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Motivation

Study two-dimensional fluid dynamics on a Möbius strip:

I application of ‘modern’ differential
geometry to fluid dynamics,

I effect of the non-orientability,
I dynamics of soap films,
I pretty pictures.

Goldstein et al

Geophysical and astrophysical
applications:

I hmm. . . exoplanets (maybe).

Möbius Strip Earth Society
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Which Möbius strip?

I Flat: periodic channel (x, y) ∈ [0, 2π]× [−1, 1] with

u(x + π, y) = u(x,−y), v(x + π, y) = −v(x,−y).

Too simple! Not embedded in R3, no pretty pictures.
I Genuine strip, made of inextensible material,

I zero Gaussian curvature,
I without external stresses,

minimising elastic energy
Starosin & Van Der Heijden 2007
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The Möbius strip, obtained by taking a rectangular strip of
plastic or paper, twisting one end through 180�, and then
joining the ends, is the canonical example of a one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since its first formulation in refs 1,2. Here we
use the invariant variational bicomplex formalism to derive
the first equilibrium equations for a wide developable strip
undergoing large deformations, thereby giving the first non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Möbius strip and
solve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat triangular regions, a
feature also familiar from fabric draping3 and paper crumpling4,5.
This could give new insight into energy localization phenomena
in unstretchable sheets6, which might help to predict points
of onset of tearing. It could also aid our understanding of the
relationship between geometry and physical properties of nano-
and microscopic Möbius strip structures7–9.

It is fair to say that the Möbius strip is one of the few icons
of mathematics that have been absorbed into wider culture. It
has mathematical beauty and inspired artists such as Escher10. In
engineering, pulley belts are often used in the form of Möbius strips
to wear ‘both’ sides equally. At a much smaller scale, Möbius strips
have recently been formed in ribbon-shaped NbSe3 crystals under
certain growth conditions involving a large temperature gradient7,8.
The mechanism proposed by Tanda et al. to explain this behaviour
is a combination of Se surface tension, which makes the crystal
bend, and twisting as a result of bend–twist coupling due to the
crystal nature of the ribbon. Recently, quantum eigenstates of a
particle confined to the surface of a developable Möbius strip were
computed9 and the results compared with earlier calculations11.
Curvature eVects were found in the form of a splitting of the
otherwise doubly degenerate ground-state wavefunction. Thus
qualitative changes in the physical properties of Möbius strip
structures (for instance nanostrips) may be anticipated and it is of
physical interest to know the exact shape of a free-standing strip. It
has also been theoretically predicted that a novel state appears in a
superconducting Möbius strip placed in a magnetic field12. Möbius
strip geometries have furthermore been proposed to create optical
fibres with tuneable polarization13.

The simplest geometrical model for a Möbius strip is the ruled
surface swept out by a normal vector that makes half a turn as
it traverses a closed path. A common paper Möbius strip (Fig. 1)
is not well described by this model because the surface generated
in the model need not be developable, meaning that it cannot be
mapped isometrically (that is, with preservation of all intrinsic
distances) to a plane strip. A paper strip is to a good approximation
developable because bending a piece of paper is energetically

Figure 1 Photo of a paper M¨obius strip of aspect ratio 2⇡. The strip adopts a
characteristic shape. Inextensibility of the material causes the surface to be
developable. Its straight generators are drawn and the colouring varies according to
the bending energy density.

much cheaper than stretching it. The strip therefore deforms in
such a way that its metrical properties are barely changed. It is
reasonable to suggest that some nanostructures have the same
elastic properties. A necessary and suYcient condition for a surface
to be developable is that its gaussian curvature should everywhere
vanish. Given a curve with non-vanishing curvature there exists a
unique flat ruled surface (the so-called rectifying developable) on
which this curve is a geodesic curve14. This property has been used
to construct examples of analytic (and even algebraic) developable
Möbius strips15–18.

If r(s) is a parametrization of a curve then

x(s, t) = r(s)+ t [b(s)+⌘(s)t(s)],

⌧(s) = ⌘(s)(s), s = [0,L], t = [�w,w]

is a parametrization of a strip with r as centreline and of length
L and width 2w, where t is the unit tangent vector, b the unit
binormal,  the curvature and ⌧ the torsion of the centreline (see,
for example, ref. 18). The parametrized lines s = const. are the
generators, which make an angle � = arctan(1/⌘) with the positive
tangent direction. Thus the shape of a developable Möbius strip
is completely determined by its centreline. We also recall that a

nature materials VOL 6 AUGUST 2007 www.nature.com/naturematerials 563

© 2007 Nature Publishing Group 

Too complicated! No closed form expression.
I Ruled surface: simple and pretty.



MOTIVATION MÖBIUS STRIP VORTEX DYNAMICS NUMERICAL SIMULATIONS

Which Möbius strip?
Ruled surface parameterised by −d ≤ ζ ≤ d and 0 ≤ θ ≤ π:

x = (1 + ζ cos θ) cos(2θ),
y = (1 + ζ cos θ) sin(2θ),
z = ζ sin θ,

Twist, x(ζ, π) = x(−ζ, 0): not a global coordinate chart.

Metric: pulling back g = dx⊗ dx + dy⊗ dy + dz⊗ dz,

g = dζ ⊗ dζ +
(
4 + 8 cos θ ζ + (3 + 2 cos(2θ))ζ2) dθ ⊗ dθ .

Area element:
µ = |g|1/2dζ ∧ dθ ,

A pseudo 2-form! Can be interpreted as the normal to M.
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Vortex dynamics on a manifold
Write the Euler equations as

(∂t + Lu)ν = dπ , div u = 0 ,

with the momentum 1-form

ν = g(u, ·).

Kelvin-friendly formulation, in Cartesian coordinates,

Dt(u dx + v dy + w dz) = d(−p + |u|2/2).

Applying d takes the curl:

(∂t + Lu)dν = 0 ,

where dν is the vorticity 2-form.
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Vortex dynamics on a manifold

In 2 dimensions:

dν︸︷︷︸
2-form

= ω︸︷︷︸
pseudoscalar

× µ︸︷︷︸
pseudo-2-form

.

Incompressibility: introduce a (pseudoscalar) streamfunction
such that

uyµ = −dψ .

This leads to the vorticity formulation

(∂t + Lu)ω = 0 , ω = ∆ψ .
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Vortex dynamics on a Möbius strip

In (ζ, θ) coordinates:

∂tω + |g|−1/2∂(ψ, ω) = 0,

|g|−1/2
(
∂ζ

(
|g|1/2∂ζψ

)
+ ∂θ

(
|g|−1/2∂θψ

))
= ω.

Boundary conditions:

ψ(ζ, θ + π, t) = −ψ(−ζ, θ, t) and ψ(ζ = ±d, θ, t) = ±C(t).

To determine C(t), use circulation conservation:

dΓ

dt
= 0 with Γ =

∑
±

∫ π

0
|g|1/2(±d, θ)∂ζψ(±d, θ, t) dθ.
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Vortex dynamics on a Möbius strip
Effect of non-orientability

Since ω satisfies

ω(ζ, θ + π, t) = −ω(−ζ, θ, t),

the vorticity dν always vanishes somewhere.

Only pseudo 2-forms can be integrated:∫
M
µ,

∫
M
ω2µ,

∫
M
ω4µ, · · ·

The Casimirs ∫
M

f (ω)µ

are well defined and invariant only for even f (·).

No Stokes theorem to relate the circulation Γ to an integral of ω.
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Numerical simulations
Discretise:

I in space, using a finite-difference scheme,
I in time, using 3rd-order Adams–Bashforth.

To control small scales:
I add (unphysical) dissipative term ε∆ω to the vorticity

equation,
I use free slip boundary conditions,
I account for the change in Γ.

Visualise:
I the vorticity 2-form dν is coordinate-independent,
I can be represented as a field of vectors normal to M,
I easier to use a colour plot of the pseudoscalar ω,
I change sign at the ‘seam’.
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Movie time
Vortex along the (single) boundary: Escher’s ant.
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Movie time
Vortex collision
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Movie time
Shear instability
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Movie time
Turbulence: with circulation around the strip.




MOTIVATION MÖBIUS STRIP VORTEX DYNAMICS NUMERICAL SIMULATIONS

Conclusions

I Fluid dynamics on manifolds:
I is fun,
I is made easy by exterior calculus.

I Non-orientability:
I has little impact on familiar vortex-dynamics phenomena,
I only affects global properties,
I probably impact the condensate that results from the

inverse energy cascade.
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