WAVE-MEAN FLOW GEOMETRIC APPROACH DYNAMICS MEAN FLOW APPLICATION CONCLUSION

000000 00 000000 00000 000 o
:

Geometric generalised Lagrangian mean
theories

Jacques Vanneste

School of Mathematics and Maxwell Institute
University of Edinburgh, UK
www.maths.ed.ac.uk/"vanneste

with Andrew Gilbert (Exeter)



DYNAMICS MEAN FLOW APPLICATION CONCLUSION

WAVE-MEAN FLOW GEOMETRIC APPROACH
000000 00000 000 o

900000 00

Wave-mean flow interactions
Separation between ‘waves’ and mean flows” in GFD:

21

» fast waves + slow motion,
» zonal mean + perturbation,
» resolved + unresolved.
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Wave—-mean flow interactions
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Wave—-mean flow interactions

Main interest is for the evolution of the mean flow, but this is
influenced by wave feedback.

Wave-mean flow theories have been developed to:

1. obtain simple governing equations for the mean,

N

include wave feedback terms that can parameterised,

@

track particle motion (e.g. for heat transport),

=~

preserve geometric structures (vorticity /potential vorticity
conservation, energy conservation, wave action),

5. be valid in multiple regimes (non-perturbative).
Important: for flows that are balanced (controlled by PV),
3+4=1

Lagrangian averaging.
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Wave—-mean flow interactions

Eulerian mean flow: does not track particle motion.

Example: zero-mean, time-periodic flow,
u=-cl(xt), #*=U =0
Particle position: expanding x(t) = xo + ex1 (t) + 2xo(t) + - - -,

ex] + ey + - - =cel(xg+ex1+---,1t)
= eU(xg, t) 4 2x1 - VU (x, 1) + - - -
Order by order,

t
x1(t) =&(t) = / U(xg,s) ds : periodic displacement,

(x2(t)) = u° = (€ - VU) : Stokes drift.
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Wave—-mean flow interactions
Generalised Lagrangian mean, GLM Andrews & Mclntyre 1978
>

Average ‘following fluid particles’:
fix particle label a,

x(a,t) = X(a,t) + £&(X(a,t)) .

Define the mean flow by
& =0 ie X(a,t)= (x(a,t)).
Lagrangian-mean velocity:
X(a,t) = #"(X,t) = (w(X + &(X,1),1))

Average equations of motion: see Biihler 2014
» nice mean vorticity equation,
» not-so-nice mean momentum equation.
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Wave-mean flow interactions

Generalised Lagrangian mean
GLM is coordinate dependent: basic definitions make sense
only in Euclidean space,

x = X(a,t) +&(X(a,t)) , ﬁL(Xa t) = WX +£(X,1),t), (§ =0,
» cannot add points,
» cannot add vectors at different points on a manifold M
(e.g. sphere),
This is damaging;:
» xe MbutX ¢ M,
» V-u=0butV-u" #0.

Take a geometric approach:
» avoid temptation of coordinate dependence,
» results valid on arbitrary manifolds,
» GLM made easy(?).
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Geometric approaCh
Notation

> use the flow map ¢; to avoid confusing maps and points,

X = ¢ta ; Qﬁtﬂ = u(¢taa t) .

> use lowercases, x € M, implicit time dependence ¢ = ¢;.

Main tools: push-forward, pull-back and
Lie derivative

(640) = V/8¢", ¢* = (67 1),

d X
L0 = a t:0(¢t) 0.

Focus on incompressible perfect fluid:
volume preserving, ¢ € SDiff(M).
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CONCLUSION
o

Geometric approach
Notation

Consider an ensemble of flow maps ¢ = ¢* : M — M.
»a=1,--- N,
» o€ [0,27], ¢%(x,t,e71t) = B(x,t, e (t — ),
> «, realisation of a flow-map-valued random process.

This defines an average for vectors and other linear objects:

N
(v*) =N~! Zv"‘, (v*) = /va da.
a=1

Aim:
1. Define a a mean flow map: ¢ € SDiff(M),
2. Derive dynamical equations for ¢.

Start with 2.
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! !
Dvynamics

Decompose flow maps into mean and perturbation
9" =600,

with £% an ensemble of perturbation maps. Holm 2000
P p

Decompqsmon of the maps Decomposition of the maps in SDiff.
at one point x.
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Dynamics

Good definition of ¢:
» requires that £* remain close to id for t > 1
» needs to be expressed in terms of ¢ or £, not u®.

The mean velocity u is defined by
ox = ii(dx), with @1 £ (u®).
Chain rule: £ (ga)—l e =y,

Deduce £ when ¢ and hence # are defined.
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Dynamics
Write Euler equations in “the right way”:
du+u-Vu=-Vp & du+u-Vu+Vu?/2) = -V(p—u?/2).
Multiplying by dx: d

a(u -dx) = —dr.

Geometrically, define momentum:
» vy =1u-dx inR”,
» v =g(u,-) =u, on general M with metric g(-,-).

Momentum is a one-form, dual to vector:

v(v) = Z vo' € R
(v =ydx' = gijuf dx’ covariant; v = v'0,; contravariant vector).
Euler equations:

o+ Lyv = —dr, divu =0.
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Dynamics

v+ Ly =—dr, ie, — (¢"'v)=—-d(¢"n).

Why is this ‘the right way’?
1. Kelvin’s circulation theorem follows at once:

7{ v= ¢ ¢*v = const.
¢Co Co

2. The form emerges directly from the variational principle

T
i dt , .
¢e§1’5‘%ffn<m>/o /Mg(” e

Euler equations: geodesic motion on SDiff(M). Arnold 1966

3. The alternative 0;u + V,u = —Vp involves the covariant
derivative V,,.
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Dynamics

Mean dynamics: pull-back Euler equations with £, then
average (on mean configuration ¢pM),

(€ (O™ + Lyar®)) = =(€Md7) & O V) +La(" V) = —d(--)
Define Lagrangian mean momentum: 7 = (£**1%) , then
O + Lyp" = —d7".

Mean Kelvin theorem follows:

d 7{ N
- ¢ v = const.
dt ¢C0

Circulation of the Lagrangian-mean one-form /" along
contours moving with velocity u is conserved
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Dynamics

Mean flow
Wave-mean flow interaction = relation between i and 7".

Pseudomomentum: —p = 7" — ¢(ii, -) .

Closure: model to express p in terms of mean fields, 70
(e.g. linear waves, a-Euler).

Remarks:

» for more complex fluid models, = = (£**-) is the natural
averaging for: buoyancy, potential vorticity, magnetic
field.. .,

» butu # .
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Mean flow

Define ¢: definition of an average
on SDiff(M)

Natural to use:
» group structure,

» Riemannian structure.

Discuss 4 definitions:
1. extended GLM,
2. optimal transport,
3. geodesic,
4. Soward & Roberts” glm.
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Mean flow
1. Extended GLM

¢ = arg min( /d2 &, % )w

¢eDiff(M

Best defined in terms of s-dependent vector fields g* such that

£ — el 795 = flow of ge at s =1.

ng + ngqg‘ =0,
» (q¢) =0ats=0
defines the mean
flow.

Perturbatively g = q1 +sq2 + - - - and Eix) = + gi + gé +oee,

) =0, (p)=-Vym, (€)=0, (&) =-1riEe.
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Mean flow
2. Optimal transport

¢ = arg min /d2 &, d*)w
»ESDiff(M)
As GLM, but with incompressibility constraint: ¢,w = w.

End condition: (g§) = V¢ ats = 0 for some . McCann 2001

Peturbatively:

(1) =0, (q2) = —P(Vgyq1),
(€) =0, (&) =1(1-P)ae) — IPTieeh),

where P projection on divergence-free vector fields.
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Mean flow
3. Geodesic

The Euler equations describe geodesics on SDiff(M) with metric
Arnold 1963

D) = P [01HSD1ffM)/ /g Yo, Js)wds, 0 =¢, 1=

Use this metric to define ¢ as a Riemannian centre of mass:

¢ = arg min (D*(¢, ¢")) .
HESDIff(M)

> 0sq¢" + PVyeqg = 0: Euler equations,
> (g =0ats =0, end condition.

Pertubatively: (q1) =0, (g2) = —P(V4,41) , same as optimal
transport to leading order.



WAVE-MEAN FLOW GEOMETRIC APPROACH DYNAMICS MEAN FLOW APPLICATION CONCLUSION

000000 00 000000 0000e 000 o |
Mean flow

Soward & Roberts 2010
4. glm

Take g = g“ to be s-independent:
¢* =e!"  Lie group exponential,

with
(7%) =0.
Perturbatively:

() =0, (q2) =0,(¢l) =0, (&)= X(clae),

The simplest theory, but
> ‘most’ flows £ cannot be written as exponentials,

» still usable perturbatively.
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Application

Inertia-gravity-wave-mean flow interactions

Start with 3D rotating, Boussinesq equations,

oy + Lyavy = —dn® + 0%dz,
o0 + L0 =0, divu® =0,

with v{ = v + f(xdy — ydx)/2.

PV (substance) conservation: Haynes & McIntyre 1990

(O + Lyo)dv® AdE* =0

Lagrangian average: (0; + L) dza- A dg"=0.
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Wave feedback of inertia-gravity waves
» assume u® = uf Feu§ +---,
~—
fast waves

» take () as fast-time average,
» i1 is geostrophically balanced: & = (=, ¢x,0) ,
» mean momentum: 7" = —¢, dx + ¢ dy + wave terms ,

» mean dynamics is controlled by Lagrangian-mean PV:

hg- + 0(h, ") =

() o
+ (O(u1,&1) + 0(v1,m)) + f(O(§1,m)) +fV - (&1 - V&) /2.

Holmes—Cerfon et al 2011, Xie & V 2015, Wagner & Young 2015, Salmon 2016
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Stimulated generation
Near-inertial waves J-H Xie
Waves with (1,0, ---) o< M(x, t)elft.

Coupled model for M and g~ conserves action and energy:

A= / IM|*dx = NIW kinetic energy,

H=1] (IV¢P + L0 + HIVMP) dx
= QG energy + NIW potential energy
Physical implications:
» A = const: no spontaneous NIW generation,

» ‘H = const: mean-flow energy decays as | VM| increases:

stimulated wave generation
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Conclusion

v

Revisit Andrews & McIntyre’s GLM using geometric
formulation to

» obtain an incompressible mean flow,
» mean trajectories constrained to M,
» coordinate independence.

» natural definition of Lagrangian mean in terms of
pull-back: 7 = (£*7),

» several definitions of the mean flow, O(£?) apart,

» mean circulation theorem is automatic,

» relation between # and 7" encodes wave-mean flow
interactions,

» geodesic GLM + Taylor closure: Holm’s c-model. Oliver 2017
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