Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	CONCLUSION
00	00	00000	000	0

Bayesian inference of ocean diffusivity from Lagrangian trajectory data

Y-K Ying, J R Maddison & J Vanneste

School of Mathematics and Maxwell Institute University of Edinburgh, UK www.maths.ed.ac.uk/~vanneste

・ロト・(四)・(日)・(日)・(日)・(日)

MOTIVATION	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	CONCLUSION
•0	00	00000	000	0

Motivation

Coarse-graining turbulent transport

The scalar concentration C(x, t) of passive scalars obeys the advection–diffusion equation

$$\partial_t C + \boldsymbol{u} \cdot \nabla C = \kappa \nabla^2 C \; ,$$

with $\nabla \cdot \boldsymbol{u} = 0$ and molecular diffusivity κ .

The velocity field u = u(x, t) is

- turbulent, complex, multiscale,
- generates fine scales in C(x, t),
- only partially resolved in GCMs.

Need to coarse grain the advection–diffusion equation, so that large-scale features of C(x, t) are well reproduced.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	INFERRING U AND K	BAYESIAN INFERENCE	QG FLOW	Conclusion
o●	00		000	0

Motivation

Coarse-graining turbulent transport

Coarse-grained model: advection-difffusion equation

$$\partial_t C + \boldsymbol{U} \cdot \nabla C = \nabla \cdot (K \nabla C) ,$$

with

- $\boldsymbol{U} = \boldsymbol{U}(\boldsymbol{x})$ an averaged velocity,
- K = K(x) an eddy diffusivity tensor.

Justified by:

- simplicity,
- asymptotic results (e.g. for $u = u(x, t/\epsilon)$),
- central limit theorem.

Applies for $t \gg$ correlation time of u.

How to estimate U and K?

Motivation	INFERRING \boldsymbol{U} and K	BAYESIAN INFERENCE	QG FLOW	CONCLUSION
00	•0	00000	000	0

Inferring *U* and *K*

Using numerical models or satellite-altimetry-based *u*,

- *U* as (Eulerian) time average, $U = \overline{u}$,
- ► *K* from flux-gradient relations in numerical experiments: $\overline{u'C'} = K\nabla \overline{C}$, eg Abernathey et al 2013

► effective diffusivity. Nakamura 1996, Haynes & Shuckburgh 2000

Want to exploit Lagrangian trajectory data (e.g. Global Drifter Program, Argo...):

$$\dot{X} = u(X,t) + \sqrt{2\kappa}\dot{W}$$

coarse-grained as

$$\dot{X} = U(X) + \sqrt{2K(X)} \diamond \dot{W}$$

Infer **U** and *K* from set of trajectories $\{\mathbf{X}^{(i)}(t_j), i, j = 1, 2, \cdots\}$.

MOTIVATION	INFERRING U AND K	BAYESIAN INFERENCE	QG FLOW	CONCLUSION
00	0•	00000	000	0

Inferring *U* and *K*

Standard approach: consider particles starting near *x*:

► **U**(**x**) as average velocity,

$$\boldsymbol{U}(\boldsymbol{x}) = \frac{1}{t} \langle \boldsymbol{X}^{(i)}(t) - \boldsymbol{X}^{(i)}(0) \, | \, \boldsymbol{X}^{(i)}(0) \approx \boldsymbol{x} \rangle,$$

• $K(\mathbf{x})$ from covariance,

$$K(\mathbf{x}) = \frac{1}{2t} \langle \left(\mathbf{X}^{\prime(i)}(t) - \mathbf{X}^{\prime(i)}(0) \right) \otimes \left(\mathbf{X}^{\prime(i)}(t) - \mathbf{X}^{\prime(i)}(0) \right) \mid \mathbf{X}^{(i)}(0) \approx \mathbf{x} \rangle,$$

or from the velocity correlation

$$K(\mathbf{x}) = \frac{1}{2} \langle \int_0^t \mathbf{u}'^{(i)}(s) \mathbf{u}'^{(i)}(0) \, \mathrm{d}s \, | \, \mathbf{X}^{(i)}(0) \approx \mathbf{x} \rangle,$$

Taylor 1922, Davies 1991, Griesel et al 2010

Assumption of locality, $K(X_i(t)) \approx \text{const}$, problematic since $t \gg T_{\text{corr}}$ needed.

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	Conclusion
00	00		000	0

The correct approach to infer any parameter. Here,

$$\boldsymbol{\theta} = (\boldsymbol{U}, \boldsymbol{K}) \; ,$$

discretised in applications, to be inferred from a single trajectory $\{X_i = X(t_i), i = 1, 2, \dots\}$.

Bayes's formula:

 $p(\boldsymbol{\theta}|\{\boldsymbol{X}_i\}) \propto p(\{\boldsymbol{X}_i\}|\boldsymbol{\theta}) \, p(\boldsymbol{\theta}) \; .$

- *p*(θ|{X_i}): posterior, pdf of values of θ given data,
- ▶ p({X_i}|θ): likelihood, solution of the advection–diffusion equation,
- $p(\boldsymbol{\theta})$: prior.

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	Conclusion
00	00		000	0

We can compute the likelihood:

$$p({\mathbf{X}_i}|{\boldsymbol{\theta}}) = \prod_i \phi_{{\boldsymbol{\theta}}}({\mathbf{X}_i}, h|{\mathbf{X}_{i-1}}), \quad h = t_i - t_{i-1}$$

where $\phi_{\theta}(x, t|y)$ is the fundamental solution of the advection–diffusion equation,

 $\partial_t \phi_{\boldsymbol{\theta}} + \boldsymbol{U} \cdot \nabla \phi_{\boldsymbol{\theta}} = \nabla \cdot (K \nabla \phi_{\boldsymbol{\theta}}) , \quad \phi_{\boldsymbol{\theta}}(x, 0|y) = \delta(x - y) .$

Problem solved?

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	Conclusion
00	00		000	0

Challenge:

► $p(\theta|{X_i})$ is a pdf in high dimension: for 16 × 16 grid, piece-uniform (\boldsymbol{U}, K) , dim $\theta = 1280$,

• sample from $p(\theta|\{X_i\})$ to estimate

$$\int f(\boldsymbol{\theta}) p(\boldsymbol{\theta}|\{\boldsymbol{X}_i\}) \, \mathrm{d}\boldsymbol{\theta}, \quad \mathrm{eg} \ \langle K(\boldsymbol{x}) \rangle = \int K(\boldsymbol{x}) p(\boldsymbol{\theta}|\{\boldsymbol{X}_i\}) \, \mathrm{d}\boldsymbol{\theta},$$

using Markov Chain Monte Carlo: $oldsymbol{ heta}_1, oldsymbol{ heta}_2, \cdots, oldsymbol{ heta}_{10^6}$,

- require $\phi_{\theta_i}(X_i, h | X_{i-1})$ for each t_i and each θ_j ,
- ► 10⁵ × 10⁶ = 10¹¹ numerical solutions of the advection-diffusion equation.

Infeasible.

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	Conclusion
00	00		000	0

Two methods to make the inference tractable:

1. Locality assumption: with (\boldsymbol{U} , K) taken as constant along particle trajectories, closed form for $\phi_{\boldsymbol{\theta}}(\boldsymbol{x}, t | \boldsymbol{y})$,

Ying, Maddison & V 2019

2. Coarse-grained inference: replace exact starting position by starting cell,

$$\phi_{\boldsymbol{\theta}}(X_i, h|X_{i-1}) \quad \rightsquigarrow \quad \bar{\phi}_{\boldsymbol{\theta}}(X_i, h|B_k) = |B_k|^{-1} \int_{B_k} \phi_{\boldsymbol{\theta}}(X_i, h|\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y}.$$

Solve 1 advection-diffusion for all $X_{i-1} \in B_k$:

$$\partial_t \bar{\phi}_{\boldsymbol{\theta}} + \boldsymbol{U} \cdot \nabla \bar{\phi}_{\boldsymbol{\theta}} = \nabla \cdot \left(K \nabla \bar{\phi}_{\boldsymbol{\theta}} \right), \quad \bar{\phi}_{\boldsymbol{\theta}}(x, 0|B_k) = \begin{cases} 1 & \text{if } x \in B_k \\ 0 & \text{if } x \notin B_k \end{cases}$$

Motivation 00	Inferring U and K 00	BAYESIAN INFERENCE	QG FLOW 000	Conclusion 0

Coarse-grained inference

For $N \to \infty$ data points, drawn from exact model with $\theta = \theta_*$,

$$p(\{X_i\}|\boldsymbol{\theta}) \asymp \mathbf{e}^{-ND(\theta)}, \quad \bar{p}(\{X_i\}|\boldsymbol{\theta}) \asymp \mathbf{e}^{-N\bar{D}(\theta)}$$

with

relative entropies (Kullback–Leibler divergences)

$$D(\boldsymbol{\theta}) = \int \phi_{\boldsymbol{\theta}_*} \log \frac{\phi_{\boldsymbol{\theta}}}{\phi_{\boldsymbol{\theta}_*}} \, \mathrm{d}x \mathrm{d}y, \quad \bar{D}(\boldsymbol{\theta}) = \sum_k \int \bar{\phi}_{\boldsymbol{\theta}_*} \log \frac{\bar{\phi}_{\boldsymbol{\theta}}}{\bar{\phi}_{\boldsymbol{\theta}_*}} \, \mathrm{d}x,$$

ション 人口 マイビン イビン トロン

- minimised for $\theta = \theta_*$: Maximum A Posteriori (MAP) estimate is exact,
- loss of information, $D(\theta) \ge \overline{D}(\theta)$.

Motivation 00	Inferring U and K 00	BAYESIAN INFERENCE	QG FLOW ●00	Conclusion 0

QG flow

Application to simulated trajectories:

- 3-layer quasi-geostrophic model,
- wind-driven, Atlantic-like,
- ► 513² resolution.

Data & MCMC

- 10-year trajectories of 676 drifters,
- exact numerical integration for approximate velocity field,
- ▶ 16×16 cells B_k ,
- ▶ 283,920 MCMC samples,
- standard Metropolis–Hastings–Gibbs sampler,
- advection-diffusion solved by finite volume.

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG flow	Conclusion
00	00		0●0	0

QG flow

Diffusivity: MAP estimate vs sampling time h

Motivation	Inferring U and K	BAYESIAN INFERENCE	QG FLOW	Conclusion
00	00		00●	0

QG flow

Comparing coarse-grained with high-resolution advection-diffusion

Initial Ensemble		MAP	Davis	
•	•	-	-	
•	%	-	>	
•	2		•	
•	•	•	•	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

00 0000 0000 000 000	Motivation 00	Inferring U and K 00	BAYESIAN INFERENCE	QG FLOW 000	CONCLUSION
----------------------	------------------	--------------------------------	--------------------	----------------	------------

Conclusion

Bayesian inference of mean velocity and diffusivity

- clear interpretation of *U* and *K*,
- made computationally tractable using coarse-grained inference,
- ▶ removes the need for locality assumption: no need that $h \ll U$ /cell length, just $h \ll T_{corr}$,
- performs well with moderate data volume,
- gives $p(\boldsymbol{U}, K|\{X_i\})$, uncertainty estimate.

Future work

- computational challenge: increase spatial resolution, improve MCMC sampler, exploit localisation,
- divergent flow, non-uniform distribution of drifters,
- application to real drifters.