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Motivation
Coarse-graining turbulent transport

The scalar concentration C(x, t) of passive scalars obeys the
advection–diffusion equation

∂tC + u · ∇C = κ∇2C ,

with ∇ · u = 0 and molecular diffusivity κ.

The velocity field u = u(x, t) is
I turbulent, complex, multiscale,
I generates fine scales in C(x, t),
I only partially resolved in GCMs.

Need to coarse grain the advection–diffusion equation, so that
large-scale features of C(x, t) are well reproduced.



MOTIVATION INFERRING U AND K BAYESIAN INFERENCE QG FLOW CONCLUSION

Motivation
Coarse-graining turbulent transport

Coarse-grained model: advection–difffusion equation

∂tC + U · ∇C = ∇ · (K∇C) ,

with
I U = U(x) an averaged velocity,
I K = K(x) an eddy diffusivity tensor.

Justified by:
I simplicity,
I asymptotic results (e.g. for u = u(x, t/ε)),
I central limit theorem.

Applies for t� correlation time of u.

How to estimate U and K?
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Inferring U and K
Using numerical models or satellite-altimetry-based u,
I U as (Eulerian) time average, U = u,
I K from flux-gradient relations in numerical experiments:

u′C′ = K∇C̄, eg Abernathey et al 2013

I effective diffusivity. Nakamura 1996, Haynes & Shuckburgh 2000

Want to exploit Lagrangian trajectory data (e.g. Global Drifter
Program, Argo. . . ):

Ẋ = u(X, t) +
√

2κẆ

coarse-grained as

Ẋ = U(X) +
√

2K(X) � Ẇ .

Figure 2: Left panel: 10-year trajectories for 50 arbitrarily selected particles in the middle layer
of the quasigeostrophic double-gyre system. The division of the domain into a 16 ⇥ 16 array of
square elements is shown in grey. Right panel: 10-year time-averaged streamfunction, multiplied
by the layer thickness, in the middle layer. Selected cells of the 16 ⇥ 16 array referred to in the
main text are highlighted in white and labelled by a letter/numeral coordinate.

We consider only particle advection, with no explicit small-scale di↵usivity,316

within the middle layer of the model. This layer experiences no direct wind forcing317

or bottom linear drag. After a 100 year spinup2 676 particles are distributed318

uniformly across the square domain. This number is chosen so as to resemble the319

typical number of ARGO drifters available in the North Atlantic (Argo, 2000).320

The particles are then advected for a further 10 years, and their positions are321

recorded daily. The resulting trajectories for 50 arbitrarily selected particles are322

shown in figure 2.323

4.3. Bayesian inference324

The domain is partitioned into a 16 ⇥ 16 array of square cells with 240 km
side lengths. Within each cell the velocity is represented as a linearly varying
non-divergent field, and the di↵usivity as a constant symmetric positive definite
tensor,

U (x) = U (x;✓) = A (x � x0) + U0, (22a)

K = K (✓) = R (�K)

✓
�1 0
0 �2

◆
R (�K)T , (22b)

2Julian years are used throughout.

12

Infer U and K from set of trajectories {X(i)(tj), i, j = 1, 2, · · · }.
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Inferring U and K

Standard approach: consider particles starting near x:
I U(x) as average velocity,

U(x) =
1
t
〈X(i)(t)− X(i)(0) |X(i)(0) ≈ x〉,

I K(x) from covariance,

K(x) =
1
2t
〈
(

X′(i)(t)− X′(i)(0)
)
⊗
(

X′(i)(t)− X′(i)(0)
)
|X(i)(0) ≈ x〉,

I or from the velocity correlation

K(x) =
1
2
〈
∫ t

0
u′(i)(s)u′(i)(0) ds |X(i)(0) ≈ x〉,

Taylor 1922, Davies 1991, Griesel et al 2010

Assumption of locality, K(Xi(t)) ≈ const, problematic since
t� Tcorr needed.
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Bayesian inference
The correct approach to infer any parameter.
Here,

θ = (U,K) ,

discretised in applications, to be inferred from
a single trajectory {Xi = X(ti), i = 1, 2, · · · }.
Bayes’s formula:

p(θ|{Xi}) ∝ p({Xi}|θ) p(θ) .

I p(θ|{Xi}): posterior, pdf of values of θ
given data,

I p({Xi}|θ): likelihood, solution of the
advection–diffusion equation,

I p(θ): prior.
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Bayesian inference

We can compute the likelihood:

p({Xi}|θ) =
∏

i

φθ(Xi, h|Xi−1) , h = ti − ti−1

where φθ(x, t|y) is the fundamental solution of the
advection–diffusion equation,

∂tφθ + U · ∇φθ = ∇ · (K∇φθ) , φθ(x, 0|y) = δ(x− y) .

Problem solved?
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Bayesian inference

Challenge:
I p(θ|{Xi}) is a pdf in high dimension:

for 16× 16 grid, piece-uniform (U,K), dimθ = 1280 ,
I sample from p(θ|{Xi}) to estimate

∫
f (θ)p(θ|{Xi}) dθ, eg 〈K(x)〉 =

∫
K(x)p(θ|{Xi}) dθ,

using Markov Chain Monte Carlo: θ1,θ2, · · · ,θ106 ,
I require φθj(Xi, h|Xi−1) for each ti and each θj,

I 105 × 106 = 1011 numerical solutions of the
advection–diffusion equation.

Infeasible.
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Bayesian inference

Two methods to make the inference tractable:
1. Locality assumption: with (U,K) taken as constant along

particle trajectories, closed form for φθ(x, t|y),
Ying, Maddison & V 2019

2. Coarse-grained inference: replace exact starting position
by starting cell,

φθ(Xi, h|Xi−1)  φ̄θ(Xi, h|Bk) = |Bk|−1
∫

Bk

φθ(Xi, h|y) dy.

Solve 1 advection-diffusion for all Xi−1 ∈ Bk:

∂tφ̄θ+U·∇φ̄θ = ∇·
(
K∇φ̄θ

)
, φ̄θ(x, 0|Bk) =

{
1 if x ∈ Bk
0 if x /∈ Bk

.
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Bayesian inference
Coarse-grained inference

For N →∞ data points, drawn from exact model with θ = θ∗,

p({Xi}|θ) � e−ND(θ) , p̄({Xi}|θ) � e−ND̄(θ) ,

with
I relative entropies (Kullback–Leibler divergences)

D(θ) =

∫
φθ∗ log

φθ
φθ∗

dxdy, D̄(θ) =
∑

k

∫
φ̄θ∗ log

φ̄θ
φ̄θ∗

dx,

I minimised for θ = θ∗: Maximum A Posteriori (MAP)
estimate is exact,

I loss of information, D(θ) ≥ D̄(θ).
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QG flow

Application to simulated trajectories:
I 3-layer quasi-geostrophic model,
I wind-driven, Atlantic-like,
I 5132 resolution.

Figure 2: Left panel: 10-year trajectories for 50 arbitrarily selected particles in the middle layer
of the quasigeostrophic double-gyre system. The division of the domain into a 16 ⇥ 16 array of
square elements is shown in grey. Right panel: 10-year time-averaged streamfunction, multiplied
by the layer thickness, in the middle layer. Selected cells of the 16 ⇥ 16 array referred to in the
main text are highlighted in white and labelled by a letter/numeral coordinate.

We consider only particle advection, with no explicit small-scale di↵usivity,316

within the middle layer of the model. This layer experiences no direct wind forcing317

or bottom linear drag. After a 100 year spinup2 676 particles are distributed318

uniformly across the square domain. This number is chosen so as to resemble the319

typical number of ARGO drifters available in the North Atlantic (Argo, 2000).320

The particles are then advected for a further 10 years, and their positions are321

recorded daily. The resulting trajectories for 50 arbitrarily selected particles are322

shown in figure 2.323

4.3. Bayesian inference324

The domain is partitioned into a 16 ⇥ 16 array of square cells with 240 km
side lengths. Within each cell the velocity is represented as a linearly varying
non-divergent field, and the di↵usivity as a constant symmetric positive definite
tensor,

U (x) = U (x;✓) = A (x � x0) + U0, (22a)

K = K (✓) = R (�K)

✓
�1 0
0 �2

◆
R (�K)T , (22b)

2Julian years are used throughout.

12

Data & MCMC
I 10-year trajectories of 676 drifters,
I exact numerical integration for approximate velocity field,
I 16× 16 cells Bk,
I 283,920 MCMC samples,
I standard Metropolis–Hastings–Gibbs sampler,
I advection–diffusion solved by finite volume.
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QG flow
Diffusivity: MAP estimate vs sampling time h

K

With locality assumption

Figure 10: Cross-stream di↵usivity K? (in 1000 m2 s�1) in the middle layer against sampling
interval s or time-lag ⌧ in selected cells, labeled on the top of each column and left of each row
(see figure 2). The blue lines are the MAP estimates of the Bayesian inference; the red lines
correspond to the Davis (1987) di↵usivity. The grey shading shows the marginal posterior density
for K?, normalised by its maximum values for each s. The dash-dot vertical lines indicate the
time taken for 10 percent of particles to exit the origin and its neighbouring 8 cells. The solid
grey vertical lines show the e-folding scale estimated from Lagrangian trajectories as described
in Appendix B. Note that the vertical lines are not shown if they correspond to times beyond
128 days.

22
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QG flow
Comparing coarse-grained with high-resolution advection–diffusion
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Conclusion
Bayesian inference of mean velocity and diffusivity
I clear interpretation of U and K,
I made computationally tractable using coarse-grained

inference,
I removes the need for locality assumption: no need that

h� U/cell length, just h� Tcorr,
I performs well with moderate data volume,
I gives p(U,K|{Xi}), uncertainty estimate.

Future work
I computational challenge: increase spatial resolution,

improve MCMC sampler, exploit localisation,
I divergent flow, non-uniform distribution of drifters,
I application to real drifters.


	Motivation
	

	Inferring bold0mu mumu UUtrueUUUU and K
	

	Bayesian inference
	

	QG flow
	

	Conclusion

