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Motivation

Coarse-graining turbulent transport

The scalar concentration C(x, t) of passive scalars obeys the
advection—diffusion equation

C+u-VC = rV2C,

with V - u = 0 and molecular diffusivity .
The velocity field u = u(x, t) is

» turbulent, complex, multiscale,

> generates fine scales in C(x, t),

» only partially resolved in GCMs.

Need to coarse grain the advection-diffusion equation, so that
large-scale features of C(x, t) are well reproduced.
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Motivation

Coarse-graining turbulent transport

Coarse-grained model: advection-difffusion equation

8C+U-VC=V-(KVC),

with

» U = U(x) an averaged velocity,

» K = K(x) an eddy diffusivity tensor.
Justified by:

> simplicity,

» asymptotic results (e.g. for u = u(x, t/¢)),

» central limit theorem.

Applies for t > correlation time of u.

How to estimate U and K?
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Inferring U and K

Using numerical models or satellite-altimetry-based u,
» U as (Eulerian) time average, U = #,

» K from flux-gradient relations in numerical experiments:
u'C' = KVC, eg Abernathey et al 2013

» effective difoSiVity. Nakamura 1996, Haynes & Shuckburgh 2000

Want to exploit Lagrangian trajectory data (e.g. Global Drifter
Program, Argo...):

X =u(X,t) + V2rW

coarse-grained as

X = U(X) + 2K(X) o W .
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Inferring U and K

Standard approach: consider particles starting near x:
» U(x) as average velocity,

u(x) = H(XO(0) ~ XO0) | X0(0) ~ ),
» K(x) from covariance,

Lo(x i — x0) 10 () _ x0) 0
K@) = 2 ((XD0) = X002 (x0 (1) - x0(0)) | x9(0)
» or from the velocity correlation

K = 5[ 00 00) 85| X0(0) = ),

A X),

Taylor 1922, Davies 1991, Griesel et al 2010

Assumption of locality, K(X;(t)) ~ const, problematic since
t > Teorr needed.
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Bayesian inference

The correct approach to infer any parameter.
Here,

0 = (U,K),

discretised in applications, to be inferred from
a single trajectory {X; = X(t;), 1 =1,2,--- }.

Bayes’s formula:

p(O1{Xi}) o p({Xi}|6) p(6) -

> p(0]{X;}): posterior, pdf of values of
given data,

» p({X;}|0): likelihood, solution of the
advection—diffusion equation,

> p(0): prior.
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Bayesian inference

We can compute the likelihood:

p({Xi}10) = [ [ ¢o(Xi,h|Xi1) , h=t;—tiy

where ¢g(x, t|y) is the fundamental solution of the
advection—diffusion equation,

Opg +U-Vog =V -(KVgg), g(x,00y) =0(x—y).

Problem solved?
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Bayesian inference

Challenge:
> p(0{X;})is a pdf in high dimension:
for 16 x 16 grid, piece-uniform (U, K), dim@ = 1280,
» sample from p(0|{X;}) to estimate

/f(H)P(HI{Xi})dO, eg (K(x)) =/K(x)P(9\{Xi})d0,

using Markov Chain Monte Carlo: 61,63, - ,010s ,
> require ¢9j(Xi, h|X;_1) for each t; and each 6;,
> 10° x 10° = 10! numerical solutions of the
advection—diffusion equation.

Infeasible.
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Bayesian inference

Two methods to make the inference tractable:

1. Locality assumption: with (U, K) taken as constant along
particle trajectories, closed form for ¢g(x, t|y),
Ying, Maddison & V 2019

2. Coarse-grained inference: replace exact starting position
by starting cell,

do(Xi, h|Xi—1) ~ ¢o(Xi,h|Br) = |Be| ™" : b0 (Xi, hly) dy.
k

Solve 1 advection-diffusion for all X;_1 € By:

1 ifx e By

Orbo+U Vo = V-(KVg) ,  da(x,0/B) = { 0 ifx¢ By
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Bayesian inference

Coarse-grained inference

For N — oo data points, drawn from exact model with 8 = 6.,
P({Xi}16) < e™NPO) | p({X;}|6) < e NPO),
with
» relative entropies (Kullback-Leibler divergences)

D(e) = /%* log QZZ dxdy, D(9) = Zk: / ¢a, log i dx,

» minimised for § = 0,: Maximum A Posteriori (MAP)
estimate is exact,

» loss of information, D(68) > D(8).
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QG flow

Application to simulated trajectories:
» 3-layer quasi-geostrophic model,
» wind-driven, Atlantic-like,
> 5132 resolution.

Data & MCMC
» 10-year trajectories of 676 drifters,
» exact numerical integration for approximate velocity field,
> 16 x 16 cells By,
> 283,920 MCMC samples,
» standard Metropolis-Hastings—Gibbs sampler,
>

advection—diffusion solved by finite volume.
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QG flow
Diffusivity: MAP estimate vs sampling time /
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QG flow

Comparing coarse-grained with high-resolution advection—diffusion
Initial Ensemble MAP Davis
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Conclusion

Bayesian inference of mean velocity and diffusivity
» clear interpretation of U and K,

» made computationally tractable using coarse-grained
inference,

» removes the need for locality assumption: no need that
h < U/cell length, just h < Teorr,

» performs well with moderate data volume,

> gives p(U, K|{X;}), uncertainty estimate.

Future work

» computational challenge: increase spatial resolution,
improve MCMC sampler, exploit localisation,

» divergent flow, non-uniform distribution of drifters,

» application to real drifters.
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