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PREFACE

This book consists of notes on lectures given at the Uni-

versity of Chicago in the academic year 1966-67. My aim in
these lectures was to develop PL theory from basic principles
and cover most of that part of the theory which does not
require the use of bundles. Thus the book is complete in
itself, apart from a very little algebraic topology. It covers
subdivision, regular neighbourhoods, general position, en-
gulfing, embeddings, isotopies and handle-body theory,
including a complete proof éf the s-cobordism theorem,

Fortunately there have been considerable simplifications
in the basic theory, in particular in the proof of Newman's
theorem that the closed complement of an n-ball in an n-sphere
is an n-ball. The original proof required a considerable study
of 'stellar theory'. This was first rendered unnecessary by
Zeeman's proof, using a large induction including regular
neighbourhood theory. M, Cohen's short proof simplified
things further. I heard of Cohen's proof just in time to put a
version of it into the lectures.

A certain amount of new material is included, notably the

proof that concordance implies isotopy for embeddings in co-
dimension <3. I have drawn heavily on E, C., Zeeman's
seminar notes on Combinatorial Topology (IHES, Paris, 1963),
for much of the basic theory, though my treatment of general

position and engulfing is somewhat different. The section on

vii
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Whitehead torsion is lifted direct from J, Milnor' s paper in
the Bulletin of the A, M. S., 1966.

I am very grateful to the Mathematics Department at the
University of Chicago for inviting me there to give these lec-
tures. I also wish to thank J. Lees and J, L. Shaneson for the
considerable amount of time and effort they spent helping me
with the preparation of these notes.

My thanks also to R, Lashof and M., A, Armstrong for
many discussions during the course, and to E, C. Zeeman for
introducing me to PL topology and for all his help and en-

couragement since,

November, 1968 JOHN F. P, HUDSON
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This characterization of faces follows from the definition. The details
appear in the appendex at the end of this chapter. Note that this characteri-
zation implies that the dimension of a proper face of a cell is strictly lower
than the dimension of the cell itself,

The proofs of the following elementary results are left to the reader:

(1) A cell is convex. Moreover, it is the convex hull of its vertices.

(2) The intersection and product of cells are cells. (We identify’

EPx E= gPT9))

(3) The convex hull of a finite set is a cell.

(4) Let AC EP pe acell. Let f: EP —> E? pe (affine) linear. Then
f(A) is a cell,

(Note that by (4), it suffices to prove (3) for the subset

{(1,0,...,0),...,(0,...,0,1)} of En, each n, a triviality.)

A Euclidean Polyhedron in Eh is any finite union of cells. We have the

following elementary properties:
(1) The intersection, union, and product of Euclidean polyhedra are

Euclidean polyhedra.

(2) The linear image of a polyhedron is a polyhedron.

If f: P—> Q is a map, Pand Q polyhedr‘a, then we say that f' is

piecewise linear provided that

(1) f is continuous; and

(2) l"f = {(x,f(x))|x ¢ P} is a polyhedron.




P ol b
(Notes if P EP ana @ &Y, r, e wt e wP )
Lemma 1.1 a) If P1 and P& are polyhedwya, and 13 P41 .P;2 R SN

Q another polydron, then £ is piecewise linear if and only if f[P1 and Ii Pd
are piecewise linear,
b) 15 P -—3% 1 is p.1, (= piecewisc linear), P any polyhedron,

¢) The composite of p. 1. maps 18 o p.ls map.

Pxooi, a) <= Since Pl and PZ are closed, is continuous if flpi,

i= 1,2, are. T = rflP W

. (P

p2

we D= ki) xe Pyl =T0 (P X Q)

{ f 1

b) If A is a cell then I’

£l P

1 = {(xox)l xe A} = {(X,y) € AX Al x = y} =

A
{ze AX A] forall i, 1 <1< m, gi(z) = 0}, where if z = (x,vy), gi(z) = XY

Here m 1is the dim,. of the Kuclidean space containing A and

x=(x!"‘.lxm)0 Y"‘(Yiy'afpym)a
c) Let P& Ep, Q& Eq, R ¢ EY be polyhedra, and let f¢ P -9 Q and

p'*'q+rm Then

g: Q—> R be p.l, maps, Let I' = {{x, f(x), gf(x))] x« P} C. E

U= {(x,{x),z)| xe P, z¢ R} " {(x,y,gy)| xe P,ye Q = (C XR) r(PX by

f
Hence 1" is a polybedron, The map w: £P x Y% EY —» EP x Er., projection

on the first and third factors, is linear. Hence m(1') = Tg ¢ is a polyhedron.
(-]

We now make a definition which will not be used for at least the rest of the
chapter, but will be referred to eventually, Let X be a topological space,

A co-ordinate map of X is a map fy P—> X, P a polyhedron, which is an




embedding [i.e., a homeomorphism onto its image]. We usually write (f,P)
to denote such a map. Two co-ordinate maps (f,P) and (g; Q) are said to be
compatible if either f(P)N g(Q) = # or there exists a co-ordinate map (h;R)
such that the following hold:
(1) h(R) = £{(P) n g(Q)

(2) £ 'h and g-ih are piecewise linear.

A P,L, structure on X is a family 3" of co-ordinate maps satisfying

the followings

(1) Any two elements of 3 are compatible,

(2) If x e X, there exists (f,P)e 3 such that f(P) is a neighborhood
of x in X, ‘

(3) 3"’ is maximal; i.e., if (f,P) is compatible with every map in 3'

then (f,P) ¢ 3’ .

If Ef" satisfies (1) and (2), it is called a basis for a P. L. structure on X,

ExamEIes: 1) If P is a polyhedron, ]_P : P—> P forms a basis for a P. L.
structure.
2) If UEEn, 3‘= {(i,P)] P a polyhedron, P C U, i: P—>U

the inclusion map} is a basis for a P. L. structure.



Cell Complexes, Simplicial Complexes, and Subdivision

A convex linear cell complex in E" is a finite set of cells in En,K

guch that
1) If Ae K, every face of A is in K.

2) If AandBe K, then ANnB=¢ or AN B =common face of A and B,

An n-simplex in EN is the convex hull of (n+1) linearly independent points ,
called its vertices. Each face of an n- simElex is the convex span of some of the
vertices and therefore is an m-simplex, m<n. We write ¢ <7 for "o is a
face of T",

A simplicial complex is a cell complex whose cells are all simplices.

If K is any complex, by IK] we denote the union of all the cells in K. We call
|K| the underlying polyhedron of K.

If K and L are cell complexes, K is called a subdivision of L if the
following hold.

0 x| = {1l

2) Every cell of K is a subset of some cell of L,

Lemma 1.2, If K is a subdivision of L, then every cell of L is the

union of cells of K.

Proof. Since |K| = |L|, it suffices to show that if A is a cell of L and

x ¢ A, then there is a cell B of K, xe¢ B, with B &€ A, There is a cell B' of

K suchthat xe€ B' and there is a cell A' of L. such that B'C A', But
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A NA'" is a common face Ai’ say., B'& A' are convex linear cells, so

B'n A1 is a face, B say, of B', and xe BE A,

A subdivision K of L is said to be simplicial if it is a simplicial compley
One of the most important types of subdivision of a simplicial complex is

stellar subdivision. In order to define stellar subdivision, we must first int-ro-,

duce the notions of joins, stars, and links; however these notions (let the

reader be forewarned!!) also are important in themselves.

Let A and B be two simplices in E". If the set consisting of all the ver
of A and of B form a linearly independent set, then we say that A and B are
joinable. By A.B we denote the simplex whose vertices are those of A and
The simplex A.B is called the join of A and B.*

If Kand L are two simplicial complexes in En, we say that K-and L
are joinable if the following hold:

(1) If Ae¢ K and Be L, A and B are joinable.
(2) If A'¢ K and B'e L, also, then either A.Bn A'.B'=§ or A.B f\A
is a face of A.B and of A'.B!'.

If Kand L. are joinable simplicial complexes, we define

K.L=KuL u{AB| Ac¢ K, B¢ L}, called the join of K and L, KL is clear |

a simplicial complex.

*
By convention, we allow A or B = and write A.f = §.A = A,
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mple: Let A and B be joinable simplices. By A we denote the complex

‘ase\ elements are A and all its faces. Then A and B are joinable complexes,

nd A.B = (AB) .

Now let K be a simplicial complex. If A ¢ K, then we make the following
efinitions:

star (A;K) = {Be¢ K| B > A}.

star(A;K) = {B ¢ K| B is a face of an element of star(A;K)}.

link(A;K) = {B € K| B and A are joinable and A.B ¢ K},

The reader can easily verify that star(A;K) and link(A;K) are complexes,
~ that A and link(A;K) are joinable, and that the following equality holds:

star (A; K) = A, link(A; K).

Remark. In general, if L is a convex linear cell complex and K is a subset
of L, then if K is the set of all cells of K and their faces, K is a subcomplex
of L i.e,, K is a subset of L which is a complex. Clearly, this notation is

consistent with the definitions of star and star.

[}
Notation, If A is a simplex, A = points of A not contained in any face.

A = subcomplex of A consisting of the proper faces. (If A = point, we put
A=g.)

Definition of SteNar Subdivision. Let K be a simplicial complex, A¢ K a

simplex, Let ae A . Then define:

T = {K - star(A; K)} U (a. A, link(A; K))

= [K - A.link(A;K)] U [a,l:.li.nk(A;K)L
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(The reader will note that in general if K, L, and M are three complexes

each joinable to the join of the othet two, then the following equality is both

meaningful and true: (K.L). M= K. (L., M)

L 1is called the complex obtained from K by starring A at a. The reader

can easily verify that L is indeed a complex and that it is a subdivision of K,
The complex L may also be obtained from K as follows, Write
K=K UA.P, with Af K. Thenset L=K U a.A.P,
We say that the complex L 1is a stellar subdivision of K if there exists a
series K= K ,K

o gt Kr = L, such that K is obtained from K by starring
Ir

r-1

a simplex at some interior point.

Picture:

P

Example of a non-stellar subdivision:

.
AN N




and if B e K, and dim B < dim A, then B will be a simpleX of the
ng subdivision.

ote that if A' denotes the first derived subdivision of A obtained by

for A, the same starring points, and A' denotes the subdivision of A

ined similarly, then

A

N
< <
1A2°'°Ar’ where Ai;tAz.,-‘:”' iAr are

1
If A is impl i i —T toeoo v i
is a simplex with vertices {ao, 9an}, =i %% ) a  1is

alled the barxcenter of A. K! is called a barzcentric first derived of K if

' . . IN
all the starring points A are barycenters.,

(r)

An rth derived subdivision K of K is defined inductively to be a first

derived of an (r-1)th derived, K(r_i).
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3., Basic Lemmas on Subdivision

Lemma 1.3. Let K Dbe a subcomplex of the simplicial complex
o

Then 1) If K' is a subdivision of K, it contains a subdivision of Ko; an
2) If K(') is a subdivision of KO, there exists a subdivision of K
containing K(').

Proof. 1) Put Ké) = {simplices of K' contained in IKOI}. If Ace K(‘),
then A is contained in a simplex of KO., For A C B, some B e K. Hence
AS BN lKol , a union of faces of B. Since A is a simplex, it lies in one of
these faces; in a simplex of KO. So K;) is a subcomplex of K' and
|Ké| - |K0| . By Proposition 1.2, every simplex of KO is a union of simplices
which are in K' and so also in K('); therefore IKO[ c |K'O| .

2) By induction on the number of simplices in K — Ko. If none, there is

nothing to prove. So suppose A An e K— KO, with 1< j=>dim i< dim

1,o.o,

let K, =K U{A ,...,A
o 1

1 }, a subcomplex. By induction, we may sup

n-1

pose that K'! is a subdivision of K, such that K(') is a subcomplex of K1

1 1
. . o
By 1), K'1 contains a subdivision (An)' of An° Let ace An . Define

K'= K} u a.(A)".

Notation. If we write K' or o(XK) to denote a subdivision of K and if L is
a subcomplex of K, by o(L) or L' we mean the subdivision of i as in 1);

it is called the induced subdivision of L and is the unique subdiviiion ~f

which is a subcomplex of K!'.
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A
=

Figure for Lemma 1.3, Part 2,

mark. Lemma 1.3 holds equally well for cell-complexes.

Lemma 1.4. If K is a cell complex, then K has a simplicial sub-

vision with no extra vertices.
Proof. Order the vertices of K. If Ae K, write A= IaBI, a the first
vertex of A, B = all faces of A not containing a. Define subdivision of cells
order of increasing dimension by the rule:

A'= a,B',
where B! is- the subdivision of B determined by the (simplicial) subdivision
of cells of lower dimension. (If A=a, set A'=a), The construction is self-
consistent because if C is a face of A containing a, then a is the first ver-

“tex of C,
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Lemma 1.5. Let A1, on e ,An be convex linear cells, Let K be a

simplicial complex in EN with Aiu ce o\ An c ’KI . Then K has an

th . - .
r derived K( v) containing subdivisions of A1, ceey An .

Proof. Let ¢ Cr be A ,... ,An and their faces, in order of

13-:0, 19

increasing dimension. Then 4 is a point, and there is obviously a first

(1)

derived K of K in which ¢, is a vertex. Suppose there exists an (r-1)-st

1
r-1)

derived K( of K containing subdivisions of ¢

For each simplex o ¢ K(r-i), let Ge on C. provided that this interesectio

(r)

cesC

17 r-1°

is non-empty. Otherwise, choose any point ¢ ¢ ¢. Let K be the rth derived

(r-1) (x-1)

(x)

obtained from K by starring each simplex of K o, at O, in order

of decreasing dimension. We are going to show that K contains a subdivision

of onN c. for all o e K(r-1) such that o n c. # ¢ This clearly implies that

(r)

K contains a subdivision of C .

3

Consider c.Nneo # . We may assume that crﬂ o £ ¢, since otherwise the
there is nothing to prove, by the inductive hypothesis. IL.et H = hyperplane of
lowest dimension containing i i.e., H is the unique hyperplane, containing

c with respect to which c. has interior points. Then crﬂ c=HNgo. For

(r-1)

ér = proper faces of . is subdivided as a subcomplex of K ,- and so its

.

. . . . . o .
intersection with o is a union of faces of o. So cr meets o only if

o-Cc':r, and so c.N c=HnNo,

feo4)
Now we prove by induction on the dimension of ¢ that for cav o e #°

. r . NP - : .
with o n cr # ¢, K( ) contains a subdivision of o N Ct° 1 = {5, 1l
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clear. By induction, K(r) contains a subdivision L. of c. N &, if

arn o ¥ . We may assume that grm o #¢. If on c.¢c o, it is alweady
subcomplex, so suppose that ¢ n . 7 ¢ . Hence we have:

cre, =oNH=0 |6 nH|=8|5nc | =5 |L].

(r)

A . o o o
ence 0.L, a subcomplex of K'"’, is a subdivision of ¢ n c. -

te. By ©. ILI , for example, we mean the join of {6} ard lL| . Clearly,

cel

Corollary 1.6. If |K| C |L|, K and L simplicial complexes, then there

)

of L which contains a subdivision of K.

(r)

ts an rth derived subdivision L(r

 Proof. By Lemma 4.5, subdivide L to get an rth derived L which

ntains a subdivision of each of the simplices of K. Let K' be the union of
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(r)

these subcomplexes . Then K' is a subcomplex of L and a subdivision

of K.

Corollary 1.7. Every Euclidean Polyhedron is the underlying set of a

simplicial complex.
N
Proof. Let A be an N-simplex containing the compact subset P of

N
E , where P = A1u ees U Ar’ each Ai a convex linear cell. Apply

Lemma 4.5 to find a subdivision of AN which contains a subdivision of

each Ai’ and take the union of these subcomplexes to get a complex whose unde

lying set is P.

Definition. If P is a Euclidean Polyhedron and K is a simplicial com-

plex with |K| = P, K is called a triangulation of P.

Unsolved Problem: Suppose K and L are simplicial complexes, and

|K| = |L|. Then is there a complex M which is a stellar subdivision of

both K and L?
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Piecewise Linear Maps, Simplicial Maps, and Subdivisions.

In this section we study the relation between piecewise linear maps and
implicial maps. If K and L are simplicial complexes, a simplicial map
K —> L is a continuous map f: |K| —> |L| which maps vertices of K to.

ertices of L and simplicies of K linearly into (and hence onto) simplices of L.

1) Although we write f;: K—> L, f is not really a function from

emarks?
T

the set K to the set L; but it may be though of as a collection of linear maps
. of simplices of K onto simplices of L.
| 2) Any simplicial map is piecewise linear. (Use Lemma 1.1.)

3) A simplicial map f{ is determined by its values on vertices.
Conversely, given a function g which assigns to each vertex of K a vertex
of K' in such a way that if VyseessvV oare in a simplex of K,

g(vi), cees g(vn) are in a simplex of L, there exists a unique simplicial
map f: K—> L which extends g. Namely, if

n n n
Z Ri =4, X\, 20 all i, set £( z )\ivi) = 2 Xig(vi)
i=1 i=1 i=1

Lemma 4.8, Let f: K—> L be simplicial. Given any subdivision L.

of L, there exists a subdivision K' of K such that f: K'*—> L' is
~ simplicial.
Proof. If A is a simplex of K, f{A) is a simplex of L. We also write

f(A) for the subcomplex consisting of f(A) and its faces, and f(A)' for the

induced subdivision.




i
i
i
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Let K, = {A ﬁf—i(o’)' Ae K and ce L'}, Then K, is a convex linear

cell complex (together with the empty set). For A N £-1(c) is a convex linea;
cell (or empty). A typical face is of the form BN f-i( T ), where B and «
are (not necessarily proper) faces of A and o, respectively. (The reader
may verify the last statement by consideration of the appropriate linear
inequalities.) Hence faces of cells of K1 and in K‘l' Moreover,

" Hn) = (AnC) n (o) n £4(n) = (AnO)n (o ), |

.

(An £ (o) (CnE

e

-1 -
which is a common face if Anf (o) and Cnf{ 1( n ).
Obviously, ]K1| = |K|. Also, f is linear on each cell of K1 and maps

vertices of K, to vertices of L', Let K'= a simplicial subdivision of K,1

1

with no extra vertices, by LLemma 1,4,

N
Lemma 1.9. Let Kand L be simplicial complexes, with |L|C€ E .,

Let f:

K| —% |L| be a map whose restriction to each cell of K is linear.
Then there exists subdivisions K' and L' of K and I respectively, such that%

f: Kt —> L' 1is simplicial. Moreover, we may insist that L' be stellar.

Proof. If Ae K, f(A) is a convex linear cell; hence there exists an cth

derived L(r) of L in which all the cells f(A), A €K, are subdivided as sub-

(

complexes, Consider K'.l = {Ar\f_1(B)| Ae K, Be L r)} Then as in

Lemma 1. 8, K1 is a cellular subdivision of K, f is linear on cells of A, andé

maps vertices onto vertices. Subdivide K1 with no extra vertices.
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ma 1.10. Let f£: |K| —> |L| be a piecewise linear map of

jal complexes. Then there exist subdivisions K'and L' of Kand L

vely, so that f: K'—> L' is simplicial. We may insist that L' be

roof. Say |K| cEP, |L| € Y. T ng+q’ the graph of f, is a poly-

f

. Let M be a simplicial subdivision of I'_, by Corollary 1.7, If

fs
Py 1 — EP 45 projection on the first factor, then by Lemma 1.9 there

subdivisions M1 and K1 of M and K respectively, such that

M, — K, is simplicial.

1 1 lM'll is a bijection; hence it is a homeo-

N

phism. Moreover, if T, is projection on the second factor,

2°(1T1| |Ml)-1: K1 —> L. But w, is a linear map, and so we may apply

-1
mma 1.9 to the map =7 °(1ri|M) : K, — L,

2 1

Now consider the following diagram:

K —>1L

In general we cannot find subdivisions of K, L, and M with respect to which

‘and g are simultaneously simplicial, as the following example shows.




-18-

Here f and g map vertices 1,2, and 3 as shown and are linear. To mak
g simplicial (3 in M is not a given vertex), we must introduce vertec 4 in K.
Then keeping f simplicial requires the introduction of vertices 4 and 5 in Li an
K respectively. Then keeping g simplicial requires 5 in M and 6 in K; ar
then we must add 6 in L. and 7 in K. Continuing in this way we find it necessa:
to add infinitely many vertices between 1 and 2 in K, for example. This ca:
not be done by subdivision,

However, there are some types of diagrams in which it is always possibl

to subdivide all the complexes soc that all the maps are simultaneously simplic

Definition. A finite diagram of cell complexes and piecewise linear map

is called a one-way tree if

1) The corresponding complex is one-connected; i.e., the diagra

has no loops; and
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2) Each complex is the domain of at most one map.

A subdivision of a diagram T is a diagram obtained by subdividing each com-

plex appearing in T. A simplicial subdivision of T is one in which all the

_maps are simplicial with respect to the subdivided complexes,

Theorem 1.44. 1Iif T is a one-way tree, it has a simplicial subdivision.

Proof. After a subdivision, we may assume that all the complexes of T
are simplicial. If T has only two complexes, this theorem is then just

emma 1.10.

Suppose T has at least three complexes. There is amap f: K—> L

T such that K is not the range of any mapin T. Let K' and L' be sub-
ivisions of K and L such that f: K'—> L' is simplicial. Let T* be the
e obtained from T by deleting f;: K—> L and replacing L by L'. By
uction there is a subdivision T = of T  which is simplicial. Let L" be

corresponding subdivision of L'. Apoly Lemma 1.8 to find K", a sub-

sion of K', such that f: K" —> L" is simplicial.
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5. Piecewise Linear Manifolds

Definition. A piecewise linear m-ball is a polyhedron which is piece-
wise homeomorphic to an m-simplex. A piecewise linear m-sphere is a
polyhedron which is p.1l. homeomorphic to the boundary on an (m+1)-simplex.

A p.l. manifold of dimension m, Mm, is a Euclidean polyhedron in which

every point has a (closed) neighborhood which is a p.l. m-ball,

Remark, One can show by topological arguments that given an m-manifold M
m is uniquely determined by M. However, this result will also follow from

the results of this section.

Lemma 1.12. If A is a convex linear cell of dimension m, then A is

p.l. m-ball,
Proof. Let A be an m-simplex containing A; i.e., let A be a simpl

containing A and contained in the unique hyperplane containing A with resped

. o

to which A has an interior. Choose a € A c A. Then let pt A—> A be
radial projection from a. It is easy to verify that p is a homeomorphism.
Unfortunately, p is not piecewise linear.
We are going to alter p to get a p.1l. map. Consider o e A,

Then a is joinable to o. A A a.oc is a union of cells, and p(Ar\a.c) = o.
Let A' be a subdivision of A which contains subdivisions of the polyhedra

-1 .
p (0)=Ana.c, o<A.

Let T be a simplex of A', Then p( 7) is a simplex contained in a face

of A. Define p't A' —> A, by letting p'(£) = p(£) if £ is a vertex of A', ant.
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extending linearly., Then p' is a well-defined p.l, map, and p'T = pr7.

. .

;So p' is p.l. homeomorphism A—> A
Finally, to define a p.l. homeomorphism f: A—> A, we just set f = p'
on A, f(a) = a, and then extend f linearly to A, Then f is a p.l. homeo-
morphism; in fact f: |a.A‘| —-> |‘aA| maps simplices linearly onto simplices.

Pictures

Remark. The map p' constructed in the proof of Lemma 1.12 is called a
pseudo-radial projection. It is obtained from an ordinary radial projection
by an adjustment which insures piecewise linearity. In the sequel, we shall

construct pseudo-radial projections with impunity and without the detailed

discussion of the last proof.

A
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Lemma 1.13. 1) Let B™ and B? pe joinable simplicial complexes

whose underlying polyhedra are an m-ball and a q-ball, respectively. Then
le. Bq| is an m+q+1 ball,
m q . s . . . .
2) Let B and S be joinable simplicial complexes, with
|B™| and m-ball, |S?| aq-sphere. Then |B™.S%| is an m+q+l ball,
3) Let S™ and S% be joinable simplicial complexes, |Sm| an B

m-sphere and |Sq| a q-sphere. Then |Sm.Sq! is an m+q+1 sphere.

Proof. 1) Let A™ and A? be an m-simplex and a q-simplex which
are non-intersecting faces of another simplex (of suitably high dimension),
Let h: B — A™ be a p.l. homeomorphism, and let k: BT — A% bea

P.l. homeomorphism. Let B m’ Biq, Aim, and Aiq be subdivisions such that

h and k are simplicial. The reader may verify that if two complexes are join

able, so are any subdivisions of these two complexes. Moreover, the vertic

m

1 and Bmo Hence h and k determi

of ’BIn.BCIn are just the vertices of B

by their values on vertices, a unique simplicial isomorphism

m
1

h. k: BIn.Biq———> A Al But A

2) As in 1), it suffices to show that if A™ and A

A1q| = |Am. Aql , an mtq+1 simplex.

at! are joinable, then

s g+ -
IAm. Al | is an m+q+1 ball. Let A™ = v, A™ 1, v a vertex of A™. Then

q+ _f__> Am—1.Aq+i defined as follows. Let f(v) be

.
.

consider the map Am,Z\ .

the barycenter of Aq+1. Let f(x)=x if x is a vertex of Aq+1 or a vertex

.
|

of A . Extend f linearly over simplices of A Aq+1, It is not hard to |

.

m-1

check that f defines a p.l. homeomorphism. Now apply 1).
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3) In 2), replace m by m+i. Then f: An'l-*.i‘,./..kq-l-1 —> Am.Aq+1.
. + ° ° +1
Moreover, £|A™TI AT )2 |A™T2| Gpere a™HET2 LA™ AT,

. m+'1. Aq+1

A is an m+q+1 sphere, As in 1), this suffices to prove 3).

Lemma 1.14. If K' is a subdivision of K, K and K' simplicial, then

(a; K) = link(a; K').
ote: = means p.l. homeomorphic,

Proof. If B'e link(a; K'), then aB' e K'. Hence there exists B ¢ K such
that aB ¢ K, and aB'< aB, since a is also a vertex of K. Hence we may
define a radial projection p: link(a;K') —> link(a; K). The map p is a topo-
/Qgical homeomorphism. In addition, p(B) is a simplex which lies in B and
s spanned by the images of the vertices of B'. Hence, using the technique of

.emma 1.12, we may find a pseudo-radial projection p's link|a; K| 2 link(a;K').

ote: In this case it is unnecessary to subdivide link(a;K') in order to define

he pseudo-radial projection. ]

Corollary 1.45. If h: |K| — |L| is a p.l. homeomorphism, K and L

simplicial complexes, then link(aj;K) 2 link(ha; L), provided ha is a vertex of L.

Proof. Let K' and L' be subdivisions so that h: K'—> L' is simplicial.

‘hen h: link(a; K') > link(ha; L') is a p.l. homeomorphism. Apply Lemma 1.14.

e

SRS

S
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Picture for 1. 14:

Case 2. be 1&, A a proper face of A. Say A= As; i.e., A is an ¢ -simplé

Corollary 1. 16, If |K| is a p.l. n-manifold, K a simplicial compley]

then if A e K, link(A,K) is an (n-r—1) sphere or ball, where r = dimension A/

Proof. First consider the case A = a is a vertex. Let B¢l |K| bea
neighborhood of A which is p.l. homeomorphic to An, an n- simplex. Then
let K' be a subdivision of K which contains a triangulation of B, Ko, as a
subcomplex. Let h: ‘K0| —5 A" be a p.l. homeomorphism.

By 1. 14, it suffices, in this case, to show that link(ajK') is an (n-1)
or ball. But link(a; K') = link(a; KO), since lKOI is a neighborhood of a in |

|k

. Let A' = stellar subdivision of A" obtained by starring at ha. Then
1.15, link(a;Ko) =~ link(ha; A'). So it suffices to prove that link(ha;A') is a
(n-1) sphere or ball.

Case 1: ha=be A, Then A'= ha.A. So link(ha; A') = &, an (n-1) sphere.
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A=A _,B 1, where B is the convex hull of the vertices not in A,

Star at b to get A'= bAB: hence link(b;A')= A.B, an (s-1) + (n-s-1) +1 =

(B; K) is a ball or sphere of dimensionn - dim B - 1.

Write A = a.Ai, where a is a vertex of A and A'1 a face. Let

= Link(A1‘,’K), an n-r sphere or ball, r=dim A. Then a is a vertex of L,

:}_t1ce a,A1 ¢ K. Moreover, B e link(a;L) <> a,B.A, ¢ K<=> B.(a.Ai) e K

1
> B e link(A; K). That is,

link (a; L) = link(A; K).

hus to complete the proof, it suffices to show only that L = link(Aig K) is an
i~r) manifold. This will be the case if, for any r, AT is an r-manifold and
. . T r+i ) ) ]

is also an r-manifold, A" and A being r- and (r+1)-31mp11ces,

spectively.

It is clear that AT is an r-manifold. Consider Ar+1. Let £ e Ar+1 be

given point. Let ¢ be an r-simplex of Ar+1 with gel o. Let x be the ver-

. cr+l
x not in o. Now, cl(AT - ¢) = T is a neighborhood of § in

+<artl

T+0'
‘1'+1_0_) - IX.

(cl = topological closure.). But cl(A o|. This is an r-ball.
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Definition. The complex K is called a combinatorial n-manifold if
for all A € K, link(A;K) is a sphere or ball of dimensionn - dim A - 1,

(Note: We have been writing link(A; K) = |link(A; K)|.)

Remark. Corollary 1.16 asserts that if |[K| is a p.l. n-manifold, then K
is a combinatorial n-manifold, Conversely, if K is a combinatorial

o
. Say xe A, Ae K, Let K' be obtained from K t

n-manifold, let x ¢ |K

starring A at x. Then |star (a;K')| = la.A,link(A;K)l, an n-ball contai

x in its interior (w.r.t. [K ). Hence K a combinatorial n-manifold implie:
]KI is a p.1l. n-manifold,

[+
Definition. Let P be an n-manifold. Let xe¢ P, We say xe P if give

any triangulation of P having x as a vertex, K, link(x; K) is a sphere. W
say X € P (or xe 8P) if for |K| = P a triangulation of P, with x a verte
link (x;K) is a ball. P is called the interior of P, and P = 0P is calledt

boundary of P. I P= @ , we say that P is a manifold without boundary.

Remarks: 1) To determine whether or not x e P 1is in the boundary or inte
it suffices to consider only one triangulation of P having x as a vertex. ¥c

iP is a2 p.1l. homeomorphism and so if K and K, are two such triangulations

1
then there is a p.l. homeomorphism link(x;K) = |k(x;K'), by Corollary 1.15.

In particular, P = P U P.
2) P Nop= @, since a ball is not homeomorphic to a sphere. This is tr
for purely topological reasons. However, the non-existence of a p.l. homeo-

_ morphism of a ball with a sphere also follows from the facts that a simplex £



-27-

a p.l. manifold with boundary |A| , a p.l. homeomorphism preserves
lboundar'y, and the following lemmas:

Lemma 1.17. An n-sphere is an n-manifold without boundary.

Proof. Let A be an (nt1) simplex. Assume a € A, A a proper face.

Star A at a to get A'=a.A,B, where A= A.B, A = A,}°3 UA.B, so

= a.A,B U A.B. Hence link(a;A') = A.B, an (n-1) sphere.

The next lemma tells us how to find the boundary of a m-manifold M using

ly one triangulation.

Lemma 1.48. If |K| = M is a triangulation of the m-manifold M, define
en

{A e K| link(A;K) is aball} . Then K is a subcomplex of K,
Ve

M, and |K| is an (m-1) manifold without boundary.

Proof., Let A e K Let B be a face of A of one less dimension. Then

x. B, x the remaining vertex. Then link(A;K) = link(x;link(B; K)), so by

link (a; K') = A, link(A; K).

refore, A e K implies a € M 1 Ad K => link(A, K) is a sphere => a ' M

To show that IK] is an (m-1) manifold without boundary, let A e K,

n Be link(A;K)<=> A.Be¢ K<> AB ¢ K and link(A.B;K) is a ball. But
(AB; K) = 1ink(B; link(A; K)), so link(AB;K) is a ball <> B is contained in

0~

‘boundary of |link(A;K)

. So link(A,K) = the boundary of |link(A;K)|, which
n(n - dim A - 2)-sphere; thus K is a combinatorial (n-1) manifold and by

t we already proved, IKI has no boundary.



Note: In view of 1.18, if K is a combinatorial manifold, we refer to

K = {A e K| link(A;K) is aball} as the boundary of K.

- 28.
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Dual Cells

The main aim of the next three sections is to prove that if S is a p.l.
here and B C S is a p.l. ball of the same dimension, then S - B is a

1. ball of the same dimension. In this section we define and study dual cells,
, the next we prove some lemmas, and in Section 8 we prove this assertion
derive some corollaries.

Let K be a simplicial complex and K' its barycentric first derived.

A e K, we define A*, the dual cell of A, to be the following subcomplex:

A = ﬂ star (v; K').

v a vertex of A

A¥

Al

B*\ '\ B

‘he reader will observe that in general the underlying polyhedron of A is not

convex linear cell.
N —ay———
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Suppose o ¢ K'. Then c=A ﬁs say, where A

<...<A ¢k,
1 5

1

and Ai is the barycenter of 21' Now o€ A if and only if o e star(v;K!')

for each vertex v of A, But o e star(v;K') if and only if vEA,. So

e A if and only if ASA1 . So

ats
=

A" = {A...A|AgA <A <...<A}
- 10.: s - 1 2 L s °

Definition. If B is a p.1l. ball of dim n, a combinatorial face of B is a
p.l. ball of dimension (n-1) lying in B.
W hen there is no danger of confusion, a combinatorial face of B will be|

referred to simply as a face of B.

Lemma 1.19. Let K be a combinatorial m-manifold. Let A ¢ K,

e

y e AT
dim A =r, Then |A | is an (m-r) ball. Furthermore, if Ae¢ K and if A

is the dual cell of A in K then A" and c1{|8(a™)| - [a#])} are faces of |

Proof. To prove the first assertion, let A ¢ K. Then

3

£ A A A ES .

A ={A.,.A|A5A <,..<A }. I ¢=A ...A € A, then for each j
1 S 1 s 1 s

~ P 2\

with A <A, write A = AB,. Then c=ﬁ,1@2,.,ABS or ¢=AB,...AB

Every o€ A" is of this form, where Bi <... < Bs ,1=1o0or 2, and
Bj € link(A;K), i<j< s,
Let link{A;XK)' be the first barycentric subdivision of link( A;K), which
: s ~
also the induced subdivision from K'. Define h: A —> Alink(A;K)' by ma
. A A s A
ping A to A and AB to B, B e link(A;K), and extending linearly over

simplices. Then by the last paragraph, h is a simplicial isomorphism. W

| A.link(A; K)'| is an (n-r) ball, since link(A;K) is an (n-r-i) sphere or ba’’.
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Suppose A ¢ K. Then the restriction of h to A# is a simplicial iso-
orphism of A# onto z/’-\\.link(A;K)'. But |k(A;K) is a p.l. ball with

£ P A °
A#, and 0A™ - A" are p.l. homeomorphic to A.A, AA and A,

espectively, where A is a simplex, (via the same homeomorphism). So

ats
N

and 9A™ - AT are faces of A ,

Lemma 1.20. Let K be a combinatorial manifold. Let {Bil i=1,...,r}

‘the dual cells in K and K . Then the following hold:
r

1) |K| = UBi

i=1

3) Bi is a union of dual cells of lower dimension than the dimension of B..

: In 2), ﬁi denotes the set IBiI——-IaBi'g

Proof. 1) Let K'= barycentric first derived of K, If xe |K|, X € 0,

A A B
me oce K', Let 6= A .,..,A , A <.,,.<A , Then oce¢ A, .
1 s 1 s 1
2) Every point of IK'l is contained in the interior of a (unique) simplex

K'. Hence it suffices to show that if o ¢ K', then ¢ is contained in at most

als
5>

A
So let o = Ai"”’:&s’ A1<... <As’ be in K', Then o ¢ A'1 . Suppose

: £ sk
€ A, Then A<A,. If AsEA , then o C |0A

. For let

1 1’

E
A — A. link(A; K) be the p.l. homeomorphism defined in the proof of

ma 1.19. Then h(o) C |link(A;K)|. Similarly, if ¢e K, then

At — A<A, ; andif A#Ai, then o c |oal |,



-32~

Hence we have only the possibilities & ¢ (A*)° and, if Ai e K, 1<i<s,
T C (Aﬁ )Y Incase of¢ (I.i)', we thus have nothing more to prove. So assume

L2 ;{:

that o ¢ (K)'; i.e., Ase K. Then %glAﬁ |, a face of Ai' So

g C !8(A1)| , and thus A# is the unique dual cell which contains o.

1

3) Consider again the map h: AT —> A | k(A; K), defined as in Lemma 1

A
(proof). Using this homeomorphism, it is easy to see that if o = AjenaA,

A1<... <As’ then o e 8(A*) if and only if A;{_A'l or o€ A#. Since

A< A1 implies A

o,

.
b<d

1

#

|

a face of |A| , this shows that | 8A;'<| is the union of dual cells of lower dim

C A and has lower dimension by 1.19, and since IA

sion.
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More Lemmas

Lemma 1.241. If B1m and B;_n are p.1l, balls, n>m, and if

F > BZ is a p.l. embedding (or homeomorphism), then there exists a

. embedding (homeomorphism) h': B1 —> B, extending h.

' Proof. AT = [x. A..m[ . A= [y. An| , x and y in the interior of A™

A", respectively, We may view h as a map h: A™ —> A", set h'(x) = y
join up linearly. This is a p.l. map, because it is simply the map obtained
subdividing A™ and A" to make h simplicial, defining h'(x) = y, and

tending linearly over simplices to get h': x. (Am)' —> v, (An)'. It is clearly

embedding.

Lemma 1.22. Let K be a simplicial complex and let V be a point which

joinable to K. Let L be a subdivision of v.K. Thenif |K| N ]star(v;L)|=’—¢,

en cl.(|v.K| - |star(v;L)|) is p.l. homeomorphic to KxXI, I=[0,1].

! = induced subdivision of K.)

Proof. Let R = link(v;L). Let p:R—> K = link(v; rK) be radial projection.
ien p is not a p.l. map. However, p carries simplices of R onto simplices
ntained in |K|. Hence we may find a subdivision K' of K which contains a
iangulation of p(A) for each simplex A of K'.

For each Ae K', letT= cl.(|v,A| - IV.AI M |V.R|) = cl.(lv.A) - IV-P—i(A)')-
is a convex linear cell (in fact, a "truncated simplex"). The faces of A are
e simplex p-i(A) and its faces, A and its faces, and the cells '_E where

< A, Moreover, Tn'_li' = m a common face of 'X' and rB—‘ Let

= {T and its faces |A € K'}. Then rl? is a cell complex and

= cL.(|[v.K]| - [|star(v;L)|).
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Let K* be a simplicial subdivision of K with no extra vertices. Then
each vertex of | K* is either a vertex of K' or the image of a vertex of K'
under p_i. Define h: K" —> KX I by sending a vertex x in K' to
h(x) = (x,0), avertex yin |R| to h(y) = (py,1), and extending linearly. Thj
definition makes sense because |R| N |K| = § and because h maps all the
vertices of any simplex in K* into the same convex subset of KX I, It is cle
that h is a homeomorphism; in fact, h maps 'X‘ homeomorphically onto
AXI,

Lemma 1.22. If P and Q are n-balls, PN Q=F is a common face, a;

cl. (P-F) and cl.(é—F) are faces of P and Q respectively, then P U Q isa

n-ball,

Proof. Triangulate and let A e cl.(P-F). Link(A;P-F) fails to be a
sphere if and only if link(A;F) is non-empty. Similarly, link(A;F) fails to
be a sphere if and only if 1link(A;P-F)# @, if Ae¢ F. So

F = Fn P-F = 8(P-F).
Similarly, O8F = 8(Q-F). Now the identity F —> F extends (by Lemma 1. 21)’

to p.l. homeomorphisms:

h1: P-F > a.ﬁ‘
h: F ——> b.F
h3: Q“F > CaF“.

(Here a,b,c, and F are assumed joinable in some Euclidean Space.) Again

we may extend h and h3 toget h: P— abF and h_:Q—> ch“, giving

17 By 4° 2
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‘1. homeomorphism

P UQ ~abF U beF = acF = ap.l. ball,

Lemma 1. 23, Let K be a combinatorial n-manifold. Let

, ) s
KX 0)U(KXI), Then K =2 K via a p.l. homeomorphism sending
7 p

to x if xe¢ K,

Proof. Let {Ail i=1,,..,N} be the simplices of K in order of decreasing

nsion. Let B, = |A|, F, = iA#
i i i

i 3 the p.1l. balls are ordered in order

ncreasing dimension, Let Di = (Bi X 0) J (Fi X I), Let

N i
cl. (K - U B,)., Let U =V X0, Let U,=U U D, . Let
j=q 1 o o i o =y
i J=
o U] Bj . We define inductively a sequence of p.1l. homeomorphisms

. —> V. such that
i i

. hil UO is given by hi(x,O) = X.
hi(x* 1) = x for all xe K
proves the lemma.

efines h . Assume h. defined,
o i-1

Di= (BiX 0) U (FiX I).

For let A be a simplex and linearly embed A X1 in vA with

S A. Pseudo-radial projection from a point in AX0 gives a p.l. homeo-~

sassssSaaaaea

SmERRRaRE

R

-
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morphism (A X 1)y (A X 1) —> vA . Hence Di is a ball.
- C . ].3 - F X -
Now, cl. (Di Fi X1) € Ui-i . hi-i maps cl.{ - F, 1) homeo

morphically to cl. (ﬁl - Fi ). Define hiIFi x) by hi(x, 1) = x. This togety

with hi defines a p.l. homeomorphism Di —_—> Bi » Which may be exten

1
to a p.l. homeomorphism Di — Bi . Combine this last map with hi—'l to

h °
get i

Corollary 1.24. There exists a neighborhood of K in K which is p.1

homeomorphic to KX I, In fact, there exists an imbedding c: KX I—>
with c¢(x,0) = x, whose image is a neighborhood of K. (The map c is cal

a boundary collar. )

Lemma 1.25, If S is a sphere and x and y are points of S, then th

exists a p.l. homeomorphism S —> S sending x to y.

Proof. Exercise. (Hint: Use pseudo-radial projection.)
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Removing Balls from Spheres.

Theorem 1.26, If B is an m-ball contained in the m-sphere S, then

1.(S-B) is an m-ball.
Proof. By induction. For m = 0, this theorem is trivial. Assume the
eorem for (m-1).

1) S-B is a manifold with boundary B For there exist simplicial com-

lexes K C K with |K| =8, |K | = B. Now |[K-K | =cl {|K| - |K |} .
o o o (o]
Recall: K-KO = simplices of K-KO and their faces.)

We show that K—Ko is a combinatorial manifold. If A e K-KO, then
, k(A;K):link(A;K-KO). For if Belink(A:K), then AB e K. Since A ¢ K,

B¢ KO. Hence Belink(A; K-KO ). Hence 1"1nk(A;K-KO) is an (n-r-1) sphere,

Say Ae (K-Ko)f\ Ko° Let r=dim A,

im: link(A; K-K ) = {ink(A; K) - link(A; K )Y .
For Be\link(A;K-Ko) <> AB ¢ K-Ko <=> AB < C, some
K-K <=> AB< AC,, some AC, ¢ K-K <=>B<C,, some C, in
o 1 1 o 1 1
(A;K) - link(A; K ). |
Now, link(A; K) is an (m-r-1) sphere, and link(A;Ko) is an (m-r-1) sphere

ball. Since link(A;KO) ?Cé link(A; K), it cannot be a sphere. Hence by

uction,

I

| Link(A;K-K_ ) | cl(|link(A; K)| - |link(A; K )])

1]

| {Tink(A3K) - Tink(A; K )} |

an m-r-1 ball. Hence K—KO is a combinatorial n-manifold with boundary

o NEK (= 9K ).

.
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2) Let L= K-KO Vv, Ko , Vv a joinable point. The identity map on

I K-KO| extends to a p.l. homeomorphism |L| _ |K| For |Ko| is

a sphere, so the identity map on |f{o' extends to a p.l. homeomorphism
Iv, I.iol E— |Ko|, by Lemma 1.21. So |L| is an m-sphere. By Lemma 1. 25

'm+'1|

let k: |[L| —> |A be a p.l. homeomorphism such that v'= kfv) is a

vertex of Am-H.
Now take first derived subdivisions and follow by further subdivision to get
a(L) and B(A) so that k: (L) —> ﬁ(A) is simplicial. Then
Sstar(v; e(L)) = star(v; af(v.ko )) does not meet oz(I.(o) and star(v'; B(A)) does
not meet 5(A1), where A = V'A1,
By Lemma 1. 22, c1(|vf<o| - | star(v; (L)) f{o X1, and
cl. { |V'.A1‘ - I'_s—izg(v';ﬁ(v'.51))| | = A1 XI. By Lemma 1. 23,
|R-—K_o| =~ [( ﬁo ) X {0} ]u If{o X I|. This last polyhedron is p.l. homeo-

morphic to

IR—:—K_O | U cl. {lv,I.(0| - | star (v;e(L)|}

= cl. {|a(L)] - |star(v;(L))| } = cl.{l'ﬁAI - | star(v';E

This last isomorphism being the restriction of k. Now,

star(v';pA ) = ns_E;f(v';B(v'.Ai)) and ﬁ(A) = ﬂ(A1) U ﬁ(v.z.&,l)., Hence the last
polyhedron above is p.l. homeomorphic to IA1| U |A,1 X1| = IA'l |, this last
homeomorphism being given by Lemma 1.23. So |I—{-‘-T<; | = IL\1] and so

cl.(S-B) is an m-ball.
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Corollary 1,27, If A is an n-ball and F is a face of A, then any p.1l.

-1
eomorphism h: ¥ —> A" extends to a p.l. homeomorphism

An = v.An-i.

Proof. F is the boundary of the ball cl.(;\-F); this was shown in 2) of the

oof of 1.26. So h|F extends to a p.l. homeomorphism
> V.An-i. Now hiu h: A—> A" = v.An_iu An"1 is a p. 1.

cl. (A—F)

n
eomorphism, and so we may extend to a p.l. homeomorphism h'l! A—> A",

Corollary 1.28, If A and B are n-balls and AN B is a common face,

A UB is an n-ball.

Proof. Immediate from 1.26 and 1, 22.

Corollary 1.29. If M is an n-manifold, B ann-ball, and B nM=F is

face of B which lies in 9M, then M UuB = M,

Proof. Let c: MXI—> M be a boundary collar. Let A = c(F X1I).

?
7
it

is an n-ball. An B= {c(x,0)] xe F} = ¢(F X 0)=F, a common face of A

G

G

d of B, Hence A UB is an n-ball,
. -1
Let F, = c(FXIUF X1), afaceof A, Let h: F, —> A" béap.l.

meomorphism. By Corollary 1.27, let h,: A —> vA, extending h, be a

1

1, homeomorphism. F1 is also a face of Ay B, since F1 = cl.(A - F).

-1
t hZ: AU B—>vA extend h, Then h'1 hZ: AUB—> A is a p.l. homeo-

orphism which is the identity on c((F X I) U (F X 1)). Define k: MUB —> M




by letting it be an extension of h1 h2 which is the identity whene

is not already defined. Then k is a p.l. homeomorphism.
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APPENDIX TO CHAPTER I.

We want to show that if A 1is a convex linear cell, then a cell B is a
face of A if and only if
1) If P is the hyperplane spanned by B, PN A =B ;
and

2) No point of P lies between any two points of A - B.

Clearly any face satisfies these conditions. Conversely, let {fi =0, gJ. >0}

be a system of equations for A. Suppose {fi = 0, g1= eoe = g = 0,
gs+1 20,004, g,c > 0} is the smallest face B of A containing B. Then
given j > s, there exists X, € B with gj(xj) >0, Put

¥, vt x

Then gj(x) >0 forall j=2st1. If ye B' and L is the line segment from

X to y, then from 1) there must exist z ¢ e 'B' with x between y and z,

By 2), yand/or z isin B. So by 1), yand z are in B. So xe¢ B, Thus

B=r§:



Chapter II - Regular Neighborhood Theory

1. CollaEsing

Definition. Suppose POQ P are Euclidean polyhedra, and suppose

B = clP(P - PO) is a p.1. ball which has BA P_ as a face. Then we say

e
that P collapses to Po by an elementary collapse, and we write P \ PO .

We say that P collapses to the subpolyhedron PO and write P\ Po if there
e e e
exists a finite sequence P =P \P \ .. \P .
T r-1 o

Remark. If P \Po, then PO is a strong deformation retract of P. For
e

suppose P \ Po; then if B = cl(P - PO), B ﬁPO is a strong deformation

retract of B, being a face of B, If Tp‘t is the deformation retraction, then

setting Q= U ?, defines a strong deformation retraction of P to Po .

1

P
o
Definition. P is said to be collapsible if P collapses to a singular poin

If this is the case, we write P\O.

By the preceding remark, every collapsible polyhedron is contractible.

The converse is false, however, as the following example shows.

Consider a two-simplex: Let D be the quotient

i

space obtained by making the identifications shown. Thesecond derived of this
two-simplex is a triangulation consistent with the identifications, and so we ma |

consider D to be a simplicial complex., Moreover, by a theorem of Whitehead“
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D is contractible; for 'rri(D) = 0, the obvious cell-decomposition shows

Hi(D) =0, 1i>0, and so 'rri(D) = 0, all i.

Now D is not collapsible. For suppose D\e*DO, D . Do = B. Let
xe 9B - BN DO. Then link(x;D) = link(x, B) = a p.1l. ball., But no point of D

has a p.l. ball as a link. It turns out that D X I\O, I1=1[0,1].

Definition. Let Kog K be simplicial complexes. Suppose A and aA
are not in K0 but are simplices of K, where a is a vertex of KO, and sup-
pose that K= Kou {A} U {aA}. (We also write this condition in the form

K= Ko + A +aA,) Then we say that K collapses by an elementary simplicial

es
11 K, d ite . W impliciall
collapse to o’ and we write K\ Ko e say that K collapses simplicially

es es es
to K if there is a finite sequence K=K \ K \ ce \ K , and if
o r r-4 o

s
this is the case, we write K \ K .
: o)

5 Definition. If K is a complex, B e K is called a principal simplex if

B is not a proper face of any simplex of K. If the face A of B is the proper

face of no other simplex of K, then A is called a free face of B in K.

Remarks: 1) An elementary simplicial collapse is an elementary collapse.
es
2) If K \ K and K=K_+A+aA, then a4 is a principal simplex of K
with free face A. On the other hand, if B is a principal simplex of K with
~free face A, then B = aA; and if Ko = K - {{Aa} v {B}), Ko is a subcomplex
: es
and K \ K .
o

3) It is false that ]KI \]Ll , L a subcomplex of K, implies that K \i\ L.



Lemma 2.1. a) A cone collapses simplicially to a subcone. Precise

s
if Kog_ K are simplicial complexes, then v.K \V.KO, v a joinable poin

b) Say K are subcomplexes of K, K, \S‘ K3 , and

1’K2

S
K NK CXK. U i
) , S K,. Then K, KZ\K3UK2 '

Proof. Let A _,... ’Ar be the simplices of K - Ko in order of decrega

1’

dimension. Then A  is a free face of the principal simplex v. A

1 Collaps

1

out A, and v.A,., Then A_ is a free face of the principal simplex v, A

1 1 2 2!

what remains, etc. ...

es
b) It suffices to consider K1 \ K3, with K, N K_C K3. Suppose

1 2 3
= s 3 N (g
Ki K3 +aA + A, Then aA and A are not in KZ’ .s1nce K,1 KZ K3.
Hence K1 v K2 = K3 U K2 + aA + A defines an elementary simplicial colla.ps
U es i
K1 KZ \1 K3 Y KZ'

Lemma 2,2. If K collapses to Ko simplicially, and if o(K) is a

S
stellar subdivision of K, then o(K) \U‘(Ko).

Unsolved Problem: Is this true for non-stellar subdivision ? It is true for

complexes of dimension < 3.

Proof. In this proof we do not distinguish in the notation between a simpll
and its associated simplicial complex. If A is a simplex, we write A for the
complex A,

It suffices to consider elementary simplicial collapses. It also suffices to
consider only subdivisions obtained by starring at one simplex. So suppose

K= Ko +aA + A, aA a principal simplex with free face A, and suppose that |
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° o
¢(K) = K - B.link(B; k) + bB link(B;K), be B, Be K,
Case 1: B not a face of aA; then (r(aA) = aA, and

o(K) = a(KO) +aA + A,
Case 2¢ B< A, Let A= BA1 , [Picture for Case 2]

(with A, = § a possibility). Then A,

1
c(aA) = b. B. a. Ai' We have:

° S . . .
a.A,.b:B N\ a.A,.B+ah .b.B,

since A'l'B + Ai.b.B is a subcomplex . B

of A, .b.B, and by Lemma 2.1.

But aA = a..BA}l +aBA1, S0

o(ah) = a.B. A, ta.b.BA, .
s 2 o(ah). L A), K A), K K Th
o, olan) N\ o(ad). Let K, =o(ad), K, = ofad), K,= oK ). Then

K N K. = olad) C
1 K2 o‘(a.A)__K3, so

K,u K, = o(as) uo(K) { K,UK, = o(K ) Vo ah) = oK ).

s
That is, o(K) \ cr(Ko), by Lemma 2.1. ~ by

Case 3: B ; aA but B¥A (9= "nota face of");

that is, BgaA. Put B=aB1, A=A1B1. Then
4B, = 4,B. So U(aA)—Ai.b.B=A1b(aB1+B1) A

aA = aA

abAiB,1

S . .
+ b, . b. + )
bA\‘aLbAiB1 bA

by Lemma 2.1.

L



Now,

abA B +bA = abA B +b(A

171 171 11 A1B1)

= abA1B1+bA B, \a(bA B, +4,B,) +bA B, ,

by Lemma 2.1 (both parts). Hence we have

s .. . .
a(aA) \a(bA1B1 +A1B1) + bA,B

174 °
Now,
o(ad) = c)'(a.AiB1 +aA1B1) (AiB +aA1B1)
= aAiBi +b(aB1 +B1)A1 = a(bAiBi +A1B1) +bA,B, .

S .
That is, a(aA) \ o(aA). Now continue as in Case 2).

Case 41 B = aA. Then o(B)= o{aA) = b.B = b(ad +A), But
. ] . . » ° S -
b(aA + A) \ baA and abA \aA = ¢(aA). Thus o(ad) \ o(aA). Now procee

as in Case 2).

e
Lemma 2.3. Let |K]| \ |L|, L a subcomplex of the simplicial com-~ -
plex K. Then there exists a subdivision K' of K such that if L' is the indu

]
subdivision of 1L, K'\L', and L' is stellar.

Proof, Let B=cl(|K| - |L|)=|K-L | Br\|L|=F,afaceoftheb
B. By Corollary 1. 27, there is a p.l. homeomorphism h:(B,F)—> (A;A ), |
where Ai is a free face of the simplex A (i.e., dim Ai = dim A-1).

Write B for the triangulalion K - L of B. Let B' and A' be subdivisi

of B and A respectively, such that h: B' —> A' is simplicial and B' is

stellar; apply Lemma 1.10 to h-i. Note that as h(F') = Ai’ B! contains a tri]
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angulation of F, say F'. Let K' be a stellar subdivision of K whose in-
duced subdivision on B is B',
Let p: A—> A

1 be the linear map which is the identity on A‘1 and sends

the vertex v opposite Ai to an interior point of Ai' Then there is a sub-

division A" of A' such that p: A" —> A;' is simplicial, and A;l‘ is a stellar
subdivision of A‘i .

Let B" be the subdivic »n of B' making h: B" —> A" simplicial. Since
hs B' —> A' was already simplicial, F" is a stellar subdivision of F', and
extends to a stellar subdivision L" of L , Put K"= B" y L", Since B" and
| L" meet in the common subcomplex F", K'' is a well defined subdivision of K,
' not necessarily stellar.

To prove this lemma, it suffices by Lemma 2.1 to prove that B" \S‘F", as
B"N L"=F", To prove that B" iF“, it suffices to prove that A" i A'i ,
ﬁhere p: A" —> A'i' is simplicial. Now let {Ai} be the simplices of A'1'
1in order of decreasing dimension. p—iAi i p-iAi ) Ai by collapsing the

.. . -1 .
Principal simplexes of p Ai from their top faces in order. Doing this in turn

 gives the required‘simplicia,l collapse of A" onto A."1 .

&
<




Theorem 2.4. If L and K are simplicial complexes, |L| € |K|, and’

if | K| \ |L|, then there exists subdivisions K'and L' with L'C K' and
s
K! \ L,
Proof. By induction, assume the theorem for all collapses consisting of
e e
most (n-1) elementary collapses. Suppose |K| = Pn \ \Po = | L]
There is a triangulation Kn of K ccntaining as subcomplexes triangulations

of P, say K, . By induction, there is a subdivision K' of K with
1 1 n-1 n-1 ,

s
K! K' ., Now, K! extends to a subdivision K' of K . By Lemma
n-1 o) n-1 n n

there exist subdivisions K" and K" of K!' and K! respectively, with
n n n n- P 4

-1 1

s
K" stellar, such that K" K" .
n-1 n n-1

By Lemma 2.2, K ix" = induced subdivision of K!' . Hence
- o]

]
Kn Kn .
n \ o
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2. Full Subcomplexes and Derived Neighborhoods

Definition. If Ko is a subcomplex of the simplicial complex K, Ko is
. gaid to be full if any simplex in K all of whose vertices lie in Ko is a

simplex of K ; i.e., no simplex in K - K has all its vertices in K
o o o

Lemma 2.5, 1) If Ko is a subcomplex of K and K(')Q_ K' are first

deriveds, then K(') is a full subcomplex of Ko .

2) If K is a full subcomplex of K and K! & K' is any subdivision

then K(') is full in K'.

3) If K isfullin K and Ace K-K_, then A N IKOI is either

empty or a single face of A. (And conversely.)

+
4) Ko is full in K <==> there exists a linear map f: K—> R

- +
such that f 1(0) = KO. (Linear means linear on simplices R = [0, ®).)

A
A, A <...<A ¢K. If A eK',
S 1 O

Proof. 1) If ce K', let o= A...
— 1 s 1

1<i<s, then A has an interior point in K and hence A_¢ K . So A, e K,
s o s ) i o

i<s, and o e K(').

,.e.,2,) be the vertices of A in K .
1 i o

e K and A, <A, Since AN |K | is
o 1 o)

3) If AeK-K meets IKOI, let (a

Let A =
e 1 span{a1,...,ai}. Then A1

always a union of faces of A, each of which is spanned by its vertices,

A= AanK |,

2) Suppose KOQ K is full. Let o e K'. Choose A e K such that the

barycenter of ¢ isin A, Then & ¢ A. Moreover, ¢ N [Ko‘l C AN |K0[ = Ai’

Ai a face of A. Therefore o n [Kol =oNn AJl , which is either empty or a




face of o¢. Thus, every simplex of K' which meets KO' meets it in exj

one face. This means that K,i-, is full in K'. (Converse of 3).)

4) If Ko € K is a full subcomplex, let f: K—> RY be defined by
setting f(v) = 0 if v is a vertex of KO and f(v)=1 if v is a vertex in
K-KO, and extending linearly over simplices. Clearly, |Ko| = f-i(O).

Conversely, if f: K—> R+ is given and we set Ko = f-i(O), then Ko‘ ;
a full subcomplex. It is a subcomplex because if x ¢ g, oe¢ K, then
f(x) = 0 => f(¢) = 0. It is full because if o ¢ K and f is zero on the verti

of o, then f(c)= 0.

Definition. Suppose that Lo is a subcomplex of L. Then we define

N(Lo; L)= U star (v; L) (union over vertices), called the closed simplicit
rel
o

neighborhood of LO in L.

Definition. Suppose that X is a polyhedron, M an m-manifold, X c M3
Let Ko§ K be a triangulation of X & M; i.e., IKOI =X, |K| = M; with
Ko a full subcomplex of K. Then N = IN(K('); K')| is called a derived

neighborhood of X in M, where Ké C K!' is the first derived subdivision of }

i

4

K & K.
o

Definition., If Kog_ K is any triangulation of X & M and if K(Er)g K

is the rtP subdivision, then |N(K(§r);K(r))| is called an rth derived neighborh

of X in M, For r2>2, an et derived neigh»orhood is a derived neighborh '
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Remark. The reason for taking full subcomplexes or at least 2nd deriveds

nemat>.

as derived neighborhoods is that we want to be able to prove that a derived
neighborhood of X collapses to X, If M= Az, X = AZ, then the first

derived neighborhood of X in M is M, which does not collapse to X. The

2nd derived neighborhood does collapse to X, however.

+
Lemma 2,6. Let Ko be a full subcomplex of K. Suppose f; K —> fR

and Ko = f-i(o), f linear. Suppose 0< &< f(v), v anyvertex in K—KO.

-1
Then f "([0,¢]) is a derived neighborhood of [KOI in [K|.

Proof, Let K' be obtained from K by starring each simplex A at

[ ° - o -
Ae¢ A in order of increasing dimensi on, choosing Ae f 1(€) if An £ 1(6) 7{ ¢

Claim: IN(K(; ;K| = f‘1([o, €]). Let ¢ be a principal simplex of N(K(‘),K').

A ~ A
A, ,,A, A <...<A , A eK. Then A, e K', so A, ¢ K, somei.
r i i o i o



Take i as large as possible with Ai € KO. Then f(gj) =0, j<i.

Ai+'1' ooy Ar have vertices whose values under f are greater than £ ,
1
(

Hence f (€) N Ai+k # #, 1<k<r-i, by linearity of f. Therefore,

A A -1
A = = = f '
£( i+1) f(Ar) € , so N(KO,K)C £ [0, € 1.
Conversely, suppose A‘i"'gr c f_i([O,e]), A1 <...< Ar' Then

fA)=0 org. If £a,)=0, then A, isavertexof K/ . If i(4,) =¢,

1

then A1 has a vertex in Ko, say v, with {v} # A1, and so

V.Ai...z&r ¢ K' and lies in f_1([0, £1). But V'Af"gr € N(Ké,‘K').

So f'i[o, g ]c IN(K'O,K')I.



Ambient Isotopy

Definition. An ambient isotopy of a polyhedron X is a p.l. homeomorphism

+ XXI—>X A1l which commutes with projection on I (i.e., is level preserving)

a.nd has the property that h(x,0) = (x,0), all xe X,

If h is an ambient isotopy, we write ht for the p.l. homeomorphism of X

fonto itself defined by setting h(x,t) = (b (x),t). I X and X, are polyhedra

2

ontained in X, we say that h throws X’l onto XZ if h'l(Xi):XZ . Two

olyhedra contained in X are said to be ambient isotopic if there exists an

mbiént isotopy throwing one onto the other. The relation "X1 is ambient

otopic to X2" is clearly an equivalence relation.

A homeomorphism k! X —> X is said tobe ambient isotopic to the identity

there exists an ambient isotopy h of X with h1 = k.

If XOQ X, we say that the ambient isotopy h of X keeps Xo fixed if

lXo X I = identity map of Xo X 1.

Lemma 2.7. Let Kog K be simplicial complexes, and let

|K| —> [Kol be a p.l. homeomorphism such that
1) h| [Kol = identity.
2) hic)=¢ , all o€ K,

hen h is ambient isotopic to the identity via an ambient isotopy keeping IKOI

Proof. Let. Tyreees ° be the simplices of K-KO, in order of increasing

Simensjon. Define H on KO X1 by setting it equal to the identity. Define H



on KX 1 by setting H(x,1) = (h(x),1) all x ¢ K. Assume that H has beewi

defined on o'j X1, all j<i, Then H is defined on the faces of O'j X1,

Extend H to u-iX I by defining H(G,

1,% ) = (ﬁ‘i, 1 ) and joining linearly, I&i

a point in B'i . This defines a p.1l. homeomorphism H: KXI—> KXI, It
easy to check that it is level preserving and is therefore the desired ambient
isotopy.

Corollary 2.8, If h: B—> B, B a p.l. ball, is a p.l. homeomorphis

and if hl B = identity of B , then h is ambient isotopic to the identity, keepi
B fixed.
Proof. Let K= 4, Ko = A and apply Lemma 2.7.

Lemma 2.9, Let Nl1 and N2 be two derived neighborhoods of the polyhe

X in the polyhedron M, Then there is an ambient isotopy throwing N1 onto
which is fixed on X,

Proof. Let K, € J, and K_CSJ

o . c : K.
1 1 > > be triangulations of X © M, with i

full in .]'i . Let primes denote first derived subdivisions,and suppose

= |[N(K';J')|]. Let K € J beacommon subdivisia
2 2 O @] 5

= L)
N |N(K1,J'1)| and N

1 2

c c e e . . — |7
of K1_ J, and K2 - .]'2 . (Choose subdivisions making 1 : |J'0| l 1| |
simplicial. They obviously are the same.) Then KO is a full subcomplex

of Jo and, so (primes denote first deriveds) NO = ]NO(J'(‘); K(‘))I is a derived |

neighborhood.

It clearly suffices to find an isotopy throwing N

1 onto No and an isotopy |

throwing N_ onto No' We will construct an ambient isotopy throwing N1 ontd

2
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+
Let f: |J1] —> R be a map which is linear on simplices, with
f"i(o) = |K1| Then f is also linear on simplices of JO. Let £ be such
’,lthat 0 <E< f(v) for all vertices v in JO-KO. Then there exist first derived
| bdivisions K ¢ 1 k¥c 77 of K €J and K
arsubd1v151ons o &9, and 1 S J1 of SR an
sk

; - F3 sk £ o 8
! guch that f 1([0,5]) = IN(Ki;Ji)I = IN(KO;JO)| = N , by the proof of

c .
1 & Ji’ respectively,

{f‘Lemma 2.6.

Let {Ai} = simplices of Ji’ Let Ji' be obtained by starring at points

o

° kd ~
Ai € Ai . Say J"1 is obtained by starring Ai € Ai . From the proof of

/ A A

3 Lemma 2.6, it is clear that we may suppose Ai = Ai
S . h * Y N .

. simplicial homeomorphism J|, —> J'1 by sending i to Ai and extending

if A, e K,, Define a
i 1

1

viflinearly over simplices. By the Lemma 2.7, h is ambient isotopic to the

dentity, keeping IKil fixed, for if o e Ji’ h(c) = &, and h| IKil = identity.
ence there is an ambient isotopy keeping |K1| fixed and throwing N,1 onto

L3 sk sk
N = IN(K 7 )| Similarly, there is an ambient isotopy keeping [KOI fixed

e

_throwing No onto N = IN(KO;JO)I, and so N, is ambient isotopic to No’

1

keeping | Ko | fixed.

Lemma 2.10. If X is a polyhedron contained in the polyhedron M, and

'if N is a derived neighborhocd of X in M, then N\X.

Proof. In view of Lemma 2.9, it suffices to prove that N \ X for one

- derived neighborhood N. So let K, € K be a triangulation of X & M, and

: + -
- assume Ko is full in K. Then let f: K —> R be linear, with £ 1(0) = KO.

Let €>0 be suchthat €< f(v), all vertices v of K - KO. We have seen that



N = f-1([0, ¢]) is a derived neighborhood of KO. So it suffices to show ¢

-1
£ ([0, e DNJK, |-
_Let {Ail i=41,...,r} be the simplices of K-Ko in order of increag
dimension. Then Ci = Aif\ f-1([0,€ ]) is a convex linear cell and so a p.1,

Let Fi = Aif‘\ f-i( £), a face. Now set UO = (KO), and set
= j = --;' . .h = .(\A'z C-'F. 1
U, =U_ Y (U{le_] 1,...,i}). Then C,NU. _, C.N A cl{ : 1} i
face of ci. So cl{Ui-Ui_i} = cl{ci -¢.n Ui_i} = c:i is a ball meeting
e -1 £
in a face. Hence U, \ U. ,. But U =£ ([0,¢]). L
i i-1 r 3

5
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4. Existence and Uniqueness of Regular Neighborhoods

Definition. Let X be a polyhedron contained in the p.l. m-manifold M.
N € M is called a regular neighborhood of X in M if
1) N is a closed neighborhood of X in M,
2) N is an m-manifold, and
3) N\X.

This section is devoted to the proof of the following theorem.

Theorem 2.14. Let X C M, M and m-manifold, X a polyhedron. Then

1) Any derived neighborhood of X is a regular neighborhood;

2) If N1 and NZ are regular neighborhoods of X in M, then there

bexists a p.l. homeomorphism h: N1 — N2 such that h(x) = x if xe X; and

3) If X is collapsible (XN 0), then any regular neighborhood of X

:a p.1l. m-ball,

Theorem 2.11 is proven by induction. We consider the following three

ements, for each integer n > O:

VE(nk' If X is a polyhedron contained in the m-manifold M, and if m < n,

2 every derived neighborhood of X is a regular neighborhood.
M If N, and N_ are derived neighborhoods of X in M™, an m-mani-

1 2
» and if m < n, then there exists a p.1l. homeomorphism h: N1 — N2 which

In a manifold of dimension at most n, every regular neighborhood of a

ible polyhedron is a p.1. m-ball.




Lemma 2.12. U(n) implies B(n).

Proof. Let dim M<n., If X \{Xo} and N is a regular neighborhoog %
of X in M, then X 1is a regular neighborhood of {xo}. Let M= |K| be
triangulation of M with X a vertex of K. Then
|_§ar—(xo;K)| = |xo.1'1nk(xo;K)| is a p.l. m-ball, and a closed neighborhood

of X - Moreover, lstar(xO;K)l \{xo}. So U{n) implies that N is homeo;

to the p.l. m-ball | star (xO,K)

Lemma 2.13. E(n-1) and B(n-1) implies E(n).

Proof. Let X & M be a polyhedron contained in the m-manifold M, m §
Let KO‘_:—_ K be a triangulation of X CM, with KO full in K. Let (
N = IN(K(');K')I . N is clearly a closed (topological) neighborhood of X, and ‘
know that N\X. So it remains only to show that N is a p.l. m-manifold.
do this, it suffices to prove that N(Kc‘); K'), for which we also write N, by ab‘
of notation, is a combinatiorial m-manifold. Using induction and the formula"'
link(AB; N) = link(A;link(B; N)) with a single vertex, it is easy to see that N ’
be a combinatorial m-manifold if {(and only if) for every vertex v of N,
link(v; N) is an (m-1)-sphere or ball.

So let v be a vertexof N. If ve KJ, then star (viK') < N, and so
link(v; N) = link(v; K') = a sphere or ball of dimension (m-1).

Suppose on the other hand that v e N-Kf‘) » Then v = 4\\ for some simplex}§
Aec¢ K, Let B=A N :Kol’ a single (si;lzpli.cia..} face of A Dby fullness of Ko

(B is clearly non-empty).
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A

Let o e K', and write 0'=A1... o’

A <.,..<A € K. Then
1 s

some j, or A< A or AS<A. So if

jt1 1

4 A
S = {%1...le ASB,<...<B ¢ K, then g¢ link(v;K)s=>o=0

e link(v; K') <s=> AJ_ <A<A

172

 where o, € (A)' and o, ¢ S, (A)' being the induced subdivision of K' on A,
j (We allow the possibility o, = #,i=1,2, and write Ui'¢ =0y g. o, = 0'2.)
Thus, link(viK') = A.S.

. A
Let L=A.S. Now A<B=>B¢ K! . Hence SAK! = g. Therefore

g
-

LA Kc') = A'n K(‘) = B', Therefore, L NN consists of the simplices of L
fﬁmeeting B' and their faces, The fact that B is convex insures that it and its

:faces form a full subcomplex of any simplicial complex containing it. We have

L AN=N(B':L) = N(B'; A'S) = N(B'; A"). S,

the last equality being a consequence of the fact that B'E& A',

N(B'; A') is a derived neighborhood.of the collapsible complex B' in the
manifold ]A'I of dimension at most (n~1). Hence by B(n-1) and E(n-1),
‘]N(B';A')I is a p.l. ball whose dimension is (dim A - 1). However, S is

1. homeomorphic to link(A; K). In fact, if A< B and C is the complementary
féce, the map on vertices which sends f?: to ¢ determines a simplicial homeo-
}’florphism qf S onto (link(A;K))'. Thus, [S| is a p.l. ball of dimension equal
to m - dim A - 1. Hence IA'.SI is a p.1l. ball fo dimension m-1.

Thus to complete the proof, it remains only to show that

hnk(V,N) = link(v; K') N N, Certainly, link(v; N) C link(vyK') n N, Conversely,

if ¢e¢ link(v;K') N N=N(B',A").S, then o= o

where o, € Al , o_¢€¢ S
i

172 1 1°' %2

o <“l'1 » T, meets B'. So VO’<VT1 o, which meets B', So voe N, gelink(v,N).

o



Lemma 2.14. If M is an m-manifold, if X C M is a polyhedron, j

B'C M is an m-ball suchthat F = BN M is a face of B, and if BN X
then there exists a p.l. homeomorphism h:cl{(m-B) —> M with h{X = jdel}

of X.

/x

Proof. By inductionon m. So assume 2.14 for manifolds of dim

and say dim M = m.
1) cl(M-B) is an m-manifold. ‘:
Namely, triangulate M so that B and F are triangulated as SI;
complexes, and consider link(x;i\_/f:-ﬁ-), x a vertex of M-B. If xe¢ M-B, th’:

link(X; M-B) = 1link(X; M), an (m-1) ball or sphere. If x¢ M-B N B, supposek“

first :‘:x¢'\,'4i). =, x4 F. Then link(x;M-B) = link(x; M) - link(x; B) is an (
sphere with the interior of an (m-1)-ball deleted, and so an (m-1) ball, If xe¢ 1
thenx e F. [FAM-B= F]. So link(%,F) is an (m-2) ball, Moreover,

(Timk(x: M) = link(x; M), and so (link(x: M)) n link(x; B) = link(x; MN B) = link{
a face of the (m-1) ball link(x;B). Hence by induction,

c1(|link(x; M)| - |link(x; B)|) is p.l. homeomorphic to |link(x; M)| , an (m-1) B



61 -

perefore, |link(x; M-B) is p.l. (m-1) ball. This proves that ci(M-B) is

manifold of dim m.

2) Let F, = BB-F. Let c:d(ci(M-B) XI—> cl(M-B) be a

oundary collar. Choose &> 0 such that c(F1 X [0, 8]) does not meet X.

; ;et D= c(Fi X [0,&]). There is a p.l. homeomorphism B 0D —> D which

s the identity on D - F. Extend to all of M by the identity, getting a p. 1.

meomorphism M —> cl(M-B).

To start the induction, we leave it to the reader to verify that in case m = 1,

1(M-B) is a manifold, and then to proceed as in 2).

Lemma 2.15. E(n-1) and B(n-1) implies U(n).

Proof. Let N bea regular neighborhood of X in M. Then we will show

hat N is p.l. homeomorphic to a derived neighborhood of X in M. (M an

kk;-manifold, X a polyhedron in M.), via a homeomorphism which is the identity

n X. This together with Lemma 2.9 will imply U(n).

Let KOC_:_ K C J be triangulations of X € NC M. We can choose KOQ K
s es es es

othat K | K . Solet K=K K., \ -+- \ K, bethecollapse. Let

o r r-1 o

" = barycentric second derived of K. Let Ui = N(Ki‘;K"). Then Ur = K",

nd U0 is a second derived neighborhood of [KOI in the n-manifold |K|. We

re going to construct p.l. homeomorphisms hi: Ui+1 -_— Ui which leave Ko

ointwise fixed. We assume by induction that hi-l-i has been constructed if i #r-'l,

0 that we may assume in particular that Ui+1 is an m-manifold.




Now let us observe that Ui = U st (¢;K"), Since & is a vertex o
cgeK, '
i
K'{ , the inclusion 2 is obvious. Suppose on the other hand, that T e U,
i

A

n =
1 meets Ki' Suppose ] Bi"'

A
B <..,<B € K'. Then for some i, B, e K¥, Hence B, e K!, so B, ¢
1 s i i i i 14

then 7571, where = és’ where

If B, is a point, then B

1 =6 o ¢ Ki . Otherwise, let ve¢ Ki be such tha

1

A
£ is a vertex of Bi' Then 6'51., ..BS e K", So in either case

T, € U st(¢; K"), and hence so does T,
o€ Ki

Now let K_+ =Ki+A+B, A=2aB, ac Ki’ A/Ki. Then the only bary
i

-

1

which are not barycenters of simplices of Kijﬁ

23

centers of simplices of Ki+1
A
A and B. Therefore
Ui+1 = Ui +P+Q, P= star(A;K“), Q= -;t_(ﬁgK“).
We now claim that the following two statements are true:
a) Uiﬂ P is a face of P.
b) (UiUP) NQ is a face of Q.
. A A
To prove a), let L = link(A;K') = A'.S, where S= {B'l'“Bs, A §B1<...’<,
(See Lemma 2.13.,) Let p: I(A:K") —> L' be simplicial homeomorphism |
A ‘.
which is defined on vertices by sending AC to C for any simplex C of L.
A —— A A
If e Pn Ui' then o ¢ 1k(A;K"), as o ¢ st (A;K") and A ¢ ¢. In addition, |
o€ link(]AD;K") for some D e Ki as o€ é?(f);K“) for some D e Ki but
A _— 1
D ¢ st(A;K"), Therefore, ce¢ PN Ui => g ¢ 1?;1k(A;K") s lk(f);K"), some D]

Conversely, it is clear that any simplex of such an intersection lies in P N |
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However, 1k(R;K") A 1k(ﬁ;K") g <= AD ¢ K!. Forif o= %1’ ..gs,

<,,. < BS ¢ K', is a simplex of this intersection, then X and ﬁ must be

1

ertices of Bi’ and conversely. So this intersection is non-

A<D or D<A. But A was a principal simplex of Ki+‘1 and D Ki' So

D< A is the only possibility, in which case D¢ aB. So we have proven the

"ollowing:
A
PNy, = U (1ink(£;K“) N link(Dj; K")).
DeaB
Since P N Ui C link(A; K"), we may consider its image under the p.l.
h . . A R .
homeomorphism p: link(A; K*)—> L'. If oe link(A;K") and De aB, then

‘lk(ﬁ;K")<‘-=>pcre'§(f);L'). Forif o= ﬁi...ﬁs, B1<...<Bse K',

- .
Tite B, = = & A 1
i A'ri. Then p(o) FpreeTs € L', But

i A —
‘:! Ik(D; K") <> D< ]_:»,‘1 <> ﬁi < A <> po € st(ﬁ; L'). So we have:

empty if and only if
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pP AU = DLeja ; st(d; L) = N{aB), L.

The last equality follows an argument similar to that used in deriving a similar
’ expression for Ui (page 62 ).
| However, (aB)' is full in A' and so also in L = A',S. Therefore, (aB)"
is full in L', |L'| is a p.l. manifold of dimension (n-1). Hence
E(n-i) = N((aB)", L') is a regular neighborhood of [a]él in |L|{. But

'Iaél \0, so by B(n-1), this regular neighborhood is a p.1, (mji) ball. Hence
.:;Pn Ui is also a p.l, (m-1) ball. Since PN Uig_ link(A; K"), which lies

‘ e boundary of P = E—tE(A;K"), this proves that P N Ui is a face of P,

To prove b), let L, = 1'1nk(ﬁ;K') = é‘.S1, say. Define pi.lk(ﬁ; K") —» L'1

.

AN A
by defining it on vertices to send BC to C. As before we have that

e Q A (U, L P) if and only if o e link(B; K") A 1link(D; K") for some D e X,

br for D= A, Once again, this intersection is non-empty if and only if B< D

D< B. Since B is a free face of the principal simplex A, the only
esibilities are D= A or D < B. So this time we find that

) —_— A A .
P{QN (U, LP) = | ) st(D:L,) = N((AB)";L)).

DeB t
D=

or A

before, we see that AB' is full in L1 = E'Si and is collapsible. So E(n-1)

B(n-1) = N((Aé:)";L'i) is an (n-1) ball, and so QN (Ui N P) is a face of Q.
To complete the proof, we are going to apply Lemma 2.44. Recall that the

tive hypothesis implied that Ui+1 is a manifold. Moreover,

Q=clQ - FrQ), where the frontier of Q is taken with respect to Ui+1'




But FrQ= (UiLJ P) n Q, a face of Q. Hence Ui 0 Q is also a face of
Hence Ui+1 is p.1l, homeomorphic to cl{U - Q} = U VP, A similar ar
i i

ment gives a p.l. homeomorphism of U U P with U,1 , using Lemma 2, {4
1

again,

Proof of Theorem 2.11. By the preceding lemma, it suffices to estab

B(0), E(0), and U(0). Let M be a zero-manifeld, X a polyhedron, X &
Then M is a finite set of points and X 1is a subset. Hence any derived neigii
hood of X 1is also X, as if P4 X, X u{P} does not collapse to X. If X

collapsible, it is a single point, so B(0) is alsu trivial.

Remark. In the course of proving Lemma 2.1, we also showed that given a

regular neighborhood N, of X in Mm, there exists a sequence of m-man

1

Z
]
<
1
W

1 r e Vo

with VO a derived neighborhood of X and cl(V1 - Vi 1) and m-ball, which

meets Vi in a face and also meets 9Y 1in a face.

-1 i
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Uniqueness of Regular Neighborhoods which Meet the Boundary Regularly

'5.
In Section 3 we proved that derived neighborhoods of a polyhedron in a

i manifold are ambient isotopic. In this section we extend this result to a larger

lass of regular neighborhoods.

Definition, A regular neighborhood N of the polyhedron X in the p.l.

,\Vma.nifold M 1is said to meet the boundary regularly if either NN oM is a

”‘,';-egular neighborhood of X N M in 9M or both of these intersections are empty.
ote: A derived neighborhood of X in M meets the boundary regularly.

+ -
For suppose f:K—> R is linear, f 1(0) = Ko’ and f(v) >€ for all vertices

¢ K-K - If Kom 0K = ¢, 9K f'1[o, € ]=4g. Otherwise 9K N f'i[o,a] is a

erived neighborhood of Ko N 8K in 0K. The uniqueness of derived neighborhods

fshows that the result holds for all derived neighborhoods.

If N,1 and N2 are two regular neighborhoods of the poly-

edron X in the manifold M which meets 8M regularly, then there exists an

Theorem 2.1 :

mbient isotopy throwing N1 onto NZ’ fixed on X.

Naturally to prove this theorem we will need some lemmas.

Lemma 2.17. Let N € M be m-manifolds. Suppose N n M is an (m-1)

nanifold, Let X € N be a polyhedron, B € N and m-ball, BN X =g, Sup-
0se B N FrM(N) is a face of B and either

1) BC Int M or

2) BN M = B, is a face of B and Biﬁ FrM(N) is a face of Bi'

1
"311 there exists an ambient isotopy of M, throwing N onto cl(N-B), which is

8tant outside an m-ball contained in M not meeting X,



Pictures:
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Proof., First of all, cI(M-N) and cl(N-B) are manifolds. Namely,
triangulate M with N as a subcomplex and let x be a vertex of M-N,

1) x ¢ M-N, Then lk(x; M-N) = link(x; M) = sphere or ball of dim m-1.

2) xe (FrN) N (Int M), Then link(x; M-N) = link(x; M) - link(x; N).
EBut lk(x; M) # link(x; N) and link(x; M) is an (m-1) sphere. Hence link(x; N)
is an (m-1) ball and the closure of the difference is an (m-1) ball.

3) xe M N Fr(N).

FrM(N) = 9N - NN 9M , which is a p.1l. (m-1)-manifold,

since we assumed that Nn M was, and by 1) and 2).

Now link(x; M-N) = link(x; M) - link(x; N) and

hink(x; M-N N N) = Tink(x; M) - link(x; N) N link(x;N).  Let B, = link(x; M),

= link(x; N), both (n-1) balls. Then Bi-B2 N B2 is a face of BZ. So

9B N ; BB ;i -
PPy B2 is a face of B2 and B1 B2 is an n-ball.

This proves cl(M-N) is a manifold. cl(N-B) is a manifold by Lemma 2. 14.

Let F, =B N Fr(N)., Let FZ = BN cl(N-B). F2 is a face of B, for in

(l ase 1) of the statement of this lemma FZ = ci(B - Fi); and in case 2,

U Bi)’ and we saw that F, U B, is a face of B in the last para-

1 1 1

raph. Triangulate M with F,, B, = BNoM, F

"j 2 = Cl(:é - F
B, N, and X as subcomplexe

2!

ngula.tion. Let D = second derived neighborhood of FZ in N-B . Note that

A e o

o T L



Since F1 and FZ are collapsible, C and D are m-balls, by the

uniqueness part of Theorem 2.11. Cn B = Fi’ a common face, so Cy B
is an m-ball. DN B = FZ , a common face, so D uUB is an m-ball,
E=C:.; B ) D is a second derived neighborhood of B in M and so is an
m-ball,

Now we consider the two cases of the statement of this lemma.
1) B € Int M.

We define f: E—> E as follows. Put hlE = identity.

Now CN(BuD)=C rn Fr(cl(M-N)) =C n(8cl(M-N)), as C ﬂ oM = ¢ 14

But F1 ¢ FrN and C is a derived neighborhood in cl(M-N) and so meets

boundary regularly. Hence C M (B 11 D) is an (m-1) ball.
(Cw B)r. D=D n 8(ciN-B)) is also an (m-1) ball. Moreover, these two bal
have identical boundaries, both contained in ﬁ. Hence the restriction of h
this common boundary extends to a p.l. homeomorphism

h,t Cn (BuUD)—> (Cw B) nD. Together with h, this defines a p.L. hom

morphism hz: C— (C ..B)' and a p.l. homeomorphism h3: (Bu D)" — Dj

which agree where they are both defined. Hence h2 extends to a p.1l. homeo ik

C—>CuB and h extendsto h_.: B D—> D, Let

morphism h4: 3 5

h= h4u h5 : E—> E. (The reader is advised to consult Picture 1 on page ‘2

Now, h(B uD)=B. Moreover, h is ambient isotopic to 1. keeping OF

E
fixed. Extend this ambient isotopy over M by letting it be the identity at eve

level for points outside E. The resulting ambient isotopy throws N onto cl(N

and leaves X f{ixed.
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2) BNOMF0. Let C,=CndM, D

. =D noM, E = ENOM. By

1

. arguing as in 1) (one lower dimension), we may find a p.l. homeomorphism

he E‘1 — E1 such that h| aEi = identity, h(ci) = C1 T

(Recall: 8M = §,) Define h on FrE by setting h|FrE = 4. Then as before,

U Bi, h(D1u B1)= D

h is defined on (C A (B u D)), which it maps homeomoprhically onto
?" ((Cv B) n D)" . (These are not equal.) Once again, this definition extends
to a.p.l. homeomorphism of E which is the identity on Fr(E). Now h is
ambient itotopic to the identity via an isotopy fixed on Fr(E), by a corollary to

. 2.7 which we did not state. Extend this isotopy as in 1).

L Notes: 1) The unstated corollary is: If A  is a principal face of A =vA

1 1’

~ any homeomorphism h: A —> A with hIVAi = jdentity, is ambient isotopic to

' the identity keeping vA, fixed. This applies because E = vE

1 1°

2) The m-ball outside which the isotopy is constant is E,

Lemma 2.48, If X C Int M™ and N'1 and NZ are two regular neighbor-

‘h oods of X which lie in Int M, then there exists an ambient isotopy throwing

N1 onto NZ'

Proof. In the proof of Theorem 2.11 (see lemma 2.14 and the remark on
page Q-(»), we showed that there exists a sequence of m-manifolds,
Ny = Vr 2 Vr 1> - .'.DVO with Vo a derived neighborhood of X in M and

W ith Bi = (:l(Vi - Vi 1) and m-ball which meets V, and BVi in faces. Since

-1
BiE Int M, Bin(BVi) = Bif'\ FrVi. Hence Lemma 2.1  applies: there exists

an ambient isotopy of M, fixed on X, throwing Vi onto Vi 1 Hence N1 is

ambient isotopic to a derived neighborhood. So is N_, and derived neighborhoods

2

Te ambient isotopic.



Lemma 2.19. If X CM™, and N

" and N2 are regular neighborhood
of X mOM in OM, then there exists an ambient isotopy of M, fixed on X

throwing N, onto NZ .

1

Proof. Let M be triangulated with N'1 and X as subcomplexes wit
N1 \s XN oM, Let UO = 2nd derived neighborhood of X with respect to thi
triangulation. Then Uof\ OM is a second derived neighborhood in M of
X N dM. We saw in the proof of Theorem 2.11 (see Lemma 2.415) that in 8

there exists a collection of (m-1) manifolds N'1 = Vr 2 ...2 V0 = Uo such ti

cl(Vi - Vi 1) is a ball meeting Vi-i and B(Vi) in faces. As 98(0M) = ¢,
BVi = FraM Vi . Therefore, Lemma 2.1 applies to each pair Vi Vi-1 to

give an ambient isotopy throwing Vi onto Vi 1 constant outside of an (m-i)
ball in 8M which does not meet X, Call this ambient isotopy Hi , and let

be the ball outside of which it is constant (may take Ei = 2nd derived neighboi"

hood of c1(vi-vi ,) in 3M). Eif\ X =g,

Now triangulate M with X and E  as subcomplexes., Let Fi= 2nd deriy
i !

E

of E‘i in M, Fiﬁ X =@ . We extend H, to Fi as follows: Put Hi= iden ,

on FrM(Fi) and extend Ir-I1 and H over Fi and Fi X I in the usual way (see}

Section 3, Lemma 2.7 and Corollary 2.8.). Now put Hi = identity on the rest i

M X 4. This defines an ambient isotopy of M throwing Vi onto Vi-1' Com

posing these isotopies defines an isotopy throwing N,  onto Uo M 8M, fixed on =

1

Similarly, NZ is ambient isotopic to UO' ry OM, UO' a derived neighborhood of |

X also. But U(‘) is ambient isotopic to Uo’ and any ambient isotopy throwing |
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i onto Uc'> must throw Uof\ OM onto Ué)f\ 9M, as p.l. homeomorphisms of

manifolds preserve boundary.

B

oM

Lemma 2.20, If N is a regular neighborhood of X in M and if N meets

M regularly, then N \X L (NN BM)\J X.
Proof. First suppose that N is a derived neighborhood of X, i.e.,

]N(Ké sK")| , where KOC K is a triangulation of X € M with K0 a full

Bubcomplex. Let A , .,Ar be the simplices of K-KO which meet KO, ordered

R

0 as to satisfy the following tow properties:

a) Simplices of K preceed those of K.

b) Ai preceeds its faces.

LN [K | =B, a single faceof A, A N N= |N(B!;A"]|, a ball.
o 1 1 1 11

10 N=N(B; A;), a face of this ball., Hence

U, = l?t<iolu{jL=)1 (Nnaj} | K| u{jg1 (NA AN =, ,
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r . r
as U (Nn A) x U (N n Aj) and by Lemma 2.1, (applied to a sub-
i=1 j=it

division in which the collapses are simplicial). Lemma 2.1 applies because

K In (| J Nna) = |KOM(U a) ClK_|n (U a), forifa
j=1 : RIS j=i+t

point of Ko is contained in Aj’ some j, it is contained in a proper face of A,
J;

Now suppose that N is a regular neighborhood of X which meets the bou
regularly. Then N A 9M is a regular neighborhood of X N 3dM in 9M,
Claim: N N 9dM C 8N is a regular neighborhood of X N 9N in 0N,
N N M is a neighborhood of X N 9N in ON because
XNAN=(XNFrN) (XN NAdM)=XNdM as XN FrN=f and NnOM i
obviously a neighborhood of X M 8M in 8N, N N3dM is an (m-1) manifold
which collapses to X M oM = X N ON,
Let N, be a derived neighborhood of X in M, Then N, meets dM

1 1

regularly. Now, there exists a p.l. homeomorphism h: N —> N, such that

1
h|X = identity and h(N) = N,. Moreover, h(NN3M) and N, N 8M are both
regular neighborhoods of X N 8N1 in 8N1. Hence there exists an ambient
isotopy of N, fixed on X, throwing h(NN3M) on N, N OM. In particular,

1’ 1

there exists a p.l. homeomorphism h' of N onto N, with h'|X = identity,

1

such that h'(N N 8M) = N, N 9M. But N1\‘X L (N, N oM) \( X. Hence

1
N\ X u(Nn M) xX, since (h')"~ preserves collapses,
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Proof of Theorem 2.16. We are going to show that any regular neighbor-

hood which meets the boundary regularly is ambient isotopic to a derived neigh-
borhood. Since derived neighborhoods are ambient isotopic, this will prove 2.16.

So let N be a regular neighborhood of X in M meeting OM regularly.

¢ Then N \X v (M (\N)‘ X. Let K be a triangula:tion of M such that X and

N are triangulated as subcomplexes, Ko and L, say. We may suppose that
es

s . \S es
L \ Ko v (L n K) \ Ko . Let L= Kr \ \ KO be these two collapses,

with Ks = KOU (L n I.<), some s < r, Let Ui = N(K'{ ‘;K"r), where K" = 2nd

derived of K. Let Ki =K, , +A+B, A=aB. Then we have seen (Lemma 2.15)

i-1

—_— A —_— A
hat Ui = Ui-i U P UQ, where P = st (A;K"), Q= star(B; K"), and that there
exists a p.l. homeomorphism Ui = Ui 1 vPz Ui e We are going to use

Lemma 2.16 to show that in fact Ui is ambient isotopic to Ui 1U P and

VU P is ambient isotopic to Ui , keeping X fixed. This will complete the

Either A and B are both in M or neither is in 9M, In the latter case,
P and Q both do not meet 9M, In this case, P P\Fr(Ui 4V P)= Pr\a(Ui 1U P),

d we have seen (page ég ) that P n 3(U, , u P) is a face of P. Similarly,

i-1
QN Fr(Ui) =Q n B(Ui) is a face of Q. Hence by Lemma 2.16, there are ambient

otopies throwing Ui onto U, ,J P and Ui J P onto Ui'
i -

-1 1

Suppose on the other hand that A and B are both in M. Then

A e N .
tar(A; K") N K" = star(A:K") and similarly for %, so P and Q each meets dM
a face. We still have that Pn Fr(Ui s P) is a face of P, and

NFr Ui is a face of Q. Hence in order to conclude the proof by applying



VU P) and

Lemma 2.16. we must show that (P N M) n Fr(Ui-i

(Q NnaM) n FrUi are faces of P n 3M and Q NoM, respectively.
Now, N N aM = |K‘I'_ N I.i"l is a regular neighborhood of IKO n K | =

. . \€es
Moreover, Krf'\ K=.,..= KS’\ K

. fs KO(\ K . (We are assuming
here that i<s.) Clearly, we have that U, N 8M = N(KJ n K ;K N K )
N((Ki/\ k)";(Krm I.{)“). Also, we just noted that P N oM = star(?\;l'{") an
QnNnoM= star(ﬁ;l.{" ). Hence, the arguments of Lemma 2.15 (see page 43 )
apply in M to show that (P N 8M) n E)[(Ui_1 Vv P) n 8M] and

(Qn M) n B(Ui N OM) are faces of P nOM and Q N OM, respectively. B

8l(U,_,U P)n aM] = [Fx(U,_, u P)] A 8M, and 3(U; N 8M) = (FrU) N 8M.

Thus P n dM n Fr(U,

LV P) is a faceof PN 3M and Q N M f\Fr(Ui) i
1—

face of Q n oM,

CIntB B, and B, p

Corollary 2.16.1 (Annulus Property): Say B , By 5

1

m-balls. Then cl(B‘2 - Bi) is p.1l. homeomorphic to B1X I

Corollary 2.16. 2. (Generalized Annulus Property): If N1 and N2 are

C Int. N, and if N, meets 0

regular neighborhoods of X in M with N MmN, 1

1

regularly, then there exists a p.1l, homeomorphism

h: cl(NZ-N ) —> (Fr Ni)XI'

1 M

Proof. Clearly, 2.16.2 implies 2.16.1, since a ball is a regular neighb
hood of any interior point. To prove 2, 16.2, let Ko be a full subcomplex of 3
|K| = M, with [Kol = X. Let ®: K—>[0,1] be a simplicial map (vertices
1

(

[0,1] are 0 and 1) with &~ 0)=Ko. Choose 0< ¢ <¢,<1. Thenby 2.14,3
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| there exists a p.l. homeomorphism h! Nz—-> ¢-1[0,£2], hIKo = identity.
~‘ -1 .
E Now , h(Ni) and ¢ [0, 81] are regular neighborhoods of X in g 1[O, EZ]

which meet the boundary regulariy (in fact, N1 meets BNZ regularly and

¢"1[0, ei] is a derived neighborhood). Hence these two neighborhoods are

)lambient isotopic; in particular, there exists a p.l. homeomorphism

k.

b 0700, £,]—> 271[0, €,] such that (n(N,)) = ¢ 0, e,]. So

3 -1 -1
EcN_-N, ) =g [e,, €] =24 (g,)X1I = FrN, X1,
b2 1 1’ =2 1 nedied x 4 1

e
A

l ddendum 2.16.3. Let Ni’NZ' N3 be regular neighborhoods of X in M

eeting 9M regularly. Suppose N1 and N2 are (topological) neighborhoods

N3. Let PE M - (N1 ! NZ) be a polyhedron. Then there exists an ambient

otopy of M, fixed on P UN,, throwing N, onto N,.

P o . < i i - & ° - -—» .
roof. 2.17.2 implies cl(N:l N3) (FrMN3 X I). Hence cl(N'1 N3) FrN3

ence Ni\ N3 (Lemma 2.1). Similarly, N_ is a regular neighborhood of N

2 3°

N4 be a second derived neighborhood of P. Then N1 v N4 and N2 J N4

_regular neighborhoods of N3 U P meeting 9M regularly. (Ni NN, = g,
1, 2.) Hence there exists an ambient isotopy throwing N1 U] N4 onto

N4, keeping N_ U P fixed. Since a p,l. homeomorphism is continuous and

3

aps connected components onto connected components, it follows that this

ent isotopy throws Nl1 onto N2°



Chapter III -- P, L. Spaces and Infinite Complexes

1., Introduction.

Chapters I and II have been confined to the study of compact polyhedra an
p.l. manifolds contained in given Euclidean spaces. As in Differential Topoh;
where one can introduce abstract manifolds, one can define P, L. spaces and
manifolds without reference to an ambient Euclidean space and without the
hypotheses of compactness. In this chapter we propose to study abstract P,

spaces and manifolds and to indicate how to extend the preceding results to such ]

4

objects.

One can also define the notion of a locally finite infinite complex conta.ine"

in a given Euclidean space (possibly E®). We will show that the notions of P

space and infinite complex are essentially equivalent. In particular, compacﬁ

P.L. spaces and manifolds are no more general than the finite polyhedra and

. p.l. manifolds which we have been considering.

2. Triangulation of P, L, Spaces and Manifolds.

Definition, Let X be a topological space. A co-ordinate map (£, P) iS{
a topological embedding f: P —> X of a Euclidean polyhedron P. Two such
maps (f,P) and (g, Q) are compatible provided that if £(P) n g(Q) g therei
exists a coordinate map (h,R) such that h(R) = g(Q) n £{(P) and f-ih ‘and g ‘
are p.l. maps. Equivalently, we say that (f,P) and (g, Q) are compatible !

-1 -
f (gQ) is a subpolyhedronof Q and g e ¢ (gQ) —> Q is a p.l. map.

(Put h= glf-ng), assuming f(P) N g(Q) = 4.
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Definition. A P, L. structure 3 on X is a family of coordinate maps

such that
1) Any tWo elements of ? are compatible.
2) For all x ¢ X, there exists (f,P) ¢ 3 such that f(P) is a topological
neighborhood of x in X,

3) :} is maximal, i.e., if (f, P) is compatible with every map of 9! ,

| then (£,P) e 7.

If X is a 2P countable Hausdorff space, the pair (X, 3’ ) is called a

P. L, space.

Definition. A family of coordinate maps :71 on X satisfying 1) and 2) is

alled a base for a P. L., structure on X,

Lemma 3.1. Every base A for a P.L. structure on the topological

pace X is contained in a unique P.L. structure 3"’ .

Proof. Let ? = the set of all coordinate maps in X compatible with those

7 . The elements of ?’ are compatible. For if ({,P) and (g, Q) are

kY

9 and f(P) N g(Q) # #, we may find a finite collection (hi’ B'l)’ e (hr’ Br)

r
aps in @9 such that f(P) N g(Q) C U hi(Bi)' By definition f and g are
i=1
1

: . -1 -
mpatible with each h,, so if we let Ri = hi fP and Ri" = hi gQ, R; and R:
i

. sk sk
subpolyhedra of B,. Let R, =R! N R;'. Then Uh.R, = £(P) N g(Q).

i'i
b _1 b3 -
UhiRi ) = Uf hiRi is a polyhedron, and g 1f is

i
gyfore, Pi = f_i(gQ) = f-

-1 sk
n Pi because in each piece f hiRi it agrees with the p.l. map

4



1

g hihi_if which also is defined on this piece. It is clear that 5L satisfieg

2) and 3) in the definition of a P. L, space and is the unique structure contain

ing 3 .

Lemma 3.2,  f: P—>X and g: Q—> X are two compatible coordj

maps, X a topologiéal space, then there exists h: R —> X, a coordinate

with h(R) = £{(P) U g(Q) and with h_1f and hnig p.l. maps.

Proof. Let |K| =P and |L| = Q be triangulations with Ko and Lo

subcomplexes, triangulating f-1gQ and g-ifP respectively. Let Ko' and

o

be subdivisions of KO and Lo such that g"ifg K;—-—> L'o is simplicial. Le

N 3
K' and L' be extensions of these subdivisions. Let A S F  be a simplex |

which has one vertex j(v) for each vertex v of L' - I.n'o and one vertex i(v)§

for each vertex v of K', and no others. Consider the simplicial homeomo
itK'—> A determined by the definition for i already given on vertices andjf
homeomorphism j: L' —> A defined by putting j{v) = i(f-ig(v)) if ve L(’)
extending linearly to all of L', (j is already defined on vertices of L' - Lc'> &
Let R be the union of the images of these simplicial homeomorphisms, |
a simplicial complex. Define h: R —> X by defining

hix) = fi-1(x) if x € Image 1i.

1(x) if x e Image j.

hi(x) = goj
The definitions agree on the overlap, since if x ¢ (Im i) A Im (j)

goj_i(x) = gg-iﬁ-1(x) = fi'i(x). It is not hard to see that h: R—> X is a h°.

morphism with image £(P)u g(Q) , and that h-if and h-ig are p.l. maps-f;
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Corollary 3.3. If (X,Ef{‘ ) is a P, L. space and C C X is compact, then

there exists (h,R) ¢ j with C € Int h(R).

Proof. Let (h,R),...,(h R ) bein F with c¢ m(h,(R,) U . UB_(R)).

b There exists a coordinate map h:R —> X with h(R) = hi(Ri)u eV hr(Rr)’ and

3 -1
b with h compatible with each hi (i.e., b hii Ri-———> R is p.l. , all i), By

arguing as in Lemma 3.1, it is not hard to show that h is compatible with every

element of 3(' and so in j‘ .

Definition. The P.L, space (X, :71 ) is called a P.L., m-manifold if

for all x ¢ X there exists h: AT —> X with (1, A™) e 3" and X ¢ IntX n(a™).

Lemma 3.4. If (X, 5‘ ) is a P.L. m-manifold and C C X is compact,

en there exists (h, R) e 5( with
1) R is a p.l. m-manifold.

2) C CInt, h(R).

Proof. By Lemma 3.2, choose (f,P)and (g, Q) in F with C C Int £(P),

P) C Int g(Q). Let Ko be a full subcomplex of K, |K| =Q, ]Kol = g-ifP.

N be the second derived neighborhood of Ko in K, Then N is an.
manifold, for though K need not be a combinatorial manifold, every point
|K_| has a neighborhood in |K| which is a p.1. m-ball. So link(v,K) = an
1 sphere or ball for all v e Ko’ and link(A,K) is a sphere or ball for all
Aplices A meeting KO. So the proof that N is a manifold goes through (see

0f of Lemma 2.13). g|N—> X is the required coordinate map of this lemma.



Note: Strictly speaking, the last two lemmas have been using the fact that
if in the P, L. space (X, K ), (h,P) is a coordinate map such that h(P)
be covered by the images of a finite number of maps in _’7’ with which h i

compatible, then (h, P) ¢ 5(' . The proof is left to the reader (see Lemma

The next lemma may be viewed as affirming the possibility of "triangul
P, L. spaces and manifolds, as we shall see following the introduction of loc,

finite (infinite) complexes.

Lemma 3.5. Let (X, 3!—) be a P. L. space. Then there exists a counta

set of simplicial complexes and subcomplexes, K, c Ji . Li c J. and embed

£.: |J.] = X such that
i i .
1) x=J £(17.0).

i=1

2) £(13. DN g3 D=9 i |i-k| 22

3) (130, (3,0 =080 = £ (UK D

-1
4) £, f.: L > K, is a simplicial homeomorphism.

itd i i itd ‘

If (X, 3 ) is a P.L. m-manifold, we can take Ji to be a combinatoria

-
.

m-manifold and Ki and Li to be combinatorial (m-1) manifolds in 8Ji.

Proof. X is locally compact and 274 countable. Hence X is 0’~compa‘2 ]
oo .

Let X=| | C., C, compact. Let (h,R,) ¢ F . Define inductively
oyt i 17714
R i C C
(hi’ j_) € 3( , 1> 2, such that Ci -l hi-i(Ri-’l) C Int hi(Ri)' Let

1 1

P = - B . = -
i cl(Ri hi hi-iRi)’ a polyhedron. Let Qi h.1 FrX (h 1),

i—iRi-

-1
=h. (FrhR). Let f =h|P,. Let K,L  J be triangulations of
i i i i Ti'Ti i’ i




-84~

Q"Si’ Pi . For each i, let Li and Ki_'_ be subdivisions such that
i

: 1
2T . e e . - . . ,
fi’*'i fi' Li > Ki+'1 is simplicial. Since Ki N Li @, this defines a sub-

division of Ki ) Li which we extend to a subdivision Ji of J. Then
J1,KI, L and f, satisfy the first part of the lemma.
e i

The proof of the second part of the lemma is similar, using Lemma 3.4

, instead of Lemma 3. 2. The details are left to the reader.

To make the notion of a triangulation of a P.L, space more precise, we

P . . n nti . sps
jntroduce infinite complexes, First of all, we view E " C E by identifying
Kypoees xn) with (xi, ceesX 0). Note that under these identifications, the
convex hull of a subset S of E"™ is the same a5 its convex hull viewed as a sub-
(o)

: + i
set of E° 1. Let E® = U E' , with the weak topology. E® may be viewed
i=1

as all (o0)-tuples (xi, ceerX pan .) with all but a finite number of x, being zero,
and the topology of E® may be viewed as the topology of pointwise convergence.
The convex hull of any subset of E® is defined in the obvious way. In particular,
:IY A% we denote the convex hull of the points (1,0,... ), (0,1,0,...),

4

0’0'1,0’0--), e’tC.

Definition. A locally finite simplicial complex K in E® is a collection of
finite) simplices, K, such that

1) o,t¢e K = onT=§ or a common face.

2) ve K, <o => T¢ K.

3) For all x ¢ |K|, there exists a neighborhood U of x in E® meeting
Ly finitely many simplices of K. V(Exercise: Prove that every finite subcomplew

K lies in some E".)



Let (X, 3) be a P.L. space. Using Lemma 3,5, and the technique of
Lemma 3.2 one can construct an infinite locally finite complex K whose
vertices are vertices of A® and a homeomorphism h: |K| —> X of lK|
onto X such that the restrictions of h to finite subcomplexes are elements
of 3( . Moreover, if (X, _9’- ) is a P.L. m-manifold, then we may insist thy

,»
]

|K| 1is also; that is, every point of |K| lies in the interior of a p.l. m-ba
contained in |K|. In the case that there is a bound on the dimensions of th

. N
simplexes of Lemma 3.5, one can take K CE  for some finite N. In this 3

the complex K is constructed within a suitable Euclidean space by "bare hazi,

using the instructions provided by Lemma 3.5. Details are left to the readef .

Definition. The pair (K,h) is called atriangulation of (X,g ) if K is

KI —> X is a homeomorphism such that the ';

locally finite complex and h:

restrictions of h to finite subcomplexes are elements of 3’ .
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3., P,L, Maps and Subidivision Theorems

Definition. Let (X, _’71 ) and (Y, fj ) be P.L. spaces. Then f: X —>Y
' PR
l is called a P.L, map if for all (£,P) € 3 and all (g, Q)e b, £°g g is

} either empty or a subpolyhedron of P, and if the latter, then

<

- -1 -1
gioﬁefzfiﬁ gQ > Q
is,a p.1l. map.
Notes: 1) It is easy to check that a P, L. map is continuous.

2) By an argument similar to that of Lemma 3.1, to show that a given map

¢ is a P. L. map, it suffices to check the condition in the definition for elements

(£,P) of a base of 3 and elements (g, Q) of a base of M.

Definition. If # |K| —> |L|, K and L. locally finite simplicial complexes,
e say # is P.L. if it maps each finite subcomplex piecewise linearly into a

inite subcomplex of L.,

emark, The two definitions of P. L, map are consistent. That is, if (X, 3 )
d (X, }j) are P.L, spaces and if (K,h) and (L,j) are triangulations of
and Y respectively, and if § and § are maps such that the following diagram

Ommutes ;

h j

IX| Y5 |1

f isaP.L. map if and only if ¢ is a P.L. map.



Definition. A map f: X —> Y of topological spaces is said to be a Prop

map if the inverse images of compact sets in Y are compact.

Definition. A subdivision K' of a locally finite complex K is a locally
finite simplicial complex such that
1) x| = [x].

2) Every simplex of K 1is contained in a simplex of KI'. .

Using Lemma 1,2 and local finiteness, it is easy to see that every simp{,
of K 1is a union of finitely many simplices of K'. Moreover, if K' isa su

division of K, then K' induces a subdivision (in the finite sense) of every f',;

subcomplex of K,

Theorem 3.6. A. If S is a locally finite family of polyhedra in lK|

then there exists a subdivision K' of K containing (finite) triangulations of
each element of S. k
B, If f: K—> L is a P.L. map of locally finite complexes, then therej
exists a subdivision K' of K such that f: K' —> L maps simplices linearli
into simplices, |
C. If f: K—>L is proper P.L. map, then there exist.subdivisions K'

L' with f: K'—> L' simplicial.

m : 1
Proof. A) Write K= U Ki , Ki finite subcomplexes, Ki N Kj = ¢ if 3
i=1 '

]i-jl > 2. For example, if K is connected, let R1 be a finite subcom'ple

and define Ri = closed simplicial neighborhoods of Ri-i’ for each i. Let
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. The Ri cover K because any vertex of K can be connected

K= R Ry

‘“to a vertex of R, by a finite edge path.

1
Each Ki meets finitely only finitely many polyhedra in S. Proceed by
jnduction subdividing Ki to contain subdivisions of its intersections with memv-
: Xybers of S and with the preceding subdivision of Ki-i' Then since Ki is not
cha.nged after the (it1)st step is over, it is clear that this defines the required
‘f\:’subdivision of K,

B), S'={ocn f-1('r)| ¢ ¢ K, Te L} is a locally finite set of polyhedra

;)f K. Let K' be a subdivision of K containing subdivisions of the elements

of S.

C), We may assume by B that f is linea: :n simplices of K. As { is
proper, {fo l o ¢ K} is a locally finite family of polyhedra in |L|. Let L!
ve these polyhedra as subcomplexes. Then {o n £l lce K, Te L'} isa
Voca]ly finite cell subdivision of K. As in the finite case this cell subdivision

has a locally finite simplicial subdivision with no extra vertices. (See Lemzas

C) is false for non-proper maps. For example, triangulate
bhe real line with vertices at the integers. There is a PL map f:R —»[0, 1)
apping R homeomorphically onto the open interval (0, t). It is impossible t~

find locally finite subdivisions to make f simplicial.

A

——



4, P,L. Subspaces

Definition. Let (X, 3/ ) be a P.L. space. Let (Xo’ 3’0) be anothe
P.L. space with Xog_: X. Then (Xo, _9-0) is called a P, L. subspace of
(X, F) provided

1) Xo has the relative topology induced by X, and

2) i: Xo——éX, i(x) = x, is a P. L., map.

'

Examples: 1) If XOC. X is open and if 3’0 = {(f,P) ¢ 5 | £(P) QXO}, th
(Xo, go) is a P, L, subspace of (X, 5")

2) E™ has the natural P.L, structure generated by the inclusion maps
polyhedra in En. A compact subspace Xo of E™ must be a polyhedron 1n
(with its natural structure). For suppose XO c E” isa compact P. L. sub
Then there is a coordinate map (f, P) in the struc£ure of Xo with £(P) = '
But Xo is a P. L. subépace, so the composition P —£—> XOC E” isa P-L-
Therefore Xo = f(P) is a polyhedron in E™

3) In E", {x] a(x, Xo) <1} is a P.L, subspace,

{x|a(x, xo) < 1} is not.

4) 1If PoC P are polyhedra in E®, P- P isa P. L, subspace of 'j

L 7. ; . L. X, if X i
emma 3.7 If (Xo’ 3-0) isa P subspace of ( _?) and if X :

K|

closed subset of X, then there exists a locally finite triangulation h:
and a subcomplex Ko of K such that h| ]KO | IKOI _ Xo is a trianguly

of X .,
o



3

Fet ki M| —> Xo be a locally finite triangulation of Xo. Let § = h_‘l
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Proof. Let h: |L| —> X be a locally finite triangulation of X. Then

ik,

': xo-——>x the inclusion map. Let M' and K be subdivisions of M and

ol

respectively, making the proper P.L. map (Xo

 ' et Ko = Image f§.

is closed) # simplicial.




5. Collapsing and Regular Neighborhood Theory.

Definition. If Xo is a closed P.L. subspace of the compact P.L. sp

then we say X &XO if there exists a finite sequence of P. L., subspaces of:

X € X C...CX = X suchthat X, - X, , = cl(X, - X, ,)
o] 1 = r i i-1 i i-1
is a p.1. (P, L.) ball having cl(X,l-Xi 1) N Xi-i as a face.

Definition. If M is a P.L., manifold, let h: IK] > M be a triang

of a neighborhood of x in M (h in the structure). We say x e M if

1

link(h” x; K) is a ball. This does not depend upon the choice of (h, K).

Definition. Let XO be a compact P. L. subspace of the P. L., manifold

Then a regular neighborhood N of X is a topological neighborhood N, co

such that N \ X and N is an m-dimensional P.L, submanifold (i.e., a si"
space which is a manifold) of X, N meets the boundary regularly if N N 8

P

or is a regular neighborhood of X N dM in 9M,

Theorem 3.8, Let Xo be a compact P. L. subspace of the P, L. m-maj

M. Then a regular neighborhood of Xo which meets the boundary regularl " ;

exists., If N1 and N2 are any two regular neighborhoods of X, then there

a P.L. homeomorphism of N,1 onto N, pointwise fixed on Xo . I N‘1 an

2

meet the boundary regularly, then there exists an ambient isotopy

H: MXI——> MXI throwing N1 onto N2 and leaving Xo fixed.

Proof. Let (f,K) be an element of the P, L. structure 9 of X such

X <
o

IntM f(K) and K is a p.l. m-manifold. Let N be the image under £

a regular neighborhood of f-i(Xo) in K.
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The uniqueness theorems follow similarly by taking N 1 U N2 c IntM i(P).

One can also define regular neighborhoods of non-compact subspaces of a
P.L. manifold. If X and Xo are closed P, L, spaces, X0 a subspace of X,
‘ we say Xo collapses to X by an elementary generalized collapse if cl(X-Xo)
is the union of a .disjoint locally finite family of P. L., subspaces Bi of X,
where, for each i, Bi is a p.1l. ball having Bin Xo as a face, A generalized

1 collapse is a finite sequence of elementary generalized collapses. We write

X‘f Xo if X collapses to Xo by an elementary generalized collapse.

A generalized regular neighborhood of XO in the P, L, m-manifold M,

a closed P, L.. subspace, is a closed topological neighborhood.which is an
-submanifold and which collapses to X by an elementary generalized collapse.
This definition gives rise to the analogous existence and uniqueness
heorems as for the compace case., However, these generalized regular neigh-

orhoods have had no importance so far,




Chapter IV - General Position

§1. Definitions

Let K and L be P,L. subspaces of the P. L. manifold Q, q = dim Q
Then K and L are in general position (or Kis in gen. pos. w.r.t. L) if:
dim (KN L)< dim K + dim L - q. (Note the similarity between this conditigg
and the condition in dimensions that is necessary and sufficient for two sub
spaces of a finite dimensionalvector space to span that space. )

If f: P—> Q is a map, S'r(f) = xe¢ P f-if(x) has at least r-points

and Sr(f) = S'er) . If P& Q are P.L. spaces and f is a P.L. map, thenf

follows from the fact that P and Q may be triangulated to make f linear

S'(f) is a P.L. subspace of P. If f is proper, then Sr(f) is a closed P.‘,
subspace, and dim Sr(f) = dim S'r(f). : ’,‘
If f: P—> Q is a map, P & Q P.L. spaces of dimension p and q
respectively, we say that f is in general position provided
1) £ is P.L. and proper. .
2) forall r, dimS.(f) < rpjr"”(r-i)q |
3) Soo(f) =@ (i.e. f is non-degenerate),
Let f and g be two maps P—> Q, P and Q P.L. spaces. Let
E: P—> IR+ be a positive, continuous function. Let/D be a metric for
the topology of Q. Then we say f is an £ -approximationto g (with respes
to/O ) provided that \V/x ¢ P, /O (f(x), g(x)) < £(x). |

If fand g are maps, f = f' (rel K) means that f is homotopic to f'

a homotopy which is the constant homotopy on XK.
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§2. Approximation of Continuous Functions by P. L. Maps,

Lemma 4.1. Let P,,P_, and P, be subpolyhedra of the polyhedron P.

1" 2 3

gLet f: P—> 1" be a continuous map, with f|P3 a p.l. map. Assume

‘p1n P2 =@ . Given £> 0, there exists f': P—> I" with the following properties:

1) f'll'-’1 is a p.1l. map

2) fIPZu P3= f'|P3U P3 .

3) f' is an E-approximation to f (w.r.t the usual metric on ™)

‘ Proof. Let p be a metric for P and choose & >0 such that p(x,y)< 6

| ‘Vmplies d(fx, fy) < &/2. Let Ki’ KZ’ K3 C K be simplicial triangulations of

P, 2 Py C P, suchthat K, isfullin K, mesh (K) < &, and f|K is linear.

:‘_ow define f': |K| — 1" by first putting f'(v) = f(v) for every vertex v e K.

, P

”hen f! Ior,, ‘¢ any simplex of K:l’ be defined by extending linearly the definition

pf f' on vertices of o. If ¢ n[K1| = @§ , however, (i.e., ¢ has no faces in Ki ,

G

but f'lec = f|o. Finally if o e K - Ki’ but o'f\|K1| # #, we may put o= 7472

ZnIKil =@, as K1 is full. Then we define f'|c by extending

n early the map f' already given on 7y and T, Clearly, f'lKZ ) K3 = f|K_ u K,,

€ K1, o

i

nd f'IK‘1 is linear. Since Vo e K, diam fo< €/2 and diam f'c < €/2 by

f' is an £-approximation to f.

f is homotopic to f' (rel 13'2 Vv P3) by the homotopy

ti(x) + (1-t)f'(x). Then d(H(x),H (x)) <€ , all xe I, alls,tel In



Lemma 4.2. Let f: P—> Q be a continuous map of the P. L. spacd
P into the P. L. g-manifold Q. Let Po C. P be aclosed P, L. subspace
of P on which f is already a P.L. map. Let £: P—> R be a continuoll
positive function. Then there exists {': P —> Q such that
1) f' >~ f (rel P ),
o
2)/0 (fx,f'x) < £(x) all x ( © some given distance function for the |
!/ 3

topology of Q),

3) f' is a P.L. map.

Proof, Let {Bi} be a locally finite countable family of g-balls in Qf
with Q C U IntQ Bi . (For example, triangulate Q and take closed vert]
/¥

stars.) Let Ko G K be (locally finite) simplicial complexes triangulating |

POE P, such that if o ¢ K, fo ¢ Int_ B,, some j. This is possible becaus

Q 3
there is atriangulation L of P, containing a triangulation of PO, such tha§
fo'o)

L= U L., L. finite subcomplexes suchthat L. N L =g if [i-j| > 2.
iy 1 i i j ’
Subdivide each Li to get Li such that o « Li implies fo C Int Bj’ some j
Then further subdivide (proceed inductively) to get L'i such that for all i
L'i and L'i+1 are compatible; this gives the required subdivision, K, of |
Let {Ail i=41,..., oo} be the simplices of K-KO, ordered so that a
simplex follows its faces, (For example: first take the vertices of L;-
then the 1-simplices and Lg - Ko and the vertices of (L" - L'(')) - Ko’ then §
the 2-simplices of L"O-KO, the 1-simplices of (L"i-L"O)-KO and the zero=

impli £ (L" - L") - K ) Put K.=K U |') A,. Wearef
simplices o 5 - LY -K,, etc. ... ut K. = K_u jk.—.J1 ;e e are |
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i1;0 define inductively maps fi: K—Q
1) fil |Ki| is P, L,
2) fi e~ f (rel Po)

3) if ¢e K, fi(cr) c IntQ Bj , some j.

9) (5,1 () < g/2", all x.

We start with f0 = f. Suppose fi- is defined. Then fi-—

C
1 (Ai) C Int

B
. 1 Q7
1 -4
some j. Let K' be a subdivision of K such that N(Ai ;s K') C fi 1(IntQ Bj).

ét h: Bj — 1% bea P.L, homeomorphism. Put R = N(Ai ; K"), R1 = Ai ,
“; ,

LK = N = e
N(A;K'), R,=RNK. _, . Then R, R, g and h (fi_ilR)
3 Hence for every €> 0 ther- exists ao:R—> 11 such that

}]{Ri is P. L., aleu R, = h°(fi_1|R2uR3), and p(af(x),hofi_i(x)) <€ ,

i x ¢ R. Define fi: K—> Q by

£|R = h e
1

£] el|K[-R) = fi_1[c1(|K|-R).

Now R is compact, so by choosing £ small enough we can ensure that
fi(x)- fi_1(x)) < & (x)/Z1 for all x e [K|, and also that every fi(cr) is contained

B,. Then £, is a well-defined map which clearly satisfies 1), 3),
Qj i

4). Moreover, from the remark following Lemma 4.1, we see that

E|R) fi-'1|R (rel. R W R3) and so, extending the homotopy by the identity,

2
ee that 3) holds, Call this homotopy Hi.

By construction, fi agrees with f, except on a simplicial neighberhs-d
1-

1

R, . If 0e K, o meets only finitely many of the Ri' Therefore the 1,



eventually agree on ¢. Hence putting {' = lim fi defines a P. L. map:
1—> oo

|K| — Q. Similarly, the homotopies I—Ii are eventually the identity on

given o ¢ K and so H= lim Hi © ve. O I—I1 is a well defined continuous
i-2> o

|[K| XI— Q, and so f =~ f' (rel lKOI).

Remark. Using the remark following 4.1, the reader can easily show that
under the hypotheses of 4. 2, we can find a homotopy H of £, fixed on PO
such that f'= H,  satisfies the conclusions of 6. 2 and in addition, for ever

1
x ¢ P and every s,t in [0,1], d(st,Htx)< E(x).

§3. Approximaiion of P. L, maps by Non-Degenerate P. L. Maps.

Definition. 1f X 1is a finite set of points in En, let QX be \the unio
all proper affine subspaces of ok spanned by subsets of X. QX 1is a clos

n n ) . n
subset of E = of measure zero, so E - QX 1is dense in E’,

Lemma 4.3. Let Pl and P2 C P be polyhedra, dim P < n. Let
f: P—>1" bea p.l. map with f]Pl N PZ non-degenerate. Given £€> 0 th
exists a p.1l. map {': P —> I" such that

1) f‘[Pl is non-degenerate

2) f'|P2= f|P2

3) §P-P) cin

o (f'x, fx) < €

4

Note: In general we cannot shift f to be non-degenerate on P

4) for allx ¢ P,

-P itho
1 2 wit

changing it on P_, if it is not already non-degenerate on P, for example,

2
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glet P2 = 1-face of a 2-simplex P, P1 = P, and suppose f(PZ) is a point.

Proof of Lemma 4. 3. Let Kl’ K2 C K be triangulations of Pl’ P‘2 cP

1

1

'so that f1K—> 1" is linear. Let v peees Vo be the vertices of K1 n KZ
Vg be the vertices of Kl_Kln KZ. For i< r put

W onathat v L.
= f(vi). For r<i<s we may choose points w,, W, arbitrarily close to
ai ° n
E I 3 1e —
1£(vi)’ such that w, g Q {Wl e ’Wi-l} , and W, € L. If we define f:K—>1
» o be the unique linear map such that f'(vi) =W, 1<igs, and f'(v) = f(v) for

:all other vertices v, then by choosing each W, close enough to f(vi), we may

iensure that f' satisfies 4). It clearly satisfies 2) and 3). To show that such

:an f' is non-degenerate on K1 , it suffices to show that its restriction to each ¢ ¢ K

8., This we prove by induction on dim o¢. If o e Klf\ KZ’ f'|o = f| o, so there

i 3 n = « o 08 . j < LY < i H j > .
8 nothing to prove, If 0'{ K1 KZ’ put o le 'vJt v ) \M ‘]t r

By induction, f'|v, ...V, is non-degenerate. As dim P < n,
1
%pan {fv. yeee, v, } # En, so f'(v.) is not in this affine subspacz2. Therc-
J1 Ity t
) R f'(vj )} are independent; so. f'|c is non-degsnemuie.

ore the points {f'(vj
t

1
Lemma 4.4, Let f: P—> Q be a P.L. map, Q a P.L. manifold and

a P.L. space with dim P < dim Q. Let Po C P be a closed P, L. subspace
Suppose fIPo is non-degenerate. Then f= f' (rel PO), where f' is a non-
~egenerate P, L, map and f'(P-Po) C Int Q. Moreover, given €: P—> R+

| & Positive continuous function, we may ingist that /O(f(x), f'(x)) < €(x), all x,

2 given metric for the topology of Q.



Proof. Exactly as Lemma 4. 2, using Lemma 4.3 instead of 4,1,

Remarks,

1) As in 4.2, we could actually insist that there be a homotopy
H: f ~ f' (rel PO) such that for all x ¢ P and all s,t in [0,1]
H < .
d(H , x, Hx) < (x)
2) In 4.2 and 4.4, one can insist that if the given map f is proper,

then so is the map f'.

§4. Shifting Subspaces to General Position,

Lemma 4.5, Let PO C P and R - Rr be polyhedra contained in

1,--

n :
I, with P o1 ¢ PO. Given < > 0 there exists an ambient isotopy h of

In such that
. n
1) h is fixed on 9T o Po,

2) hl(P-PO) is in general position w. r.t. each R,

3) for allt, d(htx,x) <€, \

Proof. Let J be a triangulation of " having as subcomplexes trian%

tions K ¢ K, L ,...,LL of P £ P, R,.,,,R , with K fullin J. Let]
o) 1 r 0 1 r o) ;

Viseees Vg be the vertices of K-KO, and let X be the set of all the verticeS‘
Let w,,...,w_ be points in Int 1", such that w.lgé QX ff_wl, Ceea WL

1

all i; we may choose each W, to be less than any preassigned distance fro k
In particular, we may choose the w, so that if £ is the linear map J —>1
determined by putting !l(vi) = w. and L(vy=v if veX, and v # v, all i, th

{ is ambient isotopic to 1 via an ambient isotopy h satisfying 3) and 1) .
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(Certainly we can make { isotopic to the identity by "small" moves. Then

lsee proof that isotopy by moves implies ambient isotopy, Chapter V, §1,

H.emma 5.1.)
To check 2), let 0e¢ K-K , 1¢ R,. Write c¢=0 0¢,, 0. ¢ K and
o i 12 1 o)

'Zn |Ko| =g (crl = @ possible). Let c, = Vil"'vis ) il <...< is' Then
~, o= 01-(wi cee W, ). If Lo and T span En, then
1 s

dim(fe N 7) £ dim ¢ + dimT- n< dim P + dim Ri -n.

n n . .
f {0 and T do not span E, then since w, ;./Q(Xug_wl,...,wi _1}), w,  is

s s s
%t the affine subspace spanned by OpeWy oo oWy and 7T . This implies
3 1 2-1
: = §. Since P-P_ = |K| - |K | = U & , this shows that
o o
oe K-KO

dim[(P-P_)"R,] < dim(P-P )+ dim R.- n,
alli, 1<i<r.

Lemma 4, . Let Pog P, Rl’ eo o Rr be closed P, L. subspaces of the

. g-manifold Q, with PN aQ C Po . Let €: @—>K be a continuous
itive function. Then there existe an ambient isotopy h of Q such that:
1) h fixes the points of 9Q U P
; 2) hl(P-PO) is in general position w.r.t. each R,,

3) d(htx, x) < £(x) for all x (d a metric for the topology of Q.).

‘&i. Let {Bi} be a locally finite countable family of g-balls such tha*
o

IntQ Bi' Let KOC-_ K be triangulations of Po C P such that, fcr
¢ K, ¢ ClInt. B, for some i. Let {A} be the simplices of K-K ,
~ Qi j i c

80 that any simplex follows its faces. Let Ki = KOU l\) Aj
=1

We



are going to define P. L, homeomorphisms hi (i>0) of Q and ambient
isotopies H(l) of Q (i>1) fixing 8Q Vv PO, such that

(i) _
1) H'Yeh | =h,

2) V'creK,\vlt, Ht(l)(a)_C_.IntQBj, some j ,

3) Vx, d(Ht(i)x,x)< &"(x)/Zi , all t.

4) hi(|Kil - lKO,) is in general position w, r.t each of the Ri .

We start by putting ho = identity. Now suppose hi- is constructed,

1

some i>1. Let Ai - IntQ Bj . Let a: B—> 1% bea P, L. homeomo rphisrg

Let V_ =((h, ,K l)/»\ Bj), let V= oz(hi_

. . K.NB,)=V U ah,
i-1"1i- i j o i-

Ai , and let]

1 1 i

B,). Notethat Vn 9I%¢ V .
k 7] - o0

By Lemma 4.5, for every £> 0 there exists an ambiént isotopy k o

fixed on Vo v axq, such that kl(‘V--VO) is in general position with respect t

(1)

each Wk and such that , for every ¢, ﬂ(x,ktx) < €. Now define H by ’
H(i)[Bj X1 = (a_l X1)eoko(aX1l)
H<i)1 cl(Q - Bj) X 1 = identity. '
Put hi = Hl(i)o hi-l . By choosing £ small enough we can ensure that

d(Ht(l)x, x) < E(x)/?_1 for all x ¢ |K|, te I, and also that, given o e K, te I.

H(i)(O') C Int

B j.
t i for some j

Q 3

. (1.
To complete the proof, we observe that, by the construction of the H .
we may have that each is the identity outside the interior of some Bj. Hence

if C is any compact subset of Q, then on C X I all but a finite number of th

H(l) are the identity. Hence it makes sense to define
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h= lim ald yli-1g ol

i—> 00

Then h is an ambient isotopy and by construction satisfies 1), 2), and 3) in

the statement of the lemma.

§5. Shifting maps to General Position,

Lemma 4.7. Let K be a (locally finite} simplicial complex and let

K—> Q be a P.L. map which embeds each simplex. Let KOC_:. K, and

et Rl’ o vos Rn be tlosed P. L. subspaces of the P. L. manifold Q. Assume
£(| K| - IKOI)g_ Int Q. Let £: K—> [R_‘_ be a positive continuous function.
Then there is a map f't K—> Q and a homotc,» H: KXI—>Q of fandf{'

#uch that

1) H is the constant homotopy

2) H is a P.L, map

3) f' embeds each simplex of K and (| K| -]Kol) CInt Q

4) VO’,...,O’ in K-K
1 r e}

r T
dim(o £38) < 21) dim o, - (r-1)q
r r
dim[( () £'§.)A R] £ dim o, +dim R, - rq , all j.
Aenynny e $ e romn - s

5) d(st,fx)< €(x) forall xand s, (d a metric on Q)

6) (K| - [K |) € Int Q




Proof. Let {Ail i=1,2, }

be the simplices of K-Ko, with e

i
simplex following its faces. Let Ki = Ko U LJI Aj , a subcomplex. We
J:

going to define, inductively, P.L. maps fi , i20, and P, L. homotopies
i> 1, such that

1) Vtr e K, £i| ¢ is an embedding;

2) H(l) is a homotopy of fi-l to fi which leaves Ki-l fixed;

3) Yo,,...,0 ¢ K.-K_,
1 T i o

T r
dim( () £%) £ S dimo, - (r-1)q
J=1 1) j=1 J
r by ’
dim £, G, < dim o, t dim - rq, all k.
(j@l IR J}:l J R, - T4

4) d(H(si-)-x,fi_lx) < gx)/2"

5) fi(lK[ - |Kol)§_1ntQ.

Put f =f. Now assume f, is defined, i>1. Let L. ,...,L, be]
o i-1 1 N »

all the following P. L. subspaces of Qs

a) R, ,1<j<n,
X .
b) j@l (5,00 »all oppeeno, K
r
c) [J_Q g 0] AR, all o),.e.,0, 0 Ky and 1<k,

(Note: r not fixed.)

Now we are going to apply Lemma 4.(, . Let L = link (Ai; K). Let

P =f (A.L), andlet P=P Uf, _(A). Notethat PN3dQ ¢ P_.
o i-1" 1 o i-1" 1 o
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By Lemma 4,6, there exists an ambient isotopy h of Q, fixed on
L p N 9Q, such that hl(P-Po) is in general position w.r.t, each L., and
Y

Vs and \/x,

d(hsx, x) < —51— min{ﬁ(y)l y € Ai.L} .

| Define H(l) on (Ai' L) X I by putting Hs(l)(x) = h, f(x). Extend H(l) to KX1I
| (1)

p S b g

Clearly H(l) and fi satisfy 2) and 4). Condition 5) holds because

by the constant homotopy outside (Ai' L) X I, and put f = H L

hI

(Int Q) € Int Q and because fi-l

satisfies 5). Condition 1) holds for fi

only on simplices of Ai. L, where it is the com-

Ebecause fi differs from fi 1

bosite of fi-l and a homeomorphism.

©
To check 3), we first observe that fi l(Ai) C P-Po (in fact have =).

, _ -
)_‘or suppose X € Po ) fi-l(Ai)' Then x fi-ly’ say, where ye¢ A.L, and

;'ﬁﬁ fi l(z), z € Ai. Let ye p.v, pe Ai and Te L. Then Ai—r is a simplex

K and so is embedded by fi-

E 1 Therefore y = z, so X ¢ fi—l(Ai)' There-

444

fore P N f (A)C f. .(A,). Therefore, as f, . embeds A,
. o} i-1V 17 = -1 i i-1 i
. -]
‘i-l(Ai) n Po = . Condition 3) now follows for fi from the corresponding con-

R

I o
Rition for f, and the fact that fi(Ai) is in general position with respect to

i-1
the L., .
i

To complete the proof, put H= lim 1) ang g - H, = lim Hl(l) = lim
i oo i oo i->oo



Finally we put some of the above results together to get:

Lemma 4.8. Let P be a P.L., space, PO a closed subspace. Let:

g
S

Q be a P,L. manifold , dim P<dim Q. Let f: P—> Q be a continuous i

such that f[Po is P. L. and non-degenerate. Let Rl’ oe ey RN be closed P

subspaces of Q. Let €: P—> R bea positive continucus function. The

there exist g: P —> Q and a homotopy H: f = g (rel Po) such that

1) g is a P. L., non-degenerate map,

2) gl P-P _ is in general position,
3) g(P-PO) is in general position w.r.t. €ach Ri , i
4) g(P-P)C IntQ,

5) Vx, d(st, fx) < € (x) \st € {[0,1] (d some metric for the
topology of Q).

Proof. By 4.2 and 4.4 we can find f' >~ f (rel Po) and a homotopy j
between f and f' relative PO, with f' P.L. and non-degenerate,
f'(P—PO) C Int Q, and d(H'Sx,fx) < E(x)- -lz . Let K C K be triangulations:"
of Q, sothat f'* K—> L is linear on simplices. Then f' embeds the 31m
plices of K. Let H" be a homotopy of ' to a map g, relative Po’ sa.tiSf

a) g is P.L. non-ddgenerate;

b) g(P-P ) ClInt Q

T r
. o < N _ e . - .
c) dlm(i\ go, < ? dim o, (r-1)q, crl,...,O'rmK Ko’

d) dim(g‘@’rnRj) £ dim o % dim Rj -q, TE€ K-Ko;

1
e) A(H x,£'%) <3 £(x), all =
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‘ Then c) and 4) imply 2) and 3) in the statement of the lemma. Put

' 1
H'(x, 2t) 0t 5
H(x,t) =
1
H"(xs 2t-1) ><t<l

By the triangle inequality, H satisfies 5). Certainly, g satisfies 1) and 4).

Definition. Let POC P be polyhedra. We say that Po is of local

i

codimension > r in P if, for any triangulation KOC K of Po C P, and for

any simplex A of Ko’ there is a simplex B of X with A< B and

f Gim B - dim A > 1.

Lemma 4.9. Let Q be a P.L. manifold, and p: QXI—> Q the pro-

ction on the first coordinate. Suppose X is a polyhedron in QX I with

Xc (9Q X I) = Xo . If dimX<m-r, r>1, and dim Xo < m-r-1, then there
is a level-preserving P.L. homeomorphism h: QXI—> QX arbitrarily close
to the identity, such that SZ(pIhX) is of local codimension 2 r in hX.

Furthermore, if Sz(pIXo) is already of codimension > r in Xo’ we

ote: 'Level-preserving' means that h commutes with projection onto the

econd factor.

Before proceeding with the proof of lemma 4.9 we need another technical



Lemma 4.10. Let Ko be a full subcomplex of K., Let K' be the gy

division of K obtained by starring all simplexes of K-Ko in order of
decreasing dimension. Then Ko is a subcomplex of K' and if A ¢ K'-K
o

then link(A;K') N Ko is either empty or a single simplex.

Proof. One may readily check, by induction on dimension, that a gene
n A A *

simplex of K' may be written in the form B. Cl' CZ' .. Cr where B e Ko’ and’
C,¢e K and B<C <...<C_. Nowif AecK'-K is written in the above fo
D ¢ link(A; K') N KO if and only if AD e K' and D¢ Ko' In which case
A A :

AD = BD.C....C and BD<C_.<C_.<...<C . Now K isfullin K, an

1 T 1 2 r o

so C1 N K0 is a single simplex o say, and the above conditions are satisfi
if and only if BD < ¢. So link(A;K') N Ko = link(B; ¢) = a single simplex (if

is not empty).

Proof of Lemma 4.9.

Case 1: First consider the case when Q = A% and when Sz(plxo) is

k.

already of local codimension 2 r in Xo; and we wish to keep 9Q X I fixed. |
Let Ko C K C/B(A™XI) be triangulations of XC X € AXI, with Ko full in'Kf
Let K' C B8'(A X I) be obtained from f( C B(A X I) by starring at interior poin“
the simplices of K-Ko in order of decreasing dimension. '

Let x_,... X be the vertices of Ko, MEERE , ¥, the vertices of K'-K]

1

For every £30 let vl', ce ,vt' be points in A X I such that the following hold:
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1) there is a linear homeomorphism g: (A X 1) —» A X1, sending v,
to vi' and z to itself if z is any other vertex of PB(A X I);

2) v. and vi' are on the same level; d(v:,vi)éﬁ, for all i,

 and
3 r i ! g e 0 8y 3 ! 3 s e ey -,
) for every i, PY; fﬂfpxl, X, PY) A ZS
F Note: Condition 3) does not in fact depend upon the order of the vertices
4 (vl, . ,vt)

Let h: P(AXI)—> A X1 be the linear homeomorphism of 1) above.

kae claim that h is the desired homeomorphist:.

To prove this claim, let o, T be simplices of the simplicial complex hK'.

-1

‘)}Ne consider (pl o) (pT).

m

 Case 1: po and pT together span E . Then

dim(po A p7) £ dim po +dimp -m< dim po - r.

Therefore dim(picr)—lp’r < dim o-r.
m
§ Case 2: po and pT do not span E .
°
A) o & AXI. Write o= POy 'r=p"rl,0'l,\_‘rl=¢. By 3) on page 102,

e vertices of p(srl) are linearly independent of the vertices of p{7). There-

-1
re (plo) (pr)=p=on T,
B) ¢ and T beth mest KO and N T ¢ KO.

. N =@, (I is . =
€ Ko" o K ] (r(o is full,) Put T TITo

P =
ut o 0'0,0'2 1 o

12

NK =¢, 1 ¢ K . Then the vertices of p(ql) are linearly independent of

Ose of p o, and pTt together, Therefore (plv)"l(p'r) = (p’o’z)-l(p:r) C KO .



And so is of codimension 2 r in Ko by the given conditions.
C) o, T both meet K, onT ¢ K .

= = N =
Let p=o T, @ PO, T, where T Ko g, T, € KO. Let

= = . 'K , ” i s X! =”’
T=pT T, TN K g, T, ¢ K . Now pe K'-K_. Hence link(ps K') 0 K, 1

a single simplex, P, say. By 3), the vertices of POy and pT; are iride’penci
of the (space spanned by the) vertices of PT,5: PT, and pp and of each other, l
Therefore porn prt = p(pcrz) A p(p'rz). But po,,pT, are faces of pp;, and
p |pp1 is one-one because SZ(pIKO) has loc.codim > r and so Soo(p|Ko) = a‘
Therefore (p| or)-l(p'r) = p.

Now,

Sz(p [hK') A o = U cl[(p[o-)-lp'r -oNnT),

where T ranges over hK'. So SZ(PIhK') is of local codimension 2 r in h

Proof of Lemma 4.9 continued -- The General Case.

s

Let K triangulate X, J triangulate Q, be such that p|X: K—> 17T is

simplicial. Let K' and J' be first derived subdivisions such that
p|X: K' —> J' is still simplicial.

*
Let A An be the simplices of J. Let Ai = dual cell of Ai inJ

ERLEE
o1 % ®
Let Ki = (p|X) Ai: (K| n (Ai X I). Ki is a subcomplex.
. .
Claim: dim Ki < dim Ai -T,

A A A
Forlet ¢ K.. Put o=8....8 , B. <...<B_. Then ps = pB, ... 05
i 1 r 1 T 1 !

e .
(with possible repetitions). Now, po ¢ Ai if and only if Ai < pBl. Therefor

dim Ai < dim pB1 < dim Bl'
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However, dim B, £ dim Br-(r-l) = dim B_ - dim ¢ £ dim X - dim o.

1
| Therefore dim ¢ < dim X - dim B, < dim X - dim A,. So dim ¢ < (m-r)-dimA,,
1 s &

i But m - dim Ai = dim Ai . Hence dim ¢ £ dim Ai - r.

Suppose that A .o As’ s < n, are the simplices of the boundary 3

=
Let A#i = dual cell of Ai in J'. Then, since dim Xo <m-r-1, if

Li = (p[Xo)-lA# , then dim Li < dim Af -r, i<s, bythe same argument

as in the last paragraph.

Now let B1 ye oo Bt be the dual cells Ai: and Ai in order of increasing
ydimension , and let Kj = (p|X)-1Bj, changing notation. We recall from the
theory of dual cells that the Bi cover |J|, that their interiors are disjoint, and
that <'DBi is the union of some of the Bj with  <1i.

Now we construct inductively p.l. homeomorphisms hi: BiX I—> Bix I

such that

1) if 13j ¢ 9B, , hiIBjXI= b .

2) SZ(pIhiKi) is of local codimension > r in Ki .

Suppose that hj is defined for j< i-1. Then the maps hj’ j<Li-1
efine a p.l. homeomorphism

h'e BBi XI—> aBi X1,
ince Bi is a ball, h' extends to a p.l. homeomorphism of (831 XI)u (Bi X 37)
nto itself, and this homeomorphism extends in turn to a p.1l, homeosmornhis:

3 "2 Bi XI— Bi X I, which is level preserving. To define hi’ we now appiy toc

;-2se 1 of this proof with X = h"Ki and Q= Bi .




Clearly Sz(plh K|) = klj SZ(plhi Ki"), where h is the p.l. homeo
morphism, h: |J| XI—> |J| X1, defined by the h.. Therefore h satisf
the requirements of the first paragraph in Lemma 4.9.

The proof in case SZ(plxo) is already of local codimensi on at least
is nearly the same. We start out by defining h to be the identity on
(8J) X I and then extend the definition inductively in order of increasing di

>"‘ .
sions over the dual cells Ai of J (not J) using Case 1.




Chapter V: Sunny Collapsing and Unknotting of Spheres and Balls

1 §1. Statement of the Problem

Suppose that sn_c; s are P.L. spheres of dimension n and q respectively.

Then the pair (s%,8") is called a sphere pair of type (q,n). The pair

un+1

. . g-n e n+l
(A CATEA™TY) called the standard pair of type (q,n). The sphere pair

(Sq, Sn) is called unknotted if it is P. L., homeomorphic to the standard pair;

«ntl q-n

‘ i.e., if there exists a P. L. homeomorphism h: st— A A such that

h(Sn) - An+1.
Question: Is a sphere pair always unknotted?
L;"Answer: Yes if gq-n>3
No if gq-n= 2 (e.g., Trefoil knot in 3-sphere.)

Unknown if g-n =1 (Schoenflies Conjecture.)

We are going to show in this chapterthat the answer to this question is

findecd affirmative if q-n 2 3.

A related question is that of the unknotting of ball pairs. A proper ball

q

pot

pair (B, B”) of type (q,n) is a P.L. m-ball B contained in P.L. g-bail B
m m g : / \

such a way that 8B = B N 3B®. The standard (proper) pair of type (g, =’

the pair (A™.ATT™, A™), and a proper ball pair is said to be unknotted if

is P, L., homeomorphic to the standard pair.

Is a proper ball pair always unknotted ?

Yes if g-n 2 3 -- we will prove this.

2

No if g-n

n
[

? if g-n




In order to prove that pairs of codimension 2> 3 (i.e. q-n > 3) are
unknotted, we shall also have to consider the

Factorization Question: If Ko C KCM are compact P.L. spaces, with M '

an m-manifold, and if K\KO and M\K_, soes M\ K
In some cases the answer is always affirmative:

Lemma 5.1. If, in addition to the hypotheses of the factorization ques ]
K ClInt M= M- 3M, then M\K.
Proof. Let N be a derived neighbourhood of K in M. ThenN ¢ Int’
and N \K\ K . So N isa regular neighbourhood of K , meeting the bound
regularly. By the generalized annulus theorem, ”Mfﬁ =~ (FrN) X I. Therefo
M\N\K, so M \ K. |

However, the result we will need for the unknotting question is:

Theorem 5.2. If KOQ K CM are compact P.L. spaces, M an

m-manifold, then if M\K_ and K\K_ and if dim (K-K )< m-3, then M \ K

Here dim(K—Ko) = largest dimension of simplices of K not in KO.

The proof of this theorem occupies the next few sections.

§2. Sunny Collapsing

Definition. Say XOQ X CMX1 are compact P. L. spaces. If (x,t)
and (x',t') ¢ M X1, we say (x,t) is directly below (x',t') if x=x' and t<'§
If U= MXI, the shadow of U is defined to be the set {y e MXI| y is direc

below a point of U} . We write sh(U) for this set.



-111-

Picture:
ricklet

sh(U)

tions K T K of X ¢ X and Jof M such that

1) The inclusion K—> J X I is linear (on simplices),
and

2) there exists a sequence of elementary simplicial collapses:

fK—K €S €es es
=K_ \q Kr_l\ \ K _ such that (}Kil - [Ki_l,):.sh(Ki)—,dﬁ

If K= entire figure inside the box,

then |K| sunny collapses to !KO} .




Lemma 5.3. Suppose X C MXI are compact P.L. spaces. Let

Xo =X A[(MX0)u(dMXI)]. Suppose that X sunny collapses to Xo in

M X1I. Then MXI \(Mx 0) u (BM X I) U X.

Proof, Let M= |J], X = IKOI, X = |K|, where K G K, and K
es es es
contained linearly in J X I. Let K=K \ K \ \ K  with
r r-1 o

(lKll - IKi-l [)n sh(Ki) = § be the sunny collapse.

Step 1): |J| X1\ ([J]x0)u (8] x1D) v [K| u sh{|K]).

Let PB(IJXI) and +y(J) be simplicial subdivision such that B(J X1I)
contains a subdivision of K and PIS B(J X I) —= y(J), projection on the fx :
coordinate, is simplicial. Let {Ai} be the simplices of vy(J) - y(8J) in of
order of decreasing dimension. For each i, B(J X I) contains a triangulai
of A XI Consider cl{Aix I- (A XI)A (KU sh(K))} . Now, if this se
non-empty it is a convex linear cell with Ai X 1 as a principal face. Henc
collapses to the closure of the difference of its boundary and Ai X1. So
AiXI\(AiXI) L (A, X0) U {(Aix I) n (K Lsh(K)} .

So doing these collapses in order of increasing i we find that

|7 % 1 \(|J| X 0)u (|K| u sh(]|K|)) uv(]aT| xXT1) .

Step 2): (IX0)u(dIXI)u Ku shK&(JXO)U(BJXI) v K.
In this step we use the existence of the sunny collapse. We are going

show that

(Ix0)w((@IXI)vKuU sh(Ki) \(J X 0)w(d8J XI) v K vsh (Ki-l)'
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‘ Let Kj_ = Ki lL) A B, with A= aB, A Ki 1 = aB’ Therefore
b A sh(K)C aB.
4 A

Let B be an interior point of B. Let b be a point directly below

N A .
L B. Then for b near enoughto B, b.AN Ki-l = aB; note that b is joinable

o A because A can contain no vertical line segments. So b.A " Ki = A.

ince bA ¢ sh(K,): K,. this implies that bA K= A, So, collapsing bA

i

yom the face bB

K v sh Ki 1 2 sh bafZ» U baB

KUShKi\qK"shKi’-IntbA-Inth
sing the fact that (ba.B) N (K v ShKi-l) C aB Ki ) collapse vertically as

Step 1. K ushK; L shbaB \KushK .

sh(baB)

sh(Ki-q)

l the defirnition: if P and Q are (compact) P.L. spaces, PC Q, wer =3y
.0f local ¢godimension greater than or equal to ¢ in Q provided that, fc+
angulaticn Kog_ Kof PC Q, and say o EKO, there exists Te K

and dim o X dim T -C.



Lemma 5.4. Let F: XXI—> MXI be a P.L. embedding, X anq

compact P. L, spaces, such that

F'l((Mx 0) V(M XTI) = X X0,

Let w: XXI—>X , prt MXI—> M be projections on the lst factors,
Suppose that

1) S2 (peF) 1is of local codimension> 2 jn X XTI

2) T"ISZ(P°F) is non-degenerate.

Then F(X X I) sunny collapses to F(X X 0) in MXI.

Proof. By induction on dim K. Let Kand J be simplicidl complexes
triangulating X and M, respectively, Let @K XI) and B(K) be subdi
of KXI and K, respectively, such that

1) a(KX1I) contains a triangulation L of Sz(p F).

2) w: alKXI)—> B(K) is simplicial.

Let yL. be a subdivision of L suchthat p F | yL: wh—> J' is simplicia.lk;
for a suitable subdivision J' of J. lNote that yL contains a subdivision
y(LNKX0) of LN (KX D0).

Let dim K= r and let Al’ oo ,.Ar be the r-simplices of pK. Let ,
Bl’ cees Bs be the (r-1) simplices of yL - y{L n (KX 0}). Any (r-1) simplex
L is a face of. an (r+1) simplex of a(K X I). Hence each Bi lies in a face of ;
some simplex of a(,Aj' X I), some j. Since m: cw(Aj X I) -b-Aj is simplicial, ti

means that each Bi is contained in Aj X1, some j.
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Now we are going to construct nplisters" on the B, as follows. For
going 5

g . A . A
. each 1, let Bi: barycenter of B.1° Choose Xi directly below Bi and near

Y

it (how near will be specified in a moment). If Bist X X 1, choose Yi near

o

. A
b and directly above Bi' Choose Aj such that B,1 c Aj X I, and let Zi e A XI

g A
be a point on the same level as Bi and near it (how near to be specified
f shortly). Let
. . A
XY.Z.B, i B.CXX1 (i.e. B, dXX1);
E = itiid i i

X.2.B, if B, C X X1
iii i=

' AN
We choose X.,Y., and Z, near enoughto B, so that EEN E, =B.NB
‘ i’ i i i j i 7

We observe that Xi and Yi are not in 3, because Soo( 'rrISZ(po ) = ¢,

nd so no simplices of v(L) may contain a vertical line segment.

Zi
\ \




o]
Let E! ,...,E, be the blisters which meet A,  XI. Each bijg
3 IR(; J
()
a ball of dim (rX1) and meets B(Aj X I) in a face. Hence cl(Aj X1

an (r+l)-ball. Since E, n E. = B, N B, , it is not hard to see that
R U S

E. N 3c{A, XI-E ))=E, n 3(A, XI)=afaceof E, . Hence

iy j iy iy j iy

cl(AJ. XI- Ej v Ej ) is an (r+1)-ball. Continuing thusly, we at last fingd
1 2
c{A, XI-E, ... ukE, ) is an (r+l)-ball. A similar argument sho
that cl(A. X1 -(A. X1)n(E, U ... UE, )) is a face of
j " i JR(s)
cl[A,XI-E, u ... uvE, ]. Hence the closure of the complement of
face is also a face of cl{[A.XI-E, y.... VE, ], to which this last poly
j)

hedron collapses. So, A, XI \'[(A X0) w(BA XI)]U(E, u...VE,

Let A =(r-1) skeletonof BK-= BK-{Ai}. Then, by what we have j

proved

KX 1\ (BKX 0)U(AX D) U(E U ... VE),

and so
R=F@KXD\FU&C<®U(AXD&MEﬁJ”.uEJ=S.
Moreover sh(R)n R C S. For if F(x) e sh(R)n R, then x ¢ SZ(pOF) and s

x ¢ A X1, Since there exist subdivisions making the collapse R \S simplic

it follows that R sunny collapses to S.
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Now let U, = Z.X.B, B,CXX1.

zXB wzY¥YB B ¢XX]
11 1 111 1

= (X.B. BiQXXI.

X.B. v Y B, B, ¢ XX1.
1 1 1 1 1

hen Ei\ Ui’ as a ball always collapses to a face.
Recall that B,,..,B_ are the (r-1) simplices of yI and that
oF:yL —> J' is simplicial. We may suppose in addition that the Bi are
fdered so that if F(Bi) overshadows F(Bj) (i. e. has interior points of
*(Bj) in its shadow and therefore all of F(Bj) in its shadow) then i< j.
Note that since Sz(p oF) is of local codim. at least two, none of the polyhedra
‘- Bj) may contain a vertical line segment. )
Since Ej\ Uj all j, we have:

' i-1 i-1 s
X0y (AXTI) - V., + U, + E, collapses to
s j klj j klj j P

i i s
Duaxn-Uv.+J U+ (JE, . Hence
| 1 41 ) on
i-1 i-1 s
FI(Kx0)w(axI) - Vo4 U U+ U Ej]\
1 I i

F[(Kxo)u(AXI)-OVj+L1) Uj+ O F.l.
1 1

i+l 7

eover, F(Int Ei) = Int F(El) misses the shadow of

. i-1 i-1 s

X0 u (AXI) - U Vj + U Uj + UEJ] For otherwise, we would hz
1 1 i



Int F(El) meeting sh(F(Ej)), some j>i. From the construction of the bljg

Ek’ this implies that F(Bj) overshadows F(Bi)’ an impossibility for igj,

It now follows that any simplicial subdivisions which make (I) a simplicial ¢q
lapse make it a sunny collapse. Hence we may conclude that F(KXI) sunny'

5 s
collapses to F({(KX 0) v (A XTI) - U M \‘ Uj)'
1

1
s s
Now let ki AXI—>AXI- |V, +{J U be the p.l. homeomozrphism whj
I 1

sends %i to Zi and }s the identity on cl{A X I - UVj). Let F'=Fok: AX]S
M X I, Then F' satisfies the hypotheses of this lemma. For |
Sz(poF') cyL - {le J=1,..., s} and so Sp{pe°F') has local co-dimension '

at least two in A X I, and 'n'iSZ(poF’) is the restriction of a non—degeneraté.?

map and so is non-degenerate. Hence by induction F'e k(A X I) sunny collaf‘

s 5
to F'o k(A X 0); therefore F(A XTI - U Vj + H) Uj) sunny collapses to F(A
1 5

This means that

F(AXIDu (KXD0) - UVJ, + UUj)\F((Axo)u(Kxo)).

Since F(K X 0) € (J X 0) u(8J XI), this collapse is also a sunny collapse. T

completes the proof.

§3. Factorization of Collapses -- Proof of Theorem 1. 2.

Lemma 5.5. Let BC QX1 be an n-ball, Q a compact g-manifold.
Suppose that BN [(Q X 0) U (8Q X I)] is a face of B. Suppose that n < q-2. |

Then (sz)\(on)u(annuB.
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Proof. Let F=BA[(QX0)u (8Qx1I)]. Let hi FXI—>B beaP.L.
homeomorphism with h(x, 0) = x. By Lemma 4,9, there is 2 P, L, homeo-~
morphism kiQ XI-—> QXI, level preserving, such that Sz(p]kB) is of

flocal co-dimension 2 2 in kB, Consider K= h-l(SZ(kaB)). (p = proj. on the

b

ffirst coordinate). It is of local codim 2 2 in F X I, and so its intersection

ith (i'“ X 1)1 (F X 0) is of local codimension 21 in (i? X I) U (F X 0), Hence
e may apply Lemma 4.9 to find k":F XI—> F X I, alevel preserving homeo-

orphism, such that SZ( ‘ﬂ'lk'(K)) has local codim > 1 in k'(K), ® the pro-

ection of F XI onto F.
Lol

Let ¢ = koho(k')-lz FXI—» QX1 Then SZ(pc.‘wp) =k'ch & Sz(plkB))
»

s of local codimension 2 2| in F X 1. Moreover, SZ( Wlsz(pcqo)) is of local

v

dimension > 1 in Sz(pwp); hence -rrISZ(poq>) is non-degenerate. Finally,

*l(BQ XIuwuQXO0)=F X0, This is because k' and k are level preserving

ind boundary preserving, and because of the definition of h. Hence by
mma 5.4, kh(F X I) sunny collapses to kh(F X I) n ((Q X 0) w (8Q(x I)).

nce by Lemma 5.2, (Q X1I) \q (Qx0)y (8Q XI)w kh(F X I). Applying k"1

tboth sides of this collapse, we see that

(QX1) \‘\\\(Q X 0) L (8Q X I) UB.

Theorem 5.2, Let Kog K CM, Ko, K P. L. subspaces of the compact

- m-manifold M. Suppose M\“Ko’ K\‘Ko' and dim(K-Ko)Sm-B. Then



Proof. It suffices to suppose that K \e‘KO‘; i.e. cl(K-Ko)
r-ball and B n Ko = F, a face of B. Subdivide M with K, Ko’ and B
triangulated as subcomplexes. Let N be a 2nd derived neighborhood of;
in M. M is also a regular neighborhood of Ko and N also meets the

regularly. Hence, by the generalized amnulus theorem, there exists a p,

homeomorphism
h: cli(M-N) —=>FrNXI
with
h(x) = (x,0) if xe Fr N,

Now, NN B is a regular neighborhood of ¥ in B meeting 9B reg
So NN B is an r-ball and NN B is an (r-1) ball, being regular neighboﬁ
of collapsible sets. Therefore (Fr N)N B is also an (r-1) ball.

Let B1 = cl(B-N). Fl =BNFrN. Let Q=Fr N. Let hﬁ:F1 —>Q

be the restriction of h above. We must now construct a p.1l. homeomorpi,
4

pr QX I—=>QXI throwing Q X 0 into (Q X 0) v (8Q X I).

2 3
Let \: I2 —> I” be a p.l. homeomorphism such that \(1,t) = (1,t)

k
A

for-every t, and A (IX0)=((IX0)u(0XI)). (Exercise: Construct M.
2). Let c: 9Q X I—> Q be a boundary collar. Then define |
p: QXI—>QXI by

Set N = (N\,.\

m(c(x, s), t) = (c(x, )\1(s,t)),)\2(s,t)) if xe 9Q

u(y,t) = (y,t) i;:' y ¢ cl(Q-Im c).

The two definitions agree on the overlap (where s = 1 in the first defini.tion

The map p is p.l. For on Im(c) X1, it is the composite:
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X
£ X1 o oaaxixI—AZr saaxixt <2 5 me) X1,

" This also shows that is is a homeomorphism.

Now, w(hB,) is a ball in Q X I meeting (Q X 0) s (8Q X'I) in the face

)

dim B, < dim M-3 < dim Q-2. Therefore QXI (QX0) ..(8QXI)u phB

P'hFi' 1 !

e

- -4
l Hence cl(M-N)'(Fr N): B1, applying h 17 " to the preceding collapse.

Al

Therefore M\N. B, . NuB, =NuB, so M N' B. But N B\K uB®K

1° 1

;Note: If LOC_ L < J are simplicial, Lo full in J and L"D C L' J are
irst deriveds, then N(L(') ;J') w L \\*\L'.

Proof. Let \ Aig =}8implices of J-L which meet Lo’ in order of
decreasing dimension. Then Aif”'x N(Lg ;J')"-“JAi n N(L(‘);J'). For

0 N(L('); J') is a regular neighborhood of Ai 7 LO which meets Ai regularly,

nd so Ai N(Lé;J') is a face of the ball Ai‘( \ N(L(');J') . )

- Unknotting of Ball Pairs and Sphere Pairs

Plotation: If P = (B4, Bn) is a proper ball pair, then P denotes the sphere
, q and. : q _nn . .

lir (BB ,0B); and vP denotes ball pair (vB* vB"), v a joinable point.

ofe that vP is proper.

Lemma 5.6. Let P and Q be two unknotted ball pairs of type (g, m).

et hiP - ) bea p.l. homeomorphism. Then there exists a P.L. homeo-

phism k:P —> Q with kP = h.




Proof. (Am. Ad-m, Am) -3 (/AmoArnAq-m’ /AmoAm) = v ('AmAq-m,

So there are P.L. homeomorphisms P —> vP, @ —> vQ and we can ext

h: P —> Q conically.

Lemma 5.7. The cone and suspension (join with a sphere) of an

ball or sphere pair is an unknotted ball or sphere pair.
Proof. Exercise.

By Bq m Ve denote the statement: all proper ball pairs of type (q,

are unknotted.  Let S_ = "all sphere pairs of type (q, m) are unknotte

b

Lemma 5.8. B m implies S

H ’

Proof. Let P = (S9, s™). Let KOE K be a triangulation of smg

Let v be a vertex of KO . Let P1 = (st (v3K) , E?(V,Ko)). Let

P2 = cl(P-Pi) = ( l K-st(v:K)‘ , IKo-st(v;Ko) ). Then P1 and P2 are bot§

proper ball pairs, and 1.91 = I.DZ. The identity i31 — P

1 extends to a p. 1.

homeomorphism P,1 —>vP, anda p.l. homeomorphism PZ —> v'PZ. Sot

1

P is p.l. homeomorphic (as a pair) to VP1 v v'Isi, a suspension of 1:’1 én,

so unknotted.

Definition. A face of the proper ball pair P = (Bq, Bm) is a proper ba

m-1 - Aq—1

- -1
m-1y vith A%7'c 8B and A

pair F = (a7 4 N 3B™. We de

m

fine cl(P-F) = (aB% - A%°1 9™ _ A "1y which is also a face of P.

Lemma 5.9. Let P and Q be unknctted ball pairs of type (q, m) which

in a common face. Then if Bq 1 med is true, P v Q is an unknotted ball ¥
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Proof. Let F be the common face, Let P‘1 = cl(P-F), Q= cl{Q-F).

?B implies F,P,, P2 are unknotted. Then F is unknotted as p. L

g-1, m-1 1

homoemorphisms preserve boundaries. By 5.6, the identity F—> F extends

7j'to p.1l. homeomorphisms:

: >
; h‘1 P1 alF ,
. > bF
hz, ¥ b
s P ——> cF
h3. 2 c

&

V) h2:1’3 —_— a};"u bl:"‘ extends to ki:P _ abﬁ“ and hZ h3:é - bl'T Y cf‘

extends to kz: Q—> bcf’, both homeomorphisms. So
;1L,kzzpu»Q-«>aka;bcégfaFa)cF‘ is .knotted.

Lemma 5.10. Let (Bq,Bm) be a proper ball pair. Let N be a regular

%elghborhood of B in B, Then Bq-i, - and Sq-'l, et imply (N, B"),

.
i

proper ball pair, is unknotted.

K.

~ o

Proof. Let KOS K triangulats B™ < BY, and suppose that KO

uniqueness of regular neighborhocds, we may also suppose that

3 " €s es [

N(K :K") without loss of generality, Let K =1L \ \ L =ve K,
o o r o o

Ei = (N(L‘; s K"), N(L;' ;Kg), where K" = 2nd derived subdivision,

(N, K0 ). Moreover, E,1 is a ball pair, by regular neighborhood theory,

8 easily seen to be proper.

Eo = (star(v; K"), star(v, KO) = w(link(v: K"), link(v;K"o)), a cone on a

1—

t Ei-1 is unknotted, Put L = 1L, A 13, A= aB. Then Ei = E, 1 P uqQ,



E=E, ,UPuUQ, where

P= (st(:&, K"), st(:‘\s: K'(')))

Q = (st(B; k"), st(B; K)))

(See regular neighborhood theory, Chapter III>
A A
Now P = A(link(gg K"), link(A; Kg)) The link pair is either a sphere
A " A >
or a ball pair, according as A ¢ Int Ko of Ae K(‘; . Since
" N LI n = . N . N
a(1mk(A;Ko)) = link(A; k! )clink(&; K") = 8(link(A; K")), in the event A ¢ K|
this pair is a proper ball pair or a sphere pair of type (qg~1 ,m-1). Hence
is unknotted.
Now we are going to prove that P N Ei-1 is a face of P and Ei-—i
A A _ A A v 1
Let L = (link(A;K'),link(A;K('))). Let P, = (Link(A; K"),l’ink(A;K"'D)). Th

A
P= AP1. Let p:P1 —> L be the pseudo-radial projection given by

A A
P(A¢) = ¢ if o ¢ link(A; K').
(See regular neighborhood theory. ).

We now introduce some new notation, by writing P = (Pb’ Ps)
(P"big" and P"small"), Q= (Qb,Qs)g etc. Then P sends B N (Ei-i)'b ;
onto the derived nieighborhood of (aB) in L, and sends P_N (Ei-i)s on
the derived neighborhood of (aB) in Ls . Using the sublemma appearing
the end of this proof, we see that the image of PN Ei-i is a proper ball P’
of type (q-1,m-1) and so a face of P and of Ei-i' Therefsre P U Ei-i
unknotted pair. Similarly, (see reg. nbhd. theory) (P v Ei--i) ~D isa fac

Pu Ei and of Q; hence Ei is unknotted.

1
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Sublemma 5.40.4, Let X CMC Q, M CQ a manifold pair,

M N 9Q = OM, Assume everything is triangulated so that X is full in both
M and Q. Let N = derived neighborhood of X in Q. Then &(N n M) = (8N) " M.

Proof. First, FrM(N N M) = FrQ(N) N M. For say LC Ko C K

jangulates X € M € Q, with L full in K, K fullinX. Let L'CK! < K
be first derived subdivisions, and suppose N = N(L';K!). Then NN M= N(L';Ké).

Say A e K(‘) . Then A ¢ FrM(N N M) if and only if A NL = ¢ but there exist

BeL with BAc¢ K. AcFr (N)NM ifandonlyif Aec K, ANL, = § and

there exists B e L' with AB ¢ K'. It is clear that these conditions are equi-

fralent. Therefore FrM(N N M) = FrQ(N) N M.
Now, (8N) A M= ((Fr N) AM) U (N M NoQ).

8(NA M) = Fr (N n M)y (N naM).

ut M 8Q = M,

-m > B i B
Corollary 5.44. If g-m 2 3, then m-1,q-1 and Sm-i,q-i imply m

m
Proof., If g-m 2 3, then by Theorem 5. 2, B \B

ince both collapse to a point.) Hence BY isa regular neighborhood of B™,
(BY, B™) is unknotted by 5. 10.

Theorem 5.412. If q-m > 3, then every proper ball pair or sphere pair

type (m, q) is unknotted.

Proof. We already have the following implications:

— w 3 ' - .
Bm,q—_>sm,q and sm,q Brn+1,q+1 , if g-m2>3

start the induction, assume m = 0, q > 3. So we have a point, P say, in the



interior of B, Triangulate BY with P as a vertex. By the uniqueness ¢

regular neighborhoods [P C BY o [P ¢ star(P,K)] which is clearly unknotteq

§5. Unknotting of Embeddings of Balls in Balls.

Now we ask the following question: given P.L. embeddings

m -1

£, g:B™ —> B9, with flaBm = gl o™, 8™ = £ }(9BY) = g 1(8BY), is there

an ambient isotopy throwing f(x) onto g(x), all x ¢ B™?

Lemma 5.43. If Bm§ B? is an unknotted proper ball pair and if

n: BT U 3B —> B™U 8BY isa P.L. homeomorphism, then there exists a

P. L. homeomorphism k: B — B4 extending h.

o
=

Proof. By Lemma 5.6, there exists k' (Bq; Bm) = (Bq; Bm) such
that k' |9BY = h|8BL So k'n 1|3B™ = identity. Let a:(B%B™)—> (ATAY
be a P. L. homeomorphism. Let P = Otk'h_ial-l: AT —s AT Let
zp AT AT 5 ATATT? pe the suspension of B (i.e. join up B with the
identity on AY™) Then = is the identity on ATATT a(Am.Aq“m).
Therefore k" = g} (ZB) a: BY-——5 BY s the identity on 9B, Moreover,
kK [B™ = kbl Let k= (k") 'k'. Ther k|2B%=k'|8B% = n|aBY,
k|9B™ = b H Yk = n |

Lemma 5.14. Let f,g: BT —=> B? be P, L. embeddings,
1

-1

£ 9B = g 9B% = 3B™. Assume q-m > 3 and flaBm = g 3B™. Then f and g

are ambiént isotopic keeping aB? fixed. (That is, there exists an ambient iso- |

topy h mach that h,of = g and h leaves 9B? fixed.)

1
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Proof. There exists a P. L., homeomorphism h: BY — BY guch that
l h(me) = g(Bm), as (Bq, me) and (Bq, gBm) are unknotted proper ball pairs,
The map fg'1h: fB™ —> fB™ is a P.L. homeomorphism, and
] fg-ih'f(aBm) = h|£(8B™). So hbfg 'h:8B. B™ —> 8B, B™ isa P.L.
homeomorphism. By 5,13, there exists a P. L. homeomorphism

kB3 —> B with k|8B%= h and k|fB™ = £y 'h. The map @ = hk :B%—> B4

. is a P. L., homeomorphism, and « lme = gfd. So af=g, Moreover,

a| aB9 = identity, so @ is ambient isotopic to the identity keeping aB? fixed.

$§6. Unknotting Cones

We state the following without proof: (Lickerish's Theorem)

If fand g are P. L., embeddings of v.K into Bq, K a polyhedron
- , an £ Y oRdy = o1
Jand v a joinable point, with { (0B )= g
:

dimv;K % q-3, then f and g are ambient isotopic keeping 8B fixed.

(0BY) = K, and if f|K = g|K, and if




Chapter VI. Isotopy

§1. Concordance, Isotopy, Ambient Isotopy, and Isotopy by Moves.

Definition. The embeddings f and g of M into Q (PL spaces)

are called isotopic if there exists a PL map F: M X I—> Q such that

2) Ft is an embedding . (Ft(x) = F(x,t) .)

Equivalently, we say that f and g are isotopic if there exists a level]

preserving embedding F : MX I —> QX I such that —F—o =f and F =g,

( F(x,t) = (fc(x),t)) The relation between F and F is F(x,t) = (F(x,t),t).]

We say that f and g are ambient isotopic if there exists an ambient
isotopy h: QXI—> QX1 with hef=g.

We say that f and g are concordant if there exists a PL embedding
Fi:MXI—>QXI with F(x,0) = (f(x), 0) and F(x,1) = (g(x),1) for all

x e M,

Definition. If Q is a PL space and h: Q—> Q 1is a PL homeo-

morphism, sup(h) = {x e Q| hx # x} = support of h. We say h is

supported by X if sup(h) € X € Q. Then h is supported by X if and only]
if h|Q-X is the identity,
If Q is a PL. g-manifold and h is supported by a PL g-ball contained]

in Q as a PL subspace, then h is called a move. We call the move h

a proper move if either hl 9Q = identity or there exists Bq(_: Q, BY a q-ba\

with sup(h) _(': Bq, such that Bq ~ 9Q 1is a face of Bq.
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Definition. If f and g are embeddings of M into the g-manifold Q,

we say that f and g are isotopic by moves if there exists a finite sequence
hi’ ce ,hr of proper moves of Q with

hio ...Ohrof = g.

Lemma 6.1. Each of the following statments implies the ones
below it (f and g embeddings M — Qq).

a) f and g are isotopic by moves.

f and g are isotopic.

)
b) f and g are ambient isotopic
c) :

)

d) f and g are concordant.

Proof. b)=>c). Let h: Q XI—> QX I be an ambient isotopy
{ with hf =g, Define F: MXI—> QX1 by F = ho(fX1).

c)=>d) . Clear.

a) => b). It suffices to show that any move is ambient isotopic to the

-
e

identity. So let h: Q —> Q be a move.

P

. *
Case 1: Sup(h) € B4 C Q and h|dQ = identity. Then h| 8B? is the
dentity, so h|Bq is ambient isotopic to the identity keeping 9B fixed.

Hence h is ambient isotopic to the identity (keeping Q-BCl fixed).

Case 2: Supp h € qu Q, B4~ 0Q = aface F of BYL.  Let
= cl(8B? - F). Then by continuity, th1 = identity. Let a: BY — At
be 2 PL homeomorphism sending F into a principal face A1 of A%,

Define k: A9Xx1—> ATx1 by first putting k|Aq X 0 = identity,

AT { = gho ! , k]clia - Ai) X I = identity, k(&1;1/z) = (2\1, 1/2) and




A, = barycenter of A,; then extending k, by joining up linearly, to

{ t’
-1

AYXI. Then k is an ambient isotopy ending in c¢hea and keeping

cl(A - Ai) fixed. Therefore hIBq is ambient isotopic to the identity keep-

ing cl(Bq - F) fixed, and so h is itself ambient isotopic to the identity.

Theorem 6.2. If Q is a compact g-manifold and H: QXI—=> QX

,h of

is an ambient isotopy, then there exists a finite sequence hi’ ceesh

proper moves of Q such that H1 = hio ... %h .
T

Proof. Let K triangulate Q. Assume [K'E‘__En, and view

1

+
IKIXIQ_EH . Given a linear map #: K—> I, (1,¢): K—> KX 1 is an

embedding., Let Py K X I—> K be projection on the first factor. Given
g let ¢ = poHO(L,g).
Let o{KXI) and B(K X I) be subdivisions making Heal KXI) -> B(KXI) sim

Let oe B(KXI). Let £ ¢ ¢ be a vertical line segment in o (i.e. a line
whose projection under PZ: KXI—>1 is a point). Hni( 2) is a line in the
simplex H-i( o). Since H is level preserving, H=i( £ ) makes an angle
of less than 7 /2 with the vertical. (Mozr= precisely, if £ is viewed as
an upward pointing vectcr, then Hgi( L) is a vector which makes an angle
of less than 7/2 with, say, the vertical unit vector; equivalently, the last ]

w-ordinate of the vector Hni(l ) is positive.) Moreover, by linearity of
H on simplices, this angle is independent of the choice of £ in o, §f -r=
tical. Since PB(KXI) is a finite simplicial complex, thevz sxists w < o,
such that H-i(l) makes an angle < ¢ withthe vertical if § 1is anv v =ical j

line in a simplex of B(K X I).
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On the other hand, there exists 6 > 0 such that if ¢(K) has diameter
< 6, then if o ¢ K, any line segment contained in the (convex linear cell)
(1,#)(c) makes an angle of at least ¢ with the vertical.

Now (1,@)K separates KX I That is, a path from KX 1 to KX 0
meets (1 X §)K in at least one point. This is because if AN I—> K X1 is
such a path and N, =p o\, then if NI) n(1,0)K =6, the sets
{sl)\i(s) > @(s)} and {s,ki(s) < ¢(s)} form a splitting of I by disjoint,
non-empty open sets, contradicting the connectedness of I. Therefore the
"broken line" H—i(X X 1), X € K, meets (1,#)K in at least one point.

However, (1,#)K and H-i(X X I) meet in at most one point. For if
€ is a point of intersection whose co-ordinate in I is t, # 1, and.if
Ne H-i(X X I) and 1N has t co-ordinate greater than to, then 1\ lies inside
the solid cone consisting of all rays starting at g and (when when directed
away from g ) making an angle of at most ¢ with the upward vertical.
if n e (1,¢)K, however, M lies outside this cone. This proves that the
point of intersection with smallest t co-ordinate is the only point of inter-
section,

Therefore ¢* = poHo(1,d) is a homeomorphism if diam #(K) < 6.
Then there exists a finite sequence ¢1, v, ¢N of linear maps of K into I
‘Buch that
1) ¢ (®)={o} and gy = {1}

2) diam ¢i(K) <& all i.

3) ¢i and ¢i 44 2gree on all but one vertex of K.



] sk -1
Consider ¢i °(¢i_1) . Let vv be the ver-

Then ¢: =1 and ¢1\; =H

1 L]
% %
tex such that ¢i(v) # ¢i_1(v). Then ¢i(¢i-1) is supported by ¢i-1

3 sk
¢i_1(star(v:K)) and is the identity on ¢i_1(link(v: K)). Therefore if v ¢ 8K,

grg; )

%
is a face of |star(v;K')l . Since ¢i 1 is a homeomorphism, it follows that

does not move 9K. If ve 9K', Istar(v;K')l n (8K') = Istar(v;am

i

E 3
¢i (¢i-1) is a proper move.

Theorem 6.2 has several improvements in each of the following,
H:QXI—> QX1 is an ambient isotopy. In all but the last, Qq is a com-
pact PL g-manifold.

6.2.1. If a is an open cover of Q, then ore may choose the moves

hi such that H1 = h1° ce. © hr to be supported by elements of «.
-

Proof. Let aXI= {UXI' Ue a}¢ H (aX1I) covers QXI,

Let € > 0 be the Lesbesgue number of H-i(a X I) with respect to the metric {

(x)

induced by the triangulation K of Q. Let K be the r-th barycentric

(r) _

subdivision of K, r such that mesh K

1
of K(r) < Ze- (In general mesh K'<

maximum diameter of a simplex

a mesh K, n = dim K, K' = first
n.+1 T

barycentric subdivision.)

1
Let 6§ >0 be suchthat 1) 6 < Z € 2) dim ¢(K(r)) < & implies

g is an embedding. Now construct ¢i as in 5. 2, but with K replaced
throughout by the triangulation K(r) of Q, andlet b, = ¢i ('Q‘»i..i}' Then

sup(hi) c ¢i_1(star(v;K(r))). But diam[(1 X ¢i_1)(star(v; K(r))] <e: for

* 1 r ‘
the diameter of star(v;K(r)) is at most 3 e. Therefore (1 X ﬂi 1)(starw: Y(
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lies in some element of H-i(ozX I), and so in 1(s'caur(v; K(r)) lies in some
element of «a.

6.2.2. If H keeps the boundary fixed, then we may assume each

proper move hi keeps the boundary fixed,

6.2.3. If the hypothesis of 6. 2.1 and 6. 2. 2 hold simultaneously, then

j the moves hi may be chosen so that the conclusions hold simultaneously.
Proof. Clear.

6.2.4. Let H:QXI— QX1 be an ambient isotopy, Q% not compact.

v Let X € Q be a compact PL subspace. Then there exists a sequence of

' moves h ,hr such that H, = h,» ... vhr on a neighborhood of X.

1 1

Proof. Let Ko C K be finite complexes triangulating two neighborhoods
j of X in Q, with Int|K| 2 [Ko[. Let N = N(KO;K). We may also suppose
' that |N| € Int K by choosing K suitably. If g:N-—=1=[0,1] is a linear
map we may still define ¢* = p.He(1,f): N—>Q. By the same argument
as for 6. 2, there exi.sts § >0 suchthat diam #(N) < & implies Qf* is an

| embedding.

Now suppose that ¢1’ ¢2:N —> 1 are such that diam ¢i(N) < & and

% -1

Now x € ¢1 Int N if and only if H (x X 1) intersects (1 X ﬁi)N, which
~‘ -1

happens if and only if H (x X 1) homologically links (1 X ¢1)(Fr N). Simi-

e sk
arly for ¢2. Thus ¢1 N = ¢2 N. Then by arguing as in the proof of 6.2,

i ¥ E i
J(FrN) =g, (FrN) = {5 } . Then § FrN=g FrN. SoFrf N-= Frg, N.



* +
composite is (¢2) t

% o
(¢ 1. Extending these moves to all of Q by the
1 g

% K, -
identity outside of N, we see that (ﬂz )(ﬂi) t is isotopic by moves to the

b s
identity. Therefdre ;252 is isotopic by moves to ¢1 .

Now let 0 t=t <t, <.,.<t =t =1, with t, =t, < =8,
o i i-1 2

1 r r+i

¢i: N—>1I -1<£igr, such that ¢i(v) = ti if ve Fr N is a vertex, and

1
= - i -F i . Defi . =t, i
¢i(v) ti + —(2 ti+1 ti) if ve N-Fr N is a vertex efine 4}1(\/) t1 if

(t, -t 1) if ve N-Fr N, v always a vertex.

1
ve FrN and tbi(v):ti—ii ;

o %
Then ¢,  and y agreeon K. ¢i’¢i agreeon FrN. So ¢, and ¢i

are isotopic by moves. Let hi be an isotopy by moves throwing Lbi onto

b
ﬂfi . Then h= hrhr h, is an isotopy by moves and tho = H1 [Ko.

ey

Corollary 6.3: If f,g: Mn---->Qq are two embeddings, M compact,

then f and g ambient isotopic implies f and g isotopic by moves.

§2 Locally Unknotted Manifold Pairs and the "Weak"Isotopy Extension Theore

4

Definition. Say (Q,M) is a PL manifold pair; i.e. Qand M are PL
manifolds, and M is a PL subspace of Q. We say that (Q,M) is a proper

manifold pair if M N 3Q = 8M., (Q, M) is said to be locally unknotted if

given any x € M, there exists a neighborhood V of x in Q such that
(V,V O M) is an unknotted ball pair; observe that it is a proper ball pair if

it is a ball pair at all.
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Lemma 6.4. If KO_C_ K triangules M CQ, then (Q,M) is
locally unknotted if and only if given any A ¢ Ko’ (link(A; K), link(A; Ko))

is an unknotted sphere or ball pair.

Proof. => . First we consider the case when A =v is a vertex.

If K(‘)g_ K' is any subdivision, then the radial projection

1
link(v; K') — link(v; K) carries the simplices of link(v;Ko) into simplices

of link(v; K(‘)). Hence the same is true of the pseudo-radial projection, a

PL homeomorphism. Hence it suffices to show (link(v; K'), link(v; K('))) is

unknotted. But by choosing a suitable subdivision (for example, the rth bary-
_centric, some large r), we may suppose that the link pair of v with respect

to this subdivision lies in a neighborhood V of v such that (V,V N M) is

an unknotted proper ball pair. In other words, it suffices to consider the

. '+
case Q= At A t and M = Ar, and ve AT isa given point (not necessarily

a vertex) of At
If ve AT, stellar subdivide by starring A" at r, getting the pair

cpsitd c i+

(v.a"A , Ve Ar) Then the link pair of r is (A Ar, Ar), the standard

unknotted sphere pair of type (r+i-1,r-1). If ve A, where At = A.B,

(B # @), stellar subdivide by starring A at r to get the pair (vABArH,VAB).

. . ‘+ .
The the link pair of v is (ABA® 1, AB), an unknotted ball pair.
To prove the result of an arbitrary simplex A of Ko, assume the result
by induction for simplices of lower dimension than A. Let a be a vertex

of A, and put A =a.B. (link(4;K),link(A,K )) =

[link(a; 1ink(B, K)), link(a; link(B; Ko))]. By inductive hypothesis,
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link(B; Ko) C link(B; K) is an unknotted ball or sphere pair and so a locally
unknotted proper manifold pair. Hence we may apply the result for verticeg

to the link pair of :a in this manifold pair.

b
i

<= . As (link(v;K), link(v;K _)) unknotted implies (star(v;K), star(v; K )i

unknotted.

Lemma 6.5 (weak isotopy extension theorem): Let (Q, M) be a proper

locally unknotted manifold pair, with M compact. Suppose that h: M—>M

is a homeomorphism which is ambient isotopic to the identity 1M’ Then

4

there exists a PL homeomorphism k:Q —>Q with k| M="h, If h is ambie7

isotopic to 1 keeping OM fixed, then we can assume that k is fixed in aQ*

M

Proof. Let KOE K triangulate M C Q. Then let @ be the star
convering of M; i.e., a = {si?ar(v;Ko)lv is a vertex of Ko} , where
stgr(v;Ko) = IKOI - U{oe Kol v o}. By 6.2.1, there exists a finite ’
sequence of proper moves hi’ cees hr , each supported by some element of .
hr: M— M, with h= hio cen ohr' If h keeps the boundary fixed, we may
assume each h, also,

We are going to complete the proof by showing that each hi can be ex~-
tended to Q. So suppose that supphig_ gtar(v;Ko), v a vertex.

Case 1: +w ¢ 8K. Then h, is the identity on link(v;Ko). Mo s-cow

(star (v K), star(v; Ko)) is a proper unknotted ball pair, and its boundary is
the sphere pair (lir+ X}, link(v; Ko)). We may extend hi to a p.1. homeo- |
morphism of .star{ve % 1 lizkfeeK) hy .57 3 it  be the identity on

link(v; K). By Lemma 4, this msp =xtends ¢ 4 p... homeomorphism of
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star (v; K) into itself, which we then extend to all of Q by the identity
", outside gt—;x"-(v; K).

Case 2. v ¢ 8K. Assume for the moment that (star(v;K),star(v; Ko))
is unknotted. Then by the same argument as in Case 1, we may extend
hil star(v: KO) to a homeomorphism of star(v; K) which is the identity on
link(v; K). ‘This homeomorphism extends to link(v;K) u star (v; K) by the

identity outside star (v;K), and so we get a homeomorphism of

" 9(star(v;K)) into itself which agrees with hi on star(v;K) and is the

B identity on link(v;K). But h, is the identity on link(v;Ko) and is defined

on star(v; Ko) (whose boundary is link(v; Ko) v star(v; KO)). Hence by the

I lemma quoted in Case 1, we may extend hi to star(v;K), getting a homeo-

‘morphism which is the identity on |link(v;K)| FrKl star (v;K)|. Now ex-
tend to all of Q by the identity outside star (vi K).

To prove that (star(v;K), star(v; Ko)) is unknotted, we simply observe
 that it is the conecon the sphere pair (link(v;K), link(v; Ko)) which is un-

otted because it is the boundary of the ball pair (link(v;K), link(v; KO)).

emarks: 1) k can be chosen to be the identity outside of an arbitrary

eighborhood of M.
2) It is clear that if k is constructed as in the proof of Lemma 6. 5,

l,1,'311 k 1is isotopic by moves to the identity and so ambient isotopic to the

3) We also proved that the boundary pair of a locally unknotted pair is

PCally unknotted.




§3. Uniqueness of Boundary Collars and Construction of Compatible Collay
e ——

for Proper Manifold Pairs.

Let M C Q be compact PL manifolds, with M n93Q = dM. Then the

M XI—> M and c.: QXTI —> Q are said to be

boundary collars <y 2

compatible if <y is the restriction of <, to 9M X I. In this section we ge
how to obtain compatible collars in general and, given a collar

c 2 OMXI—> M, we can extend it to a collar of ¢

{ 5" In the process we

prove the uniqueness of collars up to ambient isotopy. These results will beé

used to help prove the general isotopy extension theorem.

Theorem 6.6. If (Q,M) is proper pair of compact manifolds and is

a locally unknotted pair, then there exist compatible boundary collars of

M and of Q.

Remark. The reader will observe from the proof to follow that it would

suffice to assume that the pair (Q, M) is locally unknotted at the boundary;

i.e. every point in the boundary of M has a neighborhood in Q, V, such tha 1
(V,V A M) is an unknotted proper ball pair. One would need a variant of

Lemma 5.4. The details are left to the reader.

Proof. Let Q+ =(QX0)u(8QXI) and let M* = (Mx 3)u (av « 7,
We will monstruct a PL homeomorphism Q+ —> QQ carrying M+ info M,
which sends 8Q X i == 3Q by mapping (x,1) onto x.

Let KOQ K tri-og:ian- MC Q. Let K' beth barycentric first derive

Let Ai’ coe ’AN be the slmo to- of BK o e decreasing dimension.



{,
b

Claim: If A e 8K , then (B, B,
| — i o i’
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Let A'; be the dual cell of A, in K and let Af be its dual cell in OK.

2 1

If A.e K, let A and A# be the dual cells of A, in K and 8K ,
1 O 1 i 1 (o] O

respectively.

which, if Ai € Ko , send (A1 OX 0) u (A,# X 1) onto A

H 190 1,0 :
B &k # i _ sk #
Let B, = (A, X0)u (A, XI), Let B, =(A X0y (A, XI) if
1 1 1 1,0 i, 0 1,0
L A,c K . Let C, = cl(SAT-A#) and o, =cl(ea’ - At ) i
R ) 1 1 1 i, O i,o 1, 0

(See the section on dual cells, Chapter I.)

o) is an unknotted ball pair.

i,

The following picture indicates the situation:

sl

We are going to construct homeomorphisms (A1 X 0) u (Aiié X I)—> A1




To prove the claim, we use the pseudo-radial projection

ofe
K

b A 5
p:Ai _ Ai link(Ai;K). Under this map, Ai o is carried onto

2

A
Ai.link(Ai;Ko). Let F, = (Ci,C, o) a proper'ball pair. Under p (seeth
i

section on dual cells), this pair becomes the pair (link(Ai; K), link(Ai;K )
o’

an unknotted ball pair. The pair 9F = (aci, BCi o) 2 (link(A; 3K), link(A; 3
is also unknotted.

IR N I . A
Let FZ = (Ai’Ai o); under p it is carried onto A.p(aFl), also an

unknotted pair. Therefore FZ X I is unknotted. Let

F_= (Fz X 1) u (8F , X I), an unknotted pair because there is a p.l. homeo-

3 2

morphism (F,X1)v (BF2 X1I)—> v, dF (To see this, embed the first

2 2°

pair in v.8F_ suitably and use a pseudo-radial projection, as in the follow

2

ing picture:

The identity 8F2 —_—> BFZ extends to homeomorphisms

. (
h1 : F1 > a\BF:“
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: > b(9F ) ,
h,:F, b( 2)

)3 note that 9F. = 0F _ = 9F

h F—> C(BF 1 2 3"

373 3

Extending homeomorphisms defined on boundaries by these maps, we

get homeomorphisms

% *
. >
h4-(Ai,Ai,o) ab(dF )
. > .
hyF, X1 (bc). 8F

Finally, h,Uh :(Bi, Bi 0) > (abaF2 v bcaFZ) = ac(aFZ) is a homeo-

4 5
morphism. This proves the claim.

Now we define inductively a sequence of p.l. homeomorphisms

i% X I) > A1 with the following properties:

e
k:(A, X0)u (A
1 1

1) ki(x,1)=x if xe 9Q
#

2) k(x,0)=x if xe A, - Al ;
1 1 1

3) I A, ¢ K, then k, maps (A, X0) u(A# X 1) onto A.
i o) i i,0 i,o 1,0

2 2
and

3 % sk
4) If A,<A, (=>ixj and A, C A), then k. = k.|[(A, X 0) U(A#X 1).
i J J 1 J 1] J

Having defined kj for j<i-1, we define kil aBi by conditions 1), 2)
“and 4), and then extend it to all of Bi to satisfy 3), if it applies, by using

+
he "claim." Having defined the ki’ we define c:Q —> Q by extending
. . N B3 +
1&\1 , by the identity on (Q X 0) - U (Ai X 0), to all of Q . Clearly ¢
i-1
8 the desired homeomorphism.
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To solve the problem of extending a boundary collar on the smaller
manifold of a manifold pair, we first must consider the question of com-
pairing boundary collars of a manifold.

Lemma 6.7. Let KOQ K be finite simplicial complexes. Consider
a p.l. embedding c:KX[0,&]—> KXI with Lc(x, 0) =(x,0), xe K.
Suppose that cl Ko X [0,¢] is level preserving. Then there exists 0 <§ <E,’
and h: KX I—> KXI, a p.l. homeomorphism, such that:

1) hec|K X [0,8] is level preserving; and
2) h is ambient isotopic tothe identity keeping (K X 8I) U c(KO x[o,e])
fixed.

Proof. Let a and B be subdivisions such that « contains triangulation
of KX0and KX[0,€], and c: KX [0,8£]) —> B(K X I) is simplicial.
Let 6§ > 0 be such that no vertices of @ and B have a level t such that
0<t<& and such that c(KX[0,58] " (KX 1)=g. Now choose first derived

subdivisions @' and B' of @ and B, using the following starring points:
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1) ¢ has level 6 if & has any points of level & ;
2) If oe a(KO x0) , & o= e(®)
3) If o oK _X[0, |), co- ¢& ; and

4) @ arbitrary otherwise .

Note that 3) and 1) are consistent because ¢ is level preserving on
KX [0,£]. Now define c':e'(KX[0,¢]) —> B(K XI) to be the simplicial
map defined by c'(¢) = &&. Then c¢' is a simplicial embedding which is
level-preserving on KX [0,8] and agrees with ¢ on KO x [0,€1].

Now let B" be a first derived subdivision of B such that
c: ;z'(K X [0,8]) —> B"(K X I) is simplicial; it is clear that such a subdivision
exists, and that we may choose PB" such that

1) p"(KX 1) =p (KX 1) and B"(K X 0) = g'(K X 0) ; and

2) pr(c(k X [0,€ 1)) = p(c(X_ X [0,€ D).
b Then let h: B*"(K X I) —> (K X I) be the natural simplicial homeomorphism

between two first deriveds of the same complex. Then hoc = c¢' on all of

i
F KX [0, ], clearly. Moreover, by moving one vertex at a time, it is easy

to see that h is ambient isotopic to 1 by moves keeping

(KX 8I) u c(KO X [0,£]) fixed.

Lemma 6.8. If 4 and c, are boundary collars in M, then there exists

6 >0 and an ambient ivsotopy H of M, fixed in 0M, such that

-1
2 chl I OM X [0, 6] is defined and level preserving. (M = compact PL

manifold. )
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Proof. Let € >0 be such that c1(8MX [0,€]) € Im c, Then there

exists an ambient isotopy H' of M X I, fixed dMX 91, and 8§ <€, such

that H'1 ° c; ° (cl | oM X [0,8]) is level preserving. Define Ht on
-1

c,(dMXTI) by H = c,Hgc, . Since H{ is the identity on 9M X 1, we may

extend Ht to all of M by the identity where it is not already defined.
Lemma 6.9. If c is a boundary collar of M and 0< & <1, then

there exists an ambient isotopy H of M, fixed on 9M, such that

ch(x,t) = ¢(x, 8t), all (x,t) e OM X1,

Proof. Let M, = cl(M -Image: c), a PL manifold. Let cyt M, XI—> M1

be a boundary collar. Define c.: M X [0, 2] —> 3M by

cz(x,t)=c(x,t) 0stL1l.

cz(x,t) = cl(c(x, 1),t-1) , 1£t<2 .
Then <, is a well-defined embedding, since cl(c(x, 1),0) = c(x, 1).

Let @:[0,2] XI—>[0,2]X I be a PL ambient isotopy with
a|(0 X I) U (2 X I) = identity and ql(t) =6t if 0£t<1. Now define
h: MXI—> MXI by
hlc,(x, s),t] = [c,(x, pals, 1)), t]

h(y,t) = (y,t) forall ye cl(M - Im CZ)' Here p:[0,2] XI—>[0,2] is pro-
jection on the first coordinate. Observe that h is well-defined as
[c 2(x, pa(2,t)),t] = [c2(x, 2),t]; and h[cz(x, 0),t] = [cz(x, 0),t] = [x,t], so
hl 8M X I = identity. The map h is piecewise linear, for in Imc2 X1 its

first coordinate is ¥ust the composite:
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-1

¢, X1 1 X p,a
Imc, X1 > BM X [0, 2] X I ——E=—> aM X [0, 2]
2
| M
B To show h is a homeomorphism, suppose that h(cz(x, s),t) = h(cz(x',s'), t').

Then t =t'. Therefore x = x' and p,a(s,t) = p,a(s',t'). As a is a level
preserving homeomorphism, this implies that s = s'. So h is one-one,

B and h is clearly onto.

To complete the proof, we just note that if 0 £t <1, h(c(x,t),1) =

h(cz(x,t), 1) = (CZ(X’ pa(t,1)),1) = (cz(x;()t), 1) = (c(x; 6t), 1).

Lemma 6.10. Let < and CZ be boundary collars of M, with

Im ¢y = Im 5 and suppose in addition that C, Cyi M XI—>0MXI1 is

I level preserving. Then there exists an ambient isotopy h of M, fixed on

M, such that h e(cilamx[o,uz]): cZIBMX[O,i/Z].

Proof., Let a = cz-iciz OIMXI—> oM XI. We may write

1

( atx,t). Let p: IXI—>1 be a p.l. map such that B(t,0) =t,

1/2

1 )

[7AN

t

IN

2=t

IN

t

- o
IA

B(1,s) =1, Pp(0,8)=0 for 0<s< 1.

Now define Hs'. OIMXI—> M X1 by putting Hs(x, t)=(a

Bt )% O

Then Hs defines an ambient isotopy of dM X I; for if

H = ! ! = ' feod 1 3 = 1
s(x,t) Hs(x,t), then t =t' and aﬁ(t,s)(x) a s)(x) implies x = x'.

B(t,




The ambient isotopy defined by Hs is a p.l. map because it is the
composite of p.l. maps.

Define h: MXI—> MX1I by h(c,(x,t),s)=(c Hs(x,t),s),

i 2

h(y,s) = (y,s) if ye ci({M - Im Ci)' Then h is a well-defined p.l. homeo-

morphism, as csz(x, 1) = C2<a(3(1, 6)’ 1) = Ci(x’ 1). Now ‘
h(ci(x,t),o) = (CZHO(X’ t),0) = (cz(a't(x),t), 0) = (ci(x, t), 0); so hO = identity,
Moreover, if t< % , h(ci(x,t), 1) = (cz(aﬁ(t, 1)(x),t), 1) = (cz(ozo(x),t), 1) =

(CZ(X’ t), 1). Finally, if t = 0, h(ci(x,t), s) = (CZ(X,t), s) = (Ci(X, t), s) = (x, s)w'
so h fixes the boundary.

Theorem 6.11. (Uniqueness of Boundafy Collars). If cy and ¢ are,j'

2

two boundary collars of M, then there exists an ambientisotopy h of M,

fixed on 9M, with hic1 = Cye

Proof. By 6.8 and 6.9, there exist ambient isotopies Hand K of M,

fixed on M such that if ¢! = H ¢, and ¢! = K, c then Imc! =Imc

!
1 171 2 172’ 1 2

-1 ‘
and (c'z) c'1 is level preserving., By 5.10, we may suppose after another

ambient isotopy that we also have c'1 = c‘2 on dM X [0,1/2]. Now apply 6.9,
again, with & = 1/2,

Corollary 6.12. Let (Q, M) be a locally unknotted compact proper

manifold pair. Given a boundary collar ¢, on M, there exists a collar c¢

1 2

of Q, compatible with cy -
Pico:, By Theorem 6.6, there exist collars c and c¢' of Mand Q

e=speorively, which are compatible. By Theorem 6.11, there exists a p.l.

homeomorphism -n: M-~ » M, ambient isotopic to the identity, which keeps
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OM fixed, such that hc = Cy By the weak Isotopy Extension Theorem,

i Lemma (a 5, there exists a p.l. homeomorphism k:Q —> Q, fixed on 0Q,

 with k(M) =M and k[M=h. Put c, =k c

® 4. The Isotopy Extension Theorem.
Definition. Let M and Q be P.L. manifolds. An isotopy
| . MX1—> QX1 is said to be proper if F~(9QXI)=8MX L Itis called

; locally unknotted if in addition, for all 0<s<t<1, the following proper

_ manifold pair is locally unknotted: (Q X [s,t],F(MX[s,t])). F is always

J locally unknotted if it is proper and dim Q - dim M 2 3.

Theorem 6.12 (Isotopy Extension Theorem): Let Fi MXI1I—> QXI,

M compact, be a proper locally unknotted isotopy. Then there exists an
ambient isotopy H of Q such that

F=H (FOX 11).

Furthermore, if F|OMX 1= (FO[ aM) X 11, then we may choose H so
that H|8Q X I = identity.

| t:Resrna.r’ks: 1) C. 12 may be generalized as follows: Call F allowable if

‘4 -1(8QX I) = NXI, where N is an (m-1)-manifold, m = dim M, in 8M
ossibly @). One can define the notion of locally unknotted for allowable
sotopies by defining the notion of unknotted for certain types of non-proper
all pairs, One can prove that if dim Q ~ dim M 2 3, all allowable isotopies

Te locally Unknotted, and one can prove an isotopy extension theorem for

h isotopies.
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2) If g-m > 3, one can prove the corresponding theorem for isotopies
F: KX1—> QX1 where K is a polyhedron and F-i(aQX 1) = Ko X1,
Ko a subpolyhedron of K,

Unsolved Problem. Find a definition of locally unknotted for isotopies of

polyhedra in manifolds which would make the theorem work for codimepsioﬁ ,
< 3.
3) One can also generalize by replacing I by I". We shall do this later '

in section 5.

To prove 6.12, we start by proving a restricted version in a special ,;

case,

Lemma6.12.1., Let F: MXI—=» QX I be a proper locally unknotte
isotopy, Q and M compact. Suppose Fl OMXI= (FolaM) X1, Then ‘
ther exists & > 0 and a P.L. homoemorphism h:Q X [0,E] —> QX [0,£],
level preserving, such that

1) h|8Q X [0, £] = identity.

2) h(Fox, t) = F(x,t) forall (x,t) e MX[0,8&].

Proof. Let c:(8(MXI))XI—> MXI be a boundary collar.

Let c and €yt (QXI)XI

> QX1 be boundary collars such that the
following diagrams commute:

I(MXTI)XI > MXI

(1) (Fox1)x1 F X1

IQXI)XI > QX1
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fod
(M XI)XI > MX I
 (2) FXI F
C’Q—
8(Q X I)X I > QX1

A
: ’ QxT

This is possible because (Q, FO(M)) is a proper locally unknotted manifold

fi.

g pair, and

Now choose & > 0 such that Q X [0, 5]CC1([(Q X 0)yu (8Q X 1))

(Q XI,F(MXI)) is a locally unknotted proper manifold pair.
X I).

his is possible because the set on the right is a neighborhood of QX 0 in

EN X1 and because Q is compact.

Define h: QX [0,6] = QX I by putting h = <, (c1-1|Q X [0, 8]).

learly, h is the identity on (Q X 0), (8Q X [0,8]), since c, and c, are
oundary collars of Q X I, Moreover, h (Fo X 1[0’ 6]) = F|Qx/[o,s],

(1) ana (2) and the fact that (Fo X 9[ IMXI= F' OM X I. In particular,
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h 1is level preserving on (FO(M) x [0,8]) v(0Q X [0,8]). Hence by

Lemma 6.1, there exists 0<£< 8 and a p.l. homeomorphism

h'tQXI—> QX1 suchthat h' h is level preserving and h' is the identity
(Qxar)uv h(FO(M) X [0,£]) u (02X [0,£]). The map h' h satisfies the

requirements of the lemma.

Lemma 6.12.2. Theorem 6.12 holds in the case Q is compact and

F IBM X 1 is the constant isotopy FO X1,
Proof. Let tO e I, to# 0 or 1. Then by Lemma 6.12.1, applied in
both directions , there exists £ = Z(to) >0 and
t QX - + - . . .
hto Q [to gt ¢] —> QX [1:O £t +¢] such that hto is the identity on
QX [t -¢ ,t +¢] and hy (Fy x,t) | F(x,t) for t -g <t<t +% . Similarl
o (o] [e] (o] o] (o]
we may find ho: Qx [0, ¢(0)]—> QX [0, ¢£(0)] and
hizQ X[1-¢(1),1]—> QX [1- ¢(1),1] with similar properties. The open
sets in I of the form (to- L(to),to-l- Q,(to)), [0, £(0)), and (1-¢&(1),1] cove
I, and this covering has a Lesbesgue number a@. Choose numbers
0=t =8 <s,<,,. <s. <s_ =1, such that s. - s, , <a. 4
o o 1 r-1 r i i-1 O
Now we define inductively a sequence of maps H(l): QX [o, si] —> QX ‘~
as follows: let H(o) = identity. Suppose that H(l-i) has been defined and had
the property that H(l_i)l 9Q X [0; s 1] is the identity, and
i-1
H(1 )(Fox, t) = F(x,t) if (x,t) e MX]O, si-i]' Then there exists
ks Q X [Si-i’ si] —> QX [si T si] which is level preserving, which is the
identity on 3Q < [si £ si], and which satisfies k(F; -,t) = F(x,t) for 5, 15 t
- o - ‘
(1)

and for some to . Now é¢fine H by putting
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g (i-1) if 0<t<s,
i-1

-1 s

k g (i-1) for s, <t<s. .
s, S. i=-1 i

i-1 i-1

The definitions
agree for t = si-i' H(l) is a P. L, homeomorphism of QX [0, si] onto

iit;sellf, as shown by alternative definition

H(i)(x,t) =k (Igs1 X 1) (H(si-i) X 1)(x,t), 5. St<s,.
i-1 i-1

| Clearly H(l) is the identity on 98Q X [0, si]. If s, ySt<s, , thenwe have

(i) LS SR _ _ _
H (Fox) = ktks, Hs, (Fox) = ktks. Fs. x = k'tFt (%) = Ft(x).
i-1 i-1 i-1 Ti-l o
(r)

; : The lemma is thus proved by putting H= H'"".

Lemma 6.12.3. Let Q be a compact manifold., Suppose that h is

fan ambient isotopy of 8Q. Then there exist an ambient isotopy of Q extend-
ing h.

“ Proof. Let c:8MXI—> M be a boundary collar, Let §: 12— 1
fbe a p.l. map with

| #(0,t) =t forall t

#(1,t) =0  for all t

#(s,0) =0 for all s,

?efMe keQXI—>QXI by

k c(x,s}) = clh X, s xe OM, sand t in I
pobs) = clhy )

s,t
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and kt(y) =y if ye cl(Q - Imc). Note that c(hgf(i t)x, s) = cx,s). It is

not hard to see that k is an ambient isotopy extending h.

Lemma 6.12.4, Suppose that Q and M are compact and that

F:MXI—> QX1 is an isotopy which is proper and locally unknotted, Then &
there exists an ambient isotopy H of Q such that F = H (F0 X 1).

Proof, By 6.12.2, there exists hidQ X1 —> 9Q X I, an ambient iSOtopy'
with h (FO X 1) = F|d8M X I, Let k be an ambient isotopy of Q extending h,
Let F'= k_iF:M XI—> QXI, Then F' is a locally unknotted proper isotoy 'i
whose restriction to M is a constant isotopy. By 6.12.2, there exists an i
ambient isotopy k' of Q with k' fixed on 9Q and k’(F; X 1)=F', Let
H = kk'.
Remark: The proof shows that if one is given an ambient isotopy h of 2Q
such that h (FO X1)=F on 8M X I, then H may be chosen to extend h,

For we had H[8Q X I=h|dQ X I in the proof.

Proof of Theorem 6.12, By the lemmas already proven, it suffices

to consider the case in which Q is not compact. Let P1:Q XI—> Q be the
B3
p rojection onto the first co-ordinate. Let Q be a regular neighborhood of

P, F(MXI) meeting 9Q regularly. Let Q = Q" N 3Q and let

Q, = cl(9Q - Q,), both (g-1)-manifolds.

Now, F[&M XI:MXI—> Q1 X I, since F is proper. Q, is compact

1
If F|d9M X I is a constant isotopy, define «a 1Q XI— Q XI to be the

identity; othezr-sise by lemma 6.12,2 let « be such th:*
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o (F % 1{d8MX 1) = F|8M X 1 and such that :|9Q, XiI is the identity.
% 3
Let hidQ X1 —> 8Q X1 be defined by h|Q XI=d and
h| Q2 X I = identity., By the remark following lemma 6.12.4, we can
K¢ e
extend h to an amibient isotopy k:iQ XI—> Q XI with k (F‘o X1)=F,

¢
Now extend k to all of Q by putting k = identity on cl(Q - Q ) X L

5, The n-isotopy Extension Theorem.

Definition. An n-isotopy is a P. L. embedding FtMX 1" —> QX I"
which is level-preserving ; i.e.,, the following diagram commutes:

F
MXI® —————s QX IV

P
PZ. 2

where P2 = projection on the 2nd factor ("=1x...xIcE).

An ambient n-isotopy is a level preserving P, L. homeomorphism
B H:QxXI"—> QXI” suchthat H(x,0,...,0)=(x,0,...,0).

. n n , . -1 n
An n-isotopy F:M X I —> Q X I” is called proper if F (8Q X 17 =
oM X In. A proper n-isotopy is called locally unknotted if, for any simplex A
: linearly embedded in I, (Q XA J,F(IMXA)) is a locally unknotted manifold
pair.

n n . . . n

If F:MXI —> QXI is an n-isotopy and if xe¢ I , then FX is

defined by F(z,x) = (sz,x).



Theorem 6.13. Let FtMXI —> QXI", Mand Q P.L. manifolgs

M compact, be an n-isotopy which is proper and locally unknotted. Then
there exists an ambient n-isotopy H of Q with H(Fo X1i)=F, If
Ft' oM = FOI M for all te In, then we can insist that H|8Q X " be the

identity. (Note : 0 = (0,0,...,0) ¢ In).

Remarks: 1) Let an allowable n-isotopy F:MX I"—>QX1I" bean

n-isotopy such that F_i(aQ X In) = N X In, N a manifold in M of
dim(m-1), m = dim M, Then one can prove an analogous theorem to 5.13
for allowable n-isotopies.

2) One also can prove an analogous theorem for isotopies of complexes

into manifolds, provided one has codimension at least 3.

Lemma 6,14, Let F:MXI —> QX I bea proper n-isotopy, loca.lly
unknotted and fixed on 3M, i.e., Ftl M = Fo[ M for all t. If M and Q
are compact then there is a P, L, homeomorphism H:Q X I — 1" such that ]
H|8Q X I = identity, H(QX A) = QX A for every face A of the cube 1*, and ; "

H(F_X1)=F.

1

Proof. By induction on n. Suppose h:Q X " —s ax In-1 is a P.L.]

. . . n-1 . o
homeomorphism, equal to the identity on Q X I and sending QL X A o

O X A tor 2och face of A of In-i, and with h(Fo X 1) = F'MX In_i. Then §

-1

define h: QX1 —>QX1I® by h'=hX1. Let F'=(h) F:MXI —> QX §

. . . . n
and regard this as a !-l:utzov with the last coordinate of I as parameter.
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Let Ai’ cee, Ar be the faces of In-1 in order of increasing dimension

(with A= 1°71),
r

Then, by the remark following 6.12.4 we can define
inductively PL homeomorphisms ki: QX Ai X1I—> QX Ai X I, level-pre-
serving on the last coordinate such that
1, ki[ 8Q X A X I = identity,
2. if A,<A ,k =k |QXA XI, and
i j i j i
3. ki( o s,t) = F'(x,s,t) forall xe M, s e Ai’ te I,

Then k = h'kr:Q x1"—> oxI" is a PL homeomorphism satisfying all the

required conditions.

+
Definition. Identifying 1" with the face of I” : having the last
coordinate zero we define a primary simplex of 1" as a n-simplex linearly
1 2
§ embedded in 1" with a vertex at 0, a 1-face in I, a two face (2-face) in 17,

L etc. Thus a primary simplex will be of the form (0,v1, Vs ,vn) where

Lemma 6.15. Let F:MXI" —> QX1 bea proper locally unknotted

n-isotopy, fixed on M, M and Q being compact. Then there is a primary
simplex A in I and a PL homeomorphism H:Q X A —> QX A commuting
with projection onto A, with H|8Q X A = identity and H(Fo X1)=F|MXA
> Q XA,

Proof. Let k:QX " — QxI” beaPL homeomorphism given by
Lemma 6. 1»4. Let @« and B be triangulations of QX 1" such that
kio{Q X ™) = B(Q X I") is simplicial and the projections o(Q X I) —> I7,

BlQ x In) — 1" are linear. Now choose constants 60, ) 6n as follows:

EERER
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Choose 60> 0 such that, for any simplex ¢ in 2(Q X In) or PB(QX I‘n),
either d(0, pzcr)..O or d(O,pzo-) >8_.

Now suppose that o is a simplex of 2«(Q X In) or B(QX In) having
a vertex X in QX 0 and a vertex xj in QXD - QX I‘]_1 for each j<i,

x, for each j. Let A(pzo-,Il) [minimum angle between I' and

Let X'.-_-;
j P2

(x'x'...x' ,y) for ye p,c]. Choose § >0 such that, for all such ¢
R S P 7P i ’

either A(pzcr, I =0 or A(pzo-, ') > 6i' Now let A be the simplex

(0,v,,v .,v ) in 1° where v.e I’ - 11_1, for each i, d(0,v.)=8 , and
i n i i o)

o1

angle(Ovivz. SV 4V IJ):E»j for all j<1i. As a result of the way we have
chosen the 6i , if o is any principal simplex of o(Q X In) or ﬁ(Q X In)
such that PO N A%jj, then P," DA, and Q er meets Intoc. Moreover,
for each i, ¢ meets ' ina face, o, say, and QX v, meets Into‘i.
Now choose first derived subdivisions «' and @ of @ and f such that,
if @ denotes the subdivision point of o, then
A .
1. ce QXVi if QXvi meets Intc,
N\ A n n
and 2. ke k(o) if c£F(MXIT) Y oQXTI",
Note that these two requirements are compatible since k is level-
. n n
preserving on F(MXI) and 8Q X I .
Now let k': a'(Q X In) —> B1(Q X In) be the inducsd simplicial map.
n ;
Then we still have k' a PL homeomorphism, equal to the identitv or »Q X1, 88
and with k'(FO X 1) F. Moreover, k' is level-preserving oo QX A, Fcr " “-

let x be a vertex of a’(QXIn) lyingin QX A, Then «x: QX0 cr YIXV,

for some j. But k'x must also lie in the same set, and sc p k's- p_x.
J ’) |

2
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But k' is simplicial and so we may join linearly to get pzk'y = P,y for
all points y in QX A,
{/

Lemma 6.16 (A covering theorem):  Let :/

~

be the group of

. n
rotations, reflections, and translations of R . Suppose that for each

h ei-‘-// we are given a primary simplex o(h). Then there is a finite set
r

| n
hi’ hZ’ ce e hr of elements of/j--{ such that I C ,-_U1 hi(O'(hi)).
( =

Definition. An r-flag in R"™ is a set of oriented affine subspaces
[AO - A1 C A.2 c...C Ar]’ where dim(Ai) = i. An r-wedge on this r-flag

. n .
is a set of the form {x ¢ R |d(x,A ) < &_, %(on,A1)< 61,...,%(A x,A )< :

r-1

B where 60, 61, ...,58y are positive constants and § denotes angle between

| oriented subspaces.

We shall show by induction on decreasing r that, given any r-flag in Rn,

| there is an r-wedge on it that may be covered by finitely many simplexes of

_b the form required in the lemma. Since an 0-wedge is simply a spherical

\ neighbourhood, the compactness of 17 will complete the proof of the lemma.
To start the induction, consider an (n-1)-wedge [AOC e CAn-i]'

There are two possible orthonormal coordinate systems having this wedge as

[0,0x ,0x, x Ox, x._.. 'Xn-i]’ one being simply the reflection of the other

1 1722

in x = 0. For each of these coordinate systems we have a primary simplex

and we can choose an (n-1)-wedge contained in the union of these two simplexes:

see figure:




The inductive step. Let F = [Ao e Ar] be an r-flag, Let S be the

set of oriented (r +1)-spaces through Ar. () i# naturally isomorphic to

the set of unit vectors orthogonal to A"r’ which is an (n-r-1)-sphere. Now

for each B¢ g , let W_ be a wedge on the flag [AOCA1C CArCB] 'f

is determined by the '

B
given by the inductive hypothesis, and suppoa= *:at WB
B
B _.B B i
. ) 1) < }
constants (60 ,61 , ""6r+1 )e Then the set 7% eS/ | ¥ (B, B') 6r+1

is a neighbourhood of B in 8 . But gis compact, and so we can choose

a finite set B,, B

gr B Bs such that the corresponding neighbourhoods
cover S . Let W be the wedge on F determined by the constants
B. 8 1
(6 ,6,,00.,6 ) where &, = min(6, J), j=1,2,...,8. Then W C U W
o' 1 r i i i1 :

Proof of Theorem 6.13 (The n-isotopy extension theorem): First |
consider the special case when Q is compact. By reflection in the subspaée
. n ;
xj = integer, we may assume that F: M X Iln —> QXI is the restriction of a P
. n T . . . . n, . |
embedding F;: MXR —> QXR", commuting witr projection on R, and with
Ti R . .“
F‘tIaM ='F6|5M- forallte R, Neow b Lirn-s:- 5,15 and 6.16 there are a fin
n b i .
humber of sirnplexes A‘i in R, .ervering *, - PLhomeomorphisms

kit-' QXAi.-—’ QXAi commuting with projection onto the second factor, such that ;

kil 9Q X A, is the identity snd
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ki(ai X1)=F|MX Ai for some PL embedding o M—> Q. (In fact,

@, = Ft for t = a vertex of Ai') Now let K be a triangulation of "

such that 1) each simplex of Ki lies in one of the Ai , and 2) K col-
lapses: simplicially to the origin., Let K = KPN Kp-i \ .. ..&} Ko = the

origin, be the simplicial collapse. We define inductively level-preserving

PL homeomorphisms hi: QX Ki —> QX Ki such that hi[ aQ X Ki = identity

and hi(Fo X1)=F on MX Ki' Start with h_ = identity. Suppose h. , is
defined, Let Ki = Ki-i +aA +A. Let p:aA—> aA be a PL retraction. Suppose
that aA C Aj' Then define hi: Q X Ki —> QX Ki by hi(x,t) = (hi S t) where

' K

B i teK |
it

(

-1
kj,t )

: if t A
kj,pt hi-i,pt if € a

One may readily check that this is a PL homeomorphism, equal to the
identity on 9Q X Ki. Moreover, if xe M, te aA,
L b (F x,t) = k (k )F e
4 1( oX ) _],t( J,pt) p1:X 1.t ) t
Putting H = hp: Qx1” -—} Qx1” gives the required ambient n-isotopy.

The extension to the case when Q is not compact is more or less identical to

¢ the argument when n = 1 and so will be omitted.



Chapter VII. Engulfing

0. Introduction.

Suppose X is a closed subspace of the PL manifold QY. Then we
may pose the question: Is there a g-ball B in Q with XcZ B? Some
uses for the answers to this question are in proving embedding theorems
(See Chapter VIII) and in proving a weak generalized Poincare conjecture
in dimensions 2> 5 and a variant of the h-cobordism theorem (see 5).

We approach this question by considering the following two related
questions:

(A) If U isopenin Q and X is a cc.r.act PL subspace of Q, is
there a PL homeomorphism h:Q —> Q with ~<ZhU?

(B) If C and X are compact PL subspaces of Q, is there a compact
subspace C' of Q with X C' arnd C! NC ? What can we insist about the

dimension of (C'-C)?

1. Preliminary Results.

Lemma 7.1. Suppose that XoC X are compact PL subspaces of Q,
and suppose Y is a closed PL subspace of Q suchthat X 4 (8Q y YY) XO-“‘:‘,{' "
Assume that X\\Xo and let U.DX0 be open in Q. Then there exists a

PL homeomorphism h:Q —> Q with compact support, which is the identity

on QU Y UV Xo’ such that X< h(U).
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Picture:
ricture

Proof. Let J be a triangulation of Q containing tridngulations
s
Ko' K, and L. of XO,X, and Y, respectively. We may assume that K KO.

es €s
N\, ... \ K. Then K, \IK, and
(o] 1 1

es
Let K=K \y K
r r-i1 -1

T U T e R AT

f IKI!/\ (|8J| U lLl)C:\ IKi-i | . Hence it suffices by induction to prove the

es
lemma for Ki’ Ki and Y. So we may as well suppose K = K1 ~N Ko

1!
. N\
Let K= KO + aA + A, Then aAC U. Let A be the barycenter of A,

/\ .
Let b# a be a point of aA close enoughto a so that abAC U. Let
R = link(A; J). Since A ¢ 83, R is a PL sphere of dimension g-dim A-1.
Since dim A £ q-1, R # @. Therefore there is a PL homeomorphism
:R—> {a,c}.S, S a sphere of dimension q-dim A-2 (S =¢ is possible).
. i A e
Define a PL homeomorphism B:A.R—> A, (ay c).S= (au c).ALA.S by

i letting B\A = identity and B|R = @ and extending linearly.
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Now let y':(av c).A—>(avUc).A be a PL homeomorphism such that
/\- /\ . VA

vi(a) =a, y'(b)=A, and y'(c) =c. Thenlet y:(avc)A.A.S—> (ayc).A.A,
be a PL homeomorphism such that y|[(av c)A =y' and yIA.S = identity.
Then let &: star(A;J) —> star(A:;J) be defined by & = ﬁ-iyﬁ. Then
6(abA) = aﬁ.A = aA. Moreover, § is the identity on A.R. So if we put
h|star (A:J) = & and h = identity elsewhere, tken h| lKol = identity and
h(U) D |K].

Definition. If K= Ko + aA + A is an elementary simplicial collapse

es
K \ Ko, then dim(aA) is called the dimension of the collapse.

S
Lemma 7.2: If K\ Ko’ then we can rez.rrange the elementary
s
simplicial collapses K \ Ko to be in order of decreasing dimension.

Proof. Suppose K2 = K1 +aA+ A and K1 = Ko +bB + B are

two simplicial collapses, and dim B > dim A. Then aAC Ko . So

5 Moreover, KZ: (KO + aA + A) + bB + B‘ ‘

es es
So KZ \ (Ko +aA + A) \ KO is in order of decreasing dimension.

Ko +aA + A is a subcomplex of K

Lemma 7.3. If X,Y.{ Z are polyhedra.and if Z\X, then there

exists TC Z, a polyhedron, such that Y UX¢ZT, Z\X 0 TAX, and
dim T<dim Y + 1,

Proof. Let K,L< J triangulate X,Y< Z, Choose subdivisions
K, L'C J' so that J‘\é K', andlet J'= K"r\ies - \ils Ké be elementary
simplicial collapses in order of decreasing diiersion., Let i< r be the

least integer such that KLD L', We may suppose i #0, as if i =0 there




~-163-

{s nothing to prove, Let K'1 = K]'. y + aA + A, Then A L', as otherwise
' Ki X In particular, the collapse KiNKi_1 has dimension £ (dim L+1),

Soif T=cl|K}-K! |=|K -K [, dimT<dimL+1 and Z\X y T X,

3. Engulfing Theorems, Type (A).

Definition. A topological pair (X, A) is n-connected, n 20, if every
point of X may be joined by a path to some point of A and if vi(X;A) =0
for 1£i<n. [If A is not connected, we insist the condition holds for any

base point in A.]

Theorem 7.4. Let U be an open subset of the PL manifold Q9

Assume 9Q = . Let X Q be a compact PL subspace of Q, andlet Y. U
be a closed PL subspace of Q. Let j=dim X, s =dim Y, suppose that
(Q,U) is k-connected, and suppose that j< gq-3, s £qg-3, and t<k. Then
there exists a PL homeomorphism h:Q —> Q, which is the identity on Y,
such that X h(U).

Proof. Welet k and s be fixed and proceed by inductionon j. So
given j, assume the result for j-1,

Because of the connectivity assumptions on (Q, U), we can construct
a map B:XXI—>Q suchthat @(x,1)=x all x, and (X X 0)C U, as
follows: Let K triangulate X, Kj = jth skeleton. Define
¢o on (K(O> XI) (KX1) by #(x,1)=x and f#(v,t) = cpv(t), where e, is
a path from v to a point in U, Suppose that ¢j_1:(K(j-1) XI)U(KX1)— Q,

j £ dim K, has been defined so that ¢j_1(K(J—1) X 0)c-U and ¢j~1(x’ 1) = x,




0 4

all x. For each j-simplex A of K is defined on (A X 1) y (A X 1),

j-1

a retract of A X I, Hence there exist fA: AXI—>Q extending

¢r_1|(Ax1)u(Ax1). Let g, = (£ Then gA:(A,A)—-—>(Q, U). Since

A)o'

dim A £k, let HA:AXI—> Q be a homotopy of gp = (HA)o , relative A
such that H,(x,1) ¢ U for allxe A, Thenif x¢ Ac k) andif te I,
define
f (x;2t-1) t1/25tst
A
¢.(X,t)—
J H,(x;1-2t) 0<t21/2 .

Then ¢ij(J) X1—>Q is a well-defined map, ¢J.(K(J) X 0) £ U, and

¢j(x, 1) = x. Finally, put ¢ = ¢j’ where j = dim K.

By the lemmas of Chapter IV we can assume, after a small homotopy
of § relative X X1 that § is also a non-degenerate PL. map (Lemmas 4.2
and 4.4),

Now let L be a triangulation of X X I, containing triangulations Lo

and L, of (X X0) and (X X 1) respectively, such that ¢: L —> Q can be

made simplicial by suitably triangulating Q. Then § embeds each simplex < g

s ) ;
of L. Let L' be a subdivision of L such that L'N L(’) = induced subdivision #g

of Lo . By Lemma 4.7, f=¢ (rel XX 1), where @' is a PL map which

embeds each simplex of L and which satisfies the following:
1) If o, 7Te L'-L'1 , dim(f#'c)n (' 7)< dim o + dim T-q ;

2) Forall oce L'- L‘1 , dim (fo)~ Y £ dim T + s-q;

3) Forall ¢ e L'-L'1 , —rE,L'i , dim(f'c n @'71) < dimo +dimT-q.




es es

- ()2
Now let L!'= Rn\) cee N\ RO = L(') . Let R j-skeleton of R

each i. By induction on i, we are going to find PL homoemorphisms

h.. Q —> Q, fixed on Y, with #'( R(,J))Ch.U . This will complete the proof

)

for if we take i=n then XC #Y(X X 1) C ¢(R Ch (U). Since ¢'(RO)C U,

let h0 = identity. Suppose h, is defined. Then let V = hi-i(U)' Let
R, =R, 1 +aA + A, Let Z be a polyhedron such that

1 i-
) ) = aA v Z, By 1) and 2) above,

¢')aA) (Y UF'R
dim Z £ max(j+i+s-q, j+1-j-q) £ j-2. By 7.3, there exists a polyhedron T
such that aA\\\aA V) T\\aA, Zc- Ty aA, and dim T £ j-1. Therefore
(J) (3)
g (R"” +aA + A)\ﬁ , Y T) by a collapse "not crossing Y"; i.e., a col-
lapse in which no points of Y are disturbed.
Now we are going to use the main inductive hypothesis to engulf
(3) (J)
¢'[Ri']_1 v T]. Dim ¢g(T)<j-1. Yy ¢( )CV So letting ¢'(T) play
the role of X in the theorem, and Y o ¢‘(Ri_1) the role of Y, there exists
J
a PL homeomorphism o:Q —> Q, fixed on Y U ¢'(Ri_1), with ¢'TC oV,
Now by Lemma 7.1, there exists a PL homeomorphism B: Q —> Q such that
B is fixedon Y u ¢'(R€J) U nd #'(R U aA U A)C (BaV). Now
1-

; (3)
R:.L(J)_GLRi { +aA + A, So put h;= ﬁahi-i' Then ¢RiJ)C hiU° This com-
pletes the proof.
Remarks: We can insist that h have compact support. In fact, in view of

the fact that the homeomorphism of 7.1 could have been taken to be isotopic

to the identity by moves, the same is true of h.



Corollary 7.5. Let X,Y,Q,U satisfy all the hypotheses of

Theorem 7.4 except that X is merely a closed PL subspace of Q.
Suppose that X - X A\ U is compact. Then there exists h (with compact
support) a homeomorphism of Q, such that X< h(U).

Proof. Let XOC X be a compact PL subspace of Q (or X) con-
taining X - Xn U, Then X - XOC_ U. But X!'= Xo’ Y'=Y cl(X-X(;),)_
Let hiQRQ—> Q be a PL homeomorphism with compact support, such that

h|Y' = identity and h(U) DX. Then h(U) DX _ (X - xo) = X,

Corollary 7.6. Let U< Q? be an open subset of the PL manifold Q,

3Q # §. Let X be a compact PL subspace of Q, Y a closed PL subspace
of X, withdim X =r<q-3, dimY = s < q-3. Assume (Q,U) is k-connected
k2 r, and assume Y U and X 9QC U. Then there exists a PL homeo-
morphism (with compact support) h:Q —> Q, with h|3Q U Y = identity,

such that X< h(U).

Proof, X'=X -XAn 9Q and Y'=Y - Y~ 0Q are closed PL sub-
spaces of Q -8Q, U' =U-Upn 9Q is openin Q - 3Q. The pair (Q-9Q, U')
is g-connected; to see this suppose
f: (Dq;sq-i) —> (Q -LE)Q, U-9Q N U) is homotopic rel Squi, to a map of
D? into U. Then by using a boundary collar, one can push the homotopy
slightly off the boundary without disturbing it on Sq_i, getting a homotopy

H of f such that H (DY) C U - (8Q) N U.

1
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| Now let h':Q-9Q —> Q-9Q be a PL homeomorphism such that
h'(U') DX' and h has compact support. Define h: Q—> Q by extending

h' to be the identity on 09Q.

Remark., This corollary could have been included in Theorem 7.4 using

almost the same proof.

4, Engulfing Theorems, Type (B)

Theorem 7.7. Let C and X be compact PL subspaces of the PL

manifold Qq, 9Q = @, with (Q,C) a t-connected pair. Let r = dim X,
and suppose CNY, whoere Y is a closed PL subspace of dimension s.
Then if r<g-3, s<q-3, and r <t, there is a compact PL subspace C'
of Q suchthat C UXc C'NC and dim(C'-C) < r+i.

Proof. Let X1 = cl(X-X ~n C); assume X1 Z @. Then dim(X1m C)<r-1.
Hence by Lemma 7.3, there exists a compact PL Y1 in Q such that
{0 Xi_ﬂ Com Y o Yi’ and dim Y1 < r. Therefore C UX =
Cu Xi\Y L,,-Yiu‘ Xi’ by Lemma 2.

Let N be a regular neighborhood of Y in Q, andlet U= Int. N. The
inclusions Y~ C and Y U are both homotopy equivalences; therefore
(Q,U) is t-connected. By Theorem 7.4, there is a PL homeomorphism
h:Q —> Q such that h|Y = identity and X, v Yo h(U). So
X1 LY LY h(U). By 7.1,there is a PL homeomorphism k:Q —> Q with
k|Y Y

U X, = identity and C yX < khU. Since kh|Y = identity, khN is a

1 1




regular neighborhood of Y. In particular, khNXNY. But C\Y and
C(C Int khN. So by Lemma 5.1 (on factoring collapses), khN'\ C, So
by Lemma 7.3 again, khNN C'YC, where X C' and dim(C'-C) <

dim X + 1.

Lemma 7.8, Suppose that C and X are compact PL subspaces of

Qq, c\ Cn 9Q. Assume that (Q, 9Q) is r-connected, dim X = r, and
r £ q-3. Then there exists C' in Q, a compact PL subspace, such that
C LU XCCNC'A 8Q) y C, and dim(C'-C) < r+1.

Proof. Let N be a derived neighborhocd of 9Q in Q. Let
U= IntQN. Then (Q, U) is r-connected. Now, as in the proof of 7.7,
C UX\(C(\ 8Q) u Y, where dim Y < r. So, by Corollary 7.6, there is a
PL homeomorphism h:Q—> Q with hl 9Q = identity, Y hU, h-iY < UCN,
Now <C N BQ)U (h-iY) is compact, and so there is a compact polyhedron P
in 8Q suchthat (C n 9Q) \ (hﬂiY)CV = IntQN‘, where N' is the derived
neighborhood of P in Q. By Lemma 7.1, there is a PL homeomorphism
k:Q—>Q, fixedon 9Q J Y with Cy X khV«< khN', Now khN' is a
regular neighborhood of P in Q and P U CNP, Py Cc Int:QkhN'° So,
by Lemma <t , khN' is a regular neighborhood of PU C in Q. So, by

Lemma 7.3, khN'\P u CV TP JC, where X T T and dim T < r+1,

C'=Cw TNCy (T~ 9QN\(C U T)n 9Q.
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5. Applications of Engulfing,

Definition, If Q is an open manifold (i.e., Q is not compact and

9Q = #), Q is called {-connected at o.if given C( 2, C compact, there

is a C' Q, compact, suchthat ¢+ C' and (Q-C') is t-connected.

Theorem 7.9 (Stallings): Let W be open, (g-3)-connected PL mani-

fold which is 1-connected at co., Suppose q = dim Q > 5. Then Q is PL
homeomorphic to ﬁ‘, Euclidean space of dimension ¢,
Proof. We shall prove that if C Q 1is compact, then C 1is con-

tained in the interior of a PL g-ball contained (as a PL subspace) in Q,
o0

This is sufficient: it implies that Q = Bi’ where Bi Int Bi+1 are all
i=1

q-balls. By the annulus theorem, cl(B,

- B 1 i
i+ i) is PL homeomorphic to

EBi X 1. Moreover, E? is also such a union of balls, and so it is clear how
to define a PL homeomorphism of Q onto E.

So let C:” Q be any compact subset of Q. Let C'Z°C be aﬁother
compact subset, so that (Q-C') is 1-connected. Let V =Q-C',

Let J be a triangulation of Q. Let J1 be the (q-3)-skeleton of J,

Let JZ be the subcomplex of J' consisting of all simplices of J' which

do not meet (i.e., have no faces in) J’i, where J' = barycentric first

\

\
derived of J. A general simplex of J' is of the form o= A, ... A

A1<... <Are J. If ¢ does not meet J'

{ thendimAi?_q-Z, 1<ifr.

Therefore r<3. So dim JZ < 2.
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Now, Jl' is full in J', so there is a linear map @:J' —> I, such that
¢(J2) =1 and ¢_1(0) = J“i., If D is any compact subset of Q not meeting

-1
JZ’ then there exists 0 <6< 1 such that @#(D) [0,&+]. But g [0,3] is a

derived neighborhood of .]'1 in J. In fact, if D is compact, D is containeq

in a derived neighborhood of a finite subcomplex of J Therefore there are "

E
compact PL subspaces Z and Zo of Q (can take Z to be a q-manifold)
such that DC ZY Z_ and dim Z_<q-3.

JZ - (JZ A V) is compact, and dim JZ £ 2<£ g~3 because g = 5. Since
V is one=- connected and Q is(q-3)-connected, q>5, (Q,V) is 2-connected

Hence by Corollary 7.5, there is a PL homeomorphism h:Q —> Q, such that

IJZIC hV.

In particular, Q-hV = h(Q-V) is compact and does not meet JZ.

Hence, we may take D = Q-hV; so , Q-hV Z\‘\Zo’ dim Zo < q-3.
Now let U be the interior of a PL g-ball contained in Q. Then (Q, U)

is certainly (q-3)-connected. Therefore there is a k:Q —> Q such that

ZOC kU, by Theorem 7.4, By Lemma 7.1, there exists a k':Q —> Q with

1

Z< k'kU., Therefore Q-hV < k'kU, and so Q-Ve— h  k'k(U)., But

1 1

CCC'=Q-Ve h k'k(U)Ch™ kk(U), a PL g-ball.

Corollary 7.10. (Weak Generalized Poincare Conjecture): Let M™

be a closed (= compact without boundary) PL manifocld, m 2 5. Assume M
is [m/2]-connected. Then there is a topological homeomorphism of M onto

the sphere s™.
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Proof, By Poincare duality, M is (m-1)-connected. (1 -connected

implies orientable.) Therefore M is a homology sphere. Moreover, by
excision Hi(M’ M-pt.) = 0, for i<m, Hi(M-pt.) =0, all 0 <i< m-2.

As w_(M, M-pt.) = 0, (by general position), ni(M-pt) = 0. Therefore,"

3
M-pt. is (m-2)-connected.

If C<L M-pt, is compact, there is a regular neighborhood N of pt.
in M not meeting C. C' = cl(M-N) is compact in M-pt.
(M-pt)-C' = N-pt. But N is a m-ball, so N-pt. is homotopy equivalent to
sm-l, and vi(Sm-i) = 0. Therefore M-pt. is i-connected at co. Therefore

by Theorem 7.9, M is topologically equivalent to the one point compactifi-

cation of E™, which is s™,
We conclude this chapter with a type of h-cobordism theorem.

Theorem 7.11., Let W be a compact PL g-manifold with q > 5.

Suppose OW = M1 UMZ’ where Mi’M are disjoint g-1 manifolds.

2
Suppose that (W, Mi) is r-connected, (W’MZ) is s-connected, where

r<q-3, s<£q-3, rtstlt = q. Then W-M_ =M

2" 1x [O,CD): W-M = M, X [O,(D),

1- 2

and InthM1><RgM2XR.

Proof. It suffices to prove the first statement of the conclusion. Let

Q= W—MZ. We will show that if C is compact, C<~ Q, then C is contained

in the interior of a regular neighborhood of M1 in Q. From this it follows

00
that Q = U Ni , where each Ni is a regular neighborhood of M1 and
1

N, ¢" Int N,,. . Then, since cl(N,
i i+t

e Ni) is PL homeomorphic to (Fr

QN X1

by the generalized annulus theorem, and since by uniqueness of regular
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neighborhoods and the existence of boundary collars for Q, FrQNi o M1 L

we have cl(N,

e Ni) =~ M, XI. Using this PL homeomorphism, it is cleay

1
N
how to define inductively PL. homeomorphisms hy: U Ni —> M, X [0, NJ
i=1
such that hN = hN+1 where both are defined. Clearly the hN define the

required homeomorphism, So let CcZ Q be compact. Let N be a regular

neighborhood of M, in Q, and let U = Int N, Let N' be a regular neigh-

i Q
borhood of M2 in W suchthat N' N C =g, and let V = IntQ(N'-Mz). Then

the inclusion M1 —> U =~ M1 X [o, 1) is a homotopy equivalence, so (Q, U)

is co-connected. A similar sort of argumant, but using a boundary collar

of MZ’ shows that (Q, V) is also co-connected.

Let J'OC J be a triangulation of M, Ql, Let 7, = Jo U J(r) )

1 1
4(2)

= r-skeleton of J. Let Jz consist of those simplices of J' which do

not meet Ji' As in the proof of 7.9, dim J'Z <£g-r-1=s.

By the engulfing theorem, Corollary 7.5, (J -Jzﬂ V is compact) there

2
exists a PL homeomorphism h: Q —> Q, with !lec: hV. h(C) < h(Q-V) = Q-hVs

i

 is full in J', h(C) is con-

therefore h(C) ﬂ]JZI = ff. Hence, since J

tained in a derived neighborhood of a finite subcomplex of J, (see page 17,

1

2nd complete paragraph). We may suppose that the subcomplex of J1 is of

the form M1 U Y, where dim Y £ r. Then if Z is the regular neighborhood

h(Cxz= z \Mi vY. By Corollary 7.6, there is a PL homeomorphism

k:Q—>Q, with M, U Y& kU, By Lemma 7.1, there is a PL homeomorphism

1
k'sQ —> Q with Z<Z k'kU, So hC<c k'kU, Therefore
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- -1
C h 1k'kU Int(h "k'kN), and the latter is a regular neighborhood of M1
in Q,
Note. In fact, Poincare duality and the Hurewicz theorem ensures that the
inclusions M W, M_. W, are homotopy equivalences.

1 2




Chapter VIII -- Some Embedding Theorems

1. An Embedding Theorem Relative the Boundary

Theorem 8.1. Let M™ and Qq be connected P, L, manifolds,
M compact. Let f:(M,dM)—> (Q, dQ) be continuous, and suppose that
f|dM is a P,L., embedding, If M is (2m-g)-connected and Q 1is (2m-qt+1)-
connected, and if q-m > 3, then f ~f' (rel 9M), where f' is a P, L.
embedding.

Proof. By the general position theorems of Chapter IV, f. ~ g (rel dM),
where g is a P.L. map, dim Sz(g) < 2m-q, and g(Int M) & Int Q.

We can suppose that Sz(g) C Int M. Forlet a’:M —> (M X0). (M XI)
and B: Q—> (QX0)J(9Q X I) be P.L. homeomorphisms such that
a(x) = (x,1) if xe M and B(y) = (v,1) if ye 8Q. Then let g' be the fol-
lowing composite:

-1
—g—x—1——>(on)u (0Q X 1) B > Q.

M ——> (M X 0) . (8MX I)

Then Sz(g') = ( a/_1|M X 0)(Sz(g) X 0), so SZ( g') € Int M and dim SZ( g') < Zm-

But we can choose B so that there is a homotopy Ft: (Qxo)u(aQxIi)—Q

such that for all t, Ft|8Q><1 = ﬁ-ilan 1, F = 5‘1, F1[czxo is a P. L.

homeomorphism of QX 0 onto Q, and F,(x,t) = x, all xe 8Q and te L.

4
This can be seen by adjoining a boundary collar for Q" = cl{(Q-p(8Q X I)) to
the collar B]8Q X I and then expanding the inner collar at the expense of the

outer one. Similarly for suitable o , there is a homotopy

Gt:M-——> (MX0). (M X1I) with Go=a' , Gt(x)e x X1 for all xe 9M, and

G—1 a P.L. homeomorphism of M onto M X 0 such that Gi(x) = (x,0).
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Then ¢'= FOO(gX 1)°G0 uFio(gx 1)0(}0 uFio(gx 1)<>G1 and each

homotopy is relative 9M. But the last map may also be written in the

form k.g.h, where kandh are P.L. homeomorphisms of Q and M
respectively, which are the identity maps on 9Q and 9M.
So we may assume Sz(g) C Int M. Dim Sz(g) <2m-g<m-3. Int M is
as connected as M, and so there is a collapsible compact P. L. subspace C
of Int M, with Sz(g) € C and dim C £ 2m-q + 1, by the Engulfing Theorem 7.
By the same theorem, there exists a collapsible P. L. subspace D of
Int Q@ such that g(C) € D and dim D < 2m-q+2. By general position theorems,
there exists a P. L. homeomorphism h: Q —> Q, fixed on g(C), so that
dim((hD-gC) N g(M)) £ (2m=-q+2) + m-q = 3m-2q+2 < 2m-q-1.
So if D' = hD, g_iD' = Cu X, where X is a compact P.L. subspace of M,
and dim X £ 2m-q-1.
Let C1 = C, D1 = D!, X1 = X, and suppose by induction
we have found collapsible P. L. subspaces Ci CInt M and DiC_'-_ Int Q, and
Xi C Int M, such that Sz(g) - Ci’ (g')“iDi = Ci v Xi’ dim Xi < 2m-g-i (£ m-3).

Then by the Engulfing Theorem 7. there is a compact P.L. subspace

C.., C Int M with Ciu Xig c:i

. _ < g
i+ = 0, and dlm(ci+'1 Ci)_dlm Xi'l"l. By the

+1
same theorem, there is a P. L.. subspace D" of Int Q such that

Dib‘ g'(C.,,) C D"\O, and dim(D" - Di) < dim Xi+ 2. By the General Posi-

i+ =

tion Theorem, there exists a P. L. homeomorphism k:Q—> Q with

= identity and dim[k(D"- Di U g(Ci_H))] A g(M) £ dim Xi +24m-q

f DU o

e S ) i ) o< _ .
d1mXi 1, since m-q £ -3. Let Di+1 kD",
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For k large enough, Xk= ¢, as 2m-q- k< 0. So we get

g_ka = Ck 2 Sz(g). Now let K and L triangulate M and Q respectively,

with Ck and D triangulated as subcomplexes (some large k, now fixed),

k

and with g:K —> L simplicial. Since g is non-degenerate, it carries
barycenters to barycenters, and so if K" and L" are barycentric 2nd
derived subdivisions, then g:K"—> L" is simplicial. Let N, = N(S; K")
and N2 = N(T; L"), where S and T are subcomplexes of K" and L"

respectively. Then by uniqueness

respectively triangulating Ck and Dk

of regular neighborhoods, N, is an m-ball in Int M and N2 is a g-ball

1
. -1 -1 C .
in Int Q. Also, N1 =q NZ’ as S=q T and q is simplicial. As

Sz(g) < Int N'1 , g|cl(M-N,) embeds cl{M-N,) piecewise linearly in

y) y

cl(Q-NZ) and embeds 9N, piecewise linearly in BNZ .

Now g]81\11 extends to a P. L. embedding of N, into N, f', say.

1

We may extend f' to all of N by putting f'= g on cl(M-N Then f'

)

is a P, L. embedding. Since N_ is a ball, f']N1 ~ g|N, (rel. BN, ).

2 1

Therefore f' ~ g (rel 8M). This completes the proof.

Note. The hypothesis that M be compact can be removed provided we

-1
insist that f be a proper map, i.e., f = (compact) = compact, and S

9

is compact.

Corollary 8,1.1. If k< m-3, aclosed, k-connected m-manifold

can be embedded in EZm-k.
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Corollary 8.4.2. If Qq is k-connected, then every element of

‘ITr(Q) can be represented by an embedded sphere provided that

q+k-1)
> .

r £ min(q-3,

2. An Embedding Theorem Modulo the Boundary

Theorem 8.2. Let M be a compact P. L. manifold, Q% a P. L. mani-

fold, and let f:(M, d8M) —> (Q, Q) be a continuous map. Then if (M, M)
is (2m-q)-connected and (Q, Q) is (2m-g+1)-connected, and if g-m > 3,
then f =~ f' via a homotopy of pairs, (MX I, dMX I) — (Q, 8Q), with f{'

a P.L. embedding.

Corollary 8.2.4. If (2, 98Q) is k-connected, an element of 'rrr(Q, Q)

may be represented by a properly embedded disk, provided that

+k-1
A7)y,

q
< -
r < (q-3, >

Proof of Theorem 8.2. By the results on General Position (Chapter IV),

and by the Homotopy Extension Property for polyhedral pairs, f = f1 via a
homotopy of pairs, where f1 |8M 1is a non-degenerate P. L. map. Again by

General Position, f1 o fz via a homotopy fixed on M, where f‘2 is a P. L.

map with f_(Int M) € Int Q and where lelnt M is in general position,

5

In particular, dim(S_(f.) n Int M) £ 2m-q.

Z( 2)
Write f for fZ’ and let XO = cl(SZ(f) - Sz(f) " 9M). By the Engulfing

Theorem 7. , there exists a compact P. L. subspace C of M such that

Xo S C \ C N"dM and dim C £ (2m-q) + 1. By the same theorem, there
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exists a compact P. L. subspace D of Q suchthat £{(C) ¢ D \ DN 8Q
and dim D £ 2m-q + 2. By General Position, there exists a P.L, homeo-

morphism h:Q —> Q, fixed on £.C « 9Q, such that

2
dim[(hD - (fC) < 98Q) ~ fM] < (2m-q+2) + m-q < 2m-q-1. Therefore,

f-i(hD) =Cu Xu Y, where dim X £ 2m-q-1 (because f is non-degenerate)
and Y € 9aM,

Letting C = Ci, hD = D'l’ X = X1, Y = Yi’ we can define inductively

C,X,Y &M and D,SQ suchthat X < C.\ C.7 8M, D \ D. "~ 8Q,
A R i o i i i i
-1
and f (Di) = Civ Xiu Yi , where Yig OM and dim Xi_C_ 2m-g-i. The
inductive step combines the first step and the inductive argument used in
Theorem 8.1. (At each step, the Yi's are ignored.)

Assume now that Q is compact. Let K and L triangulate M and Q

respectively so that f: K—> L 1is simplicial and Ck and Dk are triangulated

as subcomplexes, where k is an integer such that Xk = §. Then

. -1
S fZ o s = o
£ 5 C e M, ck\ C, N oM, Dk\Dk 8Q, f D _=C, = Y, sothat

k k
-1 . - , - ) n
£ (Dk\. Q) = Ck v OM. Let N'1 = N(OM Ck,K ) and
N2 = N(9Q u Dk; L"), where K" and LL" are 2nd derived subdivisions so
that f: K" —> L" is still simplicial. Then f-1N = N,. Moreover,

2 1
N{l \ M U Ck\‘ oM and NZ\ Dk “ 0Q \ 9Q, so by uniqueness of regular

neighborhoods and existence of boundary collars, N1 = 9M X1 and

N2 = 0Q X I. In fact, N1 and N2 may be realized as the images of boundary

collars in M and Q respectively. Using these collars and adjoining to each
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a second "inner collar", we may construct homotopies Ft: M—> M and

Gt: Q —> Q with the following properties: Fo = identity, F, is a P, L.

1

homeomorphism M—>M - N, Ft(aM) C N, all t; GO = identity, G

1 1

maps cl(Q-NZ) homeomorphically onto  and carries N2 into 0Q, and
gt(BQ) = 9Q for all t.

Let f. = GofeF =G ofoF =G ofoF =1, These homotopies are
3 1 1 1 o o o

all homotopies of pairs (M, dM) in (Q, 9Q); i.e., Gith(BM) C g’lfN'1 c
GiNZ = 0Q and thFO(BM) < Gt(aQ) €09Q. Clearly, f3 is the required

P. 1. embedding.
It remains to consider the case in which Q 1is not compact. Choose

%
the C's and D's as above, and let Q be a regular neighborhood of

b b3
f MUD, in Q meeting 9Q regularly. Let P1 =Q M aQ, P2= FrQ.

k

Then Dk\‘ Dkﬁ P and fZ(BM) € P,. Let K and L triangulate M and Q>‘=

1 1

so that f: K—> L is simplicial and Ck and Dk are triangulated as sub-

complexes. Let K" and L" be barycentric 2nd derived subdivisions. Let

N, = N(C_ v 8M;K"), N, = N(D, v P,;L"). Thenas f:K"—>L" is

k 1’
. . -1 -1
simplicial, f (NZ) = N,. Also, f (PZ) = g.
: *
Now, NZ\ P1U Dk\ P1 , SO NZ is a regular neighborhood of P1 inQ .

Also, N_D P2 is a regular neighborhood of BPZ in P_ (as it is a derived

2 2 (

neighborhood). As in the compact case, we want to use uniqueness of

regular neighborhoods to conclude that (NZ;NZ N PZ) = (P1 X I, E)P1 X I).

(We still have N:l =~ 9M X I, of course.)
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sk sl
Let C1: 80Q XI—> Q be a boundary collar., Let

CZ: BPZ XI—> P2 be a boundary collar. Let C3: 8(P1><I) X1I— P1X I

be a boundary collar. Let & > 0 be such that

Pix[o,g] c C3([(P1><O) w (BPiXI)]XI). Define c:Pix[o,F]-——>Q

to be the following composite

c"1 (C~C

1 2)>< id. "

% c %
Pix[o,'c”] 3 >[(P1x0)rv (8P1><I)]><I aQ x1—-1—>Q_
W
Imc3
-
P, Tme = x
P, X1
F,
Q Q

Then it follows from results in the sections of Chapter IV on uniqueness of
regular neighborhoods that there exists a P. L. homeomorphism

(NZ;NZnPZ) = (P1>< [0,z ], P, X [0,£]) = (P1 x [0, 1], 9P, X [0, 1]).

Now define f3:°M — Q" by letting £3 be the composite with P. L.

homeomorphisms:

8 3

M >cl(Q - N,) —> Q.

> cl(M-N

) )

As in the compact case, we can choose 4 and B so that f = £3 via a homo-

topy of pairs, (M, dM) —> (Q*; Pi) C (Q, 8Q). This completes the proof.
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Note. A separate argument for the compact case would have been
unnecessary, had we developed the regular neighborhood theory for

regular neighborhoods of non-compact P. L. subspaces of a P. L. space.

3. Embedding into a non-bounded manifold.

Definition. Let f:X —> Y be a continuous map of topological spaces.

Then B(f), the branch locus of f, consists of all those points of X no

neighborhood of which is embedded by f{.

Suppose f:M —> Q, M compact, is a non-degenerate P. L. map of P.L.
manifolds (or spaces). Then B(f) is a P.L. subspace of M, B(f) & Sz(f),
and dim B(f) gE dim Sz(f). For let K and L triangulate M and Q respectively,
| with f: K —> L simplicial. If x e B(f), let x e o, 0 ¢ K. Then the open

o . . °
star st(Q;K) contains points vy,z, y# z, with f(y) = £f(z). Suppose y e ™

and z € -?2 , where o < T and o< Ty Then T %TZ because f is non-

degenerate. But fr,6 = fr, because f is simplicial. Also, neither 7 nor T

1 2 2

' equals o , because f is non-degenerate. Therefore ¢ C B(f) and Ty and T,

8 2rc contained in Sz(f).

Theorem 8.3. Let M be a compact P. L. manifold, 8M # #. Let

; Q? be a P. L. manifold without boundary. Suppose that gq-m > 2 and
B (M,d5M) is (2m-q-1)-connected. Then if f:M —> Q is a continuous map,

| £ is homotopic to a P. L. embedding, f'.
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Proof. Let f be homotopic to fi’ where f1 is non-degenerate and

dim Sz(f < 2m-q. Let K and L be triangulations of M and Q respectively,

.

so that f1:K —> L, is simplicial. Let K' be a first derived subdivision

of K with each simplex starred at & so that if dim 0'i >1, fio'1 = f1o'2,

A A
then f10'1 # f20'2 . |
Now let Ko be the 2m-q-1 skeleton of K, and let K1 be the simplices 4

of K' which do not meet |K_[. ThenK, = {81

= {3‘[0’& S

...Glo‘ <...<0o_ and
r' 1 r

dim o, > 2m-q} . Therefore K,N S_(f (f,) and dim ¢ = 2m-q}.

1 1 2
Hence K1 A B(f) = § so there exists a neighborhood U of ]K1| in | K|

1) 2 1)

such that f1l U is an embedding, because f.,K1 is an embedding and each

point of K, has a neighborhood embedded by f.

1

Now M-U is a compact set not meeting Ki' Hence there is a derived

neighborhood N, of K suchthat M-U& N \K .
o 1 o

1
Now let c: OM X I —> M be a boundary collar. Then (M, c(dMX [0, 1)))

is (2m-q-1)-connected, and so, from engulfing theorems [ Chapter 7 1,

there is a P. L. homeomorphism h:M —> M with N1C h(Im c). So

M-h(Tmc) CU. But M= M - h(Im ¢) by a homeomorphism homotopic to

the identity. Composing with fil M-h{Im c) gives the required embedding.
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Chapter IX: Concordance and Isotopy

1. Introduction.

Definition. A proper concordance of M in Q 1is a P,L. embedding

Y Y

F: MXI—> QX1 with F.(QX0)=MX0, F (QX1)=MX1,

F-i(BQ XI)=090MXI. F is a concordance between FO and F_, where

1

F(x,t) = (th, t), t=0,1. F is said to be fixed on the boundary if

F|oM X I = (Fo(aM)X 1.

Definition. Two proper embeddings f and g are said to be (properly)

concordant if there exists a concordance between them.

In this chapter we consider the question of when concordance implies
isotopy. For example, concordance does not in general imply isotopy when
the codimension (dim Q - dim M) is two. For example, the "slice knots" of
classical knot theory are precisely the knots cobordant to the trivial knot.

The main positive results that we shall prove are the following two

about a proper concordance F of M in Q fixed on the boundary, M compact.

Theorem 9.1. If dim Q - dim M > 3, then there exists an ambient

isotopy H of QX I, fixed on 8(Q X I), such that H,o F is level preserving.
y . g

Theorem 9.2. If dim Q - dim M > 3, then there exists an ambient

isotopy H of (QX1I), fixedon (QX 0 ) v (8Q X 1I), suchthat HoF = FOX 1.

1
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2. Relative Second Derived Neighborhoods.

Let Ko c K1 C K, be finite simpli¢ial complexes. Then let

2

N(K, - KO;KZ) = {oe KZI o< T for some simplex T meeting K'l- KO }.

1
This subcomplex is called the simplicial neighborhood of K1 mod Ko in KZ' g
Let K'ig K'Z be first derived. Let K‘2 be obtained from K:Z by star-

ring the simplices of K'Z - K'1 in order of decreasing dimension. We may

obtain a second derived K" from K2 by starring all the simplices of

al, )

K1 (= K‘i) in order of decreasing dimension. If A e KZ - K1 ,

link(A; KZ) n K1 = § or a single simplex. So the same is true of

link(A; KZ) ~ (K

, Ko)* is full in K_. Moreovi

-K ), as K, -K_ =(K ,

1 1

- K 5 Ko )| = [N(K) - KUK

1

c . .o
Lemma 9.3. Suppose that KOQ Ki“ KZ , Ki full in Ki+1’ i=1,2.

Suppose that if A e KZ- K, link(A;KZ) (K

1
Then N = N(K,- KO;KZ)\ (K,-K).

1" Ko) is f or a single simplex

Proof. Let {A} be the simplices of N not meeting Ki - KO, in
_— i

order of decreasing dimension. For each i, link(Ai;KZ) N (K, - KO) = a singl

1

simplex Ci which meets Ki_ KO. By fullness N = UAiCi . Let
i

N. = (K K A.C). - =A.C..
;7 (B R v (.U. ;+Cj)- Then cl(N;- N, )= A,.C,
j=21i ;
<] ) 1
A N 2 A . - r - ( ’ N )
(A,C)N N, 2AC. (AC)N(N, )7 (acC) (&K Ko)u.l\/ (AC, AJ,CJ) ,
j2it1 3
» ¢ k
C _ R
CAGC . So (AC)N (N, )=4C . So Ni\ Ni,, Therefore N\K - K. 4
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Lemma 9.4. With the conditions of LLemma 9.3, suppose K1 and KZ

a-re manifolds and Ko C 8K, . Then N(K is a manifold of the

- K
1 o’K

1 2)

same dimension as KZ.

Proof. By induction on the dimension of K Let N = N(Ki- Ko; K

2' 2)’
and let A e N. If A meets Ki- .Ko, then link(A;N) = link(A;KZ),

a sphere or ball.

Suppose A N (K, - Ko) = ff. Then

1
link(A; N) = N[link(A; K,) VK, - link(A;K,) N K ; link(A; K )].  For

o e Link(A;N)<=>cAe N<>0¢< p, Ape K and p N (Ki- KO)#¢<=>

2

AK, -LNK ;Lo = link(A;K_).
c¢ NILNK, - L SL MK, L= link(A;K,)

Now LN Ko C L~ K, C L satisfy the hypotheses of this lemma. For

certainly each of these complexes is full in the next. If Be L,

link(B; L) (L N (K=K )) =1link(B, L) N (K, K ) = link(AB;K,) N (K,- K ) = ¢

or a single simplex. If A« Ko’ then L N K,1 = 1ink(A;K1) is a submanifold

of the manifold L and LN Ko - link(A;BKi) is contained in the boundary.

A = - C m = i
If A,{Ki, LNK Lr\(K1 KO), as K G 0K, , so LNK, = p, a single

1
simplex. Since A is a face of a simplex meeting K1- K0 , PN Ko is a sub-
complex of p not equal to p and so lies in 0Jp.

Therefore by induction link(A;N) is a manifold of the appropriate
dimension. By Lemma 9,3, link(A;N)\L r\(ITTR"O) = p\0 if A¢ K,

£ AcK_, link(A; N) \link(A; N) N (K - K) = link(A;Ki)\O. So link(A;N)

is a collapsible manifold and so is a P. L. ball.
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3. The Main Lemma.

Lemma 9.5. Let F:B™ XI—> Q%% 1, B™ and m-ball, be a

proper concordance which is fixed on the boundary. Suppose g-m > 3.
Let U be an open neighborhood of FOBm in Q. Then there exists an
ambient isotopy H of (Q X 1I), fixed on (Q X 0) v (8Q X I), such that

HioF(BmXI) CUXI.

Picture:
—
|
| )
]
1
,)f
(_—
. ; ; [ |
Before. ¥y After u

The main idea is to construct "walls" (dotted line) and then to push the
concordance back behind the walls. That is, we find Wi such that FrW’i
is not overshadowed by Wi and use these to "push the concordance back"
until it eventually looks like the 2nd picture.

Proof.of Lemma 9.5. From the chapters on General Position and

Sunny Collapsing, there is a P. L. homeomorphism h:QXI—> QX I, level

preserving and ambient isotopic to 1 by an arbitrarily small ambient isotopy,
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such that hF(B X I) sunny collapses to hF((B X 0) . (8B X 1I)). Let

X = hF(Bm X 1), Xo = hF((B™ % 0) - (8B X I)). We may assume by

choosing h near enoughto 1 that there is a neighborhood V of FoBm
in Q such that XO';_ VXI<h(UXI),

Let KO; K be triangulations of Xo < X and let J be a triangulation
of Q such that the inclusion embeds K linearly in J X I and such that

es

es es
there is a sequence K = K K \ cee \ K with shadow
roy r-4 o

K. " K| € K. ;-
Let K and B8J be subdivisions such that if PiQXI—>Q is

projection on the first coordimate, then pilK: AK—> #J is simplicial.

It follows from the last section of Chapter V, already quoted, that h above

may be chosen so that Py [K is non-degenerate; this also follows directly from

the sunny collapse. So let +«"K and §"J be 2nd derived subdivisions with

pilK: WK —> BnT ostill simplicial. Let T:Q XI—>1 be projection on

the 2nd coordimte. Let LJ,Ji: K —> /‘.;* be the linear map defined by

setting LlJi(v) =0 if v is a vertex of fi"Ki and L[»'i(v)= 1+ 7(v) if v is

-1
a vertex of ="K - aL"Ki . Then Lpi (0) = "Ki , as ':L"Ki is full in ="K,

In particular, 410 (0) C VX I. Hence there exists 0< £< 1 such that
4
‘PO [0,£] SV XI.
Let W, = q,i'i[o,e]. Then W, is a derived neighborhood of 4"K, in

'K, W =W =X, (See picture following this proof.)




s ~W
Claim: Shadow(Wi) w = Intw Wi .

Suppose x € Wi’ y e W, and x overshadows y. Choose o, 67 ¢ a"(K),
}' 2%y

xe o and yeT . Then P, = pyT , and o # T because pi'K is non- 3

1

degenerate. Let ¢ = po, , p ¢ az"Ki , 0,0 oz"Ki =@, LetT = p"r1 , where

1 1

'= = . (,A\ C {A
PP PyP and PyTy = PyTy - Since shadow Ki K< Ki-i . Ki ,

p' e a“Ki . For each vertex v of 0'1, lbi (v) is not less than the value
of LlJi or the vertex v' of ™ with piv' =PV - Moreover, LlJ.l(v) >¢i(v')
unless v = v'. Therefore q;i(x) > Lpi(y) unless oy # Ty So it suffices to

show that oy # Ty
If Ae o"K - af"Ki , then link(A;a"K) ™ oz"Kif d or the first derived
B' of a single simplex B of af'Ki . So as p1|K embeds B', no point

of B' overshadows any other. Therefore if o1= Ty P = p' and so ¢ = T,

a contradiction.

Notation: If ST JXI, let S = S - {pts. lying above pts.of S}.

Let Y,=W, o Fr W.,. Y “VXI, Y =W =X. Weare goingto
i i W i o r r

Suppose Ki=Ki 1 + A +aA. Let

throw Y. onto Y. ..
i i-1

N = N(a"(aA) - a"(aA); @"K). Outside N, q;i =y N is an (m+1)-manifold

i-1°

and N\\q aA.
Consider N. (See 2nd picture following this proof.) Then
N N (QXI) piN = N[p1(aA) - p1(aA);p1(a"K)]\pi(aA). Since Py embeds
A

Aa, this shows that N ‘0.
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Wi N N is a derived neighborhood of a"(aA) in N, an (m+1)-ball.
Similarly, w. ™ N is a derived neighborhood of «"(aA) in N and so

is an m+1i-ball.

Now a(wir\ N) = (Frwi ~ N) < [Wi.’\. N~ (QX1)]u [wir\ Fr_, NJ.

w

If Ae QX4, 8N= [NN(QX1)]v Fr_ N, NN(QX1)=a derived neigh-

\d

borhood of either A mod A or of aA mod a:ﬁ in W2 (QX1), So NN(Q X 1)

is an n-ball. IfA ¢ QX 1, 8N = Fry N. In either case Fr N isan

m-manifold. Wif\ FrN= Wi_if\ Fr N = a derived neighborhood of a"(aA)

in Fr N = an m-ball. So Wii’\. N\ [(Fr Wi) N NJ w [Wi ~NN(QX1)]. So

Y AN = (Wo FroW)n NAFrWw, AN CW. N NA(QX1)
\*[m‘ ~RX )] v [W N NA(QX 1))
= p[FrWi SN Wif'\ N N (Q X 1)]

= an n-ball \0.

Similarly ¥, 0 N\¥,  n Nn(@x1)\o.

Let us assume for the moment that each Yi is an (m+1)-manifold.
That this is actually the case follows (Cor. 9.6.1).

Subdivide J X I (J = triangulation of Q) so that rl?, the Ki’ etC., ...
are all subcomplexes. Let R be a 2nd derived neighborhood of N in this
subdivision. Then because N \0, R isa (q+1)-ball. Since N ~ (Q X 1)\0,

and since we may assume QX 1 was a subcomplexof JXI, RN(QX 1)

is also a ball, of dim q.
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R Yi is a 2nd derived neighborhood of Yi "N in Yi’ and so is an
(m+1)-ball, by uniqueness of regular neighborhoods. Similarly,

(R f‘~Yi) N (QX 1) is an m-ball., Similarly, R N Yi is an (m+1)-ball

-1

and (R™ Y, )" (QX1) is an m-ball. Also, Y, " FrR=Y, , ~ FrR

because Lpi = lii 1 outside of N,
But q-m > 3. Therefore all of the following ball pairs are unknotted:

[R ~ Yif'* (QXx1) S R~ (Qx1], [R™ Yig R], [Rf\Yi_i N(QX1)CRN{(QX1)],

[R™Y R]. Moreover, Y.~ FrR isafaceof Y,"R and

i-1 =
Y ~FrR~ (QX 1) is the boundary of Y. 7 R N (Q X 1). Hence we may
find an ambient isotopy of R, fixed on Fr R = cl{dR - R N (Q X 1)), throwing

R"™ Yi onto R™ Y,

g Extending by the identity outside of R, we get an

ambient isotopy Hi of QX I, fixed on (QX 0)<-(9Q X 1), which throws Yi
onto Yi-'l'
Hence by induction there is an ambient isotopy H of QX I, fixed on
(@x0)« (8QX 1), with H X T X I VXL Recall that X = he F(B™ X 1),
Define H' by H;; = h-thh. Then H' is the required ambient isotopy.
Lemma 9.6. If N is a submanifold of QX I with Py N an embedding
and N~(QX 1) € 8N, then N (= N and points lying above N) is a manifold.
Proof. By induction on dim N. If dim N = 0, this lemma is clear.
Now suppose xe¢y , ye N-N N (Q X 1), Then there exists a closed P.L.

ball V of y in N with VN (QX 1) =¢. Then Vlis P. L. homeomo rphic

to VXI. So r—l? is a manifold near x; i.e., there is a neighborhood of x in
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N which is P. L. homeomorphic to a ball. Say, on the other hand,

x ¢ NN (QX1). Triangulate N so that N:N —> Q is simplicial
g P, P

-1

for some triangulation of Q. Then link(x;N) = link(x; N). Link(x;N) is
a ball meeting QX 1 in a subset of its boundary. So by induction,
[ [ e

link(x;N) is a manifold. But link(x; N)\\‘ link(x; N)\O, and so is a ball,

So T\I—‘ is a manifold.

Corollary 9.6.1. Let X &S QX1 be a properly embedded manifold.

Let K< X be a polyhedron. Let W be a derived neighborhood of K in X,

with (shadow W) ™ X & IntXW_ Then W .. rf‘i'X—V—\;_\ is a manifold.

Proof. If N = FrXW, then pilN:N —> Q is an embedding.

ON=N “ 8X ZNM (QX 1). Therefore N is a manifold. Clearly, N< 8N.

So W o FrXW is the union of two manifolds of the same dimension which

meet in a submanifold,of one Jower dimension, contained in the boundary of

each.

Therefore it is a manifold,
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4, Proof of Theorems 9.1 and 9. 2.

Theorem 9.2. Let F: M7 XTI —> Q%X 1 bea proper concordance,

fixed on M, M compact and g-m 2= 3. Then there is an ambient isotopy
H of Q XI, fixed on (Q X 0) v (8Q X I), such that Hi"F = Fo X id,
N
Proof. By induction on dim Q. Let K triangulate M. Let {Ai}4_

be the simplices of K - 8K, in order of increasing dimension. Let K

i PESIEERRY Ai (= these simplices and all their faces). We shall de-

fine ambient isotopies h(l) of QXI, fixed on {QX 0) « (8Q X I), such that

hi(l) F is fixed on a neighborhood of Ki .

(i-1)

Suppose that h~ ~ is defined. F'=h cF:MXI—> QX1 is fixed

on a neighborhood U of K, 1 and on M. Triangulate MXI, QXI, and

okl By

Q sothat MXI > QX ——> Q are simplicial, and so that

Ki—i X1 and Ai X1 are triangulated as subcomplexes of M X 1,

Now (p1° IE"")(Ki__1 X1I)= F(';(Ki-’l)' Let N'1 and NZ be 2nd derived

neighborhoods of Ai—i XI in MXI and of Fo'(Ki-i) in Q, respectively,
-1 '
C U X = ! =
such that N1 = UXI and N, (p1°F) NZ' Then clearly N, N3XI,
-1
where N3 = (FO) N2 .

Let M™ = cl(M - N,), and let Q%= cl(Q - N.). Let F*=

2
F'[M*X1:M XI—> Q"X A NN_ isaderived neighborhood of 94,

in Ai’ because of the ordering of the Ai' Put B = Ai NM =A -A "N

a ball.
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te
St

Let V be a regular neighborhood of FOB in Q. By Proposition 9.5,
sk e sk
there exists an ambient isotopy k of Q X I, fixedon (Q X 0)u (8Q X I),

such that k1F(B X I) € (Int V) X I. By uniqueness of regular neighbourhoods

V is a g-ball. By the unknotting of balls, there exist an ambient isotopy
k' of VXI, fixedon (VX 0)w (8V X I), such that

kflkiF'lBXI=Fo><id|B><I. We may extend k' to all of Q" X1 by

letting it be constantly the identity outside V X I, Put

* sk b3
F"=k1'k117‘ M XI—>Q XTI.
p

sk 4
> Q X I————>Q simplicial,

"

Now triangulate to make M XI
with B X1 triangulated as a subcomplex. Subdivide so that F" and p are

F3
be the 2nd derived neighborhood of FOB in Q.

4
Let N = (p F")-iN Let N =(F'1N XI. N =F'1(N
5 1 4 6 o T o

neighborhood of B in M , and so N

simplicial and let N

is a derived

o "

6 is a derived neighborhood of B X1

in M XI. Sois N,.

ok
Lemma 9.7. There is an ambient isotopy k" of M XI, fixed on

(M X 0) - (8M" X 1I), such that ki N = Ng .

(Proof postponed until later. )

Proof of 9.2 continued. Let k" be as in Lemma 9.7. By the isotopy

extension theorem, there exists an ambient isotopy k" of Q X1, fixed

w sk
on (Q X0)w (3Q X1I), sothat k! F"N_ = F"N, .

Put F™"= (kz' )‘1F". Then (piF'")_1N4 =N, = N, X1 Consider

Fm IFIM*N7 X I. Then the image of this map is contained in (FrQ*N4) X1,
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as in fact N_ = Fo-i(N

A OM. .
7

M*N7) = (FrM*N,?)

Therefore we are in the situation in which the inductive hypothesis applies

4). Moreover, Fr

to give us an ambient isotopy k(4) of (F rQ*N4) X I, fixed on the bottom and

4
sides, such that k(4)F"'|Fr ON_XI=F Xid|Fr _N_XI. The k( )
1 M*E 7 o M* 7

' (4)

extends to all of Q X I to an ambient isotopy also called k' 7, fixed on

(Q*x 0) v (0Q™ x 1).
(5) of

By the unknotting of balls, there exists an ambient isotopy k

o,

Q X1, fixedon (Q X0)u (0Q XI) U (Q -N

(5) (4
10Ky

4) X I, so that

k )F"'[N,? X1-= (FO X id)lN,] X I. This completes the proof of the
inductive step because the relation of ambient isotopic is an equivalence
relation.

To start the induction put ¢ = 3, m = 0. Then a simple version of

the same proof work: there are no neighborhoods in which to straighten

out the concordance, and so an inductive hypothesis is not necessary.

Proof of Lemma 9.7. N_ is a derived neighborhood of B X1 in

5
sk =3
M X L. N7=N5m(M°xo), N

Now let a: M" X]—>M

=N_XI, N

S _ b
6 . g N (M™ XI) =N, N (M X 1I).

6

-t

" X1 beaP.L. homeomorphism throwing

sk ES E
(M X0)uv (M XI) onto M X 0. aN_ and oN, are regular neigh-

5 6

8 5
b
aN6 N (M X 0). By the uniqueness of regular neighborhoods, there is an

¢
ambient isotopy H of M X I such that Hi(aN5) =N8XI. Let H' be the

ambient isotopy of M X I defined by H! = [Htl(M" X 0)] X 1. Then
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- ‘ %
H'i(NS X 1I) = (N8 X I) and (H') 1H is an ambient isotopy fixed on M X 0.

Similarly, we may throw aN6 onto N

g X I, keeping M X0 fixed. Com- g

|

*!

posing these two isotopies and conjugating with a gives an ambient iso- §
i

% i * ' ‘
topy of M~ X I, fixed on (M X 0) u (eM X I), throwing N5 onto N6 . 3

Theorem 9.1. Suppose F': M7 X I —> QqX I is a proper concordance

!
-,
E
1

|

fixed on 8M, M compact, q-m > 3. Then there exists an ambient isotopy

H of QXI, fixed on 8(Q X I), such that HiF is level preserving.

Proof. By 9.2, there exists an ambient isotopy K of QX I, fixed on

(QX0) «(0QX1I), with K, F = Fo X id. Let k be the ambient isotopy of Q

1
defined by Kt(x, 1) = (ktx, 1), Let #: 1 beaP.L. map with

#(s,1)=s, #(1,t) =t, ¥(s,0) = §(0,t) =0 for all s,te I. Define

K:(QXI)XI—> (QXI)XI by putting K'(x,s,t) = (k¢( )(x), s,t). Then

s, t
K' is the identity on (8Q X IXI) o (Q X 0XI) « (QXIX0).

K(‘):Q XI—> QXI is the identity. Kt': agrees with Kt on QX 1. Define

H:QXIXI—> QXIXI by H=(K')

-1
and HiF = (Kji) KiF = (Kjl)Fo X id is certainly level preserving.

K. Then H is fixed on 8(Q X I)

5. Extensions.

In this section we quote without proof two further results along these
lines. The first follows from what we have already shown, the second can
be proven using a result on unknotting of cones quoted at the end of the

chapter on Sunny Collapsing and Unknotting.
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B T S—

9.7. If F: MT x1—> QqX I is a proper concordance and if g-m > 3

and M 1is compact, then there is a ambient isotopy H of QX 1I, fixed on

; QX 0, with H F = FO X id, and an ambient isotopy K, fixed on Q X 91,

1 1

with K'lF level preserving.

-9.8. 1If KOE K are polyhedra and fiKXI— Q¥X 1 is a concordance
Y lax1)=xx1, ¢t

QX0)=KXO0, f (8Q><I)=KOXI, and if

with
1 dim K £ g-3 and dim Ko < g-4, then there exists an ambient isotopy H of

QXI, fixedon QX 0, with HF = Fo Xid, If F is fixed on KO, then one

1

can insist that H be fixed on 0Q X I,

[ SN

" s s T ettt < e
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Chapter X: Some Unknotting Theorems

1. An Unknotting Theorem Keeping the Boundary Fixed.

Theorem 10.1. Let M and Q% be compact P, L. manifolds, and
let f,g: M —> Q be two proper P, L., embeddings. Suppose that f is
homotopic to g relative 8M. Then if q-m 23, M is (2m-q+1)-connected,
and Q is (2m-q+2)-connected, then f and g are ambient isotopic keeping
9Q fixed,

Proof. Let F1tMXI—> QX1 be a (level-preserving) homotopy of
f to g FIOMXI=(fXid)|]dMXI. Now, (MXI) is g(m+1)-(q+1) = 2m-q+1
connected, and QX I is q(m+1) - (q+1) + 1 connected. Hence by the em-
bedding theorem 8.1 , F is homotopic relative (M X I) to F':MXI—> Q XI,
a proper embedding, Therefore F' is a proper concordance of f to g, fixed
on dM. By Theorem 9.2, there is an ambient isotopy H of Q X I, fixed on

(QXx0)w(9QX 1), with H, F' = F!Xid. Then H|(Q X 1) X I is an ambient

1
isotopy, fixed on 8(Q X 1), throwing g onto f=[H|QX 11X I]i°g'

Corollary 10.1. Any k-connected closed manifold M unknots in

2m-k +1 -
g™ ; i.e., any two embeddings of M in EZm k are isotopic, ifkS<m-2,

Corollary 10.1.2: If Q is k-connected, then the elements of 'rrr(Q)

can each be represented by a unique isotopy class of embedded spheres,

provided that

qtk-2

rsmin(q-3, > ).
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2. An Unknotting Theorem Moving the Boundary

Theorem 10.2. If £, g: M™ — 0% are proper P, L. embeddings,

M compact, f,g homotopic as maps of pairs (M, 8M) — (Q, 8Q); and if
g-m >3, (M, dM) is (2m-q+1)-connected, and if (Q, 8Q) is (2m-q+2)-

connected, then f and g are ambient isotopic.

Note: As in 10.1, it suffices to show that f and g are properly concordant.
Unfortunately, we have not proved an appropriate embedding theorem; we

need to alter a homotopy to an embedding keeping M X 91 fixed.

Proof. Let F:MXI—> QX I be a (level preserving) homotopy of
f to g, with Ft(aM) C 9Q for all t. We may assume that there is 2> 0,

so that Ft=FO for t £ ¢ and Ft=F for t>1-: . Applying general

1
position first to M X [£,41-E | in 8Q X [¢,1-2] and thento M X [z ,4-2]
in QX[z,1-2] (this also uses the well-known homotopy extension property

for polyhedra), we get a proper P, L. map F:MXI—> QX I, with the

following properties:

(fx, t) t<t

F =

2) S,(F') cMX[¢,1-2].

3) dim[SZ(F’) ~ (M X I)] < 2m-q

4) dim(SzF') < 2(m+1) - (g+1) = 2m-q+1.

Now {MXIntI, (M X Int I)) is (2m-qt1)-connected and

(WX IntI, QX Int I)) is (2m-q+2)-connected. Notice that SZF' isa

compact polyhedron in M X Int I. By an argument we have used several
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times (see Engulfing Theorem 7.8 and the embedding theorem 8. 2)

there exist polyhedra C and D in M X IntlI and Q X Int I, respectively,

such that SZF' - C\C " 8M><I D\D N (9Q X Int I), and (F') 1D=C.

Triangulate so that F' is simplicial and SZ(.F'), C,D,Cr (M X1I),
and D~ (M X I) are all subcomplexes. Take 2nd deriveds keeping F'

simplicial. Let N2 = 2nd derived neighborhood of D in QX I, Let
N1 = (F')-iNZ, a 2nd derived neighborhood of C in M X I. Then

F'lel(MX1I- N'l) —> cl(Q XTI - NZ) is a proper embedding. To complete

the proof it suffices to find P.L., homeomorphisms h:cl(M X I- Ni) —> MXI
and k:cl(@XI-N)—> QX1 with h|MX 8l =id and k|QX 81 = id. For
then kF‘h_/l is a proper concordance from fto g. Now N C\C =~ (M X I).

So N1 is a regular neighborhood of € N (M X I), meeting the boundary

regularly. Let N3 = N{\ (M X1I). Let c:d(MXI)XI—>MXI bea
boundary collar. Then c(N3 X I) is also a regular neighborhood of

C N (dM X I), regular at the boundary. c(N3 X I)\ac[(N3 X 1) (8N3X D).

So, by the uniqueness of regular neighborhoods, N\Fr . Let N, bea

-

derived neighborhood of N ., Then MXI and cl(MXI- N) are both regular
neighborhoods of cl(M X I-N4). So there is a P. L. homeomorphism
M XI—> cl(M X I-N) which is the identity outside NZ.

A similar argument works for Q.

Corollary 10.2.2. If (Q, 9Q) is k-connected, an element of vr(Q, Q)

is representable by a unique isotopy class of properly embedded r-balls,

qtk-2 )

provided that r < min(q-3, >




=201~

3. Unknotting in a Manifold without Boundary

Theorem 10.3. Say M is compact, OM¥# #, 80 = o, Let

f,g: M —> Q be P.L. embeddings, f g, q-m2 3. Suppose (M, OM) is

(2m-gq)-connected. Then fand g are ambient isotopic.

Unfortunately, we cannot prove this theorem based only on preceding

results because we did not prove a concordance implies isotopy theorem
for concordances of a bounded manifold in a non-bounded manifold,
Modulo this gap, the proof of 10.3 proceeds as follows:

Let F:MXI—> QX1 be a (level-preserving) homotopy of f to g,
As in the proof of 10.2, we may assume that F is a P.L. mapin general
position and S,F SMXIntI, (dimS,F = 2m-q+1). Let |K| = Mx1
and |Q| = QX I be triangulations such that F:K —> Q is simplicial,
Let K' be a first derived of K such that dimo > 4 and Fo = Frv =
Fo }‘ F; . Let K. S K be the 2m-q skeleton. Let L pe

1

the "dual skeleton" of K'1 in K, together with the top and bottom; i.e,,

the simplices of K' nd meeting K! , together with (M X0)u (Mx 1)
which we assume to be a subcomplex. Then F' embeds a neighborhood of L

U say, (see proof of embedding theorem 8. 3 ). Engulf Ki to M X I.

i.e., let C be a polyhedron containing K1 which collapses to C~ (oM X I)

T e

with CC MX IntI. Let N be a derived neighborhood of C in oM X I,
Then then there exists a homeomorphism, fixed in M X 9, MX I ~ c1(MXI-N)

a compact set not meeting K Hence cl(MXI - N) is contained in =

4

—7 NS
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regular neighborhood of L not meeting K1 (see proof of

Theorem 7. 9), N. On the other hand , U contains a regular neigh-

borhood N of L. So N "’ﬁ

, via a homeomorphism which leaves L

pointwise fixed. Hence by compositing F with homeomorphisms, we

get a concordance F' between f and g. Now apply the unproved con-

cordance ==> isotopy theorem to deduce that f and g are ambient iso-

topic.

© it S AT
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Chapter XI: Obstructions to Embedding and Isotopy

1. Linking Numbers.

+q+
If Sp,Sq are disjoint spheres in the sphere sP™4 1, the linking
: +q+
number of S and S in SP79 ! is defined to be equal to the degree of
+q+
the map sP —s P74 ! -s4 this latter being a homology p-sphere

by Alexander duality. We shall only use the linking number reduced
modulo 2 in this chapter, and so will not have to worry about signs and
orientations.

Lemma 11.4. Let M,N, W be compact connected P. L. manifolds

T
+n-
with dim W = dim M + dim N. Suppose that oW = U Sjm n-1 s

r r 1

- -1
oM = U Sjm 1 , ON = U Sjn and suppose f: M—> W, gt N—> W are
1 1

-1 +n-
proper P. L. maps in general position with ijm - S,n’1 n-1

1

j
- +n-
gSJ_n 1;: Sjm n-1 for each j. Suppose fM r gN = , and let Lj = linking
- - +n-
number of fsj’frl Voes Pt i sjrn n-1 mod 2). 1 HTY(W, oW) =
m+1
H™ (W, 8W) = 0, then > L, = 0.

Proof. Consider the following commutative diagrams, all homology and

cohomology having Z_  coefficients.

2
m-1 £y m+n-1 n-1
J_Z Ho 45,77 > H_ (s, - g8 )

11 12

Hm-i(M) —> Hm-i(W - gN)
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N W n+1 o) n _ Z
Hm 1(W- gN) < = H  “(W,dW{/gN)< ™ H'(gN, gdN) = £,
i, * 5 5
COw m & n-1
Hrn 1(8W - gdN) <—/F—H (OW, gdN) < = H  "(g8N)

The left-hand isomorphism being given by Lefshetz duality and the
right-hand ones from the exact cohomology sequences of W CN LW C W

and 8N C 9W. Now the right-hand vertical arrow maps the generator of

-1 -

HY (gS;,‘1 l) onto the generator of Hn(gN, gdN) for each j. So
tn- -

the generator of Hm—i(sjm n-1 gSjn 1) maps onto the generator of

Hm_i(W - gN) for each j. So in the first diagram, if gj generates

m-4 < s _ . — . . .
Hm-i(sj ), = Lj = 12f>,< Z gj = f*l1 z §j = 0 since i z ‘g’j is
a boundary.

n

+
Intersections. Let M, N, W™ ™ pe P.L. manifolds. Let f:M—> W,

g:N—> W be proper P.L. maps in general position. If xe¢ fM N gN ,
we can define an intersection number £(x) as equal to the linking numbers

(mod 2) of link(x,fM) and link(x, gN) in link(x, Q).

Lemma 11.2. If M N =S~ , W gZn and fM N gN ={x1,x2,... ,xk},
then ° l(xi) =0.
n 2n
Lemma 11,3, If M=ZN=2B , W=x=B and fM”\gN={x1...xk},
then z l(xi) = linking number of M, gdN in W,
Proof. Triangulate and remove the stars of the points Xpp Kopev o %

Applying Lemma 11.41 now gives the required result.

O ——— SR
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2. An Obstruction to Embedding and Isotopy.

Let £: M —> Q% be a proper P. L. map in proper general position;
i.e., f|dM:8M —> 8Q is also in general position. Assume M is com-
pact, and m < g-1. Triangulate M and Q, getting K and L. such that
f:K—> L 1is simplicial, and Kog K a full subcomplex triangulating Szf.
Let K' and L' be formed by starring at the barycenters the simplices of
K-KO and L-fKO , in order of decreasing dimension. Then f:K'—> L!'
is still simplicial.

If oe Ko is a (2m-q)-simplex, then there exists a unique ¢' ¢ Ko’
¢'# 0, with fo = fo', as the triple points have dimension 3m-2q < 2m-gq.

Let S, = link(c;K'), S, = link(c'; K'), = = link(fe; L"),

1 2

dim S, = m-(2m-q)-1= g-m-1 = dim S Dim Z = 2(gq-m)-1. Now, since

1 2°

dim o = 2m-q = dimg¢', f embeds S1 and S.2 . Moreover, Sih S‘2 = ¢
Forif T e S1 ™ SZ , orand o't ¢ K' implies o,c' e link(T;K'). But

link(T; K") N ]KOI = a single simplex p. Since f embeds p, this means
¢ =o', a contradiction.

Now, define ¢f(0') = linking number of fS1 and fS2 in £, mod 2;

i.e., ¢f(<y) € z2 .

Definition. c(f) = 2 ¢f(0')'0’ € CZ (M) Z2 , If

cge K m-q

dimo = ch)'n-q

dim KO < 2m-q, c(f) = 0.
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Now, c(f) is defined with respect to triangulations of M and Q.
Let 9f = fl OM and let c(9f) be defined with respect to the induced
triangulation.

Lemma 11.4. 8c(f) = c(of).

Proof. Suppose T ¢ K  and dim 7= 2m-q-1. Assume T ¢ OM, and

that there exist 7' # 7 and fr' = fr. Let S, = link(+; K'), s, = link(t'; K'),

= = link(fr; L'), dim S, =dimS, = q-m, dim I = 2(q-m). S S,, and T ‘

2 1’

are spheres, and Sif\ SZ = ¢, as above.

Let g = f] Siu SZ. Then g(Si) ~ g(SZ) consists entirely of vertices,
for otherwise dimszf > 2m-q. Moreover, each point of intersection vy
determines a pair of vertices x and x' in S and S', respectively, such that

xT and x'v' are in Szf. Conversely, if 7< o ¢ Szf, let x be vertex of o

not in T. Then if ¢' is a simplex such that foc = fo', T < o' because, as
m < q-1, the triple points of f have dimension at most 2m-q-2. Thus
the simplices ¢ ¢ Szf such that 7 < ¢ correspond to intersection points

of gS1 and gSZ.

Now say x e X1 and xT ¢ SZf° Then ﬂf(X'r) linking number of

f(link(xT; K')) and f(link(x't';K')) in link(f(x7; L'), where x'e S2 is the

unique point such that f(x') = f(x). But link(Tx; K') = link(x;S and

N,
link(r'x'; K') = link(x';S,) and link(f(x7);L') = link(fx;Z), as f is
simplicial. Therefore gf(x-r)= Q’g(x).

Let Xyreon ’Xq be the vertices of S1 mapped by g to intersection

q
points of g(Si) and g(SZ). Then E fo(cr) = i; ¢g(xi)= sum of the

c>T

o*eSzf
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linking numbers (mod 2) of link(yi; gSi) and link(yi; gSZ) in link(yi;Z),

y. = f(xi). Since g is in general position (its double points are of dimen-

sion zero and it has no triple points), Lemma 11.3 implies that this sum

2

&

¢

i

&
;

is congruent to zero modulo 2.
Now, for T e Ko’ dim T = 2m-q-1, suppose there is no T' with
fr = fr' but T # 7'. Then suppose T<o and o ¢ Szf. Then there exists

o' such that fo = fo' but ¢ # ¢'. Since f embeds ¢ and ¢', ¢' has a

face 7' such that ft = f1r'. Therefore T =71'. Therefore if Tysoees crp
are simplices of SZf having 7 as a face, p is even and we may suppose
f(O’i) = f(0'i+1) for i= 1(2). By definition, ¢f(cri) = ¢f(ai+1) , i=1(2),

i<p-1. So z ¢f(0') = 0 (mod 2) in this case also.
c>T
T € SZf

Now suppose T € Ko and T € OM and there exists T' such that frv = 7',

T #1', and Te OM. Let B1 = link(T;K'), B2 = link(T';K'), (g-m)-balls.

Let B = link(fT;L'), a 2(q-m)-ball. Since T is a principal simplex of

Sz(f) M, BB1 and 9B, are embedded disjointly in 90B. An argument

2

similar to that for the first case, using Lemma 11.3 instead of Lemma 11.2

shows that z ¢f(0') = linking number of BB‘1 and BBZ in 0B = ¢8f(-r)

c>T
o € Szf
| (all modulo 2). Now dc(f) = z ( z ¢f(0'))—'r where we sum only over
= &
‘ simplexes of Sz(f). But > ¢f(0') =0 if 7 /Sz(af)

o> T
= ¢af(1’) if Te SZ(Bf) .

]
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So dc(f) = c(d8f). So c(f) represents an element (f) ¢ H

2m_q(M, 3M:ZZ)

(M; Z_).

if 9f is an embedding, c(f) gives an element a(f) e HZm-q >

Lemma 11.5. a(f) and @(f) do not depend on the choice of tri-

angulation.
Proof. Suppose f:K—> L is simplicial, Ko is full in K with
|KO] = Sz(f) and K',L' are obtained from XK, L as above. Let o be

a (2m-q) -simplex of fSZf . Now suppose aK: BL are subdivisions of

K,L and f: aK—> BL is still simplicial, and let &'K,B'L be obtained

by starring simplexes not in KO,fKO . Then pseudo-radial projection

e s A S

assures us that there is a P. L, homeomorphism link(o-i, B'L) — link(c, L")

sending link(c,, fo'K) >link(cri,fK’). So ¢f(0‘1) = ¢f(cr). Thus each

1’
principal simplex occurs with the correct coefficient and gives rise to the

same homology class.

Lemma 11.6, If f, g:Mm — Qq, m £ g-2, are proper P. L. maps

in proper general position, and if f 2 g as maps (M,0M) —> (Q, 8Q),
then off) = o(g). If £|dM is an embedding and f = g (rel 8M), then
3(1) = alg).

Proof. Let F:MXI—>QXI be alevel preserving homotopy
between fand g. F|M X8I is in general position. Therefore, let
G:MXI—> QXI beaP.L. map in proper general position which agrees
with F on M X 9l.

Triangulate so that M X 0, M X 1, and 9M X I are subcomplexes and

G is simplicial. So 8c(F) = ¢(8F) = c[F|M X 0] + c[F|MX 1] + c(F|dM X I).



4

Let p,:C(MXI) X Z‘2 —> C(M) X ZZ be the map induced by projection,
where C = simplicial chains with respect to this triangulation. Then

9p,c(F) = c(f) +c(g) + P, lc(F|dM X I)). The last is in C(8M). Therefor

In the event that F|8M X I is (f]8M) X 1, one may suppose G also

has this property. Then c¢(G|dM X I) =0, so Bp*c(G) = c(f) + c(g).

Note: In view of this lemma, we may view a as a map

(M, aM), (Q, 8Q)]

d : M .
Hzm_q(M, aM; Z,)

Definition., Now suppose that 8M =@ and Q= EY Then let
f,ggiM—> Eq be two embeddings of Min Eq. Then there is always a
homotopy of fand g. Let F:MX]I—> EYX1 bea P. L.. homotopy of
f and g in general position. Then F|3(M X 1) is an embedding, so
F) e HZm-q+1(M X I ZZ) is defined. If F' is another homotopy of f and g,
then F 2 F' (rel 3(MX1I)), so @F)=aF'). Let p:MXI—> M be pro-
jection onto the first coordinate. Then define

df,g) = p,&EF) e H

We call d(f,g) the "difference class" between f and g.

Lemma 11.7. If fand g are concordant, d(f.g)= 0.

Proof. Let F be a homotopy of f and g and G a concordance. Then
F =G (rel 8(M XI)=M X8I). Therefore alF) = a(G) = 0.

Lemma 11.8. If h:M—> E? s an embedding, then

dlf, g) + d(g,b) = d(f,h).



Proof, Let F:f =g, Let G:g =@ h. Define H:f h by

F(x, 2t)
H(x,t) =
kG(x; 2t-1)

Then it is not hard to see that a(H) = &(F) + &G).

Remark. Say f: M® — Q9 is a proper P. L. map in proper general position

and 2m-q = 0. Then o(f) is defined, since 2(m-1) - (q-1) = -1, and
a(f) e I—IO(M;ZZ ). However, it is clear from the definition that

E fo(d) = 0 (mod 2), M is triangulated with f simplicial. Therefore we

o€ SZf

may view &(f) ¢ H (M;2). Similarly, if f, g MT — E1

are embeddings

M =g and 2m-q+1 =0, d(f,g) e ﬁO(M; Zz). Note that this is consistent
2

with the fact that M connected implies that M can be embedded in E m

+ . :
and any two embeddings of M in Ezm ! are isotopic,

3. Obstruction to Isotopy of Embeddings of a Manifold in Euclidean Space.

Suppose fO: M™? —» E? is an embedding, M compact, M =f4. Then

if g M —> E? is an embedding, d4(f ,g) (M; Z

o € HZm-q+1 depends only

5)
upon the isotopy class of g. For d(fo, f) = d(fo, g) + d(g,f), and if g and {
are isotopic, d(g,f) = 0. Then g—> d(fo, g) defines a map of isotopy

. m q . .
classes of embeddings of M~ into E* into HZm—q+1(M’ZZ)'

Theorem 11.9. Let Mm be a k-connected closed manifold, k< m-4.

Let f :M—> 2P K P L. embedding. Then g —> d(fo, g) defines a

map of isotopy classes of embeddings onto Hk+1(M; ZZ),
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Then we use this

special case to prove the general result.

Let S and Bk
j and k respectively.

Lemma 411.40.

with s> 3. Then there exists a level
F.s x B® x 1 —> B2%*!

(1) F_= £

(2) F, is a P.L. embedding

1
(3) Ft]SOXBBS = FO‘SOXSBS,
and

(4) a(F) e FIO(SO x B®; Z,)

0
Proof. Write S X B° = B, B
> BZs-f-:l

g:B1

embedding keeping the boundary fixed.

Let £:5° x BS —> B

denote a P. L. sphere and a P. L. ball of dimension

2st+1

preserving P. L. map

in general position such that

for all tel

is non~-zero

5 By general position, any map

- fBZ with g] 8B1 = f| 8B1 is homotopic to a P.L.

Homotopy classes of such maps

+
are determined by elements of 'n-s(st 1 - fBZ) = Z. Choose g so that
) 2st+1 )

gB1b' fB1 determine a generator of 'rrS(B - fBz). Define
F:(B,w B,)X1—> B2t x4 by

(a) F =f

o
(b) FilB1 =g , FilBZ= f

(c) Ft[(aBi\} 8B2) = flaBiuz 5B

5 for all te I.

be a proper P.L. embedding
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Now extend conically on each ball.

/——’/j\

/
v
s

\]

Then &(F) = linking number of F3(B, X 1) and F 3B, XI) in B(BZS+1 X 1)

1 2

reduced mod 2, which is one by construction.

Let M be a regular neighborhood of an r-sphere, dim M = r+s. Let

+2s+
f:M—> BT 8 ! be a P. L. embedding with s2 3. Then there is a level
+
preserving P.L. map F:MXI—> Br+Zs ! X I such that
(1) F =f
o

(2) F, is an embedding
(3) Ft|8M= f|dM forall tel

(4) AF)#0 in I—Ir(M; zz) = Zz.

Proof. The proof is by induction on r, keeping s fixed. When r =20

this is simply Lemma 41.10,

The inductive step: Let K T L triangulate STC M with K full in L.

Let N be the derived neighborhood of K in L. Then M = N,
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ol

Let ¢ be an r-simplex of K. Let ¢ be the dual cell of ¢ in K.

Notice that
(1) o is an s-ball properly embedded in N;j
(2) N n star(c,K) is a regular neighborhood of ¢ in N meeting

dN regularly;

—_— ’
(3) Nn star(c,K) n N - star(c, K) is a derived neighborhood of ¢ in

o.link(c, K), and so is P.L. homeomorphic to s¥1xB®,

(1) and (3) are clear enough. To show (2): Let TN be the simplexes

of ¢ in order of decreasing dimension. Then N n ’o\'i;ilink(a, K)\

N~ ?J":ilink(c)K) by an elementary polyhedral collapse. Similarly,

L4

N n c?-rilink(c, K)\ N n 3'-’ri1ink(0', K) by an elementary (simplicial) collapse.

Let h:N—>M be a P.L. homeomorphism. Let D =ho .

rt+2s+1 _

fD A 8B = 8D, Now (BY25%%

fD) is an unknotted ball pair, so there

).-

r+2s+1 r+2s+1

is an s*t1 ball E in B with 8E = fD u (E n 9B

By general position we may assume that dim(E N £(M)) < (r+s) + (s+1) -

(r+2s+1) = 0. So £-1E =Duv X. X = a finite number of points. M is con-

nected, so there is a polyhedron D' with D v X C D' \ D, dim(D'-D) < 1.
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+2s+1
We can assume D'-D C Int M. Now choose E' in Br s with

+25+
E¢ fD'C E'\E, dim(E'-E)<2, E'-EC Int pries 1. By general

position we may assume E'n fM = fD'. Now triangulate with D' E'

as subcomplexes and f simplicial. Let N1 = 2nd derived neighbor-

+2s+1
hood of D' in M and N2 = 2nd derived neighborhood of E' in B* 2s .

r+2s+1
= ' = = = :
Then put U1 Ni M , U2 NZ'\BB » V3 FrMN’l’VZ FrNZ, g
r+2s+1 ‘
= - U.. T V., W P. L,
], and wZ B Int U, hen U,,V,, W, are

r+2s+1

W = -
, = clloM-U,

(r+2s)-balls, Nz,cl[B are r+2s+1 balls. N,, being a regular

N T

N
neighborhood of D in M is an (r+s)-ball and, from the above remarks on

bid -
o etc., V1 =~ st 1 x B, N1 and cl{M-N) are (r+s)-balls.

By induction, there is a level preserving P. L. map IE":V1 XI—> VZX I
with

t - *
F' = f|V, XI,
Fi' = a P, L. embedding ,

3) Ft'|8V1><I=f|8V1><I , forall tel,

Y 1 i . =
4) 2(F") # 0 in Hr_i(vixLzz) z, .
+2s+
Define F:M X[ —> BY 2s 1><I as follows: put
F o=f,
o

Ft[8M=f|8M for all tel,
F1|V1XI=F1'

Extend F, over

1
N, X 1 >N, X 1

—_— +

1\/1-1\11><1——><:1[Br+zs 1-N2]><1



by conical extension. Then SZ(F) =~ suspension of SZ(F'). Moreover,

the linking numbers correspond and @(F) = suspension of @F!')

# 0 in Hr(M;ZZ).

Proof of Theorem 11.9. M is a compact k-connected closed manifold.

k<m-4, f :M—> Ezm-k is a P.L. embedding. Let £ e H , (M;Z,).
o k+1 2
. . okt
Let me m ,,(M) be an element representing £ . Let i:S —> M be

k+1
a P.L. embedding representing @ [which exists by embedding Theorem 8.1).

2m-k

+ ——
Now fOiSk 1 is unknotted in E , so bounds a k+2 disc, D say, in

EZm—k. By general position assume En fo(M) has dimension <

(k+2)+m - (2m-k) = 2k-m+2 £ k-2. By the familiar argument used for

example in proving the embedding theorems, we define inductively sets

i

k“, D.\0, f D =C,uX,_,
1 o 1 1 1

Zm-k

C.CM DCE , X, C M with Ci\iS

dim Xi < dim Xi—i . Eventually, for i= R say, XR is empty.
Now triangulatewith fo simplicial, Ck and Dk as subcomplexes, and

let N2 = 2nd derived neighborhood of Dk in Ezm_k- Let N,l = f0-1N2’

2m-k %

a 2nd derived neighborhood of Ck in M. Now let Ft MXI—>E I

F 1is in general position, ¥, is an

be such that F = fo X 1 outside N 1

1’

embedding, fo = f, F(N1 XI)C N

element of Hk+1(N1 X1;Z

s = m-(k+1) > 3, r + 2s+1 = 2m-1.) But clearly, &F) = J*E(FlNi X 1),

5 X I, and a(F ]N1 X I) is the non-zero

2). (in the notation of Lemma 11.1, r = k+1,

where J:N1 XI—> MXTI is inclusion; in fact, both elements are repre-

. - . -
sented by the same chain. But j, Hk+1(N1 X I; ZZ) P{k+1(1\/D<I) maps



-216-

the non-zero element onto £. So d(F'l’ fo) = £. Thus we have found

a new embedding having the required "difference class" from fo

4, Other Results.

In this section we outline some more results that can be proven about

obstruction to isotopy of embeddings.

I) Suppose M™ is a k-connected compact closed P, L.. manifold,

2m-k
k £ m-4, and suppose m-k is even. Suppose fO:Mm — E“M"" i5 an

embedding. Then the correspondence between isotopy classes of em-

beddings of M in g2m-k and (M; Z_) given in section 3 is also
g +1 2’ 8

one-to-one.
II) Consider maps of an orientable closed manifold M™ in a manifold
Qq. Then one can develop an obstruction theory analogous to the above,

but with coefficients in Z, provided g-m is odd. Then if M is orientable,

k-connected and closed and fO: M—> EZm-k is an embedding, one gets

2m-k

a map from isotopy classes of embeddings of M in E to H M; Z).

k+'1(
For k< m-4, this map is one-to-one and onto.

III) Suppose f:M —> Q is in general position. Let (Ef = mapping
(MXI)u Q
{(x,0) ~ (x)}

o' be such that fe = fo', o' 7‘ o, and let ¢f((r) = linking number (mod 2) of

cylinder of f = If o is a (2m-q)-simplex of SZf’ let

f(link(o; M) and f(link(¢'; M)) in link(fo;Q). Then let

C(f) = z ¢f(cr)[cr>< I] ¢ C*(Cf) X ZZ , where [0 X I] denotes the chain one
o



obtains from the usual triangulation of ¢ X I (or denotes a chain in

prismatic homology theory). Then 9C(f) = C(f) e C,(M X 0). So C(f)

represents A(f) € H (C_; M; ZZ) , and 9A(f) = off) € (M).

H
2m-qg+1’ f 2m-g

Suppose F:M XI—> QX1 is a homotopy of f and g. Then the
inclusions (Cf;'M) —_— (CF; M X I) and (Cg; M) —> ((EF; M X 1) are
homotopy equivalences. So F induces an isomorphism

EA(f) = A(g).  So A(f)

. . . —_—
F . H (c M) Zz) 2)‘ sk

C ;M;Z
* T2m-q+l £ (Cgs M

HZm-q+1
depends on the homotopy class of f, In particular, if f is homotopic to an
embedding, A(f) = 0.

If 6M=08Q=¢ , q-m=>3, 2m-qg>1, wi((Ef;M) =0 for i< 2m-q,
-rri(M) =0 for i<3m-2q +2, and g-m is even, then A(f) = 0 implies
f is homotopic to an embedding. If g-m is odd, then there is an analogous.
theory over Z, and the analogous result is true.

If F is a homotopy of f and g, fixed on the boundary, say, we can
use A(F) to measure the obstruction to getting an isotopy. In general,

however, A(F) depends not only upon f and g but also upon the choice

of F,.



-218-

Chapter XII: Embedding Up to Homotopy Type

1. Introduction.

Theorem (Browder, Sullivan, Cassen): If f: M — Q% is a homo-

topy equivalence (M compact), q-m > 3, M = @, and if i*:-1T1(8Q) —> 7,(Q)

1
is an isomorphism, then f is homotopic to an embedding.
k . . . m
Corollary. Let K be a finite simplicial complex, M a closed
P. L. manifold, Q% a P.L. manifold without boundary, Suppose g-m > 3,
g-k >3, §:M—> K is a homotopy equivalence , and the following diagram

(of continuous maps) is homotopy commutative:

Then f is homotopic to an embedding.

Proof. Let N be a regular neighborhood of K in Q. By general
position, -rr,l(N;N-K) =0 for i< 2. The generalized annulus theorem
implies that N-K = 9N X [0, ©], and so N-K has 8N as a deformation

retract. Therefore vi(aN) —> 7, (N) 1is an isomorphism. @:M—> N

1

is a homotopy equivalence, as N\K. Hence the theorem applies to §.
In this chapter we are going to find a condition on f: M —> Q which

implies the existence of a homotopy commutative diagram as in the

corollary.
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Definition. Let f:X —> Y be a continuous map of topological spaces.

(XX I)VvY

{(x,0) ~£(x)}
identifying x ¢ X with (x,1). Then define wri(f) = —rri(Cf; X).

Let €, = mapping cylinder of =

¢ Identify X C Cf by

Theorem 12.1: Let f:Kk——> Qq be continuous, K a finite simplicial

complex, 08Q=§, k< g-3. Suppose “rri(f) =0 for i£2k-q+1. Then
there is a homotopy commutative diagram in which XK' 1is a finite simplicial

complex, # a (simple) homotopy equivalence, and dim K'< ke

M\,

K1

2. Lemma on Homotopy Groups of a Triad,

Lemma 12.3. Let Kkg_ U C_me, K a simplicial complex, U open,

M a manifold, 8M = §. Then if 'rri(M-K;U—K) =0 for i<r, then
~n~i(M; M-K;U) =0 for i< rtm-k-1.

(Compare Blakers & Massey, Homotopy Groups of a Triad, Annals of Math,

55, (1953). Note that -n'i(U; U-K) = 0 for i<m-k-1, by general position.)

Proof. Let ¢ 'rri(M; M-K; U), i £ rtm-k-1. Let
f:(B’Fi;FZ) —> (M, M-K, U) represent &L , where B = i-ball, F‘1 and FZ
a i-1)-bal F, . =9 r o = = i -
re (i-1)-balls, L~ FZ B, 1 FZ 6F1 8F2. Since M-K and U

are open, we may assume, after a small homotopy if necessary, that f is

P.L. non-degenerate and f(B) is in general position with respect to K.



Let X = f—1(K). Then XN F1 = ¢ and dim X < itk-m. For

engulfing in a ball, codimension hypotheses are not necessary; so there

a polyhedron CC B with X & C\Cn FZ’ dim C < itk-m+1 < r. Let P

1K=;zf and C - f_1U(_' Int \P. Let

be a polyhedron in C with PN £ C

P0 = FrCP. So fPO C U. Now (M-K,U-K) is r-connected and dim P < r,

so there is a homotopy of P, in M-K, fixed on PO carrying P into U-K.

This extends to a homotopy of B, F ,F2 —> M, M-K,U carrying f onto

1

f' where

(1) () 'k ="k,

(2) £(C) CU.
Let R be a second derived neighborhood of FZ J C in B with f'(R) 7 U.
qu C\‘]E"2 . So R isani-ballin B, Rn 8B 1is a face. So there is a

strong def ormation retraction B:B—> B-R. f{'= f"?. : B, Fi’ FZ —> M, M-K,

and f'B(B) & M-K. So f'B represents zero in -n'i(M; M-K; U-K).

Lemma 12.4, Say Kkg Mm, k £ m-3, K a finite complex, M

a manifold. Let N be a regular neighborhood of K in M, Say 'rri(M,K) =0,
i< r. Then 'n'i(M,N,N—K) =0 if i< rtm-k-1.

Proof. The following sequence is exact:

'rri(M-K;N-K) > 'n'i(M,N) >'rri_1(M-K; N-K)
N

'rri(M, K)

> 7 (M; M-K; N)
1

So (M;M-K;N) i-connected, i< r+1 => (M-K,N-K) (i-1)-connected =>

(N, M-K,N) is (i-1)*m-k-1 > i+{ connected. So by induction, the result
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follows. (Observe that in applying 12.3 we can replace N by N because

N—> N is a homotopy equivalence. )

3. Proof of Theorem 12.1.

Let f;Xk —_— Qq , q>kt+3, 0Q =0, "n'i(f) =0 for iXL 2k-qt1, X a finite
complex. Then we want to find X' < Q, a subpolyhedron, dim X'< dim X,
and a homotopy equivalence @:X —> X' such that g:X —> Q and
f: X —> Q are homotopic.

We proceed by induction. Let {Ai} = simplices of K, |K| = X, in order
of increasing dimension. Let Ki = {Aj | j <i}, a subcomplex. Then weuse
the following inductive statement: f is homotopic to fi:K —> Q, where
f:'(Ki) C Li CQ, Li a subpolyhedron, dim Li <k, and fi]Ki:Ki —_ Li is
a homotopy equivalence.

When i= 0, KO = a point, and there is nothing to prove. So assume fi

has been constructed, and let A = Ai Let N be a regular neighborhood

+1°

of Li in Q. Let r = dim Ai . Then Ki contains the (r-1)-skeleton of K,
Therefore 1rJ,(K; Ki) =0 for j< r-1, by the cellular approximation theorem
(cf Spanier, Alg. Topology, p.404).

Let C = mapping cylinder of fi . Then
> 7 (C,K,)—> 7.(C,K
{(C.K) —> (G, K)

il )1

'trj(Q, Li) 'rrj(fi)

0

E— 'rrj(K, Ki) > T K, Ki) is exact.

j1!
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So '\TJ.(Q, Li) =0 for i< min(2k-q+1,r-1). If N is a regular neighborhood
of Li in Q, we have wj(Q,N,N-Li) =0 for j< min[r+q-k-2,k]. So

wr(Q-Li,N-Li) —_ vr(Q, N) is onto. ON is a strong deformation retract

of N-Li , SO vr(Q-N, aN) > vr(Q, N) is onto. Furthermore, from the

exact sequence of the triad,

—> 7.(Q-L,,N-L,) —— = (Q,N) ——> 7 (Q,N,N-L,) —%— ... |
J 1 1 ] ] 1

'n'j(Q-Li,N-Li) = 0 whenever j< min(2k-q+1,r-1) and j+1 < min(r+q-k-2,k),

So, in particular, whenever j< 2r-2+41. Let A = Ai+1 and choose

g: A, 8A —> Q-N , 8N such that § = fi]A:A, 9A —> Q,N, By the embedd-
ing theorem 8.2, , we may assume { to be an embedding. By the homotop
extension property fi = Ut K—> Q where qJ[A = @A, qJIKi 2 filKi: Ki —> N,
Then L]J] Ki U A:Ki UA—>NuU@A isa homotopy equivalence. Now N\SLi ,

so N\LiuT where FJANN C T, dim T¢ k. So NU;JA\LiuTung:LiH

say. If a:NugA—> L, is a corresponding deformation retraction
i+

1

define f, = aff and using the homotopy extension property extend

i+1 l Ki—i-'l

£i+1 over the whole of K with fi+1 >~ f,

This completes the inductive step.
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Handle-Body Theory and the s-Cobordism Theorem

Introduction.

A cobordism is a manifold W with boundary the disjoint union
oW = 8+W J B_W. An h-cobordism W satisfies the further requirements
8+W CW and 8 W I W are homotopy equivalences.

The method of Smale consists of representing a cobordism as the
union of handles and sliding these handles around to obtain a product
structure on certain h-cobordisms of dimension > 6. That is, for such
an h-cobor‘dism W, there is a P. L. homeomoprphism of W onto 8 W X1,
written W =2 38 W X1,

In this process an obstruction called torsion occurs naturally. An
h-cobordism with no torsion is called an s-cobordism. Alternatively,
an s-cobordism is defined as a cobordism satisfying the requirements:

3 ,WCW and 8 W T W are simple homotopy equivalences.

A simple definition of simple homotopy equivalence is given as the
equivalence relation on compact polyhedra generated by collapsing (K\L)
and by P, L. equivalence (K = L). For example, the finite sequence
Ki\KZ /K3 &~ K4 defines a simple homotopy equivalence of ]':(1 and K4 .
With any such sequence we can associate a sequence of maps of one term

into the next, the composition map is well-defined up to homotopy and is

called a simple homotopy equivalence.




The object of these lectures is to obtain the following

Theorem: If W is an s-cobordism, dim W > 6, then W = 3_W X I,

1. Suppose w" is given and suppose i: aB" x B7 7T

—_— 8+W is a
PL embedding. Let W'=W ul BY x Bn~r, then we say W' is got by
attaching an r-handle to W. W' is still regarded as a cobordism with

09 W'=29 W, 8+W' = 0W' - 38 W'. We will frequently be attaching several

handles simultaneously. Suppose BT x BT — 8+W are

11’12""’11(

PL embeddings with disjoint images. Then we can stick all the handles

corresponding to ii’ i PIRER ik on at once, say
- ) rXBn—r‘ rXBn-r“ . BI"XBn—r
w w \_i1B1 1 Jiz B2 RS ...L_:lk Kk Kk )

and we say W' is obtained from W by attaching r-handles.
A standard handle body decomposition of W 1is a sequence

where W0 =~ 9 W X I, we insist that Wi is

+4

WOC Wic. LWnH

obtained from Wi by attaching i-handles and Wn 2 W. The main ques-

+1
tion of the theory may be stated: what handle body decompositions give
the same manifold?
Lemma 1. Every cobordism W has a standard decomposition.
Proof. Let K be a simplicial complex triangulating W with KO
a subcomplex triangulating 8 W. Let L = Ky, L, =K u ((i-1)-skeleton
of K) and write Wi = N(Li‘ , K"), the simplicial neighborhood of the 2nd

derived Lfl' of Li in the 2nd derived K" of K.
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Now W0 is a regular neighborhood of 8 _ W in W (Chapter II)

but by the collar neighborhood theorem (Chapter I) there is

a regular neighborhood of 8 W in W, PL homeomorphic to 0 WXI and
so by the uniqueness of regular neighbourhoods, Wo =8 WXI. The
proof will be completed after establishing the following assertions.,
Assertion; Wi = U St (6\', K") where o = barycentre of o. (1)

cge L.,
i

Let A be an i-simplex of K, then

St(A, K" NW, = §i(A,X") N N(A,K") . 2)

Let L = { simplexes of K' whose vertices are barycentres of simplexes

having A as a face} = {%1é2érl A< B1 < B2< . < Br }. Alternatively,

we can write Bi = ACi with Ci ¢ link(A, K), then the map Bi — éi induces

a PL homeomorphism L > link(A, K) called pseudo-radial projection.
We can make the same construction again; let p: link(g, K") —> AL

A~ A ~
be the pseudo-radial projection defined by AC —> C for C e link(A,K') (2)

A'L

[link(A, K") A W]

A
link(A, K")

(2)
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The fact that p sends link(z&, K") (\Wi —> derived neighborhood of A'
in A'L follows from standard considerations (cf Chapter 1I). Since Al
is full in A'L, p[link(A,K") mWi] is a regular neighborhood if A'in A'L
(see Chapter II).

The remainder of the proof divides into two cases.
Case 1. A ¢ 8+W.

In this case, L = link(A, K') is a PL sphere so A is an unknotted
(i-1)-sphere in the (n-1)-sphere AL. Thus by uniqueness of regular
neighborhoods there is a PLL homeomorphism o : AL —> E)(Bi X Bn-i),
sending A—> B(Bi X 0) and sending p[link(;&, K")n Wi] — E)Bi X Bn-i.
Now extend ®« conically to give a PL homeomorphism from S—t‘a_l_r(./,\%, K") —>
B! x B®™*. Thus attaching EE—I'—(A,K") to Wi is attaching an i-handle.
Case 2. A« 8+W.

Here L is a ball, thus AL is a ball and A o B(AL) as an unknotted
(i-1)-sphere.

i

n—
L 0B =F v
et 1 F2 where }3‘1,]?2

interiors, and observe that (B’ X F'l) o (8B x Bn-l) = c1[8(B* x B™ ™Y -

are (n-i-1)-balls with disjoint

(B1 X FZ)] is an (n-1)-ball with 9B X % as an unknotted (i-1)-sphere in

the boundary. Thus there exists a PL homeomorphism

a: AL —> (B1 X Fi) w aB" x Bn_l) sending A —> 3B" X *, and sending a de-

rived neighborhood of A —> B x B" 7', (* is an interior point of Fi.)
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Y E) U (8B X B"™!) extends conically to

—

Then ap:link(A, K") —> (B
a PL homeomorphism

h:;:;'(/}x, K") ——>y-[(Bi X F) (aBi X Bn'i)]j ~ gl x gt ,
where the last PL homeomorphism extends the identity on the base of the

cone. Thus we have again attached an L-handle.

2. We now consider methods of altering the standard handlebody

*

decomposition so as to eliminate handles. The first crucial way of modi-
fying a handlebody decomposition uses the boundary collar to slide handles

around as in the following lemma.

Lemma 2.1. If f,g: 8" XB" " —> 8 W are PL ambient isotopic

imbeddings, then W ; (B'X B" ™) = W Ug (B' x B" ™Y,

Proof. Let ¢ be a boundary collar of W (restricted to 8+W),
That is, c: B+W XI—>W with c(x,0)=x forall x¢€ 3+W. Let

H: 8+W XI— 8+W X1 be a PL ambient isotopy with H _f = g, Define

{

a:W—>W by ac(x,t) = c(H, x,t) and by « = id. outside Im c. Then

1-t

o extends to a PL homeomorphism

W .. (B'XB

! " — W U, (Bl x B J

We will now look at homotopy classes, If f: 9B* x B" ! — 8+W is an
imbedding, then f(aB1 X 0) C 8+W is called the a-sphere of this handle and
is said to represent the element ééwi_1(8+W) if by homotoping a point on

the a-sphere to the base point in 8+W we obtain a map representing §£.

€ is determined to within the action of 'rri(a_l_W) on m 1(8+W). If

. S

- 1= 2, this action of 7, onw, is an inner automorphism.

1 1
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We introduce the followin g notation. If £ = wi_1(8+W) and wen1(8+W)
then £° is the element of wi_1(8+W) induced by carrying the base point

around the path w. If i= 2, .‘g'w = w-igw.

3. We will now look at the following main construction. If we have
two handles attached to a cobordism, both attached to the same level,

then we can slide one handle over the other.

Theorem 3.1 (Handle addition theorem): Let 8+W be connected

and let W'=W L;fhir ugh; where hirgBrXBn'r, i=1,2 and f,g
disjoint embeddings aB" x BT — 8+W. Suppose f represents £,

~ H [4 - - =
g represents 7 in wi_1(8+W) and 2 £r ¢ n-3. Let w.w1(8+W).

Then W' W __h'  h, with f,g' disjoint imbeddings of

£ Vg2
BT X B""F in 8+W and g' representing v % £€“ with prescribed sign.
[If i=2 we can choose g' to represent either w-igw or w—iﬁ_iw.]

Proof. Choose x ¢ 9B" T andlet D=B' Xx ~ h. Let c bea

boundary collar of 3 W - #(B* x B""Y). ¢ is an imbedding of
£(0B" X aBs) XI— 8+W. Let c be chosen so that Im(c) h2 = ¢ and
let D'= D o c[(BBi X x)X1]=D _c[0D X IJ.

For convenience in notation write SZaL = g(aBr X 0). Since
£(8B" X B" ")\ £(9B” X 0) of codimension 3 in 8 W, 8 W - hir rW is
still connected. Let P be a path in 8+W from 9D' to SZa with

P A hjr = §. By general position, P can be chosen as an embedded path

with 150D=15/“Sza=¢.
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Let N be a 2"9-derived neighborhood of P in 9,W, so that N
is an (n-1)-ball and N 7 3D',N™ Sza are both properly embedded
(r-1)-balls (3). We now apply Irwin's embedding theorem (Chapter 8)
to embed a cylinder Sr-Z X1 in N joining the boundaries of the two
(r-1)-discs. Since we are embedding ST X1 in an (n-1)-ball, Irwin's
connectivity conditions reduce to the condition that Sr-Z X1 be
2(r-1)-(n-1) connected, that is, r-2>2r-n-1 or n-15>r. The condition is

satisfied, so let i: Sr"2 X I~—> N be an embedding mapping the boundary

onto ON " 8D' and ON N sza,

Let g:0B" X 0—> 8, W send 8B" X0 onto 5 - (S, 1 N)
-2 R . ! r
i(s XI) u(dD' - N) (4). Let W, =W __h; . Claim g',g 9B X0

1 f1

are ambient isotopic in 8+Wi.




First subdivide further with N a subcomplex, Let N' = 2nd derived

neighborhood of D' ~ D' NInt N in I W, - Int N, N' is an (n - 1) ball
meeting 3N in an (n - 2) ball, therefore N U N' is an (n - i) ball. g¢' and

g| 3B" x 0 agree outside NUN', In (N U N') we have two properly embedded
balls which agree on the boyndary, By Zeeman's "Unknotting balls" (Chap-
ter 5), g' is isotopic to g in (N U N'), keeping the boundary fixed.

Any ambient isotopy ofa+wl throwing g| 3B x 0 onto g' (E)Br x 0)
gives an extension g" : 3" x 8" —'8+Wl of g' , ambient isotopic to g in
a+wl, By uniqueness of regular neighborhoods there exists an ambient
isotopy of 3+W1 sy fixedong' (E:Br X 0) and throwing
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g'(aBr X Bn-r) onto a 2? derived neighborhood of g'(BBr X 0). Thus we

r

can arrange for g'(aBr x B""F) to be disjoint from h'.

We have two important choices
(1) The path P

(2) The orientations of the homeomorphisms

sT"% % 0 —>8N ~ D'

sT"%x ¢ aN " sza

w
Then g' represents an element of the form v * & where P determines

w and the orientations determine the sign.

4. We now consider the problem of cancelling handles. We first

prove a simplifying lemma.

n n
1ALM

Lemma 4.1, Suppose M >

are compact PL manifolds,

\ ~J
M,\M,. Then M, =M.

Proof. (Using regular neighborhood theory): If c is a boundary

collar of M,, then M Mi\ Mo = cl[M1 - Imc] and hence M,,M._ are

2

t’ 1 2
both regular neighborhoods of Mo in MZ' Thus M1 = MZ'
+
Definition. Let M™,N" = Q™™™ be PL manifolds. We say M

and N are transverse at x if there exists a closed neighborhood U of x

in Q and a PL homeomorphism U, U "~ M, U 7~ N — B™ x Bn, B™ x 0,

n
0XB"', M and N are transverse if they are transverse at each point

of M~ N,



Note: If M,N are transverse at x,

e

star(x, Q), star(x, M), éntar(x, N) @B

X

n

B®, B™x0,0x B",

(Recall that the star of a point is well-defined up to PL homeomo rphism. )

Now suppose W' =W ufhir av;ghzr_*‘i
notation:
szaL = g3B™ ' x0) ¢ 8,(W - hir),
sP = oxaB™Fca (W .n )
1 + 1 ,
D=o0oxB "Ch®

Theorem 4. 2.

then W' & W,

(5)

We introduce the following

Proof. We shall prove W' (W and apply Lemma 4.1.

b
it Sa, S~ intersect transversally in a single point

X 0) by the

/

+ e " +1 -1 - +1
First note that BY T x B2 Tt (e x B™7T b (BT
+ -r- + -r- +1 -r-2

collapse BrixBnr1\8B1‘1><Bnr1‘\,Br x B°7F \

\ -T- i + -F=- +

\48Br+1XBnr1pBr+1XBl\q. \‘aBr1XBnr1JBr1XO
(6) / / / /
L Cin o\ e I, n-nr+]' <~z -nn-r-]‘ /Dr+1 ~v nY —~ wur 1. r\

/

(mr-"1 v n\

g, bl e
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Let W =WUfhr

1

Let U1

D-U
1

b ——
neighborhood of S -~ U in 8+W1- U = an (n-1)

1

Notice that U1 "~ D = star (%, D),

in Wl - U1

1
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a
and triangulate with S ,D as subcomplexes.

= star (X’Wl) and let N

1

= the 2nd barycentric derived of

Note N, ™ BWI- U = the 279 barycentric derived

M U - -
N. away from N1 dW-U; Nl\EBN1 (

1

1

N~ 8W,-0) = Fr

1

ball in ON_.

Now collapse

so U, n DD - U_ =link(x,D)

1

an (n-r-1) ball. Hence U1 a N1 = 2nd gerived neighborhood of U, ™ D - U

so U UvFr
T eEr

From the above remarks, Wl\' Wl—Nl\ W.-N_ -U

1

U

..Nl

1

T

1

1

1 1

= an derived neighborhood of a ball = an (n-1) ball. This ball is a face of Ul’

- U.

By transversality there exists a PL homeomorphism

U, un st Uns®

— BT x B™

r-1

,BT X 0,0X B

n-r-1

(U is the star of x).

Now 98U M N1 = 27 derived neighborhood of 38U M sP and b(3UN Nl)

is a regular neighborhood of 0 X aB""

assume b(3U N N ) = BT x 9"

so U\ (UN s u (Fr

We have now shown that by a sequence of collapses Wl\‘W1 -Nl—U

r+l1

leg(B

U) .

BW—N1

1

X 0)\4\"237'1"T'N~Tﬁ1

U _ (B
g

r-1

r-1

Also Br X B

+
:rl><

turbed during the sequence of collapses.

N ——
we can collapse B' ! X0 \ s*-s*NU so W

N O
19

borhood of D in W

1

so W

1

- N

1

- U

is a regular neighborhood of

1

D

o~

in 8(BT x B~

+
0) and BT

1

r-1

n—r-l\(

), so we can

BY x 0) (oB" x B"”

a
)
1S’

X 0 has been undis-~

+1

Since S®A U is a face of BT~ X 0

in W
1

W, -
1 h1

(B
1 ug

r+li

xo)\m.

and hr

T

W.

1

I |

is a regular neigh-

r—

1

)




The first application of Theorem 4. 2 will be in

/\// Sb

(7)

e

L2

removing the 0-handles.

Lemma 4.3. Let W1 =W\)hlouh20 u...luhpo and
sz = Wlu kll v kzl- U e kql . If (WZ,W) is 0-connected, then
WZ &~ W u(a number of 1-handles).

Proof . By induction on the number of 0-handles. The exact sequence
of the triple (WZ, Wl’ WO) shows that I-I1 (WZ’ Wl) 4 > HO(WIWO) is onto.

Thus for each pair of points %,y in two different components of W1 we can

find an explicit ! -chain having x-y as boundary. Thus there exists a 1 -hand}

kj say, with one endpoint in hp.
0

Note that a O-handle has the form B X B" so the b-sphere of a 0-handl

. . b n . 1 n-

is the whole of its boundary S =0 X 8B". Similarly, for a l-hanlde B° X B

1

the a-sphere is a pain of points s* = 8B x 0, so an a-sphere of h1 always

0
meets the b-sphere of h transversely.

By Theorem 4.2, W_ = Wu(p-1) O-handles _ l-handles. This com-

2

pletes the inductive step.
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§5. We now want to deliberately add on an extra pair of handles for

cancellation.

Theorem 5.1. Suppose W is given with r < dim W-1 and U open

+
in 8 W. Then Wew=wWohTo h', where

1 2
(1) (hlu hz)ﬁwcu

b
(2) SZaL and S.  meet transversely in one point.

1
Proof. In v.Br, let C,l_ = (2w +(1-N)x: xe B” , X< lZ}
r 1
C2 = {)\v+(1-)\)x: xe¢e B, xz-z- }
Observe that vBT X Bn—r-l is an n~ ball and v(8Br) X Bn-r-l is a face,
say F., Let i:F —>U bean embedding, then W & W LJi (VBr X Bn-r—l).
Now C1 ~ B X I, soput hy = Cl X Bn—r-l' Then
B b N W= BT x 1x BT, aBTxIx B! Thus h) is an r-handle,
— ol o Tt . _ n-r-1

C2=VB =B , and if hZ—CZXB

h, O (W o hl) = 8C, X gP- Tl , so h, isan (r+1) handle attached to W U h,.




§6. Transversality and intersections

Lemma 6.1. Suppose Kk, Lﬁ are compact combinatorial manifolds in

+ ‘
<t and suppose given oce K, Te¢ L, dim (¢ n 7) < dim o + dim 7= k+4

(i. e., simplexes meet at most in isolated points in their interior). Then, K, L
meet transversely in a finite number of points.
Proof. This is clear from general position considerations .

+
Corollary 1. If B m’ B" c BT are properly embedded balls with

+
B B nap™ P = #, then there exists an arbitrarily small PL homeomorphi

+ +
h: B™ " —= B™™ fixed on the boundary with Bm, hB" transverse.

Proof. Suppose Bm+n =4 Irn+n and triangulate Bm, B" so they are
linearly embedded in 1™ Now shift the vertices by a small amount into
general position (Chapter 4).

Corollary 2. If Mn, N Qm+n are manifolds without boundary and
M compact, then there is an arbitrarily small PL homeomorphism h: Q —> Q
with M, hN transverse,

Proof. By general position assume M N N is a finite set of points.

Now apply Corollary 1 in disjoint neighborhoods of these points.

§7. Geometric and algebraic intersections.

T T , r+l r+l
= ) = W !
Let W1 Wuhlu...\_, hp’WZ Wl kl U oee s U kq and
suppose 1r1(W) = Trl(WZ)' Let W C ~2 be the universal covers of W, W2
~ _1 ~
and let W1= P Wl where p: W2 —> WZ is the natural projection map of the

covering space.




Now for each handle hi choose a lift ’;i of hi and for each j

a lift Téj of kj' Given xe -rrl(W) we regard x as a transformation of the

covering space and write xzi as the handle obtained by applying the trans-

r~

formation to hi chosen above,.
Let gi generate Hr(hi’ hi ~ W), £ be the corresponding generator of

H (h,h, N W. Simi i . H AW
r( h, b \ W). Similarly, define n; asa generator of r-’rl(kj’kj ) and

write Tﬁ’j as the corresponding generator of H l(kj’?{j N \’7‘:’) Let A be

r+

the group ring of 'rrl(W Now El' . §p generate Hr( V‘VI,VV) as a free A

2)'
module since every handle in the covering is got by a translation of one of

~

the ’gi's. Similarly 7]1. nq generate H (\7&'/' , VV) as a free A module

r+l 2

and we obtain a matrix relating these generators from the boundary operator 3,

writing ~
3(m.) = > ry Es with X € A

We will now see how these elements of the group ring are tied up with

the intersections of the a~spheres and the b-spheres. Let

a
= a- -
Sj a-sphere of kj 8+W1
b
= b~ W
Si b-sphere of h,1 C 8+
b -
Di = usual disc spanning Si (0 X BT - hi)'
. a b . . . ~a b
Notice S ,S  bound discs in W2 so we have also chosen lifts Sj ’Si
~ ~J b
in W D i .
in 5 and . spanning Si

b
The first thing to observe is that Sja, S.1 transverse in 8+W implies

a

ij R yS,lb are transverse in E?‘_VNV1 for all x,y e ™ (WZ). This is true since

the condition of transversality is local and p is a local homeomorphism.



~
Further, W, is orientable,so to each transverse intersection we may give

2

a sign.

(9)

N

~b
S,

N

s 5\\ s
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In general if M™ and N" are submanifolds of an

m+tn

orientable manifold Q which meet transversely

at a point x, there is a homeomorphism

h:U,UNM, UNN—> B™ x B®, B™ X 0, 0 X B”, where

U is a neighborhood of x in Q. Geometrically, we can }

choose h so UNM, UNN are mapped with the natural §

orientation and give intersection sign + 1 according as
whether U is mapped with correct orientation.

More precisely, in the diagram

H )——> H _(Q,Q-N)
m m
A
l k
H_(M, M- U[UimM])
i=1

R
k
EH Uf\Man\M) ,

m

i=1

[ 8

for each i the generator of Hm( Uif\ M, 8Ui(\ M) maps
onto 1+ the generator of Hm(Q, QtN) by the local pro-
duct structure, the sign 1 is precisely the sign of the
intersection.

We define the algebraic intersection of gja with
xgib by taking the signed intersections and adding.

Then the algebraic intersection is the coefficient of x

in N\,
ji
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. :
Lemma 7.1. If Bp, B B> are properly embedded balls, p,q2>1

and (Bp+q, BY unknotted with BP, B meeting transversely at two points
with opposite sign, then 8Br is inessential in Bpulbq - Bq.

Proof. 9BY is homologous to zero in Bp+q - B4 [because aBP is
cobordant to two spheres each linking BY once in opposite directions] and
is therefore inessential since
(s*h) - 2.

+
x (BP9 8Y ru (BPTU.BY & H

p-1 p-1 p-1

Corollary. If p<p+g-3 and the above hypotheses hold, o4 spans
a p-disc BP properly PL embedded in Bp-‘-q - B4,
Proof. This is a direct application of Irwin's embedding theorem.
Note that 2p - (p+q)+1 < p-2, thus the connectivity condition on the image
space is satisfied.
r+l

Theorem 7.3. Let W, =W u h W= W, ok with 2 < r < n-4

and T (8+W) = q (W). Let Sa,Sb represent the a-sphere of k and the

1 1

b-sphere of h respectively, in 8+W Assume Sa,Sb meet transversely.

1
Na ~
Now lift to the universal cover and assume S , xS meet in two points Pl’ P2

with opposite sign (plus some more, possibly).

Then we can alter the attaching map of k by an isotopy to an attaching

a' . b .
map k' so that S (corresponding to k') is transverse to S  and meets it

. +
in two fewer points than s® and so that W2 = W1 o k' 1.

Proof. Let I‘I,TZ be paths in Sa,Sb from P1 to PZ. By general

position (r > 3, n-r-1 > 3) we can assume that I‘l, I‘Z are embedded and do

a b
not meet S M S except in their end points.




We now have to notice that I',I_ 1lift to paths in the universal

1’72
cover 8+\A’\J’1 having the same endpoints. In fact, by the choice of
~ ~h
Pl’PZ we can lift fl in Sa, FZ in S°. So, I‘lu FZ is inessential
in 8+W1 .

We will split the proof into two cases:

Casel. r>3. Let D beadiscin 9, W spanning I . I.. By

+1 1 2
general position, assume D is embedded (dim 8+W >5), D¢ s? = Pl
b
(dim 8, W, - dim 5% = n-1-r23), and similarly D* S" =T,
(dim 8+W1 - dim Sb = r 2> 3).

Let N be the 2nd derived neighborhood of D in 8+W, then N is
a ball with Fl s PZ properly embedded, meeting in two points with opposite
sign. By Corollary 7.2, we can shift N s off N~ Sb keeping
- N fixed.

8+Wl

Case 2. r = 2. Here, the spanning disc used in the previous argument

might hit Sb in a number of points.

. b
Notice that 3_*_W1 -S —-8+W1 - (h1 8+W1) (10)
But now, if (S)* is the a-sphere of h, 8 W -(©")* =38 W-(h 08 W)
+w + +
b, ay )
So, vl(3+W1 -S7) = 'rrl(8+W - (81Y°) = Trl(8+W) 'n'l(8+W1) where the

isomorphism is induced by inclusion.

Let I.,I. be as before, N. = 204 derived neighborhood of T

1’772 1 2
in E)+W1 with I“1 , TZ’ Sa, and Sb as subcomplexes. Let
_ . b
R - o~ 1 1 . t _ . =
Tl 1"l (Fl Nl)’ PI’PZ endpoints of Tl . F:?N1 (BN1 S7)

(n-2) sphere - (n-4) sphere and is therefore connected. So let I‘"Z be a




path in 8N, - (ale‘\ sb) from P/ to P). (11).

(10)

From the diagram (11) it is clear that Fl' u I'}, is homotopic in

8+W to I U T. and is therefore inessential in 8+W hence in

1 1 2 1’

b
9,W., - S by the previous isomorphism. Thus there is a disc D in

1
8+W1 - Int N1 - Sb spanning Tl' U TZ' . By general position we can
assume D is embedded, DN S*=L' and DNAN, =T,

Now let N2 be a 274 derived neighborhood of D in 8+W1 - Int Nl.

Since N1 meets NZ in a common face, N = le\ N2 is an (n-1) ball (12).

Notice that N NS?® is a regular neighborhood of I‘1 in S* and

b b b

NNS = N1 M S~ is a regular neighborhood of FZ in S°. For,
N, N s* = 274 gerived neighborhood of I’} in s?, N, N s = 204 derived
neighborhood of l'i’ in §% - N1 , so NN s is an r-ball. Similarly,
for NN Sb. b
b N
S
(1 1) /\/ P! (12) \f
1 -
. NZ
1 1
o ! N
T, 1
52 s®
N, 2 /[P
PI




a b
Using this construction we may manipulate S and S to get them to
intersect transversely in a single point, provided we know something

about their algebraic intersection.

+
Corollary 7.4. Let W; =W u h', WZ = WI\, k' 1, 1r1(8+W) = 'n-l(W)

and 2 < r<n-4. Suppose £ generates’ Hr(Wl,W), N generates Hr+1(w2’w)

Lk W) respectively,

and E ,:]‘ are lifts generating Hr((ﬁ,’}\; ~ VNV) and Hr .

+

If 8m = £ , then W, =W,

Proof. We have to look at how this algebraic condition ties up with

intersection numbers. We know 91 = E a_ X ¢ where the integer a_ is
XeT
. . Sa . =b . ~ 7 .
the intersection number of S~ with xS”. So if 9n=¢§, a_ = 0 if x # 1

and a = 1. So by repeated application of LLemma 7.3, observing, for example,

~ ~

a . . . .
that S~ meets xS in pairs of points with opposite intersection sign and

b
cancelling these pairs, it follows that W2 = W1 < (k') where s*' cuts S°!

transversely in a single point and cancelling the handle, W‘2 =~ W.

We now show how to cancel r handles by adding (r+l) and (r+2)
handles.

=W Oh™, W= W < kL ..._ k.,

L . 5.
emma 7.5 Suppose W 2 1 1 q

1

171(8+W) = ‘nfl(W), 2<r<n-4. If (WZ , W) is r-connected then
W2 ~ W _ (r+l) handles o an (r+2) handle.
Proof. . Sr o — S0OSh . .
roof. 3 Hr+l( WZ’ Wl) Hr( Wl , W) is onto and so we can write
9
~ ~ ~ ~r+l ~ r+l
= E DN - .
£ e i8 un where )\i ¢ A and n, generate Hr+l( ki ’ki ; Wl) ]

We will introduce a complementary pair of handles (14). The attaching spheres §
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of k1 kq do not cover 0 Wl’ therefore the attaching maps do not cover

81W1. So choose U Z 9 W1 with U disjoint from kl...kq. We may

attach a pair of trivially cancelling handles in U. Let

(14)
r+l T kr+1 1r+2

‘ +1
' /t S kq+1
)" S /\\ /\
/ ~:/l//h \ | ) y
U

kq+1 , £ 2 be the pair of complementary handles attached in U. So,
W, =W, 4. Let W'= W_ o eee ~ .
2 EWyw Uy e R yy) et Wy =W~k kgl
Kq+2 is null homotopic in WZ' . Thus under the boundary map
e, ~l ~ ~
: W —— —> 0.
o:H (W), W) H ( 1’ W), Mg+l 0

We will now apply the handle addition Theorem 3.1. Since the theorem
is stated in terms of homotopy classes, we must pass from the spherical
homology class :’1 to the corresponding homotopy class. Let

h: 171_(8+W~ )—>H (8 Wl) be the Hurewicz map. If the a-sphere of ki repre-

. . w
sents @ e T (6+W1) T (8+W1) (up to the indeterminate @ - oci) we

obtain from the follow.ing diagram

,ﬁz

(W, W)

/"
\ !

H

11'(8 Wl)—-—h————>H

/\
|_.

the relation jh a, = 87& . By the handle addition theorem we can choose

k! i - o= + .
) so that its a-sphere represents aq+1 aq+1 . )xia/i So

res
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: 1 - Y = 9 " + i 1N A =~ W 7.
Jh(aq+1) 9 nq+l [nq+1 = ini] £ We can now use 7.4 to cancel
1
- i wh = W_ v C e W_ = "o ]
the r-handle in > 1™ k1 w _ kq+l and hence > WZ £

W C (r+l1) handles _ an (r+2) handle.

The following handle rearrangement lemma is sometimes useful.

Lemma 7.6 . If W1= W'J‘hr, W2=W1\.ks, s < r, then

W, =W L k'° where k'> is disjoint from h’.

Proof. First of all, if s* = a-sphere of k and Sb = b-sphere of h,
dim $% + dim Sb = (s-1) + (n-r-1) £ n-2<n-1. By general position s* can

b
be moved off S by an ambient isotopy. Let Nl be a 289 derived neighbor-

hood of Sb in 8+W1 not meeting s? (15). There exists an ambient isotopy

of 8+W throwing N. onto a+wl " h which is also a regular neighborhood

1 1

of Sb in 8+W1. So S% is now disjoint from h.
S n-s ) ) a
If 2B X B — 8+W1 is the attaching map of k with S°~ h = {,

let N_ be a 279 derived neighborhood of S% in 3, W

> not meeting h.

1
There exists an ambient isotopy carrying f(8BS X Bn—s) onto NZ’ and now

the two handles are disjoint.

(15)

iAo e S B S
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Collecting all our results, we have
+ +1
Lemma 7.7. If W, =W . h° . ... k>, W, =W _ k' .. k7,
=emma L7 1 1 - p 2 s W a
'rrl(8+W) = 'n‘l(W), 2<r<n-4 and (WZ’W) is r-connected, then
W2 ~ W _ (r+l) handles ¢ (r+2) handles.
Proof. By induction on p. Let Wl' =W hlr:\, e L hi)-l' Now we

look at the exact sequence Tr(Wi’ W) — 'rrr(WZ, W) —> wrr(WZ, W'l) —> 0 and

conclude that vr(WZ, Wl') = 0. By 7.5, W2 = W'1 _ (r+l1) handles _ (r+2) handles.
By induction, W'1 _ (r+l) handles @ W _ (r+l) handles _(r+2) handles.

§8. We have now done all the geometry necessary to cancel r-handles,

T > 2. In this section we show how to cancel 1-handles.

Lemma 8.1. Let W1 =W _ hl, W2=W1:; klz;,- ~_k2, n> 5,

Trl(8+W) = 'n'l(W) and (W_,W) 1l-connected. Under these conditions

2’

W2 >~ W o 2-handles . 3-handle.

The proof will be very much like the case r > 2. Let P = B1X x C h',

Xe aBn_l. We can assume that P is disjoint from all 2-handles, since

we can move the attaching spheres off P by general position and use regular
neighborhood theory to move the 2-handles off P.

Since (WZ’W) l-connected, P is homotopic in W2 keeping endpoints
fixed to a path in 8+W. So there is a new path P' in 8+W - h' with
OP' = 8P and P J P' inessential in W2 (16 ). By general position we may

assume that P UP' is an embedded 1-sphere in 8+W1, which cuts the

b-sphere of h' transversely in a single point.
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(16) b

attaching sphere of
another 2-handle

Pl

We will now introduce k;‘l’ £ 3, a pair of complementary handles and

slide the attaching map of the 2-handle around to throw it onto P u P'. Let

Sa = attaching sphere of k , by construction (§5) Sa is inessential in 8+W

qtl A

So by Zeeman's unknotting theorem, P u P!, S* are ambient isotopic in
8+W2.
Thus W_=W ukz -k2 k'2 --1'3 here the attachin

u , =W, 1w Ry e Ry w aching
2
! i P ! 2. W
sphere of kq+1 is P_ P So we can cancel h and kq+1 , by 4.2 e can
cancel a whole lot of 1-handles by using this technique repeatedly. Collecting

the various preceding theorems we obtain

Theorem 8. 2. Let W be a connected cobordism, with (W, 8 W)

r-connected, r < n-3. Then W & (B_W X I) handles of index 2 r.

Proof. Choose a standard handle decomposition and apply various
lemmas above.

One of the important things about cobordism is that we can turn them
upside down. By this process, an r-handle becomes an (n~r) handle.

It W oW,  .... . W is a standard handle body decomposition,

0 1~ n+l
let W'=W o (a+w X 1) and identifying 3 W X 0 with 83 W, let 3 W'=293 W,
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0 W' = 8+W X 1. Notice that attaching an i-handle to Wi removes an

(n-i) handle from W' - Wi' That is, B X B™" is attached to Wi by

9B ' X B" ™' and so is attached to the complement by B'x 8B If

[ L. WL oW R A i
Wi w Wn-i+l , then 0 1~ ni] 82 standard handle body

decomposition. This enables us to state a stronger form of Theorem 8. 2.

Theorem 8.2'. If W isasin 8.2, 2<r<n-3 and (W, 8+W) is

(n-r-2) connected, then

W =9 WXI «r-handles o (r+1) handles.

Proof. Turning upside down we must cancel the handles of index

< n-r-2. This is possible by our lemmas provided n-r-2 < n-4, i.e., r2> 2.

r T rt+l r+l
N W =W _ e e =W, v e e S
OwW suppose 1 h1 » - hp , W2 1 kl w - kq
1r1(3+W) 'rrl(W) and 2< r<n-4. Let §ie Hr(Wl,W), m, € Hr+1( Z’Wl) be
generators chosen as before.
. "~ ~J —-> o~ ~o . )
Then the boundary 0: Hr+l(W2’ Wl) Hr(Wl , W) is represented by a

matrix M= (mij) where
Bni = z mij gj with rnij:./\.
J
First of all we know that!
(1) f w(W,,W)=0 forall i, then H, (VVZ,W) =0, Thus M has an

inverse as it represents an isomorphism between two free A~modules. In

particular, M is square, p = q.



(2) M is not completely determined by the handle body decomposition;

there is an element of choice in the orientations of the gi and in the choice
of lift §i —> Ei . M is determined by the handle body decomposition up to

left multiplication of a row or right multiplication of a column by elements

+ x where x ¢ 11'1 .

(3) 1If M = 1 | 2 < r<n-4, then by Ccn:ollary7,4,W‘2 > W,

We are going to look at ways of altering a handle body decomposition by

adding complementary handles and sliding handles around to get M in this

form.

§9. Whitehead torsion of a handle body decomposition
Let R be a ring with identity. Let GLn(R) = nXn invertible matrices

over R and note GLn(R) C GL ,.(R) under the natural identification

n+l
M 0

M e GL_(R) ~ [O J ¢ GL_, (R). Let GL(R) = lim GL (R).

oo

A matrix M ¢ GL(R) is called elementary if it agrees with I = \

o 1
except for at most one off diagonal element. Let E(R) Z GL(R) be the sub-
group generated by elementary matrices.

Theorem of Whitehead: E(R) = commutator subgroup of GL(R).

Thus K1<R) = GL(R)/E(R) is an abelian group, usually written additively.
Consider (-1) e GLl(R) < GL(R). Let [-1] be the image of (-1) in

K (R) and let ”K‘I(R) = K, (R)/[-11.
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If 11 is a group, write ZIl = group ring of II. We have a natural
map I —> GLI( ZI), since every element of II has an inverse in 11 and
is hence a unit in Z 11 and therefore a non singular 1 X1 matrix. We have

h: 1 —> GL_( ZI) — GL( Z1) —> K ( 711) —> K

1 1

Whitehead group of 11 = —Kl( Z11)/hil.

1( 7). Then Wh(ll) = the

If M is the matrix associated with a handle body decomposition as

in §8 with W1 = W v r-handles and WZ = W1 ~ (r+1) handles, let

T =[M]e Wh(lT). T 1is called the Whitehead torsion associated with the handle
body decomposition. The main theorem of this section enables us to cancel
the handles of this particular decomposition in case T = 0. Note that 7 is
well determined by the handle body decomposition. In fact, first note that

if we permute the rows of M we do not change [M]. Write Eij = [akl] with

a..=1 and a = 0 otherwise, for i # j, and observe 1+ aE_ is ele-
ij k{ ij

mentary given ae Z 1L Let M'= M(1 +E1j)(l - Ejl)(l + Elj)' The effect

of this posmultiplication is to add the first column to the jth, subtract the jth

from the first and add the new first column to the jth. Write

-1

M"=M‘§ 1

i 1 All these extra factors go to zero in K. and we have
{
f

|
‘ 1
; |
— —_

:th

M" = M with the first and j** columns interchanged. A similar argument

using premultiplication shows that we can interchange the rows of M.



Now if we multiply a row or column by an element +II we don't

+ x 0
. -1
alter 7. For, we may permute columns, postmultiply by 1
— — o
= 0
11
and then permute again. The matrix . —> 0 in Wh(I).
0
- ~ +1 !
Theorem 9.1. Let W_ = W hr‘._ ve. o hr,W =W'V'kr : ,,.,kr+-"
1 1 p 2T MmN - o 4
‘rrl(8+W) = 'n'l(W), 2<r<n-4 and (WZ’ W) (r+l) connected. Let T be defined |

as above. Then T =0 implies W2 = W,

Proof., 7 =0 means that M —> 0 under the map

GLn( a1y —> GL( Zn) L s Wh(II) where kerd is the ‘subgroup of GL(Z 1)

-1 0 x 0
1
generated by elementary matrices, 1 | and 1 1
0 _Q o
M 0 ‘
Then for some N, | = EU where E = finite product of elementary
‘_O IN _E B
[ +x 1 0
matrices and U = | 1 with x e 11
Lo

First of all we can choose a new lift é“l to eliminate U. Introduce

N pairs of complementary r and (r+l) handles, all disjoint from

+1 +1
h r{ ..._ h t = k) e kr . This gives a new handle body decom-
1+ P 1 - p Kk
position represented by the matrix E = TII e with e elementary. Let

i-1

e, = (1+ aEij)'




r r+1 r+l

r

If we now have W!= W  h, _~....h

L= Wi e
1 1 WZ -k k

p+N 171 - - SN

and Ei’:{i chosen to give E, we apply the handle addition theorem to slide

+1
one of the handles k; over the others to get

+1 r+l
1~ 1 1‘+l‘ o r+l '1‘+1 r
Wh = Wio ko kLR Ky URTR S

where 8:;;]' = 8(;; - a?’]’i) (see 7.5).

J

The matrix of the new handle body decomposition is E with a times

the ith row subtracted from the jth row, i.e., is (I - aEij)E' So the new
matrix is ‘—’k_!‘ e We repiat this process unitl we get a new handle body
=2 1 o}
decomposition with matrix 1. . This enables us to cancell all the
i 0 R
handles. _ )

§10. Whitehead torsion.

Let R be a ring with identity. We also make the following assumption:
If Fn = free module over R with n generators, m # n implies Fm # Fn.
This assumption is certainly true for group rings R = ZI. For, we can
make 11 operate trivially on the rationals Q and regard Q as a right
R module. Then Q®R Fn = vector space of dimension n over Q and som #n
implies Fm 7 Fn .

Definition. Let A be an R module, A is s-free if A ® Fn is free

for some n.

Lemma 10.1. If 00— A—> B —> C — 0 is exact and B,C are

s-free, then A 1is s-free.
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Proof. 0 —>A—>B® Fn —>C® Fn —> 0 is exact. For large
enoughn, B® Fn and CO® Fn are free, so the sequence splits and

B@FnzAéB(CGBFn), therefore A is s-free.

Definition. If A is s-free, an s-basis for A 1is a basis for A ® Fn
for some n. We will use a single letter underlined for a basis. If A is

free, and b= (b b ), c=(c

- . A i .= ..
1 v ! cr) are bases for A, write b1 E )\ljcj

where the )\ij form an invertible matrix. Write [yg]= [)\ij] € El(R)'

We can do the same thing for s-free bases. In general, if b is a basis

for A@Fm, c is a basis for A@Fn, and b +{ s _c_+£ are free

k-m —k-n

bases for A ® Fn where f , £ are standard bases for F

F
k-m’—k-n k-m’ k-n’

define [b/c] = [E Tixom/fe +¢ ] € K, (R).
— = - k-n 1
This element does not depend on the choice of Kk, and we write b ~ ¢
if [E/E] = 0. In particular, if b is obtained from ¢ by permutation or
adding multiples of one element to another, then b ~c. Note that
[a/b] +[b/c] = [a/c).

Let 0 —> A—>B —> C —>0 be exact, AB,C s-free. Then the

following sequence is also exact:

0—> ADF SBO®F @®@F —r —sCceF —>o.
m m n n

Let a, c be chosen as bases for A® Fm, Co Fn respectively,

it(a .a ),£=(c1...c ). Given i< s, suppose pc!1= Ci' Then -

1" " Tr s

(Aa,...Na ,c'...c') is a basis for B®F @F . Call this s-basis for B ac .
r’ 1 s m n —

1

Then ac is defined up to a choice of the c; I ci‘ is another choice with




\o

—_
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pc"=c., then c!'-c. ¢ Im\ and we can write down a matrix comparing
i i i i

these as follows:

‘)\.ai )\ai,

| L

i Na Na I

| r r \

! " = M 1 ;

| €1 1 '
| t

i " !
IRt

where M is of the form r 1 , so [M]=0 in K,(R). Thus the

1

equivalence class of ac is well determined.

Suppose now a , a' are s-bases for A, c,c' are s-bases for C and
choose related s-bases ac, a'c' for B. We would now like to compare
these s-bases.

Lemma 9.2. [ac/a'c']=[a/a'] + [c/c'].

Proof. Assume A,B,C free; a,c,a',c' are actual bases. We have

00— A )\>B—H>C 0, choose a: C—> B with pa =1, then

B= \NA®aC.
We can suppose ac = (ha,ec), a'c' =

a (
[’Mi 0 TMi 0]
where M of of the form [_ |

0

Aa',ac'). Then ac = Ma'c',

—
(]
—

J with a = Mi_a_' ,
2

b

M_b'. Soin ’1'(1(R),[M] = [Mi] +[M

2= 2l

We will now define torsion for a general chain complex over R. Suppose

0 — Cn _ Cn 1 —_— s —> Co —> 0 is a chain complex of free R modules.



Given i, let g, be a basis for Ci' If either

(2) Hi(C) is s-free for each i with given basis t_l_i ,
!

let 0—>B —>Z —H, —> 0 and 0 2, ~C, B, . -0 be the short
i i i i i i-1

exact sequences associated with C. Now by inductionon i and 10.1, B.1
and Zi are s-~free.

Choose s-bases b. for B, and choose in the usual manner s-bases
-1 i

. = i
bh  for zi, (b.h, )b. for ci. Define T= > (-1)[(1?.15)@1_1/%]. If

1 ; ' 1 = ' 1 +
-Pi is another basis for Bi’ [(b ltl')b‘i-1/gi] [(biEi)bi-i/(]?ihi)'bi—1]
= ! + ! + . .
[(bi{li)‘bi-i/‘ci] [bl/‘?l] [b /b 1 [(b h /c and in the alternating

sum the terms b'/b cancel. 7T 1is thus independent of the choice of —b-i and

is called the Whitehead torsion of the based chain complex (C’S-i)'
Let us now consider the actual geometric situation. Let KOC_ K be a

pair of finite simplicial complexes with (KO) ~ 7 (K) by inclusion.

1 i

If Ko . K is a homotopy equivalence, let AI%O = K be the universal
cover, this has a standard simplicial structure given b.y that on Ko Z K.

Consider ~ o~
K,K )_____> «c e e

Given oe¢ K - Ko , let ‘s be a lift of ¢ to K, o is determined to
whithin an action of 'n'1 . Ci(E’ RJO) is a finitely generated free 7II module

with generators of the form o, dimo =1, o0e¢ K - KO

Since KOC K is a homotopy equivalence, the chain complex above has

no homology and 7(C) is defined in _Ki( 711) and depends on the choices of

et i 2 s e~
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the lifts {;} . A different ’; differs by an element of ZII. Let
T(K,VKO) = [1] ¢ Wh(IT), then is well determined . We will show that this
(K, KO) element of Wh(II) does not depend on the triangulation, i.e., is
invariant under subdivision.

More generally, if Hi(f{)’ R'o) is s-free with s-bases Ei we can still
define T(K,KO), now depending on the choice of s-bases Ei' If b{ is
another s-base of Hi(I’z, Eo) and []—D-Ii/pi] —> 0 under -Ki(f;fﬂ) —> Wh(II),
then T(K,KO) is not changed by replacing _tzl by _b_'i

Suppose we have a sequence of inclusions of R modules

GO S G1 —> GZ — G3—-—> +++ we attach symbols a,b,c ... to the arrows

Go Py G1 b>G2 c>G3 —> +++ where a 1is an s-basis for Gi/Go’ etc.

In the short exact sequence 0 >G1 /Go GZ/GO G, / Gi > 0

the s-bases a and b of G'i/Go and GZ/Gi give rise to an s-base ab for

a b
G,/G . Wewrite G —> G, —> G, —> . By exactly the same process, we
2" o o 1 =2

e e e

ab
define ‘bc> and finally a(bc)> and (ab)c

5 -
[a(bc)//(ab)c >] = 0.

Then a(bc)> ~ (ab)c> ,i.e.,

Proof. We can assume all quotients free and all s-bases are actual

bases. Let (x 'Xr) be a basis for Gi/Go which extends to a basis

e
ve. cee —_— i i .
(x1 Xs) for GZ/GO such that (Xr+1 xs) b, the given basis for GZ/G'l
L —> i . ce i i
et (xs+1. . .Xn) c in G3/G2 Now (x1 xn) is equivalent to both

a(bc) and (ab)c.




This process is the refore associative. It is also commutative in a

reasonable sense. Suppose we have a diagram of inclusions

7
\ .
ANB

with A,B, & C say, A+B={a+b| acA,be B}. We have the natural

isomorphism
A A+B
A~ B B

Thus A~ B —=>A gives B

> A + B. Similarly for b.

Lemma 10.2. ba ~ ab in the diagram
pa ’1A + B -
J // a
ab | B ba
7
\\ a ‘b /

Proof. Recall that this equivalence is defined in K R), hence even and

1
odd permutations of the basis elements are allowed. We have got

A+B _ A B

5 = i-p ® 3§ » and going one way we get the basis (a,b), the other

way (b,a). We can thus choose ab, ba to be the same basis permuted.
Now suppose we have a short exact sequence of chain groups (finitely

generated free R-modules)

0—=>C'—>C—>C"—>0
Let i c)!‘ and c!l' be generators for Ci’ Ci and CJ!" respectively.

We also want to suppose that the homology groups Hi = Hi(C), I—IJ" = Hi(C')
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1"

Hi (C") are all stably free with given s-bases b b' and b” Here
we regard H' —> H —> H"-——> H; 1 —> -+ as a chain complex ., of
length £ 3n.

Theorem 10.3. If c; ~ cici’ for each i, then

(C) = w(Cr) +7(C") + (7).

This is the main lemma used to prove combinatorial invariance of
torsion. The first thing we will prove is that the torsion doesn't change if

the basis for Hi is changed. We have the short exact sequences

0 > X! H! > X, > 0
1 1 1

0 > X > H., > X" > 0
1 1 1

0 > X" > H© > X! —> 0
i i i-1

where Xi = ker (Hi — Hi)’ etc. To form the torsion we choose arbitrary

s-bases x.,h., etc., and b_,b!,b" for B,,B! and B' respectively with
i’1 R A i’ T i

Bi - Ci the boundaries in Ci’ etc. Then the general formula for torsion

T = 2 (- '1) bhb /c becomes

W) =S (-3 {Ixxy_, /b)) - [xgxt /B] + [ /RITY

r(C) - 7(C1) - 7(C") = 0 (-)lbnp, /e, ]~ (bl /el - [bUkbY  Jem

(1) Notice that changing bases c; or ci‘ does not alter
7{C) - 7(C'") - 7(C") so long as e, ™~ c‘ici' , and c; ci, ci‘ do not appear in the

expression for T(H ).
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(2) Choosing a different basis for the Hi's ,that is, replacing h,
by Ei , adds to T(A) a factor (-1) [hi/Ki] = (-1)[ Ki/hi] since
n = 1" - -
[x,lx i/ hi] [Xixi/hi] + [hi/ hi]’ and adds (-1) [bihibi~1/ci[ [bihibi-i/ci]

pb 1= (D E/R] to T(C) - 7(C) - w(Gh).

i -_—
= (-1) [bihibi_i/b h.b
Thus changing bases hi’ hi, h'i adds equal quantities to T(ﬂ),
7(C) - 7(C") - T(C™").

So long as we can prove T(C)= 7(C') + v(C") + T(f(, ) for one basis,

we will have shown the equality for all bases. Choose

h, = x.x" c.= b'h'h!

i i i i i1 i-1
h! = x'x. c’=b"h"b"

i ii i i i 1-1
h"= x"x!

i i1

(This choice will make 7(C') = 7(C") = T(ﬂ )=0.) We are now going to draw

an enormous diagram of subgroups and quotient groups of the Hi's and C, 's,
i
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Here D/vB means the basis represented by B is equivalent
A c gl
to the basis represented by T . All the arrows in the diagram represent
A
9

inclusions; note that Ci 1 c Ci 1< Ci . We also have the diagram

0—> C'—>sct s cr—so

1 ] l ] l 0
0—s &2 st s Cr—sy

-1
Note that x e p B{’ if and only if there is a y ¢ Ci+1 with poy = px, i.e.,

if and only if x - By ¢ Ci , SO p-1B!i = Bi + Ci . We thus get



(4)

Z.r |..L-1B'f z .~ (B, +C!) B.+2!
1 1 1 1 1 1
X. = —> H") = =
= ker (H, — HY) B. B. B.
1 Z' 1 1
~ i
Bzt
1 1
: -1
zih B, B. " Cl 9 C!
ker (H' —> H,) = ' = - Lo , L ,
+
! ' B B Cirt tZim

(ztnB,=C! 7 B. since everything in Bi is a cycle)

1 1 1

Z. Zi
Im(H, — H!") = = o=
' Z, ~p B! B, +¢
B B
i = = —Eiii——- (since C
1 - ~ 71 _ .
Bi('\ Ci Bi Zi 5 1C! i+
i
From (1),(2),(4) and Lemma 10.2 we have
C' + B,
b" A 1 1 b
i :
e \1-1
C! 0 /Zf + B,

') B
N A 1
,/Bn
D
zi ~ B
i, i
! X'
i
B

—> B. —> 0).
1
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Using (2),(3) and Lemma 10.2, we get

-1
o [ C!
A O
/o
h"/ oi-1
i, C'+ Z,
/ 1 Iy
// %" \\ bi_ 1
i . S
C'+ B, I z!
1 h\l - P 1
bl s A
. . h
i ‘\\J.» ;
XT‘\
1

We can choose bi = b; xib'i so that all the remaining squares and
triangles commute. So c, ™~ bihibi-i and therefore T(C)=0. We have now
proved

w(C) = T(C') + w(C") + ().

Now suppose we have a cobordism and add on a whole lot of handles.

We will compare the torsion of the resulting cobordism with that of the

original one.

Lemma 10.4. Suppose W is a cobordism, W1 =W v h1r U e h; .
Let KO T K be a simplicial pair triangulating W < Wi, wi(Ko) = 'rri(K)
and let NKOC"IV{ be the corresponding universal covers. Now H_ (?(,NKO) is

a free 71 module with given generators in each dimension. If
(1) Each component of [Kl - lKO[ is simply connected, and

(2) Each given generator of H_*_(I'z, ﬁo) is representable by a chain in




~ ~
one component of K - KO , i.e., a chain which is a combination of closed

simplexes whose interiors are in one component of K ,
o

Then T(K,KO) = 0.

Proof. Let 1"1. . .Fr be the connected components of K - Ko, let
T « s ® F i « " e . LU ) N’ K i
1“1 i, be lifts of T, l"r If b1 b_ e H*(K KO) are the given
generators. let §1. .. gs € c(ﬁ, ﬁo) be cycles representing them, each gi

~ ~
is contained in one component of K - K .
o

Choose x e 1r,, regarded as a covering transformation so that xéi is

1
contained in one of the {1:;} The generators {Xibi} € H,‘(g, R'o) are also a
free Z 1l basis. Moreover, this basis gives rise to the same T since multi-
plication by X, does not alter an element in Wh(ll). Choose free ZII
generators of Ci(g, R‘o) and stably free generators of Bi(g, I?O), all lying

in one of the {rIV‘J}

Now all operations done in calculating T are done with integer
coefficients. In fact, Ci(IN{‘, go) o Ci(K’ Ko) ®Z Z1 where the isomorphism
sends generators onto generators. So

T(K,KO) ¢ Im{k"1(17,) — 1_{1( Z1n) —> Wh(m)}.

But —I-(-1( 7Z)=0, i.e., every invertible matrix with integer coefficients
is equivalent under elementary operations to the identity matrix I. In fact,
let M be an m X m matrix with integer coefficients. First add rows until
the smallest non zero eleme nt of the first column divides all the elements in

the first column (this uses the division algorithm inductively). Cancel out

the other elements in the first column. Repeat with the other columns.
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M= TE with T upper triangular and E a product of elementary

So
det M = + 1, thus the diagonal ele-

matrices. Now M invertible implies
Therefore, we can cancel the upper right hand corner

ments of T are 1 1.
K,, M is then equivalent to I.

of T by elementary row operations. In K‘l’
r
Corollary 10.5. Suppose W1 =W «h, e — hp ,
+1 +
wo=w okt k™ 122 and w.(W,,W)=0, all i. Choose
2 1 1 - q it 2
~ ~ {[7 )C

generators gi,nj of Hr(hi ho N ) Hr(Wi,W), HrH(kJ,,kJ_ 4

Hr+1(WZ’ VVi), respectively. Now then, we know that we have a matrix ex-

pressing 9, 871_ = zm..,g--
J i ji "1
Suppose that W‘2 is triangulated with Wi’

W as subcomplexes.

Then ’T(Wz, W) = (-1)r[mji] € Wh('rriW).

We look at the exact sequence of chain complexes

Proof.
0 —> C(Wi, W) —> C(WZ, W) — C(WZ, Wi) —> 0
00— C! > C > C" —> 0 .

By 10.3 and 10. 4,

T(C) = 7(C) +r(C") +4(H )=0+0 + 7

. —_ —_ W
>0 Hr+1(w2’ 1

)

Wy =2 >Hr(VNV1,VV)—-> 0>+ =>0

We write this as

For ?’Lwehave 0o—> --

3 with bases ¢ nj » and « gil for the two non zero terms.
0 ——>C > C > 0 —> - - > 0
r+i r
. §i

J

obtaining exact sequences

and split up the sequence,
> 0 > 0

0—B —>7Z —0—>0 0—>Z —C
T T r r

—_ 0 —> 0

> 7
r+1

0—0




—> C

and so 0 —> Z —> B —~> 0 becomes 0 —>
r+1 r+1 r

We compare the new bases with the original one to get

(-7 (o /E] = (-1)7[m .

3 a
- -~ B >
0 Cr+1 r 0.

b [

To complete the proof that T is invariant under subdivision we have

Theorem 10,

all i and oK a subdivision of K. Then 'r(a/K,a/Ko)

Proof. Let Li= Kou ji-skeleton of K. Let ﬁ

Let KOC. K be simplicial complexes, vi(K,KO)

=0
T(K,KO).

be the universal cover

of K with the standard triangulation, and let ’ii be the cover of Li in K

We consider chain complexes defined as follows:

Let C be the chain complex

9

~ ~ 9
Jlaby yoel,

— H (oL, oL > H
Hylaly, ok ) i
with each term a finitely generated free ZII module

H (C)~H (o&%,a%o).
Let Er be the chain complex
~ )

— 1, ol
0 Hr(oz @ r-i)

>
H (oer_i,oer_Z)

r-1

with H (€ )=H (oL ,aK ).
T r O

We shall prove inductively that T(_C_r)

L )__>...

—_— e

~

—> H (oL ,af(l;)—>0
o' o o

By standard arguments

'r(oer, ozKo) in Wh(w) with

the generators for Er chosen as follows: Given o e K - Li 1 let © bea

~

lift of o= in K and let £. be a generator of Hi(

This gives a set of free generators for Hi(a/Li, arLi

1)

~ ~1 ~ o~
0 <~ H,(aL., aL .
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We now pass from L to Lr+4_ and look at the exact sequence
r
—3 —_— — L L )—> .
0 >C(aLr,a/Ko) C(aLr_H,ozKC)) Cla o1 @ r) 0
c' c c"

The bases c¢,c',c" satisfy the condition ¢ ~c'c" by the usual

. r~ L aR ) 4 (ol Ry
definition. So T(aLr_H , aKO) 'r(oer, aKO) T(a cipr r) v( /.). The
homology exact sequence /i is

_ L K —_— L E —> H f g _—
0 Hr+1(aLr+1 ’ aKo ) Hr+1(a r+1° % r) r(a & o) 0

For the sequence C , we have

>C > C
0 ’ Cr+1

> C _—
Cr+1/6r 0,

but Er-H/ é_r is zero except for a group in dimension (r+1) and we have

—

C =1(C )+ +(C T '- :
7( Cr+1) 7( Cr) 7( Cr-H/ Cr) +1( 7. ) where ‘. is the exact sequence
— — =

r+1( Cr+1) > Hr+1( Cr+1/ Cr)

0 —> H >Hr('6)—>0

T

By the inductive hypothesis -r(ozir, a/I'\{JO) = T(Er)' Recall that

~

H“(Er) = H*(ozlr:'r, aKO) where the generators are chosen to corresponds under

the natural isomorphism. Further, Hr+’1( Cr+'1/ Cr) can be calculated from

:‘/\’\, are isomorphic

~ ¢

L )— o.
(aLr+1,aLr) 0. So 7

- 7

i —> H
the chain complex 0 —

by an isomorphism sending generators to generators.

Now since the chain complex 0 — H (ag , afLr) ~—> 0 is trivial,

r+1 r+1

T(Er_H/Er) = 0. All we need to prove to show the inductive step is that

'r(aLr_H, oer) = 0 using the generators already chosen for C(aLr_H, aLr),

H (arLr_H,aLr). This follows from Lemma 10.4 since ]aLr_H] - IaLrI is

the disjoint union of simply connected sets.
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Starting the induction with L L= Ko’ we have proved Tt(aK, aKO) =

7(C). Now
C Hr+1(aLr+1 aLr) > I—Ir(arLr aLr-i) >
na R @
_ K > C (K, K ) —>
CI‘+'1( ’ KO) r( ’ o)

where ac (o a lift of an (r+1) simplex of K - Ko), is a generator of

So C = C(K,KO) by an isomo rphism sending the generator suitably.

Therefore 7(C) = T(K,KO).

We introduce the notation T(W) = 7(W,8 W).

[1g=p

Lemma 10.7. Let Wi’WZ be h-cobordisms with 8+W1 8_W2,

h a simplic al homeomorphism. Let W = W1 Uh W2 .

Then T(W) = T(W1) + T(WZ).

Proof. We have the exact sequence of chain groups

Wi) > 0

R
5,0 W))

-

0 —> C(\Tvi, 9 \7(71) —> C(W, o \7\71) —> ¢

C(W

Now the homology exact sequence is zero, so

™(W,8 W) =r(W B_Wi) + (W,

1’

Lemma 10.8. T(M X I, MXD0) = 0.

MXI in 40.7. Then

P . P ;] =W
roof ut V\«1 >

T(MXI)++(MXI).

(M X I)
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Lemma 10.9. If K

O o K K =
. K1 ,.KZ are complexes, -rri( L o) 0,

. \ _
all i and K Ki’ then T(KZ,KO) (Ki’K ).

Proof. Suppose K_\K, by one elementary polyhedral collapse,

2‘ 1
so K-K, is a PL ball BY say, with B’ N K, aface F of B, and
K - - ™y = X X .
( ZKi’KZ K'1 Ki) (FXI,F X0)
We have the exact sequence
s ~ -_—_. ~ N s ~ ~ __>
0 —> C(K 1,K ) (KZ’ ) >C(K2,K1) 0.

These complexes have zero homology, so

(KZ’K )= 7T (K1,K ) +T(K2,K1)

Now K2 - K1 is simply connected so by Lemma 10. 4, T(KZ’K'l) = 0.

Lemma 10.40. If n> 6, W™ is an h-cobordism, then

W =9 WXI ifandonlyif (W) = 0.

Proof. Certainly by 10.8, W =08 W XTI implies (W) =0. By §§7,8
if n>6 and W is an h-cobordism, W & (B_W X I) « r-handles U (r+1)
handles with 2< r<n-4. In §9, we showed how to cancel these handles if
the matrix representing the boundary map Hr+1(ﬁ2’ Wi) —> HI(VV1, \TI) from
the homology of the (r+1) handles to the homology of the r-handles was
equivalent to zero in Wh(w). We have now shown (10.5,10.6 ) that the
equivalence class of this matrix is T(W, B_W).

Lemma 10.11. If n> 6 , w" is an h-cobordism, then W =3 W X I

if and only if there is a PL space X with WC X, X\W and X \ 2 W.
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Proof. W28 WX I implies W\8 W. If WI X \W, X 3a_W,
then T(W,d W)= 7(X,8_.W)=1(8_W,8_W) =10 by 10.9, and so

W=9 WXTI by10.10.

§11. How many handles do we need in the case of an h-cobordism

with non zero torsion?

Theorem 11.1. Let W™ be an h-cobordism , n>6, Given r,

2<r<n-4, let jp: GLp( Zwrl(W)) —_ Wh(-rrl(W)). Then W =9 _ WX I p
r-handles U p (r+l)-handles if and only if (W) e Im jp.

~ +
Proof. We know W = (8 WXI)u hlri, e h(;, kI qu L

Let ’1'\1',?(' be lifts of h,,k, ; let E,:]' genrate H (ﬁ',ﬁr 9 W XI),
i i’y ri’i -

p—

1]
Hr+1(kj’kj . Wi) respectively.
r r ~ ~ ~
Wi = X L R : \\ —> H (W X
ith W, = (8 WXI). hl v -y, BrH L, (W W) (W, wx)

given by 3:]}, = z xijz , we know [)\ij] = 7(W)e Wh(w). Thus g<p im-
plies T(W) e Im jp .

Now if T € Im jp there is an M e GLp such that for some N,

[xi.] 0 M 0
) where E is a product of elementary

"
c

0 Iyg N-pd

o
=

ixl 6]

matrices and U = +x with xi e II.
- |

0 -
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We first add N-g complementary pairs of r, (r+l1) handles. By

altering the choice of the generators 'g,?‘] we can get the matrix repre-
M 0
senting the new handlebody decomposition equal to E. Sliding
0 I
n-p

the (r+l) handles over each other according to the handle addition theorem we

M 0
can find a new handlebody decomposition of W with matrix

N-p
So W= (8 WXI)L N r-handles @ N (r+l) handles and the a-spheres
of the last N-q (r+l) handles cut the b-spheres of the last N-g r-handles
algebraically once. Thus we can arrange that they intersect transversely in

one point. So we can cancel the last N-p (r+l)- and r-handles.

Note that Im j, = 0 and U Imj = Wh(11).
B

Suppose now that W is a cobordism, w, (W) =w (8_W) = (8+W)

1 1 1

~

by the natural inclusions, 3 < r<n-3, and Hi(W’ 8_\7\7) =0 for i 'f’ r and
free of rank p as a ZIl module if i= r.

Given a free basis for Hr(VNV, 8_VNV) we can define T(W). Altering this
free basis of Hr(w, 8_V~V) adds an element of Im jp to T(W). So we can
define T(W) e Wh(I)/Im jp .

Theorem 11.2. W = (8 WXI)u p r-handles if and only if T = 0.

Thus T is an obstruction whose vanishing implies we can eliminate all but
the r-handles.

Proof. We know W = (8_W X I) _ {r-1) handles « r-handles. Let

wo=awxIL W, =w o, . Uor®! and
o - 1 o 1 s



r
W =W L .
2 1 kl Tt 2

k (W, = W).

Choose generators for Hr(VV,a VNV) EHr(W W ), so T is defined

2’ o

i . = + (7 A i
in Wh(lI). Then T(WZ,WO) T(wl’wo) + T(WZ,WI) (/) where /( is
the homology exact sequence
—_ _—
0 —> Hr(WZ, WO) > Hr(WZ, l) Hr~1(W1’W0) > 0.

Let £,7n be bases for Hr-l(Wl’Wo)’ Hr(WZ,Wl) respectively, chosen

by

lifting the handles in the usual way. Then T (Wl’ WO) = T(WZ, Wl) =0, by

Lemma 10. 4.

Let h be chosen a basis for Hr(’\&’(fz, VNVO), E' a lift of the basis

back into H_(W,, W ). If h'=ih, (h',E') form a basis for H (W,, W

2’

~

~~

€

1)'

Write n= M(h',£') where M 1is an invertible tX t matrix over I

~o

and [M] =47 in Wh(I). Now write a'ﬁj =3 xji“g'i ,i.e., 8n = BE
i

where B is a tX s matrix over ZII. Since t>s, M= (A,B) with A

a tX p matrix.

Now 'r(W2 , Wo) e Im jp if and only if for some N,

M 0 M!' 0
= EU where M' is p X p, E 1is the product
0 0 I
LN-'c N-p 3 x, 0

+

of elementary matrices and U = %2 , X e m . So
.0
M 0 ™' 0
can be converted to by the elementary row

0 I 0 I
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operations:
(1) permuting rows ,
(2) multiplying a row by *x with x e T
(3) adding one row to another .

Notice that B is given by the last columns of M, and row operations do not

confuse the columns. Thus, by elementary row operations

M 0 A B 0 M' 0

n-~t n-t n-p

p columns

and so can be converted to

N-t n-p

Recall 8’:] = BE. Add in N-t pairs of complementary (r-1)- and

B 0
r-handles, so B will be replaced by . Now each row operation
0 IN—t
(B0
of type (1) or (2) on can be effected by altering the choice of
0 IN ¢

generators m, either by permuting , altering sign or translating by a cover-
ing transformation. Type (3) row operations are effected by altering the

handle body decomposition by handle addition.

r~1 ' r-1
~ 1 3 ' W r e !
So we get W = WZ with W1 v h1 _ - hN-p and
- 1 T, r, AW W —_— "W
W?_ Wlu k1 SR, kN where 8.(WZ ’Wl ) Hr-l(wl ,Wo) is

0

] . Then we may cancel the last (N-p) r-handles
N-p
with the (r-1) handles.

represented by L
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This proves the first part of the theorem. The converse follows

from a previous argument. ‘
We now look at duality. If we have a cobordism and turn it over,

what effect is there on the torsion?

Suppose W =8 WXI, W, =W < h '« ..._h’ and
o - 1 o 1 P ;
+1 +1 1
W = Wl w klr U e U kpr is an h-cobordism W, Suppose to start ;
1

that W 1is orientable.

),

Osz

To get the torsion we choose generators E’i’:{j of Hr(Wl’

H W, W) respectively and look at the boundary map Bqu =

r+l( 271

ax,

H-[\/J

where a_ = algebraic intersection of 'gja with xglb . §?= a-sphere of Ej’

~J

xSib = b-sphere of X?{i (17).

(FIGURE 17 WITH ACCOMPANYING TEXT IS ON NEXT PAGE)
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If we turn the whole picture around, the a-spheres
become b-spheres and the b-spheres become

a-spheres, So the torsion is given by a matrix

NE,ON, = :: a' x, where a' = algebriac inter-
ij ij X x

XeT
section of Si with ij = algebraic intersection of
-1~h ~Na e

X Si with Sj .

So T(W,8,W) = (-1 gr(W,8 W), where
¢: Wh(I1) —> Wh(ll) sends M into its transpose con-
jugate, with conjugation in 71l induced by sending
x —> x-l . ¢ induces an anti homomorphism
GLn( Z) —> GLn( 7“11) and so induces a homomorphism
Wh(il) — Wh(lI), since WHh(II) is abelian.

In the non orientable case we define o: 711 —> 711

-1
by x —> x if x is orientation preserving and

o . . . . A
x —> -x if x 1is orientation reversing. This in-

duces a map @': Wh(II[} —> Wh(II) and we get

(W, 8, W) = (1)t g 2w, 5 W).
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§12. h-cobordisms with given torsion.

Theorem 12.1. If M is a compact connected PL manifold of

dimension > 5, given any element T e Wh(w (M)), there is an h-cobordism

|
W with B_W ~ M and (W) = 7.

Theorem 12.2. If Wl’ W‘2 are h-cobordisms of dimension > 6,

awlé’aw

and T(W1)= T(WZ) then W, = W

2 1 2

Proof that 12.1 implies 12.2. Choose W with 9 W = 8+W and

(W) = -7(W,). Then by 10.7, T(w CW.)=0. So WL W, =3 W XI

and 8+W =] B_Wl o B_WZ . So form W3 = W1 o W L.WZ

(WL W,)=0. So WLW, =3 WXL So W =W, _(3W

XI) oW, =W

oW .
(— 2 2

2

In order to prove Theorem 12.1 we first need a lemma:

Lemma 12.3. If M™ is a PL man ifold, let i,j:SZX B™ 2 5 M

be disjoint PL embeddings representing elements £,ne w_ M. If w & 'rrl(M),

2

there is a PL embedding k: S2 X Bm_2 —> M representing the element

£+ 1]w e T M.
2
2 m-2 .
Proof. Let xe¢ S, ye 0B , let P be a PLpathin M from

i(x,y) to j(x,y) not meeting Im(i) or Im(j) again. Let N be a second

derived neighborhood of P in cl[M - Imi - Imj],




—
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The choice of the path P will determine the element w. By the

uniqueness of regular neighborhoods we may assume that

-1 -
i N=j lN = UX YV, where U is a regular neighborhood of x in S‘2

and V is a regular neighborhood of y in BBm-Z. Now the embeddings

iflUXV: UXV—>8N, j|UXV:UXV —> 8N are ambient isotopic to
"standard" ones, since any two orientation preserving embeddings of a PL

ball in a connected manifold of the same dimension are isotopic. So there

is a PL homeomorphism h:N—> UXV XI with hi|]UXV:UXV — UXV X0,

hj ] UXV:UXV— UXYV X1 equal to the natural identifications. Now con-

- 1 -
sider B 2 as B° XB™ 3, with the point y lying in 8B1 X 0, and take

1
V= Vl X VZ’ where V1 is a regular neighborhood of y in 9B, and V2 is

a regular neighborhood of 0 in Bm_3. Then there is a PL embedding

1 2 1 -1

e:Im i L Im j oN— R™ such that a[i(SZXB )< j(S"XB ). h "(UXV, XI)]

1

lies in R3.

T T
/ /_\ \,
/ Lo
[ , ‘t
(\ ] S

\// |
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If Vl' is a regular neighborhood of y inside Vl’ let

o ! - o ! .
s = i(SZXO)-Vl' ui(V1X0y)uh 1(V1><1) uj(vl' X 0y) v j s?x0 -V

where Oy denotes the segment of B' from 0 to y. Then & has a pro-
duct neighborhood R3 and so in Rm, so Z has a product neighborhood

in M. X will represent § + nw provided we choose a suitable path P.

Proof of Theorem 12.1. Given M and T ¢ Wh('rrl(M)). Represent T

m-1
by a matrix A e GL (Z-rrl) for some p. Let Ti ~88xB  for i=1,2,...,p.

P
p
Let W1 be formed by taking (M X I)uU Ti and attaching p 1l-handles,
1
h.,,...,h , where h, connects T, to (MXI).
1 p i i
S 7N
VoL
O .\ K&//;
\,
. ) m-1 .. 2.
Now in T, = §¢ X B , choose a set of disjoint spheres Sij = 84X X

xij € aBm. We may assume that these do not intersect the handles hl' ee.,h .
These all have product neighborhoods in 3+W1 .

Now let M be the universal cover of M and let W be the correspond-

ing covering space of W. Now every element of HZ(VV,IVI x 0 can be repre-
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sented by a 2-sphere in 8+W formed by piping together a finite number of

the spheres Sij in accordance with Lemma 12.3. Let gi generate Hz(l‘i),

’E. generate Hz(%i), where NTi is a lift of Ti in \TV

If the matrix A = (aij)’ we can find, as above, disjoint PL embeddings
i=1,2,...,p, representing the homology classes

2 m-2
. X —_—
ai S B 8+W1

aij §j. Attaching 2-handles by these maps gives rise to the required
j=1

h-cobordism W with torsion .
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