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P R E F A C E  

This book consis ts  of notes on lectures given a t  the  Uni- 

versity of Chicago in  the academic year 1966-67. My aim in  

these  lectures was  t o  develop PL theory from bas ic  principles 

and cover most of that  part of the  theory which does not 

require the  u se  of bundles. Thus the  book is complete in  

i t se l f ,  apart from a very l i t t le algebraic topology. It covers 

subdivision, regular neighbourhoods, general position, en- 

gulfing, embeddings , isotopies and handle-body theory, 

including a complete proof of the S-cobordism theorem. 

Fortunately there have been considerable simplifications 

i n  the  basic  theory, in particular in  the proof of Newman's 

theorem that the  closed complement of a n  n-ball in  a n  n-sphere 

i s  a n  n-ball. The original proof required a considerable study 

of ' stel lar  theory' . This was first rendered unnecessary by 

Zeeman' S proof, using a large induction including regular 

neighbourhood theory. M .  Cohen' S short proof simplified 

things further. I heard of Cohen's proof just i n  time to  put a 

version of i t  into the lectures.  

A certain amount of new material i s  included, notably the 

proof that concordance implies isotopy for embeddings i n  co- 

dimension 5 3. I have drawn heavily on E .  C .  Zeeman' s 

seminar notes on Combinatorial Topology (IHES , Paris , 1963) , 

for much of the  basic  theory, though my treatment of general 

position and engulfing i s  somewhat different. The sect ion on 

v i i  



v i i i  

Whitehead torsion i s  lifted direct from J. Milnor' S paper i n  

the Bulletin of the A.  M. S . ,  1966. 

I am very grateful to  the Mathematics Department a t  t he  

University of Chicago for inviting me there t o  give these  lec-  

tures .  I a l so  wish t o  thank J. Lees and J. L. Shaneson for the  

considerable amount of time and effort they spent helping me 

with the  preparation of these  notes.  

My thanks a l s o  t o  R.  Lashof and M .  A .  Armstrong for 

many discussions during the  course ,  and t o  E .  C .  Zeeman for 

introducing me t o  PL topology and for a l l  his  help and en- 

couragement s ince.  

November, 1968 JOHN F.  P. HUDSON 
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This characterization of faces  follows from the definition. The details 

appear  in the appendex at  the end of this chapter.  Note that this charac ter i -  

zation implies that the dimension of a proper face of a cell  i s  s t r ic t ly  lower 

than the dimension of the cell  itself. 

The proofs of the following elementary resul ts  a r e  left to the reader:  

( 1 )  A cel l  i s  convex. Moreover, it i s  the convex hull of i ts  ver t ices .  

( 2 )  The intersection and product of cel ls  a r e  cells.  (We identify 

E'X = Eptq. ) 

( 3 )  The convex hull of a finite set  i s  a cell .  

(4)  Let A  G. EP be a cell. Let f :  E' -> Eq be (affine) l inear .  Then 

f ( A )  i s  a cell .  

(Note that by (4 ) ,  it suffices to prove ( 3 )  fo r  the subset . . .  

n 
( 1  0 , .  . 0 )  . , ( 0 ,  . 0 l)} of E , each n,  a triviali ty.  ) 

h 
A Euclidean Polyhedron in E i s  any finite union of cells.  We have the 

following elementary propertie S: 

( l )  The intersection, union, and product of Euclidean polyhedra a r e  

Euclidean polyhedra. 

( 2 )  The l inear  image of a polyhedron i s  a polyhedron. 

If f :  P --3 Q i s  a map, P and Q polyhedra, then we say that f '  i s  

piecewise l inear  provided that 

( l )  f i s  continuous; and 

( 2 )  Tf  = {(X, f(x)) l X s P) i s  a polyhedron. 



are piecewiee' linear, 

h) i f  c' --.-?P 1' is p. l .  ( =  ~ > ~ e c c : w i  L > (  (ineii x'), F) m y  polyhedron, 

c)  '.L'l~e composite of p, l, maps  1 s  :>. p, l, map* 

{ a *  A X  A I  for al l  i, I .Si<rn. gi (z )  = 0 1 ,  "hem i f  ;.. = ( x n y ) ,  g i ( z )  = X , - y  I. i' 

Here m is the dim. of the Kuclidean space containing A and 

g : Q --b. R be p, l. maps, Let I' {(X, f ( x ) ,  gf(x))l x a P) G. E ~ ' ~ ' ~ ~  l ' h r n  

on the first and third factors, is  linear, Hence ~(1') r is a polyhedron. 
g Q f 

We now make a definition which will not be used for at leas t  the rest of the 

chapter, but will be referred to eventu,tlly, Let X be a topologjc~il s p ~ ' ' " .  

A - co-ordinate map of X is a map f t  P ---> X ,  P a polyhedron, which is an 



embedding [i. e . ,  a homeomorphism onto its image]. We usually W 

to denote such a map. Two co-ordinate maps (f ,  P) and (g; Q) a r e  

compatible i f  either f(P) n g(Q) = jd o r  there exists a co-ordinate 

rite 

S aid 

such that the following hold: 

- 1 - 1 (2)  f h and g h a re  piecewise linear. 

A P. L. structure on X i s  a family 3 of co-ordinate maps satisfying 

the followingn 

( l )  Any two elements of 3 a re  compatible. 

(2 )  If x r X ,  there exists (f, P) r 3 such that f(P) i s  a neighborhood 

of X in X. 

( 3 )  3 i s  maximal; i. e. , i f  (f, P) i s  compatible with every map in 3 , 

then ( f ,  P) r 3 . 

If 3 satisfies ( l )  and (2), it i s  called a basis for a P. L. structure on X. 

Examples: l) If P i s  a polyhedron, : P -> P forms a basis for a P. L. 

structure. 

2) If U , 3 = {(i, P)! P a polyhedron, P C U, i: P -> U 

the inclusion map) i s  a basis for a P. L. structure. 



n n 
convex linear cell complex in E is a finite set of cells in E , K  

i )  If A E K, every face of A is in K. 

2) If A and B E K ,  then A n B = o r  A n B = common face of A and B. 

N 
An n-simplex in E is the convex hull of (n4-l) linearly independent points, 

led its vertices. Each face of an n-simplex is the convex span of some of the 

rtices and therefore i s  an m- simplex,, m 5 n . We write r 7 for is a 

A simplicial complex i s  a cell complex whose cells a r e  al l  simplices. 

K i s  any complex, by I K I  we denote the union of all  the cells in K. W e  c a l l  

the undrrlymg polyhedron of K. 

If K and L are cell complexes, K is called a subdivision of L i f  the 

2) Every cell of K is a subset of some cell of L. 

Lemma 1.2, If K is a subdivision of L, then every cell of L is the 

union of cells of K. 

Proof. Since 1 K I  + 1 L I  , it suffices to show that if A is a cell of L and 

X B A, then there i s  a cell B of K, X E B, with B 5 A. There i s  a cell B' of 

K such that X E B' and there is a cell A '  of L such that B' C_ At. But 



A f7 A' i s  a common face A say. B' C, A' a r e  convex linear cells, so 
1 ' 

B '  n A i  i s  a face, B say, of B ' ,  and X E B C A. 

A subdivision K of L i s  said to be simplicial i f  it i s  a simplicial compl~ 

One of the most important types of subdivision of a simplicial complex is  

stellar subdivision. In order to define stellar subdivision, we must firs$ intrc 

duce the notions of joins, s tars ,  and links; however these notions (let the 

reader be forewarned!!') also a r e  impoftant in themselves. 

Let A and B be two simplices in E ~ .  If the set  consisting of all  the ver, 

of A and of B form a linearly independent set, then we say that A and B a r ~  

joinable. By A. B we denote the simplex whose vertices a r e  those of A and 

* 
The simplex A.B i s  called the join of A and B .  

If K and L a r e  two sirnplicial complexe S in E ~ ,  we say that K and L 

a r e  joinable i f  the following hold: 

( l )  If A E K and B E L, A and B a re  joinable. 

(2 )  If A '  E K and B '  E L, also, then either A . B  n A ' . B 1  = jd o r  A . B  n 

i s  a face of A. B and of A'. Bt.  

If K and L a r e  joinable simplicial complexes, we define 

K. L = K u L U {ABJ A E K, B E L),  called the join of K and L. K L  i s  clea 

a sirnplicial complex. 

* 
By convention, we allow A o r  B = P( and write A.$ = $.A = A. 
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- 
Let A and B be joinable simplices. By A we denote the complex 

ments a r e  A and all its faces. Then and E a re  joinable complexes, 

let K be a simplicial complex. If A c K, then we make the following 

s ta r  (A; K) = {BE'  K I  B 2 A ) .  

star(A; K) = {B c  K I  B i s  a face of an element of  star(^; K)).  

l i n ~ ( A ;  K) = {B c K I  B and A are  joinable and A.B c  K).  

The reader can easily verify that s tar  (A;  K) and link(A; K )  a r e  complexes, 

hat and link(A; K)  a re  joinable, and that the following equality holds: 

s tar  (A; K) = A.  link(^; K). 

R.emark. In general, i f  L i s  a convex linear cell complex and K i s  a subset 

- 
of L, then if  i s  the set of all cells of K and their faces, K is  a subcomplex 

- 
of Lt i. e . ,  K i s  a subset of L which i s  a complex. Clearly, this notation is  

consistent with the definitions of s tar  and s t a r .  

0 

Notation. If A i s  a simplex, A = points of A not contained in any face. 
. 

A = subcomplex of A consisting of the proper faces. (1f A = point, we put 

De fu t ion  of Stdllhr Gubdivision. Let K be a simplicial complex, A g K a 

0 
simplex. Let a c A . Then define: 

K)} U (a. A.  link(^; K)) 

= [K - A. li~??c(A; K)] U [aA.  i ink(~;K)I.  
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(The reader  will note that in general i f  K ,  L, and M a r e  three complexe S 

each joinable to the join of the othci. two, then the following equality is both 

meanifigful and t rue :  ( K .  L ) .  M = K .  ( L .  M) 

L i s  called the complex obtained f rom K by s t a r r ing  A  at  a. The reader 

can easily ver ify that L i s  indeed a complex and that it i s  a subdivision of K. 

The complex L may also be obtained f rom K a s  follows. Write 

K = K  U A . P ,  with A{ KO. T h e n s e t  L = K  u a . A . P .  
0 0 

We say that the complex L i s  a s te l lar  subdivision of K i f  there  exists 

s e r i e s  K =  K . Kl. . . . K = L such that K i s  obtained f rom K by s t a r r in  
o r r r - l  

a simplex a t  some interior point. 

Picture:  

Example of a non- s te l lar  subdivision: 



lex KY i s  called a f i rs t  derived of the simplicial complex 

tained as  a s tel lar  subdivision from K a s  follows: F o r  each 

A A 

K, choose A E 8.. Star each simpler A at A in order  of 

imension. This constructionmakes sense because i f  we s t a r  A 

f B E K,  and dim B 5 dim A,  then B will be a simplex of the 

ubdivision. 

that if  A '  denotes the f i r s t  derived subdivision of A obtained by 

. 
r A, the same starr ing points, and x9 denotes the subdivision of 

similarly, then 

- 
A9 = A . i l -  

om this formula i t  follows by hduction on dimension that the general 

A f\ A 
ex of K9 i s  of the form A .  A - .  . . A  . where A ,  5 A, 5 . .  . 5 A a r e  

ices in K, 

f ter  reading the definition of s implicial~map,  the reader will be able to 

easily that any two f i rs t  deriveds of the same complex a r e  simplicially 

l 1 
If A i s  a s implexwithver t ices  {ao , . . . , an}9  nil a + ... *- a i s  

o n t i  n 

ed the barycenter of A. K'  i s  called a barycentrlc f i r s t  derived of K If 

the s tarr ing points 2 a r e  barycenters. 

An rth derived subdivision K") of K is defined inductively to be a f i rs t  

rived of an (r-1)th derived, K ( r - i )  



3 .  Basic Lemmas on Subdivision 

Lemma 1.3. Let K be a subcomplex of the simplicial  complex 
0 

Then 1) If K' i s  a subdivision of K, i t  contains a subdivision of K a: 
0 

2) If K' i s  a subdivision of K , there  exists a subdivision of K 
0 0 

containing K' . 
0 

Proof.  1) Put K' = { ~ i m ~ l i c e s o f  K' containedin ] K  I } .  If A E  K;, 
0 0 

then A i s  contained in a simplex of K . F o r  A C B, some B E K. Hence 
0 

A C_ B n I K I , a union of faces of B. Since A is a simplex, it l ies  in one of 
0 

these faces;  in a s implexof  K . So K' i s  a subcomplex of K' and 
0 0 

l K; l C I KO I . By Proposition 1. 2, every s implex  of K i s  a union of simplic 
0 

which a r e  in K' and so also in K '  ; therefore I K I C_ I K'  1 .  
0 0 0 

2) By induction on the number of simplices in K - K . If none, there  i s  
0 

nothing to prove. So suppose A 
l' . . , A  E K - K  , with i L j * d i m i ( d i m  

n o 

Let K1 = K U { A ~ ,  . . ., A } a subcomplex. By induction, we may sup 
o n- l 

pose that K' i s  a subdivision of K such that K' i s  a subcomplex of K' 
1 1 0 1" 

0 
By l), K; contains a subdivision (A ) '  of hr Let  a r A Define 

n no  n 

K' = K' " a. (A) ' .  
1 

Notation. If we wri te  K' o r  cr(K) to denote a subdivision of K ar,d if  L is  

a subcomplex of K, by r ( L )  o r  L '  we mean the subdivision of 2 s  h 1); 

i t  i s  called the induced subdivision of L and i s  the unique s i ~ b d i ~ ' ,  :.>-: I-.f 7. 

which i s  a subcomplex of K'. 



Figure  for  Lemma 1 .3 ,  P a r t  2. 

Lemma 1. 3 holds equally well for  cell-complexes.  

If K i s  a cel l  complex, then K has a simplicial  sub- 

on with no ext ra  ver t ices .  

Order the ver t ices  of K. U. A G K, wri te  A = l a ~ ( ,  a the f i r s t  

X of A ,  B = a l l  faces of A not contzisling a. Define subdivision of ce l l s  

r d e r  of increasing dimension by the rule: 

A '  = a. B ' ,  

e r e  B' i s  the subdivision of B determined by  the (simplicial)  subdivision 

f ce l l s  of lower dimension. (1f A = a,  set  A s  = a). The construction i s  self-  

sistent because i f  C i s  a face of A containing a ,  then a i s  the f i r s t  v e r -  



Lemma 1.5. Let A l . . .  - ,  A be convex linear cells.  Let K be a 
n 

S irnplicial complex in IZN with A i~ . . . y An C_ 1 K 1 . Then K has an 
1 

t h 
r derived K") containing subdivisione of A l . . e 0 9 A  

n 

Proof. Let C l . . a o ,  ck be A ..., A and the i r f ace s ,  i n o r d e r o f  
l ' n 

increasing dimension. Then c l  i s  a point, and there  i s  obviously a f i rs t  

derived K(') of K in which c i s  a vertex. Suppose there exists an ( r - l ) - s t  
1 

derived K (r-1) of K containing subdivisions of c l . c 
r - l  ' 

F o r  each simplex U r K b-1) let 2 E B n c provided that this interesecti 
r9 

i s  non-empty. Otherwise, choose any point % r b. Let K(') be the rth derive 

obtained from K ( r - l )  by starr ing each simplex of K ( r - l )  
B at 2, in order  

of decreasing dimension. We a re  going to show that K ( ~ )  contains a subdivisio 
U " U 

for  all U E K 
r 

(r-') such that U A c # 
r 

clearly implie S 

( 4  K contains a subdivision of c . 
r 

Consider c n B # g. We may assume that crC1 B #  $, since otherwise the 
r 

there  i s  nothing to prove, by the inductive hypothesis. Let H = hyperplane of 

lowest dimension containing c : i. e ,  . H i s  the uniaue h v ~ e r d a n e .  containing 

c with 
r' 

r e spec t to  which c has inter iorpoints .  
r 

.' 

Then 

5 = proper faces of c i s  subdivided a s  a subcomplex of K "-l1, and so its 
r r 

0 
intersectionwith B i s a u n i o n o f f a c e s o f  B. $0 meets 3 onlyif  

P 

U S ;  a n d s o  c n r = H n c r .  
r' r 

(TA) 
Now we prove by induction on the dimension of B that t.::r >.,v L. i P' 

with cr n c # $, K (4  ' 
7. 

:ontains a subdivision of B 
.L 



r. By induction, contains a subdivision L of c r n 5 ,  if 

o- # . We may assume that P n o- # $. If U n c c b, it i s  a l ~ e a d y  

bcomplex, so suppose that n c r  # . Hence we have: 

[ence g. L, a subcomplex of K('), is  a subdivision of U n c r  . 

. By G. ( L I , for example, we mean the join of {g} ar.d I L ( . Clearly, 

I = C. ( L I .  

rolla .6. If I K I  g I L I .  K and L sirnplicialcomple: - , then the 

an rth derived subdivision L(r) of L which contains a subdivision of 

t h 
Lemma 1. 5, subdivide L to get an r derived 

t K '  be S a subdivision of each of the simplikee of K. Le 

L ( 

the 

wh 

union 

ich 

of 



-14- 

these subcomplexes . Then K t  i s  a subcomplex of L(r) and a subdivision 

of K. 

Corollary 1.7. Every Euclidean Polyhedron i s  the underlying set of a 

simplicial complex. 

N 
Proof. Let A be an N-simplex containing the compact subset P of 

N & , where P =  . . . U Ar,  each A a convex linear cell. Apply 
i 

N 
Lemma 1. 5 to find a subdivision of A which contains a subdivision of 

each A and take the union of these subcomplexes to get a complex whose und 
i' 

lying set i s  P .  

Definition. If P i s  a Euclidean Polyhedron and K is  a simplicial corn- 

plex with I K ( = P, K i s  called a triangulation of P. 

Unsolved Problem: Suppose K and L a r e  simplicial complexes, and 

( K ( = L ( . Then i s  there a complex M which i s  a stellar subdivision of 

both K and L? 



In this section we study the relation between piecewise linear maps and 

licial maps. I£ K and L a r e  sirnplicial complexes, a simplicial map 

-> L i s  a continuous map f :  1 K [  -> I L I which maps vertices of K to.. 

t ices of L and simplicies of K linearly into (and hence onto) simplices of L. 

function from 

et K to the set L; but it may be though of a s  a collection of linear maps 

mplices of K onto simplices of L. 

2) Any simplicial map i s  piecewise linear. (Use Lemma 1.1. ) 

3 )  A simplicial map f i s  determined by its values on vertices. 

Conversely, given a function g which as  signs to each vertex of K a vertex 

of K '  in such a way that i f  v . . . , v a r e  in a simplex of K, 
n 

( v ) ,  . . ( v  ) a re  in a simplex of L,  there exists a unique simplicial 
n 

map f :  K -5 L which extends g. Namely, i f  

Lemma 1.8. Let f : K --+ L be sirnplicial. Given any subdivision L' 

L, there exists a subdivision K '  of K such that E: K '  -> L' i s  

Proof. If A is  a simplex of K,  f (A)  i s  a simplex of L, We also write 

) for the subcomplex consisting of f (A)  and i ts  faces, and f ( ~ ) '  for the 

duced subdivision. 



r K and a r L'}. Then K1 i s  a convex linear j 

cell  complex (to get her  with the empty set).  F o r  A n f-'(U) i s  a convex linea 

- 1 
cell  (orempty) .  Atypical f a c e i s  of t he fo rm  Bn f ( T  ), where B and 7 

a r e  (not necessarily proper) faces of A and cr , respectively.  h he reader 

may verify the last  statement by consideration of the appropriate linear 

inequalities. ) Hence faces of cells of K1 and in K 1' 
Moreover, 

( A  n f-'(U)) n (C nfml(  1)) = ( A n  C) n ( f - ' ( ~ )  f-'( q ) = ( ~ n ~ ) n  (fnl(u 0 d), 
- 1 -1 

which i s  a common face if A f ( U )  and C A f ( 1 ). 

Obviously, l K1 l = ( K ( .  Also, f i s  l inear  on each cell  of K and maps 1 

vert ices of K to vertices of L'. Let K' = a simplicial subdivision of 
1 K1 

with no ext ra  vert ices,  by Lemma 1.4. 

N 
Lemma 1.9. Let K and L be sirnplicial complexes, with I L 1 C_ E . 

Let f: I K I  -+ I L I  be a map whose restriction to each cell  of K i s  linear. 

Then there exists subdivisions K' and L '  of K and L respectively, such tha 

f: K' --+ L'  i s  simplicial. Moreover, we may insist  that L' be stellar.  

Proof. If A r K, f ( ~ )  i s  a convex linear cell; hence there exists an r 
th 

derived L(') of L in which all  the cells f(.A), A .K, a r e  subdivided a s  sub- 

-1 
complexes. Consider K = {A n f (B) 1 A r K, B L Then a s  in 

1 

Lemma 1 .8 ,  Ki i s  a cellular subdivision of K, f i s  l inear  on cells of A ,  a] 

mapsver t icesontover t ices .  Subdivide K withno ex t raver t i ces .  1 
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1.10. Let f : I K I -> I L I be a piecewise linear map of 

xes. 

hat 

I K I  

Then there exist subdivisions K' and L s  of K and L 

f g  K '  -> L P  i s  simplicial. We may insist  that L' be 

C E I L /  G E ~ .  rf EiPCq9 the graph of f, i s  a poly- 

Let M be a simplicial subdivision of r by Corollary 1.7. If f "  

-> E' i s  projection on the f i rs t  factor,  then by Lemma 1 . 9  there 
* ,  

and K of M and 
1 

pect ively, such tha 

'[M/ : M1 3 K i s  simplicial. r1 l I M ~ I  i s  a bijection; hence i t  i s  a homeo- 
!& I 
, #, 

gphisrn. Moreover, i f  T, i s  projection on the second factor,  
L 

L. But r- .s map, and 

I map 

ow consider the following diagram: 



Here f and g map vert ices 1,2, and 3 a s  shown and a r e  linear.  To mak 

g simplicial ( 3  in M i s  not a given vertex),  we must introduce vertec 4 in K. 

Then keeping f simplicial requires the introduction of vertices 4 and 5 in L an 

K respectively. Then keeping g simplicial requires 5 in M and 6 in K; ar 

then we must add 6 in L and 7 in K. Continuing in this way we find it necessa: 

to add infinitely many vert ices between 1 and 2 in K, for  example. This cal 

not be done by subdivision. 

However, there a r e  some types of diagrams in which i t  i s  always possibll 

to subdivide all the complexes so that all  the maps a r e  simultaneously simplic 

Definition. A finite diagram of cell  complexes and piecewise linear map 

i s  called a one-wav t ree  if 

1) The corresponding complex is one-connected; i. e . ,  the diagra 

has no loops; and 



2) Each complex i s  the domain of at most one map. 

subdivision of a diagram T i,s a diagram obtained by subdividing each com- 

ex appearing in T. A simplicial subdivision of T i s  one in which all the 

ps a r e  simplicial with respect to the subdivided complexes. 

Theorem 1.11. If T i s  a one-way tree,  it has a simplicial subdivision. 

Proof, After a subdivision, we may assume that all the complexes of T 

e simplicial. If T has only two complexes, this theorem i s  then just 

Suppose T has a t  least three complexes. There is  a map f s  K -+ L 

such that K i s  not the range of any map in T. Let K '  and L '  be sub 

>;c 
ions of K and L such that f: K '  -> L' i s  simplicial. Let T be the 

obtained from T by deleting f: K -> L and replacing L by L'. By 

$c ..Q> 

tion there is  a subdivision T of T"'. which is  simplicial. Let L"  be 

rresponding subdivision of L'. Apply Lemma 1.8 to find K",  a sub- 

on of K '  , such that f: K"  -> L" i s  simplicial. 



5. Piecewise Linear Manifolds 

Definition. A piecewise linear m-ball i s  a polyhedron which i s  piece- 

wise homeomorphic to an m-simplex. A piecewise linear m-sphere i s  a 

polyhedron which i s  p. 1. homeomorphic to the boundary on an  (mt1)-simplex. 

A p. l. manifold of dimension m ,  M ~ ,  i s  a Euclidean polyhedron in which 

every point has a (closed) neighborhood which i s  a p. 1. m-ball. 

Remark. One can show by topological arguments that given an m-manifold h 

m i s  uniquely determined by M. However, this result  will also follow f rom 

the results of this section. 

Lemma 1 .12 .  If A i s  a convex linear ce l l  of dimension m,  then A is 

p. l. m-ball. 

Proof. Let A be an m-sirnplex containing A; i. e. , le t  A be a simpl 

containing A and contained in the unique hyperplane containing A with resp 

P 

to which A has an interior. Choose a c A G A. Then let p: A -> 6 be 

radial projection from a. It i s  easy to verify that p i s  a homeomorphism. 

Unfortunately, p is '  not piecewise linear. 

We a r e  going to a l ter  p to get a p. 1. map. Consider U c A , 

Then a i s  joinable to cr, A n a.u i s  a union of cel ls ,  and p(A n a.u) = U. 

Let A '  be a subdivision of A which contains subdivisions of the polyhedra 

- 1 
p ( U ) =  A n a . ~ ,  U <  A. 

Let r be a simplex of A'. Then p( T ) i s  a simplex contained in a face 

of A. Define p': A' -> i\, by letting p'( c) = p(c) i f  5 i s  a vertex of A', ; 
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ending linearly. Then p' i s  a well-defined p.1. map, and p ' ~  = PT. 

p' i s  p. l. homeomorphism A -> A-. 

Finally, to define a p. 1. homeomorphism f: A -> A, we just set f = p' 

A , f(a) = a, and then extend f linearly to A. Then f i s  a p. l. homeo- 

rphism; in fact f: l a.A ' I ---3 l ai\ l maps simplice S l inearly onto simplices. 

. The map p' constructed in the proof of Lemma 1 . 1 2  i s  called a 

seudo-radial projection. It i s  obtained from an ordinary radial projection 

y an  adjustment which insures piecewise linearity. In the sequel, we shall 

onstruct pseudo-radial projections with impunity and without the detailed 

iscussion of the last  proof. 



Lemma l. 13. l )  Let 

whose underlying polyhedra 

1 Bm. Bql i s  an m t q t i  ball. 

Bm and BP be join 

a r e  an m-ball and a 

.able simplic ial compl 

q-ball, respectively. 

2 )  Let Bm and ,Sq be joinable simplicial complexes, with 

I B ~ I  and m-ball, 1 ,Sq/ a q-sphere. Then I Bm. ,Sq[ i s  an m t q t 1  ball. 

3 )  Let sm and sq be joinable simplicial complexes, I I 
9 m-sphere and I S  I a q-sphere. Then I,Srn.,Sq! i s  an m t q t i  sphere. 

Proof. 1) Let Am and Aq be an m-simplex and a q-sirnplex which 

a r e  non-inte rsecting faces of another simplex (of suitably high dimension ). 

Let h: Bm 3 be a p. l. homeomorphism, and let k: -> Aq be a 

m q m  p. 1.. homeomorphism. Let B1 , B1 , A1 , and A: be subdivisions such that 

h and k a r e  simplicial. The reader may verify that i f  two complexes a r e  join. 

able, so a r e  any subdivisions of these two complexes. Moreover, the vertice 

m m 
of B m. B m a re  just the vertices of B and B Hence h and k determin, 

1 q 1 q 

by their values on vertices, a unique simplicial isomorphism 

m 
h. k: B m. B? 3 A* m q -  

1 
A .  But lA1 .A1 I - 1 ~ ~ ~ ~ ~ 1 ,  an m t q t i  simplex. 

m 
2)  As in 1), it suffices to show that i f  A and A qtl a r e  joinable, then 

m - l  m I Am. iqtl l i s  an m t q t l  ball. Let Am = v.A , r a vertex of A . The1 

m * q t 1  f, Am-l  
consider the map A .A . Aqtl defined as  follows. Let f(v) b 

the barycenter of Aqtl. Let f(x) = X i f  X i s  a vertex of A qtl o r  a vertex 

of Am-' 
m . Extend f linearly over simplices of A .iqtl. It i s  not hard to 

check that f defines a p.1. homeomorphism. Now apply 1). 
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m t 1  q t l  , A m q t1  
3) In 2),  replace m by m t l .  Then f: A .A .A . 
over, f( = I A ~ ~ ~ ~ ~  I where A m t q  t 2  = I A ~ . A  q t l l  

i s  an m t q t l  sphere, As in 1), this suffices to prove 3). 

Lemma 1.14. If K '  i s  a subdivision of K,  K and K '  simplicial, then 

(a; K) E link(a; K'). 

means p. l. homeomorphic. 

Proof. If B' E link(a; K'), then aB' E K'.  Hence there exists B E K such 

aB E K, and a B ' C  aB, since a i s  also a vertex of K. Hence we may 

e a radial projection p: link(a; K')  -> link(a; K). The map p is  a topo- 

cal homeomorphism. In addition, p(B) i s  a simplex which lies in B and 

panned by the images of the vertices of B Hence, using the technique of 

ma 1. 1 2 ,  we may find a pseudo-radial projection p': link1 a: K /  S link(a; K'). 

tet In this case it i s  unnecessary to subdivide link(a; K')  in order to define 

pseudo- radial projection. ] 

Corollary 1.15. If h: J K I  -> I L I  i s  a p. 1. homeomorphism, K and L 

plicial complexes, then link(a; K)  S link(ha; L), provided ha i s  a vertex of L. 

Proof. Let K '  and L '  be subdivisions so that h.' K '  -> L' i s  simplicial. 

n h: link(a; K t )  -> link(ha; L') i s  a p. 1. homeomorphism. Apply Lemma 1.1 



Picture for 1.14: 

Corollary 1.16. If I K I  i s  a p. 1. n-manifold, K a simplicial compl 

then i f  A E K, link(A, K) i s  an n - r -  sphere o r  ball, where r = dimension ( 9 
Proof. F i r s t  consider the case A = a i s  a vertex. Let B C  I K I  be 2 

neighborhood of A which i s  p. l. horneomorphic to a n ,  an n- sirnplex. Th 

let K' be a subdivision of K which contains a triangulation of B, KO, as  

n 
subcomplex. Let h: I K 1 -> A be a p. 1. homeomorphism. 

0 

By 1. 14, it suffices, in this case,  to show that link(a; K') i s  an (n-1) S 

o r  ball. But link(a; K' )  = link(a; KO). since I KO l i s  a neighborhood of a i 

n 1 K' I .  Let A' = stellar subdivision of A obtained by starr ing at ha. Ther 

1.15, link(a; K ) r link(ha; A'). So it suffices to prove that link(ha; A') i s  
0 

(n- 1) sphere o r  ball. 

e 
Case 1: ha = b E A. Then A' = ha. A. So link(ha; A')  = A, an (n- l )  sphere 

Case 2: b t A,  A a proper face of A. Say A = A'; i . e . ,  A i s  an S-s i r  
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- 25 -  

)e B is  the convex hull of the vertices not in A. 

tar at  b to get A' = bABf hence link(b; A')  = A. B, an (S-l) + (n-s-l) t 1 = 

Now we consider the general simplex A E K and proceed by induction on 

imension of A; i .e . ,  we assume that if B has lower dimension, 

;K) i s  a ball o r  sphere of dimension n - dim B - l. 

Write A = aeAl, where a i s  a vertex of A and A a face. Let 
l 

Link(A1; K), an n - r  sphere o r  ball, r = dim A. Then a i s  a vertex of L, 

e aAl E K. Moreover, B E link(a;L) -> a.B.A1 E K-  B.(aeAl) E K 

B E  link(^; K). That i s ,  

lihk (a; L) = link(A; K). 

to complete the proof, i t  suffices to show only that L = link(Ali K) i s  an 

manifold. This will be the case i f ,  for 9 r , Ar i s  an r-manifold and 

i s  also an r-manifold. Ar and A 
r +l 

being r- and ( r t l ) -s imnl ices .  

tively. 

i s  clea .r that 
- r+l r t l  

-manifold. Consider A . Let e E A be 

- r t l  diven point. Let U be an r - s imdex  of A with E 4 U. Let X be the ver -  

Now, cr) = U T i s  a neighborhood of in 
7 < 

r t l  
(cl = topological closure. ). But cl(A - U) = I X. b l . This i s  an r-ball. 

ly, map b -> b by the identity, let X be mapped to a point in 8,  and 

d linearly to get a p, 1. homeomorphism X. & 4 cr. 



Definition. The complex K is called a combinatorial n-manifold if  

for all A E K,  link(^;^) i s  a sphere o r  ball of dimension n - dim A - 1. 

(Note: We have been writing  link(^; K) = I  link(^; K) I . ) 

Remark. Corollary 1.16 asser ts  that if  ( K (  i s  a p*%. n-manifold, then K 

i s  a combinatorial n-manifold, Conversely, i f  K i s  a combinatorial 

0 
n-manifold, let X E I K [ .  Say X E A ,  A E K. Let K '  be obtained from K k 

starring A at X. Then l (a; K ' )  I = l a. A. link(A; K) 1 .  an n-ball contai 

X in i t s  interior (W. r. t. I K ( ), Hence K a combinatorial n-manifold implie: 

1 K J  i s  a p. 1. n-manifold. 

Definition. Let P be an n-manifold. Let X E P. 
0 

We say X c P if give 

any triangulation of P having X a s  a vertex, K, link(x; K) i s  a sphere. W 

say X s (or  X E a P )  i f  for I K I = P a triangulation of P ,  with x a verte 

link (X; K) i s  a ball. 5 i s  called the interior of P, and l? = a P  i s  called t 

boundary of P. If P = $ , we say that P is  a manifold without boundary. 

Remarks: 1) To determine whether o r  not X E P i s  in the boundary o r  inte 

it suffices to consider only one triangulation of P having X as  a vertex. F c  

Ip i s  a p. l. homeomorphism and so if  K and K a r e  two such triangulations 
1 

then there i s  a p. 1. homeomorphism link(x; K) 2' I k(x; K') ,  by Corollary 1.15. 

In particular, P = IJ G. 

2 )  h n a P  = $, since a ball i s  not homeomorphic to a sphere. This i s  t r  

for purely topological reasons. However, the non-existence of a p. 1. horneo- 

morphism of a ball with a sphere also follows from the facts that a simplex LP 



1. manif old v vith . boundary A 1 , a p. l. homeomorphism preserves 

dary, and the following lemma: 

Lemma 

Proof. 

1. 17 

Let 

An n-sphe 

be an (nt  

i s  an n-manifold without boundary. 

0 

simplex. Assume a E A ,  A a proper 

ar A at  a to get AI = a.A.B. where A =  A . B .  A = A . B  U A.B, so 

face. 

a. A. B U A. B. Hence link(a; A ' )  = A. B, an (n-1) sphere. 

The next lemma tells us how to find the boundary of a m-manifold M using 

one triangulation. 

Lemma 1.18. If I K1 = M i s  a triangulation of the m-manifold M, define 

{ A r K I link(A; K) i s  a ball ) . Then k i s  a subcomplex of K, 

= h, and 1 K 1 i s  an ( m - l )  manifold without boundary. 

Proof. Let K. Let be a face of A of one l e s s  dimension. Then 

X. B, X the remaining vertex. Then  link(^; K) = link(x; l i n k f ~ ;  K)), so by 

0 

m a  4-17,  link(^; K) must be a ball. Hence K i s  a subcomplex. 

Suppose a E ( K I  . Let a r 1, A r K, and s ta r  A  a t  a to obtain K'. 

link(a; K') = A.  link(^; K). 

fore,  A E k implies a r G ; A  / k *  link(^, K) i s  a sphere 9 a / 6. 

To show that 1 k 1 i s  an (m-  1) manifold without boundary, let A  r k. 

B r l i n k ( A : ~ )  Q A . B  r k+> AB r K and link(A.B;K) i s  a ball. But 

B; K) =  link(^; link(A; K)), so link(AB; K) i s  a ball B i s  contained in 

undary of Ilink(A;K)I. So link(A,k) = the boundary of Ilink(A;K)I, which 

n - dim A - 2) -sphere; thus K i s  a combinatorial (n- 1) manifold and by 

we already proved, I K 1 has no boundary. 



Note: In view of 1.18, if K i s  a combinatorial manifold, we refer to 

k = (A a K ]  link(A; K) is, a ball ) as the boundary of K. 



and B C_ S i s  a p.1. ball of the same dimension, then S - B i s  a 

11 of the same dimension. In this section we define and study dual cel 

next we prove some lemmas, and in Section 8 we prove this assert ion 

erive some corollaries.  

.v, 

E K, we define A"', the dual cell of A,  to be the following subcomplex: 

v a vertex of A 

.I. 

reader  will observe that in general the underlying polyhedron of A*'. i s  not 



A A 
Suppose U E K'. Then r = A i e . .  A say, where A C . . . A E K, 

S 1 S 

A 
and A.  i s  the barycenter of A.. Now a s A ' ~  if and only i f  IJ s star(v; K') 

1 1 

for  each vertex v of A. But cr E s tar(v; K') i f  and only if v 2 A So 

.l. 

1' 

a s A". i f  and onIy if  A 5 A 
1 "  

So 

Definition. If B i s  a p. l. ball of dim n, a combinatorial face of B is  

p. l. ball of dimension (n-1) lying in B. 

W hen there i s  no danger of confusion, a combinatorial face of B will 1 

referred to simply a s  a face of B. 

Lemma 1.19. Let K be a combinatorial m-manifold. Let A E K, 

dim A = r. Then l ~ " l  i s  an (m- r )  ball. Furthermore,  i f  A E k and i f  A' 

# 
i s  the dual cell  of A in k then A and cl { l  a(A") I - ( A i! I 1 a r e  faces of 

Proof. To prove the f i rs t  assert ion,  let  A E K.   hen 

.I- A A h -1- 

A.'.= { A  A S A ~ C  .,.. < A  l .  U =  A 
1"' 

A E A-', then for each 
S S 

f i  P A 
with A C A . ,  write A = A B  Then a = A o A B r . . A B  o r  a =  

S J j j S 
.I. 

Every a s A"' i s  of this form, where B. . . . < Bs , i = i o r  2, and 
1 

B E link(A;K), i l j l S. 
j 

Let link(A; K) ' be the f i rs t  barycentric subdivision of link( A; K), whicl 

$ A 

also the induced subdivision from K' .  Define h: A ->  l link(^; K)' by r r  

A h R A 

ping A to A and A B  to B, B E link(A; K),  and extending linearly over 

simplices. Then by the last  paragraph, h i s  a simplicial isomorphi;n~. F 

 link(^; K ) ' (  i s  an (n-r)  ball, since link(A; K) i s  an (n - r - i )  s rhe re  o r  Sa-- 



A E I;;. Then the restriction of h ?# 
A i s  a simplicial iso- 

ism of A' onto A. link(A: K)'. ~ u t  1 k ( ~ ;  K)  is a p. l. ball with 

a r y  link(A; K). (This was shown in the proof of Lemma 1.18. ) So 

and ,l. homeomorphic 
A 
A .  . A  and A, 

kapectively, where A i s  a simplex. (via the same homeomnrnhi sm). Sn 
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- A K  a r e f a c e s o f  A .  

Lemma 1. 20. Let  K be a combinatorial manifold. Let { B. 1 i = 1, . . . , r 1 
1 

e dual cells in K and k . Then the  fn l lnwina  hnldo 

3) f r .  is a union of dual cel ls  of lower dimension than the dimension of B.. 
1 1 

In 2), 8. denotes the set [ B i /  -- l l 1 

Proof.  1) Let K' = barycentric f i r s t  derived of K. If X s ( K / ,  X s U, 

A A .I. 
e U E  K'. Let U =  A l . . o A  A I  ... < As. Then u s  A"' 

S 1 '  

) Every point of I K ' /  i s  contained in the inter ior  of a (unique) simplex 

. Hence it  suffices to show that if U E Kg. then  rr i s  rnnta inpd  in 3f mn=f 

Then A5Ar If A $ = A ~ ,  then U J ~ A * / .  F o r  let  

A 
-> A. link(A; K) be the p. l. homeomorphism defined in the proof of 

m a  1.19. Then h(s) C 1  link(^; K) 1 . Similarly, i f  U r k , then 

a A C A ,  ; and i f  A # AI,  then U C ( aA fi ( 

:X 
Then U E A 

1 '  
Suppo S e 



Hence we have only the possibilities 8 C (A")' and, if  A. 6 8 , 1 6 i I S, 
1 

# 0 b (A1 ). In case r / (K)', we thus have nothing more to prove. So assume 

# JI v 

that r r (K)'; i . e . ,  A . Then G C_ [ A I  1 ,  a f a c e  of A I .  So 
S 

J1 # b c l a ( ~ i ) l ,  and thus A i s  the unique dual cell  which contains 
1 

-7. 

3 )  Consider again the map h: A-'. -> A 1 k ( ~ ;  K), defined a s  

0 

U. 

in Lemma 1 

A A 
(proof). Using this homeomorphism, it i s  easy to see that if U = A1.. .As, 

A < ... .tf 
1 

< A then r s a(A") i f  and only if A A o r  r s A . Since 
S' 1 

4. J. 
.P # 

A < AI implies A"' G A and has lower dimension by 4.19, and since I A I I 
Jr 

a face of I A". l , this shows that I a ~ *  l i s  the union of dual cells of lower dirr 

sion. 



m 
If Bi and B? a r e  p.1. balls, n > m ,  andif  

4 1 3 ~  i s  a p. l. embedding (o r  h ~ m e o m o r ~ h i s m ) ,  then there exists a 

mbedding (homeomorphism) h': B1 + B extending h. 
2 

' n  m . Am = IxoAmle  A = A 1, X and y in the interior of A 

On 
ely. We may view h a s  a map h: Am -> A . Set hl(x) = y 

This i s  a p. 1. map, because it i s  simply the map obtained 

bdividing Am and An to make h simplicial, defining hl(x) = y, and 

m ' n 
ding linearly over simplices to get h': X. (A ) 4 y (A ) l .  It i s  clearly 

Let K be a simplicial complex and let  \E be a point which 

able to K. Let L be a subdivision of v. K. Then i f  I K1 r\ I s tar(v; L) 13 (d 

cl. ( ]v .  K I - I s tar(v;  L) l ) i s  p. l. homeomorphic to K X I, I = [O, l]. 

induced subdivision of K. ) 

Proof. Let R = link(v; L). Let p: R -> K = link(v; rK) be radial projection. 

n p i s  not a p. l. map. However, p ca r r i e s  simplices of R onto simplices 

ined in I K I . Hence we may find a subdivision K' of K which contains a 

gulation of p(A) for  each simplex A of K'. 

I 

F o r  each A E K!, let  A = cl.(Iv.*I - I v . A J T \  I V . R ~ )  = C ~ . ( [ V . A )  - 
1 

a convex linear cel l  (in fact, a "truncated simplex"). The faces of A a r e  

1 

) a n d i t s f a c e s ,  A a n d i t s f a c e s ,  a n d t h e c e l l s  B, where 

r? r' . Moreover, f i  = 'A n B: a common face of A and B. Let 

m 
and i ts  faces I A E K']. Then K i s  a cell  complex and 

I = c l . ( I v . ~ (  - 



>;c m 
Let K be a simplicial subdivision of K with no extra vertices. Then 

.l. 

each vertex of K"' i s  either a vertex of K '  o r  the image of a vertex of K '  

- 1 .l* 

under p . Define h: K*'. -> K X I by sending a vertex X in K '  to 

h(x) = (X, 0) ,  a vertex y in I R I to h(y) = (py, 1), and extending linearly. Thi 

definition makes sense because 1 R I  n 1 K1 = and because h maps all  the 

.v. 

vertices of any simplex in K". into the same convex subset of K X I. It i s  cle 

F 
that h i s  a homeomorphism, in fact, h maps A homeomorphically onto 

Lemma 1. 2 2 ,  If P and Q a re  n-balls, P r\ Q = F is  a common face, 

cl. (P-F) and cl. (Q-F) a r e  faces of P and Q respectively, then P U Q is  

n-ball. 

Proof. Triangulate and let A E  cl.(^-F). fails to be a 

sphere i f  and only i f   link(^; F) i s  non-empty. Similarly, link(A; F )  fails to 

be a sphere i f  and only i f  l i n k ( ~ ; P - F )  # $, i f  A E F.  So 

- 
BF = F n P-F = B( P-F). 

- 
Similarly, a F  = a( Q-F). Now the identity -> F extends (by Lemma 1. 

to p. l. homeomorphisms: 

h3: Q-F > c.F. 

 e ere a, by c,  and F a r e  assumed joinable in some Euclidean space. ) Ag 

we may extend h h and h to get h P -> abF and h : Q -> bcF, g? 
1' 2' 3 4' 5 



omeomo rphism 

P U Q 2 abF U bcF r acF = a p. 1. ball. 

a 1. 23. Let K be a combinatorial n-manifold. Let 

-!- 
X 0) U (k X I). Then K S K via a p.1. homeomorphism sending 

. Let {A .  ( i = l , .  . . , N }  be the simplices of in o rder  of decreasit 
1 

4. # 
msion. Let B. = I A: 1 , F: = 1 A: 1 ; the p. 1. balls a r e  ordered in order  

zcreasing dimension. Let D. = (B. X 0) LJ (F. X I). Let 

U = v  XO. 
0 0 

Let 

U U Bj . We define inductively a sequence of p. l. homeomorphisms 
j=I  

-> V. such that 
1 

(X? l )  = X for  all X E K 

e map h proves the lemma. 
N 

1 
defined, 

0) (F. X I), a face of B. X 0 by 1.19 and clearly a face of F, X I. 

.. 19, cl. (B - Fi) i s  a face of B ., Also (F .  X 1) U (Fi X 1) i s  a face of 
i i 1 

F o r  let A be a simplex and linearly embed A X I in vA with 

C A. Pseudo-radial projection from a point in X 0 give S a p. 1. homeo- 



morphism (A X l) (A X 1) -3- v& . Hence D is  a ball. 
i . 

Now, cl.(D. - F, X I)  C_ U. , . h. , maps cl. (D. - F.  X 1) homeo- 

rnorphically to cl. (Bi - F. ). Define h. ( F. X) by hi(x, l) = X. This togetht 
1 1 1  

with h, , defines a p. 1. homeomorphism D, ---3 B, , which may be extend 

to a p. 1. homeomorphism D. 4 B. . Combine this las t  map with h 
1 1 i- l 

get hi . 
Corollarv 1- 24. There exists a neiuhhnrhnnd nf K in K which 4s n 

homeomorphic to K X I. In fact, there exists an imbedding c: K X I 

with c(x, 0) = X, whose image i s  a neighborhood of K. (The map c i s  c 

a boundary collar. ) 

Lemma 1. 25. If S i s  a sphere and X and y a r e  points of S, then thei 

exists a p. l. homeomorphism S -> S sending X to y. 

Proof.  Exercise. (Hint: Use pseudo-radial ~ ro j ec t i on .  ) 



:l. (S-B)  is a n  m-ba l l .  

k e o r e m  f o r  ( m - l ) .  

We s h o w  that K-K is a c o m b i n a t o r i a l  mani fo ld .  If A E K-K t h e n  
0 0 

A; K ) = l i n k ( ~ ;  K-K n ). F o r  if B s  link(^; K),  t h e n  A B  t K. S i n c e  A # Kn, 

& =  dim A. 

l ink(A; m ) s ilink(~; K) - l ink(A; K )\ 
0 0 

F o r  B t l i n k ( A ; K - K  ) W A B  t K-K <;=9 A B  < C , s o m e  
0 0 

-K M AB < ACi,  s o m e  ACl  t K-K a B < C l ,  s o m e  C i  i n  
0 

; K )  -  link(^; K ), 
0 

ow,  l i n k ( A ; ~ )  is  a n  ( m - r - l )  s p h e r e ,  a n d  l i nk (A;K ) is  a n  ( m - r - l )  s p h e  
0 

1. S i n c e  l ink(A; K ) C  link(^; K), it canno t  b e  a s p h e r e .  H e n c e  b y  
" + 

I  link(^; K-K- ) I = c l (  l  link(^; K) I - I  link(^; K_)  1 )  

ktn m- r- l ball. H e n c e  K-K is a c o m b i n a t o r i a l  n -man i fo ld  w i t h  b o u n d a r y  



. 
2) Let L = K-K U v. K v a joinable point. The identity map on 

0 0 ' 

1 K-KO I extends to a p. l. homeomorphism I L [  + I K1 . F o r  I K I i s  
0 

a sphere, so the identity map on I k 1 extends to a p. l. homeomorphism 
0 

Iv. k I + I K 1 ,  by Lemma 1.21. So I L /  i s  an m-sphere. By Lemma 1. 25 
0 0 

let k: I L I -3- I Amti l be a p. l. homeomorphism such that v' = k(v) i s  a 

m t 1  
vertex of A . 

Now take f irst  derived subdivisions and follow by further subdivision to get 

@(L) and P(A) so that k: a(L) * P(A) i s  simplicial. Then 

- - 
=(v; @(L)) = star(v; @(v. K )) does not meet a(K ) and star(vl ;  P(A)) does 

0 0 

not meet P(A ), where A = V'A 
1 1" 

By Lemma 1. 22, cl( 1vko ( - 1 star(v; @(L)) I ) N kO X I, and 

cl. { I v ' . A , ~  - I ~ t a r ( ~ 1 ; ~ ( ~ ' . 6 , , ) ) 1  } SJ A1 X I .  BY Lemma 1.23, 

I K-K I [( K-K ) X 10) ] I k X 11. This last polyhedron i s  p. l. homeo- 
0 0 0 

morphic to 

I K - K ~  I U c { v  - I s t a r  (v:a(L)I 1 

= cl. { I a(L)I - I s t a r  (v; @(L))[ } S cl. { l $ ~ l  - l s ta r (vl ;  F 

This last isomorphism being the restriction of k. Now, 

- - 
star(vl:  @A ) = s tar(vl ;  /3(v1. il)) and @(A) = P(A1) U P(v. A*). Hence the last 

polyhedron above i s  p. l. homeomorphic to I A1 I C) 1 A1 X 11 1 A 1 ,  this last  

homeomorphism being given by Lemma 1.23. So I K-K I S l A1 l and so 
0 

cl. (S-B) i s  an m-ball. 
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If A is  an n-ball and F i s  a face of A,  then any p. l. 

n-1 
morphism h: F --j A extends to a p. 1. homeomorphism 

. 
roof. F i s  the boundary of the ball cl. (A-F); this was shown in 2) of the 

of 1.26. So h l F extends to a p. l. homeomorphism 

n-1 n * n - i U  *n-1 . (A-F) - v A . Now hi U h: A -> A = v. A i s  a p. 1. 

morphism, and so we may extend to a p. l. homeomorphisrn h': A -> A". 

If A and B a r e  n-balls and A r\ B i s  a common face, 

L) B i s  an n-ball. 

Immediate from 1.26 and 1.22. 

. If M i s  an n-manifold, B an n-ball, and B n M = F i s  

e of B which l ies  in aM, then M U B E M. 

Let c: M X I -> M be a boundary collar. Let A = c (F  X I). 

an n-ball. A n B = (c(x, 0) I  X E F) = c (F  X 0) = F, a common face of A 

f B. Hence A cl B i s  an n-ball. 

n- 1 
e t  F1 = C ( $  X I U F X l), a face of A. Let h: F1 -> A be a p. 1. 

morphism. By Corollary 1.27, let h : A 4 vA, extending h, be a 
1 

omeomorphism . F1 i s  also a face of A B, since F = cl. (A - F). 
1 

- 1 
h2: A U B -> vA extend h. Then hi hZ: A U B + A i s  a p. l. homeo- 

hism which i s  the identity on c((F X I) W (F X 1)). Define k: M U B  -> M 





APPENDIX TO CHAPTER I .  

We want to show that if  A is a convex l inear  cell ,  then a cell  B i s  a 

face of A if  and only if 

1) If P i s  the hyperplane spanned by B, P r\ A = B ; 

2) No point of P l ies  between any two points of A - B. 

Clearly any face satisfies these conditions. Conversely, le t  ifi = 0, gj 

be a sys tem of equations for  A.  Suppose i f .  = 0, = - 
g1 "' - gs = 0, 

1 

m > 0, . . . , gt 1 0 ] i s  the smallest  face B of A containing B. Then 

giiren j > S, there  exists X. E B with g.(x.) > 0. Put 
J J J 

X + ... + X. 

X = 1 

t- S 

m 
Then g.(x)> 0 for  a l l  j 2 s t l .  If y E B and L is the line segment from 

J 

x to y, then f rom 1) there  must  exist  z r [ n with X between y and z. 

By 2 ) ,  y and/or z i s  in B. So by 1), y and z a r e  in B. So X E B. Thus 



Chapter I1 - Regular Neighborhood Theory 

1. Collapsing 

Definition. Suppose P C P are  Euclidean polyhedra, and suppose 
0 

B = clp(P - P ) i s  a p. l. ball which has B A P a s  a face. Then we say 
0 0 

We say that P collapses to the subpolyhedron P and write P 
0 

exists a finite sequence P = P 
r X P ~ - ~ ( . .  . T p o  . 

Remark. If P 4 po ,  then P i s  a strong deformation re t rac t  of P. F o r  
0 

suppose P 5 P 8 then i f  B = c l (P  - PO). B f7 P i s  a strong deformation 
0 0 

N 

retract  of B, being a face of B. If rp i s  the deformation retraction, then 
t 

0 

Definition. P i s  said to be collapsible i f  P collapses to a singular poi 

If this i s  the case,  we write P 

By the preceding remark,  every collapsible polyhedron i s  contractible. 

The converse i s  false,  however, a s  the following example shows. 

Consider a two-simplex: Let D be the quotient 

space obtained by making the identifications shown. Thesecs-zd derived of this 

two-simplex is  a triangulation consistent with the identifications, and so we ma 

consider D to be a simplicial complex. Moreover, by a theorem of Whitehead 



D is contractible; f o r  n (D) = 0, the obvious cell-decomposition shows 
1 

H.(D) = 0, i > 0 ,  and so =.(D) = 0, a l l  i. 
1 1 

Now D i s  not collapsible. F o r  suppose D V  D - D B .  Let 
0 0 

x E aB - B n D . Then link(x; D) = link(x, B) = a p. 1. ball. But no point of D 
0 

has a p. l. ball a s  a link. It tu rns  out that D X I 10, I = [o,  11. 

Definition. Let K C K be simplicial  complexes. Suppose A and aA 
0-  

/ are not in  K but a r e  simplices of K, where a i s  a ver tex of K , and sup- 
0 0 

pose that K = K U {A) U { a ~ ) .  (We also wri te  this condition in the form 
0 

K = K + A + aA. ) Then we say that K collapses by an elementary simplicial  
0 

e S 
collapse to K , and we wri te  K \  K . We say  that K collapses simplicially 

0 0 

to K if there  i s  a finite sequence K = K 
o r K r-  l . K ,  o and i f  

. R 

this i s  the case ,  we wr i te  K \T K _  . 

g Definition. If K i s  a complex, B E K is called a p r i n c i p a l  simplex i f  

B i s  not a proper  face of any simplex of K. If the face A of B i s  the proper  

face of no other  simplex of K, then A i s  called a f r ee  face of B in  K. 
f 

: Remarks: 1) An elementary simplicial  collapse i s  an elementary collapse. 

2) If K K and K = K + A + aA, then aA i s  a principal simplex of K 
0 0 

a with f r ee  face  A. On the other  hand, if  B i s  a principal simplex of K with 

f ree  face A ,  then B = aA; and if K = K - ({A) L) {B)),  K is a subcomplex 
0 0 

.e S 

3) It i s  fa l se  that I K I 11 L 1 ,  L a subcomplex of K,  implies that K \Ty L. 



Lemma 2.1.  a )  A cone collapses simplicially to a subcone. Precise 

b) Say K1,K2 a re  subcomplexes of K, 

K i n  K Z G  Kg.  Then K I U  K 

Proof. Let A I ,  . . . , A be the simplices of K - K in order  of decrea 
r o 

out A and v . A  
1 1" 

Then A i s  a f ree  face of the principal simplex v. A 
2 

what remains, etc. . . . 
b) It suffices to consider K1 Kg ,  with K1 n K2 C Kg. Suppose 

Hence K U K2 = K U K2 + aA + A defines an elementary simplicial collaps 
1 3 

KIU K y K3U K2. 

Lemma 2.2. I£ K collapses to K simplicially, and i f  u(K) i s  a 
0 

stellar subdivision of K, then u(K) u(Ko). 

Unsolved Problem: Is this t rue fo r  non-stellar subdivision? It i s  t rue for 

complexes of dimension 1 3. 

Proof. In this proof we do not distinguish in the notation between a simp 

and its associated simplicial complex. If A i s  a simplex, we write A for  th 

complex X. 

It suffices to consider elementary simplicial collapse S. It also suffice S to 

consider only subdivisions obtained by starring at one simplex. So suppose 

K = K + aA + A,  aA a principal simplex with free face A, and suppose that 
0 





Now, 

by Lemma 2 . 1  (both parts). Hence we have 

Now, 

That i s ,  ~ ( B A )  \B U($). Now continue a s  in Case 2). 

Case 4: B = aA. Then =(B) = c r ( a ~ )  = b. B = b(aA + A). But 

b ( a i  + A) 1 b a i  and abA /a.A = u(aA). Thus o(aA) 1 o(adi). Now proce 

a s  in Case 2). 

Lemma 2.3. Let I K I I L I , L a subcomplex of the simplicial com- 

plex K. Then there exists a subdivision K' of K such that if L '  i s  the indu 

subdivision of L, K' L', and L '  i s  stellar.  

Proof. Let B = c l ( l ~ I  - [ L / ) =  [ K - L [ .  B O I L I  = F ,  a f a c e o f t h e b a  

B. By Corollary 1. 27, there i s  a p. l. homeomorphism h: (B, F) -> (A; A ~ ) ,  

where A i s  a free face of the simplex A ( i .e . ,  dim AI = dim A-1). 
1 

Write B for the t r iangdalion K - L of B. Let B' and A' be subdivis. 

of B and A respectively, such that h: B' + A' i s  simplicial and B '  i s  

-1 
stellar;  apply Lemma 1.10 to h . Note that a s  h(F) = A ., B' contains a t x  

1 



Y, 

angula t i~n of F, say F'. Let K' be a s te l lar  subdivision of K whose in- 

duced subdivision on B i s  B'. 

Let p: A -+ A be the l inear  map which i s  the identity on A and sends 1 1 

thever tex  v opposite A t o a n i n t e r i o r p o i n t o f  A T h e n t h e r e i s a s u b -  1 1 ' 

division A" of A '  such that p: AI1 4 A: i s  simplicial, and A" i s  a stellar 1 

subdivision of A' 1 ' 

Let B1l be the subdivir m of B' making h: B" -> A" simplicial. Since 

h: B' 4 A' was already simplicial, F" i s  a s tel lar  subdivision of F', and 

extends to a s tel lar  subdivision L" of L , Put K" = B" L". Since B" and 

L" meet in the common subcomplex F", K" i s  a well defined subdivision of K, 

ot necessarily stellar. 

To prove this lemma, i t  suffices by Lemma 2. l to prove that Bt l  $F", a s  

n Ltt = F". To prove that B" $ F", i t  suffices to prove that A" 

where p: A'! + A" i s  simplicial. Now let {A.) be the simplices of All 
1 1 1 

-1 -1 * 
[in order of decreasing dimension. p Ai < p A. A .  by collapsing the 
B P,, 1 1 
fi : - 1 
kprincipal simplexes of p A, f rom their top faces in order.  Doing. this in  t11m 

gives the required simplicial collapse of A" onto At! . 



most (n - l )  elementary collapses. Suppose I K I = P 
n 

There i s  a triangulation K of K ccntaining a s  subcomplexes triangulations 
n 

of Pi, say Ki . By induction, there i s  a subdivision K'  

there exist  subdivisions K" and K" , of K' and K' respectively, with 1 

By Lemma 2.2,  = induced subdivision of K'  . Hence 
0 i 

1 



simplex of K ; i. e. , no simplex in K - K has all  i ts  vertices in K . 
0 0 0 

-- 

2. Ful l  Subcomplexes and Derived Neighborhoods 

Definition. If K i s  a subcomplex of the sim 
0 

said to be full i f  any simplex in K all  of whose ve 

Lemma 2.5. 1) If K i s  a subcomplex of K 
0 

U V 

empty o r  a single face of A. (And conversely. ) 

U 

A A 
Proof. 1) If us K', le t  U = AI AS, A < 1 

~plicial complex K, K i s  
0 

!r t ices lie in K i s  a 
0 

and K' S K '  a r e  f i rs t  
0 

deriveds, then K' i s  a full subcomplex of K + 
0 0 

2) If K i s  a full subcomplex of K and K'  S K '  i s  any subdivision 
0 0 

then K' i s  full in K'. 
0 

3)  If K- i s  full in K and A r K-K_, then A n I K ~ I  i s  either 

T 

4) KO i s  full in K there exists a l inear map f: K -5 R 

-1 t 
such that f (0) = K . (Linear means linear on simplices R = [0, m).) 

i < i 5  S, then A s  has an inter ior  point in K o and hence A S s KO. So A. 1 r KO, 

i l s ,  and c r s K 1 .  
0 

3)  If A r K-K meets I 1 ,  let  (a l , . .  . , a.) be the vert ices of A in K . 
0 1 0 

Let A = span{a  a i l .  Then A1 s K and A 1 < A .  Since A n [ K  I i s  
1 0 0 

always a union of faces  of A, each of which i s  spanned by i t s  vertices,  

AI = A A 1 ~ ~ 1 .  

2) Suppose K K i s  full. Let cr r K'. Choose A r K such that the 
0 

barycenter of cr i s  in A. Then b E A. Moreover, cr n 1 ~ ~ 1  A A I K0I = A,, 

AI a face of A .  Therefore o n 1 ~ ~ 1  = o n A which i s  either empty o r  a 
1 ' 





e* 
% a s  derived neighborhoods i s  that we want to De awe  LCJ plUV=  -.---. -- 

,eighborhood of X collapses to X. If M = A ~ ,  X = A ~ ,  then the f i rs t  

derived neighborhood of X in M i s  M, which does not collapse to X. The 

7.nd derived neighborhood does collnnse to X. however. 

$ 
I " 

'*: Lemma 2.6. Let KO be a full  subcomplex of K. Suppose f ;  K -+ IK 
-1 nd K = f ( O ) ,  f linear. Suppose 0 < & < f(v) , v any vertex in K-K o . 

0 

- 1 
hen f ([0, E]) i s  a derived neighborhood of I K o I in I K ! .  

=f- l ( [O,&]) .  Let c beap r inc ipa l s imp lexo f  N(Kb ,  

A A 
1"' A A 1  < 

< A  , A . €  K.  Then 
ry  r 1 

some 



T a k e  i as l a r g e  as p o s s i b l e  w i t h  A .  1 c KO. T h e n  f ( 2 . )  J = 0 ,  j < i. 

*it1 
, . . . , A h a v e  v e r t i c e s  w h o s e  v a l u e s  u n d e r  f a r e  g r e a t e r  t h a n  E . 

r 

H e n c e  £ - l (  C ) n Aitk # $, 1 k r-i, by l i n e a r i t y  of f .  T h e r e f o r e ,  

h 

f i t  = . . . = A r 1 = E  , SO N(K;, K')  C £-'[o, E 1. 
A - 1 

C o n v e r s e l y ,  s u p p o s e  Al. .  . A r  c f ([0,  E ] ) ,  A, < . . . < A,. T h e n  

h £(a.) = 0 o r  E . If £(Al) = 0 ,  t h e n  A1 is a v e r t e x  of K '  o . If £ ( A ~ )  = E 
1 

t h e n  Al  has a v e r t e x  in s a y  v ,  w i t h  [v] # A I ,  a n d  s o  

A A h 
v.  Al. . . a r c K'  a n d  l i e s  i n  £-'([0, E I). But  V. AI.  . , A r c N ( K ~ ;  K') .  

so f-'[o, E ] C I N ( K ~ ,  K ' )  I .  



Ambient Isotopy 

Definition. An ambient isotopy of a polyhedron X i s  a p. 1. homeomorphism 

X X I -> X A I which commutes with projection on I (i. e., i s  level p r e se rv i~  

d has the property that h(x, 0) = (X, 0) , all X c X. 

If h i s  an ambient isotopy, we write h for the p. 1. homeomorphism of X 
t 

0 itself defined by setting h(x, t)  = (ht(x), t). If Xi and X a r e  polyhedra 
2 

,tained in X, we say that h throws X onto X if h (X ) = X2 . Two 1 2 1 1  

yhedra contained in X are said to be ambient isotopic i f  there exists an 

ient isotopy throwing one onto the other. The relation "Xi i s  ambient 

topic to X2" i s  clearly an equivalence relation. 

A homeomorphism k: X + X i s  said to be ambient isotopic to the identity 

here exists an ambient isotopy h of X with h = k. 
1 

If X 2 X, we say that the ambient isotopy h of X keeps X fixed i f  
. o  - 

X X I = identity map of X X I. 
0 

Lemma 2 .7 .  Let K G K be simplicial complexes, and let 
0 

I K I  + l KO l be a p. l. homeomorphisrn such that 

1) h1 IKoI = identity. 

2) h(cr)= cr , al l  crr K. 

en h i s  ambient isotopic to the identity via an ambient isotopy keeping I K I 
0 

Proof. Let . U - , . . . , cr n be the simplices of K-K o in o rder  of increasing 

ension. Define H on K X I by setting i t  equal to the  identity. Define H 
0 



on K X 1 by setting ~ ( x ,  1) = (h(x), 1) a l l  X E K. Assume that H has bee 

defined on U. X I , a l l  j < i. Then H i s  defined on the faces  of U. X I. 
J 

1 1 
Extend H to U. X I by defining H($ - ) = (gi, 2 ) and joining linearly,  U. 

1 is 2 

a point in I? . This defines a p.1. homeomorphism H: K X I-> K X I. I 
i 

easy  to check that it i s  level preserving and i s  therefore the des i red  ambien 

Corol lary 2.8. If h: B -> B, B a p. l. ball, is a p. l. homeomorphis 

and if h1 6 = identity of $ , then h is ambient isotopic to the identity, keep 

Proof. Let K = A, K = and apply Lemma 2.7. 
0 

Lemma 2.9. Let  N and N be two derived neighborhoods of the polyh 
1 2 

isotopy. 

B fixed. 

X in  the polyhedron M. Then the re  i s  an ambient isotopy throwing N onto 
1 

which i s  fixed on X. 

Proof. Let K1 C J1 and K2 J 2  be triangulations of X S M, with K. 
1 

full in J . Let p r imes  denote f i r s t  derived 
i 

N1 
= I N ( K I ; J ' ) I  and N = I N ( K ' * J ' ) ~  Let  

1 1  2 2' 2 " 

of K ~ E  J1 and KZ E J (Choose subdivis 
2 '  

simplicial. They obviously a r e  the same.  ) 

of J and, so (p r imes  denote f i r s t  deriveds 
0 

subdivisions ,and suppose 

KoS Jo be a common subdivisi 

ions making 1 : I J~ I -> I J~ 1 

Then K i s  a full subcomplex 
0 

= I N  n o  ( J ' ; K ' ) )  o is a derived 

neighborhood. 

throwing N 2  onto N . We will construct an ambient isotopy throwing N ontl 
0 1 





N = f e l ( [ O ,  E ] )  i s  a derived neighborhoad of K o . So i t  suffices to show t] 

Let  F = A.  r\ £ - l (  & ), a face. Now set U. = (Ko), and set  
i 1 



Let a polyhe dron contained in the p. 1. 

j N M i s  called a regular neighborhood of X in M i f  
k 

1) N i s  a closed neighborhood of X in M, 

2) N i s  an m-manifold, and 

m-manifold M. 

This section i s  devoted to the proof of the following theorem. 

r e m  
7 

M and m-manifold, X a . polyhedron. Then 

1) Any derived neighborhood of X i s  a regular neighborhood; 

N a r e  
2 

regular neighborhoods of X in M, then there 

as t s  a p. 1. homeomorphism h: Ni -> N such that h(x) = X i f  X E X; and 
2 

3 )  If X i s  collapsible (X\ 0), then any regular neighborhood of X 

I a p. 1. m-ball. 

5 
Theorem 2.11 i s  proven by induction. We consider the following three 

iements, for each integer n 2 0: 

E(n): If X i s  a polyhedron contained in the m-manifold M, and i f  m S n, 

a every derived neighborhood of X i s  a regular neighborhood. 

If N1 and N a r e  derived neighborhoods of X in M ~ ,  an m-mani- 
p 2 

!? and if m b n, then there exists a p. l. homeomorphism h: N 1 + N 2 which 

e identity on X. 

U. In a manifold of dimension at most n, every regular neighborhood of a 

polyhedron i s  a p. 1. m-ball. 



Lemma2.12. U ( n ) i m p l i e s ~ ( n ) .  

Proof. Let dim M 2 n. If X \{X } and N i s  a regular neighborhoo 
0 

of X in M, then X is a regular neighborhood of {X }. Let M = I K [  be 
0 

triangulation of M with X a vertex of K. Then 
0 

I s ta r  (X  o K) I = I xo. link(x o ; K) I i s  a p. l. m- ball, and a closed neighborho~ 

of x . Moreover, I s ta r  (X K) I 1 {xo]. So ~ ( n )  implies that N is  home 
0 0 ' 

to the p. 1. m-ball 1 s ta r  (X K) I . 
0 ' 

Lemma 2.13. E (n-1) and B(n- l) implies E(n). 

Proof. Let X M be a polyhedron contained in the m-manifold M, 

Let K K be a triangulation of X G M ,  with full in K. Let 
0 0 

N = I N(Kb; K') I .  N i s  clearly a closed (topological) neighborhood of X, a 

know that N X. So it remains only to show that N i s  a p. 1. m-manifold. 1 
do this,  it suffices to prove that N(K' K"), for which we also write N, by ab 

0 ' 

of notation, i s  a combinatioriaf m-manifold. Using induction and the formula 

link(AB; N) = l ink(~ ; l ink(B;  N)) with a single vertex, it i s  easy to see that N 

be a combinatorial m-manifold i f  (and only i f )  for  every vertex v of N, 
i 
1 
1 

link(v; N) i s  an (m-l ) -sphere  o r  ball. 

So let v be a vertex of N. If v E K:, then s t a r  (v: K') c N, and so 

link(v; N) = link(v; K') = a sphere o r  ball of dimension (m- l ) .  

A 
Suppose on the other hand that v E N-K' . Then v =  A for  some simple% 

r3 

A E K. Let B = A n I I , a s i ~ g l e  ( ~ i . ~ : ~ l i c i a . ;  iace of A by fullness of KO 

(B i s  clearly non-empty). 



A A 
Let cr e K', and write cr = A As, A I <  ... < A  s K. Then 

S 

E. A 
j = { B  l . . .B.I A < B  < . . . < B . €  K ) ,  then U E  l ink(v;K1)-U= u1u2, 

J $ 1  J 

,,he~e cr. E (AIf  and U, E S. (A)'  being the induced subdivision of K'  on A. 

:We allow the possibility cr. = $ , i = 1, 2, and write U pl = r p. r = cr ) 
1 1 ' 1 ' 2 2' 

p u s ,  link(v; K') = A. S. 

4 
Let L = A. S. Now A < B => B / K '  . Hence S )9 K' = fi. Therefore 

f .  n K1 = A' n K' = B'. Therefore. L n N consists of the sirnplices of L 

neeting B' and their faces. The fact that B i s  convex insures that it and its 

:aces fo rm a full subcomplex of any simplicial complex containing it. We have 

&e last equality being a consequence of the fact that B' S A'.  

l N(Bt; A') i s  a derived neighborhood.of the collapsible complex B' in the 

hanifold I A' I of dimension at most (n-1). Hence by B(n-l)  and E(n-l) ,  

I N ( B ' ;  A') 1 i s  a p. l. ball whose dimension i s  (dim A - 1). However, S i s  

?.l. homeomorphic to  link(^; K). In fact, if A < B and C i s  the complementary 

4 

:ace, the map on vert ices which sends B to ? determines a simplicial homeo- 

Dorphism of S onto  link(^; K))'. Thus, I S /  i s  a p. 1. ball of dimension equal 

0 m -  dirnA - 1. Hence S i s  ap.1. ba l l fo  dimension m-1. 

Thus to complete the proof, i t  remains only to show that 

[ink(v; N) = link(v; Kt)  n N. Certainly, link(v; N) C link(v, K') A N. Conversely, 

if E link(v; K') n N = N(B', A'). S, then cr = r r where r E A1 r s S 
1 1 2  1 1 '  2 

rl< Ti S T meets B'. So v r  4 V T  cr which meets B', So vcr s N, rslink(v, 1 1 1 2  



d Lemma 2.14. If M is an m-manifold, i f  X C_ M is a polyhedron, 54 

then there exists a p. 1. homeomorphism h: cl(m-B) -> M with h l ~  = id, 

,Proof. By induction on m. So assume 2-14 for manifold 

and say dim M = m, 

l) cl(M-B) is an m-manifold. 

S of dim (m; 

Namely, triangulate M so that B and F are triangulated as S 

complexes, and consider link(X; M-B ), X a vertex of M-B . If X E M-B, thc 

link(X; M- B) = link(X; M), an (m- l) ball o r  sphere. If X E M-B r\ B, suppose 

- 
first 2 X 4 f i  i - + , X 4 F. Then link(x ;M-B) = link(x; M) - link(x; B) is  an (n 

sphere with the interior of an (m-l)-ball deleted, and so an (m-l)  ball. If X 6 

t h e n x t  l?. [F n M-B = l?]. So 1inkb.F) i s  an(m-2) ball, Moreover, 
0 -.---- 

( l ink(~ ;  M)) = ( X ;  M), and so ( l ink(~;  h)) n l i n k ( ~ $  B) = l ink(~:  G ;ln B) = lid 

a face of the (m-l)  ball link(x; B). Hence by iz5Svztion, 

cl( 1 link(x; M) 1 - I link(x; B) 1 ) i s  p. l. homeomorphic to 1 link(x; M) 1 , an (m-l)  



p. l. (m- l) ball. This proves that 

2) Let Fl = BB-F. Let c: a(cl(M- B) X I --3 cl(M-B) be a 

,oundary collar. Choose E > 0 such that c (F  X [0, E]) does not meet X. l 

L& D = c (F ,  X [0,  g] ) .  There i s  a p.1. homeomorphism B U D -> D which 

.tend to all of M by the identity, g etting a p. 1. 

homeomorphism M ->  cl(^-B). 

. To s tar t  the induction, we leave it to the reader to verify that in case m = 1, 

:I(M-B) i s  a manifold, and then to proceed a s  in 2). 

Lemma 2.15. E(n- l )  and B(n- l )  implies U(n). 

Proof. Let N be a regular neighborhood of X in  M. Then we will show 

that N i s  p. l. homeomorphic to a derived neighborhood of X in M. ( M  an 

&-manifold, X a polyhedron in  M. ), via a homeomorphism which i s  the identity 

m X. This together with Lemma 2.9 will imply U(n). 

Let K K C_ J be triangulations of X N C_ M. We can choose K K 
0 0 

e s  e s 
10 that K f K . So let K = K \. K . \ fS  . . . 1 K be the c o l l a ~ s e .  Let 

1 K" barycentric second derived of K. Let Ui = N(K;; K"). Then U = K", 
P* r 
b 
!and U i s  a second derived neighborhood of I K I in the n-manifold 1 K I  . We 
$6 0 0 
f 
tare going to construct p. l. homeomorphisms hi: ui+i 3 U. which leave KO 
B 1 

C' 
Poinhvise fixed. We assume by induction that hi+l has been constructed i f  i # r- 

80 that we may assume in particular that U;+4 i s  an m-manifold. 



-- pp p- 

- 
Now let us observe that Ui = U st  (8; K"). Since i s  a vertex 

cre K. 
1 

K!, the inclusion 2 i s  obvious. Suppose on the other hand, that T r U 

A 

then r & T where r meets K". Suppose + = Bi.. . b , where 
1 ' 1 i 1 S 

B a . ,  1 C B e K .  Then for some i, %. r K.V. Hence B. e Kf , so B 
S 1 1 1 

A If B is  a point, then B1 = q U s Ki . Otherwise, let v r K. be such t 1 1 

9 i s  a vertex of B Then t?& 

1' 1"' 
f3 r K". So in  either case 

S 

r r U =(&;K"), and hence so does T .  
1 

cre K. 
1 

Now let Kitl = K. + A + B, A = aB, a e K A 4 Ki . Then the only ba 
1 i' 

centers of simplices of K which a r e  not barycenters of simplices of K, 
it1 

A 
A and 6 .  Therefore 

A - A 

'it1 
= U. + P + Q , P = s tar  (A; K"), Q = st  (B; K"). 

1 

We now claim that the following two statements a r e  true: 

a)  U. A P i s  a face of P. 
1 

b) (U. U P )  n Q i s  a face of Q. 
1 

A 3 
To prove a), let L = link(3; K') = A'. S, where S = {a1.. . B ( A < B ... < J 

S $ 1  i 
I 

(See Lemma 2.13.) Let p: lk(A; K") L'  be simplicial homeomorphism : 
a\ A 

! 

which i s  defined on vertices by sending A C  to C for any simplex C of L. 

- h  

If U E P U., then r r lk(2; K"), a s  s s s t  (A; K") and 2 # cr. In addition, 
1 - A 

cr.. link(6; K") for some D r K as  r s s t  (D; K") for some D r K but 
i i 

A - A  h h 
D # st(A; K"). Therefore, U s P U => cr e: l : :~k(A; K") n l k ( ~ ;  K"), some D 

i 

Conversely, it i s  clear  that any simplex of such an intersection l ies in P n 





The last  equality follows an argument similar to that used in deriving a similar 

expression for U. (page 6 2  ). 
1 

However, (ai))' is full in A' and so also in L = if. S. Therefore, (a$)!' 

i s f u l l i n  L'. ) L 1 )  i s a p . 1 .  manifoldofdimension(n-l). Hence 

E(*-l) --Y. N((aB)I1, L') i s  a regular neighborhood of 1 a~ l in I L(. But 
- 

B ( \ 0, so by B(n- l), this regular neighborhood i s  a p. l. (m- l )  ball. Hence 

A U. i s  also a p.1. (m- l )  ball. Since P n U. G. link(2; K"), which lies 
1 

- 4  
e boundary of P = s tar  (A; Kn)) ,  this proves that P n U i s  a face of P. 

i 
4 

To prove b), le t  L = link(B; K') = i'. sl, say. Define p lk(%; K") -+ L' 
l l ' l 

X\ A 
defining it on vertices to send BC to C. As before we have that 

P) if and only i f  cr E link(%; K") link(Bi K") for some D E K 
i 

Once again, this intersection i s  non-empty if and only i f  B < D 

D B. Since B is  a free face of the principal simplex A, the only 

sibilities a r e  D rr A o r  D < B. So this time we find that 

- 4  
P&Q n (U.  U P)) = U st (D; L ~ )  = N ( ( A B ~ ;  L;). 

1 
DE B 

or  D = A  

efore, we see that 26' i s  full in L = fitsl and i s  collapsible. So E(n-l) 
l 

(-l) N ( ( A B ~ ;  L;) i s  an (n - l )  ball, and so Q 0 (U. A P) i s  a face of Q. 
1 

0 complete the proof, we a r e  going to apply Lemma 2. i4. Recall that the 

e hypothesis implied that Ui+l i s  a manifold. Moreover, 

Q =  cl(Q - FrQ), where the frontier of Q is taken with respect to U 
i t 4  ' 



But F r Q  = (U. LJ P) n Q, a face of Q. Hence Uitl  n Q i s  also a face of 
1 

Hence U i s  p. 1. homeomorphlc to c l  { U - Q) = U. P. A s imi l a r  arl 
itl 1 

ment gives a p. l. homeomorphism of U P with U , using Ler-nma 2.1 
1 i 

again, 

Proof of Theorem 2 - 4 4 .  By the preceding lemma,  it suffices to estab 

B(o),  E(o) ,  and ~ ( 0 ) .  Let M be a zero-manlfcld ,  X a polyhedron, X M 

Then M i s  h finite se t  of polnts and X i s  a subset. Hence any derived n e i ~  
? 

hood of X i s  a lso X ,  a s  if P 4 X, X u (P) does not collapse to X. If X 

collapsible, it i s  a slngle point, so  B(0) i s  a lsa  trivial.,  

Rcz'mark. In the course  of proving Lemma 2. 1, we also showed that given an 

regular  neighborhood N of  X in M ~ ,  t he re  exis ts  a sequence of m-rna.nij 
1 

Nl = V r "  . " ,  ' v 
0 

with V a derived neighborhood of X and cl(V - V ) and m-ball ,  which 
o i-l 

meets  V. in a face and also mee t s  8'; it? it face, 
. _ A  



Reg ular  Ne 'ighborhoods which Meet the Boundary 

- 65- 

Regularly 

In Section 3 we proved that derived neighborhoods of a polyhedron in a 

manifold a r e  ambient isotopic. In this section we extend this result to a larger  

; lass of regular neighborhoods. 

Definition. A regular neighborhood N of the polyhedron X in the p. l. 

manifold M i s  said to meet the boundary regularly i f  either N n aM i s  a 

regular neighborhood of X n aM in aM o r  both of these intersections a r e  empty. 

? 
Note: A derived neiahborhood of X in M meets the boundary regularly. 

-1 
i s  l inear,  f (0) = KO, and f(v) > for all  ver  t ic  e S 

- 1 kr K -  K If K ri a K =  $ ,  aK f [0, E ] = $. Otherwise a K n f - ' [ o , ~ ]  i s  a 
h 0 0 k( 
kaerived neighborhood of K o aK in aK. The uniqueness of derived neighborhods 

hows that the result  holds for all  derived neighborhoods. 

and N a r e  two regula 
2 

r neighbo rho0 ds of the po 

edron X in the manifold M which meets aM regularly, then there exists an 

ring N1 onto N fixed on X. 
2 

Naturally to prove this theorem we will need some lemmas. 

Lemma 2.17. Let N M be m-manifolds. Suppose N n aM i s  an (m-1) 
P 

Fnifold. Let X C _  N be a polyhedron, B C _  N and m-ball, B n X = d. Sup- 

bee B n Fr. .(NI i s  a face of B and either 

2) B n aM = B i s  a face of B and Bin I?rM(N) i s  a face of B 
L 1 1 ' 

Sen there exists an ambient isotopy of M, throwing N onto cl(N-B), which i s  

stant outside an m-ball contained in M not meeting X. 
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Proof. F i r s t  of all, cl(M-N) and cl(N-B) a r e  manifolds. Namely, 

M with N a s  a subcomplex and let X be a vertex of M-N . 
l) X E M-N. Then lk(x; M-N ) = link(x; M) = sphere o r  ball of dim m- l. 

2) X E (FrN) n (1nt M). Then link(x; M-N) = link(xt M) - link(x; N). 

But lk(x; M) # link(x; N) and link(x; M) i s  an (m-  l) sphere. Hence link(x; N) 

is an (m-1) ball and the closure of the difference i s  an (m- l )  ball. 

3) X E aM r)  Fr(N). 

F ~ ~ ( N )  = BN - N aM which is  a p.1. (m-l)-manifold, 

since we assumed that N n aM was, and by 1) and 2). 

Now link(x; M-N) = link(x; M) - link(x; N) and 

ink(x; M-N n N) = link(xi M) - link(x; NI 0 link(x; N). Let Bl = link(x: M), 

= link(x; N), both (n- 1) balls. Then Bl -B n B i s  a face of B So 2 2 2' 

a face of B and B - B i s  an n-ball. 
2 1 2 

This proves  cl(^-N) i s  a manifold. cl(N-B) is  a manifold by Lemma 2.14. 

Let F1 = B A Fr(N). Let F = B n cl(N-B). F i s  a face of B, for in 
2 2 

ase 1) of the statement of this lemma F = c l (6  - 
2 

Fl); and in case 2 ,  

= cl(B - F V Bl), and we saw that F 
1 1 U Bl 

i s  a face of B in the last  para- 

raph. Triangulate M with Fl, Bl = B n 8M, F2, B, N, and X a s  subcomplexe 

e t  C = second derived neighborhood of F in M-N , with respect to this t r i -  
1 

ngulation. Let D = second derived neighborhood of F in N-B . Note that 
2 





2) B n BM#O. Let C1 = C n BM, Di = D n a ~ ,  = E n a ~ .  BY 

a s  in 1) (one lower dimension), we may find a p. l. homeomorphism 

h: El 4 E1 such that h l aE 1 = identity, h(cl) = C* U B 1 ' h(DIu B1) = D1. 

(Recall: aM = fd. ) Define h on F r E  by setting h1 F ~ E  = l. Then as before, 

h i s  defined on (C n (B  U D)); which it maps homeomoprhically onto 

((C U B) n D)' . (These a r e  not equal. ) Once again, this definition extends 

to a p.1. homeomorphism of E which i s  the identity on Fr(E).  Now h is  

e identity via an isotopy fixed on Fr(E) ,  by a corollary to 

.7 which we did not state. Extend this isotopy as in 1). 

Notes: 1) The unstated corollary is: If A1 is 

Lemma 2.18. If X c Int and N and 
1 

Proof. In the proof of Theorem 2.11 (see 1 

6(t ), we showed that there exists a sequenc 

. 3 V  with V a derived ne 
0 0 

and m-ball which meets 

.) = B. r\ FrV . Hence Lem 
1 1 i 

a principal face 

any homeomorphism h: A 3 A with h ) v b l  = identity, i s  ambient isotopic to 

the identity keeping vi\ fixed. This applies because E I vEi. 
1 

2) The m-ball outside which the isotopy i s  constant i s  E. 

N2 a re  two regu .lar neighbor- 

h oods of X which lie in Int M, then there exists an ambient isotopy throwing 

.emma 2.14 and tl 

e of m-manifolds 

.ighborhood of X 

V and aV. i 
i- l 1 

~ m a  2 . 1  applie S 

le remark on 

3 

in M and 

.n faces. Since 

: there exists 

an ambient isotopy of M, fixed on X, throwing V onto V Hence N is 
i i- l' 1 

ambient isotopic to a derived neighborhood. So is  N 2' and derived neighborhoods 

re ambient isotopic. 



of X r~ aM i n  aM, then there  exis ts  an  ambient isotopy of M, fixed on X 

Proof .  Let  M be triangulated with N, and X a s  subcomplexes with? 

X n aM. We saw in the proof of Theorem 2 .11  (see Lemma 2 .15)  that in 8 

there  exis ts  a collection of ( m - l )  manifolds N = Vr 3_ . . . 3 V = U such 
1 0 0 

- V ) i s ' a  ball  meeting V and a(V.) in faces .  As a ( a ~ )  = $ , ' 
i- l i- 1 1 

V . Therefore ,  Lemma 2.1 applies to each  pair  V. V to a F r a ~  i 1 i-i 

give an ambient isotopy throwing V onto V constant outside of an (m-l)- 
i i-l '  j 

ball  in aM which does not meet  X. Call  this ambient isotopy H. and let E 
E 

be the ball outside of which it i s  constant (may take E = 2nd derived neighbo 
i 

hood of cl(V.-V ) i n  aM). E. fl X = g. 
1 i-l 1 

Now triangulate M with X and E. a s  subcomplexes. Let F = 2nd del 
1 i 

of E; in M. F:n X = @ .  W e  extend H: to F a s  follows: Put H; = idend 

Section 3 ,  Lemma 2.7 and Corol lary 2. 8. ). Now put Hi = Identity on the res t  ( 

M X 1. This  defines an ambient isotopy of M throwing V onto V Com- 
i i - l '  

posing these isotopies defines an isotopy throwing N onto U 17 aM, fixed on 
1 0 

Similarly,  N2 is ambient isotopic to U ' r ,  aM, U: a derived neighborhood oj 
0 

X also.  But U' is  ambient isotopic to U_, and any ambient isotopy throwing 
n 



if N meets 

e . ,  

K a full 
0 

K ordered 
0 ' 



a s  (N Q A;) \ () (N r, A,) and by Lemma 2.1, (applied to a sub 
j =1 J j = i + i  J 

division in which the collapses a r e  simplicial). Lemma 2.1 applies because 

point of K i s  contained in A some j, it is contained in a proper  face of 
o j' 

Now, U = N. Clearly, there  exists an i such that U. = X (N 17 aM), by a] 
0 1 

Now suppose that N i s  a regular  neighborhood of X which meets  the boun 

regularly. Then N n aM i s  a regular neighborhood of X n aM in aM. 

Claim: N n aM C_ aN is a regular neighborhood of X n aN in aN. 

N n aM is a neighborhood of X n aN in  aN because B 

0 

X n a N =  ( X n F r N ) u ( X n  N n a M ) = X n a M  a s  X n  F r N = $  and N n a M  is 

obviously a neighborhood of X n aM in aN. N n aM is an (m-1) manifold 

which collapses to X A aM = X /7 aN. t 

Let N, be a derived neighborhood of X in M. Then N, meets  aM 

regularly. Now, there  exists a p. l. homeomorphism h: N 3 NI such that j 

h l X = identity and h(N) = 
N1* 

Moreover, h(N BM) and NI A aM a r e  both p 

1 

regular  neighborhoods of X aN in aNr Hence there  exis ts  an ambient ! 
1 

isotopy of N fixed on X, throwing h(N n aM) on NI n aM. In particular,  
1' 

5 t here  exists a p. l. homeomorphism h' of N onto N with h '  l X = identity, + 

1 

such that hl(N r )  BM) = NI fl aM. But X U ( N ~  f7 8 ~ )  \ X. Hence 

-1 
N 1 X u (N n 8M) \ X, since (h1) p rese rves  collapses. 



i 
Proof of Theorem 2.16. We a r e  going to show that any regular neighbor- 

t' 
i 

hood which meets the boundary regularly i s  ambient isotopic to a derived neigh- 

borhood. Since derived neighborhoods a r e  ambient isotopic, this will prove 2.16. 

So let N be a regular neighborhood of X in M meeting aM regularly. 

Then N \ X U ( B M  T \ N )  X. Let K be a triangula tion of M such that X and \ 
N a r e  triangulated a s  subcomplexes, K and L, say. We may suppose that 

0 

L $ K b (L n k) 7 K . Let L =  K qS... f s  K be these two collapses, 
o o r o 

derived of K. Let K. = K. . f A + B, A = aB. Then we have s eep  (Lemma 2.15) 

= U  U 1  
i- l 

p. l. home 

1 1- 1 

A - 4  ' L) Q, where P = st  (A; K'!), Q = s t a r  (B; K" 

:amorphism U. E Ui-lU P g U We a r e  
1 i- l' 

), and that there 

going to use 

I ~ e r n m a  2.16 to show that in fact Ui i s  ambient isotopic to U C) P and 
b; i- l 

U. .U P is ambient i s o t o ~ i c  to U. . k e e ~ i n g  X fixed. This will complete the 

I Either A and B a r e  both in BM o r  neither i s  m aM. In the lat ter  case, 

and Q both do not meet aM. In this case, P n F r ( U  U P) P r\ a(Ui-lu P), i- 1 

d we have seen (page 6 3 ) that P A a(Ui-l  V P) i s  a face of P. Similarly, 

R n Fr (u i )  = Q n a(U.)  i s  a face of Q. Hence by Lemma 2.16, there a r e  ambient 
;q 1 
!. 
h o p i e s  throwing Ui onto U cl P and U P O E ~ O  U.. 
B i- l i- l 1 

Suppose on the other hand that A and B a r e  both in aM. Then 

h *  
!tar(A: K") n Kt1 = star(A; K") and similarly for b,  so P and Q each meets aM 

Fr U i s  a face of Q. Hence in order  to conclude the proof by applying 
i 







Chapter I11 - - P. L. Spaces and Infinite Complexes 

1, Introduction. 

Chapters I and I1 have been confined to the study of compact polyhedra an 

p. 1. manifolds contained in given Euclidean spaces. As in Differential Topol 

where one can introduce abstract manifolds, one can define P. L. spaces and 

manifolds without reference to an ambient Euclidean space and without the 

hypotheses of compactness. In this chapter we propose to study abstract P. 

spaces and manifolds and to indicate how to extend the precediiig result'$ to 

objects. 

One can also define the notion of'a locally finite infinite complex containe 

03 
in a given Euclidean space (possibly E ) We will show that the notions of P 

space and infinite complex a r e  essentially equivalent. In particular, compac 

P. L. spaces and manifolds a re  no more general than the finite polyhedra an 

p. 1. manifolds which we have been considering. 

2. Triangulation of P. L. Spaces and Manifolds. 

Definition. Let X be a topological space. A co-ordinate map (f ,  P) i 

a topological embedding f: P -+ X of a Euclidean polyhedron P. Two suc 

maps (f,  P) and (g, Q) a r e  compatible provided that i f  £(P) n g(Q) # fl ther 

- 1 
exists a coordinate map (h, R) such that h(R) = g(Q) n £(P) and f h and 

a r e  p. l. maps. Equivalently, we say that ( f ,  P) and (g, Q) a r e  compatib& 

- 1 -1 -1 
f (gQ) is a subpolyhedron of Q and g f: f (gQ) -> Q i s  a p. 1. map. 

(Put h = g )  f-lga), assuming £(P) r\ g(Q) = fl. 



k such that 

1) Any t& elements of 3 a r e  compatible. 

2) F o r  all  X E X, there exists ( f ,  P) E 3 such that f(P) i s  a topological 

neiahborhood of X in X. 

3) 3 i s  maximal, i. e. , i f  ( f ,  P) i s  compatible with every map of 9 

If X i s  a znd countable Hausdorff space, the pair (X, 3 ) i s  called a 

Definition. A family of coordinate maps 3 on X satisfying 1) and 2) 

ed a base f o r  a P. L. s tructure on X. 

Lemma 3.1. Every base for a P. L. structure on the topological 

rL 

Proof. Let 3 = the set  of al l  coordinate maps in X compatible with 

A , -, - I -, 

pace X i s  contained in a unique P. L. structure 2 . 

. The elements of 3 a r e  compatible. F o r  i f  ( f ,  P-') and (g, U) a r e  

and £(P) 0 g(Q) # 8, we may find a finite collection (h l *  a S (hr9 Brj  
r 

aps in bj) such that £(P) f l  g(Q) C_ U hi(Bi). By definition f and g a r e  
i=l 

-1 - 1 
lpatible with each hi, so if we let  RI = h. £P and R." = h gQ, R I  and F-!' 

1 1 1 i 1 1 

those 

i .l. 

:subpolyhedra of 
Bi. 

Let R: = R! 1 n R I '  1 . Then u ~ . R T  1 1  = f(P) n g(Q). 

.l. -1 .P 
- 1 " 

efore, 
P1 

= f-i(gQ) = f (uhiILi ) = Uf h . ~ ~ .  1 i i s  a polyhedron, and g'if i s  

- 1 ::: 
P because in each piece f h.R. it agrees with the p. 1, map 1, 1 1 1  



f whic h also i s  defined on this piece. It i s  clear  that satisfies 

7)  2nd ? \  in the definition of a P- L- snace and i s  the uniaue structure cont.;- 

f: P -> X and g: Q -2 X a re  

* 

two compatible 

maps, X a topological space, then there exists h: R ---+ X, a coordinate 

with h(R) = £(P) y g(Q) and with h'lf and heig p.1. maps. 

Proof. Let I K I  = P and I L I = Q be triangulations with K and Lo, ' 
0 

- 1 - 1 
subcomplexes, triangulating f gQ and g fP respectively. Let K: and 

be subdivisions of K 
0 

and L such that g-'f: K' -> 
0 0 

K' and L' be extensions of these subdivisions. Let A C F" be a sirnplex 

which has one vertex j(v) for each vertex v of L' - L' and one vertex i ( ~  
0 

for each vertex v of K', and no others. Consider the simplicial homeorno: 

i: K' -> A determined by the definition for  i already given on vertices and 

-1 
h omeomorphism j: L' -> A defined by putting j(v) = i(f g(v)) i f  v c LA f 

1 
extending linearly to all of L'. ( j  i s  already defined on vertices of L' - L' o 

Let R be the union of the images of these simplicial homeomorphisms, 

a simplicial complex. Define h: R -> X by defining 

h(*) fi"(x) if X e Image i. 

-I 
h(x) = g o j  (X) i f  X E  Image j.. 

The definitions agree on the overlap. since i f  X E (Im i) A Im (j) 

- 1 
= f i  (X). It i s  not hard to see ti 

1 that h''£ and morphism with image £(P) u g(Q) , anc 
1 
g a r e  p. 1. 



Corollary 3 . 3 .  If (X, 3 ) is a P. L. space and C C_ X is compact, then 

there exists (h,R) r 3 with C C Int h(R). 

Proof. Let (hl9 RI), . . . , (h , R ) be in with C C_ 1nt(h1(R1) ... u h (R 
r r r 

There exists a coordinate map h: R 3 X with h(R) = h 1 1  (R ) u . . . U hr(Rr), and 

6 - 1 
with h compatible with each h. (i. e . ,  h hi: R. + R i s  p. l. , al l  i). By 

1 1 

arguing a s  in Lemma 3.1, i t  i s  not hard  to show that h is compatible with every 

of and so in 3 . 
2 

Definition. The P. L. space (X, 3 ) i s  called a P. L. m-manifold i f  

for all  x E X there  exists h: hAA' -> X with (h8 A-^-) E 3 and X E Int, h ( ~ * ~ ~ ) .  

Lemma 3.4.  If ( X . 3 )  i s  a P . L .  m-malifoldand C C X  i s  compact, 

then there exists (h, R) E 3 with 

1) R i s  a p. l. m-manifold. 

2) C C_ IntX h(R). 

Proof, By Lemma 3 .  2, choose ( f ,  P) and (g, Q) in _f with C 2 Int f(P), 

') 2 Int g(Q). Let K o be a full subcomplex of K, 1 = Q, l KO l = g- l fp .  

Q N be the second derived neighborhood of KO in K. Then N i s  an 

-manifold, for  though K need not be a combinatorial manifold, every point 

i I KO I has a neighborhood in I K I which is a p. l. m-ball. So link(v, K) = an 
I' 
( v  

$ sphere o r  ball  f o r  al l  v s KO, and  link(^, K) i s  a sphere o r  ball for all  

~ l i c e s  A meeting KO. So the proof that N i s  a manifold goes through (see  

)f of Lemma 2.13). N -> X i s  the required coordinate map of this lemma 





Qi,Si, P. . F o r  each i, let L; and K k i  be subdivisions such that 
1 

-1 f.: L! -> K' 
itl 

i s  simplicial. Since K. n L. = 8, this defines a sub-  fit^ 1 1 1 1 

division of K, U L. which we extend to a subdivision J! of J. Then 
1 1 1 B 

Jf,K;, Lf and f .  satisfy the f i rs t  part of the lemma. 
1 

The proof of the second part  of the lemma i s  similar,  using Lemma 3 . 4  

instead of Lemma 3. 2. The details a r e  left to the reader. 

To make the notion of a triangulation of a P. L, space more precise, we 

n 
"mtroduce infinite complexes. F i r s t  of all, we view E E nti by identifying 

. , X ) with (xi, . . . , X 0). Note that under these identifications, the 
n n ' 

- 
convex hull of a subset S of E" i s  the same z s  i t s  convex hull viewed as  a sub- 

set of 
i 

Let Em = E , with the weak topology. 
i=i 

E* may be viewed 

L 
ias 

all (m)-tuples (X 1 ' * * . '  x , . . . ) with al l  but a finite number of X, being zero, 
n 1 

md the topology of Em may be viewed a s  the topology of pointwise convergence. 

he convex hull of any subset of EW i s  defined in the obvious way. In particular, 

y we denote the convex hull of the points (1,0, .  . . ), (0 ,1 ,0 , .  . . ), 

Definition. A locally finite simplicial complex K in Em i s  a collection of 

te) simplices, K, such that 

1) 4 , ~  E K U n T = o r  a common face. 

2) W E  K. T < U  * T C  K. 

i. 3) F o r  all  X t I K I ,  there exists a neighborhood U of x in Em meeting 

PY finitely many simplices of K. (Exercise: Prove that every finite subcsm.ple-J: 



Let (X, 3)  be a P. L. space. Using Lemma 3.5, and the technique of 

Lemma 3 . 2  one can construct an infinite locally finite complex K whose 

00 
vertices a r e  vertices of A and a homeomorphism h: 1 K J  -2 X of 1 K 

onto X such that the restrictions of h to finite subcomplexes a r e  element 

of 3 . Moreover, if (X, 3 ) i s  a P. L. m-manifold, then we may insist t 

I K ]  i s  also; that is,  every point of ( K ( l ies  in the interior of a p. l. m-ba 

contained in I K1 . In the case that there i s  a bound on the dimensions of t 

N 
simplexes of Lemma 3. 5, one can take K C E for some finite N. In this 

the complex K i s  constructed within a suitable Euclidean space by 'bare h 

using the instructions provided by Lemma 3 .  5. Details a r e  left to the reade 

Definition. The pair (K, h) i s  called atriangulation of (X, 3 ) if K is 

locally finite complex and h: I K 1 -> X i s  a homeomo rphism such that the 

restrictions of h to finite subcomplexes a r e  elements of 3 . 



L. Maps and Subidivi 

Definition. Let (X, 3 ) and (Y, ) be P. L. spaces. Then $l X d Y 

i s ~ a l 1 e d a P . L .  mapif  for all ( f , P ) e  3 anda l l  (g,Q)e 0, f -gQ i s  

either empty o r  a subpolyhedron of P, and i f  the latter,  then 

is, a p. 1. map. 

Notes: 1) It i s  easy to check that a P.L. map is  continuous. - 
i 

I* 2) By an argument similar to that of Lemma 3.1, to show that a given map 
\i 

is a P. L. map, it suffices to check the condition in the definition for elements L* , 

!(*,P) of a base of 3 and elements (g, Q) of a base of h . 
Definition. If $ I K I -> I L I , K and L locally finite simplicial complexe S,  

ve say jd i s  P. L. i f  it maps each finite subcomplex piecewise linearly into a 
E 

finite subcomplex of L. 

kernark The two definitions of P. L. map a r e  consistent. That i s ,  if  (X, 3 ) a' 
6 
md (X, ) a re  P. L. spaces and i f  (K, h) and (L, j) a r e  triangulations of 

E and Y respectively, and if $ and 4 a re  maps such that the following diagram 

Dmmutes : 

, I  

!n fl i s  a P .L.  map if and only if 4 i s  a P.L. map. 



Definition. A subdivision K t  of a locally finite complex K is  a locally' 

finite simplicial complex such that 

2) Every simplex of K  i s  contained in a simplex of K'. 

Using Lemma 1 .2  and local finiteness, i t  i s  easy to see that every s i m ~  

of K i s  a union of finitely many simplices of K'. Moreover, if K'  is  a sul 

division of K, then K t  induces a subdivision (in the finite sense) of every fi 

subcomplex of K. 

Theorem 3.6. A. If S i s  a locallv finite family of polyhedra in I K I  
then there exists a subdivision K t  of K containing (finite) triangulations of 

each element of S. 

exists a subdivision K'  of K  such that f: K '  -+ L maps simplices linearl 

C.  If f t  K -> L i s  DroDer P. L. map, then there exist.subdivisions K - - -  - - - 

L' with f: K t  -> L' simplicial. 

l i - j  I L 2. Fo r  example, i f  K i s  connected, let R 1 be a finite subcornple 

and define R. 7 = closed simplicial neighborhoods of Ri-l, for each i. Let 
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ecause any vertex of K can be connected 

y many polyhedra in S. Proceed by 

induction subdividing K. to contain subdivisions of its intersections with mem- 
1 

ers  of S and with the preceding subdivision of K Then since K. is  not i-i' 1 

hanged after the ( i t l ) s t  step i s  over, i t  i s  clear that this defines the required 

B). S' = { U  n f-'(-r) ( U c K, r c L} is a locally finite set of polyhedra 

f K. Let K' be a subdivision of K containing subdivisions of the elements 

C), We may assume by B that f i s  linea-a n simplices of K. As f is  

family of polyhedra in ILI. Let L' 

-1 
e these polyhedra as  subcornplexes. Then {o n f r 1 U K, r L is a 

in the finite case this cell subdivision 

8 a locally finite simplicial subdivision with no extra vertices. (See Lerrno 

C) i s  false for non-proper maps. For  example, triangulate 

real line with vertices at the integers. There is a PL map f :  R -+ [0, I ]  

pping R horneomor~hically onto the open interval (0, 1) .  It is impossible tp 

locally finite subdivisions to make f simplicial. 



4. P.L. Subspaces 

Definition. Let (X, 3 ) be a P. L. space. Let (Xo, 3,) be anothe 

P.L. space with X o C  X. Then (X o , 30) is  called a P.L. subspace of 

(X, 3 ) provided 

1) X has the relative topology induced by X, and 
0 

{X l d(x, X o ) 5 1) i s  not. 

4) If P o C P a re  polyhedra in Ens P - P o i s  a P. L. subspace of E' 

Lemma 3.7. If (Xo, 3,) i s  a P.L. subspace of (X, 3 )  and i f  X. : 

closed subset of X, then there exists a locally finite triangulation h: I K I 
and a subcomplex K o of K such that h1 1 K o I :  I K o I -> X o i s  a trianguli 

> X, i(x) = X , i s  a P. L. map. 2) i: X - 
0 

Remark. If (Xo, 3,) is  a P. L. subspace, then y0 = {(f ,  P) c g I f(p) 

Examples: 1) If X o C X i s  open and i f  3 o = {(f ,  P) c 3 1 f(p) S xo), 

(Xo, ) is a P. L. subspace of (X, 3). 
2) E" has the natural P. L. structure generated by the inclusion rna 

polyhedra in En. A compact subspace X o of E" must be a polyhedron 

n 
(with i ts  natural structure). Fo r  suppose X o C E is  a compact P. L. S 

Then there i s  a coordinate map (f ,  P) in the structure of X o with f(P) 

f 
But X. i s  a P. L. subspace, so the composition P + X o C En is  a P 

Therefore X. = f(P) is  a polyhedron in En. 

3)  In E ~ ,  { X I  d(x,x o ) C 1) i s  a P.L. subspace, 



be a 

finite 

Let 

)er  P. 

locally finite 

triangulation 

M' and K 't, 

L. map (X 
0 

triangulation 

of X . Let 
0 

e subdivision 

i s  closed) $ 

of X. Then 

$ = h-' i k, 

.S of M and 

simplicial. 



5. Collapsing and Regular Neighborhood Theory. 

Definition. If X is a closed P. L. subspace of the compact P. L. sp 
0 

then we say X X i f  there exists a finite sequence of P. L. subspaces of 
0 

such that X. - X = cl(X - X ) 
1 i-l i i - l  

i s  a p. 1. (P. L. ) ball having cl@.-X ) n X as  a face. 
1 i-l i-l 

> M be a trianrr Definition. If M i s  a P. L. manifold, let h: I K 1 - 
of a neighborhood of X in M (h in the structure). We say X E aM i f  

link(h-'X; K) i s  a ball. This does not depend upon the choice of (h, K). 

Definition. Let compact P. L. subspace of the P. L. 

Then a regular neighborhood N of X is  a topological neighborhood N, con 
2 

such that N \ X and N i s  an m-dimensional P. L. submanifold (i. e . ,  a 
j 

space which is  a manifold) of X. N meets the boundary regularly if N n al! 
i 

o r  is  a regular neighborhood of X n aM in aM. 
l 

Theorem 3.8. Let X be a compact P. L. subspace of the P. L. m-m: 
0 

M. Then a regular neighborhood of X which meets the boundary regularly 
0 

exists. If N I  and N a re  3 two regular neighborhoods of X, then there e 
2 

a P. L. homeomorphism of N onto N pointwise fixed on X . If N and 
l 2 0 1 

meet the boundary regularly, then there exists an ambient isotopy 

H: M X I 4  M X I throwing NI onto N and leaving X fixed. 
2 0 

Proof. Let ( f ,  K) be an element of the P. L. structure g of X such 

X IntM f(K) and K i s  a p. l. m-manifold. Let N be the image under f 
0 

-1 
a regular neighborhood of f (Xo) in K. 
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The uniqueness theorems follow similarly by taking Ni U N2 C MM f(P). 

One can also define regular neighborhoods of non-compact subspaces of a 

s the union of a disjoint locally finite family of P. L, subspaces B. of X, 
1 

ere, for  each i, B. i s  a p. l. ball having B. A X as  a face. A generalized 
1 1 0  

ollapse is a finite sequence of elementary generalized collapse S. We write 

A generalized regular neighborhood of X in the P. L. m-manifold M, 
0 

a closed P. L. subspace, is a closed topological neighborhood which i s  an 

-submanifold and which collapses to X by an elementary generalized collapse. 

This definition gives r ise  to the analogous existence and uniqueness 

orems as  for the compace case. However, these generalized regular neigh- 

rhoods have had no importance so far.  



Let K and L be P. L. subspaces of the P. L. manifold Q, q = dim Q 

Then K and L a r e  in general  position ( o r  K i s  in gen. pos. W. r .  t .  L) if 

i 
dim (K n L)  5 dim K t dim L - q . (Note the s imilar i ty  between this condit$ 

i 
1 

and the condition in dimension S that i s  necessary  and sufficient for  two subl 
t 

spaces of a finite dimensionalvector space to span that space. ) I 

If f: P -> Q i s  a m ,  S' ( f )  = X r P I  fWif(x) has  a t  least  r-points. 

follows f rom the fact that P and Q may be triangulated to make f linear tl 

S'(f) i s  a P. L. subspace of P. If f i s  proper ,  then S ( f )  i s  a closed P,] r 

subspace, and dim S ( f )  = dim S' ( f ) .  
r r 

If f:  P -> Q i s  a map,  P & Q P. L. spaces of dimension p and q 

respectively, we say  that f i s  in general  position provided 

1) f i s  P. L. and proper.  

Let f and g be two maps  P-> Q, P and Q P . L .  spaces.  Let 

the topology of Q. Then we say f i s  an &-approximation to g (with resp 

) provided that v x  E P ,  P ( f(4 9 g ( 4 )  < & (X) * 

If f and g a r e  maps ,  f f '  (re1 K) means that f i s  homotopic to f '  

a homotopy which i s  the constant homotopy on K. 



$2. Approximation of Continuous Functions by P. L. Maps. 

Lemma 4.1. Let P i ,  P2 , and P be subpolyhedra of the polyhedron P. 
3 

Let f: P -> be a continuons map, with f ( P a p. 1. map. Assume 
3 

n 
'p n P, = 6 . Given & > 0, there exists f '  : P-> I with the following properties: 

1) f ' l  i s  a p. l. map 

n 
3) f t  i s  an &-approximation to f (W. r. t the usual metric on I . ) 

Proof. Let p be a me t r i c  for P and choose 6 > 0 such that p(x, y) 6 

rnplies d(fx, fy) < &/2. Let K , K , K C_ K be simplicial triangulations of 
1 2 1  

P , P C_ P ,  such that K1 i s  full in K, i re  .h (K) < 6 ,  and f l K i s  linear. 
1' 2 3 

n 
bw define f': I K 1 -> I by f i r s t  putting fl(v) = b(v) for every vertex v E K. 

'hen f b  la,, ,IT any simplex of K be defined by extending linearly the definition 
1' 

f f '  on vertices of cr. If r n ( K  I = fl , however, (i. e . ,  r has no faces in K 
1 1 ' 

ut f l l u = f l r .  Final lyif  u s  K -  K*, but rAIK1l # f l ,  w e m a y p u t  r =  r1r2, 
k' 

i c K1, uZn l~~ l = 6 ,  a s  K i s  full. Then we define f '  ( r by extending 
1 

i 

inearly the map f '  already given on r w d  r Clearly, f '  1 K2 U K = f 1 K LJ K?, 
rt. 1 2' 3 2 

1 f ' l  K< i s  linear. Since vr r K, diam f r  < F /2  and diam f t r  < & / 2  by 

Wruction, f '  i s  an &-approximation to f .  

mark. f i s  homotopic to f '  ( re1 P, U P,) by the homotopy 

i(x) = tf(x) t (1-t)fl(x). Then d(H+(x), ~ ~ ( x ) )  & , all  X c I", all  S ,  t E I. IE 

Ler words, we can choose the homotopy H of f and f '  to a "artitra-rily. 



Lemma 4. 2. Let f :  P -> Q be a continuous map of the P. L. spac, 

P into the P. L. g-manifold Q. Let P P be a closed P. L,  subspace 
0 

of P on which f i s  already a P. L.  map. Let  E : P -> be a continu~ 

positive function. Then there exists f ' :  P -> Q such that 

1) f '  f ( re1 P ) , 
0 

(fx, f 'x) < & ( X )  a l l  X ( ,o some given distance function for the 
; 

topology of Q),  

3 )  f '  i s  a P. L. map. 

Proof.  Let {B.  1 be a locally finite countable family of q-balls in C 
1 

with Q C_ (??or example, triangulate Q and take closed ver 

s t a r s . )  Let K C,. K be (locally finite) simplicial  complexes triangulating 
0 

P G P ,  such that if r E K, f r  C_ IntQ Bj ,  some j. This i s  possible becau 
0 

there  i s  atzfangulation L of P, containing a triangulation of PO,  such thi 

L = 5 L L. finite subcomplexes such that L .  n L = 6 if 1 i - j 1 2 2. 
i '  1 1 

i =  l j 

Subdivide each L.  to get L! such that U E L '  implies f r  S Int B. ,  some j 
1 1 i J 

Then fur ther  subdivide (proceed inductively) to get L'! such that for  all 
1 

L'! and L" a r e  compatible; this gives the required subdivision, K, of 
1 i+ 1 

Let  {A. I i = 1, . . . , m} be the simplices of K-K , ordered  so that a 
1 0 

simplex follows i ts  faces .  ( F o r  example: f i r s t  take the vert ices  of L"- 
0 

then the l -s implices  and L" - K and the ver t ices  of (L1' - L" ) - K , then 
0 0 0 0 

the 2-simplices of L" -Ko, the 1 -simplices of (L"  -L"  )-K and the zero 
0 1 0 0  

i 
s implices  of (L" - L';) - KO, etc. . . . )  Put  K. = K,u U A . We a r e  

2 1 
j = i  j 



inductively maps f.: K * Q 
1 

f i l  IKil is P .L.  

f - f ( re1 P ) 
i o 

i f  U E  K, f . ( u ) G I n t  B some j. 
1 Q j '  

t 
I W e s t a r t w i t h  f o 2 f .  Suppose f i sde f ined .  ' Then f ( A . ) C I n t Q B j ,  i- l  i-l  1 

,me j. Let K' be a subdivision of K such that N(A!  ; K') c f - l  (Int B.). 
1 - i-1 Q J 

et h: B. d lq b e a P. L. homeomorphism. Put R = N(A{ ; K') ,  R 
J l 

= A; , 
t 

= R A  K 
i - l  

. Then Rl n R = $ and h.(f ( R )  
2 i- l 

is P. L. on R Hence for every & > 0 ther .  exists a: R -> I 
3 ' such that C 

'Ri i s P . L . ,  r r l ~ u R  = h ~ ' ( f ~ - ~ ( ~ ~ u R ~ ) ,  and p ( a ( x ) , h ~ f ~ - ~ ( x ) )  < E  , 2 3 

X r R. Define fi: K * Q by 
$ 

-l 
f . I R =  h cr 
1 

fil C I ( ~ K ~ - R ) = ~  I C ~ ( ~ K ~ - R ) .  i-l 

: Now R is compact, so by choosing & small  enough we can ensure that 
l i gi(x)- f i  1 ( ~ ) )  C & (x)/2 for all  X c I K I , and also that every f .(U) i s  cont~i3ed 
i - 1 

L+some Int B . Then f .  i s  a well-defined map which clearly satisfies l ) ,  31, 
X Q j 1 

4). Moreover, f rom the remark  following L e m m a  4.1, we see  that 

uff) f i - l  l R ( re l .  R,Y R2) and so ,  extending the homotopy by the idmtity,  

By construction, f. agree~s with f except on a simplicial neig)._bcr'?s..- .? 
1 i-l 



eventua l lyagreeon U. Henceputting f ' -  lim f d e f i n e s a P . L .  m a ~  
i 

i -> CO 

I K] -> Q. Similarly,  the homotopies H. a r e  eventually the identity on 
1 

given cr E K and so H = l im H. . . . o H i s  a well defined continuous 
1 

i 3 0 0  
1 

J K /  XI-> Q, and so  f = f '  ( re1 I K  I ) .  
0 

Remark. Using the r emark  following 4.1, the reader  can easily show tha. 

under the hypotheses of 4. 2, we can find a homotopy H of f ,  fixed on P 
l 

such that f '  = H satisfies the conclusions of 6. 2 and in addition, fo r  eve 
1 

x r  P and every s , t  i n [ 0 , 1 ] ,  d (Hsx,Htx)< € ( X ) .  

$ 3 .  Approxirnaiion - oC P. L. maps by Non-Degenerate P. L. Maps. 

Definition. If X is  a finite set  of points in E ~ ,  let S1X be the un 

n 
a l l p r o p e r  affine subspacesof  E spannedby subse tsof  X. QX i s  &c10 

n 
subset of of measure  zero,  so - S1X i s  dense in E . 

Lemma 4.3. Let P and P C_ P be polyhedra, dim P I n. Let 
1 2 

n 
f :  P -> I be a p. l. map with f ]  P n P non-degenerate. Given &> 0 . 

1 2 

exists a p. l. map f l :  P -> such that 

1) f ' l ~ ~  i s  non-degenerate 

4) fo r  all X E P, Q ( f lx , fx )  < E 
/ 

Note: In general we cannot shift f to be non-degenerate on P1 -P witk 
2' 

changing it on P if it i s  not already non-degenerate on P2 for  example 
2' 
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P1 = P ,  and suppose f(P ) is a point. 2 

Proof of Lemma 4.3. Let K , K C K be triangulations of P PZ G P 
1 2  1' 

d that  V ~ + ~ , . . . , V  be theve r t i ce so f  K -Kin K For  i C r  put 
S 1 2' 

= f (v i )  F o r  r < i 2 S we may choose points W., W arbitrarily close to 
1 i 

0 n 
vi), such that iui / S2 {W,, . . . , W  } , and W. c I If we define f l :K -> I 

i- l 1 n' 

other vertices v, then by choosing each W close enough to f(vi), we may 
i 

sure that f '  satisfies 4). It clearly satisfies 2) and 3).  To show that such 

f '  i s  non-degenerate on K it  suffices to sncw that its restriction to each U E K 
1 '  

. This we prove by induction on dim cr. If o E Kin KZ, f ' l  U = f l  r, so there 

nothing to prove. If U # K l  n KZ, put U = v . . .v.  , jl < . . . < jt , jt > r. 
jl jt 

isnon-degenerate. As d i m P I n ,  

Lemma 4.4. Let f: P --+ Q be a P. L. map, Q a P. L. manifold and 

a P. L. space with dim P I dim Q. Let P C P be a closed P. L. subspace 
0 

enerate P. L. map and fl(P-PO) c Int Q. Moreover, given & : Ps R+ 

given metric for the topology of Q. 



Proof .  Exactly a s  Lemma 4. 2 ,  using Lemma 4 .3  instead of 4. l .  

1) A s  in 4. 2, we could actually insis t  that there  be a homotopy , 

H: f f '  (re1 P ) such that f o r  a l l  X E P and a l l  S.  t in r0,  11 1 

2) In 4. 2 and 4. 4, one can insis t  that if the given map f i s  proper,  

then so is  the map f ' .  

I ~ ,  with P A 8 1 ~  (1 P . Given :, > 0 there  exists an ambient isotopy h of 
0 

2) h l (P -PO)  i s  in general position W. r .  t .  each Ri 

3 )  for  all  t ,  d(htx,x) < & . 
n 

Proof. Let J be a triangulation of I having a s  subcomplexes t r i a n d  i 

v , .  . v be the ver t icss  of K-K , and let  X be the set  of all  the vertices 
S 0 

Let W l , . . . ,  W be points in I n t I n ,  such tha t  w i L n ( x 1 { w l  , . . . ,  W. 
S i 1- * 

a l l  i; we may choose each W i to be l e s s  than any preassigned distance f roz  

n 
In particular,  we may choose the so that i f  P i s  the l inear  map J 3 I 

i 

determined by putting 1 (vi) = W. and 1 (v) = v if v E X ,  and v # vi a l l  i ,  ti 
1 

1 is ambient isotopic to 1 via an ambient isotopy h satisfying 3)  and 1 )  . 

U 

Remarks.  

L .  - 0. 

W S ,  X ,  H t 4  < (X) .  

4 .  Shifting Subspaces to General Position. 

Lemma 4. 5. L e t  P C P and R I , ,  . , , R be polyhedra contained 
o r 

.. 

In such that 

n 
1)  h i s  fixed on a1 I P .  

0 

.- 
tions X C K, L . . . ,  L of P P R ,  R with K f u l l i n  J. Le 

o 1 ' r o r ' o 
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(Certainly we can make 1 isotopic to the identity by "small"  moves. Then 

see proof that isotopy by moves implies ambient isotopy, Chapter V ,  $1, 

To check 2) ,  le t  cr E K-K T E R.. Write cr = U cr cr E K and 
0 ' 1 1 2' 1 0 

n I K ~ (  = fi (sl = fi possible). Let rZ  = vi l . .  .vis  , i < . . . < i . Then 
l S 

dim(lcr n T) 5. dim cr t dim-r- n <  dim P t dim R - n . 
i 

n 
Is and T do not span E , then since W.  1 / R(X u \ w l , .  . . , W .  1 - , W. i s  

S 
1 

S S 

t the affine subspace spanned by cr 
l*Wil .*OWi 

and T . This implies 
2 - 1 
U 

T = d. Since P-P = / K /  - I K ~ I  = 0 
C) $ , this shows that 

c r ~  K-KO 

dim[(p-po) n Ri] C dim(P-P o ) + dim R.- 1 n , 

a l l i ,  l l i s r .  

Lemma 4. Let P 2 P, R I ,  . . a , R be closed P. L. subspaces of the 
o r 

g-manifold Q, with P n aQ G P . Let E : Q ->R be a continuous 
0 

1) h fixes the points of aQ U P , 
0 

o t h a t  any simplexfollows i ts  faces .  Let K. = Kou I I A .  . 
1 J 

j=1  



a r e  going to define P. L ,  homeomorphisms h. (i 2 0) of U and ambient 
1 

isotopies H ( ~ )  of Q (i 2 l )  fixing aQ P-, such that 

1)  H y 0  h = h , i - l  i 

(i) 2) U K , t ( u ) G  Int B , some j , 
Q j 

3 )  \dx, d(Ht(')x, X) < E ( x ) / z ~  , a l l  t .  

4) h. ( lK. I  1 1  - / K  1 )  i s  in general  position W. r . t  each of the R . 
o i 

We s t a r t  by putting h = identity. Now suppose h i s  constructed, 
o i -  l 

some  i 2 l .  Let A .  2 Int, B. . Let  a: B -> 1q be a P. L. homeomorphir 
1 U J  

K.  n B.)  = V W ah A Let  V o ( ( h i K i 1 )  B ,  l e t  V = a(hi-l  I 
J 0 i-l  i 

W = Q ( R ~  B~). Note that V r ,  a~~ 2 V . 
0 

By Lemma 4. 5, for  every  & >  0 there  exis ts  an ambient isotopy k of 

fixed on V U a ~ ~ ,  such that kl(V-V ) i s  in general  position with respect  t 
0 0 

each Wk and such that , for  every  t ,  ~ ( x ,  ktx) < E . Now define 

--(i) ,-  . .  - , -1 . .  ., . , .. ., 

(i) H I cl(Q - B.) X I = identity. 
J .  

(i), h Put  h. = H1 . By choosing & sma l l  enough we can  ensure  
1 i- l 

d(Ht(i)x, X) < (x)/zi  f o r  al l  X t / K I , t s I, and a l so  that, given U E 

(i) Ht (U) C I n t  B fo r  some j. 
Q j '  

To complete the proof, we observe  that ,  by the construction of the H' 

we may  have that each i s  the identity outside the in te r ior  of some B.. Henct 
J 

if C i s  any compact subset  of Q, then on C X I a l l  but a finite number  of t h  

H(i) a r e  the identity. Hence it makes sense  to define 



h = Pim ... OH* . 
1 i ->m 
B 
Then h is  an ambiknt %otopy and by construction satisfies l ) ,  2) ,  and 3 )  in 

the statement of the lemma. 

g5. Shifting maps to General Position. 

Lemma 4. '7. Let K b e  a (locally finite) simplicial complex and let 

f: K + Q be a P. L. map which embeds each simplex. Let K K, and 
0 

le t  R1, . . . , R be blosed P. L. subspaces of the P. L. manifold Q. Assume 
n 

f( l K [  - I KO l ) C- Int Q. Let E : K 3 be a positive continuous function. + 
k 
irhen there is a map f ' :  K -> Q and a homot, , 14: K X I -> Q of f and f '  

1) H i s  the constant homotopy 

2) H i s  a P. L. map 

' 3)  f '  embeds each simplex of K and f'( 1 K I - I K~ l ) C_ Int Q 

2 dim U. - 
1 

1 

rq , all 

5) d ( ~ ~ x ,  fx) < &(X) fo r  all X and S, (d a metric on Q) 



Proofa Let A 1 i = 1,  2,  . . be the simplices of K-KO,  with e( 

simple* following i ts  faces. Let Ki = KO L a subcomplex. 

going to define, inductively, P. L. maps f i  , i L 0,  and P. L. homotopies 

i 2 l ,  such that 

1) v a- s K, fil a- i s  an embedding: 

2) i s  a homotopy of f i- l to f. 1 which leaves K i- l fixed; 

all  the following P. L. subspaces of Q: 

l , . . . , a -  r in K i-l ' 

i 
B 

be' 

(Note: r not fixed.) - 

Now we a re  going to apply Lemma 4.6 . Let L = link (A. ;  1 K). Let 

e 

F' o = fi-l(A.. 1 L), and let  P = Pod f i m l  ( A )  1 Note that P n aC2 C P o 
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By Lemma 4 . 6 ,  there  exis ts  an ambient isotopy h of Q, fixed on 

Define di) on (Ai. L) X I by putting Hii)(,) = hs f(x). Extend H(i) to K X I 

( ' ) = h . f  , by the constant homotopy outside (A.. L)  X I, and put f .  = H1 
1 1 1 i-l 

Clearly di) and f satisfy 2) and 4). Condition 5) holds because 
i 

(Int Q) E Int Q and because f sat isf ies  5). Condition 1) holds for  f i- l i 

To check 3 ) ,  we f i r s t  observe that f (xi) P-P (in fact have E). i- l o 

o r  suppose X s P f l  f A ) .  Then x = f y, say, where y s A.L,  and 
o i-l 1 i-l 1 

K and so i s  embedded by f Therefore y = z ,  so X s f (A.) .  There-  
i-l ' i-l 1 

re  P n f ( A . )  C_ f. ( )  Therefore,  as f embeds Ai, 
o i-l 1 1-1 1 i- l 

(i) To complete the proof, put H = l i m  H(i) and f '  = H = lirn H = lirr 1.. 

i-> 0s 
1 

i-> cx> 
1 

i -> a, 
(i) 0) se are well defined p. l. maps  because H I A. X I = H ( A .  X I for  

1 1 



Finally we put some of the zbove result  

Lemma 4-8 .  Let P be a P . L .  s ~ a c e .  - - - - - - - - - - - - - - - - - -  - - L - 
' 0 

Q be a P. L. manifold , dim P I dim Q. Let f: P -> Q be a continuous m 

such that f ( P  i s  P. L. and non-degenerate. 
0 

.h 

subspaces of Q, Let & : P -> IK be a positive continuous function. Then 

there exist g *  P -> Q and a homotopy H: f g (re1 P-)  such that 
i 

t 

l )  g i s  a P. L., non-degenerate m a p ,  

2) g l P-PO is in general position, 

3 )  g(P-P ) i s  in  general position W. P. t. each R. , 
0 1 

4) g(P-P ) C_ Int Q , 
0 

5) vx, d(H S X, fx) < & (X) Vs E [O, 11 (d some metr ic  for the 
! 

topology of Q). 

Proof. By 4. 2 and 4.4 we can  find f 1  

.S together to get: 

P a closed s u b s ~ a c e .  La 

Let R I ,  . . . , RN be closed 

- 
0 

-- f (re1 P ) and a homotopy 
0 

0 

between f and f '  relative P , with f '  P. L. and non-degenerate, 
0 

1 
f l(P-P ) C Int Q , and d ( ~ '  X, fx) < & ( X )  . Let  K c K be triangulations 

0 S 0 

of Q, so that f l :  K -> L i s  l inear  on simplices. Then f 1  embeds the sim 

plices of K. Let HI1 be a homotopy of f 1  to a map g, relative P satid 
0 

a )  g i s  P. L. non-degenerate; 

d) d i m ( g % n R . )  I; dim c r +  dim R. - q, U E  K - K -  ; 
J 

11 1 
e) d(Hex, f lx)  - 7. 

W 

&(X), al l  X, 



Then c )  and 4) imply 2) and 3)  in the statement of the lemma. Put 

Definition. 

codimension > r 

Furthermo 

By the triangle inequality, H satisfies 5). Certainly, g satisfies 1) and 4). 

Let 

.n P 

P C P  
0 

if, for  

po&hpd;r 

triangul 

any simplex A of KO, there i s  a simplex B of K with A < B and 

dim B - dim A 2 r. 

oca 
7 

.n d 

.l 

for 

ijection on the f i r s t  coordinate. Suppose X i s  a polyhedron in Q X I with 

"XC ( 8 ~ x 1 )  = X. . If d i m X S m - r ,  r z  l ,  and dim X C m - r - l ,  thenthere  
b 0 

8 a level-preserving P. L. homeomorphism h: Q X I ,a X I, arbi t rar i ly close 

0 the identity, such that S , ( ~ I  hX) is  of local codimension 2 r in hX. 

i s  alread ens ion 

an insist that h1 aQ X I i s  the identity. 

*: fLevel-preservingl means that h commutes with projection onto the 

lecond factor. 
5 
, Before proceeding with the proof of lemma 4 .9  we need another technical 



Lemma 4.10. Let K be a full  s u b c o m ~ l e x  of K. Let K' be the sl,i 

division of K obtained by s ta r r ing  a l l  simplexes of K-K in o rde r  of 
0 

decreasing dimension. Then K i s  a subcomplex of K' and if  A E K ' -K 
0 0 -  

then link(A; K ' )  T\ K- i s  either empty o r  a single simplex. 
v 

Proof.  One may readily check, by inductio 

h 

m on dimension, 

A A 

simplex of K' may be written in the form B. cl. C . . C where B E K an{ 2' r o ' B 

C E K and B < C 1 <  ... < C r .  Now if A E K ' -K i s  written in the above foj 
i o 

D E link(A; K ' )  n K if and only if AD E K' and D E K . In which case  
0 0 

i 
A A ? 

A D =  BD.C C and B D <  Cl < C 2 <  ... < C r .  Now K i s  f u l l i n  K,  ant 
r o 

so  Cl n K i s  a single simplex U say,  and the above conditions a r e  satisfi 
0 

if and only if BD < cr. So link(A; K ' )  n K = link(B; U) = a single simplex (if 
0 

i s  not empty). 
- I -  

Proof of Lemma 4.9. 

Case 1 : F i r s t  consider the c a s e  when Q = A% and when s Z ( p  I X,) is  

a l ready of local codimension 2 r in X fi ; and we wish to keep 82 X I fixed. 

Let  X g A X I ,  with 

Let  K '  C @'(A X I) be obtained f rom K C @(A X I)  by s ta r r ing  a t  interior pob 

the simplices of K-K in o rde r  of decreasing dimension. 
0 

Let X. , . . . , X be the vert ices  of K - ,  v, , . . . , L, the ver t ices  of K'-1 

F o r  

l - - S 

every E,o let  v; , . . . , v t  t 

0 l 

be points in A X I 

L 

such that the fo 





And so i s  of codirnension 2 r in K by the given conditions. 
0 

C) U ~ T  bothmeet  K cr n T / KO . 
0)  

Let p = a T. U = pula2 

T = P T ~ T ~ ,  T Q K = $, r2 E K . Now p s K ' - K O  Hence link(p: K ' )  Q K = 
1 0 0 

a single simplex, p say. By 3 ) ,  the ver t ices  of pcr and pz a r e  indepen 
1 1 Z 

of the (space spanned by the) vert ices  of pu PT and pp and of each other. 2' 2 

Therefore pa n p.r = p(pa2) n p(pr2), But p o 2 , p r 2  a r e  faces of pp 1 ' and 

p l p p l  i s  one-one because S ( p l ~  ) has loc. codim 2 r and so ~ ~ ( p l ~ , )  = 
2 0 1 - 1 

Therefore (p 1 U)  (PT) = p. 1 i 

Now, 
s Z ( p  I ~ K ' ) ~  cr = U c ~ [ ( ~ l  T ) - l p r  - s n T], 

T 

where r ranges over hK1* So S2(p I hK') i s  of local codimension 2 r in h2 

Proof of Lemma 4.9 continued - -  The General Case. 
, 

Let K triangulate X, J triangulate Q, be such that p l xr K + J is 

simplicial. Let K' and J '  be f i r s t  derived subdivisions such that 

p l ~ :  K' -+ J 1  is sti l l  simplicial. 

* 
Let  Al .  ..., A be the s impl i cesof  J. Let Ai = d u a l c e l l o f  A. i n J  

n 1 

* 
Claim: dim K, 5 dim A - r . 

1 i 
A A 

F o r  let  u s  K. . Put r r -  B l e . .  B < . . . < Br. Then p r  = p h P 
1 Brf 1 * 

(with possible repetitions). Now, p r  s Ai if and only if A. I pB Therefo: 
1 1 ' 

dim Ai S dim pB I dim B 
1 1 ' 
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However, dim B 5 dim B - ( r - l )  = dim B - dim c r L d i m X  - dim cr. 
1 r r 

Therefore dim cr ( dim X - dim B ( dim X - dim A So dim cr I. (m- r) -dimA.. 
1 i' 1 

'L -v * 
But m - dim A. = dim A , .  Hence d im c r I d i m  A, - r .  

L 1 1 

Suppose that A1, ..., As, S C n,  a r e  the simplices of the boundary 5 .  

dual cel l  of A. in . Then, since dim X m - 1  if  
1 0 

# = ( p l ~ o ) - l ~ X  , then dim L. 2 dim A. - r ,  i I S , by the same argument 
1 1 

as in the l a s t  paragraph. 

:;: # 
Now let  B1 , . , Bt be the dual cells AI and A in o rde r  of increasing 

i 
- 1 

dimension,  and let  K = ( p l ~ )  Bj, changingnotation. We recal l  f rom the 
j 

theory of dual cel ls  that the B cover  I J I ,  tha:  their  in te r iors  a r e  d i ~ j o i n t ,  and  
i 

hat aB. is the union of some of the B. with J < i. 
J 

Now we construct inductively p. 1. homeomorphisms h.: B. X I -+ E. X I 
1 1  1 

1) i f  B. c aB h . 1 ~ .  X I =  h . 
J i '  1 J j 

2) ~ ~ ( ~ 1  h.K.) i s  of local codimension > r in K . 
1 1  i 

Suppose that h is definedfor  j s i - l .  T h e n t h e m a p s  41 j L i - l  
j j' 

efine a p. 1. homeomo rphism 

h': aB. X  I -> aB. X  I. 
1 1 

i s  a ball, h '  extends to a p.1. homeomorphisrn of (aB. X  I) L ( '3 .  Y ?T) 
1 1 

nto i tself ,  and this  homeomorphism extends in turn  to a p. 1. horl?emmr7his!, 

I + B. X  I, which is level preserving. To define h we now apply t:lr 
1 i' 

se 1 of this proof with X = h"K and Q = B . 
i i 



Clearly ~ ~ ( ~ 1  h K [  ) = U S2(p l hi K i '  ), where h i s  the p- 1. home0 
1 

morphism, h: I JI X I -> I J I X I,  defined by the hi. Therefore h sati 

the requirements of the f i rs t  paragraph in Lemma 4.9. 

The proof in case ~ ~ ( ~ 1  x0) i s  already of local codimensi on at lea 

i s  nearly the same. We s tar t  out by defining h to be the identity on 

(aJ)  X I and then extend the definition inductively in order of increasing di 

96 
sions over the dual cells A. of J (not j) using Case l .  

1 - 



Chapter V: Sunny Collapsing and Unknotting of Spheres and Balls 

$1. Statement of the Problem 

n 
Suppose that S C_ sq a r e  P. L, spheres  of dimension n and q respectively. 

Then the pair (sq;  sn) i s  called a sphere pair  of type (q,  n). The pair 

bq-", hntl) called the standard pair of type (q,  n). The sphere pair 

sq, sn) i s  called unknotted i f  it i s  P. L. homeomorphic to the standard pair; . n t  l ~ q - n  
i. e. , i f  there exists a P. L. homeomorphism h: sq 3 A . such that 

: Is  a sphere pair  always unknotted? 

No i f  q-n = 2 (e.  g. , Trefoil  knot in 3 -sphere.  ) 

Unknown if q-n = 1 (Schoenflies Conjecture. ) 

We a r e  going to show in this chapter that  the answer to this question is 

deed affirmative i f  q-n 2 3 .  

A related question i s  that of the unknotting of ball pairs.  A proper ball 

m g 
such a way that E I B ~  = B r\ 8B . The standard (proper)  pair  of 3g?e (?; r' 

P. L. homeomorphic to the standard pair. 

: Is  a proper ball pair  always unknotted ? 

: Yes if g-n 2 3 - -  we will prove this.  

No i f  q - n =  2 

? if q-n = 1. 



In o r d e r  to prove that pa i r s  of codimension 1 3 (i. e. q-n 2 3 )  a r e  

unknotted, we shall  also have to consider the 

FactorizationQuestion: If K G K  & M  a r e c o m p a c t  P .L .  spaces,  with M 
0 

anm-manifold,  and i f  K \ K  and M ~ K  , soes M I K  
0 0 

In some cases  the answer i s  always affirmative* 

Lemma 5.1. If, in addition to the hypotheses of the factorization questj 

K C_ Int M = M - aM, then M & K .  

Proof.  Let N be a derived neighbourhood of K in M. Then N C_ Int 

and N & K  K . So N i s  a regular  neighbourhood of KO, meeting the bound; 
0 

regularly. By the generalized annulus theorem, M-N 9 ( F ~ N )  X I. Therefo~ 

However, the result  we will need r the unknotting question is: 

Theorem 5.2. If K G K E M a r e  compact P. L. spaces,  M an 
0 

m-manifold, then i f  MIKo and K $ K and if d im (K-K ) 5 m-3, then M 1 
0 0 

Here dim(K-K ) = l a rges t  dimension of simplices of K not in K . 
0 0 .  

The proof of this theorem occupies the next few sections. 

$2. Sunny Collapsing 

Definition. Say xoC X C_ M X I are compact P. L. spaces. If (X, t) 

and (X' ,  t l )  E M X I, we say (X, t )  i s  direct ly  below (X ' ,  t l )  i f  X = X '  and t < 

If U = M X I, the shadow of U i s  defined to be the set  iy E M X 11 y i s  dire( 

below a point of U . We write sh(U) for  this set. 



Pic ture :  

'inition, X sunny - -- - - col!apsss . - . -. - to X m M X I ~f t h e r e  . 0 

c K ~f X L X and 3 of M such that  
0 

- .  \ 

1) The inclusion K -> J X I is l inear  (on s impl ices ) ,  

.n d 

2) t he r e  ex i s t s  a sequence of e lementa ry  sirnplicial col1 

e s  \ e  S 

exis t  t  r iangula- 

If K -: ent i re  f i g u r e  inside the  box: 

then I K I runny col lapses  to ! KO i . 



Lemma 5.3. Suppose X G M X I  a r e c o m p a c t P . L .  spaces. Let 

X = X r\ [ (M X 0) L) (aM X I)]. Suppose that X sunny collapses to X in 
0 0 ! 

proof.  Let M =  IJ I ,  X = IKol ,  X =  ( ~ 1 ,  where K K, and K 
0 0 

e s  
contained linearly in J X I. Let K = K r j  Krml Is . . . K with 

0 

( I K i l  - I ) n sh(K.) 1 = $ be the sunny collapse,  
- 

Step 1): J J I  X I $ ( I J I  X 0) U ( p a l  X 1) u I K I  u s h ( l ~ I ) .  

Let p(J X I) and y(J) be simplicial  subdivision such that P(J X I) 

contains a subdivision of K and P P(3 X I) -> y(J),  projection on the , I ' 

coordinate, i s  sirnplicial. Let [A.] be the simplices of y ( ~ )  - y(aJ) in of 
1 

o r d e r  of decreasing dimension. F o r  each i ,  P(J X I) contains a triangula 

of A .  X I. Consider c l  {A. X I - (A. X I) (K v sh(K))} . Now, i f  this se 
1 1 1 

non-empty it i s  a convex l inear  ce l l  with A .  X 1 a s  a principal face. ~ e n c ;  
1 

collapses to the closure of the difference of i ts  boundary and A; X 1. So j 

2): (J X O) U ( a J  X I) U K U K $ ( J  X 0)  U ( a ~  X 1) U K. 

In this step we use  the existence of the sunny collapse. We a r e  going 1 

show that 



A n s ~ ( K . )  2 aB. 
1 

A 
Let B be an inter ior  point of B. Let b be  a point directly below 

A ; 
i B. Then for  b near  enough to B, b. A n K i- l = aB; note that b i s  joinable 
Q- 

l 

( sh(K.) \ K . .  this implies that bA K = A. So, collapsi'ng bA 
1 1 

ace bB 

K u s h  K \ K ' . s h  K .  - Int bA - Int bB = K U sh K -: sh ba'b d ba 
i 1 i- l 

fact that (bak)  n (K v shK i-l ) C ai) ' K i- l collapse vertically a s  

K u s ~ K  i- l U s h b a B i K v s h K  i- l ' 

1 the deflr-itto-:: i t  P a d  Q a r e  (compact) P. L. spaces,  P c Q, W-. - i b  

of local codimexsion -___  grea ter  than o r  equal to c in Q provided t h d ,  t c  - 

'iangulatiGn K K o f  P E Q,  and say  c G K , these exists T K ' '-' 
0 0 
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Lemma 5 .4 .  Let F: X X I -+P M X I be a P. L. embedding. X aria 

compact P. L. spaces, such that 5 

Let W :  X X I -> X , p: M X I -> M be projections on the 1st factors. 

Suppose that 

1) S 2  ( p* F) is  of local codimension 2 2 in X X I 

2) ~1 ~ , ( p a  F) is  non-degenerate. 

Then F(X X I) sunny collapses to F(X X 0) in M X I. 

Proof. Bv induction on dim K. Let K and J be simplicial complexet 

of K X I and K ,  respectively, such that 

1) a ( K  X I) contains a triangulation L of s2(pI F). 

2) : a ( K  X I) 4 p(K) i s  simplicial. 

Let yL be a subdivision of L such that p F 1 yL: wL -> J '  i s  simplici 

for a suitable subdivision J' of J. Note that yL contains a subdivision 

Y ( L  n K X o) of LP (K X 01. 

Let dim K = r and let A , ,  . . . ,.A be the r-simplices of pK. Let 

B 1 , ,  be the ( r - l )  simplices of yL - Y ( L ~  ( K X O ) ) .  Any( r - l )  simplex 
S 

L is a face of. an ( r t l )  simplex of cr(K X I). Hence each B lies in a face of i 

some simplex of @(A: X I), some j. Since T: a(A. X I) + A .  i s  sim@Ecial, 
J J J 

* 
means that each B. i s  contained in A .  X I, some j. 

1 J 





cl(A. X I - E.  U E.  ) i s  an (r t1)-bal l .  Continuing thusly, we at last fin 
J J1 J 2  

c l ( A . X I - E  ... u E  ) i s a n ( r t 1 ) - b a l l .  A s i m i l a r a r g u m e n t s  
J j l  

cl[A. X I - E v . . . U E. 1. Hence the closure of the complement o 
J j 1 J ~ ( j )  

Let A = ( r - l )  skeleton of j3K = PK- { ~ ~ b  Then, by what we have 

proved 

p ~ ~ ~ \ ( P ~ ~ ~ ) u ( ~ ~ ~ ) u ( ~ l u  ... " E , ) ,  

and so 

R = F ( ~ K  X I) LF((PK X O) U (A X I) V (E1u . . . V E ~ ) ) =  S. 

Moreover sh(R) n R C_ S. F o r  if  F(x) s sh(R) n R, then x c S2(p OF) and 

x s h X I. Since there exist subdivisions making the collapse R 1 S simpli 

it follows that R sunny collapses to S. 



X X l .  

X X 1  

Let V = B . G x x ~ .  i 1 

X . B . u Y . B .  B . $ X X l .  
1 1  1 

t 
Then ~~j U., a s  a ball always collapses to a face. 
A( 1 

Recall  that B1, . . , B S a r e  the ( r -  l )  simplices of yI and that 

m OF: VL -+ J' i s  simplicial. We may suppose in addition that the B. 1 a r e  

.. e. has  j n t e r  int 

(Bj) in i t s  shadow and therefore al l  of F(B;) J 4.n i t s  shadow) then i < j. 

!ate that since S2(p OF) i s  of local codim. at  least  two, none of the polyhed 

4 

(B.) mav contain a ver t ical  line segment. ) 

i - l  i - l  S 

collapses 

Hence 

i - l  i- I S \ 

e w e r ,  F(Int E.) = Int F(E.) misses tnf: sha.dow of 
1 ; - l  i - l  S 

. F o r  o the r J?. I .  



Ek' 
this implies that F(B.)  overshadows F(B . ) ,  an impossibility fo r  i c j. 4 

J 1 F 
4 
rl 

It now follows that any simplicial  subdivisions which make (I) a simplicial 

lapse make it a sunny collapse. Hence we may conclude that F(K X I) sunn; 
S S 

collapses to F((K X 01 u (A X I) - U V* + ,l uj). 
1 1 

S S 

p~~~ let k: A X I -> A X I - U V. tU U. be the p.1. homeambrphism W] 
1 

1 
1 

L 

A 
sends B to 2 .  and is the identity on cl(A X I - UV.). Let F' = Fok: A X  

i 1 J 

M X I. Then F' sat isf ies  the hypotheses of this lemma.  F o r  

S2(PoF')  C y L  - {B. I J = l , .  . . , sf and s o  ~ ~ ( p o F ' )  has  local  CO-dimension 
J 

a t  least  two in A X I, and I T I S ~ ( ~ ~ F ' )  is the restriction of a non-degenerat, 

map and so i s  non-degenerate. Hence by induction F' 0 k ( h  X I) sunny col12 
S S 

to Ft. k(A X 0); therefore  F(A X I - U sunny collapses to F(d 
1 

This means that 

Since F(K X 0) C ( J  X 0) u ( a J  X I) ,  this collapse is also a sunny collapse. 1 

completes the proof. ' 

3. Factorization of Collapses - - Proof of Theorem 1. 2. 

Lemma 5. 5. Let B S Q X I be an n-ball, Q a compact g-manifold. 

Suppose that B n [(Q X 0) (aQ X I)] i s  a face of B. Suppose that n I q-2.  
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Proof. Let F =  B ~ \ [ ( Q X O ) V ( ~ Q X I ) ~ .  Let h; F X I 4 B  b e a P . L .  

dmeornotghism with h(x, 0 )  = X. By Lemma 4.9, there  i s  a P. L. homso- 

orphism k: Q X I --t Q X I. level preserving, such that s ~ ( ~  l kB) i s  of 

- 1 
ocal CO-dimension 2 2 in kB. Consider K h ( ~ ~ ( ~ k (  B)). (P  pmj .  on the 

i rs t  coordinate). It i s o f  l o c a l c o d i m ~  2 in F X I ,  and so i t s  intersection 

ith (k X I) y ( F  X 0 )  is of local codimension 2 1 in (g X I) 4 (F X 0 ) .  Hence 

e may apply Lemma 4.9 to find k 9 : F  X I--+ F X I,  a level preserving homeo- 

orphism, such that S ( T \  kt(K))  has local codim l. l in k t ( K ) ,  a the pro- 
2 

ction of F X I onto F. 

- 1 -1 -1  
Let cp = ko ha (k l )  : F X I -3- X I. Then s ~ ( ~  - rp) = k t  L h r k ( ~ ~ ( ~ l k ~  

of local codirnensian 21 in F X I. Moreover, S2( ~ l ~ ~ ( ~ c g ) )  i s  of local 

irnension 2 l in S (prrp); hence nl S 2 ( ~ o q )  is non-degenerate. Finally, 
2 - 

(8Q X I U Q X 0 )  = F X 0 ,  This i s  because kt and k a r e  level preserving 
. 

boundary preserving, and because of the definition of h. Hence by 

mrna 5.4 ,  kh(F X I) sunny collapses to k h ( ~  X I) f~ ((Q X 0) ii ( ~ Q ( x  I)). 

- 1 
e by Lemma 5. 2, (Q X I) j 4  (Q X 0) y ( W  X I) v kh(F X I). Applying k 

th sides of this  collapse,  we see that 

(Q X I) '+(Q X 0) IJ (aQ X I) LJ B. 

Theorem 5.2. Let K C K C M ,  K , K P, L. subspaces of the compact 
0 -  0 

m-manifold M. Suppose M J K ~ .  K \K*, and dim(K-K o ) 5 m-3. Then 



Proof.  It suffices to suppose that K \Ko: i . e .  cl(K-K o ) = B, 

r - ball and B n K = F ,  a face  of B. Subdivide M with K, KO, and B : 
0 

triangulated a s  subcomplexes. Let N be a 2nd derived neighborhood of 
4 

i 

in M. M is also a regular  neighborhood of K and N also meets  the $ 
0 

regularly. Hence, by the generalized annulus theorem, there  exists a p, l 

homeomorphism 

h: cl(M-N) -> Fr  N X I 

with 

h(x) = ( x , ~ )  if  X E F r  N. 

Now, N n B i s  a regular  neighborhood of F  in B meeting aB re  

So N n B i s  an r-bal l  and N n 8 i s  an ( r - l )  ball, being regular  neighborl 
1 
C 
1 

of collapsible sets.  Therefore (Fr N) n B is also a n  ( r - l )  ball. 

be the restriction of h above. We must  now construct a p, 1. homeomorph 

(1: Q x I  -> Q X I throwing Q X 0 into (Q X 0) U ( O Q  X I). 

f a r e v e r y  t ,  and X ( I X O ) = ( ( I X O ) ~ ( O X I ) ) .  (Exercise:  Construct A 

Set A = ( X  ,X ). Let c: 8Q X I -> Q be a boundary collar.  Then define 
1 2  

p :  Q X I - > Q X I  by 

p(c(x, S),  t)  = (c(x,  Xl(s, t)) ,  h2(s ,  t ) )  if X c BQ 

P(Y, t )  = (Y, t) if y E c ~ ( Q - ~ m  C). 

The two definitions agree  on the overlap (where S = 1 in the f i r s t  definition 

The map p i s  p. l. F o r  on Im(c) X I, i t  i s  the composite: 



C X *  > 8 Q X I X I  ~ Q X I X I  
C X l  1 lm(c) X I 9 Im(c) X I . 

i 

i This also shows that i s  i s  a homeomorphism. e 
Now, P ( ~ B ~ )  i s  a ball in Q X I meeting (Q X 0) (80 X I) in the face 

shF , . dim B, L dim M -  3 5 dim Q -  2. Therefore QX I ,(Q X 0) , (BQXI)W phB,. 

[Note: If L C L J a r e  simplicial, L full in J and L' S L' ': J '  a r e  
0 0 0 

first deriveds, then N(L' ; J') L! L'  ' b  L' .  
0 9 

Proof. Let ; A ,  j =h impl ices  of J - L  which meet L in o rde r  of 
1 0 

:creasing dimension. Then A .  i: N(Lt ; J') A. N(Lb ; J ' ) .  F o r  
1 0 'l 1 

1 i N(Lt 8 J ' )  i s  a regular neighborhood of A L which meets A regularly, 
i o i o i 

~d so A. N(L1 ; J ')  i s  a face of the ball Al.( N(L! ; J ' )  . ) 

Unknotting of Ball PBirs and Sphere P a i r s  

h ?tation: If P = ( B ~ ,  B ) is a proper ball pair ,  then , \P  denotes the sphere 

( B B ~ ,  8 ~ ~ ) ;  and v P  denotes ball pair ( V B ~ , V B ~ ) ,  v a joinable point. 

that v P  i s  proper. 

Lemma 5.6. Let P and Q be two unknothd ball pairs of type (q ,  m). 

h: h * 6 be a p. l. homeomorphism. Then there exists a P. L. homeo- 



So there  a r e  P. L. homeomorphisms P -> v ~ ,  Q -> v b  and we can e*, 

ball o r  sphere pair  i s  an  unknotted ball o r  sphere pair .  

Proof. Exercise .  

a r e  unknotted. Let S = "all  sphere pa i r s  of type (q,  m )  a r e  unknotte 

Proof.  Let P = (Sy. sIAA). Let 

m ,W A m c m s q - m  A m r m  
proof.  ( A ~ .  b q - m , ~  ) (A  A A , A  A ) 2 v. (bmbq-m 

6 

-3 Q conically. 

Lemma 5.7. The cone and suspension (join with a sphere)  of an 

By Bq,m 
we denote the statement: a l l  proper  ball  pa i rs  of type (q 

4, m 

Lemma 5.8. B implies S 
91 m q, m 

,-, m 

- -  - -  . a K o E K be a triangulation of 

0 1 0 

c l (P-Pi )  = ( I K-st(v; K ) I  , I K o -st(v; K o ) I ) . Then PI and P 2 a r e  b 

0 . 
A A -- . - - - - 

Definition. A face  of the proper bali pair  P = ( B ~ ,  Bm) i s  a proper b 

, A  - 4  , - 1  n m - l n - -i m 

, . 

Lemma 5.9. Let P and Q be unknotted ball  pa i r s  of type (q ,  m )  which 

is t rue ,  P U Q i s  an  unknotted ball P 
q- 1, 111- 1 

proper  ball pa i rs ,  and F = F 'The identlty J? - P extends to  a p. l. 1 2' 1 1 

homeomorphism P1 -2 vP1 and a p. l. homeomorphism P2 3 V I P  2' SO 

0 

P i s  p. l. homeomorphic ( a s  a pa i r )  to v P  u v ' h  a suspension of h an1 
1 1' 1 

so unknotted. 

pair  F = ( A ~ " ,  ALL'- ") with AY-&G BBY and AllAp A = AY ' A  i3B"'. We d 

m -  1 
fine  cl($-^) = ( 3 ~ ~  - A'-', a~~ - A ), which i s  also a face of P. 

in a common face. Then if B- , -- 



impl ies  
m- 1 

F, P , P are unknotted. Then k i s  unknotted a s  p. 1. 
1 2  

~ o m o e m o r p h i s m s  p re se rve  boundaries.  By 5.6, the identity F - F extends 

to p. l, homeomorphisms:  

&tends to k Q -> b c ~ ,  both horneomorphisrns,  So 2: 

9 - m  Lemma 5. 10, Let (B , B ) be ;I proper  ball pa i r .  Let N be a regular 

eiohbnrhood of in B ~ .  Then B . . and S . . imply (N,  B'"), q - 1 ,  m - 1  - .  q - l ,  m-1 

proper ball pair ,  i s  unknotted. 

Proof .  Let K C K t r i angda t i  R''' B', and suppose that  K 
0 0 

L ly uniqueness of regular  n e l g h b o r h o ~ d s ,  we may also suppose that 
i 0 

I =  N(K ": K")  without l o s s  of generality, Let K = L r  Ts . . , V r o o y L o = V c  K .  o 
i I 

et Ei (N(L': ; K") , N(L" ; K " ) ,  where  K"  = 2nd derived subdivision. 
1 1 i o 
S: 
" ? (N, K ) Moreover ,  E is a ball p a i r ,  b y  regular  neighborhood theory,  

0 1 k 
easily seen to be proper .  

k 

!re pair of type iq - 1 .  m - l ) H ~ n c e  E is 1.nknotted. Suppose by induction 
0 

E i s  unknotted.  PI!^ L 7 L i- l 1 1 i- 1 ' A 13, A = a B ,  Then E . = E  uI 



(See regular neighbo rhood the0 ry, Chapter 111) 

o r  a ball pair,  according as  3 s Int K: of s K" n . Since 

this pair i s  a proper ball pair o r  a sphere pair of type (q-l , m-l ) .  Hence 

i s  unknotted. 

Now we a r e  going to prove that P n E is  a face of P and E 
i- l i- l *  

A 
Let L = ( l ink( i i  K') ,   link(^; K '  n )) . Let P4 = (link(a; K"),  link(2; K" n )). The 

(See regular neighborhood theory. ). 

We now introduce some new notation, by writing P = (Pb, PS) 

(P1'big" and P " ~ r n a l l ~ ~ ) ,  Q = (Qb, as)' etc. Then P sends P b A (Ei-i)b ; 
1 

onto the derived deighborhood of (a61 in Lb and sends P S n (E ) on6 i-l S j 

the derived neighborhood of (a61 in Ls . Using the sublemma appearing i 

the end of this proof, we see that the image of P n E i- l i s  a proper ball P 

of type (q - l ,  m-l )  and so a face of P and of Ei-l. T h e r e f ~ r e  P Ei-l 

unknotted pair. Similarly, (see reg. nbhd. theory) (P u E. I- ,- Q i s  a far 

P u E  
i- l and of Q; hence E i s  unhotted. 

i 



Sublemma 5. 10 .  1, Le t  X C - M C_ Q, M C, Q a manifold pair ,  

n 8Q = 8M. Assume everything i s  tr iangulated so  that  X i s  full in both 

and Q. Let N = derived neighborhood of X i n  Q. Then a ( ~  n M) = ( 8 ~ )  n M. 

Proof.  F i r s t ,  F r M ( ~  n M) = F ~ ~ ( N )  A M. F o r  say  LG K C K 
0 - 

t L ' S  K' C, K '  
0 

e f i r s t  derived subdivisions, and suppose N = N(L1;  K ' ) .  Then N n M = N(L'; K 

but t he re  exist 

L with B A  E K ' .  A E Fr  (N) f-\ M if and only if  A s KO, A r\ Li = $ and 
0 Q 

e r e  ex is t s  B E L' with AB E K'.  It i s  c l ea r  that these  conditions a r e  equi- 

NOW, (aN) n M = ( ( F ~ ~ N )  M) U ( N  n M n aQ). 

B(N r\ M) = F r M ( N  n M) (N n a M ) .  

t M(-\ aa = aM. 

and S Coro l la ry  5. l l .  If g - m  2 3, then B m - l ,  q - l  m - l ,  q - l  :imply Bm, 

Proof .  If q - m  2 3, then by Theorem 5. 2, 4 B r n  
m 

nce both collapse to a point. ) Hence i s  a regular  neighborhood of B . 
( B ~ ,  gm) i s  unknotted by 5. 10.  

Theorem 5. 12. If q -m 2 3, then every proper  ball pair  o r  sphere  pair  

type ( m ,  q) i s  unknotted. 

Proof ,  We already have the following implications: 

, i f  q - m  2 3 . 

s ta r t  the induction, assume m = 0, q 2 3. So we have a point, P say ,  in the 



9 q interior of B . Triangulate B wlth P a s  a vertex. By the uniqueness of' 

7 

regular neighborhoods [P C BP] [P C s tar (P ,  K)] which is  clearly unknotte 

Now we ask the followjllg question: given P. L. embeddings 

f ,  g: Bm - Bq, with f l  aBm = g I 8Bm, aBm = f - ' ( a ~ ~ )  = g - ' ( a ~ q ) ,  i s  there 

Lemma 5.43. If BL"C By i s  an unknotted proper ball pair and if  

h: Bm U aBq + B m u  a~~ i s  a P. L. homeomorphism, then there exists a 
4 

P. L. homeomorphism k: Bq -+ extending h. -3 

m q-m 
that k1 1 8 ~ ~  = h1 aBq. SO k t h - l  l aBm = idrxkity. Let 0 :  (Bq: Bm) -> (A  A 

-1 -! m 
be a P. L. homeomorphism. Let P = a k t h  . A ---3 Let 

X 

- q-1x1 h""*..-*" , a(A"'* "') 
identity on A ) Then Z p i s  the identity on 

Therefore ktl = a-' (Zp)  a : uq -> Bq is the identity on aBq. Moreover, 

m 
Lemma 5.14. Let f ,  g: B -> Bq be P. L. rmbeddings, 

m m 
f-'aBq = g - 4 a ~ q  = 8 ~ ~ .  Assume q-m 2 3 and f 16B = g l  aB . Then f and g 

a r e  ambiOnt isotopic keeping aBq fixed. (That is ,  there exists an ambient iso- 

topy h aach that h40 f = g and h leaves 8Bq fixed.) 
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Proof.  There exists  a P. L. homeomorphisrn hi Bq 3 Bq such that 

9 m  h(fBm) = g ( ~ m ) ,  a s  (Bq, f ~ ~ )  and (B , gB ) a r e  unknotted proper ball pairs. 

m 
The map fgmih: f~~ -> fB  is a P. L. homeornorphism, and 

- ih /  f ( a ~ ~ )  = h1 f ( i 3 ~ ~ ) .  So hvfg-'h: a~~ fBm + a~~ 1 fBm is a P. L. 

homeomorphism. By  5.13, there exists a P. L. ilomeomorphism 

- 1 
k r ~ ~ + ~ ~  with l c l a s q =  h and k ( f ~ ~ =  fgmlh. Thernap  a =  hk : B q + B q  

- 1 
is a P. L. homeornorphiam, and CY l f ~ ~  = gf . So of = g. Moreover, 

Q 1 aBq = identity, so a i s  ambient isotopic to the identity keeping aBq fixed. 

6. Unknotting Cones 

W e  state  the following without proof: (Liclcorish's Theorem) 

If f and g are P.L. embeddinga of v . K  into B', K a polyhedron 

-1 
d v a joinable point, with f - ' ( a ~ ~ ) =  g ( a ~ ~ )  = K, and if f l ~ =  g ( ~ ,  and if 

irnv;K f q-3, then f and g a r e  ambient isotopic keeping a~~ fixed. 



1. Concordance,  Isotopy, Ambient  Isotopy,  and Isotopy by Moves. 

Definition. The embeddings f and g of M into Q ( P L  space s )  

a r e  ca l led  isotopic if t he r e  ex i s t s  a P L  m a p  F: M X I -> Q such that  

2) F i s  an  embedding . (Ft(x) = F ( x ,  t)  . ) t 

Equivalently, we s ay  that  f and g a r e  isotopic i f  t h e r e  ex i s t s  a leve 

- - 
prese rv ing  embedding F : M X I ---4 Q X I such that  7 = f and 5 = g,  

0 

( ( X ,  t )  = ( ( X ) ,  t ) ) .  The re la t ion between F and F i s  B(x, t)  = (F (x ,  t ) ,  t). 

We say  that f and g a r e  ambient  isotopic i f  t h e r e  ex i s t s  an  ambient  

isotopy h: Q X I -> Q X I with h o f = g.  

We say  that  f and g a r e  concordant  i f  t h e r e  ex i s t s  a P L  embedding 

F: M X I -> Q X I with F ( x ,  0 )  = ( f (x) ,  0 )  and  F ( x ,  1) = (g(x) ,  1)  f o r  a l l  

X E M. 

Definition. If Q is a P L  s p a c e  and h: Q -> Q is a P L  homeo- 

morph i sm ,  sup(h) = [ X  E Q /  h x  # X] = suppor t  of h.  We say  h - is 

supported by X i f  sup(h) C_ X C_ Q. Then  h is suppor ted by X if and only 

if h l Q-X is the identity. 

If Q is a P L  q-manifold and h i s  suppor ted by a P L  q-ball  containe 

i n  Q a s  a P L  subspace,  then h is c a l l e d a  move.  W e  c a l l  the  move h 

a p r o p e r  move if e i the r  h /  aQ = identi ty o r  t h e r e  ex i s t s  B q &  Q,  Bq a q-b 

4 q with sup(h) C - Bq, such that B n aQ is a face  of B . 



Definition. If f and g a r e  embeddings of M into the q-manifold Q, 

y that f and g a r e  isotopic by moves there  exists a finite sequence 

L . h of DroDer moves of Q with 

Lemma 6. l. Each of the following statments implies the ones 

below it ( f  and g embeddings M - Q ~ ) .  

a) f and g a r e  isotopic b y  moves.  

b) f and g a r e  ambient isotopic 

c )  f and g a r e  isotopic. 

d) f and g a r e  concordant. 

Proof. b) -.I- c) .  -- Let h: Q X I -> Q X I be an ambient isotopy 

with h l f  = g. Define F: M X  I-> QX I by F = ho(f  X 1 ) .  
I 

L 
t c )  * d) . Clear .  
!! 

1 a ) 3 b ) .  It suf f ices to  s h o w t h a t a n y m o v e  i s a m b i e n t i s o t o p i c t o t h e  

t 
"identity. So let  h: C l  -> Q be a move. 

Case l: Sup(h) C, 

d 

identity. Then h1 aBq i s  the 

dentity, so h ( BY i s  ambient isotopic to the identity keeping BB' fixed. 

knce h i s  ambient isotopic to the identity (keeping Q-Bq fixed). 

q q Case 2: Supp h G B G Q, n aQ = a face F of B . Let 

; = c l ( a ~ ~  - F). Then by continuity, h1 F1 = identity. Let a : Bq -> A  
q 

R a PL homeomorphisrn sending F into a principal face Al of A ~ .  

q 9 'efine k: X I -> A X I by f i r s t  putting k l ~  X 0 = identity, 

- 1 ; 1 ~ ~  X 1 = ahrr , k ( c l ( i  - A l )  X I = identity, k l )  = ( l )  and 



A 
A1 = barycenter of A : then extending k ,  by joining up linearly,  to 

1 
- 1 

X I. Then k is  an ambient isotopy ondilg in ahhe and keeping 

 cl(^ - A ~ )  fixed. Therefore h \  i s  ambient isotopic to the identity keep- 

ing  cl(^^ - F) fixed, and so h i s  itself ambient isotopic to the identity. 

Theorem 6. 2. If Q i s  a compact q-manifold and H: Q X I + Q X I 

i s  an ambient isotopy, then there  exists a finite sequence h 
l ' " "  

proper moves of Q such that H = h o . . . 0 h . 
1 l r 

Proof. Let K triangulate Q. Assume (K[ C_ E ~ ,  and view 

I K I  X I C - E ~ " ~  G i v e n a l i n e a r  map $ :  K->I, ( l , $ ) :  K - K X I  i s  an 

embedding. Let pl : K X I -> K be projection on the f i r s t  factor.  Given 

P , let P* = P 1 ~ ~ o ( i , $ ) .  

Let a (K X I) and P(K X I) be subdivisions making H:~(KxI )  + P(KX1) s i  

Let U E /3(K X I). Let P c cr be a ver t ical  line segment in cr (i. e .  a line 

- 1 
whose projection under P : K X I -> I i s  a point). H ( P ) i s  a line in the 

2 
- i i 

simplex H ( U ). Since H is level preserving, H- ( I ) makes an angle 

of l e s s  than  IT/^ with the vertical.. (More  precisely, i f  P i s  viewed a s  

- i 
an upward pointing vector ,  then H ( P ) i s  a vector which makes an angle 

of l e s s  than rr/2 with, say, the v e r t k a l  unit vector;  equivalently, the last  

w -ordinate of the vector  H-'(I ) i s  positiva. ) Moreover, by l i n r i r i t y  of 

H on simplices,  this angle i s  independent OS the choice of B r a., 1' -:-r- 

tical. Since p(K X I) i s  a finite simplicial  complex, the.,. . T . ' A + ~ Z .  U '= . ,T; 

- 1 
such that H ( P  ) makes an angle 5 with t he vertical  3 i' P.5 i ~ j  \ ,  - . . , : .kal  

line in a simplex of P(K X I). 



On the other  hand, there  exists 6 > 0 such that i f  $(K) has diameter  

< 6, then i f  U E K, any line segment contained in the (convex l inear  cell)  

( l ,  $)(U) makes an angle of at  least  q with the vertical .  

Now (1, $)K separa tes  K X I. That i s ,  a path f rom K X 1 to K X 0 

meets (1 X $)K in a t  least  one point. This is  because i f  X: I -> K X I is 

such a path and h = pZo X ,  then i f  X(1)  n (1,  $)K = $, the sets  
1 

( s ( h l ( s )  > # ( S ) )  and [ s l h l ( s ) C  #(S)! f o r r n a  splitting of I by disjoint, 

non-empty open sets ,  contradicting the connectedness of I. Therefore the 

"broken line" H-'(x X I) ,  X E K, meets  ( l ,  $)K in a t  least  one point. 

1 
However ,: (1,  $)K and H- (X X I) meet in at  most one point. F o r  i f  

i s  a point of intersection whose co-ordinate in  I i s  t # 1, kCnd,.if 
0 

)i r H-'(x X I) and 7 has t CO-ordina'te grea ter  than t , then 'l) l i es  inside 
0 

he solid cone consisting of all rays starting at  5' and (when when directed 

&way from 5 ) making an angle of at  most (p with the upward vertical .  

If 7 r (1 ,  g ) ~ ,  however, l ies  outside this cone. This proves that the 

point of intersection with smallest  t co-ordinate i s  the only point of inter-  

::: 
Therefore $ = p 0 H o(1, g) i s  a homeomorphism i f  diam $(K) < 6. 

hen there exists a finite sequence Id .  , . . . , $,, of l inear  maps of K into I 

much that 

i 
9 2) diam $.(K) < 6 a l l  i. 

1 

vertex of K. 



* 
tex such that #.(v) $. (v). Then fli((di- ) is supported by (d 

1 1- i i- i * :p. 
$. (star(v: K)) and is the identity on g (link(v; K)).  Therefore if  v / a K ,  

1- i i- i 
* * -1 g.  (8. ) does not move aK. If v e aK ' ,  I star(v; K')  I n ( 8 ~ ' )  = I star(v; a& 
1 1-1 

X< 
i s  a face of 1 star(v; K ' )  ( . Since B(i- i s  a homeomorphism, it  follows that 

Theorem 6 . 2  has several improvements in each of the following, 

H: Q X I -> Q X I i s  an ambient isotopy. In all but the last,  i s  a corn- 

pact PL q-manifold. 

6 .  2. 1. If a, i s  an open cover of Q, then ore may choose the moves 

h. such that H = hi a . . . o h to be supported by elements of a, . 
1 l r 

Proof. Let a X I =  [ u X I I  U E a ) .  ~ " ( a X 1 )  covers Q X I .  

- i 
Let E 5 0 be the Lesbesgue number of H ( a  X I) with respect to the metric 

induced by the triangulation K of Q. $et K " ~ )  be the r-th barycentric 

subdivision of K ,  r such that mesh K") = maximum diameter of a simplex 

of < 1- E . n 
(In general mesh K '  I - mesh K ,  n = dim K ,  K' = first 

4 n. +l 

baryc ent ric subdivision. ) 

1 ( 4 
Let S > 0 be such that 1) S < T E , 2) dim #(K ) < 6 implies 

$f is an embedding. Now construct (d. as  in 5. 2 ,  but with K replaced 
1 

\ 

throughout by the triangulation of Q, and let hi = (di (1-11- 

 SUP(^.) C lie (star(v; K(r))). But diam[(i X (d. )(star(v: < : fo r  
1 l- l 

i 
the diaketer  of star(v; K (r)) i s  at  most - e . Therefore ( i  X $i-l)(stiir(r; 

( 
2 





sec $c i j  
one can find a sequence of proper moves of )'d 1 N , fixed on Fr  )'d 1 NI whoa$ 

Y 

% + l  -1 
composite i s  ( d 2 )  ( O i  ) . Extending these moves to al l  of Q by the v 

% $c - 
identity outside of N, we see that (4 ) is  isotopic by moves to the 

* 
identity. Therefdre $, i s  isotopic by moves to $, . 4 

fl.: N -> I, -1 I i r ,  such that jJ.(v) = t. i f  v E Fr  N i s  a ver tex,  and 3 
1 1 1 5 

1 
$.(v) = ti + $tiii - t .) if  v r N-Fr  N i s  a vertex. Define tJJi(v) = t if 
1 1 i 

- -(t - t ) if v c N - FP N, v always a vertex. V E  F r N  and + . ( v ) = t i  
1 i- l 

>:c * 
Then L J J ~ + ~  and Jli agree on K . fli,Ci agree  on Fr  N. So tJJi and @ 

o i 4 * 
a r e  isotopic by moves. Let h. be an isotopy by moves throwing tJJ: onto " 

8:. Then h = h h . . . h i s  an isotopy by moves and h1 K = H /K . 
P P-1 1 0 1 0  

Corollary 6.3: If f ,  g8 -P aq a r e  two embeddings, M compact, 

then f and g ambient isotopic implies f and g isotopic by moves. 

Definition. Say (Q,  M) is a P L  manifold pa i r ;  i. e. C2 and M a r e  PL 

manifolds, and M i s  a P L  subspace of Q. We say that (Q, M) is  a proper 

manifold pair if M /I BQ = BM. (Q, M) i s  said to be loeally unknotted if 

given any X E M, there exists a neighborhosd V of X ,h Q such that 

(V,V n M) i s  an unknotted ball pair; observe that i t  is a ~ P O P F ~  ball pair if 

it i s  a ball pair  a t  all.  



- 

rle s then (Q, M 

locally unknotted if and only i f  given any A E K ,   link(^; K), link(A; K )) 
0 0 

Lemma 6.4. If K G K triangu 
0 

i s  an unknotted sphere o r  ball pair .  

Proof. . F i r s t  we consider the case  when A = v i s  a vertex. 

If K b  C_ K'  i s  any subdivision, then the radial  projection 

I 

link(v; K')  -> link(v; K )  c a r r i e s  the simplices of link(v; KO) into simplices 

of link(v; K '  ),  Hence the same i s  t rue  of the pseudo-radial projection, a 
0 

PL horneornorphism. Hence it suffices to show (link(v; K ' ) ,  link(v: K;)) i s  

unknotted. But by choosing a suitable subdivision (for  example, the r th  bary-  

centr ic ,  some la rge  r),  we may  suppose that the link pair  of v with respect  

to this subdivision l ies  in a neighborhood V of v such that (V, V n M) i s  

n unknotted proper ball pair .  In o the r  words,  i t  suffices to consider the 

r . i t 1  
ase  Q =  A . A  and M = A I ,  and given PO int (not 

r 
, a vertex) of A . 
E r If v E A ~ ,  s te l la r  subdivide by s t a r r ing  A at r ,  getting the pair  

the s 

- 
dard 

I unknotted sphere pair  of type ( r t i - l ,  r - l ) .  If v E A, where hL = A. B, 
r 

i (B f d ) ,  s te l la r  subdivide by s ta r r ing  A a t  r to get the pair  l ,  V ~ ~ ) .  

To prove the resul t  of an a r b i t r a r y  simplex A of K , assume the result  
0 

f ,.by induction fo r  simplices of lower dimension than A.  Let a be a vertex 
[. 
k o f  A ,  and put A = a .B .  ( l i n k ( A ; K ) , l i n k ( A , ~  )) = 

0 
k 

$link(a: link(B,.K)), link(a; link(B; K ))l. By inductive hypothesis, 
3, 0 



unknotted proper manifold pair. Hence we may apply the result for vertices 

to the link pair of .a in this manifold pair. 

7 

c"-- . As (link(v; K),  link(v; K )) unknotted implies (star(% K),  
0 

unkno tted. 

Lemma 6 .5  (weak isotopy extension theorem): Let (Q, M) be a proper 

locally unknotted manifold pair, with M compact. Suppose that h: M-M 

is a homeomorphism which is ambient isotopic to the identity iM. Then 
i 

there exists a PL homeomorphism k:'Q ->Q with lil M = h. If h is ambied 
i 

isotopic to keeping aM fixed, then we can assume that k is  fixed in aQ, 

Proof. Let K C K triangulate M C Q. Then let a be the star 
0-  - 

0 
converingof M ;  i. e. , a = { star(v: K ) Iv i s  a vertex of K } , where 

0 0 

0 
star(v; KO) = l KO l - U {D c K I v # D } . By 6.  2. 1, there exists a finite 

0 

sequence of proper moves hi ,  . . . , hr , each supported by some element of a 

h :M->M, with h =  
r hio . . . O  h . If h keeps the boundary fixed, we may 

l- 

assume each h. also, 
1 

We are going to complete the proof by showing that each h. can be ex- 
1 

0 
tended to Q. So suppose that supp hi star(v: KO), v a vertex. 

Case 1: v j aK. Then h. is  the identity on link(v: KO). MC c 
1 

(star (v: K), star(v: KO)) i s  a proper unknotted ball pair, and its boundary is 

the sphere pair (li - - : <'I. 1 ;qk(vi K )). We may extend h to a p. 1. homeo- 
o i - 

morphism of .star(vo *, ' Y 1I:L.' K) hy .- + "  - 3 it be the identity on 

link(v; K). By Lemma 4, t h i ~  rr;ap -.=tend., .c, A p. L. homeomorphism of 
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7 

outside s t a r  (v; K). 

c a s e  2. v E aK. Assume for  the moment that ( s t a r  (v; K), s t a r  (v; K )) 
.------ 0 

i s  unknotted.1 Then by the same argument a s  in Case 1, we may extend 

l i n k ( ~ ;  K). This homeomorphism extends to link(v; K) u s t a r  (v; K) by the 

identity outside s t a r  (v; K), and so we get a homeomorphism of 

identity on link(v; K). But hi i s  the identity on link(v; K ) and is  defined 
0 

emma quoted in Case l, we may extend h. to s tar(v;  K), getting a homeo- 
1 

orphism which is  the identity on 1 link(v; K) l 2 FrK l s t a r  (v; K) ( . Now ex- 

- 
end to all  of Q by the identity outside s t a r  (v; K). 

To prove that ( s t a r  (v; K), s ta r (v ;  KO)) i s  unknotted, we simply observe 

t i t  i s  the conecon the sphere pair  (link(v; K), link(v; K )) which i s  un- 
0 

otted because i t  i s  the boundary of the ball pair (link(v; K), link(v; K )). 
0 

ighborhood of M. 

2) It i s  c l ea r  that i f  k i s  constructed a s  in the proof of Lemma6.  5, 

n k i s  isotopic by moves to the identity and so ambient isotopic to the 

3) We also proved that the boundary pair of a locally unknotted pair i s  



$3. 

for  Proper  Manifold Pai rs .  

Let M I: Q be compact PL manifolds, with M r\ 8Q = aM. Then the : 

boundary col lars  c BM X I 3 M and c2: BQ X I * Q a r e  said to be 
l ' 

compatible if c i s  the restriction of c to aM X I. In this section we 
1 2 

how to obtain compatible collars in general and, given a col lar  

c aM X I -> M, we can extend it to a collar of c In the process we 
1 2' 

prove the uniqueness of col lars  up to ambient isotopy. These results will b 

used to help prove the general isotopy extension theorem. I 
5 
i 

Theorem 6.6. If (Q, M) i s  proper pair of compact manifolds and is  S' 

a locally unknotted pair ,  then there exist compatible boundary col lars  of 

M and of Q. 

Remark. The reader will observe from the proof to follow that it would 

suffice to assume that the pair (Q, M) i s  locally unknotted at the boundary; 

i. e. every point in  the boundary of M has a neighborhood in Q, V, such thal 

(V, V M) is an unknotted proper ball pair. One would need a variant of 

Lemma 5.4. The details a r e  left to the reader. 

--t 
PPOO~.  and let M - ( M X  3 )  ( 8 ~  ' ' -.  et Q+ = (Q X O) ( 8 0  X 1) 

t 4- 
W e  - w j U  T : O ~ ' Z S ~ F U C ~  a PL homeomorphism Q -> Q carrying M into 

which sends BQ X i, --? 9Q by mapping (X, 1) onto X. 

Let K K t ~ "  - g .  . r 3 r r  - M c Q. Let K' be tk. barycentric f i rs t  derivl 
0 

Let Al. .... AN h ::U= S--? ; C BX ( decreasing dimension. 



- 1 3 9 -  

# 4, 1- 

We a r e  going to construct homeornorphisms (A? 1 X 0) u ( A .  1 X I) -> A i 
d.. J. 

which, i f  A .  E K , send (A: X 0) U ( A #  X I) onto A*' . 
1 o 1 , O  - ,  0 i, o 

Claim: If A.  E aK , then (B . ,B .  ) i s  anunknottedbal l  pair. 
1 0 P . 1 , 0  

The following picture indicate S tha situation: 



To prove the claim, we use the pseudo-radial projection 
"a 

d. * T A 
i s  ca r r i ed  onto 

f 
p: A. -> A.  link(A.: K). Under this map, A.  

1 1 1 1 3 0  

A 
A..link(A.:K ). Let F1 = (Ci,C. ) a p r o p e r m b a l l p a i r .  Under p ( s e e t h  

l 1 0  1, 0 

c e ~ t i n n  nn dual cel ls) ,  this pair becomes the pair ( i ( A  K), link(A.: 1 K n )) 

K v 
Let F = ( A ~ ,  A ); under p i t  i s  ca r r i ed  onto A. P(BE'~), also an 

i ,  o 

unknotted pair. Therefore F 2 X I i s  unknotted. Let 

Fg = ( F 2  X 1) u (aF 2 X I), an unknotted pair because there i s  a p. l. homeo- 

morphism (F X 1) (aF 2 X I) 4 v. a F  2. ( T O  see  this ,  embed the f i r s t  

oair in v. BF- suitably and use a pseudo-radial projection, a s  in  the follow 

The identity 8F 2 -> aF 2 extends to homeomorphisms 





To solve the problem of extending a boundary col lar  on the smaller  

manifold of a manifold pair ,  we f i r s t  must  consider the question of com- 

pairing boundary col lars  of a manifold. 

Lemma 6. 7 .  Let K C K be finite simplicial  complexes. Conside 
0 

a p. 1. embedding c: K X [0, & ] + K X I with c(x,  0) = ( X ,  0 ) ,  X E K. 

Suppose that c l K X [0, & ] i s  level preserving. Then there  exists 0 < 6 < E 
0 

and h: K X I -> K X I, a p. 1. homeomorphism, such that: 

1) h a  c l K X [0,  61 i s  level preserving; and 

2) h i s  ambient isotopic tothe identity keeping ( K  X 81) U c(Ko X [o ,&] )  

fixed. 

of K X 0 and K X [O,&], and c: a(K X [0, & I )  -> p(K X I) i s  simplicial. 

Let 6 > 0 be such that no vert ices  of a! and have a level t such that 
1 

0 < t 5 6 and such that c(K X [0 ,6]  r\ ( K  X 1) = 8. Now choose f i r s t  derived ' 

subdivisions a!' and p' of a! and p, using the following s ta r r ing  points: 



h 
l )  U has level 6 i f  has  any points of level G ; 

/2 4 
2) If U E Q ( K  X O )  , c o = c ( c r ) ;  

0 

/' 
3 )  If cr t a(K X [0 ,  1 )  , g o  - ca ; and 

0 

a rb i t r a ry  otherwise . 

Note that 3 )  and 1 )  a r e  consistent because U i s  level preserving on 

K X [O,F, 1. Now define c ' :  @'(K X  [0, f , ] )  -> P ' (K  X I) to be the simplicial  

R / map defined by c '(G) = cc.  Then c '  i s  a simplicial  embedding which i s  
E 

level-preserving on K X [0,  61 and a g r e e s  with c on K o X [O,& 1. 

Now le t  p" be a f i r s t  der ived subdivision of P such that 

c: @'(K X [O,€ I )  ---3 P"(K X I) i s  simplicial;  i t  i s  c l ea r  that such a subdivisio 

exis ts ,  and that we may choose P I B  such that 

1) P1'(K X 1)  = pl(K X 1) and P"(K X 0) = P'(K X 0) ; and 

2) P W K  0 X [O, E 1)) = P1(c(Ko X [ O X  I)) .  

Then let h: f3l1(K X I) -> p'(K X I) be the natural  simplicial  homeomorphism 

I between two f i r s t  der iveds of the  s a m e  complex. Then ho c = c '  on a l l  of 

K X [O,& 1, c lear ly .  Moreover ,  by moving one ve r t ex  at  a t ime ,  i t  i s  easy  

to see  that h i s  ambient isotopic to 1 by moves keeping 

(K  X 31) U c(K X [o ,&  I )  fixed. 
0 

Lemma 6 . 8 .  C and c 
2 

a r e  boundary co l la rs  in 

6 > 0 and a n  ambient isotopy H of M, fixed in aM, such that 

then there  exis ts  

t c ~ ~ H ~ c ~  I ~ M  X [o ,  61 i s  defined and level preserving.  (M = compact PL 

manifold. ) 



Proof. Let E > 0 be suchthat cl(aMX[O,&]) C_ Irn c 

exists an ambient isotopy H' of aM X I, fixed aM X 81, and 6 <E , such 

C ~ ( ~ M X  I) by H~ = c 2 ~ ; c 2  . Since H' is the identity on BM X 1, we may 
t 

extend H to all of M by the identity where it is  not already defined. 
t 

Lemma 6.9. If c i s  a boundary collar of M and 0 < 6 l ,  then 

there exists an ambient isotopy H of M, fixed on aM, such that 

Hlc(xlt) = c(x, 6t), all (X, t) r 8MX I. 

Proof. Let M1 =  cl(^ - Image c), a PL manifold. Let cl : BMI X I+ 

be a boundary collar. Define c2: aM X [o, 21 -> BM by 

c 2 ( ~ '  t) = 4 %  t) O l t l l .  

c2(x, t) = cl(c(x, l ) ,  t - l )  , l t < 2 . 
Then c is  a well-defined embedding, since cl(c(x, l ) ,  0) = C(X, 1). 

2 

Let a: [O, 21 X I + [O, 21 X I be a PL ambient isotopy with 

I ( o  X I) rJ ( 2  X I) = identity and al(t)  = 6t i f  0 2 t 5 l .  Now define 

: MXI-> M X I  by 

h[c2(xs S ) ,  tl = [c2(xj pu(ss t)), tl 

h(y, t) = (y, t) for all y E cl(M - Im c ). Here p: [O, 21 X 1 4  [O, 21 is  pro- 
2 

jection on the first coordinate. Observe that h is  well-defined as 

[c,(x, p 4 2 ,  t)); t] = [ c ~ ( x .  2), t]; and h[c2(x, 01, t] = [c2(x, 01, tl = [X, t], so 

first coordinate is ' ~ s t  the composite: 



- 1 
c X 1  

I m c  X I  
2 

2 
> a M x  [o, 21 X I l X P'cu > a M X  [O,2] 

I 

To show h i s  a homeomorphism,  suppose  that  h(c ( X ,  S ) ,  t) = h(c ( x ' , s l ) ,  t ' ) .  2 2 

Then t = t ' .  There fore  X = x h n d  p, @(S, t)  = p, a ( s l ,  t '). As cr is a leve l  

preserving homeomorphism,,  t h i s  imp l i e s  that  S = S ' .  So h is one-one,  

and h is c l ea r l y  onto. 

To complete the proof,  we just  note that  i f  0 I t 5 l ,  h(c(x ,  t ) ,  1 )  = 

h(c2(x,  t ) ,  1)  = (c2(x ,  p ~ ( t ,  l ) ) ,  1 )  = (c2(x;  ht) ,  1 )  = (c(x; b t ) ,  1) .  

L e m m a  6.10.  Le t  c and c be boundary co l l a r s  of M, with 
1 2 

- l 
Im  c = I m  c 2, and suppose i n  addit ion that  c 

2 
a M X I - > a M X I  i s  

1 

; level  preserving.  Then t he r e  ex i s t s  a n  ambient  isotopy h of M ,  f ixed on 

8M, such that h l o ( c I  I aMX [0,  1/21) E c 2 ( a M X  [0, 1/21. 

- 1 
Proof .  Let  rr = c 2  c l :  aM X I -> aM X I. We m a y  wr i t e  

u ( x , t )  = ( a t x J t ) .  Le t  p : I X  I -  I be a p.1. map  such that ~ ( t , 0 )  = t ,  

p ( t ,  l )  - : 0 0 F t 5 1/2  
i 1 

21-1 , - I t <  l 9 

c 2 

5 B(1,s) = l ,  B(0 ,  S) = 0 f o r  0 5 s L ~ .  

hen 

S (X,  

Now define H : aM X I -> a M  X I 
S 

H defines a n  ambient  i sotopy of 
S 

t) = H ( x ' , t l ) ,  then t 3 t t  and cu 
S P(t 9 

by putting H ~ ( X ,  t) = 
( %, 

a M  X I: f o r  i f  

= cup(t, S)  
(X) impl ies  



The ambient isotopy defined by H i s  a p. 1. map  because it i s  the 
S 

composite of p.1. maps.  

Define h: MXI-? M X I  by h ( c i ( x , t ) , s ) =  ( C ~ H ~ ( X , ~ ) , S )  , 

h(y,  S) = (y, S) i f  y E c l (M .- 1.m c ). Then h i s  a well-defined p. l. homes- 
1 

morphism,  a s  c H ( X ,  1)  = c (a i )  = c ,  1). Now ' 
2 S 2 B(1,s) '  

1 
Moreover ,  if t 5 , h(ci(x ,  t ) ,  1) = (cZ(ap(t, i ) (x ) , t ) ,  1) (c2(ao(x),  t ) ,  i )  = 

(c2(x , t ) ,1 ) .  Finally,  i f  t =  0 ,  h ( c 1 ( x , t ) , s ) ~ ( ~ 2 ( ~ l t ) , s ) = ( c 1 ( ~ , t ) l ~ ) = ( ~ ,  

so  h fixes the  boundary. 

two boundary co l l a r s  of M, then the re  ex is t s  an ambientisotopy h of M, 

fixed on aM, with h c - 
i 1 - c 2 '  

Proof.  By 6.8 and 6.0, there  exist; ambient isotopies H and K of h1 

- 1 
and ( c l )  c '  i s  level  preserving.  By 5.10,  we m a y  suppose a f t e r  another 

1 

ambient isotopy that  we also have c '  = c '  on  OM X [C), 1/21. Now apply 6.9,  
1 2  

again,  with 6 - 1/2. 

Corol la ry  6. i2 .  Let  (Q, M) be  a locally unknotted compact p roper  

manifold pair .  Given a boundary col l 'ar  c on M, t he re  exis ts  a coll.ar c 1 

of Q, compatible with c 
1 ' 

P a . 0 ~ .  By Theorem 6 . 6 ,  t he re  exist: co l l a r s  c and c '  of M and (2 
,. 

p . ~ . s p . .  :i:3:;- ly ,  - ~ h i c h  a r e  compatible. By Theorem 6. 11, t he re  ex is t s  a p. 1. 

homeomorphism I,: M .-.- '9 M, ambient isotopic to t:he identity, which keeps 
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BM fixed, such that hc = c By the weak Isotopy Extension Theorem, l ' 

Lemma 6. 5,  there  exis ts  a p. 1. horneomorphism k: Q -k- Q, fixed on aQ, 

with k ( M ) = M  and k l M = h .  Put c 2 = k  c ' .  

4. The Isotopy Extension Theorem. 

Definition. Let M and Q be P. L. manifolds. An isotopy 

F: M X I -+ Q X I i s  said to be proper  if F-'(BQ X I) 5 BM X I. I t  i s  called 

locally unknotted if  in addition, for a l l  0 5 s I t 2 l ,  the following proper  

manifold pa i r  i s  locally unknotted: ( Q  X [S ,  t], F(M X [S, t])). F i s  alwaya 

locally unknotted if i t  i s  proper  and dim Q - dim M Z 3 .  

Theorem 6 . 1 2  (Isotopy Extension  heo or em): Let F I M X I *- Q X I ,  

compact, be a proper  locally unknotted isotopy. Then there  exists an 

mbient isotopy H of Q such that 

F = H (F X l*). 
0 

Fur the rmore ,  if F I aM X I = (F I aM) X i I ,  then we may choose H so 
0 

hat H I  BQ X I = identity. 

: 1) 1. I 2  may be generalized aa follows: Call  F allowable i f  

(8Q X I) N X I, where N is an (m-1)-manifold, m = dim M, in BM 

orribly 8 ) .  One can define the notion of locally unknotted for allowable 

otopiee by defining the notion of unknotted for  cer tain types of non-proper 

pa i r r ,  One can prove that i f  d im Q - dim M 2 3 ,  all  allowable ieotopies 

loc~rlly Lnknotted, and one can prove an isotopy extension theorem f o r  



F: K X 1 3 Q X l where K i s  a polyhedron and F - ' ( ~ Q  X 1) K X i 
0 a 

Unsolved Problem. Find a definition of locally unknotted for  isotopies of 

polyhedra in manifolds which would make the theorem work f o r  codimensionj e 

n 
3 )  One can also generalize by replacing I by I . We shall  do this l a t e r  1 g 
in section 5. 

To prove 6 .  12, we s t a r t  by proving a res t r ic ted  version in a special 

case.  

Lemma 6.12. 1. Let F: M X I -+ Q X I be a proper  locally unknotte 

isotopy, Q and M compact. Suppose F I aM X I = (F I aM) X 1. Then 
0 

ther  exists 6- I.. 0 and a P .L .  homoemorphism h :QX [0 ,E]  + Q.X [o,&], 

level preserving, such that 

l )  h1 ZIQ X [o,  & ]  = identity. 

2) ~ C F  X, t )  = F(x, t)  fo r all (X, t)  E M X [0, E].  
0 

Proof. Let c: (a(M X I)) X I -> M X I be a boundary collar.  

Le t  c l  and c a(Q X I) X I -> Q X I be boundary col la rs  such that the 
2' 

following diagrams commute: 

a ( ~  X I) X I 
C 

s M X I  



his i s  possible because (Q, F ~ ( M ) )  i s  a proper  locally unknotted manifold 

r ,  and (Q X I, F ( M  X I)) i s  a locally unknotted proper  manifold pair. 

Now choose B > 0 such that Q X [O, 6 ] ~  c l([(Q X 0) U (aQ X 111 X 1). 

is i s  possible because the set  on the right i s  a neighborhood of Q X 0 in 

X I and because Q i s  compact. 

Define h: Q X [ O ,  61 = Q X I by putting h = c (c;' l Q X [0, 61). 2 

early, h i s  the identity on (Q X 0) y (aQ X [O, 6]), since c and c a r e  l 2 

dary col la rs  of Q X I. Moreover,  h (F X 1 
0 [o, 61 

= FI QX [O, 61, 

(1) and (2)  and the fact  that (F X aM X I = F I aM X I. In particular,  
0 



h is level preserving on (F  (M) X [O,6])  \/ (aQ X [O, 61). Hence by 
0 

Lemma 6. l ,  there exists 0 < 2 < 6 and a p. 1. homeomorphism 

h': L2 X I -> Q X I such that h' h i s  level preserving and h' i s  the identit 

(Q  X 81) u h(F (M) X [0, g I )  (aQ X [o, g]). The map h' h satisfies the 
0 

requirements of the lemma. 

Lemma 6.12.2. Theorem 6.12 holds in the case Q is compact and 

F I aM X I i s  the constant isotopy Fn X l .  

Proof. Let to I, to f 
V 

0 o r  l .  Then by Lemma 6.12.1, appli 

both directions . there exists 5 = E( t  ) > 0 and - - 0. 

- t , to +C] such that ht is the 
0 

ident 

aQX[ t  - 5 , t  ++,l and ht (Ft x , t )  I F(x, t )  fo r  t o - t ( t s t  Similar] 
0 0 0 0 0 

we may find h-:QX [0, e(o)]+ Q X [o,  £ (o ) l  and 

hi:Q X [ l -  L (  

U 

l ) ,  l ]  - Q X ( l  - & ( l ) ,  l ]  with similar properties. 

. .. - . - -  

The 

, . 
sets in I of the form (t - $,(t ) , t  + k ( t  )), [O, 1(0)) ,  and ( l -  t ( l ) ,  l ]  COW 

0 0 0 0 

I, and this covering has a Lesbesgue number Q. Choose numbers 

S = l ,  suchthat  s i - s  <a. 
r i- l 

(:l H\ I/ 
Now we define inductively a sequence of maps :QX[O,s.]-> 1 Q x ~  

(0) (i-I) a s  follows: let H = identity. Suppose that H has been defined and ha i 
i 

the property that H ( i - i ) l  aQ X [ O ;  S: , ]  i s  the identity, and i 
l.- I 

r M X [0, s ~ - ~ ] .  Then there exist 

k: Q X [S  S .] + Q X [si- S.] which is  level preserving, which is  the 
i- l '  1 1 

iclsr. t l tf  vn 8 U  [ s ~ - ~ ,  si], and which satisfies k (Ft , t) = F(X, t )  for S ; - , s  t i  

and for some t- . Now ( T i  Cine H 
( i) 

0 
l by putting 



(i- l )  
E nt if  O S ~ < S ~ - ~  

H\ A I  = kt ks H ' A - A J  for S < t < s i .  
t S i- l 

i- 1 i- 1 

The definitions 

l : \  

auree for t = S.  . . H") is a P. L. homeornorphism of Q X 10, S . ]  onto 

i tself .  a s  shown bv alternative definition 

(i- l )  
X l ) (x , t ) ,  5 t c s i .  

i- l i- l 

l Clearly H") i s  the identity on BQ X [o,  si]. If si- S t l si , then we have 
I 

( i) - l - l 
Ht ( F x ) = k k  Hi - '  (For) = k k F X = k. F (X)  = Ft(x). 

0 t s  S t s  S i - l  i-1 
t t  

i - l  i - l  o 
(r)  The lemma i s  thus proved by putting H = H . 

Lemma 6.12.3. Let Q be a compact manifold. Suppose that h i s  

n ambient isotopy of aQ. Then there exist an ambient isotopy of Q extend- 
6i 
ing h. 

2 
Proof. Let c: BM X I -+  M be a boundary collar. Let $: I -3 I 

be a p.1. map with 

Gf(0.t) = t for all t 

$ ( S , O ) = O  h r a l l  S. 

)efine k: Q X I 4 Q X I by 

ktc(x, S) = c(ha(s t ) ~ ,  S )  X E BM, S and t in I 



and kt(Y) = y if y z cl(Q - Im c ) .  Note that ~ ( h  
@ ( l ,  t)  

X, S)  = C(X, S). It is 

not hard to see that k i s  an ambient isotopy extending h. 

Lemma 6.12 .4. Suppose that Q and M a r e  compact and that 

F: M X I -+ Q X I i s  an isotopy which i s  proper and locally unknotted. Then 

there  exists an ambient isotopy H of Q such that F = H (F X 1). 
0 

with h (F X l) = F ( aM X I. Let k be an ambient isotopy of Q extending h, 
0 

Let F' = k-lF: M X I -+ Q X I. Then F '  i s  a locally unknotted proper isotop 

whose restr ic t ion to aM i s  a constant isotopy. By 6. 12.2, t he re  exists an 

ambient isotopy k' of Q with k' fixed on aQ and k ' (F1  X 1) = F'. Let 
0 

H = kk'. 

Remark: The proof shows that i f  one i s  given an ambient isotopy h of 8Q 

such that h (F X 1) = F on aM X I, then H may be chosen to extend h. 
0 

F o r  we had H I  aQ X I = h (  aQ X I in the proof. 

Proof of Theorem 6.12. By the lemmas  already proven, it suffices 

to consider the case  in which Q i s  not compact. Let PI: Q X I -> Q be the 

X< 
p rojection onto the f i r s t  co-ordinate. Let Q be a regular  neighborhood of 

.l. 

Pi F ( M  X I) meeting aQ regularly. Let Q1 = Q " ' ~  aQ and let  
4. 

= c l ( a ~ ~ ' .  - Q ), both (q-1)-manifolds, 
l 

Now, F / BM X I: BM X I -> Q, X I, since F i s  proper. Ql is compact 

If F I aM X I i s  a constant isotopy, define a : Qi X I - Ql X I to be the 

ideritit;r; othkr-  7ise by lemma 6. 12.2 let  cr be such th  t 



5. The n-isotopy Extension Theorem. 

n 

n n 

- .  

... - 

J IF X 1 I aM X I) = F I aM X I and such that .;, l aQ,'x'!I i s  the identity. 

Let h, BQ* X I BQ* X I be defined by h \  Ql X I = d and 

h ( Q 2  X I = identity. By the r e m a r k  following lemma 6.12.4, we can 

#c 1 extend h to an ambient isotopy k: Q'' X I + Q X l with k (Fo X L )  = F. 
#c 

Now extend k to al l  of Q by putting k = identity on cl(Q - Q ) X I. 

Definition. An n-isotopy i s  a P. L. embedding F: M X I" -> Q X I" 

which i s  level-preserving ; i. e. , the following diagram commutes: 

M X 

where P = projection on the 2nd factor  (lLA = I X . . . X I C  E-*). 
2 

An ambient n-isotopy i s  a level preserving P. L. homeomorphism 

H:Q X I ~ +  Q X In such that ~ ( x , 0 , .  . . , 0 )  = (X, 0 , .  . . ,0) .  

An n- isotopy F: M X 1'I -> Q X lIY i s  called proper i f  F- a [ aQ X I--) = 

OM X I". A proper  n-isotopy i s  called locally unknotted i f ,  fo r  any simplex 

n 
linearly embedded in I , (Q X , F(M XA )) i s  a locally unknotted manifold 

If F: M X 1'' -> Q X I" i s  an n-isotopy and if x E I", then F i s  
X 

defined by ~ ( z ,  X) = (FXz, X). 



Theorem 6.13. Let F: M X In 3 Q X In, M and Q P. L. manifold. 

M compact, be an  n-isotopy which is proper  and locally unknotted. Then 

the re  exists an ambient n-isotopy H of Q with H(F X 1) = F .  If 
0 

n 
Ftl aM = F l aM for  a l l  t E In, then we can insis t  that H I  aQ X I be the 

0 

n 
identity. (Note : 0 = (0 ,0 ,  ..., 0) E I ). 

n 
Remarks: l )  Let ana l lowablen- i so topy F:MXIn-ZQXI be an 

n 
n-isotopy such that F - ' ( ~ Q  X I ) = N X In, N a manifold in  aM of 

d im(m-l ) ,  m = dim M. Then one can prove an  analogous theorem to 5.13 

f o r  allowable n-isotopies. 

2) One also can prove an analogous theorem fo r  isotopies of complexes 

into manifolds, provided one has codimension a t  l eas t  3. 

n 
Lemma 6.14. Let F: M X 1" -> Q X I be a proper  n-isotopy, locallj 

unknotted and fixed on aM, i. e. , Ft ( BM = F l aM fo r  a l l  t. If M and (1 
0 

n n 
a r e  compact then there  i s  a P. L. homeomorphism H: Q X I -+ I such that 

n 
H I aQ X I = identity, H(Q X A) = Q X A fo r  every face A of the cube I , and 

H(F X i )  = F. 
0 

n-  1 n- 1 
Proof. By induction on n. Suppose h: Q X I -> Q X I is  a P. L 

n- 1 
homeomorphism, equal to the identity on Q X I and sending 2 X A ;o 

n- 1 
1 t o r ? * . c h  faceof  A of I , andwi th  h(F x ~ ) = F I M x I ~ - ' .  Then 

0 

n n I 
define h': Q X I -> Q X I by h' = h~ 1.  et F' = (W)- 'F:MX Q X I 

n 
and regard this a s  a 1 - ;  ~ $ 7  .y with the l a s t  coordinate of I a s  parameter .  
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n- l 
Let  A I , . . . , A  be t h e f a c e s o f  I in o r d e r  of increasing dimension 

r 

inductively P L  homeomorphisms k.: Q X A.  X I -> Q X A. X I, level-pre-  
1 1 1 

serving on the las t  coordinate such that 

2. if A . < A  , k . = k . l Q X A i X I ,  and 
l j l ~  

3 .  k.(Fox,  S, t )  = F1(x ,  S ,  t) f o r  a l l  X r M, S c A t r I. 
1 i' 

n 
Then k = h'k :Q X In -> Q X I i s  a P L  homeomorphism satisfying a l l  the 

r 

required conditions. 

r r-kl 
Definition. Identifying I with the face of I having the las t  

n 
coordinate zero we define a p r imary  simplex of I a s  a n-simplex linearly 

1 2 
mbedded in In with a ver tex  a t  0,  a l - f a c e  in  I , a two face (2-face) in I , 

etc. Thus a pr imary  simplex will be of the f o r m  (0,  v l  , v2, . . . , v  ) where n 

n 
Lemma 6.15. Let F : M X I ~ - > Q X I  be a proper  locally unknotted 

n-isotopy, fixed on BM, M and Q being compact. Then there  i s  a pr imary  

n 
simplex A in I and a P L  homeomorphism H: Q X A - Q X A commuting 

with projection onto a, with H l aQ X A = identity and H(F X l )  = F ( M X A 
0 

n 
Proof.  Let k: Q X In -> Q X I be a P L  homeomorphism given by 

n 
Lemma 6. 14. Let a! and /3 be triangulations of Q X I such that 

n 
: Q(Q X In) -+ /3(Q X In) i s  simplicial  and the projections a!(Q X In) -> I , 

(Q X 1") + In a r e  l inear.  Now choose constants 6 $ 6  . . . , 6 a s  follows: 
o n 



Choose 6 > 0 such that,  f o r  any simplex U in 2(Q X  In) o r  f3(Q X  IL), 
0 

either d(0, p U )  = O  o r  d(0, p U )  > 60. 
2 - 2 

n 
Now suppose that U i s  a simplex of a(Q X I ) o r  /3(Q X  In) having 

i 
Let X! = p  X for each j. Let A(pZu, I ) [minimum angle between I and 

J 2 j  

( x ' x  ' . . . X '  y) f o r  y e  p2u]. Choose 6 . > O  such tha t ,  f o r a l l s u c h  U ,  
o 1 i- 1 1 

i i 
either A ( p  U ,  I ) 0 o r  A(p2u, I ) > 6i. Now let A be the simplex 

2 7 

j v I ) .  f o r  a l l  j i .  As a resul t  of the way we have angle(0v1v2. . . vj  - 
i, J 

such tha t  p 2 u n ~ $ $ ,  thga p u ~ A ,  and Q X V  meets  Intu. Moreover, 
2 n 

A if U denotes the subdivision point of U ,  then 

l. 9 Q X v i  if  Q X v i  meets  Intg,  

A 
and 2. ku k($ i f  U G F ( M X P ) ~ ~ Q X I ~ .  

Note that these two requirements a r e  compatible since k is  level- 

preserving on F ( M  X In) and aQ X I ~ .  

n n 
Now let  k t :  a P ( Q  X I ) -> @'(Q X  1 ) be the icdzced s~rnpl ic ia l  map. 

Then we s t i l l  have k' a P L  homeomorphism, equal to the i.denY.."\; o f  

and with k ' (F  X 1) F. Moreover, k '  i s  level-preserving o -  Q A. Fc-' 
0 





The inductive step. Let F [Ao . . . A ] Le an r-flag. Let 
r $ be the 

12 naturally isomorphic to set of oriented ( r  t 1)-spaces through A . C-: X: 

the set of unit vectors orthogonal to A which l u  an (n-r-1)-sphere. Now 
F 

fo r  each B t 9 , let W B  be a wedge on the flag [A C A  C ... C A r  CB] 
0 1 

given by the inductive hypothesis, and suppo ':at W, i s  determined by the 
U 

B 
constants (6  B, 6 iBJ . . . , 6F+i  o ). ,Then the se t  ~2 1 f (BJ Bt )  < 6 B  r t l  1 
i s  a neighbourhood of B in 9 . But S is compact, and so we can choose 

a finite set B B2, . . . , B such that the corresponding neighbourhoods 
1' S 

cover S . Let W be the wedge on F determined by the constants 

(60 ,61J  S *  , 6 ) where 6 = mint6 , j = l , .  . . , S Then W C r i i j - i  U W  
Proof of Theorem 6.13  he n-isotopy extension theorem): F i r s t  

consider the special case when Q is compact. By reflection in the subspace 

17 n 
X = integer, we may assume that F: M X I + QXI is the restriction of a 
j 

embedding F: M X R ~  -> Q X R ~  
n , eommutinzg witr 1 3 ~  3jection on R ; and with 

r, 
F ~ J B M = F . ~ ~ M  f o r d l t e  R .  S r .  . 

0 
it. 15  and 6.16 there a r e  a Xi1 

11 

humbler of sirnplexe S A in R-', .c ,:C- . -:.L .:; , - :.p PL homeornorphiems i 

kit) a A .  * @A. conmmtimg with projectim orto the secoqd factor, such that 
1 1 1 

k. I 8Q X A i s  the identity a:~l:. 
1 i 
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such that l) each simplex of K l ies  in one of the A , and 2) K col- 
i i 

lap-  simplicially to the origin. Let K = Kp-i . . .h  K = the 
0 

origin, be the simplicial  collapse. We define hductively level- pre serving 

P L  homeomorphisms h.: Q X K. 3 Q X K such that h.  l aQ X Ki = identity 
1 1 i 1 

and h . (F  X l ) = F  on M X K . .  S ta r twi th  ho= iden t i ty .  Suppose h i s  
1 0  1 i -  1 

defined. Let K = K + aA 4- A. Let p: aA -> aA be a PL ~ e t r a c t l o n .  Suppo 
i i - l  

that aA C A . .  Then define h.: Q X Ki -> Q X K. by h.(x, t )  = (hil tx, t )  where 
1 1 1 

h i f  t~ K 
i -1 , t  i- 1 

h = 
i ,  t k. ( k  ) + $ l ; P t  i f  t E aA 

~ , t  j,pt 

One may readily check that this  i s  a PL homeomorphism, equal to the 

identity on aQ X K.. Moreover,  if  X E M, t E aA, 
1 

Putting H = h : Q  X In Q X In gives the required ambient n-isotopy. 
P 

The extension to the case  when Q i s  not compact i s  more  o r  l e s s  identical to 

the argument when n = 1 and so will be omitted. 



Chapter VII. Engulfing 

0. Introduction. 

9 Suppose X i s  a closed subspace of the P L  manifold Q . Then we 

may pose the question: Is there a q-ball B in Q with X L  B.? Some 

uses for the answers to this question a r e  in proving embedding theorems 

(See Chapter VIII) and in proving a weak generalized Poincare conjecture 

in dimensions 2 5 and a variant of the h-cobsrdism theorem (see 5). 

We approach this question by consider-kg the following two related 

questions: 

(A) If U is open in Q and X is a cc .: ,L~ct  P L  subspace of Q, i s  

there a P L  homeomorphism h: Q -+ Q with : X Y Z  hU? 

subspace C' of Q with X c  C' and C ' ~ C ?  What can we insist  about the *: 
8 

dimension of (C ' -C) ? 

i. Prel iminary Results. 

Lemma 7. 1. Suppose that X C X a r e  compact P L  subspaces of Q, 
0 

and suppose Y i s  a closed P L  subspace of Q such that X 4 (aQ (J Y ) C  Xo- 

Assume that X b~ and let U ~ X  be open in Q. Then there exists a 
0 0 

P L  homeomorphism h: Q 4 Q with compact support, which is the identity 

on BQ U Y U Xo, such that X C h( U). 



Picture: 

Proof. Let J be a triangulation of Q containing triangulations 
S 

K , K, and L of X , X ,  and Y ,  respectively. We may assume that K K o . n o - 
e s  

Let K =  K \ K . Then K . L K  and 
r o 1 i-l  

I ~~l~ ( I aJ I L! I L I ) I Ki-l I . Hence it suffices by induction to prove the 

e s  
lemma f o r  Ki, Ki- l ,  and Y. So we may a s  well suppose K = K1 KO . 

A 
Let K = K + aA + A .  Then aA C U. Let A be the barycenter  of A .  

0 

A 
Let b # a be a point of aA close enough to a so that a b A C  U. Let 

R = link(A: J ) .  Since A / a J ,  R i s  a P L  sphere of dimension q-dim A-1. 

Since dim A 5 q- l ,  R # g .  Therefore  there  i s  a P L  homeomorphism 

Q: R -> {a, c ) .  S, S a sphere of dimension q-dim A -  2 (S = i s  ~ o s s i b l e ) .  

A -  
: I Define a P L  homeomorphism B:A.R -> A.(a  t, c ) . S  = ( a v  c) .A.A.S by 



Now let y': ( a  c c). A -> ( a  V c). A be a P L  homeomorphism such that 

A A *  
y t ( a ) =  a,  y t ( b ) =  A, and yt (c)  = c. Thenlet  y : ( a ~ ) c ) A . A . S - - 3 ( a ~ c . ) . ~ . ~ , $  

- 1 
Then let 6:  star(^; J )  -+  star(^; J)  be defined by 6 = /.3 y p. Then 

h *  . 
6(abA) = aA. A = aA. Moreover, ' 6 i s  the identity on A. R. So if  we put 

h1 star(A: J) = 6 and h = identity elsewhere, than h1 l K I = identity and 
0 

Definition. If K = K + aA + A is  an elemtntary simplicial collapse 
0 

es  
K \ KO, then dirn(aA) i s  called the dimension of the collapse. 

S 
Lemma 7 . 2 :  If K \ K , then we can r-.zFrange the elementary 

0 
S 

simplicial collapses K KO to be in order of decreasing dimension. 

Proof. Suppose K = K + aA + A and K = K + bB + B a re  
2  1 1 0 

two simplic ial collapse S ,  and dim B > dim A. Then aA C K So 
0 

K + aA + A i s  a subcomplex of K Moreover, K - ( K  + aA + A )  + bB + I 
0 2' 2- 0 

So (K + aA + A)  5 K i s  in order of decreasing dimension. 
0 0 

Lemma 7 . 3 .  If X ,Y .C '  - Z a re  polyhedra.and if ZhX, then there 

exists T C Z,  a polyhedron, such that Y b X C  T, Z\ X U T L X ,  and 

dim T I dim Y + 1. 

Proof. Let K, L C J triangulate X, Y C- Z, Choose subdivisions 

K ' ,  L' C J '  so that J'% K ' ,  and let J '  = K' \eS o .30 be elementary 
r -. 

simplicial collapses in order  of d s c r e ~ s i n g  ai,- tcsion. Let i S r be the 

least integer such that K '  3 Lt.  We may suppose i # 0, a s  i f  i = 0 there 
i 
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is nothing to prove. Let K; = + aA + A. Then A C  L', a s  otherwise 

In particular,  the collapse K.$K has  dimension 5 (dim L+ 1). 
1 i - l  

I ,  dim T i  dim L +  l and Z\X v T ~ X .  

3 .  Engulfing Theorems,  Type (A).  

Definition. A topological pair  (X, A)  is n-connected, n 2. 0 ,  i f  every  

point of X may be joined by a path to some point of A and i f  ni(X: A) = 0 

f o r  1 L i < n. [If A is not connected, we insist  the condition holds for  any 

base point in A. ]  

Theorem 7 . 4 .  Let U be an open subset of the P L  manifold aq. 

Assume 8Q = 8. Let X C  Q be a compact PL subspace of Q, and let Y c- U 

be a closed P L  subspace of Q. Let j = dim X ,  s = dim Y ,  suppose that 

(Q, U) i s  k-connected, and suppose that j L q - 3 ,  s I q-3 ,  and t S k. Then 

there exists a PL homeomorphism h: Q -> Q, which i s  the identity on Y, . 
such that X C  h(U). 

Proof. We let  k and s be fixed and proceed by induction on j. So 
_I_ 

given j, assume the resul t  for  j* l .  

Because of the connectivity assumptions on (Q, U) ,  we can  construct 

a map 6:  X X I 3 Q such that $(X, 1) = x al l  X, and $(X X 0) C U, a s  

follows: Let K triangulate X ,  = jth skeleton. Define 

(X, l )  = x and $(v , t )  = rpv(t), where q v i s  

a path f r o m  v to a point in U. Suppose that $ j-1 : (K ('-l) X I) (K X l )  -> Q, 

j l d i m K ,  has  b e e n d e f i n e d s o t h a t  $ j-1 (K( '~ ' )XO)CU and j- l ( x , i ) = x ,  



all X. For  each j-simplex A of K('), # i s  defined on (A X 1) (i\ X I), j- l 

a &tract of A X I. Hence there exist f A X I -> Q extending A* 

B ( A  X 1) (A  X I). Let gA = (fA)o. Then g (A, ) Q ,  U). Since 
r - l  A' 

dim A S k, let HA: A X 1 - 3  Q be a homotopy of gA = (HA)o , relative i\ 

such that HA(x, I )  I U for all  X s A. Then i f  X s A s K(') and i f  t E I, 

define 
f (x;2t- l)  1 / 2 1 t s  1 
A 

$.(X, t )  = 
J H (x; l-2t)  O I t L  1/2 . 

A 

Then 9 I K(') X I -3 Q i s  a well-defined map, #.(K(') X 0) L U,  and 
j J 

t . (x ,  l )  = X. Finally, put # = jdj, where j = dim K. 
J 

By the lemmas of Chapter IV we can assume, after a small homotopy 

of relative X X 1 that # is also a non-degenerate P L  map (Lemmas 4.2 

and 4.4). 

Now let L be a triangulation of X X I,  containing triangulations L 

and Li  of (X X 0) and (K X l )  respectively, such that g: L + Q can be 

made simplicial by suitably triangulating Q. Then # embeds each simplex 

S 

of L. Let L' be a subdivision of L such that L ' \  L' = induced subdivision 
0 

of L . By Lemma 4.7, # (re1 X X l ) ,  where #' i s  a P L  map which 
0 

embeds each simplex of L and which satisfies the following: 

l )  If , E L -  , d i m ( # ' u ) ~  ($'T) i dim U + dim T -q : 

2) For  all U E L'- L' dim ($U)/ \  Y I d i m  T -k S-q; 
l 

3 )  For  all s s L'-L; , - r e L ;  , dim($ 'un $ I T )  c dimo + dimr-q.  



e S e S 
Now let  L' = R,\ . . , R = L . Let R!')= j -skeleton of R., 

0 0 1 1 

each i. By induction on i ,  we a r e  going to find P L  homoemorphisms 

hi: Q + Q, fixed on Y, with $ ' ( R ( ~ ~ o . u  i 1 . This will complete the proof 

( j )  f o r  i f  we take i = n then X C  $'(X X 1) C $(R ) c h . ( ~ ) .  Since $'(R )C U, 
n 1 o 

let  h = identity. Suppose hi-1 i s  defined. Then let  V = h (U).  Let 
o i- 1 

Ri = R + aA + A. Let Z be a polyhedron such that 
i- 1 

(j) ) ($'p)% 0 $'R i- i = aA U Z, By 1) and 2) above, 

dim Z 5 m a x ( j ~ i t s - ~ ,  j4-1 -j-q) 2 j-2. By 7.3,  there  exists a polyhedron T 

such that a ~ \ a d r  ~\lladi,  Z C T  y aA, and dim T 5 j -  1. Therefore 

(j)  
@'(R,(') + aA + A)$$'(R U T) by a collapse "not crossing Y";  i. e. ,  a col- 

I- 1 i- l 

lapse in which no points of Y a r e  disturbed. 

Now we a r e  going to use  the main inductive hypothesis to engulf 

( j  ( j  
@ ' [ R ~ -  U T]. Dim $'(T) 2 j- l. Y $'(R ) CV. So letting #'(T) play 

1- 1 

the role of X in the theorem, and Y L) $'(R? ) the role of Y ,  there  exists 
1- 1 

( j )  
a P L  homeomorphism rr:Q -> Q, fixed on Y L) $ ' (R i - l ) ,  with $ ' T C  @V. 

Now by Lemma 7.1,  there  exis ts  a PL homeomorphism P: Q -> Q such that 

( j )  /3 i s  fixed on Y $'(R(') U T) and $'(R b aA U A)C(/~UVUV). Now 
i- 1 i- l 

WC ( j )  R. 
( j  1 + aA + A. So put hi = Then $R. C h.U. This com- 

1 1 1 

pletes the proof. 

Remarks: We can insis t  that h have compact support. In fact,  in view of 

the fact that the homeomorphism of 7.1 could have been taken to be isotopic 

to the identity by moves, the same is t rue  of h. 
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Corollary 7.  5. Let X, Y, Q, U sat isfy al l  the hypotheses of 

Theorem 7 . 4  except that X is  mere ly  a closed P L  subspace of Q. 

Suppose that X - X /\ U i s  compact. Then there  exists h (with compact 

support)  a homeomorphism of Q, such that X C  h ( ~ ) .  

Proof .  Let X C X be a compact P L  subspace of Q (or  X) con- 
0 

taining X - X n  U. Then X - X  C U .  But X' = X  Y '  = Y V c ~ ( x - X I ) .  
0 0 ' 0 

Let h: d -> Q be a P L  homeomorphism with compact support, such that 

h lYt  = identity and h(U) 3 X .  Then h ( U ) 2 X  U (X - Xd = X. 
0 

Corol lary 7.6.  Let uCQq be an open subset of the P L  manifold Q, 

BQ # $. Let X be a compact P L  subspace of Q, Y a closed PL subspace 

of X ,  with d i m X  = r s q - 3 ,  dim Y = s Cq-3 .  Assume (Q,U) i s  k-connected 

k 2 f,  and assume Y C  U and X n 8 Q C  U. Then the re  exists a P L  homeo- 

rnorphism (with compact support) h: Q -> Q, with h ( aQ U Y = identity, 

such that h(U). 

Proof .  Xt  = X - X n  aQ and Y '  = Y - Yy,  8Q a r e  closed PL sub- 

spaces of Q - 8Q. U' = U - U n 8Q i s  open in C2 - aQ. The pair ( Q - a ~ ,  U' )  

is q-connected; to see  this suppose 

q. q-1 f: (D , S  ) -> (Q - aQ, U-8Q n U) is homotopic re1 sq-'$ to a map of 
L 

into U. Then by using a boundary col la r ,  one can push the hornotopy 

slightly off the boundary without disturbing it on sq-', getting a homotopy 

H of f such that H ~ ( D ~ )  C U - ( 8 ~ )  n U. 



Now let h': Q-aQ -> Q-BC2 be a P L  homeomorphism such that 

hl(U1) 3 X '  and h has  compact support. Define h: Q -> Q by extending 

h1 to be the identity on aQ. 

Remark, This corol lary could have been included in Theorem 7.4 using 

almost the same proof. 

4. Engulfing Theorems,  Type (B)  

Theorem 7.7.  Let C and X be compact P L  subspaces of the P L  

manifold Qq, aQ = $, with (Q, C) a t-connected pair.  Let r = dim X, 

and suppose C ~ Y ,  whoere Y i s  a closed P L  subspace of dimension S. 

Then if r I q-3, S L q-3, and r L t ,  there  i s  a compact P L  subspace C' 

of Q such that C u X C  C ' Q C  and dim(C1-C) 2 r t i .  

Proof .  Let Xi  =  cl(^-X n C): assume Xi # F. Then dim(X i , i C) < r -  1. 

Hence by Lemma 7 .3 ,  there  exis ts  a compact P L  Y in Q such that 

C& y Y1, X i ?  C:- Y Y l ,  and dim Y I r .  Therefore C O X  = 
i 

C I! X \ Y  ( , Y i v  X i ,  by Lemma 2. 
i 

Let N be a regular  neighborhood of Y in Q, and let U = Int. N. The 

inclusions Y C C and Y C U a r e  both homotopy equivalences; therefore 

(Q, U) i s  t-connected. By Theorem 7 .4 ,  there  i s  a P L  homeomorphism 

h: Q -> Q such that h ( Y  = identity and X 0 Y CC: h(U). So i i 

X i  (J Y I, Y c h(U). By 7. 1, there  i s  a P L  homeomorphism k: Q -> Q with 

kl Y \, Y XI = identity and C y X C khU. Since kh l Y = identity, khN i s  a 



regular neighborhood of Y.  In par t icular ,  k h ~ h ~ .  But C b Y  and 

CC Int k h ~ .  SO b y  Lemma 5.2 (on factoring collapses),  k h ~ L  C. SO 

by Lemma 7.3 again, khN\ C1k C ,  w h e r e  X C C '  and dim(C1-C) 5 

Lemma 7.8. Suppose that C and X a r e  compact P L  subspaces of 

Q ~ ,  C \  C n aQ. Assume that (Q, 8 ~ )  i s  r-connected, dim X = r ,  and 

r I q-3. Then there  exists C '  in Q, a compact PL subspace, such tha t  

C X C C ~ \ ( C ~  n a ~ )  C ,  and dirn(Cf-C) 5 r + i .  

Proof. Let N be a derived neighborhood of aQ in Qo Let 

U = Int N. Then (Q, U) i s  P-connected. Now, a s  In the proof of 7.7,  
Q 

C U X ~ ( C  0 aQ) u Y, where dim Y 5 r. So, by Corollary 7 .6 ,  there  i s  a 

4 
P L  homeomorphisrn h: Q-> Q with h1 aQ = identity, Y c hU, h - ' ~  C U C N .  ' 

Now (C r\ a ~ )  ( h - ' ~ )  i s  compact, and so  there  i s  a compact polyhedron P 

in aQ such that ( C  n aQ) I, ( h - l y ) ~  V = Int Nq,  where N1 i s  the derived 
Q 

neighborhood of P in Q. By Lemma 7 .  1, there 4s a P L  homeomorphism 

k: Q -> Q, fixed on aQ Y with C y X C  k h Y C  khN1. Now khN' i s  a 

regular neighborhood of P in  Q and P C ~ P ,  Pu C c I n t  khN1. So, Q 

by Lemma j.1 , khN1 i s  a regular  neighborhood of P U C in Q. So, by 

L e m m a 7 . 3 ,  k h ~ ' \ ~  u C U  T ~ P  L , C ,  where X<-T and d i m T L r t 1 .  



Definition. If Q i s  an open ma.nifold ( i . e . ,  Q i s  not compact and -.----- 

8Q = fl), Q i s  called l -connected at  m .. i f  given C (" a ,  C compact,  t he re  

i s  a C '  Q, compact,  such that C ! C '  and (Q-C ' )  i s  1 -connected. 

Theorem 7 . 9  (Stallings): Let  cZ be open, (q-3)-connected P L  mani-  

fold which i s  1 -connected a t  m. Suppose q = dim Q 2 5. Then Q i s  PL 

horneomorphic to E!, Euclidean space of dimension q. 

Proof.  We shaIl prove that i f  C Q i s  compact ,  then C i s  con- 

tained in the in te r ior  of a P L  q-ball  contained ( a s  a PL subspace) in Q. 
a3 

This i s  sufficient: it impl ies  that Q = B.,  where B. Int Bi+l a r e  a l l  
1 1 

i = 1 

q-balls. By the annulus theorem,  C ~ ( B ~ + ~  - B.) i s  P L  homeomorphic to 
1 

8B. X I. Moreover ,  i s  a lso such a union of bal ls ,  and so i t  is c l ea r  how 
1 

to define a P L  homeomorphism of Q onto E. 

So le t  C;: Q be any compact subset of Q. Let  C ' 3  C be  another 

compact subset ,  so that (Q-C ' )  i s  l -connected. Let V = Q-C'.  

Let  J be a tr iangulation of Q. Let J I  be the (q-3)-skeleton of J. 

Let J 2  be the subcomplex of J '  consist ing of a l l  s implices  of J 1  which 

: do not meet  (i. e. , have no f aces  in) J '  where J '  = barycentr ic  f i r s t  
1' 

\ \ 

derived of J .  A general  s implex of J '  i s  of the f o r m  U = A 
1"' A ,  r 

A I <  ... A s J.  If U does not meet  J 1  , then dim A .  2 q - 2 ,  1 L i l r. 
r 1 l 

t 

Therefore  r 2 3. So dim J L 2. 
2 



Now, J '  i s  full in J q ,  so there  i s  a l inear  map $:J1 -> I, such that 
1 

1 
$ ( J ~ )  = 1 and #' (0) = J;. If D i s  any compact subset of Q not meeting 

J2' 
then there exists 0 <f < i such that $ ( D ) C  [O,%]. But # " [ O J ~ ]  i s  a 

derived neighborhood of J in J. In fact ,  if  D i s  compact, D i s  containe 
i 

compact P L  subspaces Z and Z of Q (can take Z to be a q-manifold) 
0 

such that D C Z> z and d im Z I q-3, 
0 0 

V i s  one- connected and Q is (q-3)-connected, q 2 5, (Q,  V) is 2-connecte 

Hence by Corollary 7. 5, t he re  is a P L  homeomorphism h: Q -> Q, such that 

l J ~ I C  hV. 

In particular,  Q-hV = h ( ~ - V )  is compact and does not meet 

Hence, we may take D = Q-hV; s o  , Q - h V c  Z h Z  , dim Z I q-3. 
0 0 

Now let  U be the in te r ior  of a P L  q-ball contained in Q. Then (Q, U) 

i S certainly (q-3)-connected. Therefore there i s  a k: Q -> Q such that 

Z C kU, by Theorem 7.4. By Lemma 7. 1 ,  there  exists a k'r Q -> Q with 
0 

Z L  k'kU. Therefore Q - h V C  k'kU, and so  Q-VC h - ' k ' k ( ~ ) .  But 

C C  C1 = Q - V C  h- 'klk(u)  C h - ' k k ( ~ ) ,  a P L  q-ball. 

Corollary 7. 10. (weak  Generalized Poincare Conjecture): Let 

be a closed (= compact without boundary) PL manifold, m 2 5. Assume M 

i s  [m/2]-connected. Then there  i s  a topological homeornorphism of M onto 

the sphere sm. 



Proof. By P o m ~ a r e  duality, M i s  ( m -  1)-connected. (1 -connected 

implies orientable. ) Therefore M i s  a homology sphere. Moreover, by 

excision H,(M, M-pt. ) = 0, f o r  i < m ,  H , ( M - ~ ~ . )  = 0, all  0 < i l m-2. 
1 1 

As IT (M, M-pt.) = 0 ,  (by general posit ion),  IT (M-pt) = 0. Therefore,  
2 1 

M-pt. i s  (m-  2)-connected. 

If C C  M-pt. i s  compact, there  i s  a regular neighborhood N of pt. 

in M not meeting C. C '  = cl(M-N) is compact in M-pt. 

(M-@t)-C' = N-pt. But N i s  a m-bal l ,  so  N-pt. is homotopy equivalent to 

Sm - 1 m -  1 , and IT (S ) = 0. Therefore M-pt. i s  l-connected a t  m. Therefore 
1 

by Theorem 7 .9 ,  M i s  topologically equivalent to the one point compactifi- 

cation of E ~ ,  vh ich i s  sm. 

We conclude this chapter with a type of h-cobordism theorem. 

Theorem 7.11. Let W be a compact P L  q-manifold with q 2 5. 

Suppose aw = M 
1 

U M2, where M M a r e  disjoint q-1 manifolds. 
l '  2 

Suppose that (W,  Mi)  i s  r-connected, ( W ,  M ) i s  S-connected , where 2 

r 5 q-3, s 2 q-3,  r t s t i  = q. Then W-M2 p M1 X [0, m), W-M M2 X [0 ,  CO), l - -  

and Int W M X R -F M X R. 
1 2 

Proof. It suffices to  prove the f i r s t  statement of the conclusion. Let 

Q = W-M2. We will show that i f  C i s  compact,  C L  Q, then C i s  contained 

in the inter ior  of a regular  neighborhood of M in Q. F r o m  this i t  follows 
00 1 

that Q = U N where each N i s  a regular  neighborhood of M and 
1 i '  i 1 

N.c2  Int N 
i t 1  ' 

Then, since cl(N - N.) i s  P L  homeomorphic to ( F r  N ) X I 
1 i t 1  1 Q i 

by the generalized annulus theorem, and since by uniqueness of regular  



neighborhoods and the existence of boundary co l l a r s  for  Q, FrQNi Mi , 

we have cl(N.,, - N.) M, X I. Using this P L  homeomorphism, it i s  clear 
11-1 1 l N 

how to define inductively P L  homeomorphis m s  * N. 3 Ml X [o,, NI h ~ '  1 
i = l  

such that hN = 
h ~ t l  

where both a r e  defined. Clear ly the hN define the 

required homeomorphism. So let  C L  Q be compact. Let N be a regular 

neighborhood of M in Q, and let  U = IntQN. Let N' be a regular neigh- 
l 

borhood of M in W such that N' A C = 8, and le t  V = Int (NI-MZ). Then 
2 Q 

the inclusion M -> U " M1 X [0, l ) is a homotopy equivalence, so (Q, U) 
l 

i s  m-connected. A s imi lar  so r t  of argumant,  but using a boundary collar ? 

of M2, shows that (Q, V) i s  also m-connected. 

(r) Let J L J be a triangulation of M 1 c  Q ~ .  Let J i  = J J , 
0 0 

J ( ~ )  = r-skeleton of J. Let J 2  consist  of those simplices of J '  which do 

not meet J As in the proof of 7. 9 ,  d im ;B 4 q - r - l  S. 
1" 2 

By the engulfing theorem, Corol la ry  7.5, (J2- J2 V is compact) there 

exists a PL homeomorphism h: Q -+ Q, with IJ (C hV. h(C) c h(Q-V) = Q-h1 
2 

S 

therefore h(C) n 1 J 1 = fl. Hence, since 
2 

J l  is ful.1 in  J q ,  h(C) is con- 

tained in a derived neighborhood of a finite subcomplex of J (see  page 17, 
1 

2nd complete paragraph). W e  may  suppose that the subcomplex of J i s  of 1 

the  f o r m  Ml Y, where dim Y C r. Then ii Z is the regular  neighborhood 

h(C)C Z Y. By Corollary 7.6, there  i s  a P L  homeomorphism 

k: Q -> Q, with M1 W Y C kU. By Lemma 7.  l, there  i s  a P L  homeomorphism 

k': Q -9. Q with Z c  klkU. So h C C k f k U .  Therefore 



- 1 
C h- 'klku 1nt(h klkN), and the l a t t e r  i s  a regular  neighborhood of M 1 

in Q. 

Note. In fact,  Poincare duality and the Hurewicz theorem ensures  that the 

inclusions M W, M2. W, a r e  homotopy equivalences. 
1 



Chapter VIII - -  Some Embedding Theorems 

1. An Embedding Theorem Relative the Boundary 

Theorem 8.1. Let and be connected P. L. manifolds, 

M compact. Let f: (M,  aM) -> (Q, aQ) be continuous, and suppose that 

£ 1  aM i s  a P. L. embedding. If M i s  (2m-q)-connected and Q i s  (2m-qt1)- 

connected, and if q-m 2 3 ,  then f 2 f '  (re1 aM) , where f '  is  a P. L. 

embedding. 

Proof. By the general position theorems of Chapter IV, f 2 g (re1 aM), 

where g i s  a P. L. map, dim SZ(g) 5 Zm-q , and g(Int M) 5 Int Q. 

We can suppose that S (CJ) Int M. F o r l e t  a: M -> ( M  X 0) , (aM X I) 
2 

and p: Q -> (Q X 0) id ( aQ X I) be P. L. homeomo rphisms such that 

~ ( x )  = (X ,  1) if X E aM and = (y, 1) i f  y E aQ. Then let  g '  be the fol- 

lowing composite: 

CY 
M-> ( M  X 0) L ( ~ M x  I) > ( Q X O ) L  ( ~ Q X I )  p-4> Q. 

- 1 
Then S2(g1) = ( u I M X 0)(S2(g) X 0), so S ( g ' )  C_ Int M and dim S2(g') < 2m-( 

2 

But we can choose /3 so that there i s  a homotopy Ft: (Q X 0) U ( a ~  X I) -> Q 

s u c h t h a t f o r a l l  t ,  F 1 8 ~ x 1  = p - ' l a Q x 1 ,  F o =  B-', F 1 l ~ x O  i s a P . L .  
t 

homeomorphism of Q X 0 onto Q, and F ~ ( X ,  t) = X, al l  X E aQ and t E I. 
.I, 

This can be seen by adjoining a boundary col lar  for  Q 'l. cl(Q- p(aQ X I)) to 

the collar /3I aQ X I and then expanding the inner collar a t  the expense of the 

outer  one. Siknilarly fo r suitable a, , there i s  a homotopy 

Gt: M -> (M X 0) - ( B M  X I) with Go = u , G ~ ( x )  E X X I for all  X s aM, and 

G a P. L. homeomcrphism of M onto M X 0 such that G1(x) = (X, 0). 
1 
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Then g' = F o o ( g X  1 )oG F ~ ~ ( ~ X  l ) c G o  F 1 o ( g x  ~ ) o G *  and each  
0 

homotopy i s  re la t ive  aM. But the l a s t  map  may  a l s o  be wr i t t en  in  the 

f o r m  k.  g .h, where  k and h a r e  P. L. homeomorphisms of Q and M 

respectively,  which a r e  the  identity maps  on 8Q and aM. 

So we may  a s s u m e  S2(g) C_ Int M. Dim S (g) 5 2m-q 5 m-3. Int M i s  
2 

a s  connected a s  M, and so t h e r e  is a collapsible compact P. L. subspace C 

of Int M, with S2(g) C- C and d im  C 5 2m-q + 1 ,  by the  Engulfing Theorem 7 .  

By the same theorem,  t he r e  ex i s t s  a collapsible P. L. subspace D of 

Int Q such that  g (C)  C D and d im  D 5 2m-qt2.  By genera l  position t heo rems ,  

t he r e  ex i s t s  a P, L. homeomorphism h: Q -> Q, fixed on g(C), s o  that  

dim((hD-gC) n g ( ~ ) )  5 (2m-qt2)  t m - q  = 3m-2qt2  L 2m-q-1. 

So if D' = hD, g - l ~ '  = C c; X, where  X i s  a compact  P. L. subspace of M, 

and dim X c 2m-q-1. 

Let  Cl = C,  D = D', X = X, and suppose by induction 1 1 

we have found collapsible P. L. subspaces  Ci C_ Int M and D. Int Q, and 
1 

X. G Int M, such that  s ~ ( ~ )  C_ Ci, ( g j ' ) - ' ~ ~  = C. v Xi, d i m  X.  L 2m-q-i  (2 m-3). 
1 1 

Then by the Engulfing T h e o r e m  7.  t he r e  i s  a compact  P. L. subspace 

C Int M with C. U X.  2 ~ ~ + ~ i  0, and dim(Citl - Ci) 5 d im X.M. By the 
1 1 1 

same  theorem,  t h e r e  i s  a P .L .  subspace D"  of Int Q such that  

Di L g1(Cit1) 2 D " ~ o ,  and dim(D1' - Di) l dim X.  + 2. By the  Genera l  Pos i -  
1 

tion Theorem,  t h e r e  ex i s t s  a P. L. homeomorphism k: Q --+ Q with 

k l U g'(Ci+l) = identity and dim[k(Dt'- D. L'  1 '('itl ))] g(M) I d im X. 1 t 2 +m-q 

h dim Xi - 1, s ince m - q <  -3 .  Let  Di+l = kD". 



F o r  k la rge  enough, Xk = 8, a s  2m-q - k < 0. So we get 

- 1 
g Dk = Ck 3 S2(g).  Now let  K and L triangulate M and Q respectively,  

with Ck and D triangulated a s  subcomplexes ( some la rge  k, now fixed), 
k 

and with g:K -> L simplicial .  Since g i s  non-degenerate, it c a r r i e s  

barycenters  to barycenters ,  and so if K "  and L" a r e  barycentric 2nd 

derived subdivisions, then g: K "  -> L" i s  simplicial. Let  N1 = N(S; K") 

and N = N(T; L"),  where S and T a r e  subcomplexes of K" and L" 
2 

respectively triangulating C and D respectively.  Then by uniqueness 
k k 

of regular  neighborhoods, N i s  an  m-bal l  in Int M and N i s  a q-ball 
1 2 

- 1 -1 
in Int Q. Also, N = q N 2 ,  a s  S = q T and q i s  simplicial. AS 

1 

S2(g) C_ Int N1 , g J ~ ( M - N  ) embeds cl(M-N ) piecewise l inearly in 
1 1 

cl(Q-N ) and embeds aN piecewise l inear ly  in aN2 . 
2 1 

Now g )  aN extends to a P. L. embedding of N into N f '  , say. 
1 1 2' 

We may extend f '  to a l l  of N by putting f '  = g on cl(M-N 1 ) , Then f '  

i s  a P. L. embedding. Since N i s  a ball,  f ' ) ~ ~  " g ) ~ l  ( r e l .  aN1). 
2 

Therefore  f '  g ( re1  aM). This completes the proof. 

Note. The hypothesis that M be compact can be removed provided we 

- 1 
insist  that f be a proper  map,  i. e . ,  f (compact) = compact,  and S2(f) 

i s  compact. 

Corol lary 8 .1 .1 .  If k L m-3,  a closed,  k-connected m-manifold 

2m-k 
can be embedded in E 



9 Corol lary 8. I. 2. If Q i s  k-connected, then every element of 

rr (Q) can be represented by an embedded sphere provided that 
r 

2.  An Embedding Theorem Modulo the Boundary 

Theorem 8. 2.  Let be a compact P. L. manifold, Q a P. L. mani- 

fold, and let  f :  (M,  aM) -> (Q, aQ) be a continuous map. Then i f  (M,  aM) 

i s  (2m-q)-connected and (Q, aQ) i s  (2m-q+l)-connected, and if q-m 2 3, 

then f " f '  v ia  a homotopy of pa i rs ,  ( M X  I, aMX I) -> (Q, aQ), with f '  

a P. L. embedding. 

Corollary 8. 2.1. If (a,  aQ) i s  k-connected, an element of rr (Q, a ~ )  
r 

may be represented by a properly embedded disk, provided that 

Proof of Theorem 8. 2. By the resul ts  on General Position (Chapter IV), 

and by the Homotopy Extension Proper ty  for polyhedral pa i rs ,  f f via a 
1 

homotopy of pa i rs ,  where f ( aM i s  a non-degenerate P. L. map. Again by 
1 

General Position, = f via a homotopy fixed on aM, where f i s  a P. L. 
f1 2 2 

map with f (Int M) E Int Q and where f I Int M i s  in general position. 
2 2 

In particular,  dim(S ( f  ) r\ Int M) S 2m-q. 
2 2 

Write f f o r  f and le t  X = cl(s2(f) - sZ(f) Q aM). By the Engulfing 
2' 0 

Theorem 7. , there  exists a compact P. L. subspace C of M such that 

X C C n aM and d im C c (2m-q) t 1. By the same theorem, there 
0 



ex is t s  a compact P. L. subspace D of Q such that  f(C) C D \ D n aQ 

and d im D 5 2m-q t 2. By Genera l  Posit ion,  the re  exis ts  a P. L. homeo- 

morph i sm h: Q -> Q, fixed on f C L aQ, such that  
2 

dim[(hD - ( f ~ )  L, aQ) f ~ ]  I (Zrn-q t 2) t m - q  L 2m-q- l .  Therefore ,  

- 1 
f (hD) = C U X L, Y, where  d im X I Zm-q-l  (because  f i s  non-degenerate)  

and Y E aM. 

Letting C = Cl ,  hD = D X = X Y = Y1, we can define inductively 
I ' 1' 

C X. ,  Y .  G M and D E Q such that  X C C. \ C. aM, Di \ Di aQ, 
iy 1 1 i 0 -  1 1 

- 1 
and f (D.) = C - X c4 Y i ,  where  Y iE  OM and d i m x i  C_ 2m-q-i.  The 

1 i i 

inductive s tep  combines the  f i r s t  s t ep  and the inductive argument  used in 

Theorem 8.1. (At each s tep,  the Y . ' s  a r e  ignored. ) 
1 

Assume now that  Q i s  compact.  Let  K and L tr iangulate M and Q 

respect ively  so  that  f :  K -> L i s  s impl ic ia l  and C and Dk a r e  tr iangulated 
k 

a s  subcomplexes,  where  k i s  a n  in teger  such that  Xk , 8.  Then 

- 1 s2f L ckL aM, ck/ ck n aM, D \ p aQ, f D = c, i. Yk, 
k k 

so  that  

f - l ( ~ ~  ,L aQ) = C c aM. Le t  N, = N(aM C ; K") and 
k k 

N = N(aQ L Dk; L") ,  where  K" and L" a r e  2nd der ived subdivisions so  
2 

that f: K" -> L" i s  s t i l l  s impl ic ia l .  Then f-'N = N Moreover ,  
2 1' 

N1 4 aM c' C \ aM and N ~ \  Dk i aQ 1 aQ, so  by uniqueness of regu la r  
k 

neighborhoods and exis tence of boundary co l l a r s ,  N C2 aM X I and 
l 

N %' aQ X I. In fact ,  N and N m a y  be real ized a s  the images  of boundary 
2 1 2 

co l l a r s  in  M and Q ,  respectively.  Using these  co l l a r s  and adjoining to each  
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a second "inner collar",  we may construct homotopies F : M  -+- M and 
t 

horneomorphism M 3 M - N , F ~ ( ~ M )  5 Ni a l l  t: G = identity, 
0 Gi 

G 0 f OF = f. These homotopies a r e  

al l  homotopies of pairs  (M, aM) in (Q, aQ); i. e . ,  G fF (aM) glfN1 2 1 t 

ClNZ = BQ and G fF (aM) g G t ( a ~ )  G aQ. Clearly,  f i s  the required 
t o  3 

P. L. embedding. 

It remains to consider the c a s e  in which Q i s  not compact. Choose 

X; 
the C ' s  and D's  a s  above, and let  Q be a regular neighborhood of 

Let Pi = Q ' n  aQ, P, = F r  Q . 

so that f: K -> L i s  simplicial  and C and D a r e  triangulated a s  sub- 
k k 

complexes. Let K" and L" be barycentric 2nd derived subdivisions. Let 

* 
Now, N ~ \ ,  Piu \. Pi , so NZ i s  a regular neighborhood of P in Q . 

1 

Also, NZ" P2 i s  a regular  neighborhood of BP in P ( a s  i t  i s  a derived 
2 2 

neighborhood). As in the compact case ,  we want to use uniqueness of 

regular neighborhoods to conclude that (N2:N2 P2) 2 (Pi X I ,  aPi X I). 



d. .a. 

 et cl: a ~ "  X I -> Q be a boundary co l la r .  Le t  

C2: aP2 X I -> P 2 be a boundary co l la r .  Let  C3: a ( p l  X I) X I 3  PI X I 

be a boundary co l la r .  Le t  C. > 0 b e  such  that  

.L 'F 

PI X [ 0 ,  E ] C C3([(P1 X 0) c ( a ~ ;  X I)] X I). Define c: Pi X [0 ,  F ] -> 2 

to be the following composi te  
C -1 (ci- C ) X  id. 

2 d. c 1  * 
> [ ( P ~ x  0) .- ( a P 1 x ~ ) 1 x ~  P I X  [0,  E] - > ~ Q " ' X  I -> Q . 

Then it follows f r o m  r e su l t s  in the sect ions  of Chap te r  IV on uniqueness of 

regu la r  neighborhoods that  t h e r e  ex i s t s  a P. L .  homeomorphism 

( N ~ ;  N 2 r  P 2 ) 2 (P  1 X [0 ,  C 1,  a~ 1 X [0, E I )  2 (p1 X [0, I],  apl X [0,  I ] ) .  

.L 

Now define f M 3 P- by let t ing f be the composi te  with P. L. 
3 ' 3 

homeomorphisms:  
d. .l. 

3L 
M- > cl(M-NI) - f > N ~ )  > Q* . 

As in  the compact  c a s e ,  we c a n  choose 3 and s o  that  f f 3 via a homo- 

.l. 

ropy of p a i r s ,  (M, BM) -> (Q*'.; Pi) C_ (Q, aQ). Th i s  comple tes  the  proof. 



Note. A separate  argument for  the compact case  would have been 

unnecessary, had we developed the regular neighborhood theory for  

1 regular neighborhoods of non-compact P. L. subspaces of a P. L. space.. 

i 3 .  Embedding into a non-bounded manifold. 

Definition. Let f:  X --3 Y be a continuous map of topological spaces.  

Then B(f), the branch locus of f ,  consis ts  of a l l  those points of X no 

neighborhood of which i s  embedded by f .  

Suppose f: M + Q, M compact, is a non-degenerate P. L. map of P. L. 

manifolds ( o r  spaces).  Then B(f) is a P. L. subspace of M, ~ ( f )  C_ S2(f), 

and dimB(f) dim S (f). F o r  let  K and L triangulate M and Q respectively, f 2 

with f: K -> L simplicial. If X c B(f), let  X e &, U E K. Then the open 

0 
s t a r  s t ( ~ ;  K) contains points y, z, y # z ,  with f ( ~ )  = f(z). Suppose y E 1 

and z E i where o. < T and cr < T Then T # T because f i s  non- 
2 ' 1 2 ' 1 2  

degenerate. But f r  = fr2 because f i s  simplicial. Also, neither rl nor  r 
1 2 

equals o. , because f i s  non-degenerate. Therefore U 5 B(f) and T and T 
1 2 

a r e  contained in S (f) .  
2 

Theorem 8 . 3 .  Let be a compact P. L. manifold, aM # fl. Let 

9 Q be a P. L. manifold without boundary. Suppo S e that q-m 2 2 and 

(M, aM) i s  (2m-q-l)-connected. Then if  f: M -> Q is a continuous map, 

f i s  homotopic to a P. L. embedding, f ' .  
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Proof. Let f be homotopic to f l ,  where f i s  non-degenerate and 
1 

dim S (f  ) 5 2m-q. Let K and L be triangulations of M and Q respectively, 
2 1 

so that f l :  K + L i s  simplicial. Let K' be a f i r s t  derived subdivision 

of K with each s impler  s t a r r e d  a t  k so that i f  dim a 1 - > 1 ,  flu1 = flu2, 

then f1S1 # f 
2 2 '  

Now let  KO be the 2m-q-l  skeleton of K,  and let K1 be the simplices 

of K '  which do not meet I K I . Then K1 = {kI. . . Gr l a1 < . . . U and 
0 r 

dim rr 2 2m-q) . Therefore K n S ( f  ) = { & l  a e S (f  ) and dim U = 2m-q).  
1 1 2 1  2 1 

Hence K1 4 B(f) = so there  exists a neighborhood U of / K~ l in / K I 

such that f I U i s  an embedding, because f 1 K is  an  embedding and each 
l 1 

point of K has a neighborhood embedded by f .  
I 

Now M-U i s  a compact se t  not meeting K1. Hence there i s  a derived 

neighborhood N of K such that M-U N1 
1 0 1 . 

Now le t  c: aM X I -> M be a boundary collar. Then (M, c ( a M ~  [0,  1))) 

i s  (2m-q-l)-connected, and so,  f rom engulfing theorems [ Chapter 7 1, 

there  i s  a P. L. homeomorphism h: M -> M with N1 C h(1m c). SO 

M - h(1m c)  C U. But M S M - h(Im c )  by a homeomorphism homotopic to 

the identity. Cornpo sing with f 1 M-h(Im c)  gives the required embedding. 
1 



Chapter IX: Concordance and Isotopy 

1. Introduction. 

Definition. A proper  concordance of M in Q i s  a P. L. embedding 

F: MXI-> Q X I  with F-'(QX 0) = MXO, F " ( Q x ~ ) =  M X l ,  

F - ' ( ~ Q  X I) = aM X I. F is  a concordance between F and F where 
0 1' 

F(x ,  t )  = (Ftx,  t ) ,  t = 0, 1. F i s  said to be fixed on the boundary i f  

F / ~ M X I =  (F ( ~ M ) x I .  
0 

Definition. Two proper embeddings f and g a r e  said to be (properly) 

concordant i f  there  exists a concordance between them. 

In this chapter we consider the question of when concordance implies 

isotopy. F o r  example, concordance does not in general imply isotopy when 

the codimension (dim Q - dim M) i s  two. F o r  example, the "s l ice  knots" of 

c lassical  knot theory a r e  precisely the knots cobordant to the trivial  knot. 

The main positive resul ts  that we shall prove a r e  the following two 

about a proper concordance F of M in Q fixed on the boundary, M compact. 

Theorem 9.1. If dim Q - dim M >  3 ,  then there  exists an ambient 

isotopy H of Q X I, fixed on B(Q X I), such that H1c F is level preserving. 

Theorem 9.2. If dim Q - dim M 2 3 ,  then there exists an ambient 

isotopy H of (Q X I), fixed on (Q X 0 ) u (aQ X I), such that H1o F = F X 1. 
0 



2. Rela t ive  Second D e r i v e d  Neighborhoods .  

L e t  K C_ K1 G K 2  b e  f in i te  s i m p l i e i a l  c o m p l e x e s .  T h e n  l e t  
0 

N(K1 - KO ; K 2 )  = { r e  K / IJ T f o r  s o m e  s i m p l e x  T m e e t i n g  K t -  K 1 . 2 0 

T h i s  s u b c o m p l e x  i s  c a l l e d  t h e  s i m p l i c i a l  ne ighborhood  of K m o d  K i n  K 
1 0 

J. 

2 

L e t  K;< K; b e  f i r s t  d e r i v e d .  L e t  K; b e  ob ta ined  f r o m  K '  by  s t a r -  
2 

r i n g  t h e  s i m p l i c e s  of K '  - K; i n  o r d e r  of d e c r e a s i n g  d imens ion .  We m a y  
2 

.v. 

ob ta in  a second  d e r i v e d  K"  f r o m  K "' b y  s t a r r i n g  all t h e  s i m p l i c e s  of 
2 

.I. 4. .L 

K; (= K ' )  in  o r d e r  of d e c r e a s i n g  d i m e n s i o n .  If A r K*-  
1 2 

- K;, 

.L .P 

l ink(A; K *) K = P[ o r  a s ing le  s i m p l e x .  So  t h e  s a m e  i s  t r u e  of 
2 1 
::: -81 rL .b rL .b ::: 

l ink(A; K 2 )  (K;' - K "' ) , a s  K "' - K "  = (K1 - KO)". is f u l l  i n  K Morea  
0 1 0 2 ' 

L e m m a  9 . 3 .  Suppose  t h a t  K C_ K C K K.  fu l l  i n  K 
1 -  2 '  it1 ' i =  1 , 2 .  

0 1 

Suppose  t h a t  if A e K 
2- K1 

, l ink(A; K ) , (K1- KO) is p( o r  a s ing le  s i m p l e  
2 

T h e n  N = N ( K  - K  ; K ~ ) \ ( K  -K ) .  
1 0  1 0  

P r o o f .  L e t  {A. )  b e  t h e  s i m p l i c e s  of N n o t  m e e t i n g  K - K , i n  
1 1 0  

o r d e r  of d e c r e a s i n g  d imens ion .  F o r  e a c h  i ,   link(^^; K ) n (K - K ) = a sing 
2 1 0  

s i m p l e x  C wh ich  m e e t s  K - K . B y  f u l l n e s s  N = UA C . L e t  
i 1 0  i i i 

N. = (K1- KO) U ( U Aj.  C j )  T h e n  c l ( N  - Nit*) = Ai. Ci. 
J j2 i 

i 

0 

(A.  C . )  n Nitl 2 A .  C. .  
1 1  1 1  

(A.C. )  n (Nit l )  : (A.  C . )  (K1- K )"(L (AiCip  A.C 
1 1  1 1  0 

j2 i t  l J c 

c 

h C i .  1 So ( A . C . ) I ? ( N ~ + ~ ) = A . C  1 1  . So Ni \ ,Ni+4.  T h e r e f o r e  N K - K 
1 i Y l  0 



Lemma 9 .4 .  W i t h  t h e  c o n d i t i o n s  of Lemma 9 . 3 ,  s u p p o s e  K a n d  K 1 2 

a - r e  m a n i f o l d s  a n d  K C aK1 . T h e n  N(K1 - K o ; K 2 )  is a m a n i f o l d  of t h e  
0 

s a m e  d i m e n s i o n  as 
K2*  

P r o o f .  B y  i n d u c t i o n  o n  t h e  d i m e n s i o n  of K Let N = N ( K ~ -  KO; K Z ) ,  
2' 

a n d  let A E N. If A meets K1 - K t h e n  l i n k ( A ;  N)  = l ink(A;  K ), 
0 2 

a s p h e r e  o r  b a l l .  

S u p p o s e  A n (K1- K ) = 6. T h e n  
0 

l ink(A:N)  = N [ l i n k ( ~ ; ~  ) n K  - l i n k ( A ; K 2 ) n K  ; l ink(A:K2)] .  F o r  
2 1 0 

s r  Link(A;N)-  r A  r N W  U <  p ,  A p  r K a n d  p r ( K  - K o ) # $ -  
2 1 

r E N [ L  n K1 - L n K ; L  3 KZ] ,  L = l i n k ( A ; K  ). 
0 2 

Now L n K  C_ L I-\ K1 C_ L s a t i s f y  t h e  h y p o t h e s e s  of t h i s  l e m m a .  F o r  
0 

c e r t a i n l y  e a c h  of t h e s e  c o m p l e x e s  is f u l l  i n  t h e  n e x t .  If B E L , 

l i n k ( B ;  L )  ( L  n (K1- K ))  = l i n k ( B ,  L) n ( K  - K ) = l i n k ( A B ;  K ) A (K1- KO) = ff 
0 1 0  2 

o r  a s i n g l e  s i m p l e x .  If A E KO, t h e n  L n K1 = l i n k ( A ;  K i )  is a s u b m a n i f o l d  

o f  t h e  m a n i f o l d  L a n d  L f7 K E l i n k ( ~ ; a K ~ )  is c o n t a i n e d  i n  t h e  boundary.  
0 

If A # K 1 ,  L n  K1 = L n ( K 1 -  KO),  as K 5 a K 1 ,  s o  L n K 1  = p, a s i n g l e  
0 

s i m p l e x .  S i n c e  A is a f a c e  of a s i m p l e x  m e e t i n g  K - K , p K is a s u b -  
1 0  0 

c o m p l e x  of p not e q u a l  t o  p and s o  l i e s  in a p .  

T h e r e f o r e  b y  i n d u c t i o n  l i n k ( A ;  N) is a m a n i f o l d  of t h e  a p p r o p r i a t e  

d i m e n s i o n .  B y  L e m m a  9 , 3 ,  l i n k ( ~ ; ~ ) i ~  " ( K  - K ) = p i 0  if A / K1 . 
0 

If A c KO , l i n k ( A ;  N)  link(^; N) n (K-K ) =  link(^; K ~ ) J  0. S o   link(^; N) 
0 

is a c o l l a p s i b l e  m a n i f o l d  a n d  s o  is a P. L. ball. 



3. The Main Lemma. 

9 Lemma 9.5. Let F: Bm X I -> Q X I, Bm and m-ball ,  be a 

proper concordance which i s  fixed on the boundary. Suppose q-m 2 3 .  

Let U be an open neighborhood of F in Q. Then there  exists an 
0 

ambient isotopy H of (Q X I), fixed on (Q X 0) U ( 8 ~  X I), such that 

0 F ( B ~  X I) C_ U X I. 

Picture: 

Before. X '-' 

U 
After k 

The main idea i s  to construct "walls" (dotted line) and then to push the 

concordance back behind the walls. That i s ,  we find W such that F r W 
i i 

i s  not overshadowed by W.  and use these to "push the concordance back" 
1 

until it eventually looks like the 2nd picture. 

Proof.of Lemma 9. 5. F r o m  the chapters on General Position and 

Sunny Collapsing, there i s  a P. L. homeomorphism h: Q X I -> Q X I, level 

preserving and ambient isotopic to 1 by an arb i t ra r i ly  small  ambient isotopy, 



such that hF(B X I) sunny collapses to ~ F ( ( B  X 0) L, (aB X I)). Let 

X = hF(Bm X I), X = hF((Bm X Q) - (aB X I)). We may assume by 
0 

choosing h near  enough to 1 that there  i s  a neighborhood V of F o 

in Q such that X. V X I G h ( ~  X I). 

-- -- 
Let K 'L K be triangulations of X X, X and let  J be a triangulation 

0 0 

of Q such that the inclusion embeds K linearly in J X I and such that 

there i s  a sequence K = K r \ e s ~  4 r - l  xs . . .  T s K  o withshadow 

Let K and 8 J be subdivisions such that if p.: Q X I -> Q i s  
1 

projection on the f i r s t  coordim te,  then pi 1 K: &K -> 8 J i s  simplicial. 

It follows f rom the las t  section of Chapter V ,  a l ready quoted, that h above 

may be chosen so that p I K  i s  non-degenerate; this also follows directly f rom l 

the sunny collapse. So let  - i"K and 6"J be 2nd derived subdivisions with 

p1 (K: ("K -> B"J  s t i l l  simplicial. Let : Q X I -> I be projection on 

the 2nd coordira te.  Let JI .: 1°K + F. be the l inear  map defined by 
1 + 

setting $ i(v) = 0 i f  V i s  a ver tex of d.IIK and $.(v) = l + T(v) i f  v i s  
i 1 

-1 
a vertex of \ " K  - i t l K  . Then 6 (0) e l K i  , a s  Si"K i s  full in Y"K. 

i i 
- 1 

In particular,  $ (0) 5 V X I. Hence there exis ts  0 < c < 1 such that 
0 

- 1 
+o [0, E ] V x I. 

-1 
Let Wi = $i [o,  6 1. Then W i s  a derived neighborhood of i"Ki in 

i 

<l1K. W = W = X. (See picture following this proof. ) 
r 



Claim: ~ h a d o w ( ~  .) W - IntW Wi . 
1 

Suppose X s Wi, y s W ,  and X overshadows y. Choose U,+T E rrn(K), 

X E  U and y s ;  . Then p U =  
1 

p l r  , and r # T because p / K  i s  non- 
1 

degenerate. Let U = p u  p s cuMK U n cu"K = 8. Let T = p ' ~  where 
1 ' i '  1 i 1 ' 

pip1 = pip and p l r l  = piul . Since shadow K l' K G K 1 Ki , i i-l - 

p '  E o "K . F o r  each vertex v of U +. (v)  i s  not l e s s  than the value 
i 1' 1 

of +i o r  the ver tex v '  of T with p v' = plv . Moreover, Si(v) >+i (v l )  
I I 

unless v = v ' .  Therefore +.(X) > Q . ( ~ )  unless U # T So it suffices to 
1 1 1 1' 

show that U f T 
1 1 ' 

If A E rr"K - rr"K then link(A; cul'K) r' a"K # o r  the f i r s t  derived 
i '  i 

B' of a single simplex B of @'K . So a s  p / K  embeds B ' ,  no point 
i 1 

of B '  overshadows any other. Therefore i f  U = T p = p '  and so U = T, 
1 1' 

a contradiction. 

- 7 

Notation: If S J X I, le t  S = S {pts. lying above pts. of S ) .  

Let Yi = W i ' ~ r ~  Wi . Y V X I. Y = W = X. We a r e  going to 
i o r r 

throw Y .  onto Y Suppose K = K + A  t aA. Let 
1 i- l' i i- 1 

N = N(ol'(aA) - cut ' (a~);  &''K). Outside N, + = + . N i s  an (rnt1)-manifold 

and N'; aA. 

Consider 'k. (See 2nd picture following this proof. ) Then 

..- 

N dB  p ( Q  X I) Z plN = N [ ~ ~ ( ~ A )  - p l ( a ~ ) ;  p l ( c u " ~ ) ]  \ pl(aA). Since p embeds 
* 1 

Aa, this shows that 





W. N is a derived neighborhood of cu"(aA) in N, an (mt1)-bal l .  
1 

Similarly,  W " N i s  a derived neighborhood of cul'(aA) in N and so 
i -  1 

NOW a(Win N) = ( F r  W r5 N) - [Wi 0 N (Q X 1)] G [W. n F r W  NI. 
i 1 

If A E QX 1, a N =  [N ( ~ ( Q X  l ) ]  U F r  N, N n ( Q x  1) = ade r ivedne igh-  
W 

borhood of either A mod A o r  of aA mod a> in W '> (Q X 1). SO N n ( Q  X 1) 

i s  an n-ball. If A / il X 1,  8N = F r W  N. In either case  F r  N i s  an 
W 

m-manifold. W. n F r N = W F r N = a derived neighbo rhood of d l ( aA)  
1 i- l 

in F r  N =  anm-ba l l .  So W 9, ~ j [ ( F r  W.) :\ N] [W N Q ( Q X  i)] .  So 
i 1 i 

- F- -- 
Y .  r, N = ( W  'W 

1 i F r ~  w : ) f \ = / ' ~ r ~ . n  1 1 1 
N ' U W . ~  N n ( Q x 1 )  

= an  n-ball 1 O. 

Similarly Y ~ G \ Y .  c, ? ? ~ ( Q x - I ) / o .  
i- 1 1-1 

Let us  assume for  the moment that each Y i s  an (m+*)-manifold. 
i 

That this i s  actually the case follows (Cor. 9 .6 .1 ) .  

!--l 

Subdivide J X I (J  = triangulation of Q) so that N, the K. ,  etc. , . . . 
1 

a r e  all  subcomplexes. Let R be a 2nd derived neighborhood of 'N' in this 

subdivision. Then because N ~ 0 ,  R is a (qt1)-ball .  ~ i n c e * N  r ( Q  X 1)10 ,  

and since we may assume Q X 1 was a subcomplex of J X I, R r: (Q  X 1) 

i s  also a ball, of dim q. 



R p Y. i s  a 2nd der ived  neighborhood of Y 9 in Yi,  and so i s  an 
1 i 

(mS1)-ball,  by uniqueness of regu la r  neighborhoods. Similar ly ,  

(R  r-1 Y.) r\ ( Q  X 1) i s  a n  m-bal l .  Similar ly ,  R Q Y i s  an (mt1 ) -ba l l  
1 i- l 

and ( R ; ?  Y )'\ ( Q X  1) i s  an  m-bal l .  Also, Y i '  Fr  R =  Y ' l  Fr  R 
i- 1 i- 1 

because . = outs ide  of N. 
1 

But q - m  2 3 .  There fo re  a l l  of  the  following ball pa i r s  a r e  unknotted: 

[R - Y. l -  (Q X i )  R ( Q  X 11, [R 8- Y c R], [ R n  Yi-l n ( Q  X 1) c R n  ( Q  X I)], 
1 i - 

[R ' Y C_ R]. Moreover ,  Y -1 Fr R i s  a face  of Y ' R and 
i- 1 i i 

Y Fr R ' (Q X 1) i s  the  boundary of Y R n ( G  X 1). Hence we m a y  
i i 

find a n  ambient  isotopy of R, fixed on Fr  R = cl(8R - R n (Q X l ) ) ,  throwing 

R Y .  onto R Y Extending by the identity outside of R, we get an  
1 i-l' 

ambient isotopy H. of Q X I, fixed on ( Q  X 0) -(K2 X I), which throws Y 
1 i 

onto Y 
i-1' 

Hence by induction t h e r e  i s  an  ambient isotopy H of Q X I,  fixed on 

( Q  X 0) .-. (8Q X I) ,  with H X - X V X I. Recall  that X = he F ( B ~  X I). 
1 

Define H' by H'  = h - ' ~  h. Then H' i s  the  requ i red  ambient isotopy. 
t t 

Lemma  9 .6 .  If N is a submanifold of Q X I with p I N a n  embedding 1 

and N ? ( Q  X 1) 5 aN, then  ( = N and points lying above N) i s  a manifold. 

Proof.  By induction on d i m  N. If d im N = 0, th is  l emma  i s  c l ea r .  

Now suppose X E 7 , y E N-N ? ( Q  X 1). Then t h e r e  exis ts  a closed P. L. 

4 1  
ball V of y in N with V n ( Q  X l) = . Then V i s  P. L. homeomorphic 

m 
to V X I. So N i s  a manifold n e a r  X; i .e . ,  t he r e  i s  a neighborhood of X in 
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l?? which i s  P. L. homeomorphic to a ball. Say, on the other hand, 

j---v - 1- 

X r N (Q X 1). Triangulate N so that pi l N: N 3 Q i s  simplicial 

I-', 

for  some triangulation of Q. Then l ink(x :g)  = link(x; N). ~ i n k ( x ;  N) i s  

a ball meeting Q X 1 in a subset of i t s  boundary. So by induction, - 
link(x; N) i s  a manifold. But 'lirik(x; ~ j ' \  link(x: N)\o,  and SO i s  a ball. 

r"\ 

So N is  a manifold. 

Corollary 9.6.1. Let X g Q X I be a properly embedded manifold. 

.- 
Let K i X be a polyhedron. Let W be a derived neighborhood of K in X,  

r--- 7 
with (shadow W)  nt X L IntXW. Then W . - F r W i s  a manifold. X 

Proof. If N = F r  W, then plIN:N-Z Q i s  an embedding. 
X 

aN = N ' BX N 0 ( Q  X l ) .  Therefore v is a manifold. Clearly,  N G 3%. 

So W L ' ~ r  W' i s  the union of two manifolds of the same dimension which 
X 

meet in a submanifold,of one lower dimension, contained in the  boundary of 

each. 

Therefore it is a manifold. 



4. Proof of Theorems 9 . 1  and 9. 2. 

Theorem 9.2. Let F: X I -> Q X I be a proper concordance, 

fixed on aM, M compact and q-m 2 3 .  Then there i s  an ambient isotopy 

H of Q XI, fixed on (Q X 0) U (aQ X I), such that Hi F = F o X id. 

N 
Proof. By induction on dim Q. Let K triangulate M. 

be the simplices of K - aK, in o rde r  of increasing dimension. Let K 

K i =  A1 C . .. i . A i  (= these simplices and all  their  faces). We shall de- 

fine ambient isotopies h(i) of Q X I, fixed on (Q X 0) I- (BC2 X I) ,  such that 

(i) F i s  fixed on a neighborhood of K . 
i 

- 
Suppose that h .  i s  defined. F '  = h ( i - i ) ~ F : M X  I-> Q X I i s  fixed 

on a neighborhood U of Ki- and on aM. Triangulate M X I, Q X I, and 

F '  >.XI Q so that M X I - p1 > Q a r e  simplicial ,  and so that 

K X I and A. X I a r e  triangulated a s  subcomplexes of M X I. 
i- l 1 

Now (plo F')(K X I) = Fi(K ) Let N1 and NZ be 2nd derived 
i-l i- 1 

neighborhoods of A X I in M X  I and of F ' (Ki- l )  in Q , respectively, 
i-1 0 .  

such that N1 c U X I and Nl = F ' ) - ' N ~ .  Then clear ly N = N X I, 
1 3 

f -1 
where N = ( F ~ )  N2 . 

3 

Let M-" = cl(M - N ), and let Q* = cl(Q - NZ). Let F* = 
3 

.L 

F' l M" X I: M* X I -> Q" X I. A. Q N3 i s  a derived neighborhood of a A .  
1 1 

in A because of the ordering of the A. .  Put B = A. n M = Ai - A .  I-: N3 , 
i' 1 1 1 

a ball. 



.l. 

Let V be a regular neighborhood of F B in Q".. By Proposition 9.5, 
0 

* J. 

there exists an ambient isotopy k of Q* X I, fixed on (Q X 0) v (~Q".x I) ,  

such that klF(B X I) C_ (Int V )  X I. By uniqueness of regular neighbourhoods 

V i s  a q-ball. By the unknotting of bal ls ,  there  exist  an ambient isotopy 

k' of V X I, fixed on (V X 0) U ( W  X I), such that 
.t. 

k'k F' I B X I = F X id I B X I. We may extend k' to a l l  of Q*" X I by 
1 I 0 

letting it be constantly the identity outside V X I. Put 

.I. .l* F" > Q-1- X I 
Now triangulate to make M-'. X I - p1 > Q simplicial, 

with B X I triangulated a s  a subcomplex. Subdivide so that F" and p a r e  

* 
simplicial and let N be the 2nd derived neighborhood of FOB in Q . 

4 
- 1 - 1 

Let N5 = (p1F1I) N4. Let N6 = ( F ~ ' N ~ )  X I. N7 = F. ( N ~ )  is  a derived 

::: 
neighborhood of B in M , and so N i s  a derived neighborhood of B X I 

6 
.I. 

in M". X I. So i s  N 
5' 

$c 

Lemma 9.7.  There i s  an  ambient isotopy k" of M X I, fixed on 

(M" X 0) - (m" X I), S U C ~  that k'; N5 = N6 . 

(Proof postponed until la ter .  ) 

Proof of 9 . 2  continued. Let k" be a s  in Lemma 9.7. By the isotopy 
d. 

extension theorem, there exists an ambient isotopy k"' of Q X I ,  fixed 
J. :* 

on (Q"' X 0) LJ (aQ X I) ,  SO that k;' FIIN 5 
= FtrN6 . 

- 1 -1 
Put F"' = (k;' ) F". Then (PIF"') N4 = N6 = N X I. Consider 7 

 IF^ ,N X I. Then the image of this map i s  contained in ( F r  ,N4) X I, 
M" 7 Q.'. 



-1 N ) Q aM*. 
a s  in fact N = F (N ). Moreover, a(FrM'N7) = (FrM% 

7 0 4 

Therefore we a r e  in the situation in which the inductive hypothesis applies 

to give us an ambient isotopy k(4) of ( F r  ,N ) X I, fixed on the bottom and 
Q" 4 

sides,  such that k ( 4 ) ~  1 FrMC N 7 X I = F  ~ i d l ~ r  N XI .  The k 
(4) 

1 0 M*: 7 
.l, 

extends to a l l  of Q*' X I to an ambient isotopy also called k(4), fixed on 

(Q" X 0) i. ( a ~ *  X I). 

By the unknotting of balls,  there  exists an ambient isotopy k(5) of 

.l, 4, J. 

Q' X I ,  fixed on (Q?. X 0) il ( 8 ~ : ' '  X I) V (Q". - N4) X I, SO that 

(5)  (4)F111 I N X I = ( F  X id)  IN^ X I. This completes the proof of the 
ki ki 7 0 

inductive s tep because the relation of ambient isotopic i s  an equivalence 

relation. 

To s t a r t  the induction put q = 3 ,  m = 0. Then a simple version of 

the same proof work: the re  a r e  no neighborhoods in which to straighten 

out the concordance, and so an inductive hypothesis i s  not necessary.  

Proof of Lemma 9 . 7 .  N5 i s  a derived neighborhood of B X I in 

::: :$ 
M X I. N7 = N5 n (M X o), N6 = N7 X I, N5 n (aM* X I) = N6 A ( ~ M " x  I). 

>:C 41 

Now let Q: M X I -> M"- X I be a P. L. homeomorphism throwing 

*: 
(M* X 0) V (BM* X I) onto M X 0. uN and rrN a r e  regular neigh- 

5 6 
X: 

b o rhoods of uB, meeting the boundary regularly. Let N8 = uN (M X 0) = 
5 

$c 

uN6 
(M X 0). By the uniqueness of regular neighborhoods, there i s  an 

::c 
ambient isotopy H of M X I such that H ~ ( ~ N ~ )  = N8 X I. Let H' be the 

.l, $c 

ambient isotopy of M ' ~  X I defined by H; = [ H ~  l (M X 0)] X 1. Then 



4 
H;(N8 X I) = (N8 X I) and (H')-'H i s  an ambient isotopy fixed on M X 0. 

J. 

Similarly, we may throw aN onto N X I, keeping M". X 0 fixed. Com- 6 8 

posing these two isotopies and conjugating with a gives an ambient iso- 

::c 

topy of M" X I, fixed on (M*X 0) U (aM X I), throwing N5 onto N 6 ' 

9 Theorem 9.1.  Suppose F : M m X I +  Q X I is  a proper concordance 

fixed on aM, M compact, q - m 2  3 .  Then there  exists an ambient isotopy 

H of Q X I ,  fixed on a(Q X I) ,  such that H F i s  level preserving. 1 

Proof. By 9.2, there  exists an ambient isotopy K of Q X I, fixed on 

(Q  X 0) L' (aQ X I), with K F = F X id. Let k be the ambient isotopy of C? 
1 0 

L 
defined by K (X, 1) = (ktx, 1). Let $: I -> I be a P. L. map with 

t 

$(S, 1) = S ,  $ ( i , t )  = t ,  $ ( s ,o )  = $(0, t )  = 0 for  a l l  s , t  E I. Define 

K ' : (QXI)XI ->(QX 1 ) X I  by putting K 1 ( x , s , t )  = (k  
$(S, t )  

(X) ,  S ,  t).  Then 

K' i s  the identity on (aQ X I X I) U (Q X 0 X I) L (Q X I X 0). 

K' :Q X I -> Q X I i s  the identity. K' agrees  with K on Q X 1. Define 
0 t t 

H: Q X I X I -> Q X I X I by H = (K')-'K. Then H is  fixed on a(Q X I) 

- 1 
and H F = (K;) KIF = (K' )F X id is certainly level preserving. 

1 1 0  

5. Extensions. 

In this section we quote without proof two fur ther  resul ts  along these 

lines. The f i r s t  follows f rom what we have already shown, the second can 

be proven using a resul t  on unknotting of cones quoted a t  the end of the 

chapter on Sunny Collapsing and Unknotting . 
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i 
i m 
i 9.7. If F: M X I -> Q X I i s  a proper  concordance and i f  q-m 2 3 

and M i s  compact, then there i s  a ambient isotopy H of Q X I ,  fixed on 

j 
I Q X 0 ,  with HIF = F o X id,  and an ambient isotopy K 1 fixed on Q X 81, 

with K F level preserving. 
1 

I 9 . 9 . 8 .  If K C K a r e  polyhedra and f:  K X I -+ Q X I i s  a concordance 
0 "' 

with f-'(Q X 0) = K X 0, f " ( ~  X 1) K X 1,  f - ' ( a ~  X I) K o X I ,  and i f  
l 

! dim K 5 q-3 and dim K o 2 q-4, then there  exists an ambient isotopy H of 

I 12 X I ,  fixed on Q X 0 ,  with H'F = F X id. If F i s  fixed on KO, then one 
0 

l 

i can  insist  that H be fixed on aQ X I. 



Chapter Xt  Some Unknotting Theorems 

1. An Unknotting Theorem Keeping the Boundary Fixed.  

Theorem 10. 1. Let and aq be compact P. L. manifolds, and 

let  f, g : M -> Q  be two proper P. L. embeddings. Suppose that f i s  

homotopic to g relative aM. Then if q-m 2 3 ,  M i s  (2m-qf  1)-connected, 

and Q  i s  (2m-q~2)-connected,  then f and g a r e  ambient isotopic keeping 

aQ fixed. 

Proof. Let F I  M X  I -> Q X  I be a (level- res serving) homotopy of 

f to g. F 1 aM X  I = (f X  id) ] aM X  I. Now, ( M  X  I) i s  q(mS1)-(qH) = 2m-q+ 1 

connected, and Q X  I is q(mt1)  - (q t1)  + 1 connected. Hence by the em-  

bedding theorem 8.1 , F is homotopic relative a ( ~  X  I) to F': M X  I -> Q XI, 

a proper embedding. Therefore F'  is a proper concordance of f to g, fixed 

on aM. By Theorem 9.2, there i s  an ambient isotopy H of Q X  I, fixed on 

( Q X  0) v ( a Q x  I) ,  with HIF '  = F '  X  id. Then H J ( Q X  1) X  I i s  an ambient 
0 

isotopy, fixed on a(Q X  d.) ,  throwing g onto f = [ H I  Q X  1 X I ] ~  .g. 

Corollary 10.1. Any k-connected closed manifold M unknots in 

E 
2 m - k + 1  . 2m-k 

; 1. e. , any two embeddings of M in E a r e  isotopic, if  k ,< m - 2 .  

Corollary 10.1. 2: If Q  i s  k-connected, then the elements of a (Q) 
r 

can each be represented  by a unique isotopy c lass  of embedded spheres,  

provided that 



2. An Unknotting Theo rem Moving the  Boundary 

Theo rem 10. 2. If f ,  g: -> aq a r e  p roper  P. L. embeddings,  

M compact ,  f ,  g homotopic as m a p s  of p a i r s  (M,  a ~ )  -> (Q, aQ); and i f  

q - m  2 3 ,  (M,  aM) i s  (2x11-qS1)-connected, and if (Q, aQ) i s  (2m-q t2) -  

connected, then f and g a r e  ambient  isotopic. 

Note: As  in  10. 1 ,  i t  suffices to show that  f and  g a r e  proper ly  concordant. 

Unfortunately, we have not proved a n  appropr ia te  embedding theorem;  we 

need  to a l t e r  a homotopy t o  a n  embedding keeping M X 81 fixed. 

P roof .  Le t  F: M X I --+ Q X I be  a ( l eve l  p rese rv ing)  homotopy of 

f to  g, with F (aM) 2 aQ for  all t. We m a y  a s s u m e  that  t he r e  i s  f > 0,  
t 

so  that  F = F f o r  t c E and F = F1 f o r  t > 1- i . Applying genera l  
t 0 t 

position first to aM X [ E  , l - E  ] i n  aQ X [E , 1 - E  ] and then to M X [f , 1 -  ] 

i n  Q X [ C  , 1-: ] ( th is  a lso  u s e s  the  well-known homotopy extension p roper ty  

f o r  polyhedra),  we get a p rope r  P. L. m a p  F': M X I --+ Q X I, with the 

following proper t ies :  

2) S2 (F1 )  M X  [t , l-L].  

3 )  dim[s2(F1)  r ( aM X I)] < 2m-q  

4) d im(S2Ff )  C 2 (m+l )  - (q+l) = 2 m - q t  l. 

Now ( M  X Int I ,  a (M X Int I)) is (2m-qt1)-connected and 

( W  X Int I, a(Q X Int I)) i s  (2m-q-l-2)-connected. Notice that  S 2 ~ '  is a 

compact  polyhedron in M X Int I. By a n  a rgument  we have used  s eve ra l  



t imes  ( s e e  Engulfing Theo rem 7.8 and the embedding t heo rem 8. 2) 

t he r e  ex i s t  polyhedra C and D in  M X Int I and Q X Int I ,  respect ively ,  

such that S F '  C \ C  7 ( B M  X I), D D n ( a Q  X Int I), and (F')-'D = C. 
2 i 

Triangulate so  that  F' i s  s impl ic ia l  and S (F ' ) ,  C ,  D, C f, ( a ~  X I),  
2 

and D ,-, ( a M  X I) a r e  a l l  subcomplexes.  Take 2nd der iveds  keeping F '  

simplicial .  Let  N = 2nd der ived neighborhood of D i n  Q X I. Le t  
2 

NI = (F')- 'N a 2nd der ived neighborhood of C in M X I. Then 
2' 

F'   cl(^ X I - NI) -> c l (Q  X I - NZ) i s  a p roper  embedding. To complete 

the proof i t  suffices to find P. L. homeomorphisms  h:  cl(^ X I-  N ) -> MXI 
1 

and k: c l (Q X I - -> QX I with ~ I M X  31 = id  and ~ I Q X  81 = id. F o r  

then k F 1 h - l  i s  a p roper  concordance f r o m  f to g. Now N)C C Ĉ ( a ~  X I). 1 1  

So NI i s  a regu la r  neighborhood of C 7 ( B M  X I ) ,  meet ing the  boundary 

regularly.  Le t  N = N4\ (aM X I). Let  c: a (MX I) X I -> M X I be a 

boundary col lar .  Then c(N3 X I)  i s  a l so  a r egu l a r  neighborhood of 

S o ,  by the  uniqueness of regu la r  neighborhoods, N { F ~  (N). Let  N be a - .& 

der ived neighborhood of N, , Then M X I and  cl(^ X I-N) a r e  both regu la r  
- - 

neighborhoods of c l (M X I-N4). So t he r e  i s  a P. L. homeomorphism 

M X I -> c l (M X I-N) which i s  the identity outs ide  N - 2' 

A s i m i l a r  a rgument  works  for  Q. 

Coro l la ry  10.2.2. If (Q, aQ) i s  k-connected, a n  e lement  of a (Q, aQ) r 

i s  representable  by a unique isotopy c l a s s  of p roper ly  embedded r -ba l l s ,  

q tk -  2 
provided that  r 5 min(q-3, 2 1 



3. Unknotting in a Manifold without Boundary 

Theorem 10.3. Say i s  compact, BM # @ , a~~ = 0. Let 

f ,  g: M -> Q be P. L. embeddings, f --N g, q-m > 3 .  Suppose ( M ,  aM)  is  

(2m-q)-connected. Then f and g a r e  ambient isotopic. 

Unfortunately, we cannot prove this theorem based only on preceding 

resul ts  because we did not prove a concordance implies isotopy theorem 

f o r  concordances of a bounded manifold in a non-bounded manifold, 

Modulo this gap, the proof of 10.3 proceeds a s  follows: 

Let F: M X I -> Q X I be a (level-preserving) homotopy of f to g. 

As in the proof of 10.2,  we may assume that F i s  a P. L. map in general 

position and S F 5 M X Int I, (dim S B = 2m-q+1). Let /K1 = M X I 
2 2 

and I Q1 = Q X I be triangulations such that F:K -> Q i s  simplicial. 

Let K' be a f i r s t  derived of K such that dimcr? 1 and FF = FT a 

A r 
F; # F T  . Let K1 = K be the 2rn-q skeleton. Let L be 

the "dual skeleton" of K' in K, together with the top and bottom; i, e., 
1 

the sirnplices of K' nd; meeting K'  together with ( M  X 0) U ( M  X 1) 
1 '  

which we assume to be a subcomplex. Then F '  embeds a neighborhood of L, 

U say, ( see  proof of embedding theorem 8 . 3 ). Engulf K to 3:YL X I; 1 

i. e . ,  let  C be a polyhedron containing K1 which collapses to C p ( a ~  X I), 

with C E M X Int I. Let N be a derived neighborhood of C in hM X i, 

Then then the re  exists a homeomorphism, fixed in M X 81, M X I 2 c~(:JD(I-N), 

a compact set  not meeting K1 
Hence cl(M X I - N) is  contained in 



regular neighborhood of L not meeting K1 ( see  proof of 

-_ 
Theorem 7 .  g), N. On the other  hand , U contains a regular  neigh- 

- Cu 

borhood E of L. So N .̂ N , via a homeornorphism which leaves L 

pointwise fixed. Hence by cornpositing F with homeomorphisms, we 

get a concordance F '  between f and g. Now apply the unproved con- 

cordance =? isotopy theorem to deduce that f and g a r e  ambient iso- 

topic . 



Chapter XI: Obstructions to Embedding and Isotopy 

l .  Linking Numbers . 

If sPJ sq a r e  disjoint spheres  in the sphere  s"~" , the linking 

P number of S and sq in  sptqti i s  defined to be equal to the degree of 

the map S' + S p+q+l - sq, this l a t t e r  being a homology p-sphere 

by Alexander duality. We shall  only use  the linking number reduced 

modulo 2  in this chapter,  and so will not have to wor ry  about signs and 

o rientations.  

Lemma 11.1. Let M, N, W be compact connected P. L. manifolds 
- 
L- 

m t n -  l 
with dim W = dim M t dim N. Suppose that  aW = U S. J 

r r n - l  
1 

,M = U S: 
m -  1 , aN = S. and suppose f :  M -> W, g: N -> W a r e  

1 l 
m - l  C S m t n - l  

p roper  P. L.  maps  in general  position with fS 
j j 

J 

n - l  - m t n - l  
gs  S 

j 
for each j. Suppose fM f .  gN = $ , and le t  L = linking 

j 
m -  1 n - l  m t n - l  

number of fS J gSj in S (mod 2 ) .  If H ~ ( w ,  aW)  = 
j j 

H ~ ' ~ ( W , ~ W )  = 0, then L. = 0. 
J 

Proof.  Consider the following commutative d iagrams,  a l l  homology and 

cohomology having C2 coefficients. 



The left-hand isomorphism being given by Lefshetz duality and the 

right-hand ones f rom the exact cohomology sequences of a W  E N L ' ~ W  C W 

and aN C 8W. Now the right-hand vert ical  a r row maps the generator of 

Hn-l (@3nm1) onto the generator,  of H n (gN, gaN) for  each j .  So 
J 

the generator of H (S m+n-i - g ~ ~ - i )  maps onto the generator of 
m - l  j 

H (W - gN) fo r  each j. So in the f i r s t  diagram, i f  6. generates 
m-1  J 

m - l  
Hm-l(Sj X Lj  = i2f* 1 I = f = O since i C e j  i s  

j j 1 

a boundary. 

Intersections. Let M ~ ,  N ~ ,  W m-h 
be P, L. manifolds. Let f:  M -> W ,  

g: N W be proper  P. L. maps in general position. If X s fM gN , 

we can define an intersection number ~ ( x )  a s  equal to the linking numbers 

(mod 2) of link(x,fM) and link(x, gN) in link(x, a). . 

2n 
Lemma 11.2. If M N 2 sn , W 2 S and fM n gN = {X X2, ... , xk} I 

1 

then 1 P(x.) = o . 
1 i a 

n 2 n \ 
Lemma11.3.  If M 2 N " B  , W S B  and f M ? g N = { x  . . .  ~ ~ 1 '  

then l (x . )  = linking number of faM, gaN in BW. 
1 

l 
Proof.  Triangulate and remove the s t a r s  of the points Xi, X2, . . I Xk . 

Applying Lemma 11.1 now gives the required result. 



2. An Obstruction to Embedding and Isotopy. 

 et f: M ~ - >  Q be a proper P. L. map in proper general position; 

i. e . ,  f l aM: aM -> aQ is  also in general position. Assume M is  com- 

pact, and m < q- 1. Triangulate M and Q,  getting K and L such that 

f: K + L i s  simplicial, and K g K a full subcomplex triangulating S 2 f  
0 

Let K' and L'  be formed by s tarr ing at the barycenters the simplices of 

K-K and L-fK in o r d e r  of decreasing dimension. Then f: K '  -> L' 
0 0 '  

i s  still simplicial. 

If U E K is  a (2m-q)-simplex, then there exists a unique U '  E K 
0 0 ) 

U '  # U ,  with fu  = £U' ,  a s  the triple points have dimension 3m-2q < 2m-q. 

Let S1= link(s;K1),  S = 1ink(u';K1), = 1ink(fu;L1), 
2 

dim S = m-(2n1-~) - 1  = d-m-1 = dim S Dim I: = 2(q-m) - 1. Now, since 
1 

S? 
2' 

dim U = 2m-q = dim U ' ,  f embeds S and S 
1 2 ' 

Moreover, S i n  S2 = $. 

F o r  if T E S r1 S U T  and U ' T  E K' implies U ,  U '  E link(7; K'). But 
1 2 ' 

l ink(r ;Kf)  n I K I = a single sirnplex p. Since f embeds p ,  this means 
0 

U = U ' ,  a contradiction. 

Now, define g (v) = linking number of fS and fS in I:, mod 2; 
f 1 2 

i. e. , g f ( u )  E Z2 . 

Definition. c(f) = C ) *  c 
2m-q ( M ) @  Z2 . 'If 

U €  K 
0 

d imu = 2m-q 



Now, c(f)  i s  defined with respect  to triangulations of M and Q. 

Let af = £ 1  aM and let c(af) be defined with respect to the induced 

triangulation. 

Lemma 11.4. ac(f) = c(af). 

Proof. Suppose T E K and dim T = 2m-q-1. Assume T / aM, and 
0 

that there exist T'  f T and fr' = f r .  Let Si = l ink(r ;K1),  S = 1ink('r1;K'), 2 

I: = link(fr; L'),  dim S dim S = q-m, dim Z = 2(q-m). Si, SZ, and '3 
1 2 

a r e  spheres,  and Si r \  S = $ ,  as  above. 
2 

Let g = £ 1  S1v 
S2. 

Then g(S1) n gg(S2) consists entirely of vert ices ,  

for  otherwise dims f > 2m-q. Moreover, each point of intersection y 
2 

determines a pair of vert ices  X and X' in S and S', respectively, such that 

XT and X'? '  a r e  in S f .  Conversely, if T < U E S f ,  le t  X be vertex of U 
2 2 

not in T. Then i f  U '  i s  a sirnplex such that fu = fa ' ,  T C U '  because, a s  

m < q-1, the triple points of f have dimension at  most 2m-q-2. Thus 

the simplices cr E S f such that T C U correspond to intersection points 
2 

of gS and gS 
1 2' 

Now say X E X and x r  E S f. Then $£(X') linking number of 1 2 

f(link(xr; K ' ) )  and f(link(xl'r'; K')) in l i n k ( f ( x ~ ;  L ' ) ,  where X' E S i s  the 
2 

unique point such that ( X )  = ( X ) .  But link(rx: K ' )  link(x: Si) and 

link(.rtx'; K') = linlc(xl; S ) and link(f(xr); L ')  = link(fx; z), a s  f i s  
2 

simplicial. Therefore 

Let xi, . . . , X be the vertices of S mapped by g to intersection 
4 1 

pointsof g ( S )  1 and g(S2). Then >: ( )  $ (x . )=sUm'of the  
U > T  i= l g 1  



Y i = f ( x i )  Since g i s  in general position ( i t s  double points a r e  of dimen- 

sion zero and it has  no triple points), Lemma 11. 3 implies that this sum 

i s  congruent to zero modulo 2. 

Now, for  T E K dim T = 2m-q-1, suppose there i s  no T'  with 
0 S 

f~ = f ~ '  but T # T'. Then suppose T < cr and cr E S f. Then there  exists 
2 

U '  such that fcr = fcr' but cr # v'. Since f embeds U and v ' ,  U '  has  a 

face T'  such that f~ = f ~ ' .  Therefore T = T ' .  Therefore i f  U I )  9 .  * , v  
P 

a r e  s implices  of S f having T a s  a face,  p is  even and we may suppose 
2 

= fbitl ) fo r  i 1 2 )  By definition, $ f 1  (cr .)  = gf(critl) , i E 1(2) ,  

i < p- l .  So gf(cr) l 0 (mod 2) in this case also. 
U > T  

U E S f  
2 

Now suppose T E K and T E aM and there exists T'  such that f~ = f ~ ' ,  
0 

T # T', and T E aM. Let B1 =  link(^; K') ,  B = l i n k ( ;  K ) ,  (q-m)-balls.  
2 

Let B = l i n k ( f ~ ;  L ' ) ,  a 2(q-m)-ball. Since T i s  a principal simplex of 

S2(f) aM, aB1 and aB a r e  embedded disjointly in aB. A n  argument 
2 

s imilar  to that for  the f i r s t  case ,  using Lemma 11.3 instead of Lemma 11.2 

shows that $f(cr) = linking number of aB and 8B in aB = jdaf(r) 
U > T  

1 2 

(all  rnodulo 2). Now ac(f) = ( 2 jiff(")) T where we sum only over 
T U > T  

simplexes of SZ(f). But $f(u) = 0 if 7 # S2(af) 
U >  T 



So ac(f) = c(af). So c(f) represents  an element ~ ( f )  E H 2m-q (M, W Z 2 )  
- 

i f  af i s  an embedding, c(£) gives an element a ( f )  E H 
2m-q (M: z2 ). 

- 
Lemma 11.5. a ( f )  and a(f) do not depend on the choice of t r i -  

angulation. 

Proof. Suppose f: K -> L is simplicial, K i s  full in K with 
0 

/ KO / = SZ(f) and K' ,  L '  a r e  obtained from K, L as  above. Let U be 

a (2m-q) -simplex of £S f . Now suppose cuK: PL a r e  subdivisions of 
2 

K, L and f: aK -> PL i s  sti l l  simplicial, and let  a 'K, P'L be obtained 

by s tarr ing simplexes not in K o ,£K o . Then pseudo-radial projection 

assures  us that there i s  a P. L. homeomorphism link(sl, P'L) 4 link(u, L ' )  

sending link(u fcu'K) -> link(u fK'). So ( )  = ( U ) .  Thus each 1' 

principal simplex occurs  with the co r rec t  coefficient and gives r i se  to the 

same homology class .  

q Lemma 11.6. If f, g: -> Q , m l q-2, a r e  proper P. L. maps 

in proper general position, and i f  f r g as  maps ( M , ~ M )  -> (8, aQ), 

then a(£) = a(g). If f l aM i s  an embedding and f S g (re1 aM), then 

- 
a ( f )  = cr(g). 

Proof.  Let F: M X I -> Q X I be a level preserving homotopy 

between f and g. F I M X a1 i s  in general position. Therefore,  let 

G: M X I -> Q X I be a P. L. map in proper general position which agrees  

with F on M X 81. 

Triangulate so that M X 0, M X 1 ,  and BM X I a r e  subcomplexes and 

G i s  simplicial. So ac(F) = ~ ( Q F )  = c[F I M X 01 t c[F J M X 11 + c(F 1 aM X I). 



- - C(M) X Z be the m a p  induced by projection,  2 

where  C = s impl ic ia l  chains  with r e spec t  to th is  triangulation. Then 

ap,c(F) = c(f) + c(g) + p.,,(c(F 1 aM X I)). The l a s t  is in C(8M). There for  
-4. 

" 0 )  = 4 g ) .  

In the  event that F / aM X I is (f / BM) X 1, one m a y  suppose G a l so  

ha s  this  property.  Then c (G/BM X I) = 0 ,  s o  apSc(G) = c(f) t c(g). 

Note: In view of th is  lemma, we m a y  view a a s  a m a p  - 
> H (M: aM: Z 2 ) .  n [ ( M ,  aM), (Q, aQ)] - 

2m-q 

Definition. Now suppose that  aM = $ and Q = E ~ .  Then l e t  

f ,  g: M -> gq be two ernbeddings of M in  gq. Then t h e r e  i s  always a 

homotopy of f and g. Let  F: M X I -----). X I be a P. L. homotopy of 

f and g in genera l  posit ion. Then F / a(M X I) is an  embedding, so  

Z(F) E H 
2 m - q t l  ( M  X I: z 2 )  is defined. If F '  is ano ther  homotopy of f and g, 

then F F'  ( re1  B(M X I)), s o  TF) = Z(F1).  Le t  p: M X I * M be pro-  

ject ion onto the  f i r s t  coordinate .  Then define 

d(f, g) = P*W) H 
2 m - q t l  (M; Z2)-  

We ca l l  d(f,  g) the "difference c l a s s "  between f and g. 

L e m m a  11.7. If f and  g a r e  concordant ,  d(f .g)  = 0. 

Proof .  Le t  F be a homotopy of f and g and G a concordance.  Then - 
F S G ( re1  a(M X I) = M K 81). The re fo r e  &(F) = &(G) = 0 .  

L e m m a  11 . B .  If h: M -> is an embedding, then 

d(f, g) + d(g, h) = d(f, h). 



Then it i s  not h a r d  to  s e e  that  Z(H) = Z(F) t z((G). 

Remark .  Say f: -> aq is a p rope r  P. L. m a p  in  p rope r  gene ra l  position, 

and 2m-q = 0. Then Z(f) is defined,  s ince  2(m-I)  - (q-l) = - I ,  and 

$f) r H (M;z2  ). However,  it is c l e a r  f r o m  the  definition that  
0 

1 flf(c) = 0 (mod 2),  M is t r iangula ted with f s impl ic ia l .  The re fo r e  we 
cr E S,f 

L 
Y 

m a y  view Z(f) r H (M: Z Z )  Simi la r ly ,  i f  f ,  g: -> a r e  embeddings 
0 

aM = ,d and 2rn-q+l = 0, d ( f ,  g) E  go(^; Z 2 )  Note that th i s  is consis tent  

2m 
with the fact  that  M connected impl ies  that  M c a n  be embedded in  E 

2 m t l  
and any two embeddings of M in  E are isotopic. 

3 .  Obstruction to Isotopy of Embeddings  of a Manifold in  Euclidean Space. 

Suppose f : M ~ - >  i s  a n  embedding,  M compac t ,  aM = g .  Then 
0 

if g:M-> Eq is an  embedding,  d(fo ,  g) E H (M; Z ) depends only 
2 m - q t l  2 

upon the isotopy c l a s s  of g. F o r  d(fo, f )  = d(fo, g) t d(g, f ) ,  and if g and f 

a r e  isotopic,  d(g,  f )  = 0 .  Then g -> d(f , g) defines a map  of isotopy 
0 

m 
c l a s s e s  of embeddings of M into into H 2 m - q t l  (M;  Z2). 

T h e o r e m  11.9.  Le t  Mm be a k-connected c losed  manifold, k ( m - 4 .  

2m-k  
Le t  fo:  M -> E be a P. L .  embedding.  Then g -> d(f , g) defines a 

0 
- 

map  of isotopy c l a s s e s  of embeddings H (M; Z2) .  kf I 
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We f i r s t  prove this theorem in a special  ca se .  Then we use this  

special case  to prove the general  resul t .  

k 
Let S' and B denote a P. L. sphere and a P. L.  ball of dimension 

j and k respectively. 

0 2 s t 1  
Lemma 11.10. Let f :S X B' -> B be a proper P. L. embedding 

with S >  3 .  Then there  exis ts  a level preserving P. L. map 

0 
F : S  X B ' X ~ - > B  

2 s S1 
in general  position such that 

(1) F = f 
0 

(2)  F1 i s  a P. L. embedding 

0 0 
1 

( 3 )  F ~ ~ S  X ~ B '  = F I S  X a ~ ' ,  fo r  a l l  t c  I 
0 

l and 
0 S 

f (4) n (F) E HO(S X B ; Z2) i s  non-zero 

! 0 
i Proof.  Write S X BS = B1 LJ B By general  position, any map 
I 
4 

2 ' 

f g: B1 -> B 
Zst-1 

l - fB2 with g l  aB = f l  aB1 i s  homotopic to a P.L. 
1 

embedding keeping the boundary fixed. Homotopy c lasses  of such maps  

2 s t 1  
a r e  determined by elements of I-r (B  - fB2) = Z. Choose g so that 

S 

2 s t 1  
gB1 fB determine a generator  of a s ( B  

1 
- f B 2 )  Define 

> B'~" X 1 by F: ( B y  B2) X 1 - 

(a) F = f 
0 



Now extend conically on each ball. 

2 s t1  
Then z(F) = linking number of F a(B1 X 1) and F B ( B ~  X 1) in a(B X 1) 

reduced mod 2, which i s  one by construction. 

Let M be a regular neighborhood of an r -  sphere,  dim M = r t s .  Let 

r t 2 s t 1  
f:M--+ B be a P. L. embedding with s 2  3 .  Then there is a level 

preserving P. L. map F: M X I -> B rf2s'1 X I such that 

(1) F = f 
0 

(2) FI i s  an embedding 

( 3 )  ~ ~ l a ~ = f l a ~  f o r a l l  t r  I 

(4) Z(F) # 0 in H (M;  Z ) = Z2. 
r 2 

Proof.  The proof i s  by induction on r ,  keeping S fixed. When r = 0 

this i s  simply Lemma 11.10. 

The inductive step : Let K C L triangulate sr C M with K full in L. 

Let  N be the derived neighborhood of K in L. Then M ? N. t 

i 



.L ' P  

Let U be an r-s implex of K. Let U be the dual cel l  of U in K'. 

Notice that 

JI .P 

(1) U i s  an S-ball  properly embedded in N; 
.l, T 

(2) N n s ta r (u ,  K) i s  a regular  neighborhood of U in N meeting 

aN regular ly;  

(3) N n s t a r  (cr, K) r-l N - s ta r (u ,  K) i s  a derived neighborhood of U in 

r - 1  b. link(cr, K), and so i s  P. L. homeornorphic to S X B~ . 
(1) and (3) a r e  c l ea r  enough. To show (2): Let T*. . . T N be the simplexes 

of in o r d e r  of decreasing dimension. Then N (7 $$link(u, K)J 

A 

N n . l i n k ( K )  by an elementary polyhedral collapse.  Similarly, 
1 

A 
N n rr~. l ink(u,  K) 1 h n %.link(u, K) by an elementary (simplicial)  collapse. 

1 1 

.l. 'I. 

Let h: N-> M be a P. L. homeomorphism. Let D = hu . 
fD r7 BB 

rt2s-t-1 rt2s-t-1 
= faD. Now (B , fD) i s  an unknotted ball pair ,  so there 

i s  an s+1 ball E in B~~~~~~ with aE = fD (E n aB 
rt2s-l-1 1 

By general position we may assume that dim(E n f ( ~ ) )  2 ( r t s )  t ( s t l )  - 
- 1 

( r t 2 s t l )  = 0. So f E = D t, X. X = a finite number of points. M i s  con- 

nected, so there i s  a polyhedron D' with D X C D' $ D , dim(Dt -D) < 1. 



p- 
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r t 2 s t 1  
We can a s sume  D'-  D C Int M. Now choose E '  in  B with 

E c £D' C E ' \ E ,  d im(E1-  E) 5 2, E ' -  E c Int B 
r t 2 s t 1  . By general  

position we may a s sume  E '  n £M = £D'. Now triangulate with D ' ,  E '  

a s subcomplexesand  f s implicial .  Le t  N 1 = 2 n d d e r i v e d n e i g h b o r -  

r + 2 s t 1  
hood of D' in M and N = 2nd der ived neighborhood of E '  in B 

2 
r t 2 s  +l 1 

Then put U 
1 

= N 1 n  a M ,  U = N 2 n  aB 
2 

, V1 = FrMN1 , V 2 = Fr  NZ, ; 

W = c l [ a ~ - u , l ,  and W = aB rt2st1- 1nt u2. Then U V , W Z  a r e  P. L. 
1 2 2' 2 

r t2si -1  
( r t 2 s ) -ba l l s ,  N2, cl[B - NZ] a r e  r t 2 s t 1  balls .  N1, being a regular  

neighborhood of D in M i s  an ( r t s ) - b a l l  and, f r o m  the above r e m a r k s  on 

t c  r-1 
cr e t c . ,  V 2 S X B'. N1 and cl(M-N) a r e  ( r t s ) -ba l l s .  

1 

By induction, there  i s  a level p reserv ing  P. L. map F 1 : V  X I -+ V X I 
1 2 

with 

1) F' = £/v1  X I ,  
0 

2) F; = a P. L. embedding , 

3 )  F ' ~ ~ V ~ X I = ~ . ~ ~ V , X I  , f o r a l l  t r  I ,  
t 

4) Z(F1) # 0 in H (V  X I ; Z  ) = Z 
r-1 1 2 2 ' 

Define F: M X I -> B rt2st1 X I a s  follows: put 

F / V  X I = F ;  . 
1 1  

Extend F over  
1 

> N  X 1  N I X 1  - 
2 

M - N i X 1  > c l [~r+2s+1 - N ~ ]  X 1 



1 by conical extension. Then s2(F) E suspension of S (F') .  Moreover, 
2 

the linking numbers correspond and Z(F)  = suspension of Z(F ' )  

i Proof of Theorem 11.9. M i s  a compact k-connected closed manifold. 

2m-k 
k I m - 4 ,  f :M->E i s  a P. L. embedding. Let 6 s H k + l ( ~ ;  z2). 

0 

Let 1 s -rrktl(h4) be an element representing 6 . Let i: bk" -> M be 

a P. L. embedding representing p [which exists by embedding Theorem 8.11. 

k t l  2m-k 
Now f iS i s  unknotted in E , so bounds a k t 2  disc,  D say, in 

0 

E2m-k . By general position assume E n f (M) has dimension I 
0 

( k t 2 ) t m  - (2m-k) = 2k-mt2 S k-2. By the famil iar  argument used for  

example in proving the embedding theorems,  we define inductively se ts  

2m-k k t 1  
C . C  M, D . C  E , X.  C M with c.!~s , D.\o,  f - ' ~  = C U X , 
1 1 1 I 1 o i i i 

dim X .  < dim X . Eventually, for i = R say, XR i s  empty. 
1 i-1 

Now triangulatewith f simplicial, C and Dk a s  subcomplexes, and 
0 k 

2m-k 
let  NZ 2nd derived neighborhood of D in E k 

. Let N~ = f o - 1 ~ 2 ,  

2m-k 
a 2nd derived neighborhood of C in M. Now le t  FI MX I -> E X I 

k 

be such that F = f X 1 outside N F i s  in general  position, 1' 
F1 i s  an 

0 

embedding, f = f ,  F(N X I) E N X I, and Z(F / N ~  X I) i s  the non-zero 
0 1 2 

element of H (N X I; Z 2 )  (in the notation of Lemma 11.1, r = k+1 , 
k t 1  1 

S = m - ( k t l )  2 3 ,  r t 2 s t 1  = 2m-l. ) But clear ly,  -(F) = J::@F / N ~  X I), 

where J : N  X I -> M X I i s  inclusion; in fact, both elements a r e  repre-  
1 



the non-zero element onto 5 .  So d(FI ,  fo )  = 5. Thus we have found 

a new embedding having the required "difference class"  f rom f . 
0 

4. Other Results. 

In this section we outline some more  resul ts  that can be proven about 

i 
obstruction to isotopy of embeddings. 9 

i 
I) Suppose i s  a k-connected compact closed P. L. manifold, 

2m-k 
k i m-4, and suppose m-k i s  even. Suppose f : -> E is  an 

0 

embedding. Then the correspondence between isotopy c l a s ses  of em-  

b e d d i n g ~  of M in E ~ ~ - ~  and 3 (M; Z ) given in section 3 i s  also 
-l- I 2 

one-to-one. 

m 
11) Consider maps of an orientable closed manifold M in a manifold 

Q ~ .  Then one can develop an  obstruction theory analogous to the above, 

but with coefficients in Z, provided q-m i s  odd. Then if M i s  orientable, 

2m-k 
k-connected and closed and f : M -> E i s  an embedding, one gets 

0 

2m-k 
a map f rom isotopy c l a s ses  of embeddings of M in E to Hk+&M; Z). 

F o r  k 2 m-4,  this map i s  one-to-one and onto. 

111) Suppose f: M -> Q i s  in general position. Let Cf = mapping 

cylinder of f = ( M  X I) Q . 1f U i s  a (2m-q)-simplex of S f, let 
2 

{(X, 0) f(4) 
cr' be such that f u  = £ m ' ,  u1 # U, and let $ ( U )  = linking number (mod 2) of 

f 

f(link(u; M)) and f(link(ul; M)) in link(fu; Q). Then let 

C(f) = #f(u)[r X I] r C*(Cf) X Z2 , where [ U  X I] denotes the chain one 
U 



obtains f r o m  the usual  t r iangulat ion of U X I ( o r  denotes a chain in 

p r i s m a t i c  homology theory) .  Then aC(f) = C(f) r C,, (M -,. X 0). So C(f)  

r ep r e sen t s  ~ ( f )  r HZmmqtl (Cf: M; Z2) , and aA(f) = ~ ( f )  r H 2m-g (M). 

Suppose F: M X I -> rl X I i s  a homotopy of f and g. Then the 

inclusions (C M) -> (CF; M X I) and  (Q: ; M) -> (CF; M X I) a r e  
f' g 

homotopy equivalenc es.  So F induces a n  i somorph i sm  

F : H  (Cf;  M; Z2) -> H 2 m - q t l  
(c : M; 2,). F,,A(~) = ~ ( g ) .  SO ~ ( f )  

2m-q+l  g .P 

depends on the homotopy class of f .  In pa r t i cu la r ,  i f  f is homotopic to  an 

embedding, A(f) = 0. 

If aM = aQ = $ , q -m 2 3 ,  Zm-q 2 1 , I T . ( C ~ ;  M) = 0 f o r  i S 2m-q  , 
1 

T.(M) = 0 fo r  i 2 3m-2q + 2, and q - m  is even, then ~ ( f )  = 0 impl ies  
1 

f i s  homotopic to  a n  embedding. If q-m is odd, then t he r e  i s  a n  analogous. 

theory  ove r  Z ,  and the analogous resu l t  is t rue .  

If F is a homotopy of f and g,  fixed on  the  boundary,  say,  we can  

u s e  A(F )  to  m e a s u r e  the obst ruct ion to getting a n  isotopy. In genera l ,  

however,  A(F) depends not only upon f and g but a l so  upon the choice 



1. Introduction. 
r 

Theorem (Browder,  Sullivan, Cassen): If f: Mm -> Qq i s  a homo- 

topy equivalence ( M  compact),  q-m L 3, aM = $, and i f  i ( a ~ )  3 T ~ ( Q )  1 

i s  an isomorphism, then f i s  homotopic to an embedding. 

k 
Corollary. Let K be a finite simplicial complex, a closed 

P. L. manifold, Qq a P. L. manifold without boundary. Suppose q-m 2 3, 

q- k 2 3, $: M -> K i s  a homotopy equivalence , and the following diagram 

(of continuous maps) i s  homotopy commutative: 

Then f i s  homotopic to an embedding. 

Proof.  Let N be a regular neighborhood of K in Q. By general 

position, IT.(N; N-K) = 0 for i 5 2. The generalized annulus theorem 
1 

implies that N-K Z aN X [0, m], and so  N-K has aN a s  a deformation 

retract.  Therefore IT (aN) 3 -rrl(N) i s  an isomorphism. $: M -> N 
1 

i s  a homotopy equivalence, a s  N\K. Hence the theorem applies to $. 

In this chapter we a r e  going to find a condition on f: M-> Q which 

implies the existence of a homotopy commutative diagram a s  in the 

C O  rollary. 



Definition. L e t  f:X -> Y be a continuous map  of topological spaces 

Le t  C = mapping cyl inder  of f = 
(xx 1 ) U Y  . Identify X Cf by 

f 
{(X, 0 )  

identifying X r X with (X,  l). Then define rri(f) = rri(Cf; X). 

Theo rem 12.1: Let  f:  -> Q be continuous, K a finite s impl ic i  

complex,  a Q = $ ,  k < q - 3 .  Suppose  IT.(^)= 1 0 f o r  i 5 2 k - q t l .  Then 

t he r e  i s  a homotopy commutat ive  d i ag ram in which K '  is a finite s impl ic ia l  

complex,  $ a ( s imple )  homotopy equivalence,  and d im K' ( k: 

2. L e m m a  o n  Homotopy Groups  of a Tr iad.  

k 
L e m m a 1 2 . 3 .  Le t  K 5 U C _ M ~ ,  K a  s impl ic ia lcomplex ,  U open,  

M a manifold, aM = $. Then  if T.(M-K; U-K) = 0 fo r  i 5 r ,  then 
1 

T.(M; M-K; U) = 0 f o r  i 5 rSm-k - l .  
1 

(Compare  B lake r s  & Massey ,  Homotopy Groups of a T r i ad ,  Annals of Math, 

55, (1953). Note that  =.(U; U-K) = 0 f o r  i<m-k- l ,  by genera l  position. ) 
1 

Proof .  Let  d E ni(M; M-K; U), i 5 r t m - k - 1 .  Let  

f: (B,  F ~ )  -> (M,  M-K, U) represent ,  d , where  B = i -bal l ,  F 1 and F 2 

a r e  ( i - l ) - ba l l s ,  F1 U F = aB, F r\ F = aF = aF Since M-K and U 
2 1 2 1 2' 

a r e  open, we m a y  a s s u m e ,  a f t e r  a sma l l  homotopy i f  n ece s sa ry ,  that  f i s  

P. L. non-degenerate and £(B) i s  i n  genera l  position with r e spec t  to  K. 



Let  X = f- ' (K).  Then X PI F' = $ and d i m  X 5 i-f-k-m. F o r  

engulfing in a ball,  codimension hypotheses a r e  not  nece s sa ry ;  s o  t h e r e  

a polyhedron C C_ B with X CLC r\ F d i m  C 2 i t k - m S 1  5 r. Le t  P 
2 

- 1 
be a polyhedron in C with P D £"K jd and C - f U C IntcP. Let  

P = Fr  P. So £P C U. Now (M-K, U-K) i s  r -connected and d i m  P I r ,  
0 C 0 

so  t he r e  i s  a homotopy of P ,  i n  M-K, fixed on  P ca r ry ing  P into U-K. 0 

This  extends to  a homotopy of B,  F F -> M, M-K, U ca r ry ing  f onto 
1' 2 

f 1  whe re  

Le t  R be  a second der ived  neighborhood of F 'J C i n  B with f ' ( ~ )  ', U. 2 

F 2 L c \ F ~ .  So R i s  a n  i -bal l  i n  B,  R ri aB is a face. So t h e r e  is a 

s t rong  de fo rma t ion  re t rac t ion  p:B-> B-R. f '  " f l l  : B y F I y F 2 - > M , M - K y  

and  P P ( B )  L M-K. So f l @  r ep re sen t s  z e r o  in  -rr.(M; M-K; U-K). 
1 

k 
L e m m a  12.4. Say K C_ M ~ ,  k 2 m - 3 ,  K a f ini te complex,  M 

a manifold. Let  N be  a r egu l a r  neighborhood of K i n  M. Say T . (M,K)  = 0, 
1 

i 5 r. Then T.(M, N, N-K) = 0 if i 5 r t m - k - l .  
1 

Proof .  The following sequence is exact: 

a > T  (M-K;N-K)  
.rr.(M-K; N-K) -> =.(M, N) -> T.(M; M-K; N) - 
1 1 1 i-l 

Ill 

So (M; M-K; N) i-connected,  i L r t l  => (M-K, N-K) ( i - l ) -connected --/ 

(N,  M-K, N) is ( i - 1 ) tm-k -1  2 i+l connected. So by induction, the resu l t  



follows. (Observe that in applying 1 2 . 3  we can  replace N by N because 

N -> N i s  a homotopy equivalence.) 

3 .  Proof of Theorem 12.1.  

k 
Let f r X  - > Q ~ ,  q k k t 3 ,  a Q = O ,  ~ . ( £ ) = 0  for  i S 2 k - q t l ,  X a f in i t e  

1 

complex. Then we want to find X '  G. Q, a subpolyhedron, dim X' 5 dim X, 

and a homotopy equivalence $: X -> X' such that $: X -+ Q and 

f:X -> Q a re  homotopic. 

We proceed by induction. Let { A ~ ]  = simplices of K, / K /  = X, in o rde r  

of increasing dimension. Let K. = {A.  I j C i) , a subcomplex. Then we use 
1 J - 

the following inductive statement8 f i s  homotopic to f.: K -> Q, where 
1 

f.(K.) C L. 5 Q, Li a subpolyhedron, dim Li 5 k,  and f. 1 K.: K. -> L. i s  
? 1 -  1 1 1 1  1 

a homotopy equivalence. 

When i = 0, K = a point, and there i s  nothing to prove. So assume f 
o i 

has been constructed, and let  A = Aitl . Let N be a regular neighborhood 

of L. in Q. Let r = dim A . Then Ki contains the ( r - l ) - ske le ton  of K. 
1 i 

Therefore r .(K; Ki) = 0 fo r  j ( r - l ,  by the cel lular  approximation theor em 
J 

(cf Spanier, Alg. Topology, p. 404). 

Let C = mapping cylinder of f . Then 
i - 

a > T  ( K ,  K.) i s  exact. -> T.(K, K.) -> T.(C, Ki) -> T.(C, K) - 
J 1 J J j - l  1 

I I I I 

d Q ,  Li) T . ( f . )  . 
J J 1 



So =.(Q, Li) 0 fo r  i 5 min(2k-qt l ,  r - l ) .  If N is  a regular neighborhood 
J 

of L. in Q, we have T.(Q, N, N-L.) = 0 for j L min[rtq-k-2, k]. So 
1 J 1 

IT (Q-Li, N-L.) * r (Q, N) i s  onto. aN i s  a strong deformation re t rac t  
r 1 r 

of N-L so r aN) -> IT (Q, N) i s  onto. Fur thermore ,  f rom the 
i '  r r 

exact sequence of the t r iad,  

a -> T.(Q-L N-L.) > T.(Q, N) > IT.(Q, N, N-Li) > ... , 
3 i' 1 J J 

T.(Q-L N-L.) = 0 whenever j 5 min(2k-qt l ,  r - l )  and j t i  I min(rtq-k-2, k: 
J i' 1 

So, in particular,  whenever j ( 2r-2t1.  Let A = A 
itl 

and choose 

g: A ,  aA -> , aN such that $ 3 f .  1 A: A, aA -> Q, N. By the embedd- 
1 

ing theorem 8 . 2  , we may assume f to be an embedding. By the homoto~ 

extension property f. 3 JI: K 4 Q where + ( A  = $A, $ 1  K. E f .  l Ki: K ->N. 
1 1 1  i 

Then $ 1  K. U A: K.  LJ A 4 N U $A i s  a homotopy equivalence. Now N ~ L .  
1 1 1 '  

so N\L .  c T where $A 1'7 N / T, dim T k. So N V $ A \ L  u T U $A = Litl 
1 i 

say. If : N u  $A + Litl i s  a corresponding deformation retraction 

define fitl l Kitl = a$ and using the homotopy extension property extend 

fiti 
over  the whole of K with f f .  

i t l  

This completes the inductive step. 



Handle-Body Theory and the s -Cobordism Theorem 

Introduction. 

A cobordism i s  a manifold W with boundary the disjoint union 

BW = B+W U a W. An h-cobordism W satisfies the fur ther  requirements - 
B+W C W and 8 W W a r e  homotopy equivalences. - 

The method of Smale consists of representing a cobordism a s  the 

union of handles and sliding these handles around to obtain a product 

s t ruc ture  on cer tain h-cobordisms of dimension 2 6. That i s ,  for such 

an h-cobordism W ,  there i s  a P. L. homeombrphism of W onto B - W X I, 

written W S B-W X I. 

In this process  an obstruction called tors ion occurs  naturally. An 

h-cobordism with no torsion is  called an s -cobordism. Alternatively, 

an s -cobordism i s  defined a s  a cobordism satisfying the requirements: 

a+W c W and 8 - W C W a r e  simple homotopy equivalences. 

A simple definition of simple homotopy equivalence i s  given a s  the 

equivalence relation on compact polyhedra generated by collapsing (K\L)  

and by P. L. equivalence (K E L). F o r  example, the finite sequence 

K ~ \ K  /K E Kq defines a simple homotopy equivalence of K and K 
2 3 1 4 ' 

With any such sequence we can associate  a sequence of maps of one t e r m  

into the next, the composition map is  well-defined up to homotopy and is  

called a simple homotopy equivalence. 
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The object of these lectures  i s  to obtain the following 

Theorem: If W i s  an S-cobordism, dim W ;L 6, then W Z 8-W X I. 

r n - r  
1. Suppose W" i s  given and suppose i :  aB X B -> a+W i s  a 

n - r  
P L  embedding. Let W '  = W LJ. X B , then we say W '  i s  got by 

1 

attaching an r-handle to W. W '  i s  st i l l  regarded as  a cobordism with 

a W '  = a W, a + W f  = a W t  - a W ' .  We will frequently be attaching several  - - - 
n - r  

- B r x B  3 a t W  a r e  handles simultaneously. Suppose il, i 2 , .  . . , ik. 

P L  embeddings with disjoint images. Then we can stick al l  the handles 

corresponding to i l , i 2 , .  . . , ik on at  once, say 

r n - r r n - r  r n- r 
W ' =  W I' B I X B i  !Ji B X B  ; ...L  i .  B XBk , 

1 2 2 2 lk 

and we say W '  i s  obtained from W by attaching r-handles. 

A standard handle body decomposition of W i s  a sequence 

W O  c W1 C . . . C Wntl  where W 0  2 8-W X I, we insist  that W it1 i S 

obtained from W by attaching i-handles and Wntl  % W .  T h e m a i n q u e s -  
i 

tion of the theory may be stated: what handle body decompositions give 

the same manifold? 

Lemma l .  Every cobordism W has a standard decomposition. 

Proof. Let K  be a simplicial complex triangulating W with K O  

a subcornplex triangulating a - W. Let L. = KO , L. = K i' (( i - l ) -skeleton 
1 0  

of K)  and write W. = N(L" , K") ,  the simplicial neighborhood of the 2nd 
1 i 

derived L" of L in the 2nd derived K" of K. 
i i 



Now WO i s  a regular neighborhood of 8-W in W (Chapter 11) 
, 

but by the collar neighborhood theorem (Chapter I )  there i s  

a regular neighborhood of 8 W in W, P L  homeomorphic to 8 W X I and 

so by the uniqueness of regular neighbourhoods. WO S 8 W X I. - The 

proof will be completed after establishing the following assertions. 

Let A be an i-simplex of K ,  then 

E (A, K") n wi = S(A,  K M )  r~ N ( A ~ ,  K " )  . (2 

Let L = { simplkxes of K' whose vert ices  a r e  barycentres of simplexes 

having A a s  a f a c e )  = {$1$2...i)rl A < B 1 < B Z <  ... < B  r . Alternatively, 

we can write B. = AC. with C. E link(A, K ) ,  then the map B. -> ? induces 
L 

1 i 1 1 1 

a P L  homeomorphism L -> link(A, K) called pseudo- radial projection. 

A 

We can make the same construction again; le t  p:  link(^, K") -> A L 
4 

L' 
be the pseudo-radial projection defined by AC -> 2 for C E link(A, K')  (2) 



A 

The fact that p sends link(A, K") r\ W -> derived neighbo rhood of A '  
i 

in A I L  follows f rom standard considerations (c£ Chapter 11). Since A '  

i s  full in A I L ,  p [ l i n k ( A , ~ " )  nW.1 i s  a regular  neighborhood i f  k' in A I L  
1 

( see  Chapter 11). 

The remainder of the proof divides into two cases .  

Case l. A / atW. 

In this case ,  L = link(A, K') i s  a P L  sphere so  A i s  an unknotted 

( i - l ) - sphe re  in the (n- l ) - sphere  AL. Thus by uniqueness of regular 

i 
neighborhoods there  i s  a P L  homeomorphism CL : AL 3 a(B X B ~ - ~ ) ,  

n- i  
S ending A -> a(Bi X 0)  and sending p[link(i ,  K")  r W.] -> aB. X B . 

1 1 - A 

Now extend conically to give a P L  homeomorphism f rom Star(A, K") -> 

Bi X Bn-i A . Thus attaching s t a r  (A, K") to W. i s  attaching an i-handle. 
1 

Case 2. A E atW. 

. , 
Here L i s  a ball, thus AL is a ball and A =: a(AL) a s  an unknotted 

(i-l)- sphere. 

n- i  - 
Let aB - F I,! F where F 

1 2 
l ,  F2 a r e  (n- i - l ) -bal ls  with disjoint 

inter iors ,  and observe that (Bi X F ) u (aBi X B ~ - ~ )  = cl[a(Bi X B ~ - ~ )  - 
l 

i i 
(B X FZ)] i s  an (n- l ) -ba l l  with aB X * a s  an unknotted ( i - l ) - sphe re  in 

the boundary. Thus there  exis ts  a P L  homeomorphism 

i 
a: AL -> ( B ~  X F ) u ( aBi X sending -> aB X *, and sending a de- 

1 
i n- i  

rived neighborhood of A -> aB X B . (::: i s  an inter ior  point of F . ) 
i 



Then up: l ink(2,  K") (Bi X F.) U (aBi X B ~ - ~ )  extends conically to 

a P L  homeomorphism 

A i n- i 
h: s t a r  ( A ,  K")  -> v .  [(Bi X F) ( 8 ~ ~  X 2 B X B , 

where the las t  P L  homeomorphism extends the identity on the base of the 

cone. Thus we have again attached an L-handle. 

2. We now consider methods of a l ter ing the standard handlebody 
8 

decomposition so a s  to eliminate handles. The f i r s t  crucial  way of modi- 

fying a handlebody decomposition uses  the boundary collar to slide handles 

around a s  in the following lemma.  

i 
Lemma 2. I .  If f ,  g: aB X -> 8 W a r e  P L  ambient isotopic t 

i 
imbeddings, then W af ( B  X B ~ - ~ )  2 W 3 (Bi X B ~ - ~ ) .  

g 

Proof. Let c be a boundary col lar  of W ( res t r ic ted  to  a+W). 

That i s ,  c :  a + W  X I -> W with c(x,  0) = X for  a l l  X E a t W .  Let 

H: a W X I -> a W X I be a P L  ambient isotopy with H f = g. Define 
t t l 

Q :  W -> W by ac(x,  t )  = c(H.  X, t )  and by a = id. outside Im c. Then 
l -t  

Q extends to a P L  homeomorphism 

i n- i  
We will now look at  homotopy c l a s ses .  If f :  aB X B -> a+W i s  an 

i 
imbedding, then f(aB X 0) C a+W i s  called the a-sphere of this handle and 

is said to represent  the element 5 E n ( a + W )  if by homotoping a point on 
i- 1 

the a-sphere to  the base point in a W we obtain a map representing 5 .  
4- 

is  determined to within the action of n ( a  W) on n (a+W). If 
1 t i- 1 

'* = 2, this action of T on T i s  an inner automorphism. 
l 1 



We introduce the followin g notation. If 5 n ( a + ~ )  and w t n  ( a  W )  i- l l + 

then cW i s  the element of rr (a+W) induced by car ry ing  the base  point 
i - l  

0 - l 
around the path w. If i = 2, 5 = w 5 w. 

3 .  We will now look a t  the following main construction. If we have 

two handles attached to a cobordism, both attached to the s ame  level,  

then we can sl ide one handle ove r  the other .  

Theorem 3 .  1 (Handle addition theorem):  Let 8 + W be connected 

r r r n- r 
and le t  W' = W where h = B  X B  , i =  1 , 2  and f , g  

i 
n- r 

disjoint embeddings aBr X B - atW. Suppose f r epresen ts  5 ,  

g represen ts  r in n (a+W) and 2 r g n-3. Let o i n  ( a  W). 
i- l l t 

r r 
Then W' W -i hi  dglhZ with f ,  g' disjoint imbeddings of 

aBr X B n- r 
in atW and g' represent ing 1 + cw with prescr ibed sign. 

- l e - 1  
[If i = 2 we can choose g' to  represen t  e i ther  w - ' ~ w  o r  W 0. 1 

n - r  r 
Proof.  Choose X 6 aB and let  D = B X x  - h i .  Let  c be a 

boundary co l la r  of a+W - f (aBr  X Bn-'). c i s  an imbedding of 

f (aBr  X aBS) X I + atW. Le t  c be chosen so that Im(c) f ;  h 2  = $ and 

i 
le t  D' = D Id c[(aB X X) X I] = D , c[aD x I]. 

r 
F o r  convenience in notation wri te  S a = g ( a ~  X 0). Since 

2 
n- r r 

f ( aBr  X B ) 1 f ( a B r  X 0) of codimension 3 in a W, t atw - h i  
r W i s  

a 
s t i l l  connected. Let  P be a path in a+W f rom aD' to S with 

2 

P C h = $. By general  position, P can be chosen a s  an embedded path 
1. 



Let  N be a 2nd-derived neighborhood of P in a+W, so that N 

a 
i s  an (n- 1)-ball  and N BD1, N'.' S2  a r e  both properly embedded 

( r -  l ) -bal ls  ( 3 ) .  We now apply Irwin's embedding theorem (Chapter 8) 

r -2  
to embed a cylinder S X I in N joining the boundaries of the two 

r -2  
(r-1)-discs .  S inceweareembedd ing  S X I  i n a n ( n - l ) - b a l l ,  Irwin's 

r - 2  
connectivity conditions reduce to the condition that S X I be 

2(r-1)-(n- l)  connected, that i s ,  r-2.2r-n- 1 o r  - 1  r .  The condition i s  

r -2  
satisfied, so  le t  i: S X I-  N be an embedding mapping the boundary 

a r e  ambient isotopic in 



First subdivide further with N a subcomplex. Let N' = 2nd derived 

neighborhood of D' - D' fl Int N in a +W1 - Int N. N' is an (n - 1) ball 

meeting a N  in an (n - 2) ball, therefore N U N' is an (n - 1) ball. g' and 

g( aBr X 0 agree outside N U N' . In (N U N' ) we have two properly embedded 

balls which agree on the boyndary. By Zeeman's "Unknotting balls'' (Chap- 

ter 5 ) ,  g' is isotopic to g in (N U N' ), keeping the boundary fixed. 

Any ambient isotopy of a W throwing g l aBr X 0 onto g' (aBr X 0) 
+ 1 

gives an extension g" : aBr X B"-' + a+W1 of g' , ambient isotopic to g in 

a+wl. By uniqueness of regular neighborhoods there exists an ambient 

isotopy of a+wl,. fixed on g' ( a ~ '  X 0) and throwing 



g ' ( a ~ ~  X gn-') onto a znd derived neighborhood of g ' ( a ~ I  X 0). Thus we 

can ar range  fo r  g'(aBr X B ~ - ~ )  to be disjoint f rom hir. 

We have two important choices 

(1) The path P 

(2)  The orientations of the homeomo rphisms 

Sr-2 
X 0-aN ,- aD1 

Sr-2  a 
X 1 -8N 'i S2 . 

0 
Then g' represents  an element of the f o r m  .r + 5 where P determines 

w and the orientations determine the sign. 

4. We now consider the problem of cancelling handles. We f i r s t  

prove a simplifying lemma. 

n n 
Lemma 4 .1 .  Suppose Mi ,C M2 a r e  compact PL manifolds, 

M ; ~  M1. Then M2 E M1 

Proof. (Using regular neighborhood theory):  If c i s  a boundary 

col lar  of M then M2; M ~ ' $  MO = cl[Ml - Im c ]  and hence M , M a r e  
i ' 1 2  

both regular  neighborhood~ of M in M2. Thus Ml 
0 M2. 

m t n  
Definition. Let M ~ ,  N~ Q be PL manifolds. We say M 

and N a r e  t r ansve r se  at  X if there  ex is t s  a closed neighborhood U of X 

m 
in Q and a PL homeomorphism U, U c M, U N --P B X gn, Bm X 0, 

0 X B ~ .  M and N a r e  t r ansve r se  i f  they a r e  t ransverse  at  each point 

of M N. 



Note: If M , N  a r e  t r ansve r se  at  X,  then 

-. m 
M),  s ta r (x ,  N) g B X Bn, Bm X 0, O X Bn . 

(Recall  that the s t a r  of a point i s  well-defined up to P L  homeomorphism. ) 

r 
Now suppose W' = W 3 h h r t i .  We introduce the following 

f 1 "' g 2 

notation: 

n - r  r = O X ~ B  L a ( W .  h l )  
t 

n- r r D = O X B  C h  
1 -  

Theorem 4.  2. 

then W' G W .  

If say sb in tersec t  

D sb 
/ 

t ransversa l ly  in a single point 

Proof.  We shal l  prove W'  4 W and apply k r n m a  4. 1 S - 
r t i  B n - r - i  r t i  Bn- r - l  

F i r s t  note that B ( a ~  ) L (Brt i  X 0) by the 

n - r - i i  a B r t l  X B n - r -1  L B r + i  X Bn-r-2 4 . . .  
collapse grt i  X B 

\* aBrt l  X Bn-r-i  , Brt l  X Bi ; a B r t i  x B"-'-' -, B ~ "  X 0. (6 ) .  



r a 
Let  W1 = W U h and tr iangulate with S , D a s  subcomplexes. 

£ 1  

Let  U1 = s t a r  ( X ,  Wl) and le t  N = the znd barycentr ic  derived of 1 

D-U in W - U l  . Note N F' awl -  U = the znd barycentr ic  derived 
1 1 1 

neighborhood of sb- U in a W - U = an  (n-1)ball in aN t l  l ' Now collapse 

N away f r o m  N BW-U ; aN1 - (Nl n awl - U) = F r  
1 1 N ~ U  l N I b  (N1 ‘ Ul)  

Notice that U '7 D = s t a r  (X,  D), so U n D '' D - U = link(x, D) 
1 1 1 

an  ( n - r - l )  ba l l .  Hence U '-'NI = znd derived neighborhood of U .' D - U1 1 1 

= znd derived neighborhood of a ball  = an  ( n - l )  ball.  This ball  i s  a face of U 1 ' 

so U L U u F r  
1 

W -N 
u1 . 

1 1  

F r o m  the above r e m a r k s ,  W;\ w1 - N ~  L, W1 -N1 -U 1 - U. 

By t ransversa l i ty  t he re  ex is t s  a PL homeomorphism 

b r n - r - l  n - r - l  
U, U .? say U " 7  S -> B X B , B r x  0,O X B ( U  i s  the s t a r  of X). 

Now aU NI = znd derived neighborhood of a U  n sb and b(aU" N 1 ) 

n - r - l  
in a ( g r  X B n - r - l  i s  a regular  neighborhood of 0 X 8B ), S O  we can 

n - r - l  . *lso B' X B ~ - ~ - ~  \ ( B ~  X O )  (aBr X B n-  r- l 
assume b(aU 9 N ) = Br X aB 

1 1 

W l  g (BrS1 X 0)Lw1 - N ~  -U1 (Brt1 X 0) and Brtl  X 0 has been undis- 
g 

turbed during the sequence of col lapses .  Since sa n U i s  a face of Brt l  X 0 

we can  collapse X o 1 sa - sa so W U (Brt1 X 0) \w1 - N ~ - u ~  . 
1 g  

r n U i s  a regular  neighborhood of D in W and h i s  a regular  neigh- 
1 1 1 



The f i r s t  application of Theorem 4. 2 W 

removing the 0 -handles. 

0 0 
L e m m a 4 . 3 .  Let W = W U h l  u h 2  u . . . u h  

0 
and 

1 P 
l 1 1 

W = W u k u k2. v . . . u k . If (W2, W) i s  0-connected, then 
2 1 1 9 

W2 Z W u ( a  number of l -handles). 

Proof . By induction on the number of 0-handles. The exact sequenc 

of the t r iple  (W W1, WO) shows that H (W 
2' 

a 
H W W ) i s  onto. 

1 2' W1) - 0 1 0  

Thus for each pair of points X, y in two different components of W we can 
1 

find a n  explicit l -chain having X-y a s  boundary. Thus there  exis ts  a l -ham 

k.  say, with one endpoint in h . 
J P 

0 
Note that a 0-handle has  the fo rm B X so the b-sphere of a 0-ham 

1 
i s  the whole of i ts  boundary sb = 0 X 8 ~ " .  Similarly,  f o r  a l-hanlde B X B' 

1 1 
the  a-sphere is  a p a i n o f  points s a =  aB XO, s o a n  a - sphe reof  h alwayt 

0 
meets  the b-sphere of h t ransversely.  

By Theorem 4. 2. W2 W " (p - l )  0-handles y l -handles. This com- 

pletes the inductive step. 





5 6. Transversal i ty  and intersections 

k I 
Lemma 6.1. Suppose K , L a r e  compact combinatorial manifolds in 

=k+P 
and suppose given u r  K, r r L, dim ( g n  7 )  < d i m  u t d i m  r = k t l  

(i. e. , simplexes meet at  most  in isolated points in the i r  inter ior) .  Then, K, L 

meet t ransversely in a finite number of points. 

Proof. This i s  c l e a r  f rom general position considerations . 

Corollary 1. If B m, C B 
m t n  

a r e  properly embedded balls with 

~~n n E ~ B  rntn 
= $, then there  exists an a rb i t r a r i ly  small  P L  homeomorph: 

h: 
m t n  m n -> B fixed on the boundary with B , hB t ransverse .  

rn tn  m t n  
Proof. Suppose B 2 I and triangulate B ~ ,  so they a r e  

m t n  
l inearly embedded in I . Now shift the ver t ices  by a sma l l  amount into 

general position (Chapter 4). 

Corollary 2. If M ~ ,  N~ C Q 
m t n  

a r e  manifolds without boundary and 

M compact, then there  i s  an arb i t ra r i ly  small  P L  homeomorphism h: Q -> Q 

with M, hN t ransverse .  

Proof.  By general position assume M r\ N i s  a finite set  of points. 

Now apply Corollary 1 in disjoint neighborhoods of these points. 

5 7. Geometric and algebraic intersections. 

r r r t l  r +l 
Let W 1 = W v h l  u . . . ~  h , W 2 = W  L'k 

1 1 
U . . . L '  k and 

P q 
N N 

suppose -rrl(W) = -rrl(W2) Let W C W be the universal covers  of W, W 
2 2 

N - 1 N 

and let W1= p W1 where p: W -> W i s  the natural  projection map of the 2 2 

covering space. 
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N 

Now f o r  each handle hi choose a lift h i of h i and for each j 

I a lift z. of k Given X c IT (W) we rega rd  X a s  a transformation of the 
J j' 1 

N 

covering space and write x h  a s  the handle obtained by applying the t r ans -  
i 

N 

formation to h chosen above. 
i 

N 

Let 5 .  generate H (h. ,  hi W), 5 be the corresponding generator of 
1 r 1 

N N 

H ( h., h. ri 3. Similarly,  define 7 a s  a generator of Hrtl ( k . , k  nw) and 
r 1 1  j J j 

N 1 write 7 a s  the corresponding generator of H ( G). Let A be 
j rS1 J j 

I N N N N 

the group ring of -r ( W  ). Now fl. . . ( generate H ( W , W )  as a free A 
1 2  P r 1 

module since every handle in the covering i s  got by a translation of one of 

N N N N N 

the f . 'S. Similarly l -  ." lq  generate ( W2, W )  a s  a f ree  A module 
1 

I and we obtain a matr ix  relating these generators  f rom the boundary operator  a., 

I writing 

I We will now see how these elements  of the group ring a r e  tied up with 

I the intersections of the a -spheres  and the b-spheres .  Let 

sa = a-sphere  of k .  C a+W1 
j J 

sb = b-sphere of hi C a+W 
i 

D. = usual disc spanning S (0 X B ~ - ~ ,  hi)  
1 i 

I a b  a ~b 
Notice S , S bound d iscs  in W so we have also chosen lifts S , S 2 j i 

N 

in G and D. spanning 
b 

2 
si 

1 

a b  
The f i r s t  thing to observe i s  that S .  , Si t ransverse  in a W implies 

J t 

I b N 

x s a ,  ySi a r e  t r ansve r se  in a W for  a l l  X, y c -rr (W ). This i s  t rue  since 
j + l  1 2  



N 

Further ,  W? is  orientable, SO to each transverse intersection we may give 
L. 

a sign. 
m 

In general i f  M and N" a r e  submanifolds of an 

m t n  
o rientable manifold Q which meet transversely 

a t  a point X, there i s  a homeomorphism 

m 
h :U ,UnM,  UnN-> B X B ~ , B ~ X O ,   where 

U i s  a neighborhood of X in Q. Geometrically, we can 

choose h so U n M, U n N a r e  mapped with the natural 

orientation and give intersection sign + 1 according a s  

whether U is  mapped with correc t  orientation. 

More precisely, in the diagram 

H (M) p H (Q, Q - N) 

I m 
m 

4 

fo r  each i the generator of H (U. n M, a U .  n M) maps 
m 1 1 

- 

onto + the generator of H (Q, Q-N) by the local pro- 
m 

duct structure, the sign k i s  precisely the sign of the 

intersection. 

-- a 
We define the algebraic intersection of S with 

j 
- -b  

xSi 
by taking the signed intersections and adding. 

Then the algebraic intersection is  the coefficient of X 

in X . .  . 
J1 



Lemma 7.1.  If B ~ ,  Bq C a r e  properly embedded balls,  p, q 2 l 

and (BpSq, Bq) unknotted with Bp, Bq meeting t ransversely at two points 

r 
with opposite sign, then aB i s  inessential  in B pSq - 

Proof. aBP i s  homologous to zero in - Bq [because BB' i s  

cobordant to two spheres each linking Bq once in opposite directions] and 

is  therefore inessential since 

Corollary. If p i p S q-3 and the above hypotheses hold, spans 

a p-disc B~ properly PL embedded in BPtq - Bq. 

Proof.  This i s  a direct  application of Irwin's embedding theorem. 

Note that 2p - (p tq)  S 1 5 p-2, thus the connectivity condition on the image 

space i s  satisfied. 

r S1 
Theorem7.3 .  Let  Wl = W U h r ,  W = W  I-! k 

1 
with 2 5 r 5 n-4 

2 

and T ( a  W) S ?rl(W). Let s a ,  sb represent  the a-sphere of k and the 
1 3 -  

a b  
b-sphere of h respectively, in Assume S , S meet t ransversely.  

--a --b 
Now lift to the universal cover  and assume S , X S meet in two points P 1' P2 

with opposite sign (plus some m o r e ,  possibly). 

Then we can a l te r  the attaching map of k by an isotopy to an attaching 

a ' b 
map k' so that S (corresponding to k') i s  t ransverse  to S and meets  it 

r t l  
in two fewer points than sa and so that W S W LJ k' . 

2 1 
a b  

Proof. Let l7 , l7 be paths in S , S f rom P to P By general 
1 2  1 2 ' 

position ( r  2 3, n - r -1  2 3)  we can  a s sume  that l7 , l7 a r e  embedded and do 
1 2  

b 
not meet sa T\ S except in the i r  end points. 



We now have to notice that I' T lift to paths in the universal 
1' 2 

N 

cover  a W having the same endpoints. In fact,  by the choice of 
+ l  

- a  --b 
P , P  we can lift r in S , l? in S . S o ,  $ r2 is  inessential 

1 2  1 2 

in a+Wl . 

We will split the proof into two cases:  

Case 1.  r 2 3 .  Let D b e a d i s c  in a+W1 spanning l? 1 -IT2. By 

general position, assume D i s  embedded (dim a + W  1 5), D L sa = Tl 

a b 
(d im a+Wl - dim S = n - l -  r 2. 3 ) ,  and s imi lar ly  D S = l? 2 

(dim a+Wl - dim sb = r > 3). 

Let N be the 2nd derived neighborhood of D in a+W, then N i s  

a ball with r l? properly embedded, meeting in two points with opposite 
1' 2 

b 
sign. By Corollary 7. 2, we can shift N sa off N S keeping 

a+Wl - N fixed. 

Case 2. r = 2. Here,  the spanning disc used in the previous argument 

b 
might hit S in a n u m b e r  of points. 

b 
Notice that a W - S " a  W - (hl + 1 + l  (10) 

a 
But now, if  ( S f )  i s  the a -sphere  of h,  a+\ - ( S )  a f W - (h a , ~ ) .  

b 
SO, IT ( a  W - S ) = r ( a  W - ( s7 ja )  = r 1 ( a + W )  = IT ( a  W ) where the 

1 4 - 1  1 t- 1 + 1  

isomorphism i s  induced by inclusion. 

Let T1, T2 be a s  before, N 1 = znd derived neighborhood of r2  

a b 
in a W with T T , S , and S a s  subcomplexes. Let  

4 - 1  1' 2 

l?; = l ?  - ( N ) ,  P ,  2 endpoints of 5'. aNl - (aN1! sb) = 

(n-2) sphere - (n-4) sphere and i s  therefore connected. So let  l?; be a 



b 
path in 

aN1 
- (aNl n S ) from Pi to P; . (1 1). 

F r o m  the diagram (11) it i s  c lear  that l?' 1 U l?' 2 i s  homotopic in 

8 W to r1u  r2 a n d i s  therefore inessent ia l in  a+W1, hence in  
+ l  

b 
a+W1 - S by the previous isomorphism. Thus there i s  a disc D in 

b 
8+W1 - Int N1 - S spanning l?' 1 U l? 2 ' . By general position we can 

assume D i s  embedded, D n sa = 5 ' and D 17 8N 1 = T2'. 

Now let N2 be a znd derived neighborhood of D in 8+W1 - Int N1. 

Since N meets N i n a c o m m o n f a c e ,  N Z N l n  N i s a n ( n - 1 ) b a l l  (12). 
1 2 2 

a 
Notice that N n s a  i s  a regular neighborhood of l? 1 in S and 

b b b 
N r\ S = N1 n S i s  a regular neighborhood of l ?  in S . F o r ,  

N1 
sa = znd derived neighborhood of l? 1 in sa, N2 n sa = znd derived 

neighborhood of r1 in sa - N1 , so N n sa i s  an r-ball. Similarly, 
1 

b 
for N O S  . 



b 
Using this construction we may manipulate sa and S to get them to 

intersect t ransversely in a single point, provided we know something 

about their  algebraic intersection. 

r r t l  
Corollary 7 .4 .  Let W1 = W v h , W2 = W1 L k , rrl ( a + W )  = r l ( W )  

and 2 5 r L n - 4 .  Suppose 5 generates '  Hr(W1,W), 9 generates Hrt1(W2,W 

N N N N  N N N  N 

and 5 , q a r e  lifts generating H ( h, h r W) and H ( k ,  k n W ) respective: 
r r t 1  1 

Proof.  We have to look a t  how this algebraic condition t ies  up with 

N N 

intersection numbers.  We know a 9 = 2 a x 5 where the integer a i s  
X X 

X E T -  
- a  7 - 1 h) N 

the intersection number of S with xS . So i f  a 9 = 5 , a = 0 i f  X 1 
X 

and a = 1. So by repeated application of Lemma 7 . 3 ,  observing, for  exampl 
1 

-b  
that 'Sa meets  x S  in pairs  of points with opposite intersection sign and 

cancelling these pairs ,  it follows that W 
Wl 

( k l )  where sal cuts S b , 
2 - 

t ransversely in a single point and cancelling the handle, W W. 
2 - 

We now show how to cancel r handles by adding ( r t l )  and ( r t 2 )  

handles. 

r r t l  
Lemma 7. 5.  Suppose W = W 3 h , W2 = Wl - r t l  

1 
kl ' ... ' k , 

9 

rr ( a  W) = T ( W ) ,  2 < r 5 n-4. If (W2 , W) is  r-connected then 
1 t 1 

W W - ( r t l )  handles an ( r t 2 )  handle. 
2 - 

N N N N 

Prosf .  a: H ( W2, W1) -> H ( W1, W) is  onto and so we can write 
r i l  r 

N q N N r t l  5 = his 'li where h .  r A and q generate 
1 i W1) -  

i  = l  

We will introduce a complementary pair  of handles (14). The attaching sphere 



of kl  . . . k do not cover atW1, therefore the attaching maps do not cover 
q 

8, W , .  
So choose U L a W with U disjoint f rom k l .  . . k . We may 

+ l  q 

attach a pair  of tr ivially cancelling handles in U. Let 

pr+2 
r-t 1 

r t l  
k , irt2 be the pair  of complementary handles attached in U. SO, 

q+l 

K i s  null homotopic in W; . Thus under the boundary map 
q+2 

N 

a: H r t l  G - H ~ ~ , ) ,  iqtl -> 0. 

We will now apply the handle addition Theo.rem 3 .1 .  Since the theorem 

is  stated in t e r m s  of homotopy c l a s ses ,  we must pass  f rom the spherical 

N 

homology c l a s s  7 to the corresponding homotopy c l a s s .  Let. 

N 

h: IT (a t% ) -> H ( a  W ) be the Hurewicz map. If the a-sphere of k repre-  
r r t l  i 

N W 
sents a. c IT ( a  W ) = IT (a+W1) (UP to the indeterminate a - or ) we 

1 r t l  r i 

obtain f rom the following di'agram 

N 

the relation jh ai = a qi . By the handle addition theorem we can choose 
q 

k' so that i t s  a -sphere  represents  a' = CY t 2 hiai. So 
q+l q+l q+l i=l  



N - Y 
jh(cr' ) = a '1' 

q-t 1 
= a['; 1. q.]= 4 We can  now u s e  7. 4 to cancel 

q-tl q+l i = l  

the r-handle in W" = 
2 

W I V  k L/ . . .  .- k 
1 q+l 

and hence W 
2 

W , ( r t l )  handles L an ( r t 2 )  handle. 

The following handle rear rangement  l emma i s  sometimes useful .  

r S 
L e m m a 7 . 6 .  If W 1 = W J h  , W 2 = W  - k  , s < r , t h e n  

1 
S 

W -- W k t S  where k' i s  disjoint f r o m  hr.  
2 -  1 -  

a b 
Proof. F i r s t  of a l l ,  i f  S = a - sphe re  of k and S = b-sphere  of h, 

a b a 
d im S t dim S = ( S - l )  + ( n - r - l )  5 n-2 < n - l .  By general  position S can 

b 
be moved off S by an ambient isotopy.  Let NI be a znd derived neighbor- 

b 
hood of S in a+W, not meeting sa (1 5). The re  exis ts  an ambient isotopy 

of a+Wl throwing N1 onto a+WI h which i s  a lso a regular  neighborhood 
I 

b 
of S in a + W l .  So sa i s n o w d i s j o i n t f r o m  h. 

n- s a 
If f: aBS X B -> a W i s  the attaching map of k with S 1 -  h = g, 

+ l  

let N2 be a znd derived neighborhoad of sa in a+W1 not meeting h. 

S 
There  exis ts  an ambient isotopy car ry ing  f ( aB  X Bn-') onto N and now 

2' 

the two handles a r e  disjoint. 



Collecting a l l  our  resul ts ,  we have 

r k;+l r t l  
Lemma 7. 7. If W = W . 

1 hlr P q 
. . .  h , W = W  

2 
. . .  k , 

T ( a  W) = r l ( W ) ,  2 C r 5 n-4 and (W2, W )  i s  r-connected, then 
1 t 

W W L, ( r t l )  handles L ( r ~ 2 )  handles. 
2 

r 
Proof. By induction on p. Let W '  = W 

1 
h l - .  . . .  - h r  NOW we 

p- l '  

look at  the exact sequence IT (W' W) -> IT ( W  W )  -> ",(W2, W ; )  -> 0 and 
r 1 '  r 2' 

conclude that IT ( W  W;) = 0. By 7. 5 ,  W2 g W; ( r i l )  handles ( r t 2 )  handles. 
r 2' 

By induction, W' ( r t l )  handles g W , ( r t l )  handles , ( r+2)  handles. 
1 

5 8. We have now done al l  the geometry necessary  to cancel r-handles, 

r 2 2. In this  section we show how to cancel l -handles. 

1 2 2 Lemma 8.1. Let Wl = W h , W  = W  
2 

;- kl . . .  k , n ?  5' 
- q 

IT ( a  W) = -rr (W)  and ( W  , W) l -connected. Under these conditions 
1 -t 1 2 

1 
The proof will be ve ry  much like the c a s e  r 2 2. Let P = B X X C h ' ,  

X r a ~ " - l .  We can a s sume  that P i s  disjoint f rom a l l  2-handles, since 

we can  move the attaching spheres  off P by general position and use regular 

neighborhood theory to move the 2-handles off P. 

Since (W W) l -connected, P i s  homotopic in 
2' 

W 2  keeping endpoints 

fixed to a path in a+W. So there  i s  a new path P' in atW - h' with 

a P '  = a P  and P LJ P' inessential  in W (1 6 ). By general position we may 
2 

assume that P U P' i s  an embedded l -sphere in a+Wl, which cuts the 

b-sphere of h '  t ransverse ly  in a single point. 



attaching 
another 2 

2 3 
We will now introduce k , P , a pair  of complementary handles and 

q+1 

slide the attaching map of the 2-handle around to throw it onto P U P'. Let 

a a 
S = attaching sphere of k , by construction (S 5) S i s  inessential  in 8 W 

q+l + 2' 
a 

So by Zeeman's unknotting theorem, P U P',  S a r e  ambient isotopic in 

atw,. 
2 2 2 3 

Thus W " W  U kl , . . .  u k  ~ k '  J l ' where the attaching 
2 1 q q+l 

sphere of k' i s  P 2 P'. So we can cancel h and k12 , by 4. 2. We can  
q+l q+1 

cancel a whole lot of l -handles by using this technique repeatedly. Collecting 

the various preceding theorems we obtain 

Theorem 8. 2. Let W be a connected cobordism, with (W, 8 - W )  

r-connected, r 5 n-3. Then W S (8  W X I) handles of index L r. - 

Proof. Choose a standard handle decomposition and apply various 

lemmas  above. 

One of the important things about cobordism i s  that we can turn them 

upside down. By this process ,  an r-handle becomes an ( n - r )  handle. 

If WO L W1 L . . . .  - W  i s  a standard handle body decomposition, 
n+ l 

let  W '  = W U (a,W X I) and identifying a+W X 0 with a t W, let  a + W '  = a - W ,  



I a Wf = atW X 1. Notice that attaching an i-handle to W .  1 removes an - 

l i 
(n-i) handle f r o m  W' - W.. That i s ,  B X i s  attached to Wi by 

1 

aBi X Bn-i i n- i  
and so i s  attached to the complement by B X aB . If 

-- 
W! = W '  - W  then Wb i W; . . . ; Whtl i s  a standard handle body 

n- i t1  ' 

I decomposition. This enables us  to s ta te  a s t ronger  form of Theorem 8. 2. 

Theorem 8. 2'. If W i s  a s  in 8. 2, 2 ( r I n-3 and ( W ,  atW) i s  

(n-r-2)  connected, then 

W 2 a W X I L r-handles L ( r t l )  handles. - 

Proof .  Turning upside down we must  cancel the handles of index 

I n-r-2.  This i s  possible by our  l emmas  provided n- r -2  5 n-4, i. e. , r 2 2. 

T 1 ( a  -l- W) = T 1 ( W )  and 2 5 r ( n-4. Let 'F. 1 c H,(F~, q, yi d r t 1 ( % 2 ,  G1) be 

generators chosen a s  before. 

N N N N 

Then the boundary a: H ( w ~ ,  W1 ) -> H (wl , W) i s  represented by a 
r t l  r 

l mat r ix  M = (m.  .) where 
13 

N 

alli = m i j T j  with m & A .  
i j 

j 

I F i r s t  of all we know that: 

N N 

(1) If rri(W2, W) = 0 for  a l l  i ,  then H+ (W2, W) = 0. Thus M has an 

inverse a s  it represents  an isomorphism between two f ree  A-modules. In 

particular,  M i s  square,  p = q. 



( 2 )  M i s  not complete ly  de te rmined  by the handle body decomposition; 

the re  i s  an  element of choice in the or ienta t ions  of the 5 and in the choice 
i 

N 

of lift 5 .  -> C i  . M i s  de te rmined  by the  handle body decomposit ion up to 
1 

left multiplication of a row o r  r ight  mult iplication of a column by e lements  

I t x  where  X E IT 
1 ' 

1 ! 2 I r I n-4, then by Corollary7.4,W W. 
2 

l 

We a r e  going to look a t  ways of a l t e r ing  a handle body decomposit ion by 

adding complementary handles and sl iding handles around to get M in th i s  

f o rm.  

5 9 .  Whitehead to rs ion  of a handle body decomposition 

Le t  R be a r ing with identity. Let  GL (R)  = n X n invert ible ma t r i ce s  n 

ove r  R and note GL (R) C GL (R)  under  the na tura l  identification 
n n-tl 

M E G L  (R)  
n 

(R) .  Le t  GL(R) = l i m  GL (R) .  
n 

L .  
- 

0 
I l 

A m a t r i x  M c GL(R) i s  ca l l ed  e lementa ry  i f  i t  ag r ee s  with I = 1 . 

except fo r  a t  mos t  one off diagonal e lement .  Let E(R)  (SGL(R) be the sub- 

group generated by e lementa ry  m a t r i c e s .  

Theo rem of Whitehead: E(R)  = commutator  subgroup of GL(R).  

Thus K1(R) = GL(R)/E(R)  i s  a n  abel ian group,  usually wri t ten  additively. 

Consider  ( -1 )  E G L 1 ( R ) C  GL(R).  Let [ - l ]  be t h e i m a g e  of ( -1 )  in 

K1(R) and let  z l ( ~ )  = K ~ ( R ) / [ - l ] .  



map l? -> GL1( Bl l ) ,  s ince every element of l? has an inverse  in l1 and 

i s  hence a unit in Z 17 and therefore  a non singular 1 X 1 matr ix .  We have 

h: l? -> ( Zn) -> GL( 217) -+ K1 ( -17) -> El ( 'ill). Then Wh(11) = the 

If M i s  the ma t r ix  associated with a handle body decomposition a s  

in 8 8  with W = W L r-handles and W = W1 d ( r t l )  handles,  let  
1 2 

T = [M] E Wh(17). T i s  called the Whitehead tors ion associated with the handle 

body decomposition. The main theorem of this section enables us  to cancel 

the handles of this  par t icular  decomposition in case  T = 0. Note that 7 i s  

I 

1 well determined by the handle body decomposition. In fact ,  f i r s t  note that 

if we permute the rows of M we do not change [M]. Write Eij = [ ak l ]  with 

mentary given a €  ," 17. Let  M' = M(l SE . ) ( l  - E. )( l  t E ). The effect 
1 J J 1 1 j 

of this posmultiplication i s  to add the f i r s t  column to the jth, subtract  the jth 

f r o m  the f i r s t  and add the new f i r s t  column to the jth. Write 

I -1  
1 ! MM = M1 i 

i I All these ex t ra  fac tors  go to zero  in K1 and we have 
1 i  

M" = M with the f i r s t  and jth columns interchanged. A s imi l a r  argument 

using premultiplication shows that we can  interchange the rows of M. 



Now i f  we multiply a row o r  column by an element L 11 we don't 

a l te r  T. F o r ,  we may permute columns, postmultiply by [I l l .  .l 
and then permute again. The mat r ix  rl'... o ] ->0 in Wh(11). 

r r r +l 
Theorem 9.1.  Let W1 = W hl - ... h , W 2 =  W l d k l  . . 

P 

T ~ ( + W )  = ( W ) ,  2 S r In-4 and (W2, W) ( r t l )  connected. Let T be defined 

as above. Then T = 0 implies W 2 W. 

Proof. T = 0 means that M -> 0 under the map 

GL ( all) -> GL( all) L> Wh(n) i s  the >ubgroup of GL(Z  11) 
n 0- 

generated by elementary mat r ices ,  

r -1 

/ M  o 
Then for some N,  = E U  where E = ,finite product of elementary 

! + X  0 
matr ices  and U = 1 1 with X E 17. 

N 

F i r s t  of all  we can choose a new l i f t  1 to eliminate U. Introduce 

N pairs  of complementary r and ( r t l )  handles, a l l  disjoint f rom 

r r r t l  
hl ' . . .  _ h . . .  k . This give S a new handle body decom- 

P - - P k 

position represented by the mat r ix  E = n e with e elementary. Let 
i -l i i 



r r rS1 r S1 
If we now have W' = W hl 

. . . L hpSN , W'  =W;.. k l  ... - k 
1 2 P+* 

N N 

and ii, T~ chosen to give E ,  we apply the handle addition theorem to slide 

r t l  
one of the handles k over  the o thers  to get 

j 

r t l  r t l  r t l  r t l  r t l  
W'  G W' 

2 
k " . . .  " k  , k; - kjSl >d . - k j-1 - PSN 

N N N 

where a q ' = a( qj - a q .) ( see  7. 5). 
j 1 

I The mat r ix  of the new handle body decomposition is  E with a t imes 

I L e t .  R be a ring with identity. We also make the following assumption: 

the ith row subtracted f r o m  the jth row, i. e. , i s  (I - aE.  .)E. So the new 

k 1J 
p- 

matr ix  i s  i ) e . We repeat this process  unit1 we get a new handle body 
i - -.. 

I If F = f r e e  module over  R with n generators ,  m $ n implies F n m # Fn. 

I This assumption is  certainly t rue  for  group rings R = TIl. F o r ,  we can 

. This enables us to cancel1 al l  the 

i = 2  

decomposition with mat r ix  

I make 11 operate trivially on the rationals Q and regard Q a s  a right 

1 0 
l 1  

I R module. Then Q @  F = vec'tor space of dimension n over Q and so m # n 
R n 

implies F 
m f Fn 

Definition. Let A be an R module, A i s  S- f ree  i f  A €B F i s  f ree  n 

f o r  some n. 

Lemma 10.1.  If 0 -> A -> B -> C -> 0 i s  exact and B, C a r e  

S-free,  then A i s  S-free.  



Proof.  0 -> A -> B I F -> C CB F -> 0 is  exact. F o r  la rge  
n n 

enough n,  B I F and C I F a r e  f r ee ,  so the sequence splits  and 
n n 

B (8 F !Z A 63 ( C  (8 F ), therefore A i s  S- f ree .  
n n 

Definition. If A i s  S - f r ee ,  an S-basis  for A i s  a basis  for  A @F n 

for  some n. We will use a single le t te r  underlined for a basis.  If A i s  

f ree ,  and - b = (b l .  . .br) ,  - c = ( c  . c ) a r e  bases  for  A, write b. = 2 hijcj 
1. r 1 

where the X . .  f o r m  an invertible matrix.  Write [dz] = [X.  .] %+R). 
V 1J 

We can do the same thing for  S - f r ee  bases.  In general,  i f  - b i s  a basis 

for  A ( 8 F  , c i s  a basis  for  A I F  , and b + f k m m  , c + f  a r e  f r ee  
m - n - -k-n 

b a s e s f o r  A ( 8 F  where f , f a r e  standard bases  for  F 
n -k-m -k-n k-m'  Fk-n 

define [ b / c ] =  - - [ k t f k - m h  - + f  k-n ] r z l ( ~ ) .  

This element does not depend on the choice of k ,  and we wri te  b m - c 

if [ - b/c] - = 0. In par t icular ,  if  - b i s  obtained from - c by permutation o r  

adding multiples of one element to another,  then - b - c. Note that 

[+l + [ Y c l  - = [a/cl. - - 

Let 0 -> A -> B -> C -> 0 be exact, 4 B ,  C S-free.  Then the 

following sequence i s  a lso exact: 

X > B I F  I F  0 - > A @ F  - CL > C @ F  4 0 .  
m m n n 

Let - a , c be chosen a s  bases  f o r  A B F m ,  C Q F respectively, 
n 

a = (al .  . . a r )  , 5 = ( c  l. . . C Given i 2 S ,  suppo se pc ' = c . Then - i i 

(Lal. . . ha  , c '  . . c ) i s  a basis  for  B I Fm B F . Call this S-basis  for  B ac . 
r l '  S n - 

Then - ac i s  defined up to a choice of the c '  . 
If c; 

is  another choice with 
i 



pc; = C then c!' - c s Im X and we can wri te  down a matr ix  comparing 
is 1 i 

these a s  follows: 

where M i s  of the form 1'. 
equivalence c l a s s  of - a c  i s  well determined 

Suppose now 2 ,  2' a r e  S-bases  fo r  A ,  - c , ~ '  a r e  S-bases  for C and 

choose related S-bases  ac  , a ' c '  for  B. We would now like to compare - 
these S-bases .  

Lemma 9 .2 .  [ -- ac /a ' c l  ] = [a/a'] t [ - c /c l ] .  - 

Proof .  Assume A ,  B, C f r ee ;  - a,c,a',cl a r e  actual bases.  We have 

X 
0 -> A-> B - - >  C -> 0, choose a :  C -> B with p a =  1, then 

We can suppose ac  = (%, ac),  a ' c '  = ( X  a ' ,  a c ' ) .  Then ac = M a 'c '  , - - - - 

where M of of the form , I with a = M a '  , - 1- 
I ; i -0  M2 

b = M b' .  So in Ki(R), [M] = [M1] + [M2]. I - 2-  

We will now define tors ion fo r  a general chain complex over R. Suppose 



Given i, let  _c be a basis for  C . If either 
i i 

( 2 )  H.(C) is  S- f ree  for  each i with given basis  h , 
1 I -i 

exact sequences associated with C. Now by induction on i and 10. 1, B 
i 

and Z a r e  S-free.  
i 

Choose s-bases  .b f o r  B and choose in the usual manner  S-bases  
-i i 

i 
b.h. for Z (bihi)bi-l fo r  C . Define T = (-1) [ ( b i h i ) ~ i - l / ~ i l  If 
1 1  i' - i -- 

b! i s  another basis for B., [(b!h.)b_l-,/ci] = [(bihi)bi-l/(b.h.)b ] + 
-1 1 A..-! - -- 1 i-l 

[(b.h.)b.  /C.]  = [b!/b.] + [b_i-l/bi-i] + [(b.h.)b. /Ci] and in the alternating 
1 1 1-1 1 -- 1 -1 1 1 1 - 1  

sum the t e rms  [b!/b. ] cancel. T i s  thus independent of the choice of b and 
1 -i 

is  called the Whitehead tors ion of the based chain complex (C, c .). 
-1 

Let us  now consider the actual geometric situation. Let K C K be a 
0 

pair  of finite simplicial complexes with .rr ( K  ) IT (K) by inclusion. 
1 0  1 

N N 

If K -. K is  a homotopy equivalence, le t  K .. K be the universal 
0 0 

cover ,  this has a standard simplicial  s t ruc ture  given by that on K ..l K. 
0 

Consider 
N N N N 

a . .  ->C. (K,K )->C ( K , K ~ ) - >  - - S  

1 o i- 1 
N N 

Given cr E K - K let  7 be a lift of cr to K , cr i s  determined to 
0 '  

N N 

whithin an action of IT C.(K, K ) i s  a finitely generated f ree  7I-I module 
1 ' 1 0 

N 

with generators of the form U , dim U = i, cr E K - K . 
0 

Since K C K i s  a homotopy equivalence, the chain complex above has 
0 

- 
no homology and T(C) is  defined in %( Zll)  and depends on the choices of 



l T(K, K ) = [ T ]  c Wh(17), then i s  well determined . We will show that this 
0 

T(K, K ) element of Wh(Il) does not depend on the triangulation, i. e . ,  i s  
0 

I invariant under subdivision. 

N N 

More generally, i f  H.(K, K ) i s  S - f r ee  with S-bases  b. we can  sti l l  
1 0 -1 

define T(K, KO), now depending on the choice of S-bases  b.. If b! i s  
-1 1 

N N 

another S-base of H.(K,K ) and [b'./bi] -> 0 under R.(:.17) -> Wh(n), 
1 0 - 1 

then T(K,  K ) i s  not changed by replacing b by 
0 l 

Suppose we have a sequence of inclusions of R modules 

1 G -> G1 -> G2 -> G3-> . * S  we attach symbols a ,  b, c . . . to the a r rows 
1 O 

->G -> G -> 
G O ~ > G 1  b 2 c 3 

where a i s  an S-basis  for G / G  etc. 
1 0' 

In the short  exact sequence 0 -> G1 /Go -> G2 /Go -> G2 / G1 -> 0 

I the s-bases  a and b of G /G and G ~ / G ~  give r i se  to an S-base ab  for  
1 0  

a b 
G2/Go . We wri te  G -> G2 -> G1 ,F 

-> . By exactly the same process ,  we 
0 

'---_---_A - 
ab 

define bc and finally a(bc)  > and (ab)c > . Then a(bc)> m (ab)c> , i. e . ,  -> 

[ a(bc)/(ab)c >l = 0. 

Proof.  We can assume a l l  quotients f r ee  and all  S-bases  a r e  actual 

I bases.  Let ( x i . .  .X,) be a basis  for  G1/G which extends to a basis  
0 

(xi. . . X  ) for  G ~ / G ~  such that ( X  
r+i. xs)  

-> b, the given basis  for  G / G  
S 2 1' 

Let (X 
s + i .  exn) -> c in G ~ / G ~  NOW (xi. .  . X  ) i s  equivalent to both 

n 

a(bc) and (ab)c. 



This process  i s  t k  refore associative. It i s  also commutative in a 

reasonable sense.  Suppose we have a diagram of inclusions 

with A, B, C C say, A  t B = {a  t b / a s A, b r B) .  We have the natural  

a > A  t B. Similarly for  b. Thus A '  B  ->A gives B  - 
Lemma 10. 2. ba -- ab in  the diagram 

Proof .  Recall that this equivalence i s  defined i n a  1 (R),  hence even and 

odd permutations of the basis  elements a r e  allowed. We have got 

A t B  A 
- g -  B 
A p) B A ' B  (B A B  

, and going one way we get the basis  (a ,  b) ,  the o t h e ~  

way (b,a). We can thus choose ab, ba to be the same basis  permuted. 

Now suppose we have a short  exact sequence of chain groups (finitely 

generated f r e e  R-modules) 

O->C'->C->C'l->o . 

Let c . , c l  and c!' b e  generators for  C C! and CL respectively. 
1 i 1 i' 1 

We also want to suppose that the homology groups H i = H.(c), 1 H! 1 = H ~ ( c ' )  



HI' = H.(Cfl)  a r e  a l l  stably f r e e  with given S-bases  b . ,  1 b' i and b" i . Here 
1 1 

we r ega rd  H! -> H. -+ H;-> H' -> " ' a s  a chain complex , " of 
1 I i- l 

length I 3n. 

Theorem 10 .3 .  If ci city for  each i, then 

r (C)  = r ( C 1 )  + T (C") + r( *!' ). 

This i s  the main l emma used to  prove combinatorial  invariance of 

tors ion.  The f i r s t  thing we will prove i s  that  the tors ion doesn' t  change i f  

the bas i s  f o r  H. 1 i s  changed. We have the short  exact sequences 

0->X!'->H!'->X! 1 1 - 0  
1- l 

where X! = k e r  (H! -> H.),  etc. To f o r m  the tors ion we choose a rb i t r a ry  
1 1 1 

S-bases  X hi, e tc .  , and bi, b;, b; fo r  Bi, B; and B'! respectively with 
i' 1 

B. C C the boundaries in Ci, etc.  Then the general  formula for  tors ion 
1 i 

T = ( - ~ ) ~ [ b  h b /ci] becomes 
i i i-l 

T(C) - T(CI) - r (Cn)  = E ( - ~ ) ~ { [ b . h . b  I l i-l /ci] - [bfh\bf-l/cl] - [bl 'h'b" i i i - l  /C".]} 1 . 

(1) Notice that changing bases  c! 1 o r  c"  i does not a l t e r  

T(C) - -r(C1) - T(C")  SO long a s  C i w ~ ' ~ "  , and c , c ' ,  c!' do not appear  in the i i i i l  

expression for T($( ). 



( 2 )  Choosing a different basis  for the H. 1 ' S  , that i s ,  replacing hi 

i 
[x.x'!/hi] 1 1  = [x.x:'/hi] 1 1  + [hi/ hi], and adds (-1) [biGibi-l/ci[ - [bihibi-l/ci] 

Thus changing bases h. ,  1 h;, h; adds equal quantities to T(  1( 1, 

r(C) - T(C') - +").  

So long as  we can prove r (C)  = r (C ' )  + r(C1') + T(I( ) for  one basis ,  

we will have shown the equality for a l l  bases .  Choose 

h.  = x.x'! c = b'h'h! 
1 1 1  i i i 1 - l  

h '  = X!X. ,!l = bllhllbll 
i 1 1  1 i i i - l  . 

h" = 
i 1 1  

 h his choice will make T(C ' )  = r(C1') r ( X  ) = 0. ) We a r e  now going to draw 

an enormous diagram of subgroups and quotient groups of the H. 1 ' S  and C. 1 S.  



C 
He r e  7 3 B  means the basis  represented by \ B i s  equivalent 

A A' 

to the basis  represented by 1 . All the a r rows  in the diagram represent  
A 

a 
inclusions; note that C' C C <- C . We also have the diagram 

i- l i-l i 

Note that X E p - 'Bt'  i f  and only if there  i s  a y r C with pay = px, i .  e . ,  
i i+l 

if and only if X - By c C'  so  p - ' ~ ! !  = B. + C' . We thus get 
i '  1 1 i 



z i r  , .L-~B"  Z. r (B .  + C!) B. t Z1 
i - 1 1 - 1 - - 1 i 

X .  = k e r ( H  -> H'!) = 
1 i 1 B B B. 

i ,, i 1 

(Z !  l') B = C! ? B since  everything in  B. i s  a cyc le )  
1 i 1 i 1 

B 
i 

B. 
- - 1 B" = - - 'it1 ( s i nce  C -> B. -> 0).  

i B. n C '  B. p: Z1 it1 1 
a-'cl 1 i 1 i i 

From (l) ,  (2) '  (4) and L e m m a  1 0 . 2  we have 



Using (2),  ( 3 )  and Lemma 10. 2, we get 

We can choose b. I = b! X! b'! so that a l l  the remaining squares  and 
1 1 1  

tr iangles commute. So c b h b and therefore T(C) = 0. We have now 
i i i i-1 

proved 

,.(C) = T(C1) -t ~ ( C l l )  + T( YL ). 

Now suppose we have a cobordism and add on a whole lot of handles. 

We will compare the tors ion of the resulting cobordismwith  that of the 

original one. 

r r 
Lemma 10 .4 .  Suppose W i s  a cobordism, W1 = W c h 1 . . . . - h P . 

Let K C K be a simplicial pair  triangulating W c W1, P (K ) E P (K)  
0 1 0  1 - 

N N N N 

and let K K be the corresponding universal  covers .  Now H *  ( K ,  KO) i s  
0 

a f r ee  an module with given generators  in each dimension. If 

(1) Each component of I K I - l KO l i s  simply connected, and 

N N 

( 2 )  Each given generator of H+ ( K ,  KO) is  representable by a chain in 



N N 

one component of K - K i. e.  , a chain which i s  a combination of c10 sed 
0 ' 

simplexes whose inter iors  a r e  in one component of ' 

Then T(K, K ) = 0. 
0 

Proof. Let T1. . . I' be the connected components of K - K let  
r o 

N N N N 

. . . be lif ts  of rl.. . . If bl. . . b E H (K,  K ) a r e  the given 
r r S .C o 

N N 

generators.  le t  E l . .  . E C(K, K ) be cycles representing them, each 
o i 
N N 

is  contained in one component of K - K . 
0 

Choose X r a regarded a s  a covering transformation so that xCi i s  1' 

f ree  $ II basis .  Moreover, this basis  gives r i s e  to the same T since multi- 

plication by X does not a l t e r  an element in ~ h ( l 1 ) .  Choose f r e e  2 I I  
i 

N N N N 

generators of C.(K, K ) and stably f ree  generators  of Bi(K, KO), all  lying 
1 0 

N 

in one of the { r. ). 
J 

Now all  operations done in calculating T a r e  done with integer 

N N 

coefficients. In fact,  C.(K, K ) r C.(K, K ) @ 11 where the isomorphism 
1 0 1 

O it 
sends generators  onto generators.  So 

T(K, K ) Irn {E1( 7 ) 3 K ~ (  2 II) -> Wh(Il)]. 
0 - 

But E1( 2 ) = 0, i. e. , every invertible mat r ix  with integer coefficients 

i s  equivalent under elementary operations to the identity mat r ix  I. In fact, 

let  M be a n  m X m matr ix  with integer coefficients. F i r s t  add rows until 

the smallest  non zero e l e m  nt of the f i r s t  column divides al l  the elements in 

the f i r s t  column (thi S uses  the division algorithm inductively). Cancel out 

the other elements in the f i r s t  column. Repeat with the other  columns. 



So M = TE with T upper triangular and E a product of elementary 

mat r ices .  Now M invertible implies det M = + 1, thus the diagonal ele- 

ments of T a r e  f l .  Therefore,  we can cancel the upper right hand corner  

of T by elementary row operations.  In R1, R i s  then equivalent to I. 

r r 
Corol lary 10. 5. Suppose Wl  = W d h  1 a b . . . - h  P , 

r S1 rS1 
W = W c k l  1 L . . .  k , r 2 2 and T.(W W) = 0, a l l  i. Choose 

2 - q 1 2 '  
N N N N 

generators Ei, I r l l  w"J c 
N N 

H r + i  
(W2, W i ) ,  respectively. Now then, we know that we have a mat r ix  ex- 

N N 

pressing a ,  a i. = C m .  ., ti. 
i 11 

Suppo s e  that W 2  is triangulated with W 1 ,W as  subcomplexes. 

Proof.  We look a t  the exact sequence of chain complexes 

N N 

0 -> c(W",, W") -> G) -> C(W2, W1) -+ 0 

By 10.3 and 10.4,  

.(C) = s (C1)  +T(CII) + ~ ( t t )  = 0 t o  + s ( j ?  ). 

a W m 
F o r   we have 0-  - 3 - 0 -  H rt-l ($, %l) ->H r (Wl, W) -> 0 -> . a .  -+ 0 

- N ' N  

with bases  '. "lj and c .  . for the two non zero t e rms .  We write this a s  . l .  

and split up the sequence, obtaining exact sequences 



,-. a 
and so 0 -> Z -> C -> B -> 0 becomes 0 -> 02> C -> B -> 0. 

rt1 r+1 r r t l  W r 
N 

" j 5 i 
We compare the new bases with the original one to get 

To complete the proof that T i s  invariant under subdivision we have 

Theorem 10. . Let K C. K be simplicial complexes, T.(K, K ) = 0 
0 1 0 

al l  i and aK a subdivision of K. Then -r(aK,aK ) = T(K,K ). 
0 0 

N 

Proof.  Let Li = KO U i- skeleton of K. Let K be the universal cover 

N N 

of K with the standard triangulation, and let L be the cover of L in K .  i i 

We consider chain complexes defined a s  follows: 

Let c be the chain complex 

N N W a m N 

a > H  (a"L a L  ) - > . . a  -> H. (@Li, aLi- l ) - -> H ( a L  aKO) -> 0 
1 i - l  i - l '  i-2 0 0' 

with each t e r m  a finitely generated f r e e  7 ll module. By standard arguments 

H (r) ar H ( a % , a z  ). 
0 

Let -d be the chain complex 
r 

N N a N N 

0 -> H ( a L  a L  ) - a L  ) -> -> H ~ ( ~ L ~ ,  aKO) -> 0 
r r '  r-1 > Hr-l(aLr-19 r -2  

with H (r ) = H (aZ a? ). 
r r ' o 

We shall prove inductively that ~ ( c  ) = T ( ~ L  crK ) in Wh(a) with r r '  o 
- i 

thegenera tors  for  C chosenas fo l lows :  Given r E K -  L i-l 
let  '$ be a 

r 
N i N N 

lift of r in K and let ci be a generator  of ~ ~ ( a ? ' ,  a(a7')) E Hi(aL i' a i-l ). 
N 

This gives a set  of f ree  generators  fo r  Hi(aL QL" ). i' i-l 



We now pass  f rom L to L r t l  and look a t  the exact sequence 
r 

0 ->C(aL aKo) -> C(aL aKo) 3 C(aL a L  ) -> 0 . 
r rt1' r t l '  r 

C ' C C " 

The bases  c ,  c ' ,  c"  satisfy the condition c c ' c "  by the usual 

N N N N N N 

definition. So r ( aLr t l9  aK o ) = T(QL , aK ) t T(UL L ) t r ) The 
r o r t l '  r 

6 

homology exact sequence ,?L i s  

F o r  the sequence C , we have 

but Ert1/Er i s  zero  except for  a group in dimension ( r t l )  and we have 
- , - 

~ ( ~ r - i - 1  
) = r(E ) t T ( C ~ + ~ /  E ) + T( ;. ) where i s  the exact sequence 

r r 
- a 

0->H 
r t i (  ' r t i  )->H r t l  ( C r t l / ~ r ) - > ~ r ( T r ) - > ~  

N N 

By the inductive hypothesis r ( a L  r , aK o ) = T(E r ). Recall that 

- N N 

H,(C ) = H + ( Q L ~ ,  aK ) where the generators  a r e  chosen to corresponds under 
r o 

the natural  isomorphism.  F u r t h e r ,  HrtI  ( rS1 /Cr) can  be calculated f rom 
I 

N N 

the chain complex 0 -> H r+l(aLr+lJ  a L r )  3 0. So ,FL , a r e  isomorphic 

by an  i somorphism sending genera tors  to gene rat0 r s .  

N N 

Now since the chain complex 0 -> Hrtl(nLrt l  @Lr)  -> 0 i s  tr ivial ,  

/C ) = 0. A l l  we need to prove to show the inductive s tep i s  that 
~ ( ~ r t l  r - 

N N N 

T ( Q ~  aLr )  0 using the genera tors  a l ready  chosen for C(aLr t l ,  aLr ) ,  r t l '  
N N 

H ( C Y L ~ + ~ ,  a L ). This  follows f r o m  Lemma 10 .4  since I aLr+l  1 - / "!Lr / i s  
r 

the disjoint union of simply connected s e t s .  



Starting the induction with L - 1 = K , we have proved T(LYK, CYK ) = 
0 0 

~ (c ) .  Now 

where ( a lift of an ( r t l )  simplex of K - KO), i s  a generator of 

So = C(K, K ) by an isomorphism sending the generator suitably. 
0 

Therefore T ( E )  = T(K,  K ~ ) .  

We introduce the notation T(W)  = T(W, a - W). 

h 
Lemma 10.7. Let W1,W2 be h-cobordisms with a+W1 " 8-W2, 

h a s impl ida l  homeomorphism. Let W = W U 
W2 . 1 h  

Then T(W) = r(W1) + r ( W 2 ) .  

Proof. We have the exact sequence of chain groups 

Now the homology exact sequence i s  zero ,  so 

T ( W ,  a - W) = T ( w ~ ,  a-wl)  + T ( W ~ ,  a - wZ). 

Proof.  Put W = W = MX I in 10.7. Then 
1 2 



L e m m a  10.9 .  If K ..- K1 KZ a r e  complexes ,  ri(K1, KO) = 0 , 
0 

a l l  i and K ~ ' ~  K1 , then T(K K ) = T ( K ~ ,  K ~ ) .  2' 0 

Proof .  Suppose K 2 \, K 1 by one e lementa ry  polyhedral co l l apse ,  

r 
so K -K i s a P L b a l l  say,  with B K1 a f a c e  F of B,  and 

2 I 

We have the exact  sequence 

These  complexes  have z e r o  homology, so 

d K 2 ,  KO) = d K * ,  KO) + T(K2. K1). 

Now K - K1 i s  s imply  connected so by Lemma  10 .4 ,  T ( K ~ ,  K ) = 0. 
2 1 

I L e m m a  10.10.  If n 2 6 , wn is  an h-cobordism,  then 

W r a W X I if and only i f  T(W) = 0. - 

Proof .  Cer ta inly  by 10.  8 ,  W E 8 - W X I impl ies  T(W) = 0. By $ 5  7 ,  8 

I if n 2 6 and W i s  a n  h -cobord i sm,  W E ( a  - W X I) L, r -handles  i' ( r t l )  

handles with 2 I r 2 n-4.  In 9 ,  we showed how to cancel  these  handles if 

the m a t r i x  represen t ing  t he  boundary map  Hr t i  (W",, G1) -2 H ~ ( % ~ ,  G) f r o m  

I the  homology of the  (rt1) handles  to  the  homology of the r -handles  was  

I equivalent to  z e r o  in  W h ( r ) .  We have now shown (10. 5,10.6 ) tha t  the  

l equivalence c l a s s  of th i s  m a t r i x  i s  T(W, a W).  - 

L e m m a  10.11.  If n 2 6 , wn i s  a n  h-cobordism,  then W S' a W X I 

i f  and only if t h e r e  i s  a PL space  X with W C X, X & W  and X \  a W. 



Proof.  W r a - W X  I implies W \  a W.  If W - X \ W ,  X ,a-W, 

then T(W, a - W )  = T(X, a - W )  = -r(a-W, 8-W) = 0 by 10.9,  and so 

W r a - W X r by 10.10.  

5 l l .  How many handles do we need in the case  of an h-cobordism 

with non zero torsion ? 

Theorem 11.1. Let wn be an h-cobordism , n 2 6. Given r ,  

2 S r i n-4, le t  j : GLp( ~ T ~ ( W ) )  3 Wh(?rl(W)). Then W g 8-WX I . p 
P 

r-handles C p ('+l)-handles i f  and only i f  T(W) Im j P . 

N N N N 

Let . be l i f ts  of hi, k ; le t  5 7. genrate H ( h . ,  hir a - W  X I) ,  
j is J r 1 i' J 

plies T(W) E Im j . 
P 

Now i f  T c Im j there i s  an M c GL such that for some N, 
P P 

G.1 I O ] [6 O I EU where E i s  a product of elementary 

I 
N-q N-p-' 

mat r ices  and U s: I 
with X. E 11. - 2 .  1 



We f i r s t  add N-q complementary pairs  of r ,  ( r + l )  handles. By 

altering the choice of the generators ci, qj we can  get the mat r ix  repre-  

r~ 0 1 
senting the new handlebody decomposition equal to 1 In-p] E.  Sliding 

the ( r t l )  handles over  each other according to the handle addition theorem we 

r~ 0 1 
can find a new handlebody decomposition of W with mat r ix  

1 0  IN-J 

So W 2 ( a  W X I) L N r-handles L, N ( r t l )  handles and the a -spheres  

of the l a s t  N-q ( r ~ l )  handles cut the b-spheres  of the last  N - q  r-handles 

algebraically once. Thus we can ar range  that they intersect  t ransversely in 

one point. So we can cancel the last  N-p ( r + l ) -  and r-handles.  

Note that I m  j l = 0 and U Im j p = ~ h ( l l ) .  
P 

Suppose now that W is a cobordism, T 1 (W) = -rrl(a-W) = T 1 ( a  t W )  

by the natural  inclusions, 3 L r I n-3 , and H,(G, 1 a - a = 0 for i { r and 

f r ee  of rank p a s  a Z17 module i f  i = r. 

N N 

Given a f r ee  basis  fo r  H (W, 8- W) we can  define T(W). Altering this 
r 

f ree  b a i i s  of H (G, a %) adds an element of Im j to T ( W ) .  SO we can 
r - P 

define T(W) E w h ( ~ ~ ) / I m  j . 
P 

Theorem 11 .2  . W r ( a  - W X I) U p r-handle s i f  and only i f  T = 0. 

Thus T i s  an obstruction whose vanishing implies we can eliminate al l  but 

the r-handles 

Proof .  We know W r (a-W X I) ( r - l )  handles L r-handles.  Let 

rS1 r - l  W = a W X I ,  W = W  L h . . .  L: h and 
0 - 1 0 1 S 



W = W c  k r  k: 
1 - " .  - (W2 " W).  

2 1 
N N 

Choose genera tors  f o r  H ~ ( W ,  B - W) G H (W W ), so T i s  defined 
r 2' o 

in Wh(11). Then r(W 2' WO) = r(W1, W o ) + r (W2,  W1) + T( 71 ) where i s  

the homology exact sequence 

a > 0. 0 -> H ~ ( % ~  , Go) L> H ~ ( % ~ ,  ) -> H ( w l ,  WO) - r - l  

N N N N N N 

Let  5, q be bases  f o r  H (W1 ,Wo), Hr(W2, Wl) respectively,  chosen by 
r-l 

lifting the handles in the usual  way. Then T (Wl, W o ) = r (W2,  w l )  = 0 ,  by 

Lemma 10 .4 .  

N N N N 

Let  h be chosen a bas i s  for Hr(W2, WO), 5 '  a lift of the bas i s  5 

back into H (W 2, W 1 )  If h ' =  ih, ( h l , x l )  f o r m a b a s i s  fo r  H (W 
r r 2, W1). 
N N 

Write q = M(hl,  5 ' )  where  M i s  an  invertible t X t ma t r ix  over  11 

N N 

and [M] = f T in ~ h ( 1 l ) .  NOW wri te  a q. = A j i  C i  , i. e . ,  a = B? 
J i 

where B i s a  t X  s m a t r i x o v e r  all. Since t > s ,  M Z ( A , B )  with A 

a tX p mat r ix .  

Now T(W W ) E Im  j i f  and only i f  fo r  some N,  
2 '  0 P 

;-l= [a : I where M' i s  p X p, E i s  the product 

N-P 

of e lementary ma t r i ce s  and U = ['l L x 2 . 0 ]  , . E T  1 1 '  S o of e lementary ma t r i ce s  and U = , X. E IT S 0 

can be converted to r r  I by the e lementary row 

N-P 



operations : 

(1) permuting rows , 

(2) multiplying a row by + X with X E IT 1 '  

( 3 )  adding one row to another . 

l Notice that B i s  given by the l a s t  columns of M, and row operations do not 

I confuse the columns. Thus,  by elementary row operations 

[, P n-t l = [ :  P I n- t ] ->[f I n-p ] 
p columns 

and so [I I-.] can be converted to 

!I0 n-P l 
N N 

Recall  a q = B 5 . Add in N-t pa i r s  of complementary ( r - l )  - and 

r-handles,  so B will be replaced by [r . Now each row operation 

of type (1) o r  (2 )  on 1 can  be effected by altering the choice of 

N 

generators  q , ei ther  by permuting , al ter ing sign o r  translating by a cover -  

ing transformation.  Type ( 3 )  row operations a r e  effected by al ter ing the 

handle body decomposition by handle addition. 
, 

r - l  , r - l  
So we get W g W' with W' = W ,-L hl - . . .  _ ; h  and 

2 1 0 N-P 

l 
N N 

1 where a: (WZV, Wll) -> H ( F l l ,  qo) i s  
W ; = W " J  kl v . . .  J k N  r- l  

represented by l' 1 . Then we may  cancel the las t  (N-p) r-handles 

N-P 
with the ( r - l )  handles. 



This proves the f i r s t  par t  of the theorem.  The converse  follows 1 
f rom a previous argument.  

We now look a t  duality. If we have a cobordism and tu rn  i t  over ,  

what effect i s  there  on the tors ion? 

r r  
Suppose W = a  WXI ,  W = W  L hl . . .  - h  and 

0 - 1 0 P 

W2 = W $2 r t l  r t l  
1 

k l  . . .  L k i s  a n  h-cobordism W .  Suppose to s t a r t  
P 1 

that W is orientable.  

N N N N 

To get the tors ion we choose generators  ci,  qj of H r (W1, W o ), 

N N - 7 
H r t l  (W2, W1) respectively and look a t  the boundary map a rlj = L a z  i , 

N a  N b  - a  N 

where a = algebraic intersect ion of S with xS. . S . = a-sphere  of k 
X j 1 J j' 

N 

x z b  = b-sphere  of xh. (17). 
i 1 

(FIGURE 17 WITH ACCOMPANYING TEXT IS ON NEXT PAGE) 



If we turn  the whole picture around, the a -spheres  

'.L -, 

X 2 p  become b-spheres  and the b-spheres  become 
-<--. 
fi . . .A L 

l / *  1 
, $1, a-spheres .  So the tors ion i s  given by a ma t r ix  

A; , A; = L a '  X , where a '  = algebriac in te r -  
1 -  X X  ' ~b X E I T  

\ 
l - . --  XS --b 1 

l - a*' 
- a  

J section of S. with xS. = algebraic  intersection of 

-1-b N a- 
X S with S . 

i j 

$: Wh(l7) -> Wh(17) sends M into i t s  t ranspose con- 
.. ,, 
. Y 

/' 

jugate, with conjugation in 7'11 induced by sending 

I - 1 
X - > X  . @ inducesanant ihomomorphism 

/ 
G L  ( F 1 7 )  -> G L  (1'17) and so induces a homomorphism 

n n 
2 

(X=1 t x - X  ) 
Wh(17) -> ~ h ( 1 1 ) ,  since Wh(ll) i s  abelian.  

In the non orientable c a s e  we define cu:z17 -> .?l1 

- 1 
by X -> X i f  X i s  orientation preserving and 

- 1 
X -> -X i f  X is  orientation revers ing.  This in- 

duces a map @': Wh(l7) -> Wh(ll) and we get 

T(W,  a+w) = (-1)"" p+ .(W, a W).  



5 12. h-cobordisms with given torsion. 

Theorem 12. 1.  If M i s  a compact connected P L  manifold of 

dimension 2 5, given any element T E W ~ ( T  (M)), there  i s  an h-cobordism 
1 

W with 8 W r M and T(W) = T.  - 

Theorem 12 .2 .  If W l  , W a r e  h-cobordisms of dimension 2 6, 
2 

a W 2 a W and r(W ) = r (WZ) then W W 
- 1  - 2  1 1 -  2 '  

Proof that 1 2.1 implie S 1 2 . 2 .  Choose W with 8 - W = a+W and 

( W )  = - ( W l ) .  Then by 10.7,  T ( w  l,'W1) 0. SO W l- W 1 -  " 8 - W 1 X I 

and a W r a W1 2 a-W2. SO f o r m  W = W c. W 
t 3 l 

L W 2  

In o r d e r  to prove Theorem 12.1 we f i r s t  need a lemma: 

m-2  
Lemma 12.3.  If i s  a P L m a n i f o l d ,  let  i Y j : s 2 X B  -> M 

be disjoint PL embeddings representing elements 5, E T ~ M .  If w E a l ( M ) ,  

m -  2 
there  i s  a P L  embedding k: S' X B -> M representing the element 

2 m-2 
Proof.  Let x E S , y E 8B , let P be a P L  path in M from 

i(x,  y) to j(x, y) not meeting Im (i) o r  I m ( j )  again. Let N be a second 

derived neighborhood of P in cl[M - Im i - 1m j]. 



The choice of the path P will determine the element W. By the 

uniqueness of regular  neighborhoods we may a s sume  that 

- 1 - 1 2 
i N = j N = U X V, where U i s  a regular  neighborhood of X in S 

m-2  
and V i s  a regular  neighborhood of y in  aB . Now the embeddings 

il U X V: U X V-> a N ,  j / U X V: U X V * aN  a r e  ambient isotopic to 

"standard" ones,  since any two orientation preserving embeddings of a PL 

ball in a connected manifold of the s a m e  dimension a r e  isotopic. So there  

i s  a PL homeomorphism h :N -> U X V X I with h i / U X  V:U X V -> U X V X 0 ,  

hj I U X V: U X V -> U X V X I  equal to the natural  identifications. Now con- 

m-2  1 m -3 1 
s ider  B a s  B X B , with the point y lying in aB X 0 ,  and take 

1 
V = V1 X V where V i s  a regular  neighborhood of y in aB , and V i s  

2' 1 2 
m-3  

a regular  neighborhood of 0  in  B . Then there  i s  a PL embedding 

m 2 1 2 l 
r r : I m i ; I m j ~ N - + R  s u c h t h a t  rr[i(S XB ) - j ( S  XB ) L h - l ( ~ ~ ~  1 XI ) ]  

5 
l i e s  in R . 



If V; i s  a regular neighborhood of y inside V1, let 

where Oy denotes the segment of B' f rom 0 to y. Then a2 has a pro- 

3 m 
duct neighborhood R and so in R , so Z has a product neighborhood 

W 
in M. Z will represent c + q provided we choose a suitable path P. 

Proof .of Theorem 12.1. Given M and T c Wh(-rr (M)). Represent T 1 
mQ 

bya rna t r i x  A s  GL ($a) fo r sorne  p. Let T i 2 s L X B  for i Z 1 , 2 ,  ...,p. 
P 1 - 

Let W1 be formed by taking (M X I )~J  U Ti and attaching p l -handles, 
1 

h l , .  . . ,hp ,  where h connects T to (M X I). 
i i 

m 4  
Now in T E 8 X B , choose a se t  of disjoint spheres Sij = S' X X. .  , 

i 1J 

x s 8 ~ ~ .  We may assume that these do not intersect the handles h l ,  ... , hp 
i j  

These all  have product neighborhoods in a+W1. 

N N 

Now let M be the universal cover of M and let W be the correspond- - - 
ing covering space of W. Now every element of H2 (W, M X 0 can be repre- 



sented by a 2-sphere  i n  a W formed  by piping together a finite number  of t 

the  sphe re s  S. .  in accordance with Lemma  12 .3 .  Let  c .  generate H (I' ), 
1J 1 2 i 

N N N N 

E i  genera te  H 2 ( ~ i ) ,  where  T. i s  a lift  of T .  in W 
1 1 

If the  m a t r i x  A = (a .  .), we can  find, a s  above, disjoint PL embeddings 
1J 

2 
a . : S  X B m-2 -> L3 W i = 1 , 2 ,  . . . , p, represent ing the homology c l a s se s  

1 $ 1  

2 aijZj. Attaching 2-handles by these  maps  gives r i s e  to the required 
j = l  

h -cobord i sm W with to rs ion  T. 
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