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Zhese a r e  notes f o r  l e c t u r e s  of John Milnor that were given 

as a seminar on d i f f e r e n t i a l  topology i n  October and November, 

1963 a t  Princeton University. 

Let W be a compact smooth manifold having two boundary 

components V and V1 such t h a t  V and V' a r e  both deform- 

a t i o n  r e t r a c t s  of W. B e n  W is said t o  be a h-cobordism 

between V and Vt . The h-cobordism theorem a t a t e s  t h a t  if i n  

addi t ion  V and (hence) V1 are simply connected and of dimen- 

s ion  g rea te r  than 4 , then W is diffeomorphic t o  V X [O, 11 

and (consequently) V is diffeomorphic t o  V' . Ihe proof is 

due t o  Stephen Smale [ 6 ] .  'Ihis theorem has numerous important 

appl ica t ions  - including the proof of the  generalized ~ o i n c a r e  

conjecture i n  dimensions > 4 - and eeveraJ. of these appear 

i n  $9. Our ma,in task,  however, i s  t o  describe i n  some d e t a i l  a 

proof of t h e  theorem. 

Here is a very rough ou t l ine  of t h e  proof. We begin by 

construct ing a Morse function f o r  W (02.1), i .e. a smooth 

funct ion f : w -> [o, 11 with v = C1(0) , v 1  = f1(1) 

such t h a t  f has f i n i t e l y  many c r i t i c a l  points,  all nondegen- 

e r a t e  and i n  t h e  i n t e r i o r  of W. 'ihe proof is inspi red  by the  

observation (63.4) t h a t  W i s  diffeomorphic t o  V X [o, 11 i f  

(and only i f )  W admits a brae f'unction as above with no c r i t -  

i c a l  points .  %us i n  554-8 we show that under the hypothesis 

of t h e  theorem it is  possible  t o  simplify a given Morse funct ion 



f un t i l  f ina l ly  all c r i t i c a l  points are eliminated. In $4, f 

is ad jueted so that  the leve l  f (p) of a c r i t i c a l  point p is 

an increasing f'unction of i t s  index. In $5, geometrical condi- 

tions are  given under which a pa i r  of c r i t i c a l  points p, q of 

index h and h + 1 can be eliminated or *cancelleds. In $6, 

the geometrical conditions of $5 are replaced by more algebraic 

conditions - given a hypothesis of simple connectivity. In 

$8, the resu l t  of 95 a o w s  us t o  eliminate all c r i t i c a l  points 

of index 0 or  n , and then t o  replace the critica3.points of 

index 1 and n - 1 by equal numbers of c r i t i c a l  points of 

index 3 and n - 3 , respectively. In $7 it i e  shown tha t  the 

c r i t i c a l  point6 of the same index h can be rearranged among 

themselves for  2 < A < n - 2 (97.6) i n  such a way t ha t  all - - 
c r i t i c a l  points can then be cancelled i n  pairs by repeated appli- 

cation of the r e su l t  of 16. !his completes the proof. 

I k o  acknowledgements are i n  order. I n  $5 our argument is  

inspired by recent ideas o f .  Me Morse Ell] [32] which involve 

al terat ion of a gradient-like vector f i e l d  for f , rather than 

by the original  proof of Smale which involves h i s  'handlebodie8'. 

W e  i n  fact never expl ic i t ly  mention handles or handlebodies i n  

these notes. In 66 we have incorporated an Improvement appearing 

i n  the thesis  of Dennis Barden [33], namely the argument on our 

pages 72-73 for  'Iheorem 6.4 i n  the case h = 2 , and the state-  

ment of Theorem 6.6 in the case r = 2. 



17he h-cobordism theorem can be generalized i n  sever& direc-  

t ions .  No one has succeeded i n  removing the  r e s t r i c t i o n  t h a t  V 

and V' have dimension > 4. (see page l3.3. ) If we omit the  

r e s t r i c t i o n  t h a t  V and (hence) V' be simply connected, t h e  

theorem becomes f a l s e .  (see Milnor [34]. ) But it w i l l  remain 

t r u e  i f  we a t  t h e  same time assume t h a t  the  inc lus ion  of V 

(or  V' ) i n t o  W is  a simple homotopy equivalence i n  t h e  senee 

of J. H. C. Whitehead. This generalization, ca l led  t h e  s-cobor- 

dism theorem, i s  due t o  Mazur [35], Barden (331 and Sta l l ings .  

For t h i s  and f u r t h e r  general izat ions see  e spec ia l ly  Wall 1361. 

3 

Lastly, we remark t h a t  analogous h- and s-cobordism theorems 

hold f o r  piecewise l i n e a r  manifolds. 
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Section 1. The Cobordiem Category 
I m 

First some familiar definitions. Euclidean apace w i l l  be 

denotedby R~ = ((5 ,..., x )Ixi E R, i = l , . . ,  where n 

R P the r e a l  numbers, and Euclidean half-space by 

Definition 1.1. If V i s  eny subeet of R ~ ,  a map 

f :  V R~ is smooth or dif'ferentieble o i  claaa C? if  f can 

be extended t o  a map g: U Rm, where U 3 V i s  open in Rn, 

euch tha t  the pa r t i a l  derivatives of g of a l l  orders exis t  end 

are c o n t i n u c ~ ~ ~ .  

Definition 1.2. A smooth n-manifold is a topological manifold 

W with a countable basis together with a smoothnese structure 4 
- on Me is  a collection of' pairs ( ~ , h )  satisfying four conditions: 

(1) Each ( ~ , h )  E c m s i s t e  of? an open set U C W 

(called a coordinate neighborhood) together with a homeomorphism h 

n which maps U onto an open subset of e i ther  R~ or R+ , 

(2) The coordinate neighborhoods in 08 caver W. 

(3) If (ul,hl) and (u2,h2) belong t o  4, then 

i s  smooth. 

(4) The collection r8 i a  maximal with respect t o  property 

(3) i.e. if any pair  (u, h )  not In  $ is adjoined t o  



The boundary of W, denoted Bd W, is the se t  of all points 

in  W which do not have neighborhoods haneanorphic t o  FIn (see 

Definition 1.3. (wj Vo, v1) i e  a smooth manifold t r i a d  i f  

W i s  a compact smooth a-manifold and Bd W is the disjoin* union 

of two open and closed submanifolds Vo and V1 . 
If (w; Vo, V1), (w' j Vi, Vi) are two smooth manifold t r iads  

and h: V1 ----+ V i  18 a diffeomorphism (i .e .  i homeomorphism such 

that  h and h-' are smooth), then we can form a th i rd  triad 

(W % W l j Vo, V; ) where W % W is the space formed from W and 

Wt by identifying points of V1 and V i  under h, according t o  

the following theorem. 

Theorem 1.4. There ex is t s  a smoothness structure for - - - 
W % W1 compatible with the given structures (i.e. so tha t  each --- --- 
inclusion map - W 4 W U, Wf, Wl -4 W % W' - is  - a diffeomorphism 

~ n t o  i t s  image.) - -  
8 is unique up t o  a differnorphiam leaving Vo, h(vl) = V i  , 

and V; fixed. 
-.-- - 

The proof will be given in  $ 3 . 
Definition 1.5. Given two closed smooth n-manifolds M 0 knd 

% (i.e. Mg , 5 compact, Bd Mg - Bd M.,. = I), a cobordiam from Mo 

t o  ie a 5-tuple, (wi Vg, V1j ho, hl), where (wj Vo, V1) is a 
l 

am& menifold t r i a d  and hi: Vi 4 M is a diffemorphism, 1 = 0, 1. 

TWO cobordims (wj Vo, Vlj ho, hl) and (w' VA, Vij h& h i )  from 1 
*o t o  M1 are equivalent i f  there ex is t  a diffeomorphism g: W -4 W 1  '3 
carrying Vo t o  Vt, and V1 t o  I 



'i such that for i = 0,l  the following triangle ccamrmtes: 

Then we have a category (see Eilenberg and Steenrod, 

[2,p.1081) whose obdects are closed manifolds and whose morphism 

ere equivalence classes c of cobordisms. This means that cobordiems 

satisfy the following two conditions. They follow easily *can 1.4 

and 3.5, respectively. 

(1) Given 

5 and c t  f r o m  

from M t o  %. 
0 

c obordism equivalence 

y t o  , there is  

classes c from M t o  
0 

a well-defined claas ccg 

This  composition operation is  associative. 

(2) For every closed manifold M there is the identity 

cobordism class 
L~ 

P the equivalence class of 

That is, if  c is a cobordism class frm t o  l$, then 

Notice that  it i e  possible that cct  = rM , but c is not 

bM . For example 



c is  shaded. c c  is  unshaded. 

Here c has a r ight  inverse c ' ,  but no l e r t  inverse. Note tha t  the 

manifolds in  a cobordism are not assumed connected. 

Consider cobordism classes from M t o  i t s e l f ,  M fixed. 

These form a monoid HM , 1.e. a se t  with an aesociative cclnposition 

with an identity. The invertible cobordisms i n  HM f o m  a group 

G~ . We can construct soneelements of GM by taking M = M1 

below. 

Given a diffemorphism h: M d M1, define ch as the 

class of (M x Ij M x 0, M x l y  j, hl) where j(x,0) 3 x and 

hl(x,l) = h(x), x e M . 
Theorem 1.6. chch, = c fo r  any two diffeomorphisme hth - - - 

h: M &MI - and 

Proof: Let - 
jh, : Mt x I + W  

Chcht Define g: 

h': M' & M" . 
%I -. M x I % Mt x I and l e t  Jh: M % I d W, 

be the inclueian mapa in  the  definition of 

M x I \ W as fo l lme:  

Then g i s  well-defined and ie the  required equivalence. 



Def i n i t i m  1.7. Two differnorphiems h hl: M ---+ MI 

are (smoothly) isotopic if there exis ts  a map f: M x I d M t  

such tha t  

(1) f i s  smooth, 

(2)  each ft, defined by ft(x) 2 f ( x , t )  , is  a diffeomorphism, 

Two d l  ffeomorphisms %, hl: M -+ MI are pseudo-isotopic' 

i f  there is a diffecanorphism g: M x I *-a M t  x I such that  

Lemma 1.8. Isotopy and pseudo-isot opy are equivalence - - 

Proof: Symmetry and reflexivity are clear. To ahow kransi- - 
t i v i ty ,  l e t  ho, hl, h2: M --+ M' be differnorphiems and assume 

we are given isotopies f, g: M x I M I  between h and hl 
0 

and between hl and h2 respectively. Let m: I -3 I be a 

smooth monotonic function such tha t  m(t) = 0 for o < t < 113, - - 
and m(t) = 1 for  213 < t < 1. The required isotopy - - 
k: M x I 4 M I  between h and hl is  now defined by 

0 

for 112 < - t < - 1. The proof of t r ans i t iv i ty  for  pseudo-isotopies 

is more d i f f i cu l t  and fo l l a r s  from Lermna 6.1 of Munkres [5,p.593. 
* 

In Munkrest terminology h is  "I-cobordantn t o  hl . 
0 

(see [5,p.62]. ) In E i r s c h ~ s  terminology h i s  "concordantn t o  hl. 
D 



It is clear that if ho and hl are isotopic then they are 

diffemorphism, as follows frm the inverse f'unctian theorem, and 

hence is a pseudo-isotopy between h and hl .  h he converse 0 
11 

for  M = S , n > - 8 is proved by J. ~ e r f  [39J, ) 1t follars fran 

this  remark and frm 1.9 below that if ho and 

then c = c . 
ho hl 

Theorem l.9, c = c is 
ho hl 
- ho - 

4 are isotopic, 

pseudo-isotopic t o  hl . - 
Proof: Let g: M x I ---+ Mt x I be a pseudo-ieotopy - 

between h and hl. 
0 Define hi1 x I: Mt x I -M x I by 

(hi1 X l ) ( x , t )  = (h;l(x),f) . Then (hi1 x 1) 0 g is an 

equivalence between c and c . 
hl ho 

The converse is similar. 



Section 2. Morse Functions 

We would 

a canposition of 

like t o  be able t o  factor a given cobordism into  

simpler cobordiema, c or example the t r i a d  i n  

M e r e  2 can be factored a~ i n  Mgure 3 , )  We make t h i s  notion 

precise in what follows. 

FIGURE 3 



Definition 2.1, Let W be a smooth manifold and 

f: w 4 R a smooth function, A point p t: W 18 a c r i t i c a l  

point. of f i f ,  in  some coordinate system, - 
= 0 . Such a point Is a non-degenerate 

ce i t i c  a1 point i f  det ( a2f 1 ) 0  or example, i f  in  Figure 2 - 
1 3 P  

f is the height function (projection into  the z-axis), then f has 

four c r i t i c a l  points pl, p2, p3, pq, all non-degenerate, 

Lemma 2.2 ( ~ o r s e ) .  If p is a non-degenerate c r i t i c a l  - - -  
point of f ,  then i n  same coordlnate system about p, 

f(xl, ..,, x ) = constant 2 
" X1 - 0 . .  

2 
n - x + <+I + ... + x2 n for 

some A between 0 and n , 

h i s  defined t o  be the index of the c r i t i c a l  point p, - 

Definition 2.3, A Morse function on a smooth manifold t r i a d  

(wj Vo, V1) i s  a smooth function f: W ----5 [a,b] ouch that  

(2)  All  the c r i t i c a l  points of f are in te r ior  ( l i e  i n  

W - Bd W) and are nm-degenerate, 

As a coneequence of the Morse Lemma, the c r i t i c a l  points of 

a Morse function are isolated, Since W is  compact, there are only 

f i n i t e l y  many of them. 



Definition 2.4. The Morse nuniber p of (w i  Yo, v1) i 8  Cc 

the  minimum w e r  sll Morse function8 f of the  number of c r i t i c a l  

points of 

'Phis definition is meaningf'ul i n  view of the  

following existence theorem. 

Theorem 2.5. hrery smooth manifold t r i a d  (wi Vg , V1) - - 
possesses a Morse function, -- 

m e  proof w i l l  occupy the next 8 ~ a g e s .  

Lemma 2.6. mere  exis ts  a smooth function f :  W --+ [0,1] 

with - f91(0) = V 
0' 

fW1(l) = V1 , B U C ~  t ha t  f has no c r i t i c a l  -- -- 
point i n  a neighborhood of the boundam of W. 

Proof: 

neighborhoods. 

V1, and tha t  i f  

n 
hi' Ui d R+ 

unit b a l l  with 

On each 

L e t  U1, ..., % be a cwer of W by coordinate 

We may assume tha t  no Ui meets both V and 
0 

Ui 
meets Bd W the coordinate map 

carr ies  Ui onto the intersection of the open 

se t  Ui define a map 

Ui 
meeta V [respectively vl] l e t  f i  = Ihi d 

where L i s  the map 

x (respectively 1 - xn] . n 

If Ui does not meet Bd W , put fi a 112 identically . 



Choose a par t i t ion of unity (qi) subordinate t o  the c w e r  { Ui) 

(see Munkres [5,p.181) and define a map f :  W d [0,1] by 

where f i(p) is understood t o  have the value 0 outside U men 
i 

f is  c lear ly  a well defined smooth map t o  [0,1] with fn1(0) = V 
0' - 

( 1 )  = V . Flnally we verify tha t  df' 0 on Bd W. Suppose 

q E V [respectively q E V 1. Then, f o r  saue i, cpi(q) 0, 
0 1 

1 s € Ui. let hi(p) = (X (P) 
n 

. x  ( p ) )  Then 

Now f (z) has the 0~me value, 0, [respectively 11  for all j 
J 
k acpj a k 

and C - = 7 ( Z '91) = 0. So, a t  q, the first  sumand 
jal axn ax j=1 

af i ie zero. The derivative (q) equals 1 [respectively -11 
ax 

3 and it is  easi ly  seen tha t  the derivatives (q) all have the 
ax 

afi same sign es 7 (q) , j = 1, , mu8 af (q) + 0. 13 
ax axn 

follows tha t  df' f. 0 on Bd W, and hence df  0 i n  a neighbor- 

hood of Bd W. 

The remainder of the proof is more d i f f icu l t .  We w i l l  

a l t e r  f by stages i n  the in te r ior  of W eliminating the 

degenerate c r i t i c a l  points. To do t h i s  w e  need three lemmas which 

apply t o  Euclidean space, 



Lennna A (M. Morse). - If f is a c2 mapping of an open - -  --- I I. 
subset U c Rn t o  the r e a l  l ine  then fo r  almost all l inear  

c. 7 - - -- 
mappings L: R~ & R, the m c t i o n  f + L has only nondegenerate - -- 
c r i t i c  a1 points. 

By "almost all" we mean except f o r  a se t  which has measure 

zero i n  H-(R~,R) 2 Rn . 
- Proof: Consider the manifold U x H ~ ( R ~ , R )  . It has 

d(f(x)  + ~ ( x ) )  = 0 means tha t  L = -df(x) it is clear  tha t  the 

correspondence x 3 (x, -df(x)) is a diffeomorphism of U onto M. 

Each ( x , ~ )  e M corresponds t o  a c r i t i c a l  point of f + L, and 

t h i s  c r i t i c a l  point i s  degenerate precisely when the matrix ( 
a2f 
-1 

is singular. Now we have a projection a: M & H ~ ( R ~ , B )  

sending ( x , ~ )  t o  L. Since L = -df(x) , the projection is 

nothing but x & -df(x)  . Thus T is c r i t i c a l  a t  ( x , ~ )  e M 

2 
precisely when the matrix ~ I J  = -(a f/ax ax ) is  singular. It 

i 3  
follows tha t  f + L has a degenerate c r i t i c a l  point ( for  same x )  

i f  and only if L is  the image of a c r i t i c a l  point of 

~f t: Ee R~ is any c 1 - -- the image of the m s p , - - - -  
se t  of c r i t i c a l  points of r has measure zero in Rn. -- - - 

This gives the desired conclueicm. 



Lemma B. Let  K be a cornpact eubeet of an open se t  U - -- ---- 
i n  R*. If f: U d R is c2 and has only nondegenerate - .111 .L --- 
c r i t i c a l  points in K, then there is a nmiber 8 > 0 such tha t  - ---- -- 
if g: U ' R i s  c2 and at all p o i n t ~  of K aatiefiee - - --- 

1, 3 = 1,. . . ,n , then - g likewise has only nondegenerate c r i t i c a l  -- 

6 Proof: Let - + ... 

a2f Then I df( + I det(?, ,_ )I is  s t r i c t l y  positive on K. Let p > 0 

be i ts  minimum on K. Choose 8 > 0 so s m a l l  t ha t  (1) implies t h a t  

and (2) -lies t h a t  

J 

at al l  points I n  K. The result followe. 

Lema C. Suppose h: U d Uc 18 a differnorphiem of 

one open subset of onto another and car r ies  the  ccanpsce s e t  -- - - - - - 
K C U anto Kt C U* . Given a number 6 > 0, there is  a number - -- --- 
6 > 0 such that if a smooth map f : U' d R s a t i s f i e s  ---- - 



at a l l  points - 

a t  all points -- 

of K t  C U' , then f 0 h sa t i s f ies  - - 

Proof: Each of f 0 h, a f o h  b2foh  ax,' q 8 q  i e  a polynomial 

f'unction of the pa r t i a l  derivatives of f and of h from order 

0 t o  order 2; and t h i s  polynomial vanishes when the derivatives 

of f vanish. But the derivatives of h are bounded on the compact 

se t  K. The resul t  fol lars .  

2 The C topology on the se t  F(M, R )  of smooth real-valued 

functions on a compact manifold, M, (with boundary) msy be defined 

as follows. L e t  (U'] be a f i n i t e  coordinate covering with 

n coordinate maps ha: U' ---d R , and l e t  (C ) be a ccmpact 
Q 

refinement of (u,) (cf.  Munkres [5, p. 71). For every positive 

constant 8 > 0, define a subset ~ ( 6 ) ,  of F(M,R) consisting of 

9 all maps g : M ---+ R such that,  for all 

-1 a t  all points i n  h (C ), where 
gO: = ghG 0 a arid i, j = 1, .*., n 

If w e  take the eets ~ ( 6 )  as a base of neighborhoode of the zero 

function i n  the additive group F(M,R), the resulting topology is 



called the c2 topology. The se t s  of the form f + ~ ( 6 )  = ~ ( f ,  6) 

means that ,  fo r  all a , 

a t  a l l  points of ha(c,) . 
It shuuld be verif ied tha t  the topology T we have con- 

structed does not depend on the particular choice of coordinate 

covering and cmpact refinement. Let TI be another topology 

defined by the above procedure, and l e t  primes denote things 

associated with t h i s  topology, It is  sufficient  t o  show that ,  

given any s e t  ~ ( 6 )  In T, we can f ind a se t  B' ( 8 ' )  i n  Tt 

contained i n  ~ ( 6 )  . But t h i s  is  an easy consequence of Lemma C. 

We first caneider a closed manifold M, i.e. a t r i a d  

( M  , ) , since t h i s  case in somewhat easier. 

Theorem 2.7. - I f  M A is I- a canpact manif old without 

boundary, the Morse fUnCt%ma form an open dense subeet of -- ----- - 
F(M,R) -- in  the c2 topology. 

Roof: Let  (lTl,hl), . . . , (uk,hk) be a f i n i t e  covering of M 

by coordinate neighborhoods, We can easily f ind compact se t s  

Ci C Ui such tha t  C1, Cp . . . , Ck c w e r  M. 

We w i l l  s a y  tha t  f is  "good" on a se t  8 C M if f 

hae no degenerate c r i t i c a l  point8 on S. 



15. 

I) The s e t  of Morse flulctions is open. For if 

f: M R is a Morse function, Lemma B says that ,  i n  a 

neighborhood Ni of f in F(M, R), every function w i l l  be good 

i n  Cia Thus, i n  the neighborhood N = Nl fl ... n l& of f ,  

every function w i l l  be good i n  C1 U . . . U Ck = M. 

11) The se t  of Morse functions i s  dense. Let N be a 

given neighborhood f E F(M, R). We improve f by stages. Let 

h be a smooth function M 4 0 ,  such tha t  h = 1 i n  a 

neighborhood of C1 and A = 0 i n  a neighborhood of M - U1 
For elmost a l l  choicee of l inear  map L: # - R the function 

- - fl(p) = f (P) + A(P) ~ ( h & p ) )  w i l l  be good on C1 C U1 (Lemma A). 

We assert  tha t  if the coefficients of the l inear  map L are 

suff ic ient ly  small, then fi w i l l  l i e  in  the given neighborhood 

F i r a t  note t h a t  fl  dif fers  f'rm f only on a compact se t  

K = Suppod h C U1. Setting ~ ( x )  = L(X~,  . . . ,x ) = z lixi , note n 

fo r  a l l  x E h l ( ~ )  . By chooaing the li suff ic ient ly  small we 

can clear ly  guarantee tha t  t h i s  difference, together with i ts  f i r s t  

and second derivatives, is  lees  than any preassigned e throughout 

the se t  hl(IC). low i f  e is  su i f ic ien t ly  small, then it follows 

from Lemma C tha t  fl  belongs t o  the neighborhood N. 

We have obtained a function fl in N which is good on 

C1' Amlylng Lennns B again, we can choose a neighborhood N1 
of 

f,, N, C N . ao that any Function in N- ie. still aa& rm I! - 
- - - -  



A t  the next stage, we simply repeat the whole procees with 

fl 
and N1, t o  obtain a function f2 in  Nl good in C2, and a 

neighborhood, N2 of f2, N2 C N1, such tha t  any function i n  N2 

is s t i l l  good on C2. The function f2 is automatically good on 

C1 since it l i e s  in N1. Finally we obtain a function 

fl( E Nk C Nkml C . .. C N1 C N which i s  g00d On C1 U .. . U Ck = M . 
We are nuw i n  a position t o  prove 

Theorem 2.5. On any t r i a d  (w, Vo, V1), there - exists  - a --- 
Morse Function. 

Proof: Lema 2.6 prwides a function f :  W & [0,1] - 
such tha t  ( i )  fol(0) = Vo , fwl(l) = V1 

( i i )  f has no c r i t i c a l  points in a neighborhood of 

We want to eliminate the degenerate c r i t i c a l  points i n  

W - Bd W, a l w a y s  preserving the properties ( i )  and ( i i )  of f. 

L e t  U be an open neighborhood of Bd W on which f has no 

c r i t i c a l  points. Because W is normal we can f ind an open 

neighborhood V of Bd W ' euch that C U . Let [Ui) be a 

f i n i t e  cover of W by coordinate neighborhoods such tha t  each 
.I 

se t  Ui Lies i n  U or in  W - V . Take a cmpact refinement (Ci) 

of (Ui] and l e t  Co be the union of all those Ci that l i e  i n  

U. Jus t  as for the closed manifold of the last theorem w e  can use 

Lemma B t o  show tha t  i n  a Oufficiently s m a l l  neighborhood N of 

f,  no Amction can have a degenerate c r i t i c a l  point i n  Co. 
Also 

f is bounded away from 0 and 1 on the compact se t  W - V. 



Hence, i n  a neighborhood NI of f every function, g, sa t i s f ies  

the  condition 0 < g < 1 on W - V. Let No = N n N' , We may 

suppose tha t  the coordinate neighborhoods in W - V are 

ul' ..., $ . From t h i s  point we proceed exactly as i n  the previous 

theorem. With the help of Lemma A we fnnd 

which is  good (i.e. has only nondegenerate 

and a neighborhood N1 of fl , N1 C No 

is good i n  C1. Repeating t h i s  process k 

a funct ion  fl in  No 

c r i t i c a l  points) on C1, 

i n  which every function 

times we produce a 

which i s  good 

on Co U C1 U ... U Ck = M . Since f C NO C N' and 
k 

fXlv = f l ~  , fk sa t i s f i e s  both conditions (i) and ( i i ) .  Hence 

fk 
i s  a Morse function on (w, Vo, v ~ )  . 

Remark: It is not d i f f i cu l t  t o  show that,  in the id 

topology, the Morse functions form an open dense subset of a l l  

smooth maps 

For 

function i n  

some purposes it is convenient t o  have a Morse 

which no two c r i t i c a l  points l i e  a t  the same level. 

Lemma 2.8. Let - f :  W d [0,1) be a Morse function for  --- - 

f can be approximated by a Morse function g with  the same -- --- --- 
c r i t i c a l  point a such that -- for - 

Roof: Suppose tha t  f(pl) = f(p2) . Construct a smooth 

function A: W d [o, 11 such t ha t  X = 1 in a neighborhood 



U of pl and X = 0 outside a larger neighborhood N, where 

n C  W - Bd W and contain8 no pi for  i f 1. Choose > o 
so small tha t  fo = f + elA has values i n  [0,1] and 

fo(pl) fo(pi) , i f 1. Introduce a Riemannian metric for W 

(see Munkres [ 5 ,  p.24]), and find c and c l  so  tha t  0 < c < lgrad fl - - 
throughout the compact s e t  K = closure (0 < h < 1)  and lgrad hl < c t  - 
on K. Let  0 C E C min(el, c / c t )  . Tben fl = f + Eh i e  again a 

Morse function, fl(pl) # f(pi) for i f 1, and fl has the same 

c r i t i c a l  point 8 as f. For on K, 

Andoff K, lgradhl  - 0 ,  so  lgradfl l  = lgradfl . Continuing 

inductively, we obtsin a Morse function g which separates all the 

c r i t i c a l  points. This cmpletes the  proof. 

I Using Morse fhnctione we can now express any "canplicated" 

cobordism ae a camposition of f'simplern cobordiams. 

I Definition, Given a smooth function f: W d R, a 

c r i t i c a l  value of f is  the image of a c r i t i c a l  point. 

Lemma 2.9. - Let f: (w; Vo, V1) d ( [0,1], 0, 1) be - - a 
Morse function, and suppose tha t  0 < c < 1 where c is not a - - - --- 
c r i t i c a l  value of f. Then both f-l[o,c] and f - l [c , l ]  are smooth -- -- - - 
manif old6 with boundary. - 



Hence the cobordism (w; Vo, Vlj identity, ident i ty)  from 

vo t o  V1 can be expressed ae the composition of two cobordisms: 

one from Vo t o  fD1(c) and one frm fw1(c) t o  V1. Together 

with 2.8 this proves: 

Corollary 2.10. - Any cobordism can -- be expressed - -  as a 

composition of cobordism with Morse number 1, - -- 
Proof of 2.98 This follows immediately fram the implicit 

function theorem, f o r  if  w E f - l ( c )  , then, in some coordinate 

system 5, x2, ..., x about w, f looks locally l ike  the  n 



Section 3. Elementary Cobordisms 
7d 

Defini t ion 3.1. Let f be a Morse function f o r  the  t r i a d  

( !  V V )  . A vector  f i e l d  on P i s  a gradient- l ike vector  - 
f i e l d  f o r  f if -- 

1) e ( f )  > 0 throughout t h e  complement of t h e  s e t  of c r i t i c a l  

poin ts  of f , and 

2)  given any c r i t i c a l  point p of f the re  are coordinates 

3 ( = (xl, . . .> 5, . . . :: ) i n  a neighborhood U of p s o  
n 

t h a t  f = f (p) - 13 + la2 and 5 has coordinates 

- . . ., -\, ' ~ 1 + ~ ,  . . . , xn) throughout U . 

Lema 3.2. For every Morse function f on a t r i a d  (W"; V, V 1  ) -- --- 
there  e x i s t s  a gradient- l ike vector  f i e l d  . - - 

Proof. For s impl ic i ty  w e  assume f has only one c r i t i c a l  point 

p , t h e  proof i n  general  being s imi lar .  . By the Morse Lema 2.2 we may 

choose coordinates (2, = ( x ,  . . . x x h+l~ - 1  xn ) i n  a neighbor- 

hoocl U of p G O  t h a t  f = f ( p )  - !?/ + 13 throughout 
0 

u,. Let u 

be a neighborhood of p such t h a t  U C Uo. 

Each point p* e W - Uo i s  not a c r i t i c a l  point  of f . It 

f o l l o ~ ~ s  from the  Impl ic i t  F'unction Theorem t h a t  there e x i s t  coordinates 

xi, . . . , xt i n  a neighborhood Ut of pt such tha t  f = constant + xi n 

in U* . 



Using t h i s  and the  f ac t  tha t  t! - uo i s  compact, f ind  neighbor- 

hoods U1, . . ., Uk such t h a t  

2 )  u n U, = f i ,  i = 1 ,..., k , and 
3 )  ui i i i has coordinates , . . . , x and f = constant + x on 

n 1 

Ui, i = l,...,k . 
On Uo there i s  the vector f i e l d  whose coordinates are 

(-xl, . . . , -5, x+~, . . . , xn) , and on Ui there i s  the vector f i e ld  

with coordinates 0 . . . 0 , i = 1 .  . k . Piece together 

these vector f i e lds  using a par t i t ion of unity subordinate t o  the cover 

uo, 5, a * * ,  uk, obtaining a vector f i e l d  on t! . It is  easy t o  check 

tha t  5 i s  the required gradient-like vector f i e l d  for  f . 

Remark. From now on w e  sha l l  identify the t r i a d  (w; Vo, V1) 

with the cobordism (w; Vo, V1; io, i l )  where iO: Vo ---A Vo and 

il: V1 + V1 are the ident i ty  maps. 

Definition 3.3. A t r i a d  (v; Vo, V1) i s  said t o  be a product 

cobordism if  it i s  diffeamorphic t o  the t r i a d  (V x [0,1]; V x 0, V x 1) . 0 0 0 

Theorem 3.4. I f  the Morse number p of the t r i a d  (w; Vo, v ~ )  --- --- 
i s  zero, then (bl; Vo, V1) i s  a product cobordism. -- - - - 

Proof: Let f :  W & [0,1] be a Morse function with no c r i t i c a l  - 
points. By Lemma 3.2 there exis ts  a gradient-like vector f i e l d  5 for  f .  

Then ~ ( f  ): W d R is  s t r i c t l y  positive. Multiplying E a t  each 

point by the positive real number l / ~ ( f )  , w e  may assume ~ ( f )  = 1 

ident ical ly  on W . 
- 



If p is aay point i n  Bd W, then f expressed i n  some 

coordinate system 5, ..., xn , xn 2 0 , about p extends t o  a smooth 

function g defined on an open subset U of Itn. Correspondingly, t 

expressed i n  t h i s  coordinate system a l so  extends t o  U . Ihe Fundamental 

e d s t e n c e  and uniqueness theorem f o r  ordinary d i f f e r en t i a l  equations (see 

e.8. Lang 13, p.551) thus applies l oca l ly  t o  W . 
L e t  cp : [a, b] -> W be aay i n t eg ra l  curve f o r  the  vector 

f i e l d  . %en 

is  iden t ica l ly  equal t o  1 ; hence 

f (<p(t) ) = t + constant, 

Making the change of parameter, 9 ( s )  = p(s - constant), we obtain an 

i n t eg ra l  curve which s a t i s f i e s  

Each in tegra l  curve can be extended uniquely over a maximal 

interval ,  which, s ince W is compact, must be [0, 11. Zhus, f o r  each - - 
y E W there ex i s t s  a unique maximal i n t e w a l  curve 

which pasees through y , and satisfies f ($ (6 ) )  = e . Wthermore 
Y 

(s ) is smooth as a function of both variables (cf. 65, pages 53 - 54)- 
Y 



The required diffeomorphism 

h: Vo X [0,1] + 

is now given by the formula 

h(y0, 4 = P (4 ,  
yo 

with 

Corollary 3.5. (col lar  Neighborhood Theorem) 

Let W be a compact smooth manifold with boundary. There exis ts  a - --  -- - 
neighborhood of Bd W (cal led a co l la r  neighborhood) diffeamorphic t o  - - -, 

Bd W x [0,1) . 
Proof. By lemma 2.6, there exis ts  a amooth fuoction f: W 4 R+ - 

such t h a t  fo1(0) = Bd W and df { 0 on a neighborhood U of Bd W . 
Then f is a Morse function on fW1[0, ~ / 2 ]  , where r > 0 is a lower 

bound fo r  f on the compact set  W - U . Thus Theorem 3.4  guarantees 

A connected, closed submanifold C wn - Bd fl i s  said 

t o  be two-sided if some neighborhood of # on $ i s  cut in to  two 

caoponenta when 8-' is deleted. 

Corollary 3.6. (The - Bicollaring - Theorem) 

Suppose t ha t  every cmponent of a srnocrth submanifold M of W is compact 
7- - - -- - - 

and two-sided. Then there exis ts  a nbicollar" neighborhood of M i n  W 
--..-.-. - I___ - - - 
diffemorphic t o  - M x (-1,l) i n  such a w e y  tha t  M corresponds t o  M x 0 . - - - -  - 



Proof. Since the components of M may be covered by die jo int  - 
open se t s  i n  W , it suffices t o  consider the case where M has a single 

c canponent . 
Let  U be an open neighborhood of' M i n  W - Bd W such t h a t  

i s  compact and l i e s  i n  a neighborhood of M which is  cut i n to  two 

cumponents when M is  deleted. men U c lear ly  s p l i t s  up as a union 

of tvo submanifolds U1, U2 such t h a t  U1 fl U2 = M is the boundary of 

each. As i n  the proof of 2.6 one can use a coordinate cover and a par t i -  

t i o n  of unity t o  construct a smooth map 

such tha t  dq 0 on M , and cp < 0 on U - Ul , cp = 0 on M , 
> 0 on a - U2 . We can choose an open neighborhood V of El , with 

C U , on which cp has no c r i t i c a l  points. 

L e t  2d' > 0 be the lub of cp on the compact s e t  - V . 
Let 26' < 0 be the glb of cp on the compact set o2 - V . 
Then d l [ e t ,  elt ] is a compact n-dimensional sub-manifold of V 

with boundary pt ) u p ) , and cp is  a ~ o r s e  function on 

-1 
cp [el, G" 1 . Applying Theorem 3.1 ve f ind t h a t  d l ( e t ,  etl ) is  a "bicollar" 

neighborhood of M in V and so 8180 i n  W . 

Remark. The collaring and bicollaring theorems remain val id  

without the  compactness conditions. (~unkres  [ 5 ,  p. 511). 

We now re s t a t e  and prwe a resu l t  of Section 1. 



Theorem 1.4. Let (wj Vo, vl) and (wtj V j ,  v;) be two smooth - - _.- 

manif old t r iads  and h: V1 -4 Vi a dif'feamorphism. Then there exists  - - -- 
a smoothness structure for W % W t  compatible with the given strut- - - - - -  
tures  on W and W t .  ie unique up t o  a diffeamorphism leaving 

Vo, - - - --- 
h(vl) = Vi , and V; fixed. - - 

proof. Existence : By Corollary 3.5, there exist col la r  neighbor- - 
hoods Ul, Ui of Vl, V i  in W, Wt and diffemorphisms 

, j t :  k?' - W % W t  be the inclusion maps in the definition 

To define a smoothness structure on 8 manifold it suffices t o  define 

compatible smouthness structures on open se ts  cwering the manifold, 

and the smoothness structures defined on these se t s  by j, j and g 

respectively, are cmpatible. This completes the proof of exietence. 

Uniqueness: We ahm that  any smoothness structure 2 on 

W % W t  compatible with the given structures on ?I and Wt i s  isomorphic 

t o  a smoothness structure constructed by pasting together col lar  neighbor- 

hoods of Vl and Vi as above. The uniqueness up t o  diffeanorphism 

leaving Vo, h(vl) = Vi , and Vh fixed. then fo l la rs  essential ly f'rm 

Theorem 6.3 of Munkres [5, p. 621. By Corollary 3.6 there exists a 



blcol la r  neighborhood U of ( v )  = j ( 1 )  in W % W 1  and a diffeo- 

morphism g: V1 x (-1,l) U with respect t o  the 8moothnese struc- 

ture  8, so tha t  &,o) = J  ( x )  , for x E Vl. Then f l (u  tl J ( w ) )  

and j n ( w ) )  are co l la r  neighborhoods of V1 and V i  in w 

and W'. This canpletes the proof of uniqueness. 

Suppose now we are given t r iads  (WJ Vo, v ~ )  , (wt j V i ,  Vi) 

with Mrse functiuns f,  f1 t o  [0,1], (1,2], respectively. Construct 

gradient-like vector f ie lds  6 and on W and W t ,  respectively, 

normalized so tha t  t ( f )  = 1 , k t  (11 ) = 1 except in e small neighborhood 

of each c r i t i c a l  point, 

Lemma 3.7. Given -- a dlffemorphism h: V1 Vt there is a 1 - 
unique smoothness structure - on W L$ W' , compatible with the given --- 
structures on W , W ' ,  so tha t  f and f t  piece together t o  give a - -- - -L-- 

smooth f'unction - on W W W t  - and 5 - and E' piece - together t o  give - e - 
emooth vector f ield.  - 

Proof. The proof ie the aeme as tha t  of Themem 1.4 above, 
I-L- 

except tha t  the emoothness structure on the bicol lar  neighborhood must 

be chosen by piecing together integral  c m s  of and g t  i n  co l l a r  

neighborhoods of V1 and Vi , This condition also prwee uniqueness. 

( ~ o t i c e  tha t  uniqueness here is much stronger than tha t  i n  !Theorem 1.4. ) 

This construction gives an immediate proof of the following result. 

Corollary 3.8. p(w % W'  j Vo, v;) <_ p ( ~ ;  VO, V1) + P(W* V i ,  V$) 

where p is  the Morse n-er of the  tr iad.  -- _.-- 



Next we w i l l  study cobordisme with Morse number 1 . 
Let (wj V, V' ) be a t r i a d  with Morse function f :  W -> R 

and gradient- l ike vector  f i e l d  f o r  f . Suppose p e W is a 

c r i t i c a l  point, and Vo = f-'(c0) and Vl = fal(cl) are levels  such 

t h a t  co < f ( p )  < cl and t h a t  c = f ( p )  is  t h e  only c r i t i c a l  value i n  

t h e  i n t e r v a l  [ c ~ ,  cl] . 
Let OD' denote the open ball. of radiue r with center 0 i n  r 

R', aad set OD: = oDP. 
Since E is  a gradient- l ike vector  f i e l d  fcn. f , there e x i s t s  

a neighborhood U of p in W , and a ccordinate diffemorphism 

4 3 4 2 g:  OD" -U ao t h a t  fg(x, y ) = e  - 1x1 + lq2 and so t h a t  5 
2e 

has coordinates ( -xl, . . . , -5, . . ., x,) throughout d; for 

vo and f-'(c) and Ve l i e s  between fwl(c) and V1 . The ~ i t u a t i o n  

i s  represented schematically in Figure 3.1, 




















































































































































































