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§0. Introduction
— = =]

These are notes for lectures of John Milnor that were given

as a seminar on differential topology in October and November,

1963 at Princeton University.

Iet W be & compact smooth manifold having two boundary

components V and V' such that V and V' are both deform-

ation retracts of W, Then W is said to be a h-cobordism

between V and V' ., The h~-cobordism theorem states that if in

addition V and (hence) V! are simply connected and of dimen-
sion greater than 4 , then W is diffeomorphic to V X [0, 1]
and (consequently) V 1is diffeomorphic to V' , 'The proof is
due to Stephen Smale [6]. This theorem has numerous important
applications —— including the proof of the generalized Poincaré
conjecture in dimensions > § —— and several of these appear

in §9. Our main task, however, is to describe in some detail a

proof of the theorem.

Here is a very rough outline of the proof. We begin by
constructing a Morse function for W (§2.1), i.e. a smooth
function £ : W —> [0, 1] with V = £5(0), V' = £75(1)
such that f has finitely meny critical points, all nondegen-
erate and in the interior of W. The proof is inspired by the
observation (§3.4) that W is diffeomorphic to V X [0, 1] if
(and only if) W eadmits a Morse function as sbove with no crit-
ical points. Thus in §§4-8 we show that under the hypothesis

of the theorem it is possible to simplify a given Morse function




(i)

f until finally all critical points are eliminated, In §h, ;g
is adjusted so that the level f£(p) of a critical point p is
an increasing function of its index, In §5, geometrical condi-
tions are given under which a pair of critical points p, q of
index A and A + 1 can be eliminated or 'cancelled'. In §6,
the geometrical conditions of §5 are replaced by more algebraic
conditions —— given a hypothesis of simple connectivity. In

§8, the result of §5 allows us to eliminate all critical points
of index O or n , and then to replace the critical points of
index 1 and n -1 by equal numbers of critical points of
index 3 and n - 3, respectively. In §7 it is shown that the
critical points of the same index A can be rearranged among
themselves for 2 < A <n - 2 (§7.6) in such a way that all
critical points can then be cancelled in pairs by repeated appli-

cation of the result of §6. This completes the proof.

Two acknowledgements are in order. In §5 our argument is
inspired by recent ideas of M. Morse [11][32] which involve
elteration of a gradient-like vector field for f , rather than
by the original proof of Smale which involves his ‘'handlebodies?,
We in fact never explicitly mention handles or handlebodies in
these notes. In §6 we have incorporated an improvement appearing
in the thesis of Dennis Barden [33], namely the argument on our
pages 72-T73 for Theorem 6.4 in the case A =2 , and the state-

ment of Theorem 6.6 in the case r = 2.
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The h-cobordism theorem can be generalized in several direc-
tions. No one has succeeded in removing the restriction that V
and V' have dimension > 4, (See page 113.) If we amit the
restriction that V and (hence) V' be simply connected, the
theorem becomes false. (See Milnor [34].) But it will remain
true if we at the same time assume that the inclusion of V
(or V') into W is a simple homotopy equlvalence in the sense
of J. H. C. Whitehead. This generalization, called the s-cobor-
dism theorem, is due to Mazur [35], Barden [33] and Stallings.
For this and further generalizations see especially Wall [36].
Lastly, we remark that analogous h- and s-cobordism theorems

hold for piecewise linear manifolds.
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Section 1. The Cobordism Category \.
f—e—— e e ]

First some familiar definitions. Euclidean space will be
denoted by R- = {(x]_,...,xn)lxi €eR, 1=1,...,n) vhere
R = the real numbers, and Euclidean half-space by

Rl:- = [(xl,c-o,xn) € Rnlxn _>_ O} .

Definition 1.1, If V 1s any subset of R°, & map

£f: V —> Rm is smooth or differentiasble of class d® if £ can

be extended to amap g: U —> Rm, where U DV 4is open in Rn,

such that the partisl derivatives of g of all orders exist and

are continuous,

Definition 1,2. A smooth n-menifold is a topological manifold

W with a countable basis together with a smoothness structure J

on M, )2 is a collection of pairs (U,h) satisfying four conditions:

(1) Bach (U,h) € J consists of an open set U(C W

(called a coordinate neighborhood) together with a homeomorphism h

which maps U onto an open subset of either Rn or Ri .
(2) The coordinate neighborhoods in J cover W,

(3) 1 (Ul’hl) and (Uz,hz) belong to J, then

~1 n
Byho": By(U; N U,) —> B or R,

is smooth,
(4) The collection J is maximal with respect to property

(3); 1.e. if any pair (U, h) not in 3 is adjoined to

Ji then property (3) fails,




The boundary of W, denoted Bd W, is the set of all points

in W which do not have neighborhoods hameomorphic to R (see

Munkres [5, p.8]).

Definition 1.3. (W; Vo vl) is a smooth manifold triad if

W 1is a compact smooth n-manifold and Bd W 1is the disjoins union

of two open and closed submanifolds VO and Vl .

It (W Vo Vl), (w; Vi, Vé) are two smooth manifold triads
and h: V, —> vy is a diffeomorphism (i.e. : homecmorphism such
that b and b are smooth), then we can form a third triad

| B 1
(W U, W' Y, v2) where W U W is the space formed from W and

and V!

W' by identifying points of V 1 under h, according to

1
the following theorem.

Theorem l.k. There exists a smoothness structure J _1:21_'

W Uh W' compatible with the given structures (i.e. 8o that each

inclusion mep W —>W U W', W' —>W U W' is & diffeomorphism

- onto its image.)

o is unique up to a diffecmorphism leaving VO’ h(Vl) =V,

and Vé fixed.

The proof will be given in § 3 .

Definition 1.5. Given two closed smooth n-manifolds M0 and

M, (i.e. M), M, compact, Bd M, =BdM = @), a cobordism from M,

to M, is a 5-tuple, (W; Vor Vy5 By, hl)' where (W; Voo Vl) is a

smooth manifold triad and h,: V, —> M

i* Y1 1

Two cobordisms (W; Vo» V5 By hl) end ((W'; vy,

MO to M]. are equivalent if there exista & diffeomorphism g: W —> W!

is a diffeomorphism, 1 =0, 1.

Vi; by, bi) from

[ 4
carrying VO to VO and Vl to




Vi such that for 1 = 0,1 the following triangle commnutes: 3

givy

Then we have a category (see Eilenberg end Steenrod,
[2,p.108]) whose objects are closed manifolds and whose morphisms
are equivalence classes ¢ of cobordisms, This means that cobordisms
satisfy the following two conditions., They follow easily from 1l.h
and 3.5, respectively.

(1) Given cobordism equivalence classes ¢ fram M o to
Ml and c¢' fram Ml to MQ, there is a well-defined class cc?
from MO to M2 This composi.tion operation is associative,

(2) For every closed manifold M there is the identity

cobordism class = the equivalence class of

‘M

(M x I MxO,Mxl;p,pl), pi(x,i)=x, xeM 1=0,1.

o)
That is, if ¢ 1is a cobordism class fram Ml to Mz’ then

LMlc a ¢ =CLM2.

Notice that it 1s possible that cct! = "M , but ¢ 1is not

"M . For example




¢ 1s shaded. ¢! 1s unshaded.
Here ¢ has a right inverse c!', but no left inverse. Note that the
manifolds in a cobordism are not assumed connected.

Congider cobordism classes from M to itself, M fixed.
These form a monoid H‘M , 1.e. a set with an associative composition
with an identity., The invertible cobordisms in HM form a group
GM . We can construct some elements of G, by taeking M = M!

M
below,

Civen a diffecmorphism h: M —> M', define ¢, as the
class of (M X I; Mx 0, Mx1; J, hy) where J(x,0) = x and

hl(X,l) =h(x), xeM.,

Theorem 1,6.

¢n1 = Cpmn for any two diffeamorphisms

h: M ——> M' and h': M' —_— M,

Proof: Iet W=MXTI Uh M* X I and let Jh: MXI —>W,
Jh,: M! X T —> W be the inclusion maps in the definition of

chch, . Define g: M X I —> W as follows:

g(x)t) = Jh(xyzb) 0

IN

ct

IN
-

g(x,t) = Jh.(h(x),Et-l) < t

-
IN
[
.

Then g 18 well-defined and is the required equivalence,




M ¥——s M

Definition 1.7. Two diffecmorphisms hO’ hlz
are (smoothly) isotopic if there exists a map £: M X T —3> M?
such that

(L) £ 4s smooth,

(2) each f,, defined by ft(x) = £(x,t) , 18 a diffeomorphism,

(3) £ =1 , £ =h .

Two diffeomorphisms h , hy: M —> M' are pseudo-isotopic™

if there is a diffecmorphism g: M X I ——> M! X I such that

g(x,0) = (ho(x),O) , &(x,1) = (hl(x)’l) .

Lemma 1.8, Isotopy and pseudo-isotopy are equivalence

relations,

Proof: Symmetry and reflexivity are clear, To show transi-

tivity, let ho, hl’ h2: M ——> M! Dbe diffeomorphisms and assume

we are given isotopies f, gt M X I ~———3> M! between h0 and hl
and betveen hl and h2 respectively, Ilet m; I —> I be a
smooth monotonic function such that m(t) =0 for o0 <t < 1/3,
and m(t) =1 for 2/3 <t < 1. The required isotopy

k: M X I —> M! between ho and hl is now defined by

k(x,t) = £(x,m(2t)) for 0<t <1/2, and k(x,t) = g(x,m(2t-1))
for 1/2 <t < 1, The proof of transitivity for pseudo-isotopies

is more difficult and follows from Lemma 6,1 of Munkres [5,p.59].

*®
In Munkres' terminology hO is "I-cobordant" to h1 .

(see [5,p.62].) 1In Hirsch's terminology hO 1s “concordant" to h,.




It is clear that if ho and hl are 1sotopic then they are

pseudo-isotopic, for if f: M X I ——> M' 18 the isotopy, then
~N A

f: MXI —> M' X I, defined by f£(x,t) = (ft(x),t), is a
diffecmorphism, as follows from the inverse function theorem, and

hence is a pseudo-isotopy between ho and hl « (The converse

for M = sn, n > 8 1is proved by J. Cerf [39].) It follows from

this remsxrk and from 1.9 below that if ho and hl are isotopic,
then ¢, =¢ .
By By

Theorem 1.9. ¢, = Geomsa ho is pseudo-isotopic to h

0 1 1

Proof: Iet g: MXTI — M! XTI be a pseudo-isotopy
1l

between h. and h., Define h_

. |
0 1 oxI.M XY —>MxXI by

(n-t

o X 1)(x,t) = (hal(x),t) « Then (hal Xx1l) o g is an

end ¢ .
1 hO

equivalence between cy

The converse 1s similar,




Section 2, Morse Functions

We would like to be able to factor a given ecobordism into
a composition of simpler cobordisms, (For example the triad in

Figure 2 can be factored as in Figure 3.) We make this notion

precise in what follows,

Vo
FIGURE 2 FIGURE 3




Definition 2.1, Iet W be a smooth manifold and

f: W —> R a smooth function, A point p e W 18 a critical

point. of f 1f, in some coordinate system,

of of of -
= = ,ee = = 0 ., Such a point 1s a non-degenerate
Bxl D 8x2 o an D

2
critical point if dEt(gizaf—, ) # 0. For exasmple, if in Figure 2
173'p

f 1is the height function (projection into the z-axis), then f has

four critical points Pys Py p3, Py,s all non-degenerate.

Lemma 2.2 (Morse). If p 1s a non-degenerate critical

point of £, then in scme coordinate system sbout p,

f(xll"‘)xn) = constant "xi- (XX "{+<+1+ooo +x121 for

some AN between O and n .

N 1s defined to be the index of the eriticel point p.

Proof: See Milnor [4, p.6] .

Definition 2,3, A Morse function on a smooth manifold triad

(W; /Y Vl) is a smooth function f: W ——> [a,b] such that

(1) £7Ha) = vy, £70) =V, ,

(2) M1 the critical points of f are interior (lie in

W - BAd W) and are non-degenerate,

As a consequence of the Morse Lemma, the critical points of
a Morse function are isolated. Since W 1s compact, there are only

finitely many of them,




Definition 2.4, The Morse number p of (W; Yy Vl) is

the minimum over all Morse functions £ of the number of critical
points of £,

This definition is meaningful in view of the

following existence theoren,

Theorem 2.5, Every smooth manifold triad (W; 'Y Vl)

possesses a Morse function,

The proof will occupy the next 8 pages.

Lemua 2,6, There exists a smooth function f£: W —— [0,1]

with f-l(o) = VO ’ f’l(l) =V, , such that f has no critical

point in & neighborhood of the boundary of W,

Proof: ILet Ul’ coey uk be a cover of W by coordinate

i

vl’ and that if Ui meets B4 W the coordinate mep

hi: Ui —_— Rl_: carries Ui onto the intersection of the open

neighborhoods. We may assume that no U, meets both VO and

unit ball with Rl:_ .

On each set U‘.l define a map

as follows, If U, meets Vo, [respectively Vll let £, = Ih,

where L 18 the map

LX= X [respectively 1 - xn] .

If U, does not meet Bd W, put £, = 1/2 identically .

i

Q




Choose a partition of unity [mi] subordinate to the cover {Ui)

(see Munkres [5,p.18]) and define a map f£: W —> [0,1] by

£(p) = @ (2)E () + oot + @ (P)F, (P)

where fi(p) is understood to have the value 0 outside U,.

f 1is clearly a well defined smooth map to [0,1] with f"l(o) =V

f-l(l) =V, . Finally ve verify that af £0 on BAW. Suppose

q € Vb [respectively q e Vl]. Then, for some 1, qi(q) > 0,

and g U, Iet b (p) = (x(p),..0,x"(p)). Then
3¢ k S0 , of of :
—_—= Tt -"— + Q. ——"' + eoe + () "-"" + ses .
3 =1 d P L ad 1P

Now fj(z) has the geme value, O, [respectively 1] for all

k a¢h 3 k
and I —% = { Z J] = 0., So, at gq, the first swmand
J=1 ox ax® J=1

of
is zero, The derivative ——%-(q) equals 1 [respectively -1]

ox
of
and it 1s easily seen that the derivatives ——%-(q) all have the

ox
Bfi St
same sign as ) (a) 3 J = 1, mwwe,k o Thus — (q) f 0. It
ox X

follows that 4f #0 on B4 W, and hence 4af 4 0 in a neighbor-

hood of B4 W.

The remainder of the proof is more difficult. We will
alter f Dby stages in the interior of W eliminating the
degenerate critical points. To do this we need three lemmas which

apply to Buclidean space,

Then

lo.




Iemma A (M. Morse). If £ is a C2 mapping of an open L]

subset U(C R to the real line, then, for almost all linear

mappings L: Rn ~——> R, the function f + L has only nondegenerate

critical points.

By "almost all" we mean except for a set which has measure

zero in HomR(Rn,R) XRY,

Proof: Consider the manifold U X HomR(Rn,R) . It has
a submanifold M = {(x,L)|a(f(x) & L(x)) =0) . Since
a(f(x) + {x)) = 0 means that L = -df(x) it is clear that the
correspondence x —3> (x,-df(x)) 1is & diffeomorphism of U onto M.
Each (x,L) e M corresponds to a critical point of f + L, and

d°¢

this eritical point is degenerate precisely when the matrix (ERE)
is singular. Now we have a projection m: M —> Hom(R",R)
sending (x,L) to L. Since L = -df(x) , the projection is
nothing but x —> -df(x) . Thus T 18 critical at (x,L) e M
precisely when the matrix dy = -(aef/axiaxd) is singular, It
follows that £ + L has a degenerate critical point (for scme x)
if and only if L 1is the image of a critical point of
T M —> HomR(Rn,R) R, But, by the theorem of Sard (see
de Rham {1,p.10]):

If Mn ——>Rn is any Cl map, the image of the

set of critical points 9£ 7 has measure zero in Rn.

This gives the desired conclusionm,
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Jemma B. Iet K 1_35_ a campact subset 9_{ an open set U

in Rn. If f: U——>R 18 02 and has only nondegenerate

critical points in K, then there is a number & > O such that

——— C——— —  w——

if ge U—>R 1is 02 end at all points of K satisfies

Baf Bag

axiax 3 ox 1Bx ]

(1) < 5, (2)

< 8

1, =1,.0eyn , then g likewise has only nondegenerate critical

points in K.
s.1/2
Proof: Iet |ag| = [( ) + ( 5_' ) ] .

2
o f
Then |af] + Idet(g{-g"')l is strictly positive on K. Iet p >0
1°%3

be its minimum on K. Choose & > O 80 small that (1) implies that
[lag] - [ag]| < w/f2

and (2) implies that

Hdet( )l - |det(5§53§')“ < pf2.

Then |dg| + |aet(g)-t5¥-)| > |ag| + Idet(gi-f&—'j-)l - uf2 ~pf2>0
i3

at all points in K. The result follows,

Lemma C. Suppose h: U —> U' is a diffeomorphism of

one open subset 2{ IP onto another and carries the compact set

KCU onto K'C U'. GCiven a number e > O, there is a number

8 > 0 such that if a smooth map f: U' ——> R satisfles
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2
of £
|f| < &, |§;q| < & l%{j?i_d_ <b i, =1, sy n

at all points of K' CU' , then £ Oh sgatisfies

2
foh fOh .
|£ on| < e gf""<e’ %{;53;—<€ 1,3=1 se0ey, n,
i J

at all points of K.

2
df%h 3 foh
Bxi ’ Biiaxj is a polynomial

Proof: Each of f Oh,

function of the partial derivatives of £ and of h from order
O to order 2; and this polynomiel vanishes when the derivatives

of £ vanish. But the derivatives of h &are bounded on the compact

set K. The result follows.

The €° topology on the set F(M,R) of smooth real-valued

functions on a compact menifold, M, (with boundary) may be defined
as follows, Let [Ud} be a finite coordinate covering with
coordinate maps ha: Ud —_— Rn, and let {Ca] be a compact
refinement of {qa] (cf. Munkres [5, p.7]). For every positive
constant & > 0, define a subset N(3), of F(M,R) consisting of

all maps g: M ——> R such that, for all «a,

* < %y a2ﬁa
‘ga' B, EEI < 5, 5;;3;3 < B

-1
at all points in ha(qa), vhere g = gha and i, J =1, .40, D ¢
If we take the sets N(8) as a base of neighborhoods of the zero

function in the additive group F(M,R), the resulting topology is




1k,
called the C° topology. The sets of the form f + N(8) = N(£,5)
give a base of neighborhoods of any map f ¢ F(M,R) , eand g ¢ N(%,8)

means that, for all o,

2 2
og, bfa bga'

Yl <8 |
- , -
Bxi ox 1ax 3 ox 1ax )

<8

X &%
k?1Q

lfa - %a| <& I

at all points of ha(Ca) .

It should be verified that the topology T we have con-
structed does not depend on the particular choice of coordinate
covering and compact refinement, Iet T' be another topology
defined by the ebove procedure, and let primes denote things
associated with this topology. It is sufficient to show that,
given any set N(5) in T, we can find a set N'(3') in T

contained in N(8) . But this is an easy consequence of Lemma C.

We first consider a closed manifold M, i.e. a triad

(M, #, #) , since this case is somewhst easier.

Theorem 2.7. If M is a campsect menifold without

boundary, the Morse functlns form an open dense gubset of

F(M,R) in the c® topology.

Proof: Let(Ul,hl),...,(Uk,hk) be a finite covering of M
by coordinate neighborhoods., We can easily find compact sets

C:LCU1 such thet C,, C, ..., C, cover M.

2
We will say that £ 1is "good" on aset S(CM if ¢

hes no degenerate critical points on S.
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I) The set of Morse functions is open. For if
f: M——> R 18 a Morse function, Lemma B says that, in a

neighborhood N1 of £ in F(M, R), every function will be good

in C,. Thus, in the neighborhood N = NN..nN of f,

every function will be good in Cl V... U Ck = M,

II) The set of Morse functions is dense, Let N be a
given neighborhood £ ¢ F(M, R). We improve f by stages. Let
N be a smooth function M ——> [0,1] such that A =1 in a
neighborhood of Cl and N =0 1in a neighborhood of M - U

1
For almost all choices of linear mep L: Rn > R the function

fﬂﬂ:f@)+MNL@ﬂﬂ)wﬂlmgwdm %CUl(mmaM.
We assert that if the coefficients of the linear map I, are
sufficiently small, then fl will lie in the given neighborhood

N of £,

First note that fl differs from f only on a compact set

K = Support A C U;. Setting L(x) = L(xl,...,xn) =T £;x, , note

that flhil(x) - fhil(x) - (hhil(x)) £ 8%,

for all x ¢ hl(K) . By choosing the £, sufficiently small we

i
can clearly guarantee that this difference, together with its first
and second derivatives, is less than any preassigned e throughout

the set hl(K). Now i¥ e is sufficiently small, then it follows

from Lemms C that £, belongs to the neighborhood N.

1
We have obtained a function fl in N which is good on
Cl. Applying Lemms B again, we can choose a neighborhood Nl of

£., N. C N, so that any function in N. 1a atill zood on 0
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At the next stage, we simply repeat the whole process with

fl and Nl, to obtain a function f2 in N, good in Cys

of £, N, C N, such that any function in N,

and a

neighborhood, N2

is still good on C2. The function f2 is automatically good on

Cl since it lies in Nl‘ Finally we obtain a function

fKENkCNk-lC”'CNlCN which is good on €, U ... UCy =M.

We are now in a position to prove

Theorem 2,5. On any triad (W, Vo» Vq)s there exists &
Morse function.

Proof: Iemma 2.6 provides a function £: W — [0,1]

such that (1) f‘l(o) =V, f'l(l) =V,

(11) £ has no critical points in a neighborhood of

Bd W.

Ve want to eliminate the degenerate critical points in
W - B4 W, always preserving the properties (1) and (ii) of £,
Iet U be an open neighborhood of Bd W on which f l;as no
critical points, Because W 1is normal we can find an open
neighborhood V of BA W euch that V CU. Let (U;) be a
finite cover of W by coordinate neighborhoods such that each
get Uy lies in U or in W - V , Teke a ccmpact refinement (ci)

of (Uj_] and let C. be the union of all those C, that lie in

0 i
U. Just as for the closed manifold of the last theorem we can use
Lemma B to show that in a gufficiently smell neighborhood N of
f, no function can have a degenerate critical point in C,. Also

0
f 1is bounded away from O end 1 on the compact set W - V.
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Hence, in a neighborhood N' of f every function, g, satisfies

the condition 0<g<1l on W -V. Let No=NnN'

suppose that the coordinate neighborboods in W - V are

. We may

Ul’ coey L&( . From this point we proceed exactly as in the previous

theorem, With the help of ILemma A we fnnd a function fl in No

vhich is good (i.e. has only nondegenerate eritical points) on Cl’

and a neighborhood N, of £, , N, C Ny 1in which every function

is good in Cl' Repeating this process k times we produce a

function £ oeN C LY Ceea C Ny which is good
on C,UC U...UC =M. Since kaNOCN' and

£V =£|v, £ satisfies both conditions (1) and (1i). Hence

fk is a Morse function on (W, Vo Vl) .

Remark: It is not difficult to show that, in the C2

topology, the Morse functions form an open dense subset of all
For some purposes it is convenient to have a Morse

function in which no two critical points lie at the same level.,

Lemma 2.8. Let f: W ——> [0,1] be a Morse function for

the triad (W; Voo Vl) with critical points p,, «.., D, - Then

f can be approximated 't_:_y_ a Morse function g with the same

critical points such that g(pi) f’ G(PJ) for 1 ;& J.

Proof: Suppose that f(pl) = f(p2) . Construct a smooth

function A: W —> [0,1] such that A =1 in a neighborhood
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U of P, and A\ = 0 outside a larger neighborhood N, where
ECW—Bdw and N contains no Py for 1;41. Choose el>0

so small that fo =T + ¢\ has values in [0,1] anad
fo(pl) # £5(p;) , 1 # 1. Introduce a Riemannian metric for W

(see Munkres [5, p.24t]), and £find ¢ and e' 8o that O <ec < |grad f|
throughout the campact set K = closure {0 < A < 1) and |grad A| <c!
on K. Let 0< e<min(e, cfc') . Then £, =f + er is agein a
Morse function, fl(pl) ;éf(pi) for i £ 1, end £, has the same
critical points as f£. For on K,

lered (£ + e\)| > |erad £| - |e grad A|
>ec - egc!
>0.

And off K, |gredA| =0, so |grad £l = |ered £| . Continuing
induetively, we obtain a Morse function g which separates all the

critical points. This completes the proof.

Using Morse functions we can now express any "coamplicated"

cobordism as a composition of "simpler" cobordisms.

Definition. Given a smooth function f: W ——> R, a

critical value of f dis the image of a critical point.

Lemma 2.9. let £: (W; Vs vl) — ([o0,1], 0, 1) be a

Morse function, and suppose that 0 < ¢ <1 where ¢ 1is not a

critical value of f. Then both £ '[0,c] and £ 'fe,1] are smooth

manifolds with boundary.
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Hence the cobordism (W; Vo Vs identity, identity) from
Vb to Vl can be expressed as the composition of two cobordisms:

one from V, to f'l(c) and ocne from f'l(c) to V

1e Together

with 2.8 this proves:

Corollary 2.10. Any cobordism can be expressed as a

composition g{ cobordisms with Morse number 1.

Proof of 2,9: This follows immediately fram the implicit

function theorem, for if w € f'l(c) , then, in some coordinate

system Xyy Koy ey X about w, £ 1looks locally like the

projection map R' —> R s (xl, coey xn) — X,




Section 3. Elementary Cobordisms
e ——— —k

Definition 3.1. Let f be a Morse function for the triad

(wn; V, V') . A vector field t on wn is a gradient-like vector

field for f if

1) ¢(f) > 0 throughout the complement of the set of critical

points of £ , and

2) given any criticasl point p of f there are coordinates
-y
(£, ¥) = (xl, cees X5 K9y eeny xn) in a neighborhood U of p so
that f = £f(p) - Iiﬂe + I&ﬂg and ¢ has coordinates

(-Xl, es 0y -]&’ }&,-’-l, ¢ ey Xn) throughout U .

Lemma 3.2. For every Morse function f on a triad (wn; vV, V1)

there exists a gradient-like vector field ¢ .

Proof. For simplicity we assume f has only one critical point

p , the proof in general being similar. . By the Morse Lemma 2.2 we may

-
choose coordinates (X, ¥) = (xl, ooy Xy X 0o

hood U, of p so that f = f(p) - !212 + ]§12 throughout Uj. Let U

be a neighborhood of p such that T (C Uy-

.eon s xn) in a neighbor-

Each point p' ¢ W - U0 is not e critical point of f . It
follows from the Implicit Function Theorem that there exist coordinates
xi, seey xﬁ in a neighborhood U' of p!' such that f = constant + xi

in U* .
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Using this and the fact that V - Uo is compact, find neighbor-

hoods Ul’ ceey Uk such that

1)w-UoCUlU-¢OUUk,

2) unu = $, 1i=1,...,k, and

i i i
3) U; has coordinates xj, ..., x  end f = constant +x] on

Ui, i = l’.no,k .
On Uo there is the vector field whose coordinates are

(-xl, sees Ky K s eees xn) , end on U, there is the vector field

a/Bxi vith coordinates (1,0,...,0), i =1,...,k . Piece together
these vector fields using a partition of unity subordinate to the cover

UO’ Ul, cesy Uk, obtaining a vector field ¢ on VW . It is easy to check

that ¢ 1is the required gradient-like vector field for f .

Remark. From now on we shall identify the triad (W; Y Vl)

vith the cobordism (W; V 1

o '1¥ ‘o

il: Vl ~———>-V1 are the identity maps.

, V 11) where 1.: Vj ——V and

o’ 0

Definition 3.3. A triad (W; Vo Vl) is said to be a product

cobordism if it is diffeamorphic to the triad (V0><[0,1]5 Vb)(o, vV.x1l) .

0

Theorem 3.4. If the Morse number p of the triad (w; Vo Vl)

is zero, then (W; /S Vl) is a product cobordism.

Proof: Let f£: W —> [0,1] be a Morse function with no critical

points. By Lemms 3.2 there exists a gradient-like vector field ¢ for f.
Then &(f): W ——> R 1is strictly positive. Multiplying ¢ at each
point by the positive real number l/g(f) , We may assume g(f) =1

identically on W .
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If p is any point in Bd W, then f expressed in some
coordinate system Xys ewes X, X >0, sbout p extends to a smooth
function g defined on an open subset U of RC. Correspondingly, ¢
expressed in this coordinate system also extends to U . The fundamental
existence and uniqueness theorem for ordinary differential equations (see
e.g. Lang (3, p.55]) thus applies locally to W .

Let ¢ : [a, b] —> W be any integral curve for the vector
field & . Then

S (£ 0 0) = &(n)

is identically equal to 1 ; hence

£(p(t)) = t + constant.

Making the change of parameter, V(s) = ¢(s - constant), we obtain an

integral curve which satisfies

f(y(s)) = s .

Each integral curve can be extended uniquely over a maximal
interval, which, since W is compact, must be [0, 1]. Thus, for each
Y € W there exists a unique maximal integral curve

\lry : [0, 1] —> W

vhich passes through y , and satisfies f(Vy(B)) =8 , Furthermore

vy(s) is smooth as a function of both variables (cf. §5, pages 53 - 54 ).
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The required diffeomorphism

h: V) x [0,1] — W

is now given by the formula

h(yo) s) = ‘lfyo(s) J)

with

b7Hy) = (y,(0), £(x)) .

Corollary 3.5. (Collar Neighborhood Theorem)

Let W be a compact smooth manifold with boundary. There exists a

neighborhood of Bd W (called a collar neighborhood) diffecmorphic to

hl

Bd W x [0,1) .

Proof, By lemma 2,6, there exists a smooth function £: W — R,

such that f'l(o) =BdW end df £ 0 on a neighborhood U of Bd W .
Then f is a Morse function on f'l[o, €/2) , wvhere g> 0 is a lower
bound for f on the compact set W - U . Thus Theorem 3.h4 guarantees

e diffeamorphism of f'llo, ef2) with Ba W x [0,1) .

A connected, closed submanifold -t C W' -BAW 1is said
to be two-sided if some neighborhood of Mt on W 18 cut into two

components when M2l ig deleted.

Corollary 3.6. (The Bicollaring Theorem)

Suppose that every component gf.g smooth submanifold M 2{ W lg_compact

and two-.sided., Then there exists E,“bicollar" neighborhood of M in W

diffeomorphic to M x (-1,1) in such a vay that M corresponds to M x O .




2k,

Proof. Since the components of M may be covered by disjoint

open sets in W , it suffices to consider the case where M has a single
caomponent.

Iet U be an open neighborhood of M in W - BA W such that
U is compact and lies in a neighborhood of M which is cut into two
components when M 1s deleted., Then U clearly splits up as & union
of two submanifolds Ul’ U, such that U, N U

2 1l 2
each. As in the proof of 2.6 one can use a coordinate cover and a parti-

=M 1is the boundary of

tion of unity to construct a smooth map
¢: U ————>» R

gsuch that dp £ 0 on M, end <0 on U - Uy, =0 on M,

Q)>Oonﬁ--020

V C U, onwhich ¢ has no critical points.

We can choose an open neighborhood V of M, with

Iet 2¢" > 0 be the lub of ¢ on the compact set ﬁi -V.

let 2¢' < O be the glb of ¢ on the compact set 02

Then ¢'1[e',e"] is a compact n-dimensional sub-manifold of V

-V.

with boundary ¢"1(e') U ¢-l(e“) , and ¢ 1is a Morse function on
¢-l[e',e"] . Applying Theorem 3.1 we find that ¢'1(e',e") is a "bicollar"

neighborhood of M in V and so also in W.

Remark. The collaring and bicollaring theorems remain valid

without the compactness conditions. (Munkres [5, p. 51]).

We now restate and prove a result of Section 1,
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Theorem 1.4, Iet (W; Vo Vl) and (W; vi, Vé) be two smooth

manifold triads and h: Vl — Vi a diffeomorphism. Then there exists

& smoothness structure J for W Uh W' compatible with the given struc-

tures on W and W', .X is unique up to a diffecmorphism leaving VO,

h(Vl) =V}, snd V) fixed,

Proof. Existence: By Corollary 3.5, there exist collar neighbor-

hoods Uy» U]'_ of Vi» V]'_ in W, W' and diffeomorphisms
8t V) X (0,1] —> U, gy Vi x[1,2) —> U], such that gl(x,l) = X
x eV, and ge(y,l)-y, yevV]. et J: W——>sWwWuy W,

Jte WY ——> W U, W! be the inclusion maps in the definition of W U, it .

Define a mep g&: V, X (0,2) ———>W U, W' by
g(x,t) = J(Sl(x,t)) 0<t<l
g(x,t) = J'(se(h(X),t)) 1<t<2,

To define a smoothness structure on a manifold it suffices to define
compatible smoothness structures on open sets covering the manifold.
WU W' 1s covered by J(W - Vy), J'(W' - vl') , snd g(vy x (0,2)) ,
and the smoothness structures defined on these sets by J, j', and g

respectively, are compatible. This completes the proof of existence.

Uniqueness: We show that any smoothness structure J on
W Uh W! compatible with the given structures on ¥V and V' 1is isomorphic
to a smoothness structure constructed by pasting together collar neighbor-
hoods of Vl and V]" as above, The uniqueness up to diffecmorphism
leaving VO’ h(Vl) = Vi , end V! fixed then follows essentially fram

2
Theorem 6.3 of Munkres {5, p. 62]. By Corollary 3.6 there exists a
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bicollar neighborhood U of J(Vl) = J'(Vi) in Wy, W' and a diffeo-
morphism g: Vl X (-1,1) —— U with respect to the smoothness struc-
ture j, so that g(x,0) =3 (x) , for x ¢ Vy. Then J-l(U n 3(w))

and 3"1(Un3'(w')) are collar neighborhoods of V. and V! in W

1l 1l
and W', This canpletes the proof of uniqueness,

Suppose now we are given triads (W; Vs Vl) , (we; vi, Vé)

with Morse functioms £, £' to [0,1], [1,2], respectively. Construct
gradient-like vector fields ¢t and ¢§' on W and W', respectively,

normalized so that ¢(f) =1, ¢'(f') =1 except in & small neighborhood

of each critical point.

Lemma 3.7. Given a diffeomorphism h: V. —~——> V!

1 1
unique smoothness structure on W Uh W* , compatible with the given

there _:Eg_

i®

structures on W , W', so theat f and f' piece together to give a

smooth function on W Llh W' and ¢ and ¢' plece together to give a

smooth vector field.

Proof. The proof is the same as that of Theorem 1.4 above,
except that the smoothness structure on the bicollar neighborhood must
be chosen by piecing together integral curves of ¢ and ¢! in collar
neighborhoods of Vl and Vi . This condition also proves uniqueness.

(Notice that uniqueness here is much stronger than that in Theorem 1.4.)

This construction gives an immediate proof of the following result.

Corollary 3.8. n(W U, ¥'5 Voo Vé) < u(w; Vo vl) + p(weg vi, Vé)

where p 1is the Morse number of E_t_xg_ triad.

[ R Rl
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Next we will study cobordisms with Morse number 1 .

Iet (W; V, V') be a triad with Morse function f; W —— R
and gradient-like vector field ¢ for f . Suppose p eVW 1is a
critical point, and V, = f'l(co) and V, = f'l(cl) are levels such
that g < f(p) < c, and that c = f(p) is the only critical value in

the interval [co, cl] .
Let ODf. denote the open ball of radius r with center 0 in

1“°Dp'

Since ¢ 1is a gradient-like vector field for £ , there exists

Rp, and set OD

a neighborhood U of p in W , and a ccordinate diffecmorphism

n
g: OD2

has coordinates (-xl, vees Xy Xy s eees xn) throughout U, for

¢ —> U so that fg(X, ¥)=c - IRZ + |7]° end so that ¢

some -lf_xsn and scme € > O . Here )?n(xl, ceey )S‘)GR)\ and
- _ n-\ _ el 2 ey 2
Y = ('xx""l’ ce oy xn) e R . Set V—G - f (c - E ) a-nd Ve f (c + € ) .

We may assume he® < min(|c - col, e - cll), so that V__ 1lies between

The situation

v, end f'l(c) and V_ lies between f'l(c) and V, .

is represented schematically in Figure 3.1.

\} Vo















































































































































































































































































