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Zhese a r e  notes f o r  l e c t u r e s  of John Milnor that were given 

as a seminar on d i f f e r e n t i a l  topology i n  October and November, 

1963 a t  Princeton University. 

Let W be a compact smooth manifold having two boundary 

components V and V1 such t h a t  V and V' a r e  both deform- 

a t i o n  r e t r a c t s  of W. B e n  W is said t o  be a h-cobordism 

between V and Vt . The h-cobordism theorem a t a t e s  t h a t  if i n  

addi t ion  V and (hence) V1 are simply connected and of dimen- 

s ion  g rea te r  than 4 , then W is diffeomorphic t o  V X [O, 11 

and (consequently) V is diffeomorphic t o  V' . Ihe proof is 

due t o  Stephen Smale [ 6 ] .  'Ihis theorem has numerous important 

appl ica t ions  - including the proof of the  generalized ~ o i n c a r e  

conjecture i n  dimensions > 4 - and eeveraJ. of these appear 

i n  $9. Our ma,in task,  however, i s  t o  describe i n  some d e t a i l  a 

proof of t h e  theorem. 

Here is a very rough ou t l ine  of t h e  proof. We begin by 

construct ing a Morse function f o r  W (02.1), i .e. a smooth 

funct ion f : w -> [o, 11 with v = C1(0) , v 1  = f1(1) 

such t h a t  f has f i n i t e l y  many c r i t i c a l  points,  all nondegen- 

e r a t e  and i n  t h e  i n t e r i o r  of W. 'ihe proof is inspi red  by the  

observation (63.4) t h a t  W i s  diffeomorphic t o  V X [o, 11 i f  

(and only i f )  W admits a brae f'unction as above with no c r i t -  

i c a l  points .  %us i n  554-8 we show that under the hypothesis 

of t h e  theorem it is  possible  t o  simplify a given Morse funct ion 



f un t i l  f ina l ly  all c r i t i c a l  points are eliminated. In $4, f 

is ad jueted so that  the leve l  f (p) of a c r i t i c a l  point p is 

an increasing f'unction of i t s  index. In $5, geometrical condi- 

tions are  given under which a pa i r  of c r i t i c a l  points p, q of 

index h and h + 1 can be eliminated or *cancelleds. In $6, 

the geometrical conditions of $5 are replaced by more algebraic 

conditions - given a hypothesis of simple connectivity. In 

$8, the resu l t  of 95 a o w s  us t o  eliminate all c r i t i c a l  points 

of index 0 or  n , and then t o  replace the critica3.points of 

index 1 and n - 1 by equal numbers of c r i t i c a l  points of 

index 3 and n - 3 , respectively. In $7 it i e  shown tha t  the 

c r i t i c a l  point6 of the same index h can be rearranged among 

themselves for  2 < A < n - 2 (97.6) i n  such a way t ha t  all - - 
c r i t i c a l  points can then be cancelled i n  pairs by repeated appli- 

cation of the r e su l t  of 16. !his completes the proof. 

I k o  acknowledgements are i n  order. I n  $5 our argument is  

inspired by recent ideas o f .  Me Morse Ell] [32] which involve 

al terat ion of a gradient-like vector f i e l d  for f , rather than 

by the original  proof of Smale which involves h i s  'handlebodie8'. 

W e  i n  fact never expl ic i t ly  mention handles or handlebodies i n  

these notes. In 66 we have incorporated an Improvement appearing 

i n  the thesis  of Dennis Barden [33], namely the argument on our 

pages 72-73 for  'Iheorem 6.4 i n  the case h = 2 , and the state-  

ment of Theorem 6.6 in the case r = 2. 



17he h-cobordism theorem can be generalized i n  sever& direc-  

t ions .  No one has succeeded i n  removing the  r e s t r i c t i o n  t h a t  V 

and V' have dimension > 4. (see page l3.3. ) If we omit the  

r e s t r i c t i o n  t h a t  V and (hence) V' be simply connected, t h e  

theorem becomes f a l s e .  (see Milnor [34]. ) But it w i l l  remain 

t r u e  i f  we a t  t h e  same time assume t h a t  the  inc lus ion  of V 

(or  V' ) i n t o  W is  a simple homotopy equivalence i n  t h e  senee 

of J. H. C. Whitehead. This generalization, ca l led  t h e  s-cobor- 

dism theorem, i s  due t o  Mazur [35], Barden (331 and Sta l l ings .  

For t h i s  and f u r t h e r  general izat ions see  e spec ia l ly  Wall 1361. 

3 

Lastly, we remark t h a t  analogous h- and s-cobordism theorems 

hold f o r  piecewise l i n e a r  manifolds. 
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Section 1. The Cobordiem Category 
I m 

First some familiar definitions. Euclidean apace w i l l  be 

denotedby R~ = ((5 ,..., x )Ixi E R, i = l , . . ,  where n 

R P the r e a l  numbers, and Euclidean half-space by 

Definition 1.1. If V i s  eny subeet of R ~ ,  a map 

f :  V R~ is smooth or dif'ferentieble o i  claaa C? if  f can 

be extended t o  a map g: U Rm, where U 3 V i s  open in Rn, 

euch tha t  the pa r t i a l  derivatives of g of a l l  orders exis t  end 

are c o n t i n u c ~ ~ ~ .  

Definition 1.2. A smooth n-manifold is a topological manifold 

W with a countable basis together with a smoothnese structure 4 
- on Me is  a collection of' pairs ( ~ , h )  satisfying four conditions: 

(1) Each ( ~ , h )  E c m s i s t e  of? an open set U C W 

(called a coordinate neighborhood) together with a homeomorphism h 

n which maps U onto an open subset of e i ther  R~ or R+ , 

(2) The coordinate neighborhoods in 08 caver W. 

(3) If (ul,hl) and (u2,h2) belong t o  4, then 

i s  smooth. 

(4) The collection r8 i a  maximal with respect t o  property 

(3) i.e. if any pair  (u, h )  not In  $ is adjoined t o  



The boundary of W, denoted Bd W, is the se t  of all points 

in  W which do not have neighborhoods haneanorphic t o  FIn (see 

Definition 1.3. (wj Vo, v1) i e  a smooth manifold t r i a d  i f  

W i s  a compact smooth a-manifold and Bd W is the disjoin* union 

of two open and closed submanifolds Vo and V1 . 
If (w; Vo, V1), (w' j Vi, Vi) are two smooth manifold t r iads  

and h: V1 ----+ V i  18 a diffeomorphism (i .e .  i homeomorphism such 

that  h and h-' are smooth), then we can form a th i rd  triad 

(W % W l j Vo, V; ) where W % W is the space formed from W and 

Wt by identifying points of V1 and V i  under h, according t o  

the following theorem. 

Theorem 1.4. There ex is t s  a smoothness structure for - - - 
W % W1 compatible with the given structures (i.e. so tha t  each --- --- 
inclusion map - W 4 W U, Wf, Wl -4 W % W' - is  - a diffeomorphism 

~ n t o  i t s  image.) - -  
8 is unique up t o  a differnorphiam leaving Vo, h(vl) = V i  , 

and V; fixed. 
-.-- - 

The proof will be given in  $ 3 . 
Definition 1.5. Given two closed smooth n-manifolds M 0 knd 

% (i.e. Mg , 5 compact, Bd Mg - Bd M.,. = I), a cobordiam from Mo 

t o  ie a 5-tuple, (wi Vg, V1j ho, hl), where (wj Vo, V1) is a 
l 

am& menifold t r i a d  and hi: Vi 4 M is a diffemorphism, 1 = 0, 1. 

TWO cobordims (wj Vo, Vlj ho, hl) and (w' VA, Vij h& h i )  from 1 
*o t o  M1 are equivalent i f  there ex is t  a diffeomorphism g: W -4 W 1  '3 
carrying Vo t o  Vt, and V1 t o  I 



'i such that for i = 0,l  the following triangle ccamrmtes: 

Then we have a category (see Eilenberg and Steenrod, 

[2,p.1081) whose obdects are closed manifolds and whose morphism 

ere equivalence classes c of cobordisms. This means that cobordiems 

satisfy the following two conditions. They follow easily *can 1.4 

and 3.5, respectively. 

(1) Given 

5 and c t  f r o m  

from M t o  %. 
0 

c obordism equivalence 

y t o  , there is  

classes c from M t o  
0 

a well-defined claas ccg 

This  composition operation is  associative. 

(2) For every closed manifold M there is the identity 

cobordism class 
L~ 

P the equivalence class of 

That is, if  c is a cobordism class frm t o  l$, then 

Notice that  it i e  possible that cct  = rM , but c is not 

bM . For example 



c is  shaded. c c  is  unshaded. 

Here c has a r ight  inverse c ' ,  but no l e r t  inverse. Note tha t  the 

manifolds in  a cobordism are not assumed connected. 

Consider cobordism classes from M t o  i t s e l f ,  M fixed. 

These form a monoid HM , 1.e. a se t  with an aesociative cclnposition 

with an identity. The invertible cobordisms i n  HM f o m  a group 

G~ . We can construct soneelements of GM by taking M = M1 

below. 

Given a diffemorphism h: M d M1, define ch as the 

class of (M x Ij M x 0, M x l y  j, hl) where j(x,0) 3 x and 

hl(x,l) = h(x), x e M . 
Theorem 1.6. chch, = c fo r  any two diffeomorphisme hth - - - 

h: M &MI - and 

Proof: Let - 
jh, : Mt x I + W  

Chcht Define g: 

h': M' & M" . 
%I -. M x I % Mt x I and l e t  Jh: M % I d W, 

be the inclueian mapa in  the  definition of 

M x I \ W as fo l lme:  

Then g i s  well-defined and ie the  required equivalence. 



Def i n i t i m  1.7. Two differnorphiems h hl: M ---+ MI 

are (smoothly) isotopic if there exis ts  a map f: M x I d M t  

such tha t  

(1) f i s  smooth, 

(2)  each ft, defined by ft(x) 2 f ( x , t )  , is  a diffeomorphism, 

Two d l  ffeomorphisms %, hl: M -+ MI are pseudo-isotopic' 

i f  there is a diffecanorphism g: M x I *-a M t  x I such that  

Lemma 1.8. Isotopy and pseudo-isot opy are equivalence - - 

Proof: Symmetry and reflexivity are clear. To ahow kransi- - 
t i v i ty ,  l e t  ho, hl, h2: M --+ M' be differnorphiems and assume 

we are given isotopies f, g: M x I M I  between h and hl 
0 

and between hl and h2 respectively. Let m: I -3 I be a 

smooth monotonic function such tha t  m(t) = 0 for o < t < 113, - - 
and m(t) = 1 for  213 < t < 1. The required isotopy - - 
k: M x I 4 M I  between h and hl is  now defined by 

0 

for 112 < - t < - 1. The proof of t r ans i t iv i ty  for  pseudo-isotopies 

is more d i f f i cu l t  and fo l l a r s  from Lermna 6.1 of Munkres [5,p.593. 
* 

In Munkrest terminology h is  "I-cobordantn t o  hl . 
0 

(see [5,p.62]. ) In E i r s c h ~ s  terminology h i s  "concordantn t o  hl. 
D 



It is clear that if ho and hl are isotopic then they are 

diffemorphism, as follows frm the inverse f'unctian theorem, and 

hence is a pseudo-isotopy between h and hl .  h he converse 0 
11 

for  M = S , n > - 8 is proved by J. ~ e r f  [39J, ) 1t follars fran 

this  remark and frm 1.9 below that if ho and 

then c = c . 
ho hl 

Theorem l.9, c = c is 
ho hl 
- ho - 

4 are isotopic, 

pseudo-isotopic t o  hl . - 
Proof: Let g: M x I ---+ Mt x I be a pseudo-ieotopy - 

between h and hl. 
0 Define hi1 x I: Mt x I -M x I by 

(hi1 X l ) ( x , t )  = (h;l(x),f) . Then (hi1 x 1) 0 g is an 

equivalence between c and c . 
hl ho 

The converse is similar. 



Section 2. Morse Functions 

We would 

a canposition of 

like t o  be able t o  factor a given cobordism into  

simpler cobordiema, c or example the t r i a d  i n  

M e r e  2 can be factored a~ i n  Mgure 3 , )  We make t h i s  notion 

precise in what follows. 

FIGURE 3 



Definition 2.1, Let W be a smooth manifold and 

f: w 4 R a smooth function, A point p t: W 18 a c r i t i c a l  

point. of f i f ,  in  some coordinate system, - 
= 0 . Such a point Is a non-degenerate 

ce i t i c  a1 point i f  det ( a2f 1 ) 0  or example, i f  in  Figure 2 - 
1 3 P  

f is the height function (projection into  the z-axis), then f has 

four c r i t i c a l  points pl, p2, p3, pq, all non-degenerate, 

Lemma 2.2 ( ~ o r s e ) .  If p is a non-degenerate c r i t i c a l  - - -  
point of f ,  then i n  same coordlnate system about p, 

f(xl, ..,, x ) = constant 2 
" X1 - 0 . .  

2 
n - x + <+I + ... + x2 n for 

some A between 0 and n , 

h i s  defined t o  be the index of the c r i t i c a l  point p, - 

Definition 2.3, A Morse function on a smooth manifold t r i a d  

(wj Vo, V1) i s  a smooth function f: W ----5 [a,b] ouch that  

(2)  All  the c r i t i c a l  points of f are in te r ior  ( l i e  i n  

W - Bd W) and are nm-degenerate, 

As a coneequence of the Morse Lemma, the c r i t i c a l  points of 

a Morse function are isolated, Since W is  compact, there are only 

f i n i t e l y  many of them. 



Definition 2.4. The Morse nuniber p of (w i  Yo, v1) i 8  Cc 

the  minimum w e r  sll Morse function8 f of the  number of c r i t i c a l  

points of 

'Phis definition is meaningf'ul i n  view of the  

following existence theorem. 

Theorem 2.5. hrery smooth manifold t r i a d  (wi Vg , V1) - - 
possesses a Morse function, -- 

m e  proof w i l l  occupy the next 8 ~ a g e s .  

Lemma 2.6. mere  exis ts  a smooth function f :  W --+ [0,1] 

with - f91(0) = V 
0' 

fW1(l) = V1 , B U C ~  t ha t  f has no c r i t i c a l  -- -- 
point i n  a neighborhood of the boundam of W. 

Proof: 

neighborhoods. 

V1, and tha t  i f  

n 
hi' Ui d R+ 

unit b a l l  with 

On each 

L e t  U1, ..., % be a cwer of W by coordinate 

We may assume tha t  no Ui meets both V and 
0 

Ui 
meets Bd W the coordinate map 

carr ies  Ui onto the intersection of the open 

se t  Ui define a map 

Ui 
meeta V [respectively vl] l e t  f i  = Ihi d 

where L i s  the map 

x (respectively 1 - xn] . n 

If Ui does not meet Bd W , put fi a 112 identically . 



Choose a par t i t ion of unity (qi) subordinate t o  the c w e r  { Ui) 

(see Munkres [5,p.181) and define a map f :  W d [0,1] by 

where f i(p) is understood t o  have the value 0 outside U men 
i 

f is  c lear ly  a well defined smooth map t o  [0,1] with fn1(0) = V 
0' - 

( 1 )  = V . Flnally we verify tha t  df' 0 on Bd W. Suppose 

q E V [respectively q E V 1. Then, f o r  saue i, cpi(q) 0, 
0 1 

1 s € Ui. let hi(p) = (X (P) 
n 

. x  ( p ) )  Then 

Now f (z) has the 0~me value, 0, [respectively 11  for all j 
J 
k acpj a k 

and C - = 7 ( Z '91) = 0. So, a t  q, the first  sumand 
jal axn ax j=1 

af i ie zero. The derivative (q) equals 1 [respectively -11 
ax 

3 and it is  easi ly  seen tha t  the derivatives (q) all have the 
ax 

afi same sign es 7 (q) , j = 1, , mu8 af (q) + 0. 13 
ax axn 

follows tha t  df' f. 0 on Bd W, and hence df  0 i n  a neighbor- 

hood of Bd W. 

The remainder of the proof is more d i f f icu l t .  We w i l l  

a l t e r  f by stages i n  the in te r ior  of W eliminating the 

degenerate c r i t i c a l  points. To do t h i s  w e  need three lemmas which 

apply t o  Euclidean space, 



Lennna A (M. Morse). - If f is a c2 mapping of an open - -  --- I I. 
subset U c Rn t o  the r e a l  l ine  then fo r  almost all l inear  

c. 7 - - -- 
mappings L: R~ & R, the m c t i o n  f + L has only nondegenerate - -- 
c r i t i c  a1 points. 

By "almost all" we mean except f o r  a se t  which has measure 

zero i n  H-(R~,R) 2 Rn . 
- Proof: Consider the manifold U x H ~ ( R ~ , R )  . It has 

d(f(x)  + ~ ( x ) )  = 0 means tha t  L = -df(x) it is clear  tha t  the 

correspondence x 3 (x, -df(x)) is a diffeomorphism of U onto M. 

Each ( x , ~ )  e M corresponds t o  a c r i t i c a l  point of f + L, and 

t h i s  c r i t i c a l  point i s  degenerate precisely when the matrix ( 
a2f 
-1 

is singular. Now we have a projection a: M & H ~ ( R ~ , B )  

sending ( x , ~ )  t o  L. Since L = -df(x) , the projection is 

nothing but x & -df(x)  . Thus T is c r i t i c a l  a t  ( x , ~ )  e M 

2 
precisely when the matrix ~ I J  = -(a f/ax ax ) is  singular. It 

i 3  
follows tha t  f + L has a degenerate c r i t i c a l  point ( for  same x )  

i f  and only if L is  the image of a c r i t i c a l  point of 

~f t: Ee R~ is any c 1 - -- the image of the m s p , - - - -  
se t  of c r i t i c a l  points of r has measure zero in Rn. -- - - 

This gives the desired conclueicm. 



Lemma B. Let  K be a cornpact eubeet of an open se t  U - -- ---- 
i n  R*. If f: U d R is c2 and has only nondegenerate - .111 .L --- 
c r i t i c a l  points in K, then there is a nmiber 8 > 0 such tha t  - ---- -- 
if g: U ' R i s  c2 and at all p o i n t ~  of K aatiefiee - - --- 

1, 3 = 1,. . . ,n , then - g likewise has only nondegenerate c r i t i c a l  -- 

6 Proof: Let - + ... 

a2f Then I df( + I det(?, ,_ )I is  s t r i c t l y  positive on K. Let p > 0 

be i ts  minimum on K. Choose 8 > 0 so s m a l l  t ha t  (1) implies t h a t  

and (2) -lies t h a t  

J 

at al l  points I n  K. The result followe. 

Lema C. Suppose h: U d Uc 18 a differnorphiem of 

one open subset of onto another and car r ies  the  ccanpsce s e t  -- - - - - - 
K C U anto Kt C U* . Given a number 6 > 0, there is  a number - -- --- 
6 > 0 such that if a smooth map f : U' d R s a t i s f i e s  ---- - 



at a l l  points - 

a t  all points -- 

of K t  C U' , then f 0 h sa t i s f ies  - - 

Proof: Each of f 0 h, a f o h  b2foh  ax,' q 8 q  i e  a polynomial 

f'unction of the pa r t i a l  derivatives of f and of h from order 

0 t o  order 2; and t h i s  polynomial vanishes when the derivatives 

of f vanish. But the derivatives of h are bounded on the compact 

se t  K. The resul t  fol lars .  

2 The C topology on the se t  F(M, R )  of smooth real-valued 

functions on a compact manifold, M, (with boundary) msy be defined 

as follows. L e t  (U'] be a f i n i t e  coordinate covering with 

n coordinate maps ha: U' ---d R , and l e t  (C ) be a ccmpact 
Q 

refinement of (u,) (cf.  Munkres [5, p. 71). For every positive 

constant 8 > 0, define a subset ~ ( 6 ) ,  of F(M,R) consisting of 

9 all maps g : M ---+ R such that,  for all 

-1 a t  all points i n  h (C ), where 
gO: = ghG 0 a arid i, j = 1, .*., n 

If w e  take the eets ~ ( 6 )  as a base of neighborhoode of the zero 

function i n  the additive group F(M,R), the resulting topology is 



called the c2 topology. The se t s  of the form f + ~ ( 6 )  = ~ ( f ,  6) 

means that ,  fo r  all a , 

a t  a l l  points of ha(c,) . 
It shuuld be verif ied tha t  the topology T we have con- 

structed does not depend on the particular choice of coordinate 

covering and cmpact refinement. Let TI be another topology 

defined by the above procedure, and l e t  primes denote things 

associated with t h i s  topology, It is  sufficient  t o  show that ,  

given any s e t  ~ ( 6 )  In T, we can f ind a se t  B' ( 8 ' )  i n  Tt 

contained i n  ~ ( 6 )  . But t h i s  is  an easy consequence of Lemma C. 

We first caneider a closed manifold M, i.e. a t r i a d  

( M  , ) , since t h i s  case in somewhat easier. 

Theorem 2.7. - I f  M A is I- a canpact manif old without 

boundary, the Morse fUnCt%ma form an open dense subeet of -- ----- - 
F(M,R) -- in  the c2 topology. 

Roof: Let  (lTl,hl), . . . , (uk,hk) be a f i n i t e  covering of M 

by coordinate neighborhoods, We can easily f ind compact se t s  

Ci C Ui such tha t  C1, Cp . . . , Ck c w e r  M. 

We w i l l  s a y  tha t  f is  "good" on a se t  8 C M if f 

hae no degenerate c r i t i c a l  point8 on S. 



15. 

I) The s e t  of Morse flulctions is open. For if 

f: M R is a Morse function, Lemma B says that ,  i n  a 

neighborhood Ni of f in F(M, R), every function w i l l  be good 

i n  Cia Thus, i n  the neighborhood N = Nl fl ... n l& of f ,  

every function w i l l  be good i n  C1 U . . . U Ck = M. 

11) The se t  of Morse functions i s  dense. Let N be a 

given neighborhood f E F(M, R). We improve f by stages. Let 

h be a smooth function M 4 0 ,  such tha t  h = 1 i n  a 

neighborhood of C1 and A = 0 i n  a neighborhood of M - U1 
For elmost a l l  choicee of l inear  map L: # - R the function 

- - fl(p) = f (P) + A(P) ~ ( h & p ) )  w i l l  be good on C1 C U1 (Lemma A). 

We assert  tha t  if the coefficients of the l inear  map L are 

suff ic ient ly  small, then fi w i l l  l i e  in  the given neighborhood 

F i r a t  note t h a t  fl  dif fers  f'rm f only on a compact se t  

K = Suppod h C U1. Setting ~ ( x )  = L(X~,  . . . ,x ) = z lixi , note n 

fo r  a l l  x E h l ( ~ )  . By chooaing the li suff ic ient ly  small we 

can clear ly  guarantee tha t  t h i s  difference, together with i ts  f i r s t  

and second derivatives, is  lees  than any preassigned e throughout 

the se t  hl(IC). low i f  e is  su i f ic ien t ly  small, then it follows 

from Lemma C tha t  fl  belongs t o  the neighborhood N. 

We have obtained a function fl in N which is good on 

C1' Amlylng Lennns B again, we can choose a neighborhood N1 
of 

f,, N, C N . ao that any Function in N- ie. still aa& rm I! - 
- - - -  



A t  the next stage, we simply repeat the whole procees with 

fl 
and N1, t o  obtain a function f2 in  Nl good in C2, and a 

neighborhood, N2 of f2, N2 C N1, such tha t  any function i n  N2 

is s t i l l  good on C2. The function f2 is automatically good on 

C1 since it l i e s  in N1. Finally we obtain a function 

fl( E Nk C Nkml C . .. C N1 C N which i s  g00d On C1 U .. . U Ck = M . 
We are nuw i n  a position t o  prove 

Theorem 2.5. On any t r i a d  (w, Vo, V1), there - exists  - a --- 
Morse Function. 

Proof: Lema 2.6 prwides a function f :  W & [0,1] - 
such tha t  ( i )  fol(0) = Vo , fwl(l) = V1 

( i i )  f has no c r i t i c a l  points in a neighborhood of 

We want to eliminate the degenerate c r i t i c a l  points i n  

W - Bd W, a l w a y s  preserving the properties ( i )  and ( i i )  of f. 

L e t  U be an open neighborhood of Bd W on which f has no 

c r i t i c a l  points. Because W is normal we can f ind an open 

neighborhood V of Bd W ' euch that C U . Let [Ui) be a 

f i n i t e  cover of W by coordinate neighborhoods such tha t  each 
.I 

se t  Ui Lies i n  U or in  W - V . Take a cmpact refinement (Ci) 

of (Ui] and l e t  Co be the union of all those Ci that l i e  i n  

U. Jus t  as for the closed manifold of the last theorem w e  can use 

Lemma B t o  show tha t  i n  a Oufficiently s m a l l  neighborhood N of 

f,  no Amction can have a degenerate c r i t i c a l  point i n  Co. 
Also 

f is bounded away from 0 and 1 on the compact se t  W - V. 



Hence, i n  a neighborhood NI of f every function, g, sa t i s f ies  

the  condition 0 < g < 1 on W - V. Let No = N n N' , We may 

suppose tha t  the coordinate neighborhoods in W - V are 

ul' ..., $ . From t h i s  point we proceed exactly as i n  the previous 

theorem. With the help of Lemma A we fnnd 

which is  good (i.e. has only nondegenerate 

and a neighborhood N1 of fl , N1 C No 

is good i n  C1. Repeating t h i s  process k 

a funct ion  fl in  No 

c r i t i c a l  points) on C1, 

i n  which every function 

times we produce a 

which i s  good 

on Co U C1 U ... U Ck = M . Since f C NO C N' and 
k 

fXlv = f l ~  , fk sa t i s f i e s  both conditions (i) and ( i i ) .  Hence 

fk 
i s  a Morse function on (w, Vo, v ~ )  . 

Remark: It is not d i f f i cu l t  t o  show that,  in the id 

topology, the Morse functions form an open dense subset of a l l  

smooth maps 

For 

function i n  

some purposes it is convenient t o  have a Morse 

which no two c r i t i c a l  points l i e  a t  the same level. 

Lemma 2.8. Let - f :  W d [0,1) be a Morse function for  --- - 

f can be approximated by a Morse function g with  the same -- --- --- 
c r i t i c a l  point a such that -- for - 

Roof: Suppose tha t  f(pl) = f(p2) . Construct a smooth 

function A: W d [o, 11 such t ha t  X = 1 in a neighborhood 



U of pl and X = 0 outside a larger neighborhood N, where 

n C  W - Bd W and contain8 no pi for  i f 1. Choose > o 
so small tha t  fo = f + elA has values i n  [0,1] and 

fo(pl) fo(pi) , i f 1. Introduce a Riemannian metric for W 

(see Munkres [ 5 ,  p.24]), and find c and c l  so  tha t  0 < c < lgrad fl - - 
throughout the compact s e t  K = closure (0 < h < 1)  and lgrad hl < c t  - 
on K. Let  0 C E C min(el, c / c t )  . Tben fl = f + Eh i e  again a 

Morse function, fl(pl) # f(pi) for i f 1, and fl has the same 

c r i t i c a l  point 8 as f. For on K, 

Andoff K, lgradhl  - 0 ,  so  lgradfl l  = lgradfl . Continuing 

inductively, we obtsin a Morse function g which separates all the 

c r i t i c a l  points. This cmpletes the  proof. 

I Using Morse fhnctione we can now express any "canplicated" 

cobordism ae a camposition of f'simplern cobordiams. 

I Definition, Given a smooth function f: W d R, a 

c r i t i c a l  value of f is  the image of a c r i t i c a l  point. 

Lemma 2.9. - Let f: (w; Vo, V1) d ( [0,1], 0, 1) be - - a 
Morse function, and suppose tha t  0 < c < 1 where c is not a - - - --- 
c r i t i c a l  value of f. Then both f-l[o,c] and f - l [c , l ]  are smooth -- -- - - 
manif old6 with boundary. - 



Hence the cobordism (w; Vo, Vlj identity, ident i ty)  from 

vo t o  V1 can be expressed ae the composition of two cobordisms: 

one from Vo t o  fD1(c) and one frm fw1(c) t o  V1. Together 

with 2.8 this proves: 

Corollary 2.10. - Any cobordism can -- be expressed - -  as a 

composition of cobordism with Morse number 1, - -- 
Proof of 2.98 This follows immediately fram the implicit 

function theorem, f o r  if  w E f - l ( c )  , then, in some coordinate 

system 5, x2, ..., x about w, f looks locally l ike  the  n 



Section 3. Elementary Cobordisms 
7d 

Defini t ion 3.1. Let f be a Morse function f o r  the  t r i a d  

( !  V V )  . A vector  f i e l d  on P i s  a gradient- l ike vector  - 
f i e l d  f o r  f if -- 

1) e ( f )  > 0 throughout t h e  complement of t h e  s e t  of c r i t i c a l  

poin ts  of f , and 

2)  given any c r i t i c a l  point p of f the re  are coordinates 

3 ( = (xl, . . .> 5, . . . :: ) i n  a neighborhood U of p s o  
n 

t h a t  f = f (p) - 13 + la2 and 5 has coordinates 

- . . ., -\, ' ~ 1 + ~ ,  . . . , xn) throughout U . 

Lema 3.2. For every Morse function f on a t r i a d  (W"; V, V 1  ) -- --- 
there  e x i s t s  a gradient- l ike vector  f i e l d  . - - 

Proof. For s impl ic i ty  w e  assume f has only one c r i t i c a l  point 

p , t h e  proof i n  general  being s imi lar .  . By the Morse Lema 2.2 we may 

choose coordinates (2, = ( x ,  . . . x x h+l~ - 1  xn ) i n  a neighbor- 

hoocl U of p G O  t h a t  f = f ( p )  - !?/ + 13 throughout 
0 

u,. Let u 

be a neighborhood of p such t h a t  U C Uo. 

Each point p* e W - Uo i s  not a c r i t i c a l  point  of f . It 

f o l l o ~ ~ s  from the  Impl ic i t  F'unction Theorem t h a t  there e x i s t  coordinates 

xi, . . . , xt i n  a neighborhood Ut of pt such tha t  f = constant + xi n 

in U* . 



Using t h i s  and the  f ac t  tha t  t! - uo i s  compact, f ind  neighbor- 

hoods U1, . . ., Uk such t h a t  

2 )  u n U, = f i ,  i = 1 ,..., k , and 
3 )  ui i i i has coordinates , . . . , x and f = constant + x on 

n 1 

Ui, i = l,...,k . 
On Uo there i s  the vector f i e l d  whose coordinates are 

(-xl, . . . , -5, x+~, . . . , xn) , and on Ui there i s  the vector f i e ld  

with coordinates 0 . . . 0 , i = 1 .  . k . Piece together 

these vector f i e lds  using a par t i t ion of unity subordinate t o  the cover 

uo, 5, a * * ,  uk, obtaining a vector f i e l d  on t! . It is  easy t o  check 

tha t  5 i s  the required gradient-like vector f i e l d  for  f . 

Remark. From now on w e  sha l l  identify the t r i a d  (w; Vo, V1) 

with the cobordism (w; Vo, V1; io, i l )  where iO: Vo ---A Vo and 

il: V1 + V1 are the ident i ty  maps. 

Definition 3.3. A t r i a d  (v; Vo, V1) i s  said t o  be a product 

cobordism if  it i s  diffeamorphic t o  the t r i a d  (V x [0,1]; V x 0, V x 1) . 0 0 0 

Theorem 3.4. I f  the Morse number p of the t r i a d  (w; Vo, v ~ )  --- --- 
i s  zero, then (bl; Vo, V1) i s  a product cobordism. -- - - - 

Proof: Let f :  W & [0,1] be a Morse function with no c r i t i c a l  - 
points. By Lemma 3.2 there exis ts  a gradient-like vector f i e l d  5 for  f .  

Then ~ ( f  ): W d R is  s t r i c t l y  positive. Multiplying E a t  each 

point by the positive real number l / ~ ( f )  , w e  may assume ~ ( f )  = 1 

ident ical ly  on W . 
- 



If p is aay point i n  Bd W, then f expressed i n  some 

coordinate system 5, ..., xn , xn 2 0 , about p extends t o  a smooth 

function g defined on an open subset U of Itn. Correspondingly, t 

expressed i n  t h i s  coordinate system a l so  extends t o  U . Ihe Fundamental 

e d s t e n c e  and uniqueness theorem f o r  ordinary d i f f e r en t i a l  equations (see 

e.8. Lang 13, p.551) thus applies l oca l ly  t o  W . 
L e t  cp : [a, b] -> W be aay i n t eg ra l  curve f o r  the  vector 

f i e l d  . %en 

is  iden t ica l ly  equal t o  1 ; hence 

f (<p(t) ) = t + constant, 

Making the change of parameter, 9 ( s )  = p(s - constant), we obtain an 

i n t eg ra l  curve which s a t i s f i e s  

Each in tegra l  curve can be extended uniquely over a maximal 

interval ,  which, s ince W is compact, must be [0, 11. Zhus, f o r  each - - 
y E W there ex i s t s  a unique maximal i n t e w a l  curve 

which pasees through y , and satisfies f ($ (6 ) )  = e . Wthermore 
Y 

(s ) is smooth as a function of both variables (cf. 65, pages 53 - 54)- 
Y 



The required diffeomorphism 

h: Vo X [0,1] + 

is now given by the formula 

h(y0, 4 = P (4 ,  
yo 

with 

Corollary 3.5. (col lar  Neighborhood Theorem) 

Let W be a compact smooth manifold with boundary. There exis ts  a - --  -- - 
neighborhood of Bd W (cal led a co l la r  neighborhood) diffeamorphic t o  - - -, 

Bd W x [0,1) . 
Proof. By lemma 2.6, there exis ts  a amooth fuoction f: W 4 R+ - 

such t h a t  fo1(0) = Bd W and df { 0 on a neighborhood U of Bd W . 
Then f is a Morse function on fW1[0, ~ / 2 ]  , where r > 0 is a lower 

bound fo r  f on the compact set  W - U . Thus Theorem 3.4  guarantees 

A connected, closed submanifold C wn - Bd fl i s  said 

t o  be two-sided if some neighborhood of # on $ i s  cut in to  two 

caoponenta when 8-' is deleted. 

Corollary 3.6. (The - Bicollaring - Theorem) 

Suppose t ha t  every cmponent of a srnocrth submanifold M of W is compact 
7- - - -- - - 

and two-sided. Then there exis ts  a nbicollar" neighborhood of M i n  W 
--..-.-. - I___ - - - 
diffemorphic t o  - M x (-1,l) i n  such a w e y  tha t  M corresponds t o  M x 0 . - - - -  - 



Proof. Since the components of M may be covered by die jo int  - 
open se t s  i n  W , it suffices t o  consider the case where M has a single 

c canponent . 
Let  U be an open neighborhood of' M i n  W - Bd W such t h a t  

i s  compact and l i e s  i n  a neighborhood of M which is  cut i n to  two 

cumponents when M is  deleted. men U c lear ly  s p l i t s  up as a union 

of tvo submanifolds U1, U2 such t h a t  U1 fl U2 = M is the boundary of 

each. As i n  the proof of 2.6 one can use a coordinate cover and a par t i -  

t i o n  of unity t o  construct a smooth map 

such tha t  dq 0 on M , and cp < 0 on U - Ul , cp = 0 on M , 
> 0 on a - U2 . We can choose an open neighborhood V of El , with 

C U , on which cp has no c r i t i c a l  points. 

L e t  2d' > 0 be the lub of cp on the compact s e t  - V . 
Let 26' < 0 be the glb of cp on the compact set o2 - V . 
Then d l [ e t ,  elt ] is a compact n-dimensional sub-manifold of V 

with boundary pt ) u p ) , and cp is  a ~ o r s e  function on 

-1 
cp [el, G" 1 . Applying Theorem 3.1 ve f ind t h a t  d l ( e t ,  etl ) is  a "bicollar" 

neighborhood of M in V and so 8180 i n  W . 

Remark. The collaring and bicollaring theorems remain val id  

without the  compactness conditions. (~unkres  [ 5 ,  p. 511). 

We now re s t a t e  and prwe a resu l t  of Section 1. 



Theorem 1.4. Let (wj Vo, vl) and (wtj V j ,  v;) be two smooth - - _.- 

manif old t r iads  and h: V1 -4 Vi a dif'feamorphism. Then there exists  - - -- 
a smoothness structure for W % W t  compatible with the given strut- - - - - -  
tures  on W and W t .  ie unique up t o  a diffeamorphism leaving 

Vo, - - - --- 
h(vl) = Vi , and V; fixed. - - 

proof. Existence : By Corollary 3.5, there exist col la r  neighbor- - 
hoods Ul, Ui of Vl, V i  in W, Wt and diffemorphisms 

, j t :  k?' - W % W t  be the inclusion maps in the definition 

To define a smoothness structure on 8 manifold it suffices t o  define 

compatible smouthness structures on open se ts  cwering the manifold, 

and the smoothness structures defined on these se t s  by j, j and g 

respectively, are cmpatible. This completes the proof of exietence. 

Uniqueness: We ahm that  any smoothness structure 2 on 

W % W t  compatible with the given structures on ?I and Wt i s  isomorphic 

t o  a smoothness structure constructed by pasting together col lar  neighbor- 

hoods of Vl and Vi as above. The uniqueness up t o  diffeanorphism 

leaving Vo, h(vl) = Vi , and Vh fixed. then fo l la rs  essential ly f'rm 

Theorem 6.3 of Munkres [5, p. 621. By Corollary 3.6 there exists a 



blcol la r  neighborhood U of ( v )  = j ( 1 )  in W % W 1  and a diffeo- 

morphism g: V1 x (-1,l) U with respect t o  the 8moothnese struc- 

ture  8, so tha t  &,o) = J  ( x )  , for x E Vl. Then f l (u  tl J ( w ) )  

and j n ( w ) )  are co l la r  neighborhoods of V1 and V i  in w 

and W'. This canpletes the proof of uniqueness. 

Suppose now we are given t r iads  (WJ Vo, v ~ )  , (wt j V i ,  Vi) 

with Mrse functiuns f,  f1 t o  [0,1], (1,2], respectively. Construct 

gradient-like vector f ie lds  6 and on W and W t ,  respectively, 

normalized so tha t  t ( f )  = 1 , k t  (11 ) = 1 except in e small neighborhood 

of each c r i t i c a l  point, 

Lemma 3.7. Given -- a dlffemorphism h: V1 Vt there is a 1 - 
unique smoothness structure - on W L$ W' , compatible with the given --- 
structures on W , W ' ,  so tha t  f and f t  piece together t o  give a - -- - -L-- 

smooth f'unction - on W W W t  - and 5 - and E' piece - together t o  give - e - 
emooth vector f ield.  - 

Proof. The proof ie the aeme as tha t  of Themem 1.4 above, 
I-L- 

except tha t  the emoothness structure on the bicol lar  neighborhood must 

be chosen by piecing together integral  c m s  of and g t  i n  co l l a r  

neighborhoods of V1 and Vi , This condition also prwee uniqueness. 

( ~ o t i c e  tha t  uniqueness here is much stronger than tha t  i n  !Theorem 1.4. ) 

This construction gives an immediate proof of the following result. 

Corollary 3.8. p(w % W'  j Vo, v;) <_ p ( ~ ;  VO, V1) + P(W* V i ,  V$) 

where p is  the Morse n-er of the  tr iad.  -- _.-- 



Next we w i l l  study cobordisme with Morse number 1 . 
Let (wj V, V' ) be a t r i a d  with Morse function f :  W -> R 

and gradient- l ike vector  f i e l d  f o r  f . Suppose p e W is a 

c r i t i c a l  point, and Vo = f-'(c0) and Vl = fal(cl) are levels  such 

t h a t  co < f ( p )  < cl and t h a t  c = f ( p )  is  t h e  only c r i t i c a l  value i n  

t h e  i n t e r v a l  [ c ~ ,  cl] . 
Let OD' denote the open ball. of radiue r with center 0 i n  r 

R', aad set OD: = oDP. 
Since E is  a gradient- l ike vector  f i e l d  fcn. f , there e x i s t s  

a neighborhood U of p in W , and a ccordinate diffemorphism 

4 3 4 2 g:  OD" -U ao t h a t  fg(x, y ) = e  - 1x1 + lq2 and so t h a t  5 
2e 

has coordinates ( -xl, . . . , -5, . . ., x,) throughout d; for 

vo and f-'(c) and Ve l i e s  between fwl(c) and V1 . The ~ i t u a t i o n  

i s  represented schematically in Figure 3.1, 



Definition 3.9. The characterist ic embedding 

Iat S denote the boundary of the closed unit d i ~ c  5 in R'. 

I 

n-h &-' x OD %- d Vo i s  obtained ae follows. First define an 

A - 1  embeddiog cp: S x OD~-' d V by d u ,  0v) - g(cu cosh 8, cv sinh 8) 
- €  

for  u E sA-', v E 9 n-A-', and 0 < - 6 < 1 . Start ing a t  the point cp(u, 8v) 

i n  V the integralcurve of 5 is  anon-singular curve which leads 
-6 I 

from cp(u, 8v) back t o  some well-defined point cp (u, 0v) i n  Vo. Define 
L I 

the left-hand ephere SL of p i n  Vo t o  be the image %(sA-l x 0). 

Notice that  SL is duet the intersection of Vo with  a l l  integral  cuntes 

of 5 leading to the c r i t i c a l  point p . The left hand disc DL - -  is a smool 
S L ~  

of these in tegral  curves beginning i n  gL and ending a t  p . 
Similarly the characterist ic embedding %: O$ x S n-A-1 - v1 

is  obtained by embedding O$ X S 
n-X-1 

4 VE by 

(w, v)  ~ ( E U  sinh 8, cv coah 8 )  and then translat ing the image t o  

V1. The right-hand sphere SR of p in V1 is defined t o  be 

Qk (0 x snwh-l) . It is the boundary of the right-hand - disk DR, defined 

as the union of segments of integral  curves of g beginning at p and 

ending in SR. 

Definition 3.10. An elementary cobordism ia  a t r i a d  (w; V, V1 ) 

poseessing a Morse f'unction f with exactly one c r i t i c a l  point p . 
Remark. It follows from 3.15 below tha t  an elementary cobordism 

(w; V, V t )  i s  not a product cobordism, and hence by 3.4 tha t  the Morse 

number p ( ~ j  V, Vt ) equals one. Also 3.15 implies that  the - index of the 

elementary cobordism (w; V, Vt ), defined t o  be the index of p with res- 



Figure 3.2 i l lu s t r a t e s  an elementary cobordism of dimension 

, = 2 and index h = 1 . 

Figure -3.2 

Definition 3.11. Given a manifold V of dimension n-1 and 

an embedding 9: x V l e t  x ( v , ~ )  denote the quotient 

manifold obtained from the disjoint  sum (V - (p(&-' x 0)) + (0$ x S n-A-1 1 

A - 1  n-A-1 
by identifying cp(u, 8v) with (Gu, v )  for  each u E S  , v € 9  9 

0 < 8 < 1 . If Vt denotes any manifold diffeomorphic t o  X(V, q )  then 

we will aay t h a t  Vf can be obtained from V by surgery of type (A, n-A) 

Thus a surgery on an (n-1)-manifold has the effect  of removing 

an embedded sphere of dimension A - 1  and replacing it by an embedded 

sphere of dimension n - 1  . The next two resul ts  show t h a t  t h i s  correa- 

ponds t o  passing a c r i t i c a l  point of index A of a Mcrse futlction on an 

n-manif old. 



Theorem 3.12. - If V t  = x(v,(~) can be obtained frm V by -- - - 
s w  e r y  of type (A, -A), then there exis ts  an elementary cobordism A- -- - 
(w; V, V1 ) and a Morse function f: W ---4 R with exactly one c r i t i c a l  --- - - 
point of index h . -' - - 

Proof. L e t  \ denate the se t  of points (s  in  - 
4 2 + 2 Rh x R"-' = R" which sat isfy  the inequalities -1 < - - Ix  1 + 1 y 1 5 1 , 

4 4 and IX I I y I < (sinh l)(coeh 1 )  . Thw \ is a differentiable manifold 

4 2  -+ 2 with two boundaries. The "left"  boundary, - 1  x I + 1 y ( = - 1 , is  

h-1 diffcomorphic t o  S x 0 ~ ~ " '  under the correspondence 

(u, m) C--, (u cosh 8, v sinh 8 )  , 0 < - 8 C 1 . The "right" boundary, 

-l?12 + lf12 = 1 , is  diffeamorphic t o  O$ x S n-h-1 under the correspon- 

dence (eu, v)  C--j. (u sinh 0, v oosh 8) . 
Consider the orthogonal t ra jector ies  of the surfaces 

- 13 + 13 = constant . The trajectory which passes through the 

point (s  can be parametrized i n  the form t 4 ( t G  t-la . If 

-+ x or is zero t h i s  trajectory is  a straight l ine  aegment tending t o  

the  origin.. For 2 and f different from zero it is 8 hyperbola vhich 

leads from some well-defined point (u cosh 8, v einh 8 )  on the l e f t  

boundary of \ t o  the corresponding point (u sinh 0, v coah 8 )  on 

the r ight  boundary. 

Construct an n-manifold W = w(~,(p) as follows. S tar t  with the 

A - 1  
disjoint  sum (V - cp(9hm1x0)) X D ~ + \ .  For each u p  S , v c S  

n-A-l 
J 

0 < 0 C 1 , and c E identify the point (cp(u, w ) ,  c )  i n  the first 

summand with the unique point (3 fi e \ such tha t  

(2) (3 3 lies on the orthogonal trajectory which passea t h r o w  the 



It i s  not difficult t o  see that  t h i s  correspondence defines a 

It follows frm t h i s  tha t  w (~,cp) is 8 well-defined smooth manifold. 

This manif old w (v, cp) has two boundaries, corresponding t o  the 

can be identif ied with V , l e t t ing  z e V correspond to: 

A-1  
((2, -1) E (V - cp(sA-I x 0))  x 9 for  z ,!! .(s X 0). 

I (U cosh 0, v sinh 8 )  E \ for  z = q(u, B V )  . 
The r ight  boundary can be identified with x(v,(~) : l e t t ing  

h-1 z e V - CP(S x 0 )  correspond t o  (2, +1) 3 and l e t t ing  

(&, v)  E O$ X S n-h-l ~0r re~p0I Id  t o  (u sinh 8, v cosh 0 )  . 
A function f: w ( ~ , c p )  d R is  defined by: 

A - 1  for (z,c) e (V - r p ( ~  x0))xD'  

It is easy t o  check that f is  a well-defined Morse function with one 

c r i t i c a l  point, of index A . This completes the proof of 3.12. 

Theorem 3.13. - Let (v; V, V') be an elementary cobordism with 
II- - 

characterist ic embedding (PI: &' x OD~-' d V . Then - (w; V, Vc ) 

is  diffeomorphic t o  the t r i a d  (w(v, t); V, X(V, t)) . - --- 
proof. Using the notation of 3.9 with V = Vo and Vt = V1, v e  - 

2 
know from 3.4 that  (fo1( [c0, C-a2]); V, v - ~ )  *d (fgl( [C+E , ~ ~ 1 ) ;  v ~ ,  V' 

are product cobordisms. Thus (wj V, V8) i s  diffeomorphic t o  (wp; V-,, v 



2 2 
where h' = fol([c-E , C+E I )  . Since (w(v,%); V, %(v,(pL)) is c lear ly  

€ 

diffemorphic t o  (U(V ,cp); VDE, X(V ,q))  , it suffices t o  show 
-E -e 

(we; V-€' VE) 18 diffeomm?hic t o  (w(v y e ) ;  v-,, x(v ,q) )  . 
- E  -E 

Define a diffemorphism k: w ( ~  , cp) -4 WE as follows. For -e 

each (z, t ) r (V - cp(sh-l x 0) ) x DI l e t  k(z, t ) be the unique point 
-€  

of GI such tha t  k(z,t) l i e s  on the integral  curve which passes through 
e 

2 the point z and such that  f (k (z , t ) )  = E t + c . For each (33 E \ 
s e t  k ( Z a  ;. g ( ~ z  ea . It follows from the definitions of cp and of 

w ( v _ ~ ,  (P) , and the fact  tha t  g sends orthogonal t ra jector ies  in  'x 
t o  integral  curves i n  

WE) 
t ha t  we obtain a well-defined diffemorphism 

from U(V , 9 )  t o  W . T h i s  cmpletee the proof of 3.13. 
-E E 

Theorem 3.14. Let (w; V, V' ) be an elementary cobordism - -- 
possessing a Morse function with one c r i t i c& point, of index A . Let -- -- - -- - 

be the left-hand disk associated t o  a fixed gradient-like vector DL -- - --- 
f ie ld .  Then V U DL is  a deformation re t ract  of W. - - - - - 

Corollary 3.15. H,(w,v) - is  ismorphic t o  -- the integers Z - in 

dimension A and is zero otherwise. A generator fo r  -- - - v - i s  

represente 1 by - DL. 

I Proof of Corollary. -- 
We have r\, 

H,(w,v) = H,(V U DL, V) 

H*(DLY sL) 

,% 
(2 i n  dimension A 

= (0 otherwise 

where the second iscnnorphism is  excision. 



Proof of Theorem 3.14. By 3.13 we may assume t h a t  fo r  the charac -- - 
sh-' x - V we have t e r i s t i c  embedding . 

modulo iden t i f i ca t ions ,  where now % is  t h e  d i s k  

L e t  

cy l indr i ca l  neighborhood of DL . be t h e  

We define deformation r e t r a c t i o n s  rt from W t o  V U C and 

*;. from V U C t o  V U DL . ( ~ s r e  t E [o, 11.) Composing these gives 

the des i red  r e t r a c t i o n ,  

lst Retraction: Outside \ follow t r a j e c t o r i e s  back t o  V . 
In LA follow them as far as C o r  V . Precisely:  

For each (v, c ) E (V - %(sh-' X 0~~~')) x D' define 

For each (s 7) E LA define 

where p = p(G t )  i s  the  maximum of 1/(101?( ) and t h e  pos i t ive  real 

solu t ion  f o r  p of the  equation 



the equatiotl has a unique ~ o l u t i o n  > 0 which var ies  Since f o r  13 2 m 
continuously, it fo l l a r s  ea s i l y  t h a t  rt is a well-defined re t raot ion 

from W t o  V U C .  

Fiaure 1.3. The re t rac t ion from W t o  V U C . 

2nd Retraction. ~ u t s i d e  of C define r; t o  be the  identi ty.  

(case 1). 

I n  C move along s t ra igh t  l ines  vertically t o  V U DL, moving 

more slowly near V n C . Precisely: 
For each (3 $) E C define 

for 
r$Z 3 = 

for 1 <  - 

-+ 3 2 
where a = a(x, y, t) = (lot) + t(( 13 

=i remains continuous as (31 * 4 1, 

112 - 1)/ 13 2, . One ve r i f i e s  that 

(f12 4 0 . Note t h a t  the two def- 



Flgure 3.4. The retraction from V U c t o  V u D L *  

Remark. We now indicate b r i e f ly  how most of the above resul ts  

can be generalized t o  the case of more than one c r i t i c a l  point. 

Suppose (w; V, V' ) is  a t r i a d  and f: W & R a Moree functior 

with c r i t i c a l  points pl, . . . , %, a l l  on the same level, of indices 

hl, ..., $ . Choosing a gradient-like vector f i e l d  for f , ?re obtain 

die joint  characteristic embeddings pi: sAi-' x O D ' - ~ ~  -L V , 
i = 1.. k . Construct a smooth manifold o(vb , (4) . as follows. 

k 
hi-1 1 Sta r t  with the dis joint  sum (V - U qi(s x 0 ) )  x D + 5 + ... 

id 1 + %* 
For each u e v g S n-hi-1 , 0 < e < 1 , and c g DI identify the 

point   pi(^, BV) , c ) i n  the first summand with the unique point (%a e 

such t h a t  

(1) -1q2 + lf12 5 c , and 

(2) ($,a l i e e  on the orthogonal trajectory which passes through 



As i n  Theorem 3.13 one proves t h a t  

w(vj rpl, . . ., s) . It follows frm th i s ,  

W i s  d i f  femorphic 

as  in 3.14, t h a t  

V IJ Dl U . . . U Dk is a deformation r e t r a c t  of W , where Di denotes 

the  l e f t  hand disk of pi, i = 1 .  k . Mnally, i f  Xl= X2= ... = Xk- 
then H+(w,v) l a  iscmorphic t o  Z @ . . . @ Z (k Sunnnands) in dimension X 

and is zero otherwise. Generators f o r  H,,(w,v) are represented by 

. . ., Dk. These generators of %(w, V )  a re  ac tual ly  completely deter-  

mined by the  given Morse function without reference t o  the  given gradient- 

l i k e  vector field - see [4, p. 201. 



Section 4. Rearrangement of Cobordisms 

Frm now on we ahal l  use c t o  denote a cobordism, rather than an 

equivalence c lass  of cobordiems as i n  Section 1. If a composition cct 

of two elementary cobordisms i s  equivalent t o  a composition dd' of two 

elementary c o b o r d i w ~  such that  

and index(c ) = index(d) 

then we say tha t  the canposition ccl  can be rearranged. When i s  t h i s  

possible ? 

Recall t ha t  on the  t r i a d  (w; V V1) fo r  cc* there ex is t s  a 
0' 

Morse function f :  W -+ [0,1] with two c r i t i c a l  pointa p and p1 , 
1 index(p) = index(c ) , index(pt ) = index(c I )  , such tha t  f (p)  < < f (pl ) . 

Given a gradient-like vector f i e l d  fo r  f , the t ra jec tor ies  from p 

-1 1 meet V = f ( )  i n  an Imbedded sphere 'R called the right-hand sphere 

of p , and the  t ra jec tor ies  going t o  p t  meet V in an imbedded sphere 

Sfi , cal led the left-hand sphere fo r  pl . We s t a t e  a theorem which guar- 

antees t h a t  cct can be rearranged if SR r l  S; = 4 . 

Theorem 4.1. Preliminary Rearrangement Theorem. Let (w; Vo, vl) 

be a t r i a d  with Moree function f having two c r i t i c a l  points p, p' . 
Suppose t h a t  fo r  some choice of gradient-like vector f i e l d  5 , the c m -  

pact set 
K~ 

of points on t ra jec tor ies  going t o  or frm p is disdoint 

frcm the compact s e t  K of points on t raJector ies  going t o  or from pl.  
P' 

If f ( ~ )  = [0,1] and a,al E (0,l) , then there ex is t s  a new Morse 



( a )  5 is  a gradient-like vector f i e l d  fo r  g , 
(b)  the c r i t i c a l  points of g are s t i l l  p, p1 , and g(p) = a , 

g(p')  = a' , 
( c )  g egrees with f near V U V1 and equals f plus a constant i n  0 

erne neighborhood of p and i n  same neighborhood of p' . 
(see Figure 4.1) 

Proof: Clearly t ra jec tor ies  through points outside K = K U K , - = A 

all go fram Vo t o  V1. m e  function x: W - K + V o  t ha t  assigns t o  

each point q i n  W - K the unique intersection of i t s  t ra jectory with 

Vo i s  smooth (cf. 3.4) and when q l i e s  neex K , then n(q) l i e s  near 

K i n  Vo. It follows tha t  if b: Vb-+ [0,1] is  a smooth function zero 

near the left-hand sphere K n Vo , and one near the sphere K ,111 Vo , 
P P 

then p extends uniquely t o  a smooth function I;: W -+ [o, 11 tha t  is 

constant on each trajectory, zero near K and one near K . 
P P' 

Define a new Morse function g: W + [0,1] by g(q) = ~(f(q), ;(q))  

where ~ ( x , y )  is any smooth function [0,1] x [o,I] + [0,1] with the 

properties: (see Figure 4.2) 



ac For a l l  x end y , d x ,  y) > 0 a d  ~ ( x ,  y )  increaees f r o m  0 

t o  1 aa x increases frm 0 t o  1 . 
G(~(P) ,o )  = a ~ ( f ( p ' ) , l )  = a' 

G(X,Y) = X for  x near 0 or 1 and for  a l l  y , 

%r,0) = 1 for x in a neighborhood of f (p) , 

for x i n  a neighborhood of f (p* ) . 

Figure 4.2 

The reader can easily check that  g has the desired properties 

4.2. Extension: If more generally the Moree function f of 

4.1 i s  allowed two se t s  - of c r i t i c a l  points p {pl,. . . ,pn) , 
P' = (pi,. . . ,p*) with a l l  points of p at a single level f (p) and 

B 
a l l  points of pr at a single level f(p '  ) , then the theorem remains 

valid. In fect  the proof may be repeated verbatim. 



S t i l l  using the notation of page 37 l e t  A = index(c) , 
A'  = index(c ' ) , and n = dim H . If 

d i m  S + dim SJ: < dim V R 

i.e., (n - - 1 )  + (A* - 1) C n-1 

or  A > A'  - 
then, roughly stated, there i s  room enough t o  move 

S~ 
out of the way 

Theorem 4.4. If A > X 1  , then it is possible t o  a l t e r  the - 
gradient-like vector f i e l d  fo r  f on a prescribed small neighborhood of 

V so  tha t  the corresponding new spheres 
SR and in  V do not 

intersect .  More generally i f  c is  a cobordism with several index 

c r i t i c a l  points ply.. . ,pk of f , and c 1  a cobordiem with several 

index A 1  c r i t i c a l  points p i p  of f , then it is poseible t o  

a l t e r  the gradient l ike  vector f i e l d  for  f on a prescribed small neigh- 

borhood of V so tha t  the corresponding new spheres i n  V are pairwise 

disJoint.  

Definition 4.5. An open neighborhood U of e. submanifold 

v-m C vV , which i s  diffemorphic t o  b? x R i n  such s way tha t  I? 

corresponds t o  &? x 0 , is  cal led a product neighborhood of i n  vV . 

Lmima 4.6. Suppose M and N are tub submanifolda of dimension 

m and n i n  a manifold V of dimension v . If M haa a product neigh- 

borhood in  V , and m+n < v , then there exiete a differnorphiem h of 

V onto i t s e l f  smoothly isotopic t o  the identity, such t h a t  h ( ~ )  is dis-  

jo int  from M . 



Remark: The assurrption t ha t  M bas a product neighborhood is  

not necessary, but it simplif ies  the  proof. 

v-m Proof of 4.6: Let k: M x R d U C V be a diffecnnorphism onto a 

product neighborhood U of M in  V such t h a t  k(M x @) = M . Let 

N = U Cl N and consider the  composed map g = nok - 1 
0 lNo where 

v-m 
n : M x R  d R  V-m is the  natural  projection. 

The manifold k ( ~  x i?) r V w i l l  i n te r sec t  N i f  and only if 

2 E g ( ~ ~ )  . If No is  not empty, dim No = n < v-m ; consequently the  

theorem of Sard (see de Rham [l,p.10]) shows t h a t  g(No) has measure 

v -m 
zero i n  R . . Thus we may choose a point i? E R " - ~  - d N 0 )  . 

We w i l l  construct a diffemorphism of V onto i t s e l f  t ha t  c a r r i e s  

M t o  k(M x i?) and is isotopic t o  the identi ty.  One can ea s i l y  construct 

a smooth vector f i e l d  ((3 on R ~ ' ~  such t h a t  ( (3 = d f o r  lq 5 Iq 
v-m 

and ((9 = 0 f o r  [a > - 214 . Since f has ccmpact support, and R 

has no boundary, the  in tegra l  curves ~r ( t , ? )  are defined f o r  a l l  r e a l  

values of t . (compare Milnor [4,p.10]. ) Then @(o,?) is the  iden t i ty  

on R ~ ' ~ ,  @(l,x) i s  a diffeanorphism carrying 0 t o  ?, and @(t,$ , 
0 < - t < - 1 , gives a smooth isotopy f r m  jr(0,x) t o  $ ( l , a  . 

Since t h i s  isotopy leaves a l l  points f ixed outside a bounded s e t  

i n  R ~ - ~  we can use it t o  define an isotopy 

Then h = hl is t h e  desired diffeomorphiam V + V . 



Proof of Theorem 4.4s To simplify notation we prove only the 

first statement of 4.4. The general statement is proved similarly. 

Since the sphere 
S~ 

hcrs a product neighborhood i n  V (cf. 3.9), 

Lenun~ 4.6 prwides a dlffemrphism h: V + V smoothly isotopic t o  the 

identity, for which h(sR) n SL = $ . The isotopy is  used ae follows t o  

a l t e r  5 . 
1 1 L e t  a < p be so large t h a t  i l [ a ,$  l i e s  in  the prescribed 

neighborhood of V . The integral  curves of $ = ~ / g ( f )  determine a 

dif  fernorphiam 

1 
such t h a t  f(cp(t,q)) = t , and cp(pq) = q E V . Defbe a diffeomorphiam 

1 H of x V onto i t s e l f  by set t ing ~ ( t , q )  = ( t ,ht(q))  , where 

1 
ht(9) i s  a ~ 0 0 t h  isotopy [ayF] X V 4 V f i a a n  the  identi ty t o  h 

adjusted so tha t  ht is  the ident i ty  f o r  t near a and ht = h for  t 

near Then one readily checks tha t  3 -  

1 is  a smouth vector f i e l d  defined on f'l[a,H] which coincides with 2 
-1 -1 1 near f ( a )  and f (5) = V , and s a t i s f i e s  ~ c ( f )  = 1 identically. Thus - 1 the vector f i e l d  on W which coincides with ( ( f ) ~ '  on ~ ~ [ a , ~ ]  and 

with 5 elsewhere i s  a new smooth gradient-like vector f i e l d  for f . 

Figure 4.4. - 



Now for  each fixed q E V , cp(t,ht(q)) describes an integral 
- -1 -1 1 m r v e  of (p(a,q) i n  f ( a )  t o  d$,h(q))  = h(q) in  f (F) = v 

It follows tha t  the  right-hand sphere ~ ( a  x S ) of p in  f l ( a )  i s  
R - 

carried t o  h(sR) in V . Thus h ( ~  ) is the new right-head sphere 
R - S~ 

of p . Clearly = S . So SR f l  = h(sR) t? SL = f as required. 
L 

This completes the proof of Theorem 4.4. 

In the argument above we have proved the following lemma which is 

frequently needed in l a t e r  sections. 

Lemma 4.7. Given axe a t r i a d  (w; Vo, V1) with Morse function f 

and gradient-like vector f i e l d  5 , a non-critical level  V = f'l(b) and a 

diffemorphism h: V + V tha t  is isotopic t o  the identity. I f  

f-l[a,b] , a < b , contains no c r i t i c a l  points, then it i s  possible t o  

construct a new gradient-like vector f i e l d  for  f such tha t  

( a )  coincides with 6 outside f-l(a,b) 

(b)  6 = h cpt where cp and 6 are the diffemorphisms 

- 
f-'(a) + V determined by following the t ra ject&ies  of and 6 , 
respectively. 

Replacing f by -f one deduces a similar propositian in  which 1 

is  al tered on f-l(b,c), b < c , a neighborhood t o  the r ight  rather than 

t o  the l e f t  of V . 
Recall t ha t  any cobordism c may be expressed as a camposition of 

a f i n i t e  number of elementary cobordisme (corollary 2.11). Applying the 

Preliminary Rearrangement Theorem 4.1, 4.2 i n  canbination with Theorem 4.4 

we obtain 



Theorem 4.8. Final Rearrangement Theorem. Any cobordism c may 

b~ expressed as a composition 

where each cobordism c admits a Morse function with just one c r i t i c a l  k 

l eve l  and with all c r i t i c a l  points of index k . 
f i t e rna te  version of 4.8. 
Without using the notion of cobordism, we have the following prop- 

os i t ion about Moree functions: Given any Morse function on a t r i a d  

(Wj VO, V1) , there ex is t s  a new Morse function f , which has the same 

critical.  points each with the same index, and which hae the properties: 

(2) f (p)  = index(p) , at  each c r i t i c a l  point p of f . 
Definition 4.9. Such a Morse function w i l l  be cal led self-indexing 

(or  nice)  . - 

Theorem 4.8 Is due t o  Smale [8] and Wallace [9]. 



5 5.. A Cancellation Theorem 

I n  v i e w  of the Final Rearrangement Theorem another question 

a r iaes  naturally. Uhen is  a camposition cc '  of an elementary 

cobordism of index A with an elementary cobordism of index 

A + 1 equivalent t o  a product cobordism? Ngure 5.1 shows how 

t h i s  may occur i n  dimension 2. 

Figure 5.1 

L e t  f be a Morse function on the tried (wn; Vo, V1) 

f o r  cc l ,  having c r i t i c a l  points p, p1 of index A, A + 1 

such tha t  f (p ) < 112 < f (pt  ). A gradient-like vector f i e l d  

fo r  f determines i n  V = f- l(1/2) a right-hand sphere 

SR of p and a left-hand sphere SL of p l .  N o t e  t h a t  
I 

d i m s  R + d i m s L = ( n - ~ - ~ ) + ~ = ~ - 1 = d i r n v .  

Definition 5.1 

!No submanifolds #, PTn C vv are  said t o  have transverse 

intersection (or to in tersect  transversely) i f  a t  each point 

q e M fl N the tangent space t o  V a t  q is  spanned by the 

vectors tangent t o  M and the vectors tangent t o  N. (1f 

m + n < v t h i s  is  impossible, so transverae intersection simply 



As a preliminary t o  the w o r  Tbeorem 5.4 we prove: 

Theorem 5.2 

The gradient-like vector f i e l d  5 may be s o  chosen t h a t  SR 
I 

has transverse in tersec t ion  with 8 i n  V. L 

Fbr the  proof we use a l e m a  s t a t ed  with the notation of 

Definition 5.1: 

Lema 5.3 I f  M has a product neighborhood i n  V, then there  

i s  a diffeomorphism h of V onto itself smoothly i so topic  t o  

the  i den t i t y  such t h a t  h ( ~ )  has transverse in tersec t ion  with N. 

Remark: This l e m a  apparently includes Lema 4.6; i n  f a c t  t he  . 

proof i s  v i r t u a l l y  the same. The product neighborhood assumed 

f o r  M is  ac tua l ly  unnecessary. 

Proof: As i n  Lemma 4.6 l e t  k : M x R ~ - ~  -> u c v be a - 
diffeomorphism onto a product neighborhood U of M i n  V 

such t h a t  k ( ~  X 8) = M. Let No = U n N, and consider the 

ccanposed map g = nD k'llI'? 'where n : M x R ~ ' ~  v-m -> R 
0 

is  

the  natura l  projection. 

The manifold k ( ~  x 2) w u f a i l  - t o  have transverse 

v-m in tersec t ion  with N i f  and only i f  ?E R is the  image 

under g of some cri t ical-  point  q E: No a t  which g fails 

t o  have maximal rank v - m. But according t o  t h e  theorem of 

Sard (see Milnor [LO, p. 101 and deRham [l, p.101) t he  image 

g ( c )  of t he  set C c N of all c r i t i c a l  points  of g has 
0 

v-m v-m measure zero i n  R . Hence we can choose a point  i?& R - g(c ) ,  



and, as in  Lemna 4.6, con&ruct an isotopy of the ident i ty  map 

of V to a diffeomorphism h of V onto i t s e l f  t h a t  carries 

M to k(M X if). Since k(M X 3) meets N transversely, the 

proof i s  ccmplete. 

Proof of 'Iheorem 5.2: 

'Ihe above lemma provides a diffeomorphism h : V -> V smoothly 
1 

isotopic t o  the identity, such t h a t  h(SR) intersects  SL 

transversely. Using Lema 4.7 we can a l t e r  the gradient f i e ld  

so  tha t  the new right-hand sphere is  h(sR), and the l e f t -  

hand sphere i s  unchanged. Pris completes the proof. 

I n  the remainder of 55 it w i l l  be assumed tha t  SR has t r a m -  
f 1 

verse intersection with S 
L *  Since dim SR + dim SL = dim V, the 

intersection w i l l  consist of a f i n i t e  number of isolated points. 

For if qo is  i n  SR fl SL there ex is t  loca l  coordinate functions 

x 1  . .  X on a neighborhood U of q i n  V such 

i 
IAat X (q = 0 , i = 1 , . n - 1, and U f l  SR i s  the locus 

0 

1 f 

x (9) = . . . = xA(q) = 0 while U fl SL is the locus xAtl(q) 

n-1 I - - , . . = x (q) = 0. Clearly the only point i n  SR fl SL n U is 

90 . As a consequence there are jus t  a f i n i t e  number of t ra jec t -  
1 

or ies  going from p t o  p' , one through each point of SR fl SL . 
S t i l l  using the notations introduced on page 45 we now s t a t e  

the major theorem of th i s  section. 



Theorem 5.4 
I 

If the intersection of SR with SL is transverse and consists 

of a single point, then the cobordism is  a product cobordism. In 

f a c t  it is  possible t o  a l t e r  the gradient-like vector f i e ld  f 

on an a r b i t r a r i l y  small neighborhood of the single trajectory T 

from p t o  p'  producing a nowhere zero vector f i e l d  t '  whose 

t ra jec tor ies  all proceed from Vo t o  V1. Fhther g 1  i s  a 

gradient-like vector f i e ld  f o r  a Morse function f 1  without 

c r i t i c a l  points t ha t  agrees with f near Vo U V1. 

(see Rgure 5.2 below. ) 

Remark: The proof, due t o  M. Morse [ ~ ] [ 3 2 ] ,  is  quite formidable. 

Not including the technical. theorem 5.6 it occupies the following 

10 pages. 



Figure 5.2 

After 



Fi r s t  we prove the theorem making an assumption about the 

behavior of 6 neaz T. 

Preliminary Eypothesie 5.5 

mere i s  a neighborhood UT of the traJectory T from p t o  

p l ,  and a coordinate chart  g : UT -> R such that: 

1 )  p and p1 correepond t o  the points ( 0 , .  0 and 

(1, 0, ..., 0). 

where g(q) = 3 and where: 

3)  v(xl) is  a smooth function of 5, positive on (0, 11, 

zero a% 0 and 1, and negative elsewhere. Also, 

Assertion 1) 

Given an open neighborhood 

a smaller neighborhood U1 

U of !I! one can always find i n  U 

of T so tha t  no t ra jectory leads 

from U1 outside of U and back again in to  U1. 

Proof: If this were not so, there would ex is t  a sequence of 

( p a r t i a l )  t ra jec tor ies  TI, T2,. . . , Tk, ... where % goes from 

a point rk, through a point sk outside U t o  a point tk, 

and both sequences (rk)  and ( tk)  approach T. Since W 

Bb a - 



i s  compact we may assume tha t  sk converges t o  s E W - U. The 

in tegra l  curve $(t, s ) through s must came from Vo or go 

t o  
V1 

or  do both, e l se  it would be a second t ra jectory joining 

p to p'. Suppose fo r  definiteness t h a t  it comes from Vo. 

Then using the continuous dependence of ~ ( t ,  s ' ) on the i n i t -  

ial value s t ,  we find tha t  the t ra jector ies  through a l l  points 

near s originate at Vo. 'Ihe p a r t i a l  t ra jectory Ts, from 

V t o  any point s t  near a is  compactj hence the l e a s t  die- 
0 

t a m e  d(s  ) from T t o  Ts , ( in  any metric) depends continuously 

on s t  and w i l l  be bounded away frcon 0 fo r  all 8 '  i n  some 

neighborhood ~f s. Since r E Te k the points rk cannot 
k 

approach T as k -> CO, a contradiction. 

- 
Let U be any open neighborhood of T such tha t  U C UT 

and l e t  U' be a 'safe' neighborhood, T C U' C U, provided 

by Assertion 1). 

Assertion 2 )  

It is  possible t o  a l t e r  on a compact subset of U' 

producing a nowhere zero vector f i e l d  E l ,  such t h a t  every 

in tegra l  curve of through a point i n  U was outside U a t  

some t%e t' < 0 and w i l l  again be outside U a t  some time 

t" > 0. 

Proof: 
7 

Replace ifi2) = (v(%), -x2, . . ., xn) by a smooth vector f i e ld  

2 
= (v t (x l ,  p), -x2, ..., x ) where p = [x2 + ... n 



* 

and 

( i  ) V' (xl, ~(2)) 5 v(xl) outside a compact neighborhood 

of g(T)  i n  g(Uf). 

(11) vl(x , 0 )  is everywhere negative. 1 

(see Flgure 5.4) 

%is determines a nowhere zero vector f i e l d  g '  on W. In  our 

loca l  coordinates, the di f fe ren t ia l  equations sa t i s f ied  by 

the in tegral  curves of 5 '  on UT are 

Consider the in tegra l  curve 2( t )  = (%(t),  . . . , x ( t ) )  with n 
0 i n i t i a l  d u e  (<, ..., xn), es t increasee. 

0 0 
(a )  If one of x ~ + ~ ,  . . . , x is nonzero, say x: f 0, then n 

o t  I xn( t )  1 = lxn e 1 increases. exponentially and ?(t) event- 

leaves g(U) (g(c) is compact, therefore bounded). 

0 0 2 (b)  If x:+~ = . . . = x n = 0, then ) = [(x2) + . . . + 
0 4 

( x w 1  )2~1/2 e-t decreases exponentially. Suppose x ( t )  remains 

i n  g ( ~ ) .  Since v'(xl, ~ ( 2 ) )  L s  negative on the  %-axis, 

there exis ts  6 > 0 so small t h a t  v f  (5, ~ ( 2 ) )  is  negative 

on the ccaapact s e t  % = (2 E g(ij) 1 p(x3) 5 6)  . 
Then vt(xl, p ( 9 )  ) has a negative upperbound - c ~  < 3 on . Ks 



Eventually p (d  (t ) ) ( 6, and thereafter  

%( t  
< -01 . d t  - 

Thus d( t )  must eventually leave the bounded s e t  g(U) a f t e r  

all. 

A similar argument w l l l  show t h a t  ?(t) goes outside g ( ~ )  

as t decreases. 

Assertion 3) 

hrery t ra jectory of the vector f i e l d  5' goes frm Vo t o  V1. 

Proof: - 
If an integral  curve of 5 '  is ever i n  U t  it eventually gets 

outside U, by Assertion 2). Leaving U' it follow t r a j ec t -  

or ies  of 5; so  once out of U it w i l l  remain out of U1 

permanently by Assertion 1). Consequently it must follow a 

trajectory of t o  V1. A para l le l  argument shows t h a t  it 

comes from Vo. On the  other hand i f  an integral  curve of 5 '  

is never i n  U* it is  an integral  curve of 5 that goes from 

Assertion 4 )  In a natural way, e determines a diffeamolphism 

: ([O, 11 X Vo j O X  Vo, 1 X  V o )-> ( W j  Vo, V1) 

Proof: Let $(t, q)  be the family of in tegra l  curves for  5 ' .  

Since is  nowhere tangent t o  MW, an application of the 

implici t  function theorem shows t h a t  the function ql(q) 

[respectively 'Co(q)] t ha t  aeaigns t o  each point q E W the 

time at  which $(t, q )  reaches V1 [respectively minus the 



time when it reaches Vo] depends smoothly on q. Then the 

a lso smooth. Clearly the smooth vector f i e ld  ~ ~ ( " ( 9 )  ) (9) 

has integral  curves tha t  go from Vo t o  V1 i n  un i t  time. To 

simplify notation assume tha t  had this property from the 

outset. men the required differnorphiem maps 

( t ,  Qo) -> *(t, qO) 

and its inverse i s  the smooth map 

s -> (T0(9), d d ) .  . 
Assertion 5 l -  Ihe vector f i e ld  E L  is  a gradient-like vector 

f ie ld  for  a Morse function g on W (with no c r i t i c a l  points) 

tha t  agrees w i t h  f on a neighborhood of Vo U V1. 

Proof: In view of Assertion 4)  it w i l l  suffice t o  exhibit a - 
a Mrse function g : [O, 1 1  X Vo + [o, 1 1  such tha t  -& > 0 

and g agreeewith f l = f a $ d  near O x V  U I X V o  (w 
0 

w msume tha t  Vo = f - l (o )  and V = f l ( )  Clearly there af. 
exists 6 > o such that,  for  ~LI. q e vor $ ( t ,  q) > o 

i f  t < 5 or t > 1 - 6. Le t  A : (0, 11 -> [O, 11 be a 

smooth function zero for  t E [6, 1. - 81 and one for t near 

0 and 1. Consider the function 

Choosing 6 suff ic ient ly  e m u  we m a y  assume tha t  k(q) > 0 

f o r  a l l  q E Vo. Ben  g apparently has the required properties. 



Granting the Preliminary Hypothesis, this completes the 

proof of the Flrst Cancellation 'Beorem 5.5. lb establish 

Theorem 5.5 i n  general it remains t o  prove: 

I 
Assertion 6) When SR and SL have a single, transverse 

intersection it is a l w a y n  possible t o  choose a new gradient- 

l i k e  vector f i e l d  € '  so tha t  the Preliminary Hypothesis 5.5 

is  sat is f ied.  

Remark: The proof, which occupies the  last 12..'~ages of thla 

eection, has two par ts  -c the reduction of the problem t o  a 

technical lemma (Theorem 5.6), and the proof of the lennna. 

Proof: Let w) be a vector f i e l d  on FIn that i s  of the  - 
form described i n  the Preliminary E&pothesis, w i t h  s in&ari t ies  

a t  the origin 

function 

F@) = f ( p )  + 

0 and the  unit point e of the %-axis. The 

i e  a Morse function on R~ fo r  which qe) is a c a d i e n t -  

l i k e  vector f ie ld .  By a suitable choice of +Ae function v ( 5 )  

we may arrange t h a t  F(e) = f (p' ) , i.e. 21: v( t )d t  = 

f ( p l )  - f ( p )  . 
Recall that according to the  def ini t ion 3.1 of a grad- 

ient- l ike vector f i e l d  fo r  f ,  there ex is t s  a co-ordinate 

system (xl, ..., x ) about each of the c r i t i c a l  points p n 
2 2 

and p1 i n  which f corresponds t o  a function + xl +. .. . + xn 

of suitable index, and E ha8 coordinates (2 X , . . . , 2 xn 

'Ben one readily checks that there  ex i s t  levels  bl and b2, 



a = f ( p )  <bl< b g <  f(pt) = ag, 1 and diffecrmorpPisms gl, g2 

of closed, disjoint neighborhoods L1, L2 of 0 and e onto 

neighborhoods of p and p t  respectively such that: 

(a) The diffeomorphisms carry to 5, F to f ,  and points 

on the segment oe to points on T. 

(b) Let pi denote T 0 ( b  , 1 = 1 2. The image of LI 

is a neighborhood in fW1 [al, b ] of the segment ppl of 
1 

T, while the image of L;, is a neighborhood in f-I [bgr a*] 

of the segment p2pt of T (see Figure 5.5). 

Figure 5.2 
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Observe that the trajectories of T@) with initial points 
-1 -1 in a small neighborhood U1 of ql(%) in g1 f (bl) pro- 

-1 -1 ceed to points in g2 f (b) that form a diffemorphic image 

u2 of U1 and in doing so sweep out a set Lo diffeomorphic 

to U x [0, 11 such that L1 U Lo U L2 is a neighborhood of 1 

oe. There is a unique extension of g to a smooth imbedding 
1 - 

gl of L1 U Lo into W determined by the condition that $ 

trajectories go to trajectories and F levels go to f 

levels. 

Now let us suppose for the moment that the two imbeddings 

of U, into fm1(b2) given by 4 and g2 coincide at least 

on some small neighborhood of il(pg) in U2. Then pL and 

g2 together give a diffeomorphism g of a small neighborhood 

V of oe onto a neighborhood of T in W that preserves 

trajectories and levels. !@is implies that there is a smmthg 

positive, real-valued Function k defined on E(v) such that 

for dll points in E(v) 
- 
g* $" k &!. 

Choosing the neighborhood V of oe sufficiently small we 

may assume that the kction k is defined, smooth and positive 

on all. of W. Then 5 '  = ke is a gradient-like vector field 

satisfying the Preliminary Hypothesis 5.5. So when the above 

supposition holds the proof of Assertion 6) is complete. 

In the general case, the vector field e determines a 

diffeomorphism h : f-l(bl) -> f-'(b2) and the vector field 

+ q determines a diffeomorphism h ' : U1 -> U2. Clearly the 



supposition made in the previous paragraph holds if and only 

if h coincides with ho = g2h'q1 near pl. Ibw, by Lemma 

4.7, any diffeomorphism isotopic to h corresponds to a new 

gradient-like vector field that differs from only on 

f'l(bl, b2). Thus Assertion 6) will be established if E can 

be deformed to a diffeomorphism which coincides with ho 

near pl and for which the new right-hand sphere L(sR(bl)) 

in level b2 still has the single transverse intersection p2 
I 

with sL(b2). (The bl or b2 here indicates the level in 

which the sphere lies. ) 

For convenience we will specify the required deformation 

of h by giving a suitable isotopy of h'lh that deforms h-%I 
0 0 

on a very small neighborhood of p to coincide with the 1 

identity map on a still smaller neighborhood of pl. Observe 

that, after a preliminary alteration of g2 if necessary, 

hi's is orientation preserving at pl = hilh(pl) and both 

hi% SR(bl) and "(al) have the same intersection number 

(both +1 or both -1) with' sL(bl) at pl. (For a defln- 

ition of intersection number see 6. ) Then the folldwing 

local theorem provides the required Isotopy. 

Let n = a + b. A point x E R~ may be written x = (u, v), 

u E Ra, v E Rb . We identify u E Ra with (u, o) E: R~ and 

v E R~ with (0, v) a R ~ .  

'Iheorem 5.6 

Suppose that h is an orientation-preserving imbedding 



of R~ into R~ such that 

1 1) h(0) = 0 (where 0 denotee the origin in Rn) 

I 2) h(Ra) meets R~ only at the origin. 'Ihe intersection is 

I transverse and the intersection number is +1 (where we 

I agree that Ra meets Rb with intersection number +1)- 

I Then given any neighborhood N of the origin, there exists 
t n t a smooth isotopy h Iln -> R , 0 < t < 1, with ho = h t ' - - 

such that 
I t 

(I) ht(x) = h(x) for x = 0 and for x E Rn - N, 0 < t < 1. - - 
t 

(11) hl(x) = x for x in sane smal l  neighborhood N1 

of 0. 

1 
. I 

! 

h'SR") 

Figure 5.6 F 

R a  

i 
I -a 5.7 
i 

Let h : Rn R be the map in the hypothesis of Theorem 

n 5.6. 'Ihere exists a smooth isotopy ht : R~ -> R , 0 < - t < - 1, 
such that 

(1) ho = h and 5 is the identity map of Rn. 

b (11) for each t E [O, 11, ht(Fta) f l  R = 0, and the inter- 

section is transverse. 



Proof of L e m  5.7: 

since h(0) = 0, h(x) may be expressed i n  the form 

1 n 
h(x) = q h  (x)  + ... + xnh (x)  , x = (5, ..., x ) , where 

11 
i h ( x )  is a smooth vector function of x and (consequently) 

i ah 
h (0) = a;;- (0) , i = 1, ..., n. (see ~11nor [4, p.61). LP 

i 
we define ht by 

1 1 
4 - t ( ~ )  = h(tx)  = 5 h  ( t x )  + ... + xnhn(tx), 0 < - t < - 1, 

then ht(x) is  clearly a smooth isotopy of h t o  the l inear  

map 

1 hl(x) = yh (0) + ... + xnhn(0) 

Since h(Ra) and ht(Ra) have precisely the same orienting 

basis hl(0), . . . , ha(0) of tangent vectors a t  0 E IIn, it 

follows t h a t  f o r  eU t, 0 < - t < - 1, ht(Ra) has transverse 

b b positive intersection with B a t  0. Clearly ht(Ra) n R = 0. 

Thus i f  hl is the ident i ty  l i n e a r  map we are  through. 

If not, consider the  family A C GL(n, R )  consisting of 

all urientation-preserving non-singular l inear  transformations 

L of Rn such tha t  L ( R ~ )  has transverse posit ive in ter-  

b section with R , i.e. a l l  transformations with matrices of 

A + the form L = (&) 

where A is an a X a matrix and 

det  L > 0 , det  A > 0. 

Assertion: For any L E .A there is a smooth isotopy Lt, 

0 < - t < - 1, deforming L i n t o  the identity, such t h a t  Lt E A 

fo r  all t i  or, equivalently, there i e  a smooth path i n  A 

from L t o  the identi ty.  



Proof: Addition of a scalar multiple of one of the f i r s t  a - 
rows [columns] t o  one of the l a e t  b rows [respectively, 

columns] clearly may be realized by a smooth deformation 

(= path) i n  A. A f i n i t e  number of such operations w i l l  reduce 

the matrix L t o  the form 

where B is a b X b matrix and (necessarily) de t  B > 0. A s  

is  well known a f i n i t e  number of elementary operations on the 

matrix A, each realizable by a deformation i n  G L ( ~ ,  R),  

serve t o  reduce A t o  the iden t i ty  matrix. A similar s ta te -  

ment holds fo r  B. Plus there are smooth deformations At, Bt, 

0 < t < 1, of A and B t o  ident i ty  matrices w i t h  det  At > 0 - - 
and det  Bt > 0. 'Ihey provide a deformation i n  A of L' t o  

the identity. This completes the proof of the aseertion and 

also the proof of Lenrma 5.7. 

Proof of lheorem 5.6: Let ht, 0 < - t < - 1, be the isotopy of 5.7. 

Let E C N be an open b a l l  about 0 and l e t  d be the distance 

from 0 t o  R~ - h(E). Since ht(0) = 0 and the time interval  

0 < - t < - 1 is compact, there ex is t s  a small open b a U  El 

about 0 with C E so tha t  iht(x)( < d f o r  all x E El. 

Now define 

) fo r  x E El 

f o r  x E - E 
As it stands, t h i s  i s  an isotopy of h 1% U (# - E) 

Asan  

i n i t i a l  s tep  we w i l l  extend it to an isotopy of h thcrt satis- 

f i e s  a t  l e a s t  the conditions ( I )  and (IT) of 'Iheorem 5.6. rn 



F l r s t  observe tha t  t o  9 isotopy ht, O < t < l ,  of h - - 
there corresponds a smooth level-preserving imbedding 

H : [o, 1 1  X Ftn -> [O, 1 1  X R~ 

and conversely. The re la t ion is  simply 

lhe imbedding H determines on its image a vector f i e ld  

where (t, Y )  = H(t, x )  , i.e. y = ht(x). 'Ihis vector f ie ld ,  

together with the imbedding ho, completely determines ht and 

hence H. In  f a c t  

of in tegral  curvee with i n i t i a l  values (0, y) e 0 x ho(Ftn). 

lhese observations suggest a device due t o  R. Ihm. We 

w i l l  extend the ieotopy Kt t o  all of [0, 1 1  x lIn, by f i r s t  

extending the vector f i e l d  - - 

t o  a vector f i e ld  on [0, 11 x Ftn of the form (1, ( t ,  Y ) ) .  

'Ihe Vector Field 



Clearly admits an extension t o  a smal l  open neSghhorhoaii 

of its closed damain [o, I] X [% U (Rn - E)). This gives 

an extension of ?(t ,  y )  t o  a neighborhood U of i ts  closed 

domain. Multiplication by a smooth function identical ly one 

on the  original closed domain ana zero outside U produces an 

extension t o  [O, 1 1  X Rn. Finally, se t t ing  the first co-ord- 

inate equal t o  1 we get  a smooth extension 

?"(t, Y) = 1, a ,  Y)). 

Notice tha t  a family of in tegra l  curves $(t, y )  is  defined 

for  y e Rn and f o r  a l l  t E [O, 11. For y E Rn - h(E) - 
t h i s  is  t r i v i a l .  For y E h ( ~ )  it follows frw the fac t  t h a t  

the in tegral  curve must remain i n  the compact s e t  [o, L]  X h(E). 

'Ibe family g gives a smooth l eve l  preserving imbedding 

Jr : [O, 11 X Rn -> [O, 11 X Rn 

Then the equation 

*(t, Y 1 = (t, ~ ~ h - l ( y ) )  

servcs t o  define the  required extension of gt t o  a smooth 

isotopy of h t h a t  s a t i s f i e s  a t  l e a s t  conditions (I) and (11) 

of lheorem 5.6. 

Using a similar argument one can prove the foUowing 

theorem of R. Tham which we w i l l  use i n  Section 8. (fir a f u l l  

proof see Milnor 112, p.51 o r  Thom [13] ). 

lheorem 5.8 Isotopy Exbemion meorem. 

Let M be a smooth compact submanifold of the smooth manifold 

H without boundary. If ht,O - < t < - 1, is a smooth isotopy of 

i : M C H, then ht is  the  ree t r ic t ion  of a smooth isotopy 



I I 69 
ht,O < - t < - 1, of the identi ty map N -> N such t h a t  ht 

f ixes  points outside a compact subset of N. 

Returning t o  the proof of Theorem 5.6, l e t  $ denote 

F 
the extended isotopy. The Last condition (111) of Theorem 

5.6 w i l l  be violated i f  gt Introduces new intersections of 

the image of R~ with R~ as indicated i n  Flgure 5.9. 

Hence we can use Et only f o r  small values of t, say t < - t', 
where no new intersection can occur. We w i l l  apply the above 

process t o  construct a further deformation of , which 

a l t e r s  Kt, only a t  points i n  El, where coincides with 

htl. After a f i n i t e  number of steps we w i l l  obtain the isotopy 

required. The de ta i l s  follow. 

Note tha t  we can write the isotopy ht of Lenrma 5.7 i n  

the form 

(* 1 1 n ht(x) = x,-h ( t ,  x )  + ... + xnh ( t ,  x )  

i where h ( t ,  x )  is a smooth function of t and x, 

i 
i = 1 , u and (consequently) h ( t ,  0 )  = 

% q (O).(%e 

proof given i n  Milnor (4, p.61 is  unaffected by the pea-  

meter t. ) 



L?aauLu 
There ex is t  positive constants K, k such that f o r  all x 

a e)  ( ) k x  fo r  r e # ,  where r a : I tn ->R 

is  the naturs l  projection. 

Proof : The f i r s t  inequality comes Fmm different ia t ing (* ) . - 
The second follows f r m  the f a c t  t h a t  ht(IiB) is  transverse 

t o  R~ fo r  811 t i n  the compact in te rva l  [O, 11. 

We now complete the proof of lheorem 5.6 w i t h  an inductive 

s tep as follows. Suppose we have smehon obtained an Imbedding 

h" : # + isotopic t o  h such tha t  

1) For some t 0 < t < 1, g(x) coincides w i t h  
0' - 0 -  

ht (x) f o r  ell x near 0 and with h(x) f o r  all 
0 

x outside N. 

2) G ( R ~ )  n R~ = 0. 

We perform the  construction fo r  gt given on pages 61 t o  63 

taking i n  place of h and [to, 1 1  i n  place of [O,  11 

and making the following two special  choices ( a )  and (b ). 

(a) Choose the  ball E C N so s m a l l  that ,  f o r  aU. points 

x E E, g(x) = ht (r)  and the  inequali t ies of Lemma 5.9 
0 

hold. 

Note that on the s e t  [to&] X (3 U ( R ~  - E ) )  where Et is  

i n i t i a l l y  defined we have 



ai;,x 
Now + is  the  component of ( t ,  y). s o  it is clear  

66 

from the construction on page (62) t h a t  we can 

(b ) choose the extended F?-cornponent T(t, y)  of q ( t ,  y ) 

t o  have modulus everywhere l e s s  thaa 5r.  
Then Kt w i l l  s a t i s fy  (9) everywhere i n  [to, 11 x R'. 

We asser t  t h a t  gt w i J l  introduce no new intersection 

of the image of R~ w i t b  R~ fo r  to < t < to + k - - if' In 

f a c t  if x E Ila n (E - %), the distance of iit (x)  frm 
0 

R~ is 

k 
%US ( $ 1  shows t h a t  for  to < - t < - to + g we have 

Finally, t o  make possible composition with similar 

isotopies, we may adjust the parameter t so that  the isotopy 
1 

Lt9 
k to < - t < - t = min (1, to + g ), s a t i s f i e s  

0 

Kt(x) = h(x)  fo r  t near to r - 
I 

Et1(x) f o r  t near to 

Since the constant k depends only on ht, the required 

smooth isotopy i s  a composition of a f i n i t e  number of isotopiea 

constructed i n  the above manner. So Theorem 5.6 i s  complete. 

Thi8 means tha t  Assertion 6 )  (page 5 5 )  is  established, and 

hence the Flrst Cancellation 'Ibeorem is  proved i n  general. 



$6 A Stronger CanceUation lheorem 

Throughout these notes s i n g u l a r  homology with integer 

coefficients w i l l  be used unless otherwise specified. 

Let M and M1 be smooth submanifolds of dimenslone r 

and s i n  a smooth manifold V of dimension r + s tha t  in ter-  

s ec t  i n  points pl, ...,pk , transversely. Suppose t h a t  M is 

oriented and t h a t  the normal bundle v'(M1 ) of M1 i n  V is 

oriented. A t  pi choose a posit ively oriented r-frame 

El, ...,gr of l inear ly  independent vectors spanning the tangent 

of M a t  pi. Since the intersection at  pi is  

transverse, the vectors El, ...,gr represent a basis  fo r  the  

f iber  a t  p of the normal bundle v(M* ). i 

Definition 6.1 The intersection number of M and M1 a t  pi - - 
i s  defined t o  be +1 o r  -1 according as the vectors El, ...,Er 

represent a posit ively or  negatively oriented basis f o r  the 

f ibe r  a t  pi of v(M1). Ihe intersection number Mt.M - of 

M and M1 i s  the sum of the intersection numbers a t  the points - 

Remark 1 )  In an expression M I - M  we agree t o  write the mani- 

fold with oriented normal bundle f i r s t .  

Remark 2 )  If V is oraented, any submanifold N is  orientable 

i f  and only i f  i ts  no& bundle is orientable. In  f a c t  given 

an orientation f o r  N there is  a natural  way t o  give an orien- 

t a t ion  t o  v(N) and conversely. Nanoely  we require t h a t  a t  any 

point i n  N a posit ively oriented frame tangent t o  N followed 



v o  

6 8 .  
by a frame pos i t ive ly  oriented i n  V(N)  i s  a frame pos i t ive ly  

oriented i n  V. 

Hence i f  V i s  orietited there is  a natural  way t o  o r ien t  

v(M) and M 1 ,  The reader can check t h a t  with these orientat ions.  

M.M1 = ( - I ) ~ '  M' .M. 

If the or ienta t ion  and or ienta t ion  of nonnal. bundle are  not 

re la ted  by the  above convention we c lea r ly  s t i l l  have 

M.M1 = + - M t * M  provided V is  orientable.  

Now assume t h a t  M, M' and V are compact connected 

manifolds without boundary. We prove a lemma which implies t h a t  

t h e  in tersec t ion  number M-Ma does not change under deformations 

of M o r  ambient isotopy of M t  and which provides a def in i t ion  

of the  in tersec t ion  number of two closed connected submanifolds 

of V of complementary dimensions, but  not necessari ly i n t e r -  

sect ing transversely. ?he lemma i s  based on the  following 

corol lary of the Thom Isomorphism Theorem (see the appendix 

of Milnor [ lg ] )  and the Tubular Neighborhood lheorem (see 

Munkres [ 5 ,  p.461 and k n g  [3, p.731 o r  Wlnor 112, p.191). 

Lemma 6.2 (without proof ) 

With M1 and V as above, there  is a natural  isomcrphism 

: H ~ ( M * )  -> H ~ ( v ,  v - MI) .  

L e t  a be t he  canonical generator of H ~ ( M ' )  = 2, and 

l e t  [MI E H ~ ( M )  be the or ienta t ion  generator. Ihe announced 

l e w a  is: ' 



Lennna 6.3 In the sequence - I 

H (fl) -6> H (V) L>-H (v, V r M'.), 
L9 ,  

r r r 
where g and g' are induced by inclusion, we have glog([M]) 

= M1.M $(a). 

Proof: Choose disjoint open r-cella U1, ..., Uk in M con- 

taining pl, ..., pk respectively. The naturality of the Thm 

isomorphism implies that the inclusion induced map 

is an isomorphism given by y -> E~ $(a) where yi 
i is the 

orientation generator of H~(u~, Ui - pi) and ei is the inter- 

section number of M and MI at pi. Ihe following commutative 

diagram, in which the indicated isomorphism comes from excision 

and the other homomorphisms are induced by inclusion, cmpletes 

the proof. 

Ne can now reinforce the First Cancellation Theorem 5.4. 

Let us return to the situation of Theorem 5.4 as set out on 

page 45. l~unel~ (wnj vo, V1) is a triad with Moree function 

f having a gradient-like vector field 5, and p, p' with 

f (p) < 112 < f (pl ) are the two critical points of f, of index 

A, A + 1 respectively. Suppose that an orientation has been 
1 

given to the left-hand sphere SL in v = f-l(1/2) and also 

to the normal bundle in V of the right-hand sphere SR. 

Theorem 6.4 Second Cancellation lheorem 

SUpPose W, V and V1 are simply connected, and h > 2, 
0 - 
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h + l < n - 3 .  - I f  S R '  SL = 9, then wn is diffeomorphic t o  
1 

V x (0, 11. In  f a c t  if SR 
0 SL = 21, then can be a l t e red  

near V so t h a t  the r ight -  and left-hand spheres i n  V in te r -  

s ec t  i n  a s ingle  point, transversely; and the conclusions of 

lheorem 5.4 then apply. 

Remrk 1) Observe t h a t  V = f- l (1/2)  is a lso  simply connected. 

In f ac t ,  applying Van Kampen's theorem (crowell and Fox [17, p.631) 

n-A twice we f ind n (v) : n (D (p)  U V U DF1(q)).   his uses 1 1 R 

A 2 2 , n - A 2 3 1. But by 3.4 t he  inclusion ~ ~ ( p )  u v u ~ ~ ( q )  c w 
i s  a homotopy equivalence. Combining these two statements we see 

t h a t  nl(V) = 1. 

Remark 2 )  Notice t h a t  conclusion of the  theorem is  obviously 

t r u e  whenever A = 0 or A = n - 1. Also the reader can ver i fy  

with the help of 6.6 below t h a t  the theorem holds even with the . 
s ing le  dimension r e s t r i c t i o n  n > 6 ! (The cases we w i l l  not - 
check a r e  A = 1 and A = n - 2.) The one extension of use 

t o  us comes from turning the  t r i a d  around: 

Corollary 6.5 lheorem 6.4 is a l s o  valid i f  the  dimension 

conditions a r e  h 2 3, (A + 1) < n - 2. - 

Proof of Coro l l aq :  Orient SR and the  normal bundle VSL 
1 

of SL I n  V. Now W i s  simply connected hence orientable.  

So V i s  orientable and it follows from Remark 2 )  page 67 t ha t  
t 1 

S L . S  = + S  a s  =+I.  
R - R  L - 

If we now apply lheorem 6.4 t o  t h e  t r i a d  (H"; V1, Vo) with 



Morse function -f and gradient-like vector fiela -t we clearly 

get  corollary 6.5. 

The proof of 6.4 w i l l  be based on the following del icate  

theorem which i s  essent ia l ly  due t o  Whitney 171. 

Theorem 6.6 

Let M and M' be smooth closed, transversely intersecting 

submanifolds of dimensions r and s i n  the  smooth (r + 6)-man- 

i fo ld  V (without boundary). Suppose t h a t  M is  oriented and 

t h a t  the normal bundle of M' i n  V is  oriented. Further suppose 

t h a t  r + s > 5, s > 3, and, i n  caae r = 1 or  r = 2, suppose - - 
t h a t  the inclusion induced mag nl(V - M') -> nl(V) i e  1-1 into.  

Let p, q E M Il M1 be points with opposite intersection num- 

bers such t h a t  there ex is t s  a loop L contractible i n  V t h a t  

consists of a smoothly imbedded a rc  from p t o  q i n  M followed 

by a smoothly imbedded a rc  from q t o  p i n  M1 where both arcs 

miss M tl M1 - [p, q). 

With these aesumptions there exis ts  an isotopy ht90 < - t < - 1, 

of the iden t i ty  i : V -> V such that 

( i )  'Ihe isotopy f ixes  i near M ll M' - (p, q) 

( i i )  h l ( ~ )  n M' = M n MI - [P, ql  

Figure 6.1 



Remark: If M and Mt a re  connected, r > 2 and V is  simply - 
connected no e x p l i c i t  assumption about a loop L need be made. For 

applying the  Hopf-Rinow theorem (see M l n o r  [4, p.62 1 ), with com- 

p l e t e  Riemannian metrics on M - S and Mt - S, where 

S = M tl M' - (p, q), we can f ind  a smoothly imbedded a r c  p t o  Q 

i n  M and s imi la r ly  q t o  p i n  Mv giving a loop L t h a t  misses 

S. The loop L i s  ce r t a in ly  con t rac t ib le  i f  V is  simply connected. 

Proof of lheorem 6.4 

According t o  5.2 we can make  a preliminary adjustment of 5 
1 1 

near V s o  t h a t  SR and SL i n t e r s e c t  transversely.  If SR f l  SL 

1 
i s  not a s ing le  point ,  then SR SL = 2 1 implies that there 

1 
e x i s t s  a pair of poin ts  p l1 91 i n  S R n  SL with opposite i n t e r -  

sec t ion  numbers. If we can show t h a t  Theorem 6.6 appl ies  t o  this 

s i t u a t i o n ,  then a f t e r  we ad jus t  5 near V, using Lemna 4.7, SR 
t 

and 
SL 

w i l l  have two fewer i n t e r s e c t i o n  points. .  lhus i f  w e  r epea t  
4 

t 
t h i s  procese f i n i t e l y  many times SR and SL will i n t e r s e c t  

t ransverse ly  i n  a s ing le  poin t  and the proof w i l l  be complete. 

Since V is  13impl.y connected ( ~ e ~ a ~ . k  1 page 76) it is  c l e a r  

t h a t  i n  case A > 3 all t h e  conditions of Theorem 6.6 are satis- - 
f ied.  If X = 2, it remains t o  show t h a t  rr (V - s R )  -> n ( v )  = 1 1 1 

is 1-1, i . e .  t h a t  nl(v - sR) = 1. N:ow t h e  t r a j e c t o r i e s  of 5 

determine a diffeomorphism of Vo - SL onto V - SR, where SL 

denotes the  lef t -haad 1-sphere of p i n  Vo. Let N be a pro- 

duct  neighborhood of s,., i n  Vo. Since n - A - 1 = n - 3 2 3, 
4 

we have nl(~ - R ~ )  Z, and the diagram of fundamental groups 

corresponding t o  



Van Kampenls theorem bow implies that q(vo - SL)= 1. .!5is 

completes the proof of Pleorem 6.4 modulo proving Theorem 6.6. 

Proof of 6.6 

Suppose that the intersection numbers at p and q axe 

+1 and -1 respectively. Let C and C1 be the smoothly 

imbedded arcs in M and M1 from p to q extended a little 
1 

way at both ends. Let C and Co be open arcs in the plane 
0 

intersecting traneversely in points a and b, and enclosing a 

disk D (with two corners) ae in Hgure 6.2 below. Choose an 
t 

embedding rpl : C U Co -> M U M 1  so that rp1(co) and 
0 

I 
rpl(Co) &re the arcs C and C', with a and b corresponding 

to p .snd q. 'Ihe theorem will follow quickly from the next 

lemma, which embeds a standard model. 

Lema 6.7 For some neighborhocd U of D we can extend 
t r-1 - 

rpl(u n (C U co) to an embedding, rp : U x R 
0 

r -1 such that c'(M) = (U n Co)x R x 0 and 
I s -1 <~(Mw) = (U n c,) x o x R . 

Fiaure 6.2 The St~ndara 



Assuming kma 6.7 fo r  the moment, we w i l l  construct  an 

isotopy Ft : V -Z V such t h a t  Fo i s  the  iden t i ty ,  

F ~ ( M )  n M' = M n M' - Lp, qJ, and F J ~  i t3  the i d e n t i t y  outs ide  

the image of cp, 0 < t < 1. - - 
Let W denote p(U X RrW1 X R*-') and define Ft t o  be 

the  i d e n t i t y  on V - W. Define Ft on W as follows. 

Choose an isotopy G : U -> U of our plane model such t 

t h a t  

1. ) Go is t h e  i d e n t i t y  map, 

2. ) Gt i s  t h e  i d e n t i t y  i n  a neighborhood of t h e  boundary 

a - u  of u, O < t < l ,  and - - 

F'igure 6.3 

Let P 

such t h a t  w 

Define an iootopy F$ : U x A'-' x R ' - ~  -> U x R'V' x R s-1 

by 

the requluind isot4py on W. 'Ib.ls f ludbes a e  proof bf 'iheorem 

6.6, modulo proving 6.7. 

Lemma 6.8 mere exists a Riemannian metr ic  on V such t h a t  



1. ) in the associated connection (see Milnor [4, p.441) M and 

M1 are totally geodesic submanifolds of V (i.e. if a 

geodesic in V ie tangent to M or to Mt at any point 

tben it Ides entirely fn M m Mt, respeetlrely. ) 

2. ) there e x i s t  coordinate neighborhoods N and N about 
P Q * 

p and q in which the metric is the euclidean metric and 

so that N f l  C, N fl Ct, Nq fl C, and N fl Ct are straight 
P P 9 

line segments, 

Proof (due to E. Feldman): We know that M intersects Mt - 
transversely in points pl, ..., pk with p = pl and q = P2' 

Cover M U Mt by coordinate neighborhoods W ,  . . . W in V 
m 

Pt8 with coordinate diffeumorphisms hi : Wi --+ R , i 1, ,m , 
such tihat 

a. ) there are disjoint coordinate neighborhoods N1, . . . , % 
with pi E Ni C Ei c Wi and Ni fl W = for i = 1, ..., k 

J 
and J = k + 1, ..., m e  

be) hi (wi f l M )  C R~ x 0 

hi (wi f l M t )  C 0 x R' i = 1, ...,k. 

6 . )  hi (wi n C )  and hi (wi fl C*) are strdght line segments 

Comtruct a Riemann metric < ? , z> on the open set 
W = W1 U . . . U W by piecing together the metrics on the Wi 0 m 

induced by the h i = 1, , using a partition of unity. 

Note that because of a*) this metric is eucllaean in +he 

Ni, i =1, ..., k. 



W i t h  t h i s  metric construct  open tubular neighborhoods T 

and Tt of M and M1 i n  W using t h e  exponential map (see 
0 

h n g  [3 ,  P- 731) By choosing them thin enough we may essume 

t h a t  T fl T' C N1 U . . . U % and t h a t  

 hi(^ n T* n N,) = oar x OD:, c R~ x R~ = R** 
e 

i = 1, k , f o r  some E, E '  > 0 depending on i. The s i t u -  

a t ion  is represented schematically i n  Figure 6.4. 

2 L e t  A : T -> T be t h e  smooth involut ion (A = A A = 

i d e n t i t y )  which is the ant ipodal  map on each f i b e r  of T. Define 

a new Riemarrt! metric  < ? , i? >A on T by < ? , i ? >  = 
A 

l (c ?, i?> + < A*?, A*$>). P \ 

Assertion: With respect  t o  this new metric,  M is a t o t a l l y  

geodesic submanifold of Tm To see this, l e t  w be a geodesic 

i n  T tangent t o  M a t  some p o i n t  z E M. It is easy t o  see 

t h a t  A is an isometry of T i n  the  new metric and hence sends 

geodesics t o  geodesics. Since M is the f ixed  p o i n t  set of A, 

it follow6 t h a t  ~ ( w )  and w are geodesics with t h e  same tan- 

gent vector a t  A(Z) = 2. By uniqueness of geodesics, A i s  

the i d e n t i t y  on w. merefore  wC M, which proves t he  

asser t ion.  a 

Similarly def ine  a new metr ic  < ?, on Ttm It 

follows from property b. ) and t h e  form of  T fl T1 that these  



two new metrics agree with the old metr ic  on T n Tt and hence 

together  def ine  a metr ic  on T U Tt.  m e n d i n g  t o  all of V the  

r e s t r i c t i o n  of t h i s  metr ic  t o  an open e e t  0, with M U M' C 

0 C 5 c T U Tt , ccrmpletee t h e  construction of a metr ic  on V 

s a t i s f y i n g  conditions 1. ) and 2. ). 

Proof of Lenrma 6.7 (The proof occupies the  rest of Section 6 )  

Choose a Riemannian metr ic  on V prcvlded by Lemma 6.8. 

L e t  7 )  ( q )  ( p ) ,  ( q )  be t h e  unit  vectors tangent t o  

t h e  arc8 C and C t  (or iented from p t o  q )  a t  p and Q. 

Since C Is a con t rac t ib le  space, t h e  bundle over it of vectors 

orthogonal t o  M is trivial. Using this f a c t  conetruct a f i e l d  

of u n i t  vectors  along C orthogonal t o  M and equal t o  t h e  

p a r a l l e l  t r a n s l a t e s  of T (p ) and of -.r (q)  along v"' 
and N fl C respect ively.  

P 

Construct erne corresponding vector f i e l d  i n  t h e  model. 

(see Figure 6.5) 

F'igure 6.5 



Using the exponential map, we see tha t  there exis ts  a neighbor- 

hood of Co i n  the plane and an extension of plICo t o  an 

imbedding of th i s  neighborhood in to  V. Actually, the exponential 

map gives an imbedding locally, and then one uses the following 

lema,  whose elementary proof may be found i n  Munkres 15, p.49 

Lemma 5.7 (which is incorrectly s ta ted)]  

Lenrma 6.9 Let A be a closed subset of a compact metric space 
0 

A. Let f : A -> B be a local  hnaeomorpbism such tha t  f l~~ 
is  1-1. men there is a neighborhood of W of A. such that 

t 
Similarly extend Cq 1 co t o  an imbedding of a neighborhood 
t 

of C3 using 8 f i e l d  of unit vectors along C t  orthogonal t o  

M t  which along N n C t  and N f l  C1 coneists of the para l le l  
P Q 

t ranslates of ~ ( p )  and -7(q) respectively. When r = 1 

t h i s  is possible only because the intersection numbers at p 

and q are opposite. 

Using property 2)  of the metric on V (see 6.8) we see 
t 

t ha t  the imbeddings agree i n  a neighborhood of Co U C and 
0 

hence define an Imbedding 

of a closed annular neighborhood N of BdD such tha t  
1 

9i1(M) = N fl Co and cpil(~? ) = IV n Coo Let 8 denote the 

inner boundary of N and l e t  Do C D be the d isc  bounded by 

S i n  the plane. (see Mgure 6.5) 

Since the given loop L is homotopic t o  the loop q2(s), 

the l a t t e r  i s  cclltractible i n  V. Actually q 2 ( s )  i e  contractible 



i n  V - (hl U M' ) as the following lemma w i l l  show. 

Lemma 6.10 

If 3 , n 2 5 , i e  a emooth manifold, Y a smooth submanifold of 

codimension a t  l e a s t  3, then a loop i n  V1 - Y t ha t  is  con- 

t rac t ib le  i n  Vl i s  alsj  contractible i n  V 1 - Yo 
Before proving 6.10 we recall two theorem of Wbiimey. 

Lemma 6 . n  (see Milnor [15, p.62 and p.631) at f : Y -> Y 
be a continuous map of smooth manifolds which i s  smooth on a 

closed subset A of Y. Then there exis ts  a smooth map 

63 : 5 -> y BU& t ha t  g 2 f (g is  homotopic t o  f )  and 

Lemma 6.12 (see Whitney I161 and Milnor (15, p.633) 

L e t  f : y -> % be a smooth map of smooth manifolds which 

is  an imbedding on the closed subset A of Y. Assume that 

d i m M 2 > 2 d i m Y + l e  - men there exists  an imbedding 

g : -> approximating f such tha t  g 3 f and g l ~  = f 1 ~ .  

Proof of 6.10: 
2 1 L e t  g : (D , S ) -> (V1, V1 - Y) give a contraction 

i n  Vl of a loop i n  V1 - Y. Because dim (vl - Y) 2 9 
the above lemmas give a smooth imbedding 

2 1 
h : (D , S ) -> (V1, V1 - 5) 

such tha t  g 1 is homotopic t o  h 1 i n  V1 - Ye I 3. 1s 
2 

Ihe no& bundle of h(D2) 3.3 trivial since h(D ) is 

2 n-2 
contractible. Hence there exis ts  an imbedding H of D X R 



2 i n t o  V1 such that ~ ( u ,  o )  = h(u) f o r  u E D . Take E > 0 

so s m a l l  t h a t  121 < E, ?E R'-*, implies H(S? X 2) C V1 - Y. 
n -2 Since codimension 5 >_ 3 , there exists (cf. 4.6) xo E R , 

IgI < E, such t h a t  H(D* x s) f l  M,. = Now i n  Vl - 5 we 

have g 1 2 .cI Is h l ~ l  = =is1 x 0 2 H 1 - constant. This com- 
Is  xo 

pletes the proof of Lemma 6.10. 

Now we can show t h a t  V(S)  is cont rac t ib le  i n  V - M U M s .  

For it is  cont rac t ib le  i n  V - Mt by 6.10 i f  r > 3, and i f  - 
r = 2 by the  hypothesis t h a t  ( V  - M ) - (v)  is 1-1. 1 

We now choose a continuous extension of cp t o  U = N U D 2 0 

t h a t  maps Int  D i n t o  V - (M U Mt ). Applying &mas 6.11 
1 

and 6.12 to (p2 114t D we can obta in  a smooth imbedding 

3 : U -> V coinciding with on a neighborhood of 
? 

U - b t  D, and such t h a t  cp (u )  $ M U M' f o r  u Co U Coo 3 
r-1 It remains now t o  extend cp to U x R x R~~~ 3 .  

a s  

desired.  

We l e t  U1 denote cp (u), and f o r  convenience i n  nota- 3 ' 
tion w e  sha l l  write C, C1, Co, and Co i n  place of U1 fl C, 

1 

U' fl C', U f l  Co, and U fl Co, respect ively.  

* 
Lemma 6.13 mere exist smooth vector f i e l d s  El, . . . , Erel, 

'119 along U' which s a t i s f y  condition 1. ) below 

satisfy 3 . )  



1. ) are orthonormal and a r e  orthoaonal t o  U t  

2.) along C a r e  tangent M 

3. ) along C1 are tangent t o  M t  . 
Proof: The i d e a  is t o  construct  el, . , Er-l - i n  steps,  f irst  

along C by p a r a l l e l  t .ranslation, then extending t o  C U C t  by 

a bundle argument, and then t o  Ut by another bundle argument. 

The d e t a i l s  follow. 

Let T and 7' be the  normalized ve loc i ty  vectors along 

C and C t ,  and l e t  V t  be t h e  f i e l d  of u n i t  vectors along C t  

which a r e  tangent t o  U1 and are inward orthogonal t o  C t .  Then 

~ ' ( p )  = ~ ( p )  and vt(.q) = - ~ ( q )  (see Mgure 6 .6 )  

j'iwxe 6.6 

Choose r - 1 vectors ( p ) ,  . . ( p )  which are 

tangent t o  M a t  p, a r e  othogonal t o  UU', and a r e  such t h a t  

t h e  r-frame *(PI, s ~ ( P ) ,   YE^-^ (P) is  p o s i t i v e l y  or iented 

i n  TM . P a r a l l e l  t r a n s l a t i n g  these  r - 1 vectors along C 
P 

gives r - 1 smooth vector  f i e l d s  E,Y * a * ,  k r 4  along C. 

These vectors  f i e l d s  s a t i s f y  1 . )  because parallel t r a n s l a t i o n  

preserves inner  products (see Mii30r [4, p.4bI). They satisfy 

2.) because parallel t r a n s l a t i o n  along a curve i n  a t o t a l l y  



geodesic s u b ~ ~ . ~ n i f o l d  M sends tangent vectors to M i n t o  tangent 

vectors t o  M (see Helgason, Di f fe ren t i a l  Oeometly acld Symoletric 

maces, P. 80). Actually, given t h e  conetruction of t h e  Rieman- 

nian metric  i n  6.8, condition 2. ) e a s i l y  follows from the e x i s t -  

ence of the  "antipodal isometry1' A on a tubular  neighborhood 

of M (compare t h e  argument on p.76). Final ly ,  by cont inui ty  

t h e  r-frame T, El? Er-l is p o s i t i v e l y  or iented i n  TM 

(=  tangent bundle of  M )  at  every po in t  of C. 

Nov pa.raJ-lel t r a n s l a t e  ~ ~ ( p  ), . . , ( p )  along N n C 1  
P 

k 1 w ,  -,!& (9) along Nq f l  Ct . Ry hypothesis the  

in te r sec t ion  numbers of M and M t  at p and q are +1 and 

-1. %is means t h a t  ( p ,  ( p  . . . ( p  ia p o s i t i v e l y  

or iented i n  v(Mt) a t  p while ~ ( q ) ,  ~ ~ ( q ) ,  . .., Er-l(q) i s  

negatively or iented i n  v(M*) at q. Since V 1  (p ) = ~ ( p )  and 

V1(q) = -r(q) ,  we can conclude t h a t  a t  all points  o f  both 

N ll C t  and N f l  C t ,  t h e  frames v t Y  Ely . . 
P q 

a r e  posi-  

t i v e l y  oriented i n  v (MI ). 

Ihe b w d l e  over C1 of ( r  - 1)-frames [r -1 

orthogonal t o  Mt and t o  U', and such t h a t  v *, cl, . . , cr-l 
i s  pos i t ive ly  or iented i n  v (M' ) is t r i v i a l  with f i b e r   SO(^ - 1 ), 
which i s  connected. Hence w e  may extend El, .,Erwl t o  a 

smooth f i e l d  of ( r  - 1)-frames on C U C' t h a t  satisfy condi- 

t i o n s  1) and 2). 

Ihe bundle over Ut of orthonormal (r-1)-frames orthogonal 
e 

to U t  is 3 trivial bundle with f i b e r  ~ ( r  + B - 2)/0(s - 1) 
- 
- F-1 (fl+s-2 ), t h e  S t i e f e l  manifold of orthonormal (r - 1 ) -  

+e -2 Pramea i n  R' . So far w e  have constructed a smooth croes- 



section El, ..a,kr-l of t h i s  bundle over C U C t .  Composing 

El, ***Ar-l with the proJection in to  the f iber,  w e  get a 

smooth map of C U C1 i n to  ~ ( r  + s - 2)/0(s - 1 )  which i s  

simply connected since s > - 3. (see Steenrod [18, p.1031). 

Hence there is  a continuous extension t o  U1 and by Lennna 6 . n  

there ex is t s  a smooth extension. Thus we can define El, 4*.,Er-l 

over &U of UI t o  eetiefy 1.) and 2.). 

To define the remaing desired vector f ie lds ,  observe tha t  

the bundle over U' of orthonormal frames 'lp i n  

TV such tha t  each qi i s  orthogonal t o  U1 and t o  El, *,kr-l 

i s  a trivial bundle because U1 is contractible. L e t  the  

desired f i e l d  of frames ql, ...,qs-l on Ut be a smooth 

cross-section of t h i s  bundle. lhen El, .a.,Cr-l,  ql, . . . , Q ~ - ~  

sat i s fy  1. ). Fkthermore, since El, . . e,k,-l a re  ortho- 

gonal t o  M I  along C t ,  it follow8 tha t  q, . . . , v ~ - ~  sa t -  

ism 3 ) This finishes the proof of Lemma 6.13. 

Completion of Proof of knma 6.1 
s -1 

Defineamap U x F I r - l X R  ----3V by 

It follows from Lemma 6,9 and the  f a c t  t ha t  W e  map is  a loca l  

diffeomorphism tha t  there ex i s t s  an open E-neighborhood \ 
r+s-2 = Rr-l 

about the origin i n  R. such t h a t  i f  

q+ : U x % -> V denotes t h i s  map res t r ic ted  t o  U X NE then 



% is an embedding. (U may have to  be replaced by a slightly 

smaller neighborhood, which we s t i l l  denote by U. ) 

Define an embedding cp : U X X R'-' -> V by 

t s -1 cp(c0 X 0 X R ) C M1 because M and M1 are t o t a l l y  geodesic 

submanifolds of V. Moreover, since ~ I ( U  x 0) = Us intersects  

M and M 1  precise ly  i n  C and C 1 ,  transversely, it follows 

that,  for  E > 0 suf f i c i ent ly  smaJ.1, h a g e ( p )  intersects  M 

and MI precise ly  i n  the above product neighborhoods of C and 

C 1 .  This means {'(M) = C x R ~ - ~  x 0 and <'(M') = 
0 

1 s -1 Co x 0 X R . Thus 9 is  the required embedding. This ends 

the proof of  Lemma 6.7. 



§7 Cancellation of Critical Points 

in the Middle Dimensions 

Definition 7.1 Suppose W is a compact oriented smooth 

n-dimensional manifold, and set X = BdW. It is easy to check 

that X is given a well defined orientation, called the induced 

oriantation, by saying that an (n - 1)-frame T ~ ,  . ..,qn-l of 

vectors tangent to X at same point x E X is positively orien- 

ted if the n-frame V, T ~ ,  w..,~ is positively oriented in 
n-1 

TCJ where V is any vector at x tangent to W but not to 

X and pointing out of W (i.e. y is outward normal to x). 

Alternatively, one specifies [XI E Hn-l (x) as the induced 

orientation generator for X, where [x] is the image of the 

orientation generator [W] E H (w, X) for W under the bound- n 

ary homomorphism H~(w, X) -> Hn-l (x) of the exact sequence 

for the pair (w, x). 

Remark: Ihe reader can easily give a natural correspondence 

between an orientation of a compact manifold 8 specified by 

an orientation of the tangent bundle (in terms of ordered frames) 

and an orie~tation M specified by a generator [M] of H~(M; 2) 

(cf.~lnor [lg, p.211). It is not difficult to see that the two 

ways given above to orient BdW are equivalent under this nat- 

ural correspondence. Since we will aLways use the eecond way to 

orient M W ,  the proof is omitted. 

Suppose now that we are given n-dimensional triads 

(w; V, v'), (w'; V1, v"), and (W U WT; V, v"). Suppose also 



t h a t  f is  a Morse f'unctioh on W U W t  with c r i t i c a l  poin ts  

t  ? 
a r e  a l l  on one l e v e l  and a r e  of index A, while ql, ...,(+,, 
are on another l e v e l  and a r e  of index + 1, and V t  is  a 

non-cr i t ica l  l e v e l  between them. Choose a gradient- l ike vector  

f i e l d  f o r  f and o r i e n t  t h e  left-hand d i s h  D (q  ), ..., D (q ) 
t  ? 

L 1 
t  

L a 
i n  W and l+,(ql), ...,I+,($) i n  W'. 

Orientation f o r  the  normal bundle VD (q ) of a right-hand R i 

d i sk  i n  W is then determined by t h e  condition t h a t  ~ ~ ( q l )  have 

in te r sec t ion  number +1 with %(q l )  a t  t h e  po in t  qi. The 

normal bundle Y S ~ ( ( ~ I )  of sR(qi) i n  V1 is  na tu ra l ly  isomor- 

phic  t o  t h e  r e s t r i c t i o n  of V D ~ ( ~ )  t o  S ( ). Hence t h e  or ien-  
R PI 

t a t i o n  of V D ~ $  ) deternines an o r i en ta t ion  f o r  vsR(qi ) . 
Combining Defini t ion 7.1 and t h e  above paragraph we conclude 

t h a t  once o r i en ta t ions  have been chosen f o r  t h e  left-hand d isks  . 
i n  W and W ' ,  t he re  is  a n a t u r a l  way t o  o r i e n t  t h e  left-hand 

spheres i n  V t  and t h e  normal bundles of t h e  right-hand spheres 
1 1  

i n  V f  . Consequently t h e  i n t e r s e c t i o n  number sR(qi) S (q ) L 3 
of left-hand spheres with right-hand spheres i n  V' are well  

defined . 
horn Section 3 we know t h a t  H (w, V) and %+1(~ U W t ,  W) 

A 

2 
- = ~ + 1  (w* , V t  ) a r e  f r e e  abexian with generators 

ively,  represented by t h e  or iented lef t -hand disks.  
8 

Lemma 7.2 Let M be an or iented closed smooth manifold of 

dimension embedded i n  V t  with [MI E $(M) the or ien ta t ion  



generator,  and l e t  h : %(M) -> %(w, V )  be the map induced 

by inclusion* %en h( [MI ) = SRiqL) -14 [ D ~ ( P L )  1 + . . . + sR(ql) 

* M [IIL(ql) 1 where sR(q1) M denotes the  i n t e r s e c t i o n  number 

of sR(qi) and M i n  V1. 

Corollary 7.3 With respect  t o  t h e  baseg represented by the  

or iented left-hand disks,  t h e  boundary map a : S+~(W U W 1 ,  W )  

-> %(w, V) f o r  t h e  t r i p l e  W U W t  2 W 2 V i s  given by the  
f I 

matrix (a ) of in te r sec t ion  numbers 
id atl = s R ( ~ i )  S IL (q j ) in 

V', na tu ra l ly  determined by t h e  o r i en ta t ions  assigned t o  the  

lef t -hand disks. 

Proof of CoroU~py: Consider one of t h e  bas i s  elements 
1 1  

[DL(qj ) ]  E %+1(~ U W ', W ) .  We can f a c t o r  the  map a i n t o  t h e  

composition 

U - 
\+,@ U W t ,  W )  e > %+p', V r )  > H ( v t )  

bound* A I 

Here e i s  t h e  inverse of the  excis ion  isomorphism, and i, 

is  induced by inclusion. 
1 t 

By d e f i n i t i o n  of  the  o r inn ta t ion  f o r  S (q ), we have 
L 3 

t 1 1  

boundary O e (  rDL(qj)I = I*( [SL(qj ) I  1. 
t 1 

The r e s u l t  follows by s e t t i n g  M = S (q ) i n  Lemma 7.2. 
L 3  



Proof of 7.2: We assume 1 = 1, the proof in the general case 

being similar. Set q = ql, DL= DL(q1), DR = ~~(9~)' and 

S, = sR(ql). We must show that h([~]) = SRbM. [DL]. 

Consider the following diagram: 

The deformation retraction r : W ->,V U DL constructed '. . 
in Theorem 3.14 maps V' - SR to VU(D q ) ,  sothe 

f i  
homomorphism hl induced by r Iv' is well-defined. I h e  ob- 

vious deformation retraction of V U ( D ~  - q) to V induces 

the isomorphism he. A l l  the other homomorphisms are induced by 

inclusion. 

The diagram comutes because i = (r v ) (since the maps 

i r 1 V : V' -> W are homotopic) and the corresponding dia- 

gram of topological spaces and continuous maps commutes pointwise, 

with rlvt in place of i. 

Fhwm -Lemma 6.3 ve know that  h ( [M ] ) = SRe y *(a) where 
0 

a E Ho(sR) is the canonical generator and \k : HO(sR) -> 

v V - S ) is the mom isomorphism. Hence in order to prove R 



t h a t  h(  [MI ) = SR M [DL-), by commutativity of t h e  diagram it 

s u f f i c e s  t o  show t h a t  

(*I h3 hg O h l ( t ( d )  = [%la 

'Ihe c l a s s  *(a) is  represented by any or iented d i sk  D A 

which i n t e r s e c t s  SR Pn 6Qe p b n t  x, t ransversely,  with in%er- 

A sec t ion  number SR D = +1. Referring t o  t h e  standard form f o r  

an elementary cobordism given i n  Theorem 3.13, and t h e  conventions 

by which D (S ) i s  oriented,  one can see  t h a t  t h e  image r(DA) R 

of  Dh under the  r e t r a c t i o n  r represents  

D~ 
l $ = SR l = +1 

times the  o r i en ta t ion  generator h-'ho1([DL]) f o r  H (V U DL, 
2 3 A 

V U ( D ~  - (1)). It follows t h a t  

-1 -1 
hlt(d = hg h j  ([DL]) 

o r  h3h2\ *(a ) = [DL] 

as required.  Thus t h e  proof of 7.2 is complete. 

Given any cobordism c represented by t h e  t r i a d  (w; V, V1), 

according t o  4.8 we can f a c t o r  c = c c .. . c s o  t h a t  c o 1 n A 

admits a Morse funct ion all of whose c r i t i c a l  po in t s  &re on the  

same l e v e l  and have index A. Let cocl . . . c be represented A 

by t h e  manifold W C W, A = 0, 1, ..., n, and s e t  W = V, 60 
A -1 

t h a t  

v = w cwocw,c a * .  cwn = w -1 

Define C = H (W 
A A A' WA-l) - H * ( w ~ ,  WA-l) and l e t  a : CA -' Ck-l 

be the  boundary homo~llorphism f o r  t h e  exact  sequence o f  the  t r i p l e  



-90 
Theorem 7.4 C, = ( c ~ ,  a) is  a chain complex (i. e. a2 = 0) 

H (w, V )  f o r  all A. and q c * )  

Proof: ( ~ o t e  t h a t  we do not  use t h e  f a c t  t h a t  C is  f r e e  abe- - A 

l i a n ,  but  only  t h a t  H+(IJ~,  blh-l) is concentrated i n  degree A. ) 

That a2 = 0 i s  c lea r  from t h e  de f in i t ion .  To prove t h e  

isomorphism, consider t h e  following diagram. 

Ihe  horizontal  i s  the  exact  sequence of the  t r i p l e  ( w ~ + ~ ,  Wk, 

W ) and the v e r t i c a l  i s  t h e  exact sequence"of (W 
A-2 h' Wh-l' 

W ) One checks e a s i l y  t h a t  t h e  diagram commutes. %en c l e a r l y  
A-2 

H&c,) z HA (wwp Whe2 ). ~ u t  H ~ ( w ~ ,  w A-2 ) H ~ ( w ,  v). Leav- 

ing  the  reader t o  ve r i fy  t h i s  las t  statement (see Milnor [lg, peg] ) ,  

we have t h e  desired isomorphism $(c,) E %(w, v). 

Theorem 7.5 ( ~ o i n c a r e  Duality. ) 

If (1.l; V, V1 ) i s  a smooth manifold t r i a d  of dimension n and 

W is  or iented,  then %(W, V )  is  isomorphic t o  $IoA(w, V' ) 

for all A. 

I 

Proof: - Let c = c c . . . c and C, = (c~, a) be defined with o 1 n 

respect  t o  a Morse funct ion f as above, and f i x  a gradient- l ike 



vector f i e l d  5 for f .  Given f ixed o r i en ta t ions ,  t h e  left-hand 

d isks  of c form a bas is  f o r  C = H (W W ). From 7.3 we 
A h A A' A-1 

know t h a t  with respect  t o  this bas i s  the  boundary map 8 : CA 

-> C 
A - 1  

is given by t h e  matrix of in te r sec t ion  numbers of 

or iented lef t -hand s p h ~ r e s  of c with right-hand spheres of 
'h 

C 
A - 1  

having or iented normal bundles. 

S imi lar ly  l e t  W' C W represent  c c ... c f o r  
P n-p n-p+l n 

t 
p = 0 1, , n and s e t  W = V .  Define C' = H (w', Wlfml 

I' P CI 
1 

and a t  : C '  -> C'  a s  before. For any right-hand d i sk  DR, 
Cr CI -1 

d i s k )  together with t h e  o r i e n t a t i o n  of W give a na tc ra l ly  de- 

fined o r i en ta t ion  f o r  DR. Tihell a : C' -> C1 i s  gduen 
IJ P-1 

by a matrix of i n t e r s e c t i o n  number of oriented right-hand spheres 

with left-hand spheres having or iented normal bundles, 

* 
Let C1 = (Ctp, 8 1  ) be t h e  cochaln complex dual  t o  ths  

chain complex C i  = (C1, a t )  (mus c ' ~  = Hom(C1, 2 ) ) .  Choose 
v v 

as bas i s  f o r  c * ~  %he bas i s  dual  t o  the  bas i s  of C1 which i s  
k' 

determined by t h e  or iented right-hQaul d i m  of c n-Cr* 

An isomorphism C -> C tn-A i s  induced by assigning t o  
h 

each or iented left-hand disk,  the  dual  of  t h e  or iented  r i g h t -  

hand disk of t h e  same c r i t i c a l  point .  Now, as we have s t a t ed ,  
t t a : cA -> c ~ - ~  i s  given by a matr ix  (a ) = (sR(pi) ' sL(pj)). 

ij 

It is easy t o  see  t h a t  6 '  : can-' -> C 1 n-A+l i s  given by the  
1 1  

matr ix  (bi j) = (sL(pj) sR(pi) ). But s i n c e  W is oriented,  

b = + a  
i j  - i j p  

t h e  s ign  depending only on A. (cf. 6.1 Remark 2. 

The s ign  turns ou t  t o  be (-1 ) Thus a corresponds t o  - + 6 l ,  



and it follows t h a t  the isomorphism of chain groups induces an 

isomorphism %(c*) 8-'(ct*). 

Now 7.1 implies H~(C*) 2 H~(w; V) and H (c:) " H (W, V 1 )  
i' i' 

fo r  each h and . Wreover, the  l a t t e r  isamorphism implies 
u 

tha t  H~(C' ) 2 #(w, Vt ) for  each . Fbr i f  two 

chain complexes have isomorphic homology then the duaL cochain I 
complexes have isomorphic cohomology. m e  follows from the Uni- I 
versal Coefficient Theorem. I 

Combining the l a s t  two paragraphs we obtain the  desired 

isomorphism H (w, V )  8-h(~ ,  V t  ). 
h 

'Iheorem 7.6 Basis Theorem 

Suppose (w; V, V' ) is a triad of dimension n possessing 

a Morse function f with all c r i t i c a l  points of index h and I 
on the same level; and l e t  be a gradient-like vector f i e l d  I 
f o r  f .  Assume that 2 < A < n - 2 and t h a t  W i e  connected. - - 
lhen given any basis  f o r  H~(w, v), there exist a Morse function 

f t  and a gradient-like vector field for f' which agree I 
with f and i n  a neighborhood of V U V' and a r e  such t h a t  I 
f' has the  same c r i t i c a l  poin ts  as f ,  all on the same level ,  I 
and the left-hand disks fo r  , when sui tably  oriented,  I 
determine the given basis.  I 
-of: Le t  pl, ..., pk 
I_ 

be the  critical points  of f and l e t  

bl* - * ,  bk be the  basis  of \(w, V )  Z @ ... @Z (k-sumands) 

represented by the  left-hand dish ~ ~ ( p ~ ) ,  . . . , ~ ~ ( p ~ )  with 

any fixed orientations. Let the normal bundle6 of the  r igh t -  

hand disks D~(P=), .. ., D ~ ( P ~ )  be oriented so  that the  matrix I 



(DR(pI) DL(pJ)) of in te r sec t ion  numbers is  the i d e n t i t y  k x k 

matrix. 

Consider f irst  any or iented  A-disk D smoothly imbedded i n  

W with B d D C  V. D represents  an element 

q b l  + ..* + c p k  E B ~ ( w ,  v )  

f o r  some in tegers  , , ; t h a t  is, D is homolgous t o  

qDL(pl) + . . . + g,l+,(pk). It follows f r o m  an e a e i l y  proved 

r e l a t i v e  version of Lemma 6.3 t h a t ,  for each j = 1, . . . , k 

TZlus D represents  t h e  element 

D ~ ( P ~ ) *  D bl + ... + ~ ~ ( p ~ ) .  D bk. 

We s h a l l  construct  f1 and k t  s o  t h a t  the  new or i en ted  

for  j = 3, 4, ..., k. It follows from t h e  previous paragraph 

that t h e  new bas i s  is then b + bg, bg, . .., bk. One can a l s o  
1 

cause a basis element t o  be replaced by i t s  negative simply by 

reversing t h e  o r i en ta t ion  of the corresponding lef t -hand d isk .  

Since a composition of such elementary operat ions y ie lds  any 

desired bas is ,  t h i s  w i l l  complete t h e  proof. 

Ihe  s t eps  involved a r e  roughly as follows: increase f i n  

a neighborhood of pl, a l t e r  t h e  vec tor  f i e l d  s o  t h a t  t h e  l e f t -  

11 hand d i s k  of pl sweeps across" 
P2 

with pos i t ive  s ign ,  and 

then r e a d j u s t  the  f'unction so that t h e r e  i a  only one c r i t i c a l  value. 



More precisely, using 4.1 f ind  a Morse funct ion f, 

7 3 4  

which 
L 

agreee with f outs ide a s m a l l  neighborhood of p, such t h a t  
.L 

f l ( ~ l  ) > f (p1 ) and fi has t h e  same c r i t i c a l  poin ts  and gradient-  

l i k e  vector f i e l d  as f. Choose to s o  t h a t  fl(pl) > t > f ( p )  
0 

and s e t  Vo = f i L ( t o ) .  

The left-hand ( A  - 1 )-sphere SL of p1 in V and the r i g h t -  
0 

hand (n - A - 1)-spheres sR(pi) of t h e  pi, 2 < i < k, l y i n g  - - 
i n  V a r e  d i s j o i n t .  Choose pointe  a c SL and b E sR(p2). 

0 

Since W, and hence Vo, is connected, the re  is an enbedding 

n-A-1 Lemma 7.7 There e x i s t s  an embedding p : (0, 3 )  x R'-' X R 

-> V such t h a t  
0 

3. ) t he  image of cp misses t h e  other spheres. Moreover,, cp can 

pos i t ive  o r i en ta t ion  and s o  t h a t  cp((0, 3 )  x Ith-' X 0) 

i n t e r s e c t s  sR(p2) a t  cp(2, 0, O) = b w i t h  i n t e r s e c t i o n  

number +1. 

Proof: - 
Choose a Riemann metr ic  f o r  V s o  t h a t  t h e  arc A = %(0, 3 )  

0 

i s  orthoqonal t o  SL and t o  S (p ) and so t h a t  these  spheres R 2 

a r e  t o t a l y  geodesic submanifalds of V (cf, Lema 6.7). 
0 

Let ~ ( a )  and v(b) be orthonormal (A - 1)-frames a t  

a and b such t h a t  p(a) is tangent t o  SL at a with 



p o s i t i v e  o r i en ta t ion  and p(b) is  orthogonal t o  S (p ) a t  b 
R 2 

with in te r sec t ion  number +l .  The bundle over A of orthonormal 

(A- 1)-frames of vectors orthogonal t o  A is a t r i v i a l  bundle 

n-2 with f i b e r  t h e  S t i e f e l  manifold V (R , which is connected 
A-1  

s ince  A - 1 < n - 2. Hence we may extend t o  a smooth cross- 

sec t ion  p along a l l  of A. 

The bundle over A of orthonormal (n - A - 1)-frames of 

vectors orthogonal t o  A and t o  p is  a t r i v i a l  bundle with 

f i b e r  Vn - - (Rn-A-l ) Let 9 be a smooth cross-section. 

Now use the  exponential map associated t o  the  metric t o  

def ine  the  desired embedding with the help of t h e  (n - 2)- 

frames pq. The d e t a i l s  a r e  similar t o  those i n  the completion 

of t h e  proof of  Lemma 6.7, page 83 . This f in i shes  the  proof 

of Lemma 7.7. 

Completion of h o o f  o f t h e  meis Theorem 7.6 

Using cp we construct  an isotopy of Vo which sweeps s~ 
across sR(p2), as follows. (see Mgure 7.2) 

1 
Fix a number 6 > 0 and l e t  a : R -> [l, 2 ] be a smooth 5 

funct ion such t h a t  a ( u )  = 1 for u > - 26 and a ( u )  > 2 f o r  



As i n  the  l a s t  paragraph i n  the  proof of meorem 6.6, page 

74$ construct  an isotopy H of (0, 3 )  x R A - 1  # - A 4  
t such 

t h a t  

1.) Ht i s  the  i d e n t i t y  outs ide some compact s e t ,  0 < t < 1 . - - 
4 A - 1  2.) ~ ~ ( 1 ,  3 O) = ( t  a ( ~ 2 1 ~ )  + (1 - t ) ,  y .  0 )  f o r  F'E R . 

R g u r e  7.2 

Define an isotopy Ft bf V by F ~ ~ V )  = 0 Ht 6 f1(v)  0 

f o r  v & Image (g) and F ~ ( v )  = v otherwise. f i o m  property 

1 . )  of Ht 
we see that Ft 

i s  well-defined. 

NOW u ~ i n g  Lemma 3.5 f i n d  a product neighborhood Vo X [0, 11 

embedded i n  W on t h e  r i g h t  s i d e  of Vo such t h a t  it contains no 

c r i t i c a l  poin ts  and Vo X 0 = Vo . Using t h e  isotopy Ft, alter 

the  vector f i e l d  5 on t h i s  neighborhood as i n  Lemma 4.7, obtain- 
* 

i ng  a new vector f i e l d  E '  on W. 

Since and E 1  agree t o  t h e  l e f t  of Vo ( t h a t  is, on 

-1 fi (- CO, to] ) ,  it follows t h a t  the  right-hand spheres i n  Vo 



associated t o  k t  a r e  s t i l l  sR(pp), . . . , sR(pk).  The left-hand 

1 
sphere of p associated t o  5 '  is SL = F ~ ( s ~ ) .  morn property 

1 
I 

2.) of H we know t h a t  SL misses sR(p3), ..., sR(pk). Hence 
0 

by 4.2 we can f ind  a b r s e  function f '  agreeing i n  a neighbor- 

hood of BdW with fl (and so with f ) ,  having p t  as asso- 

c iated gradient - l ike  vector f i e l d ,  and having only one c r i t i c a l  

value. 

This completes the  construction of f and 5 I .  It remains 

t o  show t h a t  t h e  new lef t -hand d isks  represent  the  desired bas is .  

The left-hand disks of p2, ..., pk associated t o  are 

s t i l l  DL(p2), . . ., ~ ~ ( p ~ )  s ince  k 1  = 5 t o  the  l e f t  of t h e  

-1 neighborhood Vo x [0, 11,  t h a t  is ,  on fl (-w, to] .  Since 

I '  = a l s o  t o  the  r i g h t  of Vo x [0, 11, t h e  new lef t -hand 
1 1 

d i sk  ~ ~ ( p ~ )  i n t e r s e c t s  ~ ~ ( p ~ )  a t  pl = DL(pl) fl ~ ~ ( p ~ )  w i t h  

i n t e r s e c t i o n  number D (p ) D' (p ) = +1. It follows from 
R 1 L 1 

t 

property 2.) of Ht t h a t  D (p  ) i n t e r s e c t s  D*(P*) i n  a s ing le  
L 1 

I 

point ,  t ransversely,  with in te r sec t ion  number D*(P~)  DL(pl) = +l* 
I 

Finally,  property 3. ) of cp implies t h a t  ~ ~ ( p ~ )  i s  d i s j o i n t  
8 

from D (p  ), . . . , D p ) and hence t h a t  DR(pi) DL(pl) = 0 R 3 R k  

for i = 3, ..., k. Thus the  bas is  f o r  H (w, V )  represented 
h 

by the  lef t -hand d isks  associated t o  t 1  is  indeed b + b2, 1 b29 

* - * t  bk, which completes t h e  proof of 7.6. 

Theorem 7.8 suppose (w; V, V1) is  a t r i a d  of dimension n > - 6 

possessing a Morse function with no c r i t i c a l  poin ts  of indices  

0, 1 o r  n - 1, n. Futhermore, assume t h a t  W, V and V' are 

e l l  s k p l y  connected (hence orientable) and that  H*(w, V) = 0. 

Then (w; V, V' ) is  a product cobordism. 



Let c denote t h e  cobordism ( ;  V, V). It follows from 

lheorem 4.8 t h a t  we can f a c t o r  c = c c . . . c 
2 3 s o  t h a t  c n-2 

admits a Morse function f whose r e s t r i c t i o n  t o  each c is a 
A 

Morse function a l l  of whose c r i t i c a l  poin ts  are on t h e  same l e v e l  

and have index A. With the notat ion as i n  Theorem 7.4 we have 

the  sequence of f r e e  abel ian groups a -> C a 
%-2 -> . s o  n-3 

-h> 
a a a 

%+l ->C -> ... ->C 
A 2' 

For each h, choose a basis 

A + l  z1 , s o . ,  Z 
X+1 f o r  the kernel  of a : CA+l -> C 

A- 
Since 

kA+l  

H,(w, V) = 0 it follows from Theorem 7.4 that the above sequence 
A+1 

it3 exact and hence t h a t  we may choose bl , ..., ~ + 1  

L+1 a \ such t h a t  bi -> z f o r  i = 1, ..., X+l 
1 

kh. m e n  z1 , -.., 
k+l A+l 
zk h+l, . bk 

bl is a bas i s  f o r  C 
A+l A h+1 

Since 2 < - A < - A + 1 < - n - 2, using Theorem 7.6 we can f ind  
\ . 

a Morse function ft and gradient - l ike  vector f i e l d  4' on c 

so  t h a t  the  left-hand disks of c and c 
A+l  

represent  the  
h 

chosen bases for C and CA+l. 
h 

Let p and q be the c r i t i c a l  poin ts  i n  c and c A A+l 

corresponding t o  zt and by1.. By increasing f i n  a neigh- 

borhood of p an3 decreasing f ' i n  a neighborhood of q (see 

= c l c  C C'  4.1, 4 . 2 ) y e o b t a i n  c ~ c ~ + ~  X P q k + l j  where c P has exact ly  

one cr i t ica l .  poin t  p and c has exact ly  one c r i t i c a l  poin t  4- 
Q 

L e t  Y be the l e v e l  manifold between c and c 
0 P 4- 



It i s  easy t o  ver i fy  t h a t  c c and its two end manifolds a re  
P Q 

a l l  simply connected (compare Remark 4 page 70). Since 

a b y 1  = z t he  spheres sR(p) and sL(q) i n  V have i o t e r -  
0 

sec t ion  nwnber +l. Hence t h e  Second Cancellation Theorem 6.4 - 
o r  Corollary 6.5 implies t h a t  c c is  a product cobordism and 

P P 
t h a t  ft and i ts  gradient-l ike vector  f i e l d  can be a l t e r e d  on the  

i n t e r i o r  of  c c s o  t h a t  f' haa no c r i t i c a l  points  there .  
P Q 

Repeating t h i s  process as often as poss ib le  we c l e a r l y  el iminate  

a l l  c r i t i c a l  points.  Then, i n  view of Theorem 3.4, t he  proof of 

Theorem 7.8 is  complete. 



8 Elimination of C r i t i c a l  Points of Index 0 and 1. 

Consider a smooth t r i a d  (wn; V, Vt ). We w i l l  always 

assume t h a t  it c a r r i e s  a ' s e l f  indexingt Morse funct ion f (see 

4.9) and an associated gradient- l ike vector f i e l d  5 .  Let 

Theorem 8.1 

Index 0 )  If H (\q, V) = 0, t h e  c r i t i c a l  po in t s  of index 0 can 
0 

be cancelled agains t  an  equal number of c r i t i c a l  poin ts  of index 1. 

Index 1) Suppose W and V a re  simply connected and n > - 5. 

If the re  a r e  no c r i t i c a l  points  of index 0 one can i n s e r t  f o r  

each index 1 c r i t i c a l  poin t  a p a i r  of aux i l i a ry  index 2 

and index 3 c r i t i c a l  poin ts  and cancel the  index 1 c r i t i c a l  

poin ts  against  t h e  a u x i l i a r y  index 2 c r i t i c a l  points .  ('Thus 

one ' tradee'  t h e  c r i t i c a l  poin ts  of index 1 f o r  an  equal 
u . 

number of c r i t i c a l  poin ts  of  index 3. ) 

Remark: The method we used t o  cancel c r i t i c a l  poin ts  of index 

2 < - A < - n - 2 i n  Theorem 7.8 fa i ls  at index 1 f o r  t h e  follow- 

i n g  reason. Ihe Second Cancellation Theorem 6.4 holds f o r  A = 1, 

n > - 6 .  (see page 70) , but  we woad want t o  apply it where the  

simple connect ivi ty  assumption of 6.4 i s  spoi led by t h e  presence 

of severa l  index 1 c r i t i c a l  poin ts .  

Proof f o r  Index 0; 

0 n-l and SL i n t e r s e c t i n g  If i n  ' V we can always f ind  SR o+ 

i n  a s ing le  point ,  then t h e  proof w i l l  follow from 4.2, 5.4 ( m e  

Nrst Cancellation   he or em) and a f i n i t e  induction (cf. proof f o r  



index 1 below). 

z2 
= 2/22. Since 

a q w l ?  Wo; z2) - 

Consider homology with coe f f i c i en t s  i n  

H ~ ( w ,  V; Z2) = 0, by Theorem 7.4, 

-> H ( W ~ ,  V; z2) is  onto. B U ~  a i a  c i  .early 

given by the  matrix of intersection numbers modulo 2 of  t h e  r ight -  

hand (n  - 1)-spheres and left-hand 0-spheres i n  vo+* Hence 

- s; + 0 there  i s  a t  l e a s t  one S: with SR f o r  any SR 

n-1 
mod 2. lllis says SR n SOL cons is t s  of an odd number of  points 

which con only be 1. This completes t h e  proof f o r  index 1. 

To construct  auxll laay c r i t i c a l  po in t s  we w i l l  need 

Given 0 < - < n, t he re  e x i s t s  a smooth map f : Rn -> R 

SO t ha t  f(5, ..., xn) = 5 outside of a compact se t ;  and so 

t h a t  f has j u s t  two c r i t i c a l  poin ts  pl, pp, non-degenerate? 

of indices  A, A + 1 respect ive ly  with f (pl) < f (pp ). 

Proof: We i d e n t i f y  R~ with R x R~ x R n-A-1. , and denote a 

general  p o i n t  by (x, y, z). Let y2 be t h e  square of t h e  

length  of y E R ~ .  

Cboose a funct ion s ( x )  with compact support  so t h a t  

x + S(X)  has two non-degenerate c r i t i c a l  poin ts ,  say xo, xl. 

Mgure 8 .1 



2 M r s t  consider the  function x + B ( X )  - y + z2 on R ~ .  'Ihis 

has two non-degenerate c r i t i c a l  points (xo, 0, 0 )  and (xl, 0, 0) 

with the correc t  indices ,  

Now "taper" t h i s  funct ion o f f  as follows. Choose t h r e e  

smooth f'unctionc a, p, y : R -> R+ with compact support s o  i 
t h a t  

2) b l ( t )  1 < l/Max ( ~ ( x )  ( f o r  a l l  t (Primes denote de r iva t ives .  ) 
X 

3 )  p ( t )  = 1 whenever a(t) # 0. 
4 )  y(x) = 1 whenever el(x) # 0. 

t 

Ngure  8.2 

Now l e t  

2 2 2 2 2 
f = x + e ( x )  a ( y  + z ) + y(x)(-y + z ) @(y2 + z 1. 

Note t h a t  

(a) f - x has compact support  

(b) Within t h e  i n t e r i o r  of t h e  region where a = 1 (hence 

$ = 1) and y = 1 t h i s  i s  our old function, with t h e  old crit- 

i c a l  points .  

I h e  t h i r d  term has absolute value < 1 by ( 5 ) .  Hence i f  

2 2 
s l ( x )  = 0 o r  a ( y  + z ) = 0 w e  have a # 0. Thus we must 

only look a t  t h e  region where s ' (x )  # 0 (hence Y = 1) and 



2 2 
a ( y  + z ) # 0 (hence f3 = 1 )  t o  look f o r  c r i t i c a l  points .  

(d)  Within t h e  region y = 1, p = 1 we have grad ( f )  = 

+ z2) + 1)). But s ( x )  a t ( y 2  + z2) + 1 # 0 by (2). Hence the  - 
gradient  can vanish only when y = 0, z = 0, and therefore  

a = 1. But t h i s  case has already been described i n  (b).  

Proof 8.1 f o r  Index 1: 

'Ihe given s i t u a t i o n  may be represented schematically 

v V1+ v2+ 
etc .  

index 1 2 3 

The first s t e p  of t h e  proof i s  t o  conetruct, f o r  any right-hand 

(n - 2)-sphere i n  V1+ of a c r i t i c a l  point  p, a s u i t a b l e  

1-sphere t o  be the  left-hand sphere of the  index 2 c r i t i c a l  

po in t  t h a t  ' w i l l  cancel p. 

Lemma 8.3 

If SR n-2 is  a right-hand sphere i n  V1+, t h e r e  e x i s t s  a 1-sphere 
n-2 

imbedded i n  V1+ t h a t  has one treneverae i n t e r s e c t i o n  with SR 

and meets no o the r  right-hand aphere. 

Proof: 

Certainly there  exists a small imbedded 1-d isc  D C Vl+ , 
n-2 

which, a t  i ts  midpoint go, t r ansver se ly  i n t e r s e c t s  SR , and 

which has no o the r  in te r sec t ion  ~ i t h  right-hand spheres. P a n s -  

l a t e  t h e  end poin ts  of D l e f t  along the  t r a j e c t o r i e s  of t o  



a p a i r  of poin ts  i n  V. Since V is  connected, and of  dimension 

n - 1 > 2, these points  may be joined by a smooth pa th  i n  V - 
which avoids the  l e f t  hand 0-sphere8 i n  V. %is path may be 

t r ans la ted  back t o  a smooth pa th  t h a t  joins  t h e  end poin ts  of  D 

i n  V1+ and avoids a l l  right-hand spheres. NOW one can e a s i l y  

construct a smooth map g : $ -> vl+ such t h a t  

neighborhood A of a onto a neighborhood of  qo i n  D. 

(b )  g(~l - a )  meets no right-hand (n - 2)-sphere. 
Since dim V = n - 1 2 3, Whitneyls theorem 6.12 provides a 

smooth imbedding with these propert ies .  This completes t h e  proof 

We w i l l  need t h e  following corol la ry  of 'Iheorems 6.11, 6.12. 

If two smooth imbeddings of a smooth manifold -d i n t o  a smooth 

manifold N~ a r e  homotopic, then they  a r e  smoothly i so top ic  

provided n > - 2m + 3. 

Remark: Actually 8.4 holds with n > - 2m + 2 (see Whitney [16] ) 

Proof of Theorem 8.1 f o r  Index ~ & ~ ~ t i ~ ~ ~ d :  

Notice t h a t  V2+ is  always simply connected. I n  f a c t  the 

inclusion V 2 + C  W f a c t o r s  i n t o  a sequence of inclusions t h a t  

a r e  a l t e r n a t e l y  inclusions associated with c e l l  attachments and 

inclueions t h a t  a r e  homotopy equivalences. (see 3.14 ). B e  c e l l s  
I 

attached a r e  of dimension n - 2 and n - 1 goiog t o  t h e  l e f t  

and of dimension 3, 4, . . . going t o  t h e  r igh t .  lhus V2+ is 



(09 
connected s ince  W is, and n ( V  ) = nl(w) = 1 (cf .  ~~~~k 1 

1 2 t  

page 70). Given any c r i t i c a l  poin t  p of index 1, we con- 

s t r u c t  an 'idealt 1-sphere S i n  V1+ as i n  Lema 8.3. After 

ad jus t ing  E i f  necessary t o  the  r i g h t  of V2+ we may assume 

t h a t  S meets no l e f t  hand 1-snheres i n  v ~ + .  (see 4.6, 4.7). 

!Ben we can t r a n s l a t e  S r i g h t  t o  a 1-sphere S1 i n  V2+. 

In a c o l l a r  neighborhood extending t o  t h e  r i g h t  o f  
V2+, 

we can choose co-ordinate funct ions ~ 1 ,  .. . , x embedding an n 

open s e t  U i n t o  R~ s o  t h a t  f 1 u = xn (cf . proof of 2.9). 

Use Lemma 8.2 to a l t e r  f on a c o w a c t  subset  of U inse r t ing  

a pair q, r, with f (q )  < f (r), of ' auxi l ia ry1  c r i t i c a l  points  

of index 2 and 3. (see Mgure 8.3). 

Figure 8.3 

l Let S2 be the left-hand 1-sphere of q i n  V2+ . Since 

V2+ is  simply connected, 8.4 and 5.8 imply t h a t  t h ~ r e  i s  an 

isotopy of t h e  i d e n t i t y  V2+ -' V2+ t h a t  c a r r i e s  Sg t o  S1 . 
Thus a f t e r  an adjustment of  5 t o  t h e  r i g h t  of  V2+ (see 4.7), 

the  left-hand sphere of q i~ V2+ w i l l  be S1 . Then t h e  

left-hand sphere of q i n  "1+ is  S, which, by construction 

i n t e r s e c t s  the right-hand sphere of p i n  a s i n g l e  point,  



transversely,  

Without changing a l t e r  f 

1 1 of f-l[$, 1 p] and of f - l [ l  g k] 

(by 4.2) on t h e  i n t e r i o r s  

, k = ( f (q )  + f ( r ) ) / 2 ,  

increasing t h e  l e v e l  of p and lowering the  l e v e l  of q so  

that f o r  some 6 > 0 
1 1 + s  < f ( p )  < l  g < f ( q )  < 2  - S 

Now use the  First Cancellation Theorem t o  a l t e r  f and 5 on 

f-' [ l  + 6, 2 - 61 el iminat ing t h e  two c r i t i c a l  poin ts  p and 

Q. Mnal ly  move t h e  c r i t i c a l  l e v e l  of r r i g h t  t o  3 (using 

4.2). 

We have now ' traded'  p f o r  r, and t h e  process may be 

repeated u n t i l  no c r i t i c a l  poin ts  of index 1 remain. This 

completes the  proof of lheorem 8.1. 



59. The h-Cobordism lheorem and Some Applications. 

Here is the  theorem we have been s t r i v i n g  t o  prove. 

Theorem 9.1 The h-Cobordism Theorem 

Suppose the  t r i a d  (wn; V, V1) has the  proper t ies  

1 )  W, V and V' a r e  simply connected. 

2 )  H,(w, V)  = 0 

3 )  dim w = n > 6  
- .  

'.&en W is d i f femorph ic  t o  V X [O, 1 1  

Remark: The condition 2 )  is  equivalent t o  2 ) '  H*(w, V' ) = 0. 

* 
For H*(w, V )  = 0 implies H (w, V' ) = 0 by ~ o i n c a r g  dual i ty .  

* 
But H (w, V1) = 0 implies H*(w, V 1 )  = 0. Simi ls r ly  2)' 

implies 2) .  

Proof : Choose a s e l f  -indexing Morse funct ion f f o r  (w; V, V 1  ). - 
lheorem 8.1 provides f o r  t h e  elimination of c r i t i c a l  po in t s  of 

index 0 and 1. If we replace t h e  Morse funct ion f by -f 

t h e  t r i a d  i s  'turned about' and c r i t i c a l  poin ts  of index A 

become c r i t i c a l  poin ts  of index n - A. Thus c r i t i c a l  poin ts  

of ( o r i g i n a l )  index n and n - 1 may a l s o  be eliminated. Now 

Theorem 7.8 gives t h e  desired conclusion, 

Defini t ion 9.2 A t r i a d  (w; V, v I )  = 0 i s  an h-cobordism and 

V is sa id  t o  be h-cobordant t o  V'  i f  both V and V1 a r e  

deformation r e t r a c t s  of W ,  

Remaxk: -- It is an i n t e r e s t i n g  f a c t  (which we w i l l  not u s e )  t h a t  

an equivalent version of Theorem 9.1 i s  obtained i f  we subs t i tu te  

f o r  2 ) the apparently s t ronger  condition that (W; V1 V' ) be 



an h-cobordism. Actually 1 )  and 2)  together imply tha t  

(w; V, V t  ) is  an h-cobordism. In f ac t  

( i )  %(v) = 0 , n1(w, V)  = 0 , H*(w, V )  = 0 together imply 

( i i )  ni(w, V )  = 0 i = 0, 1, 2, ... 
by the (relat ive ) Hurewicz isomorphism theorem (HU, [20, p. 1661; 

Hilton [21, p.1031). In view of the f ac t  tha t  (w, V )  is a 

triangulable pa i r  (Mmkres [ 5, p.101) ) ( i i )  implies tha t  a 

strong deformation retraction W -> V can be constructed. 

(see Hilton [21, p.98 llnn 1.71;) Since 2) implies H*(w, v') = 0, 

V t  i s ,  by the same argument, a (strong) deformation re t r ac t  of 

W. 

An important corollary of Theorem 9.1 is  

Theorem 9.2 

Tho simply connected closed smooth manifolds of dimension 
4 

> 5 tha t  are h-cobordant a re  diffeomorphic. - 

A Few Applications (see a lso  Smale 1221 [6] ) 

Proposition A)  Characterizations of the smooth n-disc D ~ ,  n > 6 .  - 
Suppose wn is a compact simply connected smooth n-manifold, 

n > 6, with a simply connected boundary. men the following - 
four assertions are equivalent. 

1). wn is  diffeomorphic t o  Dn. 

2). wn is  homeomorphic t o  D u o  

3). wn is contractible.. 

4). wn has the ( integral)  homology of a point. 



Proof: - Clearly 1 )  => 2 )  => 3 )  => 4).  So we prove 4 )  => 1 ) .  

If D i s  a smooth n-disc imbedded i n  I n t  W, then (W - Int  Do; 
0 

BdDo, V) s a t i s f i e s  t h e  conditions of the  h-Cobordism iheorem. 

I n  pa r t i cu la r ,  (by excis ion)  H,(W - I n t  Do, BdDo) H*(w, Do) = 0. 

Consequently the  cobordism (wn; $, V )  i s  a composition of 

( D ~ ;  $, B ~ D ~ )  with a product cobordism (W - I n t  Do; BdDo, V ) .  

It follows from 1.4 t h a t  W is  diffeomorphic t o  Do. 

Proposit ion B) The Generalized ~ o i n c a r ;  Conjecture i n  dimensions 

2 5. (see Smale [21]. ) 

If I?, n > - 5,  i s  a closed simply-connected smooth mani- 

fold with t h e  ( i n t e g r a l )  homology of t h e  n-sphere sn, then 

8 i s  homeomorphic t o  9". If n = 5 o r  6 ,  8 i s  diffeo-  

morphic t o  sn. 

Corollary I f  a closed smooth manifold I8, n >_ 5, is  a homo- 

topy n-sphere (i .e.  is  of t h e  hornotopy type of s n )  then i s  

homeomorphic t o  sn. 

Remark: m e r e  e x i s t  smooth 7-manifolds M~ t h a t  are homeo- 

7 morphic t o  s7 but  a r e  not diffeomorphic t o  S . (See Milnor 

[241- 

Proof of B Suppose first t h a t  n > - 6. If Do C M is a smooth 

n-disc, M - I n t  D s a t i s f i e s  t h e  conditions of  A ) .  
0 

In p a r t i c u l a r  

$-i(~, D ~ )  (excis ion ) 

if i > 0  
(exact sequence ) 

Z i f  i = O  



( \o  
Consequently M = (M - I n t  D ) U D i s  diffeomorphic t o  a union 

0 0 

of two copies D: , D: of t h e  n-disc with t h e  boundaries i d e n t i -  

n f i e d  under a diffeomorphism h : E~D: -> BdD2. 

Remark: Such a manifold is ca l led  a twisted sphere. 

twisted sphere is a closed manifold with Morse number 

Clearly 

2, and 

conversely. 

every 

?he proof is  completed by showing t h a t  any twisted sphere 

M = D: L& D: is  homeomorphic t o  sn. Let gl : 
n D; -> s be 

an imbedding onto t h e  aouthern hemisphere of 5" C R ~ + '  1.e. 

t he  s e t  (2 = 1, x < 0). Each point  o f  D: may be I n+l - 
n wr i t ten  tv ,  0 < t < 1, v E BdD2. Define g : M -> S by - - 

rrt -1 n t  ( i i )  g ( t v )  = s i n  - g (h ( v ) )  + cos en+l 
2 1 vhere en+l 

n+l n 
= (0, . . . , 0, 1) E R , fur a l l  poin ts  t v  i n  D2. 

Then g is a well defined 1-1 continuous map,onto sn , and 

hence is  a homeomorphism. This  completes the  proof f o r  n > - 6. 

If n = 'j we use: 

Theorem 9.1 ( ~ e r v a i r e  and Milnor [25], Wail [26 ] ) 

Suppose M" i s  a closed, simply connected, smooth manifold with 

the  homology of t h e  n-sphere SO. ?hen if n = 4, 5, o r  6, # 

bounds a smuoth, compact, cont rac t ib le  manifold. 

Then A )  implies t h a t  f o r  n = 5 or 6 8 is  a c t u a l l y  d i f f eo -  

morphic t o  sn. 

Proposit ion C Characterization of t h e  5-disc 

Suppose W' is a compact simp1y connected smooth manifold t h a t  has 

t h e  ( in teg ra l  ) homology of a point.  Let V = E d W .  

4 5 
1) If V i s  diffeomorphic t o  S then W i s  diffeomorphic to D . 



4 2) If V is homeomorphic to S then W is homeomorphic to 

Proof of 1) Form a smooth 5-manifold M = W % D~ where h 

4 is a diffeomorphism V ->B~D~ = S . Then M is a simply con- 

nected manifold with the homology of a sphere. In B) we proved 

5 that M is actually diffeomorphic to S . Now we use 
Theorem 9.6 (palais [27 1, Cerf [28L Milnor [12, p.U] ) 

Any two smooth orientation-preserving imbeddings of an n-disc 

into a connected oriented n-manifold are ambient isotopic. 

Tbus there is a diffeomorphism g : M -> M that maps 

5 5 such that D: = M - ~ n t  D: is also a D C M onto a disc Dl 

disc. lhen g maps W C M diffeomorphically onto D:. 

Proof of 2) Consider the double D(W) of W (i .e. two copies 

of W with the boundaries identified - see Munkres [ 5 ,  p. 54 1 1. 

Ihe submanifold V C D(W) has a bicollar neighborhood in D(w), 

and D(W) is homeomorphic to s5 by B). Brown [23] has 

proved : 

Theorem 9.7 If an (n - 1 )-sphere C, topologically imbedded 

in sn, has a bicollar neighborhood, then there exists a hwe- 
n 

omorphism h : 5" -> S that maps C onto snel C sn. l h u s  

sn - E has two components and the closure of each is an n-disc 

with boundary C. 

5 It follows that W is homeomorphic to D . W s  completes the 

proof of C). 



Proposition D)  The Differentiable Schoenfliess Theorem i n  

Dimensions > 5. - - 
Suppose z is  a smoothly imbedded (n - 1)-sphere i n  sn. If 

n 2 5, there is a smooth ambient isotopy t h a t  carr ies  C onto 

the equator snw1 C sn. 

Proof : sn - C has two components (by Alexander duali ty ) and 

hence 3.6 shows tha t  C is bicollared i n  sn. Ihe closure i n  

S" of a component of sn - C is a smooth simply connected 

manifold Do with boundary C .  and with the  ( in tegra l )  homo- 

logy of a point. Fbr n 2 5, Do i a  actually diffeomorphic 

t o  D' by A )  and C). lhen the theorem of Palais and Cerf 

(9.6) provides an ambient isotopy tha t  carr ies  Do t o  the 

lower hemisphere and hence BdD = C t o  the equator. 
0 

n Remark: This shows t h a t  i f  f : sn-' ->-S is a smooth 
4 

imbedding, then f i s  smoothly isotopic t o  a map onto 

C snj but it is not i n  general t rue  tha t  f is smoothly 

isotopic t o  the inclusion i : S 
n-1 .- - "n - . It is  f a l se  i f  

f = i 0 g ,  where g : S n-l -, s n-l is a diffeomorphism 

n 
which does not extend t o  a diffeomorphism Dn -> D . (The 

reader can eas i ly  show tha t  g extends t o  Dn i f  am3 only i f  

the twisted sphere D" U D~ is  diffeomorphic t o  sn. ) In 
1 g 2 

f ac t  i f  f i e  smoothly isotopic t o  i, by the  Isotopy Exten- 

n 
sion meorem 5.8, there exis ts  a diffeomorphism d : sn -> S 

such thag d 0 i = f = i 0 g. This gives two extensions of g 

n 
t o  a d i f femrphism Dn -> D . 



Concluding Remarks : 

It is an open question whether the  h-Cobordism Theorem 

i s  t r u e  f o r  dimensions n < 6 .  Let (w"; V, V 1 )  be an h- 

cobordism where $ i s  simply connected and n < 6. 

n = 0, 1, 2: The theorem i s  t r i v i a l  (or  vacuous ). 

n = 3: V and V t  must be 2-spheres. Then t h e  theorem is - 
e a s i l y  deduced from the  c l a s s i c a l  Poincar6 Conjecture : Every 

compact smooth 3-manifold which is  homotopy equivalent t o  S 3 

3 i s  diffeomorphic t o  S . Since every twisted +sphere (see 

page 110) is diffeomorphic t o  El3 (see Smale [30], Mnkres [31] ) 

t h e  theorem is ac tua l ly  equivalent  t o  t h i s  conjecture. 

n = 4: If t h e  c l a s s i c a l  Poincard ConJecture is  t r u e  V and V 1  - - 
must be 3-spheres. Then t h e  theorem is read i ly  seen t o  be 

equivalent t o  the '4-Disk Conjecturet:  Every compact cont rac t -  

ible smooth 4-manifold with boundary s3 i s  diffeomorphic t o  

4 D . Now a d i f f i c u l t  theorem of Cerf [29] says t h a t  every twisted - 
4 

4-sphere is diffeomorphic t o  S . It follows t h a t  t h i s  con- 

jecture  is equivalent to :  Every compact smooth 4-manifold which 
4 

is  homotopy equivalent t o  s4 is diffe-rphic t o  S . 
n = 5:  Proposit ion C) implies t h a t  t h e  theorem does hold when 

4 
V and V t  a r e  diffeomorphic t o  S . However the re  e x i s t  many 

types of closed s i m p l ~  connected 4-manifolds. Barden (unpublished ) 

showed t h a t  i f  t he re  e x i s t s  a diffeomorphism f : V 1  -> V 

homotopic t o  r l V ,  where r : W -> V is  a deformation 

re t r ac t ion ,  then W is d i f femorph ic  t o  V X [0, 2.1. (see 
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