MANIFOLDS AND DUALITY

ANDREW RANICKI

- Classification of manifolds
- Uniqueness Problem
- Existence Problem
- Quadratic algebra
- Applications
Manifolds

- An \(n \)-dimensional manifold \(M^n \) is a topological space which is locally homeomorphic to \(\mathbb{R}^n \).
 - compact, oriented, connected.

- Classification of manifolds up to homeomorphism.
 - For \(n = 1 \): circle
 - For \(n = 2 \):
 - sphere, torus, \ldots, handlebody.
 - For \(n \geq 3 \): in general impossible.
The Uniqueness Problem

- Is every homotopy equivalence of n-dimensional manifolds $f : M^n \rightarrow N^n$ homotopic to a homeomorphism?

 - For $n = 1, 2$: Yes.

 - For $n \geq 3$: in general No.
The Poincaré conjecture

- Every homotopy equivalence \(f : M^3 \to S^3 \) is homotopic to a homeomorphism.

 - Stated in 1904 and still unsolved!

- Theorem
 \((n \geq 5: \text{Smale, 1960, } n = 4: \text{Freedman, 1983})\)

Every homotopy equivalence \(f : M^n \to S^n \) is homotopic to a homeomorphism.
Old solution of the Uniqueness Problem

- Surgery theory works best for \(n \geq 5 \).
 - From now on let \(n \geq 5 \).

- **Theorem**
 (Browder, Novikov, Sullivan, Wall, 1970)
 A homotopy equivalence \(f : M^n \to N^n \) is homotopic to a homeomorphism if and only if two obstructions vanish.

- The 2 obstructions of surgery theory:
 1. In the **topological** \(K \)-theory of vector bundles over \(N \).
 2. In the **algebraic** \(L \)-theory of quadratic forms over the fundamental group ring \(\mathbb{Z}[\pi_1(N)] \).
Traditional surgery theory

- **Advantage:**
 - Suitable for computations.

- **Disadvantages:**
 - Inaccessible.
 - A complicated mix of topology and algebra.
 - Passage from a homotopy equivalence to the obstructions is indirect.
 - Obstructions are not independent.
Wall’s programme

• “The theory of quadratic structures on chain complexes should provide a simple and satisfactory algebraic version of the whole setup.”

• Such a theory is now available.

Siebenmann’s theorem

- The kernel groups of a map $f : M \to N$ are the relative homology groups
 \[K_r(x) = H_{r+1}(f^{-1}(x) \to \{x\}) \quad (x \in N). \]

- Exact sequence
 \[
 \cdots \to K_r(x) \to H_r(f^{-1}(x)) \to H_r(\{x\}) \to K_{r-1}(x) \to \cdots.
 \]

- $K_\ast(x) = 0$ for a homeomorphism f.

- **Theorem** (Siebenmann, 1972)
 A homotopy equivalence $f : M^n \to N^n$ with
 \[K_\ast(x) = 0 \quad (x \in N) \]
 is homotopic to a homeomorphism.
New solution of the Uniqueness Problem

- The total surgery obstruction $s(f)$ of a homotopy equivalence $f : M^n \to N^n$ is the cobordism class of

 - the sheaf of \mathbb{Z}-module chain complexes

 - with n-dimensional Poincaré duality

 - over N

 - with stalk homology $K_*(x)$ ($x \in N$).

- Cobordism and Poincaré duality are algebraic.

- **Theorem** A homotopy equivalence f is homotopic to a homeomorphism if and only if $s(f) = 0$.
Poincaré duality

• **Theorem** (Poincaré, 1895)
 The homology and cohomology of a compact oriented n-dimensional manifold M are isomorphic:

 $$H^{n-r}(M) \cong H_r(M) \quad (r = 0, 1, 2, \ldots) .$$

• **Definition** (Browder, 1962)
 An n-dimensional duality space X is a space with isomorphisms:

 $$H^{n-r}(X) \cong H_r(X) \quad (r = 0, 1, 2, \ldots) .$$
The Existence Problem

- Is an \(n \)-dimensional duality space \(X \) homotopy equivalent to an \(n \)-dimensional manifold?

 - For \(n = 1, 2 \): Yes.

 - For \(n \geq 3 \): in general No.
Old solution of the Existence Problem

- **Theorem**
 (Browder, Novikov, Sullivan, Wall, 1970)
 An n-dimensional duality space X is homotopy equivalent to an n-dimensional manifold if and only if 2 obstructions vanish.

- The 2 obstructions (as for Uniqueness):

 1. In the **topological** K-theory of vector bundles over X.

 2. In the **algebraic** L-theory of quadratic forms over the fundamental group ring $\mathbb{Z}[\pi_1(X)]$.

- Same (dis)advantages as for the old solution of the Uniqueness Problem.
The Theorem of Galewski and Stern

- The kernel groups $K_r(x)$ of an n-dimensional duality space X fit into the exact sequence

$$
\cdots \rightarrow K_r(x) \rightarrow H^{n-r}(\{x\}) \rightarrow H_r(X,X\setminus\{x\}) \rightarrow K_{r-1}(x) \rightarrow \cdots.
$$

- $K_*(x) = 0$ for a manifold.

- **Theorem** (Galewski and Stern, 1977)
 A polyhedral duality space X with

 $$
 K_*(x) = 0 \ (x \in X) \ (a \ homology\ manifold)
 $$

 is homotopy equivalent to a manifold.
New solution of the Existence Problem

• The total surgery obstruction \(s(X) \) of an \(n \)-dimensional duality space \(X \) is the cobordism class of

 – the sheaf of \(\mathbb{Z} \)-module chain complexes

 – with \((n - 1)\)-dimensional Poincaré duality

 – over \(X \)

 – with stalk homology \(K_\ast(x) \) (\(x \in X \)).

• Cobordism and Poincaré duality are algebraic.

• Theorem A duality space \(X \) is homotopy equivalent to a manifold if and only if \(s(X) = 0 \).
Quadratic algebra

- Chain complexes with the homological properties of manifolds and duality spaces.

- An n-dimensional duality complex is a chain complex

\[C_n \xrightarrow{d} C_{n-1} \xrightarrow{d} C_{n-2} \rightarrow \ldots \rightarrow C_0 \ (d^2 = 0) \]

with isomorphisms

\[H^{n-r}(C) \cong H_r(C) \ (r = 0, 1, 2, \ldots) \ . \]

- generalized quadratic forms

- cobordism of duality complexes
Local and global duality complexes

$X = \text{connected space}$

- The global surgery group $L_n(\mathbb{Z}[\pi_1(X)])$ of Wall is the cobordism group of n-dimensional duality complexes of $\mathbb{Z}[\pi_1(X)]$-modules.
 - Generalized Witt groups.

- The local surgery group $H_n(X; \mathbb{L}(\mathbb{Z}))$ is the cobordism group of n-dimensional duality complexes of \mathbb{Z}-module sheaves over X.
 - Generalized homology with coefficients $L_\ast(\mathbb{Z})$.
The surgery exact sequence

- **Theorem** The local and global surgery groups are related by the exact sequence

\[
\ldots \rightarrow H_n(X; \mathbb{L}(\mathbb{Z})) \xrightarrow{A} L_n(\mathbb{Z}[\pi_1(X)]) \rightarrow S_n(X) \rightarrow H_{n-1}(X; \mathbb{L}(\mathbb{Z})) \rightarrow \ldots .
\]

- The **assembly map** \(A \) is the passage from local to global duality.

- The **structure group** \(S_n(X) \) is the cobordism group of \((n-1)\)-dimensional local duality complexes over \(X \) which are globally underlinetrivial.
The total surgery obstructions

- **Uniqueness**: the total surgery obstruction of a homotopy equivalence \(f : M^n \to N^n \)

 \[s(f) \in S_{n+1}(N). \]

 - \(s(f) \) is the cobordism class of the \(n \)-dimensional globally trivial local duality complex with stalk homology the kernels \(K_*(x) \) \((x \in N) \).

- **Existence**: the total surgery obstruction of an \(n \)-dimensional duality space \(X \)

 \[s(X) \in S_n(X). \]

 - \(s(X) \) is the cobordism class of the \((n - 1) \)-dimensional globally trivial local duality complex with stalk homology the kernels \(K_*(x) \) \((x \in X) \).
Topology and homotopy theory

- The difference between the topology of manifolds and the homotopy theory of duality spaces = the difference between the cobordism theories of the local and global duality complexes.

\[
\begin{array}{ccc}
\text{manifolds} & \to & \text{local duality} \\
\downarrow & & \downarrow A \\
\text{duality spaces} & \to & \text{global duality}
\end{array}
\]

- Converse of Poincaré duality:
 A duality space with sufficient local duality is homotopy equivalent to a manifold.
The Novikov and Borel conjectures

- The Novikov conjecture on the homotopy invariance of the higher signatures is algebraic:

 \[A : H_*(B\pi; \mathbb{L}(\mathbb{Z})) \to L_*(\mathbb{Z}[\pi]) \] is rationally injective, for every group \(\pi \).

- The Borel conjecture on the existence and uniqueness of aspherical manifolds is algebraic:

 \[A : H_*(B\pi; \mathbb{L}(\mathbb{Z})) \to L_*(\mathbb{Z}[\pi]) \] is an isomorphism if \(B\pi \) is a duality space.

- The various solution methods can now be turned into algebra:

 - topology, geometry, analysis (\(C^* \)-algebra), index theorems, \ldots
Applications

- algebraic computations of the L-groups
 - number theory
- singular spaces
 - algebraic varieties
- differential geometry
 - hyperbolic geometry
- non-compact manifolds
 - controlled topology
- 3- and 4-dimensional manifolds