THE POINCARÉ DUALITY THEOREM
AND ITS CONVERSE I.
Andrew Ranicki (Edinburgh)
http://www.maths.ed.ac.uk/~aar

FESTIVE OPENING COLLOQUIUM
BOCHUM, 7TH DECEMBER, 2011
Local to global and, if possible, global to local

- There are many theorems in TOPOLOGY of the type
 \[
 \text{local input} \implies \text{global output}
 \]

- Theorems of the type
 \[
 \text{global input} \implies \text{local output}
 \]
 are even more interesting, and correspondingly harder to prove! This frequently requires ALGEBRA.

- *Algebra is a pact one makes with the devil!* (Sir Michael Atiyah)

- *I rather think that algebra is the song that the angels sing!* (Barry Mazur)

- *One thing I’ve learned about algebra … don’t take it too seriously* (Peanuts cartoon)
Poincaré duality and its converse

The Poincaré duality of an n-dimensional topological manifold M

$$H^*(M) \cong H_{n-*}(M)$$

is a local \Longrightarrow global theorem.

Theorem Let $n \geq 5$. A space X with n-dimensional Poincaré duality $H^*(X) \cong H_{n-*}(X)$ is homotopy equivalent to an n-dimensional topological manifold if and only if X has sufficient local Poincaré duality.

Modern take on central result of the Browder-Novikov-Sullivan-Wall high-dimensional surgery theory for differentiable and PL manifolds, and its Kirby-Siebenmann extension to topological manifolds (1962-1970)

Will explain "sufficient" over the course of the lectures!
The Seifert-van Kampen Theorem and its converse

- Local \implies global. The fundamental group of a union

\[X = X_1 \cup_Y X_2, \ Y = X_1 \cap X_2 \]

is an amalgamated free product

\[\pi_1(X) = \pi_1(X_1) \ast_{\pi_1(Y)} \pi_1(X_2). \]

- Global \implies local. Let $n \geq 6$. If X is an n-dimensional manifold such that $\pi_1(X) = G_1 \ast_H G_2$ then $X = X_1 \cup_Y X_2$ for codimension 0 submanifolds $X_1, X_2 \subset X$ with

\[\partial X_1 = \partial X_2 = Y = (n-1)\text{-dimensional manifold}, \]

\[\pi_1(X_1) = G_1, \ \pi_1(X_2) = G_2, \ \pi_1(Y) = H. \]
The Vietoris Theorem and its converses

- **Theorem** If $f : X \to Y$ is a surjection of compact metric spaces such that for each $y \in Y$ the restriction

 $$f| : f^{-1}(y) \to \{y\}$$

 induces an isomorphisms in homology

 $$H_*(f^{-1}(y)) \cong H_*(\{y\})$$

 then f induces isomorphisms in homology

 $$f_* : H_*(X) \cong H_*(Y).$$

- **Local input:** each $f^{-1}(y)$ ($y \in Y$) is acyclic

 $$\tilde{H}_*(f^{-1}(y)) = 0.$$

- **Global output:** f_* is an isomorphism.

- Would like to have converses of the Vietoris theorem! For example, under what conditions is a homotopy equivalence homotopic to a homeomorphism?
Manifolds and homology manifolds

- An n-dimensional topological manifold is a topological space M such that each $x \in M$ has an open neighbourhood homeomorphic to \mathbb{R}^n.

- An n-dimensional homology manifold is a topological space M such that the local homology groups of M at each $x \in M$ are isomorphic to the local homology groups of \mathbb{R}^n at 0

$$H_*(M, M \setminus \{x\}) \cong H_*(\mathbb{R}^n, \mathbb{R}^n \setminus \{0\}) = \begin{cases} \mathbb{Z} & \text{if } * = n \\ 0 & \text{if } * \neq n \end{cases}$$

- A topological manifold is a homology manifold.

- A homology manifold need not be a topological manifold.

- Will only consider compact M which can be realized as a subspace $M \subset \mathbb{R}^{n+k}$ for some large $k \geq 0$, i.e. a compact ENR. This is automatically the case for topological manifolds.
The triangulation of manifolds

A triangulation of a space X is a simplicial complex K together with a homeomorphism

$$X \cong |K|$$

with $|K|$ the polyhedron of K.

X is compact if and only if K is finite.

Triangulation of n-dimensional topological manifolds:

- Exists and is unique for $n \leq 3$
- Known: may not exist for $n = 4$
- Unknown: if exists for $n \geq 5$
- Differentiable and PL manifolds are triangulated for all $n \geq 0$

Triangulation of n-dimensional homology manifolds:

- Exists and is unique for $n \leq 3$
- Known: may not exist for $n \geq 4$.
The naked homeomorphism

- Poincaré, for one, was emphatic about the importance of the naked homeomorphism - when writing philosophically - yet his memoirs treat DIFF or PL manifolds only. in L. Siebenmann’s 1970 ICM lecture on topological manifolds.

- ... topological manifolds bear the simplest possible relation to their underlying homotopy types. This is a broad statement worth testing. (ibid.)

- Will describe how surgery theory manufactures the homotopy theory of topological manifolds of dimension > 4 from Poincaré duality spaces and chain complexes.

- Poincaré duality is the most important property of the algebraic topology of manifolds.
The original statement of Poincaré duality

- **Analysis Situs and its Five Supplements (1892–1904)**

```
\[ \text{Par conséquent, pour une variété fermée, les nombres de Betti également distants des extrèmes sont égaux.} \]
```

Ce théorème n’a, je crois, jamais été énoncé; il était cependant connu de plusieurs personnes qui en ont même fait des applications.

- Originally proved for a differentiable manifold \(M \), but long since established for topological and homology manifolds.
- \(h = n \), the dimension of \(M \).
- \(P_p = \dim_{\mathbb{Z}} H_p(M) \), the \(p \)th Betti number of \(M \).
- Happy birthday! 2011 is the 100th anniversary of Brouwer’s proof that homeomorphic manifolds have the same dimension. Also true for homology manifolds.
Orientation

A local fundamental class of an n-dimensional homology manifold M at $x \in M$ is a choice of generator

$$[M]_x \in \{1, -1\} \subset H_n(M, M\{x\}) = \mathbb{Z}.$$

The local Poincaré duality isomorphisms are defined by

$$[M]_x \cap - : H^*(\{x\}) \cong H_{n-*}(M, M\{x\}).$$

An n-dimensional homology manifold M is orientable if there exists a fundamental homology class $[M] \in H_n(M)$ such that for each $x \in M$ the image

$$[M]_x \in H_n(M, M\{x\}) = \mathbb{Z}$$

is a local fundamental class.

We shall only consider manifolds which are orientable, together with a choice of fundamental class $[M] \in H_n(M)$.

Poincaré duality in modern terminology

- **Theorem** For an n-dimensional manifold M the cap products with the orientation $[M] \in H_n(M)$ are Poincaré duality isomorphisms

 $$[M] \cap - : H^*(M) \cong H_{n-*}(M).$$

- **Idea of proof** Glue together the local Poincaré duality isomorphisms

 $$[M]_x \cap - : \ H^*(\{x\}) \cong H_{n-*}(M, M\{x\}) \ (x \in M)$$

 to obtain the global Poincaré duality isomorphisms

 $$[M] \cap - = \lim_{\leftarrow x \in M} [M]_x \cap - :$$

 $$H^*(M) = \lim_{\leftarrow x \in M} H^*(\{x\}) \cong H_{n-*}(M) = \lim_{\leftarrow x \in M} H_{n-*}(M, M\{x\}).$$

- Need to work on the chain level, rather than directly with homology.
Poincaré duality spaces

Definition An n-dimensional Poincaré duality space X is a finite CW complex X with a homology class $[X] \in H_n(X)$ such that cap product with $[X]$ defines Poincaré duality isomorphism

$$[X] \cap - : H^*(X; \mathbb{Z}[\pi_1(X)]) \cong H_{n-*}(X; \mathbb{Z}[\pi_1(X)]) .$$

In the simply-connected case $\pi_1(X) = \{1\}$ just

$$[X] \cap - : H^*(X) \cong H_{n-*}(X) .$$

Homotopy invariant: any finite CW complex homotopy equivalent to an n-dimensional Poincaré duality space is an n-dimensional Poincaré duality space.

A triangulable n-dimensional homology manifold is an n-dimensional Poincaré duality space.

A nontriangulable n-dimensional homology manifold is homotopy equivalent to an n-dimensional Poincaré duality space.
Floer’s Diplom thesis

- Floer’s 1982 Bochum Diplom thesis (under the supervision of Ralph Stöcker) was on the homotopy-theoretic classification of \((n - 1)\)-connected \((2n + 1)\)-dimensional Poincaré duality spaces for \(n > 1\).

Klassifikation hochzusammenhängender Poincaré-Räume

Andreas Floer

Diplomarbeit

Ruhr-Universität Bochum

Abteilung für Mathematik

1982
(Existence) When is an n-dimensional Poincaré duality space homotopy equivalent to an n-dimensional topological manifold?

(Uniqueness) When is a homotopy equivalence of n-dimensional topological manifolds homotopic to a homeomorphism?

There are also versions of these questions for differentiable and PL manifolds, and also for homology manifolds.

But it is the topological manifold version which is the most interesting! Both intrinsically, and because most susceptible to algebra, at least for $n > 4$.

Manifold structures in the homotopy type of a Poincaré duality space
Surfaces

- Surface = 2-dimensional topological manifold.
- Every orientable surface is homeomorphic to the standard surface Σ_g of genus $g \geq 0$.
- Every 2-dimensional Poincaré duality space is homotopy equivalent to a surface.
- A homotopy equivalence of surfaces is homotopic to a homeomorphism.
- In general, the analogous statements for false for n-dimensional manifolds with $n > 2$.
Bundle theories

<table>
<thead>
<tr>
<th>spaces</th>
<th>bundles</th>
<th>classifying spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>differentiable</td>
<td>manifolds</td>
<td>(BO)</td>
</tr>
<tr>
<td></td>
<td>vector bundles</td>
<td>(\pi_*(BO)) infinite</td>
</tr>
<tr>
<td>topological</td>
<td>manifolds</td>
<td>(BTOP)</td>
</tr>
<tr>
<td></td>
<td>topological bundles</td>
<td>(\pi_*(BTOP)) infinite</td>
</tr>
<tr>
<td>homotopy theory</td>
<td>Poincaré duality spaces</td>
<td>(BG)</td>
</tr>
<tr>
<td></td>
<td>spherical fibrations</td>
<td>(\pi_(BG) = \pi_{-1}^S) finite</td>
</tr>
</tbody>
</table>

- Forgetful maps downwards. Difference between the first two rows = finite (but non-zero) = exotic spheres (Milnor).
- An \(n\)-dimensional differentiable manifold \(M\) has a tangent bundle \(\tau_M : M \to BO(n)\) and a stable normal bundle \(\nu_M : M \to BO\).
- Similarly for a topological manifold \(M\), with \(BTOP(n)\).
- An \(n\)-dimensional Poincaré duality space \(X\) has a Spivak normal fibration \(\nu_X : X \to BG\).
The Hirzebruch signature theorem

- The **signature** of a $4k$-dimensional Poincaré duality space X is

 \[\sigma(X) = \text{signature}(H^{2k}(X), \text{intersection form}) \in \mathbb{Z} \]

- The **Hirzebruch L-genus** of a vector bundle η over a space X is a certain polynomial $L(\eta) \in H^{4*}(X; \mathbb{Q})$ in the Pontrjagin classes $p_*(\eta) \in H^{4*}(M)$.

- **Signature Theorem** (1953) If M is a $4k$-dimensional differentiable manifold then

 \[\sigma(M) = \langle L(\tau_M), [M] \rangle \in \mathbb{Z} \]

- There have been many extensions of the theorem since 1953!
The Browder converse of the Hirzebruch signature theorem

Theorem (Browder, 1962) For $k > 1$ a simply-connected $4k$-dimensional Poincaré duality space X is homotopy equivalent to a $4k$-dimensional differentiable manifold M if and only if $\nu_X : X \to BG$ lifts to a vector bundle $\eta : X \to BO$ such that

$$\sigma(X) = \langle \mathcal{L}(-\eta), [X] \rangle \in \mathbb{Z}.$$

Novikov (1962) initiated the complementary theory of necessary and sufficient conditions for a homotopy equivalence of simply-connected differentiable manifolds to be homotopic to a diffeomorphism.

Many developments in the last 50 years, including versions for topological manifolds and homeomorphisms.
The Browder-Novikov-Sullivan-Wall surgery theory I.

- Is an n-dimensional Poincaré duality space X homotopy equivalent to an n-dimensional topological manifold?

- The surgery theory provides a 2-stage obstruction for $n > 4$, working outside of X, involving normal maps $(f, b) : M \to X$ from manifolds M, with b a bundle map.

- Primary obstruction in the topological K-theory of vector bundles to the existence of a normal map $(f, b) : M \to X$.

- Secondary obstruction $\sigma(f, b) \in L_n(\mathbb{Z}[\pi_1(X)])$ in the Wall surgery obstruction group, depending on the choice of (f, b) in resolving the primary obstruction. The algebraic L-groups defined algebraically using quadratic forms over $\mathbb{Z}[\pi_1(X)]$.

- The mixture of topological K-theory and algebraic L-theory not very satisfactory!
The Browder-Novikov-Sullivan-Wall surgery theory II.

- Is a homotopy equivalence $f : M \to N$ of n-dimensional topological manifolds homotopic to a homeomorphism?
- For $n > 4$ similar 2-stage obstruction theory for deciding if f is homotopic to a homeomorphism.
- The mapping cylinder of f

$$L = M \times [0, 1] \cup_{(x, 1) \sim f(x)} N$$

defines an $(n + 1)$-dimensional Poincaré pair $(L, M \sqcup N)$ with manifold boundary. The 2-stage obstruction for uniqueness is the 2-stage obstruction for relative existence.
- Again, the mixture of topological K-theory and algebraic L-theory not very satisfactory!