THE WORK OF C.T.C. WALL
IN TOPOLOGY

ANDREW RANICKI

- 90+ papers, 2+ books

- Topics covered: cobordism groups, Steenrod algebra, homological algebra, manifolds of dimensions 3, 4, ≥ 5, quadratic forms, finiteness obstruction, embeddings, bundles, Poincaré complexes, surgery obstruction theory, homology of groups, 2-dimensional complexes, topological space form problem, computations of K- and L-groups, ...

- MR 57Q12 Wall finiteness obstruction for CW-complexes

- MR 57R67 Surgery obstructions, Wall groups
Wall’s manifold classifications

1. All manifolds at once
 - cobordism (1959-1961)

2. One manifold at a time
 - diffeomorphism (1962-1966)

3. Within a homotopy type
 - surgery (1967-1977)
Cobordism

• A **cobordism** between closed m-dimensional manifolds M, N is an $(m + 1)$-dimensional manifold W with boundary $\partial W = M \cup N$

 ![Diagram of cobordism](image)

• $\Omega_m =$ abelian group of cobordism classes of oriented closed m-dimensional manifolds, addition by disjoint union

• $\Omega_* = \sum_{m=0}^{\infty} \Omega_m$ **oriented cobordism ring**, multiplication by cartesian product.
Computation of oriented cobordism

- Thom: expressed Ω_\ast as homotopy groups, computed $\Omega_\ast \otimes \mathbb{Q}$
 - no odd-primary torsion (Milnor).

- Wall: **Determination of the cobordism ring** Annals of Mathematics 72, 292–311 (1960)

- Calculation of 2-primary torsion.

- **Theorem** (Wall) Two oriented manifolds are cobordant if and only if they have the same Stiefel and Pontrjagin numbers
 - ultimate achievement of pioneering phase of cobordism theory.
Handles and surgery

• Given m-manifold M and $S^r \times D^{m-r} \subset M$ define elementary cobordism $(W; M, N)$ by attaching an $(r + 1)$-handle to $M \times I$

\[
W = M \times I \cup D^{r+1} \times D^{m-r}
\]

• $N = (M \setminus S^r \times D^{m-r}) \cup D^{r+1} \times S^{m-r-1}$ manifold obtained from M by surgery on $S^r \times D^{m-r} \subset M$

• Handles are the building blocks of manifolds

 -- need surgeries to attach handles
Structure of manifolds

- Every cobordism \((W; M, N)\) is a union of elementary cobordisms.

- \(h\)-cobordism = cobordism \((W; M, N)\) with \(M \subset W, N \subset W\) homotopy equivalences

- \(h\)-cobordism theorem (Smale): every simply-connected \(h\)-cobordism with \(\dim(W) \geq 6\) is diffeomorphic to \(M \times (I; \{0\}, \{1\})\)
 - needs Whitney trick for removing double points in dimensions \(> 4\)

- \(s\)-cobordism theorem is non-simply-connected version \(\pi_1(W) \neq \{1\}\)

- possible rearrangements of handles governed by algebraic \(K\)-theory (Whitehead torsion)
Intersection form

- $M = \text{oriented } 2n\text{-dimensional manifold.}$

- **Intersection form:** $(-)^n$-symmetric pairing
 $$H_n(M) \times H_n(M) \to \mathbb{Z}$$

- Isomorphism class of form is an oriented homotopy invariant.

- **Signature** defined for even n, an oriented cobordism invariant.

- The boundary of an $(n-1)$-connected $2n$-dimensional manifold M with unimodular intersection form is a homotopy sphere $\partial M = \Sigma^{2n-1}$, with a potentially exotic differential structure for $n \geq 4$ (Milnor).
Classification of highly-connected manifolds

• Wall: **Classification of** $(n-1)$-connected $2n$-**manifolds** Annals of Mathematics 75, 163–189 (1962)

• **Theorem** (Wall) For $n \geq 3$ the diffeomorphism classes of differentiable $(n-1)$-connected $2n$-manifolds with boundary an exotic sphere $= \text{the isomorphism classes of } \mathbb{Z}\text{-valued } (\approx)^n \text{-symmetric forms with a quadratic refinement in } \pi_n(BSO(n))$

• Classification of handlebodies by homotopy theory, subsequently generalized to other cases:
4-manifolds

- Simply-connected 4-manifolds are homotopy equivalent if and only if intersection forms are isomorphic (Milnor).

- **Theorem (Wall)** Simply-connected 4-manifolds are h-cobordant if and only if intersection forms are isomorphic.

- **Theorem (Wall)** h-cobordant simply-connected 4-manifolds M, N are stably diffeomorphic

$$M \#_k S^2 \times S^2 \cong N \#_k S^2 \times S^2$$

for some $k \geq 0$. $\#$ = connected sum
CW complexes

- X space, $f : S^r \to X$ map

- $X \cup_f D^{r+1} =$ space obtained from X by attaching an $(r + 1)$-cell

- **CW complex** = space obtained from \emptyset by attaching cells

- When is a space homotopy equivalent to a finite CW complex?
Finite domination

• A space X is finitely dominated if it is a homotopy retract of a finite CW complex K, i.e. if there exist maps $f : X \to K$, $g : K \to X$ and a homotopy $gf \simeq 1 : X \to X$.

• Is a finitely dominated space homotopy equivalent to a finite CW complex?

• Every compact ANR, e.g. a topological manifold, is finitely dominated (Borsuk).

• A finite group π with cohomology of period q acts freely on an infinite CW complex Y homotopy equivalent to S^{q-1}, with Y/π finitely dominated (Swan).
Finiteness obstruction

- **Wall**: Finiteness conditions for CW-complexes
 Annals of Mathematics 81, 56–89 (1965)

- **Wall finiteness obstruction** $[X] \in \tilde{K}_0(\mathbb{Z}[\pi_1(X)])$
 of finitely dominated space X
 - fundamental algebraic invariant of non-compact topology.

- **Theorem** (Wall) X is homotopy equivalent to finite CW complex if and only if $[X] = 0$

- Many applications to topology of manifolds
 - Siebenmann end obstruction for closing tame ends of open manifolds
 - Topologically stratified sets
The surgery method

- Standard method for classifying manifolds within a homotopy type.

- An m-dimensional manifold M has Poincaré duality $H^{m-*}(M) \cong H_*(M)$.

- Is a space X with m-dimensional Poincaré duality $H^{m-*}(X) \cong H_*(X)$ homotopy equivalent to an m-dimensional manifold?

- Is a homotopy equivalence of manifolds homotopic to a diffeomorphism?

 — relative version of previous question

- Formulation by Browder, Novikov, Sullivan in terms of normal maps $(f, b) : M \to X$ from manifolds to Poincaré duality spaces, with f degree 1 and b a bundle map.
Wall surgery theory

- **Wall**: *Surgery on compact manifolds*
 LMS Monograph 1, Academic Press (1970)
 - the surgeon’s bible
 - algebraic L-groups $L_*(\mathbb{Z}[\pi])$ of group ring
 $\mathbb{Z}[\pi] = \text{quadratic algebraic } K$-groups
 - surgery obstruction of normal map $(f, b) : M \to X$

 $$\sigma_*(f, b) \in L_m(\mathbb{Z}[\pi_1(X)])$$

- **Theorem** (Wall) For $m \geq 5$ an m-dimensional
 Poincaré duality space X is homotopy equivalent to an m-dimensional manifold if and only if there exists a normal map $(f, b) : M \to X$ with $\sigma_*(f, b) = 0$.

14
Properties of Wall groups $L_m(\mathbb{Z}[\pi])$

- Quadratic forms over $\mathbb{Z}[\pi]$ for m even
- Automorphisms of forms for m odd
- Govern existence and effects of surgeries on m-dimensional manifolds with fundamental group π
- Computations for finite π using algebra
- Computations for infinite π using topology
- Many, many applications to both algebra and topology
The topological space form problem

- Wall: The topological space-form problem, pp 319-351 in Topology of manifolds, Markham, 1970

- Wall: Free actions of finite groups on spheres, pp 115-124 in Proc Symp in Pure Math 32, AMS 1978

- +3 further papers (with Madsen and Thomas)

- Complete classification of finite groups π which have a free topological action on S^m for $m \geq 5$, using:
 - group cohomology
 - homotopy theory
 - algebraic K- and L-theory of $\mathbb{Z}[\pi]$.
PL structures on tori

- **Wall:** *On homotopy tori and the annulus theorem* Bulletin LMS 1, 95–97 (1969)

- Uses geometric computation of $L_*(\mathbb{Z}[\mathbb{Z}^m])$ to classify PL manifolds homotopy equivalent to m-torus T^m for $m \geq 5$

- Applied by Kirby to prove the *annulus theorem* for $m \geq 5$: if $D^m \subset \text{int}(D^m)$ is an embedding then $D^m \setminus \text{int}(D^m)$ is homeomorphic to $S^{m-1} \times I$

- Crucial ingredient of Kirby-Siebenmann handlebody theory of topological manifolds of dimension ≥ 5

- Now know as much about topological manifolds as about differentiable manifolds.