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We shall present this paper in the framework and terminology of differential topology
though all our arguments are valid in the piecewise linear ease also, under local un-
knottedness hypotheses. In particular we use Rp for Euclidean space of dimension
p, Sp~1 for the standard unit sphere in it, and Dp for the disc which it bounds.

Kosinski proved in (5), with certain restrictions on p and q, the following theorems.
I Let The a submanifold of Sp+q+1, diffeomorphic to Sp x Sq. Then the closure of one

of its complementary components is diffeomorphic to Dp+1 x SQ.
II LetTx,T2beasinI. ThenthereisadiffeomorphismhofSp+*+1withh(T-^) = T2.

I l l Let Slt S2 be submanifolds of Sp+*+1, diffeomorphic to Sp. Then (S'»+«+1 - S±

and Sp+9+1 — S2 are diffeomorphic.
The present paper is motivated by the observation that all three theorems can be

improved. To fix notation, we mention:
LEMMA 1. Let Tp+q be a submanifold ofSp+a+1, with the homology of Sp x SQ, and such

that each component has Abelian fundamental group. Then Sp+q+1 — T splits as the dis-
joint union of two open sets, with closures Cp and Cq, each with boundary T. Cp is a
homology Sp, and if p 4= 1 also a homotopy Sp [similarly for q).

We shall call a manifold imbedded in a sphere, and diffeomorphic to a product P
of a sphere with a disc or sphere, unknotted if there is a diffeomorphism of the larger
sphere throwing the manifold onto the standard imbedded copy of P. A manifold
diffeomorphic to the product of two spheres we call a torus. Now, with the notation of
Lemma 1, our first main result is

THEOREM 2. Assumep + q+ 1 + 4.
(A) Suppose Cp is a homotopy Sp. If p + q+l = 5, or if q = 1 let T be a torus. If

p = 1 and q = 3, assume the conjecture below. Then Cv is diffeomorphic to Sp x D^+1.
(B) Suppose p,q 4= 1 and, if p + q+l = 5, that T is a torus. Then T is an unknotted

torus.
(C) Suppose q = 1, and that T is a torus. If p = 3, assume the conjecture below.

Then T is unknotted if and only ifCq is a homotopy S1.
Conjecture. Any h-cobordism of S3 x S1 to itself is diffeomorphic to S3xS1x I.
It should perhaps be mentioned that although we formulate the conjecture in

geometric terms, we have succeeded in doing the geometry, and reducing the problem
to a purely algebraic (commutative) one. In particular, there is no connexion whatever
between our conjecture and the unsolved cases of the Poincare conjecture.
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We now consider a submanifold S c: Sp+2, diffeomorphic to Sp. I t is not hard to see
that the normal bundle is necessarily trivial, so the boundary T of a tubular neigh-
bourhood is diffeomorphic to Sp x S1. We then have

THEOREM 3. Let p 4= 2. Then S is unknotted if and only if T is.

COLLORARY 3-1. / / p =j= 2,3,5 is unknotted if and only if Sp+2 — S is a homotopy
circle. Ifp = 3, this holds if the conjecture above is true.

When p ^ 4, this corollary is due to Levine ((6)). (Levine excludes the case p = 5,
but Browder has pointed out an easy way to fill the gap in the argument.)

Proof of Lemma 1. Let T be a submanifold of Sp+q+1, with the homology of Sp x Sa;
p,q > 0. By Alexander's duality theorem, C = Sp+Q+1-T has two components, and
H^C) vanishes for i 4= 0, p,q; if p 4 q, Hp(O) ~ Z, HQ(C) ~ Z, whereas if p = q,
Hp(C) ~ Z + Z. Let the components be C and C". Neither can be acyclic, for if C"
was, its closure would be an acyclic manifold, and its boundary a homology sphere.
So one component is a homology ^-sphere, the other a homology ^-sphere; we label
their closures Cp and Cq.

The case p = q = 0 is trivial (T consists of four points lying on a circle); if p > 0,
q = 0 a similar argument shows that we have three components; two acyclic (with
union Cq, say), and a homology Sp, Cp. This reduces us to the case above, as again
dCp = T = 8Cq. Also if p = 1, the Schonflies theorem (in the plane) shows

Cp ~ S1 x 2)i, Cg ~ S° x D2.

Now return to the general case, and suppose n^T) Abelian. If p,q ^ 2 this shows
that T is simply connected; van Kampen's theorem now shows that Cp and Cq are
simply connected (for 1 = n1(S

p+(1+1) = ^i(Cp) *77-1(Cg)), so they are homotopy spheres.
A similar argument goes if p J= 2, q = 0, as each component of?1 is simply-connected.
Finally, let p ^ 2, q = 1, so 7T1(T) ~ H^T) ~ Z. The commutative diagram

shows that nx{T) is a 'retract' of 77i(Cg); hence ^(Gp) is a retract of

so Cp is simply connected, hence a homotopy Sp.

Proof of Theorem 2. We have already considered the cases p +q+ 1 ^ 2; the cases
p + q+1 = 3 are due essentially to Alexander ((1)).

Now suppose p f* q and p + q > 5. Then p + q+l ^ 2g+ 1, so (if Cg is a homotopy
#«) we can imbed /S9 in Gq by a homotopy equivalence. Moreover, Si unknots in
gp+q+i (this is due to Whitney ((io» if p > q and to Wu ((11)) if p = q), and in particular
has a trivial normal bundle. Since the codimension p+\ > 3, and the dimension
p + q + 1 > 6, aresult of Smale((7),Theorem 4-1) shows that Cq is a tubular neighbour-
hood of SQ, and hence an unknotted Dp+1 x S". Hence also T = Sp x Sq is unknotted,
and Cp diffeomorphic to Sp x
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In the case2? + q = 4, the only gap in this argument is the appeal to Smale's theorem,

and the only gap in Smale's argument is the assertion that an A-cobordism between
SpxS9 and itself is diffeomorphic to a product. But for p = q = 2, this has been proved
byBarden((2));for^) = 3,q ~ 1 it is our conjecture above; for p = 4,^ = Oit was shown
by Smale ((7)) that 'a contractible 5-manifold with boundary diffeomorphic to 54 is
diffeomorphic to D5', from which the result follows.

We have now proved parts (B) and (C) of the theorem, and all cases of part (A)
except q = 1, p ^ 3, when Cp is necessarily a homotopy Sp, but unknotting need not
occur. In this case we assume T diffeomorphic to 8P x S1. Introduce corners on dCp

so that T is the product of Sp and a square. Then Cp is an ft-cobordism of manifolds
with boundary (diffeomorphic to Spxl — the 'ends' of the square) which, on the
boundary (the 'sides' of the square) is a product. Hence the A-cobordism is also a
product in a neighbourhood of the sides. Remove the sides and apply Smale ((7),
Theorem 3-1): it follows if p + 2 > 5 that Cp is a product, Spxlxl. Removing the
corners again, we have Sp x D2.

We now give an alternative proof of this last case, valid for p > 3, modelled on
Alexander's proof when p = 1, and not depending on any conjecture. Let xeSp.
Then x x S1 is null-homotopic in Cp; as dim C.p ^ 5, x x S1 bounds an imbedded disc
D2 in C .̂ This disc has a tubular neighbourhood Dp x D2 in Cp, meeting T in Dp x S1.
Also, since the group 80p <= S0p+1 and hence acts on Sp, we can change the diffeo-
morphism of T on Sp x S1 so that the framing induced by the tubular neighbourhood
above coincides with the product framing of x x S1 in Sp x S1. Now delete Dp x Sx

from T, and replace by *SJ>~1 x D2, thus giving a manifold U, and round the corners.
V is diffeomorphic to a sphere Sp+1, so (by Smale again) bounds a disc Dp+2 in Cp.
Now Cp is obtained by attaching Dp x D2 to Dp+2: we assert that the attaching sphere
S""-1 x 0 bounds a disc in U, so is unknotted. Hence Cp is a D2-bundle over 8P; since it is
parallelizable, Cp ~ Sp x D2. In fact, let I be an arc in D2 joining 0 to a point
y e S1 = dD2. Then S^1 x 0 bounds the disc (S^'1 x I) u (Dp x y) in U.

Remark. If p > q = 1, then Sp x Sq can knot in Sp+^+1.
Examples are known ((3)) of imbeddings of Sp in Sp+2 (p > 1) whose complement

has non-Abelian fundamental group. If T is the boundary of a tubular neighbourhood
of Sv, the corresponding n^Cg) is also non-Abelian, so T is knotted.

Proof of Theorem 3. In one direction this is trivial; if 8 is unknotted, then T certainly
is. Conversely, suppose T unknotted. The unknotting gives a diffeomorphism of T
on an unknotted 8P x S1; for x e 81, Sp x x is then unknotted. Our idea is to prove S
diffeotopic to Sp x x.

As T is the boundary of a tubular neighbourhood of S, we have a diffeomorphism
of T on 8 x S1, and 8 is diffeotopic to 8 x x. We now need

LEMMA 4. Let M and N be connected closed manifolds, h a homeomorphism of M x Sl

on N x Sl with h# n^M) = n^N), xeS1. Then there is an h-cobordism W imbedded in
N x81xl, with ends h(M xx)xO and (N x x) x 1.

Assuming this, we proceed as follows. We can regard Sp+2 as formed of the tubular
neighbourhood S x D2, a collar neighbourhood Txl, and the complement Dp+1 x S1.
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Taking Sv and S for M and N in Lemma 4, we obtain an A-cobordism W in T x I.
If / is an arc in D2 joining 0 to x, consider the union Ap+1 of S x / , W, and Z)p+1 x z:
this is a contractible manifold bounded by S in Sp+i (and can easily be made smooth
by rounding corners). But if p > 4, the fact that Ap+1 is contractible with boundary
diffeomorphic to 8P implies that Ap+1 is diffeomorphic to Dp+1; since Dp+1 unknots
in Sp+2, it follows that S is unknotted.

The case p = 3, as usual, offers more difficulty. Let us write Sn for a homotopy
%-sphere, Am for a compact contractible %-manifold. Then we will prove

LEMMA 5. (i) Let S4 = dAf = <?A|. Then there is a diffeomorphism of Af on A| inducing
the identity on S4.

(ii) Any two imbeddings of 24 in $5 are equivalent by a diffeomorphism of S6.
(iii) Any two imbeddings of A4 in S5 are equivalent by a diffeomorphism of Sb.
(iv) Let dA4 = S3. We can imbed A4 in S& with its boundary unknotted.
It follows immediately from (iii) and (iv) that any 3-sphere in $5, which bounds a

contractible 4-manifold in S5, is unknotted; this completes the proof of Theorem 3.

Proof of Lemma 4. Our model S1 is the unit circle in the complex plane; we may take
x — 1. Define e: R1 -> S1 by e(t) — e2nii; this is the projection of the universal cohering.
Also, for t € R, write T(t) = t+ 1. Then T generates the group of deck transformations,
isomorphic to n^S1) = Z. We also write e: N xR->- N y.81 for the product with the
identity, and correspondingly for T; p2: N x R -> R for the projection.

Since h* TTX{M) = n^N), he factors through e, he = eh'. Since Jf is compact, for
some i^^h'iM)) = T^p^h^M)) consists only of positive numbers. Write h" = T%'.
Now N — N x 0 certainly separates N x R; for the same reason so does h"(M), which
is disjoint from N. Hence there is a submanifold V ofN x R with boundary A"(M) u N.
I t is now easy to check that V is an ^-cobordism (e.g. H%(V,N) — H^V u N x R —,
N x R —). But JV x R — is a deformation retract of N x R; so is

V u (JV x R - ) = A"(iW x R - ) .

Also, p2( V) is non-negative.
Define F:N xR+^ N x S

Since tj(\ +t) is strictly monotone, this is (1 — 1); hence F\ V is an imbedding. Also,
F, h"(M) c h(M) x / . For m&M, write jPA"(m) = (h(m), u(m)). Now define

G:MxI-+h(M)xI cNx Sxxl by e(»,f) = ( % ) , ! + (l-t)j((ffl)).

This again is clearly an imbedding, and G(m, 0) = (h(m), u{m)) = Fh"(M). So F( V) and
G(M x I) fit together along F(M): their union is an /i-cobordism, of F(N) = N x 1 x 0
to 6?(JWxl) = h{M)x\.

Wenow check thattheimages-F(F)and G(M x 7) overlap only along jP(Jf) = (r(il/ x 0).
But for t > 0, the point (?(TO, £) has the same coordinates in N x S1 as (?(w, 0) = Fh"(M),
and a larger coordinate in I. Thus if it lies in the image of F, it must be the transform
of Fh"(M) by some Tl: i > 0. But if i > 0, T%"(M) is clearly not contained in F;
it is connected and disjoint from dV(= NXOKJ h"(M)) so it is disjoint from V.
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It follows that we can take W as F(V) u G(M x / ) , where the corner along F(M)
must be rounded (e.g. by the Cairns-Hirsch theorem).

Proof of Lemma 5. (i) Attach Af, S4 x / , and A2. The result is a homotopy 5-sphere
so according to Kervaire and Milnor ((4)) bounds a contractible manifold. This gives
an A-cobordism of Ax and A2, which is a product on the boundary hence (Smale ((7)))
a product.

(ii) Given two imbeddings, let the closures of the complementary domains be A1(

Â  or A2, A2. By (i), we can extend the 'identity' of S4 to diffeomorphisms

so the imbeddings are equivalent under a diffeomorphism of S5.
(iii) Let S4 be the double of A4. Any imbedding of A4 in S5 induces one of 24, for

the imbedding must have trivial normal bundle, and so extend to an imbedding of
A4 x I, which has boundary E4. (ii) now implies (iii).

(iv) Form 24 from A4 by attaching D* along the boundary. By Kervaire and Milnor
((4)) or Wall ((8)), S4 bounds a A5. The double of A5 is a homotopy 5-sphere, hence ((7))
diffeomorphic to Sb. Thus S4 imbeds in Sb, so there is an imbedding of A4 in S5 with
dA4 bounding a D4 in S5, and hence unknotted.

It now seems appropriate to make a few comments on our conjecture.

Conjecture. Any h-cobordism H of S3x S1 to itself is diffeomorphic to S3xS1x I.
We have already drawn several consequences from this, the most interesting of which

seems to be the unknotting criterion (3-1) for imbeddings of S3 in S5. We have also
made several steps towards a proof of the conjecture, which may be summarized as
follows.

Step 1. If we can find an A-cobordism of H to S3 x S1 x / , which is a product along
the edges, the result will follow—essentially by Mazur's s-cobordism theorem (see
(9), 6-3). So attach two 'edges' S3 x S1 x I to the boundary components of H, and a
further S3x S1x I to join them up (giving W) and try to prove W bounds a homotopy
S3 x S1.

Step 2. Does W bound a framed manifold which retracts on S'x/S1? The a priori
obstruction to this lies in Z2 + Z2, but this turns out to be irrelevant. We then do
surgery on F to make the retraction 0: F ->• S3x S1 3-connected.

Step 3. If we can make 0 4-connected, it is a homotopy equivalence, and we are
finished. But TT4(0) = H4(<J>) turns out to be a subgroup of H3(F) and a free module
over the group ring of n^F); Poincare duality defines a non-singular skew-Hermitian
form on this module, and a study of this form will be necessary before we can complete
the proof.
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