Surgery on Closed Manifolds

by

Laurence Taylor* and Bruce Williams*

Theorem (0.1): \((n > 4)\) Let \((f: N^n \to M^n, \hat{f})\) be a surgery problem where \(M^n\) is a closed, oriented manifold with \(\pi_1 M\) finite. Then,

\[
(f \times \text{Id}_{S^1}, \hat{f} \times \text{Id}_{S^1}) \quad \begin{cases} \text{index } N = \text{index } M, \text{ when } n = 0 \quad (4) \\ \text{for all nontrivial homomorphisms } \\ \mu : \pi \to \mathbb{Z}/2 \end{cases}
\]

is normal cobordant to a homotopy equivalence \(\begin{cases} \text{always } & \text{, when } n = 1 \quad (4) \\ \text{Arf}(f, \hat{f}) = 0 & \text{, when } n = 2 \quad (4) \\ \text{Arf}_\mu(f, \hat{f}) = 0 & \text{, when } n = 3 \quad (4) \end{cases}\)

\[
\text{Arf}_\mu(f, \hat{f}) = \text{Arf}(f_\mu : N^{n-1}_\mu \to M^{n-1}_\mu, \hat{f}_\mu), \text{ where } (f_\mu, \hat{f}_\mu) \text{ is the sub-surgery problem of } (f, \hat{f}) \text{ which is induced via transversality by the map } \begin{array}{c} M^n \to \text{B} \pi_1 M \xrightarrow{B\mu} \text{B} \mathbb{Z}_2 = \text{RP}^\infty. \end{array}
\]

Also, we can show

Theorem (0.2): For any closed manifold \(P^n\) with finite \(\pi_1\) and index = 0,

\((f: M^8 \to S^8, \hat{f}) \times (\text{Id}_P, \text{Id}_P)\) is normally cobordant to a homotopy equivalence - (where \((f, \hat{f}) = \text{Milnor surgery problem with index 8}).

*Partially supported by an NSF grant.
These results were first conjectured by Morgan and Pardon.

We thank Ian Hambleton, Karl Kronstein, and Frank Connolly for useful conversations in the course of this work.
Section 1:

For any closed, compact, oriented manifold \(M \) with \(\pi_1 M \cong \pi \), we have the Sullivan-Wall structure sequence

\[
\Sigma M, G/TOP \xrightarrow{\partial} L_{n+1}^S (Z\pi) \rightarrow S(M) \rightarrow [M, G/TOP] \xrightarrow{\theta} L_n^S (Z\pi)
\]

There are also defined "intermediate" Wall groups \(L_{\pi}^X (Z\pi) \)
where \(X \subset \mathcal{K}_1 (Z\pi) \) or \(\{ \pi \} \subset X \subset \mathcal{K}_1 (Z\pi) \) is an involution invariant subgroup (see \([R]\)). There is a homomorphism \(L_{\pi}^S (Z\pi) \rightarrow L_{\pi}^X (Z\pi) \)
so we get maps

\[
\sigma^X : [M, G/TOP] \rightarrow L_n^X (Z\pi) \quad \text{and}
\]

\[
\theta^X : [\Sigma M, G/TOP] \rightarrow L_{n+1}^X (Z\pi)
\]

It follows from work of Quinn-Ranicki that there is a homomorphism

\[
A^X : \oplus H_{n-4} (B\pi; Z/2) \oplus H_{n-4} (B\pi; Z/2) \rightarrow L_n^X (Z\pi)
\]

where \((\quad) (2)\) denotes localization at 2, such that the 2 localizations of \(\sigma^X \) and \(\theta^X \) are given by composing \(A^X \) with a certain characteristic class formula that we worked out in \([T-W]\). We wrote out the one for \(\sigma^X \) (formula 1.7): to get the one for \(\theta^X \) use the same formula but replace \([M]\) by the homology suspension of the fundamental class. Indeed, given any compact, oriented manifold with bounding, \(W^n \), we get a formula for the map \([W/\partial W, G/TOP] \rightarrow L_n (Z\pi)\): replace \([M]\) with \([W, \partial W]\) in (1.7)*

*Care is needed in \([T-W]\). The Wu class referred to there is the Morgan-Sullivan Wu class, \([M-S]\) p. 480-81. It is the inverse of the Wu class defined in Milnor-Stasheff \([Mi-S]\) 11,14. In particular, some of the polynomials on \([M-S]\) p. 481 are incorrect.
Recall that Wall ([W2]) has shown that $L^X_n(\mathbb{Z}/\pi) \to L^X_n(\mathbb{Z}/\pi)(2)$ is 1-1 for π finite.

Periodicity implies that A^X factors as

$$
\oplus \left(H_{n-41}^i(\pi, \mathbb{Z}/2) \oplus H_{n-41-2}^i(\pi, \mathbb{Z}/2) \right) \oplus J_{n-41}^{i} \oplus K_{n-41-2}^{i} \\
\oplus L_{n-41}^X(\mathbb{Z}/\pi)(2) \oplus L_{n}^X(\mathbb{Z}/\pi)(2)
$$

J^* and K^* are determined by the surgery obstructions of certain very special surgery problems. To be more specific, let $M^8 \to S^8$ denote the 8-dimensional Milnor surgery problem, and let $K^3 \to L^3$ denote the twisted Kervaire problem, i.e. the generator of $L^3_3(\mathbb{Z}e; \mathbb{Z}/2)$. Define homomorphisms

$$
\alpha^X_n : \Omega_n(B\pi) \to L^X_{n+8}(\mathbb{Z}/\pi)
$$

$$
\beta^X_n : \Omega_n(B\pi; \mathbb{Z}/2) \to L^X_{n+2}(\mathbb{Z}/\pi)
$$

by $\alpha^X_n(P)$ is the surgery obstruction for $M^8 \times P \to S^8 \times P$ and $\beta^X_n(P)$ is the surgery obstruction for the surgery problem induced along the bockstein of $K^3 \otimes P \to L^3 \otimes P$. (See [M-S]).

The map J^X_n is determined by α^X_n and the J^X_r for $r < n$. The map K^X_n is determined by β^X_n and the K^X_r and J^X_r for $r < n$.

The precise relation between the α's and the J's is supplied by (1.7) in [T-W]: to wit, if $g : P \to B\pi$,

$$
\alpha^X_n(P) = \sum J_{n-41}^* g_*(\xi_P \cap [P])
$$
where \mathcal{I} is the Morgan-Sullivan \mathcal{I} class [M-S]. With a bit more work, one can show

$$\beta_n^X(P) = \sum \chi_{n-41} g_*(y_P^2 \cap [P])$$

$$+ \sum \chi_{n-41-2} g_*(5(y_P^1 S_q^1 y_P \cap [P]))$$

where 5 denotes the bockstein $0 \to \mathbb{Z}_2(2) \to \mathbb{Z}_2 \to \mathbb{Z}/2 \to 0$ and y_P denotes the total Wu class of the oriented tangent bundle to P.

Theorem (0.1) follows from Ranicki's product formula

$$l_{n+1}^h(\mathbb{Z}(\pi \times \mathbb{Z})) = l_n^p(\mathbb{Z}\pi) \oplus l_n^h(\mathbb{Z}\pi)$$ (see [R]), plus the following result.

Theorem 1.1. Assume π is finite.

(a) θ_0^P is 1-1

(b) For $j > 0$, θ_j is trivial, where

$$\mathcal{C}_1(\pi) = \ker(\mathcal{K}_1(\mathbb{Z}\pi) \to \mathcal{K}_1(\mathbb{Z}\pi) \oplus \mathcal{K}_1(\mathbb{Q}\pi))$$ and $\mathcal{C}_1(\pi) = \{\mathcal{C}_1(\pi), \pm \pi\}$.

(c) χ_0^p and χ_1^p are 1-1.

(d) For $j > 1$, χ_j^p is trivial.

Theorem (0.2) follows from (1.1)(b).

We can improve on 1.1 for some groups.
Theorem 1.2. Let \(\pi \) be a finite group whose 2 Sylow group is abelian. Then

(a) \(J_j^s \) is trivial for \(j > 0 \)

(b) \(\kappa_j^h \) is trivial for \(j > 2 \)

(c) \(\kappa_j^c \) is trivial for \(j > 3 \)

Remarks: (i) The result for \(\kappa_j^h \) is due to Morgan-Pardon, but the \(s \) result seems new.

(ii) See Theorem 4.1 for results on generalized quaternionic and semi-dihedral groups.

(iii) Using results of Quillen [Q] and the naturality of the \(s \), and \(\kappa \), one can prove the same result for the dihedral groups; the symmetric and alternating groups; and many others.

(iv) When we sketch the proof of 1.2 we will also determine \(\kappa_2^h \).
Section 2:

Following Wall ([WI], Theorem 12) it is easy to reduce Theorem 1.1 to the result for finite 2-groups.

Relative Detection Theorem 2.1: If π is a finite 2-group, then

(a) $K_i(Z\pi \to \hat{Z}_2\pi) \to \bigoplus_{\text{special subquotients}} K_i(ZG \to \hat{Z}_2G)$ is 1-1 for all i.

(b) $L_i^{\epsilon}(Z\pi \to \hat{Z}_2\pi) \to \bigoplus_{\text{special subquotients}} L_i^{\epsilon}(ZG \to \hat{Z}_2G)$ is 1-1 for all i and $\epsilon = 0$ or 1.

$$(Cl^{\epsilon}(\pi) = \ker \tilde{K}^{\epsilon}_i(Z\pi) \to \tilde{K}^{\epsilon}_i(\hat{Z}\pi) \oplus \tilde{K}^{\epsilon}_i(\hat{Q}\pi))$$

Remarks:

1. A subquotient of π is a quotient group $G = H/N$ where H is a subgroup of π.

2. A 2-group G is special if all normal abelian subgroups of G are cyclic. A special group is either cyclic, generalized quaternionic, dihedral, or semi-dihedral.

3. The maps in (2.1) are compositions of restriction maps associated to subgroups $H \subseteq \pi$ and projection maps associated to quotients $H \to H/N = G$.
4. \(\mathcal{L}_1(\mathbb{Z} \pi) \rightarrow 0 \quad (\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) = L_1(\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) \)

\[\mathcal{L}_1(\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) = L_1(\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) \]

where \(\mathcal{L}_1 \) = the L-groups defined by Wall in [W2]. \(L_1 \neq \mathcal{L}_1 \) in general (see [W2] Section 5.4).

5. \(\mathcal{L}_0(\mathbb{Z} \pi) \rightarrow 0 \quad (\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) = L_1(\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi) \).

6. Theorem 2.1 was motivated by the calculations of Wall [W2], Section (5.2), Carlsson-Milgram [C-M], Pardon [P], Bak-Kolster [Kl], [B-K], [K2], and especially Milgram-Hambleton [M-H].

Theorem 1.1 (b) is reduced to the result for special 2-groups as follows:

A is induced by a map of spectra \(A \) which fits into a commutative diagram

\[
\begin{align*}
\mathbb{L}(\mathbb{Z}) \wedge B\pi^+ & \xrightarrow{A} \mathbb{L}(\mathbb{Z} \pi) \\
\mathbb{L}(\mathbb{Z}_2) \wedge B\pi^+ & \xrightarrow{A_2} \mathbb{L}(\mathbb{Z}_2 \pi)
\end{align*}
\]

If we localize at (2), then \(\mathbb{L}(\mathbb{Z}) \rightarrow \mathbb{L}(\mathbb{Z}_2) \) is equivalent to

\[\pi K(\mathbb{Z}(2); 4i+1) \times \pi K(\mathbb{Z}/2; 4i+2) \xrightarrow{\text{project}} \pi K(\mathbb{Z}/2; 4i+2) \xrightarrow{\text{include}} \pi K(\mathbb{Z}/2; 4i+2) \]

\[\pi K(\mathbb{Z}/2; 4i+2) \]
This implies that \(\tilde{\mathcal{S}}_j^X \) lifts to a map

\[
\tilde{\mathcal{S}}_j^X : H_j(\pi, \mathbb{Z}_2) \rightarrow L_{j+1}^X(\mathbb{Z} \pi \rightarrow \mathbb{Z}_2 \pi)_j(2) \quad \text{for all } x.
\]

Apply Theorem 2.1 with \(\epsilon = 1 \) and \(x = \text{Cl} \rightarrow 0 \).

Theorem 1.1(d) is reduced to the result for 2-groups by the following theorem.

Absolute Detection Theorem 2.2: If \(\pi \) is a finite 2-group, then

\[
L^P_1(\mathbb{Z} \pi) \rightarrow \bigoplus_{\text{special subquotients}} L^P_1(\mathbb{Z} G) \text{ is 1-1.}
\]

The proof of (2.2) relies on Wall's reduction theorem which implies that \(L^P_1(\mathbb{Z}_2 \pi) = L^P_1(\mathbb{ZZ}/2) \).
Section 3: Proof of the Relative Detection Theorem

\[\pi = \text{finite 2-group} \]
\[\mathcal{Q}\pi = \bigtimes_{\rho} A_{\rho}, \text{where } \rho \text{ varies over the } \mathbb{Q}\text{-irreducible} \]
\[\text{representations of } \pi \text{ and } A_{\rho} = \text{simple} \]
\[\mathbb{Q}\text{-algebra.} \]

Let \(n_{\rho} = \text{image } (\mathbb{Z}\pi \to \mathcal{Q}\pi \to A_{\rho}) \), \(n = \bigtimes_{\rho} n_{\rho} \). \(n_{\rho} \) is a \(\mathbb{Z} \)-order of \(A_{\rho} \).

Proposition 3.1

\[K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \cong K_1(n \to \hat{n}_2) \cong \bigoplus_{\rho} K_1(n_{\rho} \to \hat{n}_{\rho}(2)) \]

Proof: Consider the following commutative diagram with exact rows:

\[\cdots \to K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}} \pi) \to K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \to K_1(\hat{\mathbb{Z}} \pi \to \hat{\mathbb{Z}}_2 \pi) \to \cdots \]

\[\downarrow f_1 \quad \downarrow g_1 \quad \downarrow h_1 \]

\[\cdots \to K_1(n \to \hat{n}) \to K_1(n \to \hat{n}_2) \to K_1(\hat{n} \to \hat{n}_2) \to \cdots \]

\[\downarrow k_1 \downarrow l \]

\[K_1(\mathcal{Q}\pi \to \hat{\mathcal{Q}} \pi) \quad K_1(n_{\text{odd}} \to \hat{n}_{\text{odd}} \pi) \]

The Meyer-Vietoris sequences associated to the arithmetic squares

\[
\begin{array}{ccc}
\mathbb{Z}\pi & \to & \mathcal{Q}\pi \\
\downarrow & & \downarrow \\
\hat{\mathbb{Z}} \pi & \to & \hat{\mathcal{Q}} \pi \\
\end{array}
\begin{array}{ccc}
n & \to & \mathcal{Q}\pi \\
\downarrow & & \downarrow \\
\hat{n} & \to & \hat{\mathcal{Q}} \pi \\
\end{array}
\]

imply that \(f_1, k_1 \circ f_1 \) and \(k_1 \) are isomorphisms. Since \(\pi \) is a
2-group, \(\hat{\mathbb{Z}}_{\text{odd}} \pi \) is a maximal \(\hat{\mathbb{Z}}_{\text{odd}} \) order (see [Re]),
\[\hat{\mathbb{Z}}_{\text{odd}} \pi = \hat{\mathbb{Z}}_{\text{odd}}(\text{odd}) \], and \(h_1 \) is an isomorphism. Apply the 5-lemma.

Let
\[
K_1^f(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) = \bigoplus \rho \ K_1(\eta_\rho \to \hat{n}_\rho(2)) \\
\text{faithful}
\]
\[
K_1^u(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) = \bigoplus \rho \ K_1(\eta_\rho \to \hat{n}_\rho(2)) \\
\text{unfaithful}
\]

Proposition 3.2 :

(a) \(K_1^f(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \hookrightarrow K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \hookrightarrow K_1(\pi/N \to \hat{\mathbb{Z}}_2 \pi/N) \) is a trivial map, for any proper normal subgroup \(N \).

(b) \(K_1^u(\mathbb{Z}\pi \to \mathbb{Z}_2 \pi) \hookrightarrow K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \to \bigoplus \frac{K_1(\mathbb{Z}\pi/N \to \hat{\mathbb{Z}}_2 \pi/N)}{N \not\triangleleft \pi} \) is 1-1.

Proposition 3.3 : Assume \(\pi \) is a 2-group which is not special.

Then \(\pi \) contains an index 2 subgroup \(\pi_o \) such that

(a) For any \(\Phi \)-irreducible faithful representative \(\rho \) of \(\pi \),
\[\rho|_{\pi_o} = \rho_1 + \rho_2 \] where \(\rho_1 \) and \(\rho_2 \) are nonisomorphic \(\Phi \)-irreducible representations.

(b) \(\rho_1^\pi = \rho_2^\pi = \rho \), and

(c) \(K_1^f(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \hookrightarrow K_1(\mathbb{Z}\pi \to \hat{\mathbb{Z}}_2 \pi) \to K_1(\mathbb{Z}\pi_o \to \hat{\mathbb{Z}}_2 \pi_o) \)
is 1-1.

Theorem 2.1 (a) then follows from (3.2) and (3.3) by induction on the order of \(\pi \). The proof of 2.1 (b) is similar.
In particular,
\[
\text{Cl}_0(\pi) \to 0^{\text{L}_1} \bigl(\mathbb{Z}_\pi \to \mathbb{Z}_2 \bigr) = \bigoplus_{\rho} \text{L}_1 \tilde{K}_0(\pi) \to \tilde{I}_1(\pi) \to \tilde{K}_0(\hat{\pi}_\rho(2)).
\]
where \(I_\rho = \text{image} (\tilde{K}_0(\pi) \to \tilde{K}_0(\hat{\pi}_\rho(2))). \)

and
\[
\text{Cl}_1(\pi) \to 0^{\text{L}_1} \bigl(\mathbb{Z}_\pi \to \mathbb{Z}_2 \bigr) = \bigoplus_{\rho} \text{L}_1 \tilde{S}_1 \to \tilde{S}_1(\pi) \to \tilde{S}_1(\hat{\pi}_\rho(2)).
\]
Section 4: Special 2-Groups

Theorem 4.1

(a) If π is a special 2-group and $j > 0$, then
\[\overline{J^I}_j \text{ and } \overline{J}^s_j \text{ are trivial.} \]

(b) If π is cyclic or dihedral, then $\overline{X}^s_j = 0$ for $j > 1$.

If π is quaternionic, then $\overline{X}^s_j = 0$ for $j \neq 0, 1, 3$ and $\overline{X}^p_3 = 0$.

If π is semi-dihedral, then $\overline{X}^p_j = 0$ for $j > 1$.

Remark: Cappell and Shaneson [C-S] have shown that $\overline{X}^h_3 \neq 0$ when π = quaternion group.

The following result of Oliver [O] is used to improve \overline{C}^I_1-results to s-results.

Theorem 4.2: If π is a special 2-group, then $\overline{C}^I_1(\pi)$ is trivial.

For the proof of 4.1 (b) we need to analyze what happens to X_j under products.

For any pair of groups π_1 and π_2, we get a pairing of spectra

\[\mu: L_0(Z\pi_1) \wedge L_0(Z\pi_2) \rightarrow L_0(Z(\pi_1 \times \pi_2)) \text{ (see [R])} \]

such that the following diagram commutes.
If we introduce coefficients by doing surgery on \(\mathbb{Z}/2 \)-manifolds, then we get an analogous diagram.

By using the techniques of [T-W], one can analyse

\[
\mu : \mathbb{L}_0(\mathbb{Z}; \mathbb{Z}/2) \wedge \mathbb{L}^0(\mathbb{Z}; \mathbb{Z}/2) \to \mathbb{L}_0(\mathbb{Z}; \mathbb{Z}/2)
\]

localized at 2. This yields the following commutative diagram.

\[
\begin{array}{ccc}
\mathbb{L}_0(\mathbb{Z}/2; \mathbb{Z}/2) \times \mathbb{H}^j(\mathbb{Z}/2; \mathbb{Z}/2) & \to & \mathbb{L}^0(\mathbb{Z}/2; \mathbb{Z}/2) \\
\overline{X}_1 \times \mathcal{J}^j(\mathbb{Z}/2) & \to & \overline{X}_{i+j} \\
\mathbb{L}_{i+2}(\mathbb{Z}/2; \mathbb{Z}/2) \times \mathbb{L}^j(\mathbb{Z}/2; \mathbb{Z}/2) & \to & \mathbb{L}_{i+j+2}(\mathbb{Z}/2; \mathbb{Z}/2)
\end{array}
\]

where \(\mathcal{J}^j(\mathbb{Z}/2) \) is induced by

\[
\mathbb{K}(\mathbb{Z}/2; 0) \wedge \mathbb{B}\pi_2^+ \to \mathbb{L}^0(\mathbb{Z}; \mathbb{Z}/2) \wedge \mathbb{B}\pi_2^+ \xrightarrow{\mathcal{A}^*} \mathbb{L}^0(\mathbb{Z}; \mathbb{Z}/2)
\]

where \(\overline{X}_1 = X_1 \) reduced mod 2.

Action by the Center

Suppose \(C \) is the center of a group \(\pi \), then multiplication

\(\alpha : C \times \pi \to \pi \) is a homomorphism which induces a map \(B\alpha : B(C \times \pi) \to B\pi \)

plus a commutative diagram
If we combine 4.4 and 4.5, then we get the following commutative diagram

\[
\begin{array}{cccccc}
\mathbb{H}_1(C;\mathbb{Z}/2) \times \mathbb{H}_j(\pi;\mathbb{Z}/2) & \xrightarrow{\alpha_*} & \mathbb{H}_{i+j}(\pi;\mathbb{Z}/2) \\
\downarrow & & \downarrow \\
\mathbb{L}_{i+2}(\mathbb{Z}, C;\mathbb{Z}/2) \times \mathbb{L}_j(\mathbb{Z}, \pi;\mathbb{Z}/2) & \xrightarrow{\alpha_*} & \mathbb{L}_{i+j+2}(\mathbb{Z}, \pi;\mathbb{Z}/2)
\end{array}
\]

The proof of 4.1 also involves the following result.

Theorem 4.7: If \(\pi \) is a special 2-group, then there is an exact sequence

\[
\begin{array}{cccccc}
\mathcal{K}_0 \cap I_{\phi}(\hat{n}_{\phi}(2)) & \to & L_1^P(\mathbb{Z}, \pi) & \to & \oplus \ L_1^P(\mathbb{Z}, G) \\
\mathcal{L}_1^1(\hat{n}_{\phi}(2)) & \to & L_1^1(\mathbb{Z}, \pi) & \to & \oplus \ L_1^1(\mathbb{Z}, G)
\end{array}
\]

where \(\phi \) is the unique faithful, \(\mathbb{Q} \)-irreducible representation of \(\pi \), and \(I_{\phi} = \text{Image} : (\hat{\mathcal{K}}_0(\hat{n}_{\phi}) \to \hat{\mathcal{K}}_0(\hat{n}_{\phi}(2)). \) Also, there is an exact sequence,

\[
\begin{array}{cccccc}
\mathcal{C}^1(\hat{n}_{\phi}(2)) & \to & \mathcal{C}^1(\mathbb{Z}, \pi) & \to & \oplus \mathcal{C}^1(\mathbb{Z}, G) \\
\mathcal{L}_1(\hat{n}_{\phi}(2)) & \to & L_1(\mathbb{Z}, \pi) & \to & \oplus L_1(\mathbb{Z}, G)
\end{array}
\]

where \(\mathcal{C}^1 \) represents the group of homomorphisms from \(\mathbb{Z} \) to \(\mathbb{Z} \) with special subquotients.
Proof of (4.1) when \(\pi = \mathbb{Z}/2 \)

Facts

1. \(\text{tor} \mathcal{C}l_1^0 (\mathbb{Z} \mathbb{Z}/2 \to \mathbb{Z}_2 \mathbb{Z}/2) = 0 \) unless \(j = 1(4) \).

2. \(H_k(\mathbb{Z}/2, \mathbb{Z}_2(2)) = 0 \) for \(k \neq 0 \).

3. \(\mathcal{L}_j^S (\mathbb{Z} \mathbb{Z}/2) \xrightarrow{P \oplus i} \mathcal{L}_j^S (\mathbb{Z}e) \oplus \mathcal{L}_j^S (\mathbb{Z}e) \) is 1-1 for \(j \neq 3(4) \). (\(P : \mathbb{Z}/2 \to e, i : e \to \mathbb{Z}/2 \)).

4. The Pontryagin product \(\alpha_* : H_2i(\mathbb{Z}/2 ; \mathbb{Z}/2) \times H_1(\mathbb{Z}/2 ; \mathbb{Z}/2) \to H_{2i+2} (\mathbb{Z}/2 ; \mathbb{Z}/2) \) is onto. \(2 \mathcal{L}_j^S (\mathbb{Z} \mathbb{Z}/2) = 0 \).

Facts 1 and 2 imply that \(\mathcal{L}_j^1 = 0 \) for \(j > 0 \). Fact 3 plus naturality of \(\xi_j^S \), imply \(\xi_j^S = 0 \) for \(j > 0 \) and \(j \neq 1(4) \). Fact 4 plus commutativity of (4.6) imply \(\xi_j^S = 0 \) for \(j = 1(4) \) and \(j > 1 \).

Proof of (4.1) when \(\pi = D_n \), the dihedral group:

Lemma 4.8: If \(A = \mathbb{Z}/2 \) or \(\mathbb{Z}(2) \), then

\[\oplus \mathbb{H}_1(E;A) \to \mathbb{H}_1(D_n;A) \text{ is onto.} \]

Proof: (See Quillen \([Q], 4.6\))

In Section 5, we show that for \(\pi = E \), \(\xi_j^S = 0 \) for \(j > 1 \), and \(\mathcal{L}_j^1 = 0 \) for \(j > 0 \).
Proof of (4.1) when \(\pi = \mathbb{Z}/2^i \) (\(i \geq 1 \)) or \(\text{SD}_n \):

Lemma 4.9: If \(\pi = \mathbb{Z}/2^i \) (\(i \geq 1 \)) or \(\text{SD}_n \), then
\[
\text{tor} \; L_1(n_\phi - \hat{n}_{\phi}(2)) = (0).
\]

Apply (4.7). \(L_*^{\mathbb{Z}}(\mathbb{Z}/2^i) \rightarrow L_*^{\mathbb{Z}}(\mathbb{Z}/2^i) \) is 1-1. (See [B]).

Proof of (4.1) for \(\pi = \mathbb{Q}_n \), generalized quaternionic:

Facts

1. \(\text{tor} \; L_{j+1}^{\mathbb{C}l_{1} - 0}(\mathbb{Z}Q_n \rightarrow \mathbb{Z}_2 Q_n) \xrightarrow{\partial_*} L_{j+1}^{\mathbb{C}l_{1} - 0}(\mathbb{Z}D_n \rightarrow \mathbb{Z}D_n) \) is 1-1 for \(j \neq 1 \) or 2(4). \(\partial_* : Q_n \rightarrow Q_n/C = D_n \) (see (4.7)).

2. \(H_{4k+2}(Q_n, \mathbb{Z}(2)) = 0 \).

3. \(\bigoplus_{\text{cyclic subgroups}} H_{4k+1}(\mathbb{H}, \mathbb{Z}(2)) \rightarrow H_{4k+1}(Q_n, \mathbb{Z}(2)) \) is onto.

4. The Pontryagin product \(H_{4i}(\mathbb{C}; \mathbb{Z}/2) \times H_{2i}(\mathbb{Q}_n, \mathbb{Z}/2) \rightarrow H_{4i+2}(\mathbb{Q}_n, \mathbb{Z}/2) \) is onto for \(i \leq 3 \). 2 \(\text{tor} \; L_{1}^{\mathbb{Z}}(\mathbb{Z}Q_n) = 0 \) for \(i \neq 1(4) \).

5. \(\text{tor} \; L_{0}^{\mathbb{C}l_{1}}(\mathbb{Z}Q_n) = 0 \).

6. \(L_{1}^{\mathbb{C}l}(\mathbb{Z}Q_n) \xrightarrow{\partial_* \oplus 1} L_{1}^{\mathbb{C}l}(\mathbb{Z}D_n) \oplus L_{1}^{\mathbb{C}l}(\mathbb{Z}Q_n) \) is 1-1

 where \(\partial_* : Q_n \rightarrow Q_n/C = D_n \), and \(1 : Q_n \rightarrow Q_n \) is the inclusion map.

7. \(H_{4k+3}(Q_n; \mathbb{Z}/2) \xrightarrow{t_*} H_{4k+3}(Q_{n+1}; \mathbb{Z}/2) \) is trivial for all \(k \).

8. \(H_{4k+3}(Q_n; \mathbb{Z}) \rightarrow H_{4k+3}(Q_n; \mathbb{Z}/2) \) is onto for all \(k \).
Facts 1, 2, and 3 plus naturality imply $\tilde{f}_j = 0$ for $j > 0$.

Fact 4 plus the commutativity of (4.6) imply $x^S_j = 0$ for $j > 3$ and $j \neq 3$ (4). Facts 4 and 8 plus the commutativity of

\[
\begin{align*}
H_{4k}(\mathbb{Z}/2; \mathbb{Z}/2) \times H_3(\mathbb{Q}_n) & \xrightarrow{\alpha_*} H_{4k+3}(\mathbb{Q}_n; \mathbb{Z}/2) \\
L_2(\mathbb{Z}; \mathbb{Z}/2) \times L^3(\mathbb{Z}; \mathbb{Q}_n) & \xrightarrow{\alpha_*} L_1(\mathbb{Z}; \mathbb{Q}_n)
\end{align*}
\]

imply $x^S_{4k+3} = 0$ for $k > 0$.

\[
\begin{align*}
(\tilde{\jmath}^* \text{ is induced by}) \\
K(\mathbb{Z}; 0) \wedge BQ_\mathbb{Q}_n^+ & \xleftarrow{\iota^*} L^* (\mathbb{Z}) \\
& \xrightarrow{\iota^*} L^* (\mathbb{Z}; \mathbb{Q}_n)
\end{align*}
\]

Fact 5 implies $x^S_2 = 0$.

Facts 6 and 7 imply x^P_2 is trivial.
Section 5: Proof of Theorem 1.2

As always it suffices to assume that \(\pi \) is a 2-group. We first do the case of an elementary abelian 2-group,
\(E = \mathbb{Z}/2 \oplus \ldots \oplus \mathbb{Z}/2 \).

Lemma 5.1: \(J^S_j : H_j(\mathbb{Z}E ; \mathbb{Z}/2) \rightarrow L^S_j(\mathbb{Z}E)(2) \) is trivial for \(j > 0 \).

Proof: \(SK_1(\mathbb{Z}E) = 0 \), so 1.1 (b) proves the result.

The fact that \(SK_1(\mathbb{Z}E) = 0 \) shows that \(L^S_*(\mathbb{Z}E) \rightarrow L'_*(\mathbb{Z}E) \) is an isomorphism so by Wall's calculations [W2] the torsion in \(L^S_*(\mathbb{Z}E) \) has exponent 2.

Lemma 5.2: \(\chi^S_j : H_j(\mathbb{Z}E ; \mathbb{Z}/2) \rightarrow L^S_{j+2}(\mathbb{Z}E)(2) \) is trivial for \(j > 1 \).

Proof. \(H_1(\mathbb{Z}E/2 ; \mathbb{Z}/2) \otimes H_j(\mathbb{Z}E ; \mathbb{Z}/2) \rightarrow H_{1+j}(\mathbb{Z}(E \times \mathbb{Z}/2) ; \mathbb{Z}/2) \)

\[\downarrow \chi_1 \times \chi^j_j(\mathbb{Z}/2) \]

\[\downarrow \chi_{1+j} \]

\[L^S_{1+j}(\mathbb{Z}E/2 ; \mathbb{Z}/2) \otimes L^j(\mathbb{Z}E ; \mathbb{Z}/2) \rightarrow L^S_{1+j+2}(\mathbb{Z}(E \times \mathbb{Z}/2) ; \mathbb{Z}/2) \]

commutes. Since the result is true for \(\mathbb{Z}/2 \) we can begin an induction.

Since \(L^S_0(\mathbb{Z}[\mathbb{Z}/2 \times \mathbb{Z}/2]) \) is torsion-free [W2], \(\chi^S_2 \) must be trivial for \(\mathbb{Z}/2 \times \mathbb{Z}/2 \). It is not hard to finish.

We need a generalization of a trick in Stein [S].
Lemma 5.3: Let \(\pi_1 \) and \(\pi_2 \) be finite groups and suppose the torsion in \(L^X_*(\mathbb{Z} (\pi_1 \times \pi_2)) \) is annihilated by \(\mathbb{Z}/2^r \). Assume further that \(H_*(B\pi_1; \mathbb{Z}/2^r) \) is a free \(\mathbb{Z}/2^r \) module.

Then, if \(J^X_j \) is trivial for \(j > 0 \) for \(\pi_1 \) and for \(\pi_2 \), then \(J^X_j \) is trivial for \(j > 0 \) and \(\pi_1 \times \pi_2 \).

Proof: By the universal coefficients theorem

\[
\bigoplus_{s \geq r} H_1(B\pi_1; \mathbb{Z}/2^s) \otimes H_{n+1-i}(B\pi_2; \mathbb{Z}/2^s) \rightarrow \bigoplus_{s} H_{n+1}(B\pi_1 \times \pi_2; \mathbb{Z}/2^s) \xrightarrow{\beta} H_n(B\pi_1 \times \pi_2; \mathbb{Z}/2)
\]

is onto the torsion in \(H_n \).

The lemma follows from the commutativity of

(see next page)
\[H_1(\mathbb{B}_{\pi_1}; \mathbb{Z}/2^g) \otimes H_{n+1-1}(\mathbb{B}_{\pi_2}; \mathbb{Z}/2^g) \rightarrow H_n(\mathbb{B}(\pi_1 \times \pi_2); \mathbb{Z}_2) \]

\[\downarrow \beta \otimes 1 + 1 \otimes \beta \]

\[H_{1-1}(\mathbb{B}_{\pi_1}; \mathbb{Z}_2) \otimes H_{n+1-1}(\mathbb{B}_{\pi_2}; \mathbb{Z}/2^g) \oplus H_1(\mathbb{B}_{\pi_1}; \mathbb{Z}/2^g) \otimes H_{n-1}(\mathbb{B}_{\pi_2}; \mathbb{Z}_2) \]

\[\downarrow j^x_{n-1} \otimes j^{n+1-1} \oplus j^1 \otimes j^x_{n-1} \]

\[L^x_{1-1}(\mathbb{Z}_{\pi_1}; \mathbb{Z}_2) \otimes L^{n+1-1}(\mathbb{Z}_{\pi_2}; \mathbb{Z}/2^g) \oplus L^1(\mathbb{Z}_{\pi_1}; \mathbb{Z}/2) \otimes L^x_{n-1}(\mathbb{Z}_{\pi_2}/\mathbb{Z}_2) \rightarrow L^x_n(\mathbb{Z}[\pi_1 \times \pi_2]; \mathbb{Z}/2^g). \]
Lemma 5.4: If A is an abelian 2-group, then

$$\theta_j^S : H_j(BA; \mathbb{Z}/2) \to L_j^S(ZA)$$

is trivial for $j > 0$.

Proof: The lemma follows from the Stein trick (lemma 5.3) and induction on the rank of A once we observe:

(i) the result is true if A is elementary abelian (5.1)

(ii) by Wall [W2], $L_*^S(ZA)$ has torsion of exponent at most 4.

We now take up the results for X_j. To fix notation let A be our abelian group. Let $i : E \to A$ be the inclusion of the subgroup of elements of order ≤ 2. Let $j : \mathbb{Z}^r \to A$ be a map of a free abelian group of rank $r = \text{rank of } A$ which is onto.

Then we have

$$(i) \quad \oplus H_i(BE; \mathbb{Z}/2) \otimes H_{n-i}(BZ^r; \mathbb{Z}/2) \to H_n(BA; \mathbb{Z}/2)$$

is onto, where the map is defined using the H-space structure of BA

$$(ii) \quad \begin{array}{c}
H_i(BE; \mathbb{Z}/2) \otimes H_{n-i}(BZ^r; \mathbb{Z}/2) \\
\downarrow X \otimes \nu
\end{array} \to H_n(BA; \mathbb{Z}/2) \quad \begin{array}{c}
\downarrow X \\
L_{i+2}(ZE)(2) \otimes L_{n-1}(Z[Z^r])(2) \\
\downarrow X
\end{array} \to L_{n+2}(ZA)(2)$$

commutes.
An easy induction plus 5.2 shows that any $c \in H_j(\text{BA}; \mathbb{Z}/2)$ such that $K^h_j(c) = 0$ must be equal to $j_*(\overline{c})$ for the unique element $\overline{c} \in H_j(\text{BA}; \mathbb{Z}/2)$ such that $j_*(\overline{c}) = c$.

Lemma 5.4: The maps

$$K^h_j : H^j(\text{BA}; \mathbb{Z}/2) \to L^h_{j+2}(\mathbb{Z}A)(2)$$

are trivial for $j > 2$.

Proof: Bak [B] shows $L^h_*(\mathbb{Z}A) \to L^h_*(\mathbb{Z}A)$ is monic so we prove the result for K^h_j.

The result just above the lemma implies that it is enough to show that the problem $(T^2 \to S^2) \times T^j$ is solvable for $j > 2$ over BA.

We can write our problem as $(T^2 \to S^2) \times T^{j-1} \times S^1$ where $j-1 > 1$.

Now 1.1(d) plus Ranicki's result [R1] that

$$L^h_{j-1+2}(\mathbb{Z}[G]) \to L^h_{j+2}(\mathbb{Z}[G \times \mathbb{Z}])$$

factors through $L^p_{j-1+2}(\mathbb{Z}[G])$ finishes the proof.

An entirely similar trick shows 1.2 (c). We now do the promised determination of K_2.

Theorem 5.5: The sequence

$$H_2(\text{BE}; \mathbb{Z}/2) \xrightarrow{i_*} H_2(\text{BA}; \mathbb{Z}/2) \xrightarrow{K^h_2} L^h_0(\mathbb{Z}[A])$$

is exact.
Proof: Naturality of κ_2^h plus 5.2 shows that we have a zero sequence. Naturality again reduces exactness for A to exactness for $\mathbb{Z}/2 \times \mathbb{Z}/4$.

For $\mathbb{Z}/2 \times \mathbb{Z}/4$ the cokernel of i_* is $\mathbb{Z}/2$. Morgan-Pardon showed that $\kappa_2^h \neq 0$ by example.
References

[Mi-S] Milnor-Stasheff, Characteristic Classes.

II. Applications to topology, ibid. 40 (1980) 193-283,
III. To appear.

