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Introduction

Let L be a tame link! in S*® with components L,, ---, L, and let V be
the union of open tubular neighbourhoods of the L;. Then S* —V'is a 3-
manifold M with boundary B consisting of ¢ tori B; which are also the
boundaries of the closures V; of the V,. The complete group system of
L consists of the fundamental groups 7,(M), 7(B;), 7.( V) and the homo-
morphisms 7,(V;) — w(B;) — 7(M) induced by inclusion. Fox [8] has
stressed the importance of the group system and conjectured that the
known algebraic invariants of links depend only on the group system. It
is now known [18] that in situations of interest in knot theory, M and the
B, are aspherical spaces so that the homomorphisms 7 (B;) — m,(M) (which
we shall call the external group system) determine the homotopy type of
the pair (M, B). Many of the known link invariants can be described in
terms of the homology of various coverings of this pair. (Some, such as
the quadratic form for links, depend on the homology of branched cover-
ings; it seems likely that these are determined by the complete group
system.) Thus Fox’s conjecture appears to be substantially correct.

Our main concern in this paper is to show how these invariants can be
explicitly calculated by purely algebraic methods. We consider only in-
variants that can be derived from the external group system. They are of
particular interest since the external system depends only on the homeo-
morphism type of the complementary space S* — L.

1 A link of multiplicity p consists of p circles imbedded in the 3-sphere S3. It is tame
if there is a triangulation of S3 in which it is a subcomplex. More generally, one may
consider arbitrary tamely imbedded graphs in arbitrary 3-manifolds. For graphs the B;
would in general be surfaces of higher genus.

2 The external group system may be defined intrinsically in terms of S®— L by an
elaboration of Fox’s definition of peripheral subgroup [9]. Let ¥ = S3 —.L and let X be its
Freudenthal compactification [11] obtained by adding one ‘‘point at infinity’’ p; for each
component L;. For each 1, take an arc in X running from a basepoint po in Y to p;, and let
a; be the intersection of this arc with Y. For any compact A C Y, let X; be the component
of X — A containing p;, and let Y; = X; N Y. (The Y; may not be distinct if A is not
large enough.) Taking basepoints p} in the final segments of the Y; N a;, we get a group
system consisting of mi(Y, po) and the m1( Y3, pF), with maps specified by taking an element
of m1( Y3, pf) represented by a loop based at p; into the element of (Y, po) represented
by a loop which starts at po, goes along a; to pX, around the given loop, and back along
a; to po. The compact subsets of Y are directed by inclusion, and we obtain a directed
family of group systems which has the external group system of L as direct limit.
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HOMOLOGY OF GROUP SYSTEMS 465

Section 1 is occupied with the basic definitions. From an abstract point of
view a group system is a group G with a family of groups and homomor-
phisms @;: G;— G. For any such system one can construct a pair of spaces
(X, UY,) such that X and the Y, are aspherical, G = 7(X), G; = 7(Y))
and the maps @, coincide with those induced by inclusion. The homology
of this pair (with local coefficients in a G-module) is then the homology?
of the given system. We give a purely algebraic construction which is in
principle the same as Massey’s [17], but permits the use of more ‘‘econom-
ical”” complexes and is therefore better adapted to explicit calculation.*
Since most of this section consists of slight modifications of standard prop-
ositions in homological algebra we have omitted most details of proofs.

Section 2 sets out a general algorithm for computing the low-dimen-
sional homology of group systems given by generators and relations. Most
of it is a reformulation of known relations between the free differential
calculus and the homology of groups; the construction of the diagonal map,
however, is new. Some convenient simplifications which are possible
when the group systems and coefficients satisfy certain restrictions are
discussed in § 3.

In §§4 and 5 we compute invariants of the group system of a knot
which are related to the homology of eyclic coverings of the knot. Seifert
[22, 23] showed by partly geometrical arguments that the latter could be
calculated from a ‘‘linking matrix’’ obtained from an orientable surface
having the knot as boundary, and we essentially reproduce his results in
an algebraic setting. It is a consequence of our results that once an ori-
entation of 3-space is specified, the Seifert invariants are determined by
the external group system, and hence by the complementary space of the
knot. The same is shown to hold for the quadratic form of a knot, which
is interesting since methods of Kyle[14] can be used to show that a certain
pair of 2-component links with homeomorphic complementary spaces (of
the type described in [26]) have inequivalent quadratic forms.” In §4 we
deal with the algebraic analogue of the infinite cyclic covering, and obtain
in Theorem 2 some invariant properties of the Seifert matrix which are
slightly stronger than those previously known. An algorithm for com-
puting the analogue of self-linking in an arbitrary fiinite covering of a
knot is developed in § 5 and applied to obtain Seifert’s results on finite
cyclic coverings.

3 Here, and in similar contexts throughout, we write ‘‘homology’’ rather than ‘“‘homology
and cohomology’’.

4+ M. Auslander [29] uses a standard complex, and Takasu [30] an algebraic mapping
cylinder construction.

5 The computation is carried out in detail in [13].
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1. The homology of group systems

1.1 Notations and definitions. For a group homomorphism f: G—G’,
the same letter will denote the induced homomorphism f: Z(G)— Z(G’) of
the integer group rings. A left (right) G-module is a left (right) module
over Z(G); we write ®q, Hom, rather than Q, ., Hom, . Let A and A’
be right modules over G and G’ respectively. An additive homomorphism
p: A— A’ is a map under the homomorphism f:G — G’ if p(a-g9) = p(a)-f(9)
forallae A, ge€G. A map q: A’ — A is under f if q(a-f(g9)) = q(a)-g for
alla € A’, g € G. Similar definitions apply to left modules.

Let B, C and B’, C’ be left modules over G and G’ respectively. Then
maps u:A—A’, v:B—B', w:C'—C, all under f, induce maps
U@, v: AQeB — A’ Qe B’ and Hom (v, w): Homg(B’, C’) — Homg(B, C).

By a resolution over a group G we shall mean what is called in [1] a

projective resolution of Z over Z(@), i.e., it is a complex X with an aug-
mentation € such that

X, - x X,z 0

is exact, the X, are projective left G-modules, and the d, and ¢ are G-
homomorphisms. (Z is considered a G-module under the trivial action of

G.) A resolution over a system {G, G,, ®;} is a pair of G-complexes (X, Y)
such that:

(i) X is a resolution over G;

(ii) Y is the direct sum of complexes Y; = Z(G) Qq, Y, where Y; is a
resolution over G; and Z(G) is considered a right G;,-module via the map
Pis

(ili) Y is a G-direct summand of X,

We shall call the Y, referred to in (ii) the auxiliary resolutions.

A map of a system {G, G,, ®;} into another {G', G}, ®;}} consists of homo-
morphisms f: G — G’ and f;: G; — G}, (where for each ¢, G}, may be any
of the G%) such that the obvious commutativity relations fo, = @}, f;
hold. If (X, Y),(X’, Y’) are resolutions over the two systems then a fune-
tion /¥ X — X' is a chain-map under the map {f, f;} if
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(i) itis a chain-map and a module homomorphism under f,

(ii) for each i, f#|Y, = f®,,f::Y,— Y], where f} is a chain-map
Y, — Y, under f; and f: Z(G) — Z(®) is the given homomorphism.

Resolutions exist over any system, and for any map of systems there
exist induced chain-maps of resolutions which are unique to within a chain-
homotopy. The proofs are easy generalizations of standard arguments
(for example, see [1, pp. 75-77]). One simply makes the constructions
for the auxiliary resolutions first, takes the indicated tensor products, and
then extends the construction to the entire complex. (Since Y is a direct
summand of X there is no difficulty in extending the maps and homotopies.)
It follows that any two resolutions over a system are naturally homotopy-
equivalent.

Let (X, Y) be a resolution over {G, G;, »;}. Since the sequence

0 Y X XY 0
splits, the sequences
11) 0—mARY — ARX — AReX]Y — 0
and
(1.2) 0 «—Homy(Y, B) «—— Homy(X, B) «— Homy«(X/Y, B) «—— 0

are also exact, for any right G-module 4 or left G-module B. The sequence
(1.1) gives rise to a homology sequence which (up to natural isomorphism)
depends only on A and the system. We write H,(G; A) for H,(X; A),
H,({G:}; A) for H,(Y; A), and H,({.}; A) for H,(X|/Y; A), and call the
sequence

— H,({G}; A) — H,(G; A) — H,({p:}; A) — H,_,({G.}; 4)—

the homology sequence of {G, G, @;} with coeffictents in A. We remark

that H,(G; A) is the usual ™ homology group of G with coefficients in A4,

while H,({G}; A) is naturally isomorphic to the direct sum of the homology

groups H,(G;; A), where A is treated as a G;-module via the map o,.
Similarly (1.2) gives rise to a sequence

—— H"(lpd; B) —— H'({G}; B) — H"(G;B) —— H'({p}; B) —,
the cohomology sequence of {G, G;, p;} with coefficients in B. H*G; B) is

usual n™ cohomology group of G with coefficients in B, while H*({G,}; B)
is naturally isomorphic to the direct product of the groups H*(G;; B).

1.2 Equivalence of systems; fused systems. In describing the group
system of a topological space and subspaces, we spoke loosely of homo-
morphisms of fundamental groups ‘‘induced by inclusion’’. Such homo-
morphisms depend on the choice of base-points, and on the choice of paths
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joining the base-points of the subspaces to that of the space; they are
well-defined only to within inner automorphisms.

Let {G, G;, #;} and {G, G, !} be systems involving the same groups but
possibly different maps. We say that they are equivalent if for each ¢
there is an element g; of G such that @i(x) = g.p.(x)9:?, for all zeG,.
The group system of a space and subspaces is thus well-defined up to
equivalence. To show that the homology of the group system of a space
and subspaces is a topological invariant, it suffices to show that equivalent
systems have isomorphic homology. This is an immediate corollary of the
following proposition.

PROPOSITION. Equivalent group systems possess isomorphic resolu-
tions.

ProOF. We shall write Z(G);, Z(G). to denote Z(G) considered as a right
G,-module via the maps @;, @} respectively. For each 1, let Y, be a resolu-
tion over G; and put

Y, = Z(6):Q¢ Y: = Z(G): 6, 2G) R¢, Y,
Y! = Z(G): ®Gl Yz = Z(G);®G¢Z(Gi) ®Gi Yz .

The elements g®e, forg € G, form an additive basis for both Z(G); ®4+,Z(G:)
and Z(G);®e, Z(G;); the additive isomorphism under which g®e corre-
sponds to gg;* @ e is easily verified to be an isomorphism of left G-modules
and right G;-modules, and it follows that Y; and Y/ are isomorphic G-
complexes. Consequently Y, the direct sum of the Y;, and Y’, the direct
sum of the Y, are isomorphic, and they can be extended in ‘‘parallel”
fashion to give isomorphie resolutions (X, Y) and (X', Y’).

Any system {G, G;, ?;} has a naturally associated fused system {G, G,
®,} in which G, is the free product of the G;and ¢,: G, — G is induced by
the @,. The obvious natural map of the original system into the fused one
induces maps of the homology and cohomology sequences, with any coef-
ficients. For homology, the induced maps are isomorphisms except for
H{G}; A)— Hy(G,; A) and H,({;}; A)—H,(®,; A), which are epimorphisms.
For cohomology, the maps are isomorphisms except for monomorphisms
HG,; B)— H'({G;}; B) and HY@, B) — H'({p:}; B). We indicate the
proof for homology; a dual argument gives the proof for cohomology. It
is easily seen that the induced map H,(G; A) — H,(G; A) is the identity. We
show below that the map H,({G:}; A) — H,(G; A) is an isomorphism ex-
cept in dimension zero, where it is an epimorphism. The ‘‘five lemma”’
then implies the result stated for the maps of the relative groups.

Examination of the constructions shows that the induced map H,({G:};4)
— H,(G,; A) is the same (when H,({G;}; 4) is identified with the direct
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sum Y H,(G,; A)) as the sum of the individual maps H,(G:; A)— H,.(G,; A)
induced by the inclusion of the G; in G,. What we need thus amounts to
the following proposition. (The result below is well known to follow from
a theorem of Whitehead [28],and the geometric definition of the homology
of groups. I have not found a purely algebraic proof in the literature.)

PROPOSITION. Let G be the free product of groups G, and let A be a
right G-module (and hence a G,~module for all ). Let i,: H,(G.; A) —
H,(G; A) be induced by the inclusion G, — G. Then except in dimension
0, the i, give an isomorphism between the direct sum Y H,(G,; A) and
H, (G; A).

Proor. Let I,, I be the augmentation ideals (fundamental ideals) in
Z(G.), Z(G). By formula (4) of [1, p. 144], H,(G; A) ~ Tor?9(A, I) for
n > 1, with analogous results for H,(G,; 4). I, = Z(G)®a,I. can be natu-
rally identified with the left ideal of Z(G) generated by I,. Note that
since G, is a subgroup of G, Z(G) is free over Z(G,) and TorZ?¢=(Z(®), I,) =
0 for n > 0. Theorem 3.1 of [1, p. 150] applies, and we conclude that
H,(G,; A)~Tor?9(A, I,) for n >1. To complete the proof we show
that I is the direct sum of the I,. Retractions p,: I — I, can be defined
as follows. For a fixed a, let H be the subgroup of G generated by the
Ge with 8 # a. Each g€ G then has a representation in the form g =
hg, «++ h,g, with the g; in G, and the h; in H, which is unique if su-
perfluous identity factors are absent. Elements of the form g — e give
an additive basis for I, and it is easy to verify that setting

P9 —€) = hi(9,—€) + hgih(g,—€) + -+ + hg, + - h,(9,—¢€)

yields a homomorphism I— I, which is the identity on I, and 0 on all the
other I;. The sum of all the p, is the identity, and together with the in-
clusion maps %,: I, — I they yield a direct sum decomposition of I.

1.3 Products. The product of two pairs of topological spaces (U,, V,)
and (U, V,) is defined as the pair (U, x U,, U, x V, U V, x U,). If the
spaces and subspaces are path-connected then (in the absence of patholo-
gy) the van Kampen theorem [2] implies that 7,(U, x V,U V, x U,) is iso-
morphic to the free product 7,(U, x V,)*7(V, x U,), reduced by all rela-
tions 7,(v) = i,(v) where v e 7(V, x V,) and 1,, 1, are the maps induced by
the inclusion of V,; x V,in U, x V,and V, x U,. For group systems with
a single auxiliary group (corresponding to a space and single connected
subspace, in the topological picture) we define a product in analogy
with the above, as follows.

The product of two systems @: G,—G and ¢':G,—G’ is a system
@": Gy —G" in which G” is the direct product G x G’. G} is the free product
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(Gy x G")*(G x Gy), reduced by all relations g x @'(¢") = @(g) x ¢’ where
g X ¢’ is an element of G, X G|. The map ¢” is defined by

o X 9 —>P(g) X ¢’ for g, x ¢’ e Gy x G’
g X go— g X P'(q0) for g x gre G x Gy
Since Z(G x G”) is naturally isomorphic to Z(G) ® Z(G’) we may conclude
from [1, Proposition XI, 1.1] that if X, X’ are resolutions over G, G’ re-
spectively, then X® X' is a resolution over G x G’. It can then be shown
that if (X, Y), (X', Y’) are resolutions over the systems ¢: G,— G,
?":Gi—G' then (XQR X', XQ Y'+ YR X') is a resolution over the product
system, as is to be expected from the topological analogy.
Mapping g into g x g gives a natural diagonal map of a system into its
product with itself. This permits the definition of cup products

—,: H*(G; BY® H(G; B') — H**(G; B")

— . H*(p; BY® H(p; B') — H**(p; B")
for any G-homomorphism \: BB’ — B”. (BQ B’ is considered a G-
module under the action g(b®b’) = gb®gb’.) If B = B’ and \ is sym-
metric so that M5, @ b,) = \Mb,@b,) then the usual commutativity relation
(1.3.1) u— v = (—1)*v—u

holds for cohomology classes of dimensions p, q.

2. Presentations of group systems, and their related resolutions

In this section we show how to construct the first few terms of a resolu-
tion over a system given by generators and relations. We shall consider
only group systems {G, G,, ¢} with a single auxiliary group; we lose little
generality, since for most purposes a group system can be replaced by its
fused version, and we gain substantially in simplicity. (The more general
construction is not difficult, but is made complicated by the need to use
more than one generator in the 0-dimensional term of the resolution.)

2.1 Presentations and identities. In dealing with presentations of
groups we follow the terminology and notation of [6, 7]. Let F be a free
group with generators x = {x;}, and r = {r;} a set of words (the relators)
in F. The consequence of r in F' is the smallest normal subgroup of F
containing r. Then {x; r}is a presentation for the group G = F|R where
R is the consequence of r in F. We need to consider identities between
the relators of a presentation [16, 19]. Let P be a free group with gener-
ators 0; corresponding to the relators »;, and define : PxF — F by
v(0;) = 7j, ¥(x;) = x;. A word se PxF is an identity (of the presenta-
tion {x; r}) if it is in the kernel of 4, and in the consequence of P in PxF.
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(This last condition amounts to saying that s is of the form I, _ w.0imw,!
where the w,, are in Fand ¢, = +1.)

By a presentation of a system {G, G,, #} we mean what Fox [7] calls a
presentation of the homomorphism @. Let F = F'xF, where F” is free
with generators x’ and Fj is free with generators x,. (We allow x’ or x,
to be empty, with the convention that the trivial group is freely gener-
ated by the empty set.) Let r, be a set of words in F}, and r’ a set of words
in F' (not necessarily in F”). Let R, be the consequence of r, in F, and R
the consequence of r' Ur,in F. Then {x, x,; ’, r,} is a presentation for the
system {G, G,, #} where G = F|R, G, = F,/R,, and @is induced by the inclu-
sion F,— F. Writing x for x'Ux, and r for ' Ur, we observe that {x; r}
is a presentation for G. To define identities we introduce the free group
Pinthe form P« P, where P’ and P,arefree with generators corresponding
to the elements of v/, r, respectively, and define the map +: PxF — F as
before. An identity is then an element of PxF which is an identity of
the presentation {x; r}; if it happens to lie in Px*F} it is also an identity
of the auxiliary presentation {x,, r,}.

2.2 The topological picture. Before going on to describe the chain-
complexes associated with presentations of groups and group systems
we shall discuss briefly the topological picture involved. Strictly speaking,
this picture is irrelevant to the algebraic development, but the reader may
find it helpful in motivating the constructions of the next section. Since
this discussion is purely heuristic we give no proofs.

The construction of a 2-dimensional cell-complex having a fundamental
group G with presentation {x;r} is well known [20]. There is a single
vertex p, each generator x, is represented by a loop based at p, and each
relator r; corresponds to a 2-cell adjoined so that its boundary represents
the relator. What we shall call the associated complex of the presenta-
tion has a 2-skeleton isomorphic to the chain-complex of the universal
covering space of this cell-complex.® The group of 0-chains, considered
as a G-module, has a single generator ¢ corresponding to a base-point chosen
in the universal covering space. The 1-chains have a basis {a;} where each
a; corresponds to the 1-cell in the covering space which begins at ¢ and
covers the loop representing ;. More generally, any word w in the free
group F'is represented by a path in the 1-skeleton of the original complex,

6 We shall actually define a 3-dimensional chain-complex associated with a presentation
and set of identities. The identities may be interpreted topologically as elements of the
second homotopy group of the 2-complex associated with the presentation [19], and our
algebraic construction corresponds to adjoining 3-cells which ‘kill’’ the second homotopy
group.
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and this is covered by a unique path starting at e in the universal cover-
ing space. Considering this path as a 1-chain, we obtain a function (from
I to the group of 1-chains in the covering complex) which corresponds to
the crossed homomorphism « defined in the next section.

2.3 Resolutions derived from presentations. In this section and the
next we shall have to describe a number of functions f: FF — M where F
is a free group on a set of generators {x,;} and M is a left F-module. These
maps will satisfy some relation of the form

(2.3.1) fluv) = f(u) + uf@) + g(u, v) u,vekl
and
f)=0,

where g: F' x F'— M is a given function of two variables. Since f((uv)w)
must be the same as f(u(vw)), g has to satisfy

(2.3.2) g(u, vw) — g(uv, w) — g(u, v) + ug(v, w) =0
and

g(u,1) =9g(1,v) =0 u,v,weklF,
We shall need the following converse.

LEMMA Given any function g: F x F— M satisfying (2.3.2), there
exists a unique function f: F— M which satisfies (2.8.1) and has arbitra-
ry prescribed values on the generators x;.

ProorF. The uniqueness of f is obvious, for setting v =v =1 in (2.8.1)
shows that f(1) = 0, and setting » = ="' in (2.3.1) gives

(2.3.3) fw™ = —uf(u) — ulglu, u™) .

Thus if f is given on the generators z;, it is determined on the inverses
27!, and an obvious induction on the length of the word w shows that
(2.3.1) determines f(w) for all we F. Conversely, to construct f given
the values f(x;) we first define f(x;?) by (2.3.3). A straightforward induc-
tion on the lengths of the words involved shows that f can be consistent-
ly defined on the semi-group of (unreduced) words in the 2, and their in-
verses in such a way that (2.3.1) is satisfied. By a trivial calculation,
flxx) = f(x7'x;) = 0 for any generator x;. For any u, v, w in the semi-
group

(2.3.4)  fluvw) = f(u) + uf(v) + wof(w) + gu, vw) +ug(v, w) .

If v =xx; or 27, then f(v) = g(v, w) =0, and f(uvw) = f(u) + uf(w) +
g(u, w) = f(uw). From this it follows that f has the same value on any
two words in the semi-group which represent the same element of F', so
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that f is well-defined on F.

If f satisfies (2.3.1) with g identically zero, it is called a crossed homo-
morphism. Thus as a special case of this lemma we have the well-known
result that crossed homomorphisms of a free group can be arbitrarily
prescribed on the generators.

Let {x;r} be a presentation of a group G and s = {s,} a set of identities
of the presentation. The associated complex of {x;r;s} is a free augment-
ed G-complex X,

(2.3.5) x4 x4 x-S x,—z2—0

defined as follows. X, has a single basis element e; X, has a basis {a;}
whose elements correspond to the generators x;; X, has a basis {b;} whose
elements correspond to the relators r; and X; has a basis {c,} whose ele-
ments correspond to the identities s,. We consider X as an F-module ma
the quotient map F—G, and as a PxF-module via the map PxF-2>
F—G. Let a: F— X, be the crossed homomorphism such that a(x;) =
a; for all ¢, and B: Px F— X, the crossed homomorphism such that 8(0;) =
b, for all j and B(z;) = 0 for all <. Then the augmentation and boundary
operator are determined by giving their values on the generators as
follows:’

ge)=1, d(a;) = (x; — De,
dd;) = a(ry),  dlc) = B(se) -

We remark that in the notation of the free differential calculus [5], a(w) =
>, (w/ox)a; and B(w) = 2 (0w[80;)b;. It follows from Lemma 5.1 and
§ 1 of [16] that d* = ed = 0 so that X actually is a complex. (Note that
a corresponds exactly to the ‘‘differential’’ of [16], while 8 is the same
as the correspondence described in Lemma 5.2 of [16].) Indeed Lemma
5.1 of [16] states that (2.3.5) is exact at X;, X, and Z. Let us say that s
is a complete set of identities if (2.8.5) is also exact at X,. Corollary 5.3
of [16] then implies that any presentation has a complete set of identities.
We can summarize these remarks in the following proposition.

Any presentation {x; r} of a group G has a complete set of identities s.
T he associated complex of {x; r; s} is the 8-skeleton of a resolution over G.
For a presentation with identities {x’, x,;1’, r,;§', s,} of a system {G, G,, #}
we define an associated pair of complexes (X, Y) as follows. X is simply
the associated complex of {x;r;s} where x = x’'Ux,, etc., and Y is the

7 The topological interpretation suggests the formula da(w) = (w — 1)e. An algebraic
proof is easy. Both da and the map w — (w — l)e are crossed homomorphisms F — Xo;
they coincide on the generators of F' and are therefore identical.
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submodule generated by ¢ and those a;, b; and ¢, which correspond to
elements of x,, r, and s,. It is easy to see that Y is a subcomplex and a
direct summand, and that in fact ¥~ Z(G) ®g,Y where Y is the associated
complex of the presentation {x,; r;; s} of G,. We say that the set of
identities is complete for the presentation of the system if s, is complete
for {x,; r;} and s is complete for {x;r}. It is obvious that the pair of
complexes associated with a system presentation and complete set of
identities is the 3-skeleton of a resolution over the presented system.

2.4 The diagonal chain-map. Suppose that (X, Y) is a resolution
over a system {G, G,, #} whose 3-skeleton is associated with a presenta-
tion and complete ‘set of identities for the system. In this section we
present explicit formulas® which define on the 3-skeleton of (X, Y) a chain
map D*(X,Y)—(X® X, YR Y) under the diagonal map D:{G,G,, ¥} —
{G’ GO) g)} X {Gy GO’ g)}°

Routine calculation shows that the function g: F x F— X, ® X, defined
by g(u, v) = a(u) Qua(v) satisfies condition (2.3.2). Hence there is a
unique function v: F— X, ® X, such that
(2.4.1) Y(uv) = v(u) + uv(v) + a(uw) @ ua(v)
and

Y(x:) =0 foralls .

The map D* is defined on the basis elements of X as follows:

D¥e) =eRe

Da)=eQ@a; +a;Q ze

D¥b;) =e@b; +b; Qe + (r))

Dﬁ(ck) =€ ® Cy + Ci ® e+ E?em(a(wm) ® wmbjm + wmbjm ® a(wm))

+ E:&amwm(bjm ® a(lrjm)) - E1gz<m§nslwlbﬂ'l ® 8m?’v1116‘{(,".7',,,‘) ’
where ¢, corresponds to the identity
Sy = :Ln:lwmpimw;bly Emn = il and 5m = %(Em - 1) .

(Fortunately in using this map for computing cup products we shall be
interested chiefly in the component of D¥(¢c,) lying in X, ® X,, which is

8 The method of contracting homotopies for constructing diagonal maps described in
XI,5 of [1]is of little use in the present context. Even in dimension 0, explicit description
of a contracting homotopy for the complex associated with a presentation apparently requires
solution of the word problem for the given presentation. Thus it seems likely that there
is no effectively computable general algorithm for constructing such contracting homotopies.
Our formulas were suggested by those of Kyle [15].
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simply 3 'e,(ax(w,) @ w,b; ).)

These formulas, plus the requirement that D* be a homomorphism
under the diagonal map G — G x G determine the map. We must now
verify that it is a chain map. It is sufficient to check that ¢’ D% = ¢ and
d’'D* = D' on all the basis elements. (We write d’, ¢’ for the boundary
operator and augmentation in X ® X.)

In dimension 0,

¢D¥e) =c'eQRe)=1=c¢(e).
In dimension 1,

d'D¥a;) = e Q@ (x; — 1)e + (x; — 1)e @ x.e
=xeQRQxe —e®e = Did(a,) .
Define ¢: F'— X, ® X, by ¢(u) = eQa(u) + a(u)@ue. Calculation using
(2.4.1) shows that d'y + ¢ is a crossed homomorphism F— X, ® X,. D'«
is also a crossed homomorphism, and for each 4, Da(x;) = (d'y + &)(z,).
It follows that D*a = d’'y + ¢. Thus in dimension 2,
d'D¥b;) = e @ a(r;) + a(r;) @ e + d'v(r))
=e@a(r;) + a(r,) Q re + d'v(r;)
= (¢ + d'7)(r;) = D'a(r;) = D*(b;) .

In the preceding calculation we used the fact that for any » ¢ R (the
kernel of the map F— G), rx = « for any z € X. Using the same fact,
the following consequences of (2.4.1) are easily seen to be valid for any
7, Tm € R.

(i) 7(r?) = ev(r) — da(r) @ a(r) wheree = +1, 5 = 4(c — 1)
(2.4.2) (ii) v(wrw™) = wy(r) + a(w) Q wa(r) — wa(r) @ a(w)

(i) v(II77ra) = Zv(ra) + 220 ., _ a(r) Q a(r,).
(Formula (i) with ¢ = —11is obtained by expanding 0 = v(r—'r).) Hence
if s, = H:”wmpmw,;l is an identity for the presentation,

(I warinws?)
=v1)=0
= 2 Y (warimwit) + 25 ewia(r;) Q epwaalr;,)
= Eremwm,y(rjm) + E?em(a(wm) ®wma(’rjm)—wma(rjm) ®a(wm))

— 20 awa(a(r; ) @ a(r; )

+ Ek1§l<msn€lwla(,rjl) ®emwma(rim) .

(2.4.3)

Now,
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d'Dic, = e @ D TenWnb; + D eaWab; Qe
+ D renWn(r; ) Q A(Wn) + 3 enWnb;, & (W, — 1)e
— 2orena(Wy) @ waa(r;,) + 32 (W, — e @ epwnb;,
+ 200 wa(a(r;, ) Q a(r;,))

- El§l<m§n€lwla(/rjl) ® smw’ma(rim) ’
and taking (2.4.3) into account, this simplifies to

d,D#ck = E:ﬁ{emwm(e ® bfm) + emwm(bjm ® e) + emwm’y(/rjm)}
— DX epwnbs, ) = Dide, .

To complete the discussion we need only remark that D carries Y into
Y® Y (and a fortiori into X®Y + Y X) and coincides with the result
of “‘lifting’’ a diagonal map Y— Y® Y, where Y is the auxiliary resolu-
tion over G,.

3. Quasi-resolutions

This section is concerned with simplifications which are sometimes pos-
sible if the coefficient modules used satisfy certain restrictions. It is diffi-
cult to find a complete set of identities for a presentation (indeed there
may not exist any finite complete set of identities [27]) so that in general
the methods of the preceding section are effective for computing homology
groups only in dimensions 0 and 1. We shall show how this difficulty can
be largely evaded for the group systems of interest in knot theory.

Let a map Z(G) — A be given, where A is an arbitrary ring. Then any
right (left) A-module can be considered a G-module via this map, and can
be used as a coefficient module for homology of G.° Because of the natural
isomorphisms A R X~ (ARA) R X~ AR (A ReX) and Homy(X, B) ~
Homy (X, AR ,B)~ Hom,(ARsX, B), valid for any right A-module A and
left A-modules B, X [1;II, 5], the homology or cohomology of G with
coefficients in any A-module can be obtained from A ®,X, where X is any
resolution over G. More generally, if there is a homotopy equivalence
between A ®,X and some A-complex X, then X will do just as well, even
though there may be no resolution X’ over G such that X ~ AR.X".
(The simplification this may make possible is illustrated in §4.) We shall
call any such X a A-resolution over G. To calculate cup-products using
a A-resolution, one starts with a diagonal map for a resolution X over G.
This induces a diagonal map for A®,X, which can then be transferred
to a diagonal map for X via the postulated homotopy equivalence. The

9 For simplicity we speak only of groups, but the results of this section apply equally
well to group systems.
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A-complex associated with a given presentation and set of identities is
defined to be AQ¢X, where X is the usual associated complex. Itisa
free A-module on the ‘‘same’’ generators as X, and the boundary operator
is given by the same formulas, except that the coefficients must be in-
terpreted as their images in A rather than as their images in Z(G).

We call a A-module K residual if for some finite n, A"@ K~ A", and
A itself non-residual if there are no non-trivial residual A-modules. If
K is a residual G-module, it follows from the distributivity of tensor
product over direct sums that A ®.K is a residual A-module.

A quasi-resolution over a group G is a projective augmented G-complex
(X, d) such that the augmentation ¢ maps X, onto Z, and the kernel of
d, (kernel of ¢ for n = 0) is the direct sum of the image of d,,, and a
residual G-module K,. Let K, be isomorphic to K,, and construct a new
complex (X', d’) with X; = X,, X, = X, B K, ,forn =1, d'|X, = d, and
d’'| K, an isomorphism onto K,. The result is acyclic, and is actually a
resolution over G since residual modules are direct summands of free
modules and are therefore projective. If A is a non-residual ring, A QeX’
and A ®,X are isomorphic, and consequently if X is a quasi-resolution
over G and A is non-residual then A ®.X is a A-resolution over G. The
point is that, as will be shown below, a quasi-resolution is sometimes
easier to obtain than a resolution.

Any A which is finite-dimensional and torsion-free over an integral
domain R is non-residual, for it is easily seen that a residual A-module
would be torsion-free and zero-dimensional over R and hence trivial. In
particular, group rings of finite groups and rings of matrices with coeffi-
cients in an integral domain are non-residual. If Hisa free abelian group,
Z(H) is an integral domain. If H is the direct product of a free abelian
group H, and a finite group H,, then Z(H) has dimension equal to the
order of H, over the integral domain Z(H,) and is therefore non-residual.
In particular, the group ring of any finitely generated abelian group is
non-residual. Conceivably, all group rings are non-residual, but this
appears to be a very difficult question. An affirmative answer would of
course make the distinction between resolutions and quasi-resolutions
vacuous.

We call a group presentation aspherical if, when it is taken with the
empty set of identities, the associated complex (2.3.5) is acyclic. (The
terminology is suggested by the fact that a presentation is aspherical if
and only if the geometric complex described in 2.2 is an aspherical spag:‘e__.)_

In general let K be the kernel of d,: X,— X; in the complex X associated
with a presentation and empty set of identities, so that K= 0 if and only
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if the presentation is aspherical. We shall be concerned with the change
produced in K when the presentation is altered by adding a new generator
and defining relator (Tietze operation [6] of type I) or adding a new relator
which is a consequence of the others (Tietze operation of type IT). (We shall
not use the inverse operations of deleting generators or relators.) Which-
ever the type of operation, X may be considered a subcomplex of X’. If
the operation is of type I, then K’ = K. If it is of type II, then K’ =
K @ Z(G) and the direct sum splitting may be chosen in such a way that
the summand Z(G) is generated by A(s), where s is any given identity
exhibiting the new relator as a consequence of the others. We omit the
proofs, which are straightforward.

From now on we shall consider only finite presentations and finitely
presentable groups. The deficiency of a presentation is the number of
generators minus the number of relators. The deficiency of a group is
the maximum of the deficiencies of its finite presentations [25]. Note
that a Tietze operation of type I does not change the deficiency of a presen-
tation, while a type II operation decreases the deficiency by one.

For any two finite presentations of the same group, there exists a third
presentation obtainable from either of the first two by a finite sequence
of operations of types I and II [6, p. 198]. Let K, K’, K" be the respec-
tive associated kernels, and n, n', n” the respective deficiencies. There
must be n — n”" type II operations used in going from the first presenta-
tion to the third, and »' — »n” in going from the second to the third.
Consequently K" ~ KD [Z(G)]* ™" ~ K'D[Z(G)]” ™. If the first presen-
tation is aspherical, K = 0 and [Z(G)]" " ~ K' @ [Z(G)|*~"". Tensoring
with Z over G gives Z" "' ~ ZQK'P Z~ ", which implies »=n' and
shows that any aspherical presentation has maximum defictency. 1f the
first presentation is aspherical and the second has the same deficiency,
K’ is a residual G-module. This gives the partial converse: ¢f G has an
aspherical presentation then the complex associated with any presenta-
tion of maximum deficiency is a quasi-resolution over G.

Papakyriakopoulos [18] defines a non-empty proper closed subset B of
S?® to be (geometrically) splittable if there is a semi-linear 2-sphere
S?c S® — B, such that both components of S® — S? contain points of B.
Let B be a tame unsplittable graph in S® with ¢ components and 1-dimen-
sional Betti number ». Then 7,(S°® — B) is an aspherical group with
deficiency » — ¢¢ + 1. This follows readily from the asphericity of S* — B
[18], since S°* — B has the homotopy type of a finite 2-complex (which
must also be aspherical) and, by Alexander duality, has Euler character-
istic # — r. A complex of the same homotopy type with a single vertex
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must have » — (£ + 1 more 1-cells than 2-cells to have the proper charac-
teristic. The derived presentation (which will be aspherical) has therefore
r — ¢t + 1 more generators then relators; i.e., it has deficiency » — ¢ 4 1.
Since the presentation is aspherical it has maximum deficiency and
actually gives the deficiency of the group.

4. Group systems of knots; abelian coefficients

By an abelian G-module A we mean a module such that xye = yza for
allz, yeG and a € A. An abelian G-module may be considered a module
over Z(H), where H is the commutator quotient group of G, and for calcu-
lating homology or cohomology with abelian coefficients, we may apply
the results of the preceding section by taking A to be Z(H).

We shall obtain a presentation for the group system of a knot such that
the associated complex X is a quasi-resolution and Z(H) XX has a par-
ticularly simple form. Since H is a finitely generated abelian group, Z(H)
is a non-residual ring, so that we obtain a Z{ H)-resolution over the system,
in the sense of §3.

Let F be a tame oriented surface with boundary the oriented knot K,
and let & be its genus. Seifert [22] showed how such a surface could be
constructed for any tame knot; for a more detailed description see [3].
F is topologically equivalent to a dise with % pairs of bands. Its funda-
mental group is free on 2k generators u,, - -, 4y, Which may be chosen,
as shown in Figure 1, in such a way that the product of commutators y =

/ U,

Figure 1
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H;‘zl[uzi_l, U,,;] is represented by a loop running parallel to the boundary
of the surface. A presentation of G = 7,(S* — K) can be obtained by
expressing S® — K as the union of two open subsets, and applying the
van Kampen theorem [2]. We take one subset, V, to be S* — F, and the
other, U, to be a neighborhood of F' in S® — K which has F as a strong
deformation retract, together with a tubular neighbourhood of a small
circle linking K once. Then the intersection of U and V is U — F and
consists of one layer ‘‘above’ F' and one ‘‘below’’, joined by a bridge in
S® — F. (It is to be understood that ‘‘above’’ and ‘‘below’’ are defined
in terms of the orientation of F' and S3.)

Take a base-point p in the upper layer of UN V and let ¢ be a point
directly below it in the lower layer. The group 7 (U) is free on 2k + 1
generators. One generator, «, is represented by a loop which runs around
the bridge in U N V from p to ¢ and then returns to p by cutting directly
through F', and the other 2/ generators may be identified with the gener-
ators u,, «« -, U, of w,(F'). The group 7, (U N V) is free on 4k generators
uf, o oo, ub,, ul, -+, ul, where uf is represented by a loop running parallel
to u; in the upper layer, and w} is represented by a loop which goes via
the bridge to g, runs parallel to u; in the lower layer, and returns to p via
the bridge. The space V has the homotopy type of the complement in S?
of a connected graph with 1-dimensional Betti number 2. Hence, by the
last paragraph of §3, 7,( V) has a presentation of deficiency 2h. By Alex-
ander duality we can choose 2h generators v,, - - -, v,, so that the linking
number of the cycles represented by u, and v, is d,;, while the remaining
generators v,, ., * + +, Va1 €aN be chosen to lie in the commutator subgroup
of 7, (V). There will then be k relators in each of which the v; with ¢ < 2h
occur with net index zero.

According to the van Kampen theorem, one obtains a presentation for
G = (U U V) by taking presentations for 7,(U) and 7,(V) and adjoining
relators 7,(u)ii(u*) for each generator w of 7,(U N V) where 7, and 7}
are the homomorphisms of the fundamental groups induced by the inclu-
sions of UN Vin V and U respectively. Under ¢, ! is identified with
u; and u: with zu,x~*. We shall simply write uf, u’ for ¢.(uf), 7,(u;) and
from now on consider them as abbreviations for certain words in the
generatorsv,;. Then theu,; may be eliminated along with the relators identi-
fying u; with «f. The final result is a presentation for G with 2h + % +1
generators x, vy, + -+, vy, and 2k + k relators ;. Fori =1, -.-, 2k, the
relators are r; = xulx~'(u’)~*, while the last k relators are those of the
presentation of 7,( V') and do not contain the generator x.

A peripheral subgroup [9] is generated by x and y = H;’:l[uﬁi_l, ul;],
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and is presented by these generators and the relator r, =[x, y]. We
thus obtain a presentation of the group system consisting of G, the
peripheral subgroup, and the inclusion map, by adding the generator v,
the defining relator r,=y™* ’;zl[ugi_l, uf;], and the relator r, to the presen-
tation of G given above. If r, is omitted, the result is a presentation of
G of deficiency 1, which is maximum deficiency for a knot group. Thus
it is only necessary to find an identity expressing r, as a consequence of
the other relators to obtain a presentation and set of identities whose
associated complex will be a quasi-resolnution over the system.

The identity arises from the obvious geometric fact that H';zl[uﬁi_l, u¥;]
and J]’_ [}, us] represent the same element of 7,(V). Hence (using
F, P, 4 and p; as in 2.3) there is an R in the consequence of P in PxF
with the property that yw(R) = TT"_ [usi—s, us)(I1}_ [ufis, ut])™. This B
does not contain « or any of the p; with j = 2h.

Define

w; = TT_ [taoy %as] (with w, = 1)
and

Wi = Wi 105 Wity s Wiy Ugi 1 02(Wi—1Uni—1) e

(W) 03 (W i) 7 e W, 03w

Direct calculation gives

(W) = wi@lufi,uilewi
so that

P(IT5, W) = (1 [wdi, wdi])e™ i

From this it follows that
4.1) (IT%_, W)+ R-yo,y " yz0;, (o)~ 07

is an identity.

Let (X, Y) be the pair of Z(H)-complexes associated with this presen-
tation and identity which, as was remarked above, is a Z(H)-resolution
over the system. X isa free Z(H)-module with one generator ¢ in dimen-
sion 0, generators a,, @,, @,, -« +, Qa4 corresponding to , Y, v, ** 2y Vonss
in dimension 1, generators b, b,, b, « « +, b+, corresponding to 7, 75, 71, « * <,
Fynep in dimension 2, and a generator ¢ in dimension 3 corresponding
to the identity (4.1). The subcomplex Y is generated by e, a,, a, and b,.
H is an infinite cyclic group; « maps into a generator of H which we shall
denote by ¢, while all other generators of the presentation map into the
identity in H. As a consequence, crossed homomorphisms into X behave
as multiplicative-to-additive homomorphisms when applied to words not
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involving the generator . Because of this, the boundary operator can
be described by comparatively simple formulas as follows.

ele) =1
d(a,) = — e d(a,) = d(a;) =0
d(bv) = —0y d,) = (¢t — 1a,
d;) = jil(pijt — pij)a; + E?Zl,iﬂ(qw'jt — ¢ija; (@ = 2h)
= ) 100 (4 > 2h)
d(c) = i}:;lfzﬂ%bi =b,— ( —1)b,.

In these formulas, for ¢ < 2k, p,; and g¢,; give the net index of v; in uf,
while p}; and ¢}; give the net index of »; in u%. For ¢ > 2h, ¢,; is the net
index of v; in 7;; as remarked before, this is zero for j < 2k. The g, arise
from the term R in (4.1).

Because of the particular choice of the generators v;, p,; is the linking
number of u} with u; (or u}) so that the matrixz with entries p;; is identi-
cal with the linking matrix defined by Seifert [22.] We shall call it V
in agreement with his notation. The linking number of u: with u; is p};.
This is obviously the same as the linking number of u; with u#, so the
transposed matrix V' has entries p};. The difference p,; — p}; is the inter-
section number of u; with u; on F, so that V — V' is the skew-symmetric
unimodular matrix S (the negative of Seifert’s A [23]) consisting of &

copies of [0_1 (1)] along the main diagonal.

The homology of G with simple integer coefficients is that of the complex
ZXzX which is a free abelian group on the ‘‘same’ generators as X,
with boundary operator defined by the formulas above with ¢ replaced by
1. Since H(G; Z)~ Z, the k x k matrix Q with entries ¢,;, ¢, 7 =2h +1,
«++,2h + k, must be unimodular, for if any of its elementary divisors were
different from +1 then H,(G; Z) would have at least one additional cyclic
factor. This fact and the relation d*(¢) = 0 imply that all ¢; are zero, so
that actually

de) = —b, — (t — 1)b, .

Let X be the submodule of X generated by the basis elements other
than the a;, b, with ¢ > 2k, and make it a complex by using the same
formulas as above for the boundary operator, replacing these a; and b; by
zero wherever they occur. We assert that there is a homotopy equiva-
lence between the pairs of Z(H)-complexes (X, Y) and (X, Y). To exhibit
the equivalence we define f: X— X to be the identity on X while f(a;) =
f(b;) = 0 for © > 2h. The inverse map g: X — X is the injection except
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in dimensiou 2, where it is defined by
9(b)) = b; + Ej}f;—'k—_—gh_‘_l(qijt — @) Q7 N;ibj .

It is easily verified that f and g are chain maps, and that fg is the identity
on X. A homotopy between gf and the identity on X is obtained by send-
ing a; into Ej:’,f L(@7")i;b; for @ > 2h, and sending all the other basis
elements of X into zero.

To calculate cup products in dimension 8 we need to know the component
of D*(c) lying in X; ® X,. The formula of §2.4 applied to (4.1) simplifies
greatly since in the Z(H)-module X, a([u,;_,, u,;]) reduces to 0 for all j.
We obtain

(DHe))e = 2o {—a(uy) @ byyy + a(u) @ by}
+ av®by - (a'y + ax) ® tby
+ terms involving b; with 5 > 2h .

The last terms (arising from R in (4.1)) are mapped into zero under the
homotopy equivalence of the preceding paragraph. The first terms can
be written as 3" (VS)i{a; ®b;). As will appear, use of the identity
S = (V' — V) results in a more invariant form for this expression. We
summarize these calculations in

PROPOSITION 4.1. Let K be a tame oriented knot in S, and {G, G', 1} its
group system, with G = w(S* — K), G’ a peripheral subgroup, and i the
inclusion map. Let t be a generator of H= G|[G,G] = H(S®— K). Then
if V is the linking matrixz obtained from a Seifert surface for K of
genus h, the pair of Z(H)-complexes (X, Y) given below is a Z(H)-
resolution over the system {G, G', i}.

X is freely generated over Z(H) by a generator e in dimension 0,2h + 2
generators ,, Gy, a, « -+, ay, 10 dimension 1, 2h + 2 generators b,, b,, b,,
o oo, by, i dimension 2, and one generator ¢ in dimension 3. T he bounda-
ry operator is given by

d(e) =0 d(a) = (t — 1)e d(a,) = d(a;) = 0
d(by) = —Qy d(bs) = (t — l)ay
d;) = E?}f__l(tV— V"),0; d(¢) = —b, — (t — 1),

where © = 1,2, <+, 2h. The subcomplex Y is generated by e, a,, a, and
b,. The image of ¢ under the diagonal map has

“2) X0 _IV(V = V) ia: ®b,) + a, @b, — (a, + a,) R th,

for its component in X, R X,.
The first homology group of the infinite cyclic covering of S®— K may



484 H. F. TROTTER

be identified with H(G; Z(H)) = H(X), and calculated immediately from
the above. The 1-cycles are generated by a,and the a;, and the boundaries
are generated by a, and the d(b;). Hence tV — V' is a relation matrix
for H/(G; Z(H)) (considered as a Z(H)-module).

It follows that the elementary ideals [5] of ¢tV — V' are invariants of
the group G. In particular, the elementary ideal of deficiency 0, which
is the principal ideal generated by det(tV — V'), is an invariant. The
generator of this ideal is determined up to a unit factor &¢" and we
define A(t), the Alexander polynomial of K, to be the unique generator
which has no terms of negative degree, a non-zero constant term, and
the value +1 for ¢ = 1. (Seifert [22] chose the sign so as to make the
leading coefficient positive; our choice works out more naturally in some
formulas.) If Vis non-singular, A(t) = det(tV — V) since the constant
term is det(— V') = 0 and A(1) = det(V — V') = +1 since the matrix is
unimodular and skew-symmetric.

Seifert made use of a matrix ' = — VS = — V(V’' — V). Since S is
unimodular,

—tV =V =(V' = V+ V-tV V' —V)'=E—T + (T

is also a relation matrix for the first homology group of the infinite cyclic
covering of S? — K; this is one of Seifert’s results [22].

The formulas of Proposition 4.1 can be applied to any square integer
matrix Vsuch that V— V’is unimodular to yield a pair of Z(H)-complexes
(X, Y) with a selected element (4.2) in X; ® X,. We shall say that two
such matrices are h-equivalent if there is a homotopy equivalence between
their related complexes which carries the selected element of one onto
the selected element of the other. In examining sufficient conditions for
h-equivalence, it is clearly permissible to restrict attention to the subcom-
plex generated by the a; and b,.

If a change of basis is made, so that a; = Y, Pu,, b; = Y, @b, (P,
Q unimodular), then the boundary operator has matrix P'(tV — V')}(Q)
with respect to the new basis {@;}, {b;} and the selected element is
2 PV = V)l Q b,. Taking Q = (P') and setting W= P'VP,
the matrix for the boundary operator is t W — W', and for the selected
element is W(W’' — W). We have shown that if P is unimodular, V
and P'VP are h-equivalent. We next show that if V is singular, it is A-
equivalent to a matrix U partitioned in the form

000
(4.3) U=|-100
0q W
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where Uis 2n x 2n, Wis 2n — 2 x 2n — 2 and ¢ is 2n — 2 x 1.* For
any V there exist unimodular @, R such that Q VR has diagonal form;
and if V is singular, the first row can be made to be 0. Then QVQ’ also
has a zero first row. QVQ' — (QVQ')Y = QV — V')Q’ is skew-symmetric
and unimodular, and its first column is the same as the first column of
QVQ' since the first row of the latter is zero. The first entry in this
column is 0, and because of the unimodularity the g.c.d. of the other
entries in the column must be 1. Hence there exists a sequence of ele-
mentary row operations on Q V@', not affecting the first row, which makes
the second entry of the first column —1 and the rest 0. These operations
can be effected by premultiplication by a unimodular P; postmultiplica-
tion by P’ does not affect the first column, and so PQVQ'P’ agrees with
U in its first row and column. Postmultiplication by a suitable R’ will
add appropriate multiples of the first column to the others, and reduce
all but the first entry of the second row to 0. Premultiplication by R will
have no effect since the first row is zero, and we finally obtain U =
(RPQ)V(RPQ) in the required form.

Let A, B be the submodules of the complex constructed from U gener-
ated by a,, « -+, a,, and b,, - -, b,, respectively. Consider the submodules
A’, B’ generated by a,, +++,a,, and b,, -+ +, b,, as a complex with boundary
operator given by the matrix ¢tW — W’. Define f: A, B— A’, B’ by
f(b) = f(b) = f(a,)) = 0, f(a) = _tZ:‘Iiai, and f(a;) = a;, f(b;) = b; for
i > 8. Define g: A’, B’ - A, B by g(a;) = a;, 9(b;) = b; — t7'¢;b,, © = 3.
Then f and g are chain maps, fg is the identity, and by sending a, into
b,, a, into —t'b;, and all the other generators into zero, one obtains a
homotopy between ¢ f and the identity on A, B. Hence f is a homotopy
equivalence. The matrix U(U’ — U)™ partitions into

0 0 0
—q¢'(W'— W)'qg —1 0 '
—q + W(W'— W)q 0 W(w'— W)
from which it is easy to see that f takes the selected element determined
by U into the selected element determined by W. Consequently if (4.3)
holds, then U and W are h-equivalent. Together with the result of the

preceding paragraph, this shows that every linking matrix is h-equiva-
lent to a mnon-singular matrixz.* Note that the proof provides an

10 To avoid special treatment of an obvious trivial case we make the convention that
there is a 0 X 0 matrix, which is symmetric, skew-symmetric, and has determinant +1.

11 It is an easy consequence of this remark and those following Theorem 3 in §5 that
Fox’s results on the homology of cyclic coverings of knots of genus one [10] generalize
to all knots with Alexander polynomial of degree 2.
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algorithm for reducing such a matrix to a non-singular one.

In deriving Proposition 4.1, we used a canonical set of generators for
m,(F'), and the matrix V can be thought of as giving a bilinear form on
H,(F"), relative to a canonical basis. If another basis is chosen, the linking
matrix obtained will have the form P’'VP for some unimodular P, and
will therefore be h-equivalent to V. We have proved:

PROPOSITION 4.2. The conclusions of Proposition 4.1 hold if V is any
matrix h-equivalent to the linking matrix obtained from any basis for
the first homology group of any Seifert surface for K. It is always
possible to reduce such a V to a non-singular one.

We shall call a matrix of the type referred to in Proposition 4.2 a
Seifert matrix for K. The actual matrix is of course not an invariant
of K, since if V is a Seifert matrix for K, then so is any V which is congru-
ent to it. The rest of this section is devoted to the proof of a partial
converse of this remark (Theorem 2).

From now on we suppose V to be a non-singular 2k x 2k Seifert matrix
for K. Then det(tV — V') = A(t) is an invariant of K and so is its leading
coefficient det(V’). Let R be an integral domain in which det( V) is a unit.
(For example, we can always take R to be the rational numbers, or the
p-adic integers for any prime not dividing det(V'), while if det(V) = +1
we can take R = Z.) V is then a unimodular matrix over R.

We shall consider the cohomology of the relative complex X/Y (which
is isomorphic to the subcomplex of X generated by the a;, the b,, b, and
¢, with d(b,) redefined as 0 and d(c) redefined as —(¢ — 1)b,) with coef-
ficients in the exact sequence

(4.4) 0 — R(H) —— R(H) -5 A — 0,

where A: R(H) — R(H) is multiplication by A(¢), and A is the quotient of
R(H) by the image of A. The 1-cochains and 2-cocycles with coefficients
in R(H) can be represented by 2h-dimensional column vectors with entries
in R(H) by making the column vector with 7" entry §,; correspond to the
cochain which is 1 on a; (or b;) and 0 on the other generators. (Since R
is an integral domain, (¢ — 1) is not a divisor of zero in ‘R(H), so every
2-cocycle must vanish on b,.) Denoting these column vectors by bold-face
type, the coboundary is given by the formula d(a) = (¢tV — V’)a. Define
T'= V'V Then for any 2-cocycle b, (t — T)b =tV — V)V-'b =
0(V'b), so that tb = T'b modulo coboundaries. It follows that every b is
cohomologous to one with entries in R (considered as a subring of R(H)).
On the other hand, since V and V' are non-singular there is no non-trivial
coboundary with all entries in R. Hence H*X|Y; R(H)) can be identified
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with the 2h-dimensional column vectors over R and is a free 2k-dimensional
R-module. It also has the structure of an R(H)-module, scalar multiplica-
tion being defined by p(t)-b = p(T)b. (This shows that the similarity
class of T as a matrix over R is an invariant.) Since V and V' are non-
singular, H(X|/Y; R(H)) = 0, and part of the exact sequence derived
from 4.4 is

0— H(X|Y; A) — H(X|Y; R(H)) - H{X|Y; R(H)) .

A(t) is a scalar multiple of the characteristic polynomial of 7, so the
Cayley-Hamilton theorem implies that A* annihilates H*X/Y; R(H)), and
it follows by exactness that 6* is an isomorphism onto. We claim that
6*'(b) = adj(tV — V')b in the sense that the right side is a 1-cochain
with coefficients in R(H) which represents the required element of
HY(X|Y; A). By the definition of 6*, this follows immediately from the
equation

d(adjtV — Vb)) = ¢V — V)adjtV — V)b = A(t)b .

Next we define a bilinear form on H*X|Y; R(H)) by a modification of
Kyle’s procedure.” The first step is to define a homomorphism
A AR R(H) — R under the diagonal map of G into G x G, considering
A and R(H) as Z(H)-modules and hence G-modules in the natural way,
and R as a G-module with trivial action. For p(t) € R(H), let p(t) be the
‘“‘conjugate’’ polynomial p(t') and define \: AR R(H)—> A by
M((t) @ p(t)) = q(t)p(t), where q(t) and q(t)p(t) are taken modulo A(%).
We have

MHO) Q@ P(R))) = M(ta®) QD) = ta®)tD(t) = M(a@) R () ,

which shows that A, is a map under the diagonal when its range is con-
sidered a G-module with trivial action. The residue classes of 1,¢, - - -, t**?
form an R-basis for A, which is canonical in the sense that it depends only
on the choice of the generator ¢ in H. This gives a canonical R-homo-
morphism A\;: A — R with A\, (1) = 1 and \(t")=0 for =1, 2, ---,2h — 1.
We now take M = A\, and consider the associated —,: H(X/Y;A) ®
HX|Y; R(H)) — H¥X|Y; R). -
H(X]Y; R) is isomorphic to R and is generated by the fundamental
cycle ¢, which is uniquely determined (up to a choice of sign) as the image
of the generator of H,(X/Y; Z) under the map induced by the inclusion

12 See [15]. The possibility of extending these methods to local coefficients is mentioned
in [13], but the idea is not developed there. In an unpublished manuscript, Linking
mvariants of manifolds with operators, Fox has discussed an analogous form defined in
terms of classical intersection theory.
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Z — R. The choice of sign of course corresponds to a choice of orientation
in S°. We obtain an R-valued bilinear form on H*(X/Y; R(H)) by defining

L(b, b)) = (B*fl(lh)vaz)(C) .

The explicit calculation is quite simple. Referring to (4.2) we note first
that if a, b are column vectors over R(H) representing elements of
HY(X|Y;A), H(X|Y; R(H)), then (a— b)(c) is obtained by evaluating
the matrix product a’ V(V’' — V)b in R(H) (b denoting the conjugate
of b), reducing the result modulo A(t), and then applying \,. Thus if b,
b, are column vectors over R representing b,,b, € H*(X|Y; R(H)), we must
consider the product bj[adj(tV — V")’ V(V' —V)™'b,. (Since b, has entries
in R, b,=b,.) The matrix adj(tV — V") consists of (2h — 1)-dimensional
minors of tV — V' and does not contain powers of ¢ higher than 27 — 1
or less than 0. Hence the result of applying X, to the product is simply
to replace t by 0. Since V is even-dimensional det(V) = det(—V’) =
adj(— V')(—V’'). Hence [adj(—V")] = —det(V)V" and (Lb, b,)=
—det(V)by(V' — V)'b,.

The formula shows that L is skew-symmetric, whereas one might expect
symmetry by analogy with the self-linking of 1-cycles or their dual 2-
cocycles in a 3-manifold. The explanation lies in the fact that \ is not a
symmetric pairing. From its definition, L should be invariant under the
action of G, that is L(tb,, tb,) should equal L(b,, b,). This property may
be verified directly from the formula. It isequivalent to 7'(V’'—V)'T=
(V' = V)Y or T (V' — V)T')* = V' — V, which follows at once from
the definition of T as V'V,

We summarize these results as

THEOREM 1. Let K be a tame knot in S* with group system {G, G, i}.
Let t be a generator of H= G/|G,G] = H(S® — K). SupposeV is a non-
stingular 2h x 2h Seifert matriz for K, and let R be an integral domain
i which det(V) is a unit. Then the R(H)-module H*({t}; R(H)) carries
an R-valued bilinear form L which is uniquely determined by choice of
the generator t and an orientation for S®. As an R-module, H*({i}; R(H))
s free on 2h gemerators and possesses a basis with respect to which
multiplication by t has the matrix T = V'V, and L has the matrix
—det(V)(V' — V). '

If a different R-basis is chosen for M, the action of ¢ will be given by
P~*TP and the matrix of L will be —det(V)P'(V' — V)'P, for some
matrix P unimodular over R. Thus if W is another non-singular Seifert
matrix for K, there is some P such that WW-—= P'V'V'P and
(W' —- W)= P(V'—V)'P. (Recall that det(W) must equal det(V)



HOMOLOGY OF GROUP SYSTEMS 489

since both are equal to the leading coefficient of the Alexander polynomial.)
W' can be expressed as (E— W'W) (W' W)W — W’), and by
expressing W'W-'and W— W' in terms of V and P this can be reduced
toP*V'(P~'). Thus V= PWP’, and Vand W are unimodularly congruent
over R. This proves

THEOREM 2. If K, K are tame knots such that S*— K and S*— K are
homeomorphic under an orientation-preserving map carrying the
selected gemerator of H(S® — K)onto the selected generator of H(S* — K),
and V, V are non-singular Seifert matrices for K and K, then V and
V are congruent over any integral domain in which the leading coeffi-
cient of the Alexander polynomial of K is a unit.

As a special case we have

PROPOSITION 4.3. If V is a non-singular linking matriz and det(V)=
+1, then W is h-equivalent to V if and only if W and V are congruent
over the integers.

Since Seifert matrices are not symmetric the problem of classifying
them by congruence is not the classical quadratic form problem. For any
Seifert matrix V, V — V' is unimodular, and by arguments similar to
those following formula (4.3), there is a congruent matrix V with
V — V =_8. Weshall call such a V a standard Seifert matrix. A matrix
P is symplectic if PSP’ = S. Clearly two standard Seifert matrices V, W
are congruent if and only if the symmetric matrices V+ V', W+ W’ are
congruent by a symplectic matrix. Thus the equivalence problem reduces
to that of equivalence of quadratic forms under the symplectic group, a
problem which does not appear to have been solved. Classical quadratic
form theory yields invariants when applied to the symmetric matrix
V 4+ V'. Also, the similarity class of (V + V’)S~'is an invariant of the
symplectic congruence class of V + V’, and this yields additional
invariants.

The preceding theorems have referred to a choice of generator for
H,(S® — K); once an orientation for S*is fixed, the generator for H,(S* —K)
is determined (by its linking number with K) in terms of the orientation
of K. In our development of the formulas in terms of the Seifert matrix,
t is the generator represented by a loop which goes from the ‘‘top’’ of
the surface F' around K to the ‘‘bottom’’ of F. Which side of F is the
top depends of course on the orientation which F inherits from K, and
the orientation of S®. If we consider the inverse knot (i.e., the same knot
with the opposite orientation) the roles of top and bottom, and hence the
labels ‘‘sharp’” and ‘“‘flat”’, are interchanged. It follows that if V is a
Seifert matrix for K, then V' is a Seifert matrix for the inverse of K.
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On the other hand, — V' is a Seifert matrix for the mirror image of K,
for the configuration of sharp and flat cycles whose linking numbers give
V is reflected into a configuration with linking numbers of opposite sign,
with the sharp and flat labels interchanged. A knot is invertidble if it is
equivalent to its inverse and amphicheiral if it is equivalent to either
orientation of its reflection. (This is the classical terminology [21]. For
non-invertible knots one could also distinguish between direct and inverse
amphicheirality.) Applying Theorem 2, we obtain

PROPOSITION 4.4. Let V be a non-singular Seifert matrixz for K, and
R any integral domain which is an extension of the integers and in
which det(V') is a unit. If K is invertible then V is congruent over R
toV'. If K is amphicheiral, then V is congruent over Rto —V or — V.

I have been unable to determine whether every linking matrix is con-
gruent to its transpose. It would be interesting to find a counter-example,
since it would show the existence of non-invertible knots.

5. Finite coverings

A representation of a group G by permutations on % symbols gives a
representation of G by permutation matrices which extends to a homo-
morphism of Z(G) into the ring A of n x n integer matrices. Let R be an
abelian group, and R, and R" the additive groups of n-component row
and column vectors with entries in R. Then R, is a right A-module, R*
a left A-module, and we may consider the homology (cohomology) of a
G-complex with coefficients in R,(R").

We assume through the rest of this section that some fixed finite repre-
sentation of G is given. If G is the fundamental group of a space, then
such a representation is associated with a finite covering of the space,
and if the space is aspherical the homology of G with coefficients in R,
can be identified with the homology of the covering with coefficients in
R. We shall proceed, however, in a purely algebraic way. The calcula-
tion of relation matrices for the homology and cohomology groups of a
free G-complex with these coefficients is straightforward, and we shall

give details only for a special case of particular interest in knot theory.
The exact sequence

02" — @t M —0

where Z is the integers, @ the rationals, and M the quotient group Q/Z,
gives rise to an exact cohomology sequence

. >k
s H(W; Q)2 B2 (W5 M) - HY (W3 Z7) = HP (W5 Q) —
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for any G-complex W. Kyle showed in [15] how a cohomological version
of self-linking [24] could be defined by use of the coefficient sequence
0—>Z—Q— M— 0, and what follows is modeled closely on his work.
Define M: M"QZ"— M by Mm ®z) = m'z, where the prime denotes
transposition, and the right side is a matrix product. Similarly define
2R QA —Q by Meq:Q¢,) = ¢iq,. For ge G let § be its image in A.
Because g is a permutation matrix, g’ = g, and therefore \M(gm ® §z) =
(Gn)'g. = m'g'gz = m'z = M(m@=z). A similar result holds for z, so that,
with M and @ considered as G-modules under the trivial action of G, A and
¢ are homomorphisms under the diagonal map of G and give cup-products

—H (W; MQ H(W; Z") — H**{(W; M)
= H(W; QVQH(W; Q") — H*(W; Q) .

An element of HY(W; M") is represented by a cochain with values in
Q" whose coboundary has valuesin Z*. If @, v represent u, vin H?*(W; M™),
H*(W; M") respectively, then @ — 5(?7) represents u—, 6*(v) in
H?*(W; M). Because of the relation B(uv V) =0u~— J+ (= l)puv 07,
Buvﬂv and (—1)*"#@ v}ﬁv are cohomologous Slnce oois symmetrlc
(1.3.1) implies that uvyév and (—1)**V5p —,% are cohomologous,
and we have the commutation rule U, 0%(v) = (1) — 5*(u).

The image of 6* in H?*(W; Z") is the kernel of ¢*, i.e., the torsion
subgroup, which we shall denote by N?*}(W; Z"). Because of the commu-
tation rule, if either u or v is in the kernel of 6* then u~,0%(v) =0, and
consequently a function

v: N*"(W; Z") @ N (W; Z*) — H> < (W; M)

is well-defined by the formula v(x®y) = 6* '(z)—,y, * '(x) being any
w with 0*(w) = .

These functions can be computed explicitly if W is a finitely generated
free G-complex. For a € Z(G) let & denote its image in A under the given
homomorphism. Let W, be freely generated by a?, a, -+, a2 . Identify
q € Homy( W,, R™) with the column vector of nk, components in R obtained
by writing the n-component columns ¢(a?) in order in a single column.
Let the boundary operator in W be given by d(a?*') = E a, ;02 Then
the coboundary operator from Homy( W,, R") to Homy( W, ., R ) is given
by the nk,,, x nk, matrix A, which, partitioned into » x n submatrices,
has @;; in the 47 cell.

For u € Homy(W,, M™), v € Homg( W,, Z") the value of u~vonce W,
is obtained as follows. The component of D*(c) in W, X W, has the form
2, %0 @ Bial with @, By € Z(G). From the definition
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(u—,v)(e) = M2, w0 @ v(Bisa%)
= 2 M u(a?) @ Biv(ad))
= E“[u(a?)]'&;jng(a?) .
Identifying u and v with column vectors as before, this may be written
as u'Q,,v where Q,, is the nk, x nk, matrix which, partitioned inton x n
submatrices, has @!;3,; in the 5™ cell.

If Wis the relative complex of the group system of a knot, H¥(W; M)~
M by an isomorphism under which a cocycle corresponds to its value on
the fundamental cycle ¢. Hence there is a pairing of N*(W; Z") with itself
to M, defined by L(z, ¥) = v(x @y)(c).

Let A, be the nk, x nk, coboundary matrix and Q,, the nk, x nk, matrix
describing D¥c). An element x of N*(W; Z") is represented by an nk,-
dimensional integral column vector £ which is a rational combination of
the columns of A,, and any rational vector ¢ such that A,¢ = £ represents
an element of H(W; M")in 6* '(x). (Note that any rational combination
of the columns of A, is a rational coboundary and hence, if integral, an
integral cocycle. Provided we are concerned only with N*(W; Z") and
not with H*(W; Z"), we need not determine which vectors represent
cocycles.) Thus if & 7 represent x,ye N W; Z") and A& = £, then
L(z, y) = (~,7)(c) = £'Q) (mod1).

It is convenient to introduce a formal definition. An L-group'is a finite
abelian group on which is defined a bilinear function, called the linking,
with values in M = Q/Z. Two L-groups are considered isomorphic if there
is a group isomorphism between them which is compatible with the
linkings. A pair of p x q integer matrices (4, B) such that for every
rational row vector &, if £4 is integral, then so is £BA’, determines an
L-group as follows.* The group is the quotient of the group of integer
g-component row vectors which are rational combinations of the rows of
A by the subgroup of integer combinations of the rows of A. For z, y in
the L-group, represented by vectors €, 7, the linking is defined by L(x, y)=
¢B7'(mod 1) where ¢ is any rational vector such that ¢A =£. (L is easily
seen to be well-defined if and only if A and B satisfy the condition imposed
above.) )

In terms of this definition the result above may be restated as N*(W; Z")
with L(x, y) = v(x Q y)(c) is an L-group isomorphic to that determined
by the pair of matrices (A}, Q). We have given explicit rules for the

18 J,-groups have much in common with the V-groups defined in [12], but we do not
require the linking to be symmetric or primitive.

14 The definition is motivated by the topological situation (see, e.g., [23]) in which A
is a matrix of boundary relations and B a matrix of inter/section numbers.
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calculation of these matrices, and their application in any specific example
is mechanical. In case G is represented by a cyclic permutation group,
the result can be expressed very compactly in terms of a Seifert matrix
for K, and we shall examine this case in detail. The algebraic manipula-
tions involved are essentially the the same as those used by Seifert [23].

The required representation of Z(G) by n % n matrices is obtained by
composing the canonical map Z(G)— Z(H) htiw the representation taking
t into the matrix

0 0 - 0
0 1 - 0
T — e
00 0 - 1
100 - 0

(Here H and ¢ are as in §4.) Since the coefficients are abelian, we may
compute with a Z(H)-resolution as in §4. Let V be a 2k x 2k Seifert
matrix of the knot K and consider the Z(H)-resolution described in Propo-
sition 4.1. The relative complex W = X/Y is generated by the a, in dimen-
sion 1 and b, and the b, in dimension 2, with a, replaced by 0 in the formula
for d(b,) and in (4.2). The (2k + 1)n x 2hn coboundary matrix A, has n
rows of zeros above a matrix which partitions into a 2k x 2k matrix of
n x n cells with (V),;;T — (V!,)E in the ¢ cell. (E is the n x » identity
matrix.) The matrix Q,, has n columns of zeros followed by a matrix
which, partitioned as above, has [V(V’ — V)™'],;E in the ¢ cell. (Of
course, a different choice of orientation for S* would change the sign of
Q,,.)

Let us say that two pairs of matrices (4, B), (4, B) are L-equivalent
if they determine isomorphic L-groups. We shall need the following
properties of L-equivalence.

If (A, B),(4, B) are pairs of p x q matrices which determine L-groups,
then in each of the following cases (A, B) and (A, B) are L-equivalent.

b.1) A= PA, B = PB P an integer unimodular p x p matrix

(5.2) A= B = BQ’ Q an integer unimodular q x ¢ matrix

(6.3) A= [}1’] B [ *] or A =[04], B = [*B]
1 % = * %

64 A-[57) £-[15]

(5.5) A=A, B =B+ AC C any integer q x q matrix .

(In (5.3) and (5.4) A and B are supposed to be similarly partitionéd, Z€eros
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represent zero submatrices of appropriate dimensions, and stars represent
arbitrary submatrices.)

Proor. In (5.1) the groups are actually the same, since the sets of
rational and integral multiples of the rows of 4 are the same as those of
PA; the linking is easily seen to be the same. In (5.2) there is an iso-
morphism between the groups under which the element represented by
£, a rational combination of the rows of AQ~", corresponds to the element
represented by £Q, which is necessarily a rational combination of the rows
of A. Case (5.3) is obvious. In (5.4) any rational combination of the rows
of A which is an integral vector, must involve an integral multiple of the
first row. Hence any element of the group can be represented without
making use of the first row. Therefore it can be dropped, and the first
column omitted by (5.3). Let &, 7 represent x, ¥ and let & be a rational
vector such that ¢A = £. Then in case (5.5), {BY = ¢By' +£Cy' =¢By
(mod 1), so that B and B determine the same linking.

The transposed matrix A! and the matrix Q,,, which determine the
L-group N*(W; Z™), both begin with n columns of zeros; by (5.3), omitting
the zero columns gives an L-equivalent pair. By (5.1) and (5.2), the rows
and columns of these matrices may be rearranged to give an L-equivalent
pair (4, B) which partition into n» x % arrays of 2k x 2h cells as follows:

-V 0 - 0 V)
Vi -V - 0 0
A=| 0 V:o. 0 0

Lo 0o -V -V

(v — vy 0 . 0o
0 (V' —V)t .. 0
B =
L0 0 00 WV'—V)

V'’ — V is unimodular; by (5.2) we may multiply each column in the parti-
tion of A on the right by (V'— V)™, and each column of B on the right by
(V'=V). WritingT'for — V(V'— V) *(as in §4) we have V/(V' — V)=
E — T and obtain the pair (4,, B)),
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r 0 0 . E-T
E-T T 0 0
A=| 0 E-T T o |,
0 0 0 r
(V' — V) 0 .o 0
0 v —-vy . . 0
B = . . . ,
L0 0 . (V=T

which is L-equivalent to (4, B).
Foriv=1,2, .-+, n — 1 we define pairs of square matrices (4;, B;) of
dimension 2i(n — 1 + 1) as follows:

T 0 0 . —(T—EY

E-T r 0o - 0
Ai: 0 E_F . . 0 y

L 0 0 0o - r

TV — V) o . . 0

0 nv-vy . . 0

B,,::

0 0 - . D(V—V)

Note that for ¢ = 1 there is agreement with the previous definition of
(4, B)). Fort =nweput A, =I"—CT—E)", B,=T"(V'-V).

We claim that (A4, B;) and (4,4, B;+,) are L-equivalent for t =1,2,-- -,
n—1. To show this, define C; = E+ T+ -+« + 1" g0 that C;(E —=T) =
E—T1% By (5.1) we may add C; times the second row in the partition of
A; and B; to the first row, and then add I' — E times the first row of the
result to the second. The first two rows of the resulting matrices are

ECro. —T-—-~ry :I [ r(v'—V) Cr(v'-v) o . O}
[0 Mg . —(I—E)*| [(C—EXY(V'—V) TV —V)0 -0

and the other rows are unchanged. By repeated use of (5.4), the first 2h
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rows and columns may be dropped, and (4,,,, B;,,) is the result. (Strictly
speaking, the case 7 = n — 1 is slightly different from the others, but
the same manipulations produce the desired result.)

We have shown that (A}, Q,,) and (4,, B,) are L-equivalent, which gives
the following theorem,

THEOREM 3. Let K be a tame knot with group system {G, G', i}, and let
G act on Z™ by cyclic permutation of coordinates. Then there is a
camonically defined linking on N*({i}; Z*), the torsion subgroup of
H({i}; Z*). If V is a Seifert matriz for K, the L-group N*({i}; Z") is
isomorphic to that determined by the pair of matrices I'" — (I — K)",
+T(V'—V), where T' = —V(V'— V)7, and the sign depends on the
choice of orientation of S®.

By applying (5.5) with C = (V' — V), we see that the second matrix
of the pair may be replaced by =(I' — E)Y( V' — V). This puts our result
in complete agreement with Satz I of [23], since if V is a standard Seifert
matrix V' — V coincides with Seifert’s matrix A, and shows that the L-
group N*({¢}; Z") is isomorphic to the L-group of the self-linking of the
1-dimensional torsion cycles of the n™ branched cyclic covering of K.

The case n = 2, corresponding to the second cyclic covering, is of special
interest because of its connection with the quadratic form of a knot.
A, =2I' — E, B,=T%V'—V). Since A, reduces to E modulo 2, its
determinant is odd, and it follows that the L-group is of odd order. Hence
the map « — 22, which has the effect of multiplying the linking by 4,
is an automorphism of the group structure. Consequently (2I' — E,
4AT(V' — V)) is L-equivalent to (4, B,). Applying (5.5) with C =
—(2r' + E) V' — V) changes the second matrix to (V' — V), and apply-
ing (5.2) with @ = — (V' — V)~ gives the pair (— V — V', E). The oppo-
site choice of orientation would give — E and the pair would be L-equiva-
lent to (V + V', E). Now if A is symmetric and non-singular, the L-group
determined by (4, E) is isomorphic to the V-group associated with A,
in the terminology of [12]. Thus we can say the L-group N*({i}; Z*) and
the L-group of self-linking in the second cyclic covering are isomorphic
to the V-group associated with the matrix +=(V + V’)~". -By the results
of [23], this means that V + V'’ (with the appropriate sign) determines
a quadratic form belonging to the family [14] of the classical quadratic
form of the knot K.

It follows from the remarks after Theorem2, that for any non-singular
Seifert matrix V of K, the rank and signature of V + V' are invariants
of K. This, together with the results of [23] and the preceding paragraph,
implies that the congruence class of V + V' over the p-adic integers for
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any p is also an invariant of K.** In other words,

PROPOSITION 5.1. If Vis a non-singular Seifert matriz fo? a knot K,
the genus of the quadratic form determined by V + V' is an invariant
of K and the orientation of S°.

We have shown indirectly that the quadratic form of a knot is de-
termined by the external group system, and hence by the homeomorphism
type of the complementary space. It follows, for example, that if K, is
the product of two right-handed cloverleaf knots, and K, the product of
a right-handed cloverleaf knot with a left-handed one, then the comple-
mentary spaces of K; and K, are not homeomorphic. (Compare [9], where
the same result is obtained by considering representations of the group
systems by finite permutations.)
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