SOME SIMPLE EXAMPLES OF SYMPLECTIC MANIFOLDS

W. P. THURSTON

ABSTRACT. This is a construction of closed symplectic manifolds with no Kaehler structure.

A symplectic manifold is a manifold of dimension $2k$ with a closed 2-form α such that α^k is nonsingular. If M^{2k} is a closed symplectic manifold, then the cohomology class of α is nontrivial, and all its powers through k are nontrivial. M also has an almost complex structure associated with α, up to homotopy.

It has been asked whether every closed symplectic manifold has also a Kaehler structure (the converse is immediate). A Kaehler manifold has the property that its odd dimensional Betti numbers are even. H. Guggenheimer claimed [1], [2] that a symplectic manifold also has even odd Betti numbers. In the review [3] of [1], Liberman noted that the proof was incomplete. We produce elementary examples of symplectic manifolds which are not Kaehler by constructing counterexamples to Guggenheimer's assertion.

There is a representation ρ of $\mathbb{Z} \oplus \mathbb{Z}$ in the group of diffeomorphisms of T^2 defined by

$$(1,0) \xrightarrow{\rho} \text{id}, \quad (0,1) \xrightarrow{\rho} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

where "$[1 0]$" denotes the transformation of T^2 covered by the linear transformation of \mathbb{R}^2. This representation determines a bundle M^4 over T^2, with fiber T^2: $M^4 = T^2 \times_{\mathbb{Z} \oplus \mathbb{Z}} T^2$, where $\mathbb{Z} \oplus \mathbb{Z}$ acts on T^2 by covering transformations, and on T^2 by ρ (M^4 can also be seen as \mathbb{R}^4 modulo a group of affine transformations). Let Ω_1 be the standard volume form for T^2. Since ρ preserves Ω_1, this defines a closed 2-form Ω_1 on M^4 which is nonsingular on each fiber. Let ρ be projection to the base: then it can be checked that $\Omega_1 + \rho^* \Omega_1$ is a symplectic form. (It is, in general, true that $\Omega_1 + K \rho^* \Omega_1$ is a symplectic form, for any closed Ω_1 which is a volume form for each fiber, and K sufficiently large.) But $H_1(M^4) = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$, so M^4 is not a Kaehler manifold.

Many more examples can be constructed. In the same vein, if M^{2k} is a closed symplectic manifold, and if N^{2k+2} fibers over M^{2k} with the fundamental class of the fiber not homologous to zero in N, then N is also a symplectic manifold. If, for instance, the Euler characteristic of the fiber is not zero, this
hypothesis is satisfied. To do this, one must see that if there is a closed 2-form \(\alpha \) whose integral on a fiber is nonzero, then \(\alpha \) is cohomologous to a 2-form \(\alpha' \) which is nonsingular on each fiber. To find \(\alpha' \), first find a 2-form \(\beta \), not necessarily closed, which is nonsingular on each fiber, and whose integral on each fiber agrees with that of \(\alpha \); this exists by convexity considerations. On each fiber, \(F \), there is a form \(\gamma_F \) such that \(\beta_F - (\alpha_1)_F = d(\gamma_F) \). This equation can also be solved differentiably in a small neighborhood of the base, so, by convexity considerations, there is a global 1-form \(\gamma \) such that on each fiber, \(\beta_F - (\alpha_1)_F = d(\gamma_F) \). Let \(\alpha = \alpha_1 + d(\gamma) \). If \(\Omega_1 \) is a symplectic form for \(M^{2k} \), then \(\Omega = \alpha + K(p^*\Omega_1) \) is a symplectic form for \(N^{2k+2} \), \(K \) is sufficiently large.

This construction, although it applies only to a narrow range of examples, nonetheless has a certain amount of flexibility. This leads me to make the

Conjecture. Every closed \(2k \)-manifold which has an almost complex structure \(\tau \) and a real cohomology class \(\alpha \) such that \(\alpha^k \neq 0 \) has a symplectic structure realizing \(\tau \) and \(\alpha \).

I would like to thank Alan Weinstein for pointing out this question and for helpful discussions.

References

3. P. Liberman, review of [1], Zentralblatt für Mathematik 54 (1956), 68.

Department of Mathematics, Fine Hall, Princeton University, Princeton, New Jersey 08540

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540