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e(Cy) = lim b ... (C1) = M. If one is careful in the selection of the
koo

v's ¢ will be a homeomorphism on ¢, and o lo( Cy) will be Cy. Since o (Cy)
is dense in M, ¢(Cy) has dimension < n — 1.

" conroLtAry. Let M be a closed manifold and X a submanifold with bi-
collared boundary. Then there is a map p: I» 2%y M such that ¢ | KP is a
homeomorphism, ¢='o(K") = K», o(K") is of dimension < n — 1,

coroLLARY. Let M be a compact manifold with boundary B. Then there is
amap ¢:B X [0, 1] onto M such that ¢ |B X 1 =1,¢|B X (0,1]4sa
homeomorphism, ¢™*o(B X 0) = B X 0 and (B X 0) is of dimension
<n-1,

These are corollaries in the sense that their proof precisely parallels
that of the theorem.

COROLLARY. Suppose R = (B X 0) in the preceding corollary. Let
B X [0,1] - B X 0by w(x, t) = (x,-0). Let g:B ™% R by g(x) =
erpl(x). Then the mapping cylinder C; 1s homeomorphic to M. In fact M
1s a regular neighborhood (in the sense of Hu's gencralizalion of Whitchead’s
regular neighborhood) of R.

Question. During the course of the proof of Lemma 1, polygonal arcs
were constructed. This is done because subares of a polygonal arc are
cellular. Is it true that every subare of a cellular arc is cellular?
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1. Let Z be the total space of a fiber space, whose base space is the I-sphere
C and whose fiber I is pathwise connected. From the exact homotopy
sequence,

72(C) = 75(F) = m(E) = m(C) — m(F)

noting the facts 7;(C) = 0, m(F) = 0, and m(C) = Z, we ohtain the
result that =y (%) has the normal subgroup = (F) with quotiont group Z.
If I/ is a compact 3-manifold, it is reasonable to expect I to be a com-
pact 2-manifold; in particular, =1(F) would be finitely gencrated.
Now a converse is, to some extent, true. That is, we can show

THEOREM 1. If B 45 a compact 3-manifold, and if m,(E) has a finitely gen-
eraled normal subgroup G, whose quotient group is Z, then G s in fact the
Jfundamental group of a 2-manifold T embedded in E.

THROREM 2. If the hypotheses of Theorem 1 hold, and if G is not Z/27, and
tf 1o is irreducible (that is, every tame 2-sphere in 1o bounds a 3-cell), then 1§
18 the tolal space of a fiber space with base space a circle and with fiber the
manifold T of Theorem 1.

Note. Our assumption that E is irreducible is our way of avoiding
the Poincaré conjecture.

2. Let p:m (&) — Z be a homomorphism. Noting that = (C) = Z and
that C is aspherical, where C is a circle, we can obtain various maps (all
mutually homotopic) f:Z — C, which induce ¢. Let E and C be tri-
angulated; let f be simplicial; let p € C be a point which is not a vertex in
C’s triangulation. Then f~1(p) = 7 is clearly a 2-manifold, which may not
be connected; let the components of Tbe Ty, Ty, ..., Th. &

Pick points a; € T and points b;, one in each component of / Al - T.
If T, is in the boundary of the component of Af — 7' containing b;, seloct
an arc 4 ;;in that component joining a; to b;; do this so that 4;; 0 4z = a;
and A,, n Ak, = b

If M; approaches T'; from both sides, we have to choose two arcs A
and A7; whose union forms a circle eutting through T;. The union of all
these selected ares A is a I1-dimensional complex in %, which will be
called I
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One easily finds a retraction p: - T such that p=t(ay) = 7'; for all 4,

Thus, il we follow this retraetion by the map f onto €, we obtain a map
homotopic to f; that is, the following diagram is homotopy-commutative.

£ 4 . C
\ %
r

Passing to fundamental groups we get a commutative diagram; f* is just

m(£) L. >7

\P*\ (FIr),

W,(F)

“the same a8 ¢; p« is a retraction just as p is; and = (I') is a free group.
Hence ps maps the-kernel of f+ onto the kernel of (f| I') «.

Now suppose the hypothesis of Theorem 1 holds, that the kernel of f«
is finitely generated and that f« maps onlo Z. Then we have proved that
the kernel of (f] )« is finitely generated.

But there is (by a well-known group-theoretic result) only one finitely
generated normal subgroup of infinite index in any free group. Thus
(f1 )+ is an isomorphism. This enables us to sce that f| I' is homo-
topic to a map g: ' — C so that g~*(p) consists of just one of the points a;.

Then gp is a map of E into C, homotopic to f, and such that
(gp)~2(p) = T some onc of the components of f~*(p).

3. Now suppose f: E — C induces ¢ and that f~*(p) = 7T is a connected
2-manifald. If the injection m (7)) — m(£) has a trivial kernel, then'it
follows from the loop theorem that there is a 2-disk A C I such that
AN T = 94, where d A is a simple closed curve not contractible on 7'
We c¢an find a 3-cell D containing A, such that D n 7 is an annular ncigh-
horhood, both on D and 7, of @ A, A simple construction will now give
a map g: 4 — C, homotopic to f, with g=(p) = (T’ U D) — D n T, thisis
1 2-manifold which may not be connceted,

4. The simplification of Section 3 above raises the Iluler characteristic of
I7Yp) by two. If /~1(p) has been disconnected, we perform the simplifica~
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tion of Section 2; this diseards n 2-manifold which is not. a sphere, and thus
lowers the Iuler charneteristic by ut most one. The end result iy to raise
the charncteristic of f~(p); since this is bounded above, wo eventuulty
canmot simplify any further.

Thus, there exists a map £: T8 — C which induces ¢, such that f-1(p) =T
is o connected 2-manifold such that the injection wi (1) — 4J1(M) s one-lo-one.

It should have been remarked that during each simplification, we could
continue to have f simplicial with respect o trinngulations of I and €
(the trisngulations of I will vary), and that p remains a non-vertex.

5. Clearly the image of n(7') in w(M) is contained in the kernel of f..
It is, in fact, all of that kerncl, The argument is exactly that of Neuwirth in
his thesis: If there is anything else in the kernel of fe, then a geometric
construction shows that the kernel of f+ is the union of a strictly increasing
sequence of groups, and so could not be finitely generated.

Thus is Theorem 1 established.

6. Now split & along the manifold T of Theorem 1. In this manner, we
obtain a manifold M, in whose boundary are two copies 7' and T of 7.
It follows from catlicr remarks that the maps x (7o) — m(3) and
m(T1) — m (M) are isomorphisms.

The proof of Theorem 2 now involves two cases, depending on whether
T has non-vacuous boundary or not. The case for 87" = ¢ is reduced to the
case when 87" is not empty.

In the case when 97 is not empty, dM is connected. Otherwise there
would be a component of 877 which did not intersect 7'; this component
cannot be a sphere, since we assumed every sphere of E bounds a 3-cell; it
cannot be anything else, since anything else would contribute to H,(4{)
so that Hy(To) ~— H(M) would not be onto.

Let x(X) denote the Euler characteristic of X. We compute x(9/).
x(0M) = 2x(M) for any compact 3-manifold M. In the case at hand, it
is casy to see x(M) > x(T). And since M = Ty + Ty + (other picces
with Euler characteristic < 0). We obtain the results that x (M) = 2x(T)
and x(M) = x(T).

T'urther analysis along this line shows that cach component of aM —
(T U Ty) is an annulus joining a component of 87 to one of 87,

7. Now T, is a retract of M. Since 7, is aspherical and x1(T%) — m(A)
is an isomorphism, there is no obstruction to constructing such a retrac-
tion; and according to Scction 6, we can change this o a retraction

r:M — I, which is piccewise-linear and such that r~4(a7) = oM —
Int (To U T1) and for cach & € 87, r~1(x) is a line sogment.
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8. Lot @y, ..., @» be a number of disjoint ares on T, in general position
with respeet to r, such that @; C T, and such that To — U Q. is a 2-cell.

Such a sct. of ares can be found on any connected 2-manifold with boundary. -

We now consider r=1(Qy), ..., r1(Q.). The union of these is a non-
connected 2-manifold in M. We now perform the sort of simplifications on
this manifold which we did in Scection 3. That is, we take disks D in M
which interscet our manifold Ur-1(Q;) only along 4D, which is not con-
tractible on Ur-1(Q;). Then, noting that T is aspherical, we deform r so
as to cause Ur-1(Q.) to split along D.

This process cannot be carried on indefinitely, and we eventually reach
a point where each component R; of r—2(Q;) has the property =i(R;) —
m1(M) is a monomorphism; since R; is mapped by r onto the contractible
Q. and since r+: Wi (M) — 71(T) is an isomorphism, it follows that R; is
simply connected, ‘

9. Call D, the component of r~1(Q.) which contains ;. Then D; must be
a disk. If we perform the modifications of Section 8 nicely, the intersection
of D; with 7, will be an arc Q%

Then 7y - UQ; will be a disk, the only altcmatlve being some dis-
connected set; for homological reasons, the alternative is impossible.

10. Let us now construct a homeomorphism h: M — T X [0, 1]. On T%
we define h as the inclusion onto 7% X 0.

oM — (To U T4) is just homeomorphic to (87%9) X [0, 1]. Hence we
can define h on M — (To U T:). We can assume that in so doing
D;n (dM — (Ty U T1)) goes into two vertical lines, '

Then we can define b on each D; so as to map D, onto @, X [0, 1].

I has already been defined on 874 and Q. Thus we can define A on the
remaining 2-cell of 71 to map 7y onto 79 X 1.

Extend the definition of f to a thin neighborhood of each D;. By com-
puting the Euler characteristic we find that what isleft in M is bounded by a
2-sphere. Irom the hypothesis of Theorem 2, we conclude that this is a
3-ccll, and we map it by h onto the remaining 3-cell in 7o X [0, 1].

M is thus homeomorphic to T X [0, 1]. We get £ by some identifica-
tion of T X 0 with 7' X 1. This immediately proves Theorem 2.

11. Now in case T has no boundary, we have eliminated, by hypothesis,

" the chance that 7 is a 2-sphere or a projective plane. Hence there is on
Ty a 2-sided simple closed curve C which does not separate T, We play
the game of Section 8, using the curve C instead of the arcs @.. Eventually,
we find an annulus X in M which connects C to a curve C on 7.

Remove a tubular neighborhood fK from M. The resulting manifold
is called M* and T: n M* = T'¥. We uced to show now that m(7%) —
m(M*) is an isomorphism in order to perform the construction of Scctions
7-10.
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Consider the diagram

N
N

Both the bottom homomorphisms are monomorphisms, and hence the
kernel of = (T%) = m(M*) is trivial.

To show the map is onto, we usc a geometric argument. Take the base
point of all spaces concerned to be 2 € T'§. An element of m (M *) is repre-
sented by a loop in M — K. Since m(Te) — #1(M) is an isomorphism, this
loop is homotopic to a loop on 7y; make this homotopy in general position
with respect to K ; we then have amap f:I X I — M such that f(I X 0) =
fIX1) =pandf(0XI) CM~K,andf(1 XT) C T f(K) con-
sists of various curves and arcs not meeting three sides of I X 1.

We can modify f to remove an innermost closed curve of f~1(X) just
using the fact that m(K) — m (M) is a monomorphism.

To remove an arc A4 of f~1(X) which bounds a part of I X I disjoint
from the three sides we have mapped into M ~ K, we slide A along K
until f(4) C C. The edge of the disk which A bounds is now mapped into
To. Now we deform f so that it pushes this little disk over to f(4) and then
slightly further. 4 no longer will appear in f~1(K).

Doing this over and over we make f~1(K) = .

Thus we prove =i (T3) — m(M*) is onto.

77'1(76 7’1(”)

12. Hence as before we get 3/* homcomorphic to Ty X I. By pasting
together two annuli on dM* and two annuli on (T X I), we get M
homeomorphic to T X 1.

This eompletes the proof of Theorem 2 in all cases.

13. The outstanding problem presented by Theorem 2 is characterizing
those 3-manifolds with fundamental group m(E) = Z + Z,. Insuchan &
there is a projective plane carrying the group Z, by Theorem 1. The
difficulty is that Section 11 eannot be carried out ilere. 1f C is a l-sided
curve, the argument involving the Loop theorem is no longer valid; the
disks we get, along which we try to split over one-sided 2-manifolds, have
singularities along their boundaries.
This seems to be a hard problem.

14. Another question is whether {wo manifolds, %), E; as described in
Theorem 2, which have isomorphie fundamental groups, arec homeco-
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maorphic. This is probably tree if the manifolds have no boundary; in the
case of manifolds with boundary, o nore complieated condition is required,
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Summary of Results
on Contractible

. R. McMillan, Jr. )
D. R. McMillan, Jr Open Manifolds

1. DEFINITIONS

An open n-manifold is a non-compact topological space that can be tri-
angulated by a countable locally finite complex which is a combinatorial
manifold without boundary (that is, the link of each vertex is a com-
binatorial (n — 1)-spherc). We shall be concerned only with orientable
manifolds which are either open or closed (compact, without boundary).

2. STATEMENT OF RESULTS

If Miisa homotopy 3-sphere, then M ~ {pomt} is a contractible opcn_‘

3-manifold. Henece, to avoid the Poincaré conjecture, let us consider
W-spaces (contractible open 3-manifolds cach of whose compact subsets
can be embedded in 8%). Whitehead [77] was the first to give an example
of a W-space different from % Whiteheud’s construction was very general
in the following sense:

TEOREM 1. Let U be a W-space. Then, U = Z T where T 18 a cube with

imel
handles, Ty © Ty, and j: Ty — Ty 7s ~ 0,

¥rom one of the PWZ theorems [5], we have immediately, using a
theorem of Brown:

rEoreM 2. If U is @ W-space, then U X T = Fi—see [1, 2].
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rnronust 3. If Uy, Uy, are Wespaces, then Uy X Uy = 1it—see [1, 2].

In ench case, we cen express the produet as o monolone union of open
n-cells, 16 can be shown that ihe Poineiré conjecture is equivalent to the
assertion that each contractible open 3-manifold is a W-space.

Question. Can we prove the statement: A contractible open n-manifold
times ft ig fnH,

We can almost answer the above question [4]:
tuEorem 4. If M" 4s a contractible open manifold, then M» X E? = Enie,

To be sure that Theorem 2 applies to more than one space, note the
following:

TUEOREM 5. There exist uncountably many topologically different contractible
open subscls of S*—see [3].

The proof of Theorem 5 is an exercise in applying a theorem of Schubert
on how one solid torus can wrap around inside another solid torus—
see [6].

R. . Bing has raised the question as to whether each W-space can he
embedded in &% J. M. Kister and the author have recently shown that an
example constructed by Bing cannot be embedded in L3 It is casy to
modify the examples given in [3] to make sure that no one of them ean be
embedded in E3,

THEOREM 0. There exist uncountably many fopologically different W-spaces
which cannot be embedded in I3,

‘The proof of the fact that the examnples above eannot be embedded in
E3 is geometric. It would be of interest to obtain an algebraic proof. This
might lead to an answer for the following:

Question. Ig there a W—spacc which can be embedded in no closed
3-manifold?

‘We list some other questions which may prove to be interesting.

Question. Let M3 be a closed 3-manifold with infinite fundamental
group and such that = (M) = 0. If M is the universal covering space of
M, then M is a contractible open 3-manifold. What are the properties of
such covering spaces?

Question. The same question as above for the universal cover of the
complement in 8% of an unsplittable link.



