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SPACES SATISFYING POINCARE DUALITY 

MICHAEL SPIVAK~ 

(Received 28 April 1965) 

INTRODUCTION 

A P-SPACE (PoincarC duality space) of formal dimension n is, roughly speaking, a finite 
complex X such that for some p E Hn(X) the map 

is an isomorphism. A more complicated definition is required when X is not simply con- 
nected. 

According to Browder [3] and Novikov [l91 a simply connected P-space X has the 
homotopy type of a compact Cm manifold of dimension n if n is odd and there is a vector 
bundle K : E+ X of fibre dimension k, say, such that the generator of H"+k(T(E)) is spherical, 
where T(E) is the Thom space of the bundle. This paper is concerned with the possibility 
of deciding whether or not such a vector bundle exists. We consider spherical fibre spaces 
over X, that is, fibre spaces whose fibres have the homotopy type of a sphere S k - l ;  the 
integer k is called the fibre dimension. The Thom space T(K) of such a fibre space x, and 
stable fibre homotopy equivalence of two such fibre spaces, can be defined. 

THEOREM A. If X is a P-space, then there is one and, up to stablejibre homotopy equiva- 
lence, only one sphericalJibre space x over X such that the generator of H"+'(T(z)) is spherical. 

The construction of such a fibre space was suggested by Milnor. The proof of unique- 
ness is a generalization of a theorem of Atiyah 121. 

Theorem A provides an obstruction theory for the existence of a vector bundle over X 
with the desired property. The pth obstruction Op(X) lies in Hp(X; K~-,(F)), where F is 
the fibre of the fibring map B, + B, (here BH = lim B,(,), where is Stasheff's classi- 

-C 

fying space for spherical fibre spaces of fibre dimension k). If X has formal dimension N 
and is (n- l)-connected the primary obstruction On(X) E Hn(X; z,,-,(F)) is described in 
terms of the topology of X as follows. 

Let lln-, denote the stable (n- 1)-stem and let $: HN-"(X; Z) -+ HN(X; lln-,) lln-, 
be the secondary obstruction defined in [ I l l .  Then (- J/ is U $"(X) for a 
unique $"(X) E Hn(X; lln- l). 

t The author was supported in part by NSF grant GP4598. 
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THEOREM B. There is a homomorphism + n,-,(F) such that the induced co- 
efficient homomorphism Hn(X; n,-,) --, Hn(X; n,- ,(F)) takes $"(X) into On(X), and the 
sequence 

is exact. 

Sections 1 and 2 contain elementary properties of fibre spaces, $3 elementary properties 
of P-spaces, and $&l and 5 the material necessary for Theorem A. The obstruction theory 
is formulated in $6, and Theorem B is proved in 957 and 8. 

If A and B are groups [spaces] then A = B  means: A is isomorphic to B [A has the 
same homotopy type as B]. IfS, g:  X-+ Y are maps then f E g means: f is homotopic to g. 
Singular homology and cohomology are used throughout. 

This paper is essentially the author's thesis, written under Prof. J. Milnor, whom I 
gratefully thank for advice and encouragement. 

$1. SPHERICAL FIBRE SPACES 

The term "fibre space" always means a map x: E --P X with the covering homotopy 
property CHP for all spaces or, equivalently, the path lifting property, PLP. All base 
spaces of fibre spaces are assumed to be paracompact and locally contractible. The fibre 
n-'(X) will often be denoted E,. If n and t,i are fibre spaces then n t,i means "n is fibre 
homotopy equivalent to v". 

If n: E -i X is a fibre space let C, be the mapping cylinder of n and let r: C, --, X be 
the retraction. Then r: C, --, X is a fibre space with sub-fibre space x; in fact r is (see below) 
n @ 1, for the identity map l : X--, X. The fibre of r over x will be denoted simply C,, 
if no confusion is possible. The inclusions of the fibres C, and E, in the total spaces will 
be denoted i,. 

If A and B are subsets of X, then S(A, X, B) is the set of all paths p : [0,1] + X such that 
p(0) E A and p(1) E B, topologized by the compact-open topology. The endpoint map 
m: B(A, X, B) + B is defined by w(p) = p(1). 

1.1 PROPOSITION. a :  E --, X is a fibre space, then x is fibre homotopy equivalent to 
the endpoint map w : B(E, C,, X) --, X. (Compare with [7], $5, and [8]). 

Proof. Let r: C, --, X be the retraction. Let Bf(E, C,, X) be the space of paths in 
B(E, C,, X)which remain in a single fibre of r, let w' = wlS1(E, C,, X), and let i: Bf(E, C,, X)+ 
S(E, C,, X) be the inclusion. 

For p: [O, l] + X and e E E with x(e) = p(O), let I(p, e): [0, l] --, E be a path, depending 
continuously on p and e, such that I(p, e)(O) = e and x l(p, e) = p. Any point x E C, can be 
written as @(X), s(x)) for e(x) E E and s(x) E [0, l]. Define H: 9(E,C,, X) X I-,  B(E,C,, X) by 



so that H(p, 1) E B1(E, C,, X). The composition i . H( , l )  is fibre preserving homotopic to 
the identity by the homotopy H, and H( , l )  . i is easily seen to be fibre preserving homo- 
topic to the identity. It therefore suffices to show that n - U'. 

Define U:  B'(E, C,, X) + E by U@) = ~ ( 0 ) .  If i: E -+ B(E,C,,X) is the obvious map 
then U . i is the identity. If K: B'(E, C,, X ) x l  + B(E, C,, X) is defined by 

K(p ,  U) = p l [0, U) followed by the radial path from p(u) to p(l), 

then K is a fibre preserving homotopy of i U and the identity. 

Proposition 1.1, and the following considerations, allow E to be replaced by a space 
of the same homotopy type. 

If ni: Ei -+ X(i = 1,2) are maps (not necessarily fibre spaces) and f : E, +E2  is a 
homotopy equivalence such that x,f - R,, it is not hard to show that there are maps 
ui: C,, -+ C,,-, such that 

(1) ~i(Et)  c E3-i 
(2) uilX = identity map of X 
(3) u3-iui z identity map of C,,, where the homotopy keeps X pointwise fixed and 

E, fixed as a set. 

It follows that the endpoint maps m,: B(E,, C,,, X) -+ X are fibre homotopy equivalent. 

A spherical fibre space of fibre dimension k 2 1, is a fibre space in which every fibre 
has the homotopy type of Sk-l. If R :  E + X is a vector bundle of fibre dimension k, 
and E, is the set of non-zero vectors, then nlE,: E, -+ X is a spherical fibre space of 
fibre dimension k, denoted [R]. (One can similarly define [a] for any microbundle a, by 

[121.) 
The Thom isomorphism theorem holds for spherical fibre spaces: there is a class 

U(n) E Hk(C,, E), natural with respect to induced fibre spaces, such that the maps 

are isomorphisms for p 2 0, where G = Z2 if R is not orientable and G is arbitrary if x is 
orientable. This can be proved by using the Leray-Serre spectral sequence for (r,n) (c.f. 
remarks after Theorem 2.1 in [18]). 

The isomorphisms 

V(=) n 
Hp+,(C,, E; G) -----* H,(C,; G) Hp(X; G) 

are the Thom isomorphisms cp and $, respectively. 

Let * be fixed point outside of all spaces under consideration. If A and B are two 
spaces their join A * B is the set of all (a, t, b) with t E [0,1] and 
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A * B is given the small topology as in 1141. As a special case, the cone CA is {mA} * A 
where m, is the vertex. There is an obvious homeomorphism cp : A * B -, (A X CB v CA 
X B) c CA X CB and CA X CB may be regarded as C(A X CB v CA X B) = C(A * B). 

If xi : E, -+ X are fibre spaces, their Whitney join n = R, Q n, is the map n : E, @ E, 
-+ X defined as follows. 

(1) E, $ E, is the subset of E, * E, consisting of all (e,, t, e,) such that nl(el) = 
n2(e2) if t E (0, l) 

(2) ~(e,,O, *) = n,(e,) 
X(*, 1, e,) = n,(e,) 
n(e,, t, e,) = nl(e,) = n2(e2) for t E (0,l). 

Using the PLP it is easy to see that n, @ n, is a fibre space. For any integer n 2 1, the 
fibre space X x  S"-' + X will be denoted n,, or simply n, if no confusion is possible. Then 
n and are stablyjbre homotopy equivalent (n y v) if and only if there are integers m and n 
such that n @ m - $ n. The spherical fibre space .rr of fibre dimension k is trivial if and 
only if n - k and stably trivial if and only if n 7 1. 

Let H(n) be the space of all homotopy equivalences of S"-', with the compact-open 
topology. A "classifying space" B,(,) and a map in : B,(,, -+B,(,, are defined in [5]. A 
fibre space u : UE --+ EH(,) is defined in [22], which is universal for spherical fibre spaces 
of fibre dimension n over C W-complexes. We shall denote this fibre space by nH(,, : EH(,) + 

B,(,,. Ifno(,, : E,(,, + B,(,, is the universal vector bundle of fibre dimension n, then 

i,*(n,(,,) [no(,,]. If B, = B,,,) and BH = B,(,) we obtain the naturalmap i : B, -+ B,, 
which is well defined up to homotopy. The classifying space for orientable spherical fibre 
spaces of dimension will be denoted B,,(,,. 

Clearly $ induces the structure of an abelian semi-group on 7 equivalence classes of 
spherical fibre spaces over X. 

1.2 PROPOSITION. If X is ajnite complex this semi-group is a group. 

Proof. Only the existence of inverses is non-trivial. (The stable inverse of n will be 
denoted n-l). The proof is a replica of [17], Theorem 3, with the following changes. 

(1) To define the wedge of n and v, two orientable spherical fibre spaces over X of 
fibre dimension k, let n = f*(n,(,)) and =g*(nSH(,,) and define n v v over 

X v X as Cf v g)*(x,(k)). 
(2) If X" is the n-skeleton of an (n + l)-dimensional space X, and nlXn has an inverse 

v, it is not clear that can be extended to X, but it is easy to show, using the 
universal spherical fibre spaces, that there is a spherical fibre space v' over X" 
such that v 7 v' and v' can be extended over X. 

92. THOM SPACES 

If R : E + X is a fibre space, the Thom space T(n) is defined as CE y X. The vertex 
co of CE is the natural base point for T(n). Note that (T(n), co) %(Cx v CE, m) so that 
H*(T(n), m)) % H*(Cx, E). 
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If ni : Ei --, X(i = 1,2,3) are fibre spaces and f :  E, -+ E, is a fibre preserving map, 
a continuous map f, : (T(n,), m,) --r (T(n,), m,) is defined by 

f,((ml, f, e,)) = (m,, t, f(e,)) for t E CO, l), where f(*) means *. 

It is easy to show that if f :  E(nl) --, E(n,) is a fibre homotopy equivalence, then 
fT : (T(nl), col) --, (T(n,), m,) is a homotopy equivalence. 

2.1 PROPOSITION. Ifn is afibre space over Y and f :  X+ Y is a homotopy equivalence, 
then (TCf*(n)), m) z (T(n), m). 

Proof. Let g : Y -+ X be a homotopy inverse for f. There are fibre preserving maps 
1: E(f *(n)) --r E(n) and g' : E(g*Cf*(n))) --, ECf*(n)) and clearly also a fibre homotopy 
equivalence cl : E(g*Cf*(n))) --r E(Cfg)*(n)) such that fg' = Cfg)"a. Since fg -- 1 there is a 
fibre homotopy equivalence h : E(n) + E((fg)*(n)) such that (fg)"h is fibre preserving 
homotopic to 1. If /l is a fibre homotopy inverse for U, then fg"g"Bh is fibre preserving homo- 
topic to 1.   here fore fTg',(/3h), 1. 

Similarly, there is a fibre homotopy equivalence k : E(f*(n)) -+ E(f*(g*(f *(n)))) such 
that ajk is fibre preserving homotopic to 1, where $ : ECf*(g*Cf*(n)))) -+ E(g*(f *(X))). 
Hence gT(fk), -- 1. 

Since?,;.g",(Bh), 1 and (Bh), is a homotopy equivalence, it follows that (/lh),(f;gT) 1. 1, 

or ((Bh)TfT)ijT 1: 1. 

Thus g", has the left homotopy inverse (Bh),fT and the right homotopy inverse (fk),; 
consequently g', is a homotopy equivalence and its left homotopy inverse is a right homotopy 
inverse. Hence 1 - g'T((/lh)T fT) = (g'T@h)T)fT. 

~ h u s f ,  has the left and right homotopy inverse g',(Bh),, a n d h  is a homotopy equiva- 
lence. 

Let Y be a space with base point y,. Following [g] we say that Y is reducible 
[S-reducible] if and only if there is a map [S-map] f :  (S",a)+(Y,y,) inducing isomorphisms 
of R, for g 2 n. Dually, Y is coreducible [Scoreducible] if and only if there is a map 
[S-map] f :  ( Y,y,) -+ (Sn,a) inducing isomorphisms of R4 for q I n. Then Y is S-reducible 
if and only if its S-dual ([21]) is S-coreducible (Y must have the homotopy type of a finite 
CW-complex and hence ([23], Theorem 13) of a finite complex for this to be meaningful). 
A spherical fibre space n is called reducible, etc., if and only if (T(n), m) is reducible, etc. 
(Notice that if n: E --, X is a spherical fibre space over a finite complex X and F is a fibre 
then the pair (E,F) has the homotopy type of a pair of finite complexes (c.f. proof of 
Proposition (0) of [22]).) 

If n: E + X is a fibre space over X, it is easy to see that T(l @ n) is homeomorphic 
to the suspension C(T(z)), so T(n 0 n) is homeomorphic to Zn(T(n)). Therefore a simple 
generalization of the argument in [2], Proposition 2.8 proves the following. 



2.2 PROPOSITION. Zfn : E -+ X is a spherical3bre space over a connected3nite complex 
X, then n is S-coreducible if and only if x is stably trivial. 

53. P-SPACES 

A pair (X, Y) satisfies PoincarP duality for dimension n if and only if for some p E H,(X, Y) 
the maps 

are isomorphisms. Such a class p is called an orientation, and ~ ? p  is the induced orientation 
of Y. 

Note that H,(X) is finitely generated: in fact if p is represented by a finite sum a = a, + 
.. . +ak E C,(X, Y) of singular n-simplices then every element of H,(X) is represented by 
f n o for some f E C*(X, Y); but each f n a is in the free group generated by the faces of 
a,, . . . , a,. Similarly, H,( Y) and H,(X, Y) are finitely generated. 

From the commutative diagram 

0 + Ext(H,- ,(X, Y) ,  Z) + HP(X, Y) --, Hom(H,(X, Y), Z) -+ 0 

it follows that (1) is an isomorphism if and only if (2) is an isomorphism. Similar diagrams 
show that (1-3) are isomorphisms for any coefficient group. Moreover, (3) is an isomor- 
phism if (1) or (2) is. 

If, in the definition we have given, H, is replaced by HiF  (homology based on infinite, 
locally finite chains) then (X, Y) satisfies open Poincark duality for dimension n. 

If (X, Y) is a pair of complexes, 2 will represent the universal covering space of X. 
If p : 13 -+ X is the covering map, then (X, 8 )  will represent (8, p-'(Y)). A P-pair of formal 
dimension n is a finite complex (X, Y) such that (X, 8 )  satisfies open Poincart duality for 
dimension n. If (X, Y) itself satisfies (open) Poincart duality for dimension n, then (X, Y) 
is called orientable. X is called a P-space of formal dimension n if (X,@) is a P-pair of formal 
dimension n. 

The most obvious examples of P-pairs are triangulated manifolds with boundaries. 
The following examples will be used in $g7 and 8. 

Let S; and S: be two copies of S", for n I 2, and let r ,  : S --, S: v S'; (i = 1,2), be 
the inclusions. Then n2,-,(S; v S3 z n2,-,(S;) @ n2,-,(S", €l3 2; any element a E 

n2,-,(S: v S;) can be written as I ,  o a, Q 1, a, Q m[r,, I,] for a, E n2,,-,(S;) and m an 
integer. Letg : S2"- ' -+S; v S; and consider the space X = e2" U (S: v S",. The homotopy 

a 
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type of X is determined by [g]~n, ,_ ,(S;  v S;). Let K , :  S"+X be the composition 

S"-!!+ S; v S: c X and let ci E H"(X) be the elements such that x*(ci) = 1 and rc;-,(ci) = 0. 

If [g] = 1 ,  a,  @ 1 ,  a, @ m[r,, l,] then, with respect to the basis (c,, c,) for Hn(X), the cup- 
product pairing U : Hn(X)  @ Hn(X)  -+ H,"(X) = Z has the matrix 

where H(a3 is the Hopf invariant of U,. Therefore X is a P-space if and only if det M = f 1. 
In particular, let [g] = 1 ,  a a @ 0 @ [ I , ,  l,]. Then X, = eZn U (g v S;)  is a P-space. 

B 

I f  n : E -+ X is a fibre space and r : C, + X is the retraction, then HrL' will denote 
singular homology based on chains c E C,(C,) such that r,c is a locally h i t e  chain in X. 

3.1 PROPOSITION. Let a :  E --+ X be a spherical fibre space offibre dimension d over a 
space X which satisjies Poincart! duality [open Poincart! duality] for dimension n. Then (C,, E )  
satisfies Poincart! duality for dimension n + d [with H, replaced by HiLF].  

Proof. The proof will be given when X satisfies open PoincarC duality. A proof is 
obtained for the other case by deleting LF and rLF whenever they occur. 

Let p E H f F ( X )  be an orientation. Let cp amd JI be the Thom isomorphisms for n. 
Putting together the Gysin sequences in cohomology and homology we obtain the diagram 

where 
8 : H'+~(E)  + H ' + ~ +  ,(C,, E)  

d : H:L_F~(c,, E) -, H::;- ,(E) 

i : C, -t (C,, E)  is the inclusion 

X = q-'(U U U )  

p = dji, where p E H;k",(Cn, E) satisfies $@) = p, 
that is, r,(U n ji) = p. 

Thefirst square commutes up to sign: (a U X )  n p = (- l)'dk U a) n p = (- 1)ldX n (a n p). 
The second square commutes up to sign: We must show that if r,(U n a) = /3 n p, then 
da = f n*p n p. Now 

r*(U n a) = /3 n ,u 

= B n r,(U n p) 
= r*(r*j? n (U n p)) 

= r*((r*B U U) n F) 
= (- I)*(' +')((U U r*B) n F )  
= ( - l)d( 1 + ')(U n @*B n F)). 
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Therefore U n a = (- l)d('+i'U n (r*B n ji); hence a = (- l)d(l+i)r*/? n p, so 

aa = (- a(r*fl n ji) 
= (- l)i(d+ ')n*B n aji 

= (- l)i(d+l)n*B n ji. 

The third square commutes up to sign: We must prove that if r*a U U = 6/3, then a n p = 

+ n,(B n p). Now, if j : E -, C, is the inclusion, then 

n*(P n p) = 4 B  n aji) 

= r*j*(B n aji) 

= (- l)"dr,(d/3 n p) 

= (- l)i+dr*((r*a U U )  n ji) 

= (- l)i+dr*(r*a n (U n ji)) 

= (- l)i+da n r,(U n p) 

= (- l)i+da n p. 

It follows from the 5-lemma that n ,G is an isomorphism, and we need only prove that n p 
is an isomorphism. This follows from the diagram 

which is commutative, since 

r,((r*a U U )  n p)  = r,(r*a n (U n ji)) 

= a n r,(U n ji) 

$4. NORMAL FIBRE SPACES 

In this section we construct certain spherical fibre spaces over a P-pair ( X ,  Y). In the 
next section we prove that these are reducible if Y = and that all S-reducible fibre spaces 
over a P-space X are stably fibre homotopy equivalent. We will require a lemma on cap 
products. 

The usual definition of the cap product n : Hp(X,  A )  @ H,(X, A u B )  -+ H,-,(X, B )  
for A and B open in A U B,  uses the complex e,(A, B )  generated by singular simplices 
lying in A or in B. This definition also provides a cap product 

n : HP(A U B, A) G3 H,(A U B) H,-,(B), 



since f n c E C,-,(B) if f E CP(A U B, A) and c E e , (~ ,  B). These maps can also be defined 
using HiF. The following lemma applies for both H, and HiF.  

4.1 LEMMA. ( 1 )  Let k : ( A  U B, A) --, (X ,  A) be the inclusion and let 8, and 13, be the 
boundary maps of the homology sequences of (X ,  A U B) and ( X ,  B) respectively. Let a E 

P ( X ,  A) and E H,(X, A U B). Then 

k*a n a l p  = (- d2(a n p). 
(2) Let Y c A n B  and le t i : (B ,  Y ) - - , ( A u B , A )  a n d j : A u B - + ( A u B , A )  be 

inclusions. Let a E P ( A  U B, A), /3 E Hq(A U B), y E Hq(B, Y) .  If j,p = i,y then a n /l = 

i*a n y. 

Proof. Only the proof of (2) will be given. Let f E CP(A u B ,  A) represent a. Let 
c c eq (A,  B) represent 8, so that f n c represents a n B. Let d E Cq(B) represent y. Since 
j*/3 = i*y we have 

d = c + c'+ dc" 

where c' E Cq(A) and c" E C,, l (A U B). Moreover c" = c" + ac", for c" E c,+ l(A, B) and 
c" E cq+2(A U B), SO that 

Now i*a n y is represented by f n d = f n c + f n c' + f n dc". But f n c' = 0 and 

f n ac'" = (- l)"(6 f n c"' + a(f n cfff)) = (- 1 ) ~  a( f n 

so f n d = f n c + ( - l ) p a ( f n  c'"), where f n c"'€ C,(B). Hence i*a n y = a n P. 
Let H"+k be a closed half-space of bounded by R"+k-'. A complex X c 

is always assumed to be closed. A pair of complexes (X ,  Y) c R"+' is a subcomplex of 
(H"+', R"+~- ' )  if X C H"+k and Y = X n R"+k-'. I f  (X ,  Y )  is a subcomplex of 

l ) ,  a regular neighborhood of (X ,  Y) is a triple ( N ;  N I ,  N,) such that 

(1) N is a regular neighborhood of X in H"+k (with boundary dN), 
(2) N2 = N n  Rn+k-l is a regular neighborhoodof Y in R"+ '-l, 

(3) NI = Closure (aN - N,), 
(4) There is a deformation retraction (N,  N2) -+ (X ,  Y). 

Note that N is a submanifold of R"+k with dN = NI U N2. The case Y = 125 is not 
excluded; N is then a regular neighborhood of X in R"+k with aN = NI .  

The cohomology bound of X, denoted cb(X), is the largest n such that Hn(X) # 0. 
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4.2 PROPOSITION. Let ( X ,  Y )  be a subcomplex of with X connected, where 
k > cb(X) + 1. Let ( N ;  N I ,  N2) be a regular neighborhood of ( X ,  Y) .  Then ( X ,  Y )  satisfies 
open Poincark duality for dimension n if and only if the following three conditions hold. 

(1) H*(Nl) z H*(N) CB (N) ,  
(2) Hd(N) + Hd(N,) is an isomorphism, 0 I d s n ,  
(3) u g :  Hd(N1) -+ H ~ + ( ~ - ' )  ( N I )  is an isomorphism, 

0 S d I n, where g E H ( ~ - ' )  ( N I )  is a generator. 

Proof. Let v, E H,L+Pk(N, dN) be an orientation. If Y = @ then n v, : Hd(N, N I )  --r 
Hn+k-d (N,  NZ)  is clearly an isomorphism. If Y # @ this can be proved as follows. 

Let v, E ,(N2, aN2) be an orientation. Let a : dN-+ (aN, NI ) ,  b : (N,, aN,) 
(aN, N I )  and c : (aN, N I )  -+ (N,  N I )  be inclusions. Then b* : HkF(Nz, aN,) + HkF(aN, N,) 
is an isomorphism and b,v, is a generator of H::,-,(aN, NI) .  From the diagram (for 

P E NZ) 

it is clear that a&, is also a generator of HZ,_,(~N, NI) .  Hence a,av, = & b,v2. It 
follows from Lemma 4.1 (choosing A = N,, B = N, and X = N) that b*c*a n v, = 
f c*a n av, = + a(a n v,) for a E H*(aN, NI) .  Therefore the following diagram commutes 
up to sign. 

C - H ~ ( N ,  aN) - H ~ ( N ,  N, )  + H ~ ( ~ N ,  N,) + 

It follows from the 5-lemma that n V, : H ~ N ,  N I )  + (N,  N,) is an isomorphism. 

Suppose now that (X ,Y )  satisfies open Poincart duality for dimension n. Let p E 
H:~(N, NZ)  be an orientation. We have the exact sequence 



SPACES SATISFYING POINCARE DUALITY 

Hence k* = 0 and we have short exact sequences? 
i *  6 

o - H ~ ( N )  - H ~ ( N , )  - H ~ + ~ ( N ,  N , )  -3 o 
I 

If 0 I d n, then Hd-(k- l )  ( N )  = 0 and H ~ ( N )  -+ Hd(Nl)  is an isomorphism. If 
n < d l n + k - 1 ,  then Hd(N) = 0 and we have an isomorphism 

We will show that & p-' = U g, for a generator g E @-'(NI) .  We can take g = p-'(l), 
where 1 E HO(N1); in other words g = 6 - ' ( n  v ,)- ' (n p)(i*)-'(l), or 

6g n v, = (i*)-'(l) n p = p. 
Thus for a E Hd(Nl) we have 

a n p = a n ( b g  n v 1 ) = ( a u 6 g ) n  v ,  = ( - l ) d 6 ( i * a u g ) n v l  

so (- l )dp-l(a)  = a U g. This completes the proof that ( l ) ,  (2) and (3) hold. 

Suppose conversely that (l), (2) and (3) hold. We have the diagram 

If d > n then H " - ~ ( N )  = 0; moreover i* : H " + ~ - ~  (NI -+ H"+k-d-l (N,) is an isomor- 
phism, hence H,fF(N, NZ)  = 0. 

If 0 l d l n, then H " + ~ - ~ - ' ( N )  = 0 and we obtain an isomorphism 9 = ( n  v,) 
6 ( u  g)i* : H " - ~ ( N )  -+ H,fF(N, NZ). Therefore it suffices to show that 9 = & n p, for p E 

H,L~(N, NZ)  a generator. We can let p = p(1) for 1 E @(N);  in other words 
6g n v, = p. 

Then for a E I T d ( N )  we have 
O(a) = 6(i*a U g) n v ,  = (- l)"-d(i*a U 6g) n v, 

= (- n (6g n v,) 
= (- l)"-da n p. 

This completes the proof. 

t (Added in proof) Actually, the following argument is valid even if the long exact sequence is not 
split into short sequences; the regular neighborhood N may then be replaced by any thickening. 
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The proof of the following Lemma, which requires the construction of explicit fibre 
homotopies, is left to the reader. 

4.3 LEMMA. Let (X, Y) be a subcomplex of (Hn,Rn-') and let (N; NI, N,) be a regular 
neighborhood. Let (M; M,, M,) be the regular neighborhood ( N x  [- l ,  l];  NI x [- l ,  l ]  

U N x { - l ,  I}, N z x [ - l ,  l]) of (Xx{O}, Yx{O}) in ( H n x R ,  R"-'><R). I f w :  
B(M1, M, X) -+ X and q : B(N1, N, X) + X are the endpoint maps, then w- @ 1. 

4.4 PROPOSITION. Let (X, Y) be a subcomplex of (H"+k, of codimension 23. 
Suppose X is simply connected. Let (N; NI, NZ) be a regular neighborhood of (X, Y) .  The 
fibres of the endpoint map o : S(Nl, N, N) -+ N (and hence the fibre ofB(N,, N, X )  + X 
have the homotopy type of Sk- ' if and only if X satisfies open Poincark duality for dimension n. 

Proof: Assume first that k > cb(X) + 1. Let i : NI  -+ N be the inclusion. Let a : NI 4 

B(N,, N, N) be defined by u(x) = constant path X .  Then wa = i and U is clearly a homotopy 
equivalence. Let S = 9(N1, N, N). Suppose X satisfies open Poincark duality for dimen- 
sion n. It follows from 4.2 that 

(1) H*(9) X H*(N) @ H*+ k - l  ( N )  
(2) w* : HP(N) -+ Hp(B) is an isomorphism 0 S p I n 
(3) U g : HP(9) --, Hp+ (k-" ( 9 )  is an isomorphism where 

g E Hk-'(9) is a generator, 0 < p  sn. 
Let {EFIQ) be the Leray-Serre spectral sequence for o. Since the isomorphism o *  is 

the composition HP(N) X EE4.O -+ E:' -+ Hp(9) a11 maps d, :E,P-'.'-' -+ EfO are 0 and 
E t 0  z EEO.  

Consider E;,'. The maps d, all vanish on E;"; hence ET 'xE~ ' .  But 0 = H1(9J)/ 
E ~ O  z EO.' m x E:.'; hence H1(F) = 0 and all Er.' = 0. It follows that all maps d, vanish on 
E;,' SO that E;,' X E:'. But 0 = H 2 ( S ) / ~ & 0  X X E;.'; hence HZ(F) = 0 and all 
~ $ 3 '  = 0. Continuing in this way we have Hs(F) = 0 for 0 c s < k - 1 and Hk-'(F) X Z.  
For r 5 n we have the commutative diagram 

U 

E'iO @ l 

l - "'11,.-, z Q ~ , o @ P o . ~  - 1 

U 

H'(9) 8 Hk- l(9) - '(9) 
where the maps cp are inclusions as subgroups. Let g = rpOsk- ,(gf). Since U g : Hr(S) + 
H~+(~- ' ) (S )  is an isomorphism, the map cp,,-, is also. It now follows, as before, that 
HS(F) = 0 for s > k - 1. Therefore a fibre F of o has the cohomology of Sk-'. NOW 
x,(F) z nz(N, NI). If f :  (eZ ,  S') -+ (N, aN) is a simplicial map, then, sincetheco-dimension 
of X in N is 2 3, we can push f off X, and therefore retract f into NI. Thus nl(F) = 0 and 
F has the homotopy type of Sk-'. We can now use 4.3 to eliminate the assumption k > 
cb(X) + 1. 

Suppose, conversely, that F has the homotopy type of Sk-l. Then it is easy to see that 
(l), (2) and (3) hold, and therefore conditions (l), (2) and (3) of 4.2 hold, so that X satisfies 
open poincare duality for dimension n. 
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4.5 Remarks. (1) Let 8 : @(NI, N, N) -+ N be the initial point map 8(p) = p(0). Then 
8 : o-'(X) -+ N, corresponds to the inclusion of the fibre into the total space B(Nl, N, X); 
if (X, Y) satisfies open Poincart duality for dimension n and k > n then 6 induces isomor- 
phisms of Hk-l. 

(2) It is clear that X need not be simply connected provided that n,(X, X) operates 
trivially on H*(o-'(X)). 

4.6 PROPOSITION. Let (X, Y) be afinite subcomplex of (H"+~,  R"+~- ' )  oj'codimension 2 3. 
Let (N; N , ,  N,) be a regular neighborhood of (X, Y). Then the fibres of the endpoint map 
o: 9(Nl ,  N, X) -+ X) have the homotopy of type Sk- ' ifand only $(X, Y) is a P-pair of formal 
dimension n. 

ProoJ Because of 4.3 we can assume without loss of generality that k > cb(X) + 1 and 
n + k r 2.(topological dimension X) + 1. Let fl be the universal covering space of N and 
let p : fl -+ N be the covering map. Let V,, ... , V, be the vertices of N. By [13], Lemma 1, 
there is an E > 0 such that, for W,, ... , W, E R"+k satisfying IVi - Wil < E, the simplicial 
map f :  N --r R " + ~  with f (Vi) = Wi is a homeomorphism. For each vertex V of fl let V' be 
a point of R"+ such that I V' - p(V)I < E and such that the points V' are in general position. 
Then the simplicial map f :  fl -+ R"+k with f(V) = V' is a local homeomorphism which is 
a homeomorphism on 8 = p-'(X). Hence ([24], Lemma 4.1) if m is shrunk sufficiently 
the map f is a homeomorphism, whose image f(N) may not be closed. Let g : fl -+ R be a 
piecewise linear map which goes to m at a. Define h : by h(x) = (f (X), g(x)). 
Let(M; M,, M2)betheregular neighborhood (N x [- 1, l ] ;  N, x [- 1, l ]  U N x { -  1, l ) ,  
N2 x [- l ,  l]) of (X  x {0), Y x (0)) in Then ( a ;  A,, A,) is homeomorphic to 
( R x [ - 1 ,  l ] ; f l ,  X[-1, l ] u f l x { - 1 ,  1},f12x[-1, l]), whichisaregularneighborhood 
of (h(8), h( v)). By 4.4 the fibres of ~ ( f l , ,  f l ,  A )  --, A have the homotopy type of Sk 
if and only if (R, F) satisfies open Poincart duality in dimension n, that is, if and only if 
(X, Y) is a P-pair of formal dimension n. But the fibre of 9(fii, a ,  A) -+ at X E X 
is clearly homeomorphic to the fibre of B(M,, M, M) -+ M at p(x). The proposition now 
follows using 4.3. 

From now until the end of $5 we shall regard the particular triangulation of a P-pair 
(X, Y) as part of its structure. The fibre spaces given by 4.6, (when (X, Y) is embedded in 
(H"+k, R"+~- ' )  piecewise linearly with respect to this triangulation), are called normalfibre 
spaces of (X, Y). They are all stably fibre homotopy equivalent by 4.3, since all regular 
neighborhoods are homeomorphic for k sufficiently large. 

4.7 PROPOSITION. Let (X, Y) be a subcomplex of of codimension 2 3, 
which is a P-pair of formal dimension n. Let (N; N,, N,) be a regular neighborhood of (X, Y), 
and let w : B(N,, N, N) -+ N be the endpoint map. Theit (X, Y) is orientable ifand only ifo 
is orientable. 

Proof. Again we may assume that k > cb(X) + l .  If o is orientable then (X, Y) satisfies 
(open) Poincart duality by 4.5 (2). If w is not orientable and Y (m) is the orientation sheaf 
of o then in the spectral sequence of o the term X HO(X; Y(m)) is 0; it follows that 
H~-'(N,) = 0, and (X, Y) does not satisfy (open) Poincart duality for dimension n by 4.2. 
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$5. REDUCIBLE SPHERICAL FIBRE SPACES 

5.1 PROPOSITION. Let (X, Y) be a subcomplex of ( H ~ , R ~ - ' ) .  Let (N; NI, N,) be a regular 
neighborhood of (X,Y) and let w: B(Nl, N, N)+ N be the endpoint map. Then 
(N U C(Nl), m) (T(w), m). 

Proof. Let B = B(N,, N, N). Then T(w) = N U C9. Let f :  N U C(N,)+ N U CB be 
0 0 

defined by 

f(m, 0, *)=(m,  0, *) 

f (m, t, X) = (m, t, constant path X), for X E N, and 0 I t I 1 

f (Y) = Y, for Y E N .  

Let g : N U C9 -* N U C(N,) be defined by 
0 

B(Y) = Y, for Y E N. 
Then gf N 1 by the homotopy H defined by 

m, t + ut, X), for X E aN, 0 < t I 112 
t ,  X), U) = m, t + u(l - t ) , x ) , f o r x ~ d N ,  112 I t I l 

H(y, U) = Y, fory E N ,  

and fg N l by the homotopy K defined by 

K((m, 0, *l, U) = (m,O, *) 

(m, t + ut, p l CO, 1 - u l  O < t I 1 / 2  

K((m, t, p), U) = (m, t + u/2, p I [0, 1 - U ] )  112 r t r 1 - u/2 

K(y, U) = y, for y E N. 

5.2 COROLLARY. I f  W' = 01w- '(X) then (T(ol), m) % (N/N1, *). 
Proof. (NIN,, *) x (N U C(Nl), m) x (T(o), m) = (T(oP), m), by 2.2. 

5.3 COROLLARY. Let X be a P-space which is a subcomplex of R" of codimension 2 3. 
Let N be a regular neighborhood of X, and o : B(aN, N, X) + X the endpoint map. Then W 

is reducible. 

The remainder of this section is devoted to proving that all reducible spherical fibre 
spaces over a P-space X are stably fibre homotopy equivalent; in particular the normal fibre 
spaces of X for different triangulations are all stably fibre homotopy equivalent. 

Suppose X is a P-space of formal dimension n and n : E -+X is a spherical fibre space 



of fibre dimension d. 1f 8 is the universal covering space of X with covering map p : 8 +X, 
let it : E + 8 be p*(n), and i: : C;; + 8 the retraction. Let f : E + A be a homotopy equi- 
valence, where A is a locally finite complex with cells of bounded dimension (c.f. proof 
of Proposition (0) in [22]). Let o : A + X be a simplicial map such that of - 7c. Then X 
is a subcomplex of C, and the pair (C,, A)  has the homotopy type of (C,, E). On the other 
hand, the pair (c,, 2) has the homotopy type of (C,-,E). Since 8 satisfies open Poincare 
duality for dimension n, by 3.1 the pair (C;, E )  satisfies Poincark duality for dimension 
n + d, with H, replaced by HGLF. Therefore (C,, A) satisfies open PoincarC duality and 
consequently (C,, A) is a P-pair of formal dimension n + d. 

Let (C,, A)  be embedded as asubcomplex of ( H " + ~ + ~ ,  R " + ~ + ~ +  l ) ,  with regular neighbor- 
hood ( N ;  N I ,  N,). Let 

v be the endpoint map B(aN, N ,  X )  + X 

p be the endpoint map B ( N l ,  N ,  X )  --+ X 

n' be the endpoint map B(A,  C,, X )  + X. 

Clearly v is a normal fibre space of X and p is the restriction to X of a normal fibre 
space of (C,, A), while n' - n, by 1.1. 

5.4 PROPOSITION. I f d ,  k > n + 1 then v - p @ x'.  

Proof. It is clear from the proof of 4.6 that it suffices to prove the theorem for simply 
connected X. 

For X E X a map g, : v, + p, * n', will be constructed in three steps. Each map g, 
will be a homotopy equivalence, and the union of all g, will be a continuous map g, which 
is a fibre homotopy equivalence by [4], Theorem 6.3. 

We will use the following abbreviations: 

B(A)  = %A, C, , x )  

B(C,) = B(C,, C,, X-). 

Step ( 1 ) .  A homeomorphism cp, : B(N,)  * B(A)  -+ B(N,)  x C(B(A)) U C(B(Nl))  x 
B(A)  has been defined in $2. 

Step (2). Let U c N be a neighborhood of N I  such that 
( 1 )  U n X = @  
(2) U n E"+d+k-l is a neighborhood of aN,  in N ,  
(3)  U is homeomorphic to N,  x [0, l ] .  

Let t,h : N I  x [0, l ]  + U be a homeomorphism with $(y, 0 )  = y, for y E N,. Define 
i, : B ( N )  -P C(B(Nl))  as follows. 
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Ifp(0) 4 U, then i,(p) = ( m ,  0, X ) ;  ifp(0) = $(y, t ) ,  for y  E N,  and t E (0, l ) ,  then i,(p) = 

( m ,  t ,  p'), where 

i fp(0) E N I ,  then &(p)=(*, 1,p). 

Then i, is a homotopy equivalence with homotopy inverse i: : C(B(Nl))  4 B ( N )  
defined by 

i:(m, 0, *) = constant path X 

Note that B(N,) is always left fixed. 

Define j,: B(C,) -+ C(B(A)) as follows. 

I f  p(0) E X, then j,(p) = (m,  0, *); if p(0) = (a, t ) ,  for a E A and t  E 10, l ) ,  then j,(p) = 

( m ,  t, p'), where 

pf(u) = ( (a ,  O s u l t  
p((u - t ) / ( l  - t)) t  I u  5 1. 

Then jx is a homotopy equivalence with homotopy inverse ji : C(B(A)) + B(C,) 
defined by 

j:(m, 0, *) = constant path x 

ji(m, t, p) = p l [ l  - t, l] p < t I 1. 

Note that B(A) is always left fixed. 

Using ix and j, we obtain a homotopy equivalence 

Step (3). Define f, : B(aN) + B(Nl )  x B(C,) U B ( N )  x B(A)  by f,(p) = (p, r p), 
where r: (N,  N,) -+ (C,, A) is the retraction. 

Now define g, : B(aN) + B(N1) * B(A)  by g, = cpllcr,f,. 

To complete the proof it is sufficient to show that f, is a homotopy equivalence. Since 
B(N)  and B(C,) are contractible it suffices to show that 

induces isomorphisms of We have the commutative diagram 



where B,, 8; and 8; are initial point maps and A is the diagonal. 

To see that 8, induces an isomorphism of Hd+k, consider the diagram 

Since (4.6) the map B* is an isomorphism, B,* is also. Similarly (B;)* is an isomorphism 
of Hk (using k > n + 1) and (B;)* is an isomorphism of Hd (using d > n + 1). Hence 02* 
is an isomorphism of 

Let U and #l be generators of Hk(N, N,) and Hd(C,, A), respectively. Let p E H,,+,(N, NZ)  
and v, E H,+,+,(N, aN) be generators, and let p, = r,p, where r : (N ,  N Z )  -+ (C,, A )  is the 
deformation retraction. Then (c.f. proof of 4.2) we have U n v, = p. 

Now B corresponds to U(n); hence B n p, is a generator of Hn(C,) by 1.6. Therefore 

(r*B U U )  n v, = r*p n (U n v,) = r*B n p 

is a generator of H,(N). This proves (c.f. proof of 4.2) that r*/3 U a is a generator of 
H'+~(N,  m ) .  

If y is a generator of H k + d ( ( ~ ( ~ ) ,  9 ( N 1 ) )  X (9(C,), 9 ( A ) ) ) ,  then 

(fX)*(y) = (fx)*(8,* (U X B)) 

= B,*A*(l x r* ) (uxB)  

= Ol*(u U r*B), 

so ( fx)*(y) is a generator of H ~ + ~ ( B ( N ) ,  9(dN)).  This completes the proof of 5.4. 

5.5 PROPOSITION. Let ( X ,  Y )  be a P-pair and v a normal fibre space. Then T(v) is the 
S-dual of X/ Y. 

Proof. Let ( X ,  Y )  be embedded as a subcomplex of R"+'-,) and let ( N ;  N,, N,) 
be a regular neighborhood. We can assume that we actually have N C 

If m 4 R"", then {m) * is s"'~. Now X U (S"" - Interior N )  is an S-dual for N ,  
and S"+' - Interior N is an S-dual for N. Hence X U (S"+k - Interior N)/(Sn+k - Interior N )  
is an S-dual of NIN,. But X U (S"+k - Interior N)/(S"+k - Interior N )  x X/ Y and 
N/N1 T(v,) by 5.2. 

5.6 PROPOSITION. Let X be a P-space with normalfibre space v and let a be an S-reducible 
sphericalfibre space over X. Then a v. 

Proof. We can assume that fibre dimension a > 1 + formal dimension X. We have, 
using the notation introduced before 5.4, 
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where i : X+ C, is the inclusion. If r : C, + X is the retraction then r*v - p @ r*n or 
p - r*v @ (r*n)-l. 

Since T(n) is S-reducible, its S-dual is S-coreducible. Since T(n) x C,/A, by 5.5 the 
S-dual of T(n) is T(p) and by 2.1 we have T(p) x T(r*v @ (r*n)-'1. Thus T(r*v $ (r*n)-l) 
is S-coreducible and it follows from 2.5 that r*v @ (r*n)-' .;. 1 ,  or r*v y r*n. Since r is a 
homotopy equivalence, v R. 

H. OBSTRUCTION THEORY 

Let X be a P-space and let v be a normal fibre space of X, of fibre dimension k. Let 
f f :  X + B,(,) be a map such that f *(X,(,,) - v. The composite maps X + B,(,) BH are 

all in one homotopy class; we denote (maps in) this homotopy class by G,. The class G, 
is called the normal or Gauss map of X. The condition that there is a reducible vector bundle 
over X can be expressed very succinctly. 

6.1 PROPOSITION. There is a reducible vector bundle over a P-space X ifand only ifthere 

is a map g, : X + B, such that the following diagram commutes up to homotopy. 

.., - 
Proof. Suppose iGx 2: G,. For some k we have G, : X + B,(,) and G, : X -, B,(,,. - - 

Then GX*(nH(,)) - GX*i*(nRo)) - Gx*[n0(,,] - [6x*no(k)]  Since G,*(z,(~)) is reducible, - 
so is 6,*(~ , (~)) .  Conversely, if for some f :  X + B,(,, the bundle f *(no(,,) is reducible, then 
(if)*(nH(,)) - f *(i*nH(,)) - f *[no(,)] and (if)*(x,(,)) is reducible. Hence i f -  Gx. 

It follows from 6.1 that if X is a P-space there is an obstruction theory for the existence 

of a reducible vector bundle over X, namely the obstruction theory for the existence of d,. 
More generally, given a spherical fibre space n over any complex X, suppose n - f,*(nH(,)) 
for f, : X+ BH(,). Let f, also denote the composition X 2 B,(,) --+ B,. Then there is an 
obstruction theory for the existence of f: : X -, B, with 8, f,. If i : B& + BH is the 
fibring associated with i : B, + B,, then the existence off, is equivalent to the existence of 
a map?, : X+ B& such that if, = f,, hence to the existence of a cross-section of the induced 
fibre space.f,*(i). The pth obstruction OP(n) to finding a cross-section depends only on the 
7 equivalence class of a and is an element of HP(X; np- ,(F)), where Fis a fibre of i. As usual, 
the higher dimensional obstructions are not in general well-defined. If X is a P-space we 
define OP(X) as OP(v) where v is a normal fibre space. 

The groups n,(F) can be identified as follows. We have B& x B, and, for n I; k - 2, 
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the following diagram commutes, where Jn-, is the J-homomorphism (c.f. [2], pp. 293-295). 

Hence the exact homotopy sequence of i becomes 

nn(0) 5 nn 4 nn(F) + X,,- ,(O) % rIn- 1. 

Since ([l]) Jn-, is a monomorphism for n - 1 0 or 1 (mod 8), we have 

ker Jn-, w Z n - 1 3,7 (mod 8) 
ker Jn-, = 0 otherwise. 

Hence the sequence always splits and 

n,(F) x nn/image Jn @ Z n 0 ,4  (mod 8) 
nn(F) z II,/image Jn otherwise. 

The first few groups are given below. 

Examples. (1) Every P-space of dimension 4 has a reducible vector bundle over it. 

(2) There are ([6], p. 4 4 ,  3-connected compact PL-8-manifolds M', which do not 
have the homotopy type of a compact Cm manifold. But there is a reducible vector bundle 
over M'. 

If X is an (n - I)-connected P-space the primary obstruction On(X) is well-defined. 
In the next two sections On(X) will be characterized in terms of a cohomology operation 
on X, as indicated in Theorem B of the Introduction. The content of this Theorem is 
contained in 8.3 and 8.4. 

$7. THE COHOMOLOGY OPERATION 

Let 2 I k S n - 2. In [l l], $8, a cohomology operation JI : Hk(K, L; Z) -4 Hn(K, L; 
x,- ,(Sk)) is defined when (K, L) has the homotopy type of a CW-pair and satisfies the con- 
dition: HP(K, L; G) = 0 for k < p < n and for all coefficient groups G. 

If n < 2k then $ is a homomorphism and nn,,(Sk) x nn-k-l. If n = 2k, then ([ll], 
Lemma 8.2) 

$(a + D) = $(a) + $(P) + [it, ikl(a U 8) 
where [ik, ik] stands for the coefficient homomorphism Z + nzk- ,(Sk) which carries 1 into 
the Whitehead product [ik, ik], where ik E nk(Sk) is the generator. Since the kernel of the 
suspension homomorphism X : nzk- ,(Sk) --+ nzk(Sk+ l) w ITk- , is generated by [ik, ik], 
the composition of JI and the coefficient homornorphism X is also a homomorphism, 
which will also be denoted $. These are the only two cases when JI will be considered. 
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_+ H"'+"+9 ((X17 Y l ) X ( X 2 ¶  Y2); nq-ll 
are all defined and a E Hm(Xl ,  Y ,  ; Z),  B E Hn(X2, Y 2 ;  Z), then 

ProoJ (Unpublished proof of Milnor). Given spaces A and B with base point define 
A x  B a s A x B J A v B .  Thesuspensionofamap f : A - + B i s t h e m a p  f x  i l : A  X S'-+ 
B X S'.  The k-fold suspension is f X ik. If f :  -+ S" is a map then ik  X f :  Sn+q-I + 

S"+k is also defined and ik X f - (- f X ik. Let D" be the standard n-cell with 
orientation p, E Hn(Dn, Sn- l ) .  Let 

j s m + q - l  + Sm and g : (Dn, S"- l )  -+ (Sn, *) 

be given maps. Then a map 

is defined by 

h(x, y) = f ( X )  X g(y) for X E 

h(x, Y )  = * for Y E S " - ' .  

Let a(D m+qx D") be oriented by d(,um+, ><p,). Then h corresponds to an element 
of n,n+n+q-l(Sm+n). 

Assertion 1. If g has degree d then h corresponds to d times the n-fold suspension off. 
For h can be factored as 

where 
gl(x, y) = x X g(y) for X E 

g'(x, Y )  = * for X E S"-', 

and g' has degree d. 

Similarly given f :  (Dm,  S"-')  -+ ( S m ,  *) with degree d and g : -+ S" a map 

h : d(Dm x D"+q) _+ Sm X S" 

is defined by 

h(x, Y )  = * for X E S " ' - I  

h(x,  y)  = f ( X )  X g(y) for y E s"+~- ' .  

Assertion 2. h corresponds to (- l)mqd times the m-fold suspension of g. 



The proof is similar to the above except that a sign (- l)" is introduced from the for- 
mula for a ( p , ~ p , , + ~ ) ,  and a sign (- is introduced to relate im X g to the m-fold 
suspension of g. 

Now let U and /? be represented by cocycles a E Cm(Xl ,  Y l )  and b E C"(X,, Y,), respec- 
tively. Let 

f :(X:+'-' U Y,, X:-' U Y1 ) -+(Srn ,  *) 

g : (Xi'" l U Y,, X"z l U Y,) --' (S", *) 

be maps representing a and b, respectively. Then the obstruction oCf) E Cm+q(X1, Y,; 
nm+,-,(Sm)) to extending f represents $(a) and o(g) represents J/(b). Let (M, N )  = (X, ,  Y , )  

(X,, Y2). '4 map 

h : U N ,  U N )  --, (S" X Sn, *) 

corresponding to a X b is defined by 

This same formula can be used to extend h throughout the interior of a cell 
e l C x  eT+"+q-C, unless c = m + q or m. Using the two assertions, the desired formula is 
obtained. 

7.2 COROLLARY. If, in the hypothesis of 7.1, we have X ,  = X, = X, then $(or U P )  = 

$(a) U B + (- 1)"' a U *(B). 
Proof. Let Z 1  = Y ,  U X?-' and Z ,  = Y ,  U X;-'. I t  follows from the Kunneth 

theorem that $ : Hm+"((X, 2 , )  x ( X ,  Z 2 ) ; Z )  --+ H"+"' ,((X, x (X ,  Z Z ) ;  IIq- is defined. 
Since the natural homomorphism Hm(X, 2 , )  --, Hm(X, Y l )  is onto, there exists an element 
a' E Hm(X, Z 1 )  representing a. Similarly choose B' E H"(X, 2,). Let A : ( X ,  Y l  U Y,) --, 
( X ,  Z l )  x ( X ,  Z,) be the diagonal map. The required identity is obtained by applying A* to 

Let X be an (n  - l)-connected space (n 2 2) and let n : E --, X be a spherical fibre 
space of fibre dimension k 2 n. Then (C,, E )  has the homotopy type of a CW-pair (c.f. 
discussion preceeding 4.5) and HP(C,, E; G) = 0 for k p < n + k and for all coefficient 
groups G. Hence $(U(n)) E H"+k(C,, E;  is defined. Let $(U(n)) = cp($"(n)) = 
r*V(n)  U U(n) for I)"(z) E F ( X ;  nn- where r : C, --, X is the retraction. It is clear 
that V ( n )  does not depend on the orientation of n and that $"(l) = 0. 

Proof. Let nl @ 71, = n : E --+ X. Let ri : C,, --, X and r : C,-+ X be the retractions. 
Let 

c,' = U (El),  (C,,)x 
x e x  
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Then (c.f. discussion of the join in $1) we can regard C: u C: as E and U (C,  ,), x (C,,), 
X E X  

as C,. If p, : C, --, CXi(i = 1,2) is projection on the ith factor we have the maps 

where n ,  is the restriction of p,, which is the restriction of g,. 

As in [15], Theorem 11, it follows that ql*U(nl) uq,*U(n,) = U(n). Let U ,  = U(n,) and 
U = U(n). Then by (7.2) 

$(U) = $(ql*Ul) U q,*& + (-v'%,* U1 v $(q,*Uz) 
= ql*$(Ul) U q,*Uz + (-l)"klql*Ul q,*II/(U,) 
= 41*(r1*ll/"(n1) U U11 U q2*U2 

+ (- l)*'q,*U1 v q,*(rz*$"(nz) U U,) 
= nl*r1*$"(nl) u ql*Ul u q,*U, 

+ nz*r,*ll/"(n,) q,* U1 q,* U ,  
= [r*ll/"(nl) + r* $"(X,)] V U. 

Since $(U) = r*$"(n) U U the proof is complete. 

7.4 COROLLARY. $"(n) depends only on the - equivalence clms of n. 

If Xis an (n - 1)-connected P-space, then $"(X) is defined as $"(v) for any normal fibre 
space v of X. Let N be the formal dimension of X. If N - n < p  < N then we have 
W ( X ;  G) x H,-,(X; G)  = 0 so the homomorphism $ : HN-"(X;  Z )  -+ HN(X;  IIn-,) is 
defined. 

7.5 PROPOSITION. u J /" (X)  : HN-"(X;  Z ) +  H,(x; nn- ,) is (- l)+' times the map 
1,9 : HN-"(X; Z )  -+ H ~ ( x ;  nn- ,). 

(Remark. I t  is clear that ll/"(X) is the unique class with this property. Hence $"(X) can 
be computed, knowing only the topology of X) .  

Proof. Let n : E -, X be a normal fibre space of fibre dimension k, and let r : C, + X 
be the retraction. Since n is S-reducible we may assume, without loss of generality, that II 
is reducible. Let f : (SN+', a )  + (T(n), CO) be a map inducing isomorphisms of R, for q 2 N. 
Considering T(n) as C, U C E  we have the following commutative diagram. 

~ N + k - n  (C,, E ; Z )  2+ HN+k(Cn, E ;  
+ 
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Therefore + : HN+k-n(Cn, E; Z) + H ~ + ~ ( C ~ ,  E; nn- ,)is 0. The maps + : H~-"(x; Z) -+ 

HN(X; nn- ,) and $ : Hk(C,, E; 2) --, Hk+"(cn, E; lln- ,) are defined. Let a E HN-"(X; Z). 
Then by (7.2) 

Hence +(r*u) U U(n) = (- l)"(N+l)+l r * U U r*+"(n) U U(n), and therefore 

Let X, be the P-space defined in $3, where U E n2,-,(S"), and let c,, c, E Hn(XJ be as 
defined in 93. 

Proof. Consider J/ : Hn(Xa; Z) --, H2"(Xa; ,) x nn- ,. A cocycle representing cl is 
1 on S: and 0 on S; - i, so a map f : S," v S," + S representing c, is the identity on S; and 
trivial on S;-,. Therefore +(cl) = Z U and +(c2) = 0, and the result follows from 7.5, and 
the matrix for the cup-product pairing for X,, given in 93. 

C. THE PRIMARY OBSTRUCI'ION 

Let BSH(,)[O, n - l]  be the space obtained from BSH(k) by attaching cells of dimension 2 
n + 1 to kill off all homotopy groups of dimension 2 n. The inclusion j : + 
BsH(k)[O, n - l] induces isomorphisms of homotopy groups in dimension 5 n - 1. Let n : 
B&(,) + BsH(k)[O, n - l] be the fibring associated to j; the fibre will be denoted BsH(k)[n, m). 
Then the inclusion BSH(,,[n, CO) c x BB,,) induces isomorphisms of homotopy groups 
in dimensions 2 n, and BSH(,)[n, CO) is the base space of a spherical fibre space II,,(,,, of 
fibre dimension k, which is universal for spherical fibre spaces of fibre dimension k over 
(n - 1)-connected CW-complexes. The stable BsH[n, m) is defined in the obvious way. 

For k 2 n + 2 the obstruction On(~SH(k),n) is an element of H"(BSH(,,[n, m); nn- ,(F)) x 
H"(BsH[n, m); R,-,(F)). Identifying these elements for all k 2 n + 2 we obtain an element 

8.1 PROPOS~ON.  On, considered as an element of Hom(nn(Bs,), z,,- ,(F)), is the boundary 
homomorphism 8 : nn(BsH) -+ nn- ,(F) of thefibre space i : B& -+ BsH. 

Proof. Let f :  S --, be a map, where k 2 n + 2. Under the identscation of the 
following diagram f * is evaluation of a homomorphism y on m, where If] is the homotopy 
class of the composition S" 1, + B,,. 
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On the other hand, consider the regular cell complex structure for S consisting of 
two k-cells, olk and azk, for 0 I k I n. We can assume that f 10," is trivial. The obstruction 
On(f*(nsHck),.)) E Hn(S"; n,- l(F)) % n,- l (F) is defined b y  covering the reverse of the radial 
contraction of 0," into the origin of a,", obtaining an element of nn- ,(F). But theelement so 
obtained is just a(Lf]) .  

For k 2 n + 2 the class $"(nsH(k,,n) is an element of Hn(BsHck,[n, m ) ;  n,-,)% 
Hn(BSH[n, m ) ;  n,-,). Identifying these elements for all k 2 n + 2 we obtain an element. 

8.2 PROPOSITION. $In, considered as an element of Hom(nn(BsH), lIn- ,), is an isomor- 
phism. 

Proof. Let f :  S'"-' + S" and let v be a normal fibre space of X[/], of fibre dimension 
k S n + 2. Then vlSin gi*(nSH(k),n) for some gi : S" --, BSH(,)[n, m). Let rpi(V]) E nn(BsH) 
be [g,], considered as an element of nn(BsH). Then $"(Xc /,) = c, 8 $"(rplLf])  @cz@ 
$"(rpz[fI>. But (7.6) $"(X[/]) = (- 1)"" cz 8 C Lf l .  Hence JI"((P~VI) = (- 1)"" X V1 
(and I,P'((P~V]) = 0. Since Z is onto R,-,, the homomorphism $" is also onto. Since 
nn(BsH) and lI,-, are isomorphic finite groups, $" is an isomorphism. 

8.3 COROLLARY. Let X be an (n - l)-connected P-space of dimension N 2 2n. Under 
the coefficient homomorphism 

the class $"(X) goes into @"(X). 

Proof. The coefficient homomorphism ($")-l : nn-, + 7t,,(BsH) takes JI" E Horn 
(nn(BSH), nn- ,) into 1 E Hom(nn(BsH), nn(BsH)). Therefore the coefficient homomorphism 
a($")-' takes JI" into On = a E Hom(nn(BSH), X,-~(F)). Therefore this coefficient homo- 
morphism takes $"(X) into On(X). 

The composite isomorphism X,- ,(SH) 5 =,(Bs,) I l , - ,  multiplied by (- l)"" will 
be denoted j,- ,. 

8.4 PROPOSITION. The following diagram commutes. 

nn- l (S0)  - n n -  l(SH) 

jn- I 

\ 
%-l 

3,- 1 a ( v )  -l 
Therefore the sequence R,- l(SO) - lI,- - nn- l(F) is exact. 

Proof. Let Jn- ,(a) = X If] for f :  S'"-' + S". Let v be a normal fibre space of XI,,. 
It suffices (c.f. proof of 8.2) to prove that vlSZn has characteristic map ig where [g] = a. 
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Consider the S"-bundle x : E+ S" whose characteristic map is -a, where a is con- 
sidered as a member of ,(Rn+ ,). Let a = k,B for B E n,- ,(R,,), where k : R, --+ R,+ , is 
the inclusion. Then Jn- ,(a) = J,_,(k,fl) = - C Jn- ,(p). Choosing such a P corresponds 
to choosing a cross-section s of the bundle x : E + S". If a E S", the space E is ndl(a) U 

s(S") U [x - ' (S"  - a) - s(S,)] = S," U S," U e2", where (c.f. [10], p. 206) the attaching map 
is -il . J,,-,(/3) @ 0 @ [is, i,]. Thus the Cm manifold E may be chosen for XIXI (with 
[f] = - Jn-,(P)). Therefore it suffices to prove that the restriction to S," of the normal 
bundle of E in R"+k is stably equivalent to a bundle with classifying map a ;  this assertion is 
equivalent to the obvious fact that z,lSZn is stably equivalent to a bundle with classifying 
map -a. 
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