A STABLE DECOMPOSITION OF $\Omega^{n} S^{n} X$

V. P. SNAITH

If X is a countable, connected CW complex it is well known (e.g. [4; §2.1]) that the reduced product spaces, X_{∞}, of [1] and their combinatorial extension properties imply the existence of a homotopy decomposition

$$
S \Omega S X \simeq S X_{\infty} \simeq \bigvee_{j=1}^{\infty} S\left(\bigwedge_{1}^{j} X\right)
$$

If X is a connected, compactly generated Hausdorff space, the spaces, $C_{n} X$, constructed in [3] give a weak homotopy approximation to $\Omega^{n} S^{n} X$. Using these and their stable combinatorial extension properties we derive a decomposition of $S^{\infty} C_{n} X$ similar to those of $[2 ; \S \S 3.6,3.7]$ in the case $n=\infty$.

In $\S 1$ we derive the stable decomposition from the existence of weak homotopy equivalences constructed in $\S 3$ and summarised in Theorems 3.1, 3.2. In $\S 2$ we recall the spaces, $C_{n} Y$, and define related spaces, $D_{n}(Y, A)$, where A is a closed subspace of Y. The $D_{n}(Y, A)$ are slightly larger than the $C_{n} Y$ and hence more convenient for the construction of maps into them. However, just as there are evaluation maps $S^{n} C_{n} X \rightarrow S^{n} X$ and $S^{n} \Omega^{n} S^{n} X \rightarrow S^{n} X$ so there is an evaluation map

$$
S^{n} D_{n}(Y, A) \rightarrow S^{n}(Y / A)
$$

This last map is defined and proved continuous in Proposition 2.1. The construction of the weak homotopy equivalences of $\S 3$ is made using the composition of the evaluation map with suitable suspension of combinatorially constructed maps into the $D_{n}(Y, A)$ spaces.

1. Let A and B be spaces. By a stable weak homotopy equivalence of A with B we mean an element

$$
x \in\left[S^{\infty} A, S^{\infty} B\right]=\underline{\lim }\left[S^{n} A, S^{n} B\right]
$$

which induces isomorphisms of all stable homotopy groups

$$
\pi_{i}\left(S^{\infty} A\right)=\left[S^{\infty} S^{i}, S^{\infty} A\right] \rightarrow\left[S^{\infty} S^{i}, S^{\infty} B\right]=\pi_{i}\left(S^{\infty} B\right)
$$

The spaces, $C_{n} X$, are filtered by closed subspaces, $F_{k} C_{n} X \subset F_{k+1} C_{n} X, \quad(k \geqslant 0)$.

Theorem 1.1. Let X be a connected compactly generated Hausdorff space. There is a stable weak homotopy equivalence,

$$
x \in\left[\mathrm{~S}^{\infty} C_{n} X, S^{\infty}\left(\bigvee_{j=1}^{\infty}\left(F_{j} C_{n} X / F_{j-1} C_{n} X\right)\right)\right]
$$

Proof. Put $B_{j}=F_{j} C_{n} X / F_{j-1} C_{n} X$. From Theorem 3.2, there is a filtered space, $\tilde{C}_{n} X$, which is homotopy equivalent to $C_{n} X$ as a filtered space, and there are
weak homotopy equivalences,

$$
\left\{\alpha_{k}: S^{l_{k}} F_{k} \tilde{C}_{n} X \rightarrow \bigvee_{j=1}^{k} S^{l_{k}} B_{j} ; k \geqslant 1\right\}
$$

with the following properties. The integers l_{k} monotonically increase with k and if $r=l_{k}-l_{k-1}$ then the restriction of α_{k} to $S^{l_{k}} F_{k-1} \widetilde{C}_{n} X$ is homotopic to $S^{r}\left(\alpha_{k-1}\right)$. Let i_{k} denote the canonical inclusion of the wedge,

$$
\bigvee_{j=1}^{k} B_{j} \subset \bigvee_{j=1}^{\infty} B_{j}
$$

Hence $\varliminf_{k}\left(S^{l_{k}}\left(i_{k}\right) \circ \alpha_{k}\right)$ determines an element of

$$
\varliminf_{\frac{1}{k}}\left[S^{\infty} F_{k} C_{n} X, S^{\infty}\left(\bigvee_{j=1}^{\infty} B_{j}\right)\right] .
$$

Choose x to be any inverse image of this element under the epimorphism

$$
\left[S^{\infty} C_{n} X, S^{\infty}\left(\bigvee_{j=1}^{\infty} B_{j}\right)\right] \rightarrow \frac{\varliminf_{k}}{k}\left[S^{\infty} F_{k} C_{n} X, S^{\infty}\left(\bigvee_{j=1}^{\infty} B_{j}\right)\right] .
$$

2. Let T be the category of based, compactly generated Hausdorff spaces and based maps. The base point, *, is required to be non-degenerate in the sense that ($X, *$) is a strong NDR pair and, in the notation of [$3 ; \mathrm{p} .162], u^{-1}\left[0, \frac{1}{2}\right]$ is contractible. Let I^{n} denote the unit n-cube and J^{n} its interior. An (open) little n-cube is a linear embedding, f, of J^{n}, with parallel axes. Thus $f=f_{1} \times \ldots \times f_{n}$ where $f_{i}: J \rightarrow J$ is a linear function, $f_{i}(t)=\left(y_{i}-x_{i}\right) \cdot t+x_{i}$ with $0 \leqslant x_{i}<y_{i} \leqslant 1$. A little n-cube and its image in J^{n} will be denoted by the same symbol. Let $\mathscr{C}_{n}(j) \in T$ be the set of those j-tuples, $\left\langle c_{1}, \ldots, c_{j}\right\rangle$, of little n-cubes such that the images, c_{r}, are pairwise disjoint. Denote by ${ }^{j} J^{n}$ the disjoint union of j copies of J^{n}. Regard $\left\langle c_{1}, \ldots, c_{j}\right\rangle$ as a map ${ }^{j} J^{n} \rightarrow J$ and topologise $\mathscr{C}_{n}(j)$ as a subspace of the space of all continuous functions ${ }^{j} J^{n} \rightarrow J^{n}$. Write $\mathscr{Z}_{n}(0)=\langle \rangle$, a point. Let $\alpha=\left(\frac{1}{4}, \ldots, \frac{1}{4}\right) \in J^{n}$ and $\beta=\left(\frac{3}{4}, \ldots, \frac{3}{4}\right) \in J^{n}$; then $\left(c_{1}(\alpha), c_{1}(\beta), \ldots, c_{j}(\alpha), c_{j}(\beta)\right) \in J^{2 n j}$. Considering $\mathscr{C}_{n}(j)$ as a subspace of $J^{2 n j}$ in this way gives the same topology [3; §4.2]. Denote by $\mathscr{D}_{n}(j)$ the set of j-tuples, $\left\langle c_{1}, \ldots, c_{j}\right\rangle$, (without the disjoint images requirement) topologised in either manner. Hence $\mathscr{C}_{n}(j) \subset \mathscr{D}_{n}(j),(j>0)$, and $\mathscr{D}_{n}(0)=\mathscr{C}_{n}(0)$.

Let $Y, A \in T$, with A a closed subspace of Y. Define $C_{n}(Y)$ and $D_{n}(Y, A)$ in the following manner. Form, in T, the disjoint union $Z_{n}=\bigcup_{j \geqslant 0} \mathscr{D}_{n}(j) \times Y^{j}$ and let \approx be the equivalence relation, on Z_{n}, generated by

$$
\begin{align*}
&\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{i-1}, *, y_{i+1}, \ldots, y_{m}\right) \tag{i}\\
& \approx\left(\left\langle c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{m}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{m}\right) \approx\left(\left\langle c_{\sigma(1)}, \ldots, c_{\sigma(m)}\right\rangle, y_{\sigma(1)}, \ldots, y_{\sigma(m)}\right) \tag{ii}
\end{equation*}
$$

for $\sigma \in \Sigma_{m}$, the symmetric group on m letters.
Put

$$
C_{n} Y=\left\{\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{m}\right] \in Z_{n} / \approx \text { such that }\left\langle c_{1}, \ldots, c_{m}\right\rangle \in \mathscr{C}_{n}(m)\right\}
$$

and
$D_{n}(Y, A)=\left\{\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{m}\right] \in Z_{n} / \approx\right.$ such that if $y_{i_{1}}, \ldots, y_{i_{k}}$ are all the co-ordinates not in A then $\left.\left\langle c_{i_{1}}, \ldots, c_{i_{k}}\right\rangle \in \mathscr{C}_{n}(k)\right\}$,
with subspace topologies, ([] \equiv equivalence class). These are filtered spaces with m-th filtrations, $F_{m} C_{n} Y$ and $F_{m} D_{n}(Y, A)$, given by the equivalence classes of points

$$
\bigcup_{j=0}^{m} \mathscr{D}_{n}(j) \times Y^{j}
$$

Let $S^{n} Y$ denote the n-th suspension, $S^{n} Y=\left(I^{n} / \partial I^{n}\right) \wedge Y$.
Proposition 2.1. The evaluation map, eval: $S^{n} D_{n}(Y, A) \rightarrow S^{n}(Y / A)$ defined by

$$
\text { eval }\left[t\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle y_{1}, \ldots, y_{m}\right]\right]=\left\{\begin{array}{c}
{\left[u, y_{j}\right] \text { if } c_{j}(u)=t \text { and } y_{j} \notin A} \\
* \text { ifno such } j \text { and } u \text { exist }
\end{array}\right.
$$

is continuous.
Proof. $\quad Y$ may be assumed compact.
(a) Suppose eval $\left[t\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle, y_{1}, \ldots, y_{m}\right]\right]=\left[u, y_{j}\right] \neq *$. If $t \in c_{s}$ only for $s=i_{p},(1 \leqslant p \leqslant k)$, take neighbourhoods $N\left(y_{j}\right) \subset(Y-A), N(t)$ and $N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right)$ such that $\left\langle c_{1}{ }^{\prime}, \ldots, c_{m}{ }^{\prime}\right\rangle \in N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right)$ implies

$$
N(t) \subset \bigcap_{p=1}^{k} c_{i_{p}}^{\prime}
$$

If $\left[t^{\prime}\left[\left\langle c_{1}{ }^{\prime}, \ldots, c_{m}{ }^{\prime}\right\rangle, y_{1}{ }^{\prime}, \ldots, y_{m}{ }^{\prime}\right]\right]$ is an element of

$$
\left[N(t) \times N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right) \times Y \times N\left(y_{j}\right) \times \ldots \times Y\right] \cap S^{n} D_{n}(Y, A)
$$

then eval $\left[t^{\prime}\left[\left\langle c_{1}{ }^{\prime}, \ldots\right\rangle \ldots y_{m}{ }^{\prime}\right]\right]=\left[\left(c_{j}\right)^{-1}\left(t^{\prime}\right), y_{j}{ }^{\prime}\right]$.
(b) Suppose eval $\left[t\left[\left\langle c_{1}, \ldots,\right\rangle \ldots y_{m}\right]\right]=*$ and t does not belong to any c_{i}. For any neighbourhood $N\left(\partial I^{n}\right) \subset I^{n}$ it is possible to find neighbourhoods $N(t), N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right)$ such that, for $\left\langle c_{1}{ }^{\prime}, \ldots, c_{m}{ }^{\prime}\right\rangle \in N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right), N(t) \cap c_{i}^{\prime}=\varnothing$ or $N(t) \subset c_{i}^{\prime}\left(N\left(\partial I^{\prime}\right)\right)$ for $1 \leqslant i \leqslant m$.
(c) Suppose eval $\left[t\left[\left\langle c_{1}, \ldots\right\rangle \ldots y_{m}\right]\right]=*$ and $t \in c_{s}$ only for $s=i_{p},(1 \leqslant p \leqslant k)$. For any neighbourhoods, $N\left(\partial I^{n}\right)$ and $N(A)$, it is possible to find neighbourhoods $N\left(y_{i_{p}}\right) \subset N(A),(1 \leqslant p \leqslant k)$, and $N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right)$ such that for

$$
\left\langle c_{1}^{\prime}, \ldots, c_{m}^{\prime}\right\rangle \in N\left(\left\langle c_{1}, \ldots, c_{m}\right\rangle\right),
$$

$c_{i} \cap c_{j}=\varnothing$ and $c_{i}^{\prime} \cap c_{j}^{\prime} \neq \varnothing$ together imply that $c_{i}^{\prime} \cap c_{j}^{\prime} \subset N\left(\partial I^{n}\right)$.
3. Let $(X, *) \in T$ and $u: X \rightarrow I$ be a function such that $u^{-1}(0)=*,((X, *)$ is an NDR pair, cf. [3; Appendix]). Let (Y, A) be a pair in T. Define $C_{n} X \subset C_{n} X \times[0, \infty)$ as the telescope $\bigcup_{i=1}^{\infty} F_{i} C_{n} X \times[i-1, i)$ with the filtration

$$
F_{m} \tilde{C}_{n} X=\bigcup_{i=1}^{m} F_{i} \times[i-1, \infty)
$$

It is clear from [3; Appendix] that $\widetilde{C}_{n} X$ and $C_{n} X$ are homotopy equivalent as filtered spaces. Let $v: \widetilde{C}_{n} X \rightarrow C_{n} X$ be the homotopy equivalence which collapses the telescope and $\pi: Y \rightarrow Y / A$ be the canonical projection.

In this section we prove the following result.

Theorem 3.1. Let $f: F_{m} C_{n} X \rightarrow Y$ be a map such that $f\left(F_{m-1} C_{n} X\right)=*$ and $f\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle x_{1}, \ldots, x_{m}\right] \in A$ if and only if $\min u\left(x_{i}\right) \leqslant \frac{1}{2}$. There exists a canonical family of maps, a stable combinatorial extension of f,

$$
\left\{G_{k}: S^{I_{k}} F_{k} \tilde{C}_{n} X \rightarrow S^{l_{k}}(Y / A)\right\} \text { each extending } S^{I_{k}}(\pi \circ f \circ v)
$$

with $G_{k} \mid S^{l_{k}}\left(F_{k-1} \tilde{C}_{n} X\right) \simeq S^{r}\left(G_{k-1}\right),\left(r=l_{k}-l_{k-1}\right)$.
Before proving Theorem 3.1 we make the following application.

Theorem 3.2. (cf. [4; §2.1]). If $\left\{l_{k}\right\}$ is the set of integers in Theorem 3.1 there exists a family of weak homotopy equivalences

$$
\left\{\alpha_{k}: S^{l_{k}} F_{k} \tilde{C}_{n} X \rightarrow \bigvee_{j=1}^{k} S^{l_{k}}\left(F_{j} C_{n} X / F_{j-1} C_{n} X\right)\right\}
$$

such that $\alpha_{k} \mid S^{l_{k}}\left(F_{k-1} \tilde{C}_{n} X\right) \simeq S^{r}\left(\alpha_{k-1}\right),\left(r=l_{k}-l_{k-1}\right)$.

Proof. Apply Theorem 3.1 to the canonical projection

$$
f_{m}: F_{m} C_{n} X \rightarrow F_{m} C_{n} X / F_{m-1} C_{n} X
$$

with A as the image of

$$
A^{\prime}=\left\{\left[\left\langle c_{1}, \ldots, c_{m}\right\rangle x_{1}, \ldots, x_{m}\right] \left\lvert\, \min u\left(x_{i}\right) \leqslant \frac{1}{2}\right.\right\}
$$

to produce maps $\beta_{m}: S^{l_{k}} F_{k} \widetilde{C}_{n} X \rightarrow S^{l_{k}}\left(F_{m} C_{n} X / A^{\prime}\right), \quad(1 \leqslant m \leqslant k)$, such that $\beta_{m} \mid S^{L_{k}}\left(F_{m} \widetilde{C}_{n} X\right)=S^{l_{k}}\left(\pi \circ f_{m} \circ v\right)$. Since ($X, *$) is a strong NDR pair, (cf. [3; §2, p. 162]) $A^{\prime} / F_{m-1} C_{n} X$ is contractible through itself and

$$
F_{m} C_{n} X / F_{m-1} C_{n} X \simeq F_{m} C_{n} X / A^{\prime}
$$

For $\left(t_{1}, t_{2}, \ldots\right) \in I^{l_{k}}, z \in F_{k} \tilde{C}_{n} X$ define

$$
\alpha_{k}\left[t_{1}, t_{2}, \ldots, z\right]=\left\{\begin{array}{cl}
\beta_{m}\left[2^{m} \cdot t_{1}-1, t_{2}, \ldots, z\right], & \text { if } t \in\left[\left(\frac{1}{2}\right)^{m},\left(\frac{1}{2}\right)^{m-1}\right] \\
* & \text { otherwise }
\end{array}\right.
$$

Filtering the wedge in the canonical manner makes α_{k} into a map of filtered spaces which is clearly a homotopy equivalence on successive quotients.

In order to construct the stable combinatorial extension of Theorem 3.1 we need some preliminary notation.
3.3. If U_{1}, \ldots, U_{k} are subsets of J^{n} and $0 \leqslant z_{i} \leqslant 1, \Sigma z_{i}=1$ then $\Sigma z_{i} . U_{i} \subset J^{n}$ is the subset, $\left\{y \in J^{n} \mid y=\Sigma z_{i} . y_{i} ; y_{i} \in U_{i}\right\}$.

For n-cubes, $c_{i}=U_{i}, \Sigma z_{i}, c_{i} \subset J^{n}$ is not in general an n-cube as it may not have parallel axes. However an n-cube can be constructed as follows. If \hat{c}_{i} is the centre of c_{i} there is a well-defined n-cube, c, centre $\Sigma z_{i} \cdot \hat{c}_{i}$ which is maximal subject to $c \subset \Sigma z_{i} . c_{i}$. When $z_{i}=0(i \neq j)$ then $c=c_{j}$. Henceforth the cube, c, will also be denoted by $\Sigma z_{i} . c_{i}$ when no ambiguity can occur.
3.4. For $k \geqslant m$ let $W_{k}=\left(w_{1}, \ldots, w_{p}\right)$, $\left(p={ }_{k} C_{m}\right.$, binomial coefficient $)$, be the ordered set of subsequences of $(1, \ldots, k)$ with exactly m elements, ordered as in [1]. That is, if $w_{r}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and $w_{s}=\left(\beta_{1}, \ldots, \beta_{m}\right)$ are elements of W_{k} then $r<s$ if and
only if there exists $u \leqslant m$ such that $\alpha_{v}=\beta_{v}(v>u)$ and $\alpha_{u}<\beta_{u}$. For $z=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in W_{k}$ write c_{z} for $\left\langle c_{\alpha_{1}}, \ldots, c_{\alpha_{m}}\right\rangle$ and x_{z} for $\left(x_{\alpha_{1}}, \ldots, x_{\alpha_{m}}\right) \in X^{m}$.
3.5. Define integers, $q_{k}(k \geqslant m)$, by $q_{k}=n(k=m, m+1)$ and $q_{k}=m . n$ $(k>m+1)$. Further, define $l_{k}(k \geqslant m)$ by $l_{m}=n$ and $l_{j}=l_{j-1}+1+q_{j},(j \geqslant m+1)$.
3.6. The proof of Theorem 3.1 is divided into four steps which we sketch as follows.

STEP 1. For $k \geqslant m$, construct $\phi_{k}: \mathscr{C}_{n}(k) \rightarrow \mathscr{C}_{q_{k}}(p),\left(p={ }_{k} C_{m}\right)$ such that $\phi_{k}\left\langle c_{1}, \ldots, c_{k}\right\rangle$ is a set of little q_{k}-cubes with disjoint closures.

STEP 2. Inductively construct

$$
\psi_{k}: \mathscr{C}_{n}(k) \times X^{k} \rightarrow \mathscr{D}_{l_{k}}(p), \quad\left(p={ }_{k} C_{m}\right),
$$

with the property that if

$$
\psi_{k}\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)=\left\langle c_{1}^{\prime}, \ldots, c_{p}^{\prime}\right\rangle
$$

and $w_{i_{1}}, \ldots, w_{i_{\mathrm{t}}} \in W_{k}$ are the only elements with $\min _{\alpha \in w} u\left(x_{\alpha}\right)>\frac{1}{2}$ then the closures of $c_{i_{1}}{ }^{\prime}, \ldots, c_{i_{t}}{ }^{\prime}$ are disjoint. ψ_{k} is constructed by a process of topologically joining ψ_{k-1} and ϕ_{k}.

STEP 3. Use ψ_{k} and the given map, f, to construct a map

$$
\mathscr{C}_{n}(k) \times X^{k} \rightarrow \mathscr{D}_{l_{k}}(p) \times Y^{p}
$$

which induces $\Psi_{k}: F_{k} \widetilde{C}_{n} X \rightarrow D_{n}(Y, A)$.
STEP 4. Use the evaluation map and Ψ_{k} to construct G_{k}.
Proof of Theorem 3.1.
STEP 1. Take for ϕ_{m} the constant map to $\left\langle\left(\frac{1}{4}, \frac{3}{4}\right)^{n}\right\rangle$. Define

$$
\phi_{m+1}\left\langle c_{1}, \ldots, c_{m+1}\right\rangle=\left\langle c_{m+1}^{\prime}, c_{m}^{\prime}, \ldots, c_{1}^{\prime}\right\rangle
$$

where $c_{j}{ }^{\prime}$ is obtained from c_{j} by shrinking it linearly towards its centre to reduce its diameter by half. Let $\gamma\left\langle c_{1}, \ldots, c_{m}\right\rangle=\left(z_{1}, \ldots, z_{m}\right) \in\left(J^{n}\right)^{m}$ when z_{j} is the centre of c_{j}. For $k>m+1$ map $\mathscr{C}_{n}(k)$ into $\mathscr{C}_{m . n}(p)$ by mapping $\left\langle c_{1}, \ldots, c_{k}\right\rangle$ to $\left\langle c_{1}{ }^{\prime}, \ldots, c_{p}{ }^{\prime}\right\rangle$, where, if $w_{j}=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in W_{k}, c_{j}^{\prime}$ has centre $\gamma\left(c_{w_{j}}\right)$ and where each side of each little q_{k}-cube, $c_{j}{ }^{\prime}$, is of length d and cubes at these centres with all sides of length $2 . d$ would " just touch ". Note that a permutation of ($1, \ldots, k$) (or c_{1}, \ldots, c_{k}) induces a permutation of c_{1}, \ldots, c_{p} which acts on these in the same way as the induced permutation acts on W_{k}.

STEP 2. Define ψ_{m} as the composition of ϕ_{m} with the projection onto $\mathscr{C}_{n}(m)$.
Suppose ψ_{k-1} is constructed, $k \geqslant m+1$ and $0<e<\frac{1}{4}$. From this data the tilde construction on a little s-cube, c, is $\tilde{c}=c \times\left(\frac{1}{2}-e, \frac{1}{2}+e\right)^{1+q_{k}}$ if $s=l_{k-1}$ and $\tilde{c}=\left(\frac{1}{2}-e, \frac{1}{2}+e\right)^{l_{k-1}} \times\left(\frac{3}{4}-e, \frac{3}{4}+e\right) \times c$ if $s=q_{k}$. The tilde construction produces little l_{k}-cubes from cubes of smaller dimension. The map ψ_{k} will be constructed by joining l_{k}-cubes produced from ψ_{k-1} and ϕ_{k} by the tilde construction.

If $\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right) \in \mathscr{C}_{n}(k) \times X^{k}$ and $1 \leqslant j \leqslant p$ define $\chi_{j} \in \mathscr{D}_{l_{k-1}}(1)$ in the
following manner. If not all the $u\left(x_{g}\right)$ are zero ($g \notin w_{j} \in W_{k}$) define

$$
\chi_{j}=\left(1 / \Sigma u\left(x_{g}\right)\right) \cdot \Sigma_{g} u\left(x_{g}\right) \cdot \chi_{j, g}
$$

where the sum is taken over $g \notin w_{j}$ and $\chi_{j, g}$ is the r-th cube in

$$
\psi_{k-1}\left(\left\langle c_{1}, \ldots, c_{g-1}, c_{g+1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{g-1}, x_{g+1}, \ldots, x_{k}\right)
$$

w_{j} being the r-th m-tuple in the W_{k-1} formed from ($1, \ldots, g-1, g+1, \ldots, k$). If $u\left(x_{g}\right)=0,\left(g \notin w_{j}\right)$ put χ_{j} as the common value of the r-th entry of any $\psi_{k-1}\left(\left\langle d_{1}, \ldots, d_{k-1}\right\rangle z_{1}, \ldots, z_{k-1}\right)$, where $z_{\alpha_{i}}=x_{\alpha_{i}}$ if $w_{j}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ and z_{s} is the base point otherwise. This common value is the image of $\left(\frac{1}{4}, \frac{3}{4}\right)^{n}$ under successive tilde operations and can be arranged, in the inductive step, to be $\left(\frac{1}{4}, \frac{3}{4}\right)^{n} \times\left(\frac{1}{8}, \frac{5}{8}\right)^{l_{k-1-n}}$, (cf. the penultimate sentence of Step 2).

Now define $\psi_{e, k}\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right) \in \mathscr{D}_{l_{k}}(p)$ to have j-th entry,

$$
v_{j} \cdot\left(\tilde{c}_{j}^{\prime}\right)+\left(1-v_{j}\right) \cdot \tilde{\chi}_{j}
$$

where $\phi_{k}\left\langle c_{1}, \ldots, c_{k}\right\rangle=\left\langle c_{1}{ }^{\prime}, \ldots, c_{p}^{\prime}\right\rangle$ and $v_{j}=\min \left(1,2 \min _{g \neq w_{j}} u\left(x_{g}\right)\right)$.
For fixed e it is straightforward, although tedious, to check that $\psi_{e, k}$ is continuous. However, $\psi_{e, k}$ does not necessarily satisfy the disjoint-closure condition required of the ψ_{k} in Step 2. We proceed to amend $\psi_{e, k}$ to produce a ψ_{k} satisfying this condition.

For each $\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ put $E\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ equal to the supremum of those e such that $\psi_{e, k}\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ does satisfy the disjointclosure condition. The function E is not necessarily continuous. However, since ψ_{k-1} and ϕ_{k} satisfy disjoint-closure conditions, E is strictly positive. Also for $S \subset(1, \ldots, k) E$ is continuous on $\mathscr{C}_{n}(k) \times Q_{S}$ where $Q_{S} \subset X^{k}$ is $\left\{\left(x_{1}, \ldots, x_{k}\right) \left\lvert\, u\left(x_{j}\right) \leqslant \frac{1}{2}\right.\right.$ if and only if $j \in S\}$. Hence, using a canonical partition of unity on I^{k}, there exists a continuous function, $e^{\prime}: \mathscr{C}_{n}(k) \times X^{k} \rightarrow\left(0, \frac{1}{4}\right]$ such that $e^{\prime} \leqslant E / 2$. Produce a function, e, invariant under the action of the symmetric group by defining

$$
e\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)=\min _{\sigma \in \Sigma_{k}} e^{\prime}\left(\left\langle c_{\sigma(1)}, \ldots, c_{\sigma(k)}\right\rangle x_{\sigma(1)}, \ldots, x_{\sigma(k)}\right)
$$

Using $e\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ at the point $\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ in the formula for $\psi_{e k}$ defines the function ψ_{k}.

To ensure the inductive definition of the $\left\{\chi_{j}\right\}$, as described, we need to insist that $e\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)=\frac{1}{8}$ if all but m of the $\left\{x_{i}\right\}$ are the base point. If $\psi_{k}\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)=\left\langle c_{1}{ }^{\prime}, \ldots, c_{p}{ }^{\prime}\right\rangle$ note that a permutation of $(1, \ldots, k)$ induces a permutation of $\left(c_{1}{ }^{\prime}, \ldots, c_{p}{ }^{\prime}\right)$ which acts in the same manner as the induced permutation on W_{k}.

STEP 3. Using the maps of Step 2 and $f: F_{m} C_{n} X \rightarrow Y$ define

$$
\Psi_{k}: F_{k} \widetilde{C}_{n} X \rightarrow D_{l_{k}}(Y, A)
$$

as follows.
Define

$$
\Psi_{k}\left(F_{m-1} \tilde{C}_{n} X\right)=*
$$

$$
\Psi_{k}\left(\left[\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right] t\right)=\Psi_{k}\left(\left[\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right] k-1\right)
$$

if $t \geqslant k-1$, and for $(m \leqslant i \leqslant k-1), s={ }_{i} C_{m}, t \in[i-1, i], W_{s}=\left(w_{1}, \ldots, w_{s}\right)$ put

$$
\Psi_{k}\left(\left[\left\langle c_{1}, \ldots, c_{i}\right\rangle x_{1}, \ldots, x_{i}\right] t\right)
$$

equal to

$$
\left[\left\langle(i-t) \cdot c^{\prime}+(1+t-i) c^{\prime \prime}\right\rangle f\left[c_{w_{1}}, x_{w_{1}}\right], \ldots, f\left[c_{w_{s}}, x_{w_{s}}\right]\right]
$$

where $\left.\psi_{i}\left(\left\langle c_{1}, \ldots, c_{i}\right\rangle x_{1}, \ldots, x_{i}\right) \times(0,1)^{l_{k}-l_{i}}\right)=\left\langle c^{\prime}\right\rangle$ and the j-th cube, $c_{j}^{\prime \prime}$, in $\left\langle c^{\prime \prime}\right\rangle$ is the j-th cube in $\psi_{i+1}\left(\left\langle c_{1}, \ldots, c_{i}, c_{i+1}\right\rangle x_{1}, \ldots, x_{i}, *\right) \times(0,1)^{l_{k}-l_{i+1}}$. Note that $c_{j}^{\prime \prime}$ is independent of c_{i+1}. This map is well defined since $\psi_{k}\left(\left\langle c_{1}, \ldots, c_{k}\right\rangle x_{1}, \ldots, x_{k}\right)$ behaves well under permutations of $(1, \ldots, k)$ as remarked in Step 2. Also the maps induced by ψ_{k} and $\psi_{k-1} \times(0,1)^{l_{k}-l_{k-1}}$ from $F_{k-1} C_{n} X$ to $D_{l_{k}}(Y, A)$ are homotopic (by the linear homotopy featured in the definition of Ψ_{k}) since when one of the x_{i} is the base point ψ_{k} is $\tilde{\psi}_{k-1}$ in the coordinates for which $f\left[c_{w_{j}}, x_{w_{j}}\right] \neq *$. Hence if

$$
\sigma: D_{l_{k}}(Y, A) \rightarrow D_{l_{k+1}}(Y, A)
$$

is the map induced by sending a little cube, c, to $c \times(0,1)^{t_{k+1}-l_{k}}$ then

$$
\Psi_{k+1} \mid F_{k} \tilde{C}_{n} X \simeq \sigma \circ \Psi_{k}
$$

$S T E P$ 4. Put G_{k} equal to the composition (eval) $\circ S^{t_{k}}\left(\Psi_{k}\right)$. The homotopy relation between G_{k} and G_{k+1} follows from the behaviour of Ψ_{k}, Ψ_{k+1} and σ remarked in Step 3.

Remark 3.6. Put $t_{m}=n+1, t_{m+1}=2 n+3$ and $t_{j}=t_{j-1}+1+m .(n+1)$, $(j>m+1)$. For $1 \leqslant j \leqslant n+1$, the map which sends a little n-cube, $c=f_{1} \times \ldots \times f_{n}$ to

$$
f_{1} \times \ldots \times f_{j-1} \times(0,1) \times f_{j} \times \ldots \times f_{n}
$$

induces maps $\sigma_{j}: F_{m} C_{n} X / A^{\prime} \rightarrow F_{m} C_{n+1} X / A^{\prime}$ and $\sigma_{j}: F_{k} \widetilde{C}_{n} X \rightarrow F_{k} \widetilde{C}_{n+1} X$. For $g: S^{l_{k}} V \rightarrow S^{l_{k}} Z$ let $S^{a}(g),\left(a=t_{k}-l_{k}\right)$ be the a-fold suspension of g using as suspension coordinates in $I^{t_{k}}$ those in positions $j, t_{m}+j+1, t_{k}+1+j+r .(n+1)$, ($0 \leqslant r \leqslant m-1 ; k \geqslant m+1$).
With this notation a linear homotopy between little cubes yields a homotopy commutative diagram

$$
\begin{array}{ccc}
S^{t_{k}} F_{k} \tilde{C}_{n} X & \xrightarrow{S^{a}\left(\beta_{m}\right)} & S^{t_{k}}\left(F_{m} C_{n} X / A^{\prime}\right) \\
S^{t_{k}}\left(\sigma_{j}\right) \downarrow & & \downarrow S^{t_{k}}\left(\sigma_{j}\right) \\
S^{t_{k}} F_{k} \tilde{C}_{n+1} X & \longrightarrow & S_{m}
\end{array} S^{t_{k}}\left(F_{m} C_{n+1} X / A^{\prime}\right),
$$

where β_{m} is as in Theorem 3.2 (proof).

References

1. I. M. James, " Reduced Product Spaces ", Ann. of Math., 62 (1955) 170-197.
2. D. S. Kahn and S. B. Priddy, "Applications of the transfer to stable homotopy theory ", Bull. Amer. Math. Soc., 78 (1972), 981-987.
3. J. P. May, Geometry of Iterated Loop Spaces, (Springer Lecture Notes in Mathematics, vol. 271).
4. V. P. Snaith, " Some Nilpotent \boldsymbol{H}-spaces ", (to appear).

Emmanuel College,

Cambridge.

