ON THE HOMOLOGY INVARIANTS OF KNOTS

By H. SEIFERT (Heidelberg)

[Received 10 January 1949]

1. Let \(k \) be an oriented knot in 3-dimensional euclidean space \(\mathbb{R}^3 \) and \(V \) a closed tubular neighbourhood of \(k \). The boundary of \(V \) is a torus \(T \), and \(W = \mathbb{R}^3 - V + T \) is the closed complement of \(V \).

An oriented Jordan curve (i.e. a homeomorph of a circle) on \(T \) which bounds on \(V \) (on \(\mathbb{R}^3 - V + T \)) but not on \(T \) is called a meridian (longitudinal circuit). If \(m_1 \) and \(m_2 \) are any two meridians, one has \(m_1 \sim \pm m_2 \) on \(T \); likewise \(q_1 \sim \pm q_2 \) on \(T \) for any pair \(q_1, q_2 \) of longitudinal circuits.

By a topological mapping \(\phi \) one can carry \(V \) into a tubular neighbourhood \(V^* \) of an unknotted curve \(k^* \) in such a way that the longitudinal circuit of \(V \) is carried into a longitudinal circuit \(q^* \) of \(V^* \). The 3-space in which \(V^* \) lies will be designated by \(\mathbb{R}^3^* \). Fig. 1 and Fig. 2 show the situation in the case when \(k \) is a trefoil knot.

Let \(l \) be an arbitrary knot in the interior of \(V \). Then \(l \), as a 1-cycle in \(V \), is homologous in \(V \) to some multiple of \(k \), say

\[l \sim nk \quad \text{on } V. \] \hspace{1cm} (1)

By a suitable orientation of \(l \) we can arrange that \(n \geq 0 \). Fig. 3 shows an example in which \(k \) is a trefoil knot and \(n = 0 \).

The knot \(l \) is carried by the topological mapping \(\phi \) into a knot \(l^* \) in the interior of \(V^* \). The purpose of this paper is to prove the two following theorems:

Theorem I. For \(n = 0 \) the homology invariants of \(l \) and \(l^* \) are the same.

In other words: if \(M_g \) and \(M_g^* \) are the \(g \)-sheeted cyclic covering manifolds† of \(R^3 \) with the branch lines \(l \) and \(l^* \) respectively, the homology groups and linking invariants of \(M_g \) and \(M_g^* \) are equal for

ON THE HOMOLOGY INVARIANTS OF KNOTS

25

\(g = 2, 3, \ldots \), and the homology groups of \(M_\infty \) and \(M^* \), considered as groups with operators,† are isomorphic.

Theorem II. Between the \(L \)-polynomials \(\Delta_l(x) \), \(\Delta_{l^*}(x) \), \(\Delta_k(x) \) of the knots \(l, l^* \), and \(k \) the following equation holds

\[
\Delta_l(x) = \Delta_{l^*}(x) \Delta_k(x^n).
\]

(2)

In the case \(n = 0 \) formula (2) reduces to

\[
\Delta_l(x) = \Delta_{l^*}(x).
\]

(3)

For we then have

\[
\Delta_k(x^n) = \Delta_k(x^0) = \Delta_k(1).
\]

But it is known that \(\Delta_k(1) = 1 \) for any knot \(k \). Besides (3) is a consequence of Theorem I.

In the special case when the knot \(l \) lies on the boundary \(T \) of \(V \), formula (2) expresses a theorem due to Burau.† A theorem due to Alexander§ to the effect that the \(L \)-polynomial of a composite knot is the product of the \(L \)-polynomials of the factors is another special case of Theorem II (here \(n = 1 \)).

Theorem I illustrates the limits of the homology invariants of a knot in so far as the properties of knot \(k \) do not appear in the homology invariants of \(l \). A special case of this fact is the theorem of Whitehead's|| on the \(L \)-polynomial of a 'doubled knot'.

2. Proof of Theorem I.

The \(g \)-sheeted cyclic covering manifold \(M_g \) is the union of the complexes \(V_g \) and \(W_g \) corresponding to the decomposition of \(R^3 \) into \(V \) and \(W \). \(V_g \) is the \(g \)-sheeted cyclic covering manifold of \(V \) with branch line \(l \). \(W_g \) decomposes into \(g \) homeomorphs \(W', W'', \ldots, W^g \) of \(W \), since every closed curve of \(W \) is homologous to zero in \(R^3 - l \), \(n \) being equal to zero. The intersection of \(V_g \) and \(W^g \) is a torus \(T_g \) (\(\gamma = 1, 2, \ldots, g \)). Let \(g_x \) be the covering of the longitudinal circuit \(g \) lying on \(T_g \), and let \(a_1, a_2, \ldots, a_r \) be a set of generators of the homology

group of dimension 1 of \(V_g \). Then the homology group of \(V_g \) is defined by a set of \(m \) relations
\[
\sum_{\tau=1}^{t} \rho_{\mu \tau} a_{\tau} \sim 0 \quad \text{on} \quad V_g \quad (\mu = 1, 2, \ldots, m). \tag{4}
\]
Let
\[
g_{\gamma} \sim \sum_{\tau=1}^{t} \sigma_{\gamma \tau} a_{\tau} \quad \text{on} \quad V_g \quad (\gamma = 1, 2, \ldots, g). \tag{5}
\]
Then the homology group of \(M_g \) is defined by the relations (4) and
\[
\sum_{\tau=1}^{t} \sigma_{\gamma \tau} a_{\tau} \sim 0 \quad \text{on} \quad M_g \quad (\gamma = 1, 2, \ldots, g). \tag{6}
\]

On the other hand let us consider the \(g \)-sheeted cyclic covering manifold \(M_g^* = V_g^* + W_g^* \) of \(R^3 \) with branch line \(l^* \). Corresponding to the mapping \(\phi \) of \(V \) on \(V^* \) (cf. § 1) there exists a homeomorphic mapping \(\phi_g \) of \(V_g \) on \(V_g^* \) which carries the torus \(T \) into the torus \(T^* \), the longitudinal circuit \(q \) into the longitudinal circuit \(q^* \) and the set of generators \(a_1, a_2, \ldots, a_t \) of \(V \) into the set of generators \(a_1^*, a_2^*, \ldots, a_t^* \) of \(V_g^* \). Then we have the relations
\[
\sum_{\tau=1}^{t} \rho_{\mu \tau} a_{\tau}^* \sim 0 \quad \text{on} \quad V_g^* \quad (\mu = 1, 2, \ldots, m) \tag{4^*}
\]
and
\[
g_{\gamma}^* \sim \sum_{\tau=1}^{t} \sigma_{\gamma \tau} a_{\tau}^* \quad \text{on} \quad V_g^* \quad (\gamma = 1, 2, \ldots, g), \tag{5^*}
\]
since \(\phi_g \) is a homeomorphic mapping. It follows that the homology groups of \(M_g \) and \(M_g^* \) are isomorphic.

In order to determine the linking invariants of \(M_g \), we consider (besides \(a_1, a_2, \ldots, a_t \) \(t \) 1-dimensional chains \(a_1', a_2', \ldots, a_t' \) on \(V_g \) such that \(a_{\tau}^* \sim a_{\tau} \) on \(V_g \) and \(a_\tau \) and \(a_{\lambda} \) do not intersect for \(\tau, \lambda = 1, 2, \ldots, t \). Because of formulae (4) and (5), there are 2-chains \(A_1, A_2, \ldots, A_m \) and \(B_1, B_2, \ldots, B_g \) on \(V_g \) such that
\[
\text{boundary } A_\mu = \sum_{\tau=1}^{t} \rho_{\mu \tau} a_{\tau} \quad (\mu = 1, 2, \ldots, m)
\]
and
\[
\text{boundary } B_\gamma = \sum_{\tau=1}^{t} \sigma_{\gamma \tau} a_{\tau} - g_{\gamma} \quad (\gamma = 1, 2, \ldots, g).
\]
Then the linking invariants of \(M_g \) are determined by the \(t(t+g) \) intersection numbers
\[
S(A_\tau, a_\nu') \quad S(B_\gamma, a_\nu')
\]
\((\tau, \nu = 1, 2, \ldots, t; \gamma = 1, 2, \ldots, g)\).

If we define \(A_\tau^*, B_\gamma^* \) as the images of \(a_\tau', A_\gamma, B_\gamma \) under the mapping \(\phi_g \), it follows that
\[
S(A_\tau, a_\nu') = S(A_\tau^*, a_\nu'^*), \quad S(B_\gamma, a_\nu') = S(B_\gamma^*, a_\nu'^*),
\]
provided that the orientation of \(V_g \) is carried into the orientation of \(V_g^* \) under the mapping \(\phi \). Therefore the linking invariants of \(M_g \) and \(M_g^* \) are the same.

The assertion that the 1-dimensional homology groups of \(M_\infty \) and \(M_\infty^* \) are operator isomorphic follows from the fact that they are obtained from the operator isomorphic groups of \(V_\infty \) and \(V_\infty^* \) by adding the relations \(q_\gamma \sim 0 \) and \(q_\gamma^* \sim 0 \) \((-\infty < \gamma < +\infty \)).

3. For the proof of formula (2) we make use of the following facts (cf. Seifert):† For any knot \(c \) there can always be found an orientable surface \(F \) without singularities whose boundary is \(c \). By cutting \(R^3 \) along \(F \) we obtain a bounded 3-dimensional manifold \(\overline{M} \) whose boundary consists of the two exposed faces of the cut, i.e. of \(F \) and a homeomorphic copy \(xF \) of \(F \). Let \(h \) be the genus of \(F \), let \(a_1, a_2, \ldots, a_{2h} \) be a (1-dimensional) homology basis of \(F \) and let \(xa_1, xa_2, \ldots, xa_{2h} \) be the corresponding basis of \(xF \). Then there are homologies of the form

\[
a_i - \sum_{j=1}^{2h} \gamma_{ij} (a_j - xa_j) \sim 0 \quad \text{in} \quad \overline{M} \quad (i = 1, 2, \ldots, 2h).
\]

(7)

All homologies between \(a_1, a_2, \ldots, a_{2h}, xa_1, \ldots, xa_{2h} \) that exist in \(\overline{M} \) are consequences of (7).

The matrix \(\Gamma = (\gamma_{ij}) \), from which all homology invariants of \(c \) can be derived, may be called a homology matrix of \(c \). The matrix \(\Gamma \) is uniquely determined up to the choice of the spanning surface \(F \) and its homology basis \(a_1, a_2, \ldots, a_{2h} \). The \(L \)-polynomial \(\Delta_c(x) \) of \(c \) is the coefficient determinant of the system (7)

\[
\Delta_c(x) = |E - \Gamma + z\Gamma|.
\]

(8)

where \(E \) is the unit matrix of order \(2h \).

4. We may assume \(n > 0 \), since for \(n = 0 \) Theorem II is a consequence of Theorem I. We begin by constructing an oriented non-singular surface \(F_n^* \) bounded by \(l^* \). To this end we choose on the boundary \(T^* \) of \(V^* \) a set of \(n \) non-intersecting longitudinal circuits \(q_1^*, q_2^*, \ldots, q_n^* \) and orient them so that they all become homologous to \(k^* \) in \(V^* \). Since we have the homology \(l^* \sim \sum_{r=1}^{n} q_r^* \) in \(V^* \), it follows that there exists in \(V^* \) an oriented non-singular surface \(F_n^* \) with boundary \(l^* - \sum_{r=1}^{n} q_r^* \). From \(F_n^* \), we obtain the desired surface \(F_n \) by

adjoining \(n \) non-intersecting 2-cells \(F_{q_1}, F_{q_2}, \ldots, F_{q_n} \) which lie in \(W^* = R^3* - V^* + T^* \) and have the boundaries \(q_1^*, q_2^*, \ldots, q_n^* \) respectively.

Next we construct a surface \(F \) bounded by \(l \). The homeomorphic mapping \(\phi^{-1} \) of \(V^* \) upon \(V \) carries the surface \(F_{q_i}^* \) into a surface \(F_{q_i}^* \) whose boundary consists of \(l \) and \(n \) longitudinal circuits \(q_1, q_2, \ldots, q_n \) of \(V \), images of \(q_1^*, q_2^*, \ldots, q_n^* \) respectively. Since \(q_i \sim 0 \) in \(W \), there exists an oriented non-singular surface \(F_{q_i}^* \) in \(W \) with boundary \(q_i \). By an isotopic deformation \(F_{q_i} \) can be carried into a 'parallel' surface \(F_{q_i} \).

\[\begin{array}{c}
q_3 \\
q_2 \\
q_1 \\
V \\
q_2 \\
q_3 \\
V \\
q_4 \\
\end{array} \]

By a second deformation \(F_{q_3} \) can be carried into a surface \(F_{q_3} \) in \(W \) with boundary \(q_3 \) such that \(F_{q_3} \) intersects neither \(F_{q_i} \) nor \(F_{q_i}^* \), and so on. \(F_{q_i}, F_{q_2}, F_{q_3}, \ldots, F_{q_n} \) form together an orientable non-singular surface \(F \) bounded by \(l \). Fig. 4 shows the situation in a schematic cross-section; \(F_{q_3}^* \) is omitted and \(n = 3 \).

The genus of \(F \) is obviously

\[h_* + nh_k, \]

where \(h_* \) and \(h_k \) denote the genera of \(F_{q_i}^* \) and \(F_{q_i} \) respectively.

5. I shall now construct a homology basis of dimension 1 on \(F \). Let

\[a_1^{(1)}, a_2^{(1)}, \ldots, a_n^{(1)} \]

be a homology basis on \(F_{q_i} \), and

\[a_1^{(v)}, a_2^{(v)}, \ldots, a_{2n}^{(v)} \quad (v = 1, 2, \ldots, n) \]

the basis on \(F_{q_i}^* \) which corresponds to it with respect to the above-mentioned deformation of \(F_{q_i} \) into \(F_{q_i}^* \). On \(F_* \) we select a homology basis

\[b_1^*, b_2^*, \ldots, b_{2n}^* \]

where \(\alpha \) and \(\alpha^* \) denote the genus.
ON THE HOMOLOGY INVARIANTS OF KNOTS

One can assume that these chains all lie on F^*, since the 2-cells $F_q^*, F_q^*, \ldots, F^*_n$ can obviously be avoided. By the homeomorphic mapping ϕ^* of V^* on V the chains (10) are carried into the chains

$$b_1, b_2, \ldots, b_{2h^*}$$ \hspace{1cm} (11)

on F^*. The chains (9) and (11) constitute the desired homology basis of F^*.

6. In order to obtain the L-polynomial of the knot I we cut R^3 along the surface F^* according to the general rule of § 3. I shall use the following notation. By the cutting process the complexes R^3, V, W, T go into $\tilde{R}^3, \tilde{V}, \tilde{W}, \tilde{T}$. The two exposed faces of the cut are designated by F^* and $x F^*$. F^* consists of the $n+1$ surfaces $F_{q1}^*, F_{q2}^*, \ldots, F_{qn}^*$, and similarly $x F^*$ is the union of the surfaces $xF_{q1}^*, xF_{q2}^*, \ldots, xF_{qn}^*$. The homology basis $a^{(1)}_1, a^{(1)}_2, \ldots, a^{(1)}_{2h^*}, b_1, b_2, \ldots, b_{2h^*}$ of F^* corresponds to the homology basis $xa^{(1)}_1, xa^{(1)}_2, \ldots, xa^{(1)}_{2h^*}, xb_1, xb_2, \ldots, xb_{2h^*}$ of xF^*. The notation used in R^3* differs only in the addition of a superscript star.

7. In \tilde{R}^3* we have relations of the form (cf. § 3)

$$b_i^* - \sum_{j=1}^{2h^*} \gamma_{ij}^*(b_j^* - xb_j^*) \sim 0 \hspace{1cm} (i = 1, 2, \ldots, 2h^*).$$ \hspace{1cm} (12)

The homology matrix of the knot I^* is

$$\Gamma^* = (\gamma_{ij}^*).$$ \hspace{1cm} (13)

The left side of (12), being a chain in \tilde{V}^* and homologous to zero in $\tilde{R}^3* = \tilde{V}^* + \tilde{W}^*$, must be homologous to a chain on $\tilde{V}^* \cap \tilde{W}^* = \tilde{T}^*$. Thus it is homologous to a linear combination of the chains $q_1^*, q_2^*, \ldots, q_{2h^*}$:

$$b_i^* - \sum_{j=1}^{2h^*} \gamma_{ij}^*(b_j^* - xb_j^*) \sim \sum_{j=1}^{2h^*} \alpha_j q_j^* \hspace{1cm} \text{on } \tilde{V}^*. \hspace{1cm} (14)$$

By the homeomorphic mapping ϕ^* of V^* on V the homology (14) corresponds to the following homology on \tilde{V}:

$$b_i - \sum_{j=1}^{2h^*} \gamma_{ij}^*(b_j - xb_j) \sim \sum_{j=1}^{2h^*} \alpha_j q_j \hspace{1cm} \text{on } \tilde{V}. \hspace{1cm} (15)$$

If we consider this homology in $\tilde{R}^3 = \tilde{V} + \tilde{W}$, it simplifies to

$$b_i - \sum_{j=1}^{2h^*} \gamma_{ij}^*(b_j - xb_j) \sim 0 \hspace{1cm} \text{in } \tilde{R}^3 \hspace{1cm} (i = 1, 2, \ldots, 2h^*), \hspace{1cm} (16)$$

since $q_j \sim 0$ in \tilde{W}.

We still need the homologies belonging to the $a_i^{(v)}$. They have the following general form (cf. § 3):

$$a_i^{(v)} - \sum_{j=1}^{2h_k} \sum_{\mu=1}^{n} \gamma_{ij}^{(v)} (a_j^{(\mu)} - xa_j^{(\mu)}) \sim \sum_{j=1}^{2h_k} \gamma_{ij}^{(v)} (b_j - xb_j) \quad \text{in } \mathbb{R}^2. \quad (17)$$

The left side of (17) is a chain in \overline{W}, the right side a chain in V. Therefore there is a certain chain on $V \cap \overline{W} = T$ to which either side is homologous (in V or \overline{W} respectively). The most general such chain is a linear combination of q_1, q_2, \ldots, q_n, but these are ~ 0 in \overline{W}. So it follows that:

$$a_i^{(v)} - \sum_{j=1}^{2h_k} \sum_{\mu=1}^{n} \gamma_{ij}^{(v)} (a_j^{(\mu)} - xa_j^{(\mu)}) \sim 0 \quad \text{in } \overline{W}, \quad (i = 1, 2, \ldots, 2h_k; \nu = 1, 2, \ldots, n). \quad (18)$$

In order to determine the matrices

$$\Gamma^{\nu\mu} = (\gamma_{ij}^{(v)})$$

we identify in \overline{W} the surfaces F_{1q_1} and xF_{1q_1}, F_{2q_2} and xF_{2q_2}. Hereby \overline{W} goes into a complex \overline{W}_1, which may be described as the complex W cut along F_{1q_1}. The chains $a_i^{(\mu)}$ and $xa_j^{(\mu)}$ are thereby identified ($\mu = 2, 3, \ldots, n$), so that (18) reduces to

$$a_i^{(1)} - \sum_{j=1}^{2h_k} \gamma_{ij}^{(1)} (a_j^{(1)} - xa_j^{(1)}) \sim 0 \quad \text{in } \overline{W}_1, \quad (i = 1, 2, \ldots, 2h_k). \quad (19)$$

But this is exactly the system of relations (7) formed for the knot q_1 and the surface F_{1q_1}. So we see from (19) that Γ^{11} is just the homology matrix of q_1, or, what is the same thing, of k (k and q_1 are equivalent knots, since k can be deformed in V into q_1). If we designate the homology matrix of k by Γ_k, we have the result $\Gamma^{11} = \Gamma_k$, and in the same way one proves

$$\Gamma^{\nu\nu} = \Gamma_k \quad (\nu = 1, 2, \ldots, n). \quad (20)$$

Now we note that the homologies

$$xa_i^{(\nu)} \sim a_i^{(\nu+1)} \quad \text{in } \overline{W}, \quad (i = 1, 2, \ldots, 2h_k; \nu = 1, 2, \ldots, n-1) \quad (21)$$

hold, provided that the q_v have been enumerated in the right way. But we know that (16) and (18) are a complete system of homologies in \mathbb{R}^2 between the chains $b_i, a_i^{(v)}$, $xb_i, xa_i^{(v)}$. So (21) must be a consequence of (16) and (18) and therefore, because of the special form (16) and (18), of (18) alone.

If we write the variables $a_i^{(v)}$ and $xa_i^{(v)}$ in the order

$$a_i^{(1)}, a_i^{(2)}, \ldots, a_i^{(n)}; xa_i^{(1)}, xa_i^{(2)}, \ldots, xa_i^{(n)},$$
the coefficient matrices of (18) and (21) are

\[
\begin{array}{cccc|ccc}
E - \Gamma_k & - \Gamma^{12} & - \Gamma^{1n} & \Gamma_k & \Gamma^{12} & \Gamma^{1n} \\
- \Gamma^{21} & E - \Gamma_k & - \Gamma^{2n} & \Gamma_k & \Gamma^{21} & \Gamma^{2n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
- \Gamma^{n1} & - \Gamma^{n2} & E - \Gamma_k & \Gamma^{n1} & \Gamma^{n2} & \Gamma_k \\
\end{array}
\]

\text{(22)}.

and

\[
\begin{array}{ccc|ccc}
0 & -E & 0 & 0 & E & 0 & 0 \\
0 & 0 & -E & 0 & 0 & E & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & -E & 0 & E & 0 \\
\end{array}
\]

\text{(23)}.

In both matrices we add the right half to the left and obtain

\[
\begin{array}{ccc|ccc}
E & 0 & 0 & \Gamma_k & \Gamma^{12} & \Gamma^{1n} \\
0 & E & 0 & \Gamma^{21} & \Gamma_k & \Gamma^{2n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & E & \Gamma^{n1} & \Gamma^{n2} & \Gamma_k \\
\end{array}
\]

\text{(22').}

and

\[
\begin{array}{ccc|ccc}
E & -E & 0 & 0 & 0 & 0 \\
0 & E & -E & 0 & 0 & E \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & E & -E & 0 \\
\end{array}
\]

\text{(23').}

The rows of (23') can be linear combinations of the rows of (22') only if

\[
\Gamma^{\mu} = \begin{cases}
\Gamma_k - E & (\nu > \mu), \\
\Gamma_k & (\nu < \mu).
\end{cases}
\]

Hence we find for the homology matrix \(\Gamma_l \) of \(l \) (see (16) and (18))

\[
\Gamma_l = \begin{pmatrix}
\Gamma^{11} & \Gamma^{1n} & 0 \\
\vdots & \vdots & \vdots \\
\Gamma^{n1} & \Gamma^{nn} & 0 \\
0 & 0 & \Gamma^*_k \\
\end{pmatrix} = \begin{pmatrix}
\Gamma_k & \Gamma_k & \Gamma_k & 0 \\
0 & \Gamma_k - E & \Gamma_k & \Gamma_k \\
\vdots & \vdots & \vdots & \vdots \\
\Gamma_k - E & \Gamma_k - E & \Gamma_k & \Gamma_k & \Gamma_k \\
0 & 0 & 0 & \Gamma^*_k \\
\end{pmatrix}
\]
and for the L-polynomial $\Delta_l(x)$ of l

$$\Delta_l(x) = |E - \Gamma_l + x\Gamma_l|$$

$$= |E - \Gamma_l + x\Gamma_l| \begin{vmatrix} E - \Gamma_k + x\Gamma_k & -\Gamma_k + x\Gamma_k \\ E - \Gamma_k + x(\Gamma_k - E) & E - \Gamma_k + x\Gamma_k \end{vmatrix}.$$ \hspace{1cm} (24)

The first factor is the L-polynomial $\Delta_\ast(x)$ of l^\ast; the second factor has in the diagonal $E - \Gamma_k + x\Gamma_k$, above the diagonal $-\Gamma_k + x\Gamma_k$, and below the diagonal $E - \Gamma_k + x(\Gamma_k - E)$. This determinant can be computed as follows. Subtract successively the $(n-1)$th row from the nth, the $(n-2)$th from the $(n-1)$th, ..., the first row from the second. There results

$$|E - \Gamma_k + x\Gamma_k & -\Gamma_k + x\Gamma_k & -\Gamma_k + x\Gamma_k \\ -xE & E & 0 & 0 \\ 0 & -xE & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -xE & E|$$

Next add x times the nth column to the $(n-1)$th, x times the $(n-1)$th column to the $(n-2)$th, etc. This gives

$$|E - \Gamma_k + x^n\Gamma_k & -\Gamma_k + x^{n-1}\Gamma_k & -\Gamma_k + x\Gamma_k \\ 0 & E & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & E|$$

Thus (24) becomes

$$\Delta_l(x) = \Delta_\ast(x)\Delta_k(x^n).$$

This completes the proof.