THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S^1-BUNDLE

Hans J. Munkholm and Andrew A. Ranicki

Introduction

This note gives an explicit algebraic description of the geometric transfer map induced in the (reduced) projective class groups by an S^1-bundle $\xymatrix{ S^1 \ar[r] & E \ar[r] & B }$

$$
p_*^\ast : \tilde K_0(\mathbb{Z}[\rho]) \ar[r] & \tilde K_0(\mathbb{Z}[\pi])
$$

with $\pi = \pi_1(E), \rho = \pi_1(B)$. This is the transfer map (1.4) of the preceding paper, Munkholm and Pedersen [4], to which we refer for terminology and background material. In particular, $t \in \pi$ is the canonical generator of the cyclic group $\ker(p_*:\pi \to \rho)$ represented by the inclusion $S^1 \to E$ of a fibre, $\phi: \mathbb{Z}[\pi] \to \mathbb{Z}[\pi]/(t-1) = \mathbb{Z}[\rho]; r \mapsto \tilde{r}$ is the projection of fundamental group rings induced by $p_*:\pi \to \rho$, and $\mathbb{Z}[\pi] \to \mathbb{Z}[\pi]; r \mapsto r^t$ is a ring automorphism determined by the orientation class $w_1(p) \in H^1(B; \mathbb{Z}_2)$ such that $(t-1)r = r^t(t-1)$. In the orientable case $w_1(p) = 0$, $t \in \pi$ is central and $r^t = r$.

Our main results are:

Proposition 2.1 The projection of rings $\phi: \mathbb{Z}[\pi] \to \mathbb{Z}[\rho]$ gives rise to an algebraic transfer map in the projective class groups

$$
\phi^\ast : K_0(\mathbb{Z}[\rho]) \to K_0(\mathbb{Z}[\pi]); \{ \text{im}(\tilde{x}) \} \mapsto \{ \text{im}(x') \} \in \mathbb{Z}[\pi]^n.
$$

Here $\tilde{x} \in M_{n}(\mathbb{Z}[\rho])$ is a projection (i.e. an $n \times n$ matrix \tilde{x} with entries in $\mathbb{Z}[\rho]$ such that $\tilde{x}^2 = \tilde{x}$) and $X^t \in M_{2n}(\mathbb{Z}[\pi])$ is the projection defined by

$$
X^t = \begin{pmatrix} X & Y \\ (t-1) & 1-X^t \end{pmatrix} \in M_{2n}(\mathbb{Z}[\pi])
$$

for any $X, Y \in M_{n}(\mathbb{Z}[\pi])$ such that $\phi(X) = \tilde{x}, X(1-X) = Y(t-1), XY = YX^t$.

1980 Mathematics Subject Classification. 57Q12, 18F25.

* Partially supported by NSF grants.
Proposition 4.1 The algebraic and geometric transfer maps in the reduced projective class groups coincide, that is if B,E are finitely dominated CW complexes

$$\delta^1_0 = p^*_{\overline{K}_0} : \overline{K}_0(\mathbb{Z}[\pi]) \longrightarrow \overline{K}_0(\mathbb{Z}[\pi]) ;$$

$$[B] \longrightarrow \delta^1_0([B]) = p^*_{\overline{K}_0}([B]) = [E]$$

with $[B],[E]$ the Wall finiteness obstructions.

[1]

We should like to thank the Nassau Inn, Princeton for the hospitality of its back steps.

Contents

$\S 1.$ Rings with pseudostructure
$\S 2.$ The projective class transfer
$\S 3.$ The Whitehead torsion transfer
$\S 4.$ The algebraic and geometric transfers coincide
$\S 5.$ The relative transfer exact sequence

Appendix: Connection with L-theory

References
§1. Rings with pseudostructure

Let \(R \) be an associative ring with 1. We shall be using the following conventions regarding matrices and morphisms over \(R \).

Given (left) \(R \)-modules \(M, N \) let \(\text{Hom}_R(M, N) \) denote the additive group of \(R \)-module morphisms
\[
 f : M \longrightarrow N ; \quad x \longmapsto f(x)
\]

For \(m, n \geq 1 \) let \(M_{m,n}(R) \) be the additive group of \(m \times n \) matrices \(X = (x_{ij}) \) (\(1 \leq i \leq m, 1 \leq j \leq n \)) with entries \(x_{ij} \in R \), and use the isomorphism of abelian groups
\[
 M_{m,n}(R) \overset{\sim}{\longrightarrow} \text{Hom}_R(R^m, R^n) ; \quad X = (x_{ij}) \longmapsto (f : (r_1, r_2, \ldots, r_m) \longmapsto \sum_{i=1}^{m} r_i x_{i1}, \sum_{i=1}^{m} r_i x_{i2}, \ldots, \sum_{i=1}^{m} r_i x_{in})
\]
to identify
\[
 M_{m,n}(R) = \text{Hom}_R(R^m, R^n)
\]

If the \(R \)-module morphisms \(f \in \text{Hom}_R(R^m, R^n) \), \(g \in \text{Hom}_R(R^n, R^p) \) have matrices \(X = (x_{ij}) \in M_{m,n}(R) \), \(Y = (y_{jk}) \in M_{n,p}(R) \) the composite \(R \)-module morphism
\[
 g f : R^m \longrightarrow R^n \longrightarrow R^p ; \quad r \longmapsto g(f(r))
\]
has the product matrix
\[
 XY = (\sum_{j=1}^{n} x_{ij} y_{jk}) \in M_{m,p}(R)
\]

The \(n \times n \) matrix ring \(M_n(R) = M_{n,n}(R) \) is thus identified with the endomorphism ring \(\text{Hom}_R(R^n, R^n) \) of the f.g. free \(R \)-module \(R^n \)
of rank \(n \), as usual.

A projection over \(R \) is a matrix \(X \in M_n(R) \) such that
\[
 X(1-X) = 0 \in M_n(R)
\]
so that \(\text{im}(X) \subseteq R^n \) is a f.g. projective \(R \)-module with
\[
 \text{im}(X) \oplus \text{im}(1-X) = R^n
\]
and \(\text{im}(1-X) \) is a f.g. projective inverse of \(\text{im}(X) \). Let
\[
 P_n(R) = \{ X \in M_n(R) | X(1-X) = 0 \} \subseteq M_n(R)
\]
denote the subset of \(M_n(R) \) consisting of projections. Every f.g. projective \(R \)-module \(P \) is isomorphic to \(\text{im}(X) \) for some \(X \in P_n(R) \).
A pseudostructure $\phi = (\alpha, t)$ on the ring R consists of an automorphism
\[\alpha : R \rightarrow R ; \quad r \mapsto r^t \]
and an element $t \in R$ such that
\[t^t = t , \quad (t-1)r = r^t(t-1) . \]
Let ϕ also denote the projection onto the quotient of R by the two-sided principal ideal $(t-1)R$.
\[\phi : R \rightarrow \tilde{R} = R/(t-1) ; \quad r \mapsto \tilde{r} . \]
An S^1-bundle $S^1 \rightarrow E \rightarrow P \rightarrow B$ with $p_* = \phi : \pi_1(E) = \pi \rightarrow \pi_1(B) = \emptyset$ determines a pseudostructure $\phi = (\alpha, t)$ on $R = \mathbb{Z}[\pi]$ with $\tilde{R} = \mathbb{Z}[\phi]$ (cf. Munkholm and Pedersen [3,4]).
Let then (R, ϕ) be a ring R with pseudostructure $\phi = (\alpha, t)$.
A pseudoprojection over (R, ϕ) is a pair of matrices over R
\[(X, Y) \in M_n(R) \times M_n(R) \]
such that
\[X(1-X) = Y(t-1) , \quad XY = YX^t \in M_n(R) , \]
where $X^t = \alpha(X) = (x_{ij}^t) \in M_n(R)$. The pseudoprojection (X, Y) gives rise to a projection over \tilde{R}
\[\tilde{X} \in P_n(\tilde{R}) \]
with $\tilde{X} = \phi(X) = (\tilde{x}_{ij}) \in M_n(\tilde{R})$, and also to a projection over R
\[X^t = \left(\begin{array}{cc} X & Y \\ t-1 & 1-X^t \end{array} \right) \in P_{2n}(R) . \]
Let
\[P_n(R, \phi) = \{(X, Y) \in M_n(R) \times M_n(R) | X(1-X) = Y(t-1) , \ XY = YX^t \} \]
denote the subset of $M_n(R) \times M_n(R)$ consisting of the pseudoprojections over (R, ϕ).

Proposition 1.1 Every projection $\tilde{X} \in P_n(\tilde{R})$ over \tilde{R} lifts to a pseudoprojection $(X, Y) \in P_n(R, \phi)$ (non-uniquely), with $\phi(X) = \tilde{X}$.
Proof: Every matrix $\tilde{X} \in M_n(\tilde{R})$ lifts to some $X \in M_n(R)$, with any two such lifts X_1, X_2 differing by
\[X_1 - X_2 = W(t-1) \in M_n(R) \]
for some $W \in M_n(R)$. Thus if $X \notin M_n(R)$ is a lift of a projection $\tilde{X} \in P_n(R)$ there exists $W \in M_n(R)$ such that
\[X(1-X) = W(t-1) \in M_n(R) . \]
Define the matrix
\[Z = \begin{pmatrix} X & W \\ t-1 & 1-Xt \end{pmatrix} \in \text{GL}_{2n}(\mathbb{R}) . \]

Now
\[Z(1-Z) = \begin{pmatrix} 0 & WX^t - XW \\ 0 & 0 \end{pmatrix} \in \text{GL}_{2n}(\mathbb{R}) , \]
so that \((Z(1-Z))^2 = 0\) and
\[Z^2 + (1-Z)^2 = 1 - 2Z(1-Z) \in \text{GL}_{2n}(\mathbb{R}) \]
is invertible, with inverse
\[(Z^2 + (1-Z)^2)^{-1} = 1 + 2Z(1-Z) \in \text{GL}_{2n}(\mathbb{R}) , \]
so that there is defined a projection
\[X^! = (Z^2 + (1-Z)^2)^{-1}Z^2 \in \text{P}_{2n}(\mathbb{R}) . \]

(The principal ideal \((Z(1-Z))\) of the matrix ring \(M_{2n}(\mathbb{R})\) is nilpotent, and \(X^! \in \text{P}_{2n}(\mathbb{R})\)\(\subset \text{M}_{2n}(\mathbb{R})\) is an idempotent (= projection) lifting the idempotent \([Z] \in M_{2n}(\mathbb{R})/(Z(1-Z))\) - cf. Bass [0,III.2.10], Swan [9,5.17]). Substituting the relation \(Z^4 = 2z^3 - 2z^2\) we have
\[X^! = (1 + 2Z(1-Z))Z^2 \]
\[= (1 + 2Z)Z^2 - 2(2Z^3 - Z^2) \]
\[= 3Z^2 - 2Z^3 \in \text{P}_{2n}(\mathbb{R}) , \]
with
\[X^! - z = (2Z-1)Z(1-Z) \]
\[= \begin{pmatrix} 2X-1 & 2W \\ 2t-2 & 1-2X^t \end{pmatrix} \begin{pmatrix} 0 & WX^t - XW \\ 0 & 0 \end{pmatrix} \]
\[= \begin{pmatrix} 0 & (2X - 1)(WX^t - XW) \\ 0 & 0 \end{pmatrix} \in \text{M}_{2n}(\mathbb{R}) . \]

Defining
\[Y = W + (2X - 1)(WX^t - XW) \in \text{M}_{n}(\mathbb{R}) , \]
we have
\[X^! = \begin{pmatrix} X & Y \\ t-1 & 1-Xt \end{pmatrix} \in \text{P}_{2n}(\mathbb{R}) \]
with \(\phi(X) = X, X(1-X) = Y(t-1)\), \(XY = WX^t\). The projection \(\bar{X} \in \text{P}_{n}(\bar{R})\) has been lifted to a pseudoprojection \((X,Y) \in \text{P}_{n}(\bar{R},\text{P})\).
Given an R-module \bar{M} let $\phi^1\bar{M}$ be the R-module with the same additive group as \bar{M} and
\[R \times \phi^1\bar{M} \longrightarrow \phi^1\bar{M}; \quad (r, x) \longmapsto r \cdot x. \]
An R-module morphism $f \in \text{Hom}_R(\bar{M}, \bar{N})$ also defines an R-module morphism
\[\phi^1 f : \phi^1\bar{M} \longrightarrow \phi^1\bar{N}; \quad \bar{x} \longmapsto \bar{f}(\bar{x}). \]
Given a pseudoprojection $(X, Y) \in P_n(R, \phi)$ define the f.g. projective R-module $\bar{P} = \text{im}(\bar{X})$, and define the associated pseudoresolution of the restricted R-module $\phi^1\bar{P}$ to be the 1-dimensional f.g. projective R-module chain complex C^1 with
\[d_{C^1} = \begin{bmatrix} 1 - X \\ l - t \end{bmatrix}; \quad C^1_0 = \text{coker}(X^1 = \begin{bmatrix} x \\ y \end{bmatrix}); \quad R^n \otimes R^n \longrightarrow R^n \otimes R^n \]
\[= C^1_0 = R^n. \]
The homology R-modules of C^1 are given by
\[H_0(C^1) = \text{coker}(\begin{bmatrix} 1 - X \\ l - t \end{bmatrix}; \quad R^n \otimes R^n \longrightarrow R^n) = \phi^1\bar{P}, \]
\[H_1(C^1) = \ker((t - 1 - X^t) : R^n \longrightarrow R^n \otimes R^n), \]
and in many respects C^1 is like a f.g. projective R-module resolution of $\phi^1\bar{P}$. However, C^1 is a genuine resolution of $\phi^1\bar{P}$ (with $H_1(C^1) = 0$) if and only if $t - 1 \in R$ is a non-zero-divisor.

By Proposition 1.1 there exists a pseudoresolution C^1 of $\phi^1\bar{P}$ for any f.g. projective R-module \bar{P}. As for uniqueness, we have:

Proposition 1.2 Given pseudoprojections $(X, Y) \in P_n(R, \phi)$, $(X', Y') \in P_n(R, \phi)$ and a morphism of f.g. projective R-modules
\[\bar{f} : \bar{P} = \text{im}(\bar{X}) \longrightarrow \bar{P}' = \text{im}(\bar{X}') \]
there is defined an R-module chain map of the associated pseudoresolutions
\[f^1 : C^1 \longrightarrow C'^1 \]
uniquely up to chain homotopy, such that
\[(f^1)_* = \phi^1 f : H_0(C^1) = \phi^1\bar{P} \longrightarrow H_0(C'^1) = \phi^1\bar{P}'. \]
The construction of f^1 is functorial up to chain homotopy, with
\[1^1 = 1, \quad (f'f)^1 = f'^1f^1 \]
up to chain homotopy. In particular, if $\bar{f} \in \text{Hom}_R(\bar{P}, \bar{P}')$ is an isomorphism then $f^1 : C^1 \longrightarrow C'^1$ is a chain equivalence.
Proof: Let $F \in M_{n,n'}(R)$ be the matrix of the composite R-module morphism

$$P : \tilde{R}^n \xrightarrow{\text{projection}} \text{im}(\tilde{X}) = \widetilde{F} \xrightarrow{\tilde{f}} \text{im}(\tilde{X}') = \tilde{R}^{n'}.$$

Choose a lift $F \in M_{n,n'}(R)$ of \tilde{F} and define

$$P' = \begin{pmatrix} XFX' & XFY' - YFX'_X, t \\ 0 & X^t_F X, t \end{pmatrix} \in M_{2n,2n'}(R)$$

such that

$$X^tP' = F'X^t \in M_{2n,2n'}(R).$$

The R-module chain map $f : C \to C'$ is defined by

$$f : C \xrightarrow{[F]} C' \xrightarrow{XFX'} C'^{\prime}.$$

If $F_1, F_2 \in M_{n,n'}(R)$ are two different lifts of \tilde{F} there exists

$$G \in M_{n,n'}(R)$$

such that

$$F_1 - F_2 = G(t-1) \in M_{n,n'}(R),$$

and the R-module morphism

$$g : [0 \ \hat{X}G] : C_0 = R^n \to C_1 = \text{coker}(X^t)$$

defines a chain homotopy

$$g : f_1 = f_2 : C \to C'$$

between the corresponding R-module chain maps $f_1, f_2 : C \to C'$.

If $(X,Y) = (X',Y') \in P_n(R,\phi)$ and $\tilde{F} = \tilde{F} = \text{im}(\tilde{X}) \to \tilde{R} = \text{im}(\tilde{X})$

then $P = X \in M_{n}(R)$ is a lift of the composite R-module morphism

$$\tilde{P} : \tilde{X} : \tilde{R}^n \xrightarrow{\text{projection}} \tilde{R} \xrightarrow{\text{inclusion}} \tilde{R}^{n'},$$

so that

$$P = \begin{pmatrix} X^3 & 0 \\ 0 & (X^t)^3 \end{pmatrix} \in M_{2n}(R)$$

and the R-module morphism

$$h = [1 + X + X^2 \ 0] : C_0 = R^n \to C_1 = \text{coker}(X^t)$$

defines a chain homotopy
Given pseudoprojective resolutions $(X,Y) \in P_n(R,\phi)$, $(X',Y') \in P_{n'}(R,\phi)$, $(X'',Y'') \in P_{n''}(R,\phi)$ and R-module morphisms

\[\bar{f} : \bar{P} = \text{im}(\bar{X}) \rightarrow \bar{P}' = \text{im}(\bar{X}') \rightarrow \bar{P}'' = \text{im}(\bar{X}'') \]

let

\[\bar{f}'' = \bar{f}' \bar{f} : \bar{P} \rightarrow \bar{P}' \rightarrow \bar{P}'' \]

be the composite R-module morphism. If $P \in M_{n,n}(R)$ and $P' \in M_{n',n''}(R)$ are lifts of the composite R-module morphisms

\[\bar{P} : R^n \rightarrow P \rightarrow P' \rightarrow P'' \rightarrow R^{n''} \\
\bar{P}' : R^{n'} \rightarrow P' \rightarrow P'' \rightarrow R^{n''} \]

then the product

\[P'' = \text{im}(P') \in M_{n,n''}(R) \]

is a lift of the composite R-module morphism

\[\bar{P}'' : R^n \rightarrow P \rightarrow P'' \rightarrow R^{n''} \]

such that

\[f'' = f'f'' \in M_{2n,2n''}(R) \]

and so

\[f'' = f'f'' : \bar{C} \xrightarrow{f'} \bar{C}' \xrightarrow{f''} \bar{C}''. \]

§2. The projective class transfer

Proposition 2.1 Given a ring R with pseudostructure $\phi = (a,t)$ there is defined an algebraic transfer map in the projective class groups

\[\hat{\phi}^I : K_0(R) \rightarrow K_0(R) : [\bar{P}] \mapsto [\text{im}(\bar{X}^I)] - [R^n], \]

sending a f.g. projective R-module $\bar{P} = \text{im}(\bar{X}) (\bar{X} \in P_n(R))$ to the projective class $[C^I] = [\text{im}(X^I)] - [R^n] \in K_0(R) ((X,Y) \in P_n(R,\phi))$ of any pseudoresolution C^I of ϕ^I. If P is a (stably) f.g. free R-module then $\hat{\phi}^I([\bar{P}]) = 0 \in K_0(R)$, so that there is also defined an algebraic transfer map in the reduced projective class groups

\[\tilde{\hat{\phi}}^I : \tilde{K}_0(R) \rightarrow \tilde{K}_0(R) : [\bar{P}] \mapsto [\text{im}(\bar{X}^I)]. \]
Prove: Given a f.g. projective \tilde{R}-module \tilde{P} use Proposition 1.1 to lift a projection $\tilde{X} \in P_n(\tilde{R})$ such that $\tilde{P} = \text{im}(\tilde{X})$ to a pseudoprojection $(X, Y) \in P_n(R, \psi)$, and let $\text{C}^1 : \text{im}(X^1) \rightarrow R^n$ be the corresponding pseudoresolution of $\psi^1 \tilde{P}$. Up to R-module isomorphism

$$\text{im}(X^1) \otimes \text{coker}(X^1) = \text{im}(X^1) \otimes \text{im}(1-X^1) = R^n,$$

so that

$$[\text{C}^1] = [R^n] - [\text{coker}(X^1)] = [\text{im}(X^1)] - [R^n] = \phi^1_0([\tilde{P}]) \in \text{K}_0(R).$$

An element of $\text{K}_0(R)$ is the formal difference $[\tilde{P}] - [\tilde{P}']$, for some f.g. projective R-modules $\tilde{P} = \text{im}(\tilde{X})$, $\tilde{P}' = \text{im}(\tilde{X}')$. Now $[\tilde{P}] - [\tilde{P}'] = 0 \in \text{K}_0(R)$ if and only if there exists an R-module isomorphism $\tilde{f} : \tilde{P} \oplus \tilde{P}' \rightarrow \tilde{P} \oplus \tilde{P}'$ for some f.g. projective R-module \tilde{Q}, in which case Proposition 1.2 gives a chain equivalence $f^1 : \text{C}^1 \rightarrow \text{C}'^1$ of the corresponding pseudoresolutions of $\psi^1 \tilde{P}, \psi^1 \tilde{P}'$.

As the projective class of a chain complex is a chain homotopy invariant it follows that

$$\phi^1_0([\tilde{P}] - [\tilde{P}']) = [\text{C}^1] - [\text{C}'^1] = 0 \in \text{K}_0(R),$$

and so $\phi^1_0 : \text{K}_0(R) \rightarrow \text{K}_0(R)$ is well-defined.

For $P = R^n$ take $\tilde{X} = 1 \in P_n(\tilde{R})$, $(X, Y) = (1, 0) \in P_n(R, \psi)$, so that the projection

$$X^1 = \begin{pmatrix} 1 & 0 \\ t-1 & 0 \end{pmatrix} : R^n \oplus R^n \rightarrow R^n \oplus R^n$$

has $\text{im}(X^1) \cong R^n$ and so

$$\phi^1_0([R^n]) = [R^n] - [R^n] = 0 \in \text{K}_0(R).$$

Thus $\tilde{R}^1 : \text{K}_0(R) \rightarrow \text{K}_0(R)$ is also well-defined.

[1]

The original algebraic description in terms of matrices of the Whitehead group S^1-bundle transfer map

$$F^*_{WH} = \tilde{\phi}^1_1 : \text{Wh}(\varphi) \rightarrow \text{Wh}(\Pi)$$

due to Munkholm and Pedersen [3] was reformulated by Ranicki [6, §7.8] in terms of the theory of pseudo chain complexes. We shall now recall this theory, and show how it applies to the projective class group S^1-bundle transfer.
Given an R-module M let M^t denote the R-module with the same additive group and

$$R \times M^t \longrightarrow M^t ; (r,x) \longmapsto r^{-t}x,$$

where $a^{-1} : R \longrightarrow R; r \longmapsto r^t$ is the inverse of the ring automorphism $a : R \longrightarrow R; r \longmapsto r^t$ in the pseudostructure $\phi = (a, t)$. An R-module morphism $f \in \text{Hom}_R(M, N)$ also defines an R-module morphism

$$f^t : M^t \longrightarrow N^t ; x \longmapsto f(x),$$

such that

$$f(t-1) = (t-1)f^t : M^t \longrightarrow N$$

with $t-1 \in \text{Hom}_R(M^t, M)$ defined by

$$t-1 : M^t \longrightarrow M ; x \longmapsto tx - x.$$

For $M = R^n$ use the R-module isomorphism

$$M^t \sim R^n ; (r_1, r_2, \ldots, r_n) \longmapsto (r_1^t, r_2^t, \ldots, r_n^t)$$

to identify $M^t = R^n$, so that $t-1 \in \text{Hom}_R(M^t, M)$ has matrix $t-1 \in M_n(R)$. If $f \in \text{Hom}_R(M^t, M)$ has matrix $X = (x_{ij}) \in M_{n \times n}(R)$ then

$$f^t \in \text{Hom}_R(R^n, M^t) = \text{Hom}_R(R^n, R^n)$$

has matrix $X^t = (x^t_{ij}) \in M_{n \times n}(R)$.

A pseudo chain complex over (R, t) $\zeta = (C, d, e)$ consists of a collection of R-modules $\{C_r| r \geq 0\}$ and two collections of R-module morphisms $\{d \in \text{Hom}_R(C_r, C_{r-1})| r \geq 1\}, \{e \in \text{Hom}_R(C_r, C_{r-2})| r \geq 2\}$ such that

$$d^2 = (t-1)e : C_r \longrightarrow C_{r-2}, \quad d^t e = ed : C_r \longrightarrow C_{r-3}.$$

Note that ζ determines an R-module chain complex \bar{C} with

$$d_{\bar{C}} = 1 \otimes d : \bar{C}_r = \oplus_{i} C_i \longrightarrow \bar{C}_{r-1} = \oplus_{i} C_{i-1} ; a \otimes x \longmapsto a \otimes d(x),$$

and an R-module chain complex C^t with

$$d_{C^t} = \left(\begin{array}{cc} d & (-)^t e \\ (-)^t (t-1) & d^t \end{array} \right)$$

$$: C^t_r = C_r \otimes C^t_{r-1} \longrightarrow C^t_{r-1} = C_{r-1} \otimes C^t_{r-2} ;$$

$$(x, y) \longmapsto (d(x) + (-)^t (t-1)(y), (-)^t e(x) + d^t(y)).$$

Proposition 7.8.8 of Ranicki [6] associates to an S^1-bundle of CW complexes $S^1 \longrightarrow E \rightarrow B$ with $p_* \otimes \pi_1(E) = \pi_1(B) = p$ a pseudo chain complex $\zeta(p) = (C, d, e)$ over $(\Z[\pi], \phi)$ with C_r $(r \geq 0)$ the f.g. free $\Z[\pi]$-module of rank the number of r-cells in B, such that the cellular chain complexes of the universal covers \tilde{B}, \tilde{E} of B, E are given by
THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S^1-BUNDLE

$C(B) = \overline{C}$, $C(E) = C^1$.

If B is finitely dominated then so is E, and the Wall finiteness obstructions are given by the reduced projective classes

$[B] = [C(B)] = [C] \in K_0(\mathbb{Z}[\rho])$,
$[E] = [C(E)] = [C^1] \in K_0(\mathbb{Z}[\eta])$.

The geometric transfer map $p^*_K : \tilde{K}_0(\mathbb{Z}[\rho]) \to \tilde{K}_0(\mathbb{Z}[\eta])$ is defined by

$p^*_K([B]) = [E] \in \tilde{K}_0(\mathbb{Z}[\eta])$,

so that it will follow from the identification $p^*_K = \tilde{\phi}_O^1$ in §4 below that

$[C^1] = [C(E)] = [E] \\
= p^*_K([B]) = \tilde{\phi}_O^1([C]) \in \tilde{K}_0(\mathbb{Z}[\eta])$.

In Ranicki [8] it will be shown algebraically that for any finitely dominated pseudo chain complex $\mathcal{P} = (C,d,e)$ over a ring with pseudostructure (R,ϕ) the algebraic transfer map $\phi_O^1 : K_0(R) \to K_0(R)$ sends the projective class $[C] \in K_0(R)$ to

$\phi_O^1([C]) = [C^1] \in K_0(R)$

(which will give an alternative proof of $p^*_K = \tilde{\phi}_O^1$ on setting $R = \mathbb{Z}[\eta]$, $\mathcal{P} = \mathcal{P}(\rho)$). At any rate, for any pseudoprojection $(X,Y) \in P_n(R,\phi)$ there is defined a finitely dominated pseudo chain complex $\mathcal{P} = (C,d,e)$ over (R,ϕ) with

\[
d = \begin{cases} 1 - X : C_{2i+1} = R^n & \to \ C_{2i} = R^n \\ X : C_{2i+2} = R^n & \to \ C_{2i+1} = R^n \ (i \geq 0) \\ e = Y : C_{j} = R^n & \to \ C_{j-2} = R^n \ (j \geq 2) \end{cases}
\]

for which

$[C] = [\text{im}(X)] \in K_0(R)$,

$[C^1] = [\text{im}(X^1)] \to [R^n] = \phi_O^1([C]) \in K_0(R)$.

Note that C^1 is an infinite f.g. free R-module chain complex which is chain equivalent to the f.g. projective pseudoresolution C^1 of $\phi^1(\text{im}(X))$ associated to $(X,Y) \in P_n(R,\phi)$ in §1 above.

In the case when $t - 1 \in R$ is a non-zero-divisor (which for a group ring $R = \mathbb{Z}[\eta]$ is equivalent to $t \in \eta$ being of infinite order) ϕ^1_R is an R-module of homological dimension 1, with a f.g. free R-module resolution

$0 \to R \xrightarrow{(t-1)} R \xrightarrow{\phi} \phi^1_R \to 0$.
If \tilde{P} is a f.g. projective R-module then $\phi^!\tilde{P}$ is therefore an R-module of homological dimension 1, with a f.g. projective resolution

$$
\begin{array}{cccc}
O & \longrightarrow & P_1 & \longrightarrow & P_0 & \longrightarrow & \phi^!\tilde{P} & \longrightarrow & O
\end{array}
$$

The classical transfer map in the projective class groups is defined by

$$
\phi^! : K_0(\tilde{R}) \longrightarrow K_0(R) ; [\tilde{P}] \longmapsto [P_0] - [P_1]
$$

and this definition extends by the Bass-Quillen resolution theorem to transfer maps in the higher K-groups

$$
\phi^ ! : K_m(\tilde{R}) \longrightarrow K_m(R) \quad (m \geq 1).
$$

(More generally, the classical methods give transfer maps $\phi^! : K_s(\tilde{R}) \longrightarrow K_s(R)$ for any morphism of rings $\phi : R \longrightarrow \tilde{R}$ such that $\phi^! R$ is an R-module of finite homological dimension).

Proposition 2.2 If (R, ϕ) is a ring with pseudostructure such that $t-1 \in R$ is a non-zero-divisor the projective class group transfer map $\phi^!_O$ defined above agrees with the classical transfer map

$$
\phi^!_O = \phi^! : K_0(\tilde{R}) \longrightarrow K_0(R).
$$

Proof: In this case the pseudoresolution $C^!$ of $\phi^!(\text{im}(X))$

associated to a pseudoprojection $(X,Y) \in P^*_n(R,\phi)$ in §1 above is a 1-dimensional f.g. projective R-module resolution of $\phi^!(\text{im}(\tilde{X}))$

$$
\begin{array}{cccc}
O & \longrightarrow & \text{coker}(X^!) & \longrightarrow & R^0 & \longrightarrow & \phi^!(\text{im}(\tilde{X})) & \longrightarrow & O
\end{array}
$$

so that

$$
\phi^!_O([\text{im}(\tilde{X})]) = [C^!] = \phi^!(\text{im}(\tilde{X})) \in K_0(R).
$$

For a group ring $R = \mathbb{Z}[\pi]$ the identification

$$
\phi^!_O = \phi^! : \tilde{K}_0(\mathbb{Z}[\pi]) \longrightarrow \tilde{K}_0(\mathbb{Z}[\pi])
$$

given by Proposition 2.2 may also be obtained by combining the identifications $\phi^! = p^* \phi^!_O$ of §4 and $p^*_R = \phi^!$ of Munkholm and Pedersen [2].

In Proposition 3.2 below the algebraic S^1-bundle transfer map $\phi^! : K_1(R) \longrightarrow K_1(R)$ of Munkholm and Pedersen [3] in the case when $t-1 \in R$ is a non-zero-divisor will be similarly identified with the classical transfer map $\phi^! : K_1(\tilde{R}) \longrightarrow K_1(\tilde{R})$. It would be interesting to know if the definitions of $\phi^!_O$ and $\phi^!_1$ extend to algebraic transfer maps in the higher K-groups

$$
\phi^!_m : K_m(\tilde{R}) \longrightarrow K_m(R) \quad (m \geq 2)
$$
in the case when \(t-1 \in R \) is a zero divisor, so that \(\phi_1^R \) is an \(R \)-module of infinite homological dimension and the classical methods fail.

§3. The Whitehead torsion transfer

The Whitehead torsion transfer map of Munkholm and Pedersen \([3]\) was defined for any ring with pseudostructure \((R, \Phi)\) to be

\[
\phi_1^I : K_1(\overline{R}) \longrightarrow K_1(R) ; \tau(\overline{X}) \longmapsto \tau\left(\begin{array}{cc}
X & -Z \\
-t & Yt
\end{array} \right)
\]

with \(X \in M_n(R) \) a lift of \(\overline{X} \in GL_n(\overline{R}) \) and \(Y, Z \in M_n(R) \) such that

\[
XY = 1 - Z(t-1) \in M_n(R).
\]

In Ranicki \([6, \S 7.8]\), \(\phi_1^I(\tau(\overline{X})) \in K_1(R) \) was interpreted as the torsion \(\tau(C^I) \) of the acyclic \(R \)-module chain complex

\[
C^I : \mathbb{R}^n \longrightarrow R^n \oplus R^n \longrightarrow \mathbb{R}^n
\]

associated to the pseudo chain complex \(\mathcal{E} = (C, d, e) \) with

\[
d = X : C_1 = \mathbb{R}^n \longrightarrow C_0 = \mathbb{R}^n , \quad C_r = 0 \ (r \geq 2) , \quad e = 0,
\]

for which

\[
\tau(C) = \tau(\overline{X}; \mathbb{R}^n \longrightarrow \mathbb{R}^n) \in K_1(R).
\]

(The identification \(\phi_1^I(\tau(\overline{X})) = \tau(C^I) \in K_1(R) \) is immediate from the observation that

\[
\left(\begin{array}{c}
-X \\
Yt
\end{array} \right) : R^n \oplus R^n \longrightarrow \mathbb{R}^n
\]

is a splitting map for \((1-t)x^t) : R^n \longrightarrow R^n \oplus R^n \). It will be shown in Ranicki \([8]\) that for any finite pseudo chain complex \(\mathcal{E} = (C, d, e) \) over \((R, \Phi)\) with each \(C_r \ (r \geq 0) \) a based f.g. free \(R \)-module with \(\overline{C} \) (and hence \(C^I \)) acyclic

\[
\phi_1^I(\tau(C)) = \tau(C^I) \in K_1(R).
\]

We shall now interpret \(\phi_1^I \) in terms of the pseudoresolution construction \((X, Y) \longrightarrow C^I \) of §1.

Proposition 3.1 The Whitehead torsion transfer map

\[
\phi_1^I : K_1(\overline{R}) \longrightarrow K_1(R)
\]

sends the torsion \(\tau(\overline{f}) \in K_1(R) \) of an automorphism \(\overline{f} \in \text{Hom}_R(\overline{P}, \overline{P}) \) of a f.g. projective \(R \)-module \(\overline{P} \) to the torsion

\[
\phi_1^I(\tau(\overline{f})) = \tau(f^I) \in K_1(R)
\]

of the induced self chain equivalence \(f^I : C^I \longrightarrow C^I \), with \(C^I \) the
pseudoresolution of \(\phi^1 \) associated to any pseudoprojection
\((X,Y) \in P_n(R,\phi)\) with \(\overline{P} = \text{im}(\overline{X})\).

Proof: Stabilizing \(\overline{f} \) by \(1 \in \text{Hom}_R(\text{im}(1-\overline{X}), \text{im}(1-\overline{X})) \) it may be
assumed that \(\overline{P} = \overline{R}^n \) is a f.g. free \(\overline{R} \)-module, and
\((X,Y) = (1,0) \in P_n(R,\phi)\), so that \(C^i : R^n \xrightarrow{1-t} R^n \).

If \(\overline{f} \in \text{Aut}_R(\overline{R}^n,\overline{R}^n) \) has matrix \(\overline{X} \in \text{GL}_n(\overline{R}) \) then

\[
\begin{array}{c}
C^i : R^n \xrightarrow{1-t} R^n \\
\downarrow \overline{f}^t \\
\downarrow C^i \\
R^n \xrightarrow{1-t} R^n \\
\end{array}
\]

for any lift \(X \in \text{M}_n(R) \) of \(\overline{X} \), so that

\[
\tau(\overline{f}^t) = \tau(C(\overline{f}^t)) : R^n \xrightarrow{(1-t \ X^t)} R^n \otimes_{\overline{R}} R^n \xrightarrow{\text{t}-1} R^n \\
= \phi^1(\tau(\overline{X})) = \phi^1(\tau(\overline{f})) \in K_1(R).
\]

By analogy with Proposition 2.2:

Proposition 3.2 If \(\text{t}^{-1} \in R \) is a non-zero-divisor the Whitehead torsion transfer map \(\phi^1 \) agrees with the classical transfer map
\(\phi^1 = \phi^1 : K_1(\overline{R}) \longrightarrow K_1(R) \).

Proof: Given an automorphism \(\overline{f} \in \text{Aut}_R(\overline{R}^n,\overline{R}^n) \) note that the self
chain equivalence \(f^i : C^i \longrightarrow C^i \) defined in the proof of
Proposition 3.1 is a resolution of the automorphism
\(\overline{f} \in \text{Aut}_R(\overline{R}^n,\overline{R}^n) \), so that

\[
\phi^1(\tau(\overline{f})) = \tau(f^i) = \phi^1(\tau(\overline{f})) \in K_1(R).
\]

For a group ring \(R = \mathbb{Z}[\pi] \) the identification
\(\overline{\phi}^1 = \phi^1 : \text{Wh}(\rho) \longrightarrow \text{Wh}(\pi) \) given by Proposition 3.2 may also be
obtained by combining the identifications \(\phi^1 = \phi^1 \) of Munkholm and
Pedersen [3] and \(\phi^* = \phi^1 \) of Munkholm [1].

In §4 we shall make use of the following relation between
the projective class group transfer \(\phi^1 : K^0(\overline{R}) \longrightarrow K^0(R) \) for a
ring with pseudostructure \((R,\phi)\), the Whitehead torsion transfer
\((\phi \times 1)^1 : K_1(\overline{R}[z,z^{-1}]) \longrightarrow K_1(R[z,z^{-1}])\) for the polynomial
extension ring with pseudostructure \((R[z,z^{-1}],\phi \times 1)\) and the
canonical Bass-Heller-Swan injections.
THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S^1-BUNDLE 475

\[h_R : K_0(R) \rightarrow K_1(R[z,z^{-1}]) ; \quad [P] \mapsto \tau(z;[z,z^{-1}] \sim P[z,z^{-1}]) \]

and \(h_R : K_0(R) \rightarrow K_1(R[z,z^{-1}]) \) defined similarly.

Proposition 3.3 There is defined a commutative diagram

\[
\begin{array}{ccc}
K_0(R) & \xrightarrow{\phi_O} & K_0(R) \\
\downarrow h_R & & \downarrow h_R \\
K_1(R[z,z^{-1}]) & \xrightarrow{(\phi \times 1)_1} & K_1(R[z,z^{-1}]) \\
\end{array}
\]

Proof: Given a f.g. projective \(\mathbb{R} \)-module \(\mathbb{P} \) let \((X,Y) \in P_n(R,\phi) \) be a pseudoprojection such that \(\mathbb{P} = \text{im}(X) \), and let \(\mathbb{C}^l \) be the corresponding pseudoresolution of \(\phi \mathbb{P} \). Now

\[
(\phi \times 1)_1^l h_R^l([\mathbb{P}]) = (\phi \times 1)_1^l (\tau(z;\mathbb{P}[z,z^{-1}] \sim \mathbb{P}[z,z^{-1}]))
\]

\[
= \tau(z;\mathbb{C}^l[z,z^{-1}] \sim \mathbb{C}^l[z,z^{-1}]) \quad \text{(by Proposition 3.1)}
\]

\[
= h_R^l([\mathbb{C}^l]) = h_R^l \phi_O^l([\mathbb{P}]) \in K_1(R[z,z^{-1}]),
\]

so that \((\phi \times 1)_1^l h_R^l = h_R^l \phi_O^l \).

[1]

54. The algebraic and geometric transfer maps coincide

Let \(S^1 \rightarrow E \xrightarrow{\mathbb{P}} B \) be an \(S^1 \)-bundle with \(p_* = \phi : \pi_1(E) = \pi \rightarrow \pi_1(B) = 0 \), and let \((R = \mathbb{Z}[\pi],\phi) \) be the corresponding ring with pseudostructure.

Proposition 4.1 The algebraic and geometric transfer maps in the reduced projective class groups coincide, that is

\[z^l_O = p_\mathbb{P}^*_O : \bar{K}_0(\mathbb{Z}[\phi]) \rightarrow \bar{K}_0(\mathbb{Z}[\pi]). \]

Proof: We offer two proofs, in fact.

1) Given a pseudoprojection \((X,Y) \in P_n(\mathbb{Z}[\pi],\phi) \) and a number \(m \gg 2 \) the proof of Theorem F of Wall [10] gives an \(S^1 \)-bundle of CW pairs

\[
S^1 \rightarrow (E,F) \xrightarrow{(p,q)} (B,K)
\]

with \(K \) finite and \(B \) finitely dominated, such that \(\pi_1(B) = \pi_1(K) = 0 \) and such that the relative pseudo chain complex \(\mathbb{C}(p,q) = (C,d,e) \) is given by

\[
C_r = \begin{cases}
\mathbb{Z}[\pi]^n & \text{if } r \gg 2m \\
0 & \text{if } r \ll 2m-1
\end{cases}
\]
\(\begin{align*}
&\begin{aligned}
 d &= \left\{ \begin{array}{c}
 1-X : C_{2i+1} \longrightarrow C_{2i} & (i \geq m) \\
 X : C_{2i+2} \longrightarrow C_{2i+1}
 \end{array} \right.
 \vspace{1em}
 e = Y : C_{r} \longrightarrow C_{r-2} & (r \geq 2m+2).
\end{aligned}
\end{align*} \)

The finiteness obstruction of \(B \) (= the reduced projective class of \(C(B) = C \)) is given by

\[[B] = [C] = [\text{im}(X)] \in \check{K}_0(\mathbb{Z}[\rho]), \]

and that of \(E \) by

\[[E] = [C^1] = [\text{im}(X^1)] \in \check{K}_0(\mathbb{Z}[\pi]), \]

so that

\[p_{K_O}^\ast ([B]) = [E] = [\text{im}(X^1)] \]

\[= \tilde{c}_{O}^1([\text{im}(X)])) = \check{c}_{O}^1([B]) \in \check{K}_0(\mathbb{Z}[\pi]). \]

ii) Consider the commutative diagram preceding Corollary 2.3 of Munkholm and Pedersen [4]

\[
\begin{array}{ccc}
\check{K}_0(\mathbb{Z}[\pi]) & \xleftarrow{h_{\pi}} & \text{Wh}(\pi \times \mathbb{Z}) \\
\downarrow{p_{K_O}^\ast} & & \downarrow{(p \times 1)_{\text{Wh}}} \\
\check{K}_0(\mathbb{Z}[\rho]) & \xrightarrow{h_{\rho}} & \text{Wh}(\rho \times \mathbb{Z}) \\
\end{array}
\]

in which \(h_{\pi} \) (resp. \(h_{\rho} \)) is the canonical Bass-Heller-Swan surjection (resp. injection). From Proposition 3.3 we have

\[(p \times 1)_{\text{Wh}} h_{\rho} = h_{\pi} \tilde{c}_{O}^1, \]

so that

\[\begin{align*}
 p_{K_O}^\ast &= h_{\pi}^{-1}(p \times 1)_{\text{Wh}} h_{\rho} \\
 &= h_{\pi} h_{\rho}^{-1} \tilde{c}_{O}^1 : \check{K}_0(\mathbb{Z}[\rho]) \longrightarrow \check{K}_0(\mathbb{Z}[\pi]).
\end{align*} \]

§5. The relative transfer exact sequence

A ring morphism \(\phi : R \longrightarrow S \) induces morphisms in the algebraic K-groups

\[\begin{align*}
 \Phi : K_0(R) & \longrightarrow K_0(S) : [F] \longrightarrow [\phi_1 F], \quad \Phi_1 F = S \otimes_R F \\
 \Phi_1 : K_1(R) & \longrightarrow K_1(S) : \tau(X) \longrightarrow \tau(\phi(X)), \quad X \in \text{GL}_n(R)
\end{align*} \]

which are related by a change of rings exact sequence

\[\begin{array}{c}
K_1(R) \xrightarrow{\Phi_1} K_1(S) \xrightarrow{j} K_1(\phi_1) \xrightarrow{\partial} K_0(R) \xrightarrow{\Phi_1} K_0(S)
\end{array} \]
with $K_1(\phi_1)$ the relative K-group of stable isomorphism classes of pairs (P,f) consisting of a f.g. projective R-module P and an S-module isomorphism $f : \phi_1 P \cong S^n$, with $(R^n,1) = 0 \in K_1(\phi_1)$ and

$$j : K_1(S) \longrightarrow K_1(\phi_1) : \tau(z) \longmapsto (R^n,z), \quad z \in \text{GL}_n(S)$$

$$\tilde{\phi} : K_1(\phi_1) \longrightarrow K_0(R) ; (P,f) \longmapsto \{ P \} - \{ R^n \}.$$

We shall now obtain an analogous exact sequence for the transfer maps

$$K_1(\tilde{R}) \longrightarrow K_1(R) \longrightarrow K_1(\phi_1) \longrightarrow K_0(\tilde{R}) \longrightarrow K_0(R),$$

relating the projective class group transfer ϕ_1^j of S^2 to the Whitehead torsion transfer ϕ_1^j of S^3.

A base (S,T) for a pseudoprojection $(X,Y) \in P_n(R,\phi)$ is a pair of matrices

$$S = \begin{pmatrix} S_1 \\ S_2 \end{pmatrix} \in M_{2n,m}(R), \quad T = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} \in M_{m,2n}(R)$$

with $S_1,S_2 \in M_{n,m}(R), T_1,T_2 \in M_{m,n}(R)$ such that

$$ST = X^t \in M_{2n}(R), \quad TS = 1 \in M_{m}(R).$$

The factorization of R-module morphisms

$$X^t = \begin{pmatrix} X & Y \\ t-1 & 1-x^t \end{pmatrix} : R^n \oplus R^n \longrightarrow R^n \longrightarrow R^n \oplus R^n$$

shows that a base (S,T) of (X,Y) determines a base (in the usual sense) of the f.g. projective R-module $\text{im}(X^t) \subseteq R^n \oplus R^n$ consisting of m elements. Conversely, if $\text{im}(X^t)$ is a f.g. free R-module of rank m then a choice of base for $\text{im}(X^t)$ determines a factorization

$$X^t : R^n \oplus R^n \longrightarrow S \longrightarrow R^n \longrightarrow R^n \oplus R^n$$

with S onto and T one-one; it follows from the identity

$$S(TS-1)T = ST(ST-1)$$

$$= X^t(X^t-1) = 0 \in M_{2n}(R)$$

that $TS = 1 \in M_{n}(R)$, and so (S,T) defines a base of (X,Y). There is thus a natural one-one correspondence between the bases (S,T) of the pseudoprojection (X,Y) and the bases of the f.g. projective R-module $\text{im}(X^t)$, if any such exist. In dealing with bases of pseudoprojections we shall assume that (R,ϕ) satisfies the
following two conditions:
i) f.g. free R-modules have a well-defined rank,

\[\alpha^2 : R \xrightarrow{\sim} \bar{R} ; \bar{r} \mapsto (\bar{t}^t)^t \]
is an inner automorphism of \bar{R}, in which case $m = n$ for any pseudoprojection base (S, T): by i)

$[\bar{R}] \in K_0(\bar{R})$ generates an infinite cyclic subgroup of $K_0(\bar{R})$, and by

\[\alpha_{\bar{R}} : K_0(\bar{R}) \longrightarrow K_0(\bar{R}) ; [\bar{P}] \longmapsto [\bar{P}^t] \]
is an involution of $K_0(\bar{R})$ fixing $[\bar{R}]$, so that if $(S, T) \in M_{2m, m}^n(R) \times M_{m, 2n}^m(R)$ is a base for

the pseudoprojection $(X, Y) \in P_n(R, \phi)$ the f.g. projective R-module

$R^n = \text{im}(1-X)$ is such that up to R-module isomorphism

\[\bar{R}^n = \phi_1(\text{im}(X^t)) = \text{im}(\bar{X}) \oplus \bar{P}^t , \quad \bar{R}^n = \text{im}(\bar{X}) \oplus \bar{P}^t , \]
and it is clear from the action of $\alpha_{\bar{R}}$ on the identity

\[[\bar{P}] - [\bar{P}^t] = [\bar{R}^n] - [\bar{R}^n] \in K_0(\bar{R}) \]

that $m = n$. In particular, the conditions i) and ii) are satisfied

by the group rings with pseudostructure $(R = \mathbb{Z}[\pi], \phi)$ arising in

topology.

A based pseudoprojection (X, Y, S, T) is a pseudoprojection

$(X, Y) \in P_n(R, \phi)$ together with a base $(S, T) \in M_{2n, m}^n(R) \times M_{m, 2n}^m(R)$. Given such an object define the associated based pseudoresolution of the R-module $\phi_1(\text{im}(X))$ to be the 1-dimensional based f.g. free R-module chain complex

\[
\begin{array}{ccc}
S_2 & \longrightarrow & R^n \\
\downarrow \& \downarrow \& \\
D^1 : R^n & \longrightarrow & R^n \\
\end{array}
\]

which is chain equivalent to the projective pseudoresolution C^1 of

$\phi^1(\text{im}(X))$ associated to (X, Y) in §1. Explicitly, a chain equivalence $C^1 \sim \longrightarrow D^1$ is defined by

\[
\begin{array}{ccc}
\begin{bmatrix}
1-X \\
1-t
\end{bmatrix} & \longrightarrow & R^n \\
\downarrow \phi_1(\text{coker}(X^t)) \downarrow \& \downarrow \phi_1(S) \downarrow \\
\begin{bmatrix}
Y \\
-X^t
\end{bmatrix} & \longrightarrow & XS_1 + YS_2 \\
\downarrow \downarrow \downarrow \& \downarrow \downarrow \downarrow \\
D^1 : R^n & \longrightarrow & R^n \\
\end{array}
\]

(This is the composite $C^1 \longrightarrow B^1 \longrightarrow D^1$ of the chain equivalence

\[
\begin{array}{ccc}
\begin{bmatrix}
1-X \\
1-t
\end{bmatrix} & \longrightarrow & R^n \\
\downarrow \phi_1(\text{coker}(X^t)) \downarrow \& \downarrow \phi_1(S) \downarrow \\
\begin{bmatrix}
Y \\
-X^t
\end{bmatrix} & \longrightarrow & [X, Y] \\
\downarrow \downarrow \downarrow \& \downarrow \downarrow \downarrow \\
B^1 : R^n & \longrightarrow & \text{im}(X^t) \\
\end{array}
\]

(defined for any pseudoprojection (X, Y)) and the chain isomorphism
THE PROJECTIVE CLASS GROUP TRANSFER INDUCED BY AN S^1-BUNDLE

\[B^1 : \mathbb{R}^n \xrightarrow{[t-1 \cdot X^t]} \text{im}(X^1) \]
\[\downarrow 1 \quad \downarrow \quad \downarrow \]
\[D^1 : \mathbb{R}^n \xrightarrow{S_2} \mathbb{R}^n \]
\[S_1 \]

A morphism of based pseudoprojections over (R, Φ)

\[f : (X, Y, S, T) \xrightarrow{\sim} (X', Y', S', T') \]

is just a morphism of the associated f.g. projective \bar{R}-modules

\[\bar{f} : \text{im}(\bar{X}) \xrightarrow{\sim} \text{im}(\bar{X}') \]

Replacing the projective pseudo-resolutions C^1, C'^1 in the construction of Proposition 1.2 by the chain equivalent based pseudo-resolutions D^1, D'^1 there is obtained an R-module chain map

\[f^1 : D^1 \xrightarrow{\sim} D'^1 \]

inducing the R-module morphism

\[(f^1)_* = \phi^1 \bar{f} : H^0(D^1) = \phi^1(\text{im}(\bar{X})) \xrightarrow{\sim} H^0(D'^1) = \phi^1(\text{im}(\bar{X}')) \]

uniquely up to chain homotopy. More precisely, f^1 is defined by

\[f^1 : \mathbb{R}^n \xrightarrow{S_2} \mathbb{R}^n \]
\[\downarrow XFX' \quad \downarrow TF' \quad \downarrow \]
\[D^1 : \mathbb{R}^n \xrightarrow{S_2} \mathbb{R}^n \]

with $F \in \text{M}_{n \times n}(R)$ the matrix of any R-module morphism $F \in \text{Hom}_R(R^n, R^{n'})$ lifting the composite R-module morphism

\[\bar{F} : \mathbb{R}^n \xrightarrow{\text{projection}} \text{im}(\bar{X}) \xrightarrow{\bar{f}} \text{im}(\bar{X}') \xrightarrow{\text{injection}} R^n \]

and

\[F^1 = \begin{pmatrix} XFX' & XFY' - YFP_X^t X^t \cr 0 & X^t F_X^t X^t \end{pmatrix} \in \text{M}_{2n \times 2n}(R) \]

as before.

An isomorphism of based pseudoprojections is a morphism

\[f : (X, Y, S, T) \xrightarrow{\sim} (X', Y', S', T') \]

which is defined by an \bar{R}-module isomorphism $\bar{f} \in \text{Hom}_R(\text{im}(\bar{X}), \text{im}(\bar{X}'))$,

in which case $f^1 : D^1 \xrightarrow{\sim} D'^1$ is a chain equivalence of based
R-module chain complexes and the torsion of f is defined by
\[\tau(f) = \tau(f^1 : D^1 \to D^0) \in K_1(R). \]

In general, the torsion is an invariant of f but not of \(f \).
However, if f is an automorphism (i.e. \((X,Y,S,T) = (X',Y',S',T')\))
then the torsion \(\tau(f : \text{im}(X) \to \text{im}(\overline{X})) \in K_1(R) \)
is defined, and Proposition 3.1 shows that
\[\tau(f) = \tau(f^1) = \phi_1^1(\tau(\overline{f})) \in K_1(R). \]
An isomorphism \(f : (X,Y,S,T) \to (X',Y',S',T') \) is simple if
\[\tau(f) = 0 \in K_1(R). \]

Define the relative transfer group \(K_1(\phi^1) \) to be the abelian
group with one generator for each simple isomorphism class of
based pseudoprojections \((X,Y,S,T) \) over \((R,\phi)\), with relations
\[(X,Y,S,T) + (X',Y',S',T') = (X \phi X', Y \phi Y', S \phi S', T \phi T') \in K_1(\phi^1). \]

Proposition 5.1 The relative transfer group \(K_1(\phi^1) \) fits into an
exact sequence
\[K_1(R) \xrightarrow{\phi_1^1} K_1(R) \xrightarrow{j} K_1(\phi^1) \xrightarrow{\delta} K_0(\overline{R}) \xrightarrow{\delta_0} K_0(R) \]
with
\[j : K_1(R) \xrightarrow{} K_1(\phi^1); \]
\[\tau(Z) \xrightarrow{} (O, O, \begin{pmatrix} O \\ O \end{pmatrix}, Z^{-1}(t=1) Z^{-1}) \ (Z \in GL_n(R)) \]
\[\delta : K_1(\phi^1) \xrightarrow{} K_0(\overline{R}) ; (X,Y,S,T) \xrightarrow{} [\text{im}(X)] \]

Proof: If \(\overline{P}, \overline{Q} \) are f.g. projective \(\overline{R} \)-modules such that
\[[\overline{P}] - [\overline{Q}] \in \ker(\phi_1^1 : K_0(\overline{R}) \to K_0(R)) \]
let \(-\overline{Q} \) be a f.g. projective inverse for \(\overline{Q} \), so that \(\overline{Q} \phi \overline{Q} = \overline{R}^m \) is a
f.g. free \(\overline{R} \)-module, and let \((X,Y) \in P_n(R,\phi) \) be a pseudoprojection
such that \(\overline{P} \phi \overline{Q} = \text{im}(X) \). Now
\[[\text{im}(X^1)] - [\overline{R}^n] = \phi_1^1([\text{im}(X)]) \]
\[= \phi_1^1([P] - [Q] + [(\overline{R}^m)] = 0 \in K_0(\overline{R}), \]
so that \(\text{im}(X^1) \) is a stably f.g. free \(\overline{R} \)-module. Stabilizing \(\overline{P}, \overline{Q} \)
if necessary it may be assumed that \(\text{im}(X^1) \) is an unstably f.g.
free \(\overline{R} \)-module. Choosing a base \((S,T) \) for \((X,Y) \) there is obtained
an element \((X,Y,S,T) - (1,0,\begin{pmatrix} 1 \\ t \end{pmatrix},1 O) \in K_1(\phi^1) \) \((1 \in GL_m(R)) \)
such that
\[[\bar{P}] - [\bar{Q}] = [\Phi - \bar{Q}] - [\Phi^R] = [\text{im}(\bar{X})] - [\Phi^R] = 3((X,Y,S,T) - (1,0,\begin{pmatrix} 1 \\ \ell - 1 \end{pmatrix},(1,0))) \in \text{im}(3:K_1(\Phi^1) \to K_0(\bar{R})) \]

verifying exactness at \(K_0(\bar{R}) \).

If \((X,Y,S,T),(X',Y',S',T')\) are based pseudoprojections such that
\[(X',Y',S',T') - (X,Y,S,T) \in \ker(3:K_1(\Phi^1) \to K_0(\bar{R})) \]
there exists a (stable) isomorphism
\[f : (X,Y,S,T) \isom (X',Y',S',T') \]
The torsion \(\tau(f) \in K_1(\bar{R}) \) is such that
\[(X',Y',S',T') - (X,Y,S,T) = j(\tau(f)) \in \text{im}(j:K_1(\bar{R}) \to K_1(\Phi^1)) \]
verifying exactness at \(K_1(\Phi^1) \).

If \(Z \in GL_n(\bar{R}) \) is such that \(\tau(Z) \in \ker(j:K_1(\bar{R}) \to K_1(\Phi^1)) \)
there exists a based pseudoprojection \((X,Y,S,T)\) with a simple isomorphism
\[f : (X,Y,S,T) \isom (X,Y,S,T) \]
The automorphism of based pseudoprojections
\[q : (X,Y,S,T) \isom (X,Y,S,T) \]
defined by the automorphism \(f \in \text{Hom}_R(\text{im}(\bar{X}),\text{im}(\bar{X})) \) is such that
\[\tau(Z) = \tau(q^1) = \Phi^1_1(\tau(f)) \in \text{im}(\Phi^1_1:K_1(\bar{R}) \to K_1(\bar{R})) \]
verifying exactness at \(K_1(\bar{R}) \).

For the group ring with pseudostructure \((\bar{R} = \mathbb{Z}[\pi],\Phi)\)
associated to an \(S^1 \)-bundle \(S^1 \to E \to B \) with
\[p_* = \Phi : \pi_1(E) = \pi \to \pi_1(B) = \rho , \quad \bar{R} = \mathbb{Z}[\rho] \] there is also defined a reduced version of the exact sequence of Proposition 5.1
\[\text{Wh}(\rho) \xrightarrow{\Phi^1_1} \text{Wh}(\pi) \xrightarrow{\bar{g}} \text{Wh}(\Phi^1) \xrightarrow{\bar{g}} K_0(\mathbb{Z}[\rho]) \xrightarrow{\Phi^1_0} K_0(\mathbb{Z}[\pi]) \]
in the Whitehead and reduced projective class groups, with \(\text{Wh}(\Phi^1) \)
defined by
\[\text{Wh}(\mathbf{1}^1) = K_1(\mathbf{1}^1)/j(\mathbf{1}n) + (1, D, \left(\begin{array}{c} 1 \\ t \end{array} \right), \left(1, 0 \right)) . \]

See Ranicki [7, §7] for the geometric interpretation of this sequence.

Appendix: Connection with \(L \)-theory

We note the following connection between the algebraic \(K \)-theory \(S^1 \)-bundle transfer maps

\[\tilde{\phi}_m^1 : \tilde{\mathbb{K}}_O(\mathbb{Z}[\rho]) \longrightarrow \tilde{\mathbb{K}}_O(\mathbb{Z}[\pi]) \quad \text{and} \quad \tilde{\phi}_m^1 : \text{Wh}(\pi) \longrightarrow \text{Wh}(\pi) \]

and the algebraic \(L \)-theory \(S^1 \)-bundle transfer maps of Munkholm and Pedersen [3, 4] and Ranicki [6, 8]

\[\phi_L^1 : L_n^X(\rho) \longrightarrow L_{n+1}^X(\pi) \quad (m = 0 \text{ or } 1) \]

which are defined for duality-invariant subgroups \(X \subseteq \mathbb{K}_O(\mathbb{Z}[\rho]) \) \((m = 0)\) and \(X \subseteq \text{Wh}(\pi) \) \((m = 1)\). The geometric interpretation of \(\phi_L^1 \) for \(m = 1 \) in terms of finite surgery obstruction theory extends to \(m = 0 \) using the projective surgery obstruction theory of Pedersen and Ranicki [5]). The duality involutions on the algebraic \(K \)-groups are defined by

\[\ast : \mathbb{K}_O(\mathbb{Z}[\pi]) \longrightarrow \mathbb{K}_O(\mathbb{Z}[\pi]) ; [\text{im}(X)] \longmapsto [\text{im}(X^\ast)] \]

\[\ast : \text{Wh}(\pi) \longrightarrow \text{Wh}(\pi) ; \tau(X) \longmapsto \tau(X^\ast) \]

\[\ast : \text{Wh}(\mathbf{1}^1) \longrightarrow \text{Wh}(\mathbf{1}^1) ; \]

\[(X, Y, \left(\begin{array}{c} S_1 \\ T_1 \end{array} \right), \left(\begin{array}{c} T_2 \\ S_2 \end{array} \right)) \longmapsto -(1-X^\ast, -tY^\ast, \left(\begin{array}{c} -tT_1^\ast \\ T_2^\ast \end{array} \right), (-tS_2^\ast S_1^\ast)) , \]

using the group ring involution

\[\ast : \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] ; \sum g_n g \longmapsto \sum g_n g^\ast \quad (w = \text{orientation}) \]

and the corresponding matrix ring involutions

\[\ast : M_n(\mathbb{Z}[\pi]) \longrightarrow M_n(\mathbb{Z}[\pi]) ; X = (x_{ij}) \longmapsto X^\ast = (x_{ij}^\ast) . \]

The maps in the exact sequence of [55]

\[\text{Wh}(\rho) \longrightarrow \text{Wh}(\pi) \longrightarrow \text{Wh}(\mathbf{1}^1) \longrightarrow \tilde{\mathbb{K}}_O(\mathbb{Z}[\rho]) \longrightarrow \tilde{\mathbb{K}}_O(\mathbb{Z}[\pi]) \]

are such that

\[\tilde{\phi}_m^1 \ast = -\ast \tilde{\phi}_m^1 \quad (m = 0, 1) , \quad \tilde{j}^\ast = \ast \tilde{j} , \quad \tilde{\delta}^\ast = \ast \tilde{\delta} . \]
The short exact sequence of $\mathbb{Z}[\mathbb{Z}_2]$-modules

$$\cdots \to \text{ker}(\delta^1) \to \text{Wh}(\phi^1) \to \text{ker}(\delta^1) \to \text{coker}(\delta^1) \to \text{Wh}(\phi^1) \to \cdots$$

gives rise to connecting maps in the Tate \mathbb{Z}_2-cohomology groups

$$\delta^1 = \delta : \hat{H}^n(\mathbb{Z}_2; \text{ker}(\delta^1)) \to \hat{H}^{n+1}(\mathbb{Z}_2; \text{coker}(\delta^1))$$

which appear in a transfer map of generalized Rothenberg exact sequences

$$\cdots \to L_n^h(\rho) \to L_n^l(\rho) \to \hat{H}^n(\mathbb{Z}_2; \text{ker}(\delta^1)) \to L_n^{h-1}(\rho) \to \cdots$$

In particular, for the trivial S^1-bundle $E = B \times S^1$, $\pi = \rho \times \mathbb{Z}$, $\gamma_m = 0$ ($m = 0, 1$) and the exact sequence

$$\cdots \to \text{Wh}(\rho \times \mathbb{Z}) \to \text{Wh}(\phi^1) \to \text{Wh}(\rho \times \mathbb{Z}) \to \cdots$$

is split by the map

$$\bar{\phi} : \bar{\text{Wh}}_O(\mathbb{Z}[\rho]) \to \text{Wh}(\phi^1) ;$$

which is related to the duality involutions \ast by

$$\bar{\phi}^\ast \ast \text{Wh}(\rho \times \mathbb{Z}) \to \text{Wh}(\rho \times \mathbb{Z})$$

with

$$h^1 = \bar{\text{Wh}}_O(\mathbb{Z}[\rho]) \to \text{Wh}(\rho \times \mathbb{Z}) ; [\text{im}(X)] \to \tau(\text{im}(X)) \mapsto (X, O, \frac{1}{X-1}, \frac{1}{(X-1)^2}) ,$$

The transfer map in this case consists of split injections

$$\cdots \to L_n^h(\rho) \to L_n^l(\rho) \to \hat{H}^n(\mathbb{Z}_2; \text{Wh}(\rho \times \mathbb{Z})) \to L_n^{h-1}(\rho) \to \cdots$$

although not the standard such injections — see Ranicki [7] for a further discussion.
BIBLIOGRAPHY

[0] H. Bass
Algebraic K-theory,
Benjamin (1968)

Transfer on algebraic K-theory and Whitehead
torsion for PL fibrations,

[2]
and E.K. Pedersen
On the Wall finiteness obstruction for the total
space of certain fibrations,
Trans. A.M.S. 261, 529 - 545 (1980)

[3]
Whitehead transfers for S^1-bundles, an algebraic
description,

[4]
Transfers in algebraic K- and L-theory induced
by S^1-bundles,
these proceedings

Projective surgery theory,
Topology 19, 234 - 254 (1980)

Exact sequences in the algebraic theory of surgery,
Mathematical Notes 26, Princeton (1981)

[7]
Algebraic and geometric splittings of the K- and
L-groups of polynomial extensions,
preprint

[8]
Splitting theorems in the algebraic theory of surgery,
in preparation

K-theory of finite groups and orders,
Springer Lecture Notes 149 (1970)

[10] C.T.C. Wall
Finiteness conditions for CW complexes,
Ann. of Maths. 81, 56 - 69 (1965)

INSTITUTE FOR ADVANCED STUDY, PRINCETON (H.J.M. & A.A.R.)
ODENSE UNIVERSITET, DENMARK (H.J.M.)
PRINCETON UNIVERSITY (A.A.R.)