A NEW PROOF THAT Ω_3 IS ZERO

COLIN ROURKE

It is a fact that any closed orientable 3-manifold can be changed into S^3 by a finite number of elementary surgeries on embedded circles (which implies that Ω_3, the 3-dimensional oriented cobordism group, is zero). Existing proofs of this fact either use a significant amount of algebraic topology (Thom [2]) or a lengthy calculation involving curves on a surface (Lickorish [1]). In this note, I shall give a short elementary proof which avoids both algebraic topology and calculation.

Suppose that S is an orientable surface of genus n, then $x = (x_1, x_2, \ldots, x_n)$ is said to be a complete system of curves on S provided that each x_i is a simple closed curve, the curves $\{x_i\}$ are pairwise disjoint and the union $\bigcup_i x_i$ does not separate S.

A Heegaard diagram $S(x, y)$ is an orientable surface S with two complete systems x, y. The diagram determines a closed orientable 3-manifold $M(x, y)$ obtained by attaching thickened 2-discs to $S \times I$: along the x_i on $S \times \{0\}$ and along the y_i on $S \times \{1\}$, and then filling in the resulting S^2-boundaries with 3-balls. The resulting 3-manifold M has a specific handle presentation with one 0-handle, one 3-handle, n 1-handles and n 2-handles; the curves x, y are drawn on a level surface between the 1-handles and the 2-handles—the x being the b-spheres for the 1-handles and the y being the a-spheres for the 2-handles. Any handle presentation with one 0-handle and one 3-handle can be regarded as a Heegaard diagram in this way and it therefore follows from elementary results in handle theory that any orientable 3-manifold is given by some Heegaard diagram. Notice that if one of the x curves meets one of the y curves transversally in a single point then the corresponding handles are complementary and can be cancelled; therefore M has a Heegaard diagram of lower genus. (In fact the reduced diagram can be obtained explicitly by cutting out a neighbourhood in S of the two transverse curves, filling in the resulting circle boundary with a disc and completing any other curves, cut in the process, across the disc.)

I need the following observation.

Lemma 1. Suppose that $S(x, y)$ is a Heegaard diagram and that z is a third complete system of curves on S. Let $\chi(M, z)$ denote the result of performing surgery on $M = M(x, y)$ using the curves z (with framings given by parallel curves in the surface S). Then $\chi(M, z)$ is homeomorphic to the connected sum $M(x, z) \# M(y, z)$.

Proof. Assume that the surgeries are performed at level $\{\frac{1}{2}\}$ in $S \times I$. Surgery on $z_t \times \{\frac{1}{2}\}$ is performed as follows. First, remove a neighbourhood of $z_t \times \{\frac{1}{2}\}$: this has the same effect as cutting $S \times I$ open at $S \times \{\frac{1}{2}\}$ near to z_t, and results in a new boundary torus $(\alpha_t \cup \beta_t) \times S^1$ when $\alpha_t \times S^1$ and $\beta_t \times S^1$ are annuli with common boundary in the two copies of $S \times \{\frac{1}{2}\}$, see Figure 1.

Received 19 December 1983.

1980 Mathematics Subject Classification 57N10.

J. London Math. Soc. (2) 31 (1985) 373–376
Secondly, glue back a solid torus, namely \((\alpha_i \cup \beta_i) \times D^2\), where \(\partial D^2\) is identified with \(S^1\).

Now let \(M_1, M_2\) be the results of cutting \(M\) completely along \(S \times \{\frac{1}{2}\}\) (where \(M_1\) contains the lower half \(S \times [0, \frac{1}{2}]\)). Let

\[
M_1^+ = M_1 \cup \alpha_i \times D^2, \quad M_2^+ = M_2 \cup \beta_i \times D^2.
\]

Then \(M_1^+, M_2^+\) are homeomorphic to \(M(x, z), M(y, z)\) respectively, with a 3-ball removed from each, and \(\chi(M, z)\) is the union of \(M_1^+, M_2^+\) along their common 2-sphere boundary.

I also need the following easy lemma.

Lemma 2. Suppose that \(x, y\) are two non-separating curves on a surface \(S\) which meet transversally in a finite number of points. Let \(|x \cap y|\) denote the number of points of intersection.

(a) If \(|x \cap y| = 0\) (that is, \(x \cap y = \emptyset\)) then there is a third non-separating curve \(z\) which meets each of \(x\) and \(y\) transversally in a single point.

(b) If \(|x \cap y| > 1\) there is a third non-separating curve \(z\) such that \(|x \cap z| < |x \cap y|\) and \(|y \cap z| < |x \cap y|\).

Proof. (a) Cut \(S\) along \(x\) and glue in discs \(D_1, D'_1\) to get a new surface \(S'\).

Subcase (a), in which \(y\) separates \(S'\). In this case \(D_1, D'_1\) must lie on opposite sides of \(y\) (or else \(y\) would separate \(S\)). Join corresponding points of \(D_1\) and \(D'_1\) by a simple path \(\alpha\) crossing \(y\) once. Then \(\alpha\) gives the required curve in \(S\) (Figure 2).

Proof. (b) Cut \(S\) along \(y\) and glue in discs \(D_2, D'_2\) to get a new surface \(S'\).

Subcase (b), in which \(x\) separates \(S'\). In this case \(D_2, D'_2\) must lie on opposite sides of \(x\) (or else \(x\) would separate \(S\)). Join corresponding points of \(D_2\) and \(D'_2\) by a simple path \(\beta\) crossing \(x\) once. Then \(\beta\) gives the required curve in \(S\) (Figure 2).
A NEW PROOF THAT Ω_3 IS ZERO

Subcase (a), in which y does not separate S'. Cut S' along y and glue in discs D_x, D'_x then join D_1 to D_2 by a simple arc α_1 and join the corresponding points of D_1', D_2' by another arc α_2 not meeting α_1. Then $\alpha_1 \cup \alpha_2$ gives the required curve in S (Figure 3).

(b) By choosing two points of $x \cap y$ which are adjacent in x we can find an arc α in x which meets y only at its end points A, B. Let β, γ be the two arcs of y joining A to B. Since y does not separate S, one of $\alpha \cup \beta, \alpha \cup \gamma$ does not separate S. Suppose, without loss of generality, that $\alpha \cup \beta$ does not separate S. Shift α off itself, starting by pushing in the β-direction at A. Complete by an arc close to β to get a simple closed curve which meets x in at least one fewer point and y in at most one point (Figure 4(a) or (b)).

![Figure 4](image_url)

Theorem. Any closed orientable 3-manifold can be reduced to S^3 by a finite number of surgeries on embedded curves.

Proof. Let M be a closed orientable 3-manifold and, without loss of generality, assume that $M = M(x, y)$. Associate to the diagram $S(x, y)$ two integers, namely

$$n = \text{genus}(S) \text{ and } r = \min_{i,j} |x_i \cap y_j|.$$

The theorem is proved by double induction on n and r. We assume, inductively, that the theorem is true for smaller n or for the same n and smaller r. The induction starts with $n = 0$, when M is already S^3 and there is nothing to prove. The induction step is as follows.

*Case 1, in which $r > 1$.** Without loss of generality, we assume that $r = |x_1 \cap y_1|$. By Lemma 2(b), choose a curve z_1 such that $|x_1 \cap z_1| < r$ and $|y_1 \cap z_1| < r$. Extend z_1 to a complete system z and apply Lemma 1:

$$\chi(M, z) \simeq M(x, z) \neq M(y, z).$$
Each of the 3-manifolds on the right of the equation has diagram with the same n but smaller r. By induction, each can be reduced to S^3 by surgery and thus, by performing all three sets of surgeries, M can be reduced to S^3 by surgery.

Case 2, in which $r = 0$. In this case we use Lemma 2(a) to find z_1 meeting x_1, y_1 transversally in one point, and complete to z as before. Then $M(x, z), M(y, z)$ each has a diagram containing a transverse pair of curves meeting in one point, and therefore, as remarked earlier, each has another diagram of smaller genus. Hence, by induction, each can be reduced to S^3 by surgery and it follows, as in case 1, that M can be reduced to S^3 by surgery.

Case 3, in which $r = 1$. In this case the diagram for M contains a transverse pair of curves and therefore M has a diagram of lower genus. Hence, by induction, M can be reduced to S^3 by surgery.

References

Mathematics Institute
University of Warwick
Coventry CV4 7AL