ON THE CHARACTERISTIC POLYNOMIAL OF THE
PRODUCT OF SEVERAL MATRICES

WILLIAM E. ROTH

We shall prove two theorems.

Theorem I. If A is an $n \times n$ matrix with elements in the field F, if R and S_i, $i = 1, 2, \ldots, r$, are $1 \times n$ matrices with elements in F, and $D_i = R^T S_i$, where R^T is the transpose of R, and if the characteristic polynomial of $A_i = A + D_i$ is

$$|xI - A_i| = m_{i0} + m_{i1}x + m_{i2}x^2 + \cdots + m_{i,r-1}x^{r-1},$$

where $m_{i,j-1}$, $i, j = 1, 2, \ldots, r$, are polynomials in x^r with coefficients in F, then the characteristic polynomial of the product $P = A_1 A_2 \cdots A_r$ is given by $(-1)^{(r-1)n}|\Delta(x)|$, where

$$\Delta(x^r) = \begin{bmatrix}
m_{10} & m_{1,r-1}x^{r-1} & m_{1,r-2}x^{r-2} & \cdots & m_{11}x \\
m_{21}x & m_{20} & m_{2,r-1}x^{r-1} & \cdots & m_{22}x^2 \\
m_{32}x^2 & m_{31}x & m_{30} & \cdots & m_{33}x^3 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
&m_{r,r-1}x^{r-1} & m_{r,r-2}x^{r-2} & m_{r,r-3}x^{r-3} & \cdots & m_{r0}
\end{bmatrix}.$$

This proposition has been proved by the writer [1] for the case $r = 2$. Recently Parker [2] generalized that result and Goddard [3] gave an alternate proof of it and extended his method to the product of three matrices. This latter result does not come under the theorem above. Schneider [5] proved the theorem for the case $A_i A_j = 0$, $i < j$, $i, j = 1, 2, \ldots, r$.

Capital letters and expressions in bold faced parentheses will indicate matrices with elements in the field F or in $F(\omega)$, the extension of F by the adjunction of ω a primitive rth root of unity to it, and in $F(x)$ the polynomial domain of $F(\omega)$. The direct product of B and C is $(b_i c) = B(C)$. The product indicated by Π will run from 1 to r.

If R is not zero a nonsingular matrix Q with elements in F exists such that $QR^T = (1, 0, \cdots, 0)^T$; as a result

$$QD_iQ^T = (1, 0, \cdots, 0)^TS_iQ^T = E_i,$$

where Q^t is the inverse of Q and E_i has nonzero elements in only the first row. Now let

Presented to the Society, April 23, 1955; received by the editors April 4, 1955 and, in revised form, August 26, 1955.

578
\[QA_k Q' = M_k = Q(A + D_k)Q' = M + E_k, \]

where \(Q \) is the matrix defined above and \(QAQ' = M = (m_{ij}) \). Consequently \(M_k = (m_{ij}^{(k)}) \), where \(m_{ij}^{(k)} = m_{ij} + e_{ij}^{(k)} \) and \(m_{ij}^{(k)} = m_{ij} \) for \(i > 1 \). That is, the matrices \(M_k \) differ only in the elements of their first rows. As a result the elements of the first columns of the adjoints \([xI - M_k]^A\) and \([xI - M]^A\) of \(xI - M_k \) and \(xI - M \) respectively are identical for \(k = 1, 2, \ldots, r \), since all these matrices agree in the elements of their last \(n - 1 \) rows and for the same reason

\[
N_k(x) = [xI - M_k][xI - M]^A,
\]

\[
\begin{bmatrix}
m_k(x) & * & * & \cdots & * \\
0 & m(x) & 0 & \cdots & 0 \\
0 & 0 & m(x) & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & m(x)
\end{bmatrix},
\]

\[k = 1, 2, \ldots, r, \] where asterisks indicate nonzero elements in \(F(x) \) and \(|xI - M| = m(x) \).

Let \(W = (\omega_{ij}) = (\omega_{(i-1)(j-1)}), \quad i, j = 1, 2, \ldots, r; \) then

\[
|W(I_k)| = |W|^k,
\]

where \(I_k \) is the identity matrix of order \(k \). The determinantal equation holds because \(W(I_k) \) can be transformed by the interchange of rows and corresponding columns to the direct sum \(W + W + \cdots + W \) of \(k \) summands.

We shall operate in \(F(x) \) on the matrix

\[
M(x) = (\delta_{ij}x - \delta_{i+1,j}M_i) \quad (\delta_{r+1,1} = 1)
\]

\[
= \begin{bmatrix}
xI & -M_1 & 0 & \cdots & 0 \\
0 & xI & -M_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -M_r \\
-M_r & 0 & 0 & \cdots & xI
\end{bmatrix}
\]

If we multiply this matrix on the right by one whose first row is \(I, M_1x^{-1}, M_1M_2x^{-2}, \ldots, M_1M_2 \cdots M_{r-1}x^{-r+1} \), whose second row is \(0, I, M_2x^{-1}, \ldots, M_2M_3 \cdots M_{r-1}x^{-r+2} \), and whose last row is
0, 0, 0, \ldots, I, we find that the determinant of the product is
\(|x^rI - M_rM_{r-1}| \) and is therefore equal to \(|x^r - P| \). The
proof of Theorem I will consist in showing that
\[
(5) \quad |M(x)| = (-1)^{(r-1)n} |\Delta(x^r)|.
\]

We now proceed to establish this equation.
\[
M(x)W(I) = (\delta_{ij}xI - \delta_{i1}xI)(\omega^{(k-1)(1-\rho)}I),
\]
\[
= (\omega^{(i-1)(1-\rho)}xI - \omega^{i(1-\rho)}M_i),
\]
\[
= (\omega^{1-i}\{\omega^{i-1}xI - M_i\}).
\]
The number \(\omega^{1-i} \) is a common multiplier of the \(n \times n \) matrices in the
jth column of the \(nr \times nr \) matrix in right member above. Consequently
the determinant of this matrix has the factor \(\pi\omega^{(1-k)n} = \omega^{-r(r-1)n/2} \)
\(= \omega^{r(r-1)/2} = (-1)^{(r-1)n} \). The determinantal equation obtained from
the matric equation above is as a result:
\[
(6) \quad |M(x)| \cdot |W|^n = (-1)^{(r-1)n} |\omega_{ij}[\omega^{i-1}xI - M_i]|.
\]

According to (3) the product
\[
(7) \quad (\omega_{ik}[\omega^{k-1}xI - M_i])(\delta_{kj}[\omega^{j-1}xI - M_j]) = (\omega_{ij}N_i(\omega^{j-1}x)).
\]
The \(nr \times nr \) matrix of the right member of this equation can be transformed
by the interchange of corresponding rows and columns to a
similar one having the form
\[
\begin{pmatrix}
(\omega_{ij}m_i(\omega^{i-1}x)), & * & \cdots & * \\
0, & (\omega_{ij}m(\omega^{i-1}x)), & \cdots, & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0, & 0 & \cdots & (\omega_{ij}m(\omega^{i-1}x))
\end{pmatrix},
\]
where asterisks represent \(r \times r \) matrices with elements in \(F(x) \) and
the zeros are \(r \times r \) zero matrices. The determinant of this matrix is
\[
(8) \quad |W|^n[\prod m(\omega^{i-1}x)]^{n-1} |(\omega_{ij}m_i(\omega^{i-1}x))|
\]
for each of the matrices \((\omega_{ij}m(\omega^{i-1}x)) \) has \(m(\omega^{i-1}x) \) as a divisor of all
elements in the jth column. The determinant of the direct sum
\((\delta_{ij}[\omega^{j-1}xI - M_j]) \) in equation (7) is \([\prod m(\omega^{j-1}x)]^{n-1} \); consequently
the determinantal equation which follows from (7) and (8) is
\[
\begin{align*}
|\omega_{ij}[\omega^{j-1}xI - M_i]| & \cdot [\prod m(\omega^{i-1}x)]^{n-1} \\
& = |W|^n[\prod m(\omega^{j-1}x)]^{n-1} |(\omega_{ij}m_i(\omega^{j-1}x))|,
\end{align*}
\]
or
\[
(9) \quad |\omega_{ij}[\omega^{i-1}xI - M_i]| = |W|^{n-1} |(\omega_{ij}m_i(\omega^{i-1}x))|,
\]
where the determinant of the left member is that of an \(nr \times nr \) matrix and those in the right members are of order \(r \). From (6) and (9) we have
\[
\frac{|M(x)|}{|W|} = (-1)^{(r-1)n} |\omega_{ij} M_i(\omega^{j-1}x)|
\]
where the determinant of the left member is that of an \(nr \times nr \) matrix and those in the right members are of order \(r \). From (6) and (9) we have
\[
|M(x)| = W(-1)^{(r-1)n} |\omega_{ij} M_i(\omega^{j-1}x)|
\]
From (6) and (9) we have
\[
|M(x)| = W(-1)^{(r-1)n} |\omega_{ij} M_i(\omega^{j-1}x)|
\]
It remains to be shown that the right member here is
\[
(-1)^{(r-1)n} \Delta(x^r)
\]
this is easily accomplished by multiplying \(\Delta(x^r) \) in (1) on the right by \(W \). Here-with equation (5) is established and the proof of Theorem I is completed.

Corollary. Under the hypotheses of Theorem I and if \(B \) is an \(n \times n \) matrix with elements in \(F \) and if \(B_i = B + S_i^T R \) and
\[
| xI - B_i | = n_{i0} + n_{i1}x + n_{i2}x^2 + \cdots + n_{i,r-1}x^{r-1};
\]
then the characteristic polynomial of \(B_1 B_2 \cdots B_r \) is given by
\[
(10) \quad | xI - A | = m_0 + m_1x + m_2x^2 + \cdots + m_{r-1}x^{r-1},
\]
where \(m_{i-1}, i = 1, 2, \cdots, r \), are polynomials in \(x^r \) with coefficients in \(F \), and the characteristic polynomial of the product \(P = A_1 A_2 \cdots A_r \) is
\[
\Delta(x^r) = \begin{pmatrix}
 \omega_{r,0} & \omega_{r-1,1}x^{r-1} & \cdots & \omega_{r,1}x
 \\
 \omega_{r-1,1}x & \omega_{r-1,0} & \cdots & \omega_{r-1,2}x^2
 \\
 \cdots & \cdots & \cdots & \cdots
 \\
 \omega_{1,1}x^{r-1} & \omega_{1,0} & \omega_{1,2}x^2 & \omega_{1,3}x^3 & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]
This case can be made to come under Theorem I for \(B_i^T = B_i^{T} + R^T S_i \) where \(B_i^T \) now satisfies the conditions imposed upon \(A_i \). Moreover
\[
| xI - B_i | = | xI - B_i^T |.
\]
Since \((B_1 B_2 \cdots B_r)^T = B_r^T B_{r-1}^T \cdots B_1^T \), it follows that in \(\Delta(x^r) \) of (1) we must replace the elements \(m_i - jx^{j-1} \) by \(m_{i-1} - jx^{j-1} \) in forming the matrix \(\Delta'(x^r) \) above. This proves the corollary.

Theorem II. If \(D_i, i = 1, 2, \cdots, r \), are \(n \times n \) matrices with elements in \(F \), each of which is nilpotent and commutative with the others and with \(A \), which also has elements in \(F \), then the characteristic polynomials of \(A_i = A + D_i, i = 1, 2, \cdots, r \), are given by
\[
| xI - A | = m_0 + m_1x + m_2x^2 + \cdots + m_{r-1}x^{r-1},
\]
where \(m_{i-1}, i = 1, 2, \cdots, r \), are polynomials in \(x^r \) with coefficients in \(F \), and the characteristic polynomial of the product \(P = A_1 A_2 \cdots A_r \) is
\[
\Delta(x^r) = \begin{pmatrix}
 m_0 & m_{r-1}x^{r-1} & m_{r-2}x^{r-2} & \cdots & m_1x
 \\
 m_1x & m_0 & m_{r-1}x^{r-1} & \cdots & m_2x^2
 \\
 m_2x^2 & m_1x & m_0 & \cdots & m_3x^3
 \\
 \cdots & \cdots & \cdots & \cdots & \cdots
 \\
 m_{r-1}x^{r-1} & m_{r-2}x^{r-2} & m_{r-3}x^{r-3} & \cdots & m_0
\end{pmatrix}
\]
According to a theorem by Frobenius [4], the determinant of the
matrix $B + C$ is equal to that of B if B and C are commutative matrices and C is nilpotent. This establishes equation (10) as giving the characteristic polynomial of A_i, $i = 1, 2, \ldots, r$. By Theorem I the determinant

$$|xI - A^r| = (-1)^{(r-1)n} |\Delta(x)|.$$

We shall proceed by induction. Let $P_i = A_1 A_2 \cdot \cdot \cdot A_i$, then

$$|xI - P_i A^{r-1}| = |xI - (A + D_i) A^{r-1}| = |xI - A^r - D_i A^{r-1}|.$$

Now the matrix $D_i A^{r-1}$ is nilpotent and commutative with $xI - A^r$ consequently the determinants above are equal to $|xI - A^r|$. We assume that

$$|xI - P_i A^{r-i}| = |xI - A^r| ;$$

then

$$|xI - P_{i+1} A^{r-i-1}| = |xI - P_i A^{r-i} - P_i D_{i+1} A^{r-i-1}| .$$

Here $P_i D_{i+1} A^{r-i-1}$ is commutative with $xI - P_i A^{r-i}$ and is nilpotent because D_{i+1} is nilpotent and commutative with both P_i and A; hence by Frobenius' theorem

$$|xI - P_{i+1} A^{r-i-1}| = |xI - P_i A^{r-i}| = |xI - A^r| .$$

Consequently

$$|xI - P| = |xI - A^r| = (-1)^{(r-1)n} |\Delta(x)| ,$$

and the theorem is proved.

References

MISSISSIPPI CITY, MISS.