On the universal covering group of the real symplectic group

John Rawnsley

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

ARTICLE INFO

Article history:
Received 5 January 2012
Accepted 30 May 2012
Available online 7 June 2012

MSC:
53D05
20F36
53C29

Keywords:
Symplectic group
Universal cover
Braid group
Maslov index

ABSTRACT

A model for the universal covering group of the symplectic group as a Lie group, and some calculations based on the model, as well as defining a similar model for the Lagrangian Grassmannian and relating our construction to the Maslov Index.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The real symplectic group in $2n$ dimensions, $Sp(2n, \mathbb{R})$, has a number of non-trivial central extensions such as the metaplectic double covering $Mp(2n, \mathbb{R})$, an extension by \mathbb{Z}_2, the circle extension $Mp^c(2n, \mathbb{R})$ as the automorphism group of the Heisenberg group, and the universal covering group $\widetilde{Sp}(2n, \mathbb{R})$ an extension by \mathbb{Z}. These extensions do not have faithful finite dimensional representations, so there are no nice models for them as Lie groups of matrices, and this can make calculations with them cumbersome. Paths in $Sp(2n, \mathbb{R})$ are not easily lifted to an extension unless they lie in some subgroup whose inverse image in the extended group is easy to describe.

In [1], an explicit model for the circle extension of the symplectic group $Sp(2n, \mathbb{R})$ (the Mp^c group) was used to facilitate the definition of a theory of symplectic spinors on any symplectic manifold and to extend the Kostant theory of metaplectic half-forms to this case. The group manifold can be described explicitly as a hypersurface in $Sp(2n, \mathbb{R}) \times \mathbb{C}^*$ and the group multiplication given by a single global formula. In [2], these ideas have been used to define Dirac operators on any symplectic manifold and extend the theory of Habermann [3] to this case.

The method used can be adapted to other central extensions. We do this here for the universal covering group $\widetilde{Sp}(2n, \mathbb{R})$. We show how to make models for the universal covering manifold using suitable maps to the circle and to write the group multiplication in terms of an associated cocycle. We then show how to construct a particularly nice explicit circle map using the ideas from [1] and obtain the formula for its cocycle.

As an application we look at the universal covering group of $Sp(2, \mathbb{R}) = SL(2, \mathbb{R})$ and the inverse image of $SL(2, \mathbb{Z})$ in it. It is a theorem of Milnor that this extension of $SL(2, \mathbb{Z})$ is isomorphic to the braid group on three strands. We use our explicit formulæ for the multiplication to write down generators and show that they satisfy the braid relation.

Finally, we show how the same methods can be used to construct the universal covering manifold of the Lagrangian Grassmannian and the Maslov Index.
2. Basic construction

In this section, we show how a smooth circle function on a connected Lie group G with $\pi_1(G, e) = \mathbb{Z}$ can be used to construct a manifold underlying the covering group.

Definition 1. Let G be a connected Lie group with $\pi_1(G, e) = \mathbb{Z}$. A circle function on G is a smooth map $\varphi: G \to S^1$ which induces an isomorphism of the fundamental groups. It is said to be normalised if it satisfies

(i) $\varphi(e) = 1$;
(ii) $\varphi(g^{-1}) = \varphi(g)^{-1}$.

We shall regard S^1 as the unit circle in the complex plane, and φ as a complex valued function.

Lemma 2. If φ is a circle function then there is a unique smooth map $\hat{\varphi}: G \to S^1$ with
\[
\hat{\varphi}(g)^2 = \varphi(g)/\varphi(g^{-1}), \quad \hat{\varphi}(e) = 1,
\]
and $\hat{\varphi}$ is a normalised circle function.

Proof. By the connectedness of G there can be at most one such map $\hat{\varphi}$.

I claim that the map $\Psi: G \to S^1$ given by $\Psi(g) = \varphi(g)^2\varphi(g^{-1})$ is trivial on $\pi_1(G, e)$. This follows since if γ is a loop at e in G then $\Psi(\gamma) = (\varphi \circ \gamma)^2 = (\varphi \circ \gamma)\varphi(\gamma^{-1}) = \varphi_\bullet(\gamma)^2$ is trivial. Hence, Ψ is a normalised circle function. From this it follows that $\hat{\varphi}$ is a normalised circle function.

Lemma 3. If φ is a normalised circle function for G, then there is a unique smooth function $\eta: G \times G \to \mathbb{R}$ such that
\[
\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2) e^{i\eta(g_1, g_2)}
\]
with $\eta(e, e) = 0$. Further

(i) $\eta(g, e) = \eta(e, g) = \eta(g, g^{-1}) = 0$, for all $g \in G$;
(ii) $\eta(g_1, g_2) + \eta(g_1g_2, g_3) = \eta(g_1, g_2g_3) + \eta(g_2, g_3)$ for all $g_1, g_2, g_3 \in G$.

Proof. The existence of η is a consequence of the following. If $\varphi: G \to H$ is a continuous map (not necessarily a homomorphism) of connected topological groups with $\varphi(e_\mathbb{C}) = e_H$ and $\Phi: G \times G \to H$ is defined by $\Phi(g_1, g_2) = \varphi(g_1)\varphi(g_1)^{-1}\varphi(g_2)\varphi(g_2)^{-1}$, then $\Phi_\mathbb{C}: \pi_1(G \times G, (e_\mathbb{C}, e_\mathbb{C})) \to \pi_1(H, e_H)$ is trivial. From this it follows that Φ has a smooth logarithm which is unique when its value is specified at one point since G, and hence $G \times G$, is connected.

(i) and (ii) follow by continuity arguments again based on the connectivity of G. For example, $\exp i\eta(g, e) = \varphi(ge)\varphi(g)^{-1}\varphi(e) = 1$ so $\eta(g, e) \in 2\pi \mathbb{Z}$ and thus must be constant. It vanishes for $g = e$. □

Definition 4. If φ is a normalised circle function for the Lie group G set
\[
\tilde{G} = \{(g, c) \in G \times \mathbb{R} \mid \varphi(g) = e^{ic}\}.
\]

It is easy to see that 1 is a regular value of the map $G \times \mathbb{R} \ni (g, c) \mapsto \varphi(g)e^{ic} \in S^1$ and hence that \tilde{G} is a smooth manifold of the same dimension as G.

Proposition 5. Let \tilde{G} be defined as above and set
\[
(g_1, c_1) \cdot (g_2, c_2) = (g_1g_2, c_1 + c_2 + \eta(g_1, g_2))
\]
then \tilde{G} is a Lie group with identity $(e_\mathbb{C}, 0)$ and inverse $(g, c)^{-1} = (g^{-1}, -c)$. If $\sigma: \tilde{G} \to G$ is given by $\sigma(g, c) = g$ then σ is a surjective homomorphism with kernel $(\{1, 2\pi k \mid k \in \mathbb{Z}\})$.

Proof. Associativity and the group properties follow from **Lemma 3**. σ is obviously smooth and clearly a homomorphism. □

It follows from this proposition that σ is a homomorphism of Lie groups with discrete kernel, and so induces an isomorphism of Lie algebras.

Theorem 6. $\sigma: \tilde{G} \to G$ is the universal covering group of G.

Proof. Let \(\gamma : [0, 1] \to G \) be a loop in \(G \), set \(z(t) = \varphi(\gamma(t)) \) and let \(k \in \mathbb{Z} \) be the winding number of the origin of \(z(t) \) as a contour in \(C \). This means that we can lift \(z(t) = e^{i\varphi(t)} \) with \(c(0) = 0 \) and then \(c(1) = 2\pi k \). Since \(\varphi \) induces an isomorphism on the fundamental group, \(k \) is also the homotopy class of \(\gamma \). If \((\gamma', c) \) is a loop in \(G \) at \((1, 0) \) then \(\varphi(\gamma'(t)) = e^{i\varphi(t)} \) with \(c(1) = 0 \) follows that \(k = 0 \) and hence that \(\gamma \) is contractible in \(G \). So there is a curve of loops \(\delta \) in \(G \) with \(\delta(0) = \gamma \) and \(\delta(1) = 1 \). Then \(\varphi(\delta(t)) \) lifts to \(\mathbb{R} \) so we can write \(\varphi(\delta(t)) = e^{i\varphi(t)} \) with \(c(0) = 0 \) for all \(s \) and \(c(1) = \varphi(\gamma') = 0 \). (\(\delta, c \) is then a homotopy of \((\gamma', c) \) to a constant loop in \(G \). Since \((\gamma', c) \) was arbitrary it follows that \(\tilde{G} \) is simply connected and hence that it is the universal covering group of \(G \). \(\square \)

Remark 7. We have a converse to this result. If \(\tilde{G} \to G \) is the universal covering group of a Lie group \(G \) and \(\pi_1(G, e_G) = \mathbb{Z} \), then \(G \) is an extension of \(G \) by \(\mathbb{Z} \). Take a good cover \(U_\alpha \) of \(G \) and choose sections \(s_\alpha : U_\alpha \to G \). Then on overlaps we have \(\pi_1 = \pi_0 \cdot \pi_2 \). Viewed as real valued functions, the 1-cocycle \(n_\alpha \cdot \pi_1 \) is a coboundary, so there are smooth functions \(f_\alpha \) on \(U_\alpha \) with \(\pi_1 - f_\alpha = n_\alpha \). If we set \(\varphi = \exp 2\pi i f_\alpha \) then \(\varphi \) is globally defined and smooth on \(G \). Moreover, if we form the cover as in Definition 4, then it is left as an exercise to show that \((g, c) \mapsto s_a(g) \cdot (c - f_\alpha(g)) \), when \(g \in U_\alpha \), gives a globally defined isomorphism of Lie groups.

Example 8. As a first example we take \(G = U(n) \) then \(\varphi(g) = \det g \) is a normalised circle function. In this case \(\eta \equiv 0 \) and \(U(n) \) is a subgroup of \(U(n) \times \mathbb{R} \).

Lemma 9. \(\tilde{U(n)} \) is isomorphic to \(SU(n) \times \mathbb{R} \).

Proof. Define a map

\[
\mu : SU(n) \times \mathbb{R} \to \tilde{U(n)} : (k, c) \mapsto (e^{i\xi}k, nc),
\]

which is well defined since \(\det(e^{i\xi}k) = e^{in\xi} \). Moreover \(\mu \) is a homomorphism since \(\varphi \) is a homomorphism and \(\eta \equiv 0 \) giving

\[
\mu(k_1, c_1)\mu(k_2, c_2) = (e^{i\xi_1}k_1, nc_1)(e^{i\xi_2}k_2, nc_2) = \mu(k_1k_2, c_1 + c_2) = \mu(k_1, c_1)\mu(k_2, c_2).
\]

The map \(\mu \) is onto, for if \(k \in U(n) \) with \(\det k = e^{i\xi} \) then \(\det(e^{-i\xi/n}k) = 1 \). So the image of \((e^{-i\xi/n}k, c/n) \in SU(n) \times \mathbb{R} \) under \(\mu \) is \((k, c) \in U(n) \). The kernel of \(\mu \)

\[
\{(k, c) \in SU(n) \times \mathbb{R} \mid e^{i\xi}k = 1, \, nc = 0\} = \{(1, 0)\},
\]

which proves the lemma. \(\square \)

Example 10. The symplectic group is semisimple, so there are no homomorphisms \(Sp(2n, \mathbb{R}) \to S^1 \). However, \(U(n) \) is a maximal compact subgroup and so the same fundamental group. Suppose we have a smooth map \(\varphi : Sp(2n, \mathbb{R}) \to S^1 \) such that \(\varphi(g^{-1}) = \varphi(g)^{-1}, \varphi(1) = 1 \), and whose restriction to \(U(n) \) is \(\det \), then \(\varphi \) is a normalised circle function for \(Sp(2n, \mathbb{R}) \) and so such a map \(\varphi \) will induce an isomorphism on the fundamental group.

In fact we could take any retraction \(r : Sp(2n, \mathbb{R}) \to U(n) \) and set \(\varphi = \det r \circ \rho \) to get a circle function and then normalise it. But the result in this generality might not be all that easy to work with.

In order to have a useable model for \(Sp(2n, \mathbb{R}) \) it is necessary to have a nice formula for the multiplication, and this depends on being able to compute the corresponding cocycle \(\eta \). We shall see in what follows that there is a good choice of \(\varphi \) which leads to an explicit formula for \(\eta \). After defining this we shall make some computations with our formulae, to show that they are indeed ‘useable’.

3. Calculation of a symplectic circle function \(\varphi \)

We move to a slightly more abstract setting, taking a general symplectic vector space as our starting point. Let \((V, \Omega) \) be a 2n-dimensional real symplectic vector space. Fix \(J \in \text{End}(V) \) such that \(J^2 = -1, \Omega(Ju, Jv) = \Omega(u, v) \) for every \(u, v \in V \) and \(\Omega(u, Jv) > 0 \) if \(v \neq 0 \). Let

\[
\begin{align*}
\text{Sp}(V, \Omega) &= \{g \in \text{End}(V) \mid \Omega(gv, gw) = \Omega(v, w), \forall v, w \in V\}; \\
\text{Gl}(V, J) &= \{g \in \text{Gl}(V) \mid gJ = Jg\}; \\
U(V, \Omega, J) &= \{g \in \text{Sp}(V, \Omega) \mid gJ = Jg\} = \text{Sp}(V, \Omega) \cap \text{Gl}(V, J).
\end{align*}
\]

View \(V \) as a complex vector space using \(J \), then \(\text{Sp}(V, \Omega) \) is isomorphic to \(\text{Sp}(2n, \mathbb{R}), U(V, \Omega, J) \) to \(U(n) \) and \(\text{Gl}(V, J) \) to \(\text{Gl}(n, \mathbb{C}) \).

Given \(g \in \text{Sp}(V, \Omega) \) it can be written uniquely as a sum of a \(J \)-linear and \(J \)-antilinear part, namely,

\[
g = C_g + D_g,
\]

where \(C_g = \frac{1}{2}(g - JgJ) \) and \(D_g = \frac{1}{2}(g + JgJ) \).
Lemma 11. \(C_g \in \text{Gl}(V, J) \). If \(g \in \text{U}(V, \Omega, J) \), then \(C_g = g \).

Proof. Suppose that \(C_g v = 0 \). Then
\[
0 = 4\Omega(C_g v, J C_g v) = 2\Omega(v, Jv) + \Omega(g v, Jg v) + \Omega(\Omega(g v, Jg v), v).
\]
But each term in the right hand side of the above equation is positive definite and so \(v = 0 \). \(\square \)

The definition of the circle function \(\varphi \) is now easy, namely,
\[
\varphi(g) = \frac{\det C_g}{|\det C_g|}.
\]

4. Calculation of the cocycle \(\eta \)

We now find a formula for the cocycle \(\eta \) whose existence is guaranteed by Lemma 3. First we make some preliminary calculations.

Put \(Z_g = C_g^{-1} D_g \). Then \(g = C_g (1 + Z_g) \). \(Z_g \) is \(\mathbb{C} \)-antilinear. We have \(g^{-1} = C_{g^{-1}} (1 + Z_{g^{-1}}) \). Equating \(\mathbb{C} \)-linear and \(\mathbb{C} \)-antilinear parts in
\[
1 = g^{-1} g = C_{g^{-1}} (1 + Z_{g^{-1}}) C_g (1 + Z_g)
\]
gives
\[
1 = C_{g^{-1}} (1 + Z_{g^{-1}}) C_g (1 + Z_g) \quad \text{and} \quad 0 = C_{g^{-1}} (Z_{g^{-1}} C_g + Z_g).
\]
Hence
\[
Z_{g^{-1}} = - C_g Z_g C_{g^{-1}} \quad \text{and} \quad 1 = C_{g^{-1}} C_g (1 - Z_g^2),
\]
since \(C_{g^{-1}} \) is invertible. Thus \(1 - Z_g^2 \) is invertible with \((1 - Z_g^2)^{-1} = C_{g^{-1}} C_g \). We can also decompose a product
\[
C_{s_1 s_2} (1 + Z_{s_1} Z_{s_2}) = C_{s_1} (1 + Z_{s_1}) C_{s_2} (1 + Z_{s_2})
\]
as
\[
C_{s_1 s_2} = C_{s_1} (1 + Z_{s_1} Z_{s_2}) = C_{s_1} (1 - Z_{s_1} Z_{s_2}^{-1}) C_{s_2}
\]
and
\[
Z_{s_1 s_2} = C_{s_2}^{-1} (1 - Z_{s_1} Z_{s_2}^{-1})^{-1} (Z_{s_1} C_{s_2} + C_{s_2} Z_{s_2})
\]
\[
= C_{s_2}^{-1} (1 - Z_{s_1} Z_{s_2}^{-1})^{-1} (Z_{s_1} - Z_{s_2}) C_{s_2}.
\]

To define the cocycle \(\eta \) we need to see that the function
\[
(g_1, g_2) \mapsto \frac{\det(1 - Z_{g_1} Z_{g_2})}{|\det(1 - Z_{g_1} Z_{g_2})|}
\]
has a smooth logarithm. To see this, we determine that the set where \(Z_g \) lives is essentially the Siegel domain.

Introduce a Hermitian structure on \((V, J) \) as a \(\mathbb{C} \) vector space by defining
\[
\langle v, w \rangle = \Omega(v, Jw) - i \Omega(v, w).
\]
Then
\[
\langle Jv, w \rangle = i \langle v, w \rangle = - \langle v, Jw \rangle \quad \text{and} \quad \langle v, v \rangle = \Omega(v, Jv) > 0, \quad \text{for} \ v \neq 0.
\]

We calculate
\[
2 \langle C_g v, w \rangle = 2 \langle v, C_g w \rangle = \Omega(v, Jg w) + \Omega(v, g J w) - i \Omega(v, g w) + i \Omega(v, J g w)
\]
\[
= - \Omega(g^{-1} v, w) + \Omega(g^{-1} v, J w) - i \Omega(g^{-1} v, w) - i \Omega(g^{-1} J v, w)
\]
\[
= \langle g^{-1} v, w \rangle - i \langle g^{-1} J v, w \rangle = \langle g^{-1} v, w \rangle - \langle J^{-1} g v, w \rangle
\]
\[
= 2 \langle C_{g^{-1}} v, w \rangle.
\]

Therefore
\[
C_g^* = C_{g^{-1}}.
\]
which implies

$$\varphi(g^{-1}) = \frac{\det C_g^{-1}}{\det C_g} = \frac{\det C^*_g}{\det C^*_g} = \varphi(g).$$

Moreover,

$$1 - Z^2_g = (C_g^{-1} C_g)^{-1} = (C^*_g C_g)^{-1},$$

which is positive definite. Since Z_g is antilinear and (v, w) is antilinear in w, the function $(v, w) \mapsto \langle v, Z_g w \rangle$ is complex bilinear. We claim that it is symmetric.

Lemma 12. For every $v, w \in V$, we have $\langle v, Z_g w \rangle = \langle w, Z_g v \rangle$.

Proof. Now

$$\Omega(D_g v, w) = \Omega(v, D_g^{-1} w) = -\Omega(D_g^{-1} v, w);$$

and $\Omega(D_g, f w) = -\Omega(D_g^{-1} v, f v)$. Hence $(D_g v, w) = -\langle D_g^{-1} v, w \rangle$ and so

$$(Z_g v, C^*_g w) = \langle C_g Z_g v, w \rangle = -\langle C_g^{-1} Z_g^{-1} w, v \rangle = \langle Z_g C^*_g w, v \rangle. \quad \square$$

So Z_g has the three properties:

(i) Z_g is C-antilinear;
(ii) $(v, w) \mapsto \langle v, Z_g w \rangle$ is symmetric;
(iii) $1 - Z^2_g$ is self-adjoint and is positive definite.

Let $\mathcal{B}(V, \Omega, J)$ be the **Siegel domain** consisting of $Z \in \text{End}_{\mathbb{R}}(V)$ such that

$$Z J = -J Z, \quad (v, Z w) = \langle w, Z v \rangle, \quad \text{and} \quad 1 - Z^2 \text{ is positive definite}.$$

Then we have a map

$$\text{Sp}(V, \Omega) \to \text{Gl}(V, J) \times \mathcal{B}(V, \Omega, J) : g \mapsto (C_g, Z_g),$$

whose image is the submanifold \{ $(C, Z) \mid 1 - Z^2 = (C^* C)^{-1}$ \}.

Proposition 13. If $Z_1, Z_2 \in \mathcal{B}(V, \Omega, J)$, then $1 - Z_1 Z_2$ is invertible and its real part is positive definite.

Proof. Suppose that $v \neq 0$. Then

$$\left[(1 - Z_1 Z_2) + (1 - Z_1 Z_2)^* \right] v, v = \langle (1 - Z_1 Z_2) v, v \rangle + \langle (1 - Z_1 Z_2) v, v \rangle$$

$$= \langle (1 - Z_1^2) v, v \rangle + \langle (1 - Z_2^2) v, v \rangle + \langle Z_1^2 v, v \rangle$$

$$+ \langle Z_2^2 v, v \rangle - \langle Z_1 Z_2 v, v \rangle - \langle Z_1 Z_2 v, v \rangle$$

$$= \langle (1 - Z_1^2) v, v \rangle + \langle (1 - Z_2^2) v, v \rangle + \langle Z_1 v, Z_1 v \rangle$$

$$+ \langle Z_2 v, Z_2 v \rangle - \langle Z_1 v, Z_2 v \rangle - \langle Z_2 v, Z_1 v \rangle$$

$$= \langle (1 - Z_1^2) v, v \rangle + \langle (1 - Z_2^2) v, v \rangle + \| (1 - Z_2) v \|^2.$$

The first two terms in the last equality are positive, while the last term is nonnegative. Consequently, the kernel of $1 - Z_1 Z_2$ is $\{0\}$ and its real part is positive definite, which proves the proposition. \square

Thus $1 - Z_1 Z_2 \in \text{Gl}(V, J)$ and it lies in the contractible subset

$$\{ g \in \text{Gl}(V, J) \mid g + g^* \text{ is positive definite} \}.$$

It follows that there is a smooth logarithm

$$a : \mathcal{B}(V, \Omega, J) \times \mathcal{B}(V, \Omega, J) \to \text{gl}(V, J)$$

such that $1 - Z_1 Z_2 = e^{a(Z_1, Z_2)}$. We can define the cocycle η by

$$\eta(g_1, g_2) = \text{Im Tr} \left(a(Z_1, Z_2^{-1}) \right).$$

Therefore

$$e^{i \eta(g_1, g_2)} = \frac{\det(1 - Z_1 Z_2^{-1})}{\det(1 - Z_1 Z_2^{-1})},$$

which implies

$$\varphi(g_1 g_2) = \varphi(g_1) \varphi(g_2) e^{i \eta(g_1, g_2)}.$$
5. The relationship with angle functions

In [4], Milnor is interested in lifting \(\varphi \circ \sigma : \tilde{G} \to S^1 \) to a map \(\theta : \tilde{G} \to \mathbb{R} \), called an angle function, so that \(\varphi \circ \sigma = e^{i\theta} \). In our case, this is easy: set \(\theta(g, c) = c \). Then

\[
\theta((g_1, c_1) \cdot (g_2, c_2)) - \theta(g_1, c_1) - \theta(g_2, c_2) = c_1 + c_2 + \eta(g_1, g_2) - c_1 - c_2 = \eta(g_1, g_2).
\]

Lemma 3 in [4] becomes the \(n = 1 \) case of the following.

Lemma 14. \(|\eta(g_1, g_2)| < n\pi/2\).

Proof. The above inequality states that \(|\arg(\det(1 - Z_1 Z_2))| < n\pi/2 \) if we choose the branch of \(\arg \) which is 0 at 1. We know that \(1 - Z_1 Z_2 = X + i Y \) with \(X \) positive definite. So \(1 - Z_1 Z_2 = X^2 (1 + i X^{-1/2} Y X^{-1/2}) X^{-1/2} \), which implies

\[
\det(1 - Z_1 Z_2) = \det X \ det(1 + i Y) = Z_1^n \ det(1 + i Y),
\]

where \(\tilde{Y} = X^{-1/2} Y X^{-1/2} \) is self-adjoint. Therefore

\[
\arg(\det(1 - Z_1 Z_2)) = \arg(\det X \ det(1 + i Y)) = \arg \left(\prod_{j=1}^{n}(1 + i \tilde{y}_j) \right),
\]

where \(\tilde{y}_j \) are the eigenvalues of \(\tilde{Y} \). Since \(\arg(1 + iy) \in (-\pi/2, \pi/2) \), we obtain the desired inequality. \(\Box \)

It can be seen that by taking \(1 - Z_1^2 \) and \(1 - Z_2^2 \) positive definite that \(\eta \) takes values in the whole interval \((-n\pi/2, n\pi/2)\) so the bound in **Lemma 14** is sharp.

6. Special case: \(\tilde{\text{Sp}}(2, \mathbb{R}) \)

In this section, we work out the above theory in detail for the universal covering group of \(\text{Sp}(2, \mathbb{R}) = \text{SL}(2, \mathbb{R}) \).

Let \(V \) be \(\mathbb{R}^2 \) with standard basis \(\{e_1, e_2\} \). With respect to this basis the symplectic form \(\Omega \) has matrix \(J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \).

Suppose that \(P \) is a \(2 \times 2 \) real matrix which is \(J \)-linear, that is, \(PJ = JP \). Then \(P = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \), which we identify with the complex number \(a + ib \). Let \(\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \), which represents complex conjugation on \((V, J) \) thought of as a complex vector space. A \(J \)-antilinear map \(Z \) has a matrix of the form \(\begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} \), which can be identified with \((\alpha - \beta J) \Sigma \). In other words, \(Z \) can be identified with the \(\mathbb{C} \)-antilinear map \(\widetilde{Z} : \mathbb{C} \to \mathbb{C} : z \mapsto (\alpha - i \beta) z \).

When \(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{gl}(2, \mathbb{R}) \), a calculation shows that

\[
C_g = \frac{1}{2} \begin{pmatrix} a + d & b - c \\ c - b & a + d \end{pmatrix}
\]

and as a real matrix

\[
Z_g = \frac{1}{(a + d)^2 + (b - c)^2} \begin{pmatrix} a^2 + c^2 - b^2 - d^2 & 2(ab + cd) \\ 2(ab + cd) & -2(ad + bc) \end{pmatrix} \cdot
\]

Using the above identification, this gives

\[
\tilde{Z}_g \tilde{z} = \alpha_g \tilde{z} = \left(\frac{(a^2 + c^2 - b^2 - d^2) - 2i(ad + bc)}{(a + d)^2 + (b - c)^2} \right) \tilde{z}.
\]

For \(g_1, g_2 \in \text{Sp}(2, \mathbb{R}) \) the value of the cocycle \(\eta(g_1, g_2) \) defined by

\[
e^{i\eta(g_1,g_2)} = \frac{\det(1 - Z_{g_1} Z_{g_2}^{-1})}{|\det(1 - Z_{g_1} Z_{g_2}^{-1})|} = \frac{1 - \alpha_{g_1} \overline{\alpha}_{g_2}^{-1}}{|1 - \alpha_{g_1} \overline{\alpha}_{g_2}^{-1}|}
\]

where \(\eta(g_1, g_2) \) is continuous and lies in the open interval \((-\pi/2, \pi/2)\).

Example 15. To show how useable these formulae are we calculate with the generators of the integer matrices \(\text{Sp}(2, \mathbb{Z}) \). This subgroup is generated by

\[
s_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad s_2 = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
\]
subject to the relations

\[s_1 s_2 s_1 = s_2 s_1 s_2 \quad \text{and} \quad (s_1 s_2 s_1)^4 = 1. \]

Using the formula for \(\alpha_g \), we obtain the table

<table>
<thead>
<tr>
<th>(g)</th>
<th>(\alpha_g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(\begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>(s_2)</td>
<td>(\begin{pmatrix} 1 & 0 \ -1 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>(s_1^{-1})</td>
<td>(\begin{pmatrix} 1 & -1 \ 0 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>(s_2^{-1})</td>
<td>(\begin{pmatrix} 1 & 0 \ 1 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>(s_1 s_2)</td>
<td>(\begin{pmatrix} 0 & 1 \ -1 & 1 \end{pmatrix})</td>
</tr>
<tr>
<td>((s_1 s_2)^{-1})</td>
<td>(\begin{pmatrix} 1 & -1 \ 1 & 0 \end{pmatrix})</td>
</tr>
</tbody>
</table>

Next we compute the values of the cocycle \(\eta \) at \((s_1, s_2), (s_1 s_2, s_1), \) and \((s_2, s_1 s_2)\). From (1) and the above table we obtain

\[e^{i \eta(s_1, s_2)} = \frac{1 - \frac{1}{2} (-1 - 2i) \frac{1}{2} (1 + 2i)}{1 - \frac{1}{2} (-1 - 2i) \frac{1}{2} (1 + 2i)} = \frac{22 + 4i}{10\sqrt{5}} = \frac{11 + 2i}{5\sqrt{5}}. \]

Let \(\theta_0 = \tan^{-1} \frac{1}{2} \). Then

\[e^{i \theta_0} = \left(\frac{2 + i}{\sqrt{5}} \right)^3 = \frac{2 + 11i}{5\sqrt{5}} = i e^{-\eta(s_1, s_2)i}, \]

which implies

\[\eta(s_1, s_2) = \pi/2 - 3\theta_0. \]

Note that \(\eta(s_1, s_2) \) lies in \((-\pi/2, \pi/2\)\). Now

\[e^{i \eta(s_1 s_2, s_2)} = \frac{1 - \frac{1}{2} (-1 + 2i) \frac{1}{2} (1 + 2i)}{1 - \frac{1}{2} (-1 + 2i) \frac{1}{2} (1 + 2i)} = 1. \]

Consequently, \(\eta(s_1 s_2, s_2) = 0 \). Similarly,

\[e^{i \eta(s_2 s_1, s_2)} = \frac{1 - \frac{1}{2} (1 + 2i) \frac{1}{2} (1 - 2i)}{1 - \frac{1}{2} (1 + 2i) \frac{1}{2} (1 - 2i)} = 1 \]

and thus \(\eta(s_2, s_1 s_2) = 0 \).

7. The braid group \(B_3 \) lies in \(\tilde{\text{Sp}}(2, \mathbb{R}) \)

In this section, we show that the three strand braid group \(B_3 \), given by the presentation

\[\langle \sigma_1 , \sigma_2 : \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle, \quad (2) \]

is a discrete subgroup of the universal covering group \(\tilde{\text{Sp}}(2, \mathbb{R}) \) of \(\text{Sp}(2, \mathbb{R}) \).

First, we look for elements \(\tilde{\sigma}_j = (s_j, c_j) \), \(j = 1, 2 \) of \(\text{Sp}(2, \mathbb{R}) \) which satisfy the braid relation (2) and thus lie in the image \(\tilde{B}_3 \) of \(B_3 \) under the map

\[\tau : B_3 \rightarrow \tilde{\text{Sp}}(2, \mathbb{R}) : \sigma_j \mapsto \tilde{\sigma}_j, \quad \text{for} \ j = 1, 2. \]

Write

\[\tilde{\sigma}_1 = (s_1, \theta_0 + 2\pi k_1) \quad \text{and} \quad \tilde{\sigma}_2 = (s_2, \theta_0 + 2\pi k_2). \]
for some \(k_1, k_2 \in \mathbb{Z}\). Then
\[
\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 = (s_1 s_2, 2\theta_0 + 2\pi k_1 + 2\pi k_2 + \eta(s_1, s_2)) = (s_1 s_2, -\theta_0 + 2\pi k_1 + 2\pi k_2 + \pi / 2).
\]

Consequently,
\[
(\tilde{\sigma}_1 \cdot \tilde{\sigma}_2) \cdot \tilde{\sigma}_1 = (s_1 s_2, -\theta_0 + 2\pi k_1 + 2\pi k_2 + \pi / 2) \cdot (s_1, \theta_0 + 2\pi k_1) = (s_1 s_2 s_1, 4\pi k_1 + 2\pi k_2 + \pi / 2 + \eta(s_1 s_2, s_1)) = (s_1 s_2 s_1, 4\pi k_1 + 2\pi k_2 + \pi / 2)
\]
and
\[
\tilde{\sigma}_2 \cdot (\tilde{\sigma}_1 \cdot \tilde{\sigma}_2) = (s_2, \theta_0 + 2\pi k_2) \cdot (s_1 s_2, -\theta_0 + 2\pi k_1 + 2\pi k_2 + \pi / 2) = (s_2 s_1 s_2, 2\pi k_1 + 4\pi k_2 + \pi / 2 + \eta(s_2, s_1 s_2)) = (s_2 s_1 s_2, 2\pi k_1 + 4\pi k_2 + \pi / 2).
\]

Therefore the braid relation
\[
(\tilde{\sigma}_1 \cdot \tilde{\sigma}_2) \cdot \tilde{\sigma}_1 = \tilde{\sigma}_1 \cdot (\tilde{\sigma}_2 \cdot \tilde{\sigma}_1)
\]
is satisfied if and only if \(k_1 = k_2 = k\). Hence
\[
\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \cdot \tilde{\sigma}_1 = \tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \cdot \tilde{\sigma}_1 = (j, 6\pi k + \pi / 2),
\]
for some \(k \in \mathbb{Z}\). Moreover,
\[
(\tilde{\sigma}_1 \cdot \tilde{\sigma}_2)^3 = (\tilde{\sigma}_1 \cdot \tilde{\sigma}_2) \cdot (\tilde{\sigma}_2 \cdot \tilde{\sigma}_1) = (j^2, 12\pi k + \pi) = (-1, 12\pi k + \pi).
\]

Setting \(k = 0\), we have shown that
\[
\tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \cdot \tilde{\sigma}_1 = \tilde{\sigma}_1 \cdot \tilde{\sigma}_2 \cdot \tilde{\sigma}_1 = (j, \pi / 2)
\]
and
\[
(\tilde{\sigma}_1 \cdot \tilde{\sigma}_2)^3 = (-1, \pi).
\]

We now show that \((\tilde{\sigma}_1 \cdot \tilde{\sigma}_2)^3\) generates the centre of \(\widetilde{\text{Sp}}(2, \mathbb{R})\). Suppose that
\[
(g_1, a_1) \cdot (g_2, a_2) = (g_2, a_2) \cdot (g_1, a_1)
\]
for every \((g_2, a_2) \in \widetilde{\text{Sp}}(2, \mathbb{R})\). Then
\[
(g_1 g_2, a_1 + a_2 + \eta(g_1, g_2)) = (g_2 g_1, a_2 + a_1 + \eta(g_2, g_1))
\]
for every \(g_2 \in \text{Sp}(2, \mathbb{R})\). Hence \(g_1\) lies in the centre \(Z(\text{Sp}(2, \mathbb{R}))\) of \(\text{Sp}(2, \mathbb{R})\); so in particular, \(g_1 \in U(1)\). Consequently,
\[
\eta(g_1, g_2) = \eta(g_2, g_1) = 0 \text{ and } e^{i\eta} = \varphi(g_1) = \det g_1 = \pm 1.
\]
In other words, \((g_1, a_1)\) is either \((-1, 2n\pi + 1)\) or \((1, 2n\pi)\) for some \(n \in \mathbb{Z}\). But \((-1, \pi)^{2n} = (1, 2n\pi)\). Thus \(Z(\text{Sp}(2, \mathbb{R}))\) is generated by \((-1, \pi)\).

Proposition 16. \(\tilde{B}_3 = \widetilde{\text{Sp}}(2, \mathbb{Z})\).

Proof. Let \(\tilde{\sigma} \in \widetilde{\text{Sp}}(2, \mathbb{Z}) \subseteq \widetilde{\text{Sp}}(2, \mathbb{R})\). Then \(\tilde{\sigma} = (g, c)\), where \(g \in \text{Sp}(2, \mathbb{Z})\). Now \(g\) is a word \(w(s_1, s_2)\) in \(s_1\) and \(s_2\) which is a product of \(s_j s_k^{-1}\) s. Consider
\[
w(\tilde{\sigma}_1, \tilde{\sigma}_2) = (w(s_1, s_2), c') = (g, c').
\]
Because \(\tilde{\sigma}_j \in \widetilde{\text{Sp}}(2, \mathbb{R})\), we have \(\varphi(g) = e^{i\ell} = e^{i\ell'}\), which implies that \(c = c' + 2\pi \ell\) for some \(\ell \in \mathbb{Z}\). Hence
\[
(1, 2\pi \ell) = (\tilde{\sigma}_1 \cdot \tilde{\sigma}_2)^{6\ell}. \text{ But}
\]
\[
\tilde{\sigma} = (g, c) = (g, c') \cdot (1, 2\pi \ell), \text{ because } \eta(1, g) = 0
\]
\[
= w(\tilde{\sigma}_1, \tilde{\sigma}_2) \cdot (\tilde{\sigma}_1 \cdot \tilde{\sigma}_2)^{6\ell},
\]
which lies in \(\tilde{B}_3\). Thus \(\widetilde{\text{Sp}}(2, \mathbb{Z}) \subseteq \tilde{B}_3\), which proves the proposition, since \(\tilde{\sigma}_1\) and \(\tilde{\sigma}_2\) generate \(\widetilde{\text{Sp}}(2, \mathbb{Z})\). \(\square\)

We now prove the following lemma.

Lemma 17. \(B_3\) is isomorphic to \(\tilde{B}_3\).
Theorem 18. The inverse image of $\text{Sp}(2, \mathbb{Z})$ in the simply connected covering group of $\text{Sp}(2, \mathbb{R})$ is isomorphic to the braid group on three strands.

8. The Lagrangian Grassmannian

Let (V, Ω, J) be as above and let $V^\mathbb{C} = V + iV$ be the complexification of V. Let $v = v_1 + iv_2 \mapsto \tau = v_1 - iv_2$ be complex conjugation and for a subset W of $V^\mathbb{C}$ let $\overline{W} = \{ \overline{v} \mid v \in W \}$. A complex subspace $W \subset V^\mathbb{C}$ is said to be real if $W = U + iU$ for a subspace $U \subset V$ and this is the case if and only if $W = \overline{W}$.

Extend Ω, $\text{Sp}(V, \Omega, J)$, etc. to be \mathbb{C}-linear (or bilinear) on $V^\mathbb{C}$.

Definition 19. A subspace F of $V^\mathbb{C}$ is (complex) Lagrangian if

1. $\Omega(v, w) = 0$ for every $v, w \in F$;
2. $\dim_{\mathbb{C}} F = \frac{1}{2} \dim_{\mathbb{R}} V$.

A Lagrangian subspace F is positive if $i\Omega(v, \overline{v}) \geq 0$ for every $v \in F$ and strictly positive if $i\Omega(v, \overline{v}) > 0$ for every $v \neq 0 \in F$.

A Lagrangian subspace is real if $F = W + iW$, where $W = F \cap V$ is a real Lagrangian subspace of V; F is a complex structure if $F \cap \overline{F} = \{0\}$, $F + \overline{F}$ and $F \cap \overline{F}$ are always real subspaces. Real Lagrangian subspaces and complex structures are the two extremes where $F \cap \overline{F}$ is as large or as small as possible.

The first result is the following.

Proposition 20. If F and G are positive Lagrangian subspaces of $V^\mathbb{C}$, then $F \cap \overline{G}$ is real.

Proof. In fact we show that $F \cap \overline{G} \subset F \cap \overline{F}$, which implies $F \cap \overline{G} = F \cap \overline{F}$ and hence the result.

If $v \in F \cap \overline{G}$ then $\tau \in G$, so $i\Omega(\tau, \overline{\tau}) \geq 0$. Consequently, $-i\Omega(v, \overline{v}) \geq 0$. But $i\Omega(v, \overline{v}) \geq 0$ since $v \in F$. Hence $\Omega(\overline{v}, \overline{\tau}) = 0$. But $i\Omega(v, \overline{w})$ is a positive definite form on F. So by Cauchy–Schwartz, its kernel is all vectors with $\Omega(v, \overline{v}) = 0$. But its kernel is F, since F is Lagrangian. Thus $v \in F$ and $\Omega(v, \overline{v}) = 0$, which implies that $v \in F \cap \overline{F}$. Hence $F \cap \overline{G} \subset F \cap \overline{F}$.

Corollary 21. If F is positive and G is strictly positive, then $F \cap \overline{G} = \{0\}$.

Proof. If G is strictly positive, then $G \cap \overline{G} = \{0\}$. So $F \cap \overline{G} \subset G \cap \overline{G} = \{0\}$. Hence $F \cap \overline{G} = \{0\}$.

Lemma 22. $F_0 = \{ (1 + i) v \mid v \in V \}$ is a strictly positive Lagrangian subspace of $V^\mathbb{C}$.

Proof. The lemma follows from

$$i\Omega((1 + i)v, (1 - i)v) = 2\Omega(v, Jv) > 0,$$

provided that $v \neq 0$.

Proof. Consider

$$B_3 \xrightarrow{\sigma} B_2 \xrightarrow{\sigma} \tilde{\text{Sp}}(2, \mathbb{R}) : \sigma_j \mapsto \sigma_j, \quad \text{for } j = 1, 2.$$

Let $v(\sigma_1, \sigma_2)$ be a word in $\ker \tau$. Then $v(\sigma_1, \sigma_2) = 1$. But $s_1s_2s_1(s_2s_1)^{-1}$ and $(s_2s_1)^4$ generate the set of relations in $\text{Sp}(2, \mathbb{Z})$. Hence

$$v(s_1, s_2) = u(s_1s_2s_1(s_2s_1)^{-1}, (s_2s_1)^4)$$

for some word u. Therefore

$$v(\sigma_1, \sigma_2) = u((\sigma_1\sigma_2\sigma_1)(\sigma_2\sigma_1\sigma_2)^{-1}, (\sigma_1\sigma_2\sigma_2)^4)$$

$$= u(1, (\sigma_1\sigma_2\sigma_2)^4) = (\sigma_1\sigma_2\sigma_1)^{4m}.$$

But

$$(\sigma_1\sigma_2\sigma_2)^2 = (\sigma_1\sigma_2\sigma_1)(\sigma_2\sigma_1\sigma_2) = (\sigma_1\sigma_2)^3.$$

So

$$(\sigma_1\sigma_2\sigma_1)^{4m} = (\sigma_1\sigma_2)^{6m}.$$

However,

$$(1, 0) = \tau(v(\sigma_1, \sigma_2)) = \tau((\sigma_1\sigma_2)^{6m}) = (\tilde{\sigma}_1\tilde{\sigma}_2)^{6m} = ((-1, \pi))^{2m} = (1, 2m \pi).$$

Consequently, $m = 0$, which implies $v(\sigma_1, \sigma_2) = 1$. Thus the surjective homomorphism τ is injective and hence is an isomorphism. This completes the proof of the lemma.

We have thus obtained the following result of Milnor [5].
Corollary 23. If F is positive, then $F \cap \overline{F}_0 = \{0\}$.

Since $V^C = F_0 \oplus \overline{F}_0$ is a direct sum, it follows that the map $F \to F_0$ given by $v \mapsto \frac{1}{2}(1 + ij)v$ is onto. Because $\dim F = \dim F_0$, this map is a C-linear isomorphism. The map $V \to F_0$ defined by $v \mapsto \frac{1}{2}(1 + ij)v$ is an \mathbb{R}-linear isomorphism. Hence, given $v \in V$ there is a unique $v_1 + i v_2 \in F$ so that

$$\frac{1}{2}(1 + ij)(v_1 + i v_2) = \frac{1}{2}(1 + ij) v.$$

In other words, $v = v_1 - j v_2$ for unique $v_1 + i v_2 \in F$. Define $Z_F(v) = v_1 + j v_2$.

Proposition 24. If F is a positive Lagrangian subspace of V^C, then $v \mapsto Z_F(v)$ is a J-antilinear map on V, $(v, w) \mapsto \langle v, Z_F(w) \rangle$ is \mathbb{C}-symmetric, and $1 - Z_F^2$ is positive. If F is strictly positive, then $1 - Z_F^2$ is positive definite. The correspondence $F \mapsto Z_F$ is a bijection from the set of strictly positive Lagrangian subspaces of V^C onto the Siegel domain $\mathbb{B}(V, \Omega, J)$.

Proof. If $v = v_1 - j v_2$ with $v_1 + i v_2, w_1 + i w_2 \in F$. Then

$$\langle v, Z_F w \rangle - \langle w, Z_F v \rangle = \langle v, w_1 + j w_2 \rangle - \langle w, v_1 + j v_2 \rangle$$

$$= \Omega(v_1 - j v_2, j(v_1 + j w_2)) - i \Omega(v_1 - j v_2, w_1 + j w_2)$$

$$- \Omega(w_1 - j w_2, j(v_1 + j v_2)) + i \Omega(w_1 - j w_2, v_1 + j v_2)$$

$$= -2i \Omega(v_1 - v_2, w_1 - i w_2) = 0,$$

since \overline{F} is isotropic. Now

$$\langle Z_F^2 v, v \rangle = \langle Z_F v, Z_F v \rangle = \Omega(v_1 + j v_2, j(v_1 + j v_2))$$

provided that $v = v_1 - j v_2$ with $v_1 + i v_2 \in F$. Then we also have

$$\langle v, v \rangle = \Omega(v_1 - j v_2, j(v_1 - j v_2)).$$

Consequently,

$$\langle (1 - Z_F^2) v, v \rangle = 4 \Omega(v_1, v_2).$$

But

$$i \Omega(v_1 + i v_2, v_1 - i v_2) = 2 \Omega(v_1, v_2).$$

Thus F being positive implies that $1 - Z_F^2$ is positive. F strictly positive implies that $1 - Z_F^2$ is positive definite.

To see that we get a bijection between strictly positive Lagrangian subspaces and $\mathbb{B}(V, \Omega, J)$, we define the inverse map. For $Z \in \mathbb{B}(V, \Omega, J)$, set

$$F = \left\{ \frac{1}{2} (Z + 1)v - \frac{1}{2} ij(Z - 1)v \mid v \in V \right\}.$$

Since $Z + 1$ and $Z - 1$ are invertible, the map $v \mapsto \frac{1}{2} (Z + 1)v - \frac{1}{2} ij(Z - 1)v$ has real rank $\dim V$. Hence $\dim F = \dim V$.

But in fact F is a C-subspace. To see this, we find that

$$i((Z + 1)v - ij(Z - 1)v) = J(Z - 1)v + i(Z + 1)v$$

$$= -(Z + 1)v - ij(1 - Z + 1)v$$

$$= (Z + 1)(-v) - ij(Z - 1)(-v) \in F.$$

Thus F has dimension $\frac{1}{2} \dim V$ as a complex space. An easy calculation shows

$$\Omega((Z + 1)v - ij(Z - 1)v, (Z + 1)w - ij(Z - 1)w) = 2i\langle(Zv, w) - (Zw, v)\rangle.$$

So F is isotropic is equivalent to $\langle Zv, w \rangle = \langle Zw, v \rangle$. Positivity is similar. This completes the proof of the proposition. □
Under the correspondence defined in Proposition 24, we see that \(F \) is real implies that \(v_1, v_2 \in F \) if \(v_1 + i v_2 \in F \). So
\[
\langle (1 - Z^2)v, v \rangle = 4 \Omega(v_1, v_2) = 0
\]
and hence \(Z^2 = 1 \). Thus the real Lagrangian Grassmannian in our picture is the set of \(F \)-antilinear maps \(Z \) of \(V \) into itself with \(Z^2 = 1 \) and \(\langle Zv, w \rangle = \langle Zw, v \rangle \).

How does the real symplectic group \(\text{Sp}(V, \Omega) \) act on \(\Lambda(V, \Omega) \)? On Lagrangian subspaces of \(V \) it acts by \(F \rightarrow g \cdot F \) for \(g \in \text{Sp}(V, \Omega) \). What is its action on \(Z \)? In other words, give a formula for \(Z_{gF} \) in terms of \(g \) and \(Z_F \). To answer this last question, let \(v = v_1 - Jv_2 \) with \(v_1 + i v_2 \in F \). Then \(g v_1 + i g v_2 \in g \cdot F \). So \(Z_{gF}(g v_1 - Jg v_2) = g v_1 + Jg v_2 \) and \(Z_{gF}(v_1 - Jv_2) = v_1 + Jv_2 \).

Now
\[
g v_1 - Jg v_2 = C_g((1 + Z_g) v_1 - J C_g((1 + Z_g) v_2) = C_g(1 + Z_g) v_1 - C_g Jv_2 + C_g Z_g Jv_2 = C_g(v_1 - Jv_2) + C_g Z_g (v_1 + Jv_2) = C_g v + C_g Z_g Z_F v = C_g(1 + Z_g Z_F) v
\]
and
\[
g v_1 + Jg v_2 = C_g((1 + Z_g) v_1 + J C_g((1 + Z_g) v_2) = C_g(v_1 + Jv_2) + C_g Z_g (v_1 - Jv_2) = C_g Z_F v + C_g Z_g v = C_g(Z_F + Z_g)v.
\]

Hence
\[
Z_{gF} C_g((1 + Z_g Z_F) v = C_g(Z_F + Z_g)v.
\]
Since \(Z_g \in B(V, \Omega, J) \), it follows that \(1 + Z_g Z_F \) is invertible for every positive Lagrangian subspace \(F \). Thus
\[
Z_{gF} = C_g(Z_F + Z_g)(1 + Z_g Z_F)^{-1} C_g^{-1}.
\]
Eq. (3) is a uniform formula for the action of \(\text{Sp}(V, \Omega) \) on Lagrangian subspaces of \(V \) in terms of our parameters. Formula (3) shows that
\[
g \cdot Z = C_g(Z + Z_g)(1 + Z_g Z)^{-1} C_g^{-1}
\]
is a smooth action of \(\text{Sp}(V, \Omega) \) on the set of antilinear maps \(Z \) of \(V \) into itself with the properties that \(\langle v, Zw \rangle = \langle w, Zv \rangle \) for every \(v, w \in V \) and \(1 - Z^2 \) is positive definite.

9. The universal covering space of the Lagrangian Grassmannian

In this section, we define a circle function on the Lagrangian Grassmannian and use it to make a construction (4) of its universal covering space \(\tilde{\Lambda}(V, \Omega) \) by analogy with the universal covering group \(\tilde{\text{Sp}}(V, \Omega) \) of the symplectic group. We show that our constructions are compatible by giving an explicit action (5) of \(\tilde{\text{Sp}}(V, \Omega) \) on \(\tilde{\Lambda}(V, \Omega) \). Finally, we show how to lift paths to the universal covers.

Let \(\Lambda(V, \Omega) \) be the real Lagrangian Grassmannian. If \(\lambda \in \Lambda(V, \Omega) \), then \(\lambda \) and \(J \lambda \) are perpendicular with respect to the Euclidean inner product \(\text{Re} \langle \cdot, \cdot \rangle \) on \(V \). In particular, \(V = \lambda \oplus J \lambda \) is a direct sum. Define \(Z \) by \(Z v = v_1 - Jv_2 \) if \(v = v_1 + Jv_2 \) with \(v_1 \in \lambda \). In this special case, we have \(Z^2 = 1 \) and as before \(\langle v, w \rangle \mapsto \langle v, Zw \rangle \) is a \(\mathbb{C} \)-symmetric bilinear form. Moreover, \(\lambda = \{ v \in V \mid Zv = v \} \).

To define a circle function \(\psi : \Lambda(V, \Omega) \rightarrow S^1 \) for \(\Lambda(V, \Omega) \), we pick a base point \(\lambda_0 \in \Lambda(V, \Omega) \) and consider the function \(\lambda \mapsto Z \lambda_0 \).

Proposition 25. \(Z \lambda_0 \in U(V, \Omega, J) \).

Proof. \(Z \lambda_0 \) is \(J \)-linear. Moreover,
\[
\langle Z \lambda_0 u, Z \lambda_0 v \rangle = \langle Z \lambda_0 v, Z \lambda_0 u \rangle = \langle Z \lambda_0^2 v, Z \lambda_0 u \rangle = \langle u, Z \lambda_0^2 v \rangle = \langle u, v \rangle.
\]

Therefore we can define \(\psi \) by \(\lambda \mapsto \det_c(Z \lambda_0) \).

Lemma 26. If \(U \) is a \(\mathbb{C} \)-vector space and \(A, B : U \rightarrow U \) are antilinear maps, then
\[
\det_c(AB) = \overline{\det_c(BA)}.
\]
Proof. Fix a basis to identify U with \mathbb{C}^n. Then A becomes $z \mapsto A_1 \overline{z}$ and B becomes $z \mapsto B_1 \overline{z}$ with A_1, B_1 being $n \times n$ matrices with complex entries. So $ABz = A_1B_1z$ and $BAz = B_1A_1z$. Thus

$$\det_C(AB) = \det_C(A_1B_1) = \det_C A_1 \det_C B_1$$

and

$$\det_C(BA) = \det_C(B_1A_1) = \det_C B_1 \det_C A_1. \quad \square$$

The above formula allows us to compute $\psi(g \cdot \lambda)$ using (3) as follows:

$$Z_{g \cdot \lambda} Z_{\lambda_0} = C_g (Z_{\lambda} + Z_g)(1 + Z_g Z_{\lambda})^{-1} C_g^{-1} Z_{\lambda_0}.$$

Consequently,

$$\det_C(Z_{g \cdot \lambda} Z_{\lambda_0}) = \det_C \left(\frac{C_g (Z_{\lambda} + Z_g)(1 + Z_g Z_{\lambda}) C_g^{-1} Z_{\lambda_0}}{A} \right)$$

$$= \det_C ((1 + Z_g Z_{\lambda})^{-1} C_g^{-1} Z_{\lambda_0} C_g (Z_{\lambda} + Z_g))$$

$$= \det_C (1 + Z_g Z_{\lambda})^{-1} \det_C C_g^{-1} \det_C \left(\frac{Z_{\lambda_0} C_g (1 + Z_g Z_{\lambda})}{A} \right)$$

$$= \det_C (1 + Z_g Z_{\lambda})^{-1} \det_C C_g^{-1} \det_C (C_g (1 + Z_g Z_{\lambda}) Z_{\lambda_0})$$

$$= \det_C (1 + Z_g Z_{\lambda})^{-1} \det_C C_g^{-1} \det_C C_g (1 + Z_g Z_{\lambda}) \det_C (Z_{\lambda_0}).$$

Hence

$$\psi(g \cdot \lambda) = \psi(\lambda) \psi(g)^2 e^{i\nu(g, \lambda)},$$

where

$$\psi(g) = \frac{\det C_g}{\det C_{\lambda}} \quad \text{and} \quad e^{i\nu(g, \lambda)} = \left(\frac{\det_C (1 + Z_g Z_{\lambda})}{\det_C (1 + Z_g Z_{\lambda})} \right)^2.$$

The smooth function ν is uniquely determined if we require that $\nu(e, \lambda_0) = 0$. This then implies that $\nu(g, \lambda) = 0$ for every $g \in U(V, \Omega, J)$.

Theorem 27. There is a smooth map $\psi : \Lambda(V, \Omega) \to S^1$ inducing an isomorphism of $\pi_1(\Lambda(V, \Omega))$ with $\pi_1(S^1) = \mathbb{Z}$ and satisfying

$$\psi(g \cdot \lambda) = \psi(\lambda) (\det_C g)^2,$$

if $g \in U(V, \Omega, J)$. There is a smooth map $\nu : \text{Sp}(V, \Omega) \times \Lambda(V, \Omega) \to \mathbb{R}$ such that

$$\psi(g \cdot \lambda) = \psi(\lambda) \psi(g)^2 e^{i\nu(g, \lambda)}.$$

Is the map ψ unique? Obviously ψ can take any value at a given point, but then it is determined. For if ψ_1 and ψ_2 satisfy

$$\psi_1(g \cdot \lambda) = \psi_2(g \cdot \lambda) (\det g)^2$$

for every $g \in U(V, \Omega, J)$, then ψ_1/ψ_2 is invariant. Since $U(V, \Omega, J)$ acts transitively on $\Lambda(V, \Omega)$, it follows that ψ_1/ψ_2 is constant. Thus the map ψ is independent of the choice of circle function φ. Can any choice of circle function do? Yes, for if φ_0 and ν_0 satisfy

$$\psi(g \cdot \lambda) = \psi(\lambda) \varphi_0(\lambda)^2 e^{i\nu_0(g, \lambda)}$$

then ψ/ψ_0 is trivial on $U(V, \Omega, J)$. So $\varphi(g) = \varphi_0(g) e^{i\tau(g)}$ for some smooth map $\tau : \text{Sp}(V, \Omega) \to \mathbb{R}$ with $\tau(g) = 0$ for every $g \in U(V, \Omega, J)$. Hence

$$\psi(g \cdot \lambda) = \psi(\lambda) \varphi(g)^2 e^{i\nu(g, \lambda)},$$

where $\nu(g, \lambda) = 2\tau(g) + \nu_0(g, \lambda)$.

Define the universal covering space of $\Lambda(V, \Omega)$ by

$$\Lambda(V, \Omega) = \{ (\lambda, c) \in \Lambda(V, \Omega) \times \mathbb{R} \mid \psi(\lambda) = e^{ic} \}$$

(4)

and the covering projection $\sigma : \Lambda(V, \Omega) \to \Lambda(V, \Omega) : (\lambda, c) \mapsto \lambda$. Also define a map $\rho : \Lambda(V, \Omega) \to \mathbb{R} : (\lambda, c) \mapsto c$. Then

$$e^{i\rho(\lambda, c)} = e^{ic} = \psi(\lambda) = \psi(\sigma(\lambda, c)).$$
Consequently, \(e^{i\rho} = \psi \circ \sigma \). Define an action of \(\widetilde{\text{Sp}}(V, \Omega) \) on \(\Lambda(V, \Omega) \) by
\[
(g, a) \cdot (\lambda, c) = (g \cdot \lambda, c + 2a + v(g, \lambda)).
\] (5)
The above action is smooth. Moreover, \(\widetilde{\text{Sp}}(V, \Omega) \) acts transitively on \(\Lambda(V, \Omega) \). Combining the above definitions we obtain
\[
\rho(\tilde{g} \cdot \lambda) = \rho(\lambda) + 2\theta(\tilde{g}) + v(\sigma(A), \sigma(\lambda)).
\] (6)
Using (6), we now derive a formula for the cocycle \(\eta \) in terms of the function \(v \). Applying (6) twice gives
\[
\rho((\tilde{g}_1, \tilde{g}_2) \cdot \lambda) = \rho(\tilde{g}_2 \cdot \lambda) + 2\theta(\tilde{g}_1) + v(\sigma(\tilde{g}_1), \sigma(\tilde{g}_2 \cdot \lambda))
\]
\[
= \rho(\lambda) + 2\theta(\tilde{g}_2) + v(\sigma(\tilde{g}_2), \sigma(\tilde{g}_1 \cdot \lambda)) + 2\theta(\tilde{g}_1) + v(\sigma(\tilde{g}_1), \sigma(\tilde{g}_2 \cdot \lambda)).
\]
But
\[
\rho(\tilde{g}_1 \tilde{g}_2 \cdot \lambda) = \rho(\lambda) + 2\theta(\tilde{g}_1 \tilde{g}_2) + v(\sigma(\tilde{g}_1 \tilde{g}_2), \sigma(\tilde{g}_1 \cdot \lambda)).
\]
Consequently,
\[
2\eta(\tilde{g}_1, \tilde{g}_2) = 2(\theta(\tilde{g}_1 \tilde{g}_2) - \theta(\tilde{g}_1) - \theta(\tilde{g}_2))
\]
\[
= v(\sigma(\tilde{g}_1 \tilde{g}_2), \sigma(\tilde{g}_1 \cdot \lambda)) - v(\sigma(\tilde{g}_1 \tilde{g}_2), \sigma(\tilde{g}_2 \cdot \lambda)) - v(\sigma(\tilde{g}_1), \sigma(\tilde{g}_2 \cdot \lambda))
\]
\[
= v(\tilde{g}_2 \cdot \lambda) + v(\tilde{g}_1, \tilde{g}_2 \cdot \lambda) - v(\tilde{g}_1 \cdot \tilde{g}_2, \lambda).
\]
Given a continuous closed curve \([0, 1] \rightarrow \Lambda(V, \Omega) : t \mapsto \lambda_t\) with \(\lambda_0 = \lambda_1\), we lift it to a continuous curve
\([0, 1] \rightarrow \Lambda(V, \Omega) : t \mapsto \tilde{\lambda}_t = (\lambda_t, c_t)\) with \(c_t\) a continuous real-valued function of \(t\) satisfying \(e^{i\lambda_t} = \psi(\lambda_t)\) for all \(t \in [0, 1]\). Then \(e^{i\lambda_t} = \psi(\lambda_t) = \psi(\lambda_0) = e^{i\phi_0}\) and so \((c_1 - c_0)/2\pi\) is an integer. If \(\lambda_t, d_t\) is a second lift then \((c_t - d_t)/2\pi\) is integer valued and continuous; hence constant. Thus \((d_1 - d_0)/2\pi = (c_1 - c_0)/2\pi\) and so the integer is independent of which lift is chosen.

Definition 28. If \(\lambda_t\) is a continuous closed loop in the real Lagrangian Grassmannian \(\Lambda(V, \Omega)\) and \((\lambda_t, c_t)\) is a continuous lift into \(\Lambda(V, \Omega)\) then the integer \((c_1 - c_0)/2\pi\) constructed as above is called the **Maslov index** of the curve \(\lambda_t\).

Lift \(\lambda_t\) to a curve \(g_t \in \text{Sp}(V, \Omega)\) with \(\lambda_t = g_t \cdot \lambda_0\) and set \(g_0 = 1\). Then we can lift \(g_t\) to a curve \(\tilde{g}_t\) in \(\widetilde{\text{Sp}}(V, \Omega)\) with \(\tilde{g}_0 = (1, 0)\). We have \(\tilde{g}_t = (g_t, a_t)\). Moreover,
\[
\tilde{g}_t \cdot \tilde{g}_0 = (g_t, a_t) \cdot (\lambda_0, 0) = (g_t \cdot \lambda_0, 2a_t + v(g_t, \lambda_0)) = (\lambda_t, 2a_t + v(g_t, \lambda_0)).
\]
Therefore \(c_1 - c_0 = 2a_t + v(g_t, \lambda_0)\). In other words,
\[
c_1 - c_0 = 2\theta(\tilde{g}_1) + v(\tilde{g}_1, \lambda_0).
\] (7)

10. The graph map

The graph of a symplectic linear map of a symplectic vector space is a Lagrangian subspace of the symplectic double so we get a map of the real symplectic group into a Lagrangian Grassmannian. In this section, we show how our circle function for the symplectic group is related to the circle function in the Lagrangian Grassmannian of the symplectic double.

If \(g \in \text{Sp}(V, \Omega)\), let
\[
\Gamma_g = \{(v, gv) \mid v \in V\} \subseteq V \oplus V
\]
be its graph. Then \(\Gamma_g\) is Lagrangian in \((V \oplus V, \Omega \oplus (-\Omega))\). Hence we get a map
\[
\Gamma : \text{Sp}(V, \Omega) \rightarrow \Lambda(V \oplus V, \Omega \oplus (-\Omega)) : g \mapsto \Gamma_g,
\]
called the **graph map**. We will use \(\Gamma_{id} = \Delta_V\), the diagonal, as a base point in \(\Lambda(V \oplus V, \Omega \oplus (-\Omega))\).

Given \(J\) in \((V, \Omega)\) we obtain \(J_1\) in \((V \oplus V, \Omega \oplus (-\Omega))\) defined by \(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\). We then have the circle functions
\[
\varphi : \text{Sp}(V, \Omega) \rightarrow S^1 : g \mapsto \frac{\det C_g}{|\det C_g|}
\]
and
\[
\Psi : \Lambda(V \oplus V, \Omega \oplus (-\Omega)) \rightarrow S^1 : \Gamma_g \mapsto \det(Z_{\Gamma_g} \Gamma_{id}).
\]
To aid computations we observe that \(\begin{pmatrix} A & B \\ C & D \end{pmatrix}\) is \(J_1\)-linear if and only if \(A\) and \(D\) are \(J\)-linear and \(B\) and \(C\) are \(J\)-antilinear. We have the following special cases of Lemma 26.
Lemma 29.
\[
\begin{align*}
\det\begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} &= \det A \det D, \\
\det\begin{pmatrix} 1 & B \\ 0 & 1 \end{pmatrix} &= \det\begin{pmatrix} 1 & 0 \\ C & 1 \end{pmatrix} = 1.
\end{align*}
\]

Proposition 30.
\[
\begin{align*}
Z_{\Gamma} &= \begin{pmatrix} -Z_g & C^{-1}_g \\ (C^{-1}_g)^{-1} & C^{-1}_g Z_g C^{-1}_g \end{pmatrix} \\
Z_{id} &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.
\end{align*}
\]

Proof. Z_{Γ} is defined by
\[
Z_{\Gamma}\begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} v_1 \\ w_1 \end{pmatrix} - J_1 \begin{pmatrix} v_2 \\ w_2 \end{pmatrix}
\]
if
\[
\begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} v_1 \\ w_1 \end{pmatrix} + J_1 \begin{pmatrix} v_2 \\ w_2 \end{pmatrix}
\]
with $(v_i, w_i)^T \in \Gamma$. When $w_i = g v_i$, this means that
\[
v = v_1 + Jv_2 \\
w = g v_1 - Jg v_2 = C_g (1 + Z_g) v_1 - C_g (1 - Z_g) Jv_2.
\]
Hence
\[
C_g^{-1} w = v_1 - Jv_2 + Z_g (1 - Z_g) Jv_2.
\]
In other words,
\[
v_1 - Jv_2 = C_g^{-1} w - Z_g v \quad \text{and} \quad v_1 + Jv_2 = v.
\]
But
\[
Z_{\Gamma}\begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} v_1 - Jv_2 \\ g v_1 + Jg v_2 \end{pmatrix} = \begin{pmatrix} v_1 - Jv_2 \\ g \left[(v_1 + Jv_2) + Z_g (v_1 - Jv_2) \right] \end{pmatrix}
= \begin{pmatrix} C_g^{-1} w - Z_g v \\ C_g [v + Z_g (C_g^{-1} w - Z_g v)] \end{pmatrix} = \begin{pmatrix} -Z_g v + C_g^{-1} w \\ C_g (1 - Z_g^2) v + C_g Z_g C_g^{-1} w \end{pmatrix}.
\]
The desired formula for Z_{Γ} follows because $1 - Z_g^2 = (C_g^* C_g)^{-1}$. Substituting $Z_{id} = 0$ and $C_{id} = 1$ into the preceding formula gives the second. \(\square\)

Thus
\[
Z_{\Gamma} Z_{id} = \begin{pmatrix} C_g^{-1} & -Z_g \\ C_g Z_g C_g^{-1} & (C_g^*)^{-1} \end{pmatrix}
= \begin{pmatrix} 1 & 0 \\ 0 & (C_g^*)^{-1} \end{pmatrix} \begin{pmatrix} 1 & -Z_g \\ 0 & 1 \end{pmatrix} (1 - Z_g^2)^{-1} \begin{pmatrix} 1 & 0 \\ Z_g & 1 \end{pmatrix} \begin{pmatrix} C_g & 0 \\ 0 & 1 \end{pmatrix}.
\]
Consequently,
\[
\det(Z_{\Gamma} Z_{id}) = \frac{\det(C_g^*)^{-1}}{\det C_g} \times 1 \times \det(C_g^* C_g) \times 1 \times \det C_g^{-1}
= \frac{\det C_g}{\det C_g} = \phi(g)^{-2}.
\]
Hence, with our normalisation we have proved the following theorem.

Theorem 31. For every $g \in \text{Sp}(V, \Omega)$ the circle functions are related by
\[
\Psi(\Gamma_g) = \phi(g)^{-2}.
\]

Acknowledgement

This work grew out of discussions with Richard Cushman about performing explicit calculations of Maslov indices of paths. It is a great pleasure to thank him for his help and encouragement.
References

