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1.PROSPECTUS~~/

Knot theory deals with a special case of the placement problem, but it is aiI.~:) ..
important one because it is the simplest case that .has an interest~(:~
theory and may therefore serve as a model for studymg the problem ~\

more complicated cases. ":;f~~':t.
The general placement problem is the following: Given a space X an4;r·

subsets At and A 2 of it that are homeomorphic, does there 'exist an aut~j:,:
homeomorphismjof X such thatf(A I ) = A 2? If such anfexists;the tw~~il
placements At and A 2 of A in X are said to be of the same type; the probleui~i,~:

is to describe and classify the types. If At and A2 are of the same ty~:~';:
.\ "~1l

then their complementary spaces X - At and X - A 2 must be home'Q~4t\~
..,.j ....

morphic; thus the form invariants of X - A are all invariants of the ty~~:~

of placement of A in X. The form invariants that first come ·to mind ~~9
the homology groups Hn(X - A) and the homotopy groups '1rn(X - A)if}:
it is necessary at some point, however, to construct invariants of pla~~
ment that are not just form invariants of the complement. That this is ~;;~
is most easily seen by the following example of placements of A = 8 1 + $(:~1
in X = 8 3; here it is easily verified that Al and A 2 are different types ci~t~
placements of A in X, although X Al is actually homeomorphic .~;~~~.~

X -A2'1~~

'~~~
:;;;~f~
,~f'~

:'.~
':~

The central case of classical knot theory deals with the placements ~~~
a simple closed cu~e k in 3-space R (or in the 3-sphere S). The homolo~~
groups and the hIgher homotopy groups of S - k are known to be un..Ij

interesting in this case, so we are first led to consider the fundament~
group r(S - k) of the complement, the so-called group of the knot.~~
Generally speaking, to decide whether two given groups are isomorphic ~~

1~ ~
··l·~
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too difficult a problem. Therefore our first step is to associate with each
knot group a class of matrices, and then by a further act of bowdlerization
to associate to each class of matrices a polynomial ~. Thus we will associate
to each knot a polynomial, and since it is easy to decide whether two
polynomials are the same, we get a practical method for testing whether
two knots are of the same type: if ~l and a2 are different, k1 and k2 are of
different type; of course, if al and ~2 are the same, no conclusion can.1?e
drawn.

The same procedure~ apply, with variations, to other simple place­
ment problems, for example, to links (unions of disjoint simple closed
curves) or graphs (I-dimensional complexes) in 3-space, to 2~spheres in
4-space, etc. This algebraic theory will occupy us through Section 6. The
arithmetic of knot types is considered in Section 7. In Sections 8 and 9,
the systematic use of covering space theory is explained; much of the first
Hix sections can be interpreted in terms of covering spaces, and in fact, a
deeper understanding of the algebraic t~eory requires the use of covering
spaces. S~ction 10 is devoted to the problem of finding representations of
u knot group.

The material presented has not been systematically selected, except
that it is meant to illuminate what I consider to be the core of the subject.
Proofs are generally omitted or only indicated. Such proofs as do occur
often constitute hitherto unpublished improvements or variations on the
standard literature. t '

2. THE GROUP OF A KNOT

A knot type is called tame if it has a polygonal representative. Any simple
closed polygon k can be projected in a properly chosen direction onto a
plane in such a way,that' (a) there are no triple points and (b) no vertex
of k is projected into a double point. A projection of this sort is called
regular, and I shall now describe an algorithm for reading from a regular
projection of k a set of generators and defining relations for G. I

In a regular projection of k,. the number n of double points is finite.
Over each double point, k has an undercro8sing point and an overcrossing•lJoint: the n undercrossing points divide k into n arcs; let Xi denote the
element of G represented by a loop that circles once around the jth arc in
the direction of a left-handed screw and doesn't do anything funny (in
order for left-handed screw to mean anything I first give an orientation to
Ie, this orientation serves no other purpose as far as we are concerned). It
is intuitively clear that Xl, ••• , Xn generates G, and it is even not too

t A detailed presentation of the material touched on in the first four sections may
ho found in R. H. Crowell and R. H. Fox, An Introduction to Knot Theory (to be pub­
liijhed Boon by Ginn and Company).
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difficult to· prove. At each crossing a relation can be read. [Note that t~·;:.
depends only on the orientation of the jth arc, the orientation of the it~<,:'.;~.

and the kth arc is immaterial.] ~~/.;:,l

The following picture shows why this is a true relation. The n relatio~T,.·
'1, ... , Tn obtained in this way form a c<;>mplete system of defining re~;~'~'::~"

I ~~
.,),
H:

j
:'.

'1i~
tioDS; that is, any relation in G is a consequence of them. This may seent.~\~:
clear intuitively, but 4l fact, it is rather difficult to prove and is the mosif!~~'
important step in the whole construction. We have now obtained a prese~~~:::'
tation~ = (Xl, ••. , xn:rl, ... , Tn) of G, that is, a symbol listing the *"?:.~

generators Xl, ••• , X n and the n defining relations TI = 1, ... , Tn = ~~t.:~·jri
The following picture should convince you that anyone of the relationJ~P
rl = '1, ... , rn = 1 is a consequence of the others. Thus we arrive at ~~}.'
presentation (Xl, ... , xn:rl, ... , Tn-I) of G. .,,£:I!:1

Two properties of a knot group G emerge from the preceding discussioIi.r/:
(1) the abelianized group G/G' is infinite cyclic (this can be seen from t~~;~;·
form of the relations, or if you prefer, from the Alexander duality theore~~~:.".~,

m~ng use of the fact that G/G' is the first homology group of the comple;\f~:
ment); (2) the defect of G is ;:::1; that is, G has a finite presentation ~~:;1
which there is one more generator than relator, but none in which ther«~:~

are two more generators than relators (since G/G' ~ Z). ~1~;
In general, G does not determine k. In Section 4, it will be shown that::~~1:

the square knot and the granny knot have isomorphic groups. (By the~r.,;j

methods of Section 9, or by the use of the peripheral structure explaine~'~~~l
·below, they can be shown to be different knot types.) If G ~ Z, however,~~

then the type of k is uniquely determined and is trivial-this follows from.~~i.

the Dehn-Papakyriakolous theorem, and 8 few other knot types are known {j
to be determined by their groups. 1

.}
~i
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An element of G is called peripheral if, for every rieighborhood W of k,
it is representable as a loop of the form "Q,,-l where" is a path from the
base point to a point of W - k and a is a loop in W - k. If k1 and kt are
of the same type there must be such an isomorphism of G1 upon G2 that
peripheral elements are mapped into peripheral elements. This peripheral
structure is a true placement invariant, in that it is not just a form invariant
of the complement. Although the group of the square knot can be mapped
isomorphically upon the group of the granny knot, it has been shown that
no such isomorphism preserves the_peripheral structure.

Among the peripheral elements there are perhaps two, determined up
to conjugation and inversion, that are especiQlly important. An element
determined by the boundary of a small disk pierced once by k is a meridian
(for example, the generators xt are meridians). An element determined by
n, curve that runs parallel to k and does not twist around it (in the sense
that it is homologous to 0 in the complement of k) is called a longitude.
Any maximal peripheral subgroup of G is generated by a meridian and a
longitude, and any two maximal peripheral subgroups are conjugate. (In
the group of a wild knot, the maximal peripheral subgroups may degenerate
to Z, or perhaps even to 1.)

3. THE MATRICES AND POLYNOMIALS OF A KNOT

The next step involves making a careful study of the form of the
relatorB TI, ••• , r,. that appear on tho left-hand side of the relations
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rl = 1, ... , r. = 1. Such a relator is a "word" XiI 'tXit 412 ••• Xik EIJ in the gen~~;~::

erators Xl, ••• , Xn • Since it is eq~al to 1 in the group' G, it is not possible tQ}f~>,
discuss its form intelligently as long-. as we regard it as an element of G~~t.~, !~.

Rather, we must form the free group F(XI, • ~ .. ,xn ), generated by symbo~i;;~

Xl, ••• , x., and make the homomorphism"Cp"of F onto G that maps Xi int<it:\~:
what we had previously called X, and maps the elements f, of F into 1~;~
Thus cP is a homomorphism of F onto G whose kernel R is the small~~~<::
normal subgroup that contains .the elements TI, ••• , Tn. A. pre~ntatio~
~ = (Xl, ••• , Xn : fl, .... , f m ) lj3 to be understood always m this. sen~~i~)~~~

'!"lJ!1,• .'

(Sometimes, however, it is convenient to write f, = 1 or f, - 1 = 0 insteadti{;
of just f i.)' }};~

Now take any wordw = XilflXi2t12 .... Xik ei in the,generators Xl, •• • ,t;ii
x. and associate with it the free derivatives: :;~~~:X

aw, aw, ... ,~ ."~
defined as follows: aXI aX, ax"~~t

OW- = El 8ffIXill(EI-l) + E2 8U:;til elx i21(et-l) + ....
aXi

For example, if w = X2Xl1X2X2X2XIXil

OW ,~' ",

:: = _~iI + X~iIX~ ~I

1+ -1+ -1 + -12 -13 -1 ,~~i- = X2Xl X2Xl X2 X2XI X2 - X2X.1 X2XIX2 , ,t1"'.t1:
aX2,,1:!6;

,:~~~,

The right-hand sides of the equations above are understood to be elemenflt!!
of the integral group ring JF of the free group F; that is, they are linei~~
combinations of'elements of F using integral coefficients. (J denotes t~~~
ring of integers.) If we take several different words .representing the s~~
element of F, we shall in fact get the same elements of JF. For instanc4J
XIX11, xllxl and 1 all represent the same elem~nt of F and, in fact, t';f~*~

a(xIxi
I
) = 1 _ XIXi1 = 0 ;~

aXI ,~

!~;
:'~"~

:~~::
r~

11
'~~f'

l
~'.:i



A QUIOK TRIP THROUGH KNOT THEORY

Since this is so, lJ/(lJxi) may be regarded as a mapping of F into JF. It
has the characteristic property that, for u, v E F,

8 (uv) au au
--=-+u-ax ax az

Now we associate to any presentation

~ = (Xl, ... , xn : rl, ... , rm ) of G,

the matrix

that I call the Jacobian of ~. (Actually it is not quite unique because the
rows and/or the columns could appear in any order.) The ent~s in ,the
.Jacobian matrix are elements of the integral group ring JG of G. (The
eanonical homomorphism cP of F onto G extends in an obvious way to a
homomorphism of JF onto JG which I perversely continue to denote by
cP.)

If H is any group upon which G can be mapped by a homomorphism
1/1, we can similarly extend 1/1 to a homomorphism 1/1 of JG upon JH and
thus define the matrix

arm lJrm

lJXl • • ., ax"
that I call the Jacobian at 1/1.

F.14G~H

JF.!4 JG J4 JH

'l'he choice of 1/1 ranges from 1/1 being the identity mapping, of G onto itself
f,o 1/1 being the map of G into the trivial group 1. (We are going to be most
interested in choosing H to be the commutator quotient group G/G' and
1/1 the abelianizer.)
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Call two matrices over J H equivalent if one can be obtained from th.~
other by a finite sequence of -the following operations (and their inverses)~

o. Permute rows and/or. permute columns . ·S~

1. Adjoin a new row of zeros (0, 0; ...-', 0) .~~
:~./f.

2. Add to a row a left multiple of any other row .';;j~

Add to any column a right· multiple of any other column ,'N~

3. Left multiply any row by±x~",::~
..:~.~

Right multiply any column by ±xttl> :\I;~

4. Replace the m X n matrix M by the "bordered" (m + 1) X (n + l~~'~
matrix . ..J~l#.

M I 0 ..~t!..

o- I 1 . ..:·~~~1
'.:..:~~
.~..:#,

(This generalizes the classical concept of equivalence, chiefly by admissi~

of operations 1 and 4 that change the size of the matrix. Note that operati~f
1 discriminates against columns; it is a convenient trick to think of at"
matrices as having an infinite numbe.r of rows almost all of them filled~
with zeros.) Using the so-called Tietze transformations, it is not hard ~t:

show tliat if two presentations define the same group G, then their Jacobi~
matrices at 1/1 are equivalent. For instance, if you adjoin the empty-relatiQi.
1 = 1 to a presentation, the matrix gets a new column (0, · .. , 0); if yof:
adjoin a relation XiTlr2Xjl where rl and r2 are relators of ~, then you g~",
new row whose jth entry is '<~:

(
iJ (x11'lf2Xjl) )"lI(~ (ar l ar2)~'" ,\lf~

= xftl> - + - ~t~,~
~ ~ ~ i

and so you have applied rules 2 and 3 to the matrix. [Note that to get~i~
new column of zeros you would have to adjoin a new generator to ~:
keeping the same relations, and this is obviously illegitimate.] 'h~:~

What we get out of all this is an algorithm associating to any groUp':'l(f
an equivalence class of matrices over JH. This equivalence class is the~;
fore an invariant of G, provided that the homomorphism 1/1: G ---+ H h.,
an invariant significance. When 1/1 is the abelianizer, as it will· be from na"
on, I call.the Jacobian matrices at 1/1 the Alexander matrices. (Choosing tti;;
identity homomorphism of G on itself is" self-defeating for all practical
purposes; choosing H = 1 leads to a set of invariants characterizing G/G;!
which is uninteresting in the case of knots.) '>;i

.If G is finitely presented (or even just finitely generated), we can appIt
~

elementary divisor theory to the Alexander matrices (since JH is a com;..l
mutative ring when H = G/G') ..to get invariants of G that are mo~
tractable. However, JH is not usually a principal ideal ring (and if H h~

;
::i
~l
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any elements of finite order it can 'even have zero-divisors) so that the
classical elementary divisor theory .has to be modified a little bit.

Choose any integer d smaller than the number of columns and define
the dth elementary ideal 8d to be the ideal of J H generated by all the minor
determinants of our matrix of order n - d. Clearly 80 C 81 C ... C 8ft-I;
we can extend the range of d by defining 8d to be the zero ideal (0) for all
d < 0, and to be the whole ring (1) -= JH for all d ~ n. As in the classical
theory, it can be shown that equivalent matrices have the same dth
elementary ideal for any d. For instance, if the matrix is subjected to the
bordering operation 4, the minor determinants of order n - d of the
original matrix appear mthe bordered matrix as minors of order
(n + 1) - d and all the other minors of order n + 1 - d of the bordered
matrix turn out to be linear combinations of minors of order n - d of the'
original matrix.

The ide·al 80, called the order ideal, is not very interesting for knots
because it is equal to (0) whenever H is an infinite group. I call 81 the
Alexander ideal; when G is a knot group, 81 is a principal ideal, and a
generator ~(t) is called the Alexander polynomial of the knot. Recall
that when G is a knot group, H is the first homology group of the comple­
ment R8 - k hence the infinite cyclic group (t:). Naturally, a(t) is only
determined up to a factor of the form ±t'A.

The Alexander matrix class only depends on G modulo its second
commutator subgroup G", and furthermore the Alexander matrix class is
almost surely not determined by its chain of elementary ideals
eo C . .. C 8n-l C . . . . In view of this, it is remarkable how successful
the Alexander polynomial il (t) alone is in distinguishing knot types. Of
the 1 + 1 + 2 + 3 + 7 + 21 + 49 = 84 prime knot types of 9 or fewer
crossings there are exactly 3 pairs having the same polynomial. An ex­
tension of this up throug~ 10 or 11 crossings has brought this up to about
84 + (123 + 37) + 257 = 501 knots ~th some 56 pairs, 13 triplets, 2
quadruplets and 1 q¢ntuplet. -

4. EXAMPLES

Example 1



t

o

-t

(1 - t)2

,- (1 - t)2

o

1-t+PO

-t

(1 - t)!

- (1 - t)!

t

o

(1 - t)2

- (1 - t)!

-t

. (1· t + t2) (1 - 3t + (1)

(1 - t)t

- (1 - t)!

This is equivalent to the diagonal matrix

Hence a(t) = (1 - t + t!)2(1 - 3t + t')

..•~~~
R H FO~''''J. ..:~:«~~:

[Note that it is legitimate to write our relations in the group ring, and th~,~~ii
this doesn't affect the values of the entries in the Jacobian.] The Jacob~r~~~~
is the 4 X 4 matrix ·"~2t~~~..

d - aba-Id - 1 + aba-1 - a dad-I 1 - dad-I + dad-Ie - aba-1

1 - aba-1 + ~a-1d - bcb-1 •

Abelianization maps G onto the infinite cyclic group H = (t:) by mappin.~~.~,i·~
'.'~a, b, c, and d each into t. (An. element of H maps into t"A when its repr~'l;~!

sentative loops .link the ~riented knot ~ t~es algebraically.) Hence ~:
Alexander matnx of the given presentatIon IS ',:,i;~~i

','!,,;'I;~.,...
':i ,fF.

··:.:i':~·,

E2(t) = (1 - t + fJ) ,.\.~
.' . . )~~

(In this case E2 is a principal ideal, but this is not always so. It should~~
be noted. that it is not always possible to diagonalize matrices of integrtl1
polynomIals.) ··:;:~~tr

If k is any knot, its polynomial has the following two properties: ~fl~

(1) .1(1) =1:1

(2) a(ljt) = L\(t) .:;~

.1 (t)· having been normalized by multiplication by a suitably choseJ
factor ±tu • ~

It is known that, conversely, any polynomial that has these twoJ
properties is the polynomial of some knot (in fact of an infinite number of~

I~
.,~

~

128
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them). Property (1) is not deep; it is an immediate consequence of the
fact that G/G' is infinite cyclic. On the other hand, Property (2) is rather
difficult to prove, and it is an unsolved problem to describe the group­
theoretical property that causes Property (2) to be true of knot groups.
Such a property would presumably be some kind of a duality.

Example 2

a

G == (a:) = (a, b: b = 1)

The Jacobian matrix and the Alexander matrix are both 110 111; 4(t) = 1.

Example 3 (trefoil)

a

G = (a, b: aba - boo = 0)

The Jacobian matrix is 111 - b + ab -1 + a - ba II
The Alexander matrix is 111 - t + fl -1 + t + t! IJ A(t) = 1 - t + (l

Example 4 (figure eight) bob-I

G = (a, b: aba-1ba - bab-.1ab = 0)

4(t) = 1 - 3t + tt

Yc::1. x .;::::)z
Example 5 (square knot)~

G = (x, y, z: xyx = 'IIxy, xzx = zxz)
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Example 6 (granny knot) .,gt~

G = (x, y, z: xyx = yxy, xzx = zxz)

1ooo

o 0 001

Oi01,00

1 0 0 0 0

o 1 000

00010

-11

-2oo

o -1

1

,0

1 0 0 0 0

o 0 100

o 0 0 0 1

o 1 000

00010

2

1 -1

o

we map the Jacobian matrix into th~ 5 X, 10 ~atrix of intege~

-I

o -1 0 3%f-:

o..~~;

-: : : -:: : : -: -1 -: ;~~
1 0 -1 0 1 0 -1 0 1 -lt~

which I calculate to be eqUivalent to the l":)< 6 matrix (30000 0). Th~
resulting integers 3 and 5 - 4 = 1 are invariants of the representation (in:;~~

fa.ct, the to~on an~ first Betti number of the as~ocia~dcovering sp~e, asj
will be seen In SectIon 8). Of course, we get an Invanant of the knot Itse~~:~

only by doing the same thing for every representation of G into the sym.. ~~~

metric group s, of degree 5 that maps meridians into 5-cycles and;;~

considering the set of all integers so obtained. ,I
fj

In both cases, aCt) = (1 - t + t2)2, E2(t) = (1. ~ t + t2). '~:.'..

One can find deeper invariants of the same general nature by bringing"'~~'::~:'''':

.. representations by permutations into the a(jt. Let's look at Example 3 ":f;;::.
and represent its group by permutations. This is easy to do in this case:'t-'~}~
because the change of variable x = aba, y = ab gives the convenient:);~·.
presentation (x, y: x2 = yS) of G. Then we get a representation of G by·:;~:.~~

mapping x for instance into any product of transpositions and y into anY'?~0~t;
product of cycles of length S. For instance let x ~ (12) (34), y ~ (135) ...:i.~(:
Since a = y-1x and b = x-ty'J, a ~ (15432) and b~ (12534). Using the?'.~;~

regular representation by permutatiori matrices, "that is, }~~~f~

\~:·:~t~

~t~
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5. LINKS AND GRAPHS

131

An example will illustrate how the theory is modified to take care of links.

Example 7 (the Borromean rings)

G = (a, b, c: cbc-1acb-1c-1 = bab-1, etc.)

In the case of a link, the commutator quotient group H = G/G' is no
longer an infinite cyclic group but is a free abelian group of rank equal to
the number of components of the link, in this case, three~

G..L; (x, y, z: xy == yx, xz = zx, yz = zy).

Thus the Alexander matrix has entries that are L-polynomials in three
variables x, y, and z, where atP .14 x, b• .14 y, & .!4 z.

o (z - 1) (1 - x) (1 - x) (1 - y)

(1 - y) (1 - z) 0 (x - 1) (1 - y)

(y - 1) (1 - z) (1 - z) (1 - x) 0

In the case of links, El is the product of a certain fixed ideal, for n = 3
the ideal (x - 1, y - 1, z - 1), and a principal ideal (~(x, y, z». The
resulting polYnomial, which is determined only up to a multiplicative
factor ±xfyozh, I call the Alexander polynomial of the link. In this case,
we·get

~(x, y, z) = (x - 1) (y - 1) (z - 1)

E2 = «x - l)(y - 1), (x - 1)(z - 1), (y - l)(z - 1».

For the link,

000
Q b c



nomial of the knot type of the first component.

Example 8
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H a knotted arc k in half-3-space Rt is rotated in 4-space about a
plane to produce a 2-sphere 82 in R', that 2-sphere is said to have been
obtained by spinning. The group r(R4 - 82) of SZ is isomorphic to
1r(Rt - k), which is a knot group. However there are 2-spheres in R'
that cannot be obtained by spinning and whose groups are not knot groups,
as we shall see.

The first problem is to find a method for presenting the group of S2 in
R'. I have found the method of hyperplane f!'088 8ections to be the most
useful. Put the polyhedral SJ in general position in R4 and cut it by the
family of parallel hyperplanes R~; - 00 < t < 00, perpendicular to "a
properly chosen direction. If R~ cuts S'l at all, the intersection will generally
be a polygonal knot or link in R~. There will be a finite number of t-values
that are singular. A singular hyperplane may intersect SJ in an isolated
point, which may be either a maximum or a minimum for the height~ or it
may intersect S2 in a graph with just one node, which is of order four.
These nodes are 8addle pO'tnts. The singular hyperplanes divide R' into
slices, and the group of the complement of S2 in one of these slices is just
the group of the knot or link that is to be found in a representative hyper­
plane section (unless SJ doesn't intersect the slice, of course). The group
of SZ in R4 is found by gluing these slices together and applying the van
Kampen theorem.

To be more precise, if the singular poiIit is the point (0, 0, 0, 0) lying
in the hyperplane section t = 0, one can apply the van Kampen theorem
twice to the three open sets U - SZ, W - &, V - &, where

U == {(x, y, z, t) It> max (-E, - vx2+ y2 + Z2)}

W == {(x, y, z, t) IXl + y2 + z! + (J < e!}

V == {(x, y, z, t) r t < Inin (E, vx2 + y2 + Z2)}

It is easily seen that"at a maximum or minimum we get no new relation,
and at a saddle point we get one new relation:

t < to t =to t > to

new relation adjoined to group of lower slab: a == b

new relation adjoined to group of upper slab: c == d



t-It-O

o

t=-2

o

134 R. H. F@~~~fj
,:'.,'

~:)\~:

Note that at a saddle point the number of components changes by one. '.:~,~::

In the examples that we shall consider, the cross section at t = 0 w'ill be,,:/,~'

a knot, and as t goes through asaddle point with increasing absolute valueJ.;,1r~L~
the number of components increases. This assures that the result is a ::',!,/'~

!,:>/4r,:':

2-sphere and not some other closed surface, as the following schematic'~;;:::

diagram shows. Whether every locally flat type of knotted sphere is. ·LC
obtainable in this way is an open question (that is, it might be necessary 7i~
to allow more complicated schematic diagrams like the following in which '~:/
there are no connected cross sections). . .J.:'~~;

:tJ
l~l

~!t;f~
",jq
j/;:~t

Example 9. The "equatorial" cross section is a square knot; its grou~·;~i
is (x, a, b: xax = axa, xbx = bxb). The group of the knotted 2-sphere is?€~

':,t·}
,:':r,i~

o":~1
'0

t.f:i
,~~ilfi

obtained from this by adjoining the relation a = b (twice, once at t = - L~
:"~:i-:

and once at t.= 1), resulting in the ~oup G = (x, a: xax = axa). Thus'f.~~
the group of tlfis knotted sphere is isomorphic to the group of the trefoil :::1
(Example 3), and ~t has an Alexander polynom~al d(t) = 1 - t. + t2

• ('~'i

We see from thIS example that a "saddle pomt" transformatIon has to :::~

be applied ,to a knot wit~ some care·if we expect the resulting 2-sphere to~i
).

....~~
~,

~
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be locally flat. For instance~

t-O t =1

135

and we are stuck.
This suggests that w,e can't start with just any old knot, and this is in

fact the case. A knot type that can be obtained from a locally flat knotted
2-sphere by slicing it with a hyperplane must have a polynomial of the
form ~(t) = F(t)F(ljt). Milnor and I called such knot types null­
equivalent; but we are dissatisfied with this terminology which we feel may
turn out to be confusing, and I would like to adopt the name slice knot
proposed by Ed Moise. [Note that the polynomial ~(t) = (1 - t + (2)2

of the square knot has the required property-and the polynomial ~ (t) =
1 - t + t2 doesn't.] The conv~rse is almost certainly false; the granny
knot ha~ the same polynomial as the square knot (in fact, it ~as 'the same
group) but it is highly improbable that the 'granny knot is a slice knot. It
would be nice to have an: analogouS condition for a slice link, but if there
is one 1 am not aware of .it. .

Example 10. The equatorial cross section is a stevedore's knot; its
group is

and its polynomial is aCt) = (1 - 2t) (2 - t). The group of 8 2 is obtained
by adjoining the relation ax :::;: a2xa-2, that is, the relation xa2 = ax. The

ax ' x

t--2 t--t t·2
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•

•

A(t) :::;:: 2 - t

G == (x, a: a2x = xa)

relation xa8xa-!x-1 == a~~a-2 is a consequence of this, hence,

G(x, a: ro2 = ax)

L\(t) == 2t - 1

Example 11. This is quite analogous to the preceding one.

•

•

These last two exa:mp1es show that the Alexander polynomial of a knotte::"
2-sphere need not be a recip~ocal polynomial,' and therefore that the grou.I:~',j

of a knotted 2-sphere need. not be a knot group. Of course 1.£\(1) I == 1 .;~. i<

still true. Kinoshita has shown that any polynomial A(t) satisfyin':'
I .£\ (1) I == 1 is the polynomial of some locally flat knotted 2-sphe~.,.
.('~erasaka has shown that if !,-(t) is any ~lynomialolthe form F(t)F(I/t~
It IS the Alexander polynoDUaI of some shce knot.) ,I

Example 12. This is a combination of the two preceding examples. "I

O
.o~

ax x ~gl

• ";j. ,:~

-,~
G = (x a· xa2 = ax a2x = xa)1, ., , ':;~

These two relations are read from the lower and the upper saddle pointJ
respectively. The original relation of the group' of the stevedore's knot is ~~~~

. consequence of either one of these. :~
:~

G = (x, a: a3 = I, xax-1 =(61»)
Thus the commutator subgroup G is the finite cyclic group G' = (a: a3 = 1), l~
and G is an extension of this by the infinite cyclic group. .~
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81 = (2t - 1, 2 - t), which is not a principal ideal. The representation
x --+ (0 1), a --+ (0 1 2) of G onto Ss shows that a ¢ 1. Thus we have
proved a conjecture of Morton Curtis: the group of a locally flat 2-sphere
in 4-space can have an element of finite order.

The following remark explains a reason why this conjecture was
reasonable. In 1957, Papakyriakopoulos proved Dehn's lemma, the
asphericity of knots, and the Hopf co~jec~ure, and the method used showed
that the three problems were closely related. Then Andrews and Curtis
showed that knotted 2-spheres are not always aspherical, and it has been
remarked at this conference that Dehn's lemma fails to generalize, in a
certain sense, to boundaried 4-manifolds. The conjecture of Morton Curtis
then was just that Hopf's conjecture also fails to generalize to' four
dimensions.

Example 13

o

o

o

o

Schematic diagram.

Group of link in equatorial cross section:

(x, 1/' z: yXy-l = zxz-1, zxyx-1r1 = y}

Alexander polynomial: 4(x, y, z) = y - zx

~(t, t, t.)
Hosokawa polynomial: Vet) = = 1

1 - t

This sphere is of trivial type because, as David Epstein pointed out, it
bounds a 3-cell. The following diagram shows this 3-cell in cross section.
(Each cross section is a surface of genus 0.)

...

This example shows that there is a sphere of trivial type that has a
cross section that is a non-trivial link. It is a little harder to construct a
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o

o

0'

o

o

o

sphere of triVial type that has a non-trivial knot as a cross section, but ··~.L .
John Stallings has constructed one.' "/:L:{,

. ~~

Example 14. Here we have two spheres of trivial type. The Alexander .i.:~..
polynomial of the cross section 0 is a (x~ y) = 0, but the cross section link,~:}~.

.~~;;:,:~
;..•.,J.
~.;<; •

:.::t ......

:.;i\:~.
:::.. :.;.
:t·r·lllt-

is non-trivial, because 82 = (1 - x + xy) (1 - y + xy). These two spheres··o~,~:,,,o·

are actually splittable, because one can construct a 3-cell in the complement ·~~I~:o
?f one ~f them bounded by the other. (In the compleme~tof this 3-cell, it.~&
18 possIble to co!lStruot another 3:"cell whose boundary -IS t~e first curve'o:~~1?

although th~ is Dot very easy .~~ s~e.) .::~.
.::;~F..·
'/\

"'-:.

This example shows that one can have a pair of disjoint 3-cells. such· :)§::
that a cross section 'of the boundary of their union is a non-trivial link. .:<D'

;''';\~';'o

Example 15. This example generalizes Example 12. Only its equatorial/ji~:
cross section-a knot -of 4n· + 2 crossings~is shown. Its polynomial is~g>:

~:~~~

.J)
,·.:V.-

')U
'~~I.~

·::;K·:
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sphere is the metacyclic group'

G = (x, a: xan+1 = anx, ~n+1x = xaR
)

.~'.' -0" / I •

139

where b = an.
Thus for every odd integer 2n + 1 there is a locally flat ,2-sphere in

4-space whose group has an element of order 2n + 1. I have not been
able to construct any locally flat 2-sphere whose group has an element of
even order.

7. ARITHMETIC OF KNOTS

The knot resulting from tying two knots k and l ~. a piece of string'one
after the other is called the compositiOn of t~e two knots and is denoted
by k # l. There are two other ways of expressing this.

(2) If the oriented poiygonal simple closed curVes k and l are repre­
sented in 3-space on opposite sides of a plane P and have 0 in common an
edge e that inherits opposite orientations from k and l, then. k # l is
represented by the oriented curve (k - e) + (l - e) •

. (3) If T is a solid torus of revolution .and l ~ represented in T as a
curve that intersects a meridian cell just' once, V is a solid torus repre~

senting the knot k, and j is a faithful map of T on V (that is, maps oriented
longitude of Tonto oriented longitude of V), then the curve J(l) represents
k # l.

. i

In discussing composition, sometimes one representation is convenient,
sometimes another. In the second representation, it is also sometimes
convenient to replace P by a sphere.
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·'t!\li·":~·:

It is trivial that composition is associative and that the trivial knot/l0'~;~:
type is a unit. Commutativity may be seen from the following picture. :.~J~~.:

r/<:) (/~ ~~ ·.fliSL.>e-J--. ~~---. ...-e2r~--- ~b~Y!'
. . .~~~

Thus the set of all (tame, onented) knot types form a commutatlve,'~~:~~:;

semigroup under the operation #. ,- .' " -'l~':
Schubert·,has proved', that,. in.t~ ,semigtoup, factorization is unique~J~1~~

Just as in the proof of unique factorization of integers under multiplication,..~~;::
the proof may be made to depend on two fundamental lemmas: (a)::if\~ll
finiteness of factorization, and (b) the lemma about prime divisors of ~.~

d t ' < ' "',/!~~.,
pro uc. ' ;~.;':A..i.t

To prpve Lemma aJ the ge~us, of. !t ~ot. may .~ in:tr,oduced. Let m~}lt:\
digress to 4efine this important ~oncept. :first note'-t~a~ it ,is possible t(i~~:~t~~

span an orientable surface in any tame' knot. This can be done in th~?t7~:'

following way: At each crossing, span a twisted rectangle as shown below·\,~t·~

on the left (and not as shown on the right). :.:51:;~

)( X~i;
If we remove the interiors of these rectangles and the part of their boun~~~
that lies on the knot, what remains in the place of projection is a number ofl~1
disjoint circles, that I shall call Seifert circles. A Seifert circle may ~h~

.,."".,~

described by starting anywhere on the knot and following it along in tlf:t:?:
positive direction until you come to a crossing point, hopping over to t~~
other branch and following it in the positive direction until you come ~~:i
another crossing point, and so OD, until you close up. The Seifert circl~i~r~
are disjoint but they may very well be nested. H you start with the innet~~!,~
most circles and work out, however; it is easy to cap each circle with tl~

disk in such a way that their interiors ~re disjoint from one another' anf~¥
from ~he rectangles. The union of the disks and t?e rectangles clearly fo~~
an onentable surface spanned by the knot. If d IS the number of crosslng_~1~

and J the number of Seifert circles, what you have is an orientable surfa~~~
of genus (d - J + 1)/2 with one boundary. \~

"

(ji
~~

,l
:!;'~i
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\.
Since it is possible to span a knot k by at least one orientable surface,

there is a least integer h(k) ,such that k can be spanned by an orientable
surface of genus h. 'This number is called the genu8 of the knot k. Obviously
the trivial knot is the only knot of genus zero. The degree of aCt) is at
most equal to 2h, and is equal to 2h for any alternating knot. It would
appear that it is in general difficult to calculate g; nevert~eless, the current
issue 'of Acta M athematicae contains a long paper by Wolfgang Haken
that gives an algorithm to calculate the genus of any knot. (In particular,
this gives an algorithm for deciding wltether a given projection represents
the trivial type of knot.)

Returning to the semigroup of knots, it is not difficult to show that
h(k # l) = h(k) + h(l). If F is a surface spanning k # land P is a
plane in general position separating k and l, then the' intersection of F
and P consists of the arc e and a number of simple closed curves. These
curves can be capped to produce surfaces ,Ft , F2 spanning k and 1 re­
spectively, and clearly h(FI ) + h(F2) ~ h(F), thereby showing that
h(k) + h(l) ~ h(k # l).

Conversely if FI and F2 are surfaces spanning k and l respectively,
then we can just add them to'gether to produce a surface of genus h(FI ) +
h(F2) spanning k # l. Of course there may be some sheets of FI and/or
of F2 interfering with this project" but these can :first be blown out across
the point at infinity and then FI and F2 can be joined at e. This shows
that h(k # l) ~ h(k) + h(l) and completes the proof that genus is
a homeomorphism of the semigroup of knots upon the additive semigroup
of non-negative integers. It follows that no knot can be factored indefinitely;
every knot has a factorization ~to knots that have no further factorization.
rrhese are called prime knots. The standard knot tables are ·tables of the
prime knots only.

Having proved Lemma a, it is only necessary to prove Leinma b: '
If k is a prime and k divides l # m, then either k divides l or k divides

m. To prove this, we start with a simple closed curve ,representing l # m
and a plane P that cuts it in two points '~separating l from m" -(this is
easy to make precise). Since k divides l # m there is a 2-sphere 8l cutting
t.he curve at two points and representing k inside it. If 8l does not intersect
P, we are ~ished. H not, S2 C1.lt~ P in a number of disjoint simple closed
eurves. Those that do not link l # m can be removed immediately (by
deforming S2), and those that do link l # m can also be removed (also
I)y deforming 82) because of the hypothesis that k is prime.

A consequence of the finiteness of factorization, in particular, is the
impossibility of tying two knots k and l in succession on a piece of string
ill such a way that they "cancel each other out." It has been stated in
~cveral popular magazines, notably in Scientific American, that this is an
unsolved problem, but this is not so. It may be of some interest to give a
Hhort proof of this fact without using the genus.
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Suppose that there were an autohomeo~t
morphism f of space mapping k # l into Oil:
It may be arranged thatjis the identity outside;.~~'

a cube C whose boundary meets k # l in tWQ'::'~

points. ~!,

Then there is an autohomeomorphism In of space that is the identity:~\

outside C2n- 1 + C2"" that replaces k # £ by 0 inside C2n- 1 + C2n• Definin_;~~.
f to be fa inside C2l&-1 + C2I& for all n and the identity outside '~i~

~'. '. '!.

'~~
::~.~~.

we see that m = o. Repeating the same construction, using C2n + C2A+~':~
n = 1, 2, 3, ... , instead of C2n- 1 + C2n, and observing that k # l ~}:\
l # k, we see that m = k. Consequently k = 0, and hence l = O. <~~i:~

It is easy to see that k is a slice knot iff there is a,locally flat 2-0011 iq}
half 4-space bounded by k. If k is the inter~ctionof a hyperplane with .r
locally flat 2-sphere then either half 4-space intersects the 2-sphere in _~:

locally flat 2-cell; conversely, if k bounds a locally flat 2-cell in the ha$~:,

4-space on one side of the hyperplane containing k, then reflection aboui~;~~
the hyperplane yields another 2-cell which, together with the first on~ir

makes up a 2-sphere of which k is a cross section. In the definition of i;'::~

locally flat 2-cell, it is, of course, necessary to require a local flatness con4':::
clition at the boundary points as well as at the interior points. (Note th~;~·:
any knot bounds a locally flat 2-cell in all of 4-space-the restriction in the\.;
definition to half 4-spa~e is necessary.) . :.:,::~.;

Similarly, if k and l are two oriented knots, they are said to belong, td~: ..
the same cobordism clas8 (k ~ l) if there is a locally flat annulus in ~7
slab of 4-space whose boundary is k - l, k lying in one bounding hyperJ.:.\
plane and l in the other. It is obvious that ~ is an equivalence relatioU;¥j
and that k "'" 0 iff k is a slice knot. Furthermore, it is easy to see tha#~~

k # k* ~ 0, where k* denotes the reflected inverse of k. (For example, ilt~{
k is the overhand knot then k # k* is the square knot.) ~f~

Jf
Digression. There are two orientation-reversing operations: reversal'i~~

of the space orientation (this is equivalent to taking the mirror image).:t~

and reversal of the knot orientation (accomplished by reversing the·:~

direction of the arrow on the knot). This leads to the following diagram: .J~
.~
,-'1

,i
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Reversal of
.knot orientation

Reversal of
space orientation ...

p

p

k* is ~p(k) = pa(k). A knot is called invertible if u(k) is equivalent to k
and amphicheiral if k is equivalent to either p(k) or up(k). (Actually the
first should be called +amphicheiral and the second -amphicheiraL) The
overhand knot is known to be non-amphicheiral-there is a right-handed
trefoil and a left-handed trefoil; the figure eight is amphicheiral. The knot
817 is obviously (!) not invertible, but this has never been p~oved. In fact
there is no. proof that' there are any non-invertible knots; this is a very
difficult problem.

A simple geometric argument shows that if k t'J I', then k # m t'J

l # m. Hence, the cobordism classes inherit from the semigroup of knots
the operation #, and they form an abelian group thereby. In this group,
the inverse of a knot is its reflected inverse. Clearly, any knot that is
invertible and amphicheiral is of order 2 in this group. It is not known
whether there are any elements of this group that are not of order 2. It is
known that the ,'group is not finitely generated, but these two facts are all
that are known as yet about the group.

The· third representation of the operation # has been generalized in
the following way: Let T and V be as before and let l be any knot in T
just so long as it meets every meridian cell. If V represents the type of k,
the knot k is called a companion of the knot f(l). (In other words, if a
knot f(l) is contained non-trivially in a knotted solid torus V, then the
knot type ,represented by a core of V is called a companion of f(l).)
Clearly, any two knots are each companions of their composition. As
another example, let l be placed in V as shown
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(in each case there are 2p + 2 crossings), then J(l) is called a double of k):)r;:'
with a twist p. Again, let l be a torus knot of type a, b on a torus inside o}~:o:';~

• ' ' ····:·r
T and concentric to T. (A torus knot of type (a, b) is a knot located on thEf:}':;:1'··~

surface of a torus of revolution that runs a times around one way and b··i/~,1.
times the other way; a and b must be relatively prime integers or you get,::~~~~
a wrua link). In this case J(l) is called a cable about k. .rt!~

H k is a companion of m = f(l) and l runs a times around T, then·,?~~~·'
the genera satisfy the inequality , :~~l~i

and their polynomials, theh~:a:o~(k) + h(l) I
~m (t) = 4" (ta ) • 4z (t) ~~:?~J~;:~~

. :.'~~::'~

The only companions of a product knot are its prime factors and thei:tiii~
companions. The double of any knot is of genus 1 (unless it is trivial)~~t;

The companions of a non-trivial double of a knot k are all companions ~~l
k itself. The companions of a cable around a non~trivial knot k are a"\~~~

companions of k itself. Two cables around non-trivial knots k, k' are of th~t~
same type only if k = k' and the cabling is of t~e "same type". Doubl~~;
of knots k and k' are of the same type only if k = k' and the doubling .' ,., :~

of the "same type" (except when k = k' = 0, where there is a trivi~~i
exception) · ~~~it:

...~~
8. COVERING SPACES .•.~

':!f1~

Let S be an n-dimensional manifold, for example, the.3-sphere, and let ._
be a closed nowhere dense subset of S. To each covenng space of S - 'iI·
there is a ~que complet~on ~ calle~ the a88Qciated branched cov~t.;r.:t
space~ H A 18 the set of pomts of ~ lymg over L we have the follo,~

diagram' ~~.r.:';'

E! AC T ,::1
S - L C S '\{'~,i~

,1~
Thus ~ - A is an unbranched covering of S - L, and the completion ;'"
is the as~ci~tedbranched covering of S.. ...~

If S 18 tnangulated, L a subcomplex, and the mdex of branching finl"~

at each point of A, then ~ is triangulated and A is a subcomplex. If L 11
also a locally flat (n - 2) -dimensional submanifold, then ~ is an ~
dimensional manifold and A is a locally flat (n - 2)-dimensional submant~
fold. (The condition that the branching index be everywhere finite i~
necessary; it is easy to see that the universal covering of a 2-cell S branch1
over an interior point L of it is not locally compact at the point A.) .~
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A

L----t
S

,,\
It is well known that the unbranched cover-

ing ~ - A of S - L are in one-to-one corre­
spondence with the subgroups r of the group =
1f'(S - L), if a base point po E ~ - A lying over
the base point pES - L is specified. If the base
point po is unspecified within the discrete set of
points po, Pl, ... lying over P, the correspond­
ence is between covering spaces ~ - A and con­
jugate classes of subgroups r.

Each subgroup r of G of index g ~ 00 in­
duces a transitive representation of G into the
symmetric group So, of degree g. If the g symbols
0, 1, ... , g - 1 permuted are identified with the
right cosets ro, rl, ... , r 0-1 of r = ro this rep­
resentation p is . (ro rl ... rg-1 )

For any a in G, p: a ~
r o (l r 1 a . . . r 0-1 a

Conversely, if p is any transitive representation into So, it corresponds to
the subgroup r consisting of those elements of G for which the permutation
pea) leaves the symbol 0 fixed. (Note that this is not generally a normal
subgroup, and that it has nothing to do with the kernel of p. Note also
that an element.a of G belongs to the right coset Gk iff the permutation
pea) sends the symbol '0 into the symbol k.) Thus there is a one-to-one
correspondence between subgroups of G and transitive representations of
G. To a conjugate class of 'subgroups corresponds a class of equivalent
representations.

Covering space
~-A

with 9 sheets

Conjugate class
~ of subgroups r

of index 9

Equivalence class of transitive
~ 'representations into the

symmetric group of degree 9

The inclusion map 2; - A ~ 2; defines a homomorphism of r onto
7r(~). The kernel consists of those elements of r = 1r(~ - A) that can
he represe:qted by small loops that are arbitrarily close to A (that is, by
loops of the form fhf-1 where f is a path from the base point to a given
Ileighborhood of A and h is a loop in A), that is, by those elements of
G = 1f'(S - L) that lie in the subgroup r and are represented by loops
that are arbitrarily close to L and link it siinply.

If a presentation (Xl, ... , xn : rl, ... , rm) is given for the group G, the
I~,cidemeister-Schreiertheorem constructs a presentation for the group r
and from this a presentation for '1r(~) can be worked out. I will now'
('xplain an algorithm for constructing a presentation of r, given a presenta­
t,ion for G and a transitive representation p of G by permutations. This
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algorithm'is equivalent to the Reidemeister-Schreier theorem; however, it>."
contains the following simplifying gimmick. In the Reidemeister-Schreiet!,:.; ~

theorem, one has first to select iIi G a representative of each coset; if we:j:;:"
~bel the points lying over the base p~int p of S - L by the in~ces of t~,~:
nght cosets ro, r 1, ••• , r a-I of r, calling them po, PI, ... , Pg_I thIS amoun~:<'

to selecting for each k = 0, 1, ... , g - .1 a path in ~ - A from po to ~irt.~

(They should also satisfy the so-called Schreier condition, which says th~~>:'

their union should be a tree.) This s64l':..
lection of representatives is bound ~.~:.
be unsymmetric and to upset the si~;;~;'~;

Pg-, plicity of the algorithm. This ij1~;;:.

avoided in my algorithm by, so i4.:~::;
speak, lifting the tree of representatiyt'~.·'

paths out of the space ~ - A.- To be precise, I take a g-frame .p, with en4;i::;
points p~, p;, ... , P;-1 and identify each point p~ with the correspondinf;',
point p,., of ~ - A. The fundamental group of the resulting space is ob~~~,

ously r * Fg- 1, where Fa-I is the free group of rank g - 1. My algoritInii~:':~

is an algorithm for calculating a presentation for r * Fa- l instead of fof:·"·
Fg-l. For most purposes, this is just as good, because if you know that $:~

free factor Fg-1 is there, it is usually easy to take account of it. :";~l:'~
Given, then, a presentation (Xl, .•• , X,,: TI, ••• , Tm ) for G and a transi4.::::·

tive representat~on p of G\ in Sa, the algorithm constructs for r * Fa-I 1::'
presentation of the form . ,.~:~:~

(

XIO, ••• , Xno riO, ••• , rmO )

Xla-I, · • • ,Xna-l rIg-I, ••• , r ma-l
I .~~ ~'1
M\~,<;' ,

The meaning of the symbols ZiP and ria will now be explained. .'f~;:
If 8 is any element of G, and J is a loop in S, - L representing it, let lJI:~

·k';·,

denote by 8~ that element of r that is represented by a loop in (~ - A) + ,'t~

of the form hJh-;l, where hfJ is a path in ~ fr~m po to pp, J is the path ~:;.

1; - A that starts at pfJ and covers j, thereby en~g at p~, say, where ,j:
is the index into which ~ is sent by p(fJ), h~ is a path in <P from po to P"Ie );.;

l~:
;'h\
......;
KI.
'}·:r~

.,::~ oJ

~::~t;
"',.:"

~ik;'
';;:~:
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"Now take the free group generated' by symbols xj,,(l ~ i ~' n, 0 ~
(3 ~ g - 1), and map Xj" into the element (xt)p described above, and extend
to a homomorphism (also called cP) onto r'. Thus xtp = (xt)p. This
homomorphism has the following charming property: if, for· any word
U = xilelXit E!Xi3 f3 ••• (Ek = ±1) and index QE(O, 1, ... , g - 1), one de­
fines, formally,

where aI, a2, as, . . . are determined by the following rule:

(

••• Q ••• )

Xil fl ••• Xi~lErl ~ if Ek = 1
... a" ...

(

... a ... )
X i1'1 • • • X Ik tk --+ if Ek = -1

... ex" .••

then Ua is mapped by cP into the element of r described aboye and denoted
there by (u~)a.

For example, if u = xlxixl1Xil and P(Xl) = (034) (25), p(X2) =
(312)(45), then

Uo = xloX2aX21XI1Xil
U ~ -I -I

1 = .cIIIX21X22XIOX20

U2 = x12X2iX24Xllxil
etc.

If Wo 1, WI, ••• , ,«,,-1 are words in 'Xl, ••• , x. such that wt = 1,
11)t, ... ,wt_llie in the coset ro, r 1, ••• , r g- 1 respectively, and if the Schreier
(~ondition is satisfied, that is, if any left segment of any word Wi is one of- ,. ~t.he other words Wk (this can always be arranged), then, WIO' ••• , W,-ItO

luay be selected as the generators of a free factor Fg-l, and hence a presen­
t.ation of the group r can be obtained from our presentation of r * Fg- 1

by adjoining the relations WIO = 1, ... , Wg-ltO = 1. This effectively recovers
the Reidemeister-Schreier algorithm.

Example 11 (continued). G = (x, a: a2x = xa) has the representation
.,. ~ (0 1), a ~ (0 1 2) onto ,Sa. If r is the fundamental group of the
('orresponding 3-fold irregular covering ~ ~ A of the complementary
(Iomain, then r * F2 has the presentation

X2, tI2 ~l = X2lJ2

Ia (ao, a1:) * (X2, A2 : A~2 == x 2A t )
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o

1 -1

o

-1

JfJp =

f48

1~?~P~i:

.:;.i~~:;.
R. H. ~S;.~;.:.;

, ·i:::~~..,
where A2 = a~l. We may choose Wo = 1, 'WI = a, W2 = a2, satisfying thi:'::ri
Schreier condition, and obtain the presentation r =. (X2, a2: aix2 = X2ll2rt1:
by adjoining the relations ao = 1, at = 1. Thus r ~ G; the homology grouj~/:

of ~ - A is infinite cyclic. ,~:~;~'"~:'

To obtain the group 1r(~) we must now describe the branch relator4~:~
whose consequence is the kernel of 1r(~ - A) ~ 1r(~). If v is an eleme~t~;:
of G that can be represented by arbitrarily small loops close to L, and ~f:~~
p(v) = (PJft2 ... fJ).) (•.•) ••. , then the corresponding branch relatio.'
are V{hV~2 •• • V/l). = 1, . '.. , the geometrical meaning of which is easy ~i;

~~~ ~
·t?:~·~

Example 11 (continued). The elements x and ax of G are representet~:
by arbitrarily small loops close to L. The corresponding branch relationii.

are XoXl = 1, X2 = 1, fJoXl, alX2tl2Xo =11
(the last two are redundant, of course), so that ~ is seen to be simpl.~~;

connected. Since A is a pair of 2-spheres and HI (~ - L) ~ Z, ~ cann';.~ ~ ..;
be a 4-sphere. Probably ~ is topologically S2 X &. '::;1iS

Having obtained r = 'lI'(~ -A) and 'lI'(~), it is, of course, easy I'
get the homology groups of ~ - A and ~. However, the process can ,
mechanized as follows: Let J denote the Jacobian matrix .~j:

";:; II· '"'of G .and let 8.be the regular representation of S, on the group of g X:~
matnces, that 18, . . j~

8 (0 1 g - 1)= 11 8',7W II ,;~~:
,,(0) 1'(1) 'YCg - 1) "'t~~

"~l'il;l~

and extend to the gr?UP rings. Then a relation matrix for HI(~ :- A) E9 A~.:I;.~.;
where EB denotes direct· sum and A g- 1 denotes the free abelIan group~:;<. :.~

rank g - 1, is the ng X mg integral matrix J8P. . ....;~~~
·.r~~·:

Example 11 (continued). The Jacobian of the presentation i~

(x, a: a2x = xa) is J = II at - 1 1 + a - x II'" .~
~/'l~

1 1 0O'~

o -1 1 1 "" 111 0 0 0 II r~j
i~
I

and
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A .relation matriX for H 1('1;) EB Ao- 1 is obtained from J9p by adjoining
rows corresponding to the branch relators. Thus, in our example, a relation
matrix for H 1(};) e A 2 is '

·,-1. 0 1 100

1 -1 o -1 1 1

o 1 -1 1 0 0 '" II 0 0 II

1

o

1

o

o

1

000

000

(If, insteaq of 8p, we had used the monomial representation 'U --+ II 8a~ua II
we would have obtained a Jacobian matrix of r * Fg- 1.) .

The abelianizing homomorphism maps a knot group G onto the
infinite cyclic group Z. For each positive integer g there is a unique homo­
morphism of Z onto Zg, the cyclic group of order g, hence a unique homo­
morphism of,G onto Zo. The coverings }; - A and}; that belong to the
kernel G' of G~ Z are called the infinite cyclic coverings, and those that
belong to the kernel of G~ Zg the gth cyclic coverings. rhe firSt homology
group H 1'(}; - A) 'of the unbranched gth cyclic covering is the direct
sum of Z and the ~st homology group Hl(~.) of'the branched gth cyclic
covering. The order e of the group H I (};) in this case can be shown to be

0-1

e = R(to - 1, a(t)) = II a(wi )
i-O

where w denotes·a primitive gth root of unity; and when Hl(~) is infinite,
its Betti number turns out to be just the number of roots of d(t) = 0,
properly counted, that are gth roots of unity. If H 1(};) is a finite group, the
commutator quotient group of 1r(~ - A) is infinite cyclic, and so ~ - A
has an Alexander polynonlial. It can be shown that this polynomial a(r)

g-1

is equal to II a(CJJi".), where ',.. = to. Clearly~ then, .!i (1) is the order of
H1(};). i-O '

Exampie. ~ ACt) =,1 - ~ + (J

g = 2; e = 3, a(".) = (1 - t + tl ) (1 + t + tt) == 1 + 1" + 7"2

g = 3; e = 4, a(".) = (1 - t + P) (1 - ~t + 6)
2t2) (1 - CJJ'lt + wt2)

=1+27"+TJ

g = 4; e = 3, a(".) = 1 + ". + r
etc.
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(For non-cyclic coverings, HI(~) and HI(~ ~ A) are not'related by any·,
obvious formula, nor is there any known formula for the order 'of- these,
groups.)

[There is a sense in which A(t) is the "order ,of the groUp H 1(1:, - A)"
for the infinite cyclic covering. It is necessary to regard H1("2 - A) as an
operator group, the covering transformations beilig·the operators.]

9. THE CYCLIC COVERINGS OF A KNOT
i .~

'I ,,'

Now let us examine the fui~te cyclic coverings more' cloSely, utilizing a i
simplifying procedure due to :Seifert. :'~'

, Let ff be a surface of genus h with one boundary cUrve. As the ac-~;
companying diagram shows, 5' can be shrunk 'isotopically to a model ~
consisting of a 2-cell with, '2h bands ' ',~

.!~~

·)-.i

0::

, 1::~~
'JJ

, , J:7:~'

;.-- .....,
/' '\

I . \

",.,;- -- ......~

/ "/ I \
.. { '/~I!t:=~~--=Iii::I/,. \

, I I
" /r'....._- __/

\
\ I' ....._-",/' ::;:~

A:
~;\~

H ff is embedded semi-linearly in 3-space, this isotopy can be extended to,::;~

an isotopy of space; hence every type '.of embedding of ff contains a repre~~~G.
sentative consisting of a 2-cell with 2h attached, bands. These bands may/~;
however, be twisted, knotted, and linked.' , ,:,il,:)

Let at, ll2, as, a4, ... , a2h-l~h be a canonical set 'of curves on ff~ These{;t
are oriented closed curves through a commQll point but otherwise disjoint!..,>
and placed, as -in, the diagram. We shrink ff' down ~ a neighborhood of\~
at + a2 + ... + lt2h-i + ~ so that the bands occlir'around-l,he 2-Qell\m',::~j

the order al leaving, 112 leaving, al entering, lI2 entering, as leaving, etc~" ~..~,~::
If we have a knot given to us and: we' span an·,orienta15le surface -~ of '}:

genus h in it by Seifert's (or any other) m~thod, w.~ just pick. a ,po~t,\.on ,~~
it and run a system ai, ~, .. '. , ll2h-l, lZ2h of canonical curves through it and \t
shrink ff down onto'these curves. 'This can always be done, although for ~
surfaces of high genus some patience may be required. ':~

Since ff is orientable, the numbe;r of ~wiSts in any ~one band is neces- X
sarily even; hence these twists can be-replaced by curls' (just half as many ~

curls as twists) as shown in the diagram. ·i1
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or

.~

or •

(()) '.

~

The resul~ing surface ff, of the same embedding type as the original surface,
may be laid down flat on the :table so that only one side of it is visible. For
example, for thetrefoi~:' '

If the Seifert circles (see p. 140) are nested, the Seifert surface will
appear to be in layers, and this is rather confusing. I have found that in
every case that I have tried I. have been able to avoid t~s by changing the
knot diagram.

is too confusing; but another diagram of 'the figure eight is



1~
152 B.H.POX{~~

, ' '~'~~~

which, although it.is not economical as regards the number of crossings, is,,:;~,~

much more convenient as regards its Seifert surface. ::,~~~~,
.:~>,. ·-1

Vij = Vii otherwise,

fh2 - V21 = 1, V34 - V43 = 1, ... , and

Note that one always 'has

-2 -1
v=

-1 -1

o -1
v=

-1 1

where prime denotes transpose and I denotes the block diagonal matrix

:~i~~

IS'
':1"";~~ "~

" ~~

~o~ this "normalized" surf~ .ff one can read off a 2h ~ 2h integrall
matnx V = (Vij). The entry Vij 18 defined to be the algebraIc number of':~ .,~

times that the jth band crosses over the ith from left to right. 0

Thus, for the surface constructed above that spans the trefoil,

V' - r == I

and, for the one that spans the figure eight,

or, in matrix form,

h 0 -1

E· °1 0 ~I-~
Note also that I is the 2h X 2h matrix of intersection numbers on ff of the ,'; ~
canonical curves , "II"

I = 1\ S~,~i, aj "

~
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Also define; with Seifert,

t'12 -VII Vl4 -VII ·
t'u -f)21 tiM -V23 ·

r = VI = V32 -Val V34 -Vaa ·
V42 -V41 V44 -V43 ·

The l-cycles aI, tl2, ••• , tl2h-t, lZ2h form a base for the l-dimensional
homology group of if, and a change of basis will replace V by UVU' where
U is a unimodular matrix. Thus the congruence class of the matrix V is
an invariant of the type of embedding of 5=; but since it is'possible to span
a knot k by various surfaces ff', the congruence class of' V is certainly not
an invariant of the knot type of k. It is possible, however, to express some
of the invariants of the knot type of k in terms of the matrix V, and it is
this that leads to some considerable simplification in these invariants.

Let us now calculate the Alexander matrix in terms of 11. Since the
Alexander matrix in an invariant of GIG", we can begin by finding a
presentation of G/G". Let us look at the first pair of bands, where aI, tl2

are as before, b i is a loop that circles the ith band in the direction indicated

~rb'x
ql)2

on the diagram, and x is a little loop circling the knot at the place indicated.
Since we are working modulo the second commutator group G", the
elements at, ... , lI2h, bI , ••• , b2A, which obviously belong to G', commute,
HO that it doesn't matter where on the ith band bi does its circling. Other
anomalies of the diagram, such as the appearance of x at two different
places, are explained in the same way. It is not very difficult to verify
(-,hat G/G" is generated by x, 41, ••• , alA, hl, ••• , b21a
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Aside from the relations that say that commutators commute, there '.';~~:

are two kinds of relation~; that is, ::i,~~:
, "'. "::f(

G/GJI = (x, ai, ... , !Z2A, bt, ••• , b2h : Tl,<••• , T2h, 81, ••• , 821&, ••• ) ;';~}
.;;:it:~

Relation Ti is obtained by trying to lift the loop a, straight up. Naturally, '.~.~.:
it gets caught in the bands, so this gives an expression for a, in terms of ~

the loops b1, ••• , b2h that go around the bands. What you get is .~

(T.) : a. = Ii br~ii '!~
i-I .:l~1

Relation 81 is obtained by transporting the loop x around the first band .~~~
(following the right edge). As you do this, it als~ gets caught in the vari~us.'~
bands and this results in conjugations. For example, in the figure, x gets ~~~

;~lof.

caught first in the first curl of the first band and the loop around the right.. ,.f.:~

han~ edge of the first band just afte~thiscurl is, in fact, b1 X bi1 as sh~wn~,:"~~
Havmg translated x clear ar?und thIS band, we get two names ~or the, lIttle; ::{.~.~~j\~

loop that goes around the nght-hand edge of the band near Its ~nd, and I
thus we have our first relation., '.~

(81) : aTlxal = b2X ·'J~t

Similarly we get 'i
(82) : ail(blX)~ = x :1

In general, ~~~

(82~1) : aii!..lx~~IX-l = b" .:i
(82i) : lZ2i~a~lx-l = b2i~1 , ·;i:

~
From this presentation, we can either eliminate the generators a, and the ::~

relations (T.) or eliminate the generators b, and the relations (8.). The;
first method leads to thematrix::t~

TifI,~

II aa8bJ~ lit. = I +. (1 -!)V'~
- ~

and the second method to the matrix ~~t

. "::: Ir· = E + (t - 1) r :~
(Since [2 - E, the second can be obtained formally from the first by :~

right multiplying b:y -1.) I~ the .A!-e~ander.matrix there was an ex~ra ,l
column of.O's obtamed by differentiatIng WIth respect to x. FollOWing t
Seifert, we shall consider the second matrix ;~

.~::

. F(t) = !fJ + (t - 1) r %
1
'.j
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"Clearly ~ (t) = det' F (t). Now the gth cyclic covering belongs to the
representation x --+ (0 1 ... g - 1), ai --+ identity. Let T(J denote the
g X g"niatrix - . >~

o 1 .0 .. '.0

o 0 1 ... 0

o 0 0 ... 0

o 0 0 ... 1

'1 0 0 0

the regular representation of the permutation (0 1 ... g - 1). Then
F ( Tg) is a relation matrix ft?r the first homology group of the gth cyclic
branched covering ~ of 3-space branched over our knot. But, rearranging
rows and columns,

:¢-r r 0 0

F(Tg) 0 E-r r 0

r 0 0 E-r
and this is equivalent to.

E * ... * *
0 E .... * *
0: 0,

o 0

Thus the 2h X 2h matrix

E *.

F, = r' - (r - ,E)'

is a relation matrix for Hl(~).
For many knots, this represents an enormous simplification. It shows

that H1('l;) can be calculated from a 2h X 2h matrix if the knot is of
genus h, even though the method explained earlier 'leads to a matrix that
is in general much larger.



Z E9 Z for 9 555 0 (mod 6)

= 0 for 9 == ±1 (mod 6)

= Za for 9 == ±2 (mod 6)

= Z2 E9 Z2 for g == 3 (mod 6)

1
B. H. Fox,.i

'H
, -::~:i

For a knot of genus 1, it is only a matter of solving some difference ..!~
equations to work out the entries of F2• nus leads to explicit calculation ..;~
of H.l('1;) for all values of. g, and some of the results are quite interesting. ~i
For mstance, for the trefoil knot, we get that ~:i

",~

'!~~
'j

J
;~

.~
On the other hand, for the figure-eight knot we get the accompanying1
table: . :':~

g HI (Z) .~

1 0 I
2 ~ ~
3 ZeZ '~~

4 ~@i .1
5 Zu e Zu fI: ~:t 1

- 8 Z106 (±) Z21 'I
9 Z'l8 e> Z76 ~

. 10' Z275 <T> Zii ~,:'

The appearance of direct doubles in the odd-numbered rows is not i
accidental. It is a fact that, for any knot, the homology group H1('1;) of ,I
the gth cyclic branched covering is a direct double for every odd g. ..~~

Since the gth branched cyclic covering '1; is a. Closed oriented 3-manifold, 1
it supports a self-linking L. L is a primitive bilinear symmetric mapping :'~

from the I-dimensional torsion group into the rationals mod 1. It is defined ~I

as follows: if a and b are torsion cycles then there is a 2-chain A whose'J
boundary is ma for some integer m ~ o. Then , '~1

.~

1 j
L(a, b) == - S(A, b) (mod 1) '1

m ~:'·tt
!.~

where S denotes intersection number in ~. If ~ is reoriented, L changes ";~

sign. Since ~ inherits an orientation from S, we see that L changes 'its ':~
sign when S is reoriented. ~.~

The torsion group Tl(~), together with the ,primitive bilinear symmetric ,,~

mapping, !~~
'.J.

.156

is an invariant of the type of knot k in the oriented 3-sphere S. Numerical
invariants can be read from it as follows: If 'TI, 'T2, ••• , 'T. are the torsion
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numbers of ~ (they may be calculated from the matrix F,) in: the order
in which 7",+1 divides 1'" and p is any odd prime'divisor of 1'r such that pd
divides 1', but not 1"+1 (where 1'n;-1 is defined to be 1), then, for properly
chosen torsion elements g1, ••• , gT of HI ('1;) ,

1'1 '. , • 'Tr det II L (g I, gi) It i.i-l, '., t'

is an integer prime to p, and Xr (p), defined to be the quadratic residue
character (Tl ... T, det'JJ L(g" gi) ·lllp) of this integer, is independent of
the choices' made, and is an invariant of the' type of the knot k in the
oriented 3-sphere S.

It can be shown that the matrix of intersection numbers corresponding
to the matrix.!", of boundary coefficients is,iust

Sg = (r -'E) ,.I

The corresponding matrix of self-linking numbers Lg is now determined,
since

Sg = Fg·Lg

As an illustration, we found the matrix

-1 1
v=

o -1

for the trefoil knot. Hence .

1 1
r=

1 2

-2 -1

-1 0

-1 1

o -1

t i

-I i
(mod 1)

T1 = 3, 72 = 1, p = 3, r = 1,' xl(3) is the quadratic residue character of
a·i = 1. Since 1 is a quadratic residue mod 3, xl(3) = 1. On the other
hand, if the 3-sphere is reoriented we get

1 0 0 -1 -1 -2 1

: I
v= ,r= , F2 = , 82 =

-1 1 1 1 2 1 -1

-1 i
L2 = (mod 1)

-1 -1
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xI(3) ~ the'qu~tic residue ch~"tei' of 3'(-·1) = -I, Since -1 is a:i
quadratic non;resid.qe-.mod 3, ri(3) == 71. This, shows that the trefoilS~:
~ not ~p4icheir~I\.,', :". ., " , 'j~

For g = 2 there is a similar ~lgorithm based on a surfac~ 'g: spannjng'i~

the knot that is not necessarily ,orientable. Such a surface can be obtained :,~

by coloring the regions -of-the;diagPam ~alternately so as to form a "chess-':~P

~ard sudace.",A rule w,hi,cb would·produ~ such a surface is the following_~
Color a regioD."dark Qr.light':accQrding as a path from that region that goe~:J~
out .~o infinity ~~ts the" p:r~j"eGtion of the ,knot an' even or: an odd numoo~.:~;~
of tIDles.' ~~

I.:~

'"~
t
I. j.·t~

i~
~~

(At the crossings the surface twists; just as before.) To each crossi,ng c anI
integer 11 (c) = ± 1 is assigp.ed, measuring the "twist" of the surface at :;1
that place. " ".j

~vy" l~",'j
A!'" ..~
'-Ai

( "" ' ': i 'i7 +1 'I .. -1 ; 1
Let X o, :Xl~; _..0' ~n denote tne~ s~aded regions (wher~ X o, d:enotes th~.,ij
unbounded region, say), and define eli =, ~ 'I (c) ,i summed oVer those-I
cros~ings that are ~cident to both Xi and Xi- Let ..~

l(xo, Xl,' • • • , Xa)= E eii(Xi - Xi)t:~
Ki ~

'~~

:~~
..~

'~

and define'

This is called the quadratic form of the diagram. Clearly

",

j(Xo, Xl, - • • ,X",) = E aiiXt~i
i,i-O
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where aij = - eij for i F j, and ai,' = LJ", eij ~= E<\'1j (c), summed""over
the crossings incident to' X i. T~,othe. quadratic form j(xo, a;,i, ~ •• , Xn) is
associated the symmetric integral matrix Al = (aii) i,i-O,1, ... ,n and to
the quadratic form f(Xl, •.• , Xn) is associate.d its principal minor

A = (o,iJ) ".j:=l, ••• , fa

It can be shown that a relation matrix for HlC~), where ~ is the 2-fold
branched cyclic covering, is this n 'x n 'matrix .A, 0' and that the corre­
sponding matrix of self-linking numbers is A--I (mod 1). [Note that A is
necessarily a non-singular matrix, for det A = ~(-1) F O.J

Examples:. (figures above)

1. Trefoil knot (first projection)

!(Xl) = -3x~, A = ~3, A-I == -1 (mod 1)

The non-amphicheirality very plain.

2. Trefoil knot (second projection)

f( .) 2. (... )2 2Xl, X2 == ~Xl "'"7, Xl - X2 ~ X2

1 -2
A=

-2 1
A-I = 1, - 3'

-2 -1

-1 -2
(mod 1)

3. Figure-eight knot

f(xt, X2) = xi - 2(Xl - X2)2 f:' x~

-1 2 -I" -2
A;:. . ~ .. , . . ,.. A-I 5= -1 . (mod'1)

2. -1 -2 -1

The figrire eight is obv~ously amphicheiral, and, in ~a~t, if the crossingS
nre aU reversed, so as to get 'th~: mirror image, w~~t results is .

" .' :~/(Xl, X2)- = +xi + 2(xl'~ X2)! ~ xi'"
. 1 ~2

A=
~... -2 1

In either case, xl(5) = (±l) = 1.

10. FINDING REPRESENTATIONS

2 1
(mod 1)

In 3- and 4-dimensional topology, one often faces the problem of finding
representations of a presented group G", For example, you may want to
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show that a certain are is wild, for which purpose· you will be perfectly'~
happy to find any representation onto any non-trivial group. Or you ma1,f~

want· to distinguish between two different embeddings; in this case, the~~1
problem is more subtle, and it may be necessary to examine aU the~~
representations onto a selected non-trivial group. .:1J.j

The range of groups upon which representations may be made is~~
liiIiited only by one's imaginat~o~;'most frequently permutation gr?ups,!
have been used, but mathematIcIans have also used groups of matrices)';,~

for example, ~oups of motions in the hyperbolic plane, or even knot:(~

groups them~Ives. ,~~

The most obvious way to find representations of a group G, when you11
have a presentation ~f G before you, i~ to ~di~in som~ re~tions, and if yo1i\~
are lucky, the resulting homomorph IS sUffiCIently sImplIfied so that you';~

can recognize it, but not so over.simpli~ed that it becom~s trivial. If G is.':I/
perfect (G = G'), it becomes a little delicate to handle this properly; if a­
happens to be simple, it becomes impossible. (There'iS, however, a differeilt~

technique, which I shall mention later, that ~ometim.es allows one to ,dealiJ
even with simple groups.) :~

Since many of the groups G that come up. are knot groups, or like knot~
groups, let us consider first the representations of the group G of a tamEt~

knot k. The first thing to observe is that abelianization maps G onto~Z~..
and that there is a unique homeomorphism of .Z onto Zg for any g. Th .
there is a unique representation of G onto Zg. n' we think of the element '
of Zg as the powers of the permutation (0 1 2... g - 1), this repre~

sentation.is d~fined by mapping each of the generators XJ of a given over1':':
presentatIon moo the cycle (0 1 2, ... , g - 1). These are the onl'~~

finite a.~ representations. . . .~
(Changmg the names of the symbols 0, 1, ... , g - 1 say, by permutin[l

them, amounts to following the representation by an inner automorphisIitl
of the symmetric group Sg of degree g; representatio;ns into Sg a~e. alway'
determined only up to these inner automorphisms.) , ':::1

Of the non-abelian representations, the only ones that can be obtain~
at all systematically are the metabelian ones, in particular the metacycli~i

ones. Here is how metacyclic representations can be found:i;
Look at the relation at a typical crossing, ';~

,~
iJ

·,}I

;;~
. .,~

The non-zero entries in the corresponding row of the Alexander matrix are~!~

XJ

t 1 - t -1



A QUIOK TRIP THROUGH KNOT THEORY 161

so if we·multiply the Alexander matrix on the right by the column matrix

we w~ get the 0 matrix if the system of n linear homogeneous equations
in n unknowns.

~i + (1 - t)~i - tic = 0

has a solution. Since the sum of the coefficients in anyone of the equations
is 0, and since any of the n'relations is a consequence .of the others, any
one of these equations may be thrown away and one of the variables may
be given the value 0 arbitrjmly.. Since the determinant of the resulting
(n - 1) X (n - 1) system of homogeneous equations is 4(t), the system
has at least one non-trivial solution, if we reinterpret the equations to be
congruences modulo IA(t) I.. 'Here, I am thinking of t as, say, an integer.

Now our congruences can be given an interesting interpretation. The
typical one written above may be rewritten

Think of n points PI, PI, .... , P fa
on the unit circle of the plane and

. the radii OP1; OP2, ..... , OPn, and
interpret tl, ~2, ..... , tfa as the incli­
nations of these radii divided by
211"/1 a(t) ,. Then our typical con­
gruence has the interpretation that
L PiOPk is t times L PjOP i. (For
instance, if t = -1, this says that



Example 16

/~~;i~t

162 " R. H. FOX I
aPl.bi~:.th..e~~~ t.,f..OP.., if.t == '3, OPlt.~C~ t.h~angle..t..PiOPJ:,).:1
T~us, . each solution ~f our syste~ of~ ,linear equ~tio?s results in a dis- .:oJ~
tnbution of the n pomts PI, ... ,. Pn: on the unIt circle. The group G ~;~

may now be represented onto t.he; gro~ps of mot.ions of a regular poly- .~
gon of I /l(t~ I sides, in c~ t = -1 by' represen~ ~. by the reflection'
across the line OP i, and, In the g~~eral case, by dilation of the angle by 'i~
a factor of t. This can,cof co~, br, written as a permutation. .1

ti~1.', 'J

G = (a, b, c, d, e: b = d--ad-_-t,-ac-'-=---~b-a-·-..........l, d = ece-1, e = bdb-1, a = cec-1).!
The ,A!exander I;Da~~I

.. '-<>",,' i ' , Q.,~-, ... ": t.-, --1 1 - t ,·A(t) = 2, - 3t + 2tl

,0, , '0,1 - t

-1

t

o

-l

1 - t o

A ( -1) = 7. The homogeneous n X n system is

=0

=0

-:--1

--·..·E == 0

o+ 2E = 0 (mod 7)

t

0,

o

1,'- to

-a - f3

-ci

(j

-1

·::1

~ ~~ ~

"I

t
,. i~

, ; '1

Choose a == O:"(mod 7), say, and throw aw~y one of the congruences. Aj
solution is :

.~~.

a == 0, p == .2, 'Y == 5, 8 == 1, E 'a. 3
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o·

2 ,Hence, we can mark a, b, c, d, eon a regular hep-
tagon ,as shown and obtain the representation

a~ (16) (25) (34)

b~ (13) (04) (56) .

c --+ (46) (03) {12} .

d --+ .(02) (36) (::1:5)-:· .

e --+ (24) (15) (06)

Example 17. G = (a, b, c: b cac-l , c
a = boo-I) ~(t) =1 - t + fJ, ~(-2) = 7

-2a - {3 + 3" == 0

3a - 2{3 - 'Y == 0 (mod 7)

-a + 3{3 - 2'Y == 0

aba-I,

'0

and we get the representation

a --+ (132645)

b~ (021534)

c~ (354160)
o

2

4'-----«...

A metacyclic representation that is ancestral
to all other metacyclic representations may be

6 obtained as follows: Let M(n, t) denote the meta-
cyclic group (y, u: un = 1, yurl =, ~'). ;M:ap Xi into UCiY and try to .de~

tennine the integers c, so that a homeomorphism is def41ed. Qu~ typical
relation maps into .

sothatwemusthavetci + (1 '- t)Ci - C" == 0 (modn). This is the same
system of congruences, and there will be non-trivial solutions whenever n
divides ~(t).

. 'I

Example 18. (a, b, c:.b = cae-I, C = aba-1, a = bcb-1) is represented
on M(7, -2) by . ~

, ,

(compare the prev~ouB example)
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';~
In my paper itA remarkable simple closed curve" the group ~

r = (bo, b1, b2, • • • : b1bobl1 = b2blbi1 = ...) ~

was obtained, and it WaB required to show that r was non-abelian, that is,:~~

different from r /r' ~ oZ. H one adjoins the relations bo = b2 ~ b4 = ... ;.~::;

bl = ba = bl = ... , the group is mapped homeomorphically onto the:]
finitely presented group (bo, bl : b1bobl1 = boblbo1) and the methods discussed,:~
above would have led to the representation ]

b,. -. (12) for n even jJ
:~~~

~ (23) ,fornodd 1
~

that was used there. As a matter of fact, I didn't know any method theIf~

and just guessed. Example 1.4 of the paper "Some wild cells ..." could'~~

have been han~led similarly. ~e. other representations o~ that ~aper,;~
howev~r, were mto the alternatIng group Ai of degree 5. Smce AI IS f~l

from being metacyclic or even metabelian, these methods would fail for~I:r.··

these examples. As a matter of fact, AI is a simple group, so that I know o~(~

no method for finding ~prese~tat~ons on ,Ali other, than j~t trying. .~
In the paper, "A mildly WIld Imbedding ..." It was difficult to find &t~

representation of the group. Fortunately the relations of an obviouS:~~

. homomorph were x,.y",x,. = y",x,.y,." X"·Hy,,,x,....l = y,.Mjrf-11/,., x; ,.;. 1, Which)
suggests the well-known presentatIon: " ~

1;~\;

((11, (12, • • • , (1d: (1.(1,+1(1, = (1 i+10' ,(1'+1

, . «,11'i = (1iO" i, ,I i - j I ~ 2)" ,:',

that did mfact turn the trick. "',;
These Burau matrices are of considerable interest in themselves, anc41

as the above remarks show, they can do the work of' permutation group1
of infinite degree. Burau considers the group of infinite matrices who~~~

entries are almost all.:the ~e as those of an infinite identity matrix, an<tt
he represents 0', by the matnx :/~

, , ,i
]
·U
1
~~

01

-J
:~

o o E

This representation has an enlightening explanation in terms of the free ­
calculus. As the accompanying diagram shows, (f, is associated with the
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automorphism T1

Xi+l ~ Xi

165

Xi -+ XJ for all j ~ i, i + 1

of the fundamental group of the compactified plane punctured at d + 1
points (that is, the free group of rank d). This representation of Bd+1 by
the automorphism group of the free group of rank d ws,s fundamental in
Artin's study of the braid groups. Now the entries in the critical 2 X 2
minor of Burau's matrix are just

oT,(x,) oTi(x,) '" where "'(XII) = t
ox, oXitl

8T i (xi+l) aT,(Xi+l)

OX .. OX.,.,1

so that Burau's representation is just

u~ ~ II aT;;:i) Ir
i, j = 1, 2, ...

From elementary formulas of the free calculus, it follows that the
Burau matrix representing any braid word W = W(Ul"U2, ••• , Ud) is just

to~ II a:~:i) ,,~

where T is the automorphism of the free group of rank d that is associated
with the braid w.
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:~

The free pr{)!IuCt with 'amalgamation is often ~ more powerful method ~

than representaiiop. A presentation defines a free product A X B if the .~
generators split into two sets, say, xi, X2, ••• and YI, Y2, ••• and the relations 'J
also into two sets, say, TI, T2, ... , and 81, 82, ••• , where each Ti is a word in'~
Xl, X2, ••• alone and each 8, is a word in Yl, Y2, ••• alone. If there are further :'~

relations of the form Ul = VI, U2 = V2, ••• where each u, is a word in ,~
:~

Xl, X2, . • • and each vi is a word in Yl, Y2, . • • , this is not necessarily a free i,lJ

product with amalgamation AC*B; you have to prove somehow that the :,
subgroup C1 0f A generated by Ul, U2, ••• is isomorphic to the subgroup C1 j
of B generated by VI, V2, ••• under an isomorphism that makes UI correspond .~
to VI, U2 to V2, and so on. If one can show this, however, the rewards may 'fa
be tremendous. For example, A and B are contained isomorphically in ~

A * B, so that if either A .. or B is known to be non-trivial, A * B is :.:~
c ' c "~~

immediately seen to be non-trivial. (This may be used) for example, to ':~~

prove that k # l is not trivial unless k and l are both triviaL) (Since A ~~

and B are not normal in A *B, finding a non-trivial representation may :~~

be difficult or evlm impossible.) Further pleasant properties are, for ex- •.~
ample: if an element of ~ ~ B is of finite order it must be conjugate to ;1
an element of A or to an element of B; if two elements of a free product j
A *B commute, they must both belong to- ,zArl or to ZBZ-l for some z. .:~

...t\.s a simple illustration of. the use of'free products with amalgamatio'ri :,~~
(in this case free 'products), I shall prove 'that there exist a pair of tiIi-j
splittable arcs; that is, a pair of disjoint arcs X and Y such that any 3-cell ~
that contains X intersects Y. i

l
~
!
.~
-~~

;~
.:~

, ~
X and Y are just two copies of example 1.1 ~f "Some wildc~lls .. '''~

that are hooked together. If X and Y were sphttable, the group G := 'l
'Ir( S3 - (X + Y)) would be the free product of r( S3 - X) and 1r( S3 - Y), :,~

and hence no conjugate of b coul4 conmiute 'with any conjugate of c (since ~~

neither b nO,r e is trivial, as is shown by t~e representation, loe. cit.). Since :~~
band c obviously commute, X and Y must be unsplittable. :i

:'1
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