A Quick Trip
Through

R.H.F
' o Knot Theory

1. PROSPECTUS

Knot theory deals with a special case of the placement problem, but it is
important one because it is the simplest case that has an interesti
theory and may therefore serve as a model for studying the problem i
more complicated cases.

The general placement problem is the following: Given a space X and:;"
subsets A, and A, of it that are homeomorphic, does there exist an aut
homeomorphism f of X such that f(A;) = A,? If such an f exists, the twi
placements A; and A of A in X are said to be of the same fype; the proble:
is to describe and classify the types. If A, and A, are of the same ty
then their complementary spaces X — A; and X — A, must be home
morphic; thus the form snvarianis of X — A are all invariants of the ty,
of placement of 4 in X. The form invariants that first come to mind
the homology groups H,(X — A) and the homotopy groups #,.(X — A
it is necessary at some point, however, to construct invariants of pla
ment that are not just form invariants of the complement. That this is
is most easily seen by the following example of placements of 4 = S +
in X = S3; here it is easily verified that A, and A; are different types
placements of A in X, although X — 4, is actually homeomorphic -
X — A, :

The central case of classical knot theory deals with the placements og

a simple closed curve k in 3-space R (or in the 3-sphere S). The homology‘“

groups and the higher homotopy groups of 8 — k are known to be un-u_‘

interesting in this case, so we are first led to consider the fundamental

group x(8 — k) of the complement, the so-called group of the knot.,\,

Generally speaking, to decide whether two given groups are isomorphic w’ﬁ
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too difficult a problem. Therefore our first step is to associate with each
knot group a class of matrices, and then by a further act of bowdlerization
to associate to each class of matrices a polynomial A. Thus we will associate
to each knot a polynomial, and since it is easy to decide whether two
polynomials are the same, we get a ptactical method for testing whether
two knots are of the same type: if A; and A, are different, k; and %, are of
different type; of course, if A, and A, are the same, no conclusion can. be
drawn.

The same procedure will apply, with variations, to other simple place-
ment problems, for example, to links (unions of disjoint simple closed
curves) or graphs (l-dimensional complexes) in 3-space, to 2-spheres in
4-space, etc. This algebraic theory will occupy us through Section 6. The
arithmetic of knot types is considered in Section 7. In Sections 8 and 9,
the systematic use of covering space theory is explained; much of the first
six sections can be interpreted in terms of covering spaces, and in fact, a
deeper understanding of the algebraic theory requires the use of covering
spaces. Section 10 is devoted to the problem of finding representations of
a knot group.

The material presented has not been systematically selected, except
that it is meant to illuminate what I consider to be the core of the subject.
Proofs are generally omitted or only indicated. Such proofs as do occur
often constitute hitherto unpublished improvements or variations on the
standard literature.

2. THE GROUP OF A KNOT

A knot type is called tame if it has a polygonal representative. Any simple
closed polygon k can be projected in a properly chosen direction onto a
plane in such a way that (a) there are no triple points and (b) no vertex
of k is projected into a double point. A projection of this sort is called
regular, and I shall now deseribe an algorithm for reading from a regular
projection of k a set of generators and defining relations for G.

In a regular projection of k, the number n of double points is finite.
Over each double point, ¥ has an undercrossing point and an overcrossing
potnt: the n undercrossing points dividé % into n arcs; let z; denote the
clement of G represented by a loop that circles once around the jth arc in
the direction of a left-handed screw and doesn’t do anything funny (in
order for left-handed screw to mean anything I first give an orientation to
k, this orientation serves no other purpose as far as we are concerned). It
is intuitively clear that xy, ..., z. generates @, and it is even not too

t A detailed presentation of the material touched on in the first four sections may
ho found in R. H. Crowell and R. H. Fox, An Introduction to Knot Theory (to be pub-
lished soon by Ginn and Company).
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difficult to prove. At each crossing a relation can be read. [Note that this
depends only on the orientation of the jth are, the orientation of the ith
and the kth arc is immaterial.]

The followmg picture shows why this is a true relation. The n relatlons
71, , T» obtained in this way form a complete system of defining relan

N

tions; that is, any relation in G is a consequence of them. This may see
clear intuitively, but in fact, it is rather difficult to prove and is the mo
important step in the whole construction. We have now obtained a prese
tationP = (zy, ..., Zairy, ..., 1) of G, that is, a symbol listing the
generators xj, ..., &, and the n deﬁning relations 1, = 1, ..., 7 =

The following picture should convince you that any one of the relationgs-
rn=1,...,r = 1is a consequence of the others. Thus we arrive at sz

presentation (z1, ..., Zairy, ..., o) of G. y

Two properties of a knot group G emerge from the preceding discussio
(1) the abelianized group G/G’ is infinite cyclic (this can be seen from t
form of the relations, or if you prefer, from the Alexander duality theore
making use of the fact that G/G" is the first homology group of the compl
ment); (2) the defect of G is =1; that is, G has a finite presentatlon
which there is one more generator than relator, but none in which the
are two more generators than relators (since G/G" =~ 7).

In general, G does not determine k. In Section 4, it will be shown that{n.
the square knot and the granny knot have isomorphic groups. (By the:d
methods of Section 9, or by the use of the peripheral structure explameglff::
‘below, they can be shown to be different knot types.) If G ~ Z, however, ¥
then the type of k is uniquely determined and is trivial—this follows from ¥
the Dehn-Papakyriakolous theorem, and a few other knot types are known %.
to be determined by their groups.

;
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An element of G is called peripheral if, for every neighborhood W of k,
it is representable as a loop of the form yoay~! where v is a path from the
base point to a point of W — k and e is a loop in W — k. If k; and k; are
of the same type there must be such an isomorphism of G; upon G, that
peripheral elements are mapped into peripheral elements. This peripheral
structure is a true placement invariant, in that it is not just a form invariant
of the complement. Although the group of the square knot can be mapped
isomorphically upon the group of the granny knot, it has been shown that
no such isomorphism preserves the peripheral structure.

Among the peripheral elements there are perhaps two, determined up
{o conjugation and inversion, that are especially important. An element
determined by the boundary of a small disk pierced once by k is a meridian
(for example, the generators z¢ are meridians). An element determined by
n curve that runs parallel to & and does not twist around it (in the sense
that it is homologous to 0 in the complement of k) is called a longitude.
Any maximal peripheral subgroup of G is generated by a meridian and a
longitude, and any two maximal peripheral subgroups are conjugate. (In
the group of a wild knot, the maximal peripheral subgroups may degenerate
o Z, or perhaps even to 1.)

3. THE MATRICES AND POLYNOMIALS OF A KNOT

The next step involves making a careful study of the form of the
relators 1, ..., ra that appear on the left-hand side of the relations
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r=1,...,r, = 1. Such arelator is a “word” z;,*z;*... ;% in the gen-'}
erators i, . . . , Z». Sinee it is equal to 1 in the group G, it is not possible ta:%:
discuss its form intelligently as long:as we regard it as an element of
Rather, we must form the free group F(zy, . .., z.), generated by symbolw ]
%1, ..., Zn, and make the homomorphism ¢ of F onto G that maps z; intais:
what we had previously called z, and maps the elements r; of F into
Thus ¢ is a homomorphism of F onto G whose kernel R is the smalles
normal subgroup that contains the elements ri, ..., 7,. A presentati
PB=@@,...,%um, ..., rm) is to be understood always in this sen
(Sometlmes, however, it i is convenient to write r; = 1 orr; — 1 = 0 instead:
of just r;.)

Now take any word w = z;%%;, ... ;% in the generators z,, ..
Z» and associate with it the free derivatives: :

ow dw ow
a‘_x;, a—x;, e ey a_x;
defined as follows:
ow
Ex—,. = & 8;;,2;,¥ ) + & 8,2, 1D 4+,

For example, if w = zu7sxasrizz!

— = —za7! + T27%}
axl :

O'w

. =1 + 227 + ziler + 2Tl — rwTalneg
2

The right-hand sides of the equations above are understood fo be elemen
of the integral group ring JF of the free group F; that is, they are lines
combinations of elements of F using integral coeﬁ‘iclents (J denotes thg:
ring of integers.) If we take several different words representing the sa.nﬁgz"‘
element of F, we shall in fact get the same elements of JF. For mstanoe{,g
227!, 27%, and 1 all represent the same element of F and, in fact, I

d{zx7t
(11)=1—x1x1'1=0
axy

d(atlx

(1 l)=—x1 L4 251 =0
O:cl )
a(1)_

ox,
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Since this is 8o, /(8z;) may be regarded as a mapping of F into JF. It
has the characteristic property that, for u, v € F,

o(uwv) ou v

—
oz ox ox

Now we associate to any presentation

aﬂ'—‘ (xl, ...,x,.:rl,...,r.,.) OfG,

G -+ G
ax1 o O%n

GG
ox/ ~ \oza

that I call the Jacobian of P. (Actually it is not quite unique because the
rows and/or the columns could appear in any order.) The entries in the
Jacobian matrix are elements of the integral group ring JG of G. (The
canonical homomorphism ¢ of F onto G extends in an obvious way to a
homomorphism of JF onto JG which I perversely continue to denote by
.) '

If H is any group upon which G can be mapped by a homomorphism
¥, we can similarly extend ¢ to a homomorphism ¢ of JG upon JH and
thus define the matrix :

the matrix

37’1 37'1 Vo
or,  Ox.
(6(7‘1, ey Tm))‘“ _ “ !
i) veey Zn,

(xl’ T ) arm arm

0y o 0T,
that I call the Jacobian at .
F4H QL H
JF 2% J@ Y JH

The choice of ¥ ranges from ¥ being the identity mapping of G onto itself
{0 ¥ being the map of @ into the trivial group 1. (We are going to be most
interested in choosing H to be the commutator quotient group G/G’ and
¥ the abelianizer.)
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Call two matrices over JH equivalent if one can be obtained from thg
other by a finite sequence of -the following operations (and their lnverses)ﬂfv

0. Permute rows and/or permute columns
1. Adjoin a new row of zeros (0,0, ..., 0)
2. Add to a row a left multiple of any other row
Add to any column a right multiple of any other column

3. Left multiply any row by £z ¥* b
Right multiply any column by +z¥* i

4. Replace the m X n matrix M by the ‘“bordered” (m +- 1) X (n + 1}“‘

matrix 5
M M0 _

I - w

(This generalizes the classical concept of equivalence, chiefly by admissiol
of operations 1 and 4 that change the size of the matrix. Note that opera,tloﬁ
1 diseriminates against columns; it is a convenient trick to think of aﬁ
matrices as having an infinite number of rows almost all of them filled U
with zeres.) Using the so-called Tietze transformations, it is not hard #g
show that if two presentations define the same group @, then their J acobxaag
matnces at ¢ are equivalent. For instance, if you adjoin the empty- relatlcm
= 1 to a presentation, the matrix gets a new column (0, ..., 0);if yo?
adjoin a relation z;rrx7! where r1 and r, are relators of P, then you get x
new row whose jth entry is

(«')(a:mm:?‘))M o qs(;97'1 + ar’)“
ox; or
and so you have applied rules 2 and 3 to the matrix. [Note that to get: %l,"
new column of zeros you would have to adjoin a new generator to ¢
keeping the same relations, and this is obviously illegitimate.] ’
‘What we get out of all this is an algorithm associating to any group é
an equivalence class of matrices over JH. This equivalence class is thel%';
fore an invariant of G, provided that the homomorphism ¢: ¢ — H hﬁ‘
an invariant significance. When y is the abelianizer, as it will-be from nag
on, I call the Jacobian matrices at  the Alexander matrices. (Choosing tlﬁ
identity homomorphism of G on itself is self-defeating for all practicaf;
purposes; choosing H = 1 leads to a set of invariants characterizing G/G’{
which is uninteresting in the case of knots.) #
If G is finitely presented (or even just finitely generated), we can apply\'
elementary divisor theory to the Alexander matrices (since JH is a coms;
mutative ring when H = G/@’) . to get invariants of G that are morﬁ
tractable. However, JH is not usually a principal ideal ring (and if H hu

N i, S
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any elements of finite order it can even have zero-divisors) so that the
classical elementary divisor theory has to be modified a little bit.

Choose any integer d smaller than the number of columns and define
the dth elementary ideal €; to be the ideal of JH generated by all the minor
determinants of our matrix of order n — d. Clearly & C & C ... C &3
we can extend the range of d by defining &; to be the zero ideal (0) for all
d < 0, and to be the whole ring (1) "= JH for all d > #n. As in the classical
theory, it can be shown that equivalent matrices have the same dth
elementary ideal for any d. For instance, if the matrix is subjected to the
bordering operation 4, the minor determinants of order » — d of the
original matrix appear in the bordered matrix as minors of order
(n + 1) — d and all the other minors of order n + 1 — d of the bordered
matrix turn out to be linear combinations of minors of order n — d of the
original matrix.

The ideal &, called the order ideal, is not very interesting for knots
because it is equal to (0) whenever H is an infinite group. I call & the
Alexander ideal; when G is a knot group, & is a principal ideal, and a
generator A(t) is called the Alexander polynomial of the knot. Recall
that when @ is a knot group, H is the first homology group of the comple-
ment R® — k hence the infinite cyclic group (¢:). Naturally, A(Z) is only
determined up to a factor of the form 4.

The Alexander matrix class only depends on G modulo its second
commutator subgroup G'/, and furthermore the Alexander matrix class is
almost surely not determined by its chain of elementary ideals
& C ... C &1 C .... In view of this, it is remarkable how successful
the Alexander polynomial A(f) alone is in distinguishing knot types. Of
thel +142+4 347 4 21 + 49 = 84 prime knot types of 9 or fewer
crossings there are exactly 3 pairs having the same polynomial. An ex-
tension of this up through 10 or 11 crossings has brought this up to about
84 -+ (123 4+ 37) + 257 = 501 knots with some 56 pairs, 13 triplets, 2
quadruplets and 1 quintuplet.

4. EXAMPLES

Ezxample 1

dad™ aba™

G = (a, b, ¢, d: dad--c-da—'d-! = aba—, aba—'dab-'a~! = beb!, etc.)
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[Note that it is legitimate to write our relations in the group ring, and th
this doesn’t affect the values of the entries in the Jacobian.] The Jacobi
is the 4 X 4 matrix

d—abald — 1+ aba? —a dad! 1 — dod™! + dad~¢c — aba™!

1 — aba™* + aba™d — bcb™ . - .

) . .

Abelianization maps G onto the infinite cyclic group H = (:) by mappin,
a, b, ¢, and d each into f. (An element of H maps into ©* when its rep
sentative loops link the oriented knot A times algebraically.) Hence
Alexander matrix of the given presentation is

—(1 -t —t t (1 — ¢t
. 1—8r —(1-—202 —t t

4 Q- -1~ t)2t -t

—t ¢ Q-5 —(1-—-192
This is equivalent to the diagonal matrix

(At +2)(1 -3t +8) 0 0

0 1—-t4+2 0
Hence A(t) = (1 — ¢t +82)%(1 — 3t + &) 4
alt) = (1= t+#) ,gg

(In this case €, is a principal ideal, but this is not always so. It should i i
be noted that it is not always possible to diagonalize matrices of integral™
polynomials.) i

If k is any knot, its polynomial has the following two properties:

(1) aQ) =
(2) A(1L/t) = A@)

A(t)- having been normalized by multiplication by a suitably chosenf?
factor ¢~ ]

It is known that, conversely, any polynomial that has these two*-é
properties is the polynomial of some knot (in fact of an infinite number of*ﬁe

ey

3
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them). Property (1) is not deep; it is an immediate consequence of the
fact that G/@ is infinite cyclic. On the other hand, Property (2) is rather
difficult to prove, and it is an unsolved problem to describe the group-

theoretical property that causes Property (2) to be true of knot groups.
Such a property would presumably be some kind of a duality.

Exampieé
a
G=(a) =(a,b:b=1)
The Jacobian matrix and the Alexander matrix are both |0 1]|; A(f) = 1.
bab™!
Example 3 (trefoil)
a b
G = .(a, b: aba — bab = 0)
The Jacobian matrixis ||1 — b +ab —14a —ba|
The Alexander matrixis [|1 — ¢t +# —14+t4+£[AF¢) =1—t+2

Ezample 4 (figure eight)  pop! aba™
a

G = (a, b: aba~'ba — bab-lab = 0)
AG) =1 —3t+8

y X z
Example 5 (square knot) @‘;/{?

X

G = (2,9, 2: 2yz = yay, 2z = 212)
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Ezamyple 6 (granny knot) 8, @\
. x z
G = (z,9, 2: zyx = yay, 22z = 212)

In both cases, A(t) = (1 — t + ®)% e(t) = (1L — ¢+ &).
One can find deeper invariants of the same general nature by bringing

_ representations by permutations into the act. Let’s look at Example 3
and represent its group by permutations. This is easy to do in this case:
because the change of variable z = aba, y = ab gives the convenient i’
presentation (z, y: 22 = 3*) of G. Then we get a representation of G by
mapping x for instance into any product of transpositions and y into any:
product of cycles of length 3. For instance let 2 — (12) (34), ¥ — (135).
Since ¢ = y ™z and b = z7Y%? a — (15432) and b — (12534). Using the: ?
regular representation by permutation matrices, that is, o

00001 101000

10000f llo oo o1

a—0 1000 b—(00010

00100 1 0000
00010 , 00100
we map the Jacobian matrix into the 5 X 10 matrix of integers
1 -1 1 0 0 -2 0 0 0 1
0 2 0 0 -1 1 -1 0 -1 0
0 0 1 -1 1 0 1 -2 0 0

1 0 -1 o0 1 0 -1 0 1 —1

which I calculate to be equivalent to the 1°X 6 matrix (3000 00). Th
resulting integers 3 and 5 — 4 = 1 are invariants of the representation (i
fact, the torsion and first Betti number of the associated covering space,
will be seen in Section 8). Of course, we get an invariant of the knot itself ﬁs
only by doing the same thing for every representation of @ into the sym-%

metric group § of degree 5 that maps meridians into 5-cycles and 4
considering the set of all integers so obtained.
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5. LINKS AND GRAPHS

An example will illustrate how the theory is modified to take care of links.

Example 7 (the Borromean rings) ﬂ

bab!
G = (a, b, c: ebclach~c! = bab™, ete.)

In the case of a link, the commutator quotient group H = G/ is no
longer an infinite cyelic group but is a free abelian group of rank equal to
the number of components of the link, in this case, three.

GYH (2,9, 2:2y = yx, 22 = 23, yz = 2y).

Thus the Alexander matrix has entries that are L-polynomials in three
variables x, y, and 2z, where a® % z, b¢* % 3, ¢¢ %> 2.

0 -DA=-2) A-2)(1-y)
1-9Q —.z) 0 (z—-—1)1 -1y
y—1D0 -2 I-21~-2) 0

In the case of links, ¢ is the product of & certain fixed ideal, forn = 3
the ideal (x — 1,y — 1,z — 1), and a principal ideal (A(z, y, 2)). The
resulting polynomial, which is determined only up to a multiplicative
factor a’y%* I call the Alexander polynomial of the link. In this case,
we .get : )

Az, y,2) = (- D -1DE-1)

a=(@-DE-1, E-De-1, @-De-D)

Ifor the link, _
] b c
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we get A(z, ¥, z2) = 0. This shows that the Borromean rings are not com
pletely splittable.

The Alexander polynomial of a hnk has properties analogous to Prope:
ties (1) and (2) of A(t). For example, for a link with two components an
linking number g,

(1) A(x,1) = [(x2—1)/(x — 1)] A(z), where A(x) is the poly-'
nomial of the knot type of the first component.

(2 A(i, -:;) =z Yy Az, y)

if A has been normalized by multiplication by a suitable factor £z%y
Whether or not these properties are sufficient to assure that there is
link having a given polynomial A(z, y) is not known. In the case of
oriented link of u components (u > 1), the meridians of the x4 componenté?
determine a preferred basis for JH, and so when we compare the pol
nomials of two links, we need not take account of the automorphisms
H. In the case of a graph, however, it may not be possible to prescribe
preferred basis and this will cause a further complication.

G = (a1, az, a3, a4, as, by, by, bs, by, bs:
a1biby = agbsbs = asbsbs = asbsbs = asbshy)
Note that, in the case of a graph, further relations are to be read f:

6. KNOTTED 2-SPHERES

A 2-sphere St in 4-spaoe Rt has a complementary domain B¢ — §? Whose'F,g
1st homology group H is infinite cyclic. Therefore we can proceed exa.ctly%&
as in the case of a knot in 3-space to calculate an Alexander matrix.
" only thing that is different in the calculation is that the Alexander ideal i m
not always principal. The. 2-spheres that we shall consider are going to b@g
not only polyhedral but locally flat. There is no difficulty, however, in:
applying the same method to 2-spheres that have singularities.

et B e
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If a knotted arc k in half-3-space R} is rotated in 4-space about a
plane to produce a 2-sphere S? in R% that 2-sphere is said to have been
obtained by spinning. The group =(R* — 8?) of S? is isomorphic to
(R} — k), which is a knot group. However there are 2-spheres in Rt
that cannot be obtained by spinning and whose groups are not knot groups,
as we shall see.

The first problem is to find a method for presenting the group of S?in
R* 1 have found the method of hyperplane cross sections to be the most
useful. Put the polyhedral S? in general position in R* and cut it by the
family of parallel hyperplanes R%, —» < ¢t < o, perpendicular to a
properly chosen direction. If R? cuts S? at all, the intersection will generally
be a polygonal knot or link in R%. There will be a finite number of #-values
that are singular. A singular hyperplane may intersect S? in an isolated
point, which may be either a maximum or a minimum for the height, or it
may intersect S? in a graph with just one node, which is of order four.
These nodes are saddle points. The singular hyperplanes divide R* into
slices, and the group of the complement of S? in one of these slices is just
the group of the knot or link that is to be found in a representative hyper-
plane section (unless S? doesn’t intersect the slice, of course). The group
of 82 in R*is found by gluing these slices together and applying the van
Kampen theorem. .

To be more precise, if the singular point is the point (0, 0, 0, 0) lying
in the hyperplane section ¢ = 0, one can apply the van Kampen theorem
twice to the three open sets U — S?, W — 82, V — 82, where

U= {(x,?/,z,t)|t>max(—€,—vx’+y’+2’)}
W= {(@=yst)|+yr+2+8<e
= {(2,9,21¢) |t <min (¢ V& + 4 + 29}

It is easily seen that at a maximum or minimum we get no new relation,
and at a saddle point we get one new relation:

XX

f < fo f = '0 i > 'o
new relation adjoined to group of lower slab: a = b

new relation adjoined to group of upper slab: ¢ = d
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Note that at a saddle point the number of components changes by one.
In the examples that we shall consider, the cross section at ¢ = 0 will be
a knot, and as ¢ goes through a saddle point with increasing absolute value,
the number of components increases. This assures that the result is a
2-sphere and not some other closed surface, as the following schematic
diagram shows. Whether every locally flat type of knotted sphere is
obtainable in this way is an open question (that is, it might be necessary
to allow more complicated schematic diagrams like the following in Whlch
there are no connected cross sections).

Ezxample 9. The “equatorial” cross section is a square knot; its group’
is (z, a, b: zar = aza, 2bx = bxb). The group of the knotted 2-sphere is

>
>

t==2 t=—t t=0 - t=1

obtained from this by adjoining the relation @ = b (twice, once at ¢ = s
and once at ¢ = 1), resulting in the group G = (z, a: zax = aza). Thus .x’ii
the group of this knotted sphere is isomorphic to the group of the trefoxl
(Example 3), and it has an Alexander polynomial A(f) =1 — ¢ + £

We see from this example that a “saddle point” transformation has t.o
be applied to a knot with some care-if we expect the resulting 2-sphere to &

B ‘"’*’&

RS

o
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be locally flat. For instance,

and we are stuck.

This suggests that we can’t start with just any old knot, and this is in
fact the case. A knot type that can be obtained from a locally flat knotted
2-sphere by slicing it with a hyperplane must have a polynomial of the
form A(t) = F(f)F(1/t). Milnor and I called such knot types null-
equivalent; but we are dissatisfied with this terminology which we feel may
turn out to be confusing, and I would like to adopt the name slice knot
proposed by Ed Moise. [Note that the polynomial A(f) = (1 — ¢ 4 #)?
of the square knot has the required property—and the polynomial A(t) =
1 — ¢ + & doesn’t.] The converse is almost certainly false; the granny
knot has the same polynomial as the square knot (in fact, it has the same
group) but it is highly improbable that the granny knot is a slice knot. It
would be nice to have an-analogous condition for a slice link, but if there
is one ] am not aware of it.

Ezxample 10. The eQuatorial cross section is a stevedore’s knot; its
group is :
(z, a: z-a*za~2-z7! = a%zxa™?)

and its polynomial is A(f) = (1 — 2t) (2 — t). The group of 8?is obtained
by adjoining the relation ax = a?xa~? that is, the relation za? = ax. The

f=-2 t=—i t=0 tmi t=2
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relation za®za~2%r~! = a%ra~? is a consequence of this, hence,

ARSI TS

G(z, a: za? = ax)
A(f) =2t — 1
Ezample 11. This is quite analogous to the preceding one.

003

G = (z, a: a*x = za)

o ‘25! "“’?}%ﬁ%@?"’liﬁé"ﬁ'i:'

Ay =2 — ¢

| A1) | = 1 is the polynomial of some locally flat knotted 2-sphe
(Terasaka has shown that if A(Z) is any polynomial of the form F(¢) F(1 /t
it is the Alexander polynomial of some slice knot.)

Ezample 12. This is a combination of the two preceding examples.

K

= (z, a: za® = azx, a®x = za)

respectively. The original relation of the group of the stevedore’s knot is &

These two relations are read from the lower and the upper sa.ddle poin é
- consequence of either one of these. g

= (z,a:a® = 1, zaz! = g™ i
1

Thus the commutator subgroup G'is the finite cyclic group @ = (a:a® = 1)
and @ is an extension of this by the infinite cyclic group.
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& = (2t — 1,2 — t), which is not a principal ideal. The representation
z— (0 1),a— (0 1 2) of G onto 83 shows that a ¢ 1. Thus we have
proved a conjecture of Morton Curtis: the group of a locally flat 2-sphere
in 4-space can have an element of finite order.

The following remark explains a reason why th:ls conjecture was
reasonable. In 1957, Papakyriakopoulos proved Dehn’s lemma, the
asphericity of knots, and the Hopf conjecture, and the method used showed
that the three problems were closely related. Then Andrews and Curtis
showed that knotted 2-spheres are not always aspherical, and it has been
remarked at this conference that Dehn’s lemma fails to generalize, in a
certain sense, to boundaried 4-manifolds. The conjecture of Morton Curtis
then was just that Hopf’s conjecture also fails to generalize to four
dimensions.

Ezxample 13 .
Y z
=/ '
Schematic diagram.

A A
Group of link in equatorial cross section: A ‘
U V
(2, y, 2: yxy™ = 2z, zwyr's! = y)
Alexander polynomial: Az, y,2) =y — 2z

INAR)
1—t

Hosokawa polynomial: V() =

This sphere is of trivial type because, as David Epstein pointed out, it
bounds a 3-cell. The following diagram shows this 3-cell in cross section.
(Each cross section is a surface of genus 0.)

CECGOOO

This example shows that there is a sphere of trivial type that has a
cross section that is a non-trivial link. It is a little harder to construct a
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sphére of trivial type that has a non-trivial knot as a cross section, but
John Stallings has constructed one. ) '

Ezample 14. Here we have two spheres of trivial type. The Alexander
polynomial of the cross section.is A(z, y) = 0, but the cross section link

are actually splittable, because one can construct a 3-cell in the complement
of one of them bounded by the other. (In the complement of this 3-cell, if
is possible to" construct another 3-cell whose boundary is the first curve, :ii:
although this is not very easy to see.) o kX

This example shows that one can have a pair of disjoint 3-cells such
that a cross section of the boundary of their union is a non-trivial link.

Ezample 15. This example generalizes Example 12. Only its equatorial':
cross section—a knot -of 4n- 4+ 2 crossings—is shown. Its polynomial

Y,

he
A
o

*

bl

A R S

eF

A) = n(n +1) + (L — 2n(n + 1))¢ + n(n + 1)2. The group of the

&
b
%
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sphere is the metacyclic group

G = (z, a: za™*' = a"z, ™tz = za®)
= (z, b: e+t =1, 2bot = b7
where b = an, ’ N -
Thus for every odd integer 2n + 1 there is a locally flat 2-sphere in
4-space whose group has an element of order 2n 4 1. I have not been
able to construct any locally flat 2-sphere whose group has an element of
even order.

7. ARITHMETIC OF KNOTS

The knot resulting from tying two knots k and I in a piece of string one
after the other is called the composition of the two knots and is denoted
by k # 1. There are two other ways of expressing this.

k ' I
k3 . . ¥
(2) If the oriented polygonal simple closed curves k and I are repre-
sented in 3-space on opposite sides of a plane P and have.in common an
edge e that inherits opposite orientations from k and I, then k # [ is
represented by the oriented curve (k — e) + (I — e).

(3) If T is a solid torus of revolution and [ is represented in 7 as a
curve that intersects a meridian cell just once, V is a solid torus repre-
senting the knot k, and f is a faithful map of T on V (that is, maps oriented
longitude of 7 onto oriented longitude of V), then the curve f(I) represents
k#1

T

In discussing composition, sometimes one representation is convenient,
sometimes another. In the second representation, it is also sometimes
convenient to replace P by a sphere.
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It is trivial that composition is associative and that the trivial knot:
type is a unit. Commutativity may be seen from the following picture.

OV N S

Thus the set of all (tame, oriented) knot types form a commutative
semigroup under the operation #. :

Schubert-has proved. that,. in. this semlgroup, factorization is unique: %5
Just as in the proof of unique factorization of integers under multiplication;"
the proof may be made to depend on two fundamental lemmas: (a
finiteness of factorization, and (b) the lemma about pmme divisors of
product.

To prove Lemma a, the genus of a knot may be introduced. Let me’::
digress to define this important concept. First note that it is possible to:%%
span an orientable surface in any tame knot. This can be done in th
following way: At each crossing, span a twisted rectangle as shown below:
on the left (and not as shown on the right).

M X

If we remove the interiors of these rectangles and the part of their boundary
that lies on the knot, what remains in the place of projection is a number
disjoint circles, that I shall call Seifert circles. A Seifert circle may

described by starting anywhere on the knot and following it along in thg;
positive direction until you come to a crossing point, hopping over to tk
other branch and following it in the positive direction until you come
another crossing point, and so on, until you close up. The Seifert circl
are disjoint but they may very well be nested. If you start with the inne;
most circles and work out, however; it is easy to cap each circle with
. disk in such a way that their interiors are disjoint from one another- an ;f
from the rectangles. The union of the disks and the rectangles clearly forms::
an orientable surface spanned by the knot. If d is the number of crossin

and f the number of Seifert circles, what you have is an orientable surfa }:
of genus (d — f + 1) /2 with one boundgry. . ';

-
e e i S AR i
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N

" Since it is possﬂ)le to span a knot &k by at least one orientable surface,
there is a least integer h(k) such that k& can be spanned by an orientable
surface of genus A. This number is called the genus of the knot k. Obviously
the trivial knot is the only knot of genus zero. The degree of A(f) is at
most equal to 2k, and is equal to 2k for any alternating knot. It would
appear that it is in general difficult to calculate g; nevertheless, the current
issue of Acta Mathematicae contains a long paper by Wolfgang Haken
that gives an algorithm to calculate the genus of any knot. (In particular,
this gives an algorithm for deciding whether a given projection represents
the trivial type of knot.)

Returning to the semigroup of knots, it is not difficult to show that
hk # 1) = h(k) 4+ h(l). If F is a surface spanning k¥ # land Pis a
plane in general position separating k and I, then the intersection of F
and P consists of the arc ¢ and a number of simple closed curves. These
curves can be capped to produce surfaces F', F, spanning %k and I re-
spectively, and clearly h(F,) + h(F:) < h(F), thereby showing that
h(k) +h(1) < h(k #1).

Conversely if F; and F. are surfaces spanning &k and respectlvely,
then we can just add them together to produce a surface of genus h(F;) 4+
h(F,) spanning & # 1. Of course there may be some sheets of F; and/or
of Fy interfering with this project, but these can first be blown out across
the point at infinity and then F; and F, can be joined at e. This shows
that A(k # 1) < h(k) + h(l) and completes the proof that genus is
a homeomorphism of the semigroup of knots upon the additive semigroup
of non-negative integers. It follows that no knot can be factored indefinitely;
cvery knot has a factorization into knots that have no further factorization.
These are called prime knots. The standard knot tables are tables of the
prime knots only.

Having proved Lemma a, it is only necessary to prove Lemma b:

If k is a prime and k divides ! # m, then either k divides 7 or & divides
m. To prove this, we start with a simple closed curve representing ! # m
and a plane P that cuts it in two points “separating ! from m” (this is
casy to make precise). Since k divides ! # m there is a 2-sphere S? cutting
the curve at two points and representing k inside it. If S? does not intersect
P, we are finished. If not, S? cuts P in a number of disjoint simple closed
curves. Those that do not link I # m can be removed immediately (by
deforming 8?), and those that do link I # m can also be removed (also
by deforming 8?) because of the hypothesis that k is prime.

A consequence of the finiteness of factorization, in particular, is the
impossibility of tying two knots & and ! in succession on a piece of string
in such a way that they “cancel each other out.” It has been stated in
several popular magazines, notably in Scientific American, that this is an
unsolved problem, but this is not so. It may be of some interest to give a
short proof of this fact without using the genus.
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)

. Suppose that there were an autohomeo-i.
/é\l/@ morphism f of space mapping k # I into O
U It may be arranged that f is the identity outside?”
a cube C whose boundary meets k¥ # [ in twq

pOInts v.-s

Construct the following wild knot m:

outside Can-s + Can, that replaces & # &£ by 0 inside Cuns + Con. Defining!
f to be f, inside Cin1 + Cp, for all n and the identity outside

zm: Ci)
=1

we see that m = 0. Repeating the same construction, using Czn + Conqiy:
n=12323,..., instead of Cso_y + Cs, and observing that k # I =
1 # k, we see that m = k. Consequently k¥ = 0, and hence [ = 0.

It is easy to see that k is a slice knot iff there is a locally flat 2-cell
half 4-space bounded by k. If k is the intersection of a hyperplane with
locally flat 2-sphere then either half 4-space intersects the 2-sphere in
locally flat 2-cell; conversely, if & bounds a locally flat 2-cell in the ha
4-space on one side of the hyperplane containing %, then reflection abo
the hyperplane yields another 2-cell which, together with the first one )
makes up a 2-sphere of which & is a cross section. In the definition of ﬁ
locally flat 2-cell, it is, of course, necessary to require a local flatness con&
dition at the boundary points as well as at the interior points. (Note thaf:
any knot bounds a locally flat 2-cell in all of 4-space—the restriction in the»
definition to half 4-space is necessary.)

Similarly, if ¥ and [ are two oriented knots, they are said to belong to
the same cobordism class (k ~ 1) if there is a loca,lly flat annulus in !i
slab of 4-space whose boundary isk—1Lk lymg in one bounding hyper-»{
plane and [ in the other. It is obvious that ~ is an equivalence relatio;
and that k ~0 iff & is a slice knot. Furthermore, it is easy to see tha
k # k* ~ 0, where k* denotes the reflected inverse of k. (For example,
k is the overhand knot then k¥ # k* is the square knot.)

Digression. There are two orientation-reversing operations: reversal:
of the space orientation (this is equivalent to taking the mirror image):,
and reversal of the knot orientation (accomplished by reversing thefe
direction of the arrow on the knot). This leads to the following diagram: -
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Reversal of
C/b space orientation -
-—-—————"
Reversal of -
“knot orientation : e

> —

k* is ap(k) = po(k). A knot is called invertible if o(k) is equivalent to k
and amphicheiral if k is equivalent to either p(k) or op(k). (Actually the
first should be called +amphicheiral and the second —amphicheiral.) The
overhand knot is known to be non-amphicheiral—there is a right-handed
trefoil and a left-handed trefoil; the figure eight is amphicheiral. The knot
817 is obviously (!) not invertible, but this has never been proved. In fact
there is no proof that there are any non-invertible knots; this is a very
difficult problem.

A simple geometric argument shows that if k ~ U/, then k # m ~
1 # m. Hence, the cobordism classes inherit from the semigroup of knots
the operation #, and they form an abelian group thereby. In this group,
the inverse of a knot is its reflected inverse. Clearly, any knot that is
invertible and amphicheiral is of order 2 in this group. It is not known
whether there are any elements of this group that are not of order 2. It is
known that the group is not finitely generated, but these two facts are all
that are known as yet about the group.

The third representation of the operation # has been generalized in
the following way: Let T and V be as before and let [ be any knot in T
just so long as it meets every meridian cell. If V represents the type of %,
the knot k is called a companion of the knot f(I). (In other words, if a
koot f(I) is contained non-trivially in a knotted solid torus V, then the
knot type represented by a core of V is called a companion of f(1).)
Clearly, any two knots are each companions of their composition. As
another example, let I be placed in V as shown

p>0 p<0
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(in each case there are 2p + 2 crossings), then f(I) is called a double of %
with a twist p. Again, let ! be a torus knot of type a, b on a torus inside
T and concentric to 7. (A torus knot of type (a, b) is a knot located on the
surface of a torus of revolution that runs a times around one way and b
times the other way; ¢ and b must be relatively prime integers or you get,
a torus h'nk) In this case f(I) is called a cable about k.

If k& is a companion of m = f(I) and ! runs « times around 7, then
the genera satisfy the inequality

h(m) 2 ah(k) + k(D)

and their polynomials, the equation
An(t) = Ac(t*) - Ai(2)

The only companions of a product knot are its prime factors and the
companions. The double of any knot is of genus 1 (unless it is trivial
The companions of a non-trivial double of a knot % are all companions
k itseif. The companions of a cable around a non-trivial knot % are
companions of % itself. Two cables around non-trivial knots k, &’ are of t
same type only if £ = %’ and the cabling is of the “same type”. Doubleg;
of knots % and &’ are of the same type only if ¥ = k’ and the doubling ig
of the “same type” (except when k = k' = 0, where there is a triviafh
exception). :

8. COVERING SPACES

Let S be an n-dimensional manifold, for example, the 3-sphere, and let &
be a closed nowhere dense subset of S. To each covering space of 8 — &g
there is a unique completion Z called the associated branched coverir
space. H A is the set of pomts of 2 lying over L we have the followi

diagram
Z-ACX
! !
S—-LCS

Thus £ — A is an unbranched covering of § — L, and the completion %
is the associated branched covering of S. 3
If 8 is triangulated, L a subcomplex, and the index of branching finitg:
at each point of A, then 2= is triangulated and A is a subcomplex If Lig
also a locally flat (n — 2) -dimensional submanifold, then T is an mf?
dimensional manifold and A is a locally flat (n — 2)-dimensional subma,ni-&
fold. (The condition that the branching index be everywhere finite iﬁ
necessary; it is easy to see that the universal covering of a 2-cell S branch
over an interior point L of it is not locally compact at the point A.)
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It is well known that the unbranched cover-
ing £ — A of S — L are in one-to-one corre-
spondence with the subgroups I' of the group =
7(8 — L), if a base point po € £ — A lying over
the base point p € S — L is specified. If the base A
point p, is unspecified within the discrete set of l
points py, Py, ... lying over p, the correspond-
ence is between covering spaces £ — A and con-
jugate classes of subgroups TI'.

Each subgroup T' of @ of index g <  in-
duces a transitive representation of @ into the
symmetric group 8, of degree g. If the g symbols S
0,1,...,9 — 1 permuted are identified with the
right cosets I'o, Ty, ..., Iy—y of I' = T this rep-
resentation p is

) Ty r, ... I‘g—l
For any ain G, p: a —
: a

Toa I‘;a...I‘,..l

Conversely, if p is any transitive representation into §,, it corresponds to
the subgroup TI' consisting of those elements of G for which the permutation
p(a) leaves the symbol 0 fixed. (Note that this is not generally a normal
subgroup, and that it has nothing to do with the kernel of p. Note also
that an element a of G belongs to the right coset Gy iff the permutation
o(a) sends the symbol 0 into the symbol k.) Thus there is a one-to-one
correspondence between subgroups of G' and transitive representations of
G. To a conjugate class of subgroups corresponds a class of equivalent
representations. .

Covering space Conjugate class Equivalence class of transitive
Z—A <> | of subgroupsI' | <> | representations into the
with g sheets | of index g symmetric group of degree g

The inclusion map £ — A — 2 defines a homomorphism of T' onto
7(2). The kernel consists of those elements of ' = #(Z — A) that can
be represented by small loops that are arbitrarily close to A (that is, by
loops of the form fhf~! where f is a path from the base point to a given
neighborbood of A and & is a loop in A), that is, by those elements of
(7 = x(8 — L) that lie in the subgroup I' and are represented by loops
that are arbitrarily close to L and link it simply.

If a presentation (1, ..., Zs: 1, ..., rm) is given for the group G, the
Reidemeister-Schreier theorem constructs a presentation for the group I'
and from this a presentation for #(Z) can be worked out. I will now
cxplain an algorithm for constructing a presentation of I, given a presenta-
tion for G and a transitive representation p of G by permutations. This
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algorithm is equivalent to the Reidemeister-Schreier theorem; however, it::
contains the following simplifying gimmick. In the Reidemeister-Schreie:
theorem, one has first to select in G a representative of each coset; if we’
label the points lying over the base point p of S — L by the indices of the >
right cosets Ty, Iy, . . . , ['y—1 of T, calling them po, p4, . . . , Dg—1 this amountq&-’_ -
toselectingforeachk-Ol g—lapathmE—Afrompotop;."
(They should also satisfy the so-called Schreier condition, which says th
their union should be a tree.) This
lection of representatives is bound
be unsymmetric and to upset the sims:
plicity of the algorithm. This i&:
avoided in my algorithm by, so t
speak, lifting the tree of representati
paths out of the space = — A.To be precise, I take a g-frame &, with end..
points pg, Ps, - - . , Py_, and identify each point p’, with the oorrespondmg
point p, of = — A. The fundamental group of the resulting space is obvis.
ously T' % F,;, where F,, is the free group of rank g — 1. My algonthm.
is an algorithm for calculating a presentation for I' % F,_,; instead of for
F,_1. For most purposes, this is just as good, because if you know that ¢ a‘
free factor F,; is there, it is usually easy to take account of it.

Given, then, a presentatlon (@1, ..., a7y ..., Tm) for @ and a transis:
tive representation p of G in §,, the algonthm constructs for T % F,_I g:’
presentation of the form

(1:10,...,%,.0 1'10,...,1‘,,.0)

Lig—1y - « oy Tng=1  Tig—1y « + « y Tmg—,

The meaning of the symbols z;5 and 4 will now be explained.
If @ is any element of G, and f is a loop in 8, — L representing it, let ug

denote by 65 that element of I' that is represented by aloop in (2 — A) + @

of the form hgfhiz!, where hg is a path in @ from po to ps, J is the path i

2 — A that starts at pg and covers f, thereby endmg at p,, say, where {7
is the index into which g is sent by p(#), h, is a path in & from po to p,. v

o
i
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Now take the free group generated by symbols z;(1 < j < 2,0 < -
B < g — 1), and map z; into the element (z¢) s described above, and extend
to a homomorphism (also called ¢) onto I Thus z§ = (z¢), This
homomorphism has the following charming property: if, for any word
U = z;9%;,22;,% ... (& = ==1) and index ae(0, 1,..., g — 1), one de-
fines, formally,

Ua = &j1Tj, %00, %as . . .

where o1, ay, o3, . . . are determined by the following rule:

e Q...
x,-,'l...x;,,_l‘*-x—»< ) fg =1
Y. AN
L@
;... 25,%— ifeg =—1
P PR

then u, is mapped by ¢ into the element of I' described aboye and denoted
there by (u¢)a. '

For example, if v = zletiaz! and p(z;) = (034)(25), p(22) =
(312) (45), then

Uy = LiZala®BTo

Uy = TyTuTnlio e

Up = T1oTosloslTs L1
cte. .

If wo =1, w, ..., Wy are words in zy, ..., z, such that w¢ = 1,
wf, ..., w}, liein the coset Ty, I'y, ..., T',_; respectively, and if the Schreier
condition is satisfied, that is, if any left segment of any word w; is one of
the other words w; (this can always be arranged), then wf, ..., wd,,
may be selected as the generators of a free factor F,_;, and hence a presen-
tation of the group I' can be obtained from our presentation of T’ % F,,
by adjoining the relations wyy = 1, . .., wy—1,0 = 1. This effectively recovers
the Reidemeister-Schreier algorithm.

Example 11 (continued). @ = (z, a: a® = za) has the representation
r— (0 1),a— (0 1 2) onto 8. If T is the fundamental group of the
corresponding 3-fold irregular covering = — A of the complementary
domain, then T' % F, has the presentation

o, Qo QorT2 = Lol
&y G . 0T = Ta0o

Z2, Qg Aoty = T202
= (@, 1) X (2, As: Alzs = 124,)
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where A: = a,000;. We may choose wy = 1, w; = a, wy = a?, satisfying t
Schreier condition, and obtain the presentation I' =.(x,, a,: alrs = 04
by adjoining the relations @o = 1, @, = 1. Thus T’ = @; the homology gro
of = — A is infinite eyclic.

To obtain the group 7(Z) we must now describe the branch relaton

%
.....

of G that can be represented by arbitrarily small loops close to L, and #
p(v) = (BB2 ... B)(.. ) , then the correspondmg branch relatlod*

are vglg, ... g = 1, . the geometrical meaning of which is easy tﬁ#’

perceive. i

by arbitrarily small loops close to L. The corresponding branch relatio:
are .
221 = 1, 22 = 1, agxy, G102 = 1

(the last two are redundant, of course), so that Z is seen to be smplﬁ
connected. Since A is a pair of 2-spheres and Hi(Z — L) = Z, = cann&%
be a 4-sphere. Probably = is topologically S2 X 82 x
Having obtained I' = #(Z — 'A) and #(Z), it is, of course, easy ti
get the homology groups of £ — A and Z. However, the process can B
mechanized as follows: Let J denote the Jacobian matrix i

6r.~
or;

of G and let 9 be the regular representatlon of 8, on the group of g :
matrices, that is,

0 1 e g—1 :
o : = || dineo |
10 ¥(1) ... v(g—1) ,
and extend to the group rings. Then a relation matrix for Hy (2 — A) @4

where @ denotes direct sum and A4,; denotes the free abehan grou
rank g — 1, is the ng X myg integral matrix J*»,

Ezxample 11 (continued). The Jacobian of the presentation

(r,a:a% =za) is J=|laa—1 1+a—z|*
-1 0 1 100
and J¥¢=| 1 —1 0 —11 1]|~|/1 0 0 o] J"é

0 1 -1 100
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A relation matrix for H;(Z) & A, is obtained from J? by adjoining

rows corresponding to the branch relators. Thus, in our example, a relation
matrix for Hi(Z) & A.is

0 1 -1 10 ol|~J0 of

1 1 0 00O

6 0 1 0600

(If, instead of 6p, we had used the monomial representation u — || Baplla Il
we would have obtained a Jacobian matrix of I %k F,_;.)

The abelianizing homomorphism maps a knot group G onto the
infinite cyclic group Z. For each positive integer ¢ there is a unique homo-
morphism of Z onto Z,, the eyclic group of order g, hence a unique homo-
morphism of G onto Z,. The coverings = — A and = that belong to the
kernel @’ of @ — Z are called the infinite cyclic coverings, and those that
belong to the kernel of G — Z, the gth cyclic coverings. The first homology
group H(Z — A) of the unbranched gth cyclic covering is the direct
sum of Z and the first homology group H:(Z) of the hranched gth cyelic
covering. The order © of the group H,(Z) in this case can be shown to be

g—1

0=R@{tr—1,A®)) = II A(wf)

where w denotes-a primitive gth root of unity; and when H;(Z) is infinite,
its Betti number turns out to be just the number of roots of A(f) =

properly counted, that are gth roots of unity. If H;(Z) is a finite group, the
commutator quotient group of #(Z — A) is infinite cyclic, and so Z — A
has an Alexander polynomial. It can be shown that this polynomial A(r)

is equal to H A(w'r), where 7 = #. Clearly, then, A(1) is the order of
Hy(2). #°

Example. & A(f) =1 —t 42 ,
9=20=3A0n=01-t+OQ+t+8) =1+7+mn
g=3,0=4A>r) = (1 —t+8) (1 — ot + &) (1l — % + o)
1427 + 72

147+

]

g=4;0=3;5(7)
cte.
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(For non-cyclic coverings, H,(Z) and H,(Z ~ A) are not related by any
obvious formula, nor is there any known formula for the order of these.
groups.) :

[There is a sense in which A(?) is the “order of the group H. 1(2 - A) ”
for the infinite cyclic covering. It is necessary to regard H,(2£ — A) as an
operator group, the covering transformations beihg- the operators.]

9. THE CYCLIC COVERINGS OF A lmér
! |

Now let us examine the ﬁnite cyclic coverings more closely, utilizing a ¢
simplifying procedure due to Seifert. ‘»
Let § be a surface of géenus h with one boundary curve. As the aec-:
compa.nylng diagram shows, § ¢an be shrunk lsotoplcally to a model ‘

congisting of a 2-cell Wlth 2h bands ) Sk

e

If § is embedded semi-linearly in 3-space, this isotopy can be extended to \a
an isotopy of space; hence every type of embedding of & contains a repre-fk
sentative consisting of a 2-cell with 2h attached bands. These bands may,
however, be twisted, knotted, and linked.

Let a1, a5, @3, au, . . ., Gar—1621 be a canonieal set of curves on &F. Thesm
are oriented closed curves through a common point but otherwise dszmi;
and placed as in the diagram. We shrink § down to a neighborhood of: f
@, + a2 + ... + am_1 + ax so that the bands occur around-the 2-cell'in
the order a; leavmg, a; leaving, a, ent.ermg, a, entering, a; leaving, ete.

If we have a knot given to us and’ we span an orientable surface & of
genus k in it by Seifert’s (or any other) method, we just plck a pomt\on 3
& and run a system ay, as, . . . , G2a-1, Q21 Of canonical curves through it and ¥
shrink & down onto these curves. This can always be done, although for 7
surfaces of high genus some patience may be required.

Since & is orientable, the number of twists in any one band is neces- ;
sarily even; hence these twists can be replaced by curls (just half as ma.ny
curls as twists) as shown in the diagram.

SEPCERE W s S 1E
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or :Q@f
S ———

The resultlng surface ¥, of the same embedding type as the original surface,
may be laid down flat on the table so that only one side of it is visible. For

example, for the trefoil :

| Mg I"'l
ﬁﬂ"ﬂ
'llh i
If the Seifert circles (see p. 140) are nested, the Seifert surface will
appear to be in layers, and this is rather confusing. I have found that in
every case that I Have tried I have been able to avoid this by changing the
knot diagram.

is too confusing; but another diagram of the figure eight is

N
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which, although it is not economical as regards the number of crossings, is:
much more convenient as regards its Seifert surface. '

From this “normalized” surface ¥ one can read off a 2h X 2h integral’
matrix V = (v;). The entry »;; is defined to be the algebraic number of
times that the jth band crosses over the sth from left to right.

Thus, for the surface constructed above that spans the trefoil,

-1 1
V =

0 -1

and, for the one that spans the figure eight,

-1 -1
V=

-2 =1
Note that one always has
vg— vy =1 vu—vg=1..., and
vy = vj; otherwise,
or, in matrix form,
Vi—-V=1I
where prime denotes transpose and I denoteé the block diagot}a,l matrix

0 -1

h

2

] 1 0

canonical curves

I =8 al|
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Also define, with Seifert, ‘
Uiz —tn %u —U
U2 —Un Uy —Vg
I'=VI=|vie —vn v —0s
Vg —Un Vu —Vg
The 1-cycles ay, as, ..., G, G2 form a base for the 1-dimensional

homology group of ¥, and a change of basis will replace V by UV U’ where
U is a unimodular matrix. Thus the congruence class of the matrix V is
an invariant of the type of embedding of &; but since it is' possible to span
a knot k by various surfaces &, the congruence class of V is certainly not
an invariant of the knot type of k. It is possible, however, to express some
of the invariants of the knot type of k in terms of the matrix V, and it is
this that leads to some considerable simplification in these invariants.

Let us now calculate the Alexander matrix in terms of V. Since the
Alexander matrix in an invariant of G/G@”, we can begin by finding a
presentation of G/G@”. Let us look at the first pair of bands, where a,, a:
are as before, b; is a loop that circles the 7th band in the direction indicated

on the diagram, and x is a little loop circling the knot at the place indicated.
Since we are working modulo the second commutator group G, the
clements ay, . .., @G, by, . . ., ba, which obviously belong to G/, commute,
#0 that it doesn’t matter where on the 7th band b; does its circling. Other
anomalies of the diagram, such as the appearance of x at two different
places, are explained in the same way. It is not very difficult to verify
that G/G" is generated by z, a1, . . ., Gapy by, . .., b
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Aside from the relations that say that commutators commute, there 'J‘;‘;

are two kinds of relations; that is,
G/G" = (z,01,...,080, b1, ..., b0, Tony 81y o v vy Sohy o)

Relation 7; is obtained by trying to lift the loop a; straight up. Naturally, ]
it gets caught in the bands, so this gives an expression for a; in terms of 3

the loops by, . . ., bz that go around the bands. What you get is

a
(r):a; = I b
-l

Relation s, is obtained by transporting the loop z around the first band i
(following the right edge) As you do this, it also gets caught in the various %
bands and this results in conjugations. For example, in the figure, x gets %
caught first in the first curl of the first band and the loop around the right-
hand edge of the first band just after.this curl is, in fact, by X b1! as shown.

Having translated z clear around this band, we get two names for the little,

loop that goes around the right-hand edge of the band near its end, and 4

thus we have our first relation.
(81): ar'zay = b
Similarly we get
: (82): azl(bir)as = z
In general,
(82i-1) 1 Gmtaxaziax™ = by
(sﬁt) Q2 T2 wal = b29—1
From this presentation, we can either eliminate the generators a; and the

relations (r;) or eliminate the generators b; and the relations (s;). The
first method leads to the matrix

984 v I v
= = 1—¢
%, +' ( ') _
and the second method to the matrix
67’; 14
=F+ (—-1T
aa,

(Since I* = —E, the second can be obtained formally from the first by
right multiplying by —1I1.) In the Alexander matrix there was an extra
column of 0’s obtained by differentiating with respect to z. Following
Seifert, we shall consider the second matrix

F() =E+ (t— 1T

B AN SR PR oa

g

am.@r-@;lwgwii‘w_i:f;gmlél};%g Foh¥s

e ki R
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Ciearly A(t) = det F(f). Now the gth cyclic covering belongs to the
representation  — (0 1...g — 1), a; — identity. Let T, denote the
g X gmatrix . “

01.0...0
00 1...0
000...0
0 00...1
i1 00 o

the regular representation of the permutation (0 1 ... g — 1). Then
F(T,) is a relation matrix for the first homology group of the gth cyclic
branched covering = of 3-spaoe branched over our knot But, rearranging
rows and columns,

E-T T 0 0

F(T,) = 0 E-1T T 0
T 0 0 E-T
and this is equivalent to '
0 E...*% *
o 0 E | %

' 0 0 0 I — (I'— E)°
Thus the 2h X 2h matrix )
Fy=T¢— (I — E)'
is a relation matrix for H. 1(2)
For many knots, this represents an enormous simplification. It shows
that Hi(Z) can be calculated from a 2k X 2h matrix if the knot is of

genus h, even though the method explained earlier leads to a matrix that
is in general much larger.
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For a knot of genus 1, it is only a matter of solving some dlfferenoe
equations to work out the entries of F,. This leads to explicit calculation
of Hy(Z) for all values of g, and some of the results are quite interesting.
For instance, for the trefoil knot, we get that

H,(=) Z®Z forg=0(mod®6)
= 0 for g = =£1 (mod 6)
= Z for g = %2 (mod 6)
=Z; ® Z, forg =3 (mod 6)

On the other hand, for the figure-eight knot we get the accompa,nymg
table:

i b S LR e R ,aak@.&m@m ;

g

Hy (Z)

<

0

Z;
Z,® Z,
Zy® Z,
' Zy® Zn
Zyw® Zs
Zsy® Zy
Z1s @ Zn
) Zuw®D Zx
10 Zys @ Zys

The appearance of direct doubles in the odd-numbered rows is not
accidental. It is a fact that, for any knot, the homology group H1(Z) of |
the gth cyclic branched covering is a direct double for every odd g.

Since the gth branched cyelic covering Z is a closed oriented 3-man1fold
it supports a self-linking L. L is a primitive bilinear symmetric mapping 5
from the 1-dimensional torsion group into the rationals mod 1. It is defined *
as follows: if @ and b are torsion cycles then there is a 2-chain A whose °
boundary is ma for some integer m > 0. Then %

e s

© 00 ~T O O N

i

%

L(a, b) = -:;s(A, b) (mod1)

where 8 denotes intersection number in 2. If 2 is reoriented, L changes :

sign. Since = inherits an orientation from S, we see that L changes its : ,_

sign when 8 is reoriented.
The torsion group T:(Z), together with the primitive bilinear symmetrlc

mapping,

L: Ty(Y) ® Ty(X) — rationals mod 1 - ,_

is an invariant of the type of knot & in the oriented 3-sphere S. Numerical
invariants can be read from it as follows: If 7, 73, . . ., 74 are the torsion
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numbers of 2 (they may be calculated from the matrix F,) in the order
in which ,,1 divides 7,, and p is any odd prime-divisor of 7, such that p?
divides 7. but not 7,1 (where 7,4 is defined to be 1), then, for properly
chosen torsion elements ¢, . . ., g- of Hi(Z),

7 . 7. det “ L(gs, 95) Ilc.j-l. oo st

is an integer prime to p, and x,(p), defined to be the quadratic residue
character (71 ... 7 det’ || L(gs, g;) ||/p) of this integer, is mdependent of
the choices made, and is an invariant of the type of the knot k in the
oriented 3-sphere S.

It can be shown that the matrix of intersection numbers corresponding
to the matrix F, of boundary coefficients is just

= (T = B)»I

The eorrespondmg matrix of self»hnkmg numbers L is now determined,
since

Sy = Fy- L,

As an illustration, we found the matrix

-1 1
V=
0 -1
for the trefoil knot. Hence
11
T =
-1 0
1 2 -1 1 ’
F; = , S = , Ly = (mod 1)
-2 -1 0 -1 -3 3

n=31=1p=3r =1 x(3) is the quadratic residue character of
3.3 = 1. Since 1 is a quadratic residue mod 3, x1(3) = 1. On the other
hand, if the 3-sphere is reoriented we get

10 0 —1 -1 -2 10
V = y T = , F2= , SZ—
-1 1 1 1 2 1 -1 1
-4 %,
L, = (modl)
-t -t
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x1(3) is the quadratic residue charaeter of 3-(—3%) = —1, Since —1 is a4
quadratic non-residue. mod 3, xa(3) = —1. This shows that the trefoil
is not amphicheiral. -

- Forg =2 there is a similar algonthm based on a surface 'F spanmng
the knot that is not necessarily orientable. Such a surface can be obtained %
by coloring the regions of: the: dlagra.m ‘alternately so as to form a “chess- %
board surface.” A rule which would-produce such a surface is the followmgQ
Color a region dark or light’ accordmg a8 a path from that reglon that goes
out to infinity cuts the pro]eetlon of the knot an even or an odd number

of times.

K | % %_%

(At the crossings the surface twists; just as before.) To each crossing ¢ an ¥
integer n(c) = +1is asmgned measurmg the “twist” of the surface at

XX

1‘3+1 ) ﬂ'-'

m S %ﬁséa&é PR ET m

e

Let X, X;, X,. denote the.shaded regions (Where X,. denotes the
unbounded regmn, say), and define e;; = = n(c), summed over those
crossings that are incident to both X; and X;. Let

Fo, a7 ., %) = 2 eii(zi — x;)*
<y

and define R, o ‘
. ,'Ef(xly ceey :,t») = f(o, Ty ..., x”)

i e R AR A G R S i Rk - i i, i“éﬁ ot @,:

This is called the quadratic fM of the diagram. Clearly

n .
J(@o, 2y ..., T0) = Z G iE &5
im0
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where a;; = —egfor ¢ # j, and @i = D mieii = D “i(c), summed-over
the crossings incident to X; To-the. quadratlc form f(xo, 21, ..., %a) is
associated the symmetric mtegral matrix 4, = (@) s,5=0,1, ... ,n and to
the quadratic form f(z, . . ., z,) is associated its principal mmor

A= (dij)'i.jwl, v

It can be shown that a relation matrix for Hi(Z), where T is the 2-fold
branched cyclic covering, is this n X n matrix 4, and that the corre-
sponding matrix of self-linking numbers is 4! (mod 1). [Note that 4 is
necessarily a non-singular matrix, for det A = A(—1) # 0.]

Examplés:. (figures above)
1. Trefoil knot (first projection)
@) = =32} A = =3, 4 = —} (mod 1)
The non-amphicheirality very plain. ' :
2. Trefoil knot (second prOJectlon)

f@bm)——wx wl %Vexﬁ
-2 1 -2 -1
A= , Al=1} (mod 1)
1 -2 -1 -2]|

3. Fxgure-elght knot
I, 20) = x’l — 2(z — )? + o

-1 2 -1 =2

A= - (mod-1)

|, A1= -3

2. -1
The ﬁgure eight is obviously amphxchelral and, in fact, if the crossmgs
are all reversed 50 as to get the mlrror image, what results is

f(371, xz) = "271 + 2(331 — xg)2 — xz
1 -2 ' 12

-2 -1

s A1= -1} (mod 1)
,—2,w1 .

In either case, x1(5) (i%)

2 1

10. FINDING REPRESENTATIONS

In 3- and 4-dimensional topology, one often faces the problem of finding
representations of a presented group G. For example, you may want to
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show that & certain arc is wild, for which purpose you will be perfectly g?
happy to find any representation onto any non-trivial group. Or you mayghf
want- to dlstmgulsh between two different embeddings; in this case, they
problem is more subtle, and it may be necessary to examine all theg
representations onto a selected non-trivial group. e%
The range of grot1ps upon which representations may be made 18«;
limited only by one’s imagination; most fréquently permutation groups§
have been used, but mathematicians have also used groups of matrices;’
for example, groups of motions in the hyperbolic plane, or even knot%
groups themselves. g
The most obvious way to find representatlons of a group G, when you‘#
have a presentation of G before you, is to adjoin some relations, and if you#
are lucky, the resulting homomorph i§ sufficiently simplified so that you§

can recognize it, but not so oversimplified that it becomes trivial. If @ is
perfect (G = @), it becomes a little delicate to handle this properly; if G
happens to be simple, it becomes impossible. (There is, however, a dlﬂ’erent*"
technique, which I shall mention later, that sometimes allows one to dealj
even with simple groups.) %
Since many of the groups G that come up.are knot groups, or like knoﬁ
groups, let us consider first the representatxons of the group @ of a tame
knot k. The first thing to observe is that abelianization maps G onto Zj 4
and that there is a uniqué homeomorphism of Z onto Z, for any g. Th ”1
there is a unique representation of G onto Z,. If we think of the elements?
of Z, as the powers of the permutation (0 1 2...g — 1), this repres
sentation is defined by mapping each of the generators z; of a given overs
presentation into the cycle (0 1 2, ..., g — 1). These are the onl :*._;_
finite abelian representations.
(Changing the names of the symbols 0, 1, ..., g — 1say, by permut'
them, amounts to following the representatlon by an inner automorphisnt!
of the symmetric group 8, of degree g; representations into §, are alway",
determined only up to these inner automorphisms.) :
Of the non-abelian representations, the only ones that can be obtain
at all systematically are the metabelian ones, in particular the met:a.cych@J
ones. Here is how metacyclic representatlons can be found:
Look at the relation at a typical crossing,

L2

DS

o = zax7t  (see figure p. 122)

e i a0,

The non-zero entries in the corresponding row of the Alexander matnx are’

x; x; T

11 1—-t -1
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so if we multiply the Alexander matrix on the right by the column matrix

&

&

.
’

we will get the 0 matrix if the system of n linear homogeneous equations
in 7 unknowns.

ooooooooooooooooooo

---------------------

has a solution. Since the sum of the coefficients in any one of the equations
is 0, and since any of the n relations is a consequence of the others, any
one of these equations may be thrown away and one of the variables may
be given the value O arbitrarily. Since the determinant of the resulting
(n — 1) X (n — 1) system of homogeneous equations is A(f), the system
has at least one non-trivial solution, if we reinterpret the equations to be
congruences modulo | A(¢) |. Here, I am thinking of ¢ as, say, an integer.

Now our congruences can be given an interesting interpretation. The
typical one written above may be rewritten

A Py &= &=t — &) (mod AY)

Think of n points Py, Py, ..., P,

P on the unit circle of the plane and

“the radii OP,, OP,, ..., OP,, and

interpret &, &, ..., £, as the incli-

0 nations of these radii divided by
: 2x/| A(t) |. Then our typical con-
gruence has the interpretation that

L P;OP, is t times £ P;OP;. (For

instance, if ¢ = —1, this says that
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OP; bisects:the angle’ £ P:OP,, if t =3, OP; trisects the angle AP,OP,, ). 8
Thus, each solution of our system of hnear equations results in a dis- %
2

tribution of the n points Pj, ..., P, 'on the unit circle. The group @
may now be represented onto the groups of motions of a regular poly-
gon of | A(t) | sides, in case ¢ = —1 by representing z; by the reflection i‘%
across the line OP;, and, in the general case, by dilation of the angle by : ?,,-
a factor of ¢. This can, of course, be Wntten as a permutation.

Example 16

G = (abecdeb=dadc= taxbtrl, d = ece, e = bdb!, a = cec™). &

The Alexander matrix ig

0. 0., .t ~1 1—t|l-A@) =2 3420

-1 0 1-t 0 ¢

A(—l) = 7. The homogeneous n X n system is
—a—8 - +25 =0
%a-p-v =0 |
| - ¥y — 64+2=0 (mod7) o
e - 5— =0 |
'—'o;z + 28 - —e=0

Choose @ = 0'(mod 7), say, and throw away one of the congruences. A '.
solution is

aEO,ﬁE'2,‘yE5,651,e‘"E‘3
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‘Hence, we can mark a, b, ¢, d, ¢ on a regular hep-
tagon as shown and obtain the representation
o a — (16) (25) (34)

b — (13) (04) (56) .

c— (46) (03) (12)

d— (02) (36) (45) -

e — (24) (15) (06)

Example 17. G = (a, b, ¢: b = cac™?, ¢ = aba™, ¢
=beb™) A(t) =1 —t+ & A(—2) =7

—2a—-B+3y=0
3a—28—vy=0 (mod?7)
—a+38—2y=0

2 and we get the representation
3

‘ L e—Gmes
b — (021534) : -
4 v 4 ¢ — (354160)
A ° A metacyclic reprefsentation tha!s is ancestral
5
6

to all other metacyclic representations may be
obtained as follows: Let M (n, t) denote the meta~
cyclic group (y, u: u* = 1, yuy! = ). Map z; into u®:y and try to de-
termine the integers ¢; so that 2 homeomorphlsm is defined. Our typlcal

relation maps into

ury = uﬂyu’ Yy

3

8o that we must have tc; + (1 — t)¢; — ¢ = 0 (mod n) This is the same
system of congruences, and there will be non-trivial solutions whenever n
divides A(2). : :

Ezxample 18. (a, b, c: b = cac™, ¢ = aba™, a a = beb™1) is represented
on M(7, —2) by !

a— y (éompare the preirjoua example)
b~ uly

c—uYy ‘
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Ay
R

In my paper “A remarkable simple closed curve” the group
T = (bg, by, by, ... : bibob7? = babyb3! = ...) ﬁ

was obtained, and it was required to show that I' was non-abelian, that i i, £
different from I'/T' = Z. If one adjoins the relations by = by = b, = ... ,.u-
by = by = by = ..., the group is mapped homeomorphically onto the
finitely presented group (bo, b1: bibebT! = bebibg!) and the methods dlscussed:t'
above would have led to the representation

— (12) for n even

(23) for n odd

e B R e

that was uséd there. As a matter of fact, I didn’t know any method thené
and just guessed. Example 1.4 of the paper “Some wild cells...” couldy
have been handled similarly. The other representations of that paper,’
however, were into the alternating group As of degree 5. Since A; is far;
from being metacyclic or even metabelian, these methods would fail for}'
these examples. As a matter of fact, As is a simple group, so that I know of:
no method for finding representations on A; other than just trying. :
In the paper, “A mildly wild imbedding . ..” it was difficult to find a
representation of the group. Fortunately the relations of an obvious;
- homomorph were z,4,%s = YTy, Tur1¥ulut1 = y,.M il 2o =1, Whlchg
suggests the well-known presentation:

>-g
I
b

(0’1, 02 « ¢« oy Og: a’,vq.la'; = 04100441

U'W'J—"’Ja'ul"—]l>2)

of the braid group By, and this suggested the use of the Burau matnceSw
that did in fact turn the trick. &
These Burau matrices are of considerable interest in themselves, an
as the above remarks show, they can do the work of permutation grou
of infinite degree. Burau considers the group of infinite matrices whose’
entries are almost all the same as those of an infinite identity matrix, and:

he represents a; by the matrix E
E| o |o '

0|1—¢t t10 | i

1 0 i1 ﬁ

i

0 0 E

This representation has an enlightening explanation in terms of the free
calculus. As the accompanying diagram shows, ¢; is associated with the
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Xi*iﬂ"f‘
MXI

.

automorphism T
Ty TLipTT"
Tip1 > T
z;—x; forallj=4,¢4+1

of the fundamental group of the compactified plane punctured at d + 1
points (that is, the free group of rank d). This representation of By by
the automorphism group of the free group of rank d was fundamental in
Artin’s study of the braid groups. Now the entries in the critical 2 X 2
minor of Burau’s matrix are just :

aTg(xc) 8T4($.’) 4

where Y (xx) = ¢
aa:,- axm 'P( k)
8T.-(x¢.,.1) aT;(xm)
ox $ ax;.*.l
so that Burau’s representation is just
9 Tn(xi) v
o — 3
g2} ,,7=12 ...

From elementary formulas of the free calculus, it follows that the
Burau matrix representing any braid word w = w(oy, 0, . . ., 04) is just

_)l aT (x) ||¥

az'j
where T is the automorphism of the free group of rank d that is associated
with the braid w.

%

B



166 R. H. FOX °

The free product with amalgamation is often a more powerful method |
than representation. A presentation defines a free product A X B if the
generators split into two sets, say, 1, 23, . . . and ¥, ¥, . . . and the relations
also into two sets, say, 71, 7o, . ... and &, 8, . . ., where each r;is a word in
Ty, %y, . . . alone and each s;is a word in ¥, ¥, . . . alone. If there are further
relations of the form u; = vi, us = vy, ... where each %; is a word in
Z1, T, . . . and each v; is a word in 3, ys, . . ., this is not necessarily a free 3
product with amalgamation AC*B; you have to prove somehow that the
subgroup C; of A generated by w, u,, . . . is isomorphic to the subgroup C; }
of B generated by vy, v,, . . . under an isomorphism that makes u; correspond |
to 1, us to vy, and so on. If one can show this, however, the rewards may
be tremendous. For example, A and B are contained isomorphically in
A f B, so that if either A-or B is known to be non-trivial, 4 % B is"

;

c
immediately seen to be non-trivial. (This may be used, for example, to
prove that & # [ is not trivial unless & and [ are both trivial.) (Since 4
and B are not normal in A %k B, finding a non-trivial representation may

R e

(4]
be difficult or evén impossible.) Further pleasant properties are, for ex- &
ample: if an element of 4 > B is of finite order it must be conjugate to

B

c
an element of A or to an element of ‘B; if two elements of a free product
A % B commute, they must both belong to 24271 or to zBz! for some z.
As a simple illustration of the use of free products with amalgamation 3
(in this case free products), I shall prove that there exist a pair of un- ¥
splittable arcs; that is, a pair of disjoint arcs X and Y such that any 3-cell
that contains X intersects Y. . ;

g N

STy

AR LG

R R et

L2

g e

X and Y are just two copies of example 1.1 of “Some wild cells. . .”
that are hooked together. If X and Y were splittable, the group G =
7 (8 — (X + Y)) would be the free product of #(.S* — X) and n(S* — ¥),
and hence no conjugate of b could commute with any conjugate of ¢ (since
neither b nor ¢ is trivial, as is shown by the representation, loc. cit.). Since
b and ¢ obviously commute, X and ¥ must be unsplittable.
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