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The Clifford algebras of real quadratic forms and their complexifica-
tions are studied here in detail, and those parts which are immediately
relevant to theoretical physics are seen in the proper broad context.

Central to the work is the classification of the conjugation and rever-
sion anti-involutions that arise naturally in the theory. It is of interest
that all the classical groups play essential roles in this classification.
Other features include detailed sections on conformal groups, the eight-
dimensional non-associative Cayley algebra, its automorphism group, the
exceptional Lie group G, and the triality automorphism of Spin 8.

The book is designed to be suitable for the last year of an under-
graduate course or the first year of a postgraduate course.
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Foreword

This book’s parent Topological Geometry (Porteous (1969)), originally
written in the 1960’s to make propaganda for a basis-free approach
to the differential calculus of functions of several variables, contained,
almost by accident, a central section on Clifford algebras, a generalisation
of quaternions that was at that time little known. This section was
strengthened in the second edition (Porteous (1981)) by an additional
chapter on the triality outer automorphism of the group Spin(8), a feature
which illuminates the structure of several of the other Spin groups and
which is related to a property of six-dimensional projective quadrics
first noticed almost a hundred years ago by Study in work on the rigid
motions of three-dimensional space.

In recent years Clifford algebras have become a more popular tool
in theoretical physics and it seems therefore appropriate to rework the
original book, summarising the linear algebra and calculus required but
expanding the Clifford algebra material. This seems the more worth while
since it is clear that the central result of the old book, the classification
of the conjugation anti-involution of the Clifford algebras R,4 and their
complexifications, was dealt with too briefly to be readily understood,
and some of the more recent treatments of it elsewhere have been less
than complete.

As in the previous version, the opportunity has been taken to give
an exhaustive treatment of all the generalisations of the orthogonal and
unitary groups known as the classical groups, since the full set plays a
part in the Clifford algebra story. In particular, perhaps surprisingly, one
learns to think of the general linear groups as unitary groups. Toward the
end of the book the classical groups are presented as Lie groups and their
Lie algebras are introduced. The exceptional Lie group G, also makes
an appearance as the group of automorphisms of the Cayley algebra, a

ix



X Foreword

non-associative analogue of the quaternions that plays an essential role
in the discussion of triality.

I owe a great debt not only to colleagues and students at the University
of Liverpool over the years but also to new found friends at the by now
regular international meetings on Clifford algebras and their applications
to problems of mathematical physics, whose Proceedings have been pub-
lished as Chisholm and Common (1986), Micali, Boudet and Helmstetter
(1991) and Brackx, Delanghe and Serras (1993).

My interest in Clifford algebras and their use in physics was originally
stimulated by discussions with my colleague at Liverpool Bob Boyer,
tragically killed by a madman’s bullet on the campus of the University
of Austin, Texas, on August 1, 1966. Explicit classifications of both the
conjugation and the reversion anti-involutions in the tables of Clifford
algebras in Chapter 17 are in a Liverpool M.Sc. thesis by Tony Hampson
(1969). On obtaining the answers Hampson and I wrote to my colleague
Terry Wall, who was at that time on a visit to Mexico. He replied
by drawing our attention to his paper (1968) which we had not read,
and which presented the entire theory very succinctly! For the classical
groups my main debt is to Prof. E. Artin’s classic Geometric Algebra
(1957). The observation that the Cayley algebra can be derived from
one of the Clifford algebras I owe to Michael Atiyah, while the method
adopted in Chapter 22 for constructing the Lie algebras of a Lie group
was outlined to me by Frank Adams.

In preparing this fresh version of the material I am hugely indebted
to Pertti Lounesto who has read much of the book in draft and over the
years has kept me right on many points of detail. His knowledge of the
history of the subject is unsurpassed. Much more recently, Chapter 23 on
the conformal groups owes much to Jan Cnops, as is there acknowledged,
and to the hospitality of Julius Lawrynowicz and the Banach Institute in
Warsaw in 1994. An early version of some of the material of Chapter 17
has appeared as Porteous (1993).

Finally a disclaimer! I am no physicist, and therefore the reader will
search in vain for particular applications to physics. On the other hand,
works that are strongly biased toward applications frequently give only
a fragmented and partial view of the subject. It is my belief that the
subject only makes sense when the full picture is unfolded, and some of
the otherwise confusing details are seen naturally to fall into place.

Ian Porteous, Liverpool, January, 1995
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Linear spaces

In this chapter we recall briefly some salient facts about linear spaces
and linear maps. Proofs for the most part are omitted.

Maps

Let X and Y be sets and f : X —»Y a map. Then, for each x € X
an element f(x) € Y is defined, the subset of Y consisting of all such
elements being called the image of f, denoted by im f. More generally
f : X>-Y will denote a map of an unspecified subset of X to ¥, X
being called the source of the map and the subset of X consisting of
those points x € X for which f(x) is defined being called the domain of
f, denoted by dom f. In either case the set Y is the target of f.

Given amap f : X >-Y and a point y € Y, the subset f~1{y} of X
consisting of those points x € X such that f(x) = y is called the fibre of
f over y, this being non-null if and only if y € im f. The set of non-null
fibres of f is called the coimage of f and the map

dom f — coim f; x — f1{f(x)}

the partition of dom f induced by f. The fibres of a map f are sometimes
called the level sets or the contours of f, especially when the target of f
is the field of real numbers R.

The composite gf of maps f : X>>Y and g : Y >> Z (read ‘g fol-
lowing f°) is the map X >— Z ; x — g(f(x)), with domgf = f~!(domg).

Proposition 1.1 For anymaps f W - X,g: X—>Y and h:Y »Z

h(gf) = hgf = (hg)f.
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Proof We traverse the rebracketing pentagon as follows:— for any w € W

((h(g))(w) = h((gf)w)) = h(g(f(w))) = (hg)(f(W)) = ((hg)f)(w).
g

For any set X the identity map X — X : x — x will be denoted by 1y,
maps f : X—Y and g : Y = X such that gf = 1x and fg = 1y being
said to be inverses of each other, with g = f~! and f = g~1. Given
invertible maps f : X > Y and g : Y = Z then (gf)™! = f gL,

To any map f : X — Y there is associated an equation f(x) = y. The
map f is said to be surjective or a surjection if, for each y € Y, there is
some x € X such that f(x) = y. It is said to be injective or an injection
if, for each y € Y, there is at most one element x € X, though possibly
none, such that f(x) = y. The map fails to be surjective if there exists an
element y € Y such that the equation f(x) = y has no solution x € X,
and fails to be injective if there exist x, x’ € X such that f(x') = f(x).
A map that is both injective and surjective is said to be bijective or a
bijection. A map is bijective if and only if it is invertible.

If maps f : X—>Y and g : Y —» X are such that fg = 1y then, by
Exercise 1.1, f is surjective and g is injective. The injection g is said to
be a section of the surjection f. It selects for each y € Y a single x € X
such that f(x) = y. It is assumed that any surjection f : X —»Y has a
section g : Y — X, this assumption being known as the axiom of choice.

Linear spaces and maps

A linear space (of vectors), X, over a field (of scalars), K, is an additive
abelian group X, with zero element O (or 0) and furnished with a scalar
multiplication K x X — X ;(x, 4) — x4 = Ax satisfying both distributive
laws, with A(ux) = (Au)x, for any A, u € K and any x € X. Moreover,
1x = x, for any x € X, implying that Ox = O and (—1)x = —x. Also,
for any 4 € K, A0 = 0. For us the field K will normally be either the
real field R or the complex field C and the linear spaces will normally be
finite-dimensional, a basis for such a space X being a finite set of vectors
that are linearly independent and that span X. The number of vectors in
any basis is independent of the basis and is called the dimension of X.
A linear map is a map between linear spaces that respects the linear
structures; that is f : X — Y between linear spaces X and Y is linear
if, for any a, b € X, A, p € K, f(Aa + pb) = Af(a) + uf(b). Such a map
f : X >Y is uniquely determined by the action of f on any basis for X,
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and any assignment of f on the elements of a basis for X extends to a
linear map of the whole of X to Y.

It is easily verified that the composite of any two composable linear
maps is linear, while it follows as a corollary of Exercise 1.2 that the
inverse of a linear bijection is linear.

A linear subspace of a linear space X is a subset W that acquires a
linear structure by the restriction to W of the linear structure for X.

The kernel of a linear map f : X — Y is the set {x € X : f(x) =0},
written ker f.

Proposition 1.2 For any linear map f : X - Y, ker f is a linear subspace
of X and im f is a linear subspace of Y.

Proposition 1.3 A linear map f is injective if and only if ker f = {0}.

The rank of a linear map between finite-dimensional linear spaces
is the dimension of the image of the map, this image being a linear
subspace of the target space. The kernel rank or nullity of the map is the
dimension of its kernel. The rank of the linear map f : X —» Y will be
denoted by rk f and the kernel rank by kr f.

Proposition 1.4 Let f : X > Y be a linear map, X and Y being finite-
dimensional linear spaces. Then tk f +kr f = dim X.

In the case that X is a finite-dimensional linear space a linear map
f : X > X is injective if and only if it is surjective, it then being an
automorphism or self-isomorphism of X. More generally if X and Y
are linear spaces of the same finite dimension then any linear injection
X — Y is an isomorphism.

A linear space X is said to be the direct sum Xo® X, of linear subspaces
Xy and X, if XoNX; = {0} and X, + X; = X, each of the subspaces then
being a linear complement of the other. Then dim Xy + dim X; = dim X.
Associated to any direct sum decomposition X = Xy & X; there are
projection maps X — X, with kernel X; and X — X, with kernel Xj.

The direct product of linear spaces X and Y is the Cartesian product
X xY,withthe sum (X x Y2 > X x Y;((x, y),(x, ¥)) = (x+x,y+)")
and scalar product Kx (X xY) =X xY;(4, (x, y)) — (ix, Ay), the linear
space K" being the n-fold direct power of the field K.

The choice of a basis for an n-dimensional K-linear space induces an
isomorphism with the linear space K", any linear map K" — K™ being
represented by its matrix, an array of real numbers with m rows and n
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columns, whose columns are the images of the vectors of the standard
ordered basis for K", vectors in this context being represented by column
matrices.

A non-zero kernel vector of a linear map K" — K™ ‘is’ a linear depen-
dence relation between the columns of the matrix of the map.

The transpose of a matrix with m rows and n columns is the matrix with
n rows and m columns whose ith row is the ith column of the original
matrix, for each i. Transposition will be denoted by 7, the transpose of a
matrix ¢ being denoted by a’.

Amap B : X x Y —Z is said to be bilinear if for any a € X and
beY the maps X - Z;(x,b) — B(x,b) and Y - Z;y — B(a, y) are
both linear. Scalar multiplication is an example of a bilinear map.

The set L(X,Y) of linear maps between linear spaces X and Y, of
dimensions n and m say, has a natural linear structure of dimension mn.
In particular the linear space L(X,K) of linear maps from X to K, also
of dimension n, is called the dual of X and will be denoted by XL. The
map

X > XM xeo ey,

where e.(f) = f(x), is easily proved to be injective and so is an isomor-
phism.

The dual of a linear map f : X — Y between finite-dimensional linear
spaces X and Y is the linear map

fr YL xt; o of,

where wf denotes the composite of the map w : Y — R following the
map f : X—Y. Clearly, for composable linear maps f : X - Y and
g : W— X we have (fg)L = gtfL.

Proposition 1.5 Let o and B be elements of the dual space X" of a finite-
dimensional real or complex linear space X such that kera = ker . Then
there exists a non-zero scalar A such that f = Ao

Proof Either kera = ker § = X, in which case « = # = 0 and A can be
any non-zero element of R, or both « and # are surjective. Then any
element of X is of the form a + ub, where a(a) = 0 and o(b) = 1, and
Bla+ ub) = uB(b) = a(a + ub)A, where A = f(b); that is, § = Aa. O

The dual annihilator W@ of a linear subspace W of a finite-dimen-
sional linear space X is the kernel of the map :* : XL — WL dual to the
inclusion map 1 : W — X. Its dimension is equal to dim X — dim W.
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A linear map f : X — X is said to be an endomorphism of the linear
space X and the linear space L(X, X) of all such endomorphisms of X is
also denoted by End X. As previously mentioned, a linear isomorphism
f : X — X is said to be an automorphism of the linear space X and the
set of all such automorphisms of X is denoted either by GL(X) (‘GL’
standing for ‘general linear’) or by AutX. The linear space of all n x n
matrices representing the elements of L(K", K") will be denoted by K(n).

A linear involution of a linear space X is a linear map ¢ : X — X such
that 2 =1 X

2K-modules and maps

Let A be a commutative and associative ring with unit element. Then
a A-module X is a linear space over the ring A, the terminology linear
space being reserved mainly for the case that A is a field.

Consider the case that A is the double field K consisting of the K-
linear space K? assigned the product (a, b)(c, d) = (ac, bd). A direct sum
decomposition Xy & X; of a K-linear space X may be regarded as a
2K-module structure for X by setting

(4, wx = Axg + ux;, for all x € X and (4, u) € ’K.

Conversely, any 2K-module structure for X determines a direct sum
decomposition Xy ® X; of X as a K-linear space in which X, = (1, 0)X
={(1,0x: x€ X})and X; = (0, 1)X.

Proposition 1.6 Let t : X — X be a linear involution of the K-linear space
X. Then a *K-module structure, and therefore a direct sum decomposition,
is defined for X by setting, for any x € X,

(, 0)x = %(x +1(x)) and (0, 1)x = %(x —1(x)).

2K-module maps and ?K-submodules are defined in the obvious ways.

In working with a 2K-module map t : X — Y it is often convenient to
represent X and Y each as the product of its components and then to
use notations associated with maps between products, as, for example, in
the next proposition.

Proposition 1.7 Let t :.X — Y be a *K-module map. Then t is of the form

( go 2 ) where ag € L(Xy, Yo) and ay € L(X,, Y1). Conversely any map
1

of this form is a *K-module map.



6 1 Linear spaces

A ZK-module X such that X, = (1, 0)X and X; = (0, 1)X are iso-
morphic will be called a 2K-linear space and a ?K-module map X — Y
between 2K-linear spaces X and Y will be called a 2K-linear map.

Affine spaces and maps

An affine space is a linear space with its origin deleted — it acquires a
unique linear structure so soon as a point is chosen as origin, and the
transfer from any one linear structure to any other is by a translation.
An affine map is a map f : X —» Y between affine spaces X and Y that
becomes linear so soon as a point a of X is chosen as origin for X and
f(a) is chosen as origin for Y. An affine map between linear spaces is the
sum of a linear map and a constant map. An affine subspace of a linear
space is a translate or parallel of a linear subspace.

Determinants

We assume that the reader is familiar with the basic properties of deter-
minants. Briefly, to any element a of K(n) there is a unique real number,
the determinant of a, deta, such that

(1) if any column of a matrix a is multiplied by a scalar A then the
determinant is multiplied by 4,
(i1) if any column of a matrix a is added to another then the deter-
minant remains unaltered,
(ii1) the determinant of the identity is 1.
The map is defined, for all a € K(n), by the formula

deta = ngnn]___[a,,(j),j,

nen! jen
where n! denotes the set of permutations of the set m of all natural
numbers m such that 0 < m < n. Moreover,
(iv) for any a, b € K(n),detba = detbdeta,
(v) for any invertible a € K(n),deta™! = (deta)™!,
(vi) for any a € K(n), a is invertible if and only if deta is invertible,
that is, if and only if deta = 0.

Any linear isomorphism a : K" — X induces a map

End X = L(X,X)—>K; f > det(@a!fa)
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called the determinant on End X and also denoted by det. This map is
easily seen to be independent of the isomorphism a.

Proposition 1.8 Any invertible matrix a € K(n) is reducible by a series of
column operations to a matrix with all entries on the main diagonal equal
to 1 except for one which is equal to deta, and all entries off the main
diagonal equal to zero.

Note that each of the column operations may be performed by mul-
tiplying the matrix on the right by a matrix all of whose entries on the
main diagonal are equal to 1 and all entries off the main diagonal except
one are equal to zero.

Linear groups

For any linear space X the set AutX has a natural group structure.
The group Aut K” is usually denoted by GL(n;K) and called the general
linear group of degree n. The subgroup of GL(n;K) consisting of all
automorphisms of K" of determinant 1 is called the special linear group
of degree n, denoted by SL(n;K).

For any real linear space X there is a map { : EndX — {—1,0,1},
taking the value 1 if the determinant is positive, the value —1 if the
determinant is negative and the value O if the determinant is zero. Au-
tomorphisms for which the value of { is equal to 1 are said to be
orientation-preserving, while those for which the value is equal to —1
are said to be orientation-reversing. For any finite-dimensional linear
space X the restriction of { to AutX is a group isomorphism with
the multiplicative group S° = {+1}. The orientation-preserving auto-
morphisms of X form a subgroup of AutX which we shall denote by
Autt X.

The question of orientation does not arise for complex linear spaces
since there is no notion of a positive complex number.

Exercises
1.1 Let f : X —>Y and g : Y — X be such that fg = 1y. Prove that
f is surjective and that g is injective.

1.2 Let W,X and Y be linear spaces and let t : X —Y and
u : W — X be maps whose composite tu : W —Y is linear.
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Then
(a) if t is a linear injection, u is linear,
(b) if u is a linear surjection, ¢ is linear.
Let X and Y be K-linear spaces. Prove that

XxY=Xx{0})& {0} xY)

Let K be either the field R or the field C and consider the product
K> x K > K; (x, y)+ x Ay defined by

XAy = Z(xi)’nH — Xnti¥i):
ien
Verify that the product is bilinear and that, for every x, y €
K” yAx=—xAy.
Now define 6 : K(2n) =K by the formula

1
8(a) = T Z sgnn H Ani) N Guinyis

neln! icn

where 2n! denotes the set of permutations of all the natural
numbers m such that 0 < m < 2n.

Verify that this is an alternating 2n-linear map on the columns
of the matrix a, with 8(**1) = 1, where 21 denotes the unit
2n x 2n matrix, and therefore that 6(a) = deta.

This exercise will be of use in Proposition 6.11.
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Real and complex algebras

A linear algebra over the field of real numbers R is, by definition, a linear
space A over R together with a bilinear map 42 — A, the algebra product.

Examples include R itself, the field of complex numbers, C, consisting
of the linear space R? with the product (a,b)(c,d) = (ac — bd,ad + bc),
the double field 2R consisting of the linear space R? with the product
(a, b)(c,d) = (ac, bd), and the full matrix algebra R(n) of all n x n matrices
with real entries, with matrix multiplication as the product.

An algebra 4 may, or may not, have a unit element, and the product
need be neither commutative nor associative, though it is usual to mention
explicitly any failure of associativity. The unit element, if it exists, will
normally be denoted by 1(4y or simply, where no confusion need arise,
by 1, the map R — A4;4 — Al being injective. (The notation 14 is
reserved for the identity map on A4.)

All the above examples are associative and have a unit element, and
all are commutative, with the exception of the matrix algebra R(n), with
n > 1. The double field R is often identified with the subalgebra of
R(2) consisting of the diagonal 2 x 2 matrices, the unit element being
denoted by 21. Likewise, for any n the n-fold power "R of R may
be identified with the subalgebra of the algebra R(n) consisting of the
diagonal n x n matrices, the unit matrix in R(n) similarly being denoted
by "1.

Examples of non-associative algebras include the Cayley algebra and
Lie algebras, discussed in later chapters.

Concepts defined in the obvious ways include not only subalgebras
but algebra maps, algebra-reversing maps, and in particular algebra iso-
morphisms and algebra anti-isomorphisms, the latter for example being a
linear isomorphism f of one algebra A to another B that reverses the

9
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order of multiplication, that is, for all x,y € 4, and all 4, u € R,

fOx+py) =Af(x)+puf(y), and  f(xp) = f(y)f(x).

The centre of a real algebra A is the set of all those elements of A
that commute with each element of 4. For example the centre of R(n)
consists of all real multiples of the identity "1. The centre of an algebra
A is a subalgebra of A.

Analogous definitions hold for linear algebras not only over any field,
in particular the field C of complex numbers, but also over the double
fields R and 2C. The part of a ?R-linear space is played by an R-linear
space A with a prescribed direct sum decomposition Ay ® A4;, where A
and A4, are isomorphic linear subspaces of 4 (so, in the case that A4 is
finite-dimensional, dim 4y = dim 4;) with scalar multiplication defined
by

(4, 1), (x0 + x1)) = (Axg + px1).

For example, the elements of 2R(2) may be represented as matrices either

a 0 ¢ O a ¢ 0 O
0 a 0 ¢ bo dy 0 O
of the form bo 0 do O or of the form 0 0 a ¢
0 b1 0 d1 0 0 bl dl

Our preference is for the second form, where R* = R? x {0} & {0} x R?
is thought of as R? x R2.

For any k with 0 < k < n the kth and (n + k)th columns of 2R(n)

Co
will be said to be partners. Thus in the example the columns go
0
0
0
and are partners.
¢y
d

Similar remarks apply to the algebra 2C(n).

Any algebra over C, 2R or 2C may also be regarded as an algebra
over R, while any algebra over 2C may be regarded as an algebra over
C. In particular, as the corollary to the next proposition shows, the real
algebra C is isomorphic to a subalgebra of the algebra R(2) of 2 x 2 real
matrices.
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Proposition 2.1 Let C be identified with R? in the standard way. Then,
for any c = a+ib € C, the real linear map C — C; z +— cz has matrix

a —b

b a)
Corollary 2.2 The set of matrices {( Z _z ) :(a b)e R} is a subal-
gebra of the algebra R(2), isomorphic to C.

Note that the determinant of the real matrix ( Z _2 ) is equal to

@ +b*=(@+ib)a+ib)=la+ib]%

Proposition 2.3 Let X be a finite-dimensional complex linear space and let
Xr be the underlying real linear space. Then, if t : X — X is a complex
linear map,

detgp t = | detc t|2,

where detct is the determinant of t regarded as a complex linear map and
detg t is the determinant of t regarded as a real linear map.

Proof By Proposition 1.8 the matrix of ¢t with respect to any basis for
X is reducible by elementary column operations, all of determinant 1 in
either the real or the complex sense, to a diagonal complex n x n matrix
all of whose entries except one are equal to 1, and for such a matrix the
statement is clearly true, by the above remark. O

Corollary 2.4 Let X be as in Proposition 2.3, and let t : X — X be a
complex linear map. Then detgt > 0.

Minimal ideals
Let A = K(n), where K = R or C. A left ideal # of A is a linear subspace

# of A such that, for all x € .# and all a € 4, ax € #. Right ideals are
similarly defined.

Proposition 2.5 Let X be a K-linear space, and let t € End X. Then the
subset

J(t)={at € EndX :a € End X}
is a left ideal of End X.
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A left ideal .# of A is said to be minimal if the only proper subset of
4 which is a left ideal of 4 is {0}.

Theorem 2.6 Let X be a finite-dimensional K-linear space. The minimal
left ideals of End X are those of the form

J(t)={at :a € End X},
where t € End X and tkt = 1.

Proof Suppose first that # is a minimal left ideal of End X. Then, for
any t € £, #(t) is a left ideal of End X and a subset of #. Since £ is
minimal, it follows that .# = #(t), for any non-zero t € 4.

Suppose that rkt > 1. Then, for any s € End X with rkst = 1, #(st)
is a proper subset of #(t). Since there is such an s, it follows that #(¢) is
not minimal.

So #(t) is minimal if and only if rkt = 1. O

The minimal left ideals remain the same even if End X is regarded as
an algebra over any subfield of the field K.

We shall generally index the columns of an m x n matrix by the integers
0,1,23,.,n—1, a set we denote by n.

Proposition 2.7 The matrices in K(n) all of whose columns except the zeroth
are zero form a minimal left ideal of the algebra K(n).

For this reason it is possible to think of the linear space K" on which
the matrix algebra K(n) acts as a minimal left ideal of that algebra.
Similar remarks may be made about minimal right ideals.

Algebra maps

In practice one often wishes to construct an algebra map or an algebra-
reversing map of one algebra, 4, to another, B, and such a map, in so
far as it must be linear, will be determined by its restriction to any linear
basis for A. However, the converse is no longer true — we are not free to
assign arbitrarily the values in B of a map of some basis for A to B, and
then to extend this to an algebra map of the whole of 4 to B. In general
such an extension will not be possible.

In fact what one normally starts with is a subset S of 4 that generates
A as a K-algebra, the subset S being said to generate A if each element of
A is expressible, possibly in more than one way, as a linear combination
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of a finite sequence of elements of A each of which is the product of
a finite sequence of elements of S. For example, the set of matrices
{( (1) _(1) ), ( (1) (1) )} generates R(2) as an R-algebra. The following
is then true.

Proposition 2.8 Let A and B be algebras over a field K and let S be a
subset of A that generates A. Then any algebra or algebra-reversing map
t . A— B is uniquely determined by its restriction to S.

There will be much interest later in certain automorphisms and anti-
automorphisms of linear algebras. An automorphism of an algebra A
is an algebra isomorphism 4 — A4, while an anti-automorphism of A
is an algebra anti-isomorphism A — A. An automorphism or anti-
automorphism f of A such that f2 = 14 is said to be, respectively, an
involution or an anti-involution of A.

In the sequel it will often be convenient to denote an automorphism ¢
of an algebra 4 by x+— x%, rather than by x — ¢(x). The composite ¢1p
of two automorphisms of 4 will then be denoted by x — x%¥, and not
by x — x¥¢. In fact, however, in most of the uses of the notation that
we have in mind, when we have two automorphisms of the same algebra
they will commute.

Proposition 2.9 The only automorphism of R is the identity 1g.

Proof Let f be an automorphism of R. Necessarily f sends 0 to 0 and 1
to 1, from which it follows by an easy argument that f sends each rational
number to itself. Also the order of the elements of R is determined by
the field structure. So f also respects order and, in particular, limits of
sequences. Since each real number is the limit of a convergent sequence
of rational numbers and since the limit of a convergent sequence on R
is unique, it follows that f sends each element of R to itself. O

Proposition 2.10 The only algebra automorphisms of C, regarded as a real
algebra, are the identity, 1¢ and conjugation.

However, unlike R, the field C has many automorphisms. (See Segre
(1947) and also Fuchs (1963), page 122.) Conjugation is the only field
automorphism other than the identity that sends each real number to
itself, but a field isomorphism of C need not send each real number
to itself. It is true that each rational number must be sent to itself,
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but the remainder of the proof in the real case is no longer applicable.
Indeed one of the non-standard automorphisms of C sends /2 to —+/2.
What is implied by these remarks is that the real subfield of C is not
uniquely determined by the field structure of C alone. The field injection
or inclusion R — C is an additional piece of structure. In practice the
additional structure is usually taken for granted. It is unusual to say so
explicitly.

Proposition 2.11 The only algebra automorphisms of the real algebra R
are the identity and swap o : R — 2R; (4, ) — (4, 1), the analogy with
conjugation on C being made evident if we remark that

AL D)+ u(1,-1))° = A(1,1) — u(1,-1).

There seems to be no recognised notation for swap. In Porteous (1969)
I used the clumsy notation hb, this being an abbreviation for hyperbolic,
and suggested by the observation that the set {(4, ) € 2R : (4, #)°(4, p) =
1} is just the rectangular hyperbola {(4, ) : Apu = 1}.

Two automorphisms or anti-automorphisms g,y of an algebra A4 are
said to be similar if there is an automorphism a of A such that ya = af.
If no such exists then § and y are said to be dissimilar.

Proposition 2.12 The identity and conjugation on C are dissimilar.
Proposition 2.13 The identity and swap on *R are dissimilar.

Proposition 2.14 The involutions ¢ : °C—2C : (A, u) — (4,A) and @ :
2C—2C : (4, p) > (1, 1) are similar.

Proof Define ¢ : 2C —2C;(4, p) — (4, B). Then ¢ = 7 ¢; since, for
any (4, p) € °C,

bo(d ) =i A) = (1, A) =54, B) = 7 $(4 p).

Irreducible automorphisms and anti-automorphisms

An idempotent of an algebra A is an element a of A such that o> = a.
(The word means that any power of the element is the same as the element
itself.) A primitive idempotent of A is an idempotent of 4 that is not the
sum of two non-zero idempotents of A.
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Proposition 2.15 Any automorphism or anti-automorphism of a real algebra
A permutes the primitive idempotents of A.

Proposition 2.16 Let K be any field. Then, for any positive n, the elements
of the standard basis for K" are the primitive idempotents of the n-fold
power of K, "K.

A permutation n of a finite set S is said to be reducible if there is
a proper subset T of S such that n(T) = T, and an automorphism
or anti-automorphism of an algebra A is said to be reducible if the
induced permutation of the primitive idempotents of 4 is reducible. A
permutation or automorphism or anti-automorphism that is not reducible
is said to be irreducible.

Proposition 2.17 Let n be a positive number such that "K admits an irre-
ducible involution. Then n=1 or 2.

Proposition 2.18 An automorphism of *K is reducible if and only if it is of
the form

K2K; (4, g (A, 1?),

where x, ¢ : K — K are both automorphisms of K. It is an involution of *K
if and only if both y and ¢ are involutions of K.

Such an automorphism is denoted by x x ¢.
More interesting are the irreducible automorphisms of 2K.

Proposition 2.19 An automorphism of ’K is irreducible if and only if it is
of the form

KK (4, g (w0, 2),
where y,¢ : K— K are both automorphisms of K. An involution of *K is

irreducible if and only if it is of that form with, moreover, y = ¢~1.

Thus, for example, for any field K, swap is an irreducible involution
of 2K.
There is the following generalisation of Proposition 2.14.

Proposition 2.20 For any automorphisms ¢ and x of a field K the involutions
(¢ x d~V)o and (x x xV)o of K are similar.
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Proof Leta = x'¢. Then
(xx 1 e(l x o) =(1 xa)p x ¢ o,

since, for any (4, u) € ’K,
axetxa) (g o ) = (g )
(¥ 0
-(5 )
¢
and (1xa)(¢x¢—l)a(g 2)=(lxrx)(l:) }J’(’)_l)

_(#¥ 0
N0 et )

O

Exercises
2.1 An element s of the matrix algebra R(n) is said to be skew if
s* = —s. Show that if s is a skew element of R(n) then, for any

x € R", x*s x = 0. Deduce that for such an element s the linear
map 1 —s : R*=>R*; x — x — s(x) is injective and therefore
invertible.

22 Let s be a skew element of R(n). Prove that, for all u, v € R”,
(1=sp=(14su=vv=uu

23 Prove that 2R is isomorphic to the subalgebra of R(2) consisting

of all matrices of the form ( Z Z ) , the map

a(1,1) + b(1,—1) > (Z z )

being an isomorphism.
24 Prove that

RQ2) - RQ); (Z 2)._.(_‘; ‘Z)

RQ2) - RQ): (Z 2)._.(: :)

are similar anti-involutions of R(2).

and
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2.6
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R -R2; (5 5 )= (0 5)
R(2)—>R(2);(Z 2)._.(_‘; ‘Z)

RQ2) - RQ):; (Z 2>H(_Z ‘2)

are dissimilar anti-involutions of R(2).
Hint: Track what happens to the matrices

(01)-(o0)-(V o) (0):

all of which have squares in R = R 1g().

Prove that the primitive idempotents of R(n) are those matrices
similar to u, where u has a single non-zero entry on the main
diagonal, all off-diagonal entries being zero, that is, is of the
form aua~!, where a is any invertible element of R(n).

Prove that

and
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Exact sequences

The properties of exact sequences of linear maps and group maps are
summarised and left-coset space representations are introduced.

Exact sequences of linear maps

Let s and ¢ be linear maps such that the target of s is also the source
of t. Such a pair of maps is said to be exact if ims = kert. Note that
this is stronger than the assertion that ¢t s = 0, which is equivalent to the
condition im s < kert only. A possibly doubly infinite sequence of linear
maps such that the target of each map coincides with the source of its
successor is said to be exact if each pair of adjacent maps is exact.

Proposition 3.1 Let W be a linear subspace of a linear space X. Then the
sequence of linear maps
0} — W — X 5 X/W—{0},
where 1 is the inclusion and 7 is the partition, is exact.
An exact sequence of linear maps of the form
0w SX 5 Y {0

is said to be a short exact sequence. The exactness of the sequence at W is
equivalent to the injectivity of s and the exactness at Y to the surjectivity
of t. Given such a sequence one thinks of W as a subspace of X and of
Y as the quotient space X/W. The fibres of ¢ are the parallels in X of
the linear subspace which is the image of s.

The following proposition is a first example of the technique known
as diagram-chasing.

18
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Proposition 3.2 Let

o - w S X S5 v — {0
la ls

o — w S x 5y — {0

be a diagram of linear maps such that the rows are exact and fs = s'a,
that is the square formed by these maps is commutative. Then there exists
a unique linear map y : 'Y =Y’ such that yt = t'B, and if o and B are
isomorphisms then y also is an isomorphism.

Proof Uniqueness of y: Suppose that y exists. By hypothesis y t(x) =
¢B(x), for all x € X. Since for each y € Y there exists x in t~!{y},
y(y) = ¢ B(x) for any such x; that is, y is uniquely determined.

Existence of y: Let y € Y and let x, x; € t7!{y}. Then x; —x €
kert =ims and so x; = x + s(w), for some w € W. Then

YB(x1) = t'B(x+s(w))="1B(x)+ B s(w)
= tB(x)+t'sSu(w)
= t'B(x), since ¢'s' = 0.

The prescription y(y) = ¢Bf(x), for any x in t~!{y}, does therefore
determine a map y : Y — Y’ such that y¢t = ¢'B. Since ¢'f is linear and ¢
is a linear surjection, y is linear, by Exercise 1.2.

Now suppose that « and § are isomorphisms, and let# : Y — Y’ be the
unique linear map such that n¢ = t f~1. Then applying the uniqueness
part of the proposition to the diagram

{0} — w = X LN Y — {0}
llw llx l'l}’
{0} — w = X LN Y — {0}
yields ny = 1y. Similarly yn = 1y.. Thatis, n = y~! and so y is an

isomorphism. (|

Proposition 3.3 is an important special case.

Proposition 3.3 Let W, X and Y be finite-dimensional linear spaces, and
let

{0}—>W—S>X—t>Y—>{0}
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be a short exact sequence. Then the dual sequence
L
{0} > yL 5 xt iL» WL—D{O}

1S exact.

Analogues for group maps
The definition of an exact sequence goes over without change to sequences
of group maps, as does the definition of a short exact sequence, a group
map being synonymous with a group homomorphism, a map between
groups that respects the group products. In work with multiplicative
groups the symbol {1} is usually used in place of {0} to denote the one-
element group. Of course a subgroup of a group need not be normal,
and in many of the situations that we shall encounter it will not be.
This possibility prompts the following definition, extending the notion of
short exact sequence.
Let F and G be groups, let H be a set, and let

FLGSH
be a pair of maps such that s is a group injection and ¢ is a surjection
whose fibres are the left cosets on the image of s in G, the set of such left
cosets being denoted by G/F, the specific injection s being understood.
The pair will then be said to be left-coset exact, and the induced bijection

G/F — H will be called a (left-) coset space representation of the set H.
Numerous examples will be given later.

Proposition 34 Let F, G, F' and G’ be groups, let H, H, M and N be

sets, and let
t

F = 6 - H

[« s
F 5 e 5 o
[«
M N

be a commutative diagram of maps whose rows and columns are left-coset
exact. Then if there is a (necessarily unique) bijection u : M — N such
that up = v 5 there is a unique bijection y : H — H' such that yt =1t B.
If, moreover, H and H' are groups and if t and ¢ are group maps, then y
is a group isomorphism.
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Group actions

Let G be a group and X a set. Then amap G X X - X; g g x is said
to be a (left) action of G on X if, for all x € X, and g, g’ € G,

(g'g)x=g'(gx) with Il x=x.

For any a € X the subset G, = {g € G : ga = a} is then a subgroup of
G called the isotropy subgroup of the action of G at a or the stabiliser of
a in G. It is easy to verify that the relation ~ on X defined by

x~x <« forsomege€G,x' =gx

is an equivalence. Each equivalence set is said to be an orbit of the
action. If there is only a single orbit, namely the whole of X, then the
action of G on X is said to be transitive. In this case, for any a € X, the

sequence
ar

G, — G = X
gl—)ga

is left-coset exact.

Similar remarks apply to group actions on the right. Consider, in
particular, the case of a subgroup G of a group G’ acting on G’ on the
right by the map G’ x G— G’; (g', g) — g’ g. In this case the set of orbits
of the action coincides with the set of left cosets on G in G, G'/G. For
this reason the set of orbits of a group G acting on a set X on the right
may without confusion be denoted by X/G.

Exercise

31 Let G x X—>X; (g, x) — gx be a left action of a group G
on a set X. Prove that the subset G, = {g € G :ga=a}is a
subgroup of G and that the relation ~ on X defined by x ~ x" <>
for some g € G, x’ = gx is an equivalence on X. Prove also
that if the action is transitive then, for any a € X, the sequence
G, — G 5 X is left-coset exact, while, for any a, b € X with
b = ha, where h € G, and for any g € G,, then hgh™! € G, the
map G, — Gy; g+ hgh™! being a group isomorphism.
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Real quadratic spaces

A real quadratic space is a finite-dimensional real linear space with an
assigned quadratic form.

Quadratic forms

A quadratic form on a real linear space X is most conveniently introduced
in terms of a symmetric scalar product on X. This, by definition, is a
bilinear map

X?>SR; (@b)—a-b
such that, for all ¢,b € X, b-a=a-b. The map
X->R;a—a-a

is called the quadratic form of the scalar product, a!® = a-a being called
the square or quadratic norm of a. (The notation a? is reserved for later
use.) Since, for each a,b € X,

2a-b=a? +b?P —(a—b)?,

the scalar product is uniquely determined by its quadratic form. In
particular, the scalar product is the zero map if and only if its quadratic
form is the zero map.

The following are examples of scalar products on R?:

(%), (X'y)) = 0, xx', xx’ + yy', —xx + yy’ and xy’ + yx/,
their respective quadratic forms being

(x’ Y) g 0’ x2’ 7x2 + )’2, _x2 + y2 and 2xy.

22
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A finite-dimensional real linear space with symmetric scalar product
will be called a (real) quadratic space, any lincar subspace W of a
quadratic space X being tacitly assigned the restriction to W2 of the
scalar product for X.

A quadratic space X is said to be positive-definite if, for all non-
zero a € X, a® > 0, and to be negative-definite if, for all non-zero
a € X, a? < 0. An example of a positive-definite space is the linear
space R? with the scalar product

(5, ), (x,¥) > xx' + yy'.

A quadratic space whose scalar product is the zero map is said to be
null or isotropic and a quadratic space of dimension 2n that is the direct
sum of two null subspaces of dimension n is said to be neutral.

It is convenient to have short notations for the quadratic spaces that
most commonly occur in practice. The linear space RP*? with the scalar
product

(a, b)H - Z aibi + Z ap+jbp+j

0<i<p 0gj<q

will therefore be denoted by RP4, while the linear space R with the
scalar product

(a,b) — Z (aibnyi + anyibi)

0gi<n

will be denoted by R27, the quadratic space RZ, being called the standard
hyperbolic plane.

The linear space underlying R™ will frequently be identified with
R? x R? and the linear space underlying R%, with R* x R". The linear
subspaces R” x {0} and {0} x R” of R” x R" are null spaces of RZ.. This
orthogonal space is therefore neutral. The quadratic spaces R%* and R™°
are, respectively, positive-definite and negative-definite.

The dot notation for the scalar product derives from its traditional use
on R%", that is R™ with its standard positive-definite scalar product, in
which context vectors a and b are said to be orthogonal if a-b = 0, subsets
A and B of the space being said to be mutually orthogonal if, for each
a€ A, beB,a-b=0. It will be convenient to use the same terminology
without further comment for any quadratic space, whether or not the
assigned scalar product is positive-definite. Alternative notations will be
introduced later in cases where more than one scalar product is assigned
at the same time to the same linear space.
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An element a of a quadratic space X is said to be invertible if a® # 0,
the element a(~!) = (a®)~'a being called the inverse of a. Every non-null
real quadratic space X possesses invertible elements, since the quadratic
form on X is zero only if the scalar product is zero.

Proposition 4.1 Let a be an invertible element of a quadratic space X.
Then, for some ) € R, (Aa)® = £1.

Proof Since (Aa) - (Aa)? = 220 and since a® # 0 we may choose

A= (Slla@p)~. O

Proposition 4.2 If a and b are invertible elements of a quadratic space X
with a? = b, than a+ b and a — b are mutually orthogonal and either
a+ b or a— b is invertible.

Proof Since a® = bP it follows that (a + b) - (a — b) = 0, while
(a+b)? + (a—b)? =4a? #0. |

The elements a + b and a — b need not both be invertible even when
a # +b. Consider, for example, R!2. In this case we have (1,1,1)? =
1,1,-1)@ =1, and (0,0,2) = (1,1,1) — (1,1,—1) is invertible, since
(0,0,2)@ = 4 £ 0. However, (2,2,0) = (1,1,1) + (1,1,—1) is non-
invertible, since (2,2,0)? = 0.

For a sequel to Proposition 4.2 see Proposition 5.14.

Linear correlations

Let X be any finite-dimensional real linear space with dual space X~. Any
linear map &€ : X — XL; x> x¢ = £(x) is said to be a linear correlation
on X. An example of a linear correlation on R" is transposition:

:R" > R x> X%

A correlation ¢ is symmetric if, for all a, b € X, a®(b) = b%(a). A
symmetric correlation ¢ induces a scalar product (a,b) — a*b = a®(b).
Conversely, any scalar product (a,b) — a - b is so induced by a unique
symmetric correlation, namely the map a — (a‘), where, for all a,b €
X,(a’)(b) = a-b. A real linear space X with a correlation & will be
called a real correlated (linear) space. By the above remarks any real
quadratic space may be thought of as a symmetric real correlated space,
and conversely.
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Non-degenerate spaces

Let X be a real quadratic space, with correlation £. For such a space £ is
injective if and only if it is bijective, in which case X, its scalar product,
its quadratic form and its correlation are all said to be non-degenerate.

The kernel of &, keré&, is also called the kernel of X and denoted
by kerX. An element a € X belongs to kerX if and only if, for all
x € X,a-x = a*x = 0, that is if and only if a is orthogonal to each
element of X. From this it at once follows that a positive-definite
space is non-degenerate. The rank of ¢ is also called the rank of X
and denoted by rkX. The space X is non-degenerate if and only if
rk X =dim X.

Proposition 4.3 Let A be a finite set of mutually orthogonal invertible
elements of a real quadratic space X, with correlation . Then the linear
subspace of X spanned by A is a non-degenerate subspace of X.

Proof Let A be any set of coefficients for A4 such that 3, A.a # 0.
Then, by the orthogonality condition,

Q10 (> had V) =" >0

acA acA acA

Therefore the kernel of the linear subspace spanned by 4 is {0}. g
Corollary 4.4 For any finite p, q, the quadratic space RP4 is non-degenerate.

Proposition 4.5 Let X be a real quadratic space and X' a linear complement
in X of kerX. Then X' is a non-degenerate subspace of X.

Orthogonal maps

As always, there is interest in the maps preserving a given structure.

Let X and Y be real quadratic spaces, with correlations ¢ and #,
respectively. A map f : X — Y is said to be an orthogonal map if it is
linear and, for all a,b € X,

f@)"f(b) = a*b
or, informally, in terms of the dot notation,

f@)-f(b)=a-b.



26 4 Real quadratic spaces

This condition may be re-expressed in terms of a commutative diagram
involving the linear dual fL of f, as follows.

Proposition 4.6 Let X,Y,& and n be as above. Then a linear map
f : X > Y is orthogonal if and only if finf = &, that is if and only
if the diagram

x Ly
él l'l
xL il YL

commutes.

Corollary 4.7 If the quadratic space X is non-degenerate then any ortho-
gonal map f : X — Y is injective.

Proof Let f be such a map. Then (fly)f = ¢ is injective and so f is
injective. |

Proposition 4.8 Let X and Y be real quadratic spaces with correlations &
and 1, respectively. A linear map f : X = Y such that, for all a € X,

f(@)'f(@) = d‘a

is orthogonal.

Proposition 4.9 Let W, X and Y be real quadratic spaces and let f : X —
Y and g : W — X be orthogonal maps. Then lx is orthogonal, f g is
orthogonal and, if f is invertible, f~! is orthogonal.

An invertible orthogonal map f : X — Y will be called an orthogonal
isomorphism, and two quadratic spaces X and Y so related will be said
to be isomorphic.

Proposition 4.10 For any finite n the quadratic spaces R™ and R} are
isomorphic.

Any two-dimensional quadratic space isomorphic to the standard hy-
perbolic plane Rﬁb will be called a hyperbolic plane.
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Proposition 4.11 Let X be a real quadratic space. Then any two linear
complements in X of ker X are isomorphic as quadratic spaces.

Orthogonal groups

An invertible orthogonal map f : X — X will be called an orthogonal
automorphism of the quadratic space X. By Corollary 4.7 any orthogonal
transformation of a non-degenerate quadratic space is an orthogonal
automorphism.

For quadratic spaces X and Y the set of orthogonal maps f : X —» Y
will be denoted by O(X,Y) and the group of orthogonal automorphisms
f : X — X will be denoted by O(X). That this is a group is immediate by
Proposition 4.9. For any finite p, g, n the groups O(RP4) and O(R%*) will
also be denoted, respectively, by O(p,q; R) and O(n; R) or, more briefly,
by O(p,q) and O(n).

An orthogonal transformation of a quadratic space X may or may
not preserve the orientations of X. An orientation-preserving orthogonal
automorphism of X is said to be a special orthogonal automorphism, or a
rotation, of X. The subgroup of O(X) consisting of the special orthogonal
automorphisms of X is denoted by SO(X), the groups SO(RP) and
SO(R%") also being denoted, respectively, by SO(p,q) and SO(n). These
are the special orthogonal groups.

An orthogonal automorphism of X that reverses the orientations of X
will be called an anti-rotation of X.

Proposition 4.12 For any finite p,q the groups O(p,q) and O(q, p) are iso-
morphic, as are the groups SO(p,q) and SO(q,p).

Adjoints
Suppose now that f : X — Y is a linear map of a non-degenerate
quadratic space X, with correlation ¢ : X — XL, to a quadratic space Y,
with correlation  : Y — Y L. Since ¢ is bijective there is a unique linear
map f* : Y — X such that ¢f* = fly : Y — XL, that is, such that, for
anyxeX,y€ey,

o) x=y fx)

The map f* = é71fLly : Y — X is called the adjoint of f with respect to
the correlations ¢ and 7.
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Proposition 4.13 Let X be a non-degenerate real quadratic space. Then the
map

End X - EndX; fr f*

is an anti-involution of the real algebra End X.

Proposition 4.14 Let f : X — Y be a linear map of a non-degenerate real
quadratic space X to a quadratic space Y. Then f is orthogonal if and

only if f°f = 1x.

Proof Let & and n be the correlations on X and Y respectively. Since &
is bijective,
faf =¢eff=&"nf = 1x.
g

Corollary 4.15 A linear automorphism f of a non-degenerate real quadratic
space X is orthogonal if and only if f* = f~L.

Proposition 4.16 Let f be a linear endomorphism of a non-degenerate real
quadratic space X. Then x- f(x) =0 for all x € X if and only if f* = —f.

Proof

x-f(x)=0, forall xe X
< a-f(@+b-f(b)—(a—b) f(a—b)
=a f(b)+b-f(a)=0, forall a,b € X,
< f(b)-a+f'(b)-a=0, forall a,bc X,
< (f+f)b) =0, for all x' € X, since ker X =0,
< f+f =0
|

Corollary 4.17 Let f be an orthogonal endomorphism of the space X. Then
x f(x)=0 for all x € X if and only if f?> = —1y.

Examples of adjoints

The next few propositions show what the adjoint of a linear map looks
like in several important cases. It is convenient throughout these examples
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to use the same letter to denote not only a linear map ¢ : R? — R? but
also its g x p matrix over R. Elements of R? are identified with column
matrices and elements of (RP)L with row matrices. For any linear map
t : R? - RY, t* denotes both the transpose of the matrix of ¢t and also the
linear map R? — RP represented by this matrix.

Proposition 4.18 Let t : R%? — R% be a linear map. Then t* = t*.

Proof For any x € RP, y € R4,
yot(x) =y'tx = ({'y)'x = () x.

Now R is non-degenerate, implying that the adjoint of ¢ is unique. So
=1t |

The case (p,q) = (0,2) is worth considering in detail.

Proposition 4.19 Let t : R%? — R%? be a linear map, with matrix
ac
b d)’

Then t* has matrix ( i Z ) and t is therefore orthogonal if and only if

ab acy_ (10

c d bd/ \01)
that is, if and only if a®> + b* = ¢ +d® = 1 and ac + bd = 0, from which
it follows that the matrix is either of the form ( Z _z ) or of the form

b —a
in the second case an anti-rotation, as can be verified by examination of
the sign of the determinant.

( a b ) with a® + b* = 1. The map in the first case is a rotation and

To simplify notations in the next two propositions R and R are
identified, as linear spaces, with R? x R? and R" x R", respectively. The
entries in the matrices are linear maps.

a ¢

Proposition 4.20 Let ¢t : RP4 — R4 be linear, and let t = ( b d

. a —b*
o .

)- Then
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Proof For all (x,y), (¥,y') € R,
(x,y) - (ax' + ¢y', bx' + dy")

= —x"(ax' +¢y') +y'(bx' +dy)

= —(@'x)'x —(c'x)*y + (b'y)x' + (dy)*y

= —(a'x —b'y)'x + (—c'x + d'u)y’

= (a'x—by, —c"x+d'y): (X,)).

O

Corollary 4.21 For such a linear map t, dett" = dett, and, if't is orthogonal,
(dett)?> = 1.

Proposition 4.22 Let t : R} — RZ be linear, where t = ( Z 2 ) Then
. d" ¢
= (£4)
Exercises
4.1 Lett : X — X be a linear transformation of a finite-dimensional

quadratic space X, and suppose that t* is orthogonal. Discuss
whether or not ¢t is orthogonal. Discuss, in particular, the case
where X is positive-definite.

42 Let X be a finite-dimensional real linear space. Prove that the
map

(X x XL K5 (%, £), (3, 4) = 1(y) + u(x))
is a neutral non-degenerate scalar product on the linear space

X x XL
43 Prove that R(2) with the quadratic form

R(2) = R; t+—> dett
is isomorphic as a real quadratic space with the space R%?, the
subset 10 10 0 -1 01 bein
01)°’ o-1)'\1 o)'\10 g
an orthonormal basis. Verify that ¢ € R(2) is invertible with

respect to the quadratic form if and only if it is invertible as an
element of the algebra R(2).
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4.5

4.6

4.7

4.3

Exercises 31

For any ( Z 2 ) € R(2), define ( Z 2 )_= ( _Z _: ),the
space R(2) being assigned the determinant quadratic form, and
(}; 2 ) € R(2). Verify that,
for any t € R(2), £t = t@ and that the subset T = {t € R(2) :
t+t =0} is a quadratic subspace of R(2) isomorphic to R>!,
Letu € R(2) and lett € T, where T is as in Exercise 4.4. Suppose
also that ¢ is orthogonal to u — u~. Show that tu € T. Hence
prove that any element of R(2) is expressible as the product of
two elements of T.

With T as in Exercise 4.4, prove that, for any u € SL(2; R), the
map T — T; t+— —utu! is reflection in the plane (R{u})*.
Prove that, for any u € SL(2; R), the maps R(2) = R(2); t+> ut
and t — tu are rotations of R(2). (It has to be shown not only
that the quadratic form is preserved but also that orientations
are preserved.)

Find linear injections « : R—R(2) and B : RM S R(2) such
that, for all x € RbL, (B(x))? = —a(x?P).

let any A € R be identified with



S

The classification of real quadratic spaces

Central to this chapter are the basis theorem (Theorem 5.9) and the
signature theorem (Theorem 5.22). Also important in the sequel are
the factorisations of orthogonal automorphisms as composites of hyper-
plane reflections (Theorem 5.15) and a characterisation of neutral spaces
(Theorem 5.28).

Orthogonal annihilators

Let X be a real quadratic space with correlation £ and let W be a linear
subspace of X. The dual annihilator W@ of W has been defined as the
subspace of X’ annihilating W, namely

{B € XL :forallw € W, B(w) =0}.

Moreover dim W@ = dim X — dim W. We now define W+ = ¢-1(W®).
That is,

Wt={aeX:a-w=0, forall we W}.

This linear subspace is called the orthogonal annihilator of W in X. Its
dimension is not less that dim X — dim W, being equal to this when & is
bijective, that is, when X is non-degenerate.

A linear complement Y of W in X that is also a linear subspace of
W+ is said to be an orthogonal complement of W in X. The direct sum
decomposition W@®Y of X is then said to be an orthogonal decomposition
of X.

Proposition 5.1 Let W be a linear subspace of a real quadratic space X.
Then kerW = W N W+,

32
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Proposition 5.2 Let W be a linear subspace of a non-degenerate real
quadratic space X. Then X = W ® W+ if and only if W is non-degenerate,
W<, in this case, being the unique orthogonal complement of W in X.

Corollary 5.3 Let a be a non-zero element of a non-degenerate real quad-
ratic space X and let R{a} denote the line in X spanned by a. Then
X = R{a} ® (R{a})* if and only if a is invertible.

Proposition 5.4 Let W be a linear subspace of a non-degenerate real
quadratic space X. Then (WX): = W.

Proposition 5.5 Let V and W be linear subspaces of a real quadratic space
X.ThenVc Wt e WcVt

A first application of the orthogonal annihilator is to null subspaces.

Proposition 5.6 Let W be a linear subspace of a real quadratic space X.
Then W is null if and only if W <« W+,

Corollary 5.7 Let W be a null subspace of a non-degenerate real quadratic
space X. Then dim W < }dimX.

By this corollary it is only just possible for a necessarily even-dimen-
sional non-degenerate real quadratic space to be neutral. As we noted
earlier, Rﬁ'l;, and therefore also R™", is such a space.

The basis theorem

Let W be a linear subspace of a real quadratic space X. Then, by
Proposition 5.2, X = W @& W+ if and only if W is non-degenerate.
Moreover, if W is non-degenerate, then, by Proposition 5.4, W+ also is
non-degenerate.

These remarks lead to the basis theorem, which we take in two stages.

Theorem 5.8 An n-dimensional non-degenerate real quadratic space, with
n > 0, is expressible as the direct sum of n non-degenerate mutually or-
thogonal lines.

A linearly independent set S of a real quadratic space X such that any
two distinct elements of S are mutually orthogonal, with the square of
any element of S equal to 0,—1 or 1, is said to be an orthonormal subset
of X. If § also spans X then S is said to be an orthonormal basis for X.
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Theorem 5.9 (The basis theorem.) Any real quadratic space X has an
orthonormal basis.

Proof Let X' be a linear complement in X of ker X. Then X’ is a non-
degenerate subspace of X, by Proposition 4.5, and so has an orthonormal
basis, B, say, by Theorem 5.8 and Proposition 4.1. Let A be any basis for
ker X. Then A U B is an orthonormal basis for X. g

As a corollary we have

Theorem 5.10 (The first part of the classification theorem, the second part
of which is the signature theorem, Theorem 5.22.) Any non-degenerate
real quadratic space X is isomorphic to RM for some finite p,q.

Proposition 5.11 Let f be an automorphism of a non-degenerate real quad-
ratic space X. Then (det f)? = 1, and, for any rotation f of X, det f = 1.

Proof Apply Theorem 5.10 and Corollary 4.21. O

Reflections

Proposition 5.12 Let W @ Y be an orthogonal decomposition of a real
quadratic space X. Then the map

X-oX;wtyow—y,
where w € W and y € Y, is orthogonal.

Such a map is said to be a reflection of X in W. When Y = W+
the map is said to be the reflection of X in W. A reflection of X in a
linear hyperplane W is said to be a hyperplane reflection of X. Such a
reflection exists if dim X > 0, for the hyperplane can be chosen to be an
orthogonal complement of R(a), where a is either an element of ker X or
an invertible element of X.

Proposition 5.13 A hyperplane reflection of a real quadratic space X is an
anti-rotation of X.

Let a be an invertible element of a real quadratic space X. Then the
reflection of X in the hyperplane (R(a))* will be denoted by p,.
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Proposition 5.14 Suppose that a and b are invertible elements of a real
quadratic space X, such that a? = bD. Then a may be mapped to b
either by a single hyperplane reflection of X or by the composite of two
hyperplane reflections of X.

Proof By Proposition 4.2 either a — b or a + b is invertible, a — b and
a+ b being in any case mutually orthogonal. In the first case, p,—p exists
and

Pas(@) = pa-s(3@a—b) + 4@+ b)) =—La—b) + La+b) = b.
In the second case, p,4s exists and
PbPatb(a) = pp(—b) = b.
|

Theorem 5.15 Any orthogonal automorphism t of a non-degenerate real
quadratic space X is expressible as the composite of a finite number of
hyperplane reflections of X, the number being not greater than 2dim X,
or, if X is positive-definite, dim X.

Proof This is a straightforward induction based on Proposition 5.14. The
details are left as an exercise. |

By Proposition 5.13 the number of reflections composing ¢ is even
when ¢ is a rotation and odd when ¢t is an anti-rotation. The following
corollaries are important. To simplify notations we write R? for R®? and
R3 for R%3,

Corollary 5.16 Any anti-rotation of R? is a reflection in some line of R2.
Corollary 5.17 Any rotation of R® is the composite of two plane reflections.

Proposition 5.18 The only rotation of R? leaving a non-zero point of R?
fixed is the identity.

Proposition 5.19 Any rotation of R®, other than the identity, leaves fixed
each point of a unique line in R>.

The line left fixed is called the axis of the rotation.
A common mistake is to assume that every anti-rotation of R? is a
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reflection, for example in referring loosely to the orthogonal automor-
phisms of R? as the ‘rotations and reflections’ of R3. This is clearly
wrong, any reflection of R being a linear involution of R3.

Theorem 5.15 has an important part to play in Chapter 16.

Signature

Proposition 520 Let U® V and U’ @ V' be orthogonal decompositions of
a real quadratic space X such that, for all non-zero ' € U’, u'® < 0, and,
for all v € V, v® > 0. Then the projection of X on to U with kernel V
maps U’ injectively to U.

Proof Let ' =u+v, where u € U, v € V, be any clement of U’. Then
W@ =y 4 D 5o that, if u = 0, '® = v, implying that u"® = 0 and
therefore that «' = 0. O

Corollary 5.21 If also u® < 0, for all non-zero u € U, and v'(2) > 0, for
all v € V', then dimU = dim U’.

Proof By Proposition 520, dimU’ < dimU. By a similar argument
dimU < dim U". |

As a further corollary of Proposition 5.20 we then have the following.
Theorem 5.22 (The signature theorem.) The real quadratic spaces R* and
RP4 are isomorphic if and only if p=p' and q = q'.

Yet a further corollary of Proposition 5.20 is the following proposition.

Proposition 5.23 Let Z Z

phism of R4, RP4 being identified as usual with R? xR?. Then a : R? - RP
and d : R? — R? are linear isomorphisms.

RP? — RP4 be an orthogonal automor-

The orthogonal automorphism (Z 2) of RP will be said to be

semi-orientation-preserving if a and d are orientation-preserving. We
shall prove later (Proposition 22.48) that the set SO*(p,q) of all semi-
orientation-preserving orthogonal automorphisms of R?? is a normal
subgroup of SO(p, g), with quotient group isomorphic to £1.
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It follows from Theorem 5.10 that the quadratic form x +— x® of a
real quadratic space X may be represented as a sum of squares

x= Z Xie; Z Cix,.z

0<gi<n 0gi<n

with respect to some suitable orthonormal basis {¢; : 0 < i < n} for X,
with {; = e,@ =0, —1 or 1, for each i € n. By Theorem 5.22 the number
p of negative squares and the number g of positive squares are each
independent of the basis chosen and dim(ker X) 4+ p + ¢ = dim X; that
is, tk X = p + q. The pair of numbers (p,q) will be called the signature
of the quadratic form and of the quadratic space. The number inf{p, q}
will be called the index of the form and the space.

The definitions of ‘signature’ and ‘index’ are not standard in the lit-
erature, and almost all possibilities occur. For example, the signature is
frequently defined to be —p + ¢ and the index to be p. The number we
have called the index is sometimes called the Witt index of the quadratic
space.)

The geometrical significance of the index is brought out in the next
proposition.

Proposition 5.24 Let W be a null subspace of the real quadratic space RP4.
Then dim W < inf{p,q}.

Proof Clearly R¥ = X @Y, where X = RP?, and Y = R%. As in the
proof of Proposition 5.20, the restrictions to W of the projections of R
on to X and Y, with kernels Y and X respectively, are injective. Hence
the result. O

The bound is attained, since there is a subspace of R* isomorphic to
R’7, where r = inf{p,q}, and R’ is neutral.

Witt decompositions

Let X be a non-degenerate finite-dimensional real quadratic space. A
Witt decomposition of X is a direct sum decomposition of X of the form
WeWw &(WeW:, where W and W' are null subspaces of X. (Some
authors restrict the use of the term to the case where dim W = index X.)

Proposition 5.25 Let X be a non-degenerate finite-dimensional real quad-
ratic space with a one-dimensional null subspace W. Then there exists
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another one-dimensional null subspace W' such that the plane spanned by
W and W' is a hyperbolic plane.

Proof Let w be a non-zero element of W. Since X is non-degenerate,
there exists x € X such that w-x # 0 and x may be so chosen so that
w-x = 1. Then, for any A € R, (x + Aw)® = x@ 4+ 21 this being
zero if A = —1x(. Let W’ be the line spanned by w' = x — 1x(w.
The line is null since (w')® = 0, and the plane spanned by w and w’
is isomorphic to RY! since w-w' = w':w = 1, and therefore, for any
abeR, (aw+bw) -w=>band (aw+ bw')-w = a, both being zero
onlyifa=b=0. O

Corollary 526 Let W be a null subspace of a non-degenerate finite-dimen-
sional real quadratic space X. Then there exists a null subspace W' such
that X =W @& W' & (W & W’')* (a Witt decomposition of X ).

Corollary 5.27 Any non-degenerate finite-dimensional real quadratic space
may be expressed as the direct sum of a finite number of hyperbolic planes
and a positive- or negative-definite subspace, any two components of the
decomposition being mutually orthogonal.

The number of hyperbolic planes in the decomposition is of course
equal to the (Witt) index of the space.

Neutral spaces

By Proposition 5.24 a non-degenerate real quadratic space is neutral if
and only if its signature is (n, n), for some finite number n, that is, if and
only if it is isomorphic to RZ, or, equivalently, R, for some n.

The following theorem sometimes provides a quick method of detecting
whether or not a real quadratic space is neutral.

Theorem 5.28 A non-degenerate real quadratic space X is neutral if and
only if there exists a linear map t : X — X such that t't = —1.
Proof It is enough to remark that
't = —1 < for all x € X, (t(x))? = —x?.
O

The next proposition has an important role to play in Chapter 15.
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Proposition 5.29 Let W be a possibly degenerate n-dimensional real quad-
ratic space. Then W is isomorphic to a subspace of the neutral quadratic
space R™",

Euclidean spaces

By Theorem 5.10 any finite-dimensional positive-definite quadratic space
is isomorphic to R% for some n. Throughout the remainder of this
chapter this quadratic space will be denoted simply by R”, and any such
space is said to be a euclidean space.

Let X be a euclidean space. For all b € X the norm of a is, by
definition |a| = /(a®), defined for all a € X since a® = a-a > 0, and
the distance of a from b or the length of the line-segment [a, b] is, by
definition, |a — b|. In particular, for all A € R,A® = 42, and |A| = \/(1?)
is the usual absolute value.

Proposition 5.30 Let a, b, c € R. Then the quadratic form (x, y) — ax* +
2bxy = cy? is positive-definite if and only if a > 0 and ac — b* > 0.

Proposition 5.31 Let X be a euclidean space. Then, for alla,b € X, A € R,

@) lal 20,
(ii) |a| =0 if and only if a =0,
(iii) [a—b|=0if and only if a = b,
(iv) |Aa| = |A]lal,
(v) a and b are collinear with O if and only if |bla = +|a|b,
(vi) a and b are collinear with O and not on opposite sides of 0 if and
only if |bla = |a|b,
(vii) |a-b| <lal|bl,
(viii) a- b < |a| |b],
(ix) |a+ b| < lal + |b| (the triangle inequality ),
(x) llal — |bl| < |a—b],
with equality in (vii) if and only if a and b are collinear with 0 and in
(viii), (ix) and (x) if and only if a and b are collinear with 0 and not on
opposite sides of 0.

Inequality (vii) of Proposition 5.31 is known as the Cauchy-Schwarz
inequality. It follows from this inequality that, for all non-zero a, b € X,

a-b <1
lal|b] =

-1<
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the quotient being equal to 1 if and only if b is a positive multiple of a
and equal to —1 if and only if b is a negative multiple of a. The absolute
angle between the line segments [0, a] and [0, b] is defined by

a-
cosf=——, 0<0<m,
a

with @ - b = 0 if and only if cos @ = 0 if and only if § = /2, this being
consistent with the ordinary usage of the word ‘orthogonal’.

A map t : X — Y between euclidean spaces X and Y is said to
preserve scalar product if, for all a, b € X, t(a) - t(b) = a - b, to preserve
norm if, for all a € X, |t(a)| = |a|, to preserve distance if, for all a, b €
X, |t(a) — t(b)] = |a — b|, and to preserve zero if t(0) = 0.

According to our earlier definition, ¢ is orthogonal if it is linear and
preserves scalar product.

Of the various definitions of an orthogonal map given in Proposi-
tion 5.32 (iii), is probably the most natural from a practical point of
view, being closest to our intuition of a rotation or anti-rotation.

Proposition 5.32 Let t : X — Y be a map between euclidean spaces X and
Y. Then the following are equivalent:
(i) t is orthogonal,
(ii) t is linear and preserves norm,
(iii) t preserves distance and zero,
(iv) t preserves scalar product.

Let X be a euclidean space and let a € X and r be a positive real
number. Then the set {x € X : |x —a| = r} is called the sphere with
centre a and radius r in X, the sphere {x € X : |x| = 1} being called the
unit sphere in X. The unit sphere in R™*! is usually denoted by S" and
called the unit n-sphere. In particular

SO={xeR: x*=1}={-1,1},
St = {(x, y) € R?; x*+ y* = 1}, the unit circle,
and S2={(x,y,z) € R®: x? + y? + z2 = 1}, the unit sphere.

In studying S” it is often useful to identify R™*! with R” x R. The
points (0, 1) and (0, —1) are then referred to, respectively, as the North
and South poles of S".

Proposition 5.33 Let S be the unit sphere in a euclidean space X and let
t : X > X be a linear transformation of X such that t(S) = S. Then t is
orthogonal, and t(S) = S.
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Proposition 5.34 For any non-negative integer n the map
u
n >__} n. R
S R,(u,v)v—»—l_v
undefined only at the North pole, (0, 1), is invertible.

Proof Since (u, v) € §", |u|®> +v* = 1. So, if x = I u =

1+v 2
2 _ __~
"= 1—v 1-v
and v, and therefore u, is uniquely determined by x. O

-1,

The map defined in Proposition 5.34 is said to be the stereographic
projection of S" from the North pole on to its equatorial plane R" x {0},

identified with R”. For, since (4, v) = (1 — v)(%, 0) +v(0, 1), the three
points (0, 1), (u, v) and (ﬁ, 0) are collinear.

Similarly the map S">>R"; (u,v) — ﬁ, undefined only at the

South pole, is invertible. This is stereographic projection from the South
pole to the equatorial plane.

Exercises

5.1 Prove Proposition 5.23 in the case that p=¢q = 1.
(Show first that any element of SO*(1,1) may be written in
the form
( coshu sinhu

. ,where u € R.
sinhu coshu )

Note that it has to be proved that SO*(1,1) is a subset of
50(1,1).)
52 Let t, u : R 5 R*H be linear transformations of R**1. Prove
that the following statements are equivalent:
(a) Foreach x € S", (x, t(x), u(x)) is an orthonormal 3-frame;
(b) t and u are orthogonal, t> = u> = —1,,; and ut = —tu.
(Use Propositions 4.16 and 5.33 and Corollary 4.15.)
5.3 Let i and j : R"— S" be the ‘inverses’ of the stereographic
projection of S”, the unit sphere in R™! = R" x R, from its
North and South poles, respectively, on to its equatorial plane
R" = R" x {0}. Prove that, for all x € R™\{0},

i~Lj(x) = j~li(x) = x0.
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Let #(RPA+) = {x € R4 : x(@ = 1}. Prove that, for any
(x, y) € R?x 89, (x, /(1 + x@)y) € £ (RP4+1), and that the map

R? x §7 > SRMM); (x, )= (x, V(1 +x@)y)
is bijective.
Determine whether or not the point-pairs (or 0-spheres)
{xeR: x*—8x—12=0} and {xe€R: x*—10x+7=0}

are linked.
Determine whether or not the circles

{,7,2)€R>: x*+y?+22=5 and x+y—1=0}
and
{(x,y,2) €R*: x>+y?+224+2y—4z=0 and x—z+1=0}

are linked.
Let A and B be mutually disjoint circles which link in R3. Prove
that the map

AxB—S%: (a,b)— (b—a)/|b—a]

is surjective, and describe the fibres of the map.

What was your definition of linked in the preceding three ex-
ercises? Can two circles in R* be linked, according to your
definition? Extend your definition to cover point pairs on S! or
circles on S3.

Show that any two mutually disjoint great circles on S* are
linked.

Where can one find a pair of linked 3-spheres?
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Anti-involutions of R(n)

We saw in Chapter 4 how a non-degenerate scalar product on R” induces
an anti-automorphism of R(n), the adjoint R(n)— R(n); t — ¢*, this
being an anti-involution in the particular case that the scalar product is
symmetric. For example, for the standard scalar product (x, y) — xy,
the adjoint of a matrix ¢ is its transpose t*. What can be said in the
reverse direction?

The answer is that any anti-involution of R(n) is the adjoint of some
symmetric or skew scalar product on R”". An intermediate role is played
by reflexive scalar products.

Reflexive scalar products

We are already familiar with symmetric scalar products. The scalar
product induced by a correlation ¢ on a finite-dimensional real linear
space X is said to be skew if, for all a, b € X, b°a = —a*bh. A scalar
product (a, b)+ a’b on X is said to be reflexive if, for all a, b € X,

a*b=0<«ba=0.

Not all correlations are reflexive. For example, the R-bilinear product of
R?,
R? xR’ R; ((a,b), d, b)) ad + ab’ + bV,
is induced by a correlation that is not reflexive.
We prove first that any reflexive product is either symmetric or skew

and then show how any anti-involution of R(n) may be induced by a
non-degenerate reflexive scalar product.
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Proposition 6.1 Any non-zero reflexive correlation ¢ on R", where n > 1,
is either symmetric or skew.

Proof Since b%a = 0 <> a*b = 0 for all a, b € R", it follows that for any
non-zero a € R the kernels of the linear maps b+ b%a and a¢ coincide.
Accordingly, by Proposition 1.5, there is a non-zero real number 4, such
that, for all b € R", b*a = A,a°bh.

Now A, does not depend on the vector a. For let a' be any other
non-zero vector. Since n > 1 there exists a vector ¢, independent both of
a and of & (separately!). Then, since

bta+bc=b(a+c),
it follows that
Aa@®b + Acc*b = Aayc(a+ )b,
for all b € R". So
Aaad + Ac = Agpc(a+c).
But a and c are linearly independent. So
Ao = Aaye = Ae-

Similarly, 2y = A.. So 44 = A,. That is, there exists A € R, non-zero, such
that, for all a, b € R* b%a = 1a°b.

There are two cases.

Suppose first that a®a = 0, for all a, b € R™. Then, since

2(a®b + b*a) = a*a+ b*b— (a— b)*(a — b),

b*a = la*h = —b%a,

for all a, b € R". Now, since ¢ is non-degenerate, there exist a, b such
that b*a # 0. So A = —1. That is, the correlation is skew.

The alternative is that, for some a € R", a‘a # 0, implying that the
correlation is symmetric. O

We then have the following extension of Proposition 4.13.

Proposition 6.2 For any non-degenerate symmetric or skew correlation on
R" the adjoint endomorphism of R(n) is an anti-involution.
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The following proposition is required early in the proof of the converse
to Proposition 6.2

Proposition 6.3 Let « be an anti-automorphism of R(n) and let t € R(n),
with rkt = 1. Then rkt* = 1.

Proof By Theorem 2.6 the map ¢ generates a minimal left ideal of R(n).
Since « is an anti-automorphism of R(n) the image of this ideal by «
is a minimal right ideal of R(n). This ideal is generated by t*; so, by
Theorem 2.6 again, or, rather, its analogue for right ideals, rk¢* =1. [

Now for the converse to Proposition 6.2.

Theorem 6.4 Any anti-involution o of R(n+1) is representable as the adjoint
anti-involution induced by a non-degenerate reflexive correlation on R™1,

Proof Throughout the proof we think of R**! as R” x R.

o
Let w = g (1) . Then w? = w, while, by Proposition 6.3, w has
rank 1. Accordingly w = vy, where u : R* > R and v : R— R" are linear

maps, u surjective and v injective. Now w? = w, so vuvu = vu, implying

that up = 1 = uwn, while, for all (2) €R" xR,
vuOc“_oo“Oc“_Oc“
0d) ~\o1 0d) “\oa)

The map

‘RoR; Aul 0 € av
v: ; 0

is the identity, since uwo = 1.
Now define

. " n L. 4 0 c :
E:R"xR-S(R XR)’(d)Hu(O d)'

o
Clearly ¢ is linear. Moreover it is injective, for if u ( g 2 ) = 0, for
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o o
any(Z)eR"xR,then(g 2) =vu(g 2) = 0, implying that
o

( 2 ) = 0, since a?> = 1. So ¢ is a non-degenerate correlation on R” x R.

This correlation is reflexive, since, for all ( 2 ) ( ) €eR" xR,

dl

(V) =) (@)
(S
- (55 (o))
(5 (Do)
- (&) (&)

o
wherep=(1 0) ( 2 ) v € R, from which it follows that ¢ is reflexive.

Finally, for any ( 2 ) , ( Z: ) €R" xR, and any t € R(n + 1),

() ()= ()5

4
each side being equal to u ( g Z: ) t ( 2 ), since t** = t. That is, t* is

the adjoint of ¢ with respect to the correlation &.

Real symplectic spaces

A real symplectic space is a finite-dimensional real linear space with a
skew correlation &.
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Let X and Y be real symplectic spaces, with correlations ¢ and #
respectively. A linear map f : X —» Y is said to be symplectic if, for all
abeX,

f(a)'f(b) = a*b.

Proposition 6.5 The real linear space R* with the bilinear product

'
R? x R? S R; ((Z)(Z ))»—»ab'—ab'

is a non-degenerate neutral symplectic space.

That the space is neutral follows at once from the remark that any
one-dimensional subspace of a symplectic space is null.

The symplectic space of Proposition 6.5 is called the standard real
symplectic plane and denoted by Rgp. Any symplectic space isomorphic
to this one is called a real symplectic plane.

Proposition 6.6 Let X be a non-degenerate real symplectic space and let
W be any one-dimensional subspace of X, automatically null. Then there
exists a one-dimensional subspace W', necessarily distinct from W, such
that the plane spanned by W and W' is a real symplectic plane.

Theorem 6.7 (The classification theorem for real symplectic spaces.) Let
X be a non-degenerate real symplectic space. Then X is isomorphic to
(RZ) = (R2,)k, where 2k = dim X, dim X necessarily being even.

Proposition 6.8 Let t = ( ) be an endomorphism of the symplectic

ac
b d
T —ct
space R%. Then the adjoint of t is t* = ( bt ot ) :
The group of symplectic automorphisms f : X — X will be denoted by
Sp(X;R). For any finite n = 2k the groups S p(Rfl’,‘) will also be denoted
either by Sp(2k;R) or by Sp(n; R). These are the real symplectic groups.

Proposition 6.9 An endomorphism t of a real symplectic space X with
correlation & is symplectic if and only if t't = 1.

Corollary 6.10 Any column of the matrix of an automorphism of the sym-
plectic space ng is orthogonal in the ordinary sense to every column of the
matrix except one, its partner.
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Proposition 6.11 The determinant of a symplectic automorphism of a non-
degenerate real symplectic space X is equal to 1.

Proof Use Proposition 6.8, Corollary 6.10 and Exercise 1.4, considering
first the case that dimX = 4. O
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Anti-involutions of C(n)

The classification of the anti-involutions of C(n), regarded as a real
algebra, parallels the work of the last chapter, but also extends it with
the introduction of hermitian products and unitary groups.

Complex quadratic spaces

Much of the last three chapters extends at once to complex quadratic
spaces, or indeed to quadratic spaces over any commutative field K (of
characteristic not equal to 2), R being replaced simply by C, or by K, in
the definitions, propositions and theorems. An exception is the signature
theorem, Theorem 5.22, which is false.

The main classification theorem for complex quadratic spaces is the
following.

Theorem 7.1 Let X be a non-degenerate n-dimensional complex quadratic
space. Then X is isomorphic to C" with its standard complex scalar product

C'x C">C":(a,b)— Z aib.
0<gi<n

As in the real case, a neutral non-degenerate quadratic space is even-
dimensional, but in the complex case we can say more.

Proposition 7.2 Let X be any non-degenerate complex quadratic space of
even dimension 2n. Then X is neutral, being isomorphic not only to C* but
also to C*" and to 2C".

For any complex quadratic space X the group of orthogonal auto-
morphisms of X will be denoted by O(X; C), the group O(C"; C) being
normally denoted by O(n; C). These are the complex orthogonal groups.

49
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As in the real case, the determinant of any element of O(n; C) is equal
to +1 or —1, the subgroup of elements of determinant 1 being denoted
by SO(n; C). Such groups are the special complex orthogonal groups.

Complex symplectic spaces

A complex symplectic space is a finite-dimensional complex linear space
with a skew correlation &.

Let X and Y be complex symplectic spaces, with correlations & and #
respectively. A linear map f : X — Y is said to be symplectic if, for all
abeX,

f(a)"f(b) = a*b.

Proposition 7.3 The complex linear space C* with the bilinear product

s
C*x CtC; ((Z)(Z ))Hab’—ab’

is a non-degenerate neutral symplectic space.

That the space is neutral follows at once from the remark that any
one-dimensional subspace of a symplectic space is null.

The symplectic space of Proposition 7.3 is called the standard complex
symplectic plane and denoted by cgp. Any symplectic space isomorphic
to this one is called a complex symplectic plane.

Theorem 7.4 (Classification theorem for complex symplectic spaces.) Let
X be a non-degenerate complex symplectic space. Then X is isomorphic to
(Cfl’,‘) = (Cgp)", where 2k = dim X, dim X necessarily being even.

Proposition 7.5 Let t = ( Z Z ) be an endomorphism of the symplectic
2k . . . e & —c
space Cg;. Then the adjoint of t is t* = b o)

The group of symplectic automorphisms f : X — X will be denoted by
Sp(X; C). For any finite n = 2k the groups Sp(Cfl’,‘) will also be denoted
either by Sp(2k; C) or by Sp(n;C).

Proposition 7.6 An endomorphism t of a complex symplectic space X with
correlation & is symplectic if and only if t°'t = 1.
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Proposition 7.7 The determinant of a symplectic automorphism of a non-
degenerate complex symplectic space X is equal to 1.

The proof follows the same route as the proof of Proposition 6.11

Hermitian spaces

Complex quadratic spaces are not to be confused with hermitian spaces,
finite-dimensional complex linear spaces that carry a hermitian form.
These arise when the field C is regarded as a real algebra, assigned
complex conjugation as an anti-involution, C then denoting C with this
assignment.

Let X and Y be complex linear spaces. Then an R-linear map
f : X—>Y is said to be semi-linear over C if for all x € X, 1 € C
either f(Ax) = Af(x) or f(Ax) = Af(x). In the former case the map is
C-linear. In the latter case it will be said to be C-linear. A semi-linear
map ¢ uniquely determines the automorphism ¢ of C with respect to
which it is semi-linear, unless ¢t = 0. On occasion it is convenient to refer
directly to y, the map ¢t then being said to be C¥-linear (not ‘C¥-semi-
linear’ since, when ¢ = 1¢, C¥ is usually abbreviated to C and the term
‘C-semi-linear’ could therefore be ambiguous).

The composite of any pair of composable semi-linear maps is semi-
linear and the inverse of an invertible semi-linear map is semi-linear. An
invertible semi-linear map is said to be a semi-linear isomorphism.

Proposition 7.8 Let f : X — Y be a semi-linear map over C. Then im f is
a C-linear subspace of Y and ker f is a C-linear subspace of X.

Rank and kernel rank are defined for semi-linear maps as for linear

maps.

Proposition 7.9 Let f : X - Y be a C¥-linear map, where X and Y are
finite-dimensional C-linear spaces, and vy is complex conjugation. Then, for
anyy € YL pyf € XL

Proof The map yyf is certainly R-linear. it remains to consider its
interaction with conjugation. However, for each x € X, 1 € C,

wyf(Ax) = yf(Ax) = yAf (x) = Iyf (x) = pf(x) = dpyf(x).
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The map fL : YL — XL, defined, for all y € YL, by the formula
FH(¥) = wyf, is called the dual of f.

Proposition 7.10 The dual f“ of a C-linear map f : X—>Y is
C-linear.

Many properties of the duals of R-linear maps carry over to semi-linear
maps over C.

A correlation on a finite-dimensional C-linear space X is a semi-linear
map & : X » XL; x> x*. The map X x X — (a,b) — a*b = a*(b) is the
product induced by the correlation, and the map X — C; a — a‘a the
form induced by the correlation. Such a product is R-bilinear, but not,
in general, C-bilinear, for although the map

X->C; x—a'x
is C-linear, for any a € X, the map
X5 C; x— x°h,

for any b € X, is, in general, not linear but only semi-linear over C.
Such a product is said to be sesqui-linear, the prefix being derived from
a Latin word meaning ‘one and a half times’.

Let v denote either of the involutions of C. Then a C¥-correlation
¢ : X - X" and the induced product on the C-linear space X are said
to be, respectively, symmetric or skew with respect to v or over C¥
according as, for each a, b € X,

b*a=(a*b)® or —(a*b)¥.

Symmetric products over C are called hermitian products, and their forms
are called hermitian forms. For example, the product

C?x C?>C; ((ab), (d,b))— ad + bV

is hermitian.

A hermitian space is a finite-dimensional C-linear space assigned a
C-correlation.

An invertible correlation is said to be non-degenerate.

Semi-linear correlations £,7 : X — X on a C-linear space X are said
to be equivalent if, for some invertible 1 € C,n = 1&. This is clearly an

equivalence on any set of semi-linear correlations on X.

Proposition 7.11 Any skew C-correlation on a C-linear space X is equiva-
lent to a symmetric C-correlation on X, and conversely.
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Proof Let & be a skew C-correlation on X. Then i¢ is a C-correlation
on X since, forall x € X, A € C,

(iE)(xA) = i(E(xA)) = IAE(x) = A(E)(x).
Moreover, for all a, b € X,
ba = ib’a = (—1)(—atbh) = a¥b.

That is, i¢ is symmetric over C.
Similarly, if & is symmetric over C, then i¢ is skew over C. O

Equivalent semi-linear correlations ¢ and # on C" induce the same
adjoint anti-automorphism of C(n).

Suppose now that f : X — Y is a linear map of a non-degenerate
hermitian space X, with correlation &, to a hermitian space Y, with cor-
relation #. Since £ is bijective there is a unique C-linear map t* : ¥ —» X
such that & = ¢ ltly, that is, such that, for any x € X,y € Y,
t"(y)- x = y - t(x). The map t* = ¢7!tly is called the adjoint of t with
respect to £ and #.

The adjoint of a linear map u: X — X with respect to a non-degenerate
correlation ¢ on a complex linear space X will be denoted by u*. The
map u is said to be self-adjoint if u* = u and skew-adjoint if u* = —u. The
real linear subspaces {u € EndX : u®* = u} and {u € End X : u* = —u}
of the real linear space End X = L(X, X) will be denoted by End, (X, &)
and End_(X, &), respectively.

Proposition 7.12 Let X be a non-degenerate hermitian space. Then the map
End X - End X; fo f°

is an anti-involution of End X, regarded as a real algebra.

Proposition 7.13 Any non-zero reflexive correlation ¢ on a hermitian space
X of dimension greater than one is either symmetric or skew.

Proof This is just a re-run of the proof of Proposition 6.1, but taking
account of conjugation.

For all a, b € X, b%a = 0 < ba = 0 < a’b = 0. That is, for any
non-zero a € X, the kernels of the surjective C-linear maps b+— b%a and
a* coincide. Therefore, by Proposition 1.5, there is a non-zero complex
number A, such that, for all b € X,

bfa = 24a%h.
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To prove that A, is independent of a one then considers ¢ € X linearly
independent of a. Then, since

bta+béc =b*(a+c),

it follows that
220°b + Acc®b = Agrcla + c)’fb,

for all b € X. So
2aa + Acc = Aarcla+ c).

But a and c¢ are linearly independent. So
da=Tare =4,

implying that A; = A.. So, as before, there exists A € C such that, for all
a, b€ X,bfa = Ad°h.

Again there are apparently two cases.

However, if a‘a = 0, for all a € X, it follows that b%a = —ba for all
a, b € X, clearly not the case.

The alternative is that, for some x € X, x*x # 0, implying that, for
some invertible u € C, p~! = Au~1, or, equivalently, i = Au. Then, for all
abeX,

b a = pbta = pla’h = pl ab = fialh = ab.
That is, the correlation u &, equivalent to &, is symmetric. O

There is a converse of Proposition 7.12, analogous to the converse of
Proposition 6.2.

Theorem 7.14 Any anti-involution o of the real algebra C(n + 1) is repre-
sentable as the adjoint anti-involution induced by a non-degenerate reflexive
correlation on C™*!,

Proof This follows the proof of Theorem 6.4. At the end of the first stage
of the argument one proves that the map y is an automorphism of C, so
is either the identity or conjugation. The correlation & is defined as before
and proved to be C¥-linear, and injective, and so is a non-degenerate
CV-linear correlation on C* x C.

The remainder of the proof then goes through without change. O

Theorem 7.15 (The basis theorem for hermitian spaces.) Each hermitian
space has an orthonormal basis.
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Theorem 7.16 (The classification theorem for hermitian spaces.) Let X be
a hermitian space of finite dimension n. Then there exists a unigue pair of
numbers (p, q), with p+q = n, such that X is isomorphic to C™, this being
the C-linear space CP*4, with the hermitian product

(Cp+q)2—>C; (a,b) — _Z a b + Z T‘H’bpﬁi-

0<i<p 0<j<q

The pair of numbers (p, q) is called the signature of the hermitian space
X and of its form. The space and its form are said to be positive-definite
if p=0.

Unitary groups

Proposition 7.17 Let t = ( Z 2 ) be an endomorphism of the hermitian

—pa . o a —b
space C™". Then the adjoint of tis t* = | = T/
Let X and Y be hermitian spaces, with correlations ¢ and 5 respec-
tively. A linear map f : X — Y is said to be unitary if, for all q, b € X,

f(a)'f(b) = d‘b.

The group of unitary automorphisms f : X — X will be denoted by
U(X). For any finite p, g, n the groups U(fp’q) and U(fo’") will also be
denoted, respectively, by U(p,q) and U(n). These are the unitary groups.

Proposition 7.18 An endomorphism t of a hermitian space X with correla-
tion & is unitary if and only if t°t = 1.

Proposition 7.19 The determinant of a unitary automorphism of a hermitian
space X has modulus 1.

Proof Use Theorem 7.15 and Proposition 7.17. O

A unitary automorphism of a hermitian space X of determinant 1
is called a special unitary automorphism. The special unitary automor-
phisms of X form a subgroup SU(X) of the group U(X), the notations
SU(p,q) and SU(n) being in common use for the special unitary groups
of the hermitian spaces C*? and C.
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Proposition 7.20 For any finite n, and p + q = n, with a rather obvious
definition of O(p, q;C),
O(n) = O(n;C)NGL(n;R) = 0(n;C)NnU(n),
Sp(2n;R) = Sp(2n;C)NGL(2n;R),
0(p,9) = O, ;C)NU(p, 9)-

Clearly U(1) = S, the circle group of complex numbers of modulus 1.
Moreover U(1) = SO(2).
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Quaternions

Since for any z = x +iy € C, |z|> = Zz = x? + y?, the field of complex
numbers C, when identified with the linear space R2, can also in a natural
way be identified with the real quadratic space R%2. Moreover, since, for
any z € C,

lzl =1e x>+ y? =1,

the subgroup of the group of invertible complex numbers C*, consisting
of all complex numbers of absolute value 1, may be identified with the
unit circle S! in R2.

In what follows the identification of C with R?> = R%? is taken for
granted.

We have already remarked in Proposition 2.1 that for any complex
number ¢ = a + ib, the map C— C; z — cz may be regarded as the

real linear map R?Z — R? with matrix ( Z

det ( é _z ) =1 < |c| = 1, while, for all ¢ € C, with |c| = 1, and all

. ) Moreover, |c|? =¢c =

b
z € C, |cz| = |z|. Thus, (cf. Proposition 4.19) multiplication by a complex
number of modulus 1 induces a rotation of R?, and any rotation of R?2
may be so represented by a point of the unit circle, S!.
The following statement sums this all up.

Proposition 8.1 SO(2) = .

The group S! is called the circle group. Anti-rotations of R? also can
be handled by C, for conjugation is an anti-rotation, and any other
anti-rotation can be regarded as the composite of conjugation with a
rotation.
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The algebra of quaternions, H, the subject of this chapter, is analogous
in many ways to the algebra of complex numbers C. For example, it has
application to the description of the groups O(3) and O(4). The letter
H is the initial letter of the surname of Sir William Hamilton, who first
studied quaternions and gave them their name (1844).

The algebra H

Let 1, i, j and k denote the elements of the standard basis for R%. The
quaternion product on R* is then the R-bilinear product

R* x R* > R*; (a,b) > ab
with unit element 1, defined by the formulae

i2=j2=k2=—1
andij=k = —ji jk=i=—kj, ki=j = —ik

Proposition 8.2 The quaternion product is associative.

On the other hand the quaternion product is not commutative. For
example, ji # ij. Moreover it does not necessarily follow that, if a> = b2,
then a = +b. For example, i = j2, but i # +j.

The linear space R*, with the quaternion product, is a real algebra
H known as the algebra of quaternions. In working with H it is usual
to identify R with R{1} and R® with R{i,j,k}, the first identification
having been anticipated by our use of the symbol 1 to denote the unit
element of the algebra. The subspace R{i,j, k} is known as the subspace
of pure quaternions. Each quaternion q is uniquely expressible in the form
req + pug, where req € R and pugq € R3, req being called the real part
of ¢ and pugq the pure part of q.

Proposition 8.3 A guaternion is real if and only if it commutes with every
quaternion. That is, R is the centre of H.

Proof = : Clear.
<=: Let ¢ = a+ bi + ¢j + dk, where q, b, ¢, d are real, be a quaternion
commuting with i and j. Since ¢ commutes with i,
ai—b+ck—dj=ig=qi=ai—b—ck+dj,

implying that 2(ck — dj) = 0. So ¢ = d = 0. Similarly, since ¢ commutes
with j, b =0. So g = a, and is real. O
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Proposition 8.4 The ring structure of H induces the real linear structure,
and any ring automorphism or anti-automorphism of H is a real linear
automorphism of H, and therefore also a real algebra automorphism or
anti-automorphism of H.

Proof By Proposition 8.3 the injection of R in H, and hence the real
scalar multiplication R x H—H; (4, g) — 4¢, is determined by the ring
structure.

Also, again by Proposition 8.3, any automorphism or anti-automor-
phism ¢ of H maps R to R, this restriction being an automorphism of
R and therefore the identity, by Proposition 2.9. Therefore ¢ not only
respects addition and respects or reverses multiplication but also, for any
A€ Rand q € H, t(Aq) = t(A) t(q) = At(q)- O

This result is to be contrasted with the more involved situation for
the field of complex numbers described following Proposition 2.10. The
automorphisms and anti-automorphisms of H are discussed in more
detail below.

Proposition 8.5 4 quaternion is pure if and only if its square is a non-
positive real number.

Proof = : Consider the pure quaternion q = bi + ¢j + dk, where
b, ¢, d € R. Then ¢> = —(b? + c? + d?), which is real and non-positive.
<= : Consider ¢ = a + bi + ¢j + dk, where a, b, ¢, d € R. Then

g’ =a® — b — * — d* + 2a(bi + ¢j + dk).

If ¢? is real, either a = 0 and ¢ is pure, orb=c=d=0and a <0, in
which case g2 is positive. So, if g2 is real and non-positive, g is pure. [

Proposition 8.6 The direct sum decomposition of H, with components the
real and pure subspaces, is induced by the ring structure for H.

The conjugate g of a quaternion ¢ is defined to be the quaternion
req — pugq.

Proposition 8.7 Conjugation : H—H; q — q is a real algebra anti-
involution. That is, for all a, b€ H and all A € R,

=aandab="ba.

Qll

a+b=a+b, la=13a,



60 8 Quaternions

Moreover,a € R <> @ =a and a € R? < a = —q, while rea = %(a+¢‘z)
and pua = 1(a —a).

Now let H be assigned the standard positive-definite scalar product on

R*, denoted as usual by -.

Proposition 8.8 For all a, b € H, a'b = re(ab) = 1(@b-+ba). In particular,
for any a € H, Ga =a- a, so @a is non-negative.

In particular also, for all a, b € R3, a'b = —%(a b+ba) = —re(ab), with
a® =qa-a=—a® and with a-b =0 if and only if a and b anti-commute.

The non-negative number |a| = (/G a is called the norm or modulus or
absolute value of the quaternion a.

Proposition 8.9 Let x be a non-real element of H. Then R{l, x} is a
subalgebra of H isomorphic to C. In particular, R{1, x} is commutative.
Proof It is enough to remark that

x*+bx+c=0,

where b = —(x + X), and ¢ = X x, b and ¢ both being real. O

Proposition 8.10 Each non-zero a € H is invertiblewith a™! = |a|™@ and
with |a7!| = |a|~.

Note that the quaternion inverse of a is the conjugate of the scalar
product inverse of a, a™V = |a|2a.

By Proposition 8.10, H may be regarded as a non-commutative field.
The group of non-zero quaternions will be denoted by H".

Proposition 8.11 For all a, b € H, |ab| = |a| |b|.

A quaternion is said to be a unit quaternion if |q| = 1.

Proposition 8.12 The set of unit quaternions coincides with the unit sphere
S3 in R* and is a subgroup of the group H".

Proposition 8.13 Let g € H be such that q> = —1. Then q € S?, the unit
sphere in R3.

Proof Since ¢° is real and non-positive, ¢ € R? while, since ¢2 = —1,
lg/ =1. So q € S2.
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The cross product a x b of a pair (a, b) of pure quaternions is defined
by the formula

a x b =pu(ab).
Proposition 8.14 For all a, b € R®
ab=—a-b+axb,andaxb=3(ab—ba)=—(bxa),

whileaxa=a-(axb)=b-(axb)=0.
If a and b are mutually orthogonal elements of R then a and b anti-
commute, that is, ba = —ab, and a x b = ab. In particular,

i(xk=i-(k=ii=—=1L

Proposition 8.15 Let g be any quaternion. Then there exists a non-zero
pure quaternion b such that qb also is a pure quaternion.

Proof Let b be any non-zero pure quaternion orthogonal to the pure
part of q. Then gb = (req)b + (pug) x b, being the sum of two pure
quaternions, also is pure. O

Corollary 8.16 Any quaternion q is expressible as the product of a pair of
pure gquaternions.

Proof Let b be any non-zero pure quaternion orthogonal to the pure
part of q. Then gb = (req)b + (pug) x b, being the sum of two pure
quaternions, also is pure. O

Proposition 8.17 For any a, b, c € H,
re(abc) = re(bca) = re(cab).
Moreover, for any a, b, c € R3,
re(abc) = —a- (b x ¢) = —det(a, b, c),
where (a, b, c) denotes the matrix with columns a, b and c.

We call the real number re(abc) = a- (bc) the scalar triple product
of the quaternions a, b, ¢, in that order. (In the case that q, b, ¢ are
pure it is more usual to take the negative of this as the scalar triple
product.)
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Automorphisms and anti-automorphisms of H

By Proposition 8.4 the field automorphisms and anti-automorphisms of
H coincide with the R-algebra automorphisms and anti-automorphisms
of H. In this section we show that they are also closely related to the
orthogonal automorphisms of R3. The relationship one way is given by
the next proposition.

Proposition 8.18 Any automorphism or anti-automorphism u of H is of the
form H—- H; a— rea + t(pua), where t is an orthogonal automorphism
of R3.

Proof By Proposition 8.4, Proposition 2.9 and Proposition 8.5, u is a

linear map leaving each quaternion fixed and mapping R? to itself. Also,

for each x € R3, (u(x))? = u(x?) = x?, since x? € R, while |x|? = —x2.

So

t :RPSR3; x> u(x)

is linear and respects norm. Therefore, by Proposition 5.32, it is an
orthogonal automorphism of R>. O

In the reverse direction we have the following fundamental result.

Proposition 8.19 Let g be an invertible pure quaternion. Then, for any pure
quaternion x, g xq~! is a pure quaternion, and the map

—pq RP5R3; x> —gxq™

is reflection in the plane (R{q})*.

Proof Since (qxq~!)*> = x2, which is real and non-positive, g xg~! is
pure, by Proposition 8.5. Also —p, is linear, and —p,(q) = —q, while, for
any r € (R{g})4, po(r) = —qrq! =rqq =r. Hence the result. O

Proposition 8.19 is used twice in the proof of Proposition 8.20.

Proposition 8.20 Each rotation of R3 is of the form p, for some non-zero
quaternion g, and every such map is a rotation of R>.

Proof Since, by Corollary 5.17, any rotation of R? is the composite of
two plane reflections it follows, by Proposition 8.19, that the rotation can



8 Quaternions 63

be expressed in the given form. The converse is by Corollary 8.16 and
Proposition 8.19. O

In fact, each rotation of R? can be so represented by a unit quaternion,
unique up to sign. This follows from Proposition 8.21.

Proposition 8.21 The map p : H* — SO(3); q — pg is a group surjection,
with kernel R®, the restriction of p to S* also being surjective, with kernel
SO = {+1}.

Proof The map p is surjective, by Proposition 8.20, and is a group map
since, for all ¢, r € H®, and all x € R3,

Par(x) = qrx(qr)™ = pgp,(x).

Moreover, g € kerp if and only if gxq~! = x, for all x € R3, that is
if and only if gx = xgq, for all x € R3. Therefore, by Proposition 8.3,
kerp=RNH" =R".

The restriction of p to S* also is surjective simply because, for any
A € R* and for any q € H", p3; = p,, and 1 may be so chosen that
|Aq| = 1. Finally, ker(p|S3) = kerpn S3=R°NS§3 = §° |

Proposition 8.22 will be used in Proposition 8.26.

Proposition 8.22 Any unit quaternion q is expressible in the formaba™! b1,
where a and b are non-zero quaternions.

Proof By Proposition 8.15 there is, for any unit quaternion ¢, a non-
zero pure quaternion b such that ¢ b is a pure quaternion. Since |¢| = 1,
g b| = |b|. There is therefore, by Proposition 8.20, a non-zero quaternion
a such that gb = aba™!, that is, such that g = aba~'b~ L. O

Proposition 8.20 also leads to Proposition 8.23, converse to Proposi-
tion 8.18.

Proposition 8.23 For each t € O(3), the map
u:H-H; a— rea+ t(pua)

is an automorphism or anti-automorphism of H, u being an automorphism
if t is a rotation and an anti-automorphism if t is an anti-rotation of R3.
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Proof For each t € SO(3), the map u can, by Proposition 8.20, be put in
the form

HoH; a— gag ! =rea+q(pua)q’},

where ¢ € H', and such a map is an automorphism of H.

Also, —1ps is an anti-rotation of R} andift = —1ps, u is conjugation,
which is an anti-automorphism of H. The remainder of the proposition
follows at once, since any anti-automorphism of H can be expressed as the
composite of any particular anti-automorphism, for example conjugation,
with some automorphism. O

Corollary 8.24 An involution of H either is the identity or corresponds to
the rotation of R® through © about some axis, that is, reflection in some
line through 0. Any anti-involution of H is conjugation composed with such
an involution, and corresponds either to the reflection of R> in the origin
or to the reflection of R® in some plane through 0.

It is convenient to single out one of the non-trivial involutions of H
to be typical of the class. For technical reasons we choose the involution
H—H; aw— jaj!, corresponding to the reflection of R* in the line
R{j}. This will be called the main involution of H and, for each a € H,
@ =jaj! will be called the involute of a. The main involution commutes
with conjugation. The composite will be called reversion and, for each
a€H, @=7a=a will be called the reverse of a. A reason for this is
that H may be regarded as being generated as a real algebra by 1 and k,
and reversion sends i to i and k to k but sends ik to ki, reversing the
multiplication. Reversion in a more general setting will be defined later,
in Chapter 15.

Proposition 8.25 is required in the proof of Proposition 10.9.

Proposition 825 The map H—H; x — Xx has as image the three-
dimensional real linear subspace {y € H: 5 =y} =R{l, i, k}.

Proof It is enough to prove that the map S> — §3; x+— X¥x =%"! x has
as image the unit sphere in R{l, i, k}.
So let y € H be such that yy =1 and y = y. Then

I+y=yy+1=G+1)y.

So, if y # —1, y = %! x, where x = (1 + y)(|1 + y|)~!. Finally, —1 =1i.
O
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Rotations of R*
Quaternions may be used to represent rotations of R*.

Proposition 8.26 Let q be a unit quaternion, with H identified with R*.
Then qr : R* > R*, x — qx is a rotation of R*, as also is the map
qr :R* > R%; x> xgq.

Proof The map g is linear, and preserves norm by Proposition 8.11; so
it is orthogonal, by Proposition 5.32. That it is a rotation follows from
Proposition 8.22, which states that there exist non-zero quaternions a
and b such that ¢ = aba™! b7}, for then q; = arbr(ar)~'(br)™!, implying
that detp(qr) = 1. Similarly for gg. O

Proposition 8.27 The map
p 58 x 8> >50(4); (¢,1)— qLTr

is a group surjection with kernel {(1, 1), (—1, —1)}.

Proof For any q, ¢',r,7 € S* and any x € H,

p(d'q, r'r)(x) = (@ qLrr)rx =q'qx7r" = p(q',¥)p(q, T)(X).
Therefore, for any (g, 7), (¢’, ') € $3 x §3,

pd', P )g, 1) = p(d', ¥)p(g, 7);

that is, p is a group map. That it has the stated kernel follows from the
observation that if ¢ and r are unit quaternions such that g x7 = x, for
all x € H, then, by choosing x = 1, g7 = 1, from which it follows that
gxq~! = x for all x € H, or, equivalently, that g x = xq for all x € H.
This implies, by Proposition 8.3, that g € {1, —1} = RN S>.

To prove that p is surjective, let ¢t be any rotation of R* and let
s = t(1). Then |s| = 1 and the map R* = R*; x — 5(t(x)) is a rotation of
R* leaving 1 and therefore each point of R fixed. So, by Proposition 8.20,
there exists a unit quaternion r such that, for all x € R?,

S(t(x) =rxr!

or, equivalently, t(x) = g x ¥, where g = sr. O

Anti-rotations of R* also are easily represented by quaternions, since
conjugation is an anti-rotation and since any anti-rotation is the com-
posite of any given anti-rotation and a rotation.
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8 Quaternions

Exercises

Let ¢ and r be non-zero quaternions such that |g| = |r|, and
let & = %(q +r)and B = %(q —r). Prove that either « or #
is non-zero (cf. Proposition 4.2) and that if « is invertible then
Bo~! is a pure quaternion, while if B is invertible then o f~! is a
pure quaternion.

Let « and B be non-zero quaternions such that g @ is pure. Prove
that, as vectors of R, « and f are mutually orthogonal.

For any unit quaternion x and any 6 € R let ¢ denote the
quaternion cos 8 + k sin 8. Prove that, for any s, t € R,

Selte™ = ¢ where k =i cos2s — j sin 2s.

(This identity is the starting point of a recent paper by V.I
Arnol'd (1995), that applies the algebra of quaternions to the
geometry of curves on the sphere S2.)
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Quaternionic linear spaces

Much of the theory of linear spaces and linear maps over a commutative
field, summarised in Chapter 1, extends over H. Because of the non-
commutativity of H it is, however, necessary to distinguish two types of
linear space over H, namely right linear spaces and left linear spaces.
There are therefore restrictions on possible types of linear maps over H.

Right and left linear spaces

A right linear space over H consists of an additive group X and a map
XxH-oX; (x,)— x4

such that the usual distributivity and unity axioms hold and such that,

forallxe X,4, ¥ € H,

(x )X = x(AX).
A left linear space over H consists of an additive group X and a map

HxX-X; (u, x)— ux

such that the usual distributivity and unity axioms hold and such that,
forall x e X,u, ' € H,

H(ux) = (1 p)x.

The additive group H”, for any finite n, and in particular H itself,
can be assigned either a right or a left H-linear structure in an obvious
way. Unless there is explicit mention to the contrary, it will normally
be assumed that the right H-linear structure has been chosen. (As we
shall see below, a natural notation for H* with the obvious left H-linear
structure is either (H*)X or (HL)".)

67
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Subspaces of right or left H-linear spaces and products of such spaces
are defined in the obvious way. Likewise the basis theorems hold, except
that care must be taken to put scalar multipliers on the correct side.
Where there is a finite basis for an H-linear space the number n of
elements of the basis 1s independent of the basis and is by definition the
quaternionic dimension, dimy X, of X. It will be tacitly assumed in all that
Sfollows that any H-linear space encountered is finite-dimensional.

Linear maps t : X — Y, where X and Y are H-linear spaces, may be
defined, provided that each of the spaces X and Y is a right linear space
or that each is a left linear space. For example, if X and Y are both
right linear spaces, then t is said to be linear or right linear if it respects
addition and if, for all x € X, 1 € H, t(x1) = (t(x))4, an analogous
definition holding in the left case.

The set of linear maps ¢t : X — Y between either right or left linear
spaces X and Y over H will be denoted in either case by L(X, Y).
However, the usual recipe for L(X, Y) to be a linear space fails. For
suppose that we define, for any ¢t € L(X, Y) and any A € H, a map
tA:X —Y by the formula (t A)x = t(x) 4, X and Y being right H-linear
spaces. Then, for any ¢t € L(X, Y) and any x € X,

Hx) k = (tij)(x) = (£1)(x]) = t(xj}i = —t(x) k,

leading at once to a contradiction if ¢t # 0, as is possible. Normally
L(X, Y) is regarded as a linear space over the centre of H, namely R. In
particular, for any right H-linear space X, the set End X = L(X, X) is
normally regarded as a real algebra.

On the other hand, for any right linear space X over H, a left H-linear
structure can be assigned to L(X, H), by setting (u t)(x) = u(t(x)), for all
t € L(X, H), x € H and p € H. This left linear space is called the linear
dual of X and is also denoted by XL. The linear dual of a left H-linear
space is analogously defined. It is a right H-linear space.

For any finite-dimensional H-linear space X,

dimyg X~ = dimyg X.

Any right H-linear map t : X — Y induces a left linear map ¢~ :
YL - XL by the formula

ti(y) = yt, foreachy € YE,

and if t € L(X,Y) and 4 € L(W, X), W, X and Y all being right
H-linear spaces, then

(tu)t =ul ek
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Quaternionic matrices

Any right H-linear map ¢ : H* - H™ may be represented in the obvious
way by an m x n matrix with entries in H. In particular, any elements
of the right H-linear spaces H* and H™ may be represented by column
matrices. Scalar multipliers have, however, to be written on the right and
not on the left as has been the custom hitherto. In fact this is really more
logical anyway, as the equation t(x,4) = t(x)4 may then be regarded as
exemplifying the associative law for composition of matrices.

For example, suppose that t € EndH?, x € H?> and 1 € H. Then the
statement that t(x 1) = t(x)A becomes, in matrix notation,

() ()= ) (3)
tio tn x4 tio ti x1 '

The left H-linear space (H*)X dual to the right H-linear space H"
may be identified with the additive group H" assigned its left H-linear
structure. Elements of this space may be represented by row matrices.
A left H-linear map u : (H™)- —(H™)L is then represented by an m x n
matrix (sic) that multiplies the row vector elements of (H™)L on the right.

H(n) will denote the real algebra of n x n matrices over H.

Any quaternionic linear space X may be regarded as a real linear
space, with dimg X = 4 dimyg X. Such a space may also be regarded as a
complex linear space, once some representative of C as a subalgebra of
H has been chosen, with dim¢ X = 2 dimy X. In the following discussion
C is identified with R{l, i} in H, and, for each finite n, C** = C" x C" is
identified with H" by the (right) complex linear isomorphism

C"xC"->H"; (u,v)>u+jv.

Proposition 9.1 Let a + jb € H(n), where a and b € C(n). Then the

corresponding element of C(2n) is ( Z _l‘_; ) .

Proof For any u,v,u,v' € C* and any a,b € C(n), the equation
¥ +jv' = (a+jb)(u+jb) is equivalent to the pair of equations
W = au—bu,

v = bu+av.

d

In particular, when n = 1, this becomes an explicit representation of
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H as either a complex or a real subalgebra of C(2), analogous to the
representation of C as a subalgebra of R(2) given in Corollary 2.2.
Notice that, for any g =a+jb € H, with a, b € C,

2 =, = Bh— a —B
lg*=9q=aa+bb det(b a).

This remark is a detail in the proof of Proposition 9.3 below.
The lack of commutativity in H is most strongly felt when one tries to
introduce products, as the following proposition shows.

Proposition 9.2 Let X, Y and Z be right linear spaces over H and let
t:XxY—>Z; (x,y)— x-y be a right bilinear map. Then t = 0.

Proof Forany (x,y)€eX xY,
(x-pk =(x-pij = (x-yi) = xj-yi = (xj
= (x i = —(x-yk
Since k #0, x-y=0.S0t=0. O

It follows from this, a fortiori, that there is no non-trivial n-linear map
X" —H, for a right H-linear space, for any n > 1. In particular, there is
no direct analogue of the determinant for the algebra of endomorphisms
of a quaternionic linear space, in particular the right H-linear space H".
However, any n x n matrix over H is reducible by column operations to
a diagonal matrix all of whose entries except one are equal to 1, just
as in the real or complex case as described in Chapter 2, though this
number is no longer independent of the route taken, as Exercise 9.2 will
show. However, any two such numbers have the same absolute value, as
follows from the next proposition.

Proposition 9.3 Let X be a right H-linear space and let t : X — X be an
H-linear map. Then detct is a non-negative real number.

Proof Mimic the proof of Proposition 2.3. O

For any H-linear endomorphism ¢ : X — X, the (positive) square root
of detc t 1s defined to be the (absolute) determinant of t, dett. Clearly ¢
is invertible if and only if dett # 0.

The group of all invertible right linear maps ¢ : H* — H" over H or,
equivalently, the group of all invertible n x n matrices over H will be
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denoted by GL(n;H) and the subgroup of all such maps or matrices of
determinant 1 by SL(n; H).

Clearly earlier remarks about direct sum decompositions and the
matrix algebras 2R(n) and 2C(n) extend to direct decompositions of
quaternionic spaces and the (real) matrix algebras 2H(n).

9.1
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93

94

Exercises

Verify that the matrix ( Jl 11{ ) is invertible in H(2), but that

the matrix ( 1 J ) is not.
ik

Verify that the matrix ( Jl 11{ ) may be reduced by a pair of

-2k 0

elementary column operations not only to ( 0 1

to 1 0
0 2 )
Does a real algebra involution of H(2) necessarily map a matrix

of the form ( ?) 2 ), where a € H, to one of the same form?

Verify that the map « : C?> > H; x> xy+j X, is a right C-linear
isomorphism, and compute

) but also

o~ (a(x) «(y)), for any x, y € CZ.

Let Q = {(x, y) € (C?)* : xoyo + xiy1 = 1}. Prove that, for
any (a, b)) e H" x C,

@@, 0 a1 +jb) €Q
and that the map
H' x C—Q; (a b)— (¢7'@), a Y a7 }(1 +jb))

is injective.



10

Anti-involutions of H(n)

Proposition 9.2 has shown us that there are no non-trivial quadratic
forms on a quaternionic linear space. There are, however, analogues
of hermitian forms and these induce adjoint anti-involutions of real
quaternionic matrix algebras.

Correlated quaternionic spaces

Let X and Y be right or left quaternionic linear spaces. Then an H-
linear map f : X —» Y is said to be semi-linear over H if there is an
automorphism or anti-automorphism  of H such that, for all x € X,
A € H, f(xA) = f(x)A%, f(xA) = 2°f(x), f(Ax) = A¥f(x) or f(Ax) =
f(x) 2%, as the case may be, p being an automorphism of H if H operates
on X and Y on the same side and an anti-automorphism if H operates
on X and Y on opposite sides. The terms right, right-to-left, left and
left-to-right semi-linear maps over H have the obvious meanings.

The semi-linear map t uniquely determines the automorphism or anti-
automorphism y of H with respect to which it is semi-linear, unless t = 0.
On occasion it is convenient to refer directly to v, the map ¢ then being
said to be HY-linear.

The following maps are invertible right-semi-linear maps over H:

H-H; x—,x
x> ax, for any non-zero a € H,
x+> xb~1, for any non-zero b € H,
x+> axb™1, for any non-zero a, b € H,
x> X (=jxj™"),
and H2 > H?; (x, )~ (ax, by), for any non-zero a, b € H,
(x, y)— (by, ax), for any non-zero a, b € H,

72
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the corresponding automorphisms of H being, respectively,
14 g A bAb~, A bAb™, A 2 and 1, 1y
By contrast, the map
H? > H?; (x, y)— (xa, yb), witha, b € H,

is not right semi-linear over H, unless Aa = ub, with 4, u € R.
The maps

H S HY; (%, )~ (%),
(x, y)— (3, X)
are invertible right-to-left H-linear maps.
The composite of any two composable semi-linear maps is semi-linear

and the inverse of an invertible semi-linear map is semi-linear. An
invertible semi-linear map is said to be a semi-linear isomorphism.

Proposition 10.1 Let f : X —» Y be a semi-linear map over H. Then im f
is an H-linear subspace of Y and ker f is an H-linear subspace of X.

Rank and kernel rank are defined for semi-linear maps as for linear
maps.

Proposition 10.2 Let f : X —» Y be an HY-linear map, where X and Y
are finite-dimensional H-linear spaces, and v is an automorphism or anti-
automorphism of H. Then, for any y € YL, pyf € XL.

Proof The map wyf is certainly R-linear. It remains to consider its
interaction with H-multiplication. There are four cases, of which we
consider only one, namely the case in which X and Y are each right
H-linear. In this case, for each x € X, A € H,

ply x A) = p7y(t(x) %) = p7H((y °x)A¥) = (¥ Y £(x))A
The proofs in the other three cases are similar. O

The map fL : YL — XL, defined, for all y € YL, by the formula
fL(y) = wyf, is called the dual of f.

Proposition 103 The dual f' of an H¥-linear map f : X >Y is
HY™-linear.
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Many properties of the duals of R-linear maps carry over to semi-linear
maps over H.

A correlation on a finite-dimensional H-linear space X is an H-semi-
linear map & : X — XL; x> x¢. The map X x X — (a,b) = a’b = a*(b)
is the product induced by the correlation, and the map X —»C; aw a‘a
the form induced by the correlation. Such a product is R-bilinear, but
not, in general, H-bilinear, for although the map

X—>H; x— a*x
is H-linear, for any a € X, the map
X ->H; x> x°b,

for any b € X, is, in general, not linear but only (right-to-left) semi-linear
over H. As in the parallel C case such a product is said to be sesqui-
linear.

An HY-correlation ¢ : X — XL and the induced product on the right
H-linear space X are said to be, respectively, symmetric or skew with
respect to y or over HY according as, for all g, b € X,

b*a = (a*b)¥ or —(a*b)¥.

A correlated quaternionic space is a finite-dimensional H-linear space
assigned an H-correlation.

As always an invertible correlation is said to be non-degenerate.

Semi-linear correlations &,4 : X — X* on a right H-linear space X are
said to be equivalent if, for some invertible A € H,n = A¢&. This is clearly
an equivalence on any set of semi-linear correlations on X.

There are two quaternionic analogues of Proposition 7.11.

Proposition 104 Let v be any anti-involution of H other than conjugation.
Then any skew HY-correlation on a right H-linear space X is equivalent
to a symmetric H-correlation on X, and conversely.

Proof We give the proof for the case HY = H.

Let & be a skew H-correlation on X. Then j¢& is an H-correlation on
X, since, forall xe X, A€ H,

GO =jAE(x) = AG E)x).
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Moreover, for all a, b € X,
béa = jbla = —jath = aib j = .
That is, j & is symmetric over H. O

Proposition 10.5 Let y be as in Proposition 10.4. Then any symmetric
HY-correlation on a right H-linear space X is equivalent to a skew H-
correlation on X, and conversely.

Suppose now that f : X — Y is a linear map of a right quaternionic
space X, with non-degenerate correlation &, to a right quaternionic space
Y, with correlation #. Since & is bijective there is a unique H-linear
map t': Y — X such that t* = ¢ ltly, that is, such that, for any
x€X,y€Y,t'(y)*x = y't(x). The map t" = £~ 1tly is called the adjoint
of t with respect to £ and .

The adjoint of a linear endomorphism u of a right quaternionic linear
space X with respect to a non-degenerate correlation ¢ will be denoted
by u¢. The map u is said to be self-adjoint if u* = u and skew-adjoint
if ¥4 = —u. The real linear subspaces {u € EndX : u* = u} and
{u € EndX : u* = —u} of the real linear space End X = L(X, X) will be
denoted by End (X, £) and End_(X, &), respectively.

Proposition 10.6 Let £ be a non-degenerate correlation on a right quater-
nionic linear space X. Then the map

End X - End X; frs f°
is an anti-involution of End X, regarded as a real algebra.

Equivalent semi-linear correlations £ and # on the right quaternionic
space H" induce the same adjoint anti-automorphism of H(n).

Symmetric and skew correlations are particular cases of reflexive cor-
relations, a correlation ¢ on a quaternionic linear space X being said to
be reflexive if, for all a, b € X,

b*a=0<ah=0.

It is almost the case that any reflexive correlation is equivalent either to
a symmetric or to a skew one, a counter-example in the one-dimensional
case being provided by the correlation on H with product

H? - H?; (a, b)— a(1 + j)b.
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Proposition 10.7 Any non-zero reflexive H¥-correlation & on a right H-
space X of dimension greater than one is either symmetric or skew.

Proof This is naturally a further re-run of Proposition 6.1, but one has
to remember that v is an anti-automorphism of H, and that it need not
be an anti-involution.

For all ¢,b € X, (B*a)¥" = 0 <> b%a = 0 < afb = 0. That is,
for any non-zero a € X, the kernels of the surjective H-linear maps
b (b*a)¥"" and a¢ coincide. Therefore, by the quaternionic analogue of
Proposition 1.5 there is a non-zero quaternion A, such that, for all b € X,

(b*a)*" = Aud®b.

To prove that A, is independent of a one then considers ¢ € X linearly
independent of a, ¢ existing since dim X > 1. Then, since

b*a+btc=b(a+c),

it follows that
}vaacb + }vcccb = Aarc(a+ C)cb,

for all b € X. So

— -1 -
ady =M =2
But a and ¢ are linearly independent. So
- -1 -
A ‘= '1‘5+c = l’

implying that A, = A.. So, as before, there exists 1 € H such that, for all
a,b€X,(ba)" = Aidh.

Again there are apparently two cases.

However, if aa = 0, for all a € X, it follows that (b%a)¥” = —Ab¢a for
all @, b € X. But, for suitable a and b, b°a = 1, implying that 1 = —1 and
that y = 1. But yp cannot be the identity, so this case does not arise.

The alternative is that, for some x € X, x*x # 0, implying that, for
some invertible u € H, (u™)¥~ = Au~, or, equivalently, u~! = (u~1)¥Av.
Then, for all @, b € X,

b a = u(Aa*b)¥ = u(ua®b)*(u1)* 2% = p(pab)P ! = p(a*b)¥u".

Moreover, for all 1 € H, (bA)*a = (uAYu1)b*a. The correlation ué,
equivalent to ¢, is therefore a symmetric HY -correlation, where, for any
veH,

!
o= vl
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That is, the correlation u &, equivalent to &, is symmetric. O

There is a converse of Proposition 10.6, analogous to the converses of
Propositions 6.2 and 7.12.

Theorem 10.8 Any anti-involution « of the real algebra H(n + 1) is repre-
sentable as the adjoint anti-involution induced by a non-degenerate reflexive
correlation on H*1.

Proof This follows the proof of Theorem 6.4 or 7.14. At the end of
the first stage of the argument one proves that the map y is an anti-
automorphism of H, not necessarily an anti-involution. The correlation
¢ is defined as before and proved to be H¥-linear, and injective, and so
is a non-degenerate H¥-linear correlation on H* x H.

The remainder of the proof then goes through without change. O

The next proposition, analogous to Proposition 4.1, is required in the
proof of Theorem 10.10.

Proposition 10.9 (i) Let X be a right H-linear space and ¢ a symmetric
H-correlation and suppose that x € X is such that x*x # 0. Then there
exists A € H such that (x2)*(x2) =1 or —1.

(ii) Let X be a right H-linear space and & a symmetric H-correlation
and suppose that x € X is such that x*x # 0. Then there exists A € H
such that (x 2)*(x 1) = 1.

Proof Let y be either of the anti-involutions of H. Then, since, for
all A e H, (xA)*(xA) = l“’(xfx)l it is enough to prove that, for some
A€eH, Al =) 11! = +x¥x. Now, when y is conjugation,
xix = x'x, by the symmetry of &, and x%x is therefore real. So in this
case we may take A~! to be the square root of |x¢x|, proving (i). On
the other hand, if H®* = H, x{x = x¢x, and so, by Proposition 8.25, x¢x
belongs to the image of the map H—H; p+— up Then we may take
A =y}, proving (ii). g

Theorem 10.10 (The basis theorem for symmetric correlated quaternionic
spaces.) Each finite-dimensional symmetric H- or H-correlated space has
an orthonormal basis.

By Theorem 10.8 this holds also for skew correlated quaternionic
spaces since any skew correlation is equivalent to a symmetric one.
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Theorem 10.11 (The classification theorem for symmetric correlated
quaternionic spaces.) (i) Let X be a non-degenerate symmetric H-corre-
lated space of finite dimension n. Then there exists a unique pair of numbers
(p, q), with p+q = n, such that X is isomorphic to H™, this being the right
H-linear space HP*1, with the sesqui-linear product

(HPH?2 S H; (a,b) = =) @b+ Y @prjbpsj.
0<i<p 0<j<q

(ii) Let X be a non-degenerate symmetric H-correlated space of finite
dimension n. Then X is isomorphic to H", this being the right H-linear
space H", with the sesqui-linear product

(H")? > H; (a,b) — > Gib:
0<i<n
The pair of numbers (p,q) in (i) is called the signature of the correlated

space X and of its form. The space and its form are said to be positive-
definite if p=0.

Quaternionic groups

Proposition 10.12 (i) Let t = ( Z 2 ) be an endomorphism of the cor-

related quaternionic space H™. Then the adjoint of t is

e (@ b
= _ zf .
(ii) Let t be an endomorphism of the correlated quaternionic space H".
Then the adjoint of t is t* =t".

There are quaternionic groups analogous to the orthogonal and sym-
plectic groups over R or C. The classical notations make no mention of
quaternions and so are quite inappropriate for our purposes. It turns out
that the natural definitions are as follows: to define the orthogonal quater-
nionic group of degree n, O(n;H), to be the group of automorphisms of
the correlated quaternionic space H", and to define the symplectic quater-
nionic group of degree n = p + q and signature (p, q), Sp(p, q;H), to be
the group of automorphisms of the correlated quaternionic space H™.
Of course, by Propositions 10.4 and 10.5 either may be regarded as pre-
serving either a symmetric or a skew form. As in the unitary case, but
by contrast to the real or complex case, there is no requirement in the
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symplectic quaternionic case for the degree of the group, the dimension
of the correlated space, to be even. The group Sp(0,n;H) is frequently
denoted simply by Sp(n), and referred to as the symplectic group of
degree n, without even mention of the quaternions H.

Note that Sp(1) = S3, the group of quaternions of absolute value 1.

The rather varied uses of the word ‘symplectic’ tend to be a bit
confusing at first. The word was first used to describe the groups
Sp(2n; R) and Sp(2;C) to indicate their connection with the set of null

planes in the correlated spaces RZ and CZr. Such a set of null planes,

regarded as a set of projective linl;s in the associated projective space,
is known to projective geometers as a line complex. The groups were
therefore originally called complex groups. This was leading to hopeless
confusion when Hermann Weyl (1939) coined the word ‘symplectic’,
derived from the Greek equivalent of the Latin word ‘complex’. Whether
the situation is any less complicated now is a matter of dispute!

The next proposition continues Proposition 7.20.

Proposition 10.13 For any finite n, and p + q = n, with a rather obvious
definition of Sp(2p, 2q;C),

Sp(n) Sp(2n;C)NGL(n;H) = Sp(2n;C)NnU(n),
O(n;H) 0O(2n; C) N GL(n; H),
Sp(p,q) = Sp(2p, 24;C)NU(2p, 29).

Proof As an example, the equation Sp(n) = Sp(2n; C) N U(2n) follows at
once from the observation that, for all z +jw, z/ +jw € H,

CHjw)Z +jw)=GEZ +ww)—jwz —zw)=0
ifand only if Zz' +Ww' =0and wz' —zw =0, O

Corollary 10.14 Each element, either of the group O(n;H) or of the group
Sp(p,q), has determinant 1.

Exercises
101 Let t € SU(3). Show that

lp2 =

Loo tor
o tn

too tor
o t2

ho tn

and tg; =
ly tn ’
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Show that the diagram of maps
Sp(l)=SU@2) — SU@B) — §°

Sp(2) — SU@) =5 T
|
S7 _1’ S7

b

where any z+jw in Sp(1) is identified with ; _WE ) in SU(2),

is commutative, the top row and the two columns being special
cases of the left-coset exact pairs defined in Theorem 13.13, and
the map = being the surjection, with image T a subset of SU(4),
defined, for all ¢t € SU(4), by the formula n(t) = t {; where

In —tan tn —in
—t t —t t
= 10 00 30 20
hzy —tes t3z —In
=ty t2 —t2 I

Hence, by Proposition 3.4, construct a bijection S* — T that
makes the square

su@3) — §?

SU@d) > T

commute and show that this bijection is the restriction to §3
with target T of an injective real linear map y : C>— C(4).
(Exercise 10.1 is relevant at one point of the argument. We
shall encounter this example again in Proposition 17.3 and in
Diagram 24.5.)
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Tensor products of algebras

The tensor product of algebras is a special case and generalisation of
the tensor product of linear spaces that can be defined directly. We have
chosen not to develop the theory of tensor products in general, as we
have no need of the more general concept.

Tensor products of real algebras

Certain algebras over a commutative field K admit a decomposition some-
what analogous to the direct sum decompositions of a linear space, but
involving the multiplicative structure rather than the additive structure.
Suppose that B and C are subalgebras of a finite-dimensional algebra
A over K, the algebra being associative and with unit element, such that

(i) foranybe B,ceC,cb=bc,
(ii) A is generated as an algebra by B and C,
(iii) dim A = dim Bdim C.

Then we say that A is the tensor product B ®k C over K, the abbreviation
B ® C being used when the field K is not in doubt.

Proposition 11.1 Let B and C be subalgebras of a finite-dimensional algebra
A over K, such that A = B x C, the algebra A being associative and with
unit element. Then BN C =K (the field K being identified with the set of
scalar multiples of the unit element 1(4)).

It is tempting to suppose that the condition BN C =K can be used as
an alternative to condition (iii) in the definition. That this is not the case
is shown by the following example.

81
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abc
Example11.2LetA={(0 a 0) GR(3):a,b,c€R},
0 0a

ab o a 0 c
B = 0 aO0]:abeR} andC= 0 aO]|:acekR).
00a 0 0a

Then A is generated as an algebra by B and C, BN C = R, and any
element of B commutes with any element of C. But dimA = 3, while
dimB = dim C = 2, so that dimA # dim B dimC.

Condition (iii) is essential to the proof of the following proposition.

Proposition 11.3 Let A be a finite-dimensional associative algebra with unit
element over a commutative field K and let B and C be subalgebras of A
such that A= B ® C. Also let

{e,:0<i<dimB} and {f; :0 < j <dimC}
be bases for the linear spaces B and C, respectively. Then the set
{e;fj:0<i<dimB, 0< j<dimC}
is a basis for the linear space A.

This may be used in the proof of the next proposition.

Proposition 11.4 Let A and A’ be finite-dimensional associative algebras
with unit elements over a field K and let B and C be subalgebras of A, and
B’ and C' subalgebras of A’ such that A=B®C and A'= B'® C'. Then,
if B=B and if C = C', it follows that A = A'.

Proposition 11.4 encourages various extensions and abuses of the
notation ®. In particular, if 4, B, C, B’ and C’ are associative algebras
with a unit element over a commutative field K such that

A=B®C,B'=Band C'=C,

then one frequently writes 4 = B’ ® C’, even though there is no unique
construction of B’ ® C’. The precise meaning of such a statement will
always be clear from the context.

The following propositions involving the tensor product of algebras
will be of use in determining the table of Clifford algebras in Chapter 15.
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Proposition 11.5 Let A be an associative algebra with unit element over a
commutative field K and let B, C and D be subalgebras of A. Then

A=B®C <« A=C®B
and A=B®(C®D) < A=BoC)®D.

In the latter case it is usual to write, simply, A=B® C ® D.

Proposition 11.6 For any commutative field K, and for any finite p, q,

K(pq) = K(p) ®k K(9).

Proof Let KM be identified as a linear space with KP*?, the linear
space of p x ¢ matrices over K. Then the maps K(p) > K(pq); a— ar
and K(q9) = K(pgq); b — by are algebra injections, whose images in
K(p q) satisfy conditions (i)—(iii) for ®, a; and by being defined, for each
a € K(p) and b € K(q), and for each ¢ € K?*4, by the formulae

ar(c) = ac and bg(c) =cb".

For example, the commutativity condition (i) follows directly from the
associativity of matrix multiplication. O

In particular, for any finite p, g,

R(pq) = R(p) ®r R(q).
In this case we can say slightly more.
Proposition 11.7 For any finite p, q, let R?, R? and RP be regarded as

positive-definite quadratic spaces in the standard way, and let R?*? be iden-
tified with RM, Then the algebra injections

R(p)—R(pq); ar> ar and R(g) > R(pq); b by
send the orthogonal elements of R(p) and R(q), respectively, to orthogonal

elements of R(pq).

Corollary 11.8 The product of any finite ordered set of elements belonging
either to the copy of O(p) or to the copy of O(q) in R(pq) is an element

of O(pq).

In what follows, C and H will both be regarded as real algebras, of
dimensions 2 and 4, respectively, and ® = ®g.
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Proposition 11.9
R@R=R, C®R=C, H®R=H,
C®C=2C, H®C=C(2) HeH=R(4).

Proof The first three of these statements are obvious. To prove that
C ® C = 2C it is enough to remark that 2C is generated as a real algebra

z 0, z 0 .
bythesubalgcbras{(o z) .zGC} and{(o 7) .zeC},each

isomorphic to C, conditions (i) to (iii) being easily verified.

To prove that H® C = C(2) let C? be identified with H as a right
complex linear space by the map C?>— H; (z, w) — z + jw, as before.
Then, for any ¢ € H and any ¢ € C, the maps

qr. :H—-H; x—»gxand cg :H-H; x— xc
are complex linear, and the maps
H—- C(2); g~ qr and C— C(2); c— cr

are algebra injections. Conditions (i) and (ii) are obviously satisfied by
the images of these injections. To prove (iii) it is enough to remark that

the matrices
10 i 0 0 -1 0 —
01/’ V0 -1 /°\'1 o0/)’\ - 0)
10 -1 0 0 —i 01
0 i)’ 01/’\i 0/°’\10)’

1’ iL’ jL’ kL’
ir, iLir, JLir, KLig,

representing

respectively, span C(2) linearly.
The proof that H@® H = R(4) is similar, the maps

qr :H-H; x—gxand7g :H-H; x> x7
being real linear, for any ¢, r € H, and the maps
H—-R(4); g—qrand H>R(4); r—1p

being algebra injections whose images satisfy conditions (i) — (iii), con-
dition (i), for example, following by the associativity of H. |



11 Tensor products of algebras 85

In this last case it is worth recalling Proposition 8.26, which states that
the image, by either of these injections, of a quaternion of absolute value
1 is an orthogonal element of R(4).

In fact we have the following analogue to Proposition 8.27.

Proposition 11.10 For any q € S* and any ¢ € S! the map
- X qgxc

is unitary, C? being identified with H in the usual way. Moreover, any
element of U(2) can be so represented, two distinct elements (q, ¢) and
(q', ¢) € S3 x S! representing the same unitary map if and only if (¢', ¢') =
_(q’ C)-

Proof The map x — qxc is complex linear, for any (g, ¢) € §* x S},
since it clearly respects addition, while, for any 4 € C, q(x A)c = (¢ x¢)4,
since ¢ = ¢ A. To prove that it is unitary it is then enough to show that
it respects the hermitian form

C25R; x> Xx.
However, since, for all (xo, x;) € C?,
Xoxo +X1x1 = (X — X1j)(x0 +ix1) = |xo +jx %,

it is enough to verify instead that the map, regarded as a map from H to
H, preserves the norm on H, and this is obvious.
Conversely, let t € U(2) and let r = t(1). Then [r| = 1 and the map

C2 > C?; x> FH(x)

is an element of U(2) leaving 1, and therefore every point of C, fixed,
and mapping the orthogonal complement in C of C, the complex line
jC=1{jz : z € C}, to itself. It follows that there is an element ¢ of S!,
defined uniquely up to sign, such that, for all x € C?, Ft(x) = ¢xc or,
equivalently, t(x) = g x ¢, where ¢ = r €. Finally, since ¢ is defined up to
sign, the pair (g, ¢) also is defined up to sign.

An alternative proof of the converse goes as follows.

Let ¢ € U(2). Then ¢ = cgu, where ¢? = dett and u € SU(2). Now the

a —

b
which it follows that u = q;, where ¢ = a + jb. The result follows at
once. O

matrix of u can readily be shown to be of the form g , from
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Corollary 11.11 The following is a commutative diagram of exact sequences
of group maps:

{1} {1}

I — 8 = 5 —
() — 8 5 $xst X o o)

| b s

det

{1} — sUE) — U — ' — {1}

|

{1} {1} {n .
the map f being defined by the formula

f(a, ¢) = qLcr, for all (g, ¢) € $* x S,

and the map sq. being just the squaring map z v z°.

In particular, Sp(1) = S3 = SU(2).

Now, by Proposition 11.9, C(2) = H ® C, the representative of any
g € H being g, and the representative of any ¢ € C being cg. It
follows, by Proposition 11.10, that the product of any finite ordered set
of elements belonging either to the copy of Sp(1) = S* or to the copy of
U(1) = $! in C(2) is an element of U(2).

This result is to be compared with Proposition 11.7 and the remark
following the proof of Proposition 11.9. Note also that in the standard
inclusion of C in R(2) the elements representing the elements of U(1) = S!
are all orthogonal.

For an important application of these remarks see Proposition 15.28.

Complexification

Roughly speaking, complexification is the operation of tensoring by C.
Thus C(2) is the complexification of H and 2C is the complexification of
C, but in the applications that we have in mind the object complexified
will frequently be a real superalgebra, that is a real algebra furnished with
an anti-involution, in which case there are two kinds of complexification,
tensoring by C, that is by C with the identity as (anti-)involution, and



11 Tensor products of algebras 87

tensoring by C, that is by C with conjugation as (anti-)involution. For
H ® C there are four different outcomes, as follows.

Proposition 11.12 We consider the isomorphism C(2) = H ® C, where the
quaternion q = w + zj is represented by the matrix

(*7%)

and the complex number c is represented by the matrix

(o)

(i) Let H be assigned conjugation and C the identity. Then the induced
anti-involution of C2) 2 H® C is

acy d —c
b d —b a)’
(ii) Let H be assigned conjugation and C conjugation. Then the induced
anti-involution of C(2) = H ® C is conjugate transposition.
(iii) Let H be assigned the anti-involution q =w+zjr—>qg=w—2},

where w, z € C, and let C be assigned the identity. Then the induced
anti-involution of C2)=Z=H®C is

(sa)-(c2)

(iv) Let H be assigned the anti-involution ¢ = w+zjr— g =w—
Z j, where w, z € C, and let C be assigned conjugation. Then the
induced anti-involution of CRQ)=H®C is

acy d —¢
b d -b a)’
Proof In each case all one has to verify is that the asserted anti-involution

is correct both on the copy of H in C(2) and on the copy of C in C(2).
In every case this is immediate. O

Likewise for C x C = 2C there are three different outcomes, as follows.

Proposition 11.13 We consider the isomorphism 2C = C ® C, where the
complex number w in the first factor is represented by the matrix

(55)
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and the complex number c in the second factor is represented by the matrix

(0¢)

(i) Let both copies of C be assigned the identity. Then 2°C = C x C is
assigned the identity.

(ii) Let the first copy of C be assigned the identity and the second
copy conjugation. Then 2C = C x C is assigned the swap (anti-)

involution
(a0 . d o
*\od 0a)

(iii) Let both copies of C be assigned conjugation. Then 2C = C x C is
assigned conjugation.

The recognition of subalgebras

It is an advantage to be able to detect quickly whether or not a subalgebra
of a given associative algebra A is isomorphic to one of the algebras

R, C, H, 'R, ’C, ’H, R(2), C(2), or H(2),

or whether a subalgebra of a given complex associative algebra A is iso-
morphic to one of the algebras C, 2C or C(2). The following proposition
is useful in this context.

Proposition 11.14 Let A be a real associative algebra with unit element 1.
Then

(i) 1 generates R,

(ii) any two-dimensional subalgebra generated by an element ey of A
such that e} = —1 is isomorphic to C,

(iii) any two-dimensional subalgebra generated by an element ey of A
such that €} = 1 is isomorphic to °R,

(iv) any four-dimensional subalgebra generated by a set {e,, e,} of mu-
tually anti-commuting elements of A such that €} = &2 = —1 is
isomorphic to H,

(v) any four-dimensional subalgebra generated by a set {ey, e1} of mu-
tually anti-commuting elements of A such that €} = €2 = 1 is iso-
morphic to R(2),
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(vi) any eight-dimensional subalgebra generated by a set {eg, e1, €2} of
mutually anti-commuting elements of A such that € = 2 = &3 = —1
is isomorphic to 2H,

(vi) any eight-dimensional subalgebra generated by a set {ey, ey, €2} of
mutually anti-commuting elements of A such that e = e? = & = 1
is isomorphic to C(2).

Sets of elements meeting the required conditions include
01 01
17 0)(10)} ormen
i k O )}

5)(54)}
(205 0 e
(1))’((1) _(1))’((; _(;)},forC(z).

those listed in the following proposition we have had before.

oi—l
Lo
—
TN
O .
oo
—
TN
o

|

~

=]
-

0
=]
(=%

o

=

-+

=]

(=]

-+
A A~

0 Ok O O .

—r

Several o

Proposition 11.15 The subset of matrices of the real algebra K(2) of the
form

@) ( Z z ) is a subalgebra isomorphic to *R, 2C or *H,

(ii) ( Z _z ) is a subalgebra isomorphic to C, *C or C(2),

!

(iid) ( Z z, ) is a subalgebra isomorphic to *R, R(2) or C(2),

/

(iv) ( Z _z, ) is a subalgebra isomorphic to C, H or *H,

according as K = R, C or H, respectively, where, for anya €K, a' =a, @
or a, respectively.

Each of the algebras listed in Proposition 11.15 is induced by a (non-
unique) real linear injection. For example, those of the form (iii) may
be regarded as being the injections of the appropriate endomorphism



90 11 Tensor products of algebras

algebras induced by the real linear injections
RoRY (% y)— (x+y, x—),
RZ-C% (x, y)e (x+iy, x—iy),
and C2—-H?; (z, w)r> (z+jw, Z+]jW).
Real algebras, A, B, C and D, say, frequently occur in a commutative
square of algebra injections of the form

A — C

||

B — D

the algebra D being generated by the images of B and C. Examples
of such squares, which may easily be constructed using the material of
Proposition 11.15, include

R — R IR — R(2
| | |
C — RQ) R2) — IR(2)

C —-R2) C — «C I — CQ

I R |

H— CQ2 2 — C2 €2 — (2

H — CQ2) ZH — H(2
| ], e | .
ZH — H(Q) HQ2) — 2H(Q2)
Exercise
11.1  Show that there is a group map S U(2) — S x §3 making the dia-
S3x§3
gram 2 l commute, but that there is no group
SUQ2) —» S04
S3x 83
map U(2) - §3 x §3 that makes A ! commute,

UQ) - S04
the vertical map in either case being the group map defined in
Proposition 8.26 and the horizontal maps being the standard
group injections induced by the usual identification of C? with
R*.
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Anti-involutions of 2K(n)

In this chapter we learn to think of the general linear groups GL(n;K)
as unitary groups! For example an element of GL(n; C) may, according
to the context, appear as a matrix of the form

a 0 r(a 0
0 (a’)-‘) o (a')-l)’

where a is an invertible n x n matrix over C. The first of these leaves
invariant the symmetric sesqui-linear form

2em o 2L 2 x 0 x 0 yx 0
e ((3 05 ) (5 )

with swap playing the part of conjugation, and the second the symmetric
sesqui-linear form

2¢n , 24 2. x 0 x 0 7:x0
et (32):( )= (5 )

with swap composed with conjugation taking the part of conjugation.

2K linear spaces and maps

The double fields R and 2C were introduced at the very beginning of
Chapter 2 and 2H at the end of Chapter 9. These are not fields, for it is
not true that every non-zero element has an inverse. Nevertheless much
of the standard theory of linear spaces and maps over a field holds also
for 2K-linear spaces, for K = R, C or H, as does the theory of semi-linear
correlations.

The part of a 2K linear space is played by a K-linear space A with
a prescribed direct sum decomposition 4o & A4;, where Ay and A4; are

91
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isomorphic linear subspaces of A (so in particular in the case that A
is finite-dimensional dim 4o = dim 4,) with scalar multiplication defined
by

(A 1), xo + x1) > (Axo + px1),

which may also be written as

((62)- (5 2))= (8 a)

2K-linear maps are defined in the obvious way.

Lett : X — Y be a 2K-linear map. Then ¢ is of the form ( ‘:)0 : ) ,
1

where ap € L(Xo, Yo) and a; € L(X,, Y;). Conversely, any map of this
form may be regarded as a ’K-linear map.

One has to take care with extending the basis theorems of linear
algebra over a field to double fields. We say that an element x of a 2K-
linear space X is linearly free of a subset A of X if, and only if, (1, O)x is
linearly independent of (1, 0)A4 in the K-linear space (1, 0)X and (0, 1)x
is linearly independent of (0, 1)A4 in the K-linear space (1, 0)X. Thus, in
2K itself, (1, 1) is not free of {(1, 0)}. Then a basis for X is a free subset
of X that spans X.

The following is the basis theorem for 2K-linear spaces.

Theorem 12.1 Let X be a ?K-linear space with a basis A. Then Xy =
(1, 0)X and X, = (0, 1)X are isomorphic as K-linear spaces, the set (1, 0)A
being a basis of the K-linear space X, and the set (0, 1)A being a basis of
the K-linear space X,. Moreover any two finite bases for X have the same
number of elements.

Any 2K-linear space with a finite basis is isomorphic to the 2K-linear
space 2K" = (’K)", n being the number of elements in the basis.

It should be noted that not every point x of a 2K-linear space X spans
a 2K-line. For this to happen, both (1, 0)x and (0, 1)x must be non-zero.
A point that spans a line will be called a regular point of X. Similar
considerations show that the image and kernel of a 2K-linear map need
not be 2K-linear spaces.

Anti-involutions of *K

For the theory of semi-linear correlations on 2K-linear spaces we need to
know all possible anti-involutions of 2K. We begin by recalling Proposi-
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tions 2.18 and 2.19, extending these to apply not only to the fields R and
C but also to the non-commutative field H, in which case whatever was
said earlier about automorphisms applies also to anti-automorphisms.

Proposition 122 Let K = R, C or H. Then any automorphism or anti-
automorphism of K is of the form either

A0 A0
N2 2y .
(i) K—»K,(O#>H(O #¢>,or

A0 ¢ 0
sy 2 K. 19
M)K*&(op)H(o y)

where y, ¢ : K—K are both automorphisms or both anti-automorphisms
of K, any irreducible automorphism or anti-automorphism necessarily being

of type (ii).

In case (i) the map is an involution or anti-involution of 2K if and
only if x and ¢ are both involutions or both anti-involutions of K,
Case (ii) is of greater interest. Such an automorphism or anti-auto-

. 1 0 -10 1 0 .
morpmsmsends(o _l)to( 0 1)——(0 _1),and1san

involution or anti-involution of %K if and only if it is of the form

A0 b 0
2 2y .
K*K(0u>H(ozw>’

where ¢ is an automorphism or anti-automorphism (not necessarily an
involution or anti-involution) of K.
As in Chapter 2 the swap involution

A0 u 0
2 K-
K—-“K; (0 #)I—)(O }.)
will be denoted by ¢, the involution or anti-involution
A0 uw 0
2 K.
K*K(op>H(ozw>
then being the composite involution or anti-involution
(@ x ¢ o =0(¢7" x ¢).

Proposition 12.3 For any two automorphisms or two anti-automorphisms ¢
and x of K the involutions or anti-involutions (¢ x ¢')o and (x x x Vo
of K are similar.
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Proof The proof is just as for Proposition 2.20. O

Semi-linear maps over ’K

Let X and Y be right or left linear spaces over the double field 2K,
where K = R, C or H. Then a 2K-linear map f : X —» Y is said to be
semi-linear over 2K if there is an automorphism or anti-automorphism
of 2K such that, for all x € X, € 2K, f(xA) = f(x)A¥, f(xA) = A¥f(x),
f(Ax) = A¥f(x) or f(Ax) = f(x)A¥, as the case may be, y being an
automorphism of 2K if 2K operates on X and Y on the same side and
an anti-automorphism if 2K operates on X and Y on opposite sides. The
terms right, right-to-left, left and left-to-right semi-linear maps over 2K
have the obvious meanings.

The semi-linear map ¢t uniquely determines the automorphism or anti-
automorphism 1 of 2K with respect to which it is semi-linear, unless
t = 0. On occasion it is convenient to refer directly to v, the map ¢ then
being said to be 2K¥-linear.

The first of the maps

H oW (x,y)- (%)
(x, ) (3, X)

is a right-to-left 2H-linear map and the second a right-to-left 2H’ -linear
map.
Semi-linear maps over %K are classified by the following proposition.

Proposition 124 Let X and Y both be ’K-linear spaces. Then any
2K**%_linear map X — Y is of the form
Xo ® X1 — Yo ® Y1; (x0, x1) = (f(x0), 8(x1)),

where f : Xo— Yy is K-linear and g : X, — Y, is K%-linear, while any
2K*9)._linear map X — Y is of the form

Xo ® X1 — Yo ® Y1; (x0, X1) > (f(%0), g(x1)),
where f : Xy — Y; is KX-linear and g : X| — Yy is K®-linear.
Proof We indicate the proof for a 2K°(**9)-linear map X — Y, assuming,

for the sake of definiteness, that X is a right 2K-linear space and Y a left
2K-linear space. Then, for all a € Xy, b € X3,

t(a,0) = t((a,0)(1,0)) = (0, 1)t(a,0),
t(0,b) = t((0,b)(0,1)) = (1,0)t(0, b).
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So maps f : Xo— Y; and g : X; — Y, are defined by
(0, f(a)) = t(a, 0) and (g(b), 0) = £(0, b), for all (q, b) € X.

It is then a straightforward matter to check that these maps f and g have
the required properties.
The proofs in the other cases are similar. O

An A¥-linear map t : X — Y is said to be irreducible if y is irreducible.
Otherwise it is said to be reducible. If t is irreducible, and if y is an
involution or anti-involution then, by Proposition 2.17, A = K or 2K. Of
the two maps in Proposition 12.4 the first is reducible, while the second
is irreducible.

As before, the composite of any two composable semi-linear maps is
semi-linear and the inverse of an invertible semi-linear map is semi-linear.
An invertible semi-linear map is said to be a semi-linear isomorphism.
Duals of *K-linear spaces and semi-linear maps are then defined just as
for H-linear spaces and semi-linear maps. In particular, correlations and
their induced sesqui-linear forms are similarly defined, as are symmetric
and skew correlations. For example, the product

R x R—R; ((a, b), @, b)) (bd', ab')

is a symmetric sesqui-linear product over *R.
A correlated *K space is a finite-dimensional right ?K-linear space
assigned a 2K¥-correlation, where v is some anti-involution of ?K.
Semi-linear correlations &,7 : X — X* on a right 2K-linear space X
are said to be equivalent if, for some invertible 1 € 2K, n = A¢£. This is
clearly an equivalence on any set of semi-linear correlations on X.
There follows an analogue of Propositions 7.11, 10.4 and 10.5.

Proposition 12.5 Any irreducible skew 2K¥-correlation on a right *K-linear
space is equivalent to a symmetric correlation on X, and conversely.

Proof Let ¢ be an irreducible skew 2K¥-correlation on X. Then, for all
a,beX,
Vg = (1, —=1)bta = —(a*b)¥ (1, —1)
(a*b)¥ (1, —1)¥, since  is a swap anti-involution,
= (a(l,—l)éb)w.

That is, the correlation (1, —1)¢& is symmetric.
Similarly, if & is symmetric, then (1, —1)¢ is skew. O
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The adjoint of a 2K-linear map X — Y, with respect to correlations &
on X and # on Y, is then defined just as in the quaternionic case.

Equivalent semi-linear correlations € and # on the right quaternionic
space H" induce the same adjoint anti-automorphism of H(n).

Proposition 12.6 Let & be a irreducible symmetric or skew correlation on
a right 2K-linear space X. Then the map

End X - EndX; t ¢
is a real algebra anti-involution.

As always, symmetric and skew correlations are particular cases of
reflexive correlations, a correlation ¢ on a 2K-linear space X being said
to be reflexive if, for all q, b € X,

ba=0<da*b=0.

Proposition 12.7 Any non-zero irreducible reflexive ’K¥-correlation & on a
right 2K-space X of dimension greater than one is equivalent either to a
symmetric or to a skew one.

(A counter-example in the one-dimensional case is the correlation on H
with product H? — H; (a, b) — a(1 +j)b.)

Proof This is our final re-run of Proposition 6.1, but one has again to
remember that y is an anti-automorphism of *K, and that it need not be
an anti-involution.

The proof is basically as before, but care has to be taken, since a
non-zero element of 2K or of X is not necessarily regular. One proves
that there exists an invertible A € 2K such that, for all regular a € X and
allbe X,

)" = Aatb.

It is then easy to deduce that this formula also holds for all a € X. The
remainder of the proof is as before. O

Next we state an analogue of Proposition 6.3.

Proposition 128 Let X be a finite-dimensional *K-linear space, let o be
an anti-automorphism of the real algebra End X and let t € End X, with
rkt =1. Then rk t* = 1.
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Proof This is almost as before. The only difference is that the left ideal
generated by an element ¢t of End X, with rkt = 1, is not minimal, but
has exactly two minimal left ideals as proper subideals. However, this
can only occur if rk t = 1. The details are left to the reader. O

What then follows is our final generalisation of Theorem 6.4.

Theorem 12.9 Let X be a finite-dimensional *K-linear space, with dim X >
1. Then any anti-involution o of the real algebra End X is representable as
the adjoint anti-involution induced by a non-degenerate reflexive correlation
on X.

Proof Entirely as for Theorem 10.8. O

Proposition 12.10 Let & be a non-zero irreducible reflexive correlation on
a right *K-linear space X. Then for some x € X, x*x is invertible.

Proof Since & is an irreducible correlation, ¢ = a(n % {), where { :
X, = XF and 7 : Xo — X[ are semi-linear. Since ¢ is reflexive,

(0, a"b) = (a, 0)*(a, b) = 0 <> (*a,0) = (0, b)*(a, 0) =0,

that is a"b # 0 <> b'a # 0.

Since ¢ is non-zero, either # or { is non-zero. Suppose that # is non-
zero. Then there exists (a, b) € Xy X X; such that a"b # 0 and b*a # 0,
that is such that (a, b)*(a, b) is invertible. O

If ¢ is symmetric we can say more, this case being required in the
proof of Theorem 12.14 below.

Proposition 12.11 Let & be an irreducible correlation on a right *K-linear
space X, symmetric with respect to the anti-involution (¢ x ¢p~V)o of ’K,
and suppose that, for some x € X, x*x is invertible. Then there exists
A € XK such that (xA)*(x1) = 1.

Proof As in the proof of Proposition 12.10, & = (7 x {). Now & is
symmetric with respect to (¢ x ¢~!)a, so, for all (a, b) € X,
(@ b)*(a, B)**4™ = (a, b)*(a, b),
that is,
(a"h)?, (B a)*”) = (b*a, a"b).
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In particular, a"b = 1 if and only if b* = 1. Now, if x = (a, b) is
invertible, b*a # 0. Choose 1 = ((b*a)”!, 1). O

An invertible correlation is said to be non-degenerate.

Proposition 12.12 Let & be a non-degenerate correlation on a finite-dimen-
sional right K-linear space X, and let x be any non-zero element of X.
Then there exists X' € X such that x*x' = 1.

Proposition 12.13 Let £ be a non-degenerate irreducible correlation on a
finite-dimensional right *K-linear space X, and let x be a regular element
of X. Then there exists X' € X such that x*x’ =1 (= (1, 1)).

Theorem 12.14 (Basis theorem.) Each finite-dimensional irreducible sym-
metric *K°-correlated space has an orthonormal basis.

By Theorem 12.9 this holds also for irreducible skew 2K°-correlated
spaces since any skew correlation is equivalent to a symmetric one.

Theorem 12.15 (Classification theorem.) Let X be a non-degenerate sym-
metric 2K -correlated space of finite dimension n, where K = R, C or H.
Then X is isomorphic to (*°K)", this being the right *K-linear space *K",
with the sesqui-linear product

CK) -7K; (a.b) = ) @ b
0<i<n

General linear groups

Proposition 12.16 Let t = ( 0 ) be an endomorphism of the correlated

a
0d
space (°K°)", where K = R, C or H. Then the adjoint of t is
c_(d 0
= .
0 @
Corollary 12.17 The correlated automorphisms of (K’ )" are the endomor-

phisms of K" of the form (
K",

g ( 51(;—1 ) where a is any automorphism of



Exercise 99

Corollary 12.18 The group of correlated automorphisms of K" )" is iso-
morphic to the general linear group GL(n;K).

We define the determinant of such a correlated automorphism to be the
determinant of a € K(n). Accordingly the subgroup of all such correlated
automorphisms of determinant equal to 1 is isomorphic to the special
linear group SL(n;K).

12.1

Exercise

Let twK denote the twisted square of K, that is, K x K with the
product (K x K)2 =K x K; (4, p), (X, &) — (A%, i p). Show
that, for any finite-dimensional K-linear space X, the K-linear
space X x X* may be regarded as a (twK)-linear space by defining
scalar multiplication by the formula

(x, 0)4, p) = (x4, pw),

for any (x, ) € X x XL, (4, ) € twk.

Develop the theory of twK-correlated spaces. Show, in par-
ticular, that, for any finite-dimensional K-linear space X, the
map

(X x X1 - twK; ((a, %), (b, B)) — (a(b), B(a))

is the product of a non-degenerate symmetric (twK)?-correlation
on X x X%, ¢ being an anti-involution of twK.
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The classical groups

In this chapter we tie together the results of the last few chapters. The
main result, Theorem 13.8, states how any real algebra anti-involution
of A(n) may be regarded as the adjoint involution induced by some
appropriate product on the right A-linear space A", where A is equal to
K or 2K, and K = R, C or H, n being finite. Theorem 13.8 and The-
orem 13.7 together classify the anti-involutions of A(n) into ten classes,
and associated with these are the ten families of classical groups.

The left-coset exact pairs of the last section will play a role in the
discussion of Lie groups in Chapter 22.

Equivalent correlated spaces

Let A = K or 2K, where K = R, C or H. Then a correlated A-space is a
finite-dimensional right A-linear space assigned an A¥-correlation, where
y is some anti-involution of 2K. One speaks of the A¥-correlated space
(X, &), where € is the assigned A¥-correlation.

Let (X, &) and (Y, n) be correlated A-spaces. Then a correlated map
t: (X, &) =(Y, n) is a (right) A%linear map, where « is an automorphism
of A, such that, for all g, b € X,

t(a)"t(b) = (a*b)",

an invertible map of this type being a correlated isomorphism. If such an
isomorphism exists then the correlated spaces are said to be equivalent,
X, = (Y, n).

Recall also that two anti-automorphisms of A are said to be similar if
there exists an automorphism o of A such that ey = ya.

The next proposition generalises several propositions of previous chap-
ters.

100
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Proposition 13.1 Let & be an A¥-correlation on a right A-linear space
X and let y be any anti-automorphism of A similar to . Then there
exist a right A-linear space Y and an A*-correlation n on Y such that
(Y, n) = (X, &)

Proof Since x and y are similar, there exists an automorphism « of 4
such that ap = yo. Let Y = X®, where X* consists of the set X with
addition defined as before, but with a new scalar multiplication, namely,

1

X* X A—- X% (x, > xA¥,
and let 4 : Y — YL be defined, for all a, b € Y, by the formula
a'b = (a*b).
The image of 5 is genuinely in YL since, for any u € A,
d'(bu) = @by ) = (@*b)*p.
Moreover, for any A € A,
@' Yb = (a2 )¥b)* = (A* a*b)* = Ha®h,

since y = awa ™. That is, n is A¥-linear.
Finally, the set identity (X,&)—(Y, n) is a correlated isomorphism,
since it is a semi-linear isomorphism and, from its very definition,

a'b = (a*b)a, for all a, b € X.
|

The adjoint t* of a linear map t between correlated spaces (X, &) and
(Y, n) is the map &~ 1tly : Y — X, and is such that, forallae X, b€ Y,

b't(a) = t'(b)*a,

the adjoint of a linear map u : X — X with respect to ¢ being denoted
by uf. The map u is said to be self-adjoint if u* = u and skew-adjoint
if 4 = —u. The real linear subspaces {u € EndX : u* = u} and
{u € EndX : uf = —u} of the real linear space End X = L(X, X) will
be denoted by End (X, &) and End_(X, &), respectively.

Proposition 13.2 Let & be an irreducible reflexive correlation on a finite-
dimensional right A-linear space X of dimension > 1. Then the map
End X - End X; t — t° is a real algebra anti-involution, equivalent cor-
relations inducing the same anti-involution of End X.
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Proposition 13.3 Let (X, &) and (Y, n) be non-degenerate finite-dimen-
sional A¥-correlated spaces. Then an A-linear map t : (X, &)—=(Y, n) is
correlated if and only if t" t = 1x, where t is the adjoint of t with respect
to & and n.

Corollary 134 Let (X, &) and (Y, n) be as in Proposition 13.3. Then any
correlated map t . (X, &) —(Y, n) is injective.

Corollary 135 Let (X, &) be as in Proposition 13.3 and let t € End X.
Then t is a correlated automorphism of (X, £) if and only if t*t = 1.

The final proposition in this section will be used in the construction of
charts on quadric Grassmannians in Chapter 14.

Proposition 13.6 Let (X, &) and (Y, n) be as in Proposition 13.3, and
suppose, further, that ¢ and n are each symmetric or skew. Then, for
anyt € L(X, Y), (t't)* = +t°t, the + sign applying if & and n are both
symmetric or both skew, and the — sign if one is symmetric and the other
skew.

The ten product types

The following theorem combines many earlier results.

Theorem 13.7 Let & be an irreducible correlation on a right A-linear space
of finite dimension > 1, and therefore equivalent to a symmetric or skew
correlation. Then ¢ is equivalent to one of the following ten types, these
being mutually exclusive.

a symmetric R-correlation;

a symmetric, or equivalently a skew, 2R%-correlation;
a skew R-correlation;

a skew C-correlation;

a skew H- or equivalently a symmetric H-correlation;
a skew, or equivalently a symmetric, *H' -correlation;
a symmetric H-, or equivalently a skew, H-correlation;
a symmetric C-correlation;

a symmetric, or equivalently a skew, C-correlation;

a symmetric, or equivalently a skew, *C’ -correlation.

O 00 AWV hAWN-=O
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Explicitly this combines Propositions 7.11, 104, 10.5, 12.5 and 13.1 and
Propositions 6.1. 7.13, 10.7 and 12.7. The logic behind the coding of the
ten types listed in the theorem will be explained later.

Theorem 13.8 follows at once from earlier work.

Theorem 13.8 Let X be a finite-dimensional right K- or *K-linear space.
Then any irreducible anti-involution a of the real algebra End X is rep-
resentable as the adjoint anti-involution induced by a symmetric or skew
correlation on X.

By Theorem 13.7 there are ten cases. In each of these there is a family
of groups of correlated automorphisms analogous to the orthogonal
groups. These are known as the classical groups. In a later chapter
(Chapter 22) we shall show that they are all Lie groups, groups that are
also differentiable manifolds, the group product being smooth. As such
each has a real dimension. What we then prove is that for the group
G = {t € A(n) : t*t = 1} the dimension is equal to the dimension of
G={t€A(n): t* +t =0} as a real vector space.

First we summarise here the explicit anti-involutions for each type.
The notations are all as before, with the additional convention that, if,
for some number n, a € K(n) and if i is any anti-involution of K, then
a¥ denotes the element of K(n) whose matrix is obtained from the matrix
of a by applying the anti-involution g to each term of the matrix. The
map a¥* is then the transpose of a¥.

Table 13.9
X (X,8) teEndX t¢
oy
K’ (K¥ (=K(pjzor H) f w .
& -

K7 K (i=Rl,(€orﬁ) (Z Z) (_; g‘)
K" x K wi (5 2) (o)
K" x K wi  (vi) (v )

< e () ()

We are now in a position to list the classical groups.
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Table 13.10 The ten families of classical groups, with their real dimensions,
are as follows, where n=p+q:

Code Group Dimension
0 O(p,q;R) or O(p,q), with O(n) = O(0, n) %n(n -1
1 GL(n;R) n?

2 Sp(2n;R) n(2n+ 1)
3 Sp(2n;C) 2n2n+1)
4 Sp(p,q;H) or Sp(p,q), with Sp(n) = Sp(0,n) n(2n+1)
5 GL(n;H) an?

6 O(n; H) n2n—1)
7 O(n;C) nin—1)

8 U(p,q), with U(n) = U(0,n) n?

9 GL(n;C) 2n?,

the subgroup consisting of all elements of the group of determinant 1 in
each case being as follows:

Code  Group Dimension
0 SO(p,q;R) or SO(p,q), with SO(n) =S0(0,n) inn—1)
1 SL(n;R) n?—1
2 Sp(2n;R) n2n+1)
3 Sp(2n;C) 2n(2n+1)
4 Sp(p,q;H) or Sp(p,q), with Sp(n) = Sp(0,n) n(2n+1)
5 SL(n;H) an? —1
6 SO(n;H) n(2n—1)
7 S0(n;C) nin—1)

8 SU(p,q), with SU(n) = SU(O,n) n”—1
9 SL(n;C) 2n? =2,

Note that the three families of general linear groups in this context all
turn up as ‘unitary’ groups. In the simplest case, that of a symmetric >R°
form, the elements of the group preserving the form actually occur as

matrices of the form
a 0
0 (af)—l

where a is any invertible m x m matrix and a* denotes its transpose, the
group in this way being isomorphic to the general linear group GL(m;R).
In the skew real case or in any of the complex or quaternionic cases the
automorphism in the bottom right-hand slot may be different, but that
is irrelevant to the nature of the group.
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Complexification

There are two distinct complexifications of real algebras furnished with
an anti-involution, according to whether the algebra of complex numbers
is assigned the identity or conjugation as (anti-)involution. In the tables
of the following theorem we use the code numbers for the various types
that were introduced in Theorem 13.7.

Theorem 13.11 Let X be a finite-dimensional right K- or 2K-linear space,
where K =R, C or H, and let o be an anti-involution of the real algebra
End X of type m, where 0 < m < 9. Then the induced anti-involution of
the real algebra End X ® C restricting to o on End X and to the identity
on C is of the type given by the following table:

012 3456 7 89
79323397127 91229,

while the induced anti-involution of the real algebra End X ® C restricting
to o on End X and to conjugation on C is of the type given by the following
table:
0123435
898989
Proof None of these are difficult to verify, if one has the canonical forms
of Table 13.9 in mind. Indeed the cases in which K = R are immediate.
For the cases in which K = H the argument is a mild generalisation of
Proposition 11.12, while in the cases in which K = C the argument is a
mild generalisation of Proposition 11.13.

As an example consider the correlated space H' of type 4, inducing

the anti-involution ¢ — ' of H(n). If each entry ¢ = z + jw is rep-

resented by the 2 x 2 complex matrix ; _g ) , Wwith g =z —jw

zZw
—-w
represented in block form as an element of C(n)(2) = C(2n), namely

( z -w ) , where Z, W € C(n), mapped by the anti-involution to the

represented by the matrix , then the matrix of ¢t may be

w V4

—Z—a' R TAd
matrix ( we zt ) , in accordance with both the anti-involutions of

At -t R
C(2n),(Z 2).-.(_‘;: Zf)oftype3and(z 2)._.(‘; 57’1)
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of type 8, the first being appropriate if the (anti)-involution on C is the
identity and the second if it is conjugation.

By contrast, the anti-involution H(n)—H(n); t +— ¢, of type 6,

zZ -w VAR AT N .
transforms to ( W A ) — ( W 7 ) , In accord with both

T T

the anti-involutions of C(2n), (Z 2) — (‘; Z, ) of type 7 and

ac d —¢
( b d ) — ( F 7 ) of type 8, the latter being a different version

of type 8 from that above, but type 8 nevertheless, the first again being
appropriate if the (anti)-involution on C is the identity and the second if
it is conjugation. O

For completeness’ sake and for future reference we also give the
following analogue of Theorem 13.11 involving tensoring by *R.

Theorem 13.12 Let X be a finite-dimensional right K- or *K-linear space,
where K =R, C or H, and let o be an anti-involution of the real algebra
End X of type m, where 0 < m < 9. Then the induced anti-involution of
the real algebra End X ® 2R restricting to o on End X and to swap on 2R
is of the type given by the following table:

0 1234 56
1 55

The reason for separating off cases 8 and 9 from the others in these
two theorems will become apparent when we come to applications in a
later chapter (Chapter 17).

Quasi-spheres

There are analogues of the unit sphere S” in R**! for all non-degenerate
finite-dimensional correlated spaces. Suppose first that (X, &) is a sym-
metric correlated space Then

FX, ) ={xeX: xx=1}

is defined to be the unit quasi-sphere in (X, &), with #(R™1) = §”, while
P(C") and #(H™") are identifiable in an obvious way with $2"+! and
S4n+3 respectively, for any n.
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Note also that, for (X, &) =2K"*, with K =R, C or H,

FX, € = {xe? K xlx=1}
= {x 2K : (Xixg, X5x1) = (1, 1)}
= {xe?K"!: X'x =1},
since Xjxo = 1 if and only if X§x; = 1.
A slightly different definition is necessary in the essentially skew cases.
The appropriate definition is

PEE)={(x,y) € KPP : x-y=1},

where - denotes the standard product on Ksp, or, equivalently,

(K3 )—{(bd> (K")z"z.a-d—b-c=1},

where - denotes the standard scalar product on K”, K being either R or
C.
The verification of the following theorem is a straightforward check!

Theorem 13.13 For any p, g, n let the correlated spaces RP4+1, Cr+1 C” q“,
H™, Hpat1, 2R+ 20m+ 2+, R2H2, €242 be tdenttﬁed with RP4 x
R, C"xC, C™ xC, H" xH, H?4 xH, 2R" xR, 2C" x2C, 2H" x*H, RZxRZ,

CIn x C2,, respectively, in the obvious ways. Then the pairs of maps
o(p,9) — O, q+1) — FLRMH,
SO(p,q9) — SO(p,q+1) — SR, p+q>0,
on;C) — 0O(n+1,C) — F(C),
SO(n;C) — SO(n+1,C — LRMT), n>0,
Up g — Up g+l — ST,
SUp, @) — SUpq+1) — ), p+q>0,
om;H — Om+1;H) — LHM,
Spp,q) — Spp.g+1) — @,
GL(n;R) — GL(n+1;R) — Z(R™),
SL(n;R) — SL(n+1;R) — ZLCR™), n>0,
GL(n;C) — GL(n+1;C) — ZL(C™,
SL(n;C) — SL(n+1;C) — ZL(C™),
GLn; H) — GL(n+1;H) — &CH™),
SLin; H) — SL(n+1;H) — SCH™),
Sp2n; R) — Spn+2;R) — FREH),
Sp(2n; C) — Sp(2n+2;C) — y(c2"+2)
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are each left-coset exact (Chapter 3), the first map in each case being the

injection s+ and the second being, in all but the last two cases,

s 0
0 1)
the map t — t(0, 1), the last column of t, and, in the last two cases, the
map t— (t(0, (1, 0)), ¢(0, (0, 1))), the last two columns of t.

Note, in particular, the left-coset exact pairs of maps

o) — O(m+1) — Sn,

SO(n) — SO(n+1) — 8", n>0,
Un) — Umnp+1) — §¥H,

SU(m — SU@n+1) — ST >0,
Sp(n) — Sp(n+1) — S4H3,

For applications of Theorem 13.13 see Corollary 22.38 and Corol-
lary 22.40.

Witt decompositions

The Witt construction of Proposition 5.25 generalises to each of the ten
classes of correlated space as follows.

Proposition 13.14 Let (X, &) be a non-degenerate irreducible finite-dimen-
sional symmetric or skew A¥-correlated space, and suppose that W is a one-
dimensional null subspace of X. Then there exists another one-dimensional
null subspace W' distinct from W such that the plane spanned by W and
W' is, respectively, a hyperbolic or symplectic A¥-plane, that is, isomorphic
to (A®)}, or to (AY)Z,

Proof In the argument which follows, the upper of two alternative signs
refers to the symmetric case and the lower to the skew case.

Let w be a regular element of W. Since X is non-degenerate there
exists, by Proposition 12.12 or 12.13, an element x € X such that wéx = 1.
Then, for any 4 € A,

X+ wAi(x+wi)=xx+ 1% + 4,

this being 0 if 1 = Fix%x, since x*x = +(xx)®. Let w' = x F Jwxéx.
Then wéw' = 1, w®w = %1 and w*w' = 0. Now let W' = A{w'} be
a 2K-line in the 2K case, since w*w = +1(= +(1, 1)). Then the plane
spanned by W and W' is a hyperbolic or symplectic A¥-plane. O
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Corollary 13.15 Let W be a null subspace of a non-degenerate irreducible
finite-dimensional symmetric or skew A¥-correlated space X. Then there
exists a null subspace W' of X such that X =W & W' & (W & W')*.

Such a decomposition of X will be called a Witt decomposition of X
with respect to the null subspace W.

Corollary 13.16 Let (X, &) be a non-degenerate irreducible symmetric or
skew finite-dimensional A¥-correlated space. Then there is a unique number
k such that X is isomorphic either to (A¥)% x Y in the symmetric case, or
to (A"’)fg x Y in the skew case, where in either case Y is a subspace of X
admitting no non-zero null subspace.

The number k is the (Witt) index of the correlated space (X, &). It is
the dimension of the null space of greatest dimension in (X, £).

Proposition 13.17 The index of a non-degenerate finite-dimensional A¥-
correlated space (X, &) is at most half the dimension of X.

Proposition 13.18 The correlated spaces R™*, R2, C*, C*"¥1, c

c2, A2, |32 B (2K9)2 and (PK¥)*H all have index n for any

non-negative integers n and k.
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Quadric Grassmannians

The central objects of study in this chapter are the quadric Grassman-
nians of finite-dimensional correlated spaces. Particular topics include
parabolic charts on a quadric Grassmannian and various coset space
representations of quadric Grassmannians.

There is no attempt to be exhaustive. The purpose of the chapter is to
provide a fund of illustrative examples.

All linear spaces will be finite-dimensional linear spaces over A = K
or 2K, where K = R, C or H. On a first reading one should assume
that A = R or C and that the anti-involution v is the identity, ignoring
references to the more complicated cases.

We start by considering ordinary Grassmannians of linear spaces.

Grassmannians

Let X be a right A-linear space of dimension n. Then, for any k, the set
%1(X) of linear subspaces of X of dimension k over A is the Grassmannian
of linear k-planes in X, In the case that A is the field of real numbers R
there are also the Grassmannians %; (X) of oriented linear k-planes in X.

An important example is the Grassmannian %;(X) of lines in X
through 0, also called the projective space of the linear space X. The
projective space G;(K"*!) is also denoted by KP", and said to be n-
dimensional. A zero-dimensional projective space is called a projective
point, a one-dimensional projective space is called a projective line and a
two-dimensional projective space is called a projective plane. Each point
of the projective space #%(X) of a linear space X is a line through 0
in X, this line being determined by any one of its points x other than
0. The line, or projective point, K{x} will also be denoted by [x]. For
example, [x, y] denotes a point of KP?, namely the line through 0 and

110
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(x, ). (Confusion here with the closed intervals of R, which are similarly
denoted, is most unlikely in practice.)

Let X be a finite-dimensional K-linear space and let x € X\{0}. Then
we denote by K{x} the linear subspace of X dimension 1 spanned by x.
The map

X\{0} - %1(X); x— [x]

is called the Hopf map over the projective space 4;(X).
Various subsets of the Grassmannian %,(X) may be regarded in a
natural way as linear spaces.

Proposition 14.1 For any linear subspace W of X of dimension k, any
complementary linear subspace Y of X of codimension k and any linear
mapt: W —Y, grapht is an element of %r(X).

The injective map L(W,Y)— %(X); t — grapht will be called a
standard chart on %;(X).

A standard atlas on %, (X) is a set of standard charts on %;(X) such
that every point of %, (X) is in the image of at least one chart, the
dimension of %,(X) being defined to be the dimension over A of any of
the linear spaces L(W, Y), namely k(n — k), where n = dim X.

Example 14.2 The maps
K—KP!; x> [x, 1] and y— [1, y]
form a standard atlas for KP!.

That is KP! may be thought of simply as the union of two copies of
the field K glued together by the map K >— K; x+— x~1. Only one point
of the second copy of K fails to correspond to a point of the first. This
point [1, 0] is often denoted by co and called the point at infinity on the
projective line. Every other point [x, y] of KP! is represented by a unique
point x y~! in the first copy of K. When we are using this representation
of KP! we shall simply write K U {c0} in place of KP!.

Example 14.3 The maps
K> >KP% (x, )= [x, p, 1], (%, 2 [x, 1, 2] and (3, 2) > [1, p, 2]
form a standard atlas for KP2.

As was the case with KP! it is often convenient in working with KP2
to regard the first of these charts as standard and to regard all the points
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not lying in its image as lying at infinity. Observe that the set of points
then lying at infinity is a projective line, namely the projective space of
the plane {(x, y, z) € K> : z =0} in K.

Quadric Grassmannians

Now let & be an irreducible symmetric or skew correlation on the right
A-linear space X. The kth quadric Grassmannian of the correlated
space is, by definition, the subset A" (X, &) of %x(X) consisting of the
k-dimensional null subspaces of (X, &).

Proposition 14.4 Let ¢ be such a correlation on X and let n be any correla-
tion equivalent to &. Then, for each k, /' 1(X, 1) = A (X, ). In particular,
N X, —=&) = N(X, &), for each k.

The inverse image of A" (X, &) by any one of the standard charts
of 4;(X) will be called an affine form of & k(X, &) or simply an affine
quadric Grassmannian. We shall mainly be concerned with the case when
¢ is non-degenerate. In this case the dimension of a null subspace is at
most half the dimension of X.

When (X, £) is a non-degenerate neutral space, necessarily of even di-
mension, null subspaces of half the dimension of X exist. Such subspaces
will be termed semi-neutral (or, when (X,¢) = R or C2, Lagrangian
(Arnol'd (1974)) subspaces) and the set of semi-neutral subspaces of
(X, &) will be called a semi-neutral quadric Grassmannian,

There are null lines in (X,¢) unless (X, ) is positive- or negative-
definite. The subset 4"1(X, &) of the projective space %1(X) is called the
projective quadric of (X, &).

A line W in X is null with respect to the correlation ¢ on X, or,
equivalently, is a point of the projective quadric, if and only if, for every
x € W, x*x = 0. This equation is frequently referred to as the equation
of the quadric /1(X,¢&).

Just as the elements of %,(X) may, when k > 1, be interpreted as
(k — 1)-dimensional projective subspaces of the projective space %;(X)
rather than as k-dimensional linear subspaces of X, so the elements
of &1 (X,&) may, when k > 1, be interpreted as (k — 1)-dimensional
projective spaces lying on the projective quadric A"y(X, &) rather than
as k-dimensional null subspaces of (X, ). We shall refer to this as the
projective interpretation of the quadric Grassmannians.
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When (X, &) is isomorphic either to Rg; or to ng, every line in (X, &) is
null. In these cases, therefore, the first interesting quadric Grassmannian
is not A1(X, &) but A (X, ), the set of null planes in (X, £). This set
is usually called the (projective) line complex of (X, &), the terminology
reflecting the projective rather than the linear interpretation of A"5(X, &).

See also the remarks preceding Proposition 10.13.

Grassmannians as coset spaces

Proposition 14.5 Let R" be identified with R* x R"*. Then the map f :
O(R™) > % (R"); t — t(R* x {0}) is surjective, its fibres being the left
cosets in O(R™) of the subgroup O(R¥) x O(R™*).

Proof With R” identified with R* x R"*, any linear map ¢ : R" - R" is of
the form ( Z Z ), where a € L(R¥,R¥), b € L(R*,R**), c € L(R"*,R¥)

and d € L(R"* R"*). Since the first k columns of the matrix span
t(R* x {0}), t(Rk x {0}) = R* x {0} if and only if b = 0. However, if
t is orthogonal with b = 0, then ¢ also is zero, since any two columns
of the matrix are mutually orthogonal. The subgroup O(R¥) x O(R"*),

a0 ) € O(R* x R"*), is therefore the fibre of f over

consisting of all ( 0 d

Rk x {0}.

The map f is surjective by Proposition 52. This follows since any
element of %, (R") is a non-degenerate subspace of R"” and so has an
orthonormal basis that extends to an orthonormal basis for the whole of
R".

Finally, if ¢t and u € O(R") are such that t(R* x {0}) = u(R* x {0}),
then (u~'t)(R* x {0}) = R* x {0}, from which it follows that the fibres of
the map f are left cosets in O(R") of the subgroup O(R*) x O(R"*). O

Accordingly the pair of maps O(k) x O(n — k) —= O(n) -1» G, R is
left-coset exact, and the induced bijection

0(n)/(0(k) x O(n — k)) = %(R")

is a coset space representation of % (R").
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Proposition 14.6 For each finite n, k, with k < n, there are coset space
representations

Un)/(Uk) x U(n—k)) — 4(C"),
Sp(n)/(Sp(k) x Sp(n —k)) — Fi(H"),
SO(n)/(SO(k) x SO(n—k)) — %} R"),

analogous to the coset space representation
O(n)/(0Ok) x O(n—k)) — %R

constructed in Proposition 14.5.

Charts on quadric Grassmannians

Let (X, £) be any non-degenerate irreducible symmetric or skew AY-
correlated space, and consider the quadric Grassmannian A4 (X, &).

By Corollary 13.15 there is, for any W € A(X, &), a Witt decomposi-
tion W@ W' ®Z of X, where W’ € A/ (X, &) and Z = (W & W')*. There
are, moreover, linear isomorphisms A* — W and A* — W' such that the
product on X induced by ¢ is given with respect to these isomorphisms
by the formula

(@b, o), V,d)y=b"d +a"b + ¢,

where 7 is the (symmetric) correlation on (A¥)* and ( is the correlation
induced on Z by &, and where X has been identified with W x W’ x Z
to simplify notations.

Both here and in the subsequent discussion, where there is a choice of
sign the upper sign applies when ¢ (and therefore {) is symmetric and
the lower sign when ¢ (and () is skew.

Nowlet Y = W & Z = W x Z and consider the standard chart on
Gi(X),

L(W, Y)—> %.(X); (s, t)— graph(s, t).
The inverse image by this chart of the quadric Grassmannian A4 (X, &)
is given by the following proposition.
Proposition 14.7 Let (s, t) € L(W, Y), the notations and sign conventions
being those just introduced. Then
graph(s, t) € /(X, E) s+ s+t =0,

where t* is the adjoint of T with respect to the correlations n on A* and
{onZ.
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In particular, when Z = {0}, that is, when ¥ (X, &) is semi-neutral, the
counterimage of N (X, &) by the chart

L(W, Y)—> %(X); (s, t)— graph(s, t)

is a real linear subspace of its source.

Proof Foralla,be W,
(a, s(a), @)D, s), (b)) = s(a)'b+ a"s(b) + t(a)t(b)

(s(a) 1 s"(a) + " t(a))"b

by the definition of the adjoint preceding Proposition 13.2. Therefore
graph(s, t) € # (X, §) st 5"+t =0.

The second part of the proposition follows from the remark that
End. (4%, #) and End_(A¥, ) are real linear subspaces of End(4*), while
t =0, when Z = {0}. O

Proposition 14.8 Let the notations be as above. Then the map
f: Endg(4*, n) x L(A*, Z) > L(AY, Y); (5, t) > (s— 167, ¢)

is injective, with image the affine form of Aw(X, &) in L(A%, Y)
(=L(W,Y)).

Proof That the map f is injective is obvious. That its image is as
stated follows from the fact that, for any t € L(A%, Z), (" t)" = +t" ¢, by
Proposition 13.6. Therefore, for any (s, t),

=ntis-iry+ce=0.

That is, the image of f is a subset of A (X, &), by Proposition 14.7.
Conversely, if graph(s, ¢') € A (X, &), let s = + 1" ¢ and let t = ¢’
Then s+s" = 0; so s € Endg (A%, n) and ¢t € L(A%, Z), while s’ =s—1¢"¢
and ¢ =t.

That is, the affine form of A, (X, &) is a subset of im f. The image of
f and the affine quadric Grassmannian coincide. O

The composite of the map f with the inclusion of im f in A4 (X, &)
will be called a parabolic chart on 4 (X, &) at W. A set of parabolic
charts on A (X, &), one at each point of Ak (X, €), will be called a
parabolic atlas for ¥ (X, &).
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Quadric Grassmannians as coset spaces

Coset space representations analogous to those of Proposition 14.6 exist
for each of the quadric Grassmannians.

We begin by considering a particular case, the semi-neutral Grassman-
nian A ,(CZ) of the neutral C-correlated space CZ.

Proposition 14.9 There exists a bijection
0(2n)/U(n)— A n(C),

where O(2n)/U(n) denotes the set of left cosets in O(2n) of the standard
image of U(n) in O(2n).

Proof The bijection is constructed as follows.

The linear space underlying the correlated space Ci} is C* x C,
and this same linear space also underlies the positive-definite correlated
space C' x C'. Any linear map ¢ : C" x C"— C" x C" that respects

both correlations is of the form (Z l‘_;), with a'h + b'a = 0 and

@a =Dbb =1, for, by Table 13.9, the respective adjoints of any such

ac d c* a T
mapt—(b d)are(bl al)and(l—)f (—f),andtheseareequal

if and only if d = @ and ¢ = b. By Proposition 11.15 such a map may be
identified with an element of O(2n) or, when b = 0, with an element of
U(n), the injection U(n) — O(2n) being the standard one.

Suppose that W is any null subspace of CZ of dimension n. A
positive-definite orthonormal basis may be chosen for W as a subspace
of C" x C. Suppose this is done, and the basis elements arranged in

a ) Then W is

some order to form the columns of a 2n X n matrix ( b

the image of the null subspace C" x {0} by the map ( z l‘_; ) Moreover,

a'b + b'a = 0, since W is null for the hyperbolic correlation, while
@Ta+Db'b =1, since the basis chosen for W is orthonormal with respect
to the positive-definite correlation.

Now let f be the map

b ,
0(2n)—»m,,(cﬁ'.;;(z a)l—»lﬂl(Z).

The map is clearly surjective; so none of the fibres is null. Secondly,
fH(C" x {0}) = U(n). Finally, by an argument similar to that used in the



14 Quadric Grassmannians 117

proof of Proposition 14.5, the remaining fibres of f are the left cosets in
O(2n) of the subgroup U(n). O

Theorem 14.10 Let (X,&) = (AY)}} or (AY)2, for some n, where y is

irreducible. Then in each of the ten standard cases there is a coset space
representation on the semi-neutral Grassmannian A (X, &), as follows:

(O(n) x O(n))/O(n) —> N (R,
Um)/O(n) — N o(RED),
o@2n)/U(m) — N n(CE),
(Um) x Um)/U(n) — N oCip) = A u(Cop),
Sp(n)/U(n) —> N n(C2),
UQn)/Sp(n) — N o(F2) = A (FL),
(Sp(r) X Sp(n)/Sp(n) —> N W(2) = A(Hiy),
0(2n)/(0(n) x O(n)) —> A n(Ryp),
U@n/(Un) x U(m)) — A A(Ciy),
Sp(2n)/(Sp(r) X Sp(n)) —> N w(*Flgy).

Proof The third of these is the case considered in Proposition 14.9. The
details in each of the other cases follow the details of this case, but using
the appropriate part of Proposition 11.15. O

Cayley charts

The first of the cases listed in Theorem 14.10 merits further discussion in
view of the following remark.

Proposition 14.11 Let f be the map
0(n) x O(n) — O(n); (a, b)— ab™'.

Then the inverse image of the identity element of O(n) is the image of O(n)
by the injective group map

O(n)— 0O(n) x O(n); aw (a, a)
and the induced map
(0(n) x O(n))/0(n) — O(n)

is bijective.
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That is O(n) may be represented as the semi-neutral Grassmannian
A n(RZ). The charts on O(n) corresponding to the parabolic charts on
A n(RZ) will be called the Cayley charts on O(n). The following is an
independent account of this case.

Let (X, &) = R™ = R¥ and consider the quadric A" \(X, £). Its
equation may be taken to be either

x*x = y'y, where (x, y) € R" xR",
or u'v =0, where (4, v) € R" x R",

according to the isomorphism chosen, the two models being related, for
example, by the equations

u=x+y, v=-x+y.

Now any n-dimensional subspace of R" x R” may be represented as
the image of an injective linear map

(a,b)=(Z) . R"—R" xR".

Proposition 14.12 The linear space A m(a, b), where (a, b) is an injective
element of L(R", R* x R"), is a null subspace of R™ if and only if a and
b are bijective and ba™! € O(n).

Proof =: Let im(a, b) € A ,(R™), let w € R* be such that x =
a(w) = 0 and let y = b(w). Since (x, y) belongs to an null subspace
of R*, x'x = y'y, but x = 0, so that y = 0. Since (q, b) is in-
jective, it follows that w = 0 and therefore that a is injective. So a
is bijective. Similarly, b is bijective. Since a is bijective, a~! exists;
so, for any (x, y) = (a(w) b(w)), y = ba~!(x). But y'y = x*x. So

ba! € O(n).
<=: Suppose that a and b are bijective; then, as above, for any
(x,y) € #m(a, b), y=bal(x). If also ba™! € O(n), then y*y = x'x.
O

Corollary 14.13 Any n-dimensional null subspace of R™" has an equation of
the form y = t(x), where t € O(n), and any n-plane with such an equation
is null.

Proposition 14.14 Any element of A ,(R™) may be represented as the
image of a linear map (a, b) : R" — R" xR" with a and b each orthogonal.
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This leads at once to the coset space representation for A4 ,(R™") whose
existence is asserted in Theorem 14.10.

Note that A47,(R™) = {grapht : t € O(n)} divides into two disjoint
classes, according as t preserves or reverses orientation.

So far we have considered the projective quadric A"j(R™"). We now
consider the quadric A#"1(RZ). Let s € End(R") be such that graphs €
A w(RE). Then, for all u, u’ € R",

s(u') u+u"s(u) =0,

implying that s+ s* = 0, that is, that s € End_(R"), this being a particular
case of Proposition 14.7.
Now graphs = m(l, s). We can transfer to A4"(R*") by the map

1 ( 1 -1 ) :R¥ - R™. Then the image of graphs in R™", namely

VAR
m (1 71)(5)-m(15):

is an element of A" ,(R™). So, by Proposition 14.12, or by Exercise 2.1,
1 — s is invertible. By Proposition 14.12 again, or by Exercise 2.2, the
product (1 +s)(1 —s) = 1 —s? = (1 —s)(1 + s). Moreover, since

(1—=5)=1+s=01+5" (Q+s)(1—-s""'esonm).

The following proposition sums this all up.

Proposition 14.15 For any s € End_(R"), the endomorphism 1 —s is invert-
ible, and (1+ s)(1 —s)~! € SO(n). Moreover, the map

End_(R") — SO(n); s (1 +s)(1 —s)!
is injective.

The map of Proposition 14.15 is the Cayley chart on SO(n) (or O(n))
at "1. For n > 2 it is not surjective even on SO(n). For example, when
n = 2 the rotation —?1 does not lie in its image.

The direct analogue of Proposition 14.15, with R in place of R" and

SO(p, q) in place of SO(n), is not true when both p and g are non-zero;

for ((1) (1) ) € End_(R™), but ( _i _i ) is not invertible. There is,

however, the following partial analogue.
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Proposition 14.16 For any s € End_(RP?) for which 1 — s is invertible,
(1 +5)(1 —s)7! € SO(p, q). Moreover, the map

End_(RP4) > SO(p, q); s+ (1 +s)(1 —s5)7!
is injective.

The map given in Proposition 14.16 is, by definition, the Cayley chart
on SO(p, q) or O(p, q)) at "1.

An entirely analogous discussion to that given above for the orthogonal
group O(n) can be given also for both the unitary group U(n) and the
symplectic group Sp(n).

It was remarked above that the semi-neutral Grassmannian A~ ,,(Rﬁ'l;)
divides into two parts, the parts corresponding to the orientations of

R". The semi-neutral Grassmannian .4",(CZ) divides similarly into two
parts, the parts corresponding, in the coset space representation

0(2n)/U(n) = A »(CRY),

to the two orientations of R?". (By Corollary 2.4, any element of U(n)
preserves the orientation of R?".)

Further coset space representations

Coset space representations analogous to those listed above for the semi-
neutral quadric Grassmannians exist for all the quadric Grassmannians.
The results are summarised in the following theorem.

Theorem 14.17 Let (X, &) be a non-degenerate irreducible symmetric or
skew A¥-correlated space of dimension n. Then, for each k, in each of
the ten standard cases, there is a coset space decomposition of the quadric
Grassmannian A (X &) as follows:

(O(p) x 0(q))/(O(k) x O(p— k) x O(q —k)) —> N k(RP4),
U(n)/(0(k) x Un—k)) — Hk(RE),
O(n)/(U(k) x O(n—2k)) — AH%(C"),

(Up) x U(q))/(Uk) x Ulp—k) x U(g—k)) — H((C™),
Sp(m)/(Uk) x Sp(n—k)) — H(CZ),
Un)/(Sp(k) x U(n—2k)) — Hw(H),

(Sp(p) x Sp(2))/(Sp(k) x Sp(p — k) x Sp(g —k)) — A W(H),
O(n)/(0(k) x O(k) x O(n—2k)) — A4(*R"),

Un)/(Utk) x U(k) x U(n—2k)) — 4T,

Sp(n)/(Sp(k) x Sp(k) x Sp(n— 2k)) — N (H).
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The resourceful reader will be able to supply the proof!

Certain of the cases where k = 1 are of especial interest, and we
conclude by considering several of these.

Consider first the real projective quadric A#"1(RP4), where p > 1 and
qg=1

Proposition 14.18 The map
S x 8471 — A 1(RP); (%, y) = R{(%, y)}
is surjective, the fibre over R{(x, y)} being the set {(x, y), (—x, —y)}.
That is, there is a bijection
(877! x $971) /80 — 41 (RP),
where the action of S° on $7~! x §97! is defined by the formula
(x, Y)(=1) = (=x, —y),

for all (x, y) € $P71 x §971,
This result is in accord with the representation of 47 j(RP4) given in
Theorem 14.17, in view of the familiar coset space representations

O(p)/O(p— 1) — 5P~ and 0(g)/0(g — 1) — §*~*

of Theorem 13.13.
The complex projective quadric A4"1(C") handles rather differently.

Lemma 14.19 For any finite n let z = x +iy € C", where x, y € R". Then
z® =0if and only if x? = y@ agnd x-y = 0.

Now let R(x, y) denote the oriented plane spanned by any orthonormal
pair (x, y) of elements of R”.

Proposition 14.20 For any orthonormal pair (x, y) of elements of R", C(x+
iy) € #1(C") and the map

4 (R") = A1(C"); R(x, y) > C{x + iy}
is well-defined and bijective.
The coset space representation

SO(n)/(SO(2) x SO(n— 2)) - %} (R™)
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given in Proposition 14.6 is in accord with the coset space representation
O(n)/(U(1) X O(n —2)) » A1(C")

given in Theorem 14.17, since SO(2) = ! = U(1).

Now consider A~ l(Rgg). In this case every line is null; so A~ 1(R§3)
coincides with %;(R?"), for which we already have a coset space rep-
resentation O(2n)/(0(1) x O(2n — 1)), equivalent, by Theorem 13.13, to
S2"-1/5% where the action of —1 on $*~! is the antipodal map. By The-
orem 14.17 there is also a representation U(n)/(0(1) x U(n—1)). This also
is equivalent to $2"~!/S° by the standard representation (Theorem 13.13
again)

U(n)/Um—1)— S,

Finally, the same holds for 4 l(Cfg), which coincides with %;(C?"),
for which we already have a representation U(n)/(U(1) x U(2n — 1)),
equivalent to S*~1/S!. Here the action of S! is right multiplication, $**~!
being identified with the quasi-sphere #(C™") in C?". Theorem 14.17
provides the alternative representation Sp(n)/(U(1) x Sp(n — 1)), also
equivalent to S*~1/S! via the standard representation (Theorem 13.13
yet again)

Sp(n)/Sp(n — 1) > 541,

Exercises
14.1 Show that the fibres of the restriction of the Hopf map

C? > CPY; (20, 21)  [20, 21]

to the sphere S* = {(z, z;) € C? : Zpzo + Z7z; = 1} are circles,
any two of which link. (Cf. Exercise 5.8 and Hopf (1931) and
(1935)).

14.2 Show that the fibres of the restriction of the Hopf map

H? > HP!; (g0, 1)~ [90, 1]

to the sphere S7 = {(q0, ;1) € H? : Qoqo + q1q1 = 1} are 3-
spheres, any two of which link.

143  Prove that the map RP3— SO(3), induced by the map p :
H" — S0(3); g — p, of Proposition 8.21, is bijective. In this
representation of SO(3) by RP3 how are the rotations of R?
about a specified axis through O represented?
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Clifford algebras

We saw in Chapter 8 how well-adapted the algebra of quaternions is
to the study of the groups SO(3) and SO(4). In either case the centre
of interest is a real quadratic space X, in the one case R and in the
other case R?, and in either case the real associative algebra H contains
both R and X as linear subspaces, there being an anti-involution, namely
conjugation, of the algebra, such that, for all x € X,

Xx = x@,
In the former case, when R? is identified with the subspace of pure
quaternions, this formula can also be written in the simpler form

xt=—x

In an analogous, but more elementary way, the real algebra of complex
numbers C may be used in the study of the group SO(2).

Our aim is to put these rather special cases into a wider context. To
keep the algebra simple, the emphasis is laid at first on generalising the
second of the two displayed formulae. It is shown that, for any finite-
dimensional real quadratic space X, there is a real associative algebra,
A say, with unit element 1, containing isomorphic copies of R and X as
linear subspaces in such a way that, for all x € X, x> = —x@®.

If the algebra A is also generated as a ring by the copies of R and
X or, equivalently, as a real algebra by {1} and X, then A4 is said to
be a (real) Clifford algebra for X (Clifford’s term (1876) was geometric
algebra). It is shown that such an algebra can be chosen so that there is
also on A4 an algebra anti-involution

A—> A, a— a

such that, for all x € X, x~ = —x.

123
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To simplify notations in the above definitions, R and X have been
identified with their copies in 4. More strictly, there are linear injections
o« :R—A4 and 1 : X — A4 such that, for all x € X,

(%)) = —o(x),

the unit element in A being o(1).

The minus sign in the formula x2 = —x@ can be a bit of a nuisance
at times. One could get rid of it at the outset, simply by replacing
the quadratic space X by its negative. However, it turns up anyway in
applications, and so we keep it in.

Proposition 15.1 Let A be a Clifford algebra for a real quadratic space X
and let W be a linear subspace of X. Then the subalgebra of A generated
by W is a Clifford algebra for W.

By Proposition 5.29 and Proposition 15.1 the existence of a Clifford
algebra for an arbitrary n-dimensional quadratic space X is implied by
the existence of a Clifford algebra for the neutral non-degenerate space
R™". Such an algebra is constructed below in Corollary 15.18. (An
alternative construction of a Clifford algebra for a real quadratic space
X depends on the prior construction of the (infinite-dimensional) tensor
algebra of X, regarded as a linear space. The Clifford algebra is then
defined as a quotient algebra of the tensor algebra, this definition being
that adopted by Chevalley (1954). For details see, for example, Atiyah,
Bott and Shapiro (1964).

Clifford algebras for low-dimensional spaces

Examples of Clifford algebras are easily given for low-dimensional non-
degenerate quadratic spaces.

For example, R itself is a Clifford algebra both for R%® and for R, C,
regarded as a real algebra, is a Clifford algebra for R®!, and H, regarded
as a real algebra, is a Clifford algebra for both R®? and R%3, it being
usual, in the former case, to identify R%? with the linear image in H of
{i, k}, while, in the latter case, R® has necessarily to be identified with
the linear image of {i, j, k}, the space of pure quaternions. Moreover, it
follows easily from Exercises 4.4 and 4.8 that R(2) is a Clifford algebra
for each of the spaces R%%, RM and R%1,
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It is provocative to arrange these examples in a table as follows.

Table 15.2 Clifford algebras for RP4, for low values of p and q

—p+q —4 =3 =2 -1 0 1 2 3 4

p+q
0 R
1 R C
2 R(2) RQ) H
3 ? R(2) ? H
4 ? ? ? ? ?

A complete table of Clifford algebras for the non-degenerate quadratic
spaces RP? is given later in this chapter as Table 15.27. As can be
seen from that table, one can always choose as Clifford algebra for such
a space the space of endomorphisms of some finite-dimensional linear
space over R, C, H, 2R or 2H, the endomorphism space being regarded
as a real algebra.

In Chapter 16 we examine in some detail how a Clifford algebra A
for a real quadratic space X may be used in the study of the group of
orthogonal automorphisms of X. Here we only make two preliminary
remarks.

Proposition 15.3 Let a, b € X. Then, in A,
a'b= —%(ab+ba).

In particular, a and b are mutually orthogonal if and only if a and b anti-
commute.

Proof

2a-b a‘a+b-b—(a—>b)-(a—>b)
= —a®—b*+(a—b)?

= —ab-—ba

O

Proposition 154 Let a € X. Then a is invertible in A if and only if it is
invertible with respect to the scalar product, when a~! = —a=V,
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Proof = : Let b=a"l,in A. Then a® b = —a’>b = —q, implying that
a®? # 0 and that b = a1,

< :Let b=a"™V = —(a®)!a. Then ba = —(a®)'a? = 1. Similarly,
ab=1. Thatis,b=a"l. a

Notice that the inverse in A of an element of X is also an element of
X.

Orthonormal subsets

One of the characteristic properties of a Clifford algebra may be re-
expressed in terms of an orthonormal basis as follows.

Proposition 155 Let X be a finite-dimensional real quadratic space with
an orthonormal basis {e; : 0 < i < n}, where n = dim X, and let A be a
real associative algebra with unit element 1 containing R and X as linear
subspaces. Then x? = —x@, for all x € X, if and only if

e,~2 = —e,(z), for all i,

eiej+eje; =0 for all distinct i and j.

This prompts the following definition.

An orthonormal subset of a real associative algebra 4 with unit element
1 is a linearly independent subset S of mutually anti-commuting elements
of A, the square a? of any element a € S being 0, 1 or —1.

Proposition 15.6 Let S be a subset of mutually anti-commuting elements
of the algebra A such that the square a* of any element a € S is 1 or —1.
Then S is an orthonormal subset in A

All that has to be verified is the linear independence of S.

An orthonormal subset S each of whose elements is invertible, as in
Proposition 15.6, is said to be non-degenerate. If p of the elements of S
have square +1 and if the remaining g have square —1, then § is said to

be of type (p, 9)-

Proposition 15.7 Let X be the linear image of an orthonormal subset S of
a real associative algebra A. Then there is a unique quadratic form on X
such that, for all a € S,a® = —a?, and, if S is of type (p, q), X with this
structure is isomorphic to RP2. If S also generates A, then A is a Clifford
algebra for the quadratic space X.



15 Clifford algebras 127

The dimension of a Clifford algebra

There is an obvious upper bound to the linear dimension of a Clifford
algebra for a finite-dimensional real quadratic space.

It is convenient first of all to introduce the following notation. Suppose
that (¢; : 0 < 1 < n) is an n-tuple of elements of an associative algebra
A. Then, for each naturally ordered subset I of n = {0, 1, ..,n— 1}, ¢;
will denote the product [],; e;, with ey = 1, where § denotes the empty
set. In particular, e, = [[;c, €

Proposition 15.8 Let A be a real associative algebra with unit element 1
(identified with 1 € R) and suppose that (e; : i € n) is an n-tuple of
elements of A generating A such that, for any i, j € n,

eejteje € R.

Then the set {e; : I < n} spans A linearly.

Corollary 15.9 Let A be a Clifford algebra for an n-dimensional quadratic
space X. Then dimA < 2"

The following theorem gives the complete set of possible values for
dim 4, when X is non-degenerate.

Theorem 15.10 Let A be a Clifford algebra for an n-dimensional non-
degenerate real quadratic space X of signature (p, q). Then dim A = 2" or
2L, the lower value being a possibility only if p — q — 1 is divisible by 4,
in which case n is odd and e, = +1 or —1 for any ordered orthonormal
basis (e; : i € n) for X.

Proof Let (e; : i € n) be an ordered orthonormal basis for X. Then, for
each I < n, ¢; is invertible in A and so is non-zero.

To prove that the set {¢; : I < n} is linearly independent, it is enough
to prove that if there are real numbers 1;, for each I < n, such that
> 1ca 41(er) = 0, then, for each J < n, 4; = 0. Since, for any J < n,

D ke =0 Aie)e)™ =0,
Icn Icn
thus making A; the coefficient of e, it is enough to prove that
> hier) =0= 1y =0.
Icn

Suppose, therefore, that ), _, Ar(e;) = 0. We assert that this implies
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either that iy = 0, or, if n is odd, that Ay + Ay(e,) = 0. This is because,
for each i € m and each I < n, ¢; either commutes or anti-commutes with
er. So

S hle)=0=> " kelee! = Lik(e) =0

Icn Icn Icn
where (;; = 1 or —1 according as e; commutes or anti-commutes with
er. It follows that ), A;(e;) = 0, with the summation over all I such that
e; commutes with each ¢;. Now there are at most only two such subsets
of m, namely @, since ey = 1, and, when n is odd, n itself. This proves the
assertion.

From this it follows that the subset {¢; : I < n,#I even} is linearly
independent in A for all n and that the subset {¢; : I < m} is linearly
independent for all even n. For n odd, either {¢; : I < n} is linearly
independent or e, is real.

To explore this last possibility further let n = p+ g = 2k + 1. Then
(en)? = (eu41)* = (—1)HE+D+a. But, since e, is real, (e,)? is positive.
Therefore (e,)? = 1, implying that k(2k + 1) + q is divisible by 2, that is,
4k? 4+ p+ 3q — 1, or, equivalently, p — g — 1, is divisible by 4. Conversely,
if p— g — 1 is divisible by 4, n is odd.

Finally, if ¢, = *1, n being odd, then, for each I < n with #i odd,
e = tey\. Since the subset {e; : I < n,#I even} is linearly independent
in 4, it follows in this case that dim 4 = 2"~1, O

The lower value of the dimension of a Clifford algebra of a non-
degenerate finite-dimensional real quadratic space does occur; for, as has
already been noted, R is a Clifford algebra for R and H is a Clifford
algebra for R%3,

Corollary 15.11 indicates how Theorem 15.10 is used in practice.

Corollary 15.11 Let A be a real associative algebra with an orthonormal
subset {e; :i € n} of type (p, q), where p+q = n. Then, if dimA =2""1 4
is a Clifford algebra for RP4 while, if dim A = 2" and if e, + L1, then A is
again a Clifford algebra for RP4, it being necessary to check that en #+ £1
only when p — q — 1 is divisible by 4.

For example, R(2) is now seen to be a Clifford algebra for R% simply
because dimR(2) = 22 and because the set {( 10 ) , ( 10 )} is

01 0 —1
an orthonormal subset of R(2) of type (2,0).

Proposition 15.12 The real algebra R is a Clifford algebra for R,
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Universal Clifford algebras

The special role played by a Clifford algebra of dimension 2", for an
n-dimensional real quadratic space X, is brought out by the following
theorem.

Theorem 15.13 Let A be a Clifford algebra for an n-dimensional real
quadratic space X, with dimA = 2", let B be a Clifford algebra for a
real quadratic space Y, and suppose that t : X — Y is an orthogonal map.
Then there is a unique algebra map t4 : A— B sending 14 to 1(g) and a
unique algebra-reversing map (t4) : A— B sending 1.4y to 1(g) such that
the diagrams

x Sy x Ly
Db L
A 5B A 4 B

commute.

Proof We construct t,4, the construction of (t4) being similar.

Let (¢; : i € n) be an ordered orthonormal basis for X. Then, if t4
exists, t4(er) = [ [ t(e:), for each non-null I < n, while t4(14)) = 1(5), by
hypothesis. Conversely, since the set {¢; : I < n} is a basis for 4, there is a
unique linear map t4 : A— B such that, for each I < n, ty(e;) = [];; t(e:).

x Ly
In particular, since, for each i € n,t4(¢;) = t(e;), the diagram l. l.
A 45 B

commutes. It only remains to check that ¢4 respects products, and for
this it is enough to check that, for any I, J < n,

ta((er)(es)) = ta(er)ta(es).

The verification is straightforward, if slightly tedious, and depends on
the fact that, since t is orthogonal, t(e;))> = e?, for any i € m, and
t(ej)t(e;) = —t(e;)t(e;), for any distinct i, j € n. The final details are left
as an exercise. O

Theorem 15.13 is amplified and extended in Theorem 15.32 in the
particular case that Y = X and B = A. Immediate corollaries include
the following,
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Corollary 15.14 Let A and B be 2"-dimensional Clifford algebras for an
n-dimensional real quadratic space X. Then A = B.

Corollary 15.15 Any Clifford algebra B for an n-dimensional quadratic
space X is isomorphic to some quotient of any given 2"-dimensional Clifford
algebra A for X.

Proof What has to be verified is that the map (1x)4 : A—»B is a
surjective algebra map. This verification is left as an exercise. O

A 2"-dimensional real Clifford algebra for an n-dimensional quadratic
space X is said to be a universal real Clifford algebra for X. Since
any two universal Clifford algebras for X are isomorphic, and since the
isomorphism between them is essentially unique, one often speaks loosely
of the universal Clifford algebra for X. The existence of such an algebra
for any X has, of course, still to be proved.

We shall denote the universal real Clifford algebra for the quadratic
space R” by R,,.

The construction of universal Clifford algebras

Corollary 15.11 may now be applied to the construction of universal
Clifford algebras for each non-degenerate quadratic space RP. The
following elementary proposition is used frequently.

Proposition 15.16 Let a and b be elements of an associative algebra A
with unit element 1. Then, if a and b commute, (ab)* = a®b?, so that, in
particular,
Z=b=-1 = (abp =1,
a?=—land ¥ =1 = (ab)’=-1,
a=p=1 = (@bp=1,

while, if a and b anti-commute, (ab)? = —a®b?, and
a@=p=-1 = (ab)=-1,
@=—landb* =1 = (abPl =1,
@=bp=1 = (ab)=-1
The first stage in the construction is to show how to construct the

universal Clifford algebra Rpi1441 for RP*L4H1 given R, ,, the universal
Clifford algebra for R?. This leads directly to the existence theorem.
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Proposition 15.17 Let X be an A-linear space, where A = K or 2K and
K =R, C or H, and let S be an orthonormal subset of End X of type
(p, q), generating End X as a real algebra. Then the set of matrices

a o 01 0 -1
{(5 2)eestol(V6)-(2 )}
is an orthonormal subset of End X? of type (p + 1,q + 1), generating
End X2 ®g R(2) as a real algebra.

Corollary 15.18 For each n, the endomorphism algebra R(2") is a universal
Clifford algebra for the neutral non-degenerate space R™. That is, Rp, =
R(2").

Proof By induction. The basis is that R is a universal Clifford algebra
for R%, and the step is Proposition 15.17. O

We return to Proposition 15.17 in Chapter 18.

Theorem 15.19 (Existence theorem.) Every finite-dimensional quadratic
space has a universal Clifford algebra.

Proof This follows at once from the remarks following Proposition 15.1,
from Proposition 15.8 and from Corollary 15.18. O

One might conjecture that, for any finite p, g, Ry, is isomorphic to
R,,. This is not quite the case, the true state of affairs being given by
the corollary to the next proposition.

Proposition 15.20 Let S be an orthonormal subset of type (p + 1,q), gen-
erating a real associative algebra A. Then, for any a € S with a*> = 1, the
set

{ba:be S\{a}}u{a}

is an orthonormal subset of type (q + 1, p) generating A.

Corollary 15.21 The universal Clifford algebras Rp.14 and Ryy1, are iso-
morphic.

Proposition 15.22 The universal Clifford algebra R, is isomorphic to R, C,
H, 2H, or H(2), according as ¢ =0, 1, 2, 3 or 4.
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Proof By Corollary 15.11 it is enough, in each case, to exhibit an ortho-
normal subset of the appropriate type with the product of its members,
in any order, not equal to 1 or —1, for each algebra has the correct real
dimension, namely 2". Appropriate orthonormal subsets are

0 for R, {i} for C, {i, k} for H,
{0 5) (0 5) (5 )} worm
(3 2003 3 (5 ) (2 ) s

Proposition 1523 Ry; = C, R3p = Ry = C® R(2) = C(2), while R3; =
R22 = R(4).

This completes the construction of the algebras R, g, for p+ g < 4.
Finally, here is a more sophisticated result, leading to the ‘periodicity
theorem’.

Proposition 1524 Let S = {e; : i € 4} be an orthonormal subset of type
(0, 4) of an associative algebra A with unit element 1 and let R be an
orthonormal subset of type (p, q) of A such that each element of S anti-
commutes with every element of R. Then there exists an orthonormal subset
R’ of type (p, q) such that each element of S commutes with every element
of R'. Conversely, the existence of R’ implies the existence of R.

Proof Leta = eq4 = egerezes and let R' = {ab : b € R}. Since a commutes
with every element of R and anti-commutes with every element of § and
since > = 1, it follows at once that R’ is of the required form. The
converse is similarly proved. O

Corollary 15.25 For all p, q,
Rp’q+4 = Rp,q ® R0,4 = H(2)'

For example, by Proposition 11.9,

Ros = CoH(Q) = CA4),

Ros = H®HQ2) = R(@),

Rp7 = 2H®HQ2) = 2R,
and Rgg = HQ)®HQ2) = R(16)
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Corollary 15.26 (The periodicity theorem.) For all finite p, q,

By putting together Propositions 15.22, 15.12, 15.17, and 15.20, and
these last two corollaries, we can construct any R,,. Table 15.27 shows
them all, for 0 < p,q < 7.

Table 15.27
q —_

p R C H 2H HQ2 C4 RSB RO

l 2R RQ2) C2 HQ) 2H2) H@#) C@B) R(6)

R(2) ’R(2) R4) C@) H@) 2H4) HE) C(16)

C2) R@4) R@4) R(8) C(8) H(8) Z2H() H(16)

H(2) C@#) R(8) 2R(8) R(16) C(16) H(16) H(16)

ZH(2) H@4) C(8) R(16) 2R(16) R(32) C(32) H(32)

H(4) 2H(4) H(8) C(16) R(32) R(32) R(64) C(64)

C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

The pattern from the top left to the bottom right of the table is derived
from Proposition 15.17, while the symmetry about the line with equation
—p + q = —1 is derived from Proposition 15.20. Squares like those in
Table 15.27 have already made a brief appearance at the end of Chap-
ter 11. There are clearly (non-unique) algebra injections Rpg = Rpy14
and Ry, — R, 411, for any p, g such that the squares commute.

Table 15.27 exhibits each of the universal Clifford algebras R, as
the real algebra of endomorphisms of a right A-linear space V of the
form A™, where A = R, C, H, 2R or ?H. This space is called the (real)
spinor space or space of (real) spinors of the orthogonal space RP4. It is
identifiable with a minimal left ideal of the algebra, and to that extent is
non-unique. However it can be proved that any two minimal left ideals
are equivalent, so that the slight ambiguity in the definition in practice
is unimportant.

Proposition 15.28 Let Ry, = A(m), according to Table 15.27 or its exten-
sion by Corollary 15.26. Then the representative in A(m) of any element of
the standard orthonormal basis for RP*4 is orthogonal with respect to the
standard positive-definite correlation on A™.

Proof This follows from Proposition 11.9 and Corollary 11.11, and its
truth, readily checked, for small values of p and gq. O
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When K is a double field (R or 2H), the K-linear spaces V(1, 0)
and V(0, 1) are called the (real) half-spinor spaces or spaces of (real)
half-spinors, the endomorphism algebra of either being a non-universal
Clifford algebra of the appropriate orthogonal space.

Complex Clifford algebras

The real field may be replaced throughout the above discussion by the
field of complex numbers C, and indeed by any commutative field,
though the case of characteristic 2 needs careful handling — we ignore
such matters here! The notation C, will denote the universal complex
Clifford algebra for C* unique up to isomorphism.

Proposition 15.29 For any finite p, q withn =p+q, C, Z Ry, O C, =
denoting a real algebra isomorphism.

Corollary 1530 For any finite k, Cy = C(2*) and Cy4q = 2C(2%).

The complex spinor and half-spinor spaces are defined analogously to
their real counterparts.

Superfields

A further generalisation of the concept of a Clifford algebra involves the
concept of a superfield. A superfield, L*, with fixed field K, consists of a
commutative algebra L with unit element 1 over a commutative field K
and an involution o of L, whose set of fixed points is the set of scalar
multiples of 1, identified as usual with K. (The algebra L need not be a
field.) Examples include R, € and 2R, each with fixed field R, and C and
2Ce, each with fixed field C, where in the latter two examples ¢ denotes
the swap involution.

Let X be a finite-dimensional quadratic space over a commutative field
K. Let L* be a superfield with fixed field K and let A be an associative
L-algebra with unit element, the algebra L being identified with the
subalgebra generated by L and the unit element. Then A is said to be an
L*-Clifford algebra for X if it contains X as a K-linear subspace in such
a way that, for all x € X, x@ = —x®, provided also that A4 is generated
as a ring by L and X or, equivalently, as an L-algebra by 1 and X.

All that has been said before about real Clifford algebras generalises
to L*-Clifford algebras also. The notations Cp, and *R}, ¢ Will denote the
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universal C- and >R-Clifford algebras for R4, and the notation 2C the
universal 2C-Clifford algebra for C”, for any finite p, g, n.

Proposition 15.31 Let L* be a superfield with fixed field K, let X be a K-
quadratic space and let A and B be universal K- and L*-Clifford algebras,
respectively, for X. Then, as K-algebras, B = 4 @ L.

Note that, as complex algebras, C,; and C, are isomorphic, for any
finite n, p, ¢ with n = p + ¢q. The detailed construction of the tables of
L*-Clifford algebras is left to the reader.

Involutions and anti-involutions

Certain involutions and anti-involutions of Clifford algebras play major
roles in the description of their structure. These arise as corollaries of the
following theorem which amplifies and extends Theorem 15.13 in various
ways, in the particular case that Y = X and B = 4.

Theorem 1532 Let A be a universal L*-Clifford algebra for a finite-
dimensional K-orthogonal space X, L* being a superfield with involution
o and fixed commutative field K. Then, for any orthogonal automorphism
t : X - X, there is a unique L-algebra automorphism t, : A — A, sending
any A € L to A, and a unique K-algebra anti-automorphism t4 : A— A,
sending any A to A%, such that the diagrams

X 5L x x 5L x
ll ll and ll ll
A 45 4 4 M4

commute. Moreover, (1x)4 = 14 and, for any t, u € O(X),
(ut)A =uU ty=u4ty.

If t is an orthogonal involution of X, then t, is an algebra involution of
A and t4 is an algebra anti-involution of A.

The involution of 4 induced by the orthogonal involution —1x will be
denoted by a+—> @ and called the main involution or the grade involution
of A. The anti-involutions of 4 induced by the orthogonal involutions 1x
and —1x will be denoted by a+— a and a+— a” and called, respectively,
reversion and conjugation, d” being called the reverse of a and a the
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conjugate of a. (The reason for preferring @ to @ and a™ to @ will become
apparent later.)

Of the two anti-involutions conjugation is the more important. Rever-
sion takes its name from the fact that the reverse of a product of a finite
number of elements of X is just their product in the reverse order.

For example, consider a = 1 + ¢g + e1e2 + ege1e2 € Roj3.

Then d=1—ey+ erer —egerer,
a=1+4ey+eze1 + erejeg = 1+ ¢y — eje2 — egere,
while a=1—¢y+ e;e; — erereg =1 — ey — e1e3 + epeses.

Proposition 1533 Let A be a universal L*-Clifford algebra for a finite-
dimensional K-quadratic space X, L* being a superfield with commutative
fixed field K. Then, for any a € A, a™ = (@) = a.

Proof Each of the three anti-involutions is the unique anti-involution of
A induced by —1y. O

Even Clifford algebras

Let A be a universal L*-Clifford algebra for a finite-dimensional K-
quadratic space X. By Proposition 1.6 the main involution induces a
direct sum decomposition A° ® A! of A4, where

A’={acA:d=a}and A'={ac 4:d=—da}.

Clearly A° is an L-subalgebra of A. This subalgebra is called the even
Clifford algebra for X. It is unique up to isomorphism. Any element
a € A may be uniquely expressed as the sum of its even part a® € A° and
its odd part a' € Al. For a = 1 + ¢ + eje3 + egerez, a® = 1 + eje; and
al = ey + egejer.

The even Clifford algebras for the non-degenerate real or complex
finite-dimensional quadratic spaces are determined by the next proposi-
tion.

Proposition 15.34 Let A be a universal L*-Clifford algebra for a finite-
dimensional K-quadratic space X, L* being a superfield with fixed field K,
and let S be an orthonormal basis for X of type (p, q). Then, for any
a € S, the set {ab : b € S\{a}} is an orthonormal subset of A° generating
A°, and of type (p, ¢ — 1) or (¢, p — 1), according as a* = —1 or 1. In

either case, moreover, the induced isomorphism of A® with the universal
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L*-Clifford algebra of a (p + q — 1)-dimensional quadratic space respects
conjugation, but not reversion.

Proof The first part is clear, by Proposition 15.16. For the last part
it is enough to consider generators and to remark that if a and b are
anti-commuting elements of an algebra sent to —a and —b, respectively,
by an anti-involution of the algebra, then, again by Proposition 15.16,
ab is sent to —ab. On the other hand, if a and b are sent to ¢ and b,
respectively, by the anti-involution, then ab is sent to —ab and not to
ab. O

Corollary 15.35 For any finite p, q, n,

Eg"“'l = Ep,q’ RO+l,q = l_‘“

Cp,q+l = CM’ ) C8+l,q = C,“,
CR) 1 = (R, CR )1y = CR)gp,
1 = G, and (C°)°,, = (CC),.

It follows from Corollary 15.35 in particular, that the table of the even
Clifford algebras Rg o> With p+¢g > 0, is, apart, from relabelling, the
same as Table 15.27, except that there is an additional line of entries
down the left-hand side matching the existing line of entries across the
top row. The symmetry about the main diagonal in the table of even
Clifford algebras expresses the fact that the even Clifford algebras of a
finite-dimensional non-degenerate quadratic space and of its negative are
isomorphic.

So far we have considered only universal Clifford algebras. The use-
fulness of the non-universal Clifford algebras is limited by the following
proposition.

Proposition 1536 Let A be a non-universal Clifford algebra for a non-
degenerate finite-dimensional quadratic space X. Then either 1y or —l1x
induces an anti-involution of A, but not both.

If 1x induces an anti-involution of A, we say that 4 is a Clifford
algebra for X with reversion, and, if —1x induces an antj-involution of
A, we say that A is a Clifford algebra for X with conjugation.

Proposition 15.37 The non-universal Clifford algebras for the quadratic
spaces RO%+3 hape conjugation, but not reversion, while those for the
quadratic spaces R¥+19 hape reversion, but not conjugation.
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15 Clifford algebras

Exercises

Let A be a Clifford algebra for a finite-dimensional null real, or
complex, quadratic space X such that, for some ordered basis
(ei i €n) for X, [];cq & # O. Prove that 4 is a universal Clifford
algebra for X. (Try first the case that n = dim X = 3.)

(The universal Clifford algebra, A X, for a finite-dimensional
linear space X, regarded as a null quadratic space by having
assigned to it the zero quadratic form, is called the exterior or
Grassmann algebra for X, Grassmann’s term being the extensive
algebra for X (Grassmann (1844)). The square of any element
of X in A X is 0 and any two elements of X anti-commute.)
Let X be a real or complex n-dimensional linear space and
let a be an element of A X expressible in terms of some basis
{e; : i € n} for X as a linear combination of k-fold products of
the e’s for some positive integer k. Show that if {f; : i € n} is
any other basis for X then a is a linear combination of k-fold
products of the f’s. Show by an example that the analogous
proposition is false for an element of a universal Clifford algebra
of a non-degenerate real or complex quadratic space.

Let X be as in Exercise 15.2. Verify that the set of elements
of A X expressible in terms of a basis {¢; : i € n} for X as
a linear combination of k-fold products of the ¢’s is a linear

space of dimension (:) where (:) is the coefficient of x* in
the polynomial (1 + x)". (This linear space, which is defined
by Exercise 15.2 independently of the choice of basis for X, is
denoted by A* X))

Let X be as in Exercise 15.2, let (a; : i € n) be a k-tuple of
elements of X, let (e; : i € n) be an ordered basis for X and let
t : X — X be the linear map sending ¢; to a;, for all i € n. Prove

that in A X

H a; = (det t) H ;.

ien icn
Let X be as in Exercise 15.2 and let (a; : i € k) be a k-tuple of
elements of X. Prove that the elements of (a; : i € k) are linearly
independent in X if and only if, in A X, [];ex ax # 0.
Let X be as in Exercise 15.2 and let (a; : i € k) and (b; : i € k)
be ordered sets of k linearly independent elements of X. Prove
that the k-dimensional linear subspaces of X spanned by these
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coincide if and only if ], b; is a non-zero scalar multiple of

Hiek a;.

(Consider first the case k = 2. In this case
aoar = boby = aparbo = 0,

from which it follows that by is linearly dependent on ap and
a;. It should now be easy to complete the argument, not only in
this case, but in the general case also.)
Construct an injective map %y (X) — {41(/\" X), where X is as in
Exercise 15.2.

(Use Exercise 15.6. This is the link between Grassmannians
and Grassmann algebras.)
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Spin groups

We turn to applications of Clifford algebras to groups of quadratic
automorphisms and rotation groups in particular. The letter X will
denote a finite-dimensional real quadratic space, whose elements will
be termed vectors, and A will normally denote a universal real Clifford
algebra for X — we shall make some remarks at the end about the case
where A is non-universal. For each x € X, x? = x"x = Xx = —x2.
Also, since A4 is universal, RN X = {0}. The subspace R & X of A will
be denoted by Y, the space of paravectors of X, and the letter y will
generally be reserved as notation for a paravector. The space Y will be

assigned the quadratic form
YR, y—y7y.

It is then the orthogonal direct sum of the quadratic spaces R and X. If
X = RP4 then Y = RPAH],

Clifford groups

Our first proposition singles out a certain subset of a universal Clifford
algebra A of a finite-dimensional real quadratic space X that turns out
to be a subgroup of 4.

Proposition 16.1 Let g be an invertible element of A such that, for each
x€ X, gxg ! € X. Then the map

pxg : X+ gxg!

Is an orthogonal automorphism of X.

140
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Proof For each x € X,
(pxg(x)? = (@2 Ngxg ' =gRg " gxg ! =%x = x?,

since Xx € R. So py, is an orthogonal map. Moreover, it is injective,
since g xg~! = 0 = x = 0 (this does not follow from the orthogonality
of px, if X is degenerate). Finally, since X is finite-dimensional, px,,
must also be surjective. O

The element g will be said to induce or represent the orthogonal
transformation px,, and the set of all such elements g will be denoted by
I['(X) or simply by I

Proposition 16.2 The subset I is a subgroup of A.

Proof The closure of I under multiplication is obvious. That I is also
closed with respect to inversion follows from the remark that, for any
g €T, the inverse of px, is pxg-1- Of course 1(4) € T. So I' is a group.

O

The group I is called the Clifford group (or Lipschitz group — see the
historical remarks following Theorem 18.9) for X in the Clifford algebra
A. Since the universal algebra A is uniquely defined up to isomorphism,
I is also uniquely defined up to isomorphism.

There are similar propositions concerning the action of 4 on the space
of paravectors Y =R & X.

Proposition 16.3 Let g be an invertible element of A such that, for each
y€Y,gyg l € Y. Then the map

Prg: y—gyE !

is an orthogonal automorphism of Y.

Proposition 164 The subset Q = {g€ A: y€ Y =>gygleY}isa
subgroup of A.

From now on we suppose that X is non-degenerate, and prove that in
this case every orthogonal automorphism of X is represented by an ele-
ment of I'. Recall that, by Theorem 5.15, every orthogonal automorphism
of X is the composite of a finite number of hyperplane reflections.

Proposition 16.5 Let a be an invertible element of X. Then a € T', and the
map px . is reflection in the hyperplane (R{a})*.
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Proof By Proposition 5.1, X = R{a} ® (R{a})*, so any point of X is
of the form Aa+ b, where 1 € R and b-a = 0. By Proposition 15.3,
ba = —ab. Therefore, since @ = —a,

pxa(Aa+b)=—a(Aa+b)al=—Aa+b.
Hence the result. O
The next proposition characterises the field of real numbers within the

algebra A.

Proposition 16.6 Let a € A be such that ax = xa, for all x € X, A being
a universal Clifford algebra for the finite-dimensional non-degenerate real
quadratic space X. Then a € R.

Proof Let a = a®+ a', where a° € A° and a' € A!. Then, since ax = x 3,

a®x=xd® and a' x = —xd',

for all x € X, in particular for each element ¢; of some orthonormai bz -
{e;: 0 <i<n} for X.

Now, by an argument used in the proof of Theorem 15.10, ® commutes
with each ¢; if and only if a® € R, and by a similar argument a' anti-
commutes with each ¢; if and only if a! = 0. So a € R. a
Theorem 16.7 With X as above, the map

px : I(X) = 0(X); g pxg

is a surjective group map with kernel R".
Proof To prove that px is a group map, let g, g’ € I. Then, for all
x € X,

e, — 1

Pxgg(x) = gg x(gg)
~1__
= gg'xg’ g

Pxg PXx ,g’(x)-

So pxge = pxg Pxg, Which is what had to be proved.

The surjectivity of px is an immediate corollary of Theorem 5.15 and
Proposition 16.5.

Finally, suppose that px, = px,, for g, g’ € I'. Then, for all x € X,

gxgl=g'x E’_l, implying that (g~1g')x = x(gf%’), and therefore that
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g 'g’ € R, by Proposition 16.6. Moreover, g~1g’ is invertible and is
therefore non-zero. Hence the result. O

We isolate part of this as a corollary.

Corollary 168 Any element g of the Clifford group I'(X) of a non-degen-
erate finite-dimensional real quadratic space X is representable as the prod-
uct of a finite number of elements of X.

An element g of I'(X) represents a rotation of X if and only if g
is the product of an even number of elements of X. The set of such
elements will be denoted by I'® = I'%(X). An element g of I" represents
an anti-rotation of X if and only if g is the product of an odd number of
elements of X. The set of such elements will be denoted by I'' = I''(X).
Clearly, I'® = I'n A° is a subgroup of T, while I'' =T"N AL,

Since, for any a € A%, @ = a, the rotation induced by an element g of
I is of the form

XoX; x—gxgL

Similarly, since, for any a € A!, @ = —a, the rotation induced by an
element g of T'! is of the form

XoX; x> —gxg L

An analogous discussion to that just given for the group I' can be given
for the subgroup Q of the universal Clifford algebra A for X consisting
of those invertible elements g of A4 such that, forallye Y, gygle Y.
However, the properties of this group are deducible directly from the
preceding discussion, by virtue of the following proposition.

The notations are as follows. As before, X denotes an n-dimensional
non-degenerate real quadratic space, of signature (p, g), say. This can
be considered as the subspace of RP*! consisting of those elements of
RP4+1 whose last co-ordinate, labelled the nth, is zero. The subalgebra
R, of Ry .1 generated by X is a universal Clifford algebra for X, as

also is the even Clifford algebra Rg’q +1» by the linear injection

0o .
X >R, 11 X Xey,

(See Proposition 15.34.) The linear space Y = R ® X is assigned the
quadratic form y+— y y.

Proposition 169 Let 0§ : Ry, —>Rg g+1 be the isomorphism of universal
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Clifford algebras induced, according to Theorem 15.13, by 1x. Then
(i) the map
u:YsRML 4 g(y)e!

is an orthogonal isomorphism,
(i) for any g € Q, 0(g) € T%(p, q + 1) and the diagram

y 2 v

oo ]

RPa+l 2% pea+l

commutes,
(iii) the map Q—-T%p,q+ 1); g 0(g) is a group isomorphism.

Proof
(i) Since 0 respects conjugation, and since e, e, = 1,

(0(y)e;')=yy, forany y € Y.

(ii) First observe that, for any g € R, g, 0(g)e, = e,0(g), for the
isomorphism 6 and the isomorphism g +— e, 8(g) ¢, ! agree on X.
Now let g € Q. Then, for any u(y) € R?4*! where y € Y,

0(g)(0(y) e, )0(g)™" = 0(g)0(»)0(Z) ' e,
= 0gyg e = upy(y).

So 6(g) € T%p, g + 1), and the diagram commutes.

(iii) The map is clearly a group map, since 8 is an algebra isomor-
phism. One proves that it is invertible by showing, by essentially
the same argument as in (ii), that, for any h € I%(p, ¢ + 1),
0 \meq

O

Corollary 16.10 The orthogonal transformations of Y represented by the
elements of Q are the rotations of Y.

Since conjugation, restricted to Y, is an anti-rotation of Y, the anti-
rotations of Y also are representable by elements of Q in a simple
manner.

It remains to make a few remarks about the non-universal case. We
suppose that 4 is a non-universal Clifford algebra for X (you might
have in mind H as a non-universal Clifford algebra for R%?). Since the
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main involution is not now defined, we cannot proceed exactly as before.
However in the case that we have just been discussing, g = g or —g, for
any g € T, according as g € I'® or I’ What is then true is the following.

Proposition 16.11 Let g be an invertible element of the non-universal Clif-
ford algebra A for X such that, for all x € X, gxg~! € X. Then the map
X - X; gxg~Vis a rotation of X, while the map X - X; x+> —gxg™!
is an anti-rotation of X.

In thiscase T =T% =T,

The discussion involving Y = R & X requires that conjugation be
defined, but if this is met by the non-universal Clifford algebra A, then
A may be used also to describe the rotations of Y. The restriction to Y
of conjugation is, as before, an anti-rotation of Y.

Pin groups and Spin groups
The Clifford group I'(X) of a quadratic space X is larger than is necessary
if our interest is in representing orthogonal transformations of X. Use of
a quadratic norm N on the Clifford algebra A4 leads to the definition of
subgroups of T that are less redundant for this purpose. This quadratic
norm N : A— A is defined by the formula

N(a)=a a, for any a € A4,

A denoting, as before the universal Clifford algebra of the non-degenerate
finite-dimensional real quadratic space X.

Proposition 16.12

(i) Forany g €T, N(g) €R,
(ii) N(1)=1,
(iii) for any g, g’ €T, N(g g') = N(g) N(g"),
(iv) for any g € T, N(g) # 0 and N(g~") = (N(g))™",
(v) for any g € T, there exists a unique positive real number A such
that IN(Ag)| = 1, namely A = JUN(g)])™".

Proof That N(1) =1 is obvious. All the other statements follow directly
from the observation that, by Theorem 16.7, any g € I" is expressible
(not necessarily uniquely) in the form

H Xj = X X1 - Xf—2 Xg—1,
ick
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where, for all i € k, x; € X, k being finite; for it follows that

g = ka—l—i' = Xg—1 Xk—2 -~ X1 X0,
ick
and that
N(g) =g g =[N,
ick
where, for each i € k, N(x;) = —x? € R. ]

For X and I' = I'(X) as above we now define

PinX={geTl:|N(g)| =1} and SpinX ={geT®: [N(g) =1}.

Proposition 16.13 As subgroups of T' and T respectively the groups Pin X
and SpinX are normal subgroups, the quotient groups I'/PinX and
I°/Spin X each being isomorphic to R* = {1 € R : 1> 0}.

The next proposition asserts the important fact that the Pin and
S pin groups doubly cover the relevant orthogonal and special orthogonal
groups.

Proposition 16.14 Let X be a non-degenerate quadratic space of positive
finite dimension. Then the maps

PinX — O(X); g+ px, and SpinX — SO(x); g+ pxg
are surjective, the kernel in each case being isomorphic to S°.

When X = RP4 the standard notations for I'(X), I'%(X), PinX and
SpinX will be T'(p, q), T%p, q), Pin(p, q) and Spin(p, q). Since Rg,p ~
RY,, (g p) = T, q) and Spin(q, p) = Spin(p, g). Finally, T°(0, n) is
often abbreviated to I'%(n) and Spin(0, n) to Spin(n).

That Proposition 16.12(i) is a genuine restriction on g is illustrated
by the element 1 + e4 € Roy, since N(1 + e4) = 2(1 + e4) ¢ R. That the
same proposition does not, in general, provide a sufficient condition for
g to belong to T is illustrated by the element 1 + e5 € Ryg, for, since
N(1+ e6) = (1 —e6)(1+ eg) = 2, the element is invertible, but, by explicit
computation of the element (1 + eg) ¢y (1 + €)1, it can be shown that it
does not belong to I'. However, the condition is sufficient when p+q < 5,
as the following proposition shows.
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Proposition 16.15 Let A be a universal Clifford algebra for a real non-
degenerate quadratic space X with dimX < 5. Then

SpinX ={g € A’ : N(g) = +1}.

Proof The proof is given in full for the hardest case, namely when
dim X = 5. The proofs in the other cases may be obtained from this one
simply by deleting the irrelevant parts of the argument.

From the definition there is inclusion one way (<). What has to be
proved, therefore, is that, for all g € A° such that N(g) = +1,

xeEX=>gxgleX

Let {e; : i € 5} be an orthonormal basis for X. Then, since X < A!
and g € A% X’ = gxg~! € A, for any x € X. So there are real numbers
a_, bju, ¢ such that

x'=Za,-e,~+ Z bjuejex e + ces.

ics 0<j<k<l<S
Now (x')” = (gxg~!) = =X, since g~! = +g-, while (¢) = —e;,
(ejexer)” = ejere, and es = —es. So, for 0 < j <k <1 <35,bjuy =0.

That is
x = x" + ces, for some x' € X.
The argument ends at this point if n < 5. Otherwise it remains to

prove that ¢ = 0. Now x? = x2 € R. Also I1 es commutes with each e¢;
and so with x”. So

x" 4+ 2¢x"(es) + (es)* €R.

Since x” and c%(es)? € R, and es ¢ R, either ¢ = 0 or x” = 0. Whichever
is the correct alternative it is the same for every x, for, if there were an
element of each kind, their sum would provide a contradiction. Since the
map

X—oA4; x—gxg!

is injective, it follows that ¢ = 0. Therefore g xg~! € X, for each x € X.
O

To use Proposition 16.15 we need to know the form that conjugation
takes on the Clifford algebra. This is the subject of the next chapter.
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Conjugation

This chapter is concerned with classifying the conjugation and reversion
anti-involutions of universal Clifford algebras of non-degenerate real or
complex quadratic spaces. Now, according to Table 15.27 and Corol-
lary 15.30 any such Clifford algebra is representable as an endomorphism
algebra A(m), for some number m, where A = K or 2K, where K =R, C
or H Moreover any correlation on the spinor space A™ induces an
anti-involution of the Clifford algebra, namely the appropriate adjoint
anti-involution, and conversely any anti-involution of A is so induced by
a symmetric or skew correlation on the spinor space. So the problem
reduces to determining in each case which anti-involution it is out of a
list which we essentially already have. The job of identification is made
easier by the fact that an anti-involution of an algebra is uniquely deter-
mined, by Proposition 2.8, by its restriction to any subset that generates
the algebra.

The algebras Ry,

For the Clifford algebras Ry, the determination of the conjugation anti-
involution is made easy by Proposition 17.1.

Proposition 17.1 Conjugation on the Clifford algebra R, = A(m) is the
adjoint anti-involution induced by the standard positive-definite correlation
on the spinor space A™.

Proof By Proposition 15.28, & ¢; = 1, for any element ¢; of the standard
orthonormal basis for R%”, here identified with its image in the Clifford
algebra A(m). Also by the definition of conjugacy on Ry, ¢ = —e;. But

148
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e = —1. So, for all i € n, &, = &, from which the result follows at once,
by Proposition 2.8. O

This indicates, incidentally, why we wrote a”, and not @, for the
conjugate of an element a of a Clifford algebra A, the reason for writing
a and not q, for the reverse of a, being similar. The notation @ is less
harmful in practice, for, in the context of Proposition 17.1 at least, @ in
either of its senses coincides with @ in its other sense.

As an immediate application of Proposition 17.1 we have information
on the groups Spin(n), for small n.

Proposition 17.2

Spin(1) = 0(1) = 5°, Spin(2) = U(1) = S!,
Spin(3) = Sp(1) = §3, Spin(4) = Sp(1) x Sp(1) = §3 x §3,
Spin(5) = Sp(2), Spin(6) is a subgroup of U(4).
Proof Apply Propositions 16.15 and 17.1. O

In the case of Spin(n), for n = 1, 2, 3, 4, what this proposition does is
to put into a wider relationship with each other various results which we
have had before. It may be helpful to look at these cases in turn.

R? : The universal Clifford algebra Ry, is H, while the universal
Clifford algebra Ry is R(2), the even Clifford algebras RJ, and RJ, each
being isomorphic to C.

Suppose that we use Ry, = H to describe the rotations of R?, R? being
identified with R{j, k} and R}, = C being identified with R{1, i}. Then
the rotation of R? represented by g € Spin(2) = U(1) is the map

x—gxg ' =gxg,
that is the map

(%0 + x1i)j = (xoj + x1k) > (a + bi)*(xo + x1i)j

= (a+ bi)(xoj + x1k)(a — bi),

where x =xpj+ x1k and g = a + bi.

On the other hand, by Corollary 16.10, we may use C directly, R?
being identified with C. Then the rotation of R? represented by g is the
map

yogygti=gyg =g’y

One can transfer from one model to the other simply by setting x = yj.
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R3: The universal Clifford algebra Ro3 is H, while the universal
Clifford algebra R;g is C(2), the even Clifford algebras R8,3 and Rg’o
each being isomorphic to H. Besides these, there are the non-universal
algebras Ro3(1,0) and Rg3(0, 1), also isomorphic to H. Any of these may
be used to represent the rotations of R3.

The simplest to use is Ro3(1,0) = H, R? being identified with the linear
subspace of pure quaternions. An alternative is to use R8’3 = H, in which
case R? may be identified, by Proposition 16.3, with the linear subspace
R{1, i, k}. In either case Spin(3) = Sp(1) = §3.

In the first of these two cases the rotation of R3 represented by
g € Spin(3) is the map

x—gxg ! =gxg,
while in the second case the rotation is the map
y—gyg ! =gyE

One can transfer from the one model to the other by setting x = yj,
compatibility being guaranteed by the equation

gyg =gygi

R* : The universal Clifford algebras Ro4 and Ry are each isomorphic
to H(2), the even Clifford algebra in either case being isomorphic to 2H.
There are various identifications of R> with a linear subspace of H such
that, for any x € R3, x® = —x? = X x. Once one is chosen, R* may be
identified with R ® R3, with y@ =¥y, for any y € R*.

One method is to identify R* with the linear subspace

of 2H, R? being identified with
i 0N /j O\ (kK O
~{(s 5)-(0 3):(6 )}

Then, for any ( g (r) ) € H,

(89)-(59)
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while Spin(4) = { ) € 2H : |q| = |r| = 1}. The rotation of R*

q
0
qg 0
0r

0
r
represented by ( ) € Spin(4) is then, by Proposition 16.9, the map

y O (4 0 y O qg 0 _( a7 0
0y 0r 0y 0r 0 ryq /)’
This is essentially the map

ym—qyr,

which is what we had before, in Chapter 8.
An alternative is to identify R* with the linear subspace

The rotation induced by (

y O qyr 0
(o 7)”( 0 rﬁ)

and this reduces to the map y— g yT7.

argument, the map

Proposition 17.3 Spin(6) = SU(4).

Proof A proof of this may be based on Exercise 10.2. One proves first
that if Y is the image of the injective real linear map y : C?>—C(4)
constructed in that exercise then, foreachy € Y, 7°y € R, and that if Y
is assigned the quadratic form Y —R; y — J°y then y is an orthogonal
map and T is the unit sphere in Y. The rest is then a straightforward
checking of the things that have to be checked. Note that, for all
teSpQR), =1 a

The algebras R, for small p, g # 0

For any g € Spin(n), N(g) = 1. For g € Spin(p, q), on the other hand,
with neither p nor g equal to zero, N(g) can be equal either to 1 or to —1.
The subgroup {g € Spin(p, q) : N(g) = 1} will be denoted by Spin*(p, q).
The image of Spin*(p,q) in SO(p, q) by p is a subgroup of SO(p, q). This
subgroup, called the (proper) Lorentz group of R, will be denoted by
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SO*(p,q). In Proposition 22.48 the Lorentz group of RP will be shown
to be the set of rotations of RP? that preserve the semi-orientations of
RP4,

Example 17.4 Let g € Spin(1,1). Then the induced rotation p, of RY!
preserves the semi-orientations of R if and only if N(g) = 1, and reverses
them if and only if N(g) = —1.

The next proposition covers the cases of greatest interest in physics,
the algebra R}; = C(2) being known as the Pauli algebra.

Proposition 17.5

Spin*(1,1) = {(g 0

Spin*(1,2) & {(Z ¢ ) €RQ): det( Z 2) =1} =5p(2; R)

and Spin*(1,3) = {( Z ¢ ) €CQ): det( a ¢ ) =1} =Sp(2; O).

)e2R: ad=1}=R" = GL(1;R),

au

au

au

b d

Proof 1t is enough to give the proof for Spin*(1,3), which may be
regarded as a subgroup of Ry, = C(2), since R‘l’,3 = Ry2. Now, by
Proposition 16.15 and Proposition 15.34,

Spin*(1,3)={g€Ryp: gg=1},

so that the problem is reduced to determining the conjugation anti-
involution of Ry;. To do so we have just to select a suitable copy
of R in Ryy. Our choice is to represent ey, e; and e, in R? by

1 0 0 -1 0 i ) .
( 0 —1 ),( T ) and ( i 0 ), respectively, in C(2), these mat-

rices being mutually anti-commutative and satisfying the equations
2 2

2
1 0 0 -1 0 i
(0 _1) —1,(1 0) ——land(i()) =—1,

as is necessary. Now the anti-involution ( Z 2 ) — ( _Z _: ) sends

each of these three matrices to its negative. This, by Proposition 2.8, is
the conjugation anti-involution. Since,

for any (Z 2>GC(2), (_Z _:>(Z 2>=det(z 2)

the proposition is proved. O
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It is natural, therefore, to identify the spinor space C? for Ry, with
the complex symplectic plane C2 and, similarly, to identify the spinor
space R? for Ryp with 2R° and the spinor space R? for R;; with RZ,.
When this is done the induced adjoint anti-involution on the real algebra
of endomorphisms of the spinor space coincides with the conjugation
anti-involution on the Clifford algebra.

Note, incidentally the algebra injections

Spin(2) = Spin*(1,2) and Spin(3) — Spin*(1,3)
induced by the standard (real orthogonal) injections
R%2 5, R'2 and R®? - RY?,

the image of Spin(2) = U(1) in Spin*(1,2) being SO(2) and the image of
Spin(3) = Sp(1) in Spint(1,3) being SU(2).

The isomorphisms U(1) = SO(2) and Sp(1) = SU(2) fit nicely, there-
fore, into the general scheme of things.

Proposition 17.6 is a step towards the determination and classification
of the conjugation anti-involutions for the universal Clifford algebras
R,, other than those already considered.

Proposition 17.6 Let V be the spinor space for the orthogonal space RP1
with Ry, = End V. Then, if p > 0 and if (p, q) # (1,0), the conjugation
anti-involution on R, coincides with the adjoint anti-involution on End V
induced by a neutral semi-linear correlation on V.

Proof By Theorem 13.8 there is a reflexive non-degenerate A¥-linear
correlation on the right A-linear space V producing the conjugation anti-
involution on R, as its adjoint. What we prove is that the correlation
must be neutral. This follows at once from the even-dimensionality of
V over A unless A¥ = R, C, H, 2R or 2H. However, since p > 0, there
exists in every case t € EndV such that t 't = —1, namely ¢t = ¢;; for
egep = —e} = e) = —1. The existence of such an element guarantees
neutrality when AY = R, by Theorem 5.28. The obvious analogue of
Theorem 5.28 guarantees neutrality in each of the other cases. O

Analogous results hold for the algebras C,,, where, as has already
been said in Chapter 15, C,, is obtained by tensoring R,, with the
superfield C, that is C assigned the conjugation involution, which fixes
the field C.
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Proposition 17.7 Conjugation on Co, is the adjoint anti-involution induced
by the standard positive-definite correlation on the spinor space. Conjuga-
tion on (_ZM, where p > 0 and (p, q) # (1,0), is the adjoint anti-involution
induced by a neutral semi-linear correlation on the spinor space.

Completion of the classification of conjugation

Tables 3 to 8 of Theorem 17.8 complete the classification of the conjuga-
tion anti-involutions of the five Clifford algebras naturally associated to
the orthogonal space R4, for each signature p, q. It is because there are
five and not just the one of these that the notation R,, for the standard
real Clifford algebra for R? has been chosen in this book for the real
Clifford algebras rather than Cl(p, q), or some such.

Besides the algebras R,, themselves we have, first of all, the Clifford
algebras C,, obtained by tensoring R,, with C, with the identity as
involution, where p + g = n, and C,,, obtained by tensoring R,, with
C, with conjugation as involution, as in Proposition 17.7 above. Besides
these we consider also the algebras 2R;q obtained by tensoring R, with
the superfield 2R? of diagonal 2 x 2 real matrices, with swapping the slots
as involution, which also fixes the field R, and 2cg, obtained by tensoring
R,, with the superfield 2C°, where swap fixes the field C.

In each of these five cases, minus the identity on R extends both to
an involution, the main or grade involution on the algebra, and also to
an anti-involution of the algebra, namely conjugation. In this way each
of the five should be regarded as a superalgebra, that is as a Z,-graded
algebra, equipped also with the conjugation anti-involution as an integral
part of its structure. Roughly speaking, C, encodes the rank information
in R,, while 2RS_ encodes the signature information. It is of course the
case that as algebras C,; and C, are isomorphic, but with their assigned
conjugations they are not at all the same.

By Table 15.27 each Clifford algebra of any of the five types described
above is isomorphic to a full matrix algebra over R, 2R, C, 2C, H, or 2H,
the module on which the matrix acts, identifiable with a minimal left
ideal of the algebra, being the spinor space for the algebra.

Now by Chapter 13 any anti-involution of such an algebra (in particu-
lar conjugation) may be regarded as the anti-involution adjoint to some
symmetric or skew sesqui-linear form on the spinor space. There are ten
such classes and to appreciate the tables of Theorem 17.8 one must be
familiar with all of them. It is appropriate to recall Theorem 13.7.
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Theorem 13.7 Let £ be an irreducible correlation on a right A-linear space
of finite dimension > 1, and therefore equivalent to a symmetric or skew
correlation. Then & is equivalent to one of the following ten types, these
being mutually exclusive.

a symmetric R-correlation;

a symmetric, or equivalently a skew, *R°-correlation;
a skew R-correlation;

a skew C-correlation;

a skew H-, or equivalently a symmetric, H-correlation;
a skew, or equivalently a symmetric, 2H’ -correlation;
a symmetric H-, or equivalently a skew, H-correlation;
a symmetric C-correlation;

a symmetric, or equivalently a skew, C-correlation;

a symmetric, or equivalently a skew, *C -correlation.

0 NNV A WND=O

=]

The logic behind the numbering of these ten types derives from the
order in which most of the cases appear in Table 3 below.

We begin by reminding the reader that universal Clifford algebras R,
for0 < p,g<7and C, for 0 < n <7 are as in Tables 1 and 2, where
A(m) denotes the algebra of m x m matrices over A.

q —_
p 1| R C H 2H HQ2) C4) R@B 2R@®)
| R| 2R R@2) CQ2) H(2) H((2) H@) C@B) R(6)
C| RQ2) 2RQ2) R4) C@) H4) 2H(4) H@B) C(16)
H| C(2) R@) 2R@4) R(@B) C(8) H(8) 2H(8) H(16)
2H| H(2) C@4) R(3) 2R(8) R(16) C(16) H(16) 2H(16)
H(2) |2H(2) H@4) C(8) R(16) 2R(16) R(32) C(32) H(32)
C4) | H(4) 2H@4) H(3) C(16) R(32) 2R(32) R(64) C(64)
R(8)| C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

Table 1
q—>
+1 | C 2C C(2) 2C(2) C4) *C(4) C@8) *C(®)
Table 2

Table 1 extends indefinitely either way with period 8, while Table 2
has period 2. In either case one obtains the even Clifford algebra in any
location by moving one square to the left, if necessary into the additional
column on the left.
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Theorem 17.8 Conjugation types for the algebras R, 4, and C,, to be over-
laid on the relevant part of Tables 1 and 2, are shown as Tables 3 and
4.

gmod8 —

pmod8 20 0 8 4 24 4 8 0 2
1 0 1 23 45 6 7 0
8 2 22 8 6 %% 6 8
4 3 21 07 65 4
24 4 8 0 20 0 8 4 %4
4 5 6 7 01 2 3 4
8 6 6 6 8 2 22 2 8
0 7 6 5 43 21 0

Table 3

nmod8 —
27 | 79323397727
Table 4

By contrast the table for ép,q is given in Table 5.

gmod2 —
pmod2 28 8 28
l 8 9 8
Table 5

To complete the set we give as Tables 6 and 7 the tables for 2Rg,q and
2Ce,, the algebras for these, as algebras, being just the doubles of the
algebras R,4 and C,.

—p+gmod8 —
21 | 19525912

Table 6
nmod2 —
29 | 9 29
Table 7

For the codes 0, 4 and 8 in Tables 3 and 5 there is a further classification
by signature. The choice along the top row or down the extra column on
the left is the positive-definite one. Elsewhere the choice is the neutral one.
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Proof The first row of Table 3 is known to be correct by Proposition 17.1.
Tensoring by C, assigned the identity (anti-)involution, then gives Table
4, by Theorem 13.11. The remainder of Table 3 then follows at once, also
by Theorem 13.11. Tables 5, 6 and 7 follow in their turn by tensoring
Table 3 by C and using Theorem 13.11, by tensoring Table 3 by 2R and
using Theorem 13.12 and finally, by tensoring either Table 5 or Table 6
by C and using Theorem 13.11. The neutrality statement follows from
Proposition 17.6. O

Tables 3 to 7 may be appreciated the more if the various code numbers
are replaced by the classical groups that preserve the sesqui-linear forms
on the spinor spaces. We give them here for 0 < p, ¢ < 8 as Tables 8
to 12, contenting ourselves with the tables up to n =p+ g = 7. To save
space we abbreviate the notations slightly in obvious ways.

q —_
p 0, Uy Sp1 2Spy Sp2 Us 05204
| GLi(R) Sp2(R) Sp2(C) Sp11 GLr(H) O4(H) 05(C)
Sp2(R) 2Sp2(R) Spa(R) Uz  Ou4(H) 204(H)
Sp2(C) Spa(R) GL4(R) 044 O5(C)
Sp11 Uz 044 2044
GL(H) O04H) 05(C)
04(H) 204H)

03(C)
Table 8
n—
01(C) GL4{(C) Sp2(C) 2Sp2(C) Spa(C) GL4(C) 0g(C) 205(C)
Table 9
q —_

p U 20, U, 20U, Us 2Us Us 2Us
| GLi(C) Uz GLy(C) Us GL4(C) Us GL3(C)
U, 2U, Us 2U,4 Us 2Us
GLy(C) U4 GL4(C) Ug GLg(C)
Us 2Uq Us 2Us
GL4«(C) Us GL3(C)
Us 2Us
GLg(C)

Table 10
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q -
p_GLi(R) GL\(C) GL\(H) *GLy(H) GLy(H) GL4(C) GL3(R)*GLg(R)
| *GLi(R) GL;(R) GLy(C) GLy(H)>GLy(H) GL4(H) GLs(C) GL16(R)
etc.

Table 11

nR—

GL1(C)2GL(C) GLy(C) >GL2(C) GL4(C) 2GL4(C) GL3(C) 2GL3(C)

Table 12

The dimensions of the groups in Table 8 are shown in Table 13.

0 1 3 6 10 16 28 56
1 3 6 10 16 28 56

3 6 10 16 28 56

6 10 16 28 56

10 16 28 56

16 28 56
28 56
56

Table 13

These depend only on the rank n = p + ¢ and not on the index (p, g).
The dimensions of the groups in Table 9 are twice those of the groups
in Table 8.

Tables of Spin groups

For each n the quadratic norm g~g of any element g of the group
Spin(n) = Spin(0, n) = Spin(n, 0) is equal to +1, the group being a
subgroup of the even classical group associated in Table 8§ to the index
(0, n) or (n, 0). That group, being the part of the classical group that lies
in the even Clifford algebra for the given index, lies in the table either
in the position p =0, ¢ = n—1 or in the position p =n, ¢ = —1 (in an
extra column on the left that matches the first row). For any p, ¢ with
neither p nor g equal to 0 the quadratic norm of an element of Spin(p, q)
may be equal either to +1 or to —1. It is then the subgroup Spin*(p, q),
consisting of those elements of Spin(p, q) with quadratic norm +1, that is
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a subgroup of the even classical group for the index, namely the classical
group in the position p, ¢ — 1.

The group Spin(n) or Spin*(p, q), with n = p + ¢, has dimension
%n(n —1). It is the whole group for n = p+ g < 5, but is of dimension
one less than this, namely of dimension 15, rather than 16, for n =
p+ q = 6. In that case it happens that each algebra has a real-valued
determinant, and lowering the dimension by 1 corresponds to taking the
determinant equal to 1. In the case of GL;(H) the determinant is defined
by representing each quaternionic 2 x 2 matrix as a 4 x 4 complex matrix
and then taking the determinant of that matrix, this necessarily being a
positive real number.

Theorem 17.9 The groups Spin(n) for n < 6, as well as the groups
Spint(p,q) for p+ q < 6, in the case that both p and q are non-zero,
are shown in Table 14.
q b d
p =1 0, Ux Sp 2Sp Sp» SUs
| 01 GLi(R) Sp2(R) Sp2(C) Spix SL(H)
Ui Sp2(R) 2Sp2(R) Spa(R) SUs;
Sp1 Sp2(C) Sps(R) SL4(R)
Sp1 Spi SUp
Sp» SLy(H)
SU,s

Table 14

The groups Spin(n;C), for n < 6, are shown in Table 15.

n—

+1 04(C) GLy(C) Sp2AC) 2Sp2(C) Spa(C) SL4(C)
Table 15

(Most recent writers do not give the whole of these tables and some
are in error. Note in particular that Spin*(3,3) = SL(4;R).)

Proof This theorem extends the results of Propositions 17.2 and 17.5.
The only difficulty is with the cases where p+ g = 6. A proof of the
isomorphism Spin(6) = SU(4) has already been sketched as Proposi-
tion 17.3, and an alternative proof, based on Diagram 24.5, will be given
later as a lead-up to the discussion of triality. The first of these proofs
is the more explicit and may easily be adapted to provide proofs of the
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isomorphisms Spin*(3,3) = SL(4; R) and Spin(6; C) = SL4; C), as we
now show. These are of interest as exemplifying the point stressed at the
outset that in the context of Clifford algebras the general linear groups
are best thought of as generalised unitary groups, where the relevant
conjugation involves the swapping of components of a module over a
double field.

Consider the following diagram of ‘left-coset exact’ sequences of maps:

Sp2;R)=SL(2;R) — SL(3;R) — SR}*xRd)

| L

Sp(4; R) — SL4;R) -5 QcSL@4;R)
S(R* x RY) L, SR*xRY,

where, for any n, SR” x R") = {(x,y) ER* xR" : x - y = 1}.
What we prove is that the second row of this diagram may be identified
with the left-coset exact sequence

Spin*(3,2) — Spin*(3,3) — S(R? x R?),

and hence that Spin*(3,3) may be identified with SL(4; R), the identi-
fication of Spin*(3,2) with Sp(4; R) having been previously established.
Explicitly the second map = of this sequence is the obvious action of the
group Spin*(3,3), through the group SO (3, 3), on the point

((2) ()

of the quadric S(R® x R%) in R? x R? with equation x - y = 1, that is

—(x1=y1)? = (2= y2)> = (3= y3) 2 + G+ y1)° + 2+ y2) + (x3 + 332 = 4.

The subgroup of the group Spin*(3,3) that leaves that point fixed is
identifiable with Spin*(3,2), that identification being the map 1, and the
fibres of the map = are all the left cosets of this subgroup in Spin* (3, 3).

To return to the diagram, the map SL(3; R) = S(R? x R3) is defined

by
ag Gl G2 agp Ao
ap an ap |- a2 |,| A ,
ax ax ax a» Axn
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the first component of the image being the last column of the matrix a
and the second component the last column of the the matrix (a®)~!, with

apAoe + anAd + andy = deta = 1.

The fibres of this map are the left cosets in SL(3; R) of the subgroup

0 0
SL(2; R), identified with the inverse image of (( 0 ) , ( 0 )) . The
1 1

map SL(4; R) — S(R* x R*) is analogously defined.

The map = : SL(4; R) - Q < SL(4; R) is defined, as is the map = in
Exercise 10.2, by

doo Aol Ap ap3 an —dao as —axn
a— ayp an arz ass —an app —asp ao ,

axp ax ax ax a;iz —ap azy —az

asx as as2 ass —an dp2 —asn an

with fibres the left cosets in SL(4; R) of the group Sp(4; R) identified
with the inverse image by n of the unit matrix. Note that the inverse of
any element of Sp(4; R) is then explicitly given.

The map Sp(4; R) = S(R* x R*) is defined by

ap dpr 4Ap2 4o3 —an aos

a a a a3 ag2 a3
ar 10 an an — , ,

ax ax ax ax —asz a

azp as 4as2 asz a ass

with  agais — anae; + anas; — anae

= (—an,an, —a3, az) * (a3, a3, a3, as3)
=1.

That the map between the two copies of S(R* x R*) is the identity is
then easily verified. By elementary diagram-chasing, as in Proposition 3.4,
it follows that there is a linear map R3 x R? — R(4), restricting to a
bijection between S(R> x R3) and the image Q of =, that makes the
diagram commute. Explicitly this is the map

y2 0 x0 n
((xo) (yo)) v 6
X1 |»>| N =
-y =y x2 0
x2 »2 _ 0

X1 X0 X2
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The image of this linear map may be taken to be the space of paravec-
tors in the even Clifford algebra Rg’y Identification of SL(4; R) with
Spin*(3,3) follows directly.

The whole of the above argument goes through unchanged if the field
R is replaced by the field C. Accordingly SL(4; C)) may be identified
with Spin(6; C).

As a matter of fact it is enough simply to prove this last result. Then
all the real cases follow by restriction. O

Tables for anti-involutions other than conjugation

Anti-involutions of Clifford algebras other than conjugation may also be
classified.

Theorem 17.10 The reversion anti-involution of Ry, induced by the identity
endomorphism of the quadratic space RP, is classified by a table similar
to Table 3 of Theorem 17.8 which classifies conjugation, namely Table 16.

gmod8 —
pmod8 0 7 6 5 4 3 2 1
l 20 0 8 4 4 4 8 0
01 23 45 617
8 2 22 2 8 6 2% 6
4 3 21 07 6 5
24 4 8 0 20 0 8 4
4 5 6 7 01 2 3
8 6 %6 6 8 2 22 2

Table 16

In this case positive-definiteness of the spinor product and compactness
of the associated classical group reign down the left-hand column, with
neutrality everywhere else where there is a choice.

Note that Table 16, like Table 3 of period 8, is just Table 3 translated
one square to the ‘South-East’.

More generally any orthogonal involution of R” induces an anti-
involution of R,,4, and one would like to classify all such. The relevant
table for the algebras Ry, just looks like Table 3 turned upside down, as
displayed in Table 17.
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0 8 4 24 4 8 0 %
7 6 5 43 21 0
6 %6 6 8 2 22 2 8
5 67 01 2 3 4
4 8 0 20 0 8 4 24
3 21 07 65 4
2 22 8 6 % 6 8
1 23 45 67 0
Table 17

Here the first row classifies conjugation and the first column classifies
reversion. The transition from conjugation to reversion as fewer and
fewer in turn of the standard basis vectors of RP have their signs
changed by the involution is made by traversing this table steadily from
the first row to the first column in a South-Westerly direction. At all
intermediate stages neutrality is the rule.

For the algebras R,,_, comprising the pth row of Table 3 there is a
similar table. For example in the case that p = 2 we have, for the algebras
R;,—2, Table 18, which is just Table 17, bordered by two additional rows
on the top and two additional rows on the left that respect the periodicity
8.

2 222 8 6 % 6 8

01 23 45 67 0

0 20 0 8 4 24 4 8 0 2
1 07 65 43 21 0
2 86 % 6 8 2 22 2 8
3 45 67 01 2 3 4
4 24 4 8 02 0 8 4 24
5 43 21 07 6 5 4
6 8 2 2 2 8 6 % 6 8
7 01 23 45 6 7 O

Table 18

Here also the transition from conjugation to reversion as fewer and fewer
in turn of the standard basis vectors of R?? have their signs changed by
the involution is made by traversing the table steadily from the first row
to the first column in a South-Westerly direction. The spinor product is
positive-definite if the involution changes the sign of all vectors of square
—1 while all those of square +1 remain fixed. It is neutral otherwise.



164 17 Conjugation

For the complex Clifford algebras C, the whole thing is so much
easier!

Theorem 17.11 The reversion classification of the algebras C, coincides
with the conjugation classification.

Hurwitz pairs

Let A be a possibly non-universal Clifford algebra with conjugation for
a finite-dimensional non-degenerate real quadratic space X, embedded
in A in the standard way, and let the spinor space V be taken to be a
minimal left ideal of A (for example, as those matrices of A = K(m), all
of whose entries are zero, with the exception of the last column. Then,
foranyx € X,v,0v' €V,

(xv) (') = v x xv" = (xx)" ).

Such a pairing of correlated spaces X and V is known as a Hurwitz
pair, the theory of such pairs having originated in a paper of A. Hurwitz
in (1898) and subsequently developed in work that was published posthu-
mously in (1923). It has recently become clear that all such pairings arise
in such a Clifford algebra setting. See, for example, Lawrynowicz and
Rembielinski (1986), Randriamihamison (1990) and Cnops (1994).

An important example, and one that involves the non-universal al-
gebras in an essential way, is the construction of linear subspaces of
the groups GL(s; R), for finite s, a linear subspace of GL(s; R) being,
by definition, a linear subspace of R(s) all of whose elements, with the
exception of the origin, are invertible.

For example, the standard copy of C in R(2) is a linear subspace of
GL(2; R) of dimension 2, while either of the standard copies of H in
R(4) is a linear subspace of GL(4; R) of dimension 4. On the other hand,
when s is odd, there is no linear subspace of GL(s; R) of dimension
greater than 1. For if there were such a space of dimension greater
than 1 then there would exist linearly independent elements a and b of
GL(s; R) such that, for all A € R, a+ Ab € GL(s; R) and therefore such
that ¢ + A1 € GL(s; R), where ¢ = b~'a. However, by the fundamental
theorem of algebra, there is a real number A such that det(c+41) =0,
the map R — R; A det(c + 1 1) being a polynomial map of odd degree.
This provides a contradiction.

Proposition 17.12 provides a method of constructing linear subspaces
of GL(s; R).



17 Conjugation 165

Proposition 17.12 Let End K™ be a possibly non-universal Clifford alge-
bra for the positive-definite orthogonal space R", for any positive integer
n. Then R ® R" is a linear subspace of AutK™ = GL(m; K) and there-
Jore of GL(m; R), GL(2m; R) or GL(4m; R), according as K =R, C or H.
Moreover the conjugate of any element of R @ R” is the conjugate trans-
pose of the representative in GL(m; K) or, equivalently, the transpose of its
representative in GL(m; R), GL(2m; R) or GL(4m; R).

Proof Lety =A1+x € R®R" where A € R and x € R*. Then
yy=(@A—x)A+x) = A2+ x? is real, and is zero if and only if y = 0.
Therefore y is invertible if and only if y # 0.

The last statement of the proposition follows at once from Proposi-
tion 17.1. a

The following is an immediate corollary of Proposition 16.1 coupled
with the explicit information concerning the Clifford algebras Ry, con-
tained in Table 15.27 and its extension by Corollary 15.26.

Theorem 17.13 Let (x(k)) be the sequence of positive integers defined by
1(8p+q) =4p+j, where j=0forq=0,1forq=1,2forq=2o0r 3 and
3 for q =4, 5,6 or 7. Then if 2!® divides s there exists a k-dimensional
linear subspace X of GL(s; R) such that
(i) for each x € X, x* = —x, x*x = —x? being a non-negative real
multiple of °1, zero only if x =0,
(ii)) R® X is a (k + 1)-dimensional linear subspace of GL(s; R).

The sequence y is called the Radon-Hurwitz sequence (Radon (1923)
and Hurwitz (1923)). It can be proved that there is no linear subspace of
GL(s; R)) of dimension greater than that asserted by Theorem 17.13(ii).

As a particular case of Proposition 17.12 there is an eight-dimensional
linear subspace of GL(8; R), since R(8) is a (non-universal) Clifford
algebra for R7. This remark provides a route in to the study of the
algebra of Cayley numbers which we undertake in Chapter 19.

Terminology

Because the theory of spinors has developed piecemeal, driven by ap-
plications in theoretical physics, an extensive range of different types of
spinor have appeared in the literature — Dirac spinors, Majorana spinors,
Weyl spinors and the like — in the description of which both the complex-
ifications of the ‘natural’ real, complex or quaternionic spinor spaces play
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important roles. See for example Benn and Tucker (1987) or Trautman
(1993). My personal view (as a pure mathematician) is that given the
overview of all possible cases given by the tables of this chapter, most of
this often very confusing terminology can with advantage be dropped!
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2 x 2 Clifford matrices

Let A be a universal real Clifford algebra for a finite-dimensional non-
degenerate real quadratic space X, with Clifford group I Then by
Proposition 15.17 the real algebra A(2) of 2 x 2 matrices with entries
in A is a universal real Clifford algebra for the real quadratic space
X ® RV, where elements of X @ R!! are represented in A(2) by matrices

of the form ( X

referred to below as vectors in A(2). Let I'(2) then denote the Clifford
group of A(2). For many applications one would like to characterise the
elements of I'(2) in terms of X and I'. In the case that X is positive-
definite such a characterisation was given by Vahlen (1902), and his work
was re-presented in a series of papers by Ahlfors in the early 1980’s. for
example (1985), (1986). The indefinite case is somewhat trickier to handle.
The characterisation we give here is that of Jan Cnops (1994), developed
from earlier work of Maks (1989) and Fillmore and Springer (1990). For
a parallel account, involving paravectors, see Elstrodt, Grunewald and
Mennicke (1987). See also Waterman (1993).

v ) , where x € X and g, v € R, such matrices being

The characterisation of Cnops

We begin by characterising conjugation and reversion on A(2).
Proposition 18.1 Let A be a universal Clifford algebra for a finite-dimen-

sional non-degenerate real quadratic space X and let A(2) be the universal
Clifford algebra for X ® R as in Proposition 15.17. Then

G = ()= Ga-(2)

167
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Proof These hold for vectors in A(2) and so for the whole of 4(2). [

a c) .
bd) s defined to be
ad — cb” For any element of the Clifford group I'(2) of A(2) its pseudo-
determinant is equal to the product

GG -G+

b d
of the Clifford algebra A(2), with pseudo-determinant A. Then

The pseudo-determinant A of the matrix

Proposition 18.2 Let ( be an element of the Clifford group I'(2)

A=ad—cb=da—-<cb

Proof For such a matrix

ac d —c\ _ d —c a c
b d -5 a) \-b a b d)’
either side of the equation being equal to A. O

By Corollary 16.8 any element g of the Clifford group I" of a finite-
dimensional non-degenerate real quadratic space X is representable as the
product of a finite number of invertible elements of X. Following Cnops
(1994) we introduce the monoid ® of all finite products of elements of
X, whether invertible or not, a monoid being a set furnished with an
associative product. In the case that X is positive-definite ® = I" U {0}.
In the next proposition we list several elementary properties of ©.

Proposition 18.3 For each a € ® and each x, y,z € X,

(i) aa =aa € R, being non-zero if and only if a is invertible,
(ii) axa € X,
(iii) either aua=0forallue X ora=vg for somev € X and g €T,
@iv) 1+xy €0,
(V) xy+yz €0,
(vi) if there exists u € X such that aua # 0 then xa+ay € O,
(vii) x+ yxz € ©.
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(ii)

(i)

(v)

V)

(vi)

(vii)
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This is clear.
It is sufficient to prove this when a € X. But then

axd=axa=(ax+xa)a—x(®) €X.

This is obvious when a is invertible, when the second alternative is
true. Otherwise a can be written as a product v;v;...tx of elements
of X, where we can arrange for all the non-invertible factors to
come first. We prove the proposition explicitly for a product of
two non-invertible vectors, the induction being easy. So let a =
v1v2, where v; and v, are not invertible. If these are not mutually
orthogonal then v; + v; is invertible and vyv2 = vy(vg + v2), giving
the second alternative. Otherwise viv;+v,v1 = 0, and then, for any
u € X, vauvy = (vu + uv)vz, while vyv0, = (0102 + v201)01 =0,
from which it follows that aua = 0, the first alternative.
Suppose first that at least one of x and y, say x, is invertible.
Then 1 + xy = x(x~! + y). Secondly, suppose that neither x nor
y is invertible, but that x - y # 0. Then

xy+yx)(l+xy)=xy+yx+xyxy=(x+y+xyx)(x+y)

Finally, suppose that neither x nor y is invertible, but that x-y =0,

though x # y. Now X is non-degenerate, so by Proposition 5.4

there exists a non-invertible element z of X such that z-y =0

but z- x # 0, and we may choose z so that z-x = 1. Then

x?=y'=22=0,xz+2zx=-2and
x+2)x+z—y)(x—z—y)x—2)

=(=2-(x+2)y)2—y(x—2z)) =—4(1 +xy).

Since xy+yz = (xy+yx)+y(z—x) it follows at once from (iv)

that xy+yz € ©.

By (iii) a = v g, where v is a vector and g is invertible. Then

xa+ay=(xv+vgyg’l)g=(xv+vy')g,

where y' = gyg~! € X, by (v).

Suppose first that x is invertible. It then follows that x + yxz =
x(1 + x~!y x z), which is in T by (iv).

Next, suppose that x is not invertible and that x - z = 0. Then
x+yxz = (1 —yz)x, which is in " by (iv).
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Finally, suppose that x is not invertible and that x-z # 0. Choose
k € R so that kx + z is invertible. Then

(x +yx 2)(kx + 2) = xz + y(k(x z + z x) + z°)x,

which is in I' by (v). Since kx + z is invertible it follows that
x+yxzalsoisinT.

O

We shall require Lemma 18.4 during the proof of Theorem 18.5.

Lemma 184 Let A be a universal real Clifford algebra for a finite-dimen-
sional real quadratic space X, not necessarily non-degenerate, and let u, v,
w,y € X. Then

uvywv—ovywou € X.

Proof Choose an orthonormal basis for X such that v, w and y are in the
subspace spanned by ey, ¢; and e;. Then the even element v w yv must
be of the form a + 3, ;5 bijeiej, where a and b;; € R. Now e, commutes
with ee; if i, j, k are distinct, and otherwise exeje; = teeje, € X. The
assertion follows. O

Theorem 18.5 Let A be a universal Clifford algebra for a finite-dimen-
sional non-degenerate real quadratic space X, with Clifford group T and
Clifford monoid ©, let A(2) be the universal Clifford algebra for X & R
constructed as in Proposition 15.17, and let G be the set of all matrices

ac
( b d ) of A(2) such that

(@)a, bc,de®, bab,cd,ac,bdeX, (c)A=ad—cbheR’.
Then G is the Clifford group I'(2) of A(2).

. c\.
Proof We prove first that each entry of a matrix Z d2 in G can be
written in the form vg, where v € X and g € T, and that there exist
P, 4q,1, s € X such that in each case one of the following alternatives

holds:

a=bp or b=ap; a=qgc or c=gqa;
c=dr or c=dr; b=sd or d=sb.
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Suppose first that either a or b, say g, is invertible. Then b = v a with
v=ab/(ad) € X, and b = ap, where p = a~!va. Otherwise neither a
nor b is invertible, but neither is zero, with

(ad—cb)b=a(db) and (dd—bc )a=b(—c"a),

neither of these being zero. Now a(d™b) = a(b'd) = (ab™)d. So ab™+ 0.
It follows that

abda=ab(da—bc)+0,

from which it follows from (iii) of Proposition 18.3 that ¢ = wg for
w € X and g €T, a similar result clearly holding for b.

The case of ¢ and d is similar. To prove the statement for a with ¢ or for
b with d one uses the alternative expression for the pseudo-determinant
A given in Proposition 18.2.

Next we prove that, for any x € X, axd + cxb € X. Suppose firstly
that all four entries in the matrix are non-invertible and, necessarily,
non-zero. Then in particular there exist v € X and g € I" such that
a =vg and explicit computation shows that

a c\ _(vg wuv g 0
bd/) \vw —uovw 0g)/)’
where w = A" lg(d"b)g~! and u = cd” both are in X. Then

axd+cxb=—(vywov)u+uwywv),

where y = g x g, and this is in X, by Lemma 18.4.

Alternatively, at least one of the entries of the matrix, say q, is
invertible. Thenb =ap=apa'la,c=raand d = (1+apa~'r)a, where
P=apaleX,re€X and A=2Aa Then

axd+cxb=yQA+rp)+ryp =A+@r+ry)y,

where y = axa™!, and this is in X.

Similarly it may be verified that, for any x € X, ax¢ +cxa € R and
bxd+dxb eR.

Now consider the product

G2

where x € X and g, v € R. Now, by property (b) of G either a and d are
in ®° and b and c are in ®!, or vice versa. So up to sign this product is
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(o)) (5 7%)

which is equal to

equal to

axd + ped — vab ™+ cxb~ —axc — pcc+ vad — cxa”
bxd + pdd™— vbb + dxb™ —bx¢— pdc™+ vba —dxd” J’

and this is the matrix of a vector in A(2). From this it follows at once
that G < T'(2).
Finally, we have to prove that I'(2) < G. For this it is enough to prove

that the product
a c x v
b d n —x

is in G, where the first matrix is in G and the second is an invertible
vector in A(2), the condition for this being that —x? — vu # 0. None
of the verifications causes any trouble, though at one point one requires
again to use the fact that axd + cx bis in X, for any x € X. a

An example of an element of I'(2) none of whose entries is invertible
has been given by Maks (1989). Consider generators ey and e; of R!!
with €3 = —1 and € = 1, and take the standard model of R>? in Ry;(2).

Then the rotation of R?? that sends eg to ( (1) _(1) ), and that vector

01

to —ep, and similarly sends e; to ( 10

), and that vector to —ey, is

induced by the matrix

1 e 1 —e _ 1+eer ey—e
e 1 e 1 - ep+e 1—epe

of I'(2), none of whose entries is invertible.

Cnops (1994) has given examples to show that none of the requirements
(a), (b), (c) in the characterisation of I'(2) can be derived from the other
two. His examples are

1+ e 0 1 epeg 1 0
( 0 1—e0>’(0 1) and (0 e0e1e2>’

which violate (a), (b) and (c), respectively, but not the other two. None
is in I'(2), since each is the sum of an even part and an odd part, both
different from zero.
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Theorem 18.6 Let A = R,,, with X = RP4, Clifford monoid ©, and
Clifford group T'. Then the Clifford group T'(p, q + 1) is representable as

Z _g , where

the subset of A(2) consisting of matrices of the form
(@) aand b are in O, with either aor bin T,
(b) ab€eX and (c) aa +bb=aa +bb €R".

For matrices in T%(p,q + 1), a=a € ©° and b=—-beoOl
Moreover, in the case that a € T, there exists p € X such that b=ap

and, for any sufficiently small A € R, ( }3) _jb ) eI Q).

Proof Everything follows directly from Theorem 18.5. O

Groups of motions

Of obvious practical importance is the group of rigid motions of R3, that
is the group of rotations of R* extended by the group of translations of
R3. More generally we may consider the group of rigid motions of any
finite-dimensional quadratic space X, this being the group of rotations
of X extended by the group of translations of X. Such rigid motions are
readily representable with the aid of the Clifford group I' = I'(X).

Theorem 18.7 Let A = R, with X = RP4 and Clifford group T', and let

( Z z ) in A(2) represent an element of the Clifford group T°(p, q + 1),

with a € T°. Then the map X = X; x> axa' + ba™! is a rigid motion
of X and any rigid motion of X may be so represented, the representation
being unique up to non-zero real multiples of a and b.

Strictly speaking what is involved here is the subgroup of A(2) consist-
ing of all matrices of the form ( ?) Z ) , with @ € T'® and b = ap, where
p € X. In the particular case that X = R Spin(4) is most frequently
identified with the group S3 x §3 = 2H. An alternative to 2H consists

of the matrices of H(2) of the form ( Z z ) with the injective algebra

1 ) Y-
map H —H(2) sending (?) 2) to ( fgt:; i8+:; ) , it then
2 2

being the case that if |g| = |r| and r # —q then (¢ —r)(g +7)~! is a pure
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quaternion, that is an element of R3. It is to be noted for future reference
(cf. Exercise 8.2) that o and B are quaternions such that fa~! is pure if
and only if o« and # as elements of R* are mutually orthogonal.

The subalgebra of H(2) consisting of all matrices of the form ( ?) z )

is known as Clifford’s algebra (1873) of biquaternions . Elements of it are
all of the form a + be, where a and b are quaternions and e* = 0, e being

0 (1) ) We discuss this important
special case further at the end of Chapter 24.

represented in H(2) by the matrix ( 0

Pfaffian charts

By Proposition 14.15 for any s € End_(R") the endomorphism 1 — s is
invertible, with (1 + s5)(1 — s)~! € SO(n). Moreover the map

End_(R") - SO(n);s— (1 + s)(1 —s)™!

is injective, this being the Cayley chart on SO(n) at "1. The question
naturally arises, what is the corresponding chart on Spin(n)?
A start to the answer is provided by Proposition 18.8.

Proposition 188 Let g € T%n) be such that p, = (1 +5)(1 —s)~!. Then
the real part of g is non-zero, and if this is taken to be 1 then g = 1 +
> icjSijeiej + higher order terms.

Proof Letg=a+}; <j rijeiej+ higher order terms, where a, t;; € R, and
let x =3, xie; € R", with x' = g xg~! also in R™. Then the coefficients
of ¢; on either side of the equation x’' g = g x are equal; that is

axﬁ—Zxﬁ =ax,~+in;
i<j i<j
that is (a — r)X] = (a +r)x;.
So(@—r)(1+s)1—s) ' =a+r; thatis (a—r)(1 +5) = (@+7r)(1 —s),
implying that as =r.
Soa#0andifa=1thenr=s. O

There is more than one way of presenting the complete answer. The
one we have chosen to present involves the complete Pfaffian of the
skew-symmetric matrix s.
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So let s € End_(R"), that is s € R(n) and s* = —s. The Pfaffian of s,
pf's, is defined to be 0 if n is odd and to be the real number

Z sgnm H Sn(2k),n(2k-+1)

neP iem

if n = 2m is even, P being the set of all permutations of 2m for which

(i) for any b, k € m, h < k = n(2h) < n(2k),
(it) for any k € m, n(2k) < n(2k + 1).

For example, if n = 4, pf's = so1523 — 2513 + S03S12. By convention,
pfs =1if n =0, in which case s = °1 = 0.

For any I < n, let s; denote the matrix (s;j : i,j € I). Then
s; € End_(R"), where k = #I. The complete Pfaffian of s, Pfs, is, by
definition, the element

Z pfsie

I<n

of the Clifford algebra Ry,. Since pfs; = 0 for #I odd, Pfs € Rg’n.
In fact Pfs € I'%(n), as we now state formally.

Theorem 18.9 Let s € End_(R"). Then Pf(s) € y°(n) and is the unique ele-
ment of T%n), with real part 1, that induces the rotation
A+s1-s"L

Proof A start to the proof has already been provided by Proposition 18.8.
It then follows by application of part of Theorem 18.6 that the coefficient
of ¢; is a polynomial in the terms of the matrix s;, obtained from s by
deleting all the rows and columns of s except for those with i, j € I. One
proceeds by induction, and by verifying at each stage that the coefficient
of highest degree in either e;er or e;eger is zero. Moreover, by the final
part of Theorem 18.6, this polynomial contains exactly one term from
each row and each column of s;, so that the terms of the polynomial are,
up to real multiples, the terms of pf's;.

Finally, consider any one such term,

ASg1523545€0€1€2€3€4e5, for example.

This term will be equal to the corresponding term in pfs’ where s’ €
End_(R") is defined by

!
So1 = So1 = —S19, Sp3 = 523 = —Sy and S5 = 545 = —5y,
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all the other terms being zero. However,

Pfs’ = (14 soe0e1)(1 + s3e2e3)(1 + s45e4e5)

= 1+ sp1e0e; + s23€263 + S4seses + ... + So1523545€0€1 €2€3€4€5,

since each of the factors is in I'%(6), the real part is 1 and the coefficients
of the terms e;e; are correct. So, in this case, A = 1 in accordance with
the statement of the theorem. The other terms are handled analogously.

O

The map
End_(R") - Spin(n); s— Pfs/|Pfs)]|

will be called the Pfaffian, or Lipschitz, chart at 1 on Spin(n). Lipschitz
(1880), (1884) shares with Clifford the discovery of the Clifford algebras.
See, for example, ‘Correspondence from an ultramundane correspondent’
(1959). For further details of the early history of Clifford algebras see
Van der Waerden (1985). and a forthcoming book by Pertti Lounesto.

For the alternative presentation of the Lipschitz chart that involves
the exterior exponential of the bivector 3 ,_;sijeiej, see, for example,
Lounesto (1987) and Ahlfors and Lounesto (1989).

The following property of the Pfaffian is sometimes used to characterise
it. See for example Artin (1957).

Theorem 18.10 For any s € End_(R"), (pfs)? = dets.

Proof Let s € End_(R"), Then, for any t € R(n), t'st € End_(R"). Now,
for any such s and ¢,

pf(¢'st) = dettpfs.
To show this it is enough, by Proposition 1.8, to verify that pfs is
invariant under an elementary column operation coupled with a matching
elementary row operation.
The matrix s induces a skew correlation on R” with product
R" x R">R; (x, X)— x'sx’.

Let 2m be the rank of this correlation. Then, by a slight generalisation
of Theorem 6.7 to include the degenerate case, there exists u € GL(n;R)
such that

(' su) a1 = 1 = —(U'su)a2u41
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for all k € m, and (u*su);; = 0 otherwise. It follows from this that

Pf(u‘su) = H(l + exernt1)

kem

There are two cases. If 2m < n, pf(u*su) = 0, implying that pfs = 0,
since detu # 0, while det(u*su) = 0, implying that dets = 0. If 2m = n,
pf(usu) = 1 and det(u*su) = 0, implying that

(det u)*(pf 5)* = 1 = (det u)® dets.

In either case, (pf 5)?> = dets. O

Exercises

18.1  Let p, be the rotation of R* induced by an element g of I'*(R*)
with real part equal to 1. Prove that p, is expressible as the
composite of two hyperplane reflections (cf. Theorem 5.15) if
and only if g is of the form

1 + so1€pe1 + soxegez + sozeges + spperez + sizeres + sueqes
where (e, €1, €2, €3) is the standard basis for R*. Deduce that
1 + so1€0€1 + So2€pe2 + sozepes + sipe1ez + sizere3 + sneres

is the product in the Clifford algebra Ro4 of two elements of R*
if and only if

pf's = 501523 — sg2513 + 503512 = 0.
18.2  Prove that an invertible element of the Clifford algebra C,
1 + so1€pe1 + soz€pe2 + sozepes + sppere + sizeres + sueqes

is the product of two elements of C* if and only if pfs = 0.
18.3 Prove that an element

So1€0€1 + so2€pe2 + Sozepes + s12€1€2 + s13€1€3 + 5236283

of A%(K*), where K = R or C, is the product of two elements of
K* if and only if pfs = 0. Deduce that the image constructed
in Exercise 15.7 of the Grassmannian %,(R*) in the projective
space ?1(/\2(R4)) is the projective quadric with equation

501523 — 502513 + Se3512 = 0.

184  Define an analogue of the Pfaffian chart for Spin(p,q),pq # 0.
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The Cayley algebra

In this chapter we take a brief look at a non-associative algebra over
R that nevertheless shares many of the most useful properties of R, C
and H. Though it is rather esoteric, it often makes its presence felt in
classification theorems and can ultimately be held ‘responsible’ for a rich
variety of exceptional cases. Most of these lie beyond our scope, but
the existence of the algebra and its main properties are readily deducible
from our work on Clifford algebras in previous chapters.

Real division algebras

A division algebra over R or real division algebra is, by definition, a
finite-dimensional real linear space X with a bilinear product X2 — X;
(a, b) — ab such that, for all q, b € X, the product ab = 0 if and only if
a=0or b =0, or, equivalently, if and only if the linear maps

X->X;x—xband x—ax

are injective when a and b are non-zero, and therefore bijective.

We are already familiar with three associative real division algebras,
namely R itself, C, the field of complex numbers, representable as a
two-dimensional subalgebra of R(2), and H, the non-commutative field
of quaternions, representable as a four-dimensional subalgebra of R(4).
Each has a unit element and for each there is an anti-involution, namely
conjugation, which may be made to correspond to transposition in the
matrix algebra representation, such that the map of the algebra to R,

N; arm— N(@) =4daq,

is a real-valued positive-definite quadratic form that respects the algebra

178
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product, that is, is such that, for all q, b in the algebra,
N(ab) = N(a) N(b).

A division algebra X furnished with a positive-definite quadratic form
N : X > R such that, for all a, b € X, N(ab) = N(a) N(b) is said to be a
normed division algebra.

Alternative division algebras

An algebra X such that, for all ¢, b € X, a(ab) = a’b and (ab)b = ab?
is said to be an alternative algebra. For example, any associative algebra
is an alternative algebra.

Proposition 19.1 Let X be an alternative algebra. Then, for all a, b € X,
(ab)a = a(ba).

Proof For alla, b € X,

(@a+b)a=(a+b)(a+b)a)
= (@ +ab+ba+b)a=(a+b)a®+ba)
= a’a+ (ab)a+ (ba)a+ b*a=aa®*+a(ba) + ba* + b(ba)
= (ab)a = a(ba).

O

Proposition 19.2 Let X be an alternative division algebra. Then X has a
unit element and each non-zero a € X has an inverse.

Proof If X has a single element there is nothing to be proved. So suppose
that it has more than one element. Then there is an element a € X, with
a # 0. Let e be the unique element such that ea = a. This exists, since the
map x — xa is bijective. Then e’a = e(ea) = ea. So €*> = e. Therefore,
for all x € X, e(ex) =e*x = ex and (xe)e = xe? = xe. So ex = x and
xe = x. That is, e is a unit element, necessarily unique.

Again let a # 0 and let b be such that ab = e. Then a(ba) = (ab)a =
ea=ae. So ba = e. That is, b is inverse to a. O

The Cayley algebra

There are many non-associative division algebras over R. Such an algebra
may fail even to be power-associative, that is, it may contain an element
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a such that, for example, (a®)a # a(a®). A less exotic example is given
in Exercise 19.1. However, only one of the non-associative division
algebras is of serious interest. This is the alternative eight-dimensional
Cayley algebra or algebra of Cayley numbers (1845), also discovered
independently in 1843 by John Graves (1848) and known by him as the
algebra of octaves or octonions. Despite the lack of associativity and
commutativity there is a unit element, the subalgebra generated by any
two of its elements is isomorphic to R, C or H and so is associative,
and there is a conjugation anti-involution sharing the same properties as
conjugation for R, C or H.

The existence of the Cayley algebra depends on the fact that the matrix
algebra R(8) may be regarded as a (non-universal) Clifford algebra for
the positive-definite orthogonal space R in such a way that conjugation
of the Clifford algebra corresponds to transposition in R(8). For then,
as was noted following Theorem 17.13, the images of R and R’ in R(8)
together span an eight-dimensional linear subspace, passing through 1,
such that each of its elements, other than zero, is invertible. This eight-
dimensional subspace of R(8) will be denoted by Y.

Proposition 19.3 Let u : R® > Y be a linear isomorphism. Then the map
R® x R® > R®; (a, b) — ab = (u(a))(b) is a bilinear product on R® such
that, for alla, b € R®, ab =0 if and only if a = 0 or b = 0. Moreover, any
non-zero element ¢ € R® can be made the unit element for such a product
by choosing u to be the inverse of the isomorphism

YRSy ye

The division algebra with unit element introduced in Proposition 19.3
is called the Cayley algebra on R® with unit element e. It is rather easy
to see that any two such algebras are isomorphic. We shall therefore
speak simply of the Cayley algebra, denoting it by O (for octonions).
Though the choice of ¢ is essentially unimportant, it is advantageous
to select an element of length 1 in R® For definiteness we select e,
the zeroth element of the standard basis for R®. We then denote by
v (upsilon): R" — Y the inverse of the linear isomorphism Y - R3; y
y eo, Which associates to each y € Y its zeroth column.

Here we have implicitly assigned to R® its standard positive-definite
structure, with quadratic form

N:R®*SR;a— N@ =a a=da

The space Y also has an orthogonal structure, induced by conjugation,
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namely transposition, on the Clifford algebra R(8), with quadratic form
Y- R{e}; y— y'y.

The Cayley algebra O inherits both, the one directly and the other via
the isomorphism v. As the next proposition shows, the choice of ¢ as an
element of length 1 guarantees that these two structures coincide.

Proposition 19.4 For all a € R, (v(a))*v(a) = N(a)(®1).

Proof For all a € R®, a = v(a)e. So N(a) = a*a = e*(v(a))*v(a)e. Since
y'y € R®1) for all y € Y and since ee = 1, it follows that

v(a)'v(a) = N(a)(1).

Conjugation on R(8) induces a linear involution
0-0; a— a=(v(a)e

which we shall call conjugation on Q. This involution induces a direct
sum decomposition O = R{e} ® O’ in which O’ = {b€ O : b= —b}.

The following proposition lists some important properties both of the
quadratic form and of conjugation on O. The product on R(8) and the
product on O will both be denoted by juxtaposition, as will be the action
of R(8) on O. It is important to remember throughout the discussion
that, though the product on R(8) is associative, the product on O need
not be.

Proposition 19.5 For all a, b € O,

N(ab) = N(a)N(b), implying that O is a normed division algebra,

(a- b)e = @b+ ba), implying that O’ = (R{e})*,

(N(a))e =da =agq,
and ab = ba, implying that, conjugation is an algebra anti-involution.
Moreover, for all a, b,c € 0, @ (bc)=b"(ca)=7T-(ab).

Proof For alla, b€ O,

N(ab) = N(v(a)b) = b*v(a)*v(a)b = b*(N(a)(*1))b = N(a)N(b).

Alsoab+ba = @(be)+b(ae) = v(a) v(b)e+v(b)v(a)e = 2(a-b)e, implying
that, if a € R{e} and if b € O, then 2(a - b)e = ab— ba = 0, since e,
and therefore any real multiple of ¢, commutes with any element of
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O. It implies, secondly, since N(a) = a - a, that N(a) = @a and, since
v(a)v(a)t = v(a)*v(a), that ad@ = N(a).
Next we prove that, for all a, b, c € O, a- (bc) = b (ca) and this we
do by proving that each is equal to (b @) - c. Firstly
@ (bc) = @o(b)c = av(b)c = (v(b)a)'c = (ba) - c.

Secondly, (@) c = b (ca) when a € R{e}. On the other hand, when
acO,a'¢e=a-e=0and
b-(ca)—(®a) ¢ = (ca)-b+(ba)-c
= a-(¢b)+a- (bc), by the argument used above,
= a-(Eh+bo)
a-2(c- be
= 0

So, for all @ € O,a@" (bc) = b (ca). Permuting a, b and ¢ cyclically
we also obtain b- (ca) = ¢ (ab). Finally we set ¢ = ¢ in the equation
¢-(ab)=1a-(bc). Then

e(ab)+abe=albe)+bea.
That is, ab+ab =ab+ba, so that ab = ba. O

The real number @- (bc) is said to be the scalar triple product of the
Cayley numbers a, b and ¢, in that order. This generalises the scalar
product on H, defined after Proposition 8.17.

The algebra O is clearly not commutative, since dimQ’ > 1. Nor is it
associative, as we shall see. Nevertheless we have the following

Proposition 19.6 The Cayley algebra O is alternative.

Proof For any a, b € O, @(ab) = v(@)v(a)b = v(a)*v(a)b = (aa)b. So

a(ab) (a +@)ab—a(ab)
((a + @)a)b — (aa)b, since a +a € Rie},

= &b

By proving that their conjugates are equal it follows likewise that

(ab)b = ab®.
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Throughout the remainder of this chapter we shall identify R with
R{e}. In particular, we shall write 1 in place of e for the unit element in
O, being careful to distinguish the numeral 1 from the letter 1.

Hanmilton triangles

It has been remarked that two elements a, b € O’ are orthogonal as
elements of R® if and only if they anti-commute. An orthonormal
ordered subset (i, j, k) of O, with i = jk, j = ki and k = ij, therefore
spans, with 1, a subalgebra of O isomorphic with the quaternion algebra
H. Such a subset will be said to be a Hamilton triangle in O and will be
denoted by the diagram

i
jAk

in which each vertex is the product of the other two in the order indicated
by the arrows.

Proposition 19.7 Let a and b be mutually orthogonal elements of O’ and
let c =ab. Then c € O and is orthogonal both to a and to b.

Proof First

a-b=0=ab+ba=0
= C=ab=ba=(—b)(—a)=—c
=ce0.
Also a-c = }(a@(ab)+ (aba)
= 1(N(a)b + b N(a)), by Proposition 19.6,
= 0, since b+b=0.
Similarly, b:-c = 0.

O

Corollary 19.8 Let (i, j) be an orthonormal ordered pair of elements of O’
and let k =1j. Then (i, j, k) is a Hamilton triangle in O'.

From this follows the assertion made earlier that the subalgebra gen-
erated by any two element of O is isomorphic to R, C or H and so is, in
particular, associative.
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Cayley triangles
Finally, any Hamilton triangle in O’ may be extended to a useful or-
thonormal basis for O’. We begin by defining a Cayley triangle in O’
to be an orthonormal ordered triple (a, b, ¢) in O’ such that ¢ is also
orthogonal to ab.

Proposition 19.9 Let (a, b, ¢) be a Cayley triangle in O'. Then

(1) a(bc) + (ab)c = 0, exhibiting the non-associativity of O,
(i) a-(bc) =0, implying that the elements a, b, ¢ form a Cayley triangle
in whatever order they are listed,
(iil) ab- bc =0, implying that (a, b, b¢) is a Cayley triangle,
(iv) (ab)(bc) = ac, implying that (ab, bc, ac) is a Hamilton triangle.

Proof
(i) Since (a, b, c) is a Cayley triangle,
ab+ba=ac+ca=bc+cb={(ab)c+clab)=0.
So
a(bc)+ (ab)c = —a(ch)—c(ab)
(@ +Ab—(a+ c)ab+cbh)
@+ c/’b—(a+c)(a+c)b)
= 0

(ii) From (i) it follows by conjugation that (¢b)a + ¢(ba) = 0 and
therefore that (bc)a + c(ab) = 0. Since (ab)c = +c(ab) =0, it
follows that a(bc) + (bc)a = 0, implying that a- (bc) = 0.

(iii)

2ab-bc = (ba)(bc)+ (bc)ba)
= (ba)*+(bc)* = (b(a—c))*
= —b*a* — b’ + b a—c)?

—bac+ca)

2ba-c

= 0.

(iv) Apply (i) to the Cayley triangle (a, b, b¢).
Then (a b)(bc) = —a(b(bc)) = ac, since b*> = —1.
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We can reformulate this as follows (‘" being the letter 7).

Proposition 19.10 Let (i, j, 1) be a Cayley triangle in O’ and let k = ij.
Then {i, j, k, 1, i, jl, k1} is an orthonormal basis for O, and if these seven
elements are arranged in a regular heptagon as shown then each of the

k 1

seven triangles obtained by rotating the triangle (i,j,k) through an integral
multiple of 2r/7 is a Hamilton triangle, that is, each vertex is the product
of the other two vertices in the appropriate order.

This heptagon is essentially the multiplication table for the Cayley
algebra O.

From this it is easy to deduce that there cannot be any division algebra
over R of dimension greater than 8 such that the subalgebra generated
by any three elements is isomorphic to R, C, H or O. Such an algebra
A, if it exists, has a conjugation anti-involution, inducing a direct sum
decomposition R @ A’ of A in which A’ consists of all the elements of
A which equal the negative of their conjugate. Further details are in
Exercise 19.3. The following proposition then settles the matter.

Proposition 19.11 Let (i, j, 1) be any Cayley triangle in A', let k = ij and
let m be an element orthogonal to each of the seven elements i, j, k, |, i1, j1
and k1 of the Cayley heptagon. Then m = 0.

Proof We remark first that parts (i) and (ii) of Proposition 19.9 hold for
any a, b, c € A’ such that a*b = a'c = b-¢ = ab-c = 0. Using this several
times, we find, on making a circuit of the ‘re-bracketing pentagon’, that

(ij)(Im) = —((ij)hm = (i(G))m = —i(§)m) = i((I m)) = —@j)( m).

So (ij)(Im) = 0. But ij # 0; so Im = 0, and therefore, since 1 # 0, m = 0.
O
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Further results

There are various stronger results, for example

(i) Frobenius’ theorem (1878) that any associative division algebra

over R is isomorphic to R, C or H,

(ii) Hurwitz' theorem (1898) that any normed division algebra over
R, with unit element, is isomorphic to R, C, H or O,

(iii) the theorem of Skornyakov (1950) and Bruck, Kleinfeld (1951)
that any alternative division algebra over R is isomorphic to
R, C,H or O; and

(iv) the theorem of Kervaire (1958), Milnor, Bott (1958), and Adams
(1958), that any division algebra over R has dimension 1, 2, 4 or
8.

The first two of these are little more difficult to prove than what we
have proved here and can be left as exercises. The starting point in the
proof of (i) is the remark that any element of an associative n-dimensional
division algebra must be a root of a polynomial over R of degree at most
n and, therefore, by the fundamental theorem of algebra, must be the
solution of a quadratic equation. From this it is not difficult to define
the conjugation map and to prove its linearity. Result (iii) is harder to
prove. The discussion culminates in the following.

Theorem 19.12 Any real non-associative alternative division algebra is a
Cayley algebra.

Proof Let A be a real non-associative alternative division algebra, and,
forany x, y, z € A, let

[x,y]=xy—yx and [x,y, z] =(xy)z —x(y2).

It can be shown that if x and y are such that u = [xy] # O, then
there exists z such that v = [x, y, z] ¥ 0. It can then be shown that
uv +vu = 0 and therefore, by the previous remark, that there exists ¢
such that w = [uvt] # 0. One can now verify that 42, v> and w? are
negative real numbers and that

i =u/v—12, j=v/V—0v? and 1=w//—w?

form a Cayley triangle. Then A contains a Cayley algebra as a sub-
algebra. It follows, essentially by Proposition 19.11, that 4 coincides with
the Cayley algebra.
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The details are devious and technical, and the reader is referred to
Kleinfeld (1963) for a full account. O

Finally, (iv) is very hard indeed. Its proof uses the full apparatus
of algebraic topology. See Adams (1958), (1960), Kervaire (1958) and
Milnor and Bott (1958).

The Cayley projective line and plane

Most of the standard results of linear algebra do not generalise over the
Cayley algebra O, for the very definition of a linear space involves the
associativity of the field of scalars. Nevertheless we can regard the map

0" x0—-0"; (yi:i€n), y)— (yiy:i€n)

as a quasi-linear structure for the additive group O".

It is also possible to define a ‘projective line’ and a ‘projective plane’
over O.

The Cayley projective line OP! is constructed by fitting together two
copies of O in the manner of Example 14.2 for the projective line KP!,
for K = R, C or H. Any point is represented either by [1, y] or by
[x, 1], with [1, y] = [x, 1] if and only if y = x™1, the square brackets here
having their projective-geometry connotation. There is even a ‘Hopf map’
h : O%\(0, 0) » OP! defined by h(yo, 1) = [yo y;'!, 1], whenever y; # 0,
and by h(yo, y1) = [1, y1, y5' 1], whenever y, # 0. Since any two elements
of O (for example, y, and y;) generate an associative subalgebra, it is
true that yoy;! = (31 ¥51)~!, and so the two definitions agree, whenever
yo and y; are both non-zero.

The Cayley projective plane OP? is similarly constructed by fitting
together three copies of Q2. Any point is represented in at least one of
the forms [1, yo, 2o], [x1, 1, 1] or [x2, y2, 1]. The obvious identifications
are compatible, though this requires careful checking because of the
general lack of associativity. What we require is that the equations

-1 -1 -1 -1
X1=yy,21=2Y, and xa=x12{, y2 =2

be compatible with the equations
=5 p=ypz5"
But all is well, since

1

- - —1y- - -1 —1\-1 -1
x1zt =y 20y ) =2t and ' =(y) T =0zt
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once again because the subalgebra generated by any two elements is
associative.

Useful analogues over O of projective spaces of dimension greater than
2 do not exist. The reader is referred to Bruck (1955) for a discussion.

19.1

19.2
19.3

194

Exercises
Let X be a four-dimensional real linear space with basis elements

denoted by 1, i, j and k, and let a product be defined on X by
prescribing that

P=j=k>=-1, jk+kj=ki+ik=ij+ji=0
and
jk=ai, ki=gj, ij=7yk,

where o, f, y are non-zero real numbers, all of the same sign.
Prove that X, with this product, is a real division algebra and that
X is associative if and onlyif a = =y=1ora=f=y=—1.
Prove that if @, b € O’ then ab—ba € O'.
Let X be a division algebra over R such that for each x € X
there exist a, § € R such that x2—2ax+f = 0 and let X’ consist
of all x € X for which there exists f € R such that x>+ § =0,
with g > 0.

Prove that X’ is a linear subspace of X, that X = R & X’ and
that the map

ROX 5ROX; A+x'—1-X,

where A € R, X' € X', is an anti-involution of X.
Let A be a real alternative division algebra, and, for any x, y,
z€ A, let

[x,y]=xy—yx and [x,y, z] =(xy)z —x(y2).

Prove that interchanging any two letters in [x, y, z] changes
the sign, and that

[x)’» Z] —x[,V» Z] - [x» Z]y = 3[x» Y, Z].

Hence show that, if 4 is commutative, then A also is associative.
(Forallx,y,z€ A, [x+y,x+y,2]1=0=[x,y+z y+2].)
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Exercises 189

Let A be a real alternative division algebra, and, for any w, x,
¥, 2 €A, let

w, x, y,z1 =[wx, y, z] —x[w, y, z] — [x, y, z]w.

Prove that the interchange of any two letters in [w, X, y, ]
changes the sign.

(For all w, x, y,z € A4,
wix, y, z] —[wx, y, z] + [w, xy, z] — [w, x, yz] + [w, x, y]z = 0.)
Let A be a real alternative division algebra, let x, y € 4 and let
u=[x, y], v =[x, y, z]. Prove that [v, x, y] =vu = —uv.
Prove that the real linear involution O — O; a — &, sending
j» 1, j1 to —j, —1, —j1, respectively, and leaving 1, i, k, il and k1
fixed, is an algebra anti-involution of O.
Verify that the map § : H> — O; x> xo+1x; is a right H-linear
isomorphism and compute f~!(B(x) B(¥)), for any x, y € H
(Cf. Exercise 19.7.)

Let Q = {(x, y) € (H?>)? : Xgyo + X1 y1 = 1}. Prove that for
any (a, b) € O* x H, (71(@), B~ (a~'(1 +1b))) € Q and that the
map

0" xH—Q; (a, b)— (@), ' (a™ (1 +1b)))

is bijective. (Cf. Exercise 9.4.)
Verify that the mapy : C*—>0; x> xo+jx1 +1x +jkxs is a
right C-linear isomorphism and compute y~}(y(x) y(y)), for any
x, y € C4

Let @ = {(x, y) € (C*? : Y;cq Xiyi = 1}. Prove that, for any
(a, (b, c, D)) € O* x C3,

0@,y M@ (1 +jb+1le+jkd)) € Q
and that the map
0" xC>0Q;
(@, (b, ¢, )~ (y'@,y (a1 +jb+1c+jka)
is bijective.
Show that the fibres of the restriction of the Hopf map
0% - OP!; (y0, 1)~ [yo, y1]

to the sphere S = {(yo, 1) € O® : Joyo + yiy1 = 1} are
7-spheres, any two of which link. (Cf. Exercises 14.1 and 14.2.)
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19.11 Letq, b, c € O. Prove that
a(b(ac)) = ((ab)a)c, ((ab)c)b = a(b(ch)), a(bc)a = (ab)(ca).

These are known as the Moufang identities (1935) for an alter-
native product. They are most easily proved, for O, as exercises
on the rebracketing pentagon.
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Topological spaces

In this chapter we shall simply summarise those topological concepts
that will be required in the sequel. For most of the proofs the reader is
referred to this book’s parent, Porteous (1981).

Topological spaces

Cohesion may be given to any set X by singling out a subset 7 of the
set Sub X of subsets of X such that

)PeTandXeT;
(ii) forall4,Be 7, ANBe T,
(iii) for all & < 7, the union of all the elements of & is in 7.

The set J is said to be a topology for X, and the elements of 7 are
called the open sets of the topology. A topological space consists of a set
X and a topology 4 for X.

A set X may have many topologies. For example, for any set X, both
Sub X and {@, X} are topologies for X. However, most of the sets that we
shall be concerned with will be subsets of a finite-dimensional real linear
space, and for any such set there is a natural choice for its topology.

We start by remarking that any norm on a finite-dimensional real linear
space determines a topology for the space. In Chapter 4 we defined the
norm |x| of an element x of a positive-definite real quadratic space X to
be +/|x?|, and in Proposition 5.31 we listed some of the properties of
the map

X—-R; x— [x]
These included the following:
(i) for all x € X, |x| = 0, with |x| =0 if and only if x = 0;

191
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(i) forall x€ X and all A € R, |Ax]| = |}]|x[;
(i) for all x, x' € X, |x + x| < |x| + ||

This last condition, known as the triangle inequality, is equivalent,
by (ii), with 1 = —1, to

(iv) for all x, ¥’ € X, ||x] — [X/|| < |x — X'|.

In practice one does not want to be restricted to norms induced by a
scalar product, any map X — R; x — |x| satisfying all these properties
being said to be a norm on the real linear space X.

On occasion a norm will be denoted by || || rather than by | |.

A normed linear space consists of a real linear space X and a norm
| |onX.

The distance between any two points a and b of a normed linear space
X with norm | | is defined to be the non-negative real number |a — b|.
It follows from (i) that a = b if and only if |a — b| = 0.

Let a be a point of a normed linear space X. Then a neighbourhood
of a is a subset 4 of X such that, for some positive real number J, all
points of X within a distance J of a belong to 4. A subset A of X is said
to be open in X if it is a neighbourhood of each of its points. A point
b of X is said to be a boundary point of A if, for any positive J, there
are within the distance J of b at least one point of 4 and one point of
the complement of 4. A subset A of X is open if and only if none of its
boundary points is in A.

A subset B of X is closed in X if its complement in X is open in X. A
subset B of X is closed if and only if all of its boundary points are in B.

Both the null set @ and the whole normed linear space X are both
open and closed in X.

Proposition 20.1 For any normed linear space X the set of subsets of X
open with respect to the norm is a topology for X.

Normed linear spaces are examples of Hausdorff spaces, a topological
space X being said to be Hausdorff if any two distinct points a and b of
X have disjoint neighbourhoods 4 and B.

We shall see presently that any two norms on a finite-dimensional real
linear space determine the same topology. This is the topology assumed
to be chosen if nothing is said to the contrary.
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Continuity

Let X and Y be topological spaces. A map f : X —» Y is said to be
continuous if the inverse image in X of any open set of Y is open in X.
For a map f : X —» Y between normed linear spaces X and Y this is
equivalent to the statement that, for any point of X and for any positive
real number ¢ (in general depending on a), there is a positive real number
d such that

Ix —al <6 = |f(x) - fla)l <&

Proposition 20.2 Let X and Y be topological spaces and let f : X ->Y
be a constant map. Then f is continuous.

Proposition 20.3 Let X be a topological space. Then the identity map 1x
is continuous.

Proposition 20.4 Let W, X and Y be topological spaces andletg : W - X
and f : X — Y be continuous maps. Then the compositemap fg: W - X
is continuous.

The inverse of a bijective continuous map need not be continuous. For
example, let X be any set with more than one element. Then the map

Iy : X,SubX - X, {0, X}

is continuous, but its inverse is not continuous.

A bijective continuous map whose inverse is also continuous is said to
be a homeomorphism.

Two topological spaces X and Y are said to be homeomorphic, X = Y,
if there exists a homeomorphism f : X — Y. The relation = is an
equivalence on any set of topological spaces.

Subspaces

Let W be a subset of a topological space X. Then the induced topology,
or subspace topology, on W is the smallest topology on W for which the
inclusion map is continuous, a subset C of W being open in W if and
only if there is an open set 4 in X such that C = AN W. A subset C
that is open in W need not be open in X.

Proposition 20.5 Let f : X —Y be a continuous map and let W be a
subspace of X. Then the map fIW : W — Y is continuous.
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In the sequel it will be often be convenient to denoteby f : X > Y a
map between topological spaces X, the source, and Y, the target, whose
domain, dom £, is a subset of X, not necessarily the whole of X. In most
cases dom f will be an open subset of X, but whether this is the case or
not dom f will be supposed to have assigned to it the topology induced
from X. One then has the following extension of Proposition 20.4.

Proposition 20.6 Let W, X and Y all be topological spaces and let g :
W>-»X and f : X>=Y be continuous maps. Then the composite map
fg: W>-X, with domain g~'(dom f), is continuous.

More on normed linear spaces

Proposition 20.7 Let X and Y be normed linear spaces. Then the map
X x Y >R; (x, y)— max{|x|, [y|}
isanormon X xXY.

This norm is called the product norm on X x Y.

A linear map t : X — Y between normed linear spaces X and Y is
said to be bounded if there is a real number K such that, for all x € X,
|t(x)] < K|x|. When such a number K exists the set {|t(x)| : |x| < 1} is
bounded above by K. This set is non-null, since it contains 0, so it has
a supremum. The supremum is denoted by |t| and is called the gradient
norm of t.

Proposition 20.8 Let t : X — Y be a bounded linear map between normed
linear spaces X and Y. Then, for all x € X, [t(x)| < |t||x|, |t| being the
smallest real number K such that, for all x € X, |t(x)| < K |x|.

For any normed linear spaces X and Y the set of bounded linear maps
is denoted by L(X, Y).
Proposition 20.9 Let X and Y be normed linear spaces. Then the gradient

norm is a norm on L(X, Y).

Norms | |and || || on a real linear space X are said to be equivalent
if there exist positive real numbers H and K such that, for all x € X,

Xl <Hlx] and [|x] <K||x]|.
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Proposition 20.10 Equivalent norms on a real linear space X define the
same topology on X.

Inversion

Let X and Y be finite-dimensional linear spaces. Then the set of linear
maps of maximal rank from X to Y will be denoted by GL(X, Y). When
dimX = dimY this is just the set of invertible maps from X to Y.
Proposition 20.12 is concerned with the continuity of the inversion map
L(X, Y)>> L(Y, X); t— ¢! with domain GL(X, Y). First we have a
preparatory lemma.

Lemma 20.11 Let X be a finite-dimensional linear space with norm | |, let
UeL(X,X)and let lu| < 1. Then 1y —u € GL(X, X) and |(1x —u)~!| <
(1 — |u)~. Moreover the map

LX, X)>>L(X, X); tv> 17}

is defined on a neighbourhood of 1 (= 1x) and is continuous at 1.

Proposition 20.12 Let X and Y be linear spaces of the same finite di-
mension. Then the map L(X, Y)> L(Y, X); t— t~! is continuous, its
domain, GL(X, Y), being open in L(X, Y).

Proof This follows at once from Lemma 20.11 and the decomposition

LX,Y) — LX,X) > LX,X) — L(¥,X)
t — ult — tlu — t“l,

u — 1 — 1 — ul.

Even if dimX # dim Y we still have the following.

Propeosition 20.13 Let X and Y be any two finite-dimensional linear spaces.
Then GL(X, Y) is an open subset of L(X, Y).

Quotient spaces and product spaces

A map f : X —Y is said to be a partition of X, and Y to be the quotient
of X by f, if f is surjective, if each element of Y is a subset of X, and
if the fibre of f over any y € Y is the set y itself. Anymapf: X—>Y
with domain a given set X induces a partition of X, fp, defined by
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frar(a) = {x € X : f(x) = f(a)}. Any topology J on X then induces a
topology on Y called the quotient topology for Y, this being the largest
topology on Y for which the partition is continuous, a subset B of Y
being open in Y if and only if its inverse image by f is open in X.

The subspace and quotient topologies have particular relevance to the
canonical decomposition

Xﬂcoimfﬂimfﬁ» Y

of a continuous map f : X — Y, the subspace im f of Y being assigned
the subspace topology and coim f the quotient topology.

The map f;;; need not be a homeomorphism. A continuous injection
f : X > Y such that f;;; is a homeomorphism is said to be a (topological)
embedding of X in Y. A continuous surjection f : X — Y such that fy;
is a homeomorphism is said to be a (topological) projection of X on to
Y.

Proposition 20.14 Let W, X and Y all be topological spaces and let
g : WoXand f : X—>Y be maps, whose composite fg : WY is
continuous. Then, if f is an embedding, g is continuous and, if g is a
projection, f is continuous.

For any continuous map f : X — Y the inverse image of any open set
is open and the inverse image of any closed set is closed. Such a map is
said to be open if the forward image of any open set of X is open in Y
and to be closed if the forward image of any closed set in X is closed in
Y.

The following proposition generalises the construction of the subspace
topology.

Proposition 20.15 Let W be a set, X and Y topological spaces and p :
W —>X and g : W — Y maps. Define a subset C of W to be open in W
if and only if C is the union of a set of subsets of W each of the form
p'ANqg7'B, where A is open in X and B is open in Y. Then the set of
open subsets of W is a topology, being the smallest topology for W such
that both p and q are continuous.

The topology so defined is said to be the topology for W induced by
the maps p and g from the topologies for X and Y.

When W =X x Y and (p, q) = 1w the topology induced on W by p
and g is called the product topology for W.
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Proposition 20.16 Let X and Y be normed linear spaces. Then the product
norm on X X Y induces the product topology on X x Y.

Proposition 20.17 A map (f, g) : W =X X Y is continuous if and only if
each of its components f : W —X and g : W =Y is continuous, W, X
and Y being topological spaces.

Proposition 20.18 Let X and Y be topological spaces and let y € Y. Then
the injection X - X x Y; x v (x, y) is an embedding and the product
projection X x Y ; (x, y) v x is a topological projection.

Compact sets

An (open) cover for a topological space X, J is, by definition, a subset
& of 7 such that | J& = X.

Proposition 20.19 Let B be a subset of a topological space X and let & be
a cover for X. Then B is open in X if and only if, for each A € ¥, BN A
is open in A.

Corollary 20.20 Two topologies on a set X are the same if and only if the
induced topologies on each of the elements of some cover for X are the
same.

It follows that in studying a topological space X nothing is lost by
choosing as cover for X and studying separately each element of the
cover.

Let W be a subspace of a topological space X. A set & of open sets
of X such that W < | J& will be called an X-cover for W. The set
{ANW : A e &} is then a cover for W, called the induced cover.

For example, the set {] — 1, 1[, ]0, 2[} is an R-cover for the closed
interval [0, 1]. The induced cover is the set {[0, 1[, ]0, 1]}.

It follows from the definition of the induced topology that every cover
for W is indexed by some X-cover for W (generally not unique).

Theorem 20.21 (The Heine-Borel Theorem.) Let & be an R-cover of a
bounded closed interval [a, b] = R. Then a finite subset &' of & covers
[a, b].

Corollary 20.22 Let & be any cover for [a, b]. Then there exists a finite
subset #' of P covering [a, b].



198 20 Topological spaces

A topological space X is said to be compact if for each cover & for
X a finite subset &' of & covers X. Theorem 20.21 states that every
bounded closed interval of R is compact. By contrast, the interval ]0, 1]
is not compact, since no finite subset of the cover {J(n+ 1)~1, 1]; n > 0}
covers ]0, 1]. More generally one has the following,

Theorem 20.23 A subset of R" is compact if and only if it is closed and
bounded.

There is no short proof! One route is provided by the following
sequence of propositions. The first two are easy.

Proposition 20.24 A compact subspace A of a normed linear space X is
bounded.

Proof Consider the set & of all balls in X of radius 1 with centre some
point of 4. O

Proposition 20.25 A closed subset A of a compact space X is compact.

Proof Let & be a cover of 4 by open subsets of X. Then consider the
cover & U {X\A4} of X. O
The next relates compactness to continuity.

Proposition 20.26 Let f : X —» Y be a continuous surjection and let X be
compact. Then Y is compact.

Corollary 20.27 Let X be a compact space and let f : X — Y be a partition
of X. Then the quotient Y is compact.

Proposition 20.28 Let W be a compact subspace of a Hausdorff space X.
Then W is closed in X.

Corollary 20.29 Any compact subset of a normed linear space is closed.

Putting together Corollary 20.22, Proposition 20.24, Proposition 20.25
and Corollary 20.29 we obtain the following characterisation of compact
subsets of R.

Proposition 20.30 A subset of R is compact if and only if it is closed and
bounded.
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Also from Proposition 20.24 and Corollary 20.29 we have part of
Theorem 20.23.

Corollary 20.31 Let R" be furnished with the product norm. Then any
compact subset of R" is closed and bounded.

The inverse image by a continuous map f : X —»Y of a compact
subset of Y need not be compact in X. When this is so we say that the
map f is compact.

Proposition 20.32 A closed continuous map f : X - Y is compact if and
only if each fibre is compact.

Proposition 20.33 Let X and Y be topological spaces, Y being compact.
Then the projection X x Y = X; (x, y) — x is closed, that is the image
of any closed set is closed.

Theorem 20.34 Let X and Y be non-null compact topological spaces. Then
X X Y is compact.

Proof By Proposition 20.33 the projection X x Y; (x,y)+— x is closed,
and therefore compact, by Proposition 20.32. But X is compact. So
X x Y is compact. O

It follows at once that the product of any finite number of closed
bounded intervals in R is compact.

The final stage in the proof of Theorem 20.23 is then provided by the
following proposition.

Proposition 20.35 Any bounded closed subset of R" is compact.

Connecteduess

The simplest intuitive example of a disconnected set is the set 2 = {0, 1},
the standard set with two elements. Of the four topologies for this set
only the discrete topology, namely that in which each subset is both open
and closed, is Hausdorff. Let it be assigned this topology.

A non-null topological space X is said to be disconnected if there is a
continuous surjection = : X — 2, and to be connected if every continuous
map f : X —2 is constant.

Any non-null topological space is easily seen to be either connected or
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disconnected, but not both. The null space is considered to be neither
connected nor disconnected.

Proposition 20.36 A topological space X is disconnected if and only if it is
the union of two disjoint non-null open sets of X.

Proposition 20.37 Any bounded closed interval [a, b] of R is connected.

Theorem 20.38 A non-null subset C of R is connected if and only if it is
an interval.

In particular R is connected.

Proposition 20.39 Let f : X — Y be a continuous surjection, and suppose
that X is connected. Then Y is connected.

Corollary 2040 Let f : X » Y be a continuous map and let A be a con-
nected subset of X. Then graph(f|A) is a connected subset of X x Y and
f(A) is a connected subset of Y.

Theorem 20.41 (The intermediate value theorem.) Let f : X >R be a
continuous map, let X be connected and let c, d € f(X). Then the interval
[c, d] is a subset of f(X).

Proposition 20.42 Let X be a topological space such that for any a, b € X
there exists a continuous map f : [0, 11— X such that f(0) = a and
f(1) =b. Then X is connected.

Proposition 2043 For any positive integer n the unit sphere S™ is a con-
nected subset of R™*1.

Proposition 2044 Let X and Y be non-null topological spaces. Then X x Y
is connected if and only if X is connected and Y is connected.

Proposition 20.44 may also be regarded as a particular case of the
following proposition, whose proof recalls the proof of Proposition 1.5.

Proposition 2045 Let f : X — Y be a topological projection of a topolog-
ical space X on to a connected topological space Y, each of the fibres of
f being connected. Then X is connected.
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Proof Let h : X —>2 be a continuous map. Since the fibres of f are
connected, the restriction of h to any fibre is constant. So there exists a
map g : Y — 2 defined, for all y € Y, by the formula g(y) = h(x), for
any x € f~1{y}, such that h = g f. Since h is continuous and since f is a
projection, g is continuous, by Proposition 20.14, and therefore constant,
since Y is connected. So h is constant.

Therefore X is connected. |

Exercises

20.1  Prove that the set 2 = {0, 1} has four different topologies that
may be assigned to it and that the set 3 = {0, 1, 2} has twenty-
nine. Which of these are Hausdorff and in which is each subset
of the space either open or closed?

202 Prove that if x € ]0, oo[ then i; i €]—1, 1] and that the map

10, 0[ 2 ]—-1,1[; x— X is a homeomorphism.
20.3 Prove that the intervals ] — 1, 1[ and [—1, 1] are not homeomor-
phic.

(There are various proofs. One uses compactness. Another,
which considers the complements of points of the space, uses
connectedness.)

204 Let X = {—1,1}x]—1,1[ = R? and consider the partition
n : X—Y of X which identifies (—1, x) with (1, x), for all
x €] —1, O, with Y assigned the quotient topology. Prove that
Y is not a Hausdorff space.
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Manifolds

Manifolds are sets that locally are like linear spaces. In particular they
have dimension, non-singular curves being one-dimensional manifolds
and non-singular surfaces being two-dimensional manifolds. There are
several levels of sophistication in their definition. Our interest here will
be in smooth manifolds, so we start by reviewing differentiability. This
done, we introduce smooth submanifolds of linear spaces, and then finally
smooth manifolds more generally, and their tangent spaces.

Tangency

Let f and t : X >— Y be maps between finite-dimensional real linear
spaces X and Y, and let a € X. We say that f is tangent to t at a,
or that f and t are mutually tangent at a, if (i) domf and dom¢t are
£ =t _

x—a 7
where the modulus signs in (iii) denote the assigned norms.

Note that the particular positions of the origins in X and Y are not
relevant to the definition. Accordingly in assessing the tangency of a pair
of maps f : X>-Y and t : X > Y at a particular point a € X there
is normally no loss of generality in assuming that @ = 0 in X and that
f(@)=ta)=0inT.

The following results are all basic to the theory. Most of the proofs
will be omitted. The interested reader is referred to Porteous (1981) for
these. It will be assumed tacitly here that W, X, Y and Z are all finite-
dimensional. Most of the story does generalise to infinite-dimensional
complete normed linear spaces (Banach spaces), but we shall not require
this generalisation here. For this also the reader is referred to the 1981
edition of my former book.

neighbourhoods of a in X, (ii) f(a) = t(a) and (iii) }mz

202
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Proposition 21.1 Let f, g and h be maps from X to Y, and let f be tangent
to g and g tangent to h at a € X. Then f is tangent to h at a.

Proposition 21.2 Let f and t be maps from X to Y, tangent at a € X.
Then f is continuous at a if and only if t is continuous at a.

Proposition 21.3 Maps (f, g) and (t,u) : W>>X x Y are tangent at
c€ W ifand only if f and t are tangent at c and g and u are tangent at
c.

The generalisation to products with any number of factors is obvious.
In the next proposition it is convenient to introduce the notations
(—, b) and (a, —) for the affine maps

XoXxY;x—>(x,b)and Y X xY; yr (a, y),

a being any point of X and b any point of Y.

Proposition 214 Let f : X x Y>> Z be tangent tot : X x Y>> Z at
(a, b). Then f(—, b) is tangent to t(—, b) at a and f(a, —) is tangent to
t(a, —) at b.

Theorem 21.5 (The chain rule.) Let f : X > Y be tangent to an affine
mapt:X—Y atac X and let g : Y > Z be tangent to an affine map
u:Y>Zatb=Ff(a) Theng : X >—Z istangent to ut: X>->Z at
a.

The proof is not straightforward, and is best broken into two stages,
in the first of which (the easier half) one proves that u f is tangent to ut
at g and in the second of which (the harder half) one proves that g f is
tangent to u f at a.

Until now we have assumed that the sources and targets of the various
maps involved have assigned norms. The next proposition shows that
the concept of tangency does not depend on the actual norms employed.

Proposition 21.6 Let X' and X" be finite-dimensional real normed linear
spaces with the same underlying linear space X, let Y' and Y" be finite-
dimensional real normed linear spaces with the same underlying linear space
Y, andlet f and t be maps from X to Y. Thenthe maps f andt : X' >> Y’
are tangent at a point a € X if and only if the maps f and t : X" >->Y"
are tangent at a.
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Proof The map f : X" >— Y” admits the decomposition

X" 1x X' I Y S Iy V&

and the map ¢t : X" >— Y” the decomposition
X s Ly X' s t Y/ s 1y Y”

Since the identity linear maps are certainly tangent to each other it
follows, by Theorem 21.5, that if f and t : X'>— Y’ are tangent at
a€ X then f andt : X" > Y" are tangent at a. O

In the infinite-dimensional case things are different — linear maps, even
the identity map, need not be continuous, if the norms on either side are
chosen appropriately.

The next theorem is a preliminary theorem on inverse maps. The
inverse function theorem comes later!

Theorem 21.7 Let f : X > Y be an injective map, tangent at a point
a € X to a bijective affine map t : X >>Y (so dimY = dimX ), and let
f7! : Y > X be defined in a neighbourhood of b = f(a) = t(a) and be
continuous at b. Then f~! is tangent to t~! at b.

Theorems 21.5 and 21.7 indicate the special role played by affine maps
in the theory of tangency. This role is further clarified by the following
intuitively obvious proposition.

Proposition 21.8 Let t and u : X — Y be affine maps, mutually tangent at
a point a of X. Then t = u.

Corollary 219 A map f : X > Y is tangent at a point a to at most one
affinemapt:X—>Y.

It may seem from this that Theorem 21.7 is nothing more than a
corollary to Theorem 21.5. For if f : X > Y is an injective map, tangent
at a € X to the affinemap t : X —» Y, and if f~! : Y > X is tangent at
b = f(a) to the affine map u : Y — X it follows, by Theorem 21.5, that
f~1f is tangent to ut at @ and f f~! is tangent to tu at b. Now f~1f is
also tangent to 1y at g, and f f~! is tangent to 1y at b, and therefore,
by the above corollary, ut = 1y and tu = ly. That is u = t~1. However,
Theorem 21.5 does not prove the existence of an affine map u tangent to
f7! but only determines it if it does exist.

By Corollary 219 a map f : X > Y is tangent at any point a € X to
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at most one affine map ¢ : X — Y, this map being uniquely determined
by its linear part, since necessarily t(a) = f(a). This linear part is called
the differential, or more strictly the value of the differential of f at a, and
will be denoted by dfa, the map f then being said to be differentiable at
a. The differential, df of f is the map

df : X>-L(X,Y); x> dfx,

the map f being said to be differentiable if dom(df) = dom(f), that is, if
f is differentiable at every point of its domain.

Note that it follows from condition (i) in the definition of tangency
that according to this definition the domain of a differentiable map
f : X >—>Y is an open subset of the linear space X.

The differential df of a differentiable map f : X >— Y need not be
continuous. If it is the map f is said to be continuously differentiable or
cL

Frequently in applications X = R" and Y = RP”. In that case the linear
map dfx at a point x of dom f may be represented by its matrix, a p x n
matrix over R known as the Jacobian matrix of f at x.

In computational work the notations of Leibniz are frequently in use,
the equation y’ = dfx(x’), where x € X, x' € X and y’ € Y, being often
written as dy = (dy/dx)dx, the (i, j)th entry in the Jacobian matrix of
dy/dx being denoted by dy;/0x;.

Numerous properties of differentials follow from the propositions and
theorems already stated. In stating these the letters W, X, Y and Z will
continue to denote finite-dimensional real linear spaces.

Proposition 21.10 An affine map t : X — Y is continuously differentiable,
its differential dt : X — L(X, Y) being constant, with constant value the
linear part of t.

The next proposition is just a restatement of Proposition 21.3, in
the case where t and u are affine maps, the extension to continuously
differentiable maps following at once from Proposition 20.17.

Proposition 21.11 A map (f, g) : W > X xY is continuously differentiable
at a point w € W if and only if each of the maps f : W >—»X and
g : W >-Y is continuously differentiable at w, with

d(f, g)w = (df w, dgw).

Next, a restatement of Proposition 21.4.
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Proposition 21.12 Let f : X x Y > Z be continuously differentiable at
a point (a, b) € X x Y. Then the map f(—, b) : X > Z is continuously
differentiable at a and the map f(a, —) : Y > Z is continuously differen-
tiable at b, with, forall x€e X,y € Y,

df(a, b)(x, y) = u(x) + v(y),
where u = d(f(—, b))a and v = d(f(a, —))b.

Both the last two propositions have obvious generalisations to the case
where the product of two linear spaces is replaced by a product of n
spaces, for any positive number n.

The converse to Proposition 21.12 is true, but not quite immediate,
since it is does not necessarily hold if the condition that the differentials
are continuous is dropped. An example is provided by the map f : R2 >R
defined by the formula

f0,00=0 and f(x,y)=2xp/(x* + "), for (x, y) # (0, 0),

for the partial differentials of f exist at (0, 0) although f is not differen-
tiable there.

The proof of the converse requires the increment formula, given below
as Theorem 21.27.

The next proposition will be of frequent application.

Proposition 21.13 Let § : X x Y — Z be a bilinear map. Then, for any
(a,b) € X x Y, B is tangent at (a, b) to the affine map
X XY —>Z; (x, ) B(x, b) + B(a, y) — Bla, b),
that is, B is differentiable, and, for all (a, b), (x,y) € X X Y,
df(a, b)(x, y) = B(x, b) + B(a, y),
dp being linear, and B continuously differentiable.

In the above do not confuse the linearity of df(a,b) with the linearity
of df.
Proposition 21.13 has, by Theorem 21.5, the following corollary.

Corollary 21.14 Let f : X x X — Z be a bilinear map. Then, for any
a € X, the induced quadratic map n : X — Z; x> B(x, x) is tangent at a
to the affine map

X—>Z; x> B(x, a) + B(a, x) — P(a, a),
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that is n is differentiable, with, for all a, x € X,

dna(x) = B(x, a) + B(a, x),
dn being linear and n continuously differentiable.

This generalises the familiar formula dixx2 = 2x of elementary real
calculus, to which it reduces if X = R and - is ordinary multiplication.
There is a similar formula for the differential of a multilinear map.

Proposition 21.15 Let X be a finite-dimensional K-linear space, where K =
R or C. Then the map

det : L(X, X)—K; t— dett

is continously differentiable, d(det)t being surjective if and only if tkt =
dimX or dimX — 1.

The chain rule, Theorem 21.5, may be restated in terms of differentials
and extended as follows.

Theorem 21.16 Let f : X > Y be continuously differentiable at a € X
and let g : Y >—>Z be continuously differentiable at f(a) € Y. Then
gf : X >>Z is continuously differentiable at a.

Proof The part of the theorem that concerns differentiability of g f is
just a restatement of Theorem 21.5. The continuity of d(g f) follows from
Propositions 20.5 and 20.17, since the restriction of d(g f) to (domdf) N
f~1(dom(dg)) decomposes as follows:

(df (dg)f) composition
—

x 35 LX, Y)x L(Y, Z) L(X, Z),

composition being bilinear and so continuous. O

The formula in Theorem 21.16 may be abbreviated to

d(g f) = ((dg)f) o df,

o denoting composition of values.
In the Leibniz notation this says that if f and g are differentiable maps
and if y = f(x) and z = g(y) then
d: _dz dy
dx — dy dx’

The next proposition complements Proposition 20.12.
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Proposition 21.17 Let X and Y be K-linear spaces of the same finite di-
mension, where K =R, C or H. Then the map

v LX, Y)> LY, X); t— !

is continuously differentiable and, for all u € GL(X,Y), and all t €
L(X,Y)

dpu(t) = du () = —ueu L,

This generalises the formula £x~! = —x~2 of elementary real calculus,
to which it reduces when X =Y =R.
Theorem 21.7 may also be restated and extended.

Theorem 21.18 Let f : X>— Y be an injective map, differentiable at
a € X, dfa : X - Y being bijective (so dimY = dimX ), and let ! :
Y > X be defined in a neighbourhood of f(a) in Y and continuous at
f(a). Then =1 is differentiable at f(a) and

df)f(@) = (@dfa)".

Moreover, if df is continuous and if f~! is continuous with open domain
then d(f!) is continuous.

Proof The first part is Theorem 21.7. The second part follows, by
Propositions 20.12 and 20.5, from the following decomposition of d(f!).

! df inversion

Y > X > LX,Y) > L(Y,X)
O

The differential of a more complicated map can often be computed
by decomposing the map in some manner and then applying several of
the above propositions and theorems. The next proposition is a simple
example of this.

Proposition 21.19 Let | | be the quadratic norm on a finite-dimensional
real quadratic space X ; that is, for any x € X, |x| = ./x - x. Then the map
X >-R; x> |x|, with domain X\{0}, is continuously differentiable, with

dfx(x') = "l;cr .
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Higher differentials

Until now we have only been concerned with the first differential of a map
f : X>>Y between finite-dimensional real linear spaces. Higher-order
differentials are defined recursively, by the formula

d" f = d(d"f), for all n,

where, by convention d°f = f. In general the targets of these differentials
become progressively more complicated. For example, the first three
differentials of the map f : X>— Y are of the form

df : X >—> L(X,Y),
&f . X > LX, LX,Y)),
&f 1 X > LX, L(X, L(X, Y))),

respectively, though in the particular case that X = R each of the targets
has a natural identification with Y. The map f is said to be k-smooth, or
Ck, at a point a € X, if d*f is defined on a neighbourhood of a and is
continuous at a and to be (infinitely) smooth, or C®, at q if, for each &,
d*f is defined in a neighbourhood of a.

When f is C® at a there is, for each x € X, a sequence on Y :

nes 3 @ faoh,
men
where (x)* denotes (x)(x)...(x), with (x) occurring k times. This sequence
is known as the Taylor series of f at a with increment x. The map f is
said to be analytic at a if, for some & > 0, this sequence is convergent
whenever |x| < 4, with limit f(a + x).

In real analysis a smooth map is not necessarily analytic. We shall only
require at most smoothness in what follows, and will not be concerned
with analyticity. The linear spaces involved will all be assumed to be real
finite-dimensional linear spaces.

Proposition 21.20 Any linear or bilinear map is C*®.

Proposition 21.21 Let (f,g) : W>->X xY be any map, W, X and Y
being linear spaces. Then (f, g) is C* at a point a € W if and only if f
and g are each C*, where k is a positive integer or .

Proposition 21.22 Let f : X>»Y be Cxatac X and letg : Y >~ Z
be C* at b = f(a), where k is a positive integer or o, X, Y and Z being
linear spaces. Then g f : X>-Z is C* at a.



210 21 Manifolds

Though we are omitting proofs here it is perhaps worth remarking that
the proof of Proposition 21.21 uses a special case of Proposition 21.22
and conversely. Both inductions should therefore be carried out simulta-
neously.

Proposition 21.23 For any linear spaces X and Y of the same finite dimen-
sion the inversion map

LX,Y)> L(Y, X); t— !
is C*®.

Proposition 21.24 Let f : X > Y be a map satisfying at a point a € X
the same conditions as in Theorem 21.18 and suppose that f is C* at a,
where k is a positive integer or co. Then f~! is C* at b = f(a).

Finally the second differential of a map is symmetric in the following
sense.

Proposition 21.25 Let f : X > Y be a twice-differentiable map, X and
Y being linear spaces. Then, for any a € dim f, and any x, x' € X,

(dfa(x))(x) = (& fa(x))(xX).

The proof of this is technical and is another example of one that requires
the increment formula of Theorem 21.27 below.

What this means is that the slots in the twice-linear map d’fa €
L(X, L(X, Y)) can be filled in either order by vectors of X without
affecting the result. The higher derivatives likewise are symmetric.

Corollary 21.26 Let f : Xo x X; > Y be a twice-differentiable map,
Xo, X and Y being finite-dimensional linear spaces. Then, for any (ag, a1)
edomf and any xo € X, x; € Xy,

drdof(ao, a1)(x1)(x0) = dod1f (a0, a1)(xo0)(x1).

In all that follows smooth will mean C* for any appropriate k > 1,
including k = 0. On a first reading, however, one should take k = 1, as
this is always the first case to establish, the extension to greater values
of k being routine.
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The inverse function theorem

Let X and Y be real linear spaces of the same finite dimension and let
A be an open subset of X and B an open subset of Y. Then a map
f : A— B is said to be a diffeomorphism if it is a homeomorphism and
if each of the maps X>-Y; x> f(x) and Y > X; y > f7l(y) is
smooth. A map f : X >—Y is said to be locally a diffeomorphism at a
if there are open neighbourhoods 4 of a and B of b = f(a) such that
f(4) = B and the map A — B; x+— f(x) is a diffeomorphism.

The main theorem of this section, the inverse function theorem, is a
criterion for a map f : X>-Y to be locally a diffeomorphism at
a point g of its domain. Important corollaries are preliminary to the
study of smooth manifolds. As in the previous section many proofs are
omitted.

One of the main tools used in the proof is the increment formula. This
inequality, which we have twice referred to already, replaces the mean
value theorem which occurs at this stage in the calculus of real-valued
functions of one real variable.

Theorem 21.27 (The increment formula.) Let a and b be points of the
domain of a differentiable map f : X >—Y such that the line-segment
[a, b] is a subset of dom f, X and Y being finite-dimensional linear spaces
with assigned norms, and suppose that M is a real number such that the
gradient norm |dfx| of the differential is < M for all x € [a, b]. Then

1f () — f(a)l < M|b—al.

The other tool in the proof is the contraction lemma.

Theorem 21.28 The contraction lemma.) Let A be a non-null closed subset
of a finite-dimensional normed linear space X, and suppose that f : A— A
is a map such that, for some non-negative real number M < 1 and for all
a,beA,

If(b) — f(a)l < M|b—a|.

Then there is a unique point x € A such that f(x) = x.

Theorem 21.29 (The inverse function theorem.) Let f : X>—>Y be a
smooth map and suppose that, at some point a € X, f is tangent to an
affine bijection t : X — Y, the dimensions of the real linear spaces X and
Y being equal. Then f is locally a diffeomorphism at a.
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Proof 1t is enough to consider the case that ¢ = 0 € X and f(a) =
0 € Y = X, with t = 1x. The increment formula is applied to the map
h = f — 1x near the origin, using the continuity of the differential there,
and the contraction lemma is then applied to the map x — y — h(x),
where y is a point close to the origin in the target. This provides an
inverse map which is readily proved to be continuous. Finally one applies
Theorem 21.18 to prove that this inverse map is smooth. O

Submanifolds of R"

The inverse function theorem has direct application to the description of
submantifolds of a finite-dimensional real linear space X.

An affine subspace of a finite-dimensional linear space X is a parallel
in X to a linear subspace, its dimension being the dimension of the
linear subspace to which it is parallel. A subset M of X is said to be
smooth at a point @ € M if there are an affine subspace T of X passing
through a, an open neighbourhood 4 of a in X and a diffeomorphism
h:X, a> X, a with domain A and dha = 1y, the identity map on X,
such that h(A N T) = h(4) N M. The affine space T, uniquely determined
if it exists, is called the tangent space to M at a. It is generally given the
structure of a linear space by taking a as origin. The subset N is said to
be a smooth submanifold of X if it is smooth at each of its points. For
a connected submanifold the dimension of the tangent space is constant.
This dimension is said to be the dimension of the submanifold.

In practice a subset of X is often presented either explicitly paramet-
rically as the image of a map or implicitly as a fibre or level set (most
frequently the set of zeros) of a map.

Example 21.30 Consider a map f : R>—>R; x> f(x). Then graph f is
both the image of the map R>-R? : x> (x, f(x)) and the fibre over 0
of the map R>>-R; (x, y)— y — f(x).

Example 21.31 The image of the map R—>R?; t— (2 — 1, t(t> — 1)) is
also the fibre over 0 of the map RZ > R; (x, y) = y* — (1 + x)x2.

Two corollaries of the inverse function theorem relevant to the deter-
mination of smooth submanifolds are as follows.

Theorem 21.32 (The injective criterion.) Let f : W > X be a smooth
map, with dfc injective for some ¢ € domf, W and X being finite-
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dimensional linear spaces. Then there exists an open neighbourhood C
of ¢ in W such that the image of f|C is smooth at a = f(c), with tangent
space the parallel through a of the image of dfc.

Proof Consider the case that ¢ is the origin in W and a the origin in X
and df0 : W — X is the inclusion in X of a linear subspace W. Let Y be
a complementary linear subspace, and identify X with the product space
W xY.Considerthemaph: WxY >WxY; (w,y)— f(w)+(0, y),
with derivative at (0,0) the identity on X = W x Y. Accordingly, by
the inverse function theorem, h is a local diffeomorphism at (0, 0). It
follows at once that the image of the restriction of f to some open
neighbourhood of the origin in W is C! at the origin in X with W x {0}
as tangent space.

This completes the proof in this special case. The general case reduces
at once to this one if the origin in X is set at a and new bases for the
linear spaces W and X are chosen appropriately. O

By the above ‘injective’ corollary of the inverse function theorem the
image of a parametric curve r : R>—R2, regular in the sense that dr
is continuous and drt is injective for all ¢ € R, is locally everywhere a
one-dimensional smooth submanifold of R It is necessary to insist on
the word ‘locally’ here, for a regular curve need not be injective. See
Exercise 21.6 for an example. More subtly, as Exercise 21.7 shows, even
the injectivity of the parametrisation is not enough.

The following jargon is in common use. A smooth map F : W>- X
is said to be immersive at a point a of its domain if dfa is injective, to
be an immersion if it is everywhere immersive, and to be an embedding if
also the map dom f —»im f; w+ f(w) is a homeomorphism, where the
topology on dom f is induced from the topology on W and the topology
on im f is induced from the topology on X.

Theorem 21.33 (The surjective criterion.) Let f : X >— Y be a smooth
map, with dfa surjective for some a € domf, X and Y being finite-
dimensional linear spaces. Then there exists an open neighbourhood A of a
in X such that ANf~!(f(a)) is smooth at a, with tangent space the parallel
through a of the kernel of dfa.

Proof Consider first the case that Y is a subspace of X with a and f(a)
both the origin in X, df0 being the projection of X on to Y with kernel
a linear subspace W. Then identify X with the product space W x Y.
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Consider themap h: W xY > W xY; (W, y)r— (w, f(w, y)). This
has as derivative at (0, 0) the identity on X = W x Y. Accordingly, by
the inverse function theorem, h is a local diffeomorphism at (0, 0). It
follows at once that f~!{0} is smooth at the origin in X with W x {0}
as tangent space.

This completes the proof in this special case. The general case reduces
at once to this one if the origin in X is set at a and new bases for X and
Y are chosen appropriately. O

A smooth map f : X >—Y is said to be submersive at a point a of
its domain if dfa is surjective, and to be a submersion if it is everywhere
submersive.

We shall often have occasion to use the surjective criterion in the
sequel. The following examples are typical of many.

Example 21.34 The unit sphere S" is a smooth submanifold of R™1.

Proof Consider the smooth map F : R*™! 5 R; x> x - x, where n is
any non-negative integer. Then, for any x, X' € R*, dFx(x’) = 2x- x/, of
rank 1 and therefore surjective unless x = 0. In particular it is surjective
for any x on 8" = F~!({1}). Therefore S" is a smooth submanifold of
R™1 It has dimension n since the kernel rank of dFxis (n+1)—1=n,
for any x € S". O

Example 21.35 The group O(n) is a smooth submanifold of R(n), of dimen-
sion %n(n —1).

Proof Let Ry(n) denote the linear subspace of R(n) consisting of all the
symmetric n X n matrices c, that is matrices ¢ such that ¢ = ¢'. Clearly this
is a linear subspace of R(n) of dimension %n(n+ 1). Consider the smooth
map R(n) > R4 (n); a— a'a. Now, since the map R(n) = R(n); a — a'
is linear, it follows, by Proposition 21.13, that the differential of the
former map at a is the linear map R(n) = Ry(n); b b*a + a*b. This is
surjective, when a belongs to O(n), for let ¢ be any element of R, (n) and
consider the equation a*h = }ac. But then also b*a = ic* = ¢ so that
b*a + a'h = c. Now apply the surjective criterion, implying that O(n) is
smooth at a, the tangent space being the kernel of the linear map, of
dimension n — %n(n +1)= %n(n— 1). |

Note in particular that the tangent space to O(n) at the identity matrix
1 consists of all matrices b such that b*1 + 1'b = b* + b = 0, the linear
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subspace of skew-symmetric n x n matrices. The submanifold O(n) is
an example of a Lie group, the tangent space at the origin being its Lie
algebra. The further study of such groups and their algebras is the subject
of Chapter 22.

Manifolds

A topological space X is said to be locally euclidean if there is a cover
& for X such that A € & is homeomorphic to an open subset of a
finite-dimensional real linear space.

The definition may be reformulated as follows. A pair (E, i), where
E is a finite-dimensional real linear space, and i : E > X is an open
embedding with open domain, will be called a chart on X, and a set &
of charts whose images form a cover for X will be called an atlas for X.
Clearly the topological space X is locally euclidean if and only if there
is an atlas for X.

A chart at a point x € X is a chart (E, i) on X such that X € imi.

A locally euclidean space need not be Hausdorff. See Exercise 20.4
for an example. A Hausdorff locally euclidean space is said to be a
topological manifold.

In the sequel we shall only be interested in smooth manifolds, where, as
always, smooth means C* for k a positive integer or co.

Consider again the definition above of a smooth submanifold M of
a finite-dimensional real linear space. The subset M of X is said to be
smooth at a € M if there are a linear subspace W of X passing through
a, open neighbourhoods A and B of a € X, and a diffeomorphism
h: A— B, tangent to 1y at a, such that (ANW)=BNM.

Let i in such a case denote the map W >— M; w— h(w). Its domain
is AN W, which is open in W, and it is an open embedding, since h is a
homeomorphism and B N M is open in M. So (W, i) is a chart on M.
Such charts will be called the standard charts on M.

The following proposition follows at once from these remarks, and the
fact that any topological subspace of a real linear subspace is HausdorfT,
any real linear subspace being automatically Hausdorff.

Proposition 21.36 Let M be a smooth submanifold of a finite-dimensional
real linear space X. Then M is a topological manifold.

Now consider two standard charts on a smooth submanifold.
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Proposition 21.37 Let i : V> M and j : W > M be standard charts on
a smooth submanifold M of a finite-dimensional real linear space X. Then
the map j~'i . domi—dom j is a diffeomorphism.

These propositions provide the motivation for the definitions of the
following section and their subsequent development.

Smooth manifolds
Let X be a topological manifold. Then a smooth atlas for X, where k is

a positive integer or co, consists of an atlas & for X such that for each
(E, i), (F, j) € & the map

jli: E>=F; a— jli(a)

is smooth.

Example 21.38 Let X be a finite-dimensional real linear space X. Then
{(X, 14)} is a C* atlas for A.

Example 21.39 Let M be a smooth submanifold of a finite-dimensional real
linear space X. Then the set of standard charts on M is a smooth atlas
for M.

Example 21.39 provides a C® atlas for the sphere S", for any non-
negative integer n, for, by Example 21.34, §" is a C*® submanifold of
R™1, The next example also provides an atlas for the sphere &".

Example 2140 Let i and j : R"—S" be the inverses of stereographic
projection on to the equatorial plane of the sphere S" from its North and
South poles, respectively (cf. Proposition 5.34 and Exercise 5.3). Then
{(R", i), (R", j)} is a C* atlas for S".

Proof The maps

ilj=jli: R">»R"; x> x/x?
are C*, O

The Grassmannians, and in particular the projective spaces, also have
C® atlases.

Two smooth atlases on a topological manifold X are said to be equiv-
alent, or to define the same smooth structure on X if their union is a
smooth atlas for X.
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A topological manifold with a smooth atlas is said to be a smooth
manifold, smooth manifolds with the same underlying topological space
and with equivalent atlases being said to be equivalent.

A chart (E, i) on a smooth manifold X, with atlas &, is said to be
admissible if & U {(E, i)} is a smooth atlas for X.

For most purposes the distinction between different but equivalent
manifolds is unimportant and will be ignored. One place where it is log-
ically important to have a particular atlas in mind is in the construction
of the tangent bundle of a smooth manifold, but even this will turn out
in the end to matter little, since by Corollary 21.60 the tangent bundles
of equivalent manifolds are naturally isomorphic.

Submanifolds and products of manifolds are defined in the obvious
ways.

Proposition 21.41 is of importance both in defining the dimension of
a smooth manifold and in defining its tangent spaces.

Proposition 21.41 Let (E, i) and (F, j) be admissible charts on a smooth
manifold X such that imiNimj # Q. Then, for any x € imiNim j, the
map

d(G7 )i (x)): E>F
is a linear isomorphism. In particular, dimE = dim F.

A smooth manifold X is said to have dimension n, dimX = n, if
the dimension of the source of every admissible chart on X is n. Any
connected smooth manifold has a well-defined dimension.

The dimension of any open subset of a finite-dimensional real linear
space X is equal to dim X.

Proposition 21.42 Let W be a connected smooth submanifold of a connected
smooth manifold X. Then dim W < dim X.

Proposition 2143 Let X and Y be connected smooth manifolds. Then
X x Y is a smooth manifold, with dim(X x Y)=dimX +dimY.

Maps between smooth manifolds
Proposition 21.44 Let f : X — Y be a map between smooth manifolds X

and Y, let (E, i) and (E', V') be admissible charts on X, let (F, j) and (F', j)
be admissible charts on Y, and suppose that x is a point of imiNimi such
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that f(x) € imjNimj. Then the map j~'fi{ : E'>-F is smooth at
i~1(x) if and only if the map j~' fi: E > F is smooth at i~!(x).

Proof Apply the chain rule (Theorem 21.16) to the equation

J7H i@ =G i ) a)

for all a € E sufficiently close to i~!(a). O

A map f : X—>Y between smooth manifolds X and Y is said to
be smooth at a point x if the map j~' fi : E > F is smooth at i"!(x),
for some, and therefore, by Proposition 21.44, for any, admissible chart
(E < i) at x and any admissible chart (F, j) at f(x). The map is said to
be smooth if it is smooth at each of its points.

Clearly the definition of the smoothness of a map f : X — Y depends
only on the smooth structures for X and Y and not on any particular
choice of an atlas of admissible charts.

A bijective smooth map f : X — Y whose inverse f~! : Y = X also
is smooth is said to be a diffeomorphism.

Many of the earlier theorems on differentiable maps have analogues
for smooth maps between manifolds.

Proposition 21.45 Let W, X and Y be smooth manifolds. Then a map
(f,g): W—o X xY is smooth if and only if its components f and g are
smooth.

Proposition 21.46 Let X, Y and Z be smooth manifolds, and suppose that
f: X xY —>Z is a smooth map. Then, for any (a, b) € X x Y, the maps
f(=b): X>Z and f(a, —) : Y = Z are smooth.

Proposition 21.47 Let X, Y and Z all be smooth manifolds, and let f :
X-oY and g : Y —>Z be smooth maps. Then the composite map g f :
X — Z is smooth.

Proposition 21.48 Let V be a smooth submanifold of a smooth manifold X,
let W be a smooth submanifold Y, and let f : X Y be a smooth map,
with f(V) < W. Then the restriction of f with domain V and target W is
smooth,
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Tangent bundles and maps

The concept of the differential of a smooth map f : X >-Y, where
X and Y are finite-dimensional real linear spaces, does not generalise
directly to the case where X and Y are smooth manifolds. What does
generalise is the concept of the tangent map of the map f, as defined
below.

The tangent bundle of a finite-dimensional real linear space X is, by
definition, the topological space TX = X x X, together with the projection
nrx © TX—>X; (x, a) — a, the fibre npi{a} = TX, = X x {a}, for
any a € X, being assigned the linear structure with (q, a) as origin. That
linear space is the tangent space to W at a. The tangent bundle space
TX may therefore be thought of as the union of all the tangent spaces
to X, each labelled by the point at which it is tangent, with the obvious
topology, the product topology.

The tangent bundle of an open subset A of a finite-dimensional real
linear space X is, by definition, the open subset T4 = 4 x 4 of TX,
together with the projection ny4 = n7x|TA, the fibres of n14 being
regarded as linear spaces, as above.

Now suppose that a map f : X >— Y between finite-dimensional linear
spaces X and Y is tangent at a point a of X to an affine mapt: X Y.
Then, instead of representing the map ¢ by its linear part dfa we may
equally well represent it by the linear map

Tfs: TX,— TYf(a); (x, @) (t(x), f(a)),

the tangent map of f at a. Its domain is the tangent space to X at a and
its target the tangent space to Y at f(a). If the map f is differentiable
everywhere there is then a map

Tf: TX,—> TYsq); (x, a)— Tfa(x, a),

with domain Tdom f, called, simply, the tangent map of f.

Notice that, for any (x, a) € TX, Tf,(x, a) may be abbreviated to
Tf(x, a). Notice also that the maps df and Tf are quite distinct. The
maps dfa and Tf, may be identified, for any a € X, but not the maps
df and Tf.

Proposition 21.49 Let f : X>—>Y be a smooth map, X and Y being
finite-dimensional real linear spaces. Then the map Tf is continuous, with
open domain.



220 21 Manifolds

Proposition 21.50 Let X be any finite-dimensional real linear space. Then
Tly = 17x.

The following two propositions are corollaries of the chain rule.

Proposition 2151 Let f : X>-»Y and g : W > X be smooth maps,
W, X and Y being finite-dimensional real linear spaces. Then, for any
a€domfg and eachw € W,

T(f g)(w, a) = Tf Tg(w, a).

Proposition 21.52 Let f : X>—Y and g : Y > X be smooth maps, with
g = f!, X and Y being finite-dimensional real linear spaces. Then, for
each a e dom f and any x € X,

Tg Tf(x, a)=(x, a)
and, for any b e domg and any y € Y,

Tf Tg(y, b)=(y, b).

Proposition 21.53 Let X be smooth manifold with atlas & and let ' =
U{T domix{i} : (E, i) € &} (to be thought of as the disjoint union of the
T domi). Then the relation ~ on &', given by the formula ((d, a), i) ~
(¥, b), j) if and only if j(b) = i(a) and T(j~li)d,a) = (¥, b), is an
equivalence.

The tangent bundle of X, with atlas &, is defined to be the quotient
TX of the set & defined in Proposition 21.53 by the equivalence ~,
together with the surjection nry : TX - X; [((d, a), i)}~ — i(a).

Proposition 21.54 The set of maps {Ti : (E, i) € '}, where T i is the map
Tdomi— TX; (d, a)— [((d a)i)]~, is an atlas for the set TX.

The set TX is assigned the topology induced by this atlas and called
the tangent bundle space of X.

Proposition 21.55 For any smooth manifold X the map nry is locally trivial.

The map n7x will be referred to as the tangent projection on X. The
next proposition examines the structure of the fibres of the tangent
projection.
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Proposition 21.56 Let X be a smooth manifold with atlas &. Then, for
any x € X, the fibre npy{x} is the quotient of the set

S =|JTE.x {i} : (E, i) € & and i(a) = x}

by the restriction to this set of the equivalence ~ discussed above. Moreover
there is a unique linear structure for the fibre such that each of the maps

TEs— n7x{x}; (. @)= (@, a), D]~
is a linear isomorphism.

The fibre n7{x} is assigned the linear structure defined in Proposi-
tion 21.56 and is called the tangent space to X at x. It will be denoted
also by T X,. Its elements are the tangent vectors to X at a.

Notice that the definitions of tangent bundle, tangent projection and
tangent space for a smooth manifold agree with the corresponding def-
initions given earlier for a finite-dimensional real linear space X, or an
open subset A of X, provided that X, or A, is assigned the single chart
atlas of Example 21.38.

A smooth map f : X —Y induces in a natural way a continuous
map Tf : TX—TY, the tangent (bundle) map of f. Special cases
include the tangent map of a smooth map with source and target finite-
dimensional real linear spaces, and also the map Ti induced by an
admissible chart(E, i) on a smooth manifold X, as previously defined.

Proposition 2157 Let f : X—Y be a smooth map. Then, for any
x € X, (Tf)TX,) < TYy). Moreover, for any x € X, the map Tf, :
TX,— TYg; v Tf(v) is linear.

The map Tf is easily computed in the following case.

Proposition 21.58 Let X be a smooth submanifold of a linear space V, let
Y be a smooth submanifold of a linear space W and let g : V >~ W be a
smooth map, with X < dom g, such that g(X) < Y. Then the restriction f .
X—>Y; x> g(x)of g is smooth and, for anya € X, Tf, : TX,— TYp
is the restriction of Tg, with domain TX, and target TY,).

Finally, Propositions 21.50, 21.51 and 21.52 extend to smooth maps
between smooth manifolds.
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Proposition 21.59 Let W, X and Y be smooth manifolds. Then

TlX = lTXP
T(fg)=Tf Tg, for any smoothmapsg: W o X, f: X->Y,
and Tf~!=(Tf)7), for any diffeomorphism f : X > Y.

Corollary 21.60 Let X' and X" be equivalent smooth manifolds with un-
derlying topological manifold X. Then Tly : TX — TX" is a tangent
bundle isomorphism.

Corollary 21.61 Let W be a smooth submanifold of a smooth manifold X,
let W be assigned any admissible atlas, and let i : W — X be the inclusion.
Then the tangent map Ti: TW — TX is a topological embedding whose
image is independent of the atlas chosen for W.

The tangent bundle of W, in such a case, is normally identified with
its image by Tiin TX.

For example, for any non-negative integer n the sphere S" may be
thought of as a smooth submanifold of R"+!, TS" being identified with
the subspace

{(x,a) ER™ x §": x-a=0}

of TR™! = R™! x R, A smooth map f : X —»Y between smooth
manifolds X and Y is said to be a smooth embedding if Tf : TX - TY is
a topological embedding, and to be smooth projection if tf is a topological
projection.

A smooth map f : X —Y is said to be an immersion if, for each
x € X, Tf, is injective. An immersion need not be injective, nor need an
injective immersion be a topological embedding.

A smooth map f : X —Y is said to be a submersion if, for each
x € X, Tf, is surjective.

Proposition 21.62 A submersion f : X —Y is an open map. Its non-
null fibres are smooth submanifolds of X, the tangent space at a point
X € X to the fibre f~'f(x) through x being the kernel of Tfx. A surjective
submersion is a smooth projection.

Example 21.63 below is an important example of a smooth projection.
In this example a tangent vector at any non-zero point of a real linear
space X will be said to be radial if it is of the form (x + A x, x), for
some 4 € R, or, equivalently, if it is of the form 4x, when TX, has been
identified in the standard way with X.
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Example 21.63 For any positive integer n the map

n: R > 8" x> x/|x|
defined everywhere except at 0, is a smooth projection, the kernel of the
tangent map at any point consisting of the radial tangent vectors there.
Proof Let g : R™!>-R"! be the composite of the map = with the
inclusion of $” in R*1, For any non-zero a and any x € R™,

dga(x) = |a|'x —|a|(x - @)a = |a]"'¥,

where x' = x — (x - g(a))g(a) (cf. Proposition 21.19).
Moreover, for any non-zero a € R and any A € R,

x=Aa = x-a=la‘a = x=(x-ga)gla).

So dga(x) = 0 if and only if x = Aa, for some A € R. That is the kernel
of dga has dimension 1, implying, by Proposition 1.4, that rk(T=,) =
rk(dga) = n and therefore that = is a submersion. Since 7 is surjective
it follows, by the last part of Proposition 21.62, that = is a smooth
projection. O

Exercises

21.1 Consider the map
f: L(X,X)xL(X,Y)>>L(X,Y); (a b) ba™",

where X and Y are finite-dimensional real linear spaces. Prove
that f is differentiable, with df (1x, 0)(d, b') =b'.
21.2 Prove that the map

X
]_1, ][_’R; X 1—x2

is a diffeomorphism.
213 Consider the map f : R(2)—>R; a+— deta. Compute dfa(b),
for each a, b € R(2), and show that (df1)(b) = by + b;;. Prove
that SL(2; R), the set of 2 x 2 real matrices with determinant 1,
is a three-dimensional smooth submanifold of R(2).
214 Consider the map f : R(2)—R(2); t — tt, where, for all
a@c dc ) . Verify that, for all 4, ¢ €

=1, d) eR(2), t = (b a
R(2), dfu(t) = u't + t u. Describe the matrices in the kernel and

t
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image of df1 and prove that f~!({1}) is a smooth submanifold
of R(2).

Prove that, for any non-negative integer, the complex quasi-
sphere #(C**!) = {x € C**! : x@ = 1} is homeomorphic to
TS".

Verify that the differential dr of the map

r:R->R% 0 (=1, 02— 1))

is continuous, with drt injective everywhere, but that the map r
itself is not injective.
Verify also that the differential dF of the map

F:R2SR; (x, y)— 2 — (1 + x)x?

is continuous, with dF(x, y) everywhere surjective, except at the
origin,

Note that imr = F~1(0).
Prove that the restriction of the map r of Exercise 21.6 to the
interval ]—1, o[ is an injective immersion that is not a topological
embedding.
Let r be any irrational real number. Prove that the map

f: RoS xS xm (%, &™)

is an injective immersion that is not a topological embedding.

(To see that f is not a topological embedding, it is conve-
nient first to represent the torus as the quotient of R? by the
equivalence (x + 2mn, y + 2nn) ~ (x, y), for any (x, y) € R?
and any (m, n) € Z?>. Then f is the composite of the map
R —R?; x> (x, rx) with the partition induced by the equiva-
lence.)
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Lie groups

As we have remarked, there is a natural topology for a finite-dimensional
real linear space X, that induced by any norm on X. It is a fair suppo-
sition that there should be more or less natural topologies also for the
classical groups, Spin groups, Grassmannians and quadric Grassmanni-
ans, all of which are closely related to finite-dimensional linear spaces. It
turns out that they also all have natural smooth structures as well, the
groups being examples of Lie groups.

Important topological properties of the classical groups are their com-
pactness or connectedness or otherwise.

Topological groups
A topological group consists of a group G and a topology for G such that
the maps

GxG—-G;(a,b)—ab and G—G;a—a!
are continuous. An equivalent condition is that the map G x G; (a, b) —
a'b is continuous.
Example 22.1 Let X be a finite-dimensional real linear space. Then the
group GL(X) is a topological group.
Topological group maps and topological subgroups are defined in the

obvious ways.

Proposition 22.2 Any subgroup of a topological group is a topological
group.

Corollary 22.3 All the groups listed in Table 13.10 are topological groups.

225
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Proposition 22.4 For any p, q the group Spin(p, q), regarded as a subgroup
of the Clifford algebra R, is a topological group and the map

Spin(p, 4)— SO(p, 9); g Py,
defined in Proposition 16.14 is a topological group map.

The compactness, or otherwise, of the groups listed in Table 13.10 and
of the Spin groups is easily settled.

Proposition 22.5 For any n the topological groups O(n),SO(n), U(n), SU(n)
and Sp(n) are compact.

Proof By definition O(n) = {t € R(n) : t't = 1}, from which it follows
that O(n) is closed in R(n). Moreover if R”" is assigned the euclidean
norm and R(n), identified with L(R", R"), the induced gradient norm,
then, for any t € O(n), |t| = 1, from which it follows that O(n) is bounded
in R(n). So O(n) is compact. Each of the other groups is isomorphic to
a closed subgroup of O(n), 0(2n) or O(4n), and is therefore compact, by
Proposition 20.25. O

Proposition 22.6 For any n the group Spin(n) is compact.

Proposition 22.7 All the groups listed in Table 13.10, with the exception of
those listed in Proposition 22.5, are non-compact (unless n or pq = 0).

Show, for example, that each contains an unbounded copy of R*.

Proposition 22.8 For any p, g with pq > 0, the group Spin(p, q) is non-
compact.

Closely related to the concept of a topological group is the concept of
a homogeneous space.

A Hausdorff topological space X is said to be a homogeneous space
for a topological group G if there is a transitive continuous action of G
on X, that is, a continuous map G x X — X; (g, x)— g x, such that

(i) forallg, g’ € Gand all x € X,
(g'g)x=g'(gx), with lx=x

(i) (transitivity) for each a, b € X, there is some g € G such that
b=ga
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Proposition 229 Let G x X — X; (g, x)— g x be a continuous action of
the topological group G on the topological space X. Then, for each g € G,
the map X — X; x> g x is a homeomorphism.

Corollary 22.10 Let X be a homogeneous space for a topological group G
and let a, b € X. Then there is a homeomorphism h : X — X such that
h(a) =

Example 22.11 For any n, the sphere S™ is a homogeneous space for the
group O(n+ 1).

The action that one has in mind is the obvious one, the map
O(n+1)x 8" =8 (t, x)— t(x),

which is well-defined, by Proposition 5.33.

Examples 22.12 For any n, S+ is a homogeneous space for U(n+1) and
§%+3 is a homogeneous space for Sp(n + 1), while, for any positive n, S
is a homogeneous space for SO(n + 1) and for Spin(n+ 1), while $*"*1 is
a homogeneous space for SU(n + 1).

The action in each case is the obvious analogue of the action of O(n+1)
on S" described in Example 22.11.

The next few propositions explore the relationships between homoge-
neous spaces and coset space representations.

Proposition 22.13 Let G be a topological group, let X be a homogeneous
space for X and let a € X. Then the map ar : G—X; g ga is
surjective, the isotropy subgroup G, = {g € G : ga = a} of the action of
G at a is a closed subgroup of G and the fibres of ar are the left cosets of
G, in G — in the terminology of Chapter 3 the sequence G, S35 X
is left-coset exact.

Proof This is straightforward, using parts of Exercise 3.1. O

Proposition 22.14 Let F be a subgroup of a topological group G. Then the
partition n : G— G/F; g+ gF is open.
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Proposition 22.15 Let F be a closed subgroup of a topological group G.
Then the space of left cosets G/F is a homogeneous space of G with respect
to the action

G xG/F—-G/F; (g, gF)— gg'F.

Proof First, the space G/F is Hausdorff. For let gF, g'F be distinct points
of G/F, where g, g’ € G. Since F is closed and since g~'g’ ¢ F there
exists an open neighbourhood A4 of g~!g’ in the set complement G\F. It
then follows from the continuity of the map G x G— G;(g, g')— g~ g’
that there exist open neighbourhoods B of g and C of g’ in G such
that, for all b € B and ¢ € C, b~!c ¢ F. Now define U = n(B) and
V = n(C), where = is the partition G — G/F. Then U NV = ¢, while, by
Proposition 22.14, U is an open neighbourhood of gF and V is an open
neighbourhood of g'F in G/F.

Secondly, the action is continuous, for in the commutative diagram of

maps

group product
GxG —
1 j9°¢ l n
action

G x (G/F) — G/F ,

where, for each (g, 2') € G x G, (1 x n)(g, g’) = (g, n(g’)), each of the
maps except for the one labelled ‘action’ is continuous, while =, and
therefore also 1 x =, is a projection. The continuity of the action then
follows, by Proposition 20.14,

Finally, conditions (i) and (ii) are readily checked. O

Proposition 22.16 Let X be a homogeneous space for a compact topo-
logical group G. Then, for any a € X, the map (ar)sj; G/G,— X is a
homeomorphism.

Proposition 22.17 Let F be a connected subgroup of a topological group
G and suppose that G/F is connected. Then G is connected.

Corollary 22.18 For each positive integer n the groups SO(n), Spin(n), U(n),
SU(n) and Sp(n) are connected.

Proposition 22.19 For each positive integer n the group O(n) is disconnected,
with two components, namely SO(n), the group of rotations of R", and its
coset, the set of anti-rotations of R".
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Proof The map O(n) — S°; t— dett, being the restriction of a multilinear
map, is continuous, and for n > 0 it is surjective. O

The connectedness or otherwise of the non-compact groups does not
come so easily. For this we require smoothness, as we shall see below.

We shall require to know the compactness or connectedness or oth-
erwise of the various quasi-spheres. By Proposition 22.20 the ten cases
reduce to four, namely F(RP4+!), P(C*), (HM1), and F((CH )™,
for all p, g and all n. The symbol = denotes homeomorphism.

Proposition 22.20

PRy = {(a, b) € R™): a'b =1} = PRE??)
o~ y(R"'*'l""*'l),

PCCyH) = {(a,b) €(C): a'b=1} = L (CHH)
o y(Cn+l,n+l),

SRE??) = {(ab) € R™?P: a'b=1} = SR
&~ y(R2n+2,2n+2),

P(CEY) = {(a b) €(CT?2): a'b =1} = L (CirH)
&~ y(c2n+2,2n+2),

PO = PR,

PHPIFY) . P(RIPAH),

The next four propositions cover the four outstanding cases.

Proposition 22.21 For any p, q, S(RP411) = RP x §9, and so is connected
Sor any positive q, but disconnected for q = 0, and non-compact, for any
positive p, but compact for p = 0.

Proof Use Exercise 54. It is not difficult to show that the bijection
constructed in that exercise is a homeomorphism, by verifying that the
map and its inverse are each continuous, O

Proposition 2222 The quasi-sphere &(C™) is connected and non-compact,
for any positive n.

Proof By definition, #(C*!) = {z € C"*! : z'z = 1}. For any z € C"*},
let z = x +iy, where x and y € R™!, and let R™! have its standard
positive-definite orthogonal structure. Then, since

'z =(x+iy)(x+iy)=x@—yD 4 2ix-y,
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it follows that z € #(C"*!) if and only if xX® —y@ =1 and x-y =0. In
particular, since x® =1+ y®@, x # 0.

Now S” is a subset of &(C™!). Consider the continuous map = :
F(C)—>8"; z — x/|x|. It is surjective, with n|S" = 1s.. For any
b € 8", the fibre of = over b is the image of the continuous embedding

R{p}* - A(C*); ys (V1 + yD)b, y),

where (R{b})* denotes the orthogonal annihilator of R{b} in R™*!. This
image is connected, since (R{b})! is connected. It is also non-compact,
since (R{b})! is non-compact, n being positive. Since each fibre of = is
connected, and since %" is connected, for n > 0, it follows at once that
(C™*1) is connected. Finally, since any fibre of = is a closed subset and is
non-compact, #(C"*!) is non-compact. O

Proposition 22.23 The quasi-sphere .V(ﬁ"“) is connected and non-compact,
for any positive n.

Proof This follows the same pattern as the proof of Proposition 22.22.
Here it is convenient to identify C**! with {a+jb € H™! : g, b € C*t!},
and to assign C"*! its standard orthogonal structure, just as R™! was
assigned its standard positive-definite orthogonal structure in the proof
of Proposition 22.22.

By definition, #(H™!) = {g € H**! : g%q = 1}. For any q € H"*!, let
g =x+iy, where x and y € C™.. Then since

7q=F+iy) (x+iy)=Xx—yy+i(y'x+x"y),

and since y'x + x'y = x - y, it follows that q € .?(fl"“) if and only
if X*x —3'y =1and x-y = 0. The rest of the proof consists of a
consideration of the map © : FH!) - S+ ¢ g x/1/(%x) closely
analogous to that given for the correspondin; map in Proposition 22.22,
the sphere §2*+! being identified with #(C""") in this case. O

The final case is slightly trickier.

Proposition 22.24 The quasi-sphere S((CH’ Y™*!) is connected and non-
compact, for any n.

Proof By definition, S(CH )*+!) = {(¢,r) € H™1)? : Gr = 1}. Let
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u = q+r, v = g—r. Then it easily follows that y(zﬁ"“) is homeomorphic
to

L = 83 (u, v) > u//(@ ).

This is handled just like the corresponding maps in Propositions 22.22
and 22.23. O

The various cases may be summarised as follows,

Theorem 2225 Let (X, &) be an irreducible, non-degenerate, symmetric

or essentially skew, finite-dimensional correlated space over K or ’K, where

K =R, Cor H. Then, unless (X, &) is isomorphic to R, 2R or C, the quasi-

sphere (X, &) is connected and, unless (X, &) is isomorphic to R", C" or
, for any n, or to C or ﬁ, S (X, &) is non-compact.

Lie groups
A Lie group is a topological group G with a specified smooth (C!)
structure, such that the maps

GxG-G; (a,b)—»ab and g—gb

are smooth (C!). For some purposes it is desirable to insist on a higher
degree of smoothness than 1, but C! will do for the moment.
Elementary properties of Lie groups include the following,

Proposition 22.26 Let G be a Lie group. Then, for any a, b € G, the maps
G—>G;,gr—ag and gr— gb

are smooth homeomorphisms.

Proof The map g+ ag is smooth, by Proposition 21.46, and its inverse,
the map G— G; g+ a~g/, also is.
Similarly for the other map. O

A Lie group map is a smooth group map G — H, where G and H are
Lie groups, and a Lie group isomorphism is a bijective Lie group map
whose inverse also is a Lie group map.
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Proposition 22.27 Let G be a Lie group. Then, for any a € G, the map
G—G; g—aga ! is a Lie group isomorphism.

Examples of Lie groups include all the groups in Table 13.10.

Proposition 2228 Let (X, &) be a non-degenerate finite-dimensional irre-
ducible A¥-correlated space. Then the group of correlated automorphisms
O(X, &) is a smooth submanifold of EndY and is, with this smooth struc-
ture, a Lie group.

Proof By Corollary 13.5, O(X, &) = {t € EndX : *t = lx}. Now,
by Proposition 13.2, the map End X —» End X; t +— ¢ is real linear. It
follows that the map

7 : End X - Endy (X, &); t ¢

is smooth,

For any 4 € End X,

drnu(t)=ut+tu
From this it follows, as in Example 21.35, that, for any u € O(X, &),dnu
is surjective and, by Proposition 21.62, that O(X, &) is a smooth subman-
ifold of End X of real dimension
dimg End X — dimg End, (X, &) = dimg End_(X, &).
O

The tangent space to O(X, &) at 1y, being the affine subspace of

End X through 1y parallel to the real linear subspace End_(X, &), with

1x chosen as origin, is commonly and tacitly identified with this real
linear space.

Corollary 22.29 The dimensions of the classical groups in the first list of
Table 13.10 are as there stated.

In the cases of the groups GL(n;R), GL(n;C) and GL(n;H) it is
simpler to observe that these are open subsets of R(n), C(n) and H(n),
respectively.

Proposition 22.30 For any non-negative integers p, q, n the maps

O(p, ) —S%; t+> t+>dett, U(p,q)—S!; tr dett,
GL(n;R)—> R*; t+ dett, GL(n;C)— C*; t+> dett, and
GL(n;H)—> R>%; t+> dett  are smooth projections.
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Proof Use Proposition 21.62, Proposition 21.58 and Proposition 21.15.
O

Corollary 22.31 The dimensions of the remainder of the groups listed in
Table 13.10 are as there stated.

Actions of Lie groups

There are many examples of a Lie group acting smoothly on a smooth
manifold.

Proposition 2232 Let G be a Lie group, X a smooth manifold and
GxX—>X; (g x) — gx a smooth action of G on X. Then, for any
a € G, the map X — X; x> ax is a diffeomorphism.

Proposition 2233 Let G be a Lie group, X a smooth manifold and
GxX—-X; (g, x) — gx a smooth action of G on X. Then, for any
beX,themapr :G— X : g gb is a submersion if and only if Tn, is
surjective, where 1 = 1g).

Proof For any a € G the map n admits the decomposition
GG X-X; g—algm—algh—gh

From this, and Proposition 22.26 and Proposition 21.59, it follows that
if Tn, is surjective then Tn, is surjective. This proves <=. The proof of
=> is trivial. O

The quasi-spheres of Theorem 13.13 are all smooth manifolds, the
appropriate correlated group for each quasi-sphere acting smoothly on
it.

Proposition 2234 Let (X, &) be a symmetric non-degenerate finite-
dimensional irreducible AV-correlated space. Then the quasi-sphere
F((X, &) x A) is a smooth submanifold of X x A with tangent space
at (0, 1) the linear subspace

{(c,d) eX xA:d°+d=0}

or, more strictly, its parallel through (0, 1) with that point chosen as 0.
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Proof The quasi-sphere is the fibre over 1 of the map
XxAo{AeA: ¥ =4}; (c,d)— fc+d°d
is a smooth submersion, with tangent map at (0, 1) the map
XxA-{AeA ¥ =1}; (c, d)— (0, d +d).
O

There is an analogue of Proposition 22.34 for the essentially skew
cases. The reader is invited to formulate the analogue and prove it.

Proposition 22.35 Let (X, &) be a symmetric non-degenerate finite-dimen-
sional irreducible A¥-correlated space and let G and S be the group of
correlated automorphisms and the unit quasi-sphere, respectively, of the
AP-correlated space (X, &) x A¥. Then the map

GxX—S8; (g x)— gx)

is smooth.

Proof This map is a restriction of the linear map
End(X x A) x (X x A)—> X x 4; (t, x)— t(x).
O

Proposition 22.36 Let G and S be as in Proposition 22.35, Then the map
n:9—S; g g(0, 1) is a smooth projection.

Proof By Theorem 13.13 the map = is surjective with fibres the left
cosets in G of the group O(X, &) regarded as a subgroup of G in the
obvious way. By Proposition 22.35 and Proposition 21.46 the maps =
and S -+ 8; x+— u(x), for any u € G, are smooth. By Proposition 22.33
it remains to prove that T is surjective.

ac
b d
and (c, d) € TS, if and only if d¥ +d = 0, from which the surjectivity
of the linear map

Now € TG, ifandonlyifa®+a=0,b=c’ and & +d =0,

T1‘C1 N TG] - TS(o’l); g g(O, 1)

is evident, O
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Corollary 22.37 For any p, q, n the maps

o, g+1) — FRPH,
0(n+1;C) — F(C),
O(n+ 1 H) — FH™),
Up, g+1) — LT,
Spp, g +1) — FE),
GL(n+ ;R) — S(R™),
GL(n+1;C) — F(C™),
GLn+1; H) — S(H)

defined in Theorem 13.13 are open continuous surjections.

Corollary 22.38 For any p, q, n the groups
O(n;H), U(p, q), Sp(p, 9), GL(n; C) and GL(n;H)

are each connected.

Proof Add the information in Corollary 22.37 to Theorem 22.25 and
apply Proposition 20.45, O

Similar methods prove the following,

Proposition 22.39 For any p, q, n the maps

SO(p, g +1) — SL(RPH),
SO(m+1;C) — L(C™),
SUp, g+1) — L),
SLn+1;R) — F(R™)

are open continuous surjections

Corollary 2240 For any p,q,n the groups SO(n; C), SU(p, q) and
SL(n; R) are connected.

The groups SO(p, q), by contrast, are not connected unless p or g =0,
See Proposition 22.47 below.

Once again there is an analogue for the essentially skew cases, The
conclusion is as follows,

Proposition 22.41 For any n the groups Sp(2n;R) and Sp(2n;C) are con-
nected,
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Further examples of smooth manifolds and maps are provided by the
Grassmannians and quadric Grassmannians studied in Chapter 14.

Proposition 22.42 Let (X, &) be any non-degenerate finite-dimensional irre-
ducible symmetric or skew A¥-correlated space. Then, for any k < dim X,
the quadric Grassmannian A" (X, &) is a smooth submanifold of %.(X). The
parabolic atlas is a smooth atlas for /' (X, &) and determines the same
smooth structure.

Ql o
Q o4

Proposition 22.43 Let
T\¢
a . {ab a _
G—{(b )eC(zn). (b a) (b )_ }
ab

7 7\ ¢
ab ab .
where,forany(ba)eC(Zn),(ba) —(b‘_z).ThenGtsa
Lie group, with tangent space at 1 the real linear subspace of C(2n),

{( Z g ) € C(2n) : a € End_(C") x End..(C")},

isomorphic in an obvious way with End_(C") x End_(C"). Moreover the
map

0(2n) > CQ2n); t— c e,

1 .
with ¢ = ﬁ ( : i , is a smooth embedding, with image G inducing a

Lie group isomorphism between O(2n) and G.

Proposition 22.44 For any n the map

. ab . a
f:0Qn)— #,(CH): ( b 2 ) — im ( b )
(cf. the proof of Proposition 14.9) is a smooth projection.

Proof In this instance O(2n) is embedded in C(2n), as in Proposi-
tion 22.43. It is enough to prove that the map is smooth at 1, with
surjective differential there, the surjectivity of f having been already
proved in Chapter 14.
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The image of 1 by f is im ( (1) ) and near this point of A ,(C) one

has the chart
End_(C")— #'»(C}); b’ — im ( ; ) ’
with inverse

N (CE) = End_(C™); im ( Z ) > ba™l,

sending im ( (1) ) , in particular, to 0.

Near 1, therefore, the map f is representable by the map

0(2n)— End_(C"); ( Z f_; ) > ba,

which is smooth, with tangent map at 1
End_(C") x End_(C")— End_(C"); (a, b)— b.
(Cf. Exercise 21.1.) This is clearly surjective. O

There are nine other examples like this one, and the reader is invited
to formulate and to discuss them. (Cf. Proposition 14.10.)
It remains to consider several examples involving Spin groups.

Proposition 22.45 For any p, q the group Spin(p, q) is a smooth submanifold
of Rg’,, and is, with this structure, a Lie group.

Proof The Pfaffian charts of Spin(p, q) are smooth embeddings, and the

group operations are restrictions of maps that are known to be smooth.
O

Proposition 22.46 The group surjection p : Spin(p, q)—=SO(p, q) is a
smooth projection, the fibres being pairs of points.

Proof Use Pfaffian and Cayley charts, O
Proposition 22.47 The groups Spin*(p, q) and SO*(p, q) are Lie groups.

All of these are connected, except for Spin*(0, 0), Spin*(0, 1), Spin*(1, 0)
and Spin*(1, 1), homeomorphic to S°, S°, S° and S° x R, respectively.
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Proposition 22.48 The Lorentz group SOY(p, q) consists of the rotations
of R?4 preserving the semi-orientations of RP4.

Proof Since SO*(p, q) is connected, by Proposition 22.47, the continuous

map SO*(p, g)— R"; ( @ € ) deta is of constant sign and, since its

b d
value at 1 is 1, it is always of positive sign. Similarly detd is positive
on SO*(p, q). By a similar argument deta and detd are negative on the
coset SO~ (p, q) of SO*(p, q) in SO(p, q). O

Lie algebras
In all the examples of Lie groups given above the standard atlases or
embeddings defining the smooth structure and the group operations have
been not only C!, but also C2, C* and even C®. Here we shall assume
that all groups are C? at least. This is no restriction, since it can be shown
(Pontrjagin (1946)) that any C' Lie group admits a unique C2, C* or
even C® Lie group structure compatible with the given C! Lie group
structure.
Proposition 22.49 Let G be a C? Lie group. Then the map
GxG—G;(a g)—agal

is C2.

In particular, the group map

pa: G-G; g—aga’
is C2, for any a € G. The map
Adg: G- AutTG;; a— (Tp,)s,

where 1 = 1(g), is called the adjoint representation of the Lie group G.
Proposition 22.50 Let G be a C? Lie group. Then Adg is a C! group map.

Proof By Proposition 21.59, Adg is a group map. To prove that it is C!
it is enough to prove that it is C! at 1.

Let L= TGy and let h : L>- G be any C? chart on G with h(0) = 1
and Thy = 1, the identity map on L. Let f : L x L > L be the map
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defined, for any (x, y) € L sufficiently near to 0, by the formula
h(f(x, ¥)) = h(x)h(y)(h(x))~".
Then, for any a € G sufficiently near 1,
(Tpa)1 = d1f(x,0), where h(x)=aq,

so that (Adg)h = dif(—, 0), which is C! at 1. Therefore Adg is C! at 1.
|

The adjoint representation of a Lie group need not be injective.
Example 22.51 Let G = S'. Then Adg is the constant map with value 1.

Example 22.52 Let G be any abelian Lie group. Then Adg is the constant
map with value 1.

Example 22.53 Let G = S°. Then Adg has image SO(3), the surjective
map S* — SO(3) being the familiar double covering.
The map
adG = T(AdG)l : TGI — End TGI

is called the adjoint representation of TG;.

Proposition 22.54 For any C? Lie group G, the map
TGy x TGy — TGy; (x, y)— [x, y] = adg(x)(y)
is bilinear.

The product defined in Proposition 22.54 is known as the Lie bracket,
and the linear space T G; with this product is known as the Lie algebra
of G. The Lie bracket is normally neither commutative nor associative.
(See Theorems 22.58 and 22.62 below.)

Proposition 22.55 Let G be a C? Lie group and let h and f be defined as
in the proof of Proposition 22.50. Then, for any x, y € TG,
[x, y]1 = dod1 (0, O)(x)(y).

Theorem 22.56 Let t : G— H be a C? Lie group map, where G and H are
C? Lie groups. Then Tt, is a Lie algebra map; that is, for all x, y € TG,

Tti([x, y]) = [Tta(x), Tau(y))
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Proof For any q, g € G,
Hpa(®)) = tag a™") = pua)t(g),

and therefore, for any a € G, the diagram of maps

Pa

G — G
N

is commutative. The induced diagram of tangent maps is

leading, for any y € T G, to the commutative diagram

G 2% AuTG, MUY g,
lt 1 Tt
H A_d,,’ Aut TH, cvaluati&at Tt(y) T H1 .

The induced tangent map diagram this time is

evaluation at y
—_—

TG, 2% EndTG, TG,
1Tn lTh
TH, 2 EndTH, "5 Tq .
This also is commutative. That is, for all x, y € TG,
Ttlx, yl = [Tu(x), Tay)
which is what had to be proved. O

Proposition 22.57 Let G be a C* Lie group and let L and h be defined as
in the proof of Proposition 22.50. For all x,y € L, let ¢(x, y) = x -y be
defined by the formula

h(x - y) = h(x)h(y)
whenever h(x)h(y) € im h, and let x(x) = x= be defined by the formula
h(xY) = h(x)!,
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whenever h(x)™! € imh. Then ¢ and x are C* maps with non-null open
domains,

do¢(0,0)=1., dix(0,0)=1,
and dy0 = —1;.
(Note that, for any x € L sufficiently near 0, ¢(x, 0) = x, ¢(0, x) = x
and ¢(x, x(x)) =0.)
Theorem 22.58 Let G be a C? Lie group and let L = TG,. Then, for all
x,y€L,
[y, x] =[x, y}.

Proof Let h and f be defined as in the proof of Proposition 22.50 and
let ¢ and x be defined as in Proposition 22.57. Then, for any x € dom g,
since the map f(x, —) admits the decomposition

L > L > L
y — x.y=w — w.x(_l)’

it follows that
dif(x, 0) = do¢ (0, x™V) dip(x, 0).
From this, and from Proposition 22.57, it follows that, for any x € L,

dod; (0, 0)(x) = (d1do¢(0, 0))(dx0(x))d1 (0, 0)
+(do¢(0, 0))(dod1(0, 0))(x)
= dod1 (0, 0)(x) — d1do (0, 0)(x),

implying, by Proposition 22.55 and Corollary 21.26, that, for any x, y € L,
[x, y] = dod19(0, 0)(x)(y) — dod1¢(0, 0)(y)(x),
and therefore that [y, x] = [x, yl. O

Note that, though dod; f(0, 0) is independent of the choice of the chart
h, this is not so for dyd;¢(0, 0). Consider, for example, G = R*. Then, if
h is the chart R>>R*; x— 1+ x, ¢ is a restriction of the map

RXR-R; (x,y)—=>x+y+xy

and dody ¢(0, 0)(x)(y) = x y, while, if h is the chart R—> R*; x> €%, ¢ is
the map

RxR—-R; (x,y)>x+y
and dod1 6(0, 0)(x)(y) = 0.
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Corollary 22.59 Let X be a finite-dimensional real linear space. Then, for
any u, v € T(Aut X); = End X,

[, v] =uv—vu.

Proof Let h be the chart
End X > AutX; t—t.
Then, for any u, v € End X, since ¢(u, v) = uv,
dod1 (0, 0)(u)(v) = uv.
g
Corollary 22.60 Let G be a Lie subgroup of Autx, where X is a finite-
dimensional real linear space. Then, for any u, v € TG,

[u,v] =uv—vou

Example 22.61 For any x, y € (TS>),, the space of pure quaternions,
X, yl=xy—yx=2xxy,
where X denotes the vector product.

Theorem 22.62 Let G be a C* Lie group and let L = TG,. Then, for all
x,y,z2€L,

(x, y1, 2} = [x, I, 211 = Dy, [, 2]

Proof By Theorem 22.56 applied to the C! group map Adg, adg is a Lie
algebra map. Therefore, for all x, y € L, by Corollary 22.59,

adg[x, y] = (adg x)(adg y) — (adg y)(adg x),
and so, for all x, y, z € L, [[x, y, z] = [x, [y, 211 — [y, [x, z]}. g

The equation proved in Theorem 22.62 is known as the Jacobi identity
for the Lie algebra L. By Theorem 22.58 this can also be written in the
more symmetrical form

x, v, z2l1 + I, [z, x]] + [z, [x, yll = 0.

A Lie algebra over a commutative field K is an algebra L over K such
that, for any x, y € L,

[ya X] = _[xs y]
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and, for any x, y,z € L,

X, [ya Z]] + [,V, [Z, X]] + [Z, [xa Y]] =0,

where L x L— L; (x, y)— [x, y] is the algebra product.

By Theorem 22.58 and Theorem 22.62 the Lie algebra of a Lie group
is a Lie algebra in this more general sense.

For a good survey article on Lie algebras see Kaplansky (1963).

The theory of Lie groups is developed in many places. See, for example,
Weyl (1939), Chevalley (1946), Pontrjagin (1946), Helgason (1962) and
Gilmore (1974).

Exercises

22.1 Construct the following homeomorphisms:
o =sR*) =5, R”?)x=s!, YRI,1)=R xS°,
R*=PCR) =R x 5% SL(CRP=R?xS!,
Sp(2, R) = #(RL,) =R*x §!, P(R)=R*x S’
Sp2, C) = #(C)=C* x §', F(CL)=R" x5,
sp) = A28, AP =S, YE")2R x 53,
H* > PCH) 2R x S35, LCHP =R’ xS,
O, H) x ¥H) =5!, LH?)=R?x S5,
0(1, C) x ﬁcl) ~5% L(CH=RxS,
v = #CM)=s!, € =s’, #C")=R x5!,
C+=PCPC)=R xS, LCP=R}xS.
Exercise 9.4 and Exercises 19.8 and 19.9 may be of assistance
in constructing several of the harder ones.
222 Prove that RP!, CP! and HP! are homeomorphic, respectively,
to S, §? and S
Prove also that OP! is homeomorphic to S8.
223 Prove that SO(2) = RP!, that SO(3) = RP? and that SO(4) =
H1(R*) = A#1(R},). (CE. Proposition 14.18.)
224  Prove that A ,(R%) and A ,(CZ) are each the union of two
disjoint connected components, and that either component of
A 4(R3;) is homeomorphic to A"1(R,).
Is either component of A"4(C§,) homeomorphic to A (C¥,)?
(We give the answer eventually at the end of Chapter 24.)
22.5  Let X be a real linear space of finite dimension n say, let k < n,
and let X be assigned a positive-definite quadratic form. Let
O(R*, X) denote the set of orthogonal maps R* — X, the images
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of the standard basis vectors in R* forming an orthonormal k-
frame in X. Prove that O(R¥, X) is a compact submanifold of
L(R¥, X) of dimension 1k(2n —k — 1) and that the map

7 : ORK, X)—> %(X); t— im¢

is a smooth projection, inferring, in particular, that % (X) is
compact.
The manifolds O(R*, X) are known as Stiefel manifolds.
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Conformal groups

Our concern in this chapter is with the group Conf(X) of conformal
transformations of a non-degenerate real quadratic space X of finite
dimension n and signature (p, g), and with a description of such groups
that involves Clifford algebras. In doing so we shall draw heavily on
Chapter 18 which was concerned with the study of 2 x 2 Clifford matrices.

Let X and Y be finite-dimensional quadratic spaces and f : X > Y
a smooth map. Then f is said to be conformal if the differential dfx
of f at any point x is of the form p(x)t, where p(x) is a non-zero real
number and ¢t : X — Y is an orthogonal map, and so is such that, for
any u, v € X, dfx(u) - dfx(v) = (p(x))*u - v; that is it is conformal if
it preserves angles. More generally, let X and Y be finite-dimensional
smooth manifolds and f : X >~ Y a smooth map. Then f is said to be
conformal if the differential dfx of f at any point x of X is a non-zero
real multiple of an orthogonal map.

It is well-known that any holomorphic map f : C>-C, with C
identified as a quadratic space with R? with its standard scalar product, is
conformal. Conformal transformations of quadratic spaces of dimension
greater than 2 are more restricted, as follows, in the positive-definite
case at least, from a theorem of Liouville (1850). It turns out that
in studying such maps it is appropriate to compactify the quadratic
spaces in question in a particular way that is known as the conformal
compactification, this being quite distinct from the possibly more familiar
projective compactification.

Liouville’s theorem

The theorem of Liouville, as originally stated, concerns smooth maps
f : R3>>R3, the vector space R* being assigned its standard euclidean

245
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metric. It follows from the standard theory of the curvature of a smooth
surface in R’ that the parallels to such a surface together with the
families of surfaces generated by the normals to either set of lines of
curvature form a triply orthogonal set of families of surfaces. Dupin
showed that the converse is true, in the sense that if one has such a triply
orthogonal system then the surfaces of any two of the families cut out
lines of curvature on the surfaces of the third family. Clearly a conformal
transformation of R? sends any such triply orthogonal system to another,
so maps lines of curvature on any smooth surface to lines of curvature on
the image surface. In particular it maps umbilical points of such a surface
to umbilical points of the image surface. It then follows, by a theorem
of Meusnier (1785), that the image by any conformal map of a sphere
or plane is a sphere or plane. Such a map, by a theorem of Mébius, is
representable as the composite of a finite number of orthogonal maps,
translations or inversions of R? in spheres, the simplest such inversion
being inversion in the sphere, centre the origin, with unit radius, namely
the map R>>-R>; x — x/|x|2. Moreover all such Mdbius maps are
conformal. This is the theorem of Liouville.

The obvious analogue of this theorem then holds for positive-definite
quadratic spaces of any finite dimension greater than 3. The analogous
statement for indefinite quadratic spaces also is true by a theorem of
Haantjes (1937).

The projective compactification

Let X be a finite-dimensional real linear space. Then any norm on X
induces the same topology. That is any subset of X that is open in X
with respect to any particular norm is also open with respect to any
other norm.

Consider the map X — X xR; x+> (x, 1). This map is clearly injective
but also induces an injective map

X 5% (X xR); x+— [x, 1] =R{x, 1}

of X to the projective space of lines through the origin in X x R. The
projective space inherits the quotient topology from the topology of the
linear space X x R and is compact. The complement in the projective
space of the image of the original space X is by definition the hyperplane
at infinity of X.
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The conformal compactification

For a real non-degenerate quadratic space X of signature (p, q) there
is an alternative compactification that often offers advantages. This is
the conformal compactification defined as follows (cf. E. Cartan (1947),
(1949), Kuiper (1949), Hermann (1979)).

For simplicity let the scalar product on X be denoted by -, and consider
the injective map

1: X> X' =XxRxR; x> (1, x-x)=(x, p v).

This is not linear, but the image of X is a subset of the quadric cone Q
in X" with equation

x-x—puv=0.

The map then induces an injective map to the quadric in the projective
space ¢;(X"') with this homogeneous equation. This quadric is compact,
being a closed subset of a compact space, and is defined to be the
conformal compactification X of the quadratic space X.

By Proposition 14.18 the quadric X is homeomorphic to (S? x $9)/S°,
where S° = {1, —1} acts on S? x §¢ by (=1)(x, ) = (—x,—y). In
particular, in the case that p = 0, ¢ = n the quadric is homeomorphic to
S" and in that case is a one-point compactification of R".

Let X” be assigned the quadratic form (x, g, v)+— x-x— v, this being
of signature (p + 1, ¢ + 1). The central result is then the corollary of the
following,

Theorem 23.1 Let X, X" and Q be as above. Then
(i) themap1: X > X"; x+> (x, xx, 1), with image a subset of Q, is
an isometry,
(ii) the map = : Q> X, (x, pu, v) — x/v, defined where v # 0, is
conformal.
Proof
(i) The differential of 1 at x is the linear map

dxw— (dx,2x - dx, 0),

and dx - dx — (2x - dx)(0) = dx - dx.
(ii) The differential of = at (x, p, v) is the linear map

(dx, du, dv)—> v=2(vdx — x dv),
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with x-x = uv and 2x - dx = udv + v du, implying that

(vdx —xdv)- (vdx —xdv) = vidx-dx—vdv(udv+vdy)+ pvdv?
v(dx - dx — dudv),

so that v=2(vdx — xdv) - v"3(v dx — xdv) = v2(dx - dx — dudv). O

Corollary 232 Let t © X" — X" be any orthogonal transformation of X”.
Then the map f =nt1: X > X is conformal,

From their form it is clear that such maps map conformal spheres (that
is, quasi-spheres or hyperplanes) to conformal spheres, a quasi-sphere in
the quadratic space X being a submanifold of X defined by an equation
of the form ax - x+b-x+¢ =0, where q,c € Rand b € X, a, b
and ¢ not all being zero, this being a genuine sphere in the case that
the quadratic form on X is positive-definite and a # 0 and a plane in
the case that a = 0. It is a consequence of Liouville’s theorem that, for
dim X > 3, all conformal maps X >—>X are so induced. Clearly any such
map f extends to a map f X — X, with domain the whole of X.

It is clear in Corollary 23.2 that both ¢t and —t induce the same
conformal transformation of X. The conformal group Conf(X) is accord-
ingly defined to be the quotient group O(X"”)/S°. Since the signature
(p+1, g + 1) of X" is indefinite, the group O(X”) has four components,
So Conf(X) has four or two, according to where the element —1x~ lies.
If it lies in the connected component of the identity, which is the case
when p and ¢ are both odd, implying that p+ 1 and ¢ + 1 are both even,
then Conf(X) has four components, but, if not, it has only two. The
connected component of the identity is known as the Mobius group of
X, denoted by M(X).

It should be noted that x - x — uv = x- x + (§(u — v))* — J(u + V)%
With this in mind the most usual chart to employ on the projective space
%1(X") is the map

( 2x u—v)

Xs Yy V] > s .
D, 0] u+v u+v

Then the composite of the embedding of X in X” with the projection

2x pu—v
)

X' > X xR; (x, 1, v s
G b )H(u+v u+v

is conformal, the product space X x R being assigned the quadratic form
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(%, w)> x - x + w?, since its differential is

2dx 4xx-dx  2x-dx  2x-dx(x-x—1)

d - s s
XH(x~x+1 (x-x+1% x-x+1 (x-x+ 1) )

the quadratic norm of the image being
ﬁ(((x~x+ Ddx—2xx-dx)- ((x-x+ 1)dx—2xx~dx)+4(x~dx)2)
_ 4
T (e x+ 1P
To clarify all this let us look at some simple examples.

dx - dx.

Example 23.3 Let X = R? with its standard positive-definite scalar product.
That is X = R%2. Then the image of the map

RZ>91(RY); (x, ) [x, p, 1, X2 + )7

lies in the quadric with equation x? + y*> — uv = 0, this quadric being the
conformal compactification of X.

Suppose that we make a change of variables to express the equation
of the quadric as a sum of squares, an appropriate such choice being
X=x,y=y z= %(u —v), t= %(u + v). Then the equation reduces to
x? 4+ y2 4+ z2 — 12 and the image lies entirely in the affine chart given by
t = 1, the map to this chart being the map

2x 2y 1—x?—y?
1+x24+y2 14+x24+y¥ 14+x2+)?

R*>-R%; (x,y)— ( ),

with image a subset of the unit sphere S2 in R?. Indeed the image is
the whole of this sphere with the exception of one point, the South pole,
0, 0, —1).

This compactification, being a one-point compactification, is quite
distinct from the projective compactification of the previous section. It
is often presented in inverse form as the stereographic projection of the
sphere, minus its South pole, to its equatorial plane. Indeed the three
points

( 2x 2y 1—x%— y2)
T+x24+y2 14+ x24+y?’ 14+ x2+ y?
of the sphere, (x, y, 0) of the equatorial plane and (0, 0, —1), the South
Pole, are collinear, as is readily verified.



250 23 Conformal groups

The inverse map is the map

/ yl
)-

2 2. X
SO, 0, ~1) =R (x5 ¥, ) (7550 T3

Example 23.4 Let X = R"'. Then the image of the map
R2 % (RY; (x, ) 6, 0, 1, =2 + 57

lies in the quadric with equation —x* + y? — uv = 0, this quadric being the
conformal compactification of X.

Suppose that we make the same change of variables as in Example 23.3
to express the equation of the quadric as a sum of squares, that is
X=X, y=y,z= %(u —v), t= %(u + v). Then the equation reduces to
—x? + y? + z2 — ¢2. The image no longer lies entirely in any affine chart,
but the map to the chart with ¢t = 1 is the map

2x 2y 14+ x%—y?

2 3
s — s s s
R>—>R,(X9Y) (1_x2+y2 1_x2+y2 1_x2+y2

with domain the complement of the hyperbola with equation x2 —y? = 1
and image a subset of the hyperboloid of one sheet with equation
X +y:+Z2=1

MGbius transformations of R*

As we saw in Chapter 16 the appropriate Clifford algebra in which to
study rotations of the euclidean plane R? is the algebra R} , of complex
numbers C. The plane itself is represented by the plane of paravectors
which in this case is the whole of C. Now the conformal compactification
sits naturally inside the Clifford algebra R‘l),3 which is representable by
the matrix algebra C(2), the complex number z then being represented

by the matrix
z 2z
1z /°

that is explicitly by the element

. 1 _
x((l) (1))+1y((1)_(1))+§(1+ﬁ)((1) (1))+%(1—27)((1) (1))
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More generally any element of R'* sitting as a paravector in R is
represented by an element of C(2) of the form

(i)

where z € C and u and v are real.
Consider now an element of Spint(1, 3) represented by an element of

C(2) of the form
a c
b d)

This maps the above paravector to

GGHG)-G)G)E

In particular it maps the paravector

()-() o

representing the complex number z to

ac z zZ d T\ (i a7 — 2 2’7
b d 1 z ba) i A7 - 1 z )

az+c¢ . 2
bzt d and A is the real number |bz + d|°.

Now the conformal compactification of C is a one-point compactifi-
cation and it is natural to denote the additional point by co. One easily
verifies that this point is represented in C(2) by the matrix

01
00
and that the image of this matrix by the above element of Spint(1,3) is
the matrix
ab aa
bb ba
that represents the complex number a/b, when b # 0 and oo otherwise.
A map

Ql ol
N—

where z' =

az+c
bz+d’

where a, b, c,d € C and ad — bc = 1, is known as a Mdobius map. It

CU {00} > CU {o0}; z+—>
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represents a special conformal transformation of the conformal compact-
ification of R%2, namely one that respects the orientations of R®? and its
compactification.

For such a Mdbius map the induced map of C? defined by the matrix

a c

b d
will restrict to a rotation of this sphere if and only if this matrix lies in
the copy of Spin*(0,3) = Spin 3 naturally included in Spint*(1,3). Such

matrices, as we know from earlier work, are those that represent unit
quaternions, namely those of the form

a —b

b a)’
Example 23.5 There is a unique M8bius map of C to C that sends 0 to 1,
1 toiandito 0. The induced rotation of the Riemann sphere is rotation of

2
the sphere through an angle Tn about the line with equations x =y = z.

Proof Let the M6bius map be

ZHaz+c
bz+d
c . atc . . .
Tl.len y =1, that is ¢ = d, m—l, that i1s a + ¢ = (b + d)1, and
Z;IZ=O, that is ai+ ¢ =0. Trya=1. Then ¢ =d = —i and
1—i=bi+1 so that b = —1. This gives the map
z—i
Zr> .
—z—i

However, then ad — bc = 1(—i) — (—1)(—i) = =2i = (1 —i)?, and the
inverse of 1 —1iis $(1 +i). So finally the required map is
1A +iz+3(1-1i)
=l +iz+ 30 -iy

The fixed points of this map are given by z—i = (—z —i)z, that is by the
quadratic equation z? + (1 +i)z —i = 0, with roots z = (-1 —i + /6i).
O
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MGébius transformations of R

The general case can be handled in exactly the same way as the case
of R? has been treated in the previous section. The appropriate Clifford
algebra in which to study rotations of the quadratic space X = R is

the algebra qu, isomorphic to the Clifford algebra R,,_;. The quadratic

space X itself is then represented by, and will be identified with, the space
of paravectors in this Clifford algebra, with x - x = xx7, for any x € X.
The conformal compactification sits naturally inside the Clifford algebra
Rg +1,¢+1 Which is isomorphic to the algebra Rp.1,4 0f 2 X2 matrices with
entries in Ry 1.

The vector x is then represented by the matrix

X XX
1 x i

that is explicitly by the element

x 0 1 {01 1 ~{0-1
(0 x_>+§(1+xx)(1 0)+§(1—xx)(1 0).
More generally any element of RP*1-4+1 is represented by a paravector
in Rpy14 =Ry 4-1(2) of the form

(3 r)

where x is a paravector in R, ,—; and u and v are real.
Consider now an element of Spin*(p+ 1, q) represented by an element

of Ry, 4—1(2) of the form
ac
bd)

This maps the above paravector to

GGG -GaG)6 )

by Proposition 18.1. In particular it maps the paravector

()= ()00

representing the vector x to

G)GE)Go)=0Y)
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where x’ = (ax + c)(bx + d)~! and 1 is the real number (bx + d)(bx + d)".

The matrix
ac
b d

representing the induced special conformal transformation of the confor-
mal compactification of R”? is known as a Vahlen representation (see
Vahlen, (1902)), a special transformation being one that réspects the ori-
entation (and, in the case that p and g are both odd, the semi-orientations)
of the compactification, this representation being unique up to sign in
the case that pq is even, but with a four-fold ambiguity in its definition
in the case that pq is odd.
For example the translation x+— x + c is represented by the matrix

(o 1)

and inflation by the positive scalar p by the matrix

(¥ )

while inversion in the unit quasi-sphere composed with the hyperplane
reflection x— —x" is represented by the matrix

0 -1
1 0)°
An important special case in which pq is odd is that of R in which
case the component of the identity of the conformal group is covered four

times rather than twice by the group SU(2,2), the identity transformation
of the space being represented by each of the matrices

(00)-(Fo 4)-(6 7)o (7o 5)

where I is the 2 x 2 complex matrix ( (l)

Vahlen’s characterisation (1902) of matrices

(54)

that represent special conformal transformations of R®" was rediscovered
by Ahlfors ten years ago. See, for example, Ahlfors (1985). That the
appropriate setting for this in the case of the indefinite quadratic space
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RP is the study of the Clifford group I'(p,q)(2) of the Clifford algebra
Rpi1g+1 = Rpg(2) and the determination of Vahlen type conditions on
the entries in the matrix is the work of several people since that time,
in particular Elstrodt, Grunewald and Mennicke (1987), Maks (1989),
Fillmore and Springer (1990) and Cnops (1994). See Chapter 18 for the
details. For further references consult Ryan (1995).

The complete set of Mdbius groups, for p+ g < 4, is given in the

following theorem.

Theorem 23.6 Let M, , denote the Mobius group M(RP?). Then

My,
Moy,
M,
My;
M,
Moy
M3
M3,

R 1R 1 1R 111

My = Sp@2;R)/S",

My, = Sp(2;C)/S°

(Sp(2;R)/5%) x (Sp(2; R)/S%) (pq odd).
Ms, = Sp(1,1)/5°

My, = Sp(4;R)/S°

My = SL22;H)/S°

M;; = SU(2,2))/C(4) (pq odd),
SL(4; R)/S°.

Proof These results follow directly from Table 14 of Theorem 17.9. [

Exercise

231 Let X be a finite-dimensional quadratic space, let X x R be
assigned the quadratic form x - x— 2 =0, for all (x, t) € X xR,
and let Q be the quadric cone {(x,t) € X xR : x-x—t> = 0}.
Prove that the projection Q >= X : x> t~!x, defined wherever
x * x # 0, is conformal.
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Triality

At the beginning of Chapter 19 we remarked that the Cayley division
algebra O can ultimately be held ‘responsible’ for a rich variety of
exceptional phenomena. Among these is the triality which we study
in this chapter — an automorphism of order 3 of Spin(8) that does
not project to an automorphism of SO(8). As a byproduct we make
acquaintance with the fourteen-dimensional Lie group G, the group of
automorphisms of the Cayley algebra O.

Triality has something of interest to say about the projective quadrics
H1(C?) and A1 (R**). This quadric triality seems first to have been noted
by Study (1903), (1913), though the word ‘triality’ is due to Elie Cartan
(1925), who placed the phenomenon in its proper Lie group context.

Transitive actions on spheres

To put the group Spin(8) in context we begin by looking at all the groups
Spin(n), with n < 10. By virtue of earlier work we know that

Spin(1) = 0(1) c Rg,l ~R,

Spin(2) = U(1) < R =C < RQ)
Spin(3) = Sp(1) c R§,=H < R4),
Spin(4) = Sp(1)x Sp(1) = R, =H < IR@),
Spin(5) = Sp(2) c R{;=H2) < R@O),
Spin(6) = SU4) < U@) < R}, =C@4) < R(),
Spin(7) < 0(3) < RJ; =R@®)

Spin(8) = 08) x 0(8) < RY; =’R(3),

Spin(9) < 0(16) < R§y =R(16),

Spin(10) < U(16) < R{,, =C(6),

N
h
(=)
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and so on. The induced Clifford or spinor actions of Spin(1) on S°,
Spin(2) on §!, Spin(3) and Spin(4) (in two ways) on S, Spin(5), Spin(6),
Spin(7) and Spin(8) (in two ways) on S” and Spin(9) on S are, moreover,
all transitive, although the Clifford action of Spin(10) on $3! is not, as
we shall see — a good reason for stopping at this point!

Apart from these Clifford actions of the groups Spin(n) on spheres
there are the standard orthogonal actions.

In studying the standard orthogonal action of Spin(n + 1) on §", for
a positive integer n, it is appropriate to work in the Clifford algebra
Ry, = Rg,n +1» identifying R™! with Y = R®R", R and R" being
embedded in Ry, in the standard way. Then, forany ye Y, y =y,

S"={yeY :y y=1}and Spin(n) = {g € Spin(n+1) : g =g}.

It is worth a passing mention that Y is closed under the operation of
squaring and therefore can be assigned the bilinear product

Y2 Y5 (yo, y1)= Yo yi + V1Yo

This gives Y the structure of a Jordan algebra (Paige (1961)). Moreover
the squaring map Y — Y ; y— y? is surjective, since any element of Y
with non-zero real part (and there are such, since n > 1) generates a
subalgebra of Ry, isomorphic to C. The standard orthogonal action of
Spin(n+1)onY is

Spinn+1)x Y = Y; (b, y)— hyh™,

the map Y > Y; y — hyh~! being a rotation of Y, for each h €
Spin(n+ 1).

Proposition 24.1 Any element of Spin(n+ 1) is expressible in the form z g,
where z € S, g € Spin(n).

Proof Let h € Spin(n+1). Since 1 € S" so also hh~! € S". Let z € Y be
such that z2 = hh~! and let g = z=! h = Z h. Such z exists, since squaring
on Y is surjective, while, since hh! e S", so also z € S". Moreover,
g8 l=z"1hh 'z =1 So g =g, implying that g € Spin(n). a

It is easy to verify that, for any n > 0, the sequence

Spin(n) — Spin(n + 1) — S"
h— hh1
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is left-coset exact, and projects to the left-coset exact sequence
SO(n)—So(n+1)— §"

studied in Chapter 14, Thus Spin(n + 1) acts transitively on S”, each
isotropy subgroup of the action being isomorphic to Spin(n).

All these transitive actions of the groups Spin(n) on spheres bear closer
study, not only independently, but in relation to each other. Of particular
interest are the isotropy groups of the various Clifford actions.

The story is summarised in the following sequence of commutative
diagrams:

Diagram 24.1
Spin(1) — Spin(2) — S!

= = = in RO,I g C,

SO N st L st

involving the Hopf map hg, the restriction to S' of the Hopf map
R? — RP!, composed with a stereographic projection;

Diagram 24.2
Spin2Q) — Spin(3) — S?

= = = inRO,ZgH,

sl g kg

involving the Hopf map hc, the restriction to S of the Hopf map
C2— CP!, composed with a stereographic projection;

Diagram 24.3
s$ — s
Spin(3) — Spin4) — S* inRy3 =’H,

s3 — s3

involving various transitive actions of Spin(4) on S, Spin(4) being iso-
morphic to Sp(1) x Sp(1) = S? x §3;
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Diagram 24.4
s? = Sp(1)

Spin(4) —> Spin(5) —> S* inRos = H(2),
S3 N s7 ﬂ’ s4

involving the Hopf map hy, the restriction to S’ of the Hopf map
H? - HP!, composed with a stereographic projection, and the isomor-
phism Spin(5) = Sp(2);
Diagram 24.5

Sp(1) — SUB) — §°

Spin(5) — Spin(6) — S* in Rys = C(4),

| |

s = 5
involving the isomorphisms Sp(l) = SU(Q2), Spin(5) = Sp(2) and
Spin(6) = SU@4);
Diagram 24.6
SUB) — G, — S

Spin(6) — Spin(7) —> S® in Rog = R(8),
S7 = S7

introducing G, the automorphism group of the Cayley algebra O, and
involving the transitive action of G, on S5;

Diagram 24.7
G, — Spin(7) — §7

Spin(7) —> Spin(8) — S7 in Ro7 = 2R(8),

S7 = S7
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involving various transitive actions of Spin(8) on S” and the associated
triality automorphism of Spin(8) of order 3; and finally,

Diagram 24.8

Spin(7y = Spin(7)
Spin(8) — Spin(9) — S® in Rog = R(16),

s7? N SIS k’ S8

involving the Hopf map ho, the restriction to S'° of the Hopf map
0? - OP!, composed with a stereographic projection.

The first few diagrams

Diagrams 24.1 to 24.5 can be dealt with fairly rapidly, for much of the
detail has appeared above, in Chapter 16, or even earlier.

Diagram 24.1

We work in Ro, = C. The map hg : S 1_, 81 is the restriction to
S! of the map C—C; z — 22, or, equivalently, the map R? —»R?;
(x, y)— (x2 — y?, 2yx), which admits the factorisation

s! — RP! — s
(x9 Y) g [x9 Y] = (2xl - 19 2yx)
with x2 +y? =1 = =
[2x29 2yx] (x2 - y29 2yx)
(at least when x # 0)

The map RP! — S! may be interpreted as stereographic projection
from (—1, 0) in R2.

Diagram 24.2

The Clifford algebra in which we work is Rz = H, with the real linear
space R? = R ® C embedded in H < C(2) by the real linear map

ReC—c; (o ( =)
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S? in R3? being represented by those (4, z) such that A2+ 2% = 1. The
map hc : S — §3 is the restriction to S of the map

w —Z ~ -z w —Z
HﬂH;q:(z w)'_'qq=(‘: w)(‘: ;)

or, equivalently, the map
-l w, 2)—> (WW—27Z,2zW),
which admits the factorisation

s? — CP! — o
(w, 2) — [w, 2] = (Qww-—1,2zw)
withww+zZ =1 = =
2w w, 2z w] (ww—2%Z,2zw),
at least when w % 0

the last of these maps being stereographic projection from (—1, 0) € C2.
Diagram 24.3

The Clifford algebra in which we work is Ro3 = 2H, with the real
linear space R* = H embedded in 2H < H(2) by the real linear map

HoHQ); ¢ (g g),

S3 in H being represented by those ¢ such that gg = 1. With this choice
R); = H is embedded in ?H by the real linear map

H-HQ); g~ (g g).

The diagram is

53 — §3
Spin(3) — Spin(4) — S*

s$ = 5
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where the horizontal maps are

S} 583 r—7F whererr=1,

Spin(3) — Spin(4)q — ( g g ) , where gg =1,
and

; 3.(4 0 q 0\/7 0 _ (gqF O
S”’"(4)"’S’(o ?)"’(o ?)(0 q)‘(o 73 )’

where gg=r7=1.
The central vertical maps are, simply,

S3 - Spin(4); r— ((1) 2)

and
spind) =55 (1 %) g
Ao 7 '

The diagram relates one of the Clifford actions of Spin(4) on S3 to the
standard orthogonal action and in so doing delates two distinct product
structures on Spin(4), the group isomorphism Spin(4) = Sp(1) x Sp(1)
and the diffeomorphism Spin(4) = Spin(3) x S* with (g, r) corresponding
to (g, ¢ 7). A similar dagram relates the other Clifford action of Spin(4)
on S to the standard orthogonal action.

One way in which the ‘vertical’ embeddings of S = Spin(3) in Spin(4)
differ from the ‘horizontal’ one is that they do not project to embeddings
of SO(3) in SO(4). We refer to these embeddings in the sequel as the
Clifford embeddings of Spin(3) in Spin(4). It is, in a sense, fortuitous that
the Clifford homogeneous space Spin(4)/Spin(3) is homeomorphic to the
standard one, the real Stiefel manifold (cf. Exercise 22.5)

O(R?, R*) = 0(4)/0(3) = SO(4)/S0(3) = Spin(4)/Spin(3).
The force of this remark will become more evident in the sequel.
Diagram 24.4

The Clifford algebra in which we work is Ro4 = H(2), with the real
linear space R* = R ® R* = R @ H embedded in Ro4 by the real linear
map

ReH-HQ): o~ (1 1),
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S* in R’ being represented by those (4, q) such that A2 + gqg = 1. With
this choice R8’4 is the standard copy of 2H in H(2), namely the subalgebra
of diagonal matrices. The diagram

s? = Sp1)
Spin(4) — Spin(5) — S*
S3 N S7 ﬂ, s4

relates one of the Clifford actions of Spin(4) on S and the Clifford action
of Spin(5) on S7 to the standard orthogonal action of Spin(5) on S*. The
horizontal maps are

0 d 0 d

e A s. (ac ac a —b
Spm(S)_Sp(Z)—>S,(b d)H(b d)(—? 2)
._ 2aa—1 —2ab
T\ 2@ 2aa-—-1)’

o (3a)(Fa)-(0)-(53)(53):

S*cH-S" cH?; ar (a, 0), withaa=1,

Spin(4) = Sp(1) x Sp(1) > Spin(5) = Sp((2); ( a0 ) — ( a0 )

and
ST < H? — HP? — S4
(a, b) — [a, b} — (2aa-—1,2ba).
with a@+bb =1 = =
[2aa, 2ba) (a@—bb, 2ba)

at least when a#0

The vertical maps are, simply,

$° = Sp(1) - Spin(4) = Sp(1) x Sp(1); d > ( 0 d )

and this composed with the inclusion Spin(4) — Spin(5),

Spin(4) = Sp(1) x Sp(1)— 3, ( 8 2 ) - a;
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and

Spin(5) = Sp(2) - §”; ( Z Z ) > (a, b).

The vertical embedding of Sp(1) in Sp(2) is a standard one, but the
induced embedding of Spin(3) in Spin(5) factors through one of the
Clifford embeddings of Spin(3) in Spin(4) and is not standard. We
refer to it as a Clifford embedding of Spin(3) in Spin(5). The Clifford
homogeneous space Spin(5)/Spin(3) is homeomorphic to Sp(2)/Sp(1) =
S7. On the other hand it can be shown, by methods of algebraic
topology (see, for example, Steenrod and Epstein (1962), Theorem 4.5
or James (1976), that the standard homogeneous space Spin(5)/Spin(3),
homeomorphic to the real Stiefel manifold O(R?, R®) = SO(5)/S0(3), is
not homeomorphic to S7, nor to the product $3 x S*.

There is, of course, an analogous diagram involving the other Clifford
action of Spin(4) on S3.

Diagram 24.5

We have already met this diagram in Proposition 17.3 where we proved
that Spin(6) = SU(4). We give below a slight variant of that proof.

The Clifford algebra in which we work is Ros = C(4), with the real
linear space R@®R* = R® = C3 embedded in it by the real linear injection

Z 0 z 71
0 2 Z1 —ZH
- -Z1 2 O
-z 2z O Z

C3 _’C(4); (ZOa 21, 22)H

With this choice, R8,5 is the standard copy of H(2) in C(4). The sphere S°
in R® is represented by those (zo, z1, z2) such that zoZg + 2z, Z1 + 2,72 = 1.
The determinant of the matrix representing (zo, 21, z2) is easily computed
to be (z0Zo + 21 1 + 22 73)%, which is equal to 1 when (z, 2, 22) € §°.
Since, by Proposition 24.1, any element of Spin(6) < U(4) is of the form
zg, where z € S° and g € Spin(5) = Sp(2), and since, by what we have
just proved and by Corollary 10.14, both z and g have determinant equal
to 1 (as elements of C(4)), it follows that Spin(6) < SU(4). Since both
these groups are connected and of the same dimension, namely 15, it
follows that they coincide.

Filling out the rest of the detail of the diagram is then straightforward.
For any t € C(4),t™="1"is given as in Exercise 10.2. A direct computation
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(in which Exercise 10.1 is relevant) shows that, for any u € SU(3),

i 0 up U

u 0 u 0\~_ 0 Up up —ugn
01 01 - —Ugy —Up2 u» 0 i
—u;p  up 0 u2

which is the identity matrix if and only if u = (” 0 ) with

v e SU(2) = Sp(1).
So, finally, we obtain the commutative diagram

Sp(l)=SUQ) — SU@3) — 5
Sp(2) = Spin(5) — Spin(6) = SU@) — §°

§7 = Y

where the maps not explicitly described above are all standard ones, each
row and each column being left-coset exact,

The embedding of SU(2) in SU(4) here is the standard one. It is
therefore a corollary of the diagram that the complex Stiefel mani-
fold U(C?, C*) = SU(4)/SU(2) is homeomorphic to S* x S”. Since
SU(4) = Spin(6) and SU(2) = Spin(3), this complex Stiefel manifold
may also be regarded as a Clifford homogeneous space Spin(6)/Spin(3),
the embedding of Spin(3) in Spin(6) being a Clifford one, as it factors
through a Clifford embedding of Spin(3) in Spin(4). By contrast, it can
be shown, by methods of algebraic topology, that the standard homoge-
neous space Spin(6)/Spin(3), homeomorphic to the real Stiefel manifold
O(R3, R%) = 50(6)/S0(3), is not homeomorphic to S* x §7.

Getting further

To get any further it is appropriate to jump a stage and to take a look first
at Spin(8). Any linear automorphism of R” induces an automorphism of
Spin(n), which projects to an automorphism of SO(n), since the original
automorphism of R* commutes with —"1. Of all the groups Spin(n) the
group Spin(8) is unique in that it possesses automorphisms of order 3
that do not project to automorphisms of SO(8).

To construct such an automorphism we begin with Spin(8) as a sub-
group of O(8) x O(8), or rather, since Spin(8) is connected, as a sub-
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group of SO(8) x SO(8). The Clifford algebra in which Spin(8) lies is
RJ; = Ro7 = 2R(8), where we may suppose that R® is embedded by the
injection
8_,2 . v@ O
R-Ream (5 00,

v(upsilon) : O = R® — R(8) being the injection with image Y, with which
we became familiar in our discussion of the Cayley algebra O early in
Chapter 19. Here, as on that occasion, the product on R(8) and the
product on O will both be denoted by juxtaposition, as will be the action
of R(8) on O, the unit element in O being denoted by e. One technical
detail is worth isolating as a lemma.

Lemma 242 Let x € Y, let g € R(8) and suppose that gye = x ye, for
aly€eY. Theng=xand gye=(ge)(ye)
Our purpose in singling this out is to emphasise that it is incorrect to

contract (ge)(ye) to gye or to expand g ye to (g e)(y ¢), unless we know
thatg € Y.

The companion involution

Conjugation on the Cayley algebra O is associated not only with the
conjugation anti-involution of the Clifford algebra Rgv7 2= R(8), namely
transposition, but also with an involution of R(8), which we term the
companion involution of R(8), and which restricts to an involution of
SO(8). This involution is defined by means of the element of O(8) which
induces conjugation on O (by left multiplication), namely the symmetric

anti-rotation 1 0
o -1/

Proposition 24.3 The map

RE-R®ie=i= (o _n )2 (o )

is a linear involution of the algebra R(8) which commutes with transposition
and restricts to a group involution of SO(8) and is such that

gye=gye forallgeR@®) and all y € Y,
or, equivalently,

gb=gb, forall g€ R(8) and all b€ O.
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In particular, by setting y =1, or b=e,
ge=7ge, for all g € R(8).
Moreover, for all g € SO(8).

f=gege=coje=c,

g. in such a case, being of the form ( (1) 2 ) where h € SO(7).

The element g will be called the companion of the element g.

The triality automorphism

go
0

of SO(8) and ¢, being the companion of g;. Its action on R® and in
particular on S’ is given by

y 0\ (80 y 0 g 0

0 y* 0 & /\0 y/\0 g/’
where y € Y or S7, that is by y ~—> goy g17', since g} = g;” = g7!; the
corresponding action on O being given by ye > goy ¢, "' e. In this way

the pair (go, g1) of elements of SO(8) defines a third element g, € SO(8)
by

Consider now an element ( g ) of Spin(8), go and g; being elements
1

goygile=grye forally €.

An ordered triple (go, g1, g2) of elements of SO(8) such that

g 0 .
(0 g ) € Spin(8),

or, equivalently, such that goyg;~! € Y for all y € Y, and such that
goygile=grye forall y € Y, will be called a 8-triad of SO(8), 8, the
triality automorphism of Spin(8), being the automorphism of order 3

0 : Spin(8) — Spin(8); ((g)o gl )H ((g)l gz ),

which exists by virtue of the following theorem.
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Theorem 24.4 Let (g, g1, g2) be a 6-triad of SO(8). Then (g1, g2, g0) and
(82, 8o, 81) are O-triads, as also are (g5, g7', g51), (&7%, &5, &!) and
(874, g5%, gr'). Moreover

o g). (8 O & 0
0 : Spin(8) — Spin(8); (0 gv1>'_'(0 sz>

is an automorphism of Spin(8) of order 3.
Proof The key to the proof is the scalar triple product on O with which

we made acquaintance in Proposition 19.5. What we need to recall is
that, for all q, b, c € O,

da-bc=b-ca=¢-ab,

where - denotes the standard scalar product on R®.
So let (go, g1, 22) be a O-triad. Then

goygileY, withgoygi le=grye forallye Y.
Then, by Lemma 24.2,
goygi ' ze=(goydi ' e)ze) = (g2ye)ze), forall y€ Y.
Since g, is orthogonal it follows, by Proposition 24.3, that
X6 (yeNg1 ' ze) =go X gy i ze
=goxe-grye(ze), forallx, y,z €Y,
and so, by Proposition 19.5, as we promised above,
ye- (&1 ze)(xe) = g2 78 - (ze)(do x )
=ye g lzgoxe, forallx, y, z €Y,
g2 being orthogonal. Therefore
(817 ze)xe)=gr'zgyxe, forallx,z€ Y.
So, by Lemma 24.2 yet again,
glzgeY, withgy'zgoe=g1""z¢, forallze Y.

That is, (g5, g5, g7!) is a O-triad. Repeating the whole argument with
this f-triad as starting point one deduces at once that (g;, g2, go) is a
0-triad.

The rest of the proof, including the proof that 8 is a group homomor-
phism of order 3, is obvious. O
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With this we have the companion theorem:

Theorem 24.5 Let (go, g1, g2) be a O-triad of SO(8). Then so also is
(€1, 8o, £2). Note the change of order!
Proof Let (go, g1, g2) be a 0-triad of SO(8). Then

goygi ey, withgoygi le=gryee, forallyc Y.
Then g1y g5" = (g0¥€1~') € Y, with

g1y gle=(0y8i Ve=gyii le=grye=gye
for all y~ € Y. That is, (g}, go, £2) is a 0-triad. O
g0

It is therefore appropriate to call (
0 g

((g)o gl ) in Spin(8).

Corollary 24.6 Suppose that (g, g, g) is a 0-triad of SO(8). Then g = g so
that (g, g, g) is a O-triad of SO(8).

) the companion of

Proof Since (g, g, g) is a 0-triad, so is (§, &, g) = (g, &, g). Sog =g 0O

Theorem 24.7 The triality automorphism 0 of Spin(8) does not project to
an automorphism of SO(8). However, it does project to an automorphism
of SO(8)/5°.

Proof Under the projection Spin(8) — SO(8) the elements ( (g)o g )
1

0 —g

10 10 . -1 0 -1 0 .
ever,G(O 1)—(0 1),whﬂc()( 0 _1)—( 0 1),smcc
(1, 1, 1), and therefore (—1, —1, 1), is a f-triad of SO(8). From the fact
that ((1) (1)) and ( _(1) (1)) project to distinct elements of SO(8),

and (—go Ov ) project to the same element g> of SO(8). How-

namely 1 and —1, it follows that 8 does not project to an automorphism
of SO(8).
Under the projection Spin(8) — SO(8)/S°, however, the four elements

( i(g)o +g ) project to the same element +g¢> of SO(8)/S°, while under
td
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0 they map to the four elements ( te O ), which then project to the

0 2
same element g5 of SO(8)/S°. The automorphism @ therefore projects
to the automorphism

SO(8)/8° — S0(8)/5°; +go+> +£o (and + go+> £g2),
where (go, g1, g2) is a 0-triad of SO(8). O

It is incorrect to say that 6§ and 6! are the only automorphisms of
order 3 of Spin(8) that do not project to automorphisms of SO(8), for if
¢ is the automorphism of Spin(8) induced by a change of coordinates on
R?® then ¢ 6 ¢~ will also be an automorphism of order 3 that does not
project to an automorphism of SO(8), and not all such ¢ commute with
0. Essentially, however, 6 is unique. The proof that Spin(8) is the only
one of the groups Spin(n) to admit a triality automorphism depends on a
much deeper analysis of the structure of the groups Spin(n) and their Lie
algebras than it is possible to give here. See, for example, Loos (1969).

The group G,

Let G be any group and let  : G — G be an automorphism of G. Then
the subset {g € G : y(g) = g} of elements of G left untouched by v is
clearly a subgroup of G.

Consider, in particular, the group Spin(8) and its triality automorphism
0. The subgroup of Spin(8) left untouched by 8 consists of those elements

(g" 0 ) of Spin(8) such that

that is, those ( g g ) € Spin(8) such that (g, g, g) is a 6-triad of SO(8).

Clearly this group is isomorphic to the subgroup of SO(8) consisting of
those g € SO(8) such that (g, g, g) is a 0-triad of SO(8). This group we
define to be the group G,. (The name derives from the classification of
Lie algebras. There is no group G; !)

Theorem 248 Let g € G;. Theng =g and ge =e.
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Proof Let g € G;. Then
gygleY, withgygle=gye forallycy.

In particular, by settingy =1, gg~'! € Y and g g~! e = g ¢, from which it
follows that §~!g g~ e = ¢, so that, by the last part of Proposition 24.3,
g lgg ! =g 'gg~!, implying that (gg~')* = 1. Let x = gg~'. Then
Xx€Gyand xyXxle=Xye forally €Y. But x=x"!and x> = 1. So
yxe=xye, forall y € Y; that is (ye)(xe) = (xe)(ye), for all y € Y. So
xe = te; that is x = +1. But (—1, —1, —1) is not a f-triad of SO(8). So
x=1Thatisg=g Thenge=e. Soge=ce. O

The next theorem characterises G,.

Theorem 24.9 G, is the group of automorphisms of the Cayley division
algebra O.

Proof Suppose first that g € G, acting on O by left multiplication.
Then, for allb=ye, c=ze € O,

g(bC) = gyZC=gyg—1gze
= gyglegze, sinceg =§,
= gyegze, again since g =g,
= (gb)ge),

with, in particular, ge = e. Thus g is an automorphism of O.
Conversely, by the argument of Proposition 8.18, applied to O rather
than to H, any automorphism or anti-automorphism g of O is of the

form ((1) (z : ROR'"SR®R’; am rea+ t(pua), where ¢ is an

orthogonal automorphism of O. Then

glbc)=(gb)gc), forallb=ye, c=ze€ 0,
thatis gyze=gyegze foraly, ze€Y,
thatis gyg-lgze=gyegze forally, z€Y,sinceg =g,
thatis gyg-le=gye foralyecy,
thatis g € G».

O

Since g = g, for all G € G, it follows, from the last part of Proposi-
tion 24.3, that G, actually is a subgroup of SO(7). We shall prove shortly
that G, is in fact a Lie group of dimension 14 (SO(7) and SO(8) being
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Lie groups of dimension 21 and 28, respectively). This we can do after
we have established Diagrams 24.6 and 24.7.

Before turning to these we prove one further result about the way
that the group G lies in Spin(8). In doing so it is helpful to think of
Spin(8) as the group of 0-triads of SO(8) themselves, under the group
multiplication

(80 81, 82)(80» &3> 82) = (80 80» 81815 8282)

with G, the subgroup of triads of the form (g, g, g). Now, for any 6-triad
(g09 g1, 82),

1

28 '=legpe=cesdhe=c

Bearing this in mind, we define, for each i € 3,
H; = {(g0, 815 82) € Spin(8) : gie =e}.

Theorem 24.10 For each i € 3, H; is a subgroup of Spin(8) isomorphic to
Spin(7) the three subgroups being permuted cyclically by 6, namely

0(Ho) = Hy, O(H;) = H, and 6(H;) = H.

Moreover,

HnNnH,=H,NnHy=HyNnH;=G6,.

Proof 1t is clear that H, is the isotropy subgroup at 1 of the standard
orthogonal action of Spin(8) on §’, this subgroup being isomorphic to
Spin(7). It is clear also that the three subgroups are isomorphic and that
they are permuted cyclically by 9.

To prove the last part, suppose that (go, g1, g2) € HiNH;. Then g = gy
and go = ¢, implying that (go, g1, g2) = (g0, £o, g0) and therefore, by
Corollary 24.6, that gg = g; = g». That is H; N H, < G,. Conversely it is
clear that G; is a subgroup of each of the H;. So H; N H, = G,. Likewise
H,NnHy=HyNnH; = Gs. O

We are at last in a position to appreciate Diagrams 24.6 and 24.7.
Paradoxically it is convenient to consider Diagram 24.7 first.
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Diagram 24.7
The diagram is
G2 — Spin(T)=Hy — §’

| | -

Spin(l)=H, —  Spin8) — §7,

| |

S7 = S7

where, as has been explicit throughout the preceding discussion, except
momentarily in Theorem 24.10, Spin(8) lies in the Clifford algebra Rg7 =

2R(8), any element ( (g)o
0-triad of SO(8).

The diagram relates two of the three actions of Spin(8) on S, the
standard orthogonal action and one or other of the two Clifford actions

of Spin(8) on S”. Suppose that we choose the action

g ) of Spin(8) being such that (g, g1, g2) is a
1

Spin(8) x S7— 87

g O
((0 gvl),y)wgoy

with isotropy subgroup at 1 the subgroup H, defined above. The central
vertical sequence of maps is then the corresponding left-coset exact
sequence, while the central horizontal sequence involves the standard
orthogonal action with isotropy subgroup at 1 the subgroup H,.

In view of Theorem 24.10 the whole structure of the diagram should
now be clear.

An analogous diagram relates the standard orthogonal action to the
other Clifford action of Spin(8) on S.

It is the case that, under the standard projection p : Spin(8) — SO(8),

. 10 -1 0 -~ .
with p ( 0 1 ) = p( 0 —1 ) = 1, p(H) = S0(7), while
p(Ho) = p(H,) = Spin(7).

In line with our practice above we refer to the horizontal embedding
of Spin(7) in Spin(8), with image H,, as the standard embedding, the
vertical embeddings, with image H, or H,, being the Clifford embeddings
of Spin(7) in Spin(8).

It is a corollary of Diagram 24.7 that Spin(8)/G, = S7 x §7.
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Diagram 24.6

The details of Diagram 24.6 can now be inferred.
From Diagrams 24.5 and 24.7 and the standard left-coset exact se-
quence

Spin(6) — Spin(7) — S¢
we have the diagram

SUB3) — G, — S
Spin(6) — Spin(7) — S5,

s = 5

where the elements of Spin(6) are those of Spin(7) which lie in C(4),
regarded as a subspace of R(8) in the standard way. It follows at once
that the group SU(3) coincides with the subgroup of G consisting of
all those automorphisms of O which belong to C(4) rather than to R(8).
Moreover the sequence

SU@3)— G, — S¢

is left-coset exact, the sphere S® being thus representable as the homoge-
neous space G»/SU(3).

Diagram 24.8

Diagram 24.8, concerning Spin(9), is now easy to establish. The
Clifford algebra in which we work is Rog = R(16), with the real linear
space R’ = R ® R® embedded by the real linear map

R®R® — R(16)

A —o(b)
“’b)'"’(v(b) A )

where v : O = R® Y < R(8) is the standard embedding of O in R(8),

I 4
the sphere S® being represented in R(16) by the matrices ( i i ),
where A€ R,yeYand 2 +yy =1.
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With this choice R8’8 is the standard copy of 2R(8) in R(16). Any
element of Spin(9) is of the form

G )
y 4 0 g

with ( (g)o g ) € Spin(8), and A2+ y y* = 1. The detail of the diagram,
1

namely

Spin(7) = Spin(7)

Spin(8) — Spin(9) — S8,

s7 . gis5 M, g

is then very similar to that of Diagram 244, with O replacing H. The

map
2
. A=y g 0 A=yt
8,
Spmg_’s’(y 1)(0 §1>H(Y )

with isotropy subgroup at 1 the subgroup Spin(8), determines the central
horizontal exact sequence. The lower vertical maps are

spin(e) 5" (& 3 ) m e

A =yt 0
Spin(9)— S¥; (y i )((g)o g )H(lgoe,ygoe)

and the restriction of the latter to S®, while the lower horizontal maps
are S7c 0 - S5 < 0?; gger> (goe, 0) and

S5 02 — op? — 9
(Agoe, ygoe) — [Agoe,ygoel — (212—1,21ye),

where 12 + (ye)(ye)f = 1,

[Agoe, ygoel = [2(Agoe)(Agoe), 2(¥goe)Tgo el ,
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at least when A # 0, and

2(Agoe)Zgoe) 2(vgoe)Agoe)l = (21> —1,24ye)
= (A —yy)e 2iye).

Here we have assumed, for the sake of definiteness, that the left-hand
column of the diagram corresponds to the Clifford action of Spin(8) on
S7 with isotropy group at 1 equal to Ho, one of the two Clifford Spin(7)’s
in Spin(8). There is of course an analogous diagram involving the other
Clifford action of Spin(8) on S”.

It is a corollary of the diagram that the Clifford homogeneous space
Spin(9)/Spin(7) = Spin(9)/Hp is homeomorphic to S'3. On the other
hand, Spin(9)/H,, which is homeomorphic to the real Stiefel manifold
O(R’, R®), is not homeomorphic to $'* (by Steenrod and Epstein (1962),
Theorem 4.5).

The action of Spin(10) on S3!
All the Clifford actions on spheres discussed up until now have been
transitive. By contrast, the Clifford action of Spin(10) on $3! is not, for
the isotropy subgroup at 1 at least contains a Clifford copy of Spin(7) as
a subgroup, from which it follows that the dimension of the orbit of 1 is
at most equal to

dim Spin(10) — dim Spin(7) = 45 — 21 = 24.

In fact the space of orbits, assigned the quotient topology, can be shown
to be homeomorphic to a closed interval of the real line, one end-point
of which represents an orbit 4; of dimension 21, homeomorphic both
to Spin(9)/Spin(6) and to Spin(10)/SU(5), the embedding of Spin(6)
in Spin(9) in the former case being a Clifford one, while the other
end-point represents an orbit Byy of dimension 24, homeomorphic to
Spin(10)/Spin(7), the embedding of Spin(7) in Spin(10) being Clifford,
Spin(7) = H, being indeed the isotropy subgroup at 1. Each of the interior
points of the interval represents an orbit of dimension 30, homeomorphic
to

C3 = Spin(10)/Spin(6) = Ay x S°

(the embedding of Spin(6) in Spin(10) being Clifford).

More information about Spin(10), the orbit Ay and various rela-
tionships between Az), Cy and By will be found in Exercises 24.2 to
24.4. The standard text on differentiable group actions is Bredon (1972),
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though the above example is not to be found there. I am grateful to
Christopher Spurgeon and to Dr Hugh Morton for establishing many of
the details of the action as part of an M.Sc. project in 1978.

G, as a Lie group
In our treatment of the groups Spin n so far we have regarded them
certainly as topological groups and not just as groups, but, apart from
one brief argument when discussing Diagram 24.5, we have disregarded
the fact that they are Lie groups and that the various maps between them
and the homogeneous spaces formed from them are not only continuous
but smooth (in fact C*). What about G;?

Theorem 24.11 The group G; is a compact, connected Lie group of dimen-
sion 14,

Proof Consider Diagrams 24.5 and 24.6. It is enough to prove that the
vertical map, the surjection Spin(7)— S7; g+ ge of Diagram 24.6, is a
submersion and to prove this it is enough to prove that the tangent map at
1, namely T(Spin(7)); = T(S7)1; 7+ 7y ¢, is surjective. However, this map
composed with the injection T(Spin(6)); — T(Spin(7)); is the tangent
map at 1 of the standard submersion SU(4) —» S7 of Diagram 24.5.

Hence G, is a smooth submanifold of the Lie group Spin(7), of dimen-
sion dim Spin(7) — dim S = 21 — 7 = 14. The group is clearly closed in
the compact group Spin(7), so is compact. Finally, since SU(3) and §°
are connected, so is Ga.

The group G; is one of a clutch of five compact exceptional simple
Lie groups all associated in one way or another with the Cayley algebra
O, the other four being known as F4, Eg, E; and Ez, of dimensions
52, 78, 133 and 248, respectively. For the definitions of semi-simple and
simple Lie algebras and Lie groups the reader must refer to one of the
standard texts on Lie groups, such as Helgason (1962), Gilmore (1974)
or Jacobson (1962). Most treatments construct the exceptional groups by
first constructing their Lie algebras. An elementary account of them, as
groups, is hard to find. O

Other aspects of triality

For any positive integer n the Lie group surjection p : Spin(n) —» SO(n),
with kernel S°, induces an isomorphism Tp; between the Lie algebras
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T(Spin(n)); and T(SO(n));, the latter normally being identified with
End_(R"), by the remark following Proposition 22.28. What about 6?

Proposition 24.12 The triality automorphism 0 : Spin(8)— Spin(8) is
smooth (indeed C*® ) and induces a Lie algebra automorphism

TO, : T(Spin(8))1 — T(Spin(8))s

of order 3. Although 0 does not project globally to SO(8) its restriction to
a suitably small neighbourhood U of 1 in Spin(8) does project to a smooth
map Oy : V-V, where V = p(U), the diagram of Lie algebra maps

T(Spin(®))1 —> T(Spin(8));

TPll = TPll =

TSO®): ' T(SO®)
being commutative.

Triality may be formulated entirely in terms of the action of SO(8) on
the Cayley division algebra O as follows.

Theorem 24.13 The triple (go, g1, g2) is a 0-triad of SO(8) if and only if
go(ab) = (g1a)(g2b), for all a, b € O.

Proof (go, g1, g2) is a 0-triad of SO(8)

«forallyeY, goygi'eYandgoygile=grye,
«forally,zeY, goygi 'ze=(g2ye)(ze), by Lemma 24.2,
<« forallx,yeY, goyxe=(g2ye)g xe), setting

xe=g1"'ze, ze =g xe,
<« forall x,y €Y, go(xeye) = (g1 x€)(g2y¢), conjugating both sides,
<> for all q, b € O, go(ab) = ga)(gb), setting

X€=a,ye=b.

d

Theorem 24.13 is due to Elie Cartan (1925) (page 370). The Lie algebra
version is known as Freudenthal’s principle of triality (1951):

Theorem 24.14 For any yo € T(SO(8)); (= End_(R®)), there exist unique
1, 2 € T(SO(8))1 such that

yo(ab) = (y1a)b + a(y2b), for all a € O.
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Proof For existence let V be as in Proposition 24.12 and take tangents
at 1 of each side of the equation

go(ab) = ((Bv*g0)a)((Ov go)b)
for each gy € V and each q, b € O. Then
volab) = ((T6,%)s1v0)a)b + a(((TOv)170)b),

for each yo € T(SO(8)); and each a, b € O; for Cayley multiplication is
bilinear, while the companion involution and evaluation at a or at b are
restrictions of linear maps.

So take y; = (T0v?)170 and y2 = (TOv)1y).

For uniqueness we have to prove that if yy, y2, v, v; € T(SO(8)); are
such that (y; b)c + b(y2 ¢) = (yb)c + b(y3¢), for all b, ¢ € O, then y; = y]
and y, = yj. It is clearly enough to prove that if

(y1b)c +bly2¢) =0,
for all b, ¢ € O, then y; =y, = 0. Let a = y; e. Then
ea=e -y e=—y e-e(since y; is skew) = —a-e.
So a is a pure Cayley number. However, we have

O0=ac+ysc forallceO.

So 0= (y1 b)c—b(ac), for all b, c € O.
So O0=y,b —ba,forallbeO.
So 0= (ba)c— blac), for all b, c € O,

which is not the case, unless a =0. So y;b =0, for all b € O and y;, =0,
forallc € O.Soy; =y, =0. O

It is more usual to start the entire discussion of triality by first proving
Theorem 24.13 directly and defining (yq, y1, y2) to be a triality triad of
T(SO(8)): if

Yobc=(y1b) +b(y2c¢), forall b, c € 0.
See, for example Loos (1969), Vol.Il.

Quadric triality
In Exercise 22.4 we noted that either component of A474(R¥,) is home-
omorphic to A j(RY,), each being homeomorphic to SO(4) by Exer-
cise 22.3, and we asked the question whether or not either component of
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A 4(C}p) is homeomorphic to A1 (C,). Now, back in Theorem 14.17 we
have represented each of these quadric Grassmannians as follows:

HaRY) = #4RE,) = (0(4) x 0(4))/0(4),

HIRY) = 4 (R = (0(4) x 0(4)/(0(1) x O(3) x 0(3)),
HoCP) = H4(CE) = 0@8) x U).

HCY) = H#4(CL) = 0(8) x Ul) x 0(6).

Hence one component of A4"4(R$;) is homeomorphic to the homogeneous
space (SO(4) x SO(4))/S0(4), clearly homeomorphic to SO(4), while
A 1(RE,) is homeomorphic to

(SO(4) x SO(4))/(S° x SO(3) x SO(3)) = (53 x §3)/5°
= Spin(4)/5° = SO(4).

Likewise one component of A474(C§,) is homeomorphic to SO(8)/U(4),
while A#71(C8;) is homeomorphic to SO(8)/(U(1) x SO(6)).

It looks at first sight as though the isomorphism of U(4) to U(1) x SO(6)
is a necessary condition for the homeomorphism of A"4(C§,) to A 1(C)
~ yet it can be shown by methods of algebraic topology that these
groups are not homeomorphic! However, SO(4) is not homeomorphic to
5% x SO(3) x SO(3) - though SO(4)/5° is homeomorphic to SO(3) x SO(3)
by an obvious isomorphism, Spin(4) being isomorphic to Spin(3) x Spin(3).
A better question therefore is:

Are U(4)/8° and (U(1) x SO(6))/S° homeomorphic?

Triality provides an affirmative answer.

Once again we work in R(8) = Ryg, with RS embedded in this Clifford
algebra in such a way that the even Clifford algebra R8,6 is the standard
copy of C(4) in R(8). It is easily verified that the product of the basis
elements for RS is then either of the diagonal elements +i of C(4) and
we so order them that the product is in fact i. The elements 1, i and the
six basis elements of R then span the copy of R® in R(8) that we have
found it convenient in Chapter 19 and in this chapter to denote by Y.
With these notational conventions we can now state

Theorem 24.15 Let g € U(4) < SO(B), let z be the inverse of either
of the square roots of the determinant of g, regarded as an element of
C(4), so that ztg, defined up to sign, is an element of SU(4), and let
p : Spin(6) = SU(4)— SO(6) be the standard projection. Then

- {2z 0 . .
(g, zZg, ( 0 p(zig) )) is a 0-triad of SO(8).
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In particular, the projection of 8 to SO(8)/S° maps the subgroup
U(4)/5° of SO(8)/S° to the subgroup (U(1) x SO(6))/S° by the isomor-
phism

" " z 0
= 1 N
= 0 ety

Corollary 24.16 The triality automorphism of SO(8)/S° permutes cyclically
the two components of A 4(CY,) with the projective quadric A" 1(CY,) itself.

In fact triality also is involved in the case of the real quadric 471 (R¥,).
We note first the following,

Proposition 24.17 Let SO(4) be embedded in SU(4) = Spin(6) in the obvi-
ous way. Then p(SO(4)) is a copy of SO(3) x SO(3) in SO(6).

With an obvious reordering of basis elements where necessary for sense
we then have the following,

Theorem 24.18 The triality automorphism @ of Spin(8) restricts to an au-
tomorphism of p~1(SO(4) x SO(4)), the induced automorphism of the group
SO(8)/S° likewise restricting to an automorphism of (SO(4) x SO(4))/S°.
Moreover, for any g € SO(4) < SU4),

g, 2, 1 0 | is a 0-triad of SO(4) x SO4).
- 0 p((£1)g)

In particular, the projection of 0 to (SO(4) x SO(4))/S° maps the subgroup
SO(4)/S° of (SO(4) x SO(4))/5° to the subgroup SO(3) x SO(3) by the
isomorphism +g — p(1g).

Corollary 24.19 The triality automorphism of (SO(4) x SO(4))/S° per-
mutes cyclically the two components of ¥ 4(R3,) with the projective quadric
N 1(RE,) itself.

We do not wish to deny the reader the fun of filling in the details of
the proofs of these last few theorems for him- or herself.

We have noted several times that the real projective quadric A4";(R%,)
is homeomorphic to SO(4). Study’s interest in this quadric first arose in
(1891) in connection with the problem of representing the group of rigid
motions of R?. As we saw towards the end of Chapter 18 such rigid
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motions can be represented, uniquely up to non-zero real multiples, by
pairs of quaternions (o, ) with o - § = 0 but with « # 0, so that the
group is representable by the quadric 471(R$,) with one of its isotropic
half spaces removed (the group product is (o, B)(y, 6) = (ay, ad + B7v),
and the unit element is (1, 0)). The relationship of this representation
to the representation of the group SO(4) by the whole quadric, which
we have explored in a wider setting in the section on groups of rigid
motions in Chapter 18, is hinted at in Study (1903) and stated quite
explicitly in Study (1913). The same passage in Study (1913) contains
a clear statement of what is now known as Study’s principle of triality,
but which he called the Reziprozitiitsgezetz or reciprocity law, namely the
existence of an analytic homeomorphism between the quadric A"1(R,)
and either component of the quadric Grassmannian 44(R%,) and also
between the quadric /4" {(C?®) and either component of A474(C?). For
an exhaustive treatment of quadric triality in a general setting see Tits
(1959).

Exercises

241 Verify that the set of copies of the algebra C in the Cayley algebra
O can be represented as the homogeneous space G,/SU(3), while
the set of copies of the algebra H in O can be represented as the
homogeneous space G2/SO0(4).

242 Prove that the map

ReR°=ZCaoO0 — C(16)
{ 12t
€o=@a ~ (5,

where £, n €R, { =& +in,c€cO=R, x=(,¢),z=v(c) €Y
and 1 (iota) denotes the square root of —1 in the coefficients
of the elements of C(16), is a real linear embedding of R ® R’
in Rgg = C(16) such that R8’9 is the standard copy of R(16) in
C(16).

Hence prove that any element of Spin(10) < C(16) is express-
ible in the form

(Cu‘ A =y g 0
1z ° y A 083)’
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Exercises 283

( go ; ) € Spin(8), with go, g1 € SO(8),
1

—_—ypT
('1 y )ess, withi€R,y€Yand A2 +yy =1,

T
(;Cz 1sz >€SO, with{eC,zeYand ({*+zz" =1,

the image of such an element by the standard projection
, 01 s { az*

Spin(10) - S” being ( 1z ot ) .

With the elements of Spin(10) represented as in Exercise 24.2

acting on R = C ® O < C(16) by left multiplication, prove

that the isotropy group at 1 is isomorphic to Spin(7) (in fact to

the Clifford subgroup Hy of Spin(8) — cf. Theorem 24.10) and

T+ 0 ) consists of those

that the isotropy group at 0 1—1i

elements of Spin(10) for which

cosf@ —sinf 0
go=| sinf cos® O |, with gj € SO(6),
0 0 g0

with { = A(cos@ +isinf) and z = y(sin® — icos 0), the latter
group having dimension equal to

dim SO(6) + dim S° = 15+ 9 = 24,

and acting transitively on S° with isotropy group at 1 isomorphic
to Spin(6) = SU(4). (By a theorem (Montgomery and Samelson
(1943))that lists all compact Lie groups acting transitively on
spheres it follows that this latter group must be isomorphic to
SU(5).)

Establish the following commutative diagrams for the orbits
A21, By and C3g of the Clifford action of Spin(10) on S3!:

Spin(6) = Spin(6)

l l
Spin(7) — Spin(9) —» SV ,
l l =

s6 — Ay - SB5
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Spin(7)
!

Spin(7)
l

Spin(®) — Spin(10) — §° ,

i
SlS

-

!
By

- 5

Spin6=SU@4) — SUB) - §°

l
Spin(9)

l
A

l =
— Spin(10) —» §°
l
- Ay

implying that Cy = Spin (10)/Spin (6) = Ay x S°,

Spin(6)
l
Spin(9)

l
Ay

Spin(6) = SU(4)

l
SU(5)

l
S9
and
Spin(6)

-

-

-

Spin(6)
l

Spin(10) — §° ,

l
Cx

- 5

= Spin(6)

l

— Spin(10) — Ay

Spin(6)
!
Spin(10)

l
Cx

l =

C30 - A21

— By .

— By
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Cayley projective plane, 187
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chart, standard, 111, 215

Chevalley, C., 124, 243, 286
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circle, unit, 40
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classification theorem for real symplectic
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Clifford, W.K,, 123, 286

Clifford action, 257
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Clifford embedding, 262
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closed set, 192

Cnops, J., 164, 167, 168, 172, 255, 286

code numbers for ten types of classical
group, 103

code numbers for ten types of matrix
algebra with anti-involution, 155

coimage, 1

Common, A.K., x, 286

Index

commutative diagram, 19
compact space, 198
compactification, conformal, 247
compactification, projective, 246
companion, 267
companion involution, 266
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complement, orthogonal, 32
complex field, as real algebra, 9
complex group = symplectic group, 79
complex orthogonal group, 50
complex quadratic space, 49
complex Stiefel manifold, 265
complex symplectic plane, 50
complex symplectic space, 50
complexification, 86, 105
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conformal compactification, 247
conformal group, 248
conformal map, 245
conformal spheres, 248
conformal transformation, special, 252
conjugate of a quaternion, 59
conjugation, 135, 148
conjugation anti-involution, 59
connected, 199
continuous map, 193
continuously differentiable map, 205
contour, 1
contraction lemma, 211
correlated 2K-space, 95
correlated linear space, 24
correlated quaternionic space, 74
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correlation, linear, 24
correlation, semi-linear, 95
correlation, symmetric, 24
‘Correspondence from an ultramundane
correspondent’, 176
coset space representation, 20
cover, double, 146
cover, induced, 197
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cross product, 60

decomposition, orthogonal, 32
decomposition, Witt, 37, 109
Delanghe, R., viii, 285
determinant, 6, 98
determinant, absolute, 70
diagram chasing, 18
diffeomorphism, 211, 218
differentiable map, 205
differential, higher-order, 209
differential of a map, 205
dimension, 2

dimension of affine subspace, 212
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Dirac spinors, 165

direct product, 3
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dissimilar, 14

distance, 39, 192

division algebra, 178

division algebra, normed, 179
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double cover, 146
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double field 2R, as real algebra, 9
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dual, linear, 68

dual of semi-linear map, 73, 95
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dual linear map, 4

dual linear space, 4

Elstrodt, J., 167, 255, 286
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embedding, Clifford, 262
endomorphism, linear, §

Epstein, D.B.A.,, 264, 276, 288
equation of map, 2

equivalent atlases, 216

equivalent correlations, 52
equivalent norms, 194

equivalent semi-linear correlations, 74, 95
equivalent smooth manifolds, 217
euclidean, locally, 215

euclidean space, 39

even Clifford algebra, 136

exact, left-coset, 20, 108

exact pair, 18

exact sequence, 18

exact sequence, short, 18
existence theorem for Clifford algebras, 131
extensive algebra, 138

exterior algebra, 138

fibre, 1, 212

field, 2

field, complex, 2

field, double, 5, 91

field, real, 2

Fillmore, J., 167, 255, 286
finite-dimensional, 2

five, 154

form induced by correlation, 74
form, hermitian, 52
form, quadratic, 22

form, sesqui-linear, 95
free, linearly, 92
Freudenthal, H., 278, 286

Freudenthal’s principle of triality, 278

Frobenius, G., 186
Fuchs, L., 13, 286

general linear group, 7, 98

general linear group, thought of as a

unitary group, 91
generators, set of, 12
geometric algebra, 123
Gilmore, R., 243, 277, 286
grade involution, 135
gradient norm, 194
Grassmann, H,, 138, 286
Grassmann algebra, 138
Grassmannian, 110

Grassmannians as coset spaces, 113

Grassmannian, quadric, 112
Graves, J., 180, 286

group, circle, 56, 57

group, classical, 100, 103
group, Clifford, 141

group, complex orthogonal, 50
group, conformal, 248
group G,, ix, 270

group, general linear, 7, 98
group, Lie, viii, 100, 103, 231
group, linear, 7

group, Lipschitz, 141
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group, Mdbius, 248, 255
group, orthogonal, 27
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group, real symplectic, 47
group, special linear, 7, 99
group, special unitary, 55
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group map, Lie, 231
group map, topological, 225
Grunewald, F, 167, 255, 286

Haantjes, J., 246, 286
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Helgason, S., 243, 277, 286



292

Helmstetter, J., x, 287
heptagon, Cayley, 185
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hermitian form, 52

hermitian product, 52
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higher-order differential, 209
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homogeneous space, 226
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Hopf, H., 122, 286

Hopf map, 111, 258, 259
Hurwitz, A,, 164, 165, 186, 286
Hurwitz pair, 164
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hyperbolic plane, 26
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idempotent, 14
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immersion, 213, 222
immersive, 213

increment, 209

increment formula, 211
index, 37

index, Witt, 37, 109
induced cover, 197
induced topology, 193, 196
infinity, hyperplane at, 246
infinity, point at, 111
inflation, 254

injection, 2

injective, 2

injective criterion for smoothness, 212

inverse, 2

inverse of a vector, 24

inverse function theorem, 211
inversion, 254

invertible vector, 24
involution, algebra, 13
involution, companion, 266
involution, grade, 135
involution of H, 64
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left linear space, 67
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level set, 1, 212

Lie algebra, 215, 239, 242
Lie bracket, 239

Lie group, ix, 100, 103, 215, 231
Lie group, exceptional, 277
Lie group action, 233

Lie group map, 231

line complex, 79, 113

linear algebra, 9

linear map, 2

linear map, left, 68

linear map, right, 68

linear space, 1, 2, 5

linear space, left, 67

linear space, right, 67

linear subspace, 3

linear subspace of general linear group, 164

linked spheres, 42
Liouville, J., 245, 287
Liouville’s theorem, 245
Lipschitz, R., 176, 287
Lipschitz chart, 176
Lipschitz group, 141
Liverpool, the University of, x
locally euclidean, 215
Loos, O, 270, 279, 287
Lorentz group, 238
Lounesto, P, ix, 176

Mobius group, 248, 255
Mobius map, 246

Mobius transformation, 250
main involution, 135

main involution of H, 64
Majorana spinors, 166
Maks, J., 167, 172, 255, 287
manifold, smooth, 215, 217



manifold, Stiefel, 244, 262
manifold, topological, 215
map, 1

map, affine, 6

map, bilinear, 4

map, conformal, 245

map, Hopf, 258, 259

map, identity, 2

map, linear, 2

map, Mobius, 246

map, orthogonal, 25

map, semi-linear, 72
matrix, 3

matrix, Jacobian, 205
matrix, quaternionic, 69
matrix algebra, full, 9
mean value theorem, 211
Mennicke, J., 167, 255, 286
Meusnier, J.-B.-M.-C., 246, 287
Micali, A, viii, 287
Milnor, J., 186, 187, 287
minimal left ideal, 12, 45, 133
module, §

module, ’K, §

module map, 5

modulus of quaternion, 60
monoid, 168
Montgomery, D., 283, 287
Morton, H.R., 277
motion, rigid, 173, 281
Moufang, R., 190, 287
Moufang identities, 190

negative-definite, 23
neighbourhood, 192
neutral quadratic space, 23
neutral space, 38
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orientation-reversing, 7
orthogonal complement, 32
orthogonal decomposition, 32
orthogonal group, 27

orthogonal group, special, 27
orthogonal isomorphism, 26
orthogonal map, 25

orthogonal quaternionic group, 78
orthogonal vectors, 23
orthonormal subset, 126

Paige, L.J., 257, 287

paravector, 140

partition, 1, 195

partner, 10

Pauli algebra, 152

pentagon, rebracketing, 2

periodicity theorem for Clifford algebras,
133

Pfaffian, 175

Pfaffian, complete, 174

Pfaffian chart, 176

physics, x

physics, theoretical, 165

Pin group, 146

point at infinity, 111

Pontrjagin, L.S,, 238, 243, 287

Porteous, LR., ix, x, 14, 191, 202, 287, 288

positive-definite, 23, 55

positive-definite correlated space, 78

power-associative, 179

preservation of angles, 245

primitive idempotent, 14

product, 5

product induced by correlation, 74

product, algebra, 9

non-degenerate correlation, 25, 52, 74, 98
non-degenerate orthonormal subset, 126
non-degenerate quadratic form, 25
norm, 191

norm, gradient, 194

norm, product, 194

norm, quadratic, 145

norm of quaternion, 60

normed division algebra, 179

product, cross, 60
product, direct, 3
product, hermitian, 52
product, scalar, 22
product, tensor, 81
product norm, 194
product topology, 196
projection, 3, 196

North pole, 40 projection, stereographic, 41, 249

null quadratic space, 23 projection, tangent, 220

nullity, 3 projective compactification, 246
projective line, 110

octaves, 180 projective line, Cayley, 187

octonions, 180 projective plane, 110

open cover, 197 projective plane, Cayley, 187

open map, 196 projective point, 110

open set, 191, 192 projective quadric, 112

orbit, 21 projective space, 110

orientation-preserving, 7 pseudo-determinant, 168
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pure quaternion, 58

quadratic form, 22

quadratic norm, 22, 145

quadratic space, complex, 49
quadratic space, null, 23
quadratic space, real, 23

quadric, projective, 112

quadric Grassmannian, 112
quadric Grassmannian, affine, 112

quadric Grassmannians as coset spaces,

116
quasi-sphere, 106, 229, 248
quaternion, pure, 58
quaternion product, 58
quaternionic group, 78
quaternionic group, orthogonal, 78
quaternionic group, symplectic, 78
quaternions, algebra of, 58
quotient, 195
quotient topology, 196
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Radon, J,, 165, 288
Radon-Hurwitz sequence, 165
Randriamihamison, L.-S., 164, 288
rank, 3, 51, 73

rank, kerpel, 3

rank of quadratic space, 25
real part of quaternion, 58
real quadratic space, 23
reciprocity law, 282
recognition of subalgebras, 88
reducible anti-automorphism, 15
reducible automorphism, 15
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reducible semi-linear map, 95
reflection, 34

reflection, hyperplane, 34
reflexive correlation, 75, 96
reflexive scalar product, 43
Rembielinski, J., 164, 287
representation, adjoint, 238
representation, Vahlen, 254
reversion, 135, 162

reversion of H, 64
Reziprozititsgezetz, 282

right linear space, 67

rigid motion, 173, 281

ring, 5

rotation, 27, 143

rotation of R, 62

rotation of R?, 65

Samelson, H., 283, 287
scalar, 2
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scalar product, reflexive, 43
scalar product, skew, 43

scalar product, symmetric, 22
scalar triple product, 61, 182
section, 2

Segre, B., 13, 288

self-adjoint, 53, 75

semi-linear map, 51, 72
semi-linear maps over 2K, 94
semi-neutral, 112

semi-neutral quadric Grassmannian, 11
semi-orientation-preserving, 36
semi-simple, 277

Serras, H., x, 285

sesqui-linear, 52, 74

Shapiro, A., 124, 285

signature, 37

signature of correlated space, 78
signature of hermitian space, 55
signature theorem, 36

similar, 14

simple, 277

skew, 16, 52

skew correlation, 74, 95

skew scalar product, 43
skew-adjoint, 53, 75
Skornyakov, L.A., 186

smooth manifold, 2185, 217
smooth map, 209, 218

smooth structure, 216

smooth submanifold, 212
smooth subset, 212

smooth, infiritely, 209

source, 1

source of a map, 194

South pole, 40

space of half-spinors, 134
space, linear, 1, 2, 5

space of spinors, 133

special complex orthogonal group, 50
special linear group, 7, 99
special orthogonal automorphism, 27
special orthogonal group, 27
special unitary automorphism, 55
special unitary group, 55
sphere, 40

spheres, conformal, 248

sphere, unit, 40

Spin group, 146

spinor action, 257

spinor space, 133, 154

Springer, A., 167, 286
Spurgeon, C,, 277, 288

square, twisted, 99

square of vector, 22

stabiliser, 21

standard atlas, 111
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standard complex symplectic plane, 50
standard real symplectic plane, 47
Steenrod, N.E., 264, 276, 288
stereographic projection, 41, 249
Stiefel manifold, 244, 262

Stiefel manifold, complex, 265
Study, E.,, ix, 256, 281, 282, 288
Study’s principle of triality, 282
subalgebra, 9

subgroup, topological, 225
submanifold, 212

submanifold, smooth, 212
submersion, 214, 222

submersive, 214

submodule, §

subspace, affine, 6

subspace, linear, 3

subspace topology, 193

sum, direct, 3

sum of squares, 36

superalgebra, 86

superfield, 134

surjection, 2

surjective, 2

surjective criterion, 213
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symplectic, etymology of, 79
symmetric correlation, 24, 52, 74, 95
symplectic group, complex, 50
symplectic group, real, 47
symplectic map, 47, 50

symplectic plane, complex, 50
symplectic plane, real, 47
symplectic plane, standard complex, 50
symplectic plane, standard real, 47
symplectic quaternionic group, 78
symmetric second differential, 210
symplectic space, complex, S0
symplectic space, real, 46

tangency, 202

tangent bundle, 219, 220
tangent bundle map, 221
tangent bundle space, 219
tangent map, 219

tangent projection, 220
tangent space, 212, 219, 221
tangent vector, 221
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topological manifold, 215
topological space, 191
topological subgroup, 225
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topology, product, 196
topology, quotient, 196
topology, subspace, 193
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triality, 256
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