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1941 МАТЕМАТИЧЕСКИЙ СБОРНИК Т. 9(51), N. 2 

RECUEIL MATHEMATIQUE 

A classification of mappings of the three-dimensional 
complex into the two-dimensional sphere 

L. Pontrjagin (Moscow) 

Let К and L be two complexes. The family ft, where M s a real number 
( O s ^ ^ l ) , of continuous mappings of the complex К into the complex L is 
called a continuous deformation of mappings of the complex К into the complex L 
if the function ft (x) (x 6 K) is a continuous function of the pair of arguments 
xy t. Two continuous mappings g and h of the complex К into the complex L 
are said to be nomotopic or equivalent if there exists a continuous deformation 
ft transforming the mapping g into the mapping h, i. e. such that g=f0, 
h=fv In virtue of this criterium of equivalency all continuous mappings of 
the complex К into the complex L fall into classes of equivalent mappings. 
A classification of mappings from this point of view, i. e. the determination of 
more or less effective criteria of equivalency, forms one of the fundamental pro­
blems of topology. 

The present state of topology leaves no hopes for the solution of the formu­
lated problem in the near future. At present only certain particular cases have 
been investigated and solved. 

Hopf1 gave the classification of mappings of the /г-dimensional complex Kn 

into the /г-dimensional sphere Sn. The necessary and sufficient conditions of 
equivalency are given by him in this case in terms of homologies, which is the 
best way to solve the problem, since homologies admit of a rather effective 
computation. Hopf2 has also shown that there exists an enumerable number of 
classes of the mappings of the (4/г—l)-dimensional sphere Sin~l into the 2#-di-
mensional sphere S2n; the criterium of non-equivalency in this case has been 
given by him in terms related to homologies. I 3 have given a classification of 
mappings of the (n - j - ^-dimensional sphere Sn+k into the /г-dimensional sphere 
Sn in the case fc=l, 2. Freudenthal 4, knowing my results, but not knowing my 
proof, gave for a part of them a new proof and established, moreover, that for 

1 H. Hopf , Die Klassen der Abbildungen der л-dimensionalen Polyeder auf die 
л-dimensionale Sphare, Commentarii Mathematici Helvetia, 5, (1932). 

2 H. Hopf, Ober die Abbildungen der drei-dimensionalen Sphare auf die Kugel-
ilache, Mathematische Annalen, 104, (1931). 

3 L. P o n t r j a g i n , A classification of continuous transformations of a complex 
into a sphere. I and II, Comptes rendus Acad. Sci. U. R. S. S., XIX, (1938). 

4 H. F r e u d e n t h a l , Ober die Klassen der Spharenabbildungea, Gompositio 
Mathematics 5, (1937). 
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k = 3,7 there are at least two classes of mappings. I 5 gave, further, a classifi­
cation of mappings of an (/г-j-l)-dimensional complex into the /z-dimensional 
sphere — these results have been published only in a brief exposition. This is, 
so far I know, all that has been done in the question on the classification of 
mappings. 

The first and the most important question in the general problem of classifi­
cation of mappings is undoubtedly the question on the classification of mappings 
of the (n - j - £)-dimensional sphere into the ^-dimensional sphere. Having solved 
it, it would be possible to attempt a classification of mappings of an (n-\-k)-
dimensional complex Kn+k into the ^-dimensional sphere Sn, as well as a clas­
sification of mappings of Sn+k into K. It may be surmised that on the way to 
the solution of these two questions new invariants of complexes of the type of 
homologies and intersections will arise. It is possible to approach the classifica­
tion of mappings of Kn+k into Sn and of Sn+fc into К in a different way, without 
classifying firstly the mappings of Sn+k into Sn, but simply assuming that the 
classification of mappings of Sn+k into Sn is already carried out, or, more exact­
ly, that the group6 of mappings of Sn+k into Sn is known. 

In the present paper is given a complete exposition of my earlier published 
results on mappings of the three-dimensional complex K3 into the two-dimensio­
nal sphere S2 5; besides, in this paper is partly touched the question on mappings 
of the four-dimensional complex K^ into the two-dimensional sphere S2. So par­
ticular a question as the classification of mappings of KB into S2 represents 
a certain interest due to the fact that in its solution we obtain certain indica­
tions as to how should be solved the question on the classification of mappings 
of Kn+k into 5*. Moreover, we give here for the first time an application of 
the theory of products (intersections) in complexes 7 to the solution of a purely 
geometrical question, in the formulation of which homologies, not to speak of 
products, are not even mentioned. 

In §§ 3, 4 and 5 are essentially used the results of my preceding paper 
„Products in complexes"; I shall refer to this paper in the sequel as to P. С. 7. 

In the whole of the present paper we shall consider only c o n t i n u o u s 
mappings and c o n t i n u o u s deformations of mappings, and therefore the word 
c o n t i n u o u s will be omitted in the sequel. 

§ 1. Mappings of the three-dimensional sphere into the two-dimensional one 

In the present paragraph is given a classification of mappings of the three-
dimensional sphere into the two-dimensional one. The classification is based on 
the invariant introduced by Hopf2; we shall see that this invariant uniquely 
determines the class of mappings. The fundamental role in the proof is played 

6 L. Po n t r j a gi n, Classification des transformations d'un complexe (n-\-l)-di-
mensionnel dans une sphere /z-dimensionnelle, Comptes rendus Acad. Sci., Paris, 
206, (1938). 

6 W. H u r e w i c z, Beitrage zur Topologie der Deformationen, Proc. Kon. Akad. 
Wet. Amsterdam, 38, 112 u. 521; 39, 117 u. 215, (1935—1936). 

7 L. P o n t r j a g i n , Products in complexes, see the preceding paper, p. 321. 
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by Lemma 3. The results of W. Hurewicz 6, in particular Lemma 1, do not play 
here an essential role, but they are important by themselves and form an essen­
tial complement to Lemma 3. 

The fundamental role for all further constructions of this paragraph is played 
by the standard mapping 8 of the three-dimensional sphere SB on the two-dimen­
sional sphere S2. We proceed now in the first place to construct this mapping. 

A) Let us construct the mapping § of the three-dimensional sphere SB on the 
two-dimensional sphere S2. We shall consider the sphere Ss as the set of all 
quaternions equal to one in modulus, i. e. every point z € SB we shall write in 
the form 

z = a -f- b i - j - cj - |- dk, 

where /, y, k are quaternion units and a, b, c, d are real numbers connected by 
the relation 

a?-\-b*-\-c2 + d*=\. 
The set Ss of quaternions forms a group with respect to multiplication. Denote 
by H the subgroup composed of all quaternions of the form 

cos a -f- sin a • /. (1) 

The aggregate SB j H of all right co-sets of the group S* with respect to the 
subgroup H forms naturally a certain manifold; it turns out that this manifold 
is homoeomorphic to the two-dimensional sphere S2. Correlating to every element 
z € SB the co-set Z € S3 / / / , to which z belongs, we obtain the mapping 9. 

Let us show that Ss j H is homoeomorphic to the two-dimensional sphere 
and let us consider the mapping § more detailed. 

We introduce in the metrical sphere S2 polar coordinates. To this end denote 
by p its north and by q its south pole and choose a certain fixed meridian pmq\ 
the centre of the sphere S2 we denote by o. For the radius vector of the point 
у € S2 we take the angle poy divided by тг and for the amplitude the angle тру 
between the meridians pm and py. Then the point q will have an indefinite 
amplitude. 

The set of all quaternions from S2 of the form 

a-\-cj-\-dk, (2) 

where a ^ O , we denote by A. Since every quaternion from SB has a modulus 
equal to one, every element from A may be represented in the form 

o + p (cos£•у + sin[*.&), (3) 

where O ^ p ^ l , a = -J-V"l—p2 . Here p and p may be interpreted as polar 
coordinates introduced in Л, from which immediately follows that A is homoeo­
morphic to a circle, the boundary A of which is composed of all elements of 
the form 

cos [5-y+sin (5-/г. (4) 
Further we have 

(cos a + sin a • 1) (a + p (cos p -y - j - sin [$•*)) = 
= a (cos a -f- sin a • *') + p (cos (a - f p) .y + sin (a -+- p). k). (5) 
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From this we see that every z € S3 is representable in the form (5), i. e. that 

z — x*y, (6) 

where x € H, у € A. From the same relation (5) follows that the decomposition (6) 
is unique for every z not belonging to A; if, however, z € A, then у becomes 
an arbitrary element from Л, and a is determined from the relation {5). Correlate 
now to every point z €S3, represented in the form (5), the point from S2 with 
polar coordinates p, [J. Then we obtain the mapping й transforming every co-set 
from S3 into a point from S2. 

The following propositions B) and C), as well as Lemma 1, belong to 
W. Hurewicz 6. I give them with full proofs. 

B) Let К be a compact metrical space and / 0 and fx two of its mappings 
into S3. If 

»/o = »/i [cf. A)], (7) 

then the mappings / 0 and /2 are equivalent. 
For the proof we consider the sphere S3 as the group of quaternions [cf. A)] 

and use the possibility of multiplication of its points. 
From relation (7) follows that for every x € К the elements / 0 (x) and fx (x) 

belong to one and the same co-set of the group S3 with respect to the subgroup H, 
Thus 

h(x)=f0(x)fx(x)^eH. (8) 

Since the mapping h transforms the whole space К into the circumference HaS3\ 
there exists a continuous deformation ht of mappings of К into S3 such that 
/г0 = /г, h1(K)={e}9 where e is the unit of the group S3. From this and the 
relation (8) follows that 

/o (*) = К (x)A (*)> Л (x) = hx (x)fx (x); 

hence it is natural to put ft(x) = ht{x)ft{x), and ft gives a continuous deforma^ 
tion of the mapping / 0 into the mapping / j . 

C) Let / 0 be a mapping of a compact metrical space К into the sphere S8 

and yt a continuous deformation of the mappings of the space К into the sphere 
S2 such that <p0 = §/0. Then there exists such a continuous deformation ft of 
mappings of the space К into S3 that 

? / = § / / [cf. A)], (9) 

For the proof we consider again the sphere S3 as a group of quaternions 
and interprete the points of the sphere as right co-sets of the group S3 with 
respect to the subgroup И [cf. A)]. We recall that the set A constructed in A) 
intersects with every right co-set only in one point, with the only exception of 
the co-set A, which coincides with the boundary of the topological circle A. 

Let s be a positive number so small that if и 6 S3, v 6 S3, and the distance 
between the points ft (и) and $(v) in the sphere S2 is less than s, then uv~x 

does not belong to A. The existence of such an s is easily established. By n 
we denote a natural number so great that for 1*' — * " | < — the distance between 
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the points у? (x) and wt" (л:) is less than s, where x is an arbitrary element from /C 
We shall carry out the construction of the mapping ff inductively* Suppose 

that the mapping fv satisfying the condition (9), is already constructed for 

O s ^ s ^ — - . Starting from this assumption, let us construct the mapping ft, sa­

tisfying the condition (9), for ™ < * < 2 L ± i , 

Let ~ ^ ^ ^ m ; then yt(x) is a definite right co-set. Since the mapping 

fm is already constructed, fm (x) is a definite element from S3. Thus yt(x)frn(x)~l 

H n n 
is a definite co-set. In virtue of the choice of the numbers s and n this co-set 
does not coincide with Л, and hence the point of its intersection with A is de­
termined; we shall denote it by ht(x). Put ft{x) = ht(x)fm(x). Then ft{x) enters 

n 
into the co-set <pt(x) and, consequently, <pt(x)=b(ft(x)). Thus the mapping/^ 
is constructed. The continuity of the deformation ft is obvious. 

L e m m a 1. Let f and g be two mappings of a compact metrical space К 
into the sphere SK The mappings f and g are then and only then equivalent, 
when the mappings S/ and §g are equivalent [cf. A)]. 

P roo f . Suppose that the mappings <p0 = 9/ and <p1 = $g are equivalent. 
Then there exists a continuous deformation yt connecting them. Put / 0 = = / . Thus 
we can apply the proposition C), i. e. there exists a continuous deformation / 
of mappings of the space К Into the sphere S3, and 9/^ = ^ . In virtue of this 
last, / j and g are equivalent [cf. B)]. Since, moreover, / — / 0 and ft are equiva­
lent, / and g are equivalent. 

Suppose that the mappings / and g are equivalent. Then there exists a conti­
nuous deformation gt such that g0=f, gx = g- The continuous deformation 
§gt connects §/ and $g. The lemma is thus proved. 

The following Lemma 2 forms the base for the proof of Lemma 3. 
L e m m a 2. Let К be a certain complex of arbitrary dimensionality and f 

its simplicial mapping into the n-dimensional complex L. Denote by V a cer­
tain open n-dimensional simplex of the complex L and put U=f"x (V). Then 
U naturally falls into the topological product of the simplex V and a certain 
complex P, U= V-Pt i. e. every point z€.U is uniquely and continuously* 
representable in the form of a pair z = x-y, where x € V, у 6 P, and f(z) — 
=f(x-y) = x. Further, it turns out that if К is a manifold, then P is also 
a manifold. 

Proof . Denote by Q the set of all simplexes from К which are mapped 
under / on V. Let p be an inner point of the simplex V, and denote the com­
plete original of the point p in a certain r-dimensional simplex Tr G Q by ф (7"r). 
It is easily seen that ф(Гг) is a convex body of dimensionality r—n. Further, 
if r r - a € Q is an (r—l)-dimensional face of the simplex Tr, then ф(Г г-1) is 
an (r—n—l)-dimensional face of the convex body ф(Гг)« Conversely, every 
(r — n—l)-dimensional face of the convex body ф(Гг) is obtained as ф(Г г - 1 ) , 
where Г'""*1 is an (r—l)-dimensional face of the simplex Tr entering into Q. 

Pat p = / - i ( p ) ; then Я is composed of all convex bodies of the Ьгтф(Г)„ 
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where T G Й, and we shall interprete P as the geometrical complex composed 
of these convex bodies. From the just established relation between Tr, Tr~l and 
ф(Гг), Ь(ТГ~1) follows that the relations of incidences in P are the same as 
in Q, only their dimensionalities are reduced by n. Taking into account that if 
Г - 1 6 Й and Tr G K, and Tr~x is incidentic with Tr, then Tr € ^; we conclude 
that if К is a manifold, then P is also a manifold. 

Denote by a0, av . . . , an the vertices of the simplex I/, and let Y. be the com­
plete original of the point a. in the simplex T € Q under the mapping / . Then Y. 
is a certain face of the simplex T. Let y. € К/э / = 0, 1, . . . , /г, be a system 
of points from the simplexes F0, Yv . . . , Гя. Denote by 

V(y0,yv ...,yn) (io) 

the open simplex from T with vertices y0, yv ...,yn. From elementary geome­
trical considerations follows that through every point z 6 T, satisfying the condi­
tion f(z) € V, passes one and only one simplex of the form (10). In particular, 
if z=y €ф(Г) , then we denote the simplex of the form (10) passing through 
У by V(y). Since the mapping / transforms the simplex V(y) on the whole 
simplex I/, every simplex of the form (10) may be written in the form V(y), 
where у € ф(Г). From this, in particular, follows that ф(Г) is the topological 
product of simplexes Y0, Yly . . . , Yn. 

Let z be an arbitrary point from U. Put / (z) = x and denote by T such 
a simplex of the system Q that z € T. Then there exists a simplex V(y) of the 
form (10) containing z, such that у € P and the point j / is uniquely determined. 
Thus to every z € U uniquely corresponds a pair x, y, where x € К, .У € А 
Conversely, to every pair д:, д/ uniquely corresponds a z. Thus £/ falls into the 
topological product V-P and f(z)=f(x-y) = x. Thus the lemma is proved. 

In connection with the proof of Lemma 2 it is convenient to formulate the 
following remark C;), which is not necessary for the proof of Lemma 3, but 
will be used later. 

C) Let / be a simplicial mapping of the complex К into the /z-dimensional 
complex Z,, V a certain open orientated /г-dimensional simplex from L and p 
a point belonging to V. If Tr is an r-dimensional orientated simplex from K, 
then the complete original §(Tr) of the point p under the mapping / , which is 
a convex body of dimensionality r—n or the void setf may be naturally consi­
dered as an orientated element. The orientation of the body ф(Гг) we define 
inductively. If r—n, then we assign to the point ф(Гл) the sign coinciding with 
the sign of the power of the mapping / of the simplex Tn on the simplex V. 
If now the orientated original ty(Tr) is defined for every simplex Tr with r<^s, 
then the function ф may be by additivity extended to an arbitrary algebraical 
complex C, which is a linear form of orientated simplexes from К of dimensio­
nalities less than s. Thus the function ф is defined also for the boundary fs of 
the simplex Ts. The orientation of the element ty(Ts) we define by the condi­
tion ф (Ts)' = ty (fs). If we now assume that the function cj> is already defined 
for all simplexes from К and, by additivity, for all algebraical complexes from K, 
«then we have ф(С)' = ф(С). 
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The following propositions D), E) and F) serve for the proof of Lemma 3. 
I formulate them without proof with reference to the corresponding literature. 

D) Let G be a commutative group with a finite number of generators taken 
in the additive notation. Under the integral character % of the group G we under­
stand its homoeomorphic mapping into the additive group of all integers. Let 

be an arbitrary finite system of elements from G and hv /г2, * * * 
. . . , hk an arbitrary system of integers. We ask under what conditions there exists 
an integral character 4 of the group G satisfying the conditions 

l(ut) = hp 1=1, 2, . . . , k. 

It turns out that the character 1 exists then and only then, when the following 
condition is satisfied: 

Whatever be the system of integers av a2, ...9afc,m, where m^2, such 
that агиг -f- a2u2 -f- . . . + ak

uk = ш » where a £ G, the integer axhx -\- a2h2-\-... 
. . . ~\~akhk is divisible by m. 

This assertion is easily proved. For its proof see г. 
E) Let S1 be an orientated circumference, К a complex of arbitrary dimen­

sionality, G its one-dimensional Betti group and / a mapping of the complex К 
into S1. Let, further, a £ G and 2 be a cycle from the class of homologies u; 
then f(z)=if(u)S1, where if(u) is an integer equal to the power of the map­
ping of the cycle z, which depends only on и and not on the incidental choice 
of z G u. It is easy to show that ^ is an integral character of the group G. It 
turns out that two mappings / and g of the complex К into S1 are then and 
only then equivalent, when the characters ^ and v, corresponding to them coin­
cide, Xfz==zlg- Father, for every given character 1 of the group G there exists 
such a mapping h that X = XU* 

For the proof see A 
F) Let AT be a certain complex and 

u[,ur,...,u;r ( l i ) 

the г-dimensional basis of its weak homologies, i. e. such a system of /--dimen­
sional cycles that every cycle of dimensionality r from К is weakly homologic 
to a linear form of cycles of the system (11) and, moreover, only to one such 
form. Similarly, let L be another complex, and wf, vL ...,vs its s-dimen-
sional basis of weak homologies. Then the /-dimensional basis of weak homolo­
gies of the topological product K*L is composed of all cycles of the form^.-iK, 
where r-\-s = t. 

For the proof cf. 9. 
For us only the case t=\ will be important. 
D e f i n i t i o n 1. A mapping / of the complex К into the /г-dimensional 

sphere Sn is called homologically unessential, if whatever be the integer m^2 
and whatever be the /г-dimensional cycle 0, taken from К to the modulus m, its 
image under the mapping / is equal to zero to the modulus m. 

8 N. B r u s z l i n s k y , Stetige Abbildungen und Bettische Gruppen, Mathematische 
Annalen, 109, (1934). 

9 S. L e f s c h e t z , Intersections and transformations of complexes and manifolds» 
Trans. Amer. Math. Soc, 28, (1926). 
7 Математический сборник, т. 9 (51), N. 2. 
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Observe that if the mapping / is homologically unessential, then every map­
ping equivalent to it will be also homologically unessential. 

L e m m a 3. Let К be a complex of arbitrary dimensionality and 0 its hc-
mologically unessential mapping into the two-dimensional sphere S2. Then 
there exists such a mapping f of the complex К into the three-dimensional 
sphere S* that cp = &/ [cf. A)]. 

P r o o f . We triangulate the sphere S2 so that not one of the edges of trian-
gulation passes through the north pole p of the sphere S2 [cf. A)] and choose 
an open circle V so small that its boundary V does not intersect with the edges 
of triangulation; then V— V-\- V will also not intersect with the edges of tri-
angulation. Let us further approximate the mapping <p by a simplicial mapping ф 
and put 

U= ф-1 (V), U= ф"1 (V), U= ф-1 (V); 

then U is the boundary of the domain U in К and U=U-\-U is its closure. 
Since the closed circle V lies inside a simplex of triangulation, the set U 

falls, in virtue of Lemma 2, into the topological product V-P, so that if x-y = 
= z € U, where x € V, у € P, then ф (z) = x. 

We shall assume that the circumference V is orientated in accordance with 
the angle coordinate introduced in it [cf. A)]. Choose in every component of the 
complex P one point and denote these points by pv p2i ...,pk. The orientated 
circumferences 

V.Pv V-p2,..., V.pk (12) 

are cycles in the complex К— U. Let us show that there exists a mapping \ of 
the complex К— U into the orientated circumference Sl mapping every cycle of 
the system (12) with the power one. 

In virtue of the propositions D) and E) for the proof of the stated assertions 
it is sufficient to show that from every relation of the form 

^У'РлЛ-^У'Р2+ . . . +*kV-Ph^mW (13) 

in К—U follows that ax - |- a2 -J- . . . -J- ak is divisible by m. Suppose that the 
relation (13) has place. Then 

m V— (аг V-px - f a2 V-p2 - f . . . - f ak V-pk) = c, 

where с is the boundary of a certain complex с from К—С/. The complex 
c-\-a1 V-p1-{-a2V-p2-\- ... -\-dkV*pk is evidently a cycle to the modulus m 
from K, and the power of the mapping ф on it is equal to аг -f- a2 - } - . . . -f- ak. 
Since the mapping ф is homologically unessential, the number at -f- a2 -J- . . . -f- ak 

is divisible by m, and our assertion on the existence of the mapping л is proved. 
On the circumference V there is an angle coordinate, and in the sequel we 

shall not distinguish between the point from V itself and its angle coordinate. 
On the circumference S1 we shall also introduce the angle coordinate and shall 
make no distinction between the point from S1 and its angle coordinate. 
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In virtue of this agreement о 6 V is the point from V with the angle coordi­
nate O. The point O-y, where у G Л belongs to U= V*P, and hence is de­
termined the function 

ц(у) = 1(0-у), (14) 

where \i(y) € S1, or the angle coordinate of the point д(.у). For л; 6 1/, у (z P 
put 

v(*.jO = *-f MJO. 05) 
Thus we have defined a mapping v of the complex U into the circumference Sl. 
Let us show that this mapping is equivalent to the mapping X of the complex 
UczK—U. 

For the proof we use the proposition E). Since every weakly homologic to 
zero one-dimensional cycle from U is transformed under any mapping of the 
complex U into S1 into the zero cycle, it is sufficient to show that the mappings 
X and v are algebraically equal on a certain basis of weak homologies from U. 
For the construction of the basis of weak homologies of the complex U we use 
the proposition F). Let zv z?, . . . , zt be an one-dimensional basis of weak 
homologies of the complex P. Then the basis of weak homologies of the com­
plex U is 

0 . ^ , 0.*a, ...,0.zp V-pv V-p2, . . . , V-pk. 

On every cycle of the form 0-z, the mappings X and v simply coincide. On 
every cycle of the form V-pr both of them have the power one. Thus the map­
pings X and v of the complex U are equivalent. 

Since the mappings X and v of the complex U are equivalent, there exists 
a continuous deformation transforming the mapping X of the complex U into the 
mapping v. This deformation may be extended into a deformation of the map­
ping X of the whole complex К—£/, transforming the mapping X into a certain 
new mapping 7j, and this latter coincides on the complex U with v. 

Thus we have constructed a mapping 7] of the complex К—U into S1, coin­
ciding with v ой (/ [cf. (15)]. 

The circumference V is given in polar coordinates, which are on the sphere S2 

[cf. A)], by the equation p = e, where s is a constant and p the radius vector. 
The mapping g of the complex U=V-P into Ss we define by putting 

g(x^y) = (cos(ii(y))^sm(ii(y))t)(a + P(cos^j+sm^k)) [cf. A)], (16) 

where x £ V and has the coordinates sp, j3 and у € P. For x 6 V we have 

^ ( ^ ^ ) = cos(ji(ey) + p) . /+sln( J i ( ey) + P)-ft. (17) 

The mapping g of the complex К—U into S3 we define by putting 

g(z) = cosri(z)-J-\-s'mri(z)-k. (18) 

From the relations (15), (17) and (18) directly follows that the so construct­
ed on two parts of the complex К mapping g is coordinated on the intersec-
7* 

t 
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lion U of these parts, and hence we have a mapping g of the whole complex К 
into the sphere SB [cf. A)]. 

Let us show that the mappings ф and $g of the complex К into the sphere S2 

are equivalent. 
Let us, in the first place, investigate the structure of the mapping $g. If x 

is a point from V with coordinates sp, [5, and у G P, then $(g(x-y)) is the 
point from S2 with coordinates p, p. The mapping ф transforms the same point 
x-y into the point from S2 with coordinates sp, p. The mapping $g is thus 
obtained from the mapping ф for the point from U by a simple elongation of the 
radius vector. If the point z € К—U> then §(g(z)) = q [cf. A)]. Thus, in order 
to obtain the mapping $g from the mapping ф for z £ К— U, it is necessary 
to make the point ф (z) slide from its original position along the radius vector 
into the point q. From what has been said we see that the mappings §g and ф 
are equivalent. 

Since the mappings cp and ф are equivalent, we conclude, by what has been 
just proved, that the mappings cp and $g are equivalent. Hence, in virtue of C), 
follows that there exists a mapping / satisfying the condition cp = 0/. The lemma 
is thus proved. 

In addition to Lemma 3 we make the following obvious remark. 
G) If / is a mapping of the complex К into S3, then the mapping cp = &/ 

of the complex К into S2 is homologically unessential. 
From Lemmas 1 and 3 and the remark G) we can deduce now the following 

important 
T h e o r e m 1. Let D be a class of mappings of the complex К into the 

three-dimensional sphere S3. / / / is a mapping of the class D, then denote 
by A the class of mappings of the complex К into the two-dimensional sphere S2, 
which contains the mapping S/ [cf. A)]. Then the class A is determined by the 
class D and not by the incidental choice from D of the mapping f; hence 
we may pat A = S(D). It turns out that so obtained correspondence & is an 
one-to-one correspondence between all classes of mappings of the complex К 
into S* and all homologically unessential classes of mappings of the complex К 
into S2. 

Since we have already a classification of mappings of the three-dimensional 
sphere 23 into the three-dimensional sphere S3, Theorem 1 gives us a classi­
fication of mappings of the sphere 23 into the sphere S2. 

If / is a mapping of the sphere 23 into S3, denote by (D0 (/, 23) the power 
of this mapping. As is known, two mappings / and g of the sphere 23 into the 
sphere S3 are then and only then equivalent, when 

»0( / ,2«) = »0 te ,2»). (19) 

In order to be able *to give a more concrete classification of the mappings 
of the sphere 23 into S2, we recall the following definition due to Hopf (cf. 2): 

D e f i n i t i o n 2. Let cp be a simplicial mapping of the orientated sphere 23 

into the orientated sphere S2. Choose in the sphere S2 two points афЬ not be­
longing to the edges of triangulation. Then cp-1 (a) and cp-1 (b) are naturally one-
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dimensional cycles from 23 [cf. C')]. Denote the linkage coefficient of these 
cycles by <*>! (<f>, 23). Let, further, с be a certain two-dimensional algebraical 
complex from 23 with the boundary <p-1 (a); then the power of its mapping 
under cp on S2 is equal to o)j (<p, 23). 

H. Hopf, to whom this construction belongs, has shown (cf. 2) that for two 
equivalent mappings cp and 6 we have (Oj (<p, 23) = o)1 (ф, 23). He has also shown 
that if / is a mapping of the sphere 23 into the sphere S3 then 

CD1(»/,S8) = fi)0(/,23) [cf. A)]. (20) 

From this we deduce on ground of Lemma 3 and the condition of equivalency (19) 
the following 

T h e o r e m 2. Two mappings cp and ф of the three-dimensional sphere 23 

into the two-dimensional sphere S2 are then and only then equivalent, when 
©!(¥, 23) = (o1(^,S3) 

(cf. Definition 2). 

§ 2. Preliminary notions and remarks 

For a classification of mappings of a three-dimensional complex K* into the 
two-dimensional sphere S2 (cf. Theorem 3) we have to introduce certain invari­
ants of the mappings of Кг into S2 [cf. § 2, F)], as well as certain invariants 
of pairs of mappings of K3 into S2 [cf. § 2, A')]. The present paragraph is 
devoted to the introduction of these invariants necessary for the formulation of 
Theorem 3 itself, as well as of invariants necessary for its proof. 

In the first place let us introduce certain denotations and terms. Let {ft\ be 
a family of continuous mappings of the space F into the space /?, where / is 
an arbitrary element of the topological space Д. Denote by F»& the topological 
product of the spaces F and Д. Then every element z£ F-k is representable in 
the form of a pair z = x-t> where x £ Fy /£Д. We define the mapping /д of 
the space F-Д into R by putting f^(z) = f^(x»t)=ft(x). If this mapping is 
continuous, then we shall call the family \/t\ also continuous. If, conversely, 
a certain continuous mapping /д of the product F-h is given, then it generates 
a continuous family {ft} of mappings of the space F. 

In the sequel two cases will be essential for us: 
a) Д is composed of all real numbers 0 ^ t ^ 1, 
b) Д assumes two values 0 and 1. 
If the question requires an algebraical interpretation and F is an algebraical 

complex, then in both cases we shall consider the product F>k also as an alge­
braical complex. In the case a) we orientate ^-Д so that F-0 should enter into 
the boundary of F-\ with the negative sign. In the case b) we orientate F-Aso 
that F-k = F-\— F-0. 

If two mappings / and g of the space F coincide on a closed subset EczF 
and there exists a continuous deformation of the mapping / into the mapping g 
not changing the mapping on Ey we shall say that the mappings / and g are 
equivalent with respect to E. 

Let ft and gt be two continuous deformations of the mappings of the space Fy 

coinciding on a closed subset EczF, such that /0 and g"0 coincide, as well as fx 
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and gt. It is easily seen that the mappings / д and g& [cf. a)] coincide then on 
the set E* = F-0 V F-l V £'-Ac:/?-A. We shall say that the continuous defor­
mations ft and gt are equivalent with respect to E, if the mappings Д and gA of 
the space F-A are equivalent with respect to £*. 

If / is a continuous mappping of the orientated /г-dimensional (n = 2, 3) 
sphere Hn into the orientated two-dimensional sphere S2, then by ®n_2 (/» 2Л) 
we shall denote for n = 2 the power and for /z = 3 Hopfs number of the map­
ping / (cf. Definition 2). 

A) Let / 0 and /2 fee two mappings of the /z-dimensional (n = 2, 3) orientated 
element Г" into the two-dimensional orientated sphere S2, coinciding on the boun­
dary fn of the element Tn. Let us introduce the index со/г_2 (/0, fv Tn) esti­
mating the difference of the mappings / 0 and fv Denote by A the aggregate of 
two numbers 0 and 1. Identify in the space Гя-Д in one point every pair of 
points x • 0 and x • 1, where x £ tn; then we obtain from the complex T* A the 
orientated sphere ln. Since the mappings /0 and fx coincide on the boundary Tn, 
the mapping / д may be interpreted as a mapping of the sphere 2W. Put 

<V_2 (/о, Л, n = <o„_2 ( / A , 2"). 

It is easily seen that in order that the mappings / 0 and fx should be equiva­
lent with respect to Tn, it is necessary and sufficient that <on_2 (/o>/i> Tn) = 0. 
It is as easily seen that the index introduced above does not vary at a simulta­
neous deformation of the mappings / 0 and fv if they remain coinciding on the 
boundary fn. 

B) Let ft and gt be two continuous deformations of the mappings of the 
(n—1 )-dimensional (# = 2, 3) orientated element En~l into the orientated two-
dimensional sphere S2, coinciding on the boundary En~l of the element Еп~г, 
such that the mappings / 0 and g0 coincide, as well as the mappings fx and gx. 
Introduce the index <ол_2 (ft, gt, En~1) estimating the difference of deformations 
/ and gr Let A be the set of all numbers 0 ^ t ^ 1. It is easily seen that the 
mappings / д and ^д of the element Tn = En~1-\ coincide on the boundary tn of 
the element Tn. Put 

It is easily seen that the deformations f( and gt are equivalent with respect to 
E1'1 then and only then, when the index is equal to zero. 

C) Let ft and gt be two continuous deformations of mappings of the orien­
tated /г-dimensional in = 2, 3) simplex Tn into the orientated two-dimensional 
sphere S2. Denote by fn the boundary of Tn and by V the aggregate of (n — 2)-
dimensional faces of the simplex Tn. Suppose that the mappings / 0 and g0 coin­
cide on 7"w, as well as the mappings fx and gx. Suppose, further, that the de­
formations ft and gt coincide on T. Denote by Щ"1, / — 0 , . . . , ny the faces 
of the simplex Tn, properly orientated. Then we have 

<»„-* (fv ft, ТП) = (0„_2 (/«,, ft, T") + J ) %-2 (/,, 'ft, Щ-% 
/=0 
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Let us prove the assertion C). The set of all numbers 0 ^ t ^ \ denote by A. 
We shall consider the complex Г"-Д in two copies; the first we shall denote by 
Гл-Д, the second by (Тл-Д]. Similarly we shall distinguish between all possible 
subsets and algebraical subcomplexes of the complexes Г^-Д and [Tn-\]. By P 
we shall denote the complex consisting of the two components Г"«Д and [Гл-Д]. 
Define the mapping ф of the complex P as coinciding with /д on Tn • Д and with 
g-д on [Гя-Д]. The aggregate of all (n—l)-dimensional faces of the prism Гл-Д 
we denote by A. If x g Л, then it is easily seen that ф (*) = ф ([*]). Let us 
identify in the complex P every pair of points xt [x], where x £ A. Then we 
obtain a complex Q. The mapping ф of the complex P may be now interpreted 
as a mapping of the complex Q. 

Observe that the following algebraical complexes from Q are orientated 
spheres: 

7-я.О—7 , | l-l + 2 ) £ w f 1 - A = £ / > [ 7 ^ 0 ] — [7'я-1] + 2][£»- 1 -Д] = [1/]> 
£ = 0 i = 0 

[Tn.0]—Tn-0=V0,[Tn-l]—Tn-\ = V19 

Hence we have 

Observe that the sphere U is the boundary of the prism — 7Л-Д, and the 
sphere [U] — the boundary of the prism — [7^-Д]. 

Consider now the case n = 2. Since U and [U] are nomotopic to zero in Q, 

МФ. n - ^ i + i ^ ) = M*> [*/]—£/) = о. 
1 = 0 

But 
«>о(Ф. Ц»)=®о(/о. fib. И . »о(Ф. Vr

1) = »0(/1 , ft, Г2), 

Thus, for n — 2 the assertion is proved. 
Consider the case n = 3. It is easily seen that in this case every two-dimen­

sional cycle from Q is homologic to zero, and hence the mapping ф is homo-
logically unessential; therefore, there exists a mapping i of the complex Q into 
the three-dimensional sphere Ss such that ф = &)( (cf. § 1, Lemma 3). Since 
(o0 (i, 23) = (о1(ф, 23) for an arbitrary sphere 23 from Q, we obtain the re­
quired result by applying to the mapping 4 the same argument, as we applied 
above to ф. 

D) Let Tn be an /z-dimensional (л = 2, 3) orientated element and / , g, h 
three of its mappings into the orientated two-dimensional sphere S2 such that 
all these mappings coincide on the boundary fn of the .element F*.Then we have 

In the case /г = 2 the proof follows directly by computation of the powers 
of the mappings. Consider the case n = 3. Take three copies of the element Г3 

and denote them by Г3 , [T3], {Г 3 } . Compose the complex P of the three corn-
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ponents Г3, [T3], {T3} and define the mapping ф of the complex P as coinci­
ding with / on P , with g on [T3] and with /г on {7'3}. Identify in the com­
plex P in one point every triple of points x, \x\ {x}, where x £ Г3; the so 
obtained complex denote by Q. The mapping ф may be obviously interpreted as 
a mapping of the complex Q. Since in the complex Q every two-dimensional 
cycle is homologic to zero, there exists a mapping % of the complex Q into the 
three-dimensional sphere S3 such that ф = &х (c^- § *> Lemma 3). Thus the ques­
tion is again, as in C), reduced to consideration of the power of the mapping. 

We apply now the established definitions and results to the mappings of the 
/z-dimensional complex Kn (/2 = 2, 3) into the two-dimensional orientated sphere 
S2. By Kr we shall denote hereby the aggregate of all simplexes of the complex 
Kn of dimensionalities less than or equal to r. 

A') Let / 0 and ft be two mappings of the complex Kn {n = 2, 3) into S2, 
coinciding on Кп~~г. We introduce the /z-dimensional V-complex estimating the 
difference between the mappings / 0 and ft and denote it by (ол__2 (/0, fl9 Kn). 

If Tn is an orientated /г-dimensional simplex from Kn, then we define the va­
lue of the /z-dimensional V-complex to be introduced as 

<V.2(/o>/i> Tn) 
on Tn. 

It is easily seen that mappings / 0 and fx of the complex Kn are then and 
only then equivalent with respect to Кп~г, when co/2_2(/0, fv Kn) — 0. It is as 
easily seen that if the mappings / 0 and ft are subjected to one and the same 
simultaneous deformation, while they remain coinciding on Кп~г, then the com­
plex в>я_2(/о> fv Kn) does not vary. 

B') Let / and gt be two continuous deformations of the mappings of the 
complex Л7*""1 into S2, coinciding on АГЛ~2, such that the mappings / 0 and gQ 

coincide, as well as fx and gv Introduce the (n—l)-dimensional V-complex 
w / l - 2 ( / / , gr IC1"1) estimating the difference of the deformations ft and gr If Tn~l 

is an (n—l)-dimensional orientated simplex from Л7*-1, then the value on it of 
the V-complex to be introduced we define as 

% _ 2 ( / / t gt, 7*-i).. 
It is easily seen that continuous deformations ft and gt are then and only 

then equivalent with respect to A7*"2, when (on_2 (ft, gp Kn~l) = 0. 
C) Let ft and g be two continuous deformations of the mappings of the 

complex Kn into S2
y coinciding on A?~2, such that the mappings / 0 and g0, as 

well as / j and gv coincide on A7*""1. Then we have 
®n-2<fv gv Kn) = <»n_2(f0, ft, Kn) + V(»n_2(ft, gp /C^1) , 

where the sign V denotes the V-boundary. 
D') Let / , g and h be three mappings of the complex Kn into S2, coinciding 

on Kn~~l- Then we have 
<V-2tf g> ̂ ) + w «-2 te A, Kn) = <on_2(f< A, ^ ) . 

E) In addition to A) we observe that if / 0 is a certain mapping of the /z-di­
mensional (/z = 2, 3) element Tn into S2> then there exists a mapping /г of the 
same element into S2 such that the number <o 2(/o» Л» ^л) i s defined and has 
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a given value. Hence, in addition to A'), follows that if /0 is a mapping of the 
я-dimensional (n = 2 , 3) complex Kn into S2, then there exists a mapping ft of 
the same complex into S2 such that the V-complex co/2_2(/0, fv Kn) is defined 
and coincides with the given one. In precisely the same manner we observe, in 
addition to B), that if ff is a deformation of the mappings of the (n—^-dimen­
sional (n = 2, 3) element Еп~г into S2, then there exists a continuous deforma­
tion gt of mappings of the same element into S2 such that the number 

is defined and has a given value. In addition to B') hence follows that if ft is 
a deformation of the mappings of the (n—l)-dimensional (n = 2, 3) complex 
Kn~l into S2, then there exists a continuous deformation gt of the mappings of 
the same complex into S2 such that the V-complex w„_2(//i £? Kn~l) is de­
fined and coincides with the given one. 

Let us prove E). Let /0 be a given mapping of the element Tn and let Rn 

be an element from Tn not intersecting with the boundary fn of the element Tn. 
Let us deformate the mapping /0 , not changing it on the boundary, into such a 
mapping/^ that/r

0(/?*) contains only one point p g S2 . Identify now in one 
point q all points of the boundary Rn of the element Rn and denote the so obtain­
ed sphere from Rn by S72. Let us now determine the mapping / of the 
sphere I/1 into S2 such that f'(q)=p and (ол_2 (/ ' , 2я) has a given 
value. The mapping / ' of the sphere 2" we shall interprete as a mapping 
of the element Rn. The mapping ft of the element Tn we define as co­
inciding with f0 on Tn — Rn and as coinciding with / ' on Rn. The continuous 
deformation gt is constructed in precisely the same way by starting from the map­
ping / д (A being the set of all numbers 0 ^ t ^ 1) of the element Tn = En~l-k. 

F) Let K2 be a certain two-dimensional complex, K1—the complex composed 
from all nul-dimensional and one-dimensional simplexes of the complex K2, and 
/ a mapping of K2 into S2. Suppose that there exists a point p g S2 such that 
f(Kl) does not contain p. Let us now define the V-complex co0 (/, K2) charac­
terizing the mapping / . The value of the complex co0 (/,' K2) on the simplex T2 

from K2 we define as the power of the mapping/of the simplex T2 at the point p. 
It turns out that two mappings / and g are equivalent then and only then, when 

Щ& K2)s7«>0(g, K2). 

It is evident that if /0 and fx are two mappings of the complex K2 into S2, 
coinciding on K\ then co0 (f0, fv /C2) = co0(/1, K2)~ (o0(/0, K2). 

The proposition F) which is a particular case of Whitney's theorem 10, is 
given here without proof; it follows also very easily from what has been proved 
already in the present paragraph. 

G) Let Ks be a three-dimensional complex and K2 the complex composed of 
all simplexes of the complex /C3 of dimensionality not greater than 2. The map­
ping / of the complex K2 into S2 may be then and only then extended to the 
whole complex AT3, when w0(/, K2) is a V-cycle in KB [cf. F)J. 

10 H. W h i t n e y , The maps of an «-complex into an «-sphere, Duke Mathematical 
Journal, 3, (1937). 
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Suppose that the mapping / is already defined on the whole complex K3, and 
that T3 is a three-dimensional orientated simplex from K3. Then the power of the 
mapping / of the boundary f3 of the simplex T3 is equal to zero. On the other 
hand this power is obviously equal to the sum of powers of the mappings of the 
faces of the simplex T3. Thus V Щ(А K2) = 0. 

Suppose that / is given on K2 and Vco0(/, K2) = 0. Then the power of the 
mapping / of the boundary f3 of a certain simplex T3 from K3 is equal to zero, 
and consequently the mapping / may be extended to Г3, and we obtain an exten­
sion of the mapping / to the whole complex Ks. 

§ 3. The mappings of a three-dimensional complex into the two-dimensional sphere 

By Kn we shall, as above, denote an «-dimensional complex and by Kr the 
aggregate of all simplexes from Kn, whose dimensionality does not exceed r. By 
Sr we shall denote the r-dimensional orientated sphere. 

If / and g are two mappings of the complex K3 into S2, then for the solu­
tion of the question on their equivalency we have first of all to solve the ques­
tion on the equivalency of these mappings on K2. In fact, if it turns out that 
the mappings / and g are not equivalent already on K1, then the question on 
their equivalency on K} is by this answered in the negative. The criterium of 
equivalency of the mappings / and g on K2 has been already given in § 2 
[cf. § 2, F)]. Thus it remains to consider the question on the equivalency of the 
mappings / and g of the complex Ks in the case, when these mappings are equi­
valent on /C2. Under this assumption we can transform the mapping g of the com­
plex K2 by a continuous deformation into the mapping / and then extend this 
deformation t0 the whole complex K3. We come so to the case, when the map­
pings / and g of the complex K3 simply coincide on K2. The question on the 
equivalency in this case is completely answered by the following theorem. 

T h e o r e m 3. Let f and g be two mappings of the complex K3 into S2, 
coinciding on K2. Put «)0(fv K2)=o)0(gi K2)=z2 [cf. § 2, E)]. Put, further, 
<°i (/» & K3) = z3 [cf. § 2, A')], z2 and z3 are a two-dimensional and three-
dimensional Ч-cycles from K3 [cf. § 2, G)]. The mappings f and g of the 
complex K3 are equivalent then and only then, when there exists in K3 an 
one-dimensional SJ-cycle x1 such that 

z3^2x1X*2 (cf. P. C) . (1) 

Before we proceed to the proof of Theorem 3, we prove Lemma 4, which in 
substance solves already the question. 

L e m m a 4. Let f be a continuous deformation of mappings of the complex KB 

into the sphere S2 such that the mappings / 0 and fx coincide on K2, and the 
mapping ft coincides on K° with the mapping / 0 for arbitrary t. Put 

<*o(/o> ^ ) = ®o(/i. K2)=z2, (2) 
®i( /o . / i . K*) = z3. (3) 

Then z2 and z3 are a two-dimensional and a three-dimensional S7-cycles from 
Kd. Denote, further, by et such a continuous deformation of the mappings of 
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the complex K* that the mapping et coincides with / 0 for arbitrary t and put 

Щ (*,,/,, K^^xK (4) 

Then it turns out that x1 is a Ч-cycle from Кг and 

z^2ex*Xz2 (d. § 2), (5) 

P roo f . Let A be the set of all numbers O^t^l; then the mapping fA of 
the complex /С3-Д into S2 is defined (cf. § 2). The complex А^-Д is not sim-
plicial, but without limiting the generality we may suppose that /д is a simplicial 
mapping of a certain simplicial subdivision of the complex АГ3-Д. 

By p° and p1 we denote two points of the sphere S2 lying inside one of the 
simplexes of the taken triangulation of the sphere S2. Let Tr be an orientated 
simplex of the complex Ks. By Р'(ГГ-Д) we denote the complete orientated 
original of the point pl in Гг-Д under the mapping/д , /==0, 1 [cf. § 1, C')]. 
By Pl

t(Tr) denote the complete orientated original of the point pl in Tr under 
the mapping ffi / = 0, 1, t — 0> 1 [cf. § 1, C')]. In view of the fact that the 
mappings / 0 and fx coincide on K2, we have 

Р(
0(Т2) = Р1(Т2)=Р*(Т2). 

In the sequel we shall for shortness use the denotations introduced in my 
preceding paper [cf. P. C , A)]. For computation of the relations of bounding 
we shall use the relation obtained in the present paper [cf. § 1, C')]. 

We note the following relations of bounding: 

Р*(Т*-Ь)' = Р'{Т*)-1—Р'(Т*).0 — Р*(Т*.Ь), (6) 

P* (}*•&)'= Р*{Т*)-1 — Р*ф).0 [cf. (6)], (7) 

P'0 (T*Y = P[ (Г»)' = Pl (T3). (8) 

If С is a certain nul-dimensional complex, then under the index /(C) of this 
complex we shall understand the algebraical number of points entering into it. 
In virtue of the very definition of V-complexes z2 and xl we have 

гЦТ*)=1(Р'(Т*)), (9) 
x1(T1)=I(Pi(Ti.k)). (10) 

• Let now every point x-t (x€Tr, t a number) from the complex Я /(ГГ-Д) 
slide along a straight line and uniformly in time into the point x -0 (the straight-
ness and uniformness is understood in the sense of affine geometry which is in 
the prism Тг-Д). The complex, situated in Г/*-Д, described by this motion of 
the whole complex Р /(ГЛ-Д) we denote by Qi(Tr^). The complex from Tr-0, 
into which the complex Р/'(7,г-Д) passes at the end of the motion, we denote 
by Q£(Tr)-°> where the complex Q'CT) belongs to Tr. 

Observe that the complex Qi(Tr) is a projection of the complex Рг '(7г-Д); 
in particular, for r— 1 both these nul-dimensional complexes have an equal 
index, and consequently 

xi(r)=I(Qi(T*)) [cf. (10)]. (11) 
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Note the following relations of bounding: 

Qi(T2.b)' = Pi(T2.b)—Pi(T*)-b—Qi{T2).Q^Qi('h.A), (12) 

0 /(7 ,3.Д)"==Я /(7 ,3-Д) — Р*(ТВ)'Ь— (}'{Тв)-0 [cf. (12)], (13) 

<2'(П' = — Q ' t n [cf. (6)], (14) 

Q/(7-3)- = o [cf. (14)]. (15) 

From the relations (14) and (11) follows that x1 is a V-cycle in AT3. This 
fact could have been also established in a more direct way on ground of the 
proposition C), § 2. Similarly, from the relations (8) and (9) follows that z2 is 
a V-cycle in K3. 

From the relation (8) follows that the nul-dimensional cycle P1'(T3) situated in 
T3 has the index zero and, consequently, bounds a certain one-dimensional com­
plex A1(f3) also situated in Г3, 

A* (f3)' = Pi(T3). (16) 

In virtue of (8) and (16) the one-dimensional complex Pf(f3)—Ai (f3) is, 
for t=0, 1, a cycle in the simplex T3 and, consequently, bounds in it a cer­
tain two-dimensional complex В^(Т3), t=0, 1, 

B<(T3Y = Pl
t(T3) — А*(Т3) ( / = 0 , 1 ) . (17) 

In virtue of the relations (7) and (16) the one-dimensional complex 

pi (7^3. д) _|_ Ai (/-a) .o _ Al(T3) • 1 

situated in Г3-Д is a cycle and, consequently, bounds a certain two-dimensional 
complex Б'(Г3-Д) situated in Г3-Д, 

В*(Т3-1У = Р1(Т3-к)-\-А*(Т3)-0 — A*(fB)-l. (18) 

Consider in the complex А^-Д the orientated three-dimensional sphere 

2 = (Г3-Д)* = Г3-1 — T3'0— Г3.Д. (19) 

Since this sphere bounds in K3-h the element 73-Д, the mapping / д is for it 
unessential, i. e. (Oj (Д , 2) = 0. Let us calculate this vanishing invariant by 
means of the introduced algebraical complexes; to this end denote by U* the 
complete original of the point pl in 2 under the mapping / д . It is easily seen 
that 

и1 = Р{(Т*)Л— P£(T3)-0 — Р*(Т3-£ь). , (20) 

Thus the linkage coefficient of the cycles U° and U1 in 2 is equal to zero, 
and we have 

Ks (f/o, 6'1) = 

= h(B°1(T3).l— B°0(T3)'0 — B°(f*-b)9P\(T*)-l — p i (T 3 ) .0 — РЦТ3-Ь)) = 

= I^(B°(T3),P\(T3))-/тлв°0(т% РЪ(тз))-1^(вцтз.ь), рцт*.Ц) = о. 
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Hence we obtain 
и>(Т*) = 1та(Щ(Т*), Р\(Т*))— / Г З ( ^ ( П , РХо(Т*)) = 

Let us now show that 
w(T*)=z*(T*) [cf. (3)]. (22) 

To this end denote by Д' the aggregate of two numbers 0 and 1. Then is defi­
ned the mapping/Д; of the complex Г3-Д' (cf. § 2). The complex Г3-Д' consists 
of two elements Г3-1 and — Г3-0, and fv(x-0)=fa(x-\) for every лг€Г3. 
Identify in one point every pair of points x • 0 and x • 1; then the complex Г3 • Д' 
will be transformed into the sphere 2', and the mapping fa may be considered 
as a mapping of the sphere 2 ' . In virtue of the very definition of the V-cycle 
гг we have z* (TB) = a)1 (fa, 2'). Let us calculate <ul (fa, 2'). To this end de­
note by wl the original of the point pl in 11 under the mapping fa. It is easily 
seen that 

w* = P[(T*)-\ — Р*0(Т*)-0. 
Thus we have 

z*(T*) = Vz,{w°,w1)== 
==1„{Щ(Т*)-\— Bg(rs)-0, p i ( r 8 ) - l — P j ( r 3 ) . 0 ) = 

= / Г з ( ^ ( Г 3 ) , ^ ( Г 3 ) ) - / Г з ( ^ 0 ( Г 3 ) , Р ^ ( Г 3 ) ) . 

So the relation (22) is proved and we obtain 
2?» (Г») = /л . д (Во (7-8^)^1(7-8^)) . (23) 

Let us now calculate z2 (TB) starting from the relation (23). To this end 
identify in the complex Г3 • Д in one point every pair of points x • 0 and x • 1 
and denote the obtained manifold by M; this manifold is, as may be easily seen, 
homoeomorphic to the product of the two-dimensional sphere and the circumference. 
The one-dimensional complex Р*(Т3'к) represents in M a cycle [cf. (7)] and 
bounds in M the two-dimensional complex Bl(tB-&) [cf. (18)]. Thus the linkage 
coefficient 

1^(Р0(Г».Д), Р Ч ^ - Д ) ) (24) 

is defined, since both involved cycles are homologic to zero in M. The relation 
(23), on the other hand, shows that zs (TB) is nothing else but the linkage 
coefficient (24), 

z*(T*) = VM(po(f^^) РЧ^-Д)). (25) 

Let us now calculate this linkage coefficient. 
Observe that the complexes Р'(Г3)-Д and Q'(r 3 ) -0 are cycles in M [cL (15)]. 

In virtue of the relation (13) we have 

1/м(Р0(Г3.Д)— ро(Г8).Д— Q0(7 ,8)-0>P47 ,8.A)) = 

= /ж((Э0(Г3.Д), Р Ч К Д ) ) = 
= 2 /^(очл.д), РЧ71а.д))= 2 ^2(П, (26) 

7*2 £ f3 у2£Г^' 
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where y2 is a function defined on an arbitrary two-dimensional simplex T2, i. e. 
a two-dimensional V-complex from K3 depending on the deformation / . Put now 

z*^T*)=VM(P°{f2)^+Q<>(f3)-0,pi(f3.b)). (27) 

In virtue of the relations (25), (26) and (27) we have 

and this means that 
z^z*3. (28) 

Now we shall calculate г*3(Г3) on ground of the relation (27). 
In virtue of the relation (27) we have 

** 3 (Г 3 )=К Ж (Р°(Г 3 ) .Д , P1 (f*.A))+VM(Q°(f *).(), Pi(f*.\)). (29) 

Since the cycle QQ(fB)-0 lies totally in f3-0, and the cycle Р ^ Г ^ Д ) inter­
sects Г3«0 along the nul-dimensional complex P1(fB)-Ot 

I M W 8 ) - ° > P1(TB-b))=Vfs(Q4f*)y P* (?*)). (30) 
Further, 

VM{P°(T*)-b, P1(t*-&))=VM(P1(t*-&)9 Р°(Г3).Д). (31) 

In virtue of the relation (13) we have 

УМ{Р1{Т*Л) — РЦТ*).Ь — Q4T*)-0, po(T*)-/i) = 
= /Д|(С?1(7,8-АЬ /*>(Г3).Д) = 0, (32) 

since the complex Q ^ P - A ) does not intersect with P°(fs)-k. Thus, from (32) 
we obtain 

VM(P*(t*-b)9 P°(f *).&>= 
= VM(Pl(f3)^, P ° ( r 3 ) . A ) + ^ ( Q i ( n - 0 , Р°(Г3).Д) = 

VM(P*(T*).X po ( 73) . A ) + 

+ V M Q 1 ^ 8 ) , Р°(Г3)). (33) 

The cycle Рг(Т3)-& bounds in M the complex —Л1(7 ,3)-Д, which does not 
intersect with Р°(Г3)-Д, and hence 

VM(Pl(t*)-b9 Р° ( ;Г 8 ) .Д)=0 . (34) 
Thus we finally obtain 

г*3 (T3) — Vb (Q° (/3) , P1 (Г3)) - f Vb (Qi (Г3), P° (Г3)). (35) 

Taking into account the relations (9), (11) and (14), we obtain from (35) 

z** = e2x1Xz2> (36) 

where e = ^ 1 has a quite determined value, but is not calculated here (cf. P. C , 
theorem 2). From (36) and (28) follows (5), i. e. the assertion of Lemma 4. 
The Lemma 4 is thus proved. 

P r o o f of T h e o r e m 3. Let gt be such a deformation of mappings of 
the complex K3 into the sphere S2 that the mappings g0 and gt coincide on K2. 
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Put 
*3 = М ^ > Й > * 8 ) tcf- § 2> B')]> 

z* = % (&. #2)==<*о (gv K2) [cf. § 2, F)]. 
Let us show that in KB there exists an one-dimensional V-cycle u1 satisfying the 
condition 

0 3 ^ 2 t t 1 X A (37) 

Denote by Д the set of all numbers O ^ t f s ^ l . Then the mapping g-д of the 
complex #3«A into S2 is defined (cf. § 2). Denote by L the subcomplex of the 
complex /f3-A, composed of /C3-0, /C3-l and all segments of the form л;«A, 
where x(zK°. The mapping g& is defined on L, and every segment of the form 
л;-A is mapped in such a way that g& (x-0) = g^ (x-\). Let us define a conti­
nuous deformation ^ of every segment JC«A such that %0 coincides with g± and 
the mapping ^ transforms the whole segment лг-А into the point gA(x-0) = 
= £ д {х-1), where lt(x-0)=it(x-\) = gik(x-0) for every t. On tf3-0 and /C3-T 
we define the deformation ^ so that the mapping it should coincide with g^for 
every t. The so obtained deformation it of the mappings of the complex L is 
continuous and it may be continuously extended to the whole complex AT3'A. We 
denote the mapping ^ by / д ; it is defined on /C3-A. The mapping / д determines 
a deformation ft of mappings of the complex KB, satisfying the condition of 
Lemma 4. We thus obtain zB^ 2гхг X £2> and the existence of the V-cycle ul 

satisfying the condition (37) is proved. 
Let / 0 and / be two mappings of the complex A"3 coinciding on K2. Put 

г3 = <М/о>ЛЯ3), ^2 = <о0(/0,/С2) = ( о 0 ( / , ^ ) . 

We shall show that if in Ks there exists a V-cycle u1 satisfying the condition 
гъ v" 2a1 X £2> then the mappings / 0 and / are equivalent. This will complete the 
proof of Theorem 3. 

Let и1 = £Хг (cf. Lemma 4). Denote, further, by et, 0 « ^ l ^ l , a mapping 
of the complex KB into S2, coinciding with /0 . In virtue of the remark E), § 2, 
there exists a continuous deformation ff of mappings of the complex K1 into S% 

such tlrat ^{etifpKl) = xl [cf. § 2, B')]. Extend the deformation ft to the 
complex K2- In virtue of the remark C), § 2, we have 

«>o (*i, Л> K2) — (o0 (*0, /0> /C2) = Vco0 (*,, /,, /С1) = V*i = 0, 
and since, moreover, o)0 (^0,/0,/C2) = 0, 

<M*i>/i>#2) = 0, 

and, consequently, in virtue of A'), § 2, the mappings f0 = ex and ft of the-
complex K2 are equivalent with respect to K1. The continuous deformation of map­
pings the complex K2 realizing this equivalence we denote by gr The deformation 
of the mappings of the complex K2 obtained in the result of successive applications 
of the deformations ft and gt we denote by hf. The mappings h0=f0 and 
h\z=zS\ o f t n e complex K2 coincide, and co0 (et, hf, АГ1) = л:1. We extend the de­
formation ht to the whole complex /C3 and applying to it Lemma 4 we obtain 

Thus (ox(h19 / , / C 3 ) v ° [cf. § 2, D')], or, in other words, шг (А1Э /, A?) = Vy 2 . 
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In virtue of the remark E), § 2, there exists a continuous deformation k( of 
the complex K2, transforming the mapping h1 = k0 into the mapping kt and not 
changing the mapping hx on K1, such that (01 (e'r kf, K2)=y2, where e't = hlm 

Extend the deformation kt to the whole complex AT3. Then, in virtue of C), § 2, 
we shall have 

©t (hx, kx, K*) = <ox (e\, ftx, /С3) + Чу2. 

Hence we conclude that o^ ( ^ , /, AT3) = 0 [cf. § 2, Df)]. Thus, in virtue of A'), 
§ 2, the mappings kx and / are equivalent, and consequently so are also the 
mappings / 0 and /. Theorem 3 is thus proved. 

In addition to Theorem 3 we shall prove the following proposition on the 
existence of mappings. 

A) Let z2 be a two-dimensional cycle from Ks; then there exists a mapping/ 
of the complex Ks into S2 such that 

<oQ(fyK2)=z2. (38) 

Furher, if /0 is a certain mapping of the complex KB into S2 and zs a certain 
three-dimensional V-cycle from AT3, then there exists a mapping/ of the complex 
AT3 into S2 coinciding with / 0 on K2 and satisfying the condition 

« i & . / i , *•«) = *«. (39) 

Choose on S2 a certain fixed point q and map every two-dimensional simplex 
T 2 from K2 on S 2 with the power z2 (T2) so that its boundary f2 is transform­
ed into the point q. The so arising mapping / of the complex K2 satisfies the 
condition (38) [cf. § 2, F)]. Since z2 is a V-cycle, the mapping / may be ex­
tended to the whole complex Ks. The existence of the mapping / satisfying the 
condition (39) follows from the proposition E), § 2. 

Theorem 3 has the following defect: it does not establish the complete system 
of invariants of the mappings of the complex Ks into S2, but only enables us 
to establish the equivalency or non-equivalency of two mappings. Moreover, in 
order to establish the equivalency of two mappings already equivalent on AT2, it 
is necessary to subject one of the mappings to a continuous deformation so as 
to make it coinciding with the other on K2. 

The contents of Theorem 3 is exposed in more detail by the following pro­
position, which follows from Theorem 3 and the proposition A): 

B) Let Br
4 be the r-dimensional V-Betti group of the complex KB. If Z2^.B\J , 

then there exists at least one mapping / of the complex KB into S2, satisfying 
the condition 

a)0(/, K2)=z2€Z2. (40) 

Denote, further, by 2B* X Z2 the set of all elements of the group B^ y contain­
ing cycles of the form 2u> X ^2> where u1 is an arbitrary V-cycle of dimen­
sionality one. Then to every co-set of the group B^ with respect to the subgroup 
2B\j X Z2 corresponds one and only one class of mappings satisfying the con­
dition (40). In order to determine this correspondence it is, however, necessary 
to choose arbitrarily one definite mapping satisfying the condition (40), to which 
shall then correspond the co-set 2 £ ^ X ^2-
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§ 4. Application to manifolds 

In the case when the three-dimensional complex KB is an orientable manifold 
the results of the foregoing paragraph may be formulated by means of the usual 
homologies, which presents a certain advantage. 

We shall understand here under Kz a three-dimensional, in a definite manner 
orientated manifold, somehow subdivided into simplexes. By Br we shall denote 
the г-dimensional usual Betti group of the manifold KB and by B^ — its /--dimen­
sional V-Betti group. It is known that between the groups Br and B^~r there is 
a quite definite natural isomorphic correspondence (cf. P. C , theorems 3, 4). 
By S2 we shall, as above, denote the two-dimensional orientated sphere. By Kr 

we shall denote the complex composed of all simplexes of the complex /C3, whose 
dimensionality does not exceed r. 

A) Let / be a simplicial mapping of a certain subdivision of the complex KB 

into S2 and p a certain point from S2 lying inside a simplex of the assumed 
triangulation of the sphere S2. By / _ 1 (p) we denote the complete orientated ori­
ginal of the point p in AT3 under the mapping/ [cf. § 1, C')]. Then f~"l(p) is 
an one-dimensional cycle from Ks; denote the index of its intersection with an 
arbitrary simplex T2 of the complex KB by z2(T2). Then z2 is a V-cycle, and 
the classes of homologies containing respectively/-1 (p) and z2 correspond to each 
other (cf. P. C , theorem 3). It is easily seen that г2 = со0(/, К2) [cf. § 2, F)]. 
Thus the class of homologies containing / - 1 (/?), as well as the class of homo­
logies containing co0 (/, K2)> determines the mapping / up to the equivalency on 
the complex K2[d. § 2, F)]. 

In view of the fact that the class of homologies, containing a>0 (/, K2), may 
be taken arbitrarily [cf. § 3, A)], the class of homologies, containing /~г(р), 
may be also taken arbitrarily. 

Now arises the question of establishing of equivalency or non-equivalency of 
two mappings / 0 and fx in the case, when f—1 (p) and f~x (p) are homologic to each 
other in AT3. 

B) Let / be a mapping considered in A) and p° and p1 two points lying 
inside the simplexes of triangulation of the sphere S2. It is easily seen that 
f~l (p°) and f~l (p1) are homological cycles from KB; suppose that they are 
weakly homologic to zero. Thus, there exists a complex С from KB with the 
boundary kf~l (/7°), where k is a natural number. We define the linkage coeffi­
cient ^ a ( / - 1 ( P ° ) , f~4P1)) by putting 

Ук*(/-г(Р°), Г 1 (Р 1 ) ) = ^^з(С, / -1( /71)) = (о1(/, KB). (1) 

Thus this linkage coefficient may be also a fraction. Its fractional part is, as is 
known, an invariant of the class of homologies, containing / - 1 (p°), while the 
linkage coefficient itself is an invariant of the class of mappings, containing / . 
This is proved in the same way as in Hopf's paper, 2. It turns out that for 
a given class of homologies, to which the cycle f~1(p°) belongs, the number 
Wj (/, AT3) is the only invariant of the class of mappings; moreover, the integral 
part of the number шг (/, KB) may assume arbitrary values, while the cycle 
/ - i (pO) belongs to the given class of homologies. 
8 Математический сборник, т. 9 (51), N. 2. 
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Let us prove the proposition B). Let / 0 and /г be two mappings of the 
complex Ks into S2 coinciding on K2. Denote by PUT3) the complete orientated 
original of the point pi in the simplex Г3 from Ks under the mapping / , . The 
complex P[ (Ts) — Pl

0 (TB) is a cycle in the simplex Г3 and hence bounds in it 
a certain complex Q ' ( r 3 ) , 

Qi(TB)' = P((TB) — P^(TB). (2) 

Since the mappings/0 and ft coincide on K2, the cycles f—1(pi)(i = 0J 1э 

y = 0, 1) belong all to one class of homologies [cf. A)]; suppose that this class 
of homologies has a finite order k. Thus there exists a complex C' from KB with 
the boundary kfy1(pi). 

Denote the intersection of the complex С К with the simplex Г3 by Ci(T3). 
Then 

q=2 q'(n, (3) 
/;-'(/>*) = 2 я}(П. (4) 

Put 
*3 = M/o ! >/ i>* 3 ) [cf. § 2, A')] (5) 

and compute zB (Г3) by means of the introduced complexes. To this end denote 
by Д the pair of numbers 0 and 1. Then is defined the mapping Д of the complex 
Г3-Д (cf. § 2). This mapping possesses the property that for every x£Ts we have 
/д (д; .0)=/д (x-\). Indentify in one point every pair of points of the form x-0 
and x-l and the sphere so obtained from 73«A denote by 23 . 

The mapping /д may be now considered as the mapping of the sphere I 3 . It 
is easily seen that the complete original of the point pi in 23 under the map­
ping /д is equal to P\ (Г3). 1 — Р£(Т*)-0. Thus 

0 з ( Г з ) = 1 / 1 3 ( Р о ( Г 3 ) . 1 — P°0(T*).0, P{(T*).\—PI(T*).0) = 

_ 1 / 2 3 ( ^ Q O ( 7 3 ) . 1 + C0(73) . l — С°(Г3).0, Р 1 ( Г 3 ) . 1 — /*(Г 3 ) .0) = 

= 1 / Г з ( ^ о ( Г 3 ) + С^(Г3), P j ( r 3 ) ) - | - / r 3 ( C g ( 7 3 ) , Р»(Г3)). (6) 

Since the manifold Ks is orientated, we may assume that every its three-dimen­
sional simplex has a definite orientation, coordinated with the orientation of the 
whole manifold ЛГ3. Put 

2*3(r3)=*3( tf3) , 2 Q°(T*)=Q°. (7) 
Т*£К3 Тз£К3 

With these denotations we have 

(kQ«-\-C«y = kf-Hp*) [cf. (2), (3), (4), (7)], (Q' = kf^(pO). (8) 

Summing the equality (6) over all Г3€АГ3, we obtain 

^(#:«)=i/^(ft<y+cgf/r4p1))-i/№(cgf v (/>*)), 
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i. e. 
z* (*в) = v*(/r1 (P°), / r 1 (P1)) - v* (Л"1 (P°). / r 1 (P1)) 

[cf. (1), (8)], or, which is the same thing, 
*3 (tf 8) = Wl ( / l , KS) _ (0l (/0 , ffB). (9) 

The group £<* is for the three-dimensional orientable manifold Ks the free 
# # 

cyclic group. If Г3 is a certain simplex from AT3 and 23 is the V-cycle from /C3 

assuming the value 1 on Г3 and the value 0 on all other three-dimensional 
simplexes from /C3, then г3 may be taken for the basis of V-homologies in ЛГ3. 
It is easy to see that 

z^z^(Kn)z\ (10) 

and consequently the number zn (Ks) determines the class of homologies, to which 
belongs the V-cycle z2. Thus, in the case, when сох (/2 , Кв) = (ог (/0, ЛГ3), we 
have z 3 ^-0 , and hence the mappings /0 and /2 are equivalent (cf. Theorem 3). 

Let us now show that the integral part of the number o^ (/, A"3) may be 
made arbitrary, the class of homologies, to which f~x (p°) belongs, being given. 
In fact, let / 0 be an arbitrary mapping such that /—г (p°) belongs to the given 
class of homologies; then, in virtue of A), § 3, there exists such a mapping /j 
that zs = (u1(f0,f1, Ks) is an arbitrary V-cycle from KB. Thus for a given / 0 

we may choose /j such that the number z's (Ks) should have an arbitrary integral 
value [cf. (10)], and this means that the integral part of the number (ог(/г,К2) 
may be chosen arbitrarily [cf. (9)]. The proposition B) is thus completely proved. 

Consider now the case when the cycle / _ 1 (p) [cf. A)] is weakly not homo-
logic to zero. 

C) Let Z1 be a fixed free element of the group B1 and U2 an arbitrary 
element of the group B1. Denote by X the smallest positive value which the 
number IKs(U\ Z1) may assume for a given Z1 and arbitrary U2. From Poincare-
Veblen's theorem follows that //сз(^/2, Z1) admits of positive values, since Z1 is 
a free element of the group B1. It turns out that among the mappings/ satisfying 
the condition 

f-4p)£Z* [cf. A)] (11) 

there are exactly 2X pairwise non-equivalent. 
In every class of mappings satisfying the condition (11) we may choose one, 

so that all chosen mappings should coincide on K2 [cf. A)]. Let /0 and fx be 
two mappings satisfying the condition (11) and coinciding on K2. Put 

*3 = <M/o> fv K% z2 = «>0(f0, /C2) = co0(/1, K2). 
In virtue of Theorem 3 the mappings / 0 and fx are equivalent then and only then, 
when 

^ v 2 w l X * 2 . { 12 ) 

The class of V-homologies, to which the V-cycle Z3 belongs, is determined 
by the integer zB (/C3) [cf. (7)]. The class of usual homologies Z°, corresponding 
to this class, is also determined by an integer, namely by the index of the nul* 
8* 
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dimensional complexes entering into Z°. Thus we may simply take it that Z° is 
an integer and that it coincides with Z3(/f3). We denote the class of usual ho­
mologies, corresponding to the class of V-homologies containing the V-cycle 
u1, by U2; since u1 is an arbitrary V-cycle, U2 is an arbitrary element of the 
group B2. Finally, to the class of V-homologies containing z2 corresponds the 
class of usual homologies Z1 containing f~l (p) [cf. A)]. In usual homologies the 
relation (12) may be thus written in the form 

Z° = 2IK, (U2
y Z1). 

In virtue of the arbitrariness of the class of homologies U2 the right-hand 
side of the last relation is an arbitrary number divisible by the number 2L 
Thus the mappings /0 and ft are equivalent then and only then, when the num­
ber zB (Ks) is divisible by 2X; at the same time the number z3 (AT3) may assume, for 
a given /0 , an arbitrary integral value and, consequently, there exist exactly 2X 
non-equivalent among each other mappings / satisfying the condition (11). The 
proposition C) is thus proved. 

E x a m p l e . Let S2 be the metrical two-dimensional sphere and p and q two 
its diametrically opposite points. Denote by cpa the mapping of the sphere S2 on 
itself, obtained by means of a rotation of the sphere S2 by the angle a about 
the axis pq. Denote by S1 the circumference with the parameter t, 0 ^ t ^ 2тт, 
introduced on it. The topological product of S2 and Sl denote by AT3. Every point 
y€KB is given by a pair y = x-t, xtzS2, 0^t^2n. Define the mapping cp 
of the manifold KB on itself by putting cp (x • t) = yt (x) • t. Define, further, the 
mapping / 0 of the manifold KB on the sphere S2 by putting fQ(x*t) — x. Define 
a second mapping fx by putting /г =/0<p. Then we obtain two mappings / 0 and fx 

of the manifold AT3 on S2 such that the complete original of the point p 
under both mappings is p^S1. The number \ for the cycle p^S1 is easily seen to 
be equal to 1 [cf. C)], and hence there exist exactly two non-equivalent mappings 
satisfying the condition f~l (p) -v,p-S l. These two mappings are precisely /0 

and fv 

The mappings / 0 and fx are completely equipollent, since the mapping cp is 
an homoeomorphism. Thus there is no possibility to establish in a natural manner 
a correspondence between the classes of mappings and the co-sets of the group 
B^ with respect to the subgroup 2B^ X Z2 [cf. § 3, C)], but it is necessary to 
choose arbitrarily that mapping, which corresponds to the co-set 2£* X ^3-

From the fact that the mappings / 0 and fx are not equivalent follows that the 
mapping cp is not equivalent to the identical mapping, whereas the mapping cp 
and the identical mapping are homologically equivalent. 

§ 5. The mappings of the four-dimensional complex into 
the two-dimensional sphere 

By K* we shall denote here the four-dimensional complex and by Kr the sub-
complex of the complex K* composed of all simplexes of the complex A4 of 
dimensionalities not exceeding л By S2 we shall denote the two-dimensional 
sphere. 
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In § 2 was shown that the mapping / of the complex AT2 into S2 may be 
then and only then extended to the complex AT3, when (o0 (/, K2) is a V-cycle 
in KB [cf. § 2, G)]. Here we shall solve the question on the extension of the 
mapping / , defined on K2, to the whole complex A'4. 

T h e o r e m 4. Let f be a certain mapping of the complex K2 into the 
sphere S2, The mapping f may be extended to the whole complex AT4 then and 
only then, when (o0 (/, K2) is a 4-cycle in AT4, satisfying the condition 

Щ (Л K2) X co0 (/, K2) ^ 0 [cf. § 2, F)]. (1) 

P roo f . Suppose that the mapping/ is already defined on the complex A"4, 
Without reducing the generality we may suppose that / is a simplicial mapping 
of a certain simplicial subdivision of the complex /C4. Let p° and p1 be two 
inner points of a certain simplex from the assumed triangulation of the sphere S2* 
If Tr is a certain orientated r-dimensional simplex of the complex AT4, then we 
denote by P'(Tr) the complete original of the point pi in the simplex Tr under 
the mapping / . Put, for shortness, 

2 P ' (7 7 - 1 ) = P i(7 , /). (2) 
•pr—i С fr 

From the fact that the three-dimensional sphere Г4 bounds in AT4 the sim­
plex Г4 follows (о2 (/, Г4) = 0, or, in other words, 

VfAP°(H P1(f*)) = 0. (3) 
Put 

<*o(f,K2)=z2. (4) 

In virtue of the very definition of the V-complex z2 we have 

z2(T2) = /(Pi(T2)). (5) 
Further, 

Р*(Т*)'=Р*{Т*). (6) 

From the relations (3)—(6) follows the relation (1) (cf. P. C , theorem 2). 
Suppose now that / is defined on K2 and satisfies the conditions of the 

theorem, i. e. that o)0 (/, K2) = z2 is a V-cycle in ЛГ4 satisfying the condition (1). 
Since ш0 (/, K2) is a V-cycle in AT3, the mapping / may be extended to KB 

[cf. § 2, G)], but it may be done in different ways. Suppose that / 0 and fx are 
two such extensions, i. e. two mappings of the complex KB, coinciding on K2 

with / and, consequently, also one with another. Put 

% (U fv ^ 3 ) =У*> »i (//. T*) =ft(T% (7) 
We shall show that 

У\-УАо = ^У*. (8) 

Let Д be the aggregate of the two numbers 0 and 1. Then is defined the 
mapping/д of the complex AT3-A into S2 (cf. § 2). Let Г4 be a certain four-
dimensional simplex from K4. Consider the mapping/д in application to the com­
plex Г4.Д. If лг€Г4, xZK2, then we have /A (x-0)=/A (x-1). Identify in А^-Д 
in one point every pair of points лг-O and x*\ and denote the com-
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plex, so obtained from 7м-Д, by L3. The mapping/д may be now considered as 
defined on the complex ZA It is easily seen that every two-dimensional cycle 
from L3 is homologic to zero in Z,3 to every modulus, and hence, in virtue of 
Lemma 3, there exists such a mapping g of the complex L3 into the three-dimen­
sional sphere Ss that / д =ftg [cf. § 1, A)]. 

Denote by E*, & = 0, 1, 2, 3, 4, the faces of the simplex Г4. Consider 
now in the complex Z,3 the following orientated three-dimensional spheres: 

53 = Z J 3 . 1 - z * . 0 , 

4 4 

Sg= 2 £5-0 = Г4.0, 5|==.2£?-1=7'*-1. 
5 k=0 к k=0 к 

Evidently we have 

Thus we have 

% ig, 5|) - »o te, SI) = 2 o)0 (g, Si); 
further, 

«>ote SJ) = *>!(/*, «J), /i = 0, 1 , . . . , 6 [cf. § 1, (20)]. 

Consequently, 

со, (A , 53) - », (/д , 5|) = 2 »! СЛ , SI), 

and this is the relation (8), written explicitly. 
The complete original of the point pl in the simplex Tr under the mapping 

fj we denote by Pl.(Tr). For shortness introduce the notations; 

2 Я у ( Г - 1 ) = Я / ( 7 г ) . 
v—x f rr 

Then we have 
Р}(73)' = Я<(Г3), (9) 

z2(T2) = /(P<f(T2)). (10) 

From the relations (9), (10) and (7) follows that 

(z*X**)o(Ti)=Vfr(Po(T4), Pl{T^))^yt(T% (11) 

(z^Xz\(T^)=V^(P°l(f^P\(h))=yUT^). (12) 

In the relation (11) the product z2 X <?2 is calculated by means of the auxiliary 
complexes P^(T /), and in the relation (12) the product z2 X z2 is calculated by 
means of the auxiliary complexes Р[(Т(). Although the so obtained products are 
homologic, they need not coincide. 

Suppose now that the mapping / defined on K2 and satisfying the conditions 
of the theorem is in some way extended by means of the mapping /0 to Ks. 
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Since (z2 X z \ - 0, 

Choose now the mapping fv coinciding with/0 on K2 and such that (ot (f0,fv ЛТ3)=-
= — и3 [cf. § 2, A')]."Then, in virtue of (8), we have 2^ = 0, and this means 
that the mapping / of each sphere Г4 may be extended to the simplex Г4 [cf. (7)], 
i. e. we obtain an extension of the mapping / to the whole complex /C4. Theo­
rem 4 is thus proved. 

Let us now formulate the obtained result in terms of usual homologies in 
the case when К* is a four-dimensional orientable manifold. 

A) Let / be a mapping of the orientated four-dimensional manifold /C4 into 
the two-dimensional orientated sphere S2. Without reducing the generality we 
may assume that the mapping / is a simplicial mapping of a certain simplicial 
subdivision of the complex AT4. Let p be a certain inner point of a simplex from 
the assumed tiiangulation of the sphere S2 and f"1 (p) its complete original in AT4 

under the mapping / . It is easily shown that for two equivalent mappings /0 

and/ x we have f~l (p) ^-/f"1 (p)- If C2 is a cla§s of usual two-dimensional 
homologies, then for the existence of a mapping / satisfying the condition 
/~г(р)€С2 it is necessary and sufficient that IK* (C2, C 2 ) = 0 . 

Let c2 be a certain cycle from C2. Denote by z2 (T2) its index of intersection 
with T2. Then the class of homologies C2 corresponds to the class of V-homo-
logies containing z2. In order that there should exist a mapping / satisfying the 
condition /~1(/?)€C2 , it is necessary and sufficient that there should exist a map­
ping / satisfying the condition ©0 (/, К2) ^ z2. But for this it is necessary and 
sufficient that z2y^z2^0. This last condition has in terms of usual homologies 
the form: / ^ ( C 2 X C2) = 0. The assertion A) is thus proved. 

It is of interest to note the following: 
Let Kn+2 be a complex of dimensionality n-\-2. Denote by Kr the aggre­

gate of all its simplexes of dimensionalities not exceeding r. Denote, by Sn the 
/г-dimensional orientated sphere. If / is a mapping of the complex K? into Sn, 
then we introduce, in the same way as in G), § 2, a V-complex <o0 (fv Kn) of 
dimensionality /г, characterizing the mapping / . Namely, two mappings /0 and fx 

are then and only then equivalent, when co0 (/0, Kn)^^Q(fv Kn). Further, in 
order that the mapping / , defined on Kn, could be extended to Kn+1, it is neces­
sary and sufficient that (o0 (/, Kn) should be a V-cycle in K"*1. If this condition 
is satisfied, then there arises the question on the possibility of extension of the 
mapping / from the complex Kn to the whole complex Kn+2- It turns out that 
the condition of such an extension is expressed by the demand that a certain 
(n - j~ 2)-dimensional V-cycle from Kn+2 should be homologic to zero to the 
modulus 2; this cycle is determined up to homologies by the cycle w0 (/, Kn), 
but its construction can not be carried out by means of the product operations in 
the complex Кп+2, which we possess. Thus we are lead to a new operation of 
a homological type. 

(Поступило в редакцию 27/VI 1940 г.) 
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Классификация отображений трехмерного комплекса 
в двумерную сферу 

Л. Понтрягин (Москва) 

(Резюме) 

Пус-ь {ft} ( O ^ z ^ l ) — семейство отображений комплекса К в комплексе/, 
такое, что функция ft (x) (х 6 К) является непрерывной функцией пары аргумен­
тов х и t. Говорят, что ft есть непрерывная деформация отображений ком­
плекса К в комплекс L. Два непрерывных отображения g и h комплекса К в L 
называются гомотопными или эквивалентными, если существует непрерывная де­
формация ft такая, что f0 = g, / j = / z . Классификация непрерывных отображе­
ний, с этой точки зрения, принадлежит к числу наиболее существенных задач 
современной топологии, она, однако, разрешена лишь в немногих частных слу­
чаях. Дана классификация отображений /z-мерного комплекса Кп в /г-мерную 
сферу Sn и, следовательно, в частности, классификация отображений Sn в 5", 1 и 10. 
Имеется, далее, классификация отображений (п -\-k) -мерной сферы Sn+k 

в /г-мерную сферу Sn, при £ = 1 , 2 , 2 и 3. Имеется также классификация отобра­
жений (я-}-1)-мерного комплекса Кп+1 в /г-мерную сферу Sn 5. 

В настоящей работе полностью излагаются мои результаты 5 относительно 
классификации К3 в S2. 

Пусть / — симплициальное отображение ориентированной сферы S3 в ориенти­
рованную сферу S2 и /?*'(/ = О, 1) — две точки, выбранные внутри треугольни­
ков триангуляции сферы S2. Тогда полный прообраз f~l (р*) точки р1 при отоб­
ражении / , естественно, оказывается одномерным циклом в SB. Коэфициент 
зацепления циклов /~1(р°) и f"1 (p1) обозначим через 

<М/ , S3). (1) 

Hopf 2, которому принадлежит описанная конструкция, показал, что число <ог ( / , S3) 
не зависит от выбора точек p'(i = 0, 1) и является инвариантом класса отобра­
жений, т. е. для двух эквивалентных отображений fag 

а>х (/;$») = », (#5" ) . 

В предлагаемой работе мною доказано следующее: 
Т е о р е м а 1. Для того, чтобы два отображения f u g трехмерной 

сферы S2 в двумерную сферу S2 были эквивалентны, достаточно, чтобы 

щ{/, SB) = io1(gJ S*). (2) 

Таким образом, в силу результата Hopf а и моего, равенство (2) является 
необходимым и достаточным условием для эквивалентности отображений fug. 

Для изложения результатов о классификации отображений К3 в S2 введем 
следующие обозначения: 

Через Кв будем обозначать трехмерный комплекс, а через /^^-совокупность 
всех его симплексов размерности не выше г. 
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Пусть р — некоторая точка из сферы S2 и /—такое отображение К2 в S2, 
что /(К1) не содержит точку р. Тогда определена степень отображения / про­
извольного ориентированного двумерного симплекса Т2 из К2 в точке /?, ее мы 
обозначим через z2{T2). Функция z2 является V-комплексом 7 в К2, этот 
V-комплекс обозначим через 

<о0(/, ^ 2 ) - (3> 

Пусть / и g—два отображения комплекса К3 в сферу S2> совпадающие 
на К2. Пусть, далее, Т3— произвольный ориентированный симплекс из К3 раз­
мерности 3. Рассмотрим комплекс Я, составленный из двух экземпляров [Г3] и 
{Тв\ симплекса Г3, и определим отображение <р комплекса Р в S2, считая 
его совпадающим с / на [Г3] и с g на {Г 3 } . Так как отображения fug сов­
падают на К2, то для каждой точки х> принадлежащей границе Т3 симплекса 
Г3, имеем 

* ( [ * ] ) = ¥ • ( { * } ) • 

Отождествим теперь в одну каждую пару точек [л:], {х} при х 6 7*3, тогда 
комплекс Р превратится в трехмерную сферу S3. Отображение <р теперь можно 
рассматривать как отображение сферы S3 в S2. Положим 

г*{Т*) = ®г(у9 S3) 

[см. (1)]. Функция z2 является трехмерным V-комплексом7 в /С3, ее мы обозна­
чим через 

Whitney 10 доказал, что два отображения fug комплекса К2 в S2 тогда и 
только тогда эквивалентны, когда 

Щ(А K2)sj<o0(gy К2) (5) 

[см. (3)]. Доказывается, далее, без труда, что отображение / комплекса К2, 
в S2 тогда и только тогда можно распространить в отображение всего ком­
плекса К3, когда 

<М/. #2) (6>' 
является V-циклом в /С3. 

Для того, чтобы решить вопрос об эквивалентности отображений / и g 
комплекса К3 в сферу S2, его нужно прежде всего решить для тех же отоб­
ражений, рассматриваемых на К2 [см. (5)]. Если отображения / и g не экви­
валентны уже на К2, то, тем более, они не эквивалентны на К3- Если же 
отображения f u g эквивалентны на К2, то отображение g можно заменить 
эквивалентным ему и совпадающим с / на К2. Таким образом, вопрос сводится, 
к выяснению, эквивалентны или нет два отображения / и gy совпадающие на К2. 
Вопрос этот решается следующей теоремой: 

Т е о р е м а 2. Пусть f и g— два отображения комплекса К3 в сферу S2, 
совпадающие на К2, Положим 

z2 = w0(g /С2) = (о0(/, К2) [см. (3)], z3 = (o1(f, g, К3) [см. (4)]. 

Тогда z2 есть V-цикл в К3 [см. (6)], z3 есть также Ч-цикл в К3, так 
как К3 не имеет симплексов размерности 4. Оказывается, что отображе-
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ния fug тогда и только тогда эквивалентны, когда в Къ существует 
SZ-цикл х1 размерности 1, удовлетворяющий условию 

z* ^ 2X1 X z2 7. 

В случае, когда Ks есть ориентируемое многообразие, теорема 2 может 
быть формулирована в форме теоремы 3. Для формулировки ее напомним сле­
дующие известные факты. 

Пусть х и у — два одномерных слабо гомологичных нулю цикла из трех­
мерного ориентированного многообразия AT3. Пусть, далее, с — некоторый дву­
мерный комплекс из Кв, граница которого есть ал:, где а — натуральное число. 

Число — /(с, у) называется коэфициентом зацепления циклов хну (здесь / 

означает индекс пересечения). Коэфициент зацепления, так определенный, являет­
ся инвариантом циклов л: и у, а дробная его часть — инвариантом классов 
гомологии X и К, к которым циклы эти принадлежат. 

Если и есть некоторый слабо не гомологичный нулю одномерный цикл из 
трехмерного ориентированного многообразия /С3, то существует в Къ двумерный 
цикл v такой, что I (и, v) есть положительное число. Индекс пересечения /(#, v) 
является инвариантом классов гомологии U и V, к которым принадлежат взя­
тые циклы: 

I(u, v)=I(U, V). 

Т е о р е м а 3. Пусть К* — ориентированное трехмерное многообразие и 
/—его симплициальное отображение в ориентированную двумерную сферу S2. 
Выберем две точки р*(1 = 0, \), принадлежащие внутренностям треуголь­
ников триангуляции сферы S2. Тогда полный прообраз/~г (р*) точки р1, 
естественно, оказывается одномерным циклом из /С3. Оба так полученных 
цикла принадлежат одному и тому же классу гомологии Z1. Оказывается, 
что класс Z1 является инвариантом класса F отображений, к которому 
принадлежит отображение / . Оказывается, далее, что при заданном классе 
гомологии Z1 всегда можно найти отображение f такое, чтобы оба возни­
кающих из него цикла принадлежали Z1. 

Далее, будем различать два случая: 
1) Если класс Z1 имеет конечный порядок, т. е. циклы f~l (pl) слабо го­

мологичны нулю, то коэфициент зацепления этих циклов является инвариантом 
класса отображений F, и при заданном классе Z1 этот коэфициент зацепления 
является единственным инвариантом, т. е. определяет F. Целую часть этого 
инварианта при заданном Z1 можно выбирать произвольно, подбирая надлежа­
щим образом F, в то время как дробная его часть является инвариантом класса Z1. 

2) Если класс гомологии Z1 свободный, т. е. циклы /~г (р1) слабо не гомо­
логичны нулю, то обозначим через X минимальное положительное значение, ко­
торое может принимать число I (f~l (р°), х2), где х2 — произвольный двумерный 
цикл из Кв. Тогда при заданном классе Z1 существует ровно 2л классо! отоб­
ражений / , для которых / _ 1 (р°) £ Z1. 

В работе решается также один вопрос об отображениях четырехмерного 
комплекса /С4 в двумерную сферу S2. Через Кг попрежнему будем обозначать 
комплекс, составленный из всех симплексов комплекса /С4 размерности не больше г. 
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Если / есть отображение комплекса К2 в S2
y то для распространения этого 

отображения на комплекс /С3, как ранее было отмечено, необходимо и доста­
точно, чтобы V-комплекс со0 (/, К2) [см. (3)] был циклом в К*. Теорема 4 решает 
вопрос о возможности распространения отображения / на весь комплекс К4. 

Т е о р е м а 4. Пусть /С4 — четырехмерный комплекс и f— отображение 
комплекса К2 в сферу S2. Для того, чтобы отображение f можно было 
распространить на весь комплекс ЛГ4, необходимо и достаточно^ чтобы 
V-комплекс z2 = u)0(f, К2) [см. (3)] был V7-циклом в К* и чтобы 

z2X^2^0 \ 

Для случая, когда АГ4 есть ориентируемое многообразие, теорема 4 при­
обретает вид: 

Т е о р е м а 5. Пусть К4 — ориентированное многообразие и / — е г о 
симплициальное отображение в ориентированную двумерную сферу S2. Вы­
берем некоторую точку р из внутренности какого-либо треугольника 
триангуляции сферы S2. Тогда f"1 (/?), естественно, оказывается циклом 
размерности 2 из К*. Если Z2 есть некоторый класс двумерных гомоло­
гичных между собой циклов из /С4, то для того, чтобы существовало отоб­
ражение / , удовлетворяющее условию f~l (p) 6 Z2, необходимо и доста­
точно, чтобы 

I(Z2, Z2)=--0. 


