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1941 MATEMATUYECKMH CBOPHMK T. 9(51), N. 2
RECUEIL MATHEMATIQUE

A classification of mappings of the three-dimensional
complex into the two-dimensional sphere

L. Pontrjagin (Moscow)

Let K and L be two complexes. The family f, where £ is a real number
(0 <<t<<1), of continuous mappings of the complex K into the complex L is
called a continuous deformation of mappings of the complex K into the complex L
if the function f, (x) (x €K) is a continuous function of the pair of arguments
x, t. Two continuous mappings g and & of the complex K into the complex L
are said to be homotopic or equivalent if there exists a continuous deformation
f, transforming the mapping g into the mapping A&, i. e. such that g=f,
h=Ff,. In virtue of this criterium of equivalency all continuous mappings of
the complex K into the complex L fall into classes of equivalent mappings.
A classification of mappings from this point of view, i. e. the determination of
more or less effective criteria of equivalency, forms one of the fundamental pro-
blems of topology.

The present state of topology leaves no hopes for the solution of the formu-
lated problem in the near future. At present only certain particular cases have
been investigated and solved.

Hopf! gave the classification of mappings of the n-dimensional complex K"
into the n-dimensional sphere S”. The necessary and sufficient conditions of
equivalency are given by him in this case in terms of homologies, which is the
best way to solve the problem, since homologies admit of a rather effective
computation. Hopf2 has also shown that there exists an enumerable number of
classes of the mappings of the (47— 1)-dimensional sphere S4*-! into the 2n-di-
mensional sphere S%7; the criterium of non-equivalency in this case has been
given by him in terms related to homologies. I3 have given a classification of
mappings of the (n-}-k)-dimensional sphere S§7+% into the n-dimensional sphere
87 in the case =1, 2. Freudenthal 4, knowing my results, but not knowing my
proof, gave for a part of them a new proof and established, moreover, that for

1 H. Hopf, Die Klassen der Abbildungen der n-dimensionalen Polyeder auf die
n-dimensionale Sphidre, Commentarii Mathematici Helvetici, 5, (1932).

2 H. Hopf, Uber die Abbildungen der drei-dimensionalen Sphire auf die Kugel-
{liche, Mathematische Annalen, 104, (1931).

3L.Pontrjagin, A classification of continuous transformations of a complex
into a sphere. I and II, Comptes rendus Acad. Sci. U. R. S. S., XIX, (1938).

+H. Freudenthal, Uber die Klassen der Sphirenabbildungen, Compositio
Mathematica, 5, (1937).
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k=3, 7 there are at least two classes of mappings. I % gave, further, a classifi-
cation of mappings of an (n--1)-dimensional complex into the #s-dimensional
sphere — these results have been published only in a brief exposition. This is,
so far I know, all that has been done in the question on the classification of
mappings.

The first and the most important question in the general problem of classifi-
cation of mappings is undoubtedly the question on the classification of mappings
of the (n-} k)-dimensional sphere into the n-dimensional sphere. Having solved
it, it would be possible to attempt a classification of mappings of an (n-} &)-
dimensional complex K"*+* into the n-dimensional sphere S%, as well as a clas-
sification of mappings of S”*+* into K. It may be surmised that on the way to
the solution of these two questions new invariants of complexes of the type of
homologies and intersections will arise. It is possible to approach the classifica-
tion of mappings of K"+* into S* and of §”** into K in a different way, without
classifying firstly the mappings of S"+* into S, but simply assuming that the
classification of mappings of S”** into S” is already carried out, or, more exact-
ly, that the group® of mappings of Sn+k into S" is known.

In the present paper is given a complete exposition of my earlier published
results on mappings of the three-dimensional complex K3 into the two-dimensio-
nal sphere S2 %; besides, in this paper is partly touched the question on mappings
of the four-dimensional complex K* into the two-dimensional sphere S2. So par-
ticular a question as the classification of mappings of K3 into S? represents
a certain interest due to the fact that in its solution we obtain certain indica-
tions as to how should be solved the question on the classification of mappings
of K"+* into S% Moreover, we give here for the first time an application of
the theory of products (intersections) in complexes 7 to the solution of a purely
geometrical question, in the formulation of which homologies, not to speak of
products, are not even mentioned.

In §§ 3, 4 and 5 are essentially used the results of my preceding paper
»Products in complexes“; I shall refer to this paper in the sequel as to P. C.7".

In the whole of the present paper we shall consider only continuous
mappings and continuous deformations of mappings, and therefore the word
continuous will be omitted in the sequel.

§ 1. Mappings of the three-dimensional sphere into the two-dimensional one

In the present paragraph is given a classification of mappings of the three-
dimensional sphere into the two-dimensional one. The classification is based on
the invariant introduced by Hopf ?; we shall see that this invariant uniquely
determines the class of mappings. The fundamental role in the proof is played

5 L. Pontrjagin, Classification des transformations d’'un complexe (n- 1)-di-
mensionnel dans une sphére n-dimensionnelle, Comptes rendus Acad. Sci., Paris,
206, (1938).

.8 W. Hurewicz Beitrige zur Topologie der Deformationen, Proc. Kon. Akad.
Wet. Amsterdam, 38, 112 u. 521; 39, 117 u. 215, (1935—1936).

TL. Pontrjagin, Products in complexes, see the preceding paper, p. 321.
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by Lemma 3. The results of W. Hurewicz 6, in particular Lemma 1, do not play
here an essential role, but they are important by themselves and form an essen-
tial complement to Lemma 3.

The fundamental role for all further constructions of this paragraph is played
by the standard mapping ¢ of the three-dimensional sphere S% on the two-dimen-
sional sphere S2. We proceed now in the first place to construct this mapping.

A) Let us construct the mapping 9 of the three-dimensional sphere §3 on the
two-dimensional sphere S2. We shall consider the sphere S% as the set of all
quaternions equal to one in modulus, i. e. every point z € S* we shall write in

the form
z=a- bi+cj-+dk,

where i, j, k are quaternion units and @, b, ¢, d are real numbers connected by

the relation
a2+ b2 H4-d*=1.

The set 83 of quaternions forms a group with respect to multiplication. Denote
by H the subgroup composed of all quaternions of the form

cosa—-sina-i. (1)

The aggregate S% [ H of all right co-sets of the group 8% with respect to the
subgroup H forms naturally a certain manifold; it turns out that this manifold
is homoeomorphic to the two-dimensional sphere S2. Correlating to every element
2 € 8% the co-set Z € 8%|H, to which z belongs, we obtain the mapping 9.

Let us show that S3|FH is homoeomorphic to the two-dimensional sphere
and let us consider the mapping ¥ more detailed.

We introduce in the metrical sphere S2? polar coordinates. To this end denote
by p its notth and by ¢ its south pole and choose a certain fixed meridian pmg;
the centre of the sphere S? we denote by o. For the radius vector of the point
y € 8? we take the angle poy divided by m and for the amplitude the angle mpy
between the meridians pm and py. Then the point ¢ will have an indefinite
amplitude.

The set of all quaternions from S§? of the form

a--cj-}dk, - (2)

where a =0, we denote by A. Since every quaternion from S3 has a modulus
equal to ome, every element from A may be represented in the form

o+ (cosf-j+sing-A), )

where 0<<p<<1, 0= —|—V1 ~—p% Here p and § may be interpreted as polar
coordinates introduced in A, from which immediately follows that A is homoeo-
morphic to a circle, the boundary A of which is composed of all elements of
the form
cosfB-jtsinB-k. (4)
Further we have
(cosa-}-sina-i) (6-4-p(cosB-/j-|sinB. k) =
=0 (cosa--sina-i)--p (cos (@) -+ sin (@ 4-B)- 4). (5)
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From this we see that every z € S3 is representable in the form (5), i. e. that
Z=x-Y, (6)

where x € H, y € A. From the same relation (5) follows that the decomposition (6)
is unique for every z mot belonging to A; if, however, z € A, then y becomes
an arbitrary element from A, and a is determined from the relation (5). Correlate
now to every point z €83, represented in the form (5), the point from S? with
polar coordinates p, B. Then we obtain the mapping 9 transforming every co-set
f:om 83 into a point from S2.

The following propositions B) and C), as well as Lemma 1, belong to
W. Hurewicz 6. I give them with full proofs.

B) Let K be a compact metrical space and f, and f; two of its mappings
into S§3. If

Wo=1b, [ A), (7)

then the mappings f, and f; are equivalent.

For the proof we consider the sphere S3 as the group of quaternions [cf. A)]
and use the possibility of multiplication of its points.

From relation (7) follows that for every x € K the elements fy(x) and f; (x)
belong to one and the same co-set of the group S3 with respect to the subgroup H.
Thus

h(x)=/f, (x) f, (¥)~! € H. 8)

Since the mapping A transforms the whole space K into the circumference Hc< S?,
there exists a continuous deformation #, of mappings of K into S such that
hy=nh, h, (K)={e}, where e is the unit of the group §% From this and the
relation (8) follows that

fo(X)=ho (x) f; (%), f1(X)="h(X)];(x);

hence it is natural to put f,(x)=~£,(x) f; (x), and f;, gives a continuous deforma-
tion of the mapping f, into the mapping f;.

C) Let f, be a mapping of a compact metrical space K into the sphere S3
and g, a continuous deformation of the mappings of the space K into the sphere
S? such that g,==9f,. Then there exists such a continuous deformation f, of
mappings of the space K into S§% that

=¥,  [ct A}l ©)

For the proof we consider again the sphere S® as a group of quaternions
and interprete the points of the sphere as right co-sets of the group S§3 with
respect to the subgroup H [cf. A)]. We recall that the set A constructed in- A)
intersects with every right co-set only in one point, with the only exception of
the co-set A', which coincides with the boundary of the topological circle A.

Let ¢ be a positive number so small that if #w €83, v €83, and the distance
between the points #(z) and $(v) in the sphere S2 is less than ¢, then zo~!

does not belong to A. The existence of such an ¢ is easily established. By n

we denote a natural number so great that for 1t'———t”1<in the distance between
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the points @s (x) and @ (x) is less than ¢, where x is an arbitrary element from K.
We shall carry out the construction of the mapping f, inductively. Suppose
that the mapping f,, satisfying the condition (9), is already constructed for

Ogtg's—. Starting from this assumption, let us construct the mapping f,, sa--
tisfying the condition (9), for —<t<m+1

Let — <1,‘<m—H then o, (x) is a definite right co-set. Since the mapping

f,’l’ is already constructed, fl,,(x) is a definite element from S2. Thus @, (x) fm (x)°1
n n n

is a definite co-set. In virtue of the choice of the numbers ¢ and n this co-set

does not coincide with A, and hence the point of its intersection with A is de-
termined; we shall denote it by A, (x). Put f,(x)=h,(x) fm (x). Then f,(x) enters
n

into the co-set ¢,(x) and, consequently, ¢,(¥)=10(f,(x)). Thus the mapping f;
is constructed. The continuity of the deformation f, is obvious.

Lemma 1. Let f and g be two mappings of a compact metrical space K
into the sphere S3. The mappings f and g are then and only then equivalent,
when the mappings 8f and g are equivalent [ci. A)].

Proof. Suppose that the mappings @,==1Uf and ¢,=V9g are equivalent.
Then there exists a continuous deformation @, connecting them. Put fy==f. Thus
we can apply the proposition C), i. e. there exists a continuous deformation f
of mappings of the space K into the sphere S%, and ¥f,==¢,. In virtue of this.
last, f, and g are equivalent [cf. B)]. Since, moreover, f==F, and f; are equiva-
lent, f and g are equivalent.

Suppose that the mappings f and g are equivalent. Then there exists a conti-
nuous deformation g, such that gy==/, g ==g. The continuous deformation.
dg, connects #f and $g. The lemma is thus proved.

The following Lemma 2 forms the base for the proof of Lemma 3.

Lemma 2. Let K be a certain complex of arbitrary dimensionality and f
its simplicial mapping into the n-dimensional complex L. Denote by V a cer-
tain open n-dimensional simplex of the complex L and put U= f-1(V). Then
U naturally falls into the topological product of the simplex V and a certain.
complex P, U= V-P, i. e. every point z € U is uniquely and continuously
representable in the form of a pair z=x-y, where x €V, y € P, and f(z)=-
= f(x-y)==x. Further, it turns out that if K is a manifold, then P is also-
a manifold.

Proof. Denote by @ the set of all simplexes from K which are mapped
under / on V. Let p be an inner point of the simplex V, and denote the com--
plete original of the point p in a certain r-dimensional simplex 77 € Q by ¢ (77).
It is easily seen that ¢ (77) is a convex body of dimensionality »—n. Further,
if 77-1€Q is an (r— 1)-dimensional face of the simplex 77, then ¢ (77-1) is
an (r— n— 1)-dimensional face of the convex body ¢ (77). Conversely, every
(r— n— 1)-dimensional face of the convex body ¢ (77) is obtained as ¢ (77-1),
where 771! is an (r— 1)-dimensional face of the simplex 77 entering into Q.

Put P==f~1(p); then P is composed of all convex bodies of the form ¢ (7),
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where T € Q, and we shall interprete P as the geometrical complex composed
.of these convex bodies. From the just established relation between 77, 771 and
$(7T7), &(T71) follows that the relations of incidences in P are the same as
.in Q, only their dimensionalities are reduced by z. Taking into account that if
TT-1€Q and 77 €K, and T7-! is incidentic with 77, then 77 € Q; we conclude
that if K is a manifold, then P is also a manifold.

Denote by ag, ay, ..., a, the vertices of the simplex V, and let ¥, be the com-
.plete original of the point @, in the simplex T € Q under the mapping f. Then Y,
is a certain face of the simplex 7. Let y, €Y, i=0,1,..., n, be a system
of points from the simplexes Y, V5, ..., V,. Denote by

V(Yo Yis --er V) : (10)

the open simplex from 7 with vertices y,, ¥, ..., ¥, From elementary geome-
‘trical considerations follows that through every point z € T, satisfying the condi-
tion f(z) € V, passes one and only one simplex of the form (10). In particular,
if z=y € ¢ (T), then we denote the simplex of the form (10) passing through
y by V(y). Since the mapping f transforms the simplex V(y) on the whole
simplex V, every simplex of the form (10) may be written in the form V(y),
where y € ¢ (7). From this, in particular, follows that ¢ (7) is the topological
product of simplexes Y, V¥, ..., Y,.

Let z be an arbitrary point from U. Put f(z)=x and denote by 7T such
.a simplex of the system Q that z € 7. Then there exists a simplex V(y) of the
form (10) containing 2z, such that y € P and the point y is uniquely determined.
Thus to every z € U uniquely corresponds a pair x, y, where x € V, y € P,
Conversely, to every pair x, y uniquely corresponds a z. Thus U falls into the
topological product V-P and f(z)==f(x-y)=x. Thus the lemma is proved.

In connection with the proof of Lemma 2 it 'is convenlent to formulate the
following remark C'), which is not necessary for the proof of Lemma 3, but
will be used later.

C') Let f be a simplicial mapping of the complex K into the n-dimensional
-complex L, V a certain open orientated n-dimensional simplex from L and p
.a point belonging to V. If 77 is an r-dimensional orientated simplex from K,
then the complete original ¢ (77) of the point p under the mapping f, which is
.a convex body of dimensionality r—n or the void set, may be naturally consi-
-dered as an orientated element. The orientation of the body ¢ (77) we define
inductively. If r==n, then we assign to the point ¢ (77) the sign coinciding with
the sign of the power of the mapping f of the simplex 7" on the simplex V.
If now the orientated original ¢ (7”) is defined for every simplex 77 with r<s,
then the function ¢ may be by additivity extended to an arbitrary algebraical
.complex C, which is a linear form of orientated simplexes from K of dimensio-

nalities less than s. Thus the function ¢ is defined also for the boundary 75 of
the simplex T%. The orientation of the element ¢ (7%) we define by the condi-
‘tion <})(T‘)‘=4)(7"~“). If we now assume that the function ¢ is already defined
for all simplexes from K and, by additivity, for all algebraical complexes from K,
then we have cp(C)'=¢l)((',‘).
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The following propositions D), E) and F) serve for the proof of Lemma 3.
1 formulate them without proof with reference to the corresponding literature.

D) Let G be a commutative group with a finite number of generators taken
in the additive notation. Under the integral character y of the group G we under-
stand its homoeomorphic mapping into the additive group of all integers. Let
u, Uy, ..., 4, be an arbitrary finite system of elements from G and Ay, &, ...
..., h, an arbitrary system of integers. We ask under what conditions there exists
an integral character y of the group G satisfying the conditions

() =h, i=1,2, ...,k

It turns out that the character y exists then and only then, when the following
condition is satisfied:

Whatever be the system of integers ay, a,, ..., a,, m, whete m=2, such
that ayu; +a.u, -+ ... au, =mu, where u € G, the integer a,h, -+ a,h,1-. ..
... ta,h, is divisible by m.

This assertion is easily proved. For its proof seel.

E) Let 8! be an orientated circumference, K a complex of arbitrary dimen-
sionality, G its one-dimensional Betti group and f a mapping of the complex K
into S!. Let, further, # € G and z be a cycle from the class of homologies u;
then f(2) =7y(w) ST, where y,(u) is an integer -equal to the power of the map-
ping of the cycle z, which depends only on z and not on the incidental choice
of z € u. It is easy to show that y, is an integral character of the group G. It
turns out that two mappings f and g of the complex K into S! are then and
only then equivalent, when the characters y, and Y corresponding to them coin-
cide, yp=1, Further, for every given character y of the group G there exists
such a mapping A that y=1,.

For the proof see 8.

F) Let K be a certain complex and

uf, ug, ...,u;y (11)

the r-dimensional basis of its weak homologies, i. e. such a system of r-dimen-
sional cycles that every cycle of dimensionality r from K is weakly homologic
to a linear form of cycles of the system (11) and, moreover, only to one such

form. Similarly, let L be another complex, and o5, @3, ...,'uf] its s-dimen-
s

sional basis of weak homologies. Then the £-dimensional basis of weak homolo-
gies of the topological product K-L is composed of all cycles of the form upvg,
where r-}-s=t¢.

For the proof cf. 9.

For us only the case £=1 will be important.

Definition 1. A mapping f of the complex K into the sn-dimensional
sphere S is called homologically unessential, if whatever be the integer m =2
and whatever be the n-dimensional cycle 2z, taken from K to the modulus e, its
image under the mapping f is equal to zero to the modulus .

8 N. Bruszlinsky, Stetige Abbildungen und Bettische Gruppen, Mathematische
Annalen, 109, (1934).

9S. Lefschetz Intersections and transformations of complexes and manifolds,
Trans. Amer. Math. Soc., 28, (1926).

7 Maremarnueckuit c6opHuK, T. 9 (51), N. 2.
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Observe that if the mapping f is homologically unessential, then every map-
ping equivalent to it will be also homologically unessential.

Lemma 3. Let K be a complex of arbitrary dimensionality and ¢ its ho-
mologically unessential mapping into the two-dimensional sphere S®. Then
there exists such a mapping f of the complex K into the three-dimensional
sphere S3 that @ =73f [ci. A)].

Proof. We triangulate the sphere S? so tliat not one of the edges of trian-
gulation passes through the north pole p of the sphere S2 [cf. A)] and choose
an open circle V so small that its boundary V does not intersect with the edges
of triangulation; then V= V- V will also not intersect with the edges of tri-
angulation. Let us further approximate the mapping ¢ by a simplicial mapping ¢
and put

U=4-1(V), U=0-1(V), U=¢-1(V);

then U is the boundary of the domain U in K and U_—_U—I-U is its closure.
Since the closed circle V lies inside a simplex of triangulation, the set U
falls, in virtue of Lemma 2, into the topological product V-P, so that if x.y=
=2z €U, where x € V, y € P, then ¢ (2)=1x.
We shall assume that the circumference V is orientated in accordance with
the angle coordinate introduced in it [cf. A)]. Choose in every component of the

complex P one point and denote these points by p;, p,, ..., p,. The orientated
circumferences

V'l’]’ V'pw ) V-pk (12)

are cycles in the complex K— U. Let us show that there exists a mapping A of
the complex K— U into the orientated circumference S! mapping every cycle of
the system (12) with the power one.

In virtue of the propositions D) and E) for the proof of the stated assertions
it is sufficient to show that from every relation of the form

a,Vep,+a,Vep,-+ ... +a, Vep,~mW (13}

in K— U follows that @, 4a,-}-...--a, is divisible by m. Suppose that the
relation (13) has place. Then

mV— (a,V-p; +a, V‘Pz‘*‘ et V'Pk)zév

where ¢ is the boundary of a certain complex ¢ from K—U. The complex
ct+a,Vepy+a,Vepy+ ...+ @, Vep, is evidently a cycle to the modulus m
from K, and the power of the mapping ¢ on it is equal to a;-a,+ ...+ a,.
Since the mapping ¢ is homologically unessential, the number @, +a,— ... +}a,
is divisible by m, and our assertion on the existence of the mapping A is proved.

On the circumference V there is an angle coordinate, and in the sequel we

shall not distinguish between the point from V itself and its angle coordinate.
On the circumference S! we shall also introduce the angle coordinate and shall
make no distinction between the point from S! and its angle coordinate,
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In virtue of this agreement o € V is the point from. V with the angle coordi-
nate O. The point O-.y, where y € P, belongs to U== V-.P, and hence is de-
termined the function

1(y)=:1(0-y), (14)

where j(y) € S, or the angle coordinate of the point u(y). For x € V, y € P

put
Y ()= x4 (). (15)

Thus we have “defined a mapping v of the complex U into the circumference S1.
Let us show that this mapping is equivalent to the mapping A of the complex

UcK—U.

For the proof we use the proposition E). Since every weakly homologic to
zero one-dimensional cycle frof! U is transformed under any mapping of the
complex U into S! into the zero cycle, it is sufficient to show that the mappings
L and v are algebraically equal on a certain basis of weak homologies from U.
For the construction of the basis of weak homologies of the complex U we use
the proposition F). Let z;, 2,, ..., 2, be an one-dimensional basis of weak
homologies of the complex P. Then the basis of weak homologies of the com-
plex U is

0.2, 025 ..., 0.2, V-pyy Vepy «.., Vep,.

On every ‘cycle of the form O-zj the mappings A and v simply coincide. On
every cycle of the form V.p, both of them have the power one. Thus the map-
pings L and v of the complex U are equivalent.

Since the mappings ) and v of the complex U are equivalent, there exists

a continuous deformation transforming the mapping L of the complex U into the
mapping v. This deformation may be extended into a deformation of the map-
ping A of the whole complex K— U, transforming the mapping )\ into a certain

new mapping 1, and this latter coincides on the complex U with v.
Thus we have constructed a mapping 7 of the complex K—U into S, coin-

ciding with v on U [cf. (19)].
The circumference V is given in polar coordinates, which are on the sphere S2
[cf. A)], by the equation p=¢, where ¢ is a constant and p the radius vector.

The mapping g of the complex U=V-P into §% we define by putting
& (x-y)==/(cos (u (¥)) +sin (n(y)) i) (54p (cos - j+-sinB-k)) [cf. A)], (16)
where x € V and has the coordinates eg, B and y € P. For x € V we have

g(x-y)=cos (n(y)+B)-/ 4 sin (n (y) 4-B)- & (17)
The mapping g of the complex K— U into S3 we define by putting
g(2)=cos1(z)-j+}siny (2)- . - (18)

From the relations (15), (17) and (18) directly follows that the so construct-

ed on two parts of the complex K mapping g is coordinated on the intersec-
*
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tion U of these parts, and hence we have a mapping g of the whole complex K
into the sphere 83 [cf. A)].

Let us show that the mappings ¢ and 8g of the complex K into the sphere S2
are equivalent.

Let us, in the first place, investigate the structure of the mapping ¥g. If x

is a point from V with coordinates e, B, and y € P, then §(g(x-y)) is the
point from S? with coordinates p, 8. The mapping ¢ transforms the same point
x-y into the point from S? with coordinates ep, 8. The mapping 9g is thus

obtained from the mapping ¢ for the point from U by a simple elongation of the
radius vector. If the point z € K— U, then 9 (g(2))=g¢ [cf. A)]. Thus, in order
to obtain the mapping $g from the mapping ¢ for z € K— U, it is necessary
to make the point ¢ (z) slide from its original position along the radius vector
into the point ¢. From what has been said we sée that the mappings $¢ and ¢
are equivalent.

~ Since the mappings ¢ and ¢ aie equivalent, we conclude, by what has been
just proved, that the mappings ¢ and #g are equivalent. Hence, in virtue of C),
follows that there exists a mapping f satisfying the condition ¢ =130f. The lemma
is thus proved.

In addition to Lemma 3 we make the following obvious remark.

G) If f is a mapping of the complex K into S3%, then the mapping ¢ =39/
of the complex K into S2 is homologically unessential.

From Lemmas 1 and 3 and the remark G) we can deduce now the following
important

Theorem 1. Let D be a class of mappings of the complex K into the
three-dimensional sphere S3. If f is a mapping of the class D, then denote
by A the class of mappings of the complex K into the two-dimensional sphere S2,
which contains the mapping 8f [cf. A)]. Then the class A is determined by the
class D and not by the incidental choice from D of the mapping f; hence
we may put A=39(D). It turns out that so obtained correspondence ¥ is an
one-to-one correspondence between all classes of mappings of the complex K
into S® and all homologically unessential classes of mappings of the complex K
into S2. ‘

Since we have already a classification of mappings of the three-dimensional
sphere X3 into the three-dimensional sphere 83, Theorem 1 gives us a classi-
fication of mappings of the sphere X3? into the sphere S2.

If fis a mapping of the sphere X3 into S3, denote by w,(f, 23) the power
of this mapping. As is known, two mappings f and g of the sphere X3 into the
sphere 83 are then and only then equivalent, when

o, (f; 28) =0, (8, 29). (19)

In order to be able to give a more concrete classification of the mappings
of the sphere 23 into S2, we recall the following definition due to Hopf (cf. 2):
Definition 2. Let @ be a simplicial mapping of the orientated sphere X3
into the orientated sphere S2. Choose in the sphere S? two points @ 5~& not be-
tonging to the edges of triangulation. Then ¢~!(a) and ¢~!(b) are naturally one-
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dimensional cycles from 23 [cf. C')]. Denote the linkage coefficient of these
cycles by o, (p, 2%). Let, further, ¢ be a certain two-dimensional algebraical
complex from 23 with the boundary @~!(e); then the power of its mapping
under @ on S? is equal to ®, (g, 23).

H. Hopf, to whom this construction belongs, has shown (cf. 2) that for two
equivalent mappings w and ¢ we have o, (9, %) =0, (¢, 23). He has also shown
that if f is a mapping of the sphere 23 into the sphere §3 then

o, (8, 2%) =, (/, 2 [ct. A)]. (20)

From this we deduce on ground of Lemma 3 and the condition of equivalency (19)
the following

Theorem 2. Two mappings ¢ and $ of the three-dimensional sphere X3
into the two-dimensional sphere S® are then and only then equivalent, when

o (¢, 2°) =0, (, 2?)
«(ef. Definition 2).

§ 2. Preliminary notions and remarks

For a classification of mappings of a three-dimensional complex K3 into the
two-dimensional sphere S2 (cf. Theorem 3) we have to introduce certain invari-
ants of the mappings of K3 into S2% [cf. § 2, F)], as well as certain invariants
of pairs of mappings of K3 into S? [cf. § 2, A')]. The present paragraph is
devoted to the introduction of these invariants necessary for the formulation of
Theorem 3 itself, as well as of invariants necessary for its proof.

In the first place let us introduce certain denotations and terms. Let {f,} be
a family of continuous mappings of the space F into the space R, where £ is
an arbitrary element of the topological space A. Denote by F-A the topological
product of the spaces F and A. Then every element z€ F-A is representable in
the form of a pair z2=x-¢, where x € F, t€A. We define the mapping f, of
the space F-A into R by putting /i (2)=/s (x-f)=/,(x). If this mapping is
continuous, then we shall call the family {f,} also continuous. If, conversely,
a certain continuous mapping fy of the product F-A is given, then it generates
a continuous family {f,} of mappings of the space F.

In the sequel two cases will be essential for us:

a) A is composed of all real numbers 0 <<f<C1,

b) A assumes two values 0 and 1.

If the question requires an algebraical interpretation and F is an algebraical
complex, then in both cases we shall consider the product F-A also as an alge-
braical complex. Inthe case a) we orientate F-A so that F.0 should enter into
the boundary of F-A with the negative sign. In the case b) we orientate F-A so
that F*-A=F.-1—F.0.

If two mappings f and g of the space F coincide on a closed subset ECF
and there exists a continuous deformation of the mapping f into the mapping g
not changing the mapping on £, we shall say that the mappings f and g are
equivalent with respect to E.

Let f, and g, be two continuous deformations of the mappings of the space F,
coinciding on a closed subset ECF, such that £, and g, coincide, as well as f
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and g;. It is easily seen that the mappings fi and g [cf. a)] coincide then on
the set E*=F-0\V F-1\/ E-AcF-A. We shall say that the continuous defor-
mations f, and g, are equivalent with respect to E, if the mappings fa and g of
the space F-A are equivalent with respect to E*.

If fis a continuous mappping of the orientated n-dimensional (n=2, 3)
sphere X" into the orientated two-dimensional sphere S2, then by w,_, (f, 2%
we shall denote for n=2 the power and for n=—3 Hopf’s number of the map-
ping f (cf. Definition 2).

A) Let f, and f; be two mappings of the n-dimensional (z==2, 3) orientated
element 77 into the two-dimensional orientated- sphere S2, coinciding on the boun-
dary T" of the element 77 Let us introduce the index 0, o (fo, f1, T™) esti-
mating the difference of the mappings f, and f,. Denote by A the aggregate of
two numbers O and 1. Identify in the space 7"-A in one point every pair of
points x-0 and x-1, where x € T"; then we obtain from the complex T7T-A the
orientated sphere X”. Since the mappings f, and f; coincide on the boundary ",
the mapping fi may be interpreted as a mapping of the sphere 2*. Put

O, _, (.f(); f]r Tn)=m,,__2 (fA ) Zn)

It is easily seen that in order that the mappings f, and f, should be equiva-
lent with respect to 77, it is necessary and sufficient that o,_, (fo, f;, T%)==0.
It is as easily seen that the index introduced above does not vary at a simulta-
neous deformation of the mappings f, and f;, if they remain coinciding on the
boundary 77,

B) Let f, and g, be two continuous deformations of the mappings of the
(n —1)-dimensional (=2, 3) orientated element E"~! into the orientated two-
dimensional sphere S2, coinciding on the boundary Er-1 of the element E"-1,
such that the mappings f, and g, coincide, as well as the mappings f; and g;.
Introduce the index o, _, (f, &, E"~!) estimating the difference of deformations
J, and g,. Let A be the set of all numbers 0 <<#<C1. It is easily seen that the
mappings fand gi of the element 7%= E"—1.A coincide on the boundary 7" of
the element 7". Put

mn—-Z (ft’ gf’ En—l)_____wn_z (fA’- &a Tn).

It is easily seen that the deformations /, and g, are equivalent with respect to

Er—1 then and only then, when the index is equal to zero.

C) Let f, and g, be two continuous deformations of mappings of the orien-
tated n-dimensional (=2, 3) simplex T" into the orientated two-dimensional
sphere S2. Denote by 7" the boundary of 7" and by 7' the aggregate of (n— 2)-
dimensional faces of the simplex 7. Suppose that the mappings £, and g, coin-
cide on 7", as well as the mappings f, and g,. Suppose, further, that the de-
formations f, and g, coincide on T'. Denote by E’;—l, i=0,..., n the faces
of the simplex 77, properly orientated. Then we have

0,5 (f1r & T =0, 5 (fo» & T+ Z‘”n o (fr & En_l)
i=0
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Let us prove the assertion C). The set of all numbers 0 << ¢ <<1 denote by A.
We shall consider the complex 77”-A in two copies; the first we shall denote by
Tm.A, the second by [7”-A]. Similarly we shall distinguish between all possible
subsets and algebraical subcomplexes of the complexes 77-A and [77-A]. By P
we shall denote the complex consisting of the two components 77.-A and [77-A].
Define the mapping ¢ of the complex P as coinciding with fa on 7"-A and with
gr on [T"-A]. The aggregate of all (n—1)-dimensional faces of the prism 7".A
we denote by A. If x € A, then it is easily seen that ¢ (x)=9 ([x]). Let us
identify in the complex P every pair of points x, [x], where x € A. Then we
obtain a complex Q. The mapping ¢ of the complex P may be now interpreted
as a mapping of the complex Q. i

Observe that the following algebraical complexes from Q are orientated
spheres:

n
Tn0— 771 S B A= U, [T7-0]—(T*1]4 S [E~1-A]=([U],
i=0 i=0
[T*-0]—T"-0=V,, [T*1]—T"1=V,,
[Er—1. Al —Er1. A=W,
Hence we have

U—U=V,— V1‘|‘2 W
{=0

Observe that the sphere U is the boundary of the prism — 7*.A, and the

sphere [U]-— the boundary of the prism —[7"-A].
Consider now the case #=2. Since U and [U] are homotopic to zero in @,

00 () Vo— Vi3 W) =0, (&, [U]— U)=0.
i=0

But
o, (P, Vo) =y (f5 &> T2, 0, (d.)’ Vi)y=0,(f;, & T?,
Wy ((‘P’ ‘V[)__'_(’)o (ft) & Ell)

Thus, for n=2 the assertion is proved.
Consider the case n==3. It is easily seen that in this case every two-dimen-

sional cycle from Q is homologic to zero, and hence the mapping ¢ is homo-
logically unessential; therefore, there exists a mapping y of the complex Q into
the three-dimensional sphere S§® such that $=1¥y (cf. § 1, Lemma 3). Since
o, (, X3) =0, (b, 23) for an arbitrary sphere 23 from Q, we obtain the re-
quired result by applying to the mapping y the same argument, as we applied
above to .

D) Let T* be an n-dimensional (z=2, 3) orientated element and f, g, %
three of its mappings into the orientated two-dimensional sphere S§2 such that
all these mappings coincide on the boundary 7" of the element T".Then we have

0, (i & Tﬂ)‘l““’,;-z (& b, THY=w,_,(f, h, T").

In the case n==2 the proof follows directly by computation of the powers
of the mappings. Consider the case n=3. Take three copies of the element 73
and denote them by T8, [73], {T®}. Compose the complex P of the three com-
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ponents 73, [73], {73} and define the mapping ¢ of the complex P as coinci-
ding with f on T3, with g on [7%] and with # on {7%}. Identify in the com-
plex P in one point every triple of points x, [x], {x}, where x € T3; the so
obtained complex denote by Q. The mapping ¢ may be obviously interpreted as
a mapping of the complex Q. Since in the complex @ every two-dimensional
cycle is homologic to zero, there exists a mapping y of the complex Q into the
three-dimensional sphere S® such that =3y (cf. § 1, Lemma 3). Thus the ques-
tion is again, as in C), reduced to consideration of the power of the mapping.

We apply now the established definitions and results to the mappings of the
n-dimensional complex K" (n=2, 3) into the two-dimensional orientated sphere
8% By K" we shall denote hereby the aggregate of all simplexes of the complex
K" of dimensionalities less than or equal to r.

A') Let f, and f; be two mappings of the complex K* (=2, 3) into S2,
coinciding on K”~1. We introduce the n-dimensional VV-complex estimating the
difference between the mappings £, and f; and denote it by w,_,(fy /1, K-

If T" is an orientated n-dimensional simplex from K7”, then we define the va-
lue of the n-dimensional V-complex to be introduced as

0, (for 1 T7)
on 77,

It is easily seen that mappings f, and f; of the complex K* are then and
only then equivalent with respect to K”~1, when o, ,(fy, f;, K)==0. It is as
easily seen that if the mappings f, and f; are subjected to one and the same
simultaneous deformation, while they remain coinciding on K”—!, then the com-
plex o,_, (fy, f;, K" does not vary.

B') Let f, and g, be two continuous deformations of the mappings of the
complex K”~! into &2, coinciding on K”~2, such that the mappings f, and g,
coincide, as well as f; and g,. Introduce the (7 — 1)-dimensional V-complex
0,_,(f, g K1) estimating the difference of the deformations f, and g,. If 7"~1
is an (7 — 1)-dimensional orientated simplex from K”~1, then the value on it of
the V-complex to be introduced we define as

0,5 (S & T"71)-
It is easily seen that continuous deformations f, and g, are then and only
then equivalent with respect to K"~2, when w,_,(f, g, K*~1)=0.
C) Let f, and g, be two continuous deformations of the mappings of the

complex K” into S?, coinciding on K”—2, such that the mappings f, and g;, as
well as f; and g, coincide on K"~!. Then we have

wn—Z(fl’ &1 K”)=wn_2 (fo» 8o K")—-]—Vu)n_z (ft’ & Kn—l),
where the sign V denotes the V-boundary.
D) Let f, g and & be three mappings of the complex K” into S2, coinciding
on K*~1. Then we have
W, _o (f’ & Kn)+wn_2 (& Kn)::w,,_g(f' h, K.
E) In addition to A) we observe that if f, is a certain mapping of the #-di-

mensional (n==2, 3) element 7" into S2, then there exists a mapping f; of the
same element into 8% such that the number o,_, (f), f;, 77 is defined and has
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a given value. Hence, in addition to A'), follows that if f;, is a mapping of the
n-dimensional (n=2, 3) complex K" into S2, then there exists a mapping f; of
the same complex into S? such that the V-complex o, ,(fy, f;, K”) is defined
and coincides with the given one. In precisely the same manner we observe, in
addition to B), that if f, is a deformation of the mappings of the (z— 1)-dimen-
sional (n=2, 3) element E"~! into S?, then there exists a continuous deforma-
tion g, of mappings of the same element into S* such that the number

(on—Z (ft’ egt’ Eﬂ—l)

is defined and has a given value. In addition to B') hence follows that if f, is
a deformation of the mappings of the (n— 1)-dimensional (=2, 3) complex
K"=1 into 82, then there exists a continuous deformation g, of the mappings of
the same complex into S? such that the V-complex o, _,(f, g, K*~1) is de-
fined and coincides with the given one.

Let us prove E). Let f, be a given mapping of the element 7" and let R"
be an element from 77 not intersecting with the boundary 77 of the element 77.
Let us deformate the mapping f,, not changing it on the boundary, into such a
mapping f that f{ (R") contains only one point p € §?. Identify now in one
point ¢ all points of the boundary R of the element R" and denote the so obtain-
ed sphere from R™ by 2". Let us now determine the mapping f of the
sphere 27 into 82 such that f'(¢9)=p and o, , (f', 2% has a given
value. The mapping /' of the sphere X* we shall interprete as a mapping
of the element R”. The mapping f; of the element 77 we define as co-
inciding with f(') on T"—R" and as coinciding with f' on R”™. The continuous
deformation g, is constructed in precisely the same way by starting from the map-
ping fa (A being the set of all numbers 0 <<#<C1) of the element 7" = E"~1.A.

F) Let K2 be a certain two-dimensional complex, K!— the complex composed
from all nul-dimensional and one-dimensional simplexes of the complex K?, and
f a mapping of K2 into S2. Suppose that there exists a point p € S% such that
S(K') does not contain p. Let us now define the V-complex o, (f, K?) charac-
terizing the mapping f. The value of the complex o,(f, K?) on the simplex 72
from K2 we define as the power of the mapping f of the simplex 72 at the point p.
It turns out that two mappings f and g are equivalent then and only then, when

(!)0 (f: Kz)v(’)() (gy K2)

It is evident that if f; and f; are two mappings of the complex K2 into S2,
coinciding on K1, then wg(fy, f;, K2 =0, (f;, K2 —0,(f,, K?.

The proposition F) which is a particular case of Whitney’s theorem 10, is
given here without proof; it follows also very easily from what has been proved
already in the present paragraph.

G) Let K® be a three-dimensional complex and K2 the complex composed of
all simplexes of the complex K® of dimensionality not greater than 2. The map-
ping f of the complex K2 into $%2 may be then and only then extended to the
whole complex K3, when oy (f, K?) is a V-cycle in K3 [cf. F)].

10 H. Whitney, The maps of an n-complex into an n-sphere, Duke Mathematical
Journal, 3, (1937).
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Suppose that the mapping f is already defined on the whole complex K3, and
‘that 7% is a three-dimensional orientated simplex from K3. Then the power of the
mapping f of the boundary 73 of the simplex 73 is equal to zero. On the other
hand this power is obviously equal to the sum of powers of the mappings of the
faces of the simplex 73. Thus V o, (f, K2)=0.

Suppose that f is given on K? and Vo,(f, K2 ==0. Then the power of the
‘mapping f of the boundary 73 of a certain simplex 73 from K3 is equal to zero,
-and consequently the mapping f may be extended to 73, and we obtain an exten-
sion of the mapping f to the whole complex K3.

§ 3. The mappings of a three-dimensional complex into the two-dimensional sphere

By K" we shall, as above, denote an n-dimensional complex and by K’ the
-aggregate of all simplexes from K", whose dimensionality does not exceed r. By
S” we shall denote the r-dimensional orientated sphere.

If f and g are two mappings of the complex K3 into S2, then for the solu-
tion of the question on their equivalency we have first of all to solve the ques-
tion on the equivalency of these mappings on K2. In fact, if it turns out that

the mappings f and g are not equivalent already on K2, then the question on
their equivalency on K3? is by this answered in the negative. The criterium of
equivalency of the mappings f and g on K2 has been already given in § 2
[cf. § 2, F)]. Thus it remains to consider the question on the equivalency of the
mappings f and g of the complex K?® in the case, when these mappings are equi-
valent on K2. Under this assumption we can transform the mapping g of the com-
plex K2 by a continuous deformation into the mapping f and then extend this
deformation #, the whole complex K3. We come so to the case, when the map-
pings f and g of the complex K3 simply coincide on K2. The question on the
-equivalency in this case is completely answered by the following theorem.

Theorem 3. Let f and g be two mappings of the complex K® into S2,
«coinciding on K. Put o (f;, K?) =w0,(g, K?) =22 [cf. § 2, E)]. Put, further,
o, (f, & K)=2% [cf. § 2, A')]. 22 and 2% are a two-dimensional and three-
dimensional NJ-cycles from K3 [cf. § 2, G)]. The mappings [ and g of the
complex K3 are equivalent then and only then, when there exists in K3 an
one-dimensional N-cycle x! such that

22 X2 (cf P. C.. 1)

Before we proceed to the proof of Theorem 3, we prove Lemma 4, whicl in
substance solves already the question.

Lemma 4. Let f, be a continuous deformation of mappings of the complex K3
into the sphere S% such that the mappings f, and f, coincide on K2, and the
mapping f, coincides on K° with the mapping f, for arbitrary t. Put

(‘)o(fo’ K2)=(°o(f1’ K2)=zz» (2)
0, (fo, f1,» KB)=25. 3)

Then 22 and 23 are a two-dimensional and a three-dimensional \-cycles from
K. Denote, further, by e, such a continuous deformation of the mappings of
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the complex K3 that the mapping e, coincides with f, for arbitrary t and put

t

(!)0 (ety fp K1)=xl' (4)
Then it turns out that x' is a V-cycle from K3? and
' 2837 2ex1 22 (cf. § 2), (5)
e==1.

Proof. Let A be the set of all numbers 0<<f<C1; then the mapping fa of
the complex K3-A into S? is defined (cf. § 2). The complex K3-A is not sim-
plicial, but without limiting the generality we may suppose that fy is a simplicial
mapping of a certain simplicial subdivision of the complex K3-A.

By p° and p! we denote two points of the sphere §2 lying inside one of the
simplexes of the taken triangulation of the sphere S2. Let 7”7 be an orientated
simplex of the complex K3. By P(77-A) we denete the complete orientated
original of the point p? in 77-A under the mapping fa, i=0, 1 [c¢f. § 1, C')].
By P/(T") denote the complete orientated original of the point pt in T under
the mapping f,, i=0, 1, {=0, 1 [¢f. § 1, C")]. In view of the fact that the
mappings f, and f; coincide on K2, we have

Pi(T?) = P{(T?) = P! (T?).

In the sequel we shall for shortness use the denotations introduced in my
preceding paper [cf. P. C., A)]. For computation of the relations of bounding
we shall use the relation obtained in the present paper [cf. § 1, C)].

We note the following relations of bounding:

Pi(T2-A) = Pi(T?).1 — P!(T?).0— Pi(T2.A), (6)
Pi(T3-8) = Pi{(T3)-1 —P{(T3).0 [cf. (6)], (7)
Pi(T3) = PL(T3) =PI (T?). ®)

If C is a certain nul-dimensional complex, then under the index /(C) of this
complex we shall understand the algebraical number of points entering into it.
In virtue of the very definition of V-complexes 22 and x! we have

22 (T?) =1 (P (T?), 9)
£ (TY) =1 (P(T1-A)). (10)

- Let now every point x-¢# (x€7", £ a number) from the complex PI(T7.A)
slide along a straight line and uniformly in time into the point x-0 (the straight-
ness and uniformness is understood in the sense of affine geometry which is in
the prism 77-A). The complex, situated in 77-A, described by this motion of
the whole complex P#(77-A) we denote by Q(77-A). The complex from 77-0,
into which the complex P?(77-A) passes at the end of the motion, we denote
by Q*(T")-0, where the complex Qf(7") belongs to 7v.

Observe that the complex QY(77) is a projection of the complex P! (7T7.A);
in particular, for r==1 both these nul-dimensional complexes have an equal
index, and consequently
‘ (T =1(QY(TY) [cf. (10)]. (11)
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Note the following relations of bounding:

QI (T2-A) == P!(T2-4) — P*(T%)-A— Q' (T?)-0 — Q* (724, (12)
QI (T3-A) == PL(T®-A) — PL(T%)-A— QI (T3)-0 [cf. (12)], (13)
QUTH =—Q\(T? [cf. (6)], (14)

Q (T3 =0 [cf. (14)]. (15)

From the relations (14) and (11) follows that x! is a V-cycle in X3. This
fact could have been also established in a more direct way on ground of the
proposition C'), § 2. Similarly, from the relations (8) and (9) follows that 22 is
a V-cycle in K3.

From the relation (8) follows that the nul-dimensional cycle P"(T?') situated in
78 has the index zero and, consequently, bounds a certain one-dimensional com-
plex A’(T%) also situated in 73,

Al (T3) == Pi(T3). (16)

In virtue of (8) and (16) the one-dimensional complex P;'(T3)—Af(T3) is,

for £=0, 1, a cycle in the simplex 7% and, consequently, bounds in it a cer-
tain two-dimensional complex B;'(Tg), t=0, 1,

Bi(T?) = P{(T%) — AN(T%) (¢=0, 1). (17)
In virtue of the relations (7) and (16) the one-dimensional complex
Pi(T3 - A) - AL (T3)-0— AI(T3)-1
situated in 73-4 is a cycle and, consequently, bounds a certain two-dimensional
complex Bi(T3.A) situated in 73.4,
BE(T3-A) = P! (T3-A) - AL (T%).0 — A (T9). 1. (18)
Consider in the complex K3-A the orientated three-dimensional sphere
S=(T%.-4)=T3-1— T3.0— T3.A. (19)
Since this sphere bounds in K3-A the element 73.A, the mapping f is for it
unessential, i. e. o, (fa, 2)==0. Let us calculate this vanishing invariant by
means of the introduced algebraical complexes; to this end denote by U’ the
complete original of the point p? in ¥ under the mapping f . It is easily seen

that

Ut = P(T9)-1— Pi(T%).0 — P! (T3.4). (20)

Thus the linkage coefficient of the cycles U° and U' in ¥ is equal to zero,

and we have
Vs (UY, UY)y=

=I5 (B)(T3)-1— BY(T9)-0— BO(T3-A), P} (T?)-1— P}y(T?)-0 — P (T%-4)) =
=1, (BY(T%), P1(T%) — I, (BY(T?), Py(T%) — I}, (BY(T3-4), P'(T%-4))=0.
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Hence we obtain
w(T%) =1, (BY(T?), P}(T*®) — I (B)(T?), Py(T?)=
=1, ,(B°(T?.4), P'(T?-4)). 21)
Let us now show that
w (T3 =23 (T%) [cf. (3)]. (22)
To this end denote by A' the aggregate of two numbers O and 1. Then is defi-
ned the mapping fa of the complex T3.-A’ (cf. § 2). The complex 73-A’ consists
of two elements T8-1 and — 7.0, and fy (x-0)==fu (x-1) for every x€ T3,
Identify in one point every pair of points x-0 and x-1; then the complex 73-A
will be transformed into the sphere %', and the mapping fa may be considered
as a mapping of the sphere X'. In virtue of the very definition of the V-cycle
2% we have 28 (T®%)==w, (fa, 2'). Let us calculate o, (fy, X'). To this end de-
note by w’ the original of the point p? in X' under the mapping fu. It is easily
seen that )
w! == Pi{(T?)-1— Pi(T3)-0.
Thus we have
2(T%) = Vy (w0, w!)=
=1, (BX(T?)-1—B}(T?)-0, PI(T?%-1—P}(T?)-0)=
=I5, (B} (T?), P1(T®) — I, (B3 (T?), P} (T?)).

So the relation (22) is proved and we obtain
28 (T3) = Ijv. (BY (T%-A), P1 (T3-A)). (23)

Let us now calculate 23(73) starting from the relation (23). To this end

identify in the complex 73.A in onme point every pair of points x-0 and x-1
and denote the obtained manifold by M; this manifold is, as may be easily seen,
homoeomorphic to the product of the two-dimensional sphere and the circumference.

The one-dimensional complex P’(Y"s-A) represents in M a cycle [cf. (7)] and

bounds in M the two-dimensional complex Bi(f‘3-A) [cf. (18)]. Thus the linkage
coefficient ) )
Vy (P2 (T3-8), P1(T3-4)) (24)

is defined, since both involved cycles are homologic to zero in M. The relation
(23), on the other hand, shows that 2% (73) is nothing else but the linkage
coefficient (24), . )
23(T3) =V, (PO(T3-4), P (T3-4)). (25)
Let us now calculate this linkage coefficient.
Observe that the complexes P! (T3):A and Q/(73)-0 are cycles in M [cf. (15)].
In virtue of the relation (13) we have
Vi (PO (T3-4) — PO (T%)-A— QV(T%)-0, P1(T*-A)) =
=1, (Q"(T3-4), P1(T2-4)=
= > Ira(Q°(T2-4), PL(T2-4))= 3} y¥(T?), (26)

T2¢ 7 T2€7?
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where y? is a function defined on an arbitrary two-dimensional simplex T2, i.e.
a two-dimensional V-complex from K3 depending on the deformation /- Put now

23 (T¥) = V,, (P°(T?)-A} Q(T9)-0, P! (T3-4)). 27)
In virtue of the relations (25), (26) and (27) we have
2 —2%=Vy?2,
and this means that
237 2%, (28)

Now we shall calculate 2z*3(73) on ground of the relation (27).
In virtue of the relation (27) we have

23 (T3) =V, (PO(T%)-A, P1(T3:-A)) 4 V, (Q°(T%)-0, PL(T?-4)). (29)

Since the cycle Q°(T3)-0 lies totally in 73.0, and the cycle Pl(j“3-A) inter-
sects 73.0 along the nul-dimensional complex P! (T3)-0,
Vi (Q(T9)-0, P1(T2-4) = Vix (Q (7%), P'(T9)). (30)
Further,
Vi (PO(T?)-A, PU(T3-A)) = V,, (P! (T3-4), PO(T3)-4A). (31)
In virtue of the relation (13) we have
Vi (P(T5-8) — P1(T%)-A— Q1 (7%9)-0, PO(T?).4)=
=1, (Q" (T3-8), P*(T%)-4)=0, (32)

since the complex Q! (73-A) does not intersect with PO(T3).A. Thus, from (32)
we obtain

Vi (PL(T%-A), PO°(T3).4)=
= Vy (P1(T%)-8, PO(T%)-8) 4 V, (Q'(7%)-0, PO(T%)-4)=
Vo (PL(T3)-A, PO(T3).A) 4
+ Vi (QU(T%), PO(T%)). (33)

The cycle P!(73)-A bounds in M the complex — A!(73)-A, which does not
intersect with PO (73).A, and hence
Vu (PU(T3)-A, PO(T3).-A)=0. (34)
Thus we finally obtain
2(T%) = Vi (QU(T%), PH(T%) 4 Vin (QU(T9), PO(T)). (35)
Taking into account the relations (9), (11) and (14), we obtain from (35)
2" =¢e2x1 X 22, (36)

where e== * 1 has a quite determined value, but is not calculated here (cf. P. C.,
theorem 2). From (36) and (28) follows (5), i. e. the assertion of Lemma 4.
The Lemma 4 is thus proved.

Proof of Theorem 3. Let g, be such a deformation of mappings of
the complex K3 into the sphere S? that the mappings g, and g, coincide on K2.
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Put
2=0,(g> & K?) [cf. § 2, B)],
2=, (&, K?) =0, (&, K?) [cf. § 2, F)].
Let us show that in K3 there exists an one-dimensional V-cycle z! satisfying the
condition
2357 2ul X 22, 37y
Denote by A the set of all numbers 0 <C#<C1. Then the mapping g of the
complex K3.A into S? is defined (cf. § 2). Denote by L the subcomplex of the
complex K3:A, composed of K3-0, K3-1 and all segments of the form x-A,
where x€K?°. The mapping gn is defined on L, and every segment of the form
x-A is mapped in such a way that gn (x-0)=g (x-1). Let us define a conti-
nuous deformation y, of every segment x.A such that y, coincides with gx and
the mapping y, transforms the whole segment x-A into the point g (x-0)=
=g (x-1), where ¥, (x-0) =1y, (x-1) =g (x-0) for every £. On K3.0 and K3-1
we define the deformation j, so that the mapping y, should coincide with gy for
every f. The so obtained deformation j, of the mappings of the complex L is
continuous and it may be continuously extended to the whole complex K3+A. We
denote the mapping y, by fa; it is defined on K3-A. The mapping fi determines.
a deformation f, of mappings of the complex K3, satisfying the condition of
Lemma 4. We thus obtain 2337 2ex! X 22, and the existence of the V-cycle u?

satisfying the condition (37) is proved.
Let f, and / be two mappings of the complex K3 coinciding on K2. Put

22=0,(fo, /, K¥), 2°=0,(/o, K?) =0, (I, K?).

We shall show that if in K?® there exists a V-cycle u! satisfying the condition
28 7 2u! )X 22, then the mappings f, and / are equivalent. This will complete the
proof of Theorem 3.

Let ul==ex! (cf. Lemma 4). Denote, further, by e, 0<<f<C1, a mapping
of the complex K* into §2, coinciding with f,. In virtue of the rematk E), § 2,
there exists a continuous deformation f, of mappings of the complex K! into §2
such that o (e, f, K')=x! [cf. § 2, B')]. Extend the deformation f, to the
complex K2. In virtue of the remark C'), § 2, we have

0, (e, f1, K?) — 0 (g, fys K?) =V, (ep S K1)=Vx!1=0,
and since, moreover, ®,(ey, fo, K%)=0,
W, (el, fl: K?) =0,

and, consequently, in virtue of A'), § 2, the mappings fy==e, and f, of the
complex K? are equivalent with respect to K. The continuous deformation of map-
pings the complex K? realizing this equivalence we denote by &,- The deformation
of the mappings of the complex K? obtained in the result of successive applications.
of the deformations f, and g, we denote by 4, The mappings hy==f, and
hy==g; of the complex K2 coincide, and o, (e, h, K1)=x!. We extend the de-
formation %, to the whole complex K® and applying to it Lemma 4 we obtain

o (fo, 2y, K3) T e2x! X 22,
Thus o, (2, /, K370 [cf. § 2, D)}, or, in other words, o, (k;, [, K3)=Vy2.
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In virtue of the remark E), § 2, there exists a continuous deformation kt of
the complex K2, transforming the mapping k,==#k; into the mapping k; and not
changing the mapping %, on K!, such that o, (e, &, K?) =y?, where e,=h,.
Extend the deformation %, to the whole complex K3. Then, in virtue of C'), § 2,

we shall have
o, (h, k), K3)= o, (e, k., K3) 4 Vy2.

Hence we conclude that o, (%;, 7, K3)=0 [cf. § 2, D')]. Thus, in virtue of A'),
§ 2. the mappings k; and [/ are equivalent, and consequently so are also the
mappings f, and /. Theorem 3 is thus proved.

In addition to Theorem 3 we shall prove the following proposition on the
-existence of mappings.

A) Let 22 be a two-dimensional cycle from K3; then there exists a mapping f
of the complex K3 into S2 such that

o (f; K =22 (38)

Furher, if f; is a certain mapping of the complex K3 into S? and 23 a certain
three-dimensional V-cycle from K3, then there exists a mapping f; of the complex
K3 into 82 coinciding with f; on K2 and satisfying the condition

0)1 (fO’fl’ K3)=Z3. (39)

Chioose on S? a certain fixed point ¢ and map every two-dimensional simplex
T2 from K2 on S? with the power 22(T?) so that its boundary 772 is transform-
-ed into the point g. The so arising mapping f of the complex K2 satisfies the
-condition (38) [cf. § 2, F)]. Since 22 is a V-cycle, the mapping f may be ex-
tended to the whole complex K3. The existence of the mapping f, satisfying the
condition (39) follows from the proposition E), § 2.

Theorem 3 has the following defect: it does not establish the complete system
of invariants of the mappings of the complex K3 into S2, but only enables us
to establish the equivalency or nomn-equivalency of two mappings. Moreover, in
order to establish the equivalency of two mappings already equivalent on K2, it
is necessary to subject one of the mappings to a continuous deformation so as
to make it coinciding with the other on K2.

The contents of Theorem 3 is exposed in more detail by the following pro-
position, which follows from Theorem 3 and the proposition. A):

B) Let B, be the r-dimensional V-Betti group of the complex K3. If Z°€Bg,
then there exists at least one mapping f of the complex K3 into S?, satisfying

the condition
o, (f, K?)=2z2€22. (40)

Denote, further, by 2Blv X Z? the set of all elements of the group B3\7, contain-
ing cycles of the form 2u! X 2%, where u! is an arbitrary V-cycle of dimen-
_sionality one. Then to every co-set of the group B3v with respect to the subgroup
ZBle Z? corresponds one and only one class of mappings satisfying the con-
dition (40). In order to determine this correspondence it is, however, necessary
to choose arbitrarily one definite mapping satisfying the condition (40), to which
shall then correspond the co-set 2BL X Z2.
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§ 4. Application to manifolds

In the case when the three-dimensional complex K3 is an orientable manifold
the results of the foregoing paragraph may be formulated by means of the usual
homologies, which presents a certain advantage.

We shall understand here under K3 a three-dimensional, in a definite manner
orientated manifold, somehow subdivided into simplexes. By B’ we shall denote
the r-dimensional usual Betti group of the manifold K® and by B’v—its r-dimen-
sional V-Betti group. It is known that between the groups B’" and B?’v—" there is

a quite definite natural isomorphic correspondence (cf. P. C., theorems 3, 4).
By S? we shall, as above, denote the two-dimensional orientated sphere. By K"
we shall denote the complex composed of all simplexes of the complex K3, whose
dimensionality does not exceed r.

A) Let f be a simplicial mapping of a certain subdivision of the complex K3
into §% and p a certain point from 82 lying inside a simplex of the assumed
triangulation of the sphere S2. By f~!(p) we denote the complete orientated ori-
ginal of the point p in K*® under the mapping f [cf. § 1, C')]. Then f~1(p) is
an one-dimensional cycle from K3; denote the index of its intersection with an
atbitrary simplex 72 of the complex K3 by 22(7T?). Then 22 is a V-cycle, and
the classes of homologies containing respectively f~1(p) and 22 correspond to each
other (cf. P. C., theorem 3). It is easily seen that 22=w,(f, K?) [cf. § 2, F)].
Thus the class of homologies containing f~1(p), as well as the class of homo-
logies containing o, (f, K?), determines the mapping f up to the equivalency on
the complex K2[cf. § 2, F)].

In view of the fact that the class of homologies, containing o, (f, K?), may
be taken arbitrarily [cf. § 3, A)], the class of homologies, containing f~1(p),
may be also taken arbitrarily.

Now arises the question of establishing of equivalency or non-equivalency of
two mappings f, and f; in the case, when f;~! (p) and fi (p) are homologic to each
other in K3.

B) Let f be a mapping considered in A) and p°® and p! two points lying
inside the simplexes of triangulation of the sphere S2. It is easily seen that
F1(p") and f~1(pl) are homological cycles from K3; suppose that they are
weakly homologic to zero. Thus, there exists a complex C from K3 with the
boundary kf~!(p%), where k is a natural number. We define the linkage coeffi-

cient Vs (f~1(p?), f~1(p')) by putting
Vi (FH(p%), 1 () = ¢ s (G, f=1 (p) =y (£, KO). ()

Thus this linkage coefficient may be also a fraction. Its fractional part is, as is
known, an invariant of the class of homologies, containing f~!(p%, while the
linkage coefficient itself is an invariant of the class of mappings, containing f.
This is proved in the same way as in Hopf’s paper, 2. It turns out that for
a given class of homologies, to which the cycle f=1(p% belongs, the number
o, (f, K3) is the only invariant of the class of mappings; moreover, the integral
part of the number o, (f, K®) may assume arbitrary values, while the cycle
J~1(p® Delongs to the given class of homologies.

8 Mavemarnueckui coopruk, T. 9 (51), N. 2,
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Let us prove the proposition B). Let f, and f; be two mappings of the
complex K3 into 82 coinciding on K?2. Denote by P;(Tf") the complete orientated

original of the point p? in the simplex T3 from K3 under the mapping fj. The
complex Pi(T%)— Pi(T?) is a cycle in the simplex T3 and hence bounds in it
a certain complex Q(T?3),

Q T3y =P{(T?) — P{(T?). 2)

Since the mappings f, and f; coincide on K2, the cycles f}—l (pH (=0, 1
j=0, 1) belong all to one class of homologies [cf. A)]; suppose that this class
of homologies has a finite order k. Thus there exists a complex C; from K® with
the boundary kfj.—l(p").

Denote the intersection of the complex C;Z with the simplex 73 by Cj‘.'(Tf‘).
Then

’

Ci='3 Ci(T9), 3)
. TiEK?
i ph=3 PL(TY). (4)
T3CK®
Put
23:(01 (fozifly K3) [Cf' § 27 A')] (5)

and compute 23 (73) by means of the introduced complexes. To this end denote
by A the pair of numbers O and 1. Then is defined the mapping fy of the complex
T3.A (cf. § 2). This mapping possesses the property that for every x€ T3 we have
Jfa (x-0) =fa (x-1). Indentify in one point every pair of points of the form x-0
and x-1 and the sphere so obtained from 73.A denote by 23.

The mapping fi may be now considered as the mapping of the sphere X3. It
is easily seen that the complete original of the point p? in 23 under the map-
ping fy is equal to P! (T®)-1— P{(T?)-0. Thus

2 (T8 = V,, (PY(T?)-1 — PJ(T%)-0, P1(T%.1— P}(T3).0)=

1
k

I, (RQO(T?) -1 —|—— Cg(T?’)- 1— Cg(T3)-0, P} (73)-1 —-P(l)(T*")-O) —_
— T Iy (RQO (T3 - CQ(T¥), PY(TH)— 4 I (C(TH, PY(TH).  (6)

Since the manifold K3 is orientated, we may assume that every its three-dimen-
sional simplex has a definite orientation, coordinated with the orientation of the
whole manifold K3. Put

> B (T =23 (K%), X Q(T)=Q" (7)
TI€ Ko T3EKe

With these denotations we have
(kQU - CY =k (p0) [cf. (2), (3), (4), (N], (CY =kfg (p%). (8
Summing the equality (6) over all T3€K?3, we obtain

28 (Ks)_—‘%]Kﬂ(on'i' ngjrl (pl)) _%[Ka (Cg:fo_l (pl))’
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2 (K3 = Vs (71 (p"), ST (P)) — Ve U571 (P9), S5 ' (P1)
[cf. (1), (8)], or, which is the same thing, _
2 (K% =0, (f;, K¥)—0,(f;, K- ©
The group B3'v is for the three-dimensional orientable manifold K3 the free

cyclic group. If 7% is a certain simplex from K® and 23 1is the V-cycle from K3
assuming the value 1 on 7% and the value O on all other three-dimensional

simplexes from K3, then 2 may be taken for the basis of V-homologies in K3.
It is easy to see that

By (K3) ;3’ (10)

and consequently the number 2®(K3) determines the class of homologies, to which
belongs the V-cycle 23. Thus, in the case, when o, (f;, K?) =0, (f,, K?), we
have 233—0, and hence the mappings f, and f, are equivalent (cf. Theorem 3).

Let us now show that the integral part of the number o, (f, K3) may be
made arbitrary, the class of homologies, to which f~1(p% belongs, being given.
In fact, let f, be an arbitrary mapping such that f;~1(p?) belongs to the given

class of homologies; then, in virtue of A), § 3, there exists such a mapping f;
that 22=w, (f;, f;, K?) is an arbitrary V-cycle from K3. Thus for a given f,
we may choose f; such that the number 23 (K?®) should have an arbitrary integral
value [cf. (10)], and this means that the integral part of the number o, (f,, K?)
may be chosen arbitrarily [cf. (9)]. The proposition B) is thus compietely proved.

Consider now the case when the cycle f~1(p) [cf. A)] is weakly not homo-
logic to zero. , .

C) Let Z' be a fixed free element of the group B! and U? an arbitrary
element of the group Bl. Denote by X the smallest positive value which the
number /g (U?, Z') may assume for a given Z! and arbitrary U2. From Poincaré-
Veblen’s theorem follows that /g (U2, Z') admits of positive values, since Z! is
a free element of the group B!. It turns out that among the mappings f satisfying
the condition

TP EZY [ch A)] (11

there are exactly 2\ pairwise non-equivalent.

In every class of mappings satisfying the condition (11) we may choose one,
so that all chosen mappings should coincide on K2 [cf. A)]. Let f, and f; be
two mappings satisfying the condition (11) and coinciding on K2. Put

33:(”1 (fo’ fv K3), 2.'2:(00 (fm K?) =uo, (fl’ K?).
In virtue of Theorem 3 the mappings f, and f; are equivalent then and only then,
when
23'§\7' 2u! X 22, (12)

The class of V-homologies, to which the Y-cycle Z3 belongs, is determined
by the integer 23 (K3) [cf. (7)]. The class of usual homolozies Z° corresponding
to this class, is also determined by an integer, namely by the index of the nul-
8%
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dimensional complexes entering into Z° Thus we may simply take it that Z° is
an integer and that it coincides with Z3(K3). We denote the class of usual ho-
mologies, corresponding to the class of V-homologies containing the V-cycle
u!', by U?; since u! is an arbitrary V-cycle, U? is an arbitrary element of the
group B2. Finally, to the class of V-homologies containing 22 corresponds the
class of usual homologies Z! containing f;~!(p) [cf. A)]. In usual homologies the
relation (12) may be thus written in the form

Z0=2[. (U2, ZY).

In virtue of the arbitrariness of the class of homologies U? the right-hand
side of the last relation is an arbitrary number divisible by the number 2i.
Thus the mappings f, and f; are equivalent then and only then, when the num-
ber 23 (K®) is divisible by 2); at the same time the number 23 (K3) may assume, for
a given f,, an arbitrary integral value and, consequently, there exist exactly 2
non-equivalent among each other mappings f satisfying the condition (11). The
proposition C) is thus proved.

Example. Let §? be the metrical two-dimensional sphere and p and ¢ two
its diametrically opposite points. Denote by @, the mapping of the sphere S2 on
itself, obtained by means of a rotation of the sphere S? by the angle a about
the axis pg. Denote by 8! the circumference with the parameter ¢, 0 <Cf << 2m,
introduced on it. The topological product of S2 and S! denote by K3. Every point
YEK?® is given by a pair y=x-f, x€S?, 0<Cf<<2m. Define the mapping ¢
of the manifold K% on itself by putting @ (x-f)==1,(x)-£. Define, further, the
mapping f, of the manifold K® on the sphere S? by putting f, (x-#) = x. Define
a second mapping f, by putting f, =79. Then we obtain two mappings f, and f;
of the manifold K% on S§? such that the complete original of the point p
under both mappings is p-S!. The number A for the cycle p-S! is easily seen to
be equal to 1 [cf. C)], and hence there exist exactly two non-equivalent mappings
satisfying the condition f~!(p) ~ p.S!'. These two mappings are precisely f;
and f;.

The mappings f, and f; are completely equipollent, since the mapping @ is
an homoeomorphism. Thus there is no possibility to establish in a natural manner
a correspondence between the classes of mappings and the co-sets of the group
B3v with respect to the subgroup 23{7><Z2 [cf. § 3, C)], but it is necessary to
choose arbitrarily that mapping, which corresponds to the co-set QB{7><Z3.

From the fact that the mappings f, and f, are not equivalent follows that the
mapping ¢ is not equivalent to the identical mapping, whereas the mapping o
and the identical mapping are homologically equivalent.

§ 5. The mappings of the four-dimensional complex into
the two-dimensional sphere

By K* we shall denote here the four-dimensional complex and by K7 the sub-
complex of the complex K* composed of all simplexes of the complex K% of
dimensionalities not exceeding r. By 82 we shall denote the two-dimensional
sphere.
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In § 2 was shown that the mapping f of the complex K2 into S§% may be
then and only then extended to the complex K3, when o, (f, K?) 1is a V-cycle
in K3 [cf. § 2, G)]. Here we shall solve the question on the extension of the
mapping f, defined on K?, to the whole complex K*.

Theorem 4. Let f be a certain mapping of the complex Kz into the
sphere S2. The mapping f may be extended to the whole complex K* then and
only then, when o, (f, K?) is a V-cycle in K*, satisfying the condition

0y (f, K?) X oy (f, K350 [cf. § 2, F)]. (1

Proof. Suppose that the mapping f is already defined on the complex K<
Without reducing the generality we may suppose that f is a simplicial mapping
of a certain simplicial subdivision of the complex K% Let p° and p! be two
inner points of a certain simplex from the assumed triangulation of the sphere S2.
If 77 is a certain orientated r-dimensional simplex of the complex K4, then we
denote by P?(77) the complete original of the point p? in the simplex 77 under
the mapping f. Put, for shortness,

2 PHTTY) =P 2)
Tr—1¢ fr

From the fact that the three-dimensional sphere 7* bounds in K* the sim-
plex T* follows o, (f, T4)=O, or, in other words,

Vi (PO (T¥), PY(T%)=0. (3)
Put
o, (f, K2 =22 (4)
In virtue of the very definition of the V-complex 2% we have
22 (T8 =[(P*(T?). (3
Further,
Pi(T3y = Pi (T3). ' (6)

From the relations (3)—(6) follows the relation (1) (cf. P. C., theorem 2).

Suppose now that f is defined on K2 and satisfies the conditions of the
theorem, i. e. that @, (f, K?)==22% is a V-cycle in K* satisfying the condition (1).
Since o, (f, K?) is a V-cycle in K3, the mapping f may be extended to K3
[cf. § 2, G)], but it may be done in different ways. Suppose that Jo and f, are
two such extensioms, i. e. two mappings of the complex K3, coinciding on X2
with f and, consequently, also one with another. Put

0 (for fr KY=35% 0 (f T = yi (T. (7

We shall show that
N—Yo=V)" (8)
Let A be the aggregate of the two numbers O and 1. Then is defined the

mapping f, of the complex K3-A into S2 (cf. § 2). Let T4 be a certain four-
dimensional simplex from K*. Consider the mapping f, in application to the com-

plex T¢.A. If x€T*, x€K?, then we have f; (x:0)=fa (x-1). Identify in K*%.A
in one point every pair of points x-0 and x.1 and denote the com-
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plex, so obtained from T4-A, by L3. The mapping s» may be now considered as
defined on the complex L3. It is easily seen that every two-dimensional cycle
from L3 is homologic to zero in L3 to every modulus, and hence, in virtue of
Lemma 3., there exists such a mapping g of the complex L3 into the three-dimen-
sional sphere 8% that f, =g [cf. § 1, A)].

Denote by E3, k=0, 1, 2, 3, 4, the faces of the simplex T4 Consider
now in the complex L3 the following orientated three-dimensional spheres:

S}—FE3.1—E3.0,

4 4
Si= X E}-0=T4.0, ng.kz]ozsg-1=r4.1.

Evidently we have
4

Sg —_ Sg—_— 2 Si .
k=0

Thus we have
- 4
07 (g7 Sg) — O, (gy Sg) == 2 o, (g, S;);

k=0
further,

0 (g Y=o, 8, n=0,1,..., 6 [cf § 1, (20)].

Consequently,
4
o (fs, SY—o,(fs, S = Z o, (fs, Sz)r

k=0

and this is the relation (8), written explicitly.
The complete original of the. point p’ in the simplex 7" under the mapping
/; we denote by P;'.(T’). For shortness introduce the notations:

> P = Pi(T).

17T
Then we have ‘
Py(T3 =P} (T?), )
22 (T%) = [(Pi(T?). (10)
From the relations (9), (10) and (7) follows that
(22X 22)y (T4 = Vi (P) (TY), P) (T4)) =y (T"), (11)
(22 X 22), (TH) = Vj (PO (T4, P} (T4) =1 (T¥). (12)

In the relation (11) the product 2% 2% is calculated by means of the auxiliary
complexes Pg‘(T"), and- in the relation (12) the product 22 X 2z? is calculated by
means of the auxiliary complexes P (T%. Although the so obtained products are
homologic, they need not coincide.

Suppose now that the mapping f defined on K? and satisfying the conditions
of the theorem is in some way extended by means of the mapping f, to K3.
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Since (22 X 2z2), i 0,
Vo= (22 X 2%),=Vu’.

Choose now the mapping f;, coinciding with f; on K? and such that o, (f;, f;, K%)=
= —ud [cf. § 2, A')]. Then, in virtue of (8), we have 2}==0, and this means
that the mapping f of each sphere T4 may be extended to the simplex T4 [cf. (7)),
i. e. we obtain an extension of the mapping f to the whole complex K% Theo-
rem 4 is thus proved.

Let us now formulate the obtained result in terms of usual homologies in
the case when K* is a four-dimensional orientable manifold.

A) Let f be a mapping of the orientated four-dimensional manifold K* into
the two-dimensional orientated sphere S%. Without reducing the generality we
may assume that the mapping f is a simplicial mapping of a certain simplicial
subdivision of the complex K%. Let p be a certain inner point of a simplex from
the assumed triangulation of the sphere S2? and f~!(p) its complete original in K*
under the mapping f. It is easily shown that for two equivalent mappings f,
and f; we have f;! (ﬁ)xfl—l (p). If C?is a clags of usual two-dimensional

homologies, then for the existence of a mapping f satisfying the condition
F~1(p)EC? it is necessary and sufficient that /g (C?, C?)=0.

Let ¢? be a certain cycle from C2. Denote by 22(7?) its index of intersection
with T2. Then the class of homologies C? corresponds to the class of V-homo-
logies containing 22. In order that there should exist a mapping f satisfying the
condition f~1!(p)€C?, it is necessary and sufficient that there should exist a map-
ping f satisfying the condition w, (f, K?) > 2%, But for this it is necessary and

sufficient that 22 ><z23-0. This last condition has in terms of usual homologies

" the form: [k (C? X C?)==0. The assertion A} is thus proved.

It is of interest to note the following:

Let K"*+2 be a complex of dimensionality #-}2. Denote by K" the aggre-
gale of all its simplexes of dimensionalities not exceeding r. Denote by S™ the
n-dimensional orientated sphere. If f is a mapping of the complex K" into S7
then we introduce, in the same way as in G), § 2, a V-complex o, (f;, K*) of
dimensionality z, characterizing the mapping f. Namely, two mappings f, and f;
are then and only then equivalent,. when o, (f5, K") 3 0, (fi» Km™. Further, in
order that the mapping f, defined on K%, could be extended to K"+1, it is neces-
sary and sufficient that oy (f, K® should be a V-cycle in K*+!. If this condition
is satisfied, then there arises the question on the possibility of extension of the
mapping f from the complex K” to the whole complex K”+2. It turns out that
the condition of such an extension is expressed by the demand that a certain
(n—-2)-dimensional V-cycle from K"+2 should be homologic to zero to the
modulus 2; this cycle is determined up to homologies by the cycle o, (f, K7,
but its construction can not be carried out by means of the product operations in
the complex K"*2, which we possess. Thus we are lead to a new operation of
a homological type.

(Tloctynuao B penakuuwo 27/VI 1940 r.)
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Knaccudukauuss oro6paxeHuil TpexMepHOro KomIIexca
B IByYMepHYI0 cdepy
JI. NMoutpsiran (Mocksa)
(Pesrone)

Myc~s {f,} (0<<f<C1)— cemelicTBO oTOGparennit Komnnexkca K B Kommnekce L
Taxoe, uto ynkuus f,(x) (x € K) AB1S€TCH HENpPepLBHOH (yHKIMEH Maphl aprymex-
ToB X u f. [oopaTr, uTO f, ecTb HenpepbiBHas nedopmanus OTOOpaweHHH KoM-
miaexca K B kommiexce L. JlBa HempephBHhX OTOOpawenus g uH i xommiekca K 8 L
Ha3BIBAIOTCA TOMOTOIIHBIMH HJIH KBHBAJEHTHBIMH, €CJIH CYLIECTBYeT HENpepHIBHASA Ie-
dopmaumst f, Takas, uro fy=g, f;==h. Knaccudpuxaumus nenpephBHLHX OTOGpaie-
HUH, C 3TOH TOYKH 3peHHs, NPHHAIJIEWHT K YHCITy HaWGo/Iee CYLIECTBEHHHIX 3313y
COBPEMEHHOH TOMOJIOTHH, OHA, OIHAKO, Da3pelleHa JHUIb B HEMHOTHX YaCTHBIX CHy-
yasgx. Jlana wnaccudukanus otobpaweHHH n-MepHOro Kommiekca K" B 7-MEpHyIo
cepy S™ u, cllenoBaTeNbHO, B YACTHOCTH, KJIacCHbUKalus 0ToOpawennit S” B 87, 1y 10,
Wmeercsi, nanee, xnaccupuxauus oroGpawennii (n - k)-MepHolt cepm St
B n-MepHyio cdepy S”, npu k=1, 2, 2 u 3. Mmeerca Takwe knaccudukauus oTobpa-
wenuit (-}~ 1)-mepHoro xommnexca K"+1 B n-mepuyo cdepy S” 5.

B nactoduielt pa6oTe MOMHOCTBIO M37AaraloTCsi MOH DPe3YJbTaThl 5 OTHOCHTEJIBHO
knaccupukaupn K3 B S2,

ITyctbs f— cumniuupanbHoe OTOGpaX(eHHe OPHEHTHPOBAHHOH cephl S3 B opHeHTH-
posannyio cdepy S? u p? (=0, 1) — nBe TOYKH, BHIGDAHHBIE BHYTPH TPEYTOMbHH-
KoB TpHanrysuud cepn S%. Torma nosmmii mpooGpas f~! (p?) TouKH p? mpu oT06-
paXeHHH f, €CTeCTBEHHO, OKAa3blBaeTCsi ONHOMEpPHhM LukaoM B S3. Koaduuuent
sauenienns 1HKI0B f~1(p%) u f~1(p!) oGo3naynm uepes

o, (f, $3). (1)

Hopf 2, xoTopoMy nmpHHAIIEHHUT ONMCAHHAS KOHCTPYKUMS, TOKa3al, 4To 4Heao o, ( f, S3)
HEe 3aBHCHT OT BHIGOpa Touek p’(i==0, 1) H sBAsieTCs WHBApHAHTOM KJacca OTOGpa-
JKEHHH, T. e. Ui IBYX SKBHBAJEHTHhIX OTOOpaweHHH f H &

o, (f; S =0, (& S9).

B mpemiaraemoff paGoTe MHOIO JOKa3aHO CleAylollee:
Teopema 1. Zas mozo, umobe. Osa omobpascenus f u g mpexmepHoii
cihepsr S3 6 08ymepnyro cipepy S? Oviau xsuBANEHMHBL, OOCMAMOUHO, 4MOCbL

O (f’ S3)=u)l (& S?). (2)

Takum o6pasom, B cuny pesyasrata Hopf’a u moero, paBenctBo (2) siBnsiercst
HEOOXONUMBIM H JOCTaTOYHLIM YCJIOBHEM JJISl SKBHMBAJEHTHOCTH OTOGpaweHull f u g.

Jlis u3NoWeHHst pe3y/ibTaTOB O KjaccHukauuu oroOpawenuit K3 B S2 Bexem
crenyonye 0603HaYEHHS:

Yepes K3 Gynem 0603HauaTh TPEXMEDHLIH KOMIIIEKC, a yepe3: K’ =—— COBOKYNHOCTb
BCEX €ro CHMIVIEKCOB pPa3MEpHOCTH He BhIIE 7.
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[Tycte p — HekoTopast Touka u3 cdepsl S2 M f— Takoe oTOOpaeHHe K? B S?,
uro f(K!) He comepwur Touky p. Torma ompeneneHa crenenb oToGpawenust f mpo-
H3BOJIBHOTO ODHEHTHPOBAHHOrO IBYMEPHOTo cuMiiekca 72 u3 K2 B Touke p, ee Mbl
0GosHaumm uepe3 22 (T2). PyHkuus 22 sBagercd V-kommiekcom T B K32, 3TOT
V-komniekc 0003HauHM uepes

o, (f, K?). 3y

[ycts f u g— nBa oroGpawennst Kommnekca K3 B cdepy S2, cosmanzaioupme
Ha K2, Ilycrtb, nmanee, T3 — IpOHM3BOJIBHEIH OPHEHTHPOBAHHBIH CHUMILIEKC M3 K3 pas-
MmepHocTH 3. PaceMOTpuM KOMIUIEKC P, COCTaB/IeHHHH W3 IBYX 3Kk3emnaspoB [73] u
{T38} cummnekca T3, u ompemenuM oroGpaweHue ¢ Kommiekca P B S?, cunras
ero coBnazaoumm ¢ f Ha [T3] u ¢ g Ha {T3}. Tak kak oroGpawennsi f U g COB-
nagaloT Ha K2, TO A1 KaWIOH TOUYKH X, NpHHAAJIENKalleH rpanuue T3 cummekca:
T3, umeem

o ([x]) =0o ({x}).

OroxnecTBuM Temepb B OIHY Kawaylo napy rtouek [x], {x} npu x € T3, Torna
KoMmmieKc P mpespaTHTcs B TpexmepHylo cepy S3. OroGpawenne @ Tenepb MOXHO:
paccmatpuBaTh Kak oroOpaxenue cdeper S3 B S2. [lomosum

2B(T8) =0, (g, S?)

[em. (1)]. Pynxums 22 sBasercs TpexMepHeM V-kommiaekcom? B K3, ee Mbl 0603Ha-
YHM yepe3

(!)1 (f7 & K3) (4)

Whitney 10 nokasan, uro nBa oroGpawenus f u g kommiekca K2 B S? Torma u
TOJNBKO TOTJA SKBHBAIEHTHH, KOTA4

0 (f, K?) 7 (8 K?) ©y

[em. (3)]. HoxaswiBaercst, nanee, Ge3 Tpyma, uto oToGpaxenue f kommiekca K?2,.
B S? Torma M TOMbKO TOTZA MOXKHO pACIPOCTPAaHHTh B OTOOPAXEHHE BCETO KOM--
mnexca K3, korma

oo (f, K?) (6):
sBnsercd V-uukiaoM B K3.

IOnst toro, uyToOH peuuTh BOMPOC 06 3KBUBAJIEHTHOCTH oOTOGpaseHufl f u g
Kommyekca K3 B chepy S?, ero HyXHO Ipexiae BCEero pelMTb U TeX Ke 0T00-
paxcenn#, paccMarpuBaemMbix Ha K2 {cM. (5)]. Ecim oroGpawenus f W g He SKBH-
BaNeHTHH Yywe Ha K2, To, Tem Gonee, OHH He 3KkBuBajJeHTHH Ha K3. Ecim we:
oToOpaxeHHs f M g SKBHBaJeHTHH Ha K2, TO oOToOpaweHHe g MOXHO 3aMEHHTb.
SKBHMBAJIEHTHBIM eMy M coBnajawoouum ¢ f Ha K?2. TakuM o6pa3oM, BONMPOC CBOIHTCS.
K BBISICHGHHIO, SKBHBAJNeHTHH HJH HeT JBa oToGpaweHus f M g, coBmajaiouue Ha K2,
Bonpoc aToT pemaercst ciemyioweif Teopemoi:

Teopema 2. [lycms f u g— 0sa omobpadcenus xomnaexca K3 8 cgpepy S2,
coenada‘rou;ue Ha K2, [Toroxcunm

=0y (g, K)=0y(f, K?) [em. 3)), 22=0,(f, & K?) [cm. (4)].

Tozoa 22 ecmy V-yuxa 68 K3 [cM. (6)], 23 ecms mawoce N-yura 8 K3, max
Karx K3 He umeem cumnaercos pasmeprocmu 4. Owasvieaemcs, 4mo omoGpasice-
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HUus | u g moz0a u moAsk0 moz0a 3IxsusaseHmHu, rozda 8 K3 cyuwecmsyem
V-yurxa x' pazmeprocmu 1, y008iemsopsouuli yca08uio

3 1 2 7
z'§-2x><z .

B cnyuae, worma K3 ecTb opHeHTHpyeMOe MHOroo0pasue, TeopeMa 2 MOXeT
6bith popmyspoBana B ¢opme Teopembl 3. st QOpMy/nHpOBKH €€ HANOMHHM Clie-
LyIOLHe H3BeCTHble (aKThl.

[Tycth X W y-—nBa OMHOMEPHHIX C€Ja60 TOMOJOTHYHHIX HYJIO LMKIA H3 TPEX-
MEPHOTO OPHEHTHPOBaHHOro MHoroo6pasust K3. Ilycrb, manee, ¢ — HekoTOpHId ABY-
MepHbil KoMmiekc H3 K3, rpaHdua KOTOPOTO €CTh g.X, THE d — HATYypPaNbHOE YHCIO.

1
Yucno = I(c, y) nasmiBaeTcsi KO3G(HLIHEHTOM 3aleVIeHHs LHKIOB X W y (3mech [/

03HayaeT HHIEKC nepecedenus). KoaduiuyeHT 3alensenus, TaKk ONpene/ieHHbIH, sBIsSeT-
¢l HHBADHAHTOM ULHKIOB X H Yy, a JAPOOHasi ero 4acTh — HHBAPHAHTOM KJ/accoB
romonoruit X u Y, K KOTOpPbHIM LHMKJIB 3TH MPHHALIENKAT.

Ecmu # ecTh HeKOTOpHIH €1a60 He TOMOJIOTHYHBIH HYJIO ONHOMEPHHIH LMK/ H3
TPEXMEPHOr0 OPHEHTHPOBAHHOTO MHOroo6pasus K3, To cyuwectByeT B K3 nByMepHblif
UMK v Takoif, uto [/ (u, v) ecTh moJowuTeabHOE uucao. Mumekc nepecevenus / (2, v)
IBJSIETCS MHBAPHAHTOM KJaccoB romosoruit U u V, K KOTOpDHM NpHHAIJIekar B3d-

Thie LHKJIbI:
[(, v)=1(U, V).

Teopema 3. [lycms K3 — opuenmuposanHoe mpeximepHoe mH02000pa3ue u
f— e20 cumniuyuasbHoe 0modpascerue 8 OPUEHMUPOBAHHYI0 08Y.MepHYIO0 ciepy S2.
Buibepen 0se mouwrcu p'(i=0, 1), npunadiesxicauue 8HYMpPeHHOCMAM mMpey2onb-
Huxos mpuarzyssyuu cdeps. S?2. Tozda noamwii npoobpas f~!(p’) mouru pi,
ecmecmsenHo, oKa3vleaemcs 00HOMepHbm yuxsom u3 K3. Oba marx noay4eHHsx
QUK AQ nPpURadsedxcam OOHOMY u momy dce Kaaccy 20monozuli Z1. Orxasvisaemcs,
ymo Kaacc Z' s8asiemcs UHSapuaHmoxm riaacca F omobpadsceHud, k rwomopoimy
npunadaexcum omobpadxcenue f. Oxaszwsaemcs, Oasee, 4mo npiu 3a0aHHOM Kaacce
comonozuti Z1 gcexda MOXNCHO Halimu omobpajceHue | maroe, 4mods. 00a B803HU-
KaoWux U3 Hezo yurxaa npunadsexcaru Z'.

Hanee, OyneM pasiuuaTh ABa CJaydas:

1) Ecum knacc Z! uMeeT KOHeYHHH MOpSIIOK, T. €. wukas f~1(p?) cnabo ro-
MOJIOTHYHB HY/O, TO KO(HUHEHT 3alel/IeHHd 3THX LHKJIOB SB/ISETCS HHBAPHAHTOM
knacca otoGpaweHuHt F, u npu 3amaHHOM knaacce Z! 3TOT KOI(HUMEHT 3aleneHus
SIBASETCS] €NUHCTBEHHBIM HHBapHaHToM, T. e. omnpegenser F. llenyio wacts sroro
YHBADHAHTA MPH 3aJaHHOM Z! MOXHO BHIGHPaTb NpPOH3BOJNbLHO, MOAGHpas Haalewa-
uM o6pa3oM F, B TO BpeMs Kak IpOOHasi ero 4acTb siB/IseTCS HHBapHAHTOM Kjacca Z1.

2) Ecan knacc romomoruit Z! cBoGomHHI, T. €. LHKAH f~1(pf) crmaGo He romo-
JIOTHYHBI HYJO, TO OGO3HAYHM yepe3 A MHHHMA/IbHOE IIOJIOXHTE/bHOE 3HaueHHe, KO-
TOpOe MOXeT NpHHUMATh 4Hc1o [ (f~1(pY), x2), rme X2 — NpPOH3BOJbHBLIH ABYMEpPHHIi
uuka w3 K3, Torna npw samankoM kmacce Z! cymiecTByer poBHO 2h kmacco® o1o6-
pawenuit f, mas kotopeix f~1(p% € Z1.

B paéore pelaeTcss Takwe OIHH BOMPOC 06 OTOOPAaXEHHSIX YEThIPEXMEPHOTO
xomniekca K* B aBymepnyio cepy S2. Yepes K’ nompewuemy Oyaem o6o3Hayath
KOMIIEKC, COCTABJIEGHHBIH H3 BCEX CHMIIEKCOB KOMILIeKca K* pasmMepHOCTH He Gosbuie 7.
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Ecnu f ectb oToGpawenue xomiiiexkca K2 B S2, To U1 pacnpOCTPAHEHHS 3TOTO
oToOpaxenusi Ha Kommekc K3, kak paHee ObUIO OTMEYEHO, HEOOXOIMMO M 10CTa-
TOuHO, yTOBH V-Kommiaeke o, (f, K?) [cm. (3)] 6but wpknom B K3, Teopema 4 pemwaet
BONPOC O BO3MOWHOCTH pacHpoCTpaHeHHss OTOGpaweHHs f Ha Bech Kommaekc K4,

Teopema 4. [Tyemy K*— uemoipexmepHolii xomniexc u f— omobpadicerue
womnaexca K2 8 cipepy S%. Las moezo, wmobs. omobpascenue f MOKNCHO Oblio
pacnpocmpanums Ha 8ecy Komnaexc K4, Heo6xo0umo w 00CMAmMO4HO, 4MOoObL
V-romnaexe 22 =0, (f, K?) [ecm. (3)] 6otz V-gurasom 8 K* u umobo

22X 2250 .

Ina cnydas, xoraa K% ecTb opHeHTHpyeMOe MHOrooGpasue, Teopema 4 MpH-
obperaeT BHI:

Teopema 5. [Iyems K*— opuenmuposannoe muozoobpasue u f— ez2o0
CUMNAUGUANLHOE OMOOPAJICEHUe 8 OPUCHMUPOBAHHYIO 08YMepHYIO cepy S?. Boi-
Oepeit HeKOMOpYIO MOYKY p U3 BHYMPEHHOCMU KAKO020-AUO0 MPey20NbHUKN
mpuanzyaayun cepe. S, Tozda [f~l(p), ecmecmBeHHO, OKA3BLBACMCS WUKAOM
pasmepriocmu 2 u3 K% Ecau Z* ecmb Hexomopulli Kaacc 08YMePHbLX 20M0.40-
2unnblx MexcOy coGoli yurxaos u3 K*, mo 041 moz0, 4mobGbL Cyu,ecmsosaso omoo-
padicenue f, yoosaemsopsouee ycaosiwo fTl(p) € Z2, Heo6xodumo u docma-
mouro, 4umoou.

[(Z2, Z%) = 0.



