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Poincaré Spaces,
Their Normal Fibrations and Surgery

William Browder (Princeton)*

Let X be a Poincaré space of dimension m, i.e. there is an element
[X]eH,,(X) such that [X]n: H*(X)— H,,_,(X) is an isomorphism for
all g. An oriented spherical fibre space &, E,—%> X with fibre F homo-
topy equivalent to S*~!, is called a Spivak normal fibre space for X if
there is aen,, (T () of degree 1, i.e. such that h(x)n Us=[X], where
T(&)=Xu, ¢(E,), Use H¥(T(¢)) is the Thom class; h: n, — H, the Hure-
wicz homomorphism. Let us always assume that X is the homotopy
type of a CW complex.

Differential topology and surgery theory in particular has had great
success in studying the problem of finding manifolds of the same homo-
topy type as a given Poincaré space, and classifying them (see [2] for
example). In this theory, one finds weaker structures for Poincaré spaces
analogous to well known structures on manifolds, and then studies the
obstructions to lifting the structure to the strong type found on a mani-
fold. For example, the Spivak normal fibre space is the analog of the
stable normal bundle to the embedding of a manifold in the sphere, and
the problem of making this spherical fibre space into a linear bundle
(up to fibre homotopy type) is central to the theory of surgery.

In his thesis Spivak [5] showed that if 7; X =0 then a Poincaré space
X has a Spivak normal fibre space for k>dim X, unique up to fibre
homotopy equivalence (see also [2, Ch. I, §4]). His proof extends to non-
simply connected Poincaré spaces X, provided that Poincaré duality
holds with local coefficients and X is dominated by a finite complex [6].
However, the proof of uniqueness, due essentially to Atiyah [1] makes
use of only ordinary homology, and Spanier-Whitehead S-theory. Hence
it is quite plausible to think that the Spivak normal fibre space exists
also, without any assumptions but Poincaré duality with ordinary
integer coefficients. We shall show that this is in.fact the case.

Theorem A. Any Poincaré space has a Spivak normal fibre space.

A relative version for Poincaré pairs is also true, and follows as an
easy corollary as we shall see later (see § 1, Theorem A’).

* The author was partially supported by an NSF grant.
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Suppose that X satisfies Poincaré duality with local coefficients, i.e.
[XIn: HI(X: M)~ H,_,(X; M)

is an isomorphism for local coefficients in any 7; X module M. We call
such an X an (oriented) local Poincaré space.

Corollary 1. If X is a local Poincaré space then m,(X) is finitely
generated.

This is of course not true without local Poincaré duality, since one
could take the wedge of a Poincaré space with any number of acyclic
complexes without changing the homology (and hence preserving Poin-
caré duality), while increasing the size of the fundamental group in-
definitely.

I have not been able to prove that 7, X is finitely presented. However,
we have the following:

Corollary 2. If X is a local Poincaré space and if n, X is finitely
presented, then X is dominated by a finite complex.

The two corollaries will follow by using the theorem to construct a
map of degree 1 of a compact manifold into a Spivak normal fibre
space Y for X with ; Y=m,; X, and Y dominating X.

The proof of the theorem proceeds by first noticing that one needs
only prove it for sufficiently high dimensions, and that if { is the Spivak
normal fibre space of a Poincaré space Z, and if X is embedded (in a
Poincaré space sense) in Z with a normal fibre space 5, then {|X +7 is
the Spivak normal fibre space of X. Then we show that for a Poincaré
space X of dimension m=4, one can always embed (in this sense) X in
a l-connected Poincaré space Z, so that the theorem now follows from
the 1-connected version of Spivak.

The latter step is carried out by showing that one can “kill” n; X by
“surgery”, i.e. one can find an analogous process to the well known
smooth surgery, to find a Poincaré bordism Z of X, (i. e, (Z,XuX)isa
Poincaré pair (defined later)) so that Z and X" are 1-connected.

Now suppose X is a Poincaré space in a weaker sense, for example
only with certain coefficient groups:

Let X be a CW complex and suppose [X]e H, (X) so that
[X1n: HUX; A) > H,_o(X; A)

is an isomorphism for a fixed coefficient ring A. We call X a A-Poincaré
space. The A-Spivak normal fibre space of X is defined analogously,
i.e. a fibre space ¢ over X with 1-connected fibre F, such that H, (F; A)=
H, (S*"'; A), and with aen,,_,(T(¢)) such that h(e) U =[X].
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This raises the question:

Is there an existence or uniqueness theorem for Spivak normal fibre
spaces mod A for certain A?

It turns out that for Z, Poincaré spaces, where Z,, is the integers
localized at a prime p, a simple argument due to Frank Quinn yields the
result as a consequence of our technique, together with the localization
theory developed by Sullivan.

While all our results are proved for oriented Poincaré spaces one
can easily deduce them for unoriented Poincaré spaces X, i.e. with an
orientation class in H,,(X; Z') where Z' is the twisted integer coefficient
system associated with some non-trivial action of 7; X on Z.

For X is Poincaré embedded (see §1) in the non-trivial real line
bundle Y over X corresponding to Z* and (Y, dY) is an oriented Poincaré
pair, so that the result follows from the oriented version for Poincaré
pairs.

In §1, we carry out the preliminaries of Poincaré embedding, etc.,
and deduce the two corollaries from the theorem. In § 2, we carry out the
process of “surgery” on Poincaré spaces to “kill” n;, which is the heart
of the proof.

§ 1. Poincaré Embedding

Let X be a Poincaré space of dimension m. Let n be a (k — 1)-spherical
fibre space over X, n: E, — X the total space and projection map of #.
A Poincaré embedding of X in Z with normal fibre space 7, consists of a
map f: E,— Y for some space Y with H,,,,_,(Y)=0, and a homotopy
equivalence h: Z— XU (E,x[0,1)u,Y (i.e. the double mapping
cylinder of =, f). We denote this by X <, Z.

Note first the following (c.f. [3])

(1.1) Proposition. The Spivak normal fibre space of X is (stably) the
normal fibre space for a Poincaré embedding of X<, Smrk,

Hence in fact the existence of the Spivak normal fibre space is the
analog of Whitney’s theorem on the embeddability of manifolds in
Euclidean space.

Proof. If X =, S"** with normal fibre space #*, then, the composition
SmHE B, X G (Egx [0, 11U, Y= (X U (Eo x [0, 1T}, Y)/Y=T(n)

is easily seen to have degree 1.

14 Inventiones math., Vol 17
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Conversely, suppose that aemn,, (T (")), k> 1, such that
h() N Us=[X].

First note that T(y)=E,(n+¢')/pX, where ¢! is the trivial S°-bundle,
p: X— Eo(ry+81) the canonical cross-section. Let Y=T(n)u_ em+**!,
f: Eo(n+¢")— T(n)— Y be the natural map. Then it follows easily from
calculatmg homology that Z=X U _E(n+¢' )u Y has the homology of
the sphere S™**+! and since nl(Y) 0 and n: Ey(n+¢')— X induces
isomorphism on =, (if k> 2), it follows from van Kampen’s theorem that
Z is l-connected and hence homotopy equivalent to S™**+! by a
standard argument of obstruction theory.

We can now deduce the two corollaries.

Since X has a Spivak normal fibre space by Theorem A we have a
homotopy equivalence h: S"**— X U (E, x [0,1])u, Y =Z. Now Z is the
double mapping cylinder of 7 and f so that E;x(—1,1)=Z as an open
set. Using the real coordinate in (—1,1) we can make h transverse
regular to E,, so that N™+**~'=h~Y(E,) and h|N: N - E, is a map of
degree 1 (using the Mayer-Vietoris sequence, and the fact that h: S™+*— Z
has degree 1). Then we use the following, which is proved by Pettus [4]:

(1.2) Proposition. Let X, Y be local Poincaré spaces, and let f: X »>Y
be of degree 1, i.e. f, [ X]=[Y]. Then f,: n, X —mn, Y is onto.

This is the generalization of the well known theorem of Hopf on
manifolds. One shows that if Y is a local Poincaré space and p: Y— Y is
a finite (I-fold) cover, then Y is a Poincaré space with t[Y] as orientation
inH, (f’) where t: H, (Y) — H,,(Y)is the transfer map. Then 1p,t[Y]= Y]
so p, is of degree I. Hence if f: X — Y factors through p: Y— Y, its degree
must be divisible by /, so that a map of degree 1 does not factor through
any finite cover.

If p: Y- Y is an infinite cover, then H, (Y)=H,,(Y; A) where A4 is the
left ,(Y) module Z(C), where C is the right coset space of m;(Y)/m;(Y).
By Poincaré duality H,(Y; A)=H°(Y; A) and H°(Y; A)=elements of A
invariant under the action of n,(Y). But since A=Z(C) consists of
finite linear sums of elements in C and C=mn,(Y)/n,(Y) is infinite, no
element of A is invariant, so H°(Y; 4)=0. Hence H,,(Y)=0 for p: Y- Y
an infinite cover, so a map of non-zero degree cannot factor through an
infinite cover. It follows that f,: m; X — n; Y is onto.

Now h|N: N — E, has degree 1, and if X is a local Poincaré space,
then so is E,. Hence (h|N),,: n;(N) — n;(E,) is onto. Since N is a compact
manifold 7; N is finitely generated, while n,(Ey)=~n,(X) if k>2. So
Corollary 1 follows.

In fact we can easily deduce the more general version.

Definition. (X, 0X) is a local Poincaré pair if there is a class
[X]eH,(X,0X)
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such that the Poincaré¢ duality isomorphisms hold:
[X]n: HY(X,0X;M)— H, _,(X; M)
o[X]n: HI(0X;M,) —H,_, (0X;M,)
for any m; X-module M, n,(0X)-module M,.

Corollary 1'. If (X, 0X) is a local Poincaré pair, then n; X is finitely
generated.

Proof. It follows easily that the double X, U,y X_ is a local Poin-
caré space, so that m, (X, U,y X_) is finitely generated by Corollary 1.
But X is a retract of X, U,y X_, so n,(X) is finitely generated.

Note 0X is a local Poincaré space, so that =, (0X) is finitely generated.

To deduce Corollary 2, we consider the map h|N: N — E,, and
since we are now assuming 7, X =~ E, is finitely presented, it follows
that we can do surgery on N and h|N to get h': N'— E, of degree 1 so
that h,: ny N'—n E, is an isomorphism (see [2; proof of (IV.1.13)]).
Now k" is a map of degree 1 and hence hl: H (N'; M) — H, (Ey; M) is
onto by Poincaré duality, for any n; E, module M. It then follows easily
that we can do surgery on h': N'— E,, to get h"’: N — E, with h"” [n/2]-
connected where n=m+k—1=dimE, (see again [2; (IV.1.13)]). We
may assume (by adding &' to # if necessary) that n=2 j, so that by Poin-
caré duality hy: H;(N"; M)— H;(E,; M) is an isomorphism for i=j, and
onto for i=j, for M =the group ring of «, (E,). It then follows from Wall
[7, Theorem 8 (iii) and (i)] that E, is dominated by a finite complex. But
E, dominates X, so that X is dominated by a finite complex.

Similarly to Corollary 1’, we can easily deduce:

Corollary 2'. Let (X, 0X) be a local Poincaré pair such that m; X is
finitely presented. Then X is dominated by a finite complex.

Now we proceed to the preliminaries in the proof of the theorem.

(1.3) Lemma. Let X <, Z be a Poincaré embedding of the Poincaré space
X of dimension m, in a Poincaré space Z of dimension m+k, with normal
fibre space n. If { is the Spivak normal fibre space of Z, then {|X +n is the
Spivak normal fibre space of X.

Proof. Z=X U (E,x[0,1])u, Y so that we have a natural map
T — TO/TCY),

and T({)/T(L|Y) is easily seen to be homotopy equivalent to T({|X +n).
It follows easily that S™+¥+! — T({") > T({'|X + 1) is of degree 1, which
proves the lemma.

In fact we have the following more general fact:

14*
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(1.3') Lemma. Let X, Z, W be Poincaré spaces of dimensions m, m+k

and m+k+1 respectively. Suppose X =,Z with normal fibre space n* and

CZ <, W with normal fibre space {'. Then X <, W with normal fibre space
| X +7.

Proof. We may suppose that Z=XuU,(Eq(n)x[0,1])u, Y, and
W=Zu,(Eo({)x[0,1])u, U, where n: Eq(n)x0— X, p: Eq({)x0—>Z
are the projections of the fibre spaces, f: Eq(1)x1— Y, g: E4({)x 1— U.
Set V=Yu,(Egx[0,1])u, U, where Ef=E,((|Y) and p’, g’ are the
restrictions of p, g. Let E;=E,(n+{|X), and note that

Eo=Eo(1) U, (Eo % [0, 1)) U, Eo(1X)
where E,=E, (n*(¢1X)) is the induced fibre space over E, (),
pi: Eox0— Eo(n)

its projection, p,: Eq x 1— Ey({|X) the natural map of the fibre spaces
covering 7.

Define h: Ey x 1 — V by
hlEo(i)=f: Eo(n) =YV
hEo(E1X)=8IEo(¢|X): Eo(ElX)—>UcV
h|Eg xt=p,: Eox t=Eq(n*(£|X))
= E EIX)xt<Ey(E|Y)xteV,

and it is easy to see that W= X u,(E, x [0, 1])u, V, where q: E; x0— X
is the projection of the fibre space.

(1.4) Lemma. It suffices to prove Theorem A for m=dim X sufficiently
large.

For, if X xS" has a Spivak normal fibre space, then so does X,
by (1.3), since X <, X x §".

In §2, we will show that if m=dim X >4, there is a Poincaré pair
(Z,X uX') with X', Z 1-connected. Then, if W=Z_uxZ_, it follows
that (W, X' U X')is a Poincaré pair with W 1-connected and 0W=X"u X’
the union of 1-connected components. It follows from Spivak’s theorem
(see [3, (1.4.4)]) that there is a Spivak normal fibre space for W, i.e. a
(k— 1)-spherical fibre space ¢ over W and an element aemn,, ;. ((T(&),
T(¢|0W)) such that h(x) N U =[W]eH,, (W, 0W).

(1.5) Lemma. If (W,0W) is a Poincaré pair with Spivak normal fibre
space &*, then p*(£) is the Spivak normal fibre space for W x [0, 1], and
hence p*(€)|D is the Spivak normal fibre space for the double D=W xQu
(OW x[0,1])uU W x 1, where p: W x [0, 1] — W is the natural projection,
D=0(W x [0, 1]).
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It is easy to check that T(p*(&))/T(p*(&)|o(W x [0, 1])=2(T(&)/
T(£|0W)) and the natural map T(&)/T(£|0W)— Z T(E|0W) is of degree 1.
Then (1.5) follows easily.

Hence, p*(&) is the Spivak normal fibre space for Wu,, W,
X <, WU, W, with trivial normal fibre space, so by (1.3), p*(£)|X is the
Spivak normal fibre space of X. This completes the proof of Theorem A
except for the construction of Z which will be done in § 2.

We note that it is easy to extend Theorem A to Poincaré pairs:

Theorem A’. Let (X,0X) be a Poincaré pair. Then X has a Spivak
normal fibre space ¥, i.e. a (k—1)-spherical fibre space over X and an
element aemn,, ,,(T(&), T(£|0X)) such that h(x) N U;=[X]eH, (X, 0X).

Proof. The double D=X_, U,y X_ has a Spivak normal fibre space
by Theorem A, i.e. £ over D such that o’ emn,, . (T(£)) with h(a) N Uz =
[D]e H,,(D). Then the composite map o

Sk T(E)— T(E)/TENX_)=T(E|X,)/T(|0X)
and ¢=¢'|X, fulfill the conditions of the Spivak normal fibre space.

§ 2. Surgery on Poincaré Spaces

In this section we show how to do surgery on Poincaré spaces to
“kill” m;. Recall the process that one uses with a smooth oriented
manifold M™, m>4. Take a set of generators y, ..., yxen;(M) and
represent y; by a smooth embedding g;: S' — M, i=1, ..., k. Then each
g:(S) has a trivial normal bundle so we have g;: S' x D™~' — M. Let
MO—-M—mt(Ug,(S1 x D™~1)). Then 8M0-—US‘ xS™=2, and let M'=

MOUUDZXS"' 2. Then MU M'=0W, where W=M x [0, 1]uUD2

i

D™= with g,(S'x D™ ')x1 identified with S} x D™~ 1c[)(szD"' h.
It follows easily, since m=4, that n,(M" )= (W)=, (M)/(y,, ..., 1) =0.
We shall try to imitate this construction in the category of Poincaré
spaces to prove:

(2.1) Theorem. Let X be a connected Poincaré space of dimension m=4.
Then there is a Poincaré pair (Y, X U X'), (i.e. X is one component of 0Y),
with Y, X' 1-connected, H,(Y, X)=0 for i£2, and H,(Y, X) free abelian.

(2.2) Lemma. If X is a Poincaré space, then H,(X) is finitely generated.

Proof. By replacing X by its singular complex without changing its
homological properties we may assume that X is a (infinite) CW complex.
Let i: K< X be a finite subcomplex such that [XJeim i, [X]=i,p,
pe H,(K). By naturality of cap product [X]1nx=(i, )nx=i,(uni* x)e
i, H,(K) and i, is onto. Since K is a finite complex H, (K) is finitely
generated, so i, H, (K)=H,(X) is finitely generated.
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Let oy,...,4€m; X be a finite number of elements such that
h(®y), ..., h() generate H,(X). Set Y'=X u( D}, attaching D} by «;.
Then H,(Y')=H;(X)/(h(y), ..., h(o))=

(2.3) Lemma. Suppose H, K'=0. Then there is a space K and a map
f1 K'— K, such that 1 K=0 and f,: H,(K') — H,(K) is an isomorphism.

Proof. Attach 2-cells to K’ to get K=K’ Ul JD? so that m, (K)=0. By
the Hurewicz theorem m, (K)=H,(K), and we have the exact homology

sequence _ _
— H,(K') > H,(K)— H,(K,K')—0

since H,(K')=0, and we have by excision that
H2 (K’ K,)g HZ (UDzs UaDZ)’

which is a free abelian group. Let B be a set of free generators of
H,(K,K') and choose B'cm,(K) so that B’ maps bijectively to B.
Attach a 3-cell to K for each element of B’ to get K=K U | ) D?, so that

H,(K)=H,(K)/(B)=H,(K).

Let Y be constructed from Y’ by Lemma 2.3. We shall construct
X'— Y such that (¥, X U X’) is a Poincaré pair, with X' 1-connected,
which will complete the proof.

Note that in the case of a manifold described above, we have
(UD? x D"~'= W and if we take the Thom-Pontrjagin construction we
get f: W— V S™!and f(M')=x. It is easy to check that if i: M = W, then
(fi*(H™'(V Sr~")) is Poincaré dual to 0H, (W, M)< H,(M).

Hence let us take a map f: Y— V 8™~ ! such that
k

Hm—l(vsm—l) J* ’Hm_l(Y) i* Hm—l(X)
@ [X]1n

Hz(gl,X) : > Hy(X)

commutes, where ¢ is some isomorphism of these two free abelian groups
of rank k. This can be done using obstruction theory, since H(Y)x
H(X)=0 for i>m, so any homomorphism of H™ !(VS™~!) into
H™-1(Y) is realizable as f* for some f: Y— VS™!. Replace f by a
fibre map with fibre F. We shall try to find X’ by suitably modifying F.
It is clear that much modification is necessary since it may be that
H;(F)=0 in arbitrarily high dimensions. We will first show that F has
the necessary properties in dimensions <m.

(24) Lemma. Let f: Y>XK be a fibre map with fibre F, where
H{(K)=0 for i+k—1, and H,_,(K) is free, and suppose for some n,
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Je: Hy_1(Y; G) = H,_,,1(Y, F; G) maps onto. Then for an element
xeH,(Y; G), xn f*(H*(ZK))=0 if and only if xei, H,(F; G), where
it F— Y is the inclusion.

Proof. 1t is clear that i, ynf*H*(ZK)=0. In the other direction
consider the exact sequence with G coefficients of the pair (Y, F):

.. H,(F; G)—*> H,(Y; G)—*> H,(Y,F; G)—

We wish to show that xeim i, which is equivalent to j, x=0 by exactness.
Using the technique of [8] we note the isomorphism

(2.5) H,(Y,F; G)~H,(F x(cK, K); G)

where c¢K is the cone on K. For if we let XK=c, Kuc_K, and Y, =
f~Yc4+ K), Yo=f~!(K), then the inclusion (Y, F)=(Y, Y_) is a homotopy
equivalence, and (Y., Y;)=(Y,Y_) is an excision. Thus H,(Y, F)=
H,(Y,Y_)=H,(Y,,Y,). Now Y, is a fibre space over c, K which is
contractible, so (Y, , Yo)=F x(c, K, K) which proves (2.5). The exact
sequence of (Y, F) with the isomorphism (2.5) will be called the Wang
sequence. B

Since H;_(K)~H;(c, K, K)~H;(2K) is zero for ik and free for
i=k, it follows from the Kiinneth formula that

H,(Y,F; G)=H, «(F; G)® Hi(cK, K).

Since H,(cK, K) is free, an element ze H, _,(F; G)® H,(cK, K) is zero if
and only if zn(1®¥)=0 for each ye H*(c K, K). But we have the com-
mutative diagram
H,(Y)—Z> H,(Y, F)—> H,(F x (c K, K))

| |
(2.6) l‘rxf'y ] T Enu@y)

v \

H,_(Y)<*—H,_i(F)—— H,_(F)

where ye HY(EK)=HEK, ¥), 7=p*, p: (cK, K)>(ZK, %), f: (Y, F)>(ZK, )
is induced by f. It follows that i, (j,xN f*(F)=xNf*y=0 so that
Jexn f*yedH,_,.,(Y,F; G). Since j* maps onto H,_,, (Y, F; G) and
dj,=0 it follows that j,xf*y=0. But from (2.6), it follows that
J*xr\f y=J, xN(1®Y) so that J*x 0, proving the lemma.

(2.7) We note that using the Wang sequence, i.¢. the exact sequence of
(Y, F) and (2.5) one may show that H,_,,;(Y) maps onto H, _, (Y, F)=
H,_,,1(F) under any of the following circumstances
(1) n<2k—1 (so that n—2k+1<0),
(2) n=2k—1and f,: H(Y)— H,(2K) is onto.

(3) n=2k and H,(F)=0.
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(2.8) Proposition. Let X be a Poincaré space of dimension n, j: X —Y
such that H,(Y, X)=0 for i+p+1, H, (Y, X) is free on | generators,
p+q+1=n, p<gq. Suppose f: Y— V S"+1 is a fibre map with fibre F and
suppose that the diagram

Hq+1(v Sq+1) Hq+1(Y) J* Hq+1(X)

® [X]n
v
H, (Y, X) 2 H,(X)
commutes, where @ is some isomorphism. Then there is an element
[Y]leH, (Y, X UF) such that d[Y]=[X]—[F], for some [F]leH,(F)
and ([Y1n)=¢: H*'(Y, F)> H, (Y, X) is an isomorphism.

Proof.Since p<q,n=p+q+1<2q+1=2(qg+1)—1.Now0=j,d¢(y)=
Jx([X1n*f*()=j,[X]1nf*(y) for all yeHI'(VS?'), so that
Lemma 24 and (2.7)(1) imply that j [X]=i,z for some zeH,(F),
i: Fc Y. Hence thereis a we H, (Y, X U F) with 6w [X]—z. It remains
to show that w, z can be chosen so that wn: H**'(Y, F) > H, (Y, X) is
an isomorphism.

Using the Wang sequence situation as before with K= V9, recall
that we have the commutative diagram

Fx(cvS8%, VS)—> (Y, F)

(cv 8%, VS —Ls (VS «)
where the maps e and d induce homology isomorphisms.

(29) Lemma. For xeH, (Y, F) we have the commutative diagram
HY" Y(F x (cv 54, V§9) <o~ HT* (Y, F)— H*'(Y, F)

(e{‘x)nl xnj’ k*xn}’

H, (F)—*> H, (Y) "> H, (Y, X)

where k: (Y, F)— (Y, Fu X), h: Y— (Y, X) are inclusions.

This is just the usual commutativity of the cap product with inclusions,
where H, (F) is identified with H, (F x ¢ v §9).

From (2.9) we may deduce
(2.10) Lemma. The map
B: H,, (Y, F)>Hom(H**'(Y,F),H,,(Y))
given by (B(x))(y)=xnNy, is onto, where xeH, (Y, F), ye H**!(Y, F).



Poincaré Spaces, Their Normal Fibrations and Surgery 201

Proof. First we note that e*: H1*!(Y, F)—=> H*!(c v 8%, VS9) which
is free. Let by, ..., b, be a basis for H1*'(Y, F). To prove (2.10) it suffices
to show that for any element ze H, ,(Y) and any s, 1<s<r, there is an
element xe H, (Y, F) such that xnb;=2z and xnb;=0, j*s, since any
homomorphism is the sum of these simple ones.

Nowi,:H, ,(F)— H,,,(Y)is onto since F is the fibre of f: Y— V§?*+!
and p<gq. Let Z€H, ,(F), such that i, z’=z. Let g, ..., g, be the basis
of Hi*'(cv §9, VS9 corresponding to b,,...,b,, e*b,=g;, and let
g1» ..., g, be the dual basis of H, ,(cv S8, V59 so that g;ng;=J;;. Set

xX'=7QgeH, (FI®H, . (cvS%, VS =H,, (Fx(cvS, Vs).
Then X' ng;=(z®g,)Ng; =06,z If x=e, x, then
xnb=(e,xX)Nnb=i (x'ne*b)=i,(x'Ng)=i,(0;52)=0;52
which completes the proof of (2.10).

Now we may complete the proof of (2.8). For we have weH, (Y, X UF)
such that dw=[X]-z, ze H,(F). Hence the diagram

o HY(X) — HI*(Y, X UF)—> H (Y, F) L5 HiH  (X)— -

(2.11) X1 Jw n JW A l{x] N
Y

oo Hy (X)) —  Hppy(Y)  —H, (%X)— Hy(X) —--

commutes, where the upper sequence is the exact sequence of the triple
(Y, X UF, F) with H*(X UF, F) identified with H*(X) and the lower se-
quence is the exact sequence of the pair (Y, X). If f: (Y, F)—>(V SI+1 4
is the map of pairs induced by f, then f*: HI*!(V §9*!, «)> HI* (Y, F)
is an isomorphism, and ¢ f* ' is an isomorphism so that

HY (Y, F)— Hi+ Y (X)
!w‘*"‘ !mn

! !
H, (Y, X)—% H,(X)

commutes. Then d(p f* ' —wn)=0, and H**'(Y, F) is free abelian, so that
(pf* ' —wn) factors through h,: H, .,(Y)— H, .1(Y, X), (f* '—wn)=
h, o, a: H**'(Y, F)— H,,(Y). By (2.10), there is an element xeH,, (Y, F)
such that x M =0, so that @ f* ' —wA=h,o(x ). But ho(xn)=(k,x)n
from (2.9) so that w+k,x)n=0f *' is an isomorphism which com-
pletes the proof of (2.8).

Let us apply (2.8) in our original situation with p=1, g+1=m—1,
n=m, where m=4, so p=1<gq=m—2. Since [X]n is an isomorphism
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and H (Y, F)=0 for i+m—1, i<m+1 (using the Wang sequence and the
fact that =, (F)=0), it follows from (2.11) and the Five Lemma that for

= k .
y=w+k,x) y: H(Y,FUX)— H, .\, (Y)
is an isomorphism for 0<i<m+1.

Let FY be the j-skeleton of F (or of its singular complex). Then we
have that H, (F™, F"-Y)xg, (F™, F™-Y) is the free group on the
m-cells of F, i.e. the group of m-chains, and

Z,(F)— H,(F)—0

is exact, where Z,,(F)cn,, (F™, F™~1) is the subgroup of cycles. Let
weZ,(F)cn,(F™,F™=Y) be such that {a}=0,y in H,(F), where
0,: H,,.1(Y, X UF)— H,,(F) is associated with the triple (Y, X UF, X).
From the exact sequence

0—Z,(F)> C,(F)—*> 0C,,(F)—0

we can find a direct summand B<n,,(F™), F™~Y) such that d|B: B— dC,,(F)
is an isomorphism, since 0C,,(F) is free. Let X'=F™~ DU eff Uy, ™,
beB

where B is a free basis for B, 0: m,,(F™, F™~ ") —n__ (F™ ). Ifl: X' > F
is the inclusion, [, : H;(X")— H;(F) is an isomorphism for i <m, H,(X")=Z
with generator [X"] and [, [X'] =0, y. It follows that [X]—[X"]=0[Y],
[Y]eH, (Y, XuX’) and I, [Y]=y, where | now denotes the map of
pairs (Y, X U X')—(Y, X UF).

Then H (Y, X')=H'(Y,F) for i<m+1, H(Y, X')=0 for i=m+1, so
that it follows from (2.11) (with X' replacing F) and (2.8) that (Y, X U X")
is a Poincaré pair, which completes the proof of (2.1).
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