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HERMITIAN K-THEORY. THE THEORY
OF CHARACTERISTIC CLASSES AND
METHODS OF FUNCTIONAL ANALYSIS

A. S. Mishchenko

This paper gives a survey of results on Hermitian K-theory over the last ten years. The main

emphasis is on the computation of the numerical invariants of Hermitian forms with the help of the

representation theory of discrete groups and by signature formulae on smooth multiply-connected

manifolds.

In the first chapter we introduce the basic concepts of Hermitian K-theory. In particular, we

discuss the periodicity property, the Bass—Novikov projections and new aids to the study of K-theory
by means of representation spaces. In the second chapter we discuss the representation theory method

for finding invariants of Hermitian forms. In §5 we examine a new class of infinite-dimensional

Fredholm representations of discrete groups. The third chapter is concerned with signature formulae

on smooth manifolds and with various problems of differential topology in which the signature
formulae find application.
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Introduction

One of the classical problems of algebra is that of classifying Hermitian
(skew-Hermitian) quadratic forms and their automorphisms. Hermitian K-
theory, the basic concepts of which were first worked out in [14], studies
unimodular quadratic (Hermitian and skew-Hermitian) forms and their auto-
morphisms over an arbitrary ring A with involution up to “stable” equiva-
lence, which is somewhat weaker than ordinary isomorphism (see §81, 2).
Unimodularity means that the matrix of the quadratic (Hermitian or skew-
Hermitian) form has an inverse. A-modules are supposed to be free or
projective. The stable equivalence classes of forms over a given ring A with
involution form a group with respect to direct sum, which is denoted by
Kﬁ(A) in the Hermitian case and by K{,h (A) in the skew-Hermitian case. In
classical number theory one considers integral or rational forms, with
A = Z or Q, forms over the ring of integral elements of some algebraic
number field or over such a field itself. The groups of equivalence classes
of forms over rings of numbers were first studied by Witt and are known
as Witt groups.

For a long time now, many authors have used number-theoretic results
on integral quadratic forms in the theory of smooth simply-connected mani-
folds (Milnor [48], Rokhlin [79] and others). In 1966, in papers by
Novikov and Wall ([52], [13]) it was shown that the problems of modify-
ing even-dimensional multiply-connected manifolds with fundamental group
7 (technically very important in the method of classifying manifolds due to
Novikov and Browder ([51])) leads to the need to compute the groups
K%(A) and K¥(A), the analogues of the Witt group for the group ring
A = Z[r], whose involution has the form g = o(g)g™!, where o: 7 > {+1}
is the “orientation automorphism”. In its most general form, this result was
obtained by Wall {4]. Novikov [52] has examined the fundamental case
of the free Abelian group 7 = Z°, which arose in the proof of the
topological invariance of the Pontryagin in classes; he also pointed to the
deep connection between an algebraic problem concerning Hermitian A-
forms and the problem of classifying all homotopically invariant expressions
in the Pontryagin—Hirzebruch classes (see also the survey [78]; its first
version was a preprint for the International Congress of Mathematicians at
Moscow in 1966; it was published later, with some additions, in 1970). In
1968 Wall showed that the problem of modifying odd-dimensional manifolds
required the study of classes of “‘stably equivalent” automorphisms of
Hermitian (skew-Hermitian) forms over the group ring A = Z[n] of the
fundamental group 7 of the original manifold (for precise definitions, see
§1). This work was published in detail in 1970 ([78]). The classes of
stable equivalence of automorphisms of Hermitian (skew-Hermitian) forms
constitute commutative groups with respect to direct sums, which are
denoted by K”(A) and K$*(A). Wall in his papers calls all these objects
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“L-groups”, where Lo(m) = Ki(A), L,() = KA(A), Ly(m) = K$(A), Ls(m) = KT (A):
For group rings A = Z[7] these groups have been given the name of the
“Wall groups” of 7. In 196869 Shaneson in [5], developing an idea of
Browder [57], computed from purely geometric considerations these Wall
groups for the case, very important in topology, of the free Abelian group
7 = Z° (for the idea, see §10). However, Shaneson’s result was non-effective:
it remained completely unclear how one could find by algebraic operations
from a given Hermitian form the complete system of its stable invariants.
Finally, in 1969 in [13], the present author and Gel’fand used transition to
the character group to study Hermitian forms over the group ring Z[7],
where 7 = Z", reducing their study to that of quadratic forms over the
ring C¥(T") of functions on the torus.! In this paper, it was shown that
the Hermitian K%-groups over the ring A = C(X) of complex-valued
function coincide with the ordinary groups K°(X) in homotopy theory of
the classes of stable equivalence of vector bundles (see §4). The connection
between Hermitian forms and ordinary K-theory, constructed from vector
bundles, for the ring of functions C*(X), and also differential-topological
arguments for the group ring Z[7], led to the idea that it was necessary

to establish for all rings A with involution a single homological “Hermitian
K-theory” Kﬁ(A), possessing the property of “Bott periodicity” if 2-torsion
is neglected. From the point of view of Hermitian K-theory, periodicity
means that the skew-Hermitian (Hermitian) groups K¥(A) should coincide,
in reverse order, with the Hermitian (skew-Hermitian) groups K%(A). The
problem of constructing such a theory was first solved by Novikov in 1970,
using ideas of the Hamiltonian formalism (see {14]), for the group

K" ® Z[¥] (see also §2 of this survey). Novikov proved homology
properties of Hermitian K-theory and established a link between K% and
K3, clearly constructing analogues of the so-called Bass projections, which
are similar to the suspension homomorphism in homotopy theory.

In particular, for the group m = Z°, these Bass—Novikov projections
enable us to describe in an algebraically effective way the invariants of
Hermitian (skew-Hermitian) forms and automorphisms. A precise construction
of Hermitian K-theory, with the 2-torsion taken into account, based on the
ideas of {14], was given by Ranicki in [65] and [66]. Sharpe [80]
developed Milnor’s approach to define and study the group Ké’ (A).

Using ideas of Quillen [67], Karoubi later developed in [73], [74], [75]
a homotopy approach to the construction and proof of the 4-periodicity
of the Hermitian K" ® Z[%]-theory (see §3).

1 Quadratic forms over the ring A = Z[x}, where = is a free Abelian group (a lattice in R”) arise in the

theory of a solid body as the square matrix of interacting separate parts (atoms) of the lattice,n =1, 2, 3.
In this theory A-forms always lead to forms over the ring of functions C*(T7), using characters; but there
is interest in the classification relative to orthogonal transformations or in eigenvalues as functions of a
point of the torus (phonon spectra).
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We have already mentioned above the connection between the Hermitian
K-groups for the group ring A = Z[7] of an infinite group 7 and integrals
of the rational Pontryagin—-Hirzebruch classes over certain cycles. A con-
nection between the ordinary signature 7(M*4¥) of the integral quadratic form
of the intersection of cycles on sz(M‘”‘) and characteristic classes was
found by Rokhlin, Thom, and Hirzebruch back in the early ’50’s (see
[36]1—-[38]). This link is called the “Hirzebruch formula” and takes the
form (L, (M"), IM"]>=7(M"), where L; is the Hirzebruch polynomial of the
Pontryagin classes. Thanks to this formula, for example, were discovered
the smooth structures on spheres (Milnor {49]). In the middle of the 60’s
analogues of this formula were discovered in the theory of multiply-
connected manifolds, when the homotopy invariance of the integrals of the
Pontryagin—Hirzebruch classes along special cycles (intersections of cycles)
of codimension 1) were established by Novikov in a number of special
cases in 1965 ({51], (52]) and were then completely proved in papers by
Rokhlin, Kasparov, Hsiang and Farrell ({531—{55]). By 1970 it was
completely clear that the problem of finding all “multiply connected
analogues of the Hirzebruch formula” or all homotopically invariant
relations on the rational Pontryagin classes of multiply-connected manifolds
reduce completely to the problem of Hermitian K-theory. The author (see
[46] and §8 of this survey) found a new homotopy invariant of multiply-
connected manifolds, which generalizes the ordinary signature: to each closed
manifold M” there corresponds an element of Hermitian K« ® Z['2]-theory,
which is invariant also with respect to the bordisms 2.+ K(w, 1) that preserve
the fundamental group. Thus, there arises a homomorphism ¢:

Q.(K(m, 1)) > K%(A) ® Z[%). All homotopically invariant expressions in
the Pontryagin classes reduce to purely algebraic invariants on the Hermitian
K-groups K%(A), where A = Z[x]. If [M"] € Q, (K(m, 1)) is the bordism
class of the manifold in question, then according to a conjecture of
Novikov ([52], [78]) there must exist a purely algebraic homomorphism
(“Chern character”) o: K%(A) ® Z[%] = Ha(m; @), A = Z[n], and a
“generalized Hirzebruch formula” {go@[M"], x)= (L, (M"), DY*(x),

where x € H*(m; Q), w = n (M), y: M" > K(=, 1) is the natural map, L, the
Hirzebruch polynomial, and D the Poincaré duality operator.

However, for non-Abelian infinite groups m there were no such methods
for finding invariants of Hermitian A-forms or indeed methods of defining
the homomorphism o. In an important paper [26], Lusztig, starting from
the methods of Atiyah—Singer and using a continuous analogue of a
construction of the author [46], developed a new analytical approach to
these problems: he worked with the finite-dimensional representations of w
and the families of elliptic operators (or elliptic complexes) associated with
them. In particular, he gave a new proof of the theorem already mentioned
of the homotopy invariance of the integrals of the rational Pontryagin—
Hirzebruch classes along intersections of cycles of codimension 1 and
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obtained some particular results for individual cycles, dual to the cohomology
cycles of a non-commutative fundamental group =, provided that it can be
regarded as a discrete subgroup of a semisimple Lie group (§7).

The author, in [16] and [17] has applied methods of functional analysis
and the theory of infinite-dimensional representations to the problem of
computing the Hermitian K-groups. In particular, the “Fredholm represent-
ations” studied in [17] enable us to find a number of new invariants of
Hermitian forms over the group ring (see §6) and for a wide class of
groups to give a complete classification of homotopically invariant express-
ions in the rational characteristic classes (see §9). To the class of groups
studied in [17] there belong the fundamental groups of all manifolds of
non-positive curvature. For this class of groups 7 the following theorem
is completely proved: 1) The scalar product (L, (M")x, [M"]) is homo-
topically invariant for every cohomology class x that is obtained from the
image of the map M" — K(m, 1); here L, (M") is the Hirzebruch polynomial
of the Pontryagin classes and M" is a closed manifold. 2) For a manifold
with fundamental group 7 there are no other homotopically invariant
expressions in the rational Pontryagin classes.

Note that the Fredholm representations of the ring of functions C*(X)
were used by Kasparov, realizing an idea of Atiyah [18], for an explicit
construction of the K-theory of homologies (see [20] and §5).

Very recently Solov’ev has studied discrete groups of algebraic groups
over a locally compact local field. An example of such a field is the field
of p-adic numbers. For these algebraic groups, Tits and Bruhat have proposed
the construction of a contractible complex, the so-called Bruhat—Tits
structure, on which the algebraic group acts. The factor space by the action
of a discrete subgroup without elements of finite order is an Eilenberg—
MacLane space and has a number of remarkable properties. In particular,
for such complexes we can construct analogues of the de Rham complex
of exterior differential forms and produce an ample set of Fredholm
representations, which allow us to establish the homotopy invariance of
expressions in the Pontryagin—Hirzebruch classes, provided that the funda-
mental groups are isomorphic to discrete subgroups of algebraic groups.

In conclusion we note that for integral group rings of a finite group 7
a number of strong results have recently been obtained [81], [82] concern-
ing the computation of Hermitian K-groups, which we do not discuss in
the survey.

CHAPTER 1
GENERAL CONCEPTS OF ALGEBRAIC AND HERMITIAN K-THEORY
§ 1. Elementary concepts of K-theory

There are many monographs on stable algebra, studying the topic from a
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purely algebraic point of view. We mention here the book by Bass [1] and
the lectures of Swan [2].

1. Modules over a ring A. The basic objects of our study will be modules
over some associative ring with unity. As a rule, we shall denote the ring by
A. In most cases the base ring A will be furnished with a supplementary
structure — an involutory antiautomorphism, that is, a linear map
x: A = A such that for any A, A, A, € A,

(1.1) (Aho)* = A7AT, (A%)* = A

A ring with involution arises in a natural way when one studies the
homotopy properties of multiply-connected topological spaces, in particular,
smooth or piecewise linear manifolds, topological or homology manifolds.
If X is a topological space and 7 = 7,(X) its fundamental group, then in
many problems one has to study the homology of X with coefficients in
the group ring A = Z[x], taken as a local system of coefficients. The
group ring A = Z[w] of = has a natural involution satisfying (1.1) and
uniquely determined by the condition g* = g"'(g € w). Thus, let A be an
arbitrary associative ring with involution, and M a finitely-generated left
A-module. We denote by M* the group of A-homomorphisms of the
A-module M to A: M* = Hom, (M, A). The group M* is equipped with
the structure of a left A-module by setting (Aa) (m) = a(m)A*

(xEM* meM, N€A). If : M > N is a A-homomorphism of A-
modules, then we denote by §* the homomorphism g*: N* - M*, given
by B*(e)(m) = a(f(m)) (m € M, o € N*). This 8* is a A-homomorphism
of A-modules.

Although in the present section we do not consider systematically
graded modules, we give here all the same the relevant definitions for
graded objects. By a graded A-module M we mean a left A-module M,
together with a fixed decomposition of M as a direct sum of A-modules
M= IG:Mk. If m € M, then m is said to be homogeneous of degree &,

deg m = k. Let N be a second graded A-module, N = ’Ef N, and

o: M > N a A-homomorphism. Then « is said to be homogeneous of
degree ¢ if (M) C Ni,,. In that case we write deg a = ¢. In particular,
if M is a graded A-module, then M* splits into the direct sum M* =29M,;“,

where M} consists of all the homogeneous homomorphisms of degree (—k)

from M to the trivially graded ring A, that is, those homomorphisms

a: M~ A such that a(M;) = O for i # k. Thus, the A-module M* is turned
in a natural way into a graded A-module M* = Gji?(M]?"), where (M*)j = (M_J-)*.

For graded A-modules the concept of dual homomorphism has to be adjusted.
In fact, if : M > N is a homogeneous homomorphism of graded A-modules,
then by 8* we denote the homomorphism g*: N* - M*, given by
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B* (@) (m) = (—1)* B> P o (B (m)) (mEM, @€ (N*)aega)-

This §* is a homogeneous homomorphism, and
deg p* = deg P.

The operation of duality of A-modules is not involutory for arbitrary
A-modules, but there is a natural homomorphism of A-modules
eyt M = (M*)*, which is defined on homogeneous elements by the formula

(ear (M) (@) = (—1)*E™ €% 0 (m) (a€ M*, meM).

The homomorphism &, is homogeneous and deg ey = 0.

If M is a projective graded A-module, then &, is an isomorphism.

2. The algebraic K-functor. We turn now to the description of concepts
relating to algebraic and Hermitian K-theory. Suppose, as before, that A
is an associative ring, and let o/ be the set of all finitely generated projective
A-modules. By Ky(A) we denote the Grothendieck group generated by the
set off with the operation of direct sum of modules, in which the relation
[M] = 0 is introduced for any free A-module M &€ o#.

Suppose next that I' is the set of automorphisms of free finitely
generated A-modules. We define the group K,(A) to be the factor group
of the free Abelian group generated by I' factored by the following
relations:

a) if (M, v,) and (M, v,) are two automorphisms of I', then

(1.2) (M, Y1] 4 (M, 'Yz] — (M, & M), (. © Yz)] = 0,

b) if (M, v,) and (M, <,) are two automorphisms of I' for one and the
same module M, then
(1-3) [M, '}’1] + [M, 'Yg] — [M, 'V]_'Yg] = Q.

An automorphism 7 is said to be simple if [y] = 0 in K, (A).

The groups Ko(A) and K, (A) defined above are one of the basic objects
of study of algebraic K-theory. On the other hand, these groups turn up
in various problems of algebraic topology, as the domain of values of
important homotopic and topological invariants of spaces and manifolds.
The most important example of such an invariant is the Whitehead torsion
for the homotopic equivalence of two chain complexes.

in our exposition the group K¢(A) and K, (A) will play an auxiliary role
in the development of Hermitian K-theory, and we now turn to the study
of its concepts.

3. The Hermitian K-functor. Suppose again that we are given an assoc-
iative ring A with involution. We consider a free finitely generated A-module
M. Let o M* - M be an isomorphism of A-modules satisfying the relation

(1.4) ema* = (—1)ka
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(as we have defined the homomorphism &) for graded modules, we suppose
here that M has the null grading).

When K is even, we say that we are given a Hermitian form « and when
k is odd, a skew-Hermitian form «. Thus, a (skew-)Hermitian form over A
is a pair (M, a) consisting of a free A-module M and an isomorphism «
satisfying (1.4). For brevity we speak henceforth of Hermitian forms,
distinguishing Hermitian and skew-Hermitian forms only when confusion
would otherwise arise. Two Hermitian forms (M,, a,) and (M,, «,) are
said to be equivalent if there is an isomorphism §: M, > M, such that
o, = Poy B*, that is, such that the following diagram is commutative:

M, 5 m,
(1.5) | B*T%.
With each Hermitian form (M, «) we can associate a matrix with entries
in A. To do this we fix in M a free basis (m,, ..., my) over A. Let
(mf, ..., mJ) be the dual basis for M*, so that m;“(m/-) = 8,7, where

6, =1ifi=j and 8,-]- = 0 if { # j. Then the homomorphism a: M* > M
determines the matrix A consisting of elements of A whose rows are the

coordinate elements of a(m*) in the basis (my, ..., my):
(1.6) a(mf) = 2 him;.
=

The condition (1.4) in terms of A = || A;ll then takes the following form:
(1.7 2G5 = (—1)PAy,.

If M,, a;) and (M,, a,) are two Hermitian forms and A, and A, their
matrices with respect to the bases, then the equivalence condition (1.5) can
be stated in the following way: there exists an invertible matrix B = || u;ll
with coefficients in A such that

(’1,8) Al = B*AzB,

when by B* = || v;|l we mean the matrix for which v; = uf.

The set of equivalence classes of Hermitian forms over A will be denoted
by ofy. This set splits into disjoint subsets according to the number of
generators of the free module on which the Hermitian form is defined, or,
what comes to the same thing, the order of the matrix corresponding to
the Hermitian form. We introduce on e, the operation of the direct sum
of two Hermitian forms (M,, «;) and (M,, a,): we set

(1.9) M=M®M, o=oua,

Thus, the direct sum of the two Hermitian forms (denoted by (M,, ;) @
(M,, ay)) is the pair (M, o) determined by (1.9). To equivalent Hermitian
forms there correspond, according to (1.9), equivalent direct sums, so that
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the operation of direct sum is well-defined on of}.

Now we are in the position to define the group Ké’k(A), which we call
the Hermitian K-functor of A. By definition, K’;k(A) is the factor group of
the free Abelian group generated by the set o#y of classes of equivalent
Hermitian forms, with the following relations:

(1.10) My, o)) + (M3, ap] — [(My, ay) © (M, )] = 0,
(1.41) M,a]l =0
for the Hermitian form (M, o) whose matrix A is
0 1
(1.12) A=((_1)k 0)'

To define the groups K%,, (A) we proceed as in algebraic K-theory.
Before defining K%, ., (A) we note that according to (1.11) the Hermitian
form (1.12) and also the direct sum of any number of copies of the form
(1.12) determine the trivial element in K’z’k(A). We call the Hermitian form
(M, a) Hamiltonian if M has a basis (m,, ..., my, hy, ..., hg) in which
the matrix A of « has the form

0 E

(1.13) A:((—i)hE 0)’
where £ is the unit matrix of order s.

Let (M, a) be a Hamiltonian form. We consider an isomorphism
v: M - M preserving the form «, that is, such that

(1.14) a = yoy*.

Isomorphisms satisfying (1.14) are called Hamiltonian transformations of
(M, «). Thus, as in the case of algebraic K-theory, we can define the direct
sum of Hamiltonian transformations (M,, &y, v,) and (M,, a,, v2) by
setting

(1.15) (My, oy, v;) ® (Mo, ay, Vo) = (M, @& M), (o, @ ay), (v1 D 72))-

Let I'), be the set of Hamiltonian transformations of Hamiltonian forms.
The group K’;kﬂ(A) is defined as the factor group of the free Abelian
group generated by I',, with the following relations:

a) if My, oy, vy), (M,, o, ¥2) are two Hamiltonian transformations,
then

(1.16) [My, a4, vl + (M, a,, Yz] — [(My, o4, 71) © (M, g, v2)l = 0,

b) if M, a, v,), M, «, vv,) are two Hamiltonian transformations of one
and the same Hamiltonian form (M, «), then

(1.17) (M, a, v+ M, a, y,] — [M, a, pv,] =0,

O [(5 aei)]=0

4. Other versions of Hermitian K-theory. We have introduced the simplest
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version of K-theory related to Hermitian forms over a ring A. In fact,
however, in various problems we have to consider several modifications of
the groups K;’C(A) that are better adapted to one problem or another.

We introduce in this subsection the most important versions of Hermitian
K-theory, describing their domain of applicability on the one hand and
their interconnections on the other.

a) Historically, the first groups of Hermitian K-theory appeared in
differential topology in the description in algebraically invariant terms of
the obstructions to the possibility of some modifications or other of smooth
manifolds. The corresponding groups were denoted by L;(A) and called the
Wall groups (after the author who first studied them — see [3], or, for a
detailed exposition, the book [4]). :

A Hermitian form (M, «) on a free A-module M can be regarded as a
bilinear function

(1.18) Blmy, mo) = @™ (my)(mg)  (my, my € M).

The function § takes its values in A. The condition (1.17) for o to be
(skew-) Hermitian implies for § that

(1.19) Blmy, ma) = (—1)*(Blms, m))*  (mq, my € M).

Such bilinear functions arise in smooth multiply-connected manifolds as
intersection indices of cycles realized by embedded submanifolds. The inter-
section indices of cycles are closely connected with the indices of self-
intersection of embedded submanifolds, and the algebraic expression of this
connection is embodied in the definition of the Wall groups.

For let A’ denote the group

(1.20) A = A/{v — (—1)"v*: v € A).
We consider a function y: M = A’ satisfying the following conditions:
(1.21) v(my + my) = y(my)-+y(m,) + Plmy, my),
(1.22) B(m, m) = y(m) + (—1)*(p(m))*,
(1.23) y(Am) = Ay(m)A* (A € A).

All these equations are to be understood in the following way: we have to
choose representatives in the coset y(m), carry out all operations on the
representative in A, and then associate with it the corresponding coset.

A collection of functions (8, ) satisfying (1.19) and (1.21)—(1.23), and
such that the homomorphism « in (1.18) is a Hermitign form, is called a
quadratic form over A. Quadratic forms also admit the operation of direct
sums. For if (M,, B, v1) and (M,, B,, 7¥2) are two quadratic forms, then
weset M =M, ®M,, =08, ® B, and we define y by the relation (1.21),
where we suppose that v coincides with v; (i = 1, 2) on M,.

A Hamiltonian quadratic form is a direct sum of forms (M, B, v) of the
following kind: the A-module M has two generators, the matrix A of the
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bilinear form g is
0 1

A= ((-—1)’* 0)
with respect to the basis (1, m;), and v is determined with respect to
this basis by the formulae y(m,;) = ¥(m,) = 0. Thus, we define the group
L, (A) on the set of quadratic forms as the factor group of the free
Abelian group generated by the quadratic forms, factored by relations
analogous to those for K’,’k(A).

The groups L,;,,(A) are defined with the help of automorphisms of free
A-modules preserving the pair of functions (8, ), which specify a Hamilton-
ian quadratic form.

b) The second version of the Wall group is bound up with the study of
obstructions to the construction of maps of smooth manifolds up to simple
homotopy equivalence. In this case it is supposed that every free A-module
is furnished with a class of equivalent bases, a pair of bases for M being
said to be equivalent if the transition from one to the other is determined
by a simple automorphism a: M — M, that is, [«] = O in the group K;(A).

Then we distinguish the class of those quadratic forms (M, B, v) for which
the bilinear form § is determined by a simple isomorphism a: M* - M in
any of the equivalent bases of M and the corresponding dual basis for M*.
Correspondingly, two quadratic forms (M, B8y, v;) and (M,, B, v,) are
taken to be equivalent if there is a simple isomorphism &6: M; - M,
sending one quadratic form into the other.

The class of automorphisms preserving Hamiltonian quadratic forms can
also be restricted to the subclass consisting of only simple automorphisms.

The corresponding analogues of Hermitian K-theory are also called the
Wall groups and denoted by L} (A).

¢) In these three versions of Hermitian K-theory we have observed a
number of restrictions in the definitions. In the first place, we have fixed
the class of A-modules on which the forms are considered. Up to now this
class has been either the free A-modules or the free A-modules with a
basis. Secondly, we have fixed the class of forms to be considered. We have
the cases of Hermitian forms, quadratic forms, and simple quadratic forms.
Thirdly, and finally, we have fixed an equivalence relation between forms,
that is, we have defined which pairs of forms are to be regarded as
equivalent and which forms as equivalent to zero.

Analogous restrictions have been observed in defining the classes of
automorphisms preserving a Hamiltonian form.

Other versions of Hermitian K-theory have also been treated in the liter-
ature. We mention the most important of these, indicating the class of
modules and of forms and the equivalence relation in each of these versions.
A useful class of A-modules to consider in a number of problems (see §2)
is the class of projective A-modules. The forms are then the so-called (simple)
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Hermitian forms, that is, those bilinear functions § on M of the kind (1.18)
for which there exists a function vy satisfying (1.21)—(1.23). However, the
function 7 itself is not fixed and is not considered. We denote the corres-
ponding groups by KZ(A) (K;(A)). Finally, we can take as trivial the forms
M, o), where M = N @ N* and the morphism

(5 8‘;) @ (N* @ N)— (N @ N*)

( )

Such forms are called projective-Hamiltonian.

5. Relations among the different versions of Hermitian K-theory. Despite
the abundance of versions of Hermitian K-theory, the differences between
them are not very important. Roughly speaking, if we ignore in Hermitian
K-theory elements of order two, then it seems that all the versions are iso-
morphic to each other. As an illustration we consider the previously defined
K-functors Kh (A), Kh (AN), Ks (A), Lg(A) and L} (A). It is quite clear that
the groups Lk (A) and Kh (A) can be obtained from the form defining
L. (A) by “forgetting” the fine structure and going over to a coarser
structure.

Thus, we have natural homomorphisms

L3 (A) = Ly, (A) > K (A)
N 7y

Ki(A)— K} (M)
These homomorphisms connecting all these groups, with the exception,
perhaps, of K’;(A), have a common property: the kernel and cokernel of
each of the homomorphism consists of elements of order a power of 2.
One can give more precise estimates on the orders of elements in the kernel
and cokernel. In this connection see, for example, [5], [6], [7]. Thus,
the map Li(A) = L, (A) can be included ([5]) in an exact sequence of
groups

oo Wy (A) > LE(A) = Ly (A) => Wiy (A) = . . .

The groups W, (A) are effectively described in terms of K,(A) and consist
of elements of order 2.

We make now a remark that is 1mportant later on. If A contains the
number , then the groups L (A), K" (A), and Kh (A) simply coincide. In
fact, these three groups differ from one another in that we consider in
place of the Hermitian form « the bilinear form , with a function 7y
satisfying (1.21)—(1.23) added. We show that if % € A, then « is uniquely
determined by the properties (1.21)--(1.23). For, let § be an arbitrary
bilinear form satisfying (1.19). Then we set
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(1.24) v(m)=gB(m,m)  (meM).

It is not difficult to verify that (y(m))* = (—l)ky(m) and that (1.21)-(1.23)
are satisfied. To see that - is uniquely determined by (1.21)—(1.23), it is
sufficient to note that the ring splits into the direct sum of two subgroups
A = A" ® A", consisting of the self-conjugate and skew-conjugate elements,
respectively, while A' (1.20) is isomorphic to A" or A”, according to the
parity of k.

If v is a function satisfying (1.21)—(1.23), then, for example, for even
k we get

(1.25) v(m) € A+,  P(m, m) = 29(m),

that is, v is uniquely determined.

Thus, when L € A, the set of Hermitian forgs oy, coincides with the set
of quadratic forms, that is, the groups Lj(A), KZ(A), and KZ(A) are
isomorphic.

The functional methods to which the present article is dedicated are
insensitive to adjoining to A the element L and therefore, from the point
of view of these methods we cannot distinguish the different versions of
Hermitian K-theory Ly (A), KZ(A), Ki(A) and L§(A), K5 (A), respectively.
Later we shall see that from the point of view of functional methods all
these versions of Hermitian K-theory are altogether indistinguishable.

§ 2. Periodicity in Hermitian K-theory

In §1 we have defined the groups K,’;(A) so that automatically for
k = s (mod 4) the groups KZ(A) and Khs(A) are isomorphic. This fictitious
periodicity has nowhere been justified. As a matter of fact, we are con-
cerned here with four different groups KZ(A) (k =0, 1, 2, 3), and the
question of the interpretation of these groups as a finite segment of some
4-periodic sequence of groups remains open. The incentive for considering
algebraic K-theory as a 4-periodic theory is founded on the remarkable
properties of topological K-theory discovered by Bott.

Let X be a topological space and K(X) the group generated by the locally
trivial vector bundles on X. If the fibre of the bundle is a finite-dimensional
complex space and the structure group is the group of unitary transformations,
then we denote it by K, (X). In the case of a real vector bundle and the
group of orthogonal transformations as structure group, we denote it by
Ko (X). There is also a version of topological K-theory the group of
symplectic transformations of a vector space over the field of quaternions
as structure group. In this case the group of bundles is denoted by Ksp (X).
In all three versions Bott has established a formula which is now known as
Bott periodicity.

If (X, x4) is a space with base point, then by K°(X, x,) we denote the
subgroup of K(X) generated by the zero-dimensional elements of K(X). We
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denote by SP(X) the p-fold suspension of the space with base point
(‘Xr xO)
SPX = (§? X X)/(X \ SP).

Here SP is the p-dimensional sphere with base point and the symbol V
denotes the connected sum of two topological spaces with base points. Then
Bott periodicity can be written in the form of the following equalities:

(2.1) K (S2X) = K4 (X, ),
(2.2) Ky (88X) = Kb (X, x,),
(2.3) K%, (S8X) =K%, (X, x,).

Now we introduce an argument to show that in algebraic K-theory we
can also speak of periodicity in the sense of (2.1)—(2.3).

It turns out that the groups K(X) of topological K-theory have a purely
algebraic description. To see this we consider the ring A = C(X) of all
continuous complex-valued functions on X. Then we can associate with
each complex vector bundle § over X the A-module M(§¢) of all continuous
sections of & If X is compact, then M(X) is a finitely-generated projective
A-module. Moreover, the correspondence & - M(§) establishes an equivalence
between the category of complex vector bundles and that of finitely
generated A-modules and, consequently, an isomorphism of the groups Ky (X)
and Ky(A). Generalizing the above argument to the rings of real-valued
functions R(X) and of quaternions Q(X), we get natural isomorphisms

Ky(X) = Ko(C(X)),
Ko(X) = K R(X)),
Ksp(X) = Ko(Q(X)).
Therefore, we can interpret Bott periodicity solely in algebraic terms. For
this it is more convenient to replace (2.1), (2.2), and (2.3) by relations
among the K-groups for the spaces X and X X TP, where T? is the p-
dimensional torus, that is,
TP =8t % ... xS
p times
In the case, for example of K, Bott periodicity takes the following form.
We set K;; HX, xo) = K (S’X) Then (2.1) is equivalent to the exactness of
the sequences:
(2.4) 00— K (X)—> Ky (X X SY)—> Ky (X)—>0,
(2.5) 0> Ky (X) =K} (X xSHY—> K (X)—>0.
In truth, the sequence (2.4) is exact almost by definition, while (2.5) would
be exact if we could replace K9 u{X) by KU (X). The fact that the last two

groups can change places is equivalent to Bott periodicity.
The sequences (2.4) and (2.5) can acquire a real meaning in algebraic
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K-theory. In fact, the ring of continuous functions C(X X S!) contains the
subring of Laurent polynomials C(X)[z, z7!] C C(X X S8'). To see this, we
have to represent S' as the set of complex numbers of norm 1. Then
C(X X S') is the completion of C(X)[z, z7'] with respect to a suitable
norm. The method of going from an arbitrary ring A to the ring of Laurent
polynomials Afz, z™'] contains no topological ingredient at all and can
serve as an analogue for the passage from X to X X S’. Therefore, in alge-
braic K-theory one of the essential problems is that of establishing the
connection between the K-groups for A and its Laurent extension Alz, z7!].
The analogous problem in algebraic K-theory was solved by Bass ([63],
[64], see also [1], Ch. 12; [2], 226). Roughly speaking, if A, denotes
the Laurent extension of A, then K,(A,) splits into the direct sum of
the groups Ky(A) and K;(A) and yet another summand Nil (A), consisting
of the elements of the form (1 + wz*!), where » is a nilpotent homo-
morphism over A. In many important examples the group Nil (A) is trivial.
The decomposition of K;(A,) into a direct sum is effected with the help
of the Bass projections

Ki(Az) > Ki(A) — Ki(Ay),
Ki(Az) > Ko(A) > Ki(As).

It turns out that there is a similar situation in the case of Hermitian
K-theory. The connection between the K-groups for the rings A and A,
was established by Novikov [14]. He constructed projections that decom-
pose the Hermitian K-groups over A, into the direct sum of Hermitian
K-groups over A. However, all the constructions were carried out in the
2-adic localization of the ring and the K-groups. Later Ranicki ([65], [66])
sharpened Novikov’s theorem by taking account of the 2-torsion in the
rings and the K-groups and constructed projections for “twisted” Laurent
bundles. Note that parallel (and rather earlier in time) similar questions
were solved by purely geometric methods (see §10).

The basic idea enabling us to construct projections for Hermitian
K-theory appears to lie in a new approach to the question of defining the
K-groups. If we wish to construct K, and K, in any category with direct
sums, and with zero, then we must have:

a) a class of objects containing 0 and closed with respect to direct sums,

b) a concept of equivalence between two objects of the class,

c) a concept of a means (or process in the terminology of [14]) of
establishing equivalence. In the case of algebraic K-theory, these objects
are the projective A-modules, equivalent objects are equivalent projective
A-modules, and equivalence is established by means of isomorphisms. Then
the group K¢(A) is constructed as the Grothendieck groups of the category
of projective A-modules factored by the free A-modules. The group K,(A)
is constructed with the help of all isomorphisms of a free A-module. There
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is also a concept of equivalence of isomorphisms (just as, for K,, there is
the concept of equivalence of projective modules). In exactly the same way,
if we wanted to define the next group K;(A), then we should have means
of establishing the equivalence of isomorphisms, and also a concept of the
equivalence of such means.

In the case of Hermitian K-theory the objects of the basic category are
projective modules together with Hermitian or skew-Hermitian non-degenerate
forms on a module.

Two Hermitian forms (M, o) and (M, ) are taken to be equivalent if
there is an isomorphism:

(2.6) B: M- M',
such that o' = BaB*. The trivial objects are the projective-Hamiltonian
Hermitian forms. The classes of equivalent Hermitian forms generate the
group K%, (A). To obtain the group K%, (A) we choose as objects the
isomorphisms of the projective-Hamiltonian form (2.6). For these iso-
morphisms we have to define an equivalence relation. Let M = M, ® M,
be a direct sum decomposition of the A-module M, in which the

(_Ol)k (1)) The sub-

modules M, and M, are such that a is identically zero on each of them,
while the composite map

My —>MZ5 M* M3
is an isomorphism. Such submodules are called Lagrangian planes. Every
Hamiltonian transformation (2.6) sends a Lagrangian plane into another
one. In particular, if § is a Hamiltonian transformation, then the image
BM,) of M, also is a Lagrangian plane. Moreover, each Lagrangian plane
L C Mp ® M, is the image of some Hamiltonian transformation g:

(2.7) L = B(Mp).

The transformation § in (2.7) is determined not uniquely, but up to com-
position with a Hamiltonian transformation vy leaving Mp invariant. By
analogy with the Hamiltonian formalism in dynamical systems we say that
there is an elementary transfer process from § to §y. Another type of
elementary transfer process from f to a transformation B’ consists in adjoin-
ing to M = Mp ® M, two additional coordinates

M~ M ® Apst1) © Alxsty)

and then changing coordinates by

2.8) { P§+,1 = Ps+1 —*2 '\”kxk —‘sz’ﬂv

P = Dr-tVa, Th =Ty Ts41 = Tsy1-

This operation also has an analogue in the Hamiltonian formalism if the
new coordinate xg,, is regarded as the time coordinate. One can also
iterate this, regarding x ,; as a many-dimensional vector.

Then two Hamiltonian transformations (or, what comes to the same
thing, two Lagrangian planes) are said to be equivalent if there is a

Hamiltonian Hermitian form o has the matrix 4 = (
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composition of elementary processes sending the one into the other. The
equivalence classes of transformations form the group K%, (A). The next
stage consists in choosing as fundamental objects processes taking one fixed
Lagrangian plane (say, M, C M) to another fixed Lagrangian plane L C M.
Here L can be chosen so that it projects along M, onto a direct summand.
It turns out that the composition of elementary operations sending Mp to
L is completely determined by the matrix ¢ in (2.8), which in this case is
a non-degenerate matrix of the other sign of symmetry. Consequently, we
can introduce an equivalence relation between two compositions of ele-
mentary operations if the corresponding skew-Hermitian forms are equivalent.
In this way we succeed in interpreting the groups Kﬁk”(A) from the
point of view of algebraic K-theory for Hermitian forms as distinguishing
them in the category of equivalences of elements of KﬁkH(A).

The approach we have given has a direct analogue in homotopy theory.
For let (X, Y) be the set of continuous maps of a space X to a space Y
respecting base point. Two maps ¢ and  are regarded as equivalent it they
are homotopic: ¢ ~ ¥. We denote the classes of homotopic maps by
[X, Y],. Then homotopies between two fixed maps form a new category
in which we can introduce an equivalence relation (namely, homotopy).
We denote the classes of equivalent homotopies by [X, Y],. Carrying on,
in this way, we can construct sets [X, Y], for each k£ 2 0. In topology,
one can make the remarkable observation that the sets [X, Y], can be
included in homology theory (under certain natural restrictions) and this
means that one can apply the apparatus of homological algebra for com-
puting these sets.

As a matter of fact, Hermitian K-theory has similar properties, which
enable us to carry out computations comparing the Hermitian K-groups
for the ring A and its Laurent extension A,. If we ignore torsion, that is,
if we tensor all groups with the ring of rational numbers, then we have
the following decomposition:

(2.9) Ki(Az) = KR)(A) © KP4(A).

The precise decompositions are more intricate and require that we consider
in parallel the three versions of Hermitian K-theory associated with Hermit-
ian forms on projective, projective-free, or free modules over A ([65]).

§3. Algebraic and Hermitian K-theory from the point
of view of homology theory

1. Classifying spaces. The method of defining Hermitian K-theory in §2
points to the possibility of describing the K-groups as homotopy invariants
of certain classifying spaces. The first such description was proposed by
Quillen ([67]). We consider the space BGL(A). Since the derived group of
GL(A) is equal to its second derived group, there is a map
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f: BGL(A) = BGL(A)" under which the fundamental group
m(BGL(A)) = GL(A) is mapped onto its Abelianization, and the integral
cohomologies are isomorphic. Moreover, BGL(A)" is universal with respect
to these properties. Then the space BGL(A)" is uniquely determined by the
ring A and has functional properties.

Quillen has proposed defining the K-groups in the following way:

(3.1) KA = 1 (BGL(A)Y).

The previously known groups K¢A, KA, K, A, agree with the definition
(3.1). This definition is convenient from the homotopy point of view. However,
whether it is mathematically natural remains unclear.

At the same time Volodin proposed another definition, closer in spirit
to the point of view of the processes explained in §2 ([68], [70]). With
the help of elements of GL(A) one can construct a simplicial complex. Its
vertices are the elements (matrices) of GL(A). The one-dimensional
simplexes are the elementary matrices, and so on. The homotopy groups of
the resulting space (after shifting the dimension by 1) turn out to be the
groups K,;(A). The merit of the space introduced by Volodin lies in the
fact that its homotopy properties clearly reflect the homotopy structure
of the group of pseudo-isotopies of a multiply-connected manifold. For
example, the group mo(PISOM)) is expressed in terms of K, (A), m (PISO(M))
in terms of K5(A), and so on ([72]).

Later the homotopy equivalence of the spaces defined by Quillen and
by Volodin was established ([69]).

There is still another definition of the algebraic K-groups, based
precisely on the analogy of the Laurent extension of A in algebra and
multiplication by the circle in topology ({71]). In the case of regular
rings, at least for i << 2, the groups K;(A) agree with the other definitions.

2. Periodicity in Hermitian K-theory. For Hermitian X-theory Karoubi
has also considered Quillen’s classifying space ([73]). In the case of a
regular ring A, he constructs versions of Hermitian K-theory that are
needed for the passage to the Laurent extension of the rings, U"(A),

V™ (A). Relying on ideas of Novikov, he establishes 4-periodicity for the
homotopy groups of the classifying spaces ([74], [75]).

Moreover, from the point of view of the homotopy groups of classifying
spaces one can clarify the deviation from 4-periodicity by taking account of the
elements of order a power of 2. Just as in topological K-theory, the
periodicity of the K-groups is established by multiplying a generator u,
into the group K%(A). It turns out that actually multiplication by u, is
not an isomorphism. There is a generator u_, € K" 4(A) such that
ugu_, =4 € K%(A). Consequently, after 2-adic localization, u4 becomes
invertible. For comparison we may point out that in real topological
K-theory there is an analogous picture for studying the 4-periodicity of
the theory (see [76]).
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CHAPTER 2
HERMITIAN X-THEORY AND REPRESENTATION THEORY
§4. Finite-dimensional representations

We turn now to the discussion of functional methods for studying the
invariants of Hermitian K-theory. Qur main problem is as follows.

Let A be an associative ring with involution and (M, «) a Hermitian
form over A. We have to find effective methods of finding invariants of
(M, «) that distinguish inequivalent forms. In §3, as a matter of fact, such
a complete set of invariants was given for Hermitian forms for one special
class of rings, namely, group rings of free Abelian groups. The invariants of
(M, o) are the signatures of the numerical quadratic forms that are the
images of some chain of Bass—Novikov projections.

1. Symmetric representations. We consider another way of finding numer-
ical invariants of the Hermitian form (M, «) over A, based on the study of
the representations of A. Let p: A — Mat(/, C) be a symmetric repres-
entation of A in the ring Mat(/, C) of complex matrices of order / (see
[8], 221). In Mat(l, C) we fix the involution of ordinary complex con-
jugation of a matrix and then

(4.1) o(M*) = (p()* (A EA).

By means of a symmetric representation p of A we can associate with each
Hermitian form (M, «) a well-defined numerical Hermitian form on a com-
plex vector space. Namely, let ¥ be the complex /-dimensional vector space
on which the ring Mat(/, C) acts. This action can be specified in terms of
a basis vy ...y for V, If V is furnished with a Hermitian metric in which
the vectors (v, ... v;) are orthonormal, then the involution on Mat(/, C)
corresponds to the operation of duality for the linear operators on V.
Using p, we turn V into a left A-module. To do this we set

(4.2) aw = p(h (LEA, vEV).

Let M be a free A-module with a finite number of generators (m; ... my).
We consider the tensor product of the A-modules M and V. Since it is
necessary for the tensor product that one of the modules has a left-

and the other a right-module structure, we arrange that a right-module
structure is assigned to V by the formula

(4.3) vh = p(A¥*)(v) (AEA, vET).

It is not difficult to verify that the right action of A on V satisfies all the
properties of right action of a ring. Thus, we set

(4.4) M, = M ®,V,
that is, M, is the factor group of the tensor product M ® V by the
relations:

(4.5) an @ v =m® p(A*)p (meM, veV, AEA).
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Notice that the tensor product M, has lost the structure of a A-module.
On the other hand, M o admits the structure of an action by any ring whose
action commutes with the action of A on one of its factors. Such a ring,
for example, is the field of complex numbers C whose action on ¥V commutes
with the action of Mat(/, C), by definition. Consequently, M, is a complex
vector space, of dimension /-s.

Moreover, if §: M -+ A is a module homomorphism, then we get a homo-
morphism

(4.6) BR1: My—>A,=V.

Thus, there is a natural homomorphism

(4.7) §: M*— Home (M,, V).
By a direct computation it can be verified that & is a left A-module homo-
morphism. In this way, a left A-module structure is inherited by
Hom¢ (M;, V) from the left A-module structure on V. On the other hand,
the A-module Homq(#,, V) is isomorphic to (M;)* @ V. Therefore, we
get a natural A-module homomorphism:

(4.8) 5 M*>(M)*QV.
Next, by analogy with (4.6) we have the homomorphism
(4.9 0®1: (M*),—> (M} QcV)RaV.

Now we study the space M} ®cV) o,V = (M, )* ®c(V QaV). If the
image of p(A) is the whole matrix algebra Mat(l, C), then (V ®, V) is
isomorphic to the one-dimensional space C. In general, we can at least
assert that the Hermitian metric on the complex space V well-defines a
complex-valued linear function defined on V &4 V by the formula

(4.10) V(v ® vy) = (v, Vy).
Thus, we can construct the composite of homomorphisms

(4.11) 5 (M%), — (M,)*,

(4.12) 5 (1®y)(6®1).
If M is a free A-module, then & is an isomorphism. We now return to the
Hermitian form (M, «). Here oo M* - M is a A-module isomorphism, and

by definition (1.7), exyoa* = (—1)*a. We multiply « tensorially by the
A-module V and obtain the homomorphism

(4.13) @ (@@ 1) (M%), M,,
We then set

(4.14) opr (Mo)*—> M,

(4.15) ap= o (5).

The homomorphism (4.14) satisfies a relation analogous to (1.17),
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(4.16) sﬁpag =(—=1)*a,
that is, it is a (skew-) Hermitian form over C with complex conjugation as
involution.

Our definition of the numerical Hermitian form (M,, «,), constructed
from (M, o) and the symmetric representation p of A, does not refer to
any basis in M or V. If in M we fix a free basis (m; ...my) and in V a
basis (v; ...y;), we can distinguish in their tensor product M, the basis
{(m; ® v;), 1 <i<s,1<j<1}). Then in this basis the matrix of

(M,, a,) takes the following simple form. Let
(4.17) A= Aills My € As
be the matrix of (M, o) in the basis (m, ...m;). We consider the matrix

A, of order /-5, split into square blocks of order / each (altogether s X s
blocks), each block being equal, respectively, to p(d;;) € Mat(/, C):

(4.18) Ay = |l p(hy) Il.
This A, is the matrix of M,, ap) in the basis
{tm; ® v)), 1 <i<s 1<j<1/} The verification that A, is Hermitian
and non-degenerate is trivial.

2. Signatures of Hermitian forms. The invariant definition of the numerical
Hermitian form (Mp, ap) from (M, o) and p shows that if two forms
My, o) and (M;, a,) are equivalent, then so are the forms (M, o, ,)
and (sz, a2p). Moreover, if (M, «) is Hamiltonian, then so is (Mp, ap).
In the same way, if p, and p, are equivalent representations of A and
(M, o) is a Hermitian form, then the forms (Mpl’ apl) and (Mpz’ apz) are

equivalent. Therefore, p induces a homomorphism of Hermitian K-theories:
(4.19) signg: K3 (A) — K3 (C).

Moreover, for equivalent representations p; and p, the homomorphisms

(4.19) coincide:

(4.20) signy, = signy, .

The notation sign,, is justified by the fact that the group K’z’k(C) of
numerical Hermitian forms is isomorphic to the group of integers and the
unique invariant of a numerical Hermitian form is its signature. We call
sign, (M, ) the signature of (M, a) with respect to p.

Thus, every symmetric representation of A gives us a way of obtaining
a numerical invariant for Hermitian forms over A. The larger the stock of
symmetric representation of A we have available, larger will be a priori
the number of numerical invariants of Hermitian forms we can get. Indeed,
in some cases, by running through the whole set of finite-dimensional
symmetric representations of A we obtain a complete set of numerical
invariants for Hermitian forms over A, that is, with the help of the
invariants (4.19) we can distinguish any pair of inequivalent Hermitian
forms over A.
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Before considering the class of rings A for which the finite-dimensional
signatures are a complete set of invariants of Hermitian forms we make a
number of remarks.

Let A be a ring with involution and p: A = Mat(/, C) a symmetric
representation. Then p induces a representation of the tensor product
A ®z C of A with the field of complex numbers. Thus, with the help of
signatures with respect to symmetric representations we can construct
invariants, as a matter of fact, not of Hermitian forms over A but of their
images in K%, (A ®, C) under the homomorphism

(4.21) K3 (M)~ K5 (A ®2C),
induced by the change of rings
(4.22) A—>A®zC.

Consequently, we can from the very outset suppose that our ring A is an
algebra over C.

We suppose next that A splits into the direct sum of two rings
A = A, & A,, that is, A has a self-conjugate projection u in the centre of
A, u(A) = A, (1 — w)(A) = A,. The projection u is the identity on A,
and (1 — u) the identity on A,. Then K’;k(A) is isomorphic to the direct
sum of groups K%, (A;) ® K%, (A;). For if 4 = || A;ll is the matrix of a
Hermitian form over A, then the matrices

Ay =|ipryll (nhy; € Ay),
Ay = || (1 — why; |, (1 — whi; € Ay,
define Hermitian forms over A; and A, respectively. Conversely, if 4,
and A, are the matrices of Hermitian forms over A; and A,, respectively,
then A = A, + A, is the matrix of a Hermitian form over A.

Thus, a complete set of invariants of Hermitian forms over A= A; @A,
is the union of complete sets of invariants of Hermitian forms over A,
and A,.

Finally, a third remark concerns a normed ring A with involution. This
(see [8]) is a ring A with involution which is at the same time a normed
space, such that the following relations hold:

(4.23) [1] =1, [Ap < [A]-lp]l (A p€EA),

(4.24) [M =14 (AEA.

A complete normed ring A is called a Banach ring (or Banach algebra).

For normed rings A it is natural to limit oneself to consider only
bounded symmetric representations, that is, homomorphisms

(4.25) p: A —Mat(l, C),
such that
(4.26) oM 1< CHA] (€A,

for some constant C. Let # denote the set of all representations (4.25)
satisfying (4.26) with one and the same constant C. In this case, in fact, we
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obtain invariants not of A itself, but of its completion A, which is a
Banach ring. Moreover, our results are completely unchanged if we change
the norm on A preserving the continuity of all the representations in Z.
Among all these norms there is a greatest one. We set

(4.27) IAll = sup || p(d) i (A€ A).
PER
Then
(4.28) frl<cirf  (ReA.

Consequently, || A || is the greatest norm among all ring norms for which
the representations of the set % are bounded.On the other hand, with
respect to the norm (4.27), A satisfies the relation

(4.29) NAA® | =1 Al2 (Ae D),

that is, the completion of A in the norm (4.27) is a C*-algebra (see
[10]).

In the case of the group ring A = C[w] of a discrete group m, the
representations provide us with a certain absolute norm relative to which
each symmetric representation p of A is continuous. For if the existence
of a supremum (4.27) for arbitrary normed rings is guaranteed by (4.26),
then in the case of a group ring A we obtain the existence of a supremum
from other properties.

Thus, for a group ring A we set:

(4.30) A= sup el (EA),

where the supremum is taken over all symmetric representations of A. If
f € w is any element, then according to (1.3)

(4.31) p(H* = o(f*) = o(f™") = p(H".
Consequently,
(4.32) I eh 1l <1

for any symmetric representation p. Then if A = Z x,f; (f; € 7w, x; € C), we
i

have the inequality
(4.33) oM II<2 il

for all symmetric representations p of the ring. Hence the supremum
(4.30) exists and

(4.34) |l?~|l<2{lxi|-

Summarising what has been said above we can state the following
conclusion.

In the study of the invariants of Hermitian forms with the help of
representation theory we may suppose without loss of generality that the
base ring A is a C*-algebra.

3. Two examples of group rings. In conclusion we quote two examples
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of group rings A for which we can obtain, with the help of the theory of
finite-dimensional representations, a full set of invariants of Hermitian forms.
The first example is that of the group ring A = Cln] of a finite group
M.
This ring splits into the direct sum of matrix algebras

A= é Aiv
i=1
Ai=Mat (lia C)1

(4.35)

and the projections
(4.36) ot A > A,

form a complete set of pairwise inequivalent irreducible symmetric
representation of A. Then

(4.37) Kl (A) = -iéi K (Ay).

It only remains for us to exhibit the structure of Hermitian forms over the
full matrix algebra Mat(/, C). Let A be the matrix corresponding to a
Hermitian form (M, o) over Mat(l, C):
A=|%;0l, Mj€Mat(l, C),

7"1]:('—1)117"; (1<i’ ]<7‘)
We can regard 4 as a numerical matrix A of order Ir, split into blocks
A;;. Then A is non-degenerate and Hermitian: 4* = (—1)*4. Conversely, if
Aisa non-degenerate Hermitian numerical matrix of order Ir, then by
splitting it into blocks each of order /, we obtain a matrix 4 of order s
whose elements belong to Mat(/, C). Similarly, if A; and A, are two
matrices over Mat(/, C) determining equivalent Hermitian forms, then their
numerical representatives Al and A2 are equivalent matrices of order Ir.
Conversely, if A, and Az are two numerical non-degenerate matrices and
B* Al B = Az, then by splitting Al, Az, and B into blocks of order I, we
obtain matrices 4,, A,, and B with elements in Mat(/, C) for which

B*A,B = A,.
From the arguments above we see that
(4.38) K% (Mat (1, C)) = K%, (C)=1Z

that is, for Hermitian forms over Mat(l/, C) a complete set of invariants
consists of a single number, the signature of the numerical representation
of the Hermitian form.

Thus, we can state the following proposition:

THEOREM 4.1. Let A = Clxw] be the group ring of a finite group n
with the natural involution, and let {p;} (1 < i < s} be a complete system
of irreducible unitary representations of n. Then

(4.39) Kb (N) =27
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and the projection on the ith component in the free Abelian group Z° can
be identified with the signature relative to the representation p;:

signpi: K’zlh (A)—=Z.

As a second example we consider the group ring A = C[Z'] of the free
Abelian group Z! of rank /. In the preceding section we have explained
that in place of A we should consider its completion with respect to a
certain norm induced by the system of symmetric representations of the
ring.

Instead of considering the set of all symmetric representations, we limit
ourselves for a while to the class of one-dimensional unitary representations,
that is, to the characters of Zl. Obviously, the set of characters of the free
Abelian group Z! is isomorphic to the Cartesian product of / copies of the
circle, that is, to the torus 7' of dimension /. As coordinates on 7" we

can take the sets of complex numbers (z, ...z;) of modulus 1. Let
{a, ...a} be a free basis for Z', and a € Z' any element,
l
(4.40) a= ] a}i.
i=1

Then from a we can construct a function on 7
1

(4.41) a2y, -, 20)=2(a)= [] 2}
i=1

The formula (4.41) gives us a symmetric homomorphism of A = C[Z']
into the ring C(T*) of continuous functions on T*:

(4.42) v A > C(TH

(the involution on C(TI) is defined as complex conjugation on the values of
a function). Then the norm on A, given by (4.27) on the set of characters
of Z!, is the same as the uniform norm for continuous functions on T".
Consequently the completion A of A in this norm coincides with the ring
C[T’ 1 or, more precisely, the homomorphism (4.42) extends to a ring
isomorphism

(4.43) i A—CITH.

The norm of A induced by the uniform norm on C(T*) need not a priori
be the greatest norm in which any symmetric representation of A is con-
tinuous, since in (4.27) the supremum is taken not with respect to all
representations of A, but only with respect to the characters of Z/. But
nonetheless it can be established that the norm in A defined by (4.30)
with respect to all representations of A is equivalent to the uniform norm
of C(TY). For if p: A > Mat(s, C) is a symmetric representation, then the
matrices p(a,;) ... p(g;) are unitary and commute pairwise. Consequently,
in some other basis all these matrices reduce to diagonal form, that is, p
is the direct sum of one-dimensional representations. Therefore, the norm
(4.30) can be estimated in terms of the norm (4.27) constructed from the
one-dimensional representations.
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Thus, the study of the invariants of Hermitian forms over A = C[Z']
reduces with the help of representation theory to the study of the
invariants of the ring of continuous functions C(7%).

We can generalize the problem and consider the class of continuous
functions C(X) over an arbitrary topological (compact) space ([13], and
[14], 271-273). In this case a Hermitian form (M, «) is represented by
a Hermitian matrix )

(4.44) A=l Ay =hj 1<ij<y),
whose elements are complex-valued functions A;; on X. We can interpret
the matrix-valued function (4.44) as a continuous family of non-degenerate
Hermitian forms on the trivial vector bundle X X C*. We fix a point
x € X. Then on the fibre x X C' we obtain an individual non-degenerate
Hermitian form. We split x X C° into the orthogonal sum of two subspaces
v, and ¥V on which our Hermitian form is positive definite and negative
definite, respectively. Then the union of the subspaces ¥ for all x € X
forms a subbundle

(4.45) &=y Vz

x€X
of the trivial bundle X X C°. Similarly, the union of the subspaces Ve
forms a subbundle

xEX
and

(4.47) ELOE =X XxC.

Thus, with the help of (4.45) and (4.46)) we associate with each Hermit-
ian form (M, «) two vector bundles &, (M, o) = £, and & (M, «) = £ over
X. It is quite clear that the construction of £, and & does not depend on
the choice of a free basis in M (that it, does not depend on the choice
of 4 in the class of equivalent Hermitian matrices).

This construction admits a converse, that is, if we are given two finite-
dimensional bundles £, and £_ over our spaces and a unitary isomorphism

(4.48) ¢: &L ®E. X X C,
then we can construct a Hermitian form (M, «) over C(X). To do this we
assign to each fibre x X C° the Hermitian form that is equal to the
Hermitian metric on the fibre ¢(§,), of the subbundle p(£,), while on the
fibre p(£_), of the subbundle ¢(£ ) it is equal to the Hermitian metric
with the opposite sign and leaves the two subspaces ¢(£,), and (¢ ),
orthogonal. As a result we have a continuous family of Hermitian forms
on the bundle X X C° or, what comes to the same thing, a non-degenerate
Hermitian matrix over C(X).

If we replace the isomorphism (4.48) by another unitary isomorphism ¢,
then by our construction we obtain a Hermitian matrix over C(X), which is
equivalent to the original one.
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So we have, in fact, established the following theorem:

THEOREM 4.2. Let X be a compact topological space and C(X) the
ring of continuous complex-valued functions on X, with complex conjuga-
tion as involution. The map

(4.49) (M, a)_—> E+(M, o) — dim E_(M, o)
induces an isomorphism
(4.50) 1 K3:(C (X)) - K(X)

of the group K%, (C(X)) with the topological K-functor of complex vector
bundles over X. '

4. Real representations. We make a few remarks concerning applications of
real representations. It stands to reason that just as in the case of complex
representations from a real representation we can construct without any
change signatures of Hermitian forms. A natural change of A in this case
would be to replace it by A ®z R and to complete it in to the norm of
type (4.30) constructed from the set of all the real representations. However,
in the case of the free Abelian group Z' we cannot interpret the completion
of A = R[Z'] as the ring of continuous functions of some topological
space. It seems more natural in this case to consider in the character group
T! the involution of complex conjugation and the anticomplex involution on
all the bundles considered over T'. This approach of reducing all objects
over the real field to analogous objects over the complex field can be found
for bundles in [15] and for Hermitian forms in [13].

§5. Infinite-dimensional Fredholm representations

1. Definition of Fredholm representations. In §4 we have considered the
construction of invariants of Hermitian forms with the help of finite-
dimensional symmetric representations of a ring A in the full matrix ring
Mat(/, C). We have shown that in the case of the group ring A = C[n] of
a finite group m we can construct in this way a complete set of invariants
of Hermitian forms. In fact, the finite-dimensional rings are the only class
of rings for which finite-dimensional signatures form a complete set of
invariants of Hermitian forms.

For example, even in the case of the group ring of a free Abelian group
the finite-dimensional representations do not give us new invariants of
Hermitian forms compared with the ordinary signature of numerical Hermit-
ian forms. For if # = Z! and p: Z' > U(n) is a unitary representation, then
there is a continuous family of homomorphism p,: Z'->Um) (0t <)
with po = p, p; = E. Since the signature of a Hermitian matrix does not
change for nearby Hermitian forms, for an arbitrary Hermitian form (M, «)
over A = C[Z'] the function signpi(M, «) is constant. Consequently, the
signature sign, (M, o) is the same as sign, (M, a) relative to the homomor-
phism of Z! into the trivial group.
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Thus, the problem arises naturally of searching for a class of represent-
ations of A with the help of which we might be able to construct a more
complete set of invariants of Hermitian forms.

In the present section we consider such a class of infinite-dimensional
representations, which furnish us with new invariants of Hermitian forms
(see [16], [17]). We call them Fredholm representations of the ring. With
the help of Fredholm representations we can construct invariants not only
of Hermitian forms, but also of other objects, such as classifying spaces for
discrete groups and elliptic operators on compact manifolds. We give these
examples at the end of the section despite the fact that at a first glance
they do not appear to be related to the matter being studied.

We now turn to the precise definition of Fredholm representations.

We fix two Hilbert spaces #, and H,. Let p, and p, be two symmetric
representations of A in the rings of bounded operators on H, and H,,
respectively. Next, let F: H, - H, be a Fredholm operator satisfying the
following condition:

(5.1) For each A € A the operator Fp;(A) — p,(A)F is compact.

The triple p = (p,, F, p,) consisting of p,;, p,, and F and satisfying
(5.1) is called a Fredholm representation.

Although from the point of view of representation theory it is more
natural to call p = (p,, F, p,) a wreath product of the two representations
p, and p,, all the same we call it a Fredholm representation. The thought
behind this nomenclature is that in all future applications the pair of
representations p; and p, related by the Fredholm operator F embodies
the formal difference of p; and p,, that is, the virtual representation
P11~ P2

We generalize the definition of Fredholm representations to the case of
Fredholm complexes. Let H;(1 < i < s) be Hilbert spaces and
F,(1 <i< s~ 1) be bounded operators

(5.2) /Y AL LNy
such that the F;F; , are compact. Then (5.2) is said to be a Fredholm com-
plex if there are also operators G,(2 < i < s):

(5.3) H R, 2,
such that the operators
(5.4) FiG;+ Gy fFi —1

are compact. Now just as for Fredholm operators, so also for Fredholm
complexes there is a well-defined index of a Fredholm complex, not de-
pending on homotopies of the operators F; in the class of Fredholm com-
plexes, nor on varying the F; by a compact component. Moreover, for the
F; forming a Fredholm complex we can choose compact summands K;
such that the new operators F; = F; + K; form a genuine complex, that
is, F{ F{,, = 0. Here the homology of the newly formed complex
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F! F! F
(5.5) H2H,-:. . H,

is finite-dimensional, and the index of the Fredholm complex (5.2) is the
alternating sum of the dimensions of the homology groups of the complex
(5.5).

Suppose now that p;(1 < i < s) are symmetric representations of A in
the rings of bounded operators on the spaces H(l < i < s).

We say that we are given a Fredholm complex of representations of A
if the following condition is satisfied:

(5.6) For each X € A the operators F;p;(X\) — p;4,(F;) are compact.

2. Signatures of Hermitian forms. It turns out that with the help of
Fredholm representations (or of Fredholm complexes of representations) of
a ring A we can construct numerical invariants of Hermitian forms of the
type of signatures of finite-dimensional representations.

We turn at once to the construction of these invariants. We consider for
simplicity the case of a Fredholm representation p = (p,, F, p3). .

Let (M, «) be an arbitrary Hermitian form over A, and 4 the matrix of
(M, o) with respect to some free basis for the A-module M,

A =1|2;ll, hy=2nh 1<i,j<ys).

By analogy with 83 we consider the matrix

(5.7) Ag,=llee i) i (=1, 2).
The elements of the matrix (5.7) are operators acting on the Hilbert space
H,. Therefore, (5.7) can be interpreted as the expression of a bounded
operator acting on the direct sum of s copies of H;,. We denote this
operator by

(5.8) Ay

L

(H)"— (H)* (I=1,2).
Moreover, we set
(5.9) F=|Fo;Il (1<, i<s).

Then we obtain the following diagram:

()" —— (Hy)*
(5.10) A, | ! Ap,

a \

(H)* — s (Hy)*

in which the operator ﬁA—pl_ A—mﬁ is compact. It is quite clear from the
Hermitian nature of A and the symmetry of p; that the operator (5.8) is
Hermitian, invertible, and bounded. From spectral theory it follows that
the Hilbert space (#;)* splits uniquely into the orthogonal sum of two sub-
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spaces by means of projections commuting with A—Pl’
(5.11) (H,y=H} ®© Hi,
and A4, o is represented in the form of a matrix corresponding to the decom-
position (5.11),
(5.12) Ay = (g‘? _gl_)
then the operators A; and A; are positive.

We represent F also in matrix form corresponding to the decomposition
(5.11) v

(5.13) F= (ﬁ; ﬁz)

The condition for the dlagram (5.10) to commutate up to compact
operators can be expressed as follows:

(5.14) F\A1— A3F €%,
(5.15) Fo AT+ ASF, €8,
(5.16) F3A7 + A3F3 €87,
(5.47) F,A1— A3F, ¢ ¢k,

where &% denotes the space of compact operators.

From (5.15) and (5.16) it follows that F, and F; are compact. Thus,
when we change the operator (5.13) by a compact component, we find that
the operator represented by the matrix

Fy 0
(o 72)
is Fredholm, or, what comes to the same thing, that ¥, and F, are

Fredholm operators. We then get an invariant of the Hermitian form
(M, o) from the equality

(5.18) sign (M, o) = index¥, — indexF,.
Now (5.18) does not depend on the choice of a basis in M, and when
(M, «) is Hamiltonian, this invariant vanishes:

(5.19) sign (M, o) = 0.
Next, for a direct sum of Hermitian forms we have

(5.20) sign,y (M4, o) @ (M, o)) =sign, (M, ay)+ sign, (M, @),
which means that, with (5.19), we have defined a homomorphism

(5.21) sign,: Kin (A) - Z.

In the case of skew-Hermitian forms the construction of the invariant
sign,, (M, o) is completely analagous. The only difference is the decompos-

ition of the Hilbert space (5.11) for which the operators are represented
in the form

(5.22) Ap=i (o7 _ ] ),
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where A; and A; are positive operators.
Thus, for each Fredholm representation p we have constructed a homo-
morphism

(5.23) signg: K3, (A) > Z.

So far we have considered the construction of the signature of Hermitian
forms for a Fredholm representation of the ring A. If we are now given a
Fredholm complex p of representations of A of the form (5.5), then with
its help we can associate with each Hermitian form (M, «) a numerical
invariant by a process analogous to (5.8)—(5.18). We denote this invariant
by signp M, o).

We make two remarks concerning the behaviour of the signature of a
Fredholm representation p = (p,, F, p,) of A. Let K be a compact
operator and F' = F + K. Then the triple p’ = (p,, F', p,) is also a
Fredholm representation, and

(5.24) signg(M, o) = signy- (M, o).

Thus, from the point of view of signatures of Hermitian forms we can
regard p and p' as equivalent.

The second remark concerns sufficient conditions for sign, (M, «) = 0
to hold for any Hermitian form (M, «). Suppose that the Fredholm
representation p = (p,, I, p,) is such that F is invertible and the
operators Fp;(A) — p,(A)F are small in norm in comparison with F~!.
Then signp M, o) = 0. The precise formulation of the sufficient condition
is the following: Let p, = (o,,, F,;, p,,) be a continuous family of Fred-
holm representations, parameterized by a numerical parameter #. Suppose
that the operators F, are invertible and that for any A € A,

(5.25) lim | F2ip, (1) Fipy (1) | = 0.

Then signp (M, o) = 0 for any Hermitian form (M, «).

The condition we have given is not invariant, but it is useful in a
priori estimates of signatures.

3. Connection with finite-dimensional representations. Suppose that a
Fredholm representation p = (p,, F, p,) satisfies a rather stronger condition
than (5.1), namely, for any A € A

(5.26) Fp,(2) — ps(MF = 0.

Then the kernel and cokernel of I are p,- and p,-invariant finite-dimensional
spaces. We denote the representations of A on the kernel and cokernel of
F by p} and p3, respectively. Then

(5.27) signy (M, @) = sign, (M, a)—sign,. (M, a).

The formula (5.27) justifies the point of view that when the Fredholm
operator p satisfies (5.26), then it should be identified with the formal
difference of p} and p3.
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In particular, in the case of the group ring A = C[w] of a finite group
m each Fredholm representation is equivalent to the formal difference of
finite-dimensional representations in the sense of the remark in §5.2.
Namely, if p = (p,, F, p;) is a Fredholm representation, then there is a
compact operator K such that by setting F' = F+K, p' = (p,, F', p,), we
obtain a Fredholm representation satisfying (5.26). To see this, we set

K= 3 02 (87) Foy () — F.
Then gt
Fre o @) Foule), (07 Flpy () = F'.
gen

Thus, in the case of the group ring of a finite group, the Fredholm
representations, as was to be expected (see §4.3, Theorem 4.1), do not
provide us with signatures of invariant Hermitian forms that are new in
comparison with those derived from finite-dimensional representations.

4. Elliptic operators for Fredholm representations. Apparently, Fredholm
representations were first introduced by Atiyah [18] in the study of pro-
blems concerning the index of elliptic operators on a compact closed
smooth manifold.

We consider a smooth compact closed manifold X, the Hilbert space of
square-summable functions L,(X) on X, and a pseudo-differential operator
D: Ly(X) = L,(X) of order zero. The ring of continuous functions
A = C(X) acts on L,(X), and the commutator D¢ — 9D (¢ € A) is a
pseudo-differential operator of order (—1) [19] and, consequently, compact.
In the case of an elliptic operator D we obtain in this way a Fredholm
representation p of A on the Hilbert space L,(X), p=(p,, D, p;), where p,
is a representation of A = C(X) on H = L,(X) for which p;(p)¥ = ¢{.

Consequently, in describing the homotopy invariants of an elliptic
operator D and, in particular, its index, we can raise the problem of find-
ing invariants of a Fredholm representation of the ring of continuous
functions A = C(X) on X.

It turns out that with every Fredholm representation p of A = C(X)
we can associate an element x (p) € Ky(X), where K,(X) is the group of
the generalized homology theory, dual to K-theory, constructed on the
basis of complex vector bundles. The elements x of Ky(X) can be identified
with the natural transformations of the further K°(X X x) to the function
K°(%), that is, with the homomorphisms x(Y): K®(X X Y) - K°(Y), such

that for any continuous map ¢: Y; = Y, the following diagram commutes:
x Yy

K (X xYy) —— K°(Yy)

1 t

(1X@)* I P*
x (Y2)

K9(X XY;3) — K°(Y,)
Thus, to determine an element x(p) € K (X) it is sufficient to associate
with the Fredholm representation p of A = C(X) the homomorphisms
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x(P)Y): K°(X X Y) > K°(Y). Let £ € K°%X X Y) be a finite-dimensional
bundle over the space X X Y. We denote by Fy(E) the space of continuous
sections of £ over the subspace X X {y} (v € Y). The space [y(§) is a
finitely generated projective module over A = C(X). Then D induces the
Fredholm operator

(5.28) F,=1@D: T,(§) @sH—>Ty, (8 Al

up to a compact component. So we obtain a continuous family of Fred-
holm operators F),, parametrized by the points of Y, and operating fibre-
wise on the bundle & with the Hilbert fibre Fy (§) ®a H over Y. The
family of Fredholm operators Fy determines (see [15]) an element of
KO(Y). So we have completely determined an element x(p) € Ko(X) from
the Fredholm representation p of A = C(X).

Kasparov [20] has found conditions under which two Fredholm repres-
entations p, and p, of A = C(X) lead to one and the same element of
Ko(X). If »(p) = 0, then p can be obtained by means of the following
operations:

a) homotopies in the class of Fredholm representations,

b) the addition of direct summands p' = (p}, F, p3) in which F is
invertible and satisfies (5.26).

With the help of the invariant x(p) of a Fredholm representation p of
A = C(X) one can give a more transparent description of the Atiyah—Singer
formula [21] for the index of an elliptic operator. Let p = (p,, D, p,)
be a Fredholm representation of A on the Hilbert space H = L,(X), con-
structed from the elliptic pseudo-differential operator D of order zero. Let
o(D) € K2(T*X) be the element of K2(T*X) determined by the symbol
of D. Since the cotangent bundle 7*X is a quasicomplex manifold, there is
Poincaré duality, that is, an isomorphism 9: K2(T*X) > Ko (T*X) = Ko(X).
Here K? denotes the “compact K-functor”, that is, the relative groups for
the one-point compactification of the base. Then from the Atiyah—Singer
formula we get the following relation

(5.29) 00(D) = #(p1, D, py).

The Atiyah—Singer formula itself for the index of an elliptic operator
can be obtained as an analogue of the direct image for elliptic operators.
If o: X, = X, is a continuous map of compact manifolds and
p = (p,, Fy{, p,) a Fredholm representation of A, = C(X,), then by apply-
ing the change of rings ¢*: A, = C(X,) > A, = C(X;,) we get a Fred-
holm representation ¢« (0) = (¢*p,, F, ¢*p,) of the ring A,. Here we have
the relation

(5.30) P (2(p)) = n(@x(p)).
In particular, if the manifold X, consists of a single point, X, = pt, then
(5.31) #{®4(p)) = index F.

Consequently, applying (5.29) we come to the formula for the index of D:
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(5.32) index D = ¢,(d0(D)) = ¢ (o(D)),

where o KYT*X) — Ko(pt) = Z

is the direct image in K-theory ([{22]). The derivation of the traditional
Atiyah—Singer formula in terms of the characteristic classes of the elements
of o(D) is by now standard routine in K-theory.!

§6. Fredholm representations and bundles over classifying spaces

In §5 we have described how with the help of the Fredholm repres-
entations of a ring A we can find signature invariants of Hermitian forms
over A and, in case A = C(X) is the ring of continuous functions on a
manifold X, invariants of elliptic operators.

If A is the group ring of a discrete group w, A = C[n], then with the
help of Fredholm representations we can describe the homotopy invariants
of the classifying space Bm of w, namely, vector bundles over Br.

1. Finite-dimensional representations and bundles. The connection between
vector bundles over a classifying space Bw and finite-dimensional represent-
ations of 7 was considered earlier in papers of Atiyah and Hirzebruch [22],
(23]. With each finite-dimensional representation p: @ = Mat(n, C) of 7
we can associate a finite-dimensional complex bundle £, over Bw. To do
this we consider the universal covering space over Bw:

¢: En — Bm.

The group 7 acts freely on Ew, and if Bw is a simplicial complex, then Em
also has a simplicial structure, the projection ¢ is a simplicial map, and the
action of 7 is also simplicial.

The representation p provides a linear action of 7 on the Euclidean
space V' = C"”. We consider the direct product £ X V with the diagonal
action, that is, g(x, ¥) = (gx), p(g)) (x € En, y € V). We can construct
the following commutative diagram of maps:

EnxV —2s (En x V)/n

¥ l l%
En —2s Bn

Here (Em X V)/m denotes the space of orbits of the action of 7 on

Em X V, ¢ is the projection onto the first factor, Y(x, y) =x, ¢ and @ are

the natural projections onto the space of orbits, and 1}7 is the map of the
orbit space induced by Y. Thus iD is a locally trivial bundle with fibre V.
For if x € Br is any point, then there is a neighbourhood U of x such

that the inverse image ¢! (U) splits into the disjoint union of neighbourhoods

Iy equivalent to a proof of the formula (5.29).
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{gW, g € ), ¢ U= é) gW, and ¢ homeomorphically maps each compon-
14 ™

ent gW onto U. Then ¢ homeomorphically maps ¢~ ! (gW) = gW X V onto
the set ¢ ' (V). ,

Consequently, ’J is a locally trivial bundle. Since the action of m on V
is linear, the transition functions of Ej also are linear, hence ;1] is a vector
bundle. We denote by £, the bundle E: (Fm X V)/m > Bm. We also denote
by &, the induced element of K(Bm).

It is not difficult to verify that

E(pﬁpz) - Eoi ® Epzv ‘501’&902) ngi & goa'
Thus, the correspondence p = &, induces a homomorphism of the ring
G (m) of virtual representations of 7 to the ring K(Bw):

(6.1) £ A(n) - K(Bx).

It is natural to investigate the question in what cases £ is an isomorphism
or to describe the image and kernel of £.

When 7 is a compact Lie group, Atiyah and Hirzebruch (122], (231) have
proved that ker £ = 0, while the image Im £ is dense in the ring K(Bw),
equipped with the topology induced by the finite-dimensional skeletons of
B (see also [24]).

2. Fredholm representations and bundles. Just as in the case of the
signature invariants of Hermitian forms, so finite-dimensional representations
of infinite discrete groups provide a small stock of bundles from the group
K(Bm). There are only individual results, describing the image of (6.1) for
discrete subgroups of the real symplectic group Sp(2n, R). For example, it
is shown in [25] that if 7 C Sp(2xn, R) is a discrete torsion-free group and
if the homogeneous space Sp(2n, R)/m is compact, then the inclusion homo-
morphism HP (B Sp(2n, R)) = HP (Bw) is an epimorphism for p < (n + 2)/4.
For an application of this algebraic result to obtain signature invariants of
Hermitian forms, see Lusztig [26].

With the help of Fredholm representations it becomes possible to
obtain a wide class of vector bundles over Bw.

We describe the corresponding geometrical construction of the bundle
&, € K(Bm) for a Fredholm representation p = (p;, F, p,) of a discrete
group w. In this case it is convenient to represent the elements of K(Bw)
not as linear combinations of vector bundles, but as continuous families
{Fx} of Fredholm operators, parametrized by the points x of Bw (see
[15]). If we are given a continuous family {Fx} (x € X) acting from one
Hilbert space H; to another H, (where X is some topological spaces), and
if the dimension of the kernel dim Ker F, of F, is a locally constant
function, then the element of K(X) corresponding to {Fx} is the differ-

ence of the two finite-dimensional bundles U Ker F, and U Coker F,.
xeX xeX

Here, U Ker F, is to be understood as a subspace of the direct product
xeX
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X X Hy,and U Coker F, as the factor space X X H,. Thus, it will be
xeX

convenient for us to interpret the family of Fredholm operators as a homo-
morphism of trivial bundles with Hilbert fibres

(6.2) X x H 2 X x H,
N
X

The diagram (6.2) is commutative, and over each x € X the map F is a
Fredholm operator of Hilbert spaces. It is quite clear that if in place of
trivial bundles with Hilbert fibre we consider arbitrary bundles &7, and &%,
with Hilbert fibres over X and a bundle homomorphism F: &2, — &7 ,,
which is a Fredholm operator on each fibre, then we equally well come
to an element of K(X), since each locally trivial bundle with Hilbert fibre
is isomorphic to a trivial bundle (see, for example, [15]).

We return now to the case when the base X is a classifying space Bw.
Let J¢, and &¢, be two bundles with Hilbert fibres H, and H,, respectively,
and let F: 8, - 3%, be a Fredholm bundle homomorphism on each fibre.
We denote by &, and &7, the inverse images of &7, and &%, under the
projection ¢: Em = Bw of the universal covering of Bm. Then 7 acts freely
both on Em and on each of the bundles &%, and &#,. Also, the homo-
morphism F induces a homomorphism F: &, —~FP,, that is equivariant
under the action of w. Conversely, if G: &, — &8,, is an arbitrary equi-
variant homomorphism then it is always induced by some homomorphism
F. 8, > #4,.

Therefore, to specify an element of K(B7), it is enough to give an equi-
variant homomorphism G': &, —»a%’z that is a Fredholm operator on
each fibre, for some pair of bundles &, and &%, with Hilbert fibre and
free action by 7 on the base space.

Let p be a Fredholm representation of m, that is, a triple p =(p,, F, p3)
consisting of two unitary representations on Hilbert spaces H; and H,,
and a Fredholm operator £ H, — H, such that for each g € 7 the operator
p2(@)F — Fp,(g) is compact. We have to associate with p an element £,
of K(Bw). For this purpose we construct over Em two equivalent bundles
J#, and &%, with Hilbert fibre and an equivariant homomorphism
G: 5‘/271»05732 that is a Fredholm operator on each fibre.

For the bundles &¢, and &%, we take the trivial bundles
e, = Enr X H,, and &, = Er X H,, with diagonal action of m, that is,
glx, y) = (gx, px(@)y) (x € Em, y € H). Then the map G can be regarded
as a continuous, equivariant family of Fredholm operators {G,} (x € Em).
Equivariance of {G,} means that

(6.3) P2(8)Gx = Ggxp1(8)-

We look for an equivariant family {Gx} such that for any point x € Enw
(6.4) the difference F — G, is a compact operator.
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If G, is another family satisfying (6.3) and (6.4), then by setting
Gf = G, + tG, we get a homotopy between {G,} and{G,} in the class
of families satisfying (6.3) and (6.4). Consequently, both {G,} and {G,}
define one and the same element of K(Bw), which we denote by ‘;’p.

It only remains for us to establish the existence of at least one family
{Gx}, satisfying (6.3) and (6.4). To do this we represent Bm as a
simplicial complex and Ew as a simplicial complex with simplicial action
of m. We construct {Gx} by an inductive process on the dimension of the
skeletons of Em. The zero-dimensional skeleton (Ew)° consists of a discrete
set of vertices and splits into the union of pairwise disjoint orbits of the

action of m. Let A C (Em)® be some orbit, 4 = U ga, where a € A4 is
gen

one of the vertices of A. If at @ € 4 we are given an operator G,, then
at the other points & € A the operator G, is uniquely determined by the
condition (6.3) of equivariance of the family by the formula

(6.5) Gy = 04(8)Ga0:(g7Y),

where g € 7 is an element of 7 such that & = ga. Thus, to determine a
family G,(x € (Em)?) satisfying (6.3) and (6.4) it is enough to choose a
point @ in each orbit A and to set G, = F. At all other points of the
zero-dimensional skeleton the family is defined by (6.5).

Then (6.3) is automatically fulfilled and (6.4) follows from the definition
of a Fredholm representation.

Suppose now as an inductive hypothesis that we are given a family {Gx}
on the k-dimensional skeleton (E7r)k, satisfying (6.2) and (6.3). We consider
the set of all (k + 1)-dimensional simplexes of Em. Now m, acting freely on
En, permutes its simplexes leaving none of them invariant. Therefore, the
set of all (k + 1)-dimensional simplexes can be split into the disjoint union
of “orbits” and in each orbit all the simplexes can be obtained as images
of a given simplex of the “orbit” with the help of the action of m. Let
A¥*! be one of the (k + 1)-dimensional simplexes of Ew. If the family
{Gx} is given for each x € A*¥*1 then to get an equivariant family on the
whole orbit we have to use (6.5). If the point x € A**1 belongs to the
boundary dA%*1 of A¥*1 then (6.5) gives us an identity, by the inductive
hypothesis. Therefore, it is sufficient to extend the family of operators
{Gx}, which is defined by the inductive hypothesis on the boundary
0A%*1 to a family defined on the whole simplex A**! with (6.3) pre-
served. Since (6.3) holds on 3A*¥*! and the space of compact operators is
contractible (as a linear space), the required extension of {Gx} to Ak”,
and hence to its whole orbit, always exists.

This completes the construction of the element &, &€ K(Bw) for a Fred-
holm representation.

NOTE. The reader should be warned against trying to prove that £, is
trivial, on the basis of (6.3). The fact is that (6.3) is not invariant under
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a change of coordinates in the fibres of the bundles &, and &%,. Therefore
a_trivialization of 8y and &, over Bm induces over Em a trivialization of
£+ and 07722 in which, generally speaking, (6.3) is not satisfied.

3. Modification of the construction of a bundle. The construction des-
cribed above can be generalized to the case of continuous families of
Fredholm representations. Let p = {p,} = {p1x Fy, Py} be a continuous
family of Fredholm representations, parametrized by the points of some
topological space X. Then by applying the construction of subsection 2 we
get a continuous family of Fredholm operators {G, ,}, parametrized by the
points of the direct product X X Bm, that is, an element £, € K(X X Bm).
If we ignore the torsion in K(X X Bm), this group can be identified with
the zero grading of the tensor product K(X X Bw) = [K*(X) ® K*(Bm)],,
that is, Ep splits into the sum

EQ:;ak® Bk1

where the {0y} form a basis for K*(X), and B, € K*(Bw). Consequently,
the family p of Fredholm representations gives us a whole set of homotopy
invariants B, lying in K*(Bw). Moreover, if we can guarantee that for some
point x of a closed subspace Y of X the family {G, ,} consists of invert-
ible operators, then we can define £ as an element of the relative group
KX X Bm, Y X Bw).

As a condition for the invertibility of a family of operators {G, ,} we
can take the following:

(6.6) | F'py(g) Fpi(g™)— 1 1I<1, for any g € 7.

Then in the construction of {Gx_y}we can add to (6.3) the condition

(6.7) | FGey — 1 <1,

guaranteeing the invertibility of operators of {Gx,y}.

Next, we can start not from a Fredholm representation p = (p, F, p,)
of m, but from a Fredholm complex (5.2) of representations of w. In this
case we have to construct a continuous equivariant family of Fredholm
complexes {G,;,} (1 <i<s—1,x € Er}, such that

(6.8) The operators F; — G;, are compact for each point x € E7.

In the case of a continuous family p = {px} (x € X) of Fredholm
representations we can repeat almost word for word the construction of
gp € K(X X Bm) and also write down a condition on p for Ep to be
defined as an element of the relative group K(X X Bw, Y X Bm).

Finally, if p = (p,, F1, p3) and p' = (o1, F', p,) are two Fredholm
representations of 7 such that F' — F is compact, then Sp = .Ep:.

4. The construction of Fredholm representations for a particular class of
groups. As we have indicated in subsection 2 above, we are interested in
the question how large the class of bundles over Bw is that we can con-
struct with the help of Fredholm representations. A priori, this class may
be larger than that of bundles obtained from finite-dimensional bundles.

p
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We notice to begin with that, by analogy with the signatures of Hermit-
ian forms, in the case of a Fredholm representation p = (p,, F, p;)
satisfying (5.26) rather than (5. 1) the element E € K(Bm) coincides with
the difference E - 5,, , where p} and p; are representatlons of m on the
kernel and cokernel of F, respectively. Taking into account that for finite
groups 7 each Fredholm representation can be changed into one satisfying
(5.26) by adding a compact operator to the representation, we find that
for a finite group m the classes of bundles over Bw constructed with the
help of Fredholm representations and of finite-dimensional representations
are identical.

In any case, if we wish to describe the class of bundles over B
representable in the form &, for some Fredholm representation p of m,
then we must present an explicit construction of a Fredholm representation.

There is an important class of infinite groups 7 for which such a geo-
metrical construction of Fredholm representations is possible. This class of
groups is defined by the following property:

(6.9) The space Bm is homotopically equivalent to a compact Riemannian
manifold with a metric of non-positive curvature in every two-dimensional
direction.

In particular, this class of groups includes finitely generated free Abelian
groups, the fundamental groups of compact two-dimensional surfaces, and
discrete groups of motions of homogeneous spaces of semisimple non-
compact Lie groups.

Let X be a complete Riemannian manifold with metric of non-positive
curvature, 7,(X) = m, homotopically equivalent to Bw. Then its universal
covering X is diffeomorphic to Euclidean space, and moreover, there is on
X an equivariant metric of non-positive curvature. We consider the space
T*X of the cotangent bundle of X, which we denote by Y. In this space
the metric on X induces a natural metric such that in the universal cover
Y, the group 7 preserves the metric.

Thus, we have the commutative diagram

~ Wb

Y ——

"" ‘(p
wL \L
X — X

Next, we consider on X the exterior power Ag (T *X) of the complexific-
ation of the cotangent bundle. We set &, = V¥ *(Ag(cT *X)). The pomts of
Y are pairs (X, ¥), (X € X), where y is a cotangent vector to X at X.

The vectors of the bundle & split into linear combinations of exterior
products othhe form y, A .. Ayy € &, where y,, ..., y; are cotangent
vectors to X.

We consider the complex of bundles

ag ai an-1

(6.10) B — s g e

=N
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where the homomorphisms ay, 4y, ..., a,_, are the operators of exterior
multiplication by covectors of the form (v + iw(X)) at (X, y) € Y. Here
w(x) is a section of the cotangent bundle (that is, a differential form) of
X. Note that 7 acts freely on X and Y, and also on the bundles

£0, ..., &,. Moreover, from the point of view of this action the operator
of exterior multiplication on the covector y at (X, y) is equivariant, and
the commutator of a; and the action of g € = is the operator of exterior
multiplication by the covector (w(gx) — g*w(X)).

If the covector (¥ + iw(X)) at (X, y) € Y is different from zero, then
the complex (6.10) is exact, that is, has trivial homology.

We denote by %(Ej) the “direct image” of §;, that is, the bundle with
Hilbert fibre whose fibre is constructed at each point y € Y as the ortho-
gonal sum of the finite-dimensional fibres of £; at all the inverse images of
y. A unitary action of m (which also respects fibres) is induced in the
infinite-dimensional bundle '\17,(5]), and the homomorphisms a, ...,a,
induce homomorphism of the “‘direct images”, so that we obtain a new
complex

(6.11) o ()~ (%) Tr ().

The complex (6.11) is the required family of Fredholm complexes of
representations, provided that by a suitable choice of w(X) we can guar-
antee that the conditions in the definition of Fredholm representations
hold.

The commutator of A]- and the action of g € 7w can be described by a
diagonal matrix in which each term is the operator of exterior multiplic-
ation by the covector (w(gX) — g*w(X)), and X € X runs through the orbit
of the action of w. Therefore, for the commutator to be compact it is
sufficient that

(6.12) Lim [|o (g2)— g*o (@) || =0

x—>00

Ay An—y

For the complex (6.11) to be Fredholm at each y € Y it is sufficient
that on each orbit the homology groups of the complex (6.10) are trivial
everywhere, with the exception of finitely many points of each orbit, that
is, that w(X) vanishes only at finitely many points of each orbit, and that
the norm || w() || is bounded below at infinity.

We construct such a function w(x). By the duality induced by the
Riemannian metric it is sufficient to produce a vector field with similar
properties. For this purpose we fix an initial point X, and consider the
(unique) geodesic y(X) beginning at X, and ending at a point X. Let w(X)
be the tangent vector to y(X) at X, whose length is equal to /(1 + 1),
where [.is the length of y(X). Then w(X) = O only at the point
X =Xy, lim | w(x) |l = 1, and since the curvature is non-positive condition

X —> oo

(6.12) is satisfied.
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So we have produced a family p = {p,} (# € ¥) of Fredholm complexes
of representations of m. Moreover, there is a compact subspace Z C Y such
that at the points y € Y \ Z, py satisfies an additional condition of type
(6.7) so that Ep can be defined as an element of the group K. (Y X X) of
bundles with compact support.

The Chern character of &, (see [17] can be computed by the following
formula:

(6.13) chg,= M oa; @ b;.

where q; € H*(H; Q) is a basis for the cohomology groups, b; € H*(X, Q)
is the dual basis by Poincaré duality, and oaq; € Hc*(Y; Q) are the images
in the cohomology groups under the Thom isomorphism.

Thus, with the help of a single family of Fredholm representations p we
obtain for groups 7 satisfying (6.9) invariants b;, which form a basis for
the cohomology groups of Br.

5. The construction of individual Fredholm representations. In the preced-
ing subsection we have presented for one class of groups m a family of
Fredholm representations, and with the help of it we have been able to
describe the cohomology of Bm (or, modulo torsion, the bundles over Bm).

However, the question remains open what bundles over Bm can be
described with help of Fredholm representations, not indirectly, but directly
as bundles of the type Sp. It turns out that, starting from a family of
Fredholm representations, we can construct new individual representations,
whose invariants generate the invariants of the original family. It is
appropriate to state a precise proposition.

THEOREM 6.1 [27]. Let p = {p,} (x € X) be a family of Fredholm
representations of a group T, gp € K(X X Bm) the bundle constructed in
subsection 2, and ch§, = % ay ® by, where the elements a, € H*(X; Q)

form a basis for the cohomogy groups and b, € H*@B7; Q). Then we can
find Fredholm representations py of m such that

(614) Chgpk = kkbh (}\’k ;&0)

Theorem 6.1 explains the idea behind studying families of Fredholm
representations. For example, from this theorem and the construction of
subsection 4 it follows that, in the case of a group 7 satisfying (6.9),
“almost all” the bundles can be constructed with the help of Fredholm
representations of 7. Here the term “almost all” means that the bundles of
type £, generate a subgroup of finite index in K(Bw). In one particular
case, m = Z X Z, this corollary to Theorem 6.1 was first established by
Solov’ev [29].

To prove Theorem 6.1 we need an additional geometrical construction,
which is precisely followed through in the cases of families of finite-
dimensional representations of 7.
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We consider a topological space X and a finite-dimensional bundle 75
over X on which 7 acts linearly. The action of m can be regarded as a
family p = {p,} (x € X) of finite-dimensional representations of 7 on the
fibre of n. This family p generates a (finite-dimensional) bundle
¢, € K(X X Bm). Suppose that X is a compact closed manifold. Then 7
acts linearly on the space of sections I'(n ® &) of the tensor product of
n with an arbitrary bundle ¢ and also on the completions H*(n ® {) of
I'(n & ¢) in the Sobolev norm. We consider two bundles ¢; and ¢, and the
elliptic pseudodifferential operator

(6.15) D: T'n ® &) - TI'( ® L,),
which is a Fredholm operator on the Sobolev spaces
(6.16) D: H'n ® L) — H'(n ® Ly).

The commutator of D and the action of g € 7 is an operator of smaller '
degree, and so is a compact operator on the Sobolev spaces. :

Thus, if we denote by p; and p, two representations of 7 acting on
H'(nm ® &) and H’(n ® ¢,), then the triple p = (p;, D, p,) is a Fredholm
representation.

The computation of £; € K(B7) can be made with the help of the
Atiyah—Singer theorem on the index of an elliptic operator, or more
precisely, its generalization to the case of families [28]. In particular, if
the symbol of D has the form 1 ® o: ¢*(n ® &) = ¢*(n ® &,), where
¢: T*X - X is the projection, then

(6.17) &= (§ ® 0).

Here - T*X X Bm - Brm is the projection, 0 € K(T*X) the element
defined by the symbol ¢ and ¥y the “direct image” in K-theory. Choosing
D suitably, we can easily prove Theorem ‘6.1 by using theorems on realizing
rational homology classes of X with the help of singular manifolds.

In the case of infinite-dimensional Fredholm representations, the situation
is technically somewhat more complicated, but nevertheless remains analogous.

CHAPTER 3

CHARACTERISTIC CLASSES OF SMOOTH MANIFOLDS AND
HERMITIAN K-THEORY

The theory of Hermitian forms and Hermitian K-theory have deep appli-
cations in the study of the invariants of smooth of piecewise-linear
manifolds. It would be difficult to give a historical survey of all these
applications. We note only the chief aspects of the profound connection
betwéen Hermitian K-theory and the theory of smooth manifolds. This
is above all the problem of classifying smooth structures of a given homo-
topy type, and the homotopy invariant characteristic classes of smooth
manifolds. In this chapter we give a survey of the problems concerned
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with relations for characteristic classes of smooth manifolds that arise in
the application of representation theory to the computation of characteristic
classes. These relations are known as Hirzebruch formulae.

§7. Hirzebruch formulae for finite-dimensional representations

1. Simply-connected manifolds. The classical Hirzebruch formula is con-
cerned with a compact closed 4k-dimensional oriented manifold, say X.

We consider the cohomology group H2*k (X; R) with real coefficients. It
is a finite-dimensional vector space on which there is defined a non-
degenerate symmetric bilinear form (x, y)= (xy, [X]), x, y € H**(X; R).
Here [X] denotes the fundamental class of X, [X]| € H,; (X; Z). The
signature of this form is called the signature of X and is denoted by 7(X).
So we obtain an integral-valued function 7(X), defined on the set of all
4k-dimensional oriented compact closed manifolds.

It is not difficult to see that for a disjoint sum X = X, U X, signatures
are additive: 7(X) = 7(X,;) + 7(X;,), and if the manifold is the boundary of
some (4k + 1)-dimensional oriented manifold W, X = oW, then the signa-
ture 7(X) of X is trivial. This means that 7(X) determines a linear function
on the group £2,; of oriented bordisms. In bordism theory it is known that
every linear function on the group of bordisms is a characteristic number,
that is, there exists a characteristic class (say, L,;) such that

(7.1) T(X) = 22 (Lyp(X), [X]).

The equality (7.1) is usually called the Hirzebruch formula with an
explicit description of the class L,,. To define the characteristic class L,
we denote by L the sum

(7.2) L= D) Ly.
k=0

Then in terms of the Wu generators ([30] —{32]) the characteristic class
(7.2) is
(7.3) L=][ =Z&.
- th (z;/2)
The characteristic class (7.2) or (7.3) is called the Hirzebruch class.

There are at least two distinct proofs of the Hirzebruch formula (7.1).
One of these is based on the computation of the ring of oriented cobord-
isms and the verification of the Hirzebruch formula on multiplicative
generators. For if X = X; X X,, then 7(X) = 7(X;) 7(X;). On the other
hand, it follows from (7.3) that L(X) = L(X;) L(X;). Thus, if the formula
is true for two manifolds X, and X,, then it is also true for X = X, X X,.

The second proof is based on the representation of the signature 7(X)
of X as the index of an elliptic operator on X and the calculation of this
index by means of the Atiyah—Singer formula ([31]). To represent 7(X)
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as the index of an elliptic operator it should be observed that according to
de Rham theory the real cohomology of X is isomorphic to the de Rham
homology, that is, the cohomology of the complex of exterior differential
forms of X. Let §/(X) denote the space of exterior differential forms of
degree j on X, and d: QI(X) > 1(X) the operator of exterior differ-
entiation. Then we obtain the de Rham complex

QO (X) 5ot (X) 5 ... S or(x)
(n = dim X, d? = 0). On the space (X) = & Q/(X) of all exterior differ-
i

ential forms there is the operation of exterior multiplication, which induces
a ring structure on the de Rham homology groups.

In particular, to determine the signature 7(X) of X (dim X = 4k) we
consider the bilinear form on the cohomology of middle dimension
H?**(X; R) induced by the equality

(74) @ B={anp apeoX).

Suppose that a Riemannian metric is given on X. It induces on each of
the spaces £2/(X) a scalar product

(7.5) (@ B) (o, B E QX))

Then the bilinear form (7.4) can be reduced to (7.5) by means of some
operator*

(7.6) (. B) = (@, = B).

Let 7(o) = i7" D2k (o) (o € Q/(X)). It is easily verified that 72 = 1.
Consequently, the space £2(X) of all forms splits into the direct sum of
two eigenspaces 2(X) = " @ Q~ for the involution 7. Let § be the
operator formally adjoint to the operator of exterior differentiation with
respect to the scalar product (7.5), and let D = d + 6.

It is easy to verify that D7 = —7D, that is, D maps £" into £~ and £~
into *. After this it remains to observe that

(7.7 index D+ = t(X).

2. Multiply-connected manifolds. For a multiply-connected manifold
X, dim 4k, m,(X) = m, we can define a whole series of signature invariants
using the finite-dimensional unitary representations of the fundamental
group. We consider for this purpose a unitary representation p of m on a
finite-dimensional space V. We denote by H/(X; V) the cohomology groups
of X with coefficients in the local system V. Although we cannot intro-
duce a ring structure on the groups HI(X:; V), we can define a bilinear form
which, so to speak, can be constructed from X with the help of the
cohomology product and from V with the help of the scalar product
o: V®V->RonlV:
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(@, By = (p(a @ B), IXD) (o, B € H*(X; V).

Then on the group of middle dimension sz(X; V) there is a non-degenerate
symmetric bilinear form whose signature we denote by 7,(X). In the case of
the trivial representation of 7 on R the signature 7,(X) obviously coincides
with the ordinary signature of the manifold defined in subsection 1. Just
as for the ordinary signature we can prove that the numbers are invariant
under. the special bordisms in which the fundamental group of the “film”
is isomorphic to the fundamental group of the boundary.

In the language of bordism theory, this property can be formulated in
the following way. Let X be a smooth compact closed manifold and
7, (X) = m. Then (see [33]) there exists a continuous map ypy: X = Bw of
X to the classifying space Bw, unique up to homotopy, inducing an iso-
morphism of fundamental groups (gy)«: 7 (X) > 7 (Bw) = n. If W is the
film bounding X, oW = X, and if w, (W) is naturally isomorphic to m,(X)
then ¢y extends to a continuous map ¢y, : W = Bw. Thus, 'rp(X) is defined
by the integral-valued function

(7.8) Tp: Qu(Bn) >Z
on the group of oriented bordisms of the classifying space Bw. (For the
definition of bordism see [34]).

Each numerical function on the group of bordisms can be described by
means of characteristic classes ([35]). In particular, for the functions (7.8)
there are characteristic classes a; of oriented manifolds and cohomology
classes b, € H*(Bm) such that

(7.9) T (X) = 25 (X) 9% (), [X]).

The signature 7,(X) has a number of algebraic properties which enable us
to obtain a priori information about the right-hand side of (7.9). Firstly,
Tp(X) is an additive function on . (87), that is,

(7.10) To (X 1)+ T (Xo) =T, (X, U X»).
Next, if Y is a simply-connected oriented manifold, then
(7.11) To (X X Y)=1,(X) -1(Y).

From (7.10) and (7.11) it follows that the right-hand side of (7.9) has only
one component and that a(X) = L(X). For to determine the classes a,(X)
and b; it is enough to check the formula on some additive basis for the
bordism group s« (B7). Moreover, since the left-hand side of (7.9) also is
an integer, it is enough to check the same formula on an additive basis of
the group 2+(Bm) @ Q, where Q is the field of rational numbers. Such a
basis can be chosen in the following way. Let Qf be the group of framed
bordisms ([34]). Then there is the following isomorphism:

(7.12) Q, (Bn) @ Q~ Q (Bn) @ 4 @ Q.
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Let {(Y; , Py, )} be a basis for Q7 (Br). Then every bordism
(X, wx) EQ (Bm) can be represented as a linear combination
(7.13) (X, ox)=21(Zi x Y, @Y )

where the Z]- € Q. are simply-connected manifolds. The left-hand side of
(7.9) takes the form

(7.14) (X)) =207(Z) % (V) x)-

On the right-hand side of (7.9) we may suppose without loss of generality
that the classes {b,} form a basis for the cohomology H* (B7r), dual to the
basis {(Y; ng )}. Then

(7.15) Tp (X)—Z (@5(Z3 X Y;) 9%, (bs) 123X YD)
Smce the tangent bundle to Y is trivial, ¢;(Z; X Y;) = a;(Z;). Consequently,
(7.16) To (X) = 21485 (Z)), [Z;]).
7

Setting ZJ- =0 forj # | we get
(7.17) TZ) T (Y1, @y) =(a:(Zy), [Z1])-

Taking into account the classical Hirzebruch formula (7.1) we obtain for
any simply-connected manifold Z;, and therefore, in general, for any
manifold Z,, the relation

(7.18) a;(Z))=2 T (Y5, (le)L(Zl).
Turning to (7.15) we come to the simpler relation
(7 19) { Tp (X)= 22h Zv (L (Zl X Yl) Tp (Yl’ CPYZ) CP;Z (bl)? [Zl X Yl])=
=22 (L (X) 9% (b), [X1),

(dim Z,)/2

where b = %l 7, (Y}, 0y )b

It remains only to establish the value of the cohomology class
b € H*(Bw), which depends only on p.

Unfortunately, the bordism method fails here. Therefore, we have to use
the other method described in subsection 1 to compute the classical
signature of manifolds with the help of a suitable choice of elliptic
operator. The first such calculation was carried out (in a somewhat more
. general setting) by Lusztig [26].

In contrast to the classical signature, we have to consider, in place of the
de Rham complex, exterior differential forms with values in a finite-
dimensional bundle go;(ép) (the dimension of £, is the same as that of the
vector space ¥V on which 7 acts). The only difficulty that has to be over-
come in constructing the elliptic Hirzebruch operator in our case consists
in verifying that we can construct the operator of exterior differentiation
of exterior differential forms with values in ap;‘((ép). For this purpose it is
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enough to remark that in a coordinate representation of go;(ép) we can
choose the transition functions on the intersections of the local charts so
that they are locally constant matrix functions. All the remaining con-
structions remain unchanged. It turns out that

(7.20) b = chp = chg,.
Thus, we obtain the multiply-connected Hirzebruch formula
(7.21) To (X) =22 (L (X) g% ch &, [X])

for a finite-dimensional unitary representation p of the fundamental group
of X. .

The class of formulae (7.21) can be increased [26] by considering
representations of 7 in the group of automorphisms O(m, n) of the vector
space ym*n preserving a bilinear Hermitian form of type (m, n). With the
help of such a representation p we can define a signature 7, (X) of coho-
mology with coefficients in the local system of coefficients V"™ *" and
also an element n, € K(Bm). This element M, is constructed as follows.

Let £, be the finite-dimensional bundle constructed as in §5, from the
representation p: ™ > O(m, n) € GL(n + n) of m in the group of all

linear automorphism of V™ *” Then in each fibre of £, we have a bilinear
form of type (m, n), which induces a decomposition of &, into the direct
sum £, = E; ® £ of two subbundles on one of which (E;) the bilinear form
is positive definite, and on the other (f;) negative definite. Then by
definition

(7.22) M, = & — L.
As a result we obtain the Hirzebruch formula

(7.23) Tp (X) == 2** (L (X) ch g}, [X]).

§8. Algebraic Poincaré complexes

1. The problem of classifying smooth structures and the homology
invariants of a manifold. The Hirzebruch formulae obtained in §7 for
multiply-connected manifolds with the help of finite-dimensional
representations of the fundamental group are, apart from the purely
mathematical beauty of the relations, of deep value for a number of
problems in the theory of smooth manifolds.

We mention, first of all, that the definition of the signature ’rp(X) of X
for a representation p only depends on the homotopy properties of the
cohomology ring H*(X; V), that is, it is a homotopy invariant of X. This
means that if ¢: X; = X, is a continuous map of a manifold X, to a
manifold X, and a homotopy equivalence or, what comes to the same
thing, if ¢ induces an isomorphism of all homotopy groups

&p:ki T (Xy) = m.(X,) (kK = 1), then the signature of X and X, are equal,
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7,(X;) = 7,(X3), for each finite-dimensional representation p of
= m(X,) = 7(Xy).

Consequently, the right-hand sides of the Hirzebruch formulae, which are
characteristic numbers of the manifolds and hence do not a priori depend
only on the homotopy type of the manifold but also on the smooth
structure introduced on it, are in fact homotopically invariant.

Research on the homotopy invariance of characteristic classes (and also
of the characteristic numbers derived from them) began to be developed
about 25 years ago. The first results in this direction are due to Rokhlin
(36] and Thom ([37], who proved the homotopy invariance of the (unique)
Pontryagin class on a four-dimensional oriented manifold. The proof was
essentially based on the formula they found for the signature (7.1) for
four-dimensional manifolds. In 1956 Hirzebruch [38] established, properly,
the general formula (7.1) for arbitrary oriented 4k-dimensional manifolds and
so proved the homotopy invariance of the Pontryagin—Hirzebruch classes
Ly (X), dim X = 4k.

Further research showed that the Pontryagin classes, generally speaking,
are not homotopy invariants (G. Whitehead, Dold, Thom) and for simply-
connected manifolds the highest Hirzebruch class is the only homotopicaily
invariant Pontryagin class. The last assertion was proved by Browder [39]
and S. P. Novikov [40] on the basis of a full study of the problem of
classifying smooth structures of given homotopy type of simply-connected
manifolds. In fact, they established a stronger assertion: in each homotopy
type of simply-connected manifolds the Pontryagin class is a homotopy
invariant if and only if it is proportional to the highest Hirzebruch class.

In the case of multiply-connected manifolds the answer to the problem
of the homotopy invariance of the characteristic classes is more compli-
cated, but in one way or other it has been directly tied up with progress
in the solution of the other problem: that of classifying smooth structures
of given homotopy type of a multiply-connected manifold.

We turn now to a precise description of the problem of classifying smooth
structures of given homotopy type. Let X, be a finite CW-complex. A
smooth structure of homotopy type X, consists of a smooth closed mani-
fold X and a homotopy equivalence ¢: X = X,. Two smooth structures
(X,, ¢1) and (X,, y;) of the homotopy type of X, are said to be equi-
valent if there is a smooth homeomorphism

P Xy = X,
such that the diagram
x, % x,
PNy S
X,
is homotopically commutative, that is, the maps ¢, and ¢,y are homo-
topic. Then the set of all smooth structures of homotopy type X, splits



Hermitian K-theory. The theory of characteristic classes and methods of functional analysis 119

into classes of pairwise equivalent structures. We denote the set of these
classes by F(X,).

Then the problem of classifying smooth structures of given homotopy
type X, consists in describing the set o (X,) with the help of the homotopy
invariants of X,. In particular, one of the questions consists in finding
methods of distinguishing smooth structures that are effective from the
topological point of view.

We mention to begin with that for the set & (X,) to be non-empty it is
necessary that Xy has certain properties, namely that X, is a Poincaré
complex- of some formal dimension n. This means that there is a cycle
[Xo] € H,(X,y; Z) such that the intersection homomorphism

N IXol: H¥ (X A) — H o (Xo; A)

is an isomorphism, where A = Z[x] is the group ring of the fundamental
group 7 = my (X,) of X,.

One of the invariants of a smooth structure (X, y) of given homotopy
type X, is the “normal bundle of the smooth structure”, that is, the ele-
ment £ = (¢ H*W(X)) € K,y (Xp). It is clear that if the normal bundles of
two smooth structures are distinct, then so are the smooth structures them-
selves. But on the one hand, not every element of K, (X,) can be realized
as the “normal bundle of a smooth structure”, while on the other hand,
different smooth structures may a priori have the same ‘“‘normal bundle”.

For an element £ € K, (X,) to be realized as a “normal bundle of a
smooth structure’” a number of conditions have to be satisfied. One such
relation is easily written in geometric terms. Let £ be a finite-dimnensional
(dim & = N) bundle over the complex X,, and X§ the Thom complex of
¢ (that is, the one-point compactification of the space of &). Suppose now
that:

There exists a map of the (V + n)-dimensional sphere:

(8.1) ¥ SN+7 — XE of degree 1.

Condition (8.1) is one of the requirements that have to be imposed on §
for it to be the “normal bundle of a smooth structure”. For, if (X, ¢) is
a smooth structure, then the map induces a bundle homomorphism

(8.2) v v(X)— E.

Recalling that the space of the normal bundle (for sufficiently large
N = dim »(X)) can be regarded as a domain of the sphere S¥*", we can
extend the map (8.2) to a map x of the sphere SV*” to the one-point
compactification Xg of the space of £ The map x is transverse-regular
along the null section X, C X§, and x™'(X,) = X.

(8.1) has another equivalent formulation when X, is a smooth manifold,
in terms of the so-called J-functor and the Adams cohomology operations
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(see -[41])—[45]). It is useful for us to note only one fact: the set of
elements £ € K, (X,) satisfying (8.1) is a coset of a subgroup of finite
index in K, (Xy).

However, (8.1) is by no means a sufficient condition for the existence
of a smooth structure with a given normal bundle. The only thing that can
be asserted is this: there is a manifold X and a map ¢: X = X, of degree
1 so that the inverse image p*(§) is isomorphic to the normal bundle
v(X). But ¢y need not be a homotopy equivalence. Therefore, it is reason-
able to ask with what modifications of X and of ¢ we end up with a
homotopy equivalence.

Now at this point the famous technique of modifying smooth manifolds
or surgery enters the stage. The manifold X, the map p, and the isomorphism
¥ v(X) —» go*(&’) in the previous paragraph form a triple (X, ¢, ¢¥), and
among them we can establish a natural bordism relation. The triple
(X, ¢, ¥) is called the normal map of the manifold X to the pair
(Xo, £). Using surgery we can answer the following question.

Let (X, ¢, ¥) be a given normal map. When is there a triple (X', ¢, ¥")
bordant to it in which ¢' is a homotopy equivalence? The answer was
completely worked out by Novikov for simply-connected manifolds [40]
and by Wall for multiply-connected manifolds [3], [4]. Namely, let L, ()
be the Wall group of w, defined in §1.4, and let # = 7,(X,). Then with
each triple we can associate an element 6(X, ¢, ) € L,(w) satisfying the
following conditions:

a) (X, ¢, ¥) depends only on the bordism class of the triple,

b) (X, ¢, ¥) = 0 if and only if there is another triple (X', ¢', ¥")
bordant to (X, ¢, ¢¥) in which ¢’ is a homotopy equivalence.

The element (X, ¢, ¥) is called the obstruction to modifying the map
¢ to become a homotopy equivalence. The first condition means that
(X, ¢, ¥) must be completely described at least up to elements of finite
order by means of the characteristic classes of the map ¢: X = X,. In
fact, in the case of simply-connected manifolds and n = 4k, the group
L, (1) is isomorphic to the group of integers and is described by a single
integral-valued parameter. Then

(83) G(Xv P ‘lP) = T(X) - T(XO)’

where 7(X) is the signature of the manifold.

Formula (8.3) and property b) of the surgery obstruction gives in the
simply-connected case complete information on the homotopy invariance
of the rational Pontryagin classes of the manifold. For, by the Hirzebruch
formula, 7(X) = (L, (X), [X]). Consequently, if ¢: X = X, is a homotopy
equivalence of two manifolds, then 6(X, ¢, ¥) = 7(X) — 7(X,) = 0. Therefore,
L, (X) = L4 (Xp). To establish that every other Pontryagin class is not
a homotopy invariant we must produce two manifolds X and X, and a
homotopy equivalence w: X = X, such that p(X) # ©*p(X,). Consequently,
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in terms of the problem concerning surgery it is sufficient to produce a
bundle ¢ satisfying (8.1) and also such that p(§) # p(X,) and

6(X, ¢, ¥) = 0, that is, L,;(§) = L,; (X,). The latter is a problem concern-
ing the algebraic properties of K, (X,) and has been solved positively.

2. Generalized signatures of multiply-connected manifolds. We have come
to the problem of describing the obstruction to surgery 0(X, ¢, ¥) € L, ()
with the help of the characteristic classes of ¢. But before we give this
description, we turn our attention to the fact that in the case of simply-
connected manifolds the obstruction to surgery 6(X, v, ¥) can be expressed
in terms of the signatures of X and Y,,

(8.4) 6(X, @, 9) = X) — 1(X,),

that is, by the homotopy invariants of the two manifolds. That the signa-
ture 7(X) of X is the only homotopically invariant characteristic number
follows from (8.4).

Thus, also in the multiply-connected case we must try to express the
surgery obstruction 8(X, ¢, ¥) in terms of the homotopy invariants of X
and X,. For simplicity we look for these invariants as elements of K,’; (A)
for the group ring A = Z[1/2][w] (see [46]). For the changes that would
have to be made for Z[n], see [7].

Thus, we consider a ring A with involution containing 1/2. Let (M, d)
be a free chain complex over A, that is a free graded A-module M (see
§1) and a homogeneous homomorphism d of degree (—1)

d M—-M, d& =0,

Then the dual complex (M*, d*) also is a chain complex. Let B: M*—>M
be a homogeneous homomorphism of degree #» and suppose that the
following conditions hold:
(8.5) a) p* = B,
(8.6) b) df + pd* =0,
c) the homomorphism § induces an isomorphism of the
homology groups

(8.7) H(B): H*(M*, d*) - H(M, d).

The equality (8.5) must be understood as an identification of the modules
M and (M™)*, that is, in the form &x g* = 8. Then we call the triple
(M, d, B) an algebraic Poincaré complex (APC) of formal dimension n.
Before we turn to the study of APC’s, we mention that Hermitian forms
and also automorphisms preserving a Hamiltonian form are particular cases
of an APC or can be reduced to one. For let us consider a chain complex
(M, d) such that M}- = 0 if j # k, n = 2k. Then the homomorphism
reduces to a map on the one term f3: M,’: - M,, while (8.7) means that
B is an isomorphism. Then (8.5) on replacing the kth grading by the zero
grading goes over into condition (1.17). Thus, the pair (M, ) is a (skew-)
Hermitian form over A.
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To interpret automorphisms in terms of APC’s, we consider the APC
M, d, B), n = 2k + 1, such that M/’ =0 forj#k k + 1. Then 8 gives us
the diagram:

) M, —d—> My,
(8.8) ﬁhT B | Brra

Let us forget the gradings on M. Then in place of d* in (8.8) we must
take (—1)*d*, according to (1.12). Thus, df + (=1)*8d™ = 0 in (8.8). Now
(8.5) means that (Bkﬂ)* = f,. If we introduce on the module M;:H OMpy,
a (skew-) Hermitian Hamiltonian form by means of the matrix

(8.9) ( 0 81—"11“1)
) (—1r 0/’

then the homomorphism
( @ )1 M — M¥ 1 @ Mpyy
ﬁkn
determines a Lagrangian plane in MZ‘H ®M,;,, and hence a class of auto-
morphisms preserving the form (8.9).

In the set of all APC’s we can introduce a relation of bordism type. We
consider a free chain complex (M, d) and a subcomplex (M, d) so that
My C M is a direct summand. Let §*: M* = M be a homogeneous homo-
morphism of degree n such that

(8.10) a) p* =B,
(8.11) b) dp + Pd* = O(mod M),
¢) the homomorphism § induces an isomorphism of the

homology groups

(8.12) H(p): HM*, d*)y— H(MIM,, d).
Then we call o = (M, My, d, 8) an algebraic Poincaré complex with bound-
ary (APC with boundary), of formal dimension n.

From (8.10) and (8.11) it follows that the homomorphism
dp + Bd*: M* - M, has a unique decomposition

dp+pd*

M*—— M,
N
N /s{
M3

where j: My = M is the inclusion and the triple (Mg, d, Bo) is an APC of
formal dimension (n — 1). From (8.12) we obtain the following diagram of
exact homology sequences:
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HM, - HM) - H(M/M;) - H(M,)
H(Bo)] H(B)* I H(B) | H{Bo) ,
H (M?) — H ((M/Mo)*) — H (M*) — H (M%)

The triple (M, d, B¢) is called the boundary of the APC with boundary «
and is denoted by da. If &y = (M,, d,, B1) and o, = (M,, d,, B,) are two
APC’s, then we call their sum the APC (M; @ M,, d, @ d,, B, @ ,). If
o= (M, d B)is an APC, then by (—a) we denote the APC (M, d, —f). The
operation o = (—o) is called change of orientation on the APC «.

Two APC’s oy and oy are said to be bordant if there is an APC with
boundary 7 such that o; ® (—oay) = dv. Bordism is an equivalence relation.

The complete analogy with the theory of bordisms of smooth (or
piecewise-linear) manifolds is not by chance. The fact is that with each
closed oriented smooth simplicial manifold X with fundamental group
n = m,;(X) we can associate an APC o(X) over the ring A = Z[1/2]1[=}. To
do this we take for the free chain complex (M, d) the complex of simpli-
cial chains of X with local system of coefficients A, and for § the operator

1 *
(8.13) B=—{(NIXI+(N XD,
where (N[X}) is the operator of intersection with the fundamental cycle
(see [47]).

The same construction can be made for a smooth oriented manifold X
with boundary 0X. Here we have

(8.14) 90(X) = o(9X).

We must sound one note of caution. The operation (N[X]) depends,
generally speaking, on the ordering of the zero-dimensional vertices of the
simplicial decomposition of X. Therefore, strictly speaking, the APC o(X)
is not uniquely determined. But it is not difficult to prove that for
different orderings of the vertices of X we get bordant APC’s, and (8.14)
is true for coherent orderings on X and its boundary 0X.

Thus, we find it convenient to introduce the following notation. We
denote by £2,(A) the set of bordism classes of APC’s. The sum operation
for APC’s induces a group structure on £2,(A).

Then all the above constructions and examples can be presented as
several homomorphisms.

a) The group K,’; (A) is mapped homomorphically to £,(A):

(8.15) ¥ KR(A) > Qu(A),

b) The groups of oriented bordisms ng (Bm) of the classifying space
Bn are mapped homomorphically to §2,(A):
(8.16) o: Q3% (Br) —>Q, (A).

To establish the existence of the homomorphism (8.15) corresponding to
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the interpretation of Hermitian forms and automorphisms as APC’s, we have
to verify that to equivalent Hermitian forms and automorphisms there corres-
pond bordant APC’s.

We turn now to a description of those properties of ¢ and o that
explain to us the usefulness of introducing APC’s. First of all, the analogy
between APC’s and smooth manifolds can be taken further. In particular,
the operation of elementary surgeries of smooth manifolds and of “glueing
on handles” can be interpreted ““on the level” of their chain complexes so
that analogous elementary operations can be defined for APC’s. The
inclusion of a sphere in the smooth manifold is replaced by a homomorphism
of a free A-module to the group of cycles of the chain complex. The
absence of any obstruction to the construction of such homomorphisms (in
contrast to the embedding of a sphere in the manifold) leads to the con-
clusion that Milnor’s method of killing homotopy groups ([48], [49]) of
smooth manifolds can be applied to “killing” the homology groups of an
APC. Then every APC « is bordant to another APC &' whose homology
groups are non-zero only in the middle dimension (for n = 2k) or the
two middle dimensions (for n = 2k + 1).

Moreover, chain-homotopically equivalent APC’s are bordant.

As a result we come to the following assertion.

THEOREM 8.1. The homomorphism K,ﬁ‘ (A) = 2, (A) is an isomor-
phism.

Thus, we cannot distinguish the groups K,’f (A) and £2,(A), that is, with
each APC of even formal dimension we can associate a Hermitian form
and with each APC of odd formal dimension an automorphism preserving
a Hamiltonian form. We need not use Theorem 8.1 to do this, by the
way, but can use the following simple argument. Let (M, d, ) be an APC,
which we present in terms of the following diagram:

My M, <* ... _wm,
(8.17) BT 4 s{
Mr 2 e B oy

This can be regarded as a biregular complex. Then we can construct from
(8.17) a new complex in which the grading is equal to the sum of the two
gradings in (8.17):

(8.18) Mo‘(—M1®M;;<—...-(—Mn®MT<——1M3,

and the differential is equal to the sum of the differentials (see [50]}) in
(8.17).

The chain complex (8.8) is ‘‘self-dual” and exact. Consequently, we can
split it symmetrically with respect to its ends into the direct sum of three
complexes (lopping off direct components from both ends) one of which
has the form
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(8.19) 0« Ny« N, <0

when n = 2k, or the form
(8.20) O« Np<«— My ® M} 1< NE<O

when n = 2k + 1. The complex (8.19) determines a Hermitian form and
(8.20) a Lagrangian plane in Hamiltonian form.

Taking Theorem 8.1 into account, we may suppose that the homomor-
phism (8.16), in fact, maps the group of oriented bordisms 950 (Bm) to
K (m):

(8.24) o: Q3 (Bn) - K& (n).

We denote by v: L,(7) > K,’,’ (w) the natural homomorphism of the Wall
group L, (m) to K!'(m). Let X, be a smooth manifold, 7 = m,(X,),

(X, ¢, ¥) a normal map of X to the pair (X,, £), that is, a map

@: X > X, and a bundle isomorphism ¢: v(X) — ¢*(£). The obstruction
0(X, ¢, ¥) to modifying the map by surgery to become a homotopy
equivalence lies in L, ().

THEOREM 8.2. ‘

(8.22) 7(0(X, @, 9) = o(X) — a(X,)

in K'(n).

Theorem 8.2 can be regarded as an analogue of (8.3) for simply-
connected manifolds. Naturally, the element o(X) is called the generalized
signature of the manifold. The generalized signature, just like the classical
signature, is a homotopy invariant and a bordism invariant. Consequently,
o(X) can be described with the help of the characteristic numbers of the
bordisms of Bw, that is, the numbers of the form (p(X)cp; (@), [ X)), where
p is a Pontryagin class and ¢ € H*(Bn) a cohomology class.

With the help of Theorem 8.2 we obtain an answer to the question what
characteristic classes of multiply-connected manifolds are homotopy
invariants. ‘

THEOREM 8.3. Let X be a multiply-connected manifold, m = w,(X). Then
the only homotopically invariant characteristic numbers are those of the
form

(8.23) 04(X) = (L(X)9k(a), [X1),

where a € H*(Bw; Q) and L(X) is the Hirzebruch class of X.

The numbers (8.23) are called the higher signatures of X. For some
classes of groups w it has been established that all the higher signatures are
homotopy invariants. In 1965, S. P. Novikov ([51], [52]) established the
homotopy invariance of the Hirzebruch class of codimension 1 and some
partial results for other codimensions. There he conjectured! that if a

1 See also [78].
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cohomology class a is the direct product of l-dimensional cohomology
classes, then the corresponding higher signature ¢,(X) is a homotopy
invariant. In 1966, Rokhlin ([53]) proved this conjecture for two-dimensional
classes, and later it was completely proved by Farrell and Hsiang [54] and
by Kasparov [55].

The higher signatures o,(X) are functions on bordisms

(8.24) o, 950 (Bn) — 0.

If 0,(X) for some class a € H*(Bm: Q) is a homotopy mvanant then the
homomorphlsm (8.24) splits:
Q5% (Bn) 45 Q

~N

N /&{

K}, ()

Conversely, if §: K,’,’ (m) > Q is a linear functional, then it determines a
homotopically invariant characteristic number 8§(o(X)) of X, which according
to Theorem 8.3 is necessarily a higher signature o,(X) for some cohomology
class a = a5 € H*(Bm; Q). Consequently, running through all the linear
functionals 6: Kh (m) > Q, we obtain all the classes a5 € H*Bm:; Q) whose
higher signatures are homotopically invariant.

(8.25)

§9. Hirzebruch formulae for infinite-dimensional
Fredholm representations

The generalized signature o(X) € K,’,’ () of a multiply-connected mani-
fold X gives a new interpretation of the multiply-connected Hirzebruch
formulae (7.21). The left-hand side T, (X) of (7.21) is a homotopy invariant
and, therefore, must depend only on the value of the generalized signature.
A detailed analysis of the definition of 7,(X) for a finite-dimensional
representation p of the fundamental group 7 = m{(X) of a manifold X
shows that this number can be expressed in the following way:

(9.1) To(X) = sign,y(a(X)),

where sign, is the signature of the Hermitian form defined in §4, (4.19).
Thus, the Hirzebruch formula can be written more naturally in the
following form:

(9.2) sign,(o(X)) = 2**(L(X)gX%chk,, [X]).

This way of writing the Hirzebruch formula is useful to us because both
the left- and the right-hand sides of it make sense for a wider class of
representations: the infinite-dimensional Fredholm representations of w. For
if p is a Fredholm representation of w, then the left-hand side of (9.2) is
defined by (5.18), and the element £, on the right-hand side is defined in
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86.2. Thus, we can state the following proposition [17}:

THEOREM 9.1. Let X be a closed compact oriented manifold,
dim X = 4k, w,(X) = 7w, and p a Fredholm representation of n. Then we
have the Hirzebruch formula

(9.3) sign,(o(X)) = 2 L(X)pkcht,, [X]),

where py: X = Bm is the classifying map for X.

If p = {py} (y € Y) is a family of Fredholm representations, then the
left-hand side of (9.2) is no longer a number, but the bundle
signp(o(X)) € K(Y), and the element Ep is a bundle with base space
Bn X Y. By applying to the left-hand side the Chern character, we can re-
write the Hirzebruch formula as an equality of two cohomology classes of
H*(Y; Q):

(9.4) ch sign ,(o(X)) = 2*%(L(X)g%kchE,, [X]).

The proof of (9.3) for infinite-dimensional Fredholm representations does
not repeat that of the Hirzebruch formula in the case of finite-dimensional
representations. The latter is based on the observation that its left-hand side
can be interpreted as the signature of certain cohomology groups and,
consequently, can be reduced to the index of some elliptic operator. In the
case of infinite-dimensional Fredholm representations this interpretation is
not available to us, and we can only use the indirect definition of the
Hermitian form o(X) for X.

We mention the highlights of the proof of (9.3) for infinite-dimensional
Fredholm representations. Let X be a smooth simplicial oriented closed
manifold, # = m;(X), and dim X = 4k. To construct the Hermitian form
o(X) we start from the APC of simplicial chains of X with the local system
of coefficients A = Z[1/2][w]. First of all, taking account of a remark in
84, we change the ring of scalars Z[1/2] to the field of complex numbers.
Therefore, let A = C[x]. Then ¢(X) is an APC of formal dimension n = 4k.
To obtain a Hermitian form, we perform on ¢(X) a number of elementary
operations of the type of Morse surgeries for smooth manifolds and
factorizations by acyclic subcomplexes. The whole set of these operations
can be organized as an APC « with boundary, of formal dimension n + 1,
and the boundary do is the direct sum of the APC ¢(X) and a Hermitian
form o4(X).

We consider now a Fredholm representation p = (p;, F, p,) of w (and,
hence, of A). The unitary representations p, and p, act on Hilbert spaces
H; and H,, respectively. By analogy with (4.4) we consider the tensor
products of ofX), o, and oo(X) with p; and p,, respectively. In the end
we obtain two infinite-dimensional ““algebraic Poincaré complexes”, say

o, and o, , and the Fredholm operator F' defines (up to compact

operators) a Fredholm map F,: o, > o, . Moreover, each elementary
operation on APC’s of the type of a Morse surgery or factorization by an
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“acyclic complex goes over, under the tensor product, to a pair of element-
ary operations compatible with the Fredholm map F,. Therefore, it is not
difficult to verify that sign, (0¢(X)) can be computed with the help of
APC’s, by passing to the complexes (0(X)), and (o(X)), and using the
constructions described by the diagrams (8.17)—(8.19).

The next stage consists in passing from the Hilbert “algebraic Poincaré
complexes” (O(X))pl and (or(X))p2 to some elliptic complex of differential
operators.

Each of the unitary representations p; and p, induces infinite-
dimensional bundles §#; and #;on X, and F is a family of Fredholm
operators Fy :J8; >, Note that the bundles &4, and &4 ,are locally flat.
We can, therefore, consider the spaces of exterior differential forms
VX, H,),Y(X;H#,) with coefficients in'd#;and H .

Just as in the cases of finite-dimensional bundles, we construct involutions
oy SY(X; Hy) > Q"7 (X; Hr) continuous in the appropriate Sobolev
norms. '

The de Rham complex of exterior differential forms {S¥(X;#4),d } can
be mapped to the complex of simplicial cocycles (O‘(X)):k by integrating

over simplexes. This homomorphism induces an isomorphism of cohomology
groups. Then each elementary operation on (G(X))pk is matched by a

corresponding operation on {Qj (X;8#84),d}. As the result of a finite num-

ber of such operations we obtain an isomorphism of two Hermitian forms.

On the other hand, its signature can be computed as the index of an

elliptic diagram, by splitting ® Q/(X: ;) into the direct sum " ® Q~ of
i

two eigensubspaces of a and constructing the Hirzebruch operator
d + 8): Q" = Q corresponding to this decomposition. The index. of this
diagram (taking into account the Fredholm map Fy) by the Atiyah—Singer
formula is equal to (L(X) chi,, [X P. ’

The formulae (9.3) and (9.4) provide us with plenty of homotopically
invariant higher signatures, because the right-hand side of 9.3 is a higher
signature for the cohomology class

(9.9) a = ch§,.

In (9.4) we have on the right-hand side a whole family of higher signatures.
For let b; € H*(Y; Q) be a basis for the cohomology groups and let
chf, = Za; ® b;. Then the right-hand side of (9.4) has the form

(9.6) 2:h 3 (L (X) ¥ (a)), [X]) b= ; 0a, (X) by

Consequently, the higher signatures Uaj are homotopically invariant.

The Hirzebruch formulae, together with the image (6.1) of the homo-
morphism from the set of Fredholm representations %Z(w) into the group
K(Bw) describe a set of higher signatures of varieties, which are homotopically
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invariant.

For example, if = satisfies (5.9), then it follows from (6.13) that all the
higher signatures of a manifold with fundamental group # are homotopically
invariant.

Of course, the class of group # with homotopy invariance of the higher
signatures for which we can obtain detailed information is much wider. For
example, if 7 is a free product of two other groups, m = m; * m,, then the
classifying space Bm is homeomorphic to the connected sum of the
classifying spaces, Bmr = Bm; V Bw,. Consequently, the cohomology and
the K-functor split into direct sums:

H*(Bx, + 1) = H*(Bny, pt) ® H*(Bay, pt),
K°(Bx, *t) = K%Bmny, pt) @ KBy, pt)

and the set of Fredholm representation %(w) contains the direct sum
#(mwy) © & (m,). Thus, the image of (6.1) for the group 7 contains the
direct sum of the homomorphism (6.1) for 7; and m,. In particular, for a
finitely generated free group = all the higher signatures are homotopically
invariant.

There are 4k-dimensional manifolds X involved in the Hirzebruch
formulae. Therefore, the homotopy invariance of the higher signatures
g,(x) is also proved for 4k-dimensional manifolds X and 4s-dimensional
cohomology classes € H*(Bm: Q). However, similar assertions on the
homotopy invariance of the higher signatures can also be proved for other
dimensions.

Suppose that 7 satisfies (6.9), and, for example, dim X = 4k — 1. We
consider the direct product X' = X X S! of X with the circle S'. Then
the group 7' = m, (X X S') = 7 X Z also satisfies (6.9). Consequently,
there is a family of Fredholm representations o =1 Py } (» € Y) such that
ché Za; ® b; and q; € H* (B, b; € H*(Y), are bases for the cohomology
groups. The space Br' is homeomorphlc to the direct product Brn'=Bn X S'.
Therefore the basis {q;} can be represented in the form {a, al ® v},

a e H*(Brr) v € HY(S'). The Hirzebruch formula gives us the homotopy
mvammce of the number oa 2 XH= (L(X)goX (a ®'v), [X']). Since
L(X") = L(X), with X' = = X'x S, it follows that

Oy (X) = (L (X) 0% (aj), [X])=(L(X") 9% (2j @ v), [X X §']) = Guige (X').

Consequently, the higher signatures o, (X) for dim a; ;= = 4k — 1 are homo-
topically invariant.

For the other dimensions the homotopy invariance of the higher signa-
tures is established similarly.

§ 10. Other results on the application of Hermitian K-theory

1. The application of bordism theory to the Hirzebruch formulae. The
Hirzebruch formulae both for finite-dimensional, and for infinite-dimensional
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Fredholm representations have been proved on the basis of the Atiyah—
Singer theorem on the index of elliptic operators.

In one particular case — for simply-connected manifolds — there is
another way of proving the Hirzebruch formula on the basis of bordism
theory. The difficulty in applying bordism theory in the case of the
multiply-connected Hirzebruch formula lies in the choice and effective
description of generators of the group of oriented bordisms 2. (Bw) of the
classifying space Br of m. As was shown in §7, it follows from bordism
theory that the right-hand side of the Hirzebruch formula always is of the
form 7,(X) = (LX) a,, (XD, where a, € H*(Bw) is some cohomology
class depending on p. Consequently, the main difficulty is in proving that
a, = chf,. In this direction there have been some definite advances ({56]),
which also allow us to make clear the homotopy nature of the property
of the higher signatures to be homotopy invariants of multiply-connected
manifold.

By some analogy with the papers of Volodin ([68], [70]) we can
construct for Hermitian K-theory a universal space W(A), having a number
of useful properties from the point of view of Hermitian K-theory. To do
this, we consider a ring A with involution. In §8 we have defined an
algebraic Poincaré complex over A and also an APC with boundary. We
can go further in this direction and, by analogy with n-manifolds, define
bundles of APC’s over some simplicial complex K. The exact definition is
as follows: let K be a simplicial complex, and denote by K also the
category of all its subcomplexes and their inclusion morphisms. We consider
the functor II that associates with each subcomplex K' C K the complex
II(K') of free A-modules, with TI(KX'N K") = I(K") NTI(K") and
(K’ UK")=TI(K')+ II(K"), and if K'CK", then II(K") CTI(K") as a
direct summand. Next, suppose that with each oriented simplex ¢ C K
there is associated a homomorphism f(¢): I(¢)* = II(0), satisfying the
properties of an APC with respect to the boundary II(do) C Ii(o), of
formal dimension dim ¢. Suppose, finally, that the homomorphisms are
compatible in the following way:

(40.1) @) +p@d= X BO)
dimo’=dimo—{

where the summation is over all orientations of the boundary ¢' C ¢ com-
patible with that of o. The functor II and the homomorphism (o) are
called a sheaf of algebraic Poincaré complexes.

It is important to note the following assertion: let X be a simplicial
smooth oriented manifold, and Il a sheaf of APC’s over X. Then the pair
(II(X), By), where

(10.2) Bx=_ 2 _B(o),

dim o=dim X
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is an APC.

APC sheaves behave like bundles. In particular, it makes sense to speak
of the inverse image of a sheaf of APC’s under simplicial maps. Each
simplicial complex K has a distinguished sheaf of APC’s, that of its simpl-
icial chains over the ring of integers, or if # = 7,(K), also over the group
ring A = Z[1/2][#x] of w. Then W(A) is the “universal” complex with
universal sheaf II, of APC’s over it.

If /1 X = W(A) is a simplicial map of a smooth manifold X, then from
the inverse image f*(HA) we construct the APC {f*(IIA)(X), BX} (see
(10.2)) and according to Theorem 8.1, the element

(10.3) YUX, f) € Kn(A), n = dim X.
Now (10.3) depends only on the bordism class (X, f) € &, (W(A)). Conse-
quently, we obtain the homomorphism

(10.4) a: B (A) — K (A).
The elements of the homotopy group 7, (W(A)) determine in a natural way

certain bordisms of W(A), that is, there is a homomorphism
m, (W(A)) = Qﬁo (W(A)). It turns out that the composition

(10.5) am: n{W(A)) — Kh(A)

is an isomorphism.

As we have already shown, over the classifying spaces Bw there is the
special sheaf of APC’s of its simplicial chain with coefficients in the local
system A = Z[1/2][#x]. Then we obtain the map

(10.6) L0 Bn—>W (A),
which induces a homomorphism ¢«: Sl;jo (Bm) — SZ;S;O (W(A)). The com-

posite map
to: 5% (Bn) — KR (A)

coincides with the generalized signature (8.21)
o: Q5 (Br)— Kn (7).

All the homotopically invariant higher signatures can be written in the
following way. Let «: Kh (m) = Z be a linear functional. The composite
map oy: QSO (W(A)) — Z is described by characteristic classes of the form

ap(X, f) = (L(X)f*(ay), [XD]),

where o € H*(W(A); Q) is some cohomology class. Then the higher
31gnature ay(X), b = ¢ (a,) € H*Brm; Q) is homotopically invariant. Since
the homotopy groups of W(A) are periodic of period 4, then the cohomology
ring H*(W(A); Q) is described by the generators of the cohomology group

of the first four dimensions. It is convenient, in fact, to make at the outset
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the change of rings A &> A ® C. Then the period of the homotopy groups
is two. Let u; EH'(W(A ® C);Q)andy, EH*(W (A ® C); Q) be bases
for the cohomology groups. Then there are elements v, ; € H*(W(A ® C); Q)
such that the cohomology ring H* (WA ® C); Q) is isomorphic to the ring
of topological polynomials

¥ (WA ® C); Q = A(u;) ® Qlvy, .

From the generators {vy; ;5 (}we form the Chern polynomials wy, regard-
ing the elements vy ; as elementary symmetric polynomials. Then the classes
w, € H*W(A ® C); Q) are those whose inverse images ¢*(w,) € H*(B7; Q)
give homotopically invariant higher signatures.

The Hirzebruch formulae have an elegant interpretation in terms of the
bordisms of W(A). Observe that under the change of rings
A = Mat(n, A) = A' the spaces W(A) and W(A") are homotopically equi-
valent. Therefore, a finite-dimensional representation p: A = Mat(n, C)
induces a map p«: W(A) = W(C). So we obtain the following commutative
diagram (n = 4k):

Q, (W (A)) —> K& (A)

p* J/ J’Slgnp

Q, (W (C)) ——> K (C)=Z
Then
2°%(L (X) 9k ch &, [X])=(L(X) ¢%xL*p*aq, (X)),

that is, ch&={*%q, aoCH* (W (C); Q).

The last equality raises the question of the existence of bundles over W(A)
whose Chern character determines the classes p*aa. In fact, passing to
Banach algebras, which from the point of view of representation theory,
as we saw in 84, is not a restriction, we can introduce in W(A) a weaker
topology. To do this we consider all free A-modules furnished with free
bases and we express all homomorphisms with the help of matrices with
elements in the algebra A. Then we consider two APC’s as being close if
all their homomorphisms are close. We denote the weak topology of

W(A) by W(A). We obtain a continuous map

(10.7) e: W(A) — W(A).

It turns out that (10.7) is a weak homotopy equivalence. On the other
hand, the zero-dimensional skeleton of W(A) is no longer a discrete space
in the weak topology, but is the space F(A) of Hermitian forms over A.
The inclusion

(10.8) eo: F(A) - W(A)



Hermitian K-theory. The theory of characteristic classes and methods of functional analysis 133

induces an isomorphism of homotopy groups in the 2-adic localization
(Bo)s T (F (A)) ® Z[1/2]> my (W (A)) ® Z [1/2).

Therefore, ignoring 2-torsion, we find that W(A) is weakly homotopically
equivalent to F(A). The latter space can be interpreted as the classifying
space BGL(A) of GL(A). We can also extract more precise information
about the homotopy properties of (10.8). From this point of view, (10.6)
is a map classifying bundles over Br with Banach fibre A and with the
same representation of m in its group ring A.

2. Rational-homological manifolds. The Hirzebruch formulae are true for
a wider class of manifolds, although the methods of proof given here are
suitable only for smooth manifolds (see [56]). Solov’ev has shown that
the homomorphism (10.2) defines an APC when X is a simplicial rational-
homological manifold. Consequently, all the assertions of §10.1, in parti-
cular, the Hirzebruch formulae, are true for rational-homological manifolds.

3. Geometrical methods of computing the Wall groups. In this direction
the first work to be mentioned is apparently the paper of Browder and
Levine ([57]), which is concerned with the problem of surgery of a sub-
manifold of codimension 1. Later a series of papers by Farrell and Hsiang
([58]1, [59], [54]) and then by Shaneson ([5]) solved, as a matter of fact,
the problem of computing the Wall groups for a free Abelian group.

The geometrical idea (as distinct from the algebraic methods considered
in §§2 and 3) consists in the following: each element § € L, () of the
Wall group can be realized as an obstruction to surgery of a normal map
to a homotopy equivalence. If 7 splits into the direct product 7 = 7' X Z,
we can take as a model manifold X with fundamental group 7 the direct
product of X' with fundamental group 7' and the circle S':

X =X x§8.
Then each normal map

. Y 1
(10.9) { ¢: Y > X' %81,

P v(Y) > 9* (E)
can without loss of generality be regarded as being transversal-regular along
X' C X. Thus, we obtain a new normal map

{ ¢: v - X',
(10.10) B v (Y)> 9% (),
Y'=¢(X"), o=q/Y".
Realizing any element 8 € L,(w) as an obstruction 8 = 6(Y, ¢, ¥) to
modifying the map (10.9) to a homotopy equivalence, we get the element

(10.11) q(8) = 8(Y", @, ) € L, ,(n").
(10.11) gives us the construction of a homomorphism (provided that it is
well-defined) g: L,(7) > L,_,(x"). The precise computation of the depend-
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ence of q(f) on the realization (10.9) shows that, in fact, by the given
method we can map the Wall group L} (m) of obstruction to surgeries to a
simple homotopy equivalence

(10.12) g: Li(m) — L, _,(x').

Using the operation of slicing the manifold X along X' (that is, by passage
to X' X I), (10.12) fits into an exact sequence

(10.13) 0— Ly (") —> Ly (1) > Loy (%) - 0.

With the help of (10.13) it has been possible to obtain full information
about the Wall groups for free Abelian groups.

Further generalizations of (10.13) have been applied to various classes of
amalgamated products of groups. (In this context, see the papers of
Cappell [60], [61].)

Clearly, we have not been able to give a full survey of applications of K-
theory, since at the present time this area is in a state of rapid development.
The reader can find a more complete survey of the results of foreign authors
on Hermitian K-theory up to 1972 in the collection of papers of the Seattle
conference on algebraic K-theory [62].
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