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�� Introduction

Spinc�structures on manifolds are a complex analogue to the more
common notion of spin structures on manifolds� They have been known
since the �����s �see �A�B�S�	
 but they had no real importance �as
far as I can tell	
 until the recent announcement of the Seiberg�Witten
equations for ��manifolds in �W�� These equations promise to vastly
simplify the study of smooth ��manifolds
 and their de�nition requires
the presence of a spinc�structure� In this paper I will review the def�
inition of spinc�structures on manifolds from both a geometric and
algebraic point of view
 and prove their existence in some important
cases� I will conclude by looking at how they appear in the formulation
of the Seiberg�Witten equations�


� Geometric formulation of Spincn

In one sense
 spin and spinc structures are just generalizations of ori�
entations� Consider a smooth manifold Mn with tangent bundle TM �
This vector space bundle gives rise to a principalO�n	�bundle of frames

which we denote PO�TM	� Recall that the manifold is said to be ori�
entable if this bundle can be reduced to an SO�n	�bundle PSO�TM	

making the �bers connected� This means that any trivialization of
the bundle over the �disconnected	 ��skeleton of M can be extended
to a trivialization over the �connected	 ��skeleton� The next step is
to make the �ber simply connected �where possible	� This will mean
that a trivialization over the ��skeleton of M can be extended over the

�skeleton� Recalling that
 for n � �
 ���SO�n		 �Z�
 we de�ne Spinn
to be the double cover of SO�n	� For n � �
 this is the universal �i�e�
simply� connected	 cover� in the exceptional cases we have Spin� � S�

and Spin� � S�� We then say that the manifold is spin if the bundle
PSO�TM	 has a double cover by a principal Spinn�bundle PSpin�TM	�
To �nd the complex analogue
 we replace SO�n	 by the group SO�n	�

U��	
 and consider its double cover� With this in mind
 we de�ne�

Spincn � �Spinn � U��		�f���� �	g � Spinn �Z� U��	

Date� September �� �����
�
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This is the desired double cover of SO�n	�U��	 via the map �A��� ��
�p�A	� ���
 where p is the double cover of SO�n	 by Spinn� Finally
 we
de�ne M to be spinc if given the bundle PSO�TM	
 there are principal
bundles PU����TM	 and PSpinc�TM	 with a spinc�equivariant bundle
map�

� � PSpinc�TM	 �� PSO�TM	� PU����TM	�

This de�nition of Spincn leads to a very nice geometric criterion for
the existence of a spinc�structure ��K��	� Since U��	 � SO�
	
 there is
a natural map SO�n	�U��	 � SO�n�
	 which extends �via Whitney
sum	 to a map of bundles� We can de�ne Spincn as the pullback by this
map of the covering map Spinn�� � SO�n � 
	�

Spincn �� Spinn��

� �
SO�n	� U��	 �� SO�n � 
	

Therefore
 a spinc�structure on TM consists of a complex line bundle
L and a spin�structure on TM � L� We can restate this as�

Theorem �� A manifold M is spinc �i�e� TM has a spinc�structure�
	 there is a complex line bundle L over M such that TM � L has a
spin�structure�

So M is spinc if the obstruction to extending a trivialization of the
tangent bundle over the 
�skeleton can be removed by adding a complex
line bundle�

�� Examples of Spinc�manifolds

We start with examples of manifolds which have canonical Spinc�
structures�

Theorem �� If M is a spin manifold� then M has a canonical spinc�
structure�

Proof� We simply extend the spin structure by taking the �ber prod�
uct with the trivial U��	�bundle U�
 letting

PSpinc�TM	 � PSpin�TM	�M�Z� U���

Theorem �� If M has an almost complex structure� then M has a
canonical spinc�structure�

Proof� Let j � U�k	 � SO�
k	 denote the natural homomorphism�
Then we can de�ne a homomorphism g � U�k	 � SO�
k	 � U��	 by
g�A	 � �j�A	� det�A		� Although j does not lift to Spin�k
 g does lift
to Spinc�k� Denote this lift �� An almost complex structure on M
means TM can be viewed as a complex vector bundle
 and so M has
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an unitary frame bundle PU�n��TM	� We now construct the desired
Spinc bundle as an associated bundle�

PSpinc �TM	 � PU�n��TM	�� Spin
c
�k� �

In fact
 we can give another
 more algebraic
 general criterion for
whether a manifold has a Spinc�structure�

Theorem �� An orientable manifoldM can be given a Spinc�structure
	 the second Stiefel�Whitney class w��M	 is the mod � reduction of
an integral class�

Proof� Recall that a manifold M has a spin�structure 	 the second
Stiefel�Whitney class w��M	 is � �see �L�M� and �K��	� So we apply
our geometric criterion from the last section
 which says that M can
be given a spinc�structure 	 there is a complex line bundle L such
that TM � L is spin
 which means w��TM � L	 is �� But
 since the
Stiefel�Whitney classes are stable
 we have�

w��TM � L	 � w��TM	 � w��L	 � w��TM	w��L	 � �

Both these bundles are orientable
 so the �rst Stiefel�Whitney classes
are both �
 which means w��TM	 � w��L	 � �� Since these are mod

 classes
 w��TM	 � w��L	� w��L	 has an integral lift
 the �rst Chern
class of the line bundle
 so w��TM	 � w��M	 also has an integral lift

which proves the theorem in one direction� To go the other way
 we can
follow the same argument backwards
 since if w��TM	 lifts to an inte�
gral class e
 we can always �nd a complex line bundle with �rst Chern
class e
 which will be the line bundle we need for our spinc�structure� �

In particular
 by �M�
 this means that any orientable four manifold
can be given a Spinc�structure
 which will be crucial to the formulation
of the Seiberg�Witten equations�

�� Classification of spinc�structures of a manifold

We will classify spinc�structures by using classifying spaces
 an im�
portant tool from algebraic topology� Our discussion here follows �	��
We start with a basic de�nition�

Definition� A classifying space for a group G is a CW�complex BG
and principal G�bundle EG over BG such that given any space X and
a principal G�bundle E over X
 there is a map f � X � BG such that
E � f��EG	�
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It is not hard to show that BG is unique up to homotopy equivalence�
From our de�nition and discussion of Spincn we have the following com�
mutative diagram of groups
 with rows and columns exact�

Z� 
 U��	 � U��	
k � �
Z� 
 Spincn � SO�n	 � U��	

� �
SO�n	 � SO�n	

This diagram induces a similar commutative diagram of classifying
spaces �by
 for example
 Milgram�s construction of the classifying space
in �P�	� Therefore
 we can view BSpincn as a bundle over BSO�n	 with
�ber BU��	�
Now we view the tangent bundle of a manifoldM as a map 	 �M �

BSO�n	� A spinc�structure on the tangent bundle is then a lift of this
map to BSpincn
 giving a commutative diagram�

BU��	 � BSpincn
� �

M
�
� BSO�n	

Theorem 
� The set of lifts of 	 is in bijective correspondence with
�M�BU�	�
�

Proof� Let hp denote the homeomorphism from BU��	 to the �ber
of BSpincn over the point p � BSO�n	� Given a map � � �M�BU��	�

de�ne the lift 	� by 	��x	 � h��x� 
 ��x	� This is clearly an injective
map from �M�BU��	� into the set of lifts� it is also surjective
 since two
di�erent lifts will have to disagree on at least one �ber� �

Since �M�BU��	� is just the set of complex line bundles over M
 which
are classi�ed by their �rst Chern class
 the theorem implies that the set
of lifts �and hence the spinc�structures onM	 is in correspondence with
the second cohomology group H��M �Z	� �Alternatively
 we note from
�P� that BU��	 � BS� � CP

�� Since CP� � K�Z�
	
 the Eilenberg�
Maclane space
 this means �M�BU��	� � �M�K�Z�
	� � H��M �Z	
 by
�K���	 We can combine this group structure with the correspondence
to de�ne a simply transitive group action of �M�BU��	� � H��M �Z	
on the set of lifts�

� � 	� � 	���

�� � � H��M �Z	

We also want to consider our geometric criterion identifying a spinc�
structure on M with a complex line bundle L over M and a spin�
structure on TM�L� The �rst question is whether the spinc�structure



Spinc �MANIFOLDS �

determines the complex line bundle in this description� The answer is
�Yes�� From the commutative diagram of groups drawn above
 we can
induce the following commutative diagram�

BSpincn
�

�
pr

�
M � B�SO�n	� U��		

�

� �
BSO�n	

where the map 
 �M � BSpincn is a lift of the map 	 � M � BSO�n	

and the maps on the right�hand side of the diagram are projections
induced from our commutative diagram of groups� So the lift 
 of 	
canonically gives us a lift pr 
 
 � M � B�SO�n	 � U��		� This lift is
the complex line bundle desired�
We can also ask the question in reverse� does the complex line bun�

dle determine the spinc�structure� Here
 the answer is unsurprisingly
�No�� Recall from the proof of Theorem � in Section � that we must
have w��TM	 � w��L	 � c��L	 mod 
� Hence there are strictly less
than jH��M �Z	j possible line bundles
 so these cannot determine the
jH��M �Z	j spinc�structures in a one�to�one fashion� The question now
becomes� given a complex line bundle
 how many di�erent spinc �
structures are associated with that bundle�
As a �rst approximation
 we compute the number of spin�structures

on TM � L� As above
 the spin�structures on TM � L correspond to
lifts of a map 	 �M � BSO�n�
	 to BSpinn��
 so we have a diagram�

BZ� � BSpinn��

� �

M
�
� BSO�n � 
	

Exactly as in the previous theorem
 we �nd that the set of lifts is in
bijective correspondence with �M�BZ��� �P� proves that BZ� � RP

��
But RP� is just the Eilenberg�Maclane space K�Z�� �	
 so we have
�M�BZ�� � �M�K�Z�� �	� � H��M �Z�	 �the last equality is proved in
�K��	� Therefore
 the set of spin�structures on TM � L corresponds
to H��M �Z�	�
While each of these spin�structures pulls back to a di�erent lift from

B�SO�n	�U��		 to BSpincn
 they are not all di�erent when considered
as lifts from BSO�n	 to BSpincn� We will not completely answer the
question of when they are or are not di�erent
 but we will show�

Theorem �� Two lifts which di�er by the action of an element in
H��M �Z�	 which comes from H��M �Z	 give the same spinc�structure�
assuming the complex line bundles are the same�
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Proof� As above
 we have that H��M �Z	 � �M�K�Z� �	� � �M�S���
It will clearly su�ce to show that a lift corresponding to an element in
H��M �Z�	 which comes from H��M �Z	 gives the same spinc� struc�
ture as the lift corresponding to the � element� Such a lift would
factor through S� in each �ber� i�e� the image of the lift in each �ber
BZ� � RP

� lies in the canonical copy of S� embedded in RP� as RP��
However
 when we view BSpincn as a bundle over BSO�n	
 the �ber is
BU��	 � CP�
 which is simply�connected� Therefore the copies of S�

can all be homotoped to a point in these �bers �simultaneously
 since
the homotopy is the same in each �ber	
 which means the lift is the
same as the ��lift� �
Hence
 the number of spinc�structures on M associated with each

complex line bundle over M is at most

jH��M �Z�	modulothoseelementscomingfromH��M �Z	j�

�� A Description of Spincn via Clifford modules

In this section I will give a much more algebraic formulation of the
groups Spinn and Spincn� This formulation will give us information
about the structure of these groups which is very useful in studying
vector bundles� However
 before diving into a sea of algebra
 I will try
to give some geometrical motivation
 following �K���
Recall that an element of the orthogonal group O�n	 can always be

written as a product of re�ections �i across hyperplanes through the
origin� Each such re�ection is determined by a unit normal vi to the
hyperplane� note that vi and �vi determine the same re�ection� So we
can write an element of O�n	 as a �product� �v� �v� � � � � �vk�
 where each
equivalence class contains a product and its negative
 and � � k � n�
Then the double cover of O�n	 is just the group of signed products

which is called Pinn �a play on SO�n	 and Spinn which stuck	� We
will de�ne the Cli�ord algebra C�n so that it contains Pinn in a natural
way�

Definition� Given a real vector space V with an inner product Q

the Cli�ord algebra C��V�Q	 is the quotient algebra T �V	�I�V	
 where
T �V	 is the tensor algebra

N
V 
 and I�V	 is the ideal generated by el�

ements of the form v � v �Q�v� v	�

To increase the resemblance to our geometric motivation �and to
make things easier to write	 we will usually write products as vw rather
than v � w� The relation given in the de�nition can be rewritten as
vw�wv � 
Q�v�w	� These relations have a particularly nice form when
we consider an orthonormal basis fe�� � � � � eng for V 
 and assume that Q
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is positive de�nite� Then we have that eiej � �ejei and eiei � �� From
these
 we can see that a basis for C��V�Q	 is feI � ei� � � � eik where i� 

i� 
 � � � 
 ik� and � � k � ng �when k � � we get the identity � � e�	�
Therefore
 the dimension of C��V�Q	 is 
n
 where n is the dimension
of V �
C��V�Q	 has a naturalZ��grading C��V�Q	 � C���V�Q	�C���V�Q	

where the �rst term is generated by products of an even number of
elements of V 
 and the second is generated by products of an odd
number of elements of V � We consider the multiplicative group of units
in the Cli�ord algebra
 denoted C���V�Q	� This group has a natural
representation in the Cli�ord algebra
 called the adjoint representation�

Ad � C���V�Q	 �� Aut�C��V�Q		

Ad��	�x	 � �x���

If v � V with Q�v� v	 �� �
 then v is a unit �v�� � �v�Q�v� v		
 and
Ad�v	 preserves the inner product �Q�Ad�v	�w	� Ad�v	�w		 � Q�w�w		�
so Ad restricts to a representation of P �V�Q	 � fv � V s�t� Q�v� v	 ��
�g in O�V�Q	 � f� � GL�V 	 preserving Qg� Now we de�ne�

Pin�V�Q	 
 P �V�Q	 is the subgroup generated by v � V with Q�v� v	 � ��

Spin�V�Q	 � Pin�V�Q	 � C���V�Q	

We can show that these groups �for a real vector space	 are double
covers of O�V�Q	 and SO�V�Q	 respectively
 so this agrees with our
geometric de�nition of the spin groups�
We are particularly interested in the case when V � R

n
 and Q is
the usual positive de�nite inner product �dot product	� Then we de�ne
C�n � C��V�Q	
 Spinn � Spin�V�Q	
 etc� We now de�ne the groups
Spincn as before�

Spincn � Spinn �Z� U��	

We associate with C�n a volume element � � e�e� � � � en
 where fe�� � � � � eng
is an orthonormal basis for Rn �with a given orientation	� � is inde�
pendent of the choice of this basis �in C�n	
 and we have the relation�

�� � ���	n�n�����

Similarly
 we consider the case when V is a complex vector space and
de�ne C �n to be C�n � C � Notice that Spincn 
 C �n� Again
 we de�ne
a volume element �C � ���n�������� In this case
 we �nd the square of
the volume element is always ��
These volume elements give us useful decompositions of vector spaces

which have C�n� representations�

Definition� A C�n�module is a real vector space W together with a
representation � � C�n � HomR�W�W 	� We often denote ���	�w	 by
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� � w
 and call this operation Cli�ord multiplication� Similarly
 in the
complex case we de�ne C �n�modules�

If W is a C�n�module
 and �� � �
 then we get a decomposition
W � W� �W� into the eigenspaces of �
 so W� � ���
	�� � �	W �
In the complex case
 the square of the volume element is always �
 so
the decomposition always exists�
We say that the representation � is reducible if W can be written

W��W�
 where ���	�Wi	 �Wi for every � � C�n� Otherwise
 we call
the representation irreducible� We call two representations �j � C�n �
Hom�Wj�Wj	 equivalent if there is a linear isomorphism F �W� �W�

such that F 
 ����	 
 F�� � ����	 for every � � C�n� There is a well�
understood classi�cation of Cli�ord algebras �see �L�M�	 which gives
us the following fact�

Theorem �� The number of inequivalent irreducible real representa�
tions of C�n is � if n�	 � 
 �mod ��� and 	 otherwise� The number of
inequivalent irreducible complex representations of C �n is � if n is odd
and 	 if n is even�

Finally
 we will introduce one more type of bundle � the spinor bun�
dles of a manifold�

Definition� If the manifoldM has a spin structure � � PSpin�TM	�
PSO�TM	
 a real spinor bundle is an associated bundle S�M	 � PSpin�TM	��

W 
 where W is a left module for C�n and 
 � Spinn � SO�W 	
is the representation given by Cli�ord multiplication by elements of
Spinn 
 C��n� Similarly
 we de�ne a complex spinor bundle
 with W a
complex left module for C �n � C�n � C �

We easily generalize this de�nition to spinc�manifolds by de�ning the
spinor bundle S�M	 � PSpinc�TM	 �� V 
 where V is a complex C�n�
module
 and � � Spincn � GL�V 	 is the restriction of the C�n repre�
sentation to Spincn 
 C�n � C � If this representation is irreducible
 we
say that the spinor bundle is fundamental� So by the theorem above

there is one fundamental spinor bundle if n is even
 and two if n is
odd� However
 in the odd case the two bundles are equivalent when
restricted to Spincn
 so in fact there is always a unique fundamental
spinor bundle
 which we denote S�M	� Since we are in the complex
case
 we can use the volume element �C to decompose S�M	 into two
bundles S��M	 � ���
	�� � �C 	S�M	� We will use these bundles in
the next section to de�ne the Seiberg�Witten equations�
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�� The Seiberg�Witten equations

To de�ne the Seiberg�Witten equations
 we specialize to the case of
orientable ��manifolds
 following �T� and �A�� We know
 from section
�
 that any orientable ��manifold has a spinc�structure� We also know

from the classi�cation of Cli�ord algebras in �L�M�
 that C �	 � C ��	

the algebra of � � � complex matrices� The unique irreducible complex
representation is the natural representation of this group on C 	 
 so
the fundamental spinor bundle S�M	 is a C 	 �bundle
 which splits �as
described in section �	 into two C � �bundles S��M	� By restricting
this representation to the natural copy of R	 lying inside C �	
 Cli�ord
multiplication gives us a map c from the cotangent bundle T ��M	 into
the skew�adjoint endomorphisms of S�M	 � S��M	 � S��M	 �skew�
adjoint because of the relation vv � �Q�v� v		� c induces the following
map by duality�

� � S��M	 � T ��M	� S�

��s� v	 � p��c�v	�s� �		

where p� is the projection S�M	� S��M	�
We will construct the fundamental spinor bundles S��M	 explicitly

as associated bundles to representations� First
 we recall the following
Lie group isomorphisms�

Spin	 � SU�
	 � SU�
	

SO��	 � �SU�
	 � SU�
		�f��g

Spinc	 � �SU�
	� SU�
	 � U��		�f��g

These give us two natural actions of SO��	 on R
�

�� � SO��	�R
 �� R



�� � ��p� q�� x	 ��� Im�px	

�� � ��p� q�� x	 ��� Im�qx	

where we are identifying SU�
	 � S
 with the unit quaternions
 and R


with the imaginary quaternions� The associated R
�bundles to these
representations are isomorphic to �� �the self�dual two�forms	 and ��
�the anti�self�dual two�forms	 respectively� We extend these actions to
actions of Spinc	 on the quaternions H �

s� � Spinc	 � H �� H

s� � ��p� q� ��� x	 ��� px���

s� � ��p� q� ��� x	 ��� qx���
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We view the associated R	�bundles to these actions as C � �bundles
 and
by �A� these are the spinor bundles S��M	 and S��M	
 respectively�
Then we have a pairing�

�� 	 � S��M	 � S��M	� �� ��

which is the equivariant extension of the map on �bers given by�

�� 	 � x� y ��� Im�xiy	

where the bundle of imaginary quaternions is identi�ed with �� as
before�
Our penultimate step is to introduce the complex line bundle L �

det�S��M		
 together with a connection A� Together with the rie�
mannian connection on T ��M	
 A induces a covariant derivativerA on
S��M	 which maps sections of S��M	 to sections of S��M	�T ��M	�
We de�ne the Dirac operator DA as the composition of this map with
��

DA � ��S��M		� ��S��M		

DA�s	�m	 � ��rA�s	�m		

We are now ready to state the Seiberg�Witten equations� The data
for these equations is a pair �A��	 where A is a connection on L and �
is a section of S��M	
 and we let F�

A denote the self�dual part of the
curvature of A�

DA��	 � �

F�
A � �����	

The Seiberg�Witten invariant is given by properly counting the so�
lutions to these equations
 as described in �T�� Taubes also states the
fundamental theorem�

Theorem 
� If M is a compact� oriented� connected ��manifold with
b�� � �� then the Seiberg�Witten invariant SW is a map from the space
of spinc�structures on M to the integers Zwhich depends only on the
underlying smooth structure of M�
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