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OF FINITE TOPOLOGICAL SPACES

BY MICHAEL C. McCoRD

1. Introduction. Finite topological spaces have more interesting topological
properties than one might suspect at first. Without thinking about it very long,
one might guess that the singular homology groups and homotopy groups of
finite spaces vanish in dimension greater than zero. (One might jump to the
conclusion that continuous maps of simplexes and spheres into a finite space
must be constant.) However, we shall show (see Theorem 1) that exactly the
same singular homology groups and homotopy groups occur for finite spaces
as occur for finite simplicial complexes.
A map J X -- Y is a weatc homotopy equivalence if the induced maps

(1.1) J, -(X, x) ---> -( Y, Jx)

are isomorphisms for all x in X aIld all i >_ 0. (Of course in dimension 0, "iso-
morphism" is understood to mean simply "1-1 correspondence," since ro(X, x),
the set of path components of X, is not in general endowed with a group struc-
ture.) It is a well-known theorem of J.H.C. Whitehead (see [4; 167]) that every
weak homotopy equivalence induces isomorphisms on singular homology groups
(hence also on singular cohomology rings.) Note that the general case is reduced
to the case where X and Y are path connected by the assumption that (1.1)
is a 1-1 correspondence for i 0.

THEOnnM 1. (i) For each finite topological space X there exist a finite simplicial
complex K and a wealc homotopy equivalence f IK[ -- X. (ii) For each finite sim-
plicial complex K there exist a finite topological space X and a wealc homotopy
equivalence ] "[K[ -- X.

This theorem is a consequence of the stronger and more detailed Theorems
2, 3, and 4 stated in the next section.
The main idea for the correspondences X -- K and K -- X in the above theo-

rem is contained in the pper [1] of.P.S. Alexandroff. Finite spaces re special
cases of what Alexandroff [1] called "discrete" spaces, but which we prefer to
call A-spaces (since "discrete" commonly means now that every subset is open).

Definition. An A-space is a topological space in which the intersection of
every collection of open subsets is open. A ToA-space is un A-spuce satisfying the
To separation axiom: for ech pair of distinct points, there exists an open set
containing one but not the other.

All our theorems work just as well for A-spaces. A class of spaces between the
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class of finite spaces and the class of A-spces is the class of locally finite spaces
those spces in which every point has a finite neighborhood. An example of a
compact ToA-space which is not locally finite is the positive integers with basis
consisting of the sets U {m "m >_ n}, all n >_ 1.
The author is grateful to the referee for suggesting an alternate pproach to

the proofs of the theorems. This pproach consists of applying the work of A.
])old nd R. Thorn in 2 of [2] o quusi-fibrtions. The referee’s suggestioa
resulted in stronger theorems with shorter proofs.
Some other aspects of the homotopy theory of finite spaces hve been studied

by R. E. Stong ia pper [8] to pper.
Part of the following results were announced in [5]. Added in proof. An

application of this work to "ordinary" spaces is given in [7].

2. Statements of main theorems. In the following, if K is any simplicial
complex, the underlying polyhedron IKI will lways be given the weak topology
(see [3; 75]). We do not assume complexes to be locally finite. All maps of spaces
are continuous.

THEOREM 2. There exists a correspondence that assigns to each ToA-space X a
simplicial complex (X), whose vertices are the points of X, and a weak homotopy
equivalence Ix I(X)I - X. Each map q X --> Y o] ToA-spaces is also a sim-
plicial map (X) - (Y), and ]x ], !!.
The construction X ---. C(X), which is described in 5 below, is due to Alexan-

drof [1; 506]. He calls 3C(X) the barycentric subdivision of the ToA-space X.
(The reason will be apparent.) For a special kind of locally finite To spaces X
it is shown in [1; 515] that the simplicial homology groups of the complex :(X)
are isomorphic to the Kolmogoroff homology groups of X. No map Ix
X is discussed in [1]. The observation in Theorem 2 that every continuous map
X -- Y is simplicial map (X) -- (Y) is irt [1; 508].

THEOREM 3. There exists a correspondence that assigns to each simplicial com-
plex K a locally finite To space (K) whose points are the barycenters of simplexes
o] K, and a wealc homotopy equivalence ] ]K ---> 9(K). Furthermore, to each
simplicial map K -- L is assigned a map ’ 9(K) -- (L) such that ’]

It will readily be seen from the construction below that N and 9C are covariant
functors. Theorem 2 will be used in proving Theorem 3. In fact, the functors
N and 9C are related by the equation K’ N(gC(K)), where K’ is the first bary-
centric subdivision of the complex K.

Observe that part (ii) of Theorem 1 follows from Theorem 3; for if the complex
K is finite, SC(K) is finite. And part (i) of Theorem 1 follows from Theorem 2,
except for the fact that the finite space X in Theorem 1 is not assumed to be
To. This is taken care of by the following theorem.
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THEOREM 4. There exists a correspondence that assigns to each A-space X a
quotient space ) o] X with the ]ollowing properties. (i) The quotient map

is a homotopy equivalence. (ii) . is a ToA-space. (iii) For each map " X --+ Y
o] A-spaces, there exists a unique map f --> such that ,, ,x

If X is any A-space, and -- X is a homotopy inverse for x, then the
map ]x 1()i -- X is a weak homotopy equivalence by Theorems 2 and 4.
By the same theorems, if X is finite, then the complex () is finite. Thus we
have seen that Theorem 1 follows from Theorems 2, 3, and 4.
For each space X, let S(X) be the suspension of X; and for each map X -- Y,

let S() S(X) S(Y) be the suspension of . If ( denotes the category of all
spaces and maps, then S ( -- ( is a covariant functor. The next theorem
asserts the existence of an analog $ of S, which we call non-Hausdorff suspension.

THEOREM 5. There exist a covariant ]unctor ( --+ ( and a natural trans]orma-
tion g S --> $ with the ]ollowing properties. (i) The class o] finite (locally finite)
(A--)(To) spaces is trans]ormed into itsel] by . (ii) For each space X, the map
gx S(X) ---> $(X) is a wealc homotopy equivalence.

The maps Ix, 1, and gx of Theorems 2, 3, and 5 will be proved to be weak
homotopy equivalences by using the theorem stated next. This theorem follows
from a modification of the proof of Satz 2.2 of Dold and Thorn [2]. The necessary
modification will be pointed out in the next section. An open cover of a
space B will be called basis-like if whenever x e U V and U, V , there
exists a W t such that x W C U V. Notice that this condition in fact
means precisely that is a basis for a topology on B smaller than the given one.

THEOREM 6. Suppose p is a map o] a space E into a space B ]or which there
exists a basis-like open cover o] B satis]ying the ]ollowing condition: For each
U , the restriction p[p-l(U) p-(U) ----> U is a wea homotopy equivalence.
Then p itsel] is a weak homotopy equivalence.

3. Proof of Theorem 6. Before showing what is necessary for the proof, let
us indicate why Theorem 6 "almost" follows directly from the statement of
Satz 2.2 of [2]. Recall that a map p of a space E onto a space B is called a
quasi-fibration if the induced map

p. -,(E, p-(x), y) -- r(B, x)
p-is an isomorphism for each x B, y (x), and each i > 0. From the exactness

of the homotopy sequence of (E, p-(x), y) (and a separate argument in dimen-
sion 0), i is easy to see that an onto map p E ---> B with homotopically trivial

fibers is a quasi-fibration i] and only i] it is a wea] homotopy equivalence. Hence
if ia Theorem 6 p were also assumed to be onto with homotopically trivial
fibers, then the conclusion would follow directly from the statement of Satz 2.2
i [2].
The main idea of adapting the proof of Stz 2.2 on pages 246-251 of [2] to u
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proof of Theorem 6 is simply to assign a different meaning to the phrase "dis-
tinguished subset (ausgezeichnete Teilmenge) of B." Let us say that a subset
U of B is distinguished provided that plp-l(U) p-(U)-- U is a weak homotopy
equivalence. Then we replace Hilfssatz 2.4 by the following lemma, whose
proof is quite similar.

LEMMA 1. Let p E -- B be a map and let U be a distinguished subset o] B.
Then p is a wealc homotopy equivalence if and only if the induced map

p, (E, p-’(U), y) r,(B, U, py)

is an isomorphism ]or all i >__ 0 and all y in p-(U).
Hilfssatz 2.6 is kept as it is. The main thing to observe is that Satz 2.7 re-

mains valid when "distinguished" is given the meaning specified above. For
by Lemma 1, Hilfssatz 2.6 is still applicable. Also, the proof of Hilfssatz 2.8
depends only on the fact that the open cover t is basis-like. Just as in 2.9, one
applies Satz 2.7 to show that p, -(E, p-i(U), y) --> i(B, U, py) is an isomor-
phism whenever U, , y e p-i (U), and i >_ 0. (One does not have to assume p
is onto to show that p, is onto for i 0. This follows from the facts that
covers B and that the maps -o(p-(V)) -- o(V), V , are onto.) Then one
applies Lemma 1 and the fact that t covers B to obtain the final result that p
is a weak homotopy equivalence.

4. The equivalence of transitive, reflexive relations and A-space structures..
The material in this section is essentially contained in [1]; because of the notation
and terminology involved we summarize it. Also, we have found it better ir
our context to replace Alexandroff’s use of closed sets by the use of open sets.

If M C X, where X is an A-space, the open hull U(M) of M is the intersection
of all open subsets of X containing M. We write Ux for the open hull U({x}) of
a point x in X. Obviously the system (Ux x X) is basis for X, which refines
every basis.
Now we define a relation _< on X by saying x _< y if x U (equiwlently,
U C U). We write x < y if x

_
y but x y. Clearly,

_
is transitive and

reflexive. It is easy to see thut a map ] X -- Y of A-spaces is continuous if
and only if it is order-preserving (x

_
y implies ](x)

_
](y)). An A-spce is a

To space if and only if the transitive, reflexive relation

_
is also autisymmetric--

in other words, if and only if

_
is a partial order.

The process is reversible. Let (X, _) be a set with a transitive, reflexive
relation. For eachxinX, let U {yX’y_< x}. The system(U’xX)
forms a basis for a topology on X that makes X into an A-space, in which Ux is
the open hull of x.

In the following sections we will freely use this equivalence between A-spaces
and sets with a transitive, reflexive relation.
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5. Proof of Theorem 2.

DEFINITION OF (X). Let X be ToA-spce. The vertices of the complex
(X) re the points of X. The simplexes of (X) re the finite, totally ordered
subsets of X.

Eample. Let X {a, b, c, d} be the four-point spce with bsis I/a}, {c},
{a, b, c}, {a, d, c}}. Then [5(X)1 is a simple closed curve.
Lemma 2. If Y is a subspace of the ToA-space X, then (Y) is a full subcom-

plex of (X).
Proo]. If y Y, clearly the open hull of y in Y equals the intersection of Y

with the open hull of y in X. Thus the relation _< in Y is the restriction of the
relation < in X. From this the lemma follows.

DEFINITION Of THE MAP fx [(X)[ ---> X. If u ]Y:(X)[ (where X is a ToA-
space), then u is contained in a unique open simplex (Xo xl xr) where
Xo < xl < <= xrinX. We let]x(U) Xo.

LEMMA 3. I] Y is an open subset o] the ToA-space X, then (fx) -1 (Y) is the regu-
lar neighborhood o] (Y) in 5(X). Hence by Lemma 2, (fz)-(Y) de]ormation
retracts onto [(Y) I.

Proo]. In other words, we wish to establish the equation

(5.1) (])-I(Y) k_)/star (y) "y e Y}.
Here star (y) is the union of all open simplexes of (X) having y as a vertex.

Suppose u (f)-(Y). Then u (Xo, xl, x), where xo < x < <
x in X and ]:(u) Xo Y. Thus a C star (Xo) so that u belongs to the right-
hand side of (5.1). Conversely, suppose a C star (y), where y e Y. If a

(Xo, x, x) where Xo <: xi < < x, then some x equals y. Thus xo __.
y, so thatxo U. Since Yisopen, U C Y, so thatf:() Xo Y. This
completes the proof.

:LEMMA 4. ]. i8 continuous.

Proof. Regular neighborhoods are open.

LEMM 5. Let Y be a space containing a point o such that the only open subset
o] Y containing o is Y itsel]. Then Y is contractible.

Proo]. Define a homotopy F: Y X I -- Y by letting F(y, t) y if 0 _< 1
and F(y, 1) o for all y in Y. We need only show that F is continuous. For
this, let G be any open subset of Y. Case 1" G. Then by assumption,
G= Y, sothatF-(G) YXIisopen. Case 2" oG. Then it is easy to see
that E-(G) G X [0, 1), which is open.

LEM 6. I] X is an A-space and x X, then U is contractible. Thus X has
a basis of contractible, open sets; in particular, X is locally contractible.

Proo]. TakeY Uand xiuLemma5.
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COnOLLnV. Every A-space is locally pathwise connected, hence is pathwise
connected i] and only i] it is connected.

LEMM 7. I] X is a ToA-space and x X, then (]:)-(U) is a contractible
(open) subset of the polyhedron

Proo]. By Lamina 3, it suffices to show thut I:(U)I is contractible. Let
V U x. It suffices to show that (U) cone (:(V), x). Every simplex
of (V) is of the form {x0,.-.,x} wherexo < <: x < x. Hence
{Xo x x} is a simplex of (U). And it is clear thut every simplex of
(U) V) is of the form /Xo, ,x,x} wherexo < < xinV.
Now we cn apply Theorem 6 to show that the mp ] I(X)] -- X is wek

homotopy equivalence. For the bsis-like open cover of X we tuke the bsis
(U x X). By Laminas 6 and 7, ech set U is a distinguished subset of B.
Thus Theorem 6 applies.

Remartc. An lternte method of proof is to show that the fibers of the mp
]:c re contractible. Then by Lemms 6 nd 7, ] is qusi-fibrtion over ech
U, so that one my pply Stz 2.2 of [2] directly to obtain that ] is qusi-
fibrtion hence wek homotopy equivalence. However, we hve chosen to
state nd use Theorem 6 since this theorem seems to be of interest in its own
right. Also, the use of Theorem 6 gives stronger nd simpler version of Lemm
13 in 8. Added in proof. Theorem 6 is used in [7].

It remains only to establish the second sentence in the statement of Theorem
2. Suppose X -+ Y is mp of ToA-spces. Since is order preserving,
mps simplexes of a(X) onto simplexes of a(Y); therefore o (X) --+

is simplicil. Suppose u (Xo, x) C la(X)l, where Xo < < x. Now,
lo](u) belongs to the simplex (O(Xo), o(z)), where O(Xo) __< _< o(x).
(There my be repetitions.) HeIce ],(ll(u)) (Xo) q]:(u). This completes
the proof of Theorem 2.

CoIorxv 1. I] X is a ToA-space and Y C X, hen fr induces an isomorphism
o] the singular homology exac sequence o] he pair (la(X)l I(Y)[) onto tha o]
$he pair (X, Y).

Proo]. It is clear that ]r la(Y)i -+ Y is simply the restriction of
Thus the result follows from Theorem 2, the Whitehead Theorem, nd the "five
lemm."

Coor,r,hV 2. I] X is a ToA-space, then for each poin x in X he local singular
homology groups H,(]g(X) I, la(Z) x) and H,(X, Z x) are isomorphic.

Proo]. From Corollary 1, H,(la:(X)I, la(X z)I) - H,(X, X x). How-
ever, clearly ](X)! x I(X x)[ ) ((sr x) x), so tha ]:(X x)[ is
deformation retract of [(X)[ x.

6. Proof of Theorem 3. Let K be a simplicial complex with first barycentrie
subdivision K’. For each simplex a of K, let b(a) be the barycenter of a. Let
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E(K) {b(a): a K} set of all vertices of K’. Now 9C(K) has a partial order
defined by b(a)

_
b(z’) if C ’. Thus 9(K) becomes a ToA-space. Clearly

(C(K)) K’. For each point b(a) of 9(K), Ub() is simply 9C(5), where 5 is
the subcomplex of K consisting of all faces of . Hence 9(K) is locally finite.

Let the map ] IKI -- C(K) be simply the map ]u() of Theorem 2, which
indeed maps [(:(K)) IK’I [KI onto 9C(K). Thus we get immediately
from Theorem 2 that f is a weak homotopy equivalence.

Let us now establish the correspondence -- ’ of Theorem 3. Let b K -- Lbe a simplicial map. Define a simplicial map ’ K’ L’ by ’(b(z)) b(bz).
Clearly the maps I!, !’i IK[ -- ILl are homotopic. Now ’ maps the points of
9C(K) into the points of 9(L), hence is also a map 9(K) -- 9(L), which is order-
preserving, therefore continuous. By the commutativity relation in Theorem
2, b’] ]L ]b’l--- ]L I]. This completes the proof of Theorem 3.

7. Proof of Theorem 4. Let X be an A-space. We define an equivalence
relation on X by saying x y if U U (equivalently, if x

_
y and y

_
x).

Let be the quotient space X/.., and let v vx "X be the quotient map.
It is easy to see that any quotient space of an A-space is an A-space. The A-
space structure on defines a transitive, reflexive relation on . The next
lemma shows that this relation is the same as the one induced by v from the
relation on X.

LEMMA 8. I] X, y X, then v(x)

_
v(y) if and only if x

_
y.

Proo]. First we show that for each x in X,
(7.1) v(U.)

iv then v(z) v(w) for some wObserve that -I(U) U. (For if z - (U),
in U thus z e U U C U .) Since is a quotient map, (U) is therefore
a neighborhood of (x). Thus (U) C U() The reverse inclusion follows
from the continuity of
Now if (x)

_
(y), by (7.1) (x) e ,(U). Thus (x) (z), where z U, so

that x

_
z y. Conversely, if x

_
y, by continuity of (or by (7.1), (x)

_
(y).
From this lemma, part (ii) of Theorem 4 follows, since from the definition of

it is now obvious that the relation

_
on . is antisymmetric. Notice that (7.1)

also shows that . is locally finite whenever X is. The next lemma is part (i)
of the theorem.

IEMMA 9. V X -+ is a homotopy equivalence.

Proof. Let " -X be any right inverse for the onto mp v; that is, 1.
By Lemma 8, is order preserving, hence continuous. We need to show that
the map z v X -- X is homotopic to lx. Since vz(x) /v(x) v(x), we
see that for each x in X,
(7.2) U.() U.
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Now define F X X I-- X by F(x, t) x if < 1, and F(x, 1) r(x). To
show that F is continuous, let (x, s) e X X I. Now U. X I is a neighborhood
of (x, s), which is shown as follows to be mapped by F into U,,(..) By (7.2)
U(..) U.. Now take any(y,t)U. XI. Ift < 1, thenF(y,t) y.Ux.
If 1, E(y, t) r(y) t U.() (by (7.2)) U C U,. This completes the proof.
To establish part (iii), suppose X -. Y is a map of A-spaces. Since is

order preserving, maps equivalent points under x into equivalent points under
r Hence there is a unique function J -- such that ,x r. Since
x is a quotient map, is continuous (alternately, from Lemma 8, is order
preserving, hence continuous.)

8. Non-Hausdorff suspension. Proof of Theorem 5. If X is a topological
space, the non-Hausdor]] cone o] X, denoted by e(X), is defined as follows. Take
a point not in X. Then e(X) X ) {oz}, the topology for a(X) consisting
of all open subsets of X, as well as the whole space (X). The non-Hausdorff
suspension, denoted by $(X), is defined as follows. Take two points , not
in X. Then $(X) X .J {, }, the topology consisting of all open subsets
of X, as well as X -) {0}, X _) {}, and $(X). Note that $(X) is the union
of two copies of (X), whose intersection is X. If X -- Y, we extend to
maps e() e(X) -- e(Y) and () (X) (Y) by letting e()(Ox) cot and
g()(Ox) or, g()(o) o. Continuity of these maps is obvious. Clearly
e and g are eovariant funetors. In the following we write simply o for cox, etc.

LEMM/k 10. Both e and preserve each o] the ]ollowing properties: that a space
be finite, locally finite, To, or be an A-space.

Pro@ Straightforward.

LEMMA 11. For each space X, e(X) is contractible.

Pro@ This follows from Lemma 5.
We shall prove a stronger result than that stated in Theorem 5: we shall

produce a natural transformation g from the n-fold suspension S to the n-fold
non-Hausdorff suspension " such that for each space X, g S’(X) --> $’(X) is a
weak homotopy equivalence. First we make a definition.

For each map :X -- X we define a map T() S(X) -- g(X’). Suppose
X 4, and let X X [-1, 1] -+ S(X) be the quotient map, identifying X X
1 and X X 1 to points v and v’, respectively. If (x, t) X X (- 1, 1), let

T()O,(x, t)) q(x). Let T(s)(v) o, T()(v’) o. In case X 4, S(X) is
a pair of points {v, v’}, which again we map to {o, o}. It is easy to see that T()
is continuous. The following lemma is straightforward to check.

IEMMA 12.
second diagram:

Commutativity o/ the first diagram implies commutativity oJ the
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X_ ’#>X S(X), T()> $(X’)

S(), [ (’)
S() T( )> $(y,)

LEMMA 13. I] X "--+ X’ is a wealc homotopy equivalence,
T() :S(X) --+ 8(X’).

then so is

Proof. We apply Theorem 6. For the basis-like open cover of $(X’) we take
simply {X’ {o}, X’k) {o’}, X’}. By Lemma 11, X’kJ {0} is contractible;
and (T())-I(X k.) {o}) v(X X (-1, 1]), which is contractible. Hence
X’ kJ {o} is distinguished. The treatment of X’ kJ {o’} is symmetric. On
(T())-I(X’), T(o) is essentially the composition of the projection X X
(-1, 1) -+ X and the weak homotopy equivalence o X -+ X’, hence is a weak
homotopy equivalence.
Now we define the natural transformation g" S -+ S (n >_ 1). For each space

X, let g Sn(X) --+ S"(X) be simply Tn(lx), the n-fold iterate of T applied to
Naturality of g says that for any map X --+ Y,the identity function on X.

the diagram

commutes. This follows by applying Lemma 12 inductively, beginning with
the trivially commutative diagram

1X > X

Y

Finally, applying Lemma 13 inductively, beginning with the identity map
X -+ X, we see that g is a weak homotopy equivalence S(X) ---. g(X). This
completes the proof of Theorem 5.
As an example, consider the (2n q- 2)-point space

where S is the 0-sphere (pair of points). The preceding results give a weak
homotopy equivalence of the ordinary n-sphere S"(S) onto 2]. (This may also
be seen by Theorem 2.) Not only does 2 have all the homotopy groups and
singular homology groups of an n-sphere, it even has the same local singular
homology groups (it is a "homology n-manifold".) This may be seen from
Corollary 2 at the end of 5. In fact, it may be seen directly by induction using
the Mayer-Vietoris sequence that the complement of each point in 2 is acyclic.
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The 6-point space 2; ’*would be homeomorphic to a 2-sphere if it were only
tIausdorff." More precisely, consider the following conditions on a topological
space X (1) The complement o/each point in X is acyclic (in singular homology);
(2) H(X) O. We have seen that the To space 2 satisfies these two conditions.
However, simply by adding the extra condition (3) X is Hausdorff, one can con-
clude that X is homeomorphic to the 2-sphere. (See [5].)
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