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INTRODUCTION

Most of this book is based on lectures to third-year undergraduate
and postgraduate students. It aims to provide a thorough
grounding in the more elementary parts of algebraic topology, although
these are treated wherever possible in an up-to-date way. The reader
interested in pursuing the subject further will find ions for
further reading in the notes at the end of each chapter.

Chapter 1 is a survey of results in algebra and analytic topology that
will be assumed known in the rest of the book. The knowledgeable
reader is advised to read it, however, since in it a good deal of standard
notation is set up. Chapter 2 deals with the topology of simplicial
complexes, and Chapter 3 with the fundamental group. The subject
of Chapters 4 and 5 is homology and cohomology theory (particularly
of simplicial complexes), with applications including the Lefschetz
Fixed-Point Theorem and the Poincaré and Alexander duality theo-
rems for triangulable manifolds. Chapters 6 and 7 are concerned with
homotopy theory, homotopy groups and CW-complexes, and finally
in Chapter 8 we shall consider the homology and cohomology of
CW-complexes, giving a proof of the Hurewicz theorem and a
treatment of products in cohomology.

A feature of this book is that we have included in Chapter 2 a
proof of Zeeman's version of the relative Simplicial Approximation
Theorem. We believe that the small extra effort needed to prove the
relative rather than the absolute version of this theorem is more than
repaid by the easy deduction of the equivalence of singular and
simplicial homology theory for polyhedra.

Each chapter except the first contains a number of exercises, most
of which are concerned with further applications and extensions of the
theory. There are also notes at the end of each chapter, which are
partly historical and partly suggestions for further reading.

Each chapter is divided into numbered sections, and Definitions,
Propositions, Theorems, etc., are numbered consecutively within each
section: thus for example Definition 1.2.6 follows Theorem 1.2.5 in the
second section (Section 1 of Chapter 1. A reference to Exercise n
denotes Exercise at the end of the chapter in which the reference is
made; if reference is made to an exercise in a different chapter, then
the number of that chapter will also be specified. The symbol I denotes
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vi INTRODUCTION

the end (or absence) of a proof, and is also used to indicate the end of
an example in the text. References are listed and numbered at the
end of the book, and are referred to in the text by numbers in brackets:
thus for example [73] denotes the book Homotopy Theory by S.-T. Hu.

Finally, it is a pleasure to acknowledge the help I have received in
writing this book. My indebtedness to the books of Seifert and
Threlfall [124] and Hu [73], and papers by Puppe [119], G. W.
Whitehead [155], J. H. C. Whitehead [160] and Zeeman [169] will be
obvious to anyone who has read them, but I should also like to thank
D. Barden, R. Brown, W. B. R. Lickorish, N. Martin, R. Sibson,
A. G. Tristram and the referee for many valuable conversations and
suggestions.
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CHAPTER 1

ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES

1.1 Introduction
In this chapter we collect together some elementary results in set

theory, algebra and analytic topology that will be assumed known in the
rest of the book. Since the reader will probably be familiar with most
of these results, we shall usually omit proofs and give only definitions
and statements of theorems. Proofs of results in set theory and analytic
topology will be found in Kelley [85], and in algebra in Jacobson [77];
or indeed in almost any other standard textbook. It will be implicitly
assumed that the reader is familiar with the concepts of sets (and
subsets), integers, and rational, real and complex numbers.

1.2 Set theory
The notation a e A means that a is an element of the set A; A B

that A is a subset of B. {a e A . . . } means the subset of A such that
is true, and if A, B are subsets of some set C, then A u B, A n B

denote the union and intersection of A and B respectively: thus
A uB = or ceB} and A {cECIcEA and
c e B}. Unions and intersections of arbitrary collections of sets are
similarly defined.

Definition 1.2.1 Given sets A and B, the product set A x B is the
set of all ordered pairs (a, b), for all a e A, b e B. A relation between
the sets A and B is a subset R of A x B; we usually write aRb for the
statement '(a, b) R'.

Definition 1.2.2 A partial ordering on a set A is a relation <
between A and itself such that, whenever a < 6 and 6 < c, then
a < c. A total ordering on A is a partial ordering < such that

(a) if a < 6 and b c a, then a =
(b) given a, b A, either a < b or b < a.

Proposition 1.2.3 Given a finite set A containing n distinct elements,
there exist n! distinct total orderings on A. I

1



2 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES CH 1

Definition 1.2.4 A relation R between a set A and itself is called
an equivalence relation on A if

(a) for all a A, aRa;
(b) if aRb, then bRa;
(c) if aRb and bRc, then aRc.
The equivalence class [a] of an element a A is defined by [a] =

{b e A aRb}.

Theorem 1.2.5 If R is an equivalence relation on A, then each
element of A is in one and only one equivalence class.

Definition 1.2.6 Given sets A and B, afunctionf from A to B is a
relation between A and B such that, for each a A, there exists a
unique b e B such that a/b. We write b = f(a), or f(a) = b, for the
statement 'aft', and f: A B for 'fig a function from A to B'.

Example 1.2.7 Given any set A, the identity function 14. A —÷ A
is defined by 14(a) = a for all a E A (we shall often abbreviate 14 to 1,
if no ambiguity arises). I

Definition 1.2.8 1ff: A —* B is a function and C is a subset of A,
the restriction C B is defined by (JIC)(c) = f(c) for all
C E C. Given two functionsf: A B, g: B -+ C, the composite function
gf: A C is defined bygf(a) = g(f(a)). The imagef(A) of f: A -* B
is the subset of B of elements of the formf(a), for some a e A ; f is onto
if f(A) = B; f is one-to-one (written (1-1) if, whenever f(a1) = f(a2),
then a1 = a2; f is a (1-1)-correspondence if it is both onto and (1-1).
Two sets A and B are said to be in (1-1)-correspondence if there exists a
(1-1)-correspondence f: A -÷ B.

Proposition 1.2.9 Letf: A B be a function.

(a) f:A-÷B onto qand only if there exisisafunction
such that fg 18.

(b) f: A -+B is(1-1) if and only if there exists afunctiong: B—+ A
such that gf 1A (potiided A is non-empty).

(c) f: A —* B is a (1-1)-correspondence if and only if there exists a
function g: B A such that fg = lB and gf = 'A In this case g is
unique and is called the 'inverse function' tof. I

- Definition 1.2.10 A set A is countable (or enumerable) if it is in
(1-1)-correspondence with a subset of the set of positive integers.

Proposition 1.2.11 I/the sets A and B are countable, so is A x B.
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Definition 1.2.12 A permutation of a set A is a (1-1)-corre-
spondence from A to itself; a transposition is a permutation that leaves
fixed all but two elements of A, which are interchanged. If A is a finite
set, a permutation is even if it is a composite of an even, number of
transpositions and odd if it is a composite of an odd number of
transpositions.

1.3 Algebra

Definition 1.3.1 A group G is a set, together with a function
m: G x G -+ G, called a multiplication, satisfying the following rules.

(a) m(m(g1, Z2), g3) = m(g1, m(g2, g3)) for all g1, g2, g3 e G.
(b) There exists an element e e C, called the unit element, such that

m(g, e) = g = m(e, g) for all g e G.
(c) For each g G, there exists g' e G such that m(g, g') = e =

m(g', g).

The element m(g1, g2) is regarded as the 'product' of g1 and g2, and is
normally written g1g2, so that rule (a), for example, becomes
(g1g2)g3 = g1(g2g3) (this is usually expressed by saying that the product
is associative; we may unambiguously write g1g2g3 for either (g1g2)g3
or g1(g2g3)). We shall often write 1 instead of e in rule (b), and g'
instead of g' in rule (c) (g1 is the inverse of g).

The order of G is the number of elements in it, if this is finite; the
order of the element g e C is the smallest positive integer n such that

= e (where g* means the product of g with itself n times).
A group with just one element is called a trivial group, often written

0.
A subset Hof a group G is called a subgroup if m(H x H) Hand

H satisfies rules (a)—(c) with respect to m.

Proposition 1.3.2 A non-empty subset H of G is a subgroup and
only if g1gj'eHfor all g1,g2eH. I

Theorem 1.3.3 If H is a subgroup of a finite group G, the order of
Hdivide: the order of C. I

Definition 1.3.4 Given groups C and H, a homomorphi.nn
0: C —* H is a function such that 0(g1g2) = 0(g1)0(g2) for all
g1,g2 C. 0 is an isomorphism (or is isomorphic) if it is also a (i-I)-
correspondence; in this case C and H are said to be isomorphic,
written C H. We write Tm 9 for 9(G), and the kernel of 9, Ker 0, is
the subset e C j 0(g) = e}, where e is the unit element of H.
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Example 1.3.5 The identity function G G is an isomorph-
ism, usually called the identity isomorphism. •

Proposition 1.3.6

(a) The composite of two homomorphism.
(b) If 0 is an isomorphism, the inverse function is also an isomorphism.
(c) If 0: G -÷ G is a homomorphism, Im 0 is a subgroup of H and

Ker Cisa subgroup of G. 9 is (1-1) and only if Ker 9 contains only the
unit element of G. •

Definition 1.3.7 Two elements g,, g2 e G are conjugate if there
exists h G such that g2 h - 'g1Fz. A subgroup H of G is normal
(self-conjugate) if g - 'Jig e H for all h e H and g e G.

Given a normal subgroup H of a group G, define an equivalence
relation R on G by the rule g,Rg2 if and only if e H; then R is an
cquivalence relation and the equivalence class [g) is called the coset
of g.

Theorem 1.3.8 The set of distinct cosets can be made into a group
by setting fg1][g2} = [g,g2]. I

Definition 1.3.9 The group of Theorem 1.3.8 is called the
quotient group of G by H, and is written G/H.

Proposition 1.3.10 The function p: G —÷ G/H, defined by p(g) =
[g], is a homomorphism, and is onto. Ker p = H.

Theorem 1.3.11 Given groups G, G', normal subgroups H, H' of
respectively, and a homomorphism 0: G G' such that 0(H)

H', there exists a unique homomorphism 0: G/H -÷ G'/H' such that
8[gJ = [0(g)]. I

Proposition 1.3.12 Given a homomorphism 0: G H, Ker p is a
normal subgroup of G, and G/Ker 9 -÷ Im 0 is an isomorphism. I

Definition 1.3.13 Given a collection of groups Ga, one for each
element a of a set A (not necessarily finite), the direct sum Ga is the

ae4
set of collections of elements (ge), one element in each G4, where all
but a finite number of are unit elements. The multiplication in
® is defined by = that is, corresponding elements
aeA
in each Ga are multiplied together.
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We shall sometimes write ® instead of G4, if no ambiguity
ceA

can arise; and if A is the set of positive integers we write (f)

(similarly C, or even G1 G2 . . if A is the set of the

first n positive integers). In the latter case, we prefer the notation
g2 . rather than (g,) for a typical element.

Proposition 1.3.14 Given homomorphisms G0 Ha (a e A),
the function 14, defined by $ = (00(g0)), is a

acA aeA
homomorphism, which is isomorphic if each Z5

Once again, we prefer the notation . $ if A is the
set of the first n integers.

Definition 1.3.15 Given a set A, the free group generated
by A, Gp {A}, is defined as follows. A word w in A is a formal
expression

*

where a1,.. ., are (not necessarily distinct) elements of A, = ± 1,
and n 0 (ii n = 0, w is the 'empty word', and is denoted by 1).
Define an equivalence relation R on the set of words in A by the rule:
w,Rw2 if and only if w2 can be obtained from w1 by a finite sequence of
operations of the form 'replace a11. . by alt. .
or . . (0 r a), or vice versa'. The elements
of Gp (A) are the equivalence classes [w] of words in A, and the
multiplication is defined by

r . + 1• . .

1 a1,, j I. 1 n n + I m

Normally the elements of Gp (A) are written without square brackets,
and by convention we write a for a1, a2 for a1a', a -2 for a - 1a 1, and
so on. The omission of square brackets has the effect of
equalities such as a2a 1 = a, aa -1 1 (note that 1 is the unit
element of Gp (A)).

Example 1.3.16 The group of integers under addition (usually
denoted by Z) is isomorphic to Up (a), where a denotes a set
consisting of just one element a.

Proposition 1.3.17 Give,, a set A, a group C and a function
0: A C, there exisu a 'umque homomorphism Gp (A) —* C such

that ë(a) 0(a) for each a I
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Definition 1.3.18 Given a set B of elements of Gp {A), let fl be
the intersection of all the normal subgroups of Gp {A} that contain B.
B is itself a normal subgroup (called the subgroup generated fry B), and
the quotient group Gp (A}/R is called the group generated by A,
subject to the relations B, and is written Gp {A; B). The elements of
Gp {A; B) are still written in the form of words in A, and the effect of
the relations B is to introduce new equalities of the form b = 1, for
each element b e 8.

A group G is finitely generated if G Gp {A; B) for some finite set
A; in particular, if A has only one element, G is said to be cyclic.

Example 1.3.19 For each integer n 2, the group Z, of integers
modulo n, under addition mod n, is a cyclic group, since
Gp{a; an).

In fact every group G is isomorphic to a group of the form
Gp {A; B), since we could take A to be the set of all the elements of G.
Of course, this representation is not in general unique: for example,
Gp {a; a2) Gp {a, b; a2, b).

Proposition 1.3.20 A function 0: A —+ G, such that 0(b) = e (the
unit element of G) for all & e B, defines a unique homomorphism

Gp {A; B}—* G, such that 0(a) = 0(a) for all a e A. I

Definition 1.3.21 A group G is said to be abelian (commutative) if
g1g2 = g2g1 for all g1, g2 e G. In an abelian group, the notation
g1 + g2 is normally used instead of g1g2 (and the unit element is
usually written 0). Similarly, one writes —g instead ofg1.

Observe that every subgroup of an abelian group is normal, and that
every quotient group of an abelian group is abelian, as also is esiery
direct sum of a collection of abelian groups.

Definition 1.3.22 Given a group G (not necessarily abelian), the
commutator subgroup [G, (3] is the set of all (finite) products of elements
of the form

Proposition 1.3.23 [G, G]is a normal subgroup of C, and G/f C, C]
is abelian. Given any homomorphism 0: G H into an abelian group,
(G,G] C Ker 0.

Proposition 1.3.24 If G H, then G/[G, G3 H/[H, HI. I

Definition 1.3.25 Given a set A, the free abelian group generated
by A, Ab {A), is the group Gp {A}/[Gp fA}, Op {A}].
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Proposition 1.3.26 Ab {A) Gp {A; B), where B is the set of all
elemei,ts of Gp {A} of the form a1a2aç Lap. J

The elements of Ab {A} will normally be written in the form
e1a1 -i-. - + = ± I), and the coset of I will be denoted by 0.

Definition 1.3.27 If B is a set of elements of Ab {A}, let fl be the
intersection of all the subgroups of Ab {A} that contain B: thus fl is a
subgroup and Consists of all finite sums of. elements of B (or their
negatives), together with 0. The quotient group Ab {A)/fl is the
abelian group generated by A, subject to the relations B, and is written
Ab{A;B}.

As in Definition 1.3.18, the elements of Ab {A; B) are still written
in the form of 'additive' words in A.

Proposition 1.3.28 If G= Gp{A;B}, and p:G-*G/[G,G] is
the homomorphism of Proposition 1.3.10, then G/[G, Gj Ab{A ;p(B)). I

Examples 1.3.29 Particular examples of abelian groups include Z
and observe that Z Ab {a} and Ab {a; na}. We shall also
make frequent use of the groups of rational, real and complex numbers,
under addition: these are denoted by R, Q and C respectively. I

; There is a very useful theorem giving a standard form for the
finitely generated abelian groups.

Theorem 1.3.30 Let G be a finitely generated abelian group. There
exists an integer n 0, primes p1, . . ., Pm and integers r1, . . .,
(m 0, 1), such that

G nZ $
(Here, nZ denotes the &rect sum of n copies of Z.) Moreover, if

H 1Z (? $- - $
Hif and only ifn = 1, = k, and the numbers

and are equal in pairs. I,

Definition 1.3.31 A of groups and homomorphisms
8,

—+ G + 1 + 2

is called an exact sequence if, for each 1, Ker Tm (if the
sequence terminates in either direction, for example



8 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES CH I

or —÷ then no restriction is placed on Ker or
Tm

Example 1.3.32 The sequence 0 -+ G4 H 0 is exact if and
only if 0 is an isomorphism. (Here, 0 denotes the trivial group, and
o G, H —÷ 0 the only possible homomorphisms.) This follows
immediately from the definitions.

Similarly, if H is a normal subgroup of G and i: H —÷ G is defined
by 1(h) = h for all h E H, then

j p0-+H-÷
is an exact sequence. I

1.3.33 Given exact sequences

Oa øa
kg —÷ 0,

one for each element a of a set A, the sequence

0 Ga + Hg Kg 0
aEA a€A aeA

is also exact.

Definition 1.3.34 A square of groups and homomorphisms
ei

92

is said to be commutative if = Commutative triangles, etc.,
are similarly defined, and in general any diagram of groups and
homomorphisms is commutative if each triangle, square,... in it is
commutative.

Proposition 1.3.35 Given a commutative diagram of grot4ps and
homoniorpisisms

81 83 84
G1 —÷ G2 .—+ G3 —÷ G5

*4,J,

H1 "2 H3 -;-+ 114 -. H5,

in which the rows are exact sequences, and #2, #4 are isomorphisms,
is onto and is (1-1), then is an isomorphism.
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Proof. To show that is (1-1), consider an element x 6 G3 such
that = 1 (we shall write 1 indiscriminately for the unit element
of each group). Then #403(x) = = 1, so that 03(x). = 1 since

is isomorphic. By exactness, therefore, x = 92(Y) for some y
and then = #392(Y) 1. By exactness again, 4'2(y)
for some z H1; and z = for some w e G1 since is onto. Thus
#291(w) = #1#i(w) = #a(Y)' so that 91(w) = y; but then x = 92(Y) =
9291(w) = 1.

The proof that is onto is rather similar. This time, choose an
element x H3; then #3(x) = for some y e 04, since is
isomorphic. Thus /i504(y) = = #4#3(x) 1, so that 94(y) = 1

since is (1-1). Hence by exactness y = for some z 6 03.
Unfortunately there is no reason why should be x, but it is at
least true that #3((#3(z)) — 1x) (#403(z)) — = I, so that
(#3(z)) 'x = for some w e since #2 is isomorphic. Thus

92(w)) = . = (#3(Z))(#3(Z)) - = x, and hence
is onto. •

ProposItion 1.3.36 Given an exact sequence of abe/ian group: and
homom

Proof. Define a: 0 H by a(g k) = 9(g) + it is
easy to see that a is a homomorphism. Also a is (1-1), for if

= 0, we have

but then 6(g) = 0, so that g = 0 since 9 is (1-i).
Moreover a is onto, since given h€ H we have

— — = 0.

ThusthereexistsgeGsuchthatb — 9(g),thatis,
h = O(g) + = I

An exact sequence as in the statement of Proposition 1.3.36 is called
a split exact sequence.

Of course, it is not true that all exact sequences 0 0 —k H -÷
K—* 0 split. However, this is true if K is afree abelian group.

Proposition 1.3.37 Given abelian groups and homomorphisms
G4H.4K, where 9 is onto and K is free abelian, there exists a
homomorphism #: K-÷ G such that =
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Proof. Suppose K = Ab {A}. For each a e A, choose E G such
that O(g4) = By Proposition 1.3.20, there is a unique homo-
morphism %ls: K -+ G such that g4; and then clearly I

Corollary 1.3.38 Given an exact sequence of abelian groups

if K is free abelian, the sequence splits and H G $ K.

Proof. By Proposition 1.3.37' there exists a homomorphism
K H such that 0 = I

Definition 1.3.39 A ring R is an abelian group, together with a
function m: R x R R, such that the following rules are satisfied
for all r2 and r3 in R.

(a) m(m(r1, p2), r3) =
(b) m(r1, = m(r1, r3).
(c) m(r1 + r2, r3) in(r1, r2) + ,n(r2, Ta).

Since R, considered as a group, is abelian, we use the notation ±
for the addition, and refer to m as the multiplication; and following the
convention for groups we shall write for ,n(r1, r2).

A ring R is commutative if r1r2 = for all r1, r2 e R, and R has
an identity element (or has a 1) if there exists an element 1 R such that
ir = r = ri for alire R.

Examples 1.3.40 Z and are commutative rings with 1, as also
are Q, R and C. If R is any ring with a 1, we can form a new ring
R[x], the polynomial ring, whose elements are formal polynomials

r0 + r1x + r2x2 + + (r1, . . ., R n 0),

with the obvious addition and multiplication. I

Definition 1.3.41 A subgroup S of a ring R is called a subring if
s1s2 e S for all s1, S, and an ideal if rs, sr e S for all s e S. r e R.

Given two rings R and S, a homomorphism 8: R S is a ring
homomorphism if 8('1'2) O(r1)9(r2) for all r2 e R. 8 is a ring
isomorpizism if it is a ring homomorphism and a (1-1)-correspondence.
In any case, Im 0 is a subring of S and Ker 0 is an ideal of R.

Given rings R and S, the direct sum R S can be made into a ring
by defining (r1 e s1)(r2 = ('iSi)

Definition 1.3.42 Afield F is a commutative ring with 1, fn which
the non-zero elements form a group under multiplication.
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Examples 1.3.43 Q, R and C are fields, as also is
Z and (n not prime) are not fields. I

Definition 1.3.44 A vector space V over a field F is an abelian
group V, together with a function F x V —÷ V, in which the image of
(A, v) is written Az'. The following rules are also satisfied.

(a) lv = v, and A1(A2v) = (A1A2)v for all A2 e F, V E V.
(b) A(v1 + v2) = Av1 + At,2, (A1 + A2)v = + A2v, for all A,

A2 e F, v1, v2, v V.

A subgroup W of V is called a subspace if Aw e W for all A e F,
w e W; the quotient group V/ W is also a vector space over F, called
the quotient space. If V and W are Vector spaces over F, the direct sum
V W is the direct sum of the groups, with A(v w) defined to be
(Ay) (Aw).

Examples 1.3.45 Any field F is a vector space over itself, using
the multiplication in F. More generally, so is F", the direct sum of g
copies of F. Rather perversely, it is more usual to revert to the
notation (A1 instead of A1 . A,,, for elements of F'4
Often (A1,..., A,,) is abbreviated to a single letter, x say, so that
Ax means (AA1,..., AA,j.

Definition 1.3.46 If x, y are two points (elements) in a vector
space V over F, the straig/zt-line segment joining x and y is the subset of
points of the formAx+(l — A)y(O A 1). AsubsetA of V is convex
if, for all x, y A, the straight-line segment joining x andy is contained
mA.

Definition 1.3.47 Given vector spaces V and W over F, a homo-
morphism 0: V—+ W is called a linear map if 0(Av) = A9(v), for all
A F, v e V. If 0 is also a (1-1)-correspondence, it is called a linear
(or vector space) isomorphisin.

Definition 1.3.48 A set of elements v1, . . ., v,, in a vector space V
over a field F is linearly dependent if there exist elements A1,.
A,, E F, not all zero, such that A1v1 + A,,v,, 0; otherwise
v1, . . ., are linearly in4rpeiuient. A set of elements v1, .. ., v,, forms
a base of V if it is linearly independent, and given any element v E V
there exist elements A1,..., A,, e F such that v = A1v1 + ... + A,v,,.
If V possesses a (finite) base, V sfiniü-dimeiui4nal.

Proposition 1.3.49

(a) if V is afinik-dimeruional vector space over F, any two bases have
the same number of elements.
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(b) If W is a subspaie of a finite-dimensional vector space V, then W
is finite-dimensional and any base of W can be extended to a base of V. I

The number of elements in a base is called the dimension of V. It is
easy to see that two finite-dimensional vector spaces over F are
isomorphic if and only if they have the same dimension; in particular,
if V has dimension n, then V Fez.

Proposition 1.3.50 Given an exact sequence of vector spaces over
F and linear maps:

v14
in which V3 is finite-dimensional, the sequence splits and

Definition 1.3.51 Finite-dimensional spaces V and W over F are
said to be dual spaces if there exists a function V x W F, the image
of (v, w) being written (v, w>, with the following properties.

(a) <v1 + v2, w> = <v1, w> + <v2, w>, <v, w1 + w2> = <v, w1> +
<v, w2>, <Ay, w> = A(v, w> = <v, Aw>, for all v1, v2, v E V, w,

e W and ,\ e F.
(b) <v,w> = 0 for all weW implies v = 0; <v,w> = 0 for all

V E V implies w 0.

Proposition 1.3.52 Given V, of dimension n, there exists W such
that V, W are dual spaces. Moreover, any such W has dimension n.

Propositioa 1.3.53 Given pairs of dual spaces V1, W1 and V2 , W2,
and a linear map 9: V1 —k V2, there exists a unique linear map
0': W2—* W1 such that

<9(v1), w2> = <v1, O'(w2)>,

for all v1 e V1, w2 W2. I

9' is called the dual linear map to 9.

Definition 1.3.54 Given a pair of dual spaces V, W, and a sub-
space U of V, the annihilator of U is the subspace d( U) of W of
elements w such that <u, w> 0 for all u E U.

Proposition 1.3.55 For any subspace U of V, d(d(U)) = U. Jf
ul c U2 are subspaces of V, then d(U2) cz d(U1), and U21U1,
d( U1)/d( U2) are dual spaces. •
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Definition 1.3.56 An (m x n) matrix A over a field F is a set
(A15) of elements of F (1 i m, 1 j n). Given two (m x n)
matrices A and B, the sum A + B is the (m x n) matrix defined by
(A + B)1, = A1, + B11, and given an (n x p) matrix C, the product

AC is the (m x p) matrix defined by (AC)1, = The

identity (n x n) matrix I is defined by

(I'' " otherwise,

and the (n .x n) matrix A has an inverse A' if AA' = I = A'A
if A has an inverse it is said to be non-singular.

Proposition 1.3.57 Given finite-dimensional vector spaces V, W
over F, and bases v1, . . ., of V, w1, .. ., w,, of W, there is a (1-1)-
correspondence between the linear maps 0: V —* W and the (m x n)

matrices A over F, defined by 0(v5) = Moreover the

of two matrices corresponds to the composite of the corresponding linear
maps. I

Definition 1.3.58 The trace of an (it x it) matrix A = (A15),
written tr (A), is A11, the sum of the diagonal elements.

Proposition 1.3.59 Let 0: V -÷ V be a linear map of the n-dimen-
sional vector space V. Let A, B be the matrices representing 0 with
respect to two bases (v1,. . ., and (w1, .. ., V. Then tr (A) =
tr (B).

Proof. By Proposition 1.3.57, there exists a non-singular matrix P
such that A = P'BP. Let P = (P11) and = then

tr(A) =

1.j.k

= (B,,,

(1, ifk=j= where
to, otherwis

=

= tr(B).
Thus we can unambiguously write tr (0) for this common value.
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Proposition 1.3.60 Lej 9: V —÷ V be a linear map, and let W be a
subspace of V such that 0(W) c W. Let W W be the restriction of
9 to W, an4 let /v: VJW be the linear map induced by 0. Then

tr (9) = tr + tr (sb).

Proof. Let w1,.. ., w,. be a base of W; extend to a base w1, .. .,
of V. If A is the matrix of 0 with respect to this base,

tr (0) = +

But = tr (4), and = tr since the cosets .

fo,j obviously form a base for V/W. 1

Definition 1.3.61 The determinant det A of an (n x n) matrix A
over F is the element of F defined by

det A =

where p runs over all permutations of 1, . .., n, and + 1 or — 1

according as p is even or odd.

Proposition 1.3.62

(a) det (AB) = det (A) det (B).
(b) det A 0 if and only if A is non-singular. 1

Corollary 1.3.63 A set of equations

= 0 (j = 1, 2,.. ., n)

has a solution, other than; 0 for all i, if and only if det A = 0. 1

Definition 1.3.64 Let V be a vector space over R. An inner
product on V is a function V x V —÷ R, where the image of (v1, v2)
is written [v1, 02], satisfying the following rules.

(a) [v1, v2} = rva, vi] for all v2 e V.
(b) [v, vJ 0; [v, v] 0 if and only if v = 0.
(c) [v1 + v2, v3] [vi, v2] + [v1, v3], for all v1, v2, v3 e V.
(d) [rv1, Vg] = r[v1, v2], for all r e R, v1, v2E V.

The (or norm) of v, liv is defined to be [v, v]"2.
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Example 1.3.65 There is an inner on

rJ, .. ., =
together with this inner product,

dimensional Euclidean space. I

1.4 Analytic topology
Definition 1.4.1 A topological space X (or just space when no

ambiguity arises) is a set, together with a set of subsets called open sets,
such that the following rules are satisfied.

(a) The empty set 0, and X itself, are open sets.
(b) The intersection of two open sets is an open set.
(c) The union of any collection of open sets is an open set.

The set of open sets is called a topology for X, and the elements of
X are usually called points.

A subset of X is called closed if its complement is open. Both X
and 0 are closed, as also are the union of two closed sets and the
intersection of any collection of closed sets. Given a subset U of X,
the closure U is the intersection of all closed sets that contain U; U
is itself closed, and U = U if and only if U is closed.

If x is a point of X, an (open) nezghbourhood of x is an open set that,
contains x.

Example 1.4.2 Any set X can be made into a topological space, by
calling every subset an open set. This is called the discrete topology
on X, and X with this topology is called a discrete space. I

Definition 1.4.3 The subspace topology for a subset Y of a space X
consists of all subsets of Y of the form Y U, where U is an open set
of X. A subspace Y of X is a subset Y with the subspace topology.

Definition 1.4.4 A space X is Hausdorff if, given two distinct
points x1, x2 X, there exist neighbourhoods U1, U2 of x1, x2 respec-
tively, such that U1 n U2 = 0. X is regular if, given a point x X
and a closed set F, not containing x, there exist open sets U1, U2 such
that x e U1, F U2 and U1 U2 =0. X is normal if a similar
property holds given two closed sets F1, F2 whose intersection is
empty.

Definition 1.4.5 A space X is connected if, given any two non-
empty open sets V1. U2 such that X = u U2, we have U1 U2

0. If X is not connected, it is said to be disconnected.
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Proposition 1.4.6 If U is a connected subspace of a space X, and
U C V c U, then V is a connected subspace. I

Definition 1.4.7 A space X is compact if, given any open covering
{Ua} (a e A) (that is, a set of open sets, indexed by a set A, whose
union is X) there exists a finite subset of A, a1,..., a,,, such that
X = Li•• u A subset YofX is compact if it is compact as a
subspace. X is locally compact if, given any point x X, there exists a
neighbourhood U and a compact subset C such that a e U c C.

Proposition 1.4.8

(a) A compact space is local& compact.
(b) In a Hausdorff space, a compact subset is closed.
(c) A compact Hausdorff space is regular. I

-

Proposition 1.4.9 Let X be a locally compact Hausdorff space.
Given a point x E X and a neighbourhood U of x, there exists an open set
V such that x e V c V c U, and V is compact. I

Definition 1.4.10 Given a space X, a base of open sets of X is a set
of open sets U4 (a e A) such that every open set of X is a union of
sets U4. A set of open sets U4 (a E A) is called a sub-base if every open
set of X is a union of finite intersections of sets U4.

Proposition 1.4.11 The set of U4 (a e A) is a sub-base of open sets
of I *f and only xe land a neighbourhood Vofx, there exist

thatx€ U41n...n V. I

Definition 1.4.12 Given spaces land 1, a functionf: X—3. V is
said to be continuous (or a continuous map, or usually just a map) if,
for each open set U c Y, the set f '(U) {x e X f(x) E U) is
open in X. Alternatively, f is continuous is closed for each
closed set V c Y.f is a homeomorphism if it is also a (l-1)-çorreepon-
dence, and the inverse function is continuous; in this case, X and Y are
said to be homeomorphic.

Example 1.4.13 If V is a subspace of a space X, the inclusion map
i: Y X, defined by i(y) = y for aiiy E Y, is a continuous map. And
for any space X, the identity function X Xis a homeomorphi. m
(usually called the identity map). I

Proposition 1.4.14 The relation between spaces of being homeo-
morphic is an equivalence relation on any set of spacer. I
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Proposition 1.4.15

(a) The composite of continuous maps is again continuous.
(b) Given a function f: X —* Y, f is continuous jf f' ( U) is o "en for

each member U of a base of open sets of Y, or even for each member of a
sub-base.

(c) 1ff: X —* Y is continuous, and C X is compact, then f(C) is
compact.

(d) If A and B are closed subspaces of a space X, where X = A LI B,
and if f: A Y, g: B —p. Y are continuous maps such that f(x) = g(x)
for alixeA then h: Y, defined by

h(x)
= ff(x), XEA

x e B,

is also continuous. I

Proposition 1.4.16 The properties of being Ffausdorff, regular,
normal, connected, compact or locally compact are preserved under
homeotnorphism. •

Definition 1.4.17 A pair of spaces (X, Y) is a space X, together

with a subspace Y. Given pairs (X, Y) and (A, B), a map of pairs
f:(X, Y)—+(A,B) is a mapf:X—÷A such thatf(Y) c B.f is a
homeomorphism of pairs if f is a homeomorphism and the inverse map
to f is a map of pairs (A, B) -+ (X, Y) (thus Y: Y—+ B is also a
homeomorphism). Triples, etc., of spaces, and maps between them, are
similarly defined: a triple (X, Y, Z) for example consists of a space X,
a subspace Y and a subspace Z of V.

Definition 1.4.18 Given a collection of (disjoint) spaces Xa
(a e A), the disjoint union U Xa is the union of the sets, with topology

aeA
given by open sets of the form U Ua, where each Ua is open set in

aeA
Xa. As usual, we shall use the notation X u Y, for example, if the set
A is finite.

Proposition 1.4.19 Given a collection of spaces Xa (a A), and

maps ía: Xa -÷ Y, for all a A, the functionf: U Xa —* V defined by
acA

f(x) = f3(x), x Xa, is continuous. •

Definition 1.4.20 Given a collection of spaces Xa (a e A), the

product X Xa is the set of collections of elements (Xa), one element
aeA
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in each The topology is given by a base of open sets of the
form

Uai ' {(x6)
I

E . ., Xe,, E Ua),

where a15. . ., a, is any finite set of elements of A, and each is
open in Xa?. Once again, we shall write X x Y, for example, if A is
finite: note that the open sets of X x Y are all unions of sets of the
form U x Vis open in Y.

Proposition 1.4.21

(a) Given spaces X and Y, and points x e X,, E Y, the subspaces
X x y, x x Y of X x Y are homeomorphic to X, Y respectively.

(b) The product of a collection of Hausdorff spaces is Hausdorff, and
the product of a collection of compact spaces is compact.

(c) Each projection map X —+ X0,, defined by Pa((Xa)) =
a6A

is continuous, and a function f: -+ X Xa is continuous if and only if
aeA

each Paf is continuous. In particuha-, maps 1a Xa 1'a, for each
a e A, the product map xfa: X Xa -+ X Y4, defined by xfa((Xa)) =

aeA
(f(xa)), is continuous.

Definition 1.4.22 Given a space X and an equivalence relation R
on X, the identification space X/R consists, as a set, of the disjoint
equivalence classes [x} of elements of X, and the topology is defined
by specifying that a set U C X/R is open if and only if p- '(U) is open,
where p: X —÷ X/R is the function defined by p(x) = [xJ (thus p is
certainly continuous). Alternatively, we can specify that V c X/R is
closed if and on4y if p'( V) is closed.

In particular, given a subspace Y of X, the quotient space X/ Y is
defined to be X/R, where R is the equivalence relation on X defined
by x1Rx2 x1 = x2 or x2, x2 e Y. Thus the points of X/ V are those
of X — Y, together with a single point (Y) representing the whole of
1'. If Y happens to be the empty set, it is usually convenient to
interpret XI V as the disjoint union of X with another point.

More generally, a map p: X —÷ V is called an identification map if it
is onto, and U c Yis open if and only if p1(U) is open. Clearly such
a map defines an equivalence relation R on X, by setting x1Rx2
p(x1) = p(x2), and X/R is homeomorphic to V. Conversely, if R is an
equivalence relation on X, then p: X —÷ X/R, defined by p(x) [xJ,
is an identification map.
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Proposition 1.4.23

(a) If p: X -÷ Y is an idenhfication map, a function f: Y—* Z is
continuous if and only if fp is continuous.

(b) The composite of two identsficatipn maps is an identification map. I

Example 1.4.24 Let (X, Y) and (A, B) be pairs of spaces, and let
f: Y B he any function. Define an equivalence relation R
disjoint union X u A, by setting pRq p •q, orp e Y and q = f(p).
or q 1' and p = f(q), or p, q e Y and f(p) f(q). The space
(X u A)/R is often referred to as the space obtained from X and A by
'identifying together corresponding of Y and B'. For example
if A and 13 are closed snbspaces of a space X, then on A U B c
the topologies as a siibspace.of X, and as the space obtained from the
disjoint union of copies of A and B by identifying
corresponding of A B (using the identity map), are the
same.

Example 1.4.25 particular, given (disjoint) spaces X and V
subspace A of X, map f: A —+ Y, the adjunction space Y X
is the space (X u Y R, where R is the equivalence relation defined

= q. orpEA and q =f(p), or.q€A andp =f(q), 01
p, q A and f(p) 1(q). This is thought of as the
obtained from Y by attaching the space X by the map f'.

Proposition 1.4.26 Given spaces X and Y, identification mups
p: Z, q: W, and a map f: X—÷ 1', a function g: W
such that gp = qf, is continuous. In particidar, a map of pair.
f: (X, Y) -÷ (A, B) gives rise to a (unique) map 7:XIV -÷ A/B in thu
way, which is a homeomorphism qf is a homeoinorphism of pairs. I

Definition 1.4.27 A metric space X is a set, together a
function d: X x X —÷ R (the real numbers), called a metric or distance,
satisfying the following rules.

(a) d(x, y) = d(y, x).
(b)d(x,y) = Oif and onlyifx
(c) d(x, y) + d(y, z) d(x, z). (For all x, y, z X.)

Definition 1.4.28 A subset U of a metric space X is called
open if, given any point x e U, there eiIhts 6 > 0 such that the set

< S)iscontainedjn U. Theset{yEXId(x,y) < 6}
is called the S-neighbourhood of x.
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Proposition 1.4.29 This definition of open set makes X into a
topological space, which is Hausdqrff, regular am! normal. Any subset
Y of X is a metric space, with the same metric; and the topologies of Y,
as a subspace and given by the metric, coincide. Moreover, a function
f: X —÷ Y, between metric spaces with metrics d, d' respectively, is
continuous zf and only if, for each point x E X and each £ > 0, there
exists & > 0 sue/i that d'(f(x),f(y)) < e whenever d(x,y) < 8. 1

Definition 1.4.30 A topological space Xis metrizable if there exists
a metric d on X, such that the topology on X defined by d coincides
with the original topology.

Example 1.4.31 The most important example of a metric space is
in which a metric can easily be constructed from the inner product

of Example 1.3.65 by ;etting

d(x,y) = lix — = [x — y, x —

With this metric, R" is a connected locally compact space, is
homeomorphic to the product of ii copies of R'. I

Definition 1.4.32 Let X be a metric space, and let x be a point and
Y be a subsetd The distance d(x, Y) is defined to be inf d(x, y). The

diameter of Y is sup d(y1, ya).
Ill .v3eY

Proposition 1.4.33 If Y is closed, d(x, Y) = 0 if and only if
Y. I

Proposition 1.4.34 A subset X of is compact if and only if it is
closed, and has finite diameter. I

Theorem 1.4.35 Let X be a compact metric space. Given an open
cover *g {Ua} (a E A), there exists a real number 8 > 0 (called a Lebesgue
number of { Ua}), such that any of diameter less than 8 ii contained
in one of the sets Ua.

Proof. Since X is compact, wç may as well assume that A is finite,
say A = {1, 2, . . ., n}. For .each x e X and r A, let f,(x) =
d(x, X — U1); it is easy to see that f, is Continuous, as also is f(x) =
maxf,(x). Now by Proposition 1.4.15(c)f(X) is a compact subspace of
W, and so by Proposition 1.4.33 there exists S > 0 such thatf(x) > S
for all x X. It follows that any set containing x, of diameter less than
8. must be contained in one U... I
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We end this chapter with a description of a few particular spaces
and maps, that will be of importance in the rest of this book.

Definition 1.4.36 The unit intervel I is subspace of R'
consisting points x such that 0 x 1 si'uilar!y the double unit
interval I is subspace of x such that —1 x 1. The n-cell E't
is the I d(x, 0) (it 1)-sphere S't' is
{x di v, 0) l} (E° is a single pont, and S 1 is empty). When
necessary. regarded as the s.ibspace R't x 0 of R't+M =

x R"', sindlarly with E't and thus for example, is
the of of points (x1, . . ., such that = 0.

Proposition 1.4.37 1, 3, E't and S't ' (it > 1) are compact con-
nected spaces. I

We shall frequently need to use certain standard maps between these
spaces, for example 1: J, defined by 1(x) 2x — 1, 0 x 1,

and a map of pairs 0: (E't, (Sn. (•- 1, 0, . . ., 0)) (it 0),
defined by 8(x1,. . ., xj (cos irr, (x1 ,/r) sin

r = + . . . + and (sin interpreted as ir if
r 0. It is easy to see that 1 and 0 arc continuous; moreover by
Proposition 1.4.26OgivesrisetoamapO: E"/S't1 S't(if it = Owe
interpret E°/S1 as the disjoint union of E° with another point, 'this
point being mapped by 8 to —1 in S°).

Proposition 1.4.38 —* is a homeomorphism

Another useful map is the homeomorphism p: E't —÷ i' (the product
of it copies of J), defined by magnifying straight lines through the
origin by suitable amounts: more precisely, for points x e other
than the origin, we define p(x) = Ax, where x (x1,.. ., and
A LIxI(/max Since I A a112, Proposition 1.4.29 shows that
p and its inverse are continuous.

Lastly, the standard homeomorphism hm.n: Ent-'t -÷ E" x E't is
defined to be the composite

x x E't.

Definition 1.4.39 Real projective space RP't (it 0) is defined to be
(R't + 1 — 0)/S, where S is the equivalence relation defined by
xSy x = ry for some real number r. We write [x1,. . ., +

j}

for the
equivalence class of (x1,..., +
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Proposition 1.4.40 RP" is homeornorphic to

(a) S 1', where xTy x ± y;
(b) En/U, where xUy x = y, or x, y and x = —y.

Proof.

(a) l'hdnclusion mapi: S" —p. — O)induccsi:
by Proposition 1.4.26, and the map f: — 0) —. given by

= inducesf: S't/T. Cle4rly t and J are inverses to
ca' h other, and so are homeomorphisms.

(b) There is a homeomorphism 4: (E", S
(where S' is the subspace of S" defined by x,, 0), given by

• ., = ((x1/r) sin irrJ2,,. . ., (xjr) sin nr/2, cos 1T'r/2).

This induces which can easily be seen to be a
homeomorphism.



CHAPTER 2

HOMOTOPY AND SIMPLICIAL COMPLEXES

2.1 Introduction
We have seen in Section 1.4 that the relation between spaces of

being homeomorphic is an equivalence relation, and so divides any
set of spaces into disjoint equivalence classes. The main problem of
topology is thus the classification of topological spaces: given two
spaces X and Y, are they homeomorphic? This is usually a very
difficult question to answer without employing some fairly sophisti-
cated machinery, and the idea of algebraic topology is that one should
transform such topological problems into algebraic problems, which
may have a better chance of solution. This transformation process will
be explained in a little more detail in Section 2.2. It turns out, however,
that the algebraic techniques are usually not delicate enough to
classify spaces up to homeomorphism, and so in Section 2.2 we shall
also introduce the notion of homotopy, in order to define a somewhat
coarser classification.

In the rest of this chapter we shall make a start on the general
classification problem. Instead of considering all topological spaces,
we shalt show in Section 2.3. how a large class of spaces, called
polyhedra, may be built up from certain very simple spaces called
simplexes. This not only simplifies the geometry, gives a reasonable
hope of constructing algebraic invariants, by examining bow the
simplexes are fitted together. The general theory will be explained it.
Section 2.3, and in Section 2.4 we shall establish some geometrical
properties of polyhedra that will be useful inAater chapters. Finally,
Section 2.5 is concerned with the homotopy theocy of polyhedra, the
vital result being the Simplicial Theorem. This
theorem is the most important tool in the study of polyhedra, and is the
fundamental result used in Chapters 3, 4 and 5.

2.2 Tb. classification problem; homotopy
If we are presented with two spaces X and Y, the problem of

deciding whether or not they are homeomorphic is formidable: we
23
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have either to construct a homeomorphism f: X Y or, worse still,
to prove that no such homeomorphism exists. We therefore wish to
reflect the problem algebraically. Suppose there is some means of
associating a group with each topological space: say the group G(X)
is associated with the space X. Suppose also that, whenever we have a
continuous map (not necessarily a homeomorphism) f: X —÷ Y, there
is associated with f a homomorphism G(X) —÷ G( Y), in such a
way that

(a) the identity isomorphism 1: G(X) —+ G(X) is associated with
the identity hoineomorphism 1: X X; and

(b) given another continuous map g: Y Z, where Z is a third
space, then =

Given this machinery, we can readily see that if f: X Y happens to
be a homeomorphism, G(X) G( Y) is an isomorphism. For
if g: Y X is the inverse map tof, we have

and fg=1:Y-+Y.
Hence, using properties (a) and (b), we obtain

= 1:G(X)—+G(X), =

whence it follows that is an isomorphism. Thus if X and Y are
homeomorphic. G(X) and G( Y) are isomorphic. The converse to this
result is not in general true, however, since there is nothing to
guarantee that G(X) and G( Y) will be non-isomorphic if X and Y
are not homeomorphic. As a general principle, therefore, if we wish to
prove that X and Y are homeomorphic, we must construct an explicit
homeomorphism, but if we wish to prove that they are not homeo-
morphic, we design algebraic machinery of the sort outlined above,
and try to show that G(X) and G( Y) are not isomorphic. Most of this
book will be concerned with ways of constructing such algebraic
invariants.

En practice, however, the situation is a little more complicated.
Virtually all the algebraic invariants knOwn at present are 'homotopy-
type' invariants, that is, all 'homotopy equivalences' give rise to
isomorphisms. Since 'homotopy equivalence' is a weaker relation than
homeomorphism, this means that the algebraic invariants will never
distinguish between spaces that are homotopy equivalent but not
homeomorphic. Thus we may as well abandon—temporarily, at
least—any attempt to make a homeomorphism classification, and
concentrate on homotopy instead.
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to define homotopy precisely. Two
said to be homotopic if f can be

':It is to say, if there exists a con-
(0 t 1), such thatf0 = f and

Fig. 2.1

This definition is still not quite precise, since we have not made clear
what is meant by a 'continuous family'. However, it will be seen that

of considering a family of maps X —* Y, we can equally
well consider a single map F: X x I —÷ Y (where as usual I is the
unit interval), defined by the rule

F(x, t) = X, t e I).

When we say that the maps form a continuous family, we merely
mean that F is continuous with respect to t as well

as x I to Y. To sum up, the
following is the official definition.

Definition 2.2.1 Two coiitirjuous niapsf, g: X Y are hotnozopic
(or 'fis homotcpic exkts a cctntinuous map F: X x 1
such that

= f(x)

1) =

for all x" X. The 1 said to be a homotopy, and we writef g..
for '1 is (or P:f g if wc wish to specify the
homotopy).

Proposition 2.2.2 GiL.' a map 1: X Y, f f.

The first step is obviously
continuous mapc f,g: X Y

continuously ii <.tormed iiY
family of X

g: see Fig. 2

and
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Proof. Define F: X x I -+ I by F(x, t) = f(x) (x e X. t e I).
Then F is continuous (why?) and is clearly a homotopy between f and
itself. I

For a more interesting example of a homotopy, we prove the very
useful result that, givenf, g: X Y with the property that for all x,
f(x) and g(x) can be joined by a straight line in Y, then f and g are
homotopic. For this to make sense, of course, we must assume that Y
is a subspace of some Euclidean space R".

Theorem 2.2.3 Let Y be a subspace of R", and let f, g: X - Y be
two maps. If,for each x e X,f(x) andg(x) can be joined by a straight line
segment in Y, thenf g.

Proof. Define a homotopy (called a linear homotopy) F: X I

Yby the rule F(x, t) = (1 — t).f(x) ± t.g(x) in orher
words 'deform / to g along the straight-line segments'. Certainly
F(x, 0) = f(x) and F(x, 1) g(x), so it remains to prove that P is
continuous.

Now if x' E X and t' e I, we have

F(x', 1') — F(x, t) (t' — t).(g(x') f(x'))

+ (1 — t).&(x')
+ t.. (g(x') —.

so that if d is the metric in we have

d( F'(x', t'), F(x, t)) It — t'j . f(x'))

+ (1 — t).d(j(x'),j(x))
+

But given E > 0, there exist open of x in X,
such that

x' e U1 d(J(x'),f(x)) <

x' e U2 g(x)) (/3.

rFhus if 112, then < K, wlwie K is the
constant d(g(x),f(x)) and if Jt -

d(F(x', t'), Y(x, I)) < e. Since the set

z (t — e/3K. t 4

is open in X I, this proves that F is continuous. $
Thus for exampie aiiy maps ç: X fliUSi be humotopk.

Indeed, almost any two maps into S' are
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Corollary 2.2.4 Let X be any space, and letf, g: X —* S'2 1 be two
maps such thatf(x) —g(x)forallxEX. Theuf g.

Proof. Considered as maps into R" — 0, f and g are homotopic by
Theorem since the line segment joining f(x) and g(x) does not
pass through 0. Compose this homotopy with the map #: (R" — 0)
S"' defined by = (this is the identity map on S't'
itself). I

Sometimes it is necessary to consider homótopies between maps of
pairs, triples, etc., of spaces. Definition 2.2.1 iseasily extended.

Definition 2.2.5 Given pairs (X, A) and (Y, B), two maps of pairs
f, g: (X, A) (1', B) are if there exists a map of pairs
F: (X x I, A x 1) -+ (Y, B), .such that

F(x, 0) = f(x)
and

F(x, 1) _—g(x) for all xeX.

As before, we ritef g. Homotopies of triples, etc., are similarly
defined. it is useful to consider a more restrictive kind of
homotopy of pairs: if f, g: (X, A) B) are maps of pairs such that -

I IA = g are hoxnotopic relative to A if there exists a
homotopy F: (X x 1, A x Y, B) such that F(a, t) = j(a) = g(a)
for all a e A, t I (that is, F is 'fixed' on A). In this case we write

For example. in Theorem 2.2.3 or Corpllary 2.2.4, if A is the sub..
space of X of those points x such thatf(x) = g(x), then! g rel A.

The notion of homotopy equivalence of topological spaces (pairs,
triples, etc.) follows easily from 2.2.1 and 2.2.5.

Definition 2.2.6 Two spaces X and Y sre homotopy-equivalen: (or
of the same homotopy type) if there exist mapsf: X Y and g: Y —*
such thatgf andfg ly, where ix and are the identity maps
of X and Y respectively. In this casef is equivalence andg is
a homotopy inverse tof. We writeX Yfor 'Xis homotopy-equivalent
to Y' (notice that the symbol has tawo distinct meanings, depending
on the context).

Similarly two pairs (X, 4) and (F, B) are homotopy-equivalent
(written (X, A) (Y, B)) if there ,exist maps (of pairs) f: (X, A)
(F, B), g: (1, B) -÷ (X, A) such that gf and fg the
homotopies being homotopies of pairs.
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As the name suggests, homotopy equivalence is an equivalence
relation on any set of spaces. In order to prove this, we first prove that
homotopy is an equivalence relation on the set of all maps between two
given spaces.

Proposition 2.2.7 Given two spaces X and Y, the relation between
maps from X to Y of being is an equivalence relation. Similarly,
givnt tw4) pairs (X, A) and (Y, B), the relation between maps of pairs
from (X, A) to (Y, B) of being homotopic as maps of pairs is an equival-
e ice relation, and the relation between a set of maps coinciding on each
point of A, of being homotopic relative to A, is also an equivalence
relation.

Pro9f. Consider maps j, g,... from X to Y. Certainly f f for
each f, by Proposition 2.2.2. Moreover if F: f g, then G: g f,
where G: X x !—. Y is defined by

G(x, t) = F(x, I — t).

Lastly, if g and G:g 1:, then H:f h, where

H( JF(x, Zt) (0 t 4)
/ 1G(x, 2t — 1) (4 t 1).

Here, H is by Proposition 1.4.15(d).
This proves that hoinotopy is an equivalence relation on the set of

maps from X to Y; the other two statements are proved similarly. I

Corollary 2.2.8 Given spaces X, Y and Z, and mapsf0, 11: X —h
Z, f1 andg0 g1, then g0f0 g1f1.

Proof. Let F be the homotopy between and f1, and 0 that
between g,) and g1. Let H1 = g0F: X x 1 —*- Z: it is clear that H1 is a
homotopy between g0f0 a homotopy
between g(,J1 and g.,f1; hence g0f0 g1f1 by Proposition 2.2.7. I

Of course, similar results hold for homotopies of pairs and for
homotopies to a The details are to the reader.

2.2.9 The relation beftoeen spaces (pairs, triples, etc.)
of homotofy..equivalent is an equivalence relation.

Proof. every space is homotopy-equivalent to itself (the
identity map is a homotopy equivalence). Equally obviously, if
X Y, then Y X. It remains only to show that if X Y and



§2.2 THE CLASSIFICATION PROBLEM; HOMOTOPY 29

Y Z, then X Z. But if the relevant homotopy equivalences and
homotopy inverses are f: X -÷ Y, f': Y -+ X, g: Y Z, g': Z
then

f'g'gf f'f, by Corollary 2.2.8

and similarly gffg' lz.
Again, the proof for pairs, triples, etc. is similar. I
It is easy to see that two homeomorphic spaces are homotopy-

equivalent (just use Proposition 2.2.2 again). Thus the classification
of spaces up to homotopy equivalence is coarser than the homeo—
morphism classification. Indeed, it is strictly coarser, as the following
example shows.

Example 2.2.10 Let X be the unit circle S' in R2, and let Y be
S', together with the closed line segment joining (1, 0) and (2, 0):
see Fig. 2.2.

Fig. 2.2

Now X and Y are not homeomorphic, since the removal of the point
(1, 0) from Y disconnects Y, whereas the removal of any point from X
leaves X connected. On the other hand X and Y are homotopy-.
equivalent. To prove this, define f: X Y by f(x) = x, for all x X,
andg:Y-*Xby -

fy, ifyeS1
g(y)

— 1(1, 0), if y lies between (1, 0) and (2, 0).

Clearlyfandg are continuous, and gf = Alsofg by Theorem
2.23, sincefg: Y—+ Y is given by the same formula asg. is a
homotopy equivalence. I
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In fact the equivalence between X and Y in Example 2.2.10 is of a
special type, as a (strong) deformation retraction.

Definition 2.2.11 A subspace A of a topological space X is a
retract of X if there exists a map r: X —* A (called a retraction), such
that r(a) = a for all a é A. If i: A -÷ X denotes the inclusion map,
then r is a deformation refraction (and A is a deformation retract of X)
if Ir lx. If also iv lx ret A, then r is a strong deformation
retraction, and A is a strong deformation retract of X.

For example, the map g in Example 2.2.10 is a strong deformation
retraction.

Proposition 2.2.12 If A is a deformation retract of X, then

Example 2.2.13 If E2 is t&e standard 2-cell in R2, and 0 is the
origin, then 0 is a strong deformation retract of E2. For r: E2 —÷ 0,
defined by r(x) = 0 for all x e E2, is clearly a retraction, and is a
strong deformation retraction by Theorem 2.2.3. I

Thus E2 is homotopy-equivalent to the point 0. It is convenient to
have a special name for such spaces.

Definition 2.2.14 A space X, homotopy-equivalent to a point, is
called contractible.

Other examples of contractible spaces are E", the letter Y, and an
empty bottle. The space S1 is an example of, a space that is not
contractible (see Exercise 17).

We end this section with some remarks about the set of all con-
tinuous maps from a space X to a space Y. Now by Propo&tk'i 2.2.7
this set of maps splits up into disjoint equivalence classcs,
homotopy classes. Let us write [X, YJ for the set of homotopy classes
of maps from X to Y; by keeping X fixed and varying Y, this set is an
invariant of the homotopy type of Y, in the sense that there is a (1-1)
correspondence between the sets corresponding to homotopy-equival-
ent spaces: see Exercise 5. Indeed, as we shall see in Chapter 6, the
set [X, Yj can often be endowed, in a natural way, with the structure
of a group, we then obtain exactly the sort of algebraic invariant
described at the beginning of this section. Alternatively, we can keep
Y fixed and vary X: once again i homotopy invariant results, which is
in some ways easier to handle.

Of given two pairs (X, A) and (Y, B), we can similarly
consider the set of homotopy classes of maps of pairs from.(X, A) to
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(Y, B), written [(X, A), (Y, B)]. This arises most frequently in the
case where A and B are single points of X and Y respectively, called
base points: a map of pairs is then called a base-point-preserving (or
based) map, and a homotopy of maps of pairs is called a based homo-
topy. Notice that in this situation 'homotopy of maps of pairs' and
'homotopy relatire to A' mean exactly the same.

2.3 Siinplicial complexes
This section is concerned with building up spaces called polyhedra,

from certain elementary spaces called simplexes. A simplex is just a
generalization to n dimensions of a triangle or tetrahedron, and these
are fitted together in such a way that two simplexes meet (if at all) in a
common edge or face. In order to give the precise definition of a
simplex, we must first explain what is meant by 'independent points'
in Euclidean space.

Definition 2.3.1 A set of (n + 1) p.oints a0, a1, .. ., a" in R'"
said to be independent if the vectors a' — a0,a2—a0,...,a"—a0
are linearly independent, it is easy to see that this is equivalent to the
statement that the equations -

—0, A, = 0

(where A,,..., A,, are real numbers) imply that = A1

A,, = 0; hence the definition of independence does not depend on the
order of the points a0, a',. . ., a".

For example, points a°, a1, a2 in R2 are independent if they are no
collinear.

Definition 2.32 A geometric n-simplex a,, is the set of
A,a1, where a°, a', . . ., a" are independent points in some

space and the A, are real numbers such that A, 0 for all i

a subset of Rm; a,, is given the

topology.
The points qz0, a1,. .., a" are called the vertices of a,,, and ate

to span a1: writç a',.. ., a") for a,, if we wish to specify the
vertices. -

The of a,, of those points A,a' such that A, > 0 foi sU
is the of a. this is not the same as the 'interior'
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as defined in analytic topology: for example a 0-simplex coincides
with its interior). One particular point in the interior of a,, is the
barycentre

(
1

+ •. +

If ak. , is any subset of vei of f;,, (1w )f

of those points linearly dependent oii ar', . ., a
a face could quite be empty or, at the othe

extreme, the whole of a,,; a face is proper if it is neither of these.
Finally, the number n is called the dimension of

Proposition 2.3.3 A geometric n-simplex is a closed convex
compact connected subspace of is the tiosure of its interior. A face
is a closed subspace of a,,, and is itself a simplev. Moreover, a simplex
determjnes its vertices, so that two simplexes oincide if and only if they
have the same set of vertices.

Proof. We prove only the assertion that a simplex a,, determines
its vertices. And this is almost since a point of a,, is a
vertex if and only if it is not a point of an open line segment lying
within a,,.

We write T < a (or a > r) for the statement 'the simplex r is a face
of the simplex a'.

Now suppose that a,, = (a°, a', . . ., is .i geometric n-simplex &n
and that r,, = (b0; b', .. ., b's) is a geometric n-simplex in R?.

Then a rather special way.

Proposition 2.3.4 a,, and are linearly Izomtomorphic, that is,
there exists a homeomorphism f: a,, --÷ r,,, such that

AaL

for all points of a,,.

Proof. Define f: a,, —+ r,, by the formula = It is
easy to see that f is continuous, and it is then obvious that f is a
homeomorphism. I

It follows that a geometric n-simplex is characterized,
up to homeomorphism, by its dimension.

We now wish to consider plcxc-s may be fitted together to
make more complicated spaces.
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Definition 2.3.5 A geometric simplicial complex K is a finite set of
simplexes, all contained in some Euclidean space R". Furthermore

(a) if is a simplex of K, arid is a face of then is in K;
(b) if and i,, are simplexes of K, then either is empty, or

is a common face of and

The dimension of K, dim K, is the maximum of the dimensions of its
simplexes.

A subcomplex L of K is a subset of simplexes of K, satisfying property
(a) (and hence also (b): see Proposition 2.3.6(c)). In particular, for
each r 0 the r-skeleton of K, KT, is the subset of simplexes of
dimension at most r.

A simplicial pair.. (K, L) consists of a simplicial complex K and a
subcomplex L. Simplicial triples, etc., are similarly defined.

It is important to remember that a geometric simplicial complex K
is not a topological space; it is merely a set whose elements are geometric
simplexes. However, the act of points of that lie in at least one of
the simplexes of K, topologized as a subspace of Rm, is a topological
space, called the polyhed,on of K, written 1K I; if L is a subcomplex of
K, then ILl is caUed a subpolyhedron of IKI. To illustrate this point,

a single n-simpltx in R". It is not itself a simplicial com-
plex, but we can form a simplicial complex by taking as its
elements together with all faces of a,,. The reader is invited to
prove that K(or,,) is indeed a simplicial complex, and that IK(an)t = a,,;
also that the set of all faces of a,, other than a,, itself forms a sub-
complex of K(a,,), called the boundary of q,,, written &,,.

Some elementary but important properties of simplicial complexes
and- polyhedra are collected together in the next proposition.

Proposition 2.3.6

(a) I/K it a ssmplicial complex, IKI is a closed compact subspace of
(b) Every point of is in the interior of exactly one simplex of K.

-Conversely, if K is a set of simplexes in satisfying Definition 2.3.5(a),
and such that the interiors of distmct simplexes have empty intersection,
then K is a simplicial compLex.

(c) A subcor4plex L of a simplicial comples K is ibeif a simplicial
complex, and ILl is a closed sukspace of IKI.

(d)

Proof. Parts (a), (c) and (d) are easy, and. are left as exercises for
the reader. As for part (b), if K is a simplicial complex, every point of
1KI is obviously in the interior of at least one simplex; and if the
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interiors of two simplexes a and r meet, the common face in which
a and i intersect, meets the interiors of a and r, so that a = = r.
Conversely, suppose that K is a set of simplexes in Rm, satisfying (a) of
Definition 2.3.5, and such that the interiors of distinct simplexes are
disjoint. Let

a = (a°,. . ., .. ., bS) and = (a°, . . ., at, Cvil,. •,

be two simplexes of K, with no b' equal to any c1. Obviously the simplex
(a°, . .., a')iscontained ma Cs r; rwe can
write

x = + = +
g.o

where = = I. Then A,. + 1 = A, = ,L.,. + 1 = = = 0,
for otherwise by Proposition 2.3.3 x would be in the interior of two
distinct simplexes. Hence also a fl is contained in (a°,. . ., ar), so
that a r-s 1 is exactly the common face (a°, . . ., at). Thus K satisfies
(b) of Definition 2.3.5 and so is a simplicial complex. I

It is clear that if L is a subcomjlex of K, K — L is not in general a
subcomplex, since a face of a simplex in K — L could quite well be
in L. However, we do at least have the following result.

Proposition_2.3.7 There exists a subcomplex M of K, such that

= KI — ILl (M is called the closure of K — L, written
cl (K - L)).

Proof. Let M be the set of simplexes of K, that are faces of aim-
plexes of K — L. Clearly M is a subcomplex, and since each point of
K is in the interior of a unique simplex, 1KI — ILl c IMI, which is
closed. But if x is any point in IMI, x is in a simplex that is a face of a
simplex a of K — L. Hence x e a, and every open neighbourhood of x
meets IKI — ILl, at a point in the interior of a. Thus

IMIc IKI — ILl. I
JKJ has of course aireatly been sopologized, as a.subspace of R".

However, it is often more convenient to have the following alternative
description of the topology.

Proposition 2.3.8 A subset X of IKI is closed if and only if X a
is closed in a, for each simplex a in K.

Proof. Since each simplex a is closed in Rm, it is also closed in 1K!.
Hence if a is closed in a, it is also cLosed in 1K!. Thus X
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U X a is closed, since K is a finite set of simplexes. The con verse is
"EK
trivial.

Corollary 2.3.9 The topology of K as a suhspace of is the
same as the topology of K considered as the space obtained from its
simplexes by idi'ntifvinç together the various intersections.

So far we have beeti concerned exclusively with spaces, in the form
of polyhedra and their associated simplicial and have said
nothing about continuous maps. At first sight there is nothing to be
said: given polyhedra IK1 and there seems to be no reason why a
map from IKI to IL! should anything more than continuous.
However, iKI and Lf are than just topological spaces: the
simplicial complexes K and 1, endow them with further structure, and
we ought to concentrate attention on those maps f: 1K! —+
that in some sense preserve the simplicial structure. (The reader
like to compare the notion of a ring homomorphism: althougk every
ring is a group, there is little point in considering group hoiromor-
phisms between rings that do not also 'preserve the multipikation'.)
To this end, we make the following definition.

Definition 2.3.10 Given simplicial complexes K and L, a
simplicial map f: IKI —* ELI is a function from IKI to iLl with the
following properties.

(a) If a is a vertex of a simplex of K, then 1(a) is a vertex of a
simplex of L.

(b) If (a°, a',. . ., a") is a simplex of K, then f(a°), f(a'),. . . , f(a")
span a simplex of L (possibly with repeats).

(c) If x is in a simplex (a0, a',.. ., a") of K, then
f(x) = in other words, f is 'linear' on each simplex.

A simplicial map of simplicial pairs f: (IKI, ILl) ((MI, INI)
of course, just a simplicial mapf: IKI IMI such thatf(ILI) c INI.

It is clear that the composite of two simplicial maps is another
simplicial map.

We did not specify in Definition 2.3.10 thatf was continuous, since
this follows automatically from properties (aHc).

Proposition 2.3.11 A simplicial map f: (K( —* ILl is continuous.

Proof. If X is a closed subset of ILl, X r is closed in r for each
simplex r of L. But the restriction of f to any simplex of K, being
linear, is continuous: thus f'(X) a is closed in a for each a in K.
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Hence f'(X) is closed in IKI, by Proposition 2.3.8, and so f is
continuous. •

Simplicial maps, then, are the correct 'structure-preserving' con-
tinuous maps between polyhedra. Indeed, as we shall see in the
Simplicial Approximation Theorem, every Continuous map between
polyhedra can he approximated by a simplicial map, so that there is
hardly any loss of generality in confining attention to simplicial maps.

There is a slight difficulty in the use of polyhedra, in that not every
topological space that is homeomorphic to a po!yhedron is itself a
polyhedron. This difficulty is evaded by making another definition.

Definition 2.3.12 Given a topological space X, a triangulation of X
consists of a simplicial complex K and a homeomorphism h: I —* X.
A space with a triangulation is called a triangulated space. Similarly,
if (X, A) is pair of spaces, a triangulation consists of a simplicial pair
(K, L) and a homeomorphism (of pairs) h: I, ILl) —+ (X, A);
(X, A) is a triangulated pair. Usually the particular homeomorphism h
involved does not matter, and so we shall often refer—loosely-—to K
alone as a 'triangulation of X'.

It follows from Proposition 2.3.6 that a triangulated space is compact,
normal and metrizable.

Example 2.3.13 In let be the set of points (x1, x2, . . .,

satisfying Ixd 1, and let -' be the subset where ki = 1.
As in Section 1.4, the pair (E", is horneomorphic to the pair
(Elt, by a homeomorphism that magnifies lines through the
origin by suitable amounts: see Fig. 2.3 in the case n = 2.

Fig. 2.3

xI
C.
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We claim that is a polyhedron, and 1 is a subpolyhedron. To
prove this, take vertices a0 at 0, a1 at x1 = 1 and a at x1 = — 1. Let K
be the simplicial complex whose simplexes are all those of the form
(b10, b11,. . ., b1), where i0 < 6 and b18 denotes a1, or a1.
Certainly all such sets of vertices are independent, and K satisfies (a)
and (b) of Definition 2.3.5, so that K is indeed a simplicial complex.
Moreover if L denotes the subset of those simplexes not involving a0,
then L is a subcomplex of K, and (IKI, ILl) = (E", Hence
(K, L) is a triangulation of (E",

Alternatively, another triangulation of S" ') is (K(a), or),
where a is any n-simplex. For if a is an n-simplex in R", whose
barycentre is at the origin, then since a is convex, suitable magni-
fication of lines through the origin provides a homeomorphism of the
pair (IK(or)I, lot) with And by Proposition 2.3.4

tori) is determined up to homeomorphism by the dimension n
of al

So far simplicial complexes have been sets of sirnplexes lying in one
particular Euclidean space R", and we should now like to free ourselves
of this restriction, by establishing an analogue for simplicial complexes
of Proposition 2.3.4. In order to state this result precisely, it is
necessary to introduce the notion of an abstract simplicial complex.

Definition 2.3.14 An abstract simplicial complex is a finite set
of elements a0, a',..., called (abstract) vertices, together with a
collection of subsets (a1o, di, . . ., a1*),..., called (abstract) simplexes,
with the property that any subset of a simplex is itself a simplex. The
dimension of an abstract simplex is one less than the number of vertices
in it, and the dimension of .%' is the maximum of the dimensions of its
simplexes.

Let K be a geometric simplicial complex, and let be an abstract
simplicial complex whose vertices are in (1-1) correspondence with
the vertices of K, a subset of vertices being a simplex of if and only
if they correspond to the vertices of some simplex of K. is called
an abstraction of K, and any geometric simplicial complex having
as an abstraction is called a realization of

The point of this definition is that we can now state the analogue of
Proposition 2.3.4 in the form: 'if K, and K3 are any two realizations of
an abstract simplicial complex .*', then 1K11 and 1K21 are simpliciaUy
homeomorphic'.

Theorem 2.3.15 Let K1 and K2 be two realizations of an abstract
simplicial complex Then there exists a simp&ial map f: IK,I
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such that / ii a homeoniorphism (that is, f is a 'simplicial homeomor-
phism').

F1oof. Since K, and K2 are both realizations of there is a
(1-1) correspondence between their vertires. Denote the vertices
of K, by a0, a',..., and the vertices of K2 by b°, b',..., where b1
corresponds to a1. Thus a1o, a1',..., span a simplex of K1 if and
only if b1o, .., span a simplex of K2. We can therefore define a
simplicial map f: IK1I •÷ by setting f(a1).= M (all i), and
requiring thatf is linear on each simplex. Since it is obvious thatf has
a (simplicial) inverse, f is also a homeomorphism. I

This theorem allows us to forget about the particular Euclidean
space in which a geometric simplicial complex lies, and to specify
it by an abstraction. To justify this approach, however, we ought
to establish that not only does every geometric simplicial complex
have an abstraction, but also every abstract simplicial complex has a
realization.

Theorem 2.3.16 An n-dimensional abstract simplicial complex
has a realization in +

Proof. Let the vertices of be a°, a1, .. ., am. We first choose
(m + 1) points in with the property that any (2n + 2) of them
are independent (such points are said to be in general position). This
can be done by defining

AT = (r,r2,.. (0 r

if say Ar2,.. ., A'2n+3 are not independent, there exist real
numbers A1, A2,..., + 2' not all zero, such that

A, + = 0,

A,r, + A2r2 + . .. + = 0,

Ar2 2?t+1_0
1 1 2r2 2n+272,t+2 —

But the determhsaat of this set of linear equations is fJ (r1 — r1).

This is non-zero, so that no such numbers A1 can exist, and A°, A',...,
are in general position.

Now let the point AT correspond to aT (0 r ( m), and 'fill in'
simplexes in +1 corresponding to the simplexes of i(: since is
n-dimensional, the points corresponding to any simplex of are
independent. It is also clear that property (a) of Definition 2.3.5 is
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satisfied, so that it remains to check property (b). To do so, let a,, and
Tq be two of the simplexes (of dimensions p and q respectively) that we
have 'filled in', and suppose that a, and have r vertices in common.
The number of vertices in either a,, or rq is thus p + q — r + 2
2n + 2, so that vertices are independent, and could be taken to
be the vertices of a (p + q — r + 1)-simplex having a,, and as

faces. Thus a,, Ct is either empty or a common face. I
The result of Theorem 2.3.16 is 'best possible', in the sense that for

each n 0, there exists an n-dimensional abstract simplicial complex
that cannot be in R2't: see Exercise 9. Of course, a particular
complex may be realizable in Euclidean space of dimension less
than (2n + 1): the determination of this dimension in special cases is
one of the most interesting problems of algebraic topology.

We end Section 2.3 with another example of the use of abstract
simplicial complexes, in defining the join of two simplicial complexes.

Definition 2.3.17 Let K and L be two geometric simplicial
complexes, and let and .2' be abstractions, with vertices a°, a1
and b°, 1?,... respectively. The join .( * 2' is defined to be the
abstract simplicial complex whose vertices are a0, a1,..., b°, b',.
and whose simplexes are all subsets (ago, d',.. ., b5o, b", .. .) such that
(th, a'1,...) is a simplex of and (b'o, b'x,...) is a simplex of 2
(the special cases (a1o, di,...) and (b'o, are allowed as
simplexes of * 2). Any realization of X * 2 is called the join of
K and L, written K * L; this is defined up to simplicial homeo-
morphism, by Theorem 2.3.15.

It is clear that the join construction is associative, in the sense that
(K * L) * M = K * (L * M). Thus we can write K * L * M *...
unambiguously for the join of more than two simplicial complexes.

Example 2.3.18 The triangulation L of - constructed in
Example 2.3.13, can be regsrded as L1 * L9 *•• • * where L, is the
simplicial complex consisting only of the two 0-simplexes a, and a.
Similarly the triangulation K of is a0 * L. I

If K is a simplicial complex in Rm and L is a simplicial complea in
we can construct a representative for K * L in R" + n +1 ae follow..

Since x R" x R', a point of can be speci*ed
by three co-ordinates (x, y, z), where x R", y e and z e W; *iso
K and L may be thought of as simplicial complexes in by
regarding Rm as (RM, 0, 0) and as (0, R", 1). Now if (ago, . . ., a')
and (b'o, . . ., b1a) are siznplexes of K and L respectively, the points
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(a1o, 0, 0), . . ., (air, 0, 0), (0, b'o, 1), ., (0, b'., 1) are independent,
since the equations

A0(a1o, 0, 0) + .. + 0, 0) + b5o, 1) +..: + 1)
= (0, 0, 0)

clearly imply A0 = ... = • • = = 0. Thus all the sim-
plexes of K * L can be filled in; and to show that this has constructed
a realization of * it is sufficient, by Proposition 2.3.6(b), to
show that the interiors of distinct simplexes are disjoint. This is
obvious for simplexes of K or L, and if x is in the interior of
(aLo,.. ., b'o,. . ., it is easy to see that x has the form
((1 — A)y, Az, is in the interior of (&o,.. ., atr), a is in the
Intetior of ., b'), and 0 < A < 1. But the co-ordinates of x lix
A, y and z,so that x cannot be in the interior of any other simplex.

It follows that JK * LI may be regarded as the set of points
((1 —. A)y, in for aliye IKI, ILl and 0 A 1.

Consequently, given two more simplicial complexes M and N, and
continuous (not necessarily simplicial) maps f: (K I -÷ IM
g: (Lf —* we -obtain a map f * g * —k * N(
by sotting (f 4 g)(( I .— A)y, Az, A) = ((1 — A)f(y), Ag(z), A). In par-
tiçular, if f and'g arc homeomorphisms, so is f* g, since it has an
obvious inverse. This means that we can unambiguously write

* for (K * U: for example, since each L, in Example 2.3.18 is
a triangulation of S°, it makes sense to say that is homeomorphic
to the join of n copies of S°. (Indeed, one can define the join of any
two topological spaces: see Chapter 6, Exercise 3.)

2.4 Homotopy and homeoniorphism of polyhedra
This section is concerned with some general results about homo-

topy and homeomorphism of polyhedra that will be needed later.
The reader may care to miss this section at first reading, therefore, and
return to it when necessary for the proofs of these results.

The first theorem states that polyhedral pairs possess the absolute
llomozopy extension properly: that is, any homotopy of the subpoly-
hedron can. be extended to a hornotopy of the large polyhedron, so as
to start with any given continuous map.

Theorem 2.4.1 Let (K, L) be a simplicial pair. Given a space X,
a homotopy F: J U x I -÷ X, and a' map g: (K

I
X such that the
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restriction of g to IL! is the restriction of F to ILl x 0, there exists a
Jzomotopy C: 1K! x such that the restriction of G to 1K! x 0
isg and the restriction of G to IL! x I is F.

Proof. Given a simplex a of K, let o: a x I —* (la! x I) U (or x 0)
be the projection map from 2), where is the barycentre of a.
Clearly p is a retraction: see Fig. 2.4.

I&IxI

Now if we write MT for IKI U these retractions can be fitted
together, by Proposition 1.4.15(d), to yield a retraction

p:(MT x x 0)

and hence, by induction on r, a retraction -

p:(IKI xI)-÷(?LJ x I)U.(IKI x 0).

But F and g fit together to give a map F, say, from (IL! x I) u
(1K! x 0) —+ X; the composite Fp: 1K! x I-+ X is then the
homotopy G that we require. •

For an example of a pair of spaces that does not possess the absolute
honiotopy extension property, see Exercise 11.

The otiher important theorem in this section concerns the problem
of when two polyhedra are homeomorphic. The usual
practical method is that outlined at the beginning of Section 2.2, which

A(o, 2)

Fig. 2.4
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will be developed further in Chapters 3 and 4. As has already been
pointed out, however, the algebraic invariants constructed there suffer
from the disadvantage that they are homotopy-type invariants, and so
at first sight are useless for distinguishing between two polyhedra
that are homotopy-equivalent, but not homeomorphic.

There is however a trick that can sometimes be used to overcome
this disadvantage. The idea is that, given simplicial complexes K and
L, one should construct certain subcomplexes whose polyhedra are
hornotopy-equivalent if IKI and LI are homeomorphic, but not
necessarily if IKI and ILl are merely homotopy-equivalent. The
algebraic machinery can be applied in f'avourable circumstances to
show that the subpolyhedra are not homotopy-equivalent, so that IKI
and ILl are not homeomorphic, even though it may happen that
IKI ILl.

in order to state and prove the theorem involved, a few preliminary
definitions and results are necessary.

Definition 2.4.2 Let K be a simplicial complex. For each point x
of K the simplicial neighbourhood of x, NK(x), is the set of simplexes
of K that contain x, together with all their faces. The link of x,
LkK(x), is the subset of simplexes of NK(x) that do not contain x.
Clearly NK(x) and are subcomplexes of K.

For each simplex a of K, the star of a, stk(o), is the union of the
interiors of the simplexes of K that have a as a face.

The suffix K will often be omitted, if it is clear to which complex
we refer.

For examples of N(x), Lk(x) and st(a), see Fig. 2.5.

Now Proposition 2.3.6(b) shows that each x in IKI is in the interior
of a unique simplex a of K, so that it is easy to relate N(x), Lk(x) and
st(ar).

Fig. 2.5
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Proposition 2.4.3 For each simplex a of K, st(o) is an open set.
If x is any point in the interior of a, then

st(a) = I N(x) — Lk(x)

Proof. Let K0 be the set of simplexes of K that do not have a as a
face. Clearly K0 is a subcomplex, so that IK0I is closed by Proposition
2.3.6(c). But Proposition 2.3.6(b) shows that st(a) = IKI — IK0I,
which is therefore open. Similarly st(o) = I N(x) I — I Lk(x) for any x
in the interior of a.

N(x) and Lk(x) also have convenient 'convexity' properties.

Proposition 2.4.4 If y e then all points on the straight-line
segment lie in N(x) I. Moreover, each straight-line segment starting
from x meets Lk(x) in exactly one point.

Proof. If y e IN(x)I, then y is in a simplex 'r that contains x. By
Proposition 2.3.3, is convex, so that all points of the segment xy lie
in r, and hence are in N(x) 1.

Now consider a straight-line segment 1 starting from x, and let y be
the 'last point' in 1 c's IN(x)I; more precisely, let y be the point on 1
for which d(x, y) = sup {d(x, y') y' e 1 IN(x)I}: see Fig. 2.6.

Theny x, since IN(x)I st(a), which is open (a is the simplex that
contains x in its interior). On the other hand IN(x)I is closed, and so
containsy. Thusy is in the interior of r, say, where x r, for otherwise
we could produce the segment xy further and still remain in IN(x)I.
That is, y e Lk(x) I.

It remains to prove that no other point of 1 is in JLk(x)J. Now
points of 1 further from x than y are not in N(x) and so are certainly

Fig. 2.6
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not in Lk(x) . On the other hand, if is the simplex spanned by the
vertices of a and 7', then all points of xy other x and y are in the
interior of e exists since i' must be a face of a simplex containing x,
and so containing a). Thus all points of except y are in st(a), 'and
so are not in lLk(x)I. I

The main theorem states that, given si!nplicial complexes K and L,
and a homeomorphismf: IKI ILl, then ILkL(f(x))I for
each x E IKI. It is convenient, however, to prove a'slightly more
general result.

Theorem 2.4.5 Let K and L be simp&ial complexes, and let
f: K —+ be a liomeomorphism on(o a subspace of ILl. Then for each
x€ such thatf(x) is contained in an open set U of ILl, with U
contained in 1(1K I) we have ILkK(x)1

Proof. Suppose that f(x) is in the interior of a simplex a of L.
Thenf(x) E U n st(o) c INL(f(x))l, so that f:1(U ñ st(a)) is an open
set containing x, whose image underf is contained in IN(f(x))I. For
each real number A, with 0 < A 1, let AINK(x)l be the set of points
of IN(x)I of the form (1. — A)x + Ày, where y IN(x)I: thus AIN(x)I
is N(x)J 'magnified by a factor A', and AIN(x)I is honieomorphic to
N(x)I. Since f1(U st(a)) is open, and IN(x)I is there

exists such a A, so that

and hence
x e c f"(U r'i St(a)),

f(x) ef(AIN(x)I) IN(f(x))l.
Similarly, there exist v, such that

f(x) ef(vIN(x)I) C C f(AIN(x)I) C

see Fig. 2.7.

Fig. 2.7

f(
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With an notation, let y be a point qf By Prop-
osition 2.4.4, we can define a map by'
projectingf1(y) along the straight line through x in and then
appying f Similarly, we can define by
radial projection in see Fig. 2.7.

Now let F: x — f(x) be the homotopy
formed by 'sticking as in the proof of Proposition 2.2.7, the
linear homotopy between f' and composed with f, Sand the
linear homotopy between and Thus F is a homotopy bctwcen 1
and So if g: — —* is the radial pro,,jection
map from f(x), the composite

gF: x

is a hnmotopy between 1 and s14. Similarly 1, so that
p-i Lk(f(x))i f(,.&lLk(x)I). Since is homeomorphic to
ILk(f(x))i and to ILk(x)1, this proves that 114k(f(x))1
iLk(x)i. 1

The result of Theorem 2.4.5 need not be true if f: IKI —' ILl iá
merely a homotopy equIvalence. For let. K = K(a), where
a is a 2-simplex, and let L 'be a vertex. Certainly'lKr
as in Example 2.2.13; but if x is in the interior of a, then JLkK(x)I is
homeomorphic to S', and if a is the vertex of L, ILkL(a)I is empty.

It follows, of course, that !KI is not homeom9rphic to ILl. Indeed,
the same method will show that rio. two simplicial complexes of
different dimensions can have polyhedra, although
since the proof involves some homology theory, must postpone it
to Chapter 4.

2.5 Subdivision and the Simplicial Approximation Theorem
When simplicial maps were introduced in Section 2.3', it

remarked that any continuous map between polyhedra may be
approximated by a simplicial map. The purpose of this section is to
make this statement precise, and to prove it.

A map g is regarded as an 'approximation' to a map! if f and g are
homotopic. Thus we seek to construct simplicial maps that are homo-
topic to a given map, and simplicial maps will
usually be simplicial approximations, in the sense of the following
definition.

Definition 2.5.1 Given simplicial complexes K and L, and a
continuous mapf: IKI ILl, asimplicial mapg: IKI —÷ iscalled
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a simplicial approximation to f if, for each vertex a of K, C
stL(g(a)) (see Definition 2.4.2).

Notice that a simplicial map is always a simplicial approximation
to itself. For if f is a simplicial map, afly simplex of K having a as a
vertex is mapped byf to a simplex of L bavingf(a) as a vertex; hence

C stL(f(a)) for each vertex a of K.
Before justifying the introduction of simplicial approximations, by

showing that they are always homotopic to the original maps, it is
useful to have a criterion for their existence.

Proposition 2.5.2 Let K and L be simplicial complexes, and Jet
f: (K( (Lf be a continuous map. If, for each vertex a of K, a vertex
b of L can be found, such that f(stK(a)) c stL(b), then there exists a
simplicial approximation g to f, such that g(a) = b for each vertex of K.

Proof. It is necessary only to check that g(a°), g(a'),. . . , g(a")
span a simplex of L whenever a°, a',. . ., span a simplex of K,
since g can then be extended linearly to the interiors of the simplexes
of K.

Let x be a point in the interior of the simplex (a°, a1 . . ., as). Then

x e st(a°) . . st(a").
Thus

f(x) ef(st(a°))
C st(g(a°)) Ci st(g(a')) fl• . fl st(g(a")).

So the unique simplex of L that containsf(x) in its interior must have
each a vertex, and so has a face spanned by g(a°), g(a'),...,
g(a"). I

We show now that a simplicial approximation is homotopic to the
original map.

Theorem 2.5.3 Let K and L be simplicial complexes,. and let
(K I JL( be a continuous map. Then any simplicial approximation g

101 iS homotopic to f. Moreover, the homotopy is relative to the subspace
of (K I of those points x such that f(x) = g(x).

Proof. Take a point x of (K and suppose that x is in the interior
of the simplex (a°, a1,. . ., a"). By the proof of Proposition 2.5.2,
f(x) lies in the interior of a simplex of L that has each g(a') as a vertex,
and so also contains g(x). It follows that the straight-line segment
joiningf(x) and g(x) is contained in )L(, and sof and g are homotopic
by Theorem 2.2.3. By construction, this homotopy is relative to the
subspace of (K( wheref and g coincide. •



§2.5 THE SIMPLICIAL APPROXIMATION THEOREM 47

Corollary 2.5.4 Let (K, L) and (M, N) pairs, and let
f: (IKI, INI) be a map of pairs. If g is any simplicial
approximation tof: IKI —k IMI, then c 1NI, andf gas maps
of pairs.

Proof. Let x be any point of ILl. Thenf(x), being in INI, is in the
interior of a unique simplex of N, that also contains g(x): that is,
g(x) e INI. Moreover, the line segment joining f(x) and g(x) is also
contained in INI. U

Not surprisingly, the composite of two simplicial approximations is
again a simplicial approximation.

PropositIon 2.5.5 Given simpiwial complexes K, L and M,
continuous maps fKJ —+ and 12: fL( (Mj, and simplicial
approximations g1, g2. to 12 respectively, then g2g1 is a simplicial
approximation tofj1.

Proof. For each vertex a of K,
fJ1(stg(a)) c

C I
Example 2.5.6 Let K be the simplicial complex consisting of

1-simplexes (a°, a1), (a3, a2), (a2, a3) and all their vertices, and let L
be the simplicial complex consisting of 2-simplexes (b°, b', b2),
(b°, b2, b3), (b', b2, b3), (b', b3, b4) and all their faces. Letf: IKI -÷ ILl
be the continuous map taking a1 to c1 (0 i 3), as shown in Fig. 2.8.

and

K

FIg. 2.8

L

Now f(at(a°)) st(b°) st(b2),
f(st(a3)) C st(b2),
f(st(a2)) c st(b1),
f(st(a3)) c st(b1) st(b3).
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Thus one possible simplicial approximation to f is g, the simplicial
map sending a°, a1, a2, to b°, b2, b3 respectively. U

Two points should be noticed about Example 2.5.6.

(a) Another simplicial approximation to f is g', the siinplicial map
sending a°, a2, a3 to b2, b2, b1, h' respectively. Thus 1t a siinplicial
approximation exists, it may not be unique. Theorem 2.5.3
assures us that any two simplicial approximations tof are each hemo-
topic tof, and so are themselves homotopic.

(b) If the vertices a1 and a2 were removed from K, thus making K
into K(a°, a3), there would be no simplicial approximation tof, since
then f(st(a°)) would be 1(1K which is not contained in the star of
any vertex of L. Thus not every map has a simplicial approximation.

At first sight the situation revealed in (b) means that our search for
simplicial approximations is bound to fail in general. However, the
reason for the lack of a simplicial approximation in (b) is that the
simplexes of K(a°, a3) are too large: if (a°, a3) is subdivided by
reintroducing the vertices & and a2, the simplexes are then small
enough to make the method of Proposition 2.5.2 work. This is the
situation we face in general: there may be no simplicial approximation
to a given continuous mapf: IKI —k LI, but if the simplexes of K are
subdivided enough, a simplicial approximation can always be shown
to exist, by using Theorem 1.4.35.

We must obviously investigate more closely the idea of subdivision.
In general, a subdivision of a simplicial complex K is another simplicial
complex K', obtained by 'chopping up' the simplexes of K. A system-
atic way of doing this is to introduce a new vertex at the barycentre of
each simplex of K, and then to join up the vertices. For example, let
K be the complex K(a°, a1, a2) formed from a single 2-simplex. The
new vertices are b° = + a2), b' = + a°), b2 = + a')
and c = + a' + a2); these are joined up as in Fig. 2.9.

Fig. 2.9

o0

b2



§2.5 THE SIMPLICIAk

In this way K is replaced by a new simplicial complex K', that
more, but smaller, simplexes than K. Obviously the process of
'barycentric subdivision' could be repeated as often as necessary to
make the simplexes as small as we please.

In practice it may be necessary to subdivide only a part of a simplicial
complex K, so as to leave alone a given For example, in
Fig. 2.9 we might not wish to subdivide the subcomplex L = K(a°, a2).
This can be done by omitting the vertex b1 and the simplex (c, b') in
the subdivision, so as to retain (a°, a2, c) as a single simplex. Such a
subdivision is called a subdivision relative to L, and the subdivided
simplicial complex is called the derived complex of K, relative to L.
The precise definition proceeds by induction on thediinensions of tbe
skeletons of K.

Definition 2.5.7 Let L be a subcomplex of a simplicial complex K.
The derived complex of K, relative to L, written (K, L)', is defined as
follows.

Let = K7Z u L, a K that contains L. Define
(M°, L)' M°, and suppose, inductively, that (MT, L)' has been
defined for all 0 r < n, in such a way that

(a) (Mt, L)' is a simplicial complex, containing L a subcomplex;
(b) J(JW'T, L)'J
(c) each simplex of (M', L)' is in a simplex of MT;
(d) if N is a subcomplex. of there 4xists a subcomplex N' of

(Mr, L)' such that INI =
Certainly (a)—(d) are satisfied ãf r =1. Npw if a is an n'.simplex of

K — L, the boundary is a subcomplex sO that by (d) there
exists a subcomplex (61)' of L)' sdch that = I(aYI. If
r (b°, b1,.. ., b') is a simplex of ar for the siniplex

b°,.. ., if), where e the barycerttrd of a (it follows from (c) that
the vertices of are independent). Define,

(Ms, L)' = L)' u u
where through all n-simplexes of L, an4 through all
simplexes in each (dr)'.

To justify this definition, we must check that.('M", L)' also satisfies
conditions (a)—(d).

Proposition 2.5.8 (M', L.)' satisfies (a)—(d).

Proof.

(a) We have to check (a) and (b) of Definition 2.3.5. jr (b), three
cases arise. *
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(i) Let L)', and be of form er: then 1.

since a M" -1, which by induction either is empty or is a common
race.

(ii) If are of form &r, respectively, then =
again 1 is either empty or a common face.

(iii) Lastly, if are of form er, where a v, then C n

To prove (a), it is sufficient to consider a simplex of the form er,
where a is an n-simplex of K — L. Its faces are of the form (&), C, or

where is a face of r; clearly each of these is in (M", L)'.
(b) We have

L)'p = L)'J u u (er)

= IM"11 U (&r).

tn the other hand IMI = U (a), where a runs over the
n-simplexes of K — L. For each such a, and r (or)', we have

a since r C conversely a U (&r), for r (or)', since the
union of such , is

f
(Or)' = I Hence U (er) = U (a), and

I(M", L)'j =
(c) Obviously if r is contained in a simplex of 0, then er C a.
(d) N is a subcomplex of by Proposition 2.3.6(d).

Thus there exists a subcomplex F' of (M' 1, L)', such that
IP1.Define

N' = F' u
for all n-simplexes a of (K — L) Cs N, and all r in each (0)'. As in the
proof of(a) and (b), N' is a subcomplex L)', and INI =
(Really a)! we have done is to define N' (N, L Cs N)'.) I

Finally, define (K, L)' (Mm, L)', where K has dimension m.

Thus (K, L)' is a simplicial complex such that J(K, L)'I = 1K!,
every simplex of (K, L)' is contained in a simplex of K, and for any

N of K, there exists a subcomplex N' of (K, L)' such that
= IV'(.

If L happens to be empty, K is called just the derived complex of K,
and is usually written K'.

Example 2.5.9 Let .K be the simplicial complex consisting of the
2-simplexes (a°, a1, a2), (a°, a2, a3) and (a2, a3, a4), together with all

faces, and let L be the subcomplex consisting of (ao, a', a2) and
its faces: see Fig. 2.10.
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First, (M°, L)' = M° = L U (a3) U (a4). (M1, L)' is next obtained
by filling in the barycentre of each 1-simplex of K — L, thus chopping
each of these 1-simplexes in half. Finally (K, L)' = (Ma, L)' is con-S
structed by filling in the barycentres of (a°, a2, a3) and (a2, a3, a4), and
joining them up to the (chopped-up) boundaries of (a°, a2, a3) and
(a2, a3, a4). The resulting simplicial complex has twelve 2-simplexes,
as shown in Fig. 2.10. •

The following alternative description of (K, L)' may help the reader
to familiarize himself with the idea of the derived complex.

Proposition 2.5.10 The vertices of (K, L)' are the barycentres of
the simplexes of K — L, together with the vertices of L. Distinct points

a°,.. ., a" (with dim aT dim span a simplex of
if and only if spanasimplexoof and am>..

> > a.

Proof. That the vertices of (K, L)' are as stated, follows im-
mediately from the definition. If a = (a°,.. ., a') is a simplex of L,
and am >•>a0 > a, then (&m,...,&o,a°,...,a') isasimplex of
(K, L)', since we may assume inductiveiy that . . , a°,. . ., a")
e (K, L)', and then use Definition 2.5.7. On the othcr hand if
(em, . .., a0,. . . ,. a") is a simplex of (K, L)' then so is (&m _j,.

a°, . . ., a'),and we may assume inductively this implies that
(a°,...a")isasimplexofL, andam_i >> > a. But

(&m_i, .. ., a°,. . ., a") c am_i,

and we must have am e a,,,, so that am > -

Fig. 2.10
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Corollary 2.5,11 If L is a subcomplex of K, then L is lull' in
(K, L)', that is, each simplex of (K, L)' — L meets ILl (*7 at all) in a
face. I -

The process of subdivision can of course be iterated. The rtlrderived
complex of K, relative to A is inductively by the rule
(K, = (K, ((K, ", L)' (r > 0). Similarly, we
write = Kr" (K°—")', if L is empty.

Coràilaty 2.5.12 L is full in (K, for all r> 0. I
The result of Corollary is not in true if r = C for

example, let K where a a 2-simplex, and let L & It is
clear that a C's (LI (at, which is more than just a face of a.

We have seen that ((K, L)'L. = 1K!, although in neither direction is
the identity map simplicial. However, by using Propositioft 2.5.2 it is
easylto construct a simpliciar 1: L)'.( .-+ fK(.
Noveach vertex of(K, L)' is a barycentre of asimplex a of K(possibly
a 0-simplex of L); for each a, choose any a of

Proposition 2.3.13 There exis# a siniplidal approximation h to
1 !(K, IKI, such that h(6) = afoir each

Proof. By Proposition 2.5.2, it is sullicicñ$toshow c
stK(a), for If is a simplex of (K,L}' having vertex,1
there exists a ,a of K such that- c the interior of
'r is contained in the interior of jL. Since 0 a must be a face of
thus a is a vertex of j.i, so that the interior of 'r is contained in stK(a). I

Notice that for each a of K, and for each n-simplex r of
(K, L)' that i* contained in a, h(r) a. It follows that h(r) = a for
just one such r. For suppose this is true for simplexes of dimension
less than n (it is certainly true for 0-simplexes). If a L, then h(a) a;
if a L, then each n-simplex of (K, L)' contained in a is of the form
(6, b1,. ..,bl&). If h(s) = a, then h(6, b', . . .,b") = a if and only if.
(b',.. ., b") is contained in the (n — 1)-face/h of a obtained by omitting
a, and h(bL, .

-
.,b") = but by induction this is true for just one

such (b', . . .,
'fhe purpose of introducing subdivisions was that their simplexes

should be in some sense 'smaller' than those of the original simplicial
complex. In order to make this precise, we make the following
definitinn.

Definition 2.5.14 The star covering of a simplicial complex K is
the set of stars of vertices of K. By Proposition 2.4.3, the star
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is open covering of K I. The mesh of an open covering of a metric
space is to be the supremum of the diameters of the open
'sets of the covering, and the mesh of a simplicial complex K, written
mesh Ki. the mesbof its star covering.

If we consider only the 'non-relative' derived complexes, the mesh
can be made as small as we please by subdividing enough t&mes.

2.5.15 (riven a simplicial complex K, and a nunther
E > 0, exists an integer r such that mesh < C

Proof. Let A be the maximum of the lengths of the 1-simplexes of K.
It is easy to see that the diameter of each simplex of K cannot exceed
11 if a is a vertex and x e st(a), then d(x, a) it, so that the
diameter ía at most ZA, and mesh K 2A.

let A' be The maximum of the lengths of the
of K'; say A' is the length of r. Now r is contained in some n-simplex
a. so that A' [n/(n + 1)J/, where / is the length of some line

a. Hence
A' [N/(N + 1)jA,

whéreR is thjdimension of K. Hence if is the maximum of the
lengths' of of we have

2fN/(N + 1)]'A.

4.; 1)]? 0 as r 4. co, the required result follows. I
• One Of the Simplicial Approximation Theorem can be

23.16 Let K and L be simplicial complexes, and let
be a,, continuous map. Then there exists an integer rsuch

that f; has a simplicial approximation.

Proof. the sets f '(st(b)), for each vertex b of L.
sets form an open covering of IKI, and by Theorem 1.4.35 this open
covering has a Lebesgue number 8, say. Choose r, so that jnesh K(T)
< 8; then for each vertex a of K there exists a vertex b of L such that
st(a) C f 1(st(b)), orf(st(a)) cz st(b). Hence by Proposition2.5.2fhas
a simplicial approximation. 1

Corollary 2.5.17 Given simplicial complexes K and the set
[1K is countable.

Proof. ' We need consider only simplicial maps f: —÷ ILl,
for various r, since each homotopy class of maps contains such a map.
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But for each r there exists only a finite number simplicial maps
f: IK(T)I —k ILl, since and L have only a finite number of
vertices.

Theorem 2.5.16 is what is usually referred to as the Simplicial
Approximation Theorem. However, for many purposes it is useful to
have a somewhat more refined version. Suppose that M is a sub-
complex of K, and that f: IKI ILl is a continuous map such that

JMJ is already simplicial. We should like to find a simplicial approxi-.
mation to f that actually coincides with f on MI; and this is clearly
not possible unless K is subdivided relative to M. A difficulty then
arises, since Proposition 2.5.15 is no longer true, because the simplexes
of M are unchanged under subdivision. Indeed, it is not even true that
all simplexes not in M get smaller, because those that meet M have a
face in M that is not subdivided. The 'most that can be said is the
following.

Definition 2.5.18 Given a simplicial complex K and a sub-
complex M, the supplement of M in K, M, is the set of simplexes of
(K, M)' that have no vertices in M. Clearly A? is a subcomplex of
(K, M)', and is the same as the subcomplex of K' of simplexes having
no vertices in M'.

Proposition 2.5.19 For each r 0, let a,. denote the star covering
of (K, and let be the subset of stars of vertices in IM j. Given
e > 0, there exists r such that mesh c4 < E.

Proof. Let (a°, a') be a 1-simplex of (K, and suppose that
a' e M. Then either a0 M, or a° = where a is a simplex of (K, M)'
that has a1 as a vertex. Thus a M, and so IMI. In other words,
no 1-simplex, and hence no n-simplex, of (K, can have vertices
inbothMand IMI.

It follows that ach simplex of (K, that has a vertex in JM
must be in tne supplement of M in (K, M)'. But for r 2, the
subdivision (K, includes the 'non-relative' subdivision of

and hence c4 is contained in the star covering of Now use
Proposition 2.5.15. •

Suppose that f: jKj is a continuous map such that f is
simplicial on IMI. We would hope to use Proposition 2.5.19 in the
same way 'as Proposition 2.5.15 to obtain a simplicial approximation
to f that coincides with f M . Unfortunately this is not quite
possible, because the simplexes that are in neither M nor M do not
get smaller under subdivision; on the other hand, f is not itself
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simplicial on them. These simplexes need special treatment, and the
price we must pay is that the simplicial map we finally obtain is not a
simpliciai approximation to f, although it is homotopic to f.

Theorem 2.5.20 Let K and L be simplicial complexes, let M be a
subcomplex of K, and let f: K —÷ LI be a continuous map such that
ft I

is simplicial. Then there exists an integer r and a simplicial map
g: I (K, LI such that g = f on M

I MI.
Proof. As we have just remarked, special treatment is necessary

for the simplexes of (K, M)' that are in neither M nor M, and we
start by pushing all their barycentres into

I

M LI M)': this is obtained from (K, M)' by
subdividing these exceptional simplexes, and so is a subdivision of
K 'between' (K, M)' and (K, see Fig. 2.11, in which K =
K(a°, a', a2) Li K(a1, a2, a3) and M = K(a°, a', a2).

.00

Now a vertex of K + is either a vertex of M u M, or the barycentre
of a unique simplex a of (K, M)' meeting both IMI and MI (a meets
IMI since it is not in M, and IMI since by Corollary 2.5.11 it cannot
have all its vertices in M). Hence by Proposition 2.5.13 there exists a
simplicial approximation h to 1: JK +

I I(K, M)'I such that

(a) if a is a vertex of MUM, thenh(a) = a;
(b) otherwise, h(&) is a vertex of a lying in IMI.

Notice that h 1 rel MI, since h leaves fixed all vertices of M,
and that c stM(a) for each vertex a in M, since a simplex
i of K + having a a vertex can have no vertex in M: thus h maps
all vertices of r into Mand so E M by Corollary 2.5.11.

Fig. 2.11
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It is now fairly ea*y$Q construct a. simplicial approximation to fit.
Let be (jlj)1 of IKI, let
a,. be the star covering of (K, bc the subset of a,. of
stars of vertices in where as in is the
supplement of M in M)'. By Proposition 2.5.19 there exists r such
that mesh a is less than a Lebesgue number of fi. is, for each
vertex a of(K, lying in there exists a vertex b in L such that
flz(st(a)) c st(b). On the other hand, if a is a vertex of (K,

(r 2) that does not lie in J, then by iteration of Proposition
2.5.13 there exists a vertex b of (K, not in and so a vertex
of M, such that

St(g st(XM)ca(b).= (b).
Thus

fh(st(a)) c fh(str+(b))

c f(stM(b))

sincef I IMI is simplicial. It follows from Proposition 2.S2ihat there
exists a simplicial approximationg: I(K, —* to/h. Moreover,
if a is a vertex of M, which is certainly not in we may as well take
b = a, so that g(a) .= fh(a). Thus g = fit = f oir J MJ ,. and g fit
frel IMI. I

Although the map g is not a simplicial approximation to f itself,
the fact that g f rd MI is sufficient for most practical purposes,
and makes Theorem 2.5.20 the main tool in Chapters 3 and 4. In
Chapter 4, however, we shall need a slight modification in which
ft IM1 is not itself simplicial, but we are given.a homotopy between
ft IMI and a simplicial map to IL!: in this case we wish to
extend the homotopy and the simplicial map to the whole of IKI.
This result is an easy deduction from Theorem 2.5.20. provided that
the homotopy involved is 'semi-constant'.

Definition 2.5.21 A X x I -÷ 1' is semi-constant if
there exists s, 0 s < 1, such that F(x, t) = F(x, 1) for all s t 1.

Corollary 2.5.22 Let (K, M) be a simp lidal pair, let L be a simpli-
cial complex, and letf: IKI ILL be a continuous map. Given a simpli-
cial map g: IM! —* ILl and a semi-constant homotopy G between

andg, there exists an integer r and a simplic.ial map h: J(K,
—* such thath = g IMi, andf libya homotopy that extends G.
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Theorem 2.4.3, there exists a homotopy F: fKJ x
Li, restriction to x 0 is f whose restriction to
IMI x haG. By Theorem 2.5.20, applied to the final map of P, there.
exists r and.a map h: I(K, —i-iLl such that
Ix =. g on 1MI, md, there is a hoinotopy H, reflMj, the final
map of P and If G(x, t) G(x, 1) for all s t required
homotopy I betweeiffand be constructed by setting '

fF(x, I), st.! t s ',

J(x, t) = -'-4)4 s (1 + s)12 -.

ijI(x, (2t —. 1— s)f(I — s)), s)/2 I'.

That we compose .F and H as in
t-co.-ordinate so that 'the restriction of J x I is 0. (L is
continuous, by 1.4.15(d).) I " H

Observe that It be made semi-constant if by corn-
posing with a constant homotopy and

Although Theorem 2.5.20 18 useful mainly'.iii later it can
also be used directly to obtain some
For example, we -can prove the following of
maps of to itself.

Theorem 2.5.23 Any continuous map f: E" Or has a
fixed point, that is, there exists a paint x in E" such thatf(x) x.

Proof. Suppose that, on the contrary, 1(x) x 'for each point x
of (this is immediately a contradiction if n we as
assume that n 1 from now on). We can retraction
p: E" —* as follows. .4

For each point x e join f(x) to x by a straight line and produée
the line beyond x until it meets S"' at a point x1, say: see Fig.t2.12.

Fig. 2.12

Sn-,
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Define p(x) = x': clearly p(x) = x if xe S"1, so that p is indeed a
retraction (the proof that p continuous is left as an exercise for the
reader).

Now let h: (1K1, iLl) (B", S"1) be a triangulation, as in
Example 2.3.13. Then 1j 1ph: IKI ILl is also a retraction, and is
simplicial (being the identity map) on ILl. By Theorem 2.5.20, there.
exists an integer r, and a simplicial map g: ((K, L)(T)( —* (L(, such that

.g I ILl 1. That is, g is also a retraction.
Let x be the barycentre of an (it 1)-simplex a of L. The idea is to

show that g 1(x) is a 'broken line' starting from x, and ending at
another point of IL thus contradicting the fact that g is a retraétion.
To prove this, consider g'(x) n r, for each n-simplex i of (K, L)(t).
We claim that g'(x) if non-empty, is a straight-line segment
joining two points in the interiors of (n — 1)-faces of r: see Fig. 2.13.

(x)

For suppose x E g(r). Then, since g(r) is a simpkx meeting the
interior of a, we must have g(r) = a. Let

= (a°,.. ., a") and a = (b°, . ., b" 1),

where g(aT) = b' (r < it) and g(a") = b" Then

= (1/n) =x
r0

if and only if = 1/n (r < it — 1) and + = 1/n. Thus
g1(x) i• is as claimed.

It follows that g 1(x) is a 'string' of line segments, which starts at
x, each segment joining on to the next one at a point the interior of
some (it — I )-simplcx: this is becausç each (it — 1)-simplex is• a
face of exactly two n-simplexes unless it is in L, in which case it is a
face of just one n-simplex (see Exercise 15). Since each g - '(x)

of at most one line segment, the 'string' can never cross

FIg. 2.13
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itself, and so must continue until it meets iLl again, at y, say. Then
x y, but g(y) x, which contradicts the fact that g is a retraction.
Hence g cannot exist and so f must have a fixed point. I

EXERCISES

1. Use Corollary 2.14 to show that two maps f, g: X —÷ S"' that both
fail to be onto must be homotopic.

2. Define maps f, g: RI'1 -# RI'2 by f[x, y] [x, y, 01, g(x, y]
(x, —y, 0]. Construct an explicit homotopy between f and g.

3. Given two mapsf,g: X-+ Y, show thatf g if Y is contractible.
4. Let X be the subspace of R2 consisting of straight-line segments

joining (0, 1) to the points (1/n, 0) (n = 1, 2, 3,...), and the segment
joining (0, 1) to (0, 0). Show that X is contractible, but that the map
f: (X, (0, 0)) -÷ (X, (0, 0)), defined by f(x) = (0, 0) for all x e X, is
not homotopic to the identity map as a map of pairs (that is, (X, (0, 0))
is not contractible').

5. Consider the set (A, X], where A is a fixed space. Show that a con-
tinuous mapf: X—9. Y gives rise to a function [A, XJ—*[A, Y],
with the following properties.
(a) 1ff g, =
(b) If 1: X -÷ X is the identity map, then is the identity function.
(c) If g: Y Zis another continuous map, then =
Deduce that if X Y there is a (1-1)-correspondence between the sets
[A, X] and (A, Y].

What are the corresponding results for the sets (X, A], for a fixed
space A?

6. Complete the proof of-Proposition 2.3.6.
7. Construct a triangulation of RI'2. (Hint: use Proposition 1.4.40(b).)
8. The torus and the KLein bottle arc defined as follows. Let ABCD be the

unit square in R2: see Fig. 2.14 overleaf.
The torus is the space obtained from ABCD by identifying the sides
AD and BC, and then AB and DC; more precisely, we identify (xi, 0)
with (x1, 1) (0 x1 1) and also (0, x2) with (1, x2) (0 x2 1).
Similarly the Klein bottle is obtained by identifying (x1, 0) with (xj, 1)
and (0, x2) with (1, 1 — x2), that is, AD with BC and AB with CD.
Construct triangulations of these two spaces.

9. Let .1' be the abstract 1-dimensional simplicial complex with vertices
a1, a2, a2, a', each pair of vertices being an abstract 1-simplex. Show

that .* has no realization in R2. (Hint: suppose the contrary, and
consider the vertices . ., a8. Prove that these must be placed in
such a way that three of them span a 2-simplex with the fourth in its
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interior, and deduce that the fifth vertex cannot be placed anywhere at
alL) This example can be generalized to provide an example of an
n-dimensional abstract simplicial complex that has no realization in

10. Given simplicial complexes K, L, M and N, and sirnplicial maps
f: g: show that f*g: ¶K * ÷ * is

also a simplicial map.
ii. Show that the pair of spaces (S', S' — (1, 0)) does not have the

absolute homotopy extension property. (Hint: use Theorem 2.5.23 to
show that S' is not contractible.)

12. Let a (a°,.. ., a") be a simplex in a simplicial complex K. Prove that
StK(a) = C'i

13. Let A be the maximum of the lengths of the 1-fates of a simplex a.
Show that A is the diameter of a.

14. Prove that the retraction p defined in the proof of Proposition 2.5.23
is Continuous.

15. Let (K, L) be a simpilcial pair,where dim K — n. The pair (K, L) is
said to ha'e the property (M) if each (n — 1)-simplex of K — L is a
face of of n-simplexes of K, and each (n — 1)-simplex
of L is a face of an odd number of n-simplexes of K. Prove that the pair
((K, L)', L) also has the property (M). (Hint: consider the various

of (n — 1)-simplexes in (K, L)'.) Deduce that ((K, L) has
the property (M) for each r 0.

I'S'

C

I

2.14
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16. Let (fC, L) be a simplicia,l pair, where dim K = n and dim L n — 1.

Suppose also that (K, L) has the property (M). Prove that ILl is not a
retract of IKI.

17. Use Theorem 2.5.23 to show that S" is not contractible, for each

NOTES ON CflAPTER 2

Categories and functors. The transformation process from geometry to
algebra, outlined at the beginning of Section 2.2, is a particular example of a
functor, in the sense of Eilenberg and MacLane [53] (see also Eilenberg and
SteenIod [56], Chapter 4). One first defines a category to be a collection of
'objects' X, and 'maps' f, g,... between objects, such that the

'following rules are satisfied. - -

(a) Given maps f: X —* Y, g: Y —* Z, there exists a unique 'composite
rnap'gf: X-÷ Z.

(b) For each object X in there exists an 'identity map' lx: K -+
such that = f and g1x = g whenever these are 4efined.

(c) If gf and kg are 4efined, then (hg)f.

For example, the class of all topological spaces and continuous maps, and
the class of all groups and hon*rnorphisms, are categoi4es.

Given two categories and a füncwr F: 9 is a
assigns an object of 2) to each object off, and a map of 9 to each map
in such a way that

(a) iff: X—÷ Yin then F(J): F(X) -+F(Y) in 2)';
(b) =
(c) F(gf) = 5(g)F(f).
Thus, for example, the process described at the beginning of Section 2.2

is a functor from the category of topological spacesand cofltinuous maps to
the category of groups and homomorphisms.

Homotopy. The concept of bomotopy, at least for maps of the unit
interval 1, is due to Jordan [81]. The word 'homotopy' was first introduced
by Dehn and Heegaard [43].

Simplicial complexes. The study of 1- and 2-dimensional simplicial
complexes is one of the oldest parts of topology, and dates back at least to
Euler. The earliest treatment of simplicial complexes of higher dimensions
seems to be that of Listing [92] (who was also the first to use the word
'topology', in 1847).

Simplicial complexes can be generalized in various directions. For a
description of infinite simplicial complexes, which contain more than a finite
number of simplexes, see Lefschetz [89], Chapter 7. By relaxing all 'lin-
earity' conditions, one arrives at the notion of a CW-complex, for which
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see Chapter 7 of this book (the original reference is a paper of J. H. C.
Whitehead [160]). Lastly, a generalization of the idea of an abstract simplicial
complex, known as a semi-simplicial complex, has been very fruitful in recent
years (see for example Eilenberg and Zilber [57] and Kan (84]).

The Join of two simplicial complexes was first defined by Poincaré
[117] (see also Newman [109]):

Section 2.4. Theorem 2.4.1 is due to Hurewicz [74] and Theorem 2.4.5
to Seifert and Threlfall [124], Chapter 5.

The Simplicial Theorem. Theorem 2.5.16 is the original
version of this theorem, and was first proved by Alexander (7, 9] and
Veblen [147]. The more refined version, Theorem 2.5.20, is due to Zeeman
[169].

Theorem 2.5.23. This is usually known as the Brouwer Fixed-Point
Theorem, for which the original reference is Brouwer [25]. The proof we
give is that of Hirsch [65].



CHAPTER 3

THE FUNDAMENTAL GROUP

3.1 Introduction
In this chapter we shall define and study a first example of an

algebraic invariant of a topological space X, namely the fundamental
group ir1(X): this is defined to be the set of homotopy classes of maps
of the unit interval I toX, that send 0 and 1 to some fixed point. We
shall prove that 1r1(X) can be given the structure of a group in a
natural way, and that it -is a homotopy-type invariant of X. If X is
triangulable, it is not too difficult to give a method of calculating
ir1(X): as might be expected, this method is based on the Simplicial
Approximation Theorem.

Tb1 general theory will be presented in Section 3.2, and the
calcultion theorem for triangulated spaces will be proved in Section
3.3. In Sction 3.4 we shall show how the fundamental group can be
used to prove the classification theorem for triangulated surfaces;
thus the fundamental group is quite a powerful algebraic invariant.

3.2 Definition and elementary properties of the
group

Let X be a topological space, and let x0 be a fixed point of X, ialled
a base point.

Definition 3.2.1 If x andy are points of X, apath in. Xfrom
x toy is a continuous map U: i—* Xsuch that u(O) = x and u(1) =. y.
If x = y = x0, such a path is called a loop in X, based at x0.

By PThposition 2.2.7, the relation between paths and loops of being
homotopic relative to 0 and 1 is an equivalence relation. This justifies
the following definition.

Definition 3.2.2 The fundamental group of X, with base point x0,
written 1r1(X, x0), is the set of homotopy classes, relative to 0 and 1, of
loopi in X based at x0.

We are a little premature, of course, in calling n1(X, x0) a group,
since we, have not yet endowed it with any group structure. In order

63.
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do so, we first define a 'product' and 'inverse' for paths in X, and then
check that this definition extends to homotopy classes.

Definition 3.2.3 Given paths u, v: I X, such that u(1) =
the product path u.v: I —÷ Xis obtained by 'sticking u and v together'.
More precisely, is . v is defined by the rule

— fu(2t) (0 t
— lv(2t .— 1) t 1).

(u.v iitontinuous, by Proposition 1.4.15(d).) Similarly, given n paths
U1, . ., X, such that 74(1) = Ur+i(O) for 1 r n — 1,

the-product path u1 .u2. . . I —* X is defined by

(u1.u2.-. = — r + 1) ((r — 1)/n t r/n, 1 r n).

The inverse path is I —* X is defined by is - 1(t) = u( 1 — t)
(0 1); obviously is is continuous, and (is1 . u2.. .

'1 =
Ia_i 41*1

• it—i• •'• 1
•

- The following proposition shows that this definition can be extended
to "homotopy classes of paths'.

3.2.4

(a) Gjven paths is1,.. ., irnd v1,.. ., v,1 in X, szw/z that u1(0) =
v1(0), u,(1) = = v7(1) = (1 r n — 1), and

= zf Dr tel 0, 1 (1 r n), we have u1. . . is,,

• . v,, rd 0, '.1.
(b) Given paths u, in X, swh that u(0) = v(0) and u(l) =

then zf is rd 0 1, we have u' rel 0, 1.

Proof.

Let the homotopiès be u, (1 r n). A homotopy G
between is1.. . is,, and V1. . .v,, can be constructed by 'sticking together'
F1,.. ., that is, by defitling

G(t1,t2) —.r +1,12) ((r — 1)/n 11 TIn, 1 r n, 12e1).

As usual, 0 is continuous, and it is obviously a homotopy relative to

(b) If the hombtopy is F: is v, then the required homotopy
u' and s F', where t2) = F(I — 11, 12). I

it that the definition of product and inverse can be extended
*mambiguouslyto classes (relative to 0 and 1) of paths.
Moreover, 'when we pass to homotopy classes, the product is associa-
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tive and the inverse behaves as an inverse should. These results
follow from the following trivial corollary of Theorem 2.2.3.

Proposition 3.2.5 Given paths u, v: I -+ I, such that u(0) = v(O)
and u(1) = v(l), then is v rd 0, 1.

Corollary 3.2.6

(a) If is1, . .., u,, are paths in X as in Definition 3.2.3, then for each
r, 1 r < ii, (is1.. . u1.. rd 0, 1.

(b) If u is a path in Xfrom x to y, and is the path at x',
defined by e I, then

u rel 0, 1.

(c) If is is as in (b), then is. u' rel 0, 1 and is 1
• ret 0, 1.

Proof.

(a) [(u1. . . (is,.. where f: I—+I is
the map that sends 0, 4, 1 to 0, r/n, 1 respectively and is linear in
between. But f I, rel 0, 1 by Proposition 3.2.5.

(b) Again, . uXt) = u(J(t)), where f: I —+ I is the map that sends
0, 4, 1 to 0, 0, 1 respectively.

(c) This time is • is '(1) is(J(t)), where f sends 0, 4, 1 to 0, 1, 0.
e0 ret 0,1, and ue0 =

Corollary 3.2.6 applies in particular to loops in X based at x0, and
the product of such ioops is always defined. It follows easily that
n,(X, x0) can be given the structure of a group.

Theorem 3.2.7 ir,(X, x0) is a group.

Proof. If is is a loop in X based at x0, write [is] for the equivalence
class of u under the relation of homotopy relative to 0 and 1. By
Proposition 3.2.4(a) the product of two equivalence classes can be
unambiguously defines by the rule [u}(v] [is. v], and by Corollary
3.2.6(a) this product is associative. There is an identity element
[e,j, since by Corollary 3.2.6(b) [u] . Finally,
by using Proposition 3.2.4(b) and Corollary 3.2.6(c), the element [is]
has an inverse since [u)[u'] = I

Notice also that if is,,.. ., is,, are loops in X based at x0, then by
Corollary 3.2.6(a) we have [u11tu3].. . (is,,] (is,. . . is,,].

At this stage, then, we have a method for associating a group
ir,(X, x0) with each topological space X, and we shall see later tha
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liomotopy-equivalent spaces have isomorphic fundamental groups.
However, the discussion at the beginning of Section 2.2 shows that,
in order to make this sort of method work, it is necessary to deal with
continuous maps as well as topological spaces: we ought to show that
each continuous map f: X —+ Y gives rise to a homomorphism
1*: ir1(X, x0) —* Y, yo). This is indeed the case, at least if f is a
based map.

Theorem 3.2.8 Let X and Y be topological spaces with base points
x0 and respectively, and let f: X Y be a based map, that is, a map
such that f(x0) = Yo• Then f gives rise to a homomorphism

1r1(X, x0) ir1( Y, Yo),

with the following properties.

(a) If f': X —÷ Y is another based map, and f f' ret x0, ther

(b) If X —+ X is the identity map, then I * is the identity
isomorphism.

(c) Ifg: Z is another based map, then

Proof. Let u: 1 X be a loop based at x0. Define by the rule
1* [UI = [fu]. It is clear that fu: I —÷ Y is a loop based at yØ, and that
if u v rel 0, 1 then fu fv rel 0, 1; thus the definition of

unambiguous. To show that is a homomorphism, consider u . v,
where u, v: I —÷ X are loops based at x0. Now

— fu(2t) (0
(u.v)() - lv(2t - 1) t 1),

from which it is clear that f(u . v) = (fu) . (Jv), so that

f*([u]{vl) =

Properties (a)—(c) are now obvious from the definition of I
Corollary 3.2.9 Let X and Y be spaces with base points x0 and Ye

respectively, and suppose that X and V are of the same 'based homotcpy
type', that is, there exist based mapsf: X —* V andg: V —* X such that

lx ret x0 andfg rely0. Then ir1(X, x0) Y, yo).

Proof. By Theorem 3.2.8, = = 1, the identity
àomorphism. $imilarly, the identity isomorphism, so that
and g,, are isomorphisms. I

The situation still leaves something to be desired, however, since
171(X, x0) appears to depend on the particular choice of base point x0.
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We should like to prove a theorem to the effect that, if x1 is another
choice of base point, then 1r1(X, x0) x1), but unfortunately
this is not true without some restriction on the space X: see Exercise 1.
In fact X must be path-connected, in the sense of the next definition.

Definition 3.2.10 Define a relation on the points of a space X by
the rule. x and y are related if there exists a path in X from x to y.
By Definition 3.2.3 this is an equivalence relation, and the resulting
equivalence classes are called the path components of X. If in particular
X has only one path component, X is said to be path-connected.

The set of path components of a space X is often denoted by ir0(X).
There is of course no question of giving iro(X) the structure of a
group, in general.

Example 3.2.11 E" is path-connected for all n 0, and is
path-connected if n 1. For clearly each point of E' can be connected
by a path to the origin, and each point of can be connected to the
point (1, 0,..., 0), atleastifn >0. 1

Path-connectedness is a stronger notion than connectedness in the
sense of Definition 1.4.5, as the next proposition and example show.

Proposition 3.2.12 If X is path-connected, it is connected.

Proof. Suppose, if possible, that X is path-connected, but' dis-
connected in the sense of Definition 1.4.5. Then we may write
X = U1 Li U2, where U1 and 112 are disjoint open sets. Choose points
x E U1, y e 112, and let f: I X be a path from x to y. Now the sets

are open in I, sincef is continuous; alsof1(U1) u
and 0. Thus I is

disconnected, which contradicts Proposition 1.4.37. I
On the other hand, a space may well be connected, without being

path.. connected.

Example 3.2.13 In R2, let X be the set of points (0, x2) for
— I 1, and let Y be the set of points (x1, sin (lr/x1)), for
0< x1 I:seeFig.3.loverleaf.
Now Y is path-connected, since (1, 0) can be connected to
(1 — a, sin (ir/( I — a))) by the path u: I —* Y, where u(t) =
(1 — at, sin (ir/(l — at))), 0 I 1. Hence Y is also connected; but
X U Y c V, so that X LI Y is connected, by Proposition 1.4.6.

On the other hand X Li Y is not path-connected. For suppose, if
possible, that u is a path in X U Y from (0, 0) to (1, 0); write u(t) =
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(u1(t), u3(t)). Now u1(X) is a closed set in I contains 0, and so
contains -its least upper bound b, say, where 0 <b < 1. We shall show
that u2 cannot be continuous at b.

Suppose that ug(b) c 0. Then for any 8> 0, with b + 8 1, we
have u1(b + 6) > 0, so that there exists an integer it such that
0 u1(b) <2/(4* + 1) <u1(b + 8), and there exists. t such that
b < t <b + S and u1(:) 2/(4n + 1). Thus u2(t) = 1, and
u3(t) — u2(b) 1, so that is discontinuous at 6. A similar argument
applies if u2(b) 0, so that u3 cannot be continuous. Hence no such
path u can exist, and so X U Y is not path-connected. I

For very well-behaved spaces, however, the notions of connected-
ness and path-connectednesa coincide: see Exercise 2.

The point of Definition 3.2.10 is that ir1(X, x0) will yield information
only about the path component of X that contains x0.

Proposition 3.2.14 Let X0 be the path component of X that contains
x0, and let i: X0 -÷ X be the inclusion map. Then

is: x0) —÷ 1T1(X, x0)

is an isomorphism.

Proof. Clearly any loop in X based at x0 must in fact be a ioop in
so that it is necessary only to check that two loops that are homo-

topic ret 0, 1 in X are homotopic tel 0, 1 in X0. But this is immediate,
since if F: I x I —÷ X is a homotopy whose image contains x0, its
image must lie entirely in X0, because I x I is itself path-connected. I

In fact the set ir0(X) is a homotopy-type invariant of the space X.

(0,1)

(0,

Fig. 3.1
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Proposition 3.2.15 If X Y, there is a (1-1) correspondence
between the sets ir0(X) and 'wO( Y).

Proof. Letf: X -+ Y andg: Y X be the homotopy equivalence
and homotopy inverse. Now f gives rise to a function 1r0(X) -+
ir0( Y), by sending the path component of x in X to the path com-
ponent of f(x) in Y. Moreover homotopic maps give the same func-
tion, since I x I is path-connected. Thus an argument similar to that
of Corollary 3.2.9 shows that)',, is a (1-1) correspondence. I

We are now ready to prove the theorem on the behaviour of
ir1(X, x0) under a change of base point.

Theorem 3.2.16 Let x0 and x1 be Iwo base points lying in the same
path component of X. A path u in X from x0 to x1 gives rise to an
isomorp/zism u#: ir1(X, x0) -+ irj(X, x1), with the following properties.

(a) Ifu vrelO, 1, thenu# =
(b) is the identity isomorphism.
(c) If w is a path in Xfrom x1 to x2, then (u.w)# =
(d) 1ff: X-÷ Y isa map such tlzatf(x0) = Yo andf(x1) = then

7r1(X, x0) —÷ ir1( 1', Yi).

Proof. If visa loop in X based at x0, it is clear that zC1.v.u is a
ioop based at x1, whose class in ir1(X, x1) depends only on that of v.
Moreover if w is another loop based at x0,

(u1.v.u).(u'.w.u)relO, I
by Corollary 3.2.6, so that the rule u#[v] = [u1.v.uJ defines a
homomorphism Ut: irj(X, x0) —k 1r1(X, x1).

Properties (a)—(d) are immediate from the definition of so that in
particular u#(u1)# = (u.u1)# = = 1. Similarly (u1)#u# = 1,

so that is indeed an isomorphism. I
In particular, if X is path-connected, ir1(X, x0) is determined up to

isomorphism by X alone, and does not depend on the choice base
point. It therefore makes sense to write irj(X) instead of 1r1(X, x0),
if we do not wish to distinguish between isomorphic groups.

An important special case of Theorem 3.2.16 is obtained by taking
= x1: each loop u based at x0 gives rise to an isomorphism

u#: 1r1(X, x0) -+ 7r1(X, x0), and this isomorphism depends only on the
class of u in ir1(X, x0). Indeed, it is clear from the definition that if (v]
is any element of ir1(X, x0) we have 1[v][u]; such an
isomorphism is called the inner automorphism of i71(X, x0) deter-
mined by [u]. Notice that the set of all isomorphisms reduces to the
identity isomorphism alone if and only if irj(X, x0) is abelian.
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Theorem 3.2.16 can be used to prove that two path-connected
spaces of the same homotopy type have isomorphic fundamental
groups. This result should be carefully distinguished from Corollary
3.2.9: two homotopy-equivalent spaces need not be of the same
4based homotopy type': see Exercise 3.

Theorem 3.2.17 Let f: X .-÷ Y be a homotopy equivalence, let x0
be a base point for X, and let Yo = f(x0). Then

f.: irj(X, x0) —* Y, Yo)

is an isomo?phism.

Proof. Let g: Y —* X be a homotopy inverse to f, and let F be the
homotopy between gf and Let g(y0) = x1, f(x1) y1, and define
a path u in X from x0 to x1 by the rule

u(t) = F(x0, I — t) (tel).
If v is any ioop in X based at x0, we have dv relO, 1, by
the bomotopy G: I x I —* X, defined by

C(t1,
Iu(I — (0
F(v{(3t1 — 12)1(3 — 212)), 12) (t2/3 t1 1 — 12/3)

lu(3t1 — 2) (1 — t2/3 t1 1).

Since these formulae may appear rather unenlightening, we offer an
alternative description of G in Fig. 3.2, in which the square QRPL
is I x I.

x2

Fig. 3.2
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The trapezium QRNM is stretched horizontally until it becomes
I x I, and is then mapped by F(v x l).The triangle QML is dealt
with by mapping straight lines MS by u, after suitable magnification,
where S is a general point of LQ; similarly for the triangle RPN.
Clearly these definitions coincide on QM and RN, so that G is
Continuous. Moreover, G is a homotopy between gfv and u' • v.
and is relative to 0 and 1, since the lines QL and RP are both mapped
to x1.

It follows that = u#{v], So that

1r1(X, x0) —p. ir1(X, x1)

is an isomorphism. A similar argument shows that is an isomor-
phism, so that finally both and are themselves isomorphisms. I

Definition 3.2.18 A space X is said to be simply-connected (or
1-connected) if it is path-connected, and 1r1(X) = 0, the trivial group
with just one element. (By Theorem 3.2.16, the choice of base point
is immaterial here.)

Clearly a path-connected space X is simply-connected if and only if
each loop in X (based anywhere) is homotopic rel 0, 1 to a 'constant
ioop'. As we shall see in Section 3.3, S1 is an example of a space that
is path-connected but not simply-connected, whereas is simply-
connected for all n > I. By Theorem 3.2.17 a contractible space is
simply-connected (it is easy to see that such a space is path-connected),
though the converse is not true, as is demonstrated by for n > 1
(see Chapter 2, Exercise 17).

3.3 Methods of calculatibn
So far we have defined the fundamental group and established some

of its properties; but it would be useless for proving topological
theorems if there were no means of calculating 1r1(X) for a given
space X. En general the problem of calculation is formidable, but if
X is a polyhedron the Simplicial Approximation Theorem can be
used to reduce the problem considerably. Indeed, it even allows one
to write down a finite set of generators and relations for ir1(X).

In outline, the method is the following. First note that, by the
Simplicial Approximation Theorem, each homotopy class of loops
based at x0 contains a simplicial map of some subdivision of I into X
(at least if x0 is a vertex). Thus in defining x0) it is sufficient to
consider only such 'simplicial loops', and divide them into equivalence
classes under homotopy rd 0, 1. But such a homotopy is a map of
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I x I into X, which is simplicial on the 'boundary': so we can use the
Simplicia] Approximation Theorem again to show that the horootopy
itself may as well be taken to be a simplicial map. It follows that we
can take for generators of 7r1(X, x0) all simplicial loops, and use
'simplicial homotopies' to give all the relations; and in fact this method
can be refined a little so as to produce only a finite number of generators
and relations.

In order to simplify the classification of simplicial homotopies
between simplicial loops, we start the detailed work by introducing
the idea of collapsing a simplicial complex onto a subcomplex.

Definition 3.3.1 Let K be a simplicial complex. An n-simplex a
of K is said to have afree face 7, if r is an (n — 1)-face of a but is a
face of no other n-simplex of K. If a has a free face, it is easy to see that
a is not a proper face of any simplex of K, so that K — a — is a
subcomplex of K. The process of passing from K to K — a — is
called an elementary collapse, and if L is a subcomplex of K, K is said
to collapse to L, written K \ L, if L can be obtained from K by a
sequence of elementary collapses.

Example 3.3.2 Let K be the simplicial complex shown in Fig. 3.3.
K \ a°, by the sequence of elementary collapses illustrated. •

a_____ o20' a a'

N
I L

O3QU

Fig. 3.3

An important property of collapsibility is that it is invariant under
subdivision. We shall not prove the general result here (though see
Exercise 5), since the following special case will be sufficient for our
purposes.

Proposition 3.3.3 Let K be a 1- or 2-dimensional simplicial complex,
that collapses onto a subcomplex L. Then if M is any subcomplex of K,
(K, M)' L'.

°roof. It is clearly sufficient to prove this result in the special
case where L is obtained from K by an elementary collapse, so that
L = K — a — r, where r is a free face of a. Now the result is obvious
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if a is a 1-simplex, and if a has dimension 2, it is easy to see that
[K(a)]' \ [K(a) — a — ir]': Fig. 3.4 illustrates a possible method of
collapse, in the case where K(o) fl M is empty; the other cases are
dealt with similarly.

This is sufficient to prove that (K, M)' L'.

Corollary 3.3.4 (K, \ for each r 0. I
The first step in the programme outlined at the beginning of this

section is the construction of simplicial analogues of paths and ioops.
For these, let K be a simplicial complex, and let L K(a), where a
is the 1-simplex in R' whose vertices are 0 and 1: thus L is a triangula-
tion of I. If the vertices of are 0 = b° < < b" = 1, a
simplicial map U: -÷ is completely determined by the
sequence of vertices u(b°), u(b1),.. ., u(b"). This suggests the following
definition.

Definition 3.3.5 An edge-path in K, from a vertex a° to a vertex
a", is a sequence a of vertices a0a1. . . a', such that for each r =
1,2, . .., n, the vertices a'1, a' span a simplex of K (we allow

= aT). If a0 = a", a is called an edge-loop, based at a0.
Given another edge-path = a"a" + . + m, whose first vertex is

the same as the last vertex of a, the product edge-path is defined by
a.fl = a°a1.. a is a1 =
a"a" j..

. a°. Clearly (a . a)., a. (ft . v) (so that we may unambigu-
ously write and = 8 (Compare Definition
3.2.3.)

We need next a convenient definition of 'equivalence' between
edge-paths, analogous to the relation 'homotopic rel 0, 1' for ordinary
paths. The reader may not immediately perceive the correspondence
between the following definition and that for ordinary paths; however
he is assured there is one, which will become apparent in the proof of
Theorem 3.3.9 (it is based on the notion of collapsing).

Fig. 3.4
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Definition 3.3.6 Two edge-paths a and $ are equivalent if one
can be obtained from the other by a finite sequence of operations of

the form

(a) if aT, replace . . by . . .., or conversely
replace . . . ar. . . by . . . dat. . . ; or

(h) if ar', aT, span a simplex of K (not necessarily 2—dimen-
sional), replace larar + by . . . ar - 'a' . ., or conversely.

This clearly sets up an equivalence relation between edge-paths,
and we write a for 'a and are equivalent'. Notice that if a is an
edge-path from a° to a then also is an edge-path from
a0 to

Proposition 3.3.7 Let a9, be edge-paths from a° to a's, and let
be edge-paths from to afhm, such that a0 and a1

Then

(a)
(b)
(c) a0.a0 = a0 =
(d) a0 and a7t. I

(Compare Proposition 3.2.4 and Corollary 3.2.6.)

It follows, just as in Theorem 3.2.7, that the set of equivalence

classes [a] of edge-loops a in K, based at a vertex a°, forms a group

a°): the multiplication is defined by the identity

element is [a°], and the inverse of [a] is

Definition 3.3.8 v(K, a°) is called the edge-group of K, based at a°.

The resemblance between the definitions of 17(K, a°) and ir1(1K a°)
is of course no coincidence.

Theorem 3.3.9 ii(K, a°) 7r1(IKI, a°).

Proof. The theorem is proved by constructing a homomorphism

0: ir(K, a°) —* 7r1(IKI, a°), and then siowing that C is onto ani (1-1).

Let a = be an based at a0. For each pair of

vertices at, a1 that span a simplex of K, let ILl —÷ IKI be the

simplicial map that sends 0 to a' and 1 to a1 (L = K(0, 1)). Then
is a path in IKI from a' to a5, and we may define

0[a] = [u01.u12. . eiri(IKI, a°).

It is first necessary to check that 0 is well-defined, that is, that

0[czj 0{fl} if a fi. We need only consider the case where is
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obtained from a by a single operation of type (a) or (b) in Definition
3.3.6, and by Corollary 3.2.6(b) operations of type (a) give no trouble,
since is the 'constant path' at aT. As for operations of type (b), we
merely remark that if a simplex of K, then

rel 0, 1 by an obvious homotopy.
It is easy to see that 8 is a homomorphism. For if —

an+mao is another edge-loop based at a°, we have

= (u01. . .

= [u01. . . .U,i+m,ol

O{a.flj.

Next, U is onto, since if [uJ E iri(IKI, a°), we may assume by the
Simplicial Approximation Theorem that U: —k IKI is a simplicial
map for some r 0. If the vertices of are 0 = < b' <
< = 1, define a = u(b°).u(b'). . . Then O[aj = [uJ, so that
8 is onto.

Lastly, 8 is (1-1). For if a = a°a'. . . is any edge-loop, 9[a) is
represented by a simplicial map U: —÷ IKI, where M is a tri-
angulation of I with vertices 0 = < c1 < • < = 1, and
u(cT) = ar (0 r ii), a0. So if 9fa] = 1 in irj(IKI, a°),
there is a homotopy F: I x I 1K such that

and
F(t, 0) =

F(t, 1) = F(0, t) = F(1, t) = a0

Now I x I can be triangulated as shown in Fig. 3.5 by a complex N,
the four sides of the square forming a subcomplex P.

Fig. 3.5

C
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Since F lip) is simplicial, by the Simplicial Approximation Theorem
we may assume that F is a simplicial map ((N, —+ (K( for
some r ) 0. We also know, by Corollary 3.3.4 and an argument similar
to that used in Example 3.3.2, that (N, \ c°. It follows that in N
the edge-loop . . 'd'd°c° is equivalent to the edge-loop c°.
For if (di, d', is a 2-simplex with free face (di, d'), the edge-paths

.d'd'... and .. . are equivalent, and if (dt, d') is a 1-
simplex with free vertex the edge-paths .. . d'd'd'... and . . .

are equivalent: hence the sequence of elementary collapses of
(N, defines a sequence of equivalent edge-loops starting with fi
and ending with c°. Finally we have

a = a°a1. .

a°a1. .

= F(c°)F(c1).. .

F is simplicial,

= a°,

so that [a] = 1, and so 0 is (i-I). I
An obvious corollary of Theorem 3.3.9 is

Corollary 3.3.10 iri(IK(, a°) only on K9. I
In particular, is simply-connected for n > 1. For by Example

2.3.13, may be triangulated as a, where is an (n + 1)-simplex;
and if n > 1 this has the same 2-skeleton as K(a), whose poiybedron
is contractible.

On the face of it Theorem 3.3.9 does not tell us very much more
about ir1()K), a°) than the original definition. Surprisingly enough,
however, it is quite easy to give a finite set of generators and relations
for ir(K, a°), the trick being to ignore those parts of each edge-loop
that are contained in a subcomplex whose polyhedron is contractible.
1f (K( is path-connected, there exists such a subcomplex that contains
all thern rttces of K.

Definition 3.3.11 A 1-dimensional subcomplex Id of K is called a
tree if (U is contractible. Clearly trees are partially ordered by
inclusion; a tree is maximal if it is not contained in a strictly larger
tree. (Since K has .nly a finite number of simplexes, maximal trees
certainly exist.)

Proposition 3.3.12 If (K( is th-connected, and L Lc a maximal
tree, then L contains all the if K.
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Proof. Suppose, if possible, that a is a vertex of K that is not in L.
Since IKI is path-connected, there is a path in 1K from a vertex b,
say, of L to a; hence, as in the proof of Theorem 3.3.9, there is an
edge-path ba°. . . a"a in K. If a" is the last vertex of this edge-path
that is in L, (a", a"'') is a 1-simplex not in L (we may assume that
a" ThusL = L U (a', anh1) u (a"41) is a subcomplex strictly
larger than L; moreover ILl, since the simplex (a", at+1) can be
contracted to a' without disturbing ILl. Hence is contractible, and
L is not a maximal tree, contrary to hypothesis. I

IKI is path-connected, and is a contractible subpolyhedron
that contains all the vertices of K, we can now construct a group G
with a finite number of generators and relations, which is isomorphic
to ir(K, a0), and hence to a°). Totally order the vertices of K,
in the form a° < a1 << thus each simplex of K can be
written in the form (do, ., where i0 < << a
simplex written in this way is called an ordered simplex. Let G be the
group generated by the symbols g,,, one for each ordered 1-simplex
(a', a') of K — L, subject to the relations one for each
ordered 2-simplex (a', a1, dc) of K — L (if, say, a1, span a simplex
of L, g,, is to be interpreted as 1).

Theorem 3.3.13 G i(K, a°).

Proof. This time the theorem is proved by constructing homo-
morphisms 0: G -+ ir(K, a0) and if: rr(K. 00) G, such that the
composites and are identity isomorphisms.

To define 0, choose an edge-path a, in L from a0 to a', for each
vertex a' (we take a0 = a°), and set 0(g,5) = [a, . do'. 1]. Then for
each ordered 2-simplex (a1, a1, of K — L, we have

1 = [a, . a'a'. a; '][a, . a5ak . cc 'l[ak . a7cd
.

1]

= (a1. dalabacaka( 1]

=
= [a,.alakal.aji)

=

=1
(if, say, a', a span a simplex of L, we still have 0(g,,) = (a,. a'a'.
since by Theorem 3.3.9 all edge-loops in L based at a° are equivalent).
Thus by Proposition 1.3.20 0 extends in a unique way to a homo-
morphism 0: G -+ ii(K, a°).
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The homomorphism q': ir(K, a°) —+ G is defined as follows. Given
any pair of vertices a', a1 of K, that span a simplex, let

1. — i —1
— ,

11, otherwise.

if (a', a') is an ordered 1-&mplex of K — L,
if (a', a') is an ordered 1-simplex of K — L,

Then if a = a°a'a1.. . is an edge-loop in K, define

= . G.

It is easy to see that is an unambiguously defined homomorphism.
Now = . . aT') = g11, so that is the identity

isomorphism of G. Morever if a = a°a'a5. . . is an edge-loop in K,

O#[a] =

= .a°a'.ar 11.. .

But jar.aTas.a;l] = 1 unless aT, a3 span a 1-simplex of K — L, and in
any case Oç6[ay . . a; 1] = . aTas . a; 1]. Hence = [a], so that

is the identity of 7r(K, a°). Thus 0 and are themselves
isomorphisms. I

Examples 3.3.14

(a) ir,(S') Z, the additive group of integers. To see this,
triangulate S1 as the boundary a of a 2-simplex = (a°, a'; a2), and
take for L the subcomplex a — (a°, a2). Certainly !I is contractible
and contains all the vertices, so that ir,(S') Gp {g02} Z.

(b) By Proposition 1.4.40(b) the real projective plane RP2 be
obtained from a square ABCD by identifying the sides AB and CD,

Fig. 3.6
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and BC and DA (compare Chapter 2, Exercise 8). A triangulation of
RP2 is shown in Fig. 3.6, in which the shaded area represents a
contractible subpolyhedron that contains all the vertices, and the
vertices are totally ordered by their superfixes.

Thus 171(RP2) is the group generated by :02' g15 and g35,
subject to the relations giagaj5gc5'
and Thus in ir1(RP2), g14 g04, g02 = g04, g03g25 = 1,
g25 g15 and g14 = These relations imply that all five generators
are equal, and (g02)2 = 1, that is, ir1(RPT, is isomorphic to Z2, the
group of integers mod 2. I

The reader will see from this last example that, although Theorem
3.3.13 guarantees a finite set of generators and relations for 7ri(1K1),
it may well produce far more generators and relations than are
necessary. Indeed, for more complicated spaces than spheres or the
real projective plane Theorem 3.3.13 may give such an unwieldy
description of the fundamental group that it is useless for practical
calculations. The trouble is that even comparatively simple spaces may
need a large number of simplexes to triangulate them: for example,
the torus (see Chapter 2, Exercise 8) cannot be triangulated with less
than 7 0-simplexes, 21 1-simplexes and 14 2-simplexes.

We therefore seek a method of improving Theorem 3.3.13 so as t
produce as few generators and relations as possible. The first step it
this direction is to establish a theorem that expresses the fundamental
group of the union of two polyhedra in terms of the fundamental
groups of the two polyhedra and of their intersection. However, the
result of this theorem is stated in terms of the free product of
groups, and so we must first define this.

Definition 3.3.15 Given two groups G and H, the free
G * H is the group generated by all the elements of G and all the
elements of H, subject to the relations gigagi 1, for all g1, g2, g3 e G
such that g1g2 = g3, and h1h2/ç 1, for all h1, h3 E H such that
1z1h2 = h3.

Example 3.3.16 If G and H are each free groups generated by
single elements a, 6 respectively, then G * H = Gp {a, B). I

In fact the set of generators and relations for G * H given in
Definition 3.3.15 is in general unnecessarily large. C * H can be
described in terms of any finite sets of generators and relations for G
and H, as follows.

Proposition 3.3.17 If C = Gp (a1, . . ., a,,,; . . ., a,,) and H =
..,flq},then
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Proof. Let G: H be the group

and let 0: C: H -* G * H be the obvious homomorphism, that sends a
word in a's and b's to itself; 0 is unambiguously defined since each a
or fi is 8ent to I. Similarly, let C * G:H be the obvious
homomorphism: again is unambiguous, because each relation of the
form g.igggi 1, for example, must be a word in conjugates of a's.
Moreover the composites and 0 are both identity isomorphisms,
so that 0 and are isomorphisms. I

We can now state the theorem on the union of two polyhedra.
Fot this, let L and M be subcomplexes of a simplicial complex K,
such that L u M = K, and let N = L M. Write A, for the
inclusion maps JNJ c JLJ, INI c (M( respectively.

Theorem 3.3.18 If JLJ, JMJ and (NJ are path-connected, and a°
a vertex of N, then a°) is the group obtained from ir1((L(, a°) *
irj(JMI, a°) by adding extra relations 1, one for each element
c of (N I, a°). (As in Proposition 3.3.17, it suffices to add the relations

-1, one for each element c in a finite set of generators for

Proof. Let Tff a maximal tree in N. As in Proposition 3.3.12,
TN can be extended to trees TL in L, containing all the vertices of L,
and TM in M, containing all the vertices of M, in such a way that

TN = TMflNand TK = TLU TMisatreecontainingall
the vertices of K.

Now order the vertices of K: in doing so, the vertices of L, Mand N
are also ordered in an obvious way. By Theorem 3.3.13, irj(JKJ, a°)
is generated by the symbols ge,, one for each ordered 1-simplex of
K — TK, subject to the relations one for each ordered 2-
simplex of K — This is clearly the same as the group generated
by the symbols he,, one for each ordered 1-simplex of L —
M — TM respectively, with relations of the g(,gjkg;1,
together with 1, whenever = in K. But this is exactly

a°) * ir1(JM(, a°), with extra relations one for.
each generator gt, of IT1(JN(, a°). I

There are two important special cases of Theorem 3.3.18. First,
if (NJ is simply-connected (in particular if (NJ is contractible or just a
point), then ii1((K(, a°) IT1(JL(, a°) * irj((MJ, a°). A more impor-
tant corollary, however, refers to the following situation. Let JK( be a
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path-connected polyhedron, and let a = a°a'.. . (is ) 2) be an
edge-loop in K, in which no two consecutive vertices are the same.
Let ILl be a regular polygon of (is + 1) sides in R2, triangulated as
shown in Fig. 3.7 (b is the centre of IL!).

S.

I,

//

— —

Fig. 3.7

Now (L, M) is a triangulation of (E2, S'), where Mis the 'boundary'
of L. Moreover a determines a (simplicial) map f: S' —* K by the
rule f(b') = a? (0 r is): let X be the adjunction space 1K! u,- E2.

Theorem 3.3.t9 7r1(X, a°) is obtained from iri(IKI, a°) 6y adding
the relation O[a], where 0: n(K, a°) —÷ a0) is the isomorphism
of Theorem 3.3.9.

Proof. In order to apply Theorem 3.3.18, it is first necessary to
triangulate X. To do so, let iY be the abstract simplicial
formed from the abstractions of K and (L, M)' by identifying the
vertices bT and a7, for 0 r is. If we identify If with aT, we auto-
matically also identify the abstract simplex (If, 1/ +') with a7 + 1)

for 0 r < is, and (6", 60) with (a", a°), but no further identification
of simplexes takes place. This is because

(a) since consecutive vertices of a are distinct, and each simplex
of (L, M)' meets M in a face, no simplex is reduced in dimension by
the identification;

(b) two distinct 1-simplexes c'), (1/2, c2) of (L, M)' — M
cannot be identified unless c1 = C2; but then 1/i and must be
consecutive vertices of M;

(c) given two distinct 2-simplexes of (L, M)', there must be a
vertex, not in M, that is in one simplex but not the other.

3

b
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(The reader may find Fig. 3.8 helpful in following the above argUment.)

It follows that if Nis a geometric realization of..W then INI is
morphic to X (it has the topology by Corollary 2.3.9).

Now choose a 2.-simplex a = (b°, c', c2) in (L, M)' that has b° as a
vertex (see Fig. 3.8), and writc V = — cJ. By Theorem 3.3.18,

a°) is obtained from ir1( Y, ao) * irj(a, a°) by adding relations
for each generator d of a°), where it and are the

inclusion maps. But ir1(a, a°) 0, since a is contractible, and by
Example 3.3.14(a) a free group generated by the single
element O[$], where $ = b°c1c2b°. It follows that a°) is obtained
from ITI( Y, a°) by adding the relation 8E/i•

To complete the proof, note that, since is convex, radial pro-
jectiorl from the barycentre of a is a (strong) deformation retraction of
(L, M)' — onto !MI, and so can be extended to a deformation

retraction p: Y—3- IKI. So 7r1(Y, a°) —÷ ni(IKI, a°) is an iso-
morphism, and clearly = 0[a]. I

A somewhat surprising corollary of Theorem 3.3.19 is that any
group with a finite set of generators and relations can realized as
the fundamental group of some polyhedron.

Theorem 3.3.20 Let G = Gp tb1,.. ., ph,. . ., There exists
a polyhedron JKj and a vertex a° of K such that a°) G.

b3 - — -

Fig. 3.8
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Proof. We first construct K, and then show that it has the right
properties.

Let Y be a 'wedge' of m circles S1', Si,..., More precisely,
take m copies SI, -.., of S', where a point of is denoted by
(x1, Xa)r, and let 1' be the space obtained from the disjoint union by
identifying together all the points (1, (1, 0)2, . .., (1, O)m: call this
point a0.

X is now formed from Y by attaching 2-cells by maps obtained
from the-relations . . ., Now each SUCh-Pr is a word in b's: say

= be.. where each e is ± 1. Corresponding to define a map
fT:S1-÷ Ybytherule

f(cos 0 sin 0) = f(cos (pO-.-2(q--- 1)%r),sin (p6 —2(q---i if Eq 1,

(2qir — p0), sin (2qir — Eq = — 1,

for 2(q 1)ir/p 0 2qii/p, I q p. In other words, is
divided into p equal parts, and the qth segment is wrapped tound
forwards or backwards according as Eq is 1 or — 1. Now attach a
2-cell to Y by each of the maps f,. (1 r n), and call the
resulting identification space X.

The fact that X has the required properties is now an easy corollary
of Theorem 3.3.19. By radial projection from the origin, each in Y
may be triangulated as the boundary of an equilateral triangle
(ar, ar), where = (1,

a triangulation of V results if we identify a?, 4, . . .,
to a single point a0. Similarly, each E? may be triangulated as a regular
polygon of 3p sides, where p is the number of segments into which
boundary 51 of is divided in the definition of fT: see Fig. 3.9.

______ ____________,,0

I p

\

s,

Fig. 3.9
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The point of doing this is that flow each 2-cell is attached to Y as
in Theorem 3.3.19 by means of the edge-loop

=

Thus X is triangulable, and we might as well assume that X is a
polyhedron IKI. Since Y, a°) is the free group generated by

b,,,, where = it follows at once that 711(X, a°)
G.I

This theorem is not only of interest in itself, but, used 'in reverse',
it provides a very practical method of calculating the fundamental
groups of certain spaces. By Corollary 3.3.10, if the 2-skeleton of a
simplicial complex K is a triangulation of a space X constructed as in
Theorem 3.3.20, then we can immediately write down a set of genera-
tors and relations for ii1(IKI); and this method will usually yield a
much smaller set of generators and relations than would be obtained
by using Theorem 3.3.13 directly.

Examples 3.3.21

(a) Consider the real projective plane RP2 again. By Proposition
1.4.40(b) this is the space S' u, E2, wheref: S' —+ S' is defined by
f(cos 0, sin 0) = (cos 20, sin 29): see Fig. 3.10, where a represents
the generator of ii1(S', a°).

a

a a

Fig. 3.10

It follows immediately that ir1(RP2, a°) = Gp {a; a2) Z2. The
reader should compare the ease of this proof with the messy calculations
of Example 3.3.14(b).

(b) As in Chapter 2, Exercise 8, the torus T is the space obtained
from a square ABCD by identifying the sides AD and BC, and then
AB and DC. By making the identifications on the boundary of ABCD
first, we see that this is the same as starting with the wedge Y of two

SI

C
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circles SI and so that ir1( Y) is the free group generated by b1, b2,
say, and then attaching a 2-cell as in Theorem 3.3.20 by a map
f: S' Y corresponding to the word b1b3,bç'bj': see Fig. 3.11.

Fig. 3.11

b1

Hence the fundamental group of the torus is Gp {b1, b2; b1b2bj 1);

in other words ir1(T) is a free abelian group with two generators. •

We end this section with an example of the calculation of the
fundamental group of a more complicated space. This example will also
be needed in Chapters 5 and 8.

Example 3.3.22 Let X be the space obtained from (the surface of)
a dodecahedron by identifying opposite faces after a twist through an
angle 7r/5. By stereographic projection from the mid-point of one face,
the dodecahedron can be drawn as in Fig. 3.12, in which the vertices
and faces are labelled according to the identifications.

Fig. 3.12
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It he seen that the vertices and edges of the dodecahedrcn become,
after identification, the space Y obtained from the five points a°, a', a2,
a3, a4 by joining each pair of points by a line: see Fig. 3.13.

Cl

Now V is plainly triangulabic, and X is the space obtained from
V by attaching six 2-cells A, B, C, 1), F and F by the edge-loops
a°a'a2a3a4a0, a0a4a1a3a2a0, a0aa4a3a1a0, a°a3a2a4a1a°
and a0a2a'a4a3a° respectively. Thus ir,(X, a°) can be by
Theorem 3.3.19.

The first task is to calculate ir,( Y, a°). 'T'his is easily done by using
Theorem 3.3.13: a maximal tree consists of the 1-simplexes (a°, a'),
(a°, a2), (a°, a3) and (a°, a4), so that Y, a°) is the free group
generated by

— {a°a'a2a°],
= [a°a'a3a°},

y [a°a'a4a°],
[a°a2a3a°],

E [a°a2a4a°J
and = [a°a3a4a°}.

So by Theorem 3.3.19, a°) has these generators, subject to the
following six relations, given by the faces A, B, C, D, E and F:

(we write for instance, in the equivalent form
[a°a'a2a°][a°a2a3a°][a°a3a4a°] The first, third and fifth of
these relations give a fi er', y and the
remaining three relations then become

1, I.

C3

Fig. 3.13
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From the first of these, = S 1&, so that a°) now has two
generators 8 and e, and two relations

E18€S2E8.

The second of these can be replaced by the product of itself and the
inverse of the first (or rather by the conjugate of this element by E

=

and the first relation can then be replaced by this new relation mul-
tiplied by its inverse (with conjugation by €8 before and after the
multiplication):

=

S = flE1, so that the generators are nowand and the
relations are

=
and

= E21ELt11E2.

These in turn are equivalent to

orto
—2, —2,

and this gives a concise expression for iri(X, a°) in terms of generators
and relations. It is not immediately obvious that the group is non-triv-
ial, but in the group of permutations of 1, 2, 3, 4, 5 the permutations

x: (1,2, 3, 4, 5)—÷(4, 2, 1,3,5)

and

can easily be seen to satisfy x3 = (xy)2 = y5 = 1, and so generate a

group isomorphic to a quotient group of v1(X, a°), which is therefore
non-trivial.

3.4 Classification of triangulable 2-manifolds
As an example of the application of the fundamental group to

geometric problems, we shall show in this section that the theorems of

Section 3.3 al!ow easy calculation of the fundamental groups of certain

polyhedra known as 2-manqolds or surfaces. By using geometric

arguments as well, this leads to a complete classification of these

2-manifolds, up to homeomorphism. This is a good illustration of a

typical procedure of algebraic topology: one first uses a geometric
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argument to show that every 2-manifold is homeomorphic to one of a
standard set, and then shows that the 'standard' manifolds are all
topologically distinct, by showing that their fundamental groups are
all distinct.

For completeness, we shall first define manifolds in general, and
then specialize to 2-manifolds. Roughly speaking, an n-manifold is a
topological space that is locally 'like' Euclidean space R".

Definition 3.4.1 A Hausdorif space M is called an n-manifold if
each point of M has a neighbourhood homeomorphic to an open set
in

Notice that any space homeomorphic to an n-manifold is itself an
n-manifold, as also is any open subset of an n-manifold.

Example 3.4.2 itself is clearly an n-manifold, as also is S".
To prove this, let be the open unit disc in R", of points x such that
lIxll < 1, and note that the standard map 0: E" restricts to a
homeomorphism 0: —+ — (—1, 0, ..., 0). Thus every point of

other than (— 1, 0,,. ., 0) is certainly contained in an open set
homeomorphic to and we can deal with the exceptional point by
constructing a similar honieomorphism from to the complement
of (1, 0, .. ., 0) in

Other examples of manifolds are the torus and the real projective
plane: both of these are 2-manifolds, as can readily be proved from
the definition.

Lastly, consider the space X obtained from two copies of the
• ircie S' by identifying each point (x1, x2)1 with the corresponding
point (x1, x2)2, except for t.he points (1, and (1, 0)2, which remain
distinct: see Fig. 3.14.

Fig. 314

x
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Now (1, has an open neighbourhood consisting of (1, u C,
where C is the complement in 8' of (1, 0) and (—1, 0); and this
neighbourhood is homeomorphic to an open interval in R'.. Similarly
(1, 0)2 has a neighbourhood homeomorphic to an open interval, and
this pfoperty is clearly' true for all other points of X. However, X fails
to be a manifol4, since open neighbourhoodS of (1,0), and (1,0)2
always intersect, so that Xis not Hausdorif. I

The last example shows the 'reason for insisting on the Hausdorif
condition in Definition 3.4.1: we wish to exclude such freak spaces.

In order to apply the theorems of Section 3.3, we shall consider only
triangulable n-manifolds in this chapter. Since we are particularly
interested in 2-manifolds, this is' only a mild restriction, for it can be
shown that every compact 2-manifold is triangulable, although the
proof of this is 'beyond the scope of this book. However, before
attempting to prove the classification theorem for triangulable 2-
manifolds, we need a few results about complexes whose
polyhedra are manifolds: these are based on Theorem 2.4.5.'

Proposition 3.4.3 Let K be a simplicial complex whose polyhedron
is an n-manifold. Then for each x 1K I Lk (x) I

Proof. By definition, there exists an open set U. in R", and a
homeomorphism h of U onto a subset h(U) of IKI that contains x; let

= h '(x). Since U is open, there exists £ such that the set B of
points z such that d(y, z) E is contained in U: then h is a homeo-

'morphism of B onto a subset of 1K 1' and x is in an open set contained
in h(B). .' '

But B can be triangulateä as in Example 2.3; 13, withy as the vertex
a0. Hence by Theorem 2.4.5 ILk.(x)1 jLk(y)I, which is homeo-
morphic to 8"'. 1 •.

Corollary 3.4.4 If is a 2-manifold, then

(a)dimK=2;
(b) each 1-simplex of K is a fate of just two 2-simplexes.

Proof. K cannot have a simplex c of dimension n> 2, for if x
were in the interior of such a almplCx, then by Example.. 2.3.13
lLk(x)I would be homeomorphic to S"'. But ir,(S"') = Oifn> 2,
whereas ir,(S1) so that S"' is not homotopy-ëquivalent tQ'S',
and hence cannot exist.

Now let x be a point iii the interior, of a 1-simplex 'r, and suppose
that r is a face oft' 2-simplexes. Then Lk (x) is the subcomplex shown
in Fig. 3.15, with r 'strings'joining a0and a1 (we must have r >0,
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since otherwise ILk (x)I = a0 u a', which is not homotopy-equivalent
to S').

A maximal tree of Lk (x) is shown in thick lines in Fig. 3.15. Thus
by Theorem 3.3.13 ir,( Lk (x) a°) is a free group generated by
(r — 1) elements. This contradicts Proposition 3.4.3 unless r = 2. •

We now start work on the classification theorem for triangulable
2-manifolds. As a first step, we prove the following result on path-
connected polyhedra (there is no loss of generality in supposing that
the polyhedra are path-connected, for otherwise, by Exercises 2 and
10, we merely consider the path-components separately).

Theorem 3.4.5 Let K be a simplicial complex whose polyhedron is a
path-connected 2-manzfold. Then K is homeomorphic to the space
obtained from a regular polygon of 2n sides in R2 by identtfying the
edges in pairs.

Proof. We can construct a space homeomorphic to 1K as follows.
Choose any 2-simplex a1 of K: this is (linearly) homeomorphic to an
equilateral triangle in R2. Now choose any 1-face 'r of 01; by Corollary
3.4.4(b) i is a face of just one other 2-simplex, 02, say. The subspace
01 of IKI is (simplicially) homeomorphic to the equilateral
triangle with another triangle attached along one edge, and this in turn
is simplicially homeomorphic to a square in R2: see Fig. 3.16.

Fig. 3.16

Fig. 3.15
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This process can be continued: at the general stage we have a1 u.
U simplicially homeomorphic to a regular.(m + 2)-sided polygon
in R2, although some pairs of edges in this polygon may have to be
identified: each edge corresponds to a 1-simplex of K that faces two
2-simplexes, and if both these simplexes are airea ly represented in
the polygon, then the edge must be identified with another edge of the
polygon (it must be another edge, and not an 'interior' 1-simplex,
since otherwise there would be a 1-simplex of K facing more than
two 2-simplexes). If on the other hand only one of the two 2-simplexes
is already represented in the polygon, call the other one 0m+j' and
construct a regular (m + 3)-sided polygon by attaching a triangle
corresponding to am+j along the appropriate edge, and taking a
simplicial homeomorphism of the resulting space onto a regular
polygon in R2.

It is clear that we can continue attaching triangles and deforming
into regular polygons, until we finally reach a regular polygon P of 2n
sides in which each edge is identified with one other edge (this is why
P must have an even number of edges). This is the result we want,
provided every 2-simplex of K is now represented in P.

To prove that no 2-simplex has been left out, suppose on the
contrary that P, with its appropriate identifications, is homeomorphic
to ILl, where L is a subcomplex of K. Choose a vertex of L and a
vertex of K — L, and join them by an edge-path (since KI is path-
connected); let a be the last vertex in L and b be the next vertex, so
that (a, b) is a 1-simplex of K — L. We can obtain a contradiction by
showing that ILkK(a)I is not path-connected, and so certainly not
homotopy-equivalent to S'. For suppose, if possible, that some vertex

Fig. 3.17
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in Lk (a) ri L can be joined to b by an edge-path in Lk (a). Once
again, let c be the Last vertex in LkLa) n L, and 4 be thç next vertex:
see Fig. 3.17.

Now (c, d) E Lk'(a), that i, d) is a 2-simplex of K — L. But
it is clear from the Construction of L that. each, of L, in
particular (a, c), faces twO 2-simplexes of L. (a, c) faces at

least three 2-simplexes of K, which contradicts 3.4.4(b).
Thus ILk (a)I is not path-connected, which is again a contradiction,
so that L must be the whole of KU -

Let the vertices of a regular 2ndsided polygon be b°, b',...,. 1, 60,

in order as we go çound the boundaiy Now if the edges of P are
identified in pairs, an edge (c, d) is Jdentilied with one other edge
(c', d'), say, where c is identified with c' and d with d'. For each such
pair of edges, denote both by a symbol as x, and denote the
'reversed' edges (d, c) and (d', c') by x'; of course, different symbols
are to be used for different pairs edges. In this way P can be
specified, with its by the sequence of symbols such as
x or x' to the sequence of edges (60, b1), (61,

b°). For examples the torus can be specified in this way by the
sequence xyx'y', and the real projective plane by xy1.y1:
see Fig. 3.18.

• b1

y. y

b3 . b2 . . t'2

Torus: .

Fig3.18

3.4.5 shows, then, that a pblyhedton IKI that is a path-
connected 2-manifotd can be described by a finite sequence of symbols

as x or x in letter oàcurs twice and are at
least two different letters: let us caU a sequence admissible.
Clearly any specifies a regular polygon with
identifications of edges in pairs, and hence determines a topoogical
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space. this is not yet clas since it is
quite possible 'for two- differérh admissible, sequenqes to specify4
homeornorphic spaces. The next step is to this difficulty, by
giving three rules for changing an admissible sequence, while alteting
the corresponding space only by a homeomorphfsm. To state these
rules, denote (poesibly empty) sequences of symbols by capital
letters, and if say A. = u1a2• each a,. is of the form x or
x 1, write A-' for the sequence a; aj'. (by convention -

' = x).

Rule 1. Replace ABxCDxE by AyDB - 'yC 1E where y is a new
symbol.

Rule 2. Replace
Rule 3. Replace Ax 'xB by AR, provided AR contains

at least twp letters (each occurring twice, of course).

To justify these changes, we prove-

Theorem 3.4.6 The application of Rules J—3 to an admissible
sequence gives a new admissible sequence whose corresponding space is
homeomorphic to the space corresponding to the original sequence.

Proof. It is clearly sufficient to prove this for a single application -

of Rule 1, 2 or 3.

Rule 1. In the regular polygon corresponding to ABxCDxE, join
the 'end-point' of A to the end-point of C by a straight line, denoted
by y. Cut the polygon in two along y, and join the two pieces together
again by identifying the edges corresponding to x: see Fig. 3.19.

The new space can be deformed into a regular polyhedron again, since
it can be triangulated by joining the boundary edges to the mid-point
of x. When corresponding edges of the new polygon are i4entified,

4

Fig. 3.19
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we obtain a space homeomorphic to the original one; and the new
sequence of symbols is AyDB'yC'R.

The reader should notice, however, that this proof is valid only
if BC and ADE are non-empty sequences, since otherwise the polygon
is not cut into two pieces. However, if BC is empty there is nothing
to prove, whereas if 4DB is empty, the replacement of BxCx by
yB'yC1 corresponds merely to going round the boundary of the
polygon in the opposite direction (and putting y = x 1). And BC
and ADE cannot both be empty, since an admissible sequence
contains at least two letters.

Rule 2. This admits a similar proof.

Rule 3. Consider the regular polygon corresponding to
By starting from a different vertex in the boundary, if we
may assume that each A and B represents at least two edges. Make
a cut y from the end-point of B to the end-point of x, and deform
each of the two pieces Into regular polygons in which the two edges
x and y are made into just one edge; finally join the two polygons
together by identifying the edges corresponding to xy ', and deform
the result into a regular polygon again: see Fig. 3.20.

Fig. 3.20

As in Rule 1, when corresponding edges of this polygon are identified,
we obtain a space homeomorphic to the original one, and the new
sequence of symbols is AB. I

Rules 1—3 allow the of admjssible sequences to certain
standard forms. Now each letter x in an admissible sequence occurs
twice; call these two a similar pair if the sequence of
the form • or • • and call them a reversed
pair if the sequence is of the form .. . x x •

The following four steps can be applied to an admissible sequence,
where each step is a combination of applications of Rules 1—3.

Step 1. Replace the sequence by AB, where A is of the form
. and B contains only reversed pairs (of course, A or B
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may be empty). This is justified by the following sequence of opera-
tions, using only Rule I where C is supposed to be already of the
form x1x1x2x2•-•

CDxExF •-* CyD1yE'1F
—* CzzDE'F.

(Each similar pair may be assumed to be of the form
by replacing x 1 by a new symbol y if necessary.)

Step 2. Now replace AB by ACD, where C is of the form
YiziYc lzi. 1• . .y,z8y; 1z; 1, and D contains only non-interlocking
reversed pairs (two reversed pairs are said to interlock if they occur in
the form . z. • . This is justified by Rule 2,
where E is assumed to be already of the required form.

EFaGbHa 'lb'J -÷ EcGbHc 1F1 (here a is the 'x' of Rule 2)

-÷ V (with b as 'x')

EeFIHGde 1d -1) (with c as 'x')

Eefe'f-'FIHGT (with d as 'x').

Step 3. If A is non-empty, replace ACD by ED, where E is of the
form that is, convert all interlocking reversed pairs to
similar pairs. This uses Rule 1, but in reverse:

Fxxaba'b'G÷- Fyb'a'ya'b'G
Fyay1accG

+- FyyddccG.

Step 4. Finally, consider D, which consists only of non-inter-
locking reversed pairs. Let the closest pair in D be •

then there can be no symbols between x and x1, since if both
members of a pair lie between x and x' they form a closer pair,
whereas if just one member of a pair is between x and there is an
interlocking pair in D. Thus we can 'cancel' xx' by Rule 3, and
similarly cancel the rest of D, provided what remains always contains
at least two letters.

The final result of Steps 1-4 is that the admissible sequence now
has one of the forms

—1 —1 —1 •—1 I >X1Y1XI Yi
or

x1x1x2x2• (It 2),
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with three remaining special cases xxyy -1, xx- 1yy 1 and xyy
these cannot be further reduced by 3, although it will be noticed
that represents the same space as x1xyy', and hence as
xx 1yy1, since a cyclic permutation of symbols merely corresponds
to taking a different starting point for the boundary of the correspond-
ing square.

Let' Mg (g 1) be the space obtained from a regular 4g.-sided
pqlygon by identifying the edges according to the sequence
X1Y1Xi Xg))gX 1y 1, afld let Nh (It ? 2) be defined
using x1x1 also let N1 and M0 be the special cases defined by

and xx 1 respectively: We have so far proved

Theorem 3.4.7 A path-connected triangulable 2-manifold is
homeomorphic to one of the spaces M9 (g 0) or Nh (It 1). I

Examples 3.4.8

(a) M1, is homeomorphic to S2. For S2 can be triangulated as the
boundary of a 3-simplex (A, B, C, D), and the process described in
the proof of Theorem 3.4.5 yields the square shown in Fig. 3.21, with
corresponding sequence

Fig. 3.21 *

(b) N1 is the real projective plane RP2. For Fig. 3.18 shows that
RP2 is the space defined by the sequence and a single
application of RuJe 1 reduces this to zzyy'. I

In fact Theorem 3.4.7 is exactly the classification theorem for
triangulable 2-manifolds, although it still remains to prove that each
of M9 and Nh are topologically distinct, and that each of these spaces

C B

B
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is a 2-manifold. ,l'he first point is established by calculat-
ing fundamental groups of M9 and Nh, by using Theorem 3.3.20
(compare Examples 3.3.21).

Theorem 3.4.9

(a) IT1(Mq) Gp ,...,x9,yg;
(this is to be interpreted as 0 if g = 0).

(k\ (1'.J'\..,.,g' 1. .. 2 2
= ,X1... X,,

Proof.

(a) For g 1, M9 is obtained by identifying edges in a regular
4g-sided polygon P. Now all 4g vertices of P are identified together
in since

initIal point of x1 = end point of
end point of x1

= initial point of y1
initial point of x2,

and so on. Thus the boundary of P becomes, after identification, a
'wedge' of 2g circles, one for each letter X,. or y,, arid Mg is
space obtained by attaching a single 2-cell according.to the word
x1y1xj 1yç XQVOX; 1v; 'Theorem 3.3.20 immediately (a),
at least if g 1. However, if g = 0, M9 S2, and = 0 by
Corollary 3.3.10.

(b) Again, for h 2. .Vh is obtained by identifying edges in a regular
2h-sided polygon P. As in the proof of (a), all 2h vertices P are
identified together in and the boundary of P becomes a wedge
Ii circles, one for each letter x,. So Nh is the space obtained by attaching
a 2-cell according to the word x?. . which proves (b) if Ii 2. But
for Ii = 1 RP2, and ir1(RP2) = Gp {x; x2} by Example
3.3.21(a). I

Corollary 3.4.10 The spaces and Nh are all topologically
distinct.

Proof. It is sufilciçnt to show that their fundamental groups
not isomorphic. Now in general the problem of deciding whether
groups given by generators and are isomorphic is
and may even be insoluble. However, it is sufficient here to remark
that, by Propositioii 1.3.24, if two groups G and H are ?somorphIc,
then so are their 'abelianizations' G/tG, GJ and .HJ[H, H).
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Now by Proposition 1.3.28, iri(Mg)J[ii1(Mg), is

Ab {x1, •' Xi,, yg),

and lrl(N,j/[lrI(Nh), 7rl(Nh)} is

Ab {x1, . . ., 2(x1 + +

By setting y = x1 +... + xh, the latter is the same as

Ab{x1,. . ., 2y},

which is the direct sum of a free abelian group with (h — 1) generators
and a group isomorphic to Z2. So by Theorem 1.3.30 the groups
IT1(M9) and 1rl(Nh) are all distinct, so that no two of M9 or can be
homeomorphic. U

It follows also, of course, that no two of Mg or Nh are homotopy-
equivalent, so that for triangulable 2-manifoldE classification up to
homeomorphism is the same as the 'n up to homotopy
equivalence. In particular, any manifold to

to S2; this result of especial interest,
since it remains an unsolved problem whether or not the correspond-
ing result for 3-manifolds and 53 is true: this is the famous 'Poincaré
conjecture'.

To complete the classification of triangulable 2-manifolds, it noW
remains only to prove

Theorem 3.4.11 Each of M9 and Nh triangulable 2-manifold.

Proof. As in the proof of Theorem 3.4.9, Theorem 3.3.20 shows
that each of M9 and is triangulable. Hence it is sufficient to prove
that they are 2-manjfolds.

Consider the polygon P corresponding to Mg, g ? 1.
It is clear that a point of Pnot on the boundary has a neighbourhood
bomeomorphic to an open set in R2. Also. a point A on the boundary
of F, other than a vertex, cccurs in just two -edges, say the edges
corresponding to the symbol Fig. 3.22.

Choose E so that the two 'E-neighbourhoods' of A (the shaded areas
in Fig. 3.22) intersect the boundary of P only in the tdges After
identification, these E-neighbourhoods fit together to make a neigh bour-
hood of A that is clearly homeornorphic to an open disc in R2.

Lastly, consider the point B of M9 corresponding to the 4g vertices
of P. This too has a neighbourhood to an open set in
R2, obtained by piecing together €-nei'ghbourhoods, although this
time there are 4g pieces instead of only 2. In detail, choose E less than
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half the length of an edge of P, so that the e-neighbourhoods of the
vertices are disjoint segments of an open disc: see Fig. 3.23.

SI

Mter identificaton of edges, the numbered E-neighbourhoods fit
together as shown in Fig. 3.23 to make a segment of an open disc
bounded by the beginning of edge x1 and the beginning of edge x2;
this fits onto the segment between x2 x3, and so on. Thus the 4g
segments in P together to make a neighbourhood of B that is
homeomorphic to an open disc in R2. Hence Mg is a 2-manifold.

The reader should have no difficulty in adapting this probf to
deal with Nh, for Ii 2, and the special case N1 = RP2. And of
course M0 = S2, which we have already seen in Example 3.41 is a
2-manifold. I

EXERCISES

1. Give an example of a space X, ith two base points x0 and x1 such that
7r1(X, x0) and 1T1(X, x1) are not isomorphic.

2. Show that a connected open set in is path-connected, and that a
connected polyhedron is path-connected. (Hint: show that each path

yt

A

Fig. 3.22

B
B

yt

yl

Fig. 3.23
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component is a subpolyhedron.) Show also that a contractible space is
path-connected.

3. Show by the following example that two spaces may be homotopy-
equivalent without being of the same based homotopy type. Let X be
the set of all point& in R2 on straight-line segments joining (0, 1) to
(x1, 0), where x1 runs through all points' 1/n, for each positive integer U,
together with 0. Then X is contractible, but if = 0) is the base
point, X and x0 are not of the same based homotopy type. (Suppose that
F: X x I -÷ X is a homotopy st*rting with the identity map, such that
F(x, 1) = F(x0, £) = x0 for all x X, t e I; obtain, a contradiction to,
the continuity of F.)

4. Given spaces X and' 1', with base points x0 and Yo respectively, show
that ?r1(.t x (x0, Yo)) is isomorphriè to the direct sum 'of .r1(X, x0).
and ir1( Y, yo). (This provides another proof that the fundamental
group of a torus is a free abelian group with two generators, since the
torus is homeomorphic to S1 x S1.)

5. Prove the following generalization of Pràposition 3.3.3. Let K be a
'simplicial complex that collapses onto a subcomplex L; then for any
subcomplex M, (K, M)' \ L'. Prove also that ILF is a strong deforma-
tion retract of tKI.

6. Show that a. 1-dimensional complex whose polyhedron is simply-
connected is collapsible onto a vertex. Show also that a 2-dimensional
simplicial complei K in R2 is collapsible onto a 1-dimensional. sub-
complex,'and hence that K is collapsible to a vertex if KI is simply-
connected. (However, not all contractible 2-dimensional simplicial
complexes are collapsible to vertices: see' for example Chapter 8,
Exercise 5.)

7. Show that real projective n-space can be triangulated by identify-
ing antipodal points in L', where L is the triangulatiàn of in Example
2.3.13; more precisely, by forming a geometric realization of the
abstract complex formed from the abstraction of L' by identifying each
vertex (x1,.. ., with (—x1,..., Let a be an n-simplex of
the resultin&simplicial complex K thit has (0,.. . , 0, 1) = (0,.. ., 0, '— 1)

a vertex; prove that is hon'ieomorphic to a deformation retract
of IC — and deduce that irj(RP") ir1(RP2) Z2, for all n 2.

8. 'Let be a path-connected polyhedron. Show that * S°) = 0.

.9. A topological group C is a group that is also a topological space, such that
the functions ,n: C x G.-3- C and u: G—* Care continuous, where m
is the multiplication and u(g) = g' for all g e C. Given loops v. w in
G based at the identity element e, define v * w by (v * w)(t) =
m(v(t), w(t))(t €1). Prove that v.w v * w w.v rel 0, 1, and deduce'
that irj(G, e) is abelian.
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10. Show. that the path-components of an
a is path-connected. -

11. Let X be the space obtained frbsi an eqtilatàral by identifying
edges as shownin 3.24.

Show that X is not a 2-manifold.
12. Show that if K is a triangulation of a connected 2-manifold, it cannot

have a subcomplex (other than itself) whose polyhedron is also a
2-manifold.

13. If K is a simplicial complex such that ftk (a)I is connected for each
vertex a, and each I -simplex of K is face of just two 2-simplexes,
show that is a 2-manifold. -

14. Let Xand Y be triangulable 2-manifolds,'andletf: E2 X,g: E2 -÷ Y
be embeddings, that is, homeomorphisms onto 8%ibspaces. Let e2be the
subspacc of E2 of points x such that < 1, and define the connected
sum of X and Y, X # Y, to be the space from X — f(e2) and
Y — g(e2) by identifying f(s) with (s) each point s of' (with a
little more care, this definition can be made independent of the particular
embeddings f and g). Prove that
(a) Mg # M, is to +,;
(b) N,, M1..and Nh # N3 are both hömeomQrphic to N,, +2;
(c) N,, # N1 is homeomorphic to N,, -

This shows, example, that Mg can be th9ught of as the space
obtained by 'sticking g toruses.iogether', as in Fig. 3.25.

Fig. 3.25

C

Fig. 3.24
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15. A 2-mamfold with boundary is a Hausdorif space M in which each
point has a neighbourhood homeomorphic to an open set in the half-
plane x1 0 in R2, and the boundary of M, *9M, is the subspace of M
of those points that have neighbourhoods homeomorphic to open sets
that meet the line x1 = 0. If K is a simplicial complex whose poly-
hedron is a 2-manifold with boundary, show that for each point
XE IKI, (Lk(x)f is homotopy-equivalent either to S' or to a point,
and deduce that dim K = 2. Show also that each 1-simplex of K faces
either one or two 2-simplexes, and that if L is the subcomplex of K of
those I -simplexes that face exactly one 2-simplex, together with their
vertices, then ILl = aIKI. (Hint: show that *9IKI is closed in IKI.)
Prove also that ILl is a 1-manifold.

16. Let K be a simplicial complex whose polyhedron is a path-connected
2-manifold with boundary, and let ILl be a path component of *91K!;
by subdividing, if necessary, assume that each 2-simplex of K meets L,
if at all, in a face. Show that the subpolyhedron of 1K I consisting of
those 2-simplexes that meet LI is homeomorphic to the space obtained
from a regular polygon in R2 by identifying edges according to a
sequence of symbols of the form aBa 1C, where B and C consist of
single letters (and C may be empty). By using the polygons correspond-
ing to the path components of together with the remaining 2-
simplexes of K, in the way that the 2-simplexes were used in the proof
of Theorem 3.4.5, and then applying Rules 1—3, deduce that, if *91K!
0, 1K I is homeomorphic to the space corresponding to a sequence of
symbols of the form

. . a7B,a,1 . x1y1xj 'yç'• . . ;y9x; 1y;1 (g 0, r 1)

or

a1B1aç'. a1 x1x1 (Ii ? l,r 1),

where the B's are sequences of single letters. Denote these spaces by
M;, respectively, so that for example, is M9 with r discs
removed: see Fig. 3.26 in the case of (torus with one hole).

x

y Fy

Fig. 3.26
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Classify the triangulable 2-manifolds with boundary, up to homeo-
morphism, by establishing the following four propositions.
(a) Each of is a triangulable 2-manifold with boundary.
(b) Any two of N,, that arc homeomorphic must both
have empty boundary, or both have the same r.
(c) By considering abelianizations of fundamental groups, the spaces

are all topologically distinct, as also are the spaces
(d) If M and were homeomorphic, so also would be Mg and N20.

NOTES ON CHAPTER 3

The fundamental group. The definition of the fundamental group is due
to Poincaré [116], who also gave many examples of its calculation and
applications, and introduced the term 'simply-connected'. The notation
iri(X, x0) may seem unnecessarily complicated, but is intended to emphasize
that the fundamental group is just one example of the more general horno-
topy groups, x0), which will be studied in Chapters 6 and 7.

Collapsing. This idea is due to J. H. C. Whitchead [156]. though see also
Newman [109]. Whitehead's paper contains many more examples and
applications. Collapsing plays an important role in combinatorial topology: an
excellent survey will be found in Zeeman [167].

Calculation theorems. Theorem 3.3.9 was provc;d by Tietze [144].
Theorem 3.3.18, usually known as van Kampen's Theorem, was in fact
originally proved by Seifert, and only later (independently) by van Kampen
[83], whose paper, however, also Contains a proof of Theorem 3.3.19. That
van Kampen's Theorem is not true for arbitrary topological spaces is shown
by an example due to Griffiths [61]; but there are nevertheless generaliza-
tions, due to Olum [1121 and R. Brown [35]. Example 3.3.22 is due to
Poincaré [118].

Triangulated 2-manifolds. For the proof that compact 2-manifolds are
triangulable, see Radó [120] or Ahifors and Sario [6], Chapter 1. The
original proof of the classification theorem is that of Dehn and Heegaard
[431, but we follow more closely the proof of Brahana [24].

The Poincaré conjecture. Although this is an unsolved problem for 3-
(and 4-)manifolds, curiously enough the corresponding result in dimensions
greater than 4 is known to be true: see Smale [127], Stallings [132] and
Zeeman [165, 166].
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HOMOLOGY THEORY

4.1 Introduction
In the previous chapter we defined and investigated the funda-

mental group, and saw that it was quite a powerful topological
invariant; for example, it was strong enough to prove the classification
theorem for tri2ngulahle 2-manifolds. the fundamental
group no information at all in a large class of obvious problems:
this is hardly surprising when we recall that the fundamental group of
a ,polyhcdron depends only on the 2-skeleton, and even fails to dis-
tinguish between and S3. This chapter'is concerned with setting up
mare algebraic invariants for a X, called the (singular) homology
groups Like the fundamental group, these arc homotopv-tvpe
in' ariants of X; and if X istriangulable the Sitnplicial Approximation
Theorem yields effective calculation theorems: we shall see that the
homology groups f a polyhedron jKj can he calculated directly from
the simplicial stru•:ture of K.

'l'he homology (and the closely related cohornology groups)
are useful in a large number of topological problems, and are in
practice the standard tools of algebraic In this chapter and
the next we shall give several examples of their use, in particular the
'fixed -point' theorem of Lcfschetz and the Alexander—Poincaré
duality theorem for trangulahle manifolds.

'l'hc plan of this chapter is as follows. Section 4.2 contains the
definition and elementary properties of the homology groups, includ-
ing the proof that they are homotopv-typc invariants, and in Section
4.3 shall see h( w to calculate the homology groups of a polyhedron;
some applications to the topology of Euclidean spaces and sphtres are
given. In Section 4.4 we prove some more calculation theorems, and
finally homology .roups with arbitrary coefficients are defined in See-
non 4.5: this lead to a proof of the Lcfschetz Fixed-Point Theorem.

4.2 Homology groups

Like the fundamental group, the homology groups of a space X are
based on the set -;f maps of certain fixed spaces into X. This time the

104
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fixed spaces are the standard n-simplexes 4,,, and we start by giving
their definition.

Write a" for the point (0,,. . ., 0, 1) in R" (n ? 1): by means of the
standard identification of R" as the subspace R" x 0 of R" x R" = R" +in,

a" may be regarded as a point. of R" + m for any in 0. Write also a0
for the point (0,.. ., 0) in any R". It is obvious that the points
a°, . . ., a" are independent) and so may be taken to be the vertices of
an n-simplex.

Definition 4.2.1 For n 0, the standard n-simplex 4,, is the
simplex (a°,. . ., a") in R" (or in R" + m 0). When necessary, 4,,
is regarded as the polyhedron of K(4,,).

Definition 4.2.2 Given a space X, a singular n-simplex A in X is a.
map A:4,,—*X.

Thus a singular 1-simplex in X is just a path in X, in the sense of
Definition 3.2.1, so that it would appear that we could generalize the
fundamental group by taking homotopy classes of singular n-simplexes
in X, and making an appropriate definition of the 'product' of two
singular simplexes. This can indeed be done, but the resulting groups
are the homotopy groups 7r,,(X) (compare Propositions 7.2.1 and 7.2.2).
To define the homology groups, on the other hand, we construct groups
from the sets of singular simplexes in a rather different, and more
algebraic, fashion.

Definition 4.2.3 Given a space X, and an integer is, the nth
singular chain group of X, ,S',,(X), is defined to be the free abelian
group with the singular n-simplexes in X as generators (we take
S,,(X)= Oifn <0).

The groups S,,(X) are of course not independent, since for example
the restriction of a singular n-simplex A: 4,, -+ X to 4,, is a singular
(is — 1>-simplex. The relationships that arise by restricting singular
simplexes in this way to faces of 4,, can be formally described by the
boundary homomorphisms 0: S,,(X) -÷ S,, - 1(X), whose definition
depends in turn on titeface maps FT:4,,_1

Now if K is a simplicial complex, a singular n-simplex A: 4,, —'b
that happens to be a simplicial map is completely determined by the
set of vertices (Aa°, . . ., Aa"), which span a (geometric) simplex of K
(possibly with repeats). In this situation the singular simplex will often
be denoted by (Aa°, . . ., Ad'); we hope that the context will always make
clear whether the notation refers to the singular simplex A in IKI or
to the geometric simplex A(4,,) of K.
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This notation allows us to specify certain elements of
by taking the various (n — 1)-dimensional faces of

Definition 4.2.4 The rth face map FT: .., 4,, is the element
(a°, ..., 8,..., of where the notation a7 means that
the vertex a7 has been omitted.

The boundary homomorphism e: S,,(X) S,,...,(X) is defined by
associating with each singular n-simplex A the set of composites
AFT: —÷ X. Now must of course be defined to be the zero
homomorphism if n 0, but otherwise, by Proposition 1.3.20, a
unique homomorphism can be defined by specifying its value on
each generator of S,,(X), that is, on each singular n-simplex.

Definition 4.2.5 Let A be a singular n-simplex in X (n ? 1).
Define

=
(— 1)TAFT.

Observe that if X is a polyhedron IKI, and A: 4,, —+ is a
simplicial map, then Ak,...,

Example 4.2.6 If = (a°, a', a2) is regarded as an element of
S2(42), we have

a(a°, a', a2) = (a', a2) — (a°, a2) + (a°, a'),

so that e(a°, a', a2) is associated with the sum of the 1-sirnplexes in
the boundary of (a°, a', a2), at least if these simplexes are given
appropriate signs. Observe also that

02(a°, a2) = t9(a', a2) — e(a°, a2) ÷ e(a°,

= (a2) — (a') — (a2) ± (a0) + (a') — (a°)

=0,
as one might expect, since 43(a°, a1, a2) represents a closeu loop,
which ought to have no 4boundary'. I

The property that a2 = 0 holds generally thc swgular
chain groups and boundary homomorphisms of a space X.

Proposition 4.2.7 Given a space X,

a2 = 0: S,,(X) —÷ S,,_2(X),

for all integers n.



HOMOLOGY GROUPS 107

Proof. It is clearly sufficient to prove this for ii 2, and even then
we need check it only for one typical singular. n-simplex A. Now

=

But it is easy to see that FtF' = F8FT ' if s < r, so that

= (— +
8<7

=0,
since each expression AF'F' occurs twice, once with sign (— + I + 1.

in ,and once with sign (— In . I
8<?
Thus a space X gives rise to a set of abelian groups one for

each ii, and homomorphisms a: -÷ 1(X) such that a2 0.

It is often convenient to consider this algebraic situation in the
abstract.

Definition 4.2.8 A chain complex C is a direct sum of abelian

groups one for each integer n, together with a homomorphism
8: C —* C such that = 0 and c 1for each n (each is
regarded as a subgroup of C).

In particular, the singular chain groups and boundary homomor-
phisms of a space X give rise to the singular chain eomplex of X, S(X)

Sometimes, however, it is convenient as a technical device
to introduce a fictitious 'singular (— 1)-simplex', and hence define the
'reduced' singular chain complex of X,

Definition 4.2.9 The reduced singular chain complex of X, S(X),
is defined by setting = for n 1, but by taking

to be the free abelian group with a single generator a. The
homomorphism 0 is the same as that of 8(X), except that

8(a) = 0 and 8(A) = * for each singular 0-simplçx A; clearly 82 = 0,

since if A is a singular 1-simplex,

82(A) = O(AF° — AF') = * — * = 0.

Yet a third chain complex arises if we consider a pair of spaces
(X, Y).

Definition 4.2.10 If (X, Y) is a pair of spaces, the relative
singular chain complex S(X, Y) = Y) is defined by setting
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Y) = Y), with the obvious identification of as
a subgroup of (Thus Y) may be thought of as the free
abelian group with generators those singular n-simplexes X: .-÷ X
whose image is not completely contained in

Y) Y) is the hofnomorphism
induced by a: Sn(X) -÷ in the sense of Theorem L3.l1:
obviously a2 = 0 once again.

There is no question of defining a 'reduced' relative singular chain
complex, since the singular (— 1)-simplex * is supposed to be common
to all spaces, and hence Y) Y).

The reader *ill notice that S(X; Y) = S(X) if Y happens to be
empty. Thus any theorem about relative chain complexes immediately
specializes to 'non-relative' chain complexes on putting Y = 0.

Although they are in fact topological invariants, the various chain
complexes that we have constructed are too unwieldy for practical
purposes. However, the fact that d2 = 0 in a chain complex allows us
to construct other gioups, namely the homology that turn out
to be much easier to handle, and are actually homotopy-type invariants.
As before, it is convenient first to consider the abstract algebraic
situation

Definition 4.2.11 Given a chain complex C = 'the group of
n-boundaries is defined to be the image of a: Cfl.f1 and
the group of n-cycles is the kernel of &: C,,_1. Clearly

C since a2 = 0; the nth homology group is defined
to be the quotient group We write B(C) for =
Im a, Z(C) for = Ker 0, and H(C) for

H(C) Z(C)/B(C).
in particular, we write and for

and H(C) respectively, if C = S(X): is the nth
(singular) homology group of X. Similarly if C = we write

(the nth reduced homology, group of X) and
and if C = S(X, Y) we write Y), Y), Hn(X, Y)

and Y); Y) is the nth relative homologjr' group of
(X, Y). Notice that all these homology groups are trivial if n < 0,
'except that i7. 0) Z.

Example 4.2.12 Let P be a single point. Clearly for each n 0
we have Z, generated by the only possible map from
to P. Moreover 0: —* is an isomorphism if n is even
and is zero if n is odd. Thus for n even, n 2, we have = 0 so
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= 0; for n odd, n 1, we haye BI4P) = =
so that 14(F) = '0. On the ether .hand Z0(P.) Z and B0(P) = 0,

a that 110(P) Z. To sum up,

HIP'10' n=0.
A similar calculation shows all n.

Example 4.2.13 If X s any space, 110(X) Z.
Eor the generators of = Z0(X) may be taken to be the points
of X, and a singular 1-simplex is just a path, B0(X) is the free
abel.ian group generated by all x — y, where x, yare points of X.
Thus H0(X) Z, and a generator is the coset [x], for any point x X.
• A similar argument shows that, if Xis not is
a freeabelian group with one generktor for each path compohent. Also
110(X) is a free abeian group with one fewer generators than there are
path components: tMt is, &5(X) I?0(X) Z. I

Havingdefiuied the homology groups, the next step, as in Chapter 3,
is to show that a continuous map f: X -+ 1' gives rise to homomor-
phisms 14(X) 14( Y). As usual, we do this in çwo stages, first
considering the algebraic situation.

Definition 4.2.14 Given chain complexes C = SC,, and =
a chain map 0: C —+ D is a homomorphism from C to D such

that 00 = 00 and D,, (we write 0 indiscriminately for the
boundary homomorphism in either C or D). If 0 is Ilso an isomorphism
(of groups), 8 is calle4 a chain isomorphism.

Notice that if #: D —* E is also a chain map, then so is the composite
#0:

C D jives rise to homo-
morphisms 14(C) -+ J1,(D), one for each n; with the following
properties:

(a) If 1: c C is the identity chain isomorphism, is the identity
isomorphism for each a.

(b) If 0 is a chain isomorphism, each is an isomorphism.
(c) if #: D —÷ E is another chain then =

Proof. Since 00 = 08, it is clear that c 14(D) and
Z,(D). Thus by Theorem 1.3.11 6 induces homomor-

phismi —* The proofs of properties (a)—(c) are very
easy, and are left to the reader.
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Thus, given a continuous map of pairsf: (X, Y) —+ (A, B), in order
to makef induce homology homomorphisms we must construct from
f a chain map f•: S(X, Y) —+ S(A, B).

Proposition 4.2.16 Let f: (X, Y) —÷ (A, B) be a map of pairs.
Thenf induces a chain S(X, Y) -÷ S(A, B), with the properties:

(a) f is the identity map 1: (X, Y) —* (X, Y), then f is the
identity chain isomorphism;

(b) if g: (A, B) —*(C, D) is another map of pairs, then (gf)
Also a map f: X -÷ A induces a chain map f: £'(X) -÷ S'(A), with

similar properties.

Proof. First define f: S(X) -. S(A), by sending the singular
n-simplex A: —-* X to the composite fit: —÷ A. This clearly
defines a chain map, and I S( Y) S(B), so that f induces a chain
map f: S(X, Y) •-* S(A, B) as well. Properties (a) and (b) are
trivial, and the modification to reduced chain complexes is made by

= *.

Corollary 4.2.17 f induces homomorphisms Y) -+
B), -+ all n, with the properties:

(a) if f is the identity map, is the identity isomorphism;
(b) = I
Thus homeomorphic spaces have isomorphic homology groups.

Indeed, more than this is true, since the homology groups are homo-
topy-type invariants. As iu the case of the fundamental group, the
proof consists in showing that homotopic maps induce the same
homology homomorphisms, though in the spirit of the present
chapter we first consider the analogous algebraic situation.

Definition 4.2.18 Given chain complexes C and D, and chain
maps 0, C —÷ D, a chain homotopy h between 8 and is a homo-
morphism h: C —k D such that ç6(c) — 8(c) ah(c) + ha(c) for each
c e C. In this case, the chain maps U and are said to be chain-
homotopic.

Proposition 4.2.19 If 0, C -÷ D are chain-homotopic chain maps,
then = H(C) -÷ H(D).
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Proof. A typical element of H(C) is a coset [z], where z E Z(C),
and = [0(z)]. But if h is the chain homotopy between 0 and
we have

#(z) — 9(z) +

since a(z) = 0. Hence [/,(z)] — [9(z)] = [EJ/i(z)] = 0. I
Thus it only remains to show that homotopic maps induce chain-

homotopic chain maps. Now a homotopy G between two maps
f,g: X—÷ Y induces a chain map G: S(X x 1) —÷ S(Y), and so to
construct a chain homotopy between and it is sufficient to
consider (i0), and (i1), where i0, i1: X —* X x I are the inclusions
as X x 0, X x 1 respectively. The chain homotopy here is defined by
sending A: —+ X to A x 1: x I —+ X x I, composed with a
certain element of x 1), which in turn is obtained from a
triangulation of x I.

Now if K is any simplicial complex in IKI x I C x
can be regarded as a polyhedron by the following method, which

is similar to the definition of the derived complex in Definition 2.5.7.
Suppose, as an inductive hypothesis, that for each r < n, JKTJ x I is
the polyhedron of a simplicial complex KT x I, such that

(a) IKI x are simplicial maps;
(b) if L is a subcomplex of KT, there is a subcomplex L x I of

KT x I such that IL x I = x 1•

(If n = 0 the hypothesis is vacuous.) Now if a is an n-simplex of K,
the 'boundary' a x 0 U x I u a x 1 is already the polyhedron of
K(a) x Oud' x IUK(or) x 1. Thus we may define

x I = x IO{ai}U{(&)),

where a runs through all n-simplexes of K, through all simplexes in
the 'boundary' of each a x I, and denotes the point This
definition is justified in exactly the same way as the definition of the
derived complex; we omit the details. Finally, K x I is defined to be

x I, where m = dim K.

Example 4.2.20 If K = K x I is the simplicial complex
in Fig. 4.1 overleaf. •

In particular, x I is the polyhedron of x I. By using its
simplicial structure, we can pick an element of x I) and
hence construct the required chain homotopy between the chain maps
induced byi0, x I.
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Given any space X, there exuts a chain homo-
x 1) between (i0) and (i1).

Proof. Suppose that we have already defined h: S,(X)
S,, + x I)ffor all X, and for all r < n (if r < 0, take h = 0).
Let A be a singular n-simplex in X, and define

h(A) (A x .. ., c") — (b°, .. ., b") — hø(a°,.. ., a")]),

where a = (i&, c' = (a', 1), b' = (a', 0), and a[ ] is defined by
the rule a(d°,. .., d?) = (a, d°,. ., d'), extended linearly (by induc-
tion, h8(a°,.. ., a") is a linear combination of simplicial maps, since

x 1: x I-÷4,, x us simplicial for each r). Then

.9h(A) = (A x 1)((c°,.. ., c") — (b°,. .., b") — ha(a°,. . ., a")

— . . ., c") (b°,. . ., b") ha(a°., . . a"))).

But by the inductive hypothesis we have

øhø(a°,.. .,,c") = .9(b°,...,b") — ..,a")

so that
= 8(c°, . ., c") — ø(b° ., • •,

(A x 1)((c°,. •, c") — (b°,. .., b") — .. •, a"))

= (i1)(A) — (i0)(A) —

since obviously (A x =
This completes the inductive step and hence the definition of h. I

112

Proposition 4.2.21
topy h: S(X)-+ S(X

FIg. 4.1
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Notice that /t can be extended to a chain homotopy from S(X) to
x I) by putting h(.) = 0.

Corollary 4.2.22 If f g: (X, Y) —* (A, B), then

f g: X -÷ A, then

=

Proof. The chain homotopy h clearly induces a chain homotopy
Ii: S(X, Y) -÷ S(X x I, Y x I). Thus if G: (X x 1, Y x 1) —'-
(A, B) is the homotopy between f and g, then for each x E S(X, Y)
we have

aGh(x) + Gha(x) = G(Fih(x) +

= G((i1)..x — (i0)x)

= —

Hence = by Proposition 4.2.19. The proof for reduced homol-
ogy is similar. •

Corollary 4.2.23 If(X, Y) (A, B), then Y) B)
for each n. Similarly R,,(A) if X A.

Proof. Let f: (X, Y) —* (A, B) be a homâtopy equivalence, and
g: (.4, 8) (X, Y) be a homotopy inverse tof. Then

= 1,

the identity of IJ,(X, Y). Similarly a the identity
isomorpRism 'of B), so that and are isomorphisms. I

4.3 Methàds of calculation: simplicial homology
As 3, having defined the homology groups and proved

that they are hornotopy-type invariants, we now face the problem of
calculation. Once again the Simplicial Approximation Theorem can be
used to reduce the problem considerably ifl the case of (or
indeed spaces homotopy-equivalent to polyhedra), and we shall see
that it is sufficient to consider those singular simplexes that are
actually simpliciai maps from the standard simplexes: this is. the
analogue for homology of Theorem 3.3.9.

Suppose then thaf (K, L) is a simplicial pair. Write 4,(.K) for the
subgroup of generated by the simplicial maps A:
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and let = (which may be regarded as a sub-
group of ILl)). It is clear that so that
ii(K) = and J(K, L) = L) are sub-chain complexes
of S(JKI), S(IKI, IL!) respectively. Similarly, J(K) C S(K) is
defined by setting &1(K) = S1(IKI). Finally, write

L) and for L)) and
respectively. (Compare Definition 3.3.8.)

In fact L) IL!) and
Now zl(K) S(IKI), and.the method of proof is to con-

struct a chain map that is an inverse, to within chain of
the inclusion chain map. The idea here is a very simple one: the
Simplicial Approximation Theorem is used to replace each singular
n-simplex in IKI by a simplicial map of some triangulation of in a
coherent way.

Proposition 4.3.1 For each n, and for each singular n-simplex A
in JK there exists a simplicial complex such that

J

= a
simplicial map

I I 1K J, and a homotopy GA between A and
Moreover

(a) if A is already simplicial, then = = A, and GA is
the constant homotopy;

(b) for each face map Fr: IMAFYJ IMAI is simpli-
cia!, gAF gAF', and GA(Ft x 1) GAP?.

Proof. Suppose, as an inductive hypothesis, that we have already
constructed and for all singular m-simplexes /L in 1K!, for
m < n; suppose also that each is a semi-constant homotopy in the
sense of Definition 2.5.21. The induction starts, since the hypothesis
is vacuous for n = 0.

Consider a singular n-simplex A. If A is simplicial, then so is each
and we may take MA = = A, and GA to be the constant

homotopy. If A is not simplicial, on the other hand, the inductive
hypothesis ensures that we already have the required maps and
homotopies on each face of Moreover these fit together where the
faces overlap, so that we have a simplicial complex N such that
IN! = together with a simplicial map h: )N! 1K! and a
semi-constant hornotopy H between A INI and h. Now define

M= NL{aa}tJ(a),

where a = and r runs through all simplexes of N; the usual
argument shows that IMI = Corollary 2.5.22 now yields a
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simplicial map gA: (M, —+ K , for some s, such that = h on
NI, and A gA by a homotopy GA that extends H (and, as remarked

after Corollary 2.5.22, GA may be be semi-constant). Thus if
we set MA (M, the inductive step is complete. 1

Observe that if (K, L) is a simplicial pair, and c ILl, then
and GA may be taken to be maps into jL( as well.
The required chain map from S(}K)) to zl(K) is constructed by

sending the singular n-simplex A to where xA is a suitable
element of 4fl(MA). If MA we take XA to be the identity map
of otherwise suppose that we already have XAF' for each r, and
hence (— l)7(F") XA to be

(— I XAP?, since MA is (i%1, not M; instead, we take its
image under a standard chain map #: L1(M)

Definition 4.3.2 Given a simplicial pair (M, N), the subdivision
chain map -÷J((M, N)') is defined inductively as follows.
Suppose that Llm(M) N)') has been defined for all
m < n, such that is the identity for m = 0 and on all singular
simplexes in 1NI. Take a simplicial map A: 4, whose image is
not contained in INI, and define 4(A) where a is the bary-
centre of Certainly = if A e 4(N); otherwise,

=

= —

=

since = p2(A) 0. Thus is indeed a chain map.
If A is not simplicial, define

XA = çM[a (— I)T(FT).xAF,] eJfl(MA),

and hence define a: S(IKI) by setting

a(A) =

for each singular simpLex A in KI.

Proposition 4.3.3 a is a chain map.

Proof. We first show that eXA = (— l)T(FT)xApr, by induction.
For

— (— l)T(FT)xAFT].
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But b (— 1)'(F')XAFr = 0 as in Proposition
4.2.7, so that-

= ( —

since is the identity on
it follows that

=

(gA)

=

rt is cicar that = I, where 4(K) --* S(IKI).is the inclusion
chain map, and (from the remark after Proposition 4.3.1) that a
induces a chain iaap a: 4(K, L) --* S(IKI, ILl), with a similar prop-
er.ty. To complete the'proof that 14(X) we construct a
chain homotopy between and the identity chain isomorphism of
S(IK I). This is very similar to Corollary 4.2.22, and the chain homo-
topy is defined by sending the singular n-simplex.\ to (GA).yA, where

is a suitable element of x I) and GA is the
obtained in Proposition 4.3.1.

To define we heed a triangulation of x I that has
the '0 end' and M,, at the '1 end', and such that FT x 1: INAFrI

INAT is simplicial for each face map FT: 41 —÷ If we suppose that
this has already been done for all singular m-simplexes with m < a,
then we have a suitable triangulation P of 41 x 0 U x u

x 1, so that we may take

= P u u (a),

where a = and runs through all simplexea of P.
Now suppose that we have constructed + (regarded as

a subgroup of S,n+i(4m x I)) for all singular m-simplexes with
m c a, satisfying -'

—
x

x x Oaflcl4m X 1,
and Is taken to be zero if m = 0 (compare the' proof of Proposition
4.2.21). Take a singular n-simplex A, and define

afji1)xjr, — — (— 1)7(F' x
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'Then
= (i1 ) Xl — 1,, — ( — 1 )'( Ft x 1)

as required, sinu

i0 — '> ( ly(FT 1

> 1 )T(Fr --

= ( — 1';'' 1)i F

= I) as in Proposition 4.2.7.

Finally, define h: S(IKI) -÷ by /i(A) =

Proposition 4.3.4 h 15 chain betwt'en 1 and f$tf.

Proof.

=

= (GA)[(il)x,\ . — "> ( — 1)T(FT >

= — A (--
= — — I

Corollary 4.3.5 L) -+ is an iso;norphisrn,
as also is —k

Proof. The chain homotopy h induces a similar chain hornotopy

h: S(IKI, Li) —* S(IKI,
and we can extend h'to by setting h(*) = 0. •

Observe that if f: (IKI, LI) —* (hut, is a simplicial map of
pairs, ILl) —* Ixj) may be tp be the
homomorphism from L) to N) induced by the restric-
tion off, to a chain map from d(K, L) to J(M, N). Indeed, even iff is
not simplicial, may be identified with the homomorphism
f,: L) -÷ N) induced by the composite chain map

L) —L S(IKI, LI) _'--* !Ni) N);

for certainly the diagram

L) N)

$01
ILl) —÷ INI)

is commutative, because ffl and flaf ,8 are chain-homotopic. -
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4.3.6 Let L and M be subcomplexes of a simplicial

complex K, where K = L u M, and let i: (j M L n M ) -÷
•

iLl) be the inclusion map. Then IL n Ml) —+
• ILl) is an isomorphism. since i is sirnplicial, it is
sufficient to consider

but this is an isomorphism sInce a simplex of K is in M (L M)
ifand only if it is inK — L.

This result is known as the Excision Theorem, since it expresses
the fact that the 'excision' of the simplexes in K — ]%i from both K
and L does not affect Indeed, an analogous result
holds for arbitrary topological spaces: see Theorem 8.2.1.

Corollary 4.3.5 is the analogue for homology of 'l'heorem 3.3.9 for
the fundamental group, and like that theorem does not by itself
provide a practical method of calculation. Even though each L)
is a finitely generated group, there are many more generators than
necessary: for example, if P is a single point then Z for
each n 0. What we should like to do now is to reduce the chain
complex still furthei until there is just one generator for each
(geometric) simplex of K — L (compare Theorem 3.3.13).

This is achieved by taking the quotient of 4(K), for example, by
the sub-chain complex generated by all expressions of the form

(b°, . .
•, 6n)

. . .,
(together with all (b°, . . . , contair.ing a repeated vertex), where
(b°, . . . 4(K), of 0, 1, . . . ,n,
and is ± 1 or — 1 according as p is even or odd. It is'hot quite obvious
that c 4°(K), but this is easy to prove.

Proposition 4.3.7 c 4°(K).

Proof. It is sufficient to consider the action of on (b°,. . ., b")
+ (b°, .. ., b', . . ., ba), since every permutation is a composite
of transpositions of this form. But

., + (b°, . . ., b', . . .,

= (— 1)'[(b°, . . ., . . .,
S * T.r + 1

± (b°, . . ., . . ., b', . . .,

since the terms Involving &' and STf 1 occur with opposite sign, and
so cancel.
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Definition 4.3.8 If K is a simplicial complex, the simplicial chain
complex of K, C(K), is defined by setting C(K) = ii(K)/J°(K).
There are similar definitions of C(K, L) and C(K) (where C...1(K) =
A

We shall write (b°, . . ., for the coset of (bo,. . ., observe
that this coset is zero if the set of vertices b°, . . ., b" contains a repeat,
so that C(K), for example, has one generator for each geometric
simplex of K.

Let a: 4(K, L) C(K, L) (a: 4(K) -+ C(K)) be the quotient
chain map. We prove that a induces isomorphisms between L)
and the simplicial homology groups L)).

Theorem 4.3.9 L) —* L)) and -+
are isomorphisms.

Proof. As in Corollary 4.3.5, we construct a chain map C(K)
4(K) which is an inverse to a, to within chain homotopy. To define
totally order the vertices of K, in the form b° < b", write
each generator of C(K) in the form [6o,.. ., where i0 << in,
and define

., = (b*o, . . ., ben).

Clearly is the identity chain isomorphism of C(K), so that it
remains to produce a chain homotopy h: 4(K) —.4(K) between
and the identity.

Suppose as an inductive hypothesis that we have constructed
h: 4,,1(K) 4m+i(K) for all m < n, such that

— +

for all generators of 4m(K); suppose further that h(s) actually lies
in (if m 0 we may take h 0). If now A is a
generator of 44K), n 1, then Ii has already been defined on 8(A),
and

— A — hø(A)) = — 8(A) — 0h8(A)

=0,
since h02(A) = 0. Moreover all elements involved are in 4(K(A(4j));
but is a simplex, and so is contractible; so = 0. Thus
there must exist an element h(A) c such
•that 8h(A) = fla(A) — A — 1z8(A), as required.
• It follows that H4K) H4C(K)) is an isomorphism; for
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(K, L)we observe that and /z induce corresponding homomorphisms
for (K, L), and for reduced homology we set *, /i(*) = 0.

Corollary 4.3.10 L) depends only on the (n + 1)-skeleton,
and is zero if it > dim K. •

Observe that 1ff: IL() -÷ (IMI, is a simplicial map, then
f1i°(K, L) c N), so that f induces a chain mapf•: C(K, L)
C(M, N). The corresponding homology homomorphism may be
identified withf*, since the diagram

L) ' HI,C(M, N)

I
H(C(K, L)) —÷ H(C(M, N))

is obviously commutative. Similarly ç&J°(K) J°(K'), where is the
subdivision chain map of Definition 4.3.2, so that induces 4:
C(K'), whose induced homology homomorphism is the same as that
induced by the original Moreover an obvious induction argument
shows that sends each generator of C(K), considered as an n-simplex
a of K, to the sum of the n-simplexes in (K(o)) (with appropriate
signs). Thus if h: -÷ 1K] is a simplicial approximation to the
identity map, the remark after Proposition 2.5.13 shows that

C(K) —* C(K) sends each generator to plus or minus itself.
Hence, by an obvious adaptation of the argument in Theorem 4.3.9,

is chain-homotopic to the identity, and so is the identity
isomorphism. h is a homotopy
equivalence; thus is the inverse isomorphism to Similar
remarks apply to relative homology.

We end this section with some calculations and examples.

Example 4.3.11 S' may be triangulated as the boundary 6 of a
2-simplex a = (b°, b', b2). It follows immediately that = 0 if
n > 1 (and also if ii < 0); moreover H0(S1) Z by 4.2.13.
Thus it remains only to calculate H1(S') H1(C(&)).

Now C1(à) has three generators, [b°, b1], b2] and [b1, b2], where
a[b°, b'J = [b1J — [b°}, b2J [b2J — [b°] and b2] = [b2}
— [b1J. It is easy to see that Zj(C(â)) is isomorphic to Z, with
generator [b°, b'] + [b', b9 — [b°, b2J, and since clearly B1(C(dr)) 0
we have H1(S1) H1(C(à)) Z.

Example 4.3.12 Let us now calculate for all n 0, by
triangulating S" as a, where a is the (n + 1)-simplex (b°,.. ., b's).
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Now it is possible, of course, to calculate H(C(à)) directly in
Example 4.3.11, .but this method is tedious and complicated. Instead,
we use a trick, based on the fact that a and K(a) differ by only one
simplex, and a is contractible. It is convenient also to do the in
terms of reduced homology.

Consider C(a) and C(K(a)). Obviously Cm(ô) = 0 if tn > it or
m < — 1, and the inclusion (simplicia!) map 1: IK(a)1
isomorphisms i: Cm(K(o)) for all m n. Moreover the
following diagram is commutative, since i is a chain map.

'.4 'p.
o

Now 1K(a)I, being homeornorphic to is contractible, and
hence the reduced homology grôups'ofK(a) a

point, are all Zero. It follows at once that = 0 for
m < n, Also

Z, a generator is the coset
In sum up.

A (Se)
if rn = n
otherwise.

(Notice that this is true cven if n = —1, if we interpret
empty set!)

Since K(o') — a only the one simplex C(K(t)p
., and so

H
(Z, n + I

'= I
An itnn consequence is that and s" are not homotopy-

equivalent if m n, and are certainly not homeomorphic... This
result :5 particularly useful be with .Theorem 2.4.5
to provt' some on and possible
triangulations certain spaces.

Theorem 4.3.13 It K and are polyhedrb,
K = dim L.

Proof. 'Let dim K = n,
n a point x in the interior of an n-simplex u L, so that
Lk (x) or, and - 1(Lk (x)) Z. But if y point of jK Lk (y)
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is a subcomplex of dimension at most (m — 1), so that (y)) =
0. Hence ILk (x)I )Lk which contradicts Theorem 2.4.5. I

Corollary 4.3.14 If K is a triangulation of S't or E't, then
dimK = n.

Proof. By Example 2.3.13, both 51t and E't have triangulations by
n-dimensional complexes. I

We can actually say rather more about possible triangulations of E't.

• Proposition 4.3.15 If K is a triangulation of E't, with homeo-
morphism h: IKI E't, there exists an (n — 1)-dimensional subcomplex
LofKsuchthathjLl = S't'.

Proof. In any case can be triangulated as K(c7), where a is an
n-simplex, and then a triangulates S't '. Moreover, by rotating E't
about the origin if necessary, we can arrange that any given point x of
S't' is in the interior of an (n — 1)-simplex of a. It follows that
Lk (x) a — r, and it is easy to see that là — ri is contractible to the
vertex of a that is not in (the homotopy involved is linear). On the
other hand if xe E't — S't1, then x is in the interior of a and so
Lk (x) = a. Hence is the set of points of E'tsuch that ILk (x)i is
contractible, and by Theorem 2.4.5 this is true however is
triangulated.

Thus if h(x) S't' and x is in the interior of a simplex T, then
every point in the interior of T, having the same link as x, will be
mapped into S't'. Hence h(r) since S't' is closed. That is
to say, = hiLl, where L is the subcomplex of K of those
simplexes i such that h(r) c S't'. And dim L n — 1, since L is a
triangulation of S't'. •

Another important consequence of Example 4.3.12 is

Theorem 43.16 Let U, V be open sets in Rm, R't respectively. If
U and V are homeomorphic, then m = n.

Proof Let h: U V be the homeomorphism, and let x be any
point of U. Choose e so that B, the E-neighbourhood of h(x), is con-
tained in V, and then choose so that B', the n-neighbourhood of x, is
contained in h1(B). Thus h is a of B' onto a subset
of B, and 11(x) is contained in an open set in h(B'). But B and B' are
homeomorphic to cells, and so are triangulable, so that by Theorem
2.4.5 we must have iLk (x)l ILk (h(x))I. But ILk (x)I is homeo-
morphic to and ILk (h(x))i to S't1, so that m = n.
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In particular, and R8 cannot be homeomorphic unless m
Finally, let us calculate the homology groups of the real

plane RP2.

Example 4.3.17 Consider the triangulation of RP2 by the
simplicial complex K shown in Fig. 4.2.

As in the case of 58, it would be possible, though very laborious, to
calculate H(C(K)) directly from the definition. We prefer instead to
compare K with two subcomplexes: L, consisting of K without the
2-simplex (b3, b5), and M, consisting only of (b°,tbl), (b', b2), (b°, b2)
and their vertices.

Write 1: IMI IL!, j: IL! —÷ 1K! for the inclusion (simplicial)
maps. Now IM! is a strong deformation retract of Li, so that i is a
homotopy equivalence and H8(C(M)) —+ is an iso-
morphism for each a. Also Mis a triangulation of S', so that H8(C(M))
is Z for a = 0, 1 and zero otherwise; hence thesame is true for L.
Moreover, a generator of H1(C(M)) H1(C(L)) is [z], where

= [b°, b'] + [b', b2) — [b°, b2J.

N )W consider the commutative diagram
0 8o —* C2(L) —k C1(L) —+ C0(L) —p 0

'.1

in whichj is the identity on C1(L) and C0(L). Let c be the element of
C2(L) (or C2(K)) defined by

b2

Fig. 4.2
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c = [6°, bt, + [b', b2, b3] + {b2, b4, b3] + [b°, b2] + [6°, 61, b4J

+ [61, b4] + [6', 62 + [b°, b5, b2] [b°,

direct calculation shows that b', b5] = 2z in C(K) (each
1-simplex in + [be, be]) occurs twice, with opposite signs if it
does not occur in z). So if r[b3, ÷ d e Z2(C(K)), with
d C2(L), we have

(I a(,[b3, b51 ÷ d)

in C1(L). That is, [2rz} = 0 in H1(C(L)) 2, so that r = 0. But
H9(C(L)) 0, so .that Z2(C(L)) 0 and d = 0 as well. It
follows that Z2(C(K)) = 0, or H2(C(K)) 0.

Now C1(K) = C,(L) and Z1(C(K)) = Z1(C(L)); also B1(C(K))
differs from B1(C(L)) only in that it contains extra elements 2nz for
each integer a. Since H,(C(L)) Z, generated by [zJ, it follows that
H1(C(K)) Z2, also generated by [z].

Finally, H0(RP2) 2 since RP2 is path-connected. To sum up,
II,(RP2) HO(RP2) 2, and all other homology groups are
zero. a

4.4 Methods of calculation: exact sequences
The examples at the end of Section 4.3 will no doubt have con-

vinced the reader that calculation directly from Theorem 4.3.9
be extremely laborious for general polyhedra. In the case of and
RP2 we were able to perform the calculation by various tricks, but
these had to be invented separately for each space, and gave no
insight into any sort of general procedure. One object of set Lion is
to prove a theorem enabling the homology groups of polyhedra to be
calculated from still further simplified chain complexes, in which the
generators, instead of corresponding to single simplexes, correspond
to certain subcomplexes called 'blocks'. The situation in homology is
thus once again similar to Section 3.3: there, Theorem 3.3.13
theoretically gave a method of calculation of the fundamental group
of a polyhedron, but it was much quicker in practice to use the result
of Theorem 3.3.20.

In order to prove the calculation theorem, and also for its ind-
pendent interest, we shall first show that, if (X, Y) is any pair of
spaces, the homology groups of Y, X and (X, Y) can be fitted into
exact sequence, called the exact homology sequence ef the (X, k').
In establishing this exact sequence, it is in the spirit of
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Section 4.2, first to consider the abstract algebraic situation. This
approach has-'the incidental advantage of yielding some other useful
exact sequences. In order to state the fundamental theorem, one
definition Is necessary.

Definition 4.4.1 A sequence of chain complexes and chain maps
0 - C — 1) E 0 is an exact sequence of chain complexes if it is
exact considered as a sequence of abelian groups and homomorphisms
(we write U for the chain complex C in which each = 0).

Theorem 4.4.2 Given an exact sequence of chain complexes

0----*

lucre exists a homomorphism --* - 1(C) for each n, such
that the sequence

is (ifl exact sequence of ahellan groups and homomorphisms. Moreover,
giz'en a commutative diagram of chain complexes and chain maps

a

o C' it — —4. 0
) s)

which the rows are t lie correspond#'ng diagram

lIr(C) Hr(E')

is a diagram of abelian groups and hoñzomorphinns.

Proof. W'e must first define Now a typical element of
coset [z}, where z and since g is onto, z g(d) for some

d 'Ibtis -= = = 0, so that by
f(r) for a unique element c = hj'(c)

j) so th4t (c) 0 (since f is (I—I)) and c 1(C).
z] •- (C); this appears to depend on the choice of z

d, ii z, d'. c' another choice of z, d, and c, then g(d — d')
so -- 1') = some d" 1), since

I:; onto. hence g(d — d' — = 0, so that d — d' — =
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f(c"), for some c" e C, and so — a(d') = 8f(c") = and
c — c' = so that [c] = [c'J e — 1(C).

It is easy to see that is a homomorphism. For if [g(d1)j = [zr] and
[g(d2)] = [z2] in then [g(d1 + d2)1 = [z1 + z2], so that

+ [z2}) is given by a(d1 + d2) a(d1) + a(d2), and hence

+ = +

The proof that the sequence of homology groups is exact proceeds
in three stages.

(a) = Certainly sincegf = 0 implies
0. Conversely if [z] E Ker then g(z) = a(e) for some e E

but e = g(d) for some d e D, so that g(z) = ôg(d) and
g(z — = 0 so that z e Imf. Hence {z} = [z — e

Im Ker It is clear from the definition that 0,
for an element of Im g,1, is [g(d)], where = 0. On the other hand
if [z] c Ker then z g(d), where fø(c) for some c e C,
so that z g(d — f(c)), where — f(c)) = 0. Hence [z] e

(c) Tm = Again, it is clear that = 0, sr' that
Im But if [z] E then f(z) = for some
d e D, so that eg(d) gf(z) = 0, and [g(d)] E H(E) satisfies

= {z]. Hence Kerf,,, c Tm

Finally, Proposition 4.2.15(c) shows that = and =
And if [g(d)J e H(E), then = [c], where = f(c):

thus = [a(c)]. Butf'a(c) = = so that
[a(c)] = = = I

The exact homology sequence of a pair (X, Y) follows immediately.

Theorem 4.4.3 Given a pair of spaces (X, Y), let i: Y —÷ X be the
inclusion map, and let j: S(X) —÷ S(X, Y) be the quotient chain map.
There is an exact sequence

Y) (A, B) is a map of pairs, the diagram

"1

is commutative.
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The groups and Y) in Theorem 4.4.3 can of course be
replaced by the corresponding reduced groups and
the resulting exact sequence is called the reduced homology sequence
of the pair (X, Y).

Example 4.4.4 Let x be any point of the space X. In the reduced
homology sequence of the pair (X, x), the groups are all zero;
hence x) for all n.

It is sometimes useful to have a form of Theorem 4.4.3 that
involves only relative homology groups.

Theorem 4.4.5 Given a triple (X, Y, Z), let i: (Y, Z) —* (X, Z)
and j: (X, Z) —÷ (X, Y) be the inclusion maps. There an exact
sequence

called the exact homology sequence of the triple (X, Y, Z).

Proof. 0 -+ S( Y, Z) S(X, Z) S(X, Y) 0 is clearly an
exact sequence of chain complexes. I

Of course, a continuous map of triples gives rise to a commutative
diagram involving two exact sequences, just as in Theorem 4.4.3. It
should also be noticed that in fact Theorem 4.4.3 is just the special
case of Theorem 4.4.5 obtained by putting Z = 0.

Consider now a simplicial pair (K, L). By applying Theorem 4.4.2
to the exact sequence of chain complexes

L)—* o,

we obtain an exact sequence

•—+ 14(K) —a-> L) ..._÷•..,

which might at first sight be different from the exact sequence
obtained from Theorem 4.4.3. However, there is a commutative
diagram

' >4(K) ' .4(K,L) >0

B,!,

o —+ S(ILJ) S(IKJ) —-b ILl) 0,

which by 4.4.2 gives rise to a commutative diagram involving
the two exact sequences; since each chain map induces isomorphisms
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in homology, the two exact sequences may therefore he identified.
Similar remarks apply to the reduced homology sequence of (K, L)
and to the exact sequence of a simplicial triple (K, L, 1V1). Moreover a
similar proof shows that the exact sequence of (K, L), for example,
coincides also with that obtained by 'l'heorern 4.4.2 from the exact
sequence of chain complexes

0—> C(L) C(K) C(K, L) —-.> 0.

Another useful exact sequence arises if we have a simplicial complex
K with two subcomplexes L and M such that K L U M. Write

fL n MI IL r1 Mj Kj and 14:

1K 1 for the various mclusion maps.

Theorem 4.4.6 There is an exact sequence, called the Mayer—
Vietoris sequence of the triad (K; L, M):

H M)

where ?1*(x) = ® and (3?y) ±
Moreover if (F; Q, R) is another triad, a continuous f:
such that fiLl IQI and 111141 c IRI gives rise to a commutative
diagram the two Mayer— Vietoris sequences.

Proof. 4(L) = can be made into
a chain complex by taking as its boundary homomorphism aM,
where bL and are the boundary homomorphisms in 4(L) and 4(M)
respectively. Moreover, by Proposition 1.3.33,

H(J(L) ® 4(M)) H;(M).

Now consider the sequence

0 —>J(L —*0,

here 11(x) = (i1)x (— (i2)x) and E' v) = (i3)x.+ (i4)y. It
is e that the sequence is

Hence the Mayer—Yictoris sequence is exact, by Theorem 4.4.2.
prove the last part, recall for example,

is ;he homomorphism induced by the

ieover, by the remark after 4.3.1 the chain a may
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be chosen so as to restrict correctly to the corresponding chain maps a
for Q, R and Q r'i R. It follows that the diagram

o 4(1.. .11) 4(L) 4(M) 4(K) 0

B

—+4(P)---÷O

is commutative, which by Theorem 4.4.2 completes the proof. I
By an argument similar to that used for the exact sequence of a

pair, the chain complexes C(K), etc., may be used instead of 4(K),
etc., in setting up the Mayer—Vietoris sequence. It should also be
noted that there is a corresponding theorem for arbitrary topological
spaces, whose proof, however, is more complicated than that of
Theorem 4.4.6-(see the notes at the end of the chapter).

An obvious modification of the proof of Theorem 4.4.6 shows that
the homology groups could all be replaced by the correspQnding
reduced homology groups, or alternatively by relativç homology
groups: given a triad (K; L, M) and a N of K, there an
exact sequence

called the relative Mayer— Vietoris sequence. Once again, a continuous
map gives rise to a commutative diagram of reduced or relative.
Mayer—Vietoris sequences.

Example 4.4.7 Let L be the triangulation of in Example 2.3.13
• (n 0), with vertices . . ., i4÷1. Let Mbe the subcomplex

obtained by omitting + and N the subcornplex obtained by
omitting a triangulation of S 1: see Fig. 4.3
overleaf. By Theorem 4.4.6, we have an exact sequence.

+ 1?m(M) fl(S")
•

Since (Mf and N are obviously contractible, &.,, is an isomorphism,
and so we recover the results of Example 4.3.12 by induction, starting
with the trivial observation that

m=O,
- otherwise.
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x2

The isomorphism in Example 4.4.7 is a special case of a more
general isomorphism, between the homology groups of a polyhedron
and its 'suspension'.

Definition 4.4.8 Given a simplicial complex K, the suspension 8K
is K * L, where L consists only of two vertices a and b. By the remarks
at the end of Section 2.3, homeomorphic polyhedra have homeo-
morphic suspensions, so that we can unambiguously write S K for
1K * S°, and even SX for a triangulated space X. Moreover a con-
tinuous map f: 1K I —'- IM I

gives rise to a map Sf: SI K J —+ SJ MI,
defined by Sf = f * 1, where I is the identity map of S°.

Example 4.4.9 If is as in Example 2.3.13, may be
identified with by taking a and b in Definition 4.4.8 to be
and + respectively. (This is often rather loosely expressed by
saying that 'is' S".) I

Theorem 4.4.10 For each a, there is an isomorphism

s*: —*

called the suspension isoinorphism. Moreover if f: I K I M is any
continuous map, then =

Proof. Define s: 4(K) .-+ 4(SK) by s(A) Aa Ab, for each
generator A of 4(K) (this is interpreted as a — b if A = *). Of course,

L

Fig. 4.3



§4.4 EXACT SEQUENCES 131

s is not really a chain map, since s(iJ71(K)) 471+1(K), but it is
nevertheless true that as = sa, so that s induces homomorphisms

—k

To complete the proof, we compare with the homomorphism
in the reduced Mayer—Vietoris sequence of the triad (SK; K* a, K* 6).

Now given [z] 1771(K), where z e Z71(zJ(K)), we have s(z) =
za — zb = ® — zb), where

—zb) =

Hence = 1)71 + l[a] But since 1K * a and 1K * 61 are
contractible, they have zero reduced homology, so that and hence

is an isomorphism.
That = follows now from Theorem 4.4.6. 1
Observe that s4°(K) c: 4°(SK), so that s induces a chain map

s: C(K) C(SK), whose induced homology homomorphism may be
identified with

Example 4.4.11 It is useful to define 'standard generators' a,, of
Z (it 0), by setting 00 = [(a1) — (ak)] and a,, =

(it 1), using the identification of S(S" with in Example 4.4.9.
Thus, for example, Oi = [(a1 a2) — (a1, — (ak, a2) + (at,

a representative cycle z,,, that contains (a1,. .., a,,

A corresponding generator of Sn-i) is where 1 =
and is the homomorphism in the exact homology sequence of
(Es, thus a representative cycle for is a0a,,_1, which
contains (a0, a1,.. ., a,,+1). •

Example 4.4.11 has interesting consequences concerned with fixed
points of maps of to itself (compare Theorem 2.5.23).

Proposition 4.4.12 •Let f: S71 Stm be a continuous map without
fixed points. Then (— + la,,.

Proof. By Corollary 2.2.4 f g, where g(x) = — x for all x S".
But (regardingg as a map of g is the simplicial mapthat exchanges
ag and (1 i it), and it is easy to see that therefore
(_1)71+1a,,. I

Corollary 4.4.13 1ff: S71 -+ is a map homotopic identity,
and n is even, then f has a fixed point. •

This result, in the special case it = 2, is popularly known as the
'Hairy Ball Theorem': if one imagines a hair growing out of each point
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of the surface of a ball, it is impossible to brush them flat without a
parting, since otherwise there would be a map homotopic to the
identity (along the hairs), without a fixed point.

We turn our attention now to the calculation theorem for the
homology groups of polyhedra, mentioned at the beginning of this
section. Since = and a) for any
vertex a, it will be sufficient to consider only the case of relative
homology. Roughly speaking, the method is to construct a sequence of
subcomplexes of K that in some sense generalize the skeletons ol' K.
Now if denotes the n-skeleton, for any suhcomplex L the set

L — U L consists of the n-simplexcs in K -- L, so that
u L, U L) = 0 unless r = ii, and

u L, u'L) L).

This property of the skeletons is generalized by forming a sequence of
subcomplexcs K = . . L with the property
that = 0 unless r = n: we then define a new chain
complex C by setting 1), and it turns out that
H(C) L) for any such sequence of subcomplexes.

It is particularly convenient to work with a sequence of sub-,
complexes constructed by dividing K into certain generalizatioiv
simplexes called 'blocks'. However, we must first prove the general
result on the homology of chain complexes constructed as above.

Suppose, then, that K = W' .. M° L is a
sequence of subcomplexes such that = 0 unless r = tj,
for all integers r and n. Let C be the chain complex where

11/In—i) is to be interpreted as K if n > p and L jf
n < 0), and the boundary homomorphism d: —+ is defined
to be the composite

L) 14_1(M"-'', ]Ifn_.2),

where 0,,, and j,,, are homomorphisms in the exact kquences of the
triples L) and L) respectively (in fact
d = the homomorphism in' the exact sequence of the triple
(M", see Eiercise 6). Certainly C is a chain complex,
since d2 involves a composite of two successive homomorphisms

and in the exact sequence of the same, triple, so that d2 =

Theorem 4.4.14 For each n, 14(K, L).
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Proof. This is really just an exercise in handling exact sequences.
First consider the exact sequence of the triple (Mn, (4:

"r4 L) L)

•

Since Mn_i) 0 unlessr n,
is an isomorphism for r n — 1, n. So for r > n,

L) . Hr(M"1, L) Hr(L, L) = 0, and in particular
it follows L) —÷ M'1"1) is (1-1)

Now consider part of the chain complex C. By definition the
following diagram is commutative (the superscripts to and are
merely for identification purposes).

H )%4'n\
— c/ n+1

g

L)

=

Now
= Ker is (1-1)

=

L), is (1.1).
It follows that

=

L)/Im
But Im = Ker [is: L) —* L)], so that

Im [is: L) -+ + 1, L)}, by Proposition

= L), since = 0.
But L) L) . L) = L),
and hence H,I(K, L). I

Of course,, if = K" U L, then Hr(M", M"1) = 0 unless
r = n, and CI,(K, L). It is easy to see that the
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boundary in C(K, L) defined in Theorem 4.4.14 is the same as the
ordinary boundary homomorphism in this case, so that we recover the
chain complex C(K, L).

The next step is to define blocks: these are generalizations of
simplexes, and the corresponding 'block skeletons' form a particularly
convenient sequence of subcomplexes to which Theorem 4.4,14 can
be applied.

Definition 4.4.15 An n-block in a simplicial complex K is a pair
of subcomplexes (e, e), such that dim e = n and

IZ,
e)

to,

ê is called the boundary of e, and the interior of e is the set of simplexes
in e — é.

For example, if a is an n-simplex of K, then (K(a), a) is an n-block,
by Example 4.3.12. The interior of this block consists of the single
simplex a.

We next wish to divide K into blocks, in such a way as to generalize
the structure of K as a simplicial complex.

Definition 4.4.16 A block dissection of K is a set of blocks such
that

(a) each simplex is in the interior of just one block;
(b) the boundary of each n-block is in the union of the rn-blocks,

for m < n.

A subcomplex L of K is a block subcomplex if it is a union of blocks.
In particular, the block n-skeleton of K, is the union of all the
rn-blocks for m n.

Example 4.4.17 Given any simplicial complex K, the set of pairs
(K(o), a), for all simplexes of K, forms a block dissection of K. For
this block dissection, every subcomplex is a block subcomplex.
Similarly, the set of all pairs (K(a)', (a)') forms a block dissection
ofK'.

Thus a block dissection of K is indeed a generalization of the
dissection of K as a simplicial complex.

Example 4.4.18 The torus T can be triangulated as shown in
Fig. 4.4.
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A block dissection consists of the blocks

e2, the whole simplicial complex,

I — n10 lba b°' 'b°' 1h2\e1 — , ,, , ,, , ,, ,,

4 = (b°, b3), (b8, b4), (b4, b°), (b°), (b3), (b4),

e0 = (b°),

where 12 = e1' u = e°, and e° = 0. This certainly satisfies
(a) and (b) of Definition 4.4.16, though it remains to prove that these
really are blocks. We postpone the proof until after Proposition
4.4.19: I

Example 4.4.18 illustrates the practical difficulty that usually arises
in constructing a block dissection: it is easy enough to find sub-
complexes that fit together in the right way, but less easy to show that
they are genuine blocks. However, the following proposition will often
resolve this difficulty.

Proposition 4.4.19 If (M, N) is a triangulation of (E", l), and
f: IMI IKI is a simplicial map that is (1-1) on — fNj, the*

t,I b2 to

4.4
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(f(M), f(M)) is an n-block, where f(M) is the szthcomplex of K of all
sirnplexe.c 1(u), Ill. (If n = 0, (E°, S is to be interpreted as
(0, ), where 0 is the origin.)

J'roof. is (1-1) on IMI — it is (1-i) on each simplex of
'I and hence f: 4(1W,, N) 4(f(M), f(N)) is a chain iso-

rpOrphism: thus f(N)) is an isomor-
phisni. Since; by Corollary 4.3.14, dimf(M) is clearly n, the proof
is complete. I

Thus, for example, e2, and e° in Example 4.4.18 are blocks.
usefulness of a block dissection lies in the fact that if L is a

block suhcomplex the subçomplexes U L satisfy the
• hypotheses of Theorem 4.4.14. .This is the next theorem, in which

we shall also prove is a free abelian group with
generators in (.1-1')-correspondence.-svith the n-blocks whose interiors

• 'ire in K — L; the, chain complex formed from the block dissection
isa generalizationof

4.4.20 Let K be a simplicial complex with a block
dissection, and let L be a block subcomplex. If = U L for n 0
(and L for n < 0), then 1) = 0 unless r n, and
(if 0) is a free abe/ian group with generators in
(1-1)-correspondence with the n-'blocks whose interiors are in K — L.

Proof. — M"1 is union of the interiors of those n-blocks
whose interiors aide contained in K — L. Since each simplex is in the

interior of a unique block, it follows that
for those whose interiors are in K — L. But has the same value
whether A regarded a generator of M"') or of some
4,(e1, ê1); hence ej, which is zero unless
r = ii, and if r n is a free abelian group with generators in (i-i)-
correspondence with those ef whose interiors are in K — L.

l't follows ftom Theorem 4.4.14 that L) for each n,
where = The only practical problem that iemains
before we can use C to compute L) is the determination of the
boundary homomorphisms d, and these can be described as follows.

Since — has no simplex of dimension greater than n,
= 0, and we may identify with

which is a subgroup of M"' )=
L). Let 0: L) be the inclusjon homomorphism so

defined; the boundary homomorphism d is thus completely deter-
mined by
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Proposition 4.4.21 0 is a chain map.

Proof. By definition, d is the composite

Ma') L)

where, by the remarks after Theorem 4.4.5, we may use simplicial
chain complexes throughout. Now if

X E =

is given by regarding x as an element of L). taking its
boundary 0(x) in L), and noting that in fact 0(x) e L)):
then

j*0*(x) = jO(x) e =

However, 0(x) has the same value whether x is regarded as an element
of L) or of C(K, L), and j has no effect on 0(x), since it is a
linear combination of (n — 1)-simplexes that are not in L, and so not
in Hence Od(x) = 00(x). I

In particular 0 induces a homomorphism H(C) —* L).

Proposition 4.4.22 is the isomorphism of Theorem 4.4.14.

Proof. The isomorphism of Theorem 4.4.14 is given by choosing a
representative cycle x in = 'lifting' to L),
and mapping to L) L) by But if = 0,
then by Proposition 4.4.21 we have 00(x) = 0 in C(K, L), so that
0(x) L)). That is, x becomes the coset [8(x)J = in

•

Example 4.4.23 Consider the triangulation and block dissection
of the torus T obtained in Example 4.4.18. If we identify the resulting
chain complex C with a sub-chain complex of the simplicial chain
complex, using the chain map 0, we may take the groups to be the
free abelian groups generated by the following elements.

C2: z2 = [b°, b', b3] + [b', b5, b3] +

(that is, is the sum of all the 2-simplexes of T, where each 2-simplex
is identified with a generator of the simplicial chain complex according
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to the arrows in Fig. 4.4: the arrow on (b°, b', be), for example,
indicates that we are to take [b°, 61, 69 rather than, say, [b°, b'}).

C1: = [60, b'] + [b', 1,2] + [1,2, 60]

= [1,0, b3] + [b3, 1,4] + [b4, 6°]

(these are also indicated on Fig. 4.4 by arrows on the corresponding
aim plexes).

C0: z0 = [1,0].

It is easy to see that these will do as generators: for example, = 0,
since a(z2) contains every 1-simplex twice, with opposite signs, and
hence z2 e Z2(C(e2, u 4)); on the other hand, z2 cannot be a
multiple of any other cycle. Also = = 0 and a(z°) = 0, so
that the homology groups of T are

H0(T) Z, 111(T) Z Z, 112(T) Z, = 0 otherwise.

As an example of the calculation of relative homology groups,
consider the (block) subcomplex of T. To calculate T, eI), we
use the blocks e2 and 4: again = = 0, so that H1( T,
Z, H2(T, Z and eI) = 0 otherwise. I

The same method can be used to calculate the homology groups of
the triangulable 2-manifolds of Chapter 3.

Theorem 4.4.24 The homology groups of M9, Nh (g 0, h 1)
are given by:

(a) H0(M9) 1f2(Mg) Z, Hi(Mg) 2gZ, = 0 otherçuise;
(b) Ho(Nh) Z, Hl(Nh) (h — I)Z Z2, Hft(Nh) = 0

where rZ denotes the direct sum ofr copies of Z.

Proof. As usual, we first dispose of the special cases M0 and
Now M0 = S2 and N1 = RP2, and the homology groups of these
have been calculated in Examples 4.3.12 and 4.3.17. Also the case of
M1 (the torus) has just been done in Example 4.4.23; the general case
is done in a similar way, with a block dissection of M9, for e:ample,
having one 2-block, 2g 1-blocks and one 0-block.

Consider the triangulation of M9 (g 1) obtained as in Theorem
3.4.11: take the 4g-sided polygon P corresponding to Mg, divide each
side into three equal parts, join the resulting vertices to the centre,
and then the resulting triaigulation of P relative to the
bbundary. A block dissection of is then obtained as follows, where
the boundary edges of P correspond to the sequence of symbols
x1y1xç 'yç1. . .x0yx 'y;
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Let e' = all simplexes in

- = all simplexes in the edge;,

= all simplexes in the edge yT,

e0 a, the point to which all the original vertices of P are
identified.

If we also take ê2 = U u e,'), = a, Proposition 4.4.19

ensures that these are all blocks (see Fig. 4.5).

//

Fig. 4.5

The resulting chain complex C may be taken to be that generated by

= the sum of all the 2-sirnplexes,

= the sum of the three 1-simplexes in

= the sum of the three 1-simplexes in

and [a],

where these simplexes are identified with generators of the simplicial
chain complex according to the arrows in Fig. 4.5. These will certainly
do as generators: for example e(z2) = 0 in C(e2, e2) because a(z2)
contains each 'interior' 1-simplex twice, with opj,osite signs; and z2
cannot be a multiple of another cycle.

Finally,

= 0;
and

= (zI + — — + . . . + ÷ — —

=0.
This proves (a), and the reader should have no difficulty in adapting
the proof to deal with (b). I

0
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As a final cxaniple, let us calculate the homol9gy groups of
for each n.

Example 4.4.25 We may as well regard as the space obtained
from by identifying antipodal points, where as in Example 2.3.13

is the polyhedron of a simpliciäl complex in R'"'. A triangula-
tion of is then obtained by identifying antipodal points of

By Proposition 1.4.40, is also the simplicial complex obtained
by identifying antipodal points of in where is the
subcomplex of of those simplexes lying in the region 0.
Since L84 is a triangulation of by Proposition 4.4.19 there is a
block dissection of with just one n-block e'1 = the boundary

being which in turn is a single (n — 1)-block whose
boundary is and so on, until e° = the single point
a1 =

l'he corresponding chain complex C has C,. = 0 for r > n or
r < 0, and otherwise C,. has just one generator. It remains to choose
these generators and calculate the boundary homomorphisms. Write

for the 'standard' generating cycle of as in Example 4.4.11;
then is a generating cycle for Write

for the images of these elements in the corresponding
simplicial chain complexes (they are also generating cycles). By the
remarks after Corollary 4.3.10, is a generating cycle for

and hence ifp: —* is the identification
map, the proof of Proposition 4.4.19 shows that is a
generating cycle for = Ci,. Moreover in

= i)
=
= —

But if denotes with a,. and interchanged for each r, we
have -2 = (— - -2' and 2a,) = - Hence

= (— +

= (1 + (— 1)'1)p.#(zfl_2afl).
It follows that the homology groups of are

H,.(RP") = 0 if r < 0, r > n, or r is even,
H,(RP") Z2 ifr is odd and 0 < r < n,

Z if n is odd. •
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4.5 Homology groups with arbitrary coefficients, and the
Lefschetz Fixed-Point Theorem

So far in this chapter we have been working with homology groups
of chain complexes in which the chain groups are free abelian groups.
Thus for example, if X is a topological space, an element of S(X) is a
formal linear combination where the are singular simplexes

and the r. are integers. However, it is often useful to consider a
generalization in which the instead of being integers, are elements of
an arbitrary abelian group G. The new chain complex that results is
written S(X; G), and the corresponding homology groups are

G), the homology groups of X with coefficients in G; thus
14(X) appears as the special case Z). In fact the groups

G) are completely determined by the groups so that
this generalization cannot be expected to yield new information about
X; the idea is rather that G) may be simpler and easier to
handle than For example, if K is a simplicial complex and
G is a field, we shall see that each H,,(K; G) is a finite dimensional
vector space over G, and so is determined up to isomorphism by its
dimension. Moreover the homology homomorphisms induced by
continuous maps are linear maps of vector spaces, and this fact can be
used to give algebraic conditions for a continuous mapf: IKI IKt
to have a fixed point.

Since the definition of G) is purely algebraic, we shall
follow our usual procedure and consider first the abstract situation.
The idea of 'taking coefficients in G instead of in iZ' is formalized by
the notion of the tensor product of two abelian groups.

Definition 4.5.1 Given abelian groups A and B, the tensor product
A 0 B is the abelian group generated by all symbols of the form
a 0 b, for each element a e A and each b e B, subject to the relations
a1 0 (b1 + b2) — a1 ® — a1 ® b2 and (a1 + a2) ® — a1 ® I
— a2 ® b1, for each a1, a2 e A and b1, b2 B.

Example 4.5.2 If R is any ring, then by Proposition 1.3.20 the
multiplication m: R x R —+ R may be regarded as a homomorphism
m:R®R-÷R. •

Example 4.5.3 For any abelian group G, G ® Z G. To prove
this, define a homomorphism 8: G ® Z G (using Proposition
1.3.20) by the rule O(g 0 n) = ng (n c Z, g E C), where ng means



142 HOMOLOGY THEORY CH4

g + g + + g (n times) if n > 0 and —(—ng) if n < 0 of
course Og = 0). Clearly 0 is onto, and it is alsi (1-1), since

0

0

0

0
0 is an isomorphism (indeed, we shall often identify the groups

C ® Z and C, using the isomorphism 6). 1

Example 4.5.4 lIp and q are positive integers, ® Zq
where (p, q) is the highest common factor of p and q. For we can
define a homomorphism 0: Zn ® —* by 6(r ® s) =
rs (mod (p, q)) (r s Zq). Again 0 is clearly onto, and to prove
that it is also (1-1), note that ® s1) = 0 1). Thus

A1(r1 ® = 0 )t,r1s1 0 mod (p, q)

ap + bq,

for some integers a and b, so that

= a(p® 1) + b(1®q)

=0.1

Example 4.5.5 If p is any positive integer, then Z9 ® Q = 0,

where Q is the additive group of rationals. For if r E Z,, and q e
then r ® q= (pr) ® (q/p) = 0. •

The process of forming the tensor product can be applied to
homomorphisms as well as to groups.

Proposition 4.5.6 Homomorphisms f: A A', g: B —÷ B' give rise
to a homomorphism f ® g: A ® B —* A' ® B', such that given further
Izomomorphzsmsf': A' A", g': B' B", we have (f' ® g')(f ® g)
(f'f) 0 (g'g).

Proof. DéfinefØg: A ®B—*A' ® B' by the rule

(f®g)(a 0 b) = f(a) ®g(b):
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this defines a homomorphism by Proposition 1.3.20. The property
(f' 0 g')(f 0 g) = (f'f) ® (g'g) is immediate from the definition. •

Finally, before applying tensor products to chain complexes, it is
useful to have two general rules for manipulating tensor products of
abelian groups.

Proposition 4.5.7

(b) If A = Ag and B = B5, then A ® B ® B1).
L 1 1.1

Proof. (a) is trivial. As for (b), let Pg, q,: B5 -+ be
the obvious inclusion homomorphisms, and define homomorphisms

6:A 0 B
by 9[(a1) 0 (b1)] = (a1 ® b,), = ® q5)x15 (x15 E A1 0 B5).
(Note that the latter sum is only a finite sum, since by definition of the
direct sum, all but a finite number of the x15 are zero.) Now

® (b1)] #((ag 0

= ® q1)(a1 0 b,)

= ® q5b,

= (as) ®
so that is the identity, and

® b1)) = p1a1 ® q1bj]

= 8[(a1) ® (b5)]

= ® by),

so that 0ç6 is also the identity (it is clearly sufficient to check e# on an
element of the form (a1 0 b5), since every element of 0 Bj) is a
finite sum of such elements). Thus 0 and are inverse isomorphisms. I

We are particularly interested, of course, in applying the tensor
product construction to chain complexes. Suppose that C is a chain

• complex with boundary homomorphisms 8: C,, C,,...1, and that G
is any abelian group.

Proposition 4.5.8 C ® G is a chain complex. Moreover if
•

Proof. By Proposition 4.5.7(b), C ® G (C,, 0 G), so we
may set (C 0 = C,, ® G. Since (0 0 l)(8 ® 1) = (02 0 1) = 0,



144 HOMOLOGY THEORY CH4

C ® G, with the boundary homomorphisms 3 ® I, is certainly a
chain complex. Moreover if f is a chain map, then so isf® 1, since

(fØ 1)(3 ® 1) = (f0 ® 1)

(0f® 1)

= (0® 1)(J® 1),

a pair of spaces. The homology
groups of (X, Y) with coefficients in G are defined by

Y; G) = Y) ® G).

We write Y; G) for Y; G), and G) if Y is
empty. Similarly the reduced homology groups of X with coefficients
in C are defined by

G) = ® C).

Given a continuous map f: (X, Y) —* (A, B), we obtain a chain
mapf• ® 1: S(X, Y) ® G —÷ S(A, B) ® C, and the induced homol-
ogy homomorphisms Y; G) —* B; G) are defined

= (1. 0 Just as in Section 4.2, we can prove that =
that = and that f g. Indeed, these results
follow immediately from Proposition 4.2.16 and 4.2.21, in virtue of
Proposition 4.5.6. Similarly, we can deduce from the results of
Section 4.3 that, if (K, L) is a simplicial pair, then ILl; C) is
also the homology of the chain complexes 4(K, L) ® C and
C(K, L) ® C.

By Example 4.5.3, S(X, Y) ® Z may be identified with S(X, Y),
so that Y; Z) is what we have previously called Y):
we shall continue to omit the coefficient group if it happens to be Z.
Moreover, since S(X, Y) is a direct sum of copies of Z, one for each
singular simplex in X whose image is not contained in Y, it follows
using Proposition 4.5.7 as well that, for any abelian group C,
S(X, Y) ® G is the corresponding direct sum of copies of G;
in particular the sequence of chain complexes

0 S(Y) ® C S(X) ® G S(X, Y) ® G o

is exact. Thus the results of Section 4.4 all hold in the corresponding
versions for homology with coefficients in C (though see Exercise 13
in the case of the 'block dissection' calculation theorem).
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The reader is warned, however, that although Y; G) is
defined to be Y) ® G), it does not follow that Y; G)
= Y) ® G. For example, it was proved in Example 4.3.17
that H0(RP2) Z, H1(RP2) Z2, and H2(RP2) = 0; but the same
method (or that of Theorem 4.4.24 or Example 4.4.25) will show that
H0(RP2; Z2) H1(RP2; Z2) H2(RP2; Z2) Z2. Nevertheless it
is possible to calculate Y; G) by a purely algebraic process
from Y). Since it is rather complicated, we shall not prove the
general theorem here (though see Exercise 16), but will confine our
attention to the most useful special cases G = Q or In this context,
it is worth noting that there are particular advantages in taking
coefficients in a field.

Proposition 4.5.10 Let C be a chain complex and let F be a field.
Then H(C ® F) is a vector space over F. Moreover tfg: C D is a
chain map, the induced homology homomorphism H(C ® F) —*
H(D 0 F) is a linear map of vector spaces.

Proof. We show first that C 0 F is a vector space over F. It is
necessary only to define an action of F on C ® F, and this can be done
by settingf(c ® f) = c 0 (ff'). This obviously makes C ® F into a
vector space, and also

f[(a® 1)(cOf')] =f(&-()f')
V

=

V (a ® 1){f(c Of')],
so that ® 1 is a linear map, and hence H(C ® F), being a quotient
of a subspace of C ® F, is also a vector space over F. A similar
argument shows that g ® 1 is a linear so that the same is true

Corollary 4.4.11 Given a pair (X, Y) and a field F, then each
Y; F) is a vector space over F. Moreover (X, Y) -÷ (A, B)

is a continuous map, then F; F) —* B; F) is a linear
map.I

We next establish the results on the relation between homology
with coefficients in Q or Z,, and ordinary homology, that is, homology
with coefficients in Z. As usual, the abstract situation is con8idered
first.

In ord\er to deal with coefficients in Q, an algebraic lemma is
necessary.
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Lemma 4.5.12 Let g be an element of an abelian group G. If
g ® 1 = 0 in G ® Q, there exists an integer n 0 such that ng = 0
mG.

Proof. In the free abelian group generated by the symbols g ® q
(g e G, q e Q), g 0 1 is a finite sum of elements of the form

g1 0 (q1 + q2) — g1 0 q,. — g1 0 q2
-or

(g1 +g2)®q1 —g1®q1®g2®q1.
Fhus if G0 is the subgroup of G generated by the elements g1 and g2
thai occur in this finite sum, G0 is a finitely generated abelian group
that containsg, andg ® I = 0 in G0 ® Q. But now Theorem 1.3.30
can be applied to G0, and then Examples 4.5.3 and 4.5.5 show that
there exists n such that ng = 0 in G0, and hence in G. I

Theorem 4.5.13 Let C be any chain complex. Then for each n,

Proof. We first show that if G 4 H is an exact sequence of
abelian groups, then so is

F®Q a®1 H®Q
To prove this,'note first that (/3 ® 1)(a 0 1) = 0, so that Im (tz ® 1) c
Ker (/3 0 .1). Conversely let (g1 ® e Ker (/3 ® IL), so that

0 = 0. Since this is a finite sum, there exists an integer
m 0 such that each rnq4 is an integer, so that /3(mq1gj) 1/rn = 0,
or /3(mq1g1) ® I -= 0. Hence by Lemma 4.5.12 there exists an
integer n such that 0 in II, so that mr = a(f)
for sornefE F. But then

® = ® 1/nm

a(f) 0 1/nm

e Im(aØl).
.rfhus Ker (/3 0 1) c Im (a ® 1), and the sequence is

To return to the chain complex C, the exact sequence

yields the exact sequence

•
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SO that 0 Q) = Ker ® 1) = Z, 0 Q. Hence the exact
sequence

yields

0 > Zn(C® Q) ® ® Q 0,

so that ® Q) ® Q. Finally, a similar argument
applied to the exact sequence

shows that ® Q) ® Q. I
In particular Y; Q) Y) ® Q for. a pair (X, Y).

Thus if (K, L) is a sirnplicial pair, and L) is a direct sum of m
copies of Z and a finite group, L; Q) is a direct sum of m copies
of Q. That is, L; Q) measures the 'free part' of L).

The case of coefficients is dealt with by a rather different method.
Once again, an algebraic lemma is necessary first.

Lemma 4.5.14 Let G be an abelian group, and let a: G —+ G be the
homomorphism defined by a(g) = pg. There is an exact sequence

wherefl(g)=g®1..,
Proof. Clearly fi is onto, so it is necessary only to show that

Im a = Ker fi. Now = pg ® 1 = g 0 p = 0, so that Im a C
Ker On the other hand we can define a homomorphism
y: G 0 Z,, Gum a by y(g ® n) = the coset [ng], where n e Z,;
this is unambiguous, since [pgJ 0. Moreover is just the 'quotient
homomorphism' G G/Im a, so that if g e Ker yfl(g) = 0 in
G/Im a, and hence g E Em a. Thus Ker c Im a, and the sequence
is exact. I

It is usual to write Tor (G, for Ker [ci: G —* G}. The reader
should have no difficulty in showing that Tor (Z, = 0, that
Tor (Z,,, and that Tor Tor (Gd, Z,);

this suffices to calculate Tor (G, for any finitely generated abelian
group 0.

If C is a chain complex in which each is a free ahelian group
(as it is, of course, if C = S(X, Y)), there is an exact sequence of
chain complexes

a Bo—÷C—-+C---+C0 Zp—÷0.
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By Theorem 4.4.2 this leads to an exact sequence

where again = px for each x e This sequence is called
the exact coefficient sequence associated with Z9, and is known as a
Bockstein boundary homomorphism. The exact coefficient sequence can
be broken up into short exact sequences, one for each n:

0 Im -±0,

where the homomorphisms are induced by and Now Ker =
Im so that ® Z9, by Lemma 4.5.14;
also Im &.,, = Ker = Tor Z9). So we have (almost)
proved - -

Theorem 4.5.15 Let C be a chain complex in which each is a
finitely-generated free abe/ian group, and let p be any positive integer.
men

® Z9) ® ® Tor 1(C), Zr).

Proof. Let r be any divisor of p, so that p = rs, say. There is a
commutative diagram

a $o —k C —p c —± C 0 0

o c C C ® Zr 0
$

in which A(c) = ác, = rc, and may be regarded as the 'quotient
homomorphism' C/Im a —* C/Im This gives rise to a commutative
diagram

•

11

•
. Zr)

a.

hence, by the above discussion, to a commutative diagram (of
exact sequences)

Z9)—±0

v,I,

0 _± ® Zr —± ® Z)—+ Zr) _+ 0,
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where again v may be regarded as the quotieflt homomorphism
—÷ Now it is clear from Lemma 4.5.14

that the order of èvel:y element of Tor and ® Z,,
(and hence ® Z,,)) is a divisor of p. In particular, by Theorem
1.3.30, Z,) is a direct sum Of groups .Z',, for various
divisors r of p; and if x is a generator of of these, say Z,, we can
write x = for some y e ® Z,,). Thea

ry = for some z ® Z,,. So P*v(z) = =
= 0, and hence v(Z) = 0 and z = ,f for some t e 14(C) ®

To sum up, we have = — where r(y — 0.
Hence by defining y(x) y. and making this construction
for each generator of br Zr), there results a homomoi-
phism y: Z,) such that = 1. Con-
sequently, by Proposition 1.3.36,

® Zr,) 110(C) 0 Z,).

Note. The restriction in Theorem 4.5.15, that each should be
finitely generated, is not really necessary, but is included in order to
simplify the proof. In fact the result of Theorem 4.5.15 is true in
much greater generality: see Exercise 16.

It follows from Theorem 4.5.15 that, for any simplicial pair (K, L)
and any integer p 2, we have

L; Z,) L) 0 Tor L%:Zp).

As an example of the use of homology with coefficients other than
the integers, we end this section with a proof of the Lefschetz Fixed-
Point Theorem. Suppose given a simplicial complex K, and a con-
tinuous mapf: 1KI then by Corollary 4.5.11 each

Q)-*J4(K; Q)
is a linear map of finite-dimensional vector spaces (the n on

indicates the n-dimensional component).

Definition 4.5.16 The Lefschetz number L(J) of the map
f: IKI —* is defined by L(f) (— tr (Recall Prop-

osition 1.3.59. This is only a finite sum, = 0 for n > dim K.)
The main result about the Lefschetz number is that, if L(J) 0,

then f has a fixed point. A lemma is necessary here.

Lemma If ® Q ® Q are the com-
ponents of a chain map that then L(f) = (.— tr (f,).
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Proof. Write for ® Q, and Z,,, B,, for the corresponding
groups of cycles and boundaries. Now f,,: C,, C,, restricts to

—* Z,,, B,, —* B,,, and induces 7,,: C,,/Z,, —÷ C,,/Z,,, f:
-+ Z,,/B,,. By Proposition 1.3.60, we have

tr (f,,) = tr

(f) + tr tr (J,,).

But 8 ® 1 induces an isomorphism C,,/Z,, _+ and

sf,,. Hence tr (f,,) tr so that

L(f) = (— tr (— 1)" tr (J,,). I

In particular, Lemma 4.5.17 can be applied to the identity map
1: IKI —÷ 1K!, to show that L(1) = (— 1)"a,,, where a,, is the
number of n-simplexes of K. Thus (— depends only on the
homotopy type of 1K!; it is usually called the Euler—Poincaré
characteristic of K, and written x( K

Theorem 4.5.18 Given a map f: 1K I -* 1K
1

without fixed points,
then L(f) 0.

Proof. Suppose that K is in• some Euclidean space R", and let d be
the metric in Rm. Since 1K! is compact and f has no fixed point,
d(x, f(x)) attains a greatest lower bound 6 > 0, say, as x runs over all
points of 1K!. Take an integer n such that mesh < and let
g: —÷ be a simplicial approximation to f:

Now if h: —÷ is a simplicial approximation to
the identity, g f f/i, so that g,, But it was remarked after
Corollary 4.3.10 that li,1, is the inverse isomorphism to where is
the subdivision chain map; = so that

is a chain map that induces
By Lemma 4.5.17, it is sufficient now to prove that, for each simplex

a of is a linear combination of simplexes other than a,
for then each tr (fe) is zero. Suppose, if possible, that a is a simplex
such that does contain a. Then since is a linear combina-
tion of simplexes that are all contained in a, it follows that at least one
of these must be mapped by g back to a, and so there is a pointx e a
such that g(x) E a also, that is, d(x, g(x)) mesh < 46.
proof of Theorem 2.5.3 shows that f(x) and g(x) are both in some
simplex of so that d(f(x), g(x)) < 46. Hence d(x,f(x))
d(x, g(x)) i— d(f(x), g(x)) < 8, which contradicts the definition of S.
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Co;ollary 4.5.19 If L(f) 0,f has a fixed point. •

We conclude with some examples of the use of Theorem 4.5.18.

Proposition 4.5.20 Let K be a simplicial complex such that 1K I is
path-connected, and 14(K) is a finite group for each n > 0, and let
f: IKI 1K1 be a continuous map. Thenf has afixed point.

Proof. By Theorem 4.5.13 and Example 4.5.5,

Q) ®
= o

otherwise.

And since any vertex of K will do as a representative for a generator
of 110(K), H0(K; Q) —÷ H0(K; Q) is the identity isomorphism.
Hence L(f) = 1.

Proposition 4.5.20 provides another proof of Theorem but
a rather more interesting example is that any mapf: -÷ has a
fixed point if n is even: for by Example 4.4.25 is either 0 or Z2
(r > 0) if n is That this result need not be true if n is odd is
shown, for example, by identifying RP1 with S', and taking the map
of S' that just rotates it through an angle it.

Finally, Theorem 4.5.18 provides an alternative proof of Proposition
4.4.12: if f: —÷ (a > 0) satisfies -÷ dan, then

H,1(S'; Q)

Q) is the
identity isomorphism. Hence L(f) = I + (— which is zero if
and only if d = (-.-

EXERCISES
1. Show that the relation of being chain-.homotopic is an equivalence

relation on the set of chain maps from a chain complex C to a chain
complex D. C and D are said to be chain-equivalent, and f: C —÷ D is a
chain equivalence, if there exists a chain map g: 1) C such that gf
and fg are chain-homotopic to the respective identity chain isomorph-
isms; prove that this sets up an eqvivalence relation on any set of chain
complexes.

2. Given chain complexes C and D, write [C, D] for the set of chain
hornotopy classes of chain maps from C to D. Show that [C, D) can be
made into an abelian group by defining (f + g)(c) f(c) + g(c) for
chain mapsfandg, and extending this definition to equivalence classes.
Prove also
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(a) [C, D] depends, up to isomorphism, only on the chain equivalence
classes of C and D;
(b) if X and Y are spaces'then [.9(X), S(Y)] depends only on the
homotopy types of X and Y;
(c) if C is a chain complex in which is a free abelian group with one
generator, and = 0 if r n, then [C, D]

3. Let X be a path-connected space, with base point x0. Show that a
homomorphism h: ir1(X, x0) can be defined by sending a
loop u to the corresponding singular 1-simplex u, Prove thai: Ii is onto,
and that its kernel is the commutator subgroup [IT, in of x0): thus

is isomorphic to 77-1(X, x0) 'made abelian'. (Hint: first prove that
h is onto, and [in, in c Ker h, so that h induces a homomorphism
h: x0)/[ln, in —* 111(X); now shots that is (i—i), by showng that,
if u is a ioop corresponding to B1(X), the singular 2-simplexes
in c can be used to construct a loop v such that [v] = I in ii-1(X, x0) and
[u} = [v] in 771(X, x0)/[Ir, ir}.)

4. Show that an rn-manifold cannot be homeomorphic to an n-manifold
unless m = n.

5. Given a simplicial pair (K, L), let K CL be the simpliciai complex
obtained by 'adding a cone' to L, that is, by forming the union of K and
CL = L * a, where a is a single vertex. Show that there is an isomorph-
ism L) —÷ fl*(K u CL), such that, if f: (jKj, ILl) -÷
(IMI, INI) is a map of pairs and J: 1K u U is the
obvious map formed fromfandf* 1, then the diagram

L) N)

air

L/ CL) —+ LI CX)

is commutative.
6. Given a of spaces (X. 1', Z, !1), show that the following

diagram is commutative, where the homomorphi-.ms are those in the
exact homology sequences of (X, Y, 2), (X, 1, iF) and (V4 2,

14(X, W)

14( 1', Z) 14(X, 2) IL,(X, Y) —s-. - (V, Z)
N

H,, - 1(Z, W) H,, - Y, W)

7. Let (K, L) be a simplicial pair. Show that there is a suspension iso-
morphism H,,(K, L) SL), such that if f: (IKI, ILl)
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((M(, (NI) is a map of pairs, then = Prove also that the
diagram

•—+ > ' > L)

sq

b i. 0.

where the rows are the exact homology sequences of the pairs (K, L)
and (SK,- SL), is commutative.

8. Let (K, L, M) be a simpliciat triple, in which K. has a block dissection
and L and Mare block subcomplexes. Show that in the exact homology
sequence of the triple

•-÷ H,,(L, H,I(K, M)±*. M) -+...,
the homomorphisms and may be calculated by using the blocks
and the 'block chain compleiés', in exactly thesame way that these
homomorphisms are defined using the simpliciál chain complexes.

9. Let p and q be coprime with p 2. The Lens space L(p, q)
is the space obtained from E3 by making identifications on the bound-
ary S2, as follows. Divide the equator S' into p equal parts by vertices
a°, a',.. ., an', and by joining to the 'poles' a = (0, 0, 1), b =
(0, 0, — 1), divide S2 into 2p 'triangles': see Fig. 4.6.

Fig. 4.6

L(p, q) is the space obtained by identifying each triangle aa'd + with
so that a and b are identified, as also are and ar 1q

a

b
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a' +1 and a' + + 1 (the superfixes r,r + q, etc., are interpreted as elements
of Z,).

Show that L(p, q) is triangulable, and that L(p, q) is homeomorphic
to L(p, q') if q = —q' or if q — q' is divisible byp; also that L(2, 1) is
homeomorphic to RP3. Show also that L(p, q) is homeomorphic to
L(p, q') if qq' = 1 (modp). (Hint: Cut E3 into 'tetrahedra'
and reassemble by identifying the triangles on S2 as above: this
produces E3 again, but with the line formed by identifying together
all edges a'a' 1 taking the place of ab. L(p, q) is still the space obtained
by rnaki g certain identifications on the boundary of the new E3.)

By using a suitable block dissection, show that

q)) H2(L(p, q)) = 0 and H3(L(p, q)) Z.

10. Show that (A 0 B) ® C A 0 (B 0 C) for any three abelian
groups A, B and C.

11. Show that a homomorphism 0: H between abelian groups gives
rise to homomorphisms 0,: H,I(X, 1; G) Y; H),. for any
pair (X, Y), such. that if f: (X, 1) (A, B) is a map of

-=1*0*.
12. Given an exact sequence of abelian group*

and a pair (X, Y), show that there is an exact sequence

•-÷ Y; Y; 1;
Y;F)-÷...

(this as the exact coefficient sequence, and is the Bockstein boundary
homomorphism, associated with the exact sequence 0 —÷ F G 4
H 0).

13. Let K be a simplicial complex with a block dissection, and let L be a
block subcomplex. Let C be the chain complex ® C,,, where C,, =

Ma'), and K,, U L; and for any abelian group C, let
C(G) = C,,(G) be the chain complex similarly defined by C,,(G)

M' -'; 0). Show that C(G) and C 0 C are chain-isomorphic,
so that although there appear to be two generalizations to arbitrary
coefficients of the method of calculating homology from block dissec-
tions; in fact these generalizations coincide. (Hint: define a homo-
morphism H,(X, Y) ® C -+ 14(X, Y; G), which is an isomorphism
if(X, Y) (E",

14. Given an exact sequence 0 —a. A B 4 C 0 of abelian groups, and
another abelian group C, show that the sequence

A
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is exact, but (for example, by taking A = B Z, C = G = Z2) the
homomorphism a 0 1 need not be (1-1). Show, however, that if the
sequence 0 —*- A 4- B-s- C—÷ 0 is a split exact sequence, in the sense of
Proposition 1.3.36, then

a®1 $®1.0—+A®G÷BOG---+C®G---÷O
is also a split exact sequence. (Hint: to show that Ker ($ 0 1) C
Im(a 1), construct a homomorphism y: C® ® G/Im(a 0 1),
such that = 1, where B ® G/lm (cx 0 1) —÷ C ® G is the
homomorphism induced by fi ® 1; hence is (i-I) and hence an
isomorphism.)

15. Given abelian groups A and B, write A in the form FIR, where F is a
free abelian group, so that there is an exact sequence

a $

Define Tor (A, B) = Ker (cc ® 1), so that by Exercise 14 there is an
exact Sequence

Establish the following properties of Tor (A, B).
(a) Given another abelian group A' = F'/R', and a homomorphism
f: A -÷ A', there exists a unique homomorphism J: Tor (A, B) -+
Tor (A', B) such that the diagram

—+0
7j, ,j,12®1 jhis)1

is commutative, wheref1 andf2 are any homomorphisms that make the
diagram

0—i.R —?-,-A —÷0

121 "1 1'
o —+ R' —÷ F' —-÷ A' —÷0

commutative (such homomorphisms exist by Proposition 1.3.37).
(b) Tor (A, B) depends only, up to isomorphism, on the groups A and
B, and not on the particular representation A = FIR.
(c) Tor(0 B,) Tor (As, B,).

I

(For the proof that this definition of Tor (A, B) coincides with that of
Section 43 if B = Z9, see Exercise 17.)
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16. Let C be a chain complex in which each is a free abelian group, and
let G be any abelian group. Prove that

0 G) 0 Tor (H,,...1(C), G).

(1-lint: use the theorem that any subgroup of a free abeliari group is a
free abelian group to deduce from Exercise 14 that

0 >0

is a split exact sequence, and deduce that ® G)
0 Gum (fin ® 01),

is the inclusion homomorphism. Then use the exact sequence

0 > > > 0

to define Tor G).)

17. Deduce from Exercise 16 and the exact sequence just before Theorem
4.5.15 that Tor (Zr, Tor Zr), for any p, and any
chain complex C in which each is a free abelian group. By con-
structing a suitable chain complex, hence prove that Tor (A,
Tor (Zr, A) for any abelian group A. (Tor (Z9, A), in the sense of
Exercise 15, is clearly what was called Tor (A, in Section 4.5.)

18. Given a simplicial complex K and a field F, let be the dimension of
F), as a vector space over F. The Euler-Poincaré characteristic

of K, with coefficients in F, x(IKI; F), is defined to be (— 1)"h,,;

show that x(IKI; F) = x(IKI).

NOTES ON CHAPTER 4

Homology groups. The homology groups of a po1yhedron were first
introduced by Poincaré [116], and the generalization to the singular homo-
logy groups of an arbitrary topological space was made by Lefschetz [90]
and Eilenberg [50] (although the basic idea is contained in Veblen [147]).
Relative homology groups were introduced by Lefschetz [88]. The proof
of the homotopy-type invariance of homology was first given by Alexander
[7, 9] and Veblen [147], although of course their work was done in terms of
the simplicial homology groups of a polyhedron.

There is another way of defining the homology groups of a space, which in
general yields different groups from the singular homology groups (although
the two theories coincide on polyhedra): these groups are the Cech homology
groups of [37] (following ideas of Alexandroff [13]). Apparently
different definitions were given by Vietoris [148] and Alexander [11], but
Dowker [47] proved that these definitions are equivalent to A good
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exposition of Cech homology theory will be found in Eilenberg and
Steenrod [56), Chapter 9.

A different approach to homology theory, by means of an axiomatic
definition, has much to recommend it: see Eilenberg and Steenrod [55],
or [56], Chapter I.

Exact sequences. The exact homology sequence of a pair was formalized
by Eilenberg and Steenrod [55], although the idea seems to be due to
Hurewicz: see [75]. The Mayer—Vietoris sequence has a rather longer
history: a formula for the homology groups of the union of two polyhedra
was given by Mayer [103] and Vietoris [149], but the form of the result
given in Theorem 4.4.6 is due to Eilenberg and Steenrod [56], Chapter 1.
In fact Eilenberg and Steenrod prove the more general version involving
arbitrary topological spaces.

Fixed points of maps of S". Proposition 4.4.12 was first proved by
Brouwer [25].

Homology with arbitrary coefficients. Homology with coefficients Z2 was
first used by Tietze [144] and Alexander and Veblen [12], the generalization
to coefficients Z,,, for various integers p, being made by Alexander [9].
Cech [39] defined homology with coefficients in an arbitrary abelian group,
and established the result of Exercise 16 (although our formulation is
closer to that of Eilenberg and MacLane [51]).

The Lefsc/zetz Fixed-Point Theorem and Euler—Poincaré characteristic.
Lefschetz's original proof of Theorem 4.5.18 can be found in [86, 87],
though see also Hopf [67, 68]. These papers, and [89], Chapter 6, also
contain a generalization in the form of an equality between L(f) and the
sum of the 'indices' of the fixed points off: this is the Lefschetz Fixed-
Point Formula.

In essence the Euler—Poincaré characteristic is due to Euler, whose
definition was extended by Cauchy [36], and then by Poincaré (116].

Lens spaces. Tietze [144] first defined Lens spaces, and established many
of their properties, including the fact that they are 3-manifolds, Reide-
meister [122] proved that L(p, q) and L(p, q') are homeomorphic if and
only if q' = ±q*l (modp), and J. H. C. Whitehead [158] showed that a
necessary and sufficient condition for L(p, q) and L(p, q') to be homotopy-
equivalent is that qq' or — qq' should be a quadratic residue mod p; thus
.L(7, 1) and L(7, 2) are homotopy-equivalent 3-manifolds that are not
homeomorphic.



CHAPTER 5

COHOMOLOGY AND DUALITY THEOREMS

5.1 Introduction
We have seen in Section 4.5 how the idea of the homology groups

of a pair can be generalized by taking coefficients in an arbitrary
abelian group G. This process of generalization was purely algebraic,
and bore no relation to the topology: a chain complex C gave rise to a
new chain complex C ® G, whose homology, in the case where
C = S(X, Y), was defined to be Y; G).

There is, however, another way of using a chain complex C and an
abelian group G to yield a new chain complex. This process is in a
sense dual to that of passing from C to C ® G, and will be the concern
of this chapter. The idea is that, given abelian groups A and B, the
set of homomorphisms from A to B can be given the sthucture of an
abelian group, for which the notation A 4.. B is used (the reader should
notice the resemblance to the notion of a dual space in vector space
theory). Just as in the case of the tensor product, this construction
can be applied to the chain complex C to yield chain complex

C = S(X, Y), the homology groups of
S(X, Y) G are called the cohomology groups. of (X, Y), with
coefficients in G: these are usually written Y; G). The
behaviour of cohomology groups resembles that of homology groups,
but with one important difference: this time, given a continuous map
f: (X, Y) —÷ (A, B), we obtain corresponding cohomology homo-
morphisms f*: B; G) —+ Y; G), that is, cohomology
'reverses the direction of maps'.

At first sight this definition seems rather pointless, particularly
since the groups Y; G), like Y; G), are completely
determined by the groups Y), and indeed if (K, L) is

a field, L; F) and L; F) are
dual vector spaces over F. However, the language of cohomology
allows a neat statement of the duality theorems of Sections 5.3 and 5.4,
and in any case cohomology has a great advantage over homology,
in that it is possible to define a product between elements of H*(X, Y),
and thus make Y) into a ring. This increases the power of

158
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cobomology: it may be that two spaces X and Y have isomorphic
homology groups (and hence isomorphic cohomology groups),
although H*(X) and H*( Y) are not isomorphic as rings, and so X
and V are not of the same homotopy type. However, the cohomology
product will not be defined in this chapter, since it is easier to set up
in the context of Chapter 8; but the reader should be aware of its

as a powerful reason for the study of cohomology.
The definitions will be given in Section 5.2, which also contains

some calculation theorems for cohomology groups. The rest of this
chapter is concerned with some duality theorems for triangulable
manifolds: in Section 5.3 we shall prove the duality theorems of
Poincaré and Alexander, which relate the homology and cohomology
groups of triangulable manifolds, and in Section 5.4 we shall define
manifolds with boundary, and prove the corresponding duality
theorem, due to Lefschetz..

5.2 Definitions and calculation theorems
We start by considering.the algebraic situation, which should be

compared with Section 43. Given abelian groups A and B, write
A B for the set of homomorphisms from A to B (many authors use
the notation Horn (A, B) instead of A if. B).

Proposition 5.2.1 A B can be given the structure
group.

Proof. Given homomorphisms f, g by the
rule

Cf + g)(a) = f(a) + g(a) (a e A).

It is a trivial exercise to prove '(hat f + g is another
and that f + p = g 4-f. Moreover (f + g) + h = f + (g + h) if
it: A -+ B is another homomorphism. Finally, define 0: A —* B by
0(a) = 0 for all a, and —f: A -+ B by (—f)(a) —f(a); clearly

0+f=f=tf+O
and

f+ (—f) = (—f) 0

for ailfe A A B is an abelian group. I

Examples 5.2.2

(a) For any alelian group G, Z 4.. G G. For we can define a
homomorphism 0: Z G -+ G by 0(J) = f(l) for all f: Z -÷
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which is (1-1) sincef(1) = 0 impliesf(n) = 0 for all n Z, and onto,
since given any g e G we can define f: Z G by f(a) = ng, so that
O(f)=g.

(b) If p.and q are positive integers, Z9 h Zq For just as in
(a),. there is an isomorphism between Z,, and the subgroup of Zq
consisting of possible values r of f(1) for the homomorphisms f from
Z,, to But such r's are characterized by the property pr = 0 (mod q)
or pr qs for some s. 11 p = a(p, q) and q = b(p, q), then ar = bs

and (a, b) 1, so that the possible values of r are just the (p, q)
multiples orb, and theseform a subgroup of Zq isomorphic to

(c) .If p is a positive integer, then Z = Z,, b Q 0. For in
either case, given a homomorphismf, letf(l) =. r. Then

O=pf(1)=pr,
which is impossible unless r = 0.

As in the case of the tensor product, the process of forming A B
can be applied to homomorphisms as well as to groups (compare also
the idea of a dual linear map between dual vector spaces).

Proposition Hom9morphismsf: A' A, g: B —÷ B' give rise
to a homomorphism A h B —+ A' B', such that if f': A" —÷ A'
and g': B' BTM are further homomorphisms, (f' ih g')(feh g)
(ff') (The reader should take careful note of. the behaviour
of composites here.)

Proof. If a is an element of A .h B, define g)(a) = gaf; this
is certainly a hoitiomorphism from A' to B', and clearly

+ = +
Moreover

(f' ih g)(a) = (f' g')(gaf)

-= g'gaff'

= I
Finally, before applying this construction to chain complexes, we

need a result analogous to Proposition 4.5.7(b) (there is, of course, no
analogue of Proposition 4.5.7(a), since for example Z Z2
but Z2 Z = 0). Unfortunately it is not true that k is distributive
for arbitrary direct sums: for example, let = Z for each integer i,
and let A = $ then the homomorphism that sends 1 in each

to 1 in Z is a perfectly good element of A h Z, but is not an element
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o.f $ Z), since if it were it would have to be zero for all but a

finite set of values of i. However, as long as we stick to finite direct
sums, there is no difficulty.

Proposition 5.2.4 if A = A B
.h B,).

Proof. It is clearly sufficient to prove the two propositions

(a) (A C);

To prove (a), define 0: (A B) C —÷ (A C) (B C) by

0(f) - ((IA) (/1k),

where fe (A B) vh C and 1A' i5: A, B -÷ A B are the obvious
inclusion homomorphisms. Now 0 is a homomorphism, since

0(f + g) = (f + gX4 (1 + g)1B

= (PA + (fin + gin)

= $ fIn) ÷ (gin gin)

= 0(f) + 0(g).

Also 0 is (1-i), since f = 0 if fiA = 0, and onto, since given
f: A —+ Cand g:B-+Cwe can defineh: A C by

+g(b);

then0(h)_—f®g. I
In extending the construction 'ih G' to chain complexes, some care

is necessary in view of the behaviour of direct sums: the grout C h G
need not be isomorphic to the group G).

Definition 5.2.5 Given a chain complex C, with boundary homo-
morphism C,,...1, and an ab&ian group G, the chain complex
C eh C is to be (C G),,, where (C G),, C...,, ih G.

The boundary homomorphism in C G is 8 = ih 1; clearly
82 ,h 1) = 1 = 0, by Proposition 5.2.3. ((C ih G),,
is defined to be C.,, G, and not C,, G, so that S sends (C G),,
to G),,.1.)

Notice that C G = $ (C G),, is not the same as the group
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C G, unless only a finite number of the are non-zero, as is the
case, for example, if C = C(K, L) for a simplicial pair (K, L). How-
ever, if C is a chain complex we shall always take C th G to mean

Proposition 5.2.6 A chain map f: C —i- D gives rise to a chain map
such that

(a) zf 1: C C is the identity chain isomorphism, then 1 1 is also
the identity chain isomorphism;

(b) ifg: D —* Eis another chain map, then 1)(g 1) = 1.

Proof. Letfeh 1: D th G —÷ C G be what was previously called
f tK 1, on each (D this certainly defines a homomorphism from
D G to C K C. Properties (a) and (b) follow immediately from
Proposition 5.2.3, and finally 1 is a chain map, since

=

= 1

= Jh1)(aehl)
=(fh1)8. I

If C is the singular chain complex of a pair (X, Y), the homology
groups of C eh G are called the cohomology groups of (X, Y).

Definition 5.2.7 Given a pair (X, Y), the nth cohomology group
of (X, Y), with coefficients in the abelian group G, is by

Y; G) = Y) if V = 0 we write
H"(X; C); anà also H*(X, Y; G), H*(X; G) for Y; G),

G) respectively.
Similarly, the reduced cohomology groups of X are defined by

G) = C), R*(X; C) $ G).

The word 'cohomology' is used, of course, to prevent confusion with
the homology groups. We have defined Y; C) to be

Y) C), rather than Y) h C), so that
Y; C) is zero for n < 0 (and also, as we shall see, so that
L; F) and L; F) are over F, if (K, L) is a

simplicial pair and F is a field). By analogy with homology, we shall
usually write Y) instead of Y; Z).
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Just as in Section 4.5, a continuous map f: (X, Y) (A, B) gives.
rise to a chain map f 'ih 1: S(A, G —* S(X, Y) G,
induced homology homomorphisms are called the cohomology homa...
morphisms f*: B; G) —+ H"(X, Y; G). Once again, Proposi-
tions 4.2.16 and 4.2.21, together with Proposition 5.2.3, show that
1* = 1, (gf)* f*g*, and f* = g* if g. Also, if (K, L) is a
simplicial pair, then H *( 1K!, IL I; G) may be identified with the
homology of the chain complexes 4(K, L) kG and C(K, L) .4.. G.
In particular 4,*: H*(K') and h*: H*(K) H*(K') are
inverse isomorphisms, where Ii is a simplicial approximation to the
identity map.

We can also take over the exact sequence theorems of Section 4.4,
in virtue of the following Proposition.

Proposition 5.2.8 Given an exact sequence of abelian groups
a

0 —÷ A —* B —k C ----+0,

where C is a free abelian group, and another abelian group G, then

o

is an exact sequelzce.

Proof. By Corollary 1.3.38, the exact sequence 0 -+ A —+ B
C -÷0 is a split exact sequence, and so B A C. Hence by
Proposition 5.2.4 B 4.. G (C .4.. G) (A .1.. G), and it is easy to
conclude that the sequence

a split exact sequence. •
In particular, if 0 —÷ C D 4 E —* 0 is an exact sequence of chain

complexes, and each is a free abelian group, then

o 'E.4..G >0

is an exact sequence of chain complexes. We immediately obtain,
for example, the exact cohomology sequence of the triple (X, Y, Z):

Similarly, there is a cohomology Mayer—Vietoris sequence of a
simplicial triad (K; L, M), and a relative Mayer—Vietoris sequence
given another subcomplex N. As in homology, continuous maps give



164 COHOMOLOGY AND DUALITY CH

rise to commutative diagrams involving these sequences. In
particular the homomorphism s:, 4(K) —÷ induces the cohomo-
logy isoinorphism s*: fl"÷'(SK) where if
f: IKI —* is a continuous map f*s* = s*(Sf)*. And as a conse-
quence of the exact sequence theorems, cohomology can be calculated
directly from a block dissection (though as in Section 4.5 there is an
apparent ambiguity about how to do this: see Exercise 1 which
resolves this ambiguity).

As before, the next step is to establish results that connect cohomol-
ogy groups with various coefficients, and also cohomology with
homology. The latter is done by constructing. a pairing between
elements of H(C G) and H(C ® G), given a chain complex C and a
ring (not merely an abelian group) C.

Proposition 5.2.9 Given a chain complex C and a ring G, there is a
homomorphism

called the K onecker product, where the image of x ® y is wi lten
(x, y>. Moreover 1ff: C —+ D is a chain map, and x e G),
y e ® G), then <(f,h y> = <x, (f ®

Proof. Given and E 0 G, define

<a, ® =

(using the multiplication in C). It is easy to see that this defines a
homomorphism (C 0 (C 0 —÷ C. Now given x e

C) and ye ® G), take representative cycles a, c for
x, y respectively, ard define <x, y> = <a, c>. This does not depend on
the choice of a and c, since, for example, if then

c> = <fly 1)(c)> = 0.

Finally, represent x e G), y e G) by cycles a, c
respectively. Then

=

= <a, (f ®

= <x,(f® I
It follows that if f: (X, Y) —+ (A, B) is a continuous map, and

x e B; G), y e Y; G), then

<141(x), y> =
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If X is path-connected, G H0(X; G), so that the Kronecker
product H"(X; G) ® C) G may be regarded as a homo-
morphism into H0(X; G). It is therefore possible to make the following
slight a polyhedron JKj.

Proposition If G is a ring, there exists a homomorphism

Ht(K; G) ® C) Hnr(K; G),

called the cap product, where the image of x 0 y is written x y.

Proof. Totally order the vertices of K. Given a generator a =
{b°,. . ., of C(K), with its vertices in the correct order, let.
a' = {b°, . . ., and a" = . . ., also a e Cr(K)ek (3',
define

=

It is easy to see that

® 1)(a c) = a 0 + (— c,

so that if x HT(K; C), y e G) are represented by cycles c

respectively, we can unambiguously define x fl y = [a n e]. And this
certainly defines a homomorphism from HT(K; (3) ® (3) to
Hn.r(K;G). I

In fact the cap product can be defined for arbitrary spaces: see
Exercise 2.

If in particular C = F, a field, Proposition 5.2.9 leads to the
following analogue of Proposition 4.5.10.

Proposition 5.2.11 Let C be a chain complex in which each is
a finitely-generated abelian group, and let F be a field. Then the
Kronecker product makes H.. h F) and ® F) into dual vector
spaces over F. Moreover if g: C D is a chain map, (g and
(g 0 are dual linear maps.

Proof. definefaby

(fa)(c) = fa(c) (c e Ca).

This makes (C th into a vector space overF. If the Kronecker
product is regarded as a function

x (C®
it is certainly linear in each variable. Moreover if <a, ® = 0

for all E f, e F, then in particular a(c) = 0 for all c e so that
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a = Ofor
a linear map ® F F such that

®fj 0. Thus if a is defined by a(c) = (c e Ca),
we have

= ®

= ®fj

contrary to hypothesis: thus 0 = 0 and so (C
(C 0 are dual vector spaces under the Kronecker product.

Now

S(u) = 0 forall ® F

l)(c)> = 0;

hence eK F)
d(B - F)), so that, by Proposition 1.3.55, B F) =

0 F)), and F) and 0 F) are dual vector
spaces (under the Kronecker pro.duct, of course).

That (g ® are dual linear maps is immediate
from Proposition 5.2.9. I

Corollary 5.2.12 Given a dmplicial pair (K, L) and a field F,
L; F) and L; F) are dual spaces over F. Moreover

ILl) —÷ (IMI, tN[) is-a continuous map, g* and are dual
itnear maps. I

There is a similar result to that of Proposition 5.2.11, relating
Z,) and Zr), though p may not be a prime

and so Z, may not be a field.

Proposition 5.2.13 Let C be a chain complex in which each C,, is a
finitely-gene?aled abelian group, .and let p be any positive integer. Then

Proof. Each (C ® Zr),, is a finitely-generated abelian group, in
which each element has finite order dividing p; let us call such a group
a p-group. Now given a p-group G, subgroup H, and a homomorph—
isni a: H -÷ Z,, there exists a homomorphism ,8: C —a- such that'

= a. For suppose g is in G but not H; then the set S
{s e sg e H} is clearly a (cyclic) subgroup of and f: S
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defined byf(s) = a(sg), is a homomorphism. Sof must be multiplica-
tion by some t e that is, a(sg) = ts for all se S. It follows that we
may extend a to the multiples of g by setting a(g) = t; and by con-
tinuing in this way, after a finite number of steps we shall have
extended a to the whole of G.

Now consider an exact sequence of p-groups A1* C: we show
that the sequence

is also exact. For certainly 1)(g tk 1) = 1 = 0, so that
Im (g 1) c Ker (feh 1). But if a: B is in Ker (fih 1), then
af= O,sothata(Kerg) = a(Imf) = 0. Thus
such that = a; but can be extended as above to the whole of C,
so that a e Im (g ih 1) and hence Im (g eh 1) = Ker (fh 1).

Now define 0: eh Z,, ® k by 0(a)(c) (a, c>,
a E eh Zr,, cc ® Z,. As in the proof of Proposition 5.2.11, 0 is
(1-1) and onto, and so is a chain isomorphism; our result now follows
by a proof similar to that of Theorem 4.5.13. !

Corollary 5.2.14 Given a simplicial pair (K, L), H't(K, L;
•

Theorems relating cohomology groups with various coefficients can
be established by the methods of Section 4.5. Indeed, they can
actually be deduced from the theorems of Section 4.5, in virtue of the
following proposition.

Proposition 5.2.15 Let C be a chain complex in which each is a
finitely-generated abelian group, and let G be any abe/ian group. Then
there is a chain isomorphism -.

Z) ® G-* C1hG.

Proof. Define 0: ih Z) 0 G —÷ h G by the rule

[0(a 0 g)}(c) = a(c)g,

for a Z,g e G, and c e This certainly defines a homomorph-
ism 0, and in fact 8 is an isomorphism. For if the generators of
are ui,. . •, a free abelian group with generators s1,. . .,
where = 1 if i = j and 0 otherwise. Thus a homomorphism
ç5: G Z) 0 G can be defined by the rule
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And then
= .fi(a1)

=
and

ç6O(s, g) = 0 [0(s, 0 g)](a1)

0

= ® g,

so that 8 and are inverse isomorphisms.
Lastly, to show that 0 is a chain isomorphism, observe that for

c a c if. Z, and g G, we have

[60(a 0 g)](c) = [0(a ® g)](&)

= a(ac).g

= (&z)(c).g

= ® g)](c)

= [0(6 ® 1)(a ® g)J(c),

so that 60 = 0(6 1). I

Corollary 5.2.16 Let (K, L) be a simplicial pair. Then

(a) L; Q) L) ®
(b) L; L) ® Tor L), Zr), for

any positive integer p. •

Rather surprisingly, Corollary 5.2.16 leads to a formula expressing
the cohomology groups L) in terms of the homology groups

1,). 'l'o state this formula, given a finitely generated abelian
group A, use Theorem 1.3.30 to write A in the form FA TA,
where FA is a free abelian group and TA is a finite group.

Proposition 5.2.17 H't(K, L) L) ® - 1(K, L).

Proof. By Theorem 4.5.13, Corollary 5.2.12 and Corollary
5.2.16(a),

L) ® Q L) ® Q,
being dual (finite-dimensional) vector spaces over Q. Thus

L) L).
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But we also know, by Theorem 4.5.15, Corollary 5.2.14 and Corollary
5.2.16(b), that for any positive integer p,

L) ® Tor L),
L) ® $ Tor (Hft1(K, L), Zr)] Zp.

By taking p to be the l.c.m. of the orders of the elements of TH'(K, L),
L), L) and L), and using the fact that

FtI"(K, L) L), it follows that

L) L) L) L).

But H°(K, L) = Z0(4(K, L) Z), since (d(K, L) €k Z)1 0, and
so TH°(K, L) = 0 and TH'(K, L) THQ(K, L). Proceeding by
induction on n, we obtain L) L), so that

L) FH'1(K, L) L)

L) L). 1

Example 5.2.18 We have already calculated in Example
4.4.25:

= 0 if r < 0, r > n or r is even,

HT(RP") Z2 if r is odd and 0 < r < n,
Z if n is odd.

It follows that H*(RPfl) is given by:

H°(RP't)

= 0 if r < 0, r > 12 or r is odd (unless r

Z2 if r is even and 0 < r ii,

Z if n is odd.

Similarly, the homology and cohomology of RI", with Z2 coefficients,
are given by:

Z2) = WT(RP"; Z2) = 0 if r < 0 or r > n,

Z2) HT(RP"; Z2) Z2 if 0 r n.

Example 5.2.19 Consider the triangulable 2-manifolds M9 and
N,,. By Theorem 4.4.24, we have

H0(M9) H2(M0) Z, H1(Mg) 2gZ, 0 otherwise,

Ho(Nh) Z, Hl(Nh) (h — 1)Z Z2,. Hr(Nft) = 0 otherwise.
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Hence

H2(M9) Z, H'(Mg) 2gZ, HT(M9) = 0 otherwise.
H°(Nh) Z, H'(Nh) (Jz — l)Z, H2(Nh) Z2,

Jf = 0 otherwise.

Also

H0(M9; Z2) H2(M9; Z2) Z2, Hj(Mg; Z2) 2gZ2,

HO(Nk; Z2) H2(Nh; Z2) Z2, Hl(Nh; Z2) hZ2,

cohomology with coefficients in Z2 being the same groups. •
The reader should notice the following facts about Examples 5.2.18

afl(l 5.2.19.

(a) If Z, then for all r.
(b) In any case, Z2) Z5) for all r.
(c) Similarly, !12(Mg) Z and H,(M9)
(d) IIt(."v'h; Z2) Z2).

These are all special cases of the Poincaré Duality Theorem, which we
shall prove in Section 5.3. Certain triangulable spaces X (generaliza-
tions of n-manifolds) will be called homology n-manifolds; the state-
ment of Poincaré Duality is that, for such an X, 14(X) H"T(X) If

2, and in any case HT(X; Z2) Z2).

5.3 The Alexander—Poincaré Duality Theorem
In this section we shall prove a rather mare general theorem than

the Poincaré Duality Theorem that has just been outlined,to the effect
that, if K is a triangulation of a homology n-manifold and (L, M) is a
pair of of K, then

— IMI,!KI — LI).
If we put M = 0 and L = K, we recover the original Poincaré
Duality Theorem; on the other hand ifK is of S" we
obtain the Alexander Duality Theorem, which is a very useful. one in
dealiiig with subspaces of Sit; in particular it gives a proof of a general-
ization of the (piecewise-linear) Jordan Curve Theorem.

Recall from Proposition that if K is a triangulation of an
n-manifold, then for each x e IKI, Now we could
prove the theprems of this section for ti ia.ngulable manifolds only, but

the only property we shall use is that, Eior some triangulation K
andeach XE IKI, we well consider all
spaces having this property: these are the liomol,gy n-manifolds.
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Definition 5.3.1 A path-connected space X is homology n-
manifold if there exists a triangulation K of X, such that for each point
xe IKI, and for each r, H,.(Lk(x))

In other words, for each x we have

fl,.(Lk(x))
r = n — 1

— (SO, otherwise.

By Theorem 2.4.5, if this property holds for one triangulation of X,
then it holds for every triangulation. Also, as we have just remarked,
any triangulable path-connected n-manifold is a homology n-manifold.
See Exercise 9, however, for an example homology n-manifold
that is not an n-manifold.

Examples 5.3.2 The triangulable 2-manifolds Mg and Nh are of
course homology 2-manifolds. Also and RPn are homology n-
manifolds: for by Example 3.4.2 is an n-manifold; and as for
we know at least that it is triangulable, by Example 4.4.25. But since

is formed from by-identifying antipodal points, it is very easy
to see that is an n-manifold: given a pair x, x' of antipodal points
of S'1, choose E so that the €-neighbourhoods of x and x' do not
intersect; then after identification these €-neighbourhoods become a
single open set in containing the point corresponding to x and x',
and clearly homeornorphic to an open set in I

A triangulation of a homology n-manifold has several convenient
properties, which éan be obtained by using Theorem 2.4.5. The most
important of these are collected together in the next theorem.

Theorem 5.3.3 Let K be a triangulation of a homology n-manifold.
Then K has the following properties.

(a) dim K = n.
(b) Each point of K is contained in at least one n-simplex.
(c) Each (n — 1)-simplex of K faces two n-simplexes.
(d) Given n-simplexes a and r in K, there exists a sequence of n-

simplexes a = a2, . . ., a,. = r, such that each is an
(n — 1)-simplex.

Proof. We may assume that ii 1, since a homology 0-manifold
is obviously just a point.

(a) Certainly dim K n, for otherwise dim Lk(x) would be less
than (n — 1) for all XE 1K!, and so 1(Lk(x)) would be zero. On the
other hand, if K had an rn-simplex a, for m > n, then for points x in
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the interior of a, ILk(x)1 would be homeomorphic to contra-
dicting Definition 5.3.1.

(b) This is immediate: if x were in no n-simplex, dim Lk(x) would
be less than (n — 1).

(c) Let x be a point in the interior of an (n — 1)-simplex a, and
suppose that a is a face of r n-simplcxes (r > 0). Corresponding to
each n-simplex r that has a as a face, there is a subcomplex + — a of
Lk(x); the union of these is Lk(x), and any two intersect in a: see

Fig. 5.1.

An easy calculation by induction on r, using the reduced Mayer—
Vietoris sequence, shows that is a free abelian group with
(r — 1) generators, so that r must be 2.

(d) Choose a particular n-simplex a, and let L be the set of n-
simplexes of K that can be 'connected to a' in this way (with their
faces), and M be the set of n-simplexes that cannot be connected to a
(with their faces). Then L and M are subcomplexes, and L M K.
Moreover, if we assume that M is non-empty, then L M is non-
empty, since IKI is path-connected, and, dirn(L riM) n — 2,

since an (n — of L M would have to be a face of an
n-simplex of L and an n-simplex of M. This already contradicts the
assumption that M 0 if n 1, so we may assume from now on
that n 2.

Let a be a vertex of L ri M, and Lk(a). a must be a vertex
of an n-simplex of L and an n-simplex of M, so that both Lk(a) L
and Lk(a) ri M contain (n —. 1)-simplexes. Also dim(Lk(a) L M)

n — 3, and by (c) every (n — 2)-simplex of Lk(a) is a face of two
(n — 1)-simplexes; thus if = r, for all (n — 1)-simplexes of
Lk(a) ri L, and CM = r, for all (n — of Lk(a) ri M,

-a

Fig. !i
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then CL and CM are linearly independent cycles of C(Lk(a)) ® 2'2 (in
for example, each (n — 2)-simplex occurs twice). It follows that

H, - 1(Lk(a); Z2) has dimension at least 2, as a vector space over Z2, so
that by Theorem 4.5.15 Lk(a) cannot have the same homology as

This contradiction shows that M must be empty, and so
L=K.I

It follows from this theorem, and Chapter 3, Exercise 13, that every
homology 2-manifold is actually a 2-manifold. A similar result holds
for homology 3-manifolds, but not for manifolds of higher dimension:
see Exercises 8 and 9.

It is clear from the remarks at the end of Section 5.2 that the
Poincaré Duality Theorem is not true for all homology n-manifolds,
unless coefficients Z2 are used. Those homology manifolds for which
the theorem is true for Z coefficients are exactly those that are
orientable, in the sense of the next definition.

Definition 5.3.4 A homology n-manifold X is orientable if there
exists a triangulation K of X, for which the n-simplexes can be
identified with elements of in such a way that, if a is any
(n — 1)-simplex, and 'r1, are the two n-simplexes that have a as a
face, then a occurs with opposite signs in and

Notice that a homology 0-manifold (a point) is certainly orentable.

Example 5.3.5 S' is orientable, since it can be triangulated as
shown in Fig. 5,2, and the 1-simplexes identified with generators of
the simplicial chain group according to the arrows' in Fig. 5.2.

a2

As it stands Definition 5.3.4 is not much use, since it is not clear
that the definition is independent of the particular triangulation. In

op

Fig. 5.2
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order to clear up this point, and indeed to provide a practical test for
orientability, we prove

Proposition 5.3.6 Let X be a homology n-manifold. Then
ZifXis orient able, and = 0 otherwise. In any case, Z2)
z2.

Proof. Let K he a triangulation of X, and suppose that the
n-simplexes are identified with elements of as in t)efinition
5.3.4. Then z, the sum of the n-sirnplexcs of K, is an element of

K)), and hence so also is any integer multiple of z. On the other
hand if is an element of that contains rcY for some n-
sin)pkx a, then z' must contain ri for every n-simplex r that meets a
in an (n — 1)-simplex. And so z' contains ri for every n-simplex r that
can be connected to a as in Theorem 5.3.3(d), that is, for every r in K;
hence = rz, and Z.

Con' ersely, the same argument shows that, however the n-siniplexes
of K are identified elements of any element z' E
must he of the form where z = ± a, and a runs through the
n-simplexes of K. If we must have : 0, so that it is
possible to change the identification of n-simplexes so as to satisfy
Definition 5.3.4.

Finally, the argument used to prove that Z if X is orient-
able shows that in any case Z2) Z2. But by Theorem 4.5.15,
Hr,(K), being a finitely generated free abelian group, must be iso-
morphic either to Z or 0; hence = 0 if X is not orientable. I

Corollary 5.3.7 Two homotopy-equivalent homology n-manifolds
are cit/icr both orieiz table or both non-orientable. 1

Example 5.3.8 By Theorem 4.4.24, each •iiq is orientable, and
each is non-orientahie. S't is orientable, and by Example 4.4 25
RP't is orientahie if and only if n is odd. 1

We turn now to the duality theorem, which that, if K) is an
onentabk homology n-manifold, and M) is a pair of subcomplexes
of K, then IL(L, M) — $K' IL)) for each r.
Our will he given in terms of simplicial homology and cohomo-
logy, and since K1 -- ILl and )K) IM) are not polyhedra the first
step is to replace theni by the supplements arid 117, n the sense of
Definition 2.518.

Proposition 5.3.9 Let K be a simpliciaf complex, and let (L, ill)
be a pair of subcomp/exes. There is a commutative diagram
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' >

íej, ,j,i.

—* H,dKI — ILl) F1,(l1Cl — —11) — — _>.

in which each is induced by an inclusion map, and is an isomorphism.
A similar result holds for cohomology.

Proof. Certainly the diagram is commutative, by Theorem 4.4.3.
The proof is completed by showing that f: ILl 1K! — IL! and
f: IMI —÷ — IMI are homotopy equivalences: thus the induced
homomorphisms are isomorphisms, and then L)

— IKI — ILl) is an isomorphism as well, by Proposition
1.3.35.

To show thatf: !MI IKI — MI, for example, is a homotopy
equivalence, we prove that is a strong deformation retract of
IKI — MI. Now if a is a simplex of K' — (M' 'J M), then each
vertex of a is in either M' or moreover a has a vertex in M'
because it is not in M, and a vertex in M because if a had all its
vertices in 1W' it would be a simplex of M', by Corollary 2.5.11. It
follows that a is of the form (a°, . . ., an), where a0, . . ., at

. . ., a1z E M', and 0 r < n; thus the face (a°,.. ., at) is n M
since it cannot meet and . . ., a's) is in M' since all its
vertices are in M': see Fig. 5.3, in which n = 2 and r 1.

It is now easy to define a (strong) deformation retraction
p: IKI — MI —÷IMJ: if xeIMI, set p(x) = x, and if xCa —
(a MI), then x = where > 0 and 1; put

2

Fig. 5.3
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p(x) = A1) (this represents radial projection from a2 in

Fig. 5.3). Then p is continuous on each simplex, and the definitions of
p coincide on the intersection of two so that p is continuous
by Proposition 1.4.15. And p is a strong deformation retraction, since
pf = 1 and fp I by a linear homotopy. 1

The main tool in the proof of the duality theorem is the existence
of a block dissection of a triangulation of a homology n-manifold, that
is 'dual' to the ordinary simplicial dissection, in the sense that there is
a (1-1)-correspondence between the r-blocks and the (n —

simplexes. We shall build up as much of this theory as possible for
simplicial complexes in genera), and specialize to homology manifolds
only when necessary.

Suppose then that K is any sirnp[icial complex. For each simplex
a of K, define subcomplexes

•

. e(u) = all simpkxes of K' of form . ., where

é(a) = all simplexes of e(a) not having as a vertex.

Clearly these are subcomplcxes. As an example, see Fig. 5.4, in which
a is the simplex (a', a2).

00

In general the pair (e(o), é(cJr)) need not be a block: see; for example,
Fig. 5.5, in which a = (a°), so that H1(e(a), é(a)) Z Z.

01

Fig. 5.4
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However, these subcomplexes do have some convenient properties
which we list in the next proposition (we shall refer to the set of
simplexes in e(a) — ë(a) as the interior of e(o), just as if e(a) were a
block).

Proposition 5.3.10

(a) Each simplex of K' is in the interior of just one e(a).
(b) e(o!) is the union of all the for which a is a (proper) face of r.
(c) For each a e K, = * (a)'.

Consider the simplex (s,,,. .., of K', where a,, >
> a0. This simplex is in the interior of e(a0), and cannot be in the
interior of any other e(a), which proves (a). As for (b), notice that

but a0 a. Finally
(s,,,.. ., é(a) a0 > a,

(s,,,. .., Lk(&) . ., are the vertices of a simplex of K'

a > for some r

s,.) ê(u) and . .., E (a)',

which proves (c). •
It follows from (a) and (b) that the set of all pairs (e(a), ê(a)) will

form a block dissection of K', provided each is a block. It is at this
point that we need to know that K I is a homology manifold.

a',

FIg. 5.5



178 COHOMOLOGY AND DUALITY THEOREMS CH 5

Corollary 5.3.11 Let K be a triangulation of a homology n-manifold.
Then for each r-simplex of K, (e(o), é()) is an (n — r)-block, and the
set of all (e(u), é(a)) forms a block dissection of K'.

Proof. For each a e K,

A

— tO, otherwise.

But by Example 2.3.13 (a)' is a triangulation of so that

*

by Example 2.3.18 and Theorem 4.4.10,
so that

(Z, s — n — r — 1

S
— otherwise.

the other hand e(a) = é(a) * and so is contractible. Hence
= 0 for all s, and H5(e(a), ê(a)) fl5_1(è(a)) by the exact

reduced homology sequence of the pair (e(a), é(cr)). It follows that

H8(e(a), é(a))

so that (e(a), ë(a)) is an (n — r)-block. Thus the Set of all (e(a), é(a))
forms a block dissection of K', by Proposition 5.3.10(a) and (b). I

In order to calculate homology from the blocks e(o), we must
identify the corresponding 'block chain complex' with a sub-chain
complex of C(K), as in Proposition 4.4.21: this is done by choosing
generators of each ë(a))) c Suppose now that
1K! is an orientable homology n-manifold, and that the n-simplexes
of K are identified with elements of C(K) as in Definition 5.3.4: thus
2 E Cr(K), the sum of the n-simplexes of K, is a representative cycle
for a generator of Totally order the vertices of K' so that
& if dim a > dim r; let C(K) -+ C(K') be the subdivision
chain map, and let h: IK'l IKI be a simplicial approximation to the
identity. Finally, for each r-simplex a of K (considered as an element
of C(K)), let $ e Z be the homomorphism that sends a to 1
and all other r-simplexes to 0. Define 2(a) = (h h 1)(s) E

CflT(K').

Proposition 5.3.12 2(a) is a generator of ë(a))) Z.

Proof. By the remarks after Corollary 4.3.10, each generator
., of occurs in with coefficient ± i. Now

(h l)(s) (\ ., = . . ., . . .,
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and this is zero except for just one simplex . . ., contained in a,
when it is ± ..., Hence z(a) E

Moreover, by the pioof of Proposition 5.2.10

= (— 1)(s) ri (since a#(z) = 0)

= (— 1)8(s)

e by Proposition 5.3.10(b).

Thus z(or) E Zfl_T(C(e(cr), é(a))).
Lastly, z(a) is a generating cycle since, we saw above, each

simplex in z(a) has coefficient ± 1.
We are now, at last, in a to prove the Alexander—Poincaré

Duality Theorem.

Theorem 5.3.13 Let K be a triangulation of an orientable homology
n-manifold, and let (L, M) be a pair of subcomplexes. Then for each r
there exists an isomorphism D: M) _+ L).

Proof. Note first that L is the union of the blocks e(a), for all
a L, so that L is a block subcomplex. For a simplex of L does not
meet ILl, and so all its vertices are barycentres of simplexes not in L:
so this simplex is in the interior of some e(cr), where a L. Conversely,
if a L, then no simplex having a as a face can be in L, so no simplex
in e(a) can have a vertex in IL!, and hence e(a) C L.

Similarly M is the union of the e(o), for all a M. Moreover, since
for example e(u) is contained in M if and only if its interior is contained
in M, a simplex a is in L — M if and only if the interior of e(or) is in
M—L.

Now consider the isomorphism D: C,(L, M) Z I;),
defined by D(s) = z(a), where C is the chain complex obtained from
the block dissection into e(a)'s, and s is the homomorphism that sends
a to 1 and all other r-simplexes to 0. If d is the boundary
ism in C, dD(s) can be calculated by Propositi9n 4.4.21:

OdD(s) = aOD(s)

= (—. 1)8(s) ç6(z)

by the proof of Proposition 5.3.12, where S is regarded as the boundary
homomorphism in C(L) Z, and we omit simplexes in L. Thus

dD(s) =

where the sum is taken over those (r + 1)-simplexes r such that
= a + and the interior of e(r) is not in L. But as we saw
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above, the interior of e(1) is in M — L if and only ii T Is in L — M,
and so

dD(s) = (—

where now 6 is the boundary homomorphism in C(L, M) 2.
Hence D induces an

D: HT(L, M) —÷ ,(Al, L).

Note that, by Proposition 4.4.22, D is the isomorphism induced by
the homomorphism from C(L, M) ,h 2 to C(M, L) given by sending
s to z(a), for each a in L -- 1W.

Corollary 5.3.14 With the notation of Proposition .5.2.17,

FH'(L,M) FHn_r(M,12)
and

•
It follows, of course, that we may interchange homology and

cohomology in Theorem 5.3.13: HT(L, M) L) for all r.
Moreover, these isomorphisms remain valid if we replace integer
coefficients by Q or Zr,, for any positive integer p.

We emphasize, however, that Theorem 5.3.13 has been proved only
for orientable homology manifolds. Indeed, the theorem would be
false if were non-orientable: for if (L, M) = (K, 0), then
(M, L) = (K', 0), so that if Theorem 5.3.13 were true, we would
have

H°(K)

since IKI is path-connected. But this contradicts Proposition 5.3.6.
However, there is still a duality theorem for non-orientable homo-

logy manifolds, provided Z2 coefficients are used throughout. On
using z 0 1 e ® Z2 instead of z, the method of proof of
Theorem 5.3.13 will prove

Theorem 5.3.15 Let K be a triangulation of a homology n-mani-
fold, not necessarily orientable, and let (L, M) be a pair of subeomplexes.
Then for each r, the isomorphism D: C(L, M) Z2 —÷ C(Jl?, L) ®
given by D(s) = 1)(s) ® 1)(z ® 1), induces an isomorphism
D: HT(L, M; Z2) L; Z2). Also

Hr(L, M; Z2) L; Z2). 1
Before discussing corollaries and applications of the duality

theorems, it is worth noting that Theorem 5.3.13 has the following
converse.
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Theorem 5.3.16 Given a path-connected polyhedron K J, a
positive integer n, such that for each pair of subcompkxes (L, M) of K
and for each r, we have H'(L, M) L), then IKI is an
orientable homology n-mansfold.

Proof. Choose an r-simplex a of.K, and let (L, M) (K(a), a),
so that (L, M) is a triangulation of (ET, '), and by Proposition
5.2.17

s=r
— .0, otherwise.

On the other hand, as in the proof of.Theorem 5.3.13, L U e(r)
for all i- K(a), and 21? U e(r), for all a; hence .21? = £ u e(a),
and also L e(a) = é(a), by the definition of L. It follows that

ê(a)) 118(M, L), by Example 4.3.6

Jtz,
= 10, otherwise,

so that (e(a), è(a)) is an (n — r)-block.
To finish the proof, we just reverse the proof of Corollary 5.3.11:

(a))

fls_ri.i(e(a), é(a))

fZ, s=n—1
= 10, otherwise.

But by Theorem 2.4.5 we can replace LkK; and clearly
Lk(&) = Lk(x) for all x in the interior of a. That is, Lk(x) has the
correct reduced homology groups for each point x e 1K (, so that 1K I
is a homology n-manifold. And it is orientable, since

H°(K) Z. I
The 'standard' Poincaré and Alexander duality theorems can easily

be deduced from Theorems 5.3.13 and 5.3.15.

Theorem 5.3.17 (Poincaré duality.) Let K be a triangulation of
a homology n-manifold. If 1K I is orientable, there is an isomorphism
D: H'(K) -÷ Hn_r(K') for all r; in any case there is an isomorphism
D: HT(K; Z2) -÷ Hn_r(K'; Z2)for alir.
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Proof. Apply Theorems 5.3.13 and 5.3.15, with (L, M) =
(K, 0). 1

Notice that if x e HT(K), then D(x) /z*(x) where
h: JK'J —÷ JKJ is a simplicial approximation to the identity map.
Since h* is an isomorphism, the Poincaré duality isomorphism may
conveniently be regarded as the isomorphism .D: HT(K')
given by D(x) =

Theorem 5.3.17 gives a useful sufficient condition for the orient-
ability of IKI.

Corollary 5.3.18 Let K be a triangulation of a homology n-manifold.
If H1(K; Z2) = 0, then 1K

I
is orientable.

Proof. We have Z2) H°(K; Z2) Z2 and 22)
Z2) H1(K; Z2) 0. But by Theorem 4.5.15

Z2) 0 $ Tor Z2)
and

Z2) ® Tor Z2).

Now is a finitely generated abelian group, and so is a direct
sum of groups isomorphic to Z or Zr,, for various integers p; but since

® Z2 0 there are no Z's, and all p's are udd. It follows
that Tor Z2) = 0, and so

® Z2 Z2) Z2.

Hence Z by Theorem 5.3.6, and IKI is orientable. •

Theorem 5.3.19 (Alexander duality.) Let K be a triangulation of
and let L be a subconzplex of K. Then R'(L) —

for all r.

Proof. Let a be a vertex of L. Since is an orientable homology
n-manifold, we have

PT(L) HT(L, a) L) — a, Sn —

using also Proposition 5.3.9. But it is easy to see that — a is
homeomorphic to — (use the standard map of Section 1.4),
and so- is contractible. Hence — a) = 0, and the exact reduced
homology sequence of (S's — a, — shows that

— a, — ILl) I?fl_T_l(S" — LI). I
Naturally, Theorems 5.3.17 and 5.3.19 remain true if we interchange

homology and cohomology.
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The duality theorems have many interesting corollaries. Some of
these depend on the ring structure of cohomology, and so will have
to be postponed to Chapter 8, but we shall conclude this section with
a few results on the Euler—Poincaré characteristic and inclusions of
homology manifolds in each other.

Proposition 5.3.20 Let X be a homology n-marnfold, where n is odd.
Then 0.

Proof. Whether or not X is orientable, we have

H,(X; 22) 22) 22),

by Theorem 5.3.17 and Corollary 5.2.12. Thus if ar is the dimension
of 22), as a vector space over Z2,

(— 1)'at = 0, since n is odd.

On the other hand, Theorem 4.5.15

22) ® Tor (Hr_ 1(X), 22)

[FHT(X) TH,.(X) $ THr...i(X)1 ®

Thus = where is the dimension of FHT(X) 0
Z2, as a vector space over 22. But this is the same as the dimension of
FH,(X) ® Q H7(X; Q) as a vector space over Q, so that

= I

Proposition 5.3.21 Let (K, L) be a simplicial pair, where both
KI and ILl are homology n-manifolds. Then K = L.

Proof. By Theorem 5.3.15,

HO(K', L; Z2) 14(L; Z2) Z2.

Thus in the exact homology sequence of the pair (K, L):

—÷ H0(L; Z2) .±÷ 110(K'; Z2) H0(K', L; Z2) 0,

since H0(K'; 22) H0(K', Z; 22) 22, i,, must be the zero homo-
morphism. But this is impossible unless L = 0, that is, K = L. I

In other words, a homology n-manifold cannot be properly con-
tained in another, as a subpolyhedron. Of course, it is essential for this
result that the dimensions of the two homology manifords should be
the same; for we cannot have one contained in another of lower
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dimension, and on the other hand it is certainly possible to have one
contained in another of higher dimension: for example, in

The duality theorems allow us to say quite a lot about homology
n-manifolds contained in S"4 1•

Proposition 5.3.22 Let ILl be a non-orientable homology n-manifold'.
Then L cannot, be a subcomplex of a triangulation of S" +

Proof. Suppose, if possible, that K is a triangulation of
having L as a subcomplex. Then fl0(L) R"(L) = 0, by Theorem
5.3.19. But R0(L; Z2) .fl"(L; Z2) H"(L; Z2) H0(L; Z2) Z2
(n > 0, since otherwise L must be a point, and so orientable), which
contradicts Theorem 4.5.15.

That is, a homology that is a subpolyhedron of
must be orientable. In particular, pone of the 2-manifolds Nh can be a
subpolyhedron of S3.

Proposition 5.3.23 Let ILl be an orientable homology n-manifold
(n > 1), and let L be a subcomplex of some triangulation of S" Then
S"4' ILl has two' path components.

Proof. By Theorem 5.3.19,

00(S* — ILl) R"(L)

since it i

Z, is orientable.

Thus HO(S". —ILl) Z, so that by Example 4.2.13 S" — JLJ

has two path components. I
In particular the complement in S"41 of any subpolyhedron

S" must have two path components, and indeed,
by Chapter 3, Exercise 2, these path components are connected sets.
This result is a generalization of the Jordan Curve Theorem: the
complement in S2 of any subpolyhedron homeomorphic to S has two
connected components.

5.4 Manifolds with boundary and the Lefschetz Duality
Theorem

In this section we shall generalize the duality theorems of Section
5.3 to manifolds 'with boundary' (compare Chapter 3, Exercises 15
and 16). These are spaces which are locally like either Euclidean space
R" or the half-plane x1 0.
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Definition 5.4.1 A Hausdorif space M is called an n-manifold
with boundary (n ? 1) if each point of M has a neighbourhood homeo-
morphic to an open set in the subspace x1 0 of

Examples 5.4.2 E" is an n-manifold with boundary. For each
point of — -' has a neighbourhood that is already an open set in
R"; moreover (Es, is homeomorphic to (a, for an n-simplex
a, so that a point x of has a neighbourhood in that is homeo-
morphic to the intersection of an open set in R" with a, and this (if
small enough) is of the required form (we can ensure that the given
point x is mapped under the homeomorphism to an interior point of
an (n — 1)-face of a). See Fig. 5.6.

set in R"

Other examples are the 2-manifolds with boundary M and of
Chapter 3, Exercise 16, and M x I for any manifold M (without
boundary): for a point of M x I has a neighbourhood of the form

x B, A M is homeomorphic to an open set in some
Eudlidean space, and B is an open set in I (and is not the whole of I). •

We are particularly interested, of course, in those manifolds with
boundary that are triangulable. Information about possible triangula-
lions can be obtained from the following proposition, which generalizes
Proposition 3.4.33.

Proposition 5.4.3 Let K be a triangulation of an n-manifold with
boundary. Then for each XE IKI, Lk(x)I is homotopy-equivalent either
to or to apoint.

Fig. 5.6



COHOMOLOGY AND DUALITY THEOREMS cH5

Proof. If x has a neighbourhood homeomorphic to an open set in
x1 0 that does not meet x1 = 0, the argument of Proposition 3.4.3
applies, to show that ILk(x)I Otherwise, there exists a point
y in x1 = 0, an e > 0, and a homeomorphism h of B (x1 0)
onto a subset of IKI such that h(y) = x, where B is the e-neighbour-
hood of y in But B Css (x1 0) can be triangulated as K(o-), where
a is an n-simplex with y in the interior of an (ii — 1)-face. Hence, by
Theorem 2.4.5 ILk(y)I, which is clearly contractible. •

It follows that if M is a triangulable manifold with boundary, the
set of points of M having all neighbourhoods homeomorphic to open sets
that meet x1 = 0 is exactly the set of points x such that Lk(x)I is
contractible. This subset of M is called the boundary of M,

M onto another manifold with
boundary, N, must map onto

Proof. We show first that is a closed subspace of IKI. Now
each point x of IKI — has a neighbourhood homeomorphic to
an open set in the same is therefore true for each point in this
neighbourhood, and so IKI — is open, and hence is closed.

If a is a simplex of K that meets at a point x in its interior,
then Lk(x) is contractible. But Lk(x) = Lk(y) for all points y in the

186

'V

Proposition 5.4.4
boundary, there exists
Moreover, IL! is an (n

If K is a triangulation of an n-manifold with
a subcomplex L of K such that ILl = aIKl.

— 1)-manifold.

I
/

Fig. 5.7
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of a, so that the interior of a is contained in I9!K(. Hence
a since is closed, and so if L is the ofK of
those simplexes that are contained in JL( =

Lastly, consider a point x E ILl. Then there exists a point y in
x1 = 0, an E > 0, and a homeomorphism 1: as in Proposition 5.4.3:
see Fig. 5.7.

Now it is clear that points z in x1 0 such that d(y, z) < e are
mapped by h to IKI — ILl if they do not lie in x1 = 0, and to ILl
otherwise (a point in x1 > 0, for example, has a neighbourhood that is
an open set in and is contained in B n (x1 0)). Hence x = Iz(y)
has a neighbourhood in (L( that is homeomorphic to the set of points
z in x1 = 0 such that d(y, z) < E, and this in turn is homeomorphic
to an open set in I

So far in this section, we have considered triangulable manifolds
with boundary, and it is perfectly possible to prove the Lefschetz
Duality Theorem for these spaces only. However, In the spirit of
Section 5.3, we prefer to work with rather more general spaces, the
homology manifolds with boundary.

Definition 5.4.5 A path-connected space X is a homology ii-
manifold wit/i boundary (n 1) if there exists a triangulation K of X,
such that for each point xe IKI, is isomorphic either to

1) or to 0. The boundary of X, is the set of points x such
that = 0; observe that X — 0, since a point in the
interior of a simplex of maximum dimension cannot be in

By Theorem 2.4.5, this property holds for all triangulations of X
if it holds for one, and the definition of is independent of the
particular triangulation; also, by Proposition 5.4.3, every path-
connected triangulable n-manifold with boundary is a homology
n-manifold with boundary. So, of course, is every homology n-manifold
in the sense of Definition 5.3.1; we shall sometimes call such homology
manifolds closed, if we wish to stress that their boundaries are
empty.

Examples 5.4.6 and are all homology manifolds with
boundary. I

We should like to be able to say also that X x I is a homology
n-manifold with boundary if X is a (closed) homology (n — 1)-
manifold. This is true, but is a little more difficult to prove than the
corresponding result in Examples 5.4.2. The following lemma is
necessary.
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Lemma 5.4.7 Let x be a vertex of a simplidal complex K, and let
L = Let y be any point of ILl, and let z be the mid-point of .iy
(see Fig. 5.8). Then for each r, RT('LkK(z)) —

Proof. Suppose first that
1-simplex. Then

y is a vertex of 4 so that (x, y) is a

a E x, y and a are faces of a simplex of K, but a
does not contain both x and y
a e U LkL(y) * x U * y

= * (x u y)

(if for example a contains neither x nbr y, then a E L and a e
Hence RV_j(LkL(y)) by Theorem 4.4.10.

On the other hand if y is not a vertex of L, we may as well assume
that y is a barycentre of some simplex of L. Thus y is a vertex of
(L') * x, and by Theorem 2.4.5 this subdivision has not altered the
bomotopy types of either I

Proposition 5.4.8 If X is a closed homology (n — 1)-manqow, then
X x I is a homology n-ma,ufold with boundary, and ØX = X x 0 U
X x 1.

Proof. Let K be a triangulation of X, and consider the 'cone'
CK = K*a, whereaisasingle vertex. Jfx€(CKI — (jKf (Ja), x
is an interior point of a straight-line segment ay, where y is a point of
IKJ: thus if z is the mid-point of ay, Lk(x) = Lk(z), so that by Lemma

Iz,
IIT(Lk(X)) = flir(Lk(Z))

r=n—1
otherwise.

Fig. 58
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On the other hand, if x E 1K!, it is easy to see that LkCK(x)
* a, so that Lkcff(x) is contractible, and flr(Lk(X)) = 0 for all

i That is to say, CK is almost a homology n-manifold with boundary:
each point except a satisfies the conditions of Definition 5.4.5 (a does
not in general, since Lk(a) K).

Now 1K! x I can be triangulated as K x I, as in Section 4.2, and
K x I has subcomplexes K x 0 and K x 1 that triangulate 1K I x 0
and 1K I x I respectively. Thus a simplicial complex M can be formed
from the union of K x land CK by identifying points of K x I = K
with corresponding points of the subcomplex K of CK; and it is easy
to see that M is another triangulation of CK I (see Fig. 5.9).

Kxi

It follows from Theorem 2.4.5 that, if xe 1K! x [0, 1), ILkKXI(x)! =
I I LkCK(x) so that

JZ, if r = n — I and x E (K! x (0, 1)
K 10, otherwise.

Similarly flT(LkK 1(x)) = 0 for all r if x e 1K! x I, and certainly
1K! x I is path-connected if IK1 is. Thus 1K! x I is a homology
n-manifold with boundary, and K! x I) = (K! x 0

I
x 1.

The reader will have noticed that if X is a homology n-manifold
with boundary, and X is a manifold with boundary or X is of the form
Y x I for some (closed) homology (n — 1)-manifold, then

X is a closed homology
(n 1)-manifold. This result is in fact true for all homology manifolds
with boundary, though it is by no means an obvious consequence of
Definition 5.4.5; indeed, to prove it we must first establish the

C

C

Fig. 5.9
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Lefschetz Duality Theorem. Let us call a homology n-manifold with
boundary X special if, for each triangulation, oX is a subpolyhedron,
and each of OX is a closed homology (n — 1)-
manifold. Our plan of action is first to prove the Lefschetz Duality
Theorem for special homology with boundary, and then
to deduce by induction on n that, every homology n-manifold with
boundary is special.

As in the case_of the duality theorems of Section 5.3, the Lefschetz
Theorem takes two forms according as the manifold is

orientable or not. Now the proof of Theorem 5.3.3 shows that if IKI
is a homology n-manifold with boundary, then dim K = n and every
(n — 1)-simplex is a face of one or two n-simplexes. Definition 5.3.4
can therefore be extended as follows.

Definition 5.4.9 A lomology n-manifold with boundary is said
to be orientable if there exists a triangulation K, for which the n-
simplexes can be identified with elements of in such a way
that, if a is an (n — 1)-simplex that faces two n-simplexes and 'r2,
then a occurs with opposite sign in and 0(r2).

Of course, this definition suffers from the same disadvantages as
Definition 5.3.4. To resolve this (and indeed as the main
tool in proving the Lefschetz Duality Theorem) we define the double.
of a special homology n-manifold with boundary.

Definition 5.4.10 Let X be' a special homology n-manifold with
(non-empty) boundary, and let X0 -and X1 be two copies of X. The
double of X, 2X, is deffned td be the space obtained from X0 Li
OX x 1 u X1 by identifying points of-OX1 with corresponding points
of OX x I = OX, for i = 0, 1.

Pioposition 5.4.11 2X is a closed homology and is
orientable andonly if Xis.

Proof. Let (K, L) be a triangulation of (X, OX). 2X is certainly
path-connected and triangulable; as 2K, defined to be K0 Li L x I U
K1 with appropriate identifications, where K0 and K1 are two copies
of K. It is also clear from Proposition 5.4.8 that fl,(Lk(x)) _1)

for all points x 12K1 that do not lie in JL x Oj or IL x 1J. On the
other hand, if say x IL x 01, then Lk2K(x) LkL ,(x) LI
and c's = LkL(x). But R*(LkK(x))
0, so that, by the reduced Mayer—Vietoris sequence,

A(Lk2K(x)) f4- j(LkL(x)) - 1(Slt -2) &(s IL 1)
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The same argument works for points of L x 1), so that 2K = 2X
is a closed homology n-manifold.

If 2X is orientable, identify the n-simplexes of 2K with elements of
as in Definition 5.3.4. In particular this identifies the n-

simplexes of K with elements of and shows that X is orientable.
To prove the converse, suppose that the n-simplexes of K are identified
with elements of C,(K) as in Definition 5.4.9. Now an (n — 1)-
simplex of K faces just one n-simplex of K if and only if it lies in L;
so if is the sum of the n-simplexes of K, 82(z) = 0 and 8(z) is the
sum of all the (n I )-simplexes of L, with appropriate signs. Since
the path components of ILl are obviously subpolyhedra and are homo-
logy (it — 1)-manifolds, this means that each path component of fL(
is orientable: they can be oriented by identifying each (ii — 1)-
simplex of L with the corresponding element in (with its sign).
To deduce that 12K1 is orientable, orient K0 in the same way as K, K1
in the opposite way (that is, a in K1 corresponds to — a in K), and
L x Iasfollows. Leth: S(ILI)-+S(ILI x I)bethehomomorphism
of Proposition 4.2.21, which clearly restricts to h: 4(L) x I)
and induces /1: C(L) —÷ C(L x I). It is easy to see that each n-simplex

of L x I occurs in just one expression h(or), where a is an (n — 1)-
simplex of L (already identified with an element of C(L)): identify
with the corresponding element in h(or) (with its sign). Now Definition
5.3.4 is certainly satisfied for (n — 1)-simplexes of 'K0 — L or K1 — L;
on the other hand the formula

8h(o') + h8(or) = — (i0)a

shows that Definition 5.3.4 is satisfied for (n — 1)-faces of n-
simplexes r of L x I: for if the face occurs in 8h(a) the fact thai L is
oriented correctly will give us our result, and if the face is (i1)o or
(j0)o the result follows because of the chosen orientation of K0 and
K1 (other faces of 7 must cancel in the expression for 8h(a)). Hence 2X

orientable. J
It follows that Definition 5.4.9 is independent of the triangulation

of X, at least if X is special. It is also worth noting explicitly the
following result, obtained in proving Proposition 5.4.11.

Corollary 5.4.12 If X is orientable (and special), then each path
component of 8X is orientable.

The converse is not true: for example, each of the manifolds
is non-orientable (if were orientable, it is easy to see that Nb
would also be orientable); however is a disjoint union of S"s,
each of which is certainly orientable
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We are now in a position to prove the Lefschetz Duality Theorem.

Theorem 5.4.13 Let X be a special I n-manifold with
boundary, and let (K, L) be a triangulation of (X, CX). Then if X is
orientable,

If T(K, L) Hn_r(K) (all r),

and in any case
11r(V T. 7 \ .... fl IV. 7Y , = *

Proof We may assume that L is not empty, for otherwise this is
just Theorem 5.3.17. Suppose first that X is orientable, so that by
Proposition 5.4.11 2X is also orientable. Thus 2K is a triangulation of
an orientable homology n-manifold, and Theorem 5.3.13 may be
applied to the pair of subcomplexes (2K, K1), to obtain

HT(2K, K1)

But by Example 4.3.6 (applied to cohomology) we have

IIT(2K, K1) Hr(KO u L x I, L x 1).
However, in the exact cohomology sequence of the pair (L x I, L x 1),
the inclusion of JL x IJ in IL x IJ is clearly a homotopy equivalence,
so that HS(L x I, L x 1) = 0 for all s. Thus in the exact cohomology
sequence of the triple (K0 LI L x I, L x I, L x 1), we have

Ht(K0 u L x I, L x 1) H?(KO u L x I, L x I).

Finally, using Example 4.3.6 again, we have

Hr(K0 u L x I, L x I) Hr(K0, L x 0) Hr(K, L).

On the other hand,

12KI — 1K11, by Proposition 5.3.9

= x [0,1)

JKOJ, by an obvious deformation retraction.
Hence

A similar proof works, using Z2 coefficients, if X is not orientable. I
Of course, we can interchange homology and cohomology, and also

use coefficients Q or Z,,, for any positive integer p. if X is orientable.
Theorem 5.4.13 allows us now to justify our original definition of
homology manifolds with boundary, by showing that they are all
special.
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Theorem 5.4.14 Let X be a homology n-manifold with boundary.
Then X is special.

Proof. We shall prove this theorem by induction on n, supposing it
to be true for all homology manifolds with boundary, of dimension
(n — 1). The induction starts, with n = I, since in any triangulation
of a homology 1-manifold X it is easy to see that is the set of
vertices that are faces of just one 1-simplex.

Suppose then that X is a homology n-manifold with boundary
(n> 1), and that K is a triangulation of X. Let x be a vertex of K,
and write L Lk(x). Now R,(L) R,(S" 1) or 0 according as x is in
X — or hence (LI is path-connected, and by Lemma 5.4.7
JL( is a homology (n — 1)-manifold with boundary. Thus by the
inductive hypothesis L contains a subcomplex M such that (M( =

and each path component of jM( is a closed homology (n — 2)-
manifold.

If x e X — Theorem 5.4.13 gives

H0(L, M; Z2) H"1(L; Z2) Z2.

If M were non-empty, the exact reduced homology sequence of the
pair (L, M) shows this to be a contradiction, since R0(L) = 0.

Hence M is empty and so (L( is a closed homology manifold. By
Lemma 5.4.7 again, this means that for each point y e JL), the mid-
point of the segment xy is in X — But Lk(z) is the same for all
interior points z of so that all points of these segments, except their
end-points in IL!, lie in X — and so x has a neighbourhood
contained in X — Now the same is true for any point x of
X — for we could take x to be a barycentre, and make it a vertex
by subdividing. It follows that X — is open; hence 8X is closed;
hence there is a subcomplex aKof K such that (t9KI = o(K(, as in the
proof of Proposition 5.4.4.

Now suppose that x is a vertex of Again, Theorem 5.4.13 gives

r=n—I
Hr(L, M; Z2) '(L; Z2)

to, otherwise.

Thus the exact reduced homology sequence of the pair (L, M), and
the fact that fl,(L) = 0, yields

r—n--2
10, otherwise.

Since 2(M) must be a free abelian group, and 2's) =
Theorem 4.5.15 shows that therefore - 2(M) Z. Since =, 0,
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it follows by the reduced Mayer—Vietoris sequence that 1(2L)
Z; hence 21LI is orientable, ILl is orientable, and we may use Theorem
5.4.13 again to give all r.

Now by Lemma 5.4.7, interior points z of segments xy (y e ILl)
lie in ØX if and only if y E IMI; indeed, since ØX is closed, whole
segments xy lie in t3X if and only if y e IMI. It follows that =
M, so that RT(LkeK(x)) H,.(M) The same is true if x
is a general point of by the usual trick: assume x is a barycentre
and make it a vertex by subdividing. Thus the inductive step, and
hence the proof of the theorem, is complete. I

We conclude this section with a short discussion of cobordis'm. As
we have seen, the boundary of a homology n-manifold with boundary
is a union of closed homology (iz — 1)-manifolds; cobordism is the
study of the reverse problem: given a closed homology manifold (or a
union of them), is it the boundary of a homology manifold with'
boundary? In particular, two closed (n — 1)-manifolds X and Y are
said to be cobordant if there exists an n-manifold Z such that ØZ is the
disjoint union of X and Y; and the problem can alternatively be
stated: given X and Y, how do we tell whether or not they are co-
bordant? The problem remains unsolved in general for homology
manifolds (though it has been done for dzfferentiable manifolds: see
the notes at the end of this chapter). However, it is sometimes
to prove that X and Y are not cobordant by using the following result
about the Euler—Poincaré characteristic.

Proposition 5.4.15 Let X be a homology Jt-manifold with boundary.
Then is even.

Proof. Consider the Mayer—Vietoris sequence associated with the
subpolyhedra X0'LI (ØX x I) and (ØX x I) U of 2X (with
coefficients Z2):

HT(XO u x I; 22) ® x Lu X,
Hr(2X; Z2) -÷ X I; Z2)

Now x I X U X1, all by
obvious deformation retractions. Thus the Mayer—Victoria sequence
can be amended so as to read
• . . -+ Z2) H,(X; 22) 22)

-÷ Z2) -÷'

But an exact sequence of vector spaces over Z2 -
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may be regarded as a chain complex, so that, as in Lemma 4.5.17,
we have l)' dim VT = 0. Applying this to the Mayer—Vietoris
sequence, we obtain

x'(aX) — + = 0,

where = (— 1)' dim H,(X; Z2). But it was proved in
Proposition 5.3.20 that = so that

— + = 0.

If n is even, each path component of is an odd-dimensional closed
homology manifold, so that by Proposition 5.3.20 x(aX) 0. On the
other hand if n is odd, then = 0, so that = which
is even.

Corollary 5.4.16 and 5" cannot be cobordant if n is even;
neither can N,, and Mg be if h is odd (for any g), nor N,, and N,,., if
h — h' is odd.

Proof. If n is even, = 1 and = 2. Hence

X(RP" U 5') = + = 3,

and so RP" U S" cannot be a boundary. The results about N,, and
Mg follow similarly, since = 2 — 2g and = 2 — Ii. I

In fact every M9 is a boundary, as also is N,, if h is even; on the other
hand N,, is cobordant to N1 if h is odd (see Exercise 17). Thus two
2-manifolds X and Y are cobordant (counting the empty set as a
2-manifold) if and only if + x( Y) is even.

EXERCISES

1. Let K be a simplicial complex with a block dissection, and let L be a
block subcomplex. Let C be the chain complex C,,, where C, =
H,(M', M" and fe any abelian group G, let
C(G) = ®C,,(G) be the chain complex defined by C_,,(G) =
H"(M', M" _'; G). Show that C G and C(G) are chain-isomorphic,
so that the two ways of generalizing to cohomology the method of
calculating homology by a block dissection in fact coincide.

2. Show that a cap product H'(X; G) 0 H,,(X; G) --+ H,,.(X; G) can be
defined for an arbitrary space X, as follows. Given a A of
S,,(X), let A' = AP1 and A' = AF9, where F1: 4,,...,. 4, and
F2: 4,. —+4, are defined by F1 = (a°, .. ., a" - F2 = (a" - r, ., a").
Given also a e S(X) G, define a A ® = 0 (a(A)gg);
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show that this induces the required cap product between cohomology
and homology. Prove also that this coincides with the cap product of
Proposition 5.2.10 if X is a polyhedron, and that

f is a continuous map.

3. Given an exact sequence 0 —b. A3 B4 C 0 of abelian groups, and
another abelian group G, show that the sequence

0 .ChG
is exact, but that a 1 need not be onto.

4. Given abelian groups A and B, write A in the form FIR, where F is a
free abelian group, so that there is an exact sequence

Define Ext (A, B) = R GfIm (a 1), so that by Exercise 2 there is
an exact sequence

Ext (A,
Ext (A, B) depends only on A and B, and not on the particular

representation A = FIR.
(b) Ext ® B,) Ext (A1, B,), provided both direct sums

are finite.
(c) Ext (A, B) 0 if A is a free abelian group; Ext (Z,, Z)
Ext (Zr, Zq) Z(p,q), Ext (Z,, Q) = 0, for positive integers p and q.

5. Let C be a chain complex in which each C, is a free abelian group, and
let G be any abelian group. Prove that

G) G® Ext 0).

6. If in Exercise 5 each is also finitely generated, show that
G) Z) 00 ® Tor Z), G).

(Hint: use Proposition 5.2.15.)
7. Let M be a closed orientable homology n-manifold. Show that H,- 1(M)

is a free abelian group.
S. Show that a homology n-manifold (with or without boundary) is an

n-manifold in the sense of Definitions 3.4.1 and 5.4.1, if n 3. (Hint:
prove this by induction on n, using Lemma 5.4.7 and the classification
theorems for triangulable. 2-manifolds.)

9. The result of Exercise 8 does not hold if n 4. For example, X be
the space obtained from the (solid) dodecahedron by making identifica-
tions on the boundary, as in ExampLe 3.3.22. Show that X is a triangul-
able 3-manifold, and that rr1(X) Gp b; a3(abY3,
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Show also that 113(X) Z, and deduce from Chaptet 4, Exercise 3,
and Theorem 5.3.17 that 111(X) 112(X) = 0, so that X has the same
homology groups as S3.

Deduce that the suspension of X, SX, is a simply-connected hornol-
ogy 4-manifold that is not 4-manifold.

10. Let !KI be an orientable homology ii.inanifold, and let (L, M, N) be a
triple of subcomplexes of K. Consider the diagram

• . ._,. H'(L,M)

Dl
• . .+ 1(AU)-÷...

where the rows are exact sequences of triples, and D is the isomorphism
of Theorem 5.3.13. Show that the diagram is commutative up to sign;
more precisely, that

= Dj, j5D = D1, and = (— 7D8*

(use Chapter 4, Exercise 8).
Establish a similar result for homology and cohomology with

coefficients Z2, if !KI is not necessarily orientable.

11. Let X be a homology n-manifold with and suppose
H1(X; Z2) = 0. Show that X is orientable.

12. Let 1K! be an orientabk homology n-manifold with boundary, and let
(L, M) be a pair of subcomplexcs of K, such that IL! aIKI =
Prove that HT(L, M) 1), for each r.

13. Let KI be a closed homology n-manifold, and let (L, M) be a pair of
subcomplexes such that ILl is a homology n-manifold with boundary,
and = !LnMI, 1K! = IL(JMI. Show that !MI is also a
homology n-manifold with boundary, and (Hint: prove
this by induction on a, using the Mayer—Vietoris sequence on the links
of points in and the fact that 0 for coefficients Zbr Zr,,
if X is an orientable homology n-manifold with non-empty boundary.)

14. Let (K, L) be a triangulation of an orientable homology n-manifold
with boundary, where = If ILl —* 1K! is the inclusion
map, show that H,(L) H,.(K) is an isomorphism for all r.

15. Given two closed homology n-manifolds 1K! and IL!, the connected
rum 1K! # IL! is defined as follows (compare Chapter 3, Exercise 14).
Choose r in K and L respectively, and in 1K —
IL —. identify points of f&j with corresponding points of It!, under
some simplicial homeomorphism of 161 onto 1+1. definition can be
made independent of everything except the homeoinorphism classes of
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1K! and IL!.) Show that 1K! # IL! is a closed homology n-manifold,
and that if IKI and iLl are orientable, then

# )LJ)

HXIKI # ILl) Hr(L) (0 < r < n).

Prove also that 1K! # fLJ cannot be orientable unless both 1K! and
IL! are. -

16. Let (KI be a closed homology n-manifold (n ? 2). Let and
r be disjoint n-simplexes of K, and let L be the simplicial complex
obtained from K — (or u and a x I by identifying x 0 with &
and x 1 with # (using a simplicial homeomorphism). Show that this
can be done in such a way that ILl is an orientable homology n-manifold,
and

14(L) 14(K), , n — 1, 1

Z) >
H1(L)

(n .... )

(n=2).
(The construction of L from K is a special case of a construction known
as surgery: in general this consists in replacing a subspace homeo-
morphic to S' x E"' by x which has the same
boundary S' x In the above example r = 0)

17. Show that in Exercise 16 the homology manifolds IKI and IL! are
cobordant. Deduce that each of the orientable triangulable 2-manifolds
M9 is the boundary of a 3-manifold.

Use a similar method to prove that N, is the boundary of a 3-manifold
if h is even, and that N1 and Nh are cobordant if h is odd. (Hint: use
Chapter 3, Exercise 14 to show that N2 is the space obtained from two
copies of N1 by performing the, construction of Exercise 16.)

NOTES ON CHAPTER 5
Cohomology. Cohomology theory originated with the 'pseudocycles' of

Lefschetz [89], Chapter 6, and was developed further by Alexander [10J,
Whitney [163] and Lefschetz [91], Chapter 3. It was Whitney who invented
the word 'cohomology'.

Corresponding to the Cech homology groups, one can define Cech
cohomology groups: see for example Eilenberg and Steenrod [56],
Chapter 9.

The Alexander—Poincare Duality Theorem. The original references are
Poincaré [116, 117] and Alexander and Veblen [12] for Theorem 5.3.17,
and Alexander [8] for Theorem 5.3.19. The idea of combining these two
theorems as in Theorem 5.3.13 is due to Lefscbetz [89], Chapter 3.
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In fact the assumption of triangulability in Theorem 5.3.13 is not
really necessary, jind made only in order to simplify the proof. The
more general theorem states that, if M is any (orientable) n-manifold, and
(A, B) is a pair of clased eubspaces of M, then

B) — B, M — A),

where denotes Cech cohomology 'with compact supports'. A proof will
be found in Spanier [131), Chapter 6 (see also Greenberg [60], Section 27).

In the case of non-orientable manifolds, Theorem 5.3.13 can be improved
to give an isomorphism between cohomology with Z coefficients and homo-
logy with 'twisted integer' coefficients. See, for example, Swan [141),
Chapter 11.

For more results along the lines of Proposition 5.3.22, see Chapter 8,
Exercise 17.

The Jorda* Curve Theorem. The result that the complement in 53 of a
subapace to S1 has two connected components was first
stated by Jordan (8ZJ, although his proof contained some gaps. The first
rigorous proof was given by Veblen [146].

The Leftchefa Duality Theorem. Theorem 5.4.13 is due to Lefschetz
[87, 88, 89]. In fact it holds for arbitrary manifolds with boundary: see
Greenberg [60], Section 28, or Spamer [131], Chapter 6.

Cobordism. The concept of cobordism is due to Thom [143), who gave
necessary and stifficient conditions for two differentiable ,manifolds to be
cobordant. This work was extended to 'orientation-preserving' cobordism
of differentiable manifolds by Miluor [105] and Wall [150]. The position
with regard to cobordism of non-differentiable manifolds is, however, less
satisfactory. A certain amount is known about manifolds of low dimensions
(see Wall [151]), and for combinatorial manifolds the problem has been
reduced to an (as yet unsolved) problem in homotopy theory (Williamson
[164], Armstrong and Zeeinan [151, Rourke and Sanderson [123]; see also
Browder, Liulevicius and Peterson [28]).

Surgery and dffer.ntiable mamfolds. The technique of surgery is due to
Minor [106). Both cobordism and surgery have proved extremely useful
tools in the study of manjfolds. The interested reader should consult the
excellent survey article of Smale [128].



CHAPTER 6

GENERAL HOMOTOPY THEORY

6.1 Introduction
In the last two chapters we have investigated algebraic invariants

defined for various spaces. Although the techniques were powerful
enough to prove some quite important theorems, the situation is
somewhat unsatisfactory, because the definition of homology and

appeared to be almost entirely algebraic. Aesthetically,
at' least, it would be more satisfying to perform as many of the ma-
nipulations as possible with the spaces themselves, rather than with
groups, and also to ensure as far possible that any constructions
involved are homotopy-invariant.

The first aim in this chapter, then, will be the definition of con-
structions for topological spaces analogous to the direct sum, tensor
product and constructions for groups. We shalt see that these
constructions have many of the properties of their algebraic counter-
parts, and that there is a form of duality between the analogues of ®
and

We shall then go on to consider in some detail the set [X, Y) of
homotopy classes of maps from a space I to a space Y. In many cases
this set can be given the ucture of a group, and it is of course a
homotopy-type invariant of both X and V. In the following two
chapters it will become apparent that the set [X, generalizes both
the fundamental group of Chapter 3 and the cohomology groups of
Chapter 5, and so is an appropriate concept for unifying previous
techniques. The present chapter, however, is concerned with t"te basic
properties of [X, YJ, and with general methods for calculation: in
particular we shall establish results similar to the very useful exact
sequence theorems of Chapters 4 and 5.

The geometric analogues of algebraic constructions will be dis-
cussed in Section 6.2, and the set [X, Y) in 'Section 6.3. Section
6.4 is concerned with exact sequence theorems involving [X, Y],
and Section 6.5 with certain important special cases of these exact
sequences.

200
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6.2 Some geometric constructions

Throughout this section, and indeed throughout the rest of this
chapter, we shall assume unless otherwise stated that all spaces have
base points, and that all continuous maps and homotopies are base-
point-preserving, that is, homotopies will always be relative to base
points. This assumption will usually not be made explicit: thus for
example a map f: X —+ Y will always be to mean a based
continuous map between spaces with base point.

Examples 6.2.1

(a) The spaces considered in Section 1.4 are given 'standard' base
points as follows. The base point of I, the unit interval [0, 1], is 1, and
the base point of I, the double unit interval [—1, 1], is —1; and

each have base point (—1,0,. . ., 0). Thus the identity map
from J to E', and the standard map 0: E" S's, are based maps
(but 1: I —÷ I is not).

(b) Given a collection of based spaces Xe (a e A), where Xg is the
base point of Xe, the product X Xa is always given the base point (x).

Thus for example has base point (—1, —1,..., —1), and so
p:E"—*.J"isnotabasedmap(ifn 2).

Note that, if Xe Ye are based maps (a e A), then so IS
xf4: X Xe X Ye. Moreover, if each Xe is a copy of a single space
X, the diagonal map 4g: X -* X Xe, defined by = (xa), where
Xe = x for each a, is a based map (it is continuous by Proposition
1.4.21(c)). I

It was mentioned in Section 6.1 that one of the aims of this chapter
is to ensure as far as possible that all geometric constructions are
homotopy-invariant. Having already introduced the product, we start
by checking its homotopy properties; and inevitably this involves
first investigating maps between spaces, and then spaces themselves.

Theorem 62.2 Given collections of (based) spaces Xe, Ye (a e A),

Proof. Let Fe: X6 X I Ye be the bomotopy between fa and
Then F: (X X4) x I-÷ x Ye, defined by

F((x6), I) = (F0(x4, t)) (t I)

is clearly continuous, and is a (based) homotopy between xf4 and
I
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Corollary 6.2.3 Ifeachf0 is a homotopy equivalence, then so is Xfa.

Proof. Let V0 X0 be a homotopy inverse to for each
aeA. Then

xf0) = x (g0f0) X = 1 xXi..

Similarly (xf0)( 1 Xya P
That is to say, the homotopy type of X X4 depends only on that of

each X0 (clearly a similar proof will show that Xfa is a homeomorphism
if each f0 is).

The first two new constructions in this chapter, the geometric
analogues of the direct sum and tensor product, both make use of
identification maps in their definitions. Since we áaJI be particularly
interested in the homotopy properties of these, it is
convenient first to investigate the homotopy of identification
spaces. These depend on the result that if '}' is an identifica-
tion map, then p x 1: X x I -÷ Y x I is also an identification map.
This in turn is a special case of the more general result in which I is
replaced by an arbitrary space Z; but a diølculty arises here, since this
result would not be true without some restriction on the spaces
involved (see Exercise 1). The following theorem covers all the cases
that we shall need.

Theorem 62.4

(a) If p: X -÷ Y is an identzfication map, and Z is a locally compact
Hausdorff space, then p x 1: X x Z -+ Y x Zis an identification map.

(b) If A is a compact subspace of a space I, andp: X—. X/A is the
identification map, then for any space Z, p x 1: X x Z -+ (X/A) x Z
is an identification map.

(Note. In this theorem, maps are not assumed to be base-point-
preserving.)

Proof.

(a) Certainly p x 1 is onto, and it is continuous by Projosition
1.4.21. It remains, then, to show that U c V x Zis a set such that
(p x 1)'(U) is open, then U is itself open.

Let (y, z) be a point of U, and choose a point x e X such that
p(x) y. Thus (p x l)(x, z) (y, z), and (x, x)€(p x 1)-1(U).
Since this set is open, and Z is locally compact and Hausdorif,
Proposition 1.4.9 shows that there is an open set V in Z, containing
z, such that (x, z') e (p x l)-1(U) for all z' E V, and V is compact:
see Fig. 6.1.
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(x,z)

Vx

z

V

Now each point (x, z') e x x V has an open neighbourhood of the form
A x B contained in(p x l)'(U), where A is open in XandB is open
in Z. Since V is compact, a finite number of such B's will suffice to
cover V, and so if W is the intersection of the corresponding A's, W is
open, xe W, and W x V is still contained in (p'x 1)'(U). Notice
also that p-1p(W) x V C (p x 1)-'(U), since p(W) x V c U.

Now consider all open sets W containing x, such that W x V C
(p x 1)'(U). By taking their union, we might as well assume that W
is the largest such set, in the sense that every such set is contained
in W. In this case, p'p(W) = W: for certainly W c p'p(W), and
if x' ia any point ofp'p(W), then x' x V c (p 1)'(U); the same
argument as before shows that there must be an open set W' containing
x', such that W' x V c (p x 1)1(U), and so x' must be in W, for
otherwise W Li W' would be strictly larger than W, although
(W LI W') x V c (p x 1)'(U); thus p1p(W) c W, and so
p1p(W) = W.

Since p is an identification map, it follows that p( W) is open in Y.
But (y, z) €p(W) x V C U, so that U must be open.

(b) Again it is sufficient to show that if U c (X/A) x Z is a set
such that (p x 1)1(U) is open, then U is open. As in case (a), let
(y, z) be a point of U, and choose x E X such that p(x) = y.
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If xe A, then A x z C (p x 1)1(U). Since A is compact, a
similar argument to that used in case (a) shows that there exist open.
sets V c X, W c Z such that A x z V x W C x 1)-1(U).
But then (y, z) ep(V) x W c U; p(V) is open since p1p(V) = V
(because A c V), and so p(I') x W is open.

If on the other hand x A, there certainly exist open sets V c
W C Z such that (x, z) e V x W c (p x 1)1(U); and if V r\ A
0, then p( V) x W is open. However, if V A 0, then
(p(A), z) U, and we have already seen that we can then write

(p(A),z)ep(V') x W' c U.
But then (x,z)ep(Vu V') x W') c U; p(VLI V') is open,
since A c V', and so once again (x, z) is contained in an open subset
of U. It follows that U is open, and so p x 1 is an identification
map. U

Theorem 6.2.4 has particularly useful corollaries on the homotopy
properties of quotient spaces.

Proposition 6.2.5 Given maps of pairs f, g: (X, A) -÷ (Y, B), such

that f g as maps of pairs, then the induced maps f, X/A —÷ Y/B
are Jzomotopic.

(Note. The maps f and g need not be in any sense base-pøint-
preserving; but if we take as base points of X/A, Y/B the points to
which A, B respectively are identified, then, J, and the homotopy
between them are all based.)

Proof. Let F: (X x I, A x I) —> (Y, B) be the homotopy between
/ and g. Certainly F induces a function F: (X/A) x Y/B such
that the diagram

Xxi F>y

Pxi.1,

(X/A) x Y/B

is commutative, where p and q are the identification maps. But
F(p x 1) = qF is continuous, and hence P is Continuous, since p x 1
is an identification map (I is locally compact and Hausdorif). Thus F
is a (based) homotopy betweenf and

Note that Proposition 6.2.5 remains true 114 = B = 0, provided
that X/o, for example, is interpreted as the disjoint union of X with
another point x0, which is taken to be the base point of X/ 0.
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Corollary 6.2.6 1ff: (X, A) —* (Y, B) is a homotopy equivalence
ofpairs, thenf: X/A Y/B u a (based) homotopy equivalence. I

Corollary 6.2.7 If (X, A) has the absolute homotopy extension
property (see Theorem 2.4.1), and A is contractible, then the identification
mapp: X—..X/A is a homotopy equivalence.

Proof. Let f: (X, x0) -+ (X, A) be the inclusion map, where x0 is
the base point of X, assumed to be in A. Since A is contractible,
there exists a homotopy F: A x I —+ A such that F (A x 0) is the
identity map and F(A x 1) x0. This homotopy can be extended to
a homotopy F:X x such that F1(X x 0) is the identity
map; let g: (X, A) (X, x0) be F (X x 1). Thenfg is homotopic
to the identity map (as a map of by the homotopy F, and the
same is true of gf. Hence f is and therefore
soisj=p.I

In particular, therefore, X Xf4 if (X, A) is a triangulable pair
and A is contractible. See Exercise 2, however, for an example of a
pair of spaces where this result does not hold.

Having investigated the homotopy properties of identification maps,
we are now in a position to define the geometric analogue of the direct
sum. It might be thought that the disjoint union would be suitable,
but since in this chapter we assume that all spaces have base points,
this is inappropriate, since there is no canonically defined base point
in the disjoint union. This is easily overcome by identifying
together the base points of each space.

Definition 6.2.8 Let (a e A) be a collection of (disjoint)
spaces, with base points x4 e X. The one-point union (or wedge)
V Xa is defined to be the quotient space X/X0, where X is the
disjoint union of the spaces Xa, and X0 is the subspace consisting of
all the base points xa; the base point of V X1 is the point correspond.

ing to X0. In other words, V X4 is the space obtained from X by

identifying together the base points xg.
As in the case of other constructions, if A is a finite set we shall

often use the notation v X2 v.•• instead of
There is an analogue for the one-point union of the diagonal map.

If each Ia is a copy of a single space X, the folding map Vx: V Ia X
is induced by the map of the disjoint union to X that sends the point
x in X4 to the point x in X, for each a is continuous by
Proposition 1.4.23(a).
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To show that the one-point union has desirable homotopy prop-
erties, we prove a result similar to Theorem 6.2.2.

Theorem 6.2.9 Given collections of spaces Xa, (a e A), and
based maps ía: Xa —+ Ya, there exists a map Via: V Xa V wit/i
the following properties.

(a) if Za (a e A) are further maps, then (V
V (gala).

Ya(aEA), then Yg4.
(c) If each fa: Xa -÷ Ya is a copy of a single map f: X Y, f/ten

=

V ía is the map induced by the obvious map of the dis-
joint unions. Properties (a) and (c) are clear from this definition, and
property (b) follows from Proposition 6.2.5. I

Corollary 6.2.10 If each f3 is a /zomotopy equivalence, so is Via. I
Of course, a similar argument shows that V is a homeomorphism

if each ía
Jf A is a finite set, it is possible to regard V Xa as a subspace of

X Xa, by means of the following result.

Propositirn 6.2.11 If A is a finite set, there is a homeomorphism
of V Xa onto the subspace X of X consisting of all points with at most
one co-ordinate different from the base point.

Proof. There is an obvious map fof the disjoint union of the Xa
X, that sends the point x in Xa to the point of X whose 'a' co-ordinate
is x and whose other co-ordinates are all base points. In fact, / is an
identification map: it is certainty onto, and if U is a subset of X such
that f1(U) is open, then U is open. For U (U Xa)

(where we identify Xa with its image underf); so iff1(U) is open,
each U Xg is open in Xa, and so U is open in X, since

X(\U x )( ifUdoesnotcontainthe
u = A b*a / base point,

X >( (U Xa), if U contains the base point.

Sincef identifies together the base points of all the Xa, it follows that
f induces a homeomorphism from V Xa to X. 1

The reader should notice where this proof breaks down if A is not a
finite set: an arbitrary product of open sets is not necessarily open in a
topological product.
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The next construction is the geometric analogue of the tensor
product. As in the algebraic situation, the definition is given only for
a pair of spaces, and in fact the construction is not in general
associative (though compare Theorem 6.2.23).

Definition 6.2.12 Given (based) spaces X and Y, the reduced
product (or smash product) X A Y is defined to be the quotient space
(X x Y)/(X v Y), where X v Y is regarded as a subspace of X x Y
as in Proposition 6.2.11. The base point of X A Y is of course the
point corresponding to X v Y. Points of X A Y will be written in
the form x A y: this denotes the equivalence class of (x, y) in X x V.

The reduced product has mapping and homotopy properties that
resemble those of the ordinary product and one-point union.

Theorem 6.2.13 Given spaces X, Y, A, B, and based maps
f: X —* A, g: V -+ B, there exists a map f A g: X A V —÷ A A B,
with the following properties.

(a) If h: A -+ C, k: B D are further maps, then (h A k)(f A g) =
(hf) A (kg).

(b) If / f': X A andg g': V —+ B, then / A g f' A g'.
Proof. The map f x g: X x Y A x B has the property that

fxg(Xv Y)cAvB;
hencef x g induces a mapf A g:X A A B, and property
(a) is obvious. As for (b), we note that the homotopy F betweenf x g
and f' x g', constructed in the proof of Theorem 6.2.2, is in fact a
homotopy of maps of pairs from (X x Y, X v Y) to (A x B, A v B),
and so by Proposition 6.2.5 induces a homotopy between f A g and
1' A g'. I

Corollary 6.2.14 If f and g are hoinotopy equivalence:, so is

Once again, a similar proof shows thatf A g is a borneo-
morphism if bothf and g are.

The point in working with the reduced product, rather than the
ordinary product, is that its properties are often more convenient
when dealing with based spaces. For example, it is useful that each
pair of points (x, y), in which either is a base point, becomes the base
point of X A Y. Moreover, the reduced product is particularly
appropriate discussion of spheres, as the following proposition
demonstrates.
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Proposition 6.2.15 For each m, n ? 0, Sm+ is homeomorphic to

Proof. Consider the composite

x Etm (Em/Sm') x
'

> (Em/Sm-') A

where p, q and r are the obvious identification maps. Since p x q
(p x 1)(1 x q), and the composite of identification maps is again an
identification map, Theorem 6.2.4 shows that this composite is an
identification map. Morever its effect is to identify together points of

x u Sm-i x E". Hence the standard homeomorphism

hm.n: -+E" < E" x 5m_1 x

induces a homeomorphism, for which the same notation is used:

hm A

(notice that a based map). But EM/ Sm-i, for example, is known
to be homeomorphic to Sm, so that there is a (based) homeomorphism
h: A S", that makes the following diagram commutative:

Emfn/Sm+n—1 (Em/Sm—i) A

S" A S's.

Although the homeomorphism h of Proposition 6.2.15 is easy to
define, there are other more-or-less 'obvious' maps from Smm* to

A S's, and for some purposes it is necessary to relate these. For
example, one may regard a subspice of and consider
the composite map

sm+n < u x A (E*/S*-l)
A S",

where p is the identification map that identifies together points of
x and (—1,0,. .., 0) x E". In fact this differs from the

'standard' homeomorphism of Proposition 6.2.15 only by a homotopy.

Proposition 6.2.16 This map is homotopic to h.

Proof. Consider the effect on a point (x1, . . ., Xm+n+i) of sm÷t1
applying the composite map
Sm+n Sm x u E"41 x P

A

lAO S" A A (En/Sn—i)

"" Em+n/Sm+n—1 e
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Either (x1 ,...,Xm + ,, + is sent to the base point (for example,
If hm+I,L(Xi,..., x or we can trace
(x1 through the various maps as follows:

" '- \11' 6\X1 Xm.f2,..., Xm+nj4.i
under hm+in

—-k (ax1,. . ., A (bxm + 2' bXm + + i) under

—' ., A (bXm+2,. .., bxm+n+i)
under (0 A 0)-'(l A 0) A 1

under

- (x0, c3x2,.. ., c,,, + + iXm + + under 0,

where a,b,a2,. . ., 62,.. .,bm+n+1,C3,...,Cm+R+i are non-
negative numbers. Thus if some CrX7 0, (x1,..., is not sent

to(—x1,..., =•• . = Othen
(x3, . . is sent to(±1, 0,..., 0). But both (1,0,.. .,0) and
(-- 1, 0,.. ., 0) ire sent to themselves, so that in no case is (x1,.

f sent to (— — xm + j). It follows from Corollary

2.2.4 that the composite map is homotopic to the identity map, so
that (1 A (0 A h. I

Another 'obvious' map from to S" A is (0 A
where q: x U x -÷ (Em/Sm1) A S" is the ob-
vious identification map. An argument similar to that of Proposition
6.2.16 shows that this map is homotopic to tM, where

ç'(x1, ...,Xfl,+n+1)(Xm+1,X1,...,Xm,Xrn+2,...,X,,,+ft+1)

(so that, by Example 4.4.11, is
multiplication by (— 1)").
Apart from its applications to spheres, however, the reduced

product is also useful in constructing an analogue for arbitrary based
spaces of the suspension construction of Definition 4.4.8.

Definition 6.2.11 The reduced suspension of a space X, sX, is
defined to beX A

Thus for example the reduced suspension of S" is homeomorphic

to S' and it is immediate from Corollary 6.2.14 that sX s Y if
X Y. The notation sX is used to prevent confusion with the
suspension SX of a triangulated space X: if X is triangulable the two

suspensions closely resemble each other, but are not quite identical, as
the next proposition shows.
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Proposition 6.2.18 Let x0 be the base point of a (not necessarily
triangulable) space X. Then sX is homeomorphic to the quotient space
(Xx I)11(X x 0ux0 x loX x 1).

(See Fig. 6.2, in which the thick line is supposed to be identified
to a point.)

Fig. 6.2

Proof. This is rather similar to Proposition 6.2.15. Now the
composite of standard maps

1 iO i—÷S

is an identification map, and identifies, together the points 0 and 1
(in fact 91(t) (cos (2t — 1)ir, sin (21 — Thus if p: X x S'
X A S' is the identification map, Theorem 6.2.4(b) shows that the
composite map

'>XAS'
is also an identification map, and its effect is to identify together
pointsofX x x x 1.Itfoltowsthatp(1 x Ol)induces
a homeomorphism

(X x I)/(X x Otjx0 x loX x 1)-.+X A S' = sX.

Corollary 6.2.19 If X is a polyhedron, and x0 is a vertex, there is a
homotopy equivalence p: SX —÷ sX, such that if f: X -÷ Y is a continuous
map of polyhedra, the diagram

xo

0
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SX81-SY

sX —+ sY
JA 1

is commutative.

Proof. It is easy to see that SX is homeomorphic to the space
obtained from X x I by identifying X x 1 and X x 0 to points
(these points correspond to a and b respectively in Definition 4.4.8).
Thus there is an identification map p: SX -÷ sX, that identifies
x0 x I to a point. Now x0 x I is contractible, and by Theorem 2.4.1
the pair (X x I, x0 x 1) has the absolute homotopy extension
property, since X x I is a polyhedron and x0 x I is a subpolyhedron.
Hence p is a hornotopy equivalence, by Corollary 6.2.7.

That p(Sf) (f A 1)p is an easy consequence of the definition of
pand the fact that Sf byf x 1:X x I-÷ Y x I. J

Observe that if X = p: S(S") —÷ gives yet another homo—
topy equivalence from S'"1 to A 51, if S(S") is identified with
S'"' as in Example 4.4.9. However, if q: S" x E1 U x S°—*
S(S*) is the map that identifies the two components of E'"' x S° to
points and sends E' to I by i', it is easy to see that the diagram

Sn+1 —

' x E' u .Ea+l x S°

is homotopy-commutative, in the sense that is homotopic to
the identity map S'"' —* It follows that p: S'"' is
homotopic to the map considered in Proposition 6.2.16, and so is
homotopic to the 'standard' homeomorphism h of Proposition 6.2.15.

It will be seen that the reduced suspension is in keeping witii the
spirit of this chapter, in which the usual policy is to identify to the
base point anything that involves the base points of the original spaces.
In the same spirit, the cone construction of Chapter 4, Exercise 5,
can be adapted to arbitrary spaces as follows.

Definition 6.2.20 The reduced cone on a space X, cX, is defined
to be X A I (recall that the base point of I is always taken to be 1).

The reduced cone bears the same relation to the join of a polyhedron
and a point that the reduced suspension bears to the suspension of a
polyhedron in the sense of Definition 4.4.8. We shall not give the
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details here, but merely note that the property of being contractible
for any reduced cone.

Proposition 6.2.21 For any space X, cX is contractible.

Proof. Since I is contractbie (to the point 1), Corollary 6.2.14
yields

= X A I X n 1,

which is dearly * single point. I
This discussion of tile reduced product is concluded with results

on the composition of the reduced product and one-point union
constructions, and on the associativity of reduced products.

Theorem 6.2.22 Given three spaces X, V and Z, (X v Y) A Z
is homeomorphic to (X A Z) v (V Z). (Compare Proposition
4.5.7(b).)

Proof. The map f: X x Y x Z X x Z x Y x Z, defined by
f(x, y, z) = (x, z, y, z), is clearly continuous, since if A x B x C x D
is an open set in X x Z x V x Z, f-1(A x B x C x D)
A x C x (B n D). This composes with the product of identification
maps to give a map

X x Y x A Z) x (1' A Z),

and if X v Y, for example, is regarded as a subspace of X x V by
Proposition 6.2.11, this map sends (X v Y) x Z to (X A Z) V
(Y A Z). Moreover, (X v Y) v Z is sent to the base point, so that
f induces a map

g:(X V Y) A Z—.(X A Z) v (Y A Z),

where g((x, Yo) A z) = x A z in X A Z and g((x0, y) A z) = y A Z
inYAZ.

Conversely, define

h:(X A Z) v (V A Z

V A where ix: X—÷ X v V is defined
by (x, ye), and is similarly defined. Then h(x A z) =
(x, Yo) A z and h(y A z) = (x0, y) A x, so that both gh and hg are
identity maps, and hence g is a homeomorphism. I

In particular, by taking Z = S1, this proves that s(X V Y) is
homeomorphic to sX v s V.
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Theorem 6.2.23 If X and Y are and X is Rausdorff, then
(X A Y) A Z is homeomorphic to X A (Y A Z).

Proof. Write p for the various identification of the form
x x V —÷ X A Y, and consider the diagram

1XxYxZ
px ij,

(XAflxZ
p

+

(XAY)AZ XA(YAZ).
Now p x 1 is an identification map by Theorem 6.2.4(b), since
X V V is compact if X and V are compact. Also, I x p is an identifica-
tion map by Theorem 6.2.4(a), since X is locally compact and Haus-
dorif. Since both p(p x 1) and p(l x p) identify to points those
points of X x V x Z that have at least one co-ordinate equal to a
base point, 1: X x V x Z—*X x a x Zinduces maps

f:(Xn

Y) A Z

A Z Z
that is A S2 for any space

X. See also Exercise 4, for another set of conditions on X, Y and Z
that makes (X A Y) A Z homeomorphic to X A (V A Z).

The next and last construction in this section is tlie geometric
analogue of Given spaces X and Y, it is reasonably obvious that
we should consider a space whose points are the continuous maps
from X to Y, but it is not immediately clear how to this
space. We shall use what is known as the 'compact-open' topology,
for reasons that will become clear in the proof of Theorem 6.2.25
below.

Definition 6.2.24 Given spaces X and Y, with base points x0 and
Yo respectively, the mapping space 1" consists of all (based) maps
from X to Y. The base point of YX is the 'constant map', that sends
all of X to and is topologized by taking as a sub-base of open
sets all subsets of

X -÷ Y If(K) c U),
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where K is a compact subspace of X and U is an open subspace of Y.
topology on Y' is called the compact -open topology.

1j with the other constructions in this section, the next step is to
prove a theorem on and homotopies.

Theorem 6.215 Given spaces X, Y, A and B, and based maps
f: A X, g: Y —* B, there exists a map g': Yx —* BA, with the
following properties.

(a) If h:, C ii and k: B --* D are further maps. then

(kh)(gJ) = (kg)m:

(b) 1ff f': A X andg g': Y-# B, then g1 (g')".

Proof. Given a point A of yX, that is, a map A: X - Y, define

g'(A) = gAf.

This is certainly a map from A to B, and if A is the constant map from
X to Y, then g'(A) is the constant map from A to B. However, it is
not obvious that g' is continuous, and this must be proved next.

Take a sub-basic open WKu in BA, where K A is compact
and U c B is open. Then

(A: X—÷ )tf(K) c

Butf(K) is a compact subspace of X, andg'(U) is an open subspace
of Y, so that = a sub-basic open set of yX•

Hence gf is continuous. reader will see now why the compact-
open topology is used: continuous images of compact sets are compact,
and inverse images of open sets are open.)

Property (a) follows immediately from the definition of g'. As for
property (b), this is rather more complicated. Let F: A x 1 —* X and
G: Y x I—÷ B be the homotopies betweenf,f' andg,g' respectively,
and let A —÷ X, Y -÷ B (0 t 1) be the maps defined by

= F(a, i), G(y, t). Then the set of waps
Yx * BA starts With g' and ends with (g')1', but we have to

prove that this process defines a continuous map YX x I
To do so, define functions (which will afterwards be proved to be

continuous) 9: YX x I—* (Y x I)X and >< J÷ 13.4 by the
rules

[O(A,t)J(x) = (A(x),t) Y,tel)
t)](a) = t) (a A, A x I 13).
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Now consider the composite map
1xA x exl

x I
x 1 is the diagonal map. Under this composite, the

pair (A, t) (A: X—÷ Y, tel) is sent to the map that sends a eA to
B; that is, for a given 1 the composite is exactly So the

composite Is the homotopy we want, and is continuous provided 0
and are continuous.

To deal with 8, consider the set c (Y x J)X, where K Xis
compact and U c I x I is open, and suppose that t) e
Then A(K) x I C U. Now for each point (y, t) E A(K) x t, there are
open sets V3, I, T1, I, such that

x U.

The open sets cover A(K), which is compact, so that a finite sub-
collection of them, say will suffice to cover A(K). Thus

if V 1J V and T and

T x I. Certainly (A, t) is in this subset,
and if (A', t') is any other point in it, A'(K) x t' c V x T c U, so
that 8(A', 1') E I') e 01( WK It follows that

0 is continuous.
The proof that # is continuous is similar. This time consider

WK B where K c A is compact and U c B is open, and
suppose that t)e WK.U. x t) c U, orK x t c
which is an open set in A x I. The same argument as before shows
that there exists an open set T I such

KxtcKx
and since I is locally compact and Hausdorif there is an open set
V c I such that t e V c V T and V is compact. Now consider

x V c B4 ' x I. Again I) is in this subset, and if
t') is another point in it, x I') c 1il(K x V) c U, so that

1') e WK.U. Hence is open and is continuous.
As has already been remarked, the continuity of 0 and is sufficient

to prove that g' (g')1'. I
Corollary 6.2.26 1ff and g are homotopy equivalences, so is g'. I

Naturally, also, g' is a homeomorphism if f and g are.
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For the next result, suppose that Z is a subspace of 1', so that a
set U c Z is open if and only if it is of the form V Z, where V is
open in Z. Certainly ZR is a subset of yX, and in fact the compact-
open topology on Z' coincides with the topology as a subspace of Yx.

Proposition 6.2.27 if Z is a sub:pace of Y, then ZX is a subspace
of

Proof. We have to show that a set is open in ZR if and only if it is
the intersection with ZX of a set that is open in Now if i: Z —* F
is the inclusion map, 11: Z' is continuous, so that if U c X

is open, U ZX (i')1(U) is open in ZX. To prove the converse,
it is sufficient to consider an open set in ZX of the form where
Kc Xis compact and Uc Zis open. But U Vis
open in Y; and

= {f: Y c V andf(X, c

= wK.tJ.

That is, an open set in ZX is the wjth nt open
set in

As examples of mapping spaces, we can deiine spaces that
sense dual to 'he reduced suspension and reduced cone

Definition 6.2.28 Given a space X, the path space LX is decined
to be X', and the loop space QX is X31.

Thus the points of LX are the paths in X that end at the base point
x0, and it is easy to see that the points of QX may be regarded as
loops in X based at x0: more precisely, QX may be identified with the
subspace (1)°'(QX) of LX. The relationship of DX and LX to sX and
cX will become clearer later, but it is worth noticing the following
analogue of Proposition 6.2.21 here.

Proposition 6.2.29 For any space X, LX is contractible.

Proof. By Corollary 6.2.26, LX = X' X'. But X1 is a singLe
point. I

We end this section with some results on the composition of the
mapping space construction with products, reduced products and
one-point unions. Most of these amount to proving that certain maps
are continuous, and the first of these is the 'evaluation map'.
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Definition 6.2.30 Given spaces X and 1', define a function

by the rule f(A, x) = A(x) (A: X -+ Y, x e X). If A is the constant
map, or x is the base point x0, thenf(A, x) = Yo' the base point of Y.
That is,f( Yx V X) .Yo, so thatf induces a function e: YR A X-÷ Y,
called the evaluation map.

We do not claim that e is always continuous (see Exercise 6).
However, it is if X is a reasonably well-behaved space.

Theorem 6.2.31 If X is locally compact and Hausdorff, then
e: Y' A X -+ Y is continuous.

Proof. It is sufficient to show thatf: YR x X -÷ Y is continuous,
and the proof of this follows the pattern familiar from Theorem
6.2.25. Suppose then that U c Y is open, and thatf(A, x) e U. Then
A(x) e U and x e A1(U), which is open in X. Since X is locally
compact and Hausdorif, there exists an open set V in X, such that
xe V ! V c A1(U), and V is compact. Consider x V'c
YX x X: this contains (A, x), and if (A', x') is another pOint in it, then

f(A', x') = A'(x') A'(V) c: U.

Thus f - '(U) is open, and f is continuous.
The next few results show that mapping spaces obey rules similar

to the index laws for real numbers, at least if the spaces involved are
sufficiently well-behaved.

Theorem 6.2.32 Given space: X, Y and Z, where X and Y are
Hausdorff, is homeomorpizic to x

Proof. Let x0 and Yo be the base points of X and Y respectively,
and define maps

by = (x, iy(y) = (x0, y) (using Proposition 6.2.11 to identify
Xv YwiththesubspaceX x y0ux0 x YofX x Y).Nowdefine
a function 0: ZX x Z1 (Z v Z)XVY by O(A, = ti V where
A: X-+ Zand Y-÷ Z, and consider the composite functions

#: x x

x Z1 (Z V Z)XVY
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where 4 is the diagonal map, and V: Z v Z -÷ Z is the folding map.
Given v: X V Y -+ Z, = (vi1, vii), and given A: X -* Z and
rh; Y —* Z, V(A v is). Thus and are identity functions,
and the only point that remains in showing that is a homeomorphism
is to show that 0 is continuous (it is certainly base-point-preserving).

To do so, consider the set where K c X V Y is compact
and U c Z V 2 is open. Now

= {(A,Jh) (A V C U}

= {(A, A(K X) c U ri (Z x z0)
and Y) C U x

where z0 is the base point of Z, and Xand Y are identified with their
images in X v Y. Certainly U1 = U (Z x z0) and U2 = U n
(z0 x Z) are open, since U is the intersection with Z v Z of an open
set in Z x Z. But since X and Y are Hausdorif, so is X x Y and
henceX V Y:thusK,Xand YareclosedioX V

Y and hence compact. That is,
0 is continuous. Hence 4 is a homeo-

morphism. I
There is a similar result involving (Y x Z)X and x

though it is a little more difficult this time to prove that the maps
involved are COfltiflUOUS. We need the following lemma.

Lemma 6.2.33 Let X be a Hausdorff space, and let 9' be a sub-
base of open sets for a space Y. Then the sets of the form WK.O, for
K c X compact and U E 9', form a sub-base of open sets for yX•

Proof. Let K c X be compact, V c Y be open, and let A e
Now it is certainly true that V U Va, where each Va is a finite
intersection of sets in .9'. Then K C U A- 1( Va); hence, since K is
compact, a finite collection of the sets A 1( Va), A

A - 1( V,j, suffice to cover K. Since K is a compact Hausdorff space, it is
a point x e K, which must be in some

there exists an open set in K such that

A,, c KnA1(V,).
Again, a finite collection of the sets will cover K, and their closures
are each contained in just one set of the form A - 1( V7). Thus by taking

suitable unions of As's, we can write K 1J K,, where K, c A -

and K, is closed and so compact. It follows that A c
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since if p(Kr) VT for each r, then p.(K) c U c V. But if, ,say,
1

Vr ñ Us, for U, E .9', then WKY.VJ.
= 5Q

Hence A is con-

tained in a finite intersection of sets of the form for U
and this intersection is contained in I

Theorem 6.2.34 Given spaces X, Y and Z, where X is Hausdorff,
(Y x Z)' is homeomorphic to YX x Zx.

Proof. This is now very similar to Theorem 6.2.32. Let
py: Y x Y and pz: Y x Z—*Z be the maps defined by

z) y and Pz(Y, z) = z, and define a function 0: YX x ZX ...÷
(Y x X by 8(A, p.) A x p., where A: X —+ V and p.: X —+ Z.
Consider the composites

(Y x Z)X ' (Y x Z)X x (V x x

x x x

where each is a diagonal map. If v: Y x Z, then
and if A: X Y, p.: X —* Z, then #(A, p.) = (A x

Thus and are identity functions, and it remains only to prove
that 0 is Continuous.

Since X is Hausdorif, by Lemma 6.2.33 it is sufficient to consider
sets of the form WK. ,C v, where K c X x X is compact and U c Y,
V c Z are open. Then

{(A, p.) (A x p.)(K) C U x V)

{(A,p.fl K x

But if Pi' P2: X X —÷ X are the maps defined like and Pz' then
p1(K) and p2(K) are compact, and K c x p.'(V) if and
only if p1(K) x p2(K) c A-'(U) x Hence

O1(WK.uxv) = Wp1(K)u X Wp2(K)v,

and so 0 is continuous. I
At this point we possess rules for manipulating mapping spaces,

analogous to the index laws ab + C = ab. a° and (a. = ac. b' for real
numbers, and it remains to investigate what rule, if any, corresponds
to the index law To this end, we start by defining the
'association map'.
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Definition 6.2.35 Given spaces X, Y and Z, the association map

is the function a: ZXAY -+ defined by

[aA(x)](y) A(x A y) (xeX,ye Y,):X A Y—*Z).

To justify this definition, we have to show that a(A) really is an
element of that is, is a continuous based map from X to ZT.
Now for a fixed x, the function a\(x): V —* Z is certainly a continuous
based map, so that at least a(A) is a function from X to ZT; and it is
obviously base-point-preserving.

Proposition 6.2.36 X -+ is continuous.

Consider where K C: Yis compact and U c Z is
open. x

x K c (Ap)-'(U), wberóp: X x Y -* X A Y is the identifica-
tion map. As in the proof of Theorem 6.2.2.5, there exists an open set
V c X such that xx K c V x K c But for any point
x' E V, Ap(x' x K) x K) c U, so that e That
is,

V

so that (aA) - 1( WL is open, and hence is continuous.
Thus at least a(A) is an element of (Zr)', for each

Moreover, the function a is obviously base-point-preserving; but
unfortunately a is not always continuous unless X is a Hausdorif
space.

Proposition 6.2.37 If X is Hausdorff, tile association map
a: -÷ (ZY)X is continuous.

Proof. By Lemma 6.2.33, it suffices to consider a'(Wx,u), where
K c X is compact and U ZT is of the form WL.V, for L C Y
compact and V c Z open. Now

{;k 1 c WL,v}

={AIAp(KxL)CV)
— U,
—

Butp(K x L) is a compact subset of X A Y, so that a is continuous.
Of course, we should like to be able to say that a is a homeomorph-

jam, but this is not true without imposing more conditions on the
spaces involved.
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Theorem 6.2.38

(a) For all spaces X, Y and Z, the function a: ZKAY is
(i—I).

(b) If Y is locally compact and Hau.cdorff, then a is also onto.
(c) If both X and Y are compact and Hausdorff, then a is a borneo-

morphism.

Proof.

(a) Let A, X A Y '-÷ Z be two maps such that a(A) = 4).
Then for all x E X, y e we have

A(x A y) = [aA(x)](y)

=
ly),

so that A
(b) Given a map A: X-+ X A Y-+ Zbe the composite

where e is the evaluation map. By Theorem 6.2.3 1 e, *nd hence are
continuous. But if x eX and y e Y, we have.

[cq4(x)J(y) jt&(x A y)

= e(A A IXxA y)
[A(x)](y),

so that 4) A, and hence a is onto.
(c) Certainly a is continuous, (1-1) and onto, so we have only to

show that the inverse function to a is continuous.
Consider the map 0: (Z1)' x X x Z. given by composing

the devaLuation maps' f: x V —* ZT (or rather f x and
f: Z; by Theorem 6.2.31 this is continuous. Now since
X and Yare compact, if p:X x A Y is the identification
map, then by Theorem 6.2.4(b)

I x x Xx x (X A Y)
is also an identification map. And since U maps (Z x V x x0 and
(ZY)X X Ye X X to .x0, it follows that 0 induces a map

x (X A
This in turn induces

(X A
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but then a is easy to see that this
map is the invtrse of CE. Hence a is a horneomorphism.

6.3 Homotopy classes of maps
It has already been noted in Chapter 2 that, given (based) spaces

X and 11, the reLation between (based) maps X —+ 11 of being homo-
topic (by a based homotopy) is an equivalence relation. It therefore
makes sense write [X, 11] for the set of equivalence classes, under
this equivalence relation.

Example 6.3.1 The set [S'. 11] is in (1-1)-correspondence with
11, y0). For ir1( Y, y0) is, as a set, the set of (pairwise) homotopy

classes of maps of pairs (1, 0 kJ 1) (11, ye), and this, by Proposition
6.2.5, is in (1-1)-correspondence with the set [I/(0 u 1), Y]. But
1/(0 u 1) is homeomorphic to S1. I

So [X, 11) i& a generalization of at least the fundamental group. In
fact, as we shall see later, by a suitable choice of either X or Y most
of the standard algebraic invariants of topology, for example, homo-
topy and cohomology groups, can be obtained. However, the immed-
iate task is to investigate two problems suggested by Example 6.3.1:
in what way do maps of spaces give rise to functions on [X, 11], and
in what circumstances can [X, Y] be given a group structure?

The first of these problems is quite simple, and the situation is
entirely analogous to that of Theorem

Theorem 6.3.2 A (based) map f: Y0 —* Y1 gives rise to a function

[X, ._* [X, Yr],

wit/i the following properties.

(a) 1ff': Y0 —a. Y1 is another map, andf f', thenf,, =
(b) If 1: V —+ V is the identity map, then I * is the identity function.
(c) If g: 111 is another map, then

Proof. Write [A] for the equivalence class of a map A: X-* 110 in
the set [X, Definef,, by the = [fA]: this clearly depends
only on the class of A, and property (a) is obvious. Moreover pioperties
(b) and (c) follow immediately from this definition. I

CoroUary 6.3.3 1ff: 111 is a homotopy equivalence, then
is a (1-1)-correspondence. I

Of course, similar results hold about maps of X rather than 11.
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Since the proofs are almost identical, we shall merely state these
results.

Theorem 6.3.4 A map f: X0 X1 gives rise to a function

f*:[X1, YJ—*[X0, Y], -

wit/i the following properties.

1ff': X0 —a- X1 is another map, andf f', = (f?)*.

(b) If 1: X X is the identity map, then 1* is the identity function.
(c) If g: X1 —* X2 is another map, then (gf)* = f*g*.

Corollary 6.3.5 1ff: X0 X1 is a homotopy equivalence, thEn
is a (1-1 )-correspondence. I

Thus the set [X, Y] depends only, up to (1-1)-correspondence, on.

the homotopy types of X and Y. Indeed, there is a sort of converse
to Corollaries 6.3.3 and 6.3.5.

Theorem 6.3.6
(a) 1ff: Y1 is a map such [X, Y0J-*[X, 1's] is a

(1-I for all spaces X, then f is a Fzomotopy equivalence.
(b) Similarly, :f g: X0 --* X1 gives rise to a (1-1)-correspondence

g*: [X1, Y] —i- [X0, YJ for all spaces Y, then g is a homotopy
equivalence.

Proof.

(a) in [Y1, Y0] -÷ [Y1, Y1] is a(1-1)-correspondence,
so that there exists a map g: Y1 —*. Y0 such that f,,[g] -= [lyj, or
fg Thus for any X, is the identity function on [X,
and so is the inverse (1-1)-correspondence to f,,. In particular,

= so that we also have gf ly. Hence f is a homotopy
equivalence.

(b) is proved similarly. 1
Of course, Theorem 6.3.6 is much too general to be of practical

use in showing that a given map is a bomotppy equivalence. However,
for a large class of spaces (including all polyhedra), it is sufficient in
(a) to consider only X for all n: this is J. H. C. Whitehead's
theorem, which will be proved in Chapter 7.

We turn now to the second problem: when is [X, Y] a group?The
answer is that it is Y is 'group-like' in the sense of the next definition,
or if X has corresponding 'dual' properties.
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Definition 6.3.7 A space Y is called an H-space if there exists a

map
m:Yx Y—*Y,

such that mi2 1 where i1, i2: V —÷ V x Y are the maps
defined by 1i(Y) = (y, yo), i2(y) = (Yo, Y) (Yo is the base point of Y).
An H-space Y is said to be associative if m(m x 1) m( 1 x m):
V x V x Y,andaninverseisamapu: Ysuch that

m(u x m(1 x u)41 e'.,

where ey is the constant map that sends all of Y to Yo' and is the
diagonal map.

For convenience, we shall say that Y is an AHI if it is an associative
H-space with an inverse.

It will be seen that an AHI V is 'group-like', in the sense that if
we write Yi •Y2 for m(y1, Y2) and y' for u(y), we almost have the
properties

Yo•Y Y,

(Yi •Y2).Y3 = Y1•(Y3.Y3)'

Y•Y1—Y1•YYo'
except that all equalities are, as it were, replaced by homotopies.
However, since the set [X, Y) involves only homotopy classes of maps,
it will be no surprise that [X, YJ is a genuine group whenever V is

AflI.

Theorem 6.3.8 If X is any space and Vi: an AlL!, 1/zen [X, fl can
be givtn the Structure of a group.

Proof Given two maps f, g: X Y, let J.g be m(f x g)41: this
is certahly another continuous map from X to V. Moreover, given
further f', g': X Y, such that f f and g g', then
f.g f'.g' by Theorem 6.2.2, and so a multiplication in [X, YJ can
be defined by [1]. [gJ [f.g).

It remains to show that this multiplication satisfies the axioms for a
group. First, given a third map !z: X -÷ Y, we have

(f.g).h = m(f.g x

m(m(f x g)L1 x

x 1)(J x g x h)4.
f.(g.h} I v x g x h)4, so that (f.g).h

f.(g and (Lu. [/ij [fj.([gJ.[/z}).



CLASSES OP MAPS 225

Secondly, if e: X Y is the constant map,

f.e = m(f x e)4

= mi1f

and similarly e .f f, so that [e) is a unit element for [K, Y).
Lastly, we may define = [uf], since

(uf).f= in(ufxf)4
= ,n(u x 1)4/

e,

and similarly f.(uf) e.
Naturally also, maps of X give rise to homomorphisms, not just

functions.

Proposition 6.3.9 If g: X0 —* X1 is a and Y is an AHI, then
g*: [X1, Y] Y] is a In particular, g ts an
isomorphism if g is a homotopy equivalence.

Proof. Given maps fl,f2: X1 -+ Y, we have

(11 .f2)g = m(J1 x f2)Ag

= x f2g)4

=
Thus g*([f1]

. [fe)) = g*[f1] .g*[J2].

Before giving examples of AHI spaces, let us examine the 'dual'
situation, in which [X, Y] becomes a group because of properties
possessed by X rather than Y.

Definition 6.3.10 A space X is called an H'-space if there exists a
map

X,

such that where and P2 are the restrictions to
X v X of the 'projection maps' Pi' P2: X x X X defined by
p1(x1, x2) = x1, p2(x1, x2) = x2 (as usual, we regard X V X as a
subspace of X x X, by Proposition 6.2.11). An H'-space X is said to
be associative if v (1 v X X v X V X, and an
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inverse is a map v: X X such that v v ex,
where is the folding map. Again, we shall that X is an AH'I if
it is an associative H'-space with an inverse.

Notice that the definition of an 1I'-space closely resembles that of
an H-space: we merely turn all the maps round and use the one-point
union instead of the product. For this reason, we shall not always
prove in full both 'dual' versions of theorems involving H- and H'-
spaces. The reader should have no difficulty, for example, in filling in
the details in such theorems as the following.

Theorem 6.3.11 if Xis an AR'! and Y is any space, [X, YJ can be
given the structure of a group. Moreover, if g: V0 V1 is a map,

[X, Y0] —÷ [X, Y1] is a homomorphism, and so is an isomorphism if
g is a homotopy equivalence.

Proof. Given maps 11,12: X —+ Y, define f1 .12 = V(f v and
proceed as in the proofs of Theorem 6.3.8 and Proposition 6.3.9. 1

As a first example, we shall show that S1 is an AH'I. In fact this
example is really as general as we shall need, since it will be proved
afterwards that, as a consequence, sX is an AH'I, and QX an AHI, for
any space X whatsoever.

Proposition 6.3.12 S1 is an AH 'I.

Proof. This is very similar to Corollary 3.2.6; not unexpectedly,
perhaps, in virtue of Example 6.3.1. Let 81: I —p- S' be the composite
of standard maps, and use it to denote points of S' by real numbers t
such that 0 I 1; that is, denote the point 81(1) merely by 1.
Define a map

v:I—÷S1 V S1
by

((2t,0)
v(t)

= 2t — 1) (1 I 1).

This is certainly continuous, and since v(O) = v(l), v induces a
(based) map S1 —÷ S1 V S'.

To show that this map makes S1 into an H'-space, consider the
composite

II—+S vS—÷S.
Now

f21
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so that is just the product ioop of 01 and the 'constant path', and
hence 0!, rel 0, 1, by Corollary 3.2.6(b). Hence by Proposition
6.2.5 1; similarly, 1.

S' is associative by a similar argument using Corollary 3.2.6(a),
and the map v: S' —÷ S1 given by v(t) = 1 — t is an inverse, by using
Corollary 3.2.6(c). I

Corollary 6.3.13 [S1, Y] and Y, Yo) are isomorphic groups.

Proof. The (1-1)-corre&pondence Y, Yo) -÷ [S1, Y] in Example
6.3.1 is clearly a homomorphism. •

We show next that, because S1 is an AH'I, sX is an AH'I and (IX
is an AHI, for any space X. In fact, a slightly more general result is
true.

Theorem 6.3.14 Given ipaces X and Y,
(a) X A Y is an AH'I either X or Y is;
(b) if moreover X is Hausdorff, Y' is an AHI zf either X is an AH'I

or Y is an AHI.

Proof.

(a) Let X be an AH'I, with map X X v X, and inverse
v: X —+ X. Define X A Y —÷ (X A Y) v (X A 1') to be the
composite

X A Y (X v X) A Y (X A Y) v (X A Y),

where g is the homeomorphisin of Theorem 6.2.22. Now there is an
obvious commutative diagram

(XVX)AY—L(XAY)V(XAY)

XAY
where and are the 'projection maps'; thus

= (Pi A 1) A 1 1,

by Theorem 6.2.13. Similarly 1.

Similar arguments show that X A Y is associative, and that the
map = V A 1: X A Y —* X A Y is an inverse for X A V. And of
course the same proof works if Y rather than X is an AH'I.

(b) Suppose that X is Hausdorif and an AH'I. Let

Y' x
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be the composite -

Yx x yXvX — Yx,

where is the homeomorphism of Theorem 6.2.32. Now proceed as in
(a), with the inverse = P': Y' —* Y".

Similarly, if X is Hausdorif and Y is an AHI, with map
m: Y x Y —÷ Y and inverse U: Y Y, then becomes an AHI
under ñi, the composite

x x yx,

where this time the homeomorphism of Theorem 6.2.34. Of course,
the inverse is = u': Y'-+ Y'. •

In particular, then, sX is an AH'I and £�Y is an AHI for any spaces
Xand Y, and so [sX, 1'] and [X, QY] are groups for any Xand Y.

Specializing further, since by Proposition 6.2.15 8' is borneo-
morphic to for all n 1, it is easy to see that Sn is an AH'I, and
hence (Se, Y) is a group for all spaces y.

Definition 6.3.15 For any (based) space Y, and ii 1, the group
[S", Y] is called the uth homotopy group of Y, and is usually written

Notice that this definition can even be extended to the case n = 0:
for based maps Y are in (1-1)-correspondence with points of Y,
and their homotopies correspond to paths in Y; thus the set [S°, Y]
is what we have previously referred to as Y).

Example 6.3.16 = 0 if r < n. For by Corollary 2.2.4 a
mapf: X —.÷ S" is homotopic to the constant map if it is not onto; but
by the Simplicial Approximation Theorem a map f: S' —* S" is
homotopic to a simplicial map with some triangulations, and this
cannot be onto ifr < is.

Definition 6.3.15 is somewhat unsatisfactory as it stands, since it
appears to depend on the choice of a map S" —+ v 5" that
makes S" into an AH'L However, this ambiguity is more apparent
than real if is > 1, for we shall prove in Chapter 7 that all such maps
are homotopic; and if is = 1 there are only two homotopy classes of
such maps, which give rise to isomorphic group structures in ir1: see

Exercise 9.
Ambiguities in the definition of the group structure also appear to

arise in more general Situations. For example, consider the set
X2, 1']: if both X1 and X2 are AWl's, then by Theorem
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6.3.14 X1 A X2 is an AWl in two ways, and so there appear to be two
different group structures in [X1 A X2, YJ. Fortunately, however,
these two group structures always coincide.

"heorem 6.3.17 Let and X2 be AH 'l's, with correspondifig
maps X1 X1 V X1 and p.2: X2 X2 V X2, and let

tL2: X1 A X2 A X2) v (X1 A X2)

be the two maps, as in Theorem 6.3.74(a), that make X1 A X2 into an
AH'l. Then

Proof. Let p1,p2:X1 v X1-÷X1 and q1,q2:X2 v X2—+X2 be
the cprojection maps'. Now

f(p1p.1(x1) A x2, base point) if p.1(x1) e X1 x base point
/hi(xi A x2)

— l(base point, A x2) if E base point x X1.

Let a = [(1 A v (1 A X1 A X2 —* (X1 A X3) V

(X1 A X2); then certainly a and

(p1p.1(x1) A base point) if p.1(x1) e x base
pointa(x1Ax2)=

(base point, A if p.1(x1) E base point
)( x1.

But q1p.2(x2) = base point unless ji2(x2) e x base point, and
q,J.L2(x2) = base point unless p.5(x2) e base point x X2. So the effect of
a is given more precisely by the formulae

(p1p1(x1) A q1p.2(x2), base point) (p.1(x1) e K, x base
point, p.2fr2) e X2 x base point)

a(x1 A x2) = (base point, A e base point
x X1, p.2(x2) e base point x X2)

base point (otherwise).

Similarly, by symmetry, a so that j11 •
Corollary 6.3.18 For any Y, the group structures in [X1 A X2, Y],

defined by j11 and are the same.

In fact the proof Theorem 6.3.17 has a rather surprising conse-
quence. Let us call an H'-space X (with map p.: X —* X V X)
commutative if p. ip., where X v X —+ X v X is the restriction
of the map X x X -+ X x X that sends (x,, x2) to (x2, x,).

Proposition 6.3.19 With the same data as in Theorem 6.3.17,
X1 A X2 is a commutative All'!.
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Proof. Let

= A A X2—*(X1AX2)v(X1 A X2);

again jij, and

A base point) e X1 x base
point, base point x X2)

p(x1 A x2) = (base point, A e base point
x X1, Jh2(x2) e X2 x base point)

base point (otherwise).

Similarly, by symmetry, Hence
The point of Proposition 6.3.19 is that commutative AH'I's give

rise to abelian groups.

Proposition 6.3.20 If X is a commutative AH'I, and Y is any
space, then [X, Y] is an abelian group.

Proof. Given mapsf,g: X—* Y, we have

f.g = V(f V

V(f V

= V(g v

=g.f.
Thus[f].[g] = [g].[1iJ. I

Corollary 6.3.21 For any spaces X and Y, [s(sX), Y] is an abelian
group. in particular, Y) is abelian for n 2.

As usual, there are 'dual' results to 6.3.17—6.3.21, involving AHI's
instead of AI-I'I's.

Theorem 6.3.22 Let X be a Hausdorff space, and an A H'!, with
map X X v X; let Y be an AHI, with map m: Y x V V.
Then zf Thj, rn2. YX x ÷ are the maps arising from and m

respectively, in Theorem 6.3.14(b), we have Th1

Proof. By definition, is the composite

Yx x yx..L÷(y v yx,

where 0 is the map defined in the proof of Theorem 6.2.32. Let
a = PV'(mij y mi2)10: YX x where 11, Y--÷ Y x Y
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are the usual inclusions; then a But if f,g: K Y are two
maps, we have

a(f, g) = V(mi1 v mi2)(f v

That is, if XEX,

— fm(fpljh(x), Yo) e X x x0)
g)](x)

— lm(yo, (p.(x) E x X),
where p1,p2: X V X—+ X are the 'projection maps'. But this is the
same as the map that sends x to so that

a(f, g) = mU x x p2/.L)J.

It follows that we can also write

a =
where now 9: Y' x -.+ (Y x Y)X xX is the map defined in
rrheorem 6.2.34. Hence a = 1

Corollary 6.3.23 For any Z, the two group structures in [Z, yx],
defined by 3n1 and are the same.

Let us call an H-space Y (with map m: Y x Y —* Y) commutative
if m mT, where r: Y x Y —* Y x Y is defined by 7(yj, Y2)
(Y2' Yi).

Proposition 6.3.24 With the same data as in Theorem 6.3.22, Yx
is a commutative AHI. I

Proposition 6.3.25 If Y is a commutative AHI, and X is any
space, then [X, Y] is an abelian group. I

Corollary 6.3.26 For any spaces X and 1', [X, Q(Q Y)} is an
abe/ian group. •

In fact there is hardly any need to prove Corollary 6.3.26 as a
separate result, since it is true that for any spaces X and Y, [sX, YJ
and are isomorphic groups: thus Corollary 6.3.26 follows
from Corollary 6.3.21. The theorem that [sX, 1'] [X. QY] is a
special case of a more generai result: recall from Theorem 6.2.38
that, if Y is locally compact and Hausdorif, the association map gives a
(1-1)-correspondence between maps X A Y—* 2 and
Indeed, hornotopies correspond as well, so that wc have

Theorem 6.3.27 If Y is locally compact and J-Iausdorff, a induces a
(1-1)-correspondence a: [X A Y, Z} -+ (X,
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Proof. Let F: (X A Y) x 1 Z be a homotopy between maps

f,g: X A Y—÷ Z. If p: X x Y—i. X A Y is the identification map,
F(pxl):Xx YxI-÷ZisamapthatsendsXxy0xland

x V x 1 to z0, and so induces a map F': (X x 1) A Y-+ Z.
Then a(F): X >c 1 sends x0 x 1 to the base point, and is
clearly a homotopy between a(f) and a(g).

Conversely, if a(f) a(g), then since a is a (1-1)-correspondence
we may assume that the homotopy between them is of the form a(F),
where F:(X x 1) A Y—+Z isa map such that F[(x, t) A Yo) =
for alt (x, t) e X x I. So if q: X x I x V—. (X x I) A Y is the
identification map, Fq may be regarded as a map X x Y x 1 Z
that sends X x Yo x I and x0 x V x I to z0. Since, by Theorem
6.2.4, (p x 1) is an identification map, it follows that Fq induces a
map F': (X A Y) x I —÷ Z, which is clearly a homotopy between
fandg. I

1n particular, there is a (1-1)-correspondence between [sX, YJ and
[X, QY], for all X and V. The next step is to prove that this (1-1)-
correspondence preserves the multiplication, and so is an isomorphism.
In fact a more general result is true: the (1-1)-correspondence of
Theorem 6.327 is an isomorphism whenever the sets concerned are
groups.

Theorem 6.3.28 is an isomorphism in any of the following cases.

(a) X an AH'I; group structures defined by the AH'I spaces
X A Y, X respectively.

(b) Z an AHI; groups defined by the AHI's Z and Z
(c) Y an A1i'l: groups defined by the AH'I X A Y and the AHI

zy.
Proof.

(a) Let X-4. X v X be the map that makes X an AH'I, and
consider two mapsf,g: X A Y-+ Z. Now for xeX and Y, we
have

(F A
ff(p114x) A y) x x0)

U — lg(p2j4x) A y) e x0 x X),

where p1, P2: X v X—+ X are the 'projection maps'. But

[(czf)(x)](y) = J(x A y),
and

— e X x
x X),
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so that clearly ccf. ag = a(J.g), and is a homomorphism and hence
an isomorphism.

(b) Let m: Z x Z Z be the map that makes Z an AH I. This
time

[a(f.g)(x)}(y) = (f.g)(x A y)

= m(f(x A y), g(x A y))

= m([(af)(x)}(y), [(czg)(x)](y))

=

so that ccf.ag = a(J.g).
(c) Again, let Y -÷ Y v Y make Y into an AH'I. Then

A
ff(x A E Y X Yo)

A (14Y) EY0 X 1').

But (4. in(af(x), ug(x)), where Z x Z —+ Z is induced
by Thus

[(af. ag)(x)](y) = [iñ(af(x), ag(x))](y)

= [V{af(x) V

— ff(x A (fL(y)e Yo)
— A X Y),

so that once again af.czg = cc(J.g). I

Corollary 6.3.29 For any spaces X and Y, [sX, Y] -÷ (I, QY]
is an isoinorphism. I

Corollary 6.3.30 For any space Y, and n> 1, Y) - 1(D Y).

By definition, = Y]. By Corollary 6.3.18 we
may assume that the group structure is defined by the AH'I structure
of thus by Theorem 6.3.28(a), DY] =

I
Notice that, by Corollary 6.3.23, the group structure in

may equally well be taken to be that defined by the AHI £2 Y. Thus
even ir0(Q 1') is a group, which by Corollary 6.3.29 is isomorphic to
ir1(Y).

6.4 Exact sequences
From the discussion of the sets [X, Y], it is clear that the problem

of classifying spaces up to homotopy equivalence is intimately bound
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up with the calculation of [X, Y]. It is particularly important to be
able to identify these sets in. the cases where they are groups; and the
clue to how to proceed is provided by Chapters 4 and 5, where the
most useful tools were the exact homology and cohomology sequences
of pairs and triples.

We wish, then, to establish resqlts analogous to these exact
sequences, for the sets [X, Y]. Now in general the set [X, Y] is not
a group, although it has a 'distinguished element', namely the class of
the constant map from X to Y (this, of course, is the unit element of
[X, Y] if it happens to be a group). Let us call a set with a distin-
guished element a based set: we must first define the notion of an exact
sequence of based sets.

Definition 6.4.1 Given a function f: A -÷ B between based sets
(with distinguished elements a0 and b0), write Imf = {f(a) a e A}
and Kerf = {a f(a) = b0}. A sequence of based sets and functions

ft >....

is called an exact sequence if, for each i, = Kerf4+1. (Note that
this coincides with the usual definition if the sets are groups, the
functions are homomorphisms, and the distinguished element of each
group is its unit element.)

The aim in this section is to show that a map f: A —* B gives rise
to an exact sequence involving the sets [A, Y] and [B, Y], for any
space Y; there is also a 'dual' result involving the sets [X, A] and
[X, B]. If A is a subspace of B, and f is the inclusion map, this
sequence ought to resemble the exact cdhomology sequence. It is to
be expected, therefore, that the sequence will also involve some-
thing like the relative cohomology of a pair. Now we have seen, in
Chapter 4, Exercise 5, that if (K, L) is a simplicial pair, H*(K, L)

Li CL), where K LI CL denotes K with a 'cone' attached to L.
This result suggests how to define the 'relative set' that appears as the
third object in the exact sequence involving [A, Y] and [B, }1.

Definition 6.4.2 Given a map f: A -+ B, the mapping cone C1 is
defined to be the space obtained from B and cA (the reduced cone),
by identifying, for each a e A, the points a A 0 G cA and f(a) in B.
The base point,of C1 is, of course, the point to which a0 A t and b0 are
identified, for all t E I, where a0 and h0 are the base points of A and B
respectively. See Fig. 6.3, in which the thick line is supposed to be
identified to a point.
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Writef' for the 'iiiclusion map' of B in Cr1; more precisely,f' is the
inclusion of B in the disjoint union of B and cA, composed with the
identification map onto C1.

Theorem 6.4.3
functions

is exact.

For any Y, the sequence of based sets and

[C1, Y] [B, Y} [A, Y]

Proof. The mapf'f: A —÷ is the same as the composite

where i is defined by 1(a) = a A 0, and the second map is the 'inclusion
map', dçfined similarly tof'. Now by Proposition 6.2.21 cA is contract-
ible, so thatf'f e, the constant map from A to C1. Thusf*f'* = e*,
and Imf'* Kerf*.

Conversely, let g: B V be a map such that .f*[g].is the distin-
guished element of [A, Y}, so that gf e, the constant map from A
to V. Let F: A x I -÷ Y be the homotopy; since -

F(a0, t) = F(a, 1) = y0, all aEA,tEI,

F induces a map F: cA V. And since F(a 0) = F(a, 0) = gf(a),
the maps g and F together induce a map G: C1 Y, where dearly
f'G = g; That is, [g] ImJ'*, so that Kerf* c Imf'*, and hence
Kerf* = Imf'*. • -

Of course, the exact sequence is an exact sequence of groups and
homomorphisms, if V happens to be an AHL

cA

1(4)

Fig. 6.3
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The construction of C1 can be iterated, and we then .obtain a long
sequence of spaces and maps

1 1' ;(3)
A B .-± C'1 -+

Corollary 6.4.4 For any space Y, the sequence of based sets

[C1., 1'] [C1,
(r)•> [B, 1'] [A,

Y is exact sequence of groups and
homomorphisms). I

Thus we have a long exact sequence, but the resemblance to the
exact cohomology sequence is no longer clear. However, let us examine
C,. more closely. is the space obtained from C1 by 'attaching' cli,
and since ci? already includes a copy of B, it is easy to see that C1. is
the space obtained from cA and ci? by identifying, for each a e A,
the points a A 0 and f(a) A 0: see Fig. 6.4.

Fig. 6.4

It will be noticed that cB contains a copy of c(fA), and Fig. 6.4.
suggests that it might be possible to 'shrink away' cB — c(JA), so as to
leave something like sA. This is indeed the case, as the next theorem
shows.

Theorem 6.4.5. C1. sui.

Proof. As usual, denote points of S1 by numbers t, with 0 t 1,

where 0 and I both represent the base point. Define 0: sA C1. by

0'
— ff(a) A (1 — 2t) in cli (0 I\aA 'l(2t1)•A

cA
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(Or rather, 0 is this map into the disjoint union of cB and cA followed
by the identification map onto C,..) This •is well-defined, since
f(a) A 1 and a A I both represent the base point of C,., and (for
t f)f'a) A 0 and a n 0 represent the same point of C,.. Moreover
0 is continuous by Proposition 1.4.15(d).

Also define 4): C,. —* sA, by

f4)(a A t) a A for points ofcA
1c6(b A 1) bas.e point, for points of cB.

(Strictly speaking, 4) is the map induced by this map from the disjoint
union of cA and cB. This does induce 4), since 4)(a A 0) =
a A 0€ sA = base point = 4)(f(a) A 0).)

It remains to prove that 4)0 and 04) are homotopic to the respective
identity maps. Now 4)0: sA —+ sA is given by the formulae

ç60(a A t)
fbase point (0

But this is the same as the composite

PasA —+ sA V sA —. sA,

where ji is defined as in Theorem 6.3.14(a), using the S' —÷
S'. v S' of Proposition 6.3.12. Hence 4)0 1.

On the other hand 04) is given by

— ff(a) A (1 — 2t) (0 t

A t) = base point.

To construct a homotopy F: C,. x I-÷ C,., between 04) and 1, define
FA:cA x

F — ff(a) A (1 — 2t — s(1 t)) (0 t (I — s)/(2 — .s))
A(a A

— A (2t — I + s(1 — t)) ((1 — s)/(2 — s) 1)

and F8: cB x I -+ C,. by

F8(bAt,s)=bA(1—s(1—t))
Now FA is continuous, because it is induced by a continuous map of
(A x 1) x I—* C,. (using Proposition 1.4.15: the definitions of FA
coincide when t (1 — s)/(2 — s)), and p x 1: (A x I) x I —±
cA x I is an identification map, where p: A x I cA is the standard
identification. Similarly F8 is continuous; and since

FA(a A 0,s) =f(a) A (1 — s) = A 0,s),
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and F8 together induce a homotopy F: Cr x I-÷ which is
continuous by an argument similar to that used for FA and F8.
Moreover for t 1, A 1,s) F8(b A l,s) = base point, so
that F'is a based homotopy; and clearly F is a homotopy between
and 1. Hence 0 and 4' are hornotopv equivalences. •

It follows, of course, that sB, s(c,), and so on; in
fact each space in the sequence

can be identified, up to homotopy equivalence, with an iterated
suspension of A, B or C,.

In particular f(3) is more-or-less a map from sA to sB, and it would
be very convenient if this map were f A 1. This is not quite true,
since instead of the identity map of S', we must use the inverse map
v: S' —÷ S' of Proposition 6.3.12.

Proposition 6.4.6 The diagram
,(3)

Cf. )- CI-

sA
fAt,

is homotopy-commutative, where 0 and 4' are homotopy equivalences
defined as in Theorem 6.4.5 (that is, 4'f(3)8 f A v).

Proof. 4'f(3) maps points of C, to the base point, and points of cB
to sB by the rule (b A t) (b A t) in sB. Thus

A t) = ff(a) A (1 — 2t) (0 t
point (+ t 1),

and so = f A where S1 --÷ S' is defined by

— (l—2t

v by an obvious homotopy, so thatf A V f A V.

To sum up, we have (almost) proved

Theorem 6.4.7 A map f: A B gives rise to a sequence of spaces
and maps

I fi 12 !A1 !1A1
A B > C,

such that, for any space Y, the sequence
fY] Y]-——I-*[C,, Y] 1

1']
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is an exact sequence 'of sets. If Y is an AHI, this is an exact sequence of
groups; in any case it is an exact sequence of groups as far as [sA, YJ,
and an exact sequence of abelian groups as far as [i(sA), Y].

Proof. Letf1 = f': B —÷ C,, andf2 #f": C, —* sA. Consider the
diagram

—k [sB,
(fAv)

[sA,YJ i&L [C,, YJ [B, YJ [A,Y]

... —+ [Cj..,YJ [Ci., yj

By Proposition 6.4.6 this diagram is commutative; and each is
a (1-1)-correspondence, which sends distinguished elements to
distinguished elements. Thus the upper row is an exact sequence. But

is the function that sends each element into its inverse ([sA, Y} is a
group, since sA is an AH'I). Since the image of (f A 1)*: [sB, fl
[sA, Y] is a subgroup, this means that Im (f A 1)* = Em (f A v)*;
also, of course, Ker (f A 1)* = Ker (J A v)*. Thus (f A v)* can be
replaced by (f A 3)* without sacrificing exactness.

That the sets are (abelian) groups (and the functions homomorph-
isms) in the stated circumstances is an immediate corollary of Theorem
6.3.8, Theorem 6.3.11 and Corollary 6.3.21. I

As has already been pointed out, the exact sequence of Theorem
6.4.7 resembles the exact cohomology sequence of a pair. In Chapters
4 and 5 a useful property of such sequences was that a map of pairs
gave rise to a commutative diagram of exact seqUences; and this
property holds also for the exact sequences of Theorem 6.4.7.

Proposition 6.4.8 A commutative diagram of spaces and maps

gives rise to a commutative diagram
I Ii Ia

• A —.B —p.C, —*sA —,....
Al j,u

A' —* B' —. C1. —k sA' —*.
1' ft
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Proof. Let v be the map induced by the map from the disjoint
union of Ii and cii to C1. given by combining ,a and A A 1 (certainly
/hf(a) (A A 1)(a A 0) in C,.). Then obviously = and
(A A 1)f2 I

For any space Y, we therefore obtain a commutative diagram
involving the two exact sequences of sets of homotopy classes of maps
into Y. In fact a similar result holds if we merely have j.Lf f'A
instead of jif = f'A, but this is a little more difficult to prove: see
Exercise 11.

As usual, there is a 'dual' result to 'I'heorem 6.4.7, which gives an
exact sequence of sets of homotopy classes of maps from a space X,
rather than to a space Y. The method of proof is very similar to that of
Theorem 6.4.7, so that we shall not give all the details in full.

The 'dual' to the mapping cone is the mapping path-space.

Definition 6.4.9 Given a map f: A B, the mapping path-space
L, is the subspace of A x LB of pairs (a, A) such that f(a) = A(O).

The base point of L1 is (a0, e), where a0 is the base point of A and
e: I -÷ B is the constant map.

Letf': L, A be the map defined by f'(a, A) = a.

Proposition 6.4.10 For any space X, the sequence

[X, L,J [X, A] [X, B]

is an exact sequence of based sets.

Proof. Since ff'(a, A) = f(a) A(0), the map ff' is the same as the
composite

where the first map is defined similarly to f', and p is defined by
p(A) = A(0). It is easy to see that p is continuous; and LB is con-
tractible by Proposition 6.2.29: henceff' is homotopic to the constant
map, and c

Conversely, given a map g: X —÷ A such that fg is homotopic to
the constant map from X to B, let F: X x I B be this homotopy.
F induces a map F': cX -+ B, and hence a(F'): X —* LB, where is
the 2ssociation map. Then G = (g x aF')J: X —* A x LB is a map
into L,, andf'G = g. Hence C Imf,,. I

By iterating the definition of L,, we obtain the sequence of spaces
maps

j'3J 1' IL, —k A B.
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Corollary 6.4.11 For any space X, the sequence

[X, L,.] [X, L1] [X, A] B]

is an exact sequence of sets (an exact sequence of groups 1/ X is an
AH'I). I

Theorem 6.4.12 QB.

Proof. is the subspace of A x LB x LA consisting of points
(a, A, such that f(a) = A(O) and a = f'(a, A) = see Fig. 6.5.

Now fp is a path in B from b0 to f(a), so that we can define a map
0: L,. Q8 by 'sticking together' the two paths A and fp in B. More
precisely, represent points of S1 as usual by numbers t, 0 t 1,

and define

[O(a A )](t) = — 2t) (0 t
— 1) (+ t 1).

Certainly 6 is continuous, since it corresponds under the association
map to an obviously continuous map L,. A I -÷ B. Also define
4: by = (a0, A, e), where A: S1 B, e: I—÷ A is the
constant map, and on the right-hand side A is regarded as a map I B.
Then is continuous as a map into A x LB x LA, and its image is
contained in L1., since = A(0) and = e(0).

Now QB —* QB is given by

So 1, since it is the composite

x

A

Fig. 6.5

(b0

= 1)

(0 t
t 1).
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where is induced by S1 S' V S'.
On the other hand, A, = (a0, v, e), where

— 2t) (0 t
1) t 1).

To construct a homotopy between and 1, define FB: x I —÷ LB
by

F A
— — 21 — s(1 — t)) (0 t (1 — s)/(2 — s))

[
— — 1 + s(1 t)) ((1 —s)/(2 — s) I 1),

x

[F4(a, A, s)1(t.) — s(l — t)) (0 s 1).

Now F9 is continuous, since it corresponds under the association map
to a continuous map (L1. x I) n I -+ B (which in turn is induced by a
continuous map x 1 x 1 —÷ B). Similarly F,, is continuous; and
since EFB(a, A, s)](O) = ff41 — s) and [F4(a, A, s)](0) = /L(1 —

Ffl and F4 combine to give a homotopy F: x I (the
'A-co-ordinate' of F(a, A, s) is — s)). And clearly F is a homo-
topy between ç6O and 1. I

Proposition 6.4.13 The diagram

L,- —÷

#1.
QA—+QBiv

is homotopy-commutative, where v: S' -÷ S' is the inverse map, and
and 0 are as in Theorem -

Proof. L, x LA x L(L,); and if A QA, then
= (lo, A, e), where is the base point of L1 and e: I —÷ L1 is the

constant map. Thus (la, A). But if is regarded as a sub-
space of A x LB x LA, A) becomes (a0, e, A), where e: I —÷ B is
the constant map. It follows, that

= {fA(1 — 2t)

Hence f', where is as in Proposition 6.4.6. Since
this means that fv. I
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Theorem 6.4.14 A mapf: A -÷ B gives rise to a sequence of spaces
and maps

1

such that, for any space X, the iequence

(X, QLJ] (X, QA], [I, SiB]
- tx; Z,3 [X, A] [X, B]

is an exact sequence of based sets. If Xis an AH'I, ihi5 is an exact
sequence of groups; in case it is an exact as far as
[X, S2B], and an exact sequence of groups as far as [X,

Let f1 = f': 1, A, and f'#: SiB -÷ L,. The proof
now proceeds as in Theorem 6.4.7, since fV = and
[X, SiB] —* [X, SiB] sends each element to its iftverse. I

Proposition 6.4.15 A
I

1'

gives rise to a commutative diagram V

12 11 1
• . . —k SiB —+. L, —* A —* B

All
• • SiB' —* —k A' B'

V

V

Proof. v be the restriction to L, of
A'xLB'.I V •

Thus for any space X, we obtain a commutative diagram involving
the two exact sequences pf homotopy classes maps from X.

6.5 Fibre and cofibre maps
This section is concerned with a further investigation of the spaces

C, and If the map f: B satisfies certain conditions, it is
possible to identify C, and L,, up to homotopy equivalence, as a
quotient space of B and a subspace of A, respectively: for example,
if (B, A) is a polyhedral pair, and i: A —÷ B is the inclusion map, then

V

V

V
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As usual, there are two sets of 'dual' results, involving C, and L,
respectively. We start with the results on C,.

Definition 6.5.1 A map f: A -÷ B is called a cofibre map if,
whenever we are given a space X, a map g: B —÷ X and a homotopy
H: A x I X, starting withgf, there exists a homotopy G: B x I
X that starts with g, and satisfies H = G(f x 1).

Thus if A is a subspace of B, the, inclusion map i: A —* B is a
cofibre map if the pair (B, A) has the absolute homotopy extension
property (see Section 2.4) (the converse is not true in general, since
the definition of cofibre maps refers to based maps and homotopies,
but the absolute homotopy extension property refers to maps and
homotopies that are not based). In particular, by Theorem
2.4.1, the inclusion of a subpolyhedron in a polyhedron is always a
cofibre map.

Theorem 6.5.2 1ff: A —+ B is a cofibre map, then C, B/f(A).

Proof. Let A: C, B/f(A) be the map induced by the identifica-
tion map B —* B/f(A) and the constant map cA -÷ B/f(A). We show
that A is a homotopy equivalence by constructing a homotopy inverse,
and this is where we need to know thatf is a cofibre map.

Now f1f: A —÷ C, is homotopic to the constant map, by the homo-
topy H:A x given by H(a,t) = a A t (ecA). Sincefis a
cofibre map, there exists a homotopy G: B x I -+ C, that starts with
f1 and satisfies H = G1.J x 1). Letg1: B —p- C, be the final map of G;
then g1f(A) = base point, so that g1 induces a map B/f(A) -+ C,.

To show that 1: C, —+ C,, note that we already have a
homotopyG:B x I—*C',.Definealsof:cA x 1—3-C'1 by

J(a A t, s) = a A (s + t(1 — s)) (a e A, s, t I).

J is continuous by Theorem 6.2.4; and since

J(a n 0, s) a A s = G(f(a), s),

J and combine to induce a homotopy C, x I C,, between the
identity map and jiA.

Finally, to show that A.t 1: B/f(A) B/f(A), we have only to
remark that AG: B x 1 —÷ B/f(A) sends f(A) x I .to the base point,
and so induces a homotopy B/f(A) x B/f(A) between the
Identity and AjL.
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Corollary 6.5.3 If (B, A) has the absolute homotopy extension
property, and 1: A B is the inclusion map, then B/A. Thus for
any space Y, the sequence

•—* [sB, Yj
(IA1)

> [sA, Y] (12a)' [B/A, Y] [B, Y] [A, Y]

is exact, where p: B —+ B/A is the identification map. Moreover, if
(B', A') also has the absolute homotopy extension property, and
f: (B, A) (B', A') is a map of pairs, there is a commutative diagram

[sA, Y} [B/A, Y] [B, YJ [A, Y}

I'S 1"
• • >[sA', Y} [B',.Y} •,, '[A',

(1a" ) (P) ti)
Proof. By Theorems 6.4.7 and 6.5.2, the sequence would certainly

be exact if we wrote Al1 instead c#f p; but dearly Al1 p. And by
Proposition 6.4.8 a map g gives rise to a commutative diagram of
exact sequences, since = and A commutes with maps
induced byf. I

-

Theorem 6.5.2 also provides another more-or-less standard map
from to S's. For the pair (En, being triangulable, has
the absolute hornotopy extension property, and so there is a homotopy
equivalence —*- where 1: —÷ is the inclusion
map. This may be composed with 12: —* 1, and the inverse of
h: S' (the honicomorphism of Proposition 6.2.15) to
yield

1

Proposition 6.5.4 ç69, where 0: —+ is the
standard homeomorphism, and . ., = x1,.. ., xi).

Proof. In defining —a- we have to construct a
homotopy G: Ett x I—i- = Li and take the final map
g1: Eit which induces Now it is easy to see that a suitable
map :i is given by

f(2x1,.. ., (r 4)g1(x1,..
l(xi/r, . . ., A (2r — 1) e cS't1 (r 4),

where r = Hence A S1 is given by

— fbase point (r 4)
A (2r — 1) (r 4).
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But ,...,x,%) = ((xj/r) sin iii, . ., (x,jr) sin irr, — cos 'lrr), and it
is easy to see that i2p. is homotopic to the composite of with the
map p: —+ A S1 discussed after Corollary 6.2.19. Since
p h, it follows that Jr ç&O. I

So far Theorem 6.3.2 will seem rather special, since the only maps
known to be coflbre maps are the inclusions of subpolyhedra in
polyhedra. However, cofibre maps are much more common than this
state of affairs suggests; indeed, every map is, to within homotopy
equivalence, a cofibre map.

Theorem 6.5.5 Any mapf: A -÷ B is the composite of a cofibre map
and a homotopy equivalence.

Proof. Let the mapping cylinder off, M1, be the space obtained
from B and (A x I)/(a0 x I) by identifying, for each a A, the
points (a, 1) andf(a): see Fig. 6.6, in which the thick line is supposed
to be identified to a point (the base point of M1).

Letg: A —* M1 be the inclusion of A in A x I(as A x 0), followed by
the identification map, and let h: Mf —÷ B be the map induced by the
identity map of B and the map from A x I to B that sends each
(a, t) to f(a) (so that h, as it were, shrinks A x I down the 'strings'
joining a and f(a)).

Clearly f Jig, so that it remains to prove that g is a cofibre map
and that h is a homotopy equivalence. We deal with g first.

Suppose, then, that we have k: K, and a

H: A x I —+ X starting with kg. To construct the corresponding
G: M1 x I X by

s) = k(b) (0 s 1),

0O

Fig. 6.6



§6.5 FIBRE AND COFIBRE MAPS 247

and GA: (A xl) x I-+Xby
fk(a, (2t — s)/(2 — s)) (0 s 2t)

G4(a, I, s)
— 1,H(a, s — 2t) (2t s 1).

Now G4 is continuous, since if s = 2:, k(a, 0) = kg(a) = H(a, 0).
Moreover GA(a, 1, s) = k(a, 1) kf(a) GB(f(a), s), so that GA and
G9 together induce (using Theorem 6.2.4) a homotopy G: M, x I -÷
X. Clearly G starts with k, and

G(g x -1)(a, s) = G(a, 0, s) H(a, s),

so that G(g x 1) = H. Henceg is a cofibre map.
To show that h is equivalence, define j: B —* M, to be

(the restriction of) the identification map onto M1. Then Jzj = 19,

andjh: M,-÷M1 is given by

f jh(b)=b
t) f(a).

A homotopy H: M, x I -# M, between 1 and jh can be defined by
'sliding down the strings from atof(a)'; more precisely, H is defined
by

f H(b,s)=b
t, s) (a, I + s(1 I)).

As usual, Theorem 6.2.4 shows that this is continuous.
The 'dual' results involve the space L,, and certain maps known as

fibre maps: this is historically the older concept, and explains the
of the term 'cofibre map' in Definition 6.5.1.

Definition 6.5.6 A map f: 4 -+ B is a fibre map if, whenever we
are given a spaceX, amapg: X I-÷ B
that starts with fg, there exists a homotopy G: X x I A that starts
with g and satisfies fG 'H.

1ff is a fibre map, the fibre of f, F, is defined by F = f '(be), where
is the base point of B. It-is a subspace of A.

Theorem 6.5.7 1ff: A is a fibre map, then L, F.

Proof. Recall that L, is the subspace of A x LB of pairs (a, v)
such thatf(a) = v(0). Thus we can define A: F L, by A(a) (a, e),
where e: I —p B is the constant map: certainly (a, e) E L, if f(a) =

Now consider L, -+ B. This is homotopic to the constant map,
by a homotopy H: L, x l—*B, where H(a, v, t) = v(t)(0 t 1).
Since f is a fibre map, there exists a homotopy L, x I —÷ A that
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starts with and satisfies fG = H. In particular, if g1: L1 —+ A is the
final map of G, Jg1(L,) = b0, so that g1(L1) c F; denote g1, regarded
as a map into F, by

Now G(A x 1): F x I A is a map into F, since fG(a, e, t) =
H(a, e, t) = e(t) = b0; thus G(A x 1) provides a homotopy between
'F and On the other hand, a homotopy between the identity map
of L1 and can be constructed by combining G: L1 x 1 —÷ A with
J: L, x I LB, where J is defined by

[J(a, v, s)j(i) = v(S + t(1 — s))

(this is continuous, since it corresponds under the association map to a
continuous map from (L, x I) A I to B). G and J combine to give a
homotopy L, x I -+ L1, between I and Az, since

JG(a, v, s) = H(a, v, s) v(s) LJ(a, v, s)](O). I

Corollary 6.5.8 1ff: A B is a fibre map, with fibre F, then for
any space X, the sequence

QB] [X, F] ' [X, A] [X, B]

is exact, where 1: F —÷ A is the inclusion map. Moreover, 1ff': A' —÷ B'
is a fibre map, with fibre F', and

I,
is a commutative diagram of spaces and maps, then g(F) c F', and there
is a commutative diagram

{X, .QB} LX, F] [X, A]
' [X, B]

(h1).1,

[X, QB'] [X, F'] —*{X, A'] -——-÷ [X, B'].
(u 1.* Proof. Since f1A = 1: F—*A, Theorems 6.4.14 and 6 5.! show

that the sequence is exact. And the commutatiye diagram foliuws from
Proposition 64.14. 1

Corollary 6.5.9 1ff: A —-. B is a fibre map, with fibre F, tY2ere is an
exact sequence

—+ 1(F) —+.
1. 1.—+ ir0(F) —+ 1T0(A) 7r0(B)
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called the 'exaët homotopy sequence' of the fibre map f. It is an exact
sequence of groups and homomorphisms as far as ir1(B).

Proof. The diagram

[X, .QA] [X, QBJ

[sX, A] [sX, B]

is clearly commutative, where is the iso morphism of Corollary
6.3.29. Now apply Corollary 6.5.8 with X = SP, and identify the
groups and homomorphisms up to [S°, S?B].

Lastly, the 'dual' of Theorem 6.5.5 is true.

Theorem 6.5.10 Any mapf: A —÷ B is the composite of a homotopy.
equivalence and a fibre map.

Proof. Let be the disjoint union of I and a point p, where p
taken to be the base point of I Thus for any (based) space B, B' +
may be regarded as the set of maps from I to B that are not necessaiily
base-point-preserving. This allows us to define the 'dual' of the
mapping cylinder: we' let P, be the subspace of A x consisting
of pairs (a, A) such that f(a) = A( I), and we take (a0, e) to be the base
point of P,. where e is the Constant map.

Now define g: P, B by g(a, A) = A(O), and h: A -÷ P, by
h(a) (a, ef(G)), where e,(4): I + —k B is the map that sends all of I to
f(a). Theng is continuous, since it is easy to see that the map B'4 B
that sends A to A(O) is; also h is continuous, since the map B —÷ B' +

that sends b to 4 corresponds under the association map to the map
B A J + -+ B that sends b A I to b for all I e 'I (notice that.? A.. I t
may be identified with (B x I)/(b0 x I)). Moreover gh(a) = =.
f(a), so tbatf = gh, and it remains only to prove 'thatg is a fibre map
and h is a homotopy equivalence. As in Theorem 6.5.5, we deal with
g first. .

Suppose, then, that we have k: X -+ F,, and a homotopy
H: X x I —÷ B that starts with gk. Now k: X—÷ P, c A x B" has
two components: a map k1: X-÷A and a map k2: X-÷ B'4, which
under the association map corresponds to a map X A I + B. Since
X A I + = (X x I)/(x0 x I), the latter map can be composed with.
the identification map to yield k': X x I —÷ B, where k'(x, I) =
(k2(x)}(t). Now

JI(x, 0) = gk(x) = = k'(x, 0),
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so that we can define (X x I) x I-÷B by

— fk'(x, (2t — s)j(2 — s)) (0 $ 21)
' ' l.H(x, s — 2t) (2t s 1).

This is the base point if x x0, so that induces a map (Xx I) A I +
—p. B, and hence a homotopy GB: X x I Thus we can define
a homotopy G: X x I —÷ A x B' by

G(x, s) = (k1(x), GD(x, s)).

In fact this is a map into F-, since

ft1(x) = [k2(x)](1)= k'(x, l)=

G(x, 0) (k1(x), k2(x)) = k(x), so that G starts with k;
and gG(x, s) [GB(x, s)}(0) = .c, 0) = H(x, s), so that gG = H.
Hence g is a fibre map.

To, show that h is a homotopy equivalence, define j: Pf —* A by
j(a, A) a. Then jh = 1A' and hj(a, A) (a, eI(a)). A homotopy
H: P, x I F, between 1 and hj is given by 'contracting the paths
A'; more by defining

H(a,A,s) = (a,A8),

where A8 is the map from to B defined by A8(t) = A(t + s(1 — t)).
'Now H is continuous, since the map x I-÷ that 8ends
(A, s) to is just the homotopy induced as in Theorem 6.2.25(b) by
the homotopy I + ,< .÷ + that sends (t, s) to (t + s(1 — :)). And
since H is obviously a map into P,, H is a homotopy between I and
1j. I

EXERCISES

1. Show that the results of Theorem 6.2.4 are not true without some
restriction on the spaces involved, by means of the following example.
For each integer n ? 1, let be a copy of the unit interval I. Let .X be
the disjoint union of the 4, let Y and let p: X—* Y be the
identification map. Then if Q denotes the rationals, topologized as a
subset of the real line, p x 1: X x 9 —* Y x 9 is not an identification
map. (Hint: for each n 1, enumerate the rationals in [— 1/n, 1/n] as

q1, q2, q3,..., and let = (qy — 1/(n.2'), q, + l/(n.Zr)) Q. Let
be the subset of 4 x Q of the form

—1/n) Q}u U (1 — 1/2T, 1] x UflT LI 4 x {(l/n, x) Q}.
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Finally, 1et V he the subset of Y x 9 of the form (p x l)(U Vt).
Then (p x l)3(V) U V is

open neighbourhood of (yo' 0) can be contained in V.)
2. Let X S1, and A = S1 — p, where p is any point of S1 other than

the base point. show that A is contractible, but X X/A.
3. Given spaces X and •l', the join X* Y is defined to be the space

obtained from X x Y x I by identifying (x, y, 0) with (x, Yo' 0) and
(x, y, 1) with (x0, y, 1) for each x X, y F. Show that if X and Fare
polyhedra, this definition coincides, up to horneomorpbisrn, with that
of Definition 2.3.17.

Now define the reduced join X Y to be the space obtained from
X * Y by identifying to a point the subspace (x0 x Y x I) u
(X X Yc x I). Prove that X F and s(X A F) are homeomorphic,
and deduce that X * F s(X A Y) if X and Y are polyhedra.

4. Show that (X A Y) A Z and X A (F A Z) are homeomorphic if
both X and Z are locally compact and Hausdorif.

5. Define functions

0: YX x Z-.I.(Y x Z)x, yXxZ z_÷

by the rules

(0(A,z)}(x) = (A(x),z) (x€X,zeZ, A:X-÷ Y),

(i,z)J(x)=jz(x,z) x Z-± F).

Show that 0 is always continuous, and that continuous if Z is
locally compact and Hausdorif.

6. Show that the evaluation map e: YX A X -÷ Y is not always con-
tinuous, by taking X = Q and Y = R1, both with base point 0.
(Hint: no compact subset of Q can contain all the rationals in an interval.)

7. Deduce from Exercise 6 that the association map a: (Zr)'
not always onto.

8. Given spaces X and F, such that X F, show that Y is an AHI if
and only if X is. Similarly, show that Y is an AH'I if and only if X is.

9. Let S' V S' be a map that makes S' into an AH'I. Show
that there are only two homotopy classes of such maps, and that if
ii.'( Y)1 and ir1( Y)2 denote the corresponding group structures in
[Si, F], then 7r1(Y)j ir1(Y)2. (Hint: use Theorem 3.3.18 to calculate
rr1(S' V S'), and show that there are only two elements that give an
associative H'-structure in 51.)

10. Show that F) is abelian if F is an H-space (not necessarily associative
or with inverse).
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11. Given a homotopy-commutative diagram

liz

show that there exists a map v: C1 —+ such that the diagram

A B C1 sA —*.

Al ,j,v ,JAA1

A' —+ B' C,. —* sA' —+•
I"

is also homotopy-commutative. Prove also that v is a homotopy
equivalence if both A and p are. (Hint: let F he the homotopy between
pfandf'A, and define v by

v(b) = p(l,) (b B)

L(a A t)—
JF(a,2t) (0 4)

— A (2t — 1) (4 t 1).

In order to prove that v is a homotopy equivalence if A and p are, write
v = v(A, p, F), and let v(\, F), where and ? are homotopy
inverses to A and /L, and F is a homotopy between andf\. Show that

F'), where F' is some homotopy between f and itself,
and deduce that civ is a homotopy equivalence. A similar argument
shows that vci is a homotopy equivalence, and it is easy to conclude that
therefore v is a homotopy equivalence (although ci is not necessarily a
homotopy inverse!).)

12. Establish the 'dual' results to those of Exercise 11.
13. Given a map f: S" —p. X, let Y be the adjunction space X U,

Show that Y C,., and deduce that x C9, where 0:
Sm V S" is a certain map. (Hint: regard as the subspace

E" x S"-' u Sm-i x E" of E" x Es.)
14. Given a space X, and elements a irm(X), the Whitehead

product [a, P1 1(X) is defined as follows. Represent a and by
mapsf: 5" X, g: S" -÷ X respectively, and let [a, be the element
represented by the composite

v s"LZ,x v

where 0 is the map considered in Exercise 13. Show that if X is an
H-space, [a, p3 0 for all a and fi. Conversely, prove that S" is an
H-space if [ta, = 0, where i,, is the element represented by
the identity map.
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15. Given two spaces X and Y, let i: X V Y—÷ X x Y be the inclusion
map. By considering the map f: c(X x Y) —- sX V sY defined by

f((x,y) A t) A 2i,base point) (0 t 4)
pomt, y A (2t — 1)) (4 I 1),

show that 22: C1 s(X v Y) is homotopic to the constant map.
Dedqce the following results.
(a) If s: —* is the homomorphism that sends the
element represented by f: .-÷ X to the element represented by
f A 1: S* 'A 5' X A 5', then S[cx, /31 = 0 for all a, /3.
(b) Ifiis a cofibre map, then s(X x sX V sY V s(X A Y).

16. Given any map f: A —+ B, prove that B -* Cf is a cofibre map and
that!1: L, A is a fibre map.

17. Show that, if (X, A) has the absolute homotopy extension property,
and f g: V, then the adjunction spaces Y U, X and Y U2 X
are homotopy-equivalent. (Hint: let Z, be the space obtained from
X x 0 u (A x x I) U Y by identifying (a, 1) with f(a), for
each a eA; prove that Y U, X Z, and that Z, Z2.)

18. A map!: A B is called a Serre fibre map if it satisfies Definition 6.5.6
for all polyhedra X (rather than for all spaces X); and the fibre F is
once again f'(b0). Show that there is a map g: L, with the
property that, if X is any polyhedron, [X, F] -÷ [X, L1) is a (I-I)-
correspondence. Deduce that, if 1: F A is the inclusion map, there
is an exact sequence

'—+ ±4. _4
19. A mapf: A -÷ B is called a local product, with fibre F, if for each point

b B there exists an open neighbourhood U of b and a (not necessarily
based) homeomorphism U x such thatfh0(b' X F)
= b' for all b' e U. Prove that a local product is a Serre fibre map.
(Hint: let K be a simplicial complex, and suppose given a map
g: 1KI -+ A and a homotopy H: x I—* B, such that H starts
with fg. Triangulate I by a simplicial complex L with vertices 0 =
t0 < t1 <...< t,, 1, and chooser 0, such that for each simplex a
of K and each 1, a x (th It +,] is mapped by H into one of the open
neighbourhoods U. Now construct a homotopy G: x I-÷ A
that starts with g and satisfies fG = H, by induction on the skeletons
of Km.)

20. Prove that the map f: R1 S L, defined by f(x) = (cos 2irx, sin
is a local product. Deduce that = 0 for n > 1.

21. Let f: S" —b. RP" be the identification map provided by Proposition
1.4.40. Show that f is a local product, and deduce that

for r> 1. (Hint: consider the open sets U, in RP", where U,
is the set of points [x,, . . ., x,1,.1] such that x, 0)
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22. A map f: A —> B is called a covering map if it is a local prothict, with a

discrete space as fibre. Show that —+ is isomorphic for
n > 1 and (1-I) for n = 1. Prove also that ifg: B is a (based) path
in B, there exists a unique (based) path Ji: I A such thatfh = g.

23. Let f: A —k B he a covering map, and let X be a path-connected and
locally path-connected space (X is said to be locally path-connected if,
for each point x E X and open set U containing x, there exists an open
set V, such that x e V U and any two points of V can be connected
by a path in U). Prove that, if g: B is a map such that c
f*iri(A), there exists a unique map h: X A such that fh = g.
(Hint: use Exercise 22 to define the function h, for each point of X, and
then show that h IS Continuous and unique.)

24. Let f: A -÷ B and f': A' —*. B be two covering maps such that
and suppose that both A and A' are path-con-

nected and locally path-connected. Prove that A and A' are homeo-
morphic.

25. Let B be a path-connected, locally path-connected space, that is also
'weakly locally simply-connected' (that is, for each point x e B, and
open set U containing x, there exists an open set V, such that
x e V c U, and every loop in V based at x is contractible in B). Let
G be any subgroup of irj(B). Prove that there exists a space A and a
covering map f: A B, such that f*iri(A) = G. (Flint: define an
equivalence relation R in B1, by uRv [u' v] e G, and let A =
B'/R.) Show also that A is determined up to homeomorphism by B and
G: thus in particular there is essentially only one such space A if C

0; in this case ir1(A) = 0 and A is called the universal cover of B.

NOTES ON CHAPTER 6

Identzfication maps. Theorem 6.2.4(a) is due Cohen [41] and (b) to
Puppe [119). It is possible to remove the restrictions on the spaces by
retopologizing the product: see R. Brown [32].

Associativity of the reduced product. It can be shown that (X A Y) A Z
and X A (Y A Z) are always homotopy-equivalent (though not necessarily
by a based homotopy equivalence): see Puppe [119].

Mapping spaces. The compact-open topology (due to Fox [58)) is not
the only possible topology for for example, we could take as a sub-base
all sets of the form where x is a point of X and U is an open subset of
Y: this is the topology of pointwise convergence. For a discussion of these
and other topologies, see Fox [58] or Kelley [85], Chapter 7.

Some attempts have been made to circumvent the difficulties caused by
the fact that in general the evaluation map is not Continuous, and the
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association map is not a homeomorphism. Spanier's method [130) is to
weaken the definition of continuity, but perhaps the more satisfactory
method is that of R. Brown [33], who shows that if one of the 'extraordinary

of [32] is used instead of the ordinary topological product, the
evaluation map is continuous and the association map is a homeomorphism.

H-spaces. 'fhese were first introduced by Hopf [71). It should be noted
that. Definition 6.3.7 is not absolutely standard, since some authors

mi2 should both coincide with the identity map, instead
merely homotopic to it; similar remarks apply to the definitions of
associativity and commutativity. -

In certain circumstances an associative H-space Y will automatically
have an inverse: for example, if Y is path-connected, and a
in the sense of Chapter 7. See James [79] or Sibson [126].

It is possible for YX to be an H-space, even though Y is not an H-space
and X is not an H'-space: see R. Brown [34] for an example.

H-spaces have been popular objects of study by topQlogists for some tiine
For a variety of results, see Browder [26, 27], Browder and
James [80], Stasheff [133, 134] and Dold and [45), in addition to the
papers already mentioned.

The 'dual' notion of an !f'-space is due to EckmaAn and W.lton [49].

Homotopy groups are due originally to but we follow the notation
of Hurewicz [74], which has since become

Duality. For more details of the 'duality' exhibited in chapter 6, see
Hilton [63].

Exact sequences. Theorem 6.4.7 is essentially due to Barratt [19),
we the exposition of Puppe [119). The 'dual' Theorem 6.4.14 was
first proved (in a less general form) by Peterson [115].

Cofibre maps. The result that a polyhedral pair has the absolute homo-
topy extension property can be generalized, and in Chapter 7 we shall prove
that the same result holds with 'polyhedral' replaced by 'CW'. For another
set of conditions under which a pair of spaces has the absolute homotopy
extension property, see Hu [72], or [731, p. 31, Ex. 0.

The mapping cylinder was first defined by J. H. C. Whitehead [159].

Fibre maps. Definition 6.5.6 is but one of many definitions of 'fibre
map' or 'fibre space'. Our definition is that of Hurewicz [76], and the weaker
version given in Exercise 18 is due to Serre [125]. That a Serre fibre map
need not be a Hurewicz fibre map is shown by an example of R. Brown [34].
A different method of weakening Definition 6.5.6 will be found in
Dold [44], and possibly the weakest definition of all, in which a map
f: A B is called a quaszfibration if the result of Corollary 6.5.9 holds, is
due to Doldand Thom [46].

A quite different spproach is exemplified by the local product of Exercise
19, which with a little extra structure becomes the fibre bundle of Whitney
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(1621 (see also Steenrod [137]). The theory of fibre bundles, particularly
those with a vector space as fibre, has been greatly developed in recent
years, and has led to the construction of powerful new topological invariants.
For an outline of this theory, see Atiyah and Hirzebruch [18] or Atiyah
[17).

Finally, fibre bundles have been generalized by Milnor [107] and Rourke
and Sanderson [123].

The Whitehead product. Whitehead's original definition will be found
in (157], and generalizations in Hilton [63]. Adams [2] has proved that

e,,] 0 only if n 1, 3 or 7, so that is an H-space only for these
values of n.

Exercise 15(a) is capable of considerable generalization, at least if X is a
sphere: the 4suspension homomorphism' s and a homomorphism defined
by a certain Whitehead product can be fitted into an exact sequence, the
EHP-sequence of G. W. Whitehead [154] (see also James (78]).

Covering spaces. For details of Exercises 22—25, see Hu [73], Chapter 3,
or Hilton and Wylie [64], Chapter 6. In Exercise 25, if B is a polyhedron,
then A may be taken to be a polyhedron as well: for a proof see, for example,
Seifert and Threlfall [124], Chapter 8.



CHAPTER 7

HOMOTOPY GROUPS AND CW-COMPLEXES

7.1 Introduction
We have already, in Chapter 6, defined the homotopy groups of a

(based) space 1, and established some of their properties: those, at
least, that are shared by the more general sets and groups of the
form [X, Y]. The first object of this chapter is to continue this
investigation, but with special reference now to the groups ir,,( Y).
Most of these results will be true only for the homotopy groups, and
not for the more general situation: for example, we shall calculate
the groups (n 1), and prove an important theorem concerning
the homotopy groups of CW-complexes. On the other hand we shall
also investigate the effect on Y) of changing the base point (compare
Theorem 3.2.16), and establish calculation theorems for x

V Y); and although these results will be given only in terms of
homotopy groups, they are capable of generalization to sets of the
form [X, Y]: see Exercises 1, 6 and 7.

The rest of the chapter will be concerned with CW-complexes.
These are at once generalizations and simplifications of the notion
of a simplicial complex. A simplicial complex—or rather its polyhedron
—may be thought of as a space built up by successively attaching
simplexes along their boundaries. Now a simplex and its boundary
form a triangulation of (E", S"') for some n, so that in fact a poly-
hedron is formed by successively attaching cells by maps of their
boundaries. However, the cells have to be triangulated, and the
'attaching maps' involved have to be simplicial homeomorphisms onto
their images. A C W-complex, on the other hand, is built up by success-
ively attaching cells by any continuous maps of their boundaries
(not necessarily homeomorphisms onto their mages), and the number
of cells is not restricted to be finite. This has many advantages: for
example, a polyhedron can often be regarded as a CW-complex with
far fewer cells than there were simplexes originally (for instance,
is a CW-complex with only two cells), and the product of two poly-
hedra is a CW-complex in a natural way, since the product of two
simplexes is a cell, but not a simplex in general. CW-complexes are

257
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also the natural setting for the theorem of J. H. C. Whitehead: given
a map f: X Y of path-connected CW-complexes, such that

is isomorphic for all a, then f is a hornotopy
equivalence.

Section 7.2 contains the standard results on homotopy groups, and
Section 7.3 the definition and elementary properties of CW-complexes.
Theorems on the calculation of homotopy groups of CW-complexcs
(in particular are proved in Section 7.4, and the theorem of
J. H. C. Whitehead in Section 7.5.

7.2 Homotopy groups
In Chapters 3 and 6 we have already defined Y) for any based

space Y, seen that a based map f: X —÷ Y gives rise to homomor-
phisms —+ Y) for n 1, and proved that Y) is abelian
for n 2. Moreover, a fibre map f: A —÷ B gives rise to an exact
sequence of homotopy groups. Our first task in this section is to extend
to Y) the result that the definitions of 1T1(Y), given in Chapter 3
and as [S', Y} in Chapter 6, give isomorphic groups. The point is
that the definition analogous to that of Chapter 3 is often easier to
work with than the definition as [S", fl.

Let F' be the product of a copies of the unit interval I, and øfl
its 'boundary'; thus I" is the subset of of points (x1, . . ., x,j such
that 0 I for I r n, and is the subset of points with
at least one co-ordinate equal to 0 or I. Now the composite of standard
maps

sends to the base point (— 1, 0,.. ., 0), and so induces a (based)
homeomorphism I"føI" —* S". Thus by composing with this homeo-
morphism, a based map S" —÷ Y may be regarded as a map

or alternatively as a map of pairs (I's, Yo)'
where Yo is the base point. Moreover, by Proposition 6.2.5, a based
homotopy between maps —+ Y corresponds to a homotopy of maps
of pairs between the corresponding maps (I", —* (Y, Yo). Hence
we have proved

Proposition 7.2.1 The elements of Y) are in (1-1)-correspon-
dence with homotopy classes, ret of maps (in, SF') _*( Y, Yo). More-
over, Y Z is a based map, the image under of the element of

Y) represented by a map g: (in, l3itt) (Y, Yo) is just the homotopy
class of the compositefg: tim, (Z, z0). I



§7.2 HOMOTOPY GROUPS 259

Indeed, it is easy to complete this interpretation by specifying
the group structure in terms of maps of (I", -

Proposition 7.2.2 Given two mapsf, g: (in, —÷ (Y, y0), define
by

ff(x1, . . ., x,,_1, (0 4.)fog(x1,.. .'
. .., — 1) (4. 1).

Then the definition of fog extends to homotopy classes rel of such
maps, and gives a definition of multiplication in ir,( Y) that coincides
with the origi;:al one. Moreover, the same definition results if f and g are
'composed' using any other co-ordinate instead of

Proof. It may be assumed that f and g are composites

(I", (S's, s0) (Y, Yo)'

(I's, (S', s0) (1', Yo)'

where is the above composite of standard maps and is the base
point (—1, 0, . . ., 0) of S". Now f'.g' = V(f v where

S" S" v is a map defined by the standard horneomorphism
Sn = A S' and the map S' —÷ S' v S' of Proposition
6.3.12. But the proof of Proposition 6.3.12 shows that the diagram

Sn-' AS1

v S" v = A S') v A S1)

is commutative, where v is defined by

base point) (0 4.)v(x1, .. .,
— l(base point, (x1,. . ., — 1)) (4 1).

Hence (f' f o g, so that, since the definition off c g obviously
extends to homotopy classes, the two definitions of multiplication in

Y) coincide.
Moreover, Corollary 6.3.18 shows that, if we write

= (5P—1 A S1) A A S')

and use the H'-structure of S" determined by that of S" -1 A S' to
define a multiplication in 1), this multiplication is the same as the
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previous one. But this multiplication corresponds as above to that
given by defining

,,
— ff(xi, .. ., 2x,,,. .., x,,) (0 x9 4)

. . ., — I I \ 11 < <., — . . ., -. x, —.

so that it is immaterial which co-ordinate we use to 'compose'fandg. I
The next point to consider is the effect on ir,,( Y) of changing the

base point Yo• We already know what happens if n = 1 (see Theorem
3.2.16), and the result for is the obvious generalization. In order to
state the theorem, write ir,,( Y, Yo) instead of Y) for the nth
homotopy group of Y, with the base point

Theorem 7.2.3 Let Yo and Yi be two base points lying in the same
path-component of a space Y. A path u in Yfrom Yo gives rise to an
isomorphisin u#: Yo) Yi) (n 1), with the following
properties.

(a) If u v rd 0, 1, then =
(b) is the identity isomorphism.
(c) If w is apathfromyj toy2, then (u.w)# =
(d)IfA: Y-÷ZisamapsuchthatA(y0) = z0andA(y1)= z1,then

= Yo) z1).

Proof. We use the interpretation of given by Propositions 7.2.1
and 7.2.2. Suppose then, an element of ir,,( Y, Yo)' represented
by a map f: (I", 81") -÷ (Y, Yo). To define u#ff], let f': (I", 81")
(Y,y1) be any map that is homotopic tof by a homotopy F: I" x 1.-÷ Y
such that F(x, t) = u(t) for all x 81", t e I; put u#[f] = U'] e
ir,,( Y, y1). To justify this definition, we have to show that such maps
f' always exist, and that u#[f] does not depend on the particular
choice of f'.

To show that such maps f' exist, note that, since the pair (1", 81")
is clearly triangulable, it has the absolute homotopy extension prop-
erty. The path u may be regarded as a homotopy of 01", which
extends to a homotopy F of I" that starts withf, and whose final map
is a suitable f'.

We can show that u#[f) does not depend on the choice of f', and at
the same time prove (a), as follows. Let v be another path from Yo to

and let G: I" x I —÷ Y be a homotopy that starts with f, and
satisfies G(x, t) v(t) for all x E 81", t E I; write g for the final map
of G. Of course, f' g by the homotopy H formed by composing the
reverse of F with G; but unfortunately H is not in general a homotopy
relative to 81". This difficulty can be overcome by using the absolute
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homotopy extension property again: H(x, t) . v(t) .if x
and since u vrelO, 1 we have u1.v z ç1relO, 1. By combining
this homotopy with the constant homotopy off' and g, we obtain a
homotopy starting with the restriction of H to I" x 0 u x I Li

x 1, and since this subspace can be triangulated as a subpoly-
hedron of x I, this homotopy can be extended to a homotopy of
1" x 1 that starts with H. The final map of this homotopy is again a
homotopy between f' and g, but by construction it is a homotopy
relative to 01". It follows that [f'J = [g] e Y, so that (by taking
u = v) u#[f] is independent of the choice off', and u#[f] = v#[f] if
u V rel 0, 1.

Properties (b)—(d) are clear from the definition of and in par-
ticular (a)—(c) show that is a (1-1)-correspondence. It remains, then,
to show that is a homomorphism. Let f, g: (I", 01") (1', Yo) be
two maps, let F, G: I —÷ Y be homotopies starting with f, g
respectively, such that F(x, t) = G(x, 1) = u(t) for all x e 0!", t e I,
and let f', g' be the final maps of F, G respectively. Define
FoG:I" x I—÷Yby

F G' — fF(xi, . . ., 5) (0 x,,
0 X t

Is i, . . ., n_i, n — ) 1st —.

then F o G is a homotopy between f o g and f' o g', and F o G(x, t) =
u(S) for all x e 01", 1 e I. Hence

= o g] = LI' o g'J = [f'][g'] = u#[f] .

so that is a homomorphism, and therefore an isomorphism. I

Corollary 7.2.4 Let f: X -+ Y be a homotopy equivalence. Then if
x0 is any base point of X, and Yo = f(x0),

x0) —k Y, Yo)

is an isomorphis,n for all n 1.

Proof. Letg be a homotopy inverse tof, and let F be the homotopy
between gf and let x1 = g(y0). Now if a: I" —÷ X represents an
element of x0), F(a 1) is a homotopy between a and gfa. This
homotopy is not in general relative to 0!", but its restriction to
01" x I defines a path u, say, from x0 to x1. Thus

= u#: x0) -÷ x1),

so that is an isomorphism. Similarly, is an isomorphism,
so that and are themselves isomorphic. I
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It follows from Theorem 7.2.3 that each loop u based at Yo gives rise
to an isomorphism u#: Y, (n 1) that depends
only on the class of u in Y, Thus ir1( Y, Yo) acts as a 'group of
automorphisms' of ir,,( Y, yo), which, as we saw in Chapter 3, are
actually inner automorphisms if n = 1. In certain circumstances
these automorphisms all reduce to the identity automorphism.

• Definition A space Y is n-simple for each point Yo E Y,
and each ioop u based at Yo' Y, Yo) ' Y, Yo) is the identity
isomorphism.

It is easy to see, using Theorem 7.2.3, that if Y is n-simple, the
isomorphism determined by a path u from to depends only

and y1, and not on the particular path u.

Theorem 7.2.6 Let Y be a path-connected space. Then

• (a) Y is n-simple q and only if the condition of Definition 6.2.5 holds
for just one choice of base point yo;

(b) if Y is simply-connected, F is n-simple for all n;

(c) :f Y is an H-space (not associative or with inverse),
V u n-simple for all n;

(d) if Y is n-simple and X then X is n-simple.

Proof

(a) Suppose the condition of.Dciinition 7.2.5 holds for yo; let u be
a path from to another point y1. Now if v is a loop based at
u • v. u' is a ioop based at Yo' and -(u . . ii is the identity isomor-
phism. But (u.v.u')# = that = u#(u#)', which is
the identity isomorphism.

(b) This is obvious.
(c) Let Yo be the base point, and let m: Y x Y —* V be the

'H-space map'. Define m': V V by m'(y) = m(y, yo)' and let
f: P —+ V be a map representing an element of Y, ye). Then
[f] = [m'f], since m' and the composite

lxu mYxY V

(where u is a loop based at Yo) is a homotopy between m' and itself,
whose restriction to Yo x I is a loop v which is homotopic, rel 0, 1,
to u. Hence, by composing this homotopy withf x 1,

u#[f] = v#fJ] = v#[m'f] [m'f} =
so that is the identity isomorphism.
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(d) Let f: X Y be the homotopy equivalence; let x0 be a base
point for X, and lety0 = f(x0). For each [u] x0), x E x0),

(fu#)f*(x)

by Theorem 7.2.3(d). Sincef# is an isomorphism by CoroUary 7.2.4,
it follows that x.

Thus if Y is an n-simple space, any consideration of base points is
irrelevant when working with Y). This is true not only in the sense
of Definition 7.2.5, but also in that the elements of n,,( Y) may he
regarded as homotopy classes of maps —+ Y, that are not necessarily
base-point-preserving.

Proposition 7.2.7 If Y is a path-connected n-simple space, the

elements of Y) are in (1-1)-correspondence with the homotopy classes
of maps S" —*

Proof. Let f: Y be a map, and suppose that =
where s0 is the base point (— 1, 0, . . ., 0) of S°. Then the based
homotopy class off, is an element of Y, yi)' and if u is any path
from Yi tOYo, u#[f] E Y, Yo).

Now let g: S' --÷ Y be another map, with g(s0) = y2. If v is a path
from Y2 to Then e 1', Yo) and if f g by a homotopy F,
where F J (s0 x I) defines a path w fromy1 toy2, then w#[fj [g]

Y Y2). Hence

= (w.v)#ffJ = 1'

since Y is n-:imple. Thus the homotopy class of f defines a unique
element of ir,,( Y, hut conversely an element of Y, Ye) is a based
homotopy class of based maps, which is contained in a unique
(unbased) homotopy class.

Corollary 7.2.S If X and Y are path-connected spaces, and
f: X -÷ Y is a ...± is given = where
g: —* X, and [ ] now denotes unbased homotopy classes.

The next topic in this scction is relative homotopy groups. These
bear much the same ordinary homotopy as relative
homology and cohomology groups do to those of a singie space, and
once again are most often used, via an exact sequence, for calculation
purposes.

For the definition, let X be a space with base point x0, and let Y be

a subspace containing x0. Let i: Y —+ X be the inclusion map, and
let L1 be the mapping path-space of 1. -.
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Definition 7.2.9 For n 2, the nth relative homotopy group of
(X, Y), Y), is defined by Y) = We can also
define Y) = though in general this is just a set, not a
group.

Sometimes we write Y, x0), instead of Y), if we wish
to draw attention to the particular base point. Notice that Y) is
abelian for n 3.

The definition of Y) may seem a little obscure, but with the
aid of Theorem 6.3.27 we can give an alternative definition on the
lines of Propositions 7.2.1 and 7.2.2.

Proposition 7.2.10 The elements of Y, x0) are in (1-1)-cor-
respondence with homotopy classes of maps (of triples) (In, i)

(X, V. x0), where is the closure of — x 0. Given two
such maps, f and g, definef a g by

— ff(2x1, x2, .. ., (0 x1
, . . ., — \ (1 < < 1\.— i, X2, . . ., .... X1 ..

this definition extends to homotopy classes and gives a definition of multi-
plication in Y) (n 2) that coincides with that of Definition
7.2.9. Moreover the same definition results if we 'compose' f andg using
any other co-ordinate except

Proof. By definition, L2 is the subspace of V x X' consisting of
pairs (y, A) such that A(0) = y. This is homeomorphic to the subspace
L of X' consisting of (based) maps A such that A(0) e we merely let
(y, A) correspond to A, and note that the map sending A to (A(0), A)
is continuous by Theorem 6.2.3 1. Now by an obvious modification of
Theorem 6.3.27, the elements of Y), which may be taken to be
homotopy classes of maps (L, where is the base
point of L, are in (1-1)-correspondence with homotopy classes of maps

A A I)—+(X,x0) that send Jfl-1 A 0 to V. By
Proposition 6.2.5, these in turn may be regarded as homotopy classes
of maps
(In_i x I, x 0 x I U Is-' x 1 u x I)

—÷(X, Y,x0);

that is, as classes of maps

(I", (X, Y, x0).

(If = 1, J0 is to be interpreted as the pair of points 0 and 1, with
base point 1, and ai° and D° as the point 1.)
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Finally, it is clear from Proposition 7.2.2 that if we define 10 g by
'composing' along any co-ordinate of I" except the last, the resulting
multiplication in - 1(L), and hence in Y), is the correct one.

Notice that a map (I's, (X, Y, x0) represents the
identity element of Y) if and only if it is homotopic, as a map
of triples, to a map that sends 1" to Y. For such a map corresponds
to a map (L, whose image is contained in Y';
but Y' is contractible.

An obvious corollary of Proposition 7.2.10 is that if the subspace
Y happens to be just x0, then Y, x0) x0) (at least if
n 2). Thus there is no ambiguity in the notation x0): it may
equally well be interpreted as the nth homotopy group of X, with base
point x0, or as the nth relative homotopy group of the pair (X, x0).

Proposition 7.2.11 A based map of pairs A: (X, Y) —÷ (A, B)
gives rise to a homomorphism Y) —+ B) (n ? 2), with
the following properties.

(a) If A (as based maps of pairs), then =
(b) The identity map gives rise to the identity isomorphism.
(c) If (A, B) -÷ (C, D) is another based map 0/pairs, then

=

Proof. By Proposition 6.4.15, the commutative square

B—÷A

(where i and i' are the inclusion maps) gives rise to a commutative
diagram

.1'

Define Y) —. B) to be —÷ — then
if an element of Y) is represented by a mapf: (Jft, al", 1)

(X, Y, x0), it is easy to see that = [Af], so that properties
(a)—(c) are clear. •

It is also possible to extend Theorem 7.2.3 to relative homotopy
groups.
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Theorem 7.2.12 Let (X, Y) be a pair of spaces, and let x0, x1 be
two base points in the same path-component of Y. A path u in Y from
x0 to x1 gives rise to an isomorphism Y, x0) —÷ Y, x1)
(n 2), with the following properties.

(a) If u v rd 0, 1 (as paths in Y), then =
(b) is the identity isomorphism.
(c) If w is a path in Yfrom x1 to x2, then (u.w)5 =
(d) If ,\: (X, Y) .-± (A, B) is a map such that ;k(x0) a0 and

a1, then Y, •-+ B, a').

Proof. Given a map f: —÷ (X, Y, x0), let
f': —+(X, Y, x1) be any map that is homotopic tof by
a F: I x I to V and satisfies
F(d, t) u(t) for all d D't ', I E I; define ue[f] LI'] E Y, x1).
As in the proof of Theorem 7.2.3, this defines an isomorphism that
depends oniy on the homotopy class of f, and satisfies properties
(a)—(d). I

We shall say that the pair (X, Y) is (relatively) n-simple, if, for each
point x0 in V and each loop u in V based at x0, Y, x0)

Y, x0) is the identity isomorphism. In this case, if u is a path in
Y fr'm x0 to x1, the isomorphism depends only on x0 and x1, and
not on the path u itself.

Theorem 7.2.13 Let Y he a path-connected space. Then

(a) (X, Y) is n-simple if the definition holds for just one point x0 of V
(b) q V is simply-connected, (X, Y) is n-simple for all n 2;
(c) if (X, Y) is n-simple and (A, B) (X, Y) (as pairs), then

(A, B) i.c n-simple.

Proof. This is at; obvious modification of Theorem 7.2.6, and the
proof is left to the reader.

Example 7.2.14 The pair is n-simple, for
all n 2. This is obvious 7.2.13(b) unless n = 2. To
deal with the case n = 2, consider a representative mapf: (12, 3J2, D')
—+ (E2, S', s0), and a loop u in S' based at s0. A representative map for
u#[f] is f': (12, (E2, S', se), where f' I' is the product
loop V).u; but since irj(S1) is this product ioop is
homotopic, rel 0, 1, to the loop fJP. Iii other words, by extending
this homotopy, first to the constant homotopy on D', and then to J2,
we may assume that = I But since E2 is convex, it follows
thatf' frel 912, by a linear homotopy; hence u#[f] = [I') = [fJ. •
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If (X, F) is relatively n-simple, the elements of Y) may be
defined without to points.

Proposition 7.2.15 Let F be path-connected and (X, F) be n-simple.
The elements of Y) are in (1-1)-correspondence with the hornotopy
classes of maps (In, (X, F). Moreover, given two such mapsf and
g, such that f(1, x2, . . ., = g(O, x2, . . ., the product [f][g] is
the komotopy class of the mapf o g, where

, ff(2x1, x2, . . ., (0 x1
, . . ., —

.< <— x2, . . .,

Similar remarks apply tf any other co-ordinate is used instead of x1
(even if is used).

Proof. Letf: (I", -÷ (X, Y) be a map. Now 1 is clearly
contractible, so that is homotopic (as a map into F) to a map
to a single point x1, say. This homotopy may be extended to and
then to I's, to give a final map f': (In, V, x1), such
that f' f as maps of the pair (I's, SI"). We now have [f'J e

Y, x1), and if u is any path in Y from x1 to x0, u#[f'] Y, x3).
Now letg: (I', (X, Y) be another map, homotopic as a map

of pairs to g': (I's, —p. (X, Y, x2), and let v be a path in Y
from x2 to x0. 1ff g as maps of pairs, thenf' g' as maps of pairs,
by a homotopy F, say. But F x I) is homotopic, rel 1 x 0
LI x 1, to a map that sends each x t to a single point
(because D" - x I may be contracted to I by a deformation retraction
that sends each D"1 x t to t). By extending this homotopy to
(I" x I) x I, we may assume that the homotopy F betweenf' and g'
sends each -' x t to a point, and so defines a path w from x1 to x2.
It follows that w#[f'} [g'] e Y, x2), so that

= (w. v)#[f'] =

since (X, Y) is n-simple. That is to say, the element of F, x0)
determined by f depends only on the homotopy class of f as a map of
pairs, and not on the choice off' or u.

Now suppose that f and g are maps such that f(1, x2, . ., ==

g(0, x2, . . ., Choose f' f as above, the homotopy being F, and
x I—* YbethehomotopydefinedbyG(x1,.. t)

F(1 — x1,. . ., t); extend G to the whole of to give a final map
g. The effect of this is to çnsure that

F(1, x2, . . ., 1) = G(O, x2, . . .,
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so that f' o g', as defined in Proposition 7.2.10, is homotopic to fo g,
as defined in the present proposition. It follows that 10 g represents
the element [f'][g'] of Y); and a similar argument applies if
we use any other co-ordinate instead of x1, except

To prove that even may be used, suppose thatf and g are maps.
—÷ (X, Y) such that f(x1,. . ., 1) = g(x1,.. ., 0).

Define f hyf(x1, ..., = f(x1, . . ., 1 — x,, By extend-
the standard homeomorphism between (/2, and (E2, S') to a

between (Itt, and (Jft_2 x E2, Jii-2 x S1 ti
x E2), and rotating E2 through an angle ir/2, we can see that

f f as maps of pairs: see Fig. 7.1.

Hence f and J represent the same element of Y). But if Jo g is
defined by

then

— ff(x1,..., I — (0 4)
1 — 1) (4 1),

which is the map obtained by 'composing' f and g along the x,, -
Hence fog represents the element [j][jj = [fJ[g} in

1). I
A corollary of the proof of 7.2.15 is the following.

Corollary 7.2.16 If (X, Y) is 2-simple, ir2(X, Y) is abelian.

Proof. Choose a base point ' Y, let f,g be two maps
(J2, at2, D') —÷ (X, Y, x0). Ther/ e is by

0

___________

C

8 .vn -

Fig. 7.1

0 A

fog(x1, . . .,
= . . .,

., — 1)

(0 x,1 4)
(4 1),

fog(x1, x2)
= --•

(0 < 4)
zc; 1).
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Hence

— fg(1 — 2x1, 1 — x2) (0 4)(fog)(x1,x2)
— — 2x1, 1 — x2) 1),

SO that j oj, and hence [f][g] = [g](f] E ir2(X, Y). •

Example 7.2.17 Let (X, Y) be 2-simple, and suppose given a
map f: (12, ô12) (X, Y). Now we can divide J2 into four small
squares, by cutting each unit interval in half at the point j.; and then
four maps fE1 E3: (12, Y) (E1, €2 = 0 or 1) can be defined
by restricting / to each of the four squares: more precisely, define

fE,,E2(xl, x2) = f(2x1 — — €2):

see Fig. 7.2.

x2

(0,1) (1,1)

41 fIt

'00

(0,0) —- (1,0)

Fig. 7.2.

Then if each map fcj E2 sends to Y, we have

LI] = [fool + [foi] + [110] + [hi]
in ir2(X, Y). For, by Proposition 7.2.15, the right-hand side is
represented by the map (110 which coincides withf if
composition inside the brackets refers to the x2-co-ordinate, and
composition between the brackets refers to the x1-co-ordinate.

This result can clearly be extended to Y), if (X, Y) is
n-simple: if f: (I", at") —+ (X, Y) is a map, then by halving each unit
interval 1" is subdivided into 2" hypercubes, and so we obtain 2"
maps of I" to X; if each of these sends at" to Y, then we obtain 2"
elements of 1) whose sum is (f]. •

The most important property of the relative homotopy groups,
however, is that they can be fitted into an exact sequence, and hence
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used for calculation purposes. As in the case of homology groups,
there are exact sequences of a pair and of a triple.

Theorem 7.2.18 Let (X, Y) be a pair of spaces, with base point
x0 e 1'. There is an exact sequence

1. 0.

Y) ir0(Y) 7r0(X),

called the 'exact homotopy sequence of the pair (X, Y)'. Moreover, a
(based) map of pairs f: (X, Y) —* (A, B) gives rise to a commutative
diagram involving the exact homotopy sequences of (X, Y) and (A, B).

Similarly, if Z is a subspace of Y containing x0, there is an exact
sequence

1. 0.

Z) Z) —÷ ir1(X, Y),

called the 'exact homotopy sequence of the triple (X, Y, Z)'. Again, a
(based) map of triples f: (X, Y, Z) (A, B, C) gives rise to a com-
mutative diagram of exact homotopy sequences.

In the exact sequence of a triple, i,,, and are induced Fry the inclusion
maps i: (Y, Z) -÷ (X, Z), j: (X, Z) (X, Y), and is given by
restricting a map SI", 1) (X, Y, x0) to a map (ifl 1, 1)

(Y, x0) c (Y, Z). The homomorphisms in the exact sequence of a pair
may be similarly interpreted.

Proof. Since (apart from the last few terms) the exact sequence of
the pair (X, Y) is obtained from the exact sequence of the triple
(X, Y, Z) by putting Z = x0, we shall prove the theorem only for the
exact sequence of the triple, and leave to the reader the modifications
necessary to deal with the end of the exact sequence of the pair.

Let a be the inclusion map of Z in Y, and let La, as usual, be the
mapping path-space of a. As in Proposition 7.2.10, La may be identified
with the subspace L of Y' consisting of maps % such that
and then standard map a L Z
given by = A(0). Let M and N be the spaces similarly obtained
from the inclusions Z C X, Y X respectively, and let - * Z,
8: N V be the obvious maps (defined by taking the initial points of
paths). Now M and N are both subspaces of X', and in fact M a
subspace of N: let fi: M—+ N be the inclusion map. Finally, let L' be
the space obtained from so that L' is the subspace of N' of paths
starting in M; let L' —+ M be the obvious map, and L' -÷ L the
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restriction of 91; N' so that we have the following commutative
diagram, in which the rows are sequences of spaces and maps as in
Theorem 6.4.14.

____

82 , 81 8QN L

Q Y —* L —÷ Z Y.
a1 a

We claim that is a homotopy equivalence. For, by Proposition
6.2.27 and Theorem 6.2.38(c), we may identify L' with the subspace of
X" consisting of (based) maps i\: I A I —÷ X such that A(I A 0) c Y
and A(0 A 0) e Z; and are given by restricting such a map to
I A 0, 0 A I respectively. But consider the map f: I A I -+ I given
byf(x1 A x2) = mm [x1 + x2, 1]: this induces a map L —÷ L', and
clearly Morever if g; 1 I A I is the inclusion map as
I A 0, we have gf I rel I A 0, so that xl/J 1L' by Theorem
6.2.25. In other words, is a homotopy equivalence. Notice also that

is just the inclusion map L —b. M by the inclusion of Y'
in X'.

Hence, as in Corollary 6.5.9, we obtain an exact sequence
(Pu). 8. v

>

where y is the composite

_______

(a2).ir8(N). > >

Certainly the homotopy groups of L, M and N are the relative homo-
topy groups of the pairs (Y, Z), (X, Z) and (X, Y) respectively, so
that it remains only to interpret the maps. Since !9ZX and are the
obvious inclusion maps, it is easy to see from the proof of Proposition
7.2.11 that and may be identified with

Z), Y)

respectively. Moreover, since there is a commutative diagram

-

I I
I,'/&I* A (I/el),

where the maps are standard homeomorphisms is induced by the
obvious map I" —'- x I), the isomorphism —*

is given by sending amap g: -+ N to the map
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N"8' that corresponds to g,i1 under the association map (of course,
I/E31 is identified with 5'). Since 0: N -÷ V is given by evaluation at 0,
it follows as in the proof of Proposition 7.2.10 that y corresponds to
the map Y) —+ Y, Z) given by restricting a map
(In+1, .-÷ (X, Y, x0) to a map from (I's x 0,,..9I" x 0).

Finally, a map of triples f: (X, Y, Z) —÷ (A, B, C) gives rise as in
Proposition 6.4.15 to commutative diagrams involving the spaces L,
L', M, N and the corresponding spaces formed from A, B, C, and
hence gives rise to a commutative diagram involving the exact homo-
topy sequences of the triples (X, Y, Z) and (A, B, C). 1

As an example of the use of the exact homotopy sequence, we shall
establish a useful formula for the groups v Y) (n 2). How-
ever, this depends also on a knowledge of x Y), so that we first
need

Theorem 7.2.19 Let X and V be based spaces. Then

ir4(X x Y) Y) (n 1).

Proof. By rrheorem 6.2.34, the spaces (X x and x
are homeomorphic, so that there is a (1-1)-correspondence between
based maps X x V and pairs of maps —* X, Y, where
a map f: —÷ X x V corresponds to the pair (ps,
are the projection maps of X x V onto X and Y). Since the same
result is true with replaced by S" x I, this (1-1)-correspondence
extends to homotopy classes of maps, that is, to a (1-1)-correspondence

x

It remains to show that 9 is a homomorphism; but this is trivial, since
0(x) = (Px)*x (Py)*X. I

Notice that if i1: .X, V —÷ X x Y are the inclusions as X x Yo'
x0 x V respectively, then the homomorphism ir,1( Y)

x V) defined by ç6(x = + (1y)*Y is the inverse
isomorphism to 9. For

Y) [(Pxix)*X + [(Pyix)*x +

=

since = pyly = and Px1v' are constant maps.

Theorem 7.2.20 Let X and V be based spaces. Then, for n 2,

V Y) x Y, X V Y).
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Proof. Since n 2, there is an exact sequence of abelian groups

• .—+ x Y) x Y, X V Y)
V Y) x Y).

On the other hand, a homomorphism x Y) —+ v Y)
can be defined by .,& = (ixPx)* + Then %bi* = (iixPx)* +

which is the identity isomorphism of x Y), by the
remark after Theorem 7.2.19. Hence is the zero map. and
the exact sequence splits, so that by Proposition 1.3.26 we have

V Y) x Y) $ x Y, X V

x Y, X V Y). I
At first sight this theorem is not very helpful, since we are unlikely

to know + x Y, X v Y) if we do not know the homotopy
groups of X v Y. However, in many cases it is possible to prove, by
some other method, that irft+1(X x Y, X v Y) = 0, so that

V Y) is just the direct sum of and Y); we shall
examine this point in detail in Section 7.4. In fact the general problem
of calculating homotopy groups is very difficult, but is reasonably
manageable provided that we confine our attention to fairly 'well-
behaved' spaces such as CW-complexes. The next section contains the
definition and elementary properties of CW-complexes, and in
Section 7.4 we shall return to the problem of calculating their
homotopy groups.

7.3 CW-complexes

As has already been suggested, we wish to generalize and siriiplify
the notion of simplicial complexes, by building up spaces by succes-
sively attaching cells to, say, a discrete set of points. This will general-
ize the idea of a polyhedron, because the cells are attached by arbitrary

maps, and at the same time greater generality will be
by allowing more than a finite number of cells.

It would be possible to give the definition of a CW-complex directly
in terms of attaching cells. However, it is usually more convenient in
practice to have a somewhat different definition, which will afterwards
be proved to be equivalent to this intuitive idea: see Theorem 7.3.12.

Definition 7.3.1 A CW-complex is a Hausdorif space K, together
with an indexing set for each integer ii 0, and maps

(alln ?
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such that the following properties are satisfied, where

= d(x,O) < 1} (n 1).

(a) K = U for all n 0 and a E (we interpret e0 and E°
as a single point).

(b) n #7(etm) is empty unless n = m and a = and
is (1-1) for all n 0 and a E

(c) Let U for all 0 m n and all E Am. Then
for each n 1 and aE

A subset X of K is closed if and only if Is closed in
E

each n 0 and a E
a the form #7(em).

The maps are called the characteristic maps for K, and the sub-
spaces are the n-cells of K. is called the n-skeleton of K,
and if K for some n, the smallest such n is called the dimension
of K (if no such n exists, K is said to be infinite-dimensional). Notice
that, unlike a simplicial complex, which is merely a set of sirnplexes,
a CW-complcx is itself a topological space: there is thus no need for
the notation 1K I.

Property (d) is sometimes expressed by saying that K has the weak
topology, and property (e) by saying that K is closure-finite. Hence the
initials 'CW', which stand for 'closure-finite with the weak topology'.

As a first example, we show that every polyhedron is a CW-complex.

7.3.2 Let K be a K is a
CW-comple'.

Proof. Certainly 1K is Hausdorif, since it is a of some
Euclidean space. For each n-simplex a of K, Jet (E", 1)

(a, laI) be a horneomorphism: for example, that given in Example
2.3.13. Then if denotes the set of all n-simplexes of K, the charac-
teristic maps make IKI into a CW-complex, since properties
(a)—(e) are satisfied: (a) and (b) follow from Proposition 2.3.6, (d)
follows from Proposition 2.3.8, and (c).and (e) are obvious.

Examples 7.3.3 It follows, for example, that S's, the torus T, and
real projective n-space are all CW-complexes, since obviously
any space homeomorphic to a CW-complex is itself a CW-complex
(for the proof that is triangulable, see Chapter 3, Exercise 7).
However, one of the advantages of CW-complexes is that, because of
their greater generality, it is usually possible to express a given
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polyhedron as a CW-complex with fewer cells than the original
number of simplexes.

(a) Consider the standard map 8: (E", S"1) —* (S's, se), where
is the point (—1, 0, .. ., 0); O'e' is a homeornorphism onto its image.
Since there is also an obvious map #: E° —* it follows that S'1 is a
CW-complex with one 0-cell and one n-cell, and characteristic maps

(b) Consider the torus T, formed from the square ABCD by
identifying the edges AB, DC, and AD, BC: see Fig. 7.3.

a

• C

Fig. 7.3

Define maps 4°: E° -+ T, 44, 44: E1 —+ T, and#2: E2 —+ Tby sending
E° to the point to which the four vertices A, B, C and D are identified,
E' to AB, AD, respectively (so that ± 1 go to A, B and A, D respec-
tively), and by mapping E2 homeomorphically onto the square ABCD,
and composing this map with the identification map onto T. It is easy
to see that these characteristic maps make T into a CW-complex with
one 0-cell, two 1-cells, and one Z-cell.

(c) By Proposition 1.4.40, RP" may be regarded as the space
obtained from by identifying antipodal points of this
identification turns into iS the adjunction space
RP"1 U, where f: —+ is the identification map. In
turn, RP" 1 2 u1 1, and so on; in other words, is
obtained from RP° (a single point) by successively attaching one cell
of each dimension 1, 2, . . ., n. Let ET -+ (0 r n) be the
composite of the identification map onto RPT and the inclusion of
RP' in RI": it is now easy to see that these characteristic maps make
RP' into a CW-complex with one cell of each dimension 0, 1,.. ., n
(properties (a)—(c) and (e) are obvious, and (d) is fairly easy; in any
case it follow8 from Theorem 7.3.12 below). I
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On the other hand, not every space is a CW-complex, since non-
Hausdorif spaces exist (see also Example 7.3.10).

We next establish the standard elementary properties of CW-
complexes.

Proposition 7.3.4 Let K be a CW-complex, and let X be any space.
A function f: K X is continuous if and oniy if each is continuous,
for each n ? 0 and a e

Proof. Certainly each f is. Conversely, let A
be a closed subset of X. Then each is closed in so
thatf'A is closed in K by properiy (d). Hencef is continuous. •

Definition 7.3.5 Given a CW-comple,x K, a subspace L is called a
subcomplex if, for each n 0, there a subset of such
that

(a) L = U for all n 0 and a
(b) (En) c L for all n 0 and a e

L is called a finite subcomplex if it has only a finite number of cells.
Notice that arbitrary unions and intersections of subcomplexes are

again subcomplexes.

Proposition 7.3.6 Let K be a CW-complex. For each n 0 and
a e is contained in a finite subcomplex of K.

Proof. By property.(e), is contained in the union L of a
finite number of sets of the form However, L may not be a
subcomplex, since it may not satisfy (b) of Definition 7.3.5. But if

is a set of L such that is not contained in L, then by
properties (c) and (e) we can always add a finite number of sets

(with p < m), so as to include Thus, by working
down in dimensions, we can add a finite number of sets to L
until L becomes a (finite) subcomplex. 1

Proposition 7.3.7 If L is a subeomplex of a CW-complex K, then L
is a CW-complex and is a closed subspace of K.

Proof. Certainly L is Hausdorif, and satisfies properties (a)—(c)
and (e) of Definition 7.3.1, with replaced by Moreover the
maps —* L (a e B,,) are continuous, so that certainly
is closed in whenever X is closed in L.

We can complete the proof of (d), and at the same time show that
L is a closed subspace of K, by showing that, if X is a subspace of L
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such that is closed in E't for all n 0 and a E then X is
closed in K: for then X is closed in L since X = X L, and L is
closed in K since we may take X = L.

Suppose then that X L and 1X is closed in E" for all ii and
a e Then each is compact, since E" is, and so each
X is compact, since the maps are continuous. Since the
union of a finite number of compict sets is again compact, this implies
that X n M is compact for any finite subcomplex M contained in L;
and hence X M is compact for any finite subcomplex M whatever
(because M (i L is a subcomplex, and X c L). Thus X M is
closed in M, since K (and hence M) is Hausdorif. It follows from
Proposition 7.3.6 that X ('i is closed in for all n and
a e that is, is closed in E" for all n and a E Hence, by
property (d), X is closed in K. •

Proposition 7.3.8 if K is a CW-complex, the path components of
K are subcomplexes. And if K is connected, it is path-connected.

Proof. Since each and is path-connected, the path-
components are certainly subcomplexes, for if X is a path component,
X = U for all n and a such that X 0. To prove
the second remark, suppose that K is connected but not path-con-
nected. Then the path components form a family of disjoint sub-
complexes, whose union is K, By selecting one and taking the union of
the others, K can be expressed as the union of two disjoint subcom-
plexes, each of which is a closed subspace of K by Proposition 7.3.7.
Hence K is disconnected, contrary to hypothesis.

Proposition 7.3.9 if X is a compact subspace of a CW-complex
K, it is contained in a finite subcomplex.

Proof. Choose a point xa in each non-empty set X Ct and
let P be the set of all these points. If Q is any subset of F, each set
Q is finite, by property (e), and hence closed, since K is
Hausdorif. Hence each - 'Q is closed, and so Q is closed in K.
Thus P is a discrete subspace of K, and hence of IC. Since X is
compact, it follows that P must be finite: hence X meets only a finite
number of sets of the form and their union is contained in a
finite subcomplex as in the proof of Proposition 7.3.6. •

Example 7.3.10 Let X be the subspace of R" consisting of the
points 0 and 1/n, for all integers n 1. Now the path components of
X are just the single points (since each point 1/n is both open and
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closed); so if X were homotopy-equivalent to a CW-complex K, K
would have to have an infinite number of path components. But if
f: X—÷ K were a homotopy equivalence, f(X) would be compact,
since X is, and so would have to be contained in a finite subcomplex of
K. Thusf(X) would be contained in the union of a finite number of
path components, and this contradicts the assumption that f is a
homotopy equivalence. Hence X is not hoinotopy-equivalent to a
CW-complex. I

In some contexts theorems valid for CW-complexes are also valid
for any space having the homotopy type of a CW-complex.
above example shows that not every space is of this type.

We wish now to reconcile the intuitive idea of a space built up by
attaching cells with the formal definition of a CW-complex. For this
purpose, we must first be quite precise about what is meant by a
'space built up by attaching cells'.

Definition 7.3.11 A cellular space is a topological space K, with a
sequence of subspaces

K° c K' c K2 c . . . c K,

such that K
= nYo

K'1, and the following properties hold.

(a) K° is a discrete space.
(b) For each n > 0, there exists an indexing set and continuous

maps S'11 for each a E Moreover, K'1 is the space
obtained from K'1' and (disjoint) copies of E'1 (one for each
a c- by identifying the points x and for each x and
each a e

A subset X of K is closed if and only if X K'1 is closed in
K'1, for each n 0.

Note that property (c) is automatically satisfied if K is afinite_

dimensional', that is, all sets are empty for sufficiently large n.

Theorem 7.3.12 Every CW-complex is a cellular space, and every
cellular space is a CW-complex.

Proof. Suppose first that K is a CW-complex. Then the n-
skeletons form a sequence of subspaces K° c K' K2 c . . . c K.
K° is discrete, since it is a CW-complex and each point is a sub-
complex: thus each subset is a subcomplex and hence closed in K°.
Moreover the characteristic maps E'1 K (n 0, a restrict
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to maps of S" 1 to K"1 for each n > 0. Now a subset X of K" is
closed in K" if and only if is closed in Em, for each m n
and a EArn; that is, if and only if X n K"' is closed in K"' and
each - 'X is closed in E". In other words, the topology of K" is
exactly the identification topology produced from the disjoint union
of K" -' and copies of E", by identifying x with for each
XE 1 and a e Hence property (b) of Definition 7.3.11 is
satisfied. Finally, X c K is closed if and only if is closed for
all n 0 and a that is, if and only if X ri K" is closed in K"
for each n 0. So K is a cellular space.

Conversely, suppose given a cellular space K, as in Definition 7.3.11.
In order to show that K is a CW-complex, it is first necessary to show
that K is Hausdorif, and in fact this is the most difficult part of the
proct.

Suppose then that we have two distinct points x andy in K. Choose
the smallest n such that x and y are both in K", and suppose that x,
say, is in for some a (points of K"' or are identified with
their images in K"). Now, even if y is also in there exists a number

> 0 such that lixil < 1 — 2E and y {z e e" liz — < 2€}. Let

U,, = {z es" liz — xli <

then U., and are open sets in K", containing x and y respectively,
such V,, = 0.

'What we now have to do is to 'thicken' U,, and V,, to disjoint open
sets in K. So suppose, as an inductive hypothesis, that Urn, Vm are
disjoint open sets in Ktm (m n), such that Urn K" = U,, and
Vm K" = V,,. The sets Xa = +

1) and = + ')-. 1JP

are then disjoint open sets in Sm, for each a Am+i. Define

= {z e +1
liz Ii and z/ lizIi e Xa}

= {zEer' I IIzIl > 4. and e Ya};

see Fig. 7.4 overleaf.
Now let U (U and Vm+i = V,,, '.J (U then

and Vm+i are disjoint open sets in and Urn+i K" =
Urn, Vm+i K" Vm, so that the inductive step is complete.
Finally, let U = U Urn and V = U then U and V are dis.-

rn)ti
joint open sets in K (by property (c) of Definition 7.3.11), xe U and
y E V. Hence K is Hausdorif.
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To complete the proof, extend the maps
K maps of each

and suppose as an inductive hypothesis that with these characteristic
maps K" is a CW-complex (certainly K° is a CW-complex). Then

automatically satisfies properties (a)-.{c) of Definition 7.3.A;
also (d) is true, since

X c closed X K" closed in K" and closed
in for all

a Am,

by the inductive hypothesis. And (e) is satisfied since, by Proposition
7.3.9, is contained in a finite subcomplex of K"; hence

is contained in the union of this subcomplex and
4,fl+l(efl+l)

Hence each K" is a CW-complex. It follows that K is also a CW-
complex, for the only non-trivial thing to check is property (d), and
this follows from property (c) of Definition 7.3.11. I

We next investigate to what extent the constructions of Section 6.2
can be applied to CW-complexes. In order to deal with the on>point
union and reduced product, we must first consider quotient spaces.

Theorem 7.3.13 Let (K, L) be a CW-pair; that is, K is a CW-
complex and L is a subcomplex. Then K/L is a C W-cornplex.

Proof. It is first necessary to show that K/L is Hausdorif. This
will follow from the fact that K is Hausdorif, provided that, given a
point x e K — L, there exist disjoint open sets U, V in K, with x U
and L c V. But this can obviously be established by the argument in

Pig. 7.4
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the proof of Theorem 7.3.12: if x e enclose x and in disjoint
open sets in L' Is empty), and then 'thicken' these open
sets to make open sets in K.

If now A,, and B,, are the indexing sets for the cells of K, L respec-
tively, let C,, = A,, — B,, if ii > 0, and let C0 = (A0 — B0) u (a),
where a B0 indexes one particular 0-cell of L. Let p: K-÷ K/L be
the identification map; we shall show that (a e C,,, n ? 0) are
characteristic maps for K/L. To do so, we have to check properties'
(a)—(e) of Definition 7.3.1.

(a) Each is in L or K — L. Since the points of K/L are those
of K — L, together with one extra, representing L, (a) follows.

(b) This is true for the same reason.
(c) For each a C,,, c =
(d) X c K/L is closed if and only if p — 1X is closed, that is,

is closed in E A,,. But if a B,,, is
either or empty (according as X meets L or not), and so is closed
in any case.

(e) For each a C,,, is contained in a finite union of sets of
the form (fi A,,,). Hence is contained in the union of
the corresponding sets and p4i7(em) is the point representing

1
Since the disjoint uflion of a collection of CW-complexes is

obviously another CW-cornplex, we also have

Corollary 7.3.14 If K0 (a e A) are a collection of C W-coAiilexes,
then V K0 is a CW-complex (assuming that the base points all

0-cells).

Proof. Clearly K0, the union of the base points, is a subcomplex of
the disjoint union K of the complexes K0. Hence V K0 K/K0 is a
CW-complex. I

Example Let K be a CW-complex. Theorem
is a CW-complex, for all n 0 (if n isempty,

and we interpret as the disjoint union of K" with an
extra point). Moreover, even if n = 0, the characteristic maps

-÷ (K", K"'1) (a A,,)

induce a map

V (E"/S"1)0 + K"/K"'
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Now is continuous, (1-1) and onto, and, by Proposition 7.3.4, 4i 1 is
continuous. Hence # is a homeomorphism; and since is
homeomorphic to we have thus proved that 1 is homeo-

..morphic to a one-point union of a collection of one for each
n-cell of K. •

The situation with regard to products is rather more complicated,
because in general the product of two CW-complexes is not a CW-
complex: the product topology may fail to be that defined by Definition
7.3.1(d) (see the notes at the end of the chapter). However, in two
important special cases this difficulty does not arise.

Theorem 7.3.16 if K and L are CW-complexes, so is K x L,
provided that

(a) one of K, L is locally compact; or
(b) both K and L have a countable number of cells.

Proof. Certainly K x L is Hausdorif. If K has indexing sets A,,
and characteristic maps and L has indexing sets B,, and character-
istic maps we wish to show that K x L is a CW-complex with
characteristic maps x sb', for all a e A,,, fi E Bm + " is identified
with x by the standard homeomorphism It is easy to
see that properties (a)—(c) and (e) of Definition 7.3.1 are satisfied; but
as we have already said, there is no guarantee that (d) will be true in
general.

Let us write K L for the space K x L, retopologized so as to be
a CW-complex; that is, retopologized so that X c K L is closed
if and only if x is closed in x Em, for all n, in, a, fi.
Now the (pointwise) identity function i: K L —÷ K x L is con-
tinuoi.ts, (1-1) and onto. Thus, in order to complete the proof of the
theorem, it is sufficient to show that the identity functionj: K x L
K L is also continuous; for then K x L and K L will be borneo-
morphic and K x L will have the correct topology as a CW-complex.
The proof that j is continuous differs in the two cases.

(a) Suppose that K is locally compact. Now for each n, m, a, fi, the
x E" x K L is continuous. As usual, let X +

denote the disjoint union of X with an extra point, which is taken to be
the base point of X thus X + A }' + = (X x Moreover

x may be regarded as a based map A

K L, and so we may apply the association map to obtain a map
(Es) + —* (K one for each a and Since this is continuous
for each a, and (Em) + is locally compact snd Hausdorif, Proposition
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7.3.4 and Theorem 6.2.38 show that the map K + A —* K L
that corresponds toj(1 x K x E" —÷ K L is also continuous.
And then a similar argument with K + (which is also locally compact
and Hausdorif) shows that j: K x L -+ K L is continuous;

(b) Let X c K L be an open set, and let Y c K x L.
Let (k, 1) be a point of Y, and enumerate the cells of K and L so that
k, 1 are in the first cells of K, L respectively. Let K,., L,. denote the
unions of the first r cells of K, L respectively. Now, by definition of
the topology of K L, if CX denotes the complement of X, then each

x - 'f 1CX = x 1CY is closed in E" x Em, and so
compact; hence CY x is compact and so closed.

Since K,. and 4 are finite unions of cells, it follows that C Y
(K,. x 4) is closed, and so Y n (K,. X 4) is open in K,. x L,., for
each r.

Now suppose, as an inductive hypothesis, that we have sets Ur, V,.,

open in K,., L,. respectively, such that k e U1 c . . c Ur and
1eV1 c • .c IT,.; suppose also that U,. X V,. c (K,. x 4).
This is certainly true if r 1, since K1 and L1 are compact Hausdorif.
Since and are also compact Hausdorif, there exist sets
U,.+1, V,.,1, open in respectively, such that U,. X I",. c
U,.+1.X V,.+ic X V,.+ic x and this is

sufficient to complete the inductive step.

Finally, let U U U,. and V U V,.; then (k, 1) e U x V c Y.
i—i r=1

Moreover each U,. is open in K,., and hence U,. K, is open in K3 for
ails r;hence UrIC1 U (U,.flK,)isopenlnK,,foreachs. It

follows that each 11 is open in so that 1U is
open in and hence U is open in K. Similarly V is open in L, so
that U x V, and hence Y, is open in K x L. Thusj is continuous.

Corollary 7.3.17 If K and L are CW-complexes, so is K A L, :7
either

(a) one of K, L is locally compact; or
(b) both K and L have a countable number of cells. I

Thus, in particular, cK and sK are CW-complexes if K is (so also
is SIC, the 'unreduced' suspension of K).

Theorem 7.3.16 is often used in constructing homotopies of CW-
complexes. For I is a CW-complex in an obvious way (it has one
0-cell at each end and a single 1-cell); also I is locally compact, so that
K x I is a CW-complex whenever K is.
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Example 7.3.18 Let K be a CW-complex of dimension n, and
for each a e let be the subspace e jJx II let
V = U Va. Then K"1 is a strong deformation retract of K — V.

To prove this, it is sufficient to construct a homotopy F: K x I-+ K,
starting with the identity map, such that F((K — V) x I) c K —
F((K — V) x 1) = and F is constant on K"'. This can be
done by taking F to be the identity homotopy on and to be
radial piojection from the origins in the n-cells; more precisely,

F(x,t)=x

) t)
— + t)y), y E", 1/(1 + t)

Y '
— .v E ETh, 1/(1 + t), a E

Now this is certainly continuous on each cell of K x I, and the
definitions coincide for points of x I. Hence Fis continuous,
by Proposition 7.3.4. And clearly F has the required properties. I

The same idea is used to prove what is perhaps the most important
result about CW-complexes, namely that a CW-pair always has the
absolute homotopy extension property.

Theorem 7.3.19 Let (K, L) be a CW-pair. Then (K, L) has the
absolute homotopy extension property.

Proof. What we must show is that, given a map f: (K x 0) U
(L x I)—÷ Y,fcanbeextendedtoamapK x I-+ V. Thisisdone
by extending f inductively to x I, where M" = K U L.

First, then, extend f to M° x I by defining f(x, t) = f(x). for any
0-cell x of K — L. This is continuous, since it is continuous on each
cell of the CW-complex (K x 0) u (M° x I).

Next suppose that f has been extended to a map f: (K x 0) tJ
x I) —÷ V. For each n-cell of K — L. consider the

composite map

x x I)

x I x x
x R') can be defined by radial projection from the

point (0,. . ., 0, 2): see Fig. 7.5.
This combines with the above composite map to extend it to a map of
F" x I to Y; and since each is (1-1) on e', these maps combine to
give an extension of f to a function f: (K x 0) LI (M" x I) V.
Moreover this extension is continuous: for (K x 0) U (M" x I) is a
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CW-complex, and the composite of each of its characteristic maps with
f is continuous; hence / is continuous by Proposition 7.3.4.

The inductive step is now complete, so that f can be extended to
each (K x 0) u (M" x I). Hence f can be extended to a function
f: K x I Y, which once again is continuous Proposition 7.3.4,
since K x I is a CW-complex. I

Corollary 7.3.20 If (K, L) is a CW-pair, the inclusion map
i:L—÷Kisacofibre map. I

In particular, the sequence of Corollary 6.5.3 is exact for any
CW-complex and subcomplex.

We end this section with a further consideration of the situation
revealed by Theorem 7.3.16. The method of proof was to show that
K L was always a CW-complex, and then to show that K L
coincided with K x L in certain circumstances. It follows, then, that
when dealing with CW-complexes it is usually ntore convenient to
topologize the product of K and L as K L, rather than to use the
standard product topology. There is also a corresponding version of
the reduced product, defined by K 7 L = (K L)/(K V I.), where
K v L is regarded as the subspace K L of K L: note
that K for example, is homeomorphic to K x and hence to

Fig. 7.5
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K, since 10 is certainly locally compact. Again, K 7; L alWays a
CW-complex, and coincides with K A L if either K or L is locally
compact, or if K and L each have a countable number of cells.

A further advantage of using the products and ic is that they
both strictly associative, and behave well with respect to identifica-

tion maps.

Proposition 7.3.21 The products and A are associative, for
CW-complexes. Moreover, if (K, L) and (M, N) are
(K/L) 7; (M/N) is homeomorphic to (K M)/(L u K N).

Proof. Clearly K (L M) and (K L) M have exactly the
same cells and characteristic maps, so that a homeornorphism between
them can easily be constructed by using Proposition 7.3.4. A similar
argument works for K 7; (L A M) arid (K A L) 7; M, and also
shows that (K/L) A (M/N) and (K L)/(L M L/ K N) are
homeomorphic. I

Because of Proposition 7.3.2 1 brackets can be omitted from such
expressions as K A L A M, without causing ambiguity.

We next show that the tppoiogy of K L does not in fact depend
on the structure of K and L as CW-complexes; indeed, can be
defined for arbitrary topological spaces.

Proposition 7.3.22 Given a space X, let k(X) be X, retopologized
sothatasubsetAoflis closed in k(X) if and only ifA Cis closed
in X,for all closed compact subsets CofX. Then L are CW-
complexes, we have

(a) k(K) = K;
(b) k(K x L) = K L.

Proof. First note that the above description of k(X) does define a
topology, since (A u B) ri C = (A C) U (B C), and if {Ag}
any collection of subsets, then (fl C = fl () C).

To prove (a), notice that if A is a subset .of K such that A C C is
closed for all closed compact sets C, then in particular A
is closed for all n and a. Hence each - 1A is closed, and so A is it-
self closed. Conversely, it is obvious that each A C C is closed if
A is closed.

The proof of (b) is similar: certainly every set that is closed in
k(K x L) is closed in K L. Conversely, if A is closed in K L,
then each x Ø)-'A is closed in E" x and hence is compact.
Thus each A rs x x Em) is compact, and hence closed in
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K x L. It follows that the intersection of A with each compact subset
of K x L is closed, since any such compact subset is contained in the
product of its projections onto K and L, and hence is contained in a
finite union of products of cells. Hence A is closed in k(K x L). U

Moreover, continuous maps of CW-complexes induce continuous
maps of their product..

Proposition 7.3.23 If f: X Y is a continuous map of spaces, and
Y is Hausdorff, then the corresponding map f: k(X) —+ k( Y) is also

continuous.

Proof. Suppose that A is a closed subset of k( Y). 'For any closed
compact set C in X, we have

f'(A) fl C = f1(A C;

since f(C) is compact and hence closed, A n f(C) is closed in Y, and
so f-1(A C is closed in X. Hence f'(A) is closed in
k(X), and sof: k(X) —* k( Y) is continuous. I

Corollary 7.3.24 Let K, L, M and N be CW-complexes. Continuous
mapsf: Ill', g: L induce continuous mapsf g: K g
M N and f g: K L —* M N, with properties similar to
those of / x g andf n g. Moreover the diagonal maps 4: K —* K K,
4: K—÷ K K, defined by 4(x) = (x, x), are continuous. •

7.4 Holnotopy groups of CW-complexea

Section 7.2 was concerned with general results on groups,
including the exact sequences of pairs and triples, and theorems on
the homotopy groups of products and one-point unions. In this
section we shall pursue these ideas further, so as to obtain more
precise results when the spaces involved are CW-coinplexes.

It is not possible to get very far without knowing the groups
ir,.(S"), at least for r n. We have already seen in Example 6.3.16
that 0 for r < n, so that our first task is to calculate
Now we already know that in(S1) Z; what we shall do is to prove
inductively that Z for all n 1.

The method of proof is to construct a homomorphism d: ir,,(S'9 —+
and to show by induction that d is onto and (1-1). The homomorphisd
is defined by attaching to each map f: S" —+ S" an integer, called its
degree.
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Definition 7.4.1 For each n 0, Jet a generator of
Z. Guen a map f: S" .-÷ S", the degree off, d(J), is defined by

Clearly d(J) does not depend on the choice of the generator
and given two maps we have d(fg) d(f)d(g).
Moreover, homotopic maps have the same degree, So that d may be
regarded as a function from to Z.

Proposition 7.4.2 For n 1, d: 2 is a homomorphism.

Proof. i.t.t f,g: -* be two based maps, and consider
f.g = V(f V S" v S" is tbr -space map'. Now
it is clear from a triangulation that v
and that (f v = = x + y. Also

x ® x, since pap. 1, where
are the projection maps.

Hence
= V g)*I1s(Gn'P

= V

=

+

so that d([f][g]) d[f] + dig]. I

Corollary 7.4.3 For n 1, d is onto.

Proof. The identity map of has degrce 1.
It remains to prove that d is also (1-1), aiid for this two lemmas are

necessary.

Lemma 7.4.4 Leif, g: X --* be two maps, (..'idsuppose that there
exists a non-empty open set U S", sw/i that the sets and g'(s)
coinci&'for U. Thenf g.

Proof. Let V be a non-empty open set such tiat V c U, and let
W = f'(V) = g1(V). Since -- 1, -- point, which is

to it follows that fl(X .. W) W), by a
homotopy that corresponds under the to a linear
homotopy. In particular the homotopy is constant on (X -— W) n
f1(U), and so can be fitted together with the constant homotopy on

C to yield the required homotopy. I
For the second lemma, let x and y be two po:nts in and let L be



§7.4 HOMOTOPY GROUPS OF CW-COMPLI?US

the straight-line segment joining them. Choose > and write
M = (ZER"

I
d(z, L) < €, N = {ZER't I d(z, L) Fig.

I
• •.. •.

N

Fig. 7.6

Lemma 7.4.5 i.usrs a it such
thath(x) y andh(2) •- E

Proof. Consider a line segment 1 starting at x. it ' lear that I
meets at a unique point. z say, and that all points ol x
and z lie in M. points of M C411 he in the
form Ax + (1 — A)z. 0 A I and N. Siirtilarly, points
can be uniquely in the form .kv + (I tkfine h by

h(Ax + (1 — = Ày •. (I A)z.

Then h is (1-1) and onto, and maps x to y, kuving tixed points of N;
the proof that It and its inverse are continuous is left as an exercise
to the reader.

Theorem 7.4.6 For n I, d is (1-1).

Proof. This is proved by induction on n. The induction starts,
since d: irj(S1) —* Z is an isornorphism: this is because ir1(S1) is
known to be isomorphic to Z, and d is onto. Suppose, then, that the
theorem is true for n — 1, and consider a based map f: S" —* S" of
degree 0. Since n 2, S" is n-simple, so that it is sufficient, by
Proposition 7.2.7, to show thatf is homotopic to the constant map as an
unbased map. 'rhis is done by constructing a homotopy betweenf and
a map of the form Sg, whereg: sn-i is another map of degree
0 (we identify S(S't 1) with S't as in Example 4.4.9).

Ltt N = (0, . . ., 0, 1) and S (0, . . ., 0, — 1) be the 'north and
south poles' of S", respectively, and let S't

and south.hemispheres', defined by > 0 and < 0
respectively. Triangulate S't so that N and S are in the interiors of
n-simplexes. By the Simplicial Approximation Theorem, we may
assume that f is a simplicial map from some subdivision to this
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triangulation, in which casef'(N) andf'(S) are just finite sets of
points, say

f'(N)
J — q1,.

The first step is to alter f by a homotopy so that all the p's are in
and all the q's are in Sc.. Now the standard map 9: S" 1)

(S", (—1, 0,. . ., 0)) can be modified in an obvious way to give a
homeomorphism 5" — S e". In e", each point not in

(and with Pt S) can be joined by a straight-line segment to a
point r1 in and similarly the points not in may be
joined to points in Moreover we may choose the points
f1, so that the line segments are all disjoint: for since only a finite
number of points is involved, there is a point x in such that
each straight line through x meets at most one of the points

and the line segments may then be chosen to be segments of
lines through x: see Fig. 7.7.

Since the line segments are compact, there exists 0 such that the
'closed E-aeighbourhoods' of the line segments (in the sense of
Lemma 7.4.5) are also disjoint, and are still in e". Hence, by Lemma
7.4.5, there exists a homeomorphism of e", fixed outside these E-
neighbourhoods, sending each to and each to Sj. This
homeomorphism may be transferred back to S" to give a homeomor-
phism Ii: —p. S" that pushes each p, into S" (at
least if no is S: but otherwise the same technique can be used first

Fig. 7.7
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to push pg away from S). Moreover, Lemma 7.4.4 shows that h 1,
so that by replacing f by ft 1 if necessary, we may assume that

The next step is to 'straighten out' Jon More precisely, define
by

fi u u
f1(AN + (1 — A)x) = AN + (1 — A)f(x) (x e 0 A I).

(For the second line of the definition, we identify points of S" — S
with their images under in e'; certainly — S.) Since

u is compact, its image underf is a closed set that does not
contain S; hence there is an open set U containing S withf'(U) C

It follows that = f; '(x) for all x eU, so that by Lemma
7.4.4 we have f 11.

Next we straighten outf on as well, by definingf2: -÷ by

121 u
I

u
f2(AS + (1 — A)x) = AS + (1 — A)f1(x) A 1).

As before, 12 and f2(N) = N, f2(S) =-S, f2(Sn 1) c
— (N u S).f2 is not quite a suspended map, but we can make so

by moving the image of up or down meridians of until it
lies in S"'. This gives a new mapf3: S" S", which is homotopic
to 12 by Corollary and which is a suspension of a map
g: -÷

Since d(f) = 0, it folbws from Theorem 4.4.10 that d(g) = 0 as
well. By the inductive hypothesis, this means that g is homotopic to
the constant map, and hence, by Corollary 6.2.19, f is homotopic to
the suspension of the constant map, which in turn is homotopic to the
constant map since it is not onto.

To sum up, 4: .-* Z is an isomorphism for all n 1. This
result, apart from being important for calculation purposes, has
useful applications to the homotopy theory of spheres. Most of these
depend on the following result, whih gives the degrees of some
standard homeomorphisms.

Proposition 7.4.7 Given a permutation p of 1, 2,... ., n, let
f: be the defined by yrx1, . . .,

Then d(f) is +1 or —1 as p is even or odd.
Similarly, if g: -1 51% 1 is defined by

., = (x1, . . ., — . . .,

then d(g) = — 1.
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Proof. It is clearly sufficient to consider instead of
when the result is immediate from Example 4.4.11. 1

Corollary 7.4.8 Every homotopy equivalence of S" is homotopic to
a homeomorplzism. I

Example 7.4.9 Let i: sm A S" -+ Stm be the map that
exchanges the two factors. Then, if Stm A and S" A SM are

with as in Proposition 6.2.15, i has degree (—
For clearly corresponds to the homeomorphism of that sends

I
Example 7.4.10 1ff: STM —. STM is a based map, andfA 1: S" A

—* Stm 8" is regarded as a map Itself, then d(J A 1) =
d(f). Because of the associativity of the reduced products of spheres, it
is sufficient to prove this in the case n 1; but by Corollary 6.2.19
and the following remark, there is a homotopy-commutative diagram

,sm+1

STMAS' —;-;;ff STMAS'

Thus d(J A 1), by which we really mean d(h1(J A 1)/i), is the same
as d(Sf) = d(f). I

This technique also allows us to give a useful alternative description
of the homomorphism in the homotopy sequence of a pair.

Proposition 7.4.11 Let (X, Y) be a pair of spaces, with base point
x0 E Y. Define a function Y) Y) by representing an
element of ,r,(X, Y) by a mafif: (I", 31", D"') —+ (X, Y, x0), restrict-
ingf to 31", and regarding this, via standard homeomorphisnu, as a map

'—k Y. Then (—

Proof. Via the standard homeomorphism P4 E", we may
regard I as a based map (E", S" 1) (X, Y); and then =
[Il Y]. On the other hand, is obtained by using S"' —*

- x E' u E" x S° to restrict f further to x (— 1), and
then taking the induced map Y, composed with
S"' —+ That is to say, is composed with the
homotopy class of

x S°- °
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where p is the map that identi€cs x Et U x (+ 1) to a
point. Now it was noted after 6.2.16 that this composite
would have degree(— had identified E',' x (—1) instead of

x (-i- 1) to a point: so this composite has degree (— 1)" since
multiplication by — 1 the last co-ordinate in S"' is a map of
degree — 1. Hence is composed with a map of of
degree (— and &o = I

It is useful also to have a relative version of the results on degrees
of maps of 8".

Definition 7.4.12 For ,s 0, let a generator Of S" ')
Z. Given a map f: (E", —+ (E", S"'), the dcgree of

d(f), is defined =
If (E", -1) is with (I", 81") via standard homeómor-

phisms, the degree defines a function d: S1I 2.

Proposition 7.4.13 For n 2, d is an isomorphism. Moreover, the
diagram

z
is co*mutative.

Proof. Since E" is contractible, = = 0, that
is an isomorphism by Theorem 7.2.18. And since is by

restricting a map of (.1", *91", D" ') to a map of *9!", it follows from
Theorem 4.4.3 that the diagram is commutative; hence d: S" 1)

Z is also an isomorphism. I
An obvious argument with the exact howotopy sequence shows that

in fact S"') for jill r, so that we know
ir,.(E", S"1) for all r n. The reader is warned, that

1) and are not necessarily zerO forr > a: for example
ir3(S2) Z (see Exercise 19). Indeed, the calculation of 7r?($") is one
of the most difficult problems of homotopy theory, aAd remains
unsolved for general r and ii (see the notes at the end of the chapter).

Example 7.4.14 The result on can combined with
Theorems 7.2.19 and 7.2.20 to give

x Z$Z,
v S") x S", S" v S") (n? 2). •
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The latter result is still somewhat unsatisfactory, since we do not
know x S's, S" v S") (in fact it is zero). As was suggested
at the end of Section 7.2, we need a general theorem to the effect that

Y) = 0 in certain circumstances, at least if X and Y are CW-
complexes. This is the next theorem; and the method of proof will also
yield information on a certain non-vanishing relative homotopy group
as well.

Theorem 7.4.15 Let K be an n-dimensional CW-complex (n 2),
and let L be a subcomplex that contains '. Then

(a) L) = 0, 1 r < it.
(b) Let the indexing .cets for K and L be respectively, and let
be the characteristic maps. Then if (K, L) is relatively n-simple, the

homomorphism

-') L),

defined to be on each is onto.
Note. Since Sn—i) is relatively n-simple (by Example 7.2.14),

is defined even though need not be a based map. In fact we
shall prove in Chapter 8 that is an isomorphism, so that lTn(K, L)
is a free abelian group with one generator for each cc

Proof. For each cx let Ua be the open subspace
lIxII < fl of K, and let V be the closed subspace

U thus K — V is open. Also, write for

(K — V) see Fig. 7.8.

(Port of)

Fig. 7.8

( E")

Va

Wa

L
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We shall show that any map f: (I', 81') (K, L) (r ç n) can be
'pushed off' V, and hence pushed into L. This will prove (a), and an
extension of this method will prove (b).

Now I' can be regarded as the product of r copies of I. Since I is a
CW-complex with one 1-cell and two 0-cells, Theorem 7.3.16 yields a
CW decomposition of 1', in which there is just one r-cell. Indeed, if
I is 'subdivided' by introducing a new 0-cell at 4, this has the effect of
subdividing I' into 2' hypercubes each of side and the corresponding
CW decomposition has 2' r-cells: see Fig. 7.9 for the case r = 2.

x2

xI

Fig. 7.9

This process can be iterated: at the next stage we obtain a CW-
decomposition with 22T r-cells consisting of hypercubes of side and
so on. Now we use an argument similar to that in the proof of. the
Simplicial Approximation Theorem: given a mapf: (Ii, 0!') (K, L)

(r n), the sets f 1(K —. V), f '(Us) form an open covering of fr,

so that by Theorem 1.4.35 we can iterate the subdivision process until
is subdivided into a CW-complex M, say, in which each r-cell

(hypercube) is mapped by f into K — V or into one of the sets Ua.
Notice also that 01' is a subcomplex of M.

The next step is to construct a map g: M -÷ K such that

(a) for each rn-cell #'(Em) of M (m < n), K — V

f g rel 81', and points of M that are mapped by f into Ua
remain in throughout the homotopy.

This is done by induction on the skeletons of M, in the manner of
Theorem 7.3.19. Suppose then that g has been defined on
(m < n), so as to satisfy (a) and (b) (it is easy to define g on M°, since
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each 0-cell that is mapped by f into can he joind by a straight
line to a point of We). Now consider an rn-cell 't Il'! such that

LJa;thenf )
0

characteristic map of 114 is actually a 1)

represents an element inn - = 0, since and rn < n.
Thus is homotopic to a constant iliap, .iud hence can he
extended to a map g: W. Moreovtr the original homotopy
between f and g on can be extended tJ a homotopy of

in that starts withf and whose final in ip on 1);

and this final map is homotopic tog, rel ') by .i linear homo-
topy. It follows that we can extend g to MM so as still in satisfy (a) and
(b), by using this construction on rn-cells mapped inio sume and
by deflningg = f(with the constant homotopy) on m mapped into
K — V, the resulting g (and hornotopy) being by Prop-
osition 7.3.4. By induction, therefore, g can be the
extension to M" (if r = n) being possible since ( ' ') has the
absolute homotopy extension property.

Since! gre! iff maps to the base puini. then [J] = [g]
ih 7r7(K, L). If r < n, is the image under the mn limsion map of an
element of ir7(K — V, L); but, as in Example 7 L is a strong
deformation retract of K — V, so that ir.(K -- I. 0 and hence
El] = [g] = 0. it follows that L) 0 for r n, so that at this
point the proof of (a) is complete.

To prove (b), note that we have proved each element of
L) can be represented by a mapg: K, I), that maps

j,fn-1 to K — V and each n-cell of .'lI to K — V ur one where
Mis the CW-decomposition of J* obtained above. Now (K, K - V)
(K, L), so that, by Theorem 7.2.13(c), K — V) is n-simple as
well as (K, L). Hence, by iteration of the construction in Example
7.2.17, [gJ e K — V) is sum of elements, ea(h of which lies in
the image of the homomorphism induced by an inclusion map
(Ua, —+ (K, K — V). Since the deformation of K V onto L
sends onto this proves that [g] E L) is a sum of
elements, each of lies in the image of some

L). Hence is in the image of and is onto.

Example 7.4.16 By Example 7.4.14, for n 2 we have

V x V 8").

Now S" is a CW-complex with one 0-cell and one 'i-cell, so that
S" x S" has one 0-cell, two n-LeIls and one Zn-ecu, moreovei the
n-skeleton(and indeed the (2n — 1)-skeleton) is 5" v S". It follows
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from Theorem 7.4.15 that x 5', V S") = 0, and
v S's) Z (1) Z. A similar argument shows that

v (2 it <p + q — 1). I
It follows that, for n ?- 2, there is only one homotopy class of

maps S" v 5" that make 5" into an AH'I. For since
1, must be 1 $ 1 in Z $ Z V S"). It

follows that there is only one possible way of defining a group struc-
ture in at least if it 2 (for the case n = 1, see Chapter 6,
Exercise 9).

Various general results on homotopy groups of CW-complexes can
be deduced from Theorem 7.4.15.

Theorem 7.4.17 Let (K, L) be a CW-pair, and let i: K" U L -+ K
be the inclusion map (n 0). Then

(a) i*: U L) 7rr(K) is onto for 0 r it and (1-1) for
0 r < it; similarly for U 4 L) ir(K, L);

(b) ir1(K, K" U L) = 0/or 1 r it;

Proof. Consider the exact homotopy sequence of the pair
(Km+l, Ktm) (m 0):

• Km)__+
+1, K"')

where i: Ktm K""' once again denotes the inclusion map. Now by
Theorem 7.4.15 Ktm) = 0 for 1 r m, so that i*:

is onto for 1 r m and (1-1) for 1 r < m. More-
over, since attaching cells clearly cannot increase the number of path-
components, i,0(Km) is always onto, and is (1-1) if
m>0.

Hence —* ir,(KM) is isomorphic for r < it and onto for
r it, for all m > it. But elements of are represcnted by maps
of ST to K, and since S' is compact the images must be contained in
finite skeletons. A similar argument applies to homotopies of S' in
K, so that i*: -+ is isomorphic for r < it and onto for
r it. To deduce the first part of (a), observe that U L) ..—

U L"11) is an isornorphism for alir it, and U L'"1)
is isomorphic if r < it, onto if r = it, by another application

of Theorem 7.4.15.
The exact sequence of the pair (K, K" U L) now gives (b), and then

the second part of (a) follows from the exact sequence of the triple
(K,K"uL,L). •
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Theorem 7.4.17 may be expressed by the statement that L)
depends only on the (n + 1)-skeleton of K, and so this result extends
Corollary 3.3.10, which was the case n = 1, K a polyhedron, and

7.5 The theorem of J. H. C. Whitehead and the Cellular
Approximation Theorem

The matri theorem in this section is the theorem of J. H. C. White-
head, that states that if f: K -+ L is a map of CW-complexes that
induces isomorphisms 1*: ir,(K) -+ ir,(L) for all r 0, then f is a
homotopy equivalence. It is convenient to have a special name for
maps that induce isomorphisms of homotopy groups.

Definition 7.5.1 If X and Y are any spaces, a map f: X -÷ Y is
called a weak homotopy equivalence if n'0(X) —+ lro( Y) i8 a (1-1)-
correspondence, and 1*: 17r(X, x0) ir,( Y, f(x0)) is an isomorphism
for all r 1 and all points x0 e .X.

Of course, if X and Y are path-connected, it is sufficient that
irr(X, x0) ir, ( Y, f(x0)) should be an isomorphism for all r 1

and just one point x0 E X.
Clearly every horn otopy equivalence is a weak homotopy equivalence,

and Whitehead's theorem states that the converse is true, provided X
and Y are CW-complexes. The method of proof is to investigate
first the special case in whichf is an inclusion map, and then to deduce
the general result by using the mapping.cylinder. We start by proving
a general result about inclusion maps that are weak homotopy
equivalences.

Theorem 7.5.2 Let (X, Y) be a pair of spaces, such that the
inclusion map 1: Y —+ X is .a weak homotopy equivalence. Let K be a
CW-complex, with a 0-cell as base point. Then for any choice of base
point in Y, i,1,: [K, YJ —* [K, X] is a (1-1)-correspondence.

Proof. We show first that is onto. Suppose, then, that we have a
base4map f: K —* X; we shall show by induction on the skeletons of
K that f can be deformed into Y. The argument is similar to that of
Theorem 7.3.19 (indeed, it is a generalization of that argument): f is
regarded as a map of K x 0 to X, and is extended to a mapf: K x I -+
X, such thatf(K x 1) c Y, and if L is aliy subcomplex of K that is
mapped by f into Y, then f(L x I) c Y: thus in particular the
homotopy is a based homotopy.
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Given such a subcomplex L, write u L, and extend f as
the constant homotopy to (K x 0) u (L x I). If x is any 0-cell of
K — L, there is a path u: I —* X such that u(0) = f(x) and u(l) e Y;
thus we can extendf to M° x I by settingf(x, t) = u(t), 0 t 1.

This serves to start the induction; so we may now assume that f has
been extended to a map f: (K x 0) u (M*l x I) —* X, such that

x 1) c Y. For each n-cell of K — L, consider the
composite

x 0) u x 1) ' (K x 0) u x I) ' .

which sends x 1 tp Y. Define a homeomorphism k of E" x I
toitselfby

h(x, 0) (x/2, 0) (x e Es), -

h(x, t) = (4(1 + t)x, 0) (x E 0 ct 1),

h(x, 1) (x/llxII, 2 —

h(x,1)=(2x,1)
extending the definition inside x I by regarding the inside as the
join of (E" x 0) U x 1) u (E" x 1) to (0, 4) (we are, as it
were, pulling x I down into x 0: see Fig.

4

The point of this definition is a map of(E", S*1)
to (X, Y), which therefore represents an element of Y), with
some base point. But by the exact homotopy sequence ir,(X, Y) = 0;
thus x 1)h1 can be extended to a map of E" x I that sends

x 1 and S"1 x I to Y. Hence, by applying h again, x 1)
canbeextendedtoamapofE" x IthatsendsE" x ito Y. Asin
Theorem 7.3.19, this process defines a continuous extension

Fig. 7.10
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f:(K x 0)u(M" x x 1)c Y; and hence
a continuous extension f: K x I X such that f(K x 1) c Y. It
follows that [K, Y] —÷ [K, XJ is onto.

It is easy to deduce that i1, is also (1-1). For supposef,g: K—+ Y
are based maps such that if ig by a based homotopy F: K x I -+ X.
Since K x I is a CW-complex and (K x 0) u (k0 x I) u (K x I)
is a subcomplex, F can be deformed to a map G: K x I Y such
that G coincides with F on (K x 0) u (k0 x 1) U (K x 1). That is,
G is a based homotopy betweenf and g. I

The above is a generalization of Theorem 7.3.19, for we could
apply it to the inclusion map i: (K x 0) u (L x I) K x 1 to
obtain a retraction K x I —* (K x 0) LI (L x I).

It is easy to extend Theorem 7.5.2 to an arbitrary weak homotopy
eq'iivalence, by using the mapping

Corollary 7.5.3 Given a weak homotopy equivalencef: V -÷ X, and
a CW-complex K, [K, Y] -÷ [K, X] is a (1-1)-correspondence
(where K has a 0-cell as base point, and Y, X have any base points that
correspond under f).

Proof. By Theorem 6.5.5,1 is the composite
g hY—*M,----.X,

where M1 is the mapping cylinder, g is an inclusion map, and h is a
homotopy equivalence. since both f and h are weak homotopy
equivalences, so is g; hence [K, Y] —+ [K, 1'f,] is a (1-1)-corre-
spondence. But is obviously a (1-1)-correspondence, and hence so

= •
Whitehead's theorem follows immediately.

Theorem 7.5.4 if f: K —* L is a weak homotopy equivalence of
CW-complexes, f is a homotopy equivalence.

Proof. By Corollary 7.5.3, [L, Kj —* [L, U is a (1-1)-corre-
spondence, so that there exists a map g: L —k K such that fg 1L•
Theng is also a weak homotopy equivalence, so by a similar argument
there existsf': K —* L such that il' Is.. But then

1' (fg)f'
so thatgf as well, and sog is a homotopy inverse tof. I

The reader should not be tempted to think that every weak homo-
topy equivalence is a homotopy equivalence: the assumption that K
and L are CW-complexes is essential in 7.5.4.
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Example 7.3.5 Let X be the subspace of R2 consisting of straight
line segments joining (0, 1.) to the points (0, 0) and (1/n, 0), for all
positive integers n, and (0, — 1) to all the points (0, 0) and (— 1/n, 0):
see Fig. 7.11.

We shall see that = 0 for all n 0, but that X is not
contractible. Thus the map that sends all of X to (0, 0) is a weak
homotopy equivalence that is not a homotopy equivalence. To prove
the first assertion, take an open covering of X by three open sets
A, B, C, defined by x2> 4, > x2> — —4> x2 reèpectively.
Then if f: S" Xis any map, the sets form
an open covering of with Lebesgue number 8, say. If S" is
triangulated so that the mesh is less than 8, only a finite number of
simplexes are mapped into B, and since the image of each is path-
connected, it follows that f(S*) rs B is contained in a finite number
of 'rays' from (0, 1) or (0, — 1). That is, f(S*) is contained in Y, the
union of A and C with a finite number of rays. Since it is easy to see
that Y is contractible, this means that f is homotopic to the constant
map in Y, so certainly in X. Hence = 0.

On the other hand X is not contractible For if it were, there would
be a map f: X x I X starting with the identity map and ending
with the constant map to some point x0 E X. Since I is compact, the
continuity of / implies that, given x e X and > 0, there exists 6

(0,1)

(-1,0)

:0,-I)

Fig. 7.11
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such that d(x, y) < 6 d(f(x, t), f(y, t)) <-€ for all I I But for
each integer is > 0, the homotopy f defines paths is + and is from
(1/n, 0), (— 1/n, 0) to x0 respectively. Subdivide I (considered as a
i-simplex) so that each simplex of the subdivision is mapped by each
of u into just one of the sets A, B or C. Since (1/n, 0) and
(— 1/n, 0) are in different path components if B, there isa first vertex
t such that either u(t) e C; if say, u(t)

the region x2 0. Hence u(t)) > which contradicts
the continuity of f, since if we take x = (0, and £ = there is
always an n such that 2/n < 6, for any 6. I 1

The last important theorem in this chapter is the Cellular Approxi-
mation Theorem, which in a sense is the analogue for CW-complexes
of the Simplicial Approximation Theorem for simplicial complexes.
The theorem states that, if f: K —'- L is a map between CW-com-
plexes, then f is homotopic to a map that sends the n-skeleton of K
into the n-skeleton of L, for each is.

Definition 7.5.6 If .K and L are CW-complexes, a map f: K -+ L
such that c L" for each is ? 0 is called a cellular map.

Theorem 7.5.7 If K and L are CW-complexes, and -+ L is a
'map such that JIM is cellular for some subcomplex M of K (possibly
empty), then there exists a cellular map g: K -+ L such that gJM = f M
and g f rd M.

Proof. 'Fhis is very similar to Theorem 7.5.2: by induction on the
skeletons of K, we define a homotopy F: K x I —÷ L that starts with
f, ends with a cellular map, and is the constant homotopy oii M x
Since, for each 0-cell x of K — M, there is a path in L fromf(x) to a
point of L°, we can certainly define F on K° x I u M x I. Suppose,
then, that F has been extended to K" x 4 and that F(K" -' x 1)

Just as in Theorem 7.5.2, F can be extended to each n-cell of
K — M, since L'9 = 0 by Theorem 7.4.17; and the result is a
continuoue extension such that F(K" x 1) c L". This completes the
inductive step, and so gives the required homotopy F: K x I —+ L. •

The Cellular Approximation Theorem is particularly useful in view
of the 'fact that the space obtained by attaching cells by cellular maps
to a CW-complex is another CW-complex (this follows easily from
Theorem 7.3.12). It is thus possible to make alterations in the hoino-
topy groups of CW-complexes: an element of can be represented
by a cellular map f: S" -+ K, and this map can be used to attach an
(is + 1)-cell to K, to form a new CW-complex K' in which [f] is
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'killed off'. This idea is formalized in the last two theorems of this
chapter.

Theorem 7.5.8 Given a C W-complex K and an integer n 0, then
exuts a CW-complex L, having K as a subcomplex, such that, q
i:K-÷Lis the inclusion map,

(a) i*: ir,(K) -÷ is isomorphic for r < n;
(b) = 0.

Proof. Let A be 'a set of generators for the group ir,(K) (for
example, the set of all elements of ir,(K)). For each a e A, take a
representative (based) map S" -÷ K, which by Theorem 7.5.7 may
be assumed to be cellular. Let L be the space obtained from K by
attaching cells + 1 by the maps one for each a E A.

Then L is a CW-complex: for by Theorem 7.3.12 K is a cellular
space, and hence so is L, since the maps send S' into Also
K is obviously a subcomplex of L. Moreover by Theorem 7.4.17(a)

ir,.(K) = Li K) -+ is isomorphic for r <n, and onto
for r = n. But for a A, e is represented by the map

S" -+ L; and this is clearly homotopic to the constant map, since
L has an (n + 1)-cell attached by Hence = 0.

This process can be iterated, so as to 'kill off' ir,(K) for all r n.

Theorem 7.5.9 Given a CW-complex K and an integer n 0,
there exists a CW-complex L, having K as a subcomplex, such that, if
i:K-÷Lis the inclusion map,

(a) ir,(K) -+ ir(L) is isomorphic for r <ix;
(b) irr(L) = Ofor r ix.

Proof. By repeated applications of Theorem 7.5.8, there is a
sequence of CW-complexes K c c L2 c..., each a subcomplex
of the next, such that for each m 1, if i: K Lm is the inclusion
map,

(a) -÷ i'TT(Lm) is isomorphic for r < ix, and
(b) irr(Lm) = 0 for ix r < ix + m.

Let L
= mYi 4,, (as a point set), topologized by the rule: X L

closed if and only if X fl L,,, is closed in Lm, for each m 1.*IIhis
certainly is a topology, and L is a CW-complex by Theorem 7.3.12.
Moreover each Lm, and K, is a subcomplex of L.

To prove (a) and (b), note that, given any r, i*: + 1)
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is an isomorphism. But is the (r + 1)-skeleton of each Lm for
which n + m > r, so that irr(Lm) is also an isomorphism
for such m. Hence i*: lrr(Lm) -÷ is an isomorphism, and (a) and
(b) are now immediate.

Example 7.5.10 We have already proved that

'< n

It follows from Theorem 7.5.9 that there exists a CW-complex K such
that 17r(K) 0 for r n, and Z. Such a CW-complex is
called an Eilenberg-MacLane space K(Z, n): we shall see in Chapter 8
that these spaces are important in the cohomology theory of CW-
complexes. I

EXERCISES

1. Let X and Y be oath-connected spaces with base points x0, Yo' and
suppose that (X, x0) has the absolute homotopy extension property.
Show that a path u in Y fromy0 tOyj gives rise to a(1-1)-correspondence
u#: [X, Yj0 -+ [X, Y)1 (where [X, denotes [X, YJ with base.
points x0, respectively), with the following properties.
(a) If u v ret 0, 1, then uj =
(b) is the identity function.
(c) If w is a path from to Y2' then (u . w)# =
(d) If f; Y -+ Z is a map such that = zo and f(yi) z1, then

[X, flo [X, Z}1.
(e) If X is an AH'J, is an isomorphism.

that, if f in (d) is a homotopy equivalence (as an unbased
map), then [X, Y]0 —p- [X, Z]0 is a (1-1)-correspondence.
Let be the subgroup of generated by all elements of the
form x — where (ul e 7r1(X) (if n = 1, this is to be interpreted as
x.(u#xY1). Show that is a normal subgroup of If X is
path-connected, and denotes show that a homo-
topy class of (unbased) maps f: S -÷ X defines a unique element of

and that a map g: X —÷ V between path-connected spaces gives
rise to a homomorphism 4(1) 4(Y).

3. Given elements x, y e 72(X, Y), prove that = x 'yx. (Hint
represent x andy by based mapsf,g: (E2, S')—*(X, Y) such thatfi
the constant map on x2 ? 0 and g is the constant map on x2 6
consider the effect of rotating E2 through an angle 77.) Deduce that
(1, Y) is relatively 2-simple if ir2(X, Y) is abelian and Y) = 0.
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4. Let Y) be the subgroup of ir,(X, Y) generated by elements of
the form x — ux, where [u] e 1?i( Y). Show that Y) is a normal
subgroup of 77,1(X, Y). If V is path-connected, and Y) denotes

Y), show that a homotopy class of mapsf: (1", —+

(X, Y) defines a unique element of nt(X, Y), and that the product of
two such elements may be obtained as in Proposition 7.2.15.

Show that a mapg: (X, Y) (Z, W) gives rise to a homomorphism
i4(X, Y) W) (is 2), and that there are homomorphisms

j5: -+ 1') (if 7r1(X, Y) = 0), i4(X, Y) -+ Y),
such that 0, = 0 and = 0.

5. Let (X, Y) be a pair of spaces. Deduce the following results from the
exact homotopy sequence of (X, Y).
(a) If Y is a retract of X, then ir,,(Y) $ Y) (n 2).
(b) If is homotopic to a map of X into Y, then

® Y) (ii ? 2).

(c) If i: V -+ X is homotopic to the constant map, then

Y) _. Y) (is 3).

(All maps and homotopies are assumed to be based.)
6. LetXbeanAH'Iandl,Zbeanyspaces.Provethat

[X,Yx
7. Let X be a commutative AH'I. Prove that

(X, V v Z] (X, Y] [X, Z] $ [X, Li],

where is the mapping path-space of the inclusion map Y V Z -+
V x Z. Show also that [X, U is iii (1-1)-correspondence with homo-
topy classes of based maps (X A I, X A 0) -+ (V x Z, Y V Z).

8. If F the real numbers R, the complex numbers C or the
quaternions H, F-projective space of dimension is,FP*, is defined to be
the space (F's + I — 0)/S. •wherc S is the equivalence relation given by
xSy x = j5i, for somefe F. FP5 is given the identification topology,
and the equivalence class of . . is written Eli' ..

By writing points Qf E2'in the form (z1,.. ., r), where 0 r 1

and .. . are complex numbers such that + =
1 — r2, prove that CP' is homeomorphic to the space obtained from

by identifying points of that are mapped to the same point
under p: Se" 1 CF"', where p is defined by p(z1,. ., z,) =

i]. Deduce that CP" is a CW-complex with one cell in each
dimension 0, 2, . . ., 2n.

Similarly, show that is a CW-complex with one cell in each
dimension 0,4, .. ., 4,s.

9. Prove that a CW-complex is normal.
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10. Let K be a CW-complex with a finite number of cells. Use Theorem
7.3.12 and the Simplicial Approximation Theorem to show that K has
the homotopy type of a polyhedron. Deduce that ir1(K V L)
ir1(K) * iri(L) for any CW-complexes K and L.

11. A Hausdorif space K is said to be (infinitely) triangulated if, for each
n 0, there exists an indexing set and an n-simplex a,,, and maps

a,, -÷ K for each a E A,,, with the following properties.

(a) K = U for aim ? 0 and aEA,,.
(b) Each is (1-1).
(c) Given a face im of a,,, there exists a simplicial homeomorphism

am 1m such that, given a e A1,,, there exists e Am with =
(d) iTh is either empty, or is for some p and y e A,.
In the latter case, there exist faces T of a,,, of am, such that =

(e) A subset X of K is closed if and only if - 'X is closed in for
each ii and a A,,.

Prove that any space homeomorphic to a polyhedron is a triangulated
space, and that any triangulated space is a CW-complex.

12. Prove the analogue of the Simplicial Approximation Theorem for
maps of a (compact) polyhedron into a triangulated space. Deduce that
any CW-complex is homotopy-equivalent to a triangulated space.
Show also that a CW-complex with a countable number of cells
countable homotopy groups.

13. Let U be an open set in R". Show that U is a triangulated space, and
hence is a CW-complex. (Hint: divide R' into hypercubes of unit side,
and triangulate each. For each m 0, pick the simplexes of the mth
derived complex that are contained in U, and observe that, since the
mesh tends to zero as m —* each point of U is contained in at least
one simplex. The resulting collection of simplexes is not a triangulation,
but may be made so by subdivision.)

14. By using an argument similar to that in Theorem 7.3.12, show that a
CW-complex is locally contractible, that is, given a point x and an open
set U containing x, there exists a contractible open set V such that
x e V C U. Deduce that a CW-complex is locally path-connected and
weakly locally simply-connected, in the sense of Chapter 6, Exercises
23 and 25.

15. Let K be a CW-complex, and let be its universal cover, with covering
map f: R —÷ K (see Chapter 6, Exercise 25). Prove that K is also a
CW-complex. (Hint: given a characteristic map

E a point such that x, there is a unique map
E" R such that e Show that the set of all

such is a set of characteristic maps for a CW-decomposition of R.)
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16. Let K be an n-dimensional CW-complex, and let L be a subcomplex
that contains K"1 (n 2). Let the indexing sets for K and L be

respectively, and let be the characteristic maps. Prove that
® —b. rrt(K, L) is Onto.

17. Let f: X-÷ Y be a map such that 1*: iro(X) —* is a (1-1)-
correspondence, and ir,(X, xo) —+ ir,( Y, f(Yo)) is an isomorphism
for r < a and is onto for r = n, for all points x0 e X. Show that, for
any CW-complex [K, X} [K, Y] is a (1-1)-correspondence
if dim K < n, and is onto if dim K = n.

18. Let K be a CW-complex, and let a be any positive integer. Show that
there exists a space X and a map f: X -+ K such that
(a) n',(X) = 0 for r < n;
(b) ir,(X) ir,(K) is isomorphic for r a.

19. Definef: S" -÷RP" byf(x1, .. ., = [x1, . . .,
a local product, with fibre S°. Deduce that RP" has the same homo-
topy groups as S", except for irj(RP") Z2 (a > 1).

Similarly, show that there are local products 32*11 -÷ CI", with
fibre and HP", with fibre S3. Deduce that ir(CP")

+ 1) (except that 7T2(CP") Z), and that ,,.,,(54* + 3)

1(S3).
Hence prove that n'r(S3) r 3, and that

20. Let G be a topological group (see Chapter 3, Exercise 10), and consider
themapp:G x G x x
that p induces a local product q: G * G SG with fibre G, provided 0
is locally compact and Hausdorif. (lEnt: consider the open sets in SG.
corresponding to G x [0, 1) and G x (0, 1].) By considering S' and
S3 as complex numbers and quaternions of unit modulus, respectively,
show that S' and S3 are topological groups. Hence, once again, deduce
the existence 'of local products S3 —+ S2, with fibre S1, and S7
with fibre S3.

21. Let G be a topological group, except that the associative law is wcakened
to: (gh)h 1 = g, for all g, h e 0. Show that, provided 0 is locally
compact and Hausdorff, q: G * C -+ SO is still a local product, with
fibre 0.

The Cayley numbers are, as an additive group, the direct sum H H
of two copies of the quaternions, and multiplication is defined by
(h1, h2) . (k1, k2) = (h1k1 — k2h1 + conjugate of (h1, h2)
is (h1, h2) = (hi, —ha): show that (h1, h2).(h1, h2) = (1h112 + h212, 0)
and is (0, 0) if and only if (hi, h2) = (0, 0). Hence define the modulus
(h1, h2)I = (1h1(2 + 1h212)1/2, and prove that the Cayley numbers of
unit modulus form a group under multiplication, except that, the
associative law is weakened as above.
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By identifying S7 with this 'group', show that there is a local product
S15 -> S8, with fibre Deduce that

ir,(S'6)
22. Let G be .i topological.group, and let K c H be closed subgroups (that

is, subgroups that are closed subapaces). Write GJH for the set of left
cosets gil, topologized so that the quotient function p: G G/H is an
identificatjon map.

'Flic rilap p is said to have a local cross-section if there exists an open
ncighbourhoud U of the point (H) in Gill and a map f: U —* G such
that pf = I L'• Prove that, if p has a local cross-section, then the identi-
fication map q: C/K G/H is a local product, with fibre H/K. (Hint:
consider the open covering of G/H by open sets gU, for all g E C, and
define 4; gi.' x il/K by = g.f(g 'x).y.)

23. The or!/zogcnal group 0(n) is the group of real (n x n) matrices A such
that AA' I, topologized as a subspace of Show that 0(n) is
a topological group, and that if 0(n — 1) is regarded as the subgroup
of matrices (at,) such that = 1, = 0 otherwise, then
0(n — I) is a closed subgroup.

By identifying left coeets of O(n — 1) with the last column of a
representative matrix in 0(n), show that 0(n)/0(n 1) is homeo-
niorphic to Show also that the identification map p: 0(n)-÷

has a local cross-section, by the following method. Given
(x3, . . ., with 1, regard (x1,. . ., as a column vector
x; let er he the column vector with I in the rth place and 0's elsewhere,
and define

now prove that /(x) . .,f,,) defines a local cross-section.
Deduce that the following identification maps are local products.

<a) p: 0(n) -+ with fibre 0(n — I).
(b) p: S0(n) -÷ with fibre S0(n — 1), where S0(n) is the sub-
group of 0(n) of matrices with determinant 1.
(c) p: —* S"1, with fibre Vfl_j,k...l, where = O(n)/0(n k)
(this space is called a Stir/el maiufold).

Finally, show that ir,.(O(n + 1)) for r < n — 1, with
similar isomorphisms involving S0(n) and VI.k.

24. Consider S3 as the topological group of quaternions of unit modulus,
and regard S2 as the subapace consisting of quaternions of the form
(0, b, c, d). Show that, for each x E the map

y -÷ x.y.x-'
is a linear map that sends S2 into itself. Deduce that there is a map
h: S3 -+ SO(3), that induces a homeomorphism between and
SO(3). Hence prove that ir1(S0(n)) Z3, ir2(SO(n)) = 0, n 3.
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25. The unitary group U(n) is: the group of complex (ii x n) matrices .-l
such that = I, and the symplectic group Sp(n) is similarly defined,
hut using the quaternions. Show that U(n) and Sp(n) are.topological
groups, and that there are local products 11(n) with fibre
U(n — 1), and Sp(n) 1, with fibre Sp(n — 1). If SU(n) is the
subgroup of U(n) of matrices with determinant 1, show also that there
is a local product SU(n) S2"', with fibre SU(n — 1).

Deduce that U(n)) U(n + 1)) and ir,(SU(n)) IT,.(SL(fl ÷ 1))
for r < 2n, and that Tr..(Sp(n)) ir,.(Sp(n + 1)) for r < 4n + 2. Show
also that ir1(U(n)) Z, = 0 and ij3(U(n)) Z, for n 2,
and that 171(Sp(n)) = ir2(Sp(n)) 0 and i'r3(Sp(n)) Z, for n 1.

26. Given elements show that Whitehead
product [a, is zero if either a or is in the image of

p is as in. Exercise 23 (in this question, (0, .. ., 0, 1)
is taken as the base point of S's); Deduce that if the inclusion map
i: SO(n)—. SO(n + 1) induces a monomorphism
lrn+r_1(SO(fl + 1)), then [a, = a] = 0 for all a E and
all fi whatever.

Establish similar results using SU(n) and Sp(n) in place of SO(n),
and also deduce that [a, $j = 0 for all a, except when a and
fi are both in 1r2(S2).

NOTES ON CHAPTER 7

CW-complexes. The original definition, and most of the theorems of
Section 7.3 (also Exercises 9 and 15) are the work of J. H. C. Whitehead
[160]. In particular, Whitehead first proved Theorem 7.3.16(a), although
(b) is due to Milnor [104]; for an example of two CW-complexes whose
product is not a CW-complex, see Dowker [48]. The product K L was
first considered by Spanier [129]. though see also Kelley [85], Chapter 7,
and R. Brown [32].

Various other constructions can be performed with CW-complexes to
yield spaces that have at least the homotopy type of For
example, Milnor [104] proves that K x L and KC have the homotopy type
of CW-complexes for all CW-complexes K, L and all compact Hausdorif
spaces C, and Stasheff [133] proves that, if f: E—* B is a fibre map and B is
a CW-complex, then E is homotopy-equivalent to a CW-complex if and
only if the same is true of the fibre. The special case of this result in which
f is a covering map was established earlier by Whitehead [160]: indeed, in
this case E actually is a CW-complex (cf. Exercise 15).

Although clearly not every space is a CW-complex, it is sufficient for
many purposes to consider only CW-cornplexes rather than arbitrary
topological spaces. For, by a theorem of J. H. C. Whitehead [161], given
any space X, there exists a CW-complex K and a weak homotopy equivalence
f: K X,
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Calculation The result that Z is due to
[25] and Hopf [66], Theorem 7.4.15 to J. H. C. Whitehead 1156].

Section 7.5. Like much of the rest of this chapter, this is largely work
of J. H. C. Whitehead: Theozem 7.5.4 and 7.5.7 first appeared in [160], and
Theorem 7.5.8 in [15(i).

The llopf fibrings. The local products —÷ S2, with fibre S', S7 S4,
with fibre S3, and S'5 -÷ Si', with fibre S7. discussed in Exercises 20 and 21,
were first discovered by Hopf [69, 70]. It might be supposed that these
were but the first of a series of products with fibre

but the result of Ada ins [2], mentioned in the notes on Chapter 6,
shows that such local products exist only in the cases n = 1, 2 and 3.

Topological groups, local -sections, and homotopy groups. (Exercises
22—25.) For more details of these topics, see Steenrod [137]. The map
p: G G/H, considered in Exercise 22, nearly always has a local cross-
section: this is proved by Chevalley (40], Chapter 4, in the case where G is a
Lie group, and in a more general situation by Mostert [108].

Many of the hornotopy groups of the topological groups considered in
Exercises 23—25 are known. For the groups (r < n — 1), ir,(U(n))
(r < 2n) and ir,.(Sp(n)) (r < 4n + 2), see Bott [22]; many of the groups
outside these ranges of dimensions have been calculated by Barratt and
Mahowald [20]. The closcly rehited hornotopy groups of Stiefel
have been investigated by Paechter [113].

Whitehead products. Exercise 26 is due to S. Thomeier.
Suggestions for further reading. (.)ne of the most important (and yet

unsolved) probleiña of honiotopy theory is the calculation of the groups
'rhere are two main lines of attack: the first is based on the EHP

sequence of G. W. Whitehead [154] and has been exploited most fully by
Toda [145]; the second attempts to calculate only for r < 2n — 1

(when, by a theorem of Freudenthal [59], the groups depend only on r —
and uses an algebraic machine known as the Adams spectral sequence
(see Adams [1, 5]). Much work has been done on the latter method: see
for example May [101, 102], Maunder [97, 98], Mahowald [93], and Maho-
wald and Tangora [95]. An attempt has been made to extend the Adams
spectral sequence outside the range of dimensions r < 2n — 1(see [23, 121]);
this method also generalizes the EHF sequence.

A related problem is the determination of the image of the i-homo-
morphism J: ir7(SO(n)) --p. (for the definition, see G. W. White-
head [152]). This problem has been almost completely solved by Adams
(4] (see also Mahowald [94]).



CHAPTER 8

HOMOLOGY AND COHOMOLOGY OF
CW-COMPLEXES

8.1 Introduction
This final chapter is concerned with various topics in the homology

and cohomology theory of CW-complexes. We start by showing, in
Section 8.2, that the homology and cohomology groups can be cal-
culated directly from the cellular structure, using the cells in the same
way that the simplexes are used in the simplicial homology groups of a
polyhedron. This is the important basic result of this chapter, and in
particular we shall see in Section 8.3 that it leads to a straightforward
proof (for CW-complexes) of the theorem of Hurewicz that relates
homotopy and homology groups.

In Section 8.4 we shall see how cohomology theory fits into the
general scheme of Chapter 6. This will be done by showing that the
cohomology groups of a CW-complex can be identified with the groups
of homotopy classes of maps into Eilenberg—MacLane spaces; thus
cohomology groups are 'dual' to homotopy groups, at least for CW-
complexes. We shall also investigate more general 'cohomology
theories', obtained by replacing the Eilenberg—MacLane spaces by
other spaces.

Finally, in Section 8.5 cohomology theory will he sharpened by
introducing a ring structure. As in the case of the Flu rewicz theorem,
it is possible to carry out the work for arbitrary spaces, but we shall
confine our attention to CW-complexes, since the results of Section
8.2 will then greatly simplify the proofs.

8.2 The Excision Theorem and cellular homology
The chief aim of this section is to generalizeto the

result of Chapter 4 that H(C(K)) for a sirnplicial complex
K. It would be tempting to try to do so by the of 4.3,
that is, by showing first that the homology of a CW-compkx K can be
calculated from a subchain complex of S(K), generated by the
cellular maps to K, and secondly by taking a quotient of J(K)
whose generators are in (1-1)-correspondence with the cells of K.

2t—AT. 311
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Now it is fairly easy to carry out the first of these steps, by using the
Cellular Approximation Theorem in place of the Simplicial Approxi-
mation Theorem in the arguments of Section 4.3; but the second step
would he much more difficult, because there is flO coherent way of
identifying the characteristic maps E" K with cellular maps
of

Because of these difficulties, we shall not pursue this line of attack.
However, it is possible to establish result we want by a different
approach, based on the proof of Theorem 4.4.14: it will be proved that
the homology groups of a CW.-complex K can be calculated from a
chain complex C in which = and that is a free
abelian group whose generators are in (1-1)-correspondence with the
n-cells of K. To make this argument work, it will be necessary to
know and to this end we shall prove that L)

for any CW-pair (K, L): since by Example 7.3.15
is a one-point union of S"s, this will suffice to calculate 1).

In turn, the result that L) is a corollary of the
Excision Theorem, which is the analogue for arbitrary spaces of
Example 4.3.6 for polyhedra.

Theorem 8.2.1 (The Excision Theorem.) Let and B be sub-
spaces of a space X, and suppose that tlore open sets U. V, in X,
such that U c A, F c B, and X = 'U V. Then

H,jI1, A B) - A)

is an isomorphism for all n, where i is the inclusion map.

Proof. \Ve show first that every element of A) can be
represented by a linear combination of singular simplexes that are
maps into either U or V. This is done by using a modification of the
subdivision chain map q' of Definition 4.3.2.

Given any space X, define a homomorphism —*

(for each n) by the formula where denotes the
identity map of and is the sub-
division chain map. is a chain map, because

=

= )
=

=

(It is easy to see that = since Fr is (1-1) and
simplicial.)
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Moreover is chain-homotopic to the identity chain isomorphism.
The proof of this is exactly like that of Proposition 4.3.4: we construct
suitable elements where is a triangulation of

x I that has at the '0 end' and (K(J,j)' at the '1 end'. The
details are left to the reader.

Clearly can be extended to a chain map A) —p' A),
which is chain-homotopic to the identity; also, can be Now
if is a singular n-simplex in X, the sets )c1(U),r A1(V) form an
open covering of hence by Theorem 1.4.35 and Proposition 2.5.15
there exists an integer r such that i/tT(A) is a linear combination of
singular n-simplexes that map into either U or V. Clearly also the
integer r can be chosen to have this property for a finite number of ,Vs
simultaneously.

Now consider x E A), represented by z e A). Since
is chain-homotopic to the identity, and i/f(z) differ by boundary
for each r, and so i//(z) also represents x. By choosing r large enough
we can ensure that is a linear combination of singular simplexes
that each map into either U or V, and hence into either A or B; hut
then e A n B). This proves that i*: A B) —*

A) is onto.
To show that is also (1-1), consider z A n B) such that

i(z) A). Then z, regarded as a linear combination of singular
simplexes in X, is of form x E andy E
Choose r such that every singular simplex in maps into U or
thus = a + b, where a E and b Hence

+ '/iy and — = *9a + çb"(y). But — E

and ea + %//(y) so that in fact both are in rt B).
It follows that = 8b + [ea + e B,I(B, A B), so that

and hence z, represents the zero element of H6(B, A B).
Thus is (1-1). •

An obvious modification of the above argument shows that, for any
coefficient group G, HI,,(B, A B; G) —÷ A; G) is ait
isomorphism. However, the cqrresponding result in cohomology doe..z.
not follow quite so easily, since a representative cycle for an element of,
say, A; G) may be non-zero on an infinite number of singular
n-simplexes, and so the argument involving may not work. On the
other hand the cohomology version can be deduced directly from the
homology version by means of the following proposition.

Proposition 8.2.2 Let D be a chain complex in which each D4
is a free abe/ian group, and is zero for n < 0. Let C be a subehain
complex such that each is also free abelian, and the
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chain map f: C —- D induces an isomorphism 1*: H(C) -÷H(D). Then
for any abelian group G, 1).: is also an
isomorphism.

Proof. Write E = where E,, = By Theorem 4.4.2
we have H(E) = 0, and since E is free abelian, Proposition 5.2.8 and
Theorem 4.4.2 again will show that is an isomorphism,
provided that we can deduce that H(E C) 0.

This is done by constructing a chain homotopy h: —÷ +1'
between the identity and the zero chain map, rather as in the proof
of Theorem 4.3.9. Suppose as an inductive hypothesis that we have
constructed Ii: Er E, + for all r < n (take h to be the zero homo-
morphism if r < 0). Then if x e — hex) = — = 0,
so that, since Z(E) = B(E), there exists hx e such that x =
ahx + hex: thus the inductive step is complete. But now h 1:
(E G) - —÷ (E ih G) - is a chain homotopy between the identity
and zero; so we immediately have H(E G) = 0. I

Corollary 8.2.3 With the data of Theorem 8.2.1,

1*: A; G) A B; G)

is an isomorphism for all n, where G is any abelian group.

Proof. Put D = S(X, A) and C = S(B, A B) in Proposition
8.2.2. •

Before deducing results about CW-cornplexes, we give a generalization
of the suspension isomorphism of Theorem 4.4.10. For an arbitrary space
X, this involves the 'unreduced suspension' SX, defined as in Corollary
6.2.19 to be the space obtained from Xx I by identifying X x 1 and Xx 0
topoints (and given a mapf: X-+ Y, the corresponding map Sf: SX -÷S Y
isinducedbyfx 1:XxJ÷YxI).

Theorem 8.2.4 For each n, there is an isomorphism 5*: -+
(SX), such that, iff: Y is any map, =

Proof. If K is a simplicial complex, it is easy to see, as in the proof of
Thoerem 4.4.10, that is ( — 1)"+' times the composite

a, K) K* b)

where is an excision isomorphism. For an arbitrary space X, therefore,
let be (— 1)fl+1 times the composite



§8.2 EXCISION THEOREM AND CELLULAR HOMOLOGY 315

X) COX)

where C0X, C1X are the subapaces of SX corresponding to Xx [0, 4],
Xx [4, 1] respectively, and Xis identified with Xx 4.

To show that is an isomorphism, observe that
and are clearly contractible, so that it is

sufficient to prove that is an isomorphism. Unfortunately this is not
quite an immediate corollary of Theorem 8.2.1, since the open sets U, V
do not exist. However, if we write CX for the subspace of SX corres-
ponding to X x [4, 1], there is a commutative diagram

CX, X x [4, 4]) C0 X)

X).

The top is an isomorphism by Theorem 8.2.1, and the left-hand i,,, is
isomorphic since it is induced by an obvious homotopy equivalence;
hence the right-hand is isomorphic as well.

That = is an immediate consequence of Theorem 4.4.3. I
Of course, any coefficient group may be used in Theorem 8.2.4, and

there is a corresponding isomorphism s*: R7z+1(SX; C) -÷ C)•
If K is a (based) CW-complex, the proof of Corollary 6.2.19 shows that

the identification map p: SK-3-SK is a homotopy equivalence, so that,
by composing with we may if we wish regard as an isomorphism

1?,1(K) -÷ 1ff :K-+ L is a (based) map of CW-complexes,
= (f A se). This version of' may be interpreted directly in terms

of reduced cones and suspensions of CW-complexes.

Proposition 8.2.5 Let K be a CW-coinplex. Then
4 ( — I times the composite

point)

where q: 4 the obviou.t identification map.
Proof. Consider the map 4 SK-÷sK defined by

(x t) — f base point, 0 t 4
IXA(2t—1),

Clearly # is homotopic top, and maps C1K onto cK and C0K to the base
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point; our result therefore follows immediately from the commutative
diagram

H+1(C1K, k) C0K)

K) —÷ point) I
We show next that if (K, L) is a (based) CW-pair, the sequence of

spaces and maps
3

L K—* C4 —* sK —-.
of Theorem 6.4.7 induces an exact sequence of homology groups, which
can be identified with the exact homology sequence of (K, L).

Theorem 8.2.6 There is an isomorphü'm a: L) -÷ such
that, in the diagram

Is
H,I(K, L)

= 8.

—+ &(C) —*

we have af. = = (_-
Proof. Let be the composite

L) CL)

is an isomorphism, and so also is this would be true as
in the proof of Theorem 8.2,4 if the subspace cL of were replaced by
the 'unreduced cone' (Lx I)/(L x 1); but the identification of (base
point) x I to a point makes no difference, by Corollary 6.2.7. That

= follows immediately from Theorem 4.4.3.
To prove that (— 1 a, consider an element xc L),

represented by a cycle z. Regarded as an element of az = y, where
ye Since cL is contractible, y = for Some we and
then z — we cviii do as a representative cycle for a(x). Now
shrinks K to the base point, and is q: on cL, so that a(x) =
(— at least if we identify with point).

On the other hand is represented by)', and hence by Proposition
8.2.5 = (— = (—

Naturally there are corresponding results involving homology or co-
homology groups with any coefficients.
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Corollary 8.2.7 Let (K, L) be a C W-pair, and let p: K/L be
the homotopy equivalence of Theorem 6.5.2. Then4p: K K/L is the
identification map, L) 14(K/L) is an isomorphism, and in
the diagram

L)

jz.

14(K) 14(K/L)

we have = and = (—

Proof. It is sufficient to show that = a: L)—+
or equivalently that pa,, where it: —. K/L is the homotopy
inverse to in Theorem 6.5.2. But this follows from the commutative
diagram

L) cL) point)

point). I
Observe that H,(K, L) is an isomorphism even if

L = 0, provided K/ 0 is interpreted as K the disjoint union of K
with another point.

Example 8.2.8 As remarked after Corollary 6.5.3,

= (—
1)

where 0 is the standard homeomorphism. It follows from Corollary
8.2.7 that = and in particular that

= where and are the 'standard generators' of Example
4.4.11. 1

Now that we have Corollary 8.2.7, we are in a position to prove the
main theorem on the homology groups of a CW-complex K. The irst
step is to calculate

Proposition 8.2.9 Let (K, L) be a CW-pair, with indexing sets
and and characteristic maps Write K" C.' L. Then the
homomorphism $ Sr') M*l), defined to

be on each is an i.comorphism. That is,
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HT(M", M" 1) = 0 unless r = n, when it is a free abelian group with
generators in (1-1)-correspondence with the n-cells of K L.

Proof. Let X be the disjoint union U and let Y be the
- B,,

corresponding union of the Sr'. It is easy to see that

$ Sr') Y),
A,, —B,,

where the isomorphism is induced by the inclusion of each
On the other hand the obvious map (X, Y) —÷ induces
9Y: which by Example 7.3.15 is a homeomor-
phism. Hence by Corollary 8.2.7 Y) —* is
an isomorphism. J

Thus we may define a chain complex C(K, L) = L) by
setting L) = M"1) (where is interpreted as L if
it < 0), and by taking as boundary homomorphism L)

L) the composite

L) M"2)

(which is the same as --+ M"2), or
alternatively the composite

Ms-:)

Theorem 8.2.10 For each it, L) Hft(C(K, L)).

Proof. This is almost identical with Theorem 4.4.14. Indeed, we
can repeat the proof word-for-word, as far as the statement that

M L) L)),

where p is any integer greater than it, and it remains only to show that
L) 14 (there was no difficulty in Theorem 4.4.14,

since we were dealing only with finite-dimensional complexes).
Now an element of L) is represented by a cycle which is a

(finite) linear combination of singular n-simplexes in K. Each of these
singular simplexes is a map from to K, whose image is compact and
so contained in a finite subcomplex. Thus z is in fact a cycle of

L) for some p. Since L) —* an
isomorphism for all p it, this means that + 1, L) -÷ L)
is onto. But a similar argument 8hows that if x e + 1, L) is sent
to zero in L), then it must be sent to zero in some H,,(MP, L),
and so x = 0; thus L) L) is (1-1) as well. I
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Corollary 8.2.11 1ff: (K, L) (P, Q) is a cellular map of CW-
pairs, H,,(K, L) —÷ H,,(P, Q) is the homomorphism induced by the
chain map where = u Q.
In particular, if A and B are subcomplexes of K, such that A U B = K,
then i*: H,,(B, B)-+H,,(K, A)is an isomorphicm for din.

Proof. Since all the homomorphisms in the proof of Theorem
8.2.10 are homomorphisms in the exact sequences of triples, this
follows immediately from the remark after Theorem 4.4.5 (which also
shows is a chain map). •

For many purposes, it is convenient to have a more geometrical
interpretation of the boundary homomorphism a: C,,(K, L)

L) and the chain map C(K, L) C(P, Q). Now if is
the standard generator of Proposition 8.2.9 shows that
C,,(K, L) may be identified with the free abelian group with generators
the elements of A,, — B,,, by letting a e A,, — B,, correspond to

e H,,(M", Given a eA,, — B,, and e A_1 — B,,_1,
let da8 be the composite map

V
where is the homeomorphism of Example 7.3.15 and q, is the
projection map corresponding to

Proposition 82.12 a(u) = .p, 8a0 is the degree
— 1 — — 1

of daø.

Proof. The commutative diagram

il:,,(M", M"')

I

shows that = But by Corollary may be
identified with p11: —+ H and by
Proposition 8.2.9, if x e then

S. — I \— / x
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Hence

— = 'Y -1

=

— (,L"-l\ —— aPVt'$

using Example 8.2.8. That is, 0(a) =
Similarly, letf: (K, L) —÷ (P, Q) be a cellular map, let the indexing

sets for P, Q be C,1, and the characteristic maps for P be Given
a e — and fi e — let fa$ be the composite

—L 4-
V 0

I 1—). I .—.+"

where = u Q.

Proposition 8.2.13 is induced by f, where f(a) =
d(fap) being the degree of

Proof. This is proved in a similar way to Proposition 8.2.12, using
Corollary 8.2.11. We omit the details. •

In this discussion of CW-complexes, we have not so far mentioned
homology with other coefficient groups, or cohomology. What we
should like to know, of course, is that if-G is any coefficient group, then

L; G) H(C(K, L) 0 G)
and

H*(K, L; G) H(C(K, L) h G).

The next twp theorems establish these isomorphisms.

Theorem 8.2.14 Let (K, L) be a CW-pair, and G be an abelian
group. Then for each n, H,,(K, L; G) L) ® G).

Proof. Write C for C(K, L) and C(G) for the chain complex
similarly defined by = 1; G). Now the proof of
Theorem 8.2.10 clearly adapts to show that L; G)
so that it remains only to produce a chain isomorphism a: C 0 G -÷
'C(G) (compare Chapter 4, Exercise 13).

for any chain complex D whatever, we can define a homo-
morphism a: H(D) 0 G -+ H(D ® G) by a([z] 0 g) -÷ [z 0
where z e Z(D) and g e G. Moreover if f: D —÷ F is a chain map, then
(f 0 1), a corresponding result for the
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homomorphism in the exact sequence of Theorem 4.4.2. Thus by
taking D = for various n, this gives rise to a chain
map a: C® C(G), and we have only to show that

a: ® C)

is an isomorphism. By Proposition it is enough to consider
.(M", = (Es, and by Theorem 4.3.9 we may use the
simplicial chain complex of (K(a), a) instead of.S(E't, _1), where a
is an n-simplex. But the result is now trivial, because this simplicial
chain complex has only one generator. Hence a: C ® G —+ C(G) is a
chain isomorphism. •

Theorem 8.2.15 For edclz ii, L; G) L) ih C).

Proof. For any chain, complex D, define a: H(D G)
H(D) C by (a(x))y = <x, y>, where x e H(D fG), y e H(D),
and < , > is the Kronecker product. By an argument similar to that in
Theorem 8.2.14, a is an isomorphism if D = S(X, Y), where X is a
disjoint union of Es's and Y is the corresponding union of i's,
and hence as in Proposition &2.9 a is an isomorphism if D =

That is, a: C(G) C is a chain isomorphism,
where = M"1;

It remains to prove that L; G) Now the
argument of Theorem 8.2.10 will show that
H..,1(C(G)) for any integer p > n, but we cannot use the rest of that
argument, since a representative cycle for an element of L; G)
may well be non-zero on an infinite number of singular
However, since + L) L), we can immediately
conclude that H8(K, L; C) L; G), by Proposition
8.2.2. I

We end this section by calculating the homology and cohomology
groups of some CW-complexes.

Exanlple8 8.2.16

(a) The homology and cohomology of real projective spaces has
already been calculated, in Examples 4.4.25 and 5.2.18. It is even easier
to deal with complex and quaternionic projective spaces.

By Chapter 7, Exercise 8, is a CW-complex with one cell in
each dimension 0, 2, . . ., 2n. Since CIU(CP") is zero in alternate
dimensions, = 0, and Theorem 8.2.10 immediately yields

r=0,2,...2n
— otherwise.



322 HOMOLOGY AND COHOMOLOGY OF CW-COMPLEXES CH8

Similarly
r = 0, 4, . ., 4n

— 1,0, otherwise;

and homology and with coefficients C are given by
replacing all Z's by G's.

(b) Consider S' x Now S' and are CW-complexes with
one 0-cell each, and one cell of dimension p, q respectively; hence

C0(S' x C,(S' Cq(S" x C,4Q(S' x

the other groups being zero (if p = q, C,(S' x S') Z $ Z).
Proposition 8.2.12 shows easily that all boundary homomorphisms are
zero (if say q p + i, we need Chapter 6, Exercise 15 as well to show
that 8: C, + C, is zero). It follows that H,(S' x x
for all also

x 3q; G) x ®
3q; G) CT(SP x C. I

It will be noticed that x S4 and CP3 have the same homology
and cohomology groups, so that it is possible that they are homotopy-
equivalent. In fact they are not, but the cohomology ring structure is
necessary to prove this: see Example 8.5.12.

8.3 The Hurewlcz Theorem
The Hurewicz Theorem states that, if X is a path-connected space

and Ofor , < n, then H,(X) (n 2); there is also a
corresponding for relative homotopy and homology groups.
Apart from the analogous theorem relating

a proof only for CW-complexes, since the proof for arbitrary
spaces is mote complicated (see the notes at the end of the chapter).

The method of proof is somewhat similar to that used in Section 7.4
to calculate we first define homomorphiemR -+
14(X), h4: Y) -+ Y) (that generalize the notion of
degree), and then show that they are isomorphisms in favourable
circumstaAve$.

Definition 83.1 The Hurewict homomorphism 14(X)
(n 1) is defined as follows. Let e be the standard genera-
tor; then if is represented by a map f: 8" —+ X, define

= Clearly this is independent of the representative map
f chosen.
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Similarly, an element of irjX, Y) is represented by a map
f: (I", —* (X, Y), and by using the standard homeomorphism
this may be regarded as a mapf: (E", S"1)—+(X, 1). Thus we may
define Y) —÷ Y) by

Observe that if Y is the base point x0 of X, and the relative homo-
topy group x0) is identified with via the standard homeo-
morphism 0: —÷ S", then the two definitions of coincide,
since by Example 8.2.8 we have = a,,.

Proposition 8.3.2 is a homomorphism if ii 1 (n 2 in the
relative case).

Proof. The proof of Proposition 7.4.2 easily to show
that H,,(X) is a homomorphism for n 1, since if
f,g: S"-÷X and V Sn), we
have [V(f v + As for It,,: ir,,(X, Y)-.+
14(X, Y), the diagram

ir,,(X, Y) c Y) '

lila

H,,(X, Y) cY) ÷.—

is easily seen to be commutative, where is the mapping cone of
i: Y —k X. Since cY is contractible and n 2, both are isomor-
phisms; but the lower row is just the isomorphism a of Theorem
8.2.6. Hence It,,: Y) H,,(X, Y) is a composite of
phisms, and thus is itself a homomorphism. I

Theorem 8.3.3 If X is a path-connected space, h1: ir1(X) -÷
H1(X) is onto, with kernel the commutator subgroup [ir, ir] of n1(X).

Proof. It is easy to see that the standard map 01: I—* is a
singular 1 -simplex that represents the generator a1 of H1(S'). Hence
h1 may be regarded as the homomorphism induced by sending the
loop is in X (based at x0) to the singular 1-simplex u in X.

Now let be an element of Z1(X), where the are integers
and the A1 are singular 1-simplexes. For each point x e X, choose a
path v(x) from x0 to x, and let be the product path

v(i\(1)) 1

Since = 0, we have = + —

and as in the proof of Theorem 8.2.1 this represents the same element
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of H1(X) as does But the coset = is plainly in
the image of h1, so that h1 is onto.

Since H1(X) is abelian, h1 induces a homomorphism h: itj(X)/[ir, it]
H1(X), and to show that Ker h1 [ii, it] it is sufficient to prove

that h is (1-1). Suppose then that u is a ioop based at x0, and u
in S(X), where are singular 2-simplexes: thus

u = for some r, i, and all other terms in cancel. Now
write

=

b1 =

= .(F'l1) 1 v(A1(O)) 1,

and let . . c1, w = (u,,,)". It is easy to see that
rel 0, 1 (since is contractible), and hence that iv represents the

identity element of irj(X). On the other hand, by 'abelianizing' and
w, we have [u] = [iv] in 7T1(X)J[IT, it]: hence [u] = 0 and h is (1-1). I

In proving the general Hurewicz theorem for CW-complexes, we
shall make extensive use of the fact that the homomorphisms con-
nect the homotopy and homology exact sequences of pairs and triples
in diagrams that commute up to sign.

Proposition 8.3.4 Let (X, Y, Z) be a triple of spaces. Then in the
diagram

I. as
• . Z)—÷ Y) —p

Z) —÷ Y) —+

the first two squares are commutative and the third commutes up to a sign
(— There is a similar result involving the exact sequences of a pair
(X, Y).

Proof The first two squares are seen to be commutative.
As for the third, it is sufficient to prove that the square

Y)
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is commutative up to a sign (—1)". But if f: (X, Y)
represents an element of ir,2(X, Y), Proposition 7.4.11 shows that

is (— times the homotopy class hence

—

= I
We shall prove the Hurewicz theorem by examining diagrams such

as that in Proposition 8.3.4, based on exact sequences of pairs such as
(K's, 1); and in order make this approach work, two lemmas
are necessary.

Lemma 8.3.5 Let (K, L) be a CW-pair, Li: connected. If
rel L, into L; more precisely, there exists a homotopy F: (K" - Li L) x I
—* K" u L, sisch that F is constant on L, F starts with the inclusion
map, and F ends with a map into L.

Proof. Write M" = K" Li L, and consider the exact sequence

.—+ M") _+ irr(M", L) L)

Now for 1 r < n, ir,(K, L) = 0, and also + 1(K, M") = 0 by
Theorem 7.4.17; hence ir,(M", L) = 0 for 1 r < n. The argument
used in the proof of Theorem 7.5.2 now shows that we can construct
F by induction on the skeletons of K. 1

Lemma 8.3.6 If L is connected, and contains all the of K
except for some of dimension n, then L) L) is onto
(n 2). If moreover (K, L) is relatively n-simple, then is an
isomorphism.

Proof. Let the indexing sets for the n-cells of K, L be
respectively. Now, as in Proposition 8,2.9, L) is a free abeian
group with generators in (1-1)-correspondence with the elements of

— If a e — (E", —* (K, L) may regarded
as a map of (I", SI") to (K, L), and if is the base point of L, this is
homotopic to a map (1", 81") (K, L) that sends D"' to this
is proved in Proposition 7.2.15. But then

1. rini — I—

— 1\
—
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which is the generator of L) corresponding to a. Hence is
onto.

If (K, L) is n-simple, consider the composite

(s-)
1) L) H8(K, L),

where is as in Theorem 7.4.15. Now the homology homomorphism
corresponding to is an isomorphism; and

is an isomorphism by Proposition 7.4.13. Hence
is an isomorphism; but by Theorem 7.4.15 is onto (is:

L's) —÷ IT,1(K, L) is onto, as in Theorem 7.4.17). Hence and
therefore are also isomorphic. I

Observe that we may now amend the statement of Theorem 7.4.15(b)
to read: is an isomorphism.

We are now in a position to prove the Hurewicz theorem.

Theorem 8.3.7 Let K be a connected CW-complex, and let L be a
connected subcomplex.

(a) If Ofor I r < n(n 2),
is an isomorphism.

(b) If ir1(K) = 1 r < n
(n 2), then ir8(K, L) —* L) an isomorphism.

Proof. Write M'1 = u L. We first remark that it is sufficient
to prove the theorem with K replaced by in (a), (b),
respectively, since for example if 1: L) —÷ (K, L) is the
inclusion map, the diagram

L)

L) L)
1.

is commutative, and both maps are isomorphic: the lower one by
Theorem 8.2.10, and the upper one by Theorem 7.4.17.

Now consider the diagram

._*. —÷ L) -—-* L) jI,fn)

'liii

...+ —# H71(A171, L) —' L) -÷ M71),

which is commutative, except for a sign (— 1)71+1 in the first square,
by Proposition 8.3.4. Here, 1VV1) = M71) =
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using Theorem 7.4.17, and is onto by Lemma 8.3.6, so that the
second Ii,, will be isomorphic if the first is, by Proposition 1.3.35. That
is to say, we may even replace M" + 1 by M't in (b). A similar argument
shows that we may replace K" in (a).

To complete the proof of (a), notefirst that by Lemma 8.3.5 (with
the base point as L), K"' can be deformed in K", relative to the
base point, to the base point. By Theorem 7.3.19 this homotopy can be
extended to a (based) homotopy between the identity map of K" and
a map f: K" -÷ K" that sends to the base point. The map f
induces g: —* K", such that if p: K't—÷ is the
identification map, gp 1. This means that there is a commutative
diagram

n.,,(K")

"$1
—k H,,(K"),

where = 1, so that is (1-1) and is onto. But by Lemma
8.3.6 (with L = base point), —÷ is
isomorphic: hence is both (1-1) and onto.

It remains to prove (b). In the diagram

ir2(L) 1T2(M2) ir2(M2, L) -----f 0

ha,j

• . . H2(L) 112(M2) ---+ 112(M, L) 0,

the first two maps are isomorphic by cast a), since ir1(M2) = =
0 by Theorem 7.4.17 (and 111(L) 0 by Theorem 8.3.3). Hence
h2: ir2(M2, L) H2(M2, L) is by Proposition 1.3.35,
and this proves (b) in the case a = 2. More generally, consider the
following diagram, which is commutative up to a sign — 1)" in the
third square.

-1, L) —÷ )LJn—1) 1) —*

hN.t .lhl.t

If n 3, then M"') M't') is isomorphic by
Lemma 8.3.6, sii'ice = 7r1(K) = 0, and so (M", M"1) is
relatively n-simple (we cannot use this argument for a 2, since
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may not vanish). But 0 by Lemma 8.3.5, so that at least
L) —÷ L) is (1-1). Similarly, is (1-1), and then

Proposition 1.3.35 shows that therefore L) —÷ L)
is isomorphic. And we have already seen that this. is sufficient to
prove (b). I

Example 8.3.8 If p, q > 1, then x = ir1(S' V = 0.

Also, x v = 0 for r <p + q, by Theorem 7.4.15.
Hence

si' v V SQ)

and so we can add to Example 7.4.16 the result

v Z. I
The Hurewicz theorem itself can be used to establish the following

alternative form of the hypotheses.

Corollary 8.3.9 Let (K, L) be as in Theorem 8.3.7. Then

(a) If n1(K) = 0 and Hr(K) = Ofor r < n (n ? 2), then
-* is an isomorphism.

(b) If ir1(K) = ir1(L) = 0, and HT(K, L) = 0 for r < n (n 2),
then hft: L) -÷ L) is an isomorphism.

Proof. In (a), since ir1(K) = 0, we have ir2(K) = J12(K) = 0.

Hence ir3(K) = 113(K) = 0, and so on: in fact ir,(K) = 0 for r < n.
Similarly, in (b) ir2(K, L) = H2(K, L) and so on: hence ir,(K, L) 0

for 1 r < n (ir1(K, L) = 0 anyway, by the exact homotopy
sequence). I

One of the most useful corollaries of the Hurewicz theorem is a
version of the Whitehead theorem involving homology rather than
homotopy. Theorem 7.5.4 is all very well, but as a means of proving
that two given CW-complexes are homotopy-equivalent, it is only of

interest, since we would at least need to know ill the
homotopy groups of the two complexes. However, the following
version is of much more practical use, since it is often quite possible to
calculate all the homology groups of a CW-complex.

Theorem 8i.10 If K and L are connected CW-complexes, such
that ir1(K) = ir1(L) = 0, and f: K -+ L is a based map such that
f*: -÷ is isomorphic for all ii, then f is a (based) homotopy
equivalence.
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Proof. By Theorem 6.5 .5,f is the

where M is the mapping cylinder off, g is an inclusion, and /lls a
homotopy equivalence. Now by Theorem 7.5.7 we may as well assume
thatf is a cellular map, in which case it is easy to see that M is a CW-
complex. For if we write 21? for the space obtained from L and K x I
by identifying (k 1) withf(k) for all k e K, then M is a CW-complex,
whose cells are those of K x I — K x I and L: properties (aHd) of
Definition 7.3.1 are clear, and (e) follows since a (closed) cell of K x I
is contained in a subcomplex with a finite number of cells in K x land
L, the latter since the part of the boundary of the cell lying in L is the
image under f of the part lying in K x 0, and is hence compact.
Hence (provided the base points of K and L are 0-cells) M is also a
CW-complex, by Theorem 7.3.13.

Since Ii is a homotopy equivalence it induces isomorphisms in
homology, and so -+14(M) is isomorphic for all a. By
the exact homology sequence, H,(M, K) = 0 for all a, and so by
Corollary 8.3.9 ir1(M, K) = 0 for all a, since ir1(M) = ir1(L) = 0. So
by the exact homotopy sequence, g,,,: —* is isomorphic
for all a, and hence by Theorem 7.5.4 g is a homotopy equivalence.
Hence so also 1sf = hg. I

Of course, if / induces homology isomorphisms in each dimension,
but is not a based map, it is easy to construct a homotopic based map
by using Theorem 7.3.19, since L is path-connected. Thus the word
'based' can be removed from the hypotheses of Theorem 8.3.10,
provided it is also removed from the conclusion.

A particular case of Theorem 8.3.10 is

Corollary8.3I1 IfKuacounectedCW-complex, mad ir1(K) 0.
fI,(K) Ofor all a, then K is contractible,

Proof. By Theorem 8.3.10, the map that sends K to a single
is a homotopy equivalence. I

Example 8.3.12 The reader is warned, however, that 17(K) may
be zero for all a, without K being contractible. For example, consider
the space X constructed in Example 3.3.22; this is certainly a connected
CW-complex, since it is triangulable. To calculate let T be
the maximal tree consisting o(the 1-simplexes (a°, p1), (a°, a2), (a0, a3)

and (a°, a4); since T is contractible, by Corollary
6.2.7. Now X/T has a CW-decomposition with one 0-cell a°, six
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1-cells a,..., and six 2-cells A, .. ., F; and since ir1(X) becomes
zero on abelianizing, H1(X) = H1(X/T) = 0. Thus B1(C(X/T)) =
Z1(C(X/T)) = C3(X/T), since b: C1 C0 is clearly zero; and this
implies that C2 —p- C1 must be aU isomorphism, since 0 is onto and
both C2 and C1 are free abelian with six generators. Hence H2(X) =
H2(X/T) = 0, and of course = 0 for n > 2.

On the other hand, X cannot be contractible since ir1(X) is
non-trivial. •

Example 8.3.13 As an example of the use of Theorem 8.3.10 to
show that two non-contractible CW-complexes are homotopy-
equivalent, we shall prove that a simply-connected homology 3-
manifold X is homotopy-equivalent to S3.

Now since = 0, 111(X) = 0 and so H1(X; Z2) = 0 by
Theorem 4.4.15. Thus by Corollary 5.3.18 Xis orientable. Moreover
H'(X) = 0 by Proposition 5.2.17, so that by Theorem 5.3.17
H2(JC) = 0. Finally I!3(X) Z since X is orientable.

It follows that ir2(X) = 0 and 7r3(X) Z. Let f: S3 —* X be a
map representing a generator of 1r3(X), so 173(S3) —* ir3(X) is an
isomorphism. Hence, since = and is an isomorphism for
both S3 and X, 113(S3) -÷ Y3(X) is also isomorphic. All other
reduced homology groups of S3 and X are zero, so that f induces
isomorphisms in homology in all dimensions. Hence, by Theorem
8.3.l0,f is a homotopy equivalence, since = 7r1(X) = 0. I

The Poincaré conjecture can thus be restated for 3-manifolds in the
form: a simply-connected 3-manifold is homeomorphic to S3.

8.4 Cohomology and Eilenberg—MacLane spaces

In this section we shall see how, for CW-complexes at least,
cohomologv theory can be fitted into the general scheme of Chapter 6.
rfhis will be done by showing that, for any CW-complex K and
abelian group G, the group I?1(K; G) can be identified with the group
of homotopy classes [K, K(G, n)], where K(G, n) is a CW-complex
with the pfoperty that

n))

Indeed, if (K, L) is a CW-pair the exact (reduced) cohomology
sequence of (K, L) can be identified with the corresponding exact
sequence of groups of homotopy classes, obtained from the pair
(K, L) as in Corollary 6.5.3.
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It will be seen that this approach is capable of generalization. For
we could replace the spaces K(G, a) by a different set of spaces
indexed by the integers, and thus obtain a 'cohomology theory',
defined for CW-complexes, with the same formal properties as
ordinary cohomology; indeed, the only virtue of the spaces K(G, a)
is that they are the particular set of spaces that happens to give
cohomology groups that coincide with the ordinary (singular) cohomol-
ogy groups. Since these more general cohomology theories have been
much used in recent years, and are no more difficult to describe, we
shall start by considering them, and will specialize to ordinary
cohomology afterwards.

In fact if we wish to retain the exact sequence property' for these
general cohomology theories, the spaces K(G, a) must be replaced,
not by any set of spaces, but by what is called an .Q-spectrum.

Definition 8.4.1 An Q-speclrum E is a sequence of based spaces
one for each integer a, together with based weak hornotopy

equivalences ,,:
Given an Q-.spectrum, it is very easy to define the associated

cohomology theory. What we should like to do is to define the co-S
homology groups of K associated with the Si-spectrum E by the rule
H"(K; E) = [K, Es); but since may not be an AHI this may not
be a group. However, if K is a CW-complex, then by Corollary 7.5.3
Efl induces a (1-1)-correspondence [K, E,.j —÷ [K, ii. The
latter set is a group, and hence the former set can be made into a group
by requiring that should be an isomorphism.not merely a (1-1)-
correspondence; we shall call this the multiplication in [K,
induced by

Definition 8.4.2 Given an Q-spectrum E and a CW-pair (K, L),
the cohomology groups of (K, L) associated with E are defined by

L; E) = [K/L, E,j, with multiplication induced by We
write H*(K, L; E) = L; E).

The corresponding non-relative groups are defined by

H"(K; E) = 0 ; E), fi"(K; E) = k0; E),

where k0 is the base point to be a 0-cell). Observe that
H"(K; E) = [K +, the set of unbased homotopy classes of maps of
K into and E) = [K, E,j.

Proposition 8.4.3 The groups H"(K, L; E) (and hence also
E), E)) are all abelian.
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Proof.

L; E). [K/L,

[s(KfL), by 6.3.29,

[s(K/L), by Corollary 73.3,

[K/L,

which by Corollary 6.3.26 is an abelian group. I
It is easy to check that the cohomology groups associated with E

have all the expected properties.

Theorem 8.4.4 if (M. ) is another CW-pair, a mapf: (K, L)
(M, N) hun. 'Plurp/wms N; E) —* L; E),
with the

(a) 1ff is the •fi is the identity isomorphism.
(b) If g: (M, \ ) s another map, (gf)* = f*g*.
(c) If f' f: .V) (a.c a map of pairs), then (fl)* = f*.

Moreover, there exist homomorphisms — 1(L; E) -•+ L; E),
E) —÷ L; E) such that the sequence

I. (S

L; E)---÷

and the twesponding sequence of reduced cohomology groups, are exact:
a m4p f: (K, L) —p- (M, N) gives rise to commutative diagrams of exact
sequences. Finally, if L and M are subcomplexes of K, such that
L u M = K, then the 'exwion homomorphism' i*: L; E) —+

L M; E) is an isomorphism for all n.

Proof. Let f* be the function 1*: [M/N, (K/L, E,j, as
defined in Theorem 6.3.4. Since the group structures are defined by
replacing by + 1 is a homomorphism; and properties
(a)—(c) follow immediately from Theorem 6.3.4.

E)—* H"(K, L;

[L, [L, QE,j < [sL, Eft] [K/L, Es],

where is the isomorphism of Corollary 6.3.29, and is in
Corollary 6.5.3 (the sign (— is introduced to make the analogue
of Corollary 8.2.7 hold). This is a homomorphism, since by Corollary
6.3.26 the two possible group structures in [L, 1)] coincide.
Since

— is therefore an isomorphism, Corollary 6.5.3 shows that,
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in the reduced cohomology sequence, Im = Kerj*, and, of course,
Imj* = Ku j*; moreover Im = Ker since the

[K, — [K, QE,J a [sK, E,j

[L, [L, QE,J [sL,
a

is clearly commutative. That a map f: (K, L) —- (M, N) gives rise to
commutative diagrams of exact sequences follows at once from
Corollary 63.3.

The definition of and the exactness of the cohomology sequence,
in the case of unreduced cohomology, fo.llow immediately on replacing
(K, L) by (K (the 'extra point' being the same for both K and
L), since K = K/L. Observe that a similar trick yields the exact
cohomology sequence of a triple (K, L, M), since (K/M)/(K/L) =
L/M.

Finally, the excision homomorphism is isomorphic because K! L
and M/(L M). are clearly homeomorphic. I

Notice also that, if we define the suspension isomorphism
s*: fl"(sK; E) R"'(K; E) to be the composite

[sK, [K, .QE,J * - (K,
—

then

(a) iff: K -+ L is a based map, f*s* = s*(f A ,1)*;
(b) if. (K, L) is a CW-pair, = U"(sL; E) ...÷

H'(K, L; E).

The exact cohomology sequence allows us to prove the following
generalization of a result in Example 4.2.12.

Corollary 8.4.5 JP(K; E) !P'(K; E) E).

Proof. k0 be the base point of K, and consider the exact
cohomology iequence of the pair (K, k0):

•—+ k0; E) E) H"(k0;

Ifp: K—. k0 is the constant map, pi = I: k0 -+ k0, so that i*p* 1.

Thus by Proposition 1.3.36,

E) k0; E) e E);

but k0; F) = F) and H"(k0; F) = Rht(50; E). J
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For a general Q-spectrum E, there is no reason why the groups
E) should vanish if n 0. In fact it is easy to see that a

necessary sufficient condition for this to happen is precisely that
the homotopy groups of should vanish in dimensions other than
n. This brings us back to the particular case in which we are most
interested, where each is an Eilenberg—MacLane space. We now
give the precise definition and existence theorem.

Definition 8.4.6 Given an integer n 0 and an abelian group G,
a CW-complex K is called an Eilenberg—MacLane space K(G, n) if

rG,
- otherwise.

If n 0, we require only that ir0(K) should be in(l-1)-correspondence
with G, and we may take K(G, 0) = G, with the discrete topology.

Theorem 8.4.7 For any n I and any alielian group G, K(G, n)
exists.

Proof. We first construct a CW-complex B such that

CG, r=n
r<n,

and then use Theorem 7.5.9 to 'kill' the highçr homotopy groups.
Write C = FIR, where F is a. free group aud R is a subgroup (for

example, F may be the free group with the elements of G as genera-
tors). Let A = one for :each generator a of F, and define

F -+ by 0(a) = —÷ A is the inclusion map
onto S. For each element let S" —÷ A be a map represent-
ing 8(x) E let B be the. space obtained from A by attaching
(n + 1)-cefls by the maps one for each element x e R. Then
certainly B is a CW-complex, andit is easy to see that = 0 for

- r < n. Moreover, there is a commutative diagram

—+ 0

A) —* —+ 0,

where is the Hurewicz homomorphism. Now if ii 1, ir1(A) F
and h1 is the quotient homomorphism onto F/[f, F]; otherwise, if
n > 1, —* is isomorphic and F/[F, F].
Further, A) is the free abelian group on the
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elements of R as generators, and sends each generator to its coset in
F/[F, F), so that F/R = G. If n > 1, is
an isomorphism; so that G as well; if ii = 1, we at least know
that h1i11, = i*hi: ir1(A) 111(B) is the quotient homomorphism
F —* FIR, so that Ker [1*: rr1(A) —* ir1(B)J is contained in R: however,
i*O(x) = = 0 for all x e R, since S1 B extends to a map
of E2. Thus in all cases G.

The proof is now completed by using Theorem 7.5.9 to 'kill' the
homotopy groups of B in dimensions greater than n.

Corollary 8.4.8 Given an abelian group G, there exists an
E with

E — fK(G,n), n? 0
— 1,poin:, otherwise.

Proof. Define to be a point or K(G, n) as the case may be; we
have only to construct the weak homotopy equivalenc -+

Since Q(point) = (2K(G, 0) = point, the only possible map
—÷ + is obviously a weak homotopy equivalence if n < 0,

so that in fact it is sufficient to consider only the case n ? 0.
If n = 0, note that

ir,(QK(G, 1))

Thus the map e0 that sends each element of G = K(G, 0) into the
corresponding path component of £�K(G, 1) is a weak homotopy
equivalence.

If * ) 1, construct K(G, n) as in Theorem 8.4.7, and define
f: A -÷ DK(G, n + 1) by mapping each by a representative map
for the coset of a in FIR n

n + 1)) is just the quotient map F -÷ FIR (F/[F, F]
FIR if n > 1). Each (ii + 1)-cell E*41 of B is attached by a map
that represents an element x of R; thus each

map to a map g: B QK(G, n + 1).
Since f* n + 1)),

n + 1)) is an isomorphism. Finally, K(G, n) is obtained
from B by attaching cells of dimension at least (n + 2), so that, since.

n + 1)) = 0 for r > n, g can be extended to a map e,, of
the whole of K(G, n), that still induces isomorphisms in and so
is a weak homotopy equivalence. •

It remains now to prove that, if (K, L) is a CW-pair, then the
groups H"(K, L.; E) are isomorphic to L; G), where E is
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Q-spectrum of Corollary 8.4.8. In fac' rather more than this is true:
the definitions of induced homomorphisms and the exact sequence of a
pair, given in Theorem 8.4.4, coincide with those of Chapter 5.

The proof of these results is similar to that of Theorem 8.2,15, and
depends on the following proposition.

Proposition 8.4.9 Let (K, L) be a C W-pair, G be an abe/ian group,
and E be the £2-spectrum of Corollary 8.4.8. There is a homomorphism
fi: L; E) L) G, with the following properties.

(a) Given a map f: (K, L) (P, Q), the diagram

Q; E) ÷ H"(K, L; E)

Q) ..h G L) ,k G

is commutative.
(b) The diagram

I?"(sK; E) E)

is commutative.

Proof. Represent an element XE L; E) by a map e: K/L
K(G, n), and let s(K/L) —*. K(G,n + 1) be the map that corresponds
under the association map to K/L —+ QK(G, ,z + 1). Now
define

= -+

where ii + 1)) is identified with G via the Hurewicz
isomorphism

+ + 1)).

The proof that is a homomorphism is like that of Proposition 7.4.1:
if y e H"(K, L; E) is represented by s(K/L) K(G, + 1)
x + y is represented by the composite

s(K/L) s(K,'L) v s(K/L) K(G, n + 1),
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so that

fl(x + y) = (V(E v

= +

= fl(x) +

Property (a) is easy, sincef* corresponds to

(1 A 1)*: [s(P/Q), K(G, n + 1)] —* [s(K/L), + 1)];

hence

A

= A

=

To prove property (b), we first uLserve if x e R"(sK;E) is
represented by sK —÷ ti), then fl(x) =

n)) G (n ? 1). For 'i(sK) K(G, n + 1) is the same
as the composite

s(sK) . sK(G, n) K(G, n + 1),

where corresponds to Efl under the association map. Hence

= A

=

But if 8: ,z)) —+ n + 1)) is the homomorphism
defined by sending the homotopy class of g: K(G, n) to

A 1)], there i.i a commutative diagram

n

n + 1)).

However, 0 is the same as the homomorphism that sends [gJ to the
class of the map corresponding under the association map to and
this is the identity isomorphism of G. Hence = I and =
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Now if eR" 1(K; E) is represented by K—* K(G, n —1), we have
= so that

!gs*x =

=

= I

Theorem 8.4.10 With the notation of Proposition 8.4.9, there ss
an stcomorphism y: L; E) -+ H"(K, L; G), with the following

(a) Given f: (K, L) —* (P, Q), the diagram

Q; E) !...* H"(K, L; E)

Q; G)

is commutative.
(b) The diagram

...÷fl"-'(L; E) L; E) Ø"(L; E)-÷..

11 lv j1v

H"(K, L; Tht(L; G)—÷...

is commutative.

Proof. We show first that H *(K, L; E) can be calculated from the
chain complex D(K, L), defined by L) = E)
(and u and then show that the homomorphism fi of
Proposition 8.4.9 yields a chain isomorphism

D(K,L)-÷C(14L)hG.

Now the argument of 8.flO will certainly show that,
ti"(M', L ;. E) H.. L))1!r all p > n, but once again a special
argument is needed to show that + L; E) H"(I(, L; E).
This time, however, it is sufficient to remark that, for any CW.
complex K, a map f: —* K(G, n) can be extended over th
remaining cells of K, since n)) = 0 for r > n, and
the homotopy class of such an extension depends only on that of f.

By properties (a) and (b) of Proposition 8.4.9, and Corollary 8.2.7,

D(K, L) -+ C(K, L)h G
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is certainly a chain map. But in fact is a chain isomorphism, since

If a(Mn, M"1; E) K(G, n + 1))
G

C
C.

Hence induces an isomorphism y: L; E) L; (3).
Propetty (a) follows from Proposition 8.4.9(a) and the argument

used to prove Corollary 8.2.11, at least if f: (K, L) -÷ (P, Q) is a
cellular map. But since by Theorem 7.5.7 any continuous map is
homotopic to a cellular map, property (a) immediately extends to any
Continuous map. As for property (b), we need only consider 8*, and
by the analogue of Corollary 8.2.7 it is sufficient to show
that the diagram

I1*(sK; E) E)

ij,

1?"(sK; C) G)1'
is commutative. But this follows from Proposition 8.4.9(b) in the same
way that (a) follows from Proposition 8.4.9(a). •

8.5 Products
It has already been hinted, at the beginning of Chapter 5 and

elsewbere, that cohomology theory has a real advantage over homology
theory, in that it is possible to introduce products, so as to make
the direct sum of the cohomology groups into a ring. This makes
cohomology a more delicate algebraic invariant, which will often
distinguish between spaces that have isomorphic homology groups.

It is possible to set up the general theory for the (singular) cohomo-
logy of arbitrary topological spaces (see the notes at the end the
chapter). However, it appears more illuminating—and it is certainly a
good deal easier—to confine attention to CW-complexes and make use
of the 'cellular chain groups' of Section 8.2. The product will be
defined by a set of axioms; and since these axioms are just as easy to
state for a general cobomology theory, we shall give the definition in
terms of the cohomology theory associated with an arbitrary Q-
spectrum E.

Since the axioms involve the cohomology groups of a product of two
CW-complexes, it is convenient to use the products and in
order to ensure that all products are again CW-complexes.
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Definition 8.5.1 Let E be an Q-spectrum. In ,tJ'
theory associated with E, a product is a set of

for all integers r, s and all (based) mplexes K, L (we shall write
X A y for A (x 0 y)). These homom' . phisms are required to satisfy
the following four axioms.

Axiom 7. Given based maps '.K -+ M, g: L N, the following
diagram is commutative:

R'(M; E) ® fls(N; E) _L N; E)

+ +

E) 0 R'(L E) L; E).

Axiom 2. The product is associative, that is,

A(AØl)= A(1®
L ?. M;E).

Axiom 3. The product is anti-commutative, that is, if x flT(K; E)
andy e E), then x A y = (— l)TLr*(y A x), where K L
L 7c K is the map that exchanges the two factors.

Axiom 4. There exists an element z E fl'(S'; E) such that, for
each x e K; E), s*(x A z) = x.

Of course, by replacing K, L by K L we obtain a product in
unreduced cohomology, of the form x : H'(K; E) 0 H 8(L; E) -+

L; E); again we write x x y for x(x Oy). This product
satisfies axioms similar to Axioms 1-4 above; in particular, the
analogue of Axiom 1 holds for w,based mapsf and g.

Moreover, Jy taking K = L and using the diagonal map 4: K —*
K K, 17*(K; E) can be made into a ring. As has already been
suggested, this is the real object in introducing products.

Theorem 8.52 If K is a CW-complex, a product A induces a
product between elements x, y R(K; E), written x u y, in such a way
as to make fl(K; E) into a ring. Moreover, the following properties
hold:

(a) If x E E) andy e fl'(K; E), then x uy E)and
xLJy (—1)T3yUx.

(b) 1ff: K L is a based map, then f*is a ring hcmomorphism.
(c) All products are zero in R*(sK; E).
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Proof. If E) andy e R8(K; E), define
xuy _4*(x
A this is distributive and associative, and remains

so when the product A is extended in the obvious way to more
general elements of R(K; E): hence fJ*(K; E) is a ring. Properties
(a) and (b) are immediate from Axioms 1 and 3, since i4 = 4 and

To prove (c), we have only to remark that 4: sK -+ sK 7ç sK is the
same (up to rearrangement of the factors) as 4 A 4: K A S' —+
(K ?ç K) A (S' A S'); but this is homotopic to the constant map,
since iv1(S" A S1) = ir1(S2) = 0. I

Naturally we can replace K by K so as to obtain a similar product
jj E), and then any unbased map f: K —* L induces a ring
homomorphism.

Theorem 8.5.2 shows why it is cohomology, rather than homology,
that can be made into a ring. The point is that the diagonal map
induces a homomorphism 4*: R*(K K; E) -+ fl*(K; E) in co-
homology, but goes in the opposite direction in homology, and so
cannot be used to form a product.

The next step is to justify Definition 8.5.1 by showing that there
exists a product in ordinary cohomology. We use the results of
Section 8.2 (ili par'icular Theorem 8.2.15), and the first step is to
construct a homomorphism ((K) ® C(L) —÷ C(K L) for any two
CW-complexes K and L. Let the indexing sets and characteristic maps
for K, L be B, respectively. By Theorem 7.3.16, the
indexing sets fot K c L are C,1 = U x B8, and the character-

r + s 11-

istic maps are x where h,3: E
x : ® C1(L) —*

C1+8(K 1.) may therefore be defined by setting x (cc ® g9) =
a x where the generators of, for example, are identifie4 with
the elements of Ar as in Proposition 8.2.12.

8(axP)=&cxfl+(—1)"axøP.
Proof. For each v x 8 in Cr + s-i' considef the composite map

as in Proposition 8.2.12:
h,,, S'1 x u Er x

R L1 UK? Li-i
K"-2 I) uK"-1 L'-1 U R L1-2

V
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This is clearly the constant map unless y x S e x B1 U
A,. x B1_1, and is homotopic to the constant map (since it is not onto)
unless y x S is of form y x or a x 8. On the other hand, by Prop-
osition 7.3.21, daxø.yxfl is the composite

a—i h,,
A 7 (L8/L1—')

V A (Eh/SI_l)

V (Et+1_u/ST+1_2)

may be assumed to be a based map if r > 1,
by choosing a suitable base point in If (\
K'2 = 0, both da a,,. 8and da. .

are homotopic to the constant map,
since they are not onto. The case r = 1 is discussed below.)

Now this composite is the same as

) ST_i A
dqyAi

> A

9A1
A (E5/S'—')

6

But by Proposition 6.2.16 this is homotopic to

5r+s—i A (E8/S1—1)

A

where is a homotopy inverse to thus, as in Example 7.4.10,
-

If r = 1, the above argument dces not work, since it is not possible
to make S° —* K°/K -1 + into a based map. However, the
reader should have no difficulty in making the necessary modifications
to deal with this case: the space S° A should be replaced by
(S° x E8)/(S° x SI-i).

A similar argument shows that = (_ so that in
C(K L) we have a(cz x = &c x + (— 1)'a x I

Notice that, since the obvious homomorphism

C,(K) 0 C5(L) -÷ L)

is clearly an isomorphism, Proposition 8.5.3 can be used to give a
formula for the homology groups of K L in terms of those of K and
L: see Exercise 9.
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Proposition 8.5.4 Given cellular mapsf: K -* M, g: L N,

(f x = (fa) x

Proof. By similar methods to those in the proof of Proposition
8.5.3, it is easy to see that (f g)axp.yxo may be identified with

A gao: 5$ 5? A S'. But

A g86) A 1)d(1 A gao)

= d(fgy)d(g06),

by Example 7.4.10. Hence

(f fi) = d((J x x oXV 8)

= x 8)

=
x d(gpo)8)

= (ffi) x (gft). I

By composing with the identification map p: K R L —÷ K L, the
homomorphism can be turned into a homomorphism into
C(K L) (at least if the base points are 0-cells); more precisely,
define

A C(K) 0 C(L) -+ C(K 7.: L)

by a A = x fi). Naturally, the analogues of Propositions
8.5.3 and 8.5.4 remazn true, since is a chain map.

Theorem 8.5.5 If G is a commutative ring with a 1, there exists a
product ut the cohomology with coefficients in G of CW-complexes.

Proof By interpreting C(K) as C(K, 1e0), where k0 is the base
point, the homomorphism A may be regarded as an isomorphism

A: $ C,.(K) 0 L),

where ø(a A fi) =(aa) A +(_l)Ta A IfGisa
commutative ring with a 1, this gives rise to a homomorphism

G) ® 7L)ik G

as follows. Let be the indexing sets for the r-cells of K and the
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s-cells of L, respectively. If x: C,(K) —* G and y: G, define
x A y on the generators of C1+3(K L) by the rule

(x A y)(a A fi)
= a eAr, B3

otherwise.

+ q = r + s + 1. IfwewriteS
for 1, then

[8(x A y)](a A = (x A y)[a(a A

= (x A y)[(&r) A + (— 1)Pa A

1x(da).y(P), p = r + 1, q = s
p=r,q=s+ 1

otherwise,

so that 6(x A y) = Sx A y + 1)'x A It follows that if rSX =
.= 0, then A y) = 0; if x = 6x', Sy = 0, then x A y =

A y); and if 8x = 0, y = Sy', then x A y = (— 1)'6(x A y').
'1 if [x] denotes the homology class of the cycle x, we can define

n G) G) I7t+$(K L; G)

unambiguously by [x] A [y] = [x A y).
It remains to check Axioms 1—4.

Axiom 1. Without loss of generality We may thatf andg are
cellular. In this case (f A fi) = A (gfl) by Proposition
8.5.4, so that Axiom I follows since g' and (f g) are irrduced

1, 1 and (f g). K 1 respectively.

Axiom 2. This is trivial, since (a A y = a A (fi A y) in
£ M).

Axiom 3. By Example 7.4.9, the map S' A S' -÷ S' A S3
that exchanges the two factors has degree (— 1)". Thus if we write
also for the 'exchange map' r: L K—+ K L, it is easy to see that

L)

is given by A a) = (— 1)'t(a A if a C,(K) and C,(L).
Hence in cohomology r*(y A x) = (— 1)'t(x A y), since G is com-
mutative.

Axiom 4. It is easy to see that s: C) —+ fi'(K; G) is
induced by = R(Mn/MT_1) -+ •=

where M' = K' u k,. Now for a CW-complex X,
is (— 1) times the composite X'
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Fl 41(sX), and if X is a one-point union of (for example if X =
M'/M'-1), then the r-skeleton of cX is X, so that this composite may be
identified with

Cr(X) = C,(cX) C,+1(cX)

Now if I denotes the obvious 1-cell of I, then = I — 0 in C(I);
hence if a E C,(X) we have a(cc A I) = (— in C(cX). That is,
s*: flr(X) is given by sending a to a A where

= p.(I) E C1(S1). It follows that, if z fl1(S'; G) is the class of
the homomorphism C1(S') —k G that sends to 1 in G, then for
xeflt(K;G)wehaves*(x A z) = x.

Of course, the corresponding product in unreduced cohomology is
induced by the homomorphism

x :C(K)® C(L)-÷C(K L).

It can be shown that Axioms 1—4 characterize the product uniquely,
if G is one of the groups Z or see Exercise 12.

We have now set up the theory of products in cohomology, and
certainly two bomotopy-equivalent CW-complexes will have ring-
isomorphic cohomology rings. In order to apply this theory in practice,
however, we clearly need an effective method of calculation. This
reduces to a calculation of the cohomology homomorphism induced by
the diagonal map 4: K K K (in the case of unreduced cohomol-
ogy). It is not very easy to do this for arbitrary CW-complexes, but
if K is a polyhedron there is a simple formula for a chain map

d:C(K)-*C(K x K)
that induces the same homology and cohomology homomorphisms as
4 (we may now write x rather than , since obviously a polyhedron is
a countable CW-complex).

Let K be a simplicial complex, which by Proposition 7.3.2 is also
a CW-complex. Moreover Proposition 4.4.21 ehows that we may
identify the simplicial chain complex C(K) with the cellular chain
complex Suppose that the vertices of K are totally ordered, as
a° < a' a2 •, say.

Theorem 8.5.6 For each n 0, defined: Cft(K) -÷ K x K
by

d[a'o, . . ., [do, . . ., x [di, . . .,

where i0 <..< Then d u a chain map, and induces the same
homology and cohomology homomorphisms as 4.
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Proof To show that d is a chain map, observe that

• . ., a"]
= TO . .

., a!] x [a!, . • ., a"] + (.— 1)t[aO, . . .,

x a[aT,. . .,

( — . . ., • . ., a!] x [ar, • . •, a"]
r=O

+ (— 1 . • ., a! x [aT, . • ., a"]

+ (— . . ., a"] x [a!, . . ., d,.. ., a"]
s=r+1

+ . . ., a!] x • • •, a*j)

= da[a°,. . ., a"].

The rest of the proof consists in constructing a chain homotopy h
between d and 3, where a cellular approximation to 4. This will
show that = and dually h 1 will be a chain homotopy between
d ih 1 and J 1, so that d* = 4". To construct h, note first that we
may assume that, for each simplex a of K, 4(a) c a x a. This follows
by induction on the dimension of a: in constiucting Jby the method
of Theorem 7.5.7, assume that 4 has been constructed on IK"11
with the homotopy F between 4 and 4 sending a x I into a x a for
each a 6 K"' (this is certainly possible if n = 1). Then F can be
extended to K"I x I, with the same property, since

x a, (a x a)") = 0.

We can now construct h on by induction on n. Suppose that
h: x IKI) has been defined, such that

øJi(cr) + = — d(a),

and h(a) 6 x a), for all (n — 1)-simplexes a. This can certainly
be done for n 1, since = d on C0(K) and we may define
Ii = 0: CO(K) —÷ C1(IKJ 1K I). Now if a is an n-simplex, /z is
already defined on a(a), and

a[—lu&(a) + 4(o) — d(a)] = + —

— + dø(a)

+ —

=0.
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But — + a(0) — d(o) is an element of x a), and a x a is
contractible, so that x a) = 0 (n 1).. Hence there exists an
element h(a) E x a), such that

011(a) + 110(a) = 4(o') d(a),

as required. I

Corollary 8.5.7 The ring structure in H*(K; G) is induced by a
product

U: G)Ø(C,(K)th G,

where if x G, y e C3(K) G, and (a0,. .., a' + 8) is an
(r + s)-simplex with its vertices in the correct order, we have

(x LI y)[a°, .. ., a' + = xta°, . . ., y(if,.. ., a' + •

Corollary 8.5.8 If JKI is connected, 1 e H°(K; G) G acts as
an identity element for H*(K; C). I

Theoretically, Corollary 8.5.7 gives all the information necessary to
calculate the product in H*(K; C). However, as we saw in Chapters
4 and 5, it is much too laborious in practice to use the individual
simplexes in making calculations with homology or cohomology.
Since it appears difficult to give an analogue of Theorem 8.5.6
involving a block dissection or CW-decomposition of K, we cannot
hope to improve on Corollary 8.5.7 in general; but tf IKI is a homology
manifold, the ring structure in H*(K) can easily be computed by
relating it to the Poincaré duality isomorphism.

Theorem 8.5.9 Let K be a triangulation of an orientable homology
n-manifold, and let H'(K') —÷ be the Poincare duality
isomorphism. Then if x e H'(K'), y e we have

Ei(x u y) = <x, Dy>ho,

where is the homology class of any vertex of K'.•

Proof. As remarked after Theorem 5.3.17, is given at chain level
by = x n where x e C(K') Z and z is the sum
of all the n-simplexes of K. Here, the definition of x ri involves
an ordering of the vertices of K', which we assume done in such a
way that & < if dim a > dim r. Using the same ordering to give the
ring structure in if x e .+. Z, y e Z, and
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(a0, . . ., a") is an n-simplex of K' with its vertices in the correct
order, we have

(x LI [a°, . . ., = [a°].(x uy)[a°, . . ., a")
- = [a°] . x[a°, . . ., at).

y [a°, .. .,

It follows that (x u y) ç6(z) = <x, y ç6(z)'>[a°], so that, passing to
homology classes, we have D(x LI y) <x, D(y)>ko. •

The same argument shows that a similar formula holds using Zm or
Q coefficients instead of Z, and (with Z2 coefficients only) if K is
non-orientable.

Examples 8.5.10

(a) We know that RP" is a homology n-manifold, and that
Z2) H'(RP"; Z2) Z2 if 0 r n. Moreover the CW-

decomposition of RP" given in Examples 7.3.3(c) show8 that, if
1: RP"—1 —÷ RI"' is the inclusion map, H7(RP"1; Z2)

is isomorphic for 0 r n — 1; similar remarks apply
to cohomology.

Let x be the generator of H'(RP"; Z2) corresponding under the
inclusion map to a choice of generator of H'(RP1; Z2); we shall show
that x', the r-fold product of x with itself, is a generator of HT(RP"; Z2),
0 r n. For suppose this is true in (it is certainly true in
RP'). Then by Axiom I of Definition 8.5.1 xT is a generator of
Ht(RP"; Z2) for 0 r n — 1. Moreover by Theorem 8.5.9

1Y(x") = D(x Li

= <x,

But <x, D(x"')> = I by Proposition 5.2.11, since D is an isomor-
phism, so that x" 0 and therefore is a generator of H"(RP"; Z2).

In other words, H*(RPn; Z2) is isomorphic to the polynomial
algebra Z2[x], subject to the relation = 0.

(b) To deduce the ring structure of H(CP"; Z2) and H*(HPI;Z2)
we make use of a cellular map C: RP2" -+ CI"', defined by

c(x1, .. ., = [x1 + i:c2, .. ., x2,,_1 + x2,,+1]

(this is easily seen to be well-defined and continuous). If
J?J)2* and CP"1 -+ CI" are the inclusion maps1 then
and if c': -+ CP"' is defined by

c'(x1,. . ., x2,,] = [x1 + ix2, . . ., x2,, —] +
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then there is a commutative diagram -

RP2" -1 RP2"

IC

C?"-' Cl's

where PR and Pc are the beat product maps as in Chapter 7, Exercise
19. It follows easily that —÷ is an isomor-
phism, and hence that c: C2T(RP2") is isomorphic for

Thus c*: Z2) —a- H2'(RP25; Z2) is isomorphic for 0
r n; and if y E Ha(CF1; Z2) is the generator such that c*(y)
then c*(yr) = x2T. Hence yt generates H2T(CP"; Z2), and so
H*(CP"; Z2) is isomorphic to Z2[y], subject to the relation yhlfl 0.

A similar argument shows that H*(HP"; Z2) is isomorphic to
Z2[z], subject to z"" 0, where z E H4(HP"; Z2). I

Note. It is possible to prove (b) directly from Theorem 8.5.9, by
showing that CI" and HP" are homology manifolds. Since they are in
fact orientable, similar results will hold with Z rather than Z2
coefficients.

• As a corollary of (b), we can easily prove that and v 3'
are not homotopy-equivalent. For if p, q: S2 V1 S4 -* S2, 34 are
the projection maps, then H'(S2 v S4; Z2) Z2 for r — 24, the
generators being and q*(s4), where and $4 are the of
H2(S2; Z2), H4(S'; Z2) respectively. Now

p*(52) Lip*(52) = U = 0,

so that although v Z2) and H(CP2; Z2) are isomorphic
as groups, there is no ring isomorphism between them. Thus V S'
and CF2 cannot be homotopy-equivalent.

In order to calculate the cohomology ring of a product of two
CW-complexes, the following proposition is useful.

Proposition 8.5.11 Given CW-complexes K aad L, letp, q: K L
K, L be the projection maps (which are continuous by Proposition

7.3.23). if G is any commutative ring with 1, the following diagram
is corismutative:
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Jj*(K;G)ØH*(L;G)

L;G

H*(K L; G) 0 H*(K L; G)

Proof. By Axiom 1 of Definition 8.5.1, the diagram

H*(K; G) 0 H*(L; G) H'(K L; G)

L; G) ® H*(K L; G) H(K L K L; G)

is commutative. But clearly (p q)4 1: K L —p. K L. I

Example 8.5.12 It follows that x Sm) has generators
E H's, Sm E and z e where z = U i,,,. All other products

of 5m and z are zero, since and 5m are in the images ofp* and q*
respectively, and x = 0 for r > n + m. A similar result
holds using Z2 coefficients.

We can now, at last, prove that S2 x S4 and cP3 are not homo-
topy-equivalent. For if y is the generator of H2(CP3; Z2), then
y3 0; but (s2)3 = 0 in H4(S2 x S4; Z2). •

We end this chapter with an important geometrical application of
the theory of products, on the non-existence of antipodal maps of
S" to S", m < a.

Definition 8.5.13 A map f: —* (n, m 0) is called
antipodal if, for all points x e f( — x) = —f(x).

Theorem 8.5.14 There is no antipodal map f: -+ 5m,

Proof. Suppose that there were such a map f. Then f would
induce a map g: RI" RI"", such that the diagram

S"
Pm

RP" —+ RPm

is commutative, where and Pm are the local product maps of Chapter
7, Exercise 19. Now by Chapter 6, Exercise 19, and Pm are Serre
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fibre maps; and if we choose base points in all four spaces so as to
make all the maps based, f induces a homeomorphism on the fibres

and Fm, which are both homeomorphic to S°. So by Chapter 6,
Exercise 18, there is a commutative diagram of exact sequences

o ir,(RP") ) 0

.1,1. 1

o ) 0.

Here, 1*: —' iro(F,,J is a (1-1)-correspondence. This is an
immediate contradiction if m 0 (the third square cannot be com-
mutative), and if in I (the second square cannot be commutative,
since must be a (1-1)-correspondence and 0
because ir1(RP') Z2 and irj(RPm) Z). On the other hand, if
n > in 2, then irj(S") 7T1(Sm) = 0, and so ir1(RP")

is an isomorphism. Thus by Theorem 8.3.7
H1(RPm) is also an isomorpbiezn, both groups being isomorphic to
Z2. Using the exact coefficient sequence associated with Z2, this shows
that Z2) —+ H1(RPM; Z2) is an isomorphism, and so
g*: H1(RPm; Z3) -+ H1(RP"; Z2) is isomorphic by Proposition
5.2.11. Thus if x is the generator of H'(RPm; Z2), g5(x) generates
H1(RP"; Z2), and hence = 0. But this is a
contradiction, since = 0 because in < ii.

An interesting corollary of Theorem 8.5.14 is the Fixed-Point
Theorem of Borsuk.

Theorem 8.5.15 Given any continuous map S" -÷ R", there
exists a point x E such that f(x) = f( — x).

Proof. Suppose no such point x exists. Then a continuous map
g: -÷ can be defined by setting

g(x) = [1(x) — f( — x)]/ 01(x) — f( — x) fj.

But g is clearly antipodaL •

Corollary 8.5.16 Let X1, . .., be bounded measurable subsets of
Then there exists an (n — 1)-dimensional Izyperplane Y in R" that

bisects each of X1, . . ., X,,.

Proof. Given a point x c let Z. be the n-dimensional
hyperplane of R't +1 through (0,. .., 0, 1), perpendicular to the vector
x. For 1 r n, let be the measure of that part of X,. that lies
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on the same side of Z1, as x + (0,.. ., 0, 1). It is easy to see thatff is a
continuous function from S" to R', and hence that

f(x) = . . .

is a continuous function from S" to R". By Theorem &5.15 there is a
point xe S" such thatf,(x) = f7(—x) for all r; but since Z, = Z_,
andx + (O,...,O, 1)and —X + (O,...,0, 1) are on opposite sidesof

this means that Z bisects each Xr. Hence Y = n Z is an
(n — 1)-dimensional hyperplane in R" that bisects each XT. I

If n — 3, Corollary 8.5.16 says that three bounded measurable sets
in W can be simultaneously bisected with one plane. This result is
popularly known as the Ham Sandwich Theorem: no matter how the
slices of bread and the slice of ham are arranged, it is always possible
to cut the sandwich in half with a single knife cut.

EXERCISES

1. Let and Y) be as in Chapter 7, Exercises 2 and 4. Show
that, for any pair (X, Y), = Y) = 0, so that the
Hurewicz homomorpl'isins may be regarded as homomorphisms

+ 14(X), h,: Y) —* Y).

Prove alit, that, if K is a connected CW-complex and n ) 2,
-+ Hft(K", is always an isomorphism. (Hiat:

use Chapter 7, Exercise 16.)
2. The dunce hat D is the space obtained from an equilateral triangle by

identifying edges as shown in Fig. 8.1.

a 0

Fig. 8.1

a

x

A'
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Show that D is triangulable, and use Theorem 8.3.10 to show that D is
contractible. However, D is not collapsible.

3. Show that a simply connected homology n-manifold X is homotopy.
equivalent to S' if fl,(X) = 0 for r [a/2], where [n/2] is the integer
part of n/2. Deduce that if X is the 3-manifold of Chapter 5, Exercise
9, then SX is a homology 4-manifold that is homotopy-equivalent to
S4, but not homeomorphic to S4 (thus the Poincaré conjecture is false
for homology manifolds).

4. Let f: K -÷ L be a based map between connected CW-complexes, and
let J: —+ 1. be the corresponding map of their universal covers, so
that there is a commutative diagram

I I
K—7+ L,

where g and Is are the covering maps (see Chapter 6, Exercises 23 and
25). Show that, if

—* ir1(L)
and

are isomorphic for all r, then / is a (based) homotopy equivalence.
5. Let L, M be subcomplexes of a CW-complex K, where K L U M,

and suppose that a 0-cell k0 of L r\ M is taken as the base point. By
considering the inclusion map of L V M in

K' = (L x 0) (L riM) x (M x 1),

show that for any Q-spectrum E there is an exact Mayer—Vietoris
sequence

where is induced by the inclusion maps of 4 M in K, and fl*(x y)
ir(x) — ij'(y), where i1, i2: L M —. L, M are the inclusion maps.

6. Let L-+ K be the inclusion of a subcomplex in a CW-complex, and
let M be another CW-complex. Show that (C1) M and are
homeomorphic, where i 1: L M —+ K M.

Given any integer r > 1, let 4 be the space U, E2, where
f: S1 —÷ S' is a map of degree r. For any 11-spectrum E, define

H"(K; E; = A 4; E).
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Prove that there is an exact sequence

0 -+ H"4K; E) ® Z, H"(K; E; Z,) Tot (H'" 1(K; E), Zr) ÷0,

and that if E1 K(Z, is) then H"(K; E; = H"(K; Zr).
Show that, if G is a finitely generated abelian group, then K(G, is)
can be constructed as a countable CW-complcx. (Hint: use Chapter 7,
Exercise 12.) Deduce from Corollary 7.5.3 that K(G, n) is an AHI.

8. Let K be a CW-complex, and let Y be a path-connected (n — 1)-
• simple space. Given a map f: K'1 Y, define c(J) s sk

c(fXa)

where the characteristic map is regarded as a map of 5' to K'
Similarly, given two maps!, g: such thatf g on
by a homotopy F: K"2 x I—+ Y, define d(f, g) e h

regardingf,g, Faa a map P: (K x I)'' -÷ Y, and setting

d(f,g) = (Od l)c(P),

where 8: C(K) —* C(K x I) is defined by 0(u) a x I. Prove the
following results (is 2).

(a) c(f) depends only on the homotopy class off, and is zero if and only
if f has an extension to a mapf: K' Y.
(b) 8c(J) 0. (Hint: use Exercise 1, and show that c(J) may alter-
natively be defined to be the composite

HJ,(K", K'"1) K'"1)

(c) 84(J g) (— 1)"(c(f) — c(g)).
(d) Given d e C,, - 1(K) th ire... Y), and f: K"1 —* Y, there exists

Y,suchthatg = d.
(e) If y(J) denotes the homology class of c(f) in H"(K;
then y(J) = 0 if and only if there exists a map g: K' —÷ Y such that
f = on K'2.

9. Let K and L be CW-comp!exes. Show that there is an exact sequence

0 Zr(C(K)) ® C,,(L) 0 C,p(L)
0

and deduce from Theorem 4.4.2 and Proposition 8.5.3 that there an
exact sequence

0 H,(K) 0 H,(L) H,,(K L)
÷

Tot (H1(K), H1(L)) —+ 0.
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By constructing a suitable homomorphism

9: L) -÷ Ff,(K) 014(L),

prove that this sequence splits, so that

H,I(K R L) 11(K) 011(L) $ Tor (11(K), HAL)).

Show similarly that

L) ® 0 E,(L) Tor (14(K), R,(L)).
r+i—fl—i

10. Let (K, L) be a CW-pair, such that L is a retract of K Show that, if G
is a commutative ring with a 1, -

as a direct sum of groups, andthat Im is a subring and Ker is an
ideal (1: L -* K and r: L are the inclusion and retraction maps
respectively).

By taking K = CP2, L = CP1 and G = Z3, show that CF1 is not a
retract of C?2.

11. Given an element xElr2ft_j(S") (n the Hàpf invariant i a
defined as follows. Represent x by a map f: let
Y = C,. Then Z, Z, the generators being y,,

where = fI(sa), and *re thegeneratora of
H*(S*), respectively. The Hopf invariant of x, 9(4 is then
defined by.

0(x)

Pro* the following results.
(a) depends only on x, and not on the choice off (use Chj*i 6,

11)4 V

(b) -0: -÷ Z is a homomorphism. (Hut: consider
where V(f V g): 52$ 1 V 1 -+ 5*.)
(c)0=Oifniöodd.
(d) If n is even, ¼] ± 2, where iS the generator of

• represented by the identity map. Deduce that, if a is even,
has an element of infinite order, and that S' cannot be an H-space.

12. Show that
V V

•
11"'(K(Z, r) K(Z, s)) Z

and
V

s);
V

for any integer a> 1. Deduce that Axioms of Definition 8.5.1
determine the product uniquely for with coefficientS

V
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13. Given CW-complexes K, L and a commutative ring with a I, G, define

homomorphisms \: G) ® L) ® G) —p 0 G
by the rule

x fi) Øg]
.(a ® (x(fl).g), a e

.0,,. otherwise.

Show that 0 1)(x\y) x\[(ø 0 l)y] + (— and deduce
that \ induces 'products'

Establish the following properties of \.
(a) Given mapaf: M,g: L -÷ N,

then
x x\(y\z).

(c) Given x H"(K; G) and y E G), then x\y = <x, y> in
H0(P; G) = C, where P is a single point, and y is regarded as an
element of x K; G).
(d) If K is a polyhedron, x HT(K; 0) and y E H4K; C), then
x where 4: (Kj x (K( is the diagonal map.

Establish similar results for reduced cohomology, involving
instead of

14. Let K be a triangulation of an orientable homology n-manifold, and
let L be a subcomplex of K. Let E be the supplement of L in K, so
that a typical simplex of K' (with the usual ordering) is (a°, . . ., a")
where (a°,..., aT_1)EL and (at,..., a'9€L'. Let N(L) be the set of
points in such simplexes of the form where +.• + -1
and let N(L) be the set of points where +. . . + A, show that

IL( are strong deformation retracts of N(L), NIL) respectively.
Now let M be a subcomplex of 1, so that N(M) C N(L), N(L) c:

N(M), and (K( = N(L) U N(M) u (N(M) N(L)). Show that
there are homotopy equivalences p: (N(M), N(L)) -÷ (IA?I, ILl),
q: (N(L), N(M)) -+ (Mo. Hence define a map

4: IKL —÷ ((MI/ILl) A
by the rule

— fp(x) A q(x), x e N(M) A N(L)
' ' ibase point, otherwise.

Also define a homomorphism d: C(K') -÷ C((IMI/IL() A ((L'l/OM'l))
by the rule d [a°,..., a") [a" A . ., a"], the sum
being taken over those values of r for (a",. . ., d) is a simplex
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of it? — L and (at, . . ., a") is a simplex Qf L' — M'. Show that d is a
chain map, and induces the same homology and cohomology homo-
morphisms as 4. (Hint: given a simplex a = (a°,.. ., a") e K', where
a°, . . ., at_i eL, at,.. ., €11? L' and a', . . ., a" eM', use the
method of Theorem 8.5.6, with a x a replaced by (a°, .. ., a'') A
(at, .. ., a") in the definition of h.)

Let D: HT(L', M') —* 1) be the duality isomorphism of
Theorem 5.3.13, composed with where h: (IL'!, (M'D-+
(I Lj, M is a simplicial approximation to the identity. Deduce that

=

where z e 14(K) = is the standard generator, and hence show
that, if y e Jf*_t(M, L), then

n x) = <y, l)(x)>ho,

where 1) a'so denotes the Poincaré duality isomorphism H"(K')
H0(K'), and h0 is the homology class of any vertex of K'.

Establish similar results for non-orientable homology manifolds,
using Z2 coefficients.

15. Let K be a simplicial complex. Show that, for each integer r 0,
there exists a homomorphism

x

such that the following properties hold.
(a) 4*, where 4 is the diagonal map.
(b) ® Za] x 1K!) ®
(c) + = (1 + where C(IKI x 1K!) 0
C( K 1K!) 0 Z2 is the chain map exchanging the two factors.
(d) For each simplex a, d,(cr ® 1) e C(a x a) 0 Z2.
(e) If 4,... are another set of such homomorphisms, then there

C(K) 0 Z2—*C(IKI x ® Z2(r ? 0),
such that d,. + d = .3k,. + h,a + (1 + r)k_j.

Now suppose that x e C,,(K) eh Z2, y C,,,(K) ek Z2, and define

x U,. y = (d, lXx x y) E C,, + in - f#I Z2.

Show that S(x U,Y) = S(x) + X S(y) +'X U,._iY + y LIT_i X,
and hence define SqT: H"(K; Z2) -÷ H""(K; Z2) by the rule

[x u,,... x].

Show that S( is well defined (that is, is independent of the choice of
and x), and has the following properties.

(a) Sq' is a homomorphism.
(b) 1ff: 1K! —÷ is a continuous map, then.f*S( = Sqrf*. (Hint:
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use the Approximation Theorem and a suitable mojiificatinn
of (e) above.)
(c) Sq° i. the identity isomorphism. -
(d) Sq'(x) = x2 if x e H'(K; Z2).
(e) Sq'(X) — Oif xeff*(K; Z2), n <r.
(f) If x Z2) and y e Hm(L; Z2), then

x x ILI;Z2).

(Hisit: show that S( may be calculated in (the polyhedron) IKI x ILl
by using the homomorphisms

D,: C(IKI x 0 Z2-+ C(IKI x IKI x ILl x ILl) 0

definedby D((c x 1) = 01) X id1(j& 01).)
Extend the definition of SqT to IF'(K;Z2) and L; Z2), and

prove:

(g) If 8 is the homomorphism in the exact cohomology sequence of
(K, L), then S'S(
(h) If s: Z3) —* H"(K; Z2) is the suspension isomorphism,
then — Sq's.

16. that Sq' can be in Z2) by the rule

(S)xa+r

• where x generates H1(RP"; Z2), is the binomial coefficient reduced
,mod 2, an4 x are interpreted as zero if r > s, s> n respectively.
Deduce that is not a retract of RP5/RP2 (both spaces have

4he bomotOpy type of polyhedra).

17. Let L be a subcomplex. of some triatigulation of 5*, and let I be the
supplement of L; kr.

D:

be the Alexaáder duality isomorpluim, as in Theorem 5.3.19. Define a
homomorphism ) Z5) by the rule

(y, Dc(S(4x) = Dx),

where x e Z2) and y g Use Exercise 14 and
Exercise 15(f) to show that •,

0),

and deduce that c(S?) depends only on Sq': we therefore drop the
suffix r and write
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Now suppose, if possible, that some triangulation àf RP2' can be
regarded as a subcomplex of some triangulation of Use
Exercise 15(e) to show that

c(Sq2'1) 0: Z2).

On the other hand, show by using Exercise 16 that Sq', Sq5, Sq3,
Sf-1 are all zero on #, and deduce that This
contradiction shows that RP2' cannot be embedded as a subcomplex of
a triangulation of + 1

NOTES ON CHAPTER 8

The Hurewicz theorem. Hurewicz first stated Theorem 8.3.7(a), and
gave a sketch of the proof, in [74). Theorem 8.3.7(b) can be refined slightly
to read: if ir(KL)= 0 for 1 r < a (n? 2), then

L) is an isornorphism.
For an 'elementary' proof of the Hurcwicz theorem for arbitrary spaces,

see Spanier [131], Chapter 7; however, a much easier proof can be given,
based on the work of Serre [125] on the homology of fibre spaces: see for
example Hu f733 Chapter 10.

General cohomology theories. The cohomology theory associated with
an 9-spectrUm E was first defined by G. W. Whitehead [155]. it is interest-
ing to observe that, under mild restrictions, any 'cohomology theory'
b*(K, L), having the properties in the statement of Theorem 8.4.4, is the
cohomology theory associated with some £2-spectrum: this is a theorem of
E. H. Brown [30, 31] It is possible give a definition of the homology
groups associated with an Q-apectrum, although this is more complicated
than the corresponding cohomology theory: for details, see G. W. White-
head [155].

For the original definition of Eilenberg.-MacLañe spaces, see Eilenberg
and MacLane [52, 54].

Important cohomology theories associated with other £2-spectra include
the groups K*(X) of Atiyali and Hirzebruch (ace for example Atiyah and
Hirzebruch [18], Adams [3]), and the groups MU*(X) of Conner and Floyd
[42] and Atiyah [16] (see also Novikov (110]).

G. W. Whitehead has proved that the duality theorems of Section 5.3
extend to the homology and cohornology theories associated with an arbi-
trary 9-spectrum E, provided that the manifolds involved are 'orientable
with respect to 14( ; E)'. The method is that of Exercise 14.

Products. Instead of defining products axiomatically, it is possible to
work directly with 9-spectra; this is the approach of G. W. Whitehead
11551. The explanation why it is cohomology rather than homology that
admits a ring struèture is due originally to Iàfschetz (913.
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For the theory of products in the homology and cohomology of arbitrary
spaces, see for example Spanier [131], Chapter 5.

The Borsuk—Ulam Theorem 8.5.15 was conjectured by Ulam,
and first proved by Borsuk [21].

The Dunce Hat. For more details, see Zeeman [168].

Exercise 6. This proof of the Universal Coefficient Theorem for general
cohomology theories is based on a result of Puppe [119]. For details of the
proof, see Araki and Toda [14] or Maunder [99].

Obstruction theory (Exercise 8). Most of this is due to Steenrod [137],
Part III, who also deals with the problem of obstructions to cross-sections
of fibre bundles. The theory can be extended to arbitrary topological
spaces: see Olum [111].

The Hopf invariant. The definition in Exercise 11 is that of Steenrod
[136], and 18 somewhat different from Hopf's original definition [70]. The
Hopf invariant has been generalized by G. W. Whitehead [153] to a homo-
morphism H: (m 4,s — 4), and by Hilton [62] to a
homomorphism H*: (m> 0). It is the homomorphism
H that occurs in the EHP sequence.

Adams has proved in [2] that there exist elements of Hopf invariant one
in only if n = 2, 4 or 8.

Cohomology operations (Exercise 15). The operations S( were first
defined by Steenrod [135], who also constructed similar operations in
cohomology with coefficients Z,,, for odd primes p [138); for an
account of the theory, Steenrod [1391. The operations can be extended
to the cohomology of arbitrary spaces: see for example Spanier [131],
Chapter 5.

There are many other applications of cohomology operations besides
Exercise 17. For applications to obstruction theory, see Steenrod [135, 139];
and for applications to the calculation of the homotopy groups of spheres,
via the Adams spectral sequence, see Adams [1, 5]. A general account of the
operations and their uses will be found in Steenrod and Epstein [140].

More complicated cohomology operations, known as higher-order
operations, have been studied by Adams [2] and Maunder [96].

Exercise 17. This proof that RP2" cannot be embedded in is
due to Peterson (114], although the formula for c(Sq') was first established
by Thom [142] (see also Maunder [100]).
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