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Introduction 

Our subject starts with homology, homomorphisms, and tensors. 
Homology provides an algebraic "picture" of topological spaces, 

assigning to each space X a family of abelian groups H,(X), . . . , H , ( X ) ,  
. . . , to each continuous map f : X+Y a family of group homomorphisms 
f,: H,(X) +H, (Y). Properties of the space or the map can often be 
effectively found from properties of the groups H, or the homomorphisms 
f,. A similar process associates homology groups to other Mathematical 
objects; for example, to a group n o r  to an associative algebra A. Homo- 
logy in all such cases is our concern. 

Complexes provide a means of calculating homology. Each %-dimen- 
sional "singular" simplex T in a topological space X has a boundary 
consistini of singular simplices of dimension .n- 1. If K, is the free 
abelian group generated by all these %-simplices, the function a assigning 
to each T the alternating sum aT of its boundary simplices determines a 
homomorphism a:K,+K,-,. This yields (Chap. 11) a "complex" which 
consists of abelian groups K, and boundary homomorphisms a, in the 
form 

a a a a O+K,+K,+K,+K,+.. .  . 

Moreover, aa= 0, so the kernel C, of a: K, +K,-, contains the image 
aK,,,. The factor group H, (K) = C,/aK,+, is the %-th homology 
group of the complex K or of the underlying space X. Often a smaller 
or simpler complex will suffice to compute the same homology groups for 
X. Given a group IT, there is a corresponding complex whose homology 
is that appropriate to the group. For example, the one dimensional 
homology of ll is its factor commutator group 17/[U, IT]. 

Homomorphisms of appropriate type are associated with each type 
of algebraic system; under composition of homomorphisms the systems 
and their homomorphisms constitute a "category0- (Chap.1). If C and 
A are abelian groups, the set Hom (C, A) of all group homomorphisms 
f : C -+A is also an abelian group. For C fixed, it is a covariant "functor" 
on the category of all abelian groups A; each homomorphism a:A+A1 
induces the map u, : Hom (C, A) -+Horn (C, A') which carries each f into 
its composite u f with u. For A fixed, Hom is contravariant: Each 
y:Cf-+C induces the map y* in the opposite direction, Hom(C,A) +- 
Hom (C', A), sending f to the composite f y. Thus Hom ( ?,A) applied 

Mac Lane, Homology 1 



2 Introduction 

to a complex K =  ? turns the arrows around to give a complex 

Here the factor group (Kernela*)/(Image a*) is the cohomology Hn (K, A) 
of K with coefficients A. According to the provenance of K, it yields 
the cohomology of a space X or of a group l7. 

An extension of a group A by a group C is a group B)A with BIA LZ C; 
in diagramatic language, an extension is just a sequence 

of abelian groups and homomorphisms which is exact in the sense that 
the kernel of each homomorphism is exactly the image of the preceding 
one. The set Extl (C, A) of all extensions of A by C turns out to be an 
abelian group and a functor of A and C, covariant in A and contra- 
variant in C. 

Question: Does the homology of a complex K determine its cohomo- 
logy ? The answer is almost yes, provided each Kn is a free abelian group. 
In this case Hn(K,A) is detehined "up to a group extension" by 
H,, (K), H,,-, (K), and A ; specifically, the "universal coefficient theorem" 
(Chap. 111) gives an exact sequence 

involving the functor Extl just introduced. If the K,, are not free groups, 
there is a more complex answer, involving the spectral sequences to be 
described in Chap. XI. 

Tensors arise from vector spaces U, V, and W and bilinear functions 
B (u, v) on UxV to W. Manufacture the vector space U @ V generated 
by symbols u@v which are bilinear in U E U  and veV and nothing 
more. Then u@v is a universal bilinear function; to any bilinear B 
there is a unique linear transformation T: U@ V+W with B (zl, v) = 
T(u @v). The elements of V@V turn out to be just the classical tensors 
(in two indices) associated with the vector space V. Two abelian groups 
A and G have a tensor product A @G generated by bilinear symbols 
a@g; it is an abelian group, and a functor covariant in A and G. In 
particular, if K is a complex, so is A @ K: A @K,t A @ Kl+. - . 

Question: Does the homology of K determine that of A @ K ?  
Answer: Almost yes; if each K is free, there is an exact sequence 

0 + A @ H,, (K) -t Hn (A @ K) -+ Tor,(A, Hn-, (K)) -+ 0. 

Here Tor, (A, G) is a new covariant functor of the abelian groups A and 
G, called the "torsion product"; it depends (Chap.V) on the elements 
of finite order in A and G and is generated, subject to suitable relations, 
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by pairs of elements aeA and geG for which there is an integer m with 
ma=O=mg. ' Take the cartesian product X x Y  of two spaces. Can we calculate 
its homology from that of X and Y ?  A study of complexes constructed 
from simplices (Chap.VII1) reduces this question to the calculation of 
the homology of a tensor product K @ L  of two complexes. This calcu- 
lation again involves the torsion product, via an exact sequence (the 
Kiinneth Thm, Chap. V) 

But woe, if A is a subgroup of B, A @G is not usually a subgroup 
of B @G; in other words, if E : 0 +A + B +C +O is exact, the sequence 
of tensor products 

is exact, exce$t possibly at A @G. Happily, the torsion product repairs 
the trouble; the given sequence E defines a homomorphism E,  :Torl (C, G) 
+A @G with image exactly the kernel of A @G+B @G, and the 
sequence 

is exact. Call E,  the connecting homomorphism for Tor, and @. 

But again woe, if A is a subgroup of B, a homomorphism f :  A -tG 
may not be extendable to a homomorphism B+G; in other words, 
the exact sequence 0 +A + B C - t O  induces a sequence (opposite 
direction by contravariance!) 

which may not be exact at Hom(A,G). Extl to the rescue: There is a 
"connecting" homomorphism E* which produces a longer exact sequence 

o - + H o r n ( ~ ,  G) + H O ~ ( B ,  G) + H O ~ ( A ,  G) 5 
E ' 
-+ Extl (C, G) + Extl (B, G) + Extl (A. G) + 0. 

Now generalize; replace abelian groups by modules over any com- 
mutative ring R. Then Extl(A,G) ist still defined as an R-module, but 
the longer sequence may now fail of exactness at Extl(A,G). There is 
a new functor Exta (A, G), a new connecting homomorphism E* : Extl (A, G) 
+Exta(C,G), and an exact sequence extending indefinitely to the right 
as 

. . . + Ext" (C, G) + Ext" (B, G) + Ext" (A, G) Ext"+l (C, G) +. . . . 
1 * 



4 Introduction 

The elements of Extm(C, G) are suitable equivalence classes of long 
exact sequences 

O+G+Bm-l+...-+B,+C+O 

running from G to C through n intermediate modules. Similarly for 
the tensor product; there are functors Tor, (A, G), described via suitable 
generators and relations, which enter into a long exact sequence 

+Tor,+, (C, G) 2 Tor, (A, G) +Tor, (B, G) +Tor, (C, G) + . . 
induced by each E: o +A + B -+C +O. They apply also if the ring is 
not commutative - and A, B, and C are right R-modules, G a left 
R-module. 

These functors Tor, and Ext" are the subject of homological algebra. 
They give the cohomology of various algebraic systems. If IT is a group, 
take R to be the group ring generated by 17 over the integers. Then the 
group Z of integers is (trivially) an R-module; if A is any other R-module, 
the groups Extg(Z, A) are the cohomology groups Hn(17, A) of the 
group 17 with coefficients in A. If 9~ = 2, Hz(17, A) turns out, as i t  
should, to be the group of all extensions B of the abelian group A by 
the (non-abelian) group 17, where the structure of A as a 17-module 
specifies how A is a normal subgroup of B. If n = 3 ,  HS (n, A) is a group 
whose elements are "obstructions" to an extension problem. Similarly, 
Tor, (2, A) gives the homology groups of 17. Again, if A is an algebra 
over the field F, construct Extn by long exact sequences of two-sided 
A-modules A. The algebra A is itself such a module, and ExtU(A, A) is 
the cohomology of A with coefficients A ; again Extz and Ext3 correspond 
to extension problems for algebras. 

A module P is projective if every homomorphism P -+ B/A lifts to a 
homomorphism P -+ B. Any free module is projective ; write any module 
in terms of generators; this expresses it as a quotient of a free module, 
and hence of a projective module. 

How can Tor, and Extn be calculated? Write A as a quotient of a 
projective module P,; that is, write an exact sequence O t A t P , .  The 
kernel of $-+A is again a quotient of a projective 4. This process con- 
tinues to give an exact sequence ~ t A t $ t P , t  . . . . The complex P 
is called a "projective resolution" of A. It is by no means unique; 
compare two such 

a O t A t P ,  tP, t P ,  t... 
11 i f .  i f ,  : 

a 
i 

o t A t Z $  +-q '+t t t . . .  . 
Since P, is projective, the map P, +A lifts to f,:P, +Pi. The composite 
map &-+Pi lifts in turn to an f,:P,-+P; with af,=f,,a, and so on by 
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recursion. The resulting comparison fn:P,+P,' of complexes induces a 
homomorphism H, ( P  @ G) + Hn (P' @I G) . Reversing the roles of P and P' 
and deforming P+P' -t P to the identity (deformations are called homo-. 
topies) shows this an isomorphism Hn (P @G) =Hn (P' @ G). Therefore 
the homology groups Hn(P@G) do not depend on the choice of the 
projective resolution P, but only on A and G. They turn out to be the 
groups Tor, ( A ,  G ) .  Similarly, the cohomology groups Hn (P, G) are the 
groups Extn(A, G), while the requisite connecting homomorphisms E* 
may be obtained from a basic exact homology sequence for complexes 
(Chap. 11). Thus Tor and Ext may be calculated from projective resolu- 
tions. For example, if ll is a group, the module Z has a standard "bar 
resolution" (Chap. IX) whose cohomology is that of ll. For particular 
groups, particular resolutions are more efficient. 

Qualitative considerations ask for the minimum length of a projective 
resolution of an R-module A. If there is a projective resolution of A 
stopping with P,,, =O, A is said to have homological dimension at  
most n. These dimensions enter into the arithmetic structure of the 
ring R; for example, if R is the ring 2 of integers, every module has 
dimension at most 1 ; again for example, the Hilbert Syzygy Theorem 
(Chap. VII) deals with dimensions of graded modules over a polynomial 
ring. 

Two exact sequences o +A + B +C +O and o+C +D +F -to may 
be "spliced" at C to give a longer exact sequence 

in other words, an element of Extl(C, A) and an element of Extl(F, C) 
determine a two-fold extension which is an element of Exta (F, A ) ,  called 
their product (Chap. 111). These and similar products for Tor can be 
computed from resolutions (Chap. VIII). 

Every R-module is also an abelian group; that is, a module over the 
ring Z of integers. Call an extension E: A + B +C of R-modules 2-split 
if the.middle module B, regarded just as an abelian group, is the direct 
sum of A and C. Construct the group Ext&)(C, A) using only such 
2-split extensions. This functor has connecting homomorphisms E* for 
those E which are 2-split. With the corresponding torsion functors and 
their connecting homomorphisms, it is the subject of relative homological 
algebra (Chap. IX). The cohomology of a group is such a relative functor. 
Again, if A is an algebra over the commutative ring K, all appropriate 
concepts are relative to K;  in particular, the cohomology of A arises 
from exact sequences of A-bimodules which are split as sequences of 
K-modules. 



6 Introduction 

Modules appear to be the essential object of study. But the exactness 
of a resolution and the definition of a projective are properties of homo- 
morphisms; all the arguments work if the modules and the homo- 
morphisms are replaced by any objects A, B, . . . with "morphisms" 
a:  A - tB  which can be added, compounded, and have suitable kernels, 
cokernels (BlaA), and images. Technically, this amounts to developing 
homological algebra in an abelian category (Chap. IX). From the functor 
T,  (A) =A @G we constructed a sequence of functors T, (A) =Tor, (A, G). 
More generally, let T,  be any covariant functor which is additive 
[T, (al+ a,) = T,  al+ T,ae] and which carries each exact sequence 
0 -+A -+ B +C +O into a right exact sequence T,  (A) -+& (B) +& (C) -+O. 
We again investigate the kernel of To (A) +T, (B) and construct new 
functors to describe it. If the category has "enough" projectives, each A 
has a projective resolution P, and H,,(T,(P)) is independent of the 
choice of P and defines a functor T, (A) which enters into a long exact 
sequence 

. . +  T,(A) -+T,(B)-+T,(c)~T,-~(A) -+... . 
Thus To determinesra whole sequence of derived functors T, and of 
connecting homomorphisms E,  : T, (C) -+T,-, (A). These "derived" 
functors can be characterized conceptually by three basic properties 
(Chap. XII) : 

(i) The long sequence above is exact, 
(ii) If P is projective and 12 > 0, T,(P) =0, 
(iii) If E+Er is a homomorphism of exact sequences, the diagram of 

connecting homomorphisms commutes (naturality!) : 

In particular, given T,  (A) =A @ G, these axioms characterize Tor, (A, G) 
as functors of A. There is a similar characterization of the functors 
ExtU(C,A) (Chap. 111). Alternatively, each derived functor T, can be 
characterized just in terms of the preceding T,-,: If E : S, (C) +S,-, (A) 
is another natural connecting homomorphism between additive functors, 
each "natural" map of S,-, into T,-, extends to a unique natural map 
of S, into T,. This "universal" property of T, describes it as the left 
satellite of T,-,; i t  may be used to construct products. 

Successive and interlocking layers of generalizations appear through- 
out homological algebra. We go from abelian groups to modules to 
bimodules to objects in an abelian category; from rings to groups to 
algebras to Hopf algebras (Chap. VI); from exact sequences to 2-split 
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exact sequences to a "proper" class of exact sequences characterized 
by axioms (Chap. XII). The subject is in process of rapid expansion; 
the most general formulation is yet to come. Hence this book will 
proceed from the special to the general, subsuming earlier results in 
the concluding treatment (Chap. XII) of additive functors in an abelian 
category relative to a proper class of exact sequences. 

As each concept is developed, we take time out to stress its applica- 
tions. Thus Chap. IV on the cohomology of groups includes the topo- 
logical interpretation of the cohomology groups of lI as the cohomology 
of an aspherical space with fundamental group 17, as well as SCHUR'S 
Theorem that every extension of a finite group by another finite group 
of relatively prime order must split. Chap. VII, on dimension, studies 
syzygies and separable algebras. Chap. X on the cohomology of alge- 
braic systems includes the Wedderburn principal theorem for algebras 
and the cohomology (at various levels) of abelian groups. Chap. XI 
includes the standard construction of the spectral sequences of a filtra- 
tion and of a bicomplex, used to construct the spectral sequence of a 
covering and of a group extension. (The latter is due to LYNDON and 
not, as often thought, to the subsequent work of HOCHSCHILD-SERRE). 
Much of the general development of homological algebra in the other 
chapters can be read independently of these results. 

For the expert we note a few special features. The basic functors 
Ext and Tor are described directly: Ext, following YONEDA, by long 
exact sequences, Tor by an improved set of generators and relations. 
Resolutions are relegated to their proper place as a means of computa- 
tion. All the varieties of algebras (coalgebras, Hopf Algebras, graded 
algebras, differential graded algebras) are described uniformly by com- 
mutative diagrams for the product maps. Relative homological algebra 
is treated at two levels of generality: First, by a "forgetful" functor, 
say one which regards an R-module just as an abelian group, later by 
a suitable proper class of short exact sequences in an abelian category. 
The cohomology of groups is defined functorially by the bar construction. 
This construction later appears in conceptual form: For a pair of cate- 
gories with a forgetful functor and a functor constructing relative pro- 
jective~ (Chap. IX, $7) .  The proper definition of connecting homo- 
morphisms by additive relations (correspondences) is indicated; these 
relations are used to describe the transgression in a spectral sequence. 
This gives a convenient treatment of the transgression in LYNDON'S 

spectral sequence. Diagram chasing works in an abelian category with 
subobjects or quotient objects replacing elements (XII.3). 

Notations are standard, with the following few exceptions. A com- 
plex is K (latin), a commutative ring is K (greek). A "graded" module M 
is a family M,, MI,  . . . of modules and .not their direct sum ZM,, while 



8 Chapter I. Modules, Diagrams, and Functors 

a family . . . , M-, , M,, MI, . . . is said to be "Z-graded". A monomorphism 
is written x :  A - B ,  an epimorphism a:  B+ C,  while xlla states that 
0 + A  + B +C +O is exact. A dotted arrow A+ B is a homomorphism 
to be constructed, a dashed arrow A---* B is a group homomorphism 
between modules, a half arrow A- B is an additive relation. We 
distinguish between a bicomplex (XI.6) and a complex of complexes 
(X.9); we "augment" but do not "supplement" an algebra. The dual 
of a resolution is a "coresolution". If u is a cycle in the homology class h 
of Hn (X), U E  E Hn is short for uc hcH,, while h is written h = cls u. The 
coboundary of an n-cochain f is 6f = (-I)"+'/ 8, with a sign (11.3). 

A reference to Thm V.4.3 is to Theorem 3 of section 4 of Chap. V;  
if the chapter number is omitted, it is to a theorem in the chapter at 
hand. A reference such as BOURBAKI [I9991 is to that author's article, 
as listed in the bibliography at the back of our book and published in 
the year cited; [1999b] is to the second article by the same author, 
same year. The influential treatise by H. CARTAN and S. EILENBERG 

on Homological Algebra is honored by omitting its date. The bibliography 
makes no pretense at completeness, but is intended to provide a guide 
to further reading, as suggested in the notes at the ends of some chapters 
or sections. These notes also contain occasional historical comments 
which give positive-and perhaps prejudiced-views of the develop- 
ment of our subject. The exercises are designed both to give elementary 
practice in the concepts presented and to formulate additional results 
not included in the text. 

Chap te r  one 

Modules, Diagrams, and Functors 

Homology theory deals repeatedly with the formal properties of 
functions and their composites. The functions concerned are usually 
homomorphisms of modules or of related algebraic systems. The formal 
properties are subsumed in the statement that the homomorphisms 
constitute a category. This chapter will examine the notions of module 
and category. 

1. The Arrow Notation 

If X and Y are sets, the cartesian froduct X x Y  is the set of all 
ordered pairs ( x ,  y) for x E X and y E Y. 

The notation f :  X+Y states that f is a function on X to Y. Formally, 
such a function may be described as an ordered triple f =(X, F, Y), with 
F a subset of X x Y  containing for each x€X exactly one pair ( x ,  y). 
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Actually we write f (x) = y, as usual, for the value of f at the argument x. 
Notice that we normally write the function f to the left of its argument, 
as in f (x). Notice also that each function f carries with it a definite set X 
as domain and a definite set Y as range. 

If f :  X+Y and g: Y+Z are functions, the composite functiolz gf, 
sometimes written go f, is the function on X to Z with the value 
(g f)  (x) = g (f ( x ) )  for each x E X. Since functions are written on the left, g f 
means first apply f, then apply g. This composite is defined only when 
Range ( f )  =Domain (g); in particular, we do not define the composite 
when Range (f) is a proper subset of Domain (g). 

For any set X, the identity 1 or 1, is the function 1 : X+X with 
1 (x) = x for all x. If S is a subset of X the function j :  S-tX with values 
j(s) =s  for all scS is called the ("identity") injection of S into X. For 
any f :  X+Y the composite f j :  S+Y (sometimes written flS) is the 
function f "cut down" to the subset S of its domain. Similarly, when Y 
is a subset of W and k: Y+W is the injection (with k(y) =y), the com- 
posite k f :  X+W is the function f with its range expanded from Y to W. 
Notice that the functions f and kf have the same values for each argu- 
ment x, but they are different functions, since the range is different. 
This distinction, apparently pedantic, will pay off. (See Example 2 in 
11.1.). 

We use the usual notations of set theory, with X n Y  denoting the 
intersection of the sets X and Y and with 0 the empty set. 

2. Modules 
Let R be a ring with identity 1 =+ 0. A left R-module A is an additive 

abelian group together with a function #: RxA-tA, written p (r, a) =ra,  
such that always 

( r + r t ) a = r a + r ' a ,  ( r r f )a=r ( r ' a ) ,  

It follows that Oa = O  and (-1)a = -a. Some authors define an R- 
module without requiring that l a  =a, and call a module with this 
property unitary. In this book, every ring has an identity and every 
module is unitary. 

Our treatment of left R-modules will apply, mutatis mutandis, to 
right R-modzcles. They are abelian groups A with ar E A defined so as to 
satisfy the corresponding four identities; for example a (rr') = (ar) r'. 

Modules appear in many connections. In case R is a field or a skew 
field, a left R-module is a left vector space over R. If F is a field and 
R=F[x] the polynomial ring in one indeterminate x with coefficients 
in F, then an R-module is simply a vector space V over F together with 
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a fixed linear transformation T: V+V; namely, T is the transformation 
given by left multiplication by XER. Consider 2-modules, where Z 
denotes the ring of integers. For each positive integer m, ma = a  + . . . + a 
(m times); hence a 2-module A is just an abelian group, with the usual 
meaning for integral multiples ma, mc2. If Z, is the ring of integers 
modulo k, a 2,-module A is an abelian group in which every element has 
order a divisor of k. Finally, take R to be a commutative ring generated 
by I and by an element d with d2= 0, so that R consists of all m + n d for 
integer coefficients m and n;  an R-module is then an abelian group A 
together with a homomorphism d: A+A such that d2=0; such a pair 
(A, d)  is called a "differential group" (11. I). 

A subset S of an R-module A is a swbmodzcle (in symbols, S<A), if S 
is closed under addition and if r E R, s E S imply r s  E S; then S itself is an 
R-module. The ring R is itself a left R-module. A submodule of R is a 
subset L of R closed under addition and with each rL<L; such a subset 
is also called a left ideal in R. If L is a left ideal in R and A a left R- 
module, the set 

LA ={all finite sums li a,, for li E L, ai E A) 

is a submodule of A, called the firodwct of the ideal L by the module A. 
In particular, the product LL' of two left ideals is a left ideal, and 
(L L1)A =L(LIA). 

If A and B are both R-modules, the notation a:  A+B or A A B  
states that a is an R-module homomorfihism of A to B; that is, a function 
on A to B such that always 

When a:  A-tB, call A the domain and B the range of a. The image 
Im (a) =aA consists of all elements a a  for a E A ; i t  is a submodule of the 
range B; the kernel Ker(a) consists of all a in A with a a  =0; it is a 
submodule of the domain A. If aA = B, we say that a is an e$imor#hism 
and write a:  A +B, while if Kera = 0 we say that a is a monomorfihism 
and write a :  A * B. Finally, a is an isomorphism if and only if a is both a 
monomorphism and an epimorphism. For each module A, the identity 
function IA:  A-tA is an isomorphism. For any A and B, the zero or 
"trivial" function 0 with every O(a) = O  is a homomorphism 0: A-tB. 
A homomorphism w : A 4 A  with range and domain equal is called an 
endomorphism. 

If al, a, : A+B are homomorphisms with the same domain A and the 
same range B, their sum al f a2, defined by (al + a,) a = al a + a,a, is an 
R-module homomorphism al f a ,  : A+B. 

If a :  A-tB and /?: B+C are R-module homomorphisms, the com- 
posite function /fa is also an R-module homomorphism /fa: A-tC; but 
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note that this composite is defined only when Range a =Domain ,!I. 
The composition of homomorphisms is associative when defined. A 
(two-sided) inverse of a:  A-tB is a homomorphism a-l: B+A such that 
both aa-l=IB and a-la = I A .  Moreover, a has an inverse if and only if 
it is an isomorphism, and the inverse is then unique. We write a:  A B 
when a is an isomorphism. A left inverse of a is any homomorphism y: 
B-tA with ya =IA ; it need not exist or be unique. 

A pair of homomorphisms (a, B) with Range a =Domain B = B, 

is exact at B if KerB = Im a. A longer sequence of homomorphisms: 

is said to be exact if (q-,, a,) is exact at Ad, for each i =2, . . . , n -1. 

For each submodule T <  B the injection is a monomorphism j :  T+B. 
Foreachb~Btheset  b+Tofa l l sumsb+twi th t~Ti sacose to f  T i n  B;  
two cosets b1 + T and b, + T are either disjoint or equal (the latter when 
b l - b , ~  T). Recall that the quotient gro* (factor group or difference 
group) B/ T has as its elements the cosets of Tin B, with (bl + T) + (b, + T) 
= (b, + b,) + T as addition. Since T is a submodule, the abelian group 
BIT becomes an R-module when the product of any r E R with a coset is 
defined by r (b + T )  = r b + T; we call BIT a quotient module. The func- 
tion q which sends each element b EB into its coset q b = b + T is an epi- 
morphism q: B+B/T, called the canonical map or projection of B on 
B/ T. 

Proposition 2.1. If : B+Bf with T< Ker B, there is a unique module 
homomorphism B' : B/T-tBr with Prq =B ; that is, the diagram 

can be "filled in" by a unique B' so as to be commutative (B'q = B). 

Proof. Set B' (b + T) =Bb; since T< Ker B, this is well defined. In 
particular, if 8: B+Bf is an epimorphism with kernel T,Pf: BITEB'. 

This result may be worded: Each B with /3 (T) = 0 factors uniquely 
through the projection q. This property characterizes q: B+B/T up 
to an isomorphism of BIT, in the following sense: 

Proposition 2.2. If T < B  and 5 :  B+D is such that c(T)=O and 
each B : B 3  B' with P (T) = 0 factors uniquely through 5, there is an iso- 
morphism 0 :  B I T s D  withc=Bq. 
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Proof. Factor 5 through q and 7 through[, so C=['q, 7 =$C. Hence 
(= (c'q') [= I[. But factors uniqzcely through 5, so ['ql= 1. Symmetri- 
cally, qf[' = 1. Hence q' = ((')-I and [' is the desired isomorphism 13. 

For any T<B the injection j and the projection q yield an exact 
sequence. 

O+TL B J B / T + O .  
Conversely, let 

(x, o): o+-AABLC+O 

be any short exact sequence; that is, an exact sequence of five R-modules 
with the two outside modules zero (and hence the two outside maps 
trivial). Exactness at  A means that x is a monomorphism, at  B means 
that xA = Kera, at C that o is an epimorphism. Thus the short exact 
sequence may be written as A-B+C, with exactness at  B. Now x 
induces an isomorphism x' : A x A and a an isomorphism a' : B/x A e C ; 
together these provide an isomorphism of short exact sequences, in the 
form of a commutative diagram 

In brief, a short exact sequence is but another name for a submodule 
and its quotient. 

Each homomorphism a :  A+B determines two quotient modules 

Coim a = AIKer a ,  Coker a = B/Im a ,  

called the coimage and the cokernel of a. This definition gives two short 
exact sequences 

Ker a - A+ Coim a, Im a -B+ Coker a ,  (2.2) 

an isomorphism Coim a g I m  a, and a longer exact sequence 

By Prop. 2.1, p a  = 0 implies that /l factors uniquely through q as /l =B1q. 
Dually, if some y: A1+A has ay  =0, then y factors through j as y =jyl 
for a unique y': Af+Ker a. This property characterizes j: Ker a+A up 
to an isomorphism of Ker a. Observe the dual statements: a is a mono- 
morphism if and only if Ker a =0, and is an epimorphism if and only if 
Coker a = 0. This duality will be discussed in $8. 

If a :  A+B and S<A, the set a s  of all elements a s  for SES is a sub- 
module of B called the image of S under a. Similarly, if T<B, the set 
a-I T of all s E A with a s  E T is a submodule of A, called the (complete) 
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inverse image of T. In  particular, Ker a = c lO,  where 0 denotes the sub- 
module of B consisting only of the zero element. 

For K<S<A the module S/K is called a subquotient of A ;  it is a 
quotient module of the submodule S of A,  and simultaneously a submo- 
dule of the quotient module A/K. Furthermore, if K<K1<S'<S<A, 
then K1/K is a submodule of S1/K and the composite projection St+ 
S1/K+ (S1/K)/(K'/K) has kernel Kt,  hence the familiar isomorphism 
(S1/K)/(K'/K) G S1/K'. This allows us to write each subquotient 
(S1/K)/(K'/K) of a subquotient S/K directly as a subquotient of A. 

Let S/K be a subquotient of A ,  S'IK' one of A'. If a:  A-tA' has 
a S < S' and a K < K', then as  + K' is a coset of S1/K' uniquely determined 
by the coset s+ K of S/K. Hence a,  (s+ K )  =as+ K' defines a homo- 
morphism 

a, : S/K -+ S1/K' (a S < S', a K < K') (2.4) 

called the homomorphism induced by a on the given subquotients. 
If S and T are submodules of A,  their intersection S n T  (as sets) 

is also a submodule, as is their union SU T ,  consisting of all sums s + t 
for scS,  ~ E T .  The Noether isomorfihism theorem asserts that 1, induces 
an isomorphism 

1.: S / ( S n T ) r ( S u T ) / T .  (2.5) 

3. Diagrams 

The diagram of R-modules and homomorphisms 

O+AAB$C+O 
1. .Is b (3.1) 

o +A'Z B I ~  cl+o 
is said to be commutative if x'cc = px: A+Bf (left square commutative!) 
and a'#l = yo: B+C1 (right square commutative!). In general, a dia- 
gram of homomorphisms is commutative if any two paths along directed 
arrows from one module to another module yield the same composite 
homomorphism. 

Lemma 3.1. (The Short Five Lemma.) If the commutative diagram 
(3.1) of R-modules has both rows exact, then 

(i) If a artd y are isomor~hisms, so is p ;  
(ii) If a and y are monomorphisms, so is /I; 

(iii) If a and y are epimorphisms, so is p. 
The same conclusions hold for a diagram of (not necessarily abelian) 
groups. 
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Proof. Clearly (ii) and (iii) together yield (i). To prove (ii), take 
b E Ker @. The right square is commutative, so y a b = a'p b = 0 ;  as y is a 
monomorphism, this means that a b = 0. Since the top row is exact, there 
is an element a with xa =b. Now the left square is commutative, so 
x'aa =pxa = @b =O. But the bottom row is exact at A', so aa = 0. Since 
a is a monomorphism, a = 0, and hence b =xa = 0. This proves @ a 
monomorphism. 

To prove (iii), consider any b' in B'. Since y is an epimorphism there 
is a C E C  with yc =arb'; since the top row is exact, there is a ~ E B  with 
a b = c. Then a' Gg b - b') = 0 in C'. The exactness of the bottom row 
yields an a' E A' with x'a' =@ b - b'. Since a is an epimorphism, there is 
an aEA with aa=af and hence with Bxa=xfaa=@b-b'. Then 
b' =@ (b -xu) is in the image of @, q. e. d. 

This type of proof is called "diagram chasing". Inspection shows 
that the chase succeeds just as well if the groups are non-abelian (multi- 
plicative) groups. 

By the same method, the reader should verify the following more 
general results (as formulated by J. LEICHT) : 

Lemma 3.2. (The Strong Four Lemma.) Let a commtative diagram 

have exact rows, z an efiimorfihism, and v a monomorfihism. Then 

Here the dots in the diagram stand for modules or for not necessarily 
abelian groups. 

A simpler version (the Weak Four Lemma) states, for the same com- 
mutative diagram with exact rows, that @ is a monomorphism if a and 
v are monomorphisms and z an epimorphism, while a is an epimorphism 
if 7 and @ are epimorphisms and v a monomorphism. A more frequently 
used consequence is 

Lemma 3.3. (The Five Lemma.) Let a commutative diagram 

have exact rows. If al, a,, a,, a, are isomorphims, so is Q. I n  more detail, 

(i) If al is an efiimorfihism and a, and a, monomor~hisms, then a, is a 
monomorfihism, 
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(ii) If a, i s  a monommphism and a,  and a,  epimorphisms, then or, i s  a n  
epimorphism. 

Proof. Chase the diagram, or apply Lemma 3.2 twice to the left- 
hand and right-hand portions. 

4. Direct Sums 

The external direct sum A,@A, of two R-modules A,  and A ,  is the 
R-module consisting of all ordered pairs (a,, a,), for aie A i ,  with module 
operations defined by 

The functions L and n defined by L, a, = (a,, 0 )  , &,a, = (0, a,), n, (a,, a,) = q , 
n, (a, , a,) = a, are homomorphisms 

11 

A,& A,BA,,C A, 
Zl 8 1  

(4.1) 

which satisfy the identities 

n l h = l ,  n l ~ , = O ,  
n 2 h z 0 ,  3 ~ 2 ~ 2 = 1 ~ , 1  I (4.2) 
h%t l+h%=1~, t~~~.  

Call 1, and r ,  the injections and q, n, the projections of the direct sum. 
The diagram (4.1) contains partial diagrams, to wit: 

Injective direct sum diagram : A -%.A,@ ~ , * f r -  A,. 
Projective direct sum diagram : A,Z A,@ A 2 2  A,, 
One-sided direct szcm diagram: A,@ A,= A,, 
Sequential direct sum diagram: A,-!$ A,@ A , Z  A ,  ; 

in particular, the last diagram is a short exact sequence. Instead of 
defining the direct sum via elements, we can characterize each of these 
diagrams by conceptual properties. With a view to later generalizations 
(Chap. IX), our proofs of these properties will be so cast as to use only the 
diagram (4.1), the identities (4.2), and formal properties of the addition 
and composition of homomorphisms; in particular, the distributive laws 
B(ai+aa)=Bai+Baa and ( a i + a z ) ~  = a i y + a 2 ~ .  

Proposition 4.1. For given modules A ,  and A ,  any diagram 

of the form (4.1) and satisfying the five iderttities like (4.2) i s  isomorphic to 
the direct s m  diagram. I n  more detail, there i s  exactly one isomorphism 
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8 : B-tA, @ A, such that 

nj8 =nip 84=ri, for i=1,2.  (4-3) 

Proof. Define 8 as 8 =c,n;+ ~,nj and the analogue 8': A,@A,+B by 
8'= tin,+ 1; n,. The identities (4.2) show that 8' is a two-sided inverse 
for 8 and thus that 8 is an isomorphism; the properties (4.3) follow 
directly from (4.2). Also if 8 satisfies (4.3), then 8 = (a1%+ r2n2) 8 = 
L,&+ r,n;, so 8 is indeed uniquely determined. 

Next we characterize the one-sided direct sum diagram. 
I" n" Proposition 4.2. Any diagram A,- B+A2 with n" L" = 1,4, i s  iso- 

morphic to a "one-sided" direct sum diagram A,@ A,=A, with A, = Kern". 
The proof requires an isomorphism 8: B+A,@A, with 8c"= r,, 

n, 8 =nu. Define 8 by 8 b = (b - run" b,n" b) and 8-1 by 8-I (4,  a,) - 
4+r1'a2. 

To prove this without using elements, consider the diagram 

with L' the injection. Since n" ( I  .- ~ " n " )  = O , f B -  r" n" factors through s' 
as I B -  ~"n"=r'n' for some n': B-tKern". Now n " s l = O  and s'n'r'=~' 
give n' L'= 1, SO we have identities like (4.2) and can apply Prop. 4.1. 

Now write the direct sum as a short exact sequence ( r , ,  n,). Here c, is 
a right inverse of n, , while n, =I shows n, a left inverse of I,. 

Proposition 4.3. The following properties of a short exact sequence 
(i', n") : A, - B + A,  are equivalent: 

(i) n" has a right inverse L" : A,-+B, with nu r" = 1 ; 
(ii) L' has a left inverse n' : B+A,, with n' c' = 1 ; 
(iii) The sequence i s  isomorphic (with identities on A, and A,) to 

A short exact sequence with one (and hence all) of these properties 
is said to split (some authors say instead that the sequence is inessential). 

Proof. We just observed that (iii) implies (i) and (ii). Conversely, 
exactness shows that L' gives the isomorphism Al=Kernu, so (i) implies 
(iii) by Prop. 4.2. Similarly, (ii) implies (iii). 

Now consider pairs of coterminal homomorphisms a,, a,, as in the 
diagram 

D:  A , ~ B ~ A , .  (4.4) 

Such a diagram is said to be universal with ends A, and A, if to every 
diagram D': A1+B1+-A, with the same ends there exists a unique 
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homomorphism of D to D' which is the identity on each Ai.  In other 
words, D is universal if to each rectangular diagram 

with D as first row and end maps the identities, there is a unique way 
of inserting the middle dotted arrow so that the whole diagram becomes 
commutative @%=a;, p a 2 = 4 ) .  

Proposition 4.4. The (injective) direct sum diagram A,-+A,@ A,+A, is 
universal with ends A, alzd A,.  Conversely, any diagram (4.4) which is 
universal with ends Aj  is isomor+hic to this direct sum diagram (with 
identities on A, and A,).  

Proof. To show A,@ A,  universal, define the homomorphism p needed 
for (4.5) as p(a, ,  a,)=a;a,+a;a, ; that is, as p =a;nl+a;n2; this is the 
only choice for p. To prove the converse, it will suffice to show that any 
two diagrams universal with ends A, andA, are isomorphic (with identities 
on Ai).  Suppose then that both rows in (4.5) are universal. Since the 
top row is universal, there is a p:  B+B1 with pa i=4 ;  since the bottom 
row is universal, there is a /?' : B1-+B with /?'a;.= a,.. Then (/?'p) a j=ai ,  
for j = 1 ,  2.  Since also I B a j = a j ,  the uniqueness property for the top row 
gives = I B .  Similarly the uniqueness for the bottom row gives 
1 =p/?'. Hence p and p' are mutually inverse isomorphisms, q. e. d 

Since the universal diagram is unique up to an isomorphism, it follows 
that the maps ai in any universal diagram with ends A, and A,  are 
always monomorphisms, since they are such for the external direct sum 
diagram. 

Notice that the proof of the converse part of the proposition did not 
use elements of the modules, but only formal arguments with homomor- 
phisms. This proof is thus valid in any category, in the sense soon 
(§  7) to be explained. 

Dually, a pair of coinitial maps forming a diagram D : A, t C-t A, is 
couniversal with ends A, and A,  if to each rectangular diagram 

with D as first row and with vertical maps 1 on each Ai, there is a unique 
way of inserting the middle dotted arrow to make the diagram commuta- 
tive. The reader should prove 

Mac Lane, Homology 2 



18 Chapter I. Modules, Diagrams, and Functors 

Proposition 4.5. The (projective) direct sum diagram 

is couniversal with ends A, a d  A,.  Conversely, any diagram couniversal 
with ends A, and A, is isomor#hic (identities on each Aj )  to this diagram. 

Direct sums of more than two modules work similarly. For example, in 
a direct sum A,@A,@A, an element may be regarded as an ordered 
triple (%, a,, q) or as a function a on the set { 1 , 2 , 3 }  of indices with 
a ( i )  E A+ .  In general, given a family of modules {A,} indexed by an arbi- 
trary set T, the cartesian product n, At is the set of all those functions f 
on T to the union of the sets A, for which f (t) E A, for each t .  Define the 
module operations "termwise"; that is, define the functions f + f' and 
rf for r e R  by 

( f  + f ' )  (4 = f (4 + f' (4 , f ( 4  = f 4 )  s t T. 

Then n, A, is an R-module. The homomorphisms n,: 17, A, + A  
defined by n, f = f ( t)  are called the projections of the cartesian product. 

For given A, ,  let {y ,  : B+A,} be a diagram with one additional module 
B and one homomorphism y, for each t ET.  This diagram is couniversal 
with ends A, if to each diagram {y;: B1+ A, 1 t E T }  there exists a unique 
B : B1-+B such that y; = y, for all t .  The projections of the cartesian pro- 
duct n, A, yield such a couniversal diagram, and any two such diagrams 
are isomorphic, as before. 

The externd direct sum z, A, of the same modules A, is that submodule 
of 17, A, which consists of all those functions f with but a finite number 
of non-zero values. The homomorphisms 6,: At+z t  At are defined for 
each a €A,  by letting it (a) be the function on T with [it  (a)]  (t)  =a ,  
[4  (a)]  (s) = 0 for s +t .  These homomorphisms are called the injections of 
the direct sum. As in the case of two summands, the diagram 
{ i t :  A t+z t  A,} is universal for given ends A,,  and is determined up to 
isomorphism by this fact. 

For a finite number of summands the external direct sum is identical 
with the cartesian product. This implies that any finite universal 
diagram ai: A -+ B, for j = 1, . . . , n, yields a couniversal diagram 
{yi:  B+Aj}. More explicitly, each yi is that map which is uniquely 
determined (since B is universal) by the conditions yi aj = 1 A , ,  yi ak = 0 
for j + k. Dually, the reader should obtain a universal diagram from the 
couniversal one. 

Direct sums may be treated in terms of submodules. If S, is any 
family of submodules of B indexed by a set T, their union US, is the set 
of all finite sums s,+ . . . + s, with each sj in some St ; it is a submodule 
of B containing all the St and contained in any submodule which con- 
tains all the s,. Their intersection nS ,  is the intersection of the sets S, ; 










































































































































































































































































































































































































































































































































































































































































































































































































































