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I ntroduction

Our subject starts with homology, homomorphisms, and tensors.

Homology provides an algebraic "picture” o topological spaces,
assigning to each space X afamily d abelian groups Hy(X), ..., H,(X),
..., toeach continuous map f: X+Y afamily d group homomorphisms
foH (X)—H,(Y). Properties d the space or the map can often be
effectivelyfound from propertiesd thegroups H,, or thehomomorphisms
/.- A similar process associates homology groups to other Mathematical
objects; for example, to agroup I7 or to an associativeagebra A. Homo-
logy in al such casesisour concern.

Complexes provide a means o calculating homology. Each #-dimen-
siona "singular” simplex T in a topological space X has a boundary
consisting o singular simplices d dimension »—1. If K, is the free
abelian group generated by all these z#-simplices, thefunction 2 assigning
toeach T thealternating sum 67 d itsboundary simplicesdetermines a
homomorphism 2: K, - K,,_,. This yields (Chap.IT) a " complex' which
consists d abelian groups K, and boundary homomorphismsg, in the
form

Gl El Gl 2]
0<-—K0<——- 1<—K2<-—K3<—---.

Moreover, =0, so the kernel C o ¢:K,—K, _, contains the image
0K, .,. The factor group H,(K)=C,[0K,,,; IS the n-th homology
group d the complex K or d the underlying space X. Often asmaller
or simpler complex will sufficeto compute the same homology groupsfor
X. Givenagroup|T, thereisa corresponding complex whose homology
is that appropriate to the group. For example, the one dimensiona
homology o I7 is its factor commutator group 7Z/[1, I T].
Homomorphismsd appropriate type are associated with each type
d agebraic system; under composition o homomorphisms the systems
and their homomorphisms constitute a ** category®- (Chap.I). If C and
A are abelian groups, the set Hom(C,A) d all group homomorphisms
f:C-+A isaso an abelian group. For Cfixed, it isa covariant "' functor"'
on the category o all abelian groupsA; each homomorphism «:4-—-A’
induces the map «,, : Hom (C,A) —Hom (C,A") which carries each f into
its composite «f with «. For A fixed, Hom is contravariant: Each
y:C’'—C induces the mapy* in the opposite direction, Hom(C,4)+
Hom(C, A), sending f to the composite fy. Thus Hom(?,A) applied
Mac Lane, Homology 1




2 Introduction

to a complex K=" turns the arrows around to give a complex
Hom (K,, 4) 25> Hom (K;, 4) % Hom (K,, 4) —> ---.

Herethefactor group (Kernel o*)/(Image 2*) isthe cohomology H" (K,A)
of K with coefficientsA. According to the provenance d K, it yields
the cohomology d a space X or d a group 1.

Anextensiond agroup A by agroup Cisagroup B>4 with B/4 = C;
in diagramatic language, an extension is just a sequence

E:0>A—-B—>C->0

d abelian groups and homomorphismswhich is exact in the sense that
the kernel & each homomorphismis exactly the image d the preceding
one. The set Ext!(C,A) d all extensionsd A by C turnsout to be an
abelian group and a functor o A and C, covariant in A and contra-
variant in C.

Question: Does the homology of a complex K determineits cohomo-
logy ? The answer isalmost yes, provided each K,, isafree abeliangroup.
In this case H*(K,A) is determined "up to a group extension" by
H,(K),H,_,(K),and A; specificaly, the " universal coefficient theorem™
(Chap.III) gives an exact sequence

0 — Ext!(H,_, (K),4) - H*(K, A) - Hom (H, (K), 4) ~0

involvingthe functor Ext? just introduced. If the K,, are not free groups,
there is a more complex answer, involving the spectral sequences to be
described in Chap. X1.

Tensors arise from vector spaces U, V, and W and bilinear functions
B(«, V) on U=V to W. Manufacture the vector space U ® V generated
by symbols #«®v which are bilinear in #eU and v€V and nothing
more. Then #®wv is a universal bilinear function; to any bilinear B
there is a unique linear transformation T: UQV-->W with B(%,v)=
T(» ®v). The elementsd V@V turn out to be just the classical tensors
(in two indices) associated with the vector space V. Two abelian groups
A and G have a tensor product A ®G generated by bilinear symbols
a®g; it is an abelian group, and a functor covariant in A and G. In
particular, if K isa complex, s0isAQK:ARQK«~ARQK<«-:-.

Quedtion: Does the homology d K determine that d AQK?
Answer: Almogt yes; if each K isfree, there is an exact sequence

0—->AQ®H, (K)—H,A ®K)—Tor,(4, H,_, (K))—0.

Here Tor, (A,G) isa new covariant functor o the abelian groupsA and
G, called the "torsion product™; it depends (Chap.V) on the elements
d finiteorder in A and G and is generated, subject to suitable relations,
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by pairs d elementsac 4 and geG for which there is an integer m with
ma=0=mg.

Take the cartesian product X=<Y d two spaces. Can we calculate
its homology from that o X and Y ? A study d complexes constructed
from simplices (Chap. VIII) reduces this question to the calculation o
the homology o a tensor product K &L o two complexes. This calcu-
lation again involves the torsion product, via an exact sequence (the
Kiinneth Thm, Chap.V)

0 —>P+Z Hy(K)QH,(L)~>H,(KQL) ;: » ’l;orl(H‘,(K),Hq(L)) - 0.
gm=n g=n—
But woe, if A isasubgroup d B, A®G is not usually a subgroup
d B ®G; in other words, if E:0—->4 —B —C —0 isexact, the sequence
d tensor products

05>4QG>BRG>CRG—0,

is exact, except possibly at A @G. Happily, the torsion product repairs
thetrouble; thegiven sequenceE definesa homomorphismE, :Tor, (C,G
A ®G with image exactly the kernel & AQG--BRXRG, and the
sequence

0 — Tor, (4, G) - Tory (B, G) » Tor,(C,G) 3 4 G >B QG

is exact. Cdl E, the connecting homomorphism for Tor, and &.
But again woe, if A isa subgroup d B, a homomorphismf:A -G
may not be extendable to a homomorphism B->G; in other words,

the exact sequence 0+A —B-—+C—0 induces a sequence (opposite
direction by contravariance!)

0 - Hom(C, G) - Hom (B, G) - Hom (4, G) -0

which may not be exact at Hom(4,G). Ext! to the rescue: Thereis a
"*connecting" homomorphism E* which producesalonger exact sequence

0 — Hom (C, G) - Hom (B, G) - Hom (4, ) =
E} Ext1(C,0) — Ext1(B, G) — Ext! (A.G) — 0.

Now generalize; replace abelian groups by modules over any com-
mutative ring R. Then Ext!(A,G)ist still defined as an R-module, but
the longer sequence may now fail o exactness at Ext!'(A,G). There is
anew functor Ext2 (A,G),a new connectinghomomorphismE* :Ext! (A,G)
—+Ext?(C,G), and an exact sequence extending indefinitely to the right
as

... — Ext" (C,0) - Ext" (B,G) ~ Ext" (A, G) & Ext"+1(C,G) — ...

1%
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The elements d Ext*(C, G are suitable equivalence classes o long
exact sequences
0—>G—>B, ;—>--—>By—>C—0

running from G to C through » intermediate modules. Similarly for
the tensor product; there are functors Tor, (A, G), described viasuitable
generators and relations, which enter into a long exact sequence

—>Tor,,,(C,G) & Tor, (A,G) —Tor, (B, G) = Tor, (C, G) —...

induced by each E: 04 —-B —>C—0. They apply dso if theringis
not commutative — and A, B, and C are right R-modules, G a left
R-module.

These functors Tor, and Ext* are the subject d homological algebra
They give the conomology o various algebraic systems. If I7 isagroup,
take R to bethe group ring generated by I7 over theintegers. Then the
group Z d integersis (trivially)an R-module; if A isany other R-module,
the groups Ext}(Z, A) are the cohomology groups H"*(/1, A) o the
group 7 with coefficients in A. If #=2, H3(II, A) turns out, as it
should, to be the group o all extensions B d the abelian group A by
the (non-abelian) group 17, where the structure & A as a 17-module
specifieshow A isa normal subgroup d B. If n=3, H3({1, A) isagroup
whose elements are " obstructions™ to an extension problem. Similarly,
Tor, (Z, A) gives the homology groups o 17. Again, if A is an agebra
over the field F, construct Ext* by long exact sequencesd two-sided
A-modules A. The algebra A isitself such a module, and Ext*(4, A) is
the cohomology o A with coefficients A ; again Ext2 and Ext3 correspond
to extension problemsfor algebras.

A module Pis projective if every homomorphism P-— B[4 liftsto a
homomorphism P—B. Any free moduleis projective; write any module
in terms d generators; this expressesit as a quotient d a free module,
and henced a projective module.

How can Tor, and Ext" be calculated? Write A as a quotient d a
projective module £,; that is, write an exact sequence 0<-A4<F,. The
kernel d B,—A isagain a quotient d a projective . This process con-
tinues to give an exact sequence 0<A<«Fy<«F< .... The complex P
is caled a "projective resolution’”™ o A. It is by no means unique;
compare two such

0«<A«B &B B«
Il 3/.3% i
0« A<« B B« B «--.

Since 2, is projective, the map B,—A4 liftsto f,: B,—~P,. The composite
map P,—P, liftsin turn to an f,: B, —P/ with 38f,=/,8, and so on by
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recursion. The resulting comparison f,: B, —P, of complexesinduces a
homomorphism H, ( PQG) —H, (P' @G). Reversingtherolesd Pand P
and deforming P — P’ — Pto theidentity (deformationsare called homo-.
topies) shows this an isomorphism H, (RRG)=2H, (P'®G). Therefore
the homology groups H, (P ®G) do not depend on the choice d the
projective resolution P, but only on A and G. They turn out to be the
groups Tor, (A,G). Similarly, the conomology groups H" (P,G) are the
groups Ext"(A, G), while the requisite connecting homomorphisms E*
may be obtained from a basic exact homology sequence for complexes
(Chap.II). ThusTor and Ext may be calculated from projective resolu-
tions. For example, if I7 is a group, the module Z has a standard ™ bar
resolution™ (Chap.|X) whose cohomology is that o I1. For particular
groups, particular resolutionsare more efficient.

Qualitative considerationsask for the minimumlength o a projective
resolution o an R-module A. If there is a projective resolution of A
stopping with B, , =0, A is said to have homological dimension at
most n. These dimensions enter into the arithmetic structure o the
ring R; for example, if R isthe ring Z o integers, every module has
dimension at most 1; again for example, the Hilbert Syzygy Theorem
(Chap.V11) deals with dimensionsd graded modulesover a polynomial
ring.

Two exact sequencesO+A —-B-—+C—0 and 0—»C—D —F -0 may
be "spliced™ at C to give alonger exact sequence

0—>A—->B->»D-—-F->0;
NS

in other words, an element & Ext'(C, A) and an element o Ext!(F, C)
determine a two-fold extension whichisan element o Ext2 (F,A),called
their product (Chap. III). These and similar products for Tor can be
computed from resolutions (Chap. V111).

Every R-moduleis also an abelian group; that is, a module over the
ring Z o integers. Cdl an extension E: A B —C d R-modules Z-split
if the-middle module B, regarded just as an abelian group, is the direct
sum d A and C. Construct the group Extg, »(C, A) using only such
2-split extensions. This functor has connecting homomorphismsE* for
those E which are 2-split. With the corresponding torsion functors and
their connecting homomorphisms,it isthesubject o relative homological
algebra (Chap. 1 X). Thecohomology of agroupissuch arelative functor.
Again, if Aisan algebra over the commutative ring K, all appropriate
concepts are relative to K; in particular, the cohomology o A arises
from exact sequences d A-bimodules which are split as sequences o
K-modules.
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Modulesappear to bethe essential object o study. But the exactness
d aresolution and the definition o aprojective are propertiesd homo-
morphisms; all the arguments work if the modules and the homo-
morphisms are replaced by any objects A, B, ... with "morphisms”
a: A - B which can be added, compounded, and have suitable kernels,
cokernels (Bfx4), and images. Technically, this amounts to developing
homological algebrain an abelian category (Chap. I X). From thefunctor
T, (A)=A ®G we constructed asequenced functorsZ, (A)=Tor, (A,G).
More generdly, let T, be any covariant functor which is additive
[To(y+a) =T, +Tyay] and which carries each exact sequence
0-+A —B —C -0 intoaright exact sequence T (A)-+&(B)~T, (C)—0.
We again investigate the kernel d T (A)->T,(B) and construct new
functorsto describeit. If thecategory has' enough' projectives, each A
has a projective resolution P, and H,(T,(P)) is independent d the
choice d P and defines a functor T, (A) which enters into along exact
sequence

> T(A) > T,(B) > T,(C) BT, 4 (4) -

Thus T, determines a whole sequence d derived functors T, and o
connecting  homomorphisms E,:T,(C)—T,_,(A). These "derived"
functors can be characterized conceptually by three basic properties
(Chap. X11):

(i) The long sequence above is exact,

(ii) If Pis projective and » >0, T, (P)=0,

(iii) If E—~E’isahomomorphismd exact sequences, the diagram d
connecting homomorphisms commutes (naturality!):

L(C)>T,,(4)

y v
L(C) =T, (4").

In particular, given T, (A)=A &G, these axiomscharacterize Tor, (A,Q)
as functors & A. There is a similar characterization o the functors
Ext*(C,4) (Chap.III). Alternatively, each derived functor 7, can be
characterized just in termsd the preceding 7, _,: If E:S (C)—~S,_1(A)
is another natural connecting homomorphism between additivefunctors,
each "natura™ map o S,_, into T,_, extends to a unique natural map
d S into T, This"universa" property d 7, describesit as the left
satellite of 7, _,; it may be used to construct products.
Successiveand interlocking layers d generalizationsappear through-
out homologica algebra. We go from abelian groups to modules to
bimodules to objects in an abelian category; from ringsto groupsto
algebras to Hopf algebras (Chap. V1); from exact sequences to Z-split
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exact sequences to a ""proper’ class d exact sequences characterized
by axioms (Chap. X11). The subject isin processd rapid expansion;
the most general formulation is yet to come. Hence this book will
proceed from the specia to the general, subsuming earlier results in
the concluding treatment (Chap. X11) d additive functorsin an abelian
category relative to a proper classd exact sequences.

As each concept is devel oped, we take time out to stressitsapplica-
tions. Thus Chap. IV on the cohomology d groups includes the topo-
logical interpretation d the cohomology groupsd /7 as the cohomology
d an aspherical space with fundamental group 77, as well as Scuur’s
Theorem that every extension d a finite group by another finite group
d relatively prime order must split. Chap. VII, on dimension, studies
syzygies and separable algebras. Chap. X on the cohomology o alge-
braic systems includes the Wedderburn principal theorem for algebras
and the cohomology (at various levels) d abelian groups. Chap. X1
includesthe standard construction o the spectral sequencesd afiltra-
tion and d a bicomplex, used to construct the spectral sequence d a
covering and d a group extension. (Thelatter is due to Lynpon and
not, as often thought, to the subsequent work d HoCHSCHILD-SERRE).
Much d the general development of homologica algebrain the other
chapters can be read independently o these results.

For the expert we note a few special features. The basic functors
Ext and Tor are described directly: Ext, following YONEDA, by long
exact sequences, Tor by an improved set d generators and relations.
Resolutionsare relegated to their proper place as a means d computa-
tion. All the varieties d algebras (coalgebras, Hopf Algebras, graded
algebras, differential graded algebras) are described uniformly by com-
mutative diagramsfor the product maps. Relative homologica algebra
is treated at two levelsd generdlity: First, by a "*forgetful" functor,
say one which regards an R-module just as an abelian group, later by
a suitable proper classd short exact sequencesin an abelian category.
Thecohomology d groupsisdefined functorially by the bar construction.
This construction later appears in conceptual form: For a pair o cate-
gories with a forgetful functor and a functor constructing relative pro-
jective~(Chap.1X, $7). The proper definition d connecting homo-
morphisms by additive relations (correspondences) is indicated; these
relations are used to describe the transgression in a spectral sequence.
This gives a convenient treatment d the transgression in LYNDON's
spectral sequence. Diagram chasing works in an abelian category with
subobjects or quotient objects replacing elements (X1I.3).

Notations are standard, with the following few exceptions. A com-
plexisK (latin), acommutative ringisK (greek). A *graded” module M
isafamily M,, M, ... d modulesand ot their direct sum 337, while
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afamily...,M_;, M,, M,, ...issaid to be" Z-graded". A monomorphism
is written x:A4>>B, an epimorphism a:B-»C, while x]o states that
0+A —B->C-—0isexact. A dotted arrow A--> B isa homomorphism
to be constructed, a dashed arrow 4---B is a group homomorphism
between modules, a haf arrow 4— B is an additive relation. We
distinguish between a bicomplex (X1.6) and a complex d complexes
(X.9); we "augment™ but do not "supplement™ an algebra. The dual
d aresolutionisa' coresolution™. If »isacyclein the homology classh
o H,(X),uceH, isshort for ucheH,, while h iswritten h=cls . The
coboundary d an n-cochainf is 8f==(—1)*"1f ¢, with a sign (11.3).

A referenceto ThmV.4.3 isto Theorem 3 d section 4 o Chap. V;
if the chapter number is omitted, it is to a theorem in the chapter at
hand. A reference such as BourBaki [1999] is to that author's article,
as listed in the bibliography at the back d our book and published in
the year cited; [1999b] is to the second article by the same author,
same year. The influential treatise by H. CArRTAN and S. EILENBERG
on Homologica Algebraishonored by omittingitsdate. The bibliography
makes no pretense at completeness, but isintended to provide a guide
tofurther reading, assuggested in the notesat the ends d some chapters
or sections. These notes also contain occasiona historical comments
which give positive—and perhaps prejudiced—views d the develop-
ment o our subject. The exercisesare designed both to give elementary
practice in the concepts presented and to formulate additional results
not included in the text.

Chapter one

Modules, Diagrams, and Functors

Homology theory deals repeatedly with the formal properties d
functions and their composites. The functions concerned are usually
homomorphismsd modulesor o related algebraic systems. The formal
properties are subsumed in the statement that the homomorphisms
constitute a category. This chapter will examine the notionsd module
and category.

1 The Arrow Notation

If X and Y are sets, the cartesian product X><Y is the set o al
ordered pairs (x, y) for xe X and yeY.

Thenotationf: X+Y statesthat fisafunctionon X to Y. Formally,
such afunction may bedescribed as an ordered triplef =(X, F, Y), with
Fa subset o X><Y containing for each x¢X exactly one pair (x,Y).
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Actually wewritef (x)=Yy, asusual, for thevalue of f at the argument x.
Notice that we normally write the function f to theleft o its argument,
asinf (x). Noticealso that eachfunction f carrieswithit adefinite set X
asdomainand a definite set Y asrange.

If f:X+Y and g Y-Z are functions, the composte function gf,
sometimes written gof, is the function on X to Z with the value
of) (x)=g(f (x)) for each x<X. Sincefunctionsarewritten ontheleft, gf
means first apply f, then apply g. This compositeis defined only when
Range (f) =Domain (g);in particular, we do not define the composite
when Range (f) is a proper subset d Domain (g).

For any set X, the identity 1 or 14 is the function 1: X+X with
1(X)==«foradl x. If Sisasubsetd X thefunctiony: S—X with values
i(s)=s for all seS iscaledthe ("identity")injection d Sinto X. For
any f: X+Y the composite fj: S—Y (sometimeswritten f|S) is the
function f **cut down™ to thesubset Sd itsdomain. Similarly, when Y
isasubset d W and k: Y+W istheinjection (with k(y)=y), the com-
posite kf: X—W isthefunction f with itsrange expanded from Y to W.
Notice that the functionsf and kf have the same vauesfor each argu-
ment x, but they are different functions, since the range is different.
This digtinction, apparently pedantic, will pay off. (See Example2 in
I1.1.).

We use the usual notations d set theory, with X~Y denoting the
intersection d the sets X and Y and with @ the empty set.

2. Modules

Let R bearing with identity 14=0. A left R-module A isan additive
abelian group together with a function p: R<A—>A4, written s (r, a)=ra,
such that always

r+7rYa=ra-tra, (rvYa=r(ra),
r(@+a)=ratra, 1la=a.

It follows that 0@ =0 and {—1)a=—a. Some authors define an R-
module without requiring that 14 =a, and call a module with this
property unitary. In this book, every ring has an identity and every
module is unitary.

Our treatment o left R-modules will apply, mutatis mutandis, to
right R-modules. They are abelian groups A with ar € A defined so asto
satisfy the correspondingfour identities; for examplea(rr')= (ar)r'.

Modules appear in many connections. In case R isafield or a skew
field, a left R-moduleis a left vector space over R. If Fisafield and
R=F[x] the polynomia ring in one indeterminate x with coefficients
in F, then an R-moduleis simply a vector space V over Ftogether with




10 Chapter |. Modules, Diagrams, and Functors

afixed linear transformation T: V-V ; namely, T isthe transformation
given by left multiplication by xeR. Consder Z-modules, where Z
denotestheringd integers. For eachpositiveinteger m, ma=a + ... *a
(mtimes); hencea Z-module A is just an abelian group, with the usua
meaning for integral multiples ma, meZ. If Z, isthe ring o integers
modulo k, a Z,-module A isan abelian group in which every element has
order adivisor of k. Finally, take R to bea commutative ring generated
by | and by an element d with d?= 0, sothat R consistsd all m+ s d for
integer coefficientsm and n; an R-module is then an abelian group A
together with a homomorphism d: A—+A4 such that d=0; such a pair
(A,d) is cdled a " differential group™ (IL.1).

A subset S d an R-module A is a submodule (insymbols, SC4), if S
isclosed under addition and if r¢R, se S imply rse S; then Sitself isan
R-module. Thering R isitself aleft R-module. A submoduled Risa
subset L o R closed under addition and with each »L{L ; such a subset
isdsocaledaleftideal in R. If L isaleftideal in R and A aleft R-
module, the set

LA ={al finitesums X 7; a, for /;cL, a;cA)

isasubmoduled A, called the product o theideal L by the module A.
In particular, the product LL' o two left ideals is a left ideal, and
(LLYA=L(L'A4).

f A and B are both R-modules, the notation a: 4—B or A% B
statesthat a is an R-module homomorphism d A to B; thatis, afunction
on A to B such that aways

a(gta)=aatoaa’, a(ra)=r(xa)

When a: A-»B, call A the domain and B the range d a. The image
Im(a)=ua4 consistsd al elementsaafor acA;itisasubmoduled the
range B; the kerndl Ker («) consistsd all ain A with aa=0; itisa
submoduled thedomain A. If « A=B, wesay that aisan epsmorphism
and writea: A-»B, whileif Kera=0 we say that a is a monomorphism
andwritea: A>B. Findly, aisanisomorphismif and only if aisboth a
monomorphism and an epimorphism. For each module A, the identity
function 14: A—A4 is an isomorphism. For any A and B, the zero or
"trivial™ function 0 with every 0(2)=0 is a homomorphism 0: 4—B.
A homomorphismw: 4-»A4 with range and domain equal is called an
endomorphism.

If «,,a, : A—B are homomorphismswith the samedomain A andthe
same range B, their sum o + o5, defined by (oc1+a,) a=a1a+oc2a, isan
R-module homomorphismey +ay: A—B.

If a: A—-B and §: B—C are R-module homomorphisms, the com-
posite function Be is aso an R-module homomorphism a: A—C; but
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note that this composite is defined only when Rangea=Domain 8.
The composition d homomorphisms is associative when defined. A
(two-sided) inverse of a: 4—B isa homomorphism«™: B+A such that
both aa1=15 and a-la=1,. Moreover, a has an inverseif and only if
it isan isomorphism, and the inverseisthen unique. Wewritea: A=B
when a is an isomorphism. A left inversed ais any homomorphismy:
B—+A withya=1,; it need not exist or be unique.

A pair @ homomorphisms( a, 8) with Rangea=Domain =B,
4%Btc,

isexact at B if Kerf=Ima A longer sequence d homomorphisms:

&, & xp—
4,254,254, - A, %A,

is said to be exact if («;_,, @) isexact at 4,, for eachi =2,...,n—1.

For each submodule T ¢ B theinjection isa monomorphism|j: T—B.
For each beB the set 8 +T of all sums b4 ¢ with ¢¢T isa cosetof Tin B;
two cosetsd, + T and &, + T are either digoint or equal (thelatter when
b,—b,e T). Recall that the quotient group (factor group or difference
group) B/ T hasasitselementsthecosetsdf TinB,with(s, +T) + (5, FT)
= (b, *d,) +T as addition. Since T is a submodule, the abelian group
B|T becomesan R-modulewhen the product d any reR with a coset is
defined by »(b+T) =rbF+T; wecdll BT a quotient module. The func-
tion % which sends each element beB into its coset nb=b~+ T isan epi-
morphism %: B—»B/|T, caled the canonical map or projection B on
B|T.

Proposition 2.1. If 8: B—~B’ with TCKer g, thereisa unique module
homomorphismf’: B/T—B’ with 8'n =g; that i s, the diagram

B ,.B|T

N ﬁ B(T)=o0,
él

can ke" filled in" by a unique g’ 2 asto be commutative (8’5 = f).

Proof. Set g’(b+ T)=pBb; since TC Ker g, this iswel defined. In
particular, if 8: B—B’ is an epimorphism with kernel T,8’: B/T=B".

This result may be worded: Each g with g(T)=0 factors uniquely
through the projection 5. This property characterizes n: B—B/T up
to an isomorphism d BIT, in the following sense:

Proposition2.2. If TWCB and ¢: B+D is such that ¢(7)=0 and
each §: B 3B' with 8(T)=0 factors uniquely through(¢, thereis an iso-
morphism @: B/T =D with{ =01.
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Proof. Factor ¢ through# and % through[, so{=¢{'n,n=%'{. Hence
{={'y"Y[=1{. But{ factorsunigquely through(, so{’sn'=1. Symmetri-
caly, ’'’=1. Hence n'=({")* and ¢’ is the desired isomorphism 6.

For any T<B the injection 7 and the projection # yield an exact
sequence.

O—>T—'->B—"—>B/T—>O.

Conversaly, let

(X,0): 045 B-2% C—>0

be any short exact sequence; that is, an exact sequence d five R-modules
with the two outside modules zero (and hence the two outside maps
trivial). Exactnessat A means that » is a monomorphism, at B means
that xA=Kera, at Cthat ¢ is an epimorphism. Thus the short exact
sequence may be written as 4B C, with exactness at B. Now x
inducesanisomorphismx’: A= x A and aan isomorphisme¢’: BjxA==C;
together these provide an isomorphismd short exact sequences, in the
form of a commutative diagram

0—> A5 B-25C—50

= e (2.1)
0—->xA1.B_>BjxA->0.

In brief, a short exact sequence is but another name for a submodule
and its quotient.

Each homomorphisma: A+B determines two quotient modules
Coima=A/Kera, Cokera=B/Ima,

called the coimage and the cokernel & a. This definition gives two short
exact sequences

Kera»»A-»Coima, Ima>B-»Cokera, (2.2)
an isomorphism Coima =zIm a, and a longer exact sequence

0—Kerat>4% B Coker a— 0. (2-3)

By Prop. 2.1, g« =0 impliesthat g factors uniquely through# asg =8'».
Dudly, if somey: A’—A hasay =0, then y factors through § asy =77’
forauniquey': A’—Xera. This property characterizesj: Ker atA up
to an isomorphism d Kera. Observethe dual statements: a is a mono-
morphismif and only if Kera=0, and is an epimorphismif and only if
Coker & =0. This duality will be discussedin $8.

If a: A—>B and SC4, theset « S d all elementsasfor seS is asub-
module d B called theimage d S under a. Similarly, if TCB, the set
a1 T d al seA with aseT is a submodule d A, caled the (complete)
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inverseimaged T. In particular, Ker a=a10, whereo denotesthe sub-
module d B consistingonly o the zero element.

For K{SCA the module S/K is called a subquotient of A; itisa
quotient module d the submodule Sd A, and simultaneously a submo-
dule d the quotient module A/K. Furthermore, if K{(K'CS'CSCA,
then K’/K is a submodule d S’/K and the composite projection S'—
S'|K—(S'|K)(K'|K) has kernel K’, hence the familiar isomorphism
(S'/K)(K'|K)=S'|[K’. This dlows us to write each subquotient
(S'/K)/(K'|K) d asubquotient S/K directly asa subquotient o A.

Let S/K be a subquotient & A, S'/K’ one d A'. If a:4—A4’ has
aSc S andaK ¢ K', then astK' isacoset d S’/K’ uniquely determined
by the coset s+ K o S/K. Hence a, {s+ K)=as+ K' defines a homo-
morphism

a,: S/K - S'|K’ (aS¢ s, aK¢KY) (2.4)

called the homomorphism induced by a on the given subquotients.

f Sand T are submodulesd A, their intersection S~T (assets)
is also a submodule, asis their union SU T, consisting d all sums s +t
for se S, teT. The Nocther isomorphism theorem asserts that 1, induces
an isomorphism

1 S/(SAT)=(SVD)T. (2.5)
3. Diagrams
The diagram o R-modules and homomorphisms
0->4-5B 5 C—0
e o b (3.1)

0—>A'—K;B'.i C'——)()
issaid to be commutative if »'« =fx: A-—~B’ (left square commutative!)
and ¢'8=yo0: B—C’ (right square commutative!). In general, a dia-
gram d homomorphismsiscommutativeif any two pathsalong directed

arrows from one module to another module yield the same composite
homomorphism.

Lemma 3l (The Short Five Lemma.) If the commutativediagram
(3.1) d R-modules has both rows exact, then
(i) If a and y are isomorphisms, DisP;
(ii) If aand y are monomorphisms, DisP;
(iti) If a and y are epimorphisms, D is B.
The same conclusions had for a diagram d (not necessarily abelian)
groups.
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Proof. Clearly (ii) and (ili) together yield (i). To prove (ii), take
beKer §. The right square is commutative, 0 yab=¢'fb=0; asyisa
monomorphism, this meansthat ab=0. Sincethetop row isexact, there
is an element a with xa=b. Now the left square is commutative, so
xX'aa=fx»a=pFb=0. But the bottomrowisexact at A',soaa=0. Since
a is a monomorphism, a=0, and hence b=xa =0. This proves 8 a
monomorphism.

To prove (iii),consider any b in B'. Sincey isan epimorphismthere
isaceC with yc=g'b'; sincethe top row is exact, thereisa b¢B with
ab=c. Then d (8b—b)=0in C. The exactness d the bottom row
yieldsan d e A with Xa' =gb—Db". Sincea is an epimorphism, thereis
an a¢A with wa=a" and hence with fxa=x'aa=8b—5b". Then
b =g (b—~xa) isin theimaged B, g.e.d.

This type o proof is caled "*diagram chasing™. Inspection shows
that the chase succeeds just as well if the groupsare non-abelian (multi-
plicative) groups.

By the same method, the reader should verify the following more
genera results (asformulated by J. LEICHT):

Lemma 32. (The Srong Four Lemma.) Let a commutative diagram

'lr la lﬂ l" (3.2)

n
Pty v D e

have exact rows, T an epémorphism, and v a monomorfihism. Then
Kerf=¢(Kere), Ima=#(Imp).
Herethe dotsin the diagram stand for modulesor for not necessarily
abelian groups.
A simpler version (the Weak Four Lemma) states, for the same com-
mutative diagram with exact rows, that g is a monomorphismif a and
v are monomorphisms and 7 an epimorphism, whilea is an epimorphism

if ¥ and g are epimorphisms and v a monomorphism. A more frequently
used consequenceis

Lema 33. (TheFiveLemma.) Let acommutativediagram

P S .

N R e (3.3)

D e i o
have exact rows. If o, a,, &, a, aretsomorphims, VDisay. | N more detail,

() If o isan epéimorphism and a, and a, monomorphisms, thene, isa
monomorphism,



4. Direct Sums 15

(i) If a, i'sa monomorphism and a, and a, epimorphisms, then ogisan
epimorphism.

Proof. Chase the diagram, or apply Lemma 3.2 twice to the left-
hand and right-hand portions.

4. Direct Sums

The external direct sum 4,4, of two R-modules A, and A, is the
R-module consisting & all ordered pairs (a,,a,), for ;€ 4;, with module
operations defined by

(@1, g) + (a1, a2) =(m+ a1, a5+ az), 7(ay, a))=(ray, ra,).

Thefunctions: and ndefinedby 4 8,=(a,,0), 1,a,= (0, &), =, (a,,a) =4,
m, (a,, a) =a, are homomorphisms

A 4,0D4,55 A, (44)
which satisfy the identities

mu=1,,, @L=0,
Tty =0,  Tala=14,, (4.2)
u o+ =144,
Cdl ¢ and ¢, the injections and =, , 7, the projections d the direct sum.
The diagram (4.1) contains partial diagrams, to wit:

Injective direct sumdiagram: A-54,@ A4, A,
Projectivedirect sumdiagram: 4, 4,04, A,
One-sided direct sum diagram: A4,D A, A,,
Sequential direct sumdiagram: 4,-5A4,BDA4,-3A, ;

in particular, the last diagram is a short exact sequence. Instead o
defining the direct sum via elements, we can characterize each d these
diagrams by conceptual properties. With a view to later generalizations
(Chap.1X),our proofsd these propertieswill be socast asto useonly the
diagram (4.1), the identities (4.2), and formal propertiesd the addition
and composition d homomorphisms; in particular, the distributive laws
Bloy+ag) =Py + Py and (a;+xg)y =ayy +ogy.
Proposition 4.1. For given modules A, and A, any diagram

4 4

Al — B...._) Az
’ y
G T3

d the form (4.1) and satisfying the five identities like (4.2) isisomorphic to
the direct sum diagram. | n more detail, there i s exactly one isomorphism
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0: B—>A, DA, suchthat
ml=mn;, Ou=y, forj=1,2. (4.3)

Proof. Define8as 8=1,7;-+ t,2 and theanalogue 8': 4,6 4,—~B by
0'=um+ 17, Theidentities (4.2) show that 8 is a two-sided inverse
for 8 and thus that 8 is an isomorphism; the properties (4.3) follow
directly from (4.2). Also if 6 satisfies (4.3), then @=(¢, 7,4+ ¢,7,) 0 =
4, 7T+ ta7wg, O O isindeed uniquely determined.

Next we characterizethe one-sided direct sum diagram.

11

Proposition 4.2. Any diagram 4,°>B25 4, with /¢ =14, isiso-
morphictoa" one-sided" direct sumdiagramA4,P 4,554, withA,=Kern".

The proof requires an isomorphism 8: B—>4,4, with 0¢' =1,,
7, 8=n'". Define 6 by 6b=(b—¢'n"b,#"'b) and 6 by 67 (4, 8) =
a4 a,.

To provethis without using elements, consider the diagram

[}
Ker ' > B55 A,
=

withe theinjection. Sincex” (1 — ¢"’#"’) =0, 15— ¢’ &'’ factorsthrough ¢’

as1p—'n'" =17’ for somen': B—>Kern”. Now z’’ =0 and /=’ ¢’ ="'

given’'+/'=1, so we haveidentities like (4.2)and can apply Prop. 4.1.
Now write the direct sum asashort exact sequence(e, z,). Heresis

aright inversed =,, whilen, , =1 showsr, aleftinverse of ¢;.

Proposition 4.3. The following properties o a short exact sequence
(i',n"™): A, B-»A4,areequivalent:

(i)'’ has aright inverse ¢'': A,—>B, withz" ¢''=1;
(ii) ¢’ has a left inverse n’: B—A4,, witha'¢=1;
(iii) The sequence i sisomorphic (with identitieson A, and A,) to

04,5 4,D A4, 4, >0.

A short exact sequence with one (and hence all) d these properties
issaid to split (someauthors say instead that the sequenceisinessential).
Proof. We just observed that (iii) implies (i) and (ii). Conversealy,
exactness shows that ¢ gives theisomorphism 4, =Kerz", so (i)implies
(iii) by Prop. 4.2. Similarly, (ii) implies (iii).
Now consider pairs d coterminal homomorphisms «,,a,, as in the
diagram
D: A, 5B A,. (4.4)

Such a diagram is said to be universal with ends A, and A, if to every
diagram D': 4,—B'«A, with the same ends there exists a unique
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homomorphismd D to D' which is the identity on each A4;. In other
words, D is universal if to each rectangular diagram

A, 5 BE 4,
I (4.5)

4,588 4,,

with D asfirst row and end maps the identities, there is a unique way
d inserting the middle dotted arrow so that the whole diagram becomes
commutative (Boy=os, Boa=03).

Proposition4.4. The(injective) directsumdiagramA4,—»A4,P A« 4,1s
universal with ends A, and A,. Conversely, any diagram (4.4) which is
universal with ends 4; is é¢somorphic to this direct sum diagram (with
identities on A, and A,).

Proof. Toshow 4,D A, universal, definethe homomorphismg needed
for (4.5) asB(ay, @) =14+ g4, ; that is, asf =aym -+ a7, ; thisis the
only choicefor 8. To provethe converse, it will sufficeto show that any
two diagramsuniversal withendsA, and 4, areisomorphic(withidentities
on 4;). Suppose then that both rowsin (4.5) are universal. Sincethe
top row is universal, thereisag: B—B’ with fa,;=q;; since the bottom
row is universal, thereisag’: B'—B with f'a;=a«;. Then (f'f)a,;=«;,
forj=1, 2. Sincedso 1 g &;=wa;, the uniquenessproperty for the top row
gives '8 =1g. Similarly the uniqueness for the bottom row gives
1z=gf". Hence § and g’ are mutually inverse isomorphisms, g.e.d

Sincethe universal diagramisunigue up to an isomorphism, it follows
that the maps «; in any universal diagram with ends A, and A, are
always monomorphisms, since they are such for the external direct sum
diagram.

Notice that the proof d the converse part o the propositiondid not
useelementsd the modules, but only formal arguments with homomor-
phisms. This proof is thus valid in any category, in the sense soon
(§ 7) to be explained.

Dually, a pair d coinitial maps forming a diagram D: A,«<-C—A, is
counsversal with ends A, and A, if to each rectangular diagram

4,204,
It (4.6)

4,2c %4,

with D asfirst row and with vertical maps1 on each 4;, thereisa unique
way d inserting the middledotted arrow to make the diagram commuta-
tive. The reader should prove

Mac Lane, Homology 2
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Proposition 4.5. The (projective) direct sum diagram
 — 1®A2~ﬂ)A2

is couniversal with ends A, and A,. Conversely, any diagram couniversal
with ends A, and A, isisomorphic (identities on each 4;) to this diagram.

Direct sumsd morethan two moduleswork similarly. For example,in
a direct sum 4, 4,4, an element may be regarded as an ordered
triple (4, a,, a5) or as a function a on the set {1, 2, 3} d indices with
a(i)4;. In genera, given a family d modules{A,}indexed by an arbi-
trary set T, the cartesian product [T, 4, istheset d all those functions f
on 7 to the union d thesets A, for whichf (t)c A, for each t. Definethe
module operations ""termwise’’; that is, define the functions f +¢ and
rf for reR by

Gtivo=totere, eHho= (), teT.

Then JI, A, is an R-module. The homomorphisms n,: [], A,—~A
defined by &,f =f(t)are caled the projections d the cartesian product.

For given A, ,let {y,: B—>4,} beadiagram with oneadditional module
B and one homomorphism y, for each teT. This diagram is couniversal
with ends A, if to each diagram {y;: B’ A,|teT} thereexistsa unique
B: B'—B such that y;= y, 8 for alt. Theprojectionsd thecartesian pro-
duct JT, A, yieldsuchacouniversal diagram, and any two such diagrams
areisomorphic, as before.

Theexternal direct sum Y, A, of thesamemodules A, isthat submodule
d JI,A,which consistsd all those functionsf with but a finite number
d non-zero values. The homomorphisms ¢: 4,—>, 4, are defined for
each acd, by letting ¢(a) be the function on T with [¢(a))t)a,
[, (a)](S}=0 for s£=£. Thesehomomorphismsare called theinjectionsd
the direct sum. As in the case d two summands, the diagram
{,;: 4,~3, A} is universal for given ends A,, and is determined up to
isomorphism by this fact.

For a finite number d summands the external direct sumisidentical
with the cartesian product. This implies that any finite universal
diagram «;: A;—B, for =1,...,n, yields a couniversal diagram

B—>A} More explicitly, eech y; is that map which is uniquely
determl ned (since B is universal) by the conditions y; «;=1,, ¥;%=0
for j 4=k. Dually, the reader should obtain a universal diagram from the
couniversal one.

Direct sums may be treated in terms d submodules. If S, is any
family o submodulesd B indexed by aset T, their union US, isthe set
d dl finitesumss;+ ... +s with each s; in some S, ; it isasubmodule
d B containing al the S, and contai ned in any submodule which con-
tainsall the S,. Their intersection NS, is the intersection d the sets S, ;













































8. Functors 33

Then o;7;: A;<A,—>A;; by the couniversal property of the bottom row,
there is a unique morphism f§: 4,><A4,—>A41><A; with 7 § =« 7; ; that is,
a unique # which makes the diagram commutative. For example, if € is
the category of sets or of R-modules, and if each A4,><A4, is chosen in the
usual way as the set of all pairs (4, a,), then §(a,, ) = (0, 4, % a,). Call
B =oy><a, the direct product of the given morphisms. By the couniversal
property, 1><1 =1, and (y;3><y,) (a3>< &) =910, >< %, Wherever y; a; is
defined for ¢ =1, 2. Hence P(4,;, 4;)=A,><4,, P(oy, &) =0 <a, defines
a covariant bifunctor P on %, % to . For three objects 4,, 4,, A, the
usual map (4;><A4,)><A;—>A;><(A;><A,) is a natural homomorphism
of covariant trifunctors.

The notions of category and functor provide not profound theorems,
but a convenient language. For example, consider the notion of diagrams
of the ‘‘same form”, say of diagram of modules of the form D: 4—-B—C.
Any such diagram may be regarded as a functor. Indeed, introduce the
finite category s, which has three objects a, b, and ¢, the corresponding
identity morphisms and the morphisms #y: a—b, 4,: b—>c, and uy: a—c
with A%y =ue. Then any diagram of modules as exhibited is a covariant
functor on s#to the category r.# of modules: Such a covariant functor D
does provide three modules D (a)=A, D (b)= B, and D(c)=C plus the
homomorphisms D (x,), D (4o), D {ue) =D (2g) D (). Furthermore a map
of a diagram D to a another diagram D’ of the same form is exactly a
natural transformation D—D’ of functors. In this formulation we also
can include the notions of diagrams with commutativity conditions;
thus a commutative square diagram is a functor on the finite category

5"l¥:l"" ) Mo %o = o = Vg &. (8-13)

A partly ordered set S is a set with a binary relation »<s which is
reflexive (r=7), transitive (»<s and s<¢ imply »=<¢) and such that
r<sand s<7imply »=s. The partly ordered set S has a zero if there is
an element 0€ S, necessarily unique, with 0=<s for every s. An element
ueS is a least upper bound (1. u.b.) of s,tcSifs<u,t<u ands<v,i<v
imply #=<wv. This 1. u. b. is unique if it exists, and is written u=su?.
Similarly, w=snt is a g.1.b. of sand tif w<s, w<tand x<s, ¥<¢
imply ¥*<w. The partly ordered set S is a lattice if st and s~¢ exist for
all s and ¢.

Each partly ordered set S may be regarded as a category &, with
objects the elements s€S, morphisms the pairs (s, 7): 7 —s with 7<s,
and composition of morphisms defined by (¢, s)(s,7)=(¢,7) when
r<s=¢. For example, the finite category (8.13) arises so from the partly
ordered set with four elements 4, b, ¢,d and partial order a<b=d,

Mac Lane, Homology 3





































































56 Chapter I1I. Homology of Complexes

For an affine singular simplex (7.2), the ¢-th face omits the 7-th vertex:

d,-(vo,...,v,,)c=(v0,...,ﬁ;,...,v”)c. (76)
The process of forming iterated faces satisfies the identity
&;a;,T=d;_,d,T, i<j. (7.7)

By (7.5) it suffices to prove this in the case when T"= J,; here it is clear,
since the process of first omitting vertex 7 and then vertex ¢ amounts
to the same as first omitting vertex 7 and then (in the new numbering
of vertices of 4, J,) vertex j—1. An alternative proof may be given by
replacing each point of the standard s-simplex A" by its barycentric
coordinates x,, ..., %,. A singular #-simplex T in the space X is then
a continuous function with values T'(x,, ..., x,)€X, defined for all real
x; with x; = 0and xy+ --- + x,=1. Thes-th faceis the function defined by

(@;T) (Hgs oo v X)) =T (%g, -, %41, O, Xy oeey Xp—q);

i.e., by letting the s-th variable in T be 0. Hence (7.7) follows, because
first setting x;=0 and then x,=0 for i<j in T'(x,, ..., %,) amounts
to first setting x;=0 and then setting equal to 0 the variable with the
new number j—1.

To each space X we now construct a complex S(X) of abelian
groups, called the singular complex of X. Take S,(X) to be the free
abelian group with generators all singular #-simplices T of X. Then
the ¢-th face operation defines a homomorphism d;: S,(X)—S,_,(X)
for 1=0, ..., and #>0. Define the boundary homomorphism

0: Sn (X) _>Sn—1 (X)

as the sum of the face homomorphisms with alternating signs; that is
0T=d,T—d, T+ +--+(—1)*d,T= Y (—1)'d;T, n>0. (7.8)
i=0

An #n-chain ce S, (X) has a unique representation asasum c= D7 ¢(T) T
where the coefficients ¢ (T') are integers, zero except for a finite number
of T; its boundary is dc= 2, ¢(T) 0T. To show that S(X) is a complex,
we must prove that the composite 99: S,—S,_, is the zero homo-
morphism for #>1. It suffices to prove & 8T =0. But

00T=Y (—1)"d,d,T+ 3 (—1)‘+fd,-d,T.

i<y 2]
Using (7.7) and switching the labels ¢ and § in the second sum, this is
00T=Y (—1)"Hd,_,d,T+ 3 (—1)"**a,4,T.
j=12¢ ki

The two sums are equal except for sign, hence cancel to give 89=0.
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160 Chapter V. Tensor and Torsion Products

hence a function of G and 4 which we call, for the moment,
Top® (G, 4)=H, (X QrA4)-

It is clearly a functor of 4, and also a functor of G. For, given: G>G’,
choose a projective resolution &': X'—G’, lift 9 to a chain transformation
f: X —X’, and construct the induced map fu: Hy (X ®@A)—~>H, (X'QA).
By the comparison theorem, any two such f’s are homotopic, so f,
depends only on 7 and gives 7y: Top, (G, 4) —~Top,(G’, 4). Thus Top,
is a covariant bifunctor, which we now identify with Tor,. (Often Tor,
is defined to be what we have called Top,.) '

Theorem 8.1. For a resolution ¢: X —G of the module Gy and a
module RA there is a homomorphism

w: TorR(G,4) ~>H,(XQr4), n=0,1,..., (8.1)

natural in A. If X is a projective rvesolution, o is an isomorphism, natural
in G and A.

Sketch. Each (u,L,%) of Tor, consists of a projective complex
u: L—>G of length # over G and an n-cycle (1, L,,v)eTory(L,,4) of
the complex L&A, hence determines a homology class in H,(L&A4).
A comparison L—X gives a homology class in H,(X®A), thus an
element of Top,,.

Proof. Take ¢=(u, L,v) in Tor,(G,4). The comparison theorem
yields a chain transformation #: L—>X of the projective complex L
over G (via y) to the exact complex X over G (via g). Set

o(p, L,v)y=cls(h,, L,,v) € H,(X®4).
This makes sense, for h,: L,—>X,,v: Lx >4, so (h,, Ly, )€ Tory (X,,, 4)
=X, ®A4. It is a cycle there, as
8 (hn, Ly, 9)=(0hy, Ly, ¥) = (hp—19, Ly, 7)
=(hy_1, Lp-1,% )= (ly_1, Ly_1,0)=0.
The homology class of this cycle is unique, for if &': L->X is another

chain transformation lifting 1, there is a homotopy s with A, =h,+
9s,+$,-10. Then

(i, Ly, 9) = (b Ly, ¥)+ (050, Ly, 9) + (8529, Loy )
=(h'n1 L”,'V)+a(s”, Lnx 'V)+ (s”—l: Ln—l’ 0):

which is the original cycle (,, L,,?) plus a boundary. Furthermore,
if t=(u'p, L,v) and ¢'=(u', L, v o*) for some g: L—L' are equal ele-
ments according to the definition of Tor,, while A4: L' X, then
Wo: L-X and wt=wt' in Tor,.

























































































































































5. Separable Algebras 211

Now P itself and hence each Y, is also a free K-module, so h.dimg G=<
gl.dim K=7 implies that the K-module G, is projective. For any P-module
H we have the isomorphisms

Ext3?(G, H) =Ext}(G,, H)=Ext}_,(P, Hom(G,, H)),

the first by the iterated connecting homomorphism of the sequence S
and the second by adjoint associativity (Thm. 3.3). On the right regard
the P-bimodules as P & P°-left modules. Then P®P=P, so P PPz
P QK[y] is isomorphic to a polynomial ring P[y] in one indeterminate
y over P. In particular, the P-P-bimodule P becomes a P[y]-module,
and the injection I: P— P[y] satisfies (Ip)p'=pp'. Hence Thm. 2.2
(with K there replaced by P and P by P[y]) gives h.dimgy,; P=1,
which asserts that Ext}_ (P, —) above vanishes, hence that Ext};t2=0,
so gl.dim P<7+1. On the other hand, gl.dim K=7 means that there
are K-modules C and A with Exti(C,4)==0. By Prop. 4.1, this gives
Ext31(C, A)=Extk (C,4)=0, so gl.dim P is at least »+1. This latter
argument also gives the result stated for r=o0.

Corollary 4.3. The global dimension of Z[x,, ..., %,] is n+1.

Corollary 4.4. The global dimension of the polynomial ring P=
Pp(xy, ...,%,) in n indeterminates over a field F is n. If J is any ideal
in P, h.dimp J<n—1.

Only the assertion as to the ideal J requires proof. Any projective
resolution of J yields an exact sequence

0>C, 1—>X, 3> >Xj—>]—>0

of P-modules with the X, projective. Compose this sequence with
J—>P-»P|] to give an exact sequence with » intermediate projec-
tive modules, ending in P/J. Since » is the global dimension of P,
h.dimp P[J<n, so by the characterization of homological dimension
(Thm. 1.1), C,_, is projective. This proves h.dimp J<#n—1.

5. Separable Algebras

We now consider applications to the classical theory of (ungraded)
algebras /. Recall that 1, denotes the identity element of A.

Proposition 5.1. The following conditions on an algebra A are equi-
valent:
(i) h.dim,g 4 A=0.
(ii) A is a projective A-bimodule.
(iil) The product map 7w: A QA —>A has a bimodule right inverse.
(iv) There is an element ¢ in A QA with we=1, and Le=e for all A.
14*



























































































































































































































































































































316 Chapter X. Cohomology of Algebraic Systems

system in question: See Thm.IV.4.1 for groups, Ex.12.4 for abelian
groups, and Thm.3.1 for algebras. The third cohomology group has
elements which represent the obstructions to corresponding extension
problems; see Thm.IV.8.7 for groups and HocHscHILD [1947] for al-
gebras. The typical complexes used to construct such homology theories
have been described by a notion of “generic acyclicity’”” (EILENBERG-
MacLANE [1951]). Here we will mention various other algebraic systems
for which corresponding homology theories have been developed.

The 2-dimensional cohomology theory for rings operates with two
factor sets, one for addition and one for multiplication. Let 4 be an
abelian group, regarded as a ring (without identity) in which the pro-
duct of any two elements is zero. Let R be a ring. A singular extension
of A by R is thus a short exact sequence 4 > S-»R of ring homomor-
phisms » and g, in which S is a ring with identity 15 and 615=14. Regard
4 as a two-sided ideal in S, with S/4 =R. To each x€ R choose a represen-
tative u(x)€ S, with ou (x) =x. Then 4 is an R-bimodule with operators
xa=u(x)a, ax=au(x), independent of the choice of #. The addition
and multiplication in S is'determined by two factor sets f and g defined
by

w(2)+u(y) =f (%) +u(x+9), (13.1)

u(x)u(y)=g(xy)+u(xy). (13-2)

These functions f and g satisfy various identities which reflect the asso-
ciative, commutative, and distributive laws in S (EVERETT [1942],
REDEI [1952], SZENDREI [1952]). One can now construct (MACLANE
[1956]) a cohomology theory for a ring R such that H2(R, 4) has such
pairs of functions f, g as cocycles, with cohomology classes representing
the extensions of 4 by R. A part of the corresponding 3-dimensional
cohomology group H?(R, A) then corresponds exactly (MACLANE [1958])
to the obstructions for the problem of extending a ring T (without
identity, but with product not necessarily zero) by the ring R. The
results also apply to sheaves of rings (GrRAY [1961a, b]).

SHUKLA [1961] has extended this cohomology theory for rings
(Z-algebras) to the case of algebras A over an arbitrary commutative
ring K. The resulting cohomology of algebras is more refined than the
Hochschild cohomology, because the Hochschild cohomology deals
systematically with those extensions which are K-split, while in the
present case the use of a factor set (13.1) for addition reflects exactly
the fact that the extensions concerned do not split additively. SHUKLA’s
theory is also so arranged that every element of H?® corresponds to an
obstruction. HARRISON [1962] has initiated a cohomology theory for
commutative algebras over a field.
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