Grundlehren der

mathematischen Wissenschaften

A Series of Comprehensive Studies in Mathematics

Series editors

M. Berger B. Eckmann P. de la Harpe
F. Hirzebruch N. Hitchin L. Hormander
M.-A. Knus A. Kupiainen G. Lebeau
M. Ratner D. Serre Ya. G. Sinai

N.J.A. Sloane B. Totaro

A. Vershik M. Waldschmidt

Editor-in-Chief
A. Chenciner J. Coates S.R.S. Varadhan

332



Masaki Kashiwara
Pierre Schapira

Categories and Sheaves

@ Springer



Masaki Kashiwara Pierre Schapira

Research Institute for Mathematical Sciences Institut de Mathématiques

Kyoto University Université Pierre et Marie Curie
Kitashirakawa-Oiwake-cho 4, place Jussieu

606-8502 Kyoto 75252 Paris Cedex 05,

Japan France

E-mail: masaki @kurims.kyoto-u.ac.jp E-mail: schapira@math.jussieu.fr

Library of Congress Control Number: 2005930329
Mathematics Subject Classification (2000): 18A, 18E, 18F10, 18F20, 18G

ISSN 0072-7830
ISBN-10 3-540-27949-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-27949-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2006

Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and TechBooks using a Springer I&IzX macro package
Cover design: design & production GmbH, Heidelberg
Printed on acid-free paper SPIN: 11304500 41/TechBooks 543210



Preface

The language of Mathematics has changed drastically since the middle of
the twentieth century, in particular after Grothendieck’s ideas spread from
algebraic geometry to many other subjects. As an enrichment for the notions of
sets and functions, categories and sheaves are new tools which appear almost
everywhere nowadays, sometimes simply in the role of a useful language, but
often as the natural approach to a deeper understanding of mathematics.

Category theory, initiated by Eilenberg and Mac Lane in the forties (see
[19, 20]), may be seen as part of a wider movement transcending mathematics,
of which structuralism in various areas of knowledge is perhaps another facet.
Before the advent of categories, people were used to working with a given
set endowed with a given structure (a topological space for example) and to
studying its properties. The categorical point of view is essentially different.
The stress is placed not upon the objects, but on the relations (the morphisms)
between objects within the category. The language is natural and allows one to
unify various branches of mathematics and to make unexpected links between
seemingly different subjects.

Category theory is elementary in the sense that there are few prerequi-
sites to its study, though it may appear forbiddingly abstract to many people.
Indeed, the usual course of mathematical education is not conducive to such
a conceptual way of thinking. Most mathematicians are used to manipulat-
ing spaces and functions, computing integrals and so on, fewer understand
the importance of the difference between an equality and an isomorphism or
appreciate the beauty and efficiency of diagrams.

Another fundamental idea is that of a sheaf. Sheaves provide a tool for
passing from local to global situations and a good deal of mathematics (and
physics) revolves around such questions. Sheaves allow us to study objects
that exist locally but not globally, such as the holomorphic functions on the
Riemann sphere or the orientation on a Mobius strip, and the cohomology
of sheaves measures in some sense the obstruction to passing from local to
global.
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Jean Leray invented sheaves on a topological space in the forties (see [46]
and Houzel’s historical notes in [38]). Their importance, however, became
more evident through the Cartan Seminar and the work of Serre. Subse-
quently, Serre’s work [62] on the local triviality of algebraic fiber bundles led
Grothendieck to the realization that the usual notion of a topological space
was not appropriate for algebraic geometry (there being an insufficiency of
open subsets), and introduced sites, that is, categories endowed with “Gro-
thendieck topologies” and extended sheaf theory to sites.

The development of homological algebra is closely linked to that of cat-
egory and sheaf theory. Homological algebra is a vast generalization of lin-
ear algebra and a key tool in all parts of mathematics dealing with linear
phenomena, for example, representations, abelian sheaves, and so forth. Two
milestones are the introduction of spectral sequences by Leray (loc. cit.) and
the introduction of derived categories by Grothendieck in the sixties.

In this book, we present categories, homological algebra and sheaves in
a systematic and exhaustive manner starting from scratch and continuing
with full proofs to an exposition of the most recent results in the literature,
and sometimes beyond. We also present the main features and key results of
related topics that would deserve a whole book for themselves (e.g., tensor
categories, triangulated categories, stacks).
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Introduction

The aim of this book is to describe the topics outlined in the preface, cat-
egories, homological algebra and sheaves. We also present the main features
and key results in related topics which await a similar full-scale treatment
such as, for example, tensor categories, triangulated categories, stacks.

The general theory of categories and functors, with emphasis on inductive
and projective limits, tensor categories, representable functors, ind-objects
and localization is dealt with in Chaps. 1-7.

Homological algebra, including additive, abelian, triangulated and derived
categories, is treated in Chaps. 8-15. Chapter 9 provides the tools (using trans-
finite induction) which will be used later for presenting unbounded derived
categories.

Sheaf theory is treated in Chaps. 16-19 in the general framework of Gro-
thendieck topologies. In particular, the results of Chap. 14 are applied to the
study of the derived category of the category of sheaves on a ringed site. We
also sketch an approach to the more sophisticated subject of stacks (roughly
speaking, sheaves with values in the 2-category of categories) and introduce
the important notion of twisted sheaves.

Of necessity we have excluded many exciting developments and applications
such as n-categories, operads, As-categories, model categories, among others.
Without doubt these new areas will soon be intensively treated in the liter-
ature, and it is our hope that the present work will provide a basis for their
understanding.

We now proceed to a more detailed outline of the contents of the book.

Chapter 1. We begin by defining the basic notions of categories and func-
tors, illustrated with many classical examples. There are some set—theoretical
dangers and to avoid contradictions, we work in a given universe. Universes
are presented axiomatically, referring to [64] for a more detailed treatment.
Among other concepts introduced in this chapter are morphisms of functors,
equivalences of categories, representable functors, adjoint functors and so on.
We introduce in particular the category Fect(I,C) of functors from a small
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category I to a category C in a universe U, and look briefly at the 2-category
U-Cat of all U-categories.

Here, the key result is the Yoneda lemma showing that a category C may
be embedded in the category C" of all contravariant functors from C to Set,
the category of sets. This allows us in a sense to reduce category theory to
set theory and leads naturally to the notion of a representable functor. The
category C” enjoys most of the properties of the category Set, and it is often
extremely convenient, if not necessary, to replace C by C”, just as in analysis,
we are lead to replace functions by generalized functions.

Chapters 2 and 3. Inductive and projective limits are the most important
concepts dealt with in this book. They can be seen as the essential tool of
category theory, corresponding approximately to the notions of union and
intersection in set theory. Since students often find them difficult to master,
we provide many detailed examples. The category Set is not equivalent to
its opposite category, and projective and inductive limits in Set behave very
differently. Note that inductive and projective limits in a category are both
defined as representable functors of projective limits in the category Set.

Having reached this point we need to construct the Kan extension of func-
tors. Consider three categories J, I, C and a functor ¢: J — I. The functor ¢
defines by composition a functor ¢, from Fct(Z,C) to Fet(J, C), and we can
construct a right or left adjoint for this functor by using projective or induc-
tive limits. These constructions will systematically be used in our presentation
of sheaf theory and correspond to the operations of direct or inverse images
of sheaves.

Next, we cover two essential tools for the study of limits in detail: cofinal
functors (roughly analogous to the notion of extracted sequences in analysis)
and filtrant! categories (which generalizes the notion of a directed set). As we
shall see in this book, filtrant categories are of fundamental importance.

We define right exact functors (and similarly by reversing the arrows, left
exact functors). Given that finite inductive limits exist, a functor is right exact
if and only if it commutes with such limits.

Special attention is given to the category Set and to the study of filtrant
inductive limits in Set. We prove in particular that inductive limits in Set
indexed by a small category I commute with finite projective limits if and
only if I is filtrant.

Chapter 4. Tensor categories axiomatize the properties of tensor products
of vector spaces. Nowadays, tensor categories appear in many areas, mathe-
matical physics, knot theory, computer science among others. They acquired
popular attention when it was found that quantum groups produce rich exam-
ples of non-commutative tensor categories. Tensor categories and their appli-
cations in themselves merit an extended treatment, but we content ourselves

1 Some authors use the terms “filtered” or “filtering”. We have chosen to keep the
French word.



Introduction 3

here with a rapid treatment referring the reader to [15, 40] and [59] from the
vast literature on this subject.

Chapter 5. We give various criteria for a functor with values in Set to be
representable and, as a by-product, obtain criteria under which a functor will
have an adjoint. This necessitates the introduction of two important notions:
strict morphisms and systems of generators (and in particular, a generator)
in a category C. References are made to [64].

Chapter 6. The Yoneda functor, which sends a category C to C”, enjoys
many pleasing properties, such as that of being fully faithful and commuting
with projective limits, but it is not right exact.

The category Ind(C) of ind-objects of C is the subcategory of C* consisting
of small and filtrant inductive limits of objects in C. This category has many
remarkable properties: it contains C as a full subcategory, admits small filtrant
inductive limits, and the functor from C to Ind(C) induced by the Yoneda
functor is now right exact. On the other hand, we shall show in Chap. 15 that
in the abelian case, Ind(C) does not in general have enough injective objects
when we remain in a given universe.

This theory, introduced in [64] (see also [3] for complementary material)
was not commonly used until recently, even by algebraic geometers, but mat-
ters are rapidly changing and ind-objects are increasingly playing an impor-
tant role.

Chapter 7. The process of localization appears everywhere and in many
forms in mathematics. Although natural, the construction is not easy in a
categorical setting. As usual, it is easier to embed than to form quotient.

If a category C is localized with respect to a family of morphisms S, the
morphisms of & become isomorphisms in the localized category Cs and if
F:C — A is a functor which sends the morphisms in S to isomorphisms in
A, then F will factor uniquely through the natural functor Q: C — Cs. This
is the aim of localization. We construct the localization of C when S satisfies
suitable conditions, namely, when S is a (right or left) multiplicative system.

Interesting features appear when we try to localize a functor F that is
defined on C with values in some category A, and does not map the arrows
in S to isomorphisms in 4. Even in this case, we can define the right or left
localization of the functor F under suitable conditions. We interpret the right
localization functor as a left adjoint to the composition with the functor Q,
and this adjoint exists if A admits inductive limits. It is then a natural idea to
replace the category A with that of ind-objects of A, and check whether the
localization of F at X € C is representable in A. This is the approach taken
by Deligne [17] which we follow here.

Localization is an essential step in constructing derived categories. A clas-
sical reference for localization is [24].

Chapter 8. The standard example of abelian categories is the category
Mod(R) of modules over a ring R. Additive categories present a much weaker
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structure which appears for example when considering special classes of mod-
ules (e.g. the category of projective modules over the ring R is additive but
not abelian).

The concept of abelian categories emerged in the early 1950s (see [13]).
They inherit all the main properties of the category Mod(R) and form a nat-
ural framework for the development of homological algebra, as is shown in
the subsequent chapters. Of particular importance are the Grothendieck cate-
gories, that is, abelian categories which admit (exact) small filtrant inductive
limits and a generator. We prove in particular the Gabriel-Popescu theorem
(see [54]) which asserts that a Grothendieck category may be embedded into
the category of modules over the ring of endomorphisms of a generator.

We also study the abelian category Ind(C) of ind-objects of an abelian
category C and show in particular that the category Ind(C) is abelian and that
the natural functor C — Ind(C) is exact. Finally we prove that under suitable
hypotheses, the Kan extension of a right (or left) exact functor defined on an
additive subcategory of an abelian category is also exact. Classical references
are the book [14] by Cartan-Eilenberg, and Grothendieck’s paper [28] which
stresses the role of abelian categories, derived functors and injective objects.

An important source of historical information on this period is given in [16]
by two of the main contributors.

Chapter 9. In this chapter we extend many results on filtrant inductive
limits to the case of w-filtrant inductive limits, for an infinite cardinal 7. An
object X is m-accessible if Hom (X, «) commutes with w-filtrant inductive
limits. We specify conditions which ensure that the category C, of m-accessible
objects is small and that the category of its ind-objects is equivalent C. These
techniques are used to prove that, under suitable hypotheses, given a family
F of morphisms in a category C, there are enough F-injective objects.

Some arguments developed here were initiated in Grothendieck’s paper
[28] and play an essential role in the theory of model categories (see [56]
and [32]). They are used in Chap. 14 in proving that the derived category of
a Grothendieck category admits enough homotopically injective objects.

Here, we give two important applications. The first one is the fact that
a Grothendieck category possesses enough injective objects. The second one
is the Freyd-Mitchell theorem which asserts that any small abelian category
may be embedded in the category of modules over a suitable ring. References
are made to [64]. Accessible objects are also discussed in [1, 23] and [49].

Chapter 10. Triangulated categories first appeared implicitly in papers on
stable homotopy theory after the work of Puppe [55], until Verdier axiomatized
the properties of these categories (we refer to the preface by L. Illusie of [69] for
more historical comments). Triangulated categories are now very popular and
are part of the basic language in various branches of mathematics, especially
algebraic geometry (see e.g. [57, 70]), algebraic topology and representation
theory (see e.g. [35]). They appeared in analysis in the early 1970s under the
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influence of Mikio Sato (see [58]) and more recently in symplectic geometry
after Kontsevich expressed mirror symmetry (see [43]) using this language.

A category endowed with an automorphism 7T is called here a category
with translation. In such a category, a triangle is a sequence of morphisms
X > Y > Z — T(X). A triangulated category is an additive category with
translation endowed with a family of so-called distinguished triangles satisfying
certain axioms. Although the first example of a triangulated category only
appears in the next chapter, it seems worthwhile to develop this very elegant
and easy formalism here for its own sake.

In this chapter, we study the localization of triangulated categories and
the construction of cohomological functors in some detail. We also give a
short proof of the Brown representability theorem [11], in the form due to
Neeman [53], which asserts that, under suitable hypotheses, a contravariant
cohomological functor defined on a triangulated category which sends small
direct sums to products is representable.

We do not treat ¢-structures here, referring to the original paper [4] (see [38]
for an expository treatment).

Chapter 11. It is perhaps the main idea of homological algebra to replace an
object in a category C by a complex of objects of C, the components of which
have “good properties”. For example, when considering the tensor product
and its derived functors, we replace a module by a complex of projective (or
flat) modules and, when considering the global-section functor and its derived
functors, we replace a sheaf by a complex of flabby sheaves.

It is therefore natural to study the category C(C) of complexes of objects
of an additive category C. This category inherits an automorphism, the shift
functor, called the “suspension” by algebraic topologists. Other basic con-
structions borrowed from algebraic topology are that of the mapping cone of
a morphism and that of homotopy of complexes. In fact, in order to be able
to work, i.e., to form commutative diagrams, we have to make morphisms
in C(C) which are homotopic to zero, actually isomorphic to zero. This de-
fines the homotopy category K(C) and the main result (stated in the slightly
more general framework of additive categories with translation) is that K(C)
is triangulated.

Many complexes, such as Cech complexes in sheaf theory (see Chap. 18
below), are obtained naturally by simplicial construction. Here, we construct
complexes associated with simplicial objects and give a criterion for these
complexes to be homotopic to zero.

When considering bifunctors on additive categories, we are rapidly lead to
consider the category C(C(C)) of complexes of complexes (i.e., double com-
plexes), and so on. We explain here how a diagonal procedure allows us, un-
der suitable hypotheses, to reduce a double complex to a simple one. Delicate
questions of signs arise and necessitate careful treatment.

Chapter 12. When C is abelian, we can define the j-th cohomology ob-
ject H/(X) of a complex X. The main result is that the functor H/ is
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cohomological, that is, sends distinguished triangles in K(C) to long exact
sequences in C.

When a functor F with values in C is defined on the category of finite sets,
it is possible to attach to F a complex in C, generalizing the classical notion of
Koszul complexes. We provide the tools needed to calculate the cohomology
of such complexes and treat some examples such as distributive families of
subobjects.

We also study the cohomology of a double complex, replacing the Leray’s
traditional spectral sequences by an intensive use of the truncation functors.
We find this approach much easier and perfectly adequate in practice.

Chapter 13. Constructing the derived category of an abelian category is easy
with the tools now at hand. It is nothing more than the localization of the
homotopy category K(C) with respect to exact complexes.

Here we give the main constructions and results concerning derived cate-
gories and functors, including some new results.

Despite their popularity, derived categories are sometimes supposed diffi-
cult. A possible reason for this reputation is that to date there has been no
systematic, pedagogical treatment of the theory. The classical texts on de-
rived categories are the famous Hartshorne Notes [31], or Verdier’s résumé
of his thesis [68] (of which the complete manuscript has been published re-
cently [69]). Apart from these, there are a few others which may be found
in particular in the books [25, 38] and [71]. Recall that the original idea of
derived categories goes back to Grothendieck.

Chapter 14. Using the results of Chap. 9, we study the (unbounded) derived
category D(C) of a Grothendieck category C. First, we show that any complex
in a Grothendieck category is quasi-isomorphic to a homotopically injective
complex and we deduce the existence of right derived functors in D(C). We
then prove that the Brown representability theorem holds in D(C) and discuss
the existence of left derived functors, as well as the composition of (right or
left) derived functors and derived adjunction formulas.

Spaltenstein [65] was the first to consider unbounded complexes and the
corresponding derived functors. The (difficult) result which asserts that the
Brown representability theorem holds in the derived category of a Grothen-
dieck category seems to be due to independently to [2] and [21] (see also [6,
42, 53] and [44]). Note that most of the ideas presented here come from topol-
ogy, in which context the names of Adams, Bousfield, Kan, Thomason among
others should be mentioned.

Chapter 15. We study here the derived category of the category Ind(C) of
ind-objects of an abelian category C. Things are not easy since in the simple
case where C is the category of vector spaces over a field k, the category Ind(C)
does not have enough injective objects. In order to overcome this difficulty, we
introduce the notion of quasi-injective objects. We show that under suitable
hypotheses, there are enough such objects and that they allow us to derive



Introduction 7

functors. We also study some links between the derived category of Ind(C)
and that of ind-objects of the derived category of C. Note that the category
of ind-objects of a triangulated category does not seem to be triangulated.

Most of the results in this chapter are new and we hope that they may be
useful. They are so when applied to the construction of ind-sheaves, for which
we refer to [39)].

Chapter 16. The notion of sheaves relies on that of coverings and a Gro-
thendieck topology on a category is defined by axiomatizing the notion of
coverings.

In this chapter we give the axioms for Grothendieck topologies using sieves
and then introduce the notions of local epimorphisms and local isomorphisms.
We give several examples and study the properties of the family of local iso-
morphisms in detail, showing in particular that this family is stable under
inductive limits. The classical reference is [64].

Chapter 17. A site X is a category Cy endowed with a Grothendieck topology.
A presheaf F on X with values in a category A is a contravariant functor on
Cx with values in A, and a presheaf F is a sheaf if, for any local isomorphism
A — U, F(U) - F(A) is an isomorphism. When Cy is the category of open
subsets of a topological space X, we recover a familiar notion.

Here, we construct the sheaf F¢ associated with a presheaf F with values
in a category A satisfying suitable properties. We also study restriction and
extension of sheaves, direct and inverse images, and internal Hom . However,
we do not enter the theory of Topos, referring to [64] (see also [48] for further
exciting developments).

Chapter 18. When Oy is a sheaf of rings on a site X, we define the category
Mod(Oyx) of sheaves of Ox-modules. This is a Grothendieck category to which
we may apply the tools obtained in Chap. 14.

In this Chapter, we construct the unbounded derived functors RHom o,

of internal hom, é’ox of tensor product, Rf, of direct image and Lf* of
inverse image (these two last functors being associated with a morphism f of
ringed sites) and we study their relations. Such constructions are well-known
in the case of bounded derived categories, but the unbounded case, initiated
by Spaltenstein [65], is more delicate.

We do not treat proper direct images and duality for sheaves. Indeed, there
is no such theory for sheaves on abstract sites, where the construction in the
algebraic case for which we refer to [17], differs from that in the topological
case for which we refer to [38].

Chapter 19. The notion of constant functions is not local and it is more
natural (and useful) to consider locally constant functions. The presheaf of
such functions is in fact a sheaf, called a constant sheaf. There are however
sheaves which are locally, but not globally, isomorphic to this constant sheaf,
and this leads us to the fundamental notion of locally constant sheaves, or
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local systems. The orientation sheaf on a real manifold is a good example of
such a sheaf. We consider similarly categories which are locally equivalent to
the category of sheaves, which leads us to the notions of stacks and twisted
sheaves.

A stack on a site X is, roughly speaking, a sheaf of categories, or, more
precisely, a sheaf with values in the 2-category of all U-categories of a given
universe . Indeed, it would be possible to consider higher objects (n-stacks),
but we do not pursue this matter here. This new field of mathematics was first
explored in the sixties by Grothendieck and Giraud (see [26]) and after having
been long considered highly esoteric, it is now the object of intense activity
from algebraic geometry to theoretical physics. Note that 2-categories were
first introduced by Bénabou (see [5]), a student of an independent-minded
category theorist, Charles Ehresmann.

This last chapter should be understood as a short presentation of possible
directions in which the theory may develop.



1

The Language of Categories

A set E is a collection of elements, and given two elements x and y in E there
are no relations between x and y. The notion of a category is more sophis-
ticated. A category C possesses objects similarly as a set possesses elements,
but now for each pair of objects X and Y in C, one is given a set Hom (X, Y)
called the morphisms from X to Y, representing possible relations between X
and Y.

Once we have the notion of a category, it is natural to ask what are the
morphisms from a category to another, and this lead to the notion of functors.
We can also define the morphisms of functors, and as a byproduct, the notion
of an equivalence of categories. At this stage, it would be tempting to define
the notion of a 2-category, but this is out of the scope of this book.

The cornerstone of Category Theory is the Yoneda lemma. It asserts that
a category C may be embedded in the category C* of all contravariant functors
from this category to the category Set of sets, the morphisms in Set being
the usual maps. This allows us, in some sense, to reduce Category Theory to
Set Theory. The Yoneda lemma naturally leads to the notion of representable
functor, and in particular to that of adjoint functor.

To a category C, we can associate its opposite category C°P obtained by
reversing the arrows, and in this theory most of the constructions have their
counterparts, monomorphism and epimorphism, right adjoint and left adjoint,
etc. Of course, when a statement may be deduced from another one by re-
versing the arrows, we shall simply give one of the two statements. But the
category Set is not equivalent to its opposite category, and Set plays a very
special role in the whole theory. For example, inductive and projective limits
in categories are constructed by using projective limits in Set.

A first example of a category would be the category Set mentioned above.
But at this stage one encounters a serious difficulty, namely that of manip-
ulating “all” sets. Moreover, we constantly use the category of all functors
from a given category to Set. In this book, to avoid contradictions, we work
in a given universe. Here, we shall begin by briefly recalling the axioms of
universes, referring to [64] for more details.
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1.1 Preliminaries: Sets and Universes

The aim of this section is to fix some notations and to recall the axioms of
universes. We do not intend neither to enter Set Theory, nor to say more
about universes than what we need. For this last subject, references are made
to [64].

For a set u, we denote as usual by P(u) the set of subsets of u: P(u) =
{x;x C u}. For x1,...x,, we denote as usual by {x1,...,x,} the set whose
elements are x1,...x,.

Definition 1.1.1. A universe U is a set satisfying the following properties:

(i)Fel,
(il) u € U implies u C U, (equivalently, x € U and y € x implies y € U, or
elsed C P(U)),
(iii) u € U implies {u} € U,
(iv) u € U implies P(u) € U,
(v)if I eUd and u; €U for alli € I, then | J,., u; €U,
(vijNel.

As a consequence we have

(vil) u € U implies |J ., x €U,
(viii) u,v € Y implies u x v € U,
(ix) u Cv el implies u € U,
(x) if I e and u; e for all i € I, then [[,_, u; e U.

Following Grothendieck, we shall add an axiom to the Zermelo-Fraenkel the-
ory, asking that for any set X there exists a universe U such that X € Y. For
more explanations, refer to [64].

Definition 1.1.2. Let U be a universe.

(i) A set is called a U-set if it belongs to U.
(ii) A set is called U-small if it is isomorphic to a set belonging to U.

Definition 1.1.3. (i) An order on a set I is a relation < which is:

(a) reflexive, that is, i <i for alli €I,
(b) transitive, that is, i < j, j <k =i <k,
(¢c) anti-symmetric, that is, i < j, j <i=1i=j.

(ii) An order is directed (we shall also say “filtrant”) if I is non empty and
if for any i, j € I, there exists k € I such thati <k and j < k.

(iii) An order is total (some authors say “linear”) if for any i, j € I, one
hasi < j orj<i.

(iv) An ordered set I is inductively ordered if any totally ordered subset J
of I has an upper bound (i.e., there exists a € I such that j < a for all
jeJ).

(v) If < is an order on I, < is the relation given by x < y if and only if
x<yandx #y. Wealsowritex >y if y<xandx >y ify <x.
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Recall that Zorn’s lemma asserts that any inductively ordered set admits a
maximal element.

Notations 1.1.4. (i) We denote by {pt} a set with one element, and this single
element is often denoted by pt. We denote by ¥ the set with no element.

(ii) In all this book, a ring means an associative ring with unit, and the action
of a ring on a module is unital. If there is no risk of confusion, we simply denote
by 0 the module with a single element. A field is a non-zero commutative ring
in which every non-zero element is invertible.

(iii) We shall often denote by k a commutative ring. A k-algebra is a ring
R endowed with a morphism of rings ¢: k — R such that the image of k is
contained in the center of R. We denote by k* the group of invertible elements
of k.

(iv) As usual, we denote by Z the ring of integers and by Q (resp. R, resp.
C) the field of rational numbers (resp. real numbers, resp. complex numbers).
We denote by N the set of non-negative integers, that is, N= {n € Z; n > 0}.
(v) We denote by k[xi,...,x,] the ring of polynomials in the variables
X1, ..., X, Oover a commutative ring k.

(vi) We denote by §;; the Kronecker symbol, §;; = 1if i = j and §;; = 0
otherwise.

1.2 Categories and Functors

Definition 1.2.1. A category C consists of :

(i) a set Ob(C),
(ii) for any X,Y € Ob(C), a set Hom,(X,Y),
(iii) for any X, Y, Z € Ob(C), a map:

Hom,(X,Y) x Hom,(Y, Z) - Hom (X, Z)

called the composition and denoted by (f, g)+> go f,
these data satisfying:

(a) o is associative, i.e., for f € Homy(X,Y), g € Hom (Y,Z) and h €
Hom(Z, W), we have (hog)o f =ho(go f),

(b) for each X € Ob(C), there exists idy € Hom (X, X) such that f oidx = f
for all f e Hom(X,Y) and idx og = g for all g € Hom,(Y, X).

An element of Ob(C) is called an object of C and for X, Y € Ob(C), an ele-
ment of Hom (X, Y) is called a morphism (from X to Y) in C. The morphism
idy is called the identity morphism (or the identity, for short) of X. Note that
there is a unique idy € Hom, (X, X) satisfying the condition in (b).

A category C is called a U-category if Hom(X,Y) is U-small for any
X,Y € Ob(C).

A U-small category is a U-category C such that Ob(C) is U-small.
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Notation 1.2.2. We often write X € C instead of X € Ob(C), and f: X — Y
or else f:Y <« X instead of f € Hom,(X,Y). We say that X is the source
and Y the target of f. We sometimes call f an arrow instead of “a morphism”.

We introduce the opposite category C°P by setting:
Ob(C°?) = Ob(C), Hom e, (X,Y) = Hom,(Y, X),

and defining the new composition g S f of f € Homeoo(X,Y) and g €
Hom o (Y, Z) by gogf = f o g. For an object X or a morphism f in C,
we shall sometimes denote by X°P or f°P its image in C°P. In the sequel, we
shall simply write o instead of <.

A morphism f: X — Y is an isomorphism if there exists g: X < Y such
that fog =1idy, go f = idy. Such a g, which is unique, is called the inverse of
f and is denoted by f~1.If f: X — Y is an isomorphism, we write f: X —> Y.
If there is an isomorphism X —> ¥, we say that X and Y are isomorphic and
we write X >~ Y.

An endomorphism is a morphism with same source and target, that is, a
morphism f: X — X.

An automorphism is an endomorphism which is an isomorphism.

Two morphisms f and g are parallel if they have same source and same
target, visualized by f,g: X 3 Y.

A morphism f: X — Y is a monomorphism if for any pair of parallel
morphisms g1,g2: Z = X, fog) = f ogs implies g1 = go.

A morphism f: X — Y is an epimorphism if foP: Y°P — X is a
monomorphism in C°P. Hence, f is an epimorphism if and only if for any
pair of parallel morphisms g1, g2: Y = Z, g1 0 f = go o f implies g1 = go.

Note that f is a monomorphism if and only if the map fo: Hom.(Z, X) —
Hom(Z,Y) is injective for any object Z, and f is an epimorphism if and only
if the map of : Hom,(Y, Z) — Hom (X, Z) is injective for any object Z.

Also note that if X EN Y 5 Z are morphisms and if f and g are monomor-
phisms (resp. epimorphisms, resp. isomorphisms), then g o f is a monomor-
phism (resp. epimorphism, resp. isomorphism).

We sometimes write f: X>—Y or else f: X < Y to denote a monomor-
phism and f: X—Y to denote an epimorphism.

For two morphisms f: X — Y and g: Y — X satisfying fog = idy, f
is called a left inverse of g and g is called a right inverse of f. We also say
that g is a section of f or f is a cosection of g. In such a situation, f is an
epimorphism and g a monomorphism.

A category C' is a subcategory of C, denoted by C' C C, if: Ob(C’) C
Ob(C), Hom, (X,Y) C Hom (X, Y) for any X, Y € C', the composition in C’ is
induced by the composition in C and the identity morphisms in C’" are identity
morphisms in C. A subcategory C’ of C is full if Hom, (X, Y) = Hom,(X,Y)
for all X,Y € C’. A full subcategory C’ of C is saturated if X € C belongs to C’
whenever X is isomorphic to an object of C'.
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A category is discrete if all the morphisms are the identity morphisms.

A category C is non empty if Ob(C) is non empty.

A category C is a groupoid if all morphisms are isomorphisms.

A category C is finite if the set of all morphisms in C (hence, in particular,
the set of objects) is a finite set.

A category C is connected if it is non empty and for any pair of objects
X, Y € C, there is a finite sequence of objects (Xg, ..., X,), Xo=X, X, =7,
such that at least one of the sets Hom(X;, X;41) or Hom (X 41, X;) is non
empty for any j e Nwith 0 < j<n—1.

Remark that a monoid M (i.e., a set endowed with an internal product with
associative and unital law) is nothing but a category with only one object.
(To M, associate the category M with the single object a and morphisms
Hom ,,(a,a) = M.) Similarly, a group G defines a groupoid, namely the
category G with a single object @ and morphisms Homg(a, a) = G.

A diagram in a category C is a family of symbols representing objects of
C and a family of arrows between these symbols representing morphisms of
these objects. One defines in an obvious way the notion of a commutative
diagram. For example, consider the diagrams

X
1%
Then the first diagram is commutative if and only if g o f = k o h and the
second diagram is commutative if and only if go f = 1.

! i
//--\\
v N

X—Y—>7Z.

N<—'~<

’

Notation 1.2.3. We shall also encounter diagrams such as:

81
(1.2.1) z==x Loy
2

We shall say that the two compositions coincide if f o gy = f o go.
We shall also encounter diagrams of categories. (See Remark 1.3.6 below.)

Ezamples 1.2.4. (i) Set is the category of U-sets and maps, Set’ the full
subcategory consisting of finite U-sets. If we need to emphasize the universe
U, we write U-Set instead of Set. Note that the category of all sets is not a
category since the collection of all sets is not a set. This is one of the reasons
why we have to introduce a universe U.

(ii) The category Rel of binary relations is defined by: Ob(Rel) = Ob(Set)
and Homp (X, Y) = P(X x Y), the set of subsets of X x Y. The composition
law is defined as follows. If f: X — Y and g: Y — Z, go f is the set
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{(x,z) € X x Z; there exists y such that (x,y) € f, (y,z) € g} .

Of course, idy is the diagonal set of X x X.

Notice that Set is a subcategory of Rel, but is not a full subcategory.

(iii) pSet is the category of pointed U-sets. An object of pSet is a pair (X, x)
with alf-set X and x € X. A morphism f: (X,x) — (Y, y)isamap f: X - Y
such that f(x) = y.
(iv) Let R be a ring (with R € U). The category of left R-modules be-
longing to U and R-linear maps is denoted Mod(R). Hence, by definition,
Hom \joq(gy(+: +) = Homg(+, +). Recall that right R-modules are left R°P-
modules, where R°P denotes the ring R with the opposite multiplicative struc-
ture. Note that Mod(Z) is the category of abelian groups.

We denote by Endz(M) the ring of R-linear endomorphisms of an R-
module M and by Aut (M) the group of R-linear automorphisms of M.

We denote by Mod!(R) the full subcategory of Mod(R) consisting of finitely
generated R-modules. (Recall that M is finitely generated if there exists a
surjective R-linear map u: R®'—M for some integer n > 0.) One also says of
finite type instead of “finitely generated”.

We denote by Mod!P(R) the full subcategory of Mod!(R) consisting of R-
modules of finite presentation. (Recall that M is of finite presentation if it is
of finite type and moreover the kernel of the linear map u above is of finite
type.)

(v) Let (1, <) be an ordered set. We associate to it a category Z as follows.

Ob(T) = I

. {pt} i<y,
Homz(i. /) = {Q) otherwise .
In other words, the set of morphisms from i to j has a single element if i < j,
and is empty otherwise. Note that Z°P is the category associated to (I, <°P),
where x <°P y if and only if y < x. In the sequel, we shall often simply write
I instead of Z. (See Exercise 1.3 for a converse construction.)
(vi) We denote by Top the category of topological spaces belonging to U and
continuous maps.

The set of all morphisms of a category C may be endowed with a structure
of a category.

Definition 1.2.5. Let C be a category. We denote by Mor(C) the category
whose objects are the morphisms in C and whose morphisms are described as
follows. Let f: X — Y and g: X’ — Y belong to Mor(C). Then
HomMor(C)(f,g) ={u: X - X,v:Y - Y;gou =vo f}. The composi-
tion and the identity in Mor(C) are the obvious ones.
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A morphism f — g in Mor(C) is visualized by the commutative diagram:

Definition 1.2.6. (i) An object P € C is called initial if for all X €
C,Hom (P, X) >~ {pt}. We often denote by D¢ an initial object in C.
(Note that if Py and Py are initial, then there is a unique isomorphism
P, ~ PQ)

(ii) We say that P is terminal in C if P is initial in C°P, i.e., for all X €
C,Hom (X, P) =~ {pt}. We often denote by pte a terminal object in C.

(iii) We say that P is a zero object if it is both initial and terminal (see
Exercise 1.1). Such a P is often denoted by 0. If C has a zero object
0, for any objects X,Y € C, the morphism obtained as the composition
X — 0 — Y is still denoted by 0: X — Y. (Note that the composition of
0: X — Y and any morphism f:Y - Z is0: X - Z.)

Ezamples 1.2.7. (i) In the category Set, @ is initial and {pt} is terminal.

(ii) In the category pSet, the object ({pt}, pt) is a zero object.

(iii) The zero module 0 is a zero object in Mod(R).

(iv) The category associated with the ordered set (Z, <) has neither initial
nor terminal object.

Notations 1.2.8. (i) We shall denote by Pt a category with a single object and
a single morphism (the identity of this object).

(ii) We shall simply denote by @ the empty category with no objects (and
hence, no morphisms).

(iil) We shall often represent by the diagram e — e the category which consists
of two objects, say, a and b, and one morphism a — b other than id, and id,.
We denote this category by Arr.

(iv) We represent by e ——= e the category with two objects, say {a, b}, and
two parallel morphisms a = b other than id,, idp.

(v) We shall denote by Pr a category with a single object ¢ and one morphism
p: ¢ — c other than id., satisfying p? = p.

Ezample 1.2.9. Let R be aring. Let N € Mod(R°P) and M € Mod(R). Define
a category C as follows. The objects of C are the pairs (f, L) where L € Mod(Z)
and f is a bilinear map from N x M to L (i.e., it is Z-bilinear and satisfies
f(na,m) = f(n,am) for all @ € R). A morphism from f: N x M — L to
g: N x M — K is a linear map h: L — K such that h o f = g. Since any
bilinear map f: N x M — L (i.e., any object of C) factorizes uniquely through
u: N x M - N ®g M, the object (u, N ®g M) is initial in C.
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Definition 1.2.10. (i) Let C and C' be two categories. A functor F: C — ('
consists of a map F: Ob(C) - Ob(C’) and of maps F: Hom,(X,Y) —
Hom (F(X), F(Y)) for all X, Y € C, such that

F(idy) =idp(x) forall X € C,
F(gof)=F(g)oF(f) foradl f: X —>Y, g:Y—> Z.

A contravariant functor from C to C' is a functor from C°P to C'. In other
words, it satisfies F(go f) = F(f)o F(g).

(ii) For categories C, C', C" and functors F: C — (', G: C' — (" their
composition G o F: C — (" is the functor defined by (G o F)(X) =
G(F(X)) for all X € C and (G o F)(f) = G(F(f)) for all morphism f
in C.

If one wishes to put the emphasis on the fact that a functor is not contravari-
ant, one says it is covariant.
It is convenient to introduce the contravariant functor

(1.2.2) op: C — CP

defined by the identity of C.
Note that a functor F: C — C’ naturally induces a functor

(1.2.3) FoP: CoP — C/°P .
Definition 1.2.11. Let F: C — C’ be a functor.
(i) We say that F is faithful (resp. full, fully faithful) &f

Hom (X, ¥) — Hom (F(X), F(Y))

is injective (resp. surjective, bijective) for any X,Y in C.

(ii) We say that F is essentially surjective if for each Y € C' there exist X € C
and an isomorphism F(X) > Y.

(iii) We say that F is conservative if a morphism f in C is an isomorphism
as soon as F(f) is an isomorphism in C'.

Note that properties (i)—(iii) are closed by composition of functors. In other

words, if C L ¢ & ¢ are functors and if F and G satisfy the property (i)
(resp. (ii), resp. (iii)), then so does G o F.

Proposition 1.2.12. Let F: C — C' be a faithful functor and let f: X — Y
be a morphism in C. If F(f) is an epimorphism (resp. a monomorphism),
then f is an epimorphism (resp. a monomorphism).

Proof. Assume that F(f) is an epimorphism and consider a pair of parallel
arrows g, h: Y = Z such that go f = ho f. Then F(g)o F(f) = F(h)o F(f).
If F(f) is an epimorphism, we deduce F(g) = F(h) and if F is faithful, this
implies g = h.

The case of a monomorphism is treated similarly. q.e.d.
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Definition 1.2.13. Consider a family {C;}ic; of categories indexed by a set I.

(i) We define the product category [];.; Ci by setting:

iel
Ob([Tc) =Tob) .
iel iel
Hom 1 ¢ ({Xi}i, {¥i}i) = [ [ Home, (Xi, ¥i) -
iel

(ii) We define the disjoint union category | |..; Ci by setting:

iel
Ob(|_|c) = ((x.i);i e I.X e Ob(Ci)}

iel

Hom, (X,Y) ifi=j,

@ ifi#j.

As usual, if I has two elements, say I = {1, 2}, we denote the product by
C1 x Cy and the disjoint union by C; U Cs.

If {F;: C; = C[}ier is a family of functors, we define naturally the func-
tor [[,; Fi from [];., C; to [[;c; Ci and the functor | |, , F; from | |, C; to
|_|ieI Cl’

A functor F: CxC' — (" is called a bifunctor. This is equivalent to saying
that for X € C and X' € C', F(X,+): (' - (" and F(-,X'): C — C" are
functors, and moreover for any morphisms f: X - Y inC, g: X' - Y in C/,
the diagram below commutes:

Hom I_IAEICI((X’ i),(Y,j)) =

iel

F(X.g)

F(X,X) F(X, Y
F(f,X/)l lF(.ﬁY’)
Fv, x) —209 L py vy,

Indeed, (f.g) = (idy, g) o (f.idx) = (f.idy’) o (idx, g).

Examples 1.2.14. (i) If C is a U-category, Hom,(+, +): C® x C — Set is a
bifunctor.
(ii) Let R be a k-algebra. We have the two bifunctors:

* ®g * : Mod(R°P) x Mod(R) — Mod(k) ,
Hom(+, ») : Mod(R)°? x Mod(R) — Mod(k) .

(iii) The forgetful functor for: Top — Set which associates its underlying set
to a topological space is faithful but not fully faithful.

Notations 1.2.15. (i) Let I and C be two categories, and let X € C. We denote
by Ak, or simply Ay if there is no risk of confusion, the constant functor from
I to C given by I 51— X and Mor(I) 3 (i — j) > idy.

(ii) Let C be a category, C’ a subcategory. The natural functor ¢’ — C is often
called the embedding functor.
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We end this section with a few definitions.

Definition 1.2.16. Let F: C — C' be a functor and let A € C'.
(i) The category Cy is given by

Ob(Ca) ={(X,s);X €C, s: F(X)—> A},
Hom, ((X,s),(Y,t)) ={f € Hom.(X,Y);s =to F(f)}.

(ii) The category C* is given by

Ob(CY) ={(X,s);X €C,5: A — F(X)},
Hom.((X,s), (Y, 1)) ={f €e Hom,(X,Y);t = F(f)os}.

We define the faithful functors

(1.2.4) ja: Ca = C by setting j4(X,s) =X,
(1.2.5) A Cr > C by setting (X, s) = X .

For an object (X,s) in Ca (resp. in C*), we sometimes write (F(X) — A)
(resp. (A — F(X)))or simply X.

The categories C4 and C4 depend on the functor F, but we do not mention F
in the notation. Definition 1.2.16 will be generalized in Definition 3.4.1.

Definition 1.2.17. For a category C, denote by ~ the equivalence relation on
Ob(C) generated by the relation X ~ Y if Hom,(X,Y) # @. We denote by
70(C) the set of equivalence classes of Ob(C).

Regarding 7o(C) as a discrete category, there is a natural functor C — 7((C).
Then, for a € m(C), C* and C, are equivalent, they are connected, and the set
of their objects is the set of objects in the equivalence class a. In particular,
C is connected if and only if 7y(C) consists of a single element.

Two monomorphisms f: Y>—X and g: Z—X with the same target are
isomorphic if there exists an isomorphism h: Y — Z such that f = g o h.
In other words, f: Y — X and g: Z — X are isomorphic in Cyx. Note that
such an & is unique. Similarly, two epimorphisms X — Y and X — Z are
isomorphic if they are isomorphic in C¥X.

Definition 1.2.18. Let C be a category and let X € C.

(i) An isomorphism class of a monomorphism with target X is called a sub-
object of X.

(ii) An isomorphism class of an epimorphism with source X is called a quo-
tient of X.

Note that the set of subobjects of X is an ordered set by the relation
(f: Y—X) < (f: Y —X) if there exists a morphism h: ¥ — Y’ such that
f = f oh. (If such an h exists, then it is unique.)
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1.3 Morphisms of Functors

Definition 1.3.1. Let C and C' be two categories and let Fy and Fs be two
functors from C to C'. A morphism of functors 6: F; — Fy consists of a
morphism 0x: F1(X) — Fa(X) (also denoted by 0(X)) for all X € C such that
forall f: X — Y, the diagram below commutes:

(1.3.1) Fl(f)l

Example 1.3.2. Assume that k is a field and denote by * the duality functor
from Mod(k)°? to Mod(k), which associates V* = Hom,(V,k) to a vector
space V. Then id — ** is a morphism of functors from Mod(k) to itself.

If 6: F; - Fy and A: F;, — F3 are morphisms of functors, we define
naturally the morphism of functors A 00: F; — F3 by (Ao 8)y = Ax o 0x.

Notations 1.3.3. () Let C and C' be two categories. We shall denote by
Fet(C, C') the category of functors from C to C'. Hence, if F; and F» are two
functors from C to C’, Hom g ¢ ¢y (F1, F2) denotes the set of morphisms from
Fi to Fy. If C is small and C’ is a U-category, then Fct(C, C') is a U-category.
(i) We also use the short notation C! instead of Fet(1, C).

Note that if C, C’, C" are three categories, the composition of functors defines
a bifunctor

(1.3.2) Fet(C,C') x Fet(C', C") — Fet(C,C") .

A morphism of functors is visualized by a diagram:
(1.3.3) ¢ o e

Remark 1.3.4. Morphisms of functors may be composed “horizontally” and
“yertically”. More precisely:

(i) Counsider three categories C,C’,C” and functors F;, Fo: C — C’ and
G1,Gy: C' = (C'. 1f0: F; - Fy and A: G; — G are morphisms of functors,
the morphism of functors A o6: Gy o F; — G3 o Fy is naturally defined. It is
visualized by the diagram
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If A = idg,, we write Gy o 0 instead of idg,00: G1 o F; — Gj o Fy and if
0 = idF,, we write A o F; instead of A oidp, : G1 0o F1 — Gao Fi.

(ii) Consider three functors Fy, Fa, F3: C — C’, and morphisms of functors
0: Ff - Fy and A: F; — F3. The morphism of functors A 0 6: F; — Fj3 is
naturally defined. It is visualized by the diagram

Fo—> (0~ (C

1
rob
N TR

F3

c.

Remark 1.3.5. Consider the category U-Cat whose objects are the small U-
categories and the morphisms are the functors of such categories, that is,

Hom, ¢, (C,C") =Fct(C,C') .

Since Hom,_,(C,C’) is not only a set, but is in fact a category, U-Cat is
not only a category, it has a structure of a so-called 2-category. We shall not
develop the theory of 2-categories in this book.

Remark 1.3.6. We shall sometimes use diagrams where symbols represent cat-
egories and arrows represent functors. In such a case we shall abusively say
that the diagram commutes if it commutes up to isomorphisms of functors, or
better, we shall say that the diagram quasi-commutes or is quasi-commutative.

Notation 1.3.7. Let C be a category. We denote by id¢: C — C the identity
functor of C. We denote by End (id¢) the set of endomorphisms of the identity
functor id¢ : C — C, that is,

End (ldc) = Hom Fct(C,C)(idc’ ldc) .

We denote by Aut(ide) the subset of End (id¢) consisting of isomorphisms
from ide to ide.

Clearly, End (id¢) is a monoid and Aut(ide) is a group.
Lemma 1.3.8. The composition law on End (id¢) is commutative.

Proof. Let 6 and A belong to End (id¢). Let X € C and consider the morphism
Ax : X — X. The desired assertion follows from the commutativity of the
diagram (1.3.1) with F; = F; = id¢, ¥ = X and f = Ay, because Fy(f) =
Fg(f) = Ax. qed

Consider three categories Z, C,C’ and a functor

p:C—=C .
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Then ¢ defines a functor
(1.3.4) @po: Fct(Z,C) — Fet(Z,C), Fr>¢@oF .

We shall use the lemma below, whose proof is obvious and left to the reader.

Lemma 1.3.9. If ¢ is faithful (resp. fully faithful), then so is the functor ¢ o
in (1.3.4).

We have the notion of an isomorphism of categories. A functor F: C — C’is
an isomorphism of categories if there exists G: ¢’ — C such that GoF(X) = X
and FoG(Y)=7Y forall X €C, all Y € C’, and similarly for the morphisms.
In practice, such a situation almost never appears and there is an important
weaker notion that we introduce now.

Definition 1.3.10. A functor F: C — C’ is an equivalence of categories if
there exist G: C' — C and isomorphisms of functors a: G o F —>id¢, B: F o

G = ider. In such a situation, we write F: C => C', we say that F and G are
quasi-inverse to each other and we say that G is a quasi-inverse to F. (See
Exercise 1.16.)

Lemma 1.3.11. Consider a functor F: C — C' and a full subcategory C
of C' such that for each X € C, there exist Y € C and an isomorphism
F(X) >~ Y. Denote by ' the embedding C;y — C'. Then there exist a functor

Fy: C — C and an isomorphism of functors 6y: F —> (' o Fy. Moreover, Fy is
unique up to unique isomorphism. More precisely, given another isomorphism

0,: F =51 o Fy, there exists a unique isomorphism of functors 0: F| = F
such that 6y = (' 0 6) 0 6;.

Proof. Using Zorn’s Lemma, for each X € C, choose Y € C and an isomor-
phism @y: ¥ => F(X), and set Fo(X) = Y. If f: X — X’ is a morphism in
C, define Fy(f): Fo(X) — Fo(X') as the composition Fo(X)—> F(X) FU),
F(X") i:j Fo(X’). The fact that Fy commutes with the compc()p;ition of mor-

phisms is visualized by

F(X) F(f) F(X) F(g) F(X")
T~ Tw Tw
y = Fo(x) —2 oy — pox) — 2y — Ry(xy
The other assertions are obvious. q.e.d.

Lemma 1.3.12. Let C be a category. There exists a full subcategory Cy such
that the embedding functor t: Co — C is an equivalence of categories and Cy
has the property that any two isomorphic objects in Cy are equal.
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Proof. In the set Ob(C), consider the equivalence relation X ~ Y if and only if
there exists an isomorphism X >~ Y. By Zorn’s lemma, we may pick an object
in each of the equivalence classes of ~. The full subcategory Cy of C consisting
of such objects has the required properties. Indeed, denote by ¢: Cy — C the
embedding functor. Applying Lemma 1.3.11 to id¢: C — C, there exists a
functor Fy: C — Cp such that ¢ o Fy is isomorphic to ide. Since

to(Fyot)= (1o Fp)ot~idecor >~ ~1oide,
and ¢ is fully faithful, Fj ot is isomorphic to ide,. q.e.d.

Proposition 1.3.13. A functor F: C — C' is an equivalence of categories if
and only if F is fully faithful and essentially surjective.

Proof. The necessity of the condition is clear. Let us prove the converse state-
ment. By Lemma 1.3.12, there exists a full subcategory Cy of C such that
t: Cy — C is an equivalence and if two objects of Cy are isomorphic, then they
are equal. Let « be a quasi-inverse of (. We proceed similarly with C’, and
construct C, ¢’ and «’. Then the composition of functors

k' oFout:Cy— C

is an isomorphism. Denote by K its inverse and set G = 1o K ok’. Clearly, G
is a quasi-inverse to F. q.e.d.

Corollary 1.3.14. Let F: C — C' be a fully faithful functor. Then there exist

a full subcategory Cy of C' and an equivalence of categories F': C = C}, such
that F is isomorphic to V' o F', where (': C[j — C' is the embedding functor.

Proof. Define C| as the full subcategory of C' whose objects are the image by
F of the objects of C and apply Proposition 1.3.13. q.e.d.

Ezamples 1.3.15. (i) Let k be a field and let C denote the category defined
by Ob(C) = N and Hom,(n,m) = M, ,(k), the space of matrices of type
(m,n) with entries in k. The composition of morphisms in C is given by the
composition of matrices. Define the functor F: C — Mod! (k) as follows. Set
F(n) = k", and if A is a matrix of type (m,n), let F(A) be the linear map
from k" to k™ associated with A. Then F is an equivalence of categories.

(ii) Let C and C’ be two categories. There is an isomorphism of categories:

(1.3.5) Fet(C, C')°P ~ Fet(C°P,C"P), F + opo Foop .

(iii) Consider a family {C;};c; of categories indexed by a small set 7. If I is
the empty set, then [],., C; is equivalent to the category Pt and | |,,C; is
equivalent to the empty category.

iel

Definition 1.3.16. A category is essentially U-small if it is equivalent to a
U-small category.
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Remark that C is essentially U-small if and only if C is a U-category and there
exists a U-small subset S of Ob(C) such that any object of C is isomorphic to
an object in S.

One shall be aware that if F: C — C’ is faithful, it may not exist a sub-
category C, of C’ and an equivalence F': C —> C} such that F is isomorphic to
o F/, where /: C{ — C' is the embedding functor (see Exercise 1.18). That
is the reason why we introduce Definition 1.3.17 below.

Definition 1.3.17. (i) Let F: C — C’ be a functor. We say that F is half-full
if for any pair of objects X, Y € C such that F(X) and F(Y) are isomorphic in
C', there exists an isomorphism X ~Y in C. (We do not ask the isomorphism
in C' to be the image by F of the isomorphism in C.)

(ii) We say that a subcategory Cy of C is half-full if the embedding functor is
half-full.

Proposition 1.3.18. Let F: C — C' be a faithful and half-full functor. Then
there exists a subcategory C} of C' such that F(Ob(C)) C Ob(Cy), F(Mor(C)) C
Mor(Cy) and F induces an equivalence of categories C =~ C{,. Moreover, the
embedding functor C\, — C' is faithful and half-full.

Proof. Let us define the category C{ as follows:

Ob(C}) = {F(X); X € Ob(C)} ,
Hom,, (F(X), F(Y)) = F(Hom(X. Y)) C Hom (F(X), F(Y)) .

It is immediately checked that the definition of Hom, (F(X), F(Y)) does not
depend on the choice of X, Y, thanks to the hypothesis that F is half-full,
and hence the family of morphisms in (| is closed by composition. By its
construction, the functor F: C — Cj is fully faithful and essentially surjective.
It is thus an equivalence. q.e.d.

1.4 The Yoneda Lemma

Convention 1.4.1. We start with a given universe U, and do not mention it
when unnecessary. In this book, a category means a U-category, small means
U-small, and Set denotes the category of U-sets, unless otherwise mentioned.
However, some constructions force us to deal with a category which is not
necessarily a U-category. We call such a category a big category. If this has
no implications for our purpose, we do not always mention it. Note that any
category is V-small for some universe V.

Definition 1.4.2. Let C be a U-category. We define the big categories

C,, : the category of functors from C°P to U-Set ,
Cy : the category of functors from C°P to (U-Set)P,
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and the functors

he : C— Cj;, X+ Hom,(-,X),
ke :C—Cy, X+ Hom,(X,-).

Since Hom,(X,Y) € U for all X,Y € C, the functors he and k¢ are well-
defined. They are often called the “Yoneda functors”. Hence

C;; = Fct(C°P, U-Set) ,
Cy; = Fet(CP, U-Set®P) ~ Fet(C, U-Set)°P .

Note that C/, and C;; are not U{-categories in general. If C is U-small, then C;}
and C;; are U-categories.

In the sequel, we shall write C* and C¥ for short. By (1.3.5) there is a
natural isomorphism

(1.4.1) CY ~ coprop

and CV is the opposite big category to the category of functors from C to Set.
Hence, for X € C, ke(X) = (heer (X°P))°P.

The next result, although it is elementary, is crucial for the understanding
of the rest of the book. In the sequel, we write Set for U/-Set.

Proposition 1.4.3. [The Yoneda lemmal]

(i) For AeC” and X € C, Hom,(he(X), A) =~ A(X).
(ii) For B € C¥ and X € C, Hom. (B, k¢(X)) >~ B(X).

Moreover, these isomorphisms are functorial with respect to X, A, B, that is,
they define isomorphisms of functors from C°P x C" to Set or from CV°P x C
to Set.

Proof. By (1.4.1) is enough to prove one of the two statements. Let us prove
(1).

The map ¢: Hom.(h¢(X), A) — A(X) is constructed by the chain of
maps: Hom . (he(X), A) - Homg,, (Hom (X, X), A(X)) - A(X), where the
last map is associated with idy.

To construct ¥ : A(X) — Hom ., (he(X), A), it is enough to associate with
s€A(X)and Y € C amap ¥(s)y: Hom,(Y, X) - A(Y). It is defined by the
chain of maps Hom (Y, X) - Homg,, (A(X), A(Y)) - A(Y) where the last
map is associated with s € A(X). Clearly, ¥ (s) satisfies (1.3.1).

It is easily checked that ¢ and ¢ are inverse to each other. q.e.d.

The next results will be of constant use.
Corollary 1.4.4. The two functors he and ke are fully faithful.

Proof. For X and Y in C, we have Hom,(h¢(X), he(Y)) =~ he(Y)(X) =
Hom,(X,Y). q.e.d.
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Hence, it is possible to regard C as a full subcategory of either C* or CV.
Notation 1.4.5. By identifying X € C with he(X) € C*, it is natural to set
(1.4.2) X(Y) =Hom,(Y, X).

Similarly, for A and B in C*, we shall sometimes write A(B) instead of
Hom,. (B, A).

Corollary 1.4.6. Let F: C — C' be a functor of U-categories and assume
that C is U-small. For A € C'", the category Cs associated with C — C' — C'"
(see Definition 1.2.16) s U-small.

Similarly, for B € C", the category CB associated with C — C' — C"” is
U-small.

Proof. By the Yoneda lemma, for a given X € C, the family of morphisms
heoF(X) — A is the set A(F(X)). Hence, C, is the category of pairs (X, s)
of X e C and s € A(F(X)). If C is small, then the set | |, .o A(F(X)) is small.
The case of C? is similar. q.e.d.

Corollary 1.4.7. Let C be a category, f: X — Y a morphism in C. Assume
that for each W € C, the morphism Hom (W, X) EAY Hom(W,Y) (resp.

Hom (Y, W) LA Hom (X, W)) is an isomorphism. Then f is an isomor-
phism.

Proof. By hypothesis, he(f): he(X) = he(Y) (resp. ke(f): ke(Y) = ke(X))
is an isomorphism. Hence, the result follows from the Yoneda lemma (Corol-
lary 1.4.4). q.e.d.

Definition 1.4.8. A functor F from C°P to Set (resp. C to Set) is repre-

sentable if there is an isomorphism he(X) —> F (resp. F =>kc(X)) for some
X e C. Such an object X is called a representative of F.

It follows from Corollary 1.4.4 that the isomorphism F =~ h¢(X) (resp. F =~
ke (X)) determines X up to unique isomorphism.

Assume that F € C" is represented by X € C. Then Hom . (h¢(Xo), F) =
F(X) gives an element sg € F(Xg). Moreover, for any ¥ € C and t € F(Y),
there exists a unique morphism f: Xo — Y such that t = F(f)(s9). Con-
versely, for Xg € C and sg € F(Xg), (Xo, so) defines a morphism he(Xo) — F.
If it is an isomorphism, that is, if the map Hom (Y, Xo) — F(Y) given by
f = F(f)(so) is bijective for all ¥ € C, then F is representable by Xj.

Corollary 1.4.9. Let F: C — C"™ be a functor. If F(X) is isomorphic to an
object of C' for any X € C, then there exists a unique (up to unique isomor-
phism) functor Fy: C — C' such that F >~ he oFp.

Proof. This follows from Corollary 1.4.4 and Lemma 1.3.11. q.e.d.
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Proposition 1.4.10. Let F € C*. Then F is representable if and only if Cr
has a terminal object.

Proof. Let (X,s) € Cr, that is, X € C and s € F(X). For any (Y,¢) € Cp,
Homcp((Y, 1), (X,s)) ~{u € Hom (Y, X); F(u)(s) =1} .

Hence, (X, s) is a terminal object of Cr if and only if Hom, ((Y,1), (X, s)) =~
{pt} for any ¥ € C and ¢ € F(Y), and this condition is equivalent to saying
that the map Hom (Y, X) — F(X) given by u — F(u)(s) is bijective for any
YeC. q.e.d.

Representable functors is a categorical language to deal with universal
problems. Let us illustrate this by an example.

Ezample 1.4.11. Consider the situation of Example 1.2.9. Denote by B(N x
M, L) the set of bilinear maps from N x M to L. Then the functor F: L >
B(N x M, L) is representable by N ®g M, since F(L) = B(N x M,L) ~
Hom (N ®g M, L).

If a functor F: C — Set takes its values in a category defined by some
algebraic structure (we do not intend to give a precise meaning to such a
sentence) and if this functor is representable by some object X, then X will
be endowed with morphisms which will mimic this algebraic structure. For
example if F takes its values in the category Group of groups, then X will be
endowed with a structure of a “group-object”. This notion will be discussed
in Sect. 8.1.

We shall see in Chap. 2 that the notion of representable functor allows us
to define projective and inductive limits in categories.

We conclude this section with a technical result which shall be useful in
various parts of this book.

Lemma 1.4.12. Let C be a category and let A € C*. There is a natural equiv-
alence of big categories (Co)" =~ (C™)a such that the diagram of big categories
and functors below quasi-commutes:

C, (he)a (C")a

T |

Ca)" .

Proof. (1) We construct a functor A: (C*)4 — (Ca)" as follows. Let G € C*
and 1: G — A. For (X 5 A) € Cy4, we set

(A(G 4 A))(X % A) = Hom g, (X, 5), (G, 1))
={ueGX);tx(u) =5 € A(X)}.
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(ii) We construct a functor w: (C4)" — (C")4 as follows. Let F € (C4)" and
X e C. Set

(F)(X) = {(x.9);s € A(X),x € F(X = A)}
and define (u(F) — A) € (C")a by
w(F)(X)> (x,s) > seAX)for X eC.
(iii) It is easily checked that the functors A and p are quasi-inverse to each
other. q.e.d.

Remark 1.4.13. One shall be aware that the category C* associated with the
U-category C depends on the universe U. Let V be another universe with
U C V. Since the functor from U-Set to V-Set is fully faithful, it follows from
Lemma 1.3.9 that the functor

(143) yu: CZ//} — C\/}

is fully faithful.
Hence F € CJ} is representable if and only if 1y /(F) is representable.

1.5 Adjoint Functors

Consider a functor F: C — C'. It defines a functor

(1.5.1) F.:C" —C",
F.(B)(X) = B(F(X))for BeC",XeC.

If there is no risk of confusion, we still denote by F,: C' — C” the restriction
of F, to C’, that is, we write F, instead of F, o h¢. Hence,

F(Y)(X) = he/(Y)(F(X)) = Hom (F(X), Y) .
In other words, F, is the functor
F.:C'—C" Y+ Hom,(F(-),Y).
Applying Corollary 1.4.9, we obtain:

Theorem 1.5.1. Assume that the functor F.(Y) is representable for each Y €
C'. Then there exists a functor G: C' — C such that F, >~ h¢ oG, and the
functor G is unique up to unique isomorphism.

The uniqueness of G means the following. Consider two isomorphisms of func-
tors 6y: F, —> he oGy and 6; : F, —> he oG;. Then there exists a unique iso-
morphism of functors 6: Gy — G such that 8; = (h¢ o8) o 6.
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Proof. Applying Lemma 1.3.11 to the functor F,: C' — C”" and the full sub-

category C of C", we get a functor G: C' — C such that F, — h¢ oG, and this
functor G is unique up to unique isomorphism, again by this lemma. q.e.d.

In the situation of Theorem 1.5.1, we get:
(1.5.2) Hom,(X,G(Y)) =~ F.(Y)(X) ~ Hom, (F(X),Y) .
Consider the functor
G.:C—C", X+ Homy(X,G(+)).

Then for each X € C, G.(X) is representable by F(X).
For the reader’s convenience, we change our notations, replacing F with
L and G with R.

Definition 1.5.2. Let L: C — C’ and R: C' — C be two functors. The pair
(L, R) is a pair of adjoint functors, or L is a left adjoint functor to R, or R
is a right adjoint functor to L, if there exists an isomorphism of bifunctors
from C°P x C’ to Set:

(1.5.3) Hom (L(+), ) >~ Homg(+, R(*)) .

We call the isomorphism in (1.5.3) the adjunction isomorphism .
With the language of adjoint functors, we can reformulate Theorem 1.5.1
as follows.

Theorem 1.5.3. Let L: C — C' and R: C' — C be two functors. If L (resp.
R)admits a right (resp. left )adjoint functor, this adjoint functor is unique up
to unique isomorphism. Moreover, a functor L admits a right adjoint if and
only if the functor Hom, (L(+),Y) is representable for any Y € C'.

Let X € C. Applying the isomorphism (1.5.3) with X and L(X), we find the
isomorphism Hom, (L(X), L(X)) >~ Hom,(X, R o L(X)) and the identity of
L(X) defines a morphism X — RoL(X). Similarly, we construct LoR(Y) — ¥
and these morphisms are functorial with respect to X and Y. Hence, we have
constructed morphisms of functors

(1.5.4) ¢:idc — RolL,
(1.5.5) n:LoR—ide .

By this construction, we have commutative diagrams for Y, Y’ € C’ and X, X’ €

C

(1.5.6) Hom,, (Y, Y') —~ Hom(R(Y), R(Y"))

.

Hom,,(LR(Y), Y'),
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(1.5.7) Hom (X, X') —== Hom , (L(X), L(X))
P> ’\'\Lad
Hom (X, RL(X’)) .
It is easily checked that

(1.5.8) (noL)o(Log): L—>LoRoL — L is id,
5.9) (Ron)o(¢eoR): R—> RoLoR— R is idg .

Proposition 1.5.4. Let L: C — C’ and R: C' — C be two functors and let ¢
and n be two morphisms of functors as in (1.5.4) and (1.5.5) satisfying (1.5.8)
and (1.5.9). Then (L, R) is a pair of adjoint functors.

Proof. We leave to the reader to check that the two composite morphisms
Hom (L(X), ¥) & Hom(R o L(X), R(Y)) 2 Hom(X, R(Y))

and
Hom (X, R(Y)) L Hom ., (L(X),L o R(Y)) LS Hom (L(X),Y)

are inverse to each other. q.e.d.

In the situation of Proposition 1.5.4, we say that (L, R, n, €) is an adjunction
and that ¢ and n are the adjunction morphisms.

L L
Proposition 1.5.5. Let C, C' and C” be categories and let C —= (' —= "
R R

be functors. If (L, R) and (L', R') are pairs of adjoint functors, then (L'oL, Ro
R') is a pair of adjoint functors.

Proof. For X € C and Y € C”, we have functorial isomorphisms:

Hom,,(L'L(X),Y) ~ Hom (L(X), R'(Y))
~ Hom,(X, RR'(Y)) .

q.e.d.

Proposition 1.5.6. Let (L, R, n, &) be an adjunction.

(i) The functor R is fully faithful if and only if the morphismn: LoR — ide
is an isomorphism.
(ii) The functor L is fully faithful if and only if the morphism e: ide — RoL
s an tsomorphism.
(iii) The conditions below are equivalent
(a) L is an equivalence of categories,
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(b) R is an equivalence of categories,

(¢) L and R are fully faithful.

In such a case, L and R are quasi-inverse one to each other, and (1.5.4),
(1.5.5) are isomorphisms.

Proof. (i) Let Y,Y’ € C and consider the diagram (1.5.6). We find that the
map Hom (Y, Y’) - Hom(R(Y), R(Y’)) is bijective if and only if the map
Hom, (Y,Y") - Hom (Lo R(Y),Y’) is bijective. Therefore R is fully faithful
if and only if L o R(Y) — Y is an isomorphism for all Y, and this proves (i).
(ii) is dual, and (iii) follows immediately from (i) and (ii). q.e.d.

Remark 1.5.7. 1f F: C — C' is an equivalence of categories and if G is a quasi-
inverse to F, then G is both a right and a left adjoint to F.

Ezamples 1.5.8. (i) For X, Y, Z € Set, there is a natural isomorphism
Homgy (X x Y, Z) @ Homg,, (X, Homg (Y, Z))

and this isomorphism is functorial with respect to X, Y, Z. Hence the functors
+ x Y and Homg, (Y, +) are adjoint.

(ii) Let R be a k-algebra (see Notation 1.1.4). Let K € Mod(k) and M, N €
Mod(R). The formula:

Hom (N ® K, M) ~ Hom 4(N, Hom (K, M))

tells us that the functors « ®; K and Hom (K, «) from Mod(R) to Mod(R)
are adjoint.

In the preceding situation, denote by for: Mod(R) — Mod(k) the forgetful
functor which associates the underlying k-module to an R-module M. Apply-
ing the above formula with N = R, we get

Hom 4 (R ® K, M) >~ Hom, (K, for(M)) .

Hence, the functor R ®; + (extension of scalars) is a left adjoint to for.
Similarly, the functor Hom, (R, +): Mod(k) — Mod(R) is a right adjoint
to for.

Exercises

Exercise 1.1. Let C be a category which has an initial object J¢ and a ter-
minal object pte. Prove that if Hom . (pte, @c) is not empty, then pte =~ @c.

Exercise 1.2. Prove that the categories Set and Set°® are not equivalent.
(Hint: any morphism X — @ is an isomorphism in Set.)

Exercise 1.3. Let C be a category such that for any X,Y € Ob(C), the set
Hom (X, Y) has at most one element. Prove that C is equivalent to the cate-
gory associated with an ordered set.
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Exercise 1.4. (i) Prove that a morphism f in the category Set is a monomor-
phism (resp. an epimorphism) if and only if it is injective (resp. surjective).
(ii) Prove that the morphism Z — Q is a monomorphism and an epimorphism
in the category Ring of rings belonging to ¢/ and morphisms of rings.

(iil) Prove that Z is an initial object and {0} is a terminal object in the category
Ring.

Exercise 1.5. (i) Let C be a non-empty category such that for any X,Y € C,
X and Y are isomorphic. Let us choose X € C and set M = Hom, (X, X).
Prove that C is equivalent to the category associated with the monoid M.
(ii) Let C be a connected groupoid. Prove that C is equivalent to the category
associated with a group.

Exercise 1.6. Let C be a category and let X € C. Prove that the full sub-
category of Cx consisting of monomorphisms is equivalent to the category
associated with the ordered set of subobjects of X.

Exercise 1.7. Let C be a category and let f: X — Y and g: Y — Z be mor-
phisms in C. Assume that g o f is an isomorphism and g is a monomorphism.
Prove that f and g are isomorphisms.

Exercise 1.8. Let C be a category with a zero object denoted by 0 and let
X € C. Prove that if idx = 0 (i.e., idx is the composition X — 0 — X) then
X ~0.

Exercise 1.9. Let F: C — C’ be an equivalence of categories and let G be a
quasi-inverse. Let H: C — Set be a representable functor, X a representative.
Prove that H o G is representable by F(X).

Exercise 1.10. Let F: C — C’ be a functor. Prove that F has a right adjoint
if and only if the category Cy has a terminal object for any Y € C'.

Exercise 1.11. Prove that the category C is equivalent to the opposite cate-
gory C°P in the following cases:

(a) C is the category of finite abelian groups,
(b) C is the category Rel of relations (see Example 1.2.4 (ii)).

Exercise 1.12. (i) Let C = # be the empty category. Prove that C* = Pt
(see Notation 1.2.8).
(ii) Let C = Pt. Prove that C" >~ Set.

Exercise 1.13. Let C be a category.

(i) Prove that the terminal object pte. of C* is the constant functor with
values {pt} € Set and that the initial object ¥#cr of C* is the constant functor
with values @ € Set.

(ii) Prove that Z € C is a terminal object of C if and only if h¢(Z) is a terminal
object of C".
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Exercise 1.14. Let F: C — C’ be a functor, and assume that F admits a
right adjoint R and a left adjoint L. Prove that R is fully faithful if and only
if L is fully faithful.

(Hint: use Proposition 1.5.6 with the morphisms of functors ¢: id — FL,
g:id— RF,n: LF — id and n': FR — id. Then consider the commutative
diagram below.)

Hom (X, Y) e Hom (X, FR(Y))
oex Hom, (FL(X), FR(Y o ~
/ N \
Hom (FL(X),Y Hom (L(X), R(Y)).

Exercise 1.15. Let F: C — C’ be a fully faithful functor, let G: C' — C be
a functor and let ¢: ider — F o G be a morphism of functors. Assume that
cgoF: F —-> FoGoF and Goeg: G — G o F oG are isomorphisms. Prove
that G is left adjoint to F.

Exercise 1.16. Assume that F: C — C' and G: C’ — C are equivalences of
categories quasi-inverse to each other. Prove that there are isomorphisms of
functors a: G o F =>ide and B: F o G = ide such that Foa = 8o F and
a oG = Gop, that is, F(ax) = Br(x) in Hom (F o G o F(X), F(X)), and
ag(y) = G(By) in Hom(Go Fo G(Y),G(Y)).

Exercise 1.17. Let C be a category and let S be a set. Consider the constant
functor Ag: C°P — Set with values S (see Notations 1.2.15). Prove that if Ag
is representable by Z € C, then S >~ {pt} and Z is a terminal object in C.

Exercise 1.18. Let C be a category and S a non empty set. Define the cate-
gory S by setting Ob(S) = § and Homg(a, b) = {pt} for any a,b € S.

(i) Prove that the functor 6: C x § — C, (X, a) — X is an equivalence.

(ii) Let Arr be the category e — e (see Notations 1.2.8 (iii)). Let ¢: Arr —
Pr be the natural functor. Prove that ¢ is faithful but there exists no subcat-
egory of Pr equivalent to Arr.

(iii) Let F: C' — C be a faithful functor. Prove that there exist a non empty

set S, a subcategory Cy of C x S and an equivalence A: C' = Cy such that F
is isomorphic to the composition C’ N Co—>CxS 2.

Exercise 1.19. Let C, C' be categories and L,: C — C', R,: C' — C be
functors such that (L,, R,) is a pair of adjoint functors (v = 1,2). Let
&:1id¢ — R,oL, and n,: L, o R, — ide be the adjunction morphisms.
Prove that the two maps A, u:

A
Hom peyc,cn(L1, L2) ? Hom gy, ¢) (R2, R1)
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given by

M) Ro 285 R0 Ly o Ry 2% RioLyo Ry 222 Ry

for ¢ € Hom g ¢ ¢y (L1, L2),

o LioyroL o
/,L('(ﬂ)!Llﬂ)LloRQOlQ&)LlORlOLQal—LQ)LQ

for '(ﬁ' € Hom Fct(C/,C)(R2’ Rl)
are inverse to each other.

Exercise 1.20. Consider three categories J, I, C and a functor ¢: J — I. As-
sume that ¢ is essentially surjective. Prove that the functor op: Fct(I,C) —
Fct(J, C) is faithful and conservative. (See Lemma 7.1.3 for refinements of this
result.)

Exercise 1.21. The simplicial category A is defined as follows. The objects
of A are the finite totally ordered sets and the morphisms are the order-
preserving maps. Let A be the subcategory of A consisting of non-empty sets
and

Homk (o, 7) =
u sends the smallest (resp. the largest)
u € Hom 4 (o, 7) ; element of o to the smallest (resp. the
largest) element of t

For integers n, m denote by [n, m| the totally ordered set {k € Z; n < k < m}.
(i) Prove that the natural functor A — Set/ is half-full and faithful.

(ii) Prove that the full subcategory of A consisting of objects {[0, n]},>—_1 is
equivalent to A. ~

(iii) Prove that A, as well as A, admit an initial object and a terminal object.
(iv) For o € A, let us endow S(0) :=Hom 4 (o, [0, 1]) with a structure of an
ordered set by setting for &, n € S(o), € <nif £(i) < n(i) for all i € 0. Prove
that S(o) is a totally ordered set.

(v) Prove that the functor ¢: A — A°P given by o > Hom 4 (o, [0, 1]) and
the functor ¥ : A°® — A given by 7 > Hom (7, [0, 1]) are quasi-inverse to
each other and give an equivalence A ~ A°P. B

(vi) Denote by A;,; (resp. Ay, ) the subcategory of A (resp. of A) such
that Ob(A;,;) = Ob(A), (resp. Ob(Ay,) = Ob(A)) the morphisms being
the injective (resp. surjective) order-preserving maps. Prove that A;,; and
(A, )°P are equivalent. _
(vii) Denote by t: A — A the canonical functor and by x: A — A the
functor 7 > {0} U T U {oo} (with 0 the smallest element in {0} LUt U {oo} and
oo the largest). Prove that («, ) is a pair of adjoint functors and the diagram
below quasi-commutes:
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A A

Ni(ﬂ leop
op

Aop ——> AP,

(Remark: the simplicial category will be used in §11.4.)
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Limits

Inductive and projective limits are at the heart of category theory. They are
an essential tool, if not the only one, to construct new objects and new func-
tors. Inductive and projective limits in categories are constructed by using
projective limits in Set. In fact, if 8: J°? — C is a functor, its projective
limit is a representative of the functor which associates the projective limit of
Hom,(Z, B) to Z, and if «: J — C is a functor, its inductive limit is a repre-
sentative of the functor which associates the projective limit of Hom (e, Z)
to Z.

In this chapter we construct these limits and describe with some details
particular cases, such as products, kernels, fiber products, etc. as well as the
dual notions (coproducts, etc.).

Given a functor ¢: J — I and a category C, the composition by ¢ defines
a functor ¢,: Fct(I,C) — Fct(J, C). Projective and inductive limits are the
tools to construct a right or left adjoint to the functor ¢,. This procedure is
known as the “Kan extension” of functors. When applying this construction
to the Yoneda functor, we get an equivalence of categories between functors
defined on C and functors defined on C* and commuting with small inductive
limits.

We pay special attention to inductive limits in the category Set, but the
reader will have to wait until Chap. 3 to encounter filtrant inductive limits,
these limits being often much easier to manipulate.

It is well-known, already to the students, that the limit of a convergent
sequence of real numbers remains unchanged when the sequence is replaced
by a subsequence. There is a similar phenomena in Category Theory which
leads to the notion of cofinal functor. A functor of small categories ¢: J — [
is cofinal if, for any functor @: I — C, the limits of « and ¢ o¢ are isomorphic.
We prove here that ¢ is cofinal if and only if, for any i € I, the category J¢,
whose objects are the pairs (j, u) of j € J and u: i — ¢(j), is connected.

We also introduce ind-limits and pro-limits, that is, inductive and projec-
tive limits in the categories C* and CV, respectively.
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2.1 Limits

Recall Convention 1.4.1.

In this section, I, J, K etc. will denote small categories. Let C be a category.
A functor @: I — C (resp. B: I°? — () is sometimes called an inductive
system (resp. a projective system) in C indexed by 1.

Assume first that C is the category Set and let us consider projective
systems. In other words, B is an object of I". Denote by pt,. the constant
functor from I°P to Set, defined by pt;.(i) = {pt} for all i € I. Note that pt;.
is a terminal object of I". We define a set, called the projective limit of B, by

(2.1.1) lim g = Hom . (pt;~, B)
The family of morphisms:
Hom . (pt;., B) = Homgey (pt;~ (i), B(i)) = B(i), i€l

defines the map @ B — [, B(i), and it is immediately checked that:
(21.2) lim B ~ {{x,-},- € H,B(i); B(s)(x;) = x; for all s € Hom, (i, ])} .

Since I and B(i) are small, 1(1_111 B is a small set. The next result is obvious.

Lemma 2.1.1. Let B: I°? — Set be a functor and let X € Set. There is a
natural isomorphism

HomSet(X’ 1(11_1’1,3) l) Lir_nHomSet(Xv ,8) i

where Hom g, (X, B) denotes the functor 1°P — Set, i = Homg, (X, B(i)).

Let ¢: J — I and B: I°? — Set be functors. Denote by ¢°P: J°P — [°P
the associated functor. Using (2.1.1), we get a natural morphism:

(2.1.3) lim g — l(n_n(ﬁ o ¢°P).

Now let « (resp. B) be a functor from I (resp. I°P) to a category C. For
X € C, Hom,(a, X) and Hom (X, B) are functors from I°P to Set. We can
then define inductive and projective limits as functors from C or C°P to Set
as follows.

Recall that C* and CY are given in Definition 1.4.2.

Definition 2.1.2. (i) We define li_n)la € CY and 1<ir_n/3 € C" by the formulas
(2.1.4) lime: X l(ingomC(a, X)= l(ll_n(hc(X) ow) € Set ,

(2.1.5) limp: X — Lir_nHomc(X,ﬁ) = 1<ir_n(kC(X) of) € Set .
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(ii) If these functors are representable, we keep the same notations to denote
one of their representatives in C, and we call these representatives the
inductive or projective limit, respectively.

(iii) If for every functor a from I (resp. I°P) to C, lir_)na (resp. l(i_r_na) is
representable, we say that C admits inductive (resp. projective) limits
indexed by I.

(iv) We say that a category C admits finite (resp. small) projective limits if
it admits projective limits indexed by finite (resp. small) categories, and
similarly, replacing “projective limits” with “inductive limits”.

When C = Set, this definition of 1(1_1_11[3 coincides with the former one, in
view of Lemma 2.1.1.

Remark 2.1.3. The definitions of C* and C depend on the choice of the uni-
verse U. However, given a functor a: I — C, the fact that lim « is representable
as well as its representative does not depend on the choice of the universe U
such that I is U-small and C is a U-category, and similarly for projective
limits.

Notations 2.1.4. (i) We shall sometimes use a more intuitive notation, writing
h_I)nOl(l) or h_I)IlCY(l) instead of lime. We may also write l(lnﬁ(l) or lim B(i)
iel i iel ielop

or 1(&11/3(1) instead of lim 8.

1
(ii) Notice that in the literature, lim is sometimes used for the projective limit,
and colim for the inductive limit, and one writes lim 8 and colim « instead
of im 8 and lim .
pa— =

Remark 2.1.5. Let I be asmall set and o: I — C a functor. It defines a functor
a®P: [°P — C°P and there is a natural isomorphism

(lim )P >~ lim «®P .
= —

Hence, results on projective limits may be deduced from results on inductive
limits, and conversely.

Moreover, a functor a: I — C defines a functor B: (I°?)°? — C and an
inductive system indexed by [ is the same as a projective system indexed by
I°P. However one shall be aware that the inductive limit of @ has no relation in
general with the projective limit of 8. (See the examples below, in particular
when I is discrete.)

By Definition 2.1.2, if lima or lim B8 are representable, we get:
— Pann

(2.1.6) Homc(li_rr)loz, X) ~ l(ir_nHomC(a, X),

(2.1.7) Hom (X, 1(&11,3) o~ l(ir_nHomc(X, B) .
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Note that the right-hand sides are the projective limits in Set.
Assume that lgux is representable by Y € C. We get:

l<i_r_nHomc(a(i), Y) ~Hom,(Y,Y)

i
and the identity of Y defines a family of morphisms
piiali)—>Y =lima  with p; oa(s)=p; foralls:i > j.

Consider a family of morphisms f;: «(i) — X in C satisfying the natu-
ral compatibility conditions, visualized by the commutative diagram, with
s:i—>

ai) x

ot(s)l /

a(j)
This family of morphisms is nothing but an element of lim Hom (a(i), X),
i
hence by (2.1.6) it gives an element of Hom (¥, X). Therefore there exists a
unique morphism g: ¥ — X such that f; = g o p;.

Similarly, if 1<iLnﬁ is representable, we obtain a family of morphisms
pi: imp — B(i) and any family of morphisms from X to the B(i)’s sat-
isfying the natural compatibility conditions will factorize uniquely through
1(ir_n B. This is visualized by the commutative diagrams:

/

als) hm o > lim B
f] \\

If 6: o - o is a morphism of functors, it induces a morphism li_rr)la —

\

a(j)

li_r)n(x’ in CV.
It follows from (2.1.3) that if ¢: J — I, «: I — C and B: I°? — C are
functors, we have natural morphisms:

(2.1.8) lir_r)l(a o) — lime ,
(2.1.9) lim (B 0 ¢°P) < lim B

Proposition 2.1.6. Let I be a category and assume that C admits inductive
limits (resp. projective limits) indexed by I. Then for any category J, the
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big category C’ admits inductive limits (resp. projective limits) indexed by I.
Moreover, for j € J, denote by p;: C! — C the functor which associates y (j)
to a functory: J — C. Then, ifa: I — C’ (resp. B: I°® — C’) is a functor,
its inductive (resp. projective) limit is given by

—_

(h_II)lO[)(]) = i_I)Il(,Oj owa) forany j € J

(resp. (lim B)(j) = lim (p; o ) for any j € J) .

In other words:

The proof is obvious.
For a small category I and a functor «: I — C, lim (k¢ oa) € CY exists and

coincides with lir_)na € CY given in Definition 2.1.2. Then lir_)na exists if and
only if 1ir_r)1 (ke o) is representable, and in this case, lir_r)ux is its representative.
There is a similar remark for 1(i_r£, replacing CY with C".

We shall consider inductive or projective limits associated with bifunctors.

Proposition 2.1.7. Let I and J be two small categories and assume that C
admits inductive limits indexed by I and J. Consider a bifunctora: IxJ — C
and letay: I — C’ and a;: J — C! be the functors induced by o. Then 1'11)10[
exists and we have the isomorphisms

lim o > li_r)n(li_r)naj) o~ li_n)l(li_r)nal) .

Similarly, if B: I°P x J°° — C is a bifunctor, then B defines functors
By: I°° — C'°" and B;: J°° — C'*" and we have the isomorphisms

lim A ~ lim(lim g,) ~ lim(lim B;) .

In other words:

lrp lrg Lty
i,j j i i Jj
tin (i, /) = lim (lim (7, 1)) = im(lim A7, /) -
i,j Jj i i Jj

The proof is obvious.

Definition 2.1.8. Let F: C — C' be a functor and I a category.

(i) Assume that C admits inductive limits indexed by I. We say that F com-
mutes with such limits if for any a: I — C, h_r)n (Foa) exits in C' and is
represented by F(h_II)l a).
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(ii) Similarly if C admits projective limits indexed by I, we say that F com-
mutes with such limits if for any B: I°° — C, l(gl(F o B) exists and is
represented by F(l(l_r_n B).

Note that if C admits inductive (resp. projective) limits indexed by I, there is a
O : g . .

natural morphism lim (Foa) — F(h_r)na) in C" (resp. F(l(in B) — lim (FoB)

in C'*). Then (i) (resp. (ii)) means that this morphism is an isomorphism for

any functor « (resp. ).

Ezample 2.1.9. Let k be a field, C = C" = Mod(k), and let X € C. Then
the functor Hom (X, +) commutes with small inductive limit if X is finite-
dimensional, and it does not if X is infinite-dimensional. Of course, it always
commutes with small projective limits.

If C admits projective limits indexed by a category I, the Yoneda functor
he: C — C* commutes with such projective limits by the definition, but one
shall be aware that even if C admits inductive limits, the functors he does not
commute with inductive limits in general (see Exercises 2.19 and 3.7).
Proposition 2.1.10. Let F: C — C' be a functor. Assume that:

(i) F admits a left adjoint G: C' — C,
(ii) C admits projective limits indezed by a small category I.

Then F commutes with projective limits indexed by I, that is, the natural
morphism F(l(l_r_n B) — l(1_r_nF(ﬂ) is an isomorphism for any B: I°°? — C.

Proof. For any Y € C', there is the chain of isomorphisms

Hom, (Y, F(l{lnﬂ)) ~ Hom,(G(Y ),h B)
’thHomC( (Y), B)
o~ hmHomc,( F(B))
o~ HomC,A(Y lim F(B)) .

Then the result follows by the Yoneda lemma. q.e.d.

Of course there is a similar result for inductive limits. If C admits inductive
limits indexed by I and F admits a right adjoint, then F commutes with such
limits.

The next results will be useful.

Lemma 2.1.11. Let C be a category and let a: C — C be the identity functor.
Iflig)la 1s representable by an object S of C, then S is a terminal object of C.

Proof. For X € C denote by ay the natural morphism X — li_r)na ~ §. The
family of morphisms ay satisfies:
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(a) for every f: X — Y, ayo f = ay,
(b) if a pair of parallel arrows u,u’: S = Z satisfy u o ax = u’ o ax for all
X eC, thenu =u'.

First, we shall show that ag = ids. Applying (a) to f = ax, we get asoay = ay.
Hence ags o ay = idg oay, and this implies ag = idg by (b).

We can now complete the proof. Let f: X — S. By (i), f =aso f = ax.
Hence, Hom (X, S) >~ {ax}. q.e.d.

Recall (see Notations 1.2.15) that Ax: I — C is the constant functor with
values X € C.

Lemma 2.1.12. Let I and C be two categories and assume that I is connected.
Let X € C. Then X —>lim Ay and lim Ay = X.

Proof. (i) Assume first that C = Set. By (2.1.2), lim Ay is the subset of X!
consisting of the {x;}ic; (with x; € X) such that x; = x; if there exists an
arrow [ — i’. Then the x;’s are equal to one another since C is connected, and
we obtain X = l(iLnAX.

(ii) By (i), we have the isomorphisms for ¥ € C

Homcv(lgle, Y)~ l(ingomc(Ax, Y)~ l(iilﬂHomc(X’y) ~ Hom,(X,Y),

Hom,. (Y, l(iglAX) ~ l(i£1HomC(Y, Ax) >~ LiI_nAHomc(Y,X) ~ Hom,(Y, X) .
Hence, the results follow from the Yoneda lemma. q.e.d.

(See Corollary 2.4.5 for a converse statement.)

Let A € C", and let C4 denote the category associated with the Yoneda
functor he: C — C* (see Definition 1.2.16). Hence, C, is the category of pairs
(X,u) of X € C and u € A(X).

Lemma 2.1.13. Let I be a category and assume that C admits inductive limits
indexed by I.

(i) If A: C°? — Set commutes with projective limits indexed by I (i.e.,

A(li_r)nXi) ~ 1(ir_nA(Xi) for any inductive system {X;}ie; in C), then Ca
iel iel

admits inductive limits indezed by I and j,: C4 — C commutes with such
limats.

(ii) If a functor F: C — C' commutes with inductive limits indexed by I,
then for any Y € C', Cy admits inductive limits indexed by I and Cy — C
commutes with such limits.

Proof. (1) Let {(X;, u;)}ie; be an inductive system in C4 indexed by I. Then
u:="{u;}; € 1<i_I_nA(X,-) o~ A(lig}X,-) gives an object (lig}X,-, u) of C4. It is easily

checked that it is an inductive limit of {(X;, u;)}ies-
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(ii) Let A be the functor from C°P to Set given by A(X) = Hom, (F(X),Y).
Then A commutes with projective limits indexed by I and C,4 is equivalent to
Cy. q.e.d.

Definition 2.1.14. Let us denote by Morg(C) the category whose objects
are the morphisms in C and whose morphisms are described as follows. Let
f:X — Y and g: X' — Y' belong to Mor(C). Then Hom v, o) (f. 8) =
fu: X > X,v:Y = Y;f =vogou}. The composition and the identity in
Morg(C) are the obvious ones.

A morphism f — g in Morg(C) is visualized by the commutative diagram:

X—Y

X — =y
Lemma 2.1.15. Let I and C be two categories and let o, B € Fet(I,C). Then
(i > j) — Homg(a(i), B(j)) is a functor from Moro(I)°P to Set, and there
is a natural isomorphism

(2110)  Hompef@ ) > lm  Home(a(i), B())) -

(i—> j)eMoro(I)

Proof. The first statement, as well as the construction of the map (2.1.10) is
clear. This map is obviously injective. Let us show that it is surjective. Let

¢ :={p(i > j)}i—j)eMoro (1) € lim Hom ¢ (a (i), B(j)) -
(i—>j)eMoro (1)

Then ¢(i 1y i) defines the morphism 6;: «(i) — B(i). Let us show that
0 :={0;}ie; is a morphism of functors from « to B.

Let f:i — j be a morphism in /. To f we associate the two morphisms
in Morg(I):

. . .S .
1 —=>] 11—
idil Tf fi Tid/‘
iT’él, J T)J
In the diagram below
. 0;
a(i) — B(i)
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the two triangles commute, and hence the square commutes. Hence, 6 €
Hom g/ ) (a0, B) and ¢ is the image of 6. q.e.d.

2.2 Examples

Empty Limits

If I is the empty category and a: I — C is a functor, then H_I)noz is repre-
sentable if and only if C has an initial object @, and in this case lir_)na >~ Pec.
Similarly, 1<ir_noz is representable if and only if C has a terminal object pt., and
in this case 1<i_r£1a >~ pte.

Terminal Object
If I has a terminal object, say pt;, and a: I — C (resp. B: I°® — (C) is a
functor, then

lime = a(pt;) .

(resp. lim B~ B(pt,).)

Sums and Products

Consider a family {X;};c; of objects in C indexed by a set I. We may regard [
as a discrete category and associate to this family the functor «: I — C given
by «(i) = X;.

Definition 2.2.1. Consider a family {X;}ic; of objects in C identified with a
functor a: I — C.

(i) The coproduct of the X;’s, denoted by |[; X;, is given by | [, X, := h_I)nOl.
(ii) The product of the X;’s, denoted by []; X;, is given by [[; X; := 1(1210[.

Hence we have isomorphisms, functorial with respect to Y € C:
(2.2.1) Hom (] [ Xi, ¥) ~ [ [Hom, (X, Y)
i i

(2.2.2) m%mnmznmwm&y

i l

The natural morphism X; — [[; X; is called the j-th coprojection. Similarly,
the natural morphism [], X; — X is called the j-th projection.

When X; = X for all i € I, we simply denote the coproduct by XL’ and
we denote the product by XI1/. We also write X(*) and X' instead of XL/
and XTI/ respectively.

If X7 exists, we have
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(2.2.3) Homg,, (1, Hom (X, Y)) =~ Hom (X1, v) .
If XTI/ exists, we have

(2.2.4) Homg,, (1, Hom (Y, X)) ~ Hom (Y, XI17) |

If I = {0, 1}, the coproduct and product (if they exist) are denoted by
Xo]] X1 and X [ ] X1, respectively. Moreover, one usually writes XoU X; and
Xo x X; instead of Xo ][] X1 and Xo[] X1, respectively.

The coproduct and product of two objects are visualized by the commu-
tative diagrams:

Xo Xo

/
\

XQ Ll X1 R = Y > XO x X1

\
/

X1 Xi.

In other words, any pair of morphisms from (resp. to) Xo and X; to (resp.
from) Y factors uniquely through Xou X, (resp. Xo x X1). If C is the category
Set, Xo U X; is the disjoint union and Xy x X; is the product of the two sets
Xo and Xl.

Cokernels and Kernels

Consider the category I with two objects and two parallel morphisms other
than identities (see Notations 1.2.8 (iv)), visualized by

(2.2.5) S — )

A functor «: I — C is nothing but two parallel arrows in C:

(2.2.6) fig: Xo —/—= X;.

In the sequel we shall identify such a functor with a diagram (2.2.6).

Definition 2.2.2. Consider two parallel arrows f, g: Xqg = X1 in C identified
with a functor a: I — C.

(i) The cokernel (also called the co-equalizer) of the pair (f, g), denoted by
Coker(f, g), is given by Coker(f, g) := lima.
(ii) The kernel (also called the equalizer) of the pair (f,g), denoted by
Ker(f, g), is given by Ker(f, g) := l(iLna.
(iii) A sequence Xog = X1 — Z (resp. Z — Xo = X1) is exact if Z is
isomorphic to the cokernel (resp. kernel) of Xo = X;.
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Hence we have the isomorphisms, functorial with respect to Y € C:

(2.2.7) Hom,(Coker(f, g),Y) ~ {u € Hom,(X1,Y);uo f =uog},
(2.2.8) Hom (Y, Ker(f, g)) ~ {u € Hom(Y, X¢); fou =gou}.

The cokernel L is visualized by the commutative diagram:

Xo—= X; ——>1L

X

Y

which means that any morphism A: X; — Y such that ho f = h o g factors
uniquely through k. Note that

(2.2.9) k is an epimorphism .
Dually, the kernel K is visualized by the commutative diagram:

K—>Xo—=xx;

Y

Y
and
(2.2.10) k is a monomorphism.

Proposition 2.2.3. Let F: C — C’ be a functor.

(i) Assume that F is conservative and assume one of the hypotheses (a) or
(b) below:
(a) C admits kernels and F commutes with kernels,
(b) C admits cokernels and F commutes with cokernels.
Then F is faithful.

(ii) Assume that F is faithful and assume that any morphism in C which is
both a monomorphism and an epimorphism is an isomorphism. Then F
18 conservative.

Proof. (i) Assume (a). Let f,g: X = Y be a pair of parallel arrows such
that F(f) = F(g). Let N := Ker(f, g). Denote by u: N — X the natural
morphism. Then F(N) >~ Ker(F(f), F(g)). Hence F(u) is an isomorphism.
Since F is conservative, we get N — X and this implies f = g. Hence, F is
faithful.

Assuming (b) instead of (a), the proof is the same by reversing the arrows.

(ii) Let f: X — Y be a morphism such that F(f) is an isomorphism. Then
f is both a monomorphism and an epimorphism by Proposition 1.2.12. It
follows from the hypothesis that f is an isomorphism. q.e.d.
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Fiber Products and Coproducts
Consider the category I with three objects and two morphisms other than the
identity morphisms visualized by the diagram

oO<—-"0 —>0

Let o be a functor from I to C. Hence « is characterized by a diagram:

fo f1

Yo <— X ——>11.

The inductive limit of «, if it exists, is called the fiber coproduct of Yy and Y,
over X and denoted by Yy Lix Y.

Hence, for any Z € C, Hom (Yo Ux Y1, Z) =~ {(uo, u1);uo € Hom (Yo, Z),
Uy € HOD’IC(Yl, Z), ug o fo =Uuio fl}

The fiber coproduct is visualized by the commutative diagram:

/\

This means that if two morphisms from Y, and Y; to Z coincide after composi-
tion with fy and fi respectively, then they factorize uniquely through Yoy ¥;.
We shall sometimes call the morphism Y; — Yy Uy Yy the i-th coprojection.

The fiber products over Y is defined by reversing the arrows. If 8 is a
functor from 7°P to C, it is characterized by a diagram:

XOLY<LX1-

The projective limit of B, if it exists, is called the fiber product of Xy and X,
over Y and denoted by X xy X;1. It is visualized by the commutative diagram:

We shall sometimes call the morphism Xg xy X7 — X; the i-th projection.
Clearly, we have:
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Proposition 2.2.4. (i) Consider morphisms fo: X — Yy and f1: X — Y1.
If YouYy and YolLix Yy exist in C, then the sequence X = YoUUY7 — YoUx Yy
is exact (see Definition 2.2.2).
(ii) Consider morphisms go: Xo — Y and g1: X1 — Y. If Yo x Y1 and
Yo xx Y1 exist in C, then the sequence Xog Xy X1 — Xo x X1 = Y is
exact.

Remark 2.2.5. The fiber coproduct (resp. fiber product) may also be formu-
lated using the usual coproduct (resp. product).

(i) Let Y € C and recall that j, denotes the forgetful functor Cy — C. Assume
that Cy admits products indexed by a category I.

Consider a family {X; i) Y}ic; of objects of Cy. The fiber product over Y
of the X;’s, denoted by []y; X, is given by

l_[Xi 3=jy(l_[(Xi L Y))

where the product on the right hand side is the product in Cy. Clearly one

recovers Xg Xy X1 when I = {0, 1}.
The natural morphism Hy,i X; — X is again called the j-th projection.

(ii) One defines similarly the fiber coproduct over Y of a family {Y £> Xilier
of objects of C*, and one denotes it by [ [, X;. The natural morphism X; —
[ly; Xi is again called the j-th coprojection.

Recall that if a category C admits inductive limits indexed by a category 1
and Z € C, then Cz admits inductive limits indexed by I. (See Lemma 2.1.13.)

Definition 2.2.6. Let C be a category which admits fiber products and induc-
tive limits indexed by a category I.

(i) We say that inductive limits in C indexed by I are stable by base change
if for any morphism Y — Z in C, the base change functor C; — Cy given
byCz> (X > Z) > (X xzY — Y) € Cy commutes with inductive limits
indexed by I.

This is equivalent to saying that for any inductive system {X;}ic; in C
and any pair of morphisms ¥ — Z and h_H)lXi — Z in C, we have the

isomorphism iel
(2.2.11) 1;_r>§1(xi Xz Y)L(ﬁ_r)ilxi) xz Y.
IAS] le

(ii) If C admits small inductive limits and (2.2.11) holds for any small cate-
gory I, we say that small inductive limits in C are stable by base change.

The category Set admits small inductive limits and such limits are stable
by base change (see Exercise 2.7), but one shall be aware that in the cate-
gory Mod(Z), even finite inductive limits are not stable by base change. (See
Exercise 2.26.)
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Definition 2.2.7. Let us consider a commutative diagram in C:

Yy — Xo

(2.2.12) l l

X1 — Z.
(i) The square (2.2.12) is co-Cartesian if X Uy X; —> Z.
(ii) The square (2.2.12) is Cartesian if ¥ —> X xz X;.

Assume that C admits finite coproducts. Then (2.2.12) is co-Cartesian if and
only if the sequence below is exact (see Definition 2.2.2):

Y= XouXi > Z.

Assume that C admits finite products. Then (2.2.12) is Cartesian if and only
if the sequence below is exact:

Y>> XoxX1=27Z.

Notations 2.2.8. Let f: X — Y be a morphism in a category C.

(i) Assume that C admits fiber coproducts and denote by i1,i2: ¥ =2 Y Uy Y
the coprojections. We denote by oy: ¥ LUy ¥ — Y (or simply o) the natural
morphism associated with idy: ¥ — Y, that is, oy 0 i; = oy o iy = idy. We
call oy the codiagonal morphism.

(ii) Assume that C admits fiber products and denote by p1, pa: X xy X = X
the projections. We denote by §x: X — X xy X (or simply §) the natural
morphism associated with idy: X — X, that is, p; o dx = py 0 §x = idx. We
call §x the diagonal morphism.

Consider a category C which admits finite products and let X € C. We
construct a functor

(2.2.13) xI: (Set)r - ¢
as follows. For I € Set/, we set
xH(r):= x1" (in particular, XI1(#) = pt.) ,
and for (f: J — I) € Mor(C),
xIpy: x5 xIJ

is the morphism whose composition with the j-th projection X1V — X is the
f(j)-th projection X1/ — X. Equivalently, for any Z € C, we have a map
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Hom,(Z, X1') ~ Homg,, (I, Hom.(Z, X))

2, Hom g, (J, Hom(Z, X))
~ Hom,(Z, xI17),

which induces a morphism X1/ — XII7/ by the Yoneda Lemma.
When C admits coproducts, we construct similarly a functor

(2.2.14) xU: set’ — C.

Thanks to Remark 2.2.5, these constructions extend to fiber coproducts and
fiber products. If C admits fiber products and u: X — Y is a morphism in C,
we get a functor

(2.2.15) XMy (Set/ )P — ¢
Set/ 51— xIIv/,

and similarly with fiber coproducts.

Limits as Kernels and Products
We have seen that coproducts and cokernels (resp. products and kernels) are
particular cases of inductive (resp. projective) limits. We shall show that,
conversely, it is possible to construct inductive (resp. projective) limits using
coproducts and cokernels (resp. products and kernels), when such objects
exist,.

Recall that Mor(/) denote the category of morphisms in I. There are two
natural maps (source and target) from Ob(Mor(7)) to Ob([):

o : Ob(Mor(I)) - Ob(I), (s:i—j)—1i,
7 : Ob(Mor(Z)) = Ob(I), (s:i— j)—j.

For a functor @: I — C and a morphism s: i — j in I, we get two morphisms
in CV:
idai)
a(i) T; ai)ua())
(s

from which we deduce two morphisms in CV: a(o(s)) = [, «(i). These
morphisms define the two morphisms in CV:

a

(2216) ]_[sEMor(I) Ol(O'(S)) ? ]_[iel Ol(l)

Similarly, if 8: I°? — C is a functor and s: i — j, we get two morphisms in
Ch:
. . ldﬁ(l); .
N
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from which we deduce two morphisms in C": [],.; B(i) = B(o(s)). These
morphisms define the two morphisms in C*:

(2217) Micr ) == Tientonr) A (5)):

Proposition 2.2.9. (i) lima is the cokernel of (a,b) in (2.2.16),
(ii) lim B is the kernel of (a,b) in (2.2.17).

Proof. Replacing C with C°P, it is enough to prove (ii).

When C = Set, (ii) is nothing but the definition of projective limits in
Set. Therefore, for Z € C, the projective limit l(iI_nHomC(Z, B) in Set is the
kernel of

Mies Hom(Z. B(i)) === [entor(r) Home(Z, (0 (5)):

The result follows by the Yoneda lemma. q.e.d.

Corollary 2.2.10. A category C admits small projective limits if and only if
it satisfies:

(i) C admits small products,
(ii) for any pair of parallel arrows f,g: X = Y in C, its kernel exists in C.

Corollary 2.2.11. A category C admits finite projective limits if and only if
it satisfies:

(i) C admits a terminal object,
(ii) for any X, Y € Ob(C), their product X x Y exists in C,
(iii) for any pair of parallel arrows f,g: X = Y in C, its kernel exists in C.

There is a similar result for finite inductive limits, replacing a terminal object
by an initial object, products by coproducts and kernels by cokernels. (See
also Exercise 2.6.)

2.3 Kan Extension of Functors
Definition 2.3.1. Consider three categories J, I,C and a functor ¢: J — I.
(i) The functor ¢, € Fet(Fet(1,C), Fet(J, C)) is defined by
v =aog@ fora € Fet(I,C) .

(ii) If the functor ¢, admits a left adjoint, we denote it by ¢. In such a
case we have ¢! € Fet(Fet(J,C), Fet(I,C)), and for a € Fet(1,C), B €
Fct(J,C) there is an isomorphism

(2.3.1) Hom e/ ) (B, @) ~ Hom Fct(],C)(ﬁ’ i) .
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(iii) If the functor ¢, admits a right adjoint, we denote it by ¢*. In such
a case we have ¢t € Fet(Fet(J,C), Fet(1,C)), and for a € Fet(1,C),
B € Fct(J,C) there is an isomorphism

(2.3.2) Hom poq(7.¢) (@ ¢*B) = Hom gy o) (¢:ct, B) -

These functors of big categories are visualized by the diagram

Wi
Fet(I1,C) =—w»——=TFct(J,C).
of
We have the adjunction morphisms
(2.3.3) id— @00,
(2.3.4) peopt = id .

For B € Fct(J, C), the functors ¢f B and ¢! are visualized by the diagram:

J*(p?]

|
i s 0Bt
C.

The functors ¢ and ¢! may be deduced one from the other by using
the equivalence Fect(I,C)°P =~ Fect(1°P,C°P). Namely, we have the quasi-
commutative diagram (assuming that ¢ exists):

Fet(J, C)*P —————= Fet(1,C)*P

o5 A

Fet(J°7, CP) — = Fet(I°7, C°7).
(pop ¥

Definition 2.3.1 may be generalized as follows.
Definition 2.3.2. Let 8 € Fct(J,C).
(a) If the functor

Fet(1,C) 3 a > Hom ey o) (B, 9st) € Set

is representable, we denote by ¢'B € Fet(1,C) its representative, and we
say that ¢t B exists.
(b) Similarly, if the functor

Fet(1,C) 3 a > Hom pe (o) (@set, B) € Set

is representable, we denote by ¢*B € Fct(1,C) its representative, and we
say that ¢t B exists.
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Here Set should be understood as V-Set for a sufficiently large universe
V.

If B (resp. ¢*B) exists, the isomorphism (2.3.1) (resp. (2.3.2)) holds
for any & € Mor(1,C). It is obvious that if ¢TB (resp. ¢*B) exists for all
B € Fct(J,C), then the functor ¢ (resp. ¢*) exists.

Theorem 2.3.3. Let ¢: J — I be a functor and B € Fet(J,C).

(i) Assume that lim B(j) exists in C for any i € I. Then ¢'B exists
(p(j)—>i)el;
and we have

(2.3.6) o'(i)= lim  B(j) foriel.

(p()—>i)edi
In particular, if C admits small inductive limits and J is small, then ¢
exists. If moreover ¢ is fully faithful, then ¢f is fully faithful and there

is an isomorphism idpcy(s,c) = <p*q)T.
(ii) Assume that lim B(j) eists for any i € 1. Then ¢*p € Fet(I,C)

(i—>(j))el!
exists and we have
(2.3.7) ¢'Bli)~ lm  B(j) foriel.

(i=>e(i))el!

In particular, if C admits small projective limits and J is small, then ¢t
exists. If moreover ¢ is fully faithful, then @* is fully faithful and there

is an isomorphism @.p* —> idpet(s.0)-
Proof. (i) (a) Let us define (i) by (2.3.6). For a morphism u: i — i’, the
morphism ¢fB(u): ¢TB(i) — ¢TB(i’") is given as follows. Let j € J together
with a morphism ¢(j) — i. It defines ¢(j) — i — i’, hence a morphism

BU)— lm B = !B

(p(J)—>i")edy

Passing to the inductive limit with respect to (¢(j) — i) € Ji, we get the

morphism ¢fB(u): ¢'B(i) — ¢TB(i’). Thus ¢'B is a functor.

(i) (b) We shall show that (2.3.1) holds for the functor ¢'8 defined by (2.3.6).

It would be possible to use Lemma 2.1.15 but we prefer to give a direct proof.
First, we construct a map

@: Hom Fct(J.C)(lB’ @«a) — Hom Fct(l,C)(wTﬁ’ a) .

An element u € Hom g, o) (B, ¢) gives a morphism B(j) — a(e(j)) —
a(i) for any i € I and ¢(j) — i € J;. Hence we obtain a morphism

PlB)= lm B(j) - ali).
e(j)—>i
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Clearly, the family of morphisms ¢f(i) — «(i) so constructed is functorial
in i €I, hence defines ®(u) € Hom () ¢) (pTB, @).
Next, we construct a map

¥: Hom Fct(1,C) ((pT:B’ Ol) — Hom Fct(J,C)(:Ba (P*Ol) .

An element v € Hom Fct(,,C)((pTﬂ, «) defines a morphism for j € J:

BU)— lim B =e'Ble()) > ale() -

e(iN—>e()

Clearly, the family of morphisms 8(j) — @.a(j) so constructed is functorial
in j € J, hence defines ¥ (v) € Hom (s ¢y (B, ps2t).

It is left to the reader to check that the maps @ and ¥ are inverse to each
other.
(1) (c) Assume that ¢ is fully faithful, C admits small inductive limits and J
is small. Let g € Fct(J, A) and j € J. Since J; — Jy(;) is an equivalence of
categories, we have

(00 B)(J) = (') p()) = T ()
e(j")—>e(j)
~ lim B(j') = B(J) -

and

We deduce that ¢! is fully faithful by Proposition 1.5.6.
(ii) is equivalent to (i) by (2.3.5). q.e.d.

Let w: J — C and B: J°® — C be functors. The morphisms (2.1.8) or
(2.1.9) give morphisms

(2.3.8) li_n)up*gﬁa — li_II)l(pTO[ ,
i op\i : op op\f
(2.3.9) lim (¢°P)*f — lim (¢°), (¢*P)*B .

Together with (2.3.3) and (2.3.4) we obtain the morphisms

. . 1-
(2.3.10) lima — limg'a
(2.3.11) lim () — lim 8.

Corollary 2.3.4. Let ¢: J — I be a functor of small categories.

(i) Assume that C admits small inductive limits and let «: J — C be a
functor. Then (2.3.10) is an isomorphism.

(ii) Assume that C admits small projective limits and let B: J°P — C be a
functor. Then (2.3.11) is an isomorphism.
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More intuitively, isomorphisms (2.3.10) and (2.3.11) may be written as

lima(j) — lim( lim  «(f))

jeJ iel ¢(j)—i
lim B(j) < lim( Lm A())).
jeJ iel (j)—i

Proof. For X € C, consider the constant functor A%: I — C (see Notation
1.2.15). We have ¢, AL =~ A%. Using the result of Exercise 2.8 we get the
chain of isomorphisms

Homc(li_r)na, X) ~ Hom, (a, A)J() ~ Hom, (a, go*Ag()
~ Hom, (¢p'a, A%) ~ Homc(lir_)ngoTa, X).

q.e.d.

2.4 Inductive Limits in the Category Set

We have already noticed that the category Set admits small projective limits.
Recall that | | denotes the disjoint union of sets.

Proposition 2.4.1. The category Set admits small inductive limits. More
precisely, if I is a small category and a: I — Set is a functor, then

limor =~ (Lla(i))/N,

where ~ 1is the equivalence relation generated by «(i) 3 x ~ y € a(j) if there
exists s: i — j with a(s)(x) = y.

Proof. Let S € Set. By the definition of the projective limit in Set, we get:
lim Hom (a, §) ~ {{p(i)}ier ; p(i) € Homgg( (a(i), S), p(i) = p(j)oa(s)
for any s: i — j}
~ {p € Homg,(|_|e(i), $); p(x) = p(y) if x ~ y} .
The result follows. “ q.e.d.
Notation 2.4.2. In the category Set, the notation |_] is preferred to ] .
Let C be a category. Applying Proposition 2.1.6 we get:

Corollary 2.4.3. The big category C" admits small inductive and small pro-
jective limits. If I is a small category and a: I — C” is a functor, we have
the isomorphism for X € C
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(lim (i) (X) = lim(a(i)(X)) -

i i
Similarly, if B: I°P — C" is a functor, we have the isomorphism

(lm A1) (X) = (B () (X))

l 1

There is a similar result for CV.
Recall that the terminal (resp. initial) object ptea (resp. @en) of C* is given
by ptea(X) = {pt} (resp. Ber(X) = 0).

Corollary 2.4.4. (i) The coproduct in Set is the disjoint union.

(ii) The cokernel of f,g: X = Y in Set is the quotient set Y/ ~, where ~
is the equivalence relation generated by y ~ y' if there exists x € X such
that f(x) =y and g(x) = y".

(iii) Let I be a small category, let S € Set, and consider the constant func-
tor Ag: I — Set with values S. Then h_l’I)lAS ~ gHmo(l) (see Defini-
tion 1.2.17). In particular, if S = {pt}, then li_r)nAS >~ mo(1).

(iv) Let I be a small category and consider a functor a: I — Set. Set I (a):=
I'PY that is,

Ob(I(e)) ={(i,x);i € I,x € a(i)},
Homl(a)((i7x)7 (.]7 y)) = {S € HOIHI(i, j);(}[(S)()C) = y} .

Then lim o ~ 7o(I(a)).

Proof. (i) and (ii) are particular cases of Proposition 2.4.1.
(iii) Consider mo(I) as a discrete category. Then the functor Ag decomposes
as

IS (1) 25 Set,

where Ag is the constant functor with values S. Since 1, is connected for
a € mo(I), Lemma 2.1.12 implies that 8T Ag ~ Ag. Applying Corollary 2.3.4,
we get

lim Ag ~ lim Ag ~ §“m() |
— —
(iv) By its definition,

mo(I(a)) = |_| {i,x);iel,x ea(i)}/ ~

(i,x)el ()

where ~ is the equivalence relation generated by (i, x) ~ (j, y) if there ex-
ists s: i — j with a(s)(x) = y. This set is isomorphic to the set given in
Proposition 2.4.1. q.e.d.



56 2 Limits

Corollary 2.4.5. Let I be a small category and let Aypyy: I — Set denote the
constant functor with values {pt}. Then I is connected if and only th_r)n Appty

{pt}.
Proof. Apply Corollary 2.4.4 (iii). q.e.d.

Corollary 2.4.6. Let F: C — C' and G: C — C” be two functors, let A € C’
and let B € C”. We have the isomorphism

(2.4.1) lim Hom (A, F(X)) ~ lim Hom.(G(X), B) .
(G(X)—> B)eCs (A= F(X))eCA

Proof. Consider the two functors ¢: Cg — Set and ¥ : (C*)°P — Set given
by ¢(G(X) - B) = Hom, (A, F(X)) and (A — F(X)) = Hom,,(G(X), B).
Define the category J as follows.

Ob(J) ={(X,s,1); X e€C,s: A— F(X), 1: G(X) > B},
Hom , ((X,s,1), (X', s", 1))

= {f: X — X'; the diagrams below commute}

G(X)—~—=B A——>F(X)

Using the notations and the result of Corollary 2.4.4 (iv), we have J =~ (Cg)(¢),
JOP =~ ((C*)°P)(¥r), and li_r)ntp and h_r)n Y are respectively isomorphic to 7o (J)
and 7o (JOP) >~ 7o (J). q.e.d.

The next result will be used in the sequel.

Lemma 2.4.7. Let I be a small category and let iy € I. Let a: I — Set be
the functor i = Hom,(io,i). Then limo =~ {pt}.

Proof. 1t is enough to show that the composition

{pt} = Hom, (ip, ip) — lir_)not ,

pt — idio

is a surjective map. For i € I and u € «(i) = Hom,(io,i), we have u =
a(u) oid;,. Consider the maps:

Hom, (io, io) 2, Hom, (ig, i) — lima .

The image of u in li_r)na is the image of id;,. q.e.d.
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2.5 Cofinal Functors

Definition 2.5.1. (i) A functor ¢: J — I is cofinal if the category J' is
connected for any i € I.
(ii) A functor ¢: J — I is co-cofinal if ¢°P: J°P — I°P is cofinal, that is, if
the category J; is connected for any i € I.

We shall also say that J is cofinal to I by ¢, or that J is cofinal to I.

Proposition 2.5.2. Let ¢: J — I be a functor of small categories. The con-
ditions below are equivalent.

(i) ¢ is cofinal,
(ii) for any functor B: I°? — Set, the natural map 1(131,3 — I(Ln(ﬂ o @°P) is
bijective,
(iii) for any category C and any functor B: I°? — C, the natural morphism
1<ir_n/3 — 1(£1(,3 o ¢°P) is an isomorphism in C",

(iv) for any functor a: I — Set, the natural map lir_)n(a o) —> lig)wz is
bijective,

(v) for any category C and any functor a: I — C, the natural morphism
li_r)n(a o) —> lima is an isomorphism in cv,

(vi) for anyi €1, 111_1)1Hom1(i, v(j)) ~ {pt}.
jer

Proof. (i) = (v). Let us show that the natural morphism
A lim (¢og) —> lim

is an isomorphism. For ig € I, let j°: Ji — J be the forgetful functor. For
j € J, the morphism iy — ¢(j) induces a morphism a(ig) — a(p(j)).
Hence, identifying o (ig) with the constant functor Ay;y): J — C, we obtain
a chain of morphisms

lim a(io) — lim a(p(j)) = limaogoj® — limaog.
jeJio jeJio

Since J'° is connected, lim a(ig) >~ a(ip) by Lemma 2.1.12. Hence, we obtain a
jeJio

morphism a(ig) — l’l)na o . Taking the inductive limit with respect to ig € I,

we get a morphism g : li_n)wz — li_rr)wm(p. Hence, for any i € I, the composition

ali) > lim o LN lima o ¢ is given by ai) 2, alp(j)) — lima o ¢ by taking
Jj € J and a morphism u: i — @(j). It is easily checked that A and u are
inverse to each other.

(ii) = (iii). Let X € C. By the hypothesis, there is an isomorphism
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~

l(iﬂlHomC(X, B)— l<i£1HomC(X, Boy).

To conclude, apply Corollary 1.4.7.

(iii) =

(iv) = (vi) follows from Lemma 2.4.7.
=

(vi) (i). Let i € I. Let B: J — Set be the constant functor with values
{pt}. Then Jipyy = J (here, Jipy) is associated to B), and we have

(i), (iii) < (v) and (v) = (iv) are obvious.

(pt) = lim Hom, (i ()

jeJ
~ lim Hom g, (B()). {pt}) = lim B(j) = mo(J") .
jeJi jeJi

Here the first isomorphism follows from the hypothesis, the second from Corol-
lary 2.4.6 and the last from Corollary 2.4.4 (iii). q.e.d.

Corollary 2.5.3. Let ¢: J — I be a cofinal functor of small categories. Then
I is connected if and only if J is connected.

Proof. Denote by A{pt} the constant functor I — Set with values {pt}, and
similarly with J instead of 1. Then A{,, ~ A[ 0. Since lim Al = lim Al
the result follows from Corollary 2.4.5. q.e.d.

Proposition 2.5.4. Let : K — J and ¢: J — I be two functors.

(1) If ¢ and ¥ are cofinal, then so is ¢ o .
(ii) If p o and ¥ are cofinal, then so is @.
(iii) If ¢ is fully faithful and ¢ o ¢ is cofinal, then ¢ and ¥ are cofinal.

Proof. By taking a larger universe, we may assume that I, J, K are small.
Consider a functor «: I — Set. We get functors

KL 75712 set
and maps

. ay(@op) . ag(@) .
h_rr)laogpow—>h_r>n(oeo<p)—>h_n)1a.

(i) Clearly, if a,() and ay (o o @) are bijective for all o, then dyoy (o) =
ay(a) o ay (o o @) is bijective for all a.

(ii) Assume that agoy (o) and ay (o o @) are bijective for all a. Then a,(«) is
bijective for all «.

(iii) For j € J, K/ =~ K*(U) and this category is connected. Hence, ¥ is cofinal.
Then ¢ is cofinal by (ii). q.e.d.
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Definition 2.5.5. (i) A category I is cofinally small if there exist a small
category J and a cofinal functor ¢: J — I.
(ii) A category I is co-cofinally small if I°P is cofinally small.

Corollary 2.5.6. Assume that I is cofinally small. Then there exists a small
full subcategory J of I cofinal to I.

Proof. Let 6: K — I be a cofinal functor with K small and let J denote the
full subcategory of I whose objects are the images of Ob(K) by 6. Then J is
small. Denote by ¥ : K — J the functor induced by 6. Then Proposition 2.5.4
(iii) implies that the embedding functor J — I is cofinal. q.e.d.

Note that if C is a category which admits small inductive limits and I is
cofinally small, then C admits inductive limits indexed by I, and similarly for
projective limits.

2.6 Ind-lim and Pro-lim

Let C be a category. Recall that the Yoneda lemma implies that the functor
he: C — C” is fully faithful, which allows us to identify C with a full subcat-
egory of C*. Hence, when there is no risk of confusion, we shall not write the
functor he.

Recall that in Notation 1.4.5 we have set A(X) = Hom,.(X, A) for A € C"
and X € C, and more generally, A(B) = Hom,.(B, A) for A,B € C". In
particular, we identify an element s € A(X) with a morphism s: X — A.

We have already noticed in Corollary 2.4.3 that the big category C* admits
small projective and inductive limits. Whenever C admits small projective
limits, the functor he commutes with such limits, but even when C admits
small inductive limits, the functor he does not commute with h_rr)l

In order to avoid any confusion, we introduce the following notations.

Notations 2.6.1. () We denote by “lim” and “[T” the inductive limit and the

coproduct in C*, respectively.

(ii) We sometimes write X “|_|” Y instead of X “][” Y.

(iii) If I is small and «: I — C” is a functor, we sometimes write “lim” ai)
iel

or “li_'r)n” (i) instead of “lim” . Recall that (“li_g)l” a(i)(X) ~ h_II)l (e (i) (X))

for any X € C.
(iv) If I is small and «: I — C is a functor, we set for short lim” o =

“lif_gl” (hC o C().

(v) We call “lim” « the ind-lim of «.
g
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Notations 2.6.2. (i) Similarly, we denote by “l(i_rla” and “[]” the projective
limit and the product in CV.
(ii) If 7 is small and B: I°P — CV is a functor, we sometimes write “lim” B(i),

“ls 2 . 13N 7 o : “ls » iel°op
1{1_1_?;1 B(i) or 1(1_I_Il B(i) instead of lim” B.
IAS] 1

(iii) If 7 is small and B: I°®? — C is a functor, we set for short “l(iI_n” B =
441(12177 (kC ° ’3)
(iv) We call “l(i_rll” B the pro-lim of B.

With these notations, if I is small and a: I — C" and B: I°? — CV are
functors, we have for X € C

(2.6.1) Hom,. (X, “lim” o) = lir_)nHoch(X, o),
(2.6.2) Hom . (“lim” 6, X) = lim Hom . (8. X) .

One shall be aware that isomorphism (2.6.1) (resp. (2.6.2)) is no more true
for X € C" (resp. X € CY) in general, even if a (resp. B) takes its values in C.
For A € C" and B € CY, we have

HOI’HCA(“h_I’>H” o, A) ~ l(iEIHOI’nCA (0{, A) S
Hom . (B, “lim” B) ~ lim Hom ¢, (B, B) .

Notice that the inductive limit of a: I — C is an object of C¥ while the
ind-lim of « is an object of C”, and the projective limit of 8: I°? — C is an
object of C" while the pro-lim of 8 is an object of C”.

Let B be a contravariant functor from 7 to C, that is, a functor 1°? — C.
Then we get a functor 8°P: I — C°P, and we have:

(263) 441(12177 ﬂ ~ é;‘(“li_r)n” (IBOP)) ,

where £ is the contravariant functor (C°P)" — CV.

From now on, we shall concentrate our study on “li_r)n” , the results on
“lim” being deduced using (2.6.3).

Assume that C admits small inductive limits. Then, for a functor a: I — C,
the natural map lim Hom (X, «) - Hom (X, lim«) defines the morphism in

e —
Ch:
“lim” o — hc(li_r)na) .

Ifa: I - C and B: J — C are functors defined on small categories, there

are isomorphisms:

Hom g, (“lig” e(7), “lim” B(j)) = lim Hom . (a(i), “lig” B())
(2.6.4) ! J i N
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Proposition 2.6.3. Let C be a category.
(i) Let A e CM. Then “lim” V ezists in C" and “lim” V ~ A.
= =
(V— A)eCy (V— A)eCy
(ii) Let I be a small category and o: I — C a functor. Set A = “111_1)1” «. Then
the functor a: I — C, associated with a is cofinal.

Using the functor j,: C4 — C given in Definition 1.2.16, (i) is translated as:
A~ “li_r)n” ja- Note that C4 is not essentially small in general.

Proof. (i) follows from the fact that, for any B € C*, the map

Home,(A,B) -  lim  Homg.(V, B)
(V—>A)eCy
~ lim B(V)
<«
(V—>A)eCqa

is bijective by the definition of a morphism of functors.

(ii) The functor he: C — C» induces a functor (he)a: C4 — (C")a. By
Lemma 1.4.12; there exists an equivalence A: (C")4 =~ (C4)" such that
he, >~ A o (h¢)a, visualized by the diagram

a he)a
7 C, (he) (CA)A*)C/\

~lA
hcA \L

(Ca)".

By Lemma 2.1.13, the functor (C")4 — C” commutes with small inductive
limits. Since “lim” (he o) >~ A, it follows that )Fl(“lig)l” (he, o@)) is isomor-

phic to (A <4 A), the terminal object of (C")a. Hence, “lim” (he, ott) =~

Pt yns 1€y

h_n)lHomCA((X, s), &(i)) ~ {pt}

iel
for any (X, s) € Ca. This implies that @: I — Cj is cofinal by Proposition 2.5.2
(1)< (vi). q.e.d.

Let us compare the inductive limits “lim” in C* and lim in C.
[ p—

Proposition 2.6.4. Let I be a small category and a: I — C a functor. As-
sume that “h_r)n” (he oa) € C* is isomorphic to an object X € C. Then for any
functor F: C — C', h_n)l(F ow) ~ F(X).

Proof. Tt is enough to prove the isomorphism

1<ir_nH0mc/(F ow,Y) ~Hom (F(X),Y),
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functorially in ¥ € C'. Let us define Hom (F,Y) € C" by
(2.6.5) Hom (F,Y)(Z) =Hom (F(Z),Y) for ZeC.
Then
l(i_rEHomc,(F ow,Y) ~ lim Hom ¢, (o, Hom (F, Y))
~ HOch(“liI_I)l” o, Hom (F,Y))
~ Hom . (X, Hom (F,Y))
~ Hom (F(X),Y) .
q.e.d.

This shows that “1'11)1” o >~ X implies li_r)noz ~ X, but the first assertion is much
stronger (see Exercise 2.25 and also Proposition 6.2.1).

Remark 2.6.5. Let U C V be two universes and C a U-category. With the
notations of Remark 1.4.13, we have a fully faithful functor 1y z: C; — Cy).
This functor commutes with inductive and projective limits indexed by U-
small categories.

2.7 Yoneda Extension of Functors

In this section, we apply Theorem 2.3.3 to the particular case where ¢: J — [
is the Yoneda functor h¢e: C — C”. Hence, we assume

(2.7.1) the category C is small .

Proposition 2.7.1. Let F: C — A be a functor, assume (2.7.1) and assume
that A admits small inductive limits. Then the functor hé F:C" —> A exists,

commutes with small inductive limits and satisfies hz Fohe~F.
Conversely if a functor F: C" — A satisfies the following two conditions:

(a) Fohe ~ F,
(b) F' commutes with small inductive limits with values in C (i.e., for any
functor a: I — C with I small, F(“lim” o) =~ lim (F o )),
— —
then F =~ hg F.
Proof. We set F= hZ F. By Theorem 2.3.3, this functor exists and we have

(2.7.2) F(A)= lim F(U) forAeC’.
(U—>A)eCqy

Since he is fully faithful, the same theorem implies Fohe~F.
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For M € A, recall (see (2.6.5)) that Hom (F, M) € C" is given by the
formula

Hom . (U, Hom (F, M)) = Hom 4(F(U), M) for U € C .
For A € C", we get

Hom . (A, Hom (F, M)) ~ Hoch(“lir_I)l” U, Hom (F, M))
U—54
~ lim Hom . (U, Hom (F, M)) ~ lim Hom 4(F(U), M)
U—A U= A
~ Hom 4 ( lim F(U), M) ~Hom 4(F(A),M) .
U—A

Let I be a small category and «: I — C" a functor. Set A = “h_rr)l” a. We get

Hom ,(F(A), M) ~ Hom, (A, Hom (F, M)) ~ Lir_nHoch(ot, Hom (F, M))
~ Lir_nHomA(f(a), M) ~ HomA(li_r)nf(a), M).

Therefore the natural morphism 111}1? () — F(A) is an isomorphism by
Corollary 1.4.7.

The uniqueness is obvious since (a) and (b) imply (2.7.2) by Proposition
2.6.3. qe.d.

Notation 2.7.2. If F: C — C’ is a functor of small categories, we shall denote
by R
F:C"— ()

the functor h(T: (he oF) associated with heroF: C — (C')*. Hence, for A € C*
and V € (',

(F(a) (V)= lm Home(V,F(U)).
(U—A)eCy

By Proposition 2.7.1, F commutes with small inductive limits.

Notation 2.7.3. We denote by Fct! (C*, A) the full big subcategory of the big
category Fct(C", A) consisting of functors which commute with small induc-
tive limits.

Corollary 2.7.4. Assume (2.7.1) and assume that A admits small inductive
limits. Then hc,: Fct(Ch, A) — Fct(C, A) induces an equivalence of cate-
gories

(2.7.3) he,: Fet(C, A) = Fet(C, A) ,

and a quasi-inverse is given by hz
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Proof. By Proposition 2.7.1, the functor hz takes its values in Fct’!(C*, A)
and any G € Fct(C”, A) is isomorphic to hé (he4G). Hence, hé is essentially
surjective. Since h(T: is fully faithful by Theorem 2.3.3, the result follows. q.e.d.

Let F: C — C’ be a functor of small categories. We have defined F:C" >
C'" in Notation 2.7.2 and we have defined (F°P)T: C* — C'" in Definition 2.3.1
with A = Set.

Proposition 2.7.5. Let F: C — C’ be a functor of small categories. There is
an isomorphism F ~ (F°P)t in Fct(C", (C')).

Proof. Let A € (C")" and V € C'. Applying Corollary 2.4.6, we obtain

(F(A)(V) ~ lim  Hom (V, F(U))
(U—>A)eCy
~ lim Hom ., (U, A) = ((FP)T(A))(V) .
(V—=>F(U))ec?

Exercises

Exercise 2.1. Let F: C — C’ be an equivalence of categories and let G be a
quasi-inverse. Assume that C admits inductive limits indexed by a category I.
Prove that C’ has the same property and that if «: I — C is a functor, then
lim(F o) >~ F(lima).

= —

Exercise 2.2. Let f: X—»Y be an epimorphism in a category C and let
s1,82: Y = Z be a pair of parallel arrows. Prove that the natural morphism
Coker(sy o f,s20 f) — Coker(s1, s2) is an isomorphism in C if these cokernels
exist.

Exercise 2.3. Let f: X — Y be a morphism in Set, and set Z = Y Ly Y.
Prove that

Z=fX)u\f(X)u\f(X)).

Exercise 2.4. Let C be a category which admits fiber products and let
[+ X — Y be amorphism in C. Denote by p;, ps the projections X xy X = X
and by § the diagonal morphism X — X xy X (see Notations 2.2.8).

(i) Prove that § is a monomorphism and p;, ps are epimorphisms.

(ii) Prove the equivalences

f is a monomorphism <= § is an isomorphism

<= § is an epimorphism <= p; = ps .
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(iii) Dually, assume that C admits fiber coproducts and denote by iy, i3 the
coprojections ¥ =% Y Uy Y and by o the codiagonal morphism Y Lixy ¥ — Y.
Prove the equivalences

f is an epimorphism <= ¢ is an isomorphism

<= 0 is a monomorphism <= i; =i .

Exercise 2.5. Let C be a category and consider a pair of parallel arrows
fig: X=3Y.
(1) Assume that C admits finite inductive limits. Prove that

X H Y — Coker(f, g) .

Here X UX — X is the codiagonal morphism and X UX — Y is the morphism
associated to f, g.
(ii) Dually, assume that C admits finite projective limits. Prove that

Ker(f,g)— X x Y.
Yxy

Here Y — Y x Y is the diagonal morphism and X — Y x Y is the morphism
associated to f, g.

Exercise 2.6. Let C be a category, and consider the following conditions.

(i) C admits small projective limits,

(ii) C admits finite projective limits,

(iii) C admits small products,

iv) C admits finite products,

(iv) p

(v) C has a terminal object,

(vi) for every X,Y in C, X x Y exists in C,

(vii) for every pair of parallel arrows f, g: X = Y in C, Ker(f, g) exists in C,
viii) for every pair of morphisms X — Zand ¥ — Z inC, X xz Y exists in C.
iii) f ir of hi X ZandY ZinC, X Y exists in C

Prove the following implications:

(i) & (iii) + (vii) < (i) + (viii),

(il) & (iv) + (vii) & (iv) + (viii) & (v) + (viii),
(iv) & (v) + (vi).

Exercise 2.7. Let Z € Set.

(i) Prove that the category Set; admits products (denoted here by X xz Y)
and that the functor « xz Y: Set; — Set; is left adjoint to the functor
Hom ,(Y, «) given by Hom ,(Y, X) = | |.., Homg (Y;, X;), where X, is the
fiber of X — Z over z € Z.

(ii) Deduce that small inductive limits in Set are stable by base change (see
Definition 2.2.6).

zeZ
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Exercise 2.8. Let I and C be two categories and denote by A the functor
from C to C! which associates to X € C the constant functor Ay (see Notations
1.2.15). Assume that C admits inductive limits indexed by I.

(i) Prove that lim: C! — C is a functor.

(ii) Prove that (h_r)n, A) is a pair of adjoint functors, i.e.,
Homc(li_n)la, Y) ~Homg (o, Ay) fora: I - Cand Y €C.

(iii) Replacing I with the opposite category, deduce the formula (assuming
projective limits exist):

Hom (X, 1(&11;3) =~ Hom o0 (Ax, B) .

Exercise 2.9. Let C be a category, X an object of C, and let g: X — X be a
projector i.e., a morphism satisfying ¢? = g. Prove that the conditions below
are equivalent.

(i) ¢ factorizes as ¢ = go f with an epimorphism f: X—Y and a monomor-
phism g: Y—X.
(ii) There exist ¥ € C and morphisms f: X — Y, g: ¥ — X such that
gof=gqand fog=idy.
(iii) Let Z be endowed with its natural order, and let : Z — C be the functor
a(n) = X,a(n - m) = g for m > n. Then lim o exists in C.

(iv) Let o« be as in (iii). Then lima exists in C. (Here, we identify o with a
functor (Z°P)°P — C.)

(v) Let Pr be the category defined in Notations 1.2.8. Let 8: Pr — C be
the functor 8(c) = X, B(p) = q. Then lim B exists in C.

(vi) Let B be as in (v). Then lim § exists in C.

(A category in which any projector g: X — X satisfies the equivalent con-
ditions above is said to be idempotent complete, or else, is called a Karoubi
category.)

Exercise 2.10. Let ¢: J — I be a functor and assume that ¢ admits a right
adjoint . Prove that ¢ ~ ¥, and y# ~ ¢,.

Exercise 2.11. Let C be a category. Prove that Cy admits finite projective
limits for any X € C if and only if C admits fiber products.

Exercise 2.12. Let C be a category, let X € C and denote as usual by
jx: Cx — C the canonical functor.

(i) Prove that if C admits inductive limits indexed by a small category I, then
so does Cx and jy commutes with such limits. (See Lemma 2.1.13.)

(ii) Prove that if C admits projective limits indexed by a small connected
category I, then so does Cx and jy commutes with such limits.
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(iii) Assume now that C admits finite (resp. small) projective limits. Prove that
Cx admits finite (resp. small) projective limits, and prove that if jy commutes
with such limits then X is a terminal object.

Exercise 2.13. Let a: I — C be a functor, let ¢1, ¢2: J =2 I be two functors
and 6: ¢; — @2 a morphism of functors. Assume that li_II)l(L h_r)n (a0 ¢71) and

lim (o 0 @2) exist. Prove that the diagram below commutes.

h_f>n(0‘°<ﬂ1)

| N

h_n>1(0‘°‘ﬂ2) *>1'£I)10{.

Exercise 2.14. Let I be a category and let C be a category which admits
inductive limits indexed by I. Let a: I — C and ¢: I — I be two functors
and let 6: id; — ¢ be a morphism of functors. Assume that 6,y = ¢(6;) as
elements of Hom , (¢(i), ¢(¢(i))) for every i € I.

Let us denote by 7: lim (@op) — lim« the natural morphism (see (2.1.8))
and by &: li_r)noz — 1'31)1(05 o ¢) the morphism induced by ¢ 0 0: ¢ — « o ¢.
Prove that n and & are isomorphisms inverse to each other.

Exercise 2.15. Let u: J — I and A: I — J be two functors, and assume
that w is right adjoint to A. Denote by 0: id; — poA the canonical morphism
of functors.

Let C be a category which admits inductive limits indexed by I and let
a: I — C be a functor. Consider the sequence of morphisms in C:

. u . v . w .
h_r)na—)h_r)n(ozouok)eh_r)n(aou)—)h_r)na,

where the morphism u is induced by 6 and v, w are the canonical ones (see
(2.1.8)). Prove that:

(i) w is cofinal,

(ii) the composition wovou is the identity, and vou and w are isomorphisms,
(iii) all morphisms u, v, w are isomorphisms if A(6;): A(i) = Lo pwoA(i) is an
isomorphism for all i € I.

(Hint: use the result of Exercise 2.14.)

Exercise 2.16. Let F: C — C’ be a functor. Assume that C has a terminal
objects pte. Prove that F(pte) is a terminal object of C' if and only if F is
cofinal.

Exercise 2.17. Let I and J be small categories and let «: J — [ be a
functor. Prove that « is cofinal if and only if the object “lil_)n” a of I" is a
terminal object.
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Exercise 2.18. Let C be a category, Z € C, Az: Pt — C the unique functor
with value Z.

(i) Prove that for X € C, the category Pt¥ is equivalent to the discrete
category associated with the set Hom (X, Z).

(ii) Prove that Az is cofinal if and only if Z is a terminal object.

Exercise 2.19. Let C be a category and let X, Y € C. Prove that X “| |’ Y €
C" is never isomorphic to an object of C. Here, “| |” denotes the coproduct
in C".

Exercise 2.20. Let C be a category and denote by D the set Mor(C) U
(Ob(C) x {0, 1}). The set D is endowed with the order < given by f < (X, 0),
f =<(Y,1) for any f: X — Y (together with the trivial relation x < x for any
x € D). Denote by D the category associated with the ordered set (D, <). Let
¢: D — C be a functor given as follows: go((X, n)) =Xforn=0,1,¢(f)=X
for f: X = Y, o(f) = ¢((X,0)) is idy and ¢(f) — ¢((¥,1)) is f. Prove
that ¢ is well-defined and it is a cofinal functor.

Exercise 2.21. Let C be a category admitting small inductive limits and let
I be a small category. Let ¢: I — C be a functor.

(i) Define ¥: Ob(I) — Ob(C) by setting ¥(i) = [[;— ;e @(i'). Extend ¢
to a functor from I to C.

(ii) Prove that lim ¢ =~ [l;ic; (). (Hint: letting I; be the discrete category

associated with Ob(7), apply Corollary 2.3.4 to the natural functor 6: I, —
1)

Exercise 2.22. Consider a Cartesian square

/

X/ > Y/

X——Y.
Prove that if f is a monomorphism, then f’ is a monomorphism.

Exercise 2.23. Let C be a category and let ¢: F — G be a morphism in C".
Prove that
(i) ¢ is a monomorphism if and only if ¢(X): F(X) — G(X) is injective for
any X € C,
(ii) ¢ is an epimorphism if and only if ¢(X): F(X) - G(X) is surjective for
any X € C.
(iii) Deduce that a morphism u: A — U in C" with U € C is an epimorphism
in C* if and only if u admits a section.
(iv) Assume that C is small and denote as usual by pte. a terminal object of
C™. Prove that “|_|” U — ptea is an epimorphism in C*.

UeC
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(Hint: use the isomorphisms
(F %6 F)(X) = F(X) X600 F(X). (G Ur G)(X) = G(X) Ur(x) G(X)
and Exercise 2.4.)

Exercise 2.24. Let C be a small category, and u: A— B an epimorphism in
C". Prove that A x3 A = A — B is exact in C”, that is, the sequence
S(B) — S(A) = S(A xp A) is exact in Set for any object S of C*.

f
Exercise 2.25. et X—/—=<Y L Z be a diagram in a category C such
8

that the two compositions coincide. Prove that the conditions (i) and (ii)
below are equivalent:

(i) the sequence X = Y — Z is exact in C",

(ii) there exists s: Z — Y which satisfies the two following conditions:
(a) hos = idz,
(b) there exist an integer n > 0 and uo, ..., u, in Hom (Y, X) such that
foup=idy, four =goup—1 (L<k<n),gou, =soh.

(Hint: use the exact sequence Hom,(Z, X) = Hom,(Z,Y) — Hom,(Z, Z)
in Set.)

Exercise 2.26. Let C be a category which admits finite inductive limits and
finite projective limits. Assume that finite inductive limits are stable by base
change. Let ¥J¢ be an initial object in C.

(i) Prove that e x X =~ @ for any X € C. (Hint: consider the empty inductive
limit.)

(ii) Prove that any morphism X — @¢ is an isomorphism. (Hint: consider

B <~ X 2 ¥ and apply (i) to show that idy factorizes through f¢.)

Exercise 2.27. Consider two commutative diagrams in a category C:

x—1sy x—1-vy
I
7——>U, Z—>V.

Assume that the left square is Cartesian and the right square is co-Cartesian.
Prove that the right square is Cartesian.

Exercise 2.28. Let C be a category admitting fiber products and let f: X —
Z,g:Y— Zand u: Z — Z' be morphisms in C. Denote by v: X xz ¥ —
X x 7 Y the induced morphism. Prove that if u is a monomorphism, then v is
an isomorphism.
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Filtrant Limits

The notion of filtrant categories, which generalizes that of directed ordered
set, plays an essential role in Category Theory and will be used all along this
book. We prove here that a small category [ is filtrant if and only if inductive
limits defined on I with values in Set commute with finite projective limits.

We introduce also the IPC-property on a category C, a property which
asserts, in some sense, that filtrant inductive limits commute with small prod-
ucts. This property is satisfied by Set, as well as by C” for any small category
C.

We introduce the notion of (right or left) exact (resp. small) functor. For
example, a functor F: C — C’ will be called right exact if, for any ¥ € C’, the
category Cy (whose objects are the pairs (X, u) of X € C and u: F(X) —» Y)
is filtrant. When C admits finite inductive limits, we recover the classical
definition: F is right exact if and only if it commutes with finite inductive
limits.

In this chapter, we study the links between various properties of categories

and functors, such as being cofinal, being filtrant, being exact, etc.

We also introduce the category M|/ 4k L J] associated with two

functors ¢: I — K and ¥ : J — K and study its properties with some details.
The notion of a filtrant category will be generalized in Chap. 9 in which
we will study m-filtrant categories, 7 being an infinite cardinal.

3.1 Filtrant Inductive Limits in the Category Set

If for denotes the forgetful functor from the category Mod(Z) to the category
Set, which associates to a Z-module M the underlying set M, then for com-
mutes with lim but not with lim . Indeed, if My and M; are two modules, their
coproduct in the category of modules is their direct sum, not their disjoint
union. The reason is that the functor lim : Fct(1, Set) — Set does not com-
mute with finite projective limits for small categories I in general. Indeed, if
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it commuted, then for any inductive system {M;};c; in Mod(Z), the addition
maps would give (li_n)lfor(M,-)) X (l’lrgfor(M,-)) o~ 1’11)1(f0r(Mi) x for(M;)) —
1iI_)nf07"(M,'), and lir_)nfor(M,-) would have a structure of a Z-module.

We shall introduce a property on I such that inductive limits indexed by
I commute with finite projective limits.

Definition 3.1.1. A category I is filtrant if it satisfies the conditions (i)—(iii)
below.

(i) I is non empty,
(i) for any i and j in I, there exist k € I and morphisms i — k, j — k,
(iii) for any parallel morphisms f, g: i = j, there exists a morphismh: j — k
such thatho f =hog.

A category I is cofiltrant if I°P is filtrant.

The conditions (ii)—(iii) above are visualized by the diagrams:

! | —
i ;
-k R
) 1Y
Jj k

Note that an ordered set (I, <) is directed if the associated category I is
filtrant.

Lemma 3.1.2. A category I is filtrant if and only if, for any finite category J
and any functor ¢: J — I, there existsi € I such that l(iI_nHom,(go(j), i)#£0.
jeJ

Proof. (i) Assume that I is filtrant and let J and ¢ be as in the statement.
Since J is finite, there exist iy € I and morphisms s(j): ¢(j) — i for all
Jj € J. Moreover, there exist k(j) € I and a morphism A(j): ip — k(j) such
that the composition

(1) s(J") A(J)
—

o(j") = io —> k(j)

does not depend on t: j — . Now, there exist i; € I and morphisms
&(j): k(j) — i1. Finally, take a morphism i; — iy such that the composi-
tion iy — k(j) — i1 — iz does not depend on j. The family of morphisms
uj: (j) = io = k(j) = i1 — iz defines an element ofl(iI_nHomI((p(j),ig).
jeJ

(ii) Conversely, let us check the conditions (i)—(iii) of Definition 3.1.1. By
taking for J the empty category we obtain (i). By taking for J the category
PtuPt (the category with two objects and no morphisms other than the iden-
tities) we obtain (ii). By taking for J the category e = e (see Notation 1.2.8
(iv)) we obtain (iii). q.e.d.

o(j)
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Proposition 3.1.3. Let a: I — Set be a functor with I small and filtrant.
Define the relation ~ on [ ], a(i) as follows: a(i) > x ~y € a(j) if there exist
s:i—>kandt: j — k such that a(s)(x) = a(t)(y). Then

(i) the relation ~ is an equivalence relation,
(ii) limor ~ [1; i)/ ~.

Proof. (i) Assuming that x; € a(i;) (j =1, 2, 3) satisfy x; ~ x2 and xa ~ x3,
let us show that x; ~ x3. There exist morphisms visualized by the solid
diagram:

. S1 .
11— ]1

% Ml““ .
Az

io k

7
X ws

. 13 .
I3 —>J2

such that a(s1)x; = a(s2)xe, a(t2)xe = «(f3)x3. By Lemma 3.1.2, we can
complete the solid diagram to a commutative diagram with the dotted arrows.

Then a(ug o s1)x1 = a(ug o s2)x2 = a(ug o ta)xe = a(ug o t3)x3. Hence
X1 ™~ X3.
(ii) follows from Proposition 2.4.1. q.e.d.

Corollary 3.1.4. Let o: I — Set be a functor with I small and filtrant.

(i) Let S be a finite subset in lirgoz. Then there exists i € I such that S is
contained in the image of a(i) by the natural map o (i) — lima.

(ii) Let i € I and let x and y be elements of a(i) with the same image in
lima. Then there exists s: i — j such that a(s)(x) =a(s)(y) in a(j).

The proof is left as an exercise.
Notice that the result of Corollary 3.1.4 does not hold in general if [ is
not filtrant.

Corollary 3.1.5. Let R be a ring and denote by for the forgetful functor
Mod(R) — Set. Then the functor for commutes with small filtrant inductive
limits. In other words, if I is small and filtrant and a: I — Mod(R) is a
functor, then

for(h;r)la(l)) = h_rr)l( or(a(i)) .
1 1
The proof is left as an exercise.
Inductive limits with values in Set indexed by small filtrant categories
commute with finite projective limits. More precisely:
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Theorem 3.1.6. Let I be a small category. The two conditions below are
equivalent.
(a) I is filtrant,
(b) for any finite category J and any functor a: I x J°P — Set, the natural
morphism
(3.1.1) El})ll(glu(l, j)— lélf_nli.g}a(l, J)
i J J i
is an isomorphism. In other words, the functor lir_)n Fet(I, Set) — Set
commutes with finite projective limits .

Proof. (a) = (b). Assume that [ is filtrant. It is enough to prove that lim
commutes with kernels and with finite products.

(i) 1iI_)n commutes with kernels. Let o, B: I — Set be two functors and let
f»g: a = B be two morphisms of functors. Define y as the kernel of (f, g),
that is, we have exact sequences

(i) = afi) = B() -
Let Z denote the kernel of h_II)lC((i) = 11)11/3(1) We have to prove that the

1 1
natural map A: lir_)ny(i) — Z is bijective.

1
(i)(1) The map A is surjective. Indeed for x € Z, represent x by some x; € «(i).
Then f;(x;) and g;(x;) in B(i) having the same image in lim B, there exists
s: i — j such that B(s)fi(x;) = B(s)gi(x;). Set x; = a(s)x;. Then f;(x;) =
g;(x;), which means that x; € y(j). Clearly, A(x;) = x.

(i)(2) The map A is injective. Indeed, let x, y € limy with A(x) = A(y). We
may represent x and y by elements x; and y; of y (i) for some i € I. Since x;
and y; have the same image in lim«, there exists i — j such that they have
the same image in «(j). Therefore their images in y(j) will be the same.

(i) h_r)n commutes with finite products. The proof is similar to the preceding
one and left to the reader.

(b) = (a). In order to prove that I is filtrant, we shall apply Lemma 3.1.2.
Consider a finite category J and a functor ¢: J — I. Let us show that there
exists i € I such that LiLnHom,@p(j), i) # #. By the assumption, we have a
bijection jeld

(3.1.2) h_r)nl(ingom,(a(j),i)l)l(ir_nli_r)nHomI(a(j),i).
iel jelJ jed iel

By Lemma 2.4.7, li_r)nHom,(a(j), i) >~ {pt}, which implies that the right-hand

iel

side of (3.1.2) is isomorphic to {pt}. Hence, there exists i € I such that
Lir_nHom,(a(j),i) # 0. q.e.d.

jelJ
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Applying this result together with Corollary 3.1.5, we obtain:

Corollary 3.1.7. Let R be a ring and let I be a small filtrant category. Then
the functor 1}_1)1 Mod(R)! — Mod(R) commutes with finite projective limits.

Proposition 3.1.8. Let ¥: K — I and ¢: J — I be functors. Assume that
¥ is cofinal.

(i) If Jyw) = Iy is cofinal for every k € K, then ¢ is cofinal.
(i) If K is filtrant and Jy ) is filtrant for every k € K, then J is filtrant.

Proof. By replacing the universe U with a bigger one, we may assume that I,
J and K are small categories.
(i) For any functor a: I — Set, there is a chain of isomorphisms

lima o ~limlimaog(j) =lim lim «oe(j)
iel jeJ; keK jedy k)
~lim lim a(i) ~lima oy ~lima .
- = — —

keK ielw(k)

Here, the first and fourth isomorphisms follow from Corollary 2.3.4, the second
and fifth isomorphisms follow from the fact that i is cofinal, and the third
isomorphism follows from the fact that Jy ) — Iy is cofinal.

(ii) For any functor @: J — Set, we have by Corollary 2.3.4

lime(j) = lim lim ()
jelJ iel jeJ;
~lim lim a(j).

keK jedy )

Since lim and lim commute with finite projective limits, the functor lim :
= — —

JEJy 1) keK
Fct(J, Set) — Set commutes with finite projective limits. The result then
follows from Theorem 3.1.6. q.e.d.

The IPC Property

Theorem 3.1.6 does not hold anymore when removing the hypothesis that J
is finite. However, when J is small and discrete there is a useful result which
is satisfied by many categories and that we describe now.

We consider a category A and we make the hypothesis:

(3.1.3) A admits small products and small filtrant inductive limits .

Let {I }ses be a family of small and filtrant categories indexed by a small
set S. Consider the product category
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(3.1.4) K=]]-

ses

It is easily checked that K is filtrant (see Proposition 3.2.1 below).
For s € S, denote by m; the projection functor 7y: K — I;.
Consider a family of functors

(3.1.5) a = {ot;}ses With ag: I, = A .

Define the functor

p: K—> A,

3.1.6
( ) (p = l—ls aS o T[Sv

that is, for k = {n;(k)}; € K
= HO‘X(ESUC))

The object [[, g lim oy (i) is well defined in A, and the family of morphisms
iels
a(ms(k)) — lim a; defines the morphism [Tics os (s (k) = Tlics lim &y, hence

the morphism

(3.1.7) limg — [ [lima;,
ses
or equivalently,

(3.1.8) h_rr)l(l_[as(ns(k))) - H(li_r)nas(is)).

keK ses seS is€l;

The morphism of functors (3.1.8) is visualized by the diagram (see (1.3.3)):

Fet([] sES

n u X

Example 8.1.9. Assume that I, = I for all s € S. Then K = IS and « is a
functor I x S — A. Morphism (3.1.8) may be written as:

(3.1.9) lim [ Ta(k(s),s) > [ [lima(,s) .

keK seS ses i€l

[ Fet(Z, A
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Definition 3.1.10. Let A be a category satisfying (3.1.3). We say that A
satisfies the IPC-property (inductive-limit-product commutation property) if
the morphism (3.1.7) is an isomorphism for any family {I};es of small and
filtrant categories indexed by a small set S and any family of functors ag: I, —
A indexed by s € S.

Proposition 3.1.11. (i) If categories A; (i € I) satisfy the IPC-property,
then so does the product category [];c; A;.
(ii) The category Set satisfies the IPC-property.
(iii) Let A be a category satisfying (3.1.3). Assume that there exist a set I
and a functor A: A — Set! such that

A commutes with small products,
(3.1.10) A commutes with small filtrant inductive limits,
A is conservative (see Definition 1.2.11).

Then A satisfies the IPC-property.

Proof. (i) is obvious.
(ii) Consider a family of functors {o}ses with ay: Iy — Set. We keep the
notations (3.1.4)~(3.1.6) and we set A, = lima. Let

u: h_r)ngo—)HAs

ses
denote the natural map.

(a) u is surjective. Indeed, let x := {x,}ses € [, As. For each s € S, there
exist iy € I, and x;, € o,(is) whose image in Ay is x;. Set k = {is}ses and
Vi := {x; }ses € @(k). Denote by y the image of y; in H_I)n(p. Then u(y) = x.
(b) u is injective. Let y, y" € lim ¢ with u(y) = u(y’). Since K is filtrant, there
exist k = {is}ses € K and yy := {x; }ses € (k), y; = {x,{J}sES € ¢(k) such that
y is the image of y, and y’ is the image of y;. For each s € S, x;, and x; have
the same image in Ay. Since I; is filtrant, there exists iy — i, such that x;,
and x; have the same image in o(i;). Set k' = {i{}scs. Then y; and y; have
the same image in ¢(k'). Hence y = y'.

(iii) Let a5 : I; = A be a functor (s € S). We consider the functor Aoe: Iy —
Set’. Using the hypothesis that A commutes with small products and small
filtrant inductive limits, we get the isomorphism

1t ([ Tt o, () <> A timer))

keK ses ses

because Set! satisfies the IPC-property. The result follows since A is conser-
vative. q.e.d.

Corollary 3.1.12. Let C be a small category. Then C™ satisfies the IPC-
property.

Corollary 3.1.13. Let R be a ring. Then Mod(R) satisfies the IPC-property.
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3.2 Filtrant Categories

We have introduced filtrant categories in Definition 3.1.1. We shall now study
their properties.

Proposition 3.2.1. (i) If a category has a terminal object, then it is filtrant.
(ii) If a category admits finite inductive limits, then it is filtrant.

(iii) A product of filtrant categories is filtrant.

(iv) If a category is filtrant, then it is connected.

The proof is obvious.
Proposition 2.5.2 may be formulated slightly differently when J is filtrant.

Proposition 3.2.2. Assume that J is filtrant and let ¢ : J — I be a functor.
Then the conditions below are equivalent:

(i) ¢ is cofinal,
(ii) J' is filtrant for everyi €1,
(iii) the following two conditions hold:

(a) for eachi € I there exist j € J and a morphism s: i — ¢(j) (i.e., J'
is mon empty),

(b) for anyi € I, any j € J, and any pair of parallel morphisms s, s': i =
©(j) in I, there exists a morphism t: j — k in J such that ¢(t)os =
w(t)os .

Moreover, if these equivalent conditions are satisfied, then I is filtrant.

Proof. (iii) = (ii). Let i € I. Let us check conditions (i)—(iii) of Definition 3.1.1
for Ji. First, J' is non empty by (a). Then, consider morphisms s: i — ¢(j)
and s": i — @(j’). Since J is filtrant, there exist r: j — k and t': j* — k.
Applying the hypothesis (b) above to the morphisms ¢(¢) o s and ¢(#') o s/,
we may assume that ¢(¢) os = ¢(t') o s’. Hence, ¢, ¢ induce morphisms in J'.
Finally, let i — ¢(j;) and i — ¢(j2) be two objects of J* and let &, n: j; = jo
be two parallel arrows in J. There exists a morphism j, — j3 in J such
that the two compositions j; = jo — j3 coincide. Hence, the composition
i — ¢(j2) = ¢(j3) defines an object of J', and the two compositions

(i > (1) = = ¢(2) = (i > ¢(js))

coincide.

(ii) = (i). If J' is filtrant, then it is connected.

(i) = (iii). By Definition 2.5.1, J' is connected and in particular non empty.
Hence, (a) is satisfied.

Let us prove (b). For i € I, let @: J — Set be the functor j +—
Hom, (i, ¢(j)). Then Proposition 2.5.2 implies that li_r)na =~ {pt}. Consider a
pair of parallel morphisms s, s": i =% ¢(j). Hence, s, s’ € a(j) = Hom, (i, ¢(j)).
Applying Proposition 3.1.3, there exists a morphism ¢: j — k in J such that
s and s’ have the same image in Hom, (i, ¢(k)).

The last assertion easily follows from (iii). q.e.d.
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Corollary 3.2.3. Let I be a filtrant category.

(i) For anyi € I, I' is filtrant and the functor j': I' — I is cofinal.
(ii) The diagonal functor I — I x I is cofinal.

Proof. (i) Applying Proposition 3.2.2 (ii) to id: I — I, I' is filtrant. To prove
that ¢ :=j': I' — I is cofinal, let us check the conditions in Proposition 3.2.2
(ii).

(a) For any iy € I, there exist k € I and arrows i — k, iy — k. Then we have
a morphism i; — ¢(i — k).

(b) Let iy € I, u: i — iy and let 5,5': iy =% is = @((i — i3)). There exists a
morphism ¢: i — i3 such that the two compositions iy = i, — i3 coincide.
The morphism 7: (i — iy) — (i —> i3) in I induced by ¢ satisfies ¢(7) o5 =
o(t)os'.

(ii) For (i1, iz) € I x I, I1#2) ~ (['1)i2 By (i), I'* as well as (1) are filtrant.
This implies that the functor I — I x I is cofinal by Proposition 3.2.2. q.e.d.

Proposition 3.2.4. Let ¢: J — I be a functor. Assume that I is filtrant, ¢
is fully faithful, and for any i € I there exists a morphism i — @(j) with
j €J. Then J is filtrant and ¢ is cofinal.

Proof. (a) J is filtrant. Clearly, condition (i) of Definition 3.1.1 is satisfied.
Let us check condition (ii), the proof of (iii) being similar to this case. Let
J1s j2 € J. Since [ is filtrant, there exist i € I and morphisms ¢(j;) — i and
¢(j2) — i. By the assumption there exist j; € J and a morphism i — ¢(js).
Since the functor ¢: J — [ is fully faithful, the composition ¢(j,) = i —
©(js), (a = 1,2) is the image by ¢ of a morphism j, — js (a =1,2).

(b) ¢ is cofinal. Condition (iii) (a) of Proposition 3.2.2 is satisfied by the
hypothesis. Condition (iii) (b) is proved as in (a) above. q-e.d.

The next technical results will be useful in the sequel.

Proposition 3.2.5. Let I L ¥ K be cofinal functors with I, J, K filtrant
categories. Then

(i) for any j € J, I' — I is cofinal,

(i) for any i € I, I' — 1?9 is cofinal,

(iii) for any k € K, I*¥ — J* is cofinal,

(iv) for any morphism u: k — ¥ (j) in K, the induced functor u*: I’ — I*
s cofinal.

Proof. (i) It is enough to show that for any i € I, (I/)’ is filtrant. By Corol-
lary 3.2.3, the composition I’ — I — J is cofinal, and thus (I')/ ~ (I/) is
filtrant.

(iii) For any object a = (k — ¥(j)) € J*, we have (I¥)* ~ [/ and this
category is filtrant (since ¢ is cofinal). Hence, by Proposition 3.2.2, I* — J*
is cofinal.
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(iv) By (iii), I¥ — J* is cofinal. Regarding u as an object of J, (I¥)* ~ I/
and (I¥)* — I* is cofinal by (i).
(ii) is a particular case of (iv). q.e.d.

Proposition 3.2.6. A filtrant category I is cofinally small if and only if there
exists a small subset S of Ob(I) such that for any i € I there exists a morphism
i— jwith jes.

Proof. (i) let ¢: J — I be a cofinal functor with J small, and let S be the
image of Ob(J) by the functor ¢. Then S is small, and the condition in the
statement is satisfied since ¢ is cofinal.

(ii) Conversely, consider S as a full subcategory of I. Then § — [ is cofinal
by Proposition 3.2.4. q.e.d.

Remark 3.2.7. By the result of Exercise 2.20, for any category C, there exists
an ordered set (D, <) such that, denoting by D the associated category, there
exists a cofinal functor ¢: D — C. There is also a result of Deligne (see [30])
which asserts that if 7 is small and filtrant, then there exists a small ordered
filtrant set J cofinal to I.

Lemma 3.2.8. Let I be a small ordered set, a: I — C a functor. Let J
denote the set of finite subsets of I, ordered by inclusion. To each J € J,
associate the restriction ay: J — C of a to J. Then J is small and filtrant
and moreover

(3.2.1) lima =~ lim (lima,) .
JeTJ

Proof. (i) Clearly, J is small and filtrant.

(ii) Let us prove the isomorphism (3.2.1). Let K be the ordered subset of
the ordered set I x J consisting of pairs (i, J) with i € J. The projection
I x J — I defines a functor ¢: K — 1.

(a) ¢ is cofinal. Indeed, for any ip € I, K ~ {(i,J) € K;ip < i}. For any
(i,J) € K, we have (i, J) < (i, J U{io}) and (io, {io}) < (i, J U {ip}). Hence
Ko is connected.

(b) Applying Proposition 2.5.2 and Corollary 2.3.4, we obtain

li_)azli_)aogozli_r)nli_r)naoq)(k).
JeJ kekK,

(c) Let &;: J — K, be the functor J 3 j + (j, J). The functor &; is cofinal.
Indeed, for k = (ji,J1) € K, we have j; € J; C J and hence J¥ ~ {j €
J; j1 < j} is connected since j; is the smallest element.

(d) We deduce the isomorphisms

li_rr)locogo(k) ~aopoky :lir_r)laj.
keK,
q.e.d.
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By Lemma 3.2.8, inductive limits indexed by small ordered sets can be decom-
posed into filtrant inductive limits and finite inductive limits. Using Exercise
2.20 or Proposition 2.2.9, the same result holds for any small inductive limit.

Hence, many properties on small inductive limits decompose into proper-
ties on small filtrant inductive limits and properties on finite inductive limits.
In particular:

Lemma 3.2.9. If C admits small filtrant inductive limits and finite inductive
limits (resp. finite coproducts), then C admits small inductive limits (resp.
small coproducts). Moreover, if a functor F:C — C' commutes with small
filtrant inductive limits and finite inductive limits (resp. finite coproducts),
then F commutes with small inductive limits (resp. small coproducts).

Recall that if C admits finite inductive limits and small coproducts, then C
admits small inductive limits and if a functor F: C — C’ commutes with finite
inductive limits and small coproducts, then F commutes with small inductive
limits. This follows from Proposition 2.2.9.

Notation 3.2.10. (i) We shall sometimes use the sketchy terminology “a fil-
trant inductive system”. It means a functor a: I — C where the category
I is filtrant. We use similar formulations such as “a small filtrant inductive
system”, etc.

(ii) We shall also use the formulation “a filtrant projective system”. Our con-
vention is

(3.2.2) a filtrant projective system is a functor g: J°P — C with J filtrant .

3.3 Exact Functors

Let F: C — C’ be a functor. Recall that for U € C’, Cy denotes the category
whose objects are the pairs (X,u) of X € C and u: F(X) — U, and CY
denotes the category whose objects are the pairs (X, v) of X e C and v: U —
F(X). The natural functors j;: Cy — C and jY: CY — C are faithful (see
Definition 1.2.16).

Definition 3.3.1. Let F: C — C’ be a functor.

(i) We say that F is right exact if the category Cy is filtrant for any U € C'.
(ii) We say that F is left exact if FOP: C°P — C'°P is right exact or equiva-
lently the category CU is cofiltrant for any U € C'.
(iii) We say that F is exact if it is both right and left exact.

Proposition 3.3.2. Let F: C — C’ be a left exact functor, let J be a finite
category and let B: J°P — C be a functor. Assume that 1(1_111/3 exists in C. Then

1(ir_n(F o B) exists in C' and is isomorphic to F(l(ln B). In particular, left exact

functors commute with finite projective limits if C admits such limits.
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There is a similar statement for right exact functors and inductive limits.

Proof. Using Corollary 2.4.6, we get the chain of isomorphisms for X € C and
Uel

Hom (U, F(X)) ~ lim Hom (U, F(Z))
(3.3.1) Z—>X
~ lim Hom,(Z, X) .
ﬁ
(U—>F(z))ecv
Hence we have for any U € C’

lim Hom o (U, F(A(7))) = lim lim Hom(Z, (/)

j J ZeclV
~ lim limHom(Z, B(j))
zZeClU j
~ lim Hom(Z, lim B(j))
ZecV j

~ Home, (U, F(m B(1)))

where the second isomorphism follows from Theorem 3.1.6 because Z ranges
over the filtrant category (CY)°P. Hence, F (1(1_I_n B) represents the projective

limit of F(B(J)). q.e.d.

The next result is a partial converse to Proposition 3.3.2.

Proposition 3.3.3. Let F: C — C' be a functor and assume that C admits
finite projective limits. Then F is left exact if and only if it commutes with
such limats.

There is a similar statement for right exact functors and inductive limits.

Proof. (i) Assume that F is left exact. Then it commutes with finite projective
limits by Proposition 3.3.2.

(ii) Assume that F commutes with finite projective limits. Then CY admits fi-
nite projective limits by Lemma 2.1.13, hence is cofiltrant by Proposition 3.2.1
(ii). q.e.d.
Corollary 3.3.4. Assume that C admits finite projective limits. Then F: C —
C’ is left exact if and only if it satisfies:

(i) F sends a terminal object of C to a terminal object of C’,
(i) for any X, Y € C, F(X)x F(Y) exists inC' and F(XxY) = F(X)x F(Y),
(iii) F commutes with kernels, i.e., for any parallel arrows f,g: X =Y inC,
F(Ker(f, g)) is a kernel of the parallel arrows (F(f), F(g))-
Moreover, assuming (i), condition (ii) + (iii) is equivalent to

(iv) F commutes with fiber products, i.e., F(X xzY) > F(X) xpz) F(Y) for
any pair of morphisms X — Z and Y — Z in C.
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Proof. The result follows immediately from Propositions 3.3.3 and 2.2.9 and
Exercise 2.6. q.e.d.

Ezample 3.3.5. Let R be a ring. The forgetful functor for: Mod(R) — Set is
left exact, but for is not right exact since it does not respect initial objects.

Proposition 3.3.6. Let F: C — C' be a functor. If F admits a right (resp.
left) adjoint, then F is right (resp. left) exact.

Proof. Denote by G the right adjoint to F. Let V € C'. Then for any U €
C, there is an isomorphism Hom (F(U), V) ~ Hom (U, G(V)). Hence the
category Cy of arrows F(U) — V is equivalent to the category Cg(v) of arrows
U — G(V). This last category having a terminal object, namely idg(v), it is
filtrant. q.e.d.

Proposition 3.3.7. (i) Let C be a category which admits finite inductive
limits and finite projective limits. Then the functor Hom,: C°P xC — Set
is left exact in each argument.

(ii) Let C be a category admitting inductive limits indexed by a category I.
Then the functorlir_)n : Fet(I,C) — C is right exact. Similarly, if C admits
projective limits indexed by a category J, the functorl(i_rll : Fet(J°P,C) —
C is left exact.

(iii) A small product of left (resp. right) exact functors is left (resp. right)
exact. More precisely, if F;: C; — C! is a family of left (resp. right) ezact
functors indexed by a small set I, then the functor [, Fi: [[;Ci — [, C!
is left (resp. right) ezact.

(iv) Let I be a filtrant category. The functor h_I)n : Fet(1, Set) — Set as well
as the functor lim : Fet(I, Mod(k)) — Mod(k) are exact.

(v) Let I be a small set. Then the functor []: Mod(k)! — Mod(k) is ezact.

Proof. (i) follows immediately from (2.1.6) and (2.1.7).

(ii) The functor lim admits a right adjoint (see Exercise 2.8).

(iii) follows from Proposition 3.2.1 (iii).

(iv) follows from Proposition 3.1.6 and Corollary 3.1.7.

(v) is well-known and obvious. q.e.d.

Definition 3.3.8. Let C be a category and I a small category. Assume that
C admits inductive limits indexed by I. If the functor lim : C! — C is exact,
we say that inductive limits indexed by I are exact in C. If inductive limits
indexed by any small filtrant category are exact in C, we say that small filtrant
inductive limits are exact in C.

Lemma 3.3.9. Let C be a category which admits finite projective limits and
inductive limits indexed by a connected category I. Assume that inductive
limits indexed by I are exact. Then inductive limits indexed by I are stable by
base changes (see Definition 2.2.6).
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Proof. Consider an inductive system {X;};c; and a pair of morphisms ¥ — Z

and h_r)nXi — Z in C. Let {Y;};e; and {Z;};c; denote the constant inductive
iel

systems with ¥; = Y and Z; = Z for all i € I (and the identity morphisms

associated with the morphisms in 7). We have the isomorphisms

ll_I)I'l(Xl Xz Y) ~ h_H)l(Xl Xz Yl)

iel iel
~ lim X; Xjimz limY;
i h_r)nZl i
iel iel iel

~ (h_rI)lX,) Xz Y.
iel

Here, the second isomorphism follows from the hypothesis that 1ir_[)1 is exact
and the third isomorphism from the hypothesis that I is connected together
with Lemma 2.1.12. q.e.d.

We shall prove in Corollary 3.4.6 that if a functor F: C — C’ is right exact,
then the associated functor Mor(C) — Mor(C’) is again right exact and we
shall prove in Corollary 3.3.19 that if a functor F: C — (' is left exact, it
extends to an exact functor C* — (C')".

Lemma 3.3.10. Let ¢: J — I be a left exact functor. Then ¢ is cofinal. In
particular, if ¢ admits a left adjoint, then it is cofinal.

Proof. A cofiltrant category is connected. The second assertion then follows
from Proposition 3.3.6. q.e.d.

Proposition 3.3.11. Let ¢: J — I be a functor. Assume that I is filtrant
and @ is right exact. Then J is filtrant.

Proof. This follows from Proposition 3.1.8 (ii). q.e.d.

Proposition 3.3.12. Let F: C — C' and G: C' — C" be two functors. If F
and G are right exact, then G o F is right exact.

There is a similar result for left exact functors.

Proof. Since G is right exact, C, is filtrant for any Z € C”. The functor
Cz — () is again right exact. Indeed, for any Y € C,, (Cz)y =~ Cy is filtrant
because F is right exact. Hence, Proposition 3.3.11 implies that Cy is filtrant.

q.e.d.

Recall that for a category C and for A € C*, C4 is the category of pairs
(X,u) of X € C and u € A(X).

Proposition 3.3.13. Assume that a category C admits finite inductive limits.
Let A € C. Then A: C°° — Set is left exact if and only if the category Cy is
filtrant.
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Proof. The proof is similar to that of Proposition 3.3.2.
(i) Assume that Cy4 is filtrant. By Proposition 2.6.3,

A(X)~ lim Hom, (X,Y)for X eC.
lim c
(Y—)A)ECA

Since the functor from C°P to Set given by X + Hom (X, Y) commutes with
finite projective limits, and small filtrant inductive limits commute with finite
projective limits in Set (Proposition 3.1.6), A commutes with finite projective
limits.

(ii) Conversely, assume that A is left exact and let us prove that C, is filtrant.
Since A commutes with finite projective limits, C4 admits finite inductive
limits by Lemma 2.1.13, hence is filtrant by Proposition 3.2.1 (ii). q.e.d.

Small Functors

Definition 3.3.14. Let F: C — C’ be a functor.

(i) We say that F is right small if for any U € C', the category Cy is cofinally
small.

(ii) We say that F is left small if F°P: C°P — C'°P is right small or equiva-
lently, if the category CY is co-cofinally small.

Note that if a category C is essentially small, then any functor F: C — C’ is
right small and left small.

Proposition 3.3.15. Let F: C — C’ be a right small functor and assume that
C’ is cofinally small. Then C is cofinally small.

Proof. By Corollary 2.5.6, C’ contains a small full subcategory S cofinal to C’.
For any S € S, Cs is cofinally small by the assumption, and this implies that
there exists a small full subcategory A(S) of Cs cofinal to Cy. Let jg: Cs — C
be the forgetful functor. Denote by A the full subcategory of C such that

Ob(A4) = [ i5(Ob(A(S))) -

SeS

Then A is small. For § € S, we have functors A(S) - As < Cs, and it follows
from Proposition 2.5.4 (iii) that Ag < Cg is cofinal. Hence, Proposition 3.1.8
(1) implies that the functor A — C is cofinal. q.e.d.

Proposition 3.3.16. Let F: C — C' and G: C' — C" be two functors. If F
and G are right small, then G o F is right small.

There is a similar result for left small functors.

Proof. (i) For any W € C”, Cy — Cy, is right small. Indeed, for any (G(V) —
W) € Cy, (Cw)v)—w) = Cy is cofinally small since F' is right small.

(ii) Since G is right small, Cj, is cofinally small, and this implies that Cy is
itself cofinally small by (i) and Proposition 3.3.15. q.e.d.
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Proposition 3.3.17. Let F: C — C’ be a functor. If F admits a right (resp.
left) adjoint, then F is right (resp. left) small.

The proof goes as for Proposition 3.3.6

Kan Extension of Functors, Revisited

We shall reformulate Theorem 2.3.3 using the notion of small functors and
we shall discuss the right exactness of the functors we have constructed. For
sake of brevity, we only treat the functor ¢. By reversing the arrows, (i.e.,
by using diagram 2.3.5) there is a similar result for the functor ¢*.

Theorem 3.3.18. Let ¢: J — I be a functor and let C be a category.

(a) Assume

(33.2) {(p is m’ght small,‘ o
C admits small inductive limits,

or

(3.3.3) {(p is rig?ht exact and ’I‘Z'_l]}‘lt smqll, -
C admits small filtrant inductive limits.

Then a left adjoint ¢t to the functor ¢, erists and (2.3.6) holds.
(b) Assume (3.3.3) and also

(3.3.4) small filtrant inductive limits are exact in C,

(3.3.5) C admits finite projective limits .
Then the functor ¢' is exact.

Proof. (a) By Theorem 2.3.3, it is enough to show that
lim  B(j)

(p(j)—>i)ed;

exists for i € I and B € Fet(J, C). This follows by the assumption.
(b) Since ¢ admits a right adjoint, it is right exact. By hypothesis (3.3.5),
the big category Fet(J, C) admits finite projective limits, and it is enough to
check that the functor ¢ commutes with such limits.

Consider a finite projective system {Bi}rex in Fet(J,C). Let i € I. There
is a chain of isomorphisms:

T . O\ Ao . . .
(¢"Umpy)) (i) = lim  Lm(B(j))

<
K (()—i)ehs

~lm ol (K()
k (p(j)—>i)ed:

~ lim((¢" ) (1)) ,
k
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where the second isomorphism follows from hypotheses (3.3.4) and (3.3.3).
q.e.d.

Corollary 3.3.19. Let F: J — I be a functor of small categories and assume
that F is left exact. Then F: J"» — I" (see § 2.7) is ezact.

Proof. Apply Propositions 2.7.5 and 3.3.18. q.e.d.

3.4 Categories Associated with Two Functors

It is convenient to generalize Definition 1.2.16. Consider functors

15kl

Definition 3.4.1. The category M[I % K L J] is given by

ObM[I % K & 7)) ={(i, j,u);iel, jeJ,ueHom(p(i)v(j)))

Hom (@@, jou), (i, j' u))

[ v
M[I—> K <—J]

= {(vl, v2) € Hom , (i,i") x Hom ,(j, j'); the diagram

o(i) ——=¥(Jj) commutes] .
iw(vl) l‘//(vz)

o) —=v (")

u

If there is no risk of confusion, we shall write M[I — K <« J] instead of
Mm% kL.
Let F: C — (' be a functor and let A € C'. Recall that Pt denote the

category with a single object and a single morphism and denote by A, : Pt —
C’ the unique functor with values A. Then

Ch~M[CS ¢ &Py,
A~ MPt 25 ¢ L.
Suppose that we have a diagram of functors

I ¥1 K. Y1 N

(3.4.1) Fi Hl Gi
Y2

I —2s Ky <2 ],
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and that this diagram commutes up to isomorphisms of functors, that is,
this diagram is quasi-commutative (see Remark 1.3.6). It allows us to define
naturally a functor

(342) 0: M[I]_ — K]_ < Jl] — M[lg — K2 < JQ] .

Proposition 3.4.2. Consider the quasi-commutative diagram of categories
(3.4.1) and the functor 6 in (3.4.2).

(i) If F and G are faithful, then 0 is faithful.
(ii) If F and G are fully faithful and H is faithful, then 6 is fully faithful.
(iii) If F and G are equivalences of categories and H is fully faithful, then 6
s an equivalence of categories.

The proof is left as an exercise.

Proposition 3.4.3. Let I, J, K be three categories and let ¢: I — K and
¥:J — K be two functors.

(i) For any category C and any functor a: M[I — K <« J| - C, we have
limeo >~ lim lim «((, j, ¢(i) > ¥(/))-
j€] iGI./,(/)
(ii) If ¥ is cofinal, then M[I — K <« J| — I is cofinal.
(iii) If I is connected and { is cofinal, then M[I — K < J| is connected.

Proof. (i) Set M := M[I — K < J]. Then, for every jy € J, the canonical
functor &: I (;,) = M}, admits a left adjoint n given by

My, 3 (i o gli) > 00, J > o) e (o) > w() L w(io)) € Iy -

Hence, & is cofinal by Lemma 3.3.10. It remains to apply Corollary 2.3.4.

(ii) For any functor o: I — Set, denote by B the composition of functors
M[l - K < J] - I — Set. By Corollary 2.3.4, we have limo >~ lim lim «(i).
— — =
keK i€l
Since ¢ : J — K is cofinal, we obtain

lipa = lin T o) =l ln A j,o() — ¥())) = linf,
JeJ i€ly ) JeJ i€ly(j)

where the last isomorphism follows from (i).
(iil) follows from (ii) and Corollary 2.5.3. q.e.d.

Proposition 3.4.4. Consider the quasi-commutative diagram of categories
(3.4.1) and the functor 0 in (3.4.2). Assume

(i) the category J, is filtrant and the functor v, is cofinal for v =1, 2,
(ii) the functors F and G are cofinal.

Then the functor 6 is cofinal.
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Note that the hypotheses imply that K, is filtrant for v = 1,2 by Proposi-
tion 3.2.2 and H is cofinal by Proposition 2.5.4.

Proof. We shall write M, (v = 1, 2) instead of M[I, — K, <« J,] for short.
Let a = (ia, j2, u2) € Ma. We shall check that M{ is connected. Let

o (1) = (K=

denote the canonical functor. The morphism ug: @3(ia) — ¥2(j2) defines the
functor

v () = (k)

by associating to an object (j2 — G(j1)) € (J1)72 the object (p2(iz) —
Va(ja) = ¥a(G(j1)) =~ H(Y1(j1))) of (K1)#2(2). The equivalence

(M) = M{(h) 5 (K102 & ()7

is easily checked. The category (/1) is connected. By Proposition 3.4.3, it is
enough to show that ¥’ is cofinal. The functor ¥" decomposes as

(Jl)j2 — (Jl)ll'z(h) — (Kl)‘ﬂz(lé) ,
and these arrows are cofinal by Proposition 3.2.5. q.e.d.

Proposition 3.4.5. Let I, J, K be three categories and let ¢: I — K and
¥v:J — K be two functors. Assume that I, J are filtrant and ¥ is cofinal.
Then

(i) the category M[I % K X J] is filtrant,

(ii) the canonical projection functors from M|I 4r L JJtol, J and I xJ
are cofinal,

(iii) of I and J are cofinally small, then M[I Ll J] is cofinally small.

Proof. (i) By Proposition 3.3.11, it is enough to show that the functor M :=
M[I - K <« J] — I is right exact. For every i € I, M; is equivalent to
M[l; - K < J]. On the other hand, since i € I; is a terminal object of I,
the functor &: Pt — I;, pt > i, is cofinal. Applying Proposition 3.4.4, we get
that the functor 6: M[Pt - K <« J| - M[l; - K <« J] is cofinal. Since
MPt - K <« J] ~ J#0) | this category is filtrant by Proposition 3.2.2, and
this statement also implies that M; >~ M[I; — K < J] is filtrant.

(ii) There are natural equivalences of categories

I>M[I > Pt < Pt], IxJ=M[I—>Pt<«J], J=xMPt—>Pt<«J].

Hence, the result follows from Proposition 3.4.4.

(iii) By the hypothesis, there exist small filtrant categories I’, J' and cofinal
functors I’ — I and J' — J. Then M[I' > K < J'] > M[Il - K < J]
is cofinal by Proposition 3.4.4. Since M[I’ — K <« J'] is small, the result
follows. q.e.d.
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Let F: C — C' be a functor. We denote by
(3.4.3) Mor(F): Mor(C) — Mor(C’)
the functor naturally associated with F.

Corollary 3.4.6. Let F: C — C’ be a right exact functor. Then

(i) the functor Mor(F) in (3.4.3) is right exact,
(ii) for any morphism f:Y — Y’ in C', the canonical projection functors
from Mor(C) s to Cy, Cy: and Cy x Cy: are cofinal,
(iii) of moreover Cy and Cy are cofinally small, then Mor(C)s is cofinally
small. In particular, if F is right small then Mor(F) is right small.

ide,,
Proof. It is enough to remark that Mor(C); >~ M[Cy — Cy/ P Cy’] and to
apply the preceding results. q.e.d.

Exercises

Exercise 3.1. Let C be the category with two objects {a, b} and whose mor-
phisms other than identities are a morphism f: a — b, a morphism g: b — a
and a morphism p: b — b, these morphisms satisfying fog = p, go f =id,,
pop = p. Prove that C admits filtrant inductive and filtrant projective limits.

Exercise 3.2. Let C be a category.

(i) Prove that small filtrant inductive limits commute with finite projective
limits in C* (i.e., Proposition 3.1.6 holds with C” instead of Set).

(ii) Prove that small inductive limits are stable by base change in C" (see
Definition 2.2.6).

(Hint: use Exercise 2.7.)

Exercise 3.3. Let Pt and Pr be the categories introduced in Notations 1.2.8.
Let ¢: Pt — Pr be the unique functor from Pt to Pr.

(i) Prove that Pt and Pr are filtrant.

(ii) Prove that ¢ satisfies condition (a) in Proposition 3.2.2 (iii), but that ¢
is not cofinal.

(iii) Prove that Pt° ~ Pt UPt (a set with two elements regarded as a discrete
category).

Exercise 3.4. Let F: C — C’ be a functor.

(i) Assume that F is left (resp. right) exact and let f: X — Y be a monomor-
phism (resp. an epimorphism) in C. Prove that F(f) is a monomorphism (resp.
an epimorphism).

(ii) Deduce that if C and C’ are small categories and u: A — B is an epi-
morphism in C”, then F(u): F(A) — F(B) is an epimorphism (the functor
F:C" — (C')" is defined in Notation 2.7.2). (Hint: use Proposition 2.7.1.)
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Exercise 3.5. Let F: C —_ C’ be a functor of small categories. Prove that F
is left exact if and only if F: C* — C'" is exact.

Exercise 3.6. Assume that C is idempotent complete (see Exercise 2.9).
Prove that the Yoneda functor he: C — C” is left exact if and only if C
admits finite projective limits.

Exercise 3.7. Let C be a category admitting an initial object. Denote by @¢
and @~ the initial object of C and C*, respectively.

(1) Show that @c~(X) = @ for any X € C and deduce that he(dc) and @~ are
not isomorphic.

(ii) Prove that the Yoneda functor he: C — C” is not right exact for any
category C.

Exercise 3.8. Let I be a filtrant category such that Mor(7) is countable.
Prove that there exists a cofinal functor N — I. Here, N is regarded as the
category associated with its natural order.

Exercise 3.9. Let C be a finite filtrant category. Prove that there exists a
cofinal functor Pr — C. (See Notations 1.2.8 (v).)
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Tensor Categories

This chapter is devoted to tensor categories which axiomatize the properties
of tensor products of vector spaces. Its importance became more evident when
quantum groups produced rich examples of non commutative tensor categories
and this notion is now used in many areas, mathematical physics, knot theory,
computer sciences, etc. Tensor categories and their applications deserve at
least a whole book, and we shall be extremely superficial and sketchy here.
Among the vast literature on this subject, let us only quote [15, 40].

We begin this chapter by introducing projectors in categories. Then we
define and study tensor categories, dual pairs, braidings and the Yang-Baxter
equations. We also introduce the notions of a ring in a tensor category and a
module over this ring in a category on which the tensor category operates. As
a particular case we treat monads, and finally we prove the Bar-Beck theorem.

Most of the notions introduced in this Chapter (with the exception of
§4.1) are not necessary for the understanding of the rest of the book, and this
chapter may be skipped.

4.1 Projectors

The notion of a projector in linear algebra has its counterpart in Category
Theory.

Definition 4.1.1. Let C be a category. A projector (P, g) on C is the data of a
functor P: C — C and a morphism ¢: ide¢ — P such that the two morphisms
of functors eo P, Pog: P =3 P? are isomorphisms. Here, P?:= P o P.

Lemma 4.1.2. If (P, ¢) is a projector, then eo P = P oe.

Proof. For any X € C, we have a commutative diagram with solid arrows:
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3

X —— P(X)
Ex

e J{P(m
L“ ~

P(X) —— P%(X).

EpP(X)

(4.1.1)

Since ep(x) is an isomorphism, we can find a morphism u: P(X) — P(X) such
that ep(x)y ou = P(ex). Then u o ex = ex and the commutative diagram

P(x) 2 p2x)
P(SX)\L P(u)
P*(X)

implies that P(u) = idp2(x). Since ep(x) is an isomorphism, we conclude that
u = idp(x) by the commutative diagram

P(X) ——= P(X)

SP(X)\L EpP(x)

P(u)
—_—

P2(X) P2(X).

Proposition 4.1.3. Let (P, &) be a projector on C.
(i) For any X,Y € C, the map

Hom,(P(X), P(Y)) =% Hom (X, P(Y))
1s bijective.

(ii) The following three conditions on X € C are equivalent:

(a) ex: X — P(X) is an isomorphism,
(b) Hom(P(Y), X) =% Hom (Y, X) is bijective for any Y € C,
(c) the map in (b) is surjective for ¥ = X .

(iii) Let Cy be the full subcategory of C consisting of objects X € C satisfying
the equivalent conditions in (ii). Then P(X) € Cy for any X € C and P
induces a functor C — Coy which is left adjoint to the inclusion functor
[ CO — C.

Proof. (i) The composition
6: Hom (X, P(Y)) — Hom(P(X), P*(Y)) < Hom,(P(X), P(Y)),

where the second map is given by €p(y), is an inverse of the map ogy. Indeed,
Bo(+oex)and (+ oex)of are the identities, as seen by the commutative
diagrams below.
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P(X)—~—= P(Y) X —2— P(Y)

idp(x) \ 7
SPiX) ~ | €p(r) £x 6(v) ~ | €p(y)

P(X) P(Y), P(X) = P2(Y).

e P(X)
P(ex) P(u)
(ii) (a) = (b) follows from (i).

(b) = (c) is obvious.

(¢) = (a). There exists a morphism u: P(X) — X such that u o ex = idy.
Since (ex ou)oey = ex oidy = idp(x) oex, we have ex ou = idp(x) by (i) with
Y = X. Hence, ¢y is an isomorphism.

(ili) Since ep(x) is an isomorphism, P(X) € Co for any X € C and P induces
a functor C — Cy. This functor is a left adjoint to ¢: Co — C by (i).  g.e.d.

Proposition 4.1.4. Let R: C' — C be a fully faithful functor and assume that
R admits a left adjoint L: C — C'. Let ¢: ide — Ro L and n: Lo R — id¢e
be the adjunction morphisms. Set P = RoL:C — C. Then

(i) (P, e) is a projector,
(ii) for any X € C, the following conditions are equivalent:
(a) ex: X — RL(X) is an isomorphism,
(b) Hom,(RL(Y), X) = Hom (Y, X) is bijective for any Y € C.
(iii) Let Co be the full subcategory of C consisting of objects X satisfying the
equivalent conditions in (ii). Then C' is equivalent to Cy.

Proof. Since R is fully faithful, n is an isomorphism.
(i) The two compositions

goP RnL
P——=p2——P
Poe

are equal to idp. Since Rono L: RLRL — RL is an isomorphism, it follows
that P oe and ¢ o P are isomorphisms.

(ii) follows from Proposition 4.1.3.

(iii) For X € C’, the morphism R(nx): PR(X) = RLR(X) — R(X) is an
isomorphism. Since the composition

ER(X)

R(X) PR(X) 2 R(x)
is idg(x), &r(x) is an isomorphism. Hence, R sends C’' to Cy. This functor is
fully faithful, and it is essentially surjective since ¥ >~ RL(Y) for any Y € Co.

q.e.d.
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4.2 Tensor Categories

Definition 4.2.1. A tensor category is the data of a category T, a bifunctor
*®+: TxT — T and an isomorphism of functorsa € Mor(Fct(T xT x7T,T)),

a(X,Y,Z2): (X®Y)®Z>X®(Y®Z)

such that the diagram below is commutative for any X, Y, Z, W € T :

a(X®Y,Z,W)
(X®Y)®Z) W —————— (XQY)®(ZW)
a(X,Y,Z)@Wl
(4.2.1) (XQ(YQR2Z)W a(X.,Y,ZaW)
a(X,Y®Z,W)l

X@(Yrez)ew) XQY®(ZW)).

X®a(Y,Z,W)

Ezamples 4.2.2. The following (7, ®, a) (with a the obvious one) are tensor
categories.

(i) k is a commutative ring, 7 = Mod(k) and @ = ®,.

(ii) M is a monoid, 7 is the discrete category with Ob(7) = M, a ® b = ab
fora,be M.

(iii) A is a k-algebra, 7 = Mod(A ®, A°?) and ® = ®,.

(iv) C is a category, 7 = Fct(C,C) and ® = o.

(v) 7T is a category which admits finite products and ® = x.

(vi) 7 is a category which admits finite coproducts and ® = L.

(vii) G is a group, k is a field, 7 is the category of G-modules over k, that is, the
category whose objects are the pairs (V, ¢), V € Mod(k), ¢: G — Aut (V) is
a morphism of groups, and the morphisms are the natural ones. For V, W € T,
V ® W is the tensor product in Mod(k) endowed with the diagonal action of
G given by g(vQw) = gv Q@ gw.

(viii) I is a category, 7 = S(I) is the category defined as follows. The objects of
S(I) are the finite sequences of objects of I of length > 1. For X = (x1, ..., x,)
and ¥ = (y1,...,yp) in S(I),

[T, Hom,(x;, y;) ifn=p,

Hom X,Y) =
S(I)( ) ] otherwise .

Hence, S(I) >~ | |,-, "

For two objects X = (x1,...,x,) and ¥ = (y1,..., yp) of S(I), define X @ Y
as the sequence (x1,...,%,, y1,...,Yp)-

(ix) k is a commutative ring and, with the notations of Chap. 11, 7 =
CP(Mod(k)) is the category of bounded complexes of k-modules and X ® Y is
the simple complex associated with the double complex X ®, Y.
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Let (7,®,a) be a tensor category. Then 7°P has a structure of a ten-
sor category in an obvious way. Another tensor category structure on 7 is
obtained as follows. For X, Y € 7, define

XQY =Y ®X .
For X,Y,Z € 7T, define
a’(X,Y.Z): (XQY)®Z "> X@(Y®Z)
by

a(Z,v,x)"!
_

(XQY)®Z = Z® (Y ® X) (ZRY)®X = X®(Y®Z).

Then (7, é), a") is a tensor category. We call it the reversed tensor category
of (T,®,a).
Tensor Functors

Definition 4.2.3. Let 7 and T’ be two tensor categories. A functor of tensor
categories (or, a tensor functor) is a pair (F,&r) where F: T — T' is a
functor and &r is an isomorphism of bifunctors

Eri F(+®+) = F(+)®F()
such that the diagram below commutes for all X, Y, Z € T :

F(a(X,Y,Z
(422) F(X®Y)®2Z) xer?) FIX®(Y®2Z))
S,«~(X®Y,Z)l/ iép(X,Y@Z)
F(X®Y)®F(Z) F(X)®F(Y ®Z)
sF(x,Y)®F(Z)J/ iF(X)éBSF(YqZ)

(F(X)®F(Y))® F(Z) F(X)®(F(Y)® F(Z)).

a(F(X),F(Y).F(Z))
In practice, we omit to write &p.

For two tensor functors F, G: 7 — 7', a morphism of tensor functors
0: F — G is a morphism of functors such that the diagram below commutes
forall X,Y € T

Er(X,Y)

F(X®Y) F(X)®F(Y)
(7‘x®vl \L9x®9y
Gxer)—* _Gx)0a6(Y).

Recall that to a category I we have associated a tensor category S(7) in
Example 4.2.2 (viii). Let us denote by ¢: I — S(I) the canonical functor.



98 4 Tensor Categories

Lemma 4.2.4. let T be a tensor category, let I be a category and let ¢: I —
T be a functor. There exists a functor of tensor categories @ : S(I) — T such
that @ o1 >~ ¢. Moreover, @ is unique up to unique isomorphism.

Proof. We define by induction on n

D((i1,.vvin)) = D((i1, - in-1)) @ @(in) -

We define the isomorphism

Eo: P((i1, - vin) ®(f1seevsjm) = @((i1s -+ 0n)) @ P((j1s - -+ jm))

by the induction on m as follows:

D ((i1yvvsin) ® (J1s ey jm))

D((i1, - vins J1se-esjm)

> @ ((i1y e ins 1o Jimn=1)) @ @(jm
@ ((

)
)
i1y eeesin) @ (s ey jme1)) ®@(jin)
2(@((11,,ln))®(p( Jl,-u,]m 1 )>®§0
)

((il,...,in))®(¢(]1,...,]m MY ]m>
((i1s i) @ P((1s v Jim)) -

It is left to the reader to check that this defines a functor of tensor categories.
q.e.d.

Hence, in a tensor category 7, it is possible to define the tensor product
X1 ®---®X, for X1,...,X, €7 by the formula

X19-0X, = (X19X2)®X3)® - )QX,

and this does not depend on the order of the parentheses, up to a unique
isomorphism.
In the sequel, we shall often omit the parentheses.

Unit Object

Definition 4.2.5. A unit object of a tensor category T is an object 1 of T

endowed with an isomorphism o: 1®1 > 1 such that the functors from T
toT given by X — X Q®1 and X — 1 QX are fully faithful.

Lemma 4.2.6. Let (1, 0) be a unit object of T. Then there exist unique func-
torial isomorphisms a(X): X ® 1 => X and B(X): 1®X —> X satisfying the
following properties
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a(X®Y)

(b) the two morphisms X @Y ® 1 X ®Y coincide,

X®a(Y)
B(X®Y)

(c) the two morphisms 1X ®Y ———————2% X ® Y coincide,
B(X)®Y

a(X)®Y

(d) the two morphisms X ® 1 QY X ® Y coincide,

X®B(Y)

1®a(X)

(e) the diagram 1®X®1
ﬂ(X)®1i lﬁ(X)
a(X)

Proof. If such @ and B exist, then (a) and (d) imply ¢(X)® 1 =X ® (1) =
X ® 0, @(X) is uniquely determined because X > X ® 1 is fully faithful, and
similarly with 8.

1®X commutes .

Proof of the existence of «, 8. Since X > X ® 1 is fully faithful, there exists a
unique morphism «(X): X®1 — X such that ¢(X)®1: X®1®1 > X®1
coincides with X ® o. Since X ® ¢ is an isomorphism, «(X) is an isomorphism.
The morphism B is constructed similarly by 1®8(X) =0 ® X.

Proof of (b)—(c). The morphism XY ®¢: X®Y®1®1 - X®Y®1 coincides
with (X ® Y) ® 1 and also with X ® @(Y) ® 1. Hence, «(X ®Y) = X ® a(Y).
The proof of (c) is similar.

Proof of (e). By the functoriality of «, the diagram in (e) commutes when
replacing 1 ®x(X) in the top row with «(1®X). Since ¢(1Q®X) = 1 Qa(X)
by (b), we conclude.

Proof of (d). Consider the diagram
X®1®1QY

v

XQ1QY <9 X®1QY — > X ®1QY

X®Y.

Since the upper two triangles commute as well as the big square, we obtain
XBY)=a(X)®Y.

Proof of (a). By (d), one has «(1)®1 = 1 ®8(1). On the other hand, «(1)®1 =
1®o by the construction of «. Hence, 1®8(1) = 1®p. This implies that
B(1) = 0. The proof for « is similar. q.e.d.
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Remark 4.2.7.1f (1, 0) and (1', ¢’) are unit objects, then there exists a unique
isomorphism ¢: 1 — 1’ compatible with ¢ and @', that is, the diagram

1®1 QL 1/®1/
Qi Q/l
1 . 1

commutes. Indeed, 1 < 1® 1’ > 1’ gives  which satisfies the desired prop-
erties.

Remark that all tensor categories in Examples 4.2.2 except (viii) admit a
unit object.

Definition 4.2.8. Let 7 be a tensor category with a unit object (1,0). A
tensor functor F: T — T’ is called unital if (F(1), F(0)) is a unit object of
7.
More precisely, F(1) ® F(1)—> F(1) is given as the composition F(1) ®
F1) «~—F(1®1)— F(1).

( ) &r(1.1) ( ) F(e) ( )

Definition 4.2.9. Let 7 be a tensor category. An action of T on a category
C is a tensor functor F: T — Fct(C,C). If T has a unit object and T —
Fct(C, C) is unital, the action is called unital.

For X € T and W € C, set X ® W := F(X)(W). To give isomorphisms
Er(X,Y): F(X®Y)> F(X) o F(Y) is thus equivalent to give isomorphisms
(X®Y)®W —> X®(Y®W). Hence, to give an action of 7 on C is equivalent to
giving a bifunctor ®: 7 xC — C and isomorphisms a(X, Y, W): (XQY)Q@W =~
X ® (Y ® W) functorial in X, Y € T and W € C such that the diagram (4.2.1)
commutes for X,Y,Z € 7 and W € C. In this language, the action is unital
if there exists an isomorphism 7(X): 1®X —> X functorially in X € C such

that the diagram

o®X
101X

1®'7(X)J/ ln(x)
n(X)
19X ——— X

1®X

commutes. (See Exercise 4.8.)

Ezamples 4.2.10. (i) For a category C, the tensor category Fct(C, C) acts on
C.

(ii) If 7 is a tensor category, then 7 acts on itself.
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Dual Pairs

We shall now introduce the notion of a dual pair and the reader will notice
some similarities with that of adjoint functors (see Sect. 4.3).

Definition 4.2.11. Let 7 be a tensor category with a unit object 1. Let X, Y €
T be two objects ande: 1 - Y ® X and n: X ® Y — 1 two morphisms. We
say that (X,Y) is a dual pair or that X is aleft dual to ¥ or Y is a right dual
to X if the conditions (a) and (b) below are satisfied:

(a) the composition X ~ X ®1 X% xove X 225 19X ~ X is the identity
of X,

(b) the composition Y ~1QY 25 Y @ X @ ¥ 2% Y ® 1 ~ Y is the identity
of Y.

Lemma 4.2.12. If (X, Y) is a dual pair, then for any Z, W € T, there is an
isomorphisms Hom (Z, W®X) ~ Hom - (ZQY, W) and Hom (X ® Z, W) =~
Hom,(Z,Y @ W).

Proof. We shall only prove the first isomorphism.

First, we construct a map A: Hom(Z, W ® X) - Hom,(Z ® Y, W) as

follows. Let u € Hom (Z, W @ X). Then A(u) is the composition Z ® Y uer,

WXy 2L wel~W.

Next, we construct amap B: Hom - (Z®Y, W) — Hom -(Z, W®X) as follows.
Z®¢

Let v € Hom,(Z ® ¥, W). Then B(v) is the composition Z > Z ® 1 —
zevex 2 wex
It is easily checked that A and B are inverse to each other. q.e.d.

Remark 4.2.13. (1) Y is a representative of the functor Z — Hom (X ® Z, 1)
as well as a representative of the functor W > Hom (1, W ® X).
(ii) (- ®Y, « ® X) is a pair of adjoint functors, as well as (X ® «, Y ® +).

Braiding

Definition 4.2.14. A braiding, also called an R-matrix, is an isomorphism
X®Y Y ®X functorially in X, Y € T, such that the diagrams

(4.2.3) XQY®Z rEez YX®Z

iY@R(X,Z)
R(X,Y®Z

Y®®ZoX

and
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X®R(Y.Z
(4.2.4) XQYQz Ry X®Z®Y
\ iR(X,Z)@Y
R(X®Y.Z)
ZRXQ®Y
commute for all X,Y,Z € T.
Consider the diagram
Xrez
Y8X8Z e X®Z@Y
(4.2.5) Y®R(X, z)l iR(x,z)@uf
R(X.Z®Y) .
Y@Z X S ZRXRY
m Ll%
ZRY®X.

Lemma 4.2.15. If R is a braiding, then the solid diagram (4.2.5) commutes.

The commutativity of this diagram may be translated by the so-called “Yang-
Baxter equation”

(4.2.6) (R(Y,Z)®X)o(Y®R(X,Z))o (R(X,Y)® Z)
- =(ZQR(X,Y))o(R(X,Z)®Y)o (XQR(Y,Z)).

Proof. Consider the diagram (4.2.5) with the dotted arrows. The triangles

(XRYQ®Z, YRX®Z, Y®Z®X)and (X®ZQY, ZRXR®Y, ZRY®X)

commute by the definition of a braiding. The square (X Y ® Z, X ® Z ®

Y, YRXQ®Z, Z®Y ® X) commutes by the functoriality of R. q.e.d.

Note that if R is a braiding, then
RY,X) " XY SY®X

is also a braiding. We denote it by R~

Definition 4.2.16. A tensor category with a braiding R is called a com-
R(X,Y
mutative tensor category if R = R™', i.e., the composition X ® Y g)

Y®X R )X®stequalt01d;(®y

Remark 4.2.17. Commutative tensor categories are called “tensor categories”
by some authors and tensor categories are then called monoidal categories.
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4.3 Rings, Modules and Monads

By mimicking the definition of a monoid in the tensor category Set (by Exam-
ple 4.2.2 (v)), or of a ring in the tensor category Mod(Z) (see Example 4.2.2
(1)), we introduce the following notion.

Definition 4.3.1. Let T be a tensor category with a unit 1. A ring in 7T is
a triplet (A, s, €4) of an object A € T and two morphisms 1p: A A — A
and e4: 1 — A such that the diagrams below commute:

A A A
ARL 2L AgA 10A L A0A A9A9A- _agaA

= lm = ilm A®jia \L \LMA
m pa) o

A, A, AQA—A.
Note that €4 is a unit and w4 is a composition in the case of rings in Mod (k).
Remark 4.3.2. Some authors call (A, na, €4) a monoid.

Definition 4.3.3. Let T be a tensor category with a unit 1 acting unitally on
a category C (see Definition 4.2.9). Let (A, a4, €a) be a ring in 7T .

(i) An A-module in C is a pair (M, py) of an object M € C and a morphism
Upm: AQ M — M such that the diagrams below in C commute:

eAQM HAQM
1M ———AQM AQAQM ——AQM

M, AQM M.

(ii) For two A-modules (M, uy) and (N, uy), a morphism u: (M, uy) —
(N, un) is a morphism u: M — N making the diagram below commuta-
tive:

AQu

A M AQN

l,U-M \LMN
M——=N.

Clearly, the family of A-modules in C forms a category Mod(A, C) and the
forgetful functor for: Mod(A, C) — C is faithful.

Lemma 4.3.4. Let 7 and C be as in Definition 4.3.3, let (A, pa, €4) be a ring
in T and let (M, uy) be an A-module in C. Then the diagram below is exact
in C:

na®@M

A®A®M:§A®M%M‘
AQup
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EAQM

Proof. The morphisms s: M 1M —— AQM andu: AQM ~1QAQ

MMA@A@Mbatlbfy

upos=idy, (AQuup)ou=souy, (ks @ M)ou=idsgy -
Hence, it is enough to apply the result of Exercise 2.25. q.e.d.
Recall that, for a category C, the tensor category Fct(C,C) acts on C.

Definition 4.3.5. Let C be a category. A ring in the tensor category Fct(C, C)
is called a monad in C.

The following lemma gives examples of monads and A-modules.

L
Lemma 4.3.6. Let C ——= (' be functors such that (L, R) is a pair of ad-
R

joint functors. Let ¢: id¢ — Ro L and n: L o R — idg be the adjunction
morphisms.

(a) Set A:=RoL, ep:=¢ and up:=RonoL. (Hence, tp: AocA = RoLoRoL —
RoL=A.) Then (A, pa,€a) is a monad in C.
(b) Let Y € C'. Set X = R(Y) € C and ux = R(ny): A(X) = RoLo

R(Y) Rlatr)), R(Y) = X. Then (X, ux) is an A-module and the corre-
spondence Y — (X, ux) defines a functor @: C' — Mod(A, C).

Proof. Leaving the rest of the proof to the reader, we shall only prove the
associativity of u,, that is, the commutativity of the diagram

AoAoA(X) AN 4 A(x)
lA(MA(X)) \LMA(X)
Ao A(X) X A(X).

We have A(ua(X)) = RoLoR(n(L(X))), ta(A(X)) = R(n(LoRoL(X))) and
na(X) = R(n(L(X))). Setting B:=Lo R and Y := L(X), the above diagram
is the image by R of the diagram below

n(B(Y))
_—

BoB(Y) )

B(Y
i (n(Y)) ln(Y)
Y
n(Y) v

B(Y) — "~

The commutativity of this diagram follows from the fact that n: B — ide: is
a morphism of functors. q.e.d.
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Lemma 4.3.7. Let (A, ua, €4) be a monad in C.

(a) For any X € C, (A(X), na(X)) is an A-module.
(b) The functor C — Mod(A, C) given by X — (A(X), ua(X)) is a left adjoint
of the forgetful functor for: Mod(A,C) — C.

Proof. (i) is left to the reader.
(ii) We define maps

Hom 44,0 ((A(Y), ma(Y)), (X, px)) LUT Hom (Y, X)

as follows. Tov: (A(Y), ua(Y)) = (X, ux) we associate a(v), the composition

y 29 Ar) S x.

A
Tou: Y — X, we associate B(u), the composition A(Y) A AX) 5 x.

It is easily checked that @ and B8 are well defined and inverse to each other.

q.e.d.
The next theorem is due to Barr and Beck.
L
Theorem 4.3.8. Let C ——= (' be functors such that (L, R) is a pair of
R

adjoint functors. Let (A = Ro L,&a, ta) and @: C' — Mod(A,C) be as in
Lemma 4.3.6. Then the following conditions are equivalent.

(i) @ is an equivalence of categories,
(ii) the following two conditions hold:
(a) R is conservative,
(b) for any pair of parallel arrows f, g: X = Y inC’, if Coker(R(f), R(g))
R(f)
exists in C and R(X) —= R(Y) ——=Coker(R(f), R(g)) is ezact in
R(g)
C" (see Exercise 2.25), then Coker(f, g) exists and Coker(R(f), R(g)) —

R(Coker(f, g)).

In particular, if C' admits finite inductive limits and R is conservative and
exact, then @: C' — Mod(A, C) is an equivalence of categories.

Proof. (1) = (ii). We may assume that A is a monad in C and R is the forgetful
functor C" = Mod(A, C) — C. Hence, L is the functor X + (A(X), ua(X))
by Lemma 4.3.7. Then (a) is obvious. Let us show (b). Let f, g: (X, ux) =
(Y, ny) be a pair of parallel arrows and assume that X = ¥ — Z is exact in
C". Then A(X) = A(Y) — A(Z) as well as A%(X) = A%(Y) — A2(Z) are
exact by Proposition 2.6.4. By the commutativity of the solid diagram with
exact rows
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AX) —= A(Y) ——= A(2)
l \LMY w
v
X—Y——1Z,

we find the morphism w: A(Z) — Z. It is easily checked that (Z, w) is an
A-module and (Z, w) >~ Coker(f, g) in Mod(A, C).

(ii) = (i). Let us construct a quasi-inverse ¥: Mod(A,C) — C' of @. Let
(X, ux) € Mod(A, C). Applying L to uyx: A(X) — X, we obtain

L(px)

(4.3.1) LoRoL(X)————= L(X).
n(L(X))
Applying R to this diagram we get
RoL(px)
RoLoRoL(X)———= RoL(X)
R(n(L(X)))
A(px)
which is equal to the diagram Ao A(X) ———————= A(X) .
The sequence wa(X)
A(px) wx
(4.3.2) Ao AX) —= AX) ———— X

wa(X)

is exact in C* by Lemma 4.3.4. Therefore, (b) implies that (4.3.1) has a cok-
ernel

L(px)

(4.3.3) LoRoL(X)————= L(X)— 2>,
n(L(X))

and there exists a commutative diagram

A(X)=RoL(X) > x

w T

R(Y).

We set @((X, ux)) = Y. Since the following diagram commutes
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¢ and Y correspond by the adjunction isomorphism Hom, (L(X),Y) =
Hom (X, R(Y)). This implies that the diagram

RL('//)

A(X ———————> RoLoR(Y)
l lR('I(Y))
X f R(Y)

commutes. Hence, @Y ((X, ux)) ~ (X, ux).
Conversely, for Y € C', let us set (X, ux) = ®@(Y) = (R(Y), R(n(Y))) €
Mod(A, C). Then the two compositions coincide:

LoR(n(Y)) 2(7)
(4.3.4) LoRoLoR(Y)—————=LoR(Y)—>Y.
n(LoR(Y))

Applying R to this diagram, we find the sequence A o A(X) = A(X) —> X
which is exact in C* by Lemma 4.3.4. Hence, (b) implies that

R(Y) =X ~ R(Coker(LoRo Lo R(Y) = LoR(Y))).

Then (a) 1mphes that ¥ =~ Coker(L o Ro Lo R(Y) = L o R(Y)). Hence,
v(d(Y)) ~ q.e.d.

Exercises

Exercise 4.1. Let Pr be the category given in Notations 1.2.8 (v). Let
F:Pr — Pr be the functor given by F(u) = id, for any u € Mor(Pr).
Let ¢: idpy — F be the morphism of functors given by &. = p.

(i) Prove that F and ¢ are well-defined.

(ii) Prove that F oe: F — F? is an isomorphism but ¢ o F: F — F? is not
an isomorphism.

Exercise 4.2. Let 7 be a tensor category with a unit object 1. Let X € T

and @: 1 — X. Prove that if the compositions X >~ 1®X *2X x ® X and
X~X®1— Xex x ® X are isomorphisms, then they are equal and the inverse

morphism p: X ® X — X gives a ring structure on X.

Exercise 4.3. Prove that if a tensor category has a unit object, then this ob-
ject is unique up to unique isomorphism. More precisely, prove the statement
in Remark 4.2.7. Also prove that if (1, 0) is a unit object, then o ® 1 = 1 ®o.

Exercise 4.4. Let 7 be a tensor category with a unit 1 and a braiding R.
(i) Prove that the diagram below commutes:
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R(1,X)
19X ———— > X®1
B(X) A
X.

(i) Prove that R(1,1) =id1g1.

Exercise 4.5. Let k be a field and recall that k* denotes the group of its
invertible elements. Let L be an additive group and denote by C the category
whose objects are the families

Ob(C) = {X = {X;}ier; X; € Mod(k), X; =0 for all but finitely many /},

the morphisms in C being the natural ones. For X = {X;};c; and Y = {Y;}jer,
define X®Y by (X®Y); = @1y Xy ® Yy
(i) Let ¢: L x L x L — k* be a function. For X, Y, Z € C, let

a(X,Y,2): (XQY)®Z > XQ (Y ® Z)
be the isomorphism induced by

c(ly,l2,13)

(X, ®7Y1,) ®Z X, ® (Y, ®Z,).

Prove that (C, ®, a.) is a tensor category if and only if ¢ satisfies the cocycle
condition:

(435) C(ll +12, 13, 14)6‘([1, lg, 13 +l4) = C(ll, 12, lg)C(ll, 12 + l3, 14)6'([2, 13, 14) .

If ¢ satisfies the cocycle condition (4.3.5), we shall denote by ®. the tensor
product in the tensor category (C, ®, a.).

(ii) Let b and ¢ be two functions from L x L x L to k* both satisfying (4.3.5).
Let ¢: LxL — k™ be a function and for X, Y € C,let £(X,Y): XQY — XQY
be the isomorphism in C given by

p(L.)
X[®Yl/—)X[®Y[/.

Prove that (ide, &) is a tensor functor from (C, ®,, ap) to (C, ®., a.) if and only
if

o2, I3)p(l1, 12 +13)
ol la)p(ly + 12, 13)

(iii) Assume that ¢ satisfies the cocycle condition (4.3.5) and let p: LXL — k*
be a function. Let

(436) C(ll,lg,lg) = b(ll,lg,lg) .

RX,Y) XQY—->Y®X
be the isomorphism induced by

p(LI)
XYy, —> YV X,.
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(a) Prove that R satisfies the Yang-Baxter equation (4.2.6) if
c(li, o, I3)c(la, I3, Iy )e(ls, 11, 1) = c(ly, I3, 12)c(l3, Ia, I )c(l2, 11, I3) .
(b) Prove that R is a braiding if and only if

c(l1, 1o, 13)c(la, I3, 11) _ pli,12)p(l1,13) _ plla +1s3, 1)
c(la, 1, 13) ol o+ 13) p(la, 1) p(ls, 1)

(iv) Let ¥: L — k be a function. Define 0: id¢ — id¢ by setting 0x|x, =
¥ (1) idy,. Prove that 6 is a morphism of tensor functors if and only if

Ul +12) = Y (l)v(la) .

(4.3.7)

(v) Let L = Z/2Z.

(a) Prove that the function ¢ given by

-1 iflj=Ilb=Il3=1mod2,
(4.3.8) c(l1, Ia, I3) = P m s e
1 otherwise
satisfies the cocycle condition (4.3.5).
(b) Assume that there exists an element i € k* such that i? = —1 and let ¢
be as in (4.3.8). Prove that the solutions of (4.3.7) are given by

o1 = {j:i i1 =1 = Tmod2,
1 otherwise.

(vi) Let L = Z/2Z. Prove that two tensor categories (C, ®,, a.) and (C, ®,, ap)
with ¢ as in (4.3.8) and b(l1, Iz, I3) = 1, are not equivalent when k is a field of
characteristic different from 2.

(vii) Let L = Z/2Z, and b as in (vi). Let R be the braiding given by p(I,1') =
—1 or 1 according that / = I’ = 1 mod 2 or not. Prove that (C, ®,,a,) is a
commutative tensor category. (The objects of C are called super vector spaces.)

Exercise 4.6. Let 7 be a tensor category with a unit object 1. Prove that if
0: id7 — id7 is an isomorphism of tensor functors, then 6; = id;.

Exercise 4.7. Let 7 be a tensor category with a unit object. Prove that if
(X,Y) and (X, Y’) are dual pairs, then ¥ and ¥’ are isomorphic.

Exercise 4.8. Let 7 be a tensor category with a unit object 1 and acting
on a category C. Prove that this action is unital if and only if the functor
C> X > 1Q®X € is fully faithful.

Exercise 4.9. Let A be the category of finite totally ordered sets and order-
preserving maps (see Definition 11.4.1 and Exercise 1.21).
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(i) For 0,7t € A, define o0 @ 7 as the set o Ut endowed with the total order
such that i < j for any i in the image of o and j in the image of 7 and
o0 - oUt and Tt — o U7t are order-preserving. Prove that A is a tensor
category with a unit object.

(ii) Let R(0,7): 0 ® T — T ® 0 denote the unique isomorphism of these two
objects in A. Prove that R defines a commutative tensor category structure
on A.

(iii) Let 7 be a tensor category with a unit object. Prove that the category
of rings in 7 is equivalent to the category of unital tensor functors from A to
7.

Exercise 4.10. Let G be a group and let us denote by G the associated
discrete category. A structure of a tensor category on G is defined by setting
81 ® g2 = g1g2 (g1, 82 € G). Let C be a category. An action of G on C is a
unital action ¥ : G — Fct(C, C) of the tensor category G on C.

(i) Let T : C — C be an auto-equivalence. Show that there exists an action ¥
of Z on C such that y(1) =T.

(ii) Let Ty and T be two auto-equivalences of S and let @19 : Ty 0 To 5 ThoTy
be an isomorphism of functors. Show that there exists an action ¥ of Z2 on
C such that ¥ ((1,0)) = Ty and ¥ ((0, 1)) = To.

(iii) More generally, let Ty,...,T, be n auto-equivalences of C for a non-
negative integer n, and let ¢;; : T, 0 T} = T; o T; be isomorphisms of functors
for 1 <i < j < n. Assume that for any 1 <i < j < k < n, the diagram below
commutes

T;0T;oT;

yw

TiOTkOTj TjOT,‘OTk

pikoT; i \LT/ oPik

TkOTiOTj TJ‘OTkOTi

m %

Ty oTjoT;.

Denote by uq,...,u, the canonical basis of Z". Prove that there exists an
action ¥ of Z" on C such that ¥ (u;) = T; and the composition T; o T; =~

1//(14,- ® Ltj) = w(uj ® I/t,') l) Tj o Tl coincides with Dij-
Exercise 4.11. Let 7 be a tensor category with a unit object (1, 0). Let

a € End 7(1).
(i) Prove that the diagram
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1——1

commutes and that 1®a =a ® 1.

(ii) Prove that End (1) is commutative.

(iii) Define
R : End;(1) - End Fct(T,T)(' ® 1) < End Fct(’T,T)(idT) ,
L : End7(1) - End g7 7y (1®+) <= End gy (7 7 (id7) .

where R(a)y ® 1 = X ® a and 1®L(a)x = a ® X. Prove that if 7 has a
braiding, then R = L.

Exercise 4.12. Let 7 be a tensor category with a unit object (1, ). Let
X,Y €7 and assume that X @ Y ~1 and Y ® X >~ 1. Prove that there exist

isomorphisms £: X®Y =1 and n: ¥ ® X => 1 such that the diagrams below
commute.

E®X Y ®¢&
XRYQQX —1QX YoXQYy —Y®1

T

X®1 X, 1®Y Y.

Exercise 4.13. Let 7 be a tensor category with a unit object (1, o). Assume

to be given X € 7, a positive integer n and an isomorphism A: X®" = 1.
Consider the diagram

xemnt) X2 x 91
(4.3.9) A@,Xi l

18X —— X.

(i) Assume that (4.3.9) commutes. Prove that there exists a unital functor
¢: Z/nZ — T such that ¢(1) = X. Here, the group Z/nZ is regarded as a
tensor category as in Exercise 4.10.

(ii) Prove that if 7 has a braiding, the fact that the diagram (4.3.9) commutes
does not depend on the choice of the isomorphism A: X®" > 1. (Hint: use
Exercise 4.11 (iii).)

(iii) Give an example of a braided tensor category 7 and (X, A) such that
(4.3.9) does not commute. (Hint: use Exercise 4.5 (v).)
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Generators and Representability

The aim of this chapter is to give various criteria for a functor with values in
Set to be representable, and as a by-product, criteria for a functor to have
an adjoint.

For that purpose, we need to introduce two important notions. The first
one is that of a strict morphism for a category C which admits finite inductive
and finite projective limits. In such a category, there are natural definitions
of the coimage and of the image of a morphism, and the morphism is strict if
the coimage is isomorphic to the image. A crucial fact for our purpose here is
that if C admits a generator (see below), then the family of strict quotients of
any object is a small set.

The second important notion is that of a system of generators (and in
particular, a generator) in a category C. If C admits small inductive limits and
G is a generator, then any object X € C is a quotient of a small coproduct of
copies of G, similarly as any module over a ring A is a quotient of A®! for a
small set I.

With these tools in hands, it is then possible to state various theorems
of representability. For example, we prove that if C admits small inductive
limits, finite projective limits, a generator and small filtrant inductive limits
are stable by base change, then any contravariant functor from C to Set is
representable as soon as it sends small inductive limits to projective limits
(Theorem 5.3.9).

Many of these results are classical and we refer to [64].

5.1 Strict Morphisms

Definition 5.1.1. Let C be a category which admits finite inductive and finite
projective limits and let f: X — Y be a morphism in C.

(i) The coimage of f, denoted by Coim f, is given by
Coim f = Coker(X xy X =2 X) .
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(ii) The image of f, denoted by Im f, is given by
Imf=Ker(Y =2 YuyxY).

Note that the natural morphism X — Coim f is an epimorphism and the
natural morphism Im f — Y is a monomorphism.

Proposition 5.1.2. Let C be a category which admits finite inductive and
finite projective limits and let f: X — Y be a morphism in C.

(i) There is an isomorphism X L X = Coim f.
Xy

(i) There is an isomorphism Im f =>Y x Y.
YuxY

(iii) There is a unique morphism
(5.1.1) u: Coim f — Im f

such that the composition X — Coim f — Im f — Y is f.
(iv) The following three conditions are equivalent:
(a) f is an epimorphism,
(b) Im f — Y is an isomorphism,
(¢) Im f — Y is an epimorphism.
(

Proof. (ii) Set Z = Y Uy Y. We shall prove the isomorphism Ker(i1,iz: ¥ =
Z)~Y xz Y. For any U € C, we have

Hom(U,Y xzY) = {(y1,2); y1,y2 € Y(U),ir(y1) = ia(y2)} -

The codiagonal morphism o: Z — Y satisfies 0 o i; = ¢ ois = idy. Hence,
i1(y1) = i2(y2) implies y1 = 0 0i1(y1) = 0 0i2(y2) = yo. Therefore we obtain

Hom (U, Y xzY) = {y e Y(U); i1(y) =i2(y)}
~ Hom (U, Ker(iy, is: Y = Z)) .

(i) follows from (ii) by reversing the arrows.
(iii) Consider the diagram

P1 i
XxYX:>>X—f>Y':>>1Y|_|XY.

P2 \L 7 ’/ T is
s

Coimf “o>Im f

Since f o p1 = f o pa, f factors uniquely as X N Coim f EN Y. Since
i1of =ijofosandiyof =izo fos areequal and s is an epimorphism,
we obtain i; o f =iy 0 f. Hence f factors through Im f.
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The uniqueness follows from the fact that X — Coim f is an epimorphism
and Im f — Y is a monomorphism.
(iv) Assume that f is an epimorphism. By the construction, the two mor-
phisms i1,i2: Y — Y Uy Y satisfy i1 o f =iz 0 f. Since f is an epimorphism,
it follows that i; = i5. Therefore, Ker(iy, iz) ~ Y.
Conversely, assume that w: Im f — Y is an epimorphism. Since i;ow = isow,
we have iy = i3. Consider two morphisms g1, go: ¥ = Z such that g1 0 f =
g20 f. These two morphisms define g: YUxY — Z and g1 = ij0g = iz0g = go.
q.e.d.

Ezamples 5.1.3. (i) Let C = Set. In this case, the morphism (5.1.1) is an
isomorphism, and Im f >~ f(X), the set-theoretical image of f.

(ii) Let C denote the category of topological spaces and let f: X — Y be a
continuous map. Then, Coim f is the space f(X) endowed with the quotient
topology of X and Im f is the space f(X) endowed with topology induced by
Y. Hence, (5.1.1) is not an isomorphism in general.

Definition 5.1.4. Let C be a category which admits finite inductive limits
and finite projective limits. A morphism f is strict if Coim f — Im f is an
isomorphism.

Proposition 5.1.5. Let C be a category which admits finite inductive limits
and finite projective limits and let f: X — Y be a morphism in C.

(i) The following five conditions are equivalent
(a) f is a strict epimorphism,
(b) Coim f =Y,
(c) the sequence X xy X = X — Y is exact,
(d) there exists a pair of parallel arrows g, h: Z = X such that f o g =
f oh and Coker(g, h) — Y is an isomorphism,
(e) for any Z € C, Hom,(Y, Z) is isomorphic to the set of morphisms
u: X — Z satisfying uovy, = uovy for any pair of parallel morphisms
vy, v2: W = X such that f ovy = f owvs.
(ii) If f is both a strict epimorphism and a monomorphism, then f is an
isomorphism.
(iii) The morphism X — Coim f is a strict epimorphism.

Proof. (i) (a) = (b) since Im f => Y by Proposition 5.1.2 (iv).

(i) (b) =
(i) (b) &

)
(i) (d) = (b). Assume that the sequence Z = X J, ¥ is exact. Consider the
solid diagram

(a) is obvious.
(c) is obvious.
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I/ X—>Y

.

X xy X —= X —— Coim f.

We get a morphism ¥ — Coim f which is inverse to the natural morphism
Coim f — Y.

(i) (¢) = (d) is obvious.

(i) (c) < (e). The condition on u in (e) is equivalent to saying that the two
compositions X xy X = X % Z coincide.

(ii) The morphism f decomposes as X — Coim f — Y. The first arrow is
an isomorphism by Proposition 5.1.2 (iv) (with the arrows reversed) and the
second arrow is an isomorphism by (i).

(iil) follows from (i) (d) by the definition of Coim f. g.e.d.

Remark that in Proposition 5.1.5, it is not necessary to assume that C admits
finite inductive and projective limits to formulate condition (i) (e).

Definition 5.1.6. Let C be a category. A morphism f: X — Y is a strict
epimorphism if condition (i) (e) in Proposition 5.1.5 is satisfied.

Note that condition (i) (e) in Proposition 5.1.5 is equivalent to saying that
the map

Hom (Y, Z) — Hom,(Imhe(f), he(Z))

is an isomorphism for any Z € C.
The notion of a strict monomorphism is defined similarly.

Proposition 5.1.7. Let C be a category which admits finite inductive limits
and finite projective limits. Assume that any epimorphism in C is strict. Let
f: X — Y be a morphism in C.

(i) The morphism Coim f — Y is a monomorphism.

(ii) If f decomposes as X 515 Y with an epimorphism u and a monomor-
phism v, then I is isomorphic to Coim f.

Proof. (i) Set I = Coim f and let X % I 5 Y be the canonical morphisms.
Let w denote the composition X — I — Coimwv. Since w is a strict epi-
morphism, Coimw is isomorphic to Coimwv. For a pair of parallel arrows
o, ¥: W = X, the condition u o ¢ = u o ¢ is equivalent to the condition
foe = fo. Indeed, if foe = f o, then (¢, ¥) gives a morphism
W — X xy X, and the two compositions W — X xy X = X — [ are equal
and coincide with u o ¢ and u o .

Hence, these two conditions are also equivalent to w o ¢ = w o . This
implies X Xcoimy X >~ X xy X, and hence
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I ~ Coker(X xy X = X) =~ Coker(X Xcoimy X = X)

~ Coimw =~ Coimwv .

Then Proposition 5.1.2 (iv) (with the arrows reversed) implies that v is a
monomorphism.

(ii) Since v is a monomorphism, the canonical morphism X x; X — X xy X
is an isomorphism. Hence,

Coim f >~ Coker(X xy X = X) =~ Coker(X x; X = X)
~ Coim(X — I)~1,

where the last isomorphism follows from the fact that u is a strict epimor-
phism. q.e.d.

Similarly as in Definition 1.2.18, we set:

Definition 5.1.8. Let C be a category and let X € C.

(i) An isomorphism class of a strict epimorphism with source X is called a
strict quotient of X.

(ii) An isomorphism class of a strict monomorphism with target X is called
a strict subobject of X.

5.2 Generators and Representability

Recall that, unless otherwise specified, a category means a U-category. In
particular, we denote by Set the category of U-sets.

Definition 5.2.1. Let C be a category.

(i) A system of generators in C is a family of objects {G;}ie; of C such that
I is small and the functor C — Set given by X + [[;., Hom,(G;, X) is
conservative, that is, a morphism f: X — Y is an isomorphism as soon
as Hom(G;, X) — Hom,(G;,Y) is an isomorphism for alli € I.

If the family {G,}ie; consists of a single object G, G is called a generator.

(ii) A system of cogenerators (resp. a cogenerator) in C is a system of gen-
erators (resp. is a generator) in C°P.

Note that if C admits small coproducts and a system of generators {G,};e/,
then it admits a generator, namely [[; G;.

Ezamples 5.2.2. (i) The object {pt} is a generator in Set, and a set consisting
of two elements is a cogenerator in Set.

(ii) Let A be a ring. Then A is a generator in Mod(A).

(iii) Let C be a small category. Then Ob(C) is a system of generators in C*,
by Corollary 1.4.7.
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We shall concentrate our study on categories having a generator. By revers-
ing the arrows, the reader will deduce the corresponding results for categories
having a cogenerator.

For G € C, we shall denote by ¢g the functor

¢c :=Hom,(G, +): C > Set .
Note that for X € C, the identity element of
Hom ., (Hom (G, X), Hom (G, X)) ~ Hom,, (GHH™ (4% x)
defines a canonical morphism in CV
(5.2.1) gUHom (@X) _ x

Proposition 5.2.3. Assume that C admits finite projective limits, small co-
products and a generator G. Then:

(i) the functor ¢ = Hom (G, *) is faithful,
(ii) a morphism f: X — Y in C is a monomorphism if and only if pc(f):
Hom (G, X) —» Hom,(G, Y) is injective,
(iii) @ morphism f: X — Y in C is an epimorphism if pg(f): Hom(G, X)
— Hom (G, Y) is surjective,

@X)  x defined in

(iv) for any X € C the canonical morphism GHom
(5.2.1) is an epimorphism in C,
(v) for any X € C, the family of subobjects (see Definition 1.2.18) of X is a

small set.

Proof. (i) follows from Proposition 2.2.3 and the fact that Hom (G, *) is left
exact.

(ii)—(iii) follow from (i) and Proposition 1.2.12.

(iv) By (iii) it is enough to check that Hom (G, G Hem (GX)y _, Hom (G, X)
is an epimorphism, which is obvious.

(v) We have a map from the family of subobjects of X to the set of subsets
of ¢g(X). Since ¢g(X) is a small set, it is enough to show that this map is
injective. For two subobjects Y1 < X and Y, — X, Y; xx Y5 is a subobject
of X. Assuming that Im(gg (Y1) = ¢6(X)) = Im(pg(Y2) = ¢ (X)), we find

96 (Y1 xx Y2) > 96 (Y1) Xgq(x) 96 (Y2) = ¢6(Y1) = ¢6(Y2) .
Hence, Y xx Yo =¥ fori =1, 2. Therefore, Y7 and Y5 are isomorphic. q.e.d.

Proposition 5.2.4. Let C be a category which admits finite projective limits
and small coproducts, and assume that any morphism which is both an epi-
morphism and a monomorphism is an isomorphism. For an object G of C, the
following conditions are equivalent.

(i) G is a generator,
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(ii) @G is faithful,
(iii) for any X € C, there exist a small set I and an epimorphism GU! - x.

Proof. We know by Proposition 5.2.3 that (i) = (ii) & (iii).

(ii)) = (i). Let f: X — Y and assume that ¢g(f) is an isomorphism. By
Proposition 1.2.12, f is a monomorphism and an epimorphism. We conclude
that f is an isomorphism by the third hypothesis.

(iii) = (ii). Let f, g: X = Y and assume that ¢g(f) = ¢s(g). For any small
set I and any morphism u: GU/ — X, the two compositions G/ - X =Y
are equal. If u is an epimorphism, this implies f = g. q.e.d.

Theorem 5.2.5. Let C be a category which admits small inductive limits and
let F: C°? — Set be a functor. Then F is representable if and only if the two
conditions below are satisfied:

(a) F commutes with small projective limits (i.e., F sends inductive limits in
C to projective limits in Set),

(b) the category Cr is cofinally small. (The category Cr is associated with
F € C" and he: C — C” as in Definition 1.2.16. In particular, its objects
are the pairs (X,u) of X € C andu € F(X).)

Proof. (i) Condition (a) is obviously necessary. Moreover, if F is representable,
let us say by Y € C, then the category Cr >~ Cy admits a terminal object,
namely (Y, idy).
(ii) Conversely, assume that F satisfies (a) and (b).
By hypothesis (a) and Lemma 2.1.13, Cr admits small inductive limits.
By hypothesis (b), Cr is cofinally small. Hence the inductive limit of the
identity functor is well-defined in Cr. Denote this object of Cr by Xo:

X(): h_II)l X .
XECF

Since X is a terminal object of Cr by Lemma 2.1.11, X is a representative
of F by Lemma 1.4.10. q.e.d.

We shall give a condition in order that the condition (b) of Theorem 5.2.5
is satisfied.

Theorem 5.2.6. Let C be a category satisfying:

(i) C admits a generator G,
(ii) C admits small inductive limits,
(iii) for any X € C the family of quotients of X is a small set.

Then any functor F: C°? — Set which commutes with small projective limits
is representable.

Remark 5.2.7. The hypotheses (iii) is not assumed in [64], but the authors
could not follow the argument of loc. cit.
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Proof. By Theorem 5.2.5, it is enough to check that the category Cr is cofi-
nally small. Note that F being left exact, this category is filtrant by Proposi-
tion 3.3.13.

Set Zy = GLIF(G) By the assumption on F, we have

F(Zo) ~ F(G)'©) ~ Homg, (F(G), F(G)) .

Denote by ug € F(Zg) the image of idp(g). Hence, (Zo, ug) belongs to Cr. Let
(X,u) € Cr and set X1 = GHHem (GX) "Thon the natural morphism X; — X
is an epimorphism by Proposition 5.2.3 (iv).

Consider the maps Hom (G, X) - Homg, (F(X), F(G)) — F(G) where
the second one is associated with u € F(X). They define the morphism X; =

GUHom (6:X) 7 — GUF(G) and the commutative diagram in C*

X1*>ZO

|

XT>F.

Define X’ as X I_[X1 Zy and consider the diagram below in which the square
is co-Cartesian:

X, = G]_[Hom (GX) ___ o Zo

|

Since F commutes with projective limits, the dotted arrow may be completed.
Since X; — X is an epimorphism, Zy — X’ is an epimorphism by Exercise
2.22. Hence, for any (X, u) € Cr we have found a morphism (X, u) — (X', u’)
in Cr such that there exists an epimorphism Zo—X’. By hypothesis (iii) and
Proposition 3.2.6, Cr is cofinally small. q.e.d.

Proposition 5.2.8. Let C be a category which admits small inductive limits.
Assume that any functor F: C°®? — Set is representable if it commutes with
small projective limits. Then:

(i) C admits small projective limits,
(ii) a functor F: C — C' admits a right adjoint if and only if it commutes
with small inductive limits.

Proof. (i) Let B: I°? — C be a projective system indexed by a small category
I. Consider the object F € C" given by
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F(X) = lim Hom (X, (i) -

L

This functor from C°P to Set commutes with small projective limits in C°P,
and hence it is representable.

(ii) For any Y € C’, the functor X +— Hom, (F(X),Y) commutes with small
projective limits, and hence it is representable. q.e.d.

Proposition 5.2.9. Assume that C admits finite inductive limits, finite pro-
jective limits, and a generator. Then the family of strict quotients of an object
X € C is a small set.

Proof. Recall that f: X — Y is a strict epimorphism if and only if the se-
quence X Xy X = X — Y is exact. Hence, we may identify the family of strict
quotients of X with a family of subobjects of X x X, and this is a small set
by Proposition 5.2.3 (v).

q.e.d.

Corollary 5.2.10. Assume that the category C admits small inductive limits,
finite projective limits and a generator. Assume moreover that any epimor-
phism in C is strict. Then a functor F: C°? — Set is representable if and
only if it commutes with small projective limits.

Examples 5.2.11. The hypotheses of Corollary 5.2.10 are satisfied by the cat-
egory Set as well as by the category Mod(R) of modules over a ring R.

5.3 Strictly Generating Subcategories

In Sect. 5.2 we obtained representability results in a category C when assuming
either that the family of quotients of any object is small or that any epimor-
phism is strict. In this section, we shall get rid of this kind of hypotheses.

Let C be a category and F a small full subcategory of C. Then we have
the natural functor

(5.3.1) ¢: C— F",

which associates with X € C the functor 7 > ¥ +— Hom,(Y, X). By the
Yoneda Lemma, we have

Hom 1. (¢(X), ¢(Y)) >~ Hom (X, Y)

for X e Fand Y € C.

By the definition, ¢ is conservative if and only if Ob(F) is a system of
generators. If moreover C admits finite projective limits, then ¢ is faithful by
Proposition 2.2.3.
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Definition 5.3.1. Let C be a category and F an essentially small full sub-
category of C. We say that F is strictly generating in C if the functor ¢ in
(5.3.1) is fully faithful.

Note that if F is a strictly generating full subcategory, then Ob(F) is a
system of generators.

Lemma 5.3.2. Let C be a category, and let F and G be small full subcategories
of C. Assume that F C G and F is strictly generating. Then G is also strictly
generating.

Proof. Let or: C — F” and ¢g: C — G" be the natural functors. Then ¢z
is fully faithful and it decomposes as

¢t gn L

Hence ¢g is faithful. Let us show that the map
Hom (X, Y) — Homg, (¢g(X), ¢g(Y))

is surjective for any X, ¥ € C. Let § € Homg.(pg(X), pg(Y)). Since ¢r is
fully faithful, there exists f € Hom,(X,Y) such that

(5.3.2) (&) =¢@x(f) aselements of Hom . (pr(X), ¢£(Y)).

Let us show that &€ = ¢g(f). It is enough to show that, for any Z € G, the
map induced by &

&z: Hom(Z, X) — Hom(Z,Y)

coincides with the map v —~ fowv.
Let v € Hom(Z, X). Then for any S € F and s: § — Z:

5,(v) s = &s(vos) =u(E)s(vos) = fovos.

where the last equality follows from (5.3.2). Hence ¢#(£2(v)) = ¢#(f o v) as
elements of Hom . (¢ (Z), ¢#(Y)), and the faithfulness of ¢ implies §7(v) =
fou. q.e.d.

Lemma 5.3.3. Let C be a category which admits small inductive limits and
let F be a small full subcategory of C. Then the functor ¢: C — F" admits a
left adjoint ¥ : F» — C and for F € F", we have
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Proof. For X € C and F € 7", we have the chain of isomorphisms

Home( lim Y, X)~ lim Hom, (Y, X)
(Y— F)eFr (Y= F)eFr

(Y= F)eFr

~Homg ( lim oY), ¢(X)),

(Y— F)eFr

and h_r)n ¢(Y) ~ F by Proposition 2.6.3.
(Y—)F)E]‘-p

123

q.e.d.

Proposition 5.3.4. Let C be a category which admits small inductive limits
and let F be a small strictly generating full subcategory of C. Let € denote
the full subcategory of F" consisting of objects F € F" such that the functor
C > X = Hom . (¢(X), F) € Set commutes with small projective limits.

Then C is equivalent to £ by ¢.

Proof. Tt is obvious that ¢ sends C to £. Hence, it is enough to show that any
F € & is isomorphic to the image of an object of C by ¢. Let ¥ denote the left
adjoint to ¢ constructed in Lemma 5.3.3. By Proposition 4.1.4, it is enough

to prove the isomorphism

Hom . (¢¥(G), F) — Hom .(G, F)
for any G € F" and F € £. We have the chain of isomorphisms

Hom 1. (¢¥ (G), F) ~ Hom . (¢( lim X), F)
(X—)G)Ef(;
~ lim  Homg.(¢p(X), F)
(X—)G)EJ:G
~Homy ( lm  ¢(X),F)
(X—)G)EJ:G
~ Hom .(G, F) ,

where the second isomorphism follows from the hypothesis F € £ and the last

isomorphism follows from Proposition 2.6.3 (i).

q.e.d.

Proposition 5.3.5. Let C be a category which admits small inductive limits
and assume that there exists a small strictly generating full subcategory of C.
Let F: C°® — Set be a functor. If F commutes with small projective limits,

then F 1is representable.

Proof. Let F be a small strictly generating full subcategory of C. Let Ferr

be the restriction of F to F. For X € C, we have
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Hom £ (¢(X), F) ~ Hom z.( lim  ¢(Y), F)
(Y= X)eFyx

~ lim  Homg. (p(Y), F)

(Y= X)eFx
~ im FY)~F( lm Y).
<— —>
(Y= X)eFx (Y—>X)eFy

Since ¢ is fully faithful, we have h_H)l Y >~ ¢¢(X) ~ X. Hence, we obtain
(Y= X)eFyx

(5.3.3) F(X) = Hom . (¢(X), F) forany X eC.

It follows that the functor C 3 X > Hom ».(¢(X), F) sends small inductive
limits to projective limits, and by Proposition 5.3.4 there exists Xo € C such
that F >~ ¢(Xp). Then (5.3.3) implies that

F(X) ~ Hom 1, (¢(X), F)
~ Hom . (¢(X), ¢(Xo)) >~ Hom (X, X,)

for any X € C. q.e.d.

We shall give several criteria for a small full subcategory F to be strictly
generating.

Theorem 5.3.6. Let C be a category satisfying the conditions (i)—(iii) below:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits are stable by base change (see Defini-
tion 2.2.6),
(iii) any epimorphism is strict.

Let F be an essentially small full subcategory of C such that

(a) Ob(F) is a system of generators,
(b) F is closed by finite coproducts in C.

Then F is strictly generating.

Proof. We may assume from the beginning that F is small.
(i) As already mentioned, the functor ¢ in (5.3.1) is conservative and faithful.

(ii) By Proposition 1.2.12, a morphism f in C is an epimorphism as soon as
@(f) is an epimorphism.

(iii) Let us fix X € C. For a small filtrant inductive system {¥;};c; in Cx, we
have

(5.3.4) lim Coim(Y; — X) = Coim(lim ¥; — X) .
— —

1 1
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Indeed, setting Yoo = liI_I)l Y;, we have
i
h_I>n(Yl XX Yi) = h_I)l’l(Y,l XX le) = @@(Yi1 Xx Yl2)
i i1,12 11 i2
~ h_r)n(Y,l Xx Yoo) >~ Yoo Xx Yoo .

11

Here the first isomorphism follows from Corollary 3.2.3 (ii), and the last two
isomorphisms follow from hypothesis (ii). Hence we obtain

Coim(Yoo = X) = Coker(Yoo Xx Yoo = Yo)
~ Coker(li_g)l(Y,- xx Yi) = l.gl)lYi)
~ li_Tr)lCoker(Y,- xx Y, =Y)
1
>~ lim Coim(Y; — X) .
-

(iv) For Z € Fx, set
n(Z) = Coim(Z — X):=Coker(Z xx Z = Z) .
Then n defines a functor Fx — Cx. For any Y € C, we have
Hom((n(Z),Y) ~ Ker(Hom,(Z, Y) = Hom,(Z xx Z,Y)) .

We have Hom,(Z,Y) =~ Hom ,,(¢(Z),¢(Y)) by the Yoneda Lemma. On
the other hand, the map Hom.(Z xx Z,Y) — Hom z.(¢(Z xx Z), p(Y))
Hom . (¢(Z) xy(x)9(Z), (Y)) is injective since ¢ is faithful. Hence we obtain

Hom,(n(Z),Y)
~ Ker(Hom 1, (¢(Z), (¥)) = Hom . (¢(Z) xy(x) #(Z), 9(Y)))
>~ Hom £, (Coker(¢(Z) xy(x) 9(Z) =2 ¢(Z)), ¢(Y))
~ Hom £, (Im(¢(Z) — ¢(X)), ¢(Y)) .

(v) Let us denote by I the set of finite subsets of Ob(Fy), ordered by inclusion.
Regarding I as a category, it is small and filtrant. For A € I, £(A) :=UzecaZ
belongs to Fx by (b), and & defines a functor I — Fx. Then

(5.3.5) liﬁ)ltp(é(A)) — ¢(X) is an epimorphism .
Ael

Indeed, for any S € F and u € ¢(X)(S) = Hom,(S, X), u is in the image of
¢(§(A))(S) with A = {(S, u)}.
(vi) Since li_r)ngo(E(A)) — ¢(X) factors through <p(li_rr>1$(A)), the morphism
Ael Ael
@(h_n)lE(A)) — ¢(X) is an epimorphism, and (ii) implies that li_I)IlS(A) - X
Ael Ael
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is an epimorphism, hence a strict epimorphism by the hypothesis. Proposi-
tion 5.1.5 (i) implies Coim(li_n;S(A) — X) >~ X. By (iii), we have
Ael

lim (£ (A)) = lim Coim(§(4) - X)

Ael Ael
o~ Coim(li_r)né(A) - X)~X.
Ael

(vii) For any Y € C, we obtain the chain of isomorphisms

Hom (X, ¥) ~ Hom(lim5(&(A)), ¥)
Ael

~ lim Hom ¢ (7(§(A)). Y)
Ael

=~ lim Hom . (Im(¢(§ (A)) — ¢(X)), ¢(Y))

Ael

~ Hom . (lim(Im(p(£ (4)) — ¢(X))). ¢(Y))

~ Hom ~.(¢(X), ¢(Y)) ,

where the last isomorphism follows from (5.3.5). q.e.d.

Remark 5.3.7. See Exercises 5.5-5.8 which show that it is not possible to drop
conditions (ii), (iii) or (b) in Theorem 5.3.6.
Theorem 5.3.8. Let C be a category and consider the conditions below:

(i) C admits small inductive limits and finite projective limits,
(i) small inductive limits in C are stable by base change,
(i)’ small filtrant inductive limits in C are stable by base change.

Let us consider the conditions on an essentially small full subcategory F of C:

(a) Ob(F) is a system of generators,
(b) the inclusion functor F < C is right exact.

Assume either (i), (ii) and (a) or (i), (ii)’, (a) and (b). Then F is strictly

generating.

Proof. We already know that ¢: C — F” is conservative and faithful.
Assuming (i), let ¥ : F* — C be the functor

F o> F h_r)n XecC.
(X—F)eFr

Then v is left adjoint to ¢ by Lemma 5.3.3. By Proposition 1.5.6 (i), it is
enough to show that ¥ o ¢ — id¢ is an isomorphism.

(A) First, we assume (i), (ii) and (a).



5.3 Strictly Generating Subcategories 127

(A1) We begin by proving that

for any X € C and any small inductive system {X;};c; in Fx, if
(5.3.6) h_rr)up(X,) — ¢(X) is an isomorphism, then h_r)nX, — X is an iso-
l 1
morphism.

Set Xog = h_H)lX,’ € C and let u: Xg — X be the canonical morphism. Since the
i

composition li_n)up(Xi) — ¢(Xo) = ¢(X) is an isomorphism, ¢(u): ¢(Xo) —

l
@(X) is an epimorphism. Since ¢ is conservative by (a), it remains to show
that ¢(u) is a monomorphism.
For iy,is € I, the two compositions X;, xx X;, > X;, = Xo (v =1,2)
give two morphisms &1, &2: X;;, Xx Xi, = Xo. Then we have a diagram

/—\
o(Xi, xx Xi,) —/—= h;r;(p(X,-) — ¢(Xo) — ¢(X).

1

Hence, the two arrows ¢(X;, xx Xi,) = li_rr)lgp(X,-) coincide, which implies
i

@(&1) = p(&2). Thus we obtain & = &. It means that
Xiy Xxo Xiy = Xiy xx X,

is an isomorphism for any iy, is € 1.
On the other hand, the condition (ii) implies that

L(Xil XX, Xl'2) = ]iI_)n(Xil XX, lianiQ)

5.3.7 i i 2
(5.37) ~ (lm X,,) xx, (lm X,)
i1 iz
and similarly,
(538) h_I)H(X,’l Xx Xiz) ~ (h_r)n X,'l) Xx (h_I)IlX,Q) .
i1,i2 i1 iz

Hence, we obtain the isomorphisms

.liI_?II(Xil XXo Xiz) ~ Xo,

11,02

@(Xil Xx X,'Q) ~ XO Xx X() .

11,12
Hence, Xg — Xo xx Xg is an isomorphism, and this means that X — X is a
monomorphism by Exercise 2.4.

We have proved that ¢(Xg) — ¢(X) is a monomorphism and this com-

pletes the proof of (5.3.6).
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(A2) Finally we shall show that ¥ o ¢ — id¢ is an isomorphism. For any
X €C, we have  lim @(Y) = ¢(X) by Proposition 2.6.3 (i), and (5.3.6)
(Y—>X)eFx
implies that Y (X) ~ lim ¥ ~X.
(Y— X)eFx

(B) Now, we assume (i), (ii)’, (a) and (b). The proof is similar to the former
case (A). For X € C, Fx is filtrant by (b). Hence, in step (A2), we only
need (5.3.6) when I is filtrant. On the other hand, (5.3.6) in the filtrant case
follows from (ii)’ by the same argument as in (A1). Note that, in case (A),
the condition (ii) is used only in proving (5.3.7) and (5.3.8). g.e.d.

Theorem 5.3.9. Let C be a category satisfying:

(i) C admits small inductive limits and finite projective limits,
(ii) small filtrant inductive limits in C are stable by base change,
(iii) C admits a generator.

Then any functor F: C°? — Set which commutes with small projective limits
is representable.

Proof. Let @¢ be an initial object of C and let G be a generator of C. We con-
struct by induction an increasing sequence {F, },>0 of small full subcategories
as follows.

Ob(Fy) = {#c, G}
Ob(F,) = Ob(F,—1) L I{Y1 ux Y2; X — Y7 and X — Y5 are morphisms

in F,_1} forn > 0.

Let F be the full subcategory of C with Ob(F) = |J, Ob(F,). Then F is a
small category, Ob(F) is a system of generators, and F is closed by finite in-
ductive limits. Hence, Proposition 3.3.3 implies that 7 — C is right exact, and
F is strictly generating by Theorem 5.3.8. It remains to apply Corollary 5.3.5.

q.e.d.

Note that if small filtrant inductive limits in C are exact, then such limits
are stable by base change by Lemma 3.3.9.

Exercises

Exercise 5.1. Let C be one of the categories C = Set, C = Mod(R) for a ring
R, or C = D" for a small category D. Prove that any morphism in C is strict.
Also prove that, when C = D" and f is a morphism in C, Im f is the functor
D>Zw Im(f(2)).

Exercise 5.2. Assume that a category C admits finite projective limits and
finite inductive limits. Let f: X — Y be a morphism in C. Prove the isomor-
phism Hom . (Coim(f), Z) ~ Hom . (Im(he(f)), he(Z)) for any Z € C.
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Exercise 5.3. Let C be a category which admits finite inductive limits and
finite projective limits. Consider the following conditions on C:

(a) any morphism is strict,

(b) any epimorphism is strict,

(c) for any morphism f: X — ¥, Coim f — Y is a monomorphism,

(d) any morphism which is both an epimorphism and a monomorphism is an
isomorphism,

(e) for any strict epimorphisms f: X — Y and g: ¥ — Z, their composition
g o f is a strict epimorphism.

Prove that (a) = (b) < (¢) 4+ (d) and that (c) < (e).

(Hint: (e) = (c). Adapt the proof of Proposition 5.1.7.

(¢) = (e). Consider W = Coim(g o f). Using the fact that W — Z is a
monomorphism, deduce that ¥ xy ¥ — ¥ xz Y is an isomorphism.)

Exercise 5.4. Let C be a category which admits finite inductive limits and

finite projective limits. Let f: X — Y be the composition X 2% 7% ¥ where
g is a strict epimorphism. Prove that & factors uniquely through Coim f — Y
such that the composition X — Z — Coim f coincides with the canonical
morphism.

Exercise 5.5. Let k be a field and set F := Mod{(k), the full subcategory of
Mod(k) consisting of finite-dimensional vector spaces. For V. € Mod(k), set
V* = Hom,(V, k).
(i) Prove that the functor V + V* induces an equivalence of categories F =~
Fop.
(ii) Let V € Mod(k). Prove the isomorphism lim W~V

(V—=>W)eFVv
(iii) Prove that F is a strictly generating full subcategory of Mod (k).
(iv) Prove that Mod(k)°P and F°P satisfy all hypotheses of Theorem 5.3.6
except condition (ii).
(v) Prove that the functor ¢: Mod(k)°P — (F°P)" defined in (5.3.1) decom-
poses as Mod(k)°P = Mod(k) — F" = (FoP)r,
(vi) Prove that the functor ¢: Mod(k)°P — (F°P)" is not fully faithful.

Exercise 5.6. Let k be a field and denote by F the full subcategory of Mod (k)
consisting of the single object {k}. Prove that Mod(k) — F” is not fully
faithful.

Exercise 5.7. Let A be a ring and denote by F the full subcategory of
Mod(A) consisting of the two objects {A, A®?}. Prove that Mod(A) — F*
is fully faithful.

Exercise 5.8. Let k be a field, let A = k[x, y] and let C = Mod(A). Let a
denote the ideal a = Ax+ Ay. (See also Exercises 8.27-8.29.) Let Cy be the full
subcategory of C consisting of objects X such that there exists an epimorphism
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a®’ — X for some small set I. Let F be the full subcategory of Cy consisting
of the objects {a@" yn > 0}. Let G be the full subcategory of C consisting of
the objects {A®"; n > 0}.

(i) Prove that F and G are equivalent.

(ii) Prove that the functor ¢: Cy — F” given by

Co> X (F>3Y > Hom,(Y, X))

decomposes as Cp LN Mod(A) - F* where £(X) = Hom ,(a, X) and
n(M)(Y) = Hom ,(Y,a) ®, M for Y € F. (In other words, n(M) € F" is
the functor F 3 a®" > M®".)

(iii) Prove that 7 is fully faithful. (Hint: use (i) and Theorem 5.3.6.)

(iv) Prove that ¢ is not fully faithful.

(v) Prove that (Co, F) satisfies all the conditions in Theorem 5.3.6 except
condition (iii).

(vi) Prove that any functor F: Cg® — Set commuting with small projective
limits is representable. (Hint: use Theorem 5.2.6 or Theorem 5.3.9.)

Exercise 5.9. Let C be a category with a generator and satisfying the con-
ditions (i) and (ii) in Theorem 5.3.8. Prove that for any X,Y € C, there
exists an object Hom (X,Y) in C which represents the functor C 3 Z >
Hom,.(Z x X,Y).

Exercise 5.10. (i) Let Arr be the category given in Notations 1.2.8 (iii),
with two objects a and b and one morphism from a to b. Prove that Arr
satisfies the conditions (i) and (ii) in Theorem 5.3.8, and b is a generator.
(ii) Conversely, let C be a category which satisfies the conditions (i) and (ii)
in Theorem 5.3.8. Moreover assume that there exists a generator G such that
End¢(G) = {idg}. Prove that C is equivalent to either Set, or Arr or Pt.
(Hint: apply Theorem 5.3.8.)

Exercise 5.11. Prove that a functor F: Set — Set is representable if F
commutes with small projective limits.
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Indization of Categories

In this chapter we develop the theory of ind-objects. The basic reference is [64]
where most, if not all, the results which appear here were already obtained
(see also [3]). Apart from loc. cit., and despite its importance, it seems difficult
to find in the literature a concise exposition of this subject. This chapter is
an attempt in this direction.

6.1 Indization of Categories and Functors

Recall that a universe U is given. When we consider a category, it means a
U-category and Set is the category of U-sets (see Convention 1.4.1). As far
as this has no implications, we will skip this point.

Recall that for a category C, inductive limits in C" := Fct(C°P, Set) are
denoted by “li_r)n”.

Definition 6.1.1. (i) Let C be a U-category. An ind-object in C is an object
A € C™ which is isomorphic to “1i_n)1” a for some functor a: I — C with
I filtrant and U-small.

(ii) We denote by Ind”(C) (or simply Ind(C) if there is no risk of confusion)
the full big subcategory of C* consisting of ind-objects, and call it the in-
dization of C. We denote by tc: C — Ind(C) the natural functor (induced
by hc)

(iii) Similarly, a pro-object in C is an object B € C¥ which is isomorphic to
“1(111” B for some functor B: I°° — C with I filtrant and small.

(iv) We denote by Pro¥(C) (or simply Pro(C)) the full big subcategory of CV
consisting of pro-objects.

Lemma 6.1.2. The categories Ind(C) and Pro(C) are U-categories.
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Proof. Tt is enough to treat Ind(C). Let A, B € Ind(C). We may assume that

A~ “lim” a(i) and B ~ “lim” B (j) for small and filtrant categories I and J.
iel jeJ

In this case Hom (A, B) is isomorphic to a small set by (2.6.4). q.e.d.

We may replace “filtrant and small” by “filtrant and cofinally small” in
the above definition.
There is an equivalence

Pro(C) >~ (Ind(C°P))°P .
Hence, we may restrict our study to ind-objects.

Example 6.1.3. Let k be a field and let V denote an infinite-dimensional k-

vector space. Consider the contravariant functor on Mod(k), W — V ®

Hom (W, k). It defines an ind-object of Mod(k) which is not in Mod(k). No-

tice that this functor is isomorphic to the functor V “h_H)l” V’ where V’
vicy

ranges over the filtrant set of finite-dimensional vector subspaces of V.

Notation 6.1.4. We shall often denote by the capital letters A, B, C, etc. ob-
jects of C” and as usual by X, Y, Z objects of C.

Recall that for A € C*, we introduced the category C4 and the forgetful
functor j,: C4 — C, and proved the isomorphism A =~ “li_II)l” ja (see Proposi-
tion 2.6.3).

Proposition 6.1.5. Let A € C*. Then A € Ind(C) if and only if C4 is filtrant
and cofinally small.

Proof. This follows immediately from Proposition 2.6.3 and Proposition 3.2.2.
q.e.d.

Applying Definitions 3.3.1 and 3.3.14, we get:
Corollary 6.1.6. The functor ic: C — Ind(C) is right exact and right small.

Proposition 6.1.7. Assume that a category C admits finite inductive limits.
Then Ind(C) is the full subcategory of C* consisting of functors A: C°P? — Set
such that A is left exact and C4 is cofinally small.

Proof. Apply Propositions 3.3.13 and 6.1.5. q.e.d.

Theorem 6.1.8. Let C be a category. The category Ind(C) admits small fil-
trant inductive limits and the natural functor Ind(C) — C* commutes with
such limits.

Similarly Pro(C) admits small filtrant projective limits and the natural functor
Pro(C) — CY commutes with such limits.
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Proof. Let o: I — Ind(C) be a functor with I small and filtrant and let
A = “lim” o € C". Tt is enough to show that A belongs to Ind(C). We shall
use Proposition 6.1.5.

(i) Cq4 is filtrant. By Lemma 3.1.2, it is enough to show that for any fi-
nite category J and any functor B: J — C,, there exists Z € C4 such that
lim Hom, (B, Z) # @. For any X € C4, we have

HOm (CA)A (X, A) ~ l_i—I?Hom(CA)A (X, Ol(l))
1€
~lim lim Hom, (X,Y).
- = 4
iel YECO((,-)
Since I and C,(;) are filtrant, lim and lim commute with finite projective
— =
iel YeCy(iy
limits by Theorem 3.1.6. Hence, we obtain
{pt} = kingom(CA)A(ﬂ(j), A)
jeJ
~lim lim limHome, (B(j),Y)
iel YeCqy(iy j€J
Hence, there exist i € I and Y € Cq(;) such that l(ir_nHomcA (B, Y)#0.

(ii) C4 is cofinally small. By Proposition 3.2.6, for any i € I, there exists
a small subset S§; of Ob(Cy(j)) such that for any X e Cqu(;) there exists a
morphism X — Y with ¥ € §;. Let ¢;: Cq(;y — Ca be the canonical functor.
Then S = |J,; ¢i(Si) is a small subset of Ob(C4) and for any X € C4 there
exists a morphism X — Y with ¥ € S. q.e.d.

Proposition 6.1.9. Let F: C — C’ be a functor. There exists a unique func-
tor I'F : Ind(C) — Ind(C’) such that:

(i) the restriction of I'F to C is F,
(ii) IF commutes with small filtrant inductive limits, that is, if a: I —
Ind(C) is a functor with I small and filtrant, then we have

[F(“lim” o) = “lim” (I F o at) .
— -
The proof goes as the one of Proposition 2.7.1 and we do not repeat it. The

functor I F is given by

IF(A) = “lim” F(U) for A € Ind(C) .
(U— A)eCa

Proposition 6.1.9 (i) may be visualized by the commutative diagram below:

C—=C

L

Ind(C) —£> Ind(C).
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Recall that if A >~ “lg_)n ai), B~ “lign B(Jj), then (see (2.6.4))
i i

Hom ,4c)(A, B) =~ @@Homc(“(i)a BG)) -
i

The map I F: Homy,q(c) (A, B) > Homy, 4 (I F(A), IF(B)) is given by

(6.1.1) limlim Hom,(a(i), B(j)) — l(iglli_gnHomc,(F(a(i)), F(B(J))) -

i

Remark that if C is small, the diagram below commutes.

Ind(C) £~ md(C)

L,

Ch—(C".
(The functor F is defined in Proposition 2.7.1 and Notation 2.7.2.)

Proposition 6.1.10. Let F: C — C'. If F s faithful (resp. fully faithful), so
is IF.

Proof. This follows from (6.1.1). q.e.d.

Proposition 6.1.11. Let F: C — C" and G: C' — C” be two functors. Then
[(GoF)~IGolF.

Proof. The proof is obvious. q.e.d.

Let C and C’ be two categories. By Proposition 6.1.9, the projection func-
tors C x C’ — C and C x C’ — C’ define the functor

(6.1.2) 0: Ind(C x C') = Ind(C) x Ind(C)
Proposition 6.1.12. The functor 6 in (6.1.2) is an equivalence.

Proof. A quasi-inverse to 6 is constructed as follows. To A € Ind(C) and

A’ € Ind(C’), associate “lim” (X, X'). Since C4 xCy is cofinally
(X—>A).(X'—> A"))eCaxCy
small and filtrant, it belongs to Ind(C x C’). q.e.d.

Proposition 6.1.13. Let «: I — C and B: J — C be functors with I and
J small and filtrant. Let f: “h_r)n”oz — “li_r)n”,B be a morphism in Ind(C).
Then there exist a small and filtrant category K, cofinal functors p;: K — 1,
ps: K — J and a morphism of functors ¢: a o p; — B o p; making the
diagram below commutative
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“lim? ¢
“ls ki W]y ”
lim” (a0 py) ————— “lim” (B o py)

(6.1.3) Ni

~

“lim? f T
m- o
lim” 8.

Proof. Set A = “111_1)1”0{, B = “lir_r)l” B, and denote by a: I — Cy4, E: J — Cp
and f : C4 — Cp the functors induced by «, g and f. Consider the category

K =M1 2% ¢y £ ] (see Definition 3.4.1).

The functor § is cofinal by Proposition 2.6.3 (i), and the categories I and
J are small and filtrant by the hypotheses. Proposition 3.4.5 then implies that
the category K is filtrant, cofinally small and the projection functors p; and
py from K to I and J are cofinal.

We may identify K with the category whose objects are the triplets (i, j, g)
ofi el, jeJand g: a(i) = B(j) such that the diagram below commutes

ali) ——B(j)

|

“lim” f 73 IR
m- o
7 L “lim” B,

and the morphisms are the natural ones. Then g defines a morphism of func-
tors ¢: @ o p; — B o py such that the diagram (6.1.3) commutes. q.e.d.

Corollary 6.1.14. Let f: A — B be a morphism in Ind(C). Then there exist
a small and filtrant category I and a morphism ¢: a — B of functors from I
to C such that A ~ “li_r)n” a, B~ “li_rr)l” B and f = “li_r)n” ©.

We shall extend this result to the case of a pair of parallel arrows. A more
general statement for finite diagrams will be given in Sect. 6.4.

Corollary 6.1.15. Let f, g: A = B be two morphisms in Ind(C). Then there
exist a small and filtrant category I and morphisms ¢, ¥ : a = B of functors

rom I — C such that A ~ “lim” «, B >~ “lim” B, = “lim” ¢ and g =
— = =
“Hm” .

Proof. Let I and J be small filtrant categories and let «: I — Cand 8: J — C
be two functors such that A ~ “lim” & and B =~ “lir:r)f’ B. Denote by a: I —
C x C the functor i '_i,a(i) x (i), and similarly with g. Then (A, A) ~ “lim” o
and (B, B) ~ “lim” B.

By Proposition 6.1.12, the morphism (f, g): A x A - B x B in Ind(C) x

Ind(C) defines a morphism in Ind(C x C). We still denote this morphism by
(f, g) and apply Proposition 6.1.13. We find a small and filtrant category K,
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functors p;: K — I, pj: K — J and a morphism of functors (g, ¥) from
a o p; to B o py such that (f, g) = “1'11)1” (¢, ¥). Tt follows that f = “1'£>n” @
and g = “h_rr)l” v. q.e.d.

Proposition 6.1.16. (i) Assume that for any pair of parallel arrows in C,
its kernel in C" belongs to Ind(C). Then, for any pair of parallel arrows
in Ind(C), its kernel in C" is its kernel in Ind(C).

(ii) Let J be a small set and assume that the product in C* of any family
indexed by J of objects of C belongs to Ind(C). Then, for any family
indexed by J of objects of Ind(C), its product in C" is its product in
Ind(C).

Proof. (i) Let f,g: A = B be a pair of parallel arrows in Ind(C). With the
notations of Corollary 6.1.14, we may assume that A = “lir_)n” o, B=“lim” 8
and there exist morphisms of functors ¢, ¥ : « = B such that f = “1i_n)1” )
and g = “li_r)n77 Y. Let y denote the kernel of (¢, ¥). Then “li_n)l” y is a kernel
of (f, g) in C* and belongs to Ind(C).

(ii) Let A; € Ind(C), j € J. For each j € J, there exist a small and filtrant
category I; and a functor «;: I; — C such that A; ~ “lim” ;. Define the
small filtrant category K = Hje] I; and denote by m;: K — I; the natural
functor.

Using Corollary 3.1.12 we get the isomorphisms in C*

[T A; = [T “lim” o (i) = “lim” [T et (K)) -
jeJ jelJ iEI_; keK jeJ
q.e.d.

Corollary 6.1.17. (i) Assume that the category C admits finite projective
limits. Then the category Ind(C) admits finite projective limits. Moreover,
the natural functors C — Ind(C) and Ind(C) — C” are left exact.

(ii) Assume that the category C admits small projective limits. Then the
category Ind(C) admits small projective limits and the natural functors
C — Ind(C) and Ind(C) — C* commute with small projective limits.

Proposition 6.1.18. (i) Assume that the category C admits cokernels, that
is, the cokernel of any pair of parallel arrows exists in C. Then Ind(C)
admits cokernels.

(ii) Assume that C admits finite coproducts. Then Ind(C) admits small co-
products.

(iii) Assume that the category C admits finite inductive limits. Then Ind(C)
admits small inductive limits.

Proof. (i) Let f,g: A = B be arrows in Ind(C). With the notations of
Corollary 6.1.14, we may assume that A = “lim”" o, B = “lim” 8 and
there exist morphisms of functors ¢, ¥ : o = B such that f = “lir_r)l” ¢ and
g = “lim” . Let A; denote the cokernel of (a(i), B(i)) and let L € Ind(C).
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Then Hom . (A(i), L) is the kernel of Hom . (B(i), L) = Hom . (e (i), L). Ap-
plying the left exact functor 1(121, we conclude that “h_n)l” A is a cokernel of
(C(lign” (p, “]ign” ,lp).

(ii) The proof that Ind(C) admits finite coproducts is similar to the proof in
(i). The general case follows by Lemma 3.2.9.
(

iii) follows from (i), (ii) and the same lemma. q.e.d.

Recall that if C admits cokernels (resp. finite coproducts, resp. finite in-
ductive limits), then the functor t¢: ¢ — Ind(C) commutes with such limits
by Corollary 6.1.6 and Proposition 3.3.2.

Proposition 6.1.19. Assume that C admits finite inductive limits and finite
projective limits. Then small filtrant inductive limits are exact in Ind(C).

Proof. 1t is enough to check that small filtrant inductive limits commute with
finite projective limits in Ind(C). Since the embedding Ind(C) — C* commutes
with small filtrant inductive limits and with finite projective limits, this fol-
lows from the fact that small filtrant inductive limits are exact in C* (see
Exercise 3.2). q.e.d.

Remark 6.1.20. (i) The natural functor Ind(C) — C* commutes with filtrant
inductive limits (Theorem 6.1.8), but it does not commute with inductive
limits in general. Indeed, it does not commute with finite coproducts (see
Exercise 6.3). Hence, when writing “lig)l” for an inductive system indexed by
a non filtrant category I, the limit should be understood in C”.

(ii) If C admits finite inductive limits, then Ind(C) admits small inductive lim-
its and (¢: C — Ind(C) commutes with finite inductive limits (Corollary 6.1.6
and Proposition 6.1.18) but if C admits small filtrant inductive limits, (¢ does
not commute with such limits in general. We may summarize these properties
by the table below. Here, “0” means that the functors commute, and “x”
they do not.

C — Ind(C) | Ind(C) — C
finite inductive limits o) X
finite coproducts o) X
small filtrant inductive limits X o
small coproducts X X
small inductive limits X X

Since the definition of Ind(C) makes use of the notion of being small, it depends
on the choice of the universe. However, the result below tells us that when
replacing a universe U with a bigger one V), the category of ind-objects of C
in U is a full subcategory of that of ind-objects of C in V.
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More precisely, consider two universes U« and V with 4 C V, and let C
denote a U-category.

Proposition 6.1.21. The natural functor Ind*(C) — IndY(C) is fully faith-
ful. If C admits finite inductive limits, then this functor commutes with U-small
inductive limits. If C admits finite (resp. U-small) projective limits, then this
functor commutes with such projective limits.

Proof. The first statement follows from isomorphisms (2.6.4). The functor
Ind“(C) — Ind¥(C) commutes with finite inductive limits as seen in the proof
of Proposition 6.1.18. Since it commutes with ¢-small filtrant inductive lim-
its, it commutes with /-small inductive limits. Recall that the natural functor
C/; — C§, commutes with ¢/-small projective limits (see Remark 2.6.5). Then
the functor Ind¥(C) — IndY(C) commutes with finite (resp. U-small projec-
tive) limits by Proposition 6.1.16 if C admits such limits. q.e.d.

6.2 Representable Ind-limits

Let a: I — C be a functor with / small and filtrant. We shall study under
which conditions the functor “li_r)n” is representable in C.

For each i € I, let us denote by p;: a(i) — “h_I)n” « the natural functor. It
satisfies

(6.2.1) pjoa(s)=p; foranys:i— j.

Proposition 6.2.1. Let «: I — C be a functor with I small and filtrant and
let Z € C. The conditions below are equivalent:

(1) “h_r)n” a is representable by Z,

(ii) there exist an ig € I and a morphism t9: Z — a(ip) satisfying the prop-
erty: for any morphism s: igp — i, there exist a morphism g: (i) - Z
and a morphism t: i — j satisfying
(a) goa(s) o1y =1idg,

(b) a(t) oa(s)otgo g = afr).

Proof. (i) = (ii) Let ¢: Z > “lim” & be an isomorphism. Since we have
Homy, 4 (Z, Z) =~ li_r)nHomC(Z,ot(i)), there exist ig € I and t9: Z — «(ip)

1
such that ¢ = p;, o 9. For any i € I, the chain of morphisms «(i) —

“1'11)1” a < Z defines a morphism g;: a(i) — Z with ¢ o gi = p;. Hence,
for any s: ip — i, we have

pogioa(s)org=pjoa(s)oty=pi, 0T =¢ .

This shows (ii)-(a). Since I is filtrant and
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pioidyiy=pi =¢@ogi=pioa(s)otgog,

there exists ¢: i — j satisfying a() o idyi) = a(t) o (a(s) o 79 0 g;). This is
visualized by the diagram

Pig

a(i(])

(i) a(j) -

a(f)
(ii) = (i) The morphism 79: Z — «(ip) defines the morphism
Y =pi,07: Z— “lir_r)l”ot.

To prove that ¢ is an isomorphism, it is enough to check that ¢ induces an
isomorphism

@x: Hom,(X, Z) = lilf_)nHomc(X,a(i)) for any X € C .
Injectivity of ¢x. Let u,v € Hom (X, Z) with ¢x(u) = ¢x(v). There exists
s:ip — i such that a(s) o g ou = a(s) o 79 o v. Then for g € Hom(«(i), Z)
as in (i),

u=goa(s)orgpou=goua(s)orggov="uv.
Surjectivity of ¢x. Let w € Hom (X, a(i)) and let s: ip — i. Take g: (i) —
Z and t: i — j as in (ii). Then

a(t)ow=ua(t)oa(s)orpogow.
The image of w in li_n)lHomC(X, a(j))is px(g o w). q.e.d.

J

6.3 Indization of Categories Admitting Inductive Limits

In this section we shall study Ind(C) in the case where C admits small filtrant
inductive limits. Recall that (c: C — Ind(C) denotes the natural embedding
functor.

Proposition 6.3.1. Assume that C admits small filtrant inductive limits.
(i) The functor ic: C — Ind(C) admits a left adjoint oc: Ind(C) — C, and
if A~ “lim” &, then o¢(A) ~ lima.
— —
(ii) We have o¢ o 1¢ ~ ide¢.
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Proof. (i) Let A € Ind(C) and let us show that the functor
C > X Homy,g (A, te(X))

is representable. Let o: I — C be a functor with I small and filtrant such
that A ~ “li_n)l” . Then

Hom 1) (“ling” e (X)) = ljm Hom (). X)
o~ Homc(lir_r)la, X).
(ii) is obvious. q.e.d.

Corollary 6.3.2. Assume that C admits small filtrant inductive limits. Then
for any functor F: J — C there exists a unique (up to unique isomorphism)
functor JF: Ind(J) — C such that JF commutes with small filtrant inductive
limits and the composition J — Ind(J) — C is isomorphic to F.

Indeed, JF is given by the composition Ind(J) LLN md(C) %5 C.
The next definition will be generalized in Definition 9.2.7.

Definition 6.3.3. Assume that C admits small filtrant inductive limits. We

say that an object X of C is of finite presentation if for any o: I — C with I
small and filtrant, the natural morphism li_n)lHomC(X,a) — Hom, (X, li_n)la)

is an isomorphism, that is, if Homy,qc) (X, A) — Hom(X, 0c(A)) is an
isomorphism for any A € Ind(C).
Some authors use the term “compact” instead of “of finite presentation”.
Note that any object of a category C is of finite presentation in Ind(C).

Proposition 6.3.4. Let F: J — C be a functor and assume:

(i) C admits small filtrant inductive limits,

(ii) F is fully faithful,

(iii) for any Y € J, F(Y) is of finite presentation.

Then JF: Ind(J) — C is fully faithful.
Proof. Let a: I — J and B: J — J be two functors with I and J both
small and filtrant. Using the hypothesis that F(B(j)) is of finite presentation
for any j € J, we get the chain of isomorphisms
Hom .. (“li” (), “lim” a(i)) = limim Hom  (8(/), a (7))

j i i

H
~ Hom (J F(“lin” B(j)). J F(“li” a(i))) .

! ' q.e.d.
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Let C be a category which admits small filtrant inductive limits. We denote
by C™ the full subcategory of C consisting of objects of finite presentation
and by p: C' — C the natural functor. The functor p induces a fully faithful
functor Ip: Ind(C'*) — Ind(C) and we have the diagram of functors

Cfp #)C

(6.3.1) lci %l Tac

Ind(Cfp) T> IHd(C) .

Note that the functors Jp and Ip are fully faithful. Also note that the diagram
(6.3.1) is not commutative in general. More precisely:

(6.3.2) tcodp #Ip
in general (see Exercise 6.6).

Corollary 6.3.5. Let C be a category admitting small filtrant inductive limits
and assume that any object of C is a small filtrant inductive limit of objects
of finite presentation. Then the functor Jp: Ind(C®) — C is an equivalence
of categories.

Indeed, the functor Jp is fully faithful by Proposition 6.3.4 and is essentially
surjective by the hypothesis.

A related result to Corollary 6.3.5 will be given in Proposition 9.2.19 below
in the framework of m-accessible objects.

Ezamples 6.3.6. (i) There are equivalences Set/ ~ (Set)™ and Ind(Set/) ~
Set.

(ii) There are equivalences Mod®(R) ~ (Mod(R)) and Ind(Mod(R)) ~
Mod(R) for any ring R (see Exercise 6.8).

Corollary 6.3.7. In the situation of Corollary 6.3.5, the functor oc admits a
left adjoint kc: C — Ind(C). Moreover:

() If€: I — C™ is a functor with I small and filtrant and X ~ lir_r)lé in C,
then ke(X) ~ “li_r)n” poé,

(ii) we have o¢ o ke 2 id,
(iil) ke s fully faithful.

If there is no risk of confusion, we shall write « instead of «c.

Proof. (1) Denote by k" a quasi-inverse of Jp and set k = Ip ok’.
Let X € C and let us show that the functor
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Ind(C) > A — Hom (X, oc(A))

is representable by «(X). In the sequel we shall not write Ip for short.
There exists &: J — C with J small and filtrant such that X ~ h_r)né.

Then «(X) ~ “li_r)n” &. We get the chain of isomorphisms

Homlnd(c)(K(X)’ A) ~ Homlnd(c)(“@,7 £(j). A)
J

~ Jm Hom ¢, €(7). 4)
~ i o (€ ). oe(4)
~ Hom (liné (). oe(4)
~ Homc(Xj, oc(A)) .

The other assertions are obvious. q.e.d.

6.4 Finite Diagrams in Ind(C)

Let K be a small category. The canonical functor C — Ind(C) defines the
functor

(6.4.1) ®y: Fet(K,C) — Fet(K, Ind(C)) .

Since Fct(K,Ind(C)) admits small filtrant inductive limits, we may apply
Corollary 6.3.2, and extend the functor @, to a functor

(6.4.2) @ : Ind(Fct(K,C)) — Fet(K, Ind(C))
which commutes with small filtrant inductive limits.

Proposition 6.4.1. Assume that K is a finite category. Then the functor @
in (6.4.2) is fully faithful.

Proof. We shall apply Proposition 6.3.4 to @q. Clearly, the functor @ is fully
faithful and Fct(K, Ind(C)) admits small filtrant inductive limits. Hence, it
remains to check that given a small and filtrant category I, a functor «: I —
Fct(K, Ind(C)) and an object ¥ € Fct(K, C), the map

(6.4.3) lim Hom peq g na(c)) (V> @(i)) = Hom peyx macey (¥ limer(i))

1 1

is bijective. This follows from Lemma 2.1.15 and the chain of isomorphisms
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lim Hom g macey) (V> @(i)) = lim lim Homy,, ey (¥ (a), a(i) (b))
i i (a—>b)eMorg(K)

= lim lij}Homlnd(C)(W(a)a a(i)(b))

P
(a—>b)eMorg(K) i

~ 1(1_r_n Homlnd(C)(w(a)’ ligna(l)(b))
(a—)b)GMOr()(K) i

~ Hom gy (g macey) (¥ li_gﬂa(i)) .

Here, we have used the fact that in the category Set, small filtrant inductive
limits commute with finite projective limits (Theorem 3.1.6). g.e.d.

We shall give a condition in order that the functor @ in (6.4.2) is an
equivalence. We need some preparation.

Consider the category M[Cy £ Co g Cs] associated with functors C; £
Co £ Cs (see Definition 3.4.1). We set for short:

MO :M[Cl - CO <—C2] s
My, = M[Ind(C;) — Ind(Cy) « Ind(C2)] .

Then M; admits small filtrant inductive limits, and by Proposition 3.4.2 there
is a canonical fully faithful functor My — M; which thus extend to a functor

commuting with small filtrant inductive limits.
Proposition 6.4.2. The functor ¥ in (6.4.4) is an equivalence of categories.

Proof. (i) ¥ is fully faithful. Since ¥ commutes with small filtrant inductive
limits, it is enough to show that for X € My and a small filtrant inductive
system {Y;};c; in My, we have

(6.4.5) liy Hom ;. (X, Y;) = Hom ,, (X, lim ¥ (Y;)) .

1
Let us write X = _(Xl,Xg,u) with X, € C, (y =
and let ¥; = (Y], Y4, v;) with Y] € C,, v;: F(Y]) >
Define the morphisms
; : Hom, (X1,Y]) > Hom, (F(X1), G(Y3))

£ (Fx) 25 pviy 5 G(rd)

Bi : Hom, (X3, Y5) - Hom (F(X1), G(Y3))

g (F(X1) % G(X5) 25 G(vd)) .

Then
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Hom , (X,Y;) = Hom, (X1, Y]) XHom , (F(X1).G(¥}) Hom, (X5, Y3) .

Since filtrant inductive limits commute with fiber products, we have
Holi (X, “h_ln)l” Yt)
1

=~ Homy,q(c,) (X1, “h_fl,l” Yy)

! Wi i
XHomInd(c[))(F(Xl),“li_r)n”G(Yé))HomInd(Cg)(X% h_I)n Y;)

1

= h_?}(Homcl(Xla Y{)XHomCO(F(Xl),G(Yé))Homcz (Xa, Yé))

l
~ g)nHomMo(X, Y:) .

1

(ii) ¥ is essentially surjective. Let (X1, Xo,u) € M; with X; = “li_r)n” Xi,

iel
Xs = “lgjl” X}, and u: “@)1” F(X}) — “h_rgl” G(X}). By Proposition 6.1.13
je i J

there exist a filtrant category K, cofinal functors p;: K — I and py: K — J
and a morphism of functors v = {vg}rex, vk: F(Xf’(k)) — G(Xg’(k)) such
that “lim” v = u. Define zk = (xP"® x2® ). Then z* € M, and
k
Win” 7k ~
v ( h_]t)n Z*) >~ (X1, X2, u). q.e.d.
Theorem 6.4.3. Let K be a finite category such that Hom g (a, a) = {id,} for
any a € K. Then the natural functor @ in (6.4.2) is an equivalence.

Proof. We may assume from the beginning that if two objects in K are iso-
morphic, then they are identical. Then Ob(K) has a structure of an ordered
set as follows: @ < b if and only if Hom  (a, b) # 0.

Indeed, if a < b and b < a, then there are morphisms u: a — b and
v:b — a. Since vou = id, and u o v = idy, a and b are isomorphic, hence
a=b.

We shall prove the result by induction on the cardinal of Ob(K). If this
number is zero, the result is obvious. Otherwise, take a maximal element a of
Ob(K). Then Hom g (a, b) = @ for any b # a. Denote by L the full subcategory
of K such that Ob(L) = Ob(K)\ {a} and denote by L, the category of arrows
b — a, with b € L. There is a natural functor F: Fct(L,C) — Fct(L,, C) as-
sociated with L, — L and a natural functor G: C >~ Fct(Pt,C) — Fct(L,, C)
associated with the constant functor L, — Pt.

There is an equivalence

(6.4.6) Fet(K, C) ~ M[Fct(L, C) - Fet(L,, C) < C] .

Replacing C with Ind(C) and applying Proposition 6.4.2 we get the equiva-
lences
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(6.4.7)  Fet(K,Ind(C)) ~
M[Fet(L, Ind(C)) <5 Fet(L,, Ind(C)) << md(C)]
(6.4.8) Ind(Fct(K,C)) ~
M[Ind(Fet(L, C)) <5 md(Fet(Ly, €)) << nd(C)] .

Consider the diagram

Ind(Fct(L, C)) —— Ind(Fct(L,, C)) =—— Ind(C)

91l Ool idInd(C)l

Fet(L, Ind(C)) —— Fet(Lg, Ind(C)) =<—— Ind(C) .

By the induction hypothesis 6, is an equivalence, and by Proposition 6.4.1, 6
is fully faithful. It follows that
0: M[Ind(Fct(L,C)) — Ind(Fct(L,, C)) < Ind(C)]
—> M|[Fct(L, Ind(C)) — Fct(L,, Ind(C)) <« Ind(C)]
is an equivalence of categories by Proposition 3.4.2. The left hand side is

equivalent to Ind(Fet(K, C)) by (6.4.8), and the right hand side is equivalent
to Fet(K, Ind(C)) by (6.4.7). q.e.d.

Corollary 6.4.4. For any category C, the natural functor Ind(Mor(C)) —
Mor(Ind(C)) is an equivalence.

Proof. Apply Theorem 6.4.3 by taking as K the category e — e. q.e.d.

Exercises

Exercise 6.1. (i) Let C be a small category and let A € Ind(C). Prove that
the two conditions below are equivalent.

(a) The functor Homy,c)(A, +) from Ind(C) to Set commutes with small
filtrant inductive limits, i.e., A is of finite presentation in Ind(C).

(b) There exist X € C and morphisms A — X 2> A such that poi = idy.

(ii) Prove that any A € C" which satisfies (b) belongs to Ind(C).

(iii) Prove that C — (Ind(C))™ is an equivalence if and only if C is idempotent
complete (see Exercise 2.9).

Exercise 6.2. Prove that if X is an initial (resp. terminal) object in C, then
te(X) is an initial (resp. terminal) object in Ind(C).
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Exercise 6.3. Let C be a small category and denote by @+ and pte. the
initial and terminal objects of C*, respectively.

(i) Prove that @c~ ¢ Ind(C). (Hint: see Exercise 3.7.)

(ii) Prove that ptes € Ind(C) if and only if C is filtrant and cofinally small.

Exercise 6.4. Let C be a category which admits finite inductive limits and
denote by & : Ind(C) — C” the natural functor. Prove that the functor « does
not commute with finite inductive limits (see Exercise 6.3).

Exercise 6.5. Prove that Pro(Setf ) is equivalent to the category of Hausdorff
totally disconnected compact spaces. (Recall that on such spaces, any point
has an open and closed neighborhood system.)

Exercise 6.6. Let k be a field, C = Mod(k). Let V = k®% and V, = k®h
where I, ={i € Z; |i| < n}.
(i) Construct the natural morphism “lim” V, — V.

n
(ii) Show that this morphism is a monomorphism and not an epimorphism.

Exercise 6.7. Let C be a category which admits small filtrant inductive lim-
its. Let us say that an object X of C is of finite type if for any functor «: I — C
with I small and filtrant, the natural map li_n)lHomC(X, o) - Hom (X, h_r)na)
is injective. Prove that this definition coincides with the usual one when
C = Mod(R) for a ring R (see Examples 1.2.4 (iv)).

Exercise 6.8. Let R be a ring.

(i) Prove that M € Mod(R) is of finite presentation in the sense of Defini-
tion 6.3.3 if and only if it is of finite presentation in the classical sense (see
Examples 1.2.4 (iv)), that is, if there exists an exact sequence R®" — R®"0 —
M — 0.

(ii) Prove that any R-module M is a small filtrant inductive limit of modules
of finite presentation. (Hint: consider the full subcategory of (Mod(A))ys con-
sisting of modules of finite presentation and prove it is essentially small and
filtrant.)

(iii) Deduce that the functor Jp defined in Diagram (6.3.1) induces an equiv-

alence Jp: Ind(Mod(R)) = Mod(R).

Exercise 6.9. Let C be a small category, F: C — C’ a functor and denote by
F,: C'" — C" the functor given by F.(Y)(U) = Hom (F(U),Y) for Y € C',
U € C. Prove that the functor F is right exact if and only if F, sends C’ to
Ind(C).

Exercise 6.10. Let C be a category and consider the functor

®:Ind(C) > C" givenby Ar>  lim  ke(X) .
(X—)A)GCA
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(i) Prove that @ commutes with small filtrant inductive limits and prove that

the composition C - Ind(C) 2 evis isomorphic to the Yoneda functor ke¢.

(ii) Assume that C admits filtrant inductive limits. Prove that the functor

@ factorizes as Ind(C) = C ke, CY, where o¢ is defined in the course of

Proposition 6.3.1.

Exercise 6.11. Let J be a full subcategory of a category C and let A €
Ind(C). Prove that A is isomorphic to the image of an object of Ind(7) if and
only if any morphism X — A in Ind(C) with X € C factors through an object
of J.

Exercise 6.12. Let G be a group and let G be the category with one object
denoted by ¢ and morphisms Homg(c,c) = G. A G-set is a set § with an
action of G. If § and S’ are G-sets, a G-equivariant map f: § — §’ is a map
satisfying f(gs) = gf(s) for all s € S and all g € G. We denote by G-Set the
category of G-sets and G-equivariant maps.

(i) Prove that G°P is equivalent to G.

(ii) Prove that G is equivalent to G-Set and that the object ¢ of G corresponds
to the G-set G endowed with the left action of G.

(iii) For a G-set X, prove that Gy is equivalent to the category C given by
Ob(C) = X and Hom,(x,y) ={g € G; y=gx} for x,y € X.

(iv) Prove that G = Ind(G).
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Localization

Consider a category C and a family S of morphisms in C. The aim of localiza-
tion is to find a new category Cs and a functor Q: C — Cs which sends the
morphisms belonging to S to isomorphisms in Cs, (Cs, Q) being “universal”
for such a property.

In this chapter, we shall construct the localization of a category when S
satisfies suitable conditions. A classical reference is [24].

We discuss with some details the localization of functors. When considering
a functor F from C to a category A which does not necessarily send the
morphisms in § to isomorphisms in A, it is possible to define the right (resp.
the left) localization of F, a functor RsF (resp. LsF) from Cs to A. Such a
right localization always exists if A admits filtrant inductive limits.

We also discuss an important situation where a functor is localizable. This
is when there exists a full subcategory Z of C whose localization is equivalent
to that of C and such that F sends the morphisms of & belonging to Z to
isomorphisms. This is the case that we shall encounter when deriving functors
in derived categories in Chap. 13.

We do not treat in this book the theory of model categories of Quillen
which would allow us to consider the quotient of categories in a more general
framework (cf. [32, 56]).

7.1 Localization of Categories

Let C be a category and let S be a family of morphisms in C.

Definition 7.1.1. A localization of C by S is the data of a big category Cs
and a functor Q: C — Cs satisfying:

(a) for alls € S, Q(s) is an isomorphism,

(b) for any big category A and any functor F:C — A such that F(s) is an
isomorphism for all s € S, there exist a functor Fs: Cs — A and an
isomorphism F =~ Fs o Q visualized by the diagram
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(¢c) if G1 and G4 are two objects of Fct(Cs, A), then the natural map
(7.1.1) Hom Fct(Cs,A)(Gl’ G2) — Hom Fct(C,.A)(Gl 00,G200)
1s bijective.

Note that (c) means that the functor oQ: Fct(Cs, A) — Fet(C, A) is fully
faithful. This implies that Fs in (b) is unique up to unique isomorphism.

Proposition 7.1.2. (i) If Cs ewists, it is unique up to equivalence of cate-
gories.
(ii) If Cs exists, then, denoting by S°P the image of S in C°P by the functor
op, (C°P)ser exists and there is an equivalence of categories:

(Cs)OP ~ (COp)Sop.
The proof is obvious.
Lemma 7.1.3. Consider three categories C, C', A and two functors Q, G :

c—2>0 %A,
Assume the following condition. For any X € C', there exist Y € C and a
morphism s: X — Q(Y) which satisfy the following two properties (a) and
(b):
(a) G(s) is an isomorphism,
(b) for any Y' € C and any morphism t: X — Q(Y'), there exist Y” € C and
morphisms s': Y — Y" and t': Y — Y" in C such that G(Q(s")) is an
isomorphism and the diagram below commutes

X —> o(Y)

rJ/ iQ(I’)

! Q(S,) "

oY) —0o(Y").

Then Q*Q.G exists and is isomorphic to G (see Definition 2.3.2), that is, the
natural map Hom gy (o0 4)(F, G) — Hom ey e 4)(F o Q, Go Q) is bijective for
any functor F: C' — A.

Remark 7.1.4. Since the conclusion of the lemma still holds when replacing the
categories with the opposite categories, the similar result holds when reversing
the arrows.
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Proof. (i) The map is injective. Let 6; and 05 be two morphisms from F to
G and assume 6;(Q(Y)) = 62(Q(Y)) for all ¥ € C. For X € C’, choose a
morphism s: X — Q(Y) such that G(s) is an isomorphism.

Consider the commutative diagram where i = 1, 2:

F(X) o) G(X)
F(s)i iG(x)
6:(0(Y))

F(Q(Y)) G(Q(Y))

Since G(s) is an isomorphism, we find 6, (X) = 62(X).

(ii) The map is surjective. Let 6: FoQ — GoQ be a morphism of functors. For
each X € C', choose a morphism s: X — Q(Y) satisfying the conditions (a)
and (b). Then define §(X): F(X) — G(X) as (X) = (G(s))~"L 0 8(Y) o F(s).
Let us prove that this construction is functorial, and in particular, does not
depend on the choice of the morphism s: X — Q(Y). (Take f = idx in the
proof below.)

Let f: X; — X5 be a morphism in C’. For any choice of morphisms
s1: X1 = O(Y1) and s2: Xo — Q(Y2) satisfying the conditions (a) and (b),
apply the condition (b) to s1: X1 — Q(Y1) and sg 0 f: X1 — Q(Y3). Then,
there are morphisms ¥; —> Y3 and Y5 = Y3 such that G(Q(f)) is an isomor-
phism and Q(#1) os1 = Q(f2) 0 55 0 f. We get the diagram

F(X1) o) G(X1)
R(i) ~
G(s1)
F(Q(Y1)) o G(o(n))
%1)) /
s G(o(n))
F(f) F(Q(Y3)) = G(Q(Y3)) G(f)
F(W ~
G(0(12))
F(Q(Y>)) g G(0(Y))
F(s2) ~
§(X2) Gls2)
F(X) G(X3).

Since all the internal diagrams commute, the square with vertices F(X),
G(X1), F(X3), G(X2) commutes. g.e.d.

Definition 7.1.5. The family S C Mor(C) is a right multiplicative system if
it satisfies the axioms S1-S4 below.

S1 Any isomorphism in C belongs to S.
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S2 If two morphisms f: X — Y and g: Y — Z belong to S, then go f belongs
to S.

S3 Given two morphisms f: X — Y and s: X — X' with s € S, there exist
t:Y—>Y andg: X' - Y witht € S and gos =t o f. This is visualized
by the diagram:

X——>Y

! :
v

R

S4 Let f,g: X = Y be two parallel morphisms. If there exists s: W — X
in S such that f os = g os, then there exists t: Y — Z in S such that
to f =tog. This is visualized by the diagram:

W——=X=—=Y it 7

Remark 7.1.6. Axioms S1-S2 asserts that there is a half-full subcategory S of

C with Ob(S) = Ob(C) and Mor(S) = S. With these axioms, the notion of a
right multiplicative system is stable by equivalence of categories.

Remark 7.1.7. The notion of a left multiplicative system is defined similarly
by reversing the arrows. This means that the condition S3 and S4 are replaced
by the conditions S’3 and S’4 below.

S’3 Given two morphisms f: X — Y and r: Y/ — Y with r € S, there exist
s: X —> Xand g: X' - Y' withs € Sand tog = fos. This is visualized
by the diagram:

X/ “““ g) Y/

Voo

X—7Y.

S’4 Let f,g: X = Y be two parallel morphisms. If there exists t: ¥ — Z
in § such that t o f =1 o g then there exists s: W — X in § such that
f os = gos. This is visualized by the diagram

Wolex—=zy—tez.

Remark 7.1.8. In the literature, “a multiplicative system” often means a sys-
tem which is both right and left multiplicative. Moreover, some authors, in
particular [24], call “right” what we call “left” and conversely. In [24], they call
our “right multiplicative system” a left multiplicative system since, as we will
see later, any morphism in the localization Cs is written as Q(s)~! o Q(f)
for some s € S and f € Mor(C). In this book we call it a right multi-
plicative system since Hom_(Q(X), Q(Y)) is expressed as the inductive limit
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1ir_r)1 Hom (X, Y’) over the right arrows ¥ — Y’ in S. The terminology “right
Y=y
localization of functors” (Definition 7.3.1) comes from the same reason. Its
particular case, “right derived functor” is widely used.

Definition 7.1.9. Assume that S satisfies the axioms S1-S2 and let X € C.
The categories SX, Sx and the functors a®: S* — C, ax: Sx — C are defined
as follows.

One should be aware that we do not ask & € § in the definition of the cate-
gories S¥ and Sx. Therefore SX is a full subcategory of CX and Sy is a full
subcategory of Cx (see Definition 3.4.1).

In the sequel we shall concentrate on right multiplicative systems.

Proposition 7.1.10. Assume that S is a right multiplicative system. Then
the category S¥ is filtrant.

Proof. (a) Let s: X — X' and s": X — X" belong to S. By S3, there exist
t: X' - X” and t': X” — X" such that ' os’ = ros, and r € S. Hence,
tos €S8 by S2and (X — X”) belongs to SX.

(b) Let s: X - X’ and s": X — X” belong to S, and consider two morphisms
frg: X' - X" with fos = gos = s'. By 54 there exists t: X" — W in
S such that fo f =tog. Hence t os’: X — W belongs to S¥ and the two
compositions (X', s) :;g (X",s") —= (W,105') coincide. g.e.d.

Definition 7.1.11. Let S be a right multiplicative system and let X,Y €
Ob(C). We set

Hom (X.Y) = lim Hom (X, Y’):li_r)nHomC(X,aY) .
(Y—Y')es”

Lemma 7.1.12. Assume that S is a right multiplicative system. Let Y € C
and let s : X — X' € S. Then s induces an isomorphism

Hom, (X', Y) % Hom, (X,Y).
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Proof. (1) The map os is surjective. This follows from S3, as visualized by the
diagram in which s,¢, ¢ € S:

X——>y <—7VY.

w
v
X/ e Y

(ii) The map os is injective. This follows from S4, as visualized by the diagram
in which 5,1, € S:

X —sx—=y =y,
8
|
Y

Using Lemma 7.1.12, we define the composition
(7.1.2) Hom (X,Y) x Homcg(Y, Z) — Hom ¢, (X,2)
as

lim Hom,(X,Y') x lim Hom (Y, Z')

Y=y’ 7=z
~ lim (Hom,(X,Y') x lim Hom,(Y, Z")
Y=y g
< lim (Hom(X,Y’) x lim Hom,(Y', Z'))
Y=y 7=z

— lim lim Hom,(X,Z')
- =
Y=Y 27
~ lim Hom,(X,Z') .
7=

Lemma 7.1.13. The composition (7.1.2) is associative.
The verification is left to the reader.

Hence we get a big category C whose objects are those of C and morphisms
are given by Definition 7.1.11.

Remark 7.1.14. One should be aware that C§ is not necessarily a U-category.
It is a U-category if S¥ is cofinally small for every X € C.

Let us denote by Q%: C — Cg the natural functor associated with

Hom,(X,Y) — lim Hom,(X,Y’).
(Y—>1))eS"

If there is no risk of confusion, we denote this functor simply by Q.
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Lemma 7.1.15. If s: X — Y belongs to S, then Q(s) is invertible.

Proof. For any Z € Cg, the map Homg, (Y, Z) — Hom, (X, Z) is bijective
by Lemma 7.1.12. q.e.d.

A morphism f: Q(X) — Q(Y) in Cj is thus given by an equivalence class
of triplets (Y, ¢, f') with¢t: Y — Y',r € S and f': X — Y/, that is:

XT>Y/<t7Y,

the equivalence relation being defined as follows: (Y’ ¢, f') ~ (Y", ¢, f") if
there exist (Y”,¢”, f) (¢t,¢',t" € §) and a commutative diagram:

/

(7.1.3) > Y“/

\ A
Note that the morphism (Y', 7, f') in Cs is Q(1)~! o Q(f’), that is,
(7.1.4) f=00"e0(f).

For two parallel arrows f, g: X =2 Y in C we have the equivalence

0(f) = Q(g) holds in Mor(Cx)

7.1.5
( ) < there exits s: ¥ — Y’ in S such that so f =s0g.

The composition of two morphisms (Y', 7, f'): X — Y and (Z',s,8'): ¥ —
Z is defined by the diagram below with #,s,s" € S:

Theorem 7.1.16. Assume that S is a right multiplicative system. Then the
big category Ci and the functor Q define a localization of C by S.

Proof. Let us check the conditions of Definition 7.1.1.

(a) follows from Lemma 7.1.15.

(b) For X € Ob(Cs) = Ob(C), set Fs(X) = F(X). For X,Y € C, we have a
chain of morphisms
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Hom,_(X,Y) = lim Hom,(X,Y')
(Y—>1")es”
- lim Hom 4(F(X), F(Y"))
(Y—>¥))eS?
~ lim  Hom 4(F(X), F(Y))
(Y—>1")eSY
~ HOI’nA(FS(X), Fs(Y)) .

This defines the functor Fs: Cs — A.
(c) follows from Lemma 7.1.3. Indeed, with the notations of this Lemma,
choose X = Q(Y) and s = idg(y). Any morphism ¢: Q(Y) — Q(Y’) is given

by morphisms Y Ly £y with ¢ € §, and the diagram in Lemma 7.1.3
(b) commutes. q.e.d.

Notation 7.1.17. From now on, we shall write Cs instead of C. This is justified
by Theorem 7.1.16.

Remark 7.1.18. (i) In the above construction, we have used the property of S
of being a right multiplicative system. If S is a left multiplicative system, we
set

Hom (X,Y) = lim Hom, (X", Y) = li_r)nHomC(ozX, Y).
(X'— X)eSx

Then Cfg is a localization of C by S.
(ii) When S is both a right and left multiplicative system, the two construc-
tions give equivalent categories. Hence, we have

Hom,_(X,Y) ~ lim Hom (X', Y)
(X'—> X)eSx
= lim Hom (X', Y")
—
(X'—>X)eSx, (Y—>1")eSY
P h_I)n Hom,(X,Y') .
(Y—>1")esS"

Definition 7.1.19. We say that a right multiplicative system S is right sat-
urated, or simply saturated, if it satisfies

S5 for any morphisms f: X > Y, g: Y — Z andh: Z — W such that go f
and h o g belong to S, the morphism f belongs to S.

Proposition 7.1.20. Let S be a right multiplicative system.

(i) For a morphism f: X — Y, Q(f) is an isomorphism in Cs if and only if
there exist g: Y — Z and h: Z — W such that go f € S andhog € S.
(ii) The right multiplicative system S is right saturated if and only if S coin-
cides with the family of morphisms f such that Q(f) is an isomorphism.
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Proof. (i)-(a) Let f: X — Y be a morphism in C and assume that Q(f) is
an isomorphism. Let (X', s, g) be the inverse of Q(f) in Cs. Hence we get
g:Y — X and s: X — X’ such that s € S and Q(s)™! o O(g) is the inverse
of Q(f). Since Q(g) o O(f) = O(s), there exists t: X’ — X” in S such that
togo f =tos (see (7.1.5)). This is visualized by the diagram

Since f o s € S, we have thus proved that, for f: X — Y in C, if Q(f)
is an isomorphism, then there exists g: ¥ — Z such that g o f € S. Then
0(g)o Q(f) is an isomorphism, and hence Q(g) is an isomorphism. Therefore,
there exists h: Z — W such that ho g € S.

(i)-(b) Conversely, assume that g o f and h o g belong to S. Then Q(g) has a
right inverse and a left inverse, hence is an isomorphism. Since Q(g) o Q(f)
is an isomorphism, it follows that Q(f) is an isomorphism.

(ii) follows from (i). q.e.d.

Assume that S is a right multiplicative system and let X € C. The functor
(7.1.6) 0: 8* — Cox)

is defined as follows. To s: X — Y € 8§X, associate Q(s)™': Q(¥Y) - Q(X) in
Corx)-

Lemma 7.1.21. Assume that S is a right multiplicative system and let X € C.
The functor 6 in (7.1.6) is cofinal.

Proof. Recall that an object (Y, f) € Co(x) isa pairof ¥ e Cand f: Q(Y) —
Q(X) € Mor(Cs), and a morphism (Y, f) — (Z,¢g) in Cy(x) is a morphism
h:Y — Z in C such that go Q(h) = f. An object (s, X') € S¥ is a morphism
X 5 X' e S. Also recall that S¥ is filtrant.

Let us check that 6 in (7.1.6) satisfies the conditions in Proposition 3.2.2 (iii).

(a) Let (Y, f) € Co(x). There exist morphisms ¥ Ly’ £ X in € such that
teSand f = Q(t) o Q(f'). Therefore f’ defines a morphism (Y, f) —
0((r,Y")).

(b) Let (s, X') be an object of SX, (Y, f) an object of Cox),andlet h,h': Y =
X' be a pair of parallel morphisms in C such that f = Q(s)™' o Q(h) =
Q(s)"t o Q(R'). Since Q(h) = Q(h'), there exists a morphism 7: X’ — X" in
S such that 1 oh =1 o h’. Then t defines a morphism ¢: (s, X') = (tos, X”)
in SX and O(p)oh =6(p)oh'. q.e.d.
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Let us give some easy properties of the localization functor Q.
Proposition 7.1.22. Let S be a right multiplicative system.

(i) The functor Q: C — Cs is right exact.

(ii) Let a: I — C be an inductive system in C indexed by a finite category
1. Assume that lima exists in C. Then h_r)n(Q oa) exists in Cs and is
isomorphic to Q(lima).

(iii) Assume that C admits cokernels. Then Cs admits cokernels and Q com-
mutes with cokernels.

(iv) Assume that C admits finite coproducts. Then Cs admits finite coproducts
and Q commutes with finite coproducts.

(v) If C admits finite inductive limits, then so does Cs.

Proof. (i) Recall that Q is right exact if for any X € C, the category Co(x) is
filtrant. Therefore the result follows from Lemma 7.1.21, Proposition 7.1.10
and Proposition 3.2.2.

(ii) follows from (i) and Proposition 3.3.2.

(iii) By (ii), it is enough to remark that any pair of parallel arrows in Cs is
isomorphic to the image by Q of a pair of parallel arrows in C.

(iv) By (ii), it is enough to remark that a finite family of objects in Cs is the
image by Q of a finite family of objects in C.

(v) follows from (iii) and (iv). q.e.d.

7.2 Localization of Subcategories

Proposition 7.2.1. Let C be a category, T a full subcategory, S a right multi-
plicative system in C, and let T be the family of morphisms in T which belong
to S.

(i) Assume that T is a right multiplicative system in Z. Then Iy — Cs is
well defined.

(ii) Assume that for every f: X — Y with f € S, X € Z, there exist g: Y —
W with W € T and go f € S. Then T is a right multiplicative system
and I — Cs is fully faithful.

Proof. (i) is obvious.

(ii) It is left to the reader to check that 7 is a right multiplicative system. For
X e T define the category 7% as the full subcategory of S* whose objects are
the morphisms s: X — Y with ¥ € Z. Then the functor 7% — S¥ is cofinal
by Propositions 7.1.10 and 3.2.4, and the result follows from Definition 7.1.11
and Proposition 2.5.2. q.e.d.

Corollary 7.2.2. Let C be a category, T a full subcategory, S a right mul-
tiplicative system in C, T the family of morphisms in I which belong to S.
Assume that for any X € C there exists s: X — W with W € Z and s € S.
Then T is a right multiplicative system and Z1 is equivalent to Cgs.
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Proof. The natural functor Zr — Cgs is fully faithful by Proposition 7.2.1 and
is essentially surjective by the assumption. q.e.d.

7.3 Localization of Functors

Let C be a category, S a right multiplicative system in C and F: C — A a
functor. In general, F does not send morphisms in S to isomorphisms in A. In
other words, F' does not factorize through Cs. It is however possible in some
cases to define a localization of F as follows.

Definition 7.3.1. Let S be a family of morphisms in C and assume that the
localization Q: C — Cg exists.

(i) We say that F is right localizable if the functor QT F (see Definition 2.3.2)
exists. In such a case, we say that QT F is a right localization of F and we
denote it by RsF. In other words, the right localization of F is a functor
RsF: Cs — A together with a morphism of functors t: F — RsF o Q
such that for any functor G: Cs — A the map

(7.3.1)  Hom peycg ay(RsF, G) = Hom g 4)(F, G o Q)

is bijective. (This map is the composition Hom gy  4)(RsF, G) —

Hom peyc,4)(RsF 0 Q, G 0 Q) == Hom ey 4)(F, G o Q).)
(ii) We say that F is universally right localizable if for any functor K: A —
A', the functor K o F is localizable and Rs(K o F) > K o RsF.

Note that if (RsF, 7) exists, it is unique up to a unique isomorphism.

The notion of a (universally) left localizable functor is similarly defined.
The left localization of F is Q' F, that is, a functor LgF: Cs — A together
with 0: LgF o Q — F such that for any functor G: Cs — A, o induces a
bijection

(7.3.2) Hom gy cq 4)(G, LsF) —> Hom ey (G o Q, F) .

One shall be aware that even if F admits both a right and a left local-
ization, the two localizations are not isomorphic in general. However, when
the localization Q: C — Cgs exists and F is right and left localizable, the
canonical morphisms of functors LsF o Q — F — RgsF o Q together with the
isomorphism Hom (LsF o Q, RsF o Q) >~ Hom (LsF, RsF) in (7.1.1) gives
the canonical morphism of functors

(7.3.3) LsF — RgF .

From now on, we shall concentrate on right localizations.
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Proposition 7.3.2. Let C be a category, T a full subcategory, S a right mul-
tiplicative system in C, T the family of morphisms in I which belong to S.
Let F: C — A be a functor. Assume that

(i) for any X € C, there exists s: X — W with W € Z and s € S,
(i) for any t € T, F(t) is an isomorphism.

Then F is universally right localizable and the composition T — C g Cs LELN

A is isomorphic to the restriction of F to I.

Proof. Denote by ¢: Z — C the natural functor. By hypothesis (i) and Corol-
lary 7.2.2, 1g: Iy — Cs is an equivalence. By hypothesis (ii) the localization
Fr of F o exists. Consider the solid diagram:

S
\//

Denote by Lél a quasi-inverse of tp and set RF := Fro Lél. Then the diagram

above is commutative, except the triangle (C,Cs,.A) labeled by nc. Let us

show that RF is the right localization of F. Let G: Cs — A be a functor.
We have the chain of a morphism and isomorphisms:

Hom Fct(C,.A)(F’ GoQs) 2, Hom Fct(I,A)(F ot,GoQsol)

Hom Fct(I,A)(FT (o] QT, Go lg © QT)
Hom gz, 4)(Fr. G o)

Hom Fct(CS,A)(FT o Lél, G)

Hom Fct(CS,A)(RF, G).

(7.3.4)

1 12 1R

The second isomorphism follows from the fact that Q7 satisfies the hypothesis
(c) of Definition 7.1.1 by Theorem 7.1.16. To conclude, it remains to prove

that the morphism X is bijective. Let us check that Lemma 7.1.3 applies

tOI—>C—>C5andhencet0I—>C%ALetXeC By the

hypothesis, there exist ¥ € Z and s: X — «(Y) with s € S. Therefore, F(s) is
an isomorphism and condition (a) in Lemma 7.1.3 is satisfied. Condition (b)
follows from the fact that ¢ is fully faithful together with axiom S3 of right
multiplicative systems.

Hence F is localizable and RgF ~ Fr o1}

If K: A— A’ is another functor, K o F(¢) will be an isomorphism for any
t € 7. Hence, K o F is localizable and we have
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R ~ -1 o -1
S(KOF)_(KOF)TOLQ _KOFTOLQ _KORsF.
q.e.d.

Under suitable hypotheses, all functors from C to A are localizable.
The functor Q: C — Cgs defines the functor

Q.: Fct(Cs, A) — Fet(C, A)

(7.3.5) G GoQ.

Proposition 7.3.3. We make the hypotheses

A admits small filtrant inductive limits,
(7.3.6) S is a right multiplicative system,
for each X € C, the category S is cofinally small.

Then

(i) Cs is a U-category,
(ii) the functor Q. in (7.3.5) admits a left adjoint functor QT: Fct(C, A) —
FCt(Cs, .A),
(iii) any functor F: C — A is right localizable and

(7.3.7) RsF(Q(X))= lim F(X') forany X eC.
(X— X")eS¥
Proof. (i) is obvious.
(ii) and (iii) By Lemma 7.1.21, 8* is cofinal to Co(x). Hence, this last category
is cofinally small and filtrant, and we may apply Theorem 2.3.3. q.e.d.

If the category A does not admit small filtrant inductive limits, one method
would be to embed it in the category of its ind-objects. However, one shall
be aware that this embedding does not commute with small filtrant inductive
limits. We discuss this point in the subsequent section.

7.4 Indization and Localization

Let C be a category and S a right multiplicative system. In this section we
shall assume that for every X € C, the category S¥ is cofinally small. We shall
make the link between localization and ind-objects.

As in Chap. 6, let us denote by ¢4 the natural functor A — Ind(A) and
similarly with ¢c.

The natural isomorphism

lim Hom,(X,Y’) = lim lim Hom/ (X', Y’)
e <~ —
(Y—>Y)eSY (X— X)eSX (Y—>Y))eSY

defines the isomorphism
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(7.4.1) Hom,_(X,Y) — HomInd(c)(“lir_I)l” o, “lim” o).

Recall that oX: SX¥ — C is the forgetful functor (X — X') > X'. It is
easily checked that the isomorphism (7.4.1) commutes with the composition.
Therefore

Proposition 7.4.1. Assume that SX is cofinally small for any X € C. The
functor

as: Cs — Ind(C), X > “lim”a® =  “lim” X’
- e
(X— X')eSX

is well defined and fully faithful.
One shall be aware that the diagram

C*Q>C3

Ind(C)

(where (¢ denotes the natural functor) is not commutative in general. However,
there is a natural morphism of functors:

(7.4.2) lc > asoQ given by e(X) — “lim” aX >~ (as o Q)(X).
Let F: C — A be a functor. Consider the diagram

F

C A

q |

CS ? Ind(C) ? Ind(A)

By (7.3.7), we have

(7.4.3) Rs(tayoF)~IFous.
Definition 7.4.2. The functor F is right localizable at X € C if “lir_)n” (F o
aX) = “lim” F(X') is representable by an object of A.

(X—>X")eSX

Lemma 7.4.3. If G: A — A’ is a functor and F is right localizable at X,
then G o F is right localizable at X.

Proof. This follows from the fact that /G: Ind(A) — Ind(A’) sends A to A'.
q.e.d.
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Proposition 7.4.4. Let F: C — A be a functor, S a right multiplicative
system in C. We assume that the category S¥ is cofinally small for any X € C.
The two conditions below are equivalent:

(i) F is right localizable at each X € C,
(i) F is universally right localizable.

Proof. (i) = (ii). If F is localizable at each X € C, then for any functor
K: A— A, K oF is localizable at each X € C by Lemma 7.4.3. Hence it
is enough to prove that F is right localizable. By (7.4.3) and the hypothesis,
there exists a functor H: Cs — A such that Rs(t4 0 F) >~ 14 0 H. To check
that H is a right localization of F, consider a functor G: Cs — A. We have
the chain of isomorphisms

Hom poy(cg,.4)(H. G) = Hom oy ¢ tacay (Rs(tao F),1a0G)
~ Hom Fct(C,Ind(.A))(L-A o F, lg O Go Q)
~ Hom FCt(C,A)(F’ G o Q) .

(ii) = (i). The hypothesis implies Rs(t40 F) >~ 14 o RsF. Therefore, Rs(t4 o
F)(X) ~ “lim” F(X') e A. q.e.d.
(X—> X')eSX

Remark 7.4.5. Let C (resp. C') be a category and S (resp. &) a right multi-
plicative system in C (resp. C’). It is immediately checked that S x S’ is a right
multiplicative system in the category C x C" and (C x C')sxs is equivalent to
Cs xCg,. Since a bifunctor is a functor on the product C xC’, we may apply the
preceding results to the case of bifunctors. For example, let (X,Y) € Cs x Cj,.
Then F is right localizable at (X, Y) if

“lim” F(X', Y
i
(X—=>X)eSX,(Yy—=>Y1)eS"”
is representable.

Exercises

Exercise 7.1. Let C be a category, S a right multiplicative system. Let 7 be
the set of morphisms f: X — Y in C such that there exist g: ¥ — Z and
h:Z— W, withhogand go f in S.

Prove that 7 is the smallest right saturated multiplicative system contain-
ing § and that the natural functor Cs — C7 is an equivalence.

Exercise 7.2. Let C be a category, S a right and left multiplicative system.
Prove that S is right saturated if and only if for any f: X - Y, g: Y — Z,
h:Z—>W,hogeSand go f €S imply g €S.
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Exercise 7.3. Let C be a category with a zero object 0, S a right multiplica-
tive system.

(i) Show that Cs has a zero object (still denoted by 0).

(ii) Prove that Q(X) ~ 0 if and only if there exists ¥ € C such that 0: X — Y
belongs to S.

Exercise 7.4. Let C be a category, S a right multiplicative system. Consider
morphisms f: X — Y and f': X’ — Y’ in C and morphisms u: X — X’ and
v: Y - Y in Cg, and assume that Q(f’) ou = v o Q(f). Prove that there
exists a commutative diagram in C

X—“'>X1<S—X/

|l

Y$Y1%Y/

with s and £ in S, u = Q(s)"1 o Q(u') and v = Q(t)~ 0 Q(V').

Exercise 7.5. Let F: C — A be a functor and assume that C admits finite
inductive limits and F is right exact. Let S denote the set of morphisms s in
C such that F(s) is an isomorphism.

(i) Prove that S is a right saturated multiplicative system.

(ii) Prove that the localized functor Fs: Cs — A is faithful.

L
Exercise 7.6. Let ¢ —— (¢’ be functors and let ¢ and 1 be two morphisms
R

of functors as in (1.5.4) and (1.5.5). Assume that (L, R, 1, &) is an adjunction
(see § 1.5) and that R is fully faithful (or, equivalently, n: L o R — id¢ is an
isomorphism). Set S = {u € Mor(C); L(u) is an isomorphism}.

(i) Prove that ¢(X): X — RL(X) belongs to S for every X € C.

(ii) Prove that S is a right saturated multiplicative system.

(iii) Prove that the functor (: Cs — C’ induced by L is an equivalence of
categories.

(iv) Prove that any functor F: C — A is universally right localizable with
respect to S and RsF ~ FoRo1t.

Exercise 7.7. Let C be a category and S a right saturated multiplicative
system. Assume that ide: C — C is universally right localizable with respect
to S. Prove that Rsid¢: Cs — C is fully faithful and is a right adjoint of the
localization functor Q: C — Cs.

Exercise 7.8. Give an alternative proof of Lemma 7.1.3 by showing that

~

G(X)— lim G(Q(Y)) for any X € C'.
(X—0(Y))eCX

Exercise 7.9. Consider three categories C,(C’, A and a functor Q: C — C'.
Assume
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(i) Q is essentially surjective,

(ii) for any X, Y € C and any morphism f: Q(X) — Q(Y), there exist Y’ € C
and morphisms #: ¥ — Y’ s: X — Y’ such that Q(s) = Q(¢) o f and
Q(#) is an isomorphism.

Prove that the functor Q,: Fct(C’, A) — Fet(C, A) is fully faithful.
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Additive and Abelian Categories

Many results or constructions in the category Mod(R) of modules over a ring
R have their counterparts in other contexts, such as finitely generated R-
modules, or graded modules over a graded ring, or sheaves of R-modules, etc.
Hence, it is natural to look for a common language which avoids to repeat the
same arguments. This is the language of additive and abelian categories.

In this chapter, we begin by explaining the notion of additive categories.
Then, we give the main properties of abelian categories and the basic results
on exact sequences, injective objects, etc. in such categories. In particular,
we introduce the important notion of a Grothendieck category, an abelian
category which admits exact small filtrant inductive limits and a generator.

Then we study the action of a ring on an abelian category and prove the
Gabriel-Popescu theorem (see [54]) which asserts that a Grothendieck cate-
gory is embedded in the category of modules over the ring of endomorphisms
of a generator.

We study with some details the abelian category Ind(C) of ind-objects
of an abelian category C and show in particular that the category Ind(C) is
abelian and the natural functor C — Ind(C) is exact.

Finally we prove that under suitable hypotheses, the Kan extension of a
right (or left) exact functor defined on an additive subcategory of an abelian
category remains exact.

Complementary results on abelian categories will be given in the Exercises
as well as in Sect. 9.6.

8.1 Group Objects

The notion of representable functor allows us to extend various algebraic no-
tions to categories. Let us simply give one example.

We denote by Group the category of groups and we denote by for: Group
— Set the forgetful functor.
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Definition 8.1.1. Let C be a category. An object G in C is called a group
object_if there is given a functor G: C°® — Group such that G represents
foroG.

In other words, a group object structure on G is a decomposition of the functor
Hom,(-, G): C°? — Set into C°? — Group — Set.

Let us identify G with G. For X € C, we shall write G(X) instead of
Hom, (X, G).
(i) Denote by uyx: G(X)x G(X) — G(X) the multiplication map of the group
G(X). This map is functorial with respect to X, that is, if f: X — Y is a
morphism in C, the diagram below commutes:

G(X) x G(X) > G(X)
lG(f)xG(f) iom
29

G(Y) x G(Y) =~ G(Y) .

Since there is a functorial isomorphism G(X) x G(X) =~ (G x G)(X), we get
a morphism in C*:

nu:GxG—G.

The associativity of the multiplication in groups implies that the diagram
below in C” is commutative

id xp
GxGxG—=GxG

GxG——¢G.

We shall say that the morphism pu is “associative”.

(ii) Denote by e the neutral element in G(X). It gives a map {pt} - G(X),
functorial with respect to X. Hence we get a morphism (that we denote by
the same letter) e: pten — G. Here, pten is the terminal object of C*. The
identities x -e = x and e-x = x are translated into the commutative diagrams

(id,e) (e,id)
G————>GxG G————GxG
3 iu \ lu
G G.

(iii) Denote by ax: G(X) — G(X) the map x > x~!. These maps are func-
torial with respect to X and define a morphism a: G — G. The identities
x-x'=eand x~!-x = e are translated into the commutative diagrams
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(id,a) (a,id)

G——>GxG G——>GxG
i P £
ptcA %G ptcf\ %G .

Conversely, the data of (G, i, e, a) satisfying the above properties endows
G with a structure of a group object.
If C admits finite products, then these diagrams are well defined in C.

Now assume that G represents a functor with values in Mod(Z). In such
a case, we say that G is a commutative group object.
Let us denote by

(8.1.1) 1:GxG—->GxG

the morphism associated to the map (a, b) — (b, a). Then the condition for
the group object to be commutative is wov = w. In other words, the diagram
below commutes

GxG—>GxG

g

Lemma 8.1.2. Let F: C — C' be a functor and assume one of the following
conditions

(i) C admits finite products and F commutes with such products,
(ii) F is left exact.

If an object X € C has a structure of a group object, then so does F(X).

Proof. The case (i) is obvious. In case (ii), the functor F:C" — (C')" is exact
by Corollary 3.3.19. In particular, F commutes with finite products. q.e.d.

8.2 Additive Categories

Definition 8.2.1. A pre-additive category is a category C such that for any
X,Y € C, Hom,(X,Y) is endowed with a structure of an additive group and
the composition map o is bilinear.

Ezample 8.2.2. Mod(Z) is a pre-additive category.

Lemma 8.2.3. Let X1 and X2 be objects of a pre-additive category C.
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(i) Assume that X1 x Xo exists in C and denote by py: X1 X Xo — X the
projection (k =1, 2). Let iy: X; — X1 X Xo be the morphism defined by

o Jidx, i j =k,
(821) Pjolr = {0 if j # k.
Then, we have

(8.2.2) i10p1+izopy=idy,xx, -

(ii) Conversely, let Z € C and let py: Z — Xy and iy: Xy — Z be morphisms
(k =1,2) satisfying (8.2.1) and (8.2.2). Then Z is a product of X1 and
X2 by (p1, p2) and a coproduct by (i1, i2).

Proof. (i) We have

pro(iyopi+izopz) = (proii)opi+(pioiz)ops=p1=pioidx xx, -

Similarly,
p2o (i1op1+izops) = proidyx,xx, -

Hence, il o p1 + i2 O pPo = idX]XXQ'
(ii) For any Y € C, write

Z :=Hom,(Y, Z) € Mod(Z) ,

X; :=Hom,(Y, X;) € Mod(Z), k=1,2.

The morphisms X, AN X, satisfy the conditions similar to (8.2.1) and
(8.2.2) and we get an isomorphism 75X x X by a classical result of

additive groups. Hence, Z is a product of X; and X5. By reversing the arrows,
we find that Z is a coproduct of X; and Xs. q.e.d.

We can reformulate Lemma 8.2.3.

Corollary 8.2.4. Let C be a pre-additive category and let X1, X9 € C. If
X1 x Xy exists in C, then X1 U Xy also exists. Moreover denoting by i;: X; —
X1 UXo and pj: X1 x X9 — X the j-th co-projection and projection, the
morphism

r: X1uXy — X1 x Xo

given by
' . |idx, ifj=k,
PJ‘”‘”’“{O ifj#k.

is an isomorphism
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Notation 8.2.5. (1) The object Z in Lemma 8.2.3 (ii) is denoted by X; & X»
and is called a direct sum of X; and X5. Note that a direct sum of X; and X»
is also a product as well as a coproduct of X; and Xo.

(ii) For historical reasons, if {X;};cs is a small family of objects of C and the
coproduct | [,.; X; exists in C, it is denoted by €P X; and still called the direct

iel

iel
sum of the X;’s.

Corollary 8.2.6. Let C be a pre-additive category, X,Y € C and fi, fo €
Hom,(X,Y). Assume that the direct sums X ® X and Y @ Y exist. Then
fi+ fo e Hom,(X,Y) coincides with the composition

XX xox 2 yoy By,
Here §x: X - X x X ~ X & X 1s the diagonal morphism and oy: Y @Y =~
YUY — Y is the codiagonal morphism.

Proof. Letij: X - X®X and pj: X® X — X be the j-th co-projection and
projection. Then we have py o (i +i2) = p1oi1 + p1oiz =idyx = p10d8x and
similarly ps o (i1 4 i2) = p2 0 8x. Hence we obtain i; + i = 8x. On the other
hand we have oy o (f1 U f2) oi; = f;, which implies

oy o (f1® f2) odx =oyo(fill fa)o (i1 +i2)
=oyo(fil fa)oii+oyo(fil fa)ois
=f+fo.

q.e.d.

Definition 8.2.7. Let F: C — C' be a functor of pre-additive categories. We
say that F is additive if the map Hom(X,Y) — Hom, (F(X), F(Y)) is ad-
ditive for any X,Y € C.

Definition 8.2.8. An additive category is a category C satisfying the condi-
tions (1)—(iv) below.

(i) C has a zero object, denoted by 0.

(ii) For any X1, X2 € C, the product X1 x X2 and the coproduct X1 UXo exist.

(iii) For any X1, Xs € C, define the morphism r: X1 U Xo — X1 x Xo as
follows: the composition X — X1 U Xo — X1 X Xo — X;jis0if j#k
and is idx, if j = k. Then r is an isomorphism.
(Recall that, for X,Y € C, the zero morphism 0: X — Y is the composi-
tion X - 0—>7Y).

(iv) For any X € C, there exists a € Hom (X, X) such that the composition

Sx (a,idx) ~ ox
X X x X S ¥ X < xux 2> x

1s the zero morphism. Here, §x s the diagonal morphism and ox is the
codiagonal morphism.
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Note that if C is additive, then so is C°P.

Lemma 8.2.9. Let C be a pre-additive category which admits finite products.
Then C 1is additive.

Proof. This follows from Lemma 8.2.3 and Corollary 8.2.6. Note that the
morphism a in Definition 8.2.8 (iv) is given by —idy. q.e.d.

Lemma 8.2.10. Let C be an additive category. Then any X € C has a struc-
ture of a commutative group object.

Proof. We define the composition morphism u: X x X — X by the composi-
tion

XxX<=——XuX—"=X.

Then u satisfies the associative law thanks to the commutative diagram below:

XxXxX<—(XuX)x X X% xxx

rxX
NTXXr NT NT,
~ oxuX
Xx(XUX)<——XUXUuX 2> xuX

ianX \LXUUX lﬂx
ox

XxX<———XuX——>X.
The inverse morphism a: X — X is given by Definition 8.2.8 (iv). It is easily
checked that these data give a commutative group structure on X. q.e.d.
In the sequel, we shall denote by for the forgetful functor Mod(Z) — Set.

Lemma 8.2.11. Let C be an additive category and let F: C — Mod(Z) be
a functor commuting with finite products. For any X € C, the addition map
F(X)x F(X) = F(X) of the additive group F(X) is given by the composition

E: F(X)x F(X)<— F(X x X)<F?T F(XuX) M,F(X) :

Proof. Let i,: F(X) — F(X) x F(X) (v=1,2) be the map given by i1(x) =
(x,0), i2(x) = (0, x). By the commutative diagram

F(X)<~———— F(Xx0) =—— F(XU0) —— F(X)
F(X)x F(X) =<——F(XxX) =——F(XuX) —— F(X),

we obtain & oi; = idp(x). Similarly, £ o iz = idr(x). Since £ is a morphism in
Mod(Z), we obtain the result. q.e.d.
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Proposition 8.2.12. Let C be an additive category and let F, F': C —
Mod(Z) be functors commuting with finite products. Then

Hom g e moa(zy) (Fs F') —> Hom Fet(C.Set) (for o F, for o F') .

Proof. The injectivity of the map is obvious since for is faithful. Let us prove
the surjectivity.

Let ¢: foroF — foroF’ be a morphism of functors. By Lemma 8.2.11, the
map foro F(X) — foro F'(X) commutes with the addition map, and hence it
gives a morphism ¢(X): F(X) — F'(X) in Mod(Z). It is easily checked that
the family of morphisms {¢(X)}xcc defines a morphism F — F'. q.e.d.

Proposition 8.2.13. Let C be an additive category and let F: C — Set be
a functor commuting with finite products. Then there is a functor F: C —

Mod(Z) such that F_is isomorphic to the composition C LN Mod(Z) 1% Set.
Moreover, such an F is unique up to unique isomorphism.

Proof. Any X € C has a structure of a commutative group object. Hence, by
Lemma 8.1.2, F(Xl has a structure of a commutative group object, hence
defines an object F(X) € Mod(Z). The uniqueness follows from Proposi-
tion 8.2.12. q.e.d.

Theorem 8.2.14. Let C be an additive category. Then C has a unique struc-
ture of a pre-additive category.

Proof. Let X € C. By applying Proposition 8.2.13 and 8.2.12 to the functor
F = Hom,(X, -), we obtain that Hom,(X, Y) has a structure of an addi-
tive group. For f,g € Hom,(X,Y), f + g € Hom,(X,Y) is given by the
composition

k)
X xxx 5 vy

(8.2.3) T . . TN

Xux syuy-—2svy.

Hence, + is symmetric by reversing the arrows.
oh

For h € Hom (W, X), Hom,(X, -) — Hom(W, +) is a morphism in
Fct(C, Mod(Z)) by Proposition 8.2.13. Hence, (f +g)oh = foh+ goh for
f. & € Hom (X, Y). By reversing the arrows we obtain ko(f+g) = ko f+kog
for k € Hom,(Y, Z). Thus C has a structure of a pre-additive category.

Conversely, if C has a structure of a pre-additive category, then for f,
g €Hom,(X,Y), f+ g is given by (8.2.3) in virtue of Corollary 8.2.6. q.e.d.

Proposition 8.2.15. Let C and C' be additive categories and let F: C — C'
be a functor. Then F is an additive functor if and only if it commutes with
finite products.
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Proof. For any X € C, we have two functors «, 8: C — Mod(Z) given by
C>Yr «aY):=Hom(X,Y) and C 5 Y — B(Y) := Hom, (F(X), F(Y)).
Then o and B commute with finite products and hence the canonical morphism
for oa — for o B lifts to a morphism « — S by Proposition 8.2.12. q.e.d.

Corollary 8.2.16. Let C and C' be additive categories and let F: C — C’ be
a fully faithful functor. Then F is additive.

Proof. Let X,Y € C. We endow the set Hom (X, Y) with the additive group
structure inherited from the bijection Hom(X,Y) >~ Hom (F(X), F(Y)).
This defines a pre-additive structure on C, and this structure coincides with
the original one by Theorem 8.2.14. Hence F is additive. q.e.d.
Ezamples 8.2.17. (i) If R is a ring, Mod(R), Mod!(R) and Mod'?(R) (see Ex-
ample 1.2.4 (iv)) are additive categories.

(ii) Ban, the category of C-Banach spaces and linear continuous maps is
additive.

(iii) Let I be a small category. If C is additive, the category Fet(I,C) of
functors from I to C, is additive.

All along this book we shall encounter sequences of morphisms in additive
categories.

Definition 8.2.18. A complex X* in an additive category C is a sequence of
objects {X'}jez and morphisms dy: X/ — X/t such that dy o d)jfl =0 for
all j.
Remark 8.2.19. We shall also encounter finite sequences of morphisms

X/ £> xJi+1 artt o oa! xk

such that d" o d"~! = 0 when it is defined. In such a case we also call such a
sequence a (finite) complex. We sometimes identify it with the complex

In particular, X’ Lx3 Xisa complex if and only if go f = 0.
In the subsequent chapters we shall often encounter diagrams in additive

categories which commute up to sign.

Definition 8.2.20. Let ¢ = £1. A diagram in an additive category X L Y
o
k
V—Z
is e-commutative if g o f = e(k o h). If it is (—1)-commutative, we say also
that it is anti-commutative (or anti-commutes).
Convention 8.2.21. All along this book, a diagram in an additive category

with horizontal and vertical arrows will be called a diagram of complezes if
all rows and all columns are complexes.
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8.3 Abelian Categories

From now on, C, C’ will denote additive categories.

Definition 8.3.1. Let f: X — Y be a morphism in C.

(i) The kernel of f, if it exists, is the fiber product of X Ly« 0, that is,
X xy 0. It is denoted by Ker f. Equivalently, Ker f is the equalizer of the
parallel arrows f,0: X =3 Y.

(ii) The cokernel of f, if it exwists, is the kernel of f in C°P. It is denoted by
Coker f. Equivalently, Coker f is the co-equalizer of the parallel arrows
0 X=3Y.

Note that for a pair of parallel arrows f, g: X = Y, we have Ker(f, g) =
Ker(f — g) and Coker(f, g) = Coker(f — g).
By its definition, Ker f is a representative of the contravariant functor

Ker(Hom(+, f)): Z — Ker(Hom(Z, X) - Hom,(Z, Y)) .

Here, Ker on the right hand side is the kernel in the category of additive
groups, that is, the inverse image of {0}.

Hence, if Ker f exists, it is unique up to a unique isomorphism, and there
is a morphism A: Ker f — X with f oh = 0 and such that any g: W — X
with f o g = 0 factorizes uniquely through h. This can be visualized by the

diagram:
i X
g
- !

Ker f s X——7Y.
Recall that
(8.3.1) h is a monomorphism.

Hence Ker h >~ 0. Also note that Ker f >~ 0 if and only if f is a monomorphism.

Finally, note that Ker f => X if and only if f is the zero morphism.
Similarly, Coker f is a representative of the functor

Ker(Hom(f, +)): Z — Ker(Hom,(Y, Z) - Hom (X, Z)) .

If Coker f exists, it is unique up to a unique isomorphism, and there is a
morphism k: ¥ — Coker f with ko f = 0 and such that any g: ¥ — W with
g o f = 0 factorizes uniquely through k. The cokernel may be visualized by
the diagram:

X*f>Y*k>Cokerf

w.



176 8 Additive and Abelian Categories

Note that

(8.3.2) k is an epimorphism,
and Coker f >~ 0 if and only if f is an epimorphism.

Example 8.3.2. Let R be a ring. The kernel of a morphism f: M — N in
Mod(R) is the R-module f~!(0) and the cokernel of f is the quotient R-
module N/f(M). Let I be a left ideal which is not finitely generated and let
M = R/I. Then the natural morphism R — M has no kernel in Modf(R).

Let C be an additive category in which every morphism admits a kernel and
a cokernel. Recall that (see Proposition 2.2.4):

Yo uyx ¥y >~ Coker(igo fo —i10 fi: X > Yo ® Yq)
for morphisms fp: X — Yy and f1: X — Y7,

Xoxy X1 ~Ker(gopopo—g1op1: Xo® X1 —Y)
for morphisms go: Xo — Y and g1: X1 —» Y.

Here, i,: Y, — Yy @ Y; is the co-projection and p,: Xog & X1 — X, the
projection (v =0, 1).

Notation 8.3.3. We shall often write Yy @y Y7 instead of Yy Ly Y;.

Also recall the image and coimage of a morphism given in Definition 5.1.1:

Coim f = Coker(X xy X = X),
Imf=Ker(Y =2Y®xY).

Proposition 8.3.4. Let C be an additive category which admits kernels and
cokernels. Let f: X — Y be a morphism in C. We have

Coim f >~ Coker h, where h: Ker f — X,
Im f ~ Kerk, where k: Y — Coker f .

Proof. 1t is enough to treat Coim. Recall that p;, pa: X xy X =2 X denote
the two canonical morphisms. Let Z € C. By the definition of Coim, we have

Hom (Coim f, Z) ~ {u: X - Z;u o p1 =uo pa}.
Using the definition of X xy X, we also have

Hom (Coim f, Z) >~ {u: X — Z;u o 91 = u o ¢y for any W € C and
any @1, 92 € Hom (W, X) with fo@1 = fopa}.

The condition on u is equivalent to

uo@=0for any W € C and any ¢ € Hom,(W, X) with fop =0.
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Since such a ¢ factors uniquely through h: Ker f — X, we obtain

Hom(Coim f, Z) ~ {u: X — Z;u o h = 0}
~ Hom(Coker h, Z)

functorially in Z. Hence, Coim f >~ Coker A. q.e.d.

Applying Propositions 8.3.4 and 5.1.2, we get a natural morphism Coim f —
Im f. This morphism is described by the diagram (see Proposition 5.1.2):

Ker f " X ! Yy —* = Coker f.

L

Coim f “ >Im f

Definition 8.3.5. An additive category C is abelian if:

(i) any morphism admits a kernel and a cokernel,
(ii) any morphism f in C is strict (see Definition 5.1.4), i.e., the natural
morphism Coim f — Im f is an isomorphism.

Recall that in an additive category, a morphism f is a monomorphism (resp.
an epimorphism) if and only if Ker f >~ 0 (resp. Coker f =~ 0). In an abelian
category, a morphism which is both a monomorphism and an epimorphism is
an isomorphism (see Proposition 5.1.5 (ii)).

Note that abelian categories admit finite inductive limits and finite pro-
jective limits.

Remark 8.3.6. The following assertions are easily checked.

(i) If {C;}ies is a small family of abelian categories, then the product category
[l;c; Ci is abelian.

(i) Let I be a small category. If C is abelian, the category C! of functors
from I to C is abelian. For example, if F, G: I — C are two functors and
¢: F — G is a morphism of functors, define the functor N by N(X) :=
Ker(F(X) — G(X)). Clearly, N is a kernel of ¢.

(iii) If C is abelian, then the opposite category C°P is abelian. Note that
for a morphism f: X — Y in C, we have Ker(f°P) >~ (Coker(f))°P,
Coker(f°P) ~ (Ker(f))°P, Im(f°P) =~ (Coim(f))°? and Coim(f°P) =~
(Im(f))°P.

Ezamples 8.3.7. (i) If R is a ring, Mod(R) is an abelian category.

(ii) The category Modf(R) is abelian if and only if R is a Noether ring. If
ModP(R) is abelian, we say that R is coherent .

(iii) The category Ban of Banach spaces over C admits kernels and cokernels.
If f: X — Y is a morphism of Banach spaces, then Ker f = f~!(0) and
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Coker f = Y/Im f where Im f denotes the closure of the vector space Im f.
It is well-known that there exist continuous linear maps f which are injective,
with dense and non closed image. For such an f, Ker f = Coker f = 0,
Coim f >~ X and Im f >~ Y, but Coim f — Im f is not an isomorphism. Thus
Ban is not abelian. However, Ban is a quasi-abelian category in the sense of
J-P. Schneiders [61].

Unless otherwise stated, C is assumed to be abelian until the end of this
section.
Consider a complex

(8.3.3) X' L x 2 X" (hence go f =0).

Since Im f — X — X" is zero, Im f — X factors through Ker g. Similarly,
X — Im g factors through Coker f. We thus have a commutative diagram

>—>Kerg

AN
N

Coker f — Y e m g

Note that ¢ is a monomorphism and v is an epimorphism. Let u: Kerg —
Coker f be the composition Ker g — X — Coker f. We have the morphisms
Im f— Keru— Ker(X — Coker f) >~ Im f. Therefore Keru >~ Im f. Simi-
larly, Cokeru >~ Im g. Since Imu >~ Coim u, we get the isomorphisms

Imu >~ Coker(Im f — Ker g) ~ Coker(X’ — Ker g)

8.3.4
( ) ~ Ker(Coker f — Im g) >~ Ker(Coker f — X").

Therefore the conditions below are equivalent

(8.3.5) u=0= Imf>Kerg < X'—»Kerg
- = Coker f = Im g <= Coker f—X".

Definition 8.3.8. Consider a complex X’ Lox 5 X asin (8.3.3).

(i) We shall denote by H (X' Lxs X") any of the isomorphic objects in
(8.3.4) and call it the cohomology of the complex (8.3.3).
(ii) The complex (8.3.3) is exact if the equivalent conditions in (8.3.5) are

satisfied, that is, if H(X' > X % X") ~ 0.
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(iii) More generally, a complex X/ — --- — X* is exact if any sequence
X1 X" — X" extracted from this complex is exact.
An exact complex is also often called an exact sequence.

Convention 8.3.9. All along this book, a diagram of complexes in an abelian
category (see Convention 8.2.21) will be called an ezact diagram if all rows
and all columns are exact.

Note that the complex (8.3.3) is exact if and only if it is exact in C°P.
Indeed, we have (see Remark 8.3.6 (iii))

nop 8°° op I°° /0 A 8 17\0
H(X"P =— X = X'y~ H(X' > X > X")P.

A complex 0 - X’ Lx (resp. X 5 x> 0) is exact if and only if f is a
monomorphism (resp. g is an epimorphism).

Note that a complex X LN ¥ :v; Z is exact in the sense of Defini-
w

tion 2.2.2 if and only if the sequence 0 — X 5y 25 7 is exact.

Hence, a complex 0 — X’ Lox % x (resp. X’ Lxd x> 0) is
exact if and only if X" — Ker g is an isomorphism (resp. Coker f — X" is an
isomorphism). A complex

0> XL x5 x 50

is exact if and only if X’ — Ker g and Coker f — X’ are isomorphisms. Such
an exact complex is called a short exact sequence.
Any morphism f: X — Y may be decomposed into short exact sequences:

0—-Kerf>X—->Imf—0,

(8.3.6)
0 > Imf — Y — Coker f — 0.

Recalling Definition 2.2.7, we see that a square

(8.3.7) g/l f lg

is Cartesian if and only if the sequence 0 — X’ M (f.2)

X®Y —/ Y is exact.

The square is co-Cartesian if and only if the sequence X’ M) XY M)

Y — 0 is exact.

Notations 8.3.10. Familiar notions for the categories of vector spaces are nat-
urally extended to abelian categories. Let Y>—X be a monomorphism. We
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sometimes identify ¥ with the isomorphism class of such monomorphisms,
say abusively that Y is a subobject of X (see Definition 1.2.18), and write
Y C X. Similarly, we sometimes abusively call the cokernel of ¥ — X a
quotient of X and denote it by X/Y.

If X; and X5 are subobjects of X, we sometimes set X1 N Xo = X1 xx X,
and X7 + Xo = Im(X; @ X5 — X). For a finite family of subobjects {X;};c; of
X we define similarly the subobjects (),.; X; and ), X;.

If f: X — Y is a morphism and Z is a subobject of ¥, we set f~1(Z) =
X Xy Z.

We shall now prove some lemmas of constant use.
Lemma 8.3.11. Consider the square (8.3.7).

(a) Assume that (8.3.7) is Cartesian.

(i) We have Ker f' = Ker f,
(ii) if f is an epimorphism, then (8.3.7) is co-Cartesian and f' is an
epimorphism.
(b) Assume that (8.3.7) is co-Cartesian.
(i) We have Coker f = Coker f,

(ii) of f' is a monomorphism, then (8.3.7) is Cartesian and f is a
monomorphism.

Proof. (a) (i) Let S € C. There is a chain of isomorphisms

Hom (S, Ker f’) ~ Ker(Hom (S, X') - Hom (S, Y"))
~ Ker(Hom (S, X) Xpom (s,y) Hom (S, Y") - Hom (S, Y"))
~ Ker(Hom (S, X) — Hom (S, Y))
~ Hom (S, Ker f) .
(ii) If f is an epimorphism, then the sequence 0 - X' - X @Y — ¥ —
0 is exact, hence the square is both Cartesian and co-Cartesian. Therefore

Coker f’ >~ Coker f by applying (i) with the arrows reversed.
(b) follows from (a) by reversing the arrows. q.e.d.

Lemma 8.3.12. Let X' 5> X % X" be a complez (i.e., go f =0). Then the
conditions below are equivalent:

(i) the complex X’ Lox & x"is exact,
(ii) for any morphism h: S — X such that g o h = 0, there exist an epimor-
phism f': 8’8 and a commutative diagram

ot

S —3S

L, N
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Proof. (i) = (ii). It is enough to choose X’ Xkerg S as §'. Since X' — Kerg
is an epimorphism, S — S is an epimorphism by Lemma 8.3.11.

(ii) = (i). Choose S = Ker g. Then the composition §" — X' — Ker g is an
epimorphism. Hence X’ — Ker g is an epimorphism. q.e.d.

Lemma 8.3.13. [The “five lemma”]| Consider a commutative diagram whose
rows are complezes

X0 X! X2 X3
R I
YO Y! Y? Y3,

and assume that X' — X2 — X2 and Y — Y' — Y? are exact sequences.

(i) If f° is an epimorphism and f', f3 are monomorphisms, then f? is a
monomorphism.

(ii) If £2 is a monomorphism and f°, f? are epimorphisms, then f' is an
epimorphism.

The classical “five lemma” corresponds to the case of five morphisms f/: X/ —
Y/, j =0,...,4 and exact complexes. It asserts that if f0, f!, f3, f* are
isomorphisms, then f? is also an isomorphism. Clearly, this is a consequence
of Lemma 8.3.13.

Proof. (ii) is deduced from (i) by reversing the arrows. Hence, it is enough
to prove (i). Let h: S — X2 be a morphism such that # o f2 = 0. We shall

prove that # = 0. The composition § — X? — X3 £ oys vanishes. Since
f2 is a monomorphism by the hypothesis, the composition § — X2 — X3
vanishes. Applying Lemma 8.3.12, there exist an epimorphism S'—S and a
commutative solid diagram

50 > 5l ——>
R X! Xx? x?
RN
‘YO y! Y2 Y3.

Since the composition ' — X' — Y! — Y2 vanishes, we find by applying
again Lemma 8.3.12 that there exists an epimorphism §'°—S! such that §'° —
S' — X! — v! factors as §'° — Y — Y.

Since f%: X% — Y9 is an epimorphism, there exists an epimorphism
5980 such that S° — §0 — YO factors through $° — X" — Y9 We
get a diagram
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§0 ——=> gl — = ¢

N

X0 X1 X2 X3
Yo y! Y2 Y3.

Note that the square diagram labeled “A” commutes since the two composi-
1 1

tions SO — ' = X' L5 y1 and 8° - X0 — x' L5 y1 coincide and flis

a monomorphism. Therefore the composition S — S* — § — X? vanishes.

Since S — S' — S is an epimorphism, S — X? vanishes. This shows that

f2: X2 > Y? is a monomorphism. q.e.d.

Proposition 8.3.14. Let 0 —> X’ EN X % X" = 0 be a short ezact sequence
in C. Then the conditions below are equivalent:

(i) there exists h: X" — X such that g o h = idy»,

(ii) there exists k: X — X' such that k o f = idy,

(iii) there exist h: X" — X and k: X — X' such thatidy = fok+hog,
)

(iv) there exist ¢ = (k,g) and ¥ = (f.h) such that X 5> X' @& X" and
X & X" AN X are isomorphisms inverse to each other,

(v) for any Y € C, the map Hom (Y, X) Lid Hom (Y, X") is surjective,

(vi) for any Y € C, the map Hom,(X,Y) 2N Hom (X', Y) is surjective.

Proof. (1) = (iii). Since g = gohog, we get go(idy —hog) = 0, which implies
that idy —h o g factors through Ker g, that is, through X’. Hence, there exists
k: X — X' such that idy —hog = f ok.

(iii) = (i). Since go f =0, we find g = goho g, that is (goh —idys) o g = 0.
Since g is an epimorphism, this implies g o A — idy» = 0.

(iii) < (ii) follows by reversing the arrows.

(iv) < (iii) is obvious, as well as (i) < (v) and (ii) < (vi). q.e.d.

Definition 8.3.15. If the equivalent conditions of Proposition 8.3.14 are sat-
isfied, we say that the short exact sequence splits.

Note that an additive functor of abelian categories sends split short exact
sequences to split short exact sequences.

Definition 8.3.16. An abelian category is called semisimple if all short exact
sequences split.

For another characterization of semisimplicity, see §13.1.

Ezamples 8.3.17. (i) In the category Mod(Z), the exact sequence 0 — Z 2z
7 — 7./27Z — 0 does not split.
(ii) If k is a field, then Mod(k) is semisimple.
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Proposition 8.3.18. Let F: C — C' be an additive functor of abelian cate-
gories. Then F is left exact if and only if it commutes with kernels, that is,
if and only if, for any exact sequence 0 - X' — X — X" in C, the sequence
0— F(X') > F(X) > F(X") is exact.

Proof. Applying Proposition 3.3.3, we find that F: C — (C’ is left exact if
and only if it commutes with finite projective limits. Since F is additive, it
commutes with finite products. Therefore, F commutes with finite projective
limits if and only if it commutes with kernels, by Proposition 2.2.9. q.e.d.

Similarly, an additive functor F is right exact if and only if it commutes
with cokernels, that is, if and only if if for any exact sequence X’ — X —
X" — 0 in C, the sequence F(X') - F(X) — F(X") — 0 is exact.

Recall that a contravariant functor G: C — C’ is a functor from C°P to
C'. Hence a contravariant functor G is left (resp. right) exact if and only if it
sends an exact sequence X' - X — X” — 0 (resp. 0 > X' — X — X") to
an exact sequence 0 - G(X") - G(X) — G(X') (resp. G(X") — G(X) —
G(X') = 0).

Note that F is left exact if and only if for any exact sequence 0 — X' —
X - X" — 0in C, the sequence 0 - F(X') - F(X) — F(X”) is exact, and
similarly for right exact functors. Moreover F is exact if and only if for any
exact sequence X’ — X — X” in C, the sequence F(X') - F(X) — F(X") is
exact. (See Exercise 8.17.)

Recall (see Proposition 3.3.7) that the functor Hom,: C°? x C — Mod(Z)
is left exact with respect to each of its arguments. Moreover, if F: C — ('
and G: C' — C are two functors, and F is a left adjoint to G, then F is right
exact and G is left exact.

Ezample 8.3.19. Let k be a field and let A = k[x]. Consider the additive func-
tor F: Mod(A) — Mod(A) given by M + x - M. Then F sends a monomor-
phism to a monomorphism and an epimorphism to an epimorphism. On the
other-hand, consider the exact sequence 0 — x-A - A — A/(x-A) — 0. Ap-
plying the functor F, we get the sequence 0 — x2-A — x-A — 0 — 0. Neither
the sequence 0 — x2-A — x-A — 0 nor the sequence x2-4 — x-A — 0 — 01is
exact. Hence, the functor F is neither left nor right exact. (See Exercise 8.33.)

Example 8.5.20. Let R be a k-algebra.

(1) The bifunctor Hom ,: Mod(R)°P x Mod(R) — Mod(k) is left exact with
respect to each of its argument. If R is a field, this functor is exact.

(ii) The bifunctor * ® « : Mod(R?) x Mod(R) — Mod(k) is right exact with
respect to each of its argument. If R is a field, this functor is exact.

(iii) Recall that the category Mod(R) admits small inductive and projec-
tive limits. Moreover, if [ is small and filtrant, the functor h_r)n : Mod(R)! —

Mod(R) is exact. If I is discrete, then lim and lim are exact.
- <~

By Proposition 2.2.9, the abelian category C admits small projective (resp.
inductive) limits if and only if it admits small products (resp. direct sums).
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We shall introduce several notions concerning subcategories, which will be
frequently used later.

Definition 8.3.21. Let J be a full subcategory of C. Denote by J' the full
subcategory of C defined as follows: X € J' if and only if there exist Y € J
and an isomorphism X ~ Y.

(i) We say that J is closed by subobjects (resp. by quotients) if for any
monomorphism X—Y (resp. epimorphism Y—X) with Y € J, we have
XeJ.

(ii) We say that J is closed by kernels (resp. cokernels) if for any morphism
f:X—>Y inJ, Ker f (resp. Coker f) belongs to J'.

(iii) We say that J is closed by extensions in C if for any exact sequence
0> X -X—->X"—-0inC with X',X" inJ, we have X € J'.

(iv) We say that J is thick in C if it is closed by kernels, cokernels and
extensions.

(v) We say that J is cogenerating in C if for any X € C there exist Y € J
and a monomorphism X—Y.

(vi) We say that J is generating in C if J°P is cogenerating in C°P. This
is equivalent to saying that for any X € C there exist Y € J and an
epimorphism Y —»X.

(vil) We say that J is a fully abelian subcategory of C if J is an abelian full
subcategory of C and the embedding functor is exact.

Remark 8.3.22. (i) A full subcategory J of C is additive if and only if 0 € J
and X @Y € J for any X,Y € J (see Corollary 8.2.16).

(ii) A full additive subcategory J of C is a fully abelian subcategory if and
only if J is closed by kernels and cokernels.

(iii) A full additive subcategory J of C is thick if and only if for any exact
sequence Xg = X1 — X2 »> X3 > X4 inC, X, € J for v =0, 1, 3,4 implies
that X5 is isomorphic to an object of 7.

Let us give a criterion for a fully abelian subcategory to be thick.

Lemma 8.3.23. Let C be an abelian category and J a fully abelian subcate-
gory. Assume that

for any epimorphism X — Y with Y € J, there exists a mor-
(8.3.8) {phismY' — X withY' € J such that the composition Y — X —
Y is an epimorphism,

Then J is thick in C.

Proof. We may assume that 7 is saturated. Consider an exact sequence 0 —
Y- X—Y"— 0in C with Y, Y” in J. We shall show that X € 7. By the
hypothesis, there exists an exact commutative diagram with Y € J:



8.3 Abelian Categories 185

Y —=Y" —>0

s

X—Y —0.

Consider the commutative exact diagram:

0 0
L
) (0.idy1) J’ o (dy.0) i

0 Y Yev Y 0
H l I

0 Y’ X Y’ 0
l |
0 0

Then, ¢ is an isomorphism by Exercise 8.19. Hence, Z € J and this implies
XedJ. q.e.d.

If J is cogenerating in C, then for each X € C there exists an exact sequence
(8.3.9) 0->X—-Y'5yl—> ...

with the Y/’s in J. Indeed, the Y/’s are constructed by induction by embed-
ding Coker(Y"~! — Y") into Y"*! € 7. Similarly, if J is generating, there is
an exact sequence

(8.3.10) s Y P Y 5 X 50

with the Y/’s in J.
Recall (see Proposition 5.2.4) that in an abelian category, the conditions
below are equivalent:

(i) G is a generator, that is, the functor ¢¢ = Hom (G, ) is conservative,
(ii) The functor ¢¢ is faithful.

(See Exercise 8.27 for an example in which ¢g is not conservative although
96 (X) ~ 0 implies X ~0.)

Moreover, if C admits small inductive limits, the conditions above are
equivalent to:

(iii) for any X € C, there exist a small set I and an epimorphism GH/—X.

Let us introduce a class of abelian categories which is extremely useful in
practice and to which we shall come back in Sect. 9.6.
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Definition 8.3.24. A Grothendieck U-category C is an abelian U-category
such that C admits a generator and U-small inductive limits, and U-small
filtrant inductive limits are exact.

Hence, the definition depends on the choice of a universe . However, if there
is no risk of confusion, we do not mention /.

Ezamples 8.3.25. (i) Let R be a ring. Then Mod(R) is a Grothendieck cate-
gory.

(ii) Let C be a small abelian category. We shall prove in Theorem 8.6.5 below
that Ind(C) is a Grothendieck category.

Corollary 8.3.26. Let C be a Grothendieck category and let X € C. Then the
family of quotients of X and the family of subobjects of X are small sets.

Proof. Apply Proposition 5.2.9. q.e.d.

Proposition 8.3.27. Let C be a Grothendieck category. Then C satisfies the
following properties.

(i) C admits small projective limits,
(ii) if a functor F: C°P — Set commutes with small projective limits, then
F is representable,
(iii) if a functor F: C — C' commutes with small inductive limits, then F
admits a right adjoint.

Proof. Apply Corollary 5.2.10 and Proposition 5.2.8. q.e.d.

8.4 Injective Objects

Let C be an abelian category.

Definition 8.4.1. (i) An object I of C is injective if the functor Hom,(+, I)
is exact. The category C has enough injectives if the full subcategory
of injective objects is cogemerating, i.e., for any X € C there exists a
monomorphism X—I with I injective.

(ii) An object P is projective in C if it is injective in C°P, i.e., if the functor
Hom (P, +) is exact. The category C has enough projectives if the full
subcategory of projective objects is generating, i.e., for any X € C there
exists an epimorphism P—X with P projective.

Ezample 8.4.2. (i) Let R be a ring. Free R-modules are projective. It follows
immediately that the category Mod(R) has enough projectives. It is a classical
result (see Exercise 8.24) that the category Mod(R) has enough injectives. We
shall prove later that any Grothendieck category has enough injectives.

(ii) If k is a field, then any object of Mod (k) is both injective and projective.
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Proposition 8.4.3. An object I € C is injective if and only if, for any X, Y €
C and any solid diagram in which the row is exact

the dotted arrow may be completed, making the whole diagram commutative.

Proof. Consider an exact sequence 0 — X EN Y4 Z > 0and apply the
functor Hom (-, I). Since this functor is left exact, Hom (-, I) is exact if

and only if the map Hom (Y, I) EAY Hom (X, I) is surjective. q.e.d.

Lemma 8.4.4. Let 0 — X' 4 X5 X" = 0 be an ezact sequence in C, and
assume that X' is injective. Then the sequence splits.

Proof. Applying the preceding result with & = idy,, we find 2: X — X’ such
that h o f = idy.. Then apply Proposition 8.3.14. q.e.d.

It follows that if F: C — C’ is an additive functor of abelian categories and
the hypotheses of the lemma are satisfied, then the sequence 0 — F(X') —
F(X) — F(X”) — 0 splits and in particular is exact.

Lemma 8.4.5. Let X', X" belong to C. Then X' & X" is injective if and only
if X" and X" are injective.

Proof. Tt is enough to remark that for two additive functors of abelian cate-
gories F and G, X — F(X)® G(X) is exact if and only if F and G are exact.
q.e.d.

Applying Lemmas 8.4.4 and 8.4.5, we get:

Proposition 8.4.6. Let 0 > X' — X — X” — 0 be an exact sequence in C
and assume that X' and X are injective. Then X" is injective.

Proposition 8.4.7. Let C denote a Grothendieck category and let {G;}ic; be
a system of generators. Then an object Z € C is injective if and only if for
any i € I and any subobject W C G;, the natural map Hom,(G;, Z) —
Hom (W, Z) is surjective.

Proof. The necessity of the condition is clear. Let us prove that it is sufficient.
Let f: X’—X be a monomorphism and let 4 : X’ — Z a morphism. Consider
a commutative diagram D
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f
AN

X' >——Y>——X
| A

8
VA

with [ ok = f and [ is a monomorphism.

In the sequel, we shall write for short D = (Y, g, /). Such diagrams form a
category A, a morphism D = (Y, g,1) - D’ = (Y', g/, ') being a commutative
diagram

I
k ( *
Y Y’ V4

| LT

Z.

Denote by X the set of isomorphism classes of A. Since card(Hom ,(D, D)) <
1 for any D, D’ € A, X is a small ordered set. Moreover A is equivalent to
the category associated with the ordered set X.

Since filtrant inductive limits are exact, X is inductively ordered. Let Dy =
(Yo, go, lp) be a maximal element. By the definition of a system of generators,
in order to prove that Yy = X, it is enough to check that, for each i € I, the
monomorphism Hom(G;, Yo)—Hom(G;, X) is surjective. Let ¢: G; — X
be a morphism. Define Y := Yy xx G;. Since Yy — X is a monomorphism,
Y — G; is a monomorphism. Define Y7 := Yy ®y G;. Since we have an exact
sequence 0 - Y — Yy ® G; = X, we get Y1 >~ Imu C X. By the assumption
on Z, the composition ¥ — Yy — Z factorizes through Y>—G;. The morphism
G, — Z factorizes through Y7, as in the diagram:

Y>—>G;

Since Yy is maximal, Yy >~ ¥; and G; — X factorizes through Y. q.e.d.

8.5 Ring Action

Let k denote a commutative ring.

A category C is a k-pre-additive category if for all X and Y in C,
Hom,(X,Y) is endowed with the structure of a k-module and the compo-
sition of morphisms is k-bilinear. The notion of k-additive functor between
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k-pre-additive categories and that of k-additive category, k-abelian category
are naturally defined. Note that additive categories are Z-additive. Also note
that for X € C, End,(X) := Hom (X, X) is a k-algebra.

There is an alternative definition. Let C be an additive category. Recall
that End (id¢) denotes the set of endomorphisms of the functor ide. Then
End (id¢) has a structure of a ring with unit, and it follows from Lemma 1.3.8
that this ring is commutative. Clearly, a structure of a k-additive category on
C is equivalent to the data of a morphism of rings k — End (id¢).

Definition 8.5.1. Let R be a k-algebra and C a k-additive category. The cat-
egory Mod(R, C) is defined as follows.

Ob(Mod(R,C)) = {(X,&x); X € C and éx: R — End(X) is a morphism
of k-algebms} ,

Hom yyoq.0) (X 8x), (Y.8r)) = {f: X = Y foéx(a) =&y(a)o f
for alla € R} .

Clearly, Mod(R, C) is k-additive and the functor for: Mod(R, C) — C given by
(X, &x) = X is k-additive and faithful. If R is commutative, Mod(R, C) is an
R-additive category. More generally, Mod(R, C) is a Z(R)-additive category,
where Z(R) denotes the center of R.

Note that if X € Mod(R,C) and Y € C, then Hom,(Y, X) € Mod(R) and
Hom (X, Y) € Mod(R°P).

If F: C — (' is a k-additive functor, it induces a functor Fg: Mod(R, C) —
Mod(R, C’) and the diagram below quasi-commutes

Mod(R, C) —— %~ Mod(R, C')

| |

C c.

Proposition 8.5.2. (i) Let C be a k-abelian category. Then Mod(R,C) is
k-abelian and the natural functor for: Mod(R,C) — C is faithful and
exact.

(ii) Let F: C — C’ be a right (resp. left) exact functor of k-abelian categories.
Then Fg: Mod(R, C) — Mod(R, C') is right (resp. left) exact.

The proof is obvious.

Notation 8.5.3. Let for denote the forgetful functor Mod(R, C) — C. Clearly,
for is faithful, but not fully faithful in general. However, we shall often denote
by the same symbol X an object of Mod(R, C) and its image by for in C. If
F:C — (' is a functor, we shall often write F instead of Fg.

Ezample 8.5.4. We have Mod(R, Mod(k)) >~ Mod(R).
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Note that
Mod(R, C)°P? >~ Mod(R°?, C°P) ,

where R°P denotes the opposite ring of R.

Proposition 8.5.5. Let C be a k-abelian category and R a k-algebra.

(a) Assume that C admits small inductive limits. Then
(i) for any X € Mod(R,C) and N € Mod(R®P), the functor ¥ >
Hom gop (N ,Hom (X, Y)) is representable,
(i) denoting by N ®g X its representative, the functor

* Qp *: Mod(R°P) x Mod(R,C) — C

18 additive and right exact in each variable.
(b) Assume that C admits small projective limits. Then
(i) for any X € Mod(R,C) and M € Mod(R), the functor ¥ +>
Hom »(M ,Hom (Y, X)) is representable,
(i) denoting by Hom (M, X) its representative, the functor

Hom 4(+, +): (Mod(R))°® x Mod(R,C) — C
is additive and left exact in each variable.

Proof. (a) (i) First, assume that N = R® for a small set 1. The hypothesis
implies the isomorphism, functorial with respect to Y € C:

Hom ,(R®', Hom (X, Y)) ~ Hom.(X, Y)" ~ Hom,(X®',Y) .

In the general case, we may find an exact sequence R®/ — R® — N — 0,
with I and J small. The sequence

0 — Hom z(N, Hom,(X, Y)) — Hom zx(R®', Hom,(X, Y))
— Hom z(R®’, Hom (X, Y))

is exact. Hence, Coker(X®/ — X®') represents N ®, X.
(a) (ii) is obvious.
(b) Apply the result (a) to the category C°P. q.e.d.

Remark 8.5.6. In the situation of Proposition 8.5.5, if R is a k-algebra consider
another k-algebra S, and assume that M is an (S®, R°P)-module. Then M ®, X
belongs to Mod(S, C). For an (R ®, S°P)-module N, Hom (N, X) belongs to
Mod(S, C).

Remark 8.5.7.1f M € Mod(R°P) or M € Mod(R) is of finite presentation,
the above construction shows that M ®, X and Hom (M, X) are well defined
without assuming that C admits small inductive or projective limits.
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To end this section, let us recall a result of Gabriel-Popescu (see [54]).
Let C be a Grothendieck category and G a generator. Set R = (End.(G))°P.
Hence, G belongs to Mod(R°P, C). Define the functors

¢G: C = Mod(R), ¢¢(X)=Hom,(G, X),
1//62 MOd(R) — C, wg(M) = G®R M .

Theorem 8.5.8. [Gabriel-Popescu| Let C be a Grothendieck category and G
a generator.

(1) The pair (Y, ¢c) is a pair of adjoint functors,

(ii) ¥ o ¢ — ide is an isomorphism,

(iil) @G is fully faithful,
(iv) ¥ is exact.

Proof. We shall write ¢ and ¥ instead of ¢g and V¥, respectively.
(i) is obvious, since for X € C and M € Mod(R) we have

Hom, (¢ (M), X) = Hom (M ® G, X)
~ Hom x(M, Hom (G, X)) = Hom z(M, ¢(X)) .

(ii) is equivalent to (iii) by Proposition 1.5.6.

(iii) Denote by F the full subcategory of Mod(R) consisting of the products
of finite copies of R. Then ¢ |z: F — C is fully faithful. By Theorem 5.3.6,
the functor A: C — F” (denoted by ¢ in this theorem) is fully faithful. On
the other hand, the functor A': Mod(R) — F” is fully faithful, again by
Theorem 5.3.6. Then the result follows from the commutative diagram of
categories:

¢ —Y > Mod(R)

| A

FA.

(iv) Since ¢ is right exact, in order to prove that it is exact, it remains to
prove that it sends a monomorphism M—N in Mod(R) to a monomorphism
Y (M)—y¥(N) in C. We decompose the proof into several steps.

(iv) (a) Assume that M is finitely generated and N = R®/ for a small set
J. There exist a finite set / and an epimorphism R® —M. Since v is right
exact, ¥ (R®!) — ¥ (M) is still an epimorphism. Hence, it is enough to prove
that the composition Ker(y (R®') — ¢ (R®/)) — ¥ (R®’) vanishes. Since ¢ is
faithful and left exact, we are reduced to prove the vanishing of the morphism

(8.5.1) Ker(oy (R®") — oy (R®)) — oy (R®).
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Consider the diagram:

R@I [ REB]

| N

¥ (R®) —= oy (R®) —— R/ .
Its commutativity implies the isomorphism
Ker(R®' — R®’) 5= Ker(py (R®) — ¢y (R®)) .

Then the vanishing of the morphism in (8.5.1) follows from the commutative
diagram:

Ker(R®! — R®) —— 2 pay

| |

Ker(py (R®') — ¢y (R®)) —— oy (R®).

(iv) (b) Assume that N = R®’ for a small set J and M is an arbitrary R-
submodule of N. For any finitely generated submodule M’ of M, the morphism
Y (M) — ¥(N) is a monomorphism by (iv) (a). Since M =~ li_r)nM’ where M’
ranges over the filtrant family of finitely generated submodules of M and
commutes with small inductive limits, the result follows. (Recall that by the
hypotheses, filtrant inductive limits are exact in C.)

(iv) (c) Finally, we treat the general case. We choose an epimorphism R®/ — N,
where J is a small set. We set K := M xy (R®’) and L := Ker(K — M). We
get the exact commutative diagram

,11
£

Applying the right exact functor ¥, we get the commutative diagram with
exact rows

-
,£

J

0 L R 0.

3
)
N

¥ (L) —= ¥ (R?) v

=
=
=
>~
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By the result of (iv) (b), the middle column is exact. Hence, the right column
is exact. q.e.d.

8.6 Indization of Abelian Categories

Let C be an abelian U-category. Then the big category C%? of additive
functors from C°P to Mod(Z) is abelian. By Proposition 8.2.12, we may regard
C"@dd a5 a full subcategory of C*. Recall that C and Mod(Z) are U-categories
by the hypothesis and notice that % may not be a U-category.

Notation 8.6.1. Recall that if C is a category, we denote by “h_II)l” the inductive
limit in C*. If {X;};es is a small family of objects of an additive category C

indexed by a set I, we write “@@” X; for “lim” (& X;), where J ranges over
iel 7 iel
the set of finite subsets of 7. Hence,

Hom . (Z, “@@” X;) ~ @ Hom,.(Z, X;)

iel iel
for Z € C.

Note that the functor
he: C— €M X+ Hom(+, X)

makes C a full subcategory of C*%“ and this functor is left exact, but not
exact in general.

Recall that an ind-object in C is an object A € C” which is isomorphic to
“lim” & for some functor a: I — C with / filtrant and small. Hence, Ind(C) is

a full pre-additive subcategory of C"4?. Recall that Ind(C) is a U-category.

Proposition 8.6.2. Let A € C%_ Then the two conditions below are equiv-
alent.

(i) The functor A belongs to Ind(C).
(ii) The functor A is left exact and C, is cofinally small.
Proof. This follows from Proposition 6.1.7. q.e.d.

Corollary 8.6.3. Let C be a small abelian category. Then Ind(C) is equiva-
lent to the full additive subcategory C4! of CN4 consisting of left exact
functors.

Lemma 8.6.4. (i) The category Ind(C) is additive and admits kernels and
cokernels.
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(ii) Let I be small and filtrant, let o, B: I — C be two functors, and let
¢:a — B be a morphism of functors. Let f = “li_lr)n77 ¢. Then Ker f ~

“lim” (Ker ¢) and Coker f =~ “lim”(Coker ®).

(iii) If p: A — B is a morphism in Ind(C), the kernel of ¢ in C s its

kernel in Ind(C).
This is a particular case of Propositions 6.1.16 and 6.1.18.

Theorem 8.6.5. (i) The category Ind(C) is abelian.
(ii) The natural functor C — Ind(C) is fully faithful and ezact, and the nat-
ural functor Ind(C) — C™4 s fully faithful and left exact.
(iii) The category Ind(C) admits small inductive limits. Moreover, inductive
limits over small filtrant categories are exvact.
(iv) Assume that C admits small projective limits. Then Ind(C) admits small
projective limits.
(v) “@7” is a coproduct in Ind(C).
(vi) Assume that C is essentially small. Then Ind(C) admits a generator, and
hence is a Grothendieck category.

Proof. (1) We know by Lemma 8.6.4 that Ind(C) admits kernels and coker-
nels. Let f be a morphism in Ind(C). We may assume f = “lim” ¢ as in
Lemma 8.6.4 (ii). Then Coim f ~ “li_r)n” Coim ¢ and Im f =~ “h_rr)l” Im g, by
Lemma 8.6.4. Hence Coim f >~ Im f.

(ii) follows from Lemma 8.6.4.

iii) follows from Proposition 6.1.19.

iv) follows from Corollary 6.1.17 (ii).

v) is obvious.

vi) Let {X;}ic; be a small set of objects of C such that any object of C is
isomorphic to some X;. Then this family is a system of U-generators in Ind(C)
and “@” X; is a generator. q.e.d.

iel

(
(
(
(

Proposition 8.6.6. Let 0 — A’ EN AL A" > 0 be an ezact sequence in
Ind(C) and let J be a full additive subcategory of C.

(a) There exist a small filtrant category I and an exact sequence of functors
rom I to C, 0 - o => a - a” — 0 such that f ~ “lim” ¢ and g =~
110C 0o % a2 o — 0such that f = “lin” ¢ and

lim” .
(b) Assume that A belongs to Ind(J). Then we may choose the functor a in
(a) with values in J.

(c) Assume that A’ belongs to Ind(J). Then we may choose the functor o’ in
(a) with values in J.



8.6 Indization of Abelian Categories 195

Proof. (a) By Proposition 6.1.13, we may assume that there exist I filtrant
and small, functors o, 8: I — C and a morphism of functor A: « — B such
that A >~ “lim” a, A” >~ “li_r)n77 B, and g >~ “lim” A.

Set o'(i) = Ker A(i), denote by ¢(i): &’(i) — «(i) the natural morphism,
and set a” (i) = Coker ¢(i). Since the sequence of functors 0 - o’ — « — B is
exact, we get A’ ~ “lim” o', Since the sequences 0 — /(i) — «a(i) = «”(i) —>
0 are exact, the sequence 0 — “lim” &’ — “lim” @ — “lim” «” — 0 is exact.

— — —
Hence, “h_n)l” o~ A",
(b) The proof in (a) shows that if A € Ind(J), we may assume o with values
inJ.
(¢) The result will follow from Lemma 8.6.7 below. q.e.d.

Lemma 8.6.7. Let I be a small and filtrant category, a: I — C a functor,
A = “lim”« and let f: A—B be a monomorphism in Ind(C). Then there
exist a small and filtrant category K, a cofinal functor p: K — I, a functor
B: K — C and a monomorphism of functor ¢ : cop— B such that f ~ “li_n)l” ®.

Proof. By Proposition 8.6.6 (a), there exist a small filtrant category J, func-
tors o/, B’: J — C, and a monomorphism of functors ¢: ¢’ — B’ such that
f: A — B isisomorphic to “lim” ¢: “lim” &' — “lim” B'.
— — B

By Proposition 6.1.13 applied to id4: “lim” o' — “h_r)n” o, there exist a
small and filtrant category K, cofinal functors p;: K — [ and p;: K — J,
and a morphism of functors ¥ : a’ o pj — « o p; such that “li_II)l” W ~idy.

For k € K, define B(k) as the coproduct of a(p;(k)) and B'(p,(k)) over
a'(py(k)). In other words, the square below is co-Cartesian:

o (ps (k) —22 D (i, (k)
ml l
a(pr (k) —— Bk .

It follows that the arrow &(k): a(p;(k)) — B(k) is a monomorphism by
Lemma 8.3.11. Passing to the inductive limit with respect to k € K, the
square remains co-Cartesian and it follows that B =~ “li_n)l” B, fx~ “li_n)l” .
q.e.d.

Corollary 8.6.8. Let F: C — C' be an additive functor of abelian categories,
IF: Ind(C) — Ind(C’) the associated functor. If F is left (resp. right) exact,
then I'F is left (resp. right) exact.

Proof. Apply Proposition 8.6.6 (a). q.e.d.

Proposition 8.6.9. Let f: A — B be a morphism in Ind(C). The two con-
ditions below are equivalent.
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(i) f is an epimorphism,

(ii) for any solid diagram X - f>y in Ind(C) with Y € C, the dotted arrows
v o,
A——B
may be completed to a commutative diagram with X € C such that g is
an epimorphism.

Proof. We may assume from the beginning that there exist a small and filtrant
category I and a morphism of functors ¢: o — B such that f = “lir_>n” 0.

(i) = (ii). Assume that f is an epimorphism. By Proposition 8.6.6 we may
assume that ¢(i): «(i) — B(i) is an epimorphism for all i € I. The morphism
Y — B factors through ¥ — (i) for some i € I. Hence the result follows from
the corresponding one when replacing Ind(C) by C (see Proposition 8.3.12).
(ii) = (i). For each i € I we shall apply the hypothesis with ¥ = B(i). We
find a commutative diagram

Hence, A xp B(i) = B(i) is an epimorphism. Applying the functor “1'£>n”, we

find that A ~ h_r)n (A xgB(i)) — h_r)n B(i) ~ B is an epimorphism. q.e.d.

l 1

Corollary 8.6.10. A complex A LBS Ccin Ind(C) is exact if and only if
for any solid commutative diagram in Ind(C) with Y € C

h
X Y
NN
A?BTC,

the dotted arrows may be completed to a commutative diagram with X € C
such that h is an epimorphism.

Proof. Apply Proposition 8.6.9 to the morphism A — Ker g. q.e.d.
Proposition 8.6.11. The category C is thick in Ind(C).
This follows from Proposition 8.6.9 and Lemma 8.3.23.

Proposition 8.6.12. Let C be an abelian category, J C C an additive subcat-
egory closed by extension in C. Then Ind(J) is closed by extension in Ind(C).
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Proof. Let A € Ind(C). Remark first that A € Ind(7) if and only if any
morphism X — A with X € C factorizes through an object ¥ € J (see
Exercise 6.11). Now consider an exact sequence in Ind(C): 0 - A’ - A —
A” — 0 and assume that A’, A” belong to Ind(J). Consider a morphism
X — A with X € C. The composition X — A — A” factorizes through an
object Y € J. Since A — A” is an epimorphism, there exists an epimorphism
X; — Y” in C such that the composition X; — Y” — A” factorizes through
A — A”. Hence we get the commutative diagram

XX —Y"
A——=A".

Set Xo = X® X; and define N = Ker(Xs — Y”) € C. We get the commutative
exact diagram:

0 N X2 Y” 0
0 A’ A A" 0.

The morphism N — A’ factorizes through an object Y’ € J. Set X3 =
Y @y X2. We get the commutative diagram

0 N X9 Y” 0
0 Y’ X3 Y” 0
0 A’ A A" 0.

Since the top square on the left is co-Cartesian, the middle row is exact. Since
Y’ and Y” belong to J, we get X3 € J. Hence, X — A factors through
XseJ. q.e.d.

8.7 Extension of Exact Functors

Let C be an abelian category, J a full additive subcategory of C, and let
Jj: J — C be the embedding. Let A be another abelian category. Recall that
the functor j,: Fet(C, A) — Fct(J, A) is defined by j.G = G o j.

Notation 8.7.1. (i) We denote by Fct'(C, A) the full additive subcategory of
Fct(C, A) consisting of additive right exact functors.

(ii) We denote by Fct'(J, A) the full additive subcategory of Fct(J, A) con-
sisting of additive functors F which satisfy: for any exact sequence Y’ — ¥ —
Y- 0inC with Y', Y, Y” in J, the sequence F(Y') - F(Y) - F(Y") - 0
is exact in A.
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Note that j, induces a functor (we keep the same notation)
(8.7.1) Je: Fet"(C, A) — Fet' (7, A) .

Theorem 8.7.2. Assume that J is generating in C. Then the functor j, in-
duces an equivalence of categories Fct' (C, A) —> Fet'(J, A).

Of course, one can deduce similar results for left exact or for contravariant
functors. We leave the precise formulation to the reader.

The proof here is a toy model of the construction of derived categories
studied in Chapter 11-13. Let us explain the idea of the proof. For A €
Fet"(J, A), we construct AT € Fet'(C, A) whose image by j. is isomorphic
to A as follows. We can define the functor Ko: Mor(J) — C by u +— Coker u.
On the other hand, we have the functor A’: Mor(J) — A given by u
Coker(A(u)). We will show that the diagram below can be completed with a

dotted arrow:
Ko

Mor(J)

A/
At
»

A,

C

and then prove that AT belongs to Fct”(C, A) and its image by j, is isomorphic
to A.

We set

D :=Mor(C) ,
K : D — C the functor which associates Coker(u) to u € D.

Note that D is an abelian category.

Lemma 8.7.3. For any u, v € D and any morphism f: K(u) — K(v), there
exist w € D and morphisms a«: w — u and B: w — v such that K(«) is an
isomorphism in C and f o K(a) = K(B).

Proof. Let u: ¥ - X and v: Y — X’. Then construct Xq, Y1, Yo € C such
that we have a commutative diagram with the three Cartesian squares marked
by 0:

Y5 Yy Y’

N
N

o X X'

¢ ; |

Y —— X — Coker(u) I Coker(v) .

Then w: Yo — X satisfies the desired condition. q.e.d.
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Let D’ be the category defined as follows:

Ob(D') = Ob(D) ,
Hom p, (1, v) = Im(Hom p,(u, v) - Hom(K (1), K (v))) foru,veD.

Then D’ is an additive category. The functor K decomposes as
Y
D—-D = C,

and Q is a faithful additive functor.

Let S be the set of morphisms s in D" such that Q(s) is an isomorphism.
Since Q is faithful, any morphism in § is a monomorphism by Proposi-
tion 1.2.12.

Lemma 8.7.4. (i) S is a left multiplicative system,
(ii) the functor Q decomposes as D' — D — C and the functor D — C is
an equivalence of categories.

Proof. (1) Let us check the condition in Definition 7.1.5. The conditions S1
and S2 are obvious. Let us show S’3 (with the notations there). Applying
Lemma 8.7.3 to K(t)™' o K(f): K(X) — K(Y’), there exist X’ € D’ and
morphisms s: X’ — X and g: X’ — Y’ such that K(s) is an isomorphism and
K(g) = K(t) 1o K(f)oK(s). The condition S’4 immediately follows from the
fact that any morphism in S is a monomorphism.

(ii) Since Q: D’ — C sends the morphisms in S to isomorphisms, Q decom-
poses as D' — D — C. For u,v € D', the map

Homp, (u,v) = lim Hom 1, (u', v) = Hom(Q(u), Q(v))
(u'—>u)eS,

is injective because Q is faithful, and is surjective by Lemma 8.7.3. The functor
D5 — C is therefore fully faithful, and it is evidently essentially surjective.
Hence the functor Dy — C is an equivalence of categories. q.e.d.

Let us denote by Dy the category Mor(7) and by Dj the full subcategory
of D’ such that Ob(Df) = Ob(Dy). Note that Dy is a full additive subcategory
of D. We set 7 =S N Mor(Dy).

Lemma 8.7.5. (i) For any u € D', there exists a morphism a: v — u in S
such that v € Dy.
(ii) The family of morphisms T is a left multiplicative system in Dy and the
functor (Dy)T — Dy is an equivalence of categories.

Proof. (1) Let us represent u by an object u: ¥ — X in D. Take an epimor-
phism X'—X with X’ € J and then take an epimorphism Y'—Y xx X’ with
Y € J. Then v: Y — X’ belongs to Dy and the morphism v — u induces an
isomorphism Coker(v) —> Coker(u).

(ii) then follows from Corollary 7.2.2 (with the arrows reversed). q.e.d.
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Applying Lemmas 8.7.4 and 8.7.5, we obtain that (Dj)r — C is an equivalence
of categories. Let Ko: Dy — C be the functor u + Coker(u). Then we have
proved that Ko decomposes as

Dy — Dy — (Dy)r —C .

For A € Fct'(J, A), we shall first construct AT € Fet'(C, A) such that
j«AT >~ A. We need two lemmas.

Lemma 8.7.6. Let A’: Dy — A be the functor which associates Coker(A(u))
tou € Dy. Then A’ decomposes as Dy — Dy — (D) 5 A

Proof. Tt is enough to show the following two statements:
(8.7.2) ifa: u — v in Mor(Dy) satisfies K (@) = 0, then A'(a) = 0,

(8.7.3) for a: u — v in Mor(Dy), if K(«) is an isomorphism, then
A'(«) is an isomorphism .

Let us first show (8.7.3). Let us represent «: u — v by a commutative
diagram in J:

Y$Y/

(8.7.4) l i

X$ X/

The condition that K («) is an isomorphism is equivalent to the fact that the
sequence ¥ - X @Y — X' — 0 is exact. This complex remains exact after
applying A. Hence Coker(A(u)) — Coker(A(v)) is an isomorphism.

Let us show (8.7.2). Let us represent « as in (8.7.4). The condition K (&) =
0 implies that X; := X xx Y/ — X is an epimorphism. Set ¥; = X; xx Y
and let uy: Y7 — X3 be the first projection. Then u; € D and the morphism
B: u; — u belongs to S. By Lemma 8.7.5, there exists a morphism y: w — u;
such that y belongs to S and w € Dy. Thus we obtain a commutative diagram

inC:

Ys 71 Y B1 y ay Y’

|

wl i
/
Xo— > X1 ——> X — > X

Since w — u belongs to &, (8.7.3) implies that A'(w) — A’(4) is an

isomorphism. Since the composition Xso Fooro, X 2 X in J decom-
poses through v: Y — X’ as seen by the diagram above, the composition

~ A
Al(w) — A'(u) A A’(v) vanishes. Hence we obtain the desired result,

A'(a) =0. q.e.d.
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By Lemma 8.7.6, the functor A’: Dy — A decomposes through C. Let
AT:C — A be the functor thus obtained. By the construction, it is obvious
that AT commutes with finite products, and hence it is an additive functor
by Proposition 8.2.15.

Lemma 8.7.7. The functor AT is right ezact.

Proof. For an exact sequence X; — Xo — X3 — 0 in C, we can construct a
commutative diagram in C

X} Xy Xy 0
Ltl\L MQ\L ug\L
X X5 X 0
X1 Xo X3 0
0 0 0

with X', X7 € J (j = 1,2,3). Then A’(u;) = Coker A(u;) = A*(X;). Since
A sends the first two rows to exact sequences, we obtain that AT(X;) —
AT(X3) > AT(X3) — 0 is exact. q.e.d.

We can now complete the proof of the theorem. We have obtained the
functor Fet"(J, A) — Fect'(C, A) which associates AT € Fet'(C, A) to
A € Fet' (7, A). Tt is obvious that this functor is a quasi-inverse to the functor
juin (8.7.1).

Exercises

Exercise 8.1. Let C be a category admitting finite products, let Gr(C) denote
the category of group objects in C and denote by for: Gr(C) — C the forgetful
functor. Prove that Gr(C) admits finite products and that for commutes with
finite products.

Exercise 8.2. Recall that Group denotes the category of groups and that
for: Group — Set is the forgetful functor.

(i) Prove that Group admits small projective limits and for commutes with
such limits.

(ii) Let X € Group and assume that X is a group object in Group. Prove
that the group structure on for(X) induced by the group object structure in
Set (see Lemma 8.1.2) is commutative and coincides with the group structure
on for(X) induced by the fact that X € Group.
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Exercise 8.3. Let C and C’ be additive categories.

(i) Let X, Y € C. Prove that if the first projection X x ¥ — X is an isomor-
phism, then ¥ >~ 0.

(ii) Prove that a functor F: C — C’is additive as soon as F(X xY) = F(X) x
F(Y) for any X,Y €C.

Exercise 8.4. Let C be an additive category and let S be a right multi-
plicative system. Prove that the localization Cs is an additive category and
Q : C — Cs is an additive functor.

Exercise 8.5. Let C be an additive category and assume that C is idempotent
complete. Let X € C.

(i) Let p: X — X be an idempotent (i.e., p> = p). Prove that there exists
an isomorphism X >~ Y & Z such that p = g o f where f: X — Y is the
projection and g: Y — X is the embedding.

(ii) Assume that idy = )_,_, e;, where ¢; € Hom (X, X), I is finite, e;e; =0
if i # j. Prove that X >~ @;X; with X; >~ Ime;.

Exercise 8.6. Let C be an additive category and A a full additive subcate-
gory of C. For X, Y € C, define N (X, Y) as the set of morphisms f: X — Y
in C which factorize through some Z € N.

(i) Prove that AV (X,Y) is an additive subgroup of Hom (X, Y).

(ii) Define the category Cxr by setting Ob(Cyr) = Ob(C) and Hom, (X,Y) =
Hom (X, Y)/N(X,Y). Prove that Cxr is a well-defined additive category.
(iii) Assume that A is idempotent complete. Prove that a pair of objects X,
Y in C are isomorphic in Cxr if and only if there exist Z;, Zo € N and an
isomorphism X @ Z; ~ Y @ Zs. (Hint: if f: X — Y and g: ¥ — X satisfy
go f =idy, and if there exists Y % Z 5 Y such that idy = fog+vou and
Z € N, then p:= (uov)? € End(Z) satisfies p = p? and vou =vopou.)

Exercise 8.7. Let I be a small set and let C be an additive category admitting
coproducts indexed by I. Let N be a full additive subcategory of C closed by
coproducts indexed by I. Prove that the category Cnr defined in Exercise 8.6
admits coproducts indexed by I and the functor C — Cxr commutes with such
coproducts.

Exercise 8.8. Let F: C — C’ be an additive functor of additive categories
and assume that F admits a left (or right) adjoint G. Prove that G is additive.

Exercise 8.9. Let C be a small category and denote by C“? the category of
functors from C°P to Mod(Z). Denote by ¢: C — C" the functor

o(X): Y > g ®Hom (VX))

(i) Prove that ¢ is faithful.

(i) Let C* denote the full subcategory of C*® consisting of objects which are
finite products of objects of the form ¢(X) with X € C. Prove that C* is an
additive category and
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Home, (¢(X). @(¥)) 2 227X,

(iii) Let A be an additive category and F: C — A a functor. Prove that
there exists an additive functor F’: C* — A such that F is isomorphic to the
composition F’ o ¢.

Exercise 8.10. Let k£ be a commutative ring and let C;,Cs be k-additive
categories. Let @: C; x Co — (C1 x C2)" be the functor given by

®((X1, X2))(Y1, Y2) = Hom (Y1, X1) ® Homg, (Y2, X2) .

Let Cq ®, C2 be the full subcategory of (C1 x C2)" consisting of objects isomor-
phic to finite products of images of objects of C; x C2 by @.

(i) Prove that C; ®, Cz is a k-additive category and prove that the functor
9:C x Cy = C ®, Cy induced by @ is k-bilinear, that is, k-additive with
respect to each argument.

(ii) Let A be a k-additive category and let F: C; x Coa — A be a k-bilinear

G .
functor. Prove that F decomposes as C; x Ca - C ®, Co = A where G is
unique up to unique isomorphism.

(iii) Prove that C7” ®, C5" is equivalent to (C; ®, C2)°P.

Exercise 8.11. Let C be an abelian category, S a right and left multiplicative
system. Prove that the localization Cs is abelian and the functor C — Cgs is
exact.

Exercise 8.12. Let C be an abelian category, N a full additive subcategory
closed by subobjects, quotients and extensions (see Definition 8.3.21). Let S
denote the family of morphisms in C defined by f € S if and only if Ker f and
Coker f belong to A. Prove that S is a right and left saturated multiplicative
system and that the localization Cs (usually denoted by C/N) is an abelian
category.

Exercise 8.13. We keep the notations of Exercise 8.12. Let C be a Grothen-
dieck category, N a full additive subcategory closed by subobjects, quotients,
extensions and small inductive limits.

(i) Prove that for any object X € C, there exists a maximal subobject ¥ of
X with ¥ € NV, and prove the isomorphism Hom(Z, X/Y) >~ Hom,\(Z, X)
for any Z € C.

(ii) Prove that the functor C — C/N admits a right adjoint.

(iii) Prove that C/N is a Grothendieck category and the localization functor
C — C/N commutes with small inductive limits.

Exercise 8.14. Recall that, for an additive category C, End (id¢) denotes the
commutative ring of morphisms of the identity functor on C.

(i) Let R be a ring. Prove that End (idyoa(r)) is isomorphic to the center of
R.
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(ii) Let C be the category of finite abelian groups. Prove that End (id¢) =~

where p ranges over the set of prime integers an = 1lim 18

» Lp where p rang h f prime integ dZ, l('_ZZp”'
the ring of p-adic integers.

Exercise 8.15. Let C be an abelian category.

(i) Prove that a complex 0 — X — Y — Z is exact if and only if the complex
of abelian groups 0 — Hom (W, X) — Hom (W, Y) — Hom (W, Z) is exact
for any object W € C.

(ii) By reversing the arrows, state and prove a similar statement for a complex
X—>Y—>Z—0.

Exercise 8.16. Let C be an abelian category and let f: X — Y and g: ¥ —
Z be morphisms in C. Prove that there exists an exact complex

0 — Ker(f) — Ker(go f) — Ker(g)
— Coker(f) — Coker(g o f) — Coker(g) — 0.

Here, Ker(g) — Coker(f) is given by the composition Ker(g) — ¥ —
Coker(f).

Exercise 8.17. Let F : C — C’ be an additive functor of abelian categories.
(i) Prove that F is left exact if and only if for any exact sequence 0 — X' —
X — X" — 0 in C, the sequence 0 — F(X') — F(X) — F(X") is exact.

(ii) Prove that the conditions (a)—(c) below are equivalent:

(a) F is exact,

(b) for any exact sequence 0 - X' - X — X” — 0 in C, the sequence
0— F(X') > F(X) > F(X") = 0 is exact,

(c) for any exact sequence X' — X — X” in C, the sequence F(X') —
F(X) — F(X") is exact.

Exercise 8.18. Let F : C — C’ be an additive functor of abelian categories.
(i) Prove that F is left exact if and only if for any monomorphism X—7Y in
C, the sequence F(X) — F(Y) = F(Y &x Y) is exact.

(ii) Similarly, F is right exact if and only if for any epimorphism X—Y in C,
the sequence F(X xy X) = F(X) — F(Y) is exact.

Exercise 8.19. Let C be an abelian category and consider a commutative
diagram of complexes

0 0 0
l |
0 .6 Xo X5
l i
0 X, X, X/
| |

0—> X X5 Xy,
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Assume that all rows are exact as well as the middle and right columns. Prove
that all columns are exact.

Exercise 8.20. Let C be an abelian category. An object X € C is simple if
it is not isomorphic to 0 and any subobject of X is either X or 0. In this
exercise, we write X D Y or Y C X to denote a subobject ¥ of X. A sequence
X=X90DX1 DD X,-1 DX, =0is a composition series if X;/X;11 is
simple for all i with 0 <i < n.

(i) Prove that the conditions below are equivalent:

(a) there exists a composition series X = Xg D X1 D ---D X, =0,

(b) there exists an integer n such that for any sequence X = Xg 2 X1 2 --- 2
X,, =0, we have m < n,

(c) any decreasing sequence X = X9 D X1 D --- D X, D --- is stationary
(i.e. Xy = Xjpa1 for m > 0) and any increasing sequence Xg C -+ C
X C --- C X is stationary,

(d) for any set S of subobjects of X ordered by inclusion, if § is filtrant then S
has a largest element, and if S is cofiltrant then S has a smallest element.

(ii) Prove that the integer n in (a) depends only on X.
If the equivalent conditions above are satisfied, we say that X has finite length
and the integer n in (a) is called the length of X.

Exercise 8.21. Let C be an abelian category and consider a commutative
exact diagram:

0 X0 X! X2 X3 0
fol fll le fsl
0 Yo y! Y2 Y3 0.

Prove that the following two conditions are equivalent:

(a) the middle square (X!, X2, Y1, ¥Y?) is Cartesian,
(b) £ is an isomorphism and f? is a monomorphism.

Exercise 8.22. Let C be an abelian category and consider the diagram of
complexes that we assume to be commutative except the two squares marked
by “nc”:
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0 0 0
J o
00— Xo Xx, Z1 Zy Zs 0
J Lol
0 Xo X1 Xo X3 0
J J | J
0 Yy Y, Yo Y3 0
Lo~ !
0 Wy Wy Y3 @y, Wo — 0.
o J
0 0 0

Assume that the second and third rows, as well as the second and third
columns are exact. Prove that the conditions below are equivalent:

(a) the whole diagram (including the squares marked by “nc”) is commutative
and all rows and columns are exact,

(b) X1 — X2 Xy, Y7 is an epimorphism,

(¢c) X2 ®x, Y1 — Y2 is a monomorphism.

Exercise 8.23. Let C be an abelian category and J a full additive subcate-
gory. Let X € C. We say that

(a) X is J-finite if there exists an epimorphism ¥—X with ¥ € 7,

(b) X is J-pseudo-coherent if for any morphism Y % X with Y € J, Kerg is
J-finite,

(¢) X is J-coherent if X is J-finite and J-pseudo-coherent.

We denote by coh(J) the full subcategory of C consisting of J-coherent ob-
jects.

(i) Consider an exact sequence 0 — W . X % ¥ in C and assume that X is
J-finite and Y is J-pseudo-coherent. Prove that W is J-finite. (Hint: choose
an epimorphism ¢ : Z—X with Z € J, then construct an exact commutative
diagram as below with V € J:

V=2
o
X

0—w 1>

Y

Y

—
v
8
E—

and prove, using Lemma 8.3.13, that ¢ is an epimorphism.)

(ii) Deduce from (i) that coh(J) is closed by kernels.

(iii) Prove that coh(7) is closed by extensions. (Hint: for an exact sequence
0—>Y > Y35 Y — 0and u: X — Y, there is an exact sequence 0 —
Keru — Ker(vou) = Y'.)
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(iv) Assume that for any exact sequence 0 — X' — X — X" — 0, if X"
belongs to J and X’ is J-coherent, then X is J-finite. Prove that coh(J) is
abelian and the inclusion functor coh(J) < C is exact. (Hint: it is enough
to check that coh(7) is closed by cokernels. Consider an exact sequence 0 —
X' — X — X” — 0 and assume that X’ and X are J-coherent. Clearly, X"
is J-finite. Let ¢ : S — X” be a morphism with S € J, set Y := X xx» S and
consider the commutative exact diagram

0 0
} }
Kergp ——=Kerg
! |
0 X’ Y S 0
H ! I’
0 X’ X X" 0.

Show that Ker ¢ is J-finite.)

When R is a ring, C = Mod(R) and J is the full subcategory of free modules
of finite rank, the J-coherent objects of C are called coherent R-modules.
Recall that a ring R is left coherent if it is coherent as a left R-module.

Exercise 8.24. In this exercise, we shall prove that the category Mod(R) of
modules over a ring R admits enough injective objects. If M is a Z-module,
set MY = Hom, (M, Q/Z).

(i) Prove that a Z-module M is injective in Mod(Z) if and only if nM = M
for every positive integer n.

(i) Prove that Q/Z is injective in Mod(Z).

(iii) Define a natural morphism M — M"Y and prove that this morphism is
injective.

(iv) Prove that for M, N € Mod(Z), the map Hom,(M, N) — Hom,(N", M")
is injective.

(iv) Prove that if P is a projective R-module, then P is R°P-injective.

(v) Let M be an R-module. Prove that there exist an injective R-module Z
and a monomorphism M — Z.

Exercise 8.25. Let F: C — C’ be an additive functor of abelian categories.
Consider the conditions

(a) F is faithful,
(b) F is conservative,
(¢c) F(X)~0= X ~0 for any X € C.

Prove that (a) = (b) = (c) and that these three conditions are equivalent
when assuming that F is exact. (Hint: use Proposition 2.2.3.)

(See Exercise 8.27 for an example which shows that (c) does not imply (b)
and see Exercise 8.26 for an example which shows that (b) does not imply

(a).)
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Exercise 8.26. Let k be a field and let A = k[x]. Let F: Mod(A) — Mod(A)
be the functor which associates xM & (M/xM) to M € Mod(A). Prove that
F is conservative but is not faithful.

Exercise 8.27. Let k be a field, let A = k[x, y] be the k-algebra generated by
indeterminates x, y, and let a be the ideal Ax + Ay.

(i) Prove that a is not a generator of the category Mod(A).

(i) Prove that for any X € Mod(A), Hom ,(a, X) >~ 0 implies X =~ 0. (Hint:
reduce to the case X = A/I and use Hom ,(a, A/a) ~k D k.)

(iii) Prove that the functor Hom ,(a, +): Mod(A) — Set is neither conserva-
tive nor faithful. (Hint: consider a - A — A/ a.)

Exercise 8.28. In this exercise and the next one, we shall give an example
of an additive category Cy which is not abelian, although it admits kernels
and cokernels, and any morphism which is both a monomorphism and an
epimorphism is an isomorphism.

Let C be an abelian category which admits small inductive limits, let G € C
and denote by Cy the full subcategory of C consisting of objects X such that
there exists an epimorphism G® —X for some small set I. Let a: Cy — C
denote the canonical functor.

(i) Prove that the functor « admits a right adjoint functor 8: C — Cy and
that for any X € C, «Bf(X) — X is a monomorphism and id¢, - Boa is an
isomorphism of functors.

(ii) Prove that Cp is an additive category which admits kernels and cokernels.

We shall denote by Kerg, Cokerg, Img, and Coimg the kernel, cokernel, image
and coimage in Cp.

(iii) Let f be a morphism in Cy. Prove that Cokerg f >~ Coker f and Kerq f =~
B(Ker f).

(iv) Let f be a morphism in Cy. Prove that f is a strict morphism if and only
if Ker f belongs to Cp.

Exercise 8.29. Let k be a field, let A = k[x, y] and let C = Mod(A). Let
a denote the ideal a = Ax + Ay and let a® denote its square, the ideal gen-
erated by ab with a,b € a. We define Cy, «: Cy — C and B: C — Cy as in
Exercise 8.28, taking a as G. (See also Exercise 5.8.)

(i) Let X be an A-module such that a X = 0. Prove that X belongs to Cp.
(ii) Prove that B(X) =~ 0 implies X ~ 0 (see Exercise 8.27) and prove that
B(A) ~ a.

(iii) Prove that a morphism u: X — Y in Cp is a monomorphism (resp. an
epimorphism) if and only if «(#) is a monomorphism (resp. an epimorphism)
in C. (Hint: use (ii).)

(iv) Prove that any monomorphism in Cp is strict.

(v) Prove that a morphism in Cy which is both a monomorphism and an
epimorphism is an isomorphism.

(vi) Prove that the canonical morphism u: a — a/Ax is a morphism in Cy.
Prove also that
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Kergu ~ax, Coimgu >~a/(ax), Imou>a/(Ax).

In particular, Coimgu — Img u is not an isomorphism.

(vii) We shall show that strict epimorphisms are not stable by base changes
in Cy. Let v: a — a/a? be the canonical morphism, and let w: A/a — a/a?
be the morphism that sends 1 mod a to x mod a?.

X——A/a

Rt

2
a——>a/a

Denote by X the fiber product in Cy of a and A/ a over a /a2, that is, X is the
kernel in Cy of v@w: a@®(A/a) — a/a?. Prove that v is a strict epimorphism,
prove that X ~ a? and prove that the canonical morphism X — A/ a is the
zero morphism.

This shows that the category Cy is not quasi-abelian in the sense of Schnei-
ders [61], since strict epimorphisms are stable by base change in quasi-abelian
categories.

Exercise 8.30. Let C be an abelian category which admits small inductive
limits and such that small filtrant inductive limits are exact. Prove that any
object of finite length (see Exercise 8.20) is of finite type (see Exercise 6.7).

Exercise 8.31. Let k be a field, t an indeterminate, and denote by C the
abelian category Mod(k[t]). Denote by Cy the fully abelian subcategory con-
sisting of k[¢t]-modules M for which there exists some n > 0 with "M = 0.
Set Z, :==k[t]t™ C k[t,t71], and let X, := Z,/k[t] € Co.

(i) Show that X, — X, 41 is a monomorphism but li_n)an >~ 0 in Cy (the limit
is calculated in Cp). n

(ii) Set Y, = k[t]/k[¢]t"T*. Show that ¥, — Y,_; is an epimorphism but
l(i_I_n Y, >~ 0 in Cy (the limit is calculated in Cp).

n
Note that neither h_I)n X, nor 1(&11 Y, vanishes in C when the limits are calculated
in C. n n

Exercise 8.32. Let C be an abelian category with small projective limits and

let {X,},en be objects of C.

(i) Prove that lim “@P” X,y ~ 0 in Ind(C). (Recall that “@D” denotes the
neN mzn

coproduct in Ind(C).)

(ii) Deduce that if C # Pt, filtrant projective limits in Ind(C) are not
exact. (Hint: consider the exact sequences 0 - “@” X, - “P” X, —
44@77 Xm N O) m>n m=>0

0<m<n
(iii) Deduce that if C # Pt, the abelian categories Ind(Pro(C)) and Pro(Ind(C))
are not equivalent.
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Exercise 8.33. Let A be a commutative ring and let a € A. Consider the
additive functor F,: Mod(A) — Mod(A) which associates to a module M the
submodule aM of M.

(i) Prove that F, sends monomorphisms to monomorphisms and epimorphisms
to epimorphisms.

(ii) Show that the conditions (a)—(d) below are equivalent.

(a
(b
(c

d) there exists ¢ € A such that ¢ = ¢? and Ac = Aa.

)
) F, is left exact,
F, is right exact,
) g

) a € Ad?,

)

(
(Hint: if @ = ba?, then ba is an idempotent.)

Exercise 8.34. In this exercise, we shall generalize the notion of split exact
sequences in an abelian category (Definition 8.3.15) to the one in an arbitrary
additive category. Let C be an additive category.

(i) Let 0 > X Loy 5 Z 5 0bea complex in C. Prove that the following

conditions are equivalent:

(a) there exist h: Z — Y and k: Y — X such that idy = fok+hog,
goh =1idz and ko f = idy,

(b) there exits an isomorphism of complexes

0 X Y V4 0

o

0O—X—>X®Z—>7Z—>0,

where the bottom row is the canonical complex,
(c) for any W € C, the complex

0 — Hom (W, X) - Hom(W,Y) - Hom (W, Z) - 0

in Mod(Z) is exact,
(d) for any W € C, the complex

0 — Hom(Z, W) — Hom,(Y, W) - Hom (X, W) - 0

in Mod(Z) is exact.

If these equivalent conditions are satisfied, we say that the complex 0 — X —
Y - Z — 0 splits.

(ii) Assume that C is abelian. Prove that the above notion coincides with that
of Definition 8.3.15.

Exercise 8.35. Let C be an abelian category which admits small inductive
limits and such that small filtrant inductive limits are exact. Let I be a small
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set and f: X — @,K a morphism in C. For iy € I, denote by f;, the compo-
sition X — @;Y; — Let K C I and assume that fi=0foralliel\K.

Prove that f decomposes as X 5 BickYi <> ®ic1Y;. (Hint: use the isomor-
phism ®;c;Y; =~ h_r)neaie 7Y; where J ranges over the filtrant family of finite
J
subsets of I and write X >~ lim X;.)
e

m

Exercise 8.36. Let C be an abelian category and let {G;};c; be a small family
of objects of C. Consider the conditions:

(a) {Gi}ics is a system of generators,

(b) for any X € C and any monomorphism f: Z — X, if Hom.(G;, Z) —
Hom(G;, X) is surjective for all i, then f is an isomorphism,

(c) if X € C satisfies Hom,(G;, X) =0 for all i € I, then X ~ 0.

Prove that (a) < (b) = (c).
(Note that (c) does not implies (a), see Exercise 8.27.)

Exercise 8.37. Let C be an abelian category and let {X,,},ey be an inductive
system in C indexed by the ordered set N.

(1) Assume that C admits countable coproducts and countable filtrant induc-
tive limits are exact. Let sh: @,>0 X, — @u>0X, be the morphism in C
associated with X, — X,41. Prove that the sequence

(8.7.5) 0> PpXx,— oo @X — lim X, — 0
n>0 n>0 n

n ld —sh A
is exact in C. (Hint: 0 > @ X, —— P X, = X411 — 0 is exact.)

n=0 n=0

id —sh

(ii) Prove that the sequence 0 - “@@” X, — “P” X, — “hm” X, — 0is
exact in Ind(C). nz0 nz0 e

(iii) Assume that C admits countable coproducts. Prove that the sequence
(8.7.5) is exact when assuming that “lim” X, belongs to C.

n
Exercise 8.38. Let C be an abelian category which admits small projective
limits and small inductive limits. Assume that small filtrant inductive limits
are exact. Prove that for any small family {X;};c; of objects of C, the natural

morphism P,.; X; = [[;c; X; is a monomorphism.

Exercise 8.39. Let k be a field of characteristic 0. The Weyl algebra W :=
W, (k) in n variables over k, is the k-algebra generated by x;, 8; (1 <i < n)
with the defining relations:

[ioxj] =0, [0:,9;] =0, [0, x;] =i .

We set A = Mod(k). We endow W with the increasing filtration for which
each x; and each 9; is of order one.
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Let M be a finitely generated W-module, and let us endow it with a good
filtration M = J,,cz, M, i.e., each M, is a finite-dimensional vector space,
xiM, C My1, ;M,, C M, for any m and i, and M,, = 0 for m <K 0,
Myg1 = My + >0 (xiMy + 9;M,,) for m > 0.

(i) Show that “lim” M,, belongs to Mod(W, Ind(A)).

m

ii) Show that “lim” M,, does not depend on the choice of good filtrations.
— g
m

(iii) Show that if M # 0, “lim” M,, is not isomorphic to the image of

any object of Ind(Mod(W, A)) by the natural functor Ind(Mod(W, A)) —
Mod(W, Ind(A)). (Hint: otherwise, “lim” M, ~ “lim” V; with V; € Mod(W),
and the W-linear morphisms V; — M would then factorize through finite-

dimensional vector spaces, and this implies they are zero.)

Exercise 8.40. Let C be an abelian category. Assume that finite inductive
limits are stable by base change (see Definition 2.2.6). Prove that C is equiv-
alent to Pt. (Hint: use Exercise 2.26.)

Exercise 8.41. Let k be a field, + an indeterminate, and denote by C the
abelian category Mod(k[t]) (see Exercise 8.31). Denote by C; the fully abelian
subcategory consisting of k[t]-modules M such that for any u € M, there exists
some n > 0 such that t"u = 0.

(i) Prove that C; admits small inductive limits and that the inclusion functor
C1 < C commutes with such limits.

(ii) Prove that C; admits small projective limits and that the inclusion functor
C1 = C does not commute with such limits.

(iii) Prove that C; is a Grothendieck category.

(iv) Prove that k[t, =1]/k[t] is an injective cogenerator of C;.

Exercise 8.42. Let k be a commutative ring, R a k-algebra. Set C = Mod(R).
Prove that the object F € C* given by C 3 M +— Hom, (M, k) is representable
and give its representative.

Exercise 8.43. Let U be a universe, k a U-small field and let I be a set which
is not U-small. Let A be the polynomial ring k[X;;i € I] where the X;’s are
indeterminates. (Hence, A is not small.) Let C be the category of A-modules
which are U/-small as sets.

(i) Prove that C is an abelian U-category and that C admits U-small inductive
and projective limits.

(ii) Prove that U-small filtrant inductive limits are exact.

(iii) Prove that the set of subobjects of any object of C is U-small.

(iv) Prove that C has no generator.

(v) Prove that any projective object of C is isomorphic to zero.

(vi) Prove that any injective object of C is isomorphic to zero.
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(vii) Prove that the object F € C" given by M +— Hom,(M, k) commutes
with small projective limits but is not representable.
(Hint: for (iv)—(vii), use the fact that the map A — End, (M) is not injective

for any M €C.)
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m-accessible Objects and F-injective Objects

We introduce the notion of w-filtrant categories, where 7 is an infinite cardinal.
When 7 is the countable cardinal R, we recover the notion of filtrant cat-
egories. Then we generalize previous results concerning inductive limits over
small and filtrant categories to w-filtrant categories. For example, we prove
that inductive limits in Set over w-filtrant categories commute with projective
limits over a category J as soon as the cardinal of Mor(J) is smaller than 7.
We define the full subcategory Ind” (C) of Ind(C) of objects which are induc-
tive limits over m-filtrant categories of objects of C and the full subcategory
Cr of C of m-accessible objects, that is, objects X such that Hom,(X, +) com-
mutes with w-filtrant inductive limits. Then we give sufficient conditions which

ensure that C, is small and that lim induces an equivalence Ind”(C,) —> C.
References are made to [64].

Next, given a family F of morphisms in C, we define the notion of
“F-injective objects” and prove under suitable hypotheses the existence of
“enough F-injective objects”. Some arguments used here were initiated in
Grothendieck’s paper [28] and play an essential role in the theory of model cat-
egories (see [32, 56]). Accessible objects are also discussed in [23], [1] and [49].

In the course of an argument, we need to prove a categorical version of
Zorn’s lemma which asserts that a small category which admits small filtrant
inductive limits has what we call “a quasi-terminal object”. We treat this
technical result in a separate section.

We apply these results to abelian categories. A particular case is the Gro-
thendieck theorem [28] on the existence of “enough injectives” in Grothen-
dieck categories. We shall also apply these techniques in Chap. 13 to prove
the existence of “enough homotopically injective complexes” in the category
of unbounded complexes of a Grothendieck category.

To conclude, we prove the Freyd-Mitchell theorem which asserts that any
small abelian category is equivalent to a full abelian subcategory of the cate-
gory of modules over a suitable ring R. This justifies in some sense the common
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practice which consists in replacing an abelian category by Mod(Z) when chas-
ing diagrams.

This chapter makes an intensive use of the notion of cardinals that we
recall first.

9.1 Cardinals

In this chapter we fix a universe U. As usual, Y-Set or simply Set, denotes
the category of U-sets.

Definition 9.1.1. An ordered set I is well ordered if for any non empty subset
A C I, there exists a € A such that a < b for all b € A (that is, A admits a
smallest element).

In particular, if I is well ordered, then I is totally ordered. Let I be a well
ordered set and let a € I. Let A, = {x € I;a < x}. Assuming A, non empty
(i.e., a is not a largest element of I), there exists a smallest element x in A,.
It is called the successor of a and denoted by a + 1.

Let I be a well ordered set and let x € I. Then one and only one of the
properties (a)—(c) below is satisfied.

(a) x is the smallest element in I,
(b) there exists y € I such that x =y + 1,
(c¢) x is not the smallest element of I and x = sup{y;y < x}.

Moreover, the element y given in (b) is unique. Indeed, y = sup{z;z < x}.
By the axiom of choice, any set may be well ordered.

Definition 9.1.2. A U-cardinal @ or simply a cardinal w is an equivalence
class of small sets with respect to the relation X ~ Y. Here, X ~ Y if and only
if X and Y are isomorphic in U-Set.

For a small set A, we denote by card(A) the associated cardinal.
We denote by Rg the countable cardinal, that is, card(N) = K.
If 71 = card(X1) and 7y = card(X3) are two cardinals, we define

1 - 7o = card(Xy x Xa) ,
77? = card(Hom gy (X2, X1)) -

These cardinals are well defined. Let us list some properties of cardinals.

(i) The set (which is no more small) of cardinals is well ordered. We denote
as usual by < this order. Recall that 7; < 75 if and only if there exist
small sets A; and A and an injective map f: A; — A such that
card(A;) = m; and card(As) = 7.

(ii) For any cardinal w, 27 > 7.

(iii) Let 7 be an infinite cardinal. Then 7 -7 = 7.
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(iv) An infinite cardinal 7 is said to be regular if it satisfies the condition
that for any family of small sets {B;};c; indexed by a small set I such
that card(l) < m and card(B;) < m, we have card(| |, B;) < w. If w is
an infinite cardinal, then its successor 7’ is a regular cardinal. Indeed,
if card(I) < n” and card(B;) < n/, then card(/) < &, card(B;) < 7, and
hence card(| |, B;)) <m-m=m <7n'.

(v) Let my be an infinite cardinal. There exists & > my such that 7™ = 7.
Indeed, m := 27 satisfies m > 7y and 770 = 27070 = 270 — g,

In this chapter, = denotes an infinite cardinal.

9.2 m-filtrant Categories and m-accessible Objects

Some results of Chap. 3 will be generalized here.

Proposition 9.2.1. Let I be a category. The following conditions (i) and (ii)
are equivalent:

(i) The following two conditions hold:
(a) for any A C Ob(I) such that card(A) < m, there exists j € I such
that for any a € A there exists a morphism a — j in I,
(b) for any i, j € I and for any B C Hom,(i, j) such that card(B) < 7,
there exists a morphism j — k in I such that the composition i N
Jj — k does not depend on s € B.
(ii) For any category J such that card(Mor(J)) < 7 and any functor ¢: J —
I, there exists i € I such that l(ingom,((p(j), i)#0.
jeJ

Note that condition (i) (a) implies that I is non empty. Indeed, apply this
condition with A = @.
The proof is a variation of that of Lemma 3.1.2.

Proof. (i) = (ii). Let J and ¢ be as in the statement (ii). Applying (a) to
the family {¢(j)}jes, there exist iy € I and morphisms s(j): ¢(j) — io.
Moreover, there exist k(j) € I and a morphism A(j): ip — k(j) such that the
composition

(1) s(J") A(J)
— —

o(J) o) io —> k()

does not depend on t: j — j. Now, there exist i; € I and morphisms
§(J): k(j) = ir.

Finally, take a morphism #: i1 — is such that ¢ o £(j) o A(j) does not
depend on j. The family of morphisms u;: ¢(j) — ioc = k(j) — i1 = i
defines an element of 1(i£1H0m1(<p(j), ia).

jeJ

(ii) = (i). By taking as J the discrete category A, we obtain (a). By taking as
J the category with two objects a and b and morphisms id,, id, and a family
of arrows a — b indexed by B, we obtain (b). q.e.d.
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Definition 9.2.2. A category I is w-filtrant if the equivalent conditions in
Proposition 9.2.1 are satisfied.

Note that for m = Ry, a category is w-filtrant if and only if it is filtrant.
Also note that if 7' is an infinite cardinal with 7’ < 7, then any m-filtrant
category is mr/-filtrant.

Example 9.2.3. Let  be an infinite regular cardinal and let J be a well ordered
set such that card(J) > w. For x € J, set J, = {y € J;y < x}. Define the
subset I of J by

I ={xeJ;card(Jy) <m}.

It is obvious that x < y and y € I implies x € I. Then

(i) I is well ordered,
(ii) I is w-filtrant,
(iii) sup(/) does not exist in 1.

In order to prove (ii), let us check condition (i) of Proposition 9.2.1. Condition
(i) (b) is obviously satisfied. Let A C I with card(A) < m. Set A" = J,c4 Ja-
Since 7 is regular, card(A’) < m. Hence A’ # J and b :=inf(J \ A) exists.
Then J, C A’, and b € I. This shows (i) (a) and I is w-filtrant. Let us check
(iil). If sup(/) exists in I, then card(/) < 7 and sup(/) 4+ 1 exists in J and
belongs to I, which is a contradiction.

Ezxample 9.2.4. Let w be an infinite regular cardinal and let A be a small set.
Set

I={BCA;card(B) <7} .

The inclusion relation defines an order on /. Regarding I as a category, [ is -
filtrant. Indeed, condition (i) (b) in Proposition 9.2.1 is obviously satisfied. On
the other hand, for any S C I with card(S) < m, we have card(|Jz.s B) < 7.
This implies (i) (a).

Lemma 9.2.5. Let ¢: J — I be a functor. Assume that J is w-filtrant and
@ is cofinal. Then I is 7 -filtrant.

Proof. By Proposition 3.2.4, [ is filtrant. Let us check property (i) of Propo-
sition 9.2.1.

(a) Let A € Ob(I) with card(A) < m. For any a € A, there exist j(a) € J
and a morphism a — ¢(j(a)). Let A" = {j(a);a € A}. There exist j € J and
morphisms j(a) — j in J. Therefore there exist morphisms a — ¢(j(a)) —
9(j) in I.

(b) Let i1,io € I and let B C Hom, (i1, i2) with card(B) < m. There exist
J1 € J and a morphism i; — ¢(j1). For each s € B, there exist j(s) € J, a
morphism #(s): j; — j(s) in J, and a commutative diagram
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. N .
151 [5)

i

¢(J1) 9(J(s))-

By property (i) (a), there exist jo € J and morphisms j(s) — j2. By property
(i) (b), there exists a morphism j, — j3 such that the composition j; —
j(s) = j2 — js does not depend on s. Hence the composition i; Sy >
@(j(s)) = ¢(js) does not depend on s € B. q.e.d.

p(1(s))

Remark 9.2.6. Let I be a cofinally small w-filtrant category. Then there exist
a small -filtrant category I” and a cofinal functor I’ — I. Indeed, there exists
a small subset § € Ob([I) such that for any i € I there exists a morphism
from i to an element of S. Define I’ as the full subcategory of I such that
Ob(I') = S. Then I’ is w-filtrant and cofinal to I by Proposition 3.2.4.

Definition 9.2.7. Let w be an infinite cardinal and let C be a category which
admits 7 -filtrant small inductive limits.

(i) An object X € C is m-accessible if for any mw-filtrant small category I and
any functor a: I — C, the natural map

ﬁ_r)?Homc(X, a(i)) - Hom (X, lir_i)la(i))
le IAS]

is an isomorphism.
(ii) We denote by C; the full subcategory of C consisting of m-accessible 0b-
jects.

Remark 9.2.8. (i) If C is discrete, then C = Cy, since any functor I — C with
I filtrant, is a constant functor.

(i) If n" < 7, then Cpr C Cy.

(iii) If # = Ry, C, is the category of objects of finite presentation (see Defini-
tion 6.3.3).

(iv) We shall give later a condition which ensures that Ob(C) >~ |, Ob(Cy).

Proposition 9.2.9. Let w be an infinite cardinal. Let J be a category such
that card(Mor(J)) < 7 and let I be a small w-filtrant category. Consider a
functor o: J°P x I — Set. Then the natural map X below is bijective:

(9.2.1) A:li_rr;l(iLna(j,i)—)l(iLnli_I)noz(j,i) .
iel jel jel iel

Proof. (i) Injectivity. Let s, € limlima(j, i) such that A(s) = A(z). We may
iel jeJ
assume from the beginning that s,t € LiLna(j, ig) for some iy € I. Let s =
jet
{s(J)}Yjes, t ={t(j)}jes with s(j),2(j) € a(J, io). By the hypothesis, for each
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J € J there exists a morphism iy — i(j) in I such that s(j) € «(j, i) and
t(j) € a(j,ip) have the same image in «(j,i(j)). Since I is m-filtrant and
card(J) < m, there exist iy € I and morphisms i(j) — i3 such that the
composition ig — i(j) — i1 does not depend on j. Since s(j) € «(j, i) and
t(j) € a(j,ip) have the same image in «(j,i1) for any j € J, s, € l(ir_noz(j, io)

have the same image in l(igla(j, i1). jet
jeJ

(ii) Surjectivity. Let s € l(ir_ljllir_];)loe(j, i). Then s = {s(j)}jes. 5(j) € EI_?O((], i).
jeJ ie ie

For each j € J, there exist i(j) € I and §(j) € a(j,i(j)) whose image is s(j).
Since card(J) < m, there exist ip € I and morphisms i(j) — ip. Hence we
may assume from the beginning that s(j) € «(j, ip) for some iy which does
not depend on j.

Let u: j — j' be a morphism in J°P. It defines a morphism

ui,: a(j,io) = a(j',io)

and u;,(s(j)) = s(j’) in h_n)loc(j/,i). There exist j(u) € I and a morphism
iel
ip — j(u) such that u;,(s(j)) and s(j’) have the same image in «a(j’, j(u)).
Since card(Mor(J)) < m, there exist i1 € I and morphisms j(u) — iy such
that the composition ig — j(u) — i1 does not depend on u.
We now define #(j) € «(j,i1) as the image of s(j). For any morphism
u: j — j in J°P, we have u;, (t(j)) = 1(j’). Therefore {t(j)}jc, defines an

element ¢ of 1(&10{(], i1) whose image in l(glh_r)na(], i)1iss. q.e.d.
jeJ jeJ iel

Proposition 9.2.10. Assume that C admits small m-filtrant inductive limits.
Let J be a category such that card(Mor(J)) < w. Let B: J — Cy be a functor.
Iflir_)nﬂ(j) exists in C, then it belongs to Cy.

jet

Proof. Let I be a w-filtrant category and let &: I — C be a functor. There is
a chain of isomorphisms

lim Hom . (lim B(j). «()) = lim lim Hom (B(j). (7)) .

iel jeJ iel jelJ
Hom (lin (/). lim (i) = ljm Home (B()), lim (i)
jeJ iel jed iel
~ limlim Hom (B (), (i) .
jeJ iel

where the last isomorphism follows from the fact that B(j) € C,. Hence, the
result follows from Proposition 9.2.9. q.e.d.

Corollary 9.2.11. Assume that C admits small inductive limits. Then C,, as
well as (Cy)x for any X € C, is m-filtrant.
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Proof. Let us check condition (ii) of Proposition 9.2.1. Let J be a category
such that card(Mor(J)) < w and let ¢: J — C; be a functor. By the hypoth-
esis the object Z :=1lim ¢ exists in C and by Proposition 9.2.10 it belongs to
C.. Then -

l(ingomcn(fp, Z) >~ Homc(lgx)up, Z)~Hom(Z,Z2)# 0.
The case of (Cy)x is similar. q.e.d.
Corollary 9.2.12. Let w be an infinite regular cardinal. Then
Set, = {A € Set;card(A) < 7} .

Proof. (i) Let A € Set with card(A) < m. The set {pt} clearly belongs to
Set,. By Proposition 9.2.10, A ~ {pt}"* belongs to Set,.

(ii) Conversely, let A € Set,. Set I = {B C A;card(B) < m}. Then [ is m-
filtrant as seen in Example 9.2.4. Consider the functor «: I — Set, a(B) = B.
Since A is w-accessible, we obtain

lir_r)lHomSet(A’ B) = HomSet(A’ lir_gB)
Bel Bel
~ Homg (A, A) .

Hence ids € Homge, (A, lim B) belongs to Homg (A, B) for some B € I, that

Bel
is, id4: A — A factors through B— A, which implies A = B. q.e.d.

Definition 9.2.13. Let C be a category (we do not assume that C admits small
inductive limits). We set

Ind”™ (C) = {A € Ind(C);Cy is m-filtrant} .

Remark 9.2.14. (i) If m = R, then Ind” (C) = Ind(C).
(ii) For n’ < 7, we have Ind™ (C) D Ind"(C).

Lemma 9.2.15. Let A € C. Then A € Ind" (C) if and only if there exist a
small t-filtrant category I and a functor a: I — C with A ~ “lgn” a.

Proof. (i) The condition is necessary since A >~ “li_r)n” X by Proposition 2.6.3
XECA

and Cy is cofinally small by Proposition 6.1.5 (see Remark 9.2.6).

(ii) Conversely, assume that A ~ “lim” @ with a: I — C for a small and

m-filtrant category I. Then the natural functor I — C4 is cofinal by Proposi-
tion 2.6.3. To conclude, apply Lemma 9.2.5. q.e.d.

Lemma 9.2.16. The category Ind™ (C) is closed by m -filtrant inductive limits.
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Proof. Let a: I — Ind"(C) be a functor with I small and s-filtrant and let
A="lm"o € Ind(C). We can prove that C4 is m-filtrant as in the proof of
Theorem 6.1.8. q.e.d.

Proposition 9.2.17. Let C be a category and assume that C admits inductive
limits indexed by any category J such that card(Mor(J)) < 7. Let A € Ind(C).
Then the conditions (1)—(iii) below are equivalent.

(i) A € Ind™(C),
(ii) for any category J such that card(Mor(J)) < 7 and any functor ¢: J —
C, the natural map

(9.2.2) A(lim g (j)) — lim A(g()))
jeJ jeJ

18 surjective,
(iii) for any category J and any functor ¢ as in (ii), the natural map (9.2.2)
is bijective.
Proof. (ii) = (i). By the hypothesis, any functor ¢ : J — C, factorizes through
the constant functor Ajiy,. Hence C4 is w-filtrant by Proposition 9.2.1 (ii).
—
(iii) = (ii) is obvious.
(i) = (iii). Let A ~ “lig)l” a(i), where « is a functor I — C and [ is small and

r-filtrant. We get by Proposition 9.2.9

@A(@(j)) o~ Lith_r)nHomc(ga(j), o(i)) ~ limlim Hom ,(¢(j), a(i))

— <

jeJ jeJ iel iel jeJ
~ lim Hom ¢ (lim ¢/(j), (i) = Alim g (j)) .

iel jeJ jedJ

q.e.d.

Proposition 9.2.18. Assume that C admits small w-filtrant inductive limits.
Then the functor o, : Ind" (C,) — C, “H_H)l” a > h_r)noz, s fully faithful.

The proof below is similar to that of Proposition 6.3.4.

Proof. Let I, J be small w-filtrant categories, let «: I — C,, 8: J — C;

be functors and let A = “li_r)n”a(i), B = “lim” B(j). There is a chain of
iel jelJ
isomorphisms

Hom 4+ ¢, (A B) = lim lim Hom ¢ (e (i), B(/))
iel jeJ
~ lim Hom ¢ (e(i), lig (/)
iel jeJ
~ Hom(lima (i), lim B()))
iel jeJ
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Proposition 9.2.19. Let C be a category and assume that

(i) C admits small inductive limits,
(ii) C admits a system of generators {G,}, such that each G, is w-accessible,
(iii) for any object X € C, the category (Cy)x is cofinally small.

Then the functor oy : Ind™(C,) — C is an equivalence.

Proof. By Proposition 9.2.18 it remains to show that o, is essentially sur-
jective. For any X € C, (Cy)x is m-filtrant by Corollary 9.2.11. Hence the
object “li_H)l” X' belongs to Ind™ (C;). It is then enough to check that
(X'—>X)e(Cr)x
the morphism
A lim X - X
—_
(X'—>X)e(Cr)x

is an isomorphism. Since {G,} is a system of generators, this is equivalent to
saying that the morphisms

(9.2.3) Ay h_II)l (X'(G))) ~( h_r)n X)(G,) - X(G,)
(X' —>X)e(Cx)x (X'—>X)e(Cx)x

are isomorphisms for all v.

(i) A, is surjective since (G, — X) € (Cy)x for all u € X(G,).

(ii) Let us show that A, is injective. Let f, g € X'(G,), that is, f, g: G, = X',

and assume that their compositions with X’ — X coincide. Let X" =

Coker(f, g). By Proposition 9.2.10, X” € C,. Then the two compositions

G, = X’ — X’ coincide, which implies that f and g have same image in
lim X'(G,). .e.d.

(X = X)e(Cox o !

9.3 mw-accessible Objects and Generators

Recall that 7 is an infinite cardinal. We shall assume that 7 is regular. Now
we consider the following hypotheses on C.

(i) C admits small inductive limits,
(ii) C admits finite projective limits,

(9.3.1) { (iii) small filtrant inductive limits are exact,
(iv) there exists a generator G,
(v) any epimorphism in C is strict.

Note that under the assumption (9.3.1), C admits small projective limits by
Corollary 5.2.10 and Proposition 5.2.8.
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Lemma 9.3.1. Assume (9.3.1) and let & be an infinite reqular cardinal. Let
I be a m-filtrant small category, a: I — C a functor, and let h_r)noc — Y be
an epimorphism in C. Assume either card(Y(G)) < m or Y € C,. Then there
exists ig € I such that a(ip) = Y is an epimorphism.

Proof. Set X; = (i) and ¥; = Im(X; — Y) = Ker(Y = Y Uy, Y). Since small
filtrant inductive limits are exact,
h_.II)IY,' ~ Ker(Y = Ylirhjx,- Y) :Im(h_ani Y)Y,

i — i
i

where the last isomorphism follows from the hypothesis that lirgXi — Y is
an epimorphism together with Proposition 5.1.2 (iv). i
(a) Assume that card(Y(G)) < 7. Set § = lim Y;(G) C Y(G). Then card(S) <

card(Y(G)) < . By Corollary 9.2.12, S € Set, and this implies

li_I)nHomSet(S’ Yl(G)) = HomSet(S’ S) .

iel
Hence, there exist igp and a morphism § — Y;,(G) such that the composition
S — Y,,(G) — S is the identity. Therefore Y;,(G) = S and hence, Y; (G) —
Y:(G) is bijective for any iy — i. Hence Y;, — Y; is an isomorphism, which
implies that ¥;, — Y is an isomorphism. Applying Proposition 5.1.2 (iv), we
find that X;, — Y is an epimorphism.
(b) Assume that Y € C,. Then li_r)nHomC(Y, Y;) - Hom (Y, Y) is an isomor-

iel

phism. This shows that idy decomposes as Y — Y; — Y for some i € I. Hence,
Y; >~ Y (see Exercise 1.7) and X; — Y is an epimorphism by Proposition 5.1.2
(iv). q.e.d.

Proposition 9.3.2. Assume (9.3.1) and let © be an infinite reqular cardinal.
Let A € C and assume that card(A(G)) < w and card(G"*(9)(G)) < m. Then
AeC,.

Proof. First, note that Set 3 E > G“F ¢ C is a well-defined covariant functor.
Also note that card(GUS(G)) < & for any S € A(G). Indeed, there exist
maps S — A(G) — S whose composition is the identity. Hence, the composi-
tion GUS(G) - GUAO)(G) - GUS(G) is the identity.
Let I be a small w-filtrant category and let a: I — C be a functor. Set
X, =oa(i)and Xo = lir_r)loe(i). We shall show that the map A below is bijective:

iel

(9.3.2) A 1‘i_I)nHomc(A, Xi) — Hom (A, X)) .

iel

(i) A is injective. (Here, we shall only use card(A(G)) < «.)

Let f,g: A = X;, and assume that the two compositions A = X;, - X«
coincide. For each morphism s: iy — i, set Ny = Ker(A = X;). Since 111>1 is
exact in C by the hypothesis, we obtain sel’o
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lir_r; N, ~ Ker(A = lir_r)l X;)
sel'o sel'o
~Ker(A = Xoo) @A
Since Nj is a subobject of A and card(A(G)) < 7, we may apply Lemma 9.3.1

and conclude that there exists ig — i; such that N;, — A is an epimorphism.
Hence, the two compositions A = X;, — X;, coincide.

(ii) A is surjective.

Let f € Hom,(A, X). For each i € I define ¥; = X; xx_ A. Since lir_)n is

1

exact, limY; >~ A. Since card(A(G)) < =, Lemma 9.3.1 implies that there
exists ioie I such that Y;, — A is an epimorphism. Set
K =Im(Y;,(G) = A(G)) C A(G) .
Consider the commutative diagram below:
GLY, (G) Gk glH4)

R

Y, ————= A.

The left vertical arrow is an epimorphism by Proposition 5.2.3 (iv). Hence
GUX — A is an epimorphism. Choosing a section K — Y;,(G), we get a
commutative diagram

GUK —— GllYi(G) —— GlIK

~

Yij ——= A

such that the composition GUX — GUY (@) — GUX ig the identity. Set
B = GUX . The composition B — ¥;, — A is an epimorphism. We obtain a
commutative diagram

B——=A
-
Xipg — Xoo -

Since all epimorphisms are strict, the sequence
(9.3.3) BxsB=B— A

is exact. On the other hand, since card(B(G)) = card(GUX(G)) < 7, we have
card(B x4 B)(G) < card(B(G))? < m. Then, applying part (i) to B x4 B, the
natural map
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lir_r)lHomc(B X4 B, X;) > Hom (B x4 B, Xo)
iel
is injective. Consider the diagram

BxyB—=ZB———A

| |

Xig — Xoo -

Since the two compositions B x4 B = B — X;, = X are equal, there exists
an arrow ig — i such that the two compositions B x4 B = B — X;, — X; are
equal. Hence, the exactness of (9.3.3) implies that B — X;, — X; decomposes
into B— A — X;. Since B — A is an epimorphism, the composition A —
X; = X coincides with f. q.e.d.

We keep hypothesis (9.3.1) and choose an infinite regular cardinal 7y such
that

card(G(G)) < my, card(GUP)(G)) < my .

By Proposition 9.3.2, we get G € C,,. Now choose a cardinal 7; > m such that
if X is a quotient of GLI4 for a set A with card(A) < o, then card(X(G)) < m;.
(Since the set of quotients of GU4 is small, such a cardinal 7, exists.)

Let 7 be the successor of 271. The cardinals 7 and mg satisfy

(a) m and 7y are infinite regular cardinals,
(b) G € Cry
(9.3.4) (¢) t'™ < for any n’ < 7 ,
(d) if X is a quotient of GLI4 for a set A with card(A) < o,

then card(X(G)) < 7.

Indeed (c) is proved as follows: if 7’ < 7, then 7/ < 2™ and 7/ < (2™)™ =
9Tom — 9™ < .

Lemma 9.3.3. Assume (9.3.1) and (9.3.4). Let A € Set with card(A) < &
and let X € C be a quotient of GHA. Then card(X(G)) < .

Proof. Let u: GUA — X be an epimorphism. Set I = {B C A;card(B) < o).
Then I is a mp-filtrant ordered set by Example 9.2.4.
By 9.3.4 (c), we have

card(I) < card(A)™ < .
For B € 1, set

Xp = Coim(GU? — GgU4 = x) .
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Then {Xpg}pe; is a mo-filtrant inductive system of subobjects of X by Propo-
sition 5.1.7. Since small filtrant inductive limits are exact, 1£>nX g —> Xisa

Bel
monomorphism. Since 1’11)1GUB ~ GUA, the morphism lim X5 — X is also
Bel Bel

an epimorphism. It is thus an isomorphism by the hypothesis (9.3.1) (v) and
Proposition 5.1.5 (ii). Since G € Cy, and [ is mp-filtrant,

X(G) ~ h_r)nXB(G) .
Bel
Since card(Xp(G)) < 7 by (9.3.4) (d) and card(I) < m, we obtain

card(X(G)) < card(l_l Xp(G)) <7 .
! q.e.d.

Theorem 9.3.4. Assume (9.3.1) and (9.3.4). Then
Cr ~{X €C; card(X(G)) <7} .

Proof. Set Sy = {X € C; card(X(G)) < 7}.

(i) Sz € Cr. If X € S, then Lemma 9.3.3 implies that card(GUX(9)(G)) < .
Then Proposition 9.3.2 implies X € C,,.

(i) Cx C Sr. Let X € Cr. Set I = {A C X(G); card(A) < m}. Then [ is
mw-filtrant. For A € I we get the morphisms

GUA - gUX©G) x|
Since

limgUA = gUX(G) 5 x
—
Ael

is an epimorphism, Lemma 9.3.1 implies that G4 — X is an epimorphism
for some A € I. Then Lemma 9.3.3 implies that card(X(G)) < 7. q.e.d.

Corollary 9.3.5. Assume (9.3.1) and (9.3.4). Then

(i) Cx is essentially small,

(ii) if f: X—7Y is an epimorphism and X € C, then Y € Cy,
(iii) if f: X—Y is a monomorphism and Y € Cy, then X € Cy,
(iv) Cy is closed by finite projective limits.

Proof. (i) Let X € C;. There exist a set I with card(I/) < m and an epimor-
phism GU/—X. (Take X(G) as I.) Since the set of quotients of GLI/ is small,
C, is essentially small.

(ii) Since GUX(@) 5 X is an epimorphism, we obtain an epimorphism
GUX(G) — y. Since card(X(G)) < m by Theorem 9.3.4, the result follows
from Lemma 9.3.3 and Theorem 9.3.4.
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(iii) Since X(G) C Y(G), we have card(X(G)) < card(Y(G)), and the result

follows from Theorem 9.3.4.

(iv) Let {X;};e; be a finite projective system in C and set X = 1(&1 X;. We have
X(6) = lm(X,(G)) < [1%(G).

l

and card(X(G)) < card([[ Xi(G)) <. q.e.d.

Corollary 9.3.6. Assume (9.3.1) and (9.3.4). Then the Junctorlim: Ind™(C;)
— C is an equivalence.

Proof. Apply Proposition 9.2.19. q.e.d.

Corollary 9.3.7. Assume (9.3.1). Then for any small subset S of Ob(C),
there exists an infinite cardinal w such that S C Ob(Cy).

Corollary 9.3.8. Assume (9.3.1) and let « be a cardinal. Then there exist a
full subcategory S C C and an infinite reqular cardinal w > k such that

(i) S is essentially small,

(ii) if X—Y is an epimorphism and X € S, then Y € S,

(iii) if X—Y is a monomorphism and Y € S, then X € S,

(iv) there exists an object G € S which is a generator in C,

v) for any epimorphism f: X—Y inC with Y € S, there exist Z € S and a
monomorphism g: Z — X such that fog: Z — Y is an epimorphism,

(vi) any X € S is m-accessible in C,

(vil) § is closed by inductive limits indexed by categories J which satisfy

card(Mor(J)) < .

Proof. Choose cardinals my > « and 7 as in (9.3.4) and set S = C,. We only
have to check (v). Consider the epimorphisms GHX(%) XY and set I =
{A C X(G); card(A) < w}. Then I is w-filtrant. Since h_r)nGUA ~ GUX(G),

Ael
Lemma 9.3.1 implies that there exists A € I such that GU4 — Y is an
epimorphism. Hence, it is enough to set Z = Im(GUA - X). q.e.d.

9.4 Quasi-Terminal Objects

Definition 9.4.1. Let C be a category. An object X € C is quasi-terminal
if any morphism u: X — Y in C admits a left inverse, that is, there ezists
v:Y — X such that vou = idy.

Hence, any endomorphism of a quasi-terminal object is an automorphism.
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The aim of this section is to prove Theorem 9.4.2 below, a categorical
variant of Zorn’s lemma.

Theorem 9.4.2. Let C be an essentially small non empty category which ad-
maits small filtrant inductive limits. Then C has a quasi-terminal object.

The proof decomposes into several steps. We may assume that C is small.

Sublemma 9.4.3. There exists an object X € C such that if there exists a
morphism X — Y, then there exists a morphism ¥ — X.

Proof of Sublemma 9.4.3. Let F be the set of filtrant subcategories of C. Since
C is non empty, F is non empty, and F is clearly inductively ordered. Let S
be a maximal element of F. Since S is small, X := h_r)n S exists in C.

SeS
We shall prove that X satisfies the condition of the statement. For § € S,

let us denote by as: § — X the canonical morphism. Let u: X — Y be a
morphism in C. ~
(i) Y € S. Otherwise, define the subcategory S of C by setting

Ob(S) = Ob(S) L (Y},

Mor(S) = Mor(S) u{idy} L {u o ag € Hom,(S,Y); S € S}.

It is easily checked that Sisa subcategory of C and Y is a terminal object of
S. Hence S is a filtrant subcategory containing S. This contradicts the fact
that S is maximal.

(ii) Since Y € S, there exists a morphism ¥ — X, namely the morphism ay.

q.e.d.

Sublemma 9.4.4. For any X € C, there exists a morphism f: X — Y satis-
fying the property:
P(f): for any morphism u: Y — Z, there exists a morphism v: Z — Y such
that vouo f = f.

Proof of Sublemma 9.4.4. The category CX is non empty, essentially small
and admits small filtrant inductive limits. Applying Sublemma 9.4.3, we find

an object (X EN Y) € CX such that for any object (X — Z) and morphism

u: (X - Y) > (X el Z) in C¥, there exists a morphism v: (X — Z) —

(X — Y) in C*. q.e.d.
Let us choose an infinite regular cardinal = such that card(Mor(C)) < =.

Sublemma 9.4.5. Let I be a w-filtrant small category and let {X;}ie; be an
inductive system in C indexed by I. Then there exists ip € I such that X;, —
li_r)nX,» is an epimorphism.

L
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Proof of Sublemma 9.4.5. The proof is similar to that of Lemma 9.3.1. Set
X = li_n)lXi and let g;: X; — X denote the canonical morphism. Let F € C*

1
denote the image of “li_r)n” X; — X, that is,

l

F(Y) = Im(lim Hom (Y, X;) — Hom(Y, X)) .

l

Since card(Hom (Y, X)) < m, we have F(Y) € Set,. Therefore, there exists
iy € I such that Hom (Y, X;,) — F(Y) is surjective (apply Lemma 9.3.1 with
C = Set). Since card({iy;Y € Ob(C)}) < 7w and [ is w-filtrant, there exists
ip € I such that there exists a morphism iy — iy for any ¥ € Ob(C). Hence
Hom, (Y, X;,) = F(Y) is surjective for any ¥ € C. In particular, for any i € I,
there exists a morphism #4;: X; — X;, such that a;, o h; = a;.

Let us show that a;,: X;, — X is an epimorphism. Let fi, fo: X =3 Y be
a pair of parallel arrows such that fi o a;, = f2 o a;,. Then, for any i € I, we
have

fl oda; = f1 o dj, Ohi = fgoaio Ohi = f2 oda; .
Hence, f1 = fo. q.e.d.

Proof of Theorem 9.4.2. As in Example 9.2.3, let us choose a small w-filtrant
well ordered set I such that sup(I) does not exist. Let us define an inductive
system {X;};c; in C by transfinite induction. For the smallest element 0 € I,
we choose an arbitrary object Xg € C. Let i > 0 and assume that X; and
ujr: X — X; have been constructed for k < j < i.

(a) If i = j 41 for some j, then take u;;: X; — X; with the property P (u;;)
in Sublemma 9.4.4. Then define u;; = u;; o uj; for any k < j.

b) If i = sup{j;j < i}, set X; = lim X; and define u;; as the canonical
e J
morphism X; — X;. j<i

We shall prove that X := lir_r)lX,- is a quasi-terminal object. Let @;: X; — X
il

denote the canonical morpilism. Hence, a; = a; ou;j for j < i. By Sub-

lemma 9.4.5, there exists iy € [ such that a;,: X;, — X is an epimor-

phism. Let u: X — Y be a morphism. By the property P(u;,+1,,) applied

to u o ajy41: Xiy+1 — Y, we find a morphism w: Y — X; 41 such that

WO U O Ajg41 O Ujg41,iyg = Uig41,i- €t V= ajy41 0w € Hom (Y, X). Then

(vou)oa;, = (aj,+10w)ou o (diy+1 © Uig+1.iy)

= djy+1 O Ujy+1,ipg — Aiy = ldx odj, -

Since a;, is an epimorphism, we conclude that v o u = idy. q.e.d.
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9.5 F-injective Objects

Let C denote a U-category.

Definition 9.5.1. (i) Let F C Mor(C) be a family of morphisms in C. An
object I € C is F-injective if for any solid diagram

(9.5.1) X—1
T
z

with f € F, there exists a dotted arrow making the whole diagram com-
mutative.
In other words, I is F-injective if the map Hom.(Z, I) L2 Hom (X, I)
is surjective for any f: X — Z in F.

(ii) An object is F-projective in C if it is F°P-injective in COP.

Ezample 9.5.2. Let C be an abelian category and let F C Mor(C) be the family
of monomorphisms. Then the F-injective objects are the injective objects.

We shall consider a subcategory Co of C and we shall make the hypotheses
below

(i) Co admits small filtrant inductive limits and Cp — C com-
mutes with such limits,

(ii) for any X,Y, X' € Cp, any u: X — Y in Mor(Cp) and any

(9.5.2) f: X — X' in Mor(C), there exists a commutative diagram

X —Y with u’ € Mor(Cp) and g € Mor(C).

f J, ¢g

/ /
X = Y

Lemma 9.5.3. Assume (9.5.2). Then for any X' € Cy, any small family
{ui: X; = Yilier in Mor(Co) and any family {fi: X; — X'}ier in Mor(C),
there exist u’: X' — Y' in Mor(Cy) and {g;: Yi — Y'}ic; in Mor(C) such that
the diagrams X; =Y commute foralliel.

! Js

Proof. When [ is empty, it is enough to take idy as u’. Assume that I is non
empty. We may assume that I is well ordered. We shall construct an inductive
system {X' — Y/}ie; in Cyp and morphisms ¥; — ¥/ by transfinite induction.

If i = 0 is the smallest element of I, let us take a morphism X’ — ¥ in
Co such that Xg — X’ — ¥{ factors through X, 2 Y.
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Let i > 0. By (9.5.2) (i), Y., :== h_n)le’ exists in Cy. Then we take Y/ € C
Jj<i
and a morphism Y, — ¥/ in Cy such that there exists a commutative diagram

uj
X —————

N

X’*>Y/<i*>Y/

We have thus constructed an inductive system {Y/};e; in Co. Set ¥’ := 111)1 Y!.
i
Then X' — Y’ satisfies the desired properties. q.e.d.

Theorem 9.5.4. Assume (9.5.2). Let F C Mor(Cp) be a small set and assume
that there exists an infinite cardinal w such that for any u: X — Z in F,
X € C;. Then, for any X € Cy, there exists a morphism f: X — Y such that
f € Mor(Co) and Y is F-injective in C.

Proof. We may assume from the beginning that 7 is an infinite regular car-
dinal. Choose a well ordered m-filtrant set I such that sup(/) does not exist,
as in Example 9.2.3. For i, j € I with j < i, we shall define by transfinite
induction on i:

Y; in Cp and u;;: Y; — Y; in Mor(Co)

(9.5.3) ) .
such that u;; = idy,, ujj ouj = uj for k < j <i.

Denote by 0 the smallest element in I. Set Yy = X, ugp = idy. For i > 0,
assume that Y; and uj; are constructed for k < j <.
(a) If sup{j;j < i} =1, set

Y; =lim ¥;

j<i

and define the morphisms Y¥; — Y; as the natural ones.
(b) If i = j + 1 for some j, define the set

={B<LAS Y veF).
Then §; is a small set. For s € §;, we denote by B; & Ay N Y; the corre-

sponding diagram. It follows from Lemma 9.5.3 that there exist a morphism
ujj : Yy = Y; in Cg and a commutative diagram

1

By

H

=

s

ujj

~< .

H

©
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for every s € ;. For k < j, we define u;; as the composition u;; o u j.
We have thus constructed an inductive system {Y;};c; in Cp.
Set ¥ = lim ¥;. Then the morphism X — Y belongs to Mor(Cp). Let us
iel
show that Y is F-injective. Consider a diagram

(9.5.4) Z,—=Y
|
Zy
with f € F and w € Mor(C). Since Z; € Cy, there is an isomorphism

Hom(Z,,Y) =~ li_r)nHomC(Zl, Y:)

iel
and there exists j € I such that diagram (9.5.4) decomposes into

Z14>Yj4>Y.

d

Zy

Now (Zy < Z; — Yj) is equal to (B; < A; — Y;) for some s € §; and we
get the commutative diagram

~ N

VA Ay Y; Y.

ok

~ wy
Zy —> By — Y.i+1

This completes the proof. q.e.d.

Let C be a category, Cy a subcategory and F C Mor(Cp) a family of mor-
phisms in Cy. We introduce the following condition on a morphism f: X — Y
in Co.

Any Cartesian square in C U *Y> vV (without the dotted

arrow) such that s € F can be completed to a commutative
diagram in C with a dotted arrow &.

Theorem 9.5.5. Let C be a category, Cy a subcategory and F C Mor(Cy) a
family of morphisms in Cy. Assume (9.5.2) and also
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(9.5.6) for any X € Cy, (Co)x is essentially small,

(9.5.7) any Cartesian square X’i> Yy’ in C with f, f' € Mor(Cp)

ot

decomposes into a commutative diagram X' — Y’ such

SRR

X=mzo7y
that the square labeled by A is co-Cartesian, g, h € Mor(Cy) and
f=hog,
(9.5.8) if a morphism f: X — Y in Cy satisfies condition (9.5.5),

then f is an isomorphism.

Then any Y € C which is F-injective is Mor(Cy)-injective.

Proof. Let Y be F-injective and consider morphisms Y Lx EN Z with
f € Mor(Cp). We shall show that h factorizes through f.

Let us denote by D(u, v, w, Z’') a commutative diagram in C with Z’ € Cy,
u, v € Mor(Cy):

Xu—>Z
h \Z’/
—

Y

Denote by I the category of such diagrams, a morphism D(uq, vy, w1, Z}) —
D(ugz, v2, we, Z4) being a morphism Z| — Z in Cy which satisfies the natural
commutation relations.

By hypothesis (9.5.6), I is essentially small. By hypothesis (9.5.2), I admits
small filtrant inductive limits. Applying Theorem 9.4.2, I has a quasi-terminal
object, which we denote by D(uq, v, wo, Zo)-

It remains to show that vy is an isomorphism. For that purpose, we shall
use (9.5.8).

Consider a Cartesian square

s
_

| ]

o
Zy —

with s € F. Then by (9.5.7), it decomposes into a commutative diagram
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U—— svy

T I

ZO;‘/’)ZOHUVT)Z

with ¢, ¥ € Mor(Cp) such that vy = ¥ o ¢. Since Y is F-injective, the com-
position U % 7 2% Y factors as U > V — Y, which induces a morphism
wi: Zg Uy V — Y. We thus obtain a commutative diagram

This defines a morphism & in I:
EI D(uo, Vg, Wo, Z()) — D((p oug, w, wi, ZO Uy V) .

Hence, £ admits a left inverse. We get a morphism n: Zouy V — Zg in
Cp such that the two triangles in the diagram below commute

U—2 vy

l iﬁ

ZOLZOUUV

1T

Zo——> 2.

Therefore, the whole diagram commutes, and vy satisfies condition (9.5.5),
hence is an isomorphism by assumption (9.5.8). q.e.d.

9.6 Applications to Abelian Categories

We shall apply some of the preceding results to abelian categories. Note that
a Grothendieck category (see Definition 8.3.24) satisfies hypothesis (9.3.1).

Let us summarize the principal results that we shall use in the sequel.
These results follow from Corollaries 9.3.7 and 9.3.8.

Theorem 9.6.1. Let C be a Grothendieck category. Then, for any small subset
E of Ob(C), there exist an infinite cardinal = and a full subcategory S of C
satisfying the conditions:
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(i) Ob(S) contains E,
(ii) S is a fully abelzan subcategory of C,
(iii) S is essentially small,
(iv) S contains a generator of C,
(v) S is closed by subobjects and quotients in C,
(vi) for any epimorphism f: X—Y in C with Y € S, there exist Z € S and a
monomorphism g: Z — X such that fog: Z — Y is an epimorphism,
(vii) S is closed by countable direct sums,

(viii) any object in S is w-accessible.

On the Existence of Enough Injectives and Injective Cogenerators

The next result is due to Grothendieck [28].

Theorem 9.6.2. Let C be a Grothendieck category. Then C admits enough
injectives.

Proof. We shall apply Theorem 9.5.4. Let G be a generator of C. We take
as Cy the category whose objects are those of C, the morphisms in Cy being
the monomorphisms in C. Let F C Mor(Cy) be the set of monomorphisms
N — G. This is a small set by Corollary 8.3.26. By Proposition 8.4.7, an
object of C is injective if it is F-injective.

Hypothesis (9.5.2) is clearly satisfied (use Lemma 8.3.11). By Theorem 9.6.1,
there exists an infinite cardinal 7 such that any subobject of G is w-accessible.
Applying Theorem 9.5.4, we obtain that for any X € C there exists a monomor-
phism X < Y such that Y is F-injective. q.e.d.

Theorem 9.6.3. Let C be a Grothendieck category. Then C admits an injec-
tive cogenerator K.

Proof. Let G be a generator. By the result of Proposition 5.2.9, there exists
a family {G;}je; indexed by a small set J such that any quotient of G is
isomorphic to some G;. Let § = @je] G ;. By Theorem 9.6.2, there exist an
injective object K and a monomorphism S < K. We shall show that K is a
cogenerator.

First, let us show that
(9.6.1) Hom (X, K) ~ 0 implies X >~ 0.

For any morphism u: G — X, the map Hom (X, K) - Hom(Imu, K) is sur-
jective. Hence, Hom(Imu, K') >~ 0. Since Im u is isomorphic to some G ;, there
exists a monomorphism Imu < K. Hence, Imu >~ 0. Thus Hom (G, X) >~ 0
and X =~ 0. This prove (9.6.1).

To conclude, consider a morphism f: X — Y such that Hom,(f, K) is
bijective, and let us show that f is an isomorphism. It is enough to check that
Ker f ~ Coker f =~ 0. This follows from (9.6.1) and the exact sequence
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0 — Hom(Coker f, K) — Hom,(Y, K)
— Hom (X, K) — Hom,(Ker f, K) = 0.

q.e.d.

Corollary 9.6.4. Let C be a Grothendieck category.

(i) A functor F: C — Set is representable if F commutes with small pro-
jective limits.

(ii) Let A be another category. If a functor R: C — A commutes with small
projective limits, then R admits a left adjoint.

Proof. Tt is enough to apply Theorem 9.6.3, Theorem 5.2.6 and Proposi-
tion 5.2.8 (with the arrows reversed). g.e.d.

Corollary 9.6.5. Let C be a small abelian category. Then Ind(C) admits an
injective cogenerator.

Proof. Apply Theorem 8.6.5 and Proposition 9.6.3. q.e.d.

Let us give an important application of Theorem 9.6.3.

Corollary 9.6.6. Let C be a Grothendieck category. Denote by I, the full
additive subcategory of C consisting of injective objects and by t: Zi,; — C
the inclusion functor. Then there exist a (not necessarily additive) functor
¥ C — Ly and a morphism of functor ide — to W such that X — ¥ (X) is
a monomorphism for any X € C.

Proof. The category C admits an injective cogenerator K by Proposition 9.6.3
and admits small products by Proposition 8.3.27. Consider the (non additive)
functor

W:C—C, X KHmEK
The identity of

Homg (Hom,(X, K), Hom (X, K)) ~ Hom,(X, g Hom (X,K))

defines a morphism X — W¥(X) = KHom(X’K), and this morphism is a

monomorphism by Proposition 5.2.3 (iv). q.e.d.

Corollary 9.6.7. Let C be a Grothendieck category and I a small category.
Let a: 1 — C be a functor. Denote by I;,; the full additive subcategory of C
consisting of injective objects. Then there exist a functor B: 1 — I;,; and a
monomorphism c—pB in Fct(1,C).

Proof. Take B = W oa, where ¥ is the functor given by Corollary 9.6.6. q.e.d.
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Lemma 9.6.8. Let C be an abelian category which admits a projective gen-
erator G and small inductive limits. Let J C Ob(C) be a small set. Then
there exists a projective generator P such that any X € J is isomorphic to a
quotient of P.

Proof. For X € C, the morphism G®1°™(©%) _, X is an epimorphism. Hence,
it is enough to set P = @y, GZom (@) g.e.d.
We set

(9.6.2) R := the opposite ring of the ring Hom (G, G) ,

¢ = the functor Hom,(G, +): C — Mod(Rg) .

Lemma 9.6.9. Let C be an abelian category which admits a projective gener-
ator G. Let X € C be a quotient of a finite direct sum of copies of G. Then
the map

(9.6.3) Hom (X, Y) — Hom (¢6(X), ¢c(Y))
is bijective for all Y € C.

Proof. For short, we shall write R and ¢ instead of Rg and ¢, respectively.
By the assumption, ¢ is an exact functor. By Proposition 5.2.3, the functor ¢
is faithful. Taking an epimorphism G®"—X, set N = Ker(G®" — X).

Then 0 — @(N) — ¢(G®") — ¢(X) — 0 is exact. Let us consider the
exact commutative diagram (in this diagram, we write Hom instead of Hom
or Hom j for short)

00— Hom(X,Y) ——— Hom (G®",Y) Hom (N, Y)

| | |

0 — Hom (¢(X), ¢(Y)) — Hom (¢(G®"), ¢(Y)) — Hom (¢(N), ¢(Y)).

Since Hom (G, Y) = ¢(¥) =~ Hom z(¢(G), ¢(Y)), the middle vertical arrow
is an isomorphism. Since ¢ is faithful, the right vertical arrow is a monomor-
phism. Therefore the left vertical arrow is an isomorphism. q.e.d.

The next theorem is due to Freyd and Mitchell.

Theorem 9.6.10. Let C be a small abelian category. There exist a ring R and
an ezxact fully faithful functor C — Mod(R). In other words, C is equivalent
to a fully abelian subcategory of Mod(R).
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Proof. The category C°P is abelian. Applying Corollary 9.6.5, the abelian cat-
egory Ind(C°P) admits an injective cogenerator. Hence Pro(C) =~ (Ind(C°P))°P
admits a projective generator. We regard C as a full subcategory of Pro(C).
Note that C — Pro(C) is an exact functor. By Lemmas 9.6.8 there exists a
projective generator G of Pro(C) such that any object of C is a quotient of
G. Then Lemma 9.6.9 implies that the functor ¢gg: C — Mod(Rg) is fully
faithful, and ¢¢g is obviously exact. q.e.d.

Exercises

Exercise 9.1. Let C be an abelian category. A monomorphism f: X—7Y is
essential if for any subobject W of Y, WN X ~ 0 implies W >~ 0. Prove that f
is essential if and only if a morphism g: ¥ — Z is a monomorphism as soon
as g o f is a monomorphism.

Exercise 9.2. Let C be a Grothendieck category and let f: X>—Y be a
monomorphism. Prove that there exists an essential monomorphism h: X—Z

which factorizes as X 5 ¥ — Z.
(Hint: let X denote the set of subobjects W of ¥ satisfying W N X = 0. Then
X is a small set and is inductively ordered.)

Exercise 9.3. Let C be a Grothendieck category and let Z € C. Prove that
Z is injective if and only if any essential monomorphism f: Z—W is an
isomorphism.

Exercise 9.4. Let C be a Grothendieck category and let {X — Y;};c; be an
inductive system of morphisms in C indexed by a small and filtrant category
I. Assume that all morphisms X — Y; are essential monomorphisms. Prove
that f: X — h_r)n Y; is an essential monomorphism.

1

Exercise 9.5. Let C be a Grothendieck category and let G be a generator. Set
R = (End¢(G))°P. Recall that the category Mod(R) admits enough injectives
by the result of Exercise 8.24.

(i) Prove that if f: X — Y is an essential monomorphism in C, then ¢g(f) is
an essential monomorphism in Mod(R).

(ii) Deduce another proof of Theorem 9.6.2.

Exercise 9.6. Let C be a Grothendieck category and let X € C.

(i) Prove that there exist an injective object I and an essential monomorphism
X—1I.

(ii) Let u: X — I and u’: X — I’ be two essential monomorphisms, with /
and I’ injectives. Prove that there exists an isomorphism g: I — I’ such that
gou =u'. (Note that such a g is not unique in general.)
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Exercise 9.7. Let = be an infinite cardinal and I a small category. Assume
that for any category J such that card(Mor(J)) < 7 and any functor a: J°P x
I — Set, the morphism A in (9.2.1) is an isomorphism. Prove that I is 7-
filtrant. (Hint: for any ¢: J — I, apply (9.2.1) to «(j,i) = Hom,(¢(j),i)
and use Lemma 2.4.7.)

Exercise 9.8. Let m be an infinite cardinal and let C be a category which
admits inductive limits indexed by any category J such that card(Mor(J)) <
7. Let F: C — C' be a functor. Prove that F commutes with such inductive
limits if and only if Cy is w-filtrant for any Y € C'.

Exercise 9.9. Let X and Y be two quasi-terminal objects in a category C.
Prove that any morphism f: X — Y is an isomorphism.

Exercise 9.10. Let C be a category and X € C. Assume that (X, idy) € CX
is a terminal object of CX. Prove that X is a quasi-terminal object.

Exercise 9.11. Let A be a small set and let C be the category defined as
follows.

Ob(C) = {x,y},

Hom(x, x) = {id,} ,

Hom,(y, y) = {ld YU {pasa € A},
Hom(x,y) = ,

Hom,(y,x) = {va,a €A},

with the relations p, o pp = pp, V4 0 pp = v, for any a, b € A.

(i) Prove that C is a category.

(ii) Prove that there exists a fully faithful functor F: C — Set”.

(iii) Prove that C — Ind(C) is an equivalence of categories.

(iv) Prove that C admits filtrant inductive limits.

(v) Prove that x is a quasi-terminal object of C (see Definition 9.4.1) and
observe that a left inverse of u: x — y is not unique.

Exercise 9.12. Let C be an abelian category and G a projective object of
C. Assume that any object of C is a quotient of a direct sum of finite copies
of G. Define Rg and ¢ as in (9.6.2). Prove that Rg is a left coherent ring

(see Exercise 8.23) and that ¢ gives an equivalence C —> Mod®"(R¢), where
Mod®"(Rg) is the full subcategory of Mod(R¢) consisting of coherent Rg-
modules.

Exercise 9.13. Let C be a small category which admits small products. Prove
that for any pair of objects X, Y in C, Hom (X, Y) has at most one element
and that C is equivalent to the category associated with an ordered set I such
that for any subset J of I, inf(J) exists in /. (Hint: assume there exist X, Y € C
such that Hom (X, Y) has more than one element and set M = Ob(Mor(C)),
n = card(M). By considering Hom (X, Y"), find a contradiction.)

(The result of this exercise is due to Freyd [22].)



10

Triangulated Categories

Triangulated categories play an increasing role in mathematics and this sub-
ject deserves a whole book.

In this chapter we define and give the main properties of triangulated cat-
egories and cohomological functors and prove in particular that the localiza-
tion of a triangulated category is still triangulated. We also show that under
natural hypotheses, the Kan extension of a cohomological functor remains
cohomological.

Then we study triangulated categories admitting small direct sums. Such
categories are studied by many authors, in particular [6] and [53]. Here, we
prove the so-called “Brown representability theorem” [11] in the form due to
Neeman [53], more precisely, a variant due to [44], which asserts that any coho-
mological contravariant functor defined on a triangulated category admitting
small direct sums and a suitable system of generators is representable as soon
as it sends small direct sums to products. (The fact that Brown’s theorem
could be adapted to triangulated categories was also noticed by Keller [42].)

There also exist variants of the Brown representability theorem for trian-
gulated categories which do not admit small direct sums. For results in this
direction, we refer to [8].

We ask the reader to wait until Chap. 11 to encounter examples of tri-
angulated categories. In fact, it would have been possible to formulate the
important Theorem 11.3.8 below before defining triangulated categories, by
listing the properties which become the axioms of these categories. We have
chosen to give the axioms first in order to avoid repetitions, and also because
the scope of triangulated categories goes much beyond the case of complexes
in additive categories.

We do not treat here t-structures on triangulated categories and refer to
the original paper [4] (see also [38] for an exposition). Another important
closely related subject which is not treated here is the theory of As.-algebras
(see [41, 43]).
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10.1 Triangulated Categories

Definition 10.1.1. (i) A category with translation (D, T) is a category D

endowed with an equivalence of categories T : D —>D. The functor T is
called the translation functor.

(ii) A functor of categories with translation F: (D, T) — (D', T') is a functor
F: D — D together with an isomorphism FoT ~T' o F. If D and D’
are additive categories and F is additive, we say that F is a functor of
additive categories with translation.

(iii) Let F, F': (D, T) — (D', T’) be two functors of categories with transla-
tion. A morphism 0: F — F' of functors of categories with translation
is a morphism of functors such that the diagram below commutes:

FOT%F/OT

)

T'oF —=T'oF'.

(iv) A subcategory with translation (D', T') of (D, T) is a category with trans-
lation such that D' is a subcategory of D and the translation functor T’
is the restriction of T .

(v) Let (D, T), (D', T") and (D", T") be additive categories with translation.
A bifunctor of additive categories with translation F: D x D' — D" is an
additive bifunctor endowed with functorial isomorphisms

Oxy: F(TX,Y) = T'F(X.,Y) and 0% y: F(X,T'Y) = T"F(X.,Y)

for (X,Y) € D x D such that the diagram below anti-commutes (see
Definition 8.2.20):

9X.T’Y

F(TX,T'Y) T"F(X,T'Y)

O7x.y l ac iTUQ;(.Y

T"F(TX,Y) ————T"*F(X,Y).
T"0x.y ’

Remark 10.1.2. The anti-commutativity of the diagram above will be justified
in Chapter 11 (see Proposition 11.2.11 and Lemma 11.6.3).

Notations 10.1.3. (i) We shall denote by T~! a quasi-inverse of T. Then T" is
well defined for n € Z. These functors are unique up to unique isomorphism.
(ii) If there is no risk of confusion, we shall write D instead of (D, T) and TX
instead of T'(X).
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Definition 10.1.4. Let (D, T) be an additive category with translation. A
triangle in D is a sequence of morphisms

(10.1.1) x Lyt z5hrx.

A morphism of triangles is a commutative diagram:

x—tey—toz "oy
R
7 / s
X’ y =7 Ls71x .
Remark 10.1.5. For €1, €2, €3 = %1, the triangle X —> Y = Z ih) TX is
isomorphic to the triangle (10.1.1) 1f g16963 = 1, but if g16063 = —1, it is not

isomorphic to the triangle (10.1.1) in general.

Definition 10.1.6. A triangulated category is an additive category (D, T)
with translation endowed with a family of triangles, called distinguished tri-
angles (d.t. for short), this family satisfying the axioms TRO — TR5 below.

TRO A triangle zsomorphzc to a d.t. is a d.t.
TR1 The triangle X X 50> TXisa dt
TR2 For all f: X — Y, there exists a d.t. X LyszorTx.

TR3 A triangle X Ly %5 725 X s adt if and only if Y =5 Z it

TX&TY zsadt

TR4 Given two dt.’s X 5> ¥ 5 25 X and X' L v' 5 27 55 17X and
morphisms a: X — X' and B: Y — Y with f'oa = B o f, there exists
a morphism y: Z — Z' giving rise to a morphism of d.t.’s:

XLy Sz "o 7x
al ﬁi 14 T(a)l
PR S .

TR5 Given three d.t.’s
xLyhzorx,
rSz5x STy,
x2 7Ly 5 rx,

there exists a d.t. Z' > Y = X' 5 TZ' making the diagram below
commutative:
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f h
(10.1.2) X Y Z’ TX
id 8 M id
o \
X gof 7 1 Y, TY
! id v T(f)
g Y
Y Z X’ TY
h ! idi T (h)

Z ey X =T

Diagram (10.1.2) is often called the octahedron diagram. Indeed, it can be
written using the vertices of an octahedron.

HZLI\ / T
X v z

SN2

Here, for example, X’ L, ¥ means a morphism X' — TY.

Notation 10.1.7. The translation functor T is called the suspension functor by
the topologists.

Remark 10.1.8. The morphism y in TR4 is not unique and this is the origin
of many troubles. See the paper [7] for an attempt to overcome this difficulty.

Definition 10.1.9. (i) A triangulated functor of triangulated categories F :
(D, T) — (D', T') is a functor of additive categories with translation
sending distinguished triangles to distinguished triangles. If moreover F
is an equivalence of categories, F is called an equivalence of triangulated
categories.

(ii) Let F,F': (D,T) — (D', T’) be triangulated functors. A morphism
0: F — F' of triangulated functors is a morphism of functors of ad-
ditive categories with translation.

(iii) A triangulated subcategory (D', T') of (D, T) is an additive subcategory
with translation of D (i.e., the functor T’ is the restriction of T) such
that it is triangulated and that the inclusion functor is triangulated.
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Remark 10.1.10. (i) A triangle X LyS 725 rxis anti-distinguished if

the triangle X Ly% 7z rxis distinguished. Then (D, T) endowed
with the family of anti-distinguished triangles is triangulated. If we denote by
(D31, T) this triangulated category, then (D2, T) and (D, T) are equivalent
as triangulated categories (see Exercise 10.10).

(ii) Consider the contravariant functor op: D — D°P, and define T°P = op o

T7!oop!l. Let us say that a triangle X Ly % z24 T°P(X) in D°P
op op T (hoP

is distinguished if its image Z°P £ yor EAN Xop —(—2) TZ°P by op is

distinguished. (Here, we write op instead of op~! for short.) Then (D°P, T°P)

is a triangulated category.

Proposition 10.1.11. If X EN Y& Z > TX isadt. then gof=0.

Proof. Applying TR1 and TR4 we get a commutative diagram:

X X 0 TX
1A
f g
X Y Z TX.
Then g o f factorizes through 0. q.e.d.

Definition 10.1.12. Let (D, T) be a triangulated category and C an abelian
category. An additive functor F: D — C is cohomological if for any d.t.
X—>Y—>Z—TX inD, the sequence F(X) — F(Y) — F(Z) is exact in C.

Proposition 10.1.13. For any W € D, the two functors Hom (W, «) and
Hom (+, W) are cohomological.

Proof. Let X - Y - Z — TX be a d.t. and let W € D. We want to show
that

Hom (W, X) 22 Hom (W, Y) £3 Hom (W, Z)
is exact, i.e. : for all ¢: W — Y such that g o ¢ = 0, there exists ¥: W — X
such that ¢ = f o . This means that the dotted arrows below may be
completed, and this follows from the axioms TR4 and TR3.

id

w w 0 TW
T
XLy fay X .

By replacing D with D°P, we obtain the assertion for Hom (+, W). q.e.d.

Remark 10.1.14. By TR3, a cohomological functor gives rise to a long exact
sequence:

(10.1.3) -+ —> F(T™'Z) > F(X) > F(Y) > F(Z) > F(TX) > ---.
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Proposition 10.1.15. Consider a morphism of d.t.’s:

x—Jloy oz "oy
S I )
x Loy g Moy

If o and B are isomorphisms, then so is y.

Proof. Apply Hom (W, +) to this diagram and write X instead of Hom (W, X),
a instead of Hom (W, ), etc. We get the commutative diagram:

X Y
X' Y’
The rows are exact in view of the Proposition 10.1.13, and @, E, 7707) and 7/"@_3/)
are isomorphisms. Therefore % = Hom (W, y): Hom (W, Z) — Hom (W, Z’) is

an isomorphism by Lemma 8.3.13. This implies that y is an isomorphism by
Corollary 1.4.7. q.e.d.

f ~T(f =

L ol

TX" TY' .

g

Corollary 10.1.16. Let D’ be a full triangulated subcategory of D.

(i) Consider a triangle X LY > Z > TX in D and assume that this
triangle is distinguished in D. Then it is distinguished in D’.

(ii) Consider a d.t. X - Y - Z — TX in D with X and Y in D'. Then Z
s isomorphic to an object of D'.

Proof. There exists a d.t. X Y > 7 — TX in D. Then X 5 v —

N
Z — TX is isomorphic to X EN Y - Z' - TX in D by TR4 and Proposi-
tion 10.1.15. q.e.d.

By Proposition 10.1.15, we obtain that the object Z given in TR2 is unique
up to isomorphism. As already mentioned, the fact that this isomorphism is
not unique is the source of many difficulties (e.g., gluing problems in sheaf
theory). Let us give a criterion which ensures, in some very special cases, the
uniqueness of the third term of a d.t.

Proposition 10.1.17. In the situation of TR4 assume that Hom (Y, X’) =0
and Hom (T X,Y’) = 0. Then y is unique.

Proof. We may replace a and 8 by the zero morphisms and prove that in this
case, y is zero.
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;
X y 2=zt orx
Loy g Morx

We shall apply Proposition 10.1.13. Since 2’ o y = 0, y factorizes through g’,
i.e., there exists u: Z — Y’ with y = g’ o u. Similarly, since y o g = 0, y
factorizes through 4, i.e., there exists v: TX — Z’ with y = voh.

By TRA4, there exists a morphism w defining a morphism of d.t.’s:

-T
y ez rx Y gy
P
, f
Yy ——> 7/ TX TY' .

By the hypothesis, w = 0. Hence v factorizes through Y’, and by the hypoth-
esis this implies that v = 0. Therefore, y = 0. q.e.d.

Proposition 10.1.18. Let 7 and D be triangulated categories and let F: T —
D be a triangulated functor. Then F is exact (see Definition 3.3.1).

Proof. (i) Let us show that F is right exact, that is, for any X € D, the
category 7y is filtrant.

(a) The category Tx is non empty since it contains the object 0 — X.

(b) Let (Yo, s0) and (Y7, s1) be two objects in Tx with ¥; € 7 and s;: F(Y;) —
X, i =0, 1. The morphisms so and s; define s: F(Yy @ Y1) — X. Hence, we
obtain morphisms (Y;, s;) — (Yo & Y1, s) for i =0, 1.

(c) Consider a pair of parallel arrows f, g: (Yo, s0) = (¥1,s1) in Tx. Let us

embed f —g: Yy — Yy inadt. Yy i Y: Ly TYy. Since sy 0 F(f) =

s1 o F(g), Proposition 10.1.13 implies that the morphism s;: F(Y1) — X

factorizes as F(Y;) — F(Y) 2> X. Hence, the two compositions (Yo, s0) =

(Y1, s1) = (Y, 1) coincide.

(ii) Replacing F: T — D with F°P: 7°P — D°P_we find that F is left exact.
q.e.d.

Proposition 10.1.19. Let D be a triangulated category which admits direct
sums indexed by a set I. Then direct sums indexed by I commute with the
translation functor T, and a direct sum of distinguished triangles indexed by
I is a distinguished triangle.

Proof. The first assertion is obvious since T is an equivalence of categories.
Let D; : X; — Y; > Z; —> TX; be a family of d.t.’s indexed by i € I. Let
D be the triangle

@ic1Di: & Xi — &Y, - @ Z; - & TX; .
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By TR2 there exists a d.t. D' : &;X; - ®;Y; > Z — T(®;X;). By TR3
there exist morphisms of triangles D; — D’ and they induce a morphism
D — D'. Let W € D and let us show that the morphism Hom (D', W) —

Hom (D, W) is an isomorphism. This will imply the isomorphism D —> D’
by Corollary 1.4.7. Consider the commutative diagram of complexes
Hom (T (,;Y;), W) — Hom (T (&, X;), W) —= Hom ,(Z, W) —

| | |

Hom (®;TY;, W) — Hom (&;TX;, W) — Hom (&, Z;, W) —

— Hom ,,(®;Y;, W) — Hom ,(®; X;, W)

| |

— Hom ,(®;Y;, W) — Hom (&, X;, W).

The first row is exact since the functor Hom 4, is cohomological. The second
row is isomorphic to

HHomD(TYi, W) — HHomD(TXi, W) — HHomD(Z,-, W)

— [[Hom 5 (Y;, W) — [[Hom (X;, W) .

Since the functor [[; is exact on Mod(Z), this complex is exact. Since the
vertical arrows except the middle one are isomorphisms, the middle one is an
isomorphism by Lemma 8.3.13. q.e.d.

As particular cases of Proposition 10.1.19, we get:
Corollary 10.1.20. Let D be a triangulated category.

(i) Let X1 —> Y1 —> Z1 —» TX; and X9 — Yo — Zo — T X5 be two d.t.’s.
TheTLXleaXQ—)Yl@Y2—>Zl®ZQ—>TX1@TX2 is a d.t.

(i) Let X,Y € D. Then X — X ®Y — ¥ > TX is a d.t.

10.2 Localization of Triangulated Categories

Let D be a triangulated category, A" a full saturated subcategory. (Recall that
N is saturated if X € D belongs to A/ whenever X is isomorphic to an object

of N.)

Lemma 10.2.1. (a) Let N be a full saturated triangulated subcategory of D.
Then Ob(N) satisfies conditions N1-N3 below.
N10eWN,
N2 X eN ifand only if TX € N,
N3ifX—>Y—>Z—>TXisadt.inD and X,Z e N thenY e N.
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(b) Conversely, let N be a full saturated subcategory of D and assume that
Ob(N) satisfies conditions N1-N3 above. Then the restriction of T and
the collection of dt.s X - Y — Z — TX in D with X,Y,Z in N make
N a full saturated triangulated subcategory of D. Moreover it satisfies
N3if X >Y > Z— TX is ad.t. in D and two objects among X, Y, Z

belong to N, then so does the third one.

Proof. (a) Assume that A is a full saturated triangulated subcategory of
D. Then N1 and N2 are clearly satisfied. Moreover N3 follows from Corol-
lary 10.1.16 and the hypothesis that N is saturated.

(b) Let NV be a full subcategory of D satisfying N1-N3. Then N’3 follows from
N2 and N3.

(i) Let us prove that A is saturated. Let f: X —> ¥ be an isomorphism with
X € N. The triangle X Ly > 0 — TX being isomorphic to the d.t.
X% x50 T X, it is itself a d.t. Hence, Y € N.

(i) Let X,Y € \V. Since X — X@Y — ¥ > TX is a d.t., we find that X & ¥
belongs to N, and it follows that A/ is a full additive subcategory of D.

(iii) The axioms of triangulated categories are then easily checked. q.e.d.

Definition 10.2.2. A null system in D is a full saturated subcategory N such
that Ob(N') satisfies the conditions N1-N3 in Lemma 10.2.1 (a).

We associate a family of morphisms to a null system as follows. Define:

(10.2.1)
NQ:={f: X - Y, there exists a d.t. X - Y — Z — TX with Z € N}.

Theorem 10.2.3. (i) N'Q is a right and left multiplicative system.

(i) Denote by Dyrg the localization of D by NQ and by Q: D — Dyrg the
localization functor. Then Dyrg is an additive category endowed with an
automorphism (the image of T, still denoted by T).

(iii) Define a d.t. in Darg as being isomorphic to the image of a d.t. in D by
Q. Then Dyrg is a triangulated category and Q is a triangulated functor.

(iv) If X € N, then Q(X) ~ 0.

(v) Let F: D — D' be a triangulated functor of triangulated categories such
that F(X) >~ 0 for any X € N'. Then F factors uniquely through Q.

One shall be aware that Dysp is a big category in general.
Notation 10.2.4. We will write D/N instead of Dprg.

Proof. (i) Since the opposite category of D is again triangulated and N°P is
a null system in D°P, it is enough to check that N'Q is a right multiplicative
system. Let us check the conditions S1-S4 in Definition 7.1.5.

Sl:if f: X — Y is an isomorphism, the triangle X EN Y > 0— TXisad.t.
and we deduce f € N'Q.



250 10 Triangulated Categories

S2: Let f: X — Y and g: Y — Z be in NQ. By TR3, there are d.t.’s

xLyszorx,v S5 725X 5Ty, andX 5 75 v 5 TX. By
TR5, there exists a d.t. Z/ — Y’ — X' — T Z'. Since Z' and X’ belong to N,
so does Y.

S3: Let f: X — Y and s: X — X’ be two morphisms with s € N'Q. By
the hypothesis, there exists a d.t. W L X % X o TW with W e . By

TR2, there exists a d.t. W EALY Y5 Z—> TW, and by TRA4, there exists a

commutative diagram

Wl x s x T™W
R T
WY ——2 W .

Since W € N, we get t € N Q.
S4: Replacing f by f — g, it is enough to check that if there exists s € N'Q
with f os = 0, then there exists t € N'Q with o f = 0. Consider the diagram

X — =X —>7 TX'
\h
N
Y
I
v
Y.

Here, the row is a d.t. with Z € N. Since s o f = 0, the arrow h, making
the diagram commutative, exists by Proposition 10.1.13. There exists a d.t.
Z—>Y 5> Y — TZ by TR2. We thus obtain t € N'Q since Z € N. Finally,
toh =0 implies that to f =tohok =0.

(ii) follows from the result of Exercise 8.4.

(iii) Axioms TRO-TR3 are obviously satisfied. Let us prove TR4. With the
notations of TR4, and using the result of Exercise 7.4, we may assume that
there exists a commutative diagram in D of solid arrows, with s and ¢ in A'Q

X Y z TX
la’ iﬁ’ y J{T(a’)
Y
X, Ly sz, ~TX,
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After having embedded f;: X1 — Y; in a d.t., we construct the commutative
squares labeled by A and B with u € A'Q by using the result of Exercise 10.6.
(In diagram (10.5.5) of this exercise, if Z° and Z! are in A, then so is Z2.)
Then we construct the morphism y’ using TRA4.

Let us prove TR5. Consider two morphisms in D/N: f: X — Y and
g: Y — Z. We may represent them by morphisms in D: f: X — Y and
g: Y — Z. Then apply TR5 (in D) and take the image in D/A of the octa-
hedron diagram (10.1.2).
(iv) Consider a d.t. 0 - X — X — T(0). The morphism 0 — X belongs to
N Q. Hence, 0(0) - Q(X) is an isomorphism.
(v) is obvious. q.e.d.

Let N be a null system and let X € D. The categories N'Qy and N Q¥
attached to the multiplicative system A'Q (see Sect. 7.1) are given by:
(10.2.2) ObNQ¥)={s: X > X';s e NO},

(10.2.3)  Hom prox((s: X — X'), (s": X —» X")) ={h: X' > X";hos =5}

and similarly for A'Qy.

Remark 10.2.5. It follows easily from TR5 that the morphism % in (10.2.3)
belongs to A'Q. Therefore, by considering A'Q as a subcategory of D, the
category N'Q¥ is the category given by Definition 1.2.16 (with respect to the
identity functor id: N'Q — N Q). The same result holds for N'Qy.

By Lemma 7.1.10 the categories (N Qy)°P and N'Q¥ are filtrant, and by
the definition of the localization functor we get

Homp (X, ¥Y) >~  lim  Homp(X, Y')

(Y—=>v)eNQ
o~ lim Hom (X', Y)
(X'—=>X)eNQ
~ lim Hom (X', Y') .

—>
(Y—=>Y)eNQ,(X'—>X)eNQ

Now consider a full triangulated subcategory Z of D. We shall write N NZT
for the full subcategory whose objects are Ob(N) N Ob(Z). This is clearly a
null system in Z.

Proposition 10.2.6. Let D be a triangulated category, N a null system, T a
Jull triangulated subcategory of D. Assume condition (i) or (ii) below:

(i) any morphism Y — Z withY € T and Z € N factorizes asY — Z' — Z
with Z' e NNZ,

(i) any morphism Z — Y withY € T and Z € N factorizes as Z — Z' — Y
with Z' e N NT.

Then Z/(N NT) — D/N is fully faithful.
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Proof. We may assume (ii), the case (i) being deduced by considering D°P. We
shall apply Proposition 7.2.1. Let f: X — Y is a morphism in N'Q with X € Z.
We shall show that there exists g: ¥ — W with W € 7 and go f € NQ. The
morphism f is embedded in a d.t. X — Y — Z — TX with Z € . By the
hypothesis, the morphism Z — T X factorizes through an object Z' €e N NZ.
We may embed Z' — TX in a d.t. in Z and obtain a commutative diagram of
d.t.’s by TR4:
s

X Y z TX
lid . i iid
x Ly z TX .

Since Z’ belongs to A, we get that g o f € N'Q N Mor(Z). q.e.d.

Proposition 10.2.7. Let D be a triangulated category, N a null system, T a
Jull triangulated subcategory of D, and assume conditions (1) or (ii) below:

(i) for any X € D, there exists a morphism X — Y in NQ with Y € Z,
(ii) for any X € D, there exists a morphism Y — X in NQ with Y € T.

Then Z/(N' NT) — D/N is an equivalence of categories.
Proof. Apply Corollary 7.2.2. q.e.d.

Proposition 10.2.8. Let D be a triangulated category admitting direct sums
indexed by a set I and let N be a null system closed by such direct sums. Let
Q:D — D/N denote the localization functor. Then D/N admits direct sums
indexed by I and the localization functor Q: D — D/N commutes with such
direct sums.

Proof. Let {X;}ic; be a family of objects in D. It is enough to show that
Q(®;X;) is the direct sum of the family Q(X;), i.e., the map

HomD/N(Q(@ Xi).Y) =[] HomD/N(Q(X,-), Y)
iel iel
is bijective for any Y € D.
(i) Surjectivity. Let u; € Homp 5 (Q(X;), Y). The morphism u; is represented

Vi

by a morphism u}: X, — Y in D together with a d.t. X; — X; 57— TX;
in D with Z; € N'. We get a morphism &, X, — Y and a d.t. &; X| — &; X; —
b, Z, — T(@,X;) in D with ®;Z; enN.

(i) Injectivity. Assume that the composition Q(X;) — Q(®yX:) — Q(Y)
is zero for every i € I. By the definition, the morphism u is represented
by morphisms u': @®; X; Yy &Y with s € N Q. Using the result of
Exercise 10.11, we can find Z; € N such that v/: X; — Y’ factorizes as
X, — Z; - Y'. Then &;X; — Y’ factorizes as &;X; — ®;Z; — Y'. Since
®b;Z; € N, Q(u) = 0. qed
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10.3 Localization of Triangulated Functors

Let F: D — D’ be a functor of triangulated categories, A" and A’ null systems
in D and D', respectively. The right or left localization of F (when it exists)
is defined by mimicking Definition 7.3.1, replacing “functor” by “triangulated
functor”.

In the sequel, D (resp. D', D) is a triangulated category and N (resp.
N, N”) is a null system in this category. We denote by Q: D — D/N (resp.
Q:D — D/N', Q": D" — D"/N") the localization functor and by A’ Q
(resp. N” Q) the family of morphisms in D’ (resp. D”) defined in (10.2.1).

Definition 10.3.1. We say that a triangulated functor F: D — D’ is right
(resp. left) localizable with respect to (N, N') if Q' o F: D — D'JN is uni-
versally right (resp. left) localizable with respect to the multiplicative sys-
tem N'Q (see Definition 7.3.1). Recall that it means that, for any X € D,
“lim” Q'F(Y) (resp. “lim” Q'F(Y)) 1is representable in D'/N'. If
(X—>Y)eN Q¥ (Y—=>X)eNQy
there is no risk of confusion, we simply say that F is right (resp. left) local-
izable or that RF exists.

Definition 10.3.2. Let F: D — D’ be a triangulated functor of triangulated
categories, N' and N’ null systems in D and D', and T a full triangulated
subcategory of D. Consider the conditions (i), (ii), (iii) below.

(i) For any X € D, there exists a morphism X — Y in NQ withY € T.
(ii) For any X € D, there exists a morphism Y — X in NQ with Y € Z.
(iii) For any Y e NNZ, F(Y) e N".
Then
(a) if conditions (i) and (iii) are satisfied, we say that the subcategory T is
F-injective with respect to N and N,

(b) if conditions (i) and (iii) are satisfied, we say that the subcategory T is
F-projective with respect to N and N'.

If there is no risk of confusion, we omit “with respect to N and N"”.
Note that if F(N) C AV, then D is both F-injective and F-projective.

Proposition 10.3.3. Let F: D — D’ be a triangulated functor of triangulated
categories, N' and N’ null systems in D and D', and T a full triangulated
category of D.

(a) If T is F-injective with respect to N' and N, then F is right localizable
and its right localization is a triangulated functor.

(b) If T is F-projective with respect to N and N, then F left localizable and
its left localization is a triangulated functor.

Proof. Apply Proposition 7.3.2. q.e.d.
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Notation 10.3.4. (i) We denote by Rj\\//’F: DJ/N — D'/N’ the right localiza-
tion of F with respect to (N, ). If there is no risk of confusion, we simply
write RF instead of Rjt///F.

(ii) We denote by LA} F: D/N — D'/N the left localization of F with respect
toNgN ,N). If there is no risk of confusion, we simply write LF instead of
LNF.

If 7 is F-injective, R%/F may be defined by the diagram:

7

I——=TI/(ITNN) %RN/F

\

(10.3.1)  RNF(X)~F(Y) for(X —>Y)eNQwithY eZ.

D D/N

v
D//N/

and

Similarly, if 7 is F-projective, the diagram above defines L%/F and
(10.3.2) LN F(X)~F(Y) for (Y - X)eNQwithY eZ.

Proposition 10.3.5. Let F: D — D' and F': D' — D" be triangulated func-
tors of triangulated categories and let N'y N7 and N be null systems in D,
D’ and D", respectively.

(i) Assume that R\' F, R\ F' and RN (F'oF) exist. Then there is a canon-
ical morphism in Fct(D/N, D" /N"):

(10.3.3) RN'(F'oF)— R\ F' o RYF .

(ii) Let Z and I’ be full triangulated subcategories of D and D', respectively.
Assume that T is F-injective with respect to N' and N”, T’ is F'-injective
with respect to N' and N, and F(Z) CZ'. Then I is (F' o F)-injective
with respect to N and N, and (10.3.3) is an isomorphism.

Proof. (i) By Definition 7.3.1, there are a bijection

Hom (RY. (F' o F), R\, F' o R\ F)
~Hom (Q" o F'o F, R\, F' o RN F 0 Q),

and natural morphisms of functors

Q"oF = RV/FoQ, QoF = RYFoQ.
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We deduce the canonical morphisms
Q" oF oF = RN F oQ oF = RYF o R\ Fo Q

and the result follows.

(ii) The fact that Z is (F’ o F)-injective follows immediately from the def-
inition. Let X € D and consider a morphism X — Y in N'Q with ¥ € Z.
Thel} RﬁF(X) >~ F(Y) by (10.3.1) and F(Y) € I’ by the hypothesis. Hence
(RN F')(F(Y)) ~ F'F(Y) by (10.3.1) and we find

(RN F')(RY F(X)) ~ F'F(Y) .

On the other hand, R%/I(F/ oF)(X)~ F'F(Y) by (10.3.1) since Z is (F' o F)-
injective. q.e.d.

Triangulated Bifunctors

Definition 10.3.6. Let (D, T), (D', T') and (D", T") be triangulated cate-
gories. A triangulated bifunctor F: D x D' — D" is a bifunctor of additive
categories with translation (see Definition 10.1.1 (v)) which sends d.t.’s in
each argument to d.t.’s.

Definition 10.3.7. Let D, D' and D" be triangulated categories, N', N’ and
N null systems in D, D' and D", respectively. We say that a triangulated
bifunctor F: D x D' — D" is right (resp. left) localizable with respect to
(NN, N")if Q"oF: DxD' — D"/N" is universally right (resp. left) local-
izable with respect to the multiplicative system N'Q x N’ Q (see Remark 7.4.5).
If there is no risk of confusion, we simply say that F is right (resp. left) lo-
calizable.

Notation 10.3.8. We denote by R\ \»F: D/N x D'/N" — D"/N" the right
localization of F with respect to (N x N, N”), if it exists. If there is no
risk of confusion, we simply write RF. We use similar notations for the left
localization.

Definition 10.3.9. Let D, D' and D" be triangulated categories, N', N’ and
N null systems in D, D' and D", respectively, and Z,Z" full triangulated
subcategories of D and D', respectively. Let F: D x D' — D" be a triangulated
bifunctor. The pair (Z,7') is F-injective with respect to (N, N', N if

(i) 2’ is F(Y, -)-injective with respect to N' and N”' for any Y € Z,
(i) Z is F(-,Y')-injective with respect to N' and N” for any Y’ € T'.
These two conditions are equivalent to saying that

a) for any X € D, there exists a morphism X — Y in wit e,
f X € D, th i hism X YinNQwithY €T
(b) for any X’ € D', there exists a morphism X’ — Y’ in N7Q with Y' € 7',
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(¢) F(X, X’) belongs to N/ for X € Z, X' € 7’ as soon as X belongs to N or
X’ belongs to N'.
The property for (Z,Z’) of being F-projective is defined similarly.
Proposition 10.3.10. Let D, N,Z, D', N',Z', D", N and F be as in Defi-

nition 10.3.9. Assume that (Z,1') is F-injective with respect to (N, N"). Then
F is right localizable, its right localization RﬁNF is a triangulated bifunctor

RYA\-F:DIN x D /N — D" /N,
and moreover

(10.3.4) RN\ F(X,X')~ F(Y,Y') for (X = Y) e NQ and
(X' ->Y)YeNQuwithYeZ, Y e€T.

Of course, there exists a similar result by replacing “injective” with “projec-
tive” and reversing the arrows in (10.3.4).

Corollary 10.3.11. Let D, N, Z, D', N, and D", N” be as in Proposi-
tion 10.3.10. Let F: D x D' — D" be a triangulated bifunctor. Assume that
(i) F(Z,N") c N7,
(ii) for any X' € D', T is F(-, X')-injective with respect to N .

Then F is right localizable. Moreover,
RNAF(X, X') = RYF(+, X')(X) .

Here again, there is a similar statement by replacing “injective” with “projec-
tive”.

10.4 Extension of Cohomological Functors

In this section, we consider two triangulated categories 7 and D, a triangu-
lated functor ¢ : 7 — D, an abelian category A, and a cohomological functor
F:7T — A. For X € D, we denote as usual by 7x the category whose objects
are the pairs (Y, u) of objects ¥ € 7 and morphisms u: ¢(¥) - X.

We make the hypotheses:

A admits small filtrant inductive limits and such limits are exact ,

(10.4.1) {

Tx is cofinally small for any X € D .

Note that the functor ¢: 7 — D is exact by Proposition 10.1.18. Hence,
Theorem 3.3.18 asserts that the functor ¢,: Fet(D, A) — Fet(7, A) admits
a left adjoint ¢ such that for F: D — A we have

(10.4.2) oIF(X)=lm  F(Y),
(p(Y)—> X)eTx
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and there is a natural morphism of functors
(10.4.3) F— (p'F)og.

Theorem 10.4.1. Let ¢: T — D be a triangulated functor of triangulated
categories, let A be an abelian category, and assume (10.4.1). Let F: T — A
be a cohomological functor. Then the functor ¢ F is additive and cohomolog-
ical.

Proof. (i) Let us first show that ¢fF is additive. By Proposition 8.2.15, it is
enough to show that ¢! F(X; @ X5) — o' F(X1)® ¢! F(X5) is an isomorphism
for any X1, Xo € D. Let &: Tx, x Tx, — 7x,@x, be the functor given by
((p(Y1) = X1), (¢(Y2) = X2)) — (¢(Y1 @ Y2) - X1 @ X2). Then & has a
left adjoint n: Ty,ex, = Tx, x Tx, given by (p(¥) = X1 & X2) — ((¢(Y) —
X1 @ X2 —> X1), (p(Y) > X1 ® X2 — Xo)). Hence £ is a cofinal functor by
Lemma 3.3.10. Moreover, the canonical functor Tx, x Ty, — Tx, (i =1, 2) is
cofinal. Hence we obtain

9T F(X1© Xp) ~ lim  F(Y)
YeTx ax,
(Y1,Y2)eTx, ®Tx,
~ lm (W)@ F(Y)
(Y1,Y2)eTx, ®7Tx,

~ (lim F(n))e( lim F(1s))
Y1€TX1 YQETXQ

~ ol F(X,)® ¢ F(Xa2) .

(i) Let us show that ¢f F is cohomological. We shall denote by X, Y, Z objects
of D and by Xy, Yy, Zg objects of 7.

By Proposition 10.1.18, the functor ¢ is exact. This result together with
Corollary 3.4.6 implies that:

(a) for X € D the category 7y is filtrant and cofinally small,
(b) for a morphism g: ¥ — Z in D, the category Mor(7 ), is filtrant, cofinally
small, and the two natural functors from Mor(7 ), to 7y and 7 are cofinal.

By (b), for a morphism g: ¥ — Z in D, we get

¢TF(Y) = lim F(Yo), ¢'F(2)~ lin F(Z) .
(Yo—> Zo)eMor(T), (Yo—> Zo)eMor(T),

Moreover, since small filtrant inductive limits are exact in A,

(10.4.4) Kerg'F(g) ~ Ker( lim F(go)) = lim (Ker F(go)).

7 goc(EgMor(T)g goeMor(7T), 2
Now consider a d.t. X > Y = Z — TX in D. Let (Yo — Z;) € Mor(7T),.
Embed gg in a d.t. X ﬁ> Yo s Zy — T Xg. In the diagram below, we may
complete the dotted arrows in order to get a morphism of d.t.’s:
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p(X0) L% (o) L% o(20) — T(0(X0))
TR
X Y VA TX.

Applying the functor ¢! F, and using the morphism of functors F — ¢'Fog
(see (10.4.3)), we get a commutative diagram in A in which the row in the
top is exact

F(fo) F(go)

F(Xo)

F(Yo) F(Zy)

tF tF \L
o F(X) SR R (r) SR Gl R(2).

We have a morphism Coker(F(fy)) — Coker(p'F(f)). Since F(Xo) —
F(Yy) — F(Zy) is exact, the morphism Ker(F(go)) — Coker(F(fo)) van-
ishes and hence Ker(F(gg)) — Coker(p! F(f)) vanishes. By (10.4.4), the
morphism Ker(pfF(g)) — Coker(p'F(f)) vanishes, which means that the

'F 'F
sequence ¢f F(X) AL e F(Y) #1Fis), @'F(Z) is exact. q.e.d.

10.5 The Brown Representability Theorem

In this section we shall give a sufficient condition for the representability
of contravariant cohomological functors on triangulated categories admitting
small direct sums. Recall (Proposition 10.1.19) that in such categories, a small
direct sum of d.t.’s is a d.t.

Definition 10.5.1. Let D be a triangulated category admitting small direct
sums. A system of t-generators F in D is a small family of objects of D
satisfying conditions (i) and (ii) below.

(i) F is a system of generators (see Definition 5.2.1), or equivalently, F is a
small family of objects of D such that for any X € D with Hom (C, X) =~
0 for all C € F, we have X >~ 0.

(ii) For any countable set I and any family {u;: X; — Yi}ics of morphisms
in D, the map Hom(C, ®;X;) RN Hom (C, @;Y;) vanishes for every

C € F as soon as Hom (C, X;) 2 Hom ,(C, Y;) vanishes for everyi € I
and every C € F.

Note that the equivalence in (i) follows from the fact that, for a d.t. X EN
Y - Z — TX, f is an isomorphism if and only if Z >~ 0 (see Exercise 10.1).

Theorem 10.5.2. [The Brown representability Theorem| Let D be a trian-
gulated category admitting small direct sums and a system of t-generators F.



10.5 The Brown Representability Theorem 259

(i) Let H: D°° — Mod(Z) be a cohomological functor which commutes with
small products (i.e., for any small family {X;}ic; in Ob(D), we have
H(®:X;) — [, H(X:)). Then H is representable.

(ii) Let K be a full triangulated subcategory of D such that F C Ob(K) and
K is closed by small direct sums. Then the natural functor I — D is an
equivalence.

Similarly to the other representability theorems (see e.g. §5.2), this theo-
rem implies the following corollary.

Corollary 10.5.3. Let D be a triangulated category admitting small direct
sums and a system of t-generators.

(i) D admits small products.

(ii) Let F: D — D’ be a triangulated functor of triangulated categories. As-
sume that F commutes with small direct sums. Then F admits a right
adjoint G, and G is triangulated.

Proof. (i) For a small family {X;};c; of objects in D, the functor

Z + [[Homp(Z, X;)

is cohomological and commutes with small products. Hence it is representable.
(ii) For each Y € D', the functor X + Homp, (F(X),Y) is representable by
Theorem 10.5.2. Hence F admits a right adjoint. Finally G is triangulated by
the result of Exercise 10.3. q.e.d.

Remark 10.5.4. Condition (i) in Definition 10.5.1 can be reformulated in
many ways. Each of the following conditions is equivalent to (ii):

(ii)’ for any countable set I and any family {u;: X; — Y;};c; of morphisms in
D, the map Hom ,(C, &;X;) Bity Hom (C, &,Y;) is surjective for every
C € F as soon as Hom(C, X;) N Hom ,,(C, Y;) is surjective for every
i €I and every C € F.
(ii)” for any countable set I and any family {u;: X; — Y;};c; of morphisms in
D, the map Hom (C, @;X;) REN Hom ,(C, @,Y;) is injective for every
u;

C € F as soon as Hom(C, X;) - Homp(C,Y;) is injective for every
i €I and every C € F.

Indeed if we take a d.t. X - Y — Z — T X, then we have an equivalence

Hom (C, X) —» Hom(C, Y) vanishes
<= Hom(C,Y) - Hom(C, Z) is injective
<= Hom,(C,T7'Z) — Hom,(C, X) is surjective .

Condition (ii) is also equivalent to the following condition:
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(iii) for any countable set I, any family {X;}ic; in D, any C € F and any
morphism f: C — ®;c;X;, there exists a family of morphisms u;: C; —
X; such that f decomposes into C — &;C; LN @®;X; and each C; is a
small direct sum of objects in F.

Indeed, let S be the full subcategory of D consisting of small direct sums
of objects in F. If a morphism X — Y in D satisfies the condition that
Hom (C, X) — Homy(C, Y) vanishes for every C € F, then the same con-
dition holds for every C € S. Hence it is easy to see that (iii) implies (ii).
Conversely assume that (i)’ is true. For a countable family of objects X; in
D set C; = C@ C®Xi(C) Then C; € S, and the canonical morphism C; — X;

€
satisfies the Coﬁdition that any morphism C — X; with C € F factors through
C; — X;. Hence (ii)’ implies that Hom ,(C, &;C;) — Hom (C, ®;X;) is sur-
jective. Hence any morphism C — &;X; factors through &,C; — &;X;.
Note that condition (iii) is a consequence of the following condition (iii)’,
which is sufficient in most applications.

(iii)’ for any countable set I, any family {X;};c; in D, any C € F and any
morphism f: C — ®;c;X;, there exists a family of morphisms u;: C; —

X; with C; € F such that f decomposes into C — &;C; B O X;.

Summing up, for a small family F of objects of D, we have
(i) & (i) & (ii)" < (iii) < (i)’ .

The Brown representability theorem was proved by Neeman [53] under
condition (iii)’, and later by Krause [44] under the condition (ii).

The rest of the section is devoted to the proof of the theorem.

Functors Commuting with Small Products

Let S be an additive U-category which admits small direct sums. Let S*2dd

be the category of additive functors from S°P to Mod(Z). The category S#dd
is a big abelian category. By Proposition 8.2.12, $"#44 is regarded as a full
subcategory of S”.

A complex F/ — F — F” in 8" is exact if and only if F/(X) —
F(X) — F"(X) is exact for every X € S. Let S"*P*9 be the full subcategory
of 8N4 consisting of additive functors F commuting with small products,
namely the canonical map F(&®;X;) — [[; F(X;) is bijective for any small
family {X;}; of objects in S.

Lemma 10.5.5. The full category SP*°Y is a fully abelian subcategory of
S closed by extension.

Proof. 1t is enough to show that, for an exact complex F; — Fy; — F3 —
Fy — F5 in SM24dif F; belongs to Snprod for j £ 3, then F3 also belongs to
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S/prod (gee Remark 8.3.22). For a small family {X;} of objects in S, we have
an exact diagram in Mod(Z)

Fi(®:X;) — F2 (@, X;) — F3(&,X;) — Fi(®;X;) — F5(®: X;)

e N N
[T Fu(Xi) =TI, Fa(Xi) —T1; F3(X:) —[1; Fu(Xi) =], F5(Xi) .

Since the vertical arrows are isomorphisms except the middle one, the five
lemma (Lemma 8.3.13) implies that the middle arrow is an isomorphism.
q.e.d.

Now assume that

there exists a small full subcategory Sy of S such that any

(10.5.1) object of S is a small direct sum of objects of Sg.

Hence a complex F — F — F” in SMP™4 is exact if and only if F/(X) —
F(X) — F"(X) is exact for every X € Sp. In particular the restriction functor
Shprod - Sh 2dd s exact, faithful and conservative. Hence, the category
S/Prod g a Uf-category.

Let ¢: S — S"P™d be the functor which associates to X € S the functor
S 5 C +— Homg(C, X). This functor commutes with small products. Since
shpred o SA s fully faithful, ¢ is a fully faithful additive functor by the
Yoneda lemma.

Lemma 10.5.6. Assume (10.5.1). Then, for any F € 8P we can find an
object X € § and an epimorphism ¢(X)—F.

Proof. For any C € Sy, set X¢ = C®F(©). Then we have
F(Xc) ~ F(C)F© = Homg, (F(C), F(C)) .

Hence idp(c) gives an element s¢c € F(X¢) >~ Hom g proa (9(X¢), F). Since the
composition

F(C) - Hom4(C,C) x F(C) - Homg(C, X¢) >~ ¢(X¢)(C) — F(C)

is the identity, the map ¢(X¢)(C) — F(C) is surjective. Set X = Bces, Xc-
Then (sc)c € [lc F(Xc) =~ F(X) gives a morphism ¢(X) — F and
9(X)(C) — F(C) is surjective for any C € Sp. Hence ¢(X) — F is an
epimorphism. q.e.d.

Lemma 10.5.7. Assume (10.5.1).

(i) The functor ¢: S — S™ P4 commutes with small direct sums.
(ii) The abelian category S P4 admits small direct sums, and hence it ad-
mits small inductive limits.
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Proof. (i) For a small family {X;}; of objects in S and F € S"P*4 | we have

Hom g, proa (9(9; X;), F) >~ F(®;X;)
~ l_[ F(X,) ~ HHOmS/\.pro<l(§0(Xi)v F) .

(i) For a small family {F;}; of objects in S”"P*°4, there exists an exact sequence
o(X;) - ¢(¥;) > F, - 0 with X;,Y; € § by Lemma 10.5.6. Since ¢ is
fully faithful, there is a morphism u;: X; — Y; which induces the morphism
¢(X;) = ¢(Y;). Then we have
Coker(p(&:X;) => ¢(@:Y;)) ~ Coker(@i¢(X;) > @ip(¥:))
~ @; Coker(p(X;) = ¢(¥;)) ~ @ F; .

q.e.d.

Note that, for a small family {F;}; of objects in S"P*4 and X € S, the map
@i (F;(X)) = (@; F;)(X) may be not bijective.

Proof of Theorem 10.5.2

Now let us come back to the original situation. Let D be a triangulated cate-
gory admitting small direct sums and a system of t-generators F. By replacing
F with U,o; T"F, we may assume from the beginning that TF = F. Let S
be the full subcategory of D consisting of small direct sums of objects in
F. Then S is an additive category which admits small direct sums. More-
over, TS = S, and T induces an automorphism 7: SMProd — SAprod hy
(TF)(C) = F(T7IC) for F € §"P™d and C € S. By its construction, S
satisfies condition (10.5.1), and hence S"P*? is an abelian U-category and
Lemmas 10.5.5-10.5.7 hold. Note that a complex F/ — F — F” in S™Prd ig
exact if and only if F'(C) — F(C) — F"(C) is exact for any C € F.

We shall extend the functor ¢: S — S P4 to the functor ¢: D — S prod
defined by ¢(X)(C) = Hom(C, X) for X € D and C € S. Then ¢ commutes
with 7. Note that although ¢: S — S"Pd is fully faithful, the functor
@: D — S™Prod g not faithful in general.

In the proof of the lemma below, we use the fact that F satisfies the
condition (ii) in Definition 10.5.1.

Lemma 10.5.8. (i) The functor §: D — S"P*% js a cohomological functor.

(ii) The functor §: D — S P4 commutes with countable direct sums.
(iii) Let {X; — Y;} be a countable family of morphisms in D. If 9(X;) — @(¥;)
is an epimorphism for alli, then ¢(®;X;) — @(®;Y;) is an epimorphism.

Proof. (i) is obvious.

Let us first prove (iii). For all C € F, the map Hom (C, X;) - Hom(C, ;)
is surjective. Hence Remark 10.5.4 (ii)’ implies that Hom(C, @;X;)
Hom (C, @,Y;) is surjective.
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Finally let us prove (ii). Let {X;}; be a countable family of objects of
D. Then we can find an epimorphism ¢(Y;)—@(X;) in S*Pd with ¥; € S
by Lemma 10.5.6. Let W; — Y; — X; — TW, be a d.t. Then take an
epimorphism ¢(Z;)—»@(W;) with Z; € S. Hence ¢(®;Z;) — @(&;W;) and
0(®;Y;) > ¢(®;X;) are epimorphisms by (iii). On the other hand, &; W; —
@Y - &;X; —> T(®;W;) isad.t., and hence ¢(®; W;) — ¢(®;Y;) — @(d; X;)
is exact by (i). Hence, ¢(8;Z;) — ¢(®;Y;) - ¢(®;X;) — 0 is exact. By
Lemma 10.5.7, we have ¢(®;Z;) ~ ®;¢(Z;) and similarly for ¥;. Since ¢(Z;) —
oY) = ¢(X;) — 0 is exact for all i, ®;¢0(Z;) - ®ip(Y;) —> ®;¢(X;) — 0 is
also exact, from which we conclude that ¢(®;X;) ~ ®;9(X;). g.e.d.

Let H: D°? — Mod(Z) be a cohomological functor commuting with small
products. The restriction of H to S°P defines Hy € S™Prod,
In the lemma below, we regard D as a full subcategory of D”.

Lemma 10.5.9. Let H and K be as in Theorem 10.5.2. Then there exists a
commutative diagram in D"

X, X, .. X,

(10.5.2) \ ”

H

such that X, € K and Im(@(X,) = ¢(X,41)) — Ho in S Prod.

Proof. We can take Xy € S and an epimorphism ¢(Xo)—Hy in S"P4 by
Lemma 10.5.6. We shall construct X, € K inductively as follows. Assume
that Xg - X7 — --- — X, — H has been constructed and Im((Z(X,») —

@(Xi11)) = Ho for 0 < i < n. Let us take an exact sequence ¢(Z,) —
¢(X,) > Hyp — 0 with Z, € S. Then take a d.t. Z, —> X, > X,11 —> TZ,.
Since Z, and X, belong to K, X, 41 also belongs to K. Since Z, - X, > H
vanishes and H is cohomological, X,, — H factors through X, — X, 1. Since
?(Z,) = @(Xn) = @(Xp11) is exact, we obtain that Im(@(X,) = @(X,11)) =
Coker(¢(Z,) — @(X,)) > Ho. q.e.d.

Notation 10.5.10. Consider a functor X: N — D, that is, a sequence of mor-

phisms Xg ﬁ) X - =X, ﬁ> Xu41 — -+ in D. Denote by
(10.5.3) shy: @n=0 Xn = Gnz0Xn
the morphism obtained as the composition

Dn=0Xy Shy Dnz0Xnt+1 = Bnz1Xn = Onz0Xy -

Consider a d.t.



264 10 Triangulated Categories

id —sh
(10.5.4) Br=0Xn —5 By=0Xy = Z — T(Bn=0X,) -
In the literature, Z is called the homotopy colimit of the inductive system
{X,, fu}n and denoted by hocolim(X). Note that this object is unique up to
isomorphism, but not up to unique isomorphism. Hence, {X,,, f,}, = Z is not
a functor.

Consider the functor X: N — D given by Lemma 10.5.9 and let shy be as
in (10.5.3). Since H(@,>0Xx) = [[,-0 H(X,), the morphisms X, — H define
the morphism @,-0X, — H. The commutativity of (10.5.2) implies that the

.. id —shy .
composition @,>0X, — @®n>0X, — H vanishes.

Lemma 10.5.11. The sequence

~ id—shy ~
0— (p(eanZOXn) & 90(69;130)(;1) - HO —- 0.

is exact in S™Prod,

Proof. Note that we have ¢(®,>0X,) =~ ®n>09(X,) by Lemma 10.5.8. Since
Im(@(X,) = @(Xn41)) =~ Ho, we have “lim” ¢(X,) ~ Hpy. Then h_r)n&(Xn) ~
Hy and the the above sequence is exact b}nl Exercise 8.37. ! q.e.d.
Lemma 10.5.12. There exist Z € K and a morphism Z — H which induces

an isomorphism Z(C)—> H(C) for every C € F.
Proof. Let Z be as in (10.5.4). Since H is cohomological, &,>0X, — H factors

through Z. Set X = ®,>0X,. Since ¢ is cohomological, we have an exact
sequence in S”Prod:

7(X) — e G(X) — 7(Z) —— F(TX) e (T X)
(X))~ 7))

Applying Lemma 10.5.11, we find that the last right arrows are monomor-
phisms. Hence we have

id —shy ~
-5

@(Z) ~ Coker(g(X) ?(X)) ~ Hy ,

where the last isomorphism follows from Lemma 10.5.11. q.e.d.
Lemma 10.5.13. The natural functor K — D 1is an equivalence.

Proof. This functor being fully faithful, it remains to show that it is es-
sentially surjective. Let X € D. Applying Lemma 10.5.12 to the functor
H = Homp(+, X), we get Z € K and a morphism Z — X which induces

an isomorphism Z(C) = X(C) for all C € F. Since F is a system of genera-
tors, Z = X. q.e.d.
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Lemma 10.5.14. Let Z be as in Lemma 10.5.12. Then Z — H is an isomor-
phism.

Proof. Let K denote the full subcategory of D consisting of objects Y such
that Z(T"Y) — H(T"Y) is an isomorphism for any n € Z. Then K contains
F, is closed by small direct sums and is a triangulated subcategory of D.
Therefore K = D by Lemma 10.5.13. q.e.d.

The proof of Theorem 10.5.2 is complete.

Exercises

Exercise 10.1. Let X 5> ¥ — Z — TX be a d.t. in a triangulated category.
Prove that f is an isomorphism if and only if Z is isomorphic to 0.

Exercise 10.2. Let D be a triangulated category and consider a commutative
diagram in D:

Xty Stz " rx
S
f' g %

X' Y’ 7 TX .

Assume that « and B are isomorphisms, T(f’) o A’ = 0, and the first row is a
d.t. Prove that the second row is also a d.t. under one of the hypotheses:
(i) for any P € D, the sequence below is exact:

Hom (P, X') — Hom (P, Y’') - Hom (P, Z") - Hom (P, TX') ,
(ii) for any P € D, the sequence below is exact:
Hom (T X', P) - Hom (Z', P) — Hom (Y’, P) - Hom (X', P) .

Exercise 10.3. Let F: D — D’ be a triangulated functor and assume that F
admits an adjoint G. Prove that G is triangulated. (Hint: use Exercise 10.2.)

Exercise 10.4. Let X EN Y& 25 TX beadt. ina triangulated category.

(i) Prove that if & = 0, this d.t. is isomorphic to X - X® Z — Z 2 rx.
(ii) Prove the same result by assuming now that there exists k: ¥ — X with

Exercise 10.5. Let f: X — Y be a monomorphism in a triangulated cate-

gory D. Prove that there exist Z € D and an isomorphism h: ¥ = X @ Z
such that the composition X — Y — X & Z is the canonical morphism.
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Exercise 10.6. In a triangulated category D consider the diagram of solid
arrows

w

X0 X! X2 TX°
! 7(f)
v
Y0 y! Y? TY?
(10.5.5) 8 1 T(g)
\
Z0 > 71 > 72 > T 70
h ac —T(h)
v
0 1 2 2vy0
TXY o TX 7 TX? 5 T2X°.

Assume that the two first rows and columns are d.t.’s. Show that the dotted
arrows may be completed in order that all squares are commutative except the
one labeled “ac” which is anti-commutative (see Definition 8.2.20), all rows
and all columns are d.t.’s. (Hint: see [4], Proposition 1.1.11.)

Exercise 10.7. Let D be a triangulated category, C an abelian category,
F,G: D — C two cohomological functors and 6: F — G a morphism of
functors. Define the full subcategory 7 of D consisting of objects X € D such
that 6(T*(X)): F(T*(X)) = G(T*(X)) is an isomorphism for all k € Z. Prove
that 7 is triangulated. (Hint: use Lemma 8.3.13.)

Exercise 10.8. Let D be a triangulated category, A an abelian category and
F: D — A a cohomological functor. Prove that F is exact.

Exercise 10.9. Let D be a triangulated category. Denote by F: D — D
the translation functor T. By choosing a suitable isomorphism of functors
FoT ~ToF, prove that F induces an equivalence of triangulated categories.

Exercise 10.10. Let D be a triangulated category and define the triangulated
category D" as follows: a triangle X ER y 5 z5 rxis distinguished in

Davt if and only if X Lysz2hrxis distinguished in D. Prove that D
and D"t are equivalent as triangulated categories.

Exercise 10.11. Let D be a triangulated category, A a null system, and let
Q: D — D/N be the canonical functor.

(i) Let f: X — Y be a morphism in D and assume that Q(f) = 0 in D/N.
Prove that there exists Z € N such that f factorizes as X — Z — Y.

(ii) For X € D, prove that Q(X) >~ 0 if and only if there exists ¥ such that
X @Y € N and this last condition is equivalent to X @ TX € N.

Exercise 10.12. Let F: D — D’ be a triangulated functor of triangulated
categories. Let NV be the full subcategory of D consisting of objects X € D
such that F(X) ~ 0.
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(i) Prove that A is a null system and F factorizes uniquely as D — D/N —
D'
(ii) Prove that if X®Y € N, then X e N and Y € N.

Exercise 10.13. Let D be a triangulated category admitting countable direct
sums, let X € D and let p: X — X be a projector (i.e., p? = p). Define the
functor «: N — D by setting a(n) = X and a(n - n+1) = p.

(i) Prove that lim & exists in D and is isomorphic to hocolim(e). (See Nota-
tion 10.5.10.)

(ii) Deduce that D is idempotent complete. (See [53].)

Exercise 10.14. Let D be a triangulated category and let I be a filtrant

category. Let o ER B EN y X T oa be morphisms of functors from I to D
. . (i
such that «(i) EAO% B(i) 20, y (i) LiQY T(x(i)) is a d.t. for all i € I. Prove
that if “1'£>n” o and “h_II)l” B are representable by objects of D, then so is “lgl” y
and the induced triangle “lim” ¢ — “lim” B — “lim” y — T (“lim” «) is a d.t.
= = s s
(Hint: construct a morphism of d.t.’s

for some i € I.)

Exercise 10.15. Let D be a triangulated category, A a null system, and let
N2 (resp. N*H) be the full subcategory of D consisting of objects ¥ such that
Hom (Z,Y) >~ 0 (resp. Hom (Y, Z) >~ 0) for all Z € N.
(i) Prove that N*" and N are null systems in D.
(ii) Prove that Hom (X, Y) = Homp (X, Y) for any X € D and any ¥ €

Lr

In the sequel, we assume that X @ Y € N implies X € A/ and Y € V.

iii) Prove that the following conditions are equivalent:

) Nt — D/N is an equivalence,
) D — D/N has a right adjoint,
(¢) t: N'— D has a right adjoint R,
) for any X € D, there exist X' e N, X" e N andad.t. X' — X — X" —
TX
e) N = D/N? is an equivalence,
f) D — D/N*" has a left adjoint and N ~ (N+")4,
(g) ': N*" — D has a left adjoint L and N >~ (N+")*.

(iv) Assume that the equivalent conditions (a)—(g) in (iii) are satisfied. Let
L:D—>NY R:D—N,i:: N — Dand: N — D be as above.
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(a) Prove that there exists a morphism of functors ¢'o L — T oto R such that
IR(X) > X — /L(X) - T(tR(X)) is a d.t. for all X € D.

(b) Let D be the category whose objects are the triplets (X', X”, u) with
X e N, X" € NV and u is a morphism X” — TX’ in D. A morphism
(X', X" u) — (Y, Y", v) in Dis a pair (w': X' — Y, w”: X" — Y”) making
the diagram below commutative

X// $ TX,

w,,i iW)

Y// $ TY/ .

Define an equivalence of categories D —> D.

Exercise 10.16. (i) Let D be a triangulated category. Assume that D is
abelian.

(a) Prove that D is a semisimple abelian category (see Definition 8.3.16).
(Hint: use Exercise 10.5.)
(b) Prove that any triangle in D is a direct sum of three triangles

x Y x 5 0 - 71X,
0 - vy o 7(0), and
T9'Z - 0 — zZ-Y% 1rr17).

(ii) Conversely let (C, T) be a category with translation and assume that C is
a semisimple abelian category. We say that a triangle in C is distinguished if
it is a direct sum of three triangles as in (i) (b). Prove that C is a triangulated
category.
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Complexes in Additive Categories

As already mentioned in the Introduction, one of the main ideas of homological
algebra is to replace an object in an abelian category C by a complex of objects
of the category, the components of these complexes having “good properties”.
For example, a module is replaced by a complex of projective modules.

In this chapter, we start by studying additive categories with translation,
already encountered in Chapter 10. For such a category, there are natural
notions of a differential object, a complex, the mapping cone of a morphism
and of a morphism homotopic to zero. Identifying morphisms homotopic to
zero with the zero morphism, we get the associated homotopy category.

One of the main result of this chapter is the fact that this homotopy
category, endowed with the family of triangles isomorphic to those associated
with a mapping cone, is a triangulated category.

We apply the preceding results to the category Gr(C) of sequences of ob-
jects of an additive category C. The category Gr(C) is endowed with a natural
translation functor, and we get the category C(C) of complexes of objects
of C as well as the associated triangulated category K(C). We also introduce
the simplicial category A, we construct complexes associated to it and give a
criterion in order that such complexes are homotopic to zero.

If F: C — (' is an additive functor of additive categories, it defines natu-
rally a triangulated functor K(F): K(C) — K(C'). Things become more del-
icate with bifunctors. Indeed, if F: C x C' — C” is an additive bifunctor, it
defines naturally a functor from C(C) x C(C’) to the category C2(C") of double
complexes in C”, and it is necessary to construct (under suitable hypotheses)
simple complexes associated with a double complex. As we shall see, signs
should be treated with some care.

Finally, we apply these constructions to the bifunctor Hom .
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11.1 Differential Objects and Mapping Cones

Definition 11.1.1. Let (A, T) be an additive category with translation (see
Definition 10.1.1).

(i) A differential object in (A, T) is an object X € A endowed with a mor-
phism dx: X — TX, called the differential of X.

(ii) A morphism f: X — Y of differential objects, also called a differential
morphism, is a morphism f: X — Y such that the diagram below com-
mutes:

dx
X—TX

J{f ) lr(f)

Y—TY.

We denote by Ay the category of differential objects and differential mor-
phisms.

(iii) A differential object X is a complex if T (dx) odx = 0. We denote by A,
the full additive subcategory of Ay consisting of complexes. A differential
morphism of complexes is also called a morphism of complexes.

Clearly, if F: A — A’ is a functor of additive categories with translation, it
induces a functor F: A; — A), and a functor F: A. — A..

Definition 11.1.2. Let (A, T) be an additive category with translation. For
a differential object X € Ay, the differential object TX with the differential
drx = —T(dx) is called the shifted object of X.

Note that

If X is a complex, then so is the shifted object T X.
The pair (Ay, T) is an additive category with translation, as well as the
pair (A, T).

e For a differential object X and an integer n, we have dry = (—1)"T"(dy).

Definition 11.1.3. Let (A, T) be an additive category with translation, let X
and Y be two differential objects and let f: X — Y be a morphism in A. The
mapping cone Mc(f) of f is the object TX @Y with differential

duc s .(dTX 0><—T(dx) 0)
MADTTAT(f) dy T(f) dv )"
Here we have used the column notation for morphisms between direct sums.
d c
Hence the composition TX — Mc(f) —25 T(Mc(f)) — TY in A is equal

to T(f).

Proposition 11.1.4. Assume that X and Y are complexes. Then Mc(f) is a
complez if and only if f is a morphism of complezes.
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("4 7)o (705 @) =(e5)

Then we have

Proof. Set

A = T(drx) odTX - T(—T(dx) o (—dx)) — 0 5
D = T(dy)ody :0,
B=0,
C=T*(f)odrx +T(dy) o T(f) =T(=T(f)odx +dyof).
Hence, C =0 if and only if =T (f) odx +dy o f =0, that is, if and only if f
is a morphism of differential objects. q.e.d.
We have:

Mc(f) isnot TX @Y in A, unless f is the zero morphism,
Mc is a functor from Mor(A4y) to Ay. Namely for a commutative diagram

X ——X
f\L f’\L in Ay, T(u) ® v gives a morphism Mc(f) — Mc(f),
Y ——7Y
o ifF: (A T)— (A, T')is a functor of additive categories with translation,
then F(Mc(f)) >~ Mc(F(f)).

Let f: X — Y be a morphism in A;. We introduce the differential mor-
phisms

a(f): Y - Me(f). a(f)=0@ idy
and

B(f): Me(f) = TX, B(f) = (idrx.0).
We get a triangle in Ay:

(11.1.1) x Ly 2 o) 29 rx

We call such a triangle a mapping cone triangle in Ay.

Remark 11.1.5. Consider a morphism f: X — Y in A;. We have a commuta-
tive diagram (the verification is left to the reader):

T(f) T(a(f)) =T(B(f))
TX TY —— T(Mc(f)) ————— 72X

lid lid J; lid
T(f) «(T(f)) B(T(f))

TX TY Mc(T(f)) ————T2X .
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11.2 The Homotopy Category

Lemma 11.2.1. Let (A, T) be an additive category with translation, let X and
Y be two differential objects and letu: X — T~1Y be a morphism in A. (We do
not ask u to be a differential morphism.) Set f = T (u)odx+T'(dy)ou. Then
f is a differential morphism if and only if dyoT ~(dy)ou = T?(u)oT (dx)odx.
In particular, if X and Y are complezes, f is always a morphism of complexes.

Proof. One has

dyOf:dyOT(M)de+dyOT_1(dy)Ou,
T(f)odx = T*(u) o T(dx) ody + T(T ' (dy)) o T (u) o dx.

q.e.d.

Definition 11.2.2. Let (A, T) be an additive category with translation. A
morphism f: X — Y in Ay is homotopic to zero if there exists a morphism
u: X - T7Y in A such that:

f=T(u)ody +T *(dy)ou.
Two morphisms f, g: X — Y are homotopic if f — g is homotopic to zero.

A morphism homotopic to zero is visualized by the diagram (which is not
commutative):

dx

T-1Xx X TX
/u/ Lf T (u)
T-y Y TY .

T-'(dy)

Note that a functor of additive categories with translation sends a morphism
homotopic to zero to a morphism homotopic to zero.

Lemma 11.2.3. Let f: X — Y and g: Y — Z be morphisms in Ay. If f or
g 1is homotopic to zero, then g o f is homotopic to zero.

Proof. If f =T (u)odx + T *(dy) ou for some u: X — T~'Y, then we have
gof=goT(u)ody +goT '(dy)ou

)
=goT(u)ody +T *dz)oT (g)ou
=T(T ' (g)ou)odx +T (dz) o (T (g)ou).

Hence g o f is homotopic to zero. The other assertion is similarly proved.
q.e.d.
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Set:
Ht(X,Y)={f € Hom 4 (X,Y); f is homotopic to 0} .
By the lemma above, the composition map induces a bilinear map:

(11.2.1) Hom 4 (X, Y)/Ht(X,Y) x Hom 4 (Y, Z)/Ht(Y, Z)
— HomAd(X, Z)/Ht(X, Z) .

Definition 11.2.4. The homotopy category K (A) is defined by:

Ob(K4(A)) = Ob(Ay) ,
Homy, (A)(X’ Y)= HomAd(X, Y)/Ht(X,Y),

and the composition of morphisms is given by (11.2.1).

In other words, a morphism homotopic to zero in A; becomes the zero mor-
phism in K,(A).

The category K,(A) is obviously additive and the translation functor T
on A, induces a translation functor (we keep the same notation) 7 on K;(A).
Hence, (K4(A), T) is an additive category with translation, and we have a
functor of additive categories with translation (Ay, T) — (K4(A), T).

Two objects in A, are called homotopic if they are isomorphic in K;(A).
Hence an object X in A, is homotopic to 0 if and only if idy is homotopic to
Z€ero.

Definition 11.2.5. A distinguished triangle in (K4(A), T) is a triangle iso-
morphic in Ky(A) to a mapping cone triangle (11.1.1).

Recall that we write “a d.t.” instead of “distinguished triangle”, for short.

Theorem 11.2.6. The category Ky(A) endowed with the translation functor
T and the family of d.t.’s is a triangulated category.

Proof. The axioms TR0 and TR2 are obvious and TR1 follows from TR3 and
the d.t. 0 > X — X — T(0) associated with the mapping cone of 0 — X.

Proof of TR3. We shall construct a morphism ¢: TX — Mc(a(f)) in A, such
that:

(i) ¢ is an isomorphism in Ky (A),

(ii) the diagram below commutes in K, (A):

alf B(f =T(f
v () oy oy

l ldMC(” l (Pl idy'yl

o Me(f)——=M -
Y — oy Melf) o Mele(F) o7 TY
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Define ¢ and -

9: TX - Mc(a(f))=TYRTX DY,
¥:Mc(a(f)=TY®TXDY > TX

—T(f)
= idrx |, ¥ =(0,idrx,0).
0

by:

We have to check that:
(a) ¢ and ¢ are morphisms of differential objects,
(b) ¥ o9 =idrx,
(¢c)po w is homotopic to idye(w(s))s
(@) ¥ oaa(f)) = BS),
() Bla(f) o ¢ = —T(f).
(Note that (c)+(d) = (d’): ¢ o B(f) is homotopic to a(a(f)).)
Let us prove (c), the other verifications being straightforward. Define

s: Me(a(f)) = T7(Mc(a(f))) by:

Then:

idMC(a(f)) —¢po l/f = T(S) © dMC(a(f)) + T_l(nd(a(f))) os

~Tdy) 0 0
duic(a(f) = 0 -T(dx) 0 |,

idTy T(f) dY

0=T(f)0
goyy =10 idrx O,
0 0 0

Indeed:

idry T(f) O
ind(a(f)) —po = 0 0 0 .
0 0 idy

Proof of TR4. We may assume Z = Mc(f), Z' = Mc(f'). Then saying that
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commutes in K;(A) means that there exists a morphism s: X — T~1(Y’) in
A with:
vof—flou=T(s)ody +T '(dy)os.

Define:
w: Mc(f)=TX®Y - Mc(f)=TX' @Y’

o= (1)

Then w is a morphism of differential objects and the diagram below commutes:

by

o B
x f v (f)Mc(f) (f) TX

ul vl wl T(u)l
J! B(S")

o(f) ,
X ——Yy ——Mc(f') —=TX' .

Proof of TR5. We may assume that Z’ = Mec(f), X’ = Mc(g) and Y’ =
Mc(g o f). Let us define u: Z’ — Y and v: Y’ — X' by

W TX®Y > TX® Z. u:(ldg’(g),

v TXPZ—->TY®RZ, v= T(f).O .
0 ldz

We define w: X' — TZ’ as the composition X’ pe) TY re/) TZ'. Then

the diagram in TR5 is commutative and it is enough to show that the triangle
Z5Y S5 X 5 T7 is distinguished. For that purpose, we shall construct

an isomorphism ¢: Mc(u) — X’ and its inverse ¥: X' — Mc(u) in K,(A)
such that ¢ o (1) = v and B(u) oy = w. We have

Mc(u) = T(Mc(f)) ®@Mc(go f) =T*’X OTYDTX P Z

and X' =Mc(g) =TY & Z. We define ¢ and y by

0 0

_(0idry T(f) O idy 0

_<0 0 0 idz)’ =1 0 o
0 idry

It is easily checked that ¢ and v are morphisms of differential objects, and
poa(u) =v, B(u) oy = w and ¢ o ¥ = idx hold in A,. Define a morphism
in A
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00idyx O
_ o loo 0 o0
s: Mc(u) > T (Mc(u)), s= 00 0 0
00 0 O
Then
ind(u) —W oY= T(S) ° nd(u) + T_l(nd(u)) os.
Therefore ¥ o ¢ = idne(u) holds in Kq(A). q.e.d.

Remark 11.2.7. In proving Theorem 11.3.8, we have shown that some dia-
grams were commutative in K;(A), that is, did commute in A4, up to homo-
topy. One should be aware that some of these diagrams did not commute in
Ay, and in fact, this last category is not triangulated in general.

Let K (A) be the full subcategory of K;(A) consisting of complexes in
(A, T). Then K.(A) is an additive subcategory with translation. Since the
mapping cone of a morphism of complexes is also a complex, we obtain the
following proposition.

Proposition 11.2.8. The category K.(A) endowed with the translation func-
tor T and the family of d.t.’s is a triangulated full subcategory of K4(A).

Proposition 11.2.9. Let F: (A, T) — (A, T') be a functor of additive
categories with translation. Then F defines naturally triangulated functors
K(F): Ky(A) > Ky(A) and K(F): K. (A) - K (A').

Proof. As already noticed, F induces a functor F: 4; — A),. Moreover F
sends a morphism homotopic to zero in A, to a morphism homotopic to zero
in A/, hence defines an additive functor from K,(A) to K, (A"). To conclude,
notice that F sends a mapping cone triangle in 4, to a mapping cone triangle
in A,. q.e.d.

When there is no risk of confusion, we shall simply denote by F the functor

K(F).

Let F: (A, T) x (A, T") - (A", T") be a bifunctor of additive categories

with translation. Then, Ox.y: F(TX,Y) = T"F(X, Y) in Definition 10.1.1 (v)
induces a functorial isomorphism

WOxy: F(T"X,Y) = T"F(X,Y)

for n € Z. Similarly, 0} ,: F(X,T'Y)=> T"F(X,Y) induces a functorial iso-
morphism
WOyy: F(X, T"Y) S T"F(X,Y).

We can easily check that the diagram
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nOx prmy

F(T"X, T™Yy) ——""" s T F(X, T'™Y)
m@’rnxﬂyl (-1 J/T (nB,y)

T""F(T"X,Y) T"™F(X,Y).

" (/xQX,Y)

(—=1)"-commutes (see Definition 8.2.20), i.e., it commutes or anti-commutes
according that (—1)"" =1 or —1. For a differential object X in (A, T) and Y
in (A, T'), we have morphisms in A”:

F(dy.Y): F(X.Y)— F(TX,Y)~T'F(X,Y),
F(X.dy): F(X.Y)— F(X,T'Y)~T'F(X,Y).

We set
(11.2.2)  dpxy)y=F(dx,Y)+ F(X,dy): F(X,Y) — T"F(X,Y) .

Thus we obtain a bifunctor of additive categories with translation F: (Ay4, T)x
(A, T) — (A}, T").

Lemma 11.2.10. (i) For a morphism s: X — T"X' in A and a morphism
t:Y - T"Y in A, let us set

F(s.Y): F(X,Y) —> F(T"X',Y) > T"F(X'.Y),

nex’,y

F(X,t): F(X,Y) = F(X,T"Y)—>T'"F(X,Y').
)

Then one has
T""(F(s,Y)o F(X,t) = (=1)""T""(F(X',t)) o F(s,Y) .
(ii) We have

T"(F(dx,Y))o F(X,dy) = —-T"(F(X,dy))o F(dx,Y) ,
T”(dF(X,y)) o dF(X,Y) - F(T(dx) o dx, Y) + F(X, T/(dy) o dy) .

Proof. (i) We have the diagram in which all the squares commute except the
right bottom square which (—1)""-commutes:

F(X,Y) —— FX, T""Y) —— = T"F(X,Y'
(X.Y) O ( ) (X, Y')
ip(s,y) F(s,T””Y’)\L J/T/'m(p(s,y'))
F(T"X',Y) F(T"X', T"™Y") % T""F(T"X',Y')
mYpnxr yr
Ninex’,y uex’,r’"'y’lN (—1)""1 ’“J/T//"l(nex’.y’)

T””F(X/, Y)

F(T"X',1)

T”"F(X/, T/my/) ~ T//n+mF(X/ Y/) .
T (F(X',1)) T (bl ) ’
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(ii) The first equality follows from (i) and immediately implies the second one.
q.e.d.

Proposition 11.2.11. Let F: (A, T) x (A, T") — (A", T") be a bifunctor
of additive categories with translation. Then F defines naturally triangulated
bifunctors K(F): Kg(A) x Ky(A') = Ky(A") and K(F): K (A) x K.(A) —
K.(A").

Proof. Let us show first that for a morphism f: X — X’ in .4, homotopic to
zero and Y € A, the morphism F(f,Y): F(X,Y) — F(X',Y) is homotopic
to zero. By the assumption, there exists a morphism s: X — T~'X’ in A such
that f = T(s)odx +T '(dyx)os.Set s” = F(s,Y): F(X,Y) = T" 'F(X',Y).
Then we have

T”(S) o dF(X,Y) + T/lil(dp(xf’y)) o SN
=F(T(s)ody + T '(dx)os.,Y)

+<T”F(s, Y)o F(X,dy) + T"" F(X,dy) o F(s, Y)) ,

in which the first term is equal to F(f,Y) and the second term vanishes by
Lemma 11.2.10 (i). Hence F(f, Y) is homotopic to zero.

Similarly F sends the morphisms homotopic to zero in A’ to morphisms
homotopic to zero in A”. Thus F induces a functor K(F): Ky (A) x K4(A) —
Ky (A”). By Lemma 11.2.10 (ii), K(F) sends K. (A) xK.(A) to K.(A”). Finally
note that K(F) sends the mapping cones to mapping cones. q.e.d.

11.3 Complexes in Additive Categories

In this section, C denotes an additive category.

We introduced the notion of complexes in C in Definition 8.2.18. We re-
formulate this in the language of categories with translation.

Let Z,; denote the set Z, considered as a discrete category. Recall that

e an object X of C% is a family {X"},ez of objects of C,
o for X = {X"},ez and ¥ = {Y"},cz two objects of C%, a morphism f: X —
Y is a family of morphisms {f"},cz, f": X" — Y".

Definition 11.3.1. Let C be an additive category. The associated graded cate-
gory (Gr(C), T) is the additive category with translation given by Gr(C) = C%
and (TX)" = X" for X = {X"},ez € Gr(C).

In Gr(C), a differential object X is thus a sequence of objects X" € C and
morphisms dy : X" — X"T! (n € Z). It is visualized as

dn—l ar
(11.3.1) N G (NG
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A morphism of differential objects f: X — Y is a sequence of morphisms
f": X" — Y" making the diagram below commutative:

n—1 n
anl dx X" dX Xn+1
fn—l l lfﬂ l/fnJrl
Yn—l Yy - Yn+1
dﬁ_l dy

A complex in Gr(C) is thus a differential object X of Gr(C) such that
drodyt=0forallneZ.
It coincides with the notion introduced in Definition 8.2.18.

Notations 11.3.2. (i) For an additive category C, we denote by C(C) the cate-
gory consisting of complexes and morphisms of complexes in Gr(C). In other
words, we set

(11.3.2) C(C) == (G1(C))..

An object of C(C) is often called “a complex in C” and sometimes denoted by
X°.

(ii) The translation functor T is also called the the shift functor and denoted
by [1]. We write X[n] instead of T"X (n € Z).

For X € C(C) and n € Z, the object X[n] € C(C) is thus given by:

{ (X[ = X7

dyp) = (—1)mdy™.

Definition 11.3.3. A complex X* is bounded (resp. bounded below, resp.
bounded above) if X" =0 for |n| > 0 (resp. n K 0, resp. n > 0).

Notations 11.3.4. (i) We denote by C*(C) (x = b, +, —) the full subcategory
of C(C) counsisting of bounded complexes (resp. bounded below, resp. bounded
above).

(i) We set CUP(C) := C(C). (Here, “ub” stands for “unbounded”.)

(iii) Let —o0 < a < b < +00. We denote by Cl*?1(C) the full additive sub-
category of C(C) consisting of complexes whose j-th component is zero for

j ¢ [a, b]. We also write C=4(C) (resp. C=%(C)) for Cl#=I(C) (resp. C[=>4l(C)).

Note that C*(C) (resp. C~(C), resp. CP(C)) is the union of the C=¢(C)’s (resp.
C=t(C)’s, resp. Cl*?1(C)’s). All these categories are clearly additive.

We consider C as a full subcategory of CP(C) by identifying an object X € C
with the complex X* “concentrated in degree 0”:

X = >0-X—-0—---

where X stands in degree 0 in this complex.
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Ezamples 11.3.5. (i) Let f: X — Y be a morphism in C. We identify f with
a morphism in C(C). Then Mc(f) is the complex

where Y stands in degree 0.
(ii) Consider the morphism of complexes in which X% and Y° stand in degree
0:

0 X0 > 1 0
b
0 yo —2 >yt 0.
The mapping cone is the complex
0—> x> Xl oy Lyl —0

where X! @ Y° stands in degree 0, d~! = (—dx) @ f° and d° = (f!, dy).

Applying Definition 11.2.2, we get the notion of a morphism of complexes
homotopic to zero. Hence a morphism f: X — Y is homotopic to zero if there
exist s": X" — Y"~! such that f" = s"*' od} +d} " os". Such a morphism
is visualized by the diagram (which is not commutative):

dy
Xn—l Xn Xn+l
/
/v"/ i.f"/s”“
Yn—l d;—l Y”" Yn+1

Example 11.3.6. If C is abelian, a complex 0 - X' — X — X" — 0 is
homotopic to zero if and only if it splits (see Definition 8.3.15).

Notations 11.3.7. (i) Let C be an additive category. We set
(11.3.3) K(C) :=K.(Gr(C)) .

Hence, an object of K(C) is a complex of objects of C, and a morphism in
C(C) homotopic to zero becomes the zero morphism in K(C).

(ii) We define K*(C) (x = ub, b, +, —, [a, b]) as the full subcategory of K(C)
such that Ob(K*(C)) = Ob(C*(C)) (see Notations 11.3.4).

Applying Theorem 11.2.6, we get:

Theorem 11.3.8. The category K(C) endowed with the shift functor [1] and
the family of d.t.’s is a triangulated category. Moreover, the categories K*(C)
(* =b, +, —) are full triangulated subcategories.
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The last assertion follows from the fact that C*(C) is closed by the mapping
cones.

Notation 11.3.9. Adt. X L v & z & X[1] is sometimes denoted by

xLyszH

for short.

An additive functor of additive categories F: C — C’ defines naturally an
additive functor C(F): C(C) — C(C’), by setting

CIF)(X)" = F(X"),  dépyx) = Fldy) -

Of course, C(F) commutes with the shift functor. From now on, if there is no
risk of confusion, we shall write F instead of C(F). By Proposition 11.2.9, F
induces a functor K(F): K(C) — K(C'). If there is no risk of confusion, we
still denote this functor by F.

The next result is obvious.

Proposition 11.3.10. Assume that an additive category C admits direct sums
indexed by a set I. Then so do C(C) and K(C) and the natural functor C(C) —
K(C) commutes with such direct sums.

Definition 11.3.11. Let C be an additive category and let n € Z. The stupid
truncation functors 0=": C(C) — CT(C) and 6=": C(C) — C~(C) are defined
as follows. To X* as in (11.3.1), we associate

&

(X)) = >0—>0-—> X" 5 x" ...,
d”71

cX) = > X" I X" 5 050> -

>n+1

We set 0™ =o07= =n—1

and o~ =0=
See Exercise 11.12 for some properties of the stupid truncation functors.

As we shall see in the next chapter, there are other truncation functors
when C is abelian, and the stupid truncation functors are in fact less useful.

Contravariant Functors

Let C be an additive category. We shall also encounter complexes with differ-
entials which decrease the degree. We shall denote them using subscripts, as

follows:
dyyq d¥
Xoi= o= Xpp1 —5 X 25 X, q = -+

By setting X" = X_, and d% = d*, these two notions are equivalent.



282 11 Complexes in Additive Categories

Definition 11.3.12. Let F: C°? — C’ be an additive functor. We define the
functor C(F): (C(C))°P — C(C') by setting:

C(F)(X*)" = F(X™"), diypyx) = (=1)"F(dy"™) .

With the convention of Definition 11.3.12, we get

—n (-1t —n n— n
= F(X'™") —— F(X'™") = F(X)""' = (F(X)[-1))" .
Indeed,
Aoy = (~D"Fldih) = (<L) F(=dy") = (1) F(dy")
and
n — n— —(n-1)-1 n —
di(x)-1) = _d;&) = (=1 R " = (<1 Fdy") -

11.4 Simplicial Constructions

We shall construct complexes and homotopies in additive categories by using
the simplicial category A (see Exercise 1.21). For the reader’s convenience,
we recall its definition and some properties.

Definition 11.4.1. (a) The simplicial category, denoted by A, is the category
whose objects are the finite totally ordered sets and whose morphisms are
the order-preserving maps.

(b) We denote by A;y; the subcategory of A such that Ob(A;,;) = Ob(A),
the morphisms_being the injective order-preserving maps.

(¢) We denote by A the subcategory of A consisting of non-empty finite totally
ordered sets, the morphisms being given by

Homg (o, 7) =
u sends the smallest (resp. the largest)

u € Hom 4 (0, 7) ; element of o to the smallest (resp. the
largest) element of T

For integers n, m, denote by [n, m| the totally ordered set {k € Z; n < k < m}.
The next results are obvious.

e the natural functor A — Set/ is faithful and half-full,
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e the full subcategory of A consisting of objects {[0, n]},>—_1 is equivalent to
A,
e A admits an initial object, namely @, and a terminal object, namely {0},

~

e A admits an initial object, namely [0, 1], and a terminal object, namely
{0}.

Let us recall that A is equivalent to A°P (see Exercise 1.21). We define the
functor -
K:A—> A

as follows: for 7 € A, k(7) = {0} U T U {oo} where 0 (resp. 0o) is the smallest
(resp. largest) element in {0} U T U {co}. Note that the functor k: A — A
sends @ to [0, 1], sends {0} to [0, 2], etc.

Let us denote by

d':[0,n]— [0,n + 1] 0<i<n+1)

the injective order-preserving map which does not take the value i. In other
words

(k) = k fork<z"7
k+1 fork>1i.

One checks immediately that

(11.4.1) di™tod! =d!" od}  for0<i<j<n+2.

Indeed, each morphism is the unique injective order-preserving map which
does not take the values i and j.
For n > 0, denote by

st [0,n]—[0,n — 1] (0<i<n-1)

the surjective order-preserving map which takes the same value at i and i + 1.
In other words

k for k <i
7(0k) = o
k—1 fork>i.
One checks immediately that
(11.4.2) s;’ o sl.’H'1 =57, os;.""1 for0<j<i<n.

Moreover,

sithod! =dost, for0<i<j<n,
(11.4.3) {54 od! =idjg for0<i<n+1li=jj+1,
sithod! =d/"os?  forl<j4+l<i<n+l.
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Note that the maps d' are morphisms in the category A;,; and the maps s7'
are morphisms in the category A.
The category A,;,; is visualized by the diagram below

—dl— e >
(11.4.4) B —a'= (0 8T (0. —ai>(0.1,2) 2
1 7d219 “““““““ >

Let C be an additive category and F: A;,; — C a functor. We set

o F([0,n]) forn> —1,
o otherwise,
dn: F" — F"1 where d = Y ' (1) F(d?) for n > —1.
Consider the differential object F*:

drt d?
(11.4.5) F*=.. >0—>F 15 FO5 Fl ..o,

Proposition 11.4.2. Let F: A;,; — C be a functor.
(i) The differential object F* is a complez.

(ii) Assume that there exist morphisms st: F" — F"~! satisfying:

st o F(dl) = idp forn>—1,

sptlo F(dl,) = F(d ') osl forn>i=>0.

(11.4.6) {

Then F°* is homotopic to zero.

Proof. (i) By (11.4.1), we have

£

n+2n

dittodl = (—1) T F (™ ody)

+

~.
Il
o
Il
=]

[

()M Fi T ody+ > (1) TF(d; T od))

O=j=i=n+1 0<i<j<n+2
= Z (—1)i+jF(d;l+1 Odl-n) + Z (_1>i+jF(din+1 ° d;-q,l)
0<j<i<n+1 0<i<j<n+2

=0.

(ii) We have
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spttody +df T o sy

n+1 n
=D (FV'sptt o F(d) + ) (<L) F(di ™) o st
i=0 i=0
=spto F<d3>+Z<—1>"“sz“ F(d}y,) + Z F(di™) o s}
ldpn+2 )Rt osF—i—Z F(d' ) osh
i=0
ldpn.

q.e.d.

Corollary 11.4.3. Let F: A;y; — C be a functor. Assume that there exists
a functor F: A — C such that F is isomorphic to the composition A;,j —

AS KL ¢ Then the complex F* is homotopic to zero.

Proof. By identifying « ([0, n]) with [O,n + 2], we have «(d!') = dl"_:rlz and

F(d!) = (dl":f) Set st = F(sp™2): F* — F" ! Then (11.4.3) implies

(11.4.6). qe.d.

11.5 Double Complexes

Let C be an additive category. A double complex X is the data of
{Xn’mv d;?’”” d;nym}n,meZ

where X"™ € C and the pair of the “differentials” dy"™: X"™" — Xntim
dyms Xmm — XL gatisfy:

d;z;—&-l,m ° d;?,m _ 0’ d;n,m—i—l ° d;én,m =0 ,

m—+1,m m,m __ g/m,m+1 Im,m
dy ody™ = dy ody " .

A double complex may be represented by a commutative diagram:

d//n,m
Xn,m X Xn,erl [

m,m m,m—+1
dy dy

e 5 n+1lm o n+lm+1 oS ...
X g X
X




286 11 Complexes in Additive Categories

We shall sometimes write X** instead of X to emphasize the fact that we are
dealing with a double complex.

There is a natural notion of a morphism of double complexes, and we
obtain the additive category C?(C) of double complexes.

Notation 11.5.1. The functor
(11.5.1) F; (vesp. Fyp) : C*(C) — C(C(C))

is defined by associating to a double complex X the complex whose compo-
nents are the rows (resp. the columns) of X.

For example F;(X) is the (simple) complex (X;, d;) in C(C), where
X € C(C) is given by {X™*,dy"*} and
dr: X" — X7t is given by dy®.
The two functors F; and Fy; are clearly equivalences of categories.

Notation 11.5.2. Denoting by T the shift functor in C(C), we define the trans-
lation functors in C?(C):

T.=F 'oToF,(a=11I).

Hence,
nm __ n+1,m mm __ m+1,m /tmom __ gim+1.m
(TIX) =X ’ dT,X - dX ’ dT,X - dX ’
nm __ yn,m+1 mm __ gm,m—+1 m,m 1m,m—+1
(TIIX) =X ’ dT”X - dx ’ dT,,X - _dx :

Assume that C admits countable direct sums. To a double complex X €
C?(C) we associate a differential object totg(X) by setting:
tOtEB(X)k = eaern:an’m )

dfotea(x) |X”vm = d;”m D (_1>nd;n,m.

(11.5.2)

This is visualized by the diagram:

—1)q”
Xn,m % Xn,m+1

d;l

XnJrl,m

If there is no risk of confusion, we shall write diot(x) instead of dioty(x)-

Proposition 11.5.3. Assume that C admits countable direct sums. Then the

d;'ﬁerential object {tote (X)*, dfot@(X)}kGZ is a complez (i.e., dfjt;(x)odfot@(x) =
0),
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Proof. Consider the restriction of d**1 = o d*

tot(x) © dior(x) tO X"

k+1 k . n,m n+2,m n+1,m+1 n,m—+2
ditley o dly s XM — X" @ X ® X

dyfixy 0 oy = d od @ (d o (=1)'d" + (=1)""'d" od) ®@d" 0 d"

=0.
q.e.d.

Assume that C admits countable products. To a double complex X € C?(C)
we associate a differential object tot,(X) by setting:

tOt]T(X)k = 1_[ Xn,m ,
m—+n=k
(dtotn(x))n+m71 = d;("_l'm 4 (_1)nd;n,m—1 .

It means that the composition

n+m—1
toty (X)
_—

tot, (X) Tt tot, (X)" T — x™m

r n—=1,m
is the sum of tot,(X)"™"1 — Xx"~lm L5 X"" and tot,(X)" " ! —

1 ndun.m—l
xrmm=1 L) X", This is visualized by the diagram:

Xn—l,m

Xn,mfl ﬁ) xnm
(=1)"dy

Proposition 11.5.4. Assume that C admits countable products. Then the dif-
ferential object {tot, (X)F, dfotﬂ(x)}kez is a complez (i.e., df;j(x)odfotn x) = 0).

The proof goes as for Proposition 11.5.3.
Assume that C admits countable direct sums and let X € C?(C). Define
v(X) € C?(C) by setting

U(Xn,m) _ Xm,n’ U(d;l’m) — d;n,n’ v(d;n,m) _ d;m,n )
Now, for each (n,m) € Z x Z, define
(11.5.3) pee X = u(X)™" as (—1)"" idyum .

Proposition 11.5.5. Assume that C admits countable direct sums. Let X €
C2%(C). The morphisms r™™ define an isomorphism in C(C):

7 tote(X) => tote(v(X)) .

If C admits countable products, the same isomorphism holds after replacing ®
by .
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Proof. 1t is enough to prove that the diagram below commutes, which is ob-
vious:

d.a(—1)d"
Xnmm XGB( ) X Xn+1,m o) Xn,m+1
(,1)nm (71)(n+1)m®(71)n(m+1)
_dad
xnm S x®Bdx Xn+1,m ® Xn,ln+1

q.e.d.

Remark 11.5.6. One trick to treat signs is to introduce the formal notation
X[1] = Z[1)®X where Z][1] is Z viewed as a complex of Z-modules concentrated
in degree —1. For two complexes X, Y, let us define formally the differential
of x? ® y? € XP ® Y7 (of course, x” ® y? has no meaning) by

d(x? @ y?) = dx" @ y! + (—-1)"(x" ®dy“) .
Then, Proposition 11.5.5 implies that the morphism X ® Y = Y ® X given by
XP@Y15x @yl > (—1)Myl @x? € YI Q@ X?

commutes with the differential.
With this convention, the morphism

Z[11®X - X ®Z[1],
1@x > x®1

does not commute with the differential, while the morphism defined by

Z1] X" - X"®Z[1],
1@x > (—1)'x®1

commutes.

Now consider the finiteness condition:
(11.5.4) {(n,m) € ZxZ;n+m=k, X"™ # 0} is finite for all k € Z.

We denote by C?(C) the full subcategory of C2(C) consisting of objects X

satisfying (11.5.4). Of course, if X € C3(C), then tote(X) and tot,(X) are
well defined and isomorphic. We simply denote this complex by tot(X).

Ezample 11.5.7. Let f: X — Y be a morphism in C(C). Set:

7Lk _ xk 70k _ yk
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and consider the double complex Z:

0 0

X
—s7-lm — 5 F-lm+l >
fm fm+1

ZO,m ZO,m+1 - >

0 0

Then tot(Z) is Mc(f), the mapping cone of f. In other words, if Z** is
a double complex such that ZP* = 0 for p # —1,0, then tot(Z**) is the
mapping cone of d"*: Z75* — Z0-°,

Definition 11.5.8. A morphism f: X — Y in C?(C) is homotopic to zero
if there exist morphisms 7" : X"™ — Y"=1m gnd t3™: XM — ynm=l such
that
—1,m n,m n,m—+1 /1m,m
d’y ot]" =1 od
Y 1 1 X s
d/})l/,mfl ° t;,m _ t;+1,m Od/r)l(,m ,
1 R
fn,m —_ d/r)l/ ,m ° t{l’m + t;lJrl,m od”;(m
sm—1 . .m+1 .
+d”;l;m Ot;m+t;m+ od”';(m,

It is easily checked that if f is homotopic to zero then totg or tot, is homotopic
to zero whenever they exist.

11.6 Bifunctors

Let F: C x C" = C” be an additive bifunctor (i.e., F(-, ) is additive with
respect to each argument). It defines an additive bifunctor C?(F): C(C) x
C(C') — C%(C"). In other words, if X € C(C) and X' € C(C’) are complexes,
then C2(F)(X, X’) is a double complex. If there is no risk of confusion, we
often write F instead of C?(F).

Assume that C” admits countable direct sums. We define the functor

Fg : C(C) xC(C") — C(C")
Fg(X,Y) = totg(F(X,Y)) .

Similarly, if C” admits countable products, we set
F(X,Y) =tot,(F(X,Y)).

Let us denote by the same letter T the shift functors on C(C), C(C") C(C").
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Lemma 11.6.1. The functor Fg (resp. Fy) induces an additive bifunctor

from C(C) x C(C") to C(C").
Proof. This follows immediately from Proposition 11.5.3 (resp. 11.5.4). q.e.d.

The full subcategory (C(C) x C(C"))s of C(C) x C(C') is defined similarly
as the subcategory C?(C) of C?(C). Then the two functors Fg and F? are well
defined on (C(C) x C(C')); and are isomorphic. We denote it by F*:

F*(X.Y) = tot(F(X.Y)), (X.Y)e (C(C)xC(C));.

Hence, the functor F induces well defined bifunctors of additive categories,
all denoted by F*:
F*: CT(C)x CT(C') - CT(C"), F*: C~(C)xC(C)—>C(C"),

F*: CP(C) x C(C') = C(C"), F*:C(C) x C°(C") = C(C").
Ezamples 11.6.2. (i) Consider the bifunctor Hom,: C x C°* — Mod(Z),
(Y, X) = Homc(X,Y). We shall write Hom?* instead of C*(Hom). If X
and Y are two objects of C(C), we have

Hom%* (X, Y)"" = Homq (X", Y"),
d"" =Hom (X", dy),
d"" = Hom,((—1)"dy" 1, ¥™).
Here, the calculation of d” follows from Definition 11.3.12.
Note that Hom?7,"(X, Y) is a double complex in the category Mod(Z), which
should not be confused with the group Hom (X, Y) (see Proposition 11.7.3
below).

(ii) Let R be a k-algebra. The functor + ®g +: Mod(R°P) x Mod(R) — Mod (k)
defines an additive bifunctor

(* ®r *)o: C(Mod(R°P)) x C(Mod(R)) - C(Mod(k)) .
The functor (+ ®g *)g is usually still denoted by + ®¢ -

The above result may be formulated as follows in terms of a bifunctor of
additive categories with translation.
Assuming that C” admits countable direct sums, let us define the functor

Fg: Gr(C) x Gr(C') — Gr(C")
as above (L.e., Fg(X,Y)" = ®;+;— F(X', Y/)). We define the functor

Oxy: Fo(TX,Y)=> TFg(X,Y) and
Oy y: Fo(X,TY) = TFy(X,Y)
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as follows. The composition
. . .0 P
F(TX),Y)) > Fo(TX,Y) ™ =5 (TFy(X, Y))™

is given by the canonical embedding F(X'*1,Y/) — (Fg(X, Y))iﬂ—Irl =
(TFs(X, Y))lﬂ, and the composition

. . .. 04 S
F(X',(TY))) > Fo(X, TY) ™ =5 (TFy(X, Y))™

is given by the canonical embedding F(X',Y/*') — (Fg(X, Y))iﬂ—Irl =
(TFe(X,Y))" multiplied by (—1)".

Lemma 11.6.3. The functor Fg: Gr(C) x Gr(C") — Gr(C") is a bifunctor of
additive categories with translation.

Proof. The diagram

Ox .17

F(TX,T'Y) ———>T'F(X,T'Y)

O7x.y \L i T"6%y

T'"F(TX,Y) ———— T"?F(X,Y)
THOX,Y ’

in Definition 10.1.1 (v) reduces to the following diagram when we restrict it
to F(XHL, Y/t = F((TX)', (T'Y)/):

F(XITL, yi+1) _ i F(X+1, yi+h)

(—1>'¢ l(—l)f“

F(Xi+1, Yj+1) ? F(Xi+1, Yj+1) ,

and this last diagram is anti-commutative. q.e.d.

Note that the differential of Fg(X,Y) for X € C(C) and Y € C(C’) given
by (11.2.2) coincides with the one given by (11.5.2).
Applying Proposition 11.2.11, we get

Proposition 11.6.4. Let F: C x C' — C” be an additive bifunctor.

(i) The bifunctor F induces well defined triangulated bifunctors K*(C) x
K*(C') — KH(C"), K=(C) x K7(C") — K=(C"), KP(C) x K(C") — K(C")
and K(C) x KP(C') — K(C").

(ii) Assume that C” admits countable direct sums (resp. countable products).
Then Fg (resp. Fyr) induces a well defined triangulated bifunctor K(C) x
K(C") — K(C").
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Denote by v the canonical isomorphism C’ x C ~C x C', v(¥, X) = (X, Y)
and let G = Fov:C' x C — C". In other words,

G(Y.X)=F(X.Y).

Proposition 11.6.5. Assume that C" admits countable direct sums. Let X €
C(C) and Y € C(C'). For each (n,m) € Z x Z, define r: F(X",Y") —
G(Y™, X") as (—=1)". Thenr defines an isomorphism of complexes in C(C"):

ri F3(X,Y) = Go(Y, X) .

If C” admits countable products, the same isomorphism holds after replacing
@ by m.

Proof. This follows from Proposition 11.5.5. q.e.d.

11.7 The Complex Hom®

We shall study the complex (Hom ;)% (X, Y), when X and Y are complexes in
C.

For short, we shall write Hom?, instead of (Hom,);. Hence

Hom?, (X, Y) = tot; (Hom7" (X, Y)) .

We shall also write for short Hom (X, Y)" instead of (Hom,): (X, Y)" and d"

instead of djj_ . (x.y)"

Note that Hom:: defines functors

Hom?,: C(C) x C(C)” — C(Mod(Z)) ,
Hom?,: K(C) x K(C)*® — K(Mod(Z)) .

Convention 11.7.1. When considering the bifunctor Homy?, (or its variants,
such as Hom or RHom, etc. in the subsequent chapters), we shall con-
sider it as defined on C(C) x C(C)°P (or K(C) x K(C)°P). Hence, to a pair
(X,Y) € C(C) x C(C)°P, this functor associates Hom? (Y, X). The reason of
this convention is that, together with Definition 11.3.12, the differential whose
components are given by (11.7.3) will satisfy the formula in Exercise 11.11.
However, by Proposition 11.6.5, we may also regard Hom'c( +, +) as a bifunctor
from K(C)°P x K(C) to K(Mod(Z)).

If X and Y are two objects of C(C), we get
(11.7.1) Hom (X, Y)" = [ [Hom(x*, y"**)
keZ

and
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(11.7.2) dﬁom.c(x,y) : Hom,(X,Y)" — Hom, (X, Y)" !

is given as follows. To f = { f*} € [[cz Hom(X*, Y"*) we associate d" f =
("} € [Tiey Hom (X5, Y HH1) | with

gk _ d/n—‘,—k,—kfk + (_1)k+n+ld//k+n+1,—k—1fk-i—l .

In other words, the component of d” f in Hom (X, ¥Y)"™! will be
(11.7.3) (@' f)f =dy™ o fX + (=1)"FL ¥+ o g% € Hom o (X*, Y HF) .

Notation 11.7.2. Recall that we write d" instead of dfiome - We set
C

ZO(Hom'C(X, Y)) = Kerd®
B°(Hom*,(X,Y)) =Imd ",
HO(Hom'C(X, Y)) = (Kerd®)/(Imd™!) .

Proposition 11.7.3. Let C be an additive category and let X, Y € C(C). There
are isomorphisms:

Z°(Hom$, (X, Y)) =~ Hom ) (X, Y) ,

B°(Hom?, (X, Y)) ~ Ht(X, Y),

H°(Hom?,(X, Y)) = Homy ) (X, Y) .

Proof. (i) Let us calculate ZO(Hom'C(X, Y)). By (11.7.3) the component of
d°{ f*} in Hom(X*, Y**1) will be zero if and only if d§ o f* = f*1 o df,
that is, if the family { f*}; defines a morphism of complexes.

(i) Let us calculate B®(Hom?$,(X,Y)). An element f* € Hom$,(X*, ¥*) will
be in the image of d~! if it can be written as f* = db ' o s¥ 4+ 551 0 dk with
s € Hom(X*, Y*=1).

(iii) The last isomorphism follows from the others. q.e.d.

Exercises

Exercise 11.1. Let C be a category and let T: C — C be a functor. Let T7C
be the category defined as follows:

Ob(T™'C) ={(X.n); X € Ob(C), n € Z} ,
Hom pic((X,n), (Y,m)) = lim  Hom(T"HX, T"Hy) .

k>—n,—m

(i) Prove that T~1C is a well-defined category.
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(ii) Prove that the functor T which sends (X, n) to (X, n+1) is a well-defined
translation functor.

(iii) Prove that the functor ¢: C — T~!C which sends X to (X,0) is well
defined and TO(p:(poT. ~

(iv) Prove that the category with translation (771C, T) has the following uni-
versal property: for any category with translation (A, T’) and any functor
¥:C — Asuch that T oy >~ ¢y o T there exist a functor ¥': (T~1C, T) —
(A, T") of categories with translation and an isomorphism v o ¢ >~ 1. More-
over such a ¥’ is unique up to an isomorphism.

Exercise 11.2. Let (A, T) be an additive category with translation and as-
sume to be given a morphism of functors n: id4 — T2 such that noT = Ton,
that is, nrx = T(nx) for any X € A. Let A, be the full subcategory of A,
consisting of differential objects X such that T(dx) o dx = nx.

(i) Let X and Y be objects of A,, and let u: X — T~'Y be a morphism in A.
Prove that T(u) odx + T~ *(dy) ou: X — Y is a morphism in A,.

(ii) Prove that the mapping cone of any morphism in A, belongs to A,.

(iii) Let K,(A) be the full subcategory of K;(A) given by Ob(K,(A)) =
Ob(A,). Prove that K, (A) is a full triangulated subcategory of K,(A).

Exercise 11.3. Let (A, T) be an additive category with translation. Let B
be the category of pairs (X,e) of X € A and e: X — T?X.

(i) Define a translation functor T’ on B such that (B, T’) is an additive cat-
egory with translation and that the functor for: (B,T’) — (A, T), which
forgets e, is a functor of additive categories with translation.

(i) Let n: idg — T'? be the morphism of functors that associates to (X, e) the
morphism e. Prove that n is well defined and satisfies noT = T on. Prove also

that for induces an equivalence of triangulated categories K, (B) = Ky (A).

Exercise 11.4. Let (A, T') be an additive category with translation, and let
f, g: X = Y be two morphisms in A,. Prove that f and g are homotopic if
and only if there exists a commutative diagram in A,

X[1]

X[1].

Y —— Mc(f)

a(f) \L

Yo a(g) (&) e~

ﬁ(f)

B(g)
In such a case, prove that u is an isomorphism in A,.

Exercise 11.5. Let (A, T) be an additive category with translation and
f: X — Y a morphism in A,;. By using Theorem 11.2.6, prove that f is
an isomorphism in K;(A) if and only if Mc(f), the mapping cone of f, is
homotopic to zero.
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Exercise 11.6. Let (A, T) be an additive category with translation and let
f: X — Y be a morphism in A,.
(i) Prove that the following conditions are equivalent:

) f is homotopic to zero,

)

(a) f

(b) f factors through Ot(ldx) X — Mc(idy),

(c) f factors through T-1(B(idy)): T™*Mc(idy) — Y,

(d) f decomposes as X — Z — Y with a differential object Z homotopic to
Zero.

(ii) Let A be the full subcategory of A; consisting of differential objects
homotopic to zero. Prove that the category (A;)ar defined in Exercise 8.6 is
equivalent to Ky (A).

Exercise 11.7. Let (A, T) be an additive category with translation, and con-

sider two morphisms in A,
¢
X—Y.
v
Assume that ¥ op —idyx is homotopic to zero. Prove that there exist an object

Z in A, and morphisms in A,
o
X—Y&®Z
B

such that oo =idy in A.. (Hint: use Exercise 11.6.)

Exercise 11.8. Let (A, T) be an additive category with translation and let

O—>Xi>Yi>Z—>0beacompleXinAc.
(i) Prove that u = (0, g): Mc(f) — Z is a well-defined morphism in A,.

(ii) Assume that 0 — X Lyt z50 splits in A (see Exercise 8.34),
i.e., there exist morphisms k: ¥ — X and h: Z — Y in A such that idy =
fok+hog, goh=1idz and ko f = idy. Prove that u: Mc(f) — Z is an
isomorphism in K.(A). (Hint:( ’T(k);dy °h) defines a morphism Z — Mc(f).)

Exercise 11.9. Let (A, T) be an additive category with translation and let
X € A, be a complex. Assume that there exist morphisms s, t: X — T7'X
in A such that idy = T(s) o dx + T~*(dx) o t. Prove that X is homotopic to
zero. (Hint: consider s o T=*(dx) ot.)

Exercise 11.10. Let C be an additive category and let X € C(C).

(i) Prove that there exists a morphism of functors &: idgrc) — idar(e) such
that T(¢x) — &érx = idrx for any X € Gr(C).

(ii) Prove that dx: X — X[1] defines a morphism in C(C).

(iii) Prove that dy: X — X|[1] is homotopic to zero. (Hint: use (i).)
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Exercise 11.11. Let C = Mod(Z) and let X € C(C), Y € C(C). Prove that
the family of morphisms

Hom (X", Y") @ X" — Y™
four flu).
defines a morphism of complexes Hom},(X,Y) ® X — Y. (Remark that the

signs in Definition 11.3.12 are so chosen that the above map is a morphism of
complexes.)

Exercise 11.12. Let C be an additive category, and let X € C(C), a € Z. The
stupid truncation 0=*X has been defined in Definition 11.3.11.
(i) Show that o=* does not induce a functor from K(C) to itself in general.
(ii) Prove that for X € C(C) and f € Mor(C(C)), there exist distinguished
triangles in K(C)

07X > X - o~X — (c7X)[1],

07X - 07X = X—a] — (c7*X)[1],

Mc(o™*(f)) = Mc(f) = Mc(o=(f)) — Mc(a™(£))[1] -
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Complexes in Abelian Categories

In this chapter, we study complexes (and double complexes) in abelian cate-
gories and give tools to compute their conomology. In particular, we prove the
classical “Snake lemma” and we construct the long exact sequence associated
with a short exact sequence of complexes.

As an application, we discuss Koszul complexes associated to functors
defined on a category of finite subsets of a set S, with values in an abelian
category C. The main result asserts that such a complex may be obtained as
the mapping cone of a morphism acting on a simpler Koszul complex. We
apply these results to the study of distributive families of subobjects of an
object X in C.

We postpone the introduction of derived categories to the next chapter.

Note that we avoid the use of spectral sequences, using instead systemat-
ically the “truncation functors”.

12.1 The Snake Lemma

Let C be an abelian category.

Lemma 12.1.1. [The snake Lemma] Consider the commutative diagram in C
with exact rows:

x —1-x X" 0
u l Ul wl
0 y Ly Sy

It gives rise to an exact sequence:

f1 81 ® f2 82
Keru — Kerv — Kerw — Cokeru — Coker v — Coker w .
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Proof. (a) First, we construct ¢: Kerw — Cokeru. Set W = X xx» Kerw,
Z =Y @y Cokeru and let h: W — Kerw be the natural morphism. We get
a commutative diagram

Kerh w d Kerw —=0
) d Kerg X ¢ X" 0
\ v
P ’ ’
0 y — —y 5 oy

00— Cokeru ——Z —— Cokerw.

Then the composition W — X — Y — Z uniquely decomposes as

W—Kerw 5 Cokeru—2Z .

Indeed, since the composition W — Y — Y” vanishes, the morphism W — Y
factors uniquely through Y’. By Lemma 8.3.11, the morphism Ker 4 — Ker g
is an isomorphism. Since X’ — Kerg is an epimorphism, Kerg — Y’ —
Coker u vanishes. Hence the composition Kerh — W — Cokeru vanishes
and W — Cokeru factors uniquely as W— Kerw - Cokeru. (Recall that
Ker w >~ Coker(Kerh — W).)

(b) Let us show that the sequence Keru 5 Kerv & Kerw % Cokeru —
Coker v — Coker w is exact.

(i) The sequence Keru 5y Kerv ® Kerw is exact. Choose § € C and a
morphism ¥ : § — Ker v such that g; o ¥ = 0. Consider the diagram

S

|+

f1 g1
Keru Kerv Kerw

L,

X’ : X X",

The composition § — Kerv — X — X” is 0. Applying Lemma 8.3.12 we find
an epimorphism 4: §’ — § and the commutative diagram below on the left:
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S/*h»S S’ —— Kerv
X —X X —X
0 Y’ Y.

By considering the commutative diagram above on the right, we find that

the composition §' — X' = Y’ Ei Y is 0, and therefore, the composition
S — X' 5 Y’ is 0. Hence, §' — X' factors through Keru and it remains to
apply Lemma 8.3.12.

(ii) The sequence Kerv £ Kerw 5 Cokeru is exact. Let Y:S — Kerw be
a morphism such that ¢ o ¢ = 0. Since W — Ker w is an epimorphism, we
can find an epimorphism S'—S and a commutative diagram

SO >0l ——= ¢

Cokeru .

Since the composition S — W — ¥’ — Cokeru vanishes, there exists an
epimorphism §°—S! such that the composition S - S — W — Y’ decom-

poses into S° X X' % y'. Denote by A the composition S - ! - W — X.
Then vol = vo fok. Hence A — f o k: S° — X factors through Kerv.
Therefore we obtain a commutative diagram

§0——S§

]

Kerv ——Kerw

L

X—X'.

It remains to apply Lemma 8.3.12.



300 12 Complexes in Abelian Categories

(iii) The proof that Ker w — Cokeru — Coker v — Coker w is exact follows
by reversing the arrows. q.e.d.

12.2 Abelian Categories with Translation

An abelian category with translation (A, T) is an additive category with trans-
lation (A, T) (see Definition 10.1.1) such that A is abelian. Hence T is an exact
additive functor.

Proposition 12.2.1. Let (A, T) be an abelian category with translation. Then
the categories Ay and A, (see Definition 11.1.1) are abelian categories with
translation.

The proof is straightforward.

Let (A, T) be an abelian category with translation and let X € A.. We
define (see Definition 8.3.8):

H(X)=H(T7'X - X —> TX)
~ Coker(Im T~tdy — Kerdyx)
(12.2.1) ~ Coker(T1X — Kerdy) =~ Coker(Coker T2dy — Kerdyx)
Ker(Coker T~ 'dxy — Imdy)
Ker(Coker T~'dy — T X) ~ Ker(Coker T 'dy — Ker Tdy) .

[

[

The last isomorphism follows from the fact that Ker Tdy — T X is a monomor-
phism, and similarly for the third isomorphism.
We shall also make use of the notations

Z(X) = Kerdx s
B(X):=ImT 'dy .

Hence we have monomorphisms B(X)—Z(X)—X and an exact sequence 0 —
B(X)—> Z(X)—> H(X) — 0.

We call H(X) the cohomology of X. If f: X — Y is a morphism in A, it in-
duces morphisms Z(f): Kerdx — Kerdy and B(f): ImT'dy — Im T 'dy,
thus a morphism H(f): H(X) — H(Y). We have obtained an additive func-
tor:

H: A — A.

The isomorphisms (12.2.1) give rise to the exact sequence:

(12.22) 0 — H(X) — Coker(T'dy) & Ker(Tdy) — H(TX) — 0.

Lemma 12.2.2. If f: X — Y is a morphism in A. homotopic to zero, then
H(f): H(X) — H(Y) is the zero morphism.
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Proof. Let f = T(u) odx + T~ '(dy) o u. The composition

T (u)ody
Kerdy - X ——

is the zero morphism. Moreover, T~1(dy) o u factorizes through Im T~*(dy).
q.e.d.

Hence the functor H defines a functor (denoted by the same symbol)
H:K.(A) - A.

Definition 12.2.3. A morphism f: X — Y in A. or in K.(A) is a quasi-
isomorphism (a gis for short), if H(f) is an isomorphism.

An object X is qgis to 0 if the natural morphism X — 0 is a qis, or equivalently

. ] T tdy dx .
H7T'X —— X — TX is exact.

Theorem 12.2.4. Let 0 — X’ EN X4 X" = 0 be an exact sequence in A..

(i) The sequence H(X') > H(X) - H(X") is exact.
(ii) There exists 8: H(X") — H(T(X')) making the sequence:

(12.2.3) H(X) — H(X") > H(T(X) — H(T (X))

exact. Moreover, we can construct § functorial with respect to short exact
sequences of A..

Proof. The exact sequence in A, gives rise to a commutative diagram with
exact rows:

Coker T~ tdy . Coker T~ tdy —fs Coker T~ 'dy, ——0

dx/l dxl dxui
f

00— KerTdyx Ker Tdx — %~ Ker Tdx» .

Applying the snake lemma (Lemma 12.1.1) with u = dy/, v = dx and w = dxv,
the result follows from the exact sequence (12.2.2). q.e.d.

Corollary 12.2.5. Let (A, T) be an abelian category with translation. Then
the functor

H: K. (A)—> A
is cohomological.

It means that, if X - Y — Z — T(X) is a d.t. in K.(A), then the functor H
sends it to an exact sequence in A:

-—> HX)—> H(Y)—> H(Z)—> HT(X)) —> ---
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Proof. Let X - Y — Z — T(X) be a d.t. in K.(A). It is isomorphic to

v a(u) MC(M) B(u) T(U) N T(V) for a morphism u:U — Vin Ac- Since

the sequence in A,:
0—>V —>Mc(u)—>TU)—0
is exact, it follows from Theorem 12.2.4 that the sequence
H(V) — HMec(u)) — H(T(U))
is exact. Therefore, H(X) — H(Y) — H(Z) is exact. g.e.d.

Corollary 12.2.6. Let 0 - X i> Y 5 Z = 0 be an ezact sequence in A,
and define ¢: Mc(f) = Z as ¢ = (0, g). Then ¢ is a morphism in A, and is
a qis.

Proof. The commutative diagram in A, with exact rows

idy

0 X X 0 0
4
f
0 X Y Z 0
yields an exact sequence in A.:

0 — Mc(idy) & Mc(f) % Mc(0 - Z) > 0.
Since H (Mc(idy)) >~ 0, ¢ is a qis by Theorem 12.2.4. q.e.d.

12.3 Complexes in Abelian Categories

Let C be an abelian category. Recall (see Definition 11.3.1) that the category
with translation (Gr(C), T) is given by Gr(C) = C%, and that we set (see
(11.3.2)):

C(C) := (Gr(0))e .

The categories C*(C) (* = ub, +, —, b) are obviously abelian categories with
translation.

Let us translate the definitions and results of §12.2 in the case where
A = Gr(C) and hence, A. = C(C).

Applying the functors m,: Gr(C) — C, which associates X" to X =
{X"};ez € Gr(C), we find additive functors:

H":C(C)—C, H'(X)=H(X"' - X" - x"T),
Z":C(C) = C, Z"(X) =Kerdy ,
B": C(C) - C, B"(X)=TImdy".
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We call H"(X) the n-th cohomology object of X.
Notice that:
H"(X) = H°(X[n])

by the commutative diagram

a1 4
anl X Xn X Xn+1
(=1)"idyn-1 i idyn \L l(—l)" idyn+1
Xn—l X" Xn+1 .

(=1rayt (=1)rdy

Then the exact sequence (12.2.2) give rise to the exact sequence:

(12.3.1) 0— H"(X) — Coker(d%1) & Kerd™'(X) - H"™1(X) - 0.

Definition 12.3.1. Let C be an abelian category and let n € Z. The truncation
functors :

=", =" : C(C)— C(C)

=" =" C(C) — CT(0)

are defined as follows. Let X :=--- — X"! = X" — X"t1 — ... We set:
X= ... > X"? > X! - Kerdy - 0 —> 0 —
TSMXi= o= X2 Xl o X" — Imd} - 0 —
TZX:= oo —» 0 — Imdy ' — X" - Xt - xnt2
2"X:= ---—> 0 — 0 — Cokerdy ' — X"t — X2 ...

There is a chain of morphisms in C(C):

"X > T5"X - X - T2"X —» 12X,
and there are exact sequences in C(C):
0— 751X - "X — H"(X)[-n] = 0,
0— H"(X)[-n] - "X - 7="t1X - 0,
(12.3.2) 0—15"X - X - 72""1X - 0,
071X 5 X 5 12"X - 0,

0— t5"X - T5"X — Mc(idm gz [-n-1]) = 0.

We have the isomorphisms

H/(X) j<n,

Hi(t="X) = HI (T X) ~ { ,

0 j > n.
(12.3.3) .
H/(X) j=zn,

HI(T2"X) = HI (12" X) ~ { ,
0 j <n.
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The verification is straightforward.

Lemma 12.3.2. (i) If f: X — Y is a morphism in C(C) homotopic to zero,
then H"(f): H"(X) — H"(Y) is the zero morphism.
(ii) If f: X — Y is a morphism in C(C) homotopic to zero, then t="(f),
2"(f), T=(f), T="(f) are homotopic to zero.

Proof. (i) is a particular case of Lemma 12.2.2.
(ii) The proof is straightforward. q.e.d.

Hence the functor H" defines a functor (denoted by the same symbol)
H":KC)—C.

Similarly, the functors t=" and T=" define functors, denoted by the same
symbols, from K(C) to K~(C), and the functors t=" and T=" define functors,
denoted by the same symbols, from K(C) to K*(C).

Note that a morphism f: X — Y in C(C) or in K(C) is a qis if and only
if H"(f) is an isomorphism for all n € Z and a complex X is qis to 0 if and
only the complex X is exact.

There are qis in C(C):

"X — T="X

(12.3.4) N
TZ"X — 12X .

Theorem 12.2.4 and Corollaries 12.2.5 and 12.2.6 are translated as:

Theorem 12.3.3. Let 0 — X’ Lxs x> 0 be an ezact sequence in C(C).

(i) For each n € Z, the sequence H"(X') — H"(X) — H"(X") is exact.
(ii) For each n € 7, there exists 8": H"(X") — H"tY(X') making the se-
quence:

(1235)  H'(X) > H'(X") & H™(X) > B (X)

exact. Moreover, we can construct §" functorial with respect to short exact
sequences of C(C).

Corollary 12.3.4. Let C be an abelian category. Then the functor
H":K(C)—C
is cohomological.

Corollary 12.3.5. Let 0 —> X Loy % Z 5 0 be an ezact sequence in C(C)
and define ¢: Mc(f) — Z as ¢" = (0, g"). Then ¢ is a morphism in C(C)
and is a qis.
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Using Corollaries 12.3.4 and 12.3.5, we find a long exact sequence

(12.3.6)  ---— H"(Y) = H"(Z) 55> H™(X) = H™(Y) = - .
Here H"(Z) LN H"t1(X) is the composition H"(Z) <= H"(Mc(f)) —
H"(X[1]) ~ H""(X).

Proposition 12.3.6. The morphism §'" in (12.3.6) is related to the morphism
8" constructed in Theorem 12.3.3 by the relation: §'" = —§".

Proof. The morphism 8": H"(Z) — H"*t1(X) is characterized as follows (see
the proof of the “snake lemma” (12.1.1)). There exists a commutative diagram

n

W H(2)
\\ \L
v Cokerdj™! —— Cokerdj "

la

b
Kerdyt' —— Kerdj ™

H"t1(X)

such that n: W — H"(Z) is an epimorphism and the composition W K
H"(Z) iR H"(X) is the same as the composition W — Kerdyt' —

H"t1(X). On the other hand, §" is given by
H"(Z) < H"(Mc(f)) - H"(X[1]) .
Now observe that the diagram below commutes.

Kerdi™ @ Coker di~! —— Coker dﬁ/f&f)

| |

Kerdy™ Kerdyfi ).

Let £ = (=, 9): W — Kerds"™" @ Cokerd ™. Then the composition W AN

Kerdi™ @ Cokerds™' — Coker dl’\z/fcl(f) — Kerd{\‘/[tzf) vanishes. We get the

diagram
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w

\ :

§ H"(Mc(f)) H"(Z)

| |

Kerdi™ @ Coker dii ="' —— Coker d{\l/[_cif) —> Cokerd} ' .

Note that the diagram below commutes

Kerdi™ @ Coker ™ Coker dK/[_C% f

| |

Kerd;’(‘|r1 ———— H"T}(X)>——> Cokerdy.

Hence, the composition W — H"(Mc(f)) LI H""1(X) is equal to the com-

position W - Kerdy™ — H"*'(X). Therefore, we have the commutative
diagram

W ———— H"(Z)

Kerdit! —— H"T1(X).

This completes the proof. q.e.d.

12.4 Example: Koszul Complexes

We shall give some useful tools which permit us to construct and calculate
the cohomology of some complexes. Such complexes appear in various con-
texts, such as Commutative Algebra (regular sequences of endomorphisms of
a module over a ring) or Sheaf Theory (Cech cohomology of a sheaf associated
with a closed or an open covering).

First of all, we recall that if L is a finite free Z-module of rank n, the module
A" L is free of rank one, and is usually denoted by det L. We understand
det0 = Z. Let I be a finite set and let {es}sc; be the corresponding basis of
the free module Z!. If 7 is a permutation of I, it induces an isomorphism of
7!, and the isomorphism #id on det Z’, where + is the signature of w. Note
that when I is the empty set, Z' = 0.
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If I = {s1,...,5,}, then e;, A--- A ey is a basis of det Z'. If J = I U {s},
es A denotes the linear isomorphism

detZ! — detZ’

Ut e Au.

Recall that if L is a finitely generated Z-module and X is an object of C,
the object X ® L is well defined in C. (See Remark 8.5.7.)
Let S be a set and let X be a family of finite subsets of S. We shall assume

(124.1) If I CcJ C K and I, K belong to X, then J belongs to X .
In the construction below, if X' is not finite we have to assume
(12.4.2) C admits small projective limits .

The set X is ordered by inclusion, hence defines a category. Recall that

pt} ifIcJ,

Hom (1,J) =
s ) [ otherwise .

Let F: ¥ — C be a functor. We shall write X, instead of F(I) and f;; instead
of F(I - J) (for I Cc J,I,J € X). Hence f;; =idy, and fx,o f;; = fxi1, for
IcJCKwithl,J,K € X.

To these data we associate a complex in C as follows. Let |I| denote the
cardinal of I € ¥. We set

C'(F)= [] X/®detZ'.

l|=n,lcE
If J = I u{s}, we have the morphism:
(12.4.3) o= fr1®(esn): Xy @detZ — X; @det Z7 .

Since for any J with |J| = n + 1 there are finitely many I with I C J, the
family of morphisms (12.4.3) define a morphism

(12.4.4) C'"(F)—» ] xi®detZ' =5 X, @detZ’
|I|l=n,ICJ,]eX

from which we deduce the morphism
(12.4.5) dr: C"(F) — C"TL(F).

Lemma 12.4.1. We have d;’,“ odf =0.
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Proof. Let I,J € X, with J = Tu{s}u{t}, s,t € J\I,s #t, |I| =n. We
shall show that the composition ¥;;: X; ® det Z! — X; ® det Z’ induced by
dpt o dl is zero. Set for short I, = I U {u} (u = s,t). We have

WJI = fJIs o f]sl ® (e,/\) o (es/\) —+ fJII o flzl ® (es/\) o (61/\)
= f11® (e Neg Ades AeN)
=0.

q.e.d.
We shall denote by C*(F) the complex

(1246)  C*(F):0— C°(F) % ... & () % v (F) > ..

Ezxample 12.4.2. Let S be a finite set and let X be the family of all subsets
of S. Let X € C and let {fi};cs be a family of endomorphisms of X satisfying
fsofi = fio fs for all s,¢ € S. Define the functor F: ¥ — C as follows. For
I € ¥, set X; = X. For I C J, define f;;: X; — X, as f;; = Hse]\[ fs-
In this situation, the complex C*(F) is called the Koszul complex associated
with the family {f}ses. This complex is usually denoted by K*(X, {f;}ses)- If
H"(K*(X, {fs}ses)) = 0 for n # card(S), we say that {fi}ses is a quasi-regular
family.

We shall now give a technique for computing these complexes. Let X be
as above, and let Xy be a subset of X satisfying

(12.4.7) YslcJeXSy=1cX,.

Set ¥1 = ¥\ Xy. Wehave ¥y 21 CJ € ¥ = J € ¥,. Clearly, both X,
and X satisfy hypothesis (12.4.1).

If F: ¥ — C is a functor, we denote by F; (i =0, 1) its restriction to X;.
Hence, we have the complexes C*(F;),i = 0,1 and C"(F) ~ C"(Fy) & C"(Fy).
For i = 0,1 there are natural morphisms C"(F;) — C"(F) and C"(F) —
C"(F;). We define ¢": C""1(Fy) — C"(F}) as the composition

n—1

o OV (Fy) — CN(F) Y O(F) = C'(Fy) .
Theorem 12.4.3. (i) The ¢"’s define a morphism of complexes
@: C*(Fo)[-1] —» C*(Fy) .

(ii) The complex C*(F) is isomorphic to Mc(p), the mapping cone of ¢.

(iii) There is a d.t.

C*(Fy) — C*(F) — C*(Fo) >

and a long exact sequence

o= HY(C*(F1)) — H"(C*(F)) — H"(C*(Fp)) — -
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Proof. (i) Applying Proposition 11.1.4, we obtain that ¢ is a morphism of
complexes if and only if Mc(g) is a complex. Hence (i) follows from (ii).

(ii) We have Mc(p)" = (C*(Fp)[—1])"" 1@ C"(Fy) ~ C"(Fo)®C"(F1) ~ C"(F).
The differential dy; Mc(p)" — Mc(p)"*! is given by the matrix

n — d;l:b 0
Mec(p) — ¢n+1 d;l’l :

The differential df.: C"(Fy) ® C"(F1) — C""1(Fy) @ C"T1(F)) is given by the
same matrix since d induces the morphism 0 from C"(F;) to C" 1 (Fp).
(iii) follows from (ii). q.e.d.

Ezample 12.4.4. Let (S, X) be as in Example 12.4.2. Let sg € S. Then Xy =
{I € X590 ¢ 1} and X = {J € X;s¢ € J} satisfy the above conditions.
Let I € Xy. Then ¢: C"(Fy) — C"T*(F}) induces the morphism

f(IU{SO})I ® [AVA X] ® det ZI — XIU{S()} ® det ZIU{XO} .
Recall that X; = X and f(ju(s,))r = f5- The morphisms
idy ®es, A X; @det ZN — X5,y @ det 20150}

induce an isomorphism C*(Fy) >~ C*(Fy)[1]. Hence, we get a long exact se-
quence

o HY(CH(Fo)) 25 HY(CH(Fy)) > H'™(CH(F)) — -

Hence, if {fi}ses\s, 1S a quasi-regular family and fi,: X/ > £50 Im f;, —
X/Y, 25 1M f5 i a monomorphism, then {f}ses is a quasi-regular family.

Remark 12.4.5. We may also encounter contravariant functors, that is, func-
tors G: X°P — (C. In such a case if X' is not finite, we have to assume:

(12.4.8) C admits small inductive limits .
For I € ¥ and for I C J, weset X; =G(I), g;1 =G(J — I),

Ca(G) = @ X ®det Z' .

|I|l=n
If J = I u{s} we denote by
esl: detZ/ — det Z!

the isomorphism inverse to e;A, and we get the morphism:

271 ®(es]): Xy ®detZ) — X; @ det Z/
from which we deduce the morphism d¢: C,(G) — C,—1(G). We have d¢ | o
d® = 0 and denote by C,(G) the complex

d7 s,

(12.4.9) C.(G): -+ — Cu(G) = Co—1(G) = -+ —> Co(G) —> 0.

We leave to the reader the translation of Theorem 12.4.3 in this framework.
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Distributive Families of Subobjects

As an application of Theorem 12.4.3, we shall study distributive families of
subobjects of an object. References are made to [33, 60].

Let C be an abelian category and let X € C. Let {X }scs be a family of
subobjects (see Notation 8.3.10) of X indexed by a finite subset S. Let X' be
the set of subsets of S. For I € X, set X; = (),.; X; and Xy = X. Then
I — X; gives a functor from X°P to C. We get a complex

xo(Xs {XS}SES)::

(12.4.10) ;
> Dy X1 ®@det Z — - > P Xy ®Zey; > X — 0,

where X stands in degree 0.
Note that

(12.4.11) Ho(%4(X, {Xhses)) = X/ (D X,) -

ses

Definition 12.4.6. A family {X }ses of subobjects of X is distributive if
H,l(f{.(X, {Xs}ses/)) >~ 0 for any n # 0 and any subset §’ of S.

Remark that for a subobject Y of X and a finite family {X;};cs of subob-
jects of Y, the family {X,},cs is distributive as a family of subobjects of X if
and only if it is so as a family of subobjects of Y.

Assuming card(S) > 1, let us take 5o € S and set So = S\ {so}. Then for
I C S,

X1ugse) = ﬂ(Xso nXs).

sel
Applying Theorem 12.4.3, we obtain a d.t.

(12.4.12)
1
xo(Xso’ {Xso N XS}SESU) — %.(X, {XS}S€S0> - xo(X» {Xs}seS) +—) .

Lemma 12.4.7. Assume that Hn(ff.(X, {Xs}seSo)) ~ 0 for n # 0. Then the
following two conditions are equivalent:

(a) H, (IO(Xa {Xs}.res)) ~ 0 forn #0,
(D) H(Xe( X0 {Xso N Xihyesy)) = 0 for n # 0 and Xy N (X5, X5) =

s€So s
Zses(, (X‘Yo n XS)'

Proof. By the d.t. (12.4.12), we have an exact sequence

0— H; (I.(X, {Xs}sGS)) - HO(I-(XSW {X5 N XSLESO))
— Ho(x.(X, {Xs}sESo))

and isomorphisms
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Hn (xO(Xa {Xx}seS)) ; Hn—l(x ( 50 {X }veso))

for n > 1. Since

Ker(Xm/ Y (X NX) = X/ Y xs)

seSo seSo
= (X, N Y X))/ (X, N X)),
seSo seSo
the result follows. q.e.d.

The next result gives a tool to proceed by induction in order to prove that
a finite family of subobjects of X is distributive.

Proposition 12.4.8. Let sqg € S and set Sy = S\ {so}. Let {X}ses be a family
of subobjects of X. Then the following conditions are equivalent.

(a) {Xs)ses is a distributive family of subobjects of X,
(b) the conditions (1)—(iil) below are satisfied:
(i) {Xs}ses, @8 a distributive family of subobjects of X,
(ii) {XSO N Xg)ses, s a distributive family of subobjects of X,
i

(ii) Xgo V(D ser Xs) = D ger (Xyo N Xy) for any subset I of So.

Proof. (a) = (b). Condition (b) (i) is clearly satisfied. For any I C Sp,
H, (Z{ (X, {X; }gel)) and Hn(.’{.(X, {X.v}selu{so})) vanish for n # 0. Hence (b)
(ii) and (b) (iii) follow from Lemma 12.4.7.

e

a
(b) = (a). Let I C S. Let us show that H,(X.(X, {X,}ses)) vanishes for
n#0.1If sg ¢ I, it is obvious since {X;}es, is distributive. Assume sy € 1.
Then H,,(.’f.(X, {XS}SENSO})) =~ 0 for n # 0 since {X;}ses, is distributive, and
H, (%.(XSO, {X5, N Xs}sel\{m})) ~ 0 since {X,, N X,}ses, is distributive. More-
over,

X, (Y X)= > (X,NX,).

sel\{so} sel\{so}

Hence the result follows from Lemma 12.4.7. q.e.d.

Ezample 12.4.9. (i) If X = X, for some s, then H,,(.'{.(X, {Xs}ses)) ~ ( for
all n by (12.4.12).

(i) H, ( (X, {Xs}seS)) ~0unless 0 <n < |S]—2.

(iii) If card(S) < 2, the family {X}ses is distributive.

(iv) {X1, X2, X3} is a distributive family of subobjects of X if and only if
X1N(X2+ X3) C (X1 NX2)+ (X1 NX3). Of course, the last condition is
equivalent to X1 N (X2 + X3) = (X1 n X2) + (X1 N Xg)

(v) {X1, X2, X3, X4} is a distributive family of subobjects of X if and only

X,-ﬂ(X,-Jer):(XiﬂXj)Jr(XiﬂXk) f0r1§i<j<k§4,
X1N(Xo+ Xs+ X4) = (X1NXo)+ (X1 NX3)+ (X1 N Xy).
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Let us give some properties of distributive families.

Proposition 12.4.10. Let {X }ses be a distributive family of subobjects of X
and let 8" = S u{0}.

(i) Setting Xo = X or Xo = 0, the family {X}ses is distributive.

(ii) Let so € S. Setting Xo = Xs,, the family {Xs}ses is distributive.

(iii) Let s1, 52 € S. Setting Xo = X, + Xy, , the family {X}ses is distributive.
(iv) Let 51,52 € S. Setting Xo = X5, N X,,, the family {X;}ses is distributive.

Proof. (1) In both cases, {Xo N X;}ses is distributive and for any I C S, Xo N

(Zsel XS) = ZSEI(XO n XS)-

(ii) {XoNX,}ses is distributive by (i) and Proposition 12.4.8 (a)=(b)(i). Hence,
it is enough to show that

(12.4.13) X5, N (Z X;) = Z(xm NX,) forany I C S .
sel sel

If s ¢ I, it is a consequence of Proposition 12.4.8. If sq € I, both terms of
(12.4.13) are equal to Xy, .

(iii) By (ii), we may assume that s; # so. We proceed by induction on n =
card(S). If n < 1, the result is clear.

If n = 2, the result follows from Xo N (X, + X,,) = (Xo N Xy,) + (Xo N Xs,)
(see Example 12.4.9 (iv)).

Assume n > 3. Take 5o € S\{s1, s2}. Then {X}ses\(s,) is distributive, and hence
{Xs)ses\(so) is distributive by the induction hypothesis. Since {Xo, Xj,, X,,} is
distributive, X;; N Xo = (X5, N X5,) + (X5, N Xy,). Since {X;) N Xihes\(so} 18
distributive, {X, N X }sesn\(so) is distributive by the induction hypothesis. In
order to apply Proposition 12.4.8 and conclude, it remains to show that

(124.14) X, N (D Xs) =Y (X, NX,) for any I C §'\ {so} .

sel sel

If 0 ¢ I, this is obvious. If 0 € I, the left hand side of (12.4.14) is equal to

Xoo N (Xsy + Xoy + D0 X)) = Xgo N X, + X5y N Xy, + D (X5, N XS)
sel\0 sel\0

ZX N X;)

sel

(iv) Since {Xy, N X }ses is distributive, {X,, N X, N X;}ses is distributive. For

any I C S,
N X)) =Xon (D X, NX,)

sel sel

= Z(XO N XS)

sel
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where the last equality follows from the distributivity of {X;, N X,}ses. Hence,
{X,}ses is distributive by Proposition 12.4.8. q.e.d.

Corollary 12.4.11. Let {X;}ses be a finite family of subobjects of X € C. Let
S be the smallest family of subobjects that contains the X;’s and closed by the
operations + and N. Then the following conditions are equivalent:

(1) {Xs}ses is distributive,
@UNV+WwW)=UNV)+(UNW) foranyU,V,W € S.

Proof. (i) = (ii). By Proposition 12.4.10, for any finite subset J of S, the
family {X}es is distributive.

(ii) = (i). We argue by induction on card(S). Take so € S. Then {X }ses (so)
and {X,, N X }ses\(so) are distributive by the induction hypothesis and Xy, N
(Dser Xs) = D sei (X5 N X,) for any I C S. Hence, the result follows from
Proposition 12.4.8. q.e.d.

See also Exercises 12.5-12.7 for further properties of distributive families.

12.5 Double Complexes

Let C be an abelian category and consider a double complex in C:
X = (X" dyx) = {X"", dy", dy""; (n,m) € Z x 7} .

We shall make use of the two functors F; and F;; defined in Notation 11.5.1.

The functors =", 77", t7", 77" from C2?(C) — C2%(C) and H}(+) from
C2(C) — C(C) are defined by using the functor Fy, and similarly 777", etc.
by using Fj;. For example, we set

7" = (F/ ) ot o F; .
Then Hj(X) is the simple complex

o.m—1 o.m rne.m—41
s Ep(xemy —C s (et

where HJ'(X*™) is the n-th cohomology object of the complex

gt 4P grtim
xp.m Xerl,m - = ...

We denote by H;(X) the double complex whose rows are the H} (X)’s and
with zero vertical differentials H'(X) — H"*(X). Iterating this operation,
we find a complex H;;H;(X) with (vertical and horizontal) zero differentials.

In order to prove Theorem 12.5.4 below, we prepare some lemmas.

Lemma 12.5.1. The functor tot: C]%(C) — C(C) is exact.



314 12 Complexes in Abelian Categories

The proof is straightforward.

Lemma 12.5.2. Let (X**,d’,d") € C%(C) be a double complex. Then the
natural morphism tot(t;(X)) — tot(T79(X)) is a qis for all q.
Proof. We have an exact sequence in C(C(C))
0— 779(X) - T71(X) —» Me(idyyy, g4 (—g-17) = 0 -
Applying Lemma 12.5.1, we get the exact sequence
0 — tot(z;7 (X)) — tot(T7 (X)) — tot(Me(idpy, gs(—g-17)) = 0

Since tot(Mc(idyy, gu(_g—1))) = Mc(idyy, g2[_g—1)) and this complex is exact, we
get the result by Theorem 12.3.3. q.e.d.

Lemma 12.5.3. Let X € C%(C) be a double complex. Then for each q, there

is an ezxact sequence in C(C)

0 — tot (771 (X)) — tot(r; (X)) — H{ (X)[~q] — 0.
Proof. Consider the functorial exact sequence in C(C(C)):

0 — T=H(F (X)) — o (Fi (X)) — H(F(X))[~q] — 0

and apply the exact functor tot o F, ! It is immediately checked that (tot o
Fi ) (H(Fi(X))[~q]) = H} (X)[~q]. q.e.d.

Theorem 12.5.4. Let f: X — Y be a morphism in C3(C) and assume that
f induces an isomorphism

f: H[[H[(X) l) H[]H[(Y) .

Then tot(f): tot(X) — tot(Y) is a gis.
Proof. First note that the hypothesis is equivalent to saying that for each ¢
the morphism of complexes H