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PreFdce 

This account of commutative rings has grown over the years through 
various stages. The first version was an appendix to the notes on homo- 
logical dimension issued in 1959 (these notes, without the appendix, 
have now appeared as Part I11 of [26]). The second was a crude 49 page 
dittoed manuscript written in 1961. This account was expanded in the 
1965-6 course presented at Queen Mary College. I owe an enormous 
debt to Professor Paul M. Cohn of Bedford College for his expert job 
in writing up the course; large parts are incorporated here with only 
small changes. A draft of the book was prepared during the summer of 
1968, and was used for a course at Chicago during 1968-9. 

No attempt has been made to achieve scholarly completeness. Refer- 
ences to sources have been made only in scattered instances where it 
seemed particularly desirable, and the bibliography contains only items 
to which there is an actual reference. My intention is to give an account 
of some topics in the theory of commutative rings in a way that is acces- 
sible to a reader with a modest background in modern algebra; I assume 
only an acquaintance with the definitions and most elementary proper- 
ties of rings, ideals, and modules. More exactly, this is true till $4-1, 
where I presuppose the theory of homological dimension as developed 
in [26], and 54-4 where use of the long exact sequence for Ext begins. 
I hope that readers will find it feasible to go on from this book to a 
deeper study of the literature. It would be most urgent to learn the 
theory of completion and the Cohen structure theorems. 

I have inserted numerous exercises, partly to cover additional ma- 
terial of lesser importance, and partly to give the reader a chance to test 
his growing skill. There is occasional reliance on the exercises as part 
of the exposition, and I hope no r ader will find this inconvenient. 

In the style of Landau, or Hard ,and Wright, I have presented the 
vii 
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material as an Unbroken series of theorems. I prefer this to the n-place 
decimal system favored by some authors, and I have also grown tired 
of seeing a barrage of lemmas, propositions, corollaries, and scholia 
(whatever they are). I admit that this way the lowliest lemma gets ele- 
vated to the same eminence as the most awesome theorem. Also, the 
number of theorems becomes impressive, so impressive that I felt the 
need to add an index of theorems. 

All rings have a unit element, except for a fleeting instant in Ex. 22 
of $2-2. All rings are commutative except in several (not quite so fleet- 
ing) isolated passages. Somewhat erratically, the adjective ~~~~~~~~~- 
tive” is occasionally inserted, merely for emphasis. 

I am very grateful to Joel Cohen, David Eisenbud, Graham Evans, 
Marshall Fraser, Ross Hamsher, William Heinzer, Martin Isaacs, 
Stanley Kochman, Peter Kohn, Stephen McAdam, Judith Sally, and 
Wolmer Vasconcelos for numerous valuable suggestions. If fully 
credited, their names would be everywhere dense. Robert Gilmer was 
especially generous in reading the manuscript critically and enlightening 
me on many points. 

Final thanks go to Joyce Bolden and Diane Moore for a splendid job 
of typing, and to Sylvia Clark, Gerald Curtis, and Mary Johnson of 
Allyn and Bacon, Inc. for their fine cooperation. 

IRVING UPLANSKY 

Preface 
to the Revised Edition 

In this reprinting of Commutative Rings minor slips have been corrected 
and several more substantial changes have been made (largely in the 
exercises). I am indebted to many students and colleagues; they are too 
numerous to list, but I am none the less appreciative. 

In a brief new section entitled “Notes” I have added some comments 
which are in the nature of afterthoughts rather than a revision of the text. 



CHAPTER 1 

Prime Ideals 
md Integral Extensions 

1-1’ PRIME IDEALS 

I- 

> r  

Prime ideals pl$ a central role in the theory of commutative rings, 
and it is appropriate to devote the first section to a collection of ob- 
servations concerning them. 

We recall the definition: in a commutative ring R ,  the ideal I is 
prime if ab e I implies a e I or b E I .  Alternatively: I is prime if R / I  is 
an integral domain. The convention that R itself is not regarded as a 
prime ideal is fairly universally accepted now, and we shall adhere to it 
(except, no doubt, for occasional sllps). In the ring of integers there is 
an analogous convention that 1 is not a prime. 

Let S be the set-theoretic complement of an ideal I.  Then the defini- 
tion of a prime ideal can be recast as follows: I is prime if and only if 
S is multiplicatively closed. Now it goes without saying that I is maximal 
with respect to the exclusion of .S, Krull discovered a very useful con- 
verse. 

“1 I 

Theorem 1. Let S be a multiplicatively closed set in a ring R and let 
I be an ideal in R maximal with respect to the exclusion of S.  Then I is 
prime. 

Proof. Given ab e I we must show that a or b lies in I .  Suppose the 
contrary. Then the ideal (I,  a)  generated by I and a is strictly larger 

1 



2 CH. I/PRIME IDEALS AND INTEGRAL EXTENSIONS 

than I and therefore intersects S. Thus there exists an element s1 e S of 
the form s1 = il + xa (il e I ,  x e R).  Similarly we have s2 e S, s2 = iz + yb.  
But then 

(1) s1s2 = (il + xa)(i2 + yb)  

and all four terms on the right of (1) lie in Z (the first three because a 
factor lies in Z and the fourth because ab e Z). Hence s1s2 e Z, a contra- 
diction. 

C’ 

We note that, given any ideal J disjoint from a multiplicatively closed 
set S, we can by Zorn’s lemma expand J to an ideal Z maximal with 
respect to disjointness from S. Thus we have a method of constructing 
prime ideals. 

Before proceeding, let us examine more closely the complement of 
a prime ideal. It is not any old multiplicatively closed set; it has the 
further property of being saturated in the sense that along with an 
element x it containsLan the divisors of x .  We are led to the following 
tLeorem, in essence a sharpenin6 of Theorem 1. 

#!, ;* n 

Theorem 2. The following statements on a set S in a ring R are 
equivalent: ( 1 )  S is a saturated multiplicatively closed set, (2)  the comple- 
ment of S is a set-theoretic union of prime ideals in R. 

Proof. That (2) implies (1) is immediate from the definitions. To 
prove that (1) implies (2) take x in the complement of S.  Then the 
principal ideal (x) is disjoint from S, since S is saturated. Expand ( x )  to 
an ideal Z maximal with respect to disjointness from S (Zorn). By 
Theorem 1, I is prime. Thus every x not in S has been inserted in a 
prime ideal disjoint from S, proving (2). 

Remarks. 1. In Theorem 2 it would have been reasonable to exclude 
the possibility 0 e S. A saturated multiplicatively closed set containing 
0 is the whole ring, and its complement is the null set, which is vaquously 
but not very convincingly a union of prime ideals. 

2. When we express the complement of S as a union of prime ideals 
we can of course d:sca d any prime ideals not maximal within the 
complement in favor of 6 t ,e  maximal ones. 

. ,  

Let us give two illustraqons. 
, .  

0 
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SEC.  PRIME IDEALS 3 

1. The set consisting of 1 is multiplicatively closed. Its saturation is 
the set of all units. The prime ideals maximal in the complement are 
just the ordinary maximal ideals. 

2. Let S be the set of all non-zero-divisors in R. S is a saturated 
multiplicatively closed set. So: the- zerg-divisors in R are a union of 
prime ideals. The prime ideals‘maximal among these might be called 
‘the “maximal primes of zero-divisors.” 

~ 

--j .”;:. 
Both of these illustrations admit appropriate generalizations to 

modules: in the first case take all elements of R that act one-to-one and 
onto as multiplications of the given R-module; in the second case take 
all non-zero-divisors on the module. This second case is important 
enough to merit a definition. 

Definition. Let R be any commutative ring, A any non-zero R- 
module. The prime ideals maximal within the zero-divisors on A are 
called the maximal primes of A .  When A has the form R / I ,  I an ideal 
in R, we say maximal primes of I ,  rather than of R/Z; the danger of 
ambiguity is slight. 

I %’ b 

At this point we shall briefly discuss unique factorization domains 
(UFD’s). They can be characterized by a suitable interplay between 
prime ideals and principal ideals (Theorem 5). In the course of the dis- 
cussion we encounter an instructive example of a saturated multiplic- 
atively closed set, and a typical application of Theorem 1. 

Notice that for a principal ideal ( p )  to be prime, p must have the fol- 
lowing property: p I ab implies p I a or p I b (the vertical line means 
“divides”). Let us for brevity call p a principal prime if the principal 
ideal (p) is prime and non-zero. 

Theorem.3. If an element in an integral domain is expressible as a 
product plp2 . . . p n  of principal primes, then that expression is unique, up 
to a permutation of the p’s, and multiplication of them by unit factors. 

We leave the standard proof to the reader. 

Theorem 4. Let R be an integral domain. Let S be the set of all 
elements in R expressible as a product of principal primes. Then S is a 
saturated multiplicatively closed set. 



4 CH. I/PRIME IDEALS AND INTEGRAL EXTENSIONS 

Proof. Obviously S is multiplicatively closed. To prove that S is 
saturated we assume ab e S and have to prove that a and b lie in S.  So 
suppose ab = p 1  . - 1 p,, a product of principal primes. Then p1 must 
divide a or b. Say a = plal.  Then alb = pz . . . p,.  By induction on n we 
have that both al and b are in S, and hence a, b e S. 

Theorem 5.  An integral domain is a UFD if and only if every non- 
zero prime ideal in R contains a principal prime. 

Proof. (a) Assume R is a UFD and P a non-zero prime ideal in R. 
Unless R is a field ( a trivial case we are tacitly ignoring), P will contain 
an element a that is neither 0 nor a unit. When a is written as a product 
of principal primes, a = p1 . - . p I ,  one of the factors p i  must be con- 
tained in P.  \ 

(b) Assume that every non-zero prime ideal in R contains a principal 
prime. As in Theorem 4, denote by S the set of all products of principal 
primes. It suffices for us to show that S contains every element in R that 
is neither 0 nor a unit, for Theorem 3 will then complete the proof. 
Suppose on the contrary that c is an element of R that is not 0, not a 
unit, and not in S. Since S is saturated, the principal ideal (c)  is disjoint 
from S. Expand (c)  to a prime ideal P disjoint from S (Theorem 1). By 
hypothesis, P contains a principal prime, a contradiction. 

In the next two theorems we exhibit two ways of constructing prime 
ideals without using a multiplicatively closed set. Theorem 6 is due 
to Herstein; Theorem 7 and its immediate corollary, Theorem 8, are 
due to I. S. Cohen [12]. 

Theorem 6. Let R be a ring and A an R-module. Let Z be an ideal 
in R that is maximal among all annihilators of non-zero elements of A .  
Then Z is prime. 

Proof. Say Z is the annihilator of x e A (notation: Z = ann(x)). Given 
ab E Z we must prove that ‘a or b lies in I .  Assume a F I .  Then ax # 0. 
We note that ann(ax) 3 I .  By hypothesis it cannot be properly larger. 
Hence ann(ax) = I .  Now b annihilates ax;  hence b e I .  

SEC. 1-I/PRIME, IDEALS 5 

Theorem 7. Let Z be an ideal in R .  Suppose Z is notfinitely generated, 
and is maximal among all ideals in R that are not finitely generated. Then 
Z is prime. 

Proof. We make an indirect proof, assuming abeZ with neither 
a nor b in I .  Then the ideal (I ,  a)  is properly larger than Z and conse- 
quently is finitely generated. As generators for it we may pick elements 
of the form il + xla, . . ., i, + x,a (il, . . ., in e I ) .  Now let J be the set of 
all y in R with ya e I .  Then J contains both I and b, hence is properly 
larger than I,  hence is finitely generated. We claim that 

Z = (h, . . ., i,,, Ja). 

Take an arbitrary element z in I.  Then all the more so z lies in (I,  a), 
so we have an expression 

z = ul(il + xla) + . - . + u,(i,, + x,a) 

Here we see that uIxl-+ . - - + u,x, lies in J.  Hence z e (il, . . ., in, Ja), 
as required. We have verified Z = (il, . . ., in, Ju), which implies that Z is 
finitely generated, a contradiction. 

Now any ideal that is not finitely generated can be enlarged to one 
that is maximal with this property (this is a good illustration for children 
cutting their teeth on Zorn’s lemma). We.are ready for the next theorem, 
but first we introduce the most basic definition of all. 

Definition. A commutative ring R is Noetherian if every ideal in R 
is finitely generated, or equivalently, if the ideals in R satisfy the ascend- 
ing chain condition. 

1 -, , -  , 
Remark. The designation honors Emmy Noether, whose revolu- 

tionary paper [38] inpugurated the use of chain conditions in algebra. 
;i‘ 1 - 
I . 

Theorem 8. If every prime ideal in a ring R is finitely generated, 
then R is Noetherian. 

We conclude this section with some remarks on the set S of prime 
ideals in a ring R. It seems reasonable to think of the partial ordering 
on S as its first, basic structure. Question: can an arbitrary partially 



CH. l/PRIME IDEALS AND INTEGRAL EXTENSIONS 
/ .  

6 

ordered set be the partially ordered set of prime ideals in a ring? There 
is a first negative answer, which is fairly immediate: in S every chain 
has a least upper bound and a greatest lower bound. This follows from 
Theorem 9. 
* ”  a : .  . :<< 

Theorem 9. Let ( P , }  be a chain of prime ideals in a ring R .  Then 
both U P ,  and n P ,  are prime ideals in R .  

Proof. Our task becomes even easier when we pass to the comple- 
ments S,, it being quite evident that AS, and US, are multiplicatively 
closed. 

The fact that Theorem 9 works for intersections gives us an,unusual 
opportunity to use Zorn’s lemma going down. 

Theorem 10. Let I be any ideal in a ring R, P a prime ideal contain- 
ing I .  Then - - la Q prime-ideal minimal among all prime 
igeals contaiEing I .  

Proof. Embed P in a maximal chain { P i }  of prime ideals contain- 
ing I (Zorn). By Theorem 9, n P ,  is prime and it is clearly minimal. 

We return to the partially ordered set S of prime ideals. It  does have 
another (perhaps slightly unexpected) property: between any,@& II ele- 
ments we can find a pair of “immediate neighbors.” 

Theorem 11. Let P C Q be distinct prime ideals in a ring R.  Then 
there exist distinct prime ideals Pi, Ql with 

(2) P C P i C  QiC Q 
such that there is no prime ideal properly between Pi and el. 

> ,  

Proof. Insert (Zorn) -_--- a m a x i m a l W P J  of prime ideals between _---- - 
P and Q. Take any element x that is in Q but not ‘In P .  Define Ql to be 
the intersection of all P,)s containing x ,  PI  the union of all P,’s not con- 
taining x .  By Theorem 9, P I  and Ql are prime. Obviously (2) holds. 
None of the P,’s can be properly betwee*P1 and el, for if x e P, then 
P, 3 Ql and if x f P, then P,  C Pi .  By the maximality of [Pa} ,  no prime 
ideal at all can lie properly between P1 and el. 

1- 
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I do not know of any further conditions that S has to satisfy. In 
other words, it is conceivable that if a partially ordered set satisfies the 
conclusions of Theorems 9 and 11 then it is isomorphic to the partially 
ordered set of prime ideals in some commutative ring. 

Let us peek ahead, for a moment, at facts we shall learn later in the 
Noetherian case. We shall find four further restrictions on S, the first 
of which is of course immediate. 

(a) The ascending chain condition. 
(b) The descending chain condition in the strong sense that there is 

a uniform bound on the lengths of chains descending from a fixed 
prime ideal. 

(c) The number of prime ideals between two given ones is zero or 
infinite. 

(d) There are a finite number of mipimalprime ideals. 
7: 

7 .  < 

I Again we can speculate on whether we have found all conditions on 
S for R Noetherian. 

- $’ ;b 
EXERCl SES 

. .  

1. Let R be a ring. Suppose that every ideal in R (other than R) is 
prime. Prove that R is a field. 

2. Let us say that a saturated multiplicatively closed set S is generated 
by { x , )  if S is the smallest such set containing the x’s. Prove that if S 
is finitely generated in this sense, then it can be generated by a single 
element . 

3 .  Let P be a finitely generated prime ideal with annihilator 0. Prove 
that the annihilator of the module PIP2 is P.  (Hint: ifp,, . . ., p .  generate 
P and x annihilates P/P2 ,  then xp, = Zaljp,, a,, e P .  Take determinant.) 

4. (The purpose of this exercise is to show that in Ex. 3 we cannot 
drop the requirement that P is prime.) Let K be a field. Let R be the 
ring of polynomials in x over K, subject to the condition that they 
contain no terms in x or x2. Let I be the ideal in R generated by x3 and 
9. Prove: x5 I I,  and x51 C P .  

5 .  Let P = ( p )  be a principal prime ideal and J = n P n .  
(a) If Q is a prime ideal properly contained in P, prove that Q C J .  

(Hint: for q e Q, write q = pql. Here pql e Q, p B Q, so q1 e Q. Continue.) 
(b) Assume further that p is a non-zero-divisor. Prove: J = p J .  

(Hint: for j E J, write j = px .  From j e Pn for all n deduce x e J.) 
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(c) Again assuming that p is a non-zero-divisor, prove that J is 
prime. (Hint: suppose ab e J with neither a nor b in J.  Write a = p w l ,  
b = pnbl with al, bl ++ P .  Use ab E Pm+n+l to' get a contradiction.) 

(d) Assume that R is a domain and that J is finitely generated. Prove 
that J = 0 and that there is no prime ideal properly between P and 0. 
(Hint: from J = pJ, deduce J = 0 by a determinant argument as in 
Ex. 3. Get the final statement from part (a).) 

(e) Assume merely that J is finitely generated. Prove that there can- 
not exist a distinct chain P 3 Ql 3 Qz of prime ideals. (Hint: pass to 
R/Qz and quote part (d).) 

6.  Let P be a prime ideal in R, Z the ideal generated by all the idem- 
potents in P .  Prove that R/Z has no non-trivial idempotents. (Hint: if e 
is an idempotent in R/Z, pick u + e.  Then u(1 - u) E I C P. We can as- 
sume u € P.  There exists an idempotent f in Zsuch that f (u2 - u) = u2 - u. 
Then (1 - n u  is an idempotent in P, hence in Z, hence u E Z, e = 0. This 
result is due to D. Lazard.) 

7. Let (p) and (q) be non-zero principal prime ideals in a ring. Sup- 
pose that (p) C (q) and that p is a non-zero-divisor. Prove: ( p )  = (4). 

8. (This exercise is offered as a modernization of Euclid's theorem 
on the infinitude of primes.) Prove that an infinite integral domain with 
with a finite number of units has an infinite number of maxim& ideals. 

9. (This exercise is a naive version of Gauss's lemma.) Let f and g be 
polynomials in an indeterminate over a ring R. Suppose that the ideal 
generated by the coefficients off is R, and that the same is true for g .  
Prove that the coefficients of f g  also generate R. (Hint: if the coefficients 
of f g  lie in a maximal ideal My consider the highest coefficients o f f  and 
g that do not lie in M.) 

10. (M. Isaacs) In a ring R let Z be maximal among non-principal 
ideals. Prove that Z is prime. (Hint: adapt the proof of Theorem 7. We 
have (I, a)  = (c). This time take J = all x with xc e I .  Since J 3 (I, b), 
J is principal. Argue that Z = Jc and so is principal.) 

1 1. In a ring R let Z be maximal among ideals that are not countably 
generated. Prove that Z is prime. 

1-2 INTEGRAL ELEMENTS, I 

I 
L 

This brief section is devoted to developing the theory of integral 
elements up to the point needed in $1-3. 

SEC; 1-2/lNTEGRAL ELEMENTS, I 9 

We introduce the concept of an R-algebra over a commutative ring 
R:  a ring T that is an R-module and satisfies the standard axioms, 
notably 

4v) = (axly = x(ay) 

for a e R and x, y E T. We are allowing T to be non-commutative. Per- 
haps the most important example is a ring T containing R in its center. 

Definition. Let R be a commutative ring and T an R-algebra. An 
element u e T is said to be integral over R if it satisfies an equation of 
the form 

(3) U" + alu"' + . . . + a, = 0 (ai E R) 

i.e., a polynomial equation with coefficients in R and highest coefficient 
1. We say that T is integral if all its elements are integral. 

The next theorem provides a criterion that is often easier to use. 

Theorem 12. Let R be a commlitative ring, T a n  R-algebra, u e T .  The 
following statements are equivalent: (a) u is integral over R ,  ( b )  there 
exigts a finitely generated R-submodule A of T such that uA C A and 
the left annihilator of A in T is 0. 

Proof: (a) implies (b). If u satisfies an equation ( 3 )  of degree n, take 

(b) implies (a). Say A is spanned over R by al, . . ., a,. We have equa- 
A to be the R-submodule spanned by 1, u, . . ., un-l. 

tions, 

(4) 

Bring all the terms in (4) to the left-hand side. The theory of linear 
equations applies, and if A is the determinant 

ua; = CA;jaj (Aii a R, i, j = 1, . . ., n) 

we find that A 

u - A11 -An * * * -XI, 
-A21 u - A22 * . * -A2n 

-A,1 -An2 * * *  u -  A,, 
. . .  

-annihilates al, . . ., a,. By hypothesis, A = 0. Ex- 
panding A gives us an equation that shows that u is integral. 
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Remark. In practice the condition that the left annihilator of A is 0 
is usually assured by having 1 e A .  Note that, as the proof of Theorem 
12 showed, we can always pick A to contain 1. 

We put Theorem 12 to work at once. 

Theorem 13. Let T be an algebra over the commutative ring R, 
and suppose that u, v e T are commuting integral elements. Then u + v 
and uv are integral. 

Proof. We can work within the subalgebra generated by u and v, 
so T might as well be commutative. Take, by Theorem 12, modules A 
and B working for u and v. It  makes life a little easier to arrange (as we 
can) 1 e A ,  B. Then the product AB is finitely generated, contains 1, 
and satisfies both (u + v)AB C A B  and (uv)AB C AB. We apply 
Theorem 12 again. 

t 
The next theorem is an immediate corollary. 

Theorem 14. Let T be a commutative algebra over the commutative 
ring R. Then the elements of T integral over R form a subring of T. 

The following theorem will be used in proving Theorem 16, which 
in turn will be used in $1-3. Theorem 15 will also be applied in $1-6. 

Theorem 15. Let R be a commutative ring, u an invertible element 
of a ring containing R. Then r1 is integral over R if and only i f r l  e R[u]. 

Proof. If u-' is integral over R, we have 

( 5 )  ZT" + u~c("-') + * * . + a, = 0 (a, e R) 

Multiply ( 5 )  through by un and rearrange to get 

- u(a1+ a2u + * * + a,un--l) = - 1 * 

showing that u-' e R[u]. The argument is reversible. 

11 SEC. 1-2/INTEGRAL ELEMENTS, I 

Theorem 16. Let R be an integral domain contained in a jield L. If 
L is integral over R then R is afield. 

Proof. For u # 0 in R we have that r1 is integral over R. By 
Theorem 15, r1 e R[u] = R. Hence R is a field. 

We conclude this section with a remark on finitely generated rings 
vs. finitely generated modules. Let T be a commutative R-algebra. We 
say that T is a finitely generated ring over R if there exists a finite set 
of elements generating T as a ring over R. This does not at all imply 
that T is a finitely generated R-module. For instance, if T = R[x] with 
x an indeterminate, then, as a ring over R, T is generated by one ele- 
ment, but T is not a finitely generated R-module. Note that by Theorem 
12, if T is a finitely generated R-module, then T is integral over R. The 
exact connection is given in Theorem 17. 

Theorem 17. Let T be a commutative algebra over the commutative 
ring R. The followiizg statements are equivalent: (1)  T is a finitely gen- 
erated R-module, (2) T is a finitely generated ring over R and is integral 
over R. 

Proof. We have already noted that (1) implies (2). Conversely, 
assume that T is generated as a ring over R by ul, . . ., uk, and suppose 
that the equation showing ui to be integral has degree ni. Then the 
elements 

UlrlUZrZ . . . U k r k  

where ri ranges from 0 to ni - 1, span T over R. 

EXERCISES 

1. In the setup of Theorem 12, assume uA C JA where J is an 
arbitrary ideal of R. Prove that u satisfies an equation (3) with a, eP 
h r  all r. 

2. Let R C T be commutative rings with T integral ever R. Let J be 
an arbitrary ideal of R, and assume u e JT. Prove that u satisfies an 
equation (3) with a, e P. (Hint: say u = j l t l  + - - - + j,,tn. Let A be the 
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subring of T generated over R by the t's. Observe that A is finitely 
generated as an R-module and that uA C JA.  Use Ex. 1.) 

3. Let R be an integral domain, P a finitely generated non-zero 
prime ideal in R, and Z an ideal in R properly containing P. Let x be 
an element in the quotient field of R satisfying xZ C R.  Prove that x is 
integral over R.  (Hint: observe that ZxP C P and deduce xP C P.) 
4. (This exercise generalizes half of Theorem 15.) Let R be a ring, 

and u an invertible element of a ring containing R.  Prove that R[u] 
n R[ t r l ]  is integral over R .  (Hint: if v is a polynomial in u of degree 
m, and a polynomial in r1 of degree n, prove that vA C A where A is 
the module spanned by 1, u, . . ., .) 

1-3 G-IDEALS, HILBERT RINGS, AND THE 
NU LLSTELLENSATZ 

Our main objective in this section is the Nullstellensatz, Theorems 
32 and 33. Thus we seek information on the maximal ideals of 
K[xl,  . . .,'x,], where K is a field. Now the modern style is to study the 
problem one variable at a time, that is, we look at the maximal ideals 
of R[x] with R a more or less arbitrary commutative ring. The first 
thing to do with a maximal ideal M in R[x] is to contract it back to 
the ideal M n R in R.  When we do this we certainly get a prime ideal, 
but we wish it were a maximal ideal (for instance, so that an inductive 
procedure will work smoothly). A close examination of the facts leads 
to the sequence of ideas: G-domain, G-ideal, and Hilbert ring. 

Theorem 18. Let R be an integral domain with quotient3eld K.  The 
following two statements are equivdent: ( I )  K is a$nitely generated ring 
over R,  (2) as a ring, K can be generated over R by one element. 

Proof. Of course (2) implies (1). To prove that (1) implies (2), we 
suppose K = R[al/bl, . . ., a,/b,]. Then with c = b1 - * - b, we have 
K =  R[ l / c ] .  

DeJinition. An integral domain satisfying either (hence'both) of the 
statements in Theorem 18 is called a G-domain. 
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The name honors Oscar Goldman. His paper [20] appeared at vir- . 
tually the same time as a similar paper by Krull [27]. Since Krull al- 
ready has a class of rings named after him, it seems advisable not to 
attempt to honor Krull in this connection. G-domains were also con- 
sidered by Artin and Tate in [ 11. Further results concerning the material 
in this section appear in Gilmer's paper [18]. 

Some remarks will precede the development of the theory of G- 
domains. Of course any field is a G-domain. To get more examples, we 
examine principal ideal domains. We see immediately that a principal 
ideal domain is a G-domain if and only if it has only a finite number 
of primes (up to units). 

Later we shall determine exactly which Noetherian domains are G- 
domains, the precise condition being that there are only a finite num- 
ber of non-zero prime ideals, all of which are maximal. For non-Noe- 
therian domains the facts are more complex, and we seem to lack even 
a reasonable conjecture concerning the structure of general G-domains. 
At any rate,bexamples show that the Noetherian facts do not a t  all 
generalize. It is easy to exhibit a valuation domain that is a G-domain 
but nevertheless possesses comparable non-zero prime ideals. Also 
(this is more difficult)' there exist G-domains in which all non- 
zero prime ideals are maximal and there are an infinite number of 
them. 

The next two theorems are simple but useful. Note that any G- 
domain has an element u of the type occurring in Theorem 19; note 
also that as a corollary of Theorem 19, in a G-domain the intersection 
of all non-zero prime ideals is non-zero. 

A Theorem 19. Let R be an. integral domain with quotientfield K .  For 
a non-zero dement u in R the following three statements are equivalent: 

( I )  Any non-zero prime ideal contains u; 
(2) Any non-zero ideal contains a power of u; 
(3) K = R[u-']. 

Proof. (1) implies (2 ) .  Let Z be a non-zero ideal. If Z contains no 
power of u, then (Theorem 1) Z can be expanded to a prime ideal P 
disjoint from { un), a contradiction. 

( 2 )  implies (3). Take any b # 0 in R.  From ( 2 )  we have that (b) con- 
tains some un, say u" = bc. Then b-' = c r n  E R[u-']. This being true 
for any non-zero b, we have R[u-'] = K .  

- 
4 
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(3) implies (1). Take a non-zero prime ideal P and any non-zero 
element b in it. Since R [ r l ]  = K we have b-I = c r n  for suitable c E R 
and n. Then u" = bc E P,  whence u E P .  

Theorem 20. Let R be a G-domain with quotient field K and let T be 
a ring lying between R and K.  Then T is a G-domain. 

Proof. If K = R [ r l ] ,  then K = r [ l t l ]  all the more so. 

To use the notion of a G-domain effectively, we need to know how 
it behaves under ring extensions. The next two theorems, together with 
EX. 1, 'give fairly complete information. 

Theorem 21. If R is an integral domain and x is an indeterminate 
over R, then R[x] is  never a G-domain. 

Proof. Let K be the quotient field of R .  If R[x] is a G-domain, so 
is a x ] .  But K[x] is a principal ideal domain. So we will achieve our 
goal if we show that K[x]  has an infinite number of primes. Now if K 
is infinite, this is clear; just take all x - a as a runs over K.  If K is 
finite, we can cite from field theory the existence of extensions of K of 
arbitrarily large degree, yielding irreducible polynomials of arbitrarily 
large degree. But this is unduly sophisticated, for there is a pleasant 
opportunity here for Euclid's trick to enjoy a repeat performance. 
Suppose that p l ,  . . ., pk are all the irreducible monk polynomials and 
form 1 -I- p1 - - P k  = q. Then q is divisible by none of the pi's, a con- 
tradiction. 

Theorem 22. Let R C T be integral domains and suppose that T is 
algebraic over R and finitely generated as a ring over R .  Then-R is a G- 
domain if and only i f  T is a G-domain. 

Remark. In saying that T is algebraic over R we mean that every 
element of T satisfies a polynomial equation with coefficients in R ,  no 
attempt being made to have the highest coefficient 1 ; this is.equivalent 
to saying that the quotient field of T is algebraic over the quotient field 
of R. 
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Proof. Let K, L be the quotient fields of R ,  T .  Suppose first that R 
is a G-domain; say K = R[u-']. Then T[u-l] is a domain algebraic over 
the field K, hence is itself a field, necessarily equal to L. Thus T is a 
G-domain. 

(Note that this half of the proof did not require T to be a finitely 
generated ring. But the second half does; for instance, T might even 
be the quotient field of R ,  which is algebraic over R by default, and is 
a G-domain no matter what R is.) 

We assume that T is a G-domain, L = T[V-'] and T = R[wl, . . ., wk]. 
The elements v-,, wl, . . ., wk are algebraic over K and consequently 
satisfy equations with coefficients in R which lead off, say 

." 
i 

kt 

av-m + . . . = 0 
biwini + - . = 0 ( i  = 1, . . ., k)  

t Adjoin CT', bl-I, . . ., bk-l to R ,  obtaining a ring R, between R and K.  The 
field L is generated over R by wl, . . ., wk, v-,. A fortiori these elements 
generate L over R,. Now, over R1 we have arranged that w,, . . ., wk, v-l 
are integral. Hence (Theorem 13 or Theorem 14), L is integral over R1. 
By Theorem 16, R1 is a field, necessarily K. So K is a finitely generated 
ring over R and R is a G-domain, as required. 

I 

For convenience we add a theorem, .which is immediate from Theo- 
' rems 21 and 22. 

Theorem 23. Let R be a domain, u an element of a larger domain. 
If R[u] is a G-domain, then u is algebraic over R and R is a G-domain. 

So far there has been no sign that G-domains have anything to do with 
maximal ideals in polynomial rings. The next theorem exhibits the 
connection. 

% 

Theorem 24. An integral domain R is a G-domain if and only if there 
exists in the polynomial ring R[x]  an ideal M which is maximal and satis- 
$es M f l  R = 0. 

Proof. Suppose that R is a G-domain, say K = R[u-l] where K is 
the quotient field of R.  We can map R[x]  homomorphically into K by 
sending x into u-l. The image is all of K ,  so the kernel M is maximal. 

.. 
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Since the homomorphism is one-to-one on R,  we have M r\ R = 0. 
(Remark: M can be identified as the principal ideal (ux - l), a fact we 
leave as Ex. 2.) 

Conversely, let M be maximal in R[x] and satisfy M n R = 0. De- 
note the image of x in the natural homomorphism R[x] ---f R[x] /M by Y .  
Then R[v] is a field. By Theorem 23, R is a G-domain. 

Remark. An attentive reader might note that in this application of 
Theorem 23 (really Theorem 22) only one element was involved; hence 
Theorem 13 was not needed. However, a second application of Theorem 
23 lies ahead in the proof of Theorem 31. On tracing the sequence of 
arguments, we find that Theorem 13 for two elements (which means 
essentially the full force of Theorem 13) is needed for Theorem 3 1. 

In order to discuss maximal ideals of R[x] that do not contract to 
0 in R,  the following definition is pertinent. 

Dejinition. A prime ideal P in a commutative ring R is a G-ideal 
if RIP is a G-domain. 

We insert at this point a celebrated theorem of Krull. Recall that in 
a commutative ring the set of all nilpotent elements forms an ideal 
called the nilradical of R .  Krull's theorem asserts that the nilradical is 
equal to the intersection of all prime ideals. This is immediately de- 
ducible from Theorem 1, but we delayed it to this point in order to 
sharpen it a little. 

Theorem 25. The nilradical N of any commutative ring R is the in- 
tersection of all G-ideals in R .  

Proof. Clearly a nilpotent element lies in-every prime ideal. Con- 
versely, suppose u # N. We must construct a G-ideal excluding u. The 
ideal 0 is disjoint from { un]  ; we can expand it to an ideal P maximal 
with respect to disjointness from { u" ) .  We know that P is prime (Theo- 
rem 1). We show further that P is a G-ideal. In the domain R* = R/P,  
let u* denote the image of u. The-maximality of P tells us that every 
non-zero prime ideal in R* contains u*. By Theorem 19, R* is a G- 
domain, and P is a G-ideal. 

Remark. This is a good point at which to make the belated obser- 
vation that the most frequently encountered multiplicatively closed set 
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is one consisting of the powers of an element u (with u preferably non- 
nilpotent to avoid degeneracy). From the present point of view these 
multiplicatively closed sets get a place of honor because they are in- 
extricably linked with G-ideals. Note also Ex. 2 in Q 1, 

We wish to apply Theorem 25 to the homomorphic images of R as 
well as to R itself. For this purpose we define the radical J of an ideal I 
to be the set of all elements in R having some power in I. If we pass to 
the ring R / I ,  then J / I  is the nilradical. We call I a radical ideal if it is 
equal to  its radical. - 

4 I 

Theorem 26. Let I be any ideal in a commutative ring R.  Then the 
radical of I is the intersection of all G-ideals containing I .  

t. 
This is immediate from Theorem 25 and the definitions. 
Let I be any ideal in a ring R. We write R* for the quotient ring R/I .  

In the polynomial ring R[x] there is a smallest extension ZR[x] of I .  
The quotient ring R[x]/IR[x] is in a natural way isomorphic to R*[x]. 
In treating many problems, we can in this way reduce to the case I = 0, 
and we shall often do so. As a first sample we generalize Theorem 24 
(no further proof is needed). 

Theorem 27. An ideal I in a ring R is a G-ideal ifand only i f i t  is the 
cyntraction of a maximal ideal in the polynomial ring R[x]. 

Next we discuss how to generate a' maximal ideal of a polynomial 
ring in the favorable case when the contraction is maximal. 

Theorem 28. Let M be a maximal ideal in a x ]  and suppose that 
the contraction M r\ R = N is maximal in R.  Then M can be generated 
by N and one more element f. We can select f to be a monic polynomial 
which maps mod N into an irreducible polynomial over the j e l d  R / N .  

. 
1 

I Proof. .We can reduce to the case N = 0, i. e., R a field, and then 
the statement is immediate. A 

i 
When the field R / N  is algebraically closed we get a still simpler result. 

I 
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Theorem 29. Suppose, in addition to the hypothesis of Theorem 28, 
that R / N  is algebraically closed. Then M = ( N ,  x - a)  f o r  some a E R. 

Proof. In this case an irreducible polynomial over R / N  must be 
linear. 

Any maximal ideal is a G-ideal. The nice class of rings is where the 
e- reverse holds. 

Definition. A commutative ring R is a Hilbert ring if every G-ideal 
in R is maximal. (Krull’s designation was Jacobson ring, and Bourbaki 
has followed this terminology.) 

We note the trivial fact that any homomorphic image of a Hilbert 
ring is a Hilbert ring. 

The best examples of Hilbert rings are those that arise from Theorem 
31 below. We note (Ex. 4) that, except for the trivial case where all 
prime ideals are maximal, a Hilbert ring must have an infinite number 
of maximal ideals. Later, after we acquire the principal ideal theorem, 
we shall be able to  describe exactly which Noetherian rings are Hilbert 
rings. 

From the definition and Theorem 26 we derive: 

Theorem 30. In a Hilbert ring the radical of any ideal I is the inter- 
section of the maximal ideals containing I. 

Theorem 31. A commutative ring R is a Hilbert ring if and only if 
the polynomial ring R[x]  is a Hilbert ring. 

ProoJ 
Conversely, assume that R is a Hilbert ring. Take a G-ideal Q in 

R[x]; we must prove that Q is maximal. Let P = Q A R ;  we can reduce 
the problem to the case P = 0, which, incidentally, makes R a domain. 
Let u be the image of x in the natural homomorphism R[x] 3 R[x] /Q.  
Then R[u] is a G-domain. By Theorem 23, u is algebraic over R and R 
is a G-domain. Since R is both a G-domain and a Hilbert ring, R is a 
field. But this makes R[u] = R[x] /Q a field, proving Q to be maximal. 

If R [ x ]  is a Hilbert ring, so is its homomorphic image R. 

Theorem 32. (Nullstellensatz, first version.) Let K be an algebra- 
ically closedfield and let xl, . . ., x ,  be indeterminates over K. Then any 
maximal ideal in K[xl,  . . ., x,] is of the form ( X I  - al, . . ., x,  - a,), 
a; E K, i. e., it consists of all polynomials vanishing at a point. 

Proof. Let R = a x l ,  . . ., x,-~]. R is a Hilbert ring by iterated use 
of Theorem 31. We are given a maximal ideal M in R[x,]. Let N be 
its contraction to R .  By Theorem 27, N is a G-ideal in R ,  hence maximal. 
We make an induction on n, assuming N = (xl - al, . . ., x,-~ - an-l). 
This shows that R / N  is in a natural way isomorphic to K and thus is 
algebraically closed. By Theorem 29, M = ( N ,  x,  - a,), as required. 

Theorem 33. (Full Nullstellensatz.) Let K be an algebraically closed 
field and f, g,, . . ., g ,  polynomials in n variables with coeficients in K. . 

Assume thatfianishes- at all~common zeros of gl,-. . ., g,. Then Some 
power o f f  lies in the ideal (gl, . . ., gr). 

4- ~ - 

Proof. In the light of Theorem 32, %hypothesis says that f lies 
in the intersection of all maximal ideals containing (gl,  -19,). Since 
(ThGrem 31) K[xl,  . . ., x,] is a Hilbert ring; Theorem 30-is applicable 
and shows that f is in the radical of (gl, . . ., g,). 

EXERCISES 

1 .  Let R C T be domains with T finitely generated as a ring over R ,  
and not algebraic over R. Prove that T is not a G-domain. (Hint: pass 
from R to T by a sequence of transcendental elements, followed by an 
algebraic extension. Use Theorems 21 and 22.) 

2. (This exercise arose in connection with the proof of Theorem 24.) 
Let R be a domain with quotient field K ,  and u a non-zero element of R .  
Let J be the kernel of the homomorphism from R[x]  into K given by 
x -+ u-1. Prove: J = (ux - 1). (Hint: say f= axn + . - . + b E J .  Write 
f + b(ux - 1) = xg. Then xg E J,  x F J,  g E J since J is prime. Use in- 
duction.) 

3. Let R be an integral domain having only a finite number of prime 
ideals. Prove that I? is a G;domain. (Hint: argue that the intersection 
of the non-zero prime ideals is non-zero, and use Theorem 19.) 
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4. Let R be a Hilbert ring having only a finite number of maximal 
ideals. Prove that these are the only prime ideals in R .  (Hint: by Theo- 
rem 30 every prime ideal is an intersection of maximal ideals.) 

5. Let R be an integral domain with quotient field K. Assume that 
K is countably generated as a ring over R .  Prove that R is a G-domain 
if and only if K cannot be expressed as the union o h  properly ascending 
sequence of subrings containing R. 

6. Let K be any field (not necessarily algebraically closed). Prove 
that any maximal ideal in K[xl, . . ., x,] can be generated by n elements. 
(Hint: use Theorems 28 and 31 .) 

7. (Generalization of Ex. 6.) Let R be a Hilbert ring such that every 
maximal ideal in R can be generated by k elements, k fixed. Prove that 
any maximal ideal in R[xl ,  . . ., x,] can be generated by k + n elements. 

8 .  Let R be a Hilbert ring in which every maximal ideal is finitely 
generated. Prove that the same is true for R[x].  

9. Prove that the following statements are equivalent: 
(a) R is a Hilbert ring; 
(b) Every radical ideal in R is an intersection of maximal ideals; 
(c) Every prime ideal in R is an intersection of maximal ideals; 
(d) Every G-ideal in R is an intersection of maximal ideals. 
10. Let M be a maximal ideal in T = R[xl,  . . ., x,] satisfying 

M n R = 0. Prove that M can be generated by n + 1 elements. (Hint: 
let K be the quotient field of R .  R is a G-domain, K = R[u-’1. There 
exists g e T with ug = 1 (mod M ) .  Pass to the ring T/(ug - l), which 
contains a copy of K, and argue thus that n more generators will suffice 
for M . )  

11. Let K be algebraically closed and R = K[xl, . . ., x,]. Let fi, . . ., 
fm B R .  Then the equations fl = 0, . . ., fm = 0 have a simultaneous solu- 
tion if and only if there do not exist gl, . . ., g,,, e R with Zgifi = 1. 

12. (This exercise sketches the transition to the language of algebraic 
geometry,) Let K be a field and write A ,  for the vector space of n-ples 
over K.  Given an ideal Z CK[xl, . . ., x,] we write V(Z) for the subset of 
Anconsisting of all points in A ,  where all the polynomials in Ivanish, and 
we call such a set a variety. Given a subset S of A,, we write J(S) for the 
ideal of polynomials vanishing on S. Assume K algebraically closed. 

(a) Prove that J(V(r)) is the radical of Z. 
(b) Prove that the map S ---f J(S) sets up a one-to-one correspondence 

between all varieties and all radical ideals. 
(c) Prove that under set-theoretic inclusion the set of radical ideals 

is a complete lattice and that the set of varieties likewise is a complete 
lattice. Prove further that the correspondence of part (b) is order- 
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inverting. (Remark: in each case the intersection is merely the set- 
theoretic intersection, but the union is the smallest object containing 
the radical ideals or varieties in question. Note, however, the extra 
information in part (d).) 

(d) In the lattice of varieties of part (c), prove that the union of a 
finite number of varieties is just the set-theoretic union. 

(e) Prove that in the correspondence of part (b) an ideal is prime if 
and only if the corresponding variety is irreducible, in the sense that it 
cannot be exhibited as the union of two properly smaller varieties. 

13. (The homogeneous Nullstellensatz.) Kis a field, R = K[xl,  . . ., x,]. 
Call an ideal Z in R homogeneous if along with a polynomialf, Z con- 
tains the homogeneous constituents off. Call a variety V a cone if 
(al, . . ., a,) e V implies (tal ,  , . ., tan) e V for all t e K. 

(a) If Z is homogeneous, prove that V(Z) is a cone. 
(b) If V is a cone, and K is infinite, prove that J(v> is homogeneous. 

Give an example to show that we need to assume K infinite. 
(c) Thus, or otherwise, prove that when K is algebraically closed, 

the radical of a homogeneous ideal is homogeneous. (This is actually 
true for any field.) 

(For a reader familiar with projective geometry, we sketch the facts 
in that language. From a homogeneous ideal Z we pass toea projective 
variety V in (n - 1)-dimensional projective space, Assume K alge- 
braically closed. V is the null set if and only if Icontains a power of the 
ideal (xl, . . ., x,). If we rule out this case the passage 
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1 -+ V ( 0  -+ J( UZ)) 
leads to the radical of I.  Prime homogeneous ideals correspond to 
irreducible varieties. In particular, points correspond to “submaximal” 
homogeneous prime ideals, i. e., homogeneous prime ideals direcJly be- 

14. Prove: an element x in a ring R is nilpotent if and only if it is a 
zero-divisor on every R-module. (Hint: use Theorem 25.)  

15. Let K be a field, L a field containing K ,  which is finitely generated 
as a ring over K. Prove that L is finite-dimensional over K.  

16. Let R C T be rings with R a Hilbert ring and T finitely generated 
as a ring over R.  Prove that any maximal ideal in T contracts to a 
maximal ideal in R.  

17. Let R1 C RZ C R ,  be rings with R3 finitely gznerated as a ring 
over R l .  Let P3 be an ideal in RO and PI ,  Pz its contractions to R1, Rz.  
Prove: if P1 and P,  are maximal, so is Pz. (Hint: by switching to R1/Pl 
reduce to the case where R1 is a field.) 

low (Xl, . . ., x,).) 
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1-4 LOCA 

CH. I/PFUME IDEALS AND INTEGRAL EXTENSIONS 

I ZAT I ON 

n 

The technique of localization is by now such a standard part of com- j 
mutative ring theory that we shall be brief about it. In this section we 
give the basic definitions and properties ; further facts will be developed 
as needed. 

Let S be a multiplicatively closed set in R. (It is a good idea to assume 
that 0 Q S; otherwise everything in sight will collapse to 0.) Let A be an . 

R-module. We define As to be the set of equivalence classes of pairs 
(a, s) with a e A ,  s e S, the equivalence relation being: (a, s) - (al, sl) if 
there exists s2 in S with s2(sla - sal) = 0. This is indeed an equivalence 
relation. 

We make As into an abelian group by 

(a, S) + (a1, Sl) = (s1a + .w, SS1) 

x(a, S) = (xu, S) 

and then into an R-module by 

In both cases we have to check that the definitions are independent 
of the choice of representatives, and then mechanically verify a flock 
of axioms. 

Our notation for the equivalence class of (a, s) will be a/s. We identify 
a with a l l  when there is no danger (but sometimes there is). 

Remark. It  is harmless to assume that S is saturated, and it is at any 
rate convenient to assume that I e S. 

When the construction is carried out on R itself the resulting object 
Rs carries a ring structure: 

(x, SXXl, Sl) = (xx1, SSd, 

(x, sxa, Sl) = (xu, SSl). 

and then As becomes an Rs-module: 

If the operation is iterated, nothing new happens: (A,& is identifiable 
with AS.  This has as a result the following useful observation: any 
Rs-module has the form As for a suitable R-module A (for instance 
take A to be A S  itself). For use in a Noetherian setup we shall need the 
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further easy observation: if B is finitely generated over Rs, then we can 
arrange to have B = A s  with A finitely generated over R. 

There is a natural R-module homomorphism from A into A S  and a 
natural ring homomorphism from R into Rs. In each case the kernel 
is the set of elements annihilated by some member of S.  

Especially important is the case where S is the complement of a 
prime ideal P. We then, by “abuse of notation,” write Ap, Rp instead 
of As,  Rs. (It is true that P itself is also a multiplicatively closed set, but 
it would be ludicrous to take this seriously, for 0 E P. )  

We proceed to discuss the connection between ideals in R and Rs. 
Given an ideal I in R it maps to the ideal IS in Rs. We note again that 
Is consists of all i / s  with i E I, s e S. The ideal I “explodes” to Rs 
(i. e., IS = Rs) if and only if I contains an element of S, and it collapses 
to 0 if every element of I is annihilated by some element of S. 

Given an ideal J in Rs there is a well-defined complete inverse image 
I in R ;  it consists of all x with x/l e J.  However, a handier way to think 
of it is to write a typical j E J as j = y / s  with y e R. The representation is 
not unique, so be generous and take all possible representations. Then 
collect all numerators that arise; this is the same ideal I. 

If we go from J to I and then back to IS, we find IS = J.  But if we start 
with I C R, pass to Is, and then return to an ideal of R, we generally 
get a larger ideal. (For instance, if I contains an element of S, on re- 
turning I will have grown to R.) 

The correspondence improves if we stick to prime ideals. 
i 

Theorem 34. The mappings described above implement a one-tO-one 
order-preserving correspondence between all the prime ideals in Rs and 
those prime ideals in R disjoint from S. 

Proof. We leave to the reader the routine steps of the proof except 
for thefollowing: start with P prime in R and disjoint from S, and see 
that PS returns to P.  That is, given x E R, s t S with x/s c Ps we must- 
prove that x E P.  Now we are given x / s  = p/sl for some p e P,  s1 e s. 
This says s&x - sp) = 0, s2 e S. Hence s2slx E P and x E P, since P is 
prime, S is multiplicatively closed, and P n S is void. 

’ 

Note that the maximal ideals in Rs are exactly the maximal primes 

The special case of Rp is so important that it deserves to have the 
disjoint from S discussed in $1-1. 

theorem stated all over again. 
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Theorem 35. The mappings described above implement a one-to-one 
order-preserving correspondence between all the prime ideals in Rp and 
all the prime ideals in R contained in P .  

In particular: R p  has exactly one maximal ideal. The procedure has 
the effect of making the selected prime ideal P the “big daddy” in Rp. 
Our notation for the unique maximal ideal of Rp is, sadly enough, Pp. 
We are going to call such a ring (i. e., one with exactly one maximal 
ideal) quasi-local. 

EXERCISES 

1.- Let P be prime and S multiplicatively closed in R .  Compare the 
integral domains RIP and Rs/Ps .  Is the second a suitable localization 
of the first? Note especially the relation between the integral domain 
RIP and the field RplPp. 

2. Let S, T be multiplicatively closed in R ;  write T* for the image 
of T in Rs. Compare (Rs)T* and RST.  
2. Let S be multiplicatively closed in a UFD. Prove that RS is a 

UFD. 
;Y (a) Let A be an R-module, x an element of A .  If x maps to zero 

in AM for every maximal ideal M in R ,  prove that x = 0. (Hint: if the 
annihilator I of x is not R ,  take A4 3 I . )  

(b) If AM = 0 for every M,  prove that A = 0. 
5.  Let By C be submodules of an R-module A .  Assume that BMCCM 

for every maximal ideal M in R .  Prove: B C C. (Hint: apply Ex. 4 to 
the module ( B  + C)/C.) 

8.. Let R be a ring with no non-zero nilpotent elements, and let P 
be a minimal prime ideal in R .  Prove that Rp is a field. 

d. Let T be a localization of R ,  and assume that T is quasi-local. 
Prove that T has the form R p  with P a prime ideal in R .  

8. Let R be an integral domain with quotient field K ,  R # K.  Prove 
that the following two statements are equivalent: (a) R has exactly one 
non-zero prime ideal, (b) the only localizations of R are R and K .  

9. Prove that a ring has an infinite number of distinct localizations 
if and only if it has an infinite number of prime ideals. 

10. Let R be an integral domain. If a localization Rs is integral over 
R, prove that R = Rs. 
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1-5 PRIME IDEALS IN POLYNOMIAL RINGS 

In this short section we derive some preliminary results concerning the 
nature of the prime ideals in a polynomial ring R[x].  

Such a prime ideal contracts to a prime ideal in R .  Nearly always, 
we can reduce the latter to 0. So we ask: with R a domain, what are the 
prime ideals in R[x]  that contract to O ?  Theorem 36 provides the answer. 

Theorem 36. Let R be an integral domain with quotient field K ,  and 
let x be an indeterminate. Then there is a one-to-one correspondence be- 
tween prime ideals in R[x] that contract to 0 in R and prime ideals in 
K[Xl. 

Proof. Let S be the set of non-zero elements in R .  Then RS = K 
and R[x]s is, in a natural way, a x ] .  We quote Theorem 34. 

3 $ 1  

Now the prime ideals in K[x]  are insthntly surveyed: we have 0, and 
an infinite number of maximal ideals corresponding to irreducible 
polynomials over K .  For any prime ideal P in a general ring R ,  we then 
derive a picture of the prime ideals in R[x] contracting to P :  we have 
the expansion PR[x],  and an infinite number of prime ideals sitting di- 
rectly above PR[x]. One corollary of this is important enough to war- 
rant an explicit theorem. / .  

z 

Theorem 37. Let R be any ring. There cannot exist in R[x] a chain 
of three distinct prime ideals with the same contraction in R .  

We introduce at this point one of the basic concepts in the subjec;: 
the rank of a prime ideal. Counting as the Romans did, we say that a 
chain of distinct prime ideals 

P =  Po> PI 3 - > P,  (6) 

is of length n, even though n + 1 prime ideals appear in (6). We say 
that P has rank n if there exists a chain of length n descending from P, 
but no longer chain. We say that P has rank a, if there exist arbitrarily 
long chains descending from P. Thus a minimal prime ideal has rank 0; 
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a prime ideal of rank 1 is not minimal but sits directly above a minimal 
prime ideal, etc. Note that in a domain the only truly minimal prime 
ideal is 0. So in a domain it is customary to call a rank 1 prime minimal. 

Remark. Other terminology in use in place of “rank” includes 
“height” or “altitude.” 

Theorem 38. Let P be a prime ideal of rank n in R .  In the polynomial 
ring R[x],  write P* = PR[x],  and let Q be a prime ideal in R[x]  that con- 
tracts to P in R and contains P* properly. Then 

(a)  
(b)  n +  1 5 rank(Q) 5 2n+ 1. f 

n 5 rank(P*) 9 2n, 

Proof. Say the chain (6)  descends from P.  Using * for the expansion 
of an ideal to R[x]  we exhibit the chain of prime ideals 

3 Pn* 

This proves the first inequality in both (a) and (b). 
Take a chain descending from P* and contract it to R.  Only P* can 

contract to P ,  and by Theorem 37 the others collapse at most two to one. 
This completes the proof of (a), and the handling of (b) is similar. 

Examples show that the bounds in Theorem 38 can be attained. See 
Seidenberg [46], [47]. For Noetherian rings it is possible to sharpen 
Theorem 38.  We abstract a portion of the argument at this point in order 
to exhibit the fact that it is quite elementary, and because of the possible 
usefulness of the generalization. 

Call a domain R an S-domain if for every prime ideal P of rank 1, 
P* again has rank 1 .  (As above, P* is the expansion PR[x] of P to the 
polynomial ring R[x] . )  Call a ring R a strong S-ring if for every prime 
ideal N in R ,  R / N  is an S-domain. 

Theorem 39. Let n, P, and Q be as in Theorem 38. Assume that R 
is a strong S-ring. Then rank(P*) = n and mnk( Q)  = n + 1. 

Proof. In view of Theorem 38, we need only prove the inequalities 

Suppose rank(P*) > n. Then we have P* 3 Po with Po of rank n. 
rank(P*) 5 n, rank(@ 5 n + 1. 
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Let P1 be the contraction of Po to R .  Clearly P1 is properly contained in 
P, and so rank(P1) < n. Then (by induction) the only possible way to 
have Po of rank n is to have rank(P,) = n - 1 ,  and Po properly larger 
than PIR[x].  However, it follows from our hypothesis (by the usual 
passage to the ring RIP,) that there are no prime ideals properly be- 
tween P* and P,R[x]. This contradiction proves rank(P*) = n.  

I t  is now easy to prove rank(Q) = n + 1. Take a prime ideal Q1 
properly contained in Q. If it contracts to P,  then (Theorem 37) Ql = P*. 
If it contracts to a smaller prime, then rank(Ql) 6 n,  by induction. In 
either case, rank(Ql) 6 n, whence rank(Q) 5 n + 1. 

EXERCl SES 

1. Let Q be a prime ideal in R[x] ,  contracting to P in R .  Prove that 
Q is a G-ideal if and only if P is a G-ideal and Q properly contains 
PR[x].  

2. Let Q be a G-ideal in R[xl,  . . ., xn] contracting to P in R .  Prove: 
rank(Q) 2 n + rank(P). 

3 .  In the notation of Theorem 38 ,  shaw that we have rank(Q) = 1 
+ rank(P*). 

1-6 INTEGRAL ELEMENTS, I I  

There is a considerable amount of choice in the order of presentation 
of topics in commutative rings. Frdm one point of view the theory of 
integral elements in this section is more advanced than a good deal of 
later material. But we have preferred to delay till the last moment the 
introduction of chain conditions. 

We continue with the theory of integral elements where $1-2 left off, 
but we abandon the extra generality that was briefly in evidence in 81-2. 
We work with a pair of commutative rings R C T. We recall (Theorem 
14) that the elements of T integral over R form a subring of T.  It is 
called the integral closure of R in T. 

We prove next the transitivity of the integral property. 

i; 
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Theorem 40. Let R C T be rings and u an element of a ring con- 
taining T. Suppose that u is integral over T and that T is integral over R. 
Then u is integral over R. 

Proof. Say 

un + alun--l + . . + a, = 0 (a;  E T)  

exhibits the fact that u is integral over T. Let R1 = R[al, . -, a,, u]. We 
easily argue that R1 is a finitely generated R-module, and so (Theorem 
12) u is integral over R. 

We are interested in relations between the prime ideals of R,and 
those of T where R C T. We are principally concerned with the case 
where T is integral over R, but we formulate definitions and some minor 
results in greater generality. 

We list four properties that might hold for a pair R, T. 
Lying over (LO). For any prime P in R there exists a prime Q in T 

with Q A R = P. 
Going up (GU). Given primes P C Po in R and Q in T with Q n R 

= P,  there exists Qo in T satisfying Q C Qo;Qo A R = Po. 
Going down (GD). The same with C replaced by 3. 
Incomparable (INC). Two different primes in T with the same con- 

traction in R cannot be comparable. 
Some of the simpler facts concerning these four properties appear 

in Exs. 2, 3, and 16. 
Let rings R C T be given, and let P be a prime ideal in R. In any 

attempt to study the relation between P and the prime ideals of T, the 
following construction is quite natural. Let S denote the set-theoretic 
complement of P in R. Then S may equally well be regarded ag a multi- 
plicatively closed set in T. It is still disjoint from 0, so we may expand 
0 to a prime ideal Q in T that is maximal with respect to  the exclusion 
of S.  The ideal Q A R is a prime ideal contained in P, and Q is maximal 
among prime ideals in T having this property. Does Q actually contract 
to  P? This question is evidently crucial. It turns out we can charac- 
terize G U  and INC in this way. 

Theorem 41. 

(a )  GU holds. 

The following two statements are equivalent for  rings 
R C T: 
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(b) I f P  is a prime ideal in R, S is the complement of P in R, and Q 
is an ideal (necessarily prime) in T maximal with respect to the exclu- 
sion of S, then Q A R = P. 
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Proof. (b) * (a). Let Po C P be given, and suppose Qo in T con- 
tracts to  Po. Then Qo is disjoint from s. Expand it to Q, maximal with 
respect to the exclusion of S. By hypothesis, Q n R = P,  proving GU. 

(a) * (b). Let Q be maximal with respect to the exclusion of S, the 
complement of P in R. Granted GU, we have to prove Q A R = P. 
In any event, Q lies over the prime ideal Q A R, and G U  permits us 
to  expand Q to a prime ideal Ql lying over P. The maximality of Q 
then tells us Q = Ql. 

Since (as we noted above) we can always construct a prime ideal 
maximal with resgect to the exclusion of S,  Theorem 41 has the fol- 
lowing corollary. 

Theorem 42. For any pair of rings, GU implies LO. 

The proof of the next theorem is immediate, and is left to the reader. 

Theorem 43. The following statements are equivalent for  rings R C T: 
(a )  INC holds. 
(b)  I f P  is a prime ideal in R, and Q is a prime ideal in T contracting 

to P in R, then Q is maximal with respect to the exclusion of S, the com- 
plement of P in R. 

We now turn to integral extensions. 
* #  

Theorem 44. Let R C T be rings with T integral over R. Then-the 
r pair R, T satisfies INC and GU (and thus also, by Theorem 42, LO). 

Proof. We first prove GU. We make use of Theorem 41 ; so, in the 
notation of that theorem, we must prove Q A R = P. Of course 
Q A R C P. If equality does not hold, take u E P,  u I Q n R. Then of 
course u B Q and the ideal (Q, u)  is properly larger than Q. It must 
therefore intersect S, say in the elements where s = q + au (q E Q, a E T). 

, 

I 
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Let 

(7) 
be an equation showing that a is integral over R .  Multiply (7) by u”; 

(au). + clu(au)n--I + . . - + c,un = 0 

an + clan-’ + - - * + c, = 0 (ci e R )  

Now au = s - q, i. e., au = s (mod Q). Hence 

(8) sn + clusn--l + . - + + c,un 3 0 (mod Q )  

But the left side of (8) lies in R ,  hence in Q n R ,  hence in P. Since 
u t P we get sn e P ,  s E P,  a contradiction. 

To prove INC we make use of Theorem 43 in a similar way. This 
tinie we assume Q n R = P and have to show that Q is maximal with 
respect to the exclusion of S. Suppose on the contrary that Q is properly 
contained in an ideal J with J n S void. Pick u t J,  u f Q.  By hypothesis 
u is integral over R.  We proceed to pick for u a “polynomial of least 
degree mod Q.” Precisely: among all monic polynomialsf with coeffi- 
cients in R such that f(u) e Q we pick one of least degree, say 

(9) un + UIU”’ + - - + a, 

Necessarily n 2 1. Since the expression in (9) lies in Q,  which is con- . 
tained in J,  we deduce that a, E J.  Hence a, E J A R C P C Q.  Thus 

u(un-l + alun-2 + - - - + a,-l) 

’ 

lies in Q ,  but neither factor is in Q,  a contradiction. 

We proceed to deduce some consequences concerning the ranks of 
prime ideals in R and T .  

r 

Theorem 45. Assume that the rings R C T satisfy ZNC. Let P,  Q be 
prime ideals in R ,  T with Q A R = P.  Then rank(@ 5 rank(P). 

Proof. If 
Q =  Q o ~  Q I > * . * >  Qn 

is a chain of length n descending from Q, then by INC, the contractions 
Qi A R are all distinct. Hence rank(P) 1 rank(Q). * 

Equality may fail here, even if T is integral over R (see Ex. 25). GD 
gives equality, in a manner dual to Theorem 47 below. However, we 
have : 
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Theorem 46. Assume that the rings R C T satisfy GU. Let P be a 
prime ideal in R of rank n (n < a). Then there exists in T a prime ideal 
Q lying over P and having rank(Q) 2 n. Ift further, INC holds, then 
rank(Q) = n. 

Proof. Given a chain 

P = Po 3 P13 ’ - - 3 P,  

we construct Q,  in T lying over P,  (since LO holds by Theorem 42) 
and build up a chain 

Qn C Qn-1 C * * * C QO = Q 
with Qi contracting to Pi by iterated use of GU. Thus rank(@ 2 n. 
The final statement follows from Theorem 45. 

Remark. William Heinzer has constructed an example showing that 
Theorem 46 can fail for n = a. 

Define the corank of a prime ideal P to be the sup of the lengths of 
chains of prime ideals ascending from P.  (Alternative terminology: 
dimension.) 

Remark. We shall in due course prove that in a Noetherian ring the 
, rank of any prime ideal is finite. Manifestly this is a strong descending 

chain condition on prime ideals (“strong” meaning that we get a uni- 
form bound on chains descending from a fixed P).  As for chains ascend- 
ing from P,  of course by axiom we have in a Noetherian ring the 
ascending chain condition on all ideals, let alone prime ideals. How- 
ever the corank can still be infinite; see the first of the “bad” examples 
at the end of [37]. 

‘ 

* * 

Theorem 47. Assume that the rings R C T satisfy GU and ZNC. Let 
Q be a prime ideal in T and P = Q n R.  Then corank(P) = corank(Q). 

Proof. By repeated use of GU any chain ascending from P can be 
matched by one ascending from Q.  By INC, any chain ascending from 
Q contracts to a distinct chain ascending from P. Together, these two 

’ statements prove the theorem. 
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We also introduce at this point the dimension of R itself as the sup 
of all lengths of chains of prime ideals (or equivalently, the sup of all 
ranks of prime ideals, or the sup of all ranks of maximal ideals, or 
the sup of coranks of prime ideals, or the sup of coranks of minimal 
prime ideals). Sometimes we shall call this the Krull dimension if there 
is danger of confusion with other dimensions. Theorem 48 is immediate 
from Theorem 47 or Theorem 46. 

Theorem 48. Assume that the rings R C T satisfy GU and INC. 
(In particular, this applies if T is integral over R.) Then the dimension 
of T equals the dimension of R. 

Dejinition. An integral domain is said to be integrally closed if it is 
integrally closed in its quotient field. 

See Exs. 4 and 5 for perhaps the simplest examples of domains that 
are not integrally closed. 

On the affirmative side of the ledger, ideas going back to Gauss show 
that any unique factorization domain is integrally closed. To get a 
little more mileage from this method we introduce the concept of a 
GCD-domain (Bourbaki's term is "pseudo-Btzout"). 

Definition. An integral domain R is a GCD-domain if any two 
elements in R have a greatest common divisor. 

Examples of GCD-domains include unique factorization domains and 
valuation domains (defined below). It should be carefully noted that 
we are not assuming that the greatest common divisor is a linear com- 
bination of the two elements. This stronger assumption can be recast 
as saying that all finitely generated ideals are principal, and these do- 
mains have been called Btzout domains. 

We adopt the ad hoc notation [a, b] for the greatest common divisor 
of a and b. Of course [a, b] is determined only up to a unit, and we can 
allow this ambiguity in our discussion. . 

Theorem 49. In a GCD-domain: 
(a) [ab, UC]  = a[b, C] 
(b)  Zf[a, b] = d, then [a/d,  b/h]  = 1 
( c )  v[a, bj = [a, c] = 1, then [a, bc] = 1 
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Proof. (a) Say [ab, ac] = x. Then since a divides ab and ac, a di- 
vides x, say x = ay. Since x divides ab and ac, y divides b and c. If z 
divides b and c, then az divides ab and ac, az divides x = ay, z divides 
y.  Hence [b, c] = y ,  as required. 

(b) This is immediate from (a). 
(c) Suppose that t divides a and bc. Then a fortiori t divides ab and 

bc, hence divides [ab, bc], which is b by part (a). So t divides a and b, 
t =  1. 

Theorem 50. A GCD-domain is integrally closed. 

Proof. Let R be the given GCD-domain, K its quotient field. We 
suppose that u t K and that u satisfies an equation 

(10) un + alun--l + - * . + a, = 0 (a, t R) 
Write u = s / t ,  s, t t R.  We can divide s and t by [s, t]. After we do so, 
the resulting elements have greatest common divisor 1 by part (b) of 
Theorem 49. So we can start again, assuming u = s / t  with [s, t] = 1. 
From (10) we get 

sn + alsn-lf + * * - + ant, = 0 (1 1) 

and then from (1 1) we see that t divides sn. But [sn, t] = 1 by part (c) of 
Theorem 49. Hence t is a unit, u t R. 

We proceed to investigate how integral closire behaves relative to  
localization. 

Theorem 51. If R is an integrally closed domain and i f  S a mul- 
tiplicatively closed set in R, then Rs is integrally closed. 

Proof. Suppose that the element u in the quotient field is integral 
over Rs;  we have to prove that u t Rs. We are given, say 

un + (al/sl)un-l + . . + (a,/s,) = 0 

with a, E R ,  s, t S.  Put s = s1 . . s, and t ,  = s/si. Then 

(12) sun + tlalu"-'+ - * * + tnan = 0 

If we multiply (12) by sn-1 we get an equation asserting that su is integral 
over R. Hence su t R, u E Rs. 
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Theorem 52. Let Ri )  be a family of integral domains all contained 
in one large domain, and suppose that each Ri is integrally closed. Then 
n R i  is integrally closed. 

The proof is quite obvious. 
Now it is a fact, easily proved, that for any integral domain R, 

R = n R M ,  the intersection ranging over the maximal ideals of R. 
Using Theorems 51 and 52 we deduce the following: R is integrally 
closed if and only if each RM is integrally closed. However the use of 
maximal ideals in this statement is unnecessarily extravagant. We get 
a stronger result if we use smaller prime ideals, and an attempt to do 
as well as possible leads us to use maximal primes of principal ideals. 
We shall recall again what these are, and at the same time introduce 
the notation for zero-divisors that we shall be using henceforth. 

Let R be a commutative ring, A an R-module # 0. We recall that 
the zero-divisors on A are the elements of R that annihilate some non- 
zero element of A .  We write <(A) for the set of zero-divisors on A .  

Note. It is perhaps treacherous to. try to talk about zero-divisors 
on the zero module, so (except no doubt for occasional forgetfulness) 
we shall not do so. 

We recall further that <(A) is the complement of a saturated mul- 
tiplicatively closed set, and consequently is the set-theoretic union of 
prime ideals, which are unique if they are confined to those maximal 
inside<(A). These we named(i1-1) the maximal primes of A .  If A = R / I  
we call them the maximal primes of I ,  in the firm belief that no danger 
of confusion exists. Finally, if I is principal, we have the prime ideals 
to be used in Theorem 53. 

Theorem 53. Let R be any integral domain. Then R = n R p ,  the 
intersection ranging over all maximal primes of principal ideals, 

Proof. Let u e n R p ,  and write u = a / b  (a,  b e R). Let I = the set of 
all y in R with ya e (b).  If I = R then a e (b),  u e R, and all is done. So 
assume that I f R,  i. e., a c (b). We have I C <‘R/(b)). We can expand 
I to a maximal prime P of (b).  Then, by hypothesis, u e Rp, so u = a / b  
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= c/s (c  E R, s c P) .  The equation sa = bc shows that s e I C P, a con- 
tradiction. 

Theorems 5 1, 52, and 53 together yield: 

Theorem 54. An integral domain R is integrally closed if and only 
if RP is integrally closed for every maximal prime P of a principal ideal. 

We shall later make use of Theorem 54 in a context where it will be 
known that every Rp is a “discrete valuation ring.” In that case, an 
integrally closed R will be an intersection of discrete valyation rings. 
But a useful theorem due to Krull (Theorem 57) shows that if we allow 
ourselves to use arbitrary valuation rings, then the result will hold for 
any integrally closed domain. Two theorems will precede Theorem 57; 
in the first we use the term “survives” in the following sense: if R C T 
are rings, and if I is an ideal in R,  then I survives in T if IT # T.  

Theorem 55. Let R C T be rings, let u be a unit in T, and let I be an 
ideal in R, I # R. Then I survives either in R[u] or in R[u-l]. 

Proof. Suppose the conclusion fails. Then we have equations 

a0 + alu + . - + anun = 1 (ai e I )  (13) 
(14) bo + blu-’+ - * - + bmu-m = 1 (b, e I )  

Here we may, by symmetry, assume that n 2 m, and we may further 
assume that n has been chosen as small as possible. Multiplying (1 4) by 
un we get 

( 1  - bo)un = blun-’+ * * * + bmun-m 
\r 

(1 5 )  

Now multiply (1 3) by (1 - bo) and substitute for (1 - bo)un from (1 5) .  
The result is an equation of the same type with smaller n,  a con- 
tradiction. 

We introduce the concept of a valuation ring. 

Definition. A commutative ring R is said to be a valuation ring if 
for any a and b in R either a divides b or b divides a. 

In the present context we are dealing with domains and so the desig- 
nation ‘‘valuation domain” seems appropriate. For an integral do- 

I 

L 
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main R with quotient field K we have the following obviously equivalent 
way of defining R to be a valuation domain: for any u # 0 in K either 
u or u-' lies in R. 

Theorem 56. Let K be afield, R a subring of K ,  and I an ideal in R, 
I # R. Then there exists a valuation domain V ,  R C V C K ,  such that K 
is the quotientfield of V and I survives in V.  

Proof. The proof is an application of Theorem 55 ,  plus a good 
exercise on Zorn's lemma. Consider all pairs R,, I, where R, is a ring 
between R and K ,  and I, is an ideal in R,, I, # R,, I C I,. We partially 
order the pairs by decreeing inclusion to mean both R, 3 RB and 
I, 3 I,. Zorn's lemma is applicable to yield a maximal pair V ,  J.  We 
shall prove the following: if u E K then either u or u-I is in V ;  this will 
prove both that V is a valuation domain and that K is the quotient field 
of V. Suppose not; then by Theorem 55, J survives in V[u] or V[u-l]. 
Either way we have contradicted the maximality of the pair V,  J.  

Theorem 57. Let R be an integrally closed integral domain with quo- 
tient field K. Then R = A V,  where the V,'s are valuation domains be- 
tween R and K. 

Remark. Conversely any such intersection is integrally closed, for 
by Theorem 50 any valuation domain is integrally closed, and by 
Theorem 52 an intersection of integrally closed domains is integrally 
closed. 

Proof. Let Y E A V , ,  the intersection ranging over all valuation 
domains between R and K ;  we must show y e R. It suffices to show 
that y is integral over R. Suppose not, and write u = y-l. By Theorem 15, 
u is not invertible in R[u], i. e., (u) survives in R[u]. By Theorem 56 we 
can enlarge R[u] to a valuation domain V inside K in such a way that 
(u)  survives in V. But by hypothesis y E V,  i. e., u-I E V,  and we have our 
contradiction. 

As an application of Theorem 57 we show in Ex. 10 how to prove 
that if R is integrally closed, the polynomial ring R[x] is also integrally 
closed. ~ 

We proceed to discuss domains that are locally valuation domains. 
We first need the concept of the invertibility of an ideal. 

. 
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Definitions. Let R be an integral domain with quotient field K.  By 
a fractional ideal I we mean an R-submodule of K .  (We do not insist, 
as is sometimes done, that X I  C R for some x # 0 in R. When there is 
no danger of misunderstanding we may drop the adjective "fractional.") 
By I-' (the inverse of I )  we mean the set of all x in K with X I  C R ;  I-' 
is again a fractional ideal. We say that I is invertible if II-' = R (note 
that II-l C R is automatic). 

Theorem 58. Any invertible ideal is finitely generated. 

Proof. From IF' = R we get Zaibi = 1, ai E I ,  bi e I-'. We claim that 
the ai's generate I. For if x E I we have 

x = xCaibi = C(xbi)a; 

and the elements xbi lie in R. 

Any non-zero principal deal  is invertible; for' if I = (a) ,  a # 0 (a  
need not be in R but is in the quotient field), then I-' = (a-l) and 
I F 1  = (a)(a-l) = R. 

Recall that a quasi-local ring is one with exactly one maximal M.  
Note that M consists precisely of all non-units. 

The proof of Theorem 59 is so easy that we record it separately, 
although we promptly supersede it in Theorem 60. 

Theorem 59. Any invertible ideal in a quasi-local domain is principal. 

: Proof. We use the notation of the proof of Theorem 58. The ele- 
ments a,b, lie in R and their sum is 1. Hence one of them, say albl, is a 
unit. We deduce that I = (al). I 

hi Theorem 60. Let R be an integral domain with a finite number of 
maximal ideals. Then any invertible ideal in R is principal. 

i 
i Proof. Let M l ,  . . ., M ,  denote the maximal ideals in R,  and let I 

be invertible. Since ZIP1 = R, we can, for each i from 1 to n, find a,  E I 
and b, e I-' such that a,b, p M,. Moreover, M ,  cannot contain the inter- 
section of the remaining maximal ideals. Hence we can find an ele- 

I 

! 
1 
I 

J 
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ment ui that is not in Mi but does lie in all the other maximal ideals. 
Set v = ulbl+ * + unbn. Note that v e I-' so that vl is an ideal in R.  
We claim that vZ lies in no maximal ideal. Suppose, for instance, that 
vZ C Ml. Then Val e MI.  However 

Val = (ulbl+ uzbz + * * * + unbn)al 

and in this expression ulblal c Ml while all other terms lie in Ml. Hence 
vl C MI is impossible. We have proved vl = R and I = (v-l) is principal. 

We proceed to the behavior of invertibility under localization. 

Theorem 61. Let I be an invertible ideal in an integral domain R ,  
and let S be a multiplicatively closed set in R .  Then IS is invertible in Rs.  

The proof is routine and is left to the reader. 

Theorem 62. Let I be a finitely generated ideal in an integral do- 
main R. Then I is invertible if and only if ZM is principal for  every maxi- 
mal ideal M .  

Proof. If I is invertible then IM is invertible (Theorem 61) and hence 
principal (Theorem 59). Conversely assume that each IM is principal. 
If IF-' # R ,  embed it in a maximal ideal M .  In RM, IM is by hypothesis ' 

principal. The generator can be selected to be an element i of I. Let 
al, . . ., an be generators of I. We have sjaj E ( i )  for suitable elements 
sj e R, sj f M. Write s = s1 * * - s,. Then si-' throws all the ais into R, 
whence si-' e I-'. But now 

s = si-'i e P I  C M 

a contradiction. 

Definition. A Pruyer domain is an integral domain in which every ' 
non-zero finitely generated ideal is invertible. (Recall that a Bizout 
domain is slightly more special in that every finitely generated ideal is 
required to be principal.) 

Theorem 63. A quasi-local domain is  a valuation domain if and only 
if it is a Bhout domain. 
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Proof. That valuation domains are BCzout is trivial. Conversely let 
R be quasi-local and Btzout. Given two elements in R, say a and b, 
we must show that one divides the other. We can divide a and b by 
their greatest common divisor, so we may assume that (a, b) = R.  Thus 
xu + yb = 1. One of xu, yb must be a unit, say xu. Then a is a unit and 
divides b. 

Theorem 64. The following statements are equivalent for an integral 
domain R :  

h ( 1 )  R is Prufer; 
(2)  For every prime ideal P, Rp is a valuation domain; 
(3) For every maximal ideal M ,  RM is a valuation domain. 

Proof. (1) implies (2). Let J be a finitely generated non-zero ideal 
in Rp. If J is generated by al/sl, . . ., an/sn (a$, s, e R ,  s, # P ) ,  then J = IP 
where I = (al, . . ., an). By hypothesis I is invertible; hence (Theorems 
61 and 59), J is principal. By Theorem 63, R is a valuation domain. - 

(2) implies ( 3 ) .  Trivial. 
( 3 )  implies (1). Let I be a non-zero finitely generated ideal in R.  

Then every ZM is principal, so (Theorem 62) I is invertible. 

Theorem 65. Let R be a Prufer domain with quotientfield K ,  and let 
V be a valuation domain between R and K .  Then V = Rp for some prime 
ideal P in R .  

Proof. Let M be the unique maximal ideal of V and set P = M A R.  
For any s in R but not in P we must have s1 e V, for otherwise s e M 
and so s E P. Thus R p  C V .  (So far R could have been arbitrary and 
V merely quasi-local.) 

To prove that V C Rp we note (Theorem 64) that Rp is a valuation 
domain. So if we take v e V and find v f R p  we must have v-l e RP, say 
r' = a/s, a, s e R ,  s # P .  Here a e P for otherwise a/s  would be a unit in 
Rp and v E R p ,  which we assumed is not the case. Hence a E M and 
av e M ,  s = av e M A R = P ,  again a contradiction. 

Theorem 65 has a corollary, which can be taken as the starting point 
. of the theory of algebraic functions of one variable. 
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Theorem 66. Let K be afield,  x an indeterminate over K ,  and K(x) 
the field of rational functions in x with coeflcients in K. Let V be a valu- 
ation domain between K and K(x), V # K(x), V having quotient field 
K(x). Then V is either a localization of K[x] with respect to a non-zero 
prime ideal (i. e., V = K[x]P, P = (f), f irreducible), or V = K[x-*] lo- 
calized at (x-l). 

Proof. Either x or r1 must lie in V. If X E  V then V >  K[x] and 
the form of V is given by Theorem 65. If x B V,  then V 3 K[x?] and 
has the form K [ r 1 I Q  again by Theorem 65. Since x f V,  r1 must 
lie in Q and Q = (x-l). 

We conclude this section with two additional theorems. The first will 
be used in i2-3. It is in essence due to Seidenberg [46]. 

Theorem 67. Let R be a quasi-local integrally closed domain, and 
lef  u be an element of the quotient field of R. Assume that u satisfies a 
polynomial equation with coeficients in R having at least one coeficient 
a unit in R. Then: either u or u-I lies in R. 

Proof. Say the equation for u is 

+ bun-1 + . . . = 0 

If a is a unit then u is integral over R, u e R. So we may assume a unit 
coefficient occurs further down the equation. Since 

(au)” + b(au)”-’ + - - = 0 

we have, again by the integral closure, au E R. If au is a unit, then zcl E R. 
We assume au a non-unit. We have 

(UU + b)un-’ 4- * * * = 0 

If b is a unit then, since R is quasi-local, au + b is a unit. If b is not a 
unit, there is a unit coefficient later in the equation. In any event some 
coefficient is a unit, and induction on n concludes the proof. 

‘ 

The final theorem in this section (also due to Seidenberg [46]) relates 
valuation rings to the strong S-rings defined just prior to Theorem 39. 

SEC. 1-6/1NTEGRAL ELEMENTS, I1 41 

Theorem 68. 

Proof. Any homomorphic image of a valuation ring is a valuation 
ring. Thus we may assume that R is a valuation domain, and that we 
are given a rank 1 prime ideal P in R. We are to prove that P*, the 
expansion of P to R[x], again has rank 1. Suppose on the contrary that 
N is a prime ideal in R[x] lying properly between 0 and P*. Necessarily 
N A R = 0. Say 0 # f e N .  One coefficient off, say ai, can be selected 
so as to divide all the others. Write f = a,g. Then g has 1 for one of its 
coefficients; hence g f P* and, all the more so, g I N .  Also, ai I N since 
N A R = 0. This contradiction concludes the proof. 

Any valuation ring is a strong S-ring. 

EXERCISES 

1. Let R C T be rings and P a minimal prime ideal in R. (We mean 
truly minimal, i. e., 0 if R is a domain.) Prove that there exists in T a 
prime ideal contracting to P. 

2. Let R C T be rings with R zero-dimensional. Prove that LO 
holds. Observe that GU and G D  hold vacuously. 

3. Let T = R[x] with x an indeterminate. Prove that LO and GD 
hold but that INC does not. Prove that GU fails if R is at least one- 
dimensional. (Hint: for the last point it can be assumed that R is a 
domain. If P is a non-zero prime ideal in R, take p # 0 in P, observe 
that (1 + p x )  is prime in R[x] and contracts to 0; try to go up from it 
to a prime‘over P.) 

4. Let R be the ring of all Gaussian integers with even imaginary 
part, i. e., all a + 2bi, a and b integers, i2 = -1. Prove that R is not 
integrally closed. What is its integral closure? 

5 .  Let K be any field and R the ring of all formal power series in x 
with coefficients in K and no term in x ,  i. e., all series 

’ ! 
F 

a. + a2x2 + a3x3 + - - . (a; e K )  

Prove that R is not integrally closed. What is its integral closure? 
6.  Let R be an integral domain with,integral closure T, and S a 

multiplicatively closed set in R. Prove that the integral closure of RS 
is Ts. 

7. Suppose, in a GCD-domain, that [u, a] = 1 and u divides ab. 
Prove that u divides b. (Hint: by Theorem 49, b = [ub, ab].) 
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8. Let R be a GCD-domain. We say that a polynomial in the vari- 
able x with coefficients in R is primitive if the GCD of the coefficients 
is 1. Prove Gauss’s lemma: the product of two primitive polynomials 
is primitive. (This can be done by a variant on the usual proof. We 
illustrate with a + bx and c + dx. If t divides ac, ad + bc, and bd, let 
[t,  a]  = u. Then u divides bc and bd, hence their GCD, b. Hence u = 1. 
By Ex. 7, t divides c, similarly d.) 

9. If R is a GCD-domain, prove that R[x]  is a GCD-domain. 
10. If R is integrally closed, prove that R[x] is integrally closed. 

(Use Theorem 57 to reduce to the case where R is a valuation domain. 
Then use Ex. 9. But note that Ex. 8 is a good deal easier when R is a 
valuation domain.) 

11. Let R be a GCD-domain and P a prime ideal in R[x] contracting 
to 0 in R.  Prove that P is principal. (Hint: use Ex. 8.) 

12. Suppose that (a,  b) is an invertible ideal in a domain, and n a 
positive integer. Prove that (a, b)n = (an, bn). 

13. Prove that in a Priifer domain, any finitely generated non-zero 
prime ideal is maximal. 

14. Prove that in a valuation ring, any radical ideal is prime. 
15. Prove that in a GCD-domain any invertible ideal is principal. 
16. Assume GU holds for R C T. Prove that the contraction of a 

maximal ideal in T is maximal in R.  
17. (This is a globalization of Theorem 67.) Let R be integrally closed. 

Let u = a / b  be an element of the quotient field of R. Assume that u 
satisfies a polynomial equation such that the ideal generated by the 
coefficients is invertible. Prove that the ideal (a, b) is invertible. 

18. (This is a step in the direction of showing that Theorem 68 is 
the best possible.) Let R be a one-dimensional quasi-local integrally 
closed domain that is not a valuation domain. Let M be its maximal 
ideal. Prove that rank(M*) = 2, where M* = MR[x]  is the expansion 
of M to the polynomial ring R[x] .  (Hint: pick u in the quotient field 
with neither u nor u-I in R.  Let N be the kernel of the homomorphism 
on R[x]  given by x -+ u. Using Theorem 67, prove that N is contained 
in M*.) 

19. Let R be a one-dimensional integrally closed quasi-local domain. 
Let T = R[u] with u in the quotient field of R.  Assume that LO and INC 
hold for the pair R ,  T. Prove: T = R .  (Hint: form N as in the preceding 
exercise. If N C M*, INC is violated. If N Q M*, u or u-1 lies in R by 
Theorem 67. Rule out u-l by LO.) 

20. (This is a sharpening of Theorem 53.) Let R be an integral do- 
main. For each a and b with a p (6 )  let I(a, b) denote the set of all x in R 

. 

i 

t 
i 
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with xu e (b).  Show that for a set of prime ideals to satisfy n R p  = R 
it is necessary and sufficient that every I(a,  b) be contained in some 
prime ideal of the set. 

21. If 1 and J are ideals in a domain, and IJ is invertible, prove that 
I is invertible. 

22. For any ideals I ,  J ,  K in a ring prove 

( I  + J + K W K  + KI + IJ) = (J  + J W K  + I) (I  + J )  

23. Let R be a domain in which every ideal generated by two ele- 
ments is invertible. Prove that R is Priifer. (Hint: use Exs. 21 and 22. 
Alternatively, localize, after which “invertible” can be replaced by 
“principal.”) 

24. Let (al, . . ., a,) be an invertible ideal in a domain. Let k be a 
fixed integer. Let J be an ideal generated by alk, . . ., ank and any addi- 
tional number of products of k of the a ’ s .  Prove that J is invertible. 
(Hint: after localizing, argue that one of the at’s divides all the others 
and hence one of the terms atk divides all the generators of J .  Cf. Ex. 12.) 

25. In the ring R ,  let M be a maximal ideal of rank k .  Let T be the 
ring R 0 RIM.  Regard R as embedded in T by sending a e R into 
(a, a*), where a* is the ’image of a in RIM.  Prove that T is integral 
over R.  Prove that T contains two prime ideals lying over M ,  and that 
they have ranks 0 and k .  

26. Let P be a prime ideal in ,a domain. If PP-I # P, prove that P is 
minimal over a suitable principal ideal. (Hint: pickp t P withpP-’ Q P. 
Shrink P to Q, minimal over (p). If Q # P, (pP.’)P C Q yields the 
contradiction pP-’ C Q. Remark: if R is Noetherian, Theorem 142 
will enable us to conclude that P has rank 1.) 

27. Let R be an integral domain with quotient field K.  Suppose that 
every ring between R and K is integrally closed. Prove that R is Priifer. 
(Hint: it can be assumed that R is quasi-local. For u e K we have u e R[u2]. 
Use Theorem 67.) 

28. Let R be an integral domain with quotient field K.  Assume that 
any ring between R and K is a localization of R.  Prove that R is Priifer. 
(Hint: use Ex. 10 in $1-4 and Ex. 27.) 

29. Let R be an heg ra l  domain with quotient field K. Prove that 
the following are equivalent: (a) R is a valuation domain of dimen- 
sion 6 1, (b) there are no rings properly between R and K .  

30. Let R C T be domains with R integrally closed in T, and let S 
be multiplicatively closed in R .  Prove that Rs is integrally closed in Ts. 

31. Let R C R[u] be rings with R quasi-local and integrally closed 
in R[u]. (a) Suppose that u satisfies an equation with coefficients in R 

‘ 
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and one coefficient a unit. Prove that u or u-l lies in R. (Hint: review 
the proof of Theorem 67.) (b) Suppose that u satisfies no such equation. 
If M is the maximal ideal of R, prove that R[u]/MR[u] 2 (R/M)[x] 
where x is an indeterminate. 

32. Let R be an integral domain of characteristicp. Let T be a domain 
containing R and purely inseparable over R: for any U E T ,  some 
UP" t R. Prove that the map Q + Q n R induces a one-to-one cor- 
respondence between the prime ideals of T and those of R. 

33. Let R C T be domains with T finitely generated as a ring over R. 
Prove that there exists a non-zero element a E R such that any maximal 
ideal in R not containing a survives in T. (Hint: if T'is algebraic over R, 
take a to be the product of leading coefficients of polynomials for a 
set of generators of T, observing that T[a-'1 is integral over R[a-']. In 
the general case, insert Ro between R and T with T algebraic over Ro 
and Ro purely transcendental over R. Treat the pair Ro C T as above, 
and then take a to be any coefficient of the resulting polynomial.) 

34. Let R be a domain, M a maximal ideal in R, and K a field con- 
taining R. Prove that there exists a valuation domain V with quotient 
field K and maximal ideal N ,  such that N A R = M and V / N  is alge- 
braic over RIM. (Hint: review the proof of Theorem 56.) State and 
prove the analogous strengthening of Theorem 57. 

35. Let R C T be domains such that T is algebraic over R and R is 
integrally closed in T. Prove that T is contained in the quotient field 
of R. (Hint: if u e T and oun + - . = 0, note that au is integral over R.) 

36. (S. McAdam) Let the ideal Z in an integral domain be maximal 
among all non-invertible ideals. Prove that Z is prime. (Hint: modify 
appropriately the hint for Ex. 10 in $1-1.) 

37. (This exercise is devoted to a partial analysis of GD.) Let R C T 
be rings, P a prime ideal in R. Prove that the following four statements 
are equivalent: 

(i) Any prime ideal in T minimal over PT contracts to P ;  
(ii) ("Going down to P") Given a prime P1 3 P,  and a prime Ql in T 

contracting to PI ,  we can shrink Ql to a prime contracting to P ;  
(iii) For any prime Q minimal over PT, PT is disjoint from 

(R - PXT- Q); 
(iv) If J is the radical of PT, then the torsion submodule of T/PT, 

as an (R/P)-module, is contained in J/PT. (The torsion submodule of a 
module over an integral domain is the set of all elements with a non- 
zero annihilator. A reader familiar with flatness will recognize (iv) as a 
weakened version of flatness of T as an R-module.) 

(Hint: we sketch the proofs of six implications. 
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(i) * (ii). Lower Ql to a prime minimal over PT. 
(ii) * (i). Let N be a minimal over PT, set N A R = P1, and go down. 
(i) =+ (iii). Suppose u E PT A (R - P)(T - Q). Then u e Q, but both 

(iii) * (i). Given Q minimal over PT, we are to  prove that Q A R = P .  
R - P and T - Q are disjoint from Q. 

Enlarge PT to Qo, maximal with respect to disjointness from 

(R - PXT- Q). 

Then Qo C Q, Qo n R C P. By the minimality of Q, Qo = Q. 
(iii) =+ (iv). Given x e R - P,  y e T with xy e PT, we have to  prove 

y E J .  That is, we must show that y lies in every prime Q minimal over 
PT. But y e Q means xy e (R - P)(T - Q). 

(iv) =+ (iii). Let x = Zp,t, e PT, x = su, s e R - P, u e T - Q. Let u* 
be the image of u in T/PT. Then u* lies in the torsion submodule of 
T/PT, u* e J/PT, u E J C Q, a contradiction.) 

38. Let R C T be a pair of rings satisfying GD. Let P be a prime 
ideal in R with PT # T. Prove that there exists in T a prime ideal con- 
tracting to  P,  that is, LO holds for all primes surviving in T. (Hint: use 
the implication (ii) + (i) of the preceding exercise.) 

39. (a) Let R be an integrally closed integral domain, and let Z be 
an ideal in R such that I-' is finitely generated. Prove that (ZZF1)-l = R. 
(Hint: if x e (ZZ-l)-I, thkn xZZP C R, xl-' C ZP.) 

(b) Let Z and J be ideals in a domain R, and suppose that 

1-1 = J-1 = R, 

Prove that (ZJ)-l = R. 
(c) Let R be a one-dimensional quasi-local integrally closed domain. 

Assume that I-' is finitely generated for every finitely generated ideal 
in R. Prove that R is a valuation domain. (Hint: J = ZIP1 is also finitely 
generated. By part (a), J-l = R. By part (b), (Jk)-l = R for every k. Pick 
any x which is not zero or a unit. By the one-dimensionality of R, some 
power of Jlies in (x) if J # R, a contradiction.) 

40. Let R C T be domains with T integral over R. Call an ideal Z in 
R contracted if it has the form Z = J R with J an ideal in T. Prove 
that any non-zero ideal in R contains a non-zero contracted ideal, 
provided T is a finitely generated R-module. (This exercise is adapted 
from the paper, "The converse to a well known theorem on Noetherian 
rings" by P. M. Eakin, Jr., Math. Annalen 177 (1968), 278-82.) 

(Hint: a number of steps are needed, and are sketched in (b)-(f). 
(a) Remark: the hypothesis that T is a finitely generated R-module 
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cannot be omitted. An example showing this can, for instance, be 
adapted from Ex. 15 in 52-3. 

(b) Temporarily call the pair R C T ‘‘good” if it satisfies the con- 
clusion of the exercise (every non-zero ideal contains a non-zero con- 
tracted ideal). It is routine to see that goodness is transitive. Further- 
more if R C T C U and R C U is good, then R C T is good. 

(c) By (b) we can reduce to the case T = k[u]. 
(d) Suppose that T r \  K =  R, where K is the quotient field of R. 

Then every principal ideal in R is the contraction of its extension to T. 
Hence R C T is good. 

(e) Suppose that T C K and let D be the conductor: the set of all x 
in R with xT C R. If D # 0 then R C T is good; for given I # 0 in R, 
I 3  I D  # 0 and I D  is an ideal in both R and T. 

(f) To handle the general case T = R[u], let 

un + a1un-’+ * * * + a, = 0 

be the irreducible equation for u over K. Let R* = R[al, . . ., a,], 
Tr = R*[u]. The ai’s are integral over R, being polynomials in the con- 
jugates of u. So R* is a finitely generated R-module, and therefore the 
conductor of R* relative to R is non-zero. It  follows from (e) that 
R C R* is good. Part (d) is applicable to show that R* C T* is good, 
since Tr r\ K = R* is easily verified from the fact that Tc is a free 
R*-module with basis 1, u, . . ., un--l. By part (b) we get in succession 
that R C Tr is good and that R C T is good.) 

41. Let R be an integral domain, T a ring between R and its quotient 
field, and D the conductor of T relative to R. (a) If R is Noetherian and 
, D # 0, prove that T is a finitely generated R-module. (b) Let P be a 
prime ideal in R not containing D and let Q be a prime ideal in T con- 
tracting to P. Prove that RP = TQ. (Hint: for u in T4 and z in D but not 
in P,  multiply the numerator and denominator of u by z.) (c) AsSume 
that T is a finitely generated R-module. Let P be a prime ideal in R 
with complement S. If RP = TS prove that P p D .  (d) Assume that T 
is the integral closure of R and is a finitely generated R-module. Let P 
be a prime ideal in R. Prove that RP is integrally closed if and only if 
P Z, D. 

< 

CHAPTER 2 

etherian Rings 

2-1 THE ASCENDING CHAIN CONDITION 

We recall that a commutative ring R is Noetherian if every ideal in R 
is finitely generated, or equivalently, if the ideals in R satisfy the 
ascending chain condition, and we state and prove at once the Hilbert 
basis theorem. 

b 

Theorem 69. 

Proof. Let J be an ideal in R[x] and let Z, be the set of leading 
coefficients of. polynomials of degree 5 n in J .  Then I ,  is an ideal 

R is Noetherian so is R[x]. 

Jn R =  Zo C Zi C Z, C * * * 

Let Z = UI,. We prove the following slight sharpening of the theorem: 
if Z and all the In’s are finitely generated, then so is J.  Letfi, . . ., fk be 

8 polynomials in.J whose leading coefficients generate Z. Say N is the 
maximum of the degrees of thef’s. For each j from 0 to N - 1 simi- 
larly pick a finite number of polynomials gjl,gj2,. . . whose leading 
coefficients generate Zi. Then one easily sees that t he f s  and g’s to- 
gether generate J. 

Remark. Justly celebrated though this proof is, it leaves one some- 
what dissatisfied, since the condition that I and the In’s be finitely gen- 
erated is by no means necessary for J to be finitely generated. 

41 
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The ring of formal power series R[[x]] in a variable x is the set of all 
expressions 

with the natural operations of addition and multiplication. The ana- 
logue of the Hilbert basis theorem holds (Theorem 71). We choose to 
prove it by making use of Cohen's theorem (Theorem 8), which re- 
duces our problem to the case of prime ideals, and for prime ideals in 
R[[x]] we are able to pinpoint exactly what is needed. 

a. + alx + . + anxn + - . - 

Theorem 70. Let P be a prime ideal in R[[x]] and let P* be the image 
of P in the natural homomorphism R[[x]] + R obtained by mapping x to 0. 
Then P is finitely generated if and only if P* is finitely generated. r f  P* 
is generated by r elements, then P can be generated by r + 1 elements, 
and by r i f x  6 P. 

Proof. If P is finitely generated so is its image P*. 
Suppose that P* = (al, . . ., a,). We distinguish two cases. If x e P 

then P = (al, . . ., a,, x). Assume that x P P. Let fi, . . ., f ,  E P be series 
leading off with al, . . ., a,. We claim that P = cfl, . . ., f ,) .  For take any 
g e P. If g leads off with b then b = Zbia; and g - Zbifi can be written 
xgl. Here xgl E P and therefore gl e P since we are assuming that x P. 
In the same way we write gl = Zcif; + xg2 with g2 E P. Continuation of 
the process leads us to hl, . .. ., h, E R[[x]], 

satisfying g = hdl + - - + h , f .  

hi = bi + C ~ X  + - * * 

Theorem 71. I f  R is Noetherian, so is R[[x]]. 

The argument we gave in proving Theorem 70 can yield an extra 
bonus. 

Theorem 72. I f  R is a principal ideal domain then R[[x]] is a unique 

Proof. Using Theorem 5 we only need to prove that any non-zero 
prime ideal P in R[[x]] contains a non-zero principal prime. Now if 
x E P, there is our principal prime. If x I P we note that (in the notation 
of Theorem 70) P* is principal. By the last statement in Theorem 70, 
P itself is principal. 

factorization domain. 
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Remark. We shall later (Theorem 188) prove a much stronger result 
than Theorem 72. But we note [45] that the theorem one would really 
like is not true: it is possible for R to be a unique factorization domain 
while R[[x]] is not. 

In the next theorem, modules enter the picture. We assume that the 
reader knows the following: if R is Noetherian and A is a finitely 
generated R-module, then every submodule of A is finitely generated, 
or equivalently, the submodules of A satisfy the ascending chain con- 
dition. 

Theorem 73. Let R be a Noetherian ring, Zan ideal in R, A afinitely 
generated R-module, and B a submodule of A .  Let C be a submodule of 
A which contains IB and is maximal with respect to the property C n B 
= IB. Then ZnA C C for  some n. 

Proof. Since I is finitely generated it evidently suffices !o prove that 
for any x in I there exists an integer m with PA C C. D e h e  D ,  to be 
the submodule of A consisting of all a e A with xra e C. The submodules 
D,  form an ascending chain that must become stable, say'at r = m. 
We claim that 1 

(16) ( P A  + C)n B = I B  

That ZB is contained in the left side of (16) is clear since IB = C n B. 
Conversely, suppose that t is an element of the left side. Then t e B and 
also 1 E PA+ C, say t = P a + c ( a e  A ,  c e  C).Thenxt e xB C ZB C C. 
Hence P+'a e C. By the choice of m we have p a  E C, whence t e C, 
and t e C n B = IB. We have proved (16). By the maximal property 
of C, this gives PA C C. 

Theorem 74. (The KruN intersection theorem.) Let R be a Noetherian 
ring, I an ideal in R, A a finitely generated R-module, and B = nZnA.  
Then ZB = B. . 

Remark. Krull proved this using primary decomposition and re- 
lated technical devices. Nowadays it is usually proved via the Artin- 
Rees Lemma. The present still more elementary proof (really embodied 
in Theorem 73) is due to Herstein. 
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Proof. Among all submodules of A containing ZB, pick C maximal 
with respect to the property C n B = IB. (Note: we could do this by 
Zorn's lemma, but the ascending chain condition on submodules 
makes this unnecessary.) By Theorem 73, we have P A  C C for some n. 
But B C P A ;  hence B C C and B = IB. 

Interesting conclusions can be drawn from Theorem 74. We first 
prepare the ground. 

Theorem 75. Let R be a ring, I an ideal in R, A an R-module gen- 
erated by n elements, and x an element of R satisfying x A  C ZA. Then: 
(x" + y)A  = 0 for  some y e I. 

Proof. Say al, . . ., a,, generate A. We have xu, = Zyijaj for suitable 
elements yi, in I .  Bringing everything to the left, we get the system of 
equations 

(X - y&- y12a2 - * * - - yinan = 0 
- y21al+ ( x  - y24a2 . - - y2,,an = 0 

- h a 1  - yn2a2. - - + (x  - Ynn)an = 0 

Hence the determinant of the coefficients in (17) annihilates all the 
ai)s, i. e., annihilates A .  This determinant has the form xn + y ,  y e I .  

(17) . . .  

If we apply Theorem 75 with x = 1 *we obtain: 

Theorem 76. Let R be a ring, I an ideal in R ,  A ajni te ly  generated 
R-module satisfying I A  = A. Then (1 + y)A  = 0 for  some y e I .  

We shall now apply Theorem 76 in two contexts that enable us to 
prove that n I n A  = 0. In the first, the key additional hypothesis is the 
absence of zero-divisors. 

Definition. Let R be an integral domain, A an R-module. We say 
that A is torsion-free if xu = 0 ( x  e R, a e A )  implies x = 0 or a = 0. 

Theorem 77. Let R be a Noetherian integral domain, I an ideal in 
R ,  I # R ,  and A a finitely generated torsion-free R-module. Then: 
n I " A  = 0. 

t 

B 
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Proof. Write B = nZnA.  By Theorem 74, B = IB. By Theorem 76, 
(1 + y ) B =  0 for y e  I. Hence either B =  0 or 1 + y =  0. But y =  -1 is 
ruled out since I # R. 

In the second application the conclusion that something vanishes 
will come from assumptions concerning the Jacobson radical. We can 
quote Theorem 76 again, but it is instructive to use the Nakayama 
lemma (which will, in any case, have lots of later applications). 

We assume the reader to be familiar with a little ring theory. Let R 
be any (not necessarily commutative) ring with unit element. The inter- 
section of the maximal left ideals of R turns out to coincide with the 
intersection of the maximal right ideals of R and thus is a two-sided 
ideal J ;  we call it the Jacobson radical. For any x in J,  1 + x is invertible 
(has a two-sided inverse). 

Theorem 78 is sometimes stated with a subset of J allowed instead 
of J. But note that the theorem gets its maximal force when the hy- 
pothesis is J A  = A.  

' 

Theorem 78. (The Nakayama lemma.) Let R be a (no1 necessarily 
commutative) ring, let A be a finitely generated left R-module, and as- 
sume that J A  = A where J is the Jacobson radical of R. Then A = 0. h 

Remark. See pp. 212-3 of [37] for the history of this lemma. 

Proof. Let al, . . ., a, be a minimal generating set of A. (Here "mini- 
mal" can be taken to mean that none of the a,'s can be omitted, or it 
can be taken in the stronger sense that A cannot be generated by fewer 
than r elements.) We assume that r > 0 and shall reach a contradiction. 
We have 

al = jlal + * * * +j,a, 

for jl, . . .,j, e J,  or 

( 1 - j1h = j2a2 + - . + jrar 

Since 1 -jl is invertible, this enables us to express al in terms of the 
remaining a's, a contradiction. 

Theorem 79. Let R be a commutative Noetherian ring with Jacobson 
radica? J ,  and A a finitely generated R-module. Then n J n A  = 0. 
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Proof. With B = A J A  we have B = JB. Either Theorem 76 or 
Theorem 78 yields B = 0. 

EXERCl SES 

1. If R satisfies the ascending chain condition on finitely generated 
ideals, prove that R is Noetherian. 

2. Prove: if R satisfies the ascending or descending chain condition 
on prime ideals, then so doe2 ![XI. 

3. If R satisfies the ascending chain condition on radical ideals, 
prove that the same is true for R[x]. (This is not easy. See pp. 45-8 
of [24] . )  

4. Let R be a ring, A an R-module, y an element of R such that 
1 + y annihilates A .  Then, for any ideal I containing y ,  prove that 
I A  = A .  (This is a relatively trivial converse of Theorem 76.) 

5. (The purpose of this exercise is to provide an illustrative example 
for Ex. 18 in $1-6.) Let K C L be fields with K algebraically closed in 
L, K f L. For instance, we can take L to be a simple transcendental 
extension of K .  Let R be the subring of L[[x] ]  consisting of those power 
series with constant term in K .  Prove that R is one-dimensional, quasi- 
local, and integrally closed, but not a valuation domain. Note that L 
is infinite-dimensional over K,  and that R is non-Noetherian. 

6. (This exercise is concerned with Gauss's lemma in the version 
that refers to the ideals generated by the coefficients, rather than GCD's 
as in Ex. 8 of 51-6.) Notalion: polynomials f, g with coefficients in R ;  
I ,  J ,  K the ideals generated by the coefficients off, g ,  and fg respectively. 

(a) Prove that K C IJ. 
(b) An example where K # IJ: take R as in Ex. 4 of $1-6, and let 

f = 2 +  2ix, g = 2 - 2ix. 
(c) If I = R, prove that K = J .  (Hint: this can be reduced to the quasi- 

local case. Then argue that K + M J  = J .  Compare Ex. 9 in $1-1.) 
(d) If R is a domain and I is invertible, prove that K =  IJ. (Hint: . 

localize and use part (c).) 
(e) If R is an integrally closed domain, prove that K-l = (IJ)-l. 

(Hint: get K-' 3 (IJ)+ by quoting part (a) and taking inverses. In 
getting the other inclusion argue that, by Theorem 57, R can be assumed 
to be a valuation domain.) 

, 

. 
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(f) If R is an integrally closed domain and K = (K-l)-I, prove that 
K = IJ. (Hint: (K-l)-l = ((1J)F-l 3 IJ 3 K ,  the equality coming from 

7. Let R be a Noetherian ring, A a finitely generated R-module. 
part (el.) 

Prove that there exists a series of submodules 

A = A0 3 A1 3 - * - 3 A , - 1 3  A ,  = 0 

such that each A,/A,+l  is isomorphic to RIP, for P, a prime ideal in R. 
(Hint:  use Theorem 6 to get A,-1. Pass to etc., using the ascend- 
ing chain condition on submodules of A to get the procedure to ter- 
minate.) 

8. Let R be any (not necessarily commutative) ring, A an R-module, 
B a submodule. 

(a) If B and A / B  are finitely generated, prove that A is finitely gen- 
erated. (Hint: combine generators for B with lifted generators for AIB. )  

(b) If B and A / B  satisfy the ascending chain condition on sub- 
modules, prove that the same is true for A .  (Hint: the problem is to 
prove that every submodule of A is finitely generated, knowing that 
this holds for B and A / B .  The question can be reduced to part (a).) 

9. Let R be a commutative ring, and let 11, . . ., I, be ideals in R 
such that Il n . . f7 I ,  = 0 and each R/Zj is Noetherian. Prove that R 
is Noetherian. (Hint: embed R in R/Il @ . - @ R/I, and use Ex. 8. 
For an alternative discussion see Theorem 3.16 on page 11 of [37] . )  

10. *If a ring R admits a faithful module (one with annihilator 0) that 
satisfies the ascending chain condition on submodules, prove that R is 
Noetherian. (Hint: reduce the problem to Ex. 9.) 

11. (M. Isaacs) Give an alternative proof of- Theorem 7 as follows 
(using the notation of its proof). Observe that R/ I  is Noetherian. Write 
A = ( I ,  a) ,  B = ( I ,  b). Note that A / A B  is a finitely generated (R/Z)- 
module, and hence so is its submodule I / A B .  Since A B  is finitely gen- 
erated, so is I.) 

12. An integral domain R with quotient field K is completely in- 
tegrally closed if, for a and u in K with a # 0, aun E R for all n implies 
u t R . .  

(a) If R is completely integrally closed, prove that R is integrally 
closed. 

(b) Prove that the converse of (a) holds if R is Noetherian. 
(c) Prove that a valuation domain is completely integrally closed if 

and only if it has dimension 5 1. 
(d) Let R be completely integrally closed and I a non-zero ideal in R. 

Prove that (1IP-I = R. (Hint: obviously II-l C R, (ZI-')-l 3 R. If 
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x 6 (ZZ--l)-l, then xZZ-l C R, xZ-l C Z-l, xnZP C I-’ for all n ,  xnZZ-l C R, 
x E R by complete integral closure.) 

13. Let R be a ring containing ideals I ,  J,  and N satisfying the fol- 
lowing conditions: R/Z and R / J  are Noetherian, J and N are finitely 
generated, and Z J C  N C In J.  Prove that Z is finitely generated. 
(Hint: by Ex. 9, R/(ZA J )  is Noetherian, so Z/(ZA J )  is finitely gen- 
erated. J / N  is a finitely generated (R/Z)-module, hence so is its sub- 
module (I AJ)/N. Thus Z/N is finitely generated.) 

14. For a general ring R (not necessarily Noetherian) call an R- 
module Noetherian if, as in E X ~ .  8 and 10, it satisfies the ascending 
chain condition on submodules. Let R C T be rings and let J be an 
ideal in T maximal with respect to the property that T / J  is not a Noe- 
therian R-module. Prove that J is prime. (Hint: assume that ab c J 
with neither a nor b in J.  Then T/ (J ,  a) is a Noetherian R-module. Let 
(J, b)  A R = I. Then T/(J,b)  is a faithful Noetherian (R/Z)-module. 
By Ex. 10, R/Z is a Noetherian ring. The module (J,a)/J is a cyclic T- 
module annihilated by (J,b), hence it is a cyclic (T/ (J ,  b))-module, hence 
it is a finitely generated (R/Z)-module, and therefore it is a Noetherian 
R-module. By Ex. 8 ,  T / J  is a Noetherian R - m o m  contradic- 
tion.) 

15. Let R C T be rings with T Noetherian and T a finitely generated 
R-module. Prove that R is Noetherian. (Hint: by Ex. 14 reduce to the 
case where T is a domain and T / J  is a Noetherian R-module for every 
non-zero ideal J in T. Let Z be a non-zero ideal in R. By Ex. 40 in $1-6, 
Z contains a non-zero contracted ideal. Hence R/Z is Noetherian. Since 
this is true for every non-zero Z, it follows that R is Noetherian. This 
proof is a modification of the proof given by Eakin in the paper cited 
in Ex. 40 of $1-6. Nagata has another proof in ‘‘A type of subrings of 
a Noetherian ring,” J. Math. Kyoto Univ. 8( 1968), 465-7. David Eisen- 
bud discovered still another proof, which makes use of injective modules 
and yields a non-commutative generalization.) 

2-2 ZERO-D l Vl SORS 

The results thus far derived concerning the zero-divisors on a module 
A, <(A), and the maximal primes of A,  have been relatively shallow. 
Noetherian assumptions make deeper theorems possible. 
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Theorem 80. Let R be a Noetherian ring, A ajni te ly  generated non- 
zero R-module. Then: there are only a jinite number of maximal primes 
of A ,  and each is the annihilator of a non-zero element of A .  

Proof. Consider the set of all annihilators of non-zero elements of A .  
Each annihilator is contained in a maximal one (by the ascending chain 
condition, not by Zorn’s lemma!). Evidently <(‘(A) is the set-theoretic 
union of these maximal ones. By Theorem 6 ,  each of them is prime. 

We next show that there are only finitely many. Denote them by {PI) 
and let P, be the annihilator of a,. The submodule spanned by the at’s is 
finitely generated and therefore spanned, say, by al, . . ., a,. If any 
further a’s exist we have an equation 

(18) 

From (18) we deduce 

a,+i = xlal + * * - + x,a, (x, E R) 

(19) P1 n - - n P, c P,+, 

and (19) implies that some Pi ( j  = 1,  - ., n)  must be contained in P,+l, 
contradicting the maximality of P,. Hence there are no further a’s or 
P’s. 

To complete the proof of Theorem 80 it will suffice to prove that any 
ideal contained in*<(A) is contained in one of P 1 , .  . ., P,.We abstract 
the argument for this, since it will be useful several times in the future. 
.- The sharp formulation we give in Theorem 81 is due to McCoy [35]. 

Let R be a commutative ring, J1, . . ., J,  a j n i t e  number 
of ideals in R, and S a subring of R that is contained in the set-theoretic 
union J1 V - - V J,. Assume that at least n - 2 of the J’s are prime. 
Then S is contained in some J k .  

Theorem 81, 

Remark. We are momentarily violating (here and in Theorems 82 
and 83) the widely respected convention that a subring has to contain 
the unit element of the big ring. 

Proof: We argue by induction on n.  For every k we may assume 

(20) S Q 31 V * - * V j k  V - * * V J,  

(the notation j k  means that Jk is omitted). Note that when we delete Jk 
we preserve and perhaps strengthen the hypothesis that at most two of 
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the J’s are non-prime. Pick xk e S but not in the right side of (20). Then 
x k  must lie in Jk, since it lies in S but does not lie in any of the other J’s. 
We note that the theorem is trivial for n = 1. For n = 2, we set y = x1 
+ x2 and obtain the contradiction that y lies in S but in none of the J’s; 
this case is really a piece of group theory. For n > 2 at least one of the 
J’s must be prime, and we can assume it to be J1. Set y = x1 + x2x3 
- . + x,. Again y e S but y lies in none of the J’s. 

By combining Theorems 80 and 81 we obtain a result that is among 
the most useful in the theory of commutative rings. 

Theorem 82. Let R be a commutative Noetherian ring, A ajni te ly  
generated non-zero R-module, and S a subring contained in <(A). Then 
there exists a single non-zero element a in A with Sa = 0. 

We rephrase this: although, a priori, each element of S needs a differ- 
ent element of A to exhibit the fact that it is a zero-divisor, nevertheless 
we have proved that a suitable element of A can do this uniformly. 

Can Theorem 82 be generalized? To discuss this, we drop the module 
and just consider an ideal I in a commutative ring R ,  I consisting of 
zero-divisors. If Z is not assumed to be finitely generated, examples 
abound to show that I need not be annihilated by a single element. If 
we insist that I be finitely generated, the matter is not so simple, but 
counterexamples still exist (see Ex. 7). 

The following theorem is an immediate corollary of Theorem 81. 
We record it because it will be convenient to quote it in this form. 

Theorem 83. Let R be a commutative ring, S a subring of R ,  and I 
an ideal of R contained in S. Suppose that I # S and that 

s - I c PI u - - - u P, 

where PI ,  . . ., P, are prime ideals in R ,  and S - Zdenotes the set-theoretic 
complement o j I  in S. Then S C Pi for  some i. 

Proof. We observe that 

s c I V  PI v * * - v P, 

We quote Theorem 81. Since S C I is ruled out, we deduce that S is 
contained in some Pi. 
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We move to the other extreme and give some attention to minimal 
prime ideals. The first such theorem needs no finiteness assumptions. 

Theorem 84. Let A be a non-zero R-module, I the annihilator of A ,  
and P a prime ideal in R minimal over I. Then P C <(A). 

Proof. Let S denote the set of all elements ab in R where a p P and 
b p <(A). S is clearly a multiplicatively closed set. We claim that it is 
disjoint from I ,  for suppose that baA = 0, b p <(A), a p P. Then aA = 0, 
a E I C P, a contradiction. Enlarge I to a prime ideal Q,  maximal with 
respect to disjointness from S. Then Q C <(A) and I C Q C P. By the 
minimality of P, we have Q = P and so P C <(A). 

In the Noetherian case we can strengthen Theorem 84. The proof is 
a good illustration of the use of localization, and so we seize this mo- 
ment to record a nearly obvious theorem that we need. 

5. Any localization R s  of a Noetherian ring is Noetherian. 

Proof. We know that any ideal in RS has the form IS with Z a suit- 
able ideal in R. Since I is finitely generated, so‘is IS.  

Theorem 86. Let R be Noetherian and let A be a$nitely generated 
non-zero R-module with annihilator I,Let P be a prjme ideal in R minimal 
over I. Then P is the annihilator of a non-zero element of A. 

Proof. We pass to Rp,  which is again Noetherian (Theorem 85), 
and AP,  which is again finitely generated. We need first to check A P  # 0. 
Now (since A is finitely generated) the meaning of the vanishing of Ap 
is sA = 0 where s e S, the complement of P. However, the annihilator 
Z of A is disjoint from S. 

Now I p A p  = 0, so that Zp is contained in the annihilator of Ap. As a 
matter of fact, Z p  is the annihilator of A p  (see Ex. 10). We do not need 
this, however. It suffices for us to verify that PP is minimal over ZP and 
hence, all the mork so, minimal over the annihilator of Ap. For suppose 
there exists a prime ideal in Rp, containing Zp  and properly contained 
in P P.  Necessarily (Theorem 35) it has the form Q p ,  with Q a prime 
ideal in R properly contained in P. We claim I C Q. For if i e Z, then 
i l l ,  as an element of Ip,lies in Qp. This gives us s’(si - q) = 0 for suitable 

8. 
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q e  Q and s, s' P P .  Since Q C P we get s, s' P Q and hence i e  Q.  We 
have upheld the claim I C Q, and have thereby violated the assumption 
that P is minimal over I .  

Thus PP is minimal over IP and we can apply Theorem 84 to get 
P p  C ~ ( A P ) .  Then by Theorem 80 there exists a non-zero element of 
A p  annihilated by PP, an element that can be taken to be of the form 
a l l  with a e A .  The statement that a / l  is annihilated by Pp translates 
to spa = 0, for some s P P. Write b = sa. We claim that P is exactly the 
annihilator of b. For if x b  = 0 we have that x/l  annihilates a / l ,  and 
hence x/ l  e PP, slx e P for s1 f P, and hence x E P .  

This is as far as we shall go in the direction of primary decomposition 
and the primes associated with a module. We have identified the maxi- 
mal and minimal ones, but we are ignoring the intermediate ones. 

We wish next to show that above an ideal I in a Noetherian ring R 
there are only finitely many minimal prime ideals. (Note: if I = 0 and 
R is a domain, we mean (by way of exception) truly minimal prime 
ideals, that is, 0.) It turns out that this is demonstrable with a weaker 
chain condition. Since the ideas are useful in differential algebra (see 
pp. 48-9 of [24]) we present the result in this greater generality. 

' 

Theorem 87. Let R be a commutative' ring satiflying the ascending 
chain condition on radical ideals. Then any radical ideal in R is the inter- 
section of a finite number of prime ideals. 

Proof. If not, let I be a radical ideal maximal among those for which 
the assertion fails (the existence of a maximal one following, not from 
Zorn's lemma, but from the postulated ascending chain condition on 
radical ideals). Of course, I is not prime. Take a and b with ab e I ,  a 6 I ,  
b 6 I. Let J be the radical of ( I ,  a)  and K the radical of ( I ,  b). Since I is 
maximal, J and K are each expressible as a finite intersection of prime 
ideals. We shall reach a contradiction by proving that I = J n K.  Let 
x e J A K. Then some power x lies in ( I ,  a), say 

x = il + ya (il e I ,  y e R).  

Similarly xn = i2 + zb (i2 e I ,  z e R).  By multiplying these two equations 
we get x+" e I, x e I ,  as required. 

Remark. Since any prime ideal above a given ideal contains a mini- 
mal one (Theorem lo),  the intersection in Theorem 87 might as well be 
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confined to the prime ideals minimal over the radical ideal. In that case 
one readily sees that the expression is unique, and that the prime ideals 
that occur are exactly all the minimal primes over the radical ideal. This 
leads us to the next theorem. 

Theorem 88. Let R be a commutative ring satisfving the ascending 
chain condition on radical ideals, and let I be an ideal in R. Then there 
are only a jinite number of prime ideals minimal over I .  

Proof. A prime ideal contains I if and only if it contains the radical 
of I .  Theorem 88 now follows from the remark made just-preceding it. 

We conclude this section with some useful results on O-dimensional 
and l-dimensional rings. We recall that the dimension (or Krull di- 
mension if there is danger of ambiguity) is the sup of lengths of chains 
of prime ideals. A ring is O-dimensional if all prime ideals are maximal 
(and we really mean all; a O-dimensional i tegral domain is a field). An 
integral domain is 1-dimensional if all non- \ ro prime ideals are maxi- 
ma1 . 

We shall also need the Jordan-Holder theorem. We phrase it in terms 
of composition series. A composition series for. a module A is a chain 

A = Ao 3 A1 3 - * 2 A ,  = 0 

of submodules, beginning at A and ending in 0, such that each A i / A , + l  
is irreducible (i. e., has no proper submodule). Theorem: if A has a 
composition series, then any chain of submodules-of A can b6 refined to 
a composition series, and any two composition series have the same 
length. We then say that A hasfinite length. 

Theorem 89. 

(1)  R is Noetherian and O-dimensional; 
(2)  Any finitely generated R-module has finite length; 
(3) R as an R-module hasjnite length. 

Let R be a commutative ring. The following three state- 
ments are equivalent: 

Proof. (1) implies (2). If R is O-dimensional, all its prime ideals are 
both minimal and maximal. By Theorem 88 there are only a finite 
number of them, say M1, . . ., M,,. We have 

M ~ . . . M , , C M ~ ~ . . . ~ M , = J  



60 CH. 2/NOETHERIAN RINGS 

J the Jacobson radical of R. By Theorem 25, J is a nil ideal. Since J is 
finitely generated, it is actually nilpotent. So ( M I  . . . M,)k = 0 for 
some k.  

Now let A be a finitely generated R-module. We can interpolate 
between A and 0 a string of nk submodules, a typical intermediate step 
being 

where B is the result of multiplying A by a product of Mi's (repetition 
allowed). Now BIM,B is a finitely generated module over the field 
RIM,, and so it is a finite-dimensional vector space. We can thus inter- 
polate a finite number of further submodules between B and M,B until 
all quotients are irreducible. We obtain a composition series for A .  

A 3 * * * 2 B 3 M,B 3 * * * 3 0  

(2) implies (3). Trivial. 
(3) implies (1). If R has finite length it is certainly Noetherian. It re- 

mains to  be seen that R is O-dimensional. Our problem is to  rule out 
the existence of distinct prime ideals P 2 Q. Since we can switch to the 
domain R/Q, we recast the problem as follows: prove that a domain R 
of finite length is a field. Let I be a minimal ideal in R and pick x # 0 
in I .  Then XI C I and must equal I.  In particular x = x i  for some i E I .  
This gives i = 1, I = R, so R must be a field. 

Remark. There is a fourth equivalent statement, formally weaker 
than (3): that R satisfies the descending chain condition on ideals. 
That the descending chain condition implies the ascending chain con- 
dition works even in the non-commutative case (Hopkins' Theorem). 
We shall not use this refinement, and therefore we have omitted it. 

An immediate corollary of Theorem 89 is worth a separate statement. 

Theorem 90. The following statements are equivalent f o r  an integral 
domain R: ( I )  R is Noetherian and of dimension 5 1, (2) for  any non-zero 
ideal I in R, R / I  has finite length. 

We conclude this section with a useful theorem concerning rings 
between a one-dimensional Noetherian domain and its quotient field. 
The proof we give is essentially the one in [12]; for an alternative proof 
see [9], Ch. VII, p. 29. Two theorems will precede it. 

/ 
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Proof. The maximal ideals are also minimal prime ideals and hence 
(Theorem 84) consist of zero-divisors. 

Theorem 92. Let R be a one-dimensional integral domain, let a and c 
be non-zero elements of R ,  and let J be the set of x in R satisfying xan E (c)  
for  some n. Then (J ,  a) = R. 

Proof. Alternatively, we may describe J as the set of elements which 
throw some power of a into (c). One of these is c itself. Thus J # 0 and 
hence, by Theorem 91, every non-zero-divisor in R/J has an inverse. Let 
a* be the image of a in R/J. We assert that a* is not a zero-divisor. For 
if a*y* = 0 for y* c R/J, we have ay E J where y maps on y*, i.e. som 
a'"aye (c), y E J ,  y* = 0. It follows that a* is a unit in R/& 
(J ,  a)  = R. 

Theorem 93. Let R be a one-dimensional Noetherian domain with 
quotient field K ,  and T any ring between R and K. Then T is again 
Noetherian and i ts  dimension is at most 1. 

Proof. Let a be an arbitrary non-zero element of R. Our plan is to 
prove that T/aT  is a finitely generated R-module. (We might note that 
it would be hopeless to try to prove that T itself is a finitely generated 
R-module; for instance T might be K itself, and K is a finitely generated 
R-module only when R = K . )  This will prove the theorem; for any non- 
zero ideal irj T contains a non-zero element of R, and we then apply 
Theorem 90. 

Write I ,  = (amT n R, aR). We note that-( I m )  is a descending chain 
of ideals in R, all of them containing aR. By Theorem 89 or Theorem 90 
the chain becomes stable, say at I, .  For this n we assert that 

R 
T C z + a T  

To prove (22) we take t E T and write t = b/c, b, c E R.  For these elements' 
a and c we cite Theorem 92, i .  e. (J, a) = R where J is the ideal defined 
there. We can write 1 = j + za ( j  t J ,  z e R): Then t = bj/c + tza. Now, 
by the definition of J ,  jah e (c) for some h,  so 

Theorem 91. In a zero-dimensional ring, any non-zero-divisor is a 
unit. 

bj bjah R 
c ~ a h ' >  
_ = - -  
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whence 

R 
ah 

t e - + + T  

for some h. Let us suppose that (23) has been arranged with the smallest 
possible value of h. If h 5 n, (22) follows from (23). We shall prove 
that h I n does hold. Suppose h > n. We write out (23) explicitly: 

U 
t = - + at1 (U E R, t i  E T )  

ah 
(24) 

Equation (24) gives us u = ah(t - atl) E ahT. So u E ahT n R C I h .  Since 
h > n we have I h  = Ihfl. This means that we can write 

(25) u = ah+’tz + aui (tz E T, ~1 E R) 

Substitute (25) in (24). The result is 

contradicting our minimal choice of h. We have proved (22). It shows 
T/aT to be a submodule of a cyclic R-module, hence a finitely generated 
R-module. 

EXERCl SES 

1. Let A ;  be a non-zero R-module for each i ranging over an index 

2. Given a set-theoretic union UPi of prime ideals in a commutative 

3. Let B be a non-zero R-module, and A a submodule different from 

set. Let A be the direct sum of all A;. Prove: <(A) = U<(Ai). 

ring R, prove that UP; = <(A) for a suitable R-module A .  

0 or B. Prove: 

<(A) c c <(’(A) u Z(’(BI-4) 
4. Let A be a non-zero module, x an element with x p <(A), xA # A .  

Prove: <(A/xA)  = <(A/PA) for any r. 
5.  Let R be Noetherian, S a subring of R, Ai (i = 1, - - -, n) finitely 

generated R-modules, A = A1 0 - - - 0 A,. If S C <(A), prove that 
S C <(A;) for some i .  

6 .  Let R be a UFD, but not a principal ideal domain. (For instance, 
R can be the ring of polynomials in two variables over a field.) Let the 
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R-module A be the direct sum of all R/(p), p ranging over the primes 
of R. Prove that <(A) = the set of all non-units in R. Let p ,  q be distinct 
primes such that I =  ( p ,  q) # R. Prove that I C <(A), but that the 
annihilator of I in A is 0. 

7. We modify the example in Ex. 6 so as to “absorb” the module 
into the ring. This is done by a semi-direct sum T of R and A .  T = R + A 
is an additite direct sum, and the rule of multiplication is 

(11 + al)(r~ + ad = rlrz + (rlaz + rzad 

where r ,  E R ,  a, e A .  With the same Z as in Ex. 6, prove that J C <(T), 
but that no non-zero element of T annihilates J ,  where J = IT, 

8. Let I be a finitely generated ideal contained in a minimal prime 
ideal of a ring R. Prove that I annihilates a non-zero element of R. 
(Hint: pass to Rp and observe that its maximal ideal PP is nil.) 

9. Let R be Noetherian, A a non-zero finitely generated R-module, 
P a maximal prime of A ,  S a multiplicatively closed set disjoint from P. 
Prove that Ps is a maximal prime of As.  

10. Let R be any ring, A a finitely generated R-module with annihi- 
lator I. Let S be multiplicatively closed in R. Prove that the annihilator 
of A S  is IS. 

11. Let R be a domain, and let T be a ring containing R such that 
every non-zero element of R is a non-zero-divisor in T (in other words, 
T is torsion-free as an R-module). Prove that the contraction of a mini- 
mal prime ideal in T is necessarily equal to 0 in R. (Hint: use Theorem 
84. Note that the conclusion is a piece of the G D  condition on R, T and 
observe the dual version in Ex. 16, $1-6. The hypothesis of the present 
exercise is used in the “going down theorem” of Cohen and Seidenberg 
[13], and the conclusion can advantageously replace it.) 

12. Let P and Q be prime idealsin a commutative ring R. Assume 
that no prime ideal of R is contained in both P and Q. Prove that there 
exist elements a and b with ab = 0, b in P but not in Q ,  and a in Q but 
not in P.  (Hint: let Sand  T be the set-theoretic complements of P and Q, 
respectively. Argue that 0 must lie in ST, for otherwise a prime ideal 
could be constructed excluding ST, and it would be contained in both 
P and Q. So we have a in S,  b in Twith ab = 0.) 

13. Let R be a ring with no non-zero nilpotent elements.‘ Prove: 
<(R) = UP,, the union being taken over all minimal prime ideals. 
(Hint: if ah = 0 with b # 0, then b I some P,, since n P ,  = 0.) 

14. Let R be a ring with no non-zero nilpotent elements. Assume that 
every element in R is either a unit or a zero-divisor. Prove that if R has 
finitely many minimal prime ideals, it has dimension 0. 
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a, let S be the set of all an - afL+ly. If 0 is not in the multiplicatively 
closed set S ,  construct P maximal with respect to exclusion of S.  The 
hypothesis of zero-dimensionality implies that RIP is a field. If z is an 
inverse of Q mod P ,  then a2z - a is in  P ,  a contradiction. Hence some 
an - anfly = 0, and a - azy is nilpotent.) 

23. (This exercise comes from an unpublished manuscript of 
A. Brumer and P. Sally.) In Theorem 81 assume that all the J’s are 
prime. Prove the theorem by the technique of localization. (Hint: pass 
to Rs, where S is the complement of the union of the J’s.) 

24. Let the ideal Z in the ring R be such that every prime ideal con- 
taining Z is finitely generated. Prove that every ideal containing Z is 
finitely generated. (Hint: if some ideal containing Z fails to be finitely 
generated, it can be enlarged by Zorn’s lemma so as to be maximal 
with respect to this failure. Apply Theorem 7 to get the desired con- 
tradiction.) 

25. Let R be a ring satisfying the ascending chain condition on prime 
ideals and having the property that any radical ideal is the intersection 
of a finite number of prime ideals. Prove that R satisfies the ascending 
chain condition on radical ideals. (Hint: if not, let Zl C Z2 C Z3 - - be a 
properly ascending sequence of radical ideals. Let Zl = P1 n . . - A P,. 
Writing rad for the radical of an ideal, we have 

’ 

P, = rad(Z1+ PI) c rad(Z2 + P,) c rad(Z3 + P,) * * ‘ 

for each i from 1 to r.  Suppose that for every i this sequence ultimately 
becomes constant, say at the n-th term. Then we get the contradiction 
I ,  = We have u c rad(1, + P,). For 
a suitable power uh we get uk = y ,  + z ,  with y ,  e I,, z ,  c P , .  Then 

For let u be an element of 

15. Let R be a ring such that in every homomorphic image of R, any 
element is either a zero-divisor or a unit. Prove that R is zero-dimen- 
sional. (Hint: if P C Q are different prime ideals, pass to RIP.) 

16. Let R be any ring, and let A be an R-module possessing a series 
of submodules 

A = A0 3 A1 3 - * 3 A,-1 3 A ,  = 0 

such that each A,/A,+l is isomorphic to RIP, for P, a prime ideal in R. 
Let Q be a prime ideal in R such that Q is the annihilator of a non-zero 
element in A .  Prove that Q equals one of the P,’s. (Hint: say Q is the 
annihilator of a ;  let B be the submodule generated by a. Observe that 
the annihilator of any non-zero element of B is again Q. If B A A1 # 0, 
use induction. If B A A1 = 0, prove that Q = Po.) 

17. Combine Ex. 16 and Ex. 7 in 52-1 to give alternative proofs of 
the finiteness of the number of maximal or minimal prime ideals at- 
tached to a finitely generated module over a Noetherian ring. 

18. Let Z be a radical ideal in an arbitrary ring. Prove that Z is prime 
if and only if it is not expressible as an intersection of two properly 
larger radical ideals. (Hint: see the proof of Theorem 87. Note the 
connection with part (e) of Ex. 12 in 51-3.) 

19. (This exercise continues the transition to the geometric language 
where Ex. 12 in 51-3 left off.) Prove that any variety is expressible as 
a finite union of irreducible varieties. (Hint: one can derive this directly 
from the ascending chain condition in K[xl,  . . ., x,], or from Theorem 
87.) 

20. Let R be an integral domain with quotient field K. Suppose that 
every ring between R and K is Noetherian. Prove that the dimension of 
R is at most 1. (Hint: if not, take x # 0, x e Q C P, Q and P distinct 
primes. Then take y E P, where y is not a member of any prime minimal 
over x. Let T be the ring generated over R by all xy-*, I the ideal in T 
they generate. If Z is finitely generated, it is generated by some xy-i. 
Derive a contradiction. Note that this exercise is a converse to Theo- 
rem 93.) 

21. Let R be a one-dimensional Noetherian domain, let P be a prime 
ideal in R, and let T be a ring lying between R and its quotient field. 
Prove that in T there are only a finite number of prime ideals lying 
over P. (Hint: combine Theorems 93 and 88.) 

22. (In this exercise we waive the requirement of a unit element.) 
A ring is von Neumann regular if for any a there exists an x with axa = a. 
Let R be a zero-dimensional commutative ring with no non-zero nil- 
potent elements. Prove that R is von Neumann regular. (Hint: for given 

(uk - y1) - * - (uk - y,) = z1 - * z ,  c 11 c I ,  , 

whence ueZ,.  The process can thus be iterated to yield a properly 
ascending sequence of prime ideals.) 

26. Call an ideal a J-ideal if it is an intersection of maximal ideals. 
Prove that the following conditions on a ring R are equivalent: (a) the 
ascending chain condition on J-ideals, (b) every J-ideal in R is the inter- 
section of a finite number of prime J-ideals. (Hint: that (a) implies 
(b) can be proved by a minor modificati.on of the proof of Theorem 87. 
To prove that (b) implies (a) assume on the contrary that Zl C Z2 C 13 - - - 
is a strictly ascending sequence of J-ideals. For each k there exists a 
maximal ideal Mk containing Z k  but not Ik+l. Let Z be the ideal gen- 
erated by I,, MJz,  M1M2Z3, . . .. Then Z is contained in all the M’s. We 
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claim that Mk is a minimal prime over 2. For suppose that 2 C P C Mk 
with P a prime ideal properly contained in Mk.  Since 

M1M2 * * * M k l k + l  C 2 C P 

and no M ,  is contained in P we get ZL+, C P,  and then the contradiction 
Ik+ l  C Mk. Let Y be the J-ideal AMt. Since there are infinitely many 
minimal primes over Y ,  Y cannot be the intersection of a finite number 
of prime ideals. This proof is due to William Heinzer.) 

27. Let a be a non-zero-divisor in a ring R ,  and let J be any ideal in R. 
Prove: Z'(R/J) C ,?"R/d). (Hint: if x c Z ( R / J )  then xu  E J for u pJ.  
Deduce that xau E d and au p d.) 

28. Let R be a UFD and I an ideal in R ,  I # R. Prove that the fol- 
lowing are equivalent: (a) I is principal, (b) <(R/I)  is a finite union of 
principal prime ideals, (c) if a prime ideal P is contained in <(R/I)  then 
P is principal. (Hint: only (c) =+ (a) offers any difficulty. Write I = d, 
where the GCD of the elements of J is 1. If J # R, observe that any 
prime ideal minimal over J has rank at least 2. Use hypothesis (c) and 
the preceding exercise.) 

29. Let P be a fixed prime ideal in the ring R and let A be an R-mod- 
ule. Let I be maximal among those annihilators of non-zero elements 
of A which lie inside P. Prove that I is prime. (Hint: suppose on the 
contrary that x y  E I ,  x 6 I,  y p I. Then ann(xa) contains I and y ,  so can 
not be contained in P. Take s c P,  sxa = 0. Note that sa # 0. Ann(sa) 
is contained in P and contains ( I ,  x), a contradiction. This exercise is a 
strengthened form of Theorem 6.) 

30. Prove Theorem 86 by using the preceding exercise. (Hint: deduce 
from the assumption that A is finitely generated, the fact that P con- 
tains the annihilator of some element of A .  Enlarge the latter to a 
maximal annihilator inside P. Exs. 29 and 30 are due to S. McAdam.) 

2-3 INTEGRAL ELEMENTS, I l l  

The main purpose of this section is to establish the basic properties 
of Dedekind rings, and prove that the Dedekind property is preserved 
in suitable integral extensions. 

We begin with the local case - but first we have to define a local 
ring. 
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Dejinition. A ring is local if it is Noetherian and has exactly one 
maximal ideal. 

To shorten the statements of the next theorems, and to mesh with 
later work on grade, we define grade 1. 

Dejinition. An ideal I in a ring R has grade 1 if it contains a non- 
zero-divisor x such that I C <(R/(x)). 

Theorem 94. Let I be an ideal of grade 1 in a Noetherian domain R. 
Then I-' properly contains R. 

Remark. For a converse see Exs. 1 and 2 in $3-1. 
, 

Proof. We have I C <(R/(x)). By Theorems 80 and 81 there e 
y p ( x )  with I y  C (x). Then y / x  is in I-' but not in R. 

Theorem 95. Let R be a local domain with maximal ideal M .  Assume 
that R is integrally closed and that M has grade 1.  Then M is principal. 

,- 

Proof. By Theorem 94, M-I properly contains R. Now MM-I 
contains M ,  is contained in R, and therefore equals M or R. But if 
MM-I = M then M-' is integral over R (Theorem 12), hence is con- 
tained in R since R is integrally closed. This contradiction proves that 
M is invertible, and hence (Theorem 59) principal. , 

' 
' 

i, 
I 
I c 
E 
t c c 

P r 

We discuss a little further the properties of the domain R of Theo- 
rem 95. A very easy argument shows that every ideal is principal; thits 
R is a principal ideal domain with just one prime. It is also a valuation 
domain. This kind of valuation domain is called a discrete valuation 
ring (DVR). 

Theorem 96. 

(1 )  Every non-zero ideal of R is invertible; 
(2)  R is Noetherian, integrally closed, and of dimension 5 1 ; 
(3)  R is Noetherian, and for  each maximal ideal M ,  R M  is a DVR.  

For an integral domain R the following statements are 
equivalent: 
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Proof. (1) implies (2). In each RM all ideals are principal (Theorem 
59), so RM is a DVR. R is Noetherian by Theorem 58.  R is integrally 
closed by Theorem 54. 

(2) implies (3) is covered by Theorem 95. 
(3) implies (1) follows from Theorem 62. 

An integral domain satisfying any (hence all) of the conditions in 
Theorem 96 is called a Dedekind ring. Another property of Dedekind 
rings appears as Theorem 97. 

Theorem 97. In a Dedekind ring any non-zero ideal is uniquely a 
product of prime ideals. 

Proof. Given I ,  it is contained in some prime ideal P. Since P is 
invertible we have I = ( Z F ) P .  This factorization can be continued till 
we reach a product of prime ideals, the process terminating since I is 
properly contained in IF’ ,  etc. 

If I = P1 * . P,,, = Ql * * Qn (all P’s and Q’s prime ideals) then 
Ql - - Qn C PI ,  so some Qi C PI. Since non-zero prime ideals are 
maximal we must have Q, = P1. Since PI is invertible we can cancel it 
on both sides. Continuation of the process proves uniqueness. 

Remark. Conversely, if a domain R has the property that every 
ideal is a product of prime ideals (no further assumptions are needed), 
one can prove that R is Dedekind. This theorem is due to  Matusita. 
See [ 121. 

We consider the following setup: R is an integrally closed domain 
with quotient field K, L is an algebraic extension of K, and T is the 
integral closure of R in L (the “ring of R-integers” in L). I t  is an easy 
exercise that T has quotient field L. (A little more is true: any element 
of L is expressible as a quotient with numerator in T and denominator 
in R.) The following little picture may help visualize the relationships. 

R C T  
I I  
K C  L 

SEC. 2-3/INTEGRAL ELEMENTS, I11 69 

The classical version of the problem is the case where R is the ring 
of integers, K the field of rational numbers, and L a finite algebraic 
extension of K (i. e. an algebraic number field). More generally, let R 
be a principal ideal domain and [L:K] finite. It was a great discovery of 
the 19th century that T need not be a principal ideal domain, but that 
it is a Dedekind ring. Having gone that far, we might as well let R be a 
Dedekind ring. 

Theorem 98. Let R be a Dedekind ring with quotient field K. Let L 
be a jield jnite-dimensional over K,  and let T be the integral closure of 
R in L.  Then T is a Dedekind ring. 

Proof. We head for statement (2) of Theorem 96. T is integrally 
closed by Theorem 40, and has dimension 5 1 by Theorem 48. I t  re- 
mains to argue that T is Noetherian. 

We can find a vector space basis of L over K consisting of elements 
of T (first take any basis, then multiply by suitable elements of R to 
throw the basis into T). Say ul, . . ., un is the basis. Then To = R[ul,. . ., u,] 
is Noetherian; indeed it is a finitely generated R-module. By another 
application of Theorem 48, dim(To) = 1. Since T lies between To and 
its quotient field L,  T is Noetherian by Theorem 93. 

Another method of proof is available if L is separable over K, and 
shows that T is a finitely generated R-module; see [51]. But it is not 
always true that T is a finitely generated R-module. We present, in a 
slightly recast version, a pertinent example of F. K. Schmidt (Theorem 
100). The main change from Schmidt is to switch the point of view 
(2 la Artin’s Galois theory)*from going up to going down. 

So we start with an integral domain T,  its quotient field L ,  and a 
subfield K of L ;  we define R = T A K. At present we place no restri’c- 
tions on the pair of fields K C L. For a number of facts that hold in 
this context, see Exs. 1-5. 

We introduce at this point the value group of a valuation domain. We 
can in fact define it for any integral domain R. Let U be the group of 
units in R, and let K* be the multiplicative group of non-zero elements 
in the quotient field K. We call K*/U the value group of R. Divisibility 
(relative to R) induces on K*/U the structure of a partially ordered 
group, and the ordering is total if and only if R is a valuation domain. 
This totally ordered group is cyclic if and only if R is a DVR. We leave 
the routine verification of these statements to the reader. 

’ ,  
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Theorem 99. Let T be a valuation domain with quotient field L ,  let 
K be any subfield of L ,  and set R = T A K. Then R is a valuation domain 
with quotient field K. Its value group is in a natural way a subgroup of 
that of T.  I f T  is a DVR,  so is R. 

Proof. Given a f 0 in K we have that a or c1 lies in T and there- 
fore in R. This proves that R is a valuation domain with quotient field 
K. The inclusion R C T induces a homomorphism from the value 
group of R into the value group of T.  Saying that this is an isomorphism 
amounts to the following: if x E R is a unit in T, prove that x is a unit 
in R ;  this is clear since r1 E T A K = R. The final statement of the 
theorem is immediate, since a subgroup of a cyclic group is cyclic. 

Theorem 100. Let k be a field of characteristic 2, and T = k[[x]],  
the power series ring in an indeterminate. With u E T, let K = k(x ,  u2) and 
L = k(x ,  u )  (jield adjunction), R = T A K,' S = T A L. Then [L:K]  5 2, 
R and S are discrete valuation rings with quotient fields K and L, and S is 
the integral closure of R in L. I f [ L : K ]  = 2, then S is not a finitely gen- 
erated R-module. 

- 

Remark. It  is possible to arrange [L:K] = 2, for instance, by taking 
x and u to be algebraically independent over k ,  for which we need a 
transcendental power series u. We have a choice of a cardinal number 
argument when k is countable (then T has the power of the continuum) 
or the use of suitable gaps, i la Liouville. 

~ 

Proof. We illustrate the various rings and fields in the figure: 

R C S C  T 
1 1 1  

k C K C L C M  
where M is the quotient field of T. The statement [L:K] 5 2 is obvious, 
since L is obtained from K by adjoining a square root of an element 
of K. Theorem 99 tells us that both R and S are DVR's, with quotient 
fields K and L ,  respectively. Since S contains R, has quotient field L, 
is integrally closed, and is integral over R (by characteristic 2), it follows 
that S is the integral closure of R. 

We now assume [L:K] = 2 and shall prove that S is not a finitely gen- 
erated R-module. Suppose on the contrary that it is. Then S is spanned 
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over R by elements a,  + /3,u (i = 1, . ., r)  where a,, 0, e K. (In fact, r can 
be 2, but there is no need for us to insist on this.) We note that any 
element of M can be thrown into T by multiplication by a sufficiently 
high power of x. It follows that any element of K can be thrown into R 
by multiplication by a suitable power of x. If we pick xm to satisfy 
p a ,  e R and xmp, e R for all i, we get xmS C R + Ru. Suppose 

I 

u = a. + alx + a2x2 + - 
We set 

z, = (u - a. - alx - - - - - amxm)rm--l 

and note that v is again an element of T .  (The minus signs might as well 
be plus signs since the characteristic is 2; however we thought the 
reader's eye would this way more easily catch the cancellation of all 
powers of x up to xm.) Thus the expression for the element 2' takes the 
form 

v = (a,+1xm+' + am+2xm+2 + - - .)x-~-' 

making it apparent that u lies in T. Since 21 is also in L,  we see that 
ZI E S.  So xmv E R + Ru. But the unique expression for xmz, in the form 
R + Ru has to have x-' for its coefficient of u, a contradiction since 
x - l  is not in R (it is not even in T). 

There is a Priifer analogue of Theorem 98. 

Theorem 101. Let R be a Priifer domain with quotient field K. Let L 
be an algebraic extension of K (possibly infinite-dimensional), and let T 
be the integral closure of R in L.  Then T is a Priifer domain. 

Proof. Let N be a typical maximal ideal in T.  It will suffice, by 
Theorem 64, to prove that TN is a valuation domain. Thus, given 
u E L ,  we must prove that u or u-l lies in TN.  If N A R = P,  then Rp is a 
valuation domain. Now u satisfies a polynoh$al equation with coeffi- 
cients that can be taken to be in Rp, and we can normalize so that one 
coefficient is a unit. We can equally well regard the coefficients as lying 
in TN,  for Rp C TN.  We quote Theorem 67. 

Remarks. 
2. Instead of quoting Theorem 67, we could use the globalized ver- 

1. This proof is taken from [ 191. 

sion: Ex. 17 in $1-6. 
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3. An alternative proof of Theorem 98 would begin by quoting 
Theorem 101, It would then remain to prove T Noetherian, presumably 
exactly as was done in the proof of Theorem 98. 

What examples are there of non-Dedekind Priifer domains? The 
main ones are as follows. 

(1) Valuation domains. For instance, it is possible to construct a 
valuation domain with any preassigned value group. 

(2) The ring of entire functions, an example due to Helmer [22]. This 
is a good example to keep in mind if you are looking for a Priifer domain 
with unusual properties. 

( 3 )  Examples obtained from a given Priifer domain by the use of 
Theorem 101. 

Examples (1) and (2) are in fact Btzout domains (all finitely generated 
ideals are principal). In the hope of getting away from the Btzout 
property, one might try, under the heading (3) ,  the ring of algebraic 
integers. But this too is Btzout, as is mentioned in passing in [ 151. This 
follows from the existence of so-called class fields in algebraic number 
theory. There is, however, a more elementary proof due to John Thomp- 
son, and it works in more general circumstances. (For another proof, 
see p. 86 of [33].) 

We recall that the class group of a Dedekind domain is the group of 
invertible ideals modulo principal ideals, and that for the ring of in- 
tegers in an algebraic number field the class group is finite. 

Theorem 102. Let R be a Dedekind domain with quotient jield K, 
let L be the algebraic closure of K, and let T be the integral clo- 
sure of R in L. Assume that for  any jinite algebraic extension of K 
the ring of integers has a torsion class group. Then T is a Bkzout, 
domain. 

Proof. Let I be a finitely generated ideal in T, generated say by 
al, . . .,a,. The a's generate a finite-dimensional extension Lo of K ;  
let To be the ring of integers in Lo and I. the ideal generated by al, . . ., a, 
in To. By hypothesis some power of lo is principal; say Zok = bTo, b E To. 
Let c e L  be a k-th root of b. In the ring Tl of integers in Lo(c) we 
have (IoTJk = (c". It follows from unique factorization into prime 
ideals (Theorem 97) that IoTl = (c). Hence the ideal I in T is also 
principal. 
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1 

In exercises 1-5, K C L are fields, T has quotient field L, and R 

1. Let S be a multiplicatively closed subset of R. Prove: Rs = TS 

2. If T is integrally closed, prove that R is integrally closed. 
3. If R is a valuation domain with maximal ideal M, prove that M 

4. If T is quasi-local, prove that R is quasi-local. 
5. (This exercise is intended to give a reasonably simple example in 

which the quotient field of R is not K.) Let k be any field, and let x and 
y be indeterminates over k.  Set K = k(x) ,  L = k(x,  y) ,  T = k b ,  ylx].  
Prove that R = k ,  and thus does not have quotient field K. 

6. Suppose that R is a Priifer, BCzout, or valuation domain, and S is 
multiplicatively closed in R. Prove that Rs has the same property. 

7. Let R be Btzout with quotient field K and let T be a ring between 
R and K. Prove that T = Rs for a suitable S. 

8. Let R be any integral domain, Q a prime ideal in R[x] that con- 
tracts to 0 in R. Prove that R[x]Q is a DVR. 

9. Let R be a domain' with quotient field K. (a) Suppose that R con- 
tains a principal prime p such that R[p-'] = K. Prove that R is a DVR. 
(b) Suppose that R contains a set ( p % )  of principal primes such that 
adjoining all the elements p.-I to R yields K. Prove that R is a UFD. 

10. Let R be a given integral domain. Assume that R M  is Noe- 
therian for every maximal ideal M in R ,  and that any non-zero element 
of R lies in only a finite number of maximal ideals. Prove that R is 
Noetherian. (Hint: argue that for an ascending chain of ideals Il C ZZ 
C . . there exists n such that from n on the chain is stable in each RM. 
Then use Ex. 5 in $1-4.) 

1 1. Prove: if every prime ideal in a domain R is invertible, then R is 
Dedekind. 

12. Prove: if every maximal ideal in a Noetherian domain R is invert- 
ible then R is Dedekind. (This problem was suggested by J .  C.  Robson.) 

13. Let R be a one-dimensional Noetherian domain. Prove that the 
integral closure of R is a Dedekind domain. (Hint: Theorems 93 and 96.) 

14. Let R be a one-dimensional local domain. Prove that the integral 
closure of R is a principal ideal domain with a finite number of primes. 
(Hint: Ex. 13, Ex. 21 in $2-2, and Theorem 60.) 

= T n  K. 

n K. 

survives in T. 
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15. Let R ,  ( i  = 0, I ,  2 , .  . .) be a sequence of rings with each R, 
properly contained in R,+l .  Let T be the set of polynomials in an 
indeterminate x with the coefficient of x” allowed to range over R,. 
Prdve that T is a ring and is not Noetherian. (Hint: pick a,  in R,+l 
but not in R , ,  and use the a’s to build a strictly ascending sequence 
of ideals in T. This exercise can be applied to a one-dimensional Noe- 
therian domain with integral closure not a finitely generated module 
(Theorem 100). It yields a two-dimensional Noetherian domain with a 
nm-Noetherian ring between it and its Noetherian integral closure.) 

16. Let R be any ring. Let S be the set of all polynomials in R[x] 
with the property that their coefficients generate R. 

(a) Prove that S is multiplicatively closed. (Hint: see Ex. 9 in $1-1.) 
Write T = R[xIs. 

(b) Exhibit a natural one-to-one correspondence between the maxi- 
mal ideals of R and those of T. In particular, verify that T is quasi-local 
if R is; if M ,  N are the unique maximal ideals of R, T, prove that TIN 
is isomorphic to rational functions in one variable over RIM. 

(c) If R is a valuation ring, prove that T is a valuation ring. 
(d) If R is a valuation domain, prove that the value groups of R and 

Tare isomorphic (more precisely, the map discussed in connection with 
Theorem 99 is an isomorphism). 

(e) Let R be a domain, and letf, g be polynomials with I, J the ideals 
generated by their coefficients. Assume that I C  J and that J is in- 
vertible. Prove thatflg e T. (Hint: let h be a polynomial whose coeffi- 
cients generate J-I. Writef/g =fh/gh and use Ex. 6(d) in $2-1.) 

(f) If R is a Priifer domain, prove that T is a Btzout domain. (Re- 
mark: it is immediate from part (c) that T is Priifer; the subtler fact 
that T is BCzout is deducible from part (e).) 

(g) If R is a Dedekind domain, prove that T is a principal ideal 
domain. 

Exs. 17-19 are due to M. Isaacs. They provide an alternative proof 
of Theorem 98. 

17. Let R be a ring, A an R-module. Call an ideal I in R pleasant if 
B/IB  is a Noetherian R-module for every submodule B of A .  Otherwise, 
I is unpleasant. Prove: if I is maximal among unpleasant ideals then I 
is prime. (Hint: if not, suppose that ab E I with neither a nor b in I. 
Then (I, a)  and (I, b) are pleasant. Let B be a submodule of A .  The R- 
module B/(Z, a)B is Noetherian. From the pleasantness of ( I ,  b) rela- 
tive to the submodule (I, a)B we see that (I, a)B/(I,  b)(I, a)B is a Noe- 
therian R-module. By Ex. 8 of 52-1, B/ ( I ,  b)(Z, a)B is a Noetherian 
R-module and so is its homomorphic image BIIB, a contradiction.) 
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18. Let R be a Priifer domain and let A be a torsion-free R-module 
of finite rank n. (This means that any n + 1 elements of A are linearly 
dependent over R.) Prove that for any maximal ideal M in R, A / M A  
is finite-dimensional over RIM, with dimension at most n. (Hint: we 
have to prove that n + 1 elements al*, . . ., unT1 in A / M A  must be 
linearly dependent. With a, in A mapping on at* we have Zu,a, = 0 
with u, elements in R that are not all 0. Let I = (t i1, . . ., u,+~) .  We can 
find x e I-’ with XI Q M .  From the fact that A is torsion-free we deduce 
Z(xu,)a, = 0. Since at least one xu, is not in M we get the required linear 
dependence of the al*’s.) 

19. Let R be a Dedekind domain with quotient field K ,  let L be a 
finite-dimensional extension of K ,  and let T be the integral closure of 
R in L. Prove that T is Noetherian. (Hint: apply Ex. 17 with T playing 
the role of the module A .  By Ex. 18 every maximal ideal in R is pleasant. 
Hence the only possible unpleasant ideal is 0. It suffices to prove T/J 
Noetherian for J a non-zero ideal in T. Since J A R = I is non- 
zero, T/IT is a Noetherian R-module, and so is its homomorphic 
image T/J.) 

20. Let R be an integral domain and Q a maximal ideal in R[x] that 
satisfies Q (-) R = 0. Prove that Q is invertible. (Hint: use Ex. 8, Ex. 10 
in $1-3, and Theorem 62.) 

21. Let R be a local one-dimensional domain with maximal ideal M ,  
and let T be the integral closure of R. Let u be an element of T that 
lies in the radical of MT but not in M .  Let Q be the kernel of the natural 
homomorphism R[x] -+ R[lr’]. Prove that Q is invertible but not prin- 
cipal. (Hint: deduce from Ex. 2 in $1-2 that u satisfies an equation 
un + alun--l + . . - + a, = 0 with a, 6 M .  Thus Q contains a,xn + . . . 
+ alx + 1. It follows that Q is maximal, for any prime ideal properly 
containing Q must contain M .  By Ex. 20, Q is invertible. If Q is prin- 
cipal its generator must be a linear polynomial bx + c. Here c e M for 
otherwise u = -bc-’ E R, a contradiction since the radical of MT con- 
tracts to M.)  

I 

1 
1 

2-4 INTERSECTIONS OF QUASI-LOCAL DOMAINS 

R: 
I We begin this section with two theorems on integrally closed Noe- 

therian domains. These theorems are fairly immediate corollaries of 
earlier results. 
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Theorem 103. In an integrally c.,sed Noetherian domain R every 
prime ideal P of grade 1 has rank 1, and Rp is a DVR. 

Proof. The idea of the proof is to localize and then use Theorem 95. 
However, there is a technical difficulty that needs to be circumvented, 
for we must localize so as to preserve the grade 1 property. 

We ha\ e 0 # x eF and P C <(R/(x)). Enlarge P to a maximal prime 
Q of (x ) .  Then (Theorem 80) Q is the annihilator of a non-zero element 
in R/(x). Otherwise stated, we have an element y p ( x )  such that Qy 
C (x). We pass to RQ and note that it is Noetherian and integrally 
closed. Furthermore, QQ has grade 1, the same element x working. The 
key point is that y p ( x )  still holds in RQ, for if y = (a/s)x  with a, s E R 
and s Q Q then sy = ax whence s t Q ,  a contradiction. By Theorem 95, 
RQ is a DVR, and in particular Q has rank 1. This forces Q = P, and 
proves all the statements of the theorem. 

, 

The next theorem follows directly from Theorems 53 and 103. 

Theorem 104. If R is an integrally closed Noetherian domain, then 
R = n R p  where P ranges over the prime ideals of rank 1. 

With this as motivation we proceed to investigate representations of 
R of the form R = n V i ,  where the Vi’s are quasi-local domains lying 
between a domain R and its quotient field K. Mostly, the Vi’s are 
assumed to be valuation domains (as the letter “V” suggests), but as 
far as possible we allow them to be quasi-local. 

The mere existence of such a representation does not say much. By 
Theorem 53, any domain is an intersection of quasi-local domains. To 
say that R = n V i  with the Vi’s valuation domains merely says that R 
is integrally closed (Theorem 57). It  is when we assume ‘‘local finiteness” 
of the intersection that interesting things follow. 

Definition. Let R be an integral domain with quotient field K. Let 
Vi be quasi-local domains between R and K. Let Q; be the maximal 
ideal of V,. Assume R = n Vi. We say that this representation is locally 
finite if any non-zero element of R lies in only a finite number of the 
Qi’s (i.e., is a unit in all but a finite number of the Vi’s). 

Remark. The representation given by Theorem 104 is locally finite, 
as follows from Theorem 88. We shall prove below (Theorem 123) that 
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any Noetherian domain admits a representation as a locally finite inter- 
section of quasi-local domains. This is not true for every domain, but 
there do not seem to exist easy examples to show this. 

The simplest locally finite intersection is one where there are only a 
finite number of Vi’s all together. In this context our first theorem 
treats the case where the Vi’s are already known to be localizations. 

Theorem 105. Let R be a domain, and P I , .  . ,, P, prime ideals in 
R,  no two of which are comparable. Assume that 

R = R ~ ,  n R ~ ,  n . . . n R~~ 

Then PI,  . . ., P, are exactly the maximal ideals of R. 

Proof. Let x be a non-unit in R. We claim x e PI U * . - U P,. If 
not, then x-‘ e Rp, for all i, whence x-‘ t R, which is nonsense. If M is 
a maximal ideal, then M C PI U . . - U P,, from which it follows that 
M is contained in some P,, i. e., M = P,. From this the theorem easily 
follows. / 

Theorem 105 enhances the interest in proving that the quasi-local 
domains occurring in a finite decomposition are .localizations. For 
valuation domains we get a decisive result (Theorem 107). The next 
theorem is a prelude. 

Theorem 106. Let x be a unit in a quasi-local ring R. There exists 
an integer k (depending on x )  such that for  any integer m prime to k ,  
1 + x + . - f xm-l is a unit in R. 

Proof.. Let M be the maximal ideal of R, and write L = R/M ( L  is 
called the residue class field). Write x* for the image of x in L. Our 
problem is to ensure 1 + x* + . - . + (x*>”-’ # 0. We distinguish two 
cases. 

Case I. x* = 1. k = the characteristic of L will do (meaning k = \ 
if L has characteristic 0). 

Case 11. x* z 1. Since 
1 - (x*)m 

1 - x* 
1 + x* + . . . + (x*)m-1 = 

we need to ensure (x*)m # 1. If x* is not a root of unity, take k = I 
Otherwise take k to be the order of x*. 
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Theorem 107. Let a domain R be the intersection Vl A . * . n V,,, 
where the V:s are valuation domains between R and its quotient field. 
Then each Vi has the form Rpd for  a suitable prime ideal Pi in R. R is a 
Bhout  domain. If no two V,’s are comparable, then P I,  . . ., P ,  are pre- 
cisely the maximal ideals of R. 

Proof. Let Qi be the maximal ideal of Vi ,  and set Pi = Qi A R. 
We shall show that P; does what is required. To prove, for instance, 
that V ,  = RP,, we take x E Vl and have to find s c R, s f P1, such that 
sx  E R. For each Vi  such that x is a unit in Vi we find a corresponding ki 
as in Theorem 106. Take m 2 2 prime to all the k,’s, and = 2 if there 
are no k,’s. Then s - + X ” ~ - ~ ) - I  will do. We note the be- 
havior of s at a given Vi,  distinguishing the three possibilities. 

(1 + x + - 
(a) If x e Q;, then s is a unit in Vi.  
(b) If x is a unit in V;, we have arranged that s is a unit in V;. 
(c) If x is not in Vi, then x = y-’ with y e Qi (this is the crucial place 

we use the hypothesis that V; is B valuation domain). Then 

s = y m - 1 / ( 1  + y + * * * + ym-1) 

so that s e Qi. 
Thus in all cases s e V;. Hence s e R. Since x e Vl we have (see (a) and 

(b) above) that s is a unit in V,, whence s p P1. Finally, we have to see 
that sx  E R, i. e., that sx  e every V;. Only in case (c) above do we need 
to argue further. Then 

sx = ym-2/(1 + y + * * * + ym-1) E v; 
We have proved that each Vi = Rpi. Now the representation R = A Vi 

can be shortened to be irredundant in the sense that no two Vi’s are 
comparable. Let us suppose this has already been done. Then it follows 
that no two Pi)s are comparable. We can quote Theorem 105 to  deduce 
that PI,  . . ., P ,  are exactly the maximal ideals of R. That R is BCzout 
follows from Theorems 64 and 60. 

Theorem 107 fails if we assume the V,’s merely to be quasi-local. 
Let F C G be fields and let F,, F2 be intermediate fields properly larger 
than F and satisfying Fl r\ Fz = F. Let R, Vl,  V, be the subrings of 
G[[x]] obtained by insisting that the constant term lie in F, F,, and Fz, 
respectively. Then R, V,, Vz are all quasi-local and one-dimensional ; 
V,, Vz lie between R and its quotient field; V,  and V2 are properly 

SEC. 2-4/INTERSECTIONS OF QUASI-LOCAL DOMAINS 79 

larger than R ;  and Vl A V2 = R. Of course Vl,  Vz are not localizations 
of R. 

However, there are still some affirmative statements that can be made, 
and the full facts remain to be explored; Theorem 109 is a sample. 
We need Theorem 108 as a prelude (and it will be used again later in this 
section). 

Theorem 108. Let a, b be non-zero, non-invertible elements in a one- 
dimensional quasi-local domain R. Then some power of a is divisible by b. 

Proof. The ring R/(b)  has exactly. one prime ideal, which is con- 
sequently nil (Theorem 25). The image of a in R/(b)  is therefore nil- 
potent, i. e., some power of a is divisible by b. 

Theorem 109. Let the domain R b,e equal to V ,  n V2, where the 
V’s lie between R and its quotient Jield. Assume that each Vi is quasi- 

PI and Pz are incomparable, and that each V ,  is one-dimensional. Then 
local, has maximal ideal Pi, and that Qi A R = Pi. Assume further that 

/ 

Vi = Rpd. 

Proof. Given x E Vl,  we must prove x E RP,, i. e., we must find s c R ,  
s f PI ,  such that sx c R .  We have an element t that lies in Pz but not in 
PI .  Write x = y / z  with y and z in V2. Since Vz is one-dimensional and 
t lies in its maximal ideal, we have (Theorem 108) that in Vz, z divides 
some power of t ,  say tn = zzl. Then x = yzl/ tn,  t”x = yzl. The element 
s = t” does the trick. For s, like t ,  lies in Pz but not in P1. We have 
sx  E V1 since s e R and x e V,. Finally, sx  = yzl lies in V2 since y and z1 
both do. 

We turn to what can be said for infinite intersections. The notation 
set forth in Theorem 110 will be used in the next four theorems as 
well. 

’ 

Theorem 11 0. Let the domain R be a locally finite intersection A V ,  
of one-dimensional quasi-local domains lying between R and its quotient 
field. Let Ql be the maximal ideal of V,,  and P,  = Q ,  A R. Let N be a 
non-zero prime ideal of R.  Then N 3 some P,.  
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Remark. Note that Rp, is necessarily contained in V ,  but need not 
be equal to it. We are, of course, interested in the possibility of proving 
equality from suitable hypotheses. 

Proof. Assume the contrary. Let t be a non-zero element of N .  
Let P I , .  . ., P ,  be the finite number of P’s containing t. Pick u j  in P j  
but not in N ( j  = 1, . . ., r) .  Because of the one-dimensionality of V j  we 
have (Theorem 108) that is a multiple of t (in Vj) for sufficiently 
large nj. Then u = ulnl . . u T R r  is a multiple of t in Vl ,  . . ., V ,  by con- 
struction, and is also a multiple of t in all other Vi’s since t is a unit 
there. Hence u is a multiple of t in R, u E N ,  a contradiction since each 
u, is not in N .  

Theorem 11 1. Suppose, in addition to the hypotheses of Theorem 110, 
that a n~ultiplicatively closed set in R is given: let it be denoted by S. 
Then R s  is a locallyjnite intersection of the Vi’s that contain Rs .  

Proof. Let us use the subscript j for a typical V,  containing Rs. To 
prove RS = A V ,  we take x E AV, and have to prove x E Rs. Let 
W,, . . ., W ,  be the finite number of V,’s not containing x. (Observe 
that, by the local finiteness, any element of the quotient field of R lies 
in all but a finite number of the V,’s and, moreover, is a unit in all but 
a finite number of the V,’s.) Then there exists sk E S with Sk-’ 6 wk, for 
otherwise RS C wh and wk would be one of the VJ’s. Thus sh is a non- 
unit in wk. By Theorem 108, sknlx E wk for some nr. Then with s = 

we have sx E R and so x E Rs. That the representation R s  = A V ,  is 
again locally finite is immediate. 

Theorem 112. Suppose, in addition to the hypotheses of Theorem 
110, that each Vi is a valuation domain and that R itself is quasi-local 
and one-dimensional. Then R is one of the Vi’s. 

Proof. If M is the maximal ideal of R, each P,  = M or 0. Now if 
Pi = 0, the corresponding V ,  is the quotient field of R. This is an un- 
interesting possibility, which we could have ruled out in advance ; but 
in any case our hypothesis that V ,  is one-dimensional dismisses it. So 
each P,  = M .  Local finiteness then tells us that there are only a finite 
number of V,’s. This makes Theorem 107 applicable. Since R has only 
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one maximal ideal, there can be only one V ,  left when we make the 
intersection irredundant, and R must equal that V,. (As a matter of 
fact, there can be only one V ,  present, as follows from the easily proved 
fact that there are no rings properly between a one-dimensional valua- 
tion domain and its quotient field.) 

’ 
I 

, 
Theorem 113. Suppose, in addition to the hypotheses of Theorem 110, 

that each V ,  is a valuation domain. Let N be a minimal prime ideal in R. 
Then R N  is one of the V,’s. 

Proof. By Theorem 1 1 1, RN is a locally finite intersection of the Vj’s 
that contain it. We apply Theorem 112 to RN.  

Let us call a valuation domain rational if its value group is isomorphic 
to  a subgroup of the additive group of rational numbers. 

Theorem 114. Suppose, in addition to the hypotheses of Theorem 110, 
that each V ;  is a rational valuation domain. Then R a,, where the 
intersection is taken over those Vi’s that have the form RN, N a minimal 
prime ideal in R. 

Remark. Examples, discovered independently by Ohm [41] and 
Griffin [21] show that we cannot delete “rational” in Theorem 114. 

Proof. Let us (hopefully) call the V,’s of the form RN “essential”, 
and the others “inessential.” We begin by showing that one inessential 
component can be deleted. So let W be inessential, and write Q for its 
maximal ideal, P = Q A R. We can assume that the rank of P is at 
least 2. For if P is minimal, then (Theorem 113) RI. = one of the V,’s; 
since RIJ C W this tells us that W contains an essential V ,  and so cer- 
tainly can be deleted. (Actually, W itself would be essential; see the 
analogous remark in the proof of Theorem 112.) 

We proceed to prove that the V,’s with W deleted still intersect in R. 
Suppose the contrary. Then we have an element x, that lies in every V ,  
other than W but not in W. 

Since rank(P) 2 2, P properly contains a non-zero prime ideal which 
in turn, by Theorem 110, contains a Pk, which we fix for the argument 
that follows. Pick any non-zero y in PA. The hypothesis that W is a 
rational valuation domain allows us to find positive integers m, n such 
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that z = xmyn is a unit in W. Since x e Vk and y e 

At any Vi other than W or Vk we have that x and.  
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Qk, We have Z E  Qk. 
y both lie in Vi and 

hence so does z. In sum: z lies in every Vi (hence z E R ) ;  z is a unit in W ;  
and z is a non-unit in Vk. This contradicts the inclusion Pk C P.  

From the ability to suppress one inessential component we pass step- 
wise to the suppression of a finite number. Ordinarily this would be as 
far as one could go. However, local finiteness enables us to complete 
the job simply and swiftly. Suppose the element u lies in every essential 
Vi; we have to prove u E R.  Now in any event, u lies in all but a finite 
number of the Vi’s. The troublesome components, which do not con- 
tain u, are of course inessential. We have just seen that they can be 
omitted. Hence u e R .  

Let us call a domain R a Krull domain if it satisfies the three follow- 

(1) For every minimal prime ideal P ,  R p  is a DVR. 
(2) R = n R p ,  the intersection being taken over all minimal prime 

ideals. 
(3) Any non-zero element of R lies in only a finite number of mini- 

mal prime ideals. 
Theorems 103 and 104 show that any integrally closed Noetherian 

domain is a Krull domain. It is evident that any UFD is a Krull domain. 
Since neither of these classes of domains includes the other, Krull do- 
mains are useful as a unifying concept. Also significant is the following 
fact (its proof is beyond the scope of this book): the integral closure 
of a Noetherian domain need not be Noetherian, but it is a Krull do- 
main. 

We can state the following corollary of Theorem 114: if a domain R 
is a locally finite intersection of DVR’s within its quotient field, then 
R is a Krull domain. Moreover, the given DVR’s must include every 
Rp, P minimal. 

ing conditions: 

EXERCISES 

1. In a Noetherian integrally closed domain, let x be neither 0 nor 
a unit, and let P be a prime ideal minimal over (x) .  Prove that P has 
rank 1. (Hint: use Theorems 84 and 103. This is a special case of the 
principal ideal theorem, and the point is that the integrally closed case 
admits this alternative proof.) 

SEC. 2-4/INTERSECTIONS OF QUASI-LOCAL DOMAINS 83 

2. Prove that a one-dimensional Krull domain is a Dedekind do- 
main. (Hint: see Ex. 10 in $2-3.) 

3. Under the hypotheses of Theorem 114, prove that every non-zero 
prime ideal contains a minimal prime ideal.. 

4. (a) Under the hypotheses of Theorem 110, prove that any non- 
zero element of R lies in only a finite number of minimal prime ideals. 
(Hint: review the proof of Theorem 110.) 

(b) Assume in addition that each Pi is of rank 1. Prove that for any 
a # 0 in R we have 

<(R/(a)) = P1 U - - - U P,, 

where P1, . . ., P ,  are the minimal prime ideals containing a. Prove also 
that every prime ideal of grade 1 has rank 1. 

5 .  In the notation used throughout this section, let R = Vl n V2 
with Vl a one-dimensional valuation domain, V2 quasi-local, and 
V2 V,. Prove that V2 is a localization of R.  (Hint: take x e Vz, x p Vl. 
By adding 1 if necessary, adjust x to be a unit in V2. For any u E V2, 
u r n  E R for sufficiently large n.) 

6.  Prove: if R is a Noetherian integrally closed domain, then R[[x]]  
is integrally closed. (Hint: use Theorem 104 to reduce to the case where 
R is a DVR. Then Theorem 72 is applicable. The stronger result can 
be proved: that if R is completely integrally closed (cf. Ex. 12 in $2-1) 
so is R [ [ x ] ] .  For a thoroiIgffstudy of this circle of ideas, see the paper 
[41] by Ohm.) 

7. Let R be a Krull domain and P a minimal prime ideal in R .  Let p 
be an element of P that generates P p  in R p .  Prove that there exists an 
element u with u p P ,  UP C (p ) .  (Hint: let Pz, . . ., P,  be the remaining 
minimal prime ideals containing p .  Take u i,n a sufficiently high power 

8. Let R be a Krull domain in which all prime ideals of rank 2 2 are 
finitely generated. Prove that R is Noetherian. (Hint: it must be proved 
that a typical minimal prime ideal P is finitely generated. Observe that 
RIP is Noetherian. Pick p e P generating P p ,  pick u in P but in no other 
minimal prime containing p ,  let N = ( p ,  u), and let J be the set of all 
x with XP C N .  Note that P is the only minimal prime containing N .  
Note further that N C J and that J Q P by Ex. 7. Hence every Ijrime 
ideal containing J has rank 2 2. By Ex. 24 in 52-2, R/J is Noetherian 
and J is finitely generated. The hypotheses of Ex. 13 in $2-1 are now 
fulfilled, with P playing the role of I . )  

of P2. . . P,.) 

. 



CHAPTER 3 

M~c~U(~Y Rinss 

3-1 R-SEQUENCES AND MACAULAY RINGS 

The theory of R-sequences is a comparatively recent addition to the 
theory of commutative rings, but there seems to be no doubt that it 
will have a permanent place in the subject. In this section we develop 
the basic properties of R-sequences and the related topic of Macaulay 
rings. 

Definition. Let R be any commutative ring, A any R-module. The 
(ordered sequence of) elements xl,. . ., x,  of R is said to be an R- 
sequence on A if 

(a) (XI, . . ., xn)A # A ;  
(b) For i = 1, . . ., n, xi t,?",4/(xl, . . ., xi-l)A). 

Stated more completely, (b) says that x1 is not a zero-divisor on A ,  
x2 is not a zero-divisor on A / x l A , .  . ., x,  is not a zero-divisor on 

The case A = R is of special importance. We then simply say that the 
sequence xl, . . ., x, is an R-sequence. The property can be restated in a 
suggestive way: x1 is neither a unit nor a zero-divisor in R, the image 
of x2 is neither a unit nor a zero-divisor in the ring R/(xl), the image of 
x 3  is neither a unit nor a zero-divisor in the ring R/(xl, xz), etc. 

The assumption (a) in the definition of an R-sequence is a mere 
matter of technical convenience. In the first place, it guarantees that 

A / ( X I ,  . . - 9  xn-l)A. 
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the modules A ,  A / x l A ,  . . ., A/ (x l ,  . . ., xnPl)A are all non-zero so that 
we are entitled to discuss their zero-divisors. And further, it tells us that 
the module A/ (x l ,  . . ., x,)A is non-zero, which is reassuring in case ' 

further work with zero-divisors is needed. The equivalent form given in 
Theorem 76 should be noted. 

It is assumption (b) that really matters. As a partial motivation we 
give one example. Let S be any commutative ring and let 

SEC. 3-1/R-SEQUENCES AND MACAULAY RINGS 

R =  XI, . . ., x,] 

be the polynomial ring over S in n indeterminates. For the R-module 
we take R itself. Then it is evident that the elements xl, . . ., x,  consti- 
tute an R-sequence in R. 

To some extent, the resemblance between R-sequences and inde- 
pendent indeterminates can be pursued. Let R be a commutative ring 
containing a field F, and let al, . . ., a, be an R-sequence in R. Then it 
can be shown that the a's are independent indeterminates over F ;  the 
proof is sketched in [25]. 

To push the analogy further, we note that Theorem 121 is an analogue 
of the invariance of the transcendence degree of a field extension. 

We begin our discussion by handling a number of technical points. 

Theorem 115. Let Z, J be ideals in a ring R, A an R-module, and 
write B = A/ZA. Then B/JB is isomorphic to A/(Z+ J )A .  

Proof. Consider the natural homomorphisms A -+ B -+ B/JB. The 
kernel of the induced map from A to B/JB contains ZA and JA,  hence 
( I +  J)A.  Conversely if x belongs to the kernel, then x maps into JB 
in the map A + B, hence differs from an element of JA by an element 
of ZA. Thus x e ( I +  J)A.  

Theorem 11 6. Let i be an integer less than n. Let A be an R-module, 
xl, . . ., x,  elements in R. Then the following statements are equivalent. 

(a )  X I ,  . . ., x,  is an R-sequence on A ,  
( b )  xl ,  . . ., x i  is an R-sequence on A and xifl, . . ., x,  is an R-sequence 

on A/(x l ,  . . ., x J A .  

Proof. Apply Theorem 11 5 with Z = (xl, . . ., x i )  and J successively 
replaced by (X;+I>, (x;+I, xi+%), . . .. 
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Theorem 117. Let x ,  y c R be an R-sequence on the R-module A. 
Then x 6 <(A/yA). 

Proof. Suppose that t* c A/yA  and xt* = 0. Pick any t in A mapping 
on t*. Then xt e yA,  say xt  = yu. Since y p <(A/xA), this implies u c xA,  
say u = xu1. Since x 6 <(A), we can cancel x in the equation xt  = xyul, 
getting t = yul, t* = 0, as required. 

Examples show that in Theorem 117 we cannot conclude that y ,  x 
is an R-sequence, i. e., the conclusion y p <(A) fails. If we assume 
y 6 <(A) outright then we can make the interchange of x and y ;  in the 
next theorem we extend this remark to longer sequences. 

Theorem 118. Let xl,  . . ., x ,  be an R-sequence on A. Then the 
is an R-sequence on A if sequence obtained by interchanging xi  and 

and only if xi+l p <(A/(xl, . . ., xip1)A). 

Proof. This is immediate from Theorems 116 and 117. 

With Noetherian and radical assumptions the interchange can be 
effected. 

Theorem 119. Let R be Noetherian, A a$nitely generated R-module, 
and x l .  . ., x ,  elements in the Jacobson radical of R constituting an R- 
sequence on A. Then any permutation of the x’s is also an R-sequence 
on A. 

Proof. Any permutation on n things can be achieved by successive 
interchanges of neighboring elements, By Theorem 118 it therefore 
suffices to do the case n = 2. We change notation for the R-sequence 
to x ,  y and (by Theorem 117 or 118) it suffices to prove y p <(A). Let S 
be the submodule of A annihilated by y.  We shall prove S = 0. Take 
s e S. Since y p <(A/xA), we have s e xA,  say s = xsl. Now ys = 0 gives 
us xysl = 0 and then ysl = 0 since x 6 <(A). Hence s1 E S. We have 
proved S = xS. By the Nakayama lemma (Theorem 78), S = 0. 

Remark 1. Diana Taylor (Chicago thesis, 1966) has proved a par- 
tial converse to Theorem 119: if a Noetherian ring R possesses an R- 

b 

i 
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8 sequence of length 3, and if in R every permutation o f  an R-sequence 
is an R-sequence, then R is local. See Ex. 7 for a simple example show- 
ing that the radical assumption in Theorem 119 cannot be deleted. 

’ 

Remark 2. Inspection of the proof shows that in Theorem 119 we 
need not assume that x ,  is in the radical; it suffices to know this for 
the remaining n - 1 elements. 

Theorem 120. I f x l ,  . . ., x ,  is an R-sequence on a module A ,  then the 
ideals (xl),  (x,, xz),  . . ., (x l ,  X Z ,  . . ., x,) form a properly ascending chain. 

Proof. Suppose on the contrary that (x l ,  . . ., x,) = (xl ,  . . ., x,+~). 
Then x,+, is a linear combination of x,, . . ., x ,  so that 

xt+1 A C ( X I ,  . . ., xt)A. 

This shows that x % + ~  annihilates the module A/(x l ,  . . ., x J A ,  whereas 
it is supposed to be a non-zero-divisor. 

Theorem 120 shows that if R is Noetherian and A is a non-zero R- 
module, then maximal R-sequences on A exist. But, of course, we do 
not yet know that any two such maximal R-sequences have the same 
length, or even that there is a fixed upper bound to their lengths. This 
is settled in the next theorem. 

Theorem 121. Let R be a Noetherian ring, I an ideal in R, and A a 
Jinitely generated R-module. Assume that IA  # A .  Then: any two maxi- 
mal R-sequences on A contained in I have the same length. 

Proof. It evidently suffices to prove the following: if x,, y ,  E Z, 
x,, . . ., x ,  is a maximal R-sequence on A ,  and y,, . . . , y ,  is an R- 
sequence on A ,  then yl, . . ., y, is maximal. We do this by induction on 
n, the case n = 1 requiring separate discussion. 

n = 1. After a change of notation we have the following setup: x and 
y are in I ,  they are non-zero-divisors on A ,  and the element x constitutes 
a maximal R-sequence on A. It then follows that I consists of zero- 
divisors on A/xA ; for if t E I is a non-zero-divisor on A/xA,  then the se- 
quence x ,  t is an R-sequence on A ,  the condition ( x ,  t)A # A being 
fulfilled in view of the hypothesis IA # A .  Our task is to prove that I 
consists of zero-divisors on A/yA.  The vital information is provided by 
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Theorem 82, which tells us that a single non-zero element u* of A / x A  
is annihilated by Z. Restating this in A ,  we have u in A but not in x A  
such that Zu C xA.  In particular, yu E xA ,  say yu = xv. We claim v Q y A  
and Zv C y A .  For the first point, if v = yw then yu = xyw. The factor 
y can be cancelled, leaving the contradiction u = xw. For the second 
point, we have xZv = yZu C yxA. In this inclusion the factor x is can- 
cellable, yielding Zv C y A .  If v* denotes the image of v in A / y A ,  then 
v* # 0 and Zv* = 0, as required. 

General n. For brevity let us write B, = A / ( x l ,  . . ., x,-,)A, C, = 
A/@,,  . . ., y,-,)A for i = 1, . . ., n. In particular, B1 = Cl = A .  The ex- 
istence of the elements x,,  y;  shows that Z c f  <(&), Z cf <(CJ for 
any i. From this we can deduce the existence of an element z lying 
in Z but in none of <(B,), <(C,). One way to see this is to form the 
set-theoretic union of all the sets <(B,), <(C,), observe that it is a 
finite union of prime ideals by Theorem 80, and employ Theorem 81 
to get the desired element z. Perhaps a neater alternative is to form 
the direct sum 

D = B10 * * 0 B, 0 C10 * * * 0 C, 

and deduce Z Q <‘D) from Theorem 82. It then suffices to take z e Z, 
z f 

In any event the resulting element z is a non-zero-divisor on B,, while 
x ,  constitutes a maximal R-sequence on B,. By the case n = 1, z is also 
a maximal R-sequence on B,. Now the fact that z is not a member of 
any of <(&-,), <(Bn-2), . . ., <@I), together with Theorem 118, allows 
us to push z ahead of the x’s one step at a time till we reach the conclu- 
sion that z ,  x l ,  . . ., x,-, is an R-sequence on A .  Evidently it is a maximal 
R-sequence on A .  In exactly the same way, we have that z, yl, . . ., y,-, 
is an R-sequence on A but we do not yet know it to be maximal. Now 
we pass to the module A / z A  on which we have two R-sequences of 
length n - 1 : xl, . . ., x,-, and y,, . . ., ynPl, the first of which we know to 
be maximal. By our inductive assumption we deduce that yl, . . ., y,-, 
is a maximal R-sequence on A / z A ,  which in turn implies that yl, . . ., 
Y , - ~ ,  z is a maximal R-sequence on A .  By another application of the case 
n = 1, we reach the desired conclusion that y,, . . ., y,-,, y ,  is a max- 
imal R-sequence on A .  This concludes the proof of Theorem 12 1. 

Remark. This proof is due to Northcott and Rees [40]. The appendix 
to this section presents an alternative homological proof, due in essence 
to Rees [43]. 

6. 
r 
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Dejnition. Let R be a Noetherian ring, Z an ideal in R, A a finitely 
generated R-module satisfying ZA # A .  The common length of all 
maximal R-sequences in Z on A is called the grade of Z on A and written 
GU, A) .  

Remarks. 1. G(Z, A )  could at least be defined without finiteness 
assumptions. It might be infinite, and we would have to cope with the 
possible existence of maximal R-sequences of different lengths. But 
there are so few theorems on non-Noetherian grade available as yet 
that introduction of the general notion does not seem to be warranted. 
Note that the “grade one” terminology used in $2-3 is, for Noetherian 
rings, in agreement with the present definition. 

2. In the original terminology of Auslander and Buchsbaum, the 
designation was “codimension” of Z on A .  The sense in which grade is 
complementary to some kind of dimension can only be revealed later 
when the homological invasion is in full swing (see Theorem 173). It  
is sometimes suggestive, sometimes misleading, to think of grade as 
complementary to dimension. On the whole, the “grade” terminology 
(due to Rees) seems preferable. Note: the French school has introduced 
“profondeur,” translated as “depth.” 

3. Two cases are specially important. If A = R we call G(Z, R) simply 
the grade of Z and write it G(Z). Note that this is defined for any ideal Z 
different from R and that C(Z) is the maximal length of an R-sequence 
in Z.  On the other hand, if R is a local ring with maximal ideal M ,  and 
A is any non-zero finitely generated R-module, we call G(M, A )  simply 
the grade of A and write it G(A).  Note that G(A) is defined since 
M A  # A by the Nakayama lemma. (There is a possible ambiguity in 
the notation G(Z) since we might mean G(Z, R) or G(M, I ) ;  it should 
however always be clear from the context which is intended.) 
4. When R is local it is reasonable to write G(R) for G(M, R) and 

call it simply the grade of the ring. We shall do so systematically, but 
we shall avoid using the symbol G(R) if R is not local. 

/ 

For ease of reference we record explicitly a simple result. 

Theorem 122. Let Z be an ideal in a Noetherian ring R, A afinitely 
generated R-module with I A  # A .  Then Z can be embedded in a prime 
ideal P satisfying G(P, A )  = G(Z, A) .  
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Proof. Let xl, . . ., x k  be a maximal R-sequence in I on A ,  and write 
J = (x l ,  . . ., xk). Then I C <(A/JA). We enlarge I to a maximal prime 
ideal P of the module A/JA. Then P contains the annihilator of A ,  and 
it follows readily from Theorem 76 that PA # A. Thus G(P, A )  is de- 
fined, and evidently it is equal to k .  

We interpolate at this point a theorem that was promised in the pre- 
ceding section. 

Theorem 123. Let R be a Noetherian domain. Then the representa- 
tion given in Theorem 53 (i. e., the expression R = n R p ,  P ranging over 
the maximal primes of non-zero principal ideals) is locally jinite. 

Proof. Given an element x in R, not 0 and not a unit, we must show 
that x lies in only a finite number of the P’s in question. Now a typical 
ideal P is a maximal prime, say of (y). Then y is a maximal R-sequence 
in P, and it follows from Theorem 121 (just the case n = 1 is needed) 
that x is a maximal R-sequence in P, i. e., P C <(R/(x)).  Moreover, 
since the same argument is applicable to any prime ideal containing P, 
it follows further that P is a maximal prime of (x ) .  By Theorem 80 there 
are only a finite number of maximal primes of ( x ) ;  this proves the 
present theorem. 

We proceed to a result we call the ‘‘generalized unmixedness theo- 
rem.” Actually we prove two such theorems, a first (Theorem 125), 
which is valid globally, and a second (Theorem 129), which only holds 
locally but is slightly stronger. 

The next preparatory theorem is due to E. Davis. 

Theorem 124. Let P1, . . ., P, be prime ideals in a commutative 
ring R, let I be an ideal in R, and x an element of R such that ( x ,  I )  
Q P1 V - * V P,. Then there exists an element i E I such that x + i 
$PI V - - - V P,. 

Proof. We may assume that no two of the P’s are comparable, for 
any Pk contained in another can simply be deleted without changing 
the problem. Suppose for definiteness that x lies in P1, . . ., P,  but not 
in any of Pr+l, . . ., P,. (The extreme cases r = 0 and r = n are admitted; 
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if r = 0, i = 0 will do, and if r = n the following proof applies with the 
simplification that y can be taken as 1.) We have I Q P1 U . . . U P,, 
for otherwise ( x ,  I )  C P1 U - . - U P,  contrary to hypothesis. There 
exists an element io E I not lying in any of PI, . . ., P,. Next we select y 
in P,+l n - . n P, but not in P1 V - - - U P,. Such a selection is pos- 
sible, for otherwise P,+l r\ - . n P,  C P1 U . . . U P,, whence by 
Theorem 81, P,+l n. . - r\ P,  C Pi for some j (1 6 j 6 r), and 
Pk C P j  ( r+ I S k 5 n)  for some k ,  a contradiction. The element 
i = yio then fulfills our requirements. 

Theorem 125. Let R be Noetherian, A afinitely generated R-module, 
J an ideal in R that can be generated by k elements. Assume JA # A.  
Then: 

(a)  G(J, A )  S k;  
(b)  If  G(J, A )  = k,  then J can be generated by k elements forming an 

R-sequence on A. 

Proof. Write J = (xl ,  - ., x k ) .  We shall find elements 

u1 = x1 + (linear combination of xz, . . ., xk), 
u2 = x2 + (linear combination of x3, . . ., X k ) ,  . . . 

constituting a sort of triangular change of basis, such that the u’s form 
an R-sequence on A.  We do this by repeated applications of Theo- 
rem 124. 

The theorem being presumably vacuous for k = 0, we assume k > 0. 
If G ( J , A ) =  0, no further proof is needed. So we assume J Q / ? ( A ) .  
We apply Theorem 124 with x = xl,  I = (x2;. . ., x k )  and P1 U . U P,  
= Z(A). With i the element furnished by Theorem 124, we set u1 = x1 + i. 
If G(J, A )  = 1, we are through. So we assume J Q /?(A/ulA). From this 
it follows that ( x z ,  . . ., xk)  Q‘ /?(A/ulA). For suppose the contrary. An 
arbitrary element j of J can be written as 

J 

I j = alxl + azx2 + . . + a!,& (a, E R) 
! 
I 

(b,  E R) I 

and this can be rewritten as 
i j = alul + bzxz + - - . + bkxl 

Since alul annihilates A/ulA and b2xz + . . - + bnxk is a zero-divisor on 
A/ulA,  we get j E <(A/u,A), i. e., J C <(A/ulA). This contradiction 
shows that (x2, . . ., x k )  Q <(A/ulA). We now apply Theorem 124 with 
x = X Z ,  I = ( x p ,  . . ., x k ) ,  and PI U . U P, = z ( A / u l A ) ,  and if i is the 
resulting element, we set u2 = xz + i. We continue in this fashion as long 

t 
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as possible. The process terminates in one of two ways: either G(J, A )  
< k ;  or if G(J, A )  = k ,  the elements ul, . . ., uk exhaust J.  This com- 
pletes the proof of Theorem 125. 

Theorem 126. Let R be a Noetherian ring, A a finitely generated 
non-zero R-module, x an element in the radical of R but not in <(A).  Let 
Z be an ideal in R contained in <(A). Then: (Z, x )  C Z ( A / x A ) .  

Proof. Since x annihilates A / x A ,  the conclusion really just states 
Z C <(A/xA) .  Let S be the submodule of A annihilated by I .  By Theo- 
rem 82, S # 0. If S Q x A ,  we are through, for the image of S in A / x A  
will be non-zero and annihilated by I .  So suppose on the contrary that 
S is contained in x A .  Any s e S can then be written s = xa, a e A .  We 
have Zxa = Is = 0. Since x F<(A), this implies l a  = 0, a e S. Hence 
S =  x S .  But then S =  0 by the Nakayama lemma (Theorem 78), a 
contradiction. 

Remark. This proof is really the same as that of Theorem 119. We 
have given it twice for expository reasons. 

Theorem 127. Let R be a Noetherian ring, Z an ideal in R, x an ele- 
ment of R, and J = (I ,  x). Let A be a non-zero jni te ly  generated R- 
module. Assume that J is contained in the radical of R. Then: 

G(J, A )  S 1 + G(Z, A).  

Proof. Let G(Z, A )  = m and let x l ,  . . ., x ,  be a maximal R-sequence 
in Zon A .  We switch the scene of action to the module A / ( x l ,  . . ., x,)A. 
After a change of notation we may thus assume G(Z, A )  = 0, and we 
have to prove that G(J, A )  S 1. Of course, if J C <(A) there is nothing 
to prove. So we assume that J contains a non-zero-divisor on A ,  and 
now we have to prove that G(J, A )  = 1. If <(A) = P1 V . - V P,, 
then the hypotheses of Theorem 124 are fulfilled, and we have that 
x + i I <(A) for some i e I.  We might as well replace x + i by x .  Now 
we have x F ,?“‘A). To see that G(J, A )  = 1 it remains to verify 

J C <(AIxA). 
This is asserted by Theorem 126. 

By a slight variant of the proof of Theorem 127, we can prove the 
following useful result. 

) 
# 
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Theorem 128. Let R be a local ring with maximal ideal M .  Let Z be 
an ideal in R, Z C M ,  and let A be a finitely generated non-zero R- 
module. Assume G(Z, A )  < G(M, A ) .  Then there exists a prime ideal P 
with G(P, A )  = 1 + G(I, A )  and such that P 3 I.  

Proof. Let xl, . . ., xk be a maximal R-sequence on A contained in 
I ,  and write J = (xl . . ., Xk). Since G(M, A )  > k ,  there exists in M an 
element y with y F <(A/JA).  Then G((Z, y) ,  A )  2 k + 1 .  By Theorem 126 
or Theorem 127, G((Z, y) ,  A )  = k + 1. We quote Theorem 122 to en- 
large ( I ,  y )  to the desired prime ideal P .  

Theorem 129. Let R be a Noetherian ring, let Z = (x l ,  . . ., x,) where 
the x’s lie in the radical of R, and let A be a finitely generated non-zero 
R-module. Then G(Z, A )  = n if and only if the elements x l ,  . . ., x ,  con- 
stitute an R-sequence on A .  

Proof. The “if” part is obvious. We prove the “only if” part by 
induction on n. Write J =  (x l ,  . . ., xnP1). If G(J, A )  < n - 1, then by 
Theorem 127, G(Z, A )  < n. Hence G(J, A )  = n - 1. By our inductive 
assumption, xl, . . ., x , - ~  is an R-sequence on A .  It remains to see that 
x,  B 2‘(A/JA). But the contrary assumption leads to Z C <(A/JA),  so 
that x l ,  . . ., x,-~ is a maximal R-sequence in Z on A ,  in contradiction to 
G(Z, A )  = n. 

The strengthened form we obtained in passing from Theorem 125 to 
Theorem 129 really requires that the x’s be in the radical - see Ex. 7. 
Note also that in proving Theorem 129 we have furnished an alternative 
proof of Theorem 119. 

We have referred to Theorems 125 and 129 as “generalized unmixed- 
ness theorems” but there is no sign yet of anything being unmixed. An 
explanation is overdue. 

Let Z be an ideal in a Noetherian ring R .  Z has axcertain grade, say k .  
Let P1, . . ., P ,  be the maximal primes of I ,  that is, <(R/Z) = P1 U * . 
U P,, and the P,’s are maximal within <(R/Z). Any ideal containing I has 
grade z k ;  this is in particular true of the P,’s. Simple examples show 
that some or all of the P,’s can indeed have a grade exceeding k .  In 
the favorable case where they all have grade k ,  we call Zgrade-unmixed. 

Suppose I is generated by an R-sequence x l , .  . ., xk. Then for a 
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maximal prime Pi belonging to I we have that X I ,  . . ., x k  is a maximal 
R-sequence in Pi. Hence G(PJ = k and Z is grade-unmixed. 

We return to Theorem 125, and simplify the discussion by dropping 
the module A,  or more precisely, by replacing it by R .  We may state: 

Theorem 130. Let the ideal Z in a Noetherian ring have grade k and 
be generated by k elements. Then Z is grade-unmixed. 

In the classical theorem that foreshadowed Theorem 130, “rank” 
played the role of “grade.” Ideals with rank equal to the number of 
generators corresponded to varieties defined by the “right number of 
equations,” and the unmixedness of such ideals was a significant simpli- 
fication. 

We proceed to build a bridge between the grade and rank versions 
of unmixedness. The first thing that needs to be done is to define the 
rank of a general ideal (so far we have defined it only for prime ideals). 

Definition. In any commutative ring R the rank of an ideal Z is the 
minimum of rank(P), P ranging over the prime ideals containing Z. 
Equivalently, we can let P range over the minimal prime ideals over Z. 

The first result connecting grade and rank (Theorem 132) is quite 
easy, as is attested by the fact that it is valid without any chain condi- 
tions. An equally easy theorem serves as a prelude. 

Theorem 131. Let P be a prime ideal in a commutative ring R ,  and 
let x e P be an element lying in no minimal prime ideal of R .  Write 
R* = R/(x), P* = P/(x). Let the rank of P* in R* be k .  Then the rank of 
P in R is at least k + 1. 

Note. If R is a domain, the word “minima1~’ is meant literally, i. e., 
x # 0 is all that is assumed. Observe that the hypothesis on x is ful- 
filled if x is not a zero-divisor (Theorem 84). 

Proof. We assume k finite (the case k infinite is quite evident). We 
lift the chain 

P* = Po* 3 - * ‘ 3 Pk* 
to a chain 

(26) P =  Po 3 * ’ *  3 P k  
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of length k descending from P (Pi is the complete inverse image of Pi*). 
Since x lies in no minimal prime ideal, the chain (26) can be extended 
at least one more step. 

Theorem 132. If an ideal Z in a commutative ring contains an R- 
sequence of length n, then rank(Z) 2 n. 

Proof. It is evidently harmless to assume that Z is prime, and we 
accordingly change notation to P. Write R* = R/(x l ) ,  P* = P/ (x l ) .  
Then P* contains an R-sequence of length n - 1, namely the images 
of xz,  . . ., x,. By induction, rank(P*) 2 n - 1 ,  and by Theorem 131, 
rank(P) L n. 

. 

Remark. For an analogue for modules, see Ex. 22. 

Thus rank 2 grade holds under very general conditions. The two 
need not be equal; for perhaps as simple a counterexample as any, see 
Ex. 8. The condition that rank and grade coincide is a significant 
restriction. Moreover, it is very useful to know that the assumption of 
equality of grade and rank for maximal ideals implies equality for all 
ideals. So we define Macaulay rings by the weak property, and in 
Theorem 136 pass to the strong property. 

Definition. A Macaulay ring is a Noetherian ring in which G(M) 
= rank(M) for every maximal ideal M .  

Remark. In Nagata’s terminology [37, p. 821 this is a locally Ma- 
caulay ring. For a Macaulay ring, Nagata requires in addition that all 
maximal ideals have the same rank. 

Some needed facts about the behavior of grade under localization 
are presented in the next three theorems. We give a direct proof of 
Theorem 133, but it should be noted that the gist of it is that localiza- 
tion preserves exact sequences. 

’ 
I, 

Theorem 133. Let R be any ring, A a non-zero R-module, and 
xl, . . ., x, an R-sequence on A .  Let S be a multiplicatively closed set in 
R ,  anddenote by xl* the image of x ,  in Rs. Assume (xl*, . . ., x,*)As # A S.  
Then: xl*, . . ., xn* is an R-sequence on A S.  
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Proof. We must show that xi* is a non-zero-divisor on 

Asl(xi*, . . ., xjll1)As. 
Suppose that 

i-1 

3 = 1  
xi*b* = C xj*aj* (27) 

where b*, ai* E A S.  Say b* = b / s ,  aj* = aj/sj. We multiply (27) through 
by ssl. . . si-l and then return to an equation in A itself (which calls 
for a further multiplication by an element of S). Change notation by 
replacing the a’s by suitable c’s. The result: sOx,b - Zxici = 0 with 
so E S.  By hypothesis sob E (x l ,  . . ., x i & I .  Hence b* E (xi*, . . ., x t ? & f s ,  
as required. 

The precaution we exercised in Theorem 133, by assuming 

(xi*, . . ., x,*)As f As ,  

is really needed, as simple examples show. But let us note a useful case 
where degeneration is impossible. Let the module be R, let the localiza- 
tion take place with respect to a prime ideal P, and assume xl ,  . . ., 
x ,  E P. Then the localized module RP is not 0, and the elements xi*, 
. . ., x,* are non-units in the local ring Rp. Hence the condition 
needed in Theorem 133 is fulfilled and xi*, . . ., x,* is an R-sequence. 
We deduce : 

Theorem 134. Let R be a Noetherian ring, P a prime ideal in R, I an 
ideal in R contained in P. Then G(I) S G(Zp). 

We note next that it is possible to localize to preserve the grade of a 
given ideal. 

Theorem 135. Let R be a Noetherian ring and I an ideal in R, I # R. 
Then there exists a maximal ideal M such that G(Z) = G(IM). 

Proof. Suppose G(I) = n,  let xl, . . ., x, be a maximal R-sequence 
in I,  and set J = (xl, . . . x,). Then I C <(R/J) so that (Theorem 82) 
there exists an element u pJ with Zu C J.  Let K denote the set of all 
elements y in R such that yu e J .  Then K is an ideal in R containing Iand  
different from R. Embed K in a maximal ideal M. We claim that 
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G(ZM) = n.  Theorem 134 asserts that G(IM) 2 n ;  indeed the observa- 
tions above show that the elements xi, . . ., x ,  map into an R-sequence 
in RM contained in IM. It remains to prove the maximality of this R- 
sequence, i. e., we must show IM C <(RM/JM). If u* is the image of u 
in RM, we have IMu* C J M .  Further u* p JM;  for u* e JM implies su e J 
for s p M ,  whereas s E K C M by the definition of K. 

Theorem 136. Grade and rank coincide for  every ideal in a Macaulay 
ring. 

Proof. We first note that it is sufficient to prove the theorem for 
prime ideals. For by the definition of rank we have rank(Z) = min 
rank(P) taken over all prime ideals containing I ,  and the same is true 
for grade, by Theorem 122. 

Next we reduce the problem to the local case. Let P be a prime ideal 
for which we hope to prove grade and rank to be equal. By Theorem 
135 there is a maximal ideal M containing P such that G(P) = G(PM). 
Furthermore, P and PM have the same rank. So it suffices to prove the 
equality of grade and rank for PM. Note that our hypothesis is pre- 
served in the ring RM, for the grade of M cannot rise in the passage 
from R to RM since it must not exceed the rank. 

So we now assume R to be local with maximal ideal M .  If there exists 
a prime ideal P with grade less than rank, choose P to be maximal 
among such. We must have P # M .  Thus rank(M) > rank(P). Since 
the grade and rank of M coincide, we have G(M)  > G(P). By Theorem 
128, P can be enlarged to a prime ideal Q with G(Q) = 1 + G(P). Since 
rank(Q) necessarily exceeds rank(P), we have rank(Q) > G(Q), a con- 
tradiction. 

We are in a position to state what might be called the “classical un- 
mixedness theorem.” Note that the final statement in Theorem 137 
concerning minimality is an immediate consequence, since two com- 
parable prime ideals can have the same rank only if they are equal. In 
the language of primary decomposition, the ideal I of Theorem 137 
has no “embedded” primes. 

Theorem 137. In a Macaulay ring let I be an ideal of rank n,  which 
can be generated by n elements. Then all maximal primes belonging to 
I have rank n and are minimal over I .  
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In Macaulay rings we can prove that chains of prime ideals behave 
well. In discussing this we shall find it convenient to introduce a variant 
of the notion of rank. 

Definition. The little rank of a prime ideal P is the length of the 
shortest saturated chain of prime ideals descending from P to a mini- 
mal prime ideal. A chain is said to be saturated if no further prime ideals 
can be inserted. 

The first instance where we observe a difference between little rank 
and rank is illustrated in Fig. 1, where it is to  be understood that the 

P 

b 

FIGURE 1 

indicated chains are saturated, and the bottom prime ideals are mini- 
mal. On the assumption that there are no longer chains descending 
from P, we have little rank(P) = 1, rank(P) = 2. We shall shortly see 
that this possibility is excluded in Macaulay rings, but it should be 
noted that it is not to  be regarded as at all pathological; for instance, 
such behavior is easily exhibited in a suitable homomorphic image of a 
polynomial ring over a field. 

It is a more penetrating question to ask if little rank and rank can 
differ in a domain. The first possible instance is illustrated in Fig. 2. 

P 

FIGURE 2 
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Here the chains are again to be saturated, and the bottom prime ideal 
is 0; assuming again that there are no longer chains descending from P, 
we have little rank(P) = 2, rank(P) = 3. For many years it was an open 
question whether this could happen in a Noetherian ring or, for that 
matter, in any commutative ring. Then Nagata exhibited an example 
to  show that it could; it appears among his examples of bad behavior 
at the end of [37]. 

We shall say that a commutative ring satisfies the saturated chain 
condition if any two saturated chains of prime ideals between two fixed 
ones have the same length. We leave it to the reader to  see that equality 
of little rank and rank implies the saturated chain condition. More 
exactly, it is equivalent to  the saturated chain condition in the stronger 
form referred to above: all saturated chains descending from a fixed 
prime to the bottom have the same length. 

The advantage we gain in introducing the little rank is that we are 
able to prove that 

(28) grade(P) 6 little rank(P) 

holds for any prime ideal in any Noetherian ring. We can of course 
lengthen (28) to  

(29) , grade(P) 5 little rank(P) 5 rank(P) 

Now in a Macaulay ring the two end members of (29) are equal, 
trapping the little rank between them. ~ 

! 
Theorem 138. For any prime ideal P in any Noetherian ring R, 

G(P) 5 little rank(P). 

Proof. If this is false, take P to be an offender. We can harmlessly 
pass from R to R p ,  for the little rank of P will remain the same, while 
the grade can only go up, increasing the offense. So we can start over 
with R local, M its maximal ideal, and G ( M )  > little rank(M) = n, say. 
We can find a prime ideal Q directly underneath M with little rank(Q) 
= n - 1. We make an induction on the little rank, the case of little rank 
0 being immediate. So we have G(Q) 5 n - 1. But then there is a jump 
of at least two from G(Q) to G(M), contrary to  Theorem 128. 

We wind up this section with three theorems concerning the stability 
of the Macaulay property. Three others (Theorems 15 1, 156, and 157) 
have to await the principal ideal theorem. 
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Theorem 139. If 
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is Macaulay and S a multiplicatively closed set 
in R, then Rs is Macaulay. 

Proof. Given a maximal ideal N in Rs we must show that its grade 
and rank are equal. Now N has the form Ps with P maximal within the 
complement of S. We have G(P) = rank(P) by Theorem 136 and we 
know rank(P) = rank(Ps). In going from P to PS the grade can only go 
up, but G(Ps) cannot exceed rank(Ps). Hence they are equal. 

Theorem 140. Let R be Noetherian and assume Rnr Macaulay for  
every maximal ideal M.  Then R is Macaulay. 

Proof. Our hypothesis tells us that the grade and rank of MM are 
equal, say to n. Rank(M) is this same number n, and so is G(M),  for 
by Theorem 135, G(M) = G(MM).  

Theorem 141. Let x be a non-zero-divisor in a Macaulay ring R. 
Then R* = R/@) is a Macaulay ring. 

Proof. Given a maximal ideal M* in R*, we must prove its grade 
and rank to be equal. Now M* has the form M / ( x )  with M maximal in 
R, and we know the grade and rank of M to be equal. Furthermore 
G(M) = 1 + G(M*), for we may begin a maximal R-sequence in M with 
x. As for rank, we have rank(M) L 1 + rank(M*) by Theorem 131 ; 
but inequality cannot be tolerated here, for it would make the rank of 
M* fall below its grade. 

APPENDIX 3-1. 

In this appendix we outline the proof of Theorem 121 that uses homo- 
logical algebra. We first note a trivial lemma. 

Lemma. Let C and D be R-modules, and suppose there exists an 
element x in R satisfying xC = 0 and x f <( 0). Then HomR(C, D )  = 0. 
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Proof. Let f be a homomorphism from C 
we have 0 =f(xc)  = xf(c), whence f ( c )  = 0. 
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1 D. Then for any c e C 

Theorem. Let A and B be R-modules. Assume that the elements 
x l ,  . . ., x, in R constitute an R-sequence on A and that (xl, . . ., x,)B = 0. 
Then 

Ext;(B, A )  zz HOmR(B, A / ( x l ,  . . ., x,)A) 

Proof. Since x1 is a non-zero-divisor on A we have the exact se- 
quence 

21 

0 - + A  - + A  -+A/x l  A -+ 0 

where the indicated map is multiplication by x l .  This yields the exact 
sequence 

(30) Ext:-'(B, A )  -+ Ext;-'(B, A / x l A )  + Ext;(B, A )  2 Ext;(B, A )  

Since xlB = 0, the last map in (30) is zero. Furthermore, by induction 
on n, 

(31) Ext;J-'(B, A )  Horn(& A / ( x l ,  . . ., x,-,)A) 

The right side of (31) vanishes by the lemma, applied with x,  playing 
the role of x .  Hence in (30) we can replace both end terms by 0, thus 
obtaining the isomorphism of the two inner terms. We make a second 
application of our inductive assumption of the truth of the theorem for 
n - 1 ,  and this completes the proof. 

We now apply the theorem to the case where B = R / I ,  where R is 
Noetherian and I is an ideal in R, I # R. The condition 

(32) HomR(R/I, A / ( x l ,  . . ., xn)A)  # 0 

is equivalent to  the statement that there is a non-zero element of 
A / ( x l ,  . . ., x,)A annihilated by I,  and (32), by Theorem 82, is equivalent 
to  the assertion 

(33) I C <(A/(xl ,  * * .> xn)A) 

In the presence of IA # A ,  (33) says that the R-sequence x l , .  . ., x ,  
on A is maximal within I. 

In summary, we arrive at the following homological characterization 
of G(I, A ) :  it is the smallest integer n such that Ext;(R/I, A )  # 0. 
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EXERCISES 

1. Let Z be an ideal in a domain R. If Z contains an R-sequence of 
length 2, prove that I-' = R. 

2. Let R be a Noetherian domain, Z a non-zero ideal in R. Prove: 
I-l = R if and only if G(Z) L 2. 

3. Let a,  b be an R-sequence in a domain R. Prove that ( a  + bx) is 
a prime ideal in R[x]. (Hint: consider the homomorphism x -+ - a / b .  
For this exercise and the next two we waive the requirement (a ,  b )  # R.) 

4. Let a, b be elements in a domain R such that ( a  + bx)  is prime 
in R[x].  Prove that a, b is an R-sequence. (Hint: if sa = tb with t not a 
multiple of a, observe that b(t + sx) is divisible by a + bx.)  

5 .  Prove: in a GCD-domain two elements form an R-sequence if 
and only if they are relatively prime. 

6. Let a, b be an R-sequence in a ring R ,  and let y = a + bx where 
x is any element in R. Prove that b maps into a non-zero-divisor in the 

7. (a) Let R = K[x ,  y,  z], K a field. Prove that the elements x, 
Y(l - x), z(l - x) form an R-sequence, but in the order y(l - x), 
z(l - x), x they do not. 

(b) If Z is the ideal generated by y(1 - x )  and z(l - x), prove that 
G(Z) = 1, G(Z, x) = 3. (This shows that radical assumptions cannot be 
omitted in Theorem 127.) 

8. Let .K be a field, R = K [ x ,  y ] / ( x 2 ,  xy). Let M be the image of 
(x, y )  in R. Prove that G(M) = 0, rank(M) = 1. 

9. Prove: if a ring satisfies the saturated chain condition for prime 
ideals, so do its homomorphic images. 

10. Let P C Q be prime ideals in a Macaulay ring. Suppose there 
is no prime ideal properly between them. Prove: G(Q) = 1 + G(P), 
rank(Q) = 1 + rank(P). 

11. If xi, . . ., x ,  is an R-sequence on the module A ,  prove that 

12. Let A be a non-zero module over a commutative ring R, and let 
xl, . . ., x, be elements of R. Suppose x i  = ab. 

(a) If X I , .  . ., xi-l, a, xi+l, . . ., x, and the same sequence with b in 
place of a are R-sequences on A ,  prove that xl, .  . ., xi,.  . ., x ,  is an 
R-sequence on A .  

ring R/(Y). 

A xi t <(A/(xI, * - 9  x , ,  * . - 9  xn)A). 

(b) If xl , .  . ., x i , .  . ., x, is an R-sequence on A and 

(xi, - * ., U, * * *, x,)A # A ,  
prove that xl, . . ., a , .  . ., x, is an R-sequence on A .  

I 
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(c) Deduce from (a) and (b) the following: for any integers kl, . . ., k ,  
the sequence x l ,  . . ., X, is an R-sequence on A if and only if xlk1, . . ., 
x,kn is an R-sequence on A .  

13. Let R be a commutative ring (not necessarily Noetherian), A 
an R-module. Let xl, . . ., x,,, be an R-sequence on A ,  and write 

z = ( X i ,  . . ., xm). 

(a) Prove that z(A/ZnA) = <(A/ZA) for any n. 
(b) Prove that ZnA/Zn+lA is isomorphic to a direct sum of copies 

14. Let R be a Noetherian ring, 
of AIZA. 

O + A + B - + C - + O  

a short exact sequence of R-modules. Let Z be an ideal in R with ZA # A ,  
ZB # B, ZC # C .  Prove: 

(1) If G(Z, B )  < G(Z, C), then G(Z, A )  = G(Z, B ) ;  
(2) If G(Z, B )  > G(Z, C), then G(Z, A )  = G(Z, C) + 1 ; 
(3) If G(Z, B)  = G(Z, C) ,  then G(Z, A )  2 G(Z, B). 

(Hint: if G(Z, B) and G(Z, C) are both positive we can find in Z a non- 
zero-divisor x on both B and C; the sequence 

0 -+ A / x A  + B / x B  + C / x C  -+ 0 

is still exact and all grades are down by 1. So assume G(Z, B) or G(Z, C )  
zero. If G(Z, B )  = 0, Zb = 0, either b E A or b maps onto a non-zero 
element of C, falling under (1) or (3). If G(Z, C) = 0, Zc = 0, pick b + c, 
and x in Z not a zero-divisor on B. Then xb B x A ,  but Zxb C xA,  G(Z, A )  

15. Let a,  b be elements in a Noetherian UFD, (a ,  b)  # R. Prove 
that any maximal prime of (a ,  b)  has grade 5 2. 

16. Let R be a DVR with maximal ideal ( p ) .  Let T = R[x], x an in- 
determinate. Show that x, p is a maximal R-sequence in T,  and that the 
single element 1 - p x  is also a maximal R-sequence in T. (This example 
shows that the condition ZA # A cannot be omitted in Theorem 121.) 

17. (This exercise shows that Theorem 124 cannot be extended to an 
infinite union of prime ideals.) In the ring of integers let x = 3, Z = ( 5 )  
and let P ,  range over all prime ideals. Prove that (x, I )  Q UP,,  but 
that for every i E Z, x + i e UP,. 

18. Let R be a Macaulay ring. Let T be a ring containing R, and 
suppose that as an R-module it is free and finitely generated. Prove 
that T is a Macaulay ring. 

~ 

= 1.) 
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19. Let P be a prime ideal in a Macaulay ring R, let x be any element 
not in P such that (x, P) # R, and let Q be a minimal prime ideal over 
(x, P). Prove that rank(Q) = 1 + rank(P). Deduce that there are no 
prime ideals properly between P and Q.  

20. Let R be a valuation ring, A an R-module. Prove that R cannot 
contain an R-sequence of length 2 on A .  

21. Let R be local, let A be a finitely generated non-zero module, 
let P be a maximal prime of A ,  and write k for the Krull dimension of 
RIP. Prove: G(A) 6 k .  (Hint: the case G(A) = 0 is trivial. For G(A) > 0 
take x Q <(A). By Theorem 126, (P, x) C <(A(AIxA). Enlarge (P, x) 
to a maximal prime of A / x A  and use induction on G(A).)  

22. Let R be an n-dimensional ring (not necessarily Noetherian). 
Let A be an A-module. Prove that R cannot contain an R-sequence on 
A of length n + 1. (Hint: we can assume A faithful. If x starts an R- 
sequence on A ,  then x is not in any minimal prime ideal. Pass to R/(x) 
and A / x A . )  

23. Let xl, . . ., x, be an R-sequence in a Noetherian ring. Prove that 
the ideal (xl, . . ., x,) can be generated by n elements that form an R- 
sequence in any order. (Hint: change x2, . . ., x, successively, making 
appropriate use of Theorems 11 8 and 124.) 

24. Let R be a local Macaulay ring with maximal ideal M ,  and let I 
be an ideal generated by a maximal R-sequence. Let J be the set of all 
x in R with Mx C I .  Prove that the dimension of J / I ,  as a vector space 
over RIM, is independent of the choice of I .  (Hint: deduce this from 
the theorem in the appendix.) 

25. Prove that any integrally closed Noetherian domain of dimension 
6 2 is Macaulay. 

3-2 THE PRINCIPAL IDEAL THEOREM 

The principal ideal theorem of Krull is probably the most important 
single theorem in the theory of Noetherian rings. Its statement is as 
follows : 

Theorem 142. Let x be a non-unit in a Noetherian ring and P a 
prime ideal minimal over (x). Then the rank of P is at most 1. 
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The proof we give is adapted from a brilliant note of Rees [42]. This 
is the note that introduced the Artin-Rees lemma, at about the same 
time as unpublished lectures of Artin. We are, so to speak, using the 
underlying idea but not the Artin-Rees lemma itself. 

As a prelude to Theorem 142, we isolate a preparatory result. Its 
effect is to show, under the stated hypothesis, that the module (u ,  y ) / (uz)  
and its submodule (u2, y) / (u2)  are “piecewise isomorphic,” as illustrated 
in Fig. 3. 
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Theorem 143. Let u, y be non-zero elements in an integral domain. 

(a )  The modules (u, y ) / (u )  and (u2, uy)/(u2) are isomorphic. 
(b )  Assume further that tu2 E 0.1) implies tu E 0). Then the modules 

Then: 

(u)/(u2) and (u2, y) / (uz ,  uy) are isomorphic. 

Proof. (a) Multiplication by u induces a module isomorphism of 
(u, y )  onto (u’, uy), sending the kernel (u)  onto the kernel (u’). 

(b) The module (u)/(u2) is of course caclic, with annihilating ideal (u), 
The module (ue, y) / (u2,  uy) is also cyclic, for the generator u2 is su- 
perfluous. Moreover the annihilator contains u. It remains to prove 
that the annihilator is exactly (u). That is, from 

k (34) ky  = au2 + buy 

1 
i 
I (35) ky  = CUY + buy 
3 

we must deduce k E (u). Now (34) gives us au2 E 0) so that by hypothesis, 
au E b), say au = cy. Then (34) can be rewritten b 

In (35) we can cancel y ,  and we find k E (u), as required. 

Before presenting the proof of Theorem 142, we remark that if we 
assume P to be actually principal, instead of minimal over a principal 
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ideal, the result is a good deal easier. It is so easy in fact that we were 
able to place it as Ex. 5 in $1-1 (note also the refinement in Theorem 
163). 

Proof of Theorem 142. We assume that, on the contrary, there is a 
chain P 3 P1 3 P2 of distinct prime ideals (see Fig. 4). We make two 

FIGURE 4 

successive reductions. First we pass to the integral domain RIP2; the 
image of P is still minimal over the image of ( x )  and has rank >= 2. 
Then we localize the integral domain RIP2 with respect to the image 
prime ideal P / P 2 ;  again minimality and rank are preserved. 

Let us start the notation fresh after these reductions. We have a local 
domain R with maximal ideal M ,  a non-zero element x such that M is 
a minimal prime ideal we r  (x ) ,  and a non-zero prime ideal Q properly 
contained in M. We shall find this setup to be impossible. 

Select a non-zero element y in Q. Let Zk denote the ideal of all ele- 
ments t with txk e (y). Evidently Z, C Z2 C - . is an ascending chain of 
ideals, which must become stable, say at I,,. Then txZn ~ ( y )  implies 
txn e (y). Set u = x n ;  then we have tu2 E (y) implies tu e (y). 

The ring T = R/(u2) has exactly one prime ideal. Hence (Theorem 89) 
any finitely generated T-module has finite length. This applies in par- 
ticular to the module (u, y)/(u2),  which is an R-module annihilated by 
u2, and thus at our pleasure a T-module. It follows from Theorem 143 
that its submodule (u2,y)/(uz) has the same length. This is possible only 
if (u ,  y )  = (u2, y ) ,  i. e. u E (u2, y ) ,  say u = cu2 + dy.  Since 1 - cu is a unit 
(u is a non-unit in the local ring R) we deduce u E (y) C Q. But M is 
minimal over (x) and hence also minimal over (u)  = (x"). This contra- 
diction completes the proof of Theorem 142. 
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Very shortly we shall subject the principal ideal theorem to two 
successive improvements. But we pause at this point to give a number 
of immediate applications. First we prove the theorem on prime ideals 
that was promised in $1-1. 

Theorem 144. Let P C Q be prime ideals in a Noetherian ring. If 
there exists a prime ideal properly between them, then there are infinitely 
many. 

Proof. It is harmless to pass to RIP, so we assume P = 0. Suppose 
that P1, . . ., P ,  are the sole prime ideals properly between 0 and Q. By 
Theorem 81 we cannot have Q C P1 U . U P,. So we may pick 
x E Q, x f any Pi. Then Q is minimal over (x ) .  Theorem 142 now fur- 
nishes a contradiction, for the existence of at least one prime ideal be- 
tween 0 and Q makes rank(Q) 2 2. 

To get ready for Theorem 146 we note an easy application of Theo- 
rem 88. 

Theorem 145. Let R be an integral domain satiflying the ascending 
chain condition on radical ideals. Suppose R has an infinite number of 
minimal prime ideals ( i .  e .  prime ideals of rank I). Then their intersection 
is 0. 

Proof. If x is a non-zero element lying in all prime ideals Pi of rank 
1, then each Pi is minimal over x ,  contradicting Theorem 88. 

We determine which G-domains are Noetherian. 

Theorem 146. A Noetherian domain R is a G-domain if and only if 
dim(R) 5 1 and R has only afinite number of maximal ideals (or equiva- 
lently, prime ideals). 

Proof. Half the theorem is covered by Ex. 3 in $1-3. Conversely, 
suppose that R is a G-domain. Then (Theorem 19) the intersection of 
the non-zero prime ideals in R is non-zero. Hence (Theorem 145) R 
has only a finite number of minimal prime ideals, and Theorem 144 
then tells us dim(R) 5 1, so that there are only a finite number of prime 
ideals in all. 
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We can also determine when a Noetherian ring R is a Hilbert ring. 
In the first place (Ex. 4 in 51-3) it is necessary, whether or not R is 
Noetherian, that every homomorphic image of R of dimension 2 1 
have an infinite number of maximal ideals. This condition is in fact 
sufficient for Noetherian rings. In Theorem 147 we prefer to state it in 
a form that is formally weaker, but obviously equivalent. 

Theorem 147. A necessary and suficient condition for  a Noetherian 
ring R to be a Hilbert ring is the following: for  e.very prime ideal P such 
that dim(R/P) = 1, there must exist injinitely many maximal ideals con- 
taining P. 

Proof. Our problem is to show that any G-ideal P is maximal. Now 
RIP is a G-domain, so by Theorem 146 the dimension of RIP is at 
most 1, and there are only finitely many maximal ideals containing P. 
But then our hypothesis tells us that P must be maximal. 

As Krull remarks in [27], Theorem 147 deflates the significance for 
Noetherian rings of the Hilbert ring axiom down to the mere distinc- 
tion between finite and infinite. 

We proceed to the Noetherian improvement on Theorem 38; in the 
language used in Theorem 39, we are proving that Noetherian rings 
are S-rings (and hence also strong S-rings). 

Theorem 148. Let R be a Noetherian domain and P a minimal prime 
ideal in R. Let P* = PR[x] be the expansion of P to the polynomial ring 
R[x] .  Then P* is a minimal prime ideal in R[x] .  

Proof. Let c be any non-zero element in P. Then P is minimal over 
cR. We claim that P* is likewise minimal over cR[x];  if sustained, this 
claim and Theorem 142 finish the proof. Suppose that P* 3 Q 3 cR[x]. 
Then Q n R is a prime ideal in R containing c and contained in P. 
Hence Q n R = P and Q = P*. 

For convenience of reference we record the result of combining 
Theorems 148 and 39. 

Theorem 149. Let R be a Noetherian ring, P a prime ideal in R, 
rank(P) = n. Denote by P* = PR[x] the expansion of P to R[x], and let 
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Q # P* be a prime ideal in R[x]  with Q A R = P. Then: rank(P*) = n, 1 I rank(Q) = n+ 1. 
i 

i We note at this point an application to polynomial rings. Let K be 
any field, and let R = K[xl,  . - ., x,] where the x’s are indeterminates. 
Let M be a maximal ideal in R. We know that the contraction N of M 
to K[xl ,  . . ., x,-~] is maximal, and that M lies properly above NR. By 
induction, we may assume rank(N) = n - I .  By Theorem 149, rank(M) 
= n. Thus: every maximal ideal in K[xl,  . . ., x,] has rank n. (For 
generalizations, see Exs. 3 and 4.) 

The next application we make of Theorem 142 is to show that the 
Macaulay property is inherited by polynomial rings. We first need a 
remark about polynomial rings; its very simple proof was shown me 
by J. Shamash. 

Theorem 150. Let R be any commutative ring, and M a maximal 
ideal in the polynomial ring R[x]. Then M cannot consist entirely of zero- 
divisors. 

Proof. Assume the contrary. Then x B Msince x is not a zero-divisor. 
Hence (x ,  M )  = R[x]  and we may write 1 = xf + g with f E R[x] and 
g c M.  But clearly g = 1 - xf cannot be a zero-divisor. 

Theorem 151. R is  a Macaulay ring ifand only i fR[x]  is a Macaulay 
ring. 

Proof. Suppose R is Macaulay. For M a maximal ideal in R[x]  we 
must show the equality of the grade and rank of M.  Let M A R = P. 
Then, since R is a Macaulay ring, G(P) = rank(P) = n, say. We know 
that M # PR[x];  hence (Theorem 149) rank(M) = n + 1. We shall 
prove G(M) 2 n + 1 ; since the grade can never exceed the rank this 
will prove the theorem. Let x l ,  . . ., x,  be a maximal R-sequence in P. 
It  is evident that it remains an R-sequence when considered in the ring 
R[x]. We employ the usual device of dividing both rings by the ideal 
(xl ,  . . ., xn); this depresses the grade of M by n. Our problem now is to 
show G(M) L I ,  i. e., that M does not consist entirely of zero-divisors. 
We quote Theorem 150. 

Conversely, if R[x] is Macaulay, so is R ;  this is a special case of 
Theorem 141. 
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Of course we can iterate Theorem 151 to obtain the same resujt with 
several indeterminates. In particular: i f K  is afield, and R = K[xl,  . . ., x,] 
with the x's indeterminates, then R is a Macaulay ring. If we combine 
the resulting equal chain condition with the fact that any maximal ideal 
in R has rank n,  we obtain a very satisfactory picture of the prime ideals 
in R :  every saturated chain of prime ideals running from the top to the 
bottom has length n.  If the prime ideal P has rank r,  then any saturated 
chain descending from P to 0 has length r,  and any saturated chain 
ascending from P to a maximal ideal has length n - r. In $1-6 we 
called n - r the corank of P. Algebraic geometers call n - r the di- 
mension of the variety attached to P, and they identify it with the 
transcendence degree of RIP over K (for a generalization see Ex. 5). 

In this context it is worth noting a corollary of the principal ideal 
theorem. Let P again have rank r in R = K[xl ,  . . ., x,] and letf be an 
element in R,  f c P ,  (P,f) # R .  Let Q be a prime ideal minimal above 
(P,f). The principal ideal theorem tells us that Q lies directly above P. 
Because of the equal chain condition, we can state rank(Q) = r + 1. 

Let K be algebraically closed and let us pass to the geometric lan- 
guage. The preceding result may be stated as follows: let V be an ir- 
reducible variety of dimension d,  and let W be an irreducible variety 
of codimension 1 (a hypersurface). Suppose that V n W is non-empty 
and that V W.  Then every component of V n W has dimension 
d - 1. (See, for instance, Theorem 11 on page 36 of [28].) From this, 
one passes to the full intersection theorem, given in the corollary on 
page 38 of [28], by the device of introducing the product of the two 
varieties and intersecting it with the diagonal. 

Theorem 152 provides the first of two successive improvements on 
Theorem 142, the principal ideal theorem. The proof of Theorem 152 
embodies a simplification, due to Akizuki, of Krull's original proof. 

Theorem 152. (Generalizedprincipal ideal theorem.) Let R be a Noe- 
therian ring and let Z # R be an ideal generated by n elements al, . . ., a,, 
in R .  Let P be a prime ideal in R minimal over Z. Then: rank(P) 5 n.  

Proof. By the device of passing to RP we may assume that R is local, 
with P as its unique maximal ideal. 

Suppose on the contrary that there exists a chain P = Po 3 P1 3 - - - 
3 P,+l of length n + 1. Here we may assume that there is no prime 
ideal properly between P1 and P. We cannot have Z C P1, for this would 
contradict the minimality of P over Z. Say for definiteness that al e P1. 
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Then (al, Pl )  contains P1 properly and P is therefore the only prime ideal 
containing (al,  Pl ) .  In other words, in the ring R/(al ,  P l )  the image of P 
is the unique prime ideal and hence (Theorem 25) is nilpotent. This 
means that some power of P lies in (al,  P l ) .  By choosing t sufficiently 
large we can arrange 

a: = c,al + b, (c ,  E R ,  b, E P1, i = 2, . . ., n)  
' 
* 

' 

Let J = (b2, . . ., b,) and note that J is contained in P1. Since the rank of 
P I  exceeds n - 1 we have, by induction on n, that P1 properly contains 
a prime ideal Q that contains J (see Fig. 5). The ideal (al,  Q) contains 

p" 

FIGURE 5 

some power of each of the a's. It  follows, by the minimality of P, that 
P is the only prime ideal containing (al,  Q). We now pass to the ring 
R/Q,  using * for the homomorphic images of elements or ideals. We 
have that P* is minimal over (al*), but there is a chain of length 2, 
namely P* 3 P1* 3 0, descending from P*. This contradicts Theo- 
rem 142. 

Remarks. 1. A naive proof, simply iterating Theorem 142, leads to 
the result that the little rank of P is at most n.  So this is valid if we 
weaken the Noetherian assumption on R to the hypothesis that every 
homomorphic image of R satisfies the principal ideal theorem. But as 
a matter of fact, a small rearrangement of the proof of Theorem 152 
gives the full result from the weaker hypothesis (see Ex. 6). 
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2. There is an interesting application of Theorem 152 to polynomial 
equations. Let K be algebraically closed, and let R = K[xl, . . ., x,] 
with the x’s indeterminates. Let I # R be generated by n - 1 poly- 
nomials f l ,  . . ., fn-l. Then by Theorem 152 any prime ideal P minimal 
over I has rank n - 1. Since every maximal ideal has rank n, P is not 
maximal. Hence P is contained in an infinite number of maximal ideals 
(see Theorem 147 and recall that R is a Hilbert ring). In other words, 
the equationsfi = 0, . . ., fn-l = 0 have an infinite number of solutions 
if they have any. A useful alternative way of putting this is to take 
polynomials fi, . . ., fnP1  having no constant terms. The solution x1 

that there exist infinitely many non-trivial ones. 
- - - . = x, = 0 is dismissed as trivial, and the conclusion we have is 

Theorem 152 has a useful converse. 

Theorem 153. Let R be Noetherian and P a prime ideal in R of 
rank n. Then there exist elenients al, . . ., a, such that P is minimal over 
(al, . . ., an). 

Proof. For n = 0 the assertion is vacuous, so we assume n > 0 and 
use induction on n. By Theorem 88, R has only a finite number of mini- 
mal prime ideals, say el, . . ., Q k  (we mean truly minimal, i. e. 0 if R 
is a domain). Since rank(P) 2 1, P is not contained in any Qi, and 
therefore (Theorem 81) P Q Ql U . . U Qk. Pick al e P, al t any pi. 
Now pass to R* = R/(al), P* = P/(al). By Theorem 131, rank(P*) 
5 - n - 1. By induction P* is minimal over (az*, . . ., a,*). If we pick 
any ai mapping on ai* ( i  = 2, . . ., n) we find P to be minimal over 
(al, a2, . . ., a,,). 

Remark. Theorem 153 is not at all of the same depth as the principal 
ideal theorem. In fact, the proof really used just the ascending chain 
condition on radical ideals and was available right after Theorems 81 
and 88. 

We are ready for the ultimate generalization of the principal ideal 
theorem. The technique is similar to that used in Theorem 153. 

Theorem 154. (Principal ideal theorem, generalized still further.) 
Let R be a Noetherian ring, I an ideal in R generated by n elements, 
I # R. Let P be a prime ideal containing I.  Assume that the rank of P / I  
in the ring R/ I  is k .  Then the rank of P in R is a f  most n + k. 
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Proof. The case k = 0 is Theorem 152. We argue by induction on k ,  
assuming k > 0. Then P is not minimal over I. Let P1, . . ., P, denote 
all the prime ideals minimal over I (they are finite in number by Theo- 
rem 88). P is not contained in any Pi;  hence by Theorem 81 we can 
find y e P,  y p P1 U - U P,. Let J = (I ,  y). The rank of P/J  in R/J  is 
at most k - 1, for a chain of prime ideals from P to J terminates at a 
prime not yet minimal over I. By induction, the rank of P in R is at 
most ( k  - 1) + ( n  + 1) = k + n. 

The case n = I of  Theorem 154 is important enough to be repeated, 
and we do so with a supplement, which is covered by Theorem 13 1. 

Theorem 155. Let P be aprime ideal in a Noetherian ring R and let 
x be an element in P. Suppose the rank of P in R is k .  Then the rank of 
P / ( x )  in R/(x) is k or k - 1. I f  x is not contained in any minimal prime 
ideal of R (and so, in particular if x is a non-zero-divisor) the rank of 
P / ( x )  in R/(x) is k - 1. 

We are ready for still another theorem on the stability of the Ma- 
caulay property. 

Theorem 156. I f  R is Noetherian, x is a non-zero-divisor in the 
Jacobson radical of R, and R* = R/(x) is Macaulay then R is Ma- 
caulay. 

Proof. Let M be a maximal ideal of R ;  we must prove that its grade 
and rank are equal. We have x E M and we write M* = M/(x) .  By 
hypothesis, the grade and rank of M* in R* are equal. Now G ( M )  = 1 
+ G(M*), for x can be the beginning of a maximal R-sequence in M .  
By Theorem 155, rank(M) = 1 + rank(M*). Hence G ( M )  = rank(M). 

We record a corollary of Theorems 156 and 141. 

Theorem 157. R is a Macaulay ring if and only if R[[x]] is a Ma- 
caulay ring. 
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EXERCISES 

1. Let x be a non-zero-divisor in a Noetherian ring, P a prime ideal 
minimal over (x). Prove that P has rank 1. 

2. Let x be nilpotent in R (not necessarily Noetherian) and let P be 
minimal over (x). Prove that P has rank 0. 

3. Let R be a Noetherian Hilbert ring where every maximal ideal has 
rank k .  Prove that every maximal ideal in R[x,, . . ., x,] has rank k + n. 

4. Let R be Noetherian, Q a G-ideal in R[xl, . . ., x,] and P = Q A R. 
Prove that rank(Q) = n + rank(P). 

5.  The transcendence degree of an integral domain over a subdomain 
is defined to be the transcendence degree of the big quotient field over 
the little one. If Q is a prime ideal in T = R[xl ,  . . ., x,], and P = Q A R, 
observe that RIP  can be regarded as a subdomain of TlQ. If R is Noe- 
therian, prove that 

rank(Q) - rank(P) + tr. deg. -- (ig) = 

(Hint: use Theorem 149, and the additivity of transcendence degrees in 
a tower of extensions.) 

6.  Let R be a ring such that every domain that is a homomorphic 
image of R satisfies the principal ideal theorem. Show that Theorem 
152 is valid for R. (Hint: modify the proof as follows. Among all chains 
P 3 PI 3 - * * 3 P,+1 pick one so that P1 contains as many as possible 
of the a’s. Say al $ P1. Then once more P is the only prime ideal contain- 
ing (al, PI). The rest is unchanged.) 

7. Show that for the elements a], . . ., a, constructed in Theorem 153, 
and for any i (1 5 i S n), every prime ideal minimal over (al ,  . . ., ai) 
has rank i. 

8. Let K be a field, x and y indeterminates. Let R be the ring of poly- 
nomials in x and y over K, subject to the condition that no terms in a 
power of x only are permitted. Let M be the ideal in R consisting of all 
polynomials with constant term 0. Prove: (a) R satisfies the ascend- 
ing chain condition on principal ideals; (b) M is minimal over @); 
(c) rank(M) 2 2. (This example, due to Graham Evans, shows that 
the ascending chain condition on principal ideals is too weak to imply 
the principal ideal theorem.) 

9. (a) Let R C T be any rings. Let Q be a prime ideal in T, let 
Q A R = P, and assume P is minimal. Let Q* denote the image of 
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Q in TIPT. Prove: rank(@ = rank(Q*). (Hint: observe that any prime 
ideal contained in Q must contain PT.) 

(b) With the notation of part (a), assume that R and T are Noe- 
therian, and drop the assumption that P is minimal. Prove: rank((?) 
5 rank(P) + rank(Q*). (Hint: proceed by induction on the rank k of 
P, noting that part (a) covers k = 0. Pick x t P not in any minimal prime 
ideal. Pass to the rings R/(xT A R) and TlxT, and use Theorem 155.) 

10. Let R C T be domains with R Noetherian, T algebraic over R, 
and T generated over R by n elements. Let Q be prime in T and P 
= Q A R. Let d be the transcendence degree of T/Q over RIP. 

(a) Prove: rank(Q) 5 rank(P) - d. (Hint: reduce to n = 1 and use 
Theorem 149. Compare with Ex. 5.) 

(b) Show that equality holds in (a) if the polynomial ring in n inde- 
terminates over R satisfies the saturated chain condition. 

(c) Observe that d = 0 if Q is a G-ideal, and in particular if it is a 
maximal ideal. 

1 1 .  Let R C T be domains with R Noetherian and T algebraic over 
R (but not necessarily a finitely generated ring over R). Let Q be prime 
in T and P = Q A R. Prove: rank(Q) 5 rank(P). (Hint: if Q = Qo 
3 Ql 3 . - . 3 en+,, pick D, in QzPl but not in Ql. Drop down to the 
ring R[vl, . . ., v,+,] and quote Ex. 10.) 

12. Let R be a Noetherian ring in which the classical unmixedness 
theorem holds : if an ideal I generated by n elements has rank n then I is 
rank-unmixed. Prove that R is Macaulay. (Hint: the problem is to 
construct an R-sequence of length m inside a given maximal ideal M of 
rank m. If Z is generated by an R-sequence of length i in M ,  i < m,  
argue that, by the rank-unmixedness of I, A4 cannot consist of zero- 
divisors on R/I. Thus the construction can continue.) 

3-3 REGULAR RINGS 

We need to examine minimal sets of generators for the maximal ideal M 
of a local ring R. We do it more generally for a module. 

Theorem 158. Let R be a local ring with maximal ideal M ,  and let A 
be ajni te ly  generated R-module. Let a,, . . ., a,  be elements of A .  Then 
a,, . . ., a,  generate A if and only if their images generate A I M A .  
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Proof. Since the "only if" part is obvious, we assume that the 
images of al, . . ., a, generate A / M A .  Let B denote the submodule of A 
generated by al, . . ., a,; we must prove B = A .  We have B + M A  = A,  
whence M(A/B)  = A / B .  By the Nakayama lemma, A / B  = 0. 

Note that A / M A  is an R-module annihilated by M ,  in other words 
a vector space over the field RIM. It follows that minimal generating 
sets for A correspond to vector space bases of A / M A .  We shall call 
such a minimal generating set a minimal basis for A. In the important 
case A = M ,  the number of elements in a minimal basis will be called 
the V-dimension of R written V(R). We note again that V(R) is the 
dimension of M / M 2  as a vector space over the field RIM. 

Theorem 159. Let R be a local ring with maximal ideal M.  Let x be 
any element in M - M2, and write R* = R / ( x ) .  Then V(R*) = V(R) - 1. 

Proof. Let yl*, . . ., y,* be a minimal basis of M* = M/(x ) ,  the 
maximal ideal of R*. Pick any yi e M mapping on y * .  We claim that 
x, yl, . . ., y ,  form a minimal basis of M .  It is immediate that they span 
M. To prove the minimality we take a linear combination 

dx  + clyl+ * * * + cry, 

which lies in M2, and we must prove that each coefficient lies in M. We 
pass to R* and find 

Cl*Yl* + - * * + cr*y,* E (M*)2 

whence c;* e b4* by the minimality of yl*, . . ., y,*. Hence ci E M. This 
gives us dx e M2, which implies d e M since x 6 M2. 

By Theorem 152 we have dim(R) 5 V(R). The local ring R is called 

We show at once that there is a connection with R-sequences. 
regular if we have equality. 

Theorem 160. Let R be a local ring with maximal ideal M. Suppose 
that M can be generated by an R-sequence. Then R is regular. Moreover, 
the length of the R-sequence is equal to the common value of dim(R) 
and V(R). 
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i Proof. Let k be the length of the R-sequence in question. We have 

(36) k = G(R) 5 rank(M) 5 V(R) =( k 

Here the first inequality follows from Theorem 132, the second (as 
noted tbove) from Theorem 152, and the last is immediate since V(R) 
is the smallest number of elements that can generate M. The collapse 
of all thc integers in (36) to equality gives us both conclusions of the 
theorem. 

The converse of Theorem 160 is also valid (Theorem 169 below), but 

We proceed in the next two theorems to investigate the behavior of 
we are not quite ready to prove it. 

regularity in the passage from R to R / ( x ) .  

Theorem 161. Let R be a regular local ring with maximal ideal M ,  
and x an element in M - M 2 .  Then R* = R/(x) is regular. 

Proof. By Theorem 159, V(R*) = V(R) - 1. By Theorem 155 
dim(R*) = dim(R) or dim(R) - 1. But we must have dim(R*) 5 V(R*). 
Hence dim(R*) = dim(R) - 1 = V(R*). 

Theorem 162. Let R be a local ring with m'aximal ideal M and x an 
element in M - M 2  that does not lie in any minimal prime ideal of R. 
Assume that R* = R / ( x )  is regular. Then R is regular. 

Proof. By Theorem 159, V(R*) = V(R) - 1. By Theorem 155 
dim(R*) = dim(R) - 1. Hence R is regular. 

Remark. The two theorems are not quite symmetric. But in fact 
the hypothesis of Theorem 161 implies that x lies in no minimal prime 
ideal, since we shall shortly prove that a regular local ring is an integral 
domain. Before doing so, we need a result that could have been done a 
good deal earlier (indeed right after Theorem 79). 

Theorem 163. Let R be a local ring that is not a domain. Then any 
principal prime ideal P in R is minimal. 
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Proof. Let Q be a prime ideal properly contained in P. By Ex. 5 in 
$1-1, Q C A P n .  By Theorem 79, A P "  = 0. Thus Q = 0, contradicting 
our hypothesis that R is not a domain. 

Theorem 164. A regular local ring is an integral domain. 

Proof. We argue by induction on the dimension of the regular local 
ring R. If dim(R) = 0, then R by definition is a field. We assume dim(R) 
> 0 and then have M # 0, so that M # M2,  where M is the maximal 
ideal of R. Pick x e M - M2.  By Theorem 161, R* = R / ( x )  is regular. 
By Theorem 159, dim(R*) < dim(R) (in fact it is smaller exactly by 1). 
By induction, R* is a domain, i. e. ( x )  is prime. Now we assume R is not 
a domain and seek a contradiction. By Theorem 163, ( x )  is a minimal 
prime ideal. We know this to be true for any x E M - M2.  Hence 

M -  M2 c P, w * - * w PI, 

where the Pi's are the minimal prime ideals (finite in number by Theo- 
rem 88). From Theorem 83 we deduce M C some Pi. But this means 
dim(R) = 0, the desired contradiction. 

Sooner or later everything in the subject of Noetherian rings gets 
globalized. Let us globalize the definition of regularity. 

Dejinition. A Noetherian ring R is regular if RM is regular for every 
maximal ideal M in R. 

Our next objective is to generalize Theorem 164 by proving that any 
regular ring is a direct sum of integral domains. The ideas involved 
have a broader scope, and we develop them in some detail, starting with 
the Chinese remainder theorem. 

Theorem 165. Let I ,  J ,  K be ideals in a commutative ring R. Suppose 
that I + J = R and I + K = R. Then I + ( J  n K )  = R. 

Proof. Say i + j =  1, it+ k =  1 with i, i ' e I ,  j c J ,  k c  K. Then 

1 = ( i + j ) ( i ' + k ) e I + J K C  I + ( J n  K ) .  

i 
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I Theorem 166. Let I ,  J be ideals in a commutative ring R. Assume 
I + J = R, (I@ = 0. Then In A Jn = 0, In + Jn = R, i. e. R is the di- 
rect sum of In and Jn. 

Proof. We have 1 = i + j ,  i E I ,  j E J. Then 1 = ( i  + j)2n-1 E In + Jn. 
Further, E A Jn = (In + Jn)(In A Jn) = 0. 

Now let R be a regular Noetherian ring. Each RM is an integral 
domain by Theorem 164. In particular, each RM has a unique minimal 
prime ideal (namely 0). This can be formulated in R itself as the state- 
ment that each M contains a unique minimal prime idea1,'and we use 
this as the hypothesis of the next theorem. 

Theorem 167. Let R be a Noetherian ring in which every maximal 
ideal contains a unique minimal prime ideal. Then R is the direct sum of 
a jinite number of rings, each of which has a unique minimal prime ideal. 

Proof. Let P1, . . ., P ,  denote the minimal prime ideals of R, and let 
N be their intersection; N is the nilradical of R (Theorem 25). Thus 
Nn = 0 for a suitable n. We have Pi + Pi = R for i # j ,  for otherwise 
Pi + Pi can be enlarged to a maximal ideal containing two distinct 
minimal prime ideals. By repeated use of Theorem 165 we get P1 + J 
= R, where J = P2 n . n P,. Also (Pip C Nn = 0. By Theorem 
166, R = Pln 0 Jn. Iteration of the procedure yields the desired result. 

Theorem 168. Let R be a Noetherian ring such that RM is an in- 
tegral domain for  every maximal ideal M. (In particular, R can be any 
regular Noetherian ring.) Then R is the direct sum of afinite number of 
integral domains. 

Proof. If a e R is nilpotent, then a maps into 0 in each RM. Hence 
(Ex. 4 in $1-4) R has no non-zero nilpotent elements. Now apply 
Theorem 167. 

We proceed to prove the converse of Theorem 160. 

Theorem 169. Let R be an n-dimensional regular local ring with 
maximal ideal M .  Then M can be generated by an R-sequence of length 
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n consisting of elements not in M2.  In fact ,  any minimal basis of M 
will do. 

Proof. Start the R-sequence with any element x E M - M2, use 
Theorem 161 and induction. 

Theorem 169 makes it clear that any regular local ring is Macaulay. 
By Theorem 140 this globalizes: 

Theorem 170. Any regular ring is Macaulay. 

The relation between the regularity of R and that of R[[x]] is manage- 
able. We leave it as Ex. 5 .  The relation between the regularity of R and 
that of R[x] cannot be treated by the tools available up to this point - 
it runs into the stumbling block that we need to know that regularity 
of R implies regularity of Rp. As a way of putting off the homological 
invasion just a little longer, we invent a definition that will be obsolete 
as soon as the next chapter begins. 

Dejnition. A super-regular ring is a Noetherian ring R such that 
RP is regular for every prime ideal in R. 

Theorem 171. If R is a super-regular ring so is R[x]. 

Proof. We take a prime ideal Q in R[x] and its contraction P =  
Q n R. We know that Rp is regular. Let S be the complement of P in R. 
We localize both R and R[x] with respect to S as a harmless adjustment. 

After this we may start over with R regular local, M its maximal 
ideal, T = R[x], N prime in T with N n R = M .  Our problem is to 
prove TN regular. By Theorem 160 it will suffice to prove that Ncan be 
generated by an R-sequence. By Theorem 169, M is generated by an 
R-sequence, say a], . . ., a,. There are two cases. If N = MR[x], N is 
generated by a,, . . ., a ,  in R[x] and this sequence remains an R-sequence 
in T. If N properly contains MR[x], N is generated by M and a suitable 
f(Theorem 28). The elements al, . . ., a,, f form an R-sequence. 

Remark. Any Dedekind domain is obviously super-regular. Iterated 
use of Theorem 171 thus gives us a fair-sized collection of super-regular 
rings, which can be augmented by using Ex. 9. 
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EXERCISES 

1. Let R be a local ring with maximal ideal M. (a) Suppose that 
V(R) = 1 + G(R). Prove that R is Macaulay. (b) Suppose that V(R) 
= 2 + G(R) and that R is not Macaulay. Prove that dim(R) = 1 + G(R). 

2. Let R be a local ring with maximal ideal M ,  let x # 0 be an element 
of M2, and write R* = R/(x). Prove that V(R*) = V(R), and that R* 
is not regular. 

3. Let R be a regular ring, and let x be an element not lying in the 
square of any maximal ideal of R. Prove that R/(x) is regular. 

4. Let R be a Noetherian domain,and let x be an element that is in the 
Jacobson radical of R but not in the square of any maximal ideal of R. 
Suppose that R/(x) is regular. Prove: R is regular. 

5.  Let R be a Noetherian ring. Prove that R is regular if and only 
if R[[x]] is regular. 

6.  Let R be a Noetherian integral domain, dim(R) 5 1. Prove that 
R is regular if and only if it is a Dedekind domain. 

7. Let R be a local ring in which the maximal ideal is principal. 
Prove : 

(a) If R is an integral domain, then R is a principal ideal domain 
with (up to associates) exactly one prime, i. e., a DVR. 

(b) If R is not an integral domain, then dim(R) = 0 and furthermore 
every ideal is a power of the maximal ideal. 

8. Let R be a Noetherian ring in which, for every maximal ideal M, 
the maximal ideal of Rw is principal (note that this is in particular true 
if every ideal in R is principal). Prove that R is the direct sum of a finite 
number of rings, each of which is either a Dedekind domain or a zero- 
dimensional local ring with a principal maximal ideal. 

9. If R is super-regular, prove that every localization RS is super- 
regular. 

10. Let R be a Hilbert regular ring. Prove that R[x] is regular. 
11. (a) In a domain R let P = ( p )  be a principal prime ideal. If 

S = ( p n ] ,  prove that R = RP A Rs. (Hint: if x lies in the intersection, 
x = a/s = b/pn with s 6P. From pna = sb get pnlb:) 

(b) Assume further that A P n  = 0 and that Rs is integrally closed. 
Prove that R is integrally closed. (Hint: observe that Rp is a DVR.) 

12. Prove that any super-regular local ring is integrally closed. (Hint: 
pick p P M2, observe that ( p )  is prime, use Ex. 11 and induction.) 

13. Let R be a regular local ring and let I be an ideal in R such that 
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R/Z is regular. Prove that Z = (x, ., x,) where the x’s form part of a 
minimal generating set for the maximal ideal of R. 

14. Let R be Noetherian and P a prime ideal of rank k such that Rp 
is regular. Prove that there exist elements al, . . ., a k  in P whose images 
in RP generate Pp,  and such that rank(al, . - ., ak) = k. (Hint: suppose 
suitable elements al, . . ., a k - 1  are already chosen. Let J = all x with 
sx E (al, . . ., a k - 1 ,  P*) for some s f P .  Observe that J is an ideal properly 
contained in P.  Use Theorem 83 to see that P - J is not contained in 
the union of the minimal primes over (al,. . ., a k - l ) ,  and select a k  

accordingly.) 
15. ( S .  Kochman) Let R be any Noetherian ring. Prove that R is the 

direct sum of a zero-dimensional ring and a ring in which every maxi- 
mal ideal has rank at least 1. (Hint: if there exist any maximal ideals of 
rank 0, use a Chinese remainder procedure.) 

CHAPTER 4 

Homological Aspects 
OF Ring Theory 

4-1 HOMOLOGY 

This chapter will present a number of results concerning the area in 
which homological algebra has greatly changed the subject of Noe- 
therian rings. 

We shall build on the account of homological dimension given in 
Part I11 of [26].  For convenience of reference we summarize the perti- 
nent definitions and list the theorems we shall use. These theorems 
will be designated by letters. 

A module is projectice if it is a direct summand of a free module. 
Modules A and B are projectively equivalent if there exist projective 
modules P and Q such that A 0 P is isomorphic to B 0 Q. An exact 
sequence 

O + K + P - - + A + O  

with P projective is a short projective resolution of A. The projective 
equivalence class of K does not depend on the choice of the resolution 
and is denoted by @A.  The operation of forming @ A  can be iterated. 
The homological dimension of A is the smallest n such that RnA is the 
class of projective modules. If there is no such n, the homological di- 
mension of A is infinite. Instead of homological dimension we some- 
times say projective dimension, especially when we wish to emphasize 
the contrast with injective dimension. Our notation for homological 
dimension is d(A), or &(A) if it is urgent to call attention to the ring. 

123 
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Theorems A, B, C, D, E are Theorems 1, 2, 3, 8 , 9  of Part I11 of [26]. 

Theorem A. (Schanuel’s lemma) Let 

O-+ K+P+ A - t O ,  O - t  KI--tP1-+ A+O 

be shortprojective resolutions of A .  Then K 0 PI is isomorphic to Kl 0 P. 

Theorem B. Let B be a submodule of A and write, C = A / B .  
( I )  I f two  of the dimensions d(A), d(B), d(C) arefinite, so is the third. 
(2)  I f d ( A )  > d(B), then d(C) = d(A). 
(3) I f d ( A )  < d(B), then d(C) = d(B) + 1. 
(4) I f d ( A )  = d(B), then d(C) =( d(A)  + 1. 

v 

Theorem C. Let R be a ring with unit and x a central element of R 
which is a non-zero-divisor. Write R* = R / ( x ) .  Let A be a non-zero R*- 
module with dR*(A) = n < m . Then dR(A) = n + 1. 

Theorem D. Let R be a ring with unit, x a central element in R ;  
write R* = R/(x). Let A be an R-module and suppose that x is a non- 
zero-divisor on both R and A .  Then: dR*(A/xA) 5 dR(A). * 

Theorem E. Let R be a left Noetherian ring, x a central element 
in the Jacobson radical of R ;  write R* = R/(x ) .  Let A be a finitely 
generated R-module. Assume that x is a non-zero-divisor on both R and 
A .  Then: dR*(A/xA)  = dR(A). 

The following theorem is an immediate consequence of Theorems 
C and E. 

Theorem 172. Let R be a local ring, A a finitely generated non-zero 
R-module with d(A) < m. Let x be a non-unit in R, not a zero-divisor 
on either R or A .  Then d(A/xA)  = 1 + d(A). 

We prove at once an important ‘connection between the grade of a 
module and its homological dimension. This theorem explains the use 
by Auslander and Buchsbaum of the term “codimension.” 
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Theorem 173. Let R be a local ring with maximal ideal M ,  A a 
finitely generated non-zero R-module with d(A) < m . Then G(R) = G(A) 
+ d(A). 

Proof. We begin by noting that the result is evident if A is free, for 
then d(A)  = 0 and G(A) = G(R). Next we note that if G(R) = 0 then 
d(A)  = 0; this follows from Lemma 4 on page 182 of [26],  a result 
which we shall generalize in Theorem 191. We make an induction on 

Thus we assume G(R) > 0 and proceed to treat the case G(A) = 0. 
By Theorem 82, we have an element a # 0 in A with Ma = 0. Resolve A:  

(37) O - + K - + F - + A - t O  

with F free. Pick u in F mapping on a. Then u p K and Mu C K. Since 
M <(R) we can pick x E M ,  x B <(R). Then x p <(K), since K is a sub- 
module of a free module. We have xu E K, xu p xK, Mxu C xK. This 
means that the image of xu in K / x K  is non-zero, and is annihilated by 
M. We may look at K / x K  as an R*-module, where R* = R/(x) ,  and 
then the image of xu is annihilated by the maximal ideal M* of R*. 
Hence 

I 
1 
f 
’ 
I G(R), and for a given G(R) we make a secondary induction on G(A). 
I 

(38) G(K/xK)  = 0 

We have 

(39) dR*(k/Xiy) = dB(K) = dR(A) - 1 

the first equality following from Theorem E, and the second from 
(37), since we may assume that A is not free. In particular we have 
dR*(K/XK) < w . Since 

(40) G(R*) = G(R) - 1 

we can apply induction to get 

(41) dR*(K/xK) + G(K/xK)  = G(R*) 

By combining equations (38)-(41) we get G(R) = d(A),  as required. 
<(A), so we can 

pick x E M not in <(R) or <(A) (use Theorem 81 to avoid all the prime 
ideals involved). Then 

(42) 

Now assume G(A) > 0. We have M Q <(R), M 

dR(A/xA) = 1 + d d A )  
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rank(P) 
0 
1 
2 
3 

by Theorem 172. Since x can start an R-sequence on A, we have 

(43) G(A/xA) = G(A) - 1 

Then by our secondary induction 

(44) 
By combining (42)-(44) we get G(R) = G(A) + dR(A) 

G(R) = G(A/xA) + dR(A/xA) 

Theorem 173 can be regarded as asserting that when d(A) < a,, it is 
not a new invariant; it is defined in terms of grades by G(R) - G(A). 
This is a kind of deflation of homological dimension in favor of the 
“shallower” concept of grade, except that the “deep” property then 
becomes whether d(A) is finite or infinite. 

We proceed to a second connection between grade and homological 
dimension. Theorem 174 is due to Rees [44]; the proof that follows, to 
Chase. 

&RIP) rank(P) d(R/P) 
0 0 0 
1 1 1 
2 2 2 or 3 
3 3 3 

4 4 

Theorem 174. Let R be a Noetheriun ring, A a non-zero jinitely 
generated R-module. Then for any maximal prime P of A we have G(P) 
I - d(A). 

Proof. We switch the problem to Rp. We still have (Ex. 9 in $2-2) 
that Pp is a maximal prime ideal belonging to Ap. In the transition, G 
may increase and d may decrease, but luckily both work in our favor. 
So we may start over with R local, M its maximal ideal, A a non-zero 
R-module and it4 belonging to A, i. e., M C <(A). We have to prove 
G(R) 5 d(A). If d(A) is infinite, we never had a problem. If d(A) is 
finite then d(A) = G(R) by Theorem 173. 

To investigate the situation further, we let I be the annihilator of A. 
We have I C P and so G(r> 5 G(P) I d(A). If G(I) = d(A) we have 
equality throughout. This motivates the next definition. 

Dejnition. Let A be a non-zero finitely generated module over a 
Noetherian ring, I its annihilator. We say A is perfect if G(I) = d(A). 

The remark above proves Theorem 175. 

Theorem 175. A perfect module A is grade-unmixed in the sense 
that all maximal primes of A have grade equal to the grade of the anni- 
hilator of A. 
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In the important special case where A is cyclic, A = R/J, we say that 
J is perfect, meaning strictly speaking that R/J  is perfect. An example 
of a perfect ideal is furnished by J = (al, . . ., uk) where the elements 
form an R-sequence, for we have G(J) = k, and d(R/J) = k by iterated 
use of Theorem C. 

What other perfect ideals are known? A result essentially going back 
to Macaulay asserts that if I is generated by an R-sequence, then any 
power of I is perfect. In [25] this was generalized to certain ideals 
generated by monomials in an R-sequence, an investigation carried 
further by Diana Taylor in her thesis (Chicago, 1966). 

As an application of Theorems 173 and 174 we determine the homo- 
logical dimension in a regular local ring of a prime ideal lying directly 
beneath the maximal ideal. Let R be n-dimensional regular local, and 
P a prime ideal of rank n - 1. We have d(R/P) 2 n - 1 by Theorem 174 
(R is Macaulay, so grade = rank). Since M Q <(R/P), we have d(R/P) 
< n by Theorem 173. We record this along with two extreme cases in 
Theorem 176. 

EXERCISES 

1. Let R be any ring and I an ideal in R generated by an R-sequence 
of length n. Prove: d(I) = n - 1. 
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2. Let R be local with maximal ideal M ,  and let A be a finitely 
generated R-module. Suppose that Ext(A, RIM) = 0. Prove that A is 
free. (Hint: form a minimal resolution 0 ---f K - +  F-+  A -+ 0. Any 
homomorphism from K to R I M  is extendible to F. From this and 
K C MF deduce K = 0.) 

3. Let R be local with maximal ideal M.  If the injective dimension 
of RIM is finite, prove that R is regular. (Hint: let the injective di- 
mension of R I M  be k. For any R-module A we have Ext(A, gkR/M) 
= 0, Ext(akA, RIM) = 0. For A finitely generated deduce @ A  = 0 
from Ex. 2.) 

4. Let R be a regular local ring, T a Macaulay local ring containing 
R. Suppose that T is a finitely generated R-module. Prove that T is 
R-free. (Hint: apply Theorem 173 to T. See [53] for a discussion of the 
case where T is not local. Compare Ex. 11 .) 

5 .  Let R be local with G(R) = k. (a) Show that for a finitely generated 
R-module A ,  d(A)  is an integer from 0 to k, or , and that all the integers 
0, . . ., k are eligible. (b) Show that for an ideal Z in R, d(Z) is an integer 
from 0 to k - 1, or m , and that all the integers 0, - . -, k - 1 are eligible. 
(c) Show that for a prime ideal P in R, P not maximal, d(P) is an integer 
from 0 to k - 2, or m .  

6. Let R be local, let G(R) = k ,  and let A be a finitely generated non- 
zero R-module. Assume that d(A) < m , and that some maximal prime 
P of A satisfies G(P) = k - 1. Prove: d(A) = k - 1. (Hint: apply Theo- 
rem 174.) 

7. Let R be local with maximal ideal M ,  let G(R) = k, and let P be 
a prime ideal lying directly beneath M .  Prove: d(R/P) = k - 1, or , 
d(P) = k - 2, or co . 

8. In an arbitrary ring R let al, . . ., a, be an R-sequence and let 
I = (al, . . -, u,). Let F be a free R-module with basis ul, . . ., u,. Re- 
solve Z 

O-+K-+F-+I-+O 

by sending ui into a;. Prove that K is spanned by the elements uju; 
- aiuj. 

9. Let R be a Noetherian ring, let al, . . ., a, be elements in the Jacob- 
son radical of R, and let Z = (al, . . ., a,). Resolve Z as in Ex. 8. Assume 
that K is spanned by the elements ajui - aiuj. Prove that the a’s form 
an R-sequence. (Hint: from the hypotheses one can easily deduce that 
fa, e (al, . - 0 ,  a,-l) implies t c (al, - - ., an-l). It  remains to make an in- 
ductive reduction. Write K* for K intersected with the submodule 
spanned by u l , .  . ., unPl. Let H* be the submodule spanned by u;aj 
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- u p ,  for i, j 5 n - 1. We must prove H* = K*. Do this by verifying 
K* C H* + a,K* and applying the Nakayama lemma.) 

10. Let R be an n-dimensional regular local ring with maximal ideal 
M .  Prove: G(M, M )  = 1. (Hint: note that d (M)  = n - 1 and use Theo- 

11. Let R and T be local rings,fa homomorphism of R into T carry- 
ing the maximal ideal M of R into the maximal ideal N of T. Note that 
fmakes Tan  R-module; we assume this module to be finitely generated. 
Let A be a finitely generated T-module (thereby a finitely generated 
R-module). 

(a) Prove that the grade of A is the same, whether computed as a 
T-module or as an R-module. (Hint: this can be reduced to two cases: 
where T is a homomorphic image of R, or where R C T. The first is 
immediate. For the,second, note that M C N and that MT contains 
some power of N .  This looks after grade 0. Divide by a maximal R- 
sequence on A contained in M.) 

(b) If ddA) and dR(T) are finite, prove that &(A) is their sum. (Hint: 
reduce this to part (a) by using Theorem 173.) 

12. Let R C T be local rings with the maximal ideal M of R con- 
tained in the maximal ideal N of T. Assume that T is regular, that T is a 
finitely generated R-module, and that dR(T) is finite. Prove that R is 
regular. (Hint: observe that TIN is a direct 5um of a finite number of 
copies of RIM.) 

i 

I rem 173.) 
1 
. 
1 

13. Let xl, . . ., x, be an R-sequence in a ring R, and let 

Prove that Exti(R/Z, R) f 0 if and only if i = n. (Hint: see the appen- 
dix to $3-1.) 

14. (R. Hamsher) Let R be an integral domain such that for every 
finitely generated R-module A with d(A) < m ,  the annihilator I of A 
satisfies d(1) < m .  Prove that d(J) < m for every finitely generated 
ideal J in R. (Hint: to prove d(x, y)  < CO, note that (x) A Q) is the 
annihilator of R / ( x )  0 RIQ), and that (x)/(x) A Q) E (x, y)/Q). 
Continue stepwise.) 

15. Let R be a Noetherian ring, A an R-module such that Ext(R/P, A )  
= 0 for every prime ideal P. Prove that A is injective. (Hint: use Ex. 7 

16. Let R be a one-dimensional Noetherian domain, A an R-module 
such that Ext(R/M, A )  = 0 for every maximal ideal M.  Prove that A 
is injective. 

of $2- 1 .) 
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17. Let R be local with maximal ideal M ,  and let x be a non-zero- 
divisor in R that is not contained in M 2 .  Write R* = R / ( x ) .  Let A be a 
finitely generated R-module annihilated by x (thereby an R*-module). 
If dR(A)  < a, prove that dR*(A) < 03. (Hint: resolve 

O+ K* + F* + A --+ 0 

with FY free over R*. Since dR(F*) = 1, this reduces the problem to the 
case dR(A) = 1. In that case form a minimal resolution 

O - + K + F + A + O  

over R, where F is free on ul, . . ., u,,. We have xF C K ,  and K is free. 
Observe that, since x p M 2  and K C MF, the elements xu1, . . ., xu, are 
linearly independent mod M K .  Hence they can form part of a free 
basis of K.  In this way, argue that xF/xK is a direct summand of K / x K  
with complementary summand K/xF.  Thus the R*-resolution of A 

0 + K/xF--t  F/xF+ A + 0 

splits.) 
18. In Ex. 14 of $3-1, assume that R is local and that the modules 

involved have finite projective dimension. Give an alternative proof 
by using Theorem 173 and Theorem B. 

4-2 UNIQUE FACTORIZATION 

We prove in this section that any regular local ring is a UFD, and 
we do it in a slightly generalized form. 

The literature contains at least four proofs that may be considered 
reasonably different. 

(1) The original proof of Auslander and Buchsbaum [3] which, in 
turn, made important use of earlier work, especially results of Zariski 
and Nagata. 

(2) The proof that Auslander and Goldman found as a by-product of 
their work in [5 ] .  

(3) A proof that I discovered in early 1960. It  is reproduced by 
Samuel on page 88 of [45]. 

(4) The paper [32] of MacRae proves a good deal more, and allows 
zero-divisors in the ring. He makes important use of an idea found 

I 
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independently by M. Auslander and D. Mumford. For an integral do- 
main, MacRae’s theorem is proved a lot more simply in [31]. 

The proof I give here was announced at the Varenna conference on 
rings in August, 1965 and is sketched in the notes issued after that con- 
ference. The key idea is the same as that in (3), the third of the four 
proofs just mentioned, but it is supplemented by the old trick of ad- 
joining an indeterminate. The theorem has the merit of characterizing 
UFD’s (even non-Noetherian ones). 

We need two preliminary theorems. The first embodies a useful de- 
vice, which Nagata introduced in [36]. 

Theorem 177. Let R be an integral domain mtisfving the ascending 
chain condition on principal ideals. Let ( p i )  be a set of principal primes, 
and let S be the multiplicatively closed set they generate. Then: if RS is 
a UFD, so is R. 

Proof. There is no difficulty in a direct assault: assembling the 
primes (roughly speaking, thep,’s together with those of Rs), and show- 
ing the possibility and uniqueness of factorization. But since we have 
Theorem 5 available, let us use it. 

Let then Q be a non-zero prime ideal in R ;  we have to show that Q 
contains a principal prime. If somep, E Q, we are finished. So we assume 
the contrary. Now Qs must contain some principal prime of Rs. We 
can choose it to be an element q of R, and this entails q E Q.  Furthermore 
we can choose a q not divisi6le by any p , .  For if q is divisible by p z ,  we 
can pass to q /pz  and we still have q / p ,  E Q, since p ,  p Q. We keep divid- 
ing by pi's, a procedure that the ascending chain condition on principal 
ideals will terminate in a finite number of steps. Thus we may nor- 
malize q so as not to be divisible by any p , .  Now we claim that (4) is 
prime. For suppose ab E (4). We pass to the ring RS and there we find 
that a, let us say, is divisible by q. This gives us an equation sa = cq, 
s E S ;  that is, 

(45) p E ,  - . - p Z y  = cq 

Since each p z  is prime and does not divide q, it must divide c. We can 
therefore cancel the pz’s in (45) one after another, till we get a divisible 
by q. We have thus proved that q is a principal prime, and this com- 
pletes the proof of Theorem 177. 

The second preliminary theorem might be described as a local char- 
acterization of UFD’s. 
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Theorem 178. Let R be an integral domain. The following three con- 

( I )  RM is a UFD for  every maximal ideal M ;  
(2)  Every minimal prime ideal in R is finitely generated; 
(3)  Every invertible ideal in R is principal. 

ditions are necessary and suficient for  R to be a UFD: 

Proof. The necessity needs little attention. Every localization of a 
UFD is a UFD (Ex. 3 in 51-4); in a UFD every minimal prime ideal is 
in fact principal; (3) is covered by Ex. 15 in $1-6. 

Suppose R satisfies (1)--(3). We use Theorem 5 ,  and therefore take a 
non-zero prime ideal P and seek to prove that P contains a principal 
prime. Now for any maximal ideal M 3 P, Rp is a localization of RM 
and is therefore a UFD. From this we deduce that P contains a minimal 
prime ideal Q (take one in Rp and transfer it back to R). Now for each 
maximal ideal M ,  QM maps either into all of RM or into a minimal 
prime ideal in RM. In either case QM is principal. It follows from Theo- 
rem 62 that Q is invertible, hence principal by hypothesis. 

We now present our main characterization of UFD’s. We recall that 
we have defined what it means, even in non-Noetherian rings, for an 
ideal I to have grade 1 : I must contain a non-zero-divisor a such that 
I c Z(R/(a))* 

Theorem 179. Let R be an integral domain. The following four con- 

( I )  R satisfies the ascending chain condition on principal ideals; 
(2)  In the polynomial ring R[x] all minimal prime ideals are finitely 

(3)  For any prime ideal P of grade one in R, RP is a UFD; 
(4)  In any localization of R[x] all invertible ideals are principal. 

ditions are necessary and suficient for  R to be a UFD: 

generated; 

Comment. If R is Noetherian we can forget about (1) and (2); (3) 
becomes equivalent to integral closure (Theorem 95). So for a Noe- 
therian integrally closed domain, all we are assuming is that certain in- 
vertible ideals are principal. If it were true (of course it is not) that all 
invertible ideals are principal, then every integrally closed Noetherian 
domain would be a UFD. 

! 
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Proof. Necessity. The remarks made in connection with Theorem 
178 need two supplements, of which the first is obvious and the second 
standard: any UFD satisfies the ascending chain condition on principal 
ideals; if R is a UFD so is R[x]. 

Suficiency. We shall actually prove that R[x] is a UFD; it is standard 
and easy that then R is a UFD. We abbreviate R[x] to T. It is also easy 
(much easier than Hilbert’s basis theorem) that the ascending chain 
condition on principal ideals is inherited by T. 

Let S be the set of all finite products of principal primes in T(ac1ually 
we only need the primes a + bx  discussed below). By Theorem 177 it 
suffices to prove that TS = U is a UFD. (This is the only localization 
of T to which we shall apply our fourth hypothesis.) 

We shall prove U to be a UFD by verifying that it satisfies the three 
conditions in Theorem 178. Now (2) is obviously transmitted from T 
to U,  and (3) is fulfilled by hypothesis. It remains to check that UM is 
a UFD for every maximal ideal M in U.  Note that M has the form Qs 
for Q a suitable prime ideal in T disjoint from S. Let P = Q n R. We 
claim that P = 0 or has grade 1. For otherwise P contains an R-sequence 
a, b of length 2. (Take any a # 0 in P ;  if P Q x ( R / ( a ) )  we get the de- 
sired b.) But then Q contains the principal prime a + bx  (Ex. 3 in §3-1), 
a contradiction. Now by hypothesis Rp is a UFD. So is TQ, a localiza- 
tion of RP[X], and U M ,  a localization of TQ. Theorem 179 is proved. 

It still remains to be seen whether Theorem 179 is applicable to regu- 
lar local rings. For this we have some spade work to do. We introduce 
finite free resolutions, and develop some material concerning them. 

DeJinition. Afinite free resolution (FFR) of a module A is an exact 
sequence 

0 -+ F, --+. . + + Fi + Fo -+ A -+ 0 

where each Fi is finitely generated and free. We say that a module is 
FFR if it possesses an FFR. 

Theorem 180. Ifaprojective module A has an FFR, then it has a free 
complement; that is, there exists a finitely generated free module G such 
that A 0 G is free. 



134 CH. 4/HOMOLOGICAL ASPECTS OF RING THEORY 

Proof. We prove this by induction on the length of the resolution. 
Say the resolution starts by mapping F onto A with kernel K: 

(46) O + K + F + A + O  

By induction, K 0 G is free with G free and finitely generated. Since A 
is projective, (46) splits: A 0 K Ei F. Then 

A @ K O  G z F O  G 

proves the theorem. 

Theorem 181. If an invertible ideal Z in an integral domain has an 
FFR, then Z is principal. 

Proof. Z is projective, so we have Z 0 free = free. Now Lemma 1 in 
[23] asserts that for any ideals Zl, . . ., In, J1, . . ., J ,  in an integral domain, 
if Zl 0 - - . 0 Z, and J1 0 - - - 0 J ,  are isomorphic, then Zl . . . Z, and 
J1 . . . J ,  are isomorphic. It  follows that the ideal Z is principal. 

Theorem 182. Let R be a commutative Noetherian ring with the 
property that any finitely generated R-module has an FFR. Then the 
same is true for  the polynomial ring R[x] .  

We sketch a proof due to Bore1 and Serre (Prop. 8 on p. 116 of [S]); 
the present formulation was given by Swan. This proof actually yields 
a more general result; in stating it, we find it convenient to introduce 
the notion of a family of modules: a collection S of modules with the 
property that when two members of a short exact sequence lie in S so 
does the third. Examples of families: all modules, all modules of finite 
homological dimension, all torsion modules over an integral domain. 
When R is Noetherian we have the further example of all finitely gen- 
erated modules, and finally the pertinent example of all FFR modules. 

Since any intersection of families is again a family, we may speak 
of the family generated by a set of modules. 

One sees readily that Theorem 182 is a consequence of Theorem 183. 

Theorem 183. Let R be a commutative Noetherian ring, and let 
S = R[x].  Then the set of modules A @ &  where A ranges over allfinitely 

SEC. 4-2/UNIQUE FACTORIZATION 135 

generated R-modules, generates the family of all finitely generated S- 
i modules. 

Proof. Write S for the family generated by the A@RS’S.  By an in- 
duction based on the ascending chain condition we can assume that all 
S-modules with a non-zero annihilator in R lie in S. By Ex. 7 in $2-1 it 
will suffice for us to treat S-modules having the form SIP where P is a 
prime ideal in S. Since we may assume that the annihilator of SIP in R 
is 0, we have that R is an integral domain. Let f be a polynomial of 
least degree in P. Then the principal ideal generated by f is isomorphic 
to S and is of course in S, while P / (  f )  has a non-zero annihilator in R 
and therefore also lies in S. 

Over a regular local ring every finitely generated module has an FFR;  
this is clear since projective modules over local rings are free. Thus 
Theorem 184 is applicable to regular local rings. 

Theorem 184. Let R be a Noetherian domain with the property that 
every finitely generated module has an FFR. Then R is a UFD. 

Proof. We check off the hypotheses of Theorem 179. The Noe- 
therian hypothesis looks after (1) and (2). The FFR hypothesis is 
inherited by R[x]  (Theorem 182) and by its localizations (since localiza- 
tion preserves exact sequences and freedom). Theorem 181 now looks 
after (4). As for (3), if P is a prime ideal of grade 1, then rank(P) = 1 
since R is regular and hence Macaulay. Thus Rp is a one-dimensional 
regular local ring, i. e., a DVR. 

By combining Theorem 184 with Theorem ‘178 we can sharpen the 
result a little. 

Theorem 185. Let R be a regular Noetherian domain in which every 
invertible ideal is principal. Then R is a UFD. 

In concluding this section we prove a theorem of Samuel, which 
states that if R is a regular UFD so is R[[x]] .  We generalize a little. 

Theorem 186. Let T be an integral domain, x an element in the 
Jacobson radical of T, and R = T / x ,  a domain with every invertible 
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ideal in R principal. Suppose further that n x n T  = 0. Then every in- 
vertible ideal in T is principal. 

Proof. We first investigate more generally the nature of a finitely 
generated projective T-module P .  We have that P 0 Q = F with F free 
and finitely generated over T. Then P / x P  0 Q / x Q  = F/xF. Here F/xF 
is a free R-module, of the same dimension over R as the dimension of 
F over T.  Thus P / x P  is R-projective. In particular it is torsion-free 
and has a well-defined rank. We claim that this rank is at most equal 
to the rank, say k - 1, of P .  For let ul, . a,  uk e P / x P ,  and pick ul, - - ., 
v k  E P mapping on the u’s. We have Za& = 0, where the a’s are elements 
of T, not all 0. We map this equation mod x ,  and have the desired de- 
pendence of the u’s over R, unless every a, is divisible by x .  In that case 
we can cancel x in Zam = 0. We continue the procedure, and the hy- 
pothesis A P T  = 0 guarantees that it ends in a finite number of steps. 

The same argument, of course, applies to the ranks of Q and Q/xQ.  
But since the possibly depressed ranks of P l x P  and Q / x Q  add up to 
the dimension of F/xF, which equals the dimension of F, we must have 
equality between the rank of P and the rank of P l x P .  Since an invertible 
ideal is the same thing as a projective module of rank 1, we have that 
if P is an invertible ideal in T ,  then P / x P  is isomorphic to an invertible 
ideal in R. By the hypothesis the latter is principal, i. e., isomorphic to 
R = T/(x) .  

We are faced now with the following problem: given that P and N 
are finitely generated projective modules over T and that P / x P  and 
N / x N  are isomorphic, prove that P and N are isomorphic. (This part 
of the argument works with ( x )  generalized to any ideal in the Jacobson 
radical, and the rings can be noncommutative.) In the diagram we have 
a map from N to PIxP.  Since N is projective we can lift it to f : N + P.  

P / x P  Z N / x N  

FIGURE 6 

Likewise we get g : P’+ N.  We need to prove the products f g  and gfto 
be automorphisms. Now f g  : P --* P is a map that induces the identity on 
PIxP.  Take P 0 Q = F with F free, and combine f g  on P with the 
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identity on Q.  Now we have a map on F to itself, which is the identity 
mod xF. In matrix terms we have a matrix that is the identity mod x .  
It is a well-known and easy consequence of x being in the Jacobson 
radical that such a matrix is invertible. This concludes the proof of 
Theorem 186. 

Theorem 187. Let T be a Noetherian domain, let x be an element in 
the Jacobson radical of T ,  and R = T/(x) .  Assume that x does not lie in 
the square of any maximal ideal of T .  Then: ifR is a regular UFD, so is T.  

Proof. By Ex. 4 in 93-3, T is regular. By Theorem 186 every in- 
vertible ideal in T is principal (the needed hypothesis A P T  = 0 is sup- 
plied by Theorem 79). Apply Theorem 185. 

The hypotheses of Theorem 187 are fulfilled if T = R[[x]]. Hence we 
I 

have : 

Theorem 188. If R is a regular UFD, so is R[[x]]. 

4-3 THE EULER CHARACTERISTIC 

In this section we shall define the Euler characteristic of an FFR module 
and study some of its properties. 

The first step will be to extend Schanuel’s lemma (Theorem A) to 
long projective resolutions. Commutativity is irrelevant for this theo- 
rem, and it is understood that all modules are left. 

Theorem 189. Let R be any ring, A an R-module. Suppose given 
l two exact sequences 

0 --+ K +  P ,  + P,-1-+ * * * -+Pi -+ A -+ 0 
O--+ L -+ Qn -+ --+ * * * -+ Q l +  A + 0 

where the P’s and Q’s are projective. Then 

i (47) K 0 Qn 0 P,-1 0 * * * E L  0 P ,  0 en-, 0 * 

t 
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Here, i f  n is odd, the direct sums in (47) terminate in Ql and Pi respec- 
tively; i f  n is even they terminate in P1 and Ql. 

Proof. Let KO be the kernel of the homomorphism from Pi to A and 
let Lo be similarly defined. Then we have the short exact sequences 

0 --+ KO -+ Pi + A -+ 0 
O - + L o - + Q l - + A + O  

By Schanuel's lemma, 

(48) KO 0 Qi E Lo 0 Pi 

Now there is a truncated exact sequence 

0 + K-+P, --+ * * -+ Pz -+ KO --+ 0 

It is harmless to add a direct summand Ql to the terms PZ and KO, 
taking the mapping on Ql to be the identity. We now have 

(49) O + K - + P n + . * . - + P 3 + P ~ O  Q i - t K o O  Q1-0 

and in the same way 

(50) o - + L + Q n + . . . + Q 3 - + Q z o P 1 - + L o O P 1 - + 0  

By (48), the final terms in (49) and (50) may be identified. We can now 
apply induction to the sequences (49) and (50), and the result is the 
statement to be proved. 

Let the ring R be commutative (see Appendix 4-3(a) for a discussion 
of the non-commutative case). Let A be an FFR module with the 
resolution 

O+ F, + F,-i -+ * -+ Fi+ A --+ 0 

The rank of Fi (number of elements in a free basis) is an invariant, 
which we denote by fi. We define the Euler characteristic x(A)  of A 
to be 

x(A)  =fi - f i  +f3' * * - (-)"+'fn 

If we have a second FFR, we can (by inserting harmless zeros) assume 
it to have the same length: 

O+ G, + G,-1 --+ * * * -+ GI + A -+ 0 
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' Theorem 189 tells us that 

fn + gn-l+ fn-2 + * * * = gn + f n - i +  gn-z + * * * 

where g ,  is the rank of Gi. From (51) we see that x(A)  is indeed an in- 
variant of A ,  independent of the particular FFR. 

Remark. It  is possible to develop a more general theory, which 
allows projective modules in the resolutions. This can be done by using 
the theorem that, after a suitable decomposition of the ring into a di- 
rect sum, a finitely generated projective module has a well-defined con- 
stant rank in each summand. Alternatively, the Euler characteristic 
could be allowed to take values in an appropriately defined Grothen- 
dieck group. On the othef hand, some problems can simply be treated 
by localization (see Ex. 7). 

' 

Let S be multiplicatively closed in R. Given an FFR of an R-module 
A, we obtain by localization a precisely analogous FFR of A S  over 
Rs. Hence: 

Theorem 190. Let A be an FFR module over the ring R, and let S 
be a multiplicatively closed set in R. Then A s  is FFR over Rs ,  and 
x(As)  = X U ) .  

Our basic method will be to take advantage of Theorem 190 by 
forming suitable localizations. For this purpose we formulate the next 
theorem. 

Theorem 191. Let R be a quasi-local ring with maximal ideal M .  
Suppose that every finite subset of M possesses a non-zero annihilator. 
Then every FFR R-module is free. 

Proof. It suffices for us to treat a module with a short FFR: 

(52)  O +  Fz + F1-+ A -+ 0 

for then we merely iterate this result. We can assume the resolution (52) 
to  be minimal. Minimality tells us that Fz C MFl. If we think of Fl and 
F2 with fixed bases, then only a finite number of elements of M are in- 
volved. By hypothesis, these are annihilated by a non-zero element z. 
Hence zFz = 0, which is possible only if Fz = 0, and A is free. 



140 CH. 4/HOMOLOGICAL ASPECTS OF RING THEORY 

Remarks. 1 .  For R Noetherian we are simply saying (Theorem 82) 
that M consists of zero-divisors. 

2. Whether or not R is Noetherian, the hypothesis of Theorem 191 
is fulfilled if M is nil. We make use of this in proving the next theorem. 

Theorem 192. For any FFR module A over a commutative ring R, 
we have x(A) 2 0. 

Proof. Let P be a minimal prime ideal in R. The ring Rp is quasi- 
local with a nil maximal ideal. By Theorem 190, x(A)  = ~ ( A P ) .  By 
Theorem 191, A p  is free, whence x(Ap) L 0. 

The major theorems of this section are Theorems 194 and 195 below. 
We first prove a preliminary result. 

Theorem 193. In the ring R assume <(R) is a finite union Pl U - - - V P, of prime ideals. Let A be a finitely generated module and let 
I be its annihilator. Then Api = 0 for  all i if and only i f Z  contains a non- 
zero-divisor. 

Proof. The statement APi = 0 is equivalent to the annihilation of A 
by an element not in Pi, i. e. I Q Pi. If this is true for every i, then by 
Theorem 8 1, I contains a non-zero-divisor. 

Theorem 1%. Let R be a Noetherian ring, A an FFR module with 
annihilator I. If x(A)  = 0, then I contains a non-zero-divisor. 

Proof. Let P1,. . ., P,, be the maximal primes of 0 in R. Then 
<(R) = PI U - - UP, , ,  and each Pi is the annihilator of a non-zero 
element. It  follows readily that in RP, the maximal ideal consists of 
zero-divisors. Hence(Theorem 191) AP, is free. In view of x(A)  = x(Api) 
= 0, we deduce AP,  = 0. The conclusion now follows from the preceding 
theorem. 

Theorem 195. Let R be a Noetherian ring, A an FFR module satis- 
fying x(A) # 0. Then A is faithful. 
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: 
Proof. Let I be the annihilator of A ,  and J the annihilator of I(in R). 

We proceed as in the last theorem. This time, from x(A)  # 0 we con- 
clude that each A p ,  is a non-zero free module, and its annihilator is 0. 
Hence Ips  = 0 for all i. Now we can apply Theorem 193, with I and J 
playing the roles of A and I respectively. The conclusion that J con- 
tains a non-zero-divisor tells us that I must be 0. 

I 

L 

Theorems 194 and 195 were implicit in the discussion to be found in 
[2]; the following corollary of these two theorems was given explicitly. 

Theorem 196. Let R be a Noetherian ring, A an FFR module with 
annihilator I. Then either I = 0 or I contains a non-zero-divisor. In par- 
ticular, if the ideal J in R is an FFR module, then either J = 0 or J con- 
tains a non-zero-divisor. 

We observe that the last sentence in Theorem 196 is obtained by 
nating that R/J is FFR and that its annihilator is J. 

It seems conceivable that Theorems 194 and 195 are actually valid 
verbatim without the Noetherian hypothesis. We can offer three pieces 
of evidence on the affirmative side. 

The first is that for a module A with a short resolution 

0 + Fz --+ F1+ A + 0 

both theorems hold. We see this by picking bases for Fl, Fz. The module 
A is fully determined by the resulting matrix. We drop down to the 
subring RO generated by the entries of the matrix. The ring Ro is Noe- 
therian, and we readily see that the problem can be switched to Ro. 

The second piece of evidence is the following theorem, where a 
weaker conclusion than that of Theorem 195 is derived without chain 
conditions. 

Theorem 197. Let A be an FFR module with x(A)  # 0. Then the 
annihilator of A is nil. 

Proof. Let I be the annihilator of A .  Let P be a typical minimal 
prime ideal in R. As we noted above, A p  is a free Rp-module, neces- 
sarily non-zero. Thus I p  = 0. For every x e I ,  we have sx = 0 for s p P. 
This yields x e P, I C P. This being true for every P, we deduce that I 
is nil. 
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Lastly, we prove the following theorem, due to Stallings [48]. In 
comparing it with Theorem 195, note that by strengthening the hy- 
pothesis x(A)  # 0 to the assumption that x(A)  is a non-zero-divisor in 
R, we get the desired conclusion I = 0. 

Theorem 198. For any FFR module A with annihilator I we have 
x(A)I = 0. 

Proof. Let y be an element in the annihilator of A .  In Fig. 7, the 

FIGURE 7 

vertical map A -+ A is 0, and ri : Fi --+ Fi is multiplication by y .  Note 
that the diagram commutes. It  is possible (see p. 81 of Ill]) to construct 
contracting homotopies si, as indicated, so as to satisfy so = 0 and 

(53) sif; + fi+ls;+l = ri ( i  = 0, 1, * -) 

We take the trace of the endomorphisms in (53) and then form the al- 
ternating sum. All terms on the left side cancel in pairs and we get 
x(A)y = 0, as required. 

We insert at this point an interesting theorem due to Vasconcelos [52]. 

Theorem 199. Let I be an ideal in a Iccal ring R. Assume that d(Z) 
is finite and that Z / Z 2  is a free (R/I)-module. Then I can be generated by 
an R-sequence. 

Remarks. 1 .  The converse is also true. See Ex. 13 in $3-1 and Ex. 1 
in $4-1. 
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2. Theorem 199 gives us a fresh proof that a local ring of finite global 
dimension is regular. For if M is the maximal ideal, we obviously have 
that M / M 2  is free over the field RIM. Hence d(M) < m implies that 
M can be generated by an R-sequence, whence (Theorem 160) R is 
regular. We see also from this that the condition d(Z) < a, cannot be 
omitted in the theorem: take I = M in a non-regular local ring. 

Proof. We dismiss the case I = 0. Then by Theorem 196, I contains 
a non-zero-divisor. By Theorem 83 we can sharpen this to the state- 
ment that I - MI contains a non-zero-divisor x .  The element x can be 
completed to a set x ,  yl, . . ., yk of elements of I that map into a free basis 
of the free (R/I)-module Z / P .  The plan of the proof is to pass to the 
ideal I* = Z/(x) in the ring R* = R / ( x )  and use induction. We have two 
things to verify: that Z*/(Z*)2 is a free R*/I*-module, and that dR*(Z*) is 
finite. The first of these is a routine verification, which we leave to the 
reader. For the second, we quote Theorem E to get dR*(Z/xZ) < a,. It  
will therefore suffice to see that I / ( x )  is a direct summand of I/xZ. Let 
J = ( X I ,  y l ,  - . a ,  yk). Evidently ( x )  + J = I .  We need ( x )  r\ J = XI. If 
y e ( x )  n J we get an equation 

i 

. 

where a,  bi e R and z e XI. Then 

bkyk E 1’ ax - bly, - . . . - 
Since the elements x, y, ,  . . ., yk map into a free (R/I)-basis of Z / Z 2 ,  we 
deduce a e I,  so that y E X I ,  as required. 

Our final theorem in this section is a generalization of the commuta- 
tive case of a theorem of Swan [49] (see Appendix 4-3(a) for the non- 
commutative case). The theorem concerns what‘we might call “partial” 
Euler characteristics. Let A be a module admitting a resolution by fi- 
nitely generated free modules: 

We now admit the possibility that the resolution never terminates. 
Write fi again for the rank of Fi. Define go =h, gl =fi -fo, g2 =fi 
-fi +fn, and in general 
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Of course the g’s are not at all invariant. But if we define x,(A) = inf g,, 
taken over all resolutions, we are able to prove the result stated in Theo- 
rem 200. 

We make a comment on why x,, is defined in this way (by inf rather 
than sup). As regards xo, we note that there is no upper bound forf,: 
we can generate A extravagantly by an arbitrarily large number of ele- 
ments. There is a lower bound forfo, and in fact xo(A) is simply the 
smallest number of elements that can generate A .  Similarly, there is no 
upper bound forfl -fo (or if we used fo -fi, there would be no lower 
bound): we can hold Fo fixed, and enlarge Fl by throwing in superfluous 
generators. On the other hand, it is reasonable that there is a lower 
bound forfl -fo. In an attempt to make it very small (that is, negative 
and numerically large), one would takefo large; but it is plausible that 
this would force us to take fi correspondingly large. 

Theorem 200. Let A be an R-module admitting a resolution (54) 
by jinitely generated free modules. Dejine x,(A) as above. Then 
Xn(A) > - * 

Proof. Let K denote the kernel of FnPl -+ FnP2. Given a second 
resolution by modules Hi, let L be the kernel of Hn-l ---f HA. By the 
long Schanuel lemma (Theorem 189) we have 

Now K can be generated by f,, elements. The free module FnP1 0 Hn--2 
0 . . + - - - and cannot be generated by fewer 
elements. Hence 

has rank f,-l + 

and we deduce 

( 5 5 )  f n  - fn-1+ fn-2 + * * . 2 -hn-l+ An-2 + * * a 

Think of the H-resolution as fixed, while the F-resolution is variable. 
Then the right side of (55) provides us with a fixed lower bound to the 
variable expression on the left. Hence 
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APPENDIX 4-3(a) . THE NON-COMMUTATIVE CASE 

(1) The first question that arises when we generalize to a non- 
commutative ring R is the invariance of the number of basis elements 
in a free R-module. Call this condition IBN. A general ring R need not 
satisfy IBN. We could transact some business without IBN (for ex- 
ample in the Grothendieck style) but we shall take the easy way out and 
assume IBN outright. Then x(A)  is well defined for any FFR module. 

(2) Theorem 192, asserting the positivity of the Euler characteristic, 
fails in the non-commutative case, as easy examples show. 

(3) Stallings’s result (Theorem 198) survives in the form x(A)T(y) 
= 0 where y is a central element in the annihilator of A ,  and T is the 
trace that is definable in an arbitrary ring R. (Let C be the set of all 
sums of additive commutators ab - ba. Make R/C into an additive 
group, and let T be the natural mapping R -+ R/C.) 

In Stallings’s application, R is the integral group ring ZG of a group 
G, and A is Z ,  made into a module by having G act trivially. The an- 
nihilator of A is the augmentation ideal IG (the set of all elements Zn,g, 
in ZG with Zn, = 0). One concludes easily: if A is FFR, then G has no 
finite conjugate classes # 1. 

(4) Swan’s result (Theorem 200) works in the non-commutative case 
provided we strengthen IBN to the following statement: a free R- 
module on n basis elements cannot be spanned by fewer than n elements 
(see [ 141 for a full discussion of these two conditions and a still stronger 
IBN). 

1 
1 
i 

IJ 

APPENDIX 4-3(b). THE FITTING INVARIANTS 

We shall sketch the definition and properties of the Fitting invariants, 
and exhibit an extension of Theorems 194-96 in which the exact value 
of the Euler characteristic plays a role. 

Let R be any ring and let A be a finitely generated R-module. Pick 
generators al, . . ., an for A .  Let F be a free R-module with basis u1, 

. . ., u,. Resolve A :  

O - + K - + F - + A - + O  
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by sending u, into a,. We define the first Fitting invariant Fl(A) of A 
to be the ideal in R generated by all n X n determinants whose rows are 
elements of K .  In detail: we form matrices (c,,) where, for each i, cllul 
+ .  . - +  clnune K, and let Fl(A) be the ideal generated by the 
determinants I ci, I. It is clear that instead of using all possible 
rows of K, we could equally well restrict ourselves to a set of rows 
spanning K. 

More generally, for each integer k from 1 to n, define Fk(A) to be the 
ideal generated by all n + 1 - k X n + 1 - k subdeterminants of the 
matrices (ctj). Finally, for k > n, Fk(A) is defined to be R. 

We outline the proof that the F’s are indeed invariant. It suffices to 
compare the F’s obtained from the generating set al, . . ., a, with those 
obtained when an additional generator b is added, for by successive 
steps of this kind we can compare two generating sets al, . . ., a, and 
bl, . . ., b, with the big set al, . . ., a,, bl, . . ., b,. Suppose tlal + . - 
+ t,a, + b = 0. Then as a spanning set of relations on al, . . ., a,, b, 
we can take a spanning set on al, . . ., a,, augmented with a zero at the 
end, together with the one additional relation 

tl, . . ., tn ,  1 

Routine facts about determinants then show that the F’s are the same 
for both generating sets of A .  

Fl(A) is closely connected with the annihilator J of A : it is easily seen 
that Jn C Fl C J.  

Further facts we need are: (1) the Fitting invariants behave perfectly 
under localization, that is, Fk(As) = Fk(A)s; ( 2 )  if A is free on m gener- 
ators, then K ( A )  = 0 for k 5 m and Fk(A) = R if k > m. Then the 
methods of Theorems 194-95 lead to the following result. 

Theorem. Let A be an FFR module over a Noetherian ring, and 
suppose that x(A)  = m. Then Fk(A) = 0 for k 5 m and Fk(A) contains 
a non-zero-divisor for  k > m. 

This theorem is, strictly speaking, not a generalization of Theorems 
194-95, since we have replaced the annihilator of A by the (slightly 
different) first Fitting invariant of A .  We can maintain the point of view 
of annihilators by switching to the invariants proposed by Auslander 
and Buchsbaum in [4]: the annihilators of the exterior powers of A .  
For them the theorem under discussion is likewise true. 
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We close by noting that there is a connection between the above 
theorem and a theorem of McCoy. 

McCoy’s Theorem. Let there be given n linear homogeneous equa- 
tions in m variables over a ring R. Then there is a non-trivial solution if 
and only if there exists a non-zero element of R annihilating all m x m 
subdeterminants of the matrix of coefficients. 

We do not discuss the virtually trivial “only if” part. In proving the 
‘‘if’’ part we may assume that R is Noetherian, since we may drop down 
to the subring generated over the integers by the finite number of ele- 
ments involved. Now assume there is no non-trivial solution. This says 
that the m columns of the coefficient matrix are linearly independent. 
We may take them as the relations for a module A with n generators. 
We have that A is FFR with x(A)  = n - m. Since Euler characteristics 
are non-negative, n 2 m. By the previous theorem, F,-m+l(A) contains 
a non-zero-divisor. But this is a contradiction, since F,-,+l(A) is the 
ideal generated by the m X m subdeterminants, 

See [I71 for a thorough study of McCoy’s theorem in the language 
of multilinear algebra. 

EXERCISES 

1. Let 

O - + A - + B + C - + O  

be an exact sequence of FFR modules. Prove x(B) = x(A)  + x(C).  
Generalize to long exact sequences. 

2. Let I # 0 be an FFR ideal. Prove: x(Z) = 1 ,  x(R/ I )  = 0. 

The next three exercises are the analogues, for FFR modules, of the 
three change of ring theorems of [26]. In all three, R is not necessarily 
commutative, x is a central non-zero-divisor, and R* = R/(x) .  

3. If A is an FFR R*-module, prove that A is an FFR R-module. 
4. If A is an FFR R-module and x is a non-zero-divisor on A ,  prove 

that A / x A  is an FFR R*-module. 
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5. With the ring R left Noetherian, x in the Jacobson radical, and A a 
finitely generated R-module on which x is a non-zero-divisor, prove 
that if A/xA is FFR over R*, then A is FFR over R. (Note: the following 
companion statement does not seem to yield to these methods, and we 
leave it as an open question: if A/xA  is FFR over R, then A is FFR 
over R.) 

6. Let Z be a finitely generated ideal in a ring R. Suppose that for 
every maximal ideal M ,  ZM is either all of RM or 0. Prove that Z is a 
direct summand of R (that is, Z = eR with e an idempotent). 

7. Let R be a Noetherian ring with no idempotents other than 0 
and 1. Let A be a finitely generated R-module with d(A)  < a. Prove 
that the annihilator of A is either zero or contains a non-zero-divisor. 
(Hint: localize, use Theorem 196, and then use Ex. 6.) 

8. Let R be any Noetherian ring and let A be an R-module with a 
resolution 

O - + G + F - + A + O  

where F and G are free on n, n - 1 generators respectively. Pick bases 
in F and G, thereby getting an n X n - 1 matrix. Let d,, . . ., d, be the 
minors of order n - 1. Assume ,?(A) C z(R). 

(a) Prove that A is module-isomorphic to the ideal ( d l , .  . ., d,). 
(Hint: let al, . . ., a, be the indicated generators of A .  Verify diaj = djai 
by elementary linear algebra. Observe that there is a non-zero divisor 
u = 2tidi. With b = Ztiai, uai = dib.) 

(b) Suppose given elements r, s E R such that rdi E (s) for all i and r 
is a non-zero-divisor. Prove that r is a multiple of s. (Hint: note that s 
must also be a non-zero-divisor. Argue indirectly. Pass to the ring 
R/(s) and use McCoy’s theorem to get a non-trivial solution of the re- 
sulting h e a r  equations. Move the result back to R, and use the fact 
that we have all relations on al, . . ., a, to  achieve a contradiction.) 

(c) Assume that A is an ideal in R. Prove that A = t(dl, . . ., d,) for 
some non-zero-divisor t. (Hint: combine parts (a) and (b). This exercise 
is taken from the paper [lo] of Burch, and the method comes from the 
paper [50] of Towber.) 

9. Let R be local and A a finitely generated faithful R-module with 
d(A) < a. Suppose that x E R is a non-zero-divisor on both R and A .  
Prove that the annihilator of A / x A  is (x). (Hint: with R* = R / ( x )  we 
have &*(A/xA) < by Theorem D. By a determinant argument, any 
y in R annihilating A / x A  has a power yn divisible by x .  Use Theorem 
196 to deduce that the annihilator of A / x A  in R* must be 0.) 
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1 4-4 CHANGE OF RINGS FOR INJECTIVE DIMENSION 

In this section we turn to the study of injective dimension. We first 
summarize the relevant definitions and record two theorems which we 
shall use. 

A module is injective if it is a direct summand of any module con- 
taining it. Modules A and B are injectively equivalent if there exist in- 
jective modules P and Q such that A @ P is isomorphic to B @ Q. An 
exact sequence 

O + A - + Q - + L - + O  

with Q injective is a short injective resolution of A .  The injective equiva- 
lence class of L does not depend on the resolution and is denoted by $A. 
Injective dimension is now defined in precisely the same way as homo- 
logical (or projective) dimension. Our notation for it is id(A) or idR(A). 

The following theorem is the injective dual of Theorem B. Its dual 
proof is left to  the reader. 

Theorem F. 
( I )  I f  two of the dimensions id(A), id(B), id(C) are jni te ,  so is the 

(2)  If id(A) > id(B), then id(C) = id(A). 
(3)  Zfid(A) < id(B), then id(C) = id(B) + 1. 
( 4 )  I f id (A)  = id(B), then id(C) 5 id(A)+ 1.  

Toward the end of the proof of Theorem 202, the law of diminishing 
returns sets in, and it becomes economical to use the Ext machinery. 
From that point on, we shall do so freely. We drop the ring subscript 
when there is no danger of ambiguity, and we write Ext for Ext’ where 
appropriate. The following result is Theorem 19 in Part I11 of [26]. 

Let C be a submodule of A and write B = A / C .  

third. 

Theorem G. For any modules A and B, Ext(@A, B )  = 0 if and only 
ifExt(A, g B )  = 0. 

We proceed to prove three theorems concerning change of rings for 
injective dimension. They are the injective duals of Theorems C, D, and 
E. Before proving the first we need a preliminary theorem. 

@ 
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Theorem 201. Let R be any ring (not necessarily commutative). Let 
x be a central non-zero-divisor in R, and write R* = R/(x). Let A be an 
R-module which is injective as an R*-module. Let C be an R-module 
with x # <(C). Then: ExtR(C, A )  = 0. 

Proof, We attack the problem directly by proving that the exten- 
sions in question split. So we let 

O+A + E - +  C-+O 

be an exact sequence. We are to prove that A is a direct summand of E. 
We note that A r\ xE = 0, for if a E A n xE, write a = xe, e E E. Then 
the image of a in E/A is 0. But x is a non-zero-divisor on E/A. Hence 
e e A ,  a e x A  = 0. 

In view of A A xE = 0, we may look at A as a submodule of E/xE. 
As such (since A is R*-injective), it is a direct summand. From this it is 
routine to see that A is a direct summand of E. 

Theorem 202. (First theorem on injective change of rings.) Let R 
be any ring (not necessarily commutative). Let x be a central non-zero- 
divisor in R, and write R* = R/(x). Let A be a non-zero R*-module with 
idR*(A) = n < a. Then idR(A) = n + I .  

Remark. There is an inequality that is valid under very general cir- 
cumstances. Let R and T be rings and let a ring homomorphism R -+ T 
be given. Let A be a left T-module. The homomorphism from R to T 
enables us to look at A as an R-module, and we have idR(A) P idT(A) 
+ (weak right dimension of T over R). This appears as the second part 
of Ex. 5 on page 360 of [I 13. A proof of the exercise can be given by 
an appropriate extension of the idea in Theorem 201. 

Proof, We argue by induction on n, and begin by treating the case 
n = 0. We first note that A is not R-injective. For if it were, it would be 
divisible by x (any homomorphism from (x) into A could be extended 
to R), and this is compatible with xA = 0 only if A = 0. So it suffices 
to prove idR(A) P 1. This requires us to prove that g A  is injective, for 
which we need to know that Ext(B, 4 A )  = 0 for every R-module B. 
By Theorem G it is equivalent to prove Ext(@B, A )  = 0. Now any 
module representing RB is a submodule of a projective R-module, and 
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so has the property that x is not a zero-divisor on it. From Theorem 
201 we deduce ExtR(@B, A )  = 0. 

We have finished the case n = 0. Induction on n works quite simply, 
except when we run into the “ambiguous” case at n = 1. 

Form an R*-injective resolution of A : 

O+A+Q+D-+O 

We have idR*(D) = n - 1, so that idR(D) = n by induction. Also 
idR(Q) = 1. By Theorem F we conclude idR(A) = n + 1, except that 
when n = 1 we only get the inequality idR(A) 3 2. 

To complete the proof we assume idR*(A) = 1, idR(A) 5 1 and 
achieve the contradiction that A is R*-injective. It suffices to verify 
ExtRI(R*/I*, A )  = 0 for any left ideal I* in R*. Since I* has the form 
I/(x) with Z a left ideal in R containing x, R*/Z* E R/Z, and so it is 
equivalent to check EXtR*(R/I, A )  = 0 for such an I. Here in place of 
R/Z we can take the isomorphic module (x)/xZ. 

Next we prove that ExtR*(Z/xZ, A )  = 0. To do this we begin by noting 
that ExtR(R/I, SA)  = 0 holds since idR(A) P 1. Hence ExtR(@R/I, A )  
= 0, i. e., ExtR(Z, A )  = 0. Take a free resolution of Z over R: 

O+K-+F-+Z-+O 

Note that since x c <(Z), we have an induced free resolution of Z/xZ 
over R*: 

0 -+ K/xK -+ F/xF -+ Z/xZ + 0 

ExtR(Z, A )  = 0 implies that any homomorphism from K into A can be 
extended to F. Since x A  = 0, this is exactly the same as saying that any 
homomorphism from K/xK can be extended to F/xF. We can derive 
(Theorem 16 [26]) ExtR*(I/xZ, A )  = 0. 

The proof of Theorem 202 can now be quickly concluded by an 
application of the homology sequence for Ext. In view of the exact 
sequence 

o----+-+--+o ( 4  1 1 
xz xz ( x )  

we have 

(56) Exti*(Z/xZ, A )  --+ Exth*((x)/xZ, A )  -+ Exti*(Z/(x), A ) .  

We have just proved that the left member of (56) vanishes. The right 
member vanishes since idR*(A) = 1. Hence the middle member vanishes, 
and we have seen that this suffices to finish the proof of Theorem 202. 
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We proceed to dualize Theorem D. There are in fact two duals. Our 
real objective is Theorem 205, but we prove it by first proving the dual 
version given by Theorem 204. Theorem 203 is a preliminary one that 
will also be used below in proving Theorem 207. Note that the dual of 
Theorem 203 is the assertion that A / I A  is projective if A is projective. 
(Compare Propositions 6.1 and 6.la on page 30 of [ll].) 

Theorem 203. Let I be a two-sided ideal in a (not necessarily com- 
mutative) ring R, let A be an injective R-module, and let B be the sub- 
module of A annihilared by I. Then, as an (R/I)-module, B is injective. 

Proof. To test R/I-injectivity of B, we take R/I-modules C C D 
and a homomorphism f :  C -+ B ;  we must extendfto D. In thediagram, 

the composite map C -+ A extends to g :  D -+ A since A is R-injective. 
But since D is annihilated by I ,  the image of g has to lie in B, as re- 
quired. 

Theorem 204. Let R be a (not necessarily commutative) ring and x 
a central non-zero-divisor in R. Write R* = R/(x). Let A be an R- 
module satisfying A = x A ,  and let .A be the submodule of A annihilated 
by x. Then: idR*(J) 6 idR(A). 

Proof. The proof is exactly dual to that of Theorem D, but we give 
it for completeness. 

If idR(A) = m, there is nothing to prove. Assume idR(A) = n < 03. 

We make an induction on n. If n = 0, we quote Theorem 203. Assume 
n > 0, and make an injective resolution of A :  

(57) O-+A-+Q-.D-O 
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From this we get the exact sequence 
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the subscript x preceding each module denoting passage to the sub- 
module annihilated by x. The exactness of (58) is routine except for the 
verification that .Q -+ .D is onto. So let d e D satisfy xd = 0. We have 
some q E Q mapping into d. Then xq lies in the kernel A .  Since 
A = x A  we can write xq = xa with a E A. We thereupon correct q to 
q1 = q - a, and have xql = 0, q1 -+ d. (What we have just done amounts 
to  a part of the snake diagram mentioned below.) 

Now idR(D) = n - 1, from (57). Furthermore, X D  = D since xQ 
= Q. By induction, idR&D) 5 n - 1. Since .Q is R*-injective by Theo- 
rem 203, we derive idR*(,A) 5 n from (58).  

, 

Theorem 205. (Second theorem on injective change of rings.) Let R 
be a (not necessarily commutative) ring and x a central element in R. 
Write R* = R/(x) .  Let A be an R-module and suppose x is a non-zero- 
divisor on both R and A .  Then: 

except when A is R-injective (in which case A = xA).  

Proof. We may assume idR(A) = n with 1 5 n < OD. Perform the 
injective resolution (57), so that idR(D) = n - 1. We claim that 

(59) .D .Q 0 A / x A  

Since idR*(,D) 5 n - 1 by Theorem 204, idR*(A/xA) 5 n - 1 is a con- 
sequence of (59). Thus, a proof of (59) will suffice. 

An attractive proof of (59) can be based on the exact sequence 

0 3 ,A .Q ---f .D -+ A / x A  -+ Q/xQ -+ D / x D  -+ 0 

obtained from the snake diagram. Here .A = 0 since x f! <(A), Q/xQ 
= 0 since Q is injective and x <(R), and’,Q is R*-injective by Theorem 
203. We deduce (59). 

We sketch a direct alternative discussion. Let E be the image of .Q 
in .D. For any a E A we can write a = xq (q E Q), since Q = xQ; then 
send q into its image in D. This induces an isomorphism of A / x A  into 
.D and the image is a complementary direct summand of E. 
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For Theorem 206 we do not have an analogue of the method used in 
proving Theorem E. We rely therefore on the alternative method out- 
lined on p. 179 of [26], and this forces us to assume that the underlying 
ring is commutative. 

Theorem 206. (Third theorem on injective change of rings.) Let R be 
a commutative Noetherian ring, x an element in the Jacobson radical of 
R, and write R* = R / ( x ) .  Let A be a finitely generated non-zero R- 
module with x p <(A). Then idR(A) = idR(A/xA).  If further x p <(R), 
idR(A) = 1 + idR*(A/XA). 

Proof. From the exact sequence 
z 

0 - + A  + A  + A / x A  -+ 0 

where the x above the arrow identifies the map as multiplication by x ,  
we derive 

z 

(60) Extl(B, A )  -+ Extl(B, A )  -+ Extl(B, A / x A )  ---f Ex@’(& A )  

where B is any R-module. Assume idR(A/xA) = n - 1 < a. Then the 
second to last term of (60) vanishes. If B is finitely generated, so is 
Ext;(B, A).  By (60) and the Nakayama lemma, Ext”,B, A )  = 0. The 
knowledge that this holds for every finitely generated B is sufficient 
for us to conclude idR(A) I n - 1 .  

Conversely, assume idR(A) I n - 1 .  Then the second and fourth 
terms of (60) vanish. Hence the third vanishes as well. We deduce 
idR(A/xA) 6 n - 1. This, together with the result in the preceding 
paragraph, shows that idR(A) and idR(A/xA) are equal. (Note: the 
reasoning in this paragraph can be replaced by a reference to the in- 
jective dual of Theorem B.) 

Now assume x e <(R) as well. If idR(A) = a, then idR(A/xA) = a 

as we have just seen. Then by Theorem 202, idR*(A/xA) = a. If idR(A) 
is finite, then idR*(A/XA) is finite by Theorem 205. Theorem 202 then 
yields the final statement of the theorem. 

Remark. When the injective dimensions occurring in Theorem 206 
are finite, the facts follow from the identification with grade to be given 
in Theorem 214. (The proof of Theorem 214 will not use Theorem 206, 
so this reasoning is not circular.) However, we think it useful to give 
both proofs. 
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EXERCISES 
i 
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1. Prove the following fourth version of the second change of rings 
theorem: if x is a central element in R, R* = R/(x), A is an R-module 
that is not projective, and x is a non-zero-divisor in R with xA = A ,  
then dR&A) = &(A) - 1 .  (Hint: deduce this from Theorem C just as 
Theorem 205 was deduced from Theorem 204.) 

2. The following theorem was proved by Rees in [43]: if x is a central 
element in R, R* = R / ( x ) ,  A and B are R-modules, xB = 0, and x is a 
non-zero-divisor on both R and A ,  then 

Ext;l(B, A )  iz Extli’(B, A / x A )  ., 

Use Rees’s theorem to give a brief proof of Theorem 205. 

Ex. 2 
3. Prove the following dual of Rees’s theorem: with the notation of 

Exti(A, B) Ext;f*(A/xA, B )  

(Hint: one method is to use a short free resolution 

O+K+F-+A-+O 

and the induced resolution 

0 + K/xK + F/xF -+ A / x A  + 0 

Assuming the result for n -  1 ,  we have Extl(A, B)SExt;-’(K, B )  
= - ExtXK/xK, B) Ext;*(A/xA, B). Special arguments are needed for 
n = 0, 1. Note: this identity (for n = 1) can replace the portion of the 
argument in Theorem 202 that deduced ExtR*(I/xI, A )  = 0 from 

4. Prove the two remaining duals of the Rees theorem. With R ,  x ,  R* 
EXtR(I, A )  = 0.) 

as usual, A = x A  and x B  = 0, 

Ext;(A, B) z Ext;i’(,A, B)  
Ext;l(B, A )  z Ext;t*(B, J) 

(See [39] for more on theorems of this type.) 
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4-5 GORENSTEIN RINGS 

We begin this section with a summary of essential extensions and in- 
jective envelopes, a theory due to Eckmann and Schopf [16]; see also 
pages 102-3 of [30]. The base ring is allowed to be non-commutative. 
Proofs that are not routine are sketched. 

(1) Let A C B be modules. We say that B is an essential extension 
of A if for any non-zero submodule of S of B, S A A # 0. 

(2) If A C B C C, B is an essential extension of A, and C is an 
essential extension of B, then C is an essential extension of A.  

(3) Let { B,) be a chain of modules lying between modules A and C. 
If each B, is an essential extension of A, so is U B , .  

From (3) we deduce: 
(4) Let A C C be modules. Then any essential extension of A within 

C can be enlarged to a maximal essential extension of A. 
(5) Let A be a submodule of C and let B be a submodule of C maxi- 

mal with respect to disjointness from A.  Then A may be regarded as a 
submodule of C / B ;  as such, C / B  is essential over A.  

(6) Let A C Q be modules with Q injective, and let E be an inter- 
mediate module that is a maximal essential extension of A.  Then E is 
a direct summand of Q, and therefore is injective. In fact, any sub- 
module B of Q that is maximal with respect to disjointness from E 
forms a complementary summand. To see this, we treat E as a sub- 
module of Q/B.  By (9, Q / B  is essential over A.  The map from Q / B  to 

’ 

FIGURE 8 

Q in Figure 8 exists since Q is injective. Its kernel is 0 by the essentiality 
of Q / B  over E. Hence we may regard the chain of modules A C E 
C Q / B  as being placed inside Q. The maximality of E therefore forces 
Q / B  = E, i. e., B + E = Q, and Q is the direct sum of E and B, as 
required. 
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(7) Thus any module admits an essential injective extension. We 
proceed to the uniqueness. 

(8) Let E and El be essential injective extensions of A. Then there 
exists an isomorphism of E onto El, which is the identity on A. To see 
this, note that the map A -+ El can be extended to E since El is injective. 
By the essentiality of E over A, the extended map has kernel 0. The 
image is thus a direct summand of El, and must be all of El since El 
is essential over A.  

The uniqueness justifies our calling an essential injective extension of 
A an injective envelope of A. Our notation will be E(A). 

We proceed to the study of local rings which admit a non-zero 
finitely generated module of finite injective dimension. I n  the, first 
instance we assume the module to be injective. 

L 

1 

Theorem 207. Let R be a local ring. R admits a jh i te ly  generated 
non-zero injective module if and only if R is zero-dimensional. 

Proof. Suppose A # 0 is finitely generated and injective. We make 
an indirect proof, supposing dim(R) 2 1 .  We claim that for some prime 
ideal P different from the maximal ideal, R I P  admits a non-zero homo- 
morphism into A. For we know that A contains a submodule iso- 
morphic to R / Q  for some prime ideal Q. If Q # M ,  we are done, while 
if Q = M ,  any RIP admits a homomorphism onto RIM.  

Take such a prime ideal P,  and write B = R/P. Let x be a non-unit 
not contained in P; then x is a non-zero-divisor on B. In Figure 9 
for any f: B -+ A the dotted map g exists since A is injective. Hence, 
Hom(B, A) = x Hom(B, A), and Hom(B, A) = 0 by the Nakayama 
lemma, a contradiction. 

.1/’ 
A 

FIGURE 9 

Conversely, suppose R is zero-dimensional. We claim that A 
= E(R/M) is finitely generated. If hP = 0, we prove this by induction 
on n. Let B be the submodule of A annihilated by Mn-’. By Theorem 
203, B is R*-injective, where R* = R/W-I. Evidently B = E(R*/M*) 
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where M* is the maximal ideal of R*. By induction, B is finitely gener- 
ated. Hence so is MA, since MA C B. Now let x l , .  . ., x, be a set of 
generators of M. In the homomorphism 

A + x i A  CB . . . CB x,A 

obtained by mapping a E A into the m-ple xla, . . ., x,a, the image is 
finitely generated and the kernel is isomorphic to R I M  (since A is 
essential over RIM). Hence A is finitely generated. 

In the next two theorems we allow the module A to be non-finitely- 
generated ; possibly this will be useful in future investigations. 

Theorem 208. Let R be local with maximal ideal M. Let B be a 
finitely generated R-module satisfying d(B) = I. Let A be an R-module, 
not necessarily finitely generated, satisfying Ext(B, A) = 0. Then: A 
= MA. 

Proof. Form a minimal resolution 

O+K+F+ B+O 

of B, so that K C MF and K is free and non-zero. From Ext(B, A) = 0 
we deduce that any homomorphism from K to A can be extended to F. 
Any element of A is eligible to be in the range of such a homomorphism; 
hence A = MA. 

Theorem 209. Let R be local with maximal ideal M ,  and let A be 
an R-module, not necessarily finitely generated. Assume id(A) < G(R). 
Then: A = MA. 

Proof. Let G(R) = n. There exists a finitely generated R-module B 
with d(B) = n; for instance we may take R divided by an R-sequence 
of length n. Then d(mc"-'B) = 1. Since id(A) < n we have Ext(mn-'B, A) 
= 0. We quote Theorem 208. 

From Theorem 209 and the Nakayama lemma we deduce at once: 

Theorem 210. Let R be local with maximal ideal M ,  and let A be a 

Our first main objective is Theorem 214; we will need three pre- 

finitely generated non-zero R-module. Then: id(A) 1 G(R). 

liminary theorems. 
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! 
Theorem 21 1. Let R be local with maximal ideal M ,  and let P be a 

prime ideal diflerent from M. Let A be a finitely generated R-module. 
Assume that Ext+'(R/Q, A) = 0 for every prime ideal Q properly con- 
taining P. Then: Exta(R/P, A) = 0. 

Proof. Pick x in M but not in P. Write B = R/P. Then x z <(B) and 
the exact sequence 

2 

0- B + B +  B/xB+O 
induces 

(61) Ext%(B, A) -+ Extl(B, A) -+ Extz+'(B/xB, A), 

Now B/xB GZ R/(P, x). We apply Ex. 7 in $2-1 to the module B/xB, 
noting that the modules that occur in the resulting series are of the form 
R/Q with Q a prime ideal properly containing P. By the "additivity" 
of the vanishing of Ext, we deduce that the last term of (61) vanishes. 
By the Nakayama lemma, Ext$(B, A) = 0. 

z 

Theorem 21 2. Let R be local with maximal ideal M ,  let A be afinitely 
generated R-module, and let n be an integer L 1. Assume Exti(R/M, A) 
= Ofor all i >= n. Then: id(A) < n. 

Proof. By iterated use of Theorem 21 1 we get that Exti(R/P, A) = 0 
for every prime ideal P. From this (Ex. 7 in $2-1) we deduce that 
Exti(C, A) = 0 for every finitely generated R-module C, and this im- 
plies id(A) < n. 

The next theorem is a simple property of Ext, valid over arbitrary 
rings; it is explicitly recorded for the reader's convenience. 

Theorem 21 3. Let 

O-+C.+ D +  D/C+O 

be an exact sequence of R-modules, and A another R-module. If for 
some integer k we have Extk(D, A) = 0 and Extk+'(D/C, A) = 0, then 
Extk(C, A) = 0. 

Proof. This is immediate from the exact sequence 

Extk(D, A) -+ Extk(C, A) -+ Extk+'(D/C, A) 
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Theorem 214. Let R be local with maximal ideal M and let A be a 
non-ZerofinitelygeneratedR-module with id(A) < m . Then id(A) = G(R). 

Proof. Let G(R) = n. Theorem 210 gives us id(A) 2 n and it re- 
mains to prove id(A) I n. Assume on the contrary that id(A) = k > n. 

Let xl, . . ., x,, be a maximal R-sequence in R, and write 

D = R/(xi, . . ., x,). 

Since M C <( D) we have that R I M  is isomorphic to a submodule C of 
D. We have Extk(D, A )  = 0 since d(D) = n and k > n. We have 
Extk+'(D/C, A )  = 0 since id(A) = k.  By Theorem 213, Extk(C, A )  = 0. 
Since Exti(C, A )  also vanishes for i > k ,  we deduce from Theorem 212 
the contradiction id(A) I k - 1. 

Definition. A local ring R is called a Gorenstein ring if id(R) < m . 

Theorem 215. A local Gorenstein ring R is Macaulay. 

Proof. Let id(R) = n. By Theorem 214, G(R) = n. We argue by 
induction on n. 

n = 0. Then R is injective and we quote Theorem 207. 
n > 0. There exists in M a non-zero-divisor x. Write R* = R/(x ) .  

By Theorem 205, idR8(R*) < m, i. e., R* is a Gorenstein ring. By in- 
duction R* is Macaulay, and by Theorem 156, R is Macaulay. 

Remark. This is the first time in the present section that we have 
made use of the change of rings theorems of 54-4. Thus Theorems 207- 
214 could have preceded 54-4. 

The next result is Theorem 2.2 in [29]. 

Theorem 216. Let R be a local Gorenstein ring, A a finitely gen- 
erated R-module. Then A has finite projective dimension if and only if 
it has finite injective dimension. 

Proof. Suppose d(A) < a. Then, since finitely generated free R- 
modules have finite injective dimension, an obvious induction on d(A) 
shows that id(A) < m. 

Suppose id(A) < 03. We make an induction on n = G(R). If n = 0, 
then (Theorem 215 or 207) R is zero-dimensional. Furthermore, A and 
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R are injective. One easily sees that any finitely 
module is a direct sum of copies of E(R/M). 
R E E(R/M).) Hence A is free. 

161 

generated injective R- 
(As a matter of fact, 

So we assume n > 0. Pick x p <(R), and write R* = R/(x). We form 
the resolution 

O - + K - + F - + A + O  

with F free. Since idR(F) < m , we have idR(K) < m . By Theorem 205, 
idR8(K/xK) < 0 3 .  Since G(R*) is smaller than n, and (as we noted in 
the proof of Theorem 215), R* is Gorenstein, we have dw(K/xK)  < a. 
Then, by Theorem E, dR(K) < a, and dR(A) < 00 is a consequence. 

Theorem 217. Let R be a local ring with G(R) = n. Let A and B be 
finitely generated nomzero R-modules with id(A) < m . Then: Extr(B, A )  
= 0 for  r > n - G(B). 

Proof. We proceed by induction on G(B). If G(B) = 0, the con- 

Assume G(B) > 0 and take x t! <(B). From the exact sequence 
clusion is immediate, since id(A) = n by Theorem 214. 

2 

0 -+ B -+ B -+ B/xB + 0 * 

we get the exact sequence 

(62) Extr(B, A )  -+ Extr(B, A )  -+ Extr+'(B/xB, A )  -+ Extr+'(B, A )  

We have Ext+'(B/xB, A )  = 0 by induction, since G(B/xB)  = G(B) - 1 
and ( r  + 1) + G(B/xB) > n. We deduce Extr(B, A )  = 0 from (62) and 
the Nakayama lemma. 

2 

Theorem 218. Let R, n, A and B be as in Theorem 217. Assume 
G(B) 5 n, and set r = n - G(B). Then Extr(B, A )  # 0. 

Remark. We shall see in a moment (Theorem 219) that the hy- 
pothesis G(B) 6 n is redundant. However, the proof of Theorem 219 
uses Theorem 2 18. 

Proof. First assume G(B) = 0. Suppose, by way of contradiction, 
that Extr(B, A )  = 0. Since G(B) = 0, B contains an isomorphic copy 
(say C )  of RIM. From Theorem 213, with k replaced by n and D by B, 
we get Extn(R/M, A )  = 0. Furthermore, Exti(R/M, A )  = 0 for i > n 
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since id(A) = n by Theorem 214. Then Theorem 212 gives us the con- 
tradiction id(A) < n.  

We assume G(B) > 0 and proceed by induction on G(B). Let x be 
a non-zero-divisor on B. Applying our induction to B/xB we get 
Extr+l(B/xB, A )  # 0. Furthermore, by Theorem 217, Extr+'(B, A )  = 0. 
These facts, in conjunction with (62), yield Ext'(B, A )  # 0. 

Theorem 219. Let R be a local ring that admits a non-zero finitely 
generated module A with finite injective dimension. Then any finitely 
generated non-zero R-module B has grade at most G(R). 

Proof. Suppose the contrary. Then, by dividing B by a suitable R- 
sequence, we can reach a module C with G(C) = n + 1, where n = G(R). 
Then, with x f,?(C), G(C/xC) = n.  By Theorem 218, with C/xC play- 
ing the role of B, we have Hom(C/xC, A )  # 0. Hence Hom(C, A )  # 0. 
However, 

Hom(C, A )  2 Hom(C, A )  -+ Extl(C/xC, A )  

is exact, and Ext'(C/xC, A )  = 0 by Theorem 217 (with r = 1 and B re- 
placed by C/xC). This contradicts the Nakayama lemma. 

We now exhibit a chain of five successive statements that can be 
made about a local ring R. 

I. R is regular. 
11. R is Gorenstein. 

111. R is Macaulay. 
IV. R admits a finitely generated non-zero module with finite injec- 

V. The grade of any finitely generated module is at most G(R). 
I1 and I1 3 111, and these implications cannot be re- 

versed. I11 * IV, for if J is an ideal generated by a maximal R-sequence 
in R, we need only take a non-zero finitely generated injective (R/J)- 
module (Theorems 207 and 202). IV => V by Theorem 219. Note that 
I11 3 V follows from Ex. 22 in $3-1, and so what we have done is to 
"factor" that implication into two parts of independent interest. 

Examples can be found in which property V holds but not IV. In [29] 
Levin and Vasconcelos prove IV =) I11 for rings of grade 1. Also note- 
worthy is their proof that if id(A) < m then the annihilator of A is 
zero or contains a non-zero-divisor, the exact injective analogue of 
Theorem 196. 

tive dimension. 

We have I 
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EXERCISES 

In exercises 1-8, R is local with maximal ideal M ,  and A is a finitely 
generated R-module. 

1. Suppose that M can be generated by 1 + G(R) elements. Prove 
that R is a Gorenstein ring. (Hint: by dividing by an element x that is 
not a zero-divisor and not in M2,  you can reduce successively down 
to the case where M is principal. Note that this is an improvement on 
Ex. l(a) in $3-3.) 

2. If Extt(M, A )  = 0 for all i 2 n, prove that id(A) S n. (Hint: 
Extt(M, A )  Ext%+'(R/M, A). )  

3 .  If id(A) = n,  prove that Extn(R/M, A )  # 0. 
4. If id(A) = 0 0 ,  prove that Extz(R/M, A )  # 0 for infinitely many i. 
5. If xr,?"'R), prove that R is Gorenstein if R/(x) is Gorenstein. 

(Note: the converse also is true, and came up in the proofs of Theo- 
rems 215 and 216.) 

6. If id(M) < 00 prove that R is regular. (Hint: for x c M 2  use the 
fact that M / ( x )  ts a direct summand of M / x M  to make a reduction 

7. Assume that id(A) = k < m . Let B be a finitely generated R-mod- 
ule. Prove that G(B) equals the largest integer m such that Extk-"(B, A )  
# 0. 

8. Suppose R is k-dimensional, and that Exta(R/M, R) vanishes for 
k + 1 consecutive values of i. Prove that R is Gorenstein. 

9. Let R be any ring, S a multiplicatively closed set in R, A and 
B R-modules. Construct a natural map f from (HomR(A, B))s to 
HomR,(As, Bs). 

to Rl(x).)  

(a) If A is finitely generated, prove that f is one-to-one. 
(b) If A is finitely presented, prove that f is onto. (A module A is 

finitely presented if it is finitely generated, and when it is resolved 

O - - t K - + F + A - + O  

with F free and finitely generated, then K is finitely generated. Note 
that by Schanuel's lemma this does not depend on the choice of the 
resolution.) 

10. Suppose that R is Noetherian, and that A is an injective R- 
module. Prove that A s  is Rs-injective for any multiplicatively closed 
set S. (Remark: it is furthermore true that As  is R-injective; indeed 
any injective Rs-module is also R-injective.) 

I 
I 
i 
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1 1 .  Let R be a Gorenstein local ring, and let P be a prime ideal in R. 

We define a global Gorenstein ring R by the assumptions that R is 
Noetherian and that the localization RM is Gorenstein for any maximal 
ideal M. 

12. If R is Gorenstein and S multiplicatively closed, prove that R s  
is Gorenstein. 

13. If R is Gorenstein and x is a non-zero-divisor in R, prove that 
R/(x) is Gorenstein. 

14. Suppose that R is Noetherian, that x is a non-zero-divisor in the 
Jacobsoil radical of R, and that R/(x) is Gorenstein. Prove that R is 
Gorenstein. 

15. Let R be Noetherian, and let A C B be R-modules with B an 
essential extension of A. Prove that for any multiplicatively closed set 
S, Bs is an essential extension of A S .  (Hint: given a non-zero element 
c* in Bs, we have to prove that AS meets the submodule spanned by 
c*. Pick c c B mapping on the numerator of c*. Among all elements 
sc(s e S),  pick one, say d, with maximal annihilator. Use the fact that 
A n Rd # 0.) 

16. Let R be Noetherian, and A an R-module such that AM is RM- 
injective for every maximal ideal M. Prove that A is injective. (Hint: 
localize an essential injective resolution of A, and use Ex. 15.) 

17. Let R be a Noetherian ring. Prove that the following statements 
are equivalent: (a) id(R) = n < 03, (b) R is Gorenstein and has Krull 
dimension n. 

18. Let R be a Gorenstein ring, and A a finitely generated R-module. 
Prove that for any n, the annihilator J of Ext"(A, R) is either R or has 
rank 2 n. (Hint: for P a prime ideal with rank (P)  < n, it suffices to 
prove J (L P .  This is equivalent to Extn(Ap, RP) = 0.) 

19. (This exercise is the injective dual of Ex. 17 in $4-1.) Let R be 
local with maximal ideal M ,  let x be a non-zero-divisor not contained 
in M2, and let A be a finitely generated R-module annihilated by x .  
Write R* = R/(x). Prove: if idR(A) < a, then idR*(A> < 03. (Hint: we 
have Ext;(M, A) = 0 for large n. By the dual Rees theorem of Ex. 3 in 
$4-4, Ext&l(M/xM, A) = 0. But M/xM E M* 0 R*/M*, where M* 
is the maximal ideal of R* (see the proof of Theorem 13 [26].) 
Hence Ext:r'(R*/M*, A) = 0 for large n. Use Theorem 212.) 

20. Treat Ex. 17 in $4-1 itself by the method of the preceding 
exercise. (Hint: use the Rees theorem (Ex. 2 in $4-4) and Ex. 2 in 

Prove that Rp is Gorenstein. 

$4- 1 .) 
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4-6 DUALITY 

In this section we shall show that for dimension 5 1 the Gorenstein 
property is equivalent to an appropriately formulated duality. 

In the zero-dimensional case the decisive argument is given in Theo- 
rem 220. It is routine to proceed from Theorem 220 to the full duality 
of modules of finite length (see Ex. 1). 

Theorem 220. Let R be local with maximal ideal M ,  let E denote an 
injective envelope of RIM, let A be an R-module of pnite length, and 
write B = Homx(A, E). Then B also has j k i t e  length, and its length is 
equal to that of A .  

Proof. To emphasize the potential du_ality between A and B, we 
shall use the inner product notation (a, b) to denote the value of the 
homomorphism b at the element a. 

Since A has finite length, we have MnA = 0 for some power Mn. We 
insert between A and 0 the chain of submodules 

A 3 M A  3 M2A 3 * * - 3 Mn-'A 3 MnA = 0 

Each quotient M A / M + ' A  is a finite-dimensional vector space over the 
field R I M .  

The module B is likewise annihilated by M". Let B, be the submodule 
of B annihilated by Mz. We insert the'intermediate submodules 

0 C B1 C B2 C * * - C Bn-l C B n =  B 

We shall prove that the vector space B,+l/B, is paired to MaA/M+'A 
in non-singular fashion; this will evidently prove that the length of B is 
finite and equal to the length of A .  We have that ( M A ,  B,+') is anni- 
hilated by M .  We denote by El the submodule of E annihilated by M 
and note that El is isomorphic to R I M  (since E is an injective envelope 
of R I M ) .  We obtain in this way a pairing of MzA/M%+'A and B,+'/B,. 
In order to see that this pairing is non-singular we have two things to 
prove. 

(a) If y c B,+' and (MA, y )  = 0, then y e  B,. For we have ( A ,  M y )  
= 0 and hence M y  = 0. 

(b) If x c M A  and (x, B,+l) = 0, then x E M a f l A .  For suppose on the 
contrary that x p M + ' A .  Let x* denote the image of x in MA/Ma+'A; 
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note that Mx* = 0. We can start a homomorphism of MIA/Mif lA  into 
E by sending x* into a non-zero element of El,  and then we can extend 
by the injectivity of E. In this way we get a homomorphism of MIA 
into E that annihilates Mi+‘A but not x ,  a contradiction to ( x ,  Bi+J 
= 0. This concludes the proof of Theorem 220. 

Theorem 221. Let R be a zero-dimensional local ring with maximal 
ideal M .  Then R is Gorenstein if and only if the annihilator of M is one- 
dimensional (as a vector space over RIM). 

Proof. Suppose that R is Gorenstein, and that consequently R is 
injective as an R-module. Let Z denote the annihilator of M ,  let Zo be a 
one-dimensional subspace of I ,  and let J be an injective envelope of I, 
within R. Then J is a direct summand of R. Since R is local, this entails 
J =  R. Hence R is an essential extension of lo, and therefore I must 
coincide with I,,. 

Conversely, suppose that I is one-dimensional. We note that every 
non-zero ideal of R contains a non-zero element annihilated by M ,  and 
hence contains I .  Let E be an injective envelope of I .  The isomorphism 
of I into E extends to a homomorphism of R into E which, by what we 
have just remarked, is necessarily one-to-one. By Theorem 220, R and 
E have the same length. Hence R E and R is injective, as required. 

Remark. In the literature zero-dimensional Gorenstein rings are 
usually called quasi-Frobenius, and the non-commutative generalization 
has been thoroughly studied. 

We proceed, in Theorem 222, to a characterization of one-dimen- 
sional local Gorenstein domains. As a prelude, it will be useful to dis- 
cuss duality for an arbitrary integral domain R. 

Given any R-module A ,  we think of Hom(A, R) as a dual of A ,  and 
write A* for it. There is a natural homomorphism from A to A**, and 
we call A reflexive if this homomorphism is both one-to-one and onto. 

Let F be a free R-module on a finite number of basis elements. We 
write G for Fr to emphasize the potentially symmetric roles of F and 
G, and we use an inner product notation cf, g )  for the value of g at f .  
This is equally well the value off at g,  for F is in a natural way G*. 

For any submodule A of F we write A’ for the set of all g in G with 
(A ,  g )  = 0. A similar definition is made for submodules of G.  As usual 
in such a setup, we have A C A”, A’ = A”‘. We call a submodule of F 
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or G closed if it is equal to its double prime, and we observe that prim- 
ing sets up a one-to-one correspondence between the closed submodules 
of F and those of G. 

In the present context we can define a pure submodule of F or G to 
be one such that the quotient module is torsion-free. One can easily see 
that for any A ,  A’ is pure. Furthermore, any pure submodule is closed, 
as follows from the fact that a finitely generated torsion-free module 
admits a complete set of homomorphisms into R. Thus we can restate 
the remarks of the preceding paragraph as follows: priming induces a 
one-to-one correspondence between the pure submodules of F and 
those of G. 

For any submodule of A of F, A’ is, by definition, the module of all 
homomorphisms from F to R that vanish on A .  In other words, A’ 
g (F/A)*. To complete the usual picture of duality, we would like to 
identify A* with G/A’ .  W w  by restricting homomorphisms F + R to A 
we get a mapping from G into A*. The kernel is precisely A’. Thus, G/A’ 
is isomorphic to a submodule of A*, n’amely the submodule consisting 
of all homomorphisms from A to R that are extendible to F. 

In Theorem 222 we shall, for one-dimensional local Gorenstein do- 
mains, supply the crucial point that these homomorphisms extend. 

Theorem 222. Let R be a one-dimensional local domain. The follow- 
ing three statements are equivalent: (a )  R is Gorenstein, (b )  all Jinitely 
generated torsion-free R-modules are reflexive, (c)  for any non-zero ideal 
I in R, = I .  

Proof. (a) implies (b). We continue the discussion of duality where 
it left off above. Let B be a finitely generated torsion-free module. We 
resolve 

O - + A + F - + B - + O  

and use F for the free module of the above discussion. Note that A is a 
pure submodule of F and thus is closed ( A  = A”). Since idR(R) = 1, and 
B can be embedded into a free. module, we have Ext(B, R) = 0, which 
says that every homomorphism from A to R can be extended to F. This 
supplies what was needed above in order to see that A* Z G/A’.  

(F/A)* = B* holds for any integral 
domain. Apply what was proved in the preceding paragraph to get 
(A’)* Z ,/A” = F / A  = B. This proves the required reflexivity of B. 

(b) implies (c). For a non-zero ideal I we have I* = Hom(Z, R )  I-’. 
(c) implies (a). Let M be the maximal ideal of R. We first show that 

Now recall that we saw that A’ 



168 CH. 4/HOMOLOGICAL ASPECTS OF RING THEORY 

M-’/R, which can be regarded as a vector space over RIM, is one- 
dimensional. Otherwise there would exist a (fractional) ideal J lying 
properly between R and M-l. Take inverses in the inclusions 
R C J C M-I, obtaining R 3 J-l 3 M. Hence J-l = R or M. On tak- 
ing the inverse again, we find J = R or M-l, a contradiction. 

Now pick x to be an element of R, not 0 or a unit. It suffices for us 
to prove that R/(x) is Gorenstein. Let I be the set of ally with My C (x ) .  
By Theorem 221, our task is to prove that I / ( x )  is a one-dimensional 
vector space over RIM. We observe that I =  xM-l. Since xM-‘/(x) 

M-‘/R, the proof is finished. 

Theorem 222 can be improved. It  is valid for R Noetherian (that is, 
not necessarily local). With suitable precautions, zero-divisors can be 
allowed. Moreover, hypothesis (b) or (c) implies that R is at most one- 
dimensional. For these results and others, and for the historical back- 
ground, Bass’s paper [7] should be consulted. Many aspects are pushed 
further in the paper [34] of Matlis. 

EXERCISES 

I .  Let R be a local ring with maximal ideal M ,  and let E be an in- 
jective envelope of RIM. Let A be an R-module of finite length, and 
let B be its dual Hom(A, E).  Prove that A is in a natural way the dual 
of B. Let C be any submodule of A ,  and C’ its annihilator in B. Prove 
that this mapping sets up a one-to-one correspondence between all 
submodules of A and all submodulesbf B, and that C and B/C’ are 
duals of each other. 

2. Let R be a local Macaulay ring. Prove that the following state- 
ments are equivalent: (a) R is Gorenstein, (b) for any maximal R- 
sequence xl,, . ., x,, the annihilator of M in R/(x,, . . ., x,) is one- 
dimensional. (Hint: use Ex. 24 in 53-1.) 

3. Let R be a local one-dimensional Gorenstein domain. Let I and 
J be ideals in R with I 3  J.  Prove that I/J and J-l/I-’ have the same 
length. 

4. Let R be a two-dimensional regular local ring, and let x and y be 
a minimal basis for the maximal ideal M .  Let T = R/(x2, y”), and let 
N be the maximal ideal of T. Prove that T is Gorenstein. Prove further 
that N4 = 0 and that the vector spaces T / N ,  N / N 2 ,  N2 /N3 ,  and N3 have 
dimensions 1, 2, 2, 1. 

Notes 

Page 7. There are indeed further restrictions on the partially ordered 
set of prime ideals of a ring. It is helpful to view this question in con- 
junction with the standard topology that is placed on the set of prime 
ideals, making it a topological space called Spec. For a thorough study 
see M. Hochster, “Prime ideal structure in commutative rings,” Trans. 
Amer. Math. SOC. 142(1969), 43-60. Two of Hochster’s results are note- 
worthy assertions which do not refer to the topology. (1) Any finite 
partially ordered set is eligible to be the partially ordered set of prime 
ideals of a ring. (2) If a partially ordered set P is eligible, so is the one 
obtained from P by reversing its order. 

The list of four properties which hold in the Noetherian case can also 
be substantially enlarged. Probably the augmented list will in turn soon 
be obsolete. 

Page 54. The paper of Eisenbud referred to at the end of Exercise 15 
has appeared : “Subrings of Artinian and Noetherian rings”, Math. 
Annalen 185(1970), 247-249. 

Page 66. McAdam’s paper (Exercises 29 and 30) has appeared: 
“Primes and annihilators,” Bull. Amer. Math. SOC. 76( 1970), 92. 

Section 3-1 (pages 84-104). This section should be amplified by in- 
cluding a treatment of Macaulay modules. Here is a sketch. First let R 
be Noetherian, P a prime ideal in R, and A a faithful finitely generated 
R-module satisfying PA # A ; then G(P, A )  is at most the little rank of P. 
This generalizes Theorem 138, and the proof needs only small changes. 
With R local, call a finitely generated R-module A Macaulay if G(A) 
equals the dimension of R/(annihilator of A).  If R admits a faithful 
Macaulay module, we deduce the saturated chain condition on the 
prime ideals of R. 
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Here is an instructive example. Let T be the ring of all formal power 
series in two variables over a field, R the subring of those power series 
with no linear terms. Then R is a two-dimensional local domain of grade 
1, while Tis an R-module of grade 2. Thus R admits a faithful Macaulay 
module but is not Macaulay. 

Page 110. An attractive alternative proof of Theorem 152 is provided 
by the lemma on page 240 of Volume I of [54]. 

Pages 127 and 135. Rather abruptly, on both of these pages, the finite- 
ness of the global dimension of a regular local ring is used without ex- 
planation. Reference: Theorem 12 on page 183 of [26]. 

Page 134, sixth line from the bottom. The assertion that FFR modules 
form a family is a bit abrupt. One way to prove this is to follow the plan 
of the proof of Theorem B. 

Pages 140-141. The hope that Theorems 194 and 195 might survive 
without the Noetherian hypothesis was promptly fulfilled in a paper by 
Vasconcelos : ‘‘Annihilators of modules with a finite free resolution”, 
Proc. Amer. Math. Soc. 29(1971), 440-442. However, the conclusion in 
Theorem 194 that I contains a non-zero-divisor must (as an example 
shows) be weakened to the statement that the annihilator of I is 0. 

t 
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