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Preface
This volume is a collection of chapters reflecting the status of much of the cur-
rent research in K-theory. As editors, our goal has been to provide an entry and
an overview to K-theory in many of its guises. Thus, each chapter provides its
author an opportunity to summarize, reflect upon, and simplify a given topic
which has typically been presented only in research articles. We have grouped
these chapters into five parts, and within each part the chapters are arranged
alphabetically.

Informally, K-theory is a tool for probing the structure of a mathematical
object such as a ring or a topological space in terms of suitably parameterized
vector spaces. Thus, in some sense, K-theory can be viewed as a form of higher
order linear algebra that has incorporated sophisticated techniques from algebraic
geometry and algebraic topology in its formulation. As can be seen from the
various branches of mathematics discussed in the succeeding chapters, K-theory
gives intrinsic invariants which are useful in the study of algebraic and geometric
questions. In low degrees, there are explicit algebraic definitions of K-groups,
beginning with the Grothendieck group of vector bundles as K0, continuing with
H. Bass’s definition of K1 motivated in part by questions in geometric topology,
and including J. Milnor’s definition of K2 arising from considerations in algebraic
number theory<. On the other hand, even when working in a purely algebraic
context, one requires techniques from homotopy theory to construct the higher
K-groups Ki and to achieve computations. The resulting interplay of algebra,
functional analysis, geometry, and topology in K-theory provides a fascinating
glimpse of the unity of mathematics.

K-theory has its origins in A. Grothendieck’s formulation and proof of his
celebrated Riemann-Roch Theorem [5] in the mid-1950’s. While K-theory now
plays a significant role in many diverse branches of mathematics, Grothendieck’s
original focus on the interplay of algebraic vector bundles and algebraic cycles
on algebraic varieties is much reflected in current research, as can be seen in the
chapters of Part II. The applicability of the Grothendieck construction to algebraic
topology was quickly perceived by M. Atiyah and F. Hirzeburch [1], who developed
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topological K-theory into the first and most important example of a “generalized
cohomology theory”. Also in the 1960’s, work of H. Bass and others resulted in the
formulation and systematic investigation of constructions in geometric topology
(e.g., that of the Whitehead group and the Swan finiteness obstruction) involving
the K-theory of non-commutative rings such as the group ring of the fundamental
group of a manifold. Others soon saw the relevance of K-theoretic techniques to
number theory, for example in the solution by H. Bass, J. Milnor, and J.-P. Serre [2]
of the congruence subgroup problem and the conjectures of S. Lichtenbaum [6]
concerning the values of zeta functions.

In the early 1970’s, D. Quillen [8] provided the now accepted definition of higher
algebraic K-theory and established remarkable properties of “Quillen’s K-groups”,
thereby advancing the formalism of the algebraic side of K-theory and enabling
various computations. An important application of Quillen’s theory is the identifi-
cation by A. Merkurjev and A. Suslin [7] of K2 ⊗ Z|n of a field with n-torsion in the
Brauer group. Others soon recognized that many of Quillen’s techniques could be
applied to rings with additional structure, leading to the study of operator algebras
and to L-theory in geometric topology. Conjectures by S. Bloch [4] and A. Beilin-
son [3] concerning algebraic K-theory and arithmetical algebraic geometry were
also formulated during the 1970’s; these conjectures prepared the way for many
current developments.

We now briefly mention the subject matter of the individual chapters, which
typically present mathematics developed in the past twenty years.

Part I consists of five chapters, beginning with Gunnar Carlsson’s exposition of
the formalism of infinite loop spaces and their role in K-theory. This is followed
by the chapter by Daniel Grayson which discusses the many efforts, recently fully
successful, to construct a spectral sequence converging to K-theory analogous to
the very useful Atiyah-Hirzebruch spectral sequence for topological K-theory. Max
Karoubi’s chapter is dedicated to the exposition of Bott periodicity in various forms
of K-theory: topological K-theory of spaces and Banach algebras, algebraic and
Hermitian K-theory of discrete rings. The chapters by Lars Hesselholt and Charles
Weibel present two of the most successful computations of algebraic K-groups,
namely that of truncated polynomial algebras over regular noetherian rings over
a field and of rings of integers in local and global fields. These computations are
far from elementary and have required the development of many new techniques,
some of which are explained in these (and other) chapters.

Some of the important recent developments in arithmetic and algebraic ge-
ometry and their relationship to K-theory are explored in Part II. In addition to
a discussion of much recent progress, the reader will find in these chapters consid-
erable discussion of conjectures and their consequences. The chapter by Thomas
Geisser gives an exposition of Bloch’s higher Chow groups, then discusses algebraic
K-theory, étale K-theory, and topological cyclic homology. Henri Gillet explains
how algebraic K-theory provides a useful tool in the study of intersection theory
of cycles on algebraic varieties. Various constructions of regulator maps are pre-
sented in the chapter by Alexander Goncharov in order to investigate special values
of L-functions of algebraic varieties. Bruno Kahn discusses the interplay of alge-
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braic K-theory, arithmetic algebraic geometry, motives and motivic cohomology,
describing fundamental conjectures as well as some progress on these conjectures.
Marc Levine’s chapter consists of an overview of mixed motives, including various
constructions and their conjectural role in providing a fundamental understanding
of many geometric questions.

Part III is a collection of three articles dedicated to constructions relating
algebraic K-theory (including the K-theory of quadratic spaces) to “geometric
topology” (i.e., the study of manifolds). In the first chapter, Paul Balmer gives
a modern and general survey of Witt groups constructed in a fashion analogous
to the construction of algebraic K-groups. Jonathan Rosenberg’s chapter surveys
a great range of topics in geometric topology, reviewing recent as well as classi-
cal applications of K-theory to geometry. Bruce William’ chapter emphasizes the
role of the K-theory of quadratic forms in the study of moduli spaces of mani-
folds.

In Part IV are grouped three chapters whose focus is on the (topological)
K-theory of C∗-algebras and other topological algebras which arise in the study of
differential geometry. Joachim Cuntz presents in his chapter an investigation of the
K-theory, K-homology and bivariant K-theory of topological algebras and their
relationship with cyclic homology theories via Chern character transformations.
In their long survey, Wolfgang Lueck and Holger Reich discuss the significant
progress made towards the complete solution of important conjectures which
would identify the K-theory or L-theory of group rings and C∗-algebras with
appropriate equivariant homology groups. In the chapter by Jonathan Rosenberg,
the relationship between operator algebras and K-theory is motivated, investigated,
and explained through applications.

The fifth and final part presents other forms and approaches to K-theory not
found in earlier chapters. Eric Friedlander and Mark Walker survey recent work on
semi-topological K-theory that interpolates between algebraic K-theory of vari-
eties and topological K-theory of associated analytic spaces. Alexander Merkurjev
develops the K-theory of G-vector bundles over an algebraic variety equipped
with an action of a group G and presents some applications of this theory. Stephen
Mitchell’s chapter demonstrates how algebraic K-theory provides an important
link between techniques in algebraic number theory and sophisticated construc-
tions in homotopy theory. The final chapter by Amnon Neeman provides a histor-
ical overview and through investigation of the challenge of recovering K-theory
from the structure of a triangulated category.

Finally, two Bourbaki articles (by Eric Friedlander and Bruno Kahn) are re-
printed in the appendix. The first summarizes some of the important work of
A. Suslin and V. Voevodsky on motivic cohomology, whereas the second outlines
the celebrated theorem of Voevodsky establishing the validity of a conjecture by
J. Milnor relating K(−) ⊗ Z|2, Galois cohomology, and quadratic forms.

Some readers will be disappointed to find no chapter dedicated specifically to
low-degree (i.e., classical) algebraic K-groups and insufficient discussion of the
role of algebraic K-theory to algebraic number. We fully acknowledge the many
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limitations of this handbook, but hope that readers will appreciate the expository
effort and skills of the authors.

April, 2005 Eric M. Friedlander
Daniel R. Grayson
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4 Gunnar Carlsson

Introduction1.1

A crucial observation in Quillen’s definition of higher algebraic K-theory was
that the right way to proceed is to define the higher K-groups as the homotopy
groups of a space ([23]). Quillen gave two different space level models, one via
the plus construction and the other via the Q-construction. The Q-construction
version allowed Quillen to prove a number of important formal properties of the
K-theory construction, namely localization, devissage, reduction by resolution,
and the homotopy property. It was quickly realized that although the theory initially
revolved around a functor K from the category of rings (or schemes) to the category
Top of topological spaces, K in fact took its values in the category of infinite loop
spaces and infinite loop maps ([1]). In fact, K is best thought of as a functor not to
topological spaces, but to the category of spectra ([2,11]). Recall that a spectrum is
a family of based topological spaces {Xi}i≥0, together with bonding maps σi : Xi →
ΩXi+1, which can be taken to be homeomorphisms. There is a great deal of value
to this refinement of the functor K. Here are some reasons.

Homotopy colimits in the category of spectra play a crucial role in applications
of algebraic K-theory. For example, the assembly map for the algebraic K-
theory of group rings, which is the central object of study in work on the
Novikov conjecture ([13,24]), is defined on a spectrum obtained as a homotopy
colimit of the trivial group action on the K-theory spectrum of the coefficient
ring. This spectrum homotopy colimit is definitely not the same thing as the
homotopy colimit computed in the category Top, and indeed it is clear that no
construction defined purely on the space level would give this construction.
The lower K-groups of Bass [5] can only be defined as homotopy groups in the
category of spectra, since there are no negative homotopy groups defined on
the category Top. These groups play a key role in geometric topology [3,4], and
to define them in a way which is consistent with the definition of the higher
groups (i.e. as homotopy groups) is very desirable.
When computing with topological spaces, there is a great deal of value in being
able to study the homology (or generalized homology) of a space, rather than
just its homotopy groups. A reason for this is that homology is relatively easy
to compute, when compared with homotopy. One has the notion of spectrum
homology , which can only be defined as a construction on spectra, and which
is also often a relatively simple object to study. To simply study the homology of
the zero-th space of a spectrum is not a useful thing to do, since the homology
of these spaces can be extremely complicated.
The category of spectra has the convenient property that given a map f of
spectra, the fibre of f is equivalent to the loop spectrum of the cofibre. This
linearity property is quite useful, and simplifies many constructions.

In this paper, we will give an overview of a number of different constructions of
spectra attached to rings. Constructing spectra amounts to constructing “deloop-
ings” of the K-theory space of a ring. We will begin with a “generic” construction,
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which applies to any category with an appropriate notion of direct sum. Because
it is so generic, this construction does not permit one to prove the special formal
properties mentioned above for the K-theory construction. We will then outline
Quillen’s Q-construction, as well as iterations of it defined by Waldhausen [32],
Gillet–Grayson [15], Jardine [17], and Shimakawa [27]. We then describe Wald-
hausen’s S.-construction, which is a kind of mix of the generic construction with
the Q-construction, and which has been very useful in extending the range of
applicability of the K-theoretic methods beyond categories of modules over rings
or schemes to categories of spectra, which has been the central tool in studying
pseudo-isotopy theory ([33]). Finally, we will discuss three distinct constructions
of non-connective deloopings due to Gersten–Wagoner, M. Karoubi, and Pedersen–
Weibel. These constructions give interpretations of Bass’s lower K-groups as ho-
motopy groups. The Pedersen–Weibel construction can be extended beyond just
a delooping construction to a construction, for any metric space, of a K-theory
spectrum which is intimately related to the locally finite homology of the metric
space. This last extension has been very useful in work on the Novikov conjecture
(see [19]).

We will assume the reader is familiar with the technology of simplicial sets and
multisimplicial sets, the properties of the nerve construction on categories, and
the definition of algebraic K-theory via the plus construction ([16]). We will also
refer him/her to [2] or [11] for material on the category of spectra.

Generic Deloopings
Using Infinite Loop Space Machines 1.2

To motivate this discussion, we recall how to construct Eilenberg–MacLane spaces
for abelian groups. Let A be a group. We construct a simplicial set B.A by setting
BkA = Ak, with face maps given by

d0

(
a0, a1, … , ak−1

)
=

(
a1, a2, … ak−1

)

di

(
a0, a1, … , ak−1

)
=

(
a0, a1, … , ai−2, ai−1 + ai, ai+1, … ak−1

)
for 0 < i < k

dk

(
a0, a1, … , ak−1

)
=

(
a0, a1, … , ak−2

)
.

We note that due to the fact that A is abelian, the multiplication map A × A → A
is a homomorphism of abelian groups, so B.A is actually a simplicial abelian
group. Moreover, the construction is functorial for homomorphisms of abelian
groups, and so we may apply the construction to a simplicial abelian group to
obtain a bisimplicial abelian group. Proceeding in this way, we may start with an
abelian group A, and obtain a collection of multisimplicial sets Bn

. A, where Bn
. A is

an n-simplicial set. Each n-simplicial abelian group can be viewed as a simplicial
abelian group by restricting to the diagonal ∆op ⊆ (∆op)n, and we obtain a family
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of simplicial sets, which we also denote by Bn
. A. It is easy to see that we have exact

sequences of simplicial abelian groups

Bn−1
. A → En

. A → Bn
. A

where En
. A is a contractible simplicial group. Exact sequences of simplicial abelian

groups realize to Serre fibrations, which shows that
∣∣Bn−1

. A
∣∣ =̃ Ω

∣∣Bn
. A

∣∣

and that therefore the family {Bn
. A}n forms a spectrum. The idea of the infinite

loop space machine construction is now to generalize this construction a bit, so
that we can use combinatorial data to produce spectra.

We first describe Segal’s notion of Γ-spaces, as presented in [26]. We define
a category Γ as having objects the finite sets, and where a morphism from X to Y is
given by a function θ : X → P (Y), where P (Y) denotes the power set of Y , such
that if x, x′ ∈ X, x ≠ x′, then θ(x) ∩ θ(x′) = ∅. Composition of θ : X → P (Y) and
η : Y → P (Z) is given by x → ⋃

y∈θ(x) η(y). There is a functor from the category
∆ of finite totally ordered sets and order preserving maps to Γ, given on objects by
sending a totally ordered set X to its set of non-minimal elements X−, and sending
an order-preserving map from f : X → Y to the function θf , defined by letting
θf (x) be the intersection of the “half-open interval” (f (x − 1), f (x)] with Y−. (x − 1
denotes the immediate predecessor of x in the total ordering on X if there is one,
and if there is not, the interval [x − 1, x) will mean the empty set.) There is an
obvious identification of the category Γop with the category of finite based sets,
which sends an object X in Γop to X+, X “with a disjoint base point added”, and
which sends a morphism θ : X → P (Y) to the morphism fθ : Y+ → X+ given
by fθ(y) = x if y ∈ θ(x) and fθ(y) = ∗ if y |∈ ⋃

x θ(x). Let n denote the based set
{1, 2, … , n}+. We have the morphism pi : n → 1 given by pi(i) = 1 and pi(j) = ∗
when i ≠ j.

1 Definition 1 A Γ-space is a functor from Γop to the category of simplicial sets, so
that

F(∅+) is weakly contractible.
Πn

1 F(pi) : F(n) → Πn
1 F(1) is a weak equivalence of simplicial sets.

Note that we have a functor ∆op → Γop, and therefore every Γ-space can be viewed
as a simplicial simplicial set, i.e. a bisimplicial set.

We will now show how to use category theoretic data to construct Γ-spaces.
Suppose that C denotes a category which contains a zero objects, i.e. an object
which is both initial and terminal, in which every pair of objects X, Y ∈ C admits
a categorical sum, i.e an object X ⊕ Y ∈ C, together with a diagram

X → X ⊕ Y ← Y
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so that given any pair of morphisms f : X → Z and g : Y → Z, there is a unique
morphism f ⊕ g : X ⊕ Y → Z making the diagram

X X ⊕ Y Y

Z

�

�
�
�
�R

f

�

f ⊕g

�g

�
�

�
��

g

commute. We will now define a functor FC from Γop to simplicial sets. For each
finite based set X, we define Π(X) to be the category of finite based subsets of X and
inclusions of sets. Consider any functor ϕ(X) : Π(X) → C. For any pair of based
subsets S, T ⊆ X, we obtain morphisms ϕ(S) → ϕ(S ∪ T) and ϕ(T) → ϕ(S ∪ T),
and therefore a well defined morphism ϕ(S) ⊕ ϕ(T) → ϕ(S ∪ T) for any choice of
sum ϕ(S) ⊕ ϕ(T). We say the functor ϕ : Π(X) → C is summing if it satisfies two
conditions.

ϕ(∅) is a zero object in C
For any based subsets S, T ⊆ X, with S ∩ T = {∗}, we have that the natural
morphism ϕ(S) ⊕ ϕ(T) → ϕ(S ∪ T) is an isomorphism.

Let SumC(X) denote the category whose objects are all summing functors from
Π(X) to C, and whose morphisms are all natural transformations which are iso-
morphisms at all objects of Π(X).

We next observe that if we have a morphism f : X → Y of based sets, we may

define a functor SumC(X)
SumC(f )→ SumC(Y) by

SumC(f )(ϕ)(S) = ϕ(f −1(S))

for any based subset S ⊆ Y . One verifies that this makes SumC(−) into a functor
from Γop to the category CAT of small categories. By composing with the nerve
functor N., we obtain a functor Sp1(C) : Γop → s.sets. Segal [26] now proves

2Proposition 2 The functor Sp1(C) is a Γ-space.

The category SumC(∅) is just the subcategory of zero objects in C, which
has contractible nerve since it has an initial object. The map

∏n
i=1 Sp1(pi) :

Sp1(n) → Πn
i=1Sp1(C)(1) is obtained by applying the nerve functor to the functor∏n

i=1 SumC(pi) : SumC(n) → ∏n
i=1 SumC(1). But this functor is an equivalence of

categories, since we may define a functor θ :
∏n

i=1 SumC(1) → SumC(n) by

θ
(
ϕ1, ϕ2, … , ϕn

) ({i1, i2, … , is}
)

= ϕi1

(
1
) ⊕ ϕi2

(
1
) ⊕ · · · ⊕ ϕis

(
1
)

Here the sum denotes any choice of categorical sum for the objects in question.
Any choices will produce a functor, any two of which are isomorphic, and it is easy
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to verify that
∏n

i=1 SumC(pi) ◦ θ is equal to the identity, and that θ ◦ ∏n
i=1 SumC(pi)

is canonically isomorphic to the identity functor.
We observe that this construction is also functorial in C, for functors which

preserve zero objects and categorical sums. Moreover, when C possesses zero
objects and categorical sums, the categories SumC(X) are themselves easily verified
to possess zero objects and categorical sums, and the functors SumC(f ) preserve
them. This means that we can iterate the construction to obtain functors Spn(C)
from (Γop)n to the category of (n + 1)-fold simplicial sets, and by restricting to
the diagonal to the category of simplicial sets we obtain a family of simplicial sets
we also denote by Spn(C). We also note that the category SumC(1) is canonically
equivalent to the category C itself, and therefore that we have a canonical map
from N.C to N.SumC(1). Since SumC(1) occurs in dimension 1 of Sp1(C), and since
SumC(∅) has contractible nerve, we obtain a map from ΣN.C to Sp1(C). Iterating
the Sp1-construction, we obtain maps ΣSpn(C) → Spn+1(C), and hence adjoints
σn : Spn(C) → ΩSpn+1(C). Segal proves

3 Theorem 3 The maps σn are weak equivalences for n > 1, and for n = 0, σ0 can be
described as a group completion. Taken together, the functors Spn yield a functor
Sp from the category whose objects are categories containing zero objects and
admitting categorical sums and whose morphisms are functors preserving zero
objects and categorical sums to the category of spectra.

Example 4. For C the category of finite sets, Sp(C) is the sphere spectrum.

Example 5. For the category of finitely generated projective modules over a ring
A, this spectrum is the K-theory spectrum of A.

6 Remark 6 The relationship between this construction and the iterated delooping
for abelian groups discussed above is as follows. When C admits zero objects and
categorical sums, we obtain a functor C × C by choosing a categorical sum a ⊕ b
for every pair of objects a and b in C. Applying the nerve functor yields a simplicial
map µ : N.C × N.C → N.C. The map µ behaves like the multiplication map in
a simplicial monoid, except that the identities are only identities up to simplicial
homotopy, and the associativity conditions only hold up to homotopy. Moreover, µ
has a form of homotopy commutativity, in that the maps µT and µ are simplicially
homotopic, where T denotes the evident twist map on N.C × N.C. So N.C behaves
like a commutative monoid up to homotopy. On the other hand, in verifying the
Γ-space properties for Sp1(C), we showed that Sp1(C)(n) is weakly equivalent to∏n

i=1 Sp1(C)(1). By definition of the classifying spaces for abelian groups, the set in
the n-th level is the product of n copies of G, which is the set in the first level. So, the
construction Sp1(C) also behaves up to homotopy equivalence like the classifying
space construction for abelian groups.
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The construction we have given is restricted to categories with categorical sums,
and functors which preserve those. This turns out to be unnecessarily restrictive.
For example, an abelian group A can be regarded as a category Cat(A) whose
objects are the elements of the A, and whose morphisms consist only of identity
morphisms. The multiplication in A gives a functor Cat(A) × Cat(A) → Cat(A),
and hence a map N.Cat(A) × N.Cat(A) → N.Cat(A), which is in fact associative
and commutative. One can apply the classifying space construction to N.Cat(A)
to obtain the Eilenberg–MacLane spectrum for A. However, this operation is not
induced from a categorical sum. It is desirable to have the flexibility to include
examples such as this one into the families of categories to which one can apply
the construction Sp. This kind of extension has been carried out by May [20] and
Thomason [28]. We will give a description of the kind of categories to which the
construction can be extended. See Thomason [28] for a complete treatment.

7Definition 7 A symmetric monoidal category is a small category S together with
a functor ⊕ : S×S → S and an object 0, together with three natural isomorphisms
of functors

α :
(
S1 ⊕ S2

) ⊕ S3
∼→ S1 ⊕ (

S2 ⊕ S3

)

λ : 0 ⊕ S1
∼→ S1

and

γ : S1 ⊕ S2
∼→ S2 ⊕ S1

satisfying the condition that γ2 = Id and so that the following three diagrams
commute.

((
S1 ⊕ S2

) ⊕ S3

) ⊕ S4

(
S1 ⊕ (

S2 ⊕ S3

)) ⊕ S4

(
S1 ⊕ S2

) ⊕ (
S3 ⊕ S4

)

S1 ⊕ (
S2 ⊕ (

S3 ⊕ S4

))
S1 ⊕ ((

S2 ⊕ S3

) ⊕ S4

)

�α⊕S4

�

α

�

α

�

α

�S1⊕α

(
S1 ⊕ S2

) ⊕ S3 S1 ⊕ (
S2 ⊕ S3

) (
S2 ⊕ S3

) ⊕ S1

(
S2 ⊕ S1

) ⊕ S3 S2 ⊕ (
S1 ⊕ S3

)
S2 ⊕ (

S3 ⊕ S1

)

�α

�
γ⊕S3

�γ

�
α

�α �S2⊕γ
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(
0 ⊕ S1

) ⊕ S2

(
S1 ⊕ 0

) ⊕ S2 S1 ⊕ (
0 ⊕ S2

)

S1 ⊕ S2

�γ⊕S2

HHHHHHjλ⊕S2

�α

������� S1⊕ λ

Given two symmetric monoidal categories S and T, a symmetric monoidal functor
from S to T is a triple (F, f , f ), where F : S → T is a functor, and where

f : FS1 ⊕ FS2 → F
(
S1 ⊕ S2

)
and f : 0 → F0

are natural transformations of functors so that the diagrams

(
FS1 ⊕ FS2

) ⊕ FS3 F
(
S1 ⊕ S2

) ⊕ FS3 F
((

S1 ⊕ S2

) ⊕ S3

)

FS1 ⊕ (
FS2 ⊕ FS3

)
FS1 ⊕ F

(
S2 ⊕ S3

)
F

(
S1 ⊕ (

S2 ⊕ S3

))�

α

�f ⊕FS2 �f

�
Fα

�FS3⊕f �f

and

FS1 ⊕ FS2 F
(
S1 ⊕ S2

)
F0 ⊕ FS F(0 ⊕ S)

FS2 ⊕ FS1 F
(
S2 ⊕ S1

)
0 ⊕ FS FS

�f

�

γ

�
Fγ

�f

�

Fλ

�f

�
f ⊕FS

�λ

all commute.

It is easy to see that if we are given a category C with zero objects and which
admits categorical sums, then one can produce the isomorphisms in question by
making arbitrary choices of zero objects and categorical sums for each pair of
objects of C, making C into a symmetric monoidal category. In [28], Thomason
now shows that it is possible by a construction based on the one given by Se-
gal to produce a Γ-space Sp1(S) for any symmetric monoidal category, and more
generally Γn-spaces, i.e functors (Γop)n → s.sets which fit together into a spec-
trum, and that these constructions agree with those given by Segal in the case
where the symmetric monoidal sum is given by a categorical sum. May [20] has
also given a construction for permutative categories, i.e. symmetric monoidal cat-
egories where the associativity isomorphism α is actually the identity. He uses
his theory of operads instead of Segal’s Γ-spaces. It should be pointed out that
the restriction to permutative categories is no real restriction, since every sym-
metric monoidal category is symmetric monoidally equivalent to a permutative
category.
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The Q-Construction and Its Higher
Dimensional Generalization 1.3

It was Quillen’s crucial insight that the higher algebraic K-groups of a ring A could
be defined as the homotopy groups of the nerve of a certain category Q constructed
from the category of finitely generated projective modules over A. He had previ-
ously defined the K-groups as the homotopy groups of the space BGL+(A)×K0(A).
The homotopy groups and the K-groups are related via a dimension shift of one,
i.e.

Ki(A) =̃ πi+1N.Q

This suggests that the loop space ΩN.Q should be viewed as the “right” space for
K-theory, and indeed Quillen ([16, 23]) showed that ΩN.Q could be identified as
a group completion of the nerve of the category of finitely generated projective
A-modules and their isomorphisms. From this point of view, the space N.Q can be
viewed as a delooping of BGL+(A)×K0(A), and it suggests that one should look for
ways to construct higher deloopings which would agree with N.Q in the case n = 1.
This was carried out by Waldhausen in [32], and developed in various forms by
Gillet [15], Jardine [17], and Shimakawa [27]. We will outline Shimakawa’s version
of the construction.

We must first review Quillen’s Q-construction. We first recall that its input
is considerably more general than the category of finitely generated projective
modules over a ring. In fact, the input is an exact category, a concept which we
now recall.

8Definition 8 A category is additive if it admits sums and products and if every
Hom-set is given an abelian group structure, such that the composition pairings
are bilinear. An exact category is an additive category C equipped with a family E
of diagrams of the form

C′ i→ C
p→ C′′

which we call the exact sequences, satisfying certain conditions to be specified
below. Morphisms which occur as “i” in an exact sequence are called admis-
sible monomorphisms and morphisms which occur as “p” are called admissible
epimorphisms. The family E is now required to satisfy the following five condi-
tions.

Any diagram in C which is isomorphic to one in E is itself in E.
The set of admissible monomorphisms is closed under composition, and the
cobase change exists for an arbitrary morphism. The last statement says that
the pushout of any diagram of the form
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C D

C′ C′ ×C D

�f

�

i

p

p

p

p

p

p

p

p

p

p

p�

ı̂

p p p p p p p�

exists, and the morphism ı̂ is also an admissible monomorphism.
The set of admissible epimorphisms is closed under composition, and the base
change exists for an arbitrary morphism. This corresponds to the evident dual
diagram to the preceding condition.
Any sequence of the form

C → C ⊕ C′ → C′

is in E.
In any element of E as above, i is a kernel for p and p is a cokernel for i.

We also define an exact functor as a functor between exact categories which pre-
serves the class of exact sequences, in an obvious sense, as well as base and cobase
changes.

Exact categories of course include the categories of finitely generated projective
modules over rings, but they also contain many other categories. For example,
any abelian category is an exact category. For any exact category (C, E), Quillen
now constructs a new category Q(C, E) as follows. Objects of Q(C, E) are the same
as the objects of C, and a morphism from C to C′ in Q(C, E) is a diagram of the
form

D C′

C
�

p

�i

where i is an admissible monomorphism and p is an admissible epimorphism. The
diagrams are composed using a pullback construction, so the composition of the
two diagrams

D C′ D′ C′′

C C′
�

p

�i

�
p′

�i′



Deloopings in Algebraic K-Theory 13

is the diagram

D ×C′ D′ C′′

C
�

�

Quillen now defines the higher K-groups for the exact category (C, E) by Ki−1(C, E)=
πiN.Q(C, E). The problem before us is now how to construct higher deloop-
ings, i.e. spaces Xn so that Ki−n(C, E) = πiXn. Shimakawa [27] proceeds as fol-
lows.

We will first need the definition of a multicategory. To make this definition, we
must first observe that a category C is uniquely determined by

The set AC of all the morphisms in C, between any pairs of objects.
A subset OC of AC, called the objects, identified with the set of identity mor-
phisms in AC.
The source and target maps S : AC → O C and T : AC → OC.
The composition pairing is a map ◦ from the pullback

AC ×OC AC AC

AC OC

�

�

�
T

�S

to AC.

9Definition 9 An n-multicategory is a set A equipped with n different category struc-
tures (Sj, Tj, ◦j) for j = 1, … , n satisfying the following compatibility conditions
for all pairs of distinct integers j and k, with 1 ≤ j, k ≤ n.

SjSkx = SkSjx, SjTkx = TkSjx, and TjTkx = TkTjx
Sj(x ◦k y) = Sjx ◦k Sjy and Tj(x ◦k y) = Tjx ◦k Tjy
(x ◦k y) ◦j (z ◦k w) = (x ◦j z) ◦k (y ◦j w)

The notion of an n-multifunctor is the obvious one.

It is clear that one can define the notion of an n-multicategory object in any category
which admits finite limits (although the only limits which are actually needed are
the pullbacks A ×Oj A). In particular, one may speak of an n-multicategory object
in the category CAT, and it is readily verified that such objects can be identified
with (n + 1)-multicategories.

There is a particularly useful way to construct n-multicategories from ordinary
categories. Let I denote the category associated with the totally ordered set {0, 1},
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0 < 1, and let λ equal the unique morphism 0 → 1 in I. For any category C,
define an n-multicategory structure on the set of all functors In → C as follows.
The j-th source and target functions are given on any functor f and any vector
u = (u1, … , un) ∈ In by

(
Sjf

)
(u) = f

(
u1, … , uj−1, 0, uj+1, … , un

)

and

(
Tjf

)
(u) = f

(
u1, … , uj−1, 1, uj+1, … , un

)

The j-th composition pairing is defined by

(
g ◦j f

)
=






fu : if uj = 0

gu : if uj = 1

gu ◦ fu : if uj = λ and uk ∈ {0, 1} for all k ≠ j

We will write C[n] for this n-multicategory, for any C.
We will now define an analogue of the usual nerve construction on categories.

The construction applied to an n-multicategory will yield an n-multisimplicial set.
To see how to proceed, we note that for an ordinary category C, regarded as a set A
with S, T, and ◦ operators, and O the set of objects, the set NkC can be identified
with the pullback

A ×O A ×O A · · · ×O A︸ ︷︷ ︸
k factors

i.e the set of vectors (a1, a2, … ak) so that S(aj) = T(aj−1) for 2 ≤ j ≤ k. Note that
N0C conventionally denotes O. In the case of an n-multicategory C, we can therefore
construct this pullback for any one of the n category structures. Moreover, because
of the commutation relations among the operators Sj, Tj, and ◦j for the various
values of j, the nerve construction in one of the directions respects the operators in
the other directions. This means that if we let Ns,ks denote the k-dimensional nerve
operator attached to the s-th category structure, we may define an n-multisimplicial
set NC : (∆op)n → Sets by the formula

NC
(
i1, i2, … , in

)
= N1,i1 N2,i2 · · · Nn,in C

The idea for constructing deloopings of exact categories is to define a notion of
an n-multiexact category, and to note that it admits a Q-construction which is an
n-multicategory. whose nerve will become the n-th delooping.

10 Definition 10 A functor F : C → D of small categories is called strongly good if
for any object x ∈ C and any isomorphism f : Fx → y in D, there is a unique
isomorphism f ′ : x → y′ in C such that Ff ′ = f .
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11Definition 11 Let P ⊆ {1, … , n}. Then by P-exact category, we mean an n-fold cat-
egory C so that every Cp, p ∈ P, is equipped with the structure of an exact category,
so that the following conditions hold for every pair p, j, with p ∈ P and j ≠ p.

ojCp is an exact subcategory of Cp.
(Sj, Tj) : Cp → ojCp × ojCp is strongly good and exact.
◦j : Cp ×ojCp Cp → Cp is exact.
If j also belongs to P, the class Ej of exact sequences of Cj becomes an exact
subcategory of Cp ×ojCp Cp

One direct consequence of the definition is that if we regard a P-exact category
as an (n − 1)-multicategory object in CAT, with the arguments in the (n − 1)-
multicategory taking their values in Cp, with p ∈ P, we find that we actually obtain
an (n − 1)-multicategory object in the category EXCAT of exact categories and
exact functors. The usual Q-construction gives a functor from EXCAT to CAT,
which preserves the limits used to define n-multicategory objects, so we may
apply Q in the p-th coordinate to obtain an (n − 1)-multicategory object in CAT,
which we will denote by Qp(C). We note that Qp(C) is now an n-multicategory, and
Shimakawa shows that there is a natural structure of a (P−{p})-exact multicategory
on Qp(C). One can therefore begin with an {1, … , n}-exact multicategory C, and
construct an n-multicategory QnQn−1 · · · Q1 C. It can further be shown that the
result is independent of the order in which one applies the operators Qi. The
nerves of these constructions provide us with n-multisimplicial sets, and these can
be proved to yield a compatible system of deloopings and therefore of spectra.

Waldhausen’s S.-Construction 1.4

In this section, we describe a family of deloopings constructed by F. Waldhausen
in [33] which combine the best features of the generic deloopings with the im-
portant special properties of Quillen’s Q-construction delooping. The input to
the construction is a category with cofibrations and weak equivalences, a notion
defined by Waldhausen, and which is much more general than Quillen’s exact
categories. For example, it will include categories of spaces with various special
conditions, or spaces over a fixed space as input. These cannot be regarded as
exact categories in any way, since they are not additive. On the other hand, the
construction takes into account a notion of exact sequence, which permits one to
prove versions of the localization and additivity theorems for it. It has permitted
Waldhausen to construct spectra A(X) for spaces X, so that for X a manifold, A(X)
contains the stable pseudo-isotopy space as a factor. See [33] for details.

We begin with a definition.

12Definition 12 A category C is said to be pointed if it is equipped with a distinguished
object ∗ which is both an initial and terminal object. A category with cofibrations
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is a pointed category C together with a subcategory coC. The morphisms of coC
are called the cofibrations. The subcategory coC satisfies the following proper-
ties.
1. Any isomorphism in C is in coC. In particular, any object of C is in coC.
2. For every object X ∈ C, the unique arrow ∗ → X is a cofibration.
3. For any cofibration i : X ↪→ Y and any morphism f : X → Z in C, there is

a pushout diagram

X Z

Y W

�f

�
i

�
ı̂

�

in C, and the natural map ı̂ is also a cofibration.

13 Definition 13 LetC be a category with cofibrations. A category of weak equivalences
in C is a subcategory wC of C, called the weak equivalences, which satisfy two
axioms.
1. All isomorphisms in C are in wC.
2. For any commutative diagram

Y X Z

Y ′ X′ Z′
�

� i

�

�

�
�i′ �

in C, where i and i′ are cofibrations, and all the vertical arrows are weak
equivalences, the induced map on pushouts is also a weak equivalence.

If C and D are both categories with cofibrations and weak equivalences, we say
a functor f : C → D is exact if it preserves pushouts, coC, and wC, and f ∗ = ∗.

Here are some examples.

Example 14. The category of based finite sets, with ∗ a single point space, the
cofibrations the based inclusions, and the weak equivalences being

the bijections.

Example 15. The category of based simplicial sets with finitely many cells (i.e.
non-degenerate simplices), the one point based set as ∗, the level-

wise inclusions as the cofibrations, and the usual weak equivalences as wC.
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Example 16. Any exact category E in the sense of Quillen [23] can be regarded as
a category with cofibrations and weak equivalences as follows. ∗ is

chosen to be any zero object, the cofibrations are the admissible monomorphisms,
and the weak equivalences are the isomorphisms.

Example 17. Let A be any ring, and let C denote the category of chain complexes of
finitely generated projective A-modules, which are bounded above

and below. The zero complex is ∗, the cofibrations will be the levelwise split
monomorphisms, and the weak equivalences are the chain equivalences, i.e maps
inducing isomorphisms on homology. A variant would be to consider the homo-
logically finite complexes, i.e. complexes which are not necessarily bounded above
but which have the property that there exists an N so that Hn = 0 for n > N.

We will now outline how Waldhausen constructs a spectrum out of a category
with cofibrations and weak equivalences. For each n, we define a new category SnC
as follows. Let n denote the totally ordered set {0, 1, … , n} with the usual ordering.
Let Ar[n] ⊆ n × n be the subset of all (i, j) such that i ≤ j. The category Ar[n]
is a partially ordered set, and as such may be regarded as a category. We define
the objects of SnC as the collection of all functors θ : Ar[n] → C satisfying the
following conditions.

θ(i, i) = ∗ for all 0 ≤ i ≤ n.
θ((i, j) ≤ (i, j′)) is a cofibration.
For all triples i, j, k, with i ≤ j ≤ k, the diagram

θ(i, j) θ(i, k)

θ(j, j) = ∗ θ(j, k)
�

�

�
�

is a pushout diagram.

18Remark 18 Note that each object in SnC consists of a composable sequence of
cofibrations

∗ = θ(0, 0) ↪→ θ(0, 1) ↪→ θ(0, 2) ↪→ · · · θ(0, n − 1) ↪→ θ(0, n)

together with choices of quotients for each cofibration θ((0, i) ≤ (0, j)), when i ≤ j.

SnC becomes a category by letting the morphisms be the natural transformations of
functors. We can define a category of cofibrations on SnC as follows. A morphism
Φ : θ → θ′ determines morphisms Φij : θ(ij) → θ′(ij). In order for Φ to be
a cofibration in SnC, we must first require that Φij is a cofibration in C for every
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i and j. In addition, we require that for every triple i, j, k, with i ≤ j ≤ k, the
commutative diagram

θ(i, j) θ(i, k)

θ′(i, j) θ′(j, k)
�

�

�
�

is a pushout diagram in C. We further define a category wSnC of weak equivalences
on SnC by Φ ∈ wSnC if and only if Φij ∈ wC for all i ≤ j. One can now check that
SnC is a category with cofibrations and weak equivalences.

We now further observe that we actually have a functor from ∆ → CAT
given by n → Ar[n], where ∆ as usual denotes the category of finite totally
ordered sets and order preserving maps of such. Consequently, if we denote
by F (C, D) the category of functors from C to D (the morphisms are nat-
ural transformations), we obtain a simplicial category n → F (Ar[n], C) for
any category C. One checks that if C is a category with cofibrations and weak
equivalences, then the subcategories SnC ⊆ F (Ar[n], C) are preserved under
the face and degeneracy maps, so that we actually have a functor S. from the
category of categories with cofibrations and weak equivalences, and exact func-
tors, to the category of simplicial categories with cofibrations and weak equiv-
alences and levelwise exact functors. This construction can now be iterated to
obtain functors Sk

. which assign to a category with cofibrations and weak equiva-
lences a k-simplicial category with cofibrations and weak equivalences. To obtain
the desired simplicial sets, we first apply the w levelwise, to obtain a simplicial
category, and then apply the nerve construction levelwise, to obtain a (k + 1)-
simplicial set N.wSk

. C. We can restrict to the diagonal simplicial set ∆N.wSk
. C

to obtain a family of simplicial sets, which by abuse of notation we also write as
SkC

Waldhausen’s next observation is that for any category with cofibrations and
weak equivalences C, there is a natural inclusion

ΣN.wC → S.C

The suspension is the reduced suspension using ∗ as the base point in N.wC. This
map exists because by definition, S0C = ∗, and S1C = N.wC, so we obtain a map
σ : ∆[1] × N.wC → S.C, and it is easy to see that the subspace

∂∆[1] × N.wC ∪ ∆[1] × ∗
maps to ∗ under σ, inducing the desired map which we also denote by σ. The map
σ is natural for exact functors, and we therefore obtain maps Sk

. (σ) : ΣSk
. C → Sk+1

.
for each k. Waldhausen now proves
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19Theorem 19 The adjoint to Sk
. (σ) is a weak equivalence of simplicial sets from Sk

. C
to ΩSk+1

. C for k ≥ 1, so the spaces |Sk
. C| form a spectrum except in dimension

k = 0, when it can be described as a homotopy theoretic group completion. These
deloopings agree with Segal’s generic deloopings when C is a category with sums
and zero object, and the cofibrations are chosen to be only the sums of the form
X → X ∨ T → Y .

We will write SC for this spectrum. The point of Waldhausen’s construction is
that it produces a spectrum from the category C in such a way that many of the
useful formal properties of Quillen’s construction hold in this much more general
context. We will discuss the analogues of the localization and additivity theorems,
from the work of Quillen [23].

We will first consider localization. Recall that Quillen proved a localization
theorem in the context of quotients of abelian categories. The context in which
Waldhausen proves his localization result is the following. Given a category with
cofibrations and weak equivalences C, we define ArC to be the category whose
objects are morphisms f : X → Y in C, and where a morphism from f : X → Y to
f ′ : X′ → Y ′ is a commutative diagram

X Y

X′ Y ′
�

�f

�
�f ′

It is easy to check that ArC becomes a category with cofibrations and weak equiv-
alences if we declare that the cofibrations (respectively weak equivalences) are
diagrams such as the ones above in which both vertical arrows are cofibrations
(respectively weak equivalences). If C is the category of based topological spaces,
then the mapping cylinder construction can be viewed as a functor from ArC to
spaces, satisfying certain conditions. In order to construct a localization sequence,
Waldhausen requires an analogue of the mapping cylinder construction in the
category C.

20Definition 20 A cylinder functor on a category with cofibrations and weak equiv-
alences C is a functor T which takes objects f : X → Y in ArC to diagrams of
shape

X T(f ) Y

Y

�j

�
�
��R

f

�

p

�k

�
�

���

id

satisfying the following two conditions.
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For any two objects X and Y in C, we denote by X ∨ Y pushout of the diagram

X ← ∗ → Y

We require that the canonical map X ∨ Y → T(f ) coming from the diagram
above be a cofibration, and further that if we have any morphism

X Y

X′ Y ′
�

�f

�
�f ′

in ArC, then the associated diagram

X ∨ Y T(f )

X′ ∨ Y ′ T(f ′)

�

� �
�

is a pushout.
T(∗ → X) = X for every X ∈ C, and k and p are the identity map in this case.

(The collection of diagrams of this shape form a category with natural transfor-
mations as morphisms, and T should be a functor to this category. ) We say the
cylinder functor satisfies the cylinder condition if p is in wC for every object in
ArC.

We will also need two axioms which apply to categories with cofibrations and
weak equivalences.

21 Axiom 21: Saturation axiom: If f and g are composable morphisms in C, and if
two of f , g, and gf are in wC, then so is the third.

22 Axiom 22: Extension Axiom: If we have a commutative diagram in C

X Y Z

X′ Y ′ Z′
�

�i

�

�

�
�i′ �
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where i and i′ are cofibrations, and Z and Z′ are pushouts of the diagrams ∗ ←
X → Y and ∗ ← X′ → Y ′ respectively, and if the arrows X → X′ and Z → Z′ are
in wC, then it follows that Y → Y ′ is in wC also.

The setup for the localization theorem is now as follows. We let C be a category
equipped with a category of cofibrations, and two different categories of weak
equivalences v and w, so that vC ⊆ wC. Let Cw denote the subcategory with
cofibrations on C given by the objects X ∈ C having the property that the map
∗ → X is in wC. It will inherit categories of weak equivalences vCw = Cw ∩ vC
and wCw = Cw ∩ wC. Waldhausen’s theorem is now as follows.

23Theorem 23 If C has a cylinder functor, and the category of weak equivalences
wC satisfies the cylinder axiom, saturation axiom, and extension axiom, then the
square

vS.Cw wS.Cw

vS.C wS.C
�

�

�
�

is homotopy Cartesian, and wS.Cw is contractible. In other words, we have up to
homotopy a fibration sequence

vS.Cw → vS.C → wS.C

The theorem extends to the deloopings by applying S. levelwise, and we obtain
a fibration sequence of spectra.

24Remark 24 The reader may wonder what the relationship between this sequence
and Quillen’s localization sequence is. One can see that the category of finitely
generated projective modules over a Noetherian commutative ring A, although it
is a category with cofibrations and weak equivalences, does not admit a cylinder
functor with the cylinder axiom, and it seems that this theorem does not apply.
However, one can consider the category of chain complexes Comp(A) of finitely
generated projective chain complexes over A, which are bounded above and be-
low. The category Comp(A) does admit a cylinder functor satisfying the cylinder
axiom (just use the usual algebraic mapping cylinder construction). It is shown
in [29] that Proj(A) ↪→ Comp(A) of categories with cofibrations and weak equiv-
alences induces an equivalences on spectra S(Proj(A)) → S(Comp(A)) for any
ring. Moreover, if S is a mulitiplicative subset in the regular ring A, then the cat-
egory Comp(A)S of objects C∗ ∈ Comp(A) which have the property that S−1C∗ is
acyclic, i.e. has vanishing homology, has the property that S.Comp(A)S is weakly
equivalent to the S. spectrum of the exact category Mod(A)S of finitely generated
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A-modules M for which S−1M = 0. In this case, the localization theorem above ap-
plies, with v being the usual category of weak equivalences, and where w is the class
of chain maps whose algebraic mapping cone has homology annihilated by S−1.
Finally, if we let D denote the category with cofibrations and weak equivalences
consisting with C as underlying category, and with w as the weak equivalences,
then S.D =̃ S.Comp(S−1A). Putting these results together shows that we obtain
Quillen’s localization sequence in this case.

The key result in proving 23 is Waldhausen’s version of the Additivity Theorem.
Suppose we have a category with cofibrations and weak equivalences C, and two
subcategories with cofibrations and weak equivalences A and B. This means
that A and B are subcategories of C, each given a structure of a category with
cofibrations and weak equivalences, so that the inclusions are exact. Then we define
a new category E(A, C, B) to have objects cofibration sequences

A ↪→ C → B

with A ∈ A, B ∈ B, and C ∈ C. This means that we are given a specific iso-
morphism from a pushout of the diagram ∗ ← A → C to B. The morphisms
in E(A, C, B) are maps of diagrams. We define a category of cofibrations on
E(A, C, B) to consist of those maps of diagrams which are cofibrations at each
point in the diagram. We similarly define the weak equivalences to be the pointwise
weak equivalences. We have an exact functor (s, q) : E(A, C, B) → A × B, given
by s(A ↪→ C → B) = A and q(A ↪→ C → B) = B.

25 Theorem 25 The exact functor (s, q) induces a homotopy equivalence from
S.E(A, C, B) to S.A × S.B.

Finally, Waldhausen proves a comparison result between his delooping and the
nerve of Quillen’s Q-construction.

26 Theorem 26 There is a natural weak equivalence of spaces from |wS.E| to |N.Q(E)|
for any exact category E. (Recall that E can be viewed as a category with cofibrations
and weak equivalences, and hence wS. can be evaluated on it).

The Gersten–Wagoner Delooping1.5

All the constructions we have seen so far have constructed simplicial and category
theoretic models for deloopings of algebraic K-theory spaces. It turns out that
there is a way to construct the deloopings directly on the level of rings, i.e. for
any ring R there is a ring µR whose K-theory space actually deloops the K-theory
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space of R. Two different versions of this idea were developed by S. Gersten [14]
and J. Wagoner [30]. The model we will describe was motivated by problems in
high dimensional geometric topology [12], and by the observation that the space
of Fredholm operators on an infinite dimensional complex Hilbert space provides
a delooping of the infinite unitary group U . This delooping, and the Pedersen–
Weibel delooping which follows in the last section, are non-connective, i.e. we can
have πiXn ≠ 0 for i < n, where Xn denotes the n-th delooping in the spectrum. The
homotopy group πiXi+n are equal to Bass’s lower K-group K−n(R) ([5]), and these
lower K-groups have played a significant role in geometric topology, notably in the
study of stratified spaces ([3, 4]).

27Definition 27 Let R be a ring, and let lR denote the ring of infinite matrices over R
in which each row and column contains only finitely many non-zero elements. The
subring mR ⊆ lR will be the set of all matrices with only finitely many non-zero
entries; mR is a two-sided ideal in lR, and we define µR = lR|mR.

28Remark 28 µR is a ring of a somewhat unfamiliar character. For example, it does
not admit a rank function on projective modules.

Wagoner shows that BGL+(µR) is a delooping of BGL+(R). He first observes that
the construction of the n × n matrices Mn(R) for a ring R does not require that R
has a unit. Of course, if R doesn’t have a unit, then neither will Mn(R). Next, for
a ring R (possibly without unit), he defines GLn(R) be the set of n × n matrices P
so that there is an n × n matrix Q with P + Q + PQ = 0, and equips GLn(R) with the
multiplication P ◦ Q = P + Q + PQ. (Note that for a ring with unit, this corresponds
to the usual definition via the correspondence P → I + P.) GL is now defined as
the union of the groups GLn under the usual inclusions. We similarly define En(R)
to be the subgroup generated by the elementary matrices eij(r), for i ≠ j, whose
ij-th entry is r and for which the kl-th entry is zero for (k, l) ≠ (i, j). The group
E(R) is defined as the union of the groups En(R). By definition, GL(R)|E(R) =̃ K1R.
The group E(R) is a perfect group, so we may perform the plus construction to the
classifying space BE(R). Wagoner proves that there is a fibration sequence up to
homotopy

BGL+(R) × K0(R) → E → BGL+(µR) (1.1)

where E is a contractible space. This clearly shows that BGL+(µR) deloops
BGL+(R) × K0(R). The steps in Wagoner’s argument are as follows.

There is an equivalence BGL+(R) =̃ BGL+(mR), coming from a straightforward
isomorphism of rings (without unit) M∞(mR) =̃ mR, where M∞(R) denotes
the union of the rings Mn(R) under the evident inclusions.
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There is an exact sequence of groups GL(mR) → E(lR) → E(µR). This follows
directly from the definition of the rings mR, lR, and µR, together with the fact
that E(lR) = GL(lR). It yields a fibration sequence of classifying spaces

BGL(mR) → BE(lR) → BE(µR) (1.2)

The space BE(lR) has trivial homology, and therefore the space BE+(lR) is
contractible.
The action of E(µ(R)) = π1BE+(µR) on the homology of the fiber BGL+(mR) in
the fibration 1.2 above is trivial. Wagoner makes a technical argument which
shows that this implies that the sequence

BGL+(mR) → BGL+(lR) → BGL+(µR)

is a fibration up to homotopy.
K1(µ(R)) =̃ K0(R).

Wagoner assembles these facts into a proof that we have a fibration of the form 1.1.
Iterating the µ construction and applying BGL+(−) now yields the required family
of deloopings.

Deloopings Based
on Karoubi’s Derived Functors1.6

Max Karoubi ([18]) developed a method for defining the lower algebraic K-groups
which resembles the construction of derived functors in algebra. The method
permits the definition of these lower K-groups in a very general setting. As
we have seen, the lower K-groups can be defined as the homotopy groups of
non-connective deloopings of the the zeroth space of the K-theory spectrum.
Karoubi observed that his techniques could be refined to produce deloopings
rather than just lower K-groups, and this was carried out by Pedersen and Weibel
in [22].

Karoubi considers an additive category A, i.e. a category so that every morphism
set is equipped with the structure of an abelian group, so that the composition
pairings are bilinear, and so that every finite set of objects admits a sum which is
simultaneously a product. He supposes further that A is embedded as a full sub-
category of another additive category U. He then makes the following definition.

29 Definition 29 U is said to be A-filtered if every object U ∈ U is equipped with
a family of direct sum decompositions ϕi : U

∼→ Ei ⊕ Ui, i ∈ IU , where IU is an
indexing set depending on U , with each Ei ∈ A, satisfying the following axioms.

For each U , the collection of decompositions form a filtered poset, when we
equip it with the partial order {ϕi : U

∼→ Ei ⊕ Ui} ≤ {ϕj : U
∼→ Ej ⊕ Uj} if and
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only if the composite Uj ↪→ Ej ⊕ Uj

ϕj→ U factors as Uj → Ui ↪→ Ei ⊕ Ui
ϕi→ U

and the composite Ei ↪→ Ei ⊕ Ui
ϕi→ U factors as Ei → Ej ↪→ Ej ⊕ Uj

ϕj→ U .
For any objects A ∈ A and U ∈ U, and any morphism f : A → U in U, f

factors as A → Ei ↪→ Ei ⊕ Ui

ϕi→ U for some i.
For any objects A ∈ A and U ∈ U, and any morphism f : U → A in U, f

factors as U
ϕ−1

i→ Ei ⊕ Ui
π→ Ei → A for some i.

For each U, V ∈ U, the given partially ordered set of filtrations on U ⊕ V
is equivalent to the product of the partially ordered sets of filtrations on U
and V . That is to say, if the decompositions for U , V , and U ⊕ V are given by
{Ei⊕Ui}i∈IU , {Ej ⊕Vj}j∈IV , and {Ek⊕Wk}k∈IU⊕V , then the union of the collections
of decompositions {(Ei ⊕ Ej) ⊕ (Ui ⊕ Vj)}(i,j)∈IU×IV and {Ek ⊕ Wk}k∈IU⊕V also
form a filtered partially ordered set under the partial ordering specified above.
If ϕi : U → Ei⊕Ui is one of the decompositions for U , and Ei can be decomposed
as Ei =̃ A ⊕ B in A, then the decomposition U =̃ A ⊕ (B ⊕ Ui) is also one of the
given family of decompositions for U .

Karoubi also defines an additive category U to be flasque if there a functor e : U →
U and a natural isomorphism from e to e ⊕ idU. Given an inclusion A → U as
above, he also defines the quotient category U|A to be the category with the same
objects as U, but with HomU|A(U, V) =̃ HomU(U, V)|K, where K is the subgroup
of all morphisms from U to V which factor through an object of A. The quotient
category U|A is also additive.

In [22], the following results are shown.
Any additive category A admits an embedding in an A-filtered flasque additive
category.
For any flasque additive category U, KU is contractible, where KU denotes
the Quillen K-theory space of U.
For any semisimple, idempotent complete additive category A and any em-
bedding of A into an A-filtered additive category U, we obtain a homotopy
fibration sequence

KA → KU → KU|A

It now follows that if we have an embedding A → U of additive categories,
where A is semisimple and idempotent complete, and U is flasque, then KU|A
is a delooping of the K-theory space KA. By applying the idempotent comple-
tion construction to U|A, one can iterate this construction to obtain a non-
connective family of deloopings and therefore a non-connective spectrum. This
delooping is equivalent to the Gersten–Wagoner deloopings of the last section and
to the Pedersen–Weibel deloopings to be described in the next section. Finally,
we note that M. Schlichting (see [25]) has constructed a version of the deloop-
ings discussed in this section which applies to any idempotent complete exact
category.
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The Pedersen–Weibel Delooping
and Bounded K-Theory1.7

In this final section we will discuss a family of deloopings which were constructed
by Pedersen and Weibel in [22] using the ideas of “bounded topology”. This
work is based on much earlier work in high-dimensional geometric topology,
notably by E. Connell [10]. The idea is to consider categories of possibly infinitely
generated free modules over a ring A, equipped with a basis, and to suppose
further that elements in the basis lie in a metric space X. One puts restrictions
on both the objects and the morphisms, i.e. the modules have only finitely many
basis elements in any given ball, and morphisms have the property that they send
basis elements to linear combinations of “nearby elements”. When one applies
this construction to the metric spaces Rn, one obtains a family of deloopings
of the K-theory spectrum of A. The construction has seen application in other
problems as well, when applied to other metric spaces, such as the universal
cover of a K(π, 1)-manifold, or a finitely generated group Γ with word length
metric attached to a generating set for Γ. In that context, the method has been
applied to prove the so-called Novikov conjecture and its algebraic K-theoretic
analogue in a number of interesting cases ([6, 7], and [8]). See [19] for a complete
account of the status of this conjecture. This family of deloopings is in general
non-connective, like the Gersten–Wagoner delooping, and produces a homotopy
equivalent spectrum.

We begin with the construction of the categories in question.

30 Definition 30 Let A denote a ring, and let X be a metric space. We define a category
CX(A) as follows.

The objects of CX(A) are triples (F, B, ϕ), where F is a free left A-module (not
necessarily finitely generated), B is a basis for F, and ϕ : B → X is a function so
that for every x ∈ X and R ∈ [0, +∞), the set ϕ−1(BR(x)) is finite, where BR(x)
denotes the ball of radius R centered at x.
Let d ∈ [0, +∞), and let (F, B, ϕ) and (F′, B′, ϕ′) denote objects of CX(A). Let
f : F → F′ be a homomorphism of A-modules. We say f is bounded with bound
d if for every β ∈ B, f β lies in the span of ϕ−1Bd(ϕ(x)) = {β′|d(ϕ(β), ϕ′(β′)) ≤ d}.
The morphisms in CX(A) from (F, B, ϕ) to (F′, B′, ϕ′) are the A-linear homo-
morphisms which are bounded with some bound d.

It is now easy to observe that iCX(A), the category of isomorphisms in CX(A), is
a symmetric monoidal category, and so the construction of section 1.2 allows us to
construct a spectrum Sp(iCX(A)). Another observation is that for metric spaces X
and Y , we obtain a tensor product pairing iCX(A) × iCY (B) → iCX×Y (A ⊗ B), and
a corresponding pairing of spectra Sp(iCX(A)) ∧ Sp(iCY (B)) → Sp(iCX×Y (A ⊗ B))
(see [21]). We recall from section 1.2 that for any symmetric monoidal category C,
there is a canonical map
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N.C → Sp(C)0

where Sp(C)0 denotes the zero-th space of the spectrum Sp(C). In particular, if f is
an endomorphism of any object in C, f determines an element in π1(Sp( C)). Now
consider the case X = R. For any ring A, let MA denote the object (FA(Z),Z, i),
where i ↪→ R is the inclusion. Let σA denote the automorphism of MA given on
basis elements by σA([n]) = [n + 1]. σA determines an element in π1Sp(iCR (A)).
Therefore we have maps of spectra

ΣSp
(
iCR n (A)

)
=̃ S1 ∧ Sp

(
iCR n (A)

) → Sp
(
iCR (Z)

) ∧ Sp
(
iCR n (A)

) →
→ Sp

(
iCR×R n (Z⊗ A)

) → Sp
(
iCR n+1 (Z⊗ A)

)
=̃ Sp

(
iCR n+1 (A)

)

and therefore adjoint maps of spaces

Sp
(
iCR n (A)

)
0

→ Ω
(
Sp

(
iCR n+1 (A)

))
0

Assembling these maps together gives the Pedersen–Weibel spectrum attached to
the ring A, which we denote by K(A). Note that we may also include a metric space
X as a factor, we obtain similar maps

Sp
(
iCX×R n (A)

)
0

→ Ω
(
Sp

(
iCX×R n+1 (A)

))
0

We will denote this spectrum by K(X; A), and refer to it as the bounded K-theory
spectrum of X with coefficients in the ring A. A key result concerning K(X; A) is
the following excision result (see [8]).

31Proposition 31 Suppose that the metric space X is decomposed as a union X = Y∪Z.
For any subset U ⊆ X, and any r ∈ [0, +∞), we let NrU denote r-neighborhood of
U in X. We consider the diagram of spectra

colim
r

Sp
(
iCNrY (A)

) ← colim
r

Sp
(
iCNrY∩NrZ(A)

) → colim
r

Sp
(
iCNrZ(A)

)

and let P denote its pushout. Then the evident map P → Sp(iCX(A)) induces an
isomorphism on πi for i > 0. It now follows that if we denote by P the pushout of
the diagram of spectra

colim
r

K
(
NrY ; A

) ← colim
r

K
(
NrY ∩ NrZ; A

) → colim
r

K
(
NrZ; A

)

then the evident map P → K(X; A) is an equivalence of spectra.

32Remark 32 The spectra colimr K(NrY ; A) and colimr K(NrZ; A) are in fact equiva-
lent to the spectra K(Y ; A) and K(Z; A) as a consequence of the coarse invariance
property for the functor K(−; A) described below.
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Using the first part of 31, Pedersen and Weibel now prove the following proper-
ties of their construction.

The homotopy groups πiK(A) agree with Quillen’s groups for i ≥ 0.
For i < 0 the groups πiK(A) agree with Bass’s lower K-groups. In particular,
they vanish for regular rings.
K(A) is equivalent to the Gersten–Wagoner spectrum.

The Pedersen–Weibel spectrum is particularly interesting because of the existence
of the spectra K(X; A) for metric spaces X other than Rn. This construction is
quite useful for studying problems in high dimensional geometric topology. The
spectrum K(X; A) has the following properties.

(Functoriality) K(−; A) is functorial for proper eventually continuous map of
metric spaces. A map of f : X → Y is said to be proper if for any bounded
set U ∈ Y , f −1U is a bounded set in X. The map f is said to be eventually
continuous if for every R ∈ [0, +∞), there is a number δ(R) so that dX(x1, x2) ≤
R ⇒ dY (fx1, fx2) ≤ δ(R).
(Homotopy Invariance) If f , g : X → Y are proper eventually continuous maps
between metric spaces, and so that d(f (x), g(x)) is bounded for all x, then the
maps K(f ; A) and K(g; A) are homotopic.
(Coarse invariance) K(X; A) depends only on the coarse type of X, i.e. if
Z ⊆ X is such that there is an R ∈ [0, +∞) so that NRZ = X, then the map
K(Z; A) → K(X; A) is an equivalence of spectra. For example, the inclusion
Z ↪→ R induces an equivalence on K(−; A). The spectrum K(−; A) does not
“see” any local topology, only “topology at infinity”.
(Triviality on bounded spaces) If X is a bounded metric space, then K(X; A) =̃
K(A).

To show the reader how this K(X; A) behaves, we first remind him/her about
locally finite homology. Recall that the singular homology of a space X is defined
to be the homology of the singular complex, i.e. the chain complex C∗X, with CkX
denoting the free abelian group on the set of singular k-simplices, i.e. continuous
maps from the standard k-simplex ∆[k] into X. This means that we are considering
finite formal linear combinations of singular k-simplices.

33 Definition 33 Let X denote a locally compact topological space. We define C
lf
k X

to be the infinite formal linear combinations of singular k-simplices Σ
σ

nσσ, which

have the property that for any compact set K in X, there are only finitely many
σ with im(σ) ∩ K ≠ ∅, and nσ ≠ 0. The groups C

lf
k X fit together into a chain

complex, whose homology is denoted by H
lf
∗ X. The construction H

lf
∗ is functorial

with respect to proper continuous maps, and is proper homotopy invariant.

34 Remark 34 H
lf
∗ is formally dual to cohomology with compact supports.
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Example 35. H
lf
∗Rn vanishes for ∗ ≠ n, and H

lf
nR

n =̃ Z.

Example 36. If X is compact, H
lf
∗ X =̃ H∗X.

Example 37. Suppose that X is the universal cover of a bouquet of two circles, so it
is an infinite tree. It is possible compactify X by adding a Cantor set

onto X. The Cantor set can be viewed as an inverse system of spaces C = … Cn →
Cn−1 → …, and we have H

lf
∗ X =̃ 0 for ∗ ≠ 1, and H

lf
1 X =̃ lim← Z[Cn].

Example 38. For any manifold with boundary (X, ∂X), H
lf
∗ (X) =̃ H∗(X, ∂X).

A variant of this construction occurs when X is a metric space.

39Definition 39 Suppose that X is a proper metric space, i.e. that all closed balls are
compact. We now define a subcomplex sC

lf
∗ X ⊆ C

lf
∗ X by letting sC

lf
k X denote the

infinite linear combinations Σ
σ

nσσ ∈ C
lf
k X so that the set {diam(im(σ))|nσ ≠ 0} is

bounded above. Informally, it consists of linear combinations of singular simplices
which have images of uniformly bounded diameter. We denote the corresponding
homology theory by sH

lf
∗ X. There is an evident map sH

lf
∗ X → H

lf
∗ X, which is an

isomorphism in this situation, i.e. when X is proper.

In order to describe the relationship between locally finite homology and
bounded K-theory, we recall that spectra give rise to generalize homology theo-
ries as follows. For any spectrum S and any based space X, one can construct
a new spectrum X ∧ S, which we write as h(X, S). Applying homotopy groups,
we define the generalized homology groups of the space X with coefficients in S,
hi(X, S) = πih(X, S). The graded group h∗(X, S) is a generalized homology the-
ory in X, in that it satisfies all of the Eilenberg–Steenrod axioms for a homology
theory except the dimension hypothesis, which asserts that hi(S0, S) = 0 for i ≠ 0
and h0(X, S) = Z. In this situation, when we take coefficients in the Eilenberg–
MacLane spectrum for an abelian group A, we obtain ordinary singular homology
with coefficients in A. It is possible to adapt this idea for the theories H

lf
∗ and

sH
lf
∗ .

40Proposition 40 (See [8]) Let S be any spectrum. Then there are spectrum valued
functors hlf (−, S) and shlf (−, S), so that the graded abelian group valued functors
π∗hlf (−, S) and πs∗hlf (−, S) agree with the functors H

lf
∗ (−, A) and sH

lf
∗ (−, A) defined

above in the case where S denotes the Eilenberg–MacLane spectrum for A.

The relationship with bounded K-theory is now given as follows.
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41 Proposition 41 There is a natural transformation of spectrum valued functors

αR(−) :s hlf (−, K(R)) → K(−; R)

which is an equivalence for discrete metric spaces. (The constructions above extend
to metric spaces where the distance function is allowed to take the value +∞.
A metric space X is said to be discrete if x1 ≠ x2 ⇒ d(x1, x2) = +∞.)

The value of this construction is in its relationship to the K-theoretic form of
the Novikov conjecture. We recall ([8]) that for any group Γ, we have the assembly
map AR

Γ : h(BΓ+, K(R)) → K(R[Γ]), and the following conjecture.

42 Conjecture 42: (Integral K-theoretic Novikov conjecture for Γ) AΓ induces a split
injection on homotopy groups.

43 Remark 43 This conjecture has attracted a great deal of interest due to its rela-
tionship with the original Novikov conjecture, which makes the same assertion
after tensoring with the rational numbers, and using the analogous statement for
L-theory. Recall that L-theory is a quadratic analogue of K-theory, made periodic,
which represents the obstruction to completing non simply connected surgery. The
L-theoretic version is also closely related to the Borel conjecture, which asserts that
two homotopy equivalent closed K(Γ, 1)-manifolds are homeomorphic. This ge-
ometric consequence would require that we prove an isomorphism statement for
AΓ rather than just an injectivity statement.

We now describe the relationship between the locally finite homology, bounded
K-theory, and Conjecture 42. We recall that if X is any metric space, and d ≥ 0,
then the Rips complex for X with parameter d, R[d](X), is the simplicial complex
whose vertex set is the underlying set of X, and where {x0, x1, … , xk} spans a k-
simplex if and only if d(xi, xj) ≤ d for all 0 ≤ i, j ≤ k. Note that we obtain
a directed system of simplicial complexes, since R[d] ⊆ R[d′] when d ≤ d′. We
say that a metric space is uniformly finite if for every R ≥ 0, there is an N so
that for every x ∈ X, #BR(x) ≤ N. We note that if X is uniformly finite, then
each of the complexes R[d](X) is locally finite and finite dimensional. If X is
a finitely generated discrete group, with word length metric associated to a finite
generating set, then X is uniformly finite. Also, again if X = Γ, with Γ finitely
generated, Γ acts on the right of R[d](X), and the orbit space is homeomor-
phic to a finite simplicial complex. It may be necessary to subdivide R[d](X) for
the orbit space to be a simplicial complex. This Γ-action is free if Γ is torsion
free. Further, R[∞](Γ) =

⋃
d R[d](Γ) is contractible, so when Γ is torsion free,

R[∞](Γ)|Γ is a model for the classifying space BΓ. The complex R[d](X) is itself
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equipped with a metric, namely the path length metric. For a uniformly finite
metric space X and spectrum S, we now define a new spectrum valued functor
E(X, S) by

E(X, S) = colim
d

shlf
(
R[d](X), S

)

Note that without the uniform finiteness hypothesis, the spaces R[d](X) would
not be locally compact. We may now apply the assembly map αR(−) to obtain
a commutative diagram

shlf
(
R[d](X), K(R)

)
K

(
R[d](X), R

)

shlf (R[d + 1](X), K(R)) K
(
R[d + 1](X), R

)

p

p

p

p

p

p

p

p�

p

p

p

p

p

p

p

p�

�

�αR(
R[d](X)/

�

p

p

p

p

p

p

p

p

p

p�

�αR(
R[d+1](X)/

p

p

p

p

p

p

p

p

p

p�

which yields a natural transformation

αR
E (X) : E

(
X, K(R)

) → colim
d

K
(
R[d](X), R

)

It follows directly from the coarse invariance property of K(−, R) that the natural
inclusion K(X, R) → colim

d
K(R[d](X), R) is an equivalence of spectra, and by

abuse of notation we regard αR
E (X) as a natural transformation from E(X, K(R))

to K(X, R).

44Theorem 44 ([8]) Let Γ be a finitely generated group, with finite classifying space,
and let Γ be regarded as a metric space via the word length metric associated to
any finite generating set. If αR

E (Γ) is an equivalence, then the K-theoretic Novikov
conjecture holds for the group Γ and the coefficient ring R.

The value of a theorem of this type is that πs∗hlf (X, K(R)) has many good prop-
erties, including an excision property. It does not involved the intricacies present
in the (complicated) group ring R[Γ], which makes it difficult to deal with the
algebraic K-theory of this group ring directly. Two important advantages of this
method are as follows.

Experience shows that it generally works equally well for the case of L-theory,
which is the case with direct geometric consequences.
This method produces integral results. As such, it has the potential to contribute
directly to the solution of the Borel conjecture.
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We give an outline of the proof. A first observation is that there is an equiv-
ariant version of the construction K(−, R), which when applied to the metric
space Γ with left action by the group Γ produces a spectrum KΓ(Γ, R) with Γ-
action, which is equivalent to the usual (non-equivariant) spectrum K(Γ, R), and
whose fixed point set is the K-theory spectrum K(R[Γ]). Next recall that for
any space (or spectrum) X which is acted on by a group Γ, we may define the
homotopy fixed point space (or spectrum) XhΓ to be the space (or spectrum)
FΓ(EΓ, X) of equivariant maps from EΓ to X, where EΓ denotes a contractible
space on which Γ acts trivially. The homotopy fixed set XhΓ has the following
properties.

The construction X → XhΓ is functorial for maps of Γ-spaces (spectra).
There is a map XΓ → XhΓ, which is natural for Γ-equivariant maps, where XΓ

denotes the fixed point space (spectrum).
Suppose that f : X → Y is an equivariant map of Γ-spaces (spectra), which is
a weak equivalence as a non-equivariant map. Then the natural map XhΓ → YhΓ

is also a weak equivalence.
For groups with finite classifying spaces, the functor (−)hΓ commutes with
arbitrary filtering colimits.

In order to apply these facts, we will also need to construct an equivariant version
of E(X, S). The facts concerning this construction are as follows.

It is possible to construct an equivariant version of the functor on proper
metric spaces X → shlf (X, S), whose fixed point spectrum is equivalent to
shlf (X|Γ, S). Such a construction yields naturally an equivariant version of the
functor E(X, S).
When X is a locally finite, finite dimensional simplicial complex with free
simplicial Γ action, then the fixed point spectrum of the action of Γ on the
equivariant model is shlf (X|Γ, S). In particular, we find that for a uniformly
finite metric space X, E(X, S)Γ is equivalent to

colim
d

hlf
(
R[d](X)|Γ, S

)

When X = Γ, equipped with a word length metric, and Γ is torsion free, we find
that since R[d](Γ)|Γ is a finite simplicial complex, we have

E(Γ, S)Γ =̃ colim
d

hlf
(
R[d](Γ)|Γ, S

)
=̃ colim

d
h

(
R[d](X)|Γ, S

)

=̃ h

(
colim

d
R[d](X)|Γ, S

)
=̃ h(BΓ, S)

The assembly map AR
Γ is the map obtained by restricting αR

E (Γ) to fixed point
sets.
Suppose Γ is a discrete group, and X is a finite dimensional simplicial complex
equipped with a free simplicial Γ-action, with only a finite number of orbits
in each simplicial dimension. Then hlf (X, S)Γ � hlf (X, S)hΓ =̃ h(X|Γ, S), and
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similarly for shlf . Therefore, when Γ is torsion free, so that R[d](Γ) is a filtering
direct system of such complexes, we have

E(Γ, S)Γ =̃ E(Γ, S)hΓ

In order to prove Theorem 44 from these facts, we consider the following dia-
gram.

h(BΓ, KR) =̃ E(Γ, KR)Γ K
(
R[Γ]

)
=̃ K(Γ, R)Γ

E(Γ, KR)hΓ K(Γ, R)hΓ

�
(
αR

E

)Γ=AR
Γ

� �
�

We wish to prove that the upper horizontal arrow is the inclusion of a spectrum
summand. To prove this, it will suffice that the composite to the lower right hand
corner is an equivalence. From the discussion above, it follows that the left hand
vertical arrow is an equivalence. the hypothesis of Theorem 44 shows that the map
E(Γ, KR) → K(Γ, R) is a weak equivalence. It now follow from the properties of
homotopy fixed points enumerated above the composite h(BΓ, KR) → K(Γ, R)hΓ

is a weak equivalence. It now follows that the map h(BΓ, KR) → K(R[Γ]) is the
inclusion on a wedge product of spectra.

Finally, we wish to give an indication about how one can prove that the hypothesis
of Theorem 44 holds for some particular groups. In order to do this, we need to
formulate a reasonable excision property for bounded K-theory. By a covering of
a metric space X, we will mean a family of subsets U = {Uα}α∈A of X so that
X =

⋃
α Uα. We will say that the covering has covering dimension ≤ d if whenever

α0, α1, … , αk are distinct elements of A, with k > d, then Uα0 ∩Uα1 ∩…∩Uαk = ∅.
For R ≥ 0, we say that a covering U is R-lax d-dimensional if the covering NRU =
{NRU}U∈U is d-dimensional. We also say that a covering V refines U if and only if
every element of V is contained in an element of U.

45Definition 45 An asymptotic covering of dimension ≤ d of a metric space X is
a family of coverings Un of X satisfying the following properties.

Ui refines Ui+1 for all i.
Ui is Ri-lax d-dimensional, where Ri → +∞.

Bounded K-theory has an excision property for one-dimensional asymptotic cov-
erings. We first recall that the bounded K-theory construction can accept as input
metric spaces in which the value +∞ is an allowed value of the metric, where points
x, y so that d(x, y) = +∞ are understood to be “infinitely far apart”. Suppose that
we have a family of metric spaces Xα. Then we define

∐
α Xα to be the metric space
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whose underlying set is the disjoint union of the Xα’s, and where the metric is
given by d(x, y) = dα(x, y) when x, y ∈ Xα, and where d(x, y) = +∞ when x ∈ Xα,
y ∈ Xβ, and α ≠ β. Consider a one-dimensional asymptotic covering of X, and for
each i and each set U ∈ Ui, select a set Θ(U) ∈ Ui+1 so that U ⊆ Θ(U). For each i,
we now construct the two metric spaces

N0(i) =
∐

U∈Ui

U

and

N1(i) =
∐

(U,V)∈Ui×Ui,U∩V≠∅
U ∩ V

There are now two maps of metric spaces di
0, di

1 : N1(i) → N0(i), one induced by
the inclusions U ∩ V ↪→ U and the other induced by the inclusions U ∩ V ↪→ V .
Recall that for any pair of maps f , g : X → Y , we may construct the double mapping
cylinder Dcyl(f , g) as the quotient

X × [0, 1]
∐

Y | �
where � is generated by the relations (x, 0) � f (x) and (x, 1) � g(x). This con-
struction has an obvious extension to a spectrum level construction, and so we
can construct Dcyl(di

0, di
1) for each i. Moreover, the choices Θ(U) give us maps

Dcyl
(
di

0, di
1

) → Dcyl
(
di+1

0 , di+1
1

)

for each i. Furthermore, for each i, we obtain a map

λi : Dcyl
(
di

0, di
1

) → K(X, R)

which on the metric spaces N0(i) and N1(i) is given by inclusions on the factors
U and U ∩ V respectively. The excision result for bounded K-theory which we
require is now the following.

46 Theorem 46 The maps λi determine a map of spectra

Λ : colim
i

Dcyl
(
di

0, di
1

) → K(X, R)

which is a weak equivalence of spectra.

Instead of applying K(−, R) to the diagram

N1(i) N1(i + 1)

N0(i) N0(i + 1)

�

�
di

0,di
1

�

�
di+1

0 ,di+1
1

�

� � �
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we apply E(,KR) to it. We obtain double mapping cylinders DcylE (di
0, di

1), maps
λi,E : DcylE (di

0, di
1) → E(X, KR), and finally a map

ΛE : colim
i

DcylE
(
di

0, di
1

) → E(X, KR) .

47Proposition 47 The map ΛE is a weak equivalence of spectra.

Due to the naturality of the constructions, we now conclude the following.

48Corollary 48 Suppose that we have an asymptotic covering of a metric space X of
dimension d, and suppose that the maps

αR
E

(
N0(i)

)
and αR

E

(
Ni(i)

)

are weak equivalences of spectra for all i. Then αR
E (X) is a weak equivalence of

spectra.

This result is a useful induction result. We need an absolute statement for some
family of metric spaces, though. We say that a metric space X is almost discrete if
there is a number R so that for all x, y ∈ X, d(x, y) ≥ R ⇒ d(x, y) = +∞.

49Theorem 49 If X is almost discrete, then αR
E (X) is a weak equivalence of spectra.

The proof of this theorem relies on an analysis of the K-theory of infinite
products of categories with cofibrations and weak equivalences, which is given in
[9]. An iterated application of Corollary 48 now gives the following result.

50Theorem 50 Suppose that X is a metric space, and that we have a finite family
of asymptotic coverings Uj = {Uj

k}k∈A
j
i

of dimension 1, with 1 ≤ j ≤ N. Suppose

further that for each i, there is an Ri so that for any family of elements Vj ∈ U
j
i, the

intersection ∩jVj has diameter bounded by Ri. Then αR
E (X) is a weak equivalence

of spectra.

51Remark 51 The existence of asymptotic coverings of this form can be verified
in many cases. For instance, in [8], it is shown that such coverings exist for the
homogeneous space G|K, where G is a Lie group, and K is a maximal compact
subgroup. This gives the result for torsion free, cocompact subgroups of Lie groups.
In the case of the real line, such a family of coverings can be given by the family
of coverings Ui = {[2ik, 2i(k + 1)]}k∈Z . By taking product hypercubes, one obtains
similar asymptotic coverings for Euclidean space. It can be shown that similar
coverings exist for trees, and therefore it follows that one can construct a finite
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family of asymptotic coverings satisfying the hypotheses of Theorem 50 for any
finite product of trees, and therefore for subspaces of products of trees.
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Summary. We give an overview of the search for a motivic spectral sequence: a spec-
tral sequence connecting algebraic K-theory to motivic cohomology that is analogous to
the Atiyah–Hirzebruch spectral sequence that connects topological K-theory to singular
cohomology.

Introduction2.1

In this chapter we explain the Atiyah–Hirzebruch spectral sequence that relates
topological K-theory to singular cohomology and try to motivate the search for
a motivic version. In the time since [18] appeared, which concerns motivation
for such a motivic spectral sequence, many authors have produced results in this
direction. We describe the Bloch–Lichtenbaum spectral sequence [8] for the spec-
trum of a field together with the Friedlander–Suslin and Levine extensions [12,28]
to the global case for a smooth variety over a field. We explain the Goodwillie–
Lichtenbaum idea involving tuples of commuting automorphisms and the theo-
rem [19] that uses it to produce a motivic spectral sequence for an affine regular
noetherian scheme, unfortunately involving certain non-standard motivic coho-
mology groups. We present Suslin’s result [41], that, for smooth varieties over
a field, these non-standard motivic cohomology groups are isomorphic to the stan-
dard groups. We sketch Voevodsky’s approach via the slice filtration [43, 47, 49],
much of which remains conjectural. Finally, we sketch Levine’s recent preprint [29],
which gives a novel approach that yields a spectral sequence for smooth varieties
over a field and makes it extremely clear which formal properties of K-theory are
used in the proof. At this point we refer the reader also to [11] where a similar
spectral sequence is developed for semi-topological K-theory.

The importance of the motivic spectral sequence lies in its applications. Im-
portant work of Voevodsky [42, 44, 48] makes motivic cohomology amenable to
computation, and the motivic spectral sequence is the route by which those com-
putations can be used to compute algebraic K-groups. For such applications, see,
for example, [22, 24, 34–36, 39, 40, 51].

The main open question now seems to be how to handle a general noetherian
regular scheme, such as those that arise in number theory. In all the papers cited,
except for [18], the strongest results are true only for smooth varieties over a field.

Many fine papers have been written on this topic – any difference in the depths
to which I manage to expose them are due more to personal limitations of time
and ability than to any judgment of their relative importance.

Algebraic K-Theory and Cohomology2.2

The Riemann–Roch theorem for a complete nonsingular algebraic curve X over
a field k relates the degree of a line bundle L to the dimension of its space Γ(X, L)
of global sections. The functor Γ(X, −) is not an exact functor, so what really
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enters into the theorem (on one side of an equation) is the Euler characteristic,
defined by χ(L) :=

∑
i(−1)i dim Hi(X, L). The Euler characteristic is additive in

the sense that χ(E) = χ(E ′) + χ(E ′′) whenever 0 → E ′ → E → E ′′ → 0 is an exact
sequence of (locally free) coherent sheaves on X. The natural way to prove formulas
relating one additive function on coherent sheaves to another is to work with the
universal target for such additive functions, so Grothendieck defined K0(X) to be
the abelian group generated by the isomorphism classes [E] of locally free coherent
sheaves on X, with relations [E] = [E ′] + [E ′′] for each exact sequence as before.
Alternatively, one defines K ′

0(X) by using all coherent sheaves, not just the locally
free ones. Tensor product of coherent sheaves makes K0(X) into a ring and K ′

0(X)
into a module over it. For a nonsingular quasi-projective algebraic variety X, the
natural map K0(X) → K ′

0(X) is an isomorphism, because a coherent sheaf has
a resolution of finite length by locally free coherent sheaves.

The group K ′
0(X) has a filtration whose i-th member FiK ′

0(X) is the subgroup
generated by the classes of coherent sheaves whose support has codimension at
least i. The ring K0(X) has a more complicated filtration with members Fi

γK0(X)
called the γ-filtration (formerly, the λ-filtration) [14, III, § 1], arising from a detailed
consideration of the way exterior powers of vector bundles behave with respect to
short exact sequences of bundles. Let Gri

γ K0(X) and GriK ′
0(X) denote the associated

graded groups. When X is a nonsingular quasi-projective algebraic variety the map
K0(X) → K ′

0(X) respects the filtration [21, X 1.3.2] [14, VI 5.5], and the induced
map Gri

γK0(X)Q → GriK ′
0(X)Q is an isomorphism [21, VII 4.11, X 1.3.2], where

(−)Q denotes tensoring with the field of rational numbers.
The Grothendieck group K0(X) was an essential tool in Grothendieck’s proof

of the Grothendieck–Riemann–Roch theorem [21], which extended the Riemann–
Roch theorem for curves to nonsingular varieties of any dimension. The other
important ingredient was the Chow ring. An algebraic cycle on X of codimension i
is a formal linear combination of closed subvarieties Z (reduced and irreducible)
of X of codimension i. The group of such cycles is denoted by Zi(X). Such cycles
arise naturally when intersecting two subvarieties as a way of keeping track of the
multiplicities with which the components of the intersection should be counted.
Two algebraic cycles are called linearly equivalent if they are members of the
same family parametrized algebraically by the points of the affine line A1. The
automorphism group of a projective space contains plenty of straight lines, so linear
equivalence of algebraic cycles allows pairs of cycles whose intersection doesn’t
have the maximal possible codimension to be moved to achieve that condition.
Let CHi(X) denote the group of codimension i algebraic cycles on X modulo
linear equivalence; it is the degree i component of a graded ring CH(X) whose
multiplication comes from intersection of cycles.

One consequence of the Grothendieck–Riemann–Roch theorem is that when
X is a nonsingular quasi-projective algebraic variety, the algebraic cycles of codi-
mension at least i account for all the classes of coherent sheaves of codimension at
least i, up to torsion. More precisely, given an algebraic cycle, each component of
it is a subvariety Z ⊆ X; the coherent sheaf OZ on X gives a class [OZ] in K ′

0(X).
The resulting well-defined map CHi(X) → GriK ′

0(X) induces an isomorphism
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CHi(X)Q
=̃→ GriK ′

0(X)Q [21, XIV 4.2, IV 2.9]. The proof involves the use of Chern
classes to construct an inverse map, and indeed, the Chern character, as defined
by Grothendieck, gives the following isomorphism of rings [13, 15.2.16(b)].

ch : K0(X)Q
=̃→

⊕

i

CHi(X)Q (2.1)

In [37] Quillen defined, for n ≥ 0, the higher algebraic K-group Kn(X) for
a variety X as the homotopy group πnK(X) of a certain topological space K(X)
constructed from the category of locally free coherent sheaves on X, and he defined
K ′

n(X) for a variety X as the homotopy group πnK ′(X) of a certain topological
space K ′(X) constructed in the same way from the category of coherent sheaves
on X. For a nonsingular quasi-projective algebraic variety X, the natural map
Kn(X) → K ′

n(X) is an isomorphism and both groups have filtrations analogous to
those for K0 and K ′

0. It follows from the main result in [16] that the map respects
the filtrations in the sense that Fi

γ Kn(X) lands in Fi−nK ′
n(X) but the filtrations may

disagree rationally. We may suspect such behavior by considering the spectrum
of a field: it has topological dimension 0, but its étale cohomological dimension
can be greater than 0, and the higher K-groups harbor elements whose Chern
characters involve the higher cohomology groups.

An immediate question is whether there is an analogue of (2.1) for the higher
K-groups that reflects the γ-filtration on Kn(X).

ch : Kn(X)Q
=̃→

⊕

i

(?)Q (2.2)

The abelian groups replacing the question mark should have an interesting struc-
ture in the sense that cognate groups should exist which handle torsion coefficient
groups.

Topological K-Theory and Cohomology2.3

In the late 1950’s Atiyah and Hirzebruch combined Grothendieck’s formalism
with Bott’s periodicity theorem to invent a generalized cohomology theory called
topological K-theory. In this section we sketch the definition of topological K-
theory and the relationship between it and singular cohomology provided by the
Atiyah–Hirzebruch spectral sequence. The basic objects of study are finite cell
complexes, and the spectral sequence arises from the skeletal filtration of a cell
complex. We follow the discussion in [18]; see also [3].

Let X be a finite cell complex, and let C(Xtop) denote the topological ring
of continuous functions X → C . Although this isn’t the way it was originally
envisioned, it turns out that there is a way [33] to take the topology of a ring
into account when defining the algebraic K-groups, yielding the topological K-
groups Kn(Xtop) := Kn(C(Xtop)). Let K(Xtop) denote the space obtained, so that
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Kn(Xtop) = πnK(Xtop). The space K(Xtop) is naturally an infinite loop space, with
the deloopings getting more and more connected.

Let ∗ denote the one point space. Bott computed the homotopy groups of K(∗top).

K2i(∗top) = π2iK(∗top) = Z(i) (2.3)

K2i−1(∗top) = π2i−1K(∗top) = 0 (2.4)

We writeZ(i) above to mean simply the group Z; the annotation (i) is there simply
to inform us that its elements are destined for the i-th stage in the weight filtration.
The identification Z(1) = K2(∗top) can be decomposed as the following sequence
of isomorphisms.

K2(∗top) = π2BG�(C top) =̃ π2BG�1(C top) =̃ π1(C×) =̃ Z(1) (2.5)

A generator for π1(C×) gives a generator β for K2(∗top). Bott’s theorem includes
the additional statement that multiplication by β gives a homotopy equivalence of
spaces K(∗top) → Ω2K(∗top). This homotopy equivalence gives us a non-connected
delooping Ω−2K(∗top) of K(∗top), which is K(∗top) itself. These deloopings can be
composed to give deloopings of every order, and hence yields an Ω-spectrum
called BU that has K(∗top) as its underlying infinite loop space Ω∞BU , and whose
homotopy group in dimension 2i is Z(i), for every integer i.

There is a homotopy equivalence of the mapping space K(∗top)X with K(Xtop)
and from this it follows that Kn(Xtop) = [X+, Ω∞ΩnBU], where X+ denotes X
with a disjoint base point adjoined. When n < 0 there might be a bit of ambigu-
ity about what we might mean when we write Kn(Xtop); we let it always denote
[X+, Ω∞ΩnBU], so that Kn(Xtop) = Kn+2(Xtop) for all n ∈ Z.

It is a theorem of Atiyah and Hirzebruch that the Chern character for topological
vector bundles gives an the following isomorphism.

ch : Kn(Xtop)Q
=̃→

⊕

i

H2i−n(X,Q) (2.6)

For n = 0 comparison of this formula with (2.1) shows us that CHi(X)Q (defined
for a variety X) is a good algebraic analogue of H2i(X,Q) (defined for a topological
space X).

The isomorphism (2.6) was obtained in [2] from a spectral sequence known
as the Atiyah–Hirzebruch spectral sequence. One construction of the spectral
sequence uses the skeletal filtration skp X of X as follows. (Another one maps X
into the terms of the Postnikov tower of BU , as we’ll see in Sect. 2.5.)

A cofibration sequence A ⊆ B � B|A of pointed spaces and an Ω-spectrum E
give rise to a long exact sequence · · · → [A, Ω∞Ω1E] → [B|A, Ω∞E] →
[B, Ω∞E] → [A, Ω∞E] → [B|A, Ω∞Ω−1E] → · · · .

We introduce the following groups.

E
pq
1 :=

[
skp X| skp−1 X, Ω∞Ω−p−qBU

]
(2.7)

D
pq
1 :=

[
(skp X)+, Ω∞Ω−p−qBU

]
(2.8)
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The long exact sequence provides an exact couple · · · → D
p−1,q
1 → E

pq
1 → D

pq
1 →

D
p−1,q+1
1 → · · · . The explicit computation of the homotopy groups of BU presented

above, together with fact that the space skp X| skp−1 X is a bouquet of the p-cells
from X, leads to the computation that

E
pq
1 =





Cp

(
X,Z(−q|2)

)
if q is even

0 if q is odd ,
(2.9)

where Cp denotes the group of cellular cochains. We will abbreviate this conclusion
by regarding Z(−q|2) as zero when q is odd. The differential d1 : E

pq
1 → E

p+1,q
1 is

seen to be the usual differential for cochains, so that E
pq
2 = Hp(X,Z(−q|2)). The

exact couple gives rise to a convergent spectral sequence because X is a finite
dimensional cell complex. The abutment is [X+, Ω∞Ω−p−qBU] = K−p−q(Xtop), so
the resulting spectral sequence may be displayed as follows.

E
pq
2 = Hp

(
X,Z(−q|2)

) ⇒ K−p−q(Xtop) (2.10)

This spectral sequence is concentrated in quadrants I and IV, is nonzero only
in the rows where q is even, and is periodic with respect to the translation
(p, q) 	→ (p, q − 2). Using the Chern character Atiyah and Hirzebruch show that
the differentials in this spectral sequence vanish modulo torsion, and obtain the
canonical isomorphism (2.6).

The odd-numbered rows in the spectral sequence (2.10) are zero, so the even-
numbered differentials are, also. The spectral sequence can be reindexed to
progress at double speed, in which case it will be indexed as follows.

E
pq
2 = Hp−q

(
X,Z(−q)

) ⇒ K−p−q(Xtop) (2.11)

The Motivic Spectral Sequence2.4

Now let X be a nonsingular algebraic variety, or more generally, a regular scheme.
Consider a finitely generated regular ring A and a prime number �. In [38],

motivated by the evident success of étale cohomology as an algebraic analogue
for varieties of singular cohomology with finite coefficients and by conjectures
of Lichtenbaum relating K-theory of number rings to étale cohomology, Quillen
asked whether there is a spectral sequence analogous to (2.10) of the following
form, converging at least in degrees −p − q > dim(A) + 1.

E
pq
2 = H

p
et

(
Spec(A[�−1]),Z�(−q|2)

) ⇒ K−p−q(A) ⊗ Z� (2.12)

The spectral sequence would degenerate in case A is the ring of integers in a number
field and either � is odd or A is totally imaginary.
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Beilinson asked ([4], see also [5, p. 182]) whether there is an integral version of
(2.12) serving as a totally algebraic analogue of (2.10) that would look like this:

E
pq
2 = Hp

(
X,Z(−q|2)

) ⇒ K−p−q(X) . (2.13)

The groups Hp(X,Z(−q|2)) would be called motivic cohomology groups, and com-
parison with (2.1) suggests we demand that H2i(X,Z(i)) = CHi(X). In Beilinson’s
formulation, Z(i) would be a cohomological complex of sheaves of abelian groups
in the Zariski topology on X concentrated in degrees 1, 2, …, t (except for t = 0,
where Z(0) = Z) and Hp(X,Z(−q|2)) would be the hypercohomology of the com-
plex. In an alternative formulation [30] advanced by Lichtenbaum the complexZ(i)
is derived from such a complex in the étale topology on X.

An alternative indexing scheme for the spectral sequence eliminates the odd-
numbered rows whose groups are zero anyway, and looks like this.

E
pq
2 = Hp−q

(
X,Z(−q)

) ⇒ K−p−q(X) (2.14)

Filtrations as a Source
of Spectral Sequences 2.5

The most basic way to make a (convergent) spectral sequence is to start with
a homological bicomplex [31, XI.6], but for more generality one can also start with
a filtered chain complex [31, XI.3], or even just with an exact couple [31, XI.5]. An
exact couple is basically an exact triangle of bigraded abelian groups, where two
of the three terms are the same, as in the following diagram.

D �� D

����
��
��
�

E

���������

Such exact couples can arise from long exact sequences where the terms are index
by a pair of integers, and, aside from a difference of indices, two of the terms look
the same. If C is a chain complex, and C = F0C ⊇ F1C ⊇ F2C ⊇ · · · is a descending
filtration by subcomplexes, then the long exact sequences

· · · → Hq(Fp+1C) → Hq(FpC) → Hq(FpC|Fp+1C) → Hq−1(Fp+1C) → · · ·
provide the exact couple that in turn provides the spectral sequence associated to
the filtration.

More generally, we could start simply with a sequence of maps C = F0C ←
F1C ← F2C ← · · · , for we may replace the quotient chain complex FpC|Fp+1C
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with the mapping cone of the map FpC ← Fp+1C, preserving the basic shape of the
long exact sequences above, which is all that is needed to make an exact couple.

Another source of long exact sequences is homotopy theory, where a fibration
sequence F → X → Y of pointed spaces gives rise to a long exact sequence
· · · → πnF → πnX → πnY → πn−1F → · · · → π0X → π0Y . If X → Y is any map
of pointed spaces, then letting F be the homotopy fiber of the map provides the
desired fibration sequence. If we insist that X and Y be homotopy commutative
group-like H-spaces (Abelian groups up to homotopy) and that the map X → Y
be compatible with the H-space structure, then F will be an H-space, too, the
terms in the long exact sequence will be abelian groups, and the maps in it will be
homomorphisms. Finally, if we assume that π0X → π0Y is surjective, and define
the πn = 0 for n < 0, the long exact sequence will be exact also at π0Y and thus will
extend infinitely far in both directions. Ultimately, we may assume that X → Y
is a map of spectra, in which case a homotopy cofiber for the map X → Y exists,
serving as a complete analogue of the mapping cone for a map of chain complexes.

The long exact sequences of homotopy theory can produce spectral sequences,
too. For example, let Y be a connected space with abelian fundamental group, and
let Y = F0Y ← F1Y ← F2Y ← · · · be a sequence of maps between connected
spaces FpY with abelian fundamental group; call such a thing a filtration of Y or
also a tower. By a slight abuse of notation let ΩFp|p+1Y denote the homotopy fiber
of the map Fp+1Y → FpY . The long exact sequences · · · → πqFp+1Y → πqFpY →
πq−1ΩFp|p+1Y → πq−1Fp+1Y → · · · form an exact couple. (Observe also that
π0ΩFp|p+1Y appears in the long exact sequence as the cokernel of a homomorphism
between abelian groups, so naturally is one as well.) The corresponding spectral
sequence will converge to πnY if for every q and for every sufficiently large p,
πqFpY = 0 [12, A.6].

If Y is a space, then the Postnikov tower of Y is a filtration Y = F0Y ← F1Y ←
F2Y ← · · · that comes equipped with spaces Fp|p+1Y fitting into fibration sequences
Fp+1Y → FpY → Fp|p+1Y , and Fp|p+1Y is an Eilenberg–MacLane space K(πpY , p).
The corresponding spectral sequence is uninteresting, because it gives no new
information about the homotopy groups πpY or the space Y .

More generally, let Y be a spectrum, let Y = F0Y ← F1Y ← F2Y ← · · · is
a sequence of maps of spectra; call such a thing a filtration of Y . Let Fp|p+1Y denote
the homotopy cofiber of the map Fp+1Y → FpY ; we call it the p-th layer of the
filtration. The long exact sequences · · · → πqFp+1Y → πqFpY → πqFp|p+1Y →
πq−1Fp+1Y → · · · form an exact couple. The corresponding spectral sequence will
converge to πnY if for every q and for every sufficiently large p, πqFpY = 0.

If Y is a spectrum, possibly with negative homotopy groups, then the Postnikov
filtration has terms FpY with p < 0.

The Postnikov filtration of the spectrum BU involves Eilenberg–MacLane spaces
F2i|2i+1BU =̃ K(Z, 2i); the other steps in the filtration are trivial. Taking a finite
cell complex X, the mapping spectra (FpBU)X provide a filtration of Y := BUX =̃
K(Xtop) and fit into fibration sequences (F2i+1BU)X → (F2iBU)X → K(Z, 2i)X .
The homotopy groups of K(Z, 2i)X turn out to be cohomology groups of X,
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for πpK(Z, 2i)X =̃ [X+ ∧ Sp, K(Z, 2i)] =̃ [X+, ΩpK(Z, 2i)] =̃ [X+, K(Z, 2i − p)] =̃
H2i−p(X,Z). Indeed, the spectrum K(Z, 2i)X is the generalized Eilenberg–MacLane
spectrum corresponding to the singular cochain complex of X, shifted in degree
by 2i [10, IV.2.4-5], and the spectral sequence resulting from this filtration can be
identified with the Atiyah–Hirzebruch spectral sequence of X, defined as above
using the skeletal filtration of X; see [20, theorem B.8].

In general, given a filtration of a spectrum Y , we may ask that the layers Fp|p+1Y be
generalized Eilenberg–MacLane spectra, i.e., should come from chain complexes
of abelian groups. Intuitively, such a spectral sequence describes something com-
plicated (homotopy groups) in terms of something simpler and hopefully more
computable (homology or cohomology groups). Ideally, those chain complexes
would be explicitly constructible without using any higher homotopy groups.

The motivic spectral sequences turn out to be of the type just described, and
it’s not surprising, because constructing a filtration of a spectrum is a natural
way to proceed, postponing as long as possible the study of the homotopy groups
themselves. That is the hope expressed in [18].

Here is a further important motivational remark of Goodwillie. If R is a commu-
tative ring and Y is the K-theory spectrum K(R) derived from projective finitely
generated R-modules, then tensor product over R makes Y into a ring spectrum.
If the proposed filtration is compatible with products, then F0|1Y is also a ring
spectrum and each cofiber Fp|p+1Y is a module over it. If, moreover, F0|1Y is the
Eilenberg–MacLane spectrum HZ that classifies ordinary homology, then it follows
that Fp|p+1Y must be an Eilenberg–MacLane spectrum, too, i.e., come from a chain
complex of abelian groups. Further work may be required to make the chain com-
plex explicit, but at least our search for a suitable filtration can be limited to those
compatible with products.

Commuting Automorphisms 2.6

In this section we explain the Goodwillie–Lichtenbaum idea involving tuples of
commuting automorphisms and the theorem [19] that gives a spectral sequence
relating K-theory to chain complexes constructed from direct-sum Grothendieck
groups of tuples of commuting automorphisms. (The intrusion of of the direct-
sum Grothendieck groups during the construction of the spectral sequence was
unwelcome.) One aspect of the proof I want to emphasize is the “cancellation” the-
orem for the space Stab(P, Q) of stable isomorphisms between projective modules
P and Q. It says that Stab(P, Q) and Stab(P ⊕ X, Q ⊕ X) are homotopy equivalent,
and requires the ground ring to be a connected simplicial ring. The proof is sort
of similar to Voevodsky’s proof of his cancellation theorem, which we’ll cover in
Sect. 2.7.

Let’s consider an affine regular noetherian scheme X. The Fundamental Theo-
rem [37] says that the map K(X) → K(X × A1) is a homotopy equivalence; this
property of the functor K is called homotopy invariance.
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There is a standard way of converting a functor into one that satisfies homotopy
invariance, first used1 by Gersten in [15] to describe the higher K-theory of rings
developed by Karoubi and Villamayor in [23], an attempt which turned out to
give the right answer for regular noetherian commutative rings. The standard
topological simplices ∆n form a cosimplicial space ∆· : n 	→ ∆n in which the
transition maps are affine maps that send vertices to vertices. For example, some
of the transition maps are the inclusion maps ∆n−1 ↪→ ∆n whose images are
the faces of codimension 1. Gersten considered the analogous cosimplicial affine
space A· : n 	→ A

n whose transition maps are given by the same formulas. We
regard An as a simplex, the set of affine linear combinations of n + 1 distinguished
points which are called its vertices; its faces are the subaffine spaces spanned by
subsets of the vertices. It is an elementary fact (see, for example, [19]) that if F is
a contravariant functor to spaces from a category of smooth varieties that includes
the affine spaces, the G(X) := |n 	→ F(X × An)| is homotopy invariant, and the
map F → G is, in some up-to-homotopy sense, the universal map to a homotopy
invariant functor.

Let K(X ×A·) denote the geometric realization of simplicial space n 	→ K(X ×
A

n). It follows that the map K(X) → K(X × A·) is a homotopy equivalence. The
simplicial space n 	→ K(X × An) is analogous to a bicomplex, with the spaces
K(X × An) playing the role of the columns. This particular simplicial space isn’t
interesting, because the face and degeneracy maps are homotopy equivalences, but
we can relate it to some simplicial spaces that are.

Suppose X and Y are separated noetherian schemes. Then the union of two
subschemes of X × Y that are finite over X will also be finite over X, and thus an
extension of two coherent sheaves on X × Y whose supports are finite over X will
also be finite over X. Thus we may define the exact category P (X, Y) consisting
of those coherent sheaves on X × Y that are flat over X and whose support is
finite over X. If X′ → X is a map, then there is an exact base-change functor
P (X, Y) → P (X′, Y).

For example, the category P (X, SpecZ) is equivalent to the category P (X) of
locally free coherent sheaves on X. When X = Spec(R) is affine, P (X) is equivalent
to the categoryP (R) of finitely generated projective R-modules. When X = Spec(R)
and Y = Spec(S) are both affine, the category P (X, Y) is equivalent to the category
P (R, S) of R-S-bimodules that are finitely generated and projective as R-modules.

The category P (X,A1) is equivalent to the category of pairs (M, f ) where M
is a locally free coherent sheaf on X and f is an endomorphism of M. If R is
a commutative ring and X is the affine scheme Spec R, then M is essentially the
same as a finitely generated projective R-module. Similarly, the category P (X,An)
is equivalent to the category of tuples (M, f1, …, fn) where M is a locally free
coherent sheaf on X and f1, …, fn are commuting endomorphisms of M.

LetGm = SpecZ[u, u−1]. (It is a group scheme, but we won’t use its multiplication
operation.) The category P (X,Gm) is equivalent to the category of pairs (M, f )
where M is a locally free coherent sheaf on X and f is an automorphism of M. The

1 according to [1, p. 78]
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category P (X,Gn
m) is equivalent to the category of tuples (M, f1, …, fn) where M

is a locally free coherent sheaf on X and f1, …, fn are commuting automorphisms
of M.

The identity section ∗ : SpecZ→ Gm ofGm plays the role of the base point, so
let ∗ denote it. Following Voevodsky, more or less, define the algebraic circle S1 to
be the pair (Gm, ∗). Consider the following commutative diagram.

SpecZ ��
∗

��1
GG

GG
GG

GG
G

Gm

��

SpecZ

From it we see that if F is any contravariant (or covariant) functor from schemes
to abelian groups, we can define F(S1) as the complementary summand in the
decomposition F(Gm) =̃ F(SpecZ) ⊕ F(S1) derived from the following diagram.

F(SpecZ) ��
∗

��1
KK

KK
KK

KK
KK

F(Gm)

��

F(SpecZ)

The result will be natural in F. We can iterate this: considering F(X × Y) first as
a functor of X we can give a meaning to F(S1 × Y), and then considering F(S1 × Y)
as a functor of Y we can give a meaning to F(S1 × S1). Usually that would be
written as F(S1 ∧ S1) if S1 is regarded as a pointed object rather than as a pair.
We may also define St := S1 × · · · × S1 as a “product” of t copies of S1, and then
F(St), interpreted as above, is the summand of F(Gt

m) that is new in the sense that
it doesn’t come from F(Gt−1

m ) via any of the standard inclusions.
We defineZex(t)(X) to be the chain complex associated to the simplicial abelian

group n 	→ K0(P (X × An,St)), regarded as a cohomological chain complex, and
shifted so that the group K0(P (X × At ,St)) is in degree 0. In a context where
a complex Zex(t) of sheaves is required, we sheafify the presheaf U 	→ Z

ex(t)(U),
where U ranges over open subsets of X.

Recall the direct sum Grothendieck group K⊕
0 (M), where M is a small additive

category. It is defined to be the abelian group given by generators [M], one for each
object M of M, and by relations [M] = [M′] + [M′′], one for each isomorphism of
the form M =̃ M′ ⊕ M′′. If M is not small, but equivalent to an additive category
M′ that is, we define K⊕

0 (M) := K⊕
0 (M′) and observe that up to isomorphism it

is independent of the choice of M′. It is an easy exercise to check that two classes
[M] and [N] are equal in K⊕

0 (M) if and only if M and N are stably isomorphic, i.e.,
there is another object C such that M ⊕ C =̃ N ⊕ C. There is an evident natural
surjection K⊕

0 (M)� K0(M).
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Now we present the motivic cohomology complex encountered in [19]. We
defineZ⊕(t)(X) to be the chain complex associated to the simplicial abelian group
n 	→ K⊕

0 (P (X × An,St)), reversed and shifted as for Zex(t)(X), and we define
a complex of sheaves Z⊕(t) as before. There is a natural map Z⊕(t) → Z

ex(t).
If X = Spec(R) is the spectrum of a regular noetherian ring R, then from [19,

9.7] one derives a spectral sequence of the following form.

E
pq
2 = Hp−q

(
Z

⊕(−q)(X)
) ⇒ K−p−q(X) (2.15)

The rest of this section will be devoted to sketching some of the details of the proof.
The coordinate rings n 	→ R[An] form a contractible simplicial ring, where

R[An] = R[T1, …, Tn]. Let’s examine the part in degrees 0 and 1, where we have
the ring homomorphism R ↪→ R[T] and the evaluation maps e0, e1 : R[T] ⇒ R
defined by f 	→ f (0) and f 	→ f (1). The two evaluation maps allow us to regard
a polynomial in R[T], a matrix over R[T], or an R[T]-module, as a sort of homotopy
connecting the two specializations obtained using the two evaluation maps. There
are two simple remarks about such algebraic homotopies that play a role in the
proofs.

1 Remark 1 Firstly, short exact sequences always split up to homotopy, so working
with direct sum K-theory might not be so bad. Here is the homotopy. Start with
a short exact sequence E : 0 → M′ → M → M′′ → 0 of R-modules, and define an
R[T]-module M̃ as the pull back in the following diagram.

Ẽ : 0 �� M′[T] �� M̃ ��

��

M′′[T] ��

��
T

0

E : 0 �� M′[T] �� M[T] �� M′′[T] �� 0

The short exact sequence Ẽ specializes to E when T = 1 and to 0 → M′ →
M′ ⊕ M′′ → M′′ → 0 when T = 0, and provides the desired homotopy.

2 Remark 2 Secondly, signed permutation matrices of determinant 1 don’t matter,
as they are homotopic to the identity. Here is an example of such a homotopy: the
invertible matrix

(
1 −T

0 1

)(
1 0

T 1

)(
1 −T

0 1

)

specializes to
(

1 0
0 1

)
at T = 0 and to

(
0 −1
1 0

)
at T = 1.



The Motivic Spectral Sequence 51

Here is an application of the second remark that played a role in the proof in [19],
abstracted for examination. Suppose M is an additive category. Given two objects
M and N of M let’s define a new category Stab(M, N), the category of stable
equivalences between M and N. A stable equivalence is a pair (C, θ) where C ∈ M

and θ : M ⊕ C
=̃→ N ⊕ C. An object of Stab(M, N) is a stable equivalence. An

arrow (C, θ) → (C′, θ′) of Stab(M, N) is an isomorphism class of pairs (D, ψ) with

D ∈ M and ψ : C ⊕ D
=̃→ C′, such that θ′ = (1N ⊕ ψ)(θ ⊕ 1D)(1M ⊕ ψ)−1. In effect,

an arrow connects a stable isomorphism to one obtained from it by direct sum
with an identity isomorphism, underscoring the point that stable isomorphisms
related in that way are not much different from each other.

Given P ∈ M there are natural functors Stab(M, N)� Stab(M ⊕P, N ⊕P). The
rightward map µ adds the identity isomorphism 1P to a stable isomorphism of M
with N, getting a stable isomorphism of M ⊕ P with N ⊕ P. The leftward map ρ
sends an object (D, ψ) to (P ⊕ D, ψ).

The composite functor Stab(M, N)
µ→ Stab(M ⊕P, N ⊕P)

ρ→ Stab(M, N) is the
target of a natural transformation whose source is the identity functor. The arrows
in the transformation connect (C, θ) to something equivalent to (C ⊕ P, θ ⊕ 1P).
After geometric realization the natural transformation gives a homotopy from the
identity to ρ ◦ µ.

Our goal is to show the functors ρ and µ are inverse homotopy equivalences. It
turns out there is a switching swindle that produces a homotopy from µ ◦ ρ ∼ 1
for free from the homotopy 1 ∼ ρ ◦ µ, which we describe now.

The composite functor Stab(M⊕P, N⊕P)
ρ→ Stab(M, N)

µ→ Stab(M⊕P, N⊕P)

sends an object (D, ψ), where ψ : (M ⊕ P) ⊕ D
=̃→ (N ⊕ P) ⊕ D, to an object of

the form (P ⊕ D, β). The isomorphism β : (M ⊕ P) ⊕ P ⊕ D
=̃→ (N ⊕ P) ⊕ P ⊕ D

has 1P as a direct summand, provided by µ, but the identity map is on the first P,
which is the wrong one! If only it were on the second one, we could get a natural
transformation as before. An equivalent way to visualize the situation is to embed
the composite map into the following diagram.

Stab(M ⊕ P, N ⊕ P)

��
µ2

��
ρ

Stab(M, N)

��
µ

Stab(M ⊕ P ⊕ P, N ⊕ P ⊕ P)
��

ρ2

��
ρ1

Stab(M ⊕ P, N ⊕ P)

(2.16)

Here ρ1 and ρ2 are analogues of ρ that deal with the first and second P, respectively,
and µ2 adds in an identity map on the second P. The square commutes up to
homotopy if ρ2 is used, so we need a homotopy ρ1 ∼ ρ2. The trick used is to put
ourselves in a world where remark 2 applies and incorporate a homotopy from the
identity map to a signed permutation that switches one copy of P with the other.
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That world is the world where we are working over the simplicial coordinate ring
R[A·] of A·, i.e., M is replaced by a simplicial additive category n 	→ Mn over
R[A·], so such homotopies are available. The details of that homotopy are the main
technical point of [19, 8.3]. Following Voevodsky, we may refer to the homotopy
equivalence Stab(M, N) ∼ Stab(M ⊕ P, N ⊕ P) as a cancellation theorem. Now we
explain briefly how it gets used in the construction of the spectral sequence (2.15).

We recall S−1S(M), the category constructed by Quillen in [17] whose homo-
topy groups are the higher direct sum K-groups of the additive category M. Its
objects are pairs (M, N) of objects in M, and an arrow (M, N) → (M′, N ′) is an

isomorphism class of triples (C, α, β) where C ∈ M and α : M ⊕ C
=̃→ M′ and

β : N ⊕ C
=̃→ N ′ are isomorphisms. The construction is designed so π0S−1S(M) =̃

K⊕
0 (M).

By techniques due to Quillen [37, theorem B] homotopy equivalences between
naive approximations to the homotopy fibers of a functor yield homotopy fibra-
tion sequences. The categories Stab(M, N) appear as naive approximations to the
homotopy fibers of the functor from the (contractible) path space of S−1S(M) to
S−1S(M). That follows from two observations: a stable isomorphism of M with N
is essentially a diagram of the following type in S−1S(M);

(0, 0) �� (M ⊕ C, N ⊕ C) (M, N)oo

and an arrow in the category Stab(M, N) is essentially a diagram of the following
type in S−1S(M).

(0, 0)

��PP
PP

PP
PP

PP
PP

P
�� (M ⊕ C, N ⊕ C)

��

(M, N)oo

vvnnn
nn
nn
nn
nn
nn

(M ⊕ C ⊕ D, N ⊕ C ⊕ D)

Since all the fibers are the same up to homotopy equivalence, a variant of Quillen’s
Theorem B adapted to the simplicial world tells us that any of the fibers, say
Stab(0, 0), is almost the loop space of S−1S(M). We have to say “almost” because
not every object (M, N) of S−1S(M) has components M and N that are stably
isomorphic. For an additive category M the obstruction to stable isomorphism
is captured precisely by the group K⊕

0 (M). In our situation, M is a simplicial
additive category, which means that the space associated to the simplicial abelian
group n 	→ K⊕

0 (Mn) enters into a fibration with the other two spaces. An object of
Stab(0, 0) is a stable isomorphism of 0 with 0, and is essentially a pair (C, θ) where C
is an object of M and θ is an automorphism of C. That’s how automorphisms enter
into the picture. Proceeding inductively, one encounters the additive category
whose objects are such pairs (C, θ). An automorphism of such an object is an
automorphism of C that commutes with θ. That explains why, at subsequent
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stages, tuples of commuting automorphisms are involved. Starting the game off
with M := (n 	→ P (R[An])) one can see now how Z⊕(t)(X) arises.

We discuss the extent to which the map Z⊕(t)(X) → Z(t)(X) is a quasi-
isomorphism in Sect. 2.7.

Cancellation and Comparison
with Motivic Cohomology 2.7

In this section we describe the cancellation theorem of Voevodsky [45] in the form
presented by Suslin in [41, §4]. It is one of the tools used by Suslin to prove that
Z

⊕(t)(X) → Z(t)(X) is a quasi-isomorphism locally on a smooth variety X, and
we’ll also discuss how that goes. We take some liberties with Suslin’s presentation
for the sake of motivation and for the sake of hiding technicalities. In this section
X = Spec(R) and Y = Spec(S) are affine regular noetherian schemes.

There is a functor P (X, Y) → P (X ×Gm, Y ×Gm) arising from tensor product
with the structure sheaf of the graph of the identity mapGm → Gm.

Let K⊕
0 (P (X × A·, Y)) denote the simplicial abelian group n 	→ K⊕

0 (P (X ×
A

n, Y)), or when needed, the chain complex associated to it. The cancellation
theorem states that the induced map

K⊕
0

(
P (X × A·, Y)

) → K⊕
0

(
P (X × S1 × A·, Y × S1)

)
(2.17)

is a quasi-isomorphism. Roughly speaking, the idea is to use the same switching
swindle as in the previous section. One could imagine trying to construct the
following diagram, analogous to (2.16), with S1 here playing the role P played
there.

K⊕
0

(
P (X × S1 × A·, Y × S1)

)

��
µ2

��
ρ

K⊕
0

(
P (X × A·, Y)

)

��
µ

K⊕
0

(
P (X × S1 × S1 × A·, Y × S1 × S1)

) ��
ρ2

��
ρ1

K⊕
0

(
P (X × S1 × A·, Y × S1)

)

(2.18)

Here the map µ would be external product with the identity map on S1, and
hopefully, one could find a map ρ for which ρ ◦ µ ∼ 1. The maps ρ1 and ρ2 would
be instances of ρ, but based on different S1 factors. Then one could hope to use the
switching swindle to get the homotopy µ ◦ ρ ∼ 1 for free.

We may regard a class [M] of K⊕
0 (P (X, Y)) as a direct sum Grothendieck group

correspondence from X to Y . Intuitively, a correspondence is a relation that relates
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some points of Y to each point of X. Geometrically, we imagine that the points (x, y)
in the support of M lying over a point x ∈ X give the values y of the correspondence.
Since the support of M is finite over X, each x corresponds to only finitely many y.
Since M is flat over X, the number of points y corresponding to x, counted with
multiplicity, is the rank of rank of M as a locally free OX-module near x, and is
a locally constant function of x.

For example, an element of K⊕
0 (P (X,A1)) is essentially a square matrix θ of

regular functions on X, and to a point x it associates the eigenvalues of θ(x). An
element of K⊕

0 (P (X,Gm)) is essentially an invertible square matrix θ of regular
functions on X, and to a point x it associates the eigenvalues of θ(x), which are
nonzero numbers.

We define the additive category of correspondences; its objects are the sym-
bols [X], one for each noetherian separated scheme X. An arrow [X] → [Y]
is an element of Hom([X], [Y]) := K⊕

0 (P (X, Y)). The composition [N] ◦ [M]
of correspondences is defined to be [M ⊗OY N]. The direct sum [X] ⊕ [X′] of
two objects is represented by the disjoint union [X � X′] of schemes, because
K⊕

0 (P (X � X′, Y)) =̃ K⊕
0 (P (X, Y)) ⊕ K⊕

0 (P (X′, Y)) and K⊕
0 (P (X, Y � Y ′)) =̃

K⊕
0 (P (X, Y)) ⊕ K⊕

0 (P (X, Y ′)). We define [X] ⊗ [X′] := [X × X′] on objects, and
extend it to a bilinear function on arrows.

There is a function Hom(X, Y) → Hom([X], [Y]) which sends a map f to the
class [f ] of the structure sheaf of its graph. It is compatible with composition and
defines a functor X 	→ [X] from the category of separated schemes to the category
of correspondences.

A homotopy of correspondences from X to Y will be an element of Hom([X ×
A

1], [Y]). If two correspondences f and g are homotopic, we’ll write f ∼ g. Com-
position preserves homotopies.

We are particularly interested in correspondences [X] → [Gm]. We can use
companion matrices to construct them. Let f = Tn + an−1Tn−1 + · · · + a0 ∈ R[T] be
a polynomial with unit constant term a0 ∈ R×. Since f is monic, as an R-module P
is free with rank equal to n. Since T acts invertibly on P := R[T]|f , we can regard
P as a finitely generated R[T, T−1]-module, hence as an object of P (X,Gm). The
eigenvalues of T acting on P are the roots of f , so let’s use the notation [f = 0] for
the correspondence [P].

3 Lemma 3 If f and g are monic polynomials with unit constant term, then [f =
0] + [g = 0] ∼ [fg = 0] : [X] → [Gm].

Proof The exact sequence

0 → R[T, T−1]|f → R[T, T−1]|fg → R[T, T−1]|g → 0

splits up to homotopy, according to Remark 1.
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If a ∈ R× is a unit, it may be regarded as a map a : X → Gm, and then [a] =
[T − a = 0].

4Lemma 4 If a, b ∈ R×, then [ab] ∼ [a] + [b] − [1] : [X] → [Gm].

Proof (See [41, 4.6.1].) We compute [a] + [b] = [T − a = 0] + [T − b = 0] ∼
[(T − a)(T − b) = 0] = [T2 − (a + b)T + ab = 0] ∼ [T2 − (1 + ab)T + ab = 0] =
[(T − 1)(T − ab) = 0] ∼ [(T − 1)] + [(T − ab) = 0] = [1] + [ab]. The homotopy
in the middle arises from adjoining a new variable V and using the homotopy
[T2 − (V(a + b) + (1 − V)(1 + ab))T + ab = 0], which is valid because its constant
term ab is a unit.

Now consider correspondences of the form [X] → [Gm ×Gm]. The simplest ones
are obtained from maps X → Gm × Gm, i.e., from pairs (b, c) of units in R. Let
[b, c] denote such a correspondence.

5Lemma 5 If a, b, c ∈ R×, then [ab, c] ∼ [a, c] + [b, c] − [1, c] : [X] → [Gm ×Gm].

Proof (See [41, 4.6.2].) The function Hom([X], [Gm]) → Hom([X], [Gm × Gm])
defined by f 	→ (f ⊗ [c]) ◦ [D], where D is the diagonal embedding X → X × X,
sends [a] to [a, c] and preserves homotopies.

Since Hom([X], [Y]) is an abelian group, the convention introduced above for ap-
plying functors toS1 or toSt applies, and we can attach a meaning to Hom([X], [S1])
or to Hom([S1], [Y]). If we enlarge the category of correspondences slightly by
taking its idempotent completion we may even interpret [S1] as an object of the
category of correspondences. To do so we introduce new objects denoted by p[X]
whenever X is a scheme and p ∈ Hom([X], [X]) is an idempotent, i.e., satis-
fies the equation p2 = p. We define Hom(p[X], q[Y]) := q Hom([X], [Y])p ⊆
Hom([X], [Y]), and with this definition composition is nothing new. We define
p[X] ⊗ q[Y] := (p ⊗ q)[X × Y]. A homotopy between maps p[X] ⇒ q[Y] will be
a map p[X] ⊗ [A1] → q[Y].

A map f : [X] → [Y] may be said to induce the map qfp : p[X] → q[Y],
but that procedure is not necessarily compatible with composition, for in terms
of matrices it is the function

(
a b
c d

) 	→ a. Nevertheless, we will abuse notation
slightly and denote that induced map by f : p[X] → q[Y], leaving it to the reader
to understand the necessity of composing f with p and q. Similarly, if we have
an equation f = g : p[X] → q[Y] or a homotopy f ∼ g : p[X] → q[Y], we’ll
understand that both f and g are to treated that way.



56 Daniel R. Grayson

We identify [X] with 1[X], and prove easily that [X] =̃ p[X] ⊕ p[X], where
p := 1 − p. Any functor F from the old category of correspondences to the category
of abelian groups can be extended to the new category by defining F(p[X]) :=
F(p)F([X]). For example, with this notation, F([S1]) = F(e[Gm]), where e is the
composite map Gm → SpecZ

∗→ Gm. Thus we may as well identify [S1] with
e[Gm], and similarly, [S2] with [S1] ⊗ [S1] = (e ⊗ e)[Gm ×Gm].

6 Lemma 6 Suppose a, b, c ∈ R×. Then [ab] ∼ [a] + [b] : [X] → [S1] and [ab, c] ∼
[a, c] + [b, c] : [X] → [S2]

Proof Recall our convention about composing with idempotents when necessary.
Use Lemma 4 to get e[ab] ∼ e([a]+[b]−[1]) = e([a]+[b])−e[1] and then compute
e[1] = [1]−[1] = 0. Use Lemma 5 to get (e⊗e)[ab, c] ∼ (e⊗e)([a, c]+[b, c]−[1, c])
and then compute (e ⊗ e)[1, c] = [1, c] − [1, c] − [1, 1] + [1, 1] = 0.

7 Lemma 7 Let T, U be the standard coordinates on Gm × Gm. Then [TU] ∼ 0 :
[S2] → [Gm].

Proof We compute [TU](e⊗e) = [TU]−[TU](1⊗e)−[TU](e⊗1)+[TU](e⊗e) =
[TU] − [T] − [U] + [1] ∼ 0, applying Lemma 4.

8 Corollary 8 [TU, −TU] ∼ 0 : [S2] → [G2
m].

Proof Compose the result of the lemma with the map Gm → G
2
m defined by

v 	→ (v, −v).

9 Corollary 9 [T, U] + [U, T] ∼ 0 : [S2] → [G2
m].

Proof Compute 0 ∼ [TU, −TU] ∼ [T, −TU] + [U, −TU] ∼ [T, −T] + [T, U] +
[U, T] + [U, −U] : [S2] → [G2

m] and then observe that [T, −T] ∼ 0 ∼ [U, −U] :
[S2] → [G2

m], because, for example [T, −T](e ⊗ e) = [T, −T] − [T, −T] − [1, −1] +
[1, −1] = 0.
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10Corollary 10 [T, U] ∼ [U−1, T] : [S2] → [G2
m].

Proof Compute 0 = [1, T] = [UU−1, T] ∼ [U, T] + [U−1, T] : [S2] → [G2
m], and

then apply Corollary 9.

11Corollary 11 [U−1, T] ∼ 1: [S2] → [S2].

Proof Use Corollary 10 and observe that [T, U] : [S2] → [S2] is the identity map.

The map [U−1, T] : [S2] → [S2] is an analogue of the signed permutation
(

0 −1
1 0

)

considered in Remark 2, and the homotopy found in Corollary 11 gives us a switch-
ing swindle that can be used to prove the cancellation theorem.

Having done that, the next task is to construct the map ρ used in (2.18): it doesn’t
quite exist (!), but one can proceed as follows. Suppose P ∈ P (X × S1, Y × S1),
so P is an R[T, T−1]-S[V , V−1]-module that is finitely generated and projective
as an R[T, T−1]-module. We try to define ρ[P] := [P|(Tn − 1)] − [P|(Tn − V)] ∈
K⊕

0 (P (X, Y)). It’s easy to check that P|(Tn − 1) is a projective R-module. It turns
out that for n sufficiently large, multiplication by Tn − V on P is injective, and
the bound is independent of the ring, so injectivity is preserved by base change,
implying that P|(Tn − V) is flat, hence projective as an S-module, since it’s finitely
generated. To show that ρ is a left inverse for µ in (2.18), assume that Q ∈ P (X, Y)
and let P = Q ⊗R R[T, T−1] with V acting on P the same way T does, and compute
ρ[P] = [Qn] − [Qn−1] = [Q]. One handles the problem of choosing n in the
definition of ρ by explicit computations with cycle classes.

The usual definition of motivic cohomology is this: the chain complex Zcor(t),
usually called Z(t), is defined as Zex(t) was, but K0(P (X, Y)) is replaced by the
group Cor(X, Y) of finite correspondences, those algebraic cycles on X × Y each
component of which maps finitely and surjectively onto some irreducible compo-
nent of Y . See [46] for the equivalence betweenZcor(t) andZBl(i). There is a natural
mapZex(t) → Z

cor(t), which sends a coherent sheaf to its support cycle; according
to [50, corollary 6.32] the map is an equivalence. Thus in order for the spectral
sequence (2.15) to be useful, the main remaining problem is to show that the map
Z

⊕(t) → Z
ex(t) is an equivalence, or equivalently, that Z⊕(t) → Z

cor(t) is an
equivalence.

Now let’s sketch the rest of the proof of Suslin’s theorem in [41] that, locally, for
smooth varieties over a field, that the map Z⊕(t) → Z

cor(t) is an equivalence.
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The basic strategy is to prove that the groups H∗(X,Z⊕(t)) share enough prop-
erties with motivic cohomology H∗(X,Zcor(t)) that they must be equal. First comes
the statement that Hk(X,Z⊕(t)) =̃ Hk+1(X × S1,Z⊕(t + 1)), which follows from
cancellation. (It corresponds to the part of the Fundamental Theorem of alge-
braic K-theory that says that Kn(R) =̃ Kn+1(Spec R × S1) for a regular noetherian
ring R.) Relating S1 to Gm, which is an open subset of A1, yields a statement
about cohomology with supports, Hk(X,Z⊕(t)) =̃ Hk+2

X×0(X × A1,Z⊕(t + 1)), for
k ≥ 0. By induction one gets Hk(X,Z⊕(t)) =̃ Hk+2m

X×0 (X × Am,Z⊕(t + m)) for
m ≥ 0. This works also for any vector bundle E of rank m over X, yielding
Hk(X,Z⊕(t)) =̃ Hk+2m

s(X) (E,Z⊕(t +m)), where s : X → E is the zero section. Now take
a smooth closed subscheme Z of X of codimension m, and use deformation to the
normal bundle to get Hk(Z,Z⊕(t)) =̃ Hk+2m

Z (X,Z⊕(t + m)).
Now it’s time to show that the map H∗

Z(X,Z⊕(t)) → H∗
Z(X,Zcor(t)) is an isomor-

phism, but it’s still not easy. The multi-relative cohomology groups with supports,
H∗

Z(Am, ∂Am;Z⊕(t)) arise (analogous to the multi-relative K-groups described in
Sect. 2.8), and Suslin develops a notion he calls “rationally contractible presheaves”
to handle the rest of the proof.

Higher Chow Groups
and a Motivic Spectral Sequence2.8

In this section we describe Bloch’s approach to motivic cohomology via higher
Chow groups and then describe the argument of Bloch and Lichtenbaum for
a motivic spectral sequence.

The definition of linear equivalence of algebraic cycles amounts to saying that
there is the following exact sequence, in which the two arrows are derived from
the inclusion maps A0 ⇒ A1 corresponding to the points 0 and 1.

CHi(X) ← Zi(X)⇔ Zi(X × A1) (2.19)

The first step in developing motivic cohomology groups to serve in (2.2) or (2.13)
is to bring homological algebra to bear: evidently CHi(X) is a cokernel, and in
homological algebra one can’t consider a cokernel without also considering the
kernel. One way to handle that is to try to continue the sequence above forever,
forming a chain complex like the one in (2.20).

Zi(X) ← Zi(X × A1) ← Zi(X × A2) ← · · · (2.20)

For this purpose, Bloch used the cosimplicial affine space A·, introduced earlier,
and algebraic cycles on the corresponding cosimplicial variety X ×A·. He defined
Zi(X, n) ⊆ Zi(X × An) to be the group of algebraic cycles of codimension i
on X × An meeting all the faces properly. (Two subvarieties are said to meet
properly if the codimension of the intersection is the sum of the codimensions of
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the subvarieties.) The result is a simplicial abelian group n 	→ Zi(X, n). Its face
maps involve intersecting a cycle with a hyperplane, keeping track of intersection
multiplicities. Bloch defined the higher Chow group CHi(X, n) as its homology
group in degree n, and we’ll introduce the auxiliary notation H2i−n(X,ZBl(i)) for it
here to make the anticipated use as motivic cohomolgy more apparent. A useful
abuse of notation is to writeZBl(i) = (n 	→ Zi(X, 2i − n)), leaving it to the reader to
remember to replace the simplicial abelian group by its associated chain complex.
We let H2i−n(X,QBl(i)) := H2i−n(X,ZBl(i)) ⊗Q.

A good survey of results about Bloch’s higher Chow groups is available in [27,
II, §2.1]; for the original papers see [6, 7, 26].

The main results are that Hn(X,ZBl(i)) is homotopy invariant, fits into a local-
ization sequence for an open subscheme and its complement, can be made into
a contravariant functor (on nonsingular varieties), and can be compared rationally
with K-theory.

For example, in [7] Bloch proves a moving lemma which implies a localization
theorem for ZBl. Suppose X is quasiprojective, let U ⊆ X be an open subset, let
Z = X − U , and assume Z has codimension p in X. The localization theorem
provides the following long exact sequence.

· · · → Hj−1
(

U,ZBl(i)
)

→ Hj−2p
(

Z,ZBl(i − p)
)

→ Hj
(

X,ZBl(i)
)

→ Hj
(

U,ZBl(i)
)

→ · · ·
In [6, 9.1] Bloch presents a comparison isomorphism

τ : K ′
n(X)Q

=̃→
⊕

d

H2i−n
(
X,QBl(i)

)

for X a quasiprojective variety over a field k. The proof (with some flaws corrected
later) proceeds by using the localization theorem to reduce to the case where X
is affine and smooth over k, then uses relative K-theory to reduce to the case
where m = 0, and finally appeals to Grothendieck’s result (2.1). In the case where
X is nonsingular the isomorphism τ differs from the higher Chern character
map ch by multiplication by the Todd class of X, which is a unit in the Chow ring,

so Bloch’s result implies that the map ch : Kn(X)Q
=̃→ ⊕

d H2i−n(X,QBl(i)) is an
isomorphism, too. In [26, 3.1] Levine proves the same result, but avoids Chern
classes by using a more detailed computation of the relative K-groups. Finally,
a detailed summary of the complete proof when X is nonsingular is available
in [27, III, §3.6].

Now we sketch some details of the argument from the unpublished preprint [8]
for a motivic spectral sequence for the spectrum of a field k.

A cube of dimension n is a diagram (in some category) indexed by the partially
ordered set of subsets of the set {1, 2, …, n}. The homotopy fiber hofib C of a cube C
of dimension n of spaces or spectra can be constructed inductively as follows.
When n = 0, hofib C is the single space in the diagram. For n > 0 consider
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the two cubes C′ and C′′ of dimension n − 1 appearing as faces perpendicular
to a chosen direction and take hofib C to be the homotopy fiber of the map
hofib C′ → hofib C′′.

If Y1, …, Yn are open or closed subschemes of a scheme X, their intersections
Yi1 ∩ · · · ∩ Yik form a cube of schemes. Applying the K-theory functor (which is
contravariant) gives a cube of spectra. When Y1, …, Yn are closed subschemes,
the homotopy fiber of the cube is denoted by K(X; Y1, …, Yn) and is called multi-
relative K-theory. If Y1 = X − V is an open subscheme of X, the homotopy fiber
of the cube is denoted by KV (X; Y2, …, Yn), and is called multi-relative K-theory
with supports in V . If V is a family of closed subsets of X that is closed under
finite unions, then the inductive limit colimV∈V KV (X; Y2, …, Yn) is denoted by
KV(X; Y2, …, Yn), and is called multi-relative K-theory with supports in V. If W is
another such family of closed subsets of X, then colimW∈W colimV∈V KV−W (X −
W ; Y2 − W , …, Yn − W) is denoted by KV−W (X; Y2, …, Yn), which one might call
multi-relative K-theory with supports in V away from W . Finally, if p ∈ Z, we let
KV−W

p (X; Y2, …, Yn) be the homotopy group πpKV−W (X; Y2, …, Yn), and similarly
for the other notations.

The notation for multi-relative K-theory is applied to the simplices Ap = Ap
k as

follows. For a variety X and for any p ≥ 0 we let Vn denote the family of closed
subsets of X ×Ap which are finite unions of subvarieties of codimension n meeting
X × Am properly, for each face Am ⊆ Ap of the simplex Ap. In this section we are
interested in the case where X = Spec k.

When K-theory (or multirelative K-theory) with supports in Vn is intended,
we’ll write K(n) in place of KVn

. The spectrum K(n)(X × Ap) is functorial in the
sense that if Aq → A

p is an affine map sending vertices to vertices, there is an
induced map K(n)(X ×Ap) → K(n)(X ×Aq). These maps can be assembled to form
a simplicial space p 	→ K(n)(X × Ap) which we’ll call K(n)(X × A·).

Let H0, …, Hp be the codimension 1 faces of Ap. Let ∂Ap be an abbreviation for
the sequence H0, …, Hp, and let Σ be an abbreviation for the sequence H0, …, Hp−1.

The main result is [8, theorem 1.3.3], which states that the following sequence
of multi-relative K0 groups is exact.

· · · → K(n+1)
0 (Ap; ∂Ap)

i→ K(n)
0 (Ap; ∂Ap) → K(n)

0 (Ap; Σ)

→ K(n)
0 (Ap−1; ∂Ap−1) → K(n−1)

0 (Ap−1; ∂Ap−1) → · · ·
The proof of exactness hinges on showing that the related map

KVn−Vn+1

0 (Ap; ∂Ap) → KVn−Vn+1

0 (Ap; Σ)

is injective, which in turn depends on a moving lemma that occupies the bulk of the
paper. Two of every three terms in the long exact sequence look like K(n)

0 (Ap; ∂Ap)
with a change of index, so it’s actually an exact couple. The abutment of the corre-
sponding spectral sequence is the colimit of the chain of maps like the one labelled
i above, and thus is K0(Ap; ∂Ap), which, by an easy computation, turns out to be
isomorphic to Kp(k). The E1 term KVn

0 (Ap; Σ) is isomorphic to KVn−Vn+1

0 (Ap; Σ),
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which in turn is isomorphic to the subgroup of Zn(X, p) consisting of cycles which
pull back to 0 in each face mentioned in Σ; it follows that the E2 term is CHn(X, p).
The final result of Bloch and Lichtenbaum is the following theorem.

12Theorem 12 If k is a field and X = Spec k, then there is a motivic spectral sequence
of the following form.

E
pq
2 = Hp−q

(
X,ZBl(−q)

) ⇒ K−p−q(X) (2.21)

We also mention [16, §7], which shows that the filtration of the abutment pro-
vided by this spectral sequence is the γ-filtration and that the spectral sequence
degenerates rationally.

We continue this line of development in Sect. 2.9.

Extension to the Global Case 2.9

In this section we sketch the ideas of Friedlander and Suslin [12] for generalizing
the Bloch–Lichtenbaum spectral sequence, Theorem 12, to the global case, in other
words, to establish it for any nonsingular variety X. The first step is to show that
the Bloch–Lichtenbaum spectral sequence arises from a filtration of the K-theory
spectrum, and that the successive quotients are Eilenberg–MacLane spectra. For
the subsequent steps, Levine gives an alternate approach in [28], which we also
sketch briefly.

The paper [12] is a long one, so it will be hard to summarize it here, but it is
carefully written, with many foundational matters spelled out in detail.

Let ∆ be the category of finite nonempty ordered sets of the form [p] :=
{0, 1, 2, …, p} for some p, so that a simplicial object is a contravariant functor
from ∆ to some other category. Since any finite nonempty ordered set is isomor-
phic in a unique way to some object of ∆, we can think of a simplicial object as
a functor on the category of all finite nonempty ordered sets.

Recall that the relative K-group K(n)
0 (Ap; ∂Ap) is constructed from a cube whose

vertices are indexed by the intersections of the faces of the simplex Ap. Any such
intersection is a face itself, unless it’s empty. The faces are indexed by the nonempty
subsets of the ordered set [p], so the intersections of faces are indexed by the subsets
of [p] (including the empty subset), and those subsets correspond naturally to the
vertices of a p+1-dimensional cube. The K-theory space of the empty scheme is the
K-theory space of the zero exact category, so is a one point space. If Z is a pointed
simplicial space (or spectrum), then by defining Z(∅) to be the one point space,
we can apply it to the cube of subsets of [p], yielding a p + 1-dimensional cube of
spaces (or spectra) we’ll call cubep+1 Z. As in [12, A.1] we see that this procedure,
when applied to K(n)(A·) = (q 	→ K(n)(Aq)), yields a cube whose homotopy fiber
is K(n)(Ap; ∂Ap).
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It is well known that homotopy cofibers (mapping cones) and homotopy fibers
amount to the same thing (with a degree shift of 1) for spectra. Given an m-
dimensional cube Y of pointed spaces form the homotopy cofiber hocofib Y : the
construction is inductive, as for the homotopy fiber of a cube described above, but
at each stage the mapping cone replaces the homotopy fiber of a map. Friedlander
and Suslin relate the homotopy fiber to the homotopy cofiber by proving that the
natural map hofib Y → Ωm hocofib Y is a 2m − N + 1-equivalence if each space in
the cube Y is N-connected [12, 3.4]. The proof uses the Freudenthal Suspension
theorem and the Blakers–Massey Excision theorem.

A cube of the form cubem Z arising from a simplicial space Z comes with an
interesting natural map

hocofib cubem Z → Σ|Z| (2.22)

(see [12, 2.6]), which for N ≥ 1 is N + m + 1-connected if each space Zi is N-
connected [12, 2.11]. The proof goes by using homology to reduce to the case
where Z is a simplicial abelian group.

Combining the two remarks above and passing to spectra, we get a map
K(n)

i (Ap; ∂Ap) → πi+pK(n)(A·) which is an isomorphism for i ≤ −1. It turns
out that i = 0 (the value occuring in the construction of Bloch and Lichten-
baum) is close enough to i = −1 so that further diagram chasing [12, §5–6] allows
the exact couple derived from the exact couple of Bloch and Lichtenbaum to be
identified with the exact couple arising from the filtration of spectra defined by
Fn := |K(n)(A·)|, and for the successive quotients in the filtration to be identified
with the Eilenberg–MacLane spectrum arising from the chain complex defining
Z

Bl.
So much for the first step, which was crucial, since it brings topology into the

game. Next the authors show that K(n)(X ×A·) is homotopy invariant in the sense
that it doesn’t change if X is replaced by X ×A1; by induction, the same is true for
the product with Am. Combining that with a result of Landsburg [25] establishes
the motivic spectral sequence for X = Am. To go further, we take X = Am and
m = n and examine K(n)(An ×A·). Cycles onAn ×Am that are quasifinite overAm

have codimension n. A moving lemma of Suslin asserts that such cycles are general
enough, allowing us to replace K(n)(An ×A·) by KQ(An ×A·), where Q denotes the
family of support varieties that are quasifinite over the base. The advantage here is
increased functoriality, since quasifiniteness is preserved by base change. Transfer
maps can also be defined, allowing the globalization theorem of Voevodsky for
“pretheories” to be adapted for the current situation, thereby establishing the
spectral sequence when X is a smooth affine semilocal variety over a field. Finally,
the globalization techniques of Brown and Gersten [9] involving hypercohomology
of sheaves of spaces are used to establish the spectral sequence when X is a smooth
affine variety.

Levine’s approach [28] to globalizing the spectral sequence is somewhat differ-
ent. Instead of developing transfer maps as Friedlander and Suslin do, he replaces
the K-theory of locally free sheaves by the K-theory of coherent sheaves (which is
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called G-theory) so singular varieties can be handled. Then he develops a localiza-
tion theorem [28, corollary 7.10] that provides, when U is an open subvariety of
a variety X, a fibration sequence G(n)((X−U)×A·) → G(n)(X×A·) → G(n)(U×A·).
The proof of the localization theorem involves a very general moving lemma [28,
theorem 0.9] that, roughly speaking, takes a cycle on U × AN meeting the faces
properly and moves it to a cycle whose closure in X still meets the faces properly.
But what’s really “moving” is the ambient affine space, which is blown up repeatedly
along faces – the blow-ups are then “trianglated” by more affine spaces.

Levine’s final result is more general than the Friedlander–Suslin version, since
it provides a motivic spectral sequence for any smooth scheme X over a regular
noetherian scheme of dimension 1.

The Slice Filtration 2.10

In this section we sketch some of Voevodsky’s ideas [43,47,49] aimed at producing
a motivic spectral sequence. The setting is Voevodsky’s A1-homotopy theory for
schemes [32], which can be briefly described as follows. Modern algebraic topology
is set in the world of simplicial sets or their geometric realizations; the spaces
to be studied can be viewed as being obtained from colimits of diagrams of
standard simplices ∆n, where the arrows in the diagram are affine maps that send
vertices to vertices and preserve the ordering of the vertices. Voevodsky enlarges
the notion of “space” by considering a field k (or more generally, a noetherian
finite dimensional base scheme), replacing the simplices ∆n by affine spaces An

k
over k, and throwing in all smooth varieties over k, as well as all colimits of
diagrams involving such varieties. The colimits may be realized in a universal
way as presheaves on the category of smooth varieties over k. These presheaves
are then sheafified in the Nisnevich topology, a topology intermediate between
the Zariski and étale topologies. Finally, the affine “simplices” An

k are forced to
be contractible spaces. The result is the A1-homotopy category, a world where
analogues of the techniques of algebraic topology have been developed. Spectra in
this world are called motivic spectra. In this world there are two types of circles,
the usual topological circle S1

s and the algebraic circle S1
t := Spec(k[U, U−1]), so

the spheres Sn,i := Sn−i
s ∧ Si

t have an extra index, as do the motivic spectra and
the generalized cohomology theories they represent. The sphere T := S2,1, half
topological and half algebraic, turns out to be equivalent to the projective line P1,
so the Fundamental Theorem of algebraic K-theory, which identifies K(P1

A) with
K(A) × K(A) for a ring A, shows that the motivic spectrum KGL representing
K-theory is (2, 1)-periodic.

Voevodsky’s idea for constructing a motivic spectral sequence is to build a fil-
tration of the motivic spectrum KGL, in which each term FpKGL is to be a motivic
spectrum. As in Goodwillie’s remark in Sect. 2.5, the filtration is to be compatible
with products, the cofiber F0|1KGL is to be equivalent to the motivic analogue HZ

of the Eilenberg–MacLane ring spectrum associated to the ring Z, and hence each
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quotient Fp|p+1KGL will be an HZ -module. Modulo problems with convergence,
filtrations of motivic spectra yield spectral sequences as before.

The slice filtration of any motivic spectrum Y is introduced in [43, §2]. The
spectrum FqY is obtained from Y as that part of it that can be constructed from
(2q, q)-fold suspensions of suspension spectra of smooth varieties. Smashing two
motivic spheres amounts to adding the indices, so the filtration is compatible with
any multiplication on Y . The layer sp(Y) := Fp|p+1Y is called the p-th slice of Y .

Voevodsky states a number of interlocking conjectures about slice filtrations
of various standard spectra [43]. For example, Conjecture 1 states that the slice
filtration of HZ is trivial, i.e., the slice s0(HZ ) includes the whole thing.

Conjecture 10 (the main conjecture) says s0(1) = HZ , where 1 denotes the sphere
spectrum. By compatibility with multiplication, a corollary would be that the slices
of any motivic spectrum are modules over HZ .

Conjecture 7 says that s0(KGL) = HZ . Since KGL is (2, 1)-periodic, Conjecture 7
implies that sq(KGL) = Σ2q,qHZ , thereby identifying the E2 term of the spectral
sequence, and providing a motivic spectral sequence of the desired form. In [47]
Voevodsky shows Conjecture 7 is implied by Conjecture 10 and a seemingly simpler
conjecture that doesn’t refer to K-theory or the spectrum representing it. In [49]
Voevodsky proves Conjecture 10 over fields of characteristic 0, providing good
evidence for the conjecture in general.

Filtrations for General
Cohomology Theories2.11

We’ll sketch briefly some of Levine’s ideas from [29] that lead to a new replacement
for the spectral sequence construction of Bloch–Lichtenbaum [8].

Levine’s homotopy coniveau filtration is defined for a contravariant functor E
from the category of smooth schemes over a noetherian separated scheme S of
finite dimension to the category of spectra, but for simplicity, since some of his
results require it, we’ll assume S is the spectrum of an infinite field k.

In Sect. 2.8 we defined K-theory with supports. The same definitions can be
applied to the functor E as follows. If V is a closed subset of X, we let EV (X) denote
the homotopy fiber of the map E(X) → E(X − V). If V is a family of closed subsets
of X that is closed under finite unions, then we let EV(X) denote the inductive limit
colimV∈V EV (X).

For each smooth variety X Levine provides a natural filtration E(X) = F0E(X) ←
F1E(X) ← F2E(X) ← ... of E(X) as follows.

In Sect. 2.8 we introduced the family of supports Vn on X ×Ap. Levine modifies
the definition of it slightly, considering it instead to be the family of closed subsets
of X × Ap of codimension at least n meeting each face in a subset of codimension
at least n in that face; when X is a quasiprojective variety it amounts to the same
thing. We define FnE(X) = |p 	→ EVn

(X × Ap)|.
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We say that E is homotopy invariant if for all smooth varieties X, the map
E(X) → E(X × A1) is a weak homotopy equivalence. Homotopy invariance of E
ensures that the natural map E(X) → F0E(X) is an equivalence, so the filtration
above can be regarded as a filtration of E(X). Taking homotopy groups and exact
couples leads to a spectral sequence, as before, but the homotopy groups of E
should be bounded below if the spectral sequence is to converge. Levine’s axiom 1
is homotopy invariance of E.

The terms FnE and the layers Fn|n+1E of the filtration are contravariant functors
from the category of smooth varieties (but with just the equidimensional maps)
to the category of spectra, so the procedure can be iterated. In particular, we can
consider (FnE)V (X), (FnE)V(X), and FmFnE(X).

We say that E satisfies Nisnevich excision if for any étale map f : X′ → X and for
any closed subset V ⊆ X for which the map f restricts to an isomorphism from
V ′ := f −1(V) to V , it follows that the map EV (X) → EV ′

(X′) is a weak homotopy
equivalence. (A special case is where f is the inclusion of an open subset X′ of X
into X, so that V ′ = V ⊆ X′ ⊆ X.) Levine’s axiom 2 is Nisnevich excision for E.

The first main consequence of assuming that E satisfies Nisnevich excision is
the localization theorem [29, 2.2.1], which, for a closed subset Z of X, identifies
(FnE)Z(X) with |p 	→ EW (X × Ap)|, where W is the family of closed subsets of
X ×Ap that meet each face in a subset of codimension at least n and are contained
in Z × Ap. There is an analogous statement for the layers.

Define the p-fold T-loop space Ωp
TE of E by the formula (ΩTE)(X) := EX×0(X ×

A
p). Levine’s axiom 3 is that there is a functor E′ satisfying axioms 1 and 2 and

there is a natural weak equivalence E
∼→ Ω2

TE′.
The first main consequence of axiom 3 (which implies axioms 1 and 2) is the

moving lemma, which is phrased as follows. Let f : Y → X be a map of smooth
varieties over k. Let Un be the family of closed subsets V ⊆ X ×Ap of codimension
at least n meeting the faces in sets of codimension at least n, whose pullbacks f −1(V)
have the same property, and let Fn

f E(X) = |p 	→ EUn
(X × Ap)|. Levine’s moving

lemma states that, provided X is a smooth variety of dimension d admitting a closed
embedding into Ad+2 with trivial normal bundle2, the map Fn

f E(X) → FnE(X) is
a weak homotopy equivalence.

Finally, we say that E is well-connected if it satisfies axioms 1, 2, and 3, and:
(1) for every smooth variety X and every closed subset W ⊆ X, the spectrum
EW (X) is −1-connected; and (2) πn(F0|1(Ωd

TE)(F)) = 0 for every finitely generated
field extension F of k, for every d ≥ 0, and for every n ≠ 0.

The main virtue of a well-connected functor E is that it allows computations
in terms of cycles. Indeed, Levine defines a generalization of Bloch’s higher Chow
groups that is based on E, which enters into computations of the layers in the
filtration.

The objects E(X) are already spectra, but the additional T-loop space func-
tor ΩT (or a related version called ΩP1 ) allows for the possibility of considering
spectra formed with respect to it, whose terms are spectra in the usual sense.

2 all small enough open subsets of X have such an embedding
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The associated machinery allows Levine to compare his coniveau filtration with
the slice filtration of Voevodsky in Sect. 2.10 and conclude they are equal. Fi-
nally, he is able to construct a homotopy coniveau spectral sequence, analogous
to the Atiyah–Hirzebruch spectral sequence, converging to the homotopy groups
of E(X) (suitably completed to ensure convergence). In the case where E = K is
K-theory itself, he checks that K is well-connected and that the spectral sequence
agrees with the Bloch–Lichtenbaum spectral sequence of Sect. 2.8 as globalized by
Friedlander–Suslin in Sect. 2.9.
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Introduction3.1

In general, if A is a ring and I ⊂ A a two-sided ideal, one defines the K-theory of A
relative to I to be the mapping fiber of the map of K-theory spectra induced by the
canonical projection from A to A|I. Hence, there is a natural exact triangle of spectra

K(A, I) → K(A) → K(A|I)
∂→ K(A, I)[−1]

and an induced natural long-exact sequence of K-groups

… → Kq(A, I) → Kq(A) → Kq(A|I)
∂→ Kq−1(A, I) → … .

If the ideal I ⊂ A is nilpotent, the relative K-theory K(A, I) can be expressed
completely in terms of the cyclic homology of Connes [14] and the topological
cyclic homology of Bökstedt–Hsiang–Madsen [7]. Indeed, on the one hand, Good-
willie [21] has shown that rationally

Kq(A, I) ⊗Q ∼→ HC−
q (A ⊗Q, I ⊗Q)

∼← HCq−1(A, I) ⊗Q ,

and on the other hand, McCarthy [47] has shown that p-adically

Kq(A, I,Zp)
∼→ TCq(A, I; p,Zp) .

In both cases, the argument uses the calculus of functors in the sense of Good-
willie [22, 23]. Thus, the problem of evaluating the relative K-theory is translated
to the problem of evaluating the relative cyclic theories. The definitions of cyclic
homology and of topological cyclic homology are given in Sect. 3.7 below.

Let A be a commutative algebra over a field k and suppose that A is a regular
noetherian ring. By Popescu [50] (see also [54]), this is equivalent to A being
a filtered colimit of smooth k-algebras. It is then possible by the above approach
to completely evaluate the groups Kq(A[x]|(xe), (x)) for truncated polynomial al-
gebras over A relative to the ideal generated by the variable. The calculation of
Connes’ cyclic homology follows from Masuda and Natsume [46] and Kassel [38],
but see also the Buenos Aires Cyclic Homology Group [24]. The topological cyclic
homology was evaluated by Madsen and the author [28, 30].

If the field k has characteristic zero, the relative K-groups are expressed in terms
of the (absolute) differential forms Ω∗

A = Ω∗
A|Z of the ring A. In short, Ω∗

A is the
initial example of an anti-commutative differential graded ring E∗ with a ring
homomorphism λ : A → E0. The result, which we prove in Sect. 3.11 below, then
is a natural (in A) isomorphism of abelian groups

Kq−1

(
A[x]|(xe), (x)

) ∼←
⊕

m≥1

(
Ωq−2m

A

)e−1
.

Here the superscript e − 1 on the right indicates product. In particular, the relative
K-groups are uniquely divisible groups. For e = 2 and q = 3, this was first obtained
by van der Kallen [56].
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If the field k has positive characteristic p, the relative K-groups are expressed in
terms of the (big) de Rham–Witt differential forms W·Ω∗

A of the ring A. One defines
W·Ω∗

A as the initial example of a big Witt complex [30]. The result, which we prove
in Sect. 3.13 below, then is a natural (in A) long-exact sequence of abelian groups

… →
⊕

m≥1

WmΩq−2m
A

Ve→
⊕

m≥1

WmeΩ
q−2m
A → Kq−1

(
A[x]|(xe), (x)

) → … .

In particular, the relative K-groups are p-primary torsion groups. The result for
A a finite field, e = 2, and q ≤ 4 was obtained first by Evens and Friedlander [15]
and by Aisbett, Lluis-Puebla and Snaith [2]. The big de Rham–Witt groups and the
map Ve can be described in terms of the more familiar p-typical de Rham–Witt
groups W·Ω∗

A of Bloch–Deligne–Illusie [5,35]. There is a canonical decomposition

WmΩ∗
A

∼→
∏

d

WsΩ∗
A ,

where on the right 1 ≤ d ≤ m and prime to p, and where s = s(m, d) is given by
ps−1d ≤ m < psd. Moreover, if we write e = pve′ with e′ prime to p, then the map Ve

takes the factor WsΩ∗
A indexed by 1 ≤ d ≤ m to the factor Ws+vΩ∗

A indexed by
1 ≤ de′ ≤ me by the map

e′Vv : WsΩ∗
A → Ws+vΩ∗

A .

If k is perfect and if A is smooth of relative dimension r over k, then the groups
WmΩq

A are concentrated in degrees 0 ≤ q ≤ r. The de Rham–Witt complex is
discussed in Sect. 3.8 below.

Finally, we remark that regardless of the characteristic of the field k, the spec-
trum K(A[x]|(xe), (x)) is a product of Eilenberg–MacLane spectra, and hence, its
homotopy type is completely determined by the homotopy groups.

All rings (resp. graded rings, resp. monoids) considered in this paper are as-
sumed to be commutative (resp. graded-commutative, resp. commutative) and
unital. We denote byN (resp. byN0, resp. by Ip) the set of positive integers (resp. non-
negative integers, resp. positive integers prime to p). By a pro-object of a category
C we mean a functor fromN, viewed as a category with one arrow from n + 1 to n,
to C, and by a strict map between pro-objects we mean a natural transformation.
A general map between pro-objects X and Y of C is an element of

Hompro −C(X, Y) = lim
n

colim
m

HomC(Xm, Yn) .

We view objects of C as constant pro-objects of C. We denote byT the multiplicative
group of complex numbers of modulus one and by Cr ⊂ T the subgroup of order r.
A map of T-spaces (resp. T-spectra) is an F -equivalence if the induced map of
Cr-fixed points is a weak equivalence of spaces (resp. spectra), for all Cr ⊂ T.

This paper was written on visits to the Australian National University and the
University of Tokyo. It is a pleasure to thank the two institutions for their hospitality
and support.
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Topological Hochschild Homology3.2

We first recall the Hochschild complex associated with the ring A. This is the cyclic
abelian group HH(A)· with k-simplices

HH(A)k = A ⊗ … ⊗ A (k + 1 factors)

and with the cyclic structure maps

dr(a0 ⊗ … ⊗ ak) = a0 ⊗ … ⊗ arar+1 ⊗ … ⊗ ak , 0 ≤ r < k ,

= aka0 ⊗ a1 ⊗ … ⊗ ak−1 , r = k ,

sr(a0 ⊗ … ⊗ ak) = a0 ⊗ … ⊗ ar ⊗ 1 ⊗ ar+1 ⊗ … ⊗ ak , 0 ≤ r ≤ k ,

tk(a0 ⊗ … ⊗ ak) = ak ⊗ a0 ⊗ a1 ⊗ … ⊗ ak−1 .

The Hochschild homology groups HH∗(A) are defined as the homology groups of
the associated chain complex (with differential given by the alternating sum of the
face maps dr), or equivalently [58, theorem 8.4.1] as the homotopy groups of the
geometric realization of the underlying simplicial set

HH(A) =
∣∣[k] 
→ HH(A)k

∣∣ .

It was discovered by Connes that the action of the cyclic group of order k + 1 on the
set of k-simplices HH(A)k gives rise to a continuous T-action on the space HH(A),
see [41, 7.1.9] or [37].

We next recall the topological Hochschild space THH(A). The idea in the defini-
tion is to change the ground ring for the tensor product in the Hochschild complex
from the ring of integers to the sphere spectrum. This was carried out by Bök-
stedt [6] and, as it turns out, before him by Breen [10]. To give the definition, we
first associate a commutative symmetric ring spectrum Ã in the sense of Hovey–
Shipley–Smith [34] to the ring A. Let S1

· = ∆1
· |∂∆1

· be the standard simplicial circle,
and let Si

· = S1
· ∧ … ∧ S1

· be the i-fold smash product. Then

Ãi =
∣∣[k] 
→ A{Si

k}/A{s0,k}
∣∣

is an Eilenberg–MacLane space for A concentrated in degree i. Here A{Si
k} is the free

A-module generated by the set of k-simplices Sn
k , and A{s0,k} is the sub-A-module

generated by the base-point. The action of the symmetric group Σi by permutation
of the i smash factors of Si

· induces a Σi-action on Ãi. In addition, there are natural
multiplication and unit maps

µi,i′ : Ãi ∧ Ãi′ → Ãi+i′ , ηi : Si → Ãi ,

which are Σi × Σi′-equivariant and Σi-equivariant, respectively.
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Let I be the category with objects the finite sets

i = {1, 2, … , i}, i ≥ 1 ,

and the empty set 0, and with morphisms all injective maps. We note that every
morphism in I can be written (non-uniquely) as the standard inclusion followed
by an automorphism. Concatenation of sets and maps defines a strict monoidal
(but not symmetric monoidal) structure on I. There is a functor Gk(A; X) from
Ik+1 to pointed spaces that on objects is given by

Gk(A)
(
i0, … , ik

)
= F

(
Si0 ∧ … ∧ Sik , Ãi0 ∧ … ∧ Ãik

)
, (3.1)

where the right-hand side is the space of continuous base-point preserving maps
with the compact-open topology. Let ι : ir → i′r be the standard inclusion and write
i′r = ir + jr. Then Gk(A)

(
i0, … , ι, … , ik

)
takes the map

Si0 ∧ … ∧ Sir ∧ … ∧ Sik
f→ Ãi0 ∧ … ∧ Ãir ∧ … ∧ Ãik

to the composite

Si0 ∧ … ∧ Si′r ∧ … ∧ Sik ∼→ Si0 ∧ … ∧ Sir ∧ … ∧ Sik ∧ Sjr

f ∧ηjr→ Ãi0 ∧ … ∧ Ãir ∧ … ∧ Ãik ∧ Ãjr

∼→ Ãi0 ∧ … ∧ Ãir ∧ Ãjr ∧ … ∧ Ãik

µir ,jr→ Ãi0 ∧ … ∧ Ãi′r ∧ … ∧ Ãik ,

where the first and third maps are the canonical isomorphisms (in the symmetric
monoidal category of pointed spaces and smash product [43]), and where we have
suppressed identity maps. The symmetric group Σi′r acts on Si′r and Ãi′r and by
conjugation on Gk(i0, … , i′r, … , ik). This defines the functor Gk on morphisms.

One now defines a cyclic space THH(A)· with k-simplices the homotopy colimit
(see [9, §XII] for the definition of homotopy colimits)

THH(A)k = hocolim
Ik+1

Gk(A) . (3.2)

Although this is not a filtered homotopy colimit, it still has the desired homotopy
type in that the canonical map

Gk(A)
(
i0, … , ik

) → THH(A)k (3.3)

is (i0 + … + ik − 1)-connected. The proof of this approximation lemma is similar to
the proof of the lemma in the proof of Quillen’s theorem B [51] and can be found
in [44, lemma 2.3.7]. We define the face maps

dr : THH(A)k → THH(A)k−1, 0 ≤ r ≤ k ; (3.4)
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the degeneracies and the cyclic operator are defined in a similar manner. We let
dr : Ik+1 → Ik be the functor given by

dr

(
i0, … , ik

)
0 =

(
i0, … , ir � ir+1, … , ik

)
, 0 ≤ r < k ,

=
(
ik � i0, i1, … , ik−1

)
, r = k ,

on objects and similarly on morphisms, and let

δr : Gk(A) → Gk−1 ◦ dr

be the natural transformation that takes the map

Si0 ∧ … ∧ Sir ∧ … ∧ Sik
f→ Ãi0 ∧ … ∧ Ãir ∧ … ∧ Ãik

to the composite

Si0 ∧ … ∧ Sir+ir+1 ∧ … ∧ Sik ∼→ Si0 ∧ … ∧ Sir ∧ Sir+1 ∧ … ∧ Sik

f→ Ãi0 ∧ … ∧ Ãir ∧ Ãir+1 ∧ … ∧ Ãik

µir ,ir+1→ Ãi0 ∧ … ∧ Ãir+ir+1 ∧ … ∧ Ãik ,

if 0 ≤ r < k, and to the composite

Sik+i0 ∧ Si1 ∧ … ∧ Sik−1
∼→ Si0 ∧ … ∧ Sik−1 ∧ Sik

f→ Ãi0 ∧ … ∧ Ãik−1 ∧ Ãik

∼→ Ãik ∧ Ãi0 ∧ Ãi1 ∧ … ∧ Ãik−1

µik ,i0→ Ãik+i0 ∧ Ãi1 ∧ … ∧ Ãik−1 ,

if r = k. Here again the unnamed isomorphisms are the canonical ones. The face
map dr in (3.4) is now defined to be the composite

hocolim
Ik+1

Gk(A)
δr→ hocolim

Ik+1
Gk−1(A) ◦ dr

dr∗→ hocolim
Ik

Gk−1(A) .

Then Bökstedt’s topological Hochschild space is the T-space

THH(A) =
∣∣[k] 
→ THH(A)k

∣∣ . (3.5)

The homotopy groups THH∗(A) can be defined in several other ways. Notably,
Pirashvili–Waldhausen [49] have shown that these groups are canonically isomor-
phic to the homology groups of the category P (A) of finitely generated projec-
tive A-modules with coefficients in the bifunctor Hom, as defined by Jibladze–
Pirashvili [36].
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The Topological Hochschild Spectrum 3.3

It is essential for understanding the topological cyclic homology of truncated
polynomial algebras that topological Hochschild homology be defined not only as
a T-space THH(A) but as a T-spectrum T(A).

In general, if G is a compact Lie group, the G-stable category is a triangulated
category and a closed symmetric monoidal category, and the two structures are
compatible [40, II.3.13]. The objects of the G-stable category are called G-spectra.
A monoid for the smash product is called a ring G-spectrum. We denote the set
of maps between two G-spectra T and T ′ by [T, T ′]G. Associated with a pointed
G-space X one has the suspension G-spectrum which we denote again by X. If λ
is a finite dimensional orthogonal G-representation, we denote by Sλ its one-point
compactification. Then the G-stable category is stable in the strong sense that the
suspension homomorphism

[T, T ′]G
∼→ [T ∧ Sλ, T ′ ∧ Sλ]G (3.6)

is an isomorphism [40, I.6.1]. As a model for the G-stable category we use sym-
metric orthogonal G-spectra; see [45] and [33, theorem 5.10].

Let X be a pointed space. Then there is a functor Gk(A; X) from Ik+1 to pointed
spaces that is defined on objects by

Gk(A; X)
(
i0, … , ik

)
= F

(
Si0 ∧ … ∧ Sik , Ãi0 ∧ … ∧ Ãik ∧ X

)

and on morphisms in a manner similar to (3.1). If n is a non-negative integer, we let
(n) be the finite ordered set {1, 2, … , n} and define I(n) to be the product category.
(The category I(0) is the category with one object and one morphism.) The category
I(n) is a strict monoidal category under component-wise concatenation of sets and
maps. In addition, there is a functor

�n : I(n) → I

given by the concatenation of sets and maps according to the ordering of (n). (The
functor �0 takes the unique object to 0.) Let G(n)

k (A; X) be the functor from (I(n))k+1

to pointed spaces defined as the composition

G(n)
k (A, X) = Gk(A, X) ◦ (�n)k+1 .

There is a cyclic space THH(n)
· (A; X) with k-simplices the homotopy colimit

THH(n)
k (A; X) = hocolim

(I(n))k+1
G(n)

k (A; X)

and with the cyclic structure maps defined by the same formulas as in (3.4), the only
difference being that the concatenation functor � in the formula for the functor
dr must be replaced by the component-wise concatenation functor �(n). Then we
define the T-space

THH(n)(A; X) =
∣∣[k] 
→ THH(n)

k (A; X)
∣∣ .
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An ordered inclusion ι : (n) → (n′) gives rise to a T-equivariant map

ι∗ : THH(n)(A; X) → THH(n′)(A; X) ,

which, by the approximation lemma (3.3), is an equivalence of T-spaces, provided
that n ≥ 1. For n = 0, there is canonical T-equivariant homeomorphism

Ncy(A) ∧ X
∼→ THH(0)(A; X) ,

where the first smash factor on the left is the cyclic bar-construction of the pointed
monoid given by the ring A which we now recall.

We define a pointed monoid to be a monoid in the symmetric monoidal category
of pointed spaces and smash product. The ring A determines a pointed monoid,
which we also denote A, with A considered as a pointed set with basepoint 0 and
with the multiplication and unit maps given by multiplication and unit maps from
the ring structure. Let Ncy

· (Π) be the cyclic space with k-simplices

N
cy
k (Π) = Π ∧ … ∧ Π (k + 1 times) (3.7)

and with the Hochschild-type cyclic structure maps

di(π0 ∧ … ∧ πk) = π0 ∧ … ∧ πiπi+1 ∧ … ∧ πk , 0 ≤ i < k ,

= πkπ0 ∧ π1 ∧ … ∧ πk−1 , i = k ,

si(π0 ∧ … ∧ πk) = π0 ∧ … ∧ πi ∧ 1 ∧ πi+1 ∧ … ∧ πk , 0 ≤ i ≤ k ,

tk(π0 ∧ … ∧ πk) = πk ∧ π0 ∧ π1 ∧ … ∧ πk−1 .

Then Ncy(Π) is the geometric realization.
We define of the symmetric orthogonal T-spectrum T(A). Let n be a non-

negative integer, and let λ be a finite-dimensional orthogonal T-representation.
Then the (n, λ)th space of T(A) is defined to be the space

T(A)n, λ = THH(n)
(
A; Sn ∧ S λ) (3.8)

with the diagonalT-action induced by theT×T-action, where the action by one fac-
tor is induced by theT-action on λ, and where the other is the canonical action byT
on the realization of a cyclic space. Similarly, we give T(A)n, λ the diagonal Σn-action
induced by the Σn×Σn-action, where the two factors act by permutation respectively
on (n) and on the smash factors of Sn = S1∧…∧S1. In particular, T(A)0,0 = Ncy(A).
The definition of the Σn × Σn′ × T-equivariant spectrum structure maps

σn,n′, λ, λ′ : T(A)n, λ ∧ Sn′ ∧ S λ′ → T(A)n+n′, λ⊕ λ′′

is straightforward, but can be found in [20, section 2.2]. We also refer to op. cit., ap-
pendix, for the definition of the ring spectrum product maps

µn, λ,n′, λ : T(A)n, λ ∧ T(A)n′, λ′ → T(A)n+n′, λ⊕ λ′′ ,
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which are Σn × Σn′ × T-equivariant with T acting diagonally on the left. With this
product T(A), becomes a commutative T-ring spectrum. The following result is
proved in [29, proposition 2.4].

1Proposition 1 Suppose that n ≥ 1. Then the adjoint of the structure map

σ̃n,n′, λ, λ′ : T(A)n, λ → F
(

Sn′ ∧ S λ′
, T(A)n+n′, λ⊕ λ′′

)

is an F -equivalence of pointed T-spaces.

As a corollary of the proposition, we have a canonical isomorphism

THHq(A)
∼→ [Sq ∧ T+, T(A)]T .

We also define a Hochschild T-spectrum H(A) and a map of T-spectra

� : T(A) → H(A) ,

which is called the linearization map. The construction of H(A) is completely anal-
ogous to that of T(A) but with the functor Gk(A) replaced by the functor G′

k(A)
that is defined on objects by

G′
k(A)

(
i0, … , ik

)
= F

(
Si0 ∧ … ∧ Sik , ˜(A ⊗ … ⊗ A)i0+…+ik

)

and on morphisms in a manner similar to the formulas following (3.1). There are
k + 1 tensor factors on the right and the ground ring for the tensor products is the
ring of rational integers.

Equivariant Homotopy Theory 3.4

Before we proceed, we discuss a few concepts and elementary results from the
homotopy theory of G-spaces. We refer the reader to Adams [1] for an introduction
to this material.

The homotopy category of pointed spaces is equivalent to the category of pointed
CW-complexes and pointed homotopy classes of pointed cellular maps. Similarly,
the homotopy category of pointed G-spaces is equivalent to the category of pointed
G-CW-complexes and pointed G-homotopy classes of pointed cellular G-maps.
Let G be a compact Lie group. Then a pointed G-CW-complex is a pointed (left)
G-space X together with a sequence of pointed sub-G-spaces

∗ = sk−1 X ⊂ sk0 X ⊂ sk1 X ⊂ … ⊂ skn X ⊂ … ⊂ X ,
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and for all n ≥ 0, a push-out square of (un-pointed) G-spaces

∐
α ∂Dn × G|Hα ��

ϕn|∂

��

��

skn−1 X
��

��
∐

α Dn × G|Hα ��

ϕn

skn X,

with each Hα ⊂ G a closed subgroup, such that the canonical pointed G-map

colim
n

skn X → X

is a homeomorphism. The map ϕn restricts to an embedding on the interior of
Dn × G|Hα. We say that the image of this embedding is a cell of dimension n and
orbit-type G|Hα.

A pointed G-map f : X → X′ between pointed G-CW-complexes is cellular if
f (skn X) ⊂ skn X′, for all n ≥ −1.

2 Lemma 2 Let G be a finite group, let X be a pointed G-CW-complex of finite
dimension, and let d(H) be the supremum of the dimension of the cells of X of
orbit-type G|H. Let Y be a pointed G-space such that YH is n(H)-connected. Then
the equivariant mapping space F(X, Y)G is m-connected with

m = inf{n(H) − d(H) | H ∈ OG(X)} .

Here OG(X) denotes the set of subgroups H ⊂ G for which X has a cell of orbit-type
G|H.

Proof We show by induction on n ≥ −1 that F(skn X, Y)G is m-connected. The case
n = −1 is trivial, so we assume the statement for n − 1. One shows as usual that
the map skn−1 X � skn X has the G-homotopy extension property, and that the
induced map

F(skn X, Y)G � F(skn−1 X, Y)G

has the homotopy lifting property [52]. The fiber of the latter map over the base-
point is canonically homeomorphic to

F
(
skn X| skn−1 X, Y

)G ∼→ F

(
∨

α

Sn ∧ G|Hα+, Y

)G

∼→
∏

α

F
(
Sn ∧ G|Hα+, Y

)G ∼→
∏

α

F
(
Sn, YHα

)
,

where the first map is induced by the map ϕn. But the space F(Sn, YHα ) is (n(Hα)−n)-
connected and n(Hα) − n ≥ m, so the induction step follows. Since X = skn X, for
some n, we are done.
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Pointed Monoid Algebras 3.5

Let A be a ring, and let Π be a discrete pointed monoid, that is, a monoid in
the symmetric monoidal category of pointed sets and smash product. Then the
pointed monoid algebra A(Π) is defined to be the quotient of the monoid algebra
A[Π] by the ideal generated by the base-point of Π. For example,

A[x]|(xe) = A(Πe) ,

where Πe = {0, 1, x, … , xe−1} considered as a pointed monoid with base-point 0 and
with the multiplication given by xe = 0. There is a canonical maps φ : A → A(Π)
and ι : Π → A(Π) of rings and pointed monoids, respectively, given by φ(a) = a · 1
and ι(π) = 1 · π. The following is [29, theorem 7.1].

3Proposition 3 Let A be a ring and Π a pointed monoid. Then the composite

T(A) ∧ Ncy(Π)
φ∧ι→ T

(
A(Π)

) ∧ Ncy(A(Π))
µ→ T

(
A(Π)

)

is an F -equivalence of T-spectra.

Before we give the proof, we mention the analogous result in the linear situation.
The derived category of abelian groups is a triangulated category and a symmetric
monoidal category. A monoid for the tensor product is called a differential graded
ring. If C· is a simplicial abelian group, we write C∗ for the associated chain complex.
If R· is a simplicial ring, then R∗ is a differential graded ring with product given by
the composite

R∗ ⊗ R∗
θ→ (R· ⊗ R·)∗

µ∗→ R∗ ,

where the left-hand map is the Eilenberg–Zilber shuffle map [58, 8.5.4]. If A is
a (commutative) ring, then HH(A)· is a simplicial ring with the product

(a0 ⊗ … ⊗ ak) · (a′
0 ⊗ … ⊗ a′

k) = a0a′
0 ⊗ … ⊗ aka′

k ,

and hence HH(A)∗ is a differential graded ring. We claim that the composite

HH(A)∗ ⊗ Z(Ncy
· (Π))∗ → HH(A(Π))∗ ⊗ HH(A(Π))∗

µ∗→ HH(A(Π))∗

is a quasi-isomorphism. Indeed, this map is equal to the composite of the Eilenberg–
Zilber map

HH(A)∗ ⊗ Z(Ncy
· (Π))∗

θ→ (HH(A)· ⊗ Z(Ncy
· (Π)))∗ ,

which is a quasi-isomorphism [58, theorem 8.5.1], and the map of simplicial abelian
groups

HH(A)· ⊗ Z(Ncy
· (Π)) → HH(A(Π))· ⊗ HH(A(Π))·

µ→ HH(A(Π))· ,
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which is an isomorphism, since the tensor product of simplicial abelian groups is
formed degree-wise.

Proof (Proof of proposition 3) We shall use the following criterion for a map
f : X → Y of symmetric orthogonal T-spectra to be an F -equivalence. Suppose
that for all integers n ≥ 0, all finite dimensional orthogonal T-representations λ,
and all finite subgroups C ⊂ T, the induced map

(fn, λ)C : (Xn, λ)C → (Yn, λ)C

is
(
n + dimR (λC) + εC(n, λ)

)
-connected, where εC(n, λ) tends to infinity with n

and λ. Then f : X → Y is an F -equivalence of T-spectra. This follows directly
from the definition of F -equivalence [33, 45].

We note that a C-equivariant isometric isomorphism λ ∼→ λ′ between two
finite dimensional orthogonal T-representations induces a natural C-equivariant
homeomorphism T(A)n, λ

∼→ T(A)n, λ′ . Hence, for a given finite subgroup C ⊂ T,
it suffices to consider the map

(fn, λ)C :
(
T(A)n, λ

)C ∧ Ncy(Π)C → (
T(A(Π))n, λ

)C

induced by the map of the statement in the case where λ is a direct sum of copies
of the regular representation ρC. To prove the proposition, we show that the map
(fn,mρC )C is (n + m + m − 1)-connected. We first unravel the definition of this map.

The composite of canonical maps

F
(
Si0 ∧ … ∧ Sik , Ãi0 ∧ … ∧ Ãik ∧ Sn+mρC

) ∧ Π∧(k+1)

→ F
(
Si0 ∧ … ∧ Sik , Ãi0 ∧ … ∧ Ãik ∧ Π∧(k+1) ∧ Sn+mρC

)

→ F
(
Si0 ∧ … ∧ Sik , Ã(Π)i0 ∧ … ∧ Ã(Π)ik ∧ Sn+mρC

)
(3.9)

defines a natural transformation of functors from Ik+1 to pointed spaces

Gk(A; Sn+mρC ) ∧ N
cy
k (Π) → Gk

(
A(Π); Sn+ρC

)
.

If we pre-compose on both sides by the functor (�n)k+1, we get a similar natural
transformation with G(n)

k in place of Gk. Taking homotopy colimits over (I(n))k+1,
we obtain a map

THH(n)
k (A; Sn+mρC ) ∧ N

cy
k (Π) → THH(n)

k

(
A(Π); Sn+mρC

)
.

Here we have used that taking homotopy colimits and smashing by a (fixed) pointed
space commute up to canonical homeomorphism. Finally, as k varies, these maps
constitute a map of cyclic spaces, and hence we get an induced map after geometric
realization

THH(n)(A; Sn+mρC ) ∧ Ncy(Π) → THH(n)
(
A(Π); Sn+mρC

)
.
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This is the map fn,mρC of the statement. Here we have used that the geometric
realization of a smash product of pointed simplicial spaces is canonically homeo-
morphic to the smash product of their geometric realizations.

We next give a similar description of the induced map of C-fixed points (fn,mρC )C.
The C-action on the domain and target of the map fn,mρC , we recall, is the diagonal
action induced from a natural C × C-action, where the action by one factor is
induced by the C-action on ρC, and where the other is the canonical action by
the cyclic group C ⊂ T on the realization of a cyclic space. The latter C-action is
not induced from simplicial C-action. However, this can be achieved by edge-wise
subdivision, which now we recall.

Let X· be a simplicial space, and let r be the order of C. Then by [7, lemma 1.1],
there is a canonical (non-simplicial) homeomorphism

Dr :
∣∣[k] 
→ (sdr X·)k

∣∣ ∼→ ∣∣[k] 
→ Xk

∣∣ ,

where sdr X· is the simplicial space with k-simplices given by

sdr(X·)k = Xr(k+1)−1

and simplicial structure maps, for 0 ≤ i ≤ k, given by

d′
i : sdr(Xs)k → sdr(Xs)k−1 , d′

i = di ◦ di+(k+1) ◦ … ◦ di+(r−1)(k+1) ,

s′i : sdr(Xs)k → sdr(Xs)k+1 , s′i = si+(r−1)(k+2) ◦ … ◦ si+(k+2) ◦ si .

If X· is a cyclic space, then the action by C on sdr(X·)k, where the generator
e2πi|r acts as the operator (tr(k+1)−1)k+1, is compatible with the simplicial structure
maps, and hence induces a C-action on the geometric realization. Moreover, the
homeomorphism Dr is C-equivariant, if we give the domain and target the C-
action induced from the simplicial C-action and from the canonical T-action,
respectively.

In the case at hand, we now consider

sdr THH·
(
A; Sn+mρC

)
k

= THHr(k+1)−1

(
A; Sn+mρC

)

with the diagonal C-action induced by the C × C-action, where the generator
e2πi|r of one C-factor acts as the operator (tr(k+1)−1)k+1 on the right, and where the
action by the other C-factor is induced from the C-action on ρC. This action is
not induced from an action on the individual terms of the homotopy colimit that
defines the right-hand side. However, if we let ∆r,k : Ik+1 → I(k+1)r be the diagonal
functor given by

∆r,k(i0, … , ik) = (i0, … , ik, … … , i0, … , ik) ,

then the canonical map of homotopy colimits

hocolim
Ik+1

Gr(k+1)−1

(
A; Sn+mρC

) ◦ ∆r,k → hocolim
Ir(k+1)

Gr(k+1)−1

(
A; Sn+mρC

)
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induces a homeomorphism of C-fixed sets. On the left, the group C acts trivially on
the index category, and hence the action is induced from an action on the individual
terms of the homotopy colimit. A typical term is canonically homeomorphic to

F
(
(Si0 ∧ … ∧ Sik )∧r, (Ãi0 ∧ … ∧ Ãik )∧r ∧ Sn+mρC

)
.

Moreover, the group C acts on the mapping space by the conjugation action
induced from the action on the two r-fold smash products by cyclic permutation
of the smash factors and from the action on Sn+mρC induced from the one on ρC.
The canonical maps

F
(
(Si0 ∧ … ∧ Sik )∧r, (Ãi0 ∧ … ∧ Ãik )∧r ∧ Sn+mρC

) ∧ (
Π∧(k+1)

)∧r

→ F
(
(Si0 ∧ … ∧ Sik )∧r, (Ãi0 ∧ … ∧ Ãik ∧ Π∧(k+1))∧r ∧ Sn+mρC

)

→ F
((

Si0 ∧ … ∧ Sik
)∧r

,
(
Ã(Π)i0 ∧ … ∧ Ã(Π)ik

)∧r ∧ Sn+mρC

)
(3.10)

are C-equivariant and their composite defines a natural transformation of functors
from Ik+1 to pointed C-spaces

(
G(k+1)r−1(A; Sn+mρC ) ∧ N

cy
(k+1)r−1(Π)

)
◦ ∆r,k

→ G(k+1)r−1

(
A(Π); Sn+mρC

) ◦ ∆r,k .

If we pre-compose both sides by the functor (�n)k+1, we get a similar natural
transformation with G(n)

k in place of Gk. Taking C-fixed points and homotopy
colimits over (I(n))k+1, we obtain the map

(
sdr

(
THH(n)

· (A; Sn+mρC ) ∧ Ncy
· (Π)

)
k

)C

→ (
sdr THH(n)

·

(
A(Π); Sn+mρC

)
k

)C
.

As k varies, these maps constitute a map of simplicial spaces, and hence we get
an induced map of the associated geometric realizations. Finally, this map and the
canonical homeomorphism Dr determine a map

(
THH(n)(A; Sn+mρC ) ∧ Ncy(Π)

)C → THH(n)
(
A(Π); Sn+mρC

)C
.

This is the map of C-fixed points induced by the map fn,mρC of the statement. Here
we have used that geometric realization and finite limits (such as C-fixed points)
commute [16, chap. 3, §3].

It remains to show that (fn,mρC )C is (n + 2m − 1)-connected as stated. As we have
just seen, this is the geometric realization of a map of simplicial spaces. It suffices
to show that for the latter map, the induced map of k-simplices is (n + 2m − 1)-
connected, for all k ≥ 0. Finally, by the approximation lemma (3.3), it suffices to
show that for i0, … , ik large, the maps of C-fixed points induced by the maps (3.10)
are (n + 2m − 1)-connected. Let i = i0 + … + ik.
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We first consider the second map in (3.10). The canonical map

Ãj ∧ Π → Ã(Π)j

is (2j − 1)-connected. Indeed, this map is the inclusion of a wedge in the corre-
sponding (weak) product. It follows that the canonical map

(
Ãi0 ∧ … ∧ Ãik ∧ Π∧(k+1)

)∧r ∧ Sn+mρC

→ (
Ã(Π)i0 ∧ … ∧ Ã(Π)ik

)∧r ∧ Sn+mρC

is (2ir + n + mr − 1)-connected. Let Cs ⊂ Cr and r = st. Then the induced map of
Cs-fixed points is n(Cs)-connected with n(Cs) = 2it + n + mt − 1. The supremum of
the dimension of the cells of (Si0 ∧ … ∧ Sik )∧r of orbit-type Cs is d(Cs) = it. Hence,
by lemma 2, the map of C-fixed points induced from the second map in (3.10) is
n-connected with

n = inf
{

n(Cs) − d(Cs)
∣∣Cs ⊂ Cr

}
= i + n + m − 1 .

Hence, this map is (n + 2m − 1)-connected, if i ≥ m.
Finally, we consider the first map in (3.10). We abbreviate

X = Si0 ∧ … ∧ Sik , Y = Ãi0 ∧ … ∧ Ãik ,

Z = Sn+mρC , P = Π∧(k+1),

and consider the following diagram.

F
(
X∧r, Y∧r ∧ Z

) ∧ P∧r ��

��

δ̃

F
(
X∧r, Y∧r ∧ Z ∧ P∧r

)

��

δ̃∗

F
(
P∧r, F(X∧r, Y∧r ∧ Z)

)
��

∼
F

(
X∧r, F(P∧r, Y∧r ∧ Z)

)

(3.11)

where the map δ̃ is the adjoint of the (pointed) Kronecker delta function

δ : P∧r ∧ P∧r → S0 .

The top horizontal map in (3.11) is equal to the first map in (3.10). We wish to
show that it induces an (n + 2m − 1)-connected map of C-fixed points. We prove
that the map of C-fixed points induced by the left-hand vertical map in (3.11) is
(n + 2m − 1)-connected and leave the analogous case of the right-hand vertical
map to the reader. So consider the following diagram, where the map in question
is the top horizontal map.

F
(
X∧r, Y∧r ∧ Z

)C ∧ P ��

δ̃C

��

δ̃

F
(
P∧r, F(X∧r, Y∧r ∧ Z)

)C

��

∆∗

F
(
P, F(X∧r, Y∧r ∧ Z)C

)
��

∼
F

(
P, F(X∧r, Y∧r ∧ Z)

)C
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The left-hand vertical map is the inclusion of a wedge in the corresponding
product. The summands F(X∧r, Y∧r ∧ Z)C are (n + m − 1)-connected by lemma 2,
and hence this map is (2(n + m) − 1)-connected. The right-hand vertical map
is induced from the inclusion ∆ : P → P∧r of the diagonal. The map ∆∗ has
the homotopy lifting property, and the fiber over the base-point is canonically
homeomorphic to the mapping space

F
(
P∧r/∆(P), F(X∧r, Y∧r ∧ Z)

)C
.

The connectivity can be evaluated by using lemma 2. Since P∧r|∆(P) has no cells
of orbit-type C|C, we find that this space is (n + tm − 1)-connected, where t is the
smallest non-trivial divisor in r. Since t ≥ 2, we are done.

A similar argument shows the following result.

4 Proposition 4 Let A be a ring and Π a pointed monoid. Then the composite

H(A) ∧ Ncy(Π) → H
(
A(Π)

) ∧ Ncy
(
A(Π)

) µ→ H
(
A(Π)

)

is an F -equivalence of T-spectra.

The Cyclic Bar-construction of Πe3.6

The T-equivariant homotopy type of the T-spaces Ncy(Πe) that occur in proposi-
tion 3 for truncated polynomial algebras was evaluated in [28]. The result, which
we now recall, is quite simple, and it is this simplicity which, in turn, facilitates
the understanding of the topological cyclic homology of truncated polynomial
algebras.

There is a natural wedge decomposition
∨

i∈N 0

Ncy(Πe, i)
∼→ Ncy(Πe) ,

where Ncy(Πe, i) is the realization of the pointed cyclic subset Ncy
· (Πe, i) generated

by the 0-simplex 1, if i = 0, and by the (i − 1)-simplex x ∧ … ∧ x, if i > 0. The
T-space Ncy(Π, 0) is homeomorphic to the discrete space {0, 1}. For i > 0, we let
d = [(i − 1)|e] be the largest integer less than or equal to (i − 1)|e and consider the
complex T-representation

λd = C(1) ⊕ C(2) ⊕ … ⊕ C(d) ,

where C(t) denotes the representation of T on C through the t-fold power map.
The following result is [28, theorem B].
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5Theorem 5 There is a canonical exact triangle of pointed T-spaces

S λd ∧ T|Ci|e+
id ∧ pr→ S λd ∧ T|Ci+ → Ncy(Πe, i)

∂→ S λd ∧ T|Ci|e+[−1] ,

where d = [(i − 1)|e] and where the right and left-hand terms are understood to
be a point, if e does not divide i.

We sketch the proof. By elementary cyclic theory, Ncy(Πe, i) is a quotient of the
cyclic standard (i − 1)-simplex Λi−1 = ∆i−1 ×T. In fact, it is not difficult to see that
there is a T-equivariant homeomorphism

(
∆i−1|Ci · ∆i−e

) ∧Ci T+
∼→ Ncy

(
Πe, i

)
,

where ∆i−1 is the standard (i − 1)-simplex with Ci acting by cyclically permuting
the vertices and ∆i−e ⊂ ∆i−1 is the face spanned by the first i − e + 1 vertices. It
is also easy to understand the homology. Indeed, the reduced cellular complex of
Ncy(Πe) is canonically isomorphic to the Hochschild complex ofZ[x]|(xe), and the
homology of the latter was evaluated in [24]. If e = 2, Ci ·∆i−2 = ∂∆i−1, and the result
readily follows. If e > 2, however, the homological dimension 2d is smaller than the
topological dimension i−1, and the main difficulty is to produce an equivariant map
of degree one from the sphere S λd to Ncy(Πe, i). It is the complete understanding
of the combinatorial structure of the so-called cyclic polytopes [13,17] that makes
this possible.

Topological Cyclic Homology 3.7

We recall the definition of the cyclic homology of Connes [14] and the topological
cyclic homology of Bökstedt–Hsiang–Madsen [7]. We first give the definition of the
version of cyclic homology that was defined independently by Loday–Quillen [42]
and Feigin–Tsygan [55] and that agrees with Connes’ original definition rationally.

In general, if G is a compact Lie group and H ⊂ G a finite subgroup, then there
is a canonical duality isomorphism in the G-stable category

[X ∧ G|H+, Y ∧ Sg]G
∼→ [X, Y ∧ G|H+]G , (3.12)

where g denotes the Lie algebra of G with the adjoint action [29, section 8.1]. If
G = T, the adjoint representation t is trivial, and we fix an isomorphism R

∼→ t.
Let E be a free contractible T-CW-complex; any two such T-CW-complexes are

canonically T-homotopy equivalent. We use the unit sphere E = S(C∞) with the
standard T-CW-structure with one cell in every even non-negative dimension.
Then the cyclic homology of A is defined by

HCq(A) =
[
Sq+1, H(A) ∧ E+

]
T

. (3.13)
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There is a canonical isomorphism
[
Sq+1, H(A) ∧ E+

]
T

∼← [
Sq+1, (H(A) ∧ E+)T

]
,

and hence the group HCq(A) is canonically isomorphic to the qth homotopy group
of the T-group homology spectrum

H ·
(
T, H(A)

)
=

(
H(A) ∧ E+

)T
[+1]

(compare [40, theorem 7.1] for the dimension-shift). There is a canonical exact
triangle of pointed T-CW-complexes

T+ = sk1(E+)� sk2(E+) → T+[−2]
∂→ T+[−1] ,

which induces an exact triangle of T-spectra

H(A) ∧ T+ → H(A) ∧ sk2(E+) → H(A) ∧ T+[−2]
∂→ H(A) ∧ T+[−1] .

The boundary map induces Connes’ (B-)operator

d : HHq(A) → HHq+1(A) , (3.14)

where we use the duality isomorphism (3.12) to identify

HHq(A)
∼→ [

Sq+1 ∧ T+, H(A) ∧ St
]
T

∼→ [Sq+1, H(A) ∧ T+]T .

The operator d is the d2-differential in the spectral sequence induced from the
skeleton filtration of E. The spectral sequence is a first quadrant homology type
spectral sequence with E2

s,t = HHt(A), for s even, and zero, for s odd. Moreover, the
groups HH∗(A) together with the operator d form a differential graded ring.

The definition (3.14) of the Connes’ operator d makes sense for every T-
spectrum. The operator d is a derivation, for every ringT-spectrum, but, in general,
it is not a differential. Instead, one has

d ◦ d = d ◦ ι = ι ◦ d ,

where ι is the map induced by the Hopf map η : Sq+1 → Sq.
We now explain the definition of topological cyclic homology, and refer to [20,

27, 29, 31] for details. Let p be a fixed prime and consider the groups

TRn
q(A; p) =

[
Sq ∧ T|Cpn−1+, T(A)

]
T

. (3.15)

There is a canonical isomorphism
[
Sq ∧ T|Cpn−1+, T(A)

]
T

∼←
[

Sq, T(A)
Cpn−1

]
,

and hence the group TRn
q(A; p) is canonically isomorphic to the qth homotopy

group of the Cpn−1 -fixed point spectrum

TRn(A; p) = T(A)
Cpn−1 .



K-Theory of Truncated Polynomial Algebras 89

By using the duality isomorphism (3.12), we can define a derivation

d : TRn
q(A; p) → TRn

q+1(A; p)

in a manner similar to (3.14). The canonical projection from T|Cpn−1 to T|Cpn−2

induces a natural map

F : TRn
q(A; p) → TRn−1

q (A; p) ,

called the Frobenius, and there is an associated transfer map

V : TRn−1
q (A; p) → TRn

q(A; p) ,

called the Verschiebung. The two composites FV and VF are given by multiplication
by the integer p and by the element V(1), respectively. Moreover,

FdV = d + (p − 1)ι .

There is an additional map

R : TRn
q(A; p) → TRn−1

q (A; p) ,

called the restriction, whose definition we now explain.
In general, an isomorphism of compact Lie groups f : G

∼→ G′ induces an
equivalence of categories f ∗ from the G′-stable category to the G-stable cate-
gory [40, II.1.7]. In particular, the isomorphism given by the rth root

ρr : T
∼→ T|Cr

induces an equivalence ρ∗
r from the T|Cr-stable category to the T-stable category.

We consider the following exact triangle of pointed T-CW-complexes.

E+ → S0 → Ẽ
∂→ E+[−1] .

Here Ẽ is defined as the mapping cone of the left-hand map, which collapses E to
the non-base point of S0. It induces an exact triangle of T-spectra

T(A) ∧ E+ → T(A) → T(A) ∧ Ẽ
∂→ T(A) ∧ E+[−1] .

The T-spectrum T(A) has the additional property that there is a natural F -
equivalence of T-spectra

r : ρ∗
p

(
T(A) ∧ Ẽ

)Cp ∼→ T(A) ,

and hence the exact triangle above induces an exact triangle of T-spectra

ρ∗
p

(
T(A) ∧ E+

)Cp → ρ∗
pT(A)Cp R→ T(A)

∂→ ρ∗
p

(
T(A) ∧ E+

)Cp [−1] .
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This induces an exact triangle of Cpn−2 -fixed point spectra

H ·
(
Cpn−1 , T(A)

) → TRn(A; p)
R→ TRn−1(A; p)

∂→ H ·
(
Cpn−1 , T(A)

)
[−1] ,

which, in turn, gives rise to a long-exact sequence of homotopy groups

… → Hq

(
Cpn−1 , T(A)

) → TRn
q(A; p)

R→ TRn−1
q (A; p)

∂→ …

Here the left-hand term is the Cpn−1 -group homology spectrum

H ·
(
Cpn−1 , T(A)

)
=

(
T(A) ∧ E+

)Cpn−1 ,

whose homotopy groups are the abutment of a first quadrant homology type
spectral sequence

E2
s,t = Hs

(
Cpn−1 , THHt(A)

) ⇒ Hs+t

(
Cpn−1 , T(A)

)
.

The spectral sequence is obtained from the skeleton filtration of E considered as
a Cpn−1 -CW-complex, and the identification the E2-term with the group homology
of Cpn−1 acting on THH∗(A) uses the duality isomorphism (3.12). We refer to [31,
§4] for a detailed discussion.

One defines TCn(A; p) as the homotopy equalizer of the maps

R, F : TRn(A; p) → TRn−1(A; p)

and TC(A; p) as the homotopy limit of the spectra TCn(A; p). Hence, there is
a natural long-exact sequence of pro-abelian groups

… → TC ·
q(A; p) → TR ·

q(A; p)
1−F→ TR ·

q(A; p)
∂→ TC ·

q−1(A; p) → …

and a natural short-exact sequence

0 → R1 lim TC ·
q+1(A; p) → TCq(A; p) → lim TC ·

q(A; p) → 0 .

Here we use the restriction map as the structure map for the pro-systems, but we
could just as well have used the Frobenius map. We shall use the notation TF ·

q(A; p)
to denote the pro-abelian group consisting of the groups TRn

q(A; p), for n ≥ 1, with
the Frobenius as the structure map.

The de Rham–Witt Complex3.8

The Hochschild homology groups HH∗(A) form a differential graded ring, with
the differential given by Connes’ operator, and there is a canonical ring homomor-
phism λ : A → HH0(A). The de Rham complex Ω∗

A is the initial example of this
algebraic structure, and hence there is a canonical map

λ : Ωq
A → HHq(A) .
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Analogously, the groups TR ·∗(A; p) form a more complex algebraic structure called
a Witt complex [27]. The de Rham–Witt complex W·Ω∗

A is the initial example of
this algebraic structure, and hence there is a canonical map

λ : WnΩq
A → TRn

q(A; p) .

The construction of W·Ω∗
A was given first for Fp-algebras by Bloch–Deligne–

Illusie [5, 35], who also showed that for k a perfect field of characteristic p and
X → Spec k smooth, there is a canonical isomorphism

Hq(X, W·Ω∗
X)

∼→ Hq
crys(X|W(k))

of the (hyper-)cohomology of X with coefficients in W·Ω∗
X and the crystalline

cohomology of X over Spec W(k) defined by Berthelot–Grothendieck [3]. Recent
work by Madsen and the author [27, 31] has shown that the construction can
be naturally extended to Z(p)-algebras (where p is odd) and that the extended
construction is strongly related to the p-adic K-theory of local number fields. See
also [19, 26].

Suppose either that A is a Z(p)-algebra with p odd or an F2-algebra. Then we
define a Witt complex over A to be the following (i)–(iii).

(i) A pro-differential graded ring E∗
· and a strict map of pro-rings

λ : W·(A) → E0
·

from the pro-ring of Witt vectors in A.
(ii) A strict map of pro-graded rings

F : E∗
· → E∗

·−1

such that λF = Fλ and such that for all a ∈ A,

Fdλ([a]n) = λ([a]n−1)p−1dλ([a]n−1) ,

where [a]n = (a, 0, … , 0) ∈ Wn(A) is the multiplicative representative.
(iii) A strict map of graded E∗

· -modules

V : F∗E∗
·−1 → E∗

·

such that λV = Vλ and such that FdV = d and FV = p.
A map of Witt complexes over A is a strict map f : E∗

· → E′
·
∗ of pro-differential

graded rings such that λ′ = f λ, F′f = fF and V ′f = fV . We call F the Frobenius,
V the Verschiebung, and the structure map of the pro-differential graded ring the
restriction.

It is proved in [27, theorem A] that there exists an initial Witt complex over A,
W·Ω∗

A, and that the canonical map Ωq
Wn(A) → WnΩq

A is surjective. The following
result, which we will be need below, is [27, theorem B].
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6 Theorem 6 Suppose either that A is a Z(p)-algebra, with p an odd prime, or an F2-
algebra. Then every element ω(n) ∈ WnΩq

A[t] can be written uniquely as a (direct)
sum

ω(n) =
∑

j∈N 0

a(n)
0,j [t]j

n +
∑

j∈N
b(n)

0,j [t]j−1
n d[t]n

+
n−1∑

s=1

∑

j∈Ip

(
Vs

(
a(n−s)

s,j [t]j
n−s

)
+ dVs

(
b(n−s)

s,j [t]j
n−s

))

with a(n−s)
s,j ∈ Wn−sΩ

q
A and b(n−s)

s,j ∈ Wn−sΩ
q−1
A .

If A is a regular Fp-algebra, then the structure of the groups WnΩq
A is well

understood [35]. There is a multiplicative descending filtration by the differential
graded ideals given by

Fils WnΩq
A = VsWn−sΩq + dVsWn−sΩ

q−1
A .

The filtration has length n and the filtration quotients can be expressed in terms
of the de Rham complex of A and the Cartier operator [35, I.3.9].

Cyclic Homology of A[x]|(xe)3.9

As we recalled in the introduction, there is a natural isomorphism

Kq

(
A[x]|(xe), (x)

) ⊗Q ≈ HCq−1

(
A[x]|(xe), (x)

) ⊗Q .

We use the calculation of the T-equivariant homotopy type of Ncy(Πe) to derive
a formula that expresses the left-hand groups in terms of the rational Hochschild
homology groups of the ring A.

7 Proposition 7 There is a natural isomorphism, valid for all rings A,
⊕

i∈NreN

HHq−2d(A) ⊗Q ∼→ HCq

(
A[x]|(xe), (x)

) ⊗Q ,

where d = [(i − 1)|e].

Proof We recall that the composite

H(A) ∧ Ncy(Πe) → H
(
A[x]|(xe)

) ∧ Ncy
(
A[x]|(xe)

) µ→ H
(
A[x]|(xe)

)
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is an equivalence of T-spectra. Hence, theorem 5 gives rise to an exact triangle of
T-spectra

∨

i∈eN

H(A) ∧ S λd ∧ T|Ci|e+
id ∧ pr→

∨

i∈N
H(A) ∧ S λd ∧ T|Ci+

→ H
(
A[x]|(xe), (x)

) ∂→
∨

i∈eN

H(A) ∧ S λd ∧ T|Ci|e+[−1],

which induces an exact triangle of T-group homology spectra. The associated
long-exact sequence of homotopy groups takes the form

· · · →
⊕

i∈eN

Hq

(
T, H(A) ∧ S λd ∧ T|Ci|e+

) →
⊕

i∈N
Hq

(
T, H(A) ∧ S λd ∧ T|Ci+

)

→ HCq

(
A[x]|(xe), (x)

) ∂→
⊕

i∈eN

Hq−1

(
T, H(A) ∧ S λd ∧ T|Ci|e+

) → · · ·

There is a natural isomorphism

Hq

(
T, H(A) ∧ S λd ∧ T|Ci+

) ∼← Hq

(
Ci, H(A) ∧ S λd

)
.

Moreover, the edge-homomorphism

H0

(
Ci, πq(H(A) ∧ S λd )

) → Hq

(
Ci, T(A) ∧ S λd

)

of the spectral sequence

E2
s,t = Hs

(
Ci, πt(H(A) ∧ S λd ) ⊗Q) ⇒ Hs+t

(
Ci, H(A) ∧ S λd

) ⊗Q
is an isomorphism. Indeed, for every Ci-module M, the composition

Hs(Ci, M)
ι∗→ Hs

({1}, M
) ι∗→ Hs(Ci, M)

is equal to multiplication by i = [Ci : {1}]. In the case at hand, this map is an
isomorphism. But Hs({1}, M) is zero, for s > 0, and therefore also Hs(Ci, M) is zero,
for s > 0. Next, the action by Ci on H(A) ∧ S λd extends to an action by T, and
therefore, it induces the trivial action on homotopy groups. Hence, we further have
an isomorphism

HHt−2d(A) = πt(H(A) ∧ S λd )
∼→ H0

(
Ci, πt(H(A) ∧ S λd )

)
.

Finally, one sees in a similar manner that, after tensoring withQ, the map

pr∗ : Hq

(
T, H(A) ∧ S λd ∧ T|Ci|e+

) → Hq

(
T, H(A) ∧ S λd ∧ T|Ci+

)

becomes an isomorphism. Hence, after tensoring with Q, the top left-hand term
of the long-exact sequence above maps isomorphically onto the direct summands
of the top right-hand term indexed by i ∈ eN. The proposition follows.
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Topological Cyclic Homology of A[x]|(xe)3.10

We recall that for every ring A and every prime p, the cyclotomic trace induces an
isomorphism

Kq

(
A[x]|(xe), (x),Zp

) ∼→ TCq

(
A[x]|(xe), (x),Zp

)
.

In this paragraph, we evaluate the topological cyclic homology groups on the right
in terms of the groups

TRn
q−λ(A; p) =

[
Sq ∧ T|Cpn−1+, T(A) ∧ S λ]

T
.

Indeed, we shall prove the following formula.

8 Proposition 8 Let e = pve′ with e′ prime to p, and let A be an Fp-algebra. Then
there is a natural long-exact sequence of abelian groups

· · · →
∏

j∈e′Ip

lim
R

TRr−v
q−1−λd

(A; p)
e′Vv→

∏

j∈Ip

lim
R

TRr
q−1−λd

(A; p)

→ TCq

(
A[x]|(xe), (x); p

) ∂→
∏

j∈e′Ip

lim
R

TRr−v
q−2−λd

(A; p) → · · ·

where d = [(pr−1j − 1)|e]. The analogous sequence for the homotopy groups with
Z|pv-coefficients is valid for every ring A.

Let λ be a finite dimensional othogonal T-representation, and let λ′ denote the
T-representation ρ∗

pλCp . Then the restriction map induces a map

R : TRn
q−λ(A; p) → TRn−1

q−λ′(A; p) .

This is the structure map in the limits of proposition 8. We note that, if j ∈ Ip

and r ∈ N, and if we let d = [(pr−1j − 1)|e] and d′ = [(pr−2j − 1)|e], then (λd)′ =
λd′ as required. Moreover, by [29, theorem 2.2], there is a natural long-exact
sequence

· · · → Hq

(
Cpn−1 , T(A) ∧ S λ) → TRn

q−λ(A; p)
R→ TRn−1

q−λ′(A; p) → · · ·

Since the left-hand term is zero, for q < dimR (λ), it follows that the map R in
this sequence is an epimorphism, for q ≤ dimR (λ), and an isomorphism, for
q < dimR (λ). Hence, the limits of proposition 8 are attained. In addition, we see
that the jth factor of the upper right-hand term of the long-exact sequence of
proposition 8 is non-zero if and only if q − 1 ≥ 2[(j − 1)|e] and that the jth factor
of the upper left-hand term is non-zero if and only if q − 1 ≥ 2[(pvj − 1)|e]. Hence,
the products are finite in each degree q.
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Proof (Proof of proposition 8) From proposition 3 and theorem 5, we get an exact
triangle of T-spectra

∨

i∈eN

T(A) ∧ S λd ∧ T|Ci|e+
id ∧ pr→

∨

i∈N
T(A) ∧ S λd ∧ T|Ci+

→ T
(
A[x]|(xe), (x)

) ∂→
∨

i∈eN

T(A) ∧ S λd ∧ T|Ci|e+[−1],

(3.16)

where d = [(i − 1)|e]. We wish to evaluate the map of homotopy groups of Cpn−1 -
fixed points induced by the map of T-spectra in the top line. We first consider the
top right-hand term in (3.16). By re-indexing after the p-adic valuation of i ∈ N,
this term can be rewritten as

∨

j∈N
T(A) ∧ S λd ∧ T|Cpn−1j+ ∨

n−1∨

r=1

∨

j∈Ip

T(A) ∧ S λd ∧ T|Cpr−1j+ ,

and hence the Cpn−1 -fixed point are expressed as a wedge sum

∨

j∈N
ρ∗

pn−1

(
T(A) ∧ S λd ∧ T|Cpn−1j+

)Cpn−1

∨
n−1∨

r=1

∨

j∈Ip

ρ∗
pn−r

(
ρ∗

pr−1

(
T(A) ∧ S λd ∧ T|Cpr−1j+

)Cpr−1
)Cpn−r

.

Moreover, for every T-spectrum T, there is a natural equivalence of T-spectra

ρ∗
pm TCpm ∧ ρ∗

pm (T|Cpmj+)Cpm ∼→ ρ∗
pm (T ∧ T|Cpmj+)Cpm ,

and the pmth root defines a T-equivariant homeomorphism

T|Cj+
∼→ ρ∗

pm (T|Cpmj+)Cpm .

Hence, the wedge sum above is canonically equivalent to the following wedge sum
of T-spectra.

∨

j∈N
ρ∗

pn−1

(
T(A) ∧ S λd

)Cpn−1 ∧ T|Cj+

∨
n−1∨

r=1

∨

j∈Ip

ρ∗
pn−r

(
ρ∗

pr−1

(
T(A) ∧ S λd

)Cpr−1 ∧ T|Cj+

)Cpn−r

.

(3.17)

Here, in the top line, i = pn−1j, and in the bottom line, i = pr−1j, and in both cases,
d = [(i − 1)|e]. The following easy result is [27, lemma 3.4.1].
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9 Lemma 9 Let T be aT-spectrum, let j ∈ Ip, and let ι : Cj|Cj → T|Cj be the canonical
inclusion. Then the map

Vmι∗ + dVmι∗ : πq(T) ⊕ πq−1(T) → πq

(
ρ∗

pm (T ∧ T|Cj+)Cpm
)

is an isomorphism.

The wedge decomposition (3.17) and lemma 9 gives rise to an isomorphism of
the following direct sum onto the qth homotopy group of the top right-hand term
of (3.16).

⊕

j∈N

(
TRn

q−λd
(A; p) ⊕ TRn

q−1−λd
(A; p)

)

⊕
⊕

j∈Ip

n−1⊕

r=1

(
TRr

q−λd
(A; p) ⊕ TRr

q−1−λd
(A; p)

)
.

(3.18)

The same argument gives an isomorphism of the following direct sum onto the
qth homotopy group of the top left-hand term of (3.16).

⊕

j∈e′N

(
TRm

q−λd
(A; p) ⊕ TRm

q−1−λd
(A; p)

)

⊕
⊕

j∈e′Ip

n−1⊕

r=v+1

(
TRr−v

q−λd
(A; p) ⊕ TRr−v

q−1−λd
(A; p)

)
.

(3.19)

Here in the top line m = min{n, n − v + vp(j)}. Moreover, the map of qth homotopy
groups induced by the map id ∧ pr in (3.16) preserves the indices of the direct sum
decompositions (3.18) and (3.19) of the qth homotopy groups of the target and
domain. It is given on the summands in the bottom lines of (3.18) and (3.19) by
the following maps [29, lemma 8.1].

Vv : TRr−v
q−λd

(A; p) → TRr
q−λd

(A; p),

e′Vv : TRr−v
q−1−λd

(A; p) → TRr
q−1−λd

(A; p).

We now assume that A is an Fp-algebra and consider the groups in (3.18) for
varying n ≥ 1 as a pro-abelian group with structure map given by the Frobenius
map. The Frobenius map takes the summand with index j ∈ N in the top line
of (3.18) for n to the summand with index pj ∈ N in the top line of (3.18) for n − 1.
It takes the summand with index j ∈ Ip and 1 ≤ r < n − 1 in the bottom line
of (3.18) for n to the summand with the same indices in the bottom line of (3.18)
for n − 1. Finally, it takes the summand with index j ∈ Ip and r = n − 1 in the
bottom line of (3.18) for n to the summand with index j ∈ N in the top line of (3.18)
for n − 1. It follows that the projection onto the quotient-pro-abelian group given
by the bottom line of (3.18) is an isomorphism of pro-abelian groups. Indeed, the
sub-pro-abelian group given by the upper line of loc.cit. is Mittag–Leffler zero since
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the sum is finite. The value of the Frobenius map on the summands in the bottom
line of (3.18) follows immediately from lemma 9 and the relations FV = p and
FdV = d. We find that

F = p : TRr
q−λd

(A; p) → TRr
q−λd

(A; p),

F = id : TRr
q−1−λd

(A; p) → TRr
q−1−λd

(A; p).

It follows that the pro-abelian group with degree n term given by the direct
sum (3.18) and with structure map given by the Frobenius is canonically iso-
morphic to the pro-abelian group with degree n term the direct sum

n−1⊕

r=1

⊕

j∈Ip

TRr
q−1−λd

(A; p)

and with structure map the canonical projection. A similar argument shows that
the pro-abelian group with degree n term given by the direct sum (3.19) and with
structure map given by the Frobenius is canonically isomorphic to the pro-abelian
group with degree n term the direct sum

n−1⊕

r=v+1

⊕

j∈e′Ip

TRr−v
q−1−λd

(A; p)

and with structure map the canonical projection. Hence, we have a long-exact
sequence of pro-abelian groups with degree n terms

· · · →
n−1⊕

r=v+1

⊕

j∈e′Ip

TRr−v
q−1−λd

(A; p)
e′Vv→

n−1⊕

r=1

⊕

j∈Ip

TRr
q−1−λd

(A; p)

→ TFn
q

(
A[x]|(xe), (x); p

) ∂→
n−1⊕

r=v+1

⊕

j∈e′Ip

TRr−v
q−2−λd

(A; p) → · · ·

(3.20)

and with the structure map given by the canonical projection in the two terms of
the upper line and in the right-hand term of the lower line and by the Frobenius
map in the left-hand term of the lower line. In particular, the pro-abelian group
TF ·

q(A[x]|(xe), (x); p) satisfies the Mittag–Leffler condition, so the derived limit
vanishes. Hence, we have an isomorphism

TFq

(
A[x]|(xe), (x); p

) ∼→ lim
F

TFn
q

(
A[x]|(xe), (x); p

)
,

and the long-exact sequence (3.20) induces a long-exact sequence

· · · →
∏

r≥v+1

∏

j∈e′Ip

TRr−v
q−1−λd

(A; p)
e′Vv→

∏

r≥1

∏

j∈Ip

TRr
q−1−λd

(A; p)

→ TFq

(
A[x]|(xe), (x); p

) ∂→
∏

r≥v+1

∏

j∈e′Ip

TRr−v
q−2−λd

(A; p) → · · ·
(3.21)
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of the limits. Finally, the restriction map induces a self-map of the sequence (3.21)
which on the two terms of the upper line and the right-hand term of the lower line
is given by the map

R : TRr
q−1−λd

(A; p) → TRr−1
q−1−λ′

d
(A; p) .

As we remarked after the statement of proposition 8, this map is an isomorphism
for all but finitely many r. It follows that the map

TFq

(
A[x]|(xe), (x); p

) R−id→ TFq

(
A[x]|(xe), (x); p

)

is surjective and identifies TCq(A[x]|(xe), (x); p) with the kernel. Indeed, the self-
map R − id of the sequence (3.21) is a split surjection with compatible sections on
the remaining terms. Finally, the long-exact sequence of the statement is obtained
as the long-exact sequence of kernels of the self-map R − id of the sequence (3.21).

The Characteristic Zero Case3.11

We use the description of the cyclic homology and topological cyclic homology
from the paragraphs above to prove the following result.

10 Theorem 10 Suppose that A is a regular noetherian ring and a Q-algebra. Then
there is a natural isomorphism of abelian groups

Kq−1

(
A[x]|(xe), (x)

) ∼←
⊕

m≥1

(
Ωq−2m

A

)e−1
,

where the superscript e − 1 indicates product.

Proof We first show that the relative K-groups with Zp-coefficients are zero. By
McCarthy [47], the cyclotomic trace induces an isomorphism

Kq

(
A[x]|(xe), (x),Zp

) ∼→ TCq

(
A[x]|(xe), (x); p,Zp

)

and for every spectrum X, there is a natural short-exact sequence

0 → R1 lim
v

πq+1(X,Z|pv) → πq(X,Zp) → lim
v

πq(X,Z|pv) → 0 .

Hence, by proposition 8, it suffices to show that the groups TRn
q−λ(A; p,Z|pv) are

zero. Moreover, there is a natural long-exact sequence

· · · → Hq

(
Cpn−1 , T(A) ∧ S λ) → TRn

q−λ(A; p)
R→ TRn−1

q−λ′(A; p) → · · ·

and a natural spectral sequence

E2
s,t = Hs

(
Cpn−1 , πt(T(A) ∧ S λ)

) ⇒ Hs+t

(
Cpn−1 , T(A) ∧ S λ) .
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The same is true for the homotopy groups with Z|pv-coefficients. Hence, it will be
enough to show that the groups

πt

(
T(A) ∧ S λ,Z|pv

)
= THHt−dimR (λ)(A,Z|pv)

are zero. But these groups are at the same time A-modules and annihilated by pv.
Therefore, they are zero, for every Q-algebra A. It follows that in the arithmetic
square (which is homotopy-cartesian [8])

K
(
A[x]|(xe), (x)

)
��

��

∏
p K

(
A[x]|(xe), (x)

)∧
p

��

K
(
A[x]|(xe), (x)

)
Q

��

(∏
p K

(
A[x]|(xe), (x)

)∧
p

)

Q
,

(3.22)

the spectra on the right are trivial, and hence the left-hand vertical map is an
equivalence. Hence, the canonical maps

Kq

(
A[x]|(xe), (x)

) → HC−
q

(
A[x]|(xe), (x)

) ← HCq−1

(
A[x]|(xe), (x)

)

are isomorphisms and the common group uniquely divisible. The statement now
follows from proposition 7 and the fact that the canonical map

Ω∗
A → HH∗(A)

is an isomorphism. The latter is true for A a smooth Q-algebra by Hochschild–
Kostant–Rosenberg [32], and the general case follows from Popescu [50]. Indeed,
the domain and target both commute with filtered colimits.

The Groups TRn
q−λ(A; p) 3.12

In this paragraph, we evaluate the groups

TRn
q−λ(A; p) =

[
Sq ∧ T|Cpn−1+, T(A) ∧ S λ]

T

for A a regular Fp-algebra. In the basic case of the field Fp, or, more generally,
a perfect field of characteristic p, the groups were evaluated in [29, proposition
9.1]. To state the result, we define

�s = dimC (λCps ) ,

for all s ≥ 0, and �s = ∞, for s < 0. Then there is a canonical isomorphism of
graded abelian groups

⊕

�n−r≤m<�n−1−r

Wr(k)[−2m]
∼→ TRn

∗−λ(k; p) ,
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where the sum is over all integers m, and where r is the unique integer such that
�n−r ≤ m < �n−1−r. Equivalently, the group TRn

q−λ(k; p) is isomorphic to Wr(k), for
q = 2m and �n−r ≤ m < �n−1−r, and is zero, for q is odd.

The groups TRn
∗−λ(A; p) naturally form a differential graded module over the

differential graded ring TRn∗(A; p). Hence, we have a natural pairing

WnΩ∗
A ⊗Wn(k) TRn

∗−λ(k; p) → TRn
∗−λ(A; p) . (3.23)

11 Theorem 11 Let A be a regular Fp-algebra, and let λ be a finite dimensional
complex T-representation. Then the pairing (3.23) induces an isomorphism of
graded abelian groups

⊕

�n−r≤m<�n−1−r

WrΩ∗
A[−2m]

∼→ TRn
∗−λ(A; p) .

Proof The domain and target of the map of the statement both commute with
filtered colimits. Hence, by Popescu [50], we can assume that A is a smooth k-
algebra. Moreover, if f : A → A′ is an étale map of k-algebras, then the canonical
map

Wn(A′) ⊗Wn(A) TRn
q−λ(A; p) → TRn

q−λ(A′; p)

is an isomorphism. The analogous statement holds for the domain of the map of
the statement. By a covering argument, we are reduced to consider the case where
A is a polynomial algebra over k in a finite number of variables, see [30, lemma
2.2.8] for details. Hence, it suffices to show that the statement for A implies the
statement for A′ = A[t].

The following result follows by an argument similar to [27, theorem C].

12 Proposition 12 Let λ be a finite dimensional orthogonal T-representation, and
let A be a Z(p)-algebra. Then every element ω(n) ∈ TRn

q−λ(A[t]; p) can be written
uniquely as a (direct) sum

ω(n) =
∑

j∈N 0

a(n)
0,j [t]j

n +
∑

j∈N
b(n)

0,j [t]j−1
n d[t]n

+
n−1∑

s=1

∑

j∈Ip

(
Vs

(
a(n−s)

s,j [t]j
n−s

)
+ dVs

(
b(n−s)

s,j [t]j
n−s

))

with a(n−s)
s,j ∈ TRn−s

q−λ(A; p) and b(n−s)
s,j ∈ TRn−s

q−1−λ(A; p).
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Proof We outline the proof. The group TRn
q−λ(A[t]; p) is the qth homotopy group

of the T-spectrum

ρ∗
pn−1

(
T

(
A[t]

) ∧ S λ)Cpn−1 (3.24)

Let Π = {0, 1, t, t2, …} be the sub-pointed monoid of A[t] generated by the variable.
We recall from proposition 3 that the composite

T(A) ∧ Ncy(Π)
f ∧ι→ T

(
A[t]

) ∧ Ncy
(
A[t]

) µ→ T
(
A[t]

)

is an F -equivalence of T-spectra. Moreover, the T-space Ncy(Π) decomposes as
a wedge sum

∨

i∈N 0

Ncy(Π, i)
∼→ Ncy(Π) ,

where Ncy(Π, i) is the realization of the cyclic subset of Ncy
· (Π) generated by the

0-simplex 1, if i = 0, and by the (i − 1)-simplex t ∧ … ∧ t, if i > 0. Hence, the
T-spectrum (3.24) can be expressed, up to F -equivalence, as a wedge sum

∨

j∈N 0

ρ∗
pn−1

(
T(A) ∧ S λ ∧ Ncy

(
Π, pn−1j

))Cpn−1

∨
n−1∨

s=1

∨

j∈Ip

ρ∗
ps

(
ρ∗

pn−1−s

(
T(A) ∧ S λ ∧ Ncy

(
Π, pn−1−sj

))Cpn−1−s
)Cps

.

In addition, there is a natural equivalence of T-spectra

ρ∗
pm

(
T(A) ∧ S λ)Cpm ∧ ρ∗

pm Ncy
(
Π, pmj

)Cpm

∼→ ρ∗
pm

(
T(A) ∧ S λ ∧ Ncy

(
Π, pmj

))Cpm
,

and a T-equivariant homeomorphism

∆ : Ncy(Π, j)
∼→ ρ∗

pm Ncy
(
Π, pmj

)Cpm
.

Hence, we obtain the following wedge decomposition, up to F -equivalence, of the
T-spectrum (3.24).

∨

j∈N 0

ρ∗
pn−1

(
T(A) ∧ S λ)Cpn−1 ∧ Ncy(Π, j)

∨
n−1∨

s=1

∨

j∈Ip

ρ∗
ps

(
ρ∗

pn−1−s

(
T(A) ∧ S λ)Cpn−1−s ∧ Ncy(Π, j)

)Cps

.
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We claim that the induced direct sum decomposition of the qth homotopy group
corresponds to the direct sum decomposition of the statement. To prove this, one
first proves that the map

TRn
∗−λ(A; p) ⊗ Ω∗

Z[t] → TRn
∗−λ

(
A[t]; p

)

that takes a ⊗ tj to f (a)[t]
j
n and a ⊗ tj−1dt to f (a)[t]

j−1
n d[t]n is an isomorphism onto

the direct summand π∗(ρ∗
pn−1 (T(A) ∧ Sλ)

Cpn−1 ∧ Ncy(Π)). We refer to [27, lemma
3.3.1] for the proof. Secondly, one shows that if T is any T-spectrum, and if j ∈ Ip,
then the map

Vsι + dVsι : πq(T) ⊕ πq−1(T) → πq

(
ρ∗

ps (T ∧ T|Cj+)Cps
)

is an isomorphism. Here ι : Cj|Cj → T|Cj is the canonical inclusion. This is
lemma 9. This completes our outline of the proof of the proposition.

As we recalled in theorem 6 above, the de Rham–Witt groups of A[t] can be
similarly expressed in terms of those of A. We can now complete the proof of
theorem 11. Let E

q
n(A) denote the left-hand side of the statement. We claim that

every element ω(n) ∈ E
q
n(A[t]) can be written uniquely as a direct sum

ω(n) =
∑

j∈N 0

a(n)
0,j [t]j

n +
∑

j∈N
b(n)

0,j [t]j−1
n d[t]n

+
n−1∑

s=1

∑

j∈Ip

(
Vs

(
a(n−s)

s,j [t]j
n−s

)
+ dVs

(
b(n−s)

s,j [t]j
n−s

))

with a(n−s)
s,j ∈ E

q
n−s(A) and b(n−s)

s,j ∈ E
q−1
n−s (A), or equivalently, that the map

⊕

j∈N 0

Eq
n(A) ⊕

⊕

j∈N
Eq−1

n (A) ⊕
n−1⊕

s=1

⊕

j∈Ip

(Eq
n−s(A) ⊕ Eq−1

n−s (A)) → Eq
n(A[t])

given by this formula is an isomorphism. On the one-hand, by theorem 6, the
right-hand side is given by the direct sum

⊕

�n−r≤m<�n−1−r

(⊕

j∈N 0

WrΩ
q−2m
A ⊕

⊕

j∈N
WrΩ

q−1−2m
A

)
⊕

⊕

�n−r≤m<�n−1−r

( r−1⊕

s=1

⊕

j∈Ip

(
Wr−sΩ

q−2m
A ⊕ Wr−sΩ

q−1−2m
A

))
,

(3.25)
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and on the other-hand, by the definition of E
q
n(A), the left-hand side is given by the

direct sum
⊕

j∈N 0

⊕

�n−r≤m<�n−1−r

WrΩ
q−2m
A ⊕

⊕

j∈N

⊕

�n−r≤m<�n−1−r

WrΩ
q−1−2m
A ⊕

n−1⊕

s=1

⊕

j∈Ip

⊕

�n−s−r≤m<�n−s−1−r

(WrΩ
q−2m
A ⊕ WrΩ

q−1−2m
A ) .

(3.26)

The top lines in (3.25) and (3.26) clearly are isomorphic, and the bottom lines both
are seen to be isomorphic to the direct sum

n⊕

r=1

⊕

�n−1−r≤m

⊕

j∈Ip

(
WrΩ

q−2m
A ⊕ WrΩ

q−1−2m
A

)
.

This proves the claim.

The Positive Characteristic Case 3.13

The following result was proved by Madsen and the author in [28, 30] but stated
there in terms of big de Rham–Witt differential forms.

13Theorem 13 Suppose that A is a regular noetherian ring and an Fp-algebra, and
write e = pve′ with e′ not divisible by p. Then there is a natural long-exact sequence
of abelian groups

· · · →
⊕

m≥1

⊕

j∈e′Ip

Ws−vΩq−2m
A

e′Vv→
⊕

m≥1

⊕

j∈Ip

WsΩ
q−2m
A

→ Kq−1(A[x]|(xe), (x))
∂→

⊕

m≥1

⊕

j∈e′Ip

Ws−vΩq−1−2m
A → · · · ,

where s = s(m, j) is the unique integer such that ps−1j ≤ me < psj.

Proof We recall that by Goodwillie [22], there is a canonical isomorphism

Kq

(
A[x]|(xe), (x)

) ⊗Q ≈ HCq−1

(
A[x]|(xe), (x)

) ⊗Q .

But proposition 7 shows that the groups on the left are zero. Indeed, the groups
HH∗(A) are A-modules, and therefore, annihilated by p. If � is a prime, then by
McCarthy [47], the cyclotomic trace induces an isomorphism

Kq

(
A[x]|(xe), (x),Z�

) ∼→ TCq

(
A[x]|(xe), (x); �,Z�

)
,
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and for every spectrum X, there is a natural short-exact sequence

0 → R1 lim
v

πq+1(X,Z|�v) → πq(X,Z�) → lim
v

πq(X,Z|�v) → 0 .

The groups TCq(A[x]|(xe), (x); �,Z|�v) are given by proposition 8 in terms of
the groups TRn

q−λ(A; �,Z|�v). We claim that the latter are zero, for � ≠ p. In ef-
fect, we claim the slightly stronger statement that for every prime �, the groups
TRn

q−λ(A; �) are p-groups of a bounded exponent (which depends on �, q, n,
and λ). The proof is by induction on n ≥ 1 and uses the natural long-exact
sequence

· · · → Hq

(
C�n−1 , T(A) ∧ Sλ) → TRn

q−λ(A; �)
R→ TRn−1

q−λ′(A; �) → · · ·

and the natural spectral sequence

E2
s,t = Hs

(
C�n−1 , πt(T(A) ∧ S λ)

) ⇒ Hs+t

(
C�n−1 , T(A) ∧ S λ) .

Since the groups

πt

(
T(A) ∧ S λ) = THHt−dimR (λ)(A)

are A-modules, and hence annihilated by p, the claim follows. We conclude from
the arithmetic square (3.22) that the cyclotomic trace

Kq

(
A[x]|(xe), (x)

) → TCq

(
A[x]|(xe), (x); p

)

is an isomorphism. The right-hand side can be read off from proposition 8 and
theorem 11. For notational reasons we evaluate the group in degree q − 1 rather
than the one in degree q. We find that the jth factor of the upper right-hand term
of the long-exact sequence of proposition 8 is given by

lim
R

TRr
q−2−λd

(A; p)
∼←

⊕

m≥0

WsΩ
q−2(m+1)
A ,

where s is the unique integer that satisfies
[
(ps−1j − 1)|e

] ≤ m < [(psj − 1)|e]

or equivalently,

ps−1j ≤ (m + 1)e < psj .

Writing m instead of m + 1, we obtain the upper right-hand term of the long-
exact sequence of the statement. The upper left-hand term is evaluated simi-
larly. Finally, because the isomorphism of theorem 11 is induced by the pair-
ing (3.23), the map Vv in the long-exact sequence of proposition 8 induces
the iterated Verschiebung Vv of the de Rham–Witt complex. The theorem fol-
lows.
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We first proved theorem 13 in [28] in the case of a perfect field k of characteristic
p, and the extension to all regular noetherian Fp-algebras was given in [30]. Our
main motivation was that the more general case makes it possible to also evaluate
the groups NKq(R) = Kq(R[t], (t)), which occur in the fundamental theorem for
non-regular rings, in the following situation.

14Corollary 14 Let A be a regular noetherian ring that is also an Fp-algebra, and
write e = pve′ with e′ prime to p. Then there is a natural long-exact sequence of
abelian groups

· · · →
⊕

m≥1

⊕

j∈e′Ip

Ws−vΩq−2m
(A[t],(t))

e′Vv→
⊕

m≥1

⊕

j∈Ip

WsΩ
q−2m
(A[t],(t))

→ NKq−1

(
A[x]|(xe)

) ∂→
⊕

m≥1

⊕

j∈e′Ip

Ws−vΩq−1−2m
(A[t],(t)) → · · · ,

where s = s(m, j) is the unique integers such that ps−1j ≤ me < psj.

Proof We have a natural split-exact sequence

0 → NKq

(
A[x]|(xe), (x)

) → NKq

(
A[x]|(xe)

) → NKq(A) → 0 .

Since A is regular, the fundamental theorem shows that the right-hand term is zero.
Hence, the left-hand map is an isomorphism, and the left-hand group is given by
theorem 13.

We remark that Weibel [57] has shown that the groups NK∗(A) are naturally
modules over the big ring of Witt vectors W(A). We do not know if this module
structure is compatible with the obvious W(A)-module structure on the remaining
terms of the long-exact sequence of corollary 14.

Miscellaneous 3.14

As e varies, the spectra K(A[x]|(xe)) are related by several maps. Let e′ = de and
let πd : A[x]|(xe′) → A[x]|(xe) and ιd : A[x]|(xe) → A[x]|(xe′) be the maps of A-
algebras that take x to x and xd, respectively. Then there are maps of K-theory
spectra

π∗
d, ιd∗ : K

(
A[x]|(xe′)

)
→ K(A[x]|(xe)),

ι∗d : K
(
A[x]|(xe)

) → K
(

A[x]|(xe′)
)

,
(3.27)

which are related in a manner similar to that of the restriction, Frobenius, and
Verschiebung, respectively. It remains an unsolved problem to determine the value
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of these maps under the isomorphisms of theorems 10 and 13 above. Another very
interesting and open problem is to determine the multiplicative structure of the
groups K∗(A[x]|(xe),Z|p).

There are two limit cases, however, where the maps (3.27) are well understood.
One case is a recent result by Betley–Schlichtkrull [4] which expresses topological
cyclic homology in terms of K-theory of truncated polynomial algebras. To state
it, let I be the category with objects the set of positive integers and with morphisms
generated by morphisms rd and fd from e′ = de to e, for all positive integers e and
d, subject to the following relations.

r1 = f1 = id , rdrd′ = rdd′ , fdfd′ = fdd′ , rdfd′ = fd′rd .

Then there is a functor from the category I to the category of symmetric spectra
that to the object e assigns K(A[x]|(xe)) and that to the morphisms rd and fd from
e′ = de to e assign the maps π∗

d and ιd∗, respectively. The following result is [4,
theorem 1.1].

15 Theorem 15 There is a natural weak equivalence of symmetric spectra

TC(A; p,Z|pv) � holim
I

K
(
A[x]|(xe),Z|pv

)
[1] .

Another case concerns the limit over the maps π∗
d . This limit was considered first

by Bloch [5] who used it to give a K-theoretical construction of the de Rham–Witt
complex. This, in turn, led to the purely algebraic construction of the de Rham–
Witt complex which we recalled in Sect. 3.8 above. The K-theoretical construction
begins with the spectrum of curves on K(A) defined to be the following homotopy
limit with respect to the maps π∗

d.

C(A) = holim
e

K
(
A[x]|(xe), (x)

)
[1] .

This is a ring spectrum in such a way that the ring of components is canonically
isomorphic to the ring of big Witt vectors W(A). If A is a Z(p)-algebra, the ring
W(A) has a canonical idempotent decomposition as a product of copies of the
ring of p-typical Witt vectors W(A). These idempotents give rise to an analogous
decomposition of the ring spectrum C(A) as a product of copies of a ring spectrum
C(A; p) which is called the p-typical curves on K(A). The following result was proved
by the author in [25, theorem C]. The corresponding result for the symbolic part
of K-theory was proved by Bloch [5] under the additional assumption that A be
local of dimension less than p. The restriction on the dimension of A was removed
by Kato [39].

16 Theorem 16 Let A be a smooth algebra over a perfect field of positive characteris-
tic p. Then there are natural isomorphisms of abelian groups

C∗(A; p) ≈ TR∗(A; p) ≈ WΩ∗
A .
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Finally, we briefly discuss the K-theory of Z|pe relative to the ideal generated by
p. The cyclotomic trace also induces an isomorphism

Kq

(
Z|pe, (p)

) ∼→ TCq

(
Z|pe, (p); p

)
,

and hence one may attempt to evaluate the relative K-groups by evaluating the
relative topological cyclic homology groups on the right. The following result of
Brun [11, 12] was proved by these methods. It generalizes earlier results by Evens
and Friedlander [15] and by Aisbett, Lluis-Puebla and Snaith [2].

17Theorem 17 Suppose that 0 ≤ q ≤ p − 3. Then Kq(Z|pe, (p)) is a cyclic group of
order pj(e−1), if q = 2j − 1 is odd, and is zero, if q is even.

We remark that the groups Kq(Fp[x]|(xe), (x)) and Kq(Z|pe, (p)) have the same
order, for 0 ≤ q ≤ p − 3. The order of the former group is given by the formula
of theorem 17, for all non-negative integers q, but this cannot be true for the latter
group. Indeed, by Suslin–Panin [48, 53], the canonical map

Kq

(
Zp, (p),Zp

) → lim
e

Kq

(
Z|pe, (p)

)

is an isomorphism, for all integers q. The left-hand group is non-zero, if q is even
and divisible by 2(p − 1). Hence the groups Kq(Z|pe, (p)) cannot be zero for every
even integer q and positive integer e. This comparison also shows that Kq(Z|pe, (p))
cannot be a cyclic group for every odd integer q and every positive integer e.
But this also follows from the result of Geisser [18] that the group K3(Z|9, (3)) is
isomorphic to Z|3 ⊕ Z|3.
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Summary. This paper is devoted to classical Bott periodicity, its history and more recent
extensions in algebraic and Hermitian K-theory. However, it does not aim at completeness.
For instance, the variants of Bott periodicity related to bivariant K-theory are described by
Cuntz in this handbook. As another example, we don’t emphasize here the relation between
motivic homotopy theory and Bott periodicity since it is also described by other authors of
this handbook (Grayson, Kahn, …).

Classical Bott Periodicity4.1

Bott periodicity [14] was discovered independently from K-theory, which started
with the work of Grothendieck one year earlier [13]. In order to understand its
great impact at the end of the 50’s, one should notice that it was (and still is) quite
hard to compute homotopy groups of spaces as simple as spheres. For example, it
was proved by Serre that πi(Sn) is a finite group for i ≠ n and i ≠ 2n − 1 with n even,
while πn(Sn) = Z and π2n−1(Sn) is the direct sum ofZ and a finite group for n even.
All these finite groups are unknown in general (note however that πi(Sn) = 0 for
i < n). Since the classical groups O(n) and U(n) are built out of spheres through
fibrations

O(n) → O(n + 1) → Sn

U(n) → U(n + 1) → S2n+1

it was thought that computing their homotopy groups would be harder. On the
other hand, from these fibrations, it immediatetly follows that the homotopy groups
of O(n) and U(n) stabilize. More precisely, πi(U(n)) =̃ πi(U(n + 1)) if n > i|2 and
πi(O(n)) =̃ πi(O(n + 1)) if n > i + 1. In this range of dimensions and degrees,
we shall call πi(U) and πi(O) these stabilized homotopy groups: they are indeed
homotopy groups of the “infinite” unitary and orthogonal groups

U = colim U(n) and O = colim O(n) .

1 Theorem 1 [14] The homotopy groups πi(U) and πi(O) are periodic of period 2
and 8 respectively. More precisely, there exist homotopy equivalences1

U ≈ Ω2(U) and O ≈ Ω8(O) ,

where Ωt denotes the t-th iterated loop space.

2 Remark 2 Using polar decomposition of matrices, one may replace O(n) and U(n)
by the general linear groups GLn(R) and GLn(C), which have the same homotopy

1 Throughout the paper, we use the symbol ≈ to denote a homotopy equivalence.
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type respectively. Similarly, one may consider the infinite general linear group
GL(R) = colim GLn(R) and GL(C) = colim GLn(C). Since the homotopy groups of
O ≈ GL(R) and U ≈ GL(C) are periodic, it is enough to compute the first eight
ones, which are given by the following table:

i 0 1 2 3 4 5 6 7

πi(U) 0 Z 0 Z 0 Z 0 Z

πi(O) Z|2 Z|2 0 Z 0 0 0 Z .

In the same paper, Bott gave a more general theorem (in the real case), using
the infinite homogeneous spaces related not only to the infinite orthogonal and
unitary groups, but also to the infinite symplectic group Sp. More precisely, Sp(n)
is the compact Lie group associated to GLn(H) and Sp = colim Sp(n), which has
the same homotopy type as GL(H) = colim GLn(H), where H is the skew field of
quaternions [21].

3Theorem 3 [14] We have the following homotopy equivalences (where BG denotes
in general the classifying space of the topological group G):

Ω(Z× BGL(R)) ≈ GL(R)

Ω(GL(R)) ≈ GL(R)|GL(C)

Ω(GL(R)|GL(C)) ≈ GL(C)|GL(H)

Ω(GL(C)|GL(H)) ≈ Z× BGL(H)

Ω(Z× BGL(H)) ≈ GL(H)

Ω(GL(H)) ≈ GL(H)|GL(C)

Ω(GL(H)|GL(C)) ≈ GL(C)|GL(R)

Ω(GL(C)|GL(R)) ≈ Z× BGL(R) .

In particular, we have the homotopy equivalences

Ω4(BGL(R)) ≈ Z× BGL(H)

Ω4(BGL(H)) ≈ Z× BGL(R) .

Theorems 1 and 3 were not at all easy to prove (note however that Ω(BG) ≈ G
is a standard statement). One key ingredient was a heavy use of Morse theory.
A detailed proof, starting from a short course in Riemannian geometry may be
found in the beautiful book of Milnor [32]. The proof (in the complex case) is
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based on two lemmas: one first shows that the space of minimal geodesics from I
to −I in the special unitary group SU(2m) is homeomorphic to the Grassmannian
Gm(C2m). In the other lemma one shows that every non-minimal geodesic from I
to −I has index ≥ 2m + 2. These lemmas imply the following “unstable” theorem
from which Bott periodicity follows easily:

4 Theorem 4 [32, p. 128] Let Gm(C2m) be the Grassmanniann of m-dimensional
subspaces of C2m. Then there is an inclusion map from Gm(C2m) into the space of
paths2 in SU(2m) joining I and −I. For i ≤ 2m, this map induces an isomorphism
of homotopy groups

πi(Gm(C2m)) =̃ πi+1(SU(2m)) .

The algebraic topologists felt frustated at that time by a proof using methods
of Riemannian geometry in such an essential way. A special seminar [16] held in
Paris by Cartan and Moore (1959/1960) was devoted not only to a detailed proof
of Bott’s theorems, but also to another proof avoiding Morse theory and using
more classical methods in algebraic topology. However, this second proof was still
too complicated for an average mathematician to grasp (see however the sketch of
some elementary proofs of the complex Bott periodicity in the Sect. 4.3.1 of this
paper).

Interpretation of Bott Periodicity
via K-Theory4.2

Two years later, Atiyah and Hirzebruch [5] realized that Bott periodicity was
related to the fundamental work of Grothendieck on algebraic K-theory [13]. By
considering the category of topological vector bundles over a compact space X
(instead of algebraic vector bundles), Atiyah and Hirzebruch defined a topological
K-theory K(X) following the same pattern as Grothendieck. As a new feature
however, Atiyah and Hirzebruch managed to define “derived functors” K−n(X) by
considering vector bundles over the nth suspension of X+ (X with one point added
outside). There are in fact two K-theories involved, whether one considers real or
complex vector bundles. We shall denote them by KR and KC respectively if we
want to be specific. Theorem 1 is then equivalent to the periodicity of the functors
K−n. More precisely,

K−n
C

(X) =̃ K−n−2
C

(X) and K−n−8
R

(X) =̃ K−n−8
R

(X) .

These isomorphisms enabled Atiyah and Hirzebruch to extend the definition of Kn

for all n ∈ Z and define what we now call a “generalized cohomology theory” on the

2 Note that this space of paths has the homotopy type of the loop space Ω(SU(2m)).
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category of compact spaces. Following the same spirit, Atiyah and Bott were able
to give a quite elementary proof of the periodicity theorem in the complex case [6].

From the homotopy viewpoint, there exist two Ω-spectra defined byZ×BGL(k),
k = R or C, and their iterated loop spaces. The periodicity theorems can be
rephrased by saying that these Ω-spectra are periodic of period 2 or 8 in the stable
homotopy category, according to the type of K-theory involved, depending on
whether one considers real or complex vector bundles. For instance, we have the
following formula (where [ , ]′ means pointed homotopy classes of maps):

K−n
k (X) =̃ [X+ ∧ Sn,Z× BGL(k)]′ .

As it was noticed by many people in the 60’s (Serre, Swan, Bass…), K-theory
appears as a “homology theory” on the category of rings. More precisely, let
k = R or C and let us consider a k-vector bundle E over a compact space X.
Let A be the Banach algebra C(X) of continuous functions f : X → k (with
the Sup norm). If M = Γ(X, E) denotes the vector space of continuous sections
s : X → E of the vector bundle E, M is clearly a right A-module if we define
s.f to be the continuous section x �→ s(x)f (x). Since X is compact, we may find
another vector bundle E′ such that the Whitney sum E ⊕ E′ is trivial, say X × kn.
Therefore, if we set M′ = Γ(X, E′), we have M ⊕ M′ =̃ An as A-modules, which
means that M is a finitely generated projective A-module. The theorem of Serre
and Swan [28,46] says precisely that the correspondence E �→ M induces a functor
from the category E(X) of vector bundles over X to the category P (A) of finitely
generated projective (right) A-modules, which is an equivalence of categories.
In particular, isomorphism classes of vector bundles correspond bijectively to
isomorphism classes of finitely generated projective A-modules.

These considerations lead to the following definition of the K-theory of a ring
with unit A: we just mimic the definition of K(X) by replacing vector bundles
by (finitely generated projective) A-modules. We call this group K(A) by abuse
of notation. It is clearly a covariant functor on the category of rings (through
extension of scalars). We have of course K(X) =̃ K(A), when A = C(X), thanks to
the equivalence Γ above.

Banach Algebras 4.2.1

Similarly to what Atiyah and Hirzebruch did for A = C(X), one would like to
define new functors Kn(A), n ∈ Z, with nice formal properties starting from
K0(A) = K(A). This task is in fact more difficult than it looks for general rings A
and we shall concentrate at the beginning on the case when A is a (real or complex)
Banach algebra.

Firstly, we extend the definition of K(A) to non-unital algebras (over a com-
mutative base ring k) by “adding a unit” to A. More precisely, we consider the
k-module Ã = k ⊕ A provided with the following “twisted” multiplication

(λ, a).(λ′, a′) = (λ.λ′, λ.a′ + a.λ′ + a.a′) .
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The ring Ã now has a unit that is (1, 0). There is an obvious augmentation

Ã → k

and K(A) is just defined as the kernel of the induced homomorphism K(Ã) → K(k).
It is easy to see that we recover the previous definition of K(A) if A already has
a unit and that the new K-functor is defined for maps between rings not necessarily
having a unit. It is less easy to prove that this definition is in fact independent of k;
this follows from the excision property for the functor K0 [8, 33].

Example 5. If K is the ideal of compact operators in a k-Hilbert space H (with
k = R or C), then the obvious inclusion from k to K induces an

isomorphism K(k) =̃ K(K) =̃ Z. This is a classical result in operator theory (see
for instance [39, section 2.2.10] and [28, exercise 6.15]).

Secondly, for n ∈ N, we define Kn(A) as K(An), where An = A(Rn) is the Banach
algebra of continuous functions f = f (x) from Rn to A that vanish when x goes
to ∞. It is not too difficult to show that Ki+1(A) =̃ colim πi(GLr(A)) =̃ πi(GL(A)),
where GL(A) is the direct limit of the GLr(A) with respect to the obvious inclusions
GLr(A) ⊂ GLr+1(A) (see for instance the argument in [28], p. 13).

As a fundamental example, let us come back to topology by taking A = C(X),
where X is compact. Let Y = Sn(X+) be the n-suspension of X+. Then K(Y) is
isomorphic to Kn(A) ⊕ Z. In order to show this, we notice that C(Y) is isomorphic
to C̃(X ×Rn). In particular K(Sn) is isomorphic to Kn(k)⊕Z(k = R orC, according
to the type of K-theory).

The following theorem, although not explicitly stated in this form in the litera-
ture (for the uniqueness part), is a direct consequence of the definitions.

6 Theorem 6 (compare with [28, exercise 6.14]). The functors Kn(A), n ∈ N, and A
a Banach algebra, are characterized by the following properties
1. Exactness: for any exact sequence of Banach algebras (where A′′ has the quo-

tient norm and A′ the induced norm)

0 → A′ → A → A′′ → 0

we have an exact sequence of K-groups

Kn+1(A) → Kn+1(A′′) → Kn(A′) → Kn(A) → Kn(A′′) .

2. Homotopy invariance: Kn(A(I)) =̃ Kn(A), where A(I) is the ring of continuous
functions on the unit interval I with values in A.

3. Normalization: K0(A) = K(A), the Grothendieck group defined above.
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The functors K∗(A) have other nice properties such as the following: a continu-
ous bilinear pairing of Banach algebras

A × C → B

induces a “cup-product”

Ki(A) ⊗ Kj(C) → Ki+j(B) ,

which has associative and graded commutative properties [25,28,29]. In particular,
if C = k, the field of real or complex numbers, and if A = B is a k-Banach algebra,
we have a pairing

Ki(A) ⊗ Kj(k) → Ki+j(A) .

We can now state the Bott periodicity theorem in the setting of Banach algebras.

7Theorem 7 (Bott periodicity revisited, according to [25] and [53]).
1. Let A be a complex Banach algebra. Then the group K2(C) is isomorphic to
Z and the cup-product with a generator u2 induces an isomorphism βC :
Kn(A) → Kn+2(A).

2. Let A be a real Banach algebra. Then the group K8(R) is isomorphic to Z and
the cup-product with a generator u8 induces an isomorphism βR : Kn(A) →
Kn+8(A).

As we said in Sect. 4.2.1, this theorem implies the periodicity of the homotopy
groups of the infinite general linear group in the more general setting of a Ba-
nach algebra, since Kn(A) = K(A(Rn)) is isomorphic to the homotopy group
πn−1(GL(A)) (see the corollary below). If A = C for instance, the group K(A(Rn))
is linked with the classification of stable complex vector bundles over the sphere
Sn, which are determined by homotopy classes of “glueing functions”

f : Sn−1 → GL(A)

(see again the argument in [14, p. 13]). For a general Banach algebra A, one just
has to consider vector bundles over the sphere whose fibers are the A-modules Ar

instead of Cr.

8Corollary 8
(a) If A is a complex Banach algebra, we have

πi(GL(A)) =̃ πi+2(GL(A)) and π1(GL(A)) =̃ K(A)

(b) If A is a real Banach algebra, we have

πi(GL(A)) =̃ πi+8(GL(A)) and π7(GL(A)) =̃ K(A) .
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Part (a) is essentially due to Atiyah and Bott [6], while part (b) is due to Wood [53]
and the author [25]. In the complex case, we can easily see that the isomorphism
π1(GL(A)) =̃ K(A) implies the 2-periodicity of the homotopy groups of GL(A).
In order to prove this isomorphism, one essentially has to show that any loop in
GL(A) can be deformed into a loop of the type

θ �→ pz + 1 − p

where p is an idempotent matrix of a certain size and z = eiθ. This is done via
Fourier analysis and stabilization of matrices as explained with full details in [28],
following the pattern initiated in [6]. Such an idempotent matrix p is of course
associated to a finitely generated projective module. More conceptual proofs will
be sketched later.

The Role of Clifford Algebras4.3

One way to understand Bott periodicity in topology is to introduce Clifford algebras
as it was pointed out by Atiyah, Bott and Shapiro [4]. Let us denote by Cn the Clifford
algebra of V = Rn associated to the quadratic form q(v) = (x1)2 + · · · + (xn)2, with
v = (x1, …, xn). We recall that Cn is the quotient of the tensor algebra T(V) by
the two-sided ideal generated by all relations of the form v ⊗ v − q(v) · 1. It is
a finite dimensional semi-simple real algebra of dimension 2n. There is a kind of
“periodicity” of the Cn considered asZ|2-graded algebras: we have graded algebra
isomorphisms3

Cn+8 =̃ M16(Cn) .

On the other hand, the complexified Clifford algebras have a 2-periodicity

Cn+2 ⊗R C =̃ M2(Cn) ⊗R C =̃ M2(Cn ⊗R C) .

These isomorphisms give rise to an “elementary” proof of the eight homotopy
equivalences in Theorem 3 and the already stated results in Corollary 8 [25, 53].
Indeed, the afore-mentioned homotopy equivalences can be written in a uniform
way (up to connected components) as follows:

GL(Cn)|GL(Cn−1) ≈ Ω[GL(Cn+1)|GL(Cn)] .

In order to avoid the problem with connected components, let us introduce the
“classifying space” K(A) of any (real or complex) Banach algebra A. As a first
approximation4, it is the cartesian product

K(A) = K(A) × BGL(A) ,

3 Where Mr(B) denotes in general the algebra of r × r matrices with coefficients in B.
4 This description is (non-canonically) homotopy equivalent to the “good” definition given
later (see Sect. 4.4.1).
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where BGL(A) is the classifying space of the topological group GL(A). This way,
we have πi(K(A)) = Ki(A) for i ≥ 0. One could also consider the K-theory space
K(A ⊗ Cn), where tensor products are taken over R, and the homotopy fiber Fn

of the obvious inclusion map

K(A ⊗ Cn−1) → K(A ⊗ Cn) .

We notice that the connected component of this homotopy fiber is precisely the
connected component of the homogeneous space GL(A ⊗ Cn)|GL(A ⊗ Cn−1). The
following theorem now includes all the versions of Bott periodicity quoted so far.

9Theorem 9 We have natural homotopy equivalences

Fn ≈ Ω(Fn+1) .

Elementary Proofs 4.3.1

The proof of this theorem (see [25,53], and [39, §3.5]) is still technical and requires
easy but tedious lemmas. Therefore, it would be nice to have more conceptual
proofs of Bott periodicity, at least in the complex case, as we already said at the
end of Sect. 4.2. For the real case, we refer to 4.5.1 and 4.7.2.

A first approach (for A = C) is an elegant proof of Suslin (unpublished, see
also the independent proof of Harris [20]), using the machinery of Γ-spaces due
to Segal [41]. Taking into account that the homotopy equivalence U =̃ Z× BU is
a standard statement, the heart of the proof of Bott’s periodicity is the homotopy
equivalence

Z× BU ≈ ΩU .

Since X0 = Z×BU is a Γ-space, it can be infinitely delooped and there is an explicit
recipe to build spaces Xn such that Ωn(Xn) =̃ X0 [41]. This explicit construction
shows that X1 is homeomorphic to the infinite unitary group and this ends the proof!
However, it seems that this proof cannot be generalized to all Banach algebras since
the deloopings via the machinery of Γ-spaces are connected: for instance X2 is not
homotopically equivalent to Z× BU .

Another conceptual approach (see [26, 29, 30]) leading in Sect. 4.4 to non con-
nected deloopings of the space K(A) for any Banach algebra A, is to proceed as
follows. Let us assume we have defined Kn(A), not only for n ∈ N, as we did before,
but also for n ∈ Z. We also assume that the pairing

Ki(A) ⊗ Kj(C) → Ki+j(B)

mentioned for i and j ≥ 0, extends to all values of i and j inZ and has obvious asso-
ciative and graded commutative properties. Finally, assume there exists a “negative
Bott element” u−2 in K−2(C) whose cup-product with u2 in K2(C) (as mentioned
in 7) gives the unit element 1 in K0(C) =̃ Z.
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Under these hypotheses, and assuming that A is a complex Banach algebra, we
introduce an inverse homomorphism

β′ : Kn+2(A) → Kn(A)

of the Bott map

β : Kn(A) → Kn+2(A) .

It is defined as the cup-product with u−2. It is clear that the composites of β with
β′ both ways are the identity.

This formal approach may be extended to real Banach algebras as well, although
the required elements in K8(R) and K−8(R) are less easy to construct. One should
also compare this approach to the one described in Cuntz’ paper in this handbook,
using the machinery of KK-theory (for C∗- algebras at least).

Negative K-Theory and Laurent Series4.4

The price to pay for this last conceptual proof is of course the construction of these
“negative” K-groups Kn(A), n < 0, which have some independent interest as we
shall see later (A is now a complex or real Banach algebra). This may be done, using
the notion of “suspension” of a ring, which is in some sense dual to the notion of
suspension of a space. More precisely, we define the “cone” CA of a ring A to be the
set of all infinite matrices M = (aij), i, j ∈ N, such that each row and each column
only contains a finite and bounded number of non zero elements in A (chosen
among a finite number of elements in A). This clearly is a ring for the usual matrix
operations. We make CA into a Banach algebra by completing it with respect to the
following:

∥∥M
∥∥ = Supj Σi

∥∥∥aij

∥∥

(this is just an example; there are other ways to complete, leading to the same
negative K-theory: see [26]). Finally we define A, the “stabilization” of A, as the
closure of the set of finite matrices5 in CA. It is a closed 2-sided ideal in CA and
the suspension of A, denoted by SA, is the quotient ring CA|A.

Let A be a Banach algebra. As in [26] we define the groups K−n(A) as K(SnA),
where SnA is the n-th suspension of A for n > 0. Then BGL(Sn+1A) is a delooping
of K(SnA) × BGL(SnA), i.e. we have a homotopy equivalence (for any Banach
algebra A)

Ω(BGL(SA)) ≈ K(A) × BGL(A) .

Accordingly, to any exact sequence of Banach algebras as above

0 → A′ → A → A′′ → 0

5 A matrix in CA is called finite if all but finitely many of its elements are 0.
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we can associate an exact sequence of K-groups

Kn+1(A) → Kn+1(A′′) → Kn(A′) → Kn(A) → Kn(A′′)

for n ∈ Z.

The K-Theory Spectrum 4.4.1

As a matter of fact, this definition/theorem gives the functorial definition of
the K-theory space K(A) mentioned above: it is nothing but the loop space
Ω(BGL(SA)) ≈ GL(SA). If A = R or C, it is easy to see that this space has the
homotopy type of the space of Fredholm operators in a Hilbert space modelled on
A (see [2] or [10], appendix A).

Laurent Series Approximation 4.4.2

For a better understanding of SA, it may be interesting to notice that the ring of
Laurent series A〈t, t−1〉 is a good approximation of the suspension. Any element of
A〈t, t−1〉 is a series

S =
∑

n∈Z
antn

such that
∑

n∈Z
∥∥an

∥∥ < +∞. There is a ring homomorphism A〈t, t−1〉 → SA that
associates to the series above the class of the following infinite matrix






a0 a1 a2 …

a−1 a0 a1 …

a−2 a−1 a0 …

. . . . . . . . . . . . . .






.

For instance, in order to construct the element u−2 mentioned in Sect. 4.3.1, it is
enough to describe a finitely generated projective module over the Banach algebra
C〈t, u, t−1, u−1〉, i.e. a non trivial complex vector bundle over the torus S1 × S1, as
we can see easily, using again the theory of Fourier series [29].

Bott Periodicity, the Atiyah–Singer Index
Theorem, and KR-Theory 4.5

Many variants of topological K-theory have been considered since the 60’s, also
giving rise to more conceptual proofs of Bott periodicity and generalizing it. One
of appealing interest is equivariant K-theory KG(X), introduced by Atiyah and
Segal [40]. Here G is a compact Lie group acting on a compact space X and KG(X)
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is the Grothendieck group of the category of (real or complex) G-vector bundles
on X. The analog of Bott periodicity in this context is the “Thom isomorphism”:
we consider a complex G-vector bundle V on X and we would like to compute the
complex equivariant K-theory of V , defined as the “reduced” K-theory K̃G(V+),
where V+ is the one-point compactification of V . If we denote this group simply
by KG(V), we have an isomorphism (due to Atiyah [3]) for complex equivariant
K-theory

βC : KG(X) → KG(V).

In a parallel way, if V is a real vector bundle of rank 8m, provided with a spino-
rial structure6 Atiyah proved that we also have a “Thom isomorphism” for real
equivariant K-theory

βR : KG(X) → KG(V).

At this point, we should notice that if G is the trivial group and V a trivial vector
bundle, the isomorphisms βC and βR are just restatements of the Bott periodicity
theorems as in 1.

The isomorphisms βC and βR are not at all easy to prove. The algebraic ideas
sketched in the previous sections are not sufficient (even if G a finite group!). One
has to use the full strength of the Atiyah–Singer index theorem (KK-theory in
modern terms) in order to construct a map going backwards

β′ : KG(V) → KG(X)

in the same spirit that led to the construction of the element u−2 in Sect. 4.4. The
difficult part of the theorem is to show that β′.β = Id. The fact that β.β′ = Id follows
from an ingenious trick due to Atiyah and described in [3].

KR(X)4.5.1

The consideration of equivariant vector bundles led Atiyah to another elementary
proof (i.e. more algebraic) of real Bott periodicity through the introduction of
a new theory called KR(X) and defined for any locally compact space X with an
involution [1]. In our previous language, the group KR(X) is just the K-theory of
the Banach algebra A of continuous functions

f : X → C

such that f (σ(x)) = f (x) (where σ denotes the involution on X) and f (x) → 0 when
x → ∞. The basic idea of this “Real” version of Bott periodicity is to prove (using
Fourier analysis again) that KR(X) =̃ KR(X × R1,1) where Rp,q denotes in general

6 For a more general statement, using Clifford bundles, see the following paper of the
author: Equivariant K-theory of real vector spaces and real projective spaces. Topology and
its applications, 122, 531–546 (2002).
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the Euclidean space Rp+q = Rp ⊕ Rq with the involution (x, y) �→ (−x, y). Using
ingenious homeomorphisms between spaces with involution, Atiyah managed to
show that this isomorphism implies that K(A(Rn)) is periodic of period 8 with
respect to n. As a consequence we recover the classical Bott periodicity (in the real
case) if we restrict ourselves to spaces with trivial involution.

Bott Periodicity in Algebraic K-Theory 4.6

Let us now turn our interest to the algebraic K-theory of a discrete ring A. From
now on, we change our notations and write Kn(A) for the Quillen K-groups of
a ring with unit A. We recall that for n > 0, Kn(A) is the nth homotopy group of
BGL(A)+, where BGL(A)+ is obtained from BGL(A) by adding cells of dimensions 2
and 3 in such a way that the fundamental group becomes the quotient of GL(A) by
its commutator subgroup, without changing the homology.

If A is a Banach algebra, the Kn-groups considered before will be denoted by
K

top
n (A) in order to avoid confusion. We also have a definition of Kn(A) for n < 0,

due to Bass [8] and the author [26,27]. More precisely, K−r(A) = K(SrA), where SA
denotes the suspension of the ring A (Beware: we do not take the Banach closure
as in Sect. 4.4 since A is just a discrete ring). One interpretation of Bott periodicity,
due to Bass [8] for n ≤ 0 and Quillen [37] (for all n, assuming A to be regular
Noetherian), is the following exact sequence:

0 → Kn+1(A) → Kn+1(A[t]) ⊕ Kn+1(A[t−1]) → Kn+1(A[t, t−1]) → Kn(A) → 0

[we replace the Laurent series considered in Sect. 4.4.2 by Laurent polynomials].

Periodicity with Finite Coefficients 4.6.1

However, the natural question to ask is whether we have some kind of “peri-
odicity” for the groups Kn(A), n ∈ Z. Of course, this question is too naive: for
instance, if A is the finite field Fq with q elements, we have K2n−1(Fq) =̃ Z|(qn − 1)Z,
as proved by Quillen [36]. The situation is much better if we consider alge-
braic K-theory with finite coefficients, introduced by Browder and the author
in the 70’s [15, 42]. Since we know that algebraic K-theory is represented by
a spectrum K(A) defined through the spaces BGL(SnA)+, as proved by Wag-
oner [51], there is a well known procedure in algebraic topology for construct-
ing an associated mod n-spectrum for any positive integer n > 1. The homo-
topy groups of this spectrum are the K-theory groups of A with coefficients
in Z|n.

An alternative (dual) approach is to consider the Puppe sequence associated to
a self-map of degree n of the sphere Sr

Sr → Sr → M(n, r) → Sr+1 → Sr+1 .
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The space M(n, r), known as a “Moore space”, has two cells of dimensions r
and r + 1 respectively, the second cell being attached to the first by a map of
degree n. If n = 2 and r = 1 for instance, M(n, r) is the real projective space
of dimension 2. We now define K-theory with coefficients in Z|n, denoted by
Kr+1(A;Z|n), for r ≥ 0, as the group of pointed homotopy classes of maps from
M(n, r) to K(A). From the classical Puppe sequence in algebraic topology, we get
an exact sequence

Kr+1(A) → Kr+1(A) → Kr+1(A;Z|n) → Kr(A) → Kr(A) ,

where the arrows between the groups Ki(A) are multiplication by n. Since
Kr+t+1(StA;Z|n) is canonically isomorphic to Kr+1(A;Z|n), we may extend this defi-
nition of Kr+1(A;Z|n) to all values of r∈Z, by putting Kr+1(A;Z|n)=Kr+t+1(StA;Z|n)
for t large enough so that r + t ≥ 0. With certain restrictions on n or A (we omit
the details), this K-theory mod n may be provided with a ring structure, having
some nice properties [15].

Here is a fundamental theorem of Suslin [43] that is the true analog of complex
Bott periodicity in algebraic K-theory.

10 Theorem 10 Let F be an algebraically closed field and let n be an integer prime
to the characteristic of F. Then there is a canonical isomorphism between graded
rings

K2r(F;Z|n) =̃ (µn)⊗r and K2r+1(F;Z|n) = 0 ,

where µn denotes the group of nth roots of unity in F (with r ≥ 0).

The Lichtenbaum–Quillen Conjecture4.6.2

Starting with this theorem one may naturally ask if there is a way to compute
K∗(F;Z|n) for an arbitrary field F (not necessarily algebraically closed). If F is the
field of real numbers, and if we work in topological K-theory instead, we know that
it is not an easy task, since we get an 8-periodicity that looks mysterious compared
to the 2-periodicity of the complex case. All these types of questions are in fact
related to a “homotopy limit problem”7. More precisely, let us define in general
K(A, n) as the spectrum of the K-theory of A mod n as in Sect. 4.6.1. It is easy to
show that K(F, n) is the fixed point set of K(F, n), where F denotes the separable
closure of F, with respect to the action of the Galois group G (which is a profinite
group). We have a fundamental map

φ : K(F, n) = K(F, n)G → K(F, n)hG .

whereK(F, n)hG is the “homotopy fixed point set” ofK(F, n), i.e. the set of equivari-
ant maps EG → K(F, n) where EG is the “universal” principal G-bundle over BG.

7 See the paper of Thomason: The homotopy limit problem. Contemporary Mathematics
Vol. 19, 407–419 (1983).
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Let us denote by Ket
r (F;Z|n) the r-th homotopy group of this space of equivariant

maps (which we call “étale K-theory” groups). According to Sect. 4.6.2 and the
general theory of homotopy fixed point sets, there is a spectral sequence8

E
p,q
2 = Hp(G; µ

⊗(q|2)
n ) ⇒ Két

q−p(F;Z|n) .

Let us assume now that the characteristic of the field does not divide n. A version
of the “Lichtenbaum–Quillen conjecture”9, is that φ induces an isomorphism on
homotopy groups πr for r > dn, where dn is the n-cohomological dimension of G.
In other words, the canonical map

Kr(F;Z|n) → Ket
r (F;Z|n)

should be an isomorphism for r > dn. The surjectivity of this map was inves-
tigated and proved in many cases by Soulé [42], Dwyer–Friedlander–Snaith–
Thomason [18] in the 80’s.

Thomason’s Approach 4.6.3

In order to compare more systematically algebraic K-theory and étale K-theory
(which is periodic, as we shall see), there is an elegant approach, initiated by
Thomason [47]. If we stick to fields and to an odd prime p (for the sake of
simplicity), there is a “Bott element” β belonging to the group K2(p−1)(F;Z|p)
as it was first shown by Browder and the author in the 70’s [15, 42]. One notice
that the usual Bott element u2 ∈ K2(C;Z|p) can be lifted to an element u of the
group K2(A;Z|p) via the homomorphism induced by the ring map A → C, where
A is the ring of p-cyclotomic integers. By a transfer argument, one then shows that
up−1 is the image of a canonical element β of the group K2(p−1)(Z;Z|p) through the
standard homomorphism K2(p−1)(Z;Z|p) → K2(p−1)(A;Z|p). By abuse of notation,
we shall also call β its image in K2(p−1)(F;Z|p) and βét its image in Két

2(p−1)(F;Z|p).
The important remark here is that βét is invertible in the étale K-theory ring (which
is a way to state that étale K-theory is periodic of period 2(p − 1)). Therefore, there
is a factorisation

K∗(F;Z|p)

��N
NN

NN
NN

NN
NN

�� Két∗ (F : Z|p)

K∗(F;Z|p)[β−1] .

��ppppppppppp

8 Note that πq(K (F , n) = µ⊗q|2
n as stated in Sect. 4.6.2 where we put µ⊗q|2

n = 0 for q odd.
9 Many mathematicians contributed to this formulation, which is quite different from the
original one by Lichtenbaum and Quillen. We should mention the following names: Dwyer,
Friedlander, Mitchell, Snaith, Thomason, …. For an overview, see for instance [47, p. 516–
523].
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11 Theorem 11 [47] Let us assume that F is of finite p-étale dimension and moreover
satisfies the (mild) conditions of [47, Theorem 4.1]. Then the map

K∗(F;Z|p)[β−1] → Két
∗ (F;Z|p)

defined above is an isomorphism.

The Bloch–Kato Conjecture4.6.4

In order to make more progress in the proof of the Lichtenbaum–Quillen conjec-
ture, Bloch and Kato formulated in the 90’s another conjecture that is now central
to the current research in algebraic K-theory. This conjecture states that for any in-
teger n, the Galois symbol from Milnor’s K-theory mod n [33] to the corresponding
Galois cohomology

KM
r (F)|n → Hr

(
F; µ⊗r

n

)
= Hr

(
G; µ⊗r

n

)

is an isomorphism. This conjecture was first proved by Voevodsky for n = 2k: it is
the classical Milnor’s conjecture [48].

After this fundamental work of Voevodsky, putting as another ingredient a spec-
tral sequence first established by Bloch and Lichtenbaum [11], many authors were
able to solve the Lichtenbaum–Quillen conjecture for n = 2k. We should mention
Kahn [24], Rognes and Weibel [38], Ostvaer and Rosenschon (to appear).

At the present time (August 2003), there is some work in progress by Rost
(unpublished) and Voevodsky [49] giving some evidence that the Bloch–Kato
conjecture should be true for all values of n. Assuming this work accomplished,
the Lichtenbaum–Quillen conjecture will then be proved in general!

There is another interesting consequence of the Bloch–Kato conjecture that is
worth mentioning: we should have a “motivic” spectral sequence (first conjectured
by Beilinson), different from the one written in Sect. 4.6.3:

E
p,q
2 ⇒ Kq−p(F;Z|n) .

Here, the term E2 of the spectral sequence is the following:

E
p,q
2 = Hp

(
G; µ

⊗(q|2)
n

)
for p ≤ q|2 and

E
p,q
2 = 0 for p > q|2 .

This spectral sequence should degenerate in many cases, for instance if n is odd or
if F is an exceptional field [24, p. 102].

Example 12. If F is a number field and if n is odd, we have dn = 1 with the notations
of Sect. 4.6.3. In this case, the degenerating spectral sequence above

shows a direct link between algebraic K-theory and Galois cohomology, quite
interesting in Number Theory.
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The Bloch–Kato conjecture (if proved in general) also sheds a new light on
Thomason’s localisation map considered in Sect. 4.6.3:

Kr(F;Z|p) → Kr(F;Z|p)[β−1] .

For instance, we can state Kahn’s Theorem 2 [24, p. 100], which gives quite general
conditions of injectivity or surjectivity for this map in a certain range of degrees,
not only for fields, but also for finite dimensional schemes.

We should notice in passing that a topological analog of the Lichtenbaum–
Quillen conjecture is true: in this framework, one replace the classifying space
of algebraic K-theory by the classifying space of (complex) topological K-theory
K top(A⊗R C), where A is a real Banach algebra and Z/2 acts by complex conjugation
(compare with [44]). Then the fixed point set (i.e. the classifying space of the
topological K-theory of A) has the homotopy type of the homotopy fixed point
set [30].

Despite these recent breakthroughs, the groups Kr(A) are still difficult to com-
pute explicitly, even for rings as simple as the ring of integers in a number field
(although we know these groups rationally from the work of Borel [12] on the
rational cohomology of arithmetic groups). However, thanks to the work of Bök-
stedt, Rognes and Weibel [38], we can at least compute the 2-primary torsion of
Kr(Z) through the following homotopy cartesian square

BGL(Z[1|2])+
# −−−−−→ BGL(R)#

�
�

BGL(F3)+
# −−−−−→ BGL(C)# .

Here the symbol#means 2-adic completion, while BGL(R) and BGL(C) denote the
classifying spaces of the topological groups GL(R) and GL(C) respectively. From
this homotopy cartesian square, Rognes and Weibel [38], obtained the following
results (modulo a finite odd torsion group and with n > 0 for the first 2 groups and
n ≥ 0 for the others):

K8n(Z) = 0

K8n+1(Z) = Z|2

K8n+2(Z) = Z|2

K8n+3(Z) = Z|16

K8n+4(Z) = 0

K8n+5(Z) = Z

K8n+6(Z) = 0

K8n+7(Z) = Z|2r+2 ,
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where 2r is the 2 primary component of the number 4n + 4. There is a (non
published) conjecture of S.A. Mitchell about the groups Ki(Z) in general (including
the odd torsion), for i ≥ 2. Let us write the kth Bernoulli number [28, pp. 297,
299] as an irreducible fraction ck|dk. Then we should have the following explicit
computations of Kr(Z) for r ≥ 2, with k =

[
r
4

]
+ 1:

K8n(Z) = 0

K8n+1(Z) = Z + Z|2

K8n+2(Z) = Z|2ck(k = 2n + 1)

K8n+3(Z) = Z|8kdk(k = 2n + 1)

K8n+4(Z) = 0

K8n+5(Z) = Z

K8n+6(Z) = Z|ck(k = 2n + 2)

K8n+7(Z) = Z|4kdk(k = 2n + 2) .

Example 13. If we want to compute K22(Z) and K23(Z), we write

22 = 8.2 + 6 and 23 = 8.2 + 7 .

Hence k = 6 with an associated Bernoulli number B6 = 691|2730. Therefore,
according to the conjecture, we should have (compare with [42]):

K22(Z) =̃ Z|691 K23(Z) =̃ Z|65 520 .

Note that for the groups Kr(Z) for r ≤ 6, complete results (not just conjectures)
are found among other theorems in the reference [19]. Here they are (the new ones
are K5 and K6):

K0(Z) = Z

K1(Z) = Z|2

K2(Z) = Z|2 (Milnor)

K3(Z) = Z|48 (Lee and Szczarba)

K4(Z) = 0 (Rognes)

K5(Z) = Z

K6(Z) = 0 .
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Other rings with periodic algebraic K-theory, arising from a completely dif-
ferent point of view, are complex stable C∗-algebras A: by definition, they are
isomorphic to their completed tensor product with the algebra K of compact
operators in a complex Hilbert space. For example, the C∗-algebra associated to
a foliation is stable [17]. Another example is the ring of continuous functions from
a compact space X to the ring K . These algebras are not unital but, as proved by
Suslin and Wodzicki, they satisfy excision. A direct consequence of this excision
property is the following theorem, conjectured by the author in the 70’s (the ten-
tative proof was based on the scheme described at the end of Sect. 4.3, assuming
excision).

14Theorem 14 [45] Let A be a complex stable C∗-algebra. Then the obvious map

Kn(A) → Ktop
n (A)

is an isomorphism. In particular, we have Bott periodicity

Kn(A) ≈ Kn+2(A)

for the algebraic K-theory groups.

M. Wodzicki can provide many other examples of ideals J in the ring B(H)
of bounded operators in a Hilbert space such that the tensor product (completed
of not) B ⊗ J, for B any complex algebra, has a periodic ALGEBRAIC K-theory.
These ideals are characterized by the fact that J = J2 and that the commutator
subgroup [B(H), J] coincides with J.

Bott Periodicity in Hermitian K-Theory 4.7

Orthogonal Groups 4.7.1

As we have seen, usual K-theory is deeply linked with the general linear group.
One might also consider what happens for the other classical groups. Not only is
it desirable, but this setting turns out to be quite suitable for a generalization of
Bott periodicity and the computation of the homology of discrete orthogonal and
symplectic groups in terms of classical Witt groups.

The starting point is a ring A with an antiinvolution a �→ a, together with an
element ε in the center of A such that εε = 1. In most examples, ε = ±1. For reasons
appearing later (see Theorem 19), we also assume the existence of an element λ
in the center of A such that λ + λ = 1 (if 2 is invertible in A, we may choose
λ = 1|2). If M is a right finitely generated projective module over A, we define its
dual M∗ as the group of Z-linear maps f : M → A such that f (m.a) = a.f (m)
for m ∈ M and a ∈ A. It is again a right finitely generated projective A-module
if we put (f .b)(m) = f (m).b for b ∈ A. An ε-hermitian form on M is an A-linear
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map: φ̃ : M → M∗ satisfying some conditions of ε-symmetry (̃φ = ε̃φ∗ as written
below). More precisely, it is given by a Z-bilinear map

φ : M × M → A

such that

φ
(
ma, m′b

)
= aφ

(
m, m′) b

φ
(
m′, m

)
= εφ

(
m, m′)

with obvious notations. Such a φ is called an ε-hermitian form and (M, φ) is an
ε-hermitian module. The map

φ̃ : m′ �→ [m �→ (m, m′)]

does define a morphism from M to M∗ and we say that φ is non-degenerate if φ̃ is
an isomorphism.

Fundamental example (the hyperbolic module). Let N be a finitely generated
projective module and M = N ⊕ N∗. A non-degenerate ε-hermitian form φ on M
is given by the following formula

φ
(
(x, f ), (x′, f ′)

)
= f (x′) + εf ′(x) .

We denote this module by H(N). If N = An, we may identify N with its dual via the
map y �→ fy with fy(x) = xy. The hermitian form on An ⊕ An may then be written
as

φ
(
(x, y), (x′, y′)

)
= yx′ + εxy′ .

There is an obvious definition of direct sum for non-degenerate ε-hermitian
modules. We write εL(A) or εL0(A) for the Grothendieck group constructed from
such modules10.

Example 15. Let A be the ring of continuous functions on a compact space X with
complex values. If A is provided with the trivial involution, 1L(A) is

isomorphic to the real topological K-theory of X while −1L(A) is isomorphic to its
quaternionic topological K-theory (see e.g. [28] p. 106, exercise 6.8).

In the Hermitian case, the analog of the general linear group is the ε-orthogonal
group that is the group of automorphisms of H(An), denoted by εOn,n(A): its
elements may be described concretely in terms of 2n × 2n matrices

M =

(
a b

c d

)

10 We use the letter L, which is quite convenient, but the reader should not mix up the
present definition with the definition of the surgery groups, also denoted by the letter L (see
the papers of Lück/Reich, Rosenberg and Williams in this handbook).
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such that M∗M = MM∗ = I, where

M∗ =

(
td εtb

εtc ta

)

.

Example 16. If A is the field of real numbers R, 1On,n(A) is the classical group
O(n, n), which has the homotopy type of O(n) × O(n). By contrast,

−1On,n(A) is the classical group Sp(2n,R), which has the homotopy type of the
unitary group U(n) [21].

The infinite orthogonal group

εO(A) = lim εOn,n(A)

has a commutator subgroup that is perfect (similarly to GL). Therefore, we can
perform the + construction of Quillen as in [37].

17Definition 17 The higher Hermitian K-theory of a ring A (for n > 0) is defined as

εLn(A) = πn(BεO(A)+) .

Example 18. Let F be a field of characteristic different from 2 provided with
the trivial involution. Then εL1(F) = 0 if ε = −1 and εL1(F) =

Z|2 × F∗|F∗2 if ε = +1 (see e.g. [9]).

Notation We write

K(A) = K(A) × BGL(A)+

for the classifiying space of algebraic K-theory – as before – and

εL(A) = εL(A) × BεO(A)+

for the classifying space of Hermitian K-theory.

There are two interesting functors between Hermitian K-theory and algebraic
K-theory. One is the forgetful functor from modules with hermitian forms to
modules (with no forms) and the other one from modules to modules with forms,
sending N to H(N), the hyperbolic module associated to N. These functors induce
two maps

F : εL(A) → K(A) and H : K(A) → εL(A) .

We define εV(A) as the homotopy fiber of F and εU(A) as the homotopy fiber of
H. We thus define two “relative” theories:

εVn(A) = πn(εV(A)) and εUn(A) = πn(εU(A)) .
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19 Theorem 19 (the fundamental theorem of Hermitian K-theory [29]). Let A be
a discrete ring with the hypotheses in Sect. 4.7.1. Then there is a natural homotopy
equivalence between εV(A) and the loop space of −εU(A). In particular,

εVn(A) =̃ −εUn+1(A) .

Moreover, if we work within the framework of Banach algebras with an antiinvolu-
tion, the same statement is valid for the topological analogs (i.e. replacing BGL(A)+

by BGL(A)top and BεO(A)+ by BεO(A)top).

Examples4.7.2

In order to get a feeling for this theorem, it is worthwhile to see what we get for the
classical examples A = R, C or H, with their usual topology and various antiin-
volutions. Note in general that the connected component of εV(A)(resp .−εU(A))
is the connected component of the homogeneous space GL(A)|εO(A)
(resp .−εO(A)|GL(A)). For instance, if A = R, ε = −1, we get the homogeneous
spaces

GL(R)|−1O(R) and 1O(R)|GL(R) ,

which have the homotopy type of GL(R)|GL(C), and GL(R) respectively [21]. In
this case, Theorem 19 implies that GL(R)|GL(C) has the homotopy type of the
loop space ΩGL(R), one of the eight homotopy equivalences of Bott (compare
with Theorem 3). It is a pleasant exercise to recover the remaining seven homo-
topy equivalences by dealing with other classical groups and various inclusions
between them. Since the list of classical groups is finite, it is “reasonable” to expect
some periodicity… .

An advantage of this viewpoint (compared to the Clifford algebra approach in
Sect. 4.3 for instance) is the context of this theorem, valid in the discrete case,
which implies Bott periodicity for “discrete” Hermitian K-theory. For instance, if
we consider the higher Witt groups

εWn(A) = Coker
(
Kn(A) → εLn(A)

)
,

the fundamental theorem implies a periodicity isomorphism (modulo 2 torsion)11

εWn(A) =̃ −εWn−2(A) .

From this result we get some information about the homology of the discrete
group εO(A) (at least rationally) [29]. If we denote by εW(A) the periodic graded
vector space ⊕nεWn(A) ⊗Z Q, we find that the homology with rational coefficients
H∗(εO(A);Q) may be written as the tensor product of the symmetric algebra of

11 As proved in [29], the hypotheses in Sect. 4.7.1 are no longer necessary for this statement
and A might be an arbitrary ring.
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εW(A) with a graded vector space12 T∗(A) such that T0(A) = Q. This result is
of course related to the classical theorems of Borel [12], when A is the ring of
S-integers in a number field.

In another direction, if A is a regular noetherian ring with 2 invertible in A, the
isomorphism εWn(A) ≈ −εWn−2(A) is true for n ≤ 0 with no restriction about the
2-torsion. This implies a 4-periodicity of these groups. As it was pointed in [23],
these 4-periodic Witt groups are isomorphic to Balmer’s triangular Witt groups in
this case [7]. Note these Balmer’s Witt groups are isomorphic to surgery groups as
it was proved by Walter [52], even if the ring A is not regular. It would be interesting
to relate – for non regular rings – the negative Witt groups of our paper to the
classical surgery groups.

Finally, we should remark that the 2-primary torsion of the Hermitian K-theory
of the ring Z[1|2] can be computed the same way as the 2-primary torsion of
the algebraic K-theory of Z (compare with Sect. 4.6.4), thanks to the following
homotopy cartesian square proved in [10]:

BεO(Z[1|2])+
# −−−−−→ BεO(R)#

�
�

BεO(F3)+
# −−−−−→ BεO(C)# .

From this diagram, we deduce the following 2-adic computation of the groups
εLi = εLi(Z[1|2]) for i ≥ 2, i an integer mod 8, and ε = ±1, in comparizon with the
table of the Ki = Ki(Z) in Sect. ?? (where 2t is again the 2-primary component of
i + 1):

i 0 1 2 3 4 5 6 7

Ki 0 Z⊕ Z|2 Z|2 Z|16 0 Z 0 Z|2t+1

1Li Z⊕ Z|2 (Z|2)3 (Z|2)2
Z|8 Z 0 0 Z|2t+1

−1Li 0 0 Z Z|16 Z|2 Z|2 Z Z|2t+1 .

Conclusion 4.8

Let us add a few words of conclusion about the relation between motivic ideas and
Bott periodicity, although other papers in this handbook will develop this analogy
with more details (see also 4.6.3).

Morel and Voevodsky [35] have proved that algebraic K-theory is representable
by an infinite Grassmannian in the unstable motivic homotopy category. Moreover,
Voevodsky [50] has shown that this, together with Quillen’s computation of the K-
theory of the projective line, implies that algebraic K-theory is representable in the

12 T∗(A) is the symmetric algebra of K+(A) ⊗Z Q , where K+(A) is the part of K-theory
that is invariant under the contragredient isomorphism (it is induced by the map sending
a matrix M to tM

−1
).
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stable motivic homotopy category by a motivic (2, 1)-periodic Ω-spectrum. This
mysterious “periodicity” is linked with two algebraic analogs of the circle, already
considered in [31] and [27]: one circle is the scheme of the subring of A[t] consisting
of polynomials P(t) such that P(0) = P(1). The second one is the multiplicative
groupGm, which is the scheme of the ring A[t, t−1], already considered in Sect. 4.6.
The “smash product” (in the homotopy category of schemes) of these two models
is the projective line P1. This (2, 1)-periodicity referred to above is a consequence
of Quillen’s computation of the K-theory of the projective line [34].

In the same spirit, Hornbostel [23] has shown that Hermitian K-theory is
representable in the unstable motivic homotopy category. Combining this with
Theorem 19 and the localisation theorem for Hermitian K-theory of Hornbostel–
Schlichting [22] applied to A[t, t−1], Hornbostel deduces that Hermitian K-theory
is representable by a motivic (8, 4)-periodic Ω-spectrum in the stable homotopy
category. This periodicity is linked with the computation of the Hermitian K-theory
of the smash product of P1 four times with itself (which is S8 from a homotopy
viewpoint).
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Summary. This survey describes the algebraic K-groups of local and global fields, and the
K-groups of rings of integers in these fields. We have used the result of Rost and Voevodsky
to determine the odd torsion in these groups.

Introduction5.1

The problem of computing the higher K-theory of a number field F, and of its rings
of integers OF , has a rich history. Since 1972, we have known that the groups Kn(OF)
are finitely generated [48], and known their ranks [7], but have only had conjectural
knowledge about their torsion subgroups [5,33,34] until 1997 (starting with [76]).
The resolutions of many of these conjectures by Suslin, Voevodsky, Rost and others
have finally made it possible to describe the groups K∗(OF). One of the goals of this
survey is to give such a description; here is the odd half of the answer (the integers
wi(F) are even, and are defined in Sect. 5.3):

1 Theorem 1 Let OS be a ring of S-integers in a number field F. Then Kn(OS) =̃ Kn(F)
for each odd n ≥ 3, and these groups are determined only by the number r1, r2 of
real and complex places of F and the integers wi(F):
a) If F is totally imaginary, Kn(F) =̃ Zr2 ⊕ Z|wi(F);
b) IF F has r1 > 0 real embeddings then, setting i = (n + 1)|2,

Kn(OS) =̃ Kn(F) =̃






Z
r1+r2 ⊕ Z|wi(F), n ≡ 1 (mod 8)

Z
r2 ⊕ Z|2wi(F) ⊕ (Z|2)r1−1, n ≡ 3 (mod 8)

Z
r1+r2 ⊕ Z| 1

2 wi(F), n ≡ 5 (mod 8)

Z
r2 ⊕ Z|wi(F), n ≡ 7 (mod 8) .

In particular, Kn(Q) =̃ Z for all n ≡ 5 (mod 8) (as wi = 2; see Lemma 27).
More generally, if F has a real embedding and n ≡ 5 (mod 8), then Kn(F) has no
2-primary torsion (because 1

2 wi(F) is an odd integer; see Proposition 22).
The proof of Theorem 1 will be given in 70, 73, and Sect. 5.8 below.
We also know the order of the groups Kn(Z) when n ≡ 2 (mod 4), and know

that they are cyclic for n < 20 000 (see Example 96 – conjecturally, they are cyclic
for every n ≡ 2). If Bk denotes the kth Bernoulli number (24), and ck denotes the
numerator of Bk|4k, then |K4k−2(Z)| is: ck for k even, and 2ck for k odd; see 95.

Although the groups K4k(Z) are conjectured to be zero, at present we only
know that these groups have odd order, with no prime factors less than 107. This
conjecture follows from, and implies, Vandiver’s conjecture in number theory
(see 102 below). In Table 5.1, we have summarized what we know for n < 20 000;
conjecturally the same pattern holds for all n (see 105–107).
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Table 5.1. The groups Kn(Z), n < 20 000. The notation ‘(0?)’ refers to a finite group, conjecturally zero,

whose order is a product of irregular primes > 107

K0(Z) = Z K8(Z) = (0?) K16(Z) = (0?)

K1(Z) = Z|2 K9(Z) = Z⊕ Z|2 K17(Z) = Z⊕ Z|2

K2(Z) = Z|2 K10(Z) = Z|2 K18(Z) = Z|2

K3(Z) = Z|48 K11(Z) = Z|1008 K19(Z) = Z|528

K4(Z) = 0 K12(Z) = (0?) K20(Z) = (0?)

K5(Z) = Z K13(Z) = Z K21(Z) = Z

K6(Z) = 0 K14(Z) = 0 K22(Z) = Z|691

K7(Z) = Z|240 K15(Z) = Z|480 K23(Z) = Z|65 520

K8a(Z) = (0?) K8a+4(Z) = (0?)

K8a+1(Z) = Z⊕ Z|2 K8a+5(Z) = Z

K8a+2(Z) = Z|2c2a+1 K8a+6(Z) = Z|c2a+2

K8a+3(Z) = Z|2w4a+2 K8a+7(Z) = Z|w4a+4

For n ≤ 3, the groups Kn(Z) were known by the early 1970’s; see Sect. 5.2.
The right hand sides of Table 5.1 were also identified as subgroups of Kn(Z) by
the late 1970’s; see Sects. 5.3 and 5.4. The 2-primary torsion was resolved in 1997
(Sect. 5.8), but the rest of Table 5.1 only follows from the recent Voevodsky-Rost
theorem (Sects. 5.7 and 5.9).

The K-theory of local fields, and global fields of finite characteristic, is richly
interconnected with this topic. The other main goal of this article is to survey the
state of knowledge here too.

In Sect. 5.2, we describe the structure of Kn(OF) for n ≤ 3; this material is rela-
tively classical, since these groups have presentations by generators and relations.

The cyclic summands in Theorem 1 are a special case of a more general con-
struction, due to Harris and Segal. For all fields F, the odd-indexed groups K2i−1(F)
have a finite cyclic summand, which, up to a factor of 2, is detected by a variation
of Adams’ e-invariant. These summands are discussed in Sect. 5.3.

There are also canonical free summands related to units, discovered by Borel,
and (almost periodic) summands related to the Picard group of R, and the Brauer
group of R. These summands were first discovered by Soulé, and are detected by
étale Chern classes. They are discussed in Sect. 5.4.
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The K-theory of a global field of finite characteristic is handled in Sect. 5.5. In
this case, there is a smooth projective curve X whose higher K-groups are finite,
and are related to the action of the Frobenius on the Jacobian variety of X. The
orders of these groups are related to the values of the zeta function ζX(s) at negative
integers.

The K-theory of a local field E containingQp is handled in Sect. 5.6. In this case,
we understand the p-completion, but do not understand the actual groups K∗(E).

In Sect. 5.7, we handle the odd torsion in the K-theory of a number field. This
is a consequence of the Voevodsky-Rost theorem. These techniques also apply to
the 2-primary torsion in totally imaginary number fields, and give 1(a).

The 2-primary torsion in real number fields (those with an embedding in R) is
handled in Sect. 5.8; this material is taken from [51], and uses Voevodsky’s theorem
in [69].

Finally, we consider the odd torsion in K2i(Z) in Sect. 5.9; the odd torsion in
K2i−1(Z) is given by 1. The torsion occurring in the groups K2i(Z) only involves
irregular primes, and is determined by Vandiver’s conjecture (102). The lack of
torsion for regular primes was first guessed by Soulé in [58].

The key technical tool that makes calculations possible for local and global fields is
the motivic spectral sequence, from motivic cohomology H∗

M to algebraic K-theory.
With coefficients Z|m, the spectral sequence for X is:

E
p,q
2 = H

p−q
M (X;Z|m(−q)) ⇒ K−p−q(X;Z|m) . (5.1)

This formulation assumes that X is defined over a field [69]; a similar motivic
spectral sequence was established by Levine in [32, (8.8)], over a Dedekind domain,
in which the group Hn

M(X,Z(i)) is defined to be the (2i − n)-th hypercohomology
on X of the complex of higher Chow group sheaves zi.

When 1|m ∈ F, Voevodsky and Rost proved in [69] (m = 2ν) and [68] (m odd)
that Hn

M(F,Z|m(i)) is isomorphic to Hn
ét(F, µ⊗i

m ) for n ≤ i and zero if n > i. That is,
the E2-terms in this spectral sequence are just étale cohomology groups.

If X = Spec(R), where R is a Dedekind domain with F = frac(R) and 1|m ∈ R,
a comparison of the localization sequences for motivic and étale cohomology
(see [32] and [58, p. 268]) shows that Hn

M(X,Z|m(i)) is: Hn
ét(X, µ⊗i

m ) for n ≤ i; the
kernel of Hn

ét(X, µ⊗i
m ) → Hn

ét(F, µ⊗i
m ) for n = i + 1; and zero if n ≥ i + 2. That is, the

E2-terms in the fourth quadrant are étale cohomology groups, but there are also
modified terms in the column p = +1. For example, we have E1,−1

2 = Pic(X)|m. This
is the only nonzero term in the column p = +1 when X has étale cohomological
dimension at most two for �-primary sheaves (cd�(X) ≤ 2), as will often occur in
this article.

WritingZ|�∞(i) for the union of the étale sheavesZ|�ν(i), we also obtain a spec-
tral sequence for every field F:

E
p,q
2 =





H

p−q
ét (F;Z|�∞(−q)) for q ≤ p ≤ 0,

0 otherwise
⇒ K−p−q(F;Z|�∞) , (5.2)
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and a similar spectral sequence for X, which can have nonzero entries in the column
p = +1. If cd�(X) ≤ 2 it is:

E
p,q
2 =






H
p−q
ét (X;Z|�∞(−q)) for q ≤ p ≤ 0,

Pic(X) ⊗ Z|�∞ for (p, q) = (+1, −1),

0 otherwise

⇒ K−p−q(X;Z|�∞) .

(5.3)

2Remark 2: (Periodicity for � = 2.) Pick a generator v4
1 of πs(S8;Z|16) =̃ Z|16; it

defines a generator of K8(Z[1|2];Z|16) and, by the edge map in (5.1), a canonical
element of H0

ét(Z[1|2]; µ⊗4
16 ), which we shall also call v4

1. If X is any scheme, smooth
overZ[1|2], the multiplicative pairing of v4

1 (see [16,32]) with the spectral sequence
converging to K∗(X;Z|2) gives a morphism of spectral sequences E

p,q
r → E

p−4,q−4
r

from (5.1) to itself. For p ≤ 0 these maps are isomorphisms, induced by E
p,q
2 =̃

H
p−q
ét (X,Z|2); we shall refer to these isomorphisms as periodicity isomorphisms.

Since the Voevodsky-Rost result has not been published yet (see [68]), it is ap-
propriate for us to indicate exactly where it has been invoked in this survey. In
addition to Theorem 1, Table 5.1, (5.2) and (5.3), the Voevodsky-Rost theorem is
used in Theorem 54, Sect. 5.7, 94–96, and in Sect. 5.9.
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Classical K-Theory of Number Fields 5.2

Let F be a number field, i.e., a finite extension of Q, and let OF denote the ring of
integers in F, i.e., the integral closure of Z in F. The first few K-groups of F and OF

have been known since the dawn of K-theory. We quickly review these calculations
in this section.

When Grothendieck invented K0 in the late 1950’s, it was already known that
over a Dedekind domain R (such as OF or the ring OS of S-integers in F) every
projective module is the sum of ideals, each of which is projective and satisfies
I ⊕ J =̃ IJ ⊕ R. Therefore K0(R) = Z⊕ Pic(R). Of course, K0(F) = Z.

In the case R = OF the Picard group was already known as the Class group
of F, and Dirichlet had proven that Pic(OF) is finite. Although not completely
understood to this day, computers can calculate the class group for millions of
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number fields. For cyclotomic fields, we know that Pic(Z[µp]) = 0 only for p ≤ 19,
and that the size of Pic(Z[µp]) grows exponentially in p; see [71].

Example 3. (Regular primes.) A prime p is called regular if Pic(Z[µp]) has no
elements of exponent p, i.e., if p does not divide the order hp of

Pic(Z[µp]). Kummer proved that this is equivalent to the assertion that p does not
divide the numerator of any Bernoulli number Bk, k ≤ (p − 3)|2 (see 24 and [71,
5.34]). Iwasawa proved that a prime p is regular if and only if Pic(Z[µpν ]) has
no p-torsion for all ν. The smallest irregular primes are p = 37, 59, 67, 101, 103
and 131. About 39% of the primes less than 4 million are irregular.

The historical interest in regular primes is that Kummer proved Fermat’s Last
Theorem for regular primes in 1847. For us, certain calculations of K-groups
become easier at regular primes (see Sect. 5.9.)

We now turn to units. The valuations on F associated to the prime ideals ℘ of OF

show that the group F× is the product of the finite cyclic group µ(F) of roots of
unity and a free abelian group of infinite rank. Dirichlet showed that the group of
units of OF is the product of µ(F) and a free abelian group of rank r1 + r2 − 1, where
r1 and r2 are the number of embeddings of F into the real numbersR and complex
numbers C, respectively.

The relation of the units to the class group is given by the “divisor map” (of
valuations) from F× to the free abelian group on the set of prime ideals ℘ in OF .
The divisor map fits into the “Units-Pic” sequence:

0 → O×
F → F× div→ ⊕℘Z→ Pic(OF) → 0 .

If R is any commutative ring, the group K1(R) is the product of the group R×
of units and the group SK1(R) = SL(R)|[SL(R), SL(R)]. Bass–Milnor–Serre proved
in [3] that SK1(R) = 0 for any ring of S-integers in any global field. Applying this
to the number field F we obtain:

K1(OF) = O×
F =̃ µ(F) × Zr1+r2−1 . (5.4)

For the ring OS of S-integers in F, the sequence 1 → O×
F → O×

S → Z[S]
div→

Pic(OF) → Pic(OS) → 1 yields:

K1(OS) = O×
S =̃ µ(F) × Z|S|+r1+r2−1 . (5.5)

The 1967 Bass–Milnor–Serre paper [3] was instrumental in discovering the
group K2 and its role in number theory. Garland proved in [18] that K2(OF) is
a finite group. By [49], we also know that it is related to K2(F) by the localization
sequence:

0 → K2(OF) → K2(F)
∂→ ⊕℘k(℘)× → 0 .

Since the map ∂ was called the tame symbol, the group K2(OF) was called the
tame kernel in the early literature. Matsumoto’s theorem allowed Tate to calculate
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K2(OF) for the quadratic extensions Q(
√

−d) of discriminant < 35 in [4]. In
particular, we have K2(Z) = K2

(
Z[ 1+

√
−7

2 ]
)

= Z|2 on {−1, −1}, and K2(Z[i]) = 0.
Tate’s key breakthrough, published in [65], was the following result, which was

generalized to all fields by Merkurjev and Suslin (in 1982).

4Theorem 4: (Tate [65]) If F is a number field and R is a ring of S-integers in F
such that 1|� ∈ R then K2(R)|m =̃ H2

ét(R, µ⊗2
m ) for every prime power m = �ν. The

�-primary subgroup of K2(R) is H2
ét(R,Z�(2)), which equals H2

ét(R, µ⊗2
m ) for large

ν.
If F contains a primitive mth root of unity (m = �ν), there is a split exact sequence:

0 → Pic(R)|m → K2(R)|m → mBr(R) → 0 .

Here Br(R) is the Brauer group and mBr(R) denotes {x ∈ Br(R)|mx = 0}. If we
compose with the inclusion of K2(R)|m into K2(R;Z|m), Tate’s proof shows that the
left map Pic(R) → K2(R;Z|m) is multiplication by the Bott element β ∈ K2(R;Z|m)
corresponding to a primitive m-th root of unity. The quotient mBr(R) of K2(R) is
easily calculated from the sequence:

0 → Br(R) → (Z|2)r1 ⊕
∐

v∈S
finite

(Q|Z) → Q|Z→ 0 . (5.6)

Example 5. Let F = Q(ζ�ν ) and R = Z[ζ�ν , 1|�], where � is an odd prime and ζ�ν

is a primitive �ν-th root of unity. Then R has one finite place, and
r1 = 0, so Br(R) = 0 via (5.6), and K2(R)|� =̃ Pic(R)|�. Hence the finite groups
K2(Z[ζ�ν , 1|�]) and K2(Z[ζ�ν ]) have �-torsion if and only if � is an irregular prime.

For the groups Kn(OF), n > 2, different techniques come into play. Homological
techniques were used by Quillen in [48] and Borel in [7] to prove the following
result. Let r1 (resp., r2) denote the number of real (resp., complex) embeddings of
F; the resulting decomposition of F ⊗Q R shows that [F : Q] = r1 + 2r2.

6Theorem 6: (Quillen–Borel) Let F be a number field. Then the abelian groups
Kn(OF) are all finitely generated, and their ranks are given by the formula:

rank Kn(OF) =





r1 + r2, if n ≡ 1 (mod 4) ;

r2, if n ≡ 3 (mod 4) .

In particular, if n > 0 is even then Kn(OF) is a finite group. If n = 2i − 1, the rank
of Kn(OF) is the order of vanishing of the function ζF at 1 − i.

There is a localization sequence relating the K-theory of OF , F and the finite fields
OF| ℘; Soulé showed that the maps Kn(OF) → Kn(F) are injections. This proves
the following result.
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7 Theorem 7 Let F be a number field.
a) If n > 1 is odd then Kn(OF) =̃ Kn(F).
b) If n > 1 is even then Kn(OF) is finite but Kn(F) is an infinite torsion group fitting

into the exact sequence

0 → Kn(OF) → Kn(F) →
⊕

℘⊂OF

Kn−1(OF| ℘) → 0 .

For example, the groups K3(OF) and K3(F) are isomorphic, and hence the direct
sum of Zr2 and a finite group. The Milnor K-group KM

3 (F) is isomorphic to (Z|2)r1

by [4], and injects into K3(F) by [38].
The following theorem was proven by Merkurjev and Suslin in [38]. Recall that

F is said to be totally imaginary if it cannot be embedded into R, i.e., if r1 = 0
and r2 = [F : Q]|2. The positive integer w2(F) is defined in Sect. 5.3 below, and is
always divisible by 24.

8 Theorem 8: (Structure of K3F.) Let F be a number field, and set w = w2(F).
a) If F is totally imaginary, then K3(F) =̃ Zr2 ⊕ Z|w;
b) If F has a real embedding then KM

3 (F) =̃ (Z|2)r1 is a subgroup of K3(F) and:

K3(F) =̃ Zr2 ⊕ Z|(2w) ⊕ (Z|2)r1−1 .

Example 9.
a) When F = Q we have K3(Z) = K3(Q) =̃ Z|48, because w2(F) = 24. This group

was first calculated by Lee and Szcarba.
b) When F = Q(i) we have w2(F) = 24 and K3(Q(i)) =̃ Z⊕ Z|24.
c) When F = Q(

√±2) we have w2(F) = 48 because F(i) = Q(ζ8). For these two
fields, K3(Q(

√
2)) =̃ Z|96 ⊕ Z|2, while K3(Q(

√
−2)) =̃ Z⊕ Z|48.

Classical techniques have not been able to proceed much beyond this. Although
Bass and Tate showed that the Milnor K-groups KM

n (F) are (Z|2)r1 for all n ≥ 3, and
hence nonzero for every real number field (one embeddable in R, so that r1 ≠ 0),
we have the following discouraging result.

10 Lemma 10 Let F be a real number field. The map KM
4 (F) → K4(F) is not injective,

and the map KM
n (F) → Kn(F) is zero for n ≥ 5.

Proof The map πs
1 → K1(Z) sends η to [−1]. Since πs∗ → K∗(Z) is a ring

homomorphism and η4 = 0, the Steinberg symbol {−1, −1, −1, −1} must be zero
in K4(Z). But the corresponding Milnor symbol is nonzero in KM

4 (F), because it
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is nonzero in KM
4 (R). This proves the first assertion. Bass and Tate prove [4] that

KM
n (F) is in the ideal generated by {−1, −1, −1, −1} for all n ≥ 5, which gives the

second assertion.

11Remark 11 Around the turn of the century, homological calculations by Rognes [53]
and Elbaz-Vincent/Gangl/Soulé [15] proved that K4(Z) = 0, K5(Z) = Z, and that
K6(Z) has at most 3-torsion. These follow from a refinement of the calculations
by Lee-Szczarba and Soulé in [57] that there is no p-torsion in K4(Z) or K5(Z) for
p > 3, together with the calculation in [51] that there is no 2-torsion in K4(Z),
K5(Z) or K6(Z).

The results of Rost and Voevodsky imply that K7(Z) =̃ Z|240 (see [76]). It is still
an open question whether or not K8(Z) = 0.

The e-Invariant 5.3

The odd-indexed K-groups of a field F have a canonical torsion summand, dis-
covered by Harris and Segal in [23]. It is detected by a map called the e-invariant,
which we now define.

Let F be a field, with separable closure F and Galois group G = Gal(F|F).
The abelian group µ of all roots of unity in F is a G-module. For all i, we shall
write µ(i) for the abelian group µ, made into a G-module by letting g ∈ G act as
ζ → gi(ζ). (This modified G-module structure is called the i-th Tate twist of the
usual structure.) Note that the abelian group underlying µ(i) is isomorphic toQ|Z
if char(F) = 0 and Q|Z[1|p] if char(F) = p ≠ 0. For each prime � ≠ char(F), we
write Z|�∞(i) for the �-primary G-submodule of µ(i), so that µ(i) = ⊕Z|�∞(i).

For each odd n = 2i − 1, Suslin proved [60, 62] that the torsion subgroup of
K2i−1(F) is naturally isomorphic to µ(i). It follows that there is a natural map

e : K2i−1(F)tors → K2i−1(F)G
tors =̃ µ(i)G . (5.7)

If µ(i)G is a finite group, write wi(F) for its order, so that µ(i)G =̃ Z|wi(F). This
is the case for all local and global fields (by 14 below). We shall call e the e-
invariant, since the composition πs

2i−1 → K2i−1(Q)
e→ Z|wi(Q) is Adams’ complex

e-invariant by [50].
The target group µ(i)G is always the direct sum of its �-primary Sylow subgroups

Z|�∞(i)G. The orders of these subgroups are determined by the roots of unity in
the cyclotomic extensions F(µ�ν ). Here is the relevant definition.

12Definition 12 Fix a prime �. For any field F, define integers w(�)
i (F) by

w(�)
i (F) = max

{
�ν | Gal

(
F(µ�ν )|F

)
has exponent dividing i

}

for each integer i. If there is no maximum ν we set w(�)
i (F) = �∞.



148 Charles Weibel

13 Lemma 13 Let F be a field and set G = Gal(F|F). Then Z|�∞(i)G is isomorphic to
Z|w(�)

i (F). Thus the target of the e-invariant is
⊕

� Z|w(�)
i (F).

Suppose in addition that w(�)
i (F) is 1 for almost all �, and is finite otherwise.

Then the target of the e-invariant is Z|wi(F), where wi(F) =
∏

w(�)
i (F).

Proof Let ζ be a primitive �ν-th root of unity. Then ζ⊗i is invariant under g ∈ G
(the absolute Galois group) precisely when gi(ζ) = ζ, and ζ⊗i is invariant under all
of G precisely when the group Gal(F(µ�ν )|F) has exponent i.

14 Corollary 14 Suppose that F(µ�) has only finitely many �-primary roots of unity
for all primes �, and that [F(µ�) : F] approaches ∞ as � approaches ∞. Then the
wi(F) are finite for all i ≠ 0.

This is the case for all local and global fields.

Proof For fixed i ≠ 0, the formulas in 20 and 22 below show that each w(�)
i is finite,

and equals one except when [F(µ�) : F] divides i. By assumption, this exception
happens for only finitely many �. Hence wi(F) is finite.

Example 15. (Finite fields.) Consider a finite field Fq. It is a pleasant exercise to
show that wi(Fq) = qi − 1 for all i. Quillen computed the K-theory of

Fq in [47], showing that K2i(Fq) = 0 for i > 0 and that K2i−1(Fq) =̃ Z|wi(Fq). In this
case, the e-invariant is an isomorphism.

The key part of the following theorem, i.e., the existence of a Z|wi summand,
was discovered in the 1975 paper [23] by Harris and Segal; the splitting map was
constructed in an ad hoc manner for number fields (see 18 below). The canonical
nature of the splitting map was only established much later, in [11, 21, 28].

The summand does not always exist when � = 2; for example K5(Z) = Z
but w3(Q) = 2. The Harris–Segal construction fails when the Galois groups of
cyclotomic field extensions are not cyclic. With this in mind, we call a field F non–
exceptional if the Galois groups Gal(F(µ2ν )|F) are cyclic for every ν, and exceptional
otherwise. There are no exceptional fields of finite characteristic. Both R and Q2

are exceptional, and so are each of their subfields. In particular, real number fields
(like Q) are exceptional, and so are some totally imaginary number fields, like
Q(

√
−7).

16 Theorem 16 Let R be an integrally closed domain containing 1|�, and set wi =
w(�)

i (R). If � = 2, we suppose that R is non-exceptional. Then each K2i−1(R) has
a canonical direct summand isomorphic to Z|wi, detected by the e-invariant.



Algebraic K-Theory of Rings of Integers in Local and Global Fields 149

The splitting Z|wi → K2i−1(R) is called the Harris–Segal map, and its image is
called the Harris–Segal summand of K2i−1(R).

Example 17. If R contains a primitive �ν-th root of unity ζ, we can give a simple
description of the subgroup Z|�ν of the Harris–Segal summand. In

this case, H0
ét(R, µ⊗i

�ν ) =̃ µ⊗i
�ν is isomorphic to Z|�ν, on generator ζ ⊗ · · · ⊗ ζ. If

β ∈ K2(R;Z|�ν) is the Bott element corresponding to ζ, the Bott map Z|�ν →
K2i(R;Z|�ν) sends 1 to βi. (This multiplication is defined unless �ν = 21.) The
Harris–Segal map, restricted to Z|�ν ⊆ Z|m, is just the composition

µ⊗i
�ν =̃ Z|�ν Bott→ K2i(R;Z|�ν) → K2i−1(R) .

18Remark 18 Harris and Segal [23] originally constructed the Harris–Segal map
by studying the homotopy groups of the space BN+, where N is the union of the
wreath products µ � Σn, µ = µ�ν . Each wreath product embeds in GLn(R[ζ�ν ]) as
the group of matrices whose entries are either zero or �ν-th roots of unity, each
row and column having at most one nonzero entry. Composing with the transfer,
this gives a group map N → GL(R[ζ�ν ]) → GL(R) and hence a topological map
BN+ → GL(R)+.

From a topological point of view, BN+ is the zeroth space of the spectrum
Σ∞(Bµ+), and is also the K-theory space of the symmetric monoidal category of
finite free µ-sets. The map of spectra underlying BN+ → GL(R)+ is obtained by
taking the K-theory of the free R-module functor from finite free µ-sets to free
R-modules.

Harris and Segal split this map by choosing a prime p that is primitive mod �,
and is a topological generator of Z×

� . Their argument may be interpreted as saying
that if Fq = Fp[ζ�ν ] then the composite map Σ∞(Bµ+) → K(R) → K(Fq) is an
equivalence after KU-localization.

If F is an exceptional field, a transfer argument using F(
√

−1) shows that there is
a cyclic summand in K2i−1(R) whose order is either wi(F), 2wi(F) or wi(F)|2. If F is
a totally imaginary number field, we will see in 73 that the Harris–Segal summand
is always Z|wi(F). The following theorem, which follows from Theorem 82 below
(see [51]), shows that all possibilities occur for real number fields, i.e., number
fields embeddable in R.

19Theorem 19 Let F be a real number field. Then the Harris–Segal summand in
K2i−1(OF) is isomorphic to:
1. Z|wi(F), if i ≡ 0 (mod 4) or i ≡ 1 (mod 4), i.e., 2i − 1 ≡ ±1 (mod 8);
2. Z|2wi(F), if i ≡ 2 (mod 4), i.e., 2i − 1 ≡ 3 (mod 8);
3. Z| 1

2 wi(F), if i ≡ 3 (mod 4), i.e., 2i − 1 ≡ 5 (mod 8).
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Here are the formulas for the numbers w(�)
i (F), taken from [23, p. 28], and from [74,

6.3] when � = 2. Let log�(n) be the maximal power of � dividing n, i.e., the �-adic
valuation of n. By convention let log�(0) = ∞.

20 Proposition 20 Fix a prime � ≠ 2, and let F be a field of characteristic ≠ �. Let
a be maximal such that F(µ�) contains a primitive �a-th root of unity. Then if
r = [F(µ�) : F] and b = log�(i) the numbers w(�)

i = w(�)
i (F) are:

(a) If µ� ∈ F then w(�)
i = �a+b;

(b) If µ� �∈ F and i ≡ 0 (mod r) then w(�)
i = �a+b;

(c) If µ� �∈ F and i �≡ 0 (mod r) then w(�)
i = 1.

Proof Since � is odd, G = Gal(F(µ�a+ν )|F) is a cyclic group of order r�ν for all ν ≥ 0.
If a generator of G acts on µ�a+ν by ζ → ζg for some g ∈ (Z|�a+ν)× then it acts on
µ⊗i by ζ → ζgi

.

Example 21. If F = Q(µpν ) and � ≠ 2, p then w(�)
i (F) = w(�)

i (Q) for all i. This
number is 1 unless (� − 1) | i; if (� − 1) � i but � � i then w(�)

i (F) = �.
In particular, if � = 3 and p ≠ 3 then w(3)

i (F) = 1 for odd i, and w(3)
i (F) = 3 exactly

when i ≡ 2, 4 (mod 6). Of course, p|wi(F) for all i.

22 Proposition 22 (� = 2) Let F be a field of characteristic ≠ 2. Let a be maximal such
that F(

√
−1) contains a primitive 2a-th root of unity. Let i be any integer, and let

b = log2(i). Then the 2-primary numbers w(2)
i = w(2)

i (F) are:
(a) If

√
−1 ∈ F then w(2)

i = 2a+b for all i.
(b) If

√
−1 |∈ F and i is odd then w(2)

i = 2.
(c) If

√
−1 |∈ F, F is exceptional and i is even then w(2)

i = 2a+b.
(d) If

√
−1 |∈ F, F is non–exceptional and i is even then w(2)

i = 2a+b−1.

Example 23. (Local fields.) If E is a local field, finite over Qp, then wi(E) is finite
by 14. Suppose that the residue field is Fq. Since (for � ≠ p) the

number of �-primary roots of unity in E(µ�) is the same as in Fq(µ�), we see
from 20 and 22 that wi(E) is wi(Fq) = qi − 1 times a power of p.

If p > 2 the p-adic rational numbersQp have wi(Qp) = qi − 1 unless (p − 1)|i; if
i = (p − 1)pbm (p � m) then wi(Qp) = (qi − 1)p1+b.

For p = 2 we have wi(Q2) = 2(2i − 1) for i odd, because Q2 is exceptional, and
wi(Q2) = (2i − 1)22+b for i even, i = 2bm with m odd.
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Example 24. (Bernoulli numbers.) The numbers wi(Q) are related to the Bernoulli
numbers Bk. These were defined by Jacob Bernoulli in 1713 as coef-

ficients in the power series

t

et − 1
= 1 −

t

2
+

∞∑

k=1

(−1)k+1Bk
t2k

(2k)!
.

(We use the topologists’ Bk from [41], all of which are positive. Number theorists
would write it as (−1)k+1B2k.) The first few Bernoulli numbers are:

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
,

B5 =
5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
.

The denominator of Bk is always squarefree, divisible by 6, and equal to the product
of all primes with (p−1)|2k. Moreover, if (p−1) � 2k then p is not in the denominator
of Bk|k even if p|k; see [41].

Although the numerator of Bk is difficult to describe, Kummer’s congruences
show that if p is regular it does not divide the numerator of any Bk|k (see [71, 5.14]).
Thus only irregular primes can divide the numerator of Bk|k (see 3).

25Remark 25 We have already remarked in 3 that if a prime p divides the numerator
of some Bk|k then p divides the order of Pic(Z[µp]). Bernoulli numbers also arise
as values of the Riemann zeta function. Euler proved (in 1735) that ζQ (2k) =
Bk(2π)2k|2(2k)!. By the functional equation, we have ζQ (1 − 2k) = (−1)kBk|2k. Thus
the denominator of ζ(1 − 2k) is 1

2 w2k(Q).

26Remark 26 The Bernoulli numbers are of interest to topologists because if n = 4k−1
the image of J : πnSO → πs

n is cyclic of order equal to the denominator of Bk|4k,
and the numerator determines the number of exotic (4k − 1)-spheres that bound
parallizable manifolds; (see [41], App. B).

From 24, 20 and 22 it is easy to verify the following important result.

27Lemma 27 If i is odd then wi(Q) = 2 and wi(Q(
√

−1)) = 4. If i = 2k is even then
wi(Q) = wi(Q(

√
−1)), and this integer is the denominator of Bk|4k. The prime �

divides wi(Q) exactly when (� − 1) divides i.



152 Charles Weibel

Example 28. For F = Q or Q(
√

−1), w2 = 24, w4 = 240, w6 = 504 = 23 · 32 · 7,
w8 = 480 = 25 · 3 · 5, w10 = 264 = 23 · 3 · 11, and w12 = 65 520 =

24 · 32 · 5 · 7 · 13.
The wi are the orders of the Harris–Segal summands of K3(Q[

√
−1]),

K7(Q[
√

−1]), …, K23(Q[
√

−1]) by 16. In fact, we will see in 73 that K2i−1(Q[
√

−1]) =̃
Z⊕ Z|wi for all i ≥ 2.

By 19, the orders of the Harris–Segal summands of K7(Q), K15(Q), K23(Q),
… are w4, w8, w12, etc., and the orders of the Harris–Segal summands of K3(Q),
K11(Q), K19(Q), … are 2w2 = 48, 2w6 = 1008, 2w10 = 2640, etc. In fact, these
summands are exactly the torsion subgroups of the K2i−1(Q).

Example 29. The image of the natural maps πs
n → Kn(Z) capture most of the

Harris–Segal summands, and were analyzed by Quillen in [50].
When n is 8k+1 or 8k+2, there is aZ|2-summand in Kn(Z), generated by the image
of Adams’ element µn. (It is the 2-torsion subgroup by [76].) Since w4k+1(Q) = 2,
we may view it as the Harris–Segal summand when n = 8k+1. When n = 8k+5, the
Harris–Segal summand is zero by 19. When n = 8k + 7 the Harris–Segal summand
of Kn(Z) is isomorphic to the subgroup J(πnO) =̃ Z|w4k+4(Q) of πs

n.
When n = 8k + 3, the subgroup J(πnO) =̃ Z|w4k+2(Q) of πs

n is contained in the
Harris–Segal summand Z|(2wi) of Kn(Z); the injectivity was proven by Quillen
in [50], and Browder showed that the order of the summand was 2wi(Q).

Not all of the image of J injects into K∗(Z). If n = 0, 1 (mod 8) then J(πnO) =̃ Z|2,
but Waldhausen showed (in 1982) that these elements map to zero in Kn(Z).

Example 30. Let F = Q(ζ + ζ−1) be the maximal real subfield of the cyclotomic
fieldQ(ζ), ζp = 1 with p odd. Then wi(F) = 2 for odd i, and wi(F) =

wi(Q(ζ)) for even i > 0 by 20 and 22. Note that p|wi(F[ζ]) for all i, p|wi(F) if and
only if i is even, and p|wi(Q) only when (p − 1)|i. If n ≡ 3 (mod 4), the groups
Kn(Z[ζ + ζ−1]) = Kn(F) are finite by 6; the order of their Harris–Segal summands
are given by Theorem 19, and have an extra p-primary factor not detected by the
image of J when n �≡ −1 (mod 2p − 2).

31 Conjecture 31: (Birch–Tate Conjecture.) If F is a number field, the zeta function
ζF(s) has a pole of order r2 at s = −1. Birch and Tate [64] conjectured that for totally
real number fields (r2 = 0) we have

ζF(−1) = (−1)r1 |K2(OF)||w2(F) .

The odd part of this conjecture was proven by Wiles in [77], using Tate’s Theorem 4.
The two-primary part is still open, but it is known to be a consequence of the 2-adic
Main Conjecture of Iwasawa Theory (see Kolster’s appendix to [51]), which was
proven by Wiles in loc. cit. for abelian extensions of Q. Thus the full Birch–Tate
Conjecture holds for all abelian extensions ofQ. For example, when F = Qwe have
ζQ (−1) = −1|12, |K2(Z)| = 2 and w2(Q) = 24.
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Étale Chern Classes 5.4

We have seen in (5.4) and 4 that H1
ét and H2

ét are related to K1 and K2. In order
to relate them to higher K-theory, it is useful to have well-behaved maps. In one
direction, we use the étale Chern classes introduced in [58], but in the form found
in Dwyer-Friedlander [14].

In this section, we construct the maps in the other direction. Our formulation
is due to Kahn [26–28]; they were introduced in [27], where they were called “anti-
Chern classes”. Kahn’s maps are an efficient reorganization of the constructions
of Soulé [58] and Dwyer-Friedlander [14]. Of course, there are higher Kahn maps,
but we do not need them for local or global fields so we omit them here.

If F is a field containing 1|�, there is a canonical map from K2i−1(F;Z|�ν) to
H1

ét(F, µ⊗i
�ν ), called the first étale Chern class. It is the composition of the map to the

étale K-group Két
2i−1(F;Z|�ν) followed by the edge map in the Atiyah-Hirzebruch

spectral sequence for étale K-theory [14]. For i = 1 it is the Kummer isomorphism
from K1(F;Z|�ν) = F×|F×�ν

to H1
ét(F, µ�ν ).

For each i and ν, we can construct a splitting of the first étale Chern class, at
least if � is odd (or � = 2 and F is non-exceptional). Let Fν denote the smallest field
extension of F over which the Galois module µ⊗i−1

�ν is trivial, and let Γν denote the
Galois group of Fν over F. Kahn proved in [26] that the transfer map induces an

isomorphism H1
ét(Fν, µ⊗i

�ν )Γν

=̃→ H1
ét(F, µ⊗i

�ν ). Note that because H1
ét(Fν, µ�ν ) =̃ F×

ν |�ν

we have an isomorphism of Γν-modules H1
ét(Fν, µ⊗i

�ν ) =̃ (F×
ν ) ⊗ µ⊗i−1

�ν .

32Definition 32 The Kahn map H1
ét(F, µ⊗i

�ν ) → K2i−1(F;Z|�ν) is the composition

H1
ét(F, µ⊗i

�ν )
=̃← H1

ét(Fν, µ⊗i
�ν )Γν =

[
F×

ν ⊗ µ⊗i−1
�ν

]

Γν

Harris–Segal

[
(F×

ν ) ⊗ K2i−2(Fν;Z|�ν)

]

Γν

∪→ K2i−1(Fν;Z|�ν)Γν

transfer
K2i−1(F;Z|�ν) .

33Compatibility 33 Let F be the quotient field of a discrete valuation ring whose
residue field k contains 1|�. Then the Kahn map is compatible with the Harris–Segal
map in the sense that for m = �ν the diagram commutes.

H1
ét(F, µ⊗i

m ) ��

∂

��

Kahn

H0
ét(k, µ⊗i−1

m )

��

Harris–Segal

K2i−1(F;Z|m) ��

∂

K2i−2(k;Z|m) .
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To see this, one immediately reduces to the case F = Fν . In this case, the Kahn map
is the Harris–Segal map, tensored with the identification H1

ét(F, µm) =̃ F×|m, and
both maps ∂ amount to the reduction mod m of the valuation map F× → Z.

34 Theorem 34 Let F be a field containing 1|�. If � = 2 we suppose that F is non-
exceptional. Then for each i the Kahn map H1

ét(F, µ⊗i
�ν ) → K2i−1(F;Z|�ν) is an

injection, split by the first étale Chern class.
The Kahn map is compatible with change of coefficients. Hence it induces maps

H1
ét(F,Z�(i)) → K2i−1(F;Z�) and H1

ét(F,Z|�∞(i)) → K2i−1(F;Z|�∞).

Proof When � is odd (or � = 2 and
√

−1 ∈ F), the proof that the Kahn map splits
the étale Chern class is given in [27], and is essentially a reorganization of Soulé’s
proof in [58] that the first étale Chern class is a surjection up to factorials (cf. [14]).
When � = 2 and F is non-exceptional, Kahn proves in [28] that this map is a split
injection.

35 Corollary 35 Let OS be a ring of S-integers in a number field F, with 1|� ∈ OS.
If � = 2, assume that F is non-exceptional. Then the Kahn maps for F induce
injections H1

ét(OS, µ⊗i
�ν ) → K2i−1(OS;Z|�ν), split by the first étale Chern class.

Proof Since H1
ét(OS, µ⊗i

�ν ) is the kernel of H1
ét(F, µ⊗i

�ν ) → ⊕℘H0
ét(k(℘), µ⊗i−1

m ), and
K2i−1(OS;Z|�ν) is the kernel of K2i−1(F;Z|�ν) → ⊕℘K2i−2(k(℘);Z|�ν) by 7, this
follows formally from 33.

Example 36. If F is a number field, the first étale Chern class detects the torsion-
free part of K2i−1(OF) = K2i−1(F) described in 6. In fact, it induces

isomorphisms K2i−1(OS) ⊗Q� =̃ Két
2i−1(OS;Q�) =̃ H1

ét(OS,Q�(i)).
To see this, choose S to contain all places over some odd prime �. Then 1|� ∈ OS,

and K2i−1(OS) =̃ K2i−1(F). A theorem of Tate states that

rank H1
ét(OS,Q�(i)) − rank H2

ét(OS,Q�(i)) =





r2, i even ;

r1 + r2, i odd .

We will see in 42 below that H2
ét(OS,Q�(i)) = 0. Comparing with 6, we see that the

source and target of the first étale Chern class

K2i−1(OS) ⊗ Z� → Két
2i−1(OS;Z�) =̃ H1

ét(OS,Z�(i))
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have the same rank. By 34, this map is a split surjection (split by the Kahn map),
whence the claim.

The second étale Chern class is constructed in a similar fashion. Assuming that �

is odd, or that � = 2 and F is non-exceptional, so that the e-invariant splits by 16,
then for i ≥ 1 there is also a canonical map

K2i(F;Z|�ν) → H2
ét(F, µ⊗i+1

�ν ) ,

called the second étale Chern class. It is the composition of the map to the étale
K-group Két

2i (F;Z|�ν), or rather to the kernel of the edge map Két
2i (F;Z|�ν) →

H0
ét(F, µ⊗i

�ν ), followed by the secondary edge map in the Atiyah-Hirzebruch spectral
sequence for étale K-theory [14].

Even if � = 2 and F is exceptional, this composition will define a family of second
étale Chern classes K2i(F) → H2

ét(F, µ⊗i+1
�ν ) and hence K2i(F) → H2

ét(F,Z�(i +
1)). This is because the e-invariant (5.7) factors through the map K2i(F;Z|�ν) →
K2i−1(F).

For i = 1, the second étale Chern class K2(F)|m → H2
ét(F, µ⊗2

m ) is just Tate’s map,
described in 4; it is an isomorphism for all F by the Merkurjev-Suslin theorem.

Using this case, Kahn proved in [26] that the transfer always induces an iso-

morphism H2
ét(Fν, µ⊗i

�ν )Γν

=̃→ H2
ét(F, µ⊗i

�ν ). Here Fν and Γν = Gal(Fν|F) are as in 32
above, and if � = 2 we assume that F is non-exceptional. As before, we have an
isomorphism of Γν-modules H2

ét(Fν, µ⊗i+1
�ν ) =̃ K2(Fν) ⊗ µ⊗i−1

�ν .

37Definition 37 The Kahn map H2
ét(F, µ⊗i+1

�ν ) → K2i(F;Z|�ν) is the composition

H2
ét(F, µ⊗i+1

�ν )
=̃← H2

ét(Fν, µ⊗i+1
�ν )Γν =

[
K2(Fν) ⊗ µ⊗i−1

�ν

]

Γν

Harris–Segal

[
K2(Fν) ⊗ K2i−2(Fν;Z|�ν)

]

Γν

∪→ K2i(Fν;Z|�ν)Γν

transfer
K2i(F;Z|�ν) .

38Compatibility 38 Let F be the quotient field of a discrete valuation ring whose
residue field k contains 1|�. Then the first and second Kahn maps are compatible
with the maps ∂, from H2

ét(F) to H1
ét(k) and from K2i(F;Z|m) to K2i−1(k;Z|m). The

argument here is the same as for 33.

As with 34, the following theorem was proven in [27, 28].

39Theorem 39 Let F be a field containing 1|�. If � = 2 we suppose that F is non-
exceptional. Then for each i ≥ 1 the Kahn map H2

ét(F, µ⊗i+1
�ν ) → K2i(F;Z|�ν) is an

injection, split by the second étale Chern class.
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The Kahn map is compatible with change of coefficients. Hence it induces maps
H2

ét(F,Z�(i + 1)) → K2i(F;Z�) and H2
ét(F,Z|�∞(i + 1)) → K2i(F;Z|�∞).

40 Corollary 40 Let OS be a ring of S-integers in a number field F, with 1|� ∈ OS. If
� = 2, assume that F is non-exceptional. Then for each i > 0, the Kahn maps induce
injections H2

ét(OS,Z�(i + 1)) → K2i(OS;Z�), split by the second étale Chern class.

Proof Since H2
ét(OS,Z�(i + 1)) is the kernel of

H2
ét

(
F,Z�(i + 1)

) → ⊕℘H1
ét

(
k(℘),Z�(i)

)
,

and K2i(OS;Z�) is the kernel of K2i(F;Z�) → ⊕℘K2i−1(k(℘);Z�), this follows
formally from 38.

41 Remark 41 For each ν, H2
ét(OS, µ⊗i+1

�ν ) → K2i(OS;Z|�ν) is also a split surjection,
essentially because the map H2

ét(OS,Z�(i + 1)) → H2
ét(OS, µ⊗i+1

�ν ) is onto; see [27,
5.2].

The summand H2
ét(OS,Z�(i)) is finite by the following calculation.

42 Proposition 42 Let OS be a ring of S-integers in a number field F with 1|� ∈ OS.
Then for all i ≥ 2, H2

ét(OS,Z�(i)) is a finite group, and H2
ét(OS,Q�(i)) = 0.

Finally, H2
ét(OS,Z|�∞(i)) = 0 if � is odd, or if � = 2 and F is totally imaginary.

Proof If � is odd or if � = 2 and F is totally imaginary, then H3
ét(OS,Z�(i)) = 0 by

Serre [55], so H2
ét(OS,Z|�∞(i)) is a quotient of H2

ét(OS,Q�(i)). Since H2
ét(R,Q�(i)) =

H2
ét(R,Z�(i)) ⊗Q, it suffices to prove the first assertion for i > 0. But H2

ét(OS,Z�(i))
is a summand of K2i−2(OS)⊗Z� for i ≥ 2 by 40, which is a finite group by Theorem 6.

If � = 2 and F is exceptional, the usual transfer argument for OS ⊂ OS′ ⊂
F(

√
−1) shows that the kernel A of H2

ét(OS,Z2(i)) → H2
ét(OS′ ,Z2(i)) has exponent 2.

Since A must inject into the finite group H2
ét(OS, µ2), A must also be finite. Hence

H2
ét(OS,Z2(i)) is also finite, and H2

ét(R,Q�(i)) = H2
ét(R,Z�(i)) ⊗Q = 0.

Taking the direct limit over all finite S yields:

43 Corollary 43 Let F be a number field. Then H2
ét(F,Z|�∞(i)) = 0 for all odd primes �

and all i ≥ 2.
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Example 44. The Main Conjecture of Iwasawa Theory, proved by Mazur and
Wiles [36], implies that (for odd �) the order of the finite group

H2
ét(Z[1|�],Z�(2k)) is the �-primary part of the numerator of ζQ (1 − 2k). See [51,

Appendix A] or [29, 4.2 and 6.3], for example. Note that by Euler’s formula 25 this
is also the �-primary part of the numerator of Bk|2k, where Bk is the Bernoulli
number discussed in 24.

45Remark 45: (Real number fields.) If � = 2, the vanishing conclusion of corol-
lary 43 still holds when F is totally imaginary. However, it fails when F has r1 > 0
embeddings into R:

H2
(
OS;Z|2∞(i)

)
=̃ H2

(
F;Z|2∞(i)

)
=̃





(Z|2)r1 , i ≥ 3 odd

0, i ≥ 2 even .

One way to do this computation is to observe that, by 42, H2(OS;Z|2∞(i)) has
exponent 2. Hence the Kummer sequence is:

0 → H2
(
OS;Z|2∞(i)

) → H3(OS;Z|2) → H3(OS;Z|2∞(i)) → 0 .

Now plug in the values of the right two groups, which are known by Tate-Poitou
duality: H3(OS;Z|2) =̃ (Z|2)r1 , while H3(OS;Z|2∞(i)) is: (Z|2)r1 for i even, and 0
for i odd.

46Remark 46 Suppose that F is totally real (r2 = 0), and set wi = w(�)
i (F). If i > 0 is

even then H1(OS,Z�(i)) =̃ Z|wi; this group is finite. If i is odd then H1(OS,Z�(i)) =̃
Z

r1
� ⊕ Z|wi; this is infinite. These facts may be obtained by combining the rank

calculations of 36 and 42 with (5.7) and universal coefficients.

47Theorem 47 For every number field F, and all i, the Adams operation ψk acts on
K2i−1(F) ⊗Q as multiplication by ki.

Proof The case i = 1 is well known, so we assume that i ≥ 2. If S contains all
places over some odd prime � we saw in 36 that K2i−1(OS) ⊗Q� =̃ Két

2i−1(OS;Q�) =̃
H1

ét(OS,Q�(i)). Since this isomorphism commutes with the Adams operations, and
Soulé has shown in [59] the ψk = ki on H1

ét(OS,Q�(i)), the same must be true on
K2i−1(OS) ⊗Q� = K2i−1(F) ⊗Q�.
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Global Fields of Finite Characteristic5.5

A global field of finite characteristic p is a finitely generated field F of transcendence
degree one over Fp; the algebraic closure of Fp in F is a finite field Fq of character-
istic p. It is classical (see [24], I.6) that there is a unique smooth projective curve X
over Fq whose function field is F. If S is a nonempty set of closed points of X, then
X − S is affine; we call the coordinate ring R of X − S the ring of S-integers in F. In
this section, we discuss the K-theory of F, of X and of the rings of S-integers of F.

The group K0(X) = Z⊕ Pic(X) is finitely generated of rank two, by a theorem
of Weil. In fact, there is a finite group J(X) such that Pic(X) =̃ Z⊕ J(X). For K1(X)
and K2(X), the localization sequence of Quillen [49] implies that there is an exact
sequence

0 → K2(X) → K2(F)
∂→ ⊕x∈Xk(x)× → K1(X) → F

×
q → 0 .

By classical Weil reciprocity, the cokernel of ∂ is F×
q , so K1(X) =̃ F×

q × F×
q . Bass

and Tate proved in [4] that the kernel K2(X) of ∂ is finite of order prime to p. This
establishes the low dimensional cases of the following theorem, first proven by
Harder [22], using the method pioneered by Borel [7].

48 Theorem 48 Let X be a smooth projective curve over a finite field of characteristic p.
For n ≥ 1, the group Kn(X) is finite of order prime to p.

Proof Tate proved that KM
n (F) = 0 for all n ≥ 3. By Geisser and Levine’s theo-

rem [19], the Quillen groups Kn(F) are uniquely p-divisible for n ≥ 3. For every
closed point x ∈ X, the groups Kn(x) are finite of order prime to p (n > 0) because
k(x) is a finite field extension of Fq. From the localization sequence

⊕x∈XKn(x) → Kn(X) → Kn(F) → ⊕x∈XKn−1(x)

and a diagram chase, it follows that Kn(X) is uniquely p-divisible. Now Quillen
proved in [20] that the groups Kn(X) are finitely generated abelian groups. A second
diagram chase shows that the groups Kn(X) must be finite.

49 Corollary 49 If R is the ring of S-integers in F = Fq(X) (and S ≠ ∅) then:
a) K1(R) =̃ R× =̃ F×

q × Zs, |S| = s + 1;
b) For n ≥ 2, Kn(R) is a finite group of order prime to p.

Proof Classically, K1(R) = R× ⊕ SK1(R) and the units of R are well known. The
computation that SK1(R) = 0 is proven in [3]. The rest follows from the localization
sequence Kn(X) → Kn(X′) → ⊕x∈SKn−1(x).
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Example 50. (The e-invariant.) The targets of the e-invariant of X and F are the
same groups as for Fq, because every root of unity is algebraic over

Fq. Hence the inclusions of K2i−1(Fq) =̃ Z|(qi − 1) in K2i−1(X) and K2i−1(F) are split
by the e-invariant, and this group is the Harris–Segal summand.

The inverse limit of the finite curves Xν = X × Spec(Fqν ) is the curve X = X ⊗Fq Fq

over the algebraic closure Fq. To understand Kn(X) for n > 1, it is useful to know
not only what the groups Kn(X) are, but how the (geometric) Frobenius ϕ : x → xq

acts on them.
Classically, K0(X) = Z ⊕ Z ⊕ J(X), where J(X) is the group of points on the

Jacobian variety over Fq; it is a divisible torsion group. If � ≠ p, the �-primary
torsion subgroup J(X)� of J(X) is isomorphic to the abelian group (Z|�∞)2g . The
group J(X) may or may not have p-torsion. For example, if X is an elliptic curve
then the p-torsion in J(X) is either 0 or Z|p∞, depending on whether or not X
is supersingular (see [24], Ex. IV.4.15). Note that the localization J(X)[1|p] is the
direct sum over all � ≠ p of the �-primary groups J(X)�.

Next, recall that the group of units F
×
q may be identified with the group µ of

all roots of unity in Fq; its underlying abelian group is isomorphic to Q|Z[1|p].
Passing to the direct limit of the K1(Xν) yields K1(X) =̃ µ ⊕ µ.

For n ≥ 1, the groups Kn(X) are all torsion groups, of order prime to p, because
this is true of each Kn(Xν) by 48. The following theorem determines the abelian
group structure of the Kn(X) as well as the action of the Galois group on them.
It depends upon Suslin’s theorem (see [63]) that for i ≥ 1 and � ≠ p the groups
Hn

M(X,Z|�∞(i)) equal the groups Hn
ét(X,Z|�∞(i)).

51Theorem 51 Let X be a smooth projective curve over Fq. Then for all n ≥ 0 we
have isomorphisms of Gal(Fq|Fq)-modules:

Kn(X) =̃






Z⊕ Z⊕ J(X), n = 0

µ(i) ⊕ µ(i), n = 2i − 1 > 0

J(X)[1|p](i), n = 2i > 0 .

For � ≠ p, the �-primary subgroup of Kn−1(X) is isomorphic to Kn(X;Z|�∞), n > 0,
whose Galois module structure is given by:

Kn(X;Z|�∞) =̃





Z|�∞(i) ⊕ Z|�∞(i), n = 2i ≥ 0

J(X)�(i − 1), n = 2i − 1 > 0 .

Proof Since the groups Kn(X) are torsion for all n > 0, the universal coefficient
theorem shows that Kn(X;Z|�∞) is isomorphic to the �-primary subgroup of
Kn−1(X). Thus we only need to determine the Galois modules Kn(X;Z|�∞). For
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n = 0, 1, 2 they may be read off from the above discussion. For n > 2 we consider
the motivic spectral sequence (5.3); by Suslin’s theorem, the terms E

p,q
2 vanish

for q < 0 unless p = q, q + 1, q + 2. There is no room for differentials, so the
spectral sequence degenerates at E2 to yield the groups Kn(X;Z|�∞). There are
no extension issues because the edge maps are the e-invariants K2i(X;Z|�∞) →
H0

ét(X,Z|�∞(i)) = Z|�∞(i) of 50, and are therefore split surjections. Finally, we note
that as Galois modules we have H1

ét(X,Z|�∞(i)) =̃ J(X)�(i − 1), and (by Poincaré
Duality [39, V.2]) H2

ét(X,Z|�∞(i + 1)) =̃ Z|�∞(i).

Passing to invariants under the group G = Gal(Fq|Fq), there is a natural map
from Kn(X) to Kn(X)G. For odd n, we see from Theorem 51 and Example 15 that
K2i−1(X)G =̃ Z|(qi − 1)⊕Z|(qi − 1); for even n, we have the less concrete description
K2i(X)G =̃ J(X)[1|p](i)G. One way of studying this group is to consider the action
of the algebraic Frobenius ϕ∗ (induced by ϕ−1) on cohomology.

Example 52. ϕ∗ acts trivially on H0
ét(X,Q�) = Q� and H2

ét(X,Q�(1)) = Q�. It acts
as q−i on the twisted groups H0

ét(X,Q�(i)) and H2
ét(X,Q�(i + 1)).

Weil’s proof in 1948 of the Riemann Hypothesis for Curves implies that the
eigenvalues of ϕ∗ acting on H1

ét(X,Q�(i)) have absolute value q1|2−i.
Since Hn

ét(X,Q�(i)) =̃ Hn
ét(X,Q�(i))G, a perusal of these cases shows that we have

Hn
ét(X,Q�(i)) = 0 except when (n, i) is (0, 0) or (2, 1).

For any G-module M, we have an exact sequence [75, 6.1.4]

0 → MG → M
ϕ∗−1

M → H1(G, M) → 0 . (5.8)

The case i = 1 of the following result reproduces Weil’s theorem that the �-primary
torsion part of the Picard group of X is J(X)G

� .

53 Lemma 53 For a smooth projective curve X over Fq, � � q and i ≥ 2, we have:

1. Hn+1
ét (X,Z�(i)) =̃ Hn

ét(X,Z|�∞(i)) =̃ Hn
ét(X,Z|�∞(i))G for all n;

2. H0
ét(X,Z|�∞(i)) =̃ Z|w(�)

i (F);

3. H1
ét(X,Z|�∞(i)) =̃ J(X)�(i − 1)G;

4. H2
ét(X,Z|�∞(i)) =̃ Z|w(�)

i−1(F); and

5. Hn
ét(X,Z|�∞(i)) = 0 for all n ≥ 3.

Proof Since i ≥ 2, we see from 52 that Hn
ét(X,Q�(i)) = 0. SinceQ�|Z� = Z|�∞, this

yields Hn
ét(X,Z|�∞(i)) =̃ Hn+1

ét (X,Z�(i)) for all n.
Since each Hn = Hn

ét(X,Z|�∞(i)) is a quotient of Hn
ét(X,Q�(i)), ϕ∗ − 1 is a surjec-

tion, i.e., H1(G, Hn) = 0. Since Hn(G, −) = 0 for n > 1, the Leray spectral sequence
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for X → X collapses for i > 1 to yield exact sequences

0 → Hn
ét

(
X,Z|�∞(i)

) → Hn
ét

(
X,Z|�∞(i)

) ϕ∗−1→ Hn
ét

(
X,Z|�∞(i)

) → 0 . (5.9)

In particular, Hn
ét(X,Z|�∞(i)) = 0 for n > 2. Since H2

ét(X,Z|�∞(i)) =̃ Z|�∞(i−1) this
yields H2

ét(X,Z|�∞(i)) =̃ Z|�∞(i − 1)G = Z|wi−1. We also see that H1
ét(X,Z|�∞(i))

is the group of invariants of the Frobenius, i.e., J(X)�(i − 1)ϕ∗
.

Given the calculation of Kn(X)G in 51 and that of Hn
ét(X,Z|�∞(i)) in 53, we see

that the natural map Kn(X) → Kn(X)G is a surjection, split by the Kahn maps 34
and 39. Thus the real content of the following theorem is that Kn(X) → Kn(X)G is
an isomorphism.

54Theorem 54 Let X be the smooth projective curve corresponding to a global
field F over Fq. Then K0(X) = Z ⊕ Pic(X), and the finite groups Kn(X) for n > 0
are given by:

Kn(X) =̃ Kn(X)G =̃





Kn(Fq) ⊕ Kn(Fq), n odd ,
⊕

�≠p J(X)�(i)G, n = 2i even .

Proof We may assume that n ≠ 0, so that the groups Kn(X) are finite by 48. It
suffices to calculate the �-primary part Kn+1(X;Z|�∞) of Kn(X). But this follows
from the motivic spectral sequence (5.3), which degenerates by 53.

The Zeta Function of a Curve
We can relate the orders of the K-groups of the curve X to values of the zeta function
ζX(s). By definition, ζX(s) = Z(X, q−s), where

Z(X, t) = exp

( ∞∑

n=1

∣∣X(Fqn )
∣∣ tn

n

)
.

Weil proved that Z(X, t) = P(t)|(1 − t)(1 − qt) for every smooth projective curve X,
where P(t) ∈ Z[t] is a polynomial of degree 2 · genus(X) with all roots of absolute
value 1|√q. This formula is a restatement of Weil’s proof of the Riemann Hypothesis
for X (52 above), given Grothendieck’s formula P(t) = det(1 − ϕ∗t), where ϕ∗
is regarded as an endomorphism of H1

ét(X;Q�). Note that by 52 the action of
ϕ∗ on H0

ét(X;Q�) has det(1 − ϕ∗t) = (1 − t), and the action on H2
ét(X;Q�) has

det(1 − ϕ∗t) = (1 − qt).
Here is application of Theorem 54, which goes back to Thomason (see [67, (4.7)]

and [35]). Let#A denote the order of a finite abelian group A.
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55 Corollary 55 If X is a smooth projective curve over Fq then for all i ≥ 2,

#K2i−2(X) ·#K2i−3(Fq)

#K2i−1(Fq) ·#K2i−3(X)

=
∏

�

#H2
ét(X;Z�(i))

#H1
ét(X;Z�(i)) ·#H3

ét(X;Z�(i))
=

∣∣ζX(1 − i)
∣∣ .

Proof We have seen that all the groups appearing in this formula are finite. The
first equality follows from 53 and 54. The second equality follows by the Weil-
Grothendieck formula for ζX(1 − i) mentioned a few lines above.

Iwasawa modules
The group H1

ét(X,Z|�∞(i)) is the (finite) group of invariants M#(i)ϕ∗
of the i-th

twist of the Pontrjagin dual M# of the Iwasawa module M = MX . By definition MX

is the Galois group of X̂ over X∞ = X ⊗Fq Fq(∞), where the field Fq(∞) is obtained
from Fq by adding all �-primary roots of unity, and X̂ is the maximal unramified
pro-� abelian cover of X∞. It is known that the Iwasawa module MX is a finitely
generated free Z�-module, and that its dual M# is a finite direct sum of copies
of Z|�∞ [12, 3.22]. This viewpoint was developed in [13], and the corresponding
discussion of Iwasawa modules for number fields is in [42].

Local Fields5.6

Let E be a local field of residue characteristic p, with (discrete) valuation ring V
and residue field Fq. It is well known that K0(V) = K0(E) = Z and K1(V) = V×,
K1(E) = E× =̃ (V×) × Z, where the factor Z is identified with the powers {πm} of
a parameter π of V . It is well known that V× =̃ µ(E) × U1, where µ(E) is the group
of roots of unity in E (or V), and where U1 is a free Zp-module.

In the equi-characteristic case, where char(E) = p, it is well known that V =̃
Fq[[π]] and E = Fq((π)) [55], so µ(E) = F×

q , and U1 = W(Fq) has rank [Fq : Fp]
over Zp = W(Fp). The decomposition of K1(V) = V× is evident here. Here is
a description of the abelian group structure on Kn(V) for n > 1.

56 Theorem 56 Let V = Fq[[π]] be the ring of integers in the local field E = Fq((π)).
For n ≥ 2 there are uncountable, uniquely divisible abelian groups Un so that

Kn(V) =̃ Kn(Fq) ⊕ Un, Kn(E) =̃ Kn(V) ⊕ Kn−1(Fq) .
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Proof The map Kn−1(Fq) → Kn(E) sending x to {x, π} splits the localization
sequence, yielding the decomposition of Kn(E). If Un denotes the kernel of the
canonical map Kn(V) → Kn(Fq), then naturality yields Kn(V) = Un ⊕ Kn(Fq). By
Gabber’s rigidity theorem [17], Un is uniquely �-divisible for � ≠ p and n > 0. It
suffices to show that Un is uncountable and uniquely p-divisible when n ≥ 2.

Tate showed that the Milnor groups KM
n (E) are uncountable, uniquely divisible

for n ≥ 3, and that the same is true for the kernel U2 of the norm residue map
K2(E) → µ(E); see [66]. If n ≥ 2 then KM

n (E) is a summand of the Quillen K-
group Kn(E) by [61]. On the other hand, Geisser and Levine proved in [19] that the
complementary summand is uniquely p-divisible.

In the mixed characteristic case, when char(E) = 0, even the structure of V× is
quite interesting. The torsion free part U1 is a free Zp-module of rank [E : Qp];
it is contained in (1 + πV)× and injects into E by the convergent power series for
x → ln(x).

The group µ(E) of roots of unity in E (or V) is identified with (F∗
q) × µp∞(E),

where the first factor arises from Teichmüller’s theorem that V× → F
×
q =̃ Z|(q − 1)

has a unique splitting, and µp∞(E) denotes the finite group of p-primary roots of
unity in E. There seems to be no simple formula for the order of the cyclic p-group
µp∞(E).

For K2, there is a norm residue symbol K2(E) → µ(E) and we have the following
result; see [75, III.6.6].

57Theorem 57: (Moore’s Theorem.) The group K2(E) is the product of a finite
group, isomorphic to µ(E), and an uncountable, uniquely divisible abelian group
U2. In addition,

K2(V) =̃ µp∞(E) × U2 .

Proof The fact that the kernel U2 of the norm residue map is divisible is due to
C. Moore, and is given in the Appendix to [40]. The fact that U2 is torsion free
(hence uniquely divisible) was proven by Tate [66] when char(F) = p, and by
Merkurjev [37] when char(F) = 0.

Since the transcendence degree of E overQ is uncountable, it follows from Moore’s
theorem and the arguments in [40] that the Milnor K-groups KM

n (E) are uncount-
able, uniquely divisible abelian groups for n ≥ 3. By [61], this is a summand of
the Quillen K-group Kn(E). As in the equicharacteristic case, Kn(E) will contain an
uncountable uniquely divisible summand about which we can say very little.

To understand the other factor, we typically proceed a prime at a time. This
has the advantage of picking up the torsion subgroups of Kn(E), and detecting the
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groups Kn(V)|�. For p-adic fields, the following calculation reduces the problem to
the prime p.

58 Proposition 58 If i > 0 there is a summand of K2i−1(V) =̃ K2i−1(E) isomorphic to
K2i−1(Fq) =̃ Z|(qi − 1), detected by the e-invariant. The complementary summand
is uniquely �-divisible for every prime � ≠ p, i.e., a Z(p)-module.

There is also a decomposition K2i(E) =̃ K2i(V)⊕K2i−1(Fq), and the group K2i(V)
is uniquely �-divisible for every prime � ≠ p, i.e., a Z(p)-module.

Proof Pick a prime �. We see from Gabber’s rigidity theorem [17] that the groups
Kn(V ;Z|�ν) are isomorphic to Kn(Fq;Z|�ν) for n > 0. Since the Bockstein spectral
sequences are isomorphic, and detect all finite cyclic �-primary summands of
Kn(V) and Kn(Fq) [72, 5.9.12], it follows that K2i−1(V) has a cyclic summand
isomorphic to Z|w(�)

i (E), and that the complement is uniquely �-divisible. Since
Kn(V ;Z|�) =̃ Z|�, we also see that K2i(V) is uniquely �-divisible. As � varies, we get
a cyclic summand of order wi(E) in K2i−1(V) whose complement is a Z(p)-module.

If x ∈ K2i−1(V), the product {x, π} ∈ K2i(E) maps to the image of x in K2i−1(Fq)
under the boundary map ∂ in the localization sequence. Hence the summand
of K2i−1(V) isomorphic to K2i−1(Fq) lifts to a summand of K2i(E). This breaks
the localization sequence up into the split short exact sequences 0 → Kn(V) →
Kn(E) → Kn−1(Fq) → 0.

59 Completed K-theory 59 It will be convenient to fix a prime � and pass to the
�-adic completion K̂(R) of the K-theory space K(R), where R is any ring. We
also write Kn(R;Z�) for πnK̂(R). Information about these groups tells us about
the groups Kn(R,Z|�ν) = πn(K(R);Z|�ν), because these groups are isomorphic
to πn(K̂(R);Z|�ν) for all ν.

If the groups Kn(R;Z|�ν) are finite, then Kn(R;Z�) is an extension of the Tate
module of Kn−1(R) by the �-adic completion of Kn(R). (The Tate module of an
abelian group A is the inverse limit of the groups Hom(Z|�ν, A).) For example,
Kn(C;Z�) vanishes for odd n and for even n equals the Tate module Z� of Kn−1(C).
If in addition the abelian groups Kn(R) are finitely generated, there can be no Tate
module and we have Kn(R;Z�) =̃ Kn(R) ⊗Z Z� =̃ lim← Kn(R;Z|�ν).

60 Warning 60 Even if we know Kn(R;Z�) for all primes, we may not still be able to
determine the underlying abelian group Kn(R) exactly from this information. For
example, consider the case n = 1, R = Zp. We know that K1(R;Zp) =̃ (1+pR)× =̃ Zp,
p ≠ 2, but this information does not even tell us that K1(R)⊗Z(p) =̃ Zp. To see why,
note that the extension 0 → Z(p) → Zp → Zp|Z(p) → 0 doesn’t split; there are
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no p-divisible elements in Zp, yet Zp|Z(p) =̃ Qp|Q is a uniquely divisible abelian
group.

We now consider the p-adic completion of K(E). By 58, it suffices to consider the
p-adic completion of K(V).

Write wi for the numbers wi = w
(p)
i (E), which were described in 23. For all i, and

�ν > wi, the étale cohomology group H1(E, µ⊗i
pν ) is isomorphic to (Z|pν)d ⊕Z|wi ⊕

Z|wi−1, d = [E : Qp]. By duality, the group H2(E, µ⊗i+1
pν ) is also isomorphic to Z|wi.

61Theorem 61 Let E be a local field, of degree d over Qp, with ring of integers V .
Then for n ≥ 2 we have:

Kn(V ;Zp) =̃ Kn(E;Zp) =̃

{
Z|w(p)

i (E), n = 2i,

(Zp)d ⊕ Z|w(p)
i (E), n = 2i − 1 .

}

Moreover, the first étale Chern classes K2i−1(E;Z|pν) =̃ H1(E, µ⊗i
pν ) are natural

isomorphisms for all i and ν.
Finally, each K2i(V) is the direct sum of a uniquely divisible group, a divisible

p-group and a subgroup isomorphic to Z|w(p)
i (E).

Proof If p > 2 the first part is proven in [6] (see [25]). (It also follows from the
spectral sequence (5.1) for E, using the Voevodsky-Rost theorem.) In this case,
Theorem 34 and a count shows that the étale Chern classes K2i−1(E;Z|pν) →
H1

ét(E; µ⊗i
pν ) are isomorphisms. If p = 2 this is proven in [51, (1.12)]; surprisingly,

this implies that the Harris–Segal maps and Kahn maps are even defined when E
is an exceptional 2-adic field.

Now fix i and set wi = w
(p)
i (E). Since the Tate module of any abelian group is

torsion free, and K2i(E;Zp) is finite, we see that the Tate module of K2i−1(E) vanishes
and the p-adic completion of K2i(E) is Z|wi. Since this is also the completion of
the Z(p)-module K2i(V) by 58, the decomposition follows from the structure of
Z(p)-modules. (This decomposition was first observed in [27, 6.2].)

62Remark 62 The fact that these groups were finitely generated Zp-modules of
rank d was first obtained by Wagoner in [70], modulo the identification in [46] of
Wagoner’s continuous K-groups with K∗(E;Z|p).

Unfortunately, I do not know how to reconstruct the “integral” homotopy groups
Kn(V) from the information in 61. Any of theZp’s in K2i−1(V ;Zp) could come from
either a Z(p) in K2i−1(V) or a Z|p∞ in K2i−2(V). Here are some cases when I can
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show that they come from torsion free elements; I do not know any example where
a Z|p∞ appears.

63 Corollary 63 K3(V) contains a torsion free subgroup isomorphic to Zd
(p), whose

p-adic completion is isomorphic to the torsion free part of K3(V ;Zp) =̃ (Zp)d ⊕
Z|w(p)

2 .

Proof Combine 61 with Moore’s Theorem 57 and 58.

I doubt that the extension 0 → Z
d
(p) → K3(V) → U3 → 0 splits (see Warning 60).

Example 64. If k > 0, K4k+1(Z2) contains a subgroup Tk isomorphic toZ(2) ×Z|wi,
and the quotient K4k+1(Z2)|Tk is uniquely divisible. (By 23, wi =

2(22k+1 − 1).)
This follows from Rognes’ theorem [52, 4.13] that the map from K4k+1(Z)⊗Z2 =̃

Z2 ⊕(Z|2) to K4k+1(Z2;Z2) is an isomorphism for all k > 1. (The information about
the torsion subgroups, missing in [52], follows from [51].) Since this map factors
through K4k+1(Z2), the assertion follows.

Example 65. Let F be a totally imaginary number field of degree d = 2r2 over
Q, and let E1, …, Es be the completions of F at the prime ideals

over p. There is a subgroup of K2i−1(F) isomorphic to Zr2 by Theorem 6; its im-
age in ⊕K2i−1(Ej) is a subgroup of rank at most r2, while ⊕K2i−1(Ej;Zp) has rank
d =

∑
[Ej : Qp]. So these subgroups of K2i−1(Ej) can account for at most half of the

torsion free part of ⊕K2i−1(Ej;Zp).

Example 66. Suppose that F is a totally real number field, of degree d = r1 over
Q, and let E1, …, Es be the completions of F at the prime ideals over

p. For k > 0, there is a subgroup of K4k+1(F) isomorphic to Zd by Theorem 6;
its image in ⊕K4k+1(Ej) is a subgroup of rank d, while ⊕K4k+1(Ej;Zp) has rank
d =

∑
[Ej : Qp]. However, this does not imply that the p-adic completion Zd

p of the
subgroup injects into ⊕K4k+1(Ej;Zp). Implications like this are related to Leopoldt’s
conjecture.

Leopoldt’s conjecture states that the torsion free partZd−1
p of (OF)× ⊗Zp injects

into the torsion free part Zd
p of

∏s
j=1 O×

Ej
; (see [71, 5.31]). This conjecture has been

proven when F is an abelian extension ofQ; (see [71, 5.32]).
When F is a totally real abelian extension of Q, and p is a regular prime, Soulé

shows in [59, 3.1, 3.7] that the torsion free part Zd
p of K4k+1(F) ⊗ Zp injects into

⊕K4k+1(Ej;Zp) =̃ (Zp)d, because the cokernel is determined by the Leopoldt p-adic
L-function Lp(F, ω2k, 2k + 1), which is a p-adic unit in this favorable scenario.
Therefore in this case we also have a subgroup Zd

(p) in each of the groups K4k+1(Ej).
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We conclude with a description of the topological type of K̂(V) and K̂(E), when
p is odd. Recall that FΨk denotes the homotopy fiber of Ψk − 1: Z × BU → BU .
Since Ψk = ki on π2i(BU) = Z for i > 0, and the other homotopy groups of BU
vanish, we see that π2i−1FΨk =̃ Z|(ki − 1), and that all even homotopy groups of
FΨk vanish, except for π0(FΨk) = Z.

67Theorem 67: (Thm. D of [25].) Let E be a local field, of degree d over Qp, with p
odd. Then after p-completion, there is a number k (given below) so that

K̂(V) � SU × Ud−1 × FΨk × BFΨk, K̂(E) � Ud × FΨk × BFΨk .

The number k is defined as follows. Set r = [E(µp) : E], and let pa be the number
of p-primary roots of unity in E(µp). If r is a topological generator of Z×

p , then
k = rn, n = pa−1(p − 1)|r. It is an easy exercise, left to the reader, to check that
π2i−1FΨk =̃ Zp|(ki − 1) is Z|wi for all i.

Number Fields at Primes Where cd = 2 5.7

In this section we quickly obtain a cohomological description of the odd torsion
in the K-groups of a number field, and also the 2-primary torsion in the K-groups
of a totally imaginary number field. These are the cases where cd�(OS) = 2, which
forces the motivic spectral sequence (5.3) to degenerate completely.

The following trick allows us to describe the torsion subgroup of the groups
Kn(R). Recall that the notation A{�} denotes the �-primary subgroup of an abelian
group A.

68Lemma 68 For a given prime �, ring R and integer n, suppose that Kn(R) is a finite
group, and that Kn−1(R) is a finitely generated group. Then Kn(R){�} =̃ Kn(R;Z�)
and Kn−1(R){�} =̃ Kn(R;Z|�∞).

Proof For large values of ν, the finite group Kn(R;Z|�ν) is the sum of Kn(R){�} and
Kn−1(R){�}. The transition from coefficientsZ|�ν toZ|�ν−1 (resp., toZ|�ν+1) is mul-
tiplication by 1 and � (resp., by � and 1) on the two summands. Taking the inverse
limit, (resp., direct limit) yields the groups Kn(R;Z�) and Kn(R;Z|�∞), respectively.

Example 69. By 7, the lemma applies to a ring OS of integers in a number
field F, with n even. For example, Theorem 4 says that K2(OS){�} =

K2(OS;Z�) =̃ H2
ét(OF[1|�],Z�(2)), and of course K1(OS){�} = K2(OS;Z|�∞) is the

group Z|w(�)
1 (F) of �-primary roots of unity in F.
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We now turn to the odd torsion in the K-groups of a number field. The �-primary
torsion is described by the following result, which is based on [51] and uses the
Voevodsky-Rost theorem. The notation A(�) will denote the localization of an
abelian group A at the prime �.

70 Theorem 70 Fix an odd prime �. Let F be a number field, and let OS be a ring of
integers in F. If R = OS[1|�], then for all n ≥ 2:

Kn(OS)(�) =̃






H2
ét

(
R;Z�(i + 1)

)
for n = 2i > 0 ;

Z
r2
(�) ⊕ Z|w(�)

i (F) for n = 2i − 1, i even ;

Z
r2+r1
(�) ⊕ Z|w(�)

i (F) for n = 2i − 1, i odd .

Proof By 7 we may replace OS by R without changing the �-primary torsion. By 68
and 6, it suffices to show that K2i(R;Z�) =̃ H2

ét(R;Z�(i + 1)) and K2i(R;Z|�∞) =̃
Z|w(�)

i (F). Note that the formulas for K0(OS) and K1(OS) are different; see (5.5).
If F is a number field and � ≠ 2, the étale �-cohomological dimension of F (and

of R) is 2. Since H2
ét(R;Z|�∞(i)) = 0 by 43, the Voevodsky-Rost theorem implies

that the motivic spectral sequence (5.3) has only two nonzero diagonals, except in
total degree zero, and collapses at E2. This gives

Kn(OS;Z|�∞) =̃





H0

(
R;Z|�∞(i)

)
= Z|w(�)

i (F) for n = 2i ≥ 2 ,

H1
(
R;Z|�∞(i)

)
for n = 2i − 1 ≥ 1 .

The description of K2i−1(OS){�} follows from 68 and 6.
The same argument works for coefficients Z�. For i > 0 we see that

Hn
ét(R,Z�(i)) = 0 for n ≠ 1, 2, so the spectral sequence degenerates to yield

K2i(R;Z�) =̃ H2
ét(R,Z�(i)). (This is a finite group by 42.) The description of

K2i(R){�} follows from 68 and 6.

Because H2
ét(R,Z�(i + 1))|� =̃ H2

ét(R, µ⊗i+1
� ), we immediately deduce:

71 Corollary 71 For all odd � and i > 0, K2i(OS)|� =̃ H2
ét(OS[1|�], µ⊗i+1

� ).

72 Remark 72 Similarly, the mod-� spectral sequence (5.1) collapses to yield the K-
theory ofOS with coefficientsZ|�,�odd. For example, ifOS contains a primitive�-th
root of unity and 1|� then H1(OS; µ⊗i

� ) =̃ O×
S |O×�

S ⊕ �Pic(OS) and H2(OS; µ⊗i
� ) =̃

Pic(OS)|� ⊕ �Br(OS) for all i, so
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Kn(OS;Z|�) =̃






Z|� ⊕ Pic(OS)|� for n = 0 ,

O×
S |O×�

S ⊕ �Pic(OS) for n = 2i − 1 ≥ 1 ,

Z|� ⊕ Pic(OS)|� ⊕ �Br(OS) for n = 2i ≥ 2 .

TheZ|� summands in degrees 2i are generated by the powers βi of the Bott element
β ∈ K2(OS;Z|�) (see 17). In fact, K∗(OS;Z|�) is free as a graded Z[β]-module on
K0(OS;Z|�), K1(OS;Z|�) and �Br(OS) ∈ K2(OS;Z|�); this is immediate from the
multiplicative properties of (5.1).

When F is totally imaginary, we have a complete description of K∗(OS). The 2-
primary torsion was first calculated in [51]; the odd torsion comes from Theo-
rem 70. Write wi for wi(F).

73Theorem 73 Let F be a totally imaginary number field, and let OS be the ring of
S-integers in F for some set S of finite places. Then for all n ≥ 2:

Kn(OS) =̃






Z⊕ Pic(OS) for n = 0 ;

Z
r2+|S|−1 ⊕ Z|w1 for n = 1 ;

⊕�H2
ét

(
OS[1|�];Z�(i + 1)

)
for n = 2i ≥ 2 ;

Z
r2 ⊕ Z|wi for n = 2i − 1 ≥ 3 .

Proof The case n = 1 comes from (5.5), and the odd torsion comes from 70, so it
suffices to check the 2-primary torsion. This does not change if we replace OS by
R = OS[1|2], by 7. By 68 and 6, it suffices to show that K2i(R;Z2) =̃ H2

ét(R;Z2(i + 1))
and K2i(R;Z|2∞) =̃ Z|w(2)

i (F).
Consider the mod 2∞ motivic spectral sequence (5.3) for the ring R, converging

to K∗(R;Z|2∞). It is known that cd2(R) = 2, and H2
ét(R;Z|2∞(i)) = 0 by 43.

Hence the spectral sequence collapses; except in total degree zero, the E2-terms
are concentrated on the two diagonal lines where p = q, p = q + 1. This gives

Kn(R;Z|2∞) =̃





H0

(
R;Z|2∞(i)

)
= Z|w(2)

i (F) for n = 2i ≥ 0 ,

H1
(
R;Z|2∞(i)

)
for n = 2i − 1 ≥ 1 .

The description of K2i−1(R){2} follows from 68 and 6.
The same argument works for coefficients Z2; for i > 0 and n ≠ 1, 2 we have

Hn
ét(R,Z2(i)) = 0, so (5.3) degenerates to yield K2i(R;Z2) =̃ H2

ét(R,Z2(i)). (This is
a finite group by 42). The description of K2i(R){2} follows from 68 and 6.



170 Charles Weibel

Example 74. Let F be a number field containing a primitive �-th root of unity, and
let S be the set of primes over � in OF . If t is the rank of Pic(R)|�,

then H2
ét(R,Z�(i))|� =̃ H2

ét(R, µ⊗i
� ) =̃ H2

ét(R, µ�) ⊗ µ⊗i−1
� has rank t + |S| − 1 by (5.6).

By 73, the �-primary subgroup of K2i(OS) has t + |S| − 1 nonzero summands for
each i ≥ 2.

Example 75. If � ≠ 2 is a regular prime, we claim that K2i(Z[ζ�]) has no �-torsion.
(The case K0 is tautological by 3, and the classical case K2 is 5.)

Note that the group K2i−1(Z[ζ�]) =̃ Zr2 ⊕ Z|wi(F) always has �-torsion, because
w(�)

i (F) ≥ � for all i by 20(a). Setting R = Z[ζ�, 1|�], then by 73,

K2i

(
Z[ζ�]

)
=̃ H2

ét

(
R,Z�(i + 1)

) ⊕ (finite group without �-torsion) .

Since � is regular, we have Pic(R)|� = 0, and we saw in 5 that Br(R) = 0 and |S| = 1.
By 74, H2

ét(R,Z�(i + 1)) = 0 and the claim now follows.

We conclude with a comparison to the odd part of ζF(1 − 2k), generalizing the
Birch–Tate Conjecture 31. If F is not totally real, ζF(s) has a pole of order r2 at
s = 1 − 2k. We need to invoke the following deep result of Wiles [77], which is often
called the “Main Conjecture” of Iwasawa Theory.

76 Theorem 76 (Wiles) Let F be a totally real number field. If� is odd andOS = OF[1|�]
then for all even i = 2k > 0:

ζF(1 − i) =

∣∣H2
ét(OS,Z�(i)

∣∣
∣∣H1

ét(OS,Z�(i)
∣∣ui ,

where ui is a rational number prime to �.

The numerator and denominator on the right side are finite by 36. Lichtenbaum’s
conjecture follows, up to a power of 2, by setting i = 2k:

77 Theorem 77 If F is totally real, then

ζF(1 − 2k) = (−1)kr1
|K4k−2(OF)|
|K4k−1(OF)| up to factors of 2 .

Proof By the functional equation, the sign of ζF(1 − 2k) is (−1)kr1 . It suffices to
show that the left and right sides of 77 have the same power of each odd prime �.
The group H2

ét(OF[1|�],Z�(i)) is the �-primary part of K2i−2(OF) by 70. The group
H1

ét(OF[1|�],Z�(i)) on the bottom of 76 is Z|w(�)
i (F) by 46, and this is isomorphic

to the �-primary subgroup of K2i−1(OF) by Theorem 70.
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Real Number Fields at the Prime 2 5.8

Let F be a real number field, i.e., F has r1 > 0 embeddings intoR. The calculation of
the algebraic K-theory of F at the prime 2 is somewhat different from the calculation
at odd primes, for many reasons. One reason is that a real number field has infinite
cohomological dimension, which complicates descent methods. A second reason
is that the Galois group of a cyclotomic extension need not be cyclic, so that the
e-invariant may not split (see 29). A final reason is that the groups K∗(F;Z|2) do
not have a natural multiplication, because of the structure of the mod 2 Moore
space RP2.

For the real numbersR, the mod 2 motivic spectral sequence has E
p,q
2 = Z|2 for

all p, q in the octant q ≤ p ≤ 0. In order to distinguish between the groups E
p,q
2 ,

it is useful to label the nonzero elements of H0
ét(R,Z|2(i)) as βi, writing 1 for β0.

Using the multiplicative pairing with (say) the spectral sequence ′E∗,∗
2 converging

to K∗(R;Z|16), multiplication by the element η ∈ ′E0,−1
2 allows us to write the

nonzero elements in the −i-th column as ηjβi (see Table 5.2 below).
From Suslin’s calculation of Kn(R) in [62], we know that the groups Kn(R;Z|2)

are cyclic and 8-periodic (for n ≥ 0) with orders 2, 2, 4, 2, 2, 0, 0, 0 (for n =
0, 1, …, 7).

78Theorem 78 In the spectral sequence converging to K∗(R;Z|2), all the d2 differen-
tials with nonzero source on the lines p ≡ 1, 2 (mod 4) are isomorphisms. Hence
the spectral sequence degenerates at E3. The only extensions are the nontrivial
extensions Z|4 in K8a+2(R;Z|2).

Table 5.2. The mod 2 spectral sequence for R

1

β1 η
β2 ηβ1 η2

β3 ηβ2 η2β1 η3

ηβ3 η2β2 η3β1 η4

The first 4 columns of E2

1

β1 η
0 ηβ1 η2

0 0 η2β1 0

0 0 0 0

The first 4 columns of E3
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Proof Recall from Remark 2 that the mod 2 spectral sequence has periodicity
isomorphisms E

p,q
r =̃ E

p−4,q−4
r , p ≤ 0. Therefore it suffices to work with the columns

−3 ≤ p ≤ 0.
Because K3(R;Z|2) =̃ Z|2, the differential closest to the origin, from β2 to η3,

must be nonzero. Since the pairing with ′E2 is multiplicative and d2(η) = 0, we
must have d2(ηjβ2) = ηj+3 for all j ≥ 0. Thus the column p = −2 of E3 is zero, and
every term in the column p = 0 of E3 is zero except for {1, η, η2}.

Similarly, we must have d2(β3) = η3β1 because K5(R;Z|2) = 0. By multiplica-
tivity, this yields d2(ηjβ3) = ηj+3β1 for all j ≥ 0. Thus the column p = −3 of E3 is
zero, and every term in the column p = −1 of E3 is zero except for {β1, ηβ1, η2β1}.

79 Variant 79 The analysis with coefficients Z|2∞ is very similar, except that when
p > q, E

p,q
2 = H

p−q
ét (R;Z|2∞(−q)) is: 0 for p even; Z|2 for p odd. If p is odd, the

coefficient map Z|2 → Z|2∞ induces isomorphisms on the E
p,q
2 terms, so by 78 all

the d2 differentials with nonzero source in the columns p ≡ 1 (mod 4) are iso-
morphisms. Again, the spectral sequence converging to K∗(R;Z|2∞) degenerates
at E3 = E∞. The only extensions are the nontrivial extensions of Z|2∞ by Z|2 in
K8a+4(R;Z|2∞) =̃ Z|2∞.

80 Variant 80 The analysis with 2-adic coefficients is very similar, except that
(a) H0(R;Z2(i)) is: Z2 for i even; 0 for i odd and (b) (for p > q) E

p,q
2 = H

p−q
ét (R;

Z|2∞(−q)) is: Z|2 for p even; 0 for p odd. All differentials with nonzero source in
the column p ≡ 2 (mod 4) are onto. Since there are no extensions to worry about,
we omit the details.

In order to state the Theorem 82 below for a ring OS of integers in a number field F,
we consider the natural maps (for n > 0) induced by the r1 real embeddings of F,

αn
S(i) : Hn(OS;Z|2∞(i)) →

r1⊕
Hn(R;Z|2∞(i)) =̃





(Z|2)r1 , i − n odd

0, i − n even .
(5.10)

This map is an isomorphism for all n ≥ 3 by Tate-Poitou duality; by 45, it is also
an isomorphism for n = 2 and i ≥ 2. Write H̃1(OS;Z|2∞(i)) for the kernel of α1

S(i).

81 Lemma 81 The map H1(F;Z|2∞(i))
α1(i)→ (Z|2)r1 is a split surjection for all even i.

Hence H1(OS;Z|2∞(i)) =̃ (Z|2)r1 ⊕ H̃1(OS;Z|2∞(i)) for sufficiently large S.
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Proof By the strong approximation theorem for units of F, the left map vertical
map is a split surjection in the diagram:

Since F×|F×2 is the direct limit (over S) of the groups O×
S |O×2

S , we may replace F
by OS for sufficiently large S.

We also write A� B for an abelian group extension of B by A.

82Theorem 82 ([51, 6.9]) Let F be a real number field, and let R = OS be a ring of
S-integers in F containing OF[ 1

2 ]. Then α1
S(i) is onto when i = 4k > 0, and:

Kn(OS;Z|2∞) =̃






Z|w4k(F) for n = 8a ,

H1(OS;Z|2∞(4k + 1)) for n = 8a + 1 ,

Z|2 for n = 8a + 2 ,

H1(OS;Z|2∞(4k + 2)) for n = 8a + 3 ,

Z|2w4k+2 ⊕ (Z|2)r1−1 for n = 8a + 4 ,

(Z|2)r1−1
�H1(OS;Z|2∞(4k + 3)) for n = 8a + 5 ,

0 for n = 8a + 6 ,

H̃1(OS;Z|2∞(4k + 4)) for n = 8a + 7 .

Proof The morphism of spectral sequences (5.3), from that for OS to the sum of r1

copies of that forR, is an isomorphism on E
p,q
2 except on the diagonal p = q (where

it is an injection) and p = q + 1 (where we must show it is a surjection). When
p ≡ +1 (mod 4), it follows from 79 that we may identify d

p,q
2 with αp−q

S . Hence d
p,q
2

is an isomorphism if p ≥ 2 + q, and an injection if p = q. As in 79, the spectral
sequence degenerates at E3, yielding Kn(OS;Z|2∞) as proclaimed, except for two
points: (a) the extension ofZ|w4a+2 byZ|2r1 when n = 8a+4 is seen to be nontrivial
by comparison with the extension for R, and (b) when n = 8a + 6 it only shows
that Kn(OS;Z|2∞) is the cokernel of α1

S(4a + 4).
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To resolve (b) we must show that α1
S(4a+4) is onto when a > 0. Set n = 8a+6. Since

Kn(OS) is finite, Kn(OS;Z|2∞) must equal the 2-primary subgroup of Kn−1(OS),
which is independent of S by Theorem 7. But for sufficiently large S, the map
α1(4a + 4) is a surjection by 81, and hence Kn(OS;Z|2∞) = 0.

Proof of Theorem 1.
Let n > 0 be odd. By 6 and 7, it suffices to determine the torsion subgroup of
Kn(OS) = Kn(F). Since Kn+1(OS) is finite, it follows that Kn+1(OS;Z|�∞) is the
�-primary subgroup of Kn(OS). By 73, we may assume F has a real embedding.
By 70, we need only worry about the 2-primary torsion, which we can read off
from 82, recalling from 22(b) that w(2)

i (F) = 2 for odd i.

To proceed further, we need to introduce the narrow Picard group and the signature
defect of the ring OS.

83 Definition 83: (Narrow Picard group.) Each real embedding σi : F → R deter-
mines a map F× → R

× → Z|2, detecting the sign of units of F under that
embedding. The sum of these maps is the sign map σ : F× → (Z|2)r1 . The approx-
imation theorem for F implies that σ is surjective. The group F×

+ of totally positive
units in F is defined to be the kernel of σ.

Now let R = OS be a ring of integers in F. The kernel of σ|R : R× → F× → (Z|2)r1

is the subgroup R×
+ of totally positive units in R. Since the sign map σ|R factors

through F×|2 = H1(F,Z|2), it also factors through α1 : H1(R,Z|2) → (Z|2)r1 . The
signature defect j(R) of R is defined to be the dimension of the cokernel of α1;
0 ≤ j(R) < r1 because σ(−1) ≠ 0. Note that j(F) = 0, and that j(R) ≤ j(OF).

By definition, the narrow Picard group Pic+(R) is the cokernel of the the re-
stricted divisor map F×

+ → ⊕
℘�∈S Z. (See [10, 5.2.7]. This definition is due to

Weber; Pic+(OS) is also called the ray class group ClSF ; see [45, VI.1].) The kernel of
the restricted divisor map is clearly R×

+ , and it is easy to see from this that there is
an exact sequence

0 → R×
+ → R× σ→ (Z|2)r1 → Pic+(R) → Pic(R) → 0 .

A diagram chase (performed in [51, 7.6]) shows that there is an exact sequence

0 → H̃1(R;Z|2) → H1(R;Z|2)
α1→ (Z|2)r1 → Pic+(R)|2 → Pic(R)|2 → 0 .

(5.11)

(H̃1(R;Z|2) is defined as the kernel of α1.) Thus the signature defect j(R) is also
the dimension of the kernel of Pic+(R)|2 → Pic(R)|2. If we let t and u denote the
dimensions of Pic(R)|2 and Pic+(R)|2, respectively, then this means that u = t+j(R).
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If s denotes the number of finite places of R = OS, then dim H1(R;Z|2) =
r1 + r2 + s + t and dim H2(R;Z|2) = r1 + s + t − 1. This follows from (5.5) and (5.6),
using Kummer theory. As in (5.10) and (5.11), define H̃n(R;Z|2) to be the kernel
of αn : Hn(R;Z|2) → Hn(R;Z|2)r1 =̃ (Z|2)r1 .

84Lemma 84 Suppose that 1
2 ∈ R. Then dim H̃1(R,Z|2) = r2 + s + u. Moreover, the

map α2 : H2(R,Z|2) → (Z|2)r1 is onto, and dim H̃2(R,Z|2) = t + s − 1.

Proof The first assertion is immediate from (5.11). Since H2(R;Z|2∞(3)) =̃ (Z|2)r1

by 45, the coefficient sequence for Z|2 ⊂ Z|2∞(3) shows that H2(R;Z|2) →
H2(R;Z|2∞(3)) is onto. The final two assertions follow.

85Theorem 85 Let F be a real number field, and OS a ring of integers containing 1
2 .

If j = j(OS) is the signature defect, then the mod 2 algebraic K-groups of OS are
given (up to extensions) for n > 0 as follows:

Kn(OS;Z|2) =̃






H̃2(OS;Z|2) ⊕ Z|2 for n = 8a ,

H1(OS;Z|2) for n = 8a + 1 ,

H2(OS;Z|2)� Z|2 for n = 8a + 2 ,

(Z|2)r1−1
�H1(OS;Z|2) for n = 8a + 3 ,

(Z|2)j
�H2(OS;Z|2) for n = 8a + 4 ,

(Z|2)r1−1
� H̃1(OS;Z|2) for n = 8a + 5 ,

(Z|2)j ⊕ H̃2(OS;Z|2) for n = 8a + 6 ,

H̃1(OS;Z|2) for n = 8a + 7 .

Table 5.3. The mod 2 spectral sequence for OS

1

β1 H1

0 H1 H2

0 H̃1 H2 (Z|2)r1−1

H̃1 H̃2 (Z|2)r1−1 (Z|2)j

H̃2 0 (Z|2)j 0

0 0 0 0

The first 4 columns (−3 ≤ p ≤ 0) of E3 = E∞
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Proof (cf. [51, 7.8]) As in the proof of Theorem 82, we compare the spectral
sequence for R = OS with the sum of r1 copies of the spectral sequence for R. For
n ≥ 3 we have Hn(R;Z|2) =̃ (Z|2)r1 . It is not hard to see that we may identify
the differentials d2 : Hn(R,Z|2) → Hn+3(R,Z|2) with the maps αn. Since these
maps are described in 84, we see from Remark 2 that the columns p ≤ 0 of E3

are 4-periodic, and all nonzero entries are described by Table 5.3. (By the spectral
sequence (5.3), there is only one nonzero entry for p > 0, E+1,−1

3 = Pic(R)|2, and
it is only important for n = 0.) By inspection, E3 = E∞, yielding the desired
description of the groups Kn(R,Z|2) in terms of extensions. We omit the proof that
the extensions split if n ≡ 0, 6 (mod 8).

The case F = Qhas historical importance, because of its connection with the image
of J (see Example 29 or [50]) and classical number theory. The following result was
first established in [76]; the groups are not truly periodic only because the order
of K8a−1(Z) depends upon a.

86 Corollary 86 For n ≥ 0, the 2-primary subgroups of Kn(Z) and K2(Z[1|2]) are
essentially periodic, of period eight, and are given by the following table. (When
n ≡ 7 (mod 8), we set a = (n + 1)|8.)

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z){2} Z|2 Z|2 Z|16 0 0 0 Z|16a 0

In particular, Kn(Z) and Kn(Z[1|2]) have odd order for all n ≡ 4, 6, 8 (mod 8),
and the finite group K8a+2(Z) is the sum of Z|2 and a finite group of odd order. We
will say more about the odd torsion in the next section.

Proof When n is odd, this is Theorem 1; w(2)
4a is the 2-primary part of 16a by 22(c).

Since s = 1 and t = u = 0, we see from 84 that dim H̃1(Z[1|2];Z|2) = 1 and
that H̃2(Z[1|2];Z|2) = 0. By 85, the groups Kn(Z[1|2];Z|2) are periodic of orders
2, 4, 4, 4, 2, 2, 1, 2 for n ≡ 0, 1, …, 7 respectively. The groups Kn(Z[1|2]) for n odd,
given in Theorem 1, together with the Z|2 summand in K8a+2(Z) provided by
topology (see 29), account for all of Kn(Z[1|2];Z|2), and hence must contain all of
the 2-primary torsion in Kn(Z[1|2]).

Recall that the 2-rank of an abelian group A is the dimension of the vector space
Hom(Z|2, A). We have already seen (in either Theorem 1 or 82) that for n ≡ 1, 3, 5, 7
(mod 8) the 2-ranks of Kn(OS) are: 1, r1, 0 and 1, respectively.

87 Corollary 87 For n ≡ 2, 4, 6, 8 (mod 8), n > 0, the respective 2-ranks of the finite
groups Kn(OS) are: r1 + s + t − 1, j + s + t − 1, j + s + t − 1 and s + t − 1.
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Proof (cf. [51, 0.7]) Since Kn(R;Z|2) is an extension of Hom(Z|2, Kn−1R) by Kn(R)|2,
and the dimensions of the odd groups are known, we can read this off from the list
given in Theorem 85.

Example 88. Consider F = Q(
√

p), where p is prime. When p ≡ 1 (mod 8), it is
well known that t = j = 0 but s = 2. It follows that K8a+2(OF) has

2-rank 3, while the two-primary summand of Kn(OF) is nonzero and cyclic when
n ≡ 4, 6, 8 (mod 8).

When p ≡ 7 (mod 8), we have j = 1 for both OF and R = OF[1|2]. Since r1 = 2
and s = 1, the 2-ranks of the finite groups Kn(R) are: t + 2, t + 1, t + 1 and t for
n ≡ 2, 4, 6, 8 (mod 8) by 87. For example, if t = 0 (Pic(R)|2 = 0) then Kn(R) has
odd order for n ≡ 8 (mod 8), but the 2-primary summand of Kn(R) is (Z|2)2 when
n ≡ 2 and is cyclic when n ≡ 4, 6.

Example 89. (2–regular fields.) A number field F is said to be 2–regular if there
is only one prime over 2 and the narrow Picard group Pic+(OF[ 1

2 ])
is odd (i.e., t = u = 0 and s = 1). In this case, we see from 87 that K8a+2(OF) is the
sum of (Z|2)r1 and a finite odd group, while Kn(OF) has odd order for all n ≡ 4, 6, 8
(mod 8) (n > 0). In particular, the map KM

4 (F) → K4(F) must be zero, since it
factors through the odd order group K4(OF), and KM

4 (F) =̃ (Z|2)r1 .
Browkin and Schinzel [8] and Rognes and Østvær [54] have studied this case.

For example, when F = Q(
√

m) and m > 0 (r1 = 2), the field F is 2-regular exactly
when m = 2, or m = p or m = 2p with p ≡ 3, 5 (mod 8) prime. (See [8].)

A useful example is F = Q(
√

2). Note that the Steinberg symbols {−1, −1, −1, −1}
and {−1, −1, −1, 1+

√
2}generating KM

4 (F) =̃ (Z|2)2 must both vanish in K4(Z[
√

2]),
which we have seen has odd order. This is the case j = ρ = 0 of the following result.

90Corollary 90 Let F be a real number field. Then the rank ρ of the image of
KM

4 (F) =̃ (Z|2)r1 in K4(F) satisfies j(OF[1|2]) ≤ ρ ≤ r1 − 1. The image (Z|2)ρ lies
in the subgroup K4(OF) of K4(F), and its image in K4(OS)|2 has rank j(OS) for all
OS containing 1|2. In particular, the image (Z|2)ρ lies in 2 · K4(F).

Proof By 10, we have ρ < r1 = rank KM
4 (F). The assertion that KM

4 (F) → K4(F)
factors through K4(OF) follows from 8, by multiplying KM

3 (F) and K3(OF) =̃ K3(F)
by [−1] ∈ K1(Z). It is known [16, 15.5] that the edge map Hn(F,Z(n)) → Kn(F)
in the motivic spectral sequence agrees with the usual map KM

n (F) → Kn(F). By
Voevodsky’s theorem, KM

n (F)|2ν =̃ Hn(F,Z(n))|2ν =̃ Hn(F,Z|2ν(n)). For n = 4, the
image of the edge map H4(OS,Z|2ν(4)) =̃ H4(F,Z|2ν(4)) → K4(OS;Z|2) has rank
j by table 5.3; this implies the assertion that the image in K4(OS)|2 ⊂ K4(OS;Z|2)
has rank j(OS). Finally, taking OS = OF[1|2] yields the inequality j(OS) ≤ ρ.
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Example 91. (ρ = 1) Consider F = Q(
√

7), OF = Z[
√

7] and R = OF[1|2]; here
s = 1, t = 0 and j(R) = ρ = 1 (the fundamental unit u = 8 + 3

√
7 is

totally positive). Hence the image of KM
4 (F) =̃ (Z|2)2 in K4(Z[

√
7]) is Z|2 on the

symbol σ = {−1, −1, −1,
√

7}, and this is all of the 2-primary torsion in K4(Z[
√

7])
by 87.

On the other hand, OS = Z[
√

7, 1|7] still has ρ = 1, but now j = 0, and the
2-rank of K4(OS) is still one by 87. Hence the extension 0 → K4(OF) → K4(OS) →
Z|48 → 0 of Theorem 7 cannot be split, implying that the 2-primary subgroup of
K4(OS) must then be Z|32.

In fact, the nonzero element σ is divisible in K4(F). This follows from the fact
that if p ≡ 3 (mod 28) then there is an irreducible q = a + b

√
7 whose norm

is −p = qq. Hence R′ = Z[
√

7, 1|2q] has j(R′) = 0 but ρ = 1, and the extension
0 → K4(OF) → K4(OS) → Z|(p2 − 1) → 0 of Theorem 7 is not split. If in addition
p ≡ −1 (mod 2ν) – there are infinitely many such p for each ν – then there is an
element v of K4(R′) such that 2ν+1v = σ. See [73] for details.

92 Question 92 Can ρ be less than the minimum of r1 − 1 and j + s + t − 1?

As in (5.10), when i is even we define H̃2(R;Z2(i)) to be the kernel of α2(i) :
H2(R;Z2(i)) → H2(R;Z2(i))r1 =̃ (Z|2)r1 . By 84, H̃2(R;Z2(i)) has 2-rank s + t − 1.

93 Theorem 93 ([51, 0.6]) Let F be a number field with at least one real embedding,
and let R = OS denote a ring of integers in F containing 1|2. Let j be the signature
defect of R, and write wi for w(2)

i (F).
Then there is an integer ρ, j ≤ ρ < r1, such that, for all n ≥ 2, the two-primary

subgroup Kn(OS){2} of Kn(OS) is isomorphic to:

Kn(OS){2} =̃






H2
ét(R;Z2(4a + 1)) for n = 8a ,

Z|2 for n = 8a + 1 ,

H2
ét(R;Z2(4a + 2)) for n = 8a + 2 ,

(Z|2)r1−1 ⊕ Z|2w4a+2 for n = 8a + 3 ,

(Z|2)ρ
�H2

ét(R;Z2(4a + 3)) for n = 8a + 4 ,

0 for n = 8a + 5 ,

H̃2
ét(R;Z2(4a + 4)) for n = 8a + 6 ,

Z|w4a+4 for n = 8a + 7 .

Proof When n = 2i − 1 is odd, this is Theorem 1, since w(2)
i (F) = 2 when n ≡ 1

(mod 4) by 22(b). When n = 2 it is Theorem 4. To determine the two-primary
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subgroup Kn(OS){2} of the finite group K2i+2(OS) when n = 2i + 2, we use the
universal coefficient sequence

0 → (Z|2∞)r → K2i+3(OS;Z|2∞) → K2i+2(OS){2} → 0 ,

where r is the rank of K2i+3(OS) and is given by Theorem 6 (r = r1 + r2 or r2). To
compare this with Theorem 82, we note that H1(OS,Z|2∞(i)) is the direct sum of
(Z|2∞)r and a finite group, which must be H2(OS,Z2(i)) by universal coefficients;
(see [51, 2.4(b)]). Since α1

S(i) : H1(R;Z|2∞(i)) → (Z|2)r1 must vanish on the
divisible subgroup (Z|2∞)r, it induces the natural map α2

S(i) : H2
ét(OS;Z2(i)) →

(Z|2)r1 and

H̃1(OS,Z|2∞(i)) =̃ (Z|2∞)r ⊕ H̃2(OS,Z2(i)) .

This proves all of the theorem, except for the description of Kn(OS), n = 8a + 4. By
mod 2 periodicity (Remark 2) the integer ρ of Corollary 90 equals the rank of the
image of H4(OS,Z|2(4)) =̃ H4(OS,Z|2(4k + 4)) =̃ (Z|2)r1 in Hom(Z|2, Kn(OS)),
considered as a quotient of Kn+1(OS;Z|2).

We can combine the 2-primary information in 93 with the odd torsion information
in 70 and 77 to relate the orders of K-groups to the orders of étale cohomology
groups. Up to a factor of 2r1 , they were conjectured by Lichtenbaum in [34]. Let |A|
denote the order of a finite abelian group A.

94Theorem 94 Let F be a totally real number field, with r1 real embeddings, and let
OS be a ring of integers in F. Then for all even i > 0

2r1 · |K2i−2(OS)|
|K2i−1(OS)| =

∏
�

∣∣H2
ét(OS[1|�];Z�(i))

∣∣
∏

�

∣∣H1
ét(OS[1|�];Z�(i))

∣∣ .

Proof (cf. proof of 77) Since 2i − 1 ≡ 3 (mod 4), all groups involved are finite
(see 6, 42 and 46.) Write hn,i(�) for the order of Hn

ét(OS[1|�];Z�(i)). By 46, h1,i(�) =
w(�)

i (F). By 1, the �-primary subgroup of K2i−1(OS) has order h1,i(�) for all odd �

and all even i > 0, and also for � = 2 with the exception that when 2i − 1 ≡ 3
(mod 8) then the order is 2r1 h1,i(2).

By 70 and 93, the �-primary subgroup of K2i−2(OS) has order h2,i(�) for all �,
except when � = 2 and 2i − 2 ≡ 6 (mod 8) when it is h1,i(2)|2r1 . Combining these
cases yields the formula asserted by the theorem.

95Corollary 95 For R = Z, the formula conjectured by Lichtenbaum in [34] holds up
to exactly one factor of 2. That is, for k ≥ 1,

|K4k−2(Z)|
|K4k−1(Z)| =

Bk

4k
=

(−1)k

2
ζ(1 − 2k) .
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Moreover, if ck denotes the numerator of Bk|4k, then

|K4k−2(Z)| =





ck, k even

2 ck, k odd .

Proof The equality Bk|4k = (−1)kζ(1 − 2k)|2 comes from 25. By 77, the formula
holds up to a factor of 2. By 27, the two-primary part of Bk|4k is 1|w(2)

2k . By 22(c), this
is also the two-primary part of 1|8k. By 86, the two-primary part of the left-hand
side of 95 is 2|16 when k is odd, and the two-primary part of 1|8k when k = 2a is
even.

Example 96. (K4k−2(Z)) The group K4k−2(Z) is cyclic of order ck or 2ck for all
k ≤ 5000. For small k we need only consult Example 24 to see

that the groups K2(Z), K10(Z), K18(Z) and K26(Z) are isomorphic to Z|2. We also
have K6(Z) = K14(Z) = 0. (The calculation of K6(Z) up to 3-torsion was given
in [15].) However, c6 = 691, c8 = 3617, c9 = 43 867 and c13 = 657 931 are all
prime, so we have K22(Z) =̃ Z|691, K30(Z) =̃ Z|3617, K34(Z) =̃ Z|2 ⊕Z|43 867 and
K50 =̃ Z|2 ⊕ Z|657 931.

The next hundred values of ck are squarefree: c10 = 283 · 617, c11 = 131 · 593,
c12 = 103 · 2 294 797, c14 = 9349 · 362 903 and c15 = 1721 · 1 001 259 881 are
all products of two primes, while c16 = 37 · 683 · 305 065 927 is a product of 3
primes. Hence K38(Z) = Z|c10, K42(Z) = Z|2c11, K46 = Z|c12, K54(Z) = Z|c14,
K58(Z) = Z|2c15 and K62(Z) = Z|c16 = Z|37 ⊕ Z|683 ⊕ Z|305 065 927.

Thus the first occurrence of the smallest irregular prime (37) is in K62(Z); it
also appears as a Z|37 summand in K134(Z), K206(Z), …, K494(Z). In fact, there is
37-torsion in every group K72a+62(Z) (see 105 below).

For k < 5000, only seven of the ck are not square-free; see [56], A090943. The nu-
merator ck is divisible by �2 only for the following pairs (k, �): (114, 103), (142, 37),
(457, 59), (717, 271), (1646, 67) and (2884, 101). However, K4k−2(Z) is still cyclic
with one Z|�2 summand in these cases. To see this, we note that Pic(R)|� =̃ Z|� for
these �, where R = Z[ζ�]. Hence K4k−2(R)|� =̃ H2(R,Z�(2k))|� =̃ H2(R,Z|�(2k)) =̃
Pic(R) =̃ Z|�. The usual transfer argument now shows that K4k−2(Z)|� is either zero
or Z|� for all k.

The Odd Torsion in K∗(Z)5.9

We now turn to the �-primary torsion in the K-theory of Z, where � is an odd
prime. By 27 and 70, the odd-indexed groups K2i−1(Z) have �-torsion exactly when
i ≡ 0 (mod � − 1). Thus we may restrict attention to the groups K2i(Z), whose
�-primary subgroups are H2

ét(Z[1|�];Z�(i + 1)) by 70.
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Our method is to consider the cyclotomic extension Z[ζ] of Z, ζ = e2πi|�.
Because the Galois group G = Gal(Q(ζ)|Q) is cyclic of order � − 1, prime to �, the
usual transfer argument shows that K∗(Z) → K∗(Z[ζ]) identifies Kn(Z) ⊗Z� with
Kn(Z[ζ]))G ⊗ Z� for all n. Because Kn(Z) and Kn(Z[1|�]) have the same �-torsion
(by the localization sequence), it suffices to work with Z[1|�].

97Proposition 97 When � is an odd regular prime there is no �-torsion in K2i(Z).

Proof Since � is regular, we saw in Example 75 that the finite group K2i(Z[ζ])
has no �-torsion. Hence the same is true for its G-invariant subgroup, and also
for K2i(Z).

It follows from this and 27 that K2i(Z;Z|�) contains only the Bockstein represen-
tatives of the Harris–Segal summands in K2i−1(Z), and this only when 2i ≡ 0
(mod 2� − 2).

We can also describe the algebra structure of K∗(Z;Z|�) using the action of
the cyclic group G = Gal(Q(ζ)|Q) on the ring K∗(Z[ζ];Z|�). For simplicity, let us
assume that � is a regular prime. It is useful to set R = Z[ζ, 1|�] and recall from 72
that K∗ = K∗(R;Z|�) is a free graded Z|�[β]-module on the (� + 1)|2 generators of
R×|� ∈ K1(R;Z|�), together with 1 ∈ K0(R;Z|�).

By Maschke’s theorem, Z|�[G] =̃
∏�−2

i=0 Z|� is a simple ring; every Z|�[G]-
module has a unique decomposition as a sum of irreducible modules. Since µ�

is an irreducible G-module, it is easy to see that the irreducible G-modules are µ⊗i
� ,

i = 0, 1, …, � − 2. The “trivial” G-module is µ⊗�−1
� = µ⊗0

� = Z|�. By convention,
µ⊗−i

� = µ⊗�−1−i
� .

For example, the G-module 〈βi〉 of K2i(Z[ζ];Z|�) generated by βi is isomorphic
to µ⊗i

� . It is a trivial G-module only when (� − 1)|i.
If A is any Z|�[G]-module, it is traditional to decompose A = ⊕A[i], where A[i]

denotes the sum of all G-submodules isomorphic to µ⊗i
� .

Example 98. Set R = Z[ζ�, 1|�]. It is known that the torsion free part R×|µ� =̃
Z

(�−1)|2 of the units of R is isomorphic as a G-module toZ[G]⊗Z [c]Z,
where c is complex conjugation. (This is sometimes included as part of Dirichlet’s
theorem on units.) It follows that as a G-module,

H1
ét(R, µ�) = R×|R×� =̃ µ� ⊕ (Z|�) ⊕ µ⊗2

� ⊕ · · · ⊕ µ⊗�−3
� .

The root of unity ζ generates the G-submodule µ�, and the class of the unit � of R
generates the trivial submodule of R×|R×�.

Tensoring with µ⊗i−1
� yields the G-module decomposition of R× ⊗ µ⊗i−1

� . If � is
regular this is K2i−1(R;Z|�) =̃ H1

ét(R, µ⊗i
� ) by 72. If i is odd, exactly one term is Z|�;

if i is even, Z|� occurs only when i ≡ 0 (mod � − 1).
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Notation Set R = Z[ζ�, 1|�], For i = 0, …, (� − 3)|2, pick a generator xi of the G-
submodule of R×|R×� isomorphic to µ⊗−2i

� . The indexing is set up so that yi = β2ixi

is a G-invariant element of K4i+1(R;Z|�) =̃ H1
ét(R, µ⊗2i+1

� ). We may arrange that
x0 = y0 is the unit [�] in K1(R;Z|�).

The elements β�−1 of H0
ét(R, µ⊗�−1

� ) and v = β�−2[ζ] of H1
ét(R, µ⊗�−1

� ) are also
G-invariant. By abuse of notation, we shall also write β�−1 and v, respectively, for
the corresponding elements of K2�−2(Z[1|�];Z|�) and K2�−3(Z[1|�];Z|�).

99 Theorem 99 If � is an odd regular prime then K∗ = K∗(Z[1|�];Z|�) is a free graded
module over the polynomial ring Z|�[β�−1]. It has (� + 3)|2 generators: 1 ∈ K0,
v ∈ K2�−3, and yi ∈ K4i+1 (i = 0, …, (� − 3)|2).

Similarly, K∗(Z;Z|�) is a free graded module over Z|�[β�−1]; a generating set is
obtained from the generators of K∗ by replacing y0 by y0β�−1.

The submodule generated by v and β�−1 comes from the Harris–Segal summands
of K2�−3(Z). The submodule generated by the y’s comes from the Z summands in
K4i+1(Z).

Proof K∗(Z[1|�];Z|�) is the G-invariant subalgebra of K∗(R;Z|�). Given 98, it is
not very hard to check that this is just the subalgebra described in the theorem.

Example 100. When � = 3, the groups K∗ = K∗(Z[1|3];Z|3) are 4-periodic of
ranks 1, 1, 0, 1, generated by an appropriate power of β2 times one

of {1, [3], v}.
When � = 5, the groups K∗ = K∗(Z[1|5];Z|5) are 8-periodic, with respective

ranks 1, 1, 0, 0, 0, 1, 0, 1 (∗ = 0, …, 7), generated by an appropriate power of β4

times one of {1, [5], y1, v}.

Now suppose that � is an irregular prime, so that Pic(R) has �-torsion for R =
Z[ζ, 1|�]. Then H1

ét(R, µ�) is R×|� ⊕ �Pic(R) and H2
ét(R, µ�) =̃ Pic(R)|� by Kummer

theory. This yields K∗(R;Z|�) by 72.

Example 101. Set R = Z[ζ�, 1|�] and P = Pic(R)|�. If � is regular then P = 0 by
definition; see 3. When � is irregular, the G-module structure of P is

not fully understood; see Vandiver’s conjecture 102 below. However, the following
arguments show that P[i] = 0, i.e., P contains no summands isomorphic to µ⊗i

� , for
i = 0, −1, −2, −3.

The usual transfer argument shows that PG =̃ Pic(Z[1|�])|� = 0. Hence P
contains no summands isomorphic toZ|�. By 5, we have a G-module isomorphism
(P ⊗ µ�) =̃ K2(R)|�. Since K2(R)|� G =̃ K2(Z[1|�])|� = 0, (P ⊗ µ�) has no Z|�
summands – and hence P contains no summands isomorphic to µ⊗−1

� .
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Finally, we have (P ⊗ µ⊗2
� ) =̃ K4(R)|� and (P ⊗ µ⊗3

� ) =̃ K6(R)|� by 73. Again,
the transfer argument shows that Kn(R)|� G =̃ Kn(Z[1|�])|� for n = 4, 6. These
groups are known to be zero by [53] and [15]; see 11. It follows that P contains no
summands isomorphic to µ⊗−2

� or µ⊗−3
� .

102Conjecture 102: (Vandiver’s Conjecture.) If � is an irregular prime number, then
the group Pic(Z[ζ�+ζ−1

� ]) has no �-torsion. Equivalently, the natural representation
of G = Gal(Q(ζ�)|Q) on Pic(Z[ζ�])|� is a sum of G-modules µ⊗i

� with i odd.
This means that complex conjugation c acts as multiplication by −1 on the

�-primary subgroup of Pic(Z[ζ�]), because c is the unique element of G of order 2.

As partial evidence for this conjecture, we mention that Vandiver’s conjecture has
been verified for all primes up to 12 million; see [9]. We also known from 101 that
µ⊗i

� does not occur as a summand of Pic(R)|� for i = 0, −2.

103Remark 103 The Herbrand-Ribet theorem [71, 6.17–18] states that �|Bk if and only
if Pic(R)|�[�−2k] ≠ 0. Among irregular primes < 4000, this happens for at most 3
values of k. For example, 37|c16 (see 96), so Pic(R)|�[5] = Z|37 and Pic(R)|�[k] = 0
for k ≠ 5.

104Historical Remark 104 What we now call ‘Vandiver’s conjecture’ was actually dis-
cussed by Kummer and Kronecker in 1849–1853; Harry Vandiver was not born
until 1882 and made his conjecture no earlier than circa 1920. In 1849, Kronecker
asked if Kummer conjectured that a certain lemma [71, 5.36] held for all p, and
that therefore p never divided h+ (i.e., Vandiver’s conjecture holds). Kummer’s
reply [30, pp. 114–115] pointed out that the Lemma could not hold for irregular p,
and then called the assertion [Vandiver’s conjecture] “a theorem still to be proven.”
Kummer also pointed out some of its consequences. In an 1853 letter (see [30],
p. 23), Kummer wrote to Kronecker that in spite of months of effort, the assertion
[Vandiver’s conjecture] was still unproven.

For the rest of this paper, we set R = Z[ζ�, 1|�], where ζ� = 1.

105Theorem 105 (Kurihara [31]) Let � be an irregular prime number. Then the
following are equivalent for every k between 1 and (� − 1)|2:
1. Pic(Z[ζ])|�[−2k] = 0.
2. K4k(Z) has no �-torsion;
3. K2a(�−1)+4k(Z) has no �-torsion for all a ≥ 0;
4. H2(Z[1|�], µ⊗2k+1

� ) = 0.
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In particular, Vandiver’s conjecture for � is equivalent to the assertion that K4k(Z)
has no �-torsion for all k < (� − 1)|2, and implies that K4k(Z) has no �-torsion for
all k.

Proof Set P = Pic(R)|�. By Kummer theory (see 5), P =̃ H2(R, µ�) and hence
P ⊗ µ⊗2k

� =̃ H2(R, µ⊗2k+1
� ) as G-modules. Taking G-invariant subgroups shows that

H2(Z[1|�], µ⊗2k+1
� ) =̃ (P ⊗ µ⊗2k

� )G =̃ P[−2k]. Hence (1) and (4) are equivalent.
By 71, K4k(Z)|� =̃ H2(Z[1|�], µ⊗2k+1

� ) for all k > 0. Since µ⊗b
� = µ⊗a(�−1)+b

� for all
a and b, this shows that (2) and (3) are separately equivalent to (4).

106 Theorem 106 If Vandiver’s conjecture holds for � then the �-primary torsion
subgroup of K4k−2(Z) is cyclic for all k.

If Vandiver’s conjecture holds for all �, the groups K4k−2(Z) are cyclic for all k.

(We know that the groups K4k−2(Z) are cyclic for all k < 500, by 96.)

Proof Set P = Pic(R)|�. Vandiver’s conjecture also implies that each of the “odd”
summands P[1−2k] = P[�−2k] of P is cyclic, and isomorphic toZ�|ck; (see [71, 10.15])
and 44 above. Since Pic(R) ⊗ µ⊗2k−1

� =̃ H2(R, µ⊗2k
� ), taking G-invariant subgroups

shows that P[1−2k] =̃ H2(Z[1|�], µ⊗2k
� ). By Theorem 70, this group is the �-primary

torsion in K4k−2(Z[1|�]).

Using 24 and 27 we may write the Bernoulli number Bk|4k as ck|w2k in reduced
terms, with ck odd. The following result, which follows from Theorems 1, 105
and 106, was observed independently by Kurihara [31] and Mitchell [44].

107 Corollary 107 If Vandiver’s conjecture holds, then Kn(Z) is given by Table 5.4, for
all n ≥ 2. Here k is the integer part of 1 + n

4 .

Table 5.4. The K-theory of Z, assuming Vandiver’s Conjecture

n (mod 8) 1 2 3 4 5 6 7 8

Kn(Z) Z⊕ Z|2 Z|2ck Z|2w2k 0 Z Z|ck Z|w2k 0

108 Remark 108 The elements of K2i(Z) of odd order become divisible in the larger
group K2i(Q). (The assertion that an element a is divisible in A means that for
every m there is an element b so that a = mb.) This was proven by Banaszak and
Kolster for i odd (see [1], thm. 2), and for i even by Banaszak and Gajda [2, proof
of prop. 8].
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For example, recall from 96 that K22(Z) = Z|691 and K30(Z) =̃ Z|3617. Banaszak
observed [1] that these groups are divisible in K22(Q) and K30(Q), i.e., that the
inclusions K22(Z) ⊂ K22(Q) and K30(Z) ⊂ K30(Q) do not split.

There are no divisible elements of even order in K2i(Q), because by 29 and 86
the only elements of exponent 2 in K2i(Z) are the Adams elements when 2i ≡ 2
(mod 8). Divisible elements in K2i(F) do exist for other number fields, as we saw
in 91, and are described in [73].

Let tj and sj be respective generators of the summand of Pic(R)|� and K1(R;Z|�)

isomorphic to µ⊗−j
� . The following result follows easily from 72 and 98, using the

proof of 99, 105 and 106. It was originally proven in [44]; another proof is given in
the article [42] in this Handbook. (The generators sjβj were left out in [43, 6.13].)

109Theorem 109 If � is an irregular prime for which Vandiver’s conjecture holds,
then K∗ = K∗(Z;Z|�) is a free module over Z|�[β�−1] on the (� − 3)|2 generators yi

described in 99, together with the generators tjβj ∈ K2j and sjβj ∈ K2j+1.
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Introduction 1.1

We give a survey on motivic cohomology, higher algebraic K-theory, and topologi-
cal cyclic homology. We concentrate on results which are relevant for applications in
arithmetic algebraic geometry (in particular, we do not discuss non-commutative
rings), and our main focus lies on sheaf theoretic results for smooth schemes,
which then lead to global results using local-to-global methods.

In the first half of the paper we discuss properties of motivic cohomology
for smooth varieties over a field or Dedekind ring. The construction of motivic
cohomology by Suslin and Voevodsky has several technical advantages over Bloch’s
construction, in particular it gives the correct theory for singular schemes. But
because it is only well understood for varieties over fields, and does not give well-
behaved étale motivic cohomology groups, we discuss Bloch’s higher Chow groups.
We give a list of basic properties together with the identification of the motivic
cohomology sheaves with finite coefficients.

In the second half of the paper, we discuss algebraic K-theory, étale K-theory and
topological cyclic homology. We sketch the definition, and give a list of basic prop-
erties of algebraic K-theory, sketch Thomason’s hyper-cohomology construction
of étale K-theory, and the construction of topological cyclic homology. We then
give a short overview of the sheaf theoretic properties, and relationships between
the three theories (in many situations, étale K-theory with p-adic coefficients and
topological cyclic homology agree).

In an appendix we collect some facts on intersection theory which are needed
to work with higher Chow groups. The results can be found in the literature, but
we thought it would be useful to find them concentrated in one article.

Acknowledgements: We received valuable comments from L. Hesselholt, B. Kahn,
M. Levine, C. Weibel, and the referee. Part of this paper was written while the
author was visiting the University of Tokyo, which we thank for their hospitality.

Motivic Cohomology 1.2

The existence of a complex of sheaves whose cohomology groups are related to
special values of L-functions was first conjectured by Beilinson [1], [2, §5] (for
the Zariski topology) and Lichtenbaum [62, 63](for the étale topology). Con-
sequently, the conjectural relationship between these complexes of sheaves is
called the Beilinson–Lichtenbaum conjecture. The most commonly used con-
structions of motivic cohomology are the ones of Bloch [5] and Suslin–Voevodsky
[89, 91, 99, 100]. Bloch’s higher Chow groups are defined for any scheme, but they
have properties analogous to a Borel–Moore homology theory in topology. In par-
ticular, they behave like a cohomology theory only for smooth schemes over a field.
Voevodsky’s motivic cohomology groups has good properties for non-smooth
schemes, but their basic properties are only established for schemes of finite type
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over a field, and they do not give a good étale theory (étale hypercohomology
vanishes with mod p-coefficients over a field of characteristic p). By a theorem of
Voevodsky [102], his motivic cohomology groups agree with Bloch’s higher Chow
groups for smooth varieties over a field. Since we want to include varieties over
Dedekind rings into our discussion, we discuss Bloch’s higher Chow groups.

Definition1.2.1

Let X be separated scheme, which is essentially of finite type over a quotient
of a regular ring of finite Krull dimension (we need this condition in order to
have a well-behaved concept of dimension, see the appendix). We also assume
for simplicity that X is equi-dimensional, i.e. every irreducible component has
the same dimension (otherwise one has to replace codimension by dimension
in the following discussion). Then Bloch’s higher Chow groups are defined as the
cohomology of the following complex of abelian groups. Let ∆r be the algebraic
r-simplex SpecZ[t0, … , tr]|(1 −

∑
j tj). It is non-canonically isomorphic to the

affine space Ar
Z , but has distinguished subvarieties of codimension s, given by

ti1 = ti2 = … = tis = 0, 0 ≤ i1 < … < is ≤ r. These subvarieties are called faces
of ∆r, and they are isomorphic to ∆r−s. The group zn(X, i) is the free abelian group
generated by closed integral subschemes Z ⊂ ∆i×X of codimension n, such that for
every face F of codimension s of ∆i, every irreducible component of the intersection
Z∩(F×X) has codimension s in F×X. This ensures that the intersection with a face
of codimension 1 gives an element of zn(X, i − 1), and we show in the appendix that
taking the alternating sum of these intersections makes zn(X, ∗) a chain complex.
Replacing a cycle in zn(X, ∗) by another cycle which differs by a boundary is called
moving the cycle. We let Hi(X,Z(n)) be the cohomology of the cochain complex
with zn(X, 2n − i) in degree i. For dimension reasons it is clear from the definition
that Hi(X,Z(n)) = 0 for i > min{2n, n + dim X}. In particular, if X is the spectrum
of a field F, then Hi(F,Z(n)) = 0 for i > n. It is a conjecture of Beilinson and Soulé
that Hi(X,Z(n)) = 0 for i < 0.

The motivic cohomology with coefficients in an abelian group A is defined as the
cohomology of the complex A(n) := Z(n) ⊗ A. In particular, motivic cohomology
groups with finite coefficients fit into a long exact sequences

· · · → Hi(X,Z(n))
×m→ Hi

(
X,Z(n)

) → Hi
(
X,Z|m(n)

) → · · · .

Hyper-cohomology1.2.2

By varying X, one can view Z(n) := zn(−, 2n − ∗) as a complex of presheaves on
X. It turns out that this is in fact a complex of sheaves for the Zariski, Nisnevich
and étale topology on X [5] [28, Lemma 3.1]. It is clear from the definition that
there is a canonical quasi-isomorphism Z(0) � Z of complexes of Zariski-sheaves
if X is integral. Since étale covers of a normal scheme are normal, the same quasi-
isomorphism holds for the Nisnevich and étale topology if X is normal. For X
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smooth of finite type over a field or Dedekind ring, there is a quasi-isomorphism
Z(1) =̃ Gm[−1] for all three topologies. This has been shown by Bloch [5] for quasi-
projective X over a field, and follows for general X by the localization below. We
define Hi(XZar,Z(n)), Hi(XNis,Z(n)) and Hi(Xét,Z(n)) as the hyper-cohomology
with coefficients inZ(n) for the Zariski, Nisnevich and étale topology of X, respec-
tively. One defines motivic cohomology with coefficients in the abelian group A as
the hyper-cohomology groups of Z(n) ⊗ A.

If X is of finite type over a finite field Fq, then it is worthwhile to consider
motivic cohomology groups Hi(XW ,Z(n)) for the Weil-étale topology [29]. This is
a topology introduced by Lichtenbaum [64], which is finer than the étale topology.
Weil-étale motivic cohomology groups are related to étale motivic cohomology
groups via the long exact sequence

→ Hi
(
Xét,Z(n)

) → Hi
(
XW ,Z(n)

) → Hi−1
(
Xét,Q(n)

) δ→ Hi+1
(
Xét,Z(n)

) → .

The map δ is the composition

Hi−1
(
Xét,Q(n)

) → Hi−1
(
Xét,Q|Z(n)

) ∪e→ Hi
(
Xét,Q|Z(n)

) β→ Hi+1
(
Xét,Z(n)

)
,

where e ∈ H1(Fq,Z) =̃ Ext1
Z[Z ](Z,Z) =̃ Z is a generator, and β the Bockstein

homomorphism. Consequently, the sequence breaks up into short exact sequences
upon tensoring withQ. Weil-étale motivic cohomology groups are expected to be
an integral model for l-adic cohomology, and are expected to be finitely generated
for smooth and projective varieties over finite fields [29].

Most of the properties of motivic cohomology which follow are due to Bloch [5]
for varieties over fields, and to Levine [59] for varieties over discrete valuation rings.

Functoriality 1.2.3

We show in the appendix that a flat, equidimensional map f : X → Y induces a map
of complexes zn(Y , ∗) → zn(X, ∗), hence a map f ∗ : Hi(Y ,Z(n)) → Hi(X,Z(n)).
The resulting map of complexes of sheaves f ∗

Z(n)Y → Z(n)X induces a map on
hyper-cohomology groups.

We also show in the appendix that there is a map of cycle complexes zn(X, ∗) →
zn−c(Y , ∗) for a proper map f : X → Y of relative dimension c of schemes of finite
type over an excellent ring (for example, over a Dedekind ring of characteristic 0,
or a field). This induces a map f∗ : Hi(X,Z(n)) → Hi−2c(Y ,Z(n − c)) and a map
of sheaves f∗Z(n)X → Z(n − c)Y [−2c], which induces a map of hyper-cohomology
groups if f∗ = Rf∗.

Motivic cohomology groups are contravariantly functorial for arbitrary maps
between smooth schemes over a field [5, §4], [57, II §3.5] or discrete valuation
ring [59]. This requires a moving lemma, because the pull-back of cycles may not
meet faces properly. Hence one needs to show that every cycle c is equivalent to
a cycle c′ whose pull-back does meet faces properly, and that the pull-back does
not depend on the choice of c′. This moving lemma is known for affine schemes,
and one can employ the Mayer–Vietoris property below to reduce to this situation
by a covering of X.
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Localization1.2.4

Let X be a scheme of finite type over a discrete valuation ring, and let i : Z → X
be a closed subscheme of pure codimension c with open complement j : U → X.
Then the exact sequence of complexes

0 → zn−c(Z, ∗)
i∗→ zn(X, ∗)

j∗→ zn(U, ∗)

gives rise to a distinguished triangle in the derived category of abelian groups
[8,58], i.e. the cokernel of j∗ is acyclic. In particular, there are long exact localization
sequences of cohomology groups

· · · → Hi−2c
(
Z,Z(n − c)

) → Hi
(
X,Z(n)

) → Hi
(
U,Z(n)

) → · · · .

and the complexes Z(n) satisfy the Mayer–Vietoris property, i.e. if X = U ∪ V
is a covering of X by two Zariski open subsets, then there is a long exact se-
quence

· · · → Hi
(
X,Z(n)

) → Hi
(
U,Z(n)

) ⊕ Hi
(
V ,Z(n)

) → Hi
(
U ∩ V ,Z(n)

) → · · · .

If X is a separated noetherian scheme of finite Krull dimension, then the argu-
ment of Brown–Gersten [15, 17, 95] shows that whenever the cohomology groups
Hi(C·(−)) of a complex of presheaves C· satisfies the Mayer–Vietoris property, then
the cohomology groups Hi(C·(X)) and hyper-cohomology groups Hi(XZar, C̃·) of
the associated complex of sheaves agree. Note that hyper-cohomology, i.e. an
injective resolution of C·, always satisfies the Mayer–Vietoris property, but the
Mayer–Vietoris property is not preserved by quasi-isomorphisms. For example,
Z(1) satisfies the Mayer–Vietoris property, but the quasi-isomorphic sheaf Gm

does not. As a consequence of the theorem of Brown–Gersten, cohomology and
hyper-cohomology of Z(n) agree, Hi(X,Z(n)) =̃ Hi(XZar,Z(n)), and the spectral
sequence for the hyper-cohomology of a complex gives

Es,t
2 = Hs

(
XZar, H

t
(
Z(n)

)) ⇒ Hs+t
(
X,Z(n)

)
. (1.1)

The argument of Brown–Gersten has been generalized by Nisnevich [75], see
also [17, Thm. 7.5.2], replacing the Mayer–Vietoris property by the étale excision
property. This property is satisfyed by Bloch’s higher Chow groups in view of local-
ization, hence motivic cohomology agrees with its Nisnevish hyper-cohomology
Hi(X,Z(n)) =̃ Hi(XNis,Z(n)), and we get a spectral sequence

Es,t
2 = Hs

(
XNis, H

t(Z(n))
) ⇒ Hs+t

(
X,Z(n)

)
. (1.2)

For smooth schemes, the spectral sequences (1.1) and (1.2) are isomorphic [17].
On the other hand, if X is the node Spec k[x, y]|(y2 −x(x+1)), then H1(XNis,Z) =̃ Z,
but localization shows that H1(X,Z(0)) = 0. Hence Z(0) is not quasi-isomorphic
to Z even for integral schemes.
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Gersten Resolution 1.2.5

In order to study the sheaf H t(Z(n)), one considers the spectral sequence coming
from the filtration of zn(X, ∗) by coniveau [5, §10]. The complex Fszn(X, ∗) is the
subcomplex generated by closed integral subschemes such that the projection to X
has codimension at least s. The localization property implies that the pull-back map
grszn(X, ∗) → ⊕x∈X(s) zn(k(x), ∗) is a quasi-isomorphism, where X(s) denotes the set
of points x ∈ X such that the closure of x has codimension s, and k(x) is the residue
field of x. The spectral sequence for a filtration of a complex then takes the form:

Es,t
1 =

⊕

x∈X(s)

Ht−s
(
k(x),Z(n − s)

) ⇒ Hs+t
(
X,Z(n)

)
. (1.3)

The spectral sequence degenerates at E2 for an essentially smooth semi-local ring
over a field. Hence, for X a smooth scheme over a field, the E1-terms and differen-
tials gives rise to an exact sequence of Zariski sheaves, the Gersten resolution [5,
Thm. 10.1]

0 → H t(Z(n)) →
⊕

x∈X(0)

(ix)∗Ht
(
k(x),Z(n)

)

→
⊕

x∈X(1)

(ix)∗Ht−1
(
k(x),Z(n − 1)

) → · · · . (1.4)

Here (ix)∗G is the skyscraper sheaf with group G at the point x. The same argu-
ment works for motivic cohomology with coefficients. Since skyscraper sheaves
are flabby, one can calculate the cohomology of H t(Z(n)) with the complex (1.4),
and gets Es,t

2 = Hs(XZar, H t(Z(n))).
If X is smooth over a discrete valuation ring V , there is a conditional result.

Assume that for any discrete valuation ring R, essentially of finite type over V ,
with quotient field K of R, the map Ht(R,Z(n)) → Ht(K,Z(n)) is injective (this is
a special case of (1.4)). Then the sequence (1.4) is exact on X [28]. The analogous
statement holds with arbitrary coefficients. Since the hypothesis is satisfied with
mod p-coefficients if p is the residue characteristic of V (see below), we get a Gersten
resolution for H t(Z|pr(n)). As a corollary of the proof of (1.4), one can show [28]
that the complex Z(n) is acyclic in degrees above n.

Products 1.2.6

For X and Y varieties over a field, there is an external product structure, see [34,
Appendix] [5, Section 5] [107].

zn(X, ∗) ⊗ zm(Y , ∗) → zn+m(X × Y , ∗) ,

which induces an associative and (graded) commutative product on cohomology.
If Z1 ⊆ X × ∆i and Z2 ⊆ Y × ∆j are generators of zn(X, i) and zm(Y , j), respectively,
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then the map sends Z1 ⊗ Z2 to Z1 × Z2 ⊆ X × Y × ∆i × ∆j. One then triangulates
∆p × ∆q, i.e. covers it with a union of copies of ∆p+q. The complication is to
move cycles such that the pull-back along the maps ∆p+q → ∆p × ∆q intersects
faces properly. Sheafifying the above construction on X × Y , we get a pairing of
complexes of sheaves

p∗
XZ(n)X ⊗ p∗

YZ(m)Y → Z(n + m)X×Y .

which in turn induces a pairing of hyper-cohomology groups. For smooth X, the
external product induces, via pull-back along the diagonal, an internal product

Hi
(
X,Z(n)

) ⊗ Hj
(
X,Z(m)

) → Hi+j
(
X,Z(n + m)

)
.

Over a discrete valuation ring, we do not know how to construct a product
structure in general. The problem is that the product of cycles lying in the closed
fiber will not have the correct codimension, and we don’t know how to move a cycle
in the closed fiber to a cycle which is flat over the base. Sometimes one can get by
with the following construction of Levine [59]. Let B be the spectrum of a discrete
valuation ring, let Y be flat over B, and consider the subcomplex zm(Y |B, ∗) ⊆
zm(Y , ∗) generated by cycles whose intersections with all faces are equidimensional
over B. A similar construction as over fields gives a product structure

zn(X, ∗) ⊗ zm(Y |B, ∗) → zn+m(X ×B Y , ∗) .

This is helpful because often the cohomology classes one wants to multiply with
can be represented by cycles in zm(Y |B, ∗).

Levine conjectures that the inclusion zm(Y |B, ∗) ⊆ zm(Y , ∗) induces a quasi-
isomorphism of Zariski sheaves. If B is the spectrum of a Dedekind ring, it would
be interesting to study the cohomology groups of the complex zm(Y |B, ∗).

Affine and Projective Bundles, Blow-ups1.2.7

Let X be of finite type over a field or discrete valuation ring, and let p : E → X
be a flat map such that for each point x ∈ X the fiber is isomorphic to An

k(x). Then
the pull back map induced by the projection E → X induces a quasi-isomorphism
zn(X, ∗) → zn(E, ∗). This was first proved by Bloch [5, Thm. 2.1] over a field,
and can be generalized using localization. Note that the analogous statement for
étale hyper-cohomology of the motivic complex is wrong. For example, one can
see with Artin–Schreier theory that H2(A1

Fp ,ét,Z(0)) has a very large p-part. The
localization sequence

· · · → Hi−2
(
P

n−1
X ,Z(n − 1)

) → Hi
(
P

n
X ,Z(n)

) → Hi
(
A

n
X ,Z(n)

) → · · ·

is split by the following composition of pull-back maps

Hi
(
A

n
X ,Z(n)

) ∼← Hi
(
X,Z(n)

) → Hi
(
P

n
X ,Z(n)

)
.
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This, together with induction, gives a canonical isomorphism

Hi
(
P

m
X ,Z(n)

)
=̃

m⊕

j=0

Hi−2j
(
X,Z(n − j)

)
. (1.5)

If X′ is the blow-up of the smooth scheme X along the smooth subscheme Z of
codimension c, then we have the blow-up formula

Hi
(
X′,Z(n)

)
=̃ Hi

(
X,Z(n)

) ⊕
c−1⊕

j=1

Hi−2j
(
Z,Z(i − j)

)
. (1.6)

The case X over a field is treated in [57, Lemma IV 3.1.1] and carries over to X over
a Dedekind ring using the localization sequence.

Milnor K-Theory 1.2.8

The Milnor K-groups [73] of a field F are defined as the quotient of the tensor
algebra of the multiplicative group of units F× by the ideal generated by the
Steinberg relation a ⊗ (1 − a) = 0,

KM
∗ (F) = T∗

Z (F×)|
(
a ⊗ (1 − a)|a ∈ F − {0, 1}) .

For R a regular semi-local ring over a field k, we define the Milnor K-theory of R
as the kernel

KM
n (R) = ker

( ⊕

x∈R(0)

KM
n

(
k(x)

) δ→
⊕

y∈R(1)

KM
n−1

(
k(y)

) )
. (1.7)

Here δy is defined as follows [73, Lemma 2.1]. The localization Vy of R at the
prime corresponding to y is a discrete valuation ring with quotient field k(x)
for some x ∈ R(0) and residue field k(y). Choose a uniformizer π ∈ Vy, and if
uj ∈ V×

y has reduction uj ∈ k(y), set δy({u1, … un}) = 0 and δy({u1, … , un−1, π}) =
{u1, … , un−1}. By multilinearity of symbols this determines δy. Since there ex-
ists a universally exact Gersten resolution for Milnor K-theory [17, Example
7.3(5)], the equation (1.7) still holds after tensoring all terms with an abelian
group.

For any ring, one can define a graded ring K
M
∗ (R) by generators and relations as

above (including the extra relation a ⊗ (−a) = 0, which follows from the Steinberg
relation if R is a field). If R is a regular semi-local ring over a field, there is a canonical
map K

M
i (R) → KM

i (R), and Gabber proved that this map is surjective, provided
the base field is infinite, see also [19].

For a field F, Hi(F,Z(n)) = 0 for i > n, and in the highest degree we have the
isomorphism of Nesterenko–Suslin [74, Thm. 4.9] and Totaro [98]:

KM
n (F)

∼→ Hn
(
F,Z(n)

)
. (1.8)
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The map is given by

{u1, … , un} �→
(

−u1

1 −
∑

ui
, … ,

−un

1 −
∑

ui
,

1

1 −
∑

ui

)
∈ (∆n

F)(n) . (1.9)

If m is relatively prime to the characteristic of F, it follows from Kummer theory that
KM

1 (F)|m =̃ F×|(F×)m =̃ H1(Fét, µm). Since the cup-product on Galois cohomology
satisfies the Steinberg relation [93, Thm. 3.1], we get the symbol map from Milnor
K-theory to Galois cohomology

KM
n (F)|m → Hn

(
Fét, µ⊗n

m

)
. (1.10)

The Bloch–Kato conjecture [9] states that the symbol map is an isomorphism.
Voevodsky [101] proved the conjecture for m a power of 2, and has announced
a proof for general m in [103].

Beilinson–Lichtenbaum Conjecture1.2.9

Motivic cohomology groups for the étale and Zariski topology are different. For
example, for a field F, we have H3(F,Z(1)) = 0, but H3(Fét,Z(1)) =̃ H2(Fét,Gm) =̃
Br F. The Beilinson–Lichtenbaum conjecture states that this phenomenon only oc-
curs in higher degrees. More precisely, let X be a smooth scheme over a field, and
let ε : Xét → XZar be the canonical map of sites. Then the Beilinson–Lichtenbaum
conjecture states that the canonical map

Z(n)
∼→ τ≤n+1Rε∗Z(n) . (1.11)

is a quasi-isomorphism, or more concretely, that for every smooth scheme X over
a field,

Hi
(
X,Z(n)

)
=̃ Hi

(
Xét,Z(n)

)
for i ≤ n + 1 .

In [91], Suslin and Voevodsky show that, assuming resolution of singulari-
ties, the Bloch–Kato conjecture (1.10) implies the Beilinson–Lichtenbaum con-
jecture (1.11) with mod m-coefficients; in [34] the hypothesis on resolution of
singularities is removed.

Cycle Map1.2.10

Let Hi(X, n) be a bigraded cohomology theory which is the hyper-cohomology of
a complex of sheaves C(n); important examples are étale cohomology Hi(X, µ⊗n

m )
and Deligne cohomology Hi

D(X,Z(n)). Assume that C(n) is contravariantly func-
torial, i.e. for f : X → Y there exists a map f ∗C(n)X → C(n)Y in the derived
category, compatible with composition. Assume furthermore that C(n) admits
a cycle class map CHn(X) → H2n(X, n), is homotopy invariant, and satisfies
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a weak form of purity. Then Bloch constructs in [7] (see also [34]) a natural
map

Hi
(
X,Z(n)

) → Hi(X, n) . (1.12)

Unfortunately, this construction does not work for cohomology theories which sat-
isfy the projective bundle formula, but are not homotopy invariant, like crystalline
cohomology, de Rham cohomology or syntomic cohomology.

Rational Coefficients 1.2.11

If X is a separated noetherian scheme of finite Krull dimension, then

Hi
(
X,Q(n)

)
=̃ Hi

(
Xét,Q(n)

)
. (1.13)

Indeed, in view of Hi(X,Z(n)) =̃ Hi(XNis,Z(n)), it suffices to observe that for any
sheaf FQ of Q-vector spaces, Hi(XNis, FQ ) =̃ Hi(Xét, FQ ). But for any henselian
local ring R with residue field k, and i > 0, Hi(Rét, FQ ) =̃ Hi(két, FQ ) = 0 because
higher Galois cohomology is torsion. Hence Riα∗ = 0 for α : Xet → XN is the
canonical morphism of sites.

Parshin conjectured that for X smooth and projective over a finite field,

Hi
(
X,Q(n)

)
= 0 for i �= 2n .

Using (1.3) and induction, this implies that for any field F of characteristic p,
Hi(F,Q(n)) = 0 for i �= n. From the sequence (1.4), it follows then that for any
smooth X over a field k of characteristic p, Hi(X,Q(n)) = 0 unless n ≤ i ≤
min{2n, n + d}. To give some credibility to Parshin’s conjecture, one can show [26]
that it is a consequence of the conjunction of the strong form of Tate’s conjecture,
and a conjecture of Beilinson stating that over finite fields numerical and rational
equivalence agree up to torsion. The argument is inspired by Soulé [85] and goes as
follows. Since the category of motives for numerical equivalence is semi-simple by
Jannsen [52], we can break up X into simple motives M. By Beilinson’s conjecture,
Grothendieck motives for rational and numerical equivalence agree, and we can
break up Hi(X,Q(n)) correspondingly into a direct sum of Hi(M,Q(n)). By results
of Milne [72], Tate’s conjecture implies that a simple motive M is characterized by
the eigenvalue eM of the Frobenius endomorphism ϕM of M. By Soule [85], ϕM

acts on Hi(M,Q(n)) as pn, so this group can only be non-zero if eM = pn, which
implies that M ⊆ Pn. But the projective space satisfies Parshin’s conjecture by the
projective bundle formula (1.5).

In contrast, if K is a number field, then

H1
(
K,Q(n)

)
=





Q

r1+r2 1 < n ≡ 1 mod 4

Q
r2 n ≡ 3 mod 4 ,

where r1 and r2 are the number of real and complex embeddings of K, respectively.
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Sheaf Theoretic Properties1.3

In this section we discuss sheaf theoretic properties of the motivic complex.

Invertible Coefficients1.3.1

Let X be a smooth scheme over k, and m prime to the characteristic k. Then there
is a quasi-isomorphism

Z|m(n)ét � µ⊗n
m (1.14)

of the étale motivic complex with mod m-coefficients. The map is the map of
(1.12), and it is an isomorphism, because for a henselian local ring R of X with
residue field κ, there is a commutative diagram

Hi
(
Rét,Z|m(n)

) → Hi
(
Rét, µ⊗n

m

)

∼↓ ∼↓
Hi

(
κét,Z|m(n)

) → Hi
(
κét, µ⊗n

m

)
.

The left vertical map is an isomorphism by Bloch [5, Lemma 11.1] (he assumes,
but does not use, that R is strictly henselian), the right horizontal map by rigid-
ity for étale cohomology (Gabber [22]). Finally, the lower horizontal map is an
isomorphism for separably closed κ by Suslin [87].

In view of (1.14), the Beilinson–Lichtenbaum conjecture with mod m-coeffi-
cients takes the more familiar form

Z|m(n)
∼→ τ≤nRε∗µ⊗n

m ,

or more concretely,

Hi
(
X,Z|m(n)

) ∼→ Hi
(
Xét, µ⊗n

m

)
for i ≤ n .

One could say that motivic cohomology is completely determined by étale co-
homology for i ≤ n, whereas for i > n the difference encodes deep arithmetic
properties of X. For example, the above map for i = 2n is the cycle map.

Characteristic Coefficients1.3.2

We now consider the motivic complex mod pr, where p = char k. For simplicity
we assume that k is perfect. This is no serious restriction because the functors we
study commute with filtered colimits of rings. Let W(k) be the ring of Witt vectors
of k, and K the field of quotients of W(k). For a smooth variety X over k, Illusie [50],
based on ideas of Bloch [4] and Deligne, defines the de Rham–Witt pro-complex
W·Ω∗

X . It generalizes Witt vectors W·OX , and the de Rham complex Ω∗
X , and comes

equipped with operators F : WrΩ∗
X → Wr−1Ω∗

X and V : WrΩ∗
X → Wr+1Ω∗

X , which
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generalize the Frobenius and Verschiebung maps on Witt vectors. The hyper-
cohomology of the de Rham–Witt complex calculates the crystalline cohomology
H∗

crys(X|W(k)) of X, hence it can be used to analyze crystalline cohomology using
the slope spectral sequence

Es,t
1 = Ht

(
X, W·Ωs

) ⇒ Hs+t
crys

(
X|W(k)

)
.

This spectral sequence degenerates at E1 up to torsion [50, II Thm. 3.2], and if we
denote by H

j
crys(X|W(k))[s,s+1[

K the part of the F-crystal H
j
crys(X|W(k)) ⊗W(k) K with

slopes in the interval [s, s + 1[, then [50, II (3.5.4)]

Ht
crys

(
X|W(k)

)[s,s+1[

K
= Ht−s

(
X, W·Ωs

X

) ⊗W(k) K .

The (étale) logarithmic de Rham–Witt sheaf νn
r = WrΩn

X,log is defined as the sub-
sheaf of WrΩn

X generated locally for the étale topology by d log x1 ∧ · · · ∧ d log xn,
where x ∈ WrOX are Teichmüller lifts of units. See [40,69] for basic properties. For
example, ν0

r =̃ Z|pr, and there is a short exact sequence of étale sheaves

0 → Gm
pr

→ Gm → ν1
r → 0 .

There are short exact sequences of pro-sheaves on the small étale site of X, [50,
Théorème 5.7.2]

0 → νn
· → W·Ωn

X
F−1→ W·Ωn

X → 0 . (1.15)

For a quasi-coherent sheaf (or pro-sheaf) of OX-modules such as W·Ωn
X , the higher

direct images Riε∗W·Ωi
X of its associated étale sheaf are zero for i > 0. Thus we get

an exact sequence of pro-Zariski-sheaves

0 → νn
· → W·Ωn

X
F−1→ W·Ωn

X → R1ε∗νn
· → 0 .

and Riε∗νn
· = 0 for i ≥ 2. By Gros and Suwa [41], the sheaves νn

r have a Gersten
resolution on smooth schemes X over k,

0 → νn
r →

⊕

x∈X(0)

(ix)∗νn
r

(
k(x)

) →
⊕

x∈X(1)

(ix)∗νn−1
r

(
k(x)

) → · · · .

In particular, Hi(XZar, νn
r ) = 0 for i > n. Milnor K-theory and logarithmic de

Rham–Witt sheaves of a field F of characteristic p are isomorphic by the theorem
of Bloch–Gabber–Kato [9, 55]

d log : KM
n (F)|pr ∼→ νn

r (F) . (1.16)

Since motivic cohomology, Milnor K-theory and logarithmic de Rham Witt
cohomology all admit Gersten resolutions, we get as a corollary of (1.16) and
(1.8) that for a semi-localization R of a regular k-algebra of finite type, there are
isomorphisms

Hn
(
R,Z|pr(n)

) ∼← KM
n (R)|pr ∼→ νn

r (R) .
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Using this as a base step for induction, one can show [33] that for any field K of
characteristic p,

Hi
(
K,Z|pr(n)

)
= 0 for i �= n . (1.17)

Consequently, for a smooth variety X over k, there is a quasi-isomorphism of
complexes of sheaves for the Zariski (hence also the étale) topology,

Z|pr(n) =̃ νn
r [−n] . (1.18)

so that

Hs+n
(
X,Z|pr(n)

)
=̃ Hs

(
XZar, ν

n
r

)
,

Hs+n
(
Xét,Z|pr(n)

)
=̃ Hs

(
Xét, ν

n
r

)
.

Since dF = pFd on the de Rham–Witt complex, we can define a map of truncated
complexes F : W·Ω∗≥n

X → W·Ω∗≥n
X by letting F = pj−nF on W·Ω

j
X . Since pjF − id is

an automorphism on WrΩi
X for every j ≥ 1 [50, Lemma I 3.30], the sequence (1.15)

gives rise to an exact sequence of pro-complexes of étale sheaves

0 → νn
· [−n] → W·Ω∗≥n

X
F−id→ W·Ω∗≥n

X → 0 .

The Frobenius endomorphism ϕ of X induces the map piF on WrΩi
X [50, I 2.19],

hence composing with the inclusion W·Ω∗≥n
X → W·Ω∗

X and using (1.18), we get
a map to crystalline cohomology [69]

Hs
(
X,Z(n)

) → Hs−n
(
XZar, ν

n
r

) → Hs
crys

(
X|Wr(k)

)ϕ−pn

.

This generalizes the crystalline cycle map of Gros [40].

Projective Bundle and Blow-up1.3.3

If X is smooth over a field of characteristic p, letQ|Z(n)′ = colimp�| m µ⊗n
m , and for n <

0 define negative étale motivic cohomology to be Hi(Xét,Z(n))=Hi−1(Xét,Q|Z(n)′).
Then the formula (1.5) has the analog

Hi
(
(Pm

X )ét,Z(n)
)

=̃
m⊕

j=0

Hi−2j
(
Xét,Z(n − j)

)
. (1.19)

Indeed, it suffices to show this after tensoring with Q, and with finite coefficients
Z|lr for all primes l. Rationally, the formula holds by (1.5) and (1.13). WithZ|lr-co-
efficients, it follows by (1.14) and (1.18) from the projective bundle formula for étale
cohomology [71, Prop. VI 10.1] and logarithmic de Rham–Witt cohomology [40].

Similarly, the formula (1.6) for the blow-up X′ of a smooth variety X in a smooth
subscheme Z of codimension c has the analog

Hi
(
X′

ét,Z(n)
)

=̃ Hi
(
Xét,Z(n)

) ⊕
d−1⊕

j=1

Hi−2j
(
Zét,Z(i − j)

)
. (1.20)
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This follows rationally from (1.6), and with finite coefficients by the proper base-
change for µ⊗n

m and [40, Cor. IV 1.3.6].

Mixed Characteristic 1.3.4

If X is an essentially smooth scheme over the spectrum B of a a Dedekind ring,
one can show that the Bloch–Kato conjecture (1.10) implies the following sheaf
theoretic properties of the motivic complex [28].

Purity: Let i : Y → X be the inclusion of one of the closed fibers. Then the map
induced by adjointness from the natural inclusion map is a quasi-isomorphism

Z(n − 1)ét[−2] → τ≤n+1Ri!
Z(n)ét . (1.21)

Beilinson–Lichtenbaum: The canonical map is a quasi-isomorphism

Z(n)Zar ∼→ τ≤n+1Rε∗Z(n)ét .

Rigidity: For an essentially smooth henselian local ring R over B with residue field
k and m ∈ k×, the canonical map is a quasi-isomorphism

Hi
(
R,Z|m(n)

) ∼→ Hi
(
k,Z|m(n)

)
.

Étale sheaf: There is a quasi-isomorphism of complexes of étale sheaves on X ×Z

Z[ 1
m ]

Z|m(n)ét =̃ µ⊗n
m .

Gersten resolution: For any m, there is an exact sequence

0 → H s(Z|m(n)Zar) →
⊕

x∈X(0)

(ix)∗Hs
(
k(x),Z|m(n)

)

→
⊕

x∈X(1)

(ix)∗Hs−1
(
k(x),Z|m(n − 1)

) → · · · .

Combining the above, one gets a Gersten resolution for the sheaf Rsε∗µ⊗n
m for

s ≤ n, m invertible on X, and ε : Xét → XZar the canonical map. This extends the
result of Bloch and Ogus [11], who consider smooth schemes over a field.

If X is a smooth scheme over a discrete valuation ring V of mixed characteristic
(0, p) with closed fiber i : Z → X and generic fiber j : U → X, and if (1.21) is
a quasi-isomorphism, then the (truncated) decomposition triangle Ri! → i∗ →
i∗Rj∗j∗ gives a distinguished triangle

· · · → i∗Z|pr(n)ét → τ≤ni∗Rj∗µ⊗n
pr → νn−1

r [−n] → · · · . (1.22)

By a result of Kato and Kurihara [56], for n < p − 1 the syntomic complex Sr(n) of
Fontaine–Messing [20] fits into a similar triangle

· · · → Sr(n) → τ≤ni∗Rj∗µ⊗n
pr

κ→ νn−1
r [−n] → · · · . (1.23)



208 Thomas Geisser

Here κ is the composition of the projection τ≤ni∗Rj∗µ⊗n
pr → i∗Rnj∗µ⊗n

pr [−n] with
the symbol map of [9, §6.6]. More precisely, i∗Rnj∗µ⊗n

pr [−n] is locally generated
by symbols {f1, … , fn}, for fi ∈ i∗j∗O×

U by [9, Cor. 6.1.1]. By multilinearity, each
such symbol can be written as a sum of symbols of the form {f1, … , fn} and
{f1, … , fn−1, π}, for fi ∈ i∗O×

X and π a uniformizer of V . Then κ sends the former to
zero, and the latter to d log f 1 ∧… ∧ d log f n−1, where f i is the reduction of fi to O×

Y .
For n ≥ p−1, we extend the definition of the syntomic complex Sr(n) by defining

it as the cone of the map κ. This cone has been studied by Sato [81]. Comparing
the triangles (1.22) and (1.23), one can show [28] that there is a unique map

i∗Z|pr(n)ét → Sr(n)

in the derived category of sheaves on Yét, which is compatible with the maps of
both complexes to τ≤ni∗Rj∗µ⊗n

pr . The map is a quasi-isomorphism provided that the
Bloch–Kato conjecture with mod p-coefficients holds. Thus motivic cohomology
can be thought of as a generalization of syntomic cohomology, as anticipated by
Milne [70, Remark 2.7] and Schneider [82]. As a special case, we get for smooth
and projective X over V the syntomic cycle map

Hi(X,Z(n)) → Hi(XZar, Sr(n)) .

K-Theory1.4

The first satisfactory construction of algebraic K-groups of schemes was the
Q-construction of Quillen [79]. Given a scheme X, one starts with the category
P of locally free OX-modules of finite rank on X, and defines an intermediate
category QP with the same objects, and where a morphism P → P′ is defined to
be an isomorphism of P with a sub-quotient of P′. Any (small) category C gives
rise to a simplicial set, the nerve NC. An n-simplex of the nerve is a sequence
of maps C0 → C1 → · · · → Cn in C, and the degeneracy and face maps are

defined by including an identity Ci
id→ Ci, and contracting Ci

fi→ Ci+1
fi+1→ Ci+2

to Ci
fi+1◦fi→ Ci+2, respectively. The K-groups Ki(X) of X are the homotopy groups

πi+1BQP of the geometric realization BQP of the nerve NQP of QP . Algebraic
K ′-groups are defined similarly using the category of coherent OX-modules on X. If
X is regular, then K(X) and K ′(X) are homotopy equivalent, because every coherent
OX-module has a finite resolution by finitely generated locally free OX-modules,
hence one can apply the resolution theorem of Quillen [79, §4, Cor. 2]. The functor
K ′ has properties analogous to the properties of Bloch’s higher Chow groups.

For a ring R, a different construction of Ki(R) is the +-construction [78]. It
is defined by modifying the classifying space BGL(R) of the infinite general lin-
ear group GL(R) = colimi GLi(R) to a space BGL+(R), which has the same ho-
mology groups as BGL(R), but abelian fundamental group. The K-groups of R



Motivic Cohomology, K-Theory and Topological Cyclic Homology 209

are Ki(R) = πiBGL(R)+, and by [38] they agree with the groups defined us-
ing the Q-construction for X = Spec R. The Q-construction has better functo-
rial properties, whereas the +-construction is more accessible to calculations.
For example, Quillen calculates the K-theory of finite fields in [78] using the
+-construction. This was the only type of ring for which the K-theory was com-
pletely known, until 25 years later the K-theory of truncated polynomial alge-
bras over finite fields was calculated [47]. It takes deep results on topological
cyclic homology and 25 pages of calculations to determine K3(Z|9Z) using the
+-construction [27].

Waldhausen [105] gave an improved version of the Q-construction, called the
S-construction, which gives a symmetric spectrum in the sense of [49], see [30,
Appendix]. It also allows categories with more general weak equivalences than iso-
morphisms as input, for example categories of complexes and quasi-isomorphisms.
Using this and ideas from [3], Thomason [97, §3] gave the following, better behaved
definition of K-theory. For simplicity we assume that the scheme X is noetherian.
The K ′-theory of X is the Waldhausen K-theory of the category of complexes, which
are quasi-isomorphic to a bounded complex of coherent OX-modules. This defini-
tion gives the same homotopy groups as Quillen’s construction. The K-theory of X
is the Waldhausen K-theory of the category of perfect complexes, i.e. complexes
quasi-isomorphic to a bounded complex of locally free OX-modules of finite rank.
If X has an ample line bundle, which holds for example if X is quasi-projective over
an affine scheme, or separated, regular and noetherian [97, §2], then this agrees
with the definition of Quillen.

The K-groups with coefficients are the homotopy groups of the smash product
K|m(X) := K(X) ∧ Mm of the K-theory spectrum and the Moore spectrum. There
is a long exact sequence

· · · → Ki(X)
× m→ Ki(X) → Ki(X,Z|m) → Ki−1(X) → · · · .

and similarly for K ′-theory. We let Ki(X,Zp) be the homotopy groups of the homo-
topy limit holimn K|pn(X). Then the homotopy groups are related by the Milnor
exact sequence [14]

0 → lim
n

1Ki+1(X,Z|pn) → Ki(X,Zp) → lim
n

Ki(X,Z|pn) → 0 . (1.24)

The K-groups with coefficients satisfy all of the properties given below for K-groups,
except the product structure in case that m is divisible by 2 but not by 4, or by 3
but not by 9.

Basic Properties 1.4.1

By [79, §7.2] and [97, §3], the functor K is contravariantly functorial, and the
functor K ′ is contravariantly functorial for maps f : X → Y of finite Tor-dimension,
i.e. OX is of finite Tor-dimension as a module over f −1OY . The functor K ′ is
covariant functorial for proper maps, and K is covariant for proper maps of finite
Tor-dimension.
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Waldhausen S-construction gives maps of symmetric spectra [30, 104, §9]

K(X) ∧ K(Y) → K(X × Y)

K(X) ∧ K ′(Y) → K ′(X × Y),

which induces a product structure on algebraic K-theory, and an action of K-theory
on K ′-theory, respectively. If we want to define a product using the Q-construction,
then because Ki(X) = πi+1BQPX , one needs a map from BQPX × BQPY to a space
C such that Ki(X × Y) = πi+2C, i.e. a delooping C of BQPX×Y . Thus products
can be defined more easily with the Thomason–Waldhausen construction. There
is a product formula [97, §3]: If f : X → Y is proper, y ∈ Ki(Y) and x ∈ K ′

j (X),
then f∗(f ∗y·x) = y·f∗x. The analogous result holds for x ∈ Kj(X), if f is proper and
of finite Tor-dimension.

The functor K ′ is homotopy invariant [79, §7, Pro. 4.1], i.e. for a flat map
f : E → X whose fibers are affine spaces, the pull-back map induces an iso-
morphism f ∗ : K ′

i (X)
∼→ K ′

i (E). The projective bundle formula holds for K ′ and
K: If E is a vector bundle of rank n on a noetherian separated scheme X, and
PE

p→ X the corresponding projective space, then there is an isomorphism [79,
§7, Prop. 4.3]

K ′
i (X)n ∼→ K ′

i (PE)

(xi) �→
n−1∑

i=0

p∗(xi)[O(−i)].

If X is a quasi-compact scheme then the analog formula holds for K-theory [79,
§8, Thm. 2.1].

If i : Z → X is a regular embedding of codimension c (see the appendix for
a definition), and X′ is the blow-up of X along Z and Z′ = Z ×X X′, then we have
the blow-up formula [96]

Kn(X′) =̃ Kn(X) ⊕ Kn(Z)⊕c−1 .

Localization1.4.2

For Y a closed subscheme of X with open complement U , there is a localization
sequence for K ′-theory [79, §7, Prop. 3.2]

· · · → K ′
i+1(U) → K ′

i (Y) → K ′
i (X) → K ′

i (U) → · · · .

In particular, K ′-theory satisfies the Mayer–Vietoris property. If X is a noetherian
and finite dimensional scheme, the construction of Brown and Gersten [15] then
gives a spectral sequence

Es,t
2 = Hs(XZar, K

′
−t) ⇒ K ′

−s−t(X) . (1.25)
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Here K ′
i is the sheaf associated to the presheaf U �→ K ′

i (U). A consequence of
the main result of Thomason [97, Thm. 8.1] is that the modified K-groups KB also
satisfy the Mayer–Vietoris property, hence there is a spectral sequence analogous
to (1.25). Here KB is Bass-K-theory, which can have negative homotopy groups,
but satisfies Ki(X) =̃ KB

i (X) for i ≥ 0. See Carlson’s article [16] in this handbook
for more on negative K-groups.

Gersten Resolution 1.4.3

As in (1.3), filtration by coniveau gives a spectral sequence [79, §7, Thm. 5.4]

Es,t
1 =

⊕

x∈X(s)

K−s−t

(
k(x)

) ⇒ K ′
−s−t(X) . (1.26)

If X is smooth over a field, then as in (1.4), the spectral sequence (1.26) degenerates
at E2 for every semi-local ring of X, and we get the Gersten resolution [79, §7, Prop.
5.8, Thm. 5.11]

0 → Ki →
⊕

x∈X(0)

i∗Ki

(
k(x)

) →
⊕

x∈X(1)

i∗Ki−1

(
k(x)

) → · · · . (1.27)

Because skyscraper sheaves are flabby, one can calculate cohomology of Ki with
(1.27) and gets Es,t

2 = Hs(XZar, K−t). By [37, Thm. 2, 4 (iv)] there is always a map
from the spectral sequence (1.25) to the spectral sequence (1.26), and for smooth
X the two spectral sequences agree from E2 on. If X is essentially smooth over
a discrete valuation ring V of mixed characteristic (0, p), then the Gersten resolu-
tion exists with finite coefficients. The case p � |m was treated by Gillet and Levine
[35, 36], and the case m = pr in [33]. The correponding result is unknown for
rational, hence integral coefficients.

The product structure of K-theory induces a canonical map from Milnor
K-theory of fields to Quillen K-theory. Via the Gersten resolutions, this gives
rise to a map KM

n (R) → Kn(R) for any regular semi-local ring essentially of finite
type over a field.

Motivic Cohomology and K-Theory 1.4.4

If X is of finite type over a discrete valuation ring, then Bloch’s higher Chow groups
and algebraic K ′-theory are related by a spectral sequence

Es,t
2 = Hs−t

(
X,Z(−t)

) ⇒ K ′
−s−t(X) . (1.28)

This is an analog of the Atiyah–Hirzebruch spectral sequence from singular co-
homology to topological K-theory. Consequences of the existence of the spectral
sequence for K-theory had been observed previous to the definition of motivic
cohomology. By [37, Thm. 7], there are Adams operators acting on the Er-terms of
the spectral sequence compatible with the action on the abutment. In particular,
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the spectral sequence degenerates after tensoring withQ by the argument of [86],
and the induced filtration agrees with the γ-filtration. The resulting graded pieces
have been used as a substitute for motivic cohomology before its definition.

The existence of the spectral sequence has been conjectured by Beilinson [2],
and first been proved by Bloch and Lichtenbaum for fields [10]. Friedlander–Suslin
[21] and Levine [59] used their result to generalize this to varieties over fields and
discrete valuation rings, respectively. There are different methods of constructing
the spectral by Grayson–Suslin [39, 90] and Levine [60], which do not use the
theorem of Bloch and Lichtenbaum.

Using the spectral sequence (1.28), we can translate results on motivic coho-
mology into results on K-theory. For example, Parshin’s conjecture states that for
a smooth projective variety over a finite field, Ki(X) is torsion for i > 0, and this
implies that for a field F of characteristic p, KM

i (F) ⊗Q =̃ Ki(F) ⊗Q.

Sheaf Theoretic Properties1.4.5

It is a result of Gabber [24] and Suslin [88] that for every henselian pair (A, I) with
m invertible in A, and for all i ≥ 0,

Ki(A,Z|m)
∼→ Ki(A|I,Z|m) . (1.29)

Together with Suslin’s calculation of the K-theory of an algebraically closed field
[88], this implies that if m is invertible on X, then the étale K-theory sheaf with
coefficients in the sheaf (K |m)n, associated to the presheaf U �→ Km(U,Z|m) can
be described as follows:

(K |m)n =





µ

⊗ n
2

m n ≥ 0 even,

0 n odd.
(1.30)

One can use the spectral sequence (1.28) to deduce this from (1.14), but historically
the results for K-theory were proved first, and then the analogous results for motivic
cohomology followed. However, for mod p-coefficients, Theorem (1.17) was proved
first, and using the spectral sequence (1.28), it has the following consequences for
K-theory: For any field F of characteristic p, the groups KM

n (F) and Kn(F) are
p-torsion free. The natural map KM

n (F)|pr → Kn(F,Z|pr) is an isomorphism, and
the natural map KM

n (F) → Kn(F) is an isomorphism up to uniquely p-divisible
groups. Finally, for a smooth variety X over a perfect field of characteristic p, the
K-theory sheaf for the Zariski or étale topology is given by

(K |pr)n =̃ νn
r . (1.31)

In particular, the spectral sequence (1.25) takes the form

Es,t
2 = Hs(XZar, ν

−t
r ) ⇒ K−s−t(X,Z|pr) .

and Kn(X,Z|pr) = 0 for n > dim X.
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In a generalization of (1.29) to the case where m is not invertible, Suslin
and Panin [76, 88] show that for a henselian valuation ring V of mixed char-
acteristic (0, p) with maximal ideal I, one has an isomorphism of pro-abelian
groups

Ki

(
V ,Z|pr

)
=̃ Ki

(
lim

s
V |Is,Z|pr

)
=̃

{
Ki

(
V |Is,Z|pr

)}
s

.

In [31], the method of Suslin has been used in the following situation. Let R be
a local ring, such that (R, pR) is a henselian pair, and such that p is not a zero
divisor. Then the reduction map

Ki

(
R,Z|pr

) → {
Ki

(
R|ps,Z|pr

)}
s

(1.32)

is an isomorphism of pro-abelian groups.

Etale K-Theory and Topological Cyclic
Homology 1.5

We give a short survey of Thomason’s construction of hyper-cohomology spec-
tra [95, §1], which is a generalization of Godement’s construction of hyper-
cohomology of a complex of sheaves. Let Xτ be a site with Grothendieck topology
τ on the scheme X, X∼

τ the category of sheaves of sets on Xτ, andSets the category
of sets. A point of X consists of a pair of adjoint functors p∗ : X∼

τ → Sets and
p∗ : Sets → X∼

τ , such that the left adjoint p∗ commutes with finite limits. We say
Xtau has enough points if we can find a set of points P such that a morphism α
of sheaves is an isomorphism provided that p∗α is an isomorphism for all points
p ∈ P . For example, the Zariski site XZar and étale site Xét on a scheme X have
enough points (points of XZar are points of X and points of Xét are geometric
points of X, p∗ is the pull-back and p∗ the push-forward along the inclusion map
p : Spec k → X of the residue field).

Let F be a presheaf of spectra on Xτ. Given p ∈ P , we can consider the
presheaf of spectra p∗p∗F , and the endo-functor on the category of presheaves
of spectra TF =

∏
p∈P p∗p∗F . The adjunction morphisms η : id → p∗p∗ and

ε : p∗p∗ → id induce natural transformation η : id → T and µ = p∗εp∗ : TT → T.
Thomason defines T ·F as the cosimplicial presheaf of spectra n �→ Tn+1F , where
the coface maps are di

n = TiηTn+1−i and the codegeneracy maps are si
n = TiµTn−i.

The map η induces an augmentation η : F → T ·F , and since TF only depends
on the stalks of F , T ·F for a presheaf F only depends on the sheafification
of F .

The hyper-cohomology spectrum of F is defined to be the homotopy limit of
the simplicial spectrum T ·F (X),

H
·(Xτ, F ) := holim T ·F (X) .
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It comes equipped with a natural augmentation η : F (X) → H
·(Xτ, F ), and if F

is contravariant in Xτ, then so isH·(Xτ, F ) . One important feature ofH·(Xτ, F ) is
that it admits a spectral sequence [95, Prop. 1.36]

Es,t
2 = Hs(Xτ, π̃−tF ) ⇒ π−s−tH

·(Xτ, F ) , (1.33)

where π̃iF is the sheaf associated to the presheaf of homotopy groups U �→
πiF (U). The spectral sequence converges strongly, if, for example, Xτ has finite
cohomological dimension.

Continuous Hyper-cohomology1.5.1

Let A be the category of (complexes of) sheaves of abelian groups on Xτ and
consider the category AN of pro-sheaves. A pro-sheaf on the site Xτ is the same
as a sheaf on the site Xτ × N, where N is the category with objects [n], a unique
map [n] → [m] if n ≤ m, and identity maps as coverings. If A has enough
injectives, then so does AN , and Jannsen [51] defines the continuous cohomology
group H

j
cont(Xτ, A·) to be the j-th derived functor of A· �→ limr Γ(X, Ar). There are

exact sequences

0 → lim
r

1Hj−1(Xτ, Ar) → H
j
cont(Xτ, A·) → lim

r
Hj(Xτ, Ar) → 0 . (1.34)

If Z|lr(n) is the (étale) motivic complex mod lr, then we abbreviate

Hi(Xét,Zl(n)) := Hi
cont

(
Xét,Z|l·(n)

)
. (1.35)

In view of (1.14) and (1.18), this is consistent with the usual definition of the left
hand side.

Given a pro-presheaf F · of spectra on Xτ, one gets the hyper-cohomology
spectrum H·(Xτ, F ·) := holimrH

·(Xτ, F r). The corresponding spectral sequence
takes the form [30]

Es,t
2 = Hs

cont(Xτ, π̃−tF
·) ⇒ π−s−tH

·(Xτ, F
·) . (1.36)

Hyper-cohomology of K-Theory1.5.2

If XZar is the Zariski site of a noetherian scheme of finite dimension, then by
Thomason [95, 2.4] [97, Thm. 10.3], the augmentation maps

η : K ′(X) → H
·(XZar, K ′)

η : KB(X) → H
·(XZar, KB)

are homotopy equivalences, and the spectral sequence (1.25) and (1.33) agree. By
Nisnevich [75], the analogous result holds for the Nisnevich topology.

If Xét is the small étale site of the scheme X, then we write Két(X) forH·(Xét, K)
and Két(X,Zp) for holimrH

·(Xét, K|pr). A different construction of étale K-theory
was given by Dwyer and Friedlander [18], but by Thomason [95, Thm. 4.11] the
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two theories agree for a separated, noetherian, and regular scheme X of finite
Krull dimension with l invertible on X. If m and l are invertible on X, then in view
of (1.30), the spectral sequences (1.33) and (1.36) take the form

Es,t
2 = Hs

(
Xét, µ⊗−(t/2)

m

) ⇒ Két
−s−t(X,Z|m) (1.37)

Es,t
2 = Hs

(
Xét,Zl(− t

2 )
) ⇒ Két

−s−t(X,Zl). (1.38)

Similarly, if X is smooth over a field of characteristic p, then by (1.31) and (1.35)
there are spectral sequences

Es,t
2 = Hs

(
Xét, ν

−t
r

) ⇒ Két
−s−t(X,Z|pr), (1.39)

Es,t
2 = Hs−t

(
Xét,Zp(−t)

) ⇒ Két
−s−t(X,Zp). (1.40)

The Lichtenbaum–Quillen Conjecture 1.5.3

The Lichtenbaum–Quillen conjecture (although never published by either of them
in this generality) is the K-theory version of the Beilinson–Lichtenbaum conjec-
ture, and predates it by more than 20 years. It states that on a regular scheme X,
the canonical map from K-theory to étale K-theory

Ki(X) → Két
i (X)

is an isomorphism for sufficiently large i (the cohomological dimension of X is
expected to suffice). Since rationally, K-theory and étale K-theory agree [95, Thm.
2.15], one can restrict oneself to finite coefficients. If X is smooth over a field k of
characteristic p, then with mod pr-coefficents, the conjecture is true by (1.31) for
i > cdp k + dim X, because both sides vanish. Here cdp k is the p-cohomological
dimension of k, which is the cardinality of a p-base of k (plus one in certain cases).
For example, cdp k = 0 if k is perfect.

Levine has announced a proof of an étale analog of the spectral sequence from
Bloch’s higher Chow groups to algebraic K ′-theory for a smooth scheme X over
a discrete valuation ring (and similarly with coefficients)

Es,t
2 = Hs−t

(
Xét,Z(−t)

) ⇒ Két
−s−t(X) . (1.41)

Comparing the mod m-version of the spectral sequences (1.28) and (1.41), one
can deduce that the Beilinson–Lichtenbaum conjecture implies the Lichtenbaum–
Quillen conjecture with mod m-coefficients for i ≥ cdm Xét.

If one observes that in the spectral sequence (1.37) Es,t
2 = Es,t

3 and reindexes
s = p − q, t = 2q, then we get a spectral sequence with the same E2-term as
(1.41) with mod m-coefficients, but we don’t know if the spectral sequences agree.
Similarly, the E2-terms of the spectral sequences (1.39) and (1.41) with mod pr-
coefficients agree, but we don’t know if the spectral sequences agree.
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Topological Cyclic Homology1.5.4

Bökstedt, Hsiang and Madsen [12] define topological cyclic homology for a ring
A. Bökstedt first defines topological Hochschild homology TH(A), which can be
thought of as a topological analog of Hochschild homology, see [30] [45, §1]. It
is the realization of a cyclic spectrum (i.e. a simplicial spectrum together with
maps τ : [n] → [n] satisfying certain compatibility conditions with respect to the
face and degeneracy maps), hence TH(A) comes equipped with an action of the
circle group S1 [65]. Using Thomason’s hyper-cohomology construction, one can
extend this definition to schemes [30]: On a site Xτ, one considers the presheaf of
spectra

TH : U �→ TH
(
Γ(U, OU )

)
.

and defines

TH(Xτ) = H·(Xτ, TH) . (1.42)

If the Grothendieck topology τ on the scheme X is coarser than or equal to the
étale topology, then TH(Xτ) is independent of the topology [30, Cor. 3.3.3], and
accordingly we drop τ from the notation. If X is the spectrum of a ring A, then
TH(A)

∼→ TH(X), [30, Cor. 3.2.2].
To define topological cyclic homology [45, §6], we let TRm(X; p) be the fixed

point spectrum under the cyclic subgroup of roots of unity µpm−1 ⊆ S1 acting on
TH(X). If X is the spectrum of a ring A, the group of components π0 TRm(A; p) is
isomorphic to the Witt vectors Wm(A) of length m of A [46, Thm. F]. The maps
F, V , R on Wm(A) = π0 TRm(A; p) are induced by maps of spectra: The inclusion
of fixed points induces the map

F : TRm(X; p) → TRm−1(X; p)

called Frobenius, and one can construct the restriction map

R : TRm(X; p) → TRm−1(X; p)

and the Verschiebung map

V : TRm(X; p) → TRm+1(X; p) .

Note that F, V exist for all cyclic spectra, whereas the existence of R is partic-
ular to the topological Hochschild spectrum. The two composities FV and VF
induce multiplication by p and V(1) ∈ π0TRm(X; p), respectively, on homotopy
groups. Topological cyclic homology TCm(X; p) is the homotopy equalizer of the
maps

F, R : TRm(X; p) → TRm−1(X; p) .
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We will be mainly interested in the version with coefficients

TRm(X; p,Z|pr) = TRm(X; p) ∧ Mpr ,

TCm(X; p,Z|pr) = TCm(X; p) ∧ Mpr ,

and its homotopy groups

TRm
i (X; p,Z|pr) = πi TRm(X; p,Z|pr) ,

TCm
i (X; p,Z|pr) = πi TCm(X; p,Z|pr) .

We view TR·(X; p,Z|pr) and TC·(X; p,Z|pr) as pro-spectra with R as the structure
map. Then F and V induce endomorphisms of the pro-spectrum TR·(X; p,Z|pr).
The homotopy groups fit into a long exact sequence of pro-abelian groups

· · · → TC·
i(X; p,Z|pr) → TR·

i(X; p,Z|pr)
F−1→ TR·

i(X; p,Z|pr) → · · · .

Finally, one can take the homotopy limit and define

TR(X; p,Zp) = holim
m,r

TRm(X; p,Z|pr) ,

TC(X; p,Zp) = holim
m,r

TCm(X; p,Z|pr) .

The corresponding homotopy groups again fit into a long exact sequence. If we
let (TCm |pr)i be the sheaf associated to the presheaf U �→ TCm

i (U; p,Z|pr), then
(1.33) and (1.36) take the form

Es,t
2 = Hs(Xτ, (TCm |pr)−t) ⇒ TCm

−s−t(X; p,Z|pr) , (1.43)

Es,t
2 = Hs

cont(Xτ, (TC· |p·)−t) ⇒ TC−s−t(X; p,Zp) , (1.44)

and similarly for TR. The spectral sequences differ for different Grothendieck
topologies τ on X, even though the abutment does not [30].

Topological cyclic homology comes equipped with the cyclotomic trace map

tr : K(X,Zp) → TC(X; p,Zp) ,

which factors through étale K-theory because topological cyclic homology for
the Zariski and the étale topology agree. The map induces an isomorphism of
homotopy groups in many cases, a fact which is useful to calculate K-groups. To
show that the trace map is an isomorphism, the following result of McCarthy is the
starting point [67]. If R is a ring and I a nilpotent ideal, then the following diagram
is homotopy cartesian

K(R,Zp)
tr→ TC(R; p,Zp)

↓ ↓
K(R|I,Zp)

tr→ TC(R|I; p,Zp) .

(1.45)
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In particular, if the lower map is a homotopy equivalence, then so is the upper map.
In [46], Hesselholt and Madsen use this to show that the trace map is an isomor-
phism in non-negative degrees for a finite algebra over the Witt ring of a perfect
field. They apply this in [47] to calculate the K-theory with mod p coefficients of
truncated polynomial algebras k[t]|(ti) over perfect fields k of characteristic p. In
[48], they calculate the topological cyclic homology of a local number ring (p �= 2),
and verify the Lichtenbaum–Quillen conjecture for its quotient field with p-adic
coefficients (prime to p-coefficients were treated in [9]). This has been generalized
to certain discrete valuation rings with non-perfect residue fields in [32]. See [44]
for a survey of these results.

Comparison1.5.5

Hesselholt has shown in [43] that for a regular Fp-algebra A, there is an isomor-
phism of pro-abelian groups

W·Ωi
A

∼→ TR·
i(A; p) ,

which is compatible with the Frobenius endomorphism on both sides. In [43] the
result is stated for a smooth Fp-algebra, but any regular Fp-algebra is a filtered
colimit of smooth ones [77, 92], and the functors on both sides are compatible
with filtered colimits (at this point it is essential to work with pro-sheaves and
not take the inverse limit). In particular, for a smooth scheme X over a field of
characteristic p, we get from (1.15) the following diagram of pro-sheaves for the
étale topology,

0 → νi
· → W·Ωi

X
F−1→ W·Ωi

X → 0

=̃ =̃↓ ↓ ↓
· · ·

δ→ (TC· |p·)i → (TR· |p·)i
F−1→ (TR· |p·)i

δ→ · · · .

This shows that δ = 0, and that there is an isomorphism of pro-étale sheaves
{
νi

r

}
r

=̃
{

(TCm |pr)i

}
m,r

. (1.46)

The spectral sequence (1.43) becomes

Es,t
2 = Hs

cont(X, ν−t
· ) ⇒ TC−s−t(X; p,Zp) . (1.47)

and the cyclotomic trace map from étale K-theory to topological cyclic homol-
ogy

Két
i (X,Zp)

tr→ TCi(X; p,Zp) (1.48)

is an isomorphism, because the induced map on the strongly converging spectral
sequences (1.40) and (1.47) is an isomorphism on E2-terms.

If X is not smooth, then the above method does not work because we cannot
identify the K-theory and TC-sheaves. However, we do not know of any example of
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a finitely generated algebra over a perfect field of characteristic p where the trace
map (1.48) is not an isomorphism.

One can extend the isomorphism (1.48) to smooth, proper schemes X over
a henselian discrete valuation ring V of mixed characteristic (0, p), [31]. Com-
paring the hyper-cohomology spectral sequences (1.36), it suffices to show that
the cyclotomic trace map induces an isomorphism on E2-terms. If i : Y → X is
the embedding of the closed fiber, then because V is henselian, the proper base
change theorem together with (1.34) implies that for every pro-sheaf F · on X,
Hi

cont(Xét, F ·) =̃ Hi
cont(Yét, i∗F ·). Hence it suffices to show that the cyclotomic trace

map induces a pro-isomorphism of homotopy groups for an essentially smooth,
strictly henselian local ring R over V . If π is a uniformizer of V , then from the
characteristic p case we know that the trace map is an isomorphism for R|π. Using
(a pro-version of) the method of McCarthy (1.45), this implies that the trace map is
an isomorphism for R|πs, s ≥ 1. By (1.32), the p-adic K-theory of R is determined by
the K-theory of the system {R|πs}s. The analogous statement for topological cyclic
homology holds more generally: If R is a ring such that p is not a zero-divisor, then
the reduction map

TCm
i (R; p,Z|pr) → {

TCm
i (R|ps; p,Z|pr)

}
s

is an isomorphism of pro-abelian groups.
If the trace map (1.48) is an isomorphism for every finitely generated algebra

over a perfect field of characteristic p (or any normal crossing scheme), then the
same argument shows that (1.48) is an isomorphism for every proper V-scheme
of finite type (or semi-stable scheme).

Appendix: Basic Intersection Theory A

In this appendix we collect some facts of intersection theory needed to work with
higher Chow groups. When considering higher Chow groups, one always assumes
that all intersections are proper intersections; furthermore one does not have to
deal with rational equivalence. Thus the intersection theory used for higher Chow
groups becomes simpler, and can be concentrated on a few pages. We hope that our
treatment will allow a beginner to start working with higher Chow groups more
quickly. For a comprehensive treatment, the reader should refer to the books of
Fulton [23], Roberts [80], and Serre [83].

Proper Intersection A.1

To define intersections on a noetherian, separated scheme, we can always reduce
ourselves to an open, affine neighborhood of the generic points of irreducible
components of the intersection, hence assume that we deal with the spectrum of
a noetherian ring A.



220 Thomas Geisser

If A is a finitely generated algebra over the quotient of a regular ring R of finite
Krull dimension (this is certainly true if we consider rings of finite type over a field
or Dedekind ring), then A is catenary [66, Thm. 17.9]. This implies that the length
of a maximal chain of prime ideals between two primes p ⊆ P does not depend
on the chain. In particular, if A is local and equidimensional, i.e. dim A|q is equal
for all minimal prime ideals q, then for every prime p of A, the dimension equality
holds

ht p + dim A|p = dim A . (1.49)

In order for (1.49) to extend to rings A that are localizations of finitely generated
algebras over the quotient of a regular ring R of finite Krull dimension d, it is
necessary to modify the definition of dimension as follows, see [80, §4.3]:

dim A|p := trdeg
(
k(p)|k(q)

)
− htR q + d . (1.50)

Here q is the inverse image in R of the prime ideal p of A. With this modified
definition, (1.49) still holds. If A is a quotient of a regular ring, or is of finite type
over a field, then (1.50) agrees with the Krull dimension of A|p.

1 Definition 1 We say that two closed subschemes V and W of X intersect properly,
if for every irreducible component C of V ×X W ,

dim C ≤ dim V + dim W − dim X .

If Spec A ⊆ X is a neighborhood of the generic point of C, and if V = Spec A|a
and W = Spec A|b, then V and W meet properly, if for every minimal prime ideal
P ⊇ a + b

dim A|P ≤ dim A|a + dim A|b − dim A . (1.51)

If a and b are primes in an equidimensional local ring, then by (1.49) this means
ht P ≥ ht a+ ht b, i.e. the codimension of the intersection is at least the sum of the
codimensions of the two irreducible subvarieties.

If A is regular, then it is a theorem of Serre [83, Thm. V.B.3] that the left hand side
of (1.51) is always greater than or equal to the right hand side. We will see below
(1.53) that the same is true if a or b can be generated by a regular sequence. On the
other hand, in the 3-dimensional ring k[X, Y , Z, W]|(XY − ZW), the subschemes
defined by (X, Z) and (Y , W) both have dimension 2, but their intersection has
dimension 0.

Intersection with DivisorsA.2

If a ∈ A is neither a zero divisor nor a unit, then the divisor D = Spec A|aA has
codimension 1 by Krull’s principal ideal theorem. If V = Spec A|p is an irreducible
subscheme of dimension r, then V and D meet properly if and only if a �∈ p, if and
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only if V is not contained in D, if and only if V ×X D is empty or has dimension
r − 1.

2Definition 2 If V and D intersect properly, then we define the intersection to be
the cycle

[A|p]·(a) =
∑

q

lgthAq

(
Aq|(pq + aAq)

)
[A|q] .

Here q runs through the prime ideals such that dim A|q = r − 1.

Note that only prime ideals q containing p + aA can have non-zero coefficient,
and the definition makes sense because of [80, Cor. 2.3.3]:

3Lemma 3 If (A,m) is a local ring, then A|a has finite length if and only ifm is the
only prime ideal of A containing a.

A sequence of elements a1, … , an in a ring A is called a regular sequence, if
the ideal (a1, … , an) is a proper ideal of A, and if ai is not a zero-divisor in
A|(a1, … , ai−1). In particular, ai is not contained in any minimal prime ideal of
A|(a1, … , ai−1), and dim A|(a1, … , ai) = dim A − i. If A is local, then the regularity
of the sequence is independent of the order [66, Cor. 16.3]. Our principal example
is the regular sequence (t1, … , ti) in the ring A[t0, … , ti]|(1 −

∑
ti).

Given a regular sequence a1, … , an, assume that the closed subscheme V =
Spec A|p of dimension r meets all subschemes Spec A|(ai1 , … , aij ) properly. This
amounts to saying that the dimension of every irreducible component of
A|(p, ai1 , … , aij ) has dimension r − j if r ≥ j, and is empty otherwise. In this case,
we can inductively define the intersection [V]·(a1) · · · (an), a cycle of dimension
r − n, using Definition 2.

4Proposition 4 Let a1, … , an be a regular sequence in A. Then the cycle [V]·(a1) · · · (an)
is independent of the order of the ai.

Proof See also [23, Thm. 2.4]. Clearly it suffices to show [V]·(a)·(b) = [V]·(b)·(a).
Letm is a minimal ideal containing p+aA+bA. To calculate the multiplicity ofm on
both sides, we can localize atm and divide out p, which amounts to replacing X by
V . Thus we can assume that A is a two-dimensional local integral domain, and (a, b)
is not contained in any prime ideal exceptm. If P runs through the minimal prime
ideals of A containing a, then the cycle [V] ∩ (a) is

∑
P lgthAP

(AP |aAP )[A|P ],
and if we intersect this with (b) we get the multiplicity

∑

P

lgthAP
(AP |aAP )· lgthA|P (A|(P + bA)) .
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The following lemma applied to A|(a) shows that this is lgthA(A|(a, b)) −
lgthA(b(A|aA)). This is symmetric in a and b, because since A has no zero-divisors,
we have the bijection b(A|aA) → a(A|bA), sending a b-torsion element x of A|aA
to the unique y ∈ A with bx = ay. The map is well-defined because x + za maps to
y + zb.

5 Lemma 5 Let (B,m) be a one-dimensional local ring with minimal primes
P1, … , Pr, and let b be an element of B not contained in any of the Pi. Then
for every finitely generated B-module M, we have

lgthB(M|bM) − lgthB(bM) =
∑

i

lgthBPi

(
MPi

) · lgthB

(
B|(Pi + bB)

)
.

Proof See also [23, Lemma A.2.7]. Every finitely generated module M over a noethe-
rian ring admits a finite filtration by submodules Mi such that the quotients Mi|Mi+1

are isomorphic to B|p for prime ideals p of B. Since both sides are additive on short
exact sequence of B-modules, we can consider the case M = B|Pi or M = B|m.
If M = B|m, then lgthB(M|bM) = lgthB(bM) = 0 or 1 for b �∈ m and b ∈ m,
respectively, and MPi = 0 for all i.

For M = B|Pi, we have lgthBPj
(MPj ) = 0 or 1 for j �= i and j = i, respectively, and

b �∈ Pi implies b(B|P ) = 0, so that lgthB(M|bM) − lgthB(bM) = lgthB(B|(Pi + bB)).

6 Corollary 6 The cycle complex zn(X, ∗) is a complex.

Proof Recall that the differentials are alternating sums of intersection with face
maps. Since intersecting with two faces does not depend on the order of in-
tersection, it follows from the simplicial identities that the composition of two
differentials is the zero map.

Pull-back Along a Regular EmbeddingA.3

A closed embedding i : Z → X of schemes is called a regular embedding of
codimension c, if every point of Z has an affine neighborhood Spec A in X such
that the ideal a of A defining Z is generated by a regular sequence of length c.
If Z is smooth over a base S, then i is regular if and only if X is smooth over S
in some neighborhood of Z by EGA IV.17.12.1 [42]. In particular, if Y is smooth
over S of relative dimension n, then for any morphism X → Y , the graph map
X → X ×S Y is a regular embedding of codimension n. Indeed, the graph map is
a closed embedding of smooth schemes over X. If Y is smooth and X is flat over S,
this allows us to factor X → Y into a regular embedding followed by a flat map.
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Let i : Z → X be a closed embedding and V a closed irreducible subscheme
of X which intersects Z properly. (In practice, the difficult part is to find cycles
which intersects Z properly.) In order to define the pull-back i∗V of V along i,
we need to determine the multiplicity mW of each irreducible component W of
Z ×X V . If we localize at the point corresponding to W , we can assume that X is the
spectrum of a local ring (A,m), Z is defined by an ideal a generated by a regular
sequence a1, … , ac, and V is defined by a prime ideal p of A such thatm is the only
prime containing a + p. The intersection multiplicity mW at W is defined as the
multiplicity of the iterated intersection with divisors

mW ·[A|m] = [A|p]·(a1) · · · (ac) .

7Corollary 7 If V and Z intersect properly, then the pull-back of V along the regular
embedding i : Z → X is compatible with the boundary maps in the cycle complex.

Proof It is easy to see that if (a1, … , ac) is a regular sequence in A, then (a1, … , ac,
ti1 , … , tij ) is a regular sequence in A[t0, … , ts] for any j ≤ s and pairwise different
indices il. Hence the corollary follows from Proposition 4.

The Koszul complex K(x1, … , xn) for the elements x1, … , xn in a ring A is defined
to be the total complex of the tensor product of chain complexes

K(x1, … , xn) :=
n⊗

i=1

(
A

×xi→ A) .

Here the source and target are in degrees 1 and 0, respectively.

8Proposition 8 Let (A,m) be a local ring, a ⊂ A be an ideal generated by the regular
sequence a1, … , ac. Let p be a prime ideal such that m is minimal over a + p, and
such that A|a and A|pmeet properly. Then

[A|p]·(a1) · · · (ac) =
c∑

i=0

(−1)i lgthA

(
Hi

(
K(a1, … , ac) ⊗ A|p

)) ·[A|m] . (1.52)

Proof By Krull’s principal ideal theorem, any minimal prime divisor qof (a1, … , ai)
+ p in A|p has height at most i, so that using (1.49) we get dim A|(p, a1, … , ai) =
dim A|p − ht q ≥ dim A|p − i. On the other hand, since A|a and A|pmeet properly,
dim A|(p + a) ≤ dim A|p + dim A|a − dim A = dim A|p − c. This can only happen if
we have equality everywhere, i.e.

dim A|(p, a1, … , ai) = dim A|p − ht q = dim A|p − i . (1.53)
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We now proceed by induction on c. For c = 1, by regularity, a1 (A|p) = 0, hence
both sides equal lgthA(A|(p + a1A))·[A|m]. If we denote Hi(K(a1, … , al) ⊗ A|p) by
Hi(l), then by definition of the Koszul complex, there is a short exact sequence of
A-modules

0 → Hi(c − 1)|ac → Hi(c) → ac Hi−1(c − 1) → 0 .

Hence we get for the multiplicity of the right hand side of (1.52)

c∑

i=0

(−1)i lgthA

(
Hi(c)

)
=

c∑

i=0

(−1)i
(

lgthA

(
Hi(c − 1)|ac

)
+ lgthA

(
ac Hi−1(c − 1)

) )

=
c−1∑

i=0

(−1)i
(

lgthA

(
Hi(c − 1)|ac

)
− lgthA

(
ac Hi(c − 1)

) )
.

If q runs through the minimal ideals of A|(p, a1, … , ac−1), then by Lemma 5, this
can be rewritten as

c−1∑

i=0

(−1)i
∑

q

lgthAq

(
Hi(c − 1)q

) · lgthA

(
A|(q + acA)

)
.

By induction, we can assume that the multiplicity [A|p]·(a1) · · · (ac−1) at q is∑c−1
i=0 (−1)i lgthAq

(Hi(c − 1)q), hence we get for the left hand side of (1.52)

[A|p]·(a1) · · · (ac−1)·(ac)

=
(∑

q

c−1∑

i=0

(−1)i lgthAq

(
Hi(c − 1)q

) ·[A|q]
)
·(ac)

=
∑

q

c−1∑

i=0

(−1)i lgthAq

(
Hi(c − 1)q

) · lgthA

(
A|(q + acA)

) ·[A|m].

9 Corollary 9 The pull-back of V along the regular embedding i : Z → X agrees
with Serre’s intersection multiplicity

[A|p]·(a1) · · · (ac) =
c∑

i=0

(−1)i lgthA

(
TorA

i (A|a, A|p)
) ·[A|m] .

In particular, it is independent of the choice of the regular sequence.

Proof If (x1, … , xn) are elements in a local ring A, then by [80, Thm. 3.3.4] the
Koszul-complex K(x1, … , xn) is acyclic above degree 0, if and only if (x1, … , xn) is
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a regular sequence. Hence K(a1, … , ac) is a free resolution of A|a. Tensoring the
Koszul complex with A|p and taking cohomology gives

Hi

(
K(a1, … , ac) ⊗ A|p

)
=̃ TorA

i (A|a, A|p) .

Flat Pull-back A.4

Let f : X → Y be a flat morphism. We assume that f is of relative dimension n,
i.e. for each subvariety V of Y and every irreducible component W of X ×Y V ,
dim W = dim V + n. This is satisfied if for example Y is irreducible and every
irreducible component of X has dimension equal to dim Y + n, see EGA IV.14.2. In
particular, the hypothesis implies that the pull-back of subschemes which intersect
properly also intersects properly. For every closed integral subscheme V of Y , we
define the pull-back

f ∗[V] =
∑

W

lgthOX,W

(
OX,W ⊗OY ,V k(V)

) ·[W] ,

where W runs through the irreducible components of V ×Y X.
Given f : X → Y and a subscheme D of Y locally defined by a ∈ A on Spec A ⊆ Y ,

then we can define the subscheme f −1D of X on any Spec B ⊆ X mapping to Spec A
by f ∗a ∈ B. If f is flat and D is a divisor, then so is f −1D, because f ∗ sends non-zero
divisors to non-zero divisors.

10Proposition 10 Let f : X → Y be a flat map. Then intersection with an ef-
fective principal divisor D of Y is compatible with flat pull-back, i.e. if V is
a closed subscheme of Y not contained in D, then f ∗[V]·f −1D = f ∗[V ·D] as cycles
on X.

Proof Intersection with a divisor was defined in Definition 2. It suffices to compare
the multiplicities of f ∗[V]·f −1D and f ∗[V ·D] at each irreducible component Q of
V ×Y D ×Y X. Let Spec A ⊆ Y be an affine neighborhood of the generic point
p of V and Spec B ⊆ X an affine neighborhood of Q mapping to Spec A. We
denote the induced flat map A → B by g. We can replace A by A|p and B by
B|p; this corresponds to replacing Y by V and X by f −1(V). We can also localize
B at Q and A at q = g−1Q (q is the generic point of the irreducible component
of V ×X D to which Q maps). If a ∈ A defines D, then a is non-zero because V
was not contained in D. Let P1, … , Pr be the finitely many minimal primes of B
corresponding to the irreducible components of f −1(V) passing through Q; for
all i, Q is minimal among the primes of B containing Pi + aB. We are thus in the
following situation:

(A, q) is a one-dimensional local integral domain, (B, Q) a one-dimensional
local ring with minimal prime ideals P1, … , Pr, a is a non-zero divisor in A, and
because B is flat over A, a is also a non-zero divisor in B.
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The pull-back f ∗[V] of V is given by the cycle
∑

i lgthBPi
(BPi )·[B|Pi]. The

multiplicity of the intersection of B|Pi with f −1D (at its only pointQ) is lgthB(B|(Pi+
aB)), hence the multiplicity of f ∗[V]·f −1D at Q is:

∑

i

lgthBPi

(
BPi

) · lgthB

(
B|(Pi + aB)

)
. (1.54)

The multiplicity of the intersection of V with D (at its only point q) is lgthA(A|aA),
and the pull-back of the point q of A has multiplicity lgthB(B|q), hence the multi-
plicity of f ∗[V ·D] is lgthA(A|aA)· lgthB(B|q), which by the following lemma, applied
to A|a and B|aB, agrees with lgthB(B|aB). Noting that a is not a zero-divisor in B,
the latter agrees with (1.54) by Lemma 5.

11 Lemma 11 Let A → B be a flat homomorphism of zero-dimensional artinian local
rings, then lgthB(B) = lgthA(A)· lgthB(B|mAB).

Proof See also [23, Lemma A.4.1]. There is a finite sequence of ideals Ii of A,
say of length r, such that the quotients Ii|Ii+1 are isomorphic to A|mA. Then r =
lgthA A, and tensoring with B, we get a chain of ideals B ⊗A Ii of B with quotients
B ⊗A A|mA =̃ B|mAB. Thus lgthB(B) = r· lgthB(B|mAB).

Proper Push-forwardA.5

In this section we suppose that our schemes are of finite type over an excellent
base. This holds for example if the base is the spectrum of a Dedekind ring of
characteristic 0, or a field. Given a proper map f : X → Y and a cycle V in X, we
define the proper push-forward to be

f∗[V] =

{
[k(V) : k(f (V))] ·[f (V)] if dim V = dim f (V)

0 if dim V > dim f (V) .

12 Proposition 12 Let f : X → Y be a proper map. Then intersection with an effective
principal divisor D of Y is compatible with push-forward, i.e. if V is a closed
subscheme of X not contained in f −1D, then f∗[V ·f −1D] = f∗[V]·D as cycles on Y .

Proof Let Spec A ⊆ Y be an affine neighborhood of the generic point of f (V),
Spec B ⊆ X an affine neighborhood of the generic point of V mapping to Spec A,
and let a ∈ A be an equation for D. Let P ⊆ B and p ⊆ A be the prime ideals
corresponding to V and f (V), respectively. If we denote the map A → B by g, then
p = g−1P .
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First assume that f∗[V] = 0, i.e. dim B|P > dim A|p. Since V is not contained
in f −1D, we have a �∈ P , hence by Krull’s principal ideal theorem, we get for
any minimal ideal Q of B containing P + aB (corresponding to a component of
V ∩ f −1D) with inverse image q = g−1Q in A,

dim B|Q ≥ dim B|P − 1 > dim A|p − 1 ≥ dim A|q .

This implies f∗[V ·f −1D] = 0.
In general, we can divide out p and P from A and B, respectively (which

amounts to replacing X by V , and Y by the closed subscheme f (V)), and assume
that A and B are integral domains. It suffices to consider the multiplicities at each
irreducible component of f (V) ∩ D, i.e. we can localize A and B at a minimal ideal
q of A containing a. Then A is a one-dimensional local integral domain and B
a one-dimensional semi-local integral domain with maximal ideals Q1, … , Qr

(corresponding to the irreducible components of V ∩ f −1D which map to the
component of f (V) ∩ D corresponding to q). Let K and L be the fields of quotients
of A and B, respectively. We need to show that

lgthA(A|aA)·[L : K] =
∑

Q

lgthBQ
(BQ|aBQ)·[BQ|Q : A|q] . (1.55)

Let Ã and B̃ be the integral closures of A and B in K and L, respectively. Note
that Ã and B̃ are finitely generated over A because the base is supposed to be
excellent, hence a Nagata ring. Let m and n run through the maximal ideals of Ã
and B̃, respectively. The localizations Ãm and B̃n are discrete valuation rings. The
following lemma, applied to A and K gives

lgthA(A|aA) =
∑

m

lgthÃm

(
Ãm|aÃm

) · [̃Am|m : A|q] .

Applying the lemma to Ãm and L, we get

[L : K]· lgthÃm

(
Ãm|aÃm

)
=

∑

n|m
lgthB̃n

(
B̃n|ãBn

) · [B̃n|n : Ãm|m
]

.

By multiplicativity of the degree of field extensions, the left hand side of (1.55) is
∑

m

∑

n|m
lgthB̃n

(
B̃n|ãBn

) · [B̃n|n : A|q
]

.

On the other hand, if we apply the lemma to BQ and L, we get

lgthBQ

(
BQ|aBQ

)
=

∑

n|Q
lgthB̃n

(
B̃n|ãBn

) · [B̃n|n : B|Q
]

.

Hence the right hand side of (1.55) becomes
∑

Q

∑

n|Q
lgthB̃n

(
B̃n|ãBn

) · [B̃n|n : A|q
]

.
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We only need to show that for every maximal ideal n of B̃, there is a maximal ideal
Q of B which it divides. This follows from the valuation property of properness.
Indeed, consider the commutative square

Spec L → X

↓ ↓
Spec B̃n → Y

The image in X of the closed point n of Spec B̃n under the unique lift Spec B̃n → X
provides an ideal Q in B with n|Q.

13 Lemma 13 Let A be a one-dimensional local integral domain with maximal ideal
p and quotient field K. Let L be an extension of K of degree n and Ã be the integral
closure of A in L. Assume that Ã is finitely generated over A. Then for any a ∈ A−{0},

n· lgthA(A|aA) = lgthA(Ã|aÃ) =
∑

m|p
lgthÃm

(Ãm|aÃm)·[Ãm|m : A|p] .

Proof Choose a K-basis of L consisting of elements of Ã. This basis generates a free
A-submodule F of rank n of Ã, with finitely generated torsion quotient Ã|F. Any
finitely generated torsion A-module M has a composition series with graded pieces
A|p, hence is of finite length. Then the sequence

0 → aM → M → M → M|a → 0

shows that lgthA(aM) = lgthA(M|a). Mapping the short exact sequence 0 → F →
Ã → Ã|F → 0 to itself by multiplication by a, we have lgthA(Ã|aÃ) = lgthA(F|aF) =
n· lgthA(A|aA) by the snake lemma.

We now show more generally that for any Ã-module M of finite length,

lgthA(M) =
∑

m|p
lgthÃm

(Mm)·[Ãm|m : A|p] .

The statement is additive on exact sequences, so we can reduce to the case M =
Ã|m =̃ Ãm|m for one of the maximal ideals of Ã. But in this case,

lgthA(Ã|m) = lgthA|p(Ãm|m) = [Ãm|m : A|p] .
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Introduction 2.1

The problem of defining intersection products on the Chow groups of schemes
has a long history. Perhaps the first example of a theorem in intersection theory
is Bézout’s theorem, which tells us that two projective plane curves C and D, of
degrees c and d and which have no components in common, meet in at most cd
points. Furthermore if one counts the points of C ∩ D with multiplicity, there are
exactly cd points. Bezout’s theorem can be extended to closed subvarieties Y and
Z of projective space over a field k, Pn

k , with dim(Y) + dim(Z) = n and for which
Y ∩ Z consists of a finite number of points.

When the ground field k = C, Bezout’s theorem can be proved using integral
cohomology. However, prior to the development of étale cohomology for curves
over fields of characteristic p, one had to use algebraic methods to prove Bezout’s
theorem, and there is still no cohomology theory which makes proving similar
theorems over an arbitrary base, including Spec(Z), possible.

In this chapter we shall outline the two approaches to intersection theory that
are currently available. One method is to reduce the problem of defining the inter-
section product of arbitrary cycles to intersections with divisors. The other method
is to use the product in K-theory to define the product of cycles. The difference
between the two perspectives on intersection theory is already apparent in the
possible definitions of intersection multiplicities. The first definition, due to Weil
and Samuel, first defines the multiplicities of the components of the intersection
of two subvarieties Y and Z which intersect properly in a variety X, when Y is
a local complete intersection in X, by reduction to the case of intersection with
divisors. For general Y and Z intersecting properly in a smooth variety X, the mul-
tiplicities are defined to be the multiplicities of the components of the intersection
of Y × Z with the diagonal ∆X in X × X. The key point here is that ∆X is a local
complete intersection in X × X. The second construction is Serre’s “tor formula”,
which is equivalent to taking the product, in K-theory with supports, of the classes
[OY ] ∈ KY

0 (X) and [OZ] ∈ KZ
0 (X). This definition works for an arbitrary regular

scheme X, since it does not involve reduction to the diagonal.
The Chow ring of a smooth projective variety X over a field was first constructed

using the moving lemma, which tells us that, given two arbitrary closed subvarieties
Y and Z of X, Z is rationally equivalent to a cycle

∑
i ni[Wi] in which all the Wi

meet Y properly. One drawback of using the moving lemma is that one expects
that [Y].[Z] should be able to be constructed as a cycle on Y ∩ Z, since (for
example) using cohomology with supports gives a cohomology class supported
on the intersection. A perhaps less important drawback is that it does not apply to
non-quasi-projective varieties.

This problem was solved, by Fulton and others, by replacing the moving lemma
by reduction to the diagonal and deformation to the tangent bundle. One can then
prove that intersection theory for varieties over fields is determined by intersections
with Cartier divisors, see Fulton’s book Intersection Theory [17] for details.

For a general regular scheme X, X ×X will not be regular, and the diagonal map
∆X → X × X will not be a regular immersion. Hence we cannot use deformation
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to the normal cone to construct a product on the Chow groups. In SGA6, [2],
Grothendieck and his collaborators showed that, when X is regular CH∗(X)Q �
Gr∗

γ(K0(X))Q , which has a natural ring structure, and hence one can use the product
on K-theory, which is induced by the tensor product of locally free sheaves, to define
the product on CH∗(X)Q . Here Gr∗

γ(K0(X)) is the graded ring associated to the
γ-filtration F·

γ(K0(X)). By construction, this filtration is automatically compatible
with the product structure on K0(X), and was introduced because the filtration
that is more naturally related to the Chow groups, the coniveau or codimension
filtration F·

cod(K0(X)), is not tautologically compatible with products. However,
in SGA6 Grothendieck proved, using the moving lemma, that if X is a smooth
quasi-projective variety over a field, then F·

cod(K0(X)) is compatible with products.
In this chapter, using deformation to the normal cone, we give a new proof of the
more general result that the coniveau filtration F·

cod(K∗(X)) on the entire K-theory
ring is compatible with products.

Instead of looking at the group K0(X), we can instead filter the category of
coherent sheaves on X by codimension of support. We then get a filtration on the
K-theory spectrum of X and an associated spectral sequence called the Quillen,
or coniveau, spectral sequence. The Chow groups appear as part of the E2-term
of this spectral sequence, while Gr∗

codK∗(X) is the E∞ term. The natural map
CH∗(X) → Gr∗

cod(K0(X)) then becomes an edge homomorphism in this spectral
sequence. The E1-terms of this spectral sequence form a family of complexes R∗

q(X)
for q ≥ 0, with Hq(R∗

q(X)) � CHq(X).
Let us writeR∗

X,q for the complex of sheaves withR∗
X,q(U) � R∗

q(U) for U ⊂ X an
open subset; we shall refer to these as the Gersten complexes. Gersten’s conjecture
(Sect. 2.5.6) implies that the natural augmentation Kq(OX) → R∗

X,q is a quasi-
isomorphism, which in turn implies Bloch’s formula:

Hq
(
X, Kq(OX)

) � CHq(X) .

If X is a regular variety over a field, Quillen proved Gersten’s conjecture, so that
Bloch’s formula is true in that case. (Bloch proved the q = 2 case by different
methods.) For regular varieties over a field, this then gives another construction of
a product on CH∗(X), which one may prove is compatible with the product defined
geometrically.

If X is a regular scheme of dimension greater than 0, the E1-term of the associ-
ated Quillen spectral sequence does not have an obvious multiplicative structure.
(Having such a product would imply that one can choose intersection cycles in
a fashion compatible with rational equivalence.) However, there is another spec-
tral sequence (the Brown spectral sequence) associated to the Postnikov tower of
the presheaf of K-theory spectra on X which is naturally multiplicative. In general
there is map from the Brown spectral sequence to the Quillen spectral sequence,
which maps Er to Er+1. If this map is an isomorphism, then the Quillen spectral
sequence is compatible with the product on K-theory from E2 on, and it follows
that the coniveau filtration on K∗(X) is also compatible with the ring structure on
K-theory. This map of spectral sequences is a quasi-isomorphism if Gersten’s con-



K-Theory and Intersection Theory 239

jecture is true. Thus we have another proof of the multiplicativity of the coniveau
filtration F·

cod(K0(X)), which depends on Gersten’s conjecture, rather than using
deformation to the normal cone.

The groups H
p
Y (X, Kq(OX)), for all p and q, and for all pairs Y ⊂ X with Y

a closed subset of a regular variety X, form a bigraded cohomology theory with
nice properties, including homotopy invariance and long exact sequences, for pairs
Y ⊂ X with Y closed in X:

… → Hp−1
(
X − Y , Kq(OX)

) ∂→ H
p
Y

(
X, Kq(OX)

)

→ Hp
(
X, Kq(OX)

) → Hp
(
X − Y , Kq(OX)

) → … .

However, from the perspective of intersection theory, these groups contain a lot
of extraneous information; if one looks at the weights of the action of the Adams
operations on the Quillen spectral sequence, then it was shown in [64] that after
tensoring withQ, the spectral sequence breaks up into a sum of spectral sequences,
all but one of which gives no information about the Chow groups, and that the E1

term of the summand which computes the Chow groups can be described using
Milnor K-theory tensored with the rational numbers.

It is natural to ask whether one can build a “smallest” family of complexes
with the same formal properties that the Gersten complexes have, and which still
computes the Chow groups. As explained in Sect. 2.4.1, the “obvious” relations
that must hold in a theory of “higher rational equivalence” are also the relations
that define the Milnor K-theory ring as quotient of the exterior algebra of the units
in a field. The remarkable fact, proved by Rost, is that for smooth varieties over
a field, the obvious relations are enough, i.e., the cycle complexes constructed using
Milnor K-theory have all the properties that one wants. Deformation to the normal
cone plays a key role in constructing the product on Rost’s cycle complexes. This
result is strong confirmation that to build intersection theory for smooth varieties
over a field, one needs only the theory of intersections of divisors, together with
deformation to the tangent bundle. Rost also proves, though this is not needed for
his result, that the analog of Gersten’s conjecture holds for the complexes built out
of Milnor K-theory.

Thus for smooth varieties over a field, we have a good theory of Chow groups and
higher rational equivalence, whether we use Gersten’s conjecture or deformation
to the normal cone. For general regular schemes, there is not an obvious analog
of reduction to the diagonal and deformation to the tangent bundle. Gersten’s
conjecture still makes sense; however a new idea is needed in order to prove it. It
is perhaps worth noting that a weaker conjecture, that for a regular local ring R,
CHp(Spec(R)) = 0 for all p > 0 (see [12]), is still open.

Conventions 2.1.1

Schemes will be assumed to be separated, noetherian, finite dimensional, and
excellent. See EGA IV.7.8, [36], for a discussion of excellent schemes. We shall
refer to these conditions as the “standard assumptions”.
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Any separated scheme which is of finite type over a field or Spec(Z) automati-
cally satisfies these hypotheses.
By a variety we will simply mean a scheme which is of finite type over a field.
A scheme is said to be integral if it is reduced and irreducible.
The natural numbers are 1, 2, ….

Chow groups2.2

In this section we shall give the basic properties of divisors and Chow groups on
general schemes, and sketch the two geometric constructions of the intersection
product for varieties over fields, via the moving lemma and via deformation to the
normal cone.

Dimension and Codimension2.2.1

Normally one is used to seeing the group of cycles on a scheme equipped with
a grading – however it is important to remember that dimension is not always
a well behaved concept. In particular, for general noetherian schemes, while one
may think of cycles as homological objects, it is the grading by codimension that is
well defined.

The best reference for the dimension theory of general schemes is EGA IV,
§5, [36]. We shall summarize here some of the main points.

Recall that any noetherian local ring has finite Krull dimension. Therefore, if X
is a noetherian scheme, any integral subscheme Z ⊂ X with generic point ζ ∈ X,
has finite codimension, equal to the Krull dimension of the noetherian local ring
OX,ζ. We will also refer to this as the codimension of the point ζ.

1 Definition 1 A scheme (or more generally a topological space) X is said to be:
Catenary, if given irreducible closed subsets Y ⊂ Z ⊂ X, all maximal chains of

closed subsets between Y and Z have the same length.
Finite Dimensional, if there is a (finite) upper bound on the length of chains of

irreducible closed subsets.
A scheme S, is said to be universally catenary if every scheme of finite type over

S is catenary. Any excellent scheme is universally catenary.

Cycles2.2.2

2 Definition 2 Let X be a scheme (not necessarily satisfying the standard assump-
tions). A cycle on X is an element of the free abelian group on the set of closed
integral subschemes of X. We denote the group of cycles by Z(X).
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Since the closed integral subschemes of X are in one to one correspondence with
the points of X, with an integral subscheme Z ⊂ X corresponding to its generic
point ζ, we have:

Z(X) := ⊕
ζ∈X
Z .

For a noetherian scheme, this group may be graded by codimension, and we
write Zp(X) for the subgroup consisting of the free abelian group on the set of closed
integral subschemes of codimension p in X. If every integral subscheme of X is
finite dimensional, we can also grade the group Z(X) by dimension, writing Zp(X)
for the free abelian group on the set of closed integral subschemes of dimension
p in X. If X is a noetherian, catenary and finite dimensional scheme, which is
also equidimensional (i.e., all the components of X have the same dimension), of
dimension d then the two gradings are just renumberings of each other: Zd−p(X) =
Zp(X). However if X is not equidimensional, then codimension and dimension do
not give equivalent gradings:

Example 3. Suppose that k is a field, and that X = T ∪S, with T := A1
k and S := A2

k,
is the union of the affine line and the affine plane, with T ∩ S = {P}

a single (closed) point P. Then X is two dimensional. However any closed point in
T, other than P has dimension 0, and codimension 1, while P has dimension 0 and
codimension 2.

4Definition 4 If X is a general noetherian scheme, we write X(p) for the set of
points x ∈ X, which are of “codimension p”, i.e., such that the integral closed
subscheme {x} ⊂ X has codimension p, or equivalently, the local ring OX,x has
Krull dimension p.

We also write X(p) for the set of points x ∈ X such that the closed subset {x} ⊂ X
is finite dimensional of dimension p.

Observe that

Zp(X) �
⊕

x∈X(p)

Z ,

while, if X is finite dimensional,

Zq(X) �
⊕

x∈X(q)

Z .

Cycles of codimension 1, i.e. elements of Z1(X), are also referred to as Weil
divisors.

If Z ⊂ X is an closed integral subscheme, we will write [Z] for the associated
cycle, and will refer to it as a “prime cycle”. An element ζ ∈ Z(X) will then be
written ζ =

∑
i ni[Zi].
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If M is a coherent sheaf of OX-modules, let us write supp(M) ⊂ X for its
support. For each irreducible component Z of the closed subset supp(M) ⊂ X, the
stalk Mζ of M at the generic point ζ of Z is an OX,ζ-module of finite length.

5 Definition 5 The cycle associated to M is:

[M] :=
∑

ζ

�(Mζ)[Z] ,

where the sum runs over the generic points ζ of the irreducible components Z of
supp(M), and �(Mζ) denotes the length of the Artinian Oζ module Mζ.

If Y ⊂ X is a closed subscheme, we set [Y] := [OY ]; notice that if Y is an integral
closed subscheme then this is just the prime cycle [Y].

It will also be convenient to have:

6 Definition 6 Let W ⊂ X be a closed subset. Then Z
p
W (X) ⊂ Zp(X) is the subgroup

generated by those cycles supported in W , i.e., of the form
∑

i ni[Zi] with Zi ⊂ W .

If U ⊂ V ⊂ X are Zariski open subsets, and ζ =
∑

i ni[Zi] ∈ Zp(V) is a codi-
mension p cycle, then ζ|U :=

∑
i ni[Zi ∩ U] is a codimension p cycle on U . The

maps Zp(V) → Zp(U), for all pairs U ⊂ V define a sheaf on the Zariski topol-
ogy of X, Z

p
X which is clearly flasque. Note that Z

p
W (X) = H0

W (X, Z
p
X), and also

that if U is empty then Zp(U) is the free abelian group on the empty set, i.e.,
Zp(U) � 0.

Dimension Relative to a Base2.2.3

Dimension can behave in ways that seem counter-intuitive. For example, if U ⊂ X
is a dense open subset of a scheme, U may have strictly smaller dimension than
X. The simplest example of this phenomenon is if X is the spectrum of a discrete
valuation ring, so dim(X) = 1, and U is the Zariski open set consisting of the
generic point, so dim(U) = 0 . One consequence of this phenomenon is that the
long exact sequence of Chow groups associated to the inclusion of an open subset
into a scheme will not preserve the grading by dimension.

However, dimension is well behaved with respect to proper morphisms:

7 Theorem 7 Let f : W → X be a proper surjective morphism between inte-
gral schemes which satisfy our standing hypotheses. Then dim(W) = dim(X) +
tr. deg.k(X)k(W). In particular, if f is birational and proper, then dim(W) = dim(X).

Proof [36], proposition 5.6.5.
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This leads to the notion of relative dimension. By a theorem of Nagata, any mor-
phism f : X → S of finite type is compactifiable. I.e., it may be factored as f · i:

X ��
i

��f
�
�
�
�
�
�
�
�

X

��
f

S

with i an open immersion with dense image, and f proper.

8Lemma 8 If S and X are as above, the dimension of X minus the dimension of S is
independent of the choice of compactification X.

Proof This is a straightforward consequence of Theorem 7.

Therefore we may make the following definition:

9Definition 9 Let S be a fixed base, satisfying our standing hypotheses. If X is
a scheme of finite type over S, we set dimS(X) := dim(X) − dim(S), where X is any
compactification of X over S.

The key feature of relative dimension is that if X is a scheme of finite type over S
and U ⊂ X is a dense open, then dimS(X) = dimS(U). It follows that the grading
of the Chow groups of schemes of finite type over S by dimension relative to S is
compatible with proper push-forward. In this respect, Chow homology behaves
like homology with locally compact supports; see [15], where this is referred to as
LC-homology.

Note that if the base scheme S is the spectrum of a field, or of the ring of integers
in a number field, relative dimension and dimension give equivalent gradings,
differing by the dimension of the base, on the cycle groups.

An equivalent approach to the definition of dimS(X) may be found in Fulton’s
book on intersection theory ([17]) using transcendence degree.

Cartier Divisors 2.2.4

The starting point for intersection theory from the geometric point of view is the
definition of intersection with a Cartier divisor.

Let X be a scheme. If U ⊂ X is an open set, a section f ∈ OX(U) is said to be
regular if, for every x ∈ U , its image in the stalk OX,x is a non-zero divisor. The
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regular sections clearly form a subsheaf OX,reg of the sheaf of monoids (with respect
to multiplication) OX . The sheaf of total quotient rings KX is the localization of
OX with respect to OX,reg. Note that the sheaf of units K∗

X is the sheaf of groups
associated to the sheaf of monoids OX,reg, and that the natural map OX → KX is
injective.

10 Definition 10 WriteDivX for the sheafK∗
X |O∗

X . The group Div(X) of Cartier divisors
on X is defined to be H0(X, DivX). Note that we will view this as an additive group.

If D ∈ Div(X), we write |D| for the support of D, which is of codimension 1 in X
if D is non-zero. A Cartier divisor D is said to be effective if it lies in the image of

H0
(
X, OX,reg

) → H0
(
X, DivX � K∗

X |O∗
X

)
.

For details, see [37] IV part 4, §21. See also the article of Kleiman [43] for patholo-
gies related to the sheaf of total quotient rings on a non-reduced scheme.

There is a long exact sequence:

0 → H0
(
X, O∗

X

) → H0
(
X, K∗

X

) → H0
(
X, K∗

X |O∗
X

) →
H1

(
X, O∗

X

) → H1
(
X, K∗

X

) → …

Recall that a Cartier divisor is said to be principal if it is in the image of

H0
(
X, K∗

X

) → H0
(
X, DivX = K∗

X |O∗
X

)
.

Two Cartier divisors are said to be linearly equivalent if their difference is principal.
From the long exact sequence above we see that there is always an injection of
the group of linear equivalence classes of Cartier divisors into the Picard group
H1(X, O∗

X) of isomorphism classes of rank one locally free sheaves. If H1(X, K∗
X) �

0 (for example if X is reduced), this injection becomes an isomorphism. Note that
there are examples of schemes for which the map from the group of Cartier divisors
to Pic(X) is not surjective. See the paper [44] of Kleiman for an example.

More generally, if W ⊂ X is a closed subset, we can consider H1
W (X, O∗

X), i.e.,
the group of isomorphism classes of pairs (L, s) consisting of an invertible sheaf
L and a non-vanishing section s ∈ H0(X − W , L). Then one has:

11 Lemma 11 If X is reduced and irreducible, so that K∗
X is the constant sheaf, and

W if has codimension at least one, then

H0
W

(
X, K∗

X |O∗
X

) � H1
W

(
X, O∗

X

)
.

If D is a Cartier divisor on X, the subsheaf of K∗
X which is the inverse image of D

is an O∗
X torsor – the sheaf of equations of D. The OX submodule of KX generated

by this subsheaf is invertible; i.e., it is a fractional ideal. The inverse of this sheaf is
denoted OX(D) and its class is the image of D in H1(X, O∗

X) under the boundary
map, see [37].
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Cap Products with Cartier Divisors
and the Divisor Homomorphism 2.2.5

There is a natural map from the group of Cartier divisors to the group of Weil
divisors:

12Lemma 12 Let X be a scheme. Then there is a unique homomorphism of sheaves:

div : DivX → Z1
X ,

such that, if U ⊂ X is an open set and f ∈ OX,reg(U) is a regular element, then
div(f ) = [OU |(f )] – the cycle associated to the codimension one subscheme with
equation f .

Proof See [37] §21.6.

If X is regular, or more generally locally factorial, one can show that this map is an
isomorphism.

If X is an integral scheme, then since KX is the constant sheaf associated to the
function field k(X) of X, we get a homomorphism, also denoted div:

div : k(X)∗ → Z1(X)

13Remark 13 Observe that if X is a scheme and D ⊂ X is a codimension 1 subscheme,
the ideal sheaf ID of which is locally principal, then the Cartier divisor given by
the local generators of ID has divisor equal to the cycle [D] = [OD].

14Definition 14 Suppose that D ∈ Div(X) is a Cartier divisor, and that Z ⊂ X is
an irreducible subvariety, such that |D| ∩ Z is a proper subset of Z. The Cartier
divisor D determines an invertible sheaf OX(D), equipped with a trivialization
outside of |D|. Restricting OX(D) to Z, we get an invertible sheaf L equipped with
a trivialization s on Z−(Z∩|D|). Since Z is irreducible, and Z∩|D| has codimension
at least 1 in Z, by Lemma 11 H1

Z∩|D|(Z, O∗
Z) � H0

Z∩|D|(Z, DivZ), and hence the pair
(L, s) determines a Cartier divisor on Z, which we write D|Z , and which we call
the restriction of D to Z.

15Definition 15 We define the cap product D ∩ [Z] to be div(D|Z) ∈ Z1(Z).
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Rational Equivalence2.2.6

16 Definition 16 If X is a scheme, the direct sum

R(X) := ⊕
ζ∈X

k(ζ)∗

where k(ζ)∗ is the group of units in the residue field of the point ζ, will be called
the group of “K1-chains” on X. For a noetherian scheme, this group has a natural
grading, in which

Rq(X) :=
⊕

x∈X(q)

k(x)∗ .

We call this the group of codimension q K1-chains.
If X is finite dimensional, then we can also grade R(X) by dimension:

Rp(X) :=
⊕

x∈X(p)

k(x)∗ .

If X is catenary and equidimensional, these gradings are equivalent.

The sum of the homomorphisms div : k(Z)∗ → Z1(Z), as Z runs through all
integral subschemes Z ⊂ X, induces a homomorphism, for which we use the same
notation:

div : R(X) → Z(X) .

We say that a cycle in the image of div is rationally equivalent to zero.

17 Definition 17 If X is a general scheme, then we set the (ungraded) Chow group of
X equal to:

CH(X) := coker(div) .

Now suppose that X satisfies our standing assumptions. The homomorphism
div is of pure degree −1 with respect to the grading by dimension (or by relative
dimension for schemes over a fixed base), and we set CHq(X) equal to the cokernel
of

div : Rq+1(X) → Zq(X) .

The homomorphism div is not in general of pure degree +1 with respect to
the grading by codimension, unless X is equidimensional, but it does increase
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codimension by at least one, and so we define CHp(X) to be the cokernel of the
induced map:

div :
⊕

x∈X(p−1)

k(x)∗ →
⊕

x∈X(p)

Z

f =
∑

x

{fx} �→
∑

x

div({fx}) .

We refer to these as the Chow groups of dimension q and codimension p cycles on
X, respectively.

If X is equidimensional of dimension d, then dimension and codimension are
compatible, i.e., CHp(X) � CHd−p(X).

The classical definition of rational equivalence of cycles on a variety over a field
was that two cycles α and β were rationally equivalent if there was a family of
cycles ζt , parameterized by t ∈ P1, with ζ0 = α and ζ∞ = β. More precisely, sup-
pose that W is an irreducible closed subvariety of X × P1, which is flat over
P

1 (i.e., not contained in a fiber of X × {t}, for t ∈ P1). For each t ∈ P1,
(X × {t}) is a Cartier Divisor, which is the pull back, via the projection to P1,
of the Cartier divisor [t] corresponding to the point t ∈ P1. Then one sets, for
t ∈ P1, Wt := [W].(X × {t}). (Note that [W] and the Cartier divisor (X × {t})
intersect properly). The cycle W∞ − W0 is then said to be rationally equiva-
lent to zero. (Note that [0] and [∞] are linearly equivalent Cartier divisors.)
More generally a cycle is rationally equivalent to zero if it is the sum of such
cycles.

It can be shown that this definition agrees with the one given previously, though
we shall not use this fact here.

Just as we sheafified the cycle functors to get flasque sheaves Z
p
X , we have

flasque sheaves R
q
X , with R

q
X(U) = Rq(U). The divisor homomorphism then gives

a homomorphism:

div : R
q−1
X → Z

q
X

and an isomorphism:

CHq(X) � H1(X, R
q−1
X → Z

q
X) .

18Lemma 18 The map Div(X) → CH1(X) induced by div factors through Pic(X),
and vanishes on principal divisors.

Proof If x ∈ X(0) is a generic point of X, then the local ring OX,x is Artinian,
and OX,reg,x = O∗

X,x. Hence KX,x = OX,x, and so there is a natural homomorphism
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K∗
X,x → k(x)∗. Therefore there is a commutative diagram of maps of sheaves of

abelian groups:

O∗
X

��

��

K∗
X

��

�� R0
X

��

0 �� DivX
��

div

Z1
X

Hence we get maps:

Div(X) → H1(X, O∗
X) � H1(X, K∗

X → DivX)

→ H
1(X, R0

X → Z1
X) � CH1(X) .

It follows by a diagram chase that the map from Cartier divisors on X to
Weil divisors X induces a map from linear equivalence classes of Cartier di-
visors to rational equivalence classes of Weil divisors which factors through
Pic(X).

From this lemma and the intrinsic contravariance of H1
W (X, O∗

X), we get the fol-
lowing proposition.

19 Proposition 19 Let f : Y → X be a morphism of varieties. Let W ⊂ X be a closed
subset, suppose that φ ∈ H0

W (X, DivX) is a Cartier divisor with supports in W ,
and that ζ ∈ Z

p
T(Y) is a cycle supported in a closed subset T ⊂ Y . Then there is

a natural “cap” product cycle class φ ∩ ζ ∈ CHp+1
(T∩f −1(W))

(Y).

Note that if φ above is a principal effective divisor, given by a regular element
g ∈ Γ(X, OX), which is invertible on X − W , and if ζ = [Z] is the cycle associated
to a reduced irreducible subvariety Z ⊂ X, with f (Z) � W , then f ∗(g)|Z is again
a regular element, and φ ∩ ζ is the divisor associated to f ∗(g)|Z discussed in
Definition 15.

Finally, the other situation in which we can pull back Cartier divisors is if
f : X → Y is a flat morphism of schemes. Since f is flat, if x ∈ X, and t ∈ OY ,f (x)

is a regular element, then f ∗(t) is a regular element in OX,x. It follows that there is
a pull-back

f ∗ : f −1KY → KX ,

and hence an induced map on Cartier divisors.
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Basic Properties of Chow Groups 2.2.7

Functoriality
Let f : X → Y be a morphism of schemes.

If f is flat, then there is a pull-back map f ∗ : Zp(Y) → Zp(X), preserving
codimension. If Z ⊂ X is an closed integral subscheme, then:

f ∗ : [Z] �→ [OX ⊗OY OZ] ,

which is then extended to the full group of cycles by linearity.
If f is proper, then there is a push-forward map on cycles; if Z is a k-dimensional

closed integral subscheme, then:

f∗([Z]) =





[k(Z) : k(f (Z))] [ f (Z)] if dim(f (Z)) = dim(Z)

0 if dim(f (Z)) < dim(Z) .

Push-forward preserves dimension, or dimension relative to a fixed base S, by
Theorem 7.

20Proposition 20 Both flat pull-back and proper push-forward are compatible with
rational equivalence, and therefore induce maps on Chow groups. I.e., if f : X → Y
is a morphism of schemes, we have maps:

f ∗ : CHp(Y) → CHp(X)

for f flat, and

f∗ : CHq(X) → CHq(Y)

for f proper.

See [17], for proofs, at least for maps between varieties over fields. For general
schemes, there is a proof in [24] using algebraic K-theory.

Intersection Multiplicities and the Moving Lemma
The product structure on the Chow groups of a smooth quasi-projective variety
over a field was first constructed in the 1950’s. See Séminaire Chevalley ([1]),
exposés 2 and 3. Two key steps in the construction are:

Defining intersection multiplicities.
The Moving Lemma.

Suppose that X is a noetherian scheme. Two closed subsets Y and Z of X, of
codimensions p and q, respectively, are said to intersect properly if every irreducible
component W of Y ∩ Z has codimension p + q – note that this is vacuously true
if Y and Z do not intersect. Two cycles η =

∑
i mi[Yi] and ζ =

∑
j nj[Zj] are said
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to meet properly if their supports intersect properly. If two prime cycles [Y] and
[Z] meet properly, then the problem of intersection multiplicities is to assign an
integer µW (Y , Z) to each irreducible component W of Y ∩ Z. These multiplicities
should have the property that if one defines the product of two prime cycles [Y]
and [Z] to be [Y].[Z] =

∑
W µW (Y , Z)[W], then one gets a ring structure on the

Chow groups.
To get a well defined product, one would certainly require that if η and ζ are

two cycles which meet properly, and η (resp. ζ) is rationally equivalent to a cycle
η′ (resp. ζ′), such that η′ and ζ′ meet properly, then η.ζ and η′.ζ′ are rationally
equivalent, and that every pair of cycles η and ζ is rationally equivalent to a pair
η′ and ζ′ which meet properly. Finally, one requires, that the product with divisors
be consistent with intersection with divisors.

Since η.ζ is defined when η is a divisor, then it will also be defined when
η = α1. … .αp is the successive intersection product of divisors. (Of course one
should worry whether this product is independent of the choice of the αi.) Thus
one will be able to define to define [Y].ζ when Y ⊂ X is a closed subvariety which
is globally a complete intersection in X. If Y is only a local complete intersection,
and if W is an irreducible component of Y ∩ Z with generic point w, then one
defines the intersection multiplicity µW (Y , Z) by using the fact that Y is a complete
intersection in a Zariski open neighborhood of w.

The original definition of the intersection multiplicities of the components of
the intersection of two closed integral subschemes Y ⊂ X and Z ⊂ X which meet
properly on a smooth variety X over a field, was given by Samuel [59], when one
of them, Y say, is a local complete intersection subscheme of X. One then defines
the multiplicities for general integral subschemes Y and Z of a smooth variety X,
by observing that Y ∩ Z = ∆X ∩ (Y ×k Z), where ∆X ⊂ X ×k X is the diagonal, and
then setting the µW (Y , Z) = µ∆W (∆X , Y ×k Z). Note that ∆X is an l.c.i. subvariety if
and only if X is smooth.

Once given a definition of multiplicity, one has an intersection product for cycles
which meet properly. The next step is:

21 Theorem 21: Chow’s Moving Lemma Suppose that X is a smooth quasi-projective
variety over a field k, and that Y and Z are closed integral subschemes of X. Then
the cycle [Y] is rationally equivalent to a cycle η which meets Z properly.

Proof See [1] and [55].

22 Theorem 22 Let X be a smooth quasi-projective variety over a field k. Then one has:
Given elements α and β in the Chow ring, let η and ζ be cycles representing
them which meet properly (these exist by the moving lemma). Then the class
in CH∗(X) of η.ζ is independent of the choice of representatives η and ζ, and
depends only on α and β.



K-Theory and Intersection Theory 251

The product on CH∗(X) that this defines is commutative and associative.
Given an arbitrary (i.e., not necessarily flat) morphism f : X → Y between
smooth projective varieties, there is a pull back map CH∗(Y) → CH∗(X),
making X �→ CH∗(X) is a contravariant functor from the category of quasi-
projective smooth varieties to the category of commutative rings.

Proof See Séminaire Chevalley, exposés 2 and 3 in [1].

There are several drawbacks to this method of constructing the product on the
Chow ring:

It only works for X smooth and quasi-projective over a field.
It does not respect supports. It is reasonable to expect that the intersection
product of two cycles should be a cycle supported on the set-theoretic intersec-
tion of the support of the two cycles, but the Moving Lemma does not “respect
supports”.
It requires a substantial amount of work to check that this product is well
defined and has all the properties that one requires.

In the next section, we shall see an alternative geometric approach to this problem.

Intersection via Deformation to the Normal Cone
Let us recall the goal: one wishes to put a ring structure on CH∗(X), for X a smooth
quasi-projective variety, and one wants this ring structure to have various proper-
ties, including compatibility with intersections with Cartier divisors. The approach
of Fulton, [17], as it applies to smooth varieties over a field, can be summarized in
the following theorem:

23Theorem 23 On the category of smooth, not necessarily quasi-projective, varieties
over a field, there is a unique contravariant graded ring structure on CH∗ such that:
1. It agrees with flat pull-back of cycles when f : X → Y is flat.
2. It agrees with the product CH1(X) × CHp(X) → CHp+1(X) induced by inter-

section with Cartier divisors, for all X and p.
3. If V and W are arbitrary integral closed subschemes a smooth variety X, then

we have an equality of cycles on X ×k X:

[V ×k X].[X ×k W] = [V ×k W]

4. If f : X → Y is a proper map between nonsingular varieties, and α ∈
CH∗(X), β ∈ CH∗(Y), then

f∗
(
α.f ∗(β)

)
= f∗(α).β .

(The projection formula)
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5. If p : V → X is a vector bundle over a variety X, then the flat pull-back map
p∗ : CH∗(X) → CH∗(V) is an isomorphism. (Homotopy Invariance).

Sketch of Proof
Any map f : Y → X of smooth varieties can be factored into Y

Γf→ Y × X
πX→ X,

with Γf the graph of f , and πX the projection map. Since πX is flat, to define
f ∗ : CH∗(X) → CH∗(Y) we need only define Γ∗

f .
Therefore we need only construct the pull-back map for a general regular

immersion f : Y → X. First we need (see [17], sects. 2.3 and 2.4, especially
corollary 2.4.1):

24 Lemma 24: Specialization Let D ⊂ S be a principal divisor in the scheme S. Since
OS(D)|D is trivial, intersection with D, ∩[D] : CH∗(D) → CH∗−1(D), is zero. It
follows that ∩[D] : CH∗(S) → CH∗(D) factors through CH∗(S − D).

Let WY |X be the associated deformation to the normal bundle space (see [3] and
appendix 2.7). Since the special fiber W0 ⊂ WY |X is a principal divisor, there is an
associated specialization map

σ : CH∗ (
(WY |X − NY |X) � X ×Gm

) → CH∗(W0) .

Composing with the flat pull-back:

CH∗(X) → CH∗(X ×Gm) ,

we get a map

CH∗(X) → CH∗(NY |X) � CH∗(Y) ,

where CH∗(NY |X) � CH∗(Y) by homotopy invariance.
It is not difficult to show, using homotopy invariance, that this must agree with

the pull-back map.
Finally, to get the product, one simply composes the pull-back along the inclu-

sion of the diagonal with the external product

CH∗(X) × CH∗(X) → CH∗(X × X) .

This geometric construction avoids any need to give a definition of intersection
multiplicity, and also shows that for any two cycles Y and Z, Y .Z is naturally a cycle
on the intersection supp(Y) ∩ supp(Z).

Corresponding to this cohomology theory on the category of non-singular
varieties over a field k, we also have Chow Homology groups, defined for all varieties
over k:
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25Definition 25 If X is a (possibly singular) variety over a field, let Zp(X) be the
group of dimension p cycles on X, and CHp(X) the corresponding quotient by
rational equivalence. These groups are covariant functors with respect to proper
morphisms between varieties, and contravariant with respect to flat maps (but
with a degree shift by the relative dimension).

K-Theory and Intersection Multiplicities 2.3

Serre’s tor Formula 2.3.1

While deformation to the normal cone tells us that intersection theory is unique,
given a collection of reasonable axioms, one can ask if there is an intrinsic, purely
algebraic, description of intersection multiplicities, and in particular a definition
that is valid on any regular scheme. A solution to this problem was given by Serre
in his book [61].

If R is a noetherian local ring, an R-module has finite length if and only if it
is supported at the closed point of Spec(R), and K0 of the category of modules of
finite length is isomorphic, by dévissage, to K0 of the category of vector spaces over
the residue field k of R, i.e., to Z. Given an R-module M of finite length, we write
�(M), for its length.

26Definition 26 Suppose that R is a regular local ring, and that M and N are finitely
generated R-modules, the supports of which intersect only at the closed point of
Spec(R), then Serre defines their intersection multiplicity:

χ(M, N) :=
∑

i≥0

(−1)i�
(
TorR

i (M, N)
)

.

In his book, Serre proved:

27Theorem 27 The multiplicity defined above agrees with Samuel’s multiplicity,
when that is defined.

28Theorem 28 If R is essentially of finite type over a field, and if the codimensions
of the supports of M and N sum to more than the dimension of R, then the
intersection multiplicity vanishes, while if the sum is equal to the dimension of R,
the intersection multiplicity is (strictly) positive.
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Idea of Proof
There are two key points:

Reduction to the diagonal. If R is a k-algebra, and M and N are R-modules,
then M ⊗R N � R ⊗R⊗kR (M ⊗k N). Thus if M and N are flat k-modules, as is
the case when k is a field, to understand TorR∗ (M, N), it is enough to understand
Tor

R⊗kR
∗ (R, _).

Koszul Complexes. If R is regular local ring which is a localization of an al-
gebra which is smooth over a field k, then a choice of system of parame-
ters for R determines a finite free resolution of R as an R ⊗k R-algebra by
a Koszul complex. One proves positivity, first for intersections with princi-
pal effective Cartier divisors, and then using induction on the number of
parameters.

Serre conjectured:

29 Conjecture 29 The conclusion of the theorem holds for any regular local ring.

The vanishing conjecture was proved in 1985 by Roberts [56] and independently
by Gillet and Soulé [21]. Non-negativity (but not strict positivity) was proved by
Gabber in 1996. Gabber’s proof uses, in an essential fashion, de Jong’s theorem [14]
on the existence of non-singular alterations of varieties over discrete valuation
rings. Gabber did not publish his proof, but there are various expositions of it, for
example by Berthelot in his Bourbaki exposé on the work of de Jong [4] and by
Roberts [57].

K0 with Supports2.3.2

Serre’s definition of intersection multiplicity can be rephrased using K0 with sup-
ports. (We shall discuss higher K-theory with supports later).

Let X be a noetherian scheme. Then if Y ⊂ X is a closed subset, we define KY
0 (X)

to be the quotient of the Grothendieck group of bounded complexes of locally free
coherent sheaves of OX-modules, having cohomology with supports in Y , by the
subgroup of classes of acyclic complexes.

There is a natural map

KY
0 (X) → G0(Y)

[E∗] �→
∑

i

(−1)i [H i(E∗)] .

If X is a regular noetherian scheme this is map is an isomorphism, because every
coherent sheaf has a resolution by locally free sheaves.
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If Y and Z are closed subsets of X, then there is a natural product

KY
0 (X) ⊗ KZ

0 (X) → KY∩Z
0 (X)

given by

[E∗] ⊗ [F ∗] �→ [E∗ ⊗OX F ∗] .

(The definition of the tensor product of two complexes may be found, for example,
in [70]).

If X is regular then this induces a pairing:

G0(Y) ⊗ G0(Z) → G0(Y ∩ Z)

[E] ⊗ [F ] �→
∑

i

(−1)i
[
T orOX

i (E , F )
]

.

Therefore we see that Serre’s intersection multiplicity is a special case of the
product in K-theory with supports. I.e., if X = Spec(R), with R a regular local
ring, and if M and N are finitely generated R-modules with supports Y ⊂ X and
Z ⊂ X respectively, such that Y ∩ Z = {x}, with x ∈ X the closed point, then
χ(M, N) = [M].[N] ∈ K{x}

0 (X) � Z, where [M] ∈ KY
0 (X) is the class of any

projective resolution of M, and similarly for [N].

The Filtration by Codimension of Supports

30Definition 30 A family of supports on a topological space X is a collection Φ of
closed subsets of X which is closed under finite unions, and such that any closed
subset of a member of Φ is also in Φ. Given two families of supports Φ and Ψ we
set Φ ∧ Ψ equal to the family generated by the intersections Y ∩ Z with Y ∈ Φ and
Z ∈ Ψ.

31Definition 31 Let X be a scheme, and let Φ be a family of supports on X. Then

KΦ
0 (X) := lim→ Y∈Φ

KY
0 (X)

Clearly there is a product

KΦ
0 (X) ⊗ KΨ

0 (X) → KΦ∧Ψ
0 (X) .

For intersection theory, the most important families of supports are X≥i, the
closed subsets of codimension at least i, and X≤j, the subsets of dimension at
most j.



256 Henri Gillet

32 Definition 32 The filtration by codimension of supports, or coniveau filtration, is
the decreasing filtration, for i ≥ 0:

Fi
cod(K0(X)) := Image

(
KX≥i

0 (X) → K0(X)
)

.

Similarly, we can consider the coniveau filtration on G0(X) where Fi(G0(X)) is the
subgroup of G0(X) generated by the classes of those OX-modules [M] for which
codim(Supp(M)) ≥ i.

We shall write Gr�cod(K0(X)) and Gr�cod(G0(X)) for the associated graded groups.

The Coniveau Filtration and Chow Groups
If Y ⊂ X is a codimension p subscheme of a Noetherian scheme, then [OX] ∈
Fp(G0(X)). Thus we have a map:

Zp(X) → F
p
cod(G0(X)) .

By dévissage, i.e., the fact that every coherent sheaf has a filtration with quo-
tients which are coherent sheaves on, and have supports equal to, closed integral
subschemes, ([2] appendix to exp. 0, prop. 2.6.), we have:

33 Lemma 33 If X is a noetherian scheme, the induced map

Zp(X) → Grp
cod(G0(X))

is surjective.

34 Theorem 34 For an arbitrary noetherian scheme, this map factors through CHp(X).

Proof The original proof due to Grothendieck, is in op. cit., appendix to exp. 0,
Theorem 2.12. One can also observe that the homomorphism of Lemma 33 is simply
an edge homomorphism from Zp(X) = E

p,−p
1 to Grp

cod(G0(X)) = E
p,−p
∞ in the Quillen

spectral sequence (Sect. 2.5.4 below) which factors through E
p,−p
2 � CHp(X).

Because there is such a close relationship between the Chow groups and Gr·
codK0,

including the fact that Serre’s definition of intersection multiplicities is via the prod-
uct in K-theory, it is reasonable to ask whether the product structure on K-theory
is compatible with the coniveau filtration, i.e., whether F

p
cod(K0(X)).F

q
cod(K0(X)) ⊂

F
p+q
cod (K0(X)).

Observe that this is not true at the level of modules. I.e., if E∗ and F ∗ are
complexes of locally free sheaves of OX-modules which have their cohomology
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sheaves supported in codimensions p and q respectively, then it is not in general
true that E∗ ⊗OX F ∗ has its cohomology sheaves in codimension at least p + q.

The following theorem was proved by Grothendieck, using Chow’s moving
lemma; see [2], appendix to exp. 0, §4, corollary 1 to theorem 2.12.

35Theorem 35 If X is a smooth quasi-projective variety over a field, then the product
structure on K0(X) is compatible with the coniveau filtration.

Using the Riemann–Roch theorem for a closed immersion between smooth (not
necessarily quasi-projective) varieties, one can extend Grothendieck’s result to all
smooth varieties. See [32] for details. Later, in Sect. 2.5.11, we shall prove the
analogous result for Kp(X) for all p ≥ 0, again for general smooth varieties over
a field, using deformation to the normal cone rather than the moving lemma. There
is also another proof of this more general result, which uses Quillen’s theorem that
Gersten’s conjecture is true for non-singular varieties, together with the homotopy
theory of sheaves of spectra, in Sect. 2.5.6 below.

In general, one conjectures:

36Conjecture 36: Multiplicativity of the coniveau filtration If X is a regular noethe-
rian scheme, the product on K-theory respects the filtration by codimension of
supports, and ∗ is the product on K-theory:

Fi
cod

(
KY

0 (X)
) ∗F

j
cod

(
KZ

0 (X)
) ⊂ F

i+j
cod

(
KY∩Z

0 (X)
)

Note that:

37Proposition 37 Conjecture 36 implies Serre’s vanishing conjecture.

Proof Suppose that R is a regular local ring of dimension n, and that M and N are
finitely generated R-modules, supported on closed subsets Y (of codimension p)
and Z (of codimension q) of X = Spec(R). Suppose also that Y ∩ Z = {x}, where
x ∈ X is the closed point. Then [M] ∈ F

p
cod(KY

0 (X)), [N] ∈ F
q
cod(KZ

0 (X)), and

χ(M, N) = [M] ∪ [N] ∈ F
p+q
cod

(
K{x}

0 (X)
)

.

Now K{x}
0 (X) � Z[k(x)], with [k(x)] ∈ Fn

cod(K{x}
0 (X)) \ Fn+1

cod (K{x}
0 (X)). Therefore if

p + q > n, we have

χ(M, N) = [M] ∪ [N] ∈ Fn+1
cod

(
K{x}

0 (X)
)

� 0 .

In the next section, we shall sketch how Conjecture 36 can be proved, after tensoring
withQ, following the method of [21].
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The Coniveau Filtration and the γ-Filtration2.3.3

In [2] Grothendieck constructed a product on CH∗(X)Q , for X a regular scheme, by
constructing a multiplicative filtration F·

γ (K0(X)) on K0, such that there are Chern
classes with values in the graded ring Gr·

γ(K0(X))Q . He then used the Chern classes
to define an isomorphism:

CH∗(X)Q � Gr·
γK0(X)Q ,

and hence a product on CH∗(X)Q .
For any scheme, there are operations λi : K0(X) → K0(X), defined by taking ex-

terior powers: λi([E]) = [
∧i(E)]. Note that these are not group homomorphisms,

but rather λn(x + y) =
∑n

i=0 λi(x)λ(n−i)(y).

38 Definition 38 The γ-operations are defined by:

γn : K0(X) → K0(X)

γn : x �→ λn
(
x + (n − 1)[OX]

)
.

The γ-filtration F·
γ(K0(X)) is defined by setting F1

γ(K0(X)) equal to the subgroup
generated by classes that are (locally) of rank zero, and then requiring that if
x ∈ F1

γ(K0(X)) then γ i(x) ∈ Fi
γ(K0(X)), and that the filtration be multiplicative, i.e.,

Fi
γ (K0(X)).F

j
γ(K0(X)) ⊂ F

i+j
γ (K0(X)), so that the associated graded object Gr·

γK0(X)
is a commutative ring, which is contravariant with respect to X.

Recall, following [38], that a theory of Chern classes with values in a cohomology
theory A∗ associates to every locally free sheaf E of OX-modules on a scheme X,
classes Ck(E) ∈ Ak(X), for k ≥ 0 such that
1. C0(E) = 1.
2. The map L → C1(L) ∈ A1(X) defines a natural transformation Pic → A1.
3. If

0 → E → F → G → 0

is an exact sequence of locally free sheaves, then, for all n ≥ 0, we have the
Whitney sum formula:

Cn(F ) =
n∑

i=0

Ci(E)Cn−i(G) .

39 Proposition 39: Grothendieck, [2] The natural transformations which assign to
a locally free sheaf E of OX-modules, the elements, for k ≥ 1,

Ck(E) := γk([E] − rk(E)) ∈ Grk
γK0(X) ,

satisfy the axioms for Chern classes.
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Corresponding to these classes there is a Chern character which is a natural
transformation:

ch : K0(X) → Gr∗
γ(K0(X))Q

The following theorem is proved in [2], theorem VII 4.11, where there is the extra
assumption that X possesses an ample sheaf. However as explained in [32], the
same proof, with only minor modifications, works for general regular schemes.
This theorem also follows from the results of Soulé ([64]), where the result is also
proved for K1 and K2, by studying the action of the Adams operations on the
Quillen spectral sequence; see Theorem 78 below.

40Theorem 40 If X is a regular scheme, the Chern character induces an isomorphism:

Gr∗
cod(K0(X))Q → Gr∗

γ(K0(X))Q

Furthermore, there is an isomorphism, for each k ≥ 0

CHk(X)Q → Grk
γ(K0(X))Q

[Y] �→ chk([OY ])

41Corollary 41 If X is a regular Noetherian scheme, the coniveau filtration on K0(X)Q
is multiplicative.

In [21], it shown that one can also construct lambda operations on K-theory with
supports, and that, after tensoring withQ, the coniveau filtration and γ-filtrations
on the K0, with supports in a closed subset, of a finite dimensional regular noethe-
rian scheme are isomorphic, and hence the coniveau filtration (tensorQ) is multi-
plicative. An immediate consequence of this result is Serre’s vanishing conjecture
for general regular local rings. Robert’s proof in [56] used Fulton’s operational
Chow groups, which give an alternative method of constructing the product on
CH∗(X)Q for a general regular Noetherian scheme.

Complexes Computing Chow Groups 2.4

Higher Rational Equivalence and Milnor K-Theory 2.4.1

Suppose that X is a noetherian scheme, and that Y ⊂ X is a closed subset
with complement U = X − Y . Then we have short exact sequences (note that
Z(Y) and R(Y) are independent of the particular subscheme structure we put
on Y):

0 → R(Y) → R(X) → R(U) → 0
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and

0 → Z(Y) → Z(X) → Z(U) → 0

and hence an exact sequence:

Ker
(
div : R(U) → Z(U)

) → CH(Y) → CH(X) → CH(U) → 0 .

It is natural to ask if this sequence can be extended to the left, and whether there is
a natural notion of rational equivalence between K1-chains. In particular are there
elements in the kernel Ker(div : R(U) → Z(U)) that obviously have trivial divisor,
and so will map to zero in CH(Y)?

Let us start by asking, given a scheme X, whether there are elements in R(X)
which obviously have divisor 0. First of all, any f ∈ k(x)∗ which has valuation
zero for all discrete valuations of the field k(x) is in the kernel of the divisor map.
However since we are dealing with general schemes, the only elements of k(x)
which we can be sure are of this form are ±1.

Suppose now that X is an integral scheme, and that f and g are two rational
functions on X, i.e., elements of k(X)∗, such that the Weil divisors div(f ) and div(g)
have no components in common. Writing {f } and {g} for the two (principal) Cartier
divisors defined by these rational functions, we can consider the two cap products:

{f } ∩ div(g) = div
{

f |div(g)

}

and

{g} ∩ div(f ) = div
{

g|div(f )

}
.

Here {f }|∑
i[Yi] :=

∑
i{f }|[Yi], where {f }|[Yi] denotes, equivalently, the restriction

of f either as a Cartier divisor (Definition 14), or simply as a rational function
which is regular at the generic point of Yi. If one supposes that the cap product
between Chow cohomology and Chow homology is to be associative, and that the
product in Chow cohomology is to be commutative, then we should have:

{f } ∩ ({g} ∩ [X]
)

=
({f } ∗ {g}) ∩ [X]

=
({g} ∗ {f }) ∩ [X]

= {g} ∩ ({f } ∩ [X]
)

.

I.e. the K1-chain

g|div(f ) − f |div(g)

should have divisor zero.
That this is indeed the case follows from the following general result, in which

{f } and {g} are replaced by general Cartier divisors.
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42Proposition 42: Commutativity of Intersections of Cartier Divisors Let X be an
integral scheme, and suppose that φ and ψ are two Cartier divisors, with div(φ) =∑

i ni[Yi] and div(ψ) =
∑

j mj[Zj] their associated Weil Divisors. Then
∑

i

nidiv
(
ψ|Yi

)
=

∑

j

mjdiv
(
φ|Zj

)
.

The original proof of this result, in [24], used higher algebraic K-theory, and
depended on the properties of the coniveau spectral sequence for K-theory ([53]).
However if one wants to avoid proofs using K-theory, then for varieties over fields
this is proved in Fulton’s book ([17], theorem 2.4), and there is a purely algebraic
proof of the general case by Kresch in [46].

Thus every pair of rational functions (f , g), as above, gives rise to a K1-chain with
trivial divisor. This suggests that one could view such K1-chains as being rationally
equivalent to zero, i.e. that one should extend the complex R(X) → Z(X) to the
left by

⊕
x k(x)∗ ⊗ k(x)∗, with “div” (f ⊗ g) = f |div(g) − g|div(f ). Since

“div” (f ⊗ g) = −“div” (g ⊗ f ) ,

it seems reasonable to impose the relation f ⊗ g + g ⊗ f = 0. Again it is natural
to ask what elements are obviously in the kernel of this map. An element f ⊗ g ∈
k(x)∗ ⊗ k(x)∗ such that f ≡ 1(modg), and g ≡ 1(modf ), will be in the kernel of the
map “div”, and the elements of k(x)∗ ⊗ k(x)∗ that we can be sure are of this type
are those of the form f ⊗ g with f + g = 1.

This leads naturally to the quotient of the exterior algebra
∧∗(F) =

⊕
n

∧n
Z F∗

(of F∗ viewed as aZ-module) by the two-sided ideal I generated by elements of the
form f ⊗ g with f + g = 1:

43Definition 43 If F is a field, its Milnor K-theory is defined to be:

KM
∗ (F) :=

∧∗
(F)|I .

Note that the relation {f , g} = −{g, f } ∈ KM
2 (F) can be deduced from the relation

{f , 1 − f } = 0, and hence one can equally write:

KM
∗ (F) := T∗(F)|I ,

where T∗(F) is the tensor algebra of F.

Rost’s Axiomatics 2.4.2

The fact that Milnor K-theory appears so naturally when trying to construct
a complex that computes the Chow groups is fully explored in the paper [58] of
Rost, where he proves that one need impose no more relations, or add any more
generators, to get a theory which has very nice properties.
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Rost considers a more general structure, which includes Milnor K-theory as
a special case.

44 Definition 44 A (graded) cycle module is a covariant functor M from the category
of fields (over some fixed base scheme S) to the category of Z-graded (or Z|2-
graded) Abelian groups, together with:
1. Transfers trE|F : M(E) → M(F), of degree zero, for every finite extension

F ⊂ E.
2. For every discrete valuation v of a field F a residue or boundary map ∂v :

M(F) → M(k(v)) of degree −1.
3. A pairing, for every F, F∗ × M(F) → M(F) of degree 1, which extends to

a pairing KM∗ (F) × M(F) → M(F) which makes M(F) a graded module over
the Milnor-K-theory ring.

These data are required to satisfy axioms which may be found in op. cit., Definitions
1.1 and 2.1.

A cycle module M is said to be a cycle module with ring structure if there is
a pairing M × M → M, respecting the grading, which is compatible with the cycle
module structure; see op. cit. Definition 1.2.

Milnor K-theory itself is a cycle module with ring structure. This follows from
results of Bass and Tate, of Kato, and of Milnor; see [58], theorem 1.4. We shall see
later (Theorem 65) that the same holds for the Quillen K-theory of fields.

45 Definition 45 Let X be a variety over a field. Then C∗(X, M, q) is the complex:

Cp(X, M, q) :=
⊕

x∈X(p)

Mq−p(k(x))

with the differential Cp(X, M, q) → Cp+1(X, M, q) induced by the maps ∂v :
Mq−p(k(x)) → Mq−p−1(k(v)) for each discrete valuation v of k(x) which is triv-
ial on the ground field. (Here, if k is a field, Mn(k) is the degree n component of
M(k).)

Similarly, one defines the homological complex:

Cp(X, M, q) :=
⊕

x∈X(p)

Mq−p(k(x)) .

These complexes are the “cycle complexes” associated to the cycle module M.
One then defines:

46 Definition 46
Ap(X, M, q) := Hp

(
C∗(X, M, q)

)

and
Ap(X, M, q) := Hp

(
C∗(X, M, q)

)
.
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It is easy to prove that the cohomological complex for Milnor K-theory is con-
travariant with respect to flat maps. To prove that the corresponding homological
complex is covariant with respect to proper maps, one uses Weil reciprocity for
curves, see [58], proposition 4.6.; a similar argument for Quillen K-theory is also
in [24]. Therefore the groups A∗(X, M, q) are contravariant with respect to flat
morphisms, while the groups A∗(X, M, q) are covariant with respect to proper
morphisms.

47Remark 47 One can consider bases more general than a field. In [58] Rost fixes
a base B which is a scheme over a field, and then considers schemes X of finite type
over B. More generally, it is easy to see that the homological theory can be defined
for schemes of finite type over a fixed excellent base B, so long as one grades the
complexes by dimB (see Definition 9).

Since, if F is a field, K1(F) = KM
1 (F) = F∗, and K0(F) = KM

0 (F) = Z, we see that the
last two terms in C∗(X, M, p) are the groups Rp−1(X) and Zp(X) of dimension p − 1
K1-chains and dimension p cycles on X. Therefore we have ([58], remark 5.1):

48Proposition 48 If M∗ is Milnor K-theory (or Quillen K-theory):

Ap(X, KM , −p) � CHp(X)

Ap(X, KM , p) � CHp(X) .

Rost shows:

49Theorem 49
1. For any M∗, the cohomology groups A∗(X, M, ∗) are homotopy invariant, i.e.,

for any flat morphism π : E → X with fibres affine spaces, π∗ : A∗(X, M, ∗) →
A∗(E, M, ∗) is an isomorphism.

2. For any M∗, if f : X → S is a flat morphism with S the spectrum of a Dedekind
domain Λ, and t is a regular element of Λ, there is a specialization map
σt : A∗(Xt , M, ∗) → A∗(X0, M, ∗), which preserves the bigrading. Here Xt =
X ×S Spec(Λ[1|t]) and X0 = X ×S Spec(Λ|(t)).

3. If M∗ is a cycle module with ring structure, and f : Y → X is a regular immer-
sion, then there is a Gysin homomorphism f ∗ : A∗(X, M, ∗) → A∗(Y , M, ∗).
This Gysin homomorphism is compatible with flat pull-back:
a) If p : Z → X is flat, and i : Y → X is a regular immersion, then p∗

X ·i∗ = i∗Z ·p∗,
where pX : X ×Y Z → X and iZ : X ×Y Z → Z are the projections in the
fiber product over Y .

b) If p : X → Y is flat, and i : Y → X is a section of p which is a regular
immersion, then i∗ · p∗ = 1∗

Y .
4. If M∗ is a cycle module with ring structure, and if X is a smooth variety over

a field, then there is a product structure on A∗(X, M, ∗).
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The map σt is the composition of the cup-product by {t} ∈ H1(Xt , O∗
X) (which is

defined since M∗ is a module over Milnor K-theory) with the boundary map in the
localization sequence for the open subset Xt ⊂ X with complement X0. See [58]
sect. 11, as well as [24], where a similar construction is used for the case when M∗
is Quillen K-theory. The construction of the Gysin map uses deformation to the
normal cone, specialization, and homotopy invariance. The product is constructed
as the composition of the external product A∗(X, M, ∗) × A∗(X, M, ∗) → A∗(X ×
X, M, ∗) with the Gysin morphism associated to the diagonal map ∆ : X →
X × X.

50 Corollary 50 For all p ≥ 0 and q ≥ 0, X �→ Ap(X, M, q) is a contravariant abelian
group valued functor on the category of smooth varieties over k.

Sketch of Proof
If f : X → Y is a map of smooth varieties over k, we can factor f = p · γf with
p : X ×k Y → Y the projection, and γf : X → X ×k Y the graph of f . We then
define f ∗ = (γf )∗ · p∗, where p∗ is defined since p is flat, and (γf )∗ is defined since
γf is a regular immersion. To prove that this is compatible with composition, one
uses parts a) and b) part 3 of the theorem.

More generally f ∗ can be defined for any local complete intersection morphism
between (not necessarily regular) varieties over k, using the methods of [20].

Let us write Mq for the sheaf X �→ A0(X, M, q) on the big Zariski site of regular
varieties over k. Rost also shows

51 Theorem 51 If X is the spectrum of regular semi-local ring, which is a localization
of an algebra of finite type over the ground field, then for all p, the complex
C∗(X, M, p) only has cohomology in degrees i = 0.

The proof is variation on the proofs of Gersten’s conjecture by Quillen [53] and
Gabber [19].

52 Corollary 52 If X is a regular variety over k, then Hp(C∗(X, M, q)) � Hp(X, Mq).

We then get immediately, the following variation on Bloch’s formula:

53 Corollary 53 For a variety X as above: CHp(X) � Hp(X, Mp).

Thus Rost’s paper shows us that one can construct intersection theory, together
with higher “rational equivalence”, i.e. the higher homology of the cycle complexes,
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building just on properties of divisors, and that Milnor K-theory arises naturally
in this process.

To construct Chern classes, we can follow the method of [24]. Start by observing
that since M∗ is a KM∗ -module, there are products

H1(X, O∗
X) ⊗ Ap(X, M, q) → Ap+1(X, M, q + 1) .

54Proposition 54 Let M∗ be a cycle module. Then if X is a variety over k, and
π : E → X is a vector bundle of constant rank n, there is an isomorphism
Ap(P(E), M, q) � ⊕n−1

i=0 Ap−i(P(E), M, q − i)ξi, where ξ ∈ H1(P(E), O∗
P(E)) is the

class of OP(E)(1).

Proof By a standard spectral sequence argument, this may be reduced to the case
when X is a point, and the bundle is trivial, so that P(E) � Pn. Let Pn−1 ⊂ Pn be
the hyperplane at infinity. It is easy to see that there is a short exact sequence:

0 → C∗(Pn−1, M, q − 1)[1] → C∗(Pn, M, q) → C∗(An, M, q) → 0 ,

which gives rise to a long exact sequence:

… → Ap−1(Pn−1, M, q − 1)
j∗→ Ap(Pn, M, q)

i∗→ Ap(An, M, q) → … ,

in which j∗ is the Gysin homomorphism, and i∗ is the pull back map associated
to the inclusion of the open subset i : An → P

n. Let π : Pn → Spec(k) be the
projection. By homotopy invariance, the map

(π · i)∗ : Ap(Spec(k), M, q) → Ap(An, M, q)

is an isomorphism, and so i∗ is a split monomorphism, while j∗ is a split epimor-
phism. Next, one may show that i∗ · i∗ : Ap(Pn, M, q) → Ap+1(Pn, M, q + 1) is the
same as cap product by ξ. Since i∗ is defined using deformation to the normal cone
this is not completely tautologous. The proof then finishes by induction on n.

One may now apply the axiomatic framework of [24], to obtain:

55Theorem 55 There is a theory of Chern classes for vector bundles, and also for
higher algebraic K-theory, on the category of regular varieties over k, with values
in Zariski cohomology with coefficients in the Milnor K-theory sheaf:

Cn : Kp(X) → Hn−p(X, KM
n )

which satisfies the properties of op. cit.
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These classes seem not to be in the literature, though they are known to the experts,
and they induce homomorphisms Kn(F) → KM

n (F) which are presumably the same
as the homomorphisms defined by Suslin in [65].

56 Remark 56 One can also construct the universal Chern classes Cp ∈ Hp(B·GLn, KM
p )

by explicitly computing Hp(B·GLn, KM
q ) for all p and all q. To do this one first com-

putes Hp(GLn, KM
q ), using the cellular decomposition of the general linear groups,

and then applies a standard spectral sequence argument, to get:

H∗(B·GLn, KM
∗ ) � KM

∗ (k)[C1, C2, …] .

Higher Algebraic K-Theory
and Chow Groups2.5

The connection between higher K-theory and Chow groups has at its root the
relationship between two different filtrations on the K-theory spectrum of a regular
scheme. One of these, the Brown filtration, is intrinsically functorial and compatible
with the product structure on K-theory. The other is the coniveau filtration, or
filtration by codimension, which is directly related to the Chow groups.

Gersten’s conjecture implies that there should be an isomorphism of the cor-
responding spectral sequences, and hence that these two different filtrations
of the K-theory spectrum should induce the same filtration on the K-theory
groups. At the E2 level, this isomorphism of spectral sequences includes Bloch’s
formula:

CHp(X) � Hp
(
X, Kp(OX)

)
.

The equality of these two filtrations on the K-theory groups tells us that, if
Gersten’s conjecture holds, then the product on the K-theory of a regular scheme
is compatible with the coniveau filtration. Recall that this compatibility implies
Serre’s conjecture on the vanishing of intersection multiplicities.

At the moment Gersten’s conjecture is only known for regular varieties over
a field. As we saw in the last section, one can also develop intersection theory for
smooth varieties over a field, using deformation to the normal cone. At the end of
this section, we use deformation to the normal cone to give a new proof, which does
not depend on Gersten’s conjecture, that the product on the K-theory of a smooth
variety is compatible with the coniveau filtration.

Stable Homotopy Theory2.5.1

Before discussing higher algebraic K-theory, we should fix some basic ideas of
stable homotopy theory and of the homotopy theory of presheaves of spectra.
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There are various versions of the stable homotopy category available, such as the
category of symmetric spectra of [40] and the category of S-modules of [16]. It is
shown in [60] that these are essentially equivalent.

For us, spectra have two advantages. The first is that cofibration sequences and
fibration sequences are equivalent (see Theorem 3.1.14 of [40]), and the second is
that the product in K-theory can be described via smash products of spectra. In
particular we will need the following lemma which gives information about the
stable homotopy groups of smash products:

57Lemma 57 Suppose that E and F are spectra with πi(E) = 0 if i < p and πi(F) = 0
if i < q. Then πi(E ∧ F) = 0 if i < p + q.

Proof This follows from the spectral sequence

Torπ∗(S)
(
π∗(E), π∗(F)

) ⇒ π∗(E ∧ F) ,

see [16], Chapt. II, Theorem 4.5.

Following the paper [41] of Jardine, the category of presheaves of spectra on (the
Zariski topology of) a scheme X may be given a closed model structure in the
sense of [54], in which the weak equivalences are the maps of presheaves which
induce weak equivalences stalkwise. See also the papers [10] of Brown and [11] of
Brown and Gersten, as well as [23].

If E is a presheaf of spectra on X, we define RΓ(X, E) to be Γ(X, Ẽ), where
i : E → Ẽ is a fibrant resolution of E, i.e., i is a trivial cofibration and Ẽ is fibrant.
If Y ⊂ X is a closed subset, or if Φ is a family of supports, we define RΓY (X, E)
and RΓΦ(X, E) similarly. By a standard argument, one can show that RΓ(X, E) is
a fibrant spectrum which is, up to weak equivalence, independent of the choice of
fibrant resolution.

One also defines

Hn(X, F) := π−n

(
RΓ(X, F)

)
,

and

Hn
Φ(X, F) := π−n

(
RΓΦ(X, F)

)
.

Note that these are abelian groups.
The reason for this notation is that if A is a sheaf of abelian groups on X

and Π(A, n) is the corresponding sheaf of Eilenberg-Maclane spectra, which has
πi(Π(A, n)) = A if i = n, and equal to 0 otherwise, we have:

Hp
(
X, Π(A, n)

) � Hn−p(X, A)

for n ≥ p.
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Filtrations on the Cohomology of Simplicial Sheaves2.5.2

If E is a spectrum, and F·E is a decreasing filtration of E by subspectra, there is an
associated spectral sequence with

E
p,q
1 = π−p−q(FpE|Fp+1E) .

See [23] for a detailed construction of this spectral sequence, and the associated
exact couple.

Given a scheme X satisfying our standard assumptions, and a presheaf of spectra
E on X, one can consider two different filtrations on RΓ(X, E).

The first is the “Brown” or hypercohomology filtration:

58 Definition 58 Let E be a fibrant simplicial presheaf on the scheme X. Let E(∞, k) ⊂
E be the sub-presheaf with sections over an open U ⊂ X consisting of those
simplices which have all of their faces of dimension less than k trivial. Since
the stalks of E are fibrant (i.e. are Kan simplicial sets), the stalk of E(∞, k)
at x ∈ X is the fibre of the map from Ex to the k-th stage of its Postnikov
tower.

If E = (Ei)i∈N is a fibrant presheaf of spectra, then we can define similarly its
Postnikov tower:

E(∞, k)i := Ei(∞, k + i) .

In either case, we set

Fk
BRΓ(E) := RΓ

(
X, E(∞, k)

)
,

and, if Φ is a family of supports on X,

Fk
BRΓΦ(E) := RΓΦ

(
X, E(∞, k)

)
.

Associated to this filtration we have a spectral sequence:

59 Proposition 59 If X is a scheme (which as usual, we assume to be finite dimen-
sional), and if E is a presheaf of connective spectra on X, there is a hypercohomology
spectral sequence:

E
p,q
1 = π−p−q

(
RΓ(X, E(p))

) � Hq
(
X, π−p(E)

) ⇒ Hp+q(X, E) .

Here E(p) denotes the cofiber of E(∞, p+1) → E(∞, p), which is weakly equivalent
to the presheaf of Eilenberg-Maclane spectra with homotopy groups πk(E(p)) =
πp(E) if k = p and 0 otherwise. This spectral sequence is concentrated in degrees
q ≤ 0 and 0 ≤ p ≤ dim(X).

More generally, if Φ is a family of supports on X, then we have

E
p,q
1 = π−p−q

(
RΓΦ(X, E(p))

) � H
q
Φ

(
X, π−p(E)

) ⇒ H
p+q
Φ (X, E) .
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Proof See [11] and [23].

60Definition 60 We shall refer to the spectral sequence of the previous proposition
as the Brown spectral sequence, and the corresponding filtration on the groups
H∗(X, E) and H∗

Φ(X, E) as the Brown filtration.

The second filtration on RΓ(X, E) is the coniveau filtration:

61Definition 61 Recall that ΓX≥k denotes sections with support of codimension at
least k; then we set, for E a presheaf either of connective spectra,

FkRΓ(E) := RΓX≥k (X, E) .

The resulting spectral sequence

E
p,q
1 = E

p,q
1,cod(X, E) � π−p−q(RΓX(p) (X, E)) ⇒ Hp+q(X, E)

converges to the coniveau filtration on H∗(X, E).
We can also require everything to have supports in a family of supports Φ:

Fk
codRΓΦ(E) := RΓX≥k∩Φ(X, E) ,

to obtain a spectral sequence:

E
p,q
1 = E

p,q
1,cod,Φ(X, E) � π−p−q

(
RΓX(p)∩Φ(X, E)

) ⇒ H
p+q
Φ (X, E) .

It was shown in [23] that these spectral sequences are related. First note that we
can renumber the Brown spectral sequence so that it starts at E2:

Ê
p,q
2 (X, E) := π−p−q

(
RΓ(X, E(−q))

)
.

62Theorem 62 With X and E as above, There is a map of spectral sequences, for
r ≥ 2,

Êp,q
r (X, E) → E

p,q
r,cod(X, E) ,

and more generally, given a family of supports Φ,

Ê
p,q
r,Φ(X, E) → E

p,q
r,cod,Φ(X, E) ,

Proof See [23], Theorem 2, Sect. 2.2.4. The proof there uses a generalization to
sheaves of simplicial groups of the techniques that Deligne used in a unpublished
proof of the analogous result for complexes of sheaves of abelian groups (see [9]).
There is a discussion of Deligne’s result in [51]. A key point in the proof is that
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X − X≥p has dimension p − 1, so that Hi
X−X≥p (X, A) = 0 for all i ≥ q and any sheaf

of abelian groups A.

This theorem may be viewed as an analog, in the homotopy theory of simplicial
presheaves, of a result of Maunder [50], in which he compared the two different
ways of defining the Atiyah-Hirzebruch spectral sequence for the generalized
cohomology of a CW complex.

Looking at the map on E∞ terms, we get:

63 Corollary 63 With X and E as above,

FkH∗(X, E) ⊂ Fk
codH∗(X, E) ,

for all k ≥ 0. If Φ is a family of supports on X, then:

FkH∗
Φ(X, E) ⊂ Fk

codH∗
Φ(X, E) .

We shall see that for the algebraic K-theory of regular schemes over a field, as well
as other cohomology theories for which one can prove Gersten’s conjecture, that
these two spectral sequences are isomorphic, and hence the filtrations that they
converge to are equal.

Review of Basic Notions of K-Theory2.5.3

Recall that if E is an exact category the K-theory groups Kp(E), for p ≥ 0 of E
were originally defined by Quillen in [53], to be the homotopy groups πp+1(BQE)
of the classifying space of the category QE defined in op.cit. (Here one takes the
zero object of the category as a base point.)

An alternative construction, which gives a space which can be shown to be
a deformation retract of BQE , is Waldhausen’s S·-construction. This associates to
the exact category E a simplicial set S·E . The iterates of S·-construction then give
a sequence of deloopings Sk

· E of S·E . See Sect. 1.4 of the article of Carlsson in this
volume for details. It is straightforward to check that these deloopings may used to
define a symmetric spectrum which we will denote K(E), with K∗(E) � π∗(K(E)).
We may then think of K-theory as a functor from the category of exact categories
and exact functors to the category of spectra.

Any bi-exact functor Φ : A × B → C induces pairings

Sp
· (A) ∧ Sq

· (B) → Sp+q
· (C) ,

which are compatible with the actions of the relevant symmetric groups, and hence
induce a pairing:

K(Φ) : K(A) ∧ K(B) → K(C) .

If X is a scheme we can consider the abelian category M(X) of all coherent
sheaves on X, and the exact subcategory P (X) ⊂ M(X) of locally free coherent
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sheaves on X. We shall denote the K-theory spectra of these categories by G(X)
and K(X) respectively, and the K-theory groups by G∗(X) and K∗(X) respectively.
(Note that in [53], G∗(X) is written K ′∗(X).) These groups have the following basic
properties:

X �→ K∗(X) is a contravariant functor from schemes to graded (anti-)commu-
tative rings. See [53]. The product is induced by the bi-exact functor

P (X) × P (X) → P (X)

(F , G) �→ F ⊗OX G ,

which induces a pairing of spectra:

K(X) ∧ K(X) → K(X) .

X �→ G∗(X) is a covariant functor from the category of proper morphisms
between schemes to the category of graded abelian groups. The covariance of
G∗(X) is proved in [53] for projective morphisms, while for general proper
morphisms it is proved in [27] and [66].
G∗ is also contravariant for flat maps: if f : X → Y is a flat morphism, then
the pull-back functor f ∗ : M(Y) → M(X) is exact. More generally, G∗(X) is
contravariant with respect any morphism of schemes f : X → Y which is of
finite tor-dimension. This is proven in [53] when Y has an ample line bundle.
The general case may deduced from this case by using the fact that the pull
back exists locally on Y , since all affine schemes have an ample line bundle,
together with the weak equivalence G(Y) � RΓ(Y , GY ) discussed in Theorem 66
below. Alternatively, one may show that the pull-back for general f (of finite
tor-dimension) exists by the methods of Thomason [66].
There is a “cap product” K∗(X) ⊗ G∗(X) → G∗(X), which makes G∗(X)
a graded K∗(X)-module. If f : X → Y is a proper morphism of schemes,
then f∗ : G∗(X) → G∗(Y) is a homomorphism of K∗(Y)-modules, where G∗(X)
is a K∗(Y)-module via the ring homomorphism f ∗ : K∗(Y) → K∗(X). This fact
is known as the projection formula. The cap product is induced by the bi-exact
functor:

P (X) × M(X) → M(X)

(F , G) �→ F ⊗OX G ,

which induces a pairing of spectra:

K(X) ∧ G(X) → G(X) .

If X is regular, then the inclusion P (X) ⊂ M(X) induces an isomorphism on
K-theory, K∗(X) � G∗(X).

While X �→ K∗(X) is a functor, the operation X �→ P (X) is not a functor, since
given maps f : X → Y and g : Y → Z, the functors (g · f )∗ and f ∗ · g∗ are
only isomorphic, rather than equal. There are standard ways of replacing such
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a ‘pseudo’-functor or ‘lax’-functor by an equivalent strict functor; in this case
we can replace the category P (X) of locally free sheaves on X by the equiva-
lent category PBig(X) of locally free sheaves on the Big Zariski Site over X. An
object in this category consists of giving, for every morphism f : U → X,
a locally free sheaf Ff of OU -modules, and for every triple (f : U → X, g :
V → X, h : U → V) such that g · h = f , an isomorphism g∗ : g∗(Fh) → Ff .
These data are required to satisfy the obvious compatibilities. Then if F ∈
PBig(X), and f : Y → X is a morphism, (f ∗Fg), for g : U → Y is set equal
to Ff ·g . It is a straightforward exercise to show that X �→ PBig(X) is a strict
functor.

We may then view X �→ K(X) as a contravariant functor from schemes to
spectra. When we restrict this functor to a single scheme X, we get a presheaf of
spectra which we denote KX . Similarly we have the presheaf GX associated to G
theory, together with pairings of presheaves:

KX ∧ KX → KX

KX ∧ GX → GX .

64 Definition 64 Let X be a scheme. Given an open subset U ⊂ X, we define K(X, U)
to be the homotopy fibre of the restriction K(X) → K(U). If Y ⊂ X is a closed
subset, then we also write KY (X) = K(X, X − Y), and K∗(X, U), KY∗ (X), for the
corresponding groups.

We can perform similar constructions for G-theory. However by Quillen’s local-
ization and dévissage theorems ([53]) if i : Y → X is the inclusion of a closed
subset of a scheme X, with its structure as a closed reduced subscheme, the ex-
act functor i∗ : M(Y) → M(X) induces a map i∗ : G(Y) → GY (X) which is
a homotopy equivalence. More generally, if Φ is any family of supports on X,
then GΦ(X) � K(MΦ(X)), the K-theory of the category of coherent sheaves of
OX-modules with support belonging to Φ.

Quillen’s Spectral Sequence2.5.4

For a general noetherian scheme X, the exact category M(X) of coherent sheaves
of OX-modules has a decreasing filtration

M(X) = M≥0(X) ⊃ … ⊃ M≥i(X) ⊃ M≥i+1(X) ⊃ … ,

in which M≥i(X) is the Serre subcategory consisting of those sheaves which have
supports of codimension at least i. Applying the K-theory functor, we get a filtration
of the G-theory spectrum by

… ⊂ GX≥i+1
(X) ⊂ GX≥i

(X) ⊂ … ⊂ G(X) .
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We shall refer to the corresponding spectral sequence

E
p,q
1 (X) = π−p−q

(
GX≥p

(X)|GX≥p+1
(X)

)

�
⊕

x∈X(p)

K−p−q(k(x)) ⇒ F·
cod

(
K−p−q(X)

)
.

as the Quillen spectral sequence. The identification of the E
p,q
1 -term follows from

a combination of localization and dévissage; see [53] for details.
Observe that E

p,−p
1 (X) � Zp(X) and E

p−1,−p
1 (X) � Rp(X). One may also prove that

the differential E
p−1,−p
1 (X) → E

p,−p
1 (X) is simply the divisor map. Hence E

p,−p
2 (X) �

CHp(X).
Thus for each p ≥ 0, we get a complex R∗

q(X), which we shall call the Gersten
complex:

Rp
q(X) := E

p,−q
1 (X) =

⊕

x∈X(p)

Kq−p(k(x)) .

We may also filter the spectrum G(X) by dimension of supports:

… GX≤p−1
(X) ⊂ GX≤p (X) ⊂ … ⊂ G(X) .

The corresponding spectral sequence is:

E1
p,q(X) = πp+q

(
GX≤p (X)|GX≤p−1 (X)

)

�
⊕

x∈X(p)

Kp+q(k(x)) ⇒ F·
dimKp+q(X) .

We also have the corresponding homological Gersten complex:

Rp,q(X) := E1
p,q(X) .

Again, we have that E2
p,p � CHp(X).

If f : X → Y is a flat morphism, and Z ⊂ Y has codimension p, then f −1(Z)
has codimension p in X and hence f −1(Y≥p) ⊂ X≥p. If f is proper, and W ⊂ X
has dimension q, then f (W) has dimension at most q and hence f (X≤q) ⊂ Y≤q. It
follows that if f is flat, flat pull-back induces a map of coniveau spectral sequences,
and hence of Gersten complexes. If f is proper, then push-forward induces a map
of spectral sequences, and hence of Gersten complexes:

f∗ : R∗,q(X) → R∗,q(Y) .

Notice that this automatically gives the covariance of the Chow groups with respect
to proper maps.

One can extend these results to prove:
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65 Theorem 65 Quillen K-theory of fields is a cycle module, and the Gersten com-
plexes are the associated cycle complexes.

Proof See [53], [62] and [24].

K-Theory as Sheaf Hypercohomology2.5.5

Recall that if X is a scheme, GX denotes the presheaf of G-theory spectra on X.

66 Theorem 66 If Y ⊂ X is a closed subset, the natural map

G(Y) � GY (X) → RΓY (X, GX) ,

is a weak homotopy equivalence.

Proof It is enough to prove that this is true for Y = X. The general result then
follows by comparing the fibration sequences:

GY (X) → G(X) → G(X − Y)

and

RΓY (X, GX) → RΓ(X, GX) → RΓ(X − Y , GX) � RΓ(X − Y , GX−Y ) .

The result for X is a consequence of the Mayer-Vietoris property of G-theory.
See [11].

67 Corollary 67 The Quillen spectral sequence for G∗(X) is the same as the coniveau
spectral sequence for the sheaf of spectra GX , and both converge to the coniveau
filtration on G-theory.

Let X be a scheme, and suppose that Y ⊂ X and Z ⊂ X are closed subsets. Then,
using the fact that smash products preserve cofibration sequences, one may easily
check that the K-theory product respects supports:

KY (X) ∧ KZ(X) → KY∩Z(X) .

When X is regular, then this may be identified with the pairing on generalized
sheaf cohomology:

RΓY (X, KX) ∧ RΓZ(X, KX) → RΓY∩Z(X, KX) .
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68Corollary 68 Let X be a scheme. Then the Brown spectral sequence

E
p,−q
2 (X, G) = Hp(X, Gq(OX)) ⇒ G−p−q(X)

determines a filtration F·(G∗(X)). By Corollary 63, we have an inclusion of filtra-
tions F·(Gi(X)) ⊂ F·

cod(Gi(X)).

When X is regular, we then get a filtration FkK∗(X), which we will still call the
Brown filtration, and which has nice properties:

69Theorem 69 Let X be a regular scheme. Then the Brown filtration on K(X) is
compatible with the product on K-theory, and is (contravariant) functorial in X.
I.e., if ∗ denotes the K-theory product,

FiKp(X)∗FjKq(X) ⊂ Fi+jKp+q(X)

and if Y and Z are closed subsets of X, then

FiKY ,p(X)∗FjKZ,q(X) ⊂ Fi+jKY∩Z,p+q(X) .

If f : X → Y is a map of regular schemes, and W ⊂ Y is a closed subset then

f ∗(FiKW ,p(Y)) ⊂ FiKf −1(W),p(X) .

Proof We have FiKp(X) = Image(H−p(X, KX(∞, i)) → H−p(X, KX)). Hence it
suffices to know that the map

KX(∞, i) ∧ KX(∞, j) → KX

induced by the K-theory product factors, up to homotopy, through KX(∞, i + j),
and this is a straightforward consequence of the universal coefficient theorem 57.

The compatibility of the filtration with pull-backs is a consequence of the func-
toriality of the Postnikov tower.

As we will see below Gersten’s conjecture implies that for a regular scheme X, the
Brown and coniveau filtrations coincide, and hence Gersten’s conjecture implies
that the coniveau filtration is multiplicative.

Gersten’s Conjecture, Bloch’s Formula
and the Comparison of Spectral Sequences 2.5.6

We have seen on that on a nonsingular variety, a divisor corresponds to an element
of H1(X, K1(OX)), which is determined by the local equations of the divisor. In
the seminal paper [8], Bloch showed that on a smooth algebraic surface, the fact
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that a point is given locally by a pair of equations could be used to provide an
isomorphism CH2(X) � H2(X, K2(OX)).

Quillen’s generalization of Bloch’s formula to all codimensions, starts from:

70 Conjecture 70: Gersten’s conjecture Suppose that R is a regular local ring. Then
for all i > 0, the map

M(i)(Spec(R)) ⊂ M(i−1)(Spec(R))

induces zero on K-theory.

71 Proposition 71 If Gersten’s conjecture holds for a given regular local ring R, then,
for all p, the following complex is exact:

0 → Kp(R) → Kp(F) → ⊕
x∈X(1)

Kp−1(k(x)) → … → Kp−dim(R)(k) → 0

Here X := Spec(R), while F and k are the fraction and residue fields of R respectively.

Note that this implies that CHp(Spec(R)) � 0, if p > 0, for R a regular local ring;
this is a conjecture of Fossum, [12].

72 Corollary 72 If X is regular scheme, and Gersten’s conjecture holds for all the local
rings on X, then the augmentation:

Kp(OX) → Rp,X

is a quasi-isomorphism, where Rp,X is the sheaf of Gersten complexes U �→ R∗
p(U).

Hence, since the Rp,X are flasque, we have Bloch’s formula:

Hp
(
X, Kp(OX)

) � Hp
(
R∗

p(X)
) � CHp(X) .

If Y ⊂ X is a subset of pure codimension r, then:

H
p
Y

(
X, Kp(OX)

) � H
p
Y

(
X, Rp,X

) � Hp−r
(
R∗

p−r(Y)
) � CHp−r(Y) .

Finally,

H
p
Y

(
X, Kq(OX)

) � 0

if p > q.

73 Theorem 73: Quillen, [53] If X is a regular variety over a field, then Gersten’s
conjecture is true for all the local rings on X.
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Gersten’s conjecture may be viewed as a “local” version of the moving lemma, and
versions of it play a key role elsewhere, such as in proving the local acyclicity of
the motivic cohomology complexes.

The key point in Quillen’s proof of Gersten’s conjecture is that if X is a regular
affine variety over a field k, then given a divisor D ⊂ X, and a point x ∈ D, the map
i : D ↪→ X is “homotopic” to zero in a neighborhood of x. Quillen uses a variant
of Noether normalization to show that there is a map U → A

d−1
k , with domain

an affine open U ⊂ X neighborhood of x, which is smooth and which has finite
restriction to D ∩ U . A variation on Quillen’s proof may be found in the paper [19]
of Gabber, where he proves Gersten’s conjecture for Milnor K-theory. See also [13].

74Corollary 74 If X is a regular variety of finite type over a field, and Φ is a family of
supports on X, then the map of Theorem 62 from the Brown spectral sequence to
the coniveau spectral sequence is an isomorphism from E2 onward, and hence the
Brown and the coniveau filtrations on the groups KΦ∗ (X) agree.

Proof See [27] and [23]. The key point is that the map on E2-terms: Ê
p,q
2,Φ(X) =

H
p
Φ(X, K−q(OX)) → E

p,q
2,cod,Φ(X) � H

p
Φ(X, R−q,X) is the same as the map induced by

the augmentation K−q(OX) → R−q,X .

Since, by Theorem 69, the Brown filtration is multiplicative, we get:

75Corollary 75 If X is a regular variety over a field, the coniveau filtration on K-theory
with supports is multiplicative.

We shall give another proof of this result in Sect. 2.5.11, using deformation to the
normal cone.

The Coniveau Spectral Sequence
for Other Cohomology Theories 2.5.7

We can replace the presheaf of spectra F in the previous section by a complex
of sheaves of abelian groups F ∗

X . Then the Brown spectral sequence is the stan-
dard hypercohomology spectral sequence, and one also has the coniveau spec-
tral sequence. In [9], Bloch and Ogus considered (graded) cohomology theories
X �→ F ∗

X (∗), satisfying suitable axioms, and showed that the analog of Gersten’s
conjecture holds in these cases. Examples of theories satisfying the Bloch-Ogus
axioms are étale cohomology (in which case the Brown spectral sequence is the
Leray spectral sequence for the map form the étale site to the Zariski site) and
Deligne-Beilinson cohomology ([5], see also [26]).
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If X �→ H∗(X, ∗) = H∗(X, F ∗
X (∗)) is a theory satisfying the axioms of Bloch

and Ogus, then the analog of Gersten’s conjecture implies that the E2 term of
the coniveau spectral sequence is isomorphic to Hp(X, Hq(∗)), where H∗(∗) is the
Zariski sheaf associated to X �→ Hq(X, ∗). Deligne then showed, in an unpublished
note:

76 Theorem 76 The coniveau and hypercohomology spectral sequences agree from
E2 on.

Proof A version of Deligne’s proof may be found in the paper [51]. In addition,
the proof in the paper [23] of the analogous result for K-theory, is based on the
methods of Deligne.

Compatibility with Products and Localized Intersections2.5.8

One of the great virtues of Bloch’s formula is that the K-cohomology groups have
a product structure, induced by the K-theory product.

Let us write η : CHp(X) → Hp(X, Kp(OX)) for the isomorphism induced by the
Gersten resolution of the K-theory sheaf. Grayson proved in [34],

77 Theorem 77 Let X be a smooth variety over a field k. If α ∈ Zp(X) and β ∈ Zq(X)
are two cycles which intersect properly, then

η(α)η(β) = (−1)
p(p−1)

2
q(q−1)

2 η(α.β)

where α.β is the product defined by using the intersection multiplicities of Serre,
(see Definition 26), and hence with the intersection product defined by Samuel.

Proof By additivity, one can reduce to the case in which α = [Y] and β = [Z], where
Y and Z are two integral subschemes of X which meet properly. From Quillen’s
proof of Gersten’s conjecture, we have:

H
p
Y

(
X, Kp(OX)

) � CH0(Y) = Z[Y] ,

H
q
Z

(
X, Kq(OX)

) � CH0(Z) = Z[Z] ,

and

H
p+q
Y∩Z

(
X, Kp+q(OX)

) � CH0(Y ∩ Z) =
⊕

S

Z ,

where the direct sum is over the irreducible components S of Y ∩ Z.
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Using the equality of the Brown and coniveau spectral sequences, Theorem 74,
we can identify these isomorphisms with the edge homomorphisms

H
p
Y

(
X, Kp(OX)

) → GrpKY
0 (X) = Z[OY ] ,

H
q
Z

(
X, Kq(OX)

) → GrqKZ
0 (X) = Z[OZ] ,

and

H
p+q
Y∩Z

(
X, Kp+q(OX)

) → Grp+qKY∩Z
0 (X) =

⊕

S

Z[OS] ,

in the Brown spectral sequences for K-theory with supports in Y , Z, and Y ∩ Z
respectively. By the multiplicativity of the Brown spectral sequence, these edge
homomorphisms are compatible with products, and so the product of the cycles
associated to the classes [OY ] and [OZ] maps to the cycle associated to the K-
theory product [OY ].[OZ], which is non other than the cycle defined using Serre’s
definition of intersection multiplicities.

The sign comes from the fact that the isomorphism

Ê
p,p
2,Y (X) � H2p

(
X, Kp(OX)[p]

)

preserves products, while the isomorphism

H2p
(
X, Kp(OX)[p]

) � Hp
(
X, Kp(OX)

)

only preserves products up to the factor (−1)
p(p−1)

2
q(q−1)

2 .

By Quillen’s proof of Bloch’s formula, if Y ⊂ X is a closed set, and X is equidimen-
sional of dimension n, then

CHn−p(Y) � H
p
Y

(
X, Kp(OX)

)
.

It follows that purely by the formalism of cohomology with supports, that we get
a product, for Y ⊂ X and Z ⊂ X closed subsets,

CHk(Y) × CHl(Z) → CHk+l−n(Y ∩ Z) ,

which may be shown to agree with the product with supports on Chow homology
constructed by Fulton and MacPherson ([17]). See [24] and [30].

Other Cases of Gersten’s Conjecture 2.5.9

For non-geometric regular local rings, the only case for which Gersten’s conjecture
is known is that of henselian discrete valuation rings Λ with finite residue field
k, a result due to Sherman ([63]). The idea of Sherman’s proof is that since the
general linear group of a finite field is finite, one can use Brauer lifting to show that
the restriction map

K∗(Λ) → K∗(k)
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is surjective. A variation of this is result is that if Λ is a discrete valuation ring,
the conjecture is true for K-theory with coefficients Z|n of order prime to the
characteristic of k ([29]). The proof depends on the result of Gabber ([18]), and of
Gillet and Thomason ([33]), that if R is a Henselian discrete valuation ring then
the restriction map

K∗(Λ,Z|n) → K∗(k,Z|n)

is an isomorphism.
If R is a regular local ring which is smooth over a discrete valuation ring Λ

with maximal ideal πΛ ⊂ Λ, then one can consider relative versions of Gersten’s
conjecture, in which one considers not all R-modules, but only those which are flat
over Λ. See [7], and [31], where it is shown that this “relative” version of Gersten’s
conjecture implies that Gersten’s conjecture is true for R if it is true for the discrete
valuation ring associated to the ideal πR.

Operations on the Quillen Spectral Sequence2.5.10

One can show that the λ-operations on K0 of Sect. 2.3.3 can be extended to the
higher K-theory of rings and of regular schemes (see the papers of Kratzer ([45])
and Soulé ([64])). Of particular use are the Adams operations ψp for p ∈ N.
These are defined as follows. For x ∈ K∗(X), consider the formal power series
λt(x) :=

∑
i tiλi(x) ∈ K∗(X)[[t]]. Then the ψi are defined by

d

dt

(
λt(x)

)
|λt(x) =

∞∑

k=1

(−1)k−1ψk(x)tk−1 .

One can show (op. cit.) that, if X is a regular scheme satisfying our standing
assumptions, then the action of the Adams operations on K∗(X)Q can be diago-
nalized, so that ψp acts with eigenvalue kp on a subspace which is isomorphic to
Grk

γ(K∗(X)Q ).
Note that if X is a variety over the finite field Fp, then the action of ψp on

K-theory is the same as the action induced by the Frobenius endomorphism of X.
The Adams operation act compatibly with supports and hence act on the Quillen
spectral sequence. Using a variant of the Riemann–Roch theorem for higher K-
theory of [24], Soulé (op. cit.) identified the action on the E2-term, and could thereby
deduce by weight considerations, that for a regular scheme, the differentials into
the E2

p,−p and E2
p,1−p terms are torsion, and therefore:

78 Theorem 78 If X is a regular scheme, there are isomorphisms, for all p ≥ 0:

CHp(X)Q � Grp
cod(K0(X))Q � Grp

γ(K0(X))Q .

This extends a result that was proved in SGA6 [2]; the first isomorphism was proved
in in op. cit. for smooth varieties over a field, see op. cit. Sect. 4.2 of expose é XIV,
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while the second was proved with the (unnecessary) assumption that there is an
ample invertible sheaf on X; see Theorem 40.

It is natural to ask what the relationship between the γ-filtration and the other
filtrations on higher K-theory is. In [23], we prove:

79Theorem 79 Let X be a variety over a field k. Then

Fp
γKm(X) ⊂ F

p−m
cod Km(X) .

Note that in [2], exposé X, Jussila proved:

80Theorem 80 Let X be a noetherian scheme. Then

Fp
γK0(X) ⊂ F

p
codK0(X) .

It is therefore natural to ask:

81Question 81 Can one extend Theorem 79 to the case of general noetherian
schemes?

While this would follow from Gersten’s conjecture, there may be other ways to
approach this problem, such as the construction of a filtration on the K-theory of
a regular ring constructed by Grayson ([35]) using commuting automorphisms,
which is conjecturally related to the γ-filtration.

The Multiplicativity of the Coniveau Filtration:
a Proof Using Deformation to the Normal Cone. 2.5.11

In this section we shall give a proof of the multiplicativity of the coniveau filtra-
tion on higher K-theory for arbitrary smooth varieties over a field which uses
deformation to the normal cone, rather than hypercohomology of sheaves.

Let X be a smooth variety over a field k. We can decompose the product on
K∗(X) into the composition of the external product:

� : K∗(X) ⊗ K∗(X) → K∗(X × X)

and pull-back via the diagonal map ∆ : X → X × X:

∆∗ : K∗(X × X) → K∗(X) .

82Lemma 82 The coniveau filtration is multiplicative with respect to the external
product.
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Proof The external product is induced by the bi-exact functor:

M(X) × M(X) → M(X × X)

(F , G) �→ F ⊗k G

Let πi : X × X → X, for i = 1, 2 be the two projections. Suppose that Y ⊂ X
and Z ⊂ X are closed subsets of X of codimensions p and q respectively. If F is
a coherent sheaf supported on Y , and G is a coherent sheaf supported on Z, then
F ⊗k G is supported on π−1

1 (Y) ∩ π−1
2 (Z), which has codimension p + q in X × X.

Hence the product� : (Gi(Y) ⊗ Gj(Z)) → K∗(X × X) factors through Gi+j(Y × Z),
and hence its image lies in Fp+qKi+j(X × X).

Therefore we need only show that pull back by the diagonal preserves the coniveau
filtration. More generally, we have:

83 Theorem 83 If f : Y ↪→ X is a regular immersion of schemes satisfying our
standing hypotheses, then f ∗(Fi

cod(Gp(X))) ⊂ Fi
cod(Gp(Y)).

Proof The pull back map f ∗ : G∗(X) → G∗(Y) is defined because f is a morphism
of finite Tor-dimension. However, it can also be constructed using deformation to
the normal bundle.

First we need two lemmas:

84 Lemma 84 Let f : X → Y be a flat morphism. Then

f ∗ (
Fp(Gq(Y))

) ⊂ F
p
cod(Gq(X)) .

Proof The pull-back map f ∗ is induced by the exact functor f ∗ : M(Y) → M(X),
and if a coherent sheaf F on Y is supported on closed subset Z ⊂ Y of codimension
p, then f ∗(F ) is supported on f −1(Z) which has codimension p in X.

85 Lemma 85 Let p : N → Y be a vector bundle. Then the map p∗ : F
p
cod(Gq(Y)) →

F
p
cod(Gq(N)) is an isomorphism for all p and for all q.

Proof Since p is flat, the functor p∗ : M(X) → M(N) preserves codimension of
supports, and so we get a map of filtered spectra F∗G(X) → F∗G(E) which induces
a map

p∗ : Ep,q
r (X) → Ep,q

r (X)

of coniveau spectral sequences. However it is shown in [62] (and also [24]) that the
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cohomology of the E2 term of the Quillen spectral sequence is homotopy invariant,
and hence the coniveau filtration is homotopy invariant.

Consider the deformation to the normal cone space W := WY |X . Then we have
maps:
Pull Back π∗ : K∗(X) → K∗(W \ W0 � X ×Gm).
Specialization If t is the parameter onGm, i.e., the equation of the principal

divisor W0, then we have maps, for all p ≥ 0:

σt : Kp(W \ W0) → Kp(W0 � NY |X)

α �→ ∂(α∗{t})
Here ∂ is the boundary map in the localization sequence

… → Kp+1(W) → Kp+1(W \ W0)
∂→ Kp(W0) → … .

Homotopy Invariance If p : NY |X → Y is the projection, the pull back map
p∗ : K∗(Y) → K∗(NY |X) is an isomorphism.

86Proposition 86 With the notation above, we have

f ∗ = (p∗)−1 · σt · π∗ .

Proof See [24].

By Lemmas 84 and 85, π∗ and (p∗)−1 preserve the coniveau filtration. It remains to
show that the coniveau filtration is preserved by specialization.

Suppose that Z ⊂ X is a codimension p closed, reduced, subscheme. If we are
given an element α in Gp(X) which is supported on Z – i.e., its restriction to X − Z
vanishes, we know from the localization sequence that it is the image of an element
γ ∈ Gp(Z). It will be enough to show that σt(α) is supported on a closed subset of
codimension p in NY |X .

By Lemma 90 below, we know that the Zariski closure in W of Z × Gm ⊂
X ×Gm ⊂ W is isomorphic to the deformation to the normal cone space WZ|(Y∩Z)

associated to the subscheme Y∩Z ⊂ Z. Furthermore, the special fibre of WZ|(Y∩Z) is
the normal cone CZ|(Y∩Z) ⊂ NY |X , which has codimension p in the normal bundle.

Since CZ|Y∩Z = WZ|Y∩Z ∩ NY |X , if we write j : WZ|Y∩Z → WY |X for the inclusion,
j∗ induces a map of localization sequences, and in particular a commutative square:

Gp+1(Z ×Gm) ��
∂

��
j∗

Gp(CZ|Y∩Z)

��
j∗

Gp+1(X ×Gm) ��
∂

Gp(NY |X) .
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By the projection formula, we also have a commutative square:

Gp(Z ×Gm) ��
∗{t}

��
j∗

Gp+1(Z ×Gm)

��
j∗

Gp(X ×Gm) ��
∗{t}

Gp+1(X ×Gm) .

Putting these together, we get a commutative diagram:

Gp(Z ×Gm) ��
σt

��
j∗

Gp(CZ|Y∩Z)

��
j∗

Gp(X ×Gm) ��
σt

Gp(NY |X) ,

as desired. Hence σt(α) ∈ j∗(Gp(CZ|Y∩Z)) ⊂ F
p
cod(Gp(NY |X)).

This completes the proof of the proposition, and hence of Theorem 35.

Since every regular variety over a field is a localization of smooth variety over the
prime field, it also follows that the theorem is true for regular varieties.

A similar reduction to the diagonal argument may also be used to prove the
theorem for schemes which are smooth over the spectrum of a discrete valuation
ring.

Bloch’s Formula and Singular Varieties2.6

Cohomology Versus Homology2.6.1

If X is a general CW complex which is not a manifold, it will no longer be the
case that there is a Poincaré duality isomorphism H∗(X,Z) � H∗(X,Z). If X is
a singular variety, the Chow groups of cycles modulo rational equivalence are
analogous (even when graded by codimension) to the singular homology of a CW
complex. It is natural to ask if there is appropriate theory of Chow cohomology.

One answer to this question is given by Fulton in his book [17], in which he
defines the cohomology groups to be the operational Chow groups CH∗

op(X). An
element α ∈ CHp

op(X) consists, essentially, of giving homomorphisms, for every
map f : Y → X of varieties and every q ≥ 0, ∩α : CHq(Y) → CHq−p(Y), which
satisfy various compatibilities. Fulton’s operational groups are the target of a theory
of Chern classes for vector bundles, and any regularly immersed codimension p
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closed subscheme Y ⊂ X has a cycle class [Y] ∈ CHp
op(X). (The existence of

this class uses deformation to the normal bundle.) Any Chow cohomology theory
that has reasonable properties, in particular that contains Chern classes for vector
bundles, and which has cap products with Chow homology for which the projection
formula holds, will map to the operational groups. However the operational groups,
while they have many virtues, also miss some information. For example, if X is
a nodal cubic curve over a field k, one can prove that CH1

op(X) � Z. However the
group of Cartier divisors is isomorphic to Z⊕ k∗, which carries more information
about the motive of X. Even if Pic(X) gave a “good” definition of codimension 1
Chow cohomology, it is not clear what should happen in higher codimensions –
i.e. is there a theory of codimension p “Cartier Cycles”?

It is natural to consider the groups Hp(X, Kp(OX)), because of Bloch’s formula
and by analogy with Pic(X) � H1(X, K1(OX)).

Arguments in favor of this choice are:
1. The functor X �→ ⊕

p Hp(X, Kp(OX)) is a contravariant functor from varieties
over a given field k to commutative graded rings with unit.

2. There are cap products Hp(X, Kp(OX)) ⊗ CHq(X) → CHq−p(X), which satisfy
the projection formula.

3. There are Chern classes for vector bundles: Cp(E) ∈ Hp(X, Kp(OX)), for E
is a vector bundle on X, which are functorial and satisfy the Whitney sum
formula for exact sequences of bundles.

4. Any codimension p subscheme Y ⊂ X of a which is a local complete intersec-
tion has a fundamental class [Y] ∈ Hp(X, Kp(OX)).

This approach to Chow cohomology is developed in [24] and [25].
A strong argument against this choice is that these groups (including Pic(X),

see [69]) are not homotopy invariant.
One way to get a homotopy invariant theory, if the ground field k has characteris-

tic zero, is given a singular variety X, to take a nonsingular simplicial hyperenvelope
X̃· → X (see Appendix 2.8) and take Hp(X̃·, Kp(OX̃· )) (or Hp(X̃·, KM

p )) as the defi-
nition of Chow cohomology. One can show (at least for the usual K-cohomology,
see op. cit.) that these groups are independent of the choice of hyperenvelope, are
homotopy invariant, will have cap products with the homology of the Gersten
complexes, and will be the target of a theory of Chern classes.

Given a variety X and a nonsingular simplicial hyperenvelope X̃· → X there
will be, for each q ≥ 0, a spectral sequence:

E
i,j
1 = Hi

(
X̃j, Kq(OX̃j

)
) ⇒ Hi+j

(
X̃·, Kq(OX̃· )

)
.

One can show, by the method of [27], that the E2 term of this spectral sequence
is independent of the choice of hyperenvelope, and hence gives a filtration on the
groups Hp(X̃·, Kq(OX̃· )). This filtration is a K-cohomology version of the weight
filtration of mixed Hodge theory.

Note that if X is a (projective) nodal cubic, and X̃· → X is a hyperenvelope, then

H1
(
X̃·, K1(OX̃· )

) � Pic(X) ,
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while if X is a cuspidal cubic, then

H1
(
X̃·, K1(OX̃· )

) � Z ≠ Pic(X) .

It follows from the following theorem that the weight zero part of these groups
are Fulton’s operational Chow groups:

87 Theorem 87: Kimura, [42] Let X be variety over a field. Given nonsingular en-
velopes p0 : X̃0 → X and p1 : X̃1 → X̃0 ×X X̃0 we have an exact sequence:

0 → CHp
op(X)

p∗
0→ CHp(X̃0)

δ→ CHp(X̃1) ,

where δ = p∗
1(π∗

1 − π∗
0), with πi : X̃0 ×X X̃0 → X̃0 the projections.

Local Complete Intersection Subschemes
and Other Cocyles2.6.2

If X is a scheme, we know that any subscheme the ideal of which is generated locally
by nonzero divisors defines a Cartier divisor and is a “codimension 1” cocycle.
What about higher codimension?

Let Y ⊂ X be a codimension p regularly immersed subscheme. Recall that there
is an operational class [Y]op ∈ CHp

op corresponding to the “pull-back” operation
constructed using deformation to the normal cone.

88 Theorem 88: [25] Let X be a variety over a field k, and suppose that Y ⊂ X is
closed subscheme which is a codimension p local complete intersection. Then there
is a natural class [Y] ∈ Hp(X, Kp(OX)), such that cap product with [Y] induces the
operational product by [Y]op.

Idea of Proof
While the theorem is stated using K-cohomology, it really holds for almost any
cohomology theory constructed using sheaf cohomology, that has a theory of cy-
cle classes with supports. The key point is that for a given p > 0, there is a pair
of simplicial schemes V· ↪→ U· smooth over the base, which is a “universal”
codimension p local complete intersection. That is, given Y ⊂ X, a codimen-
sion p local complete intersection, there is a Zariski open cover W of X, and
a map of simplicial schemes η : N·(W) → U. such that η−1(V .) = Y ∩ N.(W).
Then one may construct a universal class in α ∈ H

p
V .(U., Kp(OV .)), and define

[Y] := η∗(α).

The same principle also is true for codimension 2 subschemes Y ⊂ X for which
the sheaf of ideals IY |X is locally of projective dimension 2. Such ideals are deter-
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minantal, i.e., locally they are generated by the maximal minors of an n × (n − 1)
matrix.

Chow Groups of Singular Surfaces 2.6.3

Bloch’s formula for codimension two cycles on a singular surface over a field, at
least if it has isolated singularities, is fairly well understood, thanks to the work of
Collino, Levine, Pedrini, Srinivas, Weibel, and others.

In particular, if X is a reduced quasi-projective surface X over an algebraically
closed field k, Biswas and Srinivas, [6] have constructed a Chow ring

CH∗(X) = CH0(X) ⊕ CH1(X) ⊕ CH2(X)

satisfying the usual properties of intersection theory for smooth varieties. In par-
ticular, there are Chern class maps Ci : K0(X) → CHi(X) satisfying the Riemann–
Roch formula such that, if F0K0(X) denotes the subgroup generated by the classes
of the structure sheaves of smooth points of X, then C2 : F0K0(X) → CH2(X) is an
isomorphism, inverse (up to sign) to the cycle map CH2(X) → K0(X).

The definition of the group of 0-cycles modulo rational equivalence for a singular
variety X follows the one given by Levine and Weibel ([49]), i.e. as the Chow group
CH0(X, Y) of X relative to its singular locus Y . This is the group generated by
closed points on X − Y , with rational equivalence defined using rational functions
on Cartier curves, i.e. every point of Z ∩ Y lies in an open neighborhood U where
Z ∩ U is defined by a regular sequence. See also [52], [48].

Intersection Theory on Stacks 2.6.4

If X is a smooth Deligne Mumford stack over a field, then one can define Chow
groups CHp(X), where Zp(X) is the free abelian group on the reduced irreducible
substacks, and rational equivalence is defined using rational functions on sub-
stacks. Bloch’s formula remains true, though one is forced to take rational coeffi-
cients, and to replace the Zariski topology with the étale topology:

CHp(X)Q � H
p
ét

(
X, Kp(OX)

)
Q

.

This leads to a K-theoretic construction of an intersection product on X. See [28].
One should note that there are other approaches intersection theory on stacks,
using operational Chow groups, by Vistoli ([68]), Kresch ([47])and others.

If X is the coarse moduli space, or quotient, of the stack, then one can show that
the quotient map π : X → X induces an isomorphism:

π∗ : CH(X)Q → CH(X)Q ,

and hence a product structure on the Chow groups, with rational coefficients
of the singular variety X. This is analogous to the construction of the rational
cohomology ring of an orbifold.
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Deformation to the Normal Cone2.7

This section is based on the expositions in [17] and [67].

89 Definition 89 Let X be a scheme, satisfying our standing assumptions, and suppose
that Y ↪→ X, is a closed subscheme, defined by a sheaf of ideals I ⊂ OX . Let WY |X
be the scheme obtained by blowing upA1

X = Spec(OX[t]) with respect to the sheaf
of ideals (I, t) ⊂ OA 1

X
(i.e., along the subscheme Y × {0}), and then deleting the

divisor (isomorphic to the blow up of X along Y) which is the strict transform of
X × {0}.

Observe that t ∈ Γ(WY |X , OWY |X ) is a regular element and so defines a (princi-
pal effective Cartier) divisor WY |X,0 ⊂ WY |X , which is isomorphic to the nor-
mal cone CY |X = Spec(

⊕
n≥0 In|In+1). Also note that WY |X \ WY |X,0 � Gm,X =

Spec(OX[t, t−1]); we shall write π : Gm,X → X for the natural projection.
We write p : WY |X,0 = CY |X → Y for the natural projection.
If Y ↪→ X is a regular immersion, in the sense of EGA IV ([37]) 16.9.2, then

WY |X,0 = CY |X � NY |X is a vector bundle over Y .
There is a natural inclusion A1

Y ↪→ W , because Y × {0} is principal divisor
in A1

Y .

W0 � CY |X
� � �� WY |X Gm,X� �oo

Y
� � ��

��

OO

A
1
Y

��

OO

Gm,Y� �oo
��

OO

We will need the following lemma, which is a straightforward consequence of
the basic properties of blow-ups (see [39], II.7):

90 Lemma 90 Suppose that Z ⊂ X is a closed subscheme. Then WY∩Z|Z is a closed
subscheme of WY |X , indeed it is the strict transform of A1

Z ⊂ A1
Z with respect to

the blow up, and WY∩Z|Z ∩ WY |X,0 = WY∩Z|Z,0

Envelopes and Hyperenvelopes2.8

91 Definition 91 A map f : X → Y is said to be an envelope if it is proper and if
for every field F, X(F) → Y(F) is surjective – or equivalently, for every integral
subscheme Z ⊂ Y , there is an integral subscheme Z̃ ⊂ X such that f (Z̃) = Z, and
f |Z̃ → Z is birational.
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92Theorem 92 Suppose that resolution of singularities holds for the category of
varieties over the field k, Then, for every variety X over k, there is an envelope
p : X̃ → X with X̃ nonsingular.

Proof The proof is by induction on the dimension of X. If dim(X) = 0, then X is
already nonsingular. Suppose the theorem is true for all varieties of dimension less
than d > 0. If dim(X) = d, let p1 : X̃1 → X be a resolution of singularities of X such
that there is a subvariety Y ⊂ X such that p1 is an isomorphism over X − Y , with
dim(X) < d. By the induction hypothesis there is an envelope q : Ỹ → Y . Now set
X̃ := X̃1 � Y , and p := p1 � q.

93Definition 93 We say that a map of simplicial schemes f· : X· → Y· is hyperenvelope
if for all fields F, f·(F) : X·(F) → Y·(F) is a trivial Kan fibration between simplicial
sets. Alternatively, f· is a hypercovering in the topology for which envelopes are the
coverings. See [22] for more details.

It follows from Theorem 92 that if X is a variety over a field of characteristic zero,
then there is a non-singular hyperenvelope X̃· → X.

Notice that this argument also works for schemes of dimension d over a base S,
if resolution of singularities holds for such schemes.
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Introduction 3.1

The ζ-function is one of the most deep and mysterious objects in mathematics.
During the last two centuries it has served as a key source of new ideas and
concepts in arithmetic algebraic geometry. The ζ-function seems to be created
to guide mathematicians into the right directions. To illustrate this, let me recall
three themes in the 20th century mathematics which emerged from the study of the
most basic properties of ζ-functions: their zeros, analytic properties and special
values.

Weil’s conjectures on ζ-functions of varieties over finite fields inspired Grothen-
dieck’s revolution in algebraic geometry and led Grothendieck to the concept
of motives, and Deligne to the yoga of weight filtrations. In fact (pure) mo-
tives over Q can be viewed as the simplest pieces of algebraic varieties for
which the L-function can be defined. Conjecturally the L-function character-
izes a motive.
Langlands’ conjectures predict that n-dimensional representations of the Ga-
lois group Gal(Q|Q) correspond to automorphic representations of GL(n)|Q .
The relationship between these seemingly unrelated objects was manifested by
L-functions: the Artin L-function of the Galois representation coincides with
the automorphic L-function of the corresponding representation of GL(n).
Investigation of the behavior of L-functions of arithmetic schemes at integer
points, culminated in Beilinson’s conjectures, led to the discovery of the key
principles of the theory of mixed motives.

In this survey we elaborate on a single aspect of the third theme: regulators. We
focus on the analytic and geometric aspects of the story, and explore several dif-
ferent approaches to motivic complexes and regulator maps. We neither touch the
seminal Birch–Swinnerton–Dyer conjecture and the progress made in its direction
nor do we consider the vast generalization of this conjecture, due to Bloch and
Kato [13].

Special Values of the Riemann ζ-Function
and Their Motivic Nature 3.1.1

Euler proved the famous formula for the special values of the Riemann ζ-function
at positive even integers:

ζ(2n) = (−1)kπ2k 22k−1

(2k − 1)!

(
−B2k

2k

)
.

All attempts to find a similar formula expressing ζ(3), ζ(5), … via some known
quantities failed. The reason became clear only in the recent time: First, the special
values ζ(n) are periods of certain elements

ζM(n) ∈ Ext1
MT (Z)(Z(0),Z(n)), n = 2, 3, 4, … (3.1)
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where on the right stays the extension group in the abelian categoryMT (Z) of mixed
Tate motives over Spec(Z) (as defined in [20]). Second, the fact that ζM(2n − 1)
are non torsion elements should imply, according to a version of Grothendieck’s
conjecture on periods, that π and ζ(3), ζ(5), … are algebraically independent over
Q. The analytic manifestation of the motivic nature of the special values is the
formula

ζ(n) =
∫

0<t1<…<tn<1

dt1

1 − t1
∧ dt2

t2
∧ … ∧ dtn

tn
(3.2)

discovered by Leibniz. This formula presents ζ(n) as a length n iterated integral.
The existence of such a formula seems to be a specific property of the L-values at
integer points. A geometric construction of the motivic ζ-element (3.1) using the
moduli space M0,n+3 is given in Chapt. 4.4.

Beilinson conjectured ([1]) a similar picture for special values of L-functions
of motives at integer points. In particular, his conjectures imply that these special
values should be periods (in fact a very special kind of periods). For the Riemann
ζ-function this is given by the formula (3.2). In general a period is a number given
by an integral

∫

∆B

ΩA ,

where ΩA is a differential form on a variety X with singularities at a divisor A, ∆B

is a chain with boundary at a divisor B, and X, A, B are defined over Q. So far we
can write L-values at integer points as periods only in a few cases. Nevertheless, in
all cases when Beilinson’s conjecture was confirmed, we have such a presentation.
More specifically, such a presentation for the special values of the Dedekind ζ-
function this comes from the Tamagawa Number formula and Borel’s work [16],
and in the other cases it is given by Rankin–Selberg type formulas. In general the
mechanism staying behind this phenomenon remains a mystery.

Let us now turn to another classical example: the residue of the Dedekind
ζ-function at s = 1.

The Class Number Formula3.1.2

Let F be a number field with r1 real and r2 complex places, so that [F : Q] =
2r1 + r2. Let ζF(s) be the Dedekind ζ-function of F. Then according to Dirichlet and
Dedekind one has

Ress=1ζF(s) =
2r1+r2 πr2 RFhF

wF|DF|1|2 . (3.3)

Here wF is the number of roots of unity in F, DF is the discriminant, hF is the class
number, and RF is the regulator of F, whose definition we recall below. Using the
functional equation for ζF(s), S. Lichtenbaum [52] wrote (3.3) as
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lim
s→0

s−(r1+r2−1)ζF(s) = −
hFRF

wF
. (3.4)

Let us interpret the right hand side of this formula via the weight one Arakelov
motivic complex for Spec(OF), where OF is the ring of integers in F. Let us define
the following diagram, where P runs through all prime ideals of OF :

R
r1+r2 ��

Σ

R

F∗

OO

R1

��
div

⊕PZ .

OO

l

(3.5)

In this diagram, the maps are given as follows: If valP is the canonical valuation
defined on F by P and |P | is the norm of P , then

div(x) =
∑

valP (x)[P ], l : [P ] �→ − log |P |, Σ : (x1, …, xn) �→ Σxi .

The regulator map R1 is defined by x ∈ F∗ �→ (log |x|σ1 , …, log |x|σr1+r2
), where

{σ1, …, σr1+r2} is the set of all archimedian places of F and | ∗ |σ is the valuation
defined σ, (|x|σ := |σ(x)|2 for a complex place σ).

The product formula tells us Σ ◦ R1 + l ◦ div = 0. Therefore summing up the
groups over the diagonals in (3.5) we get a complex. The first two groups of this
complex, placed in degrees [1, 2], form the weight one Arakelov motivic complex
ΓA(OF , 1) of OF . There is a map

H2ΓA(OF , 1) → R .

Let H̃2ΓA(OF , 1) be its kernel. Then there is an exact sequence

0 → Ker(Σ)

R1(O∗
F )

→ H̃2ΓA(OF , 1) → ClF → 0 .

Further, R1(O∗
F ) is a lattice in Ker(Σ) = Rr1+r2−1, its volume with respect to the

measure δ(
∑

xi)dx1 ∧ … ∧ dxr1+r2 is RF , and hF = |ClF|. Therefore

volH̃2ΓA(OF , 1) = RFhF ; H1Γ̃A(OF , 1) = µF

Now the class number formula (3.4) reads

lim
s→0

s−(r1+r2−1)ζF(s) = −
volH̃2ΓA(OF , 1)

H1ΓA(OF , 1)
. (3.6)

The right hand side is a volume of the determinant of a complex, see Chapt. 2.5.
I do not know the cohomological origin of the sign in (3.6).
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Special Values of the Dedekind ζ-Functions,
Borel Regulators and Polylogarithms3.1.3

B. Birch and J. Tate [62] proposed a generalization of the class number formula for
totally real fields using Milnor’s K2-group of OF :

ζF(−1) = ±|K2(OF)|
w2(F)

Here w2(F) is the largest integer m such that Gal(F|F) acts trivially on µ⊗2∞ . Up
to a power of 2, the above formula follows from the Iwasawa main conjecture for
totally real fields, proved by B. Mazur and A. Wiles forQ [54], and by A. Wiles [65]
in general.

S. Lichtenbaum [52] suggested that for ζF(n) there should be a formula similar
to (3.4) with a higher regulator defined using Quillen’s K-groups K∗(F) of F. Such
a formula for ζF(n), considered up to a non zero rational factor, has been established
soon after in the fundamental work of A. Borel [15, 16]. Let us discuss it in more
detail. The rational K-groups of a field can be defined as the primitive part in the
homology of GL. Even better, one can show that

K2n−1(F) ⊗Q ∼= PrimH2n−1(GL2n−1(F),Q) .

Let R(n) := (2πi)n
R. There is a distinguished class, called the Borel class,

Bn ∈ H2n−1
c

(
GL2n−1(C),R(n − 1)

)

in the continuous cohomology of the Lie group GL2n−1(C). Pairing with this class
provides the Borel regulator map

rBo
n : K2n−1(C) → R(n − 1) .

Let XF := ZHom(F,C ) . The Borel regulator map on K2n−1(F) is the composition

K2n−1(F) → ⊕Hom(F,C )K2n−1(C) → XF ⊗ R(n − 1)

The image of this map is invariant under complex conjugation acting both on
Hom(F,C) and R(n − 1). So we get the map

RBo
n : K2n−1(F) → (

XF ⊗ R(n − 1)
)+

. (3.7)

Here + means the invariants under the complex conjugation. Borel proved that
for n > 1 the image of this map is a lattice, and the volume Rn(F) of this lattice is
related to the Dedekind ζ-function as follows:

Rn(F) ∼Q ∗ lim
s→1−n

(s − 1 + n)−dn ζF(s) .
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Here a ∼Q ∗ b means a = λb for some λ ∈ Q∗, and

dn = dim
(
XF ⊗ R(n − 1)

)+ =





r1 + r2 : n > 1 odd

r2 : n ≥ 2 even .

Using the functional equation for ζF(s) it tells us about ∼Q ∗ ζF(n). However Licht-
enbaum’s original conjecture was stronger since it was about ζF(n) itself.

In 1977 S. Bloch discovered [11, 12] that the regulator map on K3(C) can be
explicitly defined using the dilogarithm. Here is how the story looks today. The
dilogarithm is a multivalued analytic function on CP1 − {0, 1, ∞}:

Li2(z) := −

∫ z

0
log(1 − z)

dz

z
; Li2(z) =

∞∑

k=1

z2

k2
for |z| ≤ 1 .

The dilogarithm has a single-valued version, called the Bloch–Wigner function:

L2(z) := Im
(
Li2(z) + log(1 − z) log |z|) .

It vanishes on the real line. Denote by r(z1, …, z4) the cross-ratio of the four points
z1, …, z4 on the projective line. The Bloch–Wigner function satisfies Abel’s five
term relation: for any five points z1, ……, z5 on CP1 one has

5∑

i=1

(−1)iL2

(
r(z1, …, ẑi, …, z5)

)
= 0 . (3.8)

Let H3 be the hyperbolic three space. Its absolute is identified with the Riemann
sphere CP1. Let I(z1, …, z4) be the ideal geodesic simplex with the vertices at the
points z1, …, z4 at the absolute. Lobachevsky proved that

volI(z1, …, z4) = L2

(
r(z1, …, z4)

)
.

(He got this in a different but equivalent form). Lobachevsky’s formula makes
Abel’s equation obvious: the alternating sum of the geodesic simplices with the
vertices at z1, …, ẑi, …, z5 is empty.

Abel’s equation can be interpreted as follows: for any z ∈ CP1 the function

L2

(
r(g1z, …, g4z)

)
, gi ∈ GL2(C) (3.9)

is a measurable 3-cocycle of the Lie group GL2(C). The cohomology class of this
cocycle is non trivial. The simplest way to see it is this. The function

volI(g1x, …, g4x), gi ∈ GL2(C), x ∈ H3

provides a smooth 3-cocycle of GL2(C). Its cohomology class is nontrivial: indeed,
its infinitesimal version is provided by the volume form in H3. Since the coho-
mology class does not depend on x, we can take x at the absolute, proving the
claim.
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Let F be an arbitrary field. Denote by Z[F∗] the free abelian group generated by
the set F∗. Let R2(F) be the subgroup of Z[F∗] generated by the elements

5∑

i=1

(−1)i
{

r(z1, …, ẑi, …, z5)
}

.

Let B2(F) be the quotient ofZ[F∗] by the subgroup R2(F). Then one shows that the
map

Z[F∗] → Λ2F∗; {z} �→ (1 − z) ∧ z

kills the subgroup R2(F), providing a complex (called the Bloch–Suslin complex)

δ2 : B2(F) → Λ2F∗ . (3.10)

By Matsumoto’s theorem Cokerδ2 = K2(F). Let us define the Milnor ring KM∗ (F)
of F as the quotient of the tensor algebra of the abelian group F∗ by the two sided
ideal generated by the Steinberg elements (1 − x)⊗x where x ∈ F∗ − 1. The product
map in the K-theory provides a map

⊗nK1(F) = ⊗nF∗ → Kn(F) .

It kills the Steinberg elements, and thus provides a map KM
n (F) → Kn(F). Set

K ind
3 (F) := Coker

(
KM

3 (F) → K3(F)
)

.

A.A. Suslin [61] proved that there is an exact sequence

0 → Tor(F∗, F∗)∼ → K ind
3 (F) → Kerδ2 → 0 , (3.11)

where Tor(F∗, F∗)∼ is a nontrivial extension of Z|2Z by Tor(F∗, F∗).
Abel’s relation provides a well defined homomorphism

L2 : B2(C) → R; {z}2 �→ L2(z) .

Restricting it to the subgroup Kerδ2 ⊂ B2(C), and using (3.11), we get a map
K ind

3 (C) → R. Using the interpretation of the cohomology class of the cocycle
(3.9) as a volume of geodesic simplex, one can show that it is essentially the Borel
regulator. Combining this with Borel’s theorem we get an explicit formula for ζF(2)
for an arbitrary number field F.

How to generalize this beautiful story? Recall the classical polylogarithms

Lin(z) =
∞∑

k=1

zk

kn
, |z| ≤ 1; Lin(z) =

∫ z

0
Lin−1(z)

dz

z
.

D. Zagier [67] formulated a precise conjecture expressing ζF(n) via classical poly-
logarithms, see the survey [24]. It was proved for n = 3 in [27, 28], but it is not
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known for n > 3, although its easier part has been proved in [5, 46] and, in
a different way, in Chapt. 4.4 below.

Most of the ζF(2) picture has been generalized to the case of ζF(3) in [27, 28]
and [29]. Namely, there is a single valued version of the trilogarithm:

L3(z) := Re

(
Li3(z) − Li2(z) log |z| +

1

6
Li1(z) log2 |z|

)
.

It satisfies the following functional equation which generalizes (3.8). Let us define
the generalized cross-ratio of 6 points x0, …, x5 in P2 as follows. We present P2 as
a projectivization of the three dimensional vector space V3 and choose the vectors
li ∈ V3 projecting to the points xi. Let us choose a volume form ω ∈ detV∗

3 and set
∆(a, b, c) := 〈a ∧ b ∧ c, ω〉. Set

r3(x0, …, x5) := Alt6

{
∆(l0, l1, l3) ∆(l1, l2, l4) ∆(l2, l0, l5)

∆(l0, l1, l4) ∆(l1, l2, l5) ∆(l2, l0, l3)

}
∈ Z[F∗] .

Here Alt6 denotes the alternation of l0, …, l5. The function L3 extends by linearity
to a homomorphism L3 : Z[C∗] → R, and there is a generalization of Abel’s
equation to the case of the trilogarithm (see [28] and the appendix to [29]):

7∑

i=1

(−1)iL3

(
r3(x1, …, x̂i, …, x7)

)
= 0 . (3.12)

We define the group B3(F) as the quotient of Z[F∗] by the subgroup generated by
the functional equations (3.12) for the trilogarithm. Then there is complex

B3(F)
δ3→ B2(F) ⊗ F∗ δ2∧Id→ Λ3F∗; δ3 : {x}3 �→ {x}2 ⊗ x . (3.13)

There is a map K5(F) → Kerδ3 such that in the case F = C the composition

K5(C) → Kerδ3 ↪→ B3(C)
L3→ R

coincides with the Borel regulator (see [28] and appendix in [29]). This plus
Borel’s theorem leads to an explicit formula expressing ζF(3) via the trilogarithm
conjectured by Zagier [67].

In Chapt. 3 we define, following [30], the Grassmannian n-logarithm function
LG

n . It is a function on the configurations of 2n hyperplanes in CPn−1. One of its
functional equations generalizes Abel’s equation:

2n+1∑

i=1

(−1)iLG
n (h1, …, ĥi, …, h2n+1) = 0 .

It means that for a given hyperplane h the function LG
n (g1h, …, g2nh), gi ∈ GLn(C),

is a measurable cocycle of GLn(C). Its cohomology class essentially coincides with
the restriction of the Borel class Bn to GLn(C). To prove this we show that LG

n is
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the boundary value of a certain function defined on configurations of 2n points
in the symmetric space SLn(C)|SU(n). Using this we express the Borel regulator
via the Grassmannian polylogarithm. We show that for n = 2 we recover the
dilogarithm story: LG

2 coincides with the Bloch–Wigner function, SL2(C)|SU(2) is
the hyperbolic space, and the extension of LG

2 is given by the volume of geodesic
simplices. The proofs can be found in [33].

Beilinson’s Conjectures
and Arakelov Motivic Complexes3.1.4

A conjectural generalization of the class number formula (3.3) to the case of elliptic
curves was suggested in the seminal work of Birch and Swinnerton–Dyer. Several
years later J.Tate formulated conjectures relating algebraic cycles to the poles of
zeta functions of algebraic varieties.

Let X be a regular algebraic variety over a number field F. Generalizing the
previous works of Bloch [11] and P. Deligne [18], A.A. Beilinson [1] suggested
a fantastic picture unifying all the above conjectures. Beilinson defined the rational
motivic cohomology of X via the algebraic K-theory of X by

Hi
Mot(X,Q(n)) := grγ

nK2n−i(X) ⊗Q .

Here γ is the Adams γ-filtration.
Let us assume that X is projective. For schemes which admit regular models

over Z, Beilinson [1] defined aQ-vector subspace

Hi
Mot|Z (X,Q(n)) ⊂ Hi

Mot(X,Q(n)) , (3.14)

called integral part in the motivic cohomology. Using alterations, A. Scholl [60]
extended this definition to arbitrary regular projective schemes over a number
field F. For every regular, projective and flat over Z model X′ of X the subspace
(3.14) coincides with the image of the map Hi

Mot(X′,Q(n)) → Hi
Mot(X,Q(n)).

For a regular complex projective variety X Beilinson constructed in [1] the
regulator map to the Deligne cohomology of X:

Hi
Mot(X,Q(n)) → Hi

D(X(C),Z(n)) . (3.15)

There is a natural projection Hi
D (X(C),Z(n)) → Hi

D(X(C),R(n)). Having in mind
applications to the special values of L-functions, we compose the map (3.15) with
this projection, getting a regulator map

Hi
Mot(X,Q(n)) → Hi

D(X(C),R(n)) .

Now let X again be a regular projective scheme over a number field F, We will
view it as a scheme overQ via the projection X → Spec(F) → Spec(Q). We define
the real Deligne cohomology of X as the following R-vector space:

Hi
D

(
(X ⊗Q R)(C),R(n)

)F∞ ,
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where F∞ is an involution given by the composition of complex conjugation acting
on X(C) and on the coefficients. Then, restricting the map (3.15) to the integral
part in the motivic cohomology (3.14) and projecting the image onto the real
Deligne cohomology of X, we get a regulator map

rBe : Hi
Mot|Z (X,Q(n)) → Hi

D

(
(X ⊗Q R)(C),R(n)

)F∞ .

Beilinson formulated a conjecture relating the special values L(hi−1(X), n) of the
L-function of Grothendieck’s motive hi−1(X) to values of this regulator map, up
to a nonzero rational factor; see [1], the survey [58] and the book [57] for the
original version of the conjecture, and the survey by J. Nekovář [56] for a motivic
reformulation. For X = Spec(F), where F is a number field, it boils down to
Borel’s theorem. A precise Tamagawa Number conjecture about the special values
L(hi(X), n) was suggested by Bloch and Kato [13].

Beilinson [2] and Lichtenbaum [53] conjectured that the weight n integral mo-
tivic cohomology of a scheme X should appear as cohomology of some complexes
of abelian groups Z•

X(n), called the weight n motivic complexes of X. One must
have

Hi
Mot(X,Q(n)) = Hi

Z
•
X(n) ⊗Q .

Motivic complexes are objects of the derived category. Beilinson conjectured [2]
that there exists an abelian category MSX of mixed motivic sheaves on X, and that
one should have an isomorphism in the derived category

Z
•
X(n) = RHomMSX (Q(0)X ,Q(n)X) . (3.16)

Here Q(n)X := p∗
Q(n), where p : X → Spec(F) is the structure morphism, is

a motivic sheaf on X obtained by pull back of the Tate motiveQ(n) over the point
Spec(F). This formula implies the Beilinson–Soulé vanishing conjecture:

Hi
Mot(X,Q(n)) = 0 for i < 0 and i = 0, n > 0 .

Indeed, the negative Ext’s between objects of an abelian category are zero, and
we assume that the objects Q(n)X are mutually non-isomorphic. Therefore it is
quite natural to look for representatives of motivic complexes which are zero in
the negative degrees, as well as in the degree zero for n = 0.

Motivic complexes are more fundamental, and in fact simpler objects then
rational K-groups. Several constructions of motivic complexes are known.
i) Bloch [8,9] suggested a construction of the motivic complexes, called the Higher

Chow complexes, using algebraic cycles. The weight n cycle complex appears in
a very natural way as a “resolution” for the codimension n Chow groups on X
modulo rational equivalence, see Sect. 3.2.1 below. These complexes as well as
their versions defined by Suslin and Voevodsky played an essential role in the
construction of triangulated categories of mixed motives [47, 51, 63]. However
they are unbounded from the left.
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ii) Here is a totally different construction of the first few of motivic complexes. One
has Z•

X(0) := Z. Let X(k) be the set of all irreducible codimension k subschemes
of a scheme X. Then Z•

X(1) is the complex

O∗
X

∂→ ⊕Y∈X(1)Z; ∂(f ) := div(f ) .

The complexQ•
X(2) is defined as follows. First, using the Bloch–Suslin complex

(3.10), we define the following complex

B2(Q(X))
δ2→ Λ2

Q(X)∗ ∂1→ ⊕Y∈X(1)Q(Y)∗ ∂2→ ⊕Y∈X(2)Z .

Then tensoring it by Q we get Q•
X(2). Here ∂2 is the tame symbol, and ∂1 is

given by the divisor of a function on Y . Similarly one can define a complex
Q

•
X(3) using the complex (3.13). Unlike the cycle complexes, these complexes

are concentrated exactly in the degrees where they might have nontrivial co-
homology. It is amazing that motivic complexes have two so different and
beautiful incarnations.

Generalizing this, we introduce in Chapt. 4 the polylogarithmic motivic complexes,
which are conjectured to be the motivic complexes for an arbitrary field ([27,28]).
Then we give a motivic proof of the weak version of Zagier’s conjecture for a number
field F. In Chapt. 5 we discuss how to define motivic complexes for an arbitrary
regular variety X using the polylogarithmic motivic complexes of its points.

In Chapts. 2 and 5 we discuss constructions of the regulator map on the level of
complexes. Precisely, we want to define for a regular complex projective variety X
a homomorphism of complexes of abelian groups

{weight n motivic complex of X}→ {weight n Deligne complex of X(C)} .
(3.17)

In Chapt. 2 we present a construction of a regulator map on the Higher Chow
complexes given in [30, 33]. In Chapt. 5 we define, following [32], a regulator
map on polylogarithmic complexes. It is given explicitly in terms of the classical
polylogarithms. Combining this with Beilinson’s conjectures we arrive at explicit
conjectures expressing the special values of L-functions via classical polyloga-
rithms. If X = Spec(F), where F is a number field, this boils down to Zagier’s
conjecture.

The cone of the map (3.17), shifted by −1, defines the weight n Arakelov motivic
complex, and so its cohomology are the weight n Arakelov motivic cohomology
of X.

The weight n Arakelov motivic complex should be considered as an ingredient of
a definition of the weight n arithmetic motivic complex. Namely, one should exist
a complex computing the weight n integral motivic cohomology of X, and a natural
map from this complex to the weight n Deligne complex. The cone of this map,
shifted by −1, would give the weight n arithmetic motivic complex. The weight one
arithmetic motivic complex is the complex ΓA(OF , 1).
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In Chapt. 6 we discuss a yet another approach to motivic complexes of fields: as
standard cochain complexes of the motivic Lie algebras. We also discuss a relation-
ship between the motivic Lie algebra of a field and the (motivic) Grassmannian
polylogarithms.

Arakelov Motivic Complexes 3.2

In this section we define a regulator map from the weight n motivic complex, under-
stood as Bloch’s Higher Chow groups complex [8], to the weight n Deligne complex.
This map was defined in [30], and elaborated in detail in [33]. The construction
can be immediately adopted to the Suslin–Voevodsky motivic complexes.

Bloch’s Cycle Complex 3.2.1

A non degenerate simplex in Pm is an ordered collection of hyperplanes L0, …, Lm

with empty intersection. Let us choose in Pm a simplex L and a generic hyper-
plane H. Then L provides a simplex in the affine space Am := Pm − H.

Let X be a regular scheme over a field. Let I = (i1, …, ik) and LI := Li1 ∩ … ∩ Lik .
Let Zm(X; n) be the free abelian group generated by irreducible codimension n
algebraic subvarieties in X ×Am which intersect properly (i.e. the intersection has
the right dimension) all faces X × LI . Intersection with the codimension 1 face
X × Li provides a group homomorphism ∂i : Zm(X; n) → Zm−1(X; n). Set ∂ :=∑m

i=0(−1)i∂i. Then ∂2 = 0, so (Z•(X; n), ∂) is a homological complex. Consider the
cohomological complex Z•(X; n) := Z2r−•(X; n). Its cohomology give the motivic
cohomology of X:

Hi
M(X,Z(n)) := Hi(Z•(X; n)) .

According to the fundamental theorem of Bloch ([8, 9])

Hi(Z•(X; n) ⊗Q) = grγ
nK2n−i(X) ⊗Q .

The Deligne Cohomology and Deligne’s Complex 3.2.2

Let X be a regular projective variety over C. The Beilinson–Deligne complex
R

•(X; n)D is the following complex of sheaves in the classical topology on X(C):

R(n) → OX → Ω1
X → Ω2

X → … → Ωn−1
X .

Here the constant sheaf R(n) := (2πi)n
R is in the degree zero. The hypercoho-

mology of this complex of sheaves is called the weight n Deligne cohomology of
X(C). They are finite dimensional real vector spaces. Beilinson proved [3] that the
truncated weight n Deligne cohomology, which are obtained by putting the weight
n Deligne cohomology equal to zero in the degrees > 2n, can be interpreted as the
absolute Hodge cohomology of X(C).
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One can replace the above complex of sheaves by a quasiisomorphic one, defined
as the total complex associated with the following bicomplex:

(
D0

X
��

d

D1
X

��
d

… ��
d

Dn
X

��
d

Dn+1
X

��
d

…

Ωn
X

OO

πn

��
∂

Ωn+1
X

OO
πn

��
∂

)
⊗ R(n − 1)

Here Dk
X is the sheaf of real k-distributions on X(C), that is k-forms with the

generalized function coefficients. Further,

πn : D
p
X ⊗ C→ D

p
X ⊗ R(n − 1)

is the projection induced by the one C = R(n − 1) ⊕ R(n) → R(n − 1), the
sheaf D0

X is placed in degree 1, and (Ω•
X , ∂) is the De Rham complex of sheaves of

holomorphic forms.
To calculate the hypercohomology with coefficients in this complex we replace

the holomorphic de Rham complex by its Doulbeut resolution, take the global sec-
tions of the obtained complex, and calculate its cohomology. Taking the canonical
truncation of this complex in the degrees [0, 2n] we get a complex calculating the
absolute Hodge cohomology of X(C). Let us define, following Deligne, yet another
complex of abelian groups quasiisomorphic to the latter complex.

Let D
p,q
X = Dp,q be the abelian group of complex valued distributions of type

(p, q) on X(C). Consider the following cohomological bicomplex, where Dn,n
cl is

the subspace of closed distributions, and D0,0 is in degree 1:

Dn,n
cl

D0,n−1 ��
∂

D1,n−1 ��
∂

… ��
∂

Dn−1,n−1

��2∂∂ w
w
w
w
w
w
w
w
w

…

OO

∂

…

OO

∂

… …

OO

∂

D0,1

OO

∂

��
∂

D1,1

OO

∂

��
∂

… ��
∂

Dn−1,1

OO

∂

D0,0

OO

∂

��
∂

D1,0

OO

∂

��
∂

… ��
∂

Dn−1,0

OO

∂
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The complex C•
D(X; n) is a subcomplex of the total complex of this bicomplex

provided by the R(n − 1)-valued distributions in the n × n square of the diagram
and the subspace Dn,n

R ,cl(n) ⊂ Dn,n
cl of the R(n)-valued distributions of type (n, n).

Notice that ∂∂ sendsR(n−1)-valued distributions toR(n)-valued distributions. The
cohomology of this complex of abelian groups is the absolute Hodge cohomology
of X(C), see Proposition 2.1 of [33]. Now if X is a variety over R, then

C•
D(X|R ; n) := C•

D(X; n)F∞ ; Hi
D(X|R ,R(n)) = HiC•

D(X|R ; n)

where F∞ is the composition of the involution F∞ on X(C) induced by the complex
conjugation with the complex conjugation of coefficients.

The Regulator Map 3.2.3

1Theorem-Construction 1 Let X be a regular complex projective variety. Then there
exists canonical homomorphism of complexes

P •(n) : Z•(X; n) → C•
D(X; n) .

If X is defined over R then its image lies in the subcomplex C•
D(X|R ; n).

To define this homomorphism we need the following construction. Let X be a va-
riety over C and f1, …, fm be m rational functions on X. The form

πm

(
d log f1 ∧ … ∧ d log fm

)
,

where πn(a + ib) = a if n odd, and πn(a + ib) = ib if n even, has zero periods. It has
a canonical primitive defined as follows. Consider the following (m − 1)-form on
X(C):

rm−1(f1 ∧ … ∧ fm) :=

Altm

∑

j≥0

cj,m log |f1|d log |f2| ∧ … ∧ d log |f2j+1| ∧ di arg f2j+2 ∧ … ∧ di arg fm .

(3.18)

Here cj,m := ((2j + 1)!(m − 2j − 1)!)−1 and Altm is the operation of alternation:

AltmF(x1, …, xm) :=
∑

σ∈Sm

(−1)|σ|F(xσ(1), …, xσ(m)) .

So rm−1(f1 ∧ … ∧ fm) is an R(m − 1)-valued (m − 1)-form. One has

drm−1(f1 ∧ … ∧ fm) = πm(d log f1 ∧ … ∧ d log fm) .

It is sometimes convenient to write the form (3.18) as a multiple of

Altm

m∑

i=1

(−1)i log |f1|d log f2 ∧ … ∧ d log fi ∧ d log f i+1 ∧ … ∧ d log f m .
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Precisely, let Ai(M) be the space of smooth i-forms on a real smooth manifold M.
Consider the following map

ωm−1 : ΛmA0(M) → Am−1(M) (3.19)

ωm−1(ϕ1 ∧ … ∧ ϕm) :=

1

m!
Altm

(
m∑

k=1

(−1)k−1ϕ1∂ϕ2 ∧ …∂ϕk ∧ ∂ϕk+1 ∧ … ∧ ∂ϕm

)

.

For example

ω0(ϕ1) = ϕ1; ω1(ϕ1 ∧ ϕ2) =
1

2
(ϕ1∂ϕ2 − ϕ2∂ϕ1 − ϕ1∂ϕ2 + ϕ2∂ϕ1)

Then one easily checks that

dωm−1(ϕ1 ∧ … ∧ ϕm) = ∂ϕ1 ∧ … ∧ ∂ϕm + (−1)m∂ϕ1 ∧ … ∧ ∂ϕm

+
m∑

i=1

(−1)i∂∂ϕi ∧ ωm−2(ϕ1 ∧ … ∧ ϕ̂i ∧ … ∧ ϕm) .

(3.20)

Now let fi be rational functions on a complex algebraic variety X. Set M := X0(C),
where X0 is the open part of X where the functions fi are regular. Then ϕi := log |fi|
are smooth functions on M, and we have

ωm−1(log |f1| ∧ … ∧ log |fm|) = rm−1(f1 ∧ … ∧ fm) .

Denote by D∗
X,R (k) = D∗

R (k) the subspace ofR(k)-valued distributions in D∗
X(C ) .

Let Y0 be the nonsingular part of Y , and i 0
Y : Y0(C) ↪→ Y(C) the canonical

embedding.

2 Proposition 2 Let Y be an arbitrary irreducible subvariety of a smooth complex
variety X and f1, …, fm ∈ O∗(Y). Then for any smooth differential form ω with
compact support on X(C) the following integral is convergent:

∫

Y0(C )
rm−1(f1 ∧ … ∧ fm) ∧ i 0

Y ω .

Thus there is a distribution rm−1(f1 ∧ … ∧ fm)δY on X(C):

〈
rm−1(f1 ∧ … ∧ fm)δY , ω

〉
:=
∫

Y0(C )
rm−1(f1 ∧ … ∧ fm) ∧ i 0

Y ω .

It provides a group homomorphism

rm−1 : Λm
C(Y)∗ → Dm−1

X,R (m − 1) . (3.21)
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3Construction 3 We have to construct a morphism of complexes

… �� Z1(X; n) ��

��
P 1(n)

… �� Z2n−1(X; n) ��

��
P 2n−1(n)

Z2n(X; n)

��
P 2n(n)

0 �� D0,0
R (n − 1) �� … �� Dn−1,n−1

R (n − 1) ��
2∂∂

Dn,n
R (n)

Here at the bottom stays the complex C•
D(X; n).

Let Y ∈ Z2n(X; n) be a codimension n cycle in X. By definition

P 2n(n)(Y) := (2πi)nδY .

Let us construct homomorphisms

P 2n−k(n) : Z2n−k(X; n) → D2n−k−1
X , k > 0 .

Denote by πA k (resp. πX) the projection of X × Ak to Ak (resp. X), and by πA k

(resp. πX) the projection of X(C) × CPk to CPk (resp. X(C)).
The pair (L, H) in Pk defines uniquely homogeneous coordinates (z0 : … : zk)

in Pk such that the hyperplane Li is given by equation {zi = 0} and the hyperplane
H is

{∑k
i=1 zi = z0

}
. Then there is an element

z1

z0
∧ … ∧ zk

z0
∈ Λk−1

C(Ak)∗ . (3.22)

Let Y ∈ Z2n−k(X; n). Restricting to Y the inverse image of the element (3.22) by
π∗
A k we get an element

g1 ∧ … ∧ gk ∈ Λk
C(Y)∗ . (3.23)

Observe that this works if and only if the cycle Y intersects properly all codimension
one faces of X × L. Indeed, if Y does not intersect properly one of the faces, then
the equation of this face restricts to zero to Y , and so (3.23) does not make sense.

The element (3.23) provides, by Proposition 2, a distribution on X(C) × CPk.
Pushing it down by (2πi)n−k · πX we get the distribution P 2n−k(n)(Y):

4Definition 4 P 2n−k(n)(Y) := (2πi)n−k · πX∗rk−1(g1 ∧ … ∧ gk).

In other words, the following distribution makes sense:

P 2n−k(n)(Y) = (2πi)n−kπX∗
(

δY ∧ π∗
A k rk−1

(
z1

z0
∧ … ∧ zk

z0

))
.
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One can rewrite Definition 4 more explicitly as an integral over Y(C). Namely,
let ω be a smooth form on X(C) and iY : Y ↪→ X × Pk. Then

〈
P 2n−k(n)(Y), ω

〉
= (2πi)n−k

∫

Y0(C )
rk−1(g1 ∧ … ∧ gk) ∧ i∗Y0(C )π∗

Xω .

It is easy to check that P 2n−k(n)(Y) lies in C2n−k
D (X; n). Therefore we defined the

maps P k(n). It was proved in Theorem 2.12 in [33] that P •(n) is a homomorphism
of complexes.

The Higher Arakelov Chow Groups3.2.4

Let X be a regular complex variety. Denote by C̃•
D(X; n) the quotient of the com-

plex C•
D(X; n) along the subgroup An,n

cl,R (n) ⊂ Dn,n
cl,R (n) of closed smooth forms. The

cone of the homomorphism P •(n) shifted by −1 is the Arakelov motivic complex:

Ẑ•(X; n) := Cone
(
Z•(X; n)→C̃•

D(X; n)
)

[−1] .

The Higher Arakelov Chow groups are its cohomology:

ĈH
n
(X; i) := H2n−i

(
Ẑ•(X; n)

)
.

Recall the arithmetic Chow groups defined by Gillet–Soulé [26] as follows:

ĈH
n
(X) :=

{
(Z, g); ∂∂

πi g + δZ ∈ An,n
}

{
(0, ∂u + ∂v); (divf , − log |f |), f ∈ C(Y), codim(Y) = n − 1

} . (3.24)

Here Z is a divisor in X, f is a rational function on a divisor Y in X,

g ∈ Dn−1,n−1
R (n − 1), (u, v) ∈ C2n−2

D (X; n) = (Dn−2,n−1 ⊕ Dn−1,n−2)R (n − 1) .

5 Proposition 5 ĈH
n
(X; 0) = ĈH

n
(X).

Proof Let us look at the very right part of the complex Ẑ•(X; n):

… �� Z2n−1(X; n) ��

��
P 2n−1(n)

Z2n(X; n)

��
P 2n(n)

(Dn−2,n−1 ⊕ Dn−1,n−2)R (n − 1) ��
(∂,∂)

Dn−1,n−1
R (n − 1) ��

2∂∂

Dn,n
R (n)|An,n

R (n) .
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Consider the stupid truncation of the Gersten complex on X:
∏

Y∈Xn−1

C(Y)∗ → Z0(X; n) . (3.25)

It maps to the stupid truncation σ≥2n−1Ẑ•(X; n) of the cycle complex as follows.
The isomorphism Z0(X; n) = Z2n(X; n) provides the right component of the map.
A pair (Y ; f ) where Y is an irreducible codimension n − 1 subvariety of X maps
to the cycle (y, f (y)) ⊂ X × (P1 − {1}). It is well known that such cycles (y, f (y))
plus ∂Ẑ2n−2(X; n) generate Ẑ2n−1(X; n). Computing the composition of this map
with the homomorphism P •(n) we end up precisely with formula (3.24). The
proposition is proved.

Remarks on the Special Values
of the Dedekind ζ-Functions 3.2.5

Let Γ̃A(OF , 1) be the three term complex (3.5). It consists of locally compact abelian
groups. Each of them is equipped with a natural Haar measure. Indeed, the measure
of a discrete group is normalized so that the measure of the identity element is 1;
the groupR has the canonical measure dx; and we use the product measure for the
products. We need the following general observation.

6Lemma-Definition 6 Let

A• = … → A1 → A2 → A3 → …

be a complex of locally compact abelian groups such that
i) Each of the groups Ai is equipped with an invariant Haar measure µi.
ii) The cohomology groups are compact.
iii) Only finite number of the cohomology groups are nontrivial, and almost all

groups Ai are discrete groups with canonical measures.

Then there is a naturally defined number RµA•, and RµA•[1] = (RµA•)−1.

7Construction 7 Let

0 → A → B → C → 0 (3.26)

be an exact sequence of locally compact abelian groups. Then a choice of Haar
measure for any two of the groups A, B, C determines naturally the third one.
For example Haar measures µA, µC on A and C determine the following Haar
measure µA,C on B. Take a compact subset of C and its section KC ⊂ B, and take
a compact subset KA. Then µA,C(KA · KC) := µA(KA)µC(KC).
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For the complex (3.26) placed in degrees [0, 2] we put Rµ(3.26) = µA,C|µB.
Let us treat first the case when A• is a finite complex. Then we define the invariant

RµA• by induction. If A• = A[−i] is concentrated in just one degree, i, that A is
compact and equipped with Haar measure µ. We put RµA• := µ(A)(−1)i

. Assume
A• starts from A0. One has

Kerf0 → A0 → Imf0 → 0; Imf0 → A1 → A1|Imf0 → 0 .

Since Kerf0 is compact, we can choose the volume one Haar measure on it. This
measure and the measure µ0 on A0 provides, via the first short exact sequence,
a measure on Imf0. Similarly using this and the second exact sequence we get
a measure on A1|Imf0. Therefore we have the measures on the truncated complex
τ≥1A•. Now we define

RµA• := µ0(A0) · Rµτ≥1A• .

If A• is an infinite complex we set RµA• := Rµ(τ−N,NA•) for sufficiently big N. Here
τ−N,N is the canonical truncation functor. Thanks to iii) this does not depend on
the choice of N. The lemma is proved.

Now the class number formula (3.4) reads

lim
s→0

s−(r1+r2−1)ζF(s) = −RµΓ̃A(OF , 1) . (3.27)

Lichtenbaum’s conjectures [52] on the special values of the Dedekind ζ-functions
can be reformulated in a similar way:

ζF(1 − n)
?= ±RµΓA(OF , n); n > 1 .

It is not quite clear what is the most natural normalization of the regulator map.
In the classical n = 1 case this formula needs modification, as was explained in
Sect. 3.1.1, to take into account the pole of the ζ-function.

Example 8. The group H2ΓA(OF , 2) sits in the exact sequence

0 → R2(F) → H2Γ(OF , 2) → K2(OF) → 0 .

To calculate it let us define the Bloch–Suslin complex for Spec(OF):

B(OF , 2) : B2(F) → Λ2F∗ →
∏

P

k∗
P (3.28)

Its Arakelov version is the total complex of the following bicomplex, where the
vertical map is given by the dilogarithm: {x}2 �→ (L2(σ1(x), …, L2(σr2 (x)))).
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R
r2

B2(F)

OO

�� Λ2F∗ ��
∏

P k∗
P .

(3.29)

Then H2ΓA(OF , 2) = H2BA(OF , 2). The second map in (3.28) is surjective ([55],
Cor. 16.2). Using this one can check that

HiΓA(OF , 2) = 0 for i ≥ 3

(Notice that H1BA(OF , 2) �= H1ΓA(OF , 2)). Summarizing, we should have

ζF(−1)
?= ±RµΓA(OF , 2) = ±volH2ΓA(OF , 2)

|H1ΓA(OF , 2)| .

For totally real fields it is a version of the Birch–Tate conjecture. It would be very
interesting to compare this with the Bloch–Kato conjecture.

Grassmannian Polylogarithms
and Borel’s Regulator 3.3

The Grassmannian Polylogarithm [30] 3.3.1

Let h1, …, h2n be arbitrary 2n hyperplanes in CPn−1. Choose an additional hyper-
plane h0. Let fi be a rational function onCPn−1 with divisor hi − h0. It is defined up
to a scalar factor. Set

LG
n (h1, …, h2n) := (2πi)1−n

∫

C Pn−1
r2n−2

( 2n∑

j=1

(−1)jf1 ∧ … ∧ f̂j ∧ … ∧ f2n

)
.

It is skew-symmetric by definition. It is easy to see that it does not depend on the
choice of scalar in the definition of fi. To check that it does not depend on the
choice of h0 observe that

2n∑

j=1

(−1)jf1 ∧ … ∧ f̂j ∧ … ∧ f2n =
f1

f2n
∧ f2

f2n
∧ … ∧ f2n−1

f2n
.

So if we choose rational functions g1, …, g2n−1 such that divgi = hi − h2n then

LG
n (h1, …, h2n) = (2πi)1−n

∫

C Pn−1
r2n−2(g1 ∧ … ∧ g2n−1) .
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9 Remark 9 The function LG
n is defined on the set of all configurations of 2n hyper-

planes in CPn−1. However it is not even continuous on this set. It is real analytic
on the submanifold of generic configurations.

10 Theorem 10 The function LG
n satisfies the following functional equations:

a) For any 2n + 1 hyperplanes h1, …, h2n+1 in CPn one has

2n+1∑

j=1

(−1)jLG
n (hj ∩ h1, …, hj ∩ h2n+1) = 0 . (3.30)

b) For any 2n + 1 hyperplanes h1, …, h2n+1 in CPn−1 one has

2n+1∑

j=1

(−1)jLG
n (h1, …, ĥj, …, h2n+1) = 0 . (3.31)

Proof
a) Let f1, …, f2n+1 be rational functions on CPn as above. Then

dr2n−1

(2n+1∑

j=1

(−1)jf1 ∧ … ∧ f̂j ∧ …f2n+1

)
=

∑

j �=i

(−1)j+i−12πiδ(fj)r2n−2

(
f1 ∧ …̂fi ∧ … ∧ f̂j ∧ …f2n+1

)
(3.32)

(Notice that d log f1 ∧ … ∧ d̂ log fj ∧ … ∧ d log f2n+1 = 0 onCPn). Integrating (3.32)
over CPn we get a).
b) is obvious: we apply r2n−1 to zero element. The theorem is proved.

Let us choose a hyperplane H in P2n−1. Then the complement to H is an affine
spaceA2n−1. Let L be a non-degenerate symplex which does not lie in a hyperplane,
generic with respect to H. Observe that all such pairs (H, L) are projectively
equivalent, and the complement P2n−1 − L is identified with (G∗

m)2n−1 canonically
as soon as the numbering of the hyperplanes is choosen.

Let PGn−1
n denote the quotient of the set of (n − 1)–planes in P2n−1 in generic

position to L, modulo the action of the group (G∗
m)2n−1. There is a natural bijection

PGn−1
n =̃

{
Configurations of 2n generic hyperplanes in Pn−1

}

given by intersecting an (n − 1)–plane h with the codimension one faces of L.
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Thus LG
n is a function on the torus quotient PGn−1

n of the generic part of
Grassmannian.

Gelfand and MacPherson [25] suggested a beautiful construction of the real val-
ued version of 2n-logarithms on PG2n−1

2n (R). The construction uses the Pontryagin
form. These functions generalize the Rogers dilogarithm.

The defined above functions LG
n on complex Grassmannians generalize the

Bloch–Wigner dilogarithm. They are related to the Chern classes. It would be very
interesting to find a link between the construction in [25] with our construction.

The existence of the multivalued analytic Grassmannian n-logarithms on com-
plex Grassmannians was conjectured in [6]. They were constructed in [48,49] and,
as a particular case of the analytic Chow polylogarithms, in [30].

Recall the following general construction. Let X be a G-set and F a G-invariant
function on Xn satisfying

n∑

i=1

(−1)iF(x1, …, x̂i, …, xn) = 0 .

Choose a point x ∈ X. Then there is an (n − 1)-cocycle of the group G:

fx(g1, …, gn) := F(g1x, …, gnx) .

11Lemma 11 The cohomology class of the cocycle fx does not depend on x.

Thus thanks to (3.31) the function LG
n provides a measurable cocycle of GLn(C).

We want to determine its cohomology class, but a priori it is not even clear
that it is non zero. To handle this problem we will show below that the func-
tion LG

n is a boundary value of a certain function ψn defined on the configura-
tions of 2n points inside of the symmetric space SLm(C)|SU(n). The cohomology
class of SLn(C) provided by this function is obviously related to the so-called
Borel class. Using this we will show that the Grassmannian n-logarithm func-
tion LG

n provides the Borel class, and moreover can be used to define the Borel
regulator.

Finally, the restriction of the function LG
n to certain special stratum in the

configuration space of 2n hyperplanes in CPn−1 provides a single valued version
of the classical n-logarithm function, see Sects. 3.4–3.5 below.
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The Function ψn3.3.2

Let Vn be an n-dimensional complex vector space. Let

Hn :=
{

positive definite Hermitian forms in Vn

}
|R∗

+ = SLn(C)|SU(n)

=
{

positive definite Hermitian forms in Vn with determinant = 1
}

It is a symmetric space of rank n − 1. For example H2 = H3 is the hyperbolic
3-space. Replacing positive definite by non negative definite Hermitian forms we
get a compactificationHn of the symmetric spaceHn.

Let Gx be the subgroup of SLN(C) stabilizing the point x ∈ Hn . A point x defines
a one dimensional vector space Mx:

x ∈ Hn �→ Mx :=
{

measures on CPn−1 invariant under Gx

}
.

Namely, a point x corresponds to a hermitian metric in Vn. This metric provides
the Fubini-Studi Kahler form onCPn−1 = P(Vn). Its imaginary part is a symplectic
form. Raising it to (n − 1)-th power we get the Fubini-Studi volume form. The
elements of Mx are its multiples.

Let x0, …, x2n−1 be points of the symmetric space SLn(C)|SU(n). Consider the
following function

ψn(x0, …, x2n−1) :=
∫

C Pn−1
log
∣∣∣
µx1

µx0

∣∣∣d log
∣∣∣
µx2

µx0

∣∣∣ ∧ … ∧ d log
∣∣∣
µx2n−1

µx0

∣∣∣ .

More generally, let X be an m-dimensional manifold. For any m + 2 measures
µ0, …, µm+1 on X such that µi

µj
are smooth functions consider the following differ-

ential m-form on X:

rm(µ0 : … : µm+1) := log
∣∣∣
µ1

µ0

∣∣∣d log
∣∣∣
µ2

µ0

∣∣∣ ∧ … ∧ d log
∣∣∣
µm+1

µ0

∣∣∣ .

12 Proposition 12 The integral
∫

X rm(µ0 : … : µm+1) satisfies the following properties:
1) Skew symmetry with respect to the permutations of µi.
2) Homogeneity: if λi ∈ R∗ then

∫

X
rm(λ0µ0 : … : λm+1µm+1) =

∫

X
rm(µ0 : … : µm+1)

3) Additivity: for any m + 3 measures µi on X one has

m+2∑

i=0

(−1)i
∫

X
rm(µ0 : … : µ̂i : … : µm+2) = 0

4) Let g be a diffeomorphism of X. Then
∫

X
rm(g∗µ0 : … : g∗µm+1) =

∫

X
rm(µ0 : … : µm+1)
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The Grassmannian Polylogarithm LG
n

is the Boundary Value of the Function ψn [33] 3.3.3

Let (z0 : … : zn−1) be homogeneous coordinates in Pn−1. Let

σn(z, dz) :=
n−1∑

i=0

(−1)izidz0 ∧ … ∧ d̂zi ∧ … ∧ dzn−1

ωFS(H) :=
1

(2πi)n−1

σn(z, dz) ∧ σn(z, dz)

H(z, z)n
(3.33)

This form is clearly invariant under the group preserving the Hermitian form H.
In fact it is the Fubini-Studi volume form.

Take any 2n non zero nonnegative definite Hermitian forms H0, …, H2n−1, possi-
bly degenerate. For each of the forms Hi choose a multiple µHi of the Fubini-Studi
form given by formula (3.33). It is a volume form with singularities along the
projectivization of kernel of Hi.

13Lemma 13 The following integral is convergent

ψn(H0, …, H2n−1) :=
∫

C Pn−1
log
∣∣∣
µH1

µH0

∣∣∣d log
∣∣∣
µH2

µH0

∣∣∣ ∧ … ∧ d log
∣∣∣
µH2n−1

µH0

∣∣∣ .

This integral does not change if we multiply one of the Hermitian forms by a positive
scalar. Therefore we can extend ψn to a function on the configuration space of 2n
points in the compactificationHn−1. This function is discontinuous.

One can realize CPn−1 as the smallest stratum of the boundary of Hn. Indeed,
let CPn−1 = P(Vn). For a hyperplane h ∈ Vn let

Fh :=
{

nonnegative definite hermitian forms in Vn with kernel h
}

|R∗
+

The set of hermitian forms in Vn with the kernel h is isomorphic to R∗
+, so Fh

defines a point on the boundary ofHn. Therefore Lemma 13 provides a function

ψn(h0, …, h2n−1) := ψn(Fh0 , …, Fh2n−1 ) (3.34)

Applying Lemma 11 to the case when X is Hn and using only the fact that the
function ψn(x0, …, x2n−1) is well defined for any 2n points in Hn and satisfies the
cocycle condition for any 2n + 1 of them we get

14Proposition 14 Let x ∈ Hn and h is a hyperplane in CPn−1. Then the cohomology
classes of the following cocycles coincide:

ψn(g0x, …, g2n−1x) and ψn(g0h, …, g2n−1h)
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The Fubini-Studi volume form corresponding to a hermitian form from the set Fh

is a Lebesgue measure on the affine space CPn−1 − h. Indeed, if h0 = {z0 = 0} then
(3.33) specializes to

1

(2πi)n−1
d

z1

z0
∧ … ∧ d

zn−1

z0
∧ d

z1

z0
∧ … ∧ d

zn−1

z0
.

Using this it is easy to prove the following proposition.

15 Proposition 15 For any 2n hyperplanes h0, …, h2n−1 in CPn−1 one has

ψn(h0, …, h2n−1) = (−4)−n · (2πi)n−1(2n)2n−1

(
2n − 2

n − 1

)

· LG
n (h0, …, h2n−1) .

Construction of the Borel Regulator Map3.3.4

Let us first normalize the Borel class ψn.
Denote by H∗

c (G,R) the continuous cohomology of a Lie group G. Let us define
an isomorphism

γDR : Hk
DR(SLn(C),Q)

∼→ Hk
c (SLn(C),C) .

We do it in two steps. First, let us define an isomorphism

α : Hk
DR(SLn(C),C)

∼→ Ak
(
SLn(C)|SU(n)

)SLn(C ) ⊗ C .

It is well known that any cohomology class on the left is represented by a biinvariant,
and hence closed, differential k–form Ω on SLn(C). Let us restrict it first to the
Lie algebra, and then to the orthogonal complement su(n)⊥ to the Lie subalgebra
su(n) ⊂ sln(C). Let e be the point of Hn corresponding to the subgroup SU(n).
We identify the R–vector spaces TeHn and su(n)⊥. The obtained exterior form on
TeHn is restriction of an invariant closed differential form ω on the symmetric
spaceHn.

Now let us construct, following J. Dupont [22], an isomorphism

β : Ak(SLn(C)|SU(n))SLn(C ) ∼→ Hk
c (SLn(C),R) .

For any ordered m + 1 points x1, …, xm+1 in Hn there is a geodesic simplex
I(x1, …, xm+1) in Hn. It is constructed inductively as follows. Let I(x1, x2) be the
geodesic from x1 to x2. The geodesics from x3 to the points of I(x1, x2) form
a geodesic triangle I(x1, x2, x3), and so on. If n > 2 the geodesic simplex I(x1, …, xk)
depends on the order of vertices.

Let ω be an invariant differential m-form on SLn(C)|SU(n). Then it is closed,
and provides a volume of the geodesic simplex:

volωI(x1, …, xm+1) :=
∫

I(x1,…,xm+1)
ω
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The boundary of the simplex I(x1, …, xm+2) is the alternated sum of simplices
I(x1, …, x̂i, …, xm+2). Since the fo rm ω is closed, the Stokes theorem yields

m+2∑

i=1

(−1)i

∫

I(x1,…,̂xi,…,xm+2)
ω =

∫

I(x1,…,xm+2)
dω = 0 .

This just means that for a given point x the function volωI(g1x, …, gm+1x) is
a smooth m-cocycle of the Lie group SLn(C). By Lemma 11 cocycles corresponding
to different points x are canonically cohomologous. The obtained cohomology
class is the class β(ω). Set γDR := β ◦ α.

It is known that

H∗
DR(SLn(C),Q) = Λ∗

Q (C3, …, C2n−1)

where
C2n−1 := tr(g−1dg)2n−1 ∈ Ω2n−1(SL) .

The Hodge considerations shows that [C2n−1] ∈ H2n−1
Betti (SLn(C),Q(n)).

16Lemma 16 α(C2n−1) is an R(n − 1)-valued differential form. So it provides a co-
homology class

bn := γDR(C2n−1) ∈ H2n−1
c

(
SLn(C),R(n − 1)

)
.

We call the cohomology class provided by this lemma the Borel class, and use it
below to construct the Borel regulator.

It is not hard to show that the cohomology class of the cocycle

ψn(g0x, …, g2n−1x)

is a non zero multiple of the Borel class. So thanks to Propositions 14 and 15 the
same is true for the cohomology class provided by the Grassmannian n-logarithm.
The final result will be stated in Theorem 17 below.
Now let us proceed to the construction of the Borel regulator map.

Let G be a group. The diagonal map ∆ : G → G × G provides a homomorphism
∆∗ : Hn(G) → Hn(G × G). Recall that

PrimHnG := {x ∈ Hn(G)|∆∗(x) = x ⊗ 1 + 1 ⊗ x} .

Set AQ := A ⊗Q. One has

Kn(F)Q = PrimHnGL(F)Q = PrimHnGLn(F)Q ,

where the second isomorphism is provided by Suslin’s stabilization theorem. Let

Bn ∈ H2n−1
c

(
GL2n−1(C),R(n − 1)

)

be a cohomology which goes to bn under the restriction map to GLn. We define
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the Borel regulator map by restricting the class Bn to the subspace K2n−1(C)Q of
H2n−1(GL2n−1(C),Q):

rBo
n (bn) := 〈Bn, ∗〉 : K2n−1(C)Q → R(n − 1)

It does not depend on the choice of Bn.
Recall the Grassmannian complex C∗(n)

…
d→ C2n−1(n)

d→ C2n−2(n)
d→ …

d→ C0(n) ,

where Ck(n) is the free abelian group generated by configurations, i.e. GL(V)-
coinvariants, of k + 1 vectors (l0, …, lk) in generic position in an n-dimensional
vector space V over a field F, and d is given by the standard formula

(l0, …, lk) �→
k∑

i=0

(−1)i(l0, …,̂ li, …, lk) . (3.35)

The group Ck(n) is in degree k. Since it is a homological resolution of the trivial
GLn(F)-module Z (see Lemma 3.1 in [28]), there is canonical homomorphism

ϕn
2n−1 : H2n−1(GLn(F)) → H2n−1(C∗(n)) .

Thanks to Lemma 16 the Grassmannian n-logarithm function provides a homo-
morphism

LG
n : C2n−1(n) → R(n − 1); (l0, …, l2n−1) �→ LG

n (l0, …, l2n−1) . (3.36)

Thanks to the functional equation (3.30) for LG
n it is zero on the subgroup dC2n(n).

So it induces a homomorphism

LG
n : H2n−1(C∗(n)) → R(n − 1) ;

Let us extend the map ϕn
2n−1 ◦ LG

n to obtain a homomorphism from
H2n−1(GL2n−1(C)) to R(n − 1), by following [28, 3.10]. Consider the following
bicomplex:

… ��
d

C2n−1(2n − 1)

��
…

��

… …

��

… ��
d

��

C2n−1(n + 1) ��
d

��

… ��
d

Cn+1(n)

��

… ��
d

C2n−1(n) ��
d

C2n−2(n) ��
d

… ��
d

Cn(n)
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The horizontal differentials are given by formula (3.35), and the vertical by

(l0, …, lk) �→
k∑

i=0

(−1)i(li|l1, …,̂ li, …, lk) .

Here (li|l1, …,̂ li, …, lk) means projection of the configuration (l1, …,̂ li, …, lk) to
the quotient V |〈li〉. The total complex of this bicomplex is called the weight n
bi–Grassmannian complex BC∗(n).

Let us extend homomorphism (3.36) to a homomorphism

LG
n : BC2n−1(n) → R(n − 1)

by setting it zero on the groups C2n−1(n + i) for i > 0. The functional equation
(3.31) for the Grassmannian n-logarithm just means that the composition

C2n(n + 1) → C2n−1(n)
LG

n→ R(n − 1) ,

where the first map is a vertical arrow in BC∗(n), is zero. Therefore we get a homo-
morphism

LG
n : H2n−1(BC∗(n)) → R(n − 1)

The bottom row of the Grassmannian bicomplex is the stupid truncation of the
Grassmannian complex at the group Cn(n). So there is a homomorphism

H2n−1(C∗(n)) → H2n−1(BC∗(n)) (3.37)

In [27, 28] we proved that there are homomorphisms

ϕm
2n−1 : H2n−1(GLm(F)) → H2n−1(BC∗(n)), m ≥ n

whose restriction to the subgroup GLn(F) coincides with the composition

H2n−1(GLn(F))
ϕn

2n−1→ H2n−1(C∗(n))
(3.37)→ H2n−1(BC∗(n)) .

17Theorem 17 The composition

K2n−1(C)
∼→ PrimH2n−1(GL2n−1(C),Q)

ϕ2n−1
2n−1→ H2n−1(BC∗(n)Q )

LG
n→ R(n − 1)

equals

−(−1)n(n+1)|2 · (n − 1)!2

n(2n − 2)!(2n − 1)!
rBo

n (bn) .

P
1 − {0, ∞} as a Special Stratum in the Configuration

Space of 2n Points in Pn−1 [30] 3.3.5

A special configuration is a configuration of 2n points

(l0, …, ln−1, m0, …, mn−1) (3.38)
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Figure 3.1. A special configuration of 8 points in P
3

in Pn−1 such that l0, …, ln−1 are vertices of a simplex in Pn−1 and mi is a point on
the edge lili+1 of the simplex different from li and li+1, as on Fig. 3.1.

18 Proposition 18 The set of special configurations of 2n points in Pn−1 is canonically
identified with P1\{0, ∞}.

19 Construction 19 Let m̂i be the point of intersection of the line lili+1 with the
hyperplane passing through all the points mj except mi. Let r(x1, …, x4) be the
cross-ratio of the four points on P1. Let us define the generalized cross-ratio by

r(l0, …, ln−1, m0, …, mn−1) := r(li, li+1, mi, m̂i+1) ∈ F∗ .

It does not depend on i, and provides the desired isomorphism. Here is a differ-
ent definition, which makes obvious the fact that the generalized cross-ratio is
cyclically invariant. Consider the one dimensional subspaces Li, Mj in the (n + 1)-
dimensional vector space projecting to li, mj. Then Li, Mi, Li+1 belong to a two
dimensional subspace. The subspace Mi provides a linear map Li → Li+1. The
composition of these maps is a linear map L0 → L0. The element of F∗ describing
this map is the generalized cross-ratio.

Computations of the Grassmannian n-Logarithms3.3.6

Restriction of the Grassmannian n-Logarithm to the Special Stratum
The n-logarithm function Lin(z) has a single-valued version ([67])

Ln(z) := Re (n : odd)

Im (n : even)

(
n−1∑

k=0

βk logk |z| · Lin−k(z)

)

, n ≥ 2
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It is continuous on CP1. Here 2x
e2x−1

=
∑∞

k=0 βkxk, so βk = 2kBk
k! where Bk are

Bernoulli numbers. For example L2(z) is the Bloch–Wigner function.
Let us consider the following modification of the function Ln(z) proposed by

A.M. Levin in [50]:

L̃n(x) :=
(2n − 3)

(2n − 2)

∑

k even; 0 ≤ k ≤ n − 2

2k(n − 2)!(2n − k − 3)!

(2n − 3)!(k + 1)!(n − k − 2)!
Ln−k(x) logk |x|

(3.39)

For example L̃n(x) = Ln(x) for n ≤ 3, but already L̃4(x) is different from L4(x).
A direct integration shows that

− (2πi)n−1(−1)(n−1)(n−2)|2L̃n(x) =

∫

C Pn−1
log |1 − z1|

n−1∏

i=1

d log |zi| ∧
n−2∏

i=1

d log |zi − zi+1| ∧ d log |zn−1 − a|

For n = 2 this has been done in [30, 33]. For general n it was done in Proposition
4.4.1 of [50].

This combined with Proposition 10 below implies

20Theorem 20 The value of function LG
n on special configuration (3.38) equals

−(−1)n(n−1)|24n−1

(
2n − 2

n − 1

)−1

L̃n(a); a = r(l0, …, ln−1, m0, …, mn−1)

It follows from Theorem 20 that LG
2 (l1, …, l4) = −2L2(r(l1, …, l4)).

It was proved in Theorem 1.3 of [41] that

LG
3 (l0, …, l5) =

1

90
Alt6L3(r3(l0, …, l5))

+
1

9
Alt6

(
log
∣∣∆(l0, l1, l2)

∣∣ log
∣∣∆(l1, l2, l3)

∣∣∆(l2, l3, l4)
∣∣) (3.40)

We will continue this discussion in Sect. 3.5.
The functions LG

n for n > 3 can not be expressed via classical polylogarithms.

Polylogarithmic Motivic Complexes 3.4

The Groups Bn(F) and Polylogarithmic Motivic
Complexes ([27, 28]) 3.4.1

For a set X denote by Z[X] the free abelian group generated by symbols {x} where
x run through all elements of the set X. Let F be an arbitrary field. We define
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inductively subgroups Rn(F) of Z[P1
F], n ≥ 1 and set

Bn(F) := Z[P1
F]|Rn(F) .

One has

R1(F) := ({x} + {y} − {xy}, (x, y ∈ F∗); {0}; {∞}) ; B1(F) = F∗ .

Let {x}n be the image of {x} in Bn(F). Consider homomorphisms

Z[P1
F]

δn→




Bn−1(F) ⊗ F∗ : n ≥ 3

Λ2F∗ : n = 2
(3.41)

δn : {x} �→




{x}n−1 ⊗ x : n ≥ 3

(1 − x) ∧ x : n = 2
δn : {∞}, {0}, {1} �→ 0 (3.42)

Set An(F) := Kerδn. Any element α(t) = Σni{fi(t)} ∈ Z[P1
F(t)] has a specialization

α(t0) := Σni{fi(t0)} ∈ Z[P1
F] at each point t0 ∈ P1

F .

21 Definition 21 Rn(F) is generated by elements {∞}, {0} and α(0) − α(1) where α(t)
runs through all elements of An(F(t)).

Then δn

(
Rn(F)

)
= 0 ([27], 1.16). So we get homomorphisms

δn : Bn(F) → Bn−1(F) ⊗ F∗, n ≥ 3; δ2 : B2(F) → Λ2F∗

and finally the polylogarithmic motivic complex Γ(F, n):

Bn
δ→ Bn−1 ⊗ F∗ δ→ Bn−2 ⊗ Λ2F∗ δ→ …

δ→ B2 ⊗ Λn−2F∗ δ→ ΛnF∗

where δ : {x}p ⊗∧n−p
i=1 yi → δp({x}p) ∧∧n−p

i=1 yi and Bn is in degree 1.

22 Conjecture 22 HiΓ(F, n) ⊗Q = gr
γ
nK2n−i(F) ⊗Q.

Denote by L̂n the function Ln, multiplied by i for even n and unchanged for odd n.
There is a well defined homomorphism ([28], Theorem 1.13):

L̂n : Bn(C)) → R(n − 1); L̂n

(∑
mi{zi}n

)
:=
∑

miL̂n(zi)

There are canonical homomorphisms

Bn(F) → Bn(F); {x}n �→ {x}n, n = 1, 2, 3 . (3.43)

They are isomorphisms for n = 1, 2 and expect to be an isomorphism for n = 3, at
least modulo torsion.
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The Residue Homomorphism
for Complexes Γ(F, n) [27, 1.14] 3.4.2

Let F = K be a field with a discrete valuation v, the residue field kv and the
group of units U . Let u → u be the projection U → k∗

v . Choose a uniformizer π.
There is a homomorphism θ : ΛnK∗ → Λn−1k∗

v uniquely defined by the following
properties (ui ∈ U):

θ (π ∧ u1 ∧ · · · ∧ un−1) = u1 ∧ · · · ∧ un−1; θ (u1 ∧ · · · ∧ un) = 0 .

It is clearly independent of π. Define a homomorphism sv : Z[P1
K ] → Z[P1

kv
] by

setting sv{x} = {x} if x is a unit and 0 otherwise. It induces a homomorphism
sv : Bm(K) → Bm(kv). Put

∂v := sv ⊗ θ : Bm(K) ⊗ Λn−mK∗ → Bm(kv) ⊗ Λn−m−1k∗
v .

It defines a morphism of complexes ∂v : Γ(K, n) → Γ(kv, n − 1)[−1].

A Variation of Mixed Hodge Structures on
P1(C) − {0, 1, ∞} Corresponding to the Classical
Polylogarithm Lin(z) ([19]) 3.4.3

Its fiber H(z) over a point z is described via the period matrix





1 0 0 … 0

Li1(z) 2πi 0 … 0

Li2(z) 2πi log z (2πi)2 … 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lin(z) 2πi logn−1 z
(n−1)! (2πi)2 logn−2 z

(n−2)! … (2πi)n






. (3.44)

Its entries are defined using analytic continuation to the point z along a path γ from
a given point inCwhere all the entries are defined by power series expansions, say
the point 1|2.

Here is a more natural way to define the entries. Consider the following regu-
larized iterated integrals along a certain fixed path γ between 0 to z:

Lin(z) =
∫ z

0

dt

1 − t
◦ dt

t
◦ … ◦ dt

t︸ ︷︷ ︸
n−1 times

;
logn z

n!
=
∫ z

0

dt

t
◦ … ◦ dt

t︸ ︷︷ ︸
n times

.

To regularize the divergent integrals we take the lower limit of integration to be ε.
Then it is easy to show that the integral has an asymptotic expansion of type
I0(ε) + I1(ε) log ε + … + Ik(ε) logk ε, where all the functions Ii(ε) are smooth at ε = 0.
Then we take I0(0) to be the regularized value.

Now let us define a mixed Hodge structure H(z). Let Cn+1 be the standard
vector space with basis (e0, …, en), and Vn+1 theQ-vector subspace spanned by the
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columns of the matrix (3.44). Let W−2(n+1−k)Vn+1 be the subspace spanned by the
first k columns, counted from the right to the left. One shows that these subspaces
do not depend on the choice of the path γ, i.e. they are well-defined inspite of
the multivalued nature of the entries of the matrix. Then W•Vn+1 is the weight
filtration. We define the Hodge filtration F•

C
n+1 by setting F−k

C
n+1 := 〈e0, …, ek〉C .

It is opposite to the weight filtration. We get a Hodge–Tate structure, i.e. hpq = 0
unless p �= q. One checks that the family of Hodge–Tate structures H(z) forms
a unipotent variation of Hodge–Tate structures on P1(C) − {0, 1, ∞}.

Let n ≥ 0. An n-framed Hodge–Tate structure H is a triple (H, v0, fn), where
v0 : Q(0) → grW

0 H and fn : grW
−2nH → Q(n) are nonzero morphisms. A framing

plus a choice of a splitting of the weight filtration determines a period of a Hodge–
Tate structure. Consider the coarsest equivalence relation on the set of all n-framed
Hodge–Tate structures for which M1 ∼ M2 if there is a map M1 → M2 respecting
the frames. Tnen the set Hn of the equivalence classes has a natural abelian group
structure. Moreover

H• := ⊕n≥0Hn (3.45)

has a natural Hopf algebra structure with a coproduct ∆, see the Appendix of [38].
Observe that GrW

−2kHn(z) = Q(k) for −n ≤ k ≤ 0. Therefore Hn(z) has a natural
framing such that the corresponding period is given by the function Lin(z). The
obtained framed object is denoted by LiHn (z). To define it for z = 0, 1, ∞ we use the
specialization functor to the punctured tangent space at z, and then take the fiber
over the tangent vector corresponding to the parameter z on P1. It is straitforward
to see that the coproduct ∆LiHn (z) is computed by the formula

∆LiHn (z) =
n∑

k=0

LiHn−k(z) ⊗ logH (z)k

k!
, (3.46)

where logH (z) is the 1-framed Hodge–Tate structure corresponding to log(z).

A Motivic Proof of the Weak Version
of Zagier’s Conjecture3.4.4

Our goal is the following result, which was proved in [46] and in the unfinished
manuscript [5]. The proof below uses a different set of ideas. It follows the frame-
work described in Chapt. 13 of [34], and quite close to the approach outlined
in [4], although it is formulated a bit differently, using the polylogarithmic motivic
complexes.

23 Theorem 23 Let F be a number field. Then there exists a homomorphism

ln : H1
(
Γ(F, n) ⊗Q)→ K2n−1(F) ⊗Q

such that for any embedding σ : F ↪→ C one has the following commutative
diagram
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H1(Γ(F, n) ⊗Q) ��
σ∗

��
ln

H1(Γ(C, n) ⊗Q) ��
Ln

R(n − 1)

��
=

K2n−1(F) ⊗Q ��
σ∗

K2n−1(C) ⊗Q ��
rBo

R(n − 1)

(3.47)

Proof We will use the following background material and facts:
i) The existence of the abelian tensor category MT(F) of mixed Tate motives over

a number field F, satisfying all the desired properties, including Beilinson’s
formula expressing the Ext groups via the rational K-theory of F and the
Hodge realization functor. See [20] and the references there.

ii) The formalism of mixed Tate categories, including the description of the fun-
damental Hopf algebra A•(M) of a mixed Tate category via framed objects
in M. See [38], Sect. 8. The fundamental Hopf algebra of the category MT(F) is
denoted A•(F). For example for the category of mixed Hodge–Tate structures
fundamental Hopf algebra is the one H• from (3.45). Let

∆ : A•(F) → A•(F)⊗2

be the coproduct in the Hopf algebra A•(F), and ∆′ := ∆ − Id ⊗ 1 + 1 ⊗ Id is
the restricted coproduct. The key fact is a canonical isomorphism

Ker∆′ ∩ An(F)
∼= K2n−1(F) ⊗Q . (3.48)

Since A•(F) is graded by ≥ 0 integers, and A0(F) = Q, formula (3.48) for n = 1
reduces to an isomorphism

A1(F)
∼= F∗ ⊗Q . (3.49)

iii) The existence of the motivic classical polylogarithms

LiMn (z) ∈ An(F), z ∈ P1(F) (3.50)

They were defined in Sect. 3.6 of [38] using either a geometric construction
of [35], or a construction of the motivic fundamental torsor of path between the
tangential base points given in [20]. In particular one has LiMn (0) = LiMn (∞) =
0. A natural construction of the elements (3.50) using the moduli space M0,n+3

is given in Chapt. 4.6 below.
iv) The Hodge realization of the element (3.50) is equivalent to the framed Hodge–

Tate structure LiHn (z) from Chapt. 4.3. This fact is more or less straitforward
if one uses the fundamental torsor of path on the punctured projective line to
define the element LiMn (z), and follows from the general specialization theorem
proved in [35] if one uses the approach of loc. cit. This implies that the Lie-
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period of LiHn (z) equals to Ln(z). Indeed, for the Hodge–Tate structure H(z)
assigned to Lin(z) this was shown in [4].

v) The crucial formula (Sect. 6.3 of [38]):

∆LiMn (z) =
n∑

k=0

LiMn−k(z) ⊗ logM(z)k

k!
(3.51)

where logM(z) ∈ A1(F) is the element corresponding to z under the iso-
morphism (3.48), and logM(z)k ∈ Ak(F) is its k-th power. It follows from
formula (3.46) using the standard trick based on Borel’s theorem to reduce
a motivic claim to the corresponding Hodge one.

vi) The Borel regulator map on K2n−1(F) ⊗Q, which sits via (3.48) inside of An(F),
is induced by the Hodge realization functor on the category MT(F).
Having this background, we proceed as follows. Namely, let

L•(F) :=
A>0(F)

A>0(F)2

be the fundamental Lie coalgebra of MT(F). Its cobracket δ is induced by ∆.
Projecting the element (3.50) into Ln(F) we get an element lMn (z) ∈ Ln(F) such
that

δlMn (z) = lMn−1(z) ∧ z . (3.52)

Consider the following map

l̃n : Q[P1(F)] → Ln(F), {z} �→ lMn (z)

24 Proposition 24 The map l̃n kills the subspace Rn(F), providing a well defined
homomorphism

ln : Bn(F) → Ln(F); {z}n → l̃n(z) .

Proof We proceed by the induction on n. The case n = 1 is self-obvious. Suppose
we are done for n − 1. Then there is the following commutative diagram:

Q[F] ��
δn

��
l̃n

Bn−1(F) ⊗ F∗

��
ln−1∧Id

Ln(F) ��
δ

⊕k≤n|2Ln−k(F) ∧ Lk(F)
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Indeed, its commutativity is equivalent to the basic formula (3.52).
Let x ∈ P1(F). Recall the specialization at x homomorphism

sx : Bn(F(T)) → Bn(F), {f (T)}n �→ {f (x)}n

It gives rise to the specialization homomorphism

s′x : Bn−1(F(T)) ⊗ F(T)∗ → Bn−1(F) ⊗ F∗ , (3.53)

{f (T)}n−1 ⊗ g(T) �→ {f (x)}n−1 ⊗ g(T)

(T − x)vx(g)
(x) (3.54)

(Use the local parameter T−1 when x = ∞).
Now let

α(T) ∈ Ker
(
δn : Q[F(T)] → Bn−1(F(T)) ⊗ F(T)∗)

Using LiMn (0) = LiMn (∞) = 0, for any x ∈ P1(F) one has δ(̃ln(α(x))) = 0. Thus

l̃n(α(x)) ∈ K2n−1(F) ⊗Q ⊂ Ln(F)

Let us show that this element is zero. Given an embedding σ : F ↪→ C, write
σ(α(T)) =

∑
i ni{f σ

i (T)}. Applying the Lie-period map to this element and using
v) we get

∑
i niLnf σ

i (z). By Theorem 1.13 in [28] the condition on α(T) implies
that this function is constant on CP1. Thus the difference of its values at σ(x1)
and σ(x2), where x0, x1 ∈ P1(F), is zero. On the other hand thanks to v) and vi) it
coincides with the Borel regulator map applied to the corresponding element of
K2n−1(F) ⊗Q. Thus the injectivity of the Borel regulator map proves the claim. So
l̃n(α(x0) − α(x1)) = 0. The proposition is proved.

Proposition 24 implies that we get a homomorphism of complexes

Bn(F) ��
δ

��
ln

Bn−1(F) ⊗ F∗

��
ln−1∧Id

Ln(F) ��
δ

⊕k≤n|2Ln−k(F) ∧ Lk(F) .

The theorem follows immediately from this. Indeed, it remains to check com-
mutativity of the diagram (3.47), and it follows from v) and vi).

If we assume the existence of the hypothetical abelian category of mixed Tate
motives over an arbitrary field F, the same argumentation as above (see Chapt. 6.1)
implies the following result: one should have canonical homomorphisms

Hi(Γ(F, n)) ⊗Q→ grγ
nK2n−i(F) ⊗Q .
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The most difficult part of Conjecture 22 says that this maps are supposed to be
isomorphisms.

In the next section we define a regulator map on the polylogarithmic motivic
complexes. Combined with these maps, it should give an explicit construction of
the regulator map.

A Construction of the Motivic ζ-Elements (3.1)3.4.5

The formula (3.2) leads to the motivic extension ζM(n) as follows ([40]). Recall
the moduli space Mn+3 parametrising stable curves of genus zero with n + 3
marked points. It contains as an open subset the space Mn+3 parametrising the
(n + 3)-tuples of distinct points on P1 modulo Aut(P1). Then the complement
∂Mn+3 := Mn+3 − Mn+3 is a normal crossing divisor, and the pair (Mn+3, ∂Mn+3)
is defined overZ. Let us identify sequences (t1, …, tn) of distinct complex numbers
different from 0 and 1 with the points (0, t1, …, tn, 1, ∞) of Mn+3(C). Let us con-
sider the integrand in (3.2) as a holomorphic form on Mn+3(C). Meromorphically
extending it to Mn+3 we get a differential form with logarithmic singularities Ωn.
Let An be its divisor. Similarly, embed the integration simplex 0 < t1 < … < tn < 1
into the set of real points of Mn+3(R), take its closure ∆n there, and consider
the Zariski closure Bn of its boundary ∂∆n. Then one can show that the mixed
motive

Hn
(
Mn+3 − An, Bn − (An ∩ Bn)

)
(3.55)

is a mixed Tate motive over Spec(Z). Indeed, it is easy to prove that its l-adic
realization is unramified outside l, and is glued from the Tate modules of different
weights, and then refer to [20]. The mixed motive (3.55) comes equipped with an
additional data, framing, given by non-zero morphisms

[Ωn] : Z(−n) → grW
2nHn

(
Mn+3 − An, Bn − (An ∩ Bn)

)
, (3.56)

[∆n] : grW
0 Hn

(
Mn+3 − An, Bn − (An ∩ Bn)

)→ Z(0) . (3.57)

There exists the minimal subquotient of the mixed motive (3.55) which inherits
non-zero framing. It delivers the extension class ζM(n). Leibniz formula (3.2) just
means that ζ(n) is its period.

Example 25. To construct ζM(2), take the pair of triangles in P2 shown on the
left of Fig. 3.2. The triangle shown by the punctured lines is the

divisor of poles of the differential d log(1 − t1) ∧ d log t2 in (3.2), and the second
triangle is the algebraic closure of the boundary of the integration cycle 0 ≤ t1 ≤
t2 ≤ 1. The corresponding configuration of six lines is defined uniquely up to
a projective equivalence. Blowing up the four points shown by little circles on
Fig. 3.2 (they are the triple intersection points of the lines), we get the moduli
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Figure 3.2. Constructing ζM(2)

space M0,5. Its boundary is the union of the two pentagons, A2 and B2, projecting
to the two triangles on P2. Then ζM(2) is a subquotient of the mixed Tate motive
H2(M0,5 −A2, B2 −(A2 ∩B2)) over Spec(Z). Observe that an attempt to use a similar
construction for the pair of triangles in P2 fails since there is no non-zero morphism
[∆2] in this case. Indeed, there are two vertices of the B-triangle shown on the left of
Fig. 3.2 lying at the sides of the A-triangle, and therefore the chain 0 ≤ t1 ≤ t2 ≤ 1
does not give rise to a relative class in H2(P2(C) − A, B − (A ∩ B)).

A Geometric Construction of the Motivic
Classical Polylogarithm LiMn (z) 3.4.6

The above construction is easily generalized to the case of the classical polyloga-
rithm. Let An(z) be the divisor of the meromorphic differential form

Ωn(z) :=
dt1

z−1 − t1
∧ dt2

t2
∧ … ∧ dtn

tn

extended as a rational form to M0,n+3. Suppose that F is a number field and z ∈ F.
Then there is the following mixed Tate motive over F:

Hn
(
Mn+3 − An(z), Bn − (An(z) ∩ Bn)

)
(3.58)

One checks that the vertices (that is the zero-dimensional strata) of the divisor Bn

are disjoint with the divisor An(z). Using this we define a framing ([Ωn(z)], [∆n]) on
the mixed motive (3.58) similar to the one (3.56)–(3.57). The geometric condition
on the divisor An(z) is used to show that the framing morphism [∆n] is non-
zero. We define LiMn (z) as the framed mixed Tate motive (3.58) with the framing
([Ωn(z)], [∆n]). A similar construction for the multiple polylogarithms was worked
out in the Ph. D. thesis of Q. Wang [64].

It follows from a general result in [35] that the Hodge realization of LiMn (z)
is equivalent to the framed mixed Hodge structure LiHn (z). If n = 2 the two
corresponding mixed Hodge structures are isomorphic ([64]), while in general
they are not isomorphic but equivalent as framed mixed Hodge structures.
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Regulator Maps on the Polylogarithmic
Motivic Complexes3.5

In this section we define explicitly these regulator maps via classical polylogarithm
functions following [32] and [28]. This implies how the special values of ζ-functions
of algebraic varieties outside of the critical strip should be expressed using the
classical polylogarithms.

The Regulator Map on the Polylogarithmic Motivic
Complexes at the Generic Point of a Complex Algebraic
Variety3.5.1

The numbers βn,k.
Define for any integers p ≥ 1 and k ≥ 0 the numbers

βk,p := (−1)p(p − 1)!
∑

0≤i≤[ p−1
2 ]

1

(2i + 1)!
βk+p−2i .

For instance βk,1 = −βk+1; βk,2 = βk+2; βk,3 = −2βk+3 − 1
3 βk+1.

One has recursions

2p · βk+1,2p = −βk,2p+1 −
1

2p + 1
βk+1; (2p − 1) · βk+1,2p−1 = −βk,2p (3.59)

These recursions together with βk,1 = −βk+1 determine the numbers βk,p.
Let m ≥ 1. Then one can show that

β0,2m = β0,2m+1 =
1

2m + 1
, β1,2m−1 = −

1

(2m − 1)(2m + 1)
, β1,2m = 0 .

Let us now proceed to the definition of the regulator map.
Let us define differential 1-forms L̂p,q on CP1\{0, 1, ∞} for q ≥ 1 as follows:

L̂p,q(z) := L̂p(z) logq−1 |z| · d log |z|, p ≥ 2 (3.60)

L̂1,q(z) := α(1 − z, z) logq−1 |z|
For any rational function f on a complex variety X the 1-form L̂p,q(f ) provides
a distribution on X(C). Set

Am

{ 2p∧

i=1

d log |gi| ∧
m∧

i=2p+1

di arg gj

}
:=

Altm

{
1

(2p)!(m − 2p)!

2p∧

i=1

d log |gi| ∧
m∧

i=2p+1

di arg gj

}
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and

Am

{
log |g1| ·

p∧

i=2

d log |gi| ∧
m∧

i=p+1

di arg gj

}
:=

Altm

{
1

(p − 1)!(m − p)!
log |g1| ·

p∧

i=2

d log |gi| ∧
m∧

i=p+1

di arg gj

}
.

So Am(F(g1, …, gm)) is a weighted alternation (we divide by the order of the
stabilizer of the term we alternate).

Let f , g1, …, gm be rational functions on a complex variety X. Set

rn+m(m + 1) : {f }n ⊗ g1 ∧ … ∧ gm �→

L̂n(f ) · Am

{∑

p≥0

1

2p + 1

2p∧

i=1

d log |gi| ∧
m∧

j=2p+1

di arg gj

}
(3.61)

+
∑

k≥1

∑

1≤p≤m

βk,pL̂n−k,k(f ) ∧ Am

{
log |g1|

p∧

i=2

d log |gi| ∧
m∧

j=p+1

di arg gj

}
. (3.62)

26Proposition 26 The differential form rn+m(m + 1)({f }n ⊗ g1 ∧ … ∧ gm) defines
a distribution on X(C).

Example 27. rn(1)({f }n) = L̂n(f ).

Example 28. rn(n)(g1 ∧ … ∧ gn) = rn−1(g1 ∧ … ∧ gn).

Example 29. m = 1, n is arbitrary. Then

rn+1(2) : {f }n ⊗ g �→ L̂n(f )di arg g −
n−1∑

k=1

βk+1L̂n−k,k(f ) · log |g|

Example 30. m = 2, n is arbitrary.

rn+2(3) : {f }n ⊗ g1 ∧ g2 �→

L̂n(f )

{
di arg g1 ∧ di arg g2 +

1

3
d log |g1| ∧ d log |g2|

}

−
n−1∑

k=1

βk+1L̂n−k,k(f ) ∧ (log |g1|di arg g2 − log |g2|di arg g1)

+
∑

k≥1

βk+2L̂n−k,k(f ) ∧ (log |g1|d log |g2| − log |g2|d log |g1|)
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Let Ai(ηX) be the space of real smooth i-forms at the generic point ηX := SpecC(X)
of a complex variety X. Let D be the de Rham differential on distributions on X(C),
and d the de Rham differential on Ai(ηX). For example:

d(di arg z) = 0; D(di arg z) = 2πiδ(z)

Recall the residue homomorphisms defined in Chapt. 4.2.

31 Theorem 31
a) The maps rn(·) provide a homomorphism of complexes

Bn(C(X)) ��
δ

��
rn(1)

Bn−1(C(X)) ⊗ C(X)∗ ��
δ

��
rn(2)

… ��
δ ∧n

C(X)∗

��
rn(n)

A0(ηX)(n − 1) ��
d

A1(ηX)(n − 1) ��
d

… ��
d

An−1(ηX)(n − 1)

b) The maps rn(m) are compatible with the residues:

D ◦ rn(m) − rn(m + 1) ◦ δ = 2πi ·
∑

Y∈X(1)

rn−1(m − 1) ◦ ∂vY , m < n

D ◦ rn(n) − πn(d log f1 ∧ … ∧ d log fn) = 2πi ·
∑

Y∈X(1)

rn−1(n − 1) ◦ ∂vY

where vY is the valuation on the field C(X) defined by a divisor Y .

Let X be a regular variety over C. Recall the n-th Beilinson–Deligne complex
RD(n)X defined as a total complex associated with the following bicomplex of
sheaves in classical topology on X(C):

(
D0

X
��

d

D1
X

��
d

… ��
d

Dn
X

��
d

Dn+1
X

��
d

…

Ωn
X,log

��
∂

OO

πn

Ωn+1
X,log

��
∂

OO

πn

)
⊗ R(n − 1)

Here D0
X is in degree 1 and (Ω•

X,log, ∂) is the de Rham complex of holomorphic
forms with logarithmic singularities at infinity. We will denote by RD(n)(U) the
complex of the global sections.
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Theorem 31 can be reformulated as follows. Set r̃n(i) := rn(i) for i < n and

r̃n(n) : Λn
C(X)∗ → An−1(ηX)(n − 1) ⊕ Ωn

log(ηX)

f1 ∧ … ∧ fn �→ rn(n)(f1 ∧ … ∧ fn) + d log f1 ∧ … ∧ d log fn (3.63)

32Theorem 32 Let X be a complex algebraic variety. Then there is a homomorphism
of complexes

r̃n(·) : Γ(C(X); n) → RD(n)(SpecC(X)) (3.64)

compatible with the residues as explained in the part b) of Theorem 31.

The General Case 3.5.2

Let X be a regular projective variety over a field F. Let d := dimX. Then the complex
Γ(X; n) should be defined as the total complex of the following bicomplex:

Γ(F(X); n) → ⊕Y1∈X(1) Γ(F(Y1); n − 1)[−1] →
⊕Y2∈X(2) Γ(F(Y2); n − 2)[−1] → … → ⊕Yd∈X(d) Γ(F(Yd); n − d)[−d] ,

where the arrows are provided by the residue maps, see [27], pp. 239–240. The
complex Γ(X; n) ⊗Q should be quasiisomorphic to the weight n motivic complex.

However there is a serious difficulty in the definition of the complex Γ(X; n)
for a general variety X and n > 3, ([27], p. 240). It would be resolved if homotopy
invariance of the polylogarithmic complexes were known (Conjecture 1.39 in [27]).
As a result we have an unconditional definition of the polylogarithmic complexes
Γ(X; n) only in the following cases:
a) X = Spec(F), F is an arbitrary field.
b) X is an regular curve over any field, and n is arbitrary.
c) X is an arbitrary regular scheme, but n ≤ 3.

Now let F be a subfield of C. Having in mind applications to arithmetic, we will
restrict ourself by the case when F = Q. Assuming we are working with one of the
above cases, or assuming the above difficulty has been resolved, let us define the
regulator map

Γ(X; n) → CD(X(C);R(n)) .

We specify it for each of Γ(Q(Yk); n − k)[−k] where k = 0, …, d. Namely, we take
the homomorphism rn−k(·) for Spec(Q(Yk) and multiply it by (2πi)n−kδYn−k . Notice
that the distribution δY depends only on the generic point of a subvariety Y . Then
Theorem 31, and in particular its part b), providing compatibility with the residues
property, guarantee that we get a homomorphism of complexes. Here are some
examples.
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Weight One3.5.3

The regulator map on the weight one motivic complex looks as follows:

Q(X)∗ ��

��
r1(1)

⊕Y∈X(1)Z

��
r1(2)

D0,0 ��
2∂∂

D1,1
cl,R (1)

r1(2) : Y1 �→ 2πi · δY1 , r1(1) : f �→ log |f |
Here the top line is the weight 1 motivic complex, sitting in degrees [1, 2].

Weight Two3.5.4

The regulator map on the weight two motivic complexes looks as follows.

B2(Q(X)) ��
δ

��
r2(1)

Λ2
Q(X)∗ ��

∂

��
r2(2)

⊕Y∈X(1)Q(Y)∗ ��
∂

��
r2(3)

⊕Y∈X(2)Z

��
r2(4)

D0,0
R (1) ��

D

(D0,1 ⊕ D1,0)R (1) ��
D

D1,1
R (1) ��

2∂∂

D2,2
cl,R (2)

where D is the differential in CD(X,R(2))

r2(4) : Y2 �→ (2πi)2 · δY2 ; r2(3) : (Y1, f ) �→ 2πi · log |f |δY1

r2(2) : f ∧ g �→ − log |f |di arg g + log |g|di arg f ; r2(1) : {f }2 �→ L̂2(f )

To prove that we get a morphism of complexes we use Theorem 31. The following
argument is needed to check the commutativity of the second square. The de Rham
differential of the distribution r2(2)(f ∧ g) is

D
(
− log |f |di arg g + log |g|di arg f

)
=

π2(d log f ∧ log g) + 2πi · (log |g|δ(f ) − log |f |δ(g)) .

This does not coincide with r2(3) ◦ ∂(f ∧ g), but the difference is

(D ◦ r2(2) − r2(3) ◦ ∂)(f ∧ g) = π2(d log f ∧ log g) ∈ (D0,2 ⊕ D2,0)R (1) .
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Defining the differential D on the second group of the complex CD(X,R(2)) we
take the de Rham differential and throw away from it precisely these components.
Therefore the middle square is commutative.

Weight Three 3.5.5

The weight three motivic complex Γ(X; 3) is the total complex of the following
bicomplex: (the first group is in degree 1)

B3(Q(X)) �� B2(Q(X)) ⊗Q(X)∗ ��

��

Λ3
Q(X)∗

��

⊕Y1∈X(1)B2(Q(Y1)) �� ⊕Y1∈X(1) Λ2
Q(Y1)∗

��

⊕Y2∈X(2)Q(Y2)∗

��

⊕Y3∈X(3)Q(Y3)∗

The Deligne complex CD(X,R(3)) looks as follows:

D3,3
cl,R (3)

D0,2 ��
∂

D1,2 ��
∂

D2,2

��2∂∂ x
x
x
x
x
x
x
x

D0,1 ��
∂

OO

∂

D1,1 ��
∂

OO

∂

D1,2

OO

∂

D0,0 ��
∂

OO

∂

D1,0 ��
∂

OO

∂

D2,0

OO

∂
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We construct the regulator map Γ(X; 3) → CD(X,R(3)) by setting

r3(6) : Y3 �→ (2πi)3 · δY3

r3(5) : (Y2, f ) �→ (2πi)2 · log |f |δY2

r3(4) : (Y1, f ∧ g) �→ 2πi · (− log |f |di arg g + log |g|di arg f )δY1

r3(3) : (Y1, {f }2) �→ 2πi · L̂2(f )δY1

r3(3) : f1 ∧ f2 ∧ f3 �→ Alt3

(1

6
log |f1|d log |f2| ∧ d log |f3|

+
1

2
log |f1|di arg f2 ∧ di arg f3

)

r3(2) : {f }2 ⊗ g �→ L̂2(f )di arg g

−
1

3
log |g| ·

(
− log |1 − f |d log |f | + log |f |d log |1 − f |

)

r3(1) : {f }3 �→ L̂3(f )

Classical Polylogarithms and Special Values
of ζ-Functions of Algebraic Varieties3.5.6

We conjecture that the polylogarithmic motivic complex Γ(X; n) ⊗ Q should be
quasiisomorphic to the weight n motivic complex, and Beilinson’s regulator map
under this quasiisomorphism should be equal to the defined above regulator map
on Γ(X; n). This implies that the special values of ζ-functions of algebraic varieties
outside of the critical strip should be expressed via classical polylogarithms.

The very special case of this conjecture when X = Spec(F) where F is a number
field is equivalent to Zagier’s conjecture [67].

The next interesting case is when X is a curve over a number field. The conjecture
in this case was elaborated in [29], see also [34] for a survey. For example if X is an
elliptic curve this conjecture suggests that the special values L(X, n) for n ≥ 2 are
expressed via certain generalized Eisenstein–Kronecker series. For n = 2 this was
discovered of S. Bloch [11], and for n = 3 it implies Deninger’s conjecture [21].

A homomorphism from K-theory to Hi(Γ(X; n)) ⊗ Q has been constructed in
the following cases:
(1) F is an arbitrary field, n ≤ 3 ([27, 28, 31]]) and n = 4, i > 1 (to appear).
(2) X is a curve over a number field, n ≤ 3 ([31]) and n = 4, i > 1 (to appear).

In all these cases we proved that this homomorphism followed by the regulator
map on polylogarithmic complexes (when F = C(X) in (1)) coincides with Beilin-
son’s regulator. This proves the difficult “surjectivity” property: the image of the
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regulator map on these polylogarithmic complexes contains the image of Beilin-
son’s regulator map in the Deligne cohomology. The main ingredient of the proof
is an explicit construction of the motivic cohomology class

H2n(BGL•, Γ(∗; n)) .

The results (2) combined with the results of R. de Jeu [44, 45] prove that the
image of Beilinson’s regulator map in the Deligne cohomology coincides with the
image of the regulator map on polylogarithmic complexes in the case (2).

Coda: Polylogarithms on Curves, Feynman Integrals
and Special Values of L-Functions 3.5.7

The classical polylogarithm functions admit the following generalization. Let X be
a regular complex algebraic curve. Let us assume first that X is projective. Let us
choose a metric on X(C). Denote by G(x, y) the Green function provided by this
metric. Then one can define real-valued functions Gn(x, y) depending on a pair of
points x, y of X(C) with values in the complex vector space Sn−1H1(X(C),C)(1),
see [36], Chapt. 9.1. By definition G1(x, y) is the Green function G(x, y). It has
a singularity at the diagonal, but provides a generalized function. For n > 1 the
function Gn(x, y) is well-defined on X(C) × X(C). Let X = E be an elliptic curve.
Then the functions Gn(x, y) are translation invariant, and thus reduced to a signle
variable functions: Gn(x, y) = Gn(x−y). The function Gn(x) is given by the classical
Kronecker–Eisenstein series. Finally, adjasting this construction to the case when
X = C∗, we get a function Gn(x, y) invariant under the shifts on the group C∗,
i.e. one has Gn(x, y) = Gn(x|y). The function Gn(z) is given by the single-valued
version (3.39) of the classical n-logarithm function.

Let us extend the function Gn(x, y) by linearity to a function Gn(D1, D2) de-
pending on a pair of divisors on X(C). Although the function Gn(x, y) depends
on the choice of metric on X(C), the restriction of the function Gn(D1, D2) to
the subgroups of the degree zero divisors is independent of the choice of the
metric.

Let X be a curve over a number field F. In [36, section 9.1] we proposed a con-
jecture which allows us to express the special values L(Symn−1H1(X), n) via deter-
minants whose entries are given by the values of the function Gn(D1, D2), where
D1, D2 are degree zero divisors on (X(F)) invariant under the action of the Ga-
lois group Gal(F|F). In the case when X is an elliptic curve it boils down to the
so-called elliptic analog of Zagier’s conjecture, see [37, 66]. It has been proved for
n = 2 at [39], and a part of this proof (minus surjectivity) can be transformed to
the case of arbitrary X.

It was conjectured in the Sect. 9.3 of [36] that the special values L(Symn−1H1(X),
n + m − 1), where m ≥ 1, should be expressed similarly via the special values of the
depth m multiple polylogarithms on the curve X, defined in the Sect. 9.2 of loc. cit.
One can show that in the case when X = E is an elliptic curve, and n = m = 2, this
conjecture reduces to Deninger’s conjecture [21] on L(E, 3), which has been proved
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in [29] An interesting aspect of this story is that the multiple polylogarithms on
curves are introduced via mathematically well defined Feynman integrals. This
seems to be the first application of Feynman integrals in number theory.

Motivic Lie Algebras
and Grassmannian Polylogarithms3.6

Motivic Lie Coalgebras and Motivic Complexes3.6.1

Beilinson conjectured that for an arbitrary field F there exists an abelian Q-
category MT(F) of mixed Tate motives over F. This category is supposed to be
a mixed Tate category, see Sect. 8 of [38] for the background. Then the Tannakian
formalism implies that there exists a positively graded Lie coalgebra L•(F) such
that the category of finite dimensional graded comodules over L•(F) is naturally
equivalent to the category MT(F).

Moreover L•(F) depends functorially on F. This combined with Beilinson’s
conjectural formula for the Ext groups in the category MT(F) imply that the
cohomology of this Lie coalgebra are computed by the formula

Hi
(n)(L•(F)) = grγ

nK2n−i(F) ⊗Q (3.65)

where Hi
(n) means the degree n part of Hi. This conjecture provides a new point of

view on algebraic K-theory of fields, suggesting and explaining several conjectures
and results, see ch. 1 [28].

The degree n part of the standard cochain complex

L•(F)
δ→ Λ2L•(F)

δ∧Id−Id∧δ→ Λ3L•(F) → …

of the Lie coalgebra L•(F) is supposed to be quasiisomorphic to the weight n
motivic complex of F, providing yet another point of view on motivic complexes.
For example the first four of the motivic complexes should look as follows:

L1(F); L2(F) → Λ2L1(F); L3(F) → L2(F) ⊗ L1(F) → Λ3L1(F)

L4(F) → L3(F) ⊗ L1(F) ⊕ Λ2L2(F) → L2(F) ⊗ Λ2L1(F) → Λ4L1(F) .

Comparing this with the formula (3.65), the shape of complexes (3.10) and (3.13),
and the known information relating their cohomology with algebraic K-theory we
conclude the following. One must have

L1(F) = F∗ ⊗Q; L2(F) = B2(F) ⊗Q
and we expect to have an isomorphism

B3(F) ⊗Q ∼→ L3(F) .
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Moreover the motivic complexes (3.10) and (3.13) are simply the degree n parts
of the standard cochain complex of the Lie coalgebra L•(F). More generally, the
very existence for an arbitrary field F of the motivic classical polylogarithms (3.50)
implies that one should have canonical homomorphisms

ln : Bn(F) → Ln(F) .

These homomorphisms are expected to satisfy the basic relation 3.52. Therefore the
maps ln give rise to a canonical homomorphism from the weight n polylogarithmic
complex of F to the degree n part of the standard cochain complex of L•(F).

Bn(F) ��

��
ln

Bn−1(F) ⊗ F∗ ��

��
ln−1∧l1

… �� ΛnF∗

��
=

Ln(F) �� Λ2
(n)L•(F) �� … �� ΛnL1(F)

(3.66)

where Λ2
(n) denotes the degree n part of Λ2

(n). For n = 1, 2, 3, these maps, combined
with the ones (3.43), lead to the maps above. For n > 3 the map of complexes
(3.66) will not be an isomorphism. The conjecture that it is a quisiisomorphism is
equivalent to the Freeness conjecture for the Lie coalgebra L•(F), see [27, 28].

Therefore we have two different points of view on the groups Bn(F) for n = 1, 2, 3:
according to one of them they are the particular cases of the groups Bn(F), and
according to the other they provide an explicit computation of the first three of
the groups Ln(F). It would be very interesting to find an explicit construction
of the groups Ln(F) for n > 3 generalizing the definition of the groups Bn(F).
More specifically, we would like to have a “finite dimensional” construction of all
vector spaces Ln(F), i.e. for every n there should exist a finite number of finite
dimensional algebraic varieties Xi

n and R
j
n such that

Ln(F) = Coker
(⊕jQ[Rj

n(F)] → ⊕iQ[Xi
n(F)]

)
.

Such a construction would be provided by the scissor congruence motivic Hopf
algebra of F ([6,7]). However so far the problem in the definition of the coproduct in
loc. cit. for non generic generators has not been resolved. A beautiful construction
of the motivic Lie coalgebra of a field F was suggested by Bloch and Kriz in [14].
However it is not finite dimensional in the above sense.

Grassmannian Approach of the Motivic Lie Coalgebra 3.6.2

We suggested in [31] that there should exist a construction of the Lie coalge-
bra L•(F) such that the variety Xn is the variety of configurations of 2n points in
Pn−1 and the relations varieties R

j
n are provided by the functional equations for the

motivic Grassmannian n-logarithm. Let us explain this in more detail.
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Let L̃n(F) be the free abelian group generated by 2n-tuples of points (l1, …, l2n)
in Pn−1(F) subject to the following relations:
1) (l1, …, l2n) = (gl1, …, gl2n) for any g ∈ PGLn(F).
2) (l1, …, l2n) = (−1)|σ|(lσ(1), …, lσ(2n)) for any permutation σ ∈ S2n.
3) for any 2n + 1 points (l0, …, l2n) in Pn−1(F) one has

2n∑

i=0

(−1)i(l0, …̂li, …, , l2n) = 0 .

4) for any 2n + 1 points (l0, …, l2n) in Pn(F) one has

2n∑

i=0

(−1)i(li|l0, …̂li, …, , l2n) = 0 .

We conjecture that Ln(F) is a quotient of L̃n(F). It is a nontrivial quotient al-
ready for n = 3. Then to define the Lie coalgebra L•(F) one needs to produce
a cobracket

δ : Ln(F) → ⊕iLi(F) ∧ Ln−i(F) .

Here is how to do this in the first nontrivial case, n = 4.
Let us define a homomorphism

L̃4(F)
δ→ B3(F) ⊗ F∗ ⊕ B2(F) ∧ B2(F)

by setting δ = (δ3,1, δ2,2) where

δ3,1(l1, …, l8) := −
1

9
Alt8

((
r3(l1|, l2, l3, l4; l5, l6, l7) +

{
r(l1l2|l3, l6, l4, l5)

}
3

−

−
{

r(l1l2|l3, l5, l4, l6)
}

3

) ∧ ∆(l5, l6, l7, l8)
) ∈ B3(F) ∧ F∗

δ2,2(l1, …, l8) :=
1

7
Alt8

({
r2(l1, l2|l3, l4, l5, l6)

}
2
∧ {r2(l3, l4|l1, l2, l5, l7)

}
2

)

∈ Λ2B2(F) .

These formulae are obtained by combining the definitions at pp. 136–137 and p. 156
of [31]. The following key result is Theorem 5.1 in loc. cit.

33 Theorem 33
a) The homomorphism δ kills the relations 1)–4).
b) The following composition equals to zero:

L̃4(F)
δ→ B3(F) ⊗ F∗ ⊕ B2(F) ∧ B2(F)

δ→ B2(F) ⊗ Λ2F∗
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Here the second differential is defined by the Leibniz rule, using the differentials
in complexes (3.10) and (3.13).

Taking the “connected component” of zero in Kerδ (as we did in Sect. 3.4.1
above, or in [27]) we should get the set of defining relations for the group L4(F).
An explicit construction of them is not known.

The Motivic Grassmannian Tetralogarithm 3.6.3

Let F be a function field on a complex variety X. There is a morphism of complexes

B3(F) ⊗ F∗ ⊕ B2(F) ∧ B2(F) ��
δ

��
R4(2)

B2(F) ⊗ Λ2F∗ ��
δ

��
R4(3)

Λ4F∗

��
R4(4)

A1(SpecF) ��
d

A2(SpecF) ��
d

A3(SpecF)

extending the homomorphism r4(∗) from Chapt. 5. Namely, R4(∗) = r4(∗) for
∗ = 3, 4 and R4(2) = (r4(2), r′

4(2)) where

r′
4(2) : Λ2B2(F) → A1(SpecF)

{f }2 ∧ {g}2 �→ 1

3
· (L̂2(g) · α(1 − f , f ) − L̂2(f ) · α(1 − g, g)

)

It follows from Theorem 33 that the composition R4(2) ◦ δ(l1, …, l8) is a closed 1-
form on the configuration space of 8 points inCP3. One can show (Proposition 5.3
in [31]) that integrating this 1-form we get a single valued function on the config-
uration space, denoted LM

4 and called the motivic Grassmannian tetralogarithm.
It would be very interesting to compute the difference LM

4 − LL
4 , similarly to the

formula (3.40) in the case n = 3. We expect that is expressed as a sum of products
of functions L3, L2 and log | ∗ |.

34Theorem 34
a) There exists a canonical map

K[3]
7 (F) ⊗Q→ Ker

(
L̃4(F)

δ→ B3(F) ⊗ F∗ ⊕ Λ2B2(F)
)

Q

b) In the case F = C the composition K7(C) → L̃4(C)
LM

4→ R coincides with
a nonzero rational multiple of the Borel regulator map.

The generalization of the above picture to the case n > 4 is unknown. It would be
very interesting at least to define the motivic Grassmannian polylogarithms via
the Grassmannian polylogarithms.
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For n = 3 the motivic Grassmannian trilogarithm LM
3 is given by the first term

of the formula (3.40). It is known ([41]) that LL
3 does not provide a homomorphism

L3(C) → R since the second term in (3.40) does not have this property. Indeed,
the second term in (3.40) vanishes on the special configuration of 6 points in P2,
but does not vanish at the generic configuration. On the other hand the defining
relations in L3(F) allow to express any configuration as a linear combination of
the special ones.

We expect the same situation in general: for n > 2 the Grassmannian n-
logarithms should not satisfy all the functional equations for the motivic Grass-
mannian n-logarithms. It would be very interesting to find a conceptual explanation
of this surprising phenomena.
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Introduction 4.1

Warning: This chapter is full of conjectures. If you are allergic to them it may be
harmful to your health. Parts of them are proven, though.

In algebraic geometry, one encounters two important kinds of objects: vector
bundles and algebraic cycles. The first lead to algebraic K-theory while the second
lead to motivic cohomology. They are related via the Chern character and Atiyah–
Hirzebruch-like spectral sequences.

Vector bundles and algebraic cycles offer very different features. On the one
hand, it is often more powerful and easier to work with vector bundles: for example
Quillen’s localisation theorem in algebraic K-theory is considerably easier to prove
than the corresponding localisation theorem of Bloch for higher Chow groups. In
short, no moving lemmas are needed to handle vector bundles. In appropriate cases
they can be classified by moduli spaces, which underlies the proof of finiteness
theorems like Tate’s theorem [190] and Faltings’ proof of the Mordell conjecture, or
Quillen’s finite generation theorem for K-groups of curves over a finite field [66].
They also have a better functoriality than algebraic cycles, and this has been used
for example by Takeshi Saito in [164, Proof of Lemma 2.4.2] to establish functoriality
properties of the weight spectral sequences for smooth projective varieties over Qp.

On the other hand, it is fundamental to work with motivic cohomology: as E2-
terms of a spectral sequence converging to K-theory, the groups involved contain
finer torsion information than algebraic K-groups (see Remark 3), they appear
naturally as Hom groups in triangulated categories of motives and they appear
naturally, rather than K-groups, in the arithmetic conjectures of Lichtenbaum on
special values of zeta functions.

In this survey we shall try and clarify for the reader the interaction between
these two mathematical objects and give a state of the art of the (many) conjectures
involving them, and especially the various implications between these conjectures.
We shall also explain some unconditional results.

Sections 4.2 to 4.5 are included for the reader’s convenience and are much more
developed in other chapters of this Handbook: the reader is invited to refer to
those for more details. These sections are also used for reference purposes. The
heart of the chapter is in Sects. 4.7 and 4.8: in the first we try and explain in much
detail the conjectures of Soulé and Lichtenbaum on the order of zeroes and special
values of zeta functions of schemes of finite type over Spec Z, and an approach to
prove them, in characteristic p (we don’t touch the much more delicate Beilinson
conjectures on special values of L-functions of Q-varieties and their refinements
by Bloch–Kato and Fontaine–Perrin-Riou; these have been excellently exposed in
many places of the literature anyway). In the second, we indicate some cases where
they can be proven, following [95].

There are two sources for the formulation of (ii) in Theorem 54. One is Soulé’s ar-
ticle [176] and the article of Geisser building on it [56], which led to the equivalence
of (ii) with (i). The other source is the formulation of the Beilinson–Lichtenbaum
conjecture and its treatment by Suslin–Voevodsky in (the first version of) [187],
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which led to the equivalence of (ii) with (iii). As the Bloch–Kato conjecture and
the Beilinson–Lichtenbaum conjecture both take their roots in number theory
and arithmetic geometry, it is a bit of a paradox that they seem irrelevant to
the conjectures on special values of zeta functions after all: see the discussion in
Sect. 4.9.1.

I have tried to keep the exposition as light as possible without sacrificing rigour.
This means that many proofs are omitted and replaced by references to the liter-
ature. Many others are just sketches, although hopefully these should be enough
for the interested reader to reconstitute them. Some proofs are complete, though.
I hope this will not create any frustration or confusion.

I wish to thank Yves André, Antoine Chambert-Loir, Pierre Colmez, Thomas
Geisser, Dan Grayson, Manfred Kolster, Max Karoubi, Fabien Morel, Thong Nguyen
Quang Do, Joël Riou, Jean-Pierre Serre, V. Srinivas, Chuck Weibel and the referee
for helpful comments on the first versions of this text. This work was partly revised
during a stay at TIFR, Mumbai, under CEFIPRA Project 2501-1 Algebraic groups
in arithmetic and geometry, and I gratefully acknowledge its support.

The Picture in Algebraic Topology4.2

(For complements on this section, see Geisser’s chapter, §4, Karoubi’s chapter in
this Handbook and also [99, ch. V].)

The picture in algebraic topology is quite simple: singular cohomology and
complex K-theory are related both via the Atiyah–Hirzebruch spectral sequence and
via the Chern character. The latter lets the Atiyah–Hirzebruch spectral sequence
degenerate rationally, something the Adams operations also perform.

More precisely, let X be a reasonable topological space: say, X has the homotopy
type of a CW-complex. The singular cohomology of X, H∗(X, Z), is the cohomology
of the cochain complex Hom(C∗(X), Z), where

Ci(X) = Z
[
C0(∆i, X)

]
,

where C0 denotes continuous functions and ∆i is the standard i-simplex. The
differential Ci(X) → Ci−1(X) is defined as the alternating sum of the restrictions
of a given map to (i−1)-dimensional faces. The functors Hi(−, Z) are representable
in the sense that

Hi(X, Z) = [X, K(Z, i)]

where K(Z, i) is the i-th Eilenberg–Mac Lane space of Z.
On the other hand, complex K-theory of X may be defined as

Ki(X) =





[X, Z × BU] if i is even

[X, U] if i is odd ,
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where U is the infinite unitary group. Bott periodicity gives canonical isomor-
phisms Ki(X) � Ki+2(X). If X is compact, K0(X) (stably) classifies complex vector
bundles over X.

The Atiyah–Hirzebruch spectral sequence has the following form:

E
p,q
2 =





Hp(X, Z) if q is even

0 if q is odd
⇒ Kp+q(X) (4.1)

while the Chern character has the form

ch : K0(X) ⊗ Q →
∏

i≥0

H2i(X, Q)

ch : K1(X) ⊗ Q →
∏

i≥0

H2i+1(X, Q) .

These are isomorphisms for X finite dimensional, and they can be used to prove
that (4.1) ⊗ Q degenerates in this case. An alternate proof is to use the Adams
operations

Ψk : Ki(X) → Ki(X) .

One shows that Ψk acts on (4.1) and induces multiplication by qk on E
p,2q
2 .

Hence all differentials in (4.1) are torsion, with explicit upper bounds; this yields
in particular the formula:

Ki(X)(j) � H2j+i(X, Z) up to groups of finite exponent (4.2)

where Ki(X)(j) stands for the common eigenspace of weight j on Ki(X) for all Adams
operations.

If X is a finite CW-complex, its singular cohomology H∗(X, Z) is finitely gen-
erated. This can be proven easily by induction on the number of cells, using the
well-known cohomology of spheres:

Hi(Sn, Z) =





Z if i = 0, n (except i = n = 0!)

0 otherwise .

By (4.1), this implies that the groups Ki(X) are also finitely generated in this
case. Conversely, suppose that for a given space X we know that the Ki(X) are
finitely generated. Then using the partial degeneration of (4.1), we can deduce
that H∗(X, Z) is finitely generated up to some small torsion. This approach will
fail if we want to get finite generation of H∗(X, Z) on the nose, unless X has small
cohomological dimension.
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The Picture in Algebraic Geometry4.3

In algebraic geometry, the picture is a bit more complicated.

Algebraic K-Theory4.3.1

Historically, the theory that was defined first was algebraic K-theory, denoted with
lower indices. The definition of K0(X) (X a scheme) goes back to Grothendieck
(late fifties) and actually predates topological K-theory: K0(X) classifies algebraic
vector bundles over X, the relations being given by short exact sequences. Among
the many proposed definitions for the higher K-groups, the one that was the most
useful was that of Quillen around 1971/72 [154]: to any noetherian scheme he
associates the category M(X) of coherent sheaves on X and the full subcategory
P (X) of locally free sheaves: M(X) is abelian and P (X) is an exact subcategory.
Then

Ki(X) = πi(ΩBQP (X))

K ′
i (X) = πi(ΩBQM(X))

where QE is Quillen’s Q-construction on an exact category E and B denotes the
classifying space (or nerve) construction. For i = 0, K ′

0(X) classifies coherent
sheaves on X with respect to short exact sequences, a definition which also goes
back to Grothendieck. There is always a map

K∗(X) → K ′
∗(X) ,

which is an isomorphism when X is regular (“Poincaré duality”).
Two fundamental additions to the foundations of algebraic K-theory were the

works of Waldhausen in the early eighties [208] and Thomason–Trobaugh in
the late eighties [196]. In particular, Thomason–Trobaugh slightly modifies the
definition of Quillen’s algebraic K-theory so as to obtain functoriality missing in
Quillen’s definition. His K-groups will be denoted here by KTT to distinguish them
from those of Quillen: there is always a map

K∗(X) → KTT
∗ (X)

and this map is an isomorphism as soon as X has an ample family of vector bundles,
for example if X is quasi-projective over an affine base, or is regular.

On the other hand, motivated by Matsumoto’s theorem giving a presentation of
K2 of a field k [130], Milnor introduced in [141] a graded commutative ring

KM
∗ (k) = T(k∗)|I ,

where T(k∗) is the tensor algebra of the multiplicative group of k and I is the
two-sided ideal generated by the x ⊗ (1 − x) for x ≠ 0, 1; its graded pieces are called
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the Milnor K-groups of k. Since algebraic K-theory has a product structure, there
are natural homomorphisms

KM
i (k) → Ki(k) ,

which are isomorphisms for i ≤ 2 (the case i = 2 being Matsumoto’s theorem)
but not for i ≥ 3. While Milnor stresses that his definition is purely ad hoc, it
came as a surprise to many mathematicians that Milnor’s K-groups are in fact not
ad hoc at all and are fundamental objects in our story. See Theorem 2 below as
a sample.

We might say that algebraic K-theory is an algebro-geometric analogue of
complex K-theory. It took about 10 more years to get a correct definition of the
corresponding analogue of singular cohomology for smooth schemes over a field,
and a further 6 or 7 years for arbitrary schemes over a field of characteristic 0. See
the beautiful introduction of [14].

However, early on, Quillen already looked for a strengthening of this analogue
and conjectured the following version of an Atiyah–Hirzebruch spectral sequence:

1Conjecture 1: (Quillen Conjecture [156]) Let A be a finitely generated regular
Z-algebra of Krull dimension d and l a prime number. Then there exists a spectral
sequence with E2-terms

E
p,q
2 =





0 if q is odd

H
p
ét(A[l−1], Zl(i)) if q = −2i

and whose abutment is isomorphic to K−p−q(A) ⊗ Zl at least for −p − q ≥ 1 + d.

In this conjecture, the étale cohomology groups may be defined as inverse limits of
étale cohomology groups with finite coefficients; they coincide with the continuous
étale cohomology groups of Dwyer–Friedlander [44] and Jannsen [76] by Deligne’s
finiteness theorems [SGA 4 1/2, Th. finitude]. Note that if A is a ring of integers of
a number field, then such a spectral sequence must degenerate for cohomological
dimension reasons when l is odd or A is totally imaginary, as pointed out by
Quillen.

The Quillen conjecture and a complementary conjecture of Lichtenbaum re-
lating algebraic K-theory and the Dedekind zeta function when A is the ring of
integers of a number field (see Conjecture 46 below) have inspired much of the
development of the arithmetico-geometric side of algebraic K-theory ever since.
For the benefit of the reader, let us shortly describe the progress towards this still
unproven conjecture:
1. In [155] and [66], Quillen proved that the K-groups of rings of algebraic

integers or of smooth curves over a finite field are finitely generated.
2. In [173], following a suggestion of Quillen, Soulé constructed higher Chern

classes from algebraic K-theory with finite coefficients to étale cohomology.
He proved that the corresponding l-adic homomorphisms are surjective up
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to finite torsion in the case of rings of integers in a global field. This gave the
first application of algebraic K-theory to an algebraic problem outside the field
(finiteness of certain l-adic cohomology groups).

3. In [48] and [49], Friedlander introduced étale K-theory in the geometric case,
inspired by ideas from Artin–Mazur’s étale homotopy (compare [8, p. 0.5]).
He formulated a conjecture in [49] for complex varieties, related to Quillen’s
Conjecture 1 and that he christened the Quillen–Lichtenbaum conjecture.

4. In [44], Dwyer and Friedlander defined continuous étale cohomology and
[continuous] étale K-theory in full generality. They then did two quite different
things:
a) They constructed a spectral sequence with E2-terms the former, con-

verging to the latter, for any Z[l−1]-scheme of finite étale cohomological
l-dimension.

b) They defined a natural transformation

Ki(X) ⊗ Zl → Két
i (X)̂ (4.3)

(where the right hand side is l-adic étale K-theory) and proved that this
map is surjective when X is the spectrum of a ring of integers of a global
field.

This last result refined the result of Soulé, because in this case the spectral
sequence of a) degenerates for dimension reasons. They reinterpreted Quillen’s
conjecture by conjecturing that the version of (4.3) with finite coefficients is
an isomorphism for i large enough, and christened this the “Lichtenbaum–
Quillen conjecture”.

5. In [43], Dwyer, Friedlander, Snaith and Thomason introduced algebraic K-
theory with the Bott element inverted, proved that it maps to a version of étale
K-theory and that, under some technical assumptions, this map is surjective.
So “algebraic K-theory eventually surjects onto étale K-theory”. (To the best
of my knowledge, one can trace back the idea of using roots of unity to define
an algebraic version of the Bott element, and to invert it, to Snaith [172].)

6. In [193], Thomason went a step further by showing that, at least for nice enough
schemes, étale K-theory is obtained from algebraic K-theory by “inverting the
Bott element”. Hence, in this case, the spectral sequence of 4 a) converges to
something close to algebraic K-theory. This refined the Dwyer–Friedlander
result a). (Actually, Thomason constructs a priori a spectral sequence like that
one converging to K-theory with the Bott element inverted, and uses it to show
that this coincides with Dwyer–Friedlander’s étale K-theory.)

7. Meanwhile, the Milnor conjecture and the more general Bloch–Kato conjecture
(see Conjecture 16 below) showed up. The latter was proven in degree 2 by
Merkurjev–Suslin [132]: this was the second application of algebraic K-theory
to an algebraic problem outside algebraic K-theory (structure of central simple
algebras). Then it was proven in degree 3 for l = 2 by Merkurjev–Suslin [134]
and independently Rost [161].
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8. At the same time, Merkurjev–Suslin [133] and Levine [113] independently
studied the indecomposable part of K3 of a field F (i.e. K3(F)|KM

3 (F)). This was
the first instance of work in the direction “the Bloch–Kato conjecture implies
the Beilinson–Lichtenbaum conjecture”.

9. In [114], Levine went a step further and proved that a form of the Bloch–
Kato conjecture for (possibly singular) semi-local rings implies a form of the
Quillen–Lichtenbaum conjecture, expressed in terms of Soulé’s higher Chern
classes.

10. In [83] and [85], Kahn introduced anti-Chern classes going from étale coho-
mology to algebraic K-theory and étale K-theory, defined when the Bloch–Kato
conjecture is true; he recovered the results of Dwyer–Friedlander in this way.

11. In [74] (unfortunately unpublished), Hoobler proved that the Bloch–Kato
conjecture for regular semi-local rings implies the same conjecture for arbi-
trary semi-local rings. A previous argument of Lichtenbaum [125], relying
on Gersten’s conjecture, showed that the Bloch–Kato conjecture for regular
semi-local rings of geometric origin follows from the Bloch–Kato conjecture
for fields.

12. Meanwhile, motivic cohomology started being introduced, first by Bloch and
then by Friedlander, Suslin and Voevodsky. Spectral sequences from mo-
tivic cohomology to algebraic K-theory were constructed by Bloch–Lichten-
baum [22], Friedlander-Suslin [51] and Levine [119], and with different ideas
by Grayson [67] and Hopkins–Morel [75].

13. In [187], Suslin and Voevodsky formulated a Beilinson–Lichtenbaum con-
jecture for motivic cohomology (see Conjecture 17 below) and proved that,
under resolution of singularities, it follows from the Bloch–Kato conjecture.
In [61] and [62], Geisser and Levine removed the resolution of singularities
assumption and also covered the case where the coefficients are a power of the
characteristic.

14. Voevodsky proved the Bloch–Kato conjecture at the prime 2 [204] and condi-
tionally at any prime [206].

15. Following this, the Quillen–Lichtenbaum conjecture at the prime 2 was proven
by various authors [88, 91, 121, 152, 160]. Conditionally, the same proofs work
at an odd prime (and are in fact simpler). If one had finite generation results
for motivic cohomology, Conjecture 1 would follow from all this work.

Ironically, Thomason strongly disbelieved the Bloch–Kato Conjecture [195, p. 409],
while it was the key result that led to proofs of the Quillen–Lichtenbaum conjecture!

This concludes our short and necessarily incomplete survey. More details on
parts of it will be found in the next sections.

Bloch’s Cycle Complexes 4.3.2

See §2 and Appendix in Geisser’s chapter, §§7, 8 in Grayson’s chapter and §2.3 in
Levine’s chapter for more details in this subsection.
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For X a quasi-projective scheme over a field k, Bloch introduced the cycle
complexes in 1984 [20]. Denote by ∆• the standard cosimplicial scheme over k with

∆p = Spec k[t0, … , tp]|
(∑

ti − 1
)

.

We define the homological cycle complex of dimension n of X as the chain
complex zn(X, ∗) associated to the simplicial abelian group zn(X, •), where, for all
p, zn(X, p) is the group of cycles of dimension n + p on X × ∆p meeting all faces
properly; the faces and degeneracies are induced by those of ∆•. The homology
groups of zn(X, ∗) are called the higher Chow groups of X:

CHn(X, p) = Hp

(
zn(X, ∗)

)
.

These groups are 0 for p < 0 or n + p < 0 by dimension reasons. Beyond
these trivial examples, let us give two other characteristic ones. First, for p = 0,
one recovers the classical Chow group CHn(X), as is easily seen: this justifies the
terminology. Less easy is the following theorem, due independently to Nesterenko–
Suslin and Totaro, when X = Spec k for k a field.

2 Theorem 2: ([149, 197]) CH−n(k, n) � KM
n (k).

Higher Chow groups form, not a cohomology theory, but a Borel–Moore homology
theory on k-schemes of finite type. For example, if Z is a closed subset of X with
open complement U , then one has a long localisation exact sequence [20, 21]

… → CHn(Z, p) → CHn(X, p) → CHn(U, p) → CHn(Z, p − 1) → … (4.4)

This is a hard theorem. Using it, one derives Mayer–Vietoris long exact sequences
for open covers, which allows one to extend the definition of higher Chow groups
to arbitrary k-schemes X essentially of finite type by the formula

CHn(X, p) = H−p
Zar

(
X, zn(−, ∗)

)
,

where zn(−, ∗) is the sheaf of complexes associated to the presheaf U 	→ zn(U, ∗).
Even harder is the “Atiyah–Hirzebruch” spectral sequence (Bloch–Lichten-

baum [22], Friedlander–Suslin [51], Levine [119, 122])

E2
p,q = HBM

p (X, Z(−q|2)) ⇒ K ′
p+q(X) , (4.5)

where we have renumbered the higher Chow groups by the rule

HBM
p (X, Z(n)) := CHn(X, p − 2n)

and HBM
p (X, Z(−q|2)) is defined to be 0 if q is odd.
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If X is smooth of pure dimension d, we again change the notation by setting

CHn(X, p) := CHd−n(X, p)

Hp(X, Z(n)) := CHn(X, 2n − p) = HBM
2d−p

(
X, Z(d − n)

)
.

We then extend this definition by additivity to the case where X is not equidi-
mensional. Given the isomorphism K∗(X)

∼→ K ′∗(X), the spectral sequence (4.5)
may now be rewritten

E
p,q
2 = Hp

(
X, Z(−q|2)

) ⇒ K−p−q(X) (4.6)

resembling (4.1) closely. For future reference, let us record the mod n version of
this spectral sequence:

E
p,q
2 = Hp

(
X, Z|n(−q|2)

) ⇒ K−p−q(X, Z|n) . (4.7)

Rather easier to prove are the Chern character isomorphisms (Bloch [20],
Levine [116, 117])

K ′
i (X) ⊗ Q

∼→
⊕

n∈Z

HBM
2n−i(X, Q(n)) (4.8)

Ki(X) ⊗ Q
∼→

⊕

n∈Z

H2n−i(X, Q(n)) (X smooth) . (4.9)

They might be used to prove the degeneration of (4.5) and (4.6) up to small
torsion, although I don’t think this has been done yet. However, one may use Adams
operations for this, just as in topology (Soulé [178], Gillet–Soulé [65, §7]), which
yields the formula analogous to (4.2):

Ki(X)(j) � H2j−i(X, Z(i)) (X smooth) (4.10)

K ′
i (X)(j) � HBM

2j+i(X, Z(i)) (4.11)

up to groups of finite exponent, where K ′
i (X)(j) are the eigenspaces of the homo-

logical Adams operations [177, Th. 7 p. 533].
The above picture may be extended to schemes of finite type (resp. regular of

finite type) over a Dedekind scheme (Levine [119, 121], see also Geisser [59] and
§3.3 of Geisser’s chapter in this Handbook).

3Remark 3 Let f : X → Y be a morphism of schemes, taken smooth over a field to
fix ideas. Suppose that f induces an isomorphism on motivic cohomology groups.
Then the spectral sequence (4.6) shows that f also induces an isomorphism on
K-groups. By (4.10), the converse is true up to small torsion, but I doubt that
it is true on the nose, except in small-dimensional cases. The situation is quite
similar to that one in Thomason’s proof of absolute cohomological purity for étale
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cohomology with torsion coefficients [194]: Thomason’s proof gave the result only
up to small torsion, and it required delicate further work by Gabber to get the
theorem in its full precision (see Fujiwara’s exposition of Gabber’s proof in [53]).

Suslin–Voevodsky’s Motivic Cohomology4.3.3

See §2.4 in Levine’s chapter and also Friedlander’s Bourbaki talk [50] for more
details on this subsection.

Of course, defining a cohomology theory on smooth schemes as a renumbering
of a Borel–Moore homology theory is a kind of a cheat, and it does not define
motivic cohomology for non-smooth varieties. Friedlander, Suslin and Voevodsky
(1987–1997, [52,186,187,199]) have associated to any scheme of finite type X over
a field k a motivic complex of sheaves C∗(X) = C∗(L(X)) on the category Sm|k of
smooth k-varieties provided with the Nisnevich topology, where, for U ∈ Sm|k,
L(X)(U) is the free abelian group with basis the closed integral subschemes of
X × U which are finite and surjective over a component of U , and for a presheaf
F , C∗(F ) is the complex of presheaves with Cn(F ) defined by

Cn(F )(U) = F (U × ∆n) .

Then they define for each n a sheaf L(G∧n
m ) as the cokernel of the map

n−1⊕

i=1

L(Gn−1
m ) → L(Gn

m)

induced by the embeddings of the form

(x1, … , xn−1) 	→ (x1, … , 1, … , xn−1)

(it is in fact a direct summand). Finally, they set ZSV (n) := C∗(L(G∧n
m ))[−n] (the

index SV is ours, in order to avoid notational confusion).
If X is smooth, then there are canonical isomorphisms [201]

Hi(X, Z(n)) � Hi
Nis(X, ZSV (n)) .

However, in general one does not expect the right-hand-side group to have good
functorial properties. For this, one has to replace the Nisnevich topology by the
stronger cdh topology. If char k = 0, resolution of singularities implies that, for X
smooth, the natural maps

Hi
Nis(X, ZSV (n)) → H

i
cdh(X, ZSV (n)) (4.12)

are isomorphisms [199]. However this is not known in characteristic p. One may
therefore say that the Suslin–Voevodsky approach yields the “correct” motivic
cohomology for all schemes in characteristic 0, but does so only conjecturally
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in characteristic p, because (unlike Bloch’s approach) it relies fundamentally on
resolution of singularities. For this reason and others, we shall mainly work with
Bloch’s cycle complexes in the sequel.

Using these ideas, Suslin has recently proven that a spectral sequence con-
structed by Grayson [67] based on ideas of Goodwillie and Lichtenbaum and
converging to algebraic K-theory for X smooth semi-local essentially of finite type
over a field has its E2-terms isomorphic to motivic cohomology [185]. Thus we get
a spectral sequence like (4.6), independent of the Bloch–Lichtenbaum construc-
tion. It is not clear, however, that the two spectral sequences coincide.

One cannot expect a spectral sequence like (4.6) for arbitrary schemes of finite
type, even over a field of characteristic 0, nor Chern character isomorphisms as
(4.9). Indeed, motivic cohomology is homotopy invariant while algebraic K-theory
is not. One can however expect that (4.6) and (4.9) generalise to arbitrary schemes
of finite type X by replacing algebraic K-theory by Weibel’s homotopy invariant
algebraic K-theory KH(X) [210]. This has been done recently in characteristic 0
by Christian Haesemeyer, who produced a spectral sequence (reproduced here up
to the indexing)

Hp(X, Z(−q|2)) ⇒ KH−p−q(X) (4.13)

for X of finite type over a field of characteristic 0 [70, Th. 7.11]. This goes some
way towards the following general conjecture:

4Conjecture 4: (cf. Beilinson [12, 5.10 B and C (vi)]) Let m ≥ 1 and let X be
a Noetherian separated Z[1|m]-scheme of finite Krull dimension. Then there is
a spectral sequence

E
p,q
2 = H

p
Zar

(
X, B|m(−q|2)

) ⇒ KTT
−p−q(X, Z|m)

degenerating up to small torsion.

Here B|m(n) = τ≤nRα∗µ⊗n
m where α is the projection of the big étale site of

Spec Z[1|m] onto its big Zariski site, and KTT is Thomason–Trobaugh K-theory,
cf. 4.3.1. (Note that KTT∗ (X, Z|m) is homotopy invariant: Weibel [209, Cons. 1.1],
Thomason [196, Th. 9.5 a)].) See Corollary 22 below for an explanation of this
conjecture, and Theorem 32 for evidence to it.

The Beilinson–Soulé Conjecture 4.3.4

As a basic difference between algebraic topology and algebraic geometry, the
analogue of the following conjecture is trivially true for singular cohomology:

5Conjecture 5: (Beilinson–Soulé Conjecture [10], [177, Conj. p. 501]) For X regu-
lar, Hi(X, Z(n)) = 0 for n ≥ 0 and i < 0 (even for i = 0 when n > 0).
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This conjecture is central in the developments of the theory of motives, and we
shall come back to it in this survey every now and then.

Let us toy with the Beilinson–Soulé conjecture a little. Let Z be a regular closed
subset of X of codimension c and U be the open complement. The Gysin exact
sequence for motivic cohomology (an equivalent form of (4.4)) reads

· · · → Hi−2c
(
Z, Z(n − c)

) → Hi(X, Z(n)) → Hi(U, Z(n))

→ Hi−2c+1
(
Z, Z(n − c)

) → · · · (4.14)

Suppose we have found an inductive proof of the conjecture: induction could
be either on n or on dim X, or on both. In each case we find inductively that the
map Hi(X, Z(n)) → Hi(U, Z(n)) is an isomorphism. On the other hand, motivic
cohomology transforms filtering inverse limits of regular schemes with affine
transition morphisms into direct limits. From this, one deduces easily:

6 Lemma 6 The following conditions are equivalent:
(i) The Beilinson–Soulé conjecture is true.
(ii) The Beilinson–Soulé conjecture is true for all fields.
(iii) The Beilinson–Soulé conjecture is true for all finitely generated fields.
(iv) The Beilinson–Soulé conjecture is true for all regular schemes of finite type

over Spec Z. �

If one inputs Hironaka’s resolution of singularities or de Jong’s alteration theo-
rems [82, Th. 4.1 and 8.2], one gets stronger results:

7 Lemma 7 a) If we restrict to regular schemes over Q, the following condition is
equivalent to those of the previous lemma:
(v) The Beilinson–Soulé conjecture is true for all smooth projective varieties over

Spec Q.
b) If we restrict to regular schemes over Fp and tensor groups with Q, the following
condition is equivalent to those of the previous lemma:
(vi) The Beilinson–Soulé conjecture is true for all smooth projective varieties over

Spec Fp.
c) If we tensor groups with Q, the following condition is equivalent to those of the
previous lemma:
(vii) The Beilinson–Soulé conjecture is true for all regular projective schemes over

Spec Z, generically smooth over a suitable ring of integers of a number field
and with strict semi-stable reduction outside the smooth locus.

The dévissage arguments for this are standard and I shall only recall them sketchily:
for more details see Geisser’s survey article on applications of de Jong’s theo-
rem [57], or also [94]. There are two main steps:
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1. Given X regular and Z ⊂ X closed regular with open complement U , the exact
sequence (4.14) shows inductively that the conjecture is true for X if and only
if it is true for U . If U is now any open subset of X, a suitable stratification of
X − U reduces us to the first case, in characteristic p because finite fields are
perfect and over Z by [EGA IV, cor. 6.12.6].

2. By Hironaka in characteristic 0, any smooth variety X contains an open subset
U which is an open subset of a smooth projective variety. By de Jong in
characteristic p (resp. over Z), any regular X contains an U such that there
exists a finite étale map f : Ũ → U such that Ũ is contained in a smooth
projective variety (resp. in a scheme as in (vii). A transfer argument finishes
the proof (and uses coefficients Q). �

We shall see in Sect. 4.5.3 that tensoring groups with Q is not a very serious
restriction by now.

The Beilinson–Soulé conjecture is true for n = 0 because Z(0) = Z and for n = 1
because Z(1) � Gm[−1]. It is also true for X finitely generated over Z of Krull
dimension ≤ 1 (see Lemma 41), and for some smooth projective varieties over Fp

(see Sect. 4.8). Although some mathematicians have doubted its validity in recent
years, it is my belief that it is true in general and will be proven by arithmetic
means, analytic means or a combination of both. Evidence for this will appear in
Sects. 4.7 and 4.8.

Finally, there is a companion conjecture to the Beilinson–Soulé conjecture. For
fields, it was formulated in weight 2 by Merkurjev and Suslin [134, Conj. 11.7], and
we take the liberty to attribute it to them in general.1

8Conjecture 8: (Merkurjev–Suslin Conjecture) For any regular scheme X, let X0

be the “scheme of constants” of X, that is, the normalisation of Spec Z into X (for
example if X = Spec F with F a field, then X0 = Spec F0 where F0 is the algebraic
closure in F of its prime subfield). Then for all n ≥ 2, the map H1(X0, Z(n)) →
H1(X, Z(n)) is an isomorphism.

The same reductions as for the Beilinson–Soulé conjecture apply to this conjecture.

1 In this we follow a well-established tradition in algebraic K-theory which consists in
attributing conjectures to people who did not really formulate them in those terms. For
example, Beilinson and Soulé did not actually formulate Conjecture 5 as it stands, because
at the time motivic cohomology had not been defined. However they formulated it in
terms of the gamma filtration on algebraic K-theory and Beilinson envisioned a motivic
cohomology which would explain this conjecture. Similarly, the Beilinson–Lichtenbaum
conjecture 17 was formulated by Beilinson and Lichtenbaum as a conjecture about a yet
conjectural motivic cohomology. One last example is the name “Quillen–Lichtenbaum”
given to the conjecture asserting that algebraic and étale K-theories with finite coefficients
should agree in large enough degrees, while étale K-theory had been neither invented at the
time when they made the corresponding conjectures relating algebraic K-theory and étale
cohomology, nor even envisioned by them!
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Review of Motives4.4

The aim of this section is to present a state-of-the-art description of the current
understanding of the “theory of motives”, whose idea is fully due to Grothendieck
in the mid sixties (see [69]). This description will be very sketchy: a thorough one
would go far beyond the scope of this survey.

For an overlapping but different and much more detailed survey, we invite the
reader to consult Marc Levine’s chapter in this Handbook.

We work over a base field k. We won’t enter the description of categories of
motives over other bases.

Pure Motives4.4.1

For more background on this subsection, we refer the reader to [129], [163, Ch. VI
§4], [41], [108], [167] and [3].

To define a category of pure motives, one needs
1. a commutative ring A of coefficients;
2. an “adequate” equivalence relation∼on algebraic cycles (on smooth projective

varieties) with coefficients in A: roughly, modulo ∼, direct and inverse images
and intersection products can be defined.

We shall refer to a pair (A, ∼) as above as to an adequate pair. For X smooth
projective, the groups of cycles on X modulo ∼ will be denoted by Z∗∼(X, A).

The finest adequate equivalence relation is rational (= linear) equivalence rat,
and when A contains Q, the coarsest one is numerical equivalence num. Between
the two, one finds other interesting adequate equivalence relations (in increasing
order of coarseness):

algebraic equivalence;
Voevodsky’s smash-nilpotence equivalence [198] (the observation that it de-
fines an adequate equivalence relation is due to Y. André);
homological equivalence relative to a given Weil cohomology theory.

By definition, one has Z∗
rat(X, Z) = CH∗(X).

Now, given an adequate pair (A, ∼), one first constructs the category of (A, ∼)-
correspondences Cor∼(k, A). Objects are smooth projective k-varieties; for X
smooth projective we denote by [X] its image in Cor∼(k, A). For X, Y two smooth
projective varieties one defines

Hom([X], [Y]) = Zdim Y
∼ (X × Y , A) .

Composition of correspondences α : X → Y and β : Y → Z is given by the
sempiternal formula

β ◦ α = (pXZ)∗(p∗
XY α · p∗

YZβ) .
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For a morphism f : X → Y , denote by Γf its graph, viewed as an algebraic cycle
on X × Y . Then f 	→ [Γf ] defines a functor SmProj(k) → Cor∼(k, A). One should
be careful that this functor is covariant here, which is the convention in Fulton [54]
and Voevodsky [199] but is opposite to that of Grothendieck.

We may put on Cor∼(k, A) a symmetric monoidal structure by the rule [X] ⊗
[Y] = [X×Y], the tensor product of correspondences being given by their external
product. Then 1 = h(Spec k) is the unit object of this structure.

Once the category of correspondences is defined, we get to the category of pure
motives by two formal categorical operations:

Effective pure motives: take the pseudo-abelian (karoubian) envelope of
Cor∼(k, A). This amounts to formally adjoin kernels to idempotent endomor-
phisms. The resulting category Moteff∼ (k, A) is still monoidal symmetric. We
write h(X) for the image of [X] in Moteff∼ (k, A).
Pure motives: in Moteff∼ (k, A), we have a decomposition h(P1) = 1 ⊕ L given by
the choice of any rational point: L is called the Lefschetz motive. Tensor product
by L is fully faithful. We may then formally invert L for the monoidal structure:
the resulting category Mot∼(k, A) inherits a symmetric monoidal structure
because the permutation (123) acts on L⊗3 by the identity (this necessary and
sufficient condition which does not appear for instance in Saavedra [163] was
first noticed by Voevodsky)2. Here too we shall depart from a more traditional
notation by writing M(n) for M ⊗ L⊗n: this object is usually written M(−n) in
the Grothendieck tradition.

The category Mot∼(k, A) is rigid: any object M has a dual M∨ and any object
is canonically isomorphic to its double dual. If X has pure dimension d, then
h(X)∨ = h(X)(−d) and the unit and counit of the duality are both given by the class
of the diagonal in Hom(1, h(X)⊗h(X)∨) � Hom(h(X)∨⊗h(X), 1) = Zd∼(X×X, A).
All this theory is purely formal beyond the projective line formula:

Zn
∼(X × P1, A) = Zn

∼(X, A) ⊕ Zn−1
∼ (X, A) .

Then one is interested in finer properties of Mot∼(k, A). The most important
result is Jannsen’s theorem, which was for a long time a standard conjecture:

9Theorem 9: (Jannsen [79]) The category Mot∼(k, Q) is semi-simple if and only
if ∼= num.

What we don’t Know about Pure Motives
What is missing from a rigid tensor category to be tannakian (hence to be clas-
sified by a gerbe) is a fibre functor (detailing these notions would go beyond
the scope of this survey and we can only refer the reader to the excellent refer-

2 In fact we even have that the permutation (12) acts on L⊗2 by the identity.
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ences [163], [39], [28]). Morally, such a fibre functor on Motnum(k, Q) should be
given by any Weil cohomology theory H. However there are two unsolved problems
here:

We don’t know whether homological equivalence (relative to H) equals numer-
ical equivalence.
Even so, there is a more subtle problem that the category of pure motives as
defined above is “false”: it cannot be tannakian! Namely, let dim M be the
“rigid dimension” of an object M, defined as the trace of 1M . In any tannakian
category, the dimension is a nonnegative integer because it can be computed as
the dimension of a vector space via a fibre functor. Now if M = h(X), computing
dim X via H gives dim X = χ(X), the Euler–Poincaré characteristic of X, which
can be any kind of integer (it is 2 − 2g if X is a curve of genus g).

The second problem is a matter of the commutativity constraint in MotH(k, Q). To
solve it, one looks at the Künneth projectors, i.e. the projectors πi from H∗(X) onto
its direct summands Hi(X). In case the πi are given by algebraic correspondences,
one can use them to modify the commutativity constraint (by changing signs)
and tranform the Euler–Poincaré characteristic into the sum of dimensions of the
Hi(X), which is certainly a nonnegative integer. To do this, it suffices that the sum
of the π2i be algebraic.

The two conjectures:

(HN) Homological and numerical equivalences coincide
(C) For any X and H, the Künneth projectors are algebraic

are part of Grothendieck’s standard conjectures3 [68]. This is not the place to
elaborate on them: see also [107], [109], [163, p. 380] and [2, §1 and Appendix] for
more details. Let us just mention that there is another conjecture B (the “Lefschetz-
type conjecture”) and that

Conjecture HN ⇒ Conjecture B ⇒ Conjecture C ,

where the first implication is an equivalence in characteristic 0.
Under these conjectures, one can modify Motnum(k, Q) and make it a tannakian

category, semi-simple by Theorem 9. To the fibre functor H will then correspond
its “motivic Galois group” (ibid.), a proreductive group defined over the field of
coefficients of H, that one can then use to do “motivic Galois theory”. Moreover
the Künneth components yield a weight grading on Motnum(k, Q).

Lieberman [128] proved Conjecture B for abelian varieties (over C; see Klei-
man [107] for a write-up over an arbitrary field), and Katz–Messing [104] proved
Conjecture C when k is finite for l-adic and crystalline cohomology, as a con-
sequence of Deligne’s proof of the Weil conjecture (Riemann hypothesis) [34].
Besides these special cases and a few more easy cases, these conjectures are still
open now.

3 The terminology “standard conjectures” is not limited to Grothendieck: Serre used it
in [170] with a quite different, although closely related, meaning.
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Suppose that k is finite, and take H = Hl, l-adic cohomology (where l is a prime
number different from char k). Still by Katz–Messing, for any X the ideal

Ker
(
EndMotH (h(X)) → EndMotnum (h(X))

)

is nilpotent: this implies that the functor MotH(k, Q) → Motnum(k, Q) is essentially
surjective. It follows that one can “push down” from MotH(k, Q) to Motnum(k, Q)
the change of commutativity constraint. Then the new ⊗-category M̃otnum(k, Q)
is semi-simple rigid and any object has a nonnegative dimension: a theorem of
Deligne [SGA 4 1/2] then implies that it is (abstractly) tannakian. For details, see
Jannsen [79].

Finally we should mention Voevodsky’s conjecture:

10Conjecture 10: ([198]) Smash-nilpotence and numerical equivalence coincide.

It is stronger than the first standard conjecture above, and has the advantage not
to single out any Weil cohomology.

Getting around the Standard Conjectures
There are two ways to make the approach above both more unconditional and
more explicit. The first one was initiated by Deligne in [35] using (in characteristic
0) the notion of an absolute Hodge cycle on a smooth projective variety X, which is
a system of cohomology classes in all “classical” cohomology theories applied to
X, corresponding to each other via the comparison isomorphisms: the classes of
a given algebraic cycle define an absolute Hodge cycle and the Hodge conjecture
asserts that there are no others. This approach was refined and made almost
algebraic by Yves André in [2]. Like Deligne, André’s idea is to adjoin cycles
that one hopes eventually to be algebraic: but he just takes the inverses of the
Lefschetz operators in the graded cohomology ring H∗(X) (for some classical Weil
cohomology H) and shows that, if char k = 0, he gets a semi-simple tannakian
category (with fibre functor given by H), a priori with larger Hom groups than
MotH(k, Q).

The second and rather opposite approach, due to André and the author [5],
consists of restricting a priori to the full ⊗-subcategory Mot+

H(k, Q) formed of
those homological motives whose even Künneth projectors are algebraic. After
showing that its image Mot+

num(k, Q) in Motnum(k, Q) does not depend on the
choice of a “classical” Weil cohomology H,4 we show that the projection functor
Mot+

H(k, Q) → Mot+
num(k, Q) has monoidal sections, unique up to monoidal con-

jugation: this depends on the results of [6]. Then H defines an essentially unique
fibre functor on Mot+

num(k, Q) after the suitable modification of the commutativity
constraints.

4 If char k = 0 this is obvious via the comparison theorems; in positive characteristic it
depends on the Weil conjectures (Riemann hypothesis).
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The Conjectural Abelian Category of Mixed Motives4.4.2

See §3 in Levine’s chapter for more details on this subsection.
What about varieties X that are not smooth projective? Elementary cases show

that their cohomology, viewed in enriched categories, is not in general semi-
simple. For example, the l-adic cohomology of X is not in general semi-simple
as a Gk representation. Or, if k = C, the Betti cohomology of X is not in general
a semi-simple mixed Hodge structure.

Therefore one cannot expect that general varieties are classified by a semi-simple
tannakian category. One still hopes, however, that they are classified by a (not semi-
simple) tannakian category MMot(k, Q): see especially [12, 5.10]. Here are some
conjectural properties of this conjectural category (the list is not exhaustive of
course):

MMot(k, Q) is tannakian and every object has finite length.
The socle of MMot(k, Q) (i.e. the full subcategory of semisimple objects) is
Motnum(k, Q).
There is a weight filtration on MMot(k, Q) which extends the weight grad-
ing of Motnum(k, Q); its associated graded (for any object) belongs to
Motnum(k, Q).
Any variety X has cohomology objects and cohomology objects with com-
pact supports hi(X), hi

c(X) ∈ MMot(k, Q), with Künneth formulas; h∗ is con-
travariant for all morphisms while h∗

c is contravariant for proper morphisms.
There are canonical morphisms hi

c(X) → hi(X) which are isomorphisms for X
proper.
There are blow-up exact sequences for h∗, localisation exact sequences for h∗

c
and Mayer–Vietoris exact sequences for both.
For any X, the natural maps h∗(X) → h∗(X × A1) are isomorphisms.
If X is smooth of pure dimension d, one has canonical isomorphisms hi

c(X)∨ �
h2d−i(X)(−d).
For all X, n with X smooth there is a spectral sequence Ext

p
MMot(1, hq(X)(n)) ⇒

Hp+q(X, Q(n)); if X is smooth projective, it degenerates up to torsion and yields,
for p + q = 2n, the famous Bloch–Beilinson–Murre filtration on Chow groups,
cf. [12, 5.10 C]. (For more details on this filtration, see Jannsen [81]).

Note that the last property contains the Beilinson–Soulé Conjecture 5, since
Extp = 0 for p < 0. See Levine’s chapter, Conjecture 3.4, for a slightly different
set of properties.

The Nonconjectural Triangulated Categories
of Mixed Motives4.4.3

One expects that MMot(k, Q) will arise as the heart of a t-structure on a tensor
triangulated category. There are currently 3 constructions of such a category:
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Hanamura’s construction [71], [72];
Levine’s construction [118];
Voevodsky’s construction [199].

For a discussion of the constructions of these categories and their comparisons,
we refer the reader to §4 in Marc Levine’s chapter. Here are briefly some of their
common features (for simplicity, let us write D(k) for any of these categories):
1. D(k) is a Z-linear tensor triangulated category; it is rigid if char k = 0, or

after tensoring with Q in characteristic p (Hanamura’s category has rational
coefficients anyway).

2. There is a canonical fully faithful tensor functor

δ : Motrat(k, Z) → D(k) (4.15)

(for Hanamura, tensor with Q). The image of L under this functor is denoted
by Z(1)[2] by Voevodsky. (Note that Voevodsky calls Z(1) the “Tate object”, so
that δ sends the Lefschetz motive to a shift of the Tate object!)

3. Any smooth variety X (smooth projective for Hanamura) has a “motive”
M(X) ∈ D(k), which is contravariant in X in Levine and Hanamura, covariant
in Voevodsky; there are Mayer–Vietoris exact triangles (for open covers) and
M(X) is homotopy invariant. If char k = 0, any variety has a motive M(X) and
a Borel–Moore motive Mc(X); on top of the above properties, there are blow-
up and localisation exact triangles. There is a canonical morphism M(X) →
Mc(X) which is an isomorphism when X is proper.

4. If X is smooth of pure dimension d, there is a “Poincaré duality” isomorphism
Mc(X) � M(X)∨(d)[2d].

5. For any X (smooth in characteristic p) one has canonical isomorphisms
Hom(Z(p)[q], Mc(X)) = HBM

q (X, Z(p)). For X smooth, one has canonical iso-
morphisms Hom(M(X), Z(p)[q]) = Hq(X, Z(p)) (here we take the variance of
Voevodsky).

As pointed out at the end of the last subsection, the existence of a “motivic”
t-structure on D(k) ⊗ Q depends at least on the Beilinson–Soulé Conjecture 5.
In [71, Part III], Hanamura gives a very nice proof of the existence of this t-structure
for his category, assuming an extension of this conjecture plus Grothendieck’s
standard conjectures and the Bloch–Beilinson–Murre filtration.

Naturally, in the notation of the previous subsection, one should have hi(X) =
Hi(M(X)∨) and hi

c(X) = Hi(Mc(X)∨) for the motivic t-structure. The spectral
sequence mentioned would just be the corresponding hypercohomology spec-
tral sequence, and its degeneracy for smooth projective X would follow from
Grothendieck’s standard conjecture B (“Lefschetz type”, see [109]) and Deligne’s
degeneracy criterion [38].

What about a motivic t-structure on D(k) itself? In [199, Prop. 4.3.8], Voevodsky
shows that there is an obstruction for his category as soon as cd2(k) > 1. On
the other hand, he has an étale version DMgm,ét(k) of D(k) [199, §3.3]. I expect
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that this category does have an integrally defined motivic t-structure: see the next
paragraph on Nori’s category for more details. Note that the two categories coincide
after tensoring morphisms by Q by [199, Th. 3.3.2].5

Besides the triangulated approach, there have been attempts to construct di-
rectly something like MMot(k, Q). The first idea was to use absolute Hodge cycles
à la Deligne (Deligne [36, §1], Jannsen [78, Part I]). This is using cohomology
classes rather than algebraic cycles. Another one is to try and construct at least
a simpler subcategory of MMot(k, Q), like the full abelian subcategory generated
by Tate motives, using algebraic cycles. This was performed by Bloch–Kriz [23].
On the other hand, Levine proved [115] that Conjecture 5 (for the motivic coho-
mology of k!) is sufficient to provide a motivic t-structure on the thick triangulated
category of D(k) ⊗ Q generated by the Q(n) (this works for any version of D(k),
or more generally for any tensor triangulated category satisfying suitable axioms).
Quite different is Nori’s approach, which is described in the next section.

Nori’s Category4.4.4

For considerably more details on this subsection, see §3.3 in Levine’s chapter.
Using Betti cohomology, Madhav Nori constructs for any subfield k of C an

abelian, Z-linear category of mixed motives. This exposition is based on notes
from a series of lectures he gave in Bombay in 2000: any misunderstanding is of
course my own responsibility.

The two fundamental building blocks of Nori’s construction are:

11 Theorem 11: (Basic lemma) Let X be an affine k-variety of dimension d, and let Z
be a closed subset of X of dimension < d. Then there exists a closed subset Z′ ⊇ Z
of dimension < d such that the relative cohomology groups Hi(X, Z′, Z) are 0 for
i ≠ d.

This theorem is stated and proven in [150], but Nori points out that it also follows
from earlier work of Beilinson [13, Lemma 3.3], whose proof also works in positive
characteristic.

For the next theorem we need the notion of a diagram, also called pre-category or
quiver: this is the same as a category, except that composition of morphisms is not
defined. Any category defines a diagram by forgetting composition, and any functor
defines a morphism of diagrams. Let R be a commutative ring, D be a diagram and
T : D → R–Mod a representation of D, that is, a morphism from D to the diagram
underlying R–Mod. Following Nori, one enriches T as follows: if D is finite, T
obviously lifts to a representation T̃ : D → EndR(T)–Mod, where EndR(T) is the

5 Actually, in loc. cit. a category DMeff
−,ét(k) analogous to DMeff

− (k) is defined: this is a “big”
category. One should probably define DMgm,ét(k) as follows: take the full subcategory of
DMeff

− (k) generated by the image of DMeff
gm(k), invert Z(1) and finally take the pseudo-

abelian hull.
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ring of R-linear natural transformations from T to itself. In general one may write
D as a union of its finite subdiagrams D′, and define C(T) = lim→ D′ EndR(T|D′)–Mod.

Then there is an obvious forgetful functor ω : C(T) → R–Mod and T lifts through
ω to

T̃ : D → C(T) . (4.16)

The following is a universal property of (4.16):

12Theorem 12: (Nori’s tannakian lemma) Suppose R Noetherian. Let A be an R-
linear abelian category, � : A → R–Mod an R-linear additive faithful exact functor
and S : D → A a representation such that T = �S. Then there exists an R-linear
exact functor S′ : C(T) → A, unique up to unique isomorphism, making the
following diagram commutative up to natural isomorphism:

C(T)

��
S′

��

ω

��
��

��
��

��
��

��
��

��

A

��H
HH

HH
HH

HH
H

D

�����������

FF

T̃

�����������������

�� R–Mod
T

S �

Note that S′ is automatically faithful since ω is.
For a proof of this theorem, see Bruguières [29].
(As Srinivas pointed out, the uniqueness statement is not completely correct.

For it to be one needs at least � to be “totally faithful”, a notion introduced by
Nori: if an arrow goes to an identity arrow then it is already an identity arrow. This
condition is basically sufficient.)

Nori then takes for D the diagram whose objects are triples (X, Y , i) where X is
affine of finite type over k, Y is a closed subset and i ≥ 0, and morphisms are (I)
morphisms of triples (same i) and (II) to any chain Z ⊂ Y ⊂ X and integer i > 0
corresponds a morphism (X, Y , i) → (Y , Z, i−1). He takes T(X, Y , i) = Hi(X, Y , Z),
and also T∗(X, Y , i) = Hi(X, Y , Z) on the dual diagram D∗. The corresponding
categories C(T) and C(T∗) are respectively called EHM(k) (effective homological
motives) and ECM(k) (effective cohomological motives).

These categories are independent from the embedding of k into C; EHM(k) is
a tensor category and enjoys exact faithful tensor functors to Galois representa-
tions, mixed Hodge structures and a category of “periods” (a period is a triple
(M, W , φ) where M is a Z-module, W a k-vector space and φ an isomorphism
C ⊗Z M → C ⊗k W). There is a tensor triangulated functor

DMeff
gm(k) → Db(EHM(k)) .
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One may then define the category M(k) of motives by inverting Z(1) := H1(Gm),
exactly as for pure motives. Starting from ECM(k) and H1(Gm) yields the same
result. This category is “neutral tannakian” in the sense that it is equivalent to the
category of comodules of finite type over a certain pro-Hopf algebra… There is
also a weight filtration, all this being integrally defined!

I expect M(k) to be eventually equivalent to the heart of a motivic t-structure
on DMgm,ét(k), compare the end of Sect. 4.4.3. This is evidenced by the fact that
Betti cohomology compares nicely with étale cohomology with finite coefficients.
Of course this issue is closely related to the Hodge conjecture.

AAA1-Homotopy and Stable Homotopy Categories4.4.5

Before Fabien Morel and Vladimir Voevodsky started constructing it in the early
nineties, first independently and then together, nobody had thought of develop-
ing a “homotopy theory of schemes” just as one develops a homotopy theory of
(simplicial) sets. In this subsection we shall give a brief outline of this theory and
its stable counterpart, referring the reader to [144], [147] and [202] for details; see
also the few words in [89, §§5 to 7], [200], the exposition of Joël Riou [159], [145]
and the programmatic [146].

Homotopy of Schemes
There are two constructions of the A1-homotopy category of k-schemes H(k),
which can be considered as an algebro-geometric generalisation of the classical
homotopy category H : [144] and [147]. It can be shown that they are equivalent.
We shall describe the second with its features, as it is the best-known anyway.

We start with the category (Sm|k)Nis of smooth k-schemes of finite type endowed
with the Nisnevich topology. We first introduce the category Hs(k). A map f :
F → G of Nisnevich sheaves of simplicial sets on (Sm|k)Nis is a simplicial weak
equivalence if fx : Fx → Gx is a weak equivalence of simplicial sets for any point x
of the site; Hs(k) is the localisation of ∆opShv((Sm|k)Nis) with respect to simplicial
weak equivalences. Next, a simplicial sheaf F is A1-local if for any other simplicial
sheaf G, the map

HomHs(k)(G, F ) → HomHs(k)(G × A1, F )

induced by the projection A1 → Spec k is a bijection, and a morphism f : G → H
is an A1-weak equivalence if for any A1-local F the corresponding map

f ∗ : HomHs(k)(H , F ) → HomHs(k)(G, F )

is a bijection. Then H(k, A1) = H(k) is the localisation of ∆opShv((Sm|k)Nis) with
respect to A1-weak equivalences.

Morel and Voevodsky provide ∆opShv((Sm|k)Nis) with a closed model structure
of which H(k) is the homotopy category. By construction, any k-scheme of finite
type can be viewed in H(k). For smooth schemes, this transforms elementary Nis-
nevich covers (for example open covers by two Zariski open sets) into cocartesian
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squares, the affine line is contractible, one has a homotopy cocartesian blow-up
square (up to a suspension) and a homotopy purity theorem for a smooth pair,
expressible in terms of the Thom space of the normal bundle.

Moreover, most of the important cohomology theories are representable in
H(k): this is the case in particular for algebraic K-theory and for motivic coho-
mology.

When k ⊆ C, there is a realisation functor H(k) → H ; when k ⊆ R there is
another one, quite different from the first.

In contrast to the classical case of H , there are two circles in H(k): the simplicial
circle S1

s and the A1-circle S1
t . They account for the fact that motivic cohomology

is a bigraded theory; the fact that algebraic K-theory is single-indexed can be
interpreted as an algebraic analogue to Bott periodicity.

Stable Homotopy of Schemes
The construction of this category is outlined in [202]; see also [89, 5.4 ff], [145], [146]
and [159]. Briefly, one considers T-spectra, where T = S1

s ∧ S1
t and one constructs

SH(k) “as in topology”, except that “as in” hides not inconsiderable technical diffi-
culties. This is a tensor triangulated category, just as the classical stable homotopy
category SH . There exists an infinite version of DMgm(k), denoted by DM(k) (
[180], [211], [146, §5.2]), to which SH(k) bears the same relationship as SH bears
to the derived category of abelian groups: there is a “motive” functor

M : SH(k) → DM(k) ,

which extends the functor M : Sm|k → DMeff
gm(k) (an analogue to the “chain

complex” functor in topology), and which has as a right adjoint an “Eilenberg–
MacLane” functor

H : DM(k) → SH(k) .

Moreover, if one tensors morphisms by Q, then H is a right inverse to M; if −1
is a sum of squares in k, H is even an inverse to M.

An important theorem is that motivic cohomology is representable by a ΩT-
spectrum [202, Th. 6.2]: this rests on Voevodsky’s cancellation theorem [203].
Similarly, K-theory is representable by a ΩT-spectrum KGL. This has allowed
Hopkins and Morel to construct an Atiyah–Hirzebruch spectral sequence having
the same form as (4.6), by using a tower on KGL rather than the “skeleta” approach
leading to (4.6) [75]. Unlike the topological case, it is not clear that the two spectral
sequences coincide6.

6 In the topological case, one can easily prove that the two ways to produce the Atiyah–
Hirzebruch spectral sequence for a generalised cohomology theory (cell filtration on the
space or Postnikov tower on the spectrum) yield the same spectral sequence by reducing
to the case where the space is a sphere and where the spectrum is an Eilenberg–Mac Lane
spectrum, because the cohomology of spheres is so basic. In the scheme-homotopy theoretic
case, even if one had the suitable generality of construction of the two spectral sequences,
one would have to find the right analogues: for example, motivic cohomology of fields is
quite complicated.
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To prove Theorem 21 below, Voevodsky makes an essential use of the categories
H(k) and SH(k), and in particular of motivic Steenrod operations.

Comparisons4.5

Étale topology4.5.1

Instead of computing higher Chow groups for the Zariski topology, we may use
étale topology. For X smooth and n ≥ 0, we thus get groups

Hi
ét(X, Z(n)) := Hi−2n

ét

(
X, α∗zn(X, ∗)

)

where α is the projection (Sm|k)ét → (Sm|k)Zar. There are canonical maps
Hi(X, Z(n)) → Hi

ét(X, Z(n)). Similarly, replacing the complexes zn(X, ∗) by
zn(X, ∗) ⊗ Z|m, we may define motivic cohomology with finite coefficients, both
in the Zariski and the étale topology:

Hi(X, Z|m(n)) → Hi
ét(X, Z|m(n)) .

13 Theorem 13: (Geisser–Levine) Let X be smooth over k.
a) [62, Th. 1.5] If m is invertible in k, there is a quasi-isomorphism zn(−, ∗)ét ⊗

Z|m � µ⊗n
m .

b) [61] If m is a power of p = char k > 0, say m = ps, there is a quasi-isomorphism
zn(−, ∗)ét ⊗ Z|m � νs(n)[−n], where νs(n) is the n-th logarithmic Hodge–Witt
sheaf of level s. 7

Zariski Topology4.5.2

Keep the above notation. We first have an easy comparison with rational coefficients
(e.g. [93, Prop. 1.18]):

14 Theorem 14 For X smooth over k, Hi(X, Q(n))
∼→ Hi

ét(X, Q(n)) for all i, n.

15 Theorem 15: (Geisser–Levine [61, Th. 8.4]) Let X be smooth over k.
If m = ps, p = char k > 0, Hi

Zar(X, Z|m(n)) � Hi−n
Zar (X, α∗νs(n)).

See §3.2 in Geisser’s chapter for more details on this theorem.
For m invertible in k, the situation is more conjectural. Let l be prime and

invertible in k. Recall

7 This statement does not appear explicitly in [61]; however it can be deduced from Theo-
rem 15 by étale localisation!
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16Conjecture 16: (Bloch–Kato Conjecture) For any finitely generated extension K|k
and any n ≥ 0, the norm residue homomorphism

KM
n (K)|l → Hn

ét(K, µ⊗n
l )

is bijective.

The references for this conjecture are [100, Conj. 1] and [19, Intr. and Lect. 5]. For
l = 2, it is due to Milnor [141, p. 540].

17Conjecture 17: (Beilinson–Lichtenbaum Conjecture) For any smooth X over k,
the quasi-isomorphism of Theorem 13 a) induces a quasi-isomorphism zn(−, ∗) ⊗
Z|m � τ≤nRα∗µ⊗n

m .

The references for this conjecture are [12, 5.10 D (vi)] and [124, §5]. In view of
Theorems 14 and 15, it may be reformulated as follows:

18Lemma 18 Conjecture 17 is equivalent to the following statement: for any smooth
k-variety X, the natural morphism

Z(X, n) → τ≤n+1Rα∗α∗Z(X, n)

is an isomorphism in D−(XZar), where Z(X, n) is the class of the Zariski sheafifica-
tion of the shifted Bloch cycle complex z∗(X, n)[−2n] and where α is the projection
of the small étale site of X onto its small Zariski site. �

(The vanishing of Rn+1α∗α∗Z(X, n) is called Hilbert 90 in weight n.)
The following theorem is due to Suslin–Voevodsky [187] in characteristic 0 and

to Geisser–Levine [62] in general.

19Theorem 19 Conjectures 16 and 17 are equivalent.

The arguments of [61] for the proof of Theorem 15 and of [187] and [62] for
the proof of Theorem 19 can be abstracted [93] and give a uniqueness theorem for
motivic cohomology. Let us explain this theorem. Define (in this explanation) a co-
homology theory as a sequence of complexes of sheaves (B(n))n∈Z over the category
of smooth k-schemes endowed with the Zariski topology, enjoying two natural
properties: homotopy invariance and Gysin exact sequences (purity). There is an
obvious notion of morphisms of cohomology theories. For example, (Z(n))n∈Z de-
fines a cohomology theory as soon as we modify Bloch’s cycle complexes suitably
so as to make them strictly contravariant for morphisms between smooth vari-
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eties [93, Th. 1.17]8. Suppose now that C is a bounded above complex of abelian
groups (in applications to Theorems 15 and 19, C would be Z|m for some m) and
that we are given a morphism of cohomology theories

Z(n)
L⊗ C → B(n) . (4.17)

Under what conditions is (4.17) an isomorphism? Two obvious necessary con-
ditions are the following:
1. B(n) is bounded above for all n.
2. (4.17) is a quasi-isomorphism for n ≤ 0; in particular, B(n) = 0 for n < 0.
The third condition is very technical to state: it is called malleability and is en-
joyed by Z(n) for n > 0 by a nontrivial theorem of Geisser and Levine ([61,
Cor. 4.4], [93, Th. 2.28]). For n = 1 it is closely related to the fact that, if A is
a semi-local ring, then for any ideal I in A the homomorphism A∗ → (A|I)∗
is surjective. It is stable under tensoring with C, so if (4.17) is an isomorphism
then
3. B(n) is malleable for all n > 0.

Conversely:

20 Theorem 20: ([93, Prop. 2.30]) If Conditions 1, 2 and 3 are satisfied, then (4.17)
is an isomorphism of cohomology theories.

Finally, we have the celebrated theorem of Voevodsky:

21 Theorem 21: (Voevodsky [204]) Conjecture 16 is true for l = 2.

The reader can have a look at [50], [89], [143] and [184] for some insights in the
proof.

For an odd prime l, Conjecture 16 is “proven” in the following sense: 1) A preprint
of Voevodsky [206] gives a proof modulo two lemmas on mod l Steenrod opera-
tions (see loc. cit. , Lemmas 2.2 and 2.3) and two results of Rost (see loc. cit. , Th.
6.3). 2) Voevodsky plans to write up a proof of the Steenrod operation lemmas,
but no such proof is available at the moment. 3) The two results of Rost have
been announced by him in his address to the Beijing International Congress of
Mathematicians in 2002 with proofs of special cases [162], but no complete proof
is available at the moment.

8 One should be careful that the construction given in [93] is incomplete. The problem is
that the claimed equality in loc. cit., (1.4) is only an inclusion in general. As a consequence,
the object defined in the proof of Theorem 1.17 is not a functor, but only a lax functor. This
lax functor can be rectified e.g. by the methods of [122] (see also Vogt [207]). I am grateful
to Marc Levine for pointing out this gap, and the way to fill it.
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22Corollary 22 For n a power of 2 (or more generally for all n with the caveat just
above), the E2-terms of the spectral sequence (4.7) have the form

E
p,q
2 = H

p
Zar(X, τ≤−q|2Rα∗µ⊗(−q|2)

n ) .

In particular, if X is semi-local, then

E
p,q
2 =





H

p
ét(X, µ⊗(−q|2)

n ) if p ≤ −q|2

0 if p > −q|2 .

23Corollary 23: (Compare [120, proof of Cor 13.3]) Let X be a connected regular
scheme essentially of finite type over a field or a Dedekind scheme S Let δ be the
étale cohomological 2-dimension of the function field of X and d = dim X. Then,
for any n ≥ 0, Hi(X, Z|2s(n)) = 0 for i > δ + d.

Proof We may assume δ < ∞. Consider the hypercohomology spectral sequence

E
p,q
2 = H

p
Zar

(
X, Hq(Z|2s(n))

) ⇒ Hp+q(X, Z|2s(n)) .

It is sufficient to show that E
p,q
2 = 0 for p + q > δ + d. We distinguish two cases:

q > n. Then it follows from the definition of Bloch’s higher Chow groups plus
Gersten’s Conjecture [32], which implies that the stalks of the sheaf Hq(Z|2s(n))
inject into its stalk at the generic point.
q ≤ n. By Theorems 19 and 21, Hq(Z|2s(n))

∼→ H
q
ét(Z|2s(n)). But the right

sheaf is 0 for q > δ by the argument in [91, Proof of Cor. 4.2].

Back to the Beilinson–Soulé Conjecture 4.5.3

24Lemma 24 Under Conjecture 17, Conjecture 5 is equivalent to Conjecture 5 ten-
sored by Q.

Indeed, Conjecture 17 implies that Hi(X, Z|m(n)) = Hi
ét(X, µ⊗n

m ) = 0 for i < 0 and
any m > 0. This in turn implies that Hi(X, Z(n)) → Hi(X, Q(n)) is an isomorphism
for any i < 0 and is injective for i = 0. �

Borel–Moore Étale Motivic Homology 4.5.4

For the sequel we shall need a Borel–Moore homology theory that has the same
relationship to étale motivic cohomology as ordinary Borel–Moore motivic ho-
mology has to ordinary motivic cohomology. Ideally, we would like to associate
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to any k-scheme of finite type X a collection of abelian groups HBM,ét
i (X, Z(n))

enjoying the following two properties:
1. Poincaré duality: if X is a closed subscheme of a smooth k-scheme M of

dimension d, we have isomorphisms

HBM,ét
i (X, Z(n)) � H2d−i

X,ét (M, Z(d − n)) (4.18)

where the right hand side is étale hypercohomology of M with supports in X.
2. Localisation: if Z is a closed subset of X and U = X − Z, we have long exact

sequences

· · · → HBM,ét
i (Z, Z(n)) → HBM,ét

i (X, Z(n))

→ HBM,ét
i (U, Z(n)) → HBM,ét

i−1 (Z, Z(n)) → · · ·

The problem is that 1) does not make sense a priori because if q < 0 and M is
smooth the groups H

j
ét(M, Z(q)) have not been defined. For n ∈ Z, let

(Q|Z)′(n) := lim→
(m,char k)=1

µ⊗n
m

Qp|Zp(n) :=





lim→ νs(n)[−n] for n ≥ 0

0 for n < 0
if char k = p > 0

Q|Z(n) := (Q|Z)′(n) ⊕ Qp|Zp(n) .

Theorems 13 and 14 imply that for X smooth and n ≥ 0 we have long exact
sequences

· · · → Hi−1
ét (X, Q|Z(n)) → Hi

ét(X, Z(n))

→ Hi(X, Q(n)) → Hi
ét(X, Q|Z(n)) → · · · (4.19)

where so that we might try and define

Hi
ét(X, Z(n)) := Hi−1

ét (X, Q|Z(n)) for X smooth and n < 0 . (4.20)

This is vindicated by the projective bundle formula

Hi
ét(Pn

X , Z(q)) �
n⊕

j=0

H
i−2j
ét (X, Z(q − j))

which may be proven as [86, Th. 5.1].
Suppose that in 1) X is smooth of dimension d. Then we may take M = X and

we get isomorphisms HBM,ét
i (X, Z(n)) � H2d−i

ét (X, Z(d − n)). Suppose now that in 2)
Z is also smooth, of codimension c. Then, after reindexing, the localisation exact
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sequences translate into long exact “Gysin” sequences

· · · → H
j−2c
ét (Z, Z(m − c)) → H

j
ét(X, Z(m))

→ H
j
ét(U, Z(m)) → H

j−2c+1
ét (Z, Z(m − c)) → · · · (4.21)

However, with Definition (4.20) the exact sequences (4.21) are wrong in char-
acteristic p > 0: take for example k algebraically closed, X = P1, U = A1,
m = 0 and j = 2. The exactness of (4.21) would imply that the homomorphism
H1

ét(P1, Q|Z) → H1
ét(A1, Q|Z) is surjective, which is false because H1

ét(P1, Qp|Zp) = 0
while H1

ét(A1, Qp|Zp) is huge. Therefore the most we can hope for is to have exact
sequences (4.21) after inverting the exponential characteristic p.

This turns out to be true: (4.21) ⊗ Z[1|p] are obtained by gluing together the
purity theorem for motivic cohomology (4.14) and the purity theorem for étale
cohomology with finite coefficients, as in [86, Th. 4.2].

It also turns out that a Borel–Moore homology theory

X 	→ (
HBM,ét

i (X, Z[1|p](n))
)

(i,n)∈Z×Z (4.22)

having properties 1) and 2) after inverting p does exist. These groups sit in long
exact sequences analogous to (4.19)

· · · → HBM,ét
i+1

(
X, (Q|Z)′(n)

) → HBM,ét
i

(
X, Z[1|p](n)

)

→ HBM
i (X, Q(n)) → HBM,ét

i

(
X, (Q|Z)′(n)

) → … (4.23)

where HBM,ét
i+1 (X, (Q|Z)′(n)) = H−i−1(X, f !

X(Q|Z)′(−n)) is étale Borel–Moore homol-
ogy, with f !

X the extraordinary inverse image of [SGA 4, Exposé XVIII] associated
to fX : X → Spec k. Supposing that they are constructed, they are characterised
either by (4.18) (with p inverted) or by (4.23).

I know two techniques to construct the theory (4.22). The first is to proceed
“naïvely” as in [62] and construct a homotopy version of the homological cycle
class map of [SGA 4 1/2, Cycle, §2.3]: this had been done in [92, §1.3]. This yields
functorial zig-zags of morphisms

α∗zn(X, ∗)
∼←→ f !

XZ|m(−n)[−2n]

for (m, char k) = 1, which are compatible when m varies; in the limit one gets
zig-zags

α∗zn(X, ∗) ⊗ Q
∼←→ f !

X(Q|Z)′(−n)[−2n]

and one defines (4.22) as the homology groups of the homotopy fibre. The other
method is much more expensive but also more enlightening. First, one proves that
the cohomology theory on smooth schemes

X 	→ (
Hi

ét(X, Z[1|p](n))
)

(i,n)∈Z×Z
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is representable by a T-spectrum Hét
Z[1|p] in SH(k): for this one may glue the T-

spectrum HQ with the T-spectrum Hét
(Q|Z)′ representing étale cohomology with

(Q|Z)′ coefficients (cf. [159, Cor. 8.53]) in the spirit above, except that it is much
easier here. (As Joël Riou pointed out, it is even easier to apply the Dold–Kan con-
struction to truncations of Godement resolutions representing Rα∗α∗Z[1|p](n):
the projective bundle formula and homotopy invariance imply that they yield an
ΩT-spectrum.) Then, according to Voevodsky’s formalism of cross functors (cf.
[9, 205]), given a k-scheme of finite type X with structural morphism f : X →
Spec k, we have an “extraordinary direct image” functor

f! : SH(X) → SH(k) .

We set BM(X) = f!S0: this is the Borel–Moore object associated to X. For any
T-spectrum E ∈ SH(k), we may then define

EBM
p,q (X) := [Σ−p,−qBM(X), E]

(I am indebted to Riou for discussions about this.) Applying this to E = Hét
Z[1|p], we

get the desired theory.
Note that, for a singular scheme X, one may also consider the groups

H2n−i
ét

(
X, α∗zn(X, ∗)[1|p]

)

obtained by sheafifying the Bloch cycle complexes for the étale topology. These
groups map to HBM,ét

i (X, Z[1|p](n)), but these maps are not isomorphisms in
general as one can see easily because of (4.18). So the isomorphism of [92, (1.6)]
is wrong. (I am indebted to Geisser for pointing out this issue.) However they
become isomorphisms after tensoring with Q, and these groups then reduce to
Bloch’s higher Chow groups tensored with Q.

Finally, one can repeat the story above after tensoring the étalified Bloch cycle
complexes (for smooth schemes) by a fixed complex of étale sheaves C on the small
étale site of Spec k: this will be used in the sequel.

Applications: Local Structure of Algebraic
K-Groups and Finiteness Theorems4.6

25 Definition 25 Let X be a Spec Z[1|2]-scheme: it is non-exceptional if for any con-
nected component Xα, the image of the cyclotomic character κ2 : π1(Xα) → Z∗

2
does not contain −1.

The first result says that, locally for the Zariski topology, algebraic K-theory with
Z|2ν coefficients is canonically a direct sum of étale cohomology groups, at least
in the nonexceptional case:



Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry 383

26Theorem 26: ([91, Th. 1]) Let A be a semi-local non-exceptional Z[1|2]-algebra.
a) There are canonical isomorphisms (n ≥ 0, ν ≥ 2)

∐

0≤i≤n

H2i−n
ét (A, µ⊗i

2ν )
∼→ Kn(A, Z|2ν) .

b) If A is essentially smooth over field or a discrete valuation ring, the spectral
sequence (4.5) with Z|2ν coefficients canonically degenerates.

c) If A is a field and µ2ν ⊂ A, the natural map

KM
∗ (A) ⊗ Z|2ν[t] → K∗(A, Z|2ν)

given by mapping t to a “Bott element” is an isomorphism.

Note that the reason why Thomason disbelieved the Bloch–Kato conjecture was
precisely that it would imply the vanishing of all differentials in the Atiyah–
Hirzebruch spectral sequence for étale K-theory [195, p. 409]: similar results had
been observed by Dwyer–Friedlander [45]. See §3 in Weibel’s chapter for details
on the construction of the isomorphism a) in some special cases.

For X a scheme, define d2(X) := sup{cd2(η)}, where η runs through the generic
points of X.

27Theorem 27: (ibid., Th. 2) Let X be a finite-dimensional Noetherian non-
exceptional Z[1|2]-scheme.
a) The natural map

KTT
n (X, Z|2ν) → KTT

n (X, Z|2ν)[β−1]

is injective for n ≥ sup(d2(X) − 2, 1) and bijective for n ≥ sup(d2(X) − 1, 1).
The 1 in the sup is not necessary if X is regular. (Recall that KTT denotes
Thomason–Trobaugh K-theory.)

b) The natural map

K ′
n(X, Z|2ν) → K ′

n(X, Z|2ν)[β−1]

is injective for n ≥ d2(X) − 2 and bijective for n ≥ d2(X) − 1.
c) If cd2(X) < +∞, there are isomorphisms

KTT
n (X, Z|2ν)[β−1]

∼→ Két
n (X, Z|2ν)

for all n ∈ Z.

28Remark 28 For X regular over a field or a discrete valuation ring, one can directly
use the spectral sequences (4.5) and (4.6) with finite coefficients, cf. Levine [120];
but this approach does not work for singular X and KTT .
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29 Corollary 29: (ibid., Cor. 1) Let S be Z[1|2]-scheme and X a non-exceptional
separated S-scheme of finite type. Assume that S is
(i) Spec R[1|2], where R the ring of integers of a non-exceptional number field, or
(ii) Spec Fp, p > 2, or
(iii) Spec k, k separably closed field of characteristic ≠ 2, or
(vi) Spec k, k a higher local field in the sense of Kato.
Then KTT

n (X, Z|2ν) and K ′
n(X, Z|2ν) are finite for n ≥ dim(X|S) + d2(S) − 2.

30 Remark 30 For X regular, the map Hi(X, Z|2ν(n)) → Hi
ét(X, µ⊗n

2ν ) is injective for
i ≤ n+1 (even an isomorphism for i ≤ n) by Conjecture 17 and Theorem 21, hence
Hi(X, Z|2ν(n)) is finite by Deligne’s finiteness theorem for étale cohomology [SGA
4 1/2, th. finitude] plus arithmetic finiteness theorems. This remark yields Corol-
lary 29 by applying Corollaries 22 and 23. The general case needs the methods
of [91].

31 Corollary 31: (ibid., Cor. 2) Let X be a variety of dimension d over k = Fp (resp.

Qp), p > 2. Then KTT
n (X){2} is finite and

KTT
n+1(X)

KTT
n+1(X){2} is uniquely 2-divisible for n ≥ d

(resp. d + 1). The same statements hold with K ′∗(X).

32 Theorem 32: (ibid., Th. 3) Let d ≥ 0 and n ≥ 3. There exists an effectively
computable integer N = N(d, n) > 0 such that, for any Noetherian Z[1|2]-scheme
X separated of Krull dimension ≤ d and all ν ≥ 2, the kernel and cokernel of the
map

KTT
n (X, Z|2ν)

(ici,2i−n)→
∏

i≥1

H2i−n
Zar (X, B|2ν(i))

(given by Chern classes) are killed by N. If X is smooth over a field or a discrete
valuation ring, this holds also for n = 2.

Let us come back to Conjecture 4 in the light of this theorem. If X is of fi-
nite type over a field k of characteristic 0, the construction of the Haesemeyer
spectral sequence (4.13) yields a version with coefficients Z|2ν. The abutment is
KTT∗ (X, Z|2ν) by homotopy invariance of the latter theory. The E2-terms are of the
form H

p
cdh(X, θ∗B|2ν(−q|2)), where θ is the projection of the cdh site of k onto its big

Zariski site. This looks closely like the spectral sequence in Conjecture 4. Is there
any reason why the maps H

p
Zar(X, B|2ν(−q|2)) → H

p
cdh(X, θ∗B|2ν(−q|2)) should

be isomorphisms? A moment of reflection suggests that there might be a base
change theorem between étale and cdh topology (involving Geisser’s éh topol-
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ogy [60]) which should be closely related to Gabber’s affine analogue of proper
base change [55].

If X = Spec OS where OS is a localised ring of integers in a global field (with
1|2 ∈ OS) and OS is not formally real, then cd2(OS) = 2 and the spectral sequence
(4.7) degenerates for dimension reasons. Hence Corollary 22 directly yields iso-
morphisms

K2i−1(OS, Z|2ν) � H1
ét(OS, µ⊗i

2ν )

K2i−2(OS, Z|2ν) � H2
ét(OS, µ⊗i

2ν ) (i ≥ 2) .

This is a finite coefficients version of the original Quillen conjecture (cf. Con-
jecture 1)

K2i−1(OS) ⊗ Zl � H1
ét(OS, Zl(i)) (4.24)

K2i−2(OS) ⊗ Zl � H2
ét(OS, Zl(i)) (i ≥ 2) . (4.25)

The latter readily follows from the finite version by passing to the inverse
limit, because of the finiteness of the étale cohomology groups and Quillen’s finite
generation theorem (see below).

When OS is formally real, we have cd2(OS) = +∞ and the above does not apply.
In fact, the spectral sequence (4.7) does not degenerate at E2 in this case, neither
for OS nor for its quotient field F. It can be shown however that it degenerates at
E4 as well as (4.6), see [88, Lemma 4.3] for the latter. (For coefficients Z|2s with
s ≥ 2, see [83, Appendix]: this argument is detailed in Sect. 7 of Weibel’s chapter
for the real numbers. For coefficients Z|2, see [152]. In [160] Rognes and Weibel
avoid the use of a product structure by a clever reciprocity argument.) This yields
the following version of Quillen’s conjecture:

33Theorem 33: ([88, Th. 1]) Let r1 be the number of real places of F. Then there
exist homomorphisms

K2i−j(OS) ⊗ Z2

chi,j→ H
j
ét(OS, Z2(i)) (j = 1, 2, i ≥ j) ,

which are
(i) bijective for 2i − j ≡ 0, 1, 2, 7 (mod 8)
(ii) surjective with kernel isomorphic to (Z|2)r1 for 2i − j ≡ 3 (mod 8)
(iii) injective with cokernel isomorphic to (Z|2)r1 for 2i − j ≡ 6 (mod 8).
Moreover, for i ≡ 3 (mod 4) there is an exact sequence

0 → K2i−1(OS) ⊗ Z2 → H1
ét(OS, Z2(i)) → (Z|2)r1

→ K2i−2(OS) ⊗ Z2 → H2
ét(OS, Z2(i)) → 0

in which Im(H1
ét(OS, Z2(i)) → (Z|2)r1 ) has 2-rank ρi ≥ 1 if r1 ≥ 1.

The homomorphisms chi,j are natural in OS.
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34 Remark 34 The above results hold modulo powers of an odd prime l (without the
non-exceptional complications) as soon as the Bloch–Kato conjecture is proven
mod l. See §6 in Weibel’s chapter.

For X regular, Theorem 27 has been generalised by P. A. Østvær and A. Rosen-
schon by removing the nonexceptional hypotheses [152]: they get essentially the
same statements by replacing the étale cohomological 2-dimension by the vir-
tual étale cohomological 2-dimension. However they do not deal with singular
schemes.

J. Rognes and C. Weibel [160] used Theorem 21 and the version with divisible
coefficients of the spectral sequence (4.7) to compute much of the 2-torsion in
K∗(OF) where OF is the ring of integers of a number field (see also [88, Cor. 3]): see
Weibel’s chapter in this Handbook.

35 Question 35: Open Question Let be X regular of finite type over Spec Z[1|m]. Is
Hi(X, Z|m(n)) finite for all i?

This is false over Spec Q: by Schoen [166], there exists an elliptic curve E and
a prime l with CH2(E3)|l = H4(E3, Z|l(2)) infinite. I now tend to doubt whether
this is true even over Z: see the discussion in Sect. 4.9.1.

The Picture in Arithmetic Geometry4.7

Finite Generation Theorems4.7.1

A basic conjecture underlying all further conjectures is

36 Conjecture 36: (Bass Conjecture)
a) For any scheme X of finite type over Spec Z, the groups K ′

i (X) are finitely
generated.

b) For any regular scheme X of finite type over Spec Z, the groups Ki(X) are finitely
generated.

By Poincaré duality for K ′ and K-theory, a) evidently implies b). But conversely,
b) implies a) by the localisation exact sequence (if X is of finite type over Spec Z, its
regular points form a dense open subset so we may argue by Noetherian induction).

In view of the spectral sequences (4.5) and (4.6), it is tempting to approach this
conjecture via the stronger
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37Conjecture 37: (Motivic Bass Conjecture)
a) For any scheme X of finite type over Spec Z, the groups HBM

i (X, Z(n)) are finitely
generated.

b) For any regular scheme X of finite type over Spec Z, the groups Hi(X, Z(n)) are
finitely generated.

Just as before, a) ⇐⇒ b).
I will explain in Sect. 4.9.1 why I now doubt that these versions of the Bass

conjecture are true, and also why it does not matter too much. Nevertheless let us
start with positive results:

38Proposition 38
a) Conjecture 37 is true for n ≤ 1.
b) (Quillen) Conjecture 36 is true for dim X ≤ 1.

Sketch of proofs
We may reduce to X regular and connected. First, a) may be deduced from

a combination of
Dirichlet’s unit theorem: finite generation of units in the ring of integers of
a number field, and the finiteness of the class group of such a ring.
The Mordell–Weil theorem: for any abelian variety A over a number field K,
the group A(K) is finitely generated.
The Néron-Severi theorem: for any smooth projective variety X over an alge-
braically closed field, the Néron-Severi group NS(X) is finitely generated.

De Jong’s alteration theorem also enters the proof: we skip details (see [97], and
also [95, Lemma 4.1] for characteristic p).
b) Here Quillen’s proofs go through a completely different path ([66, 153, 155]):
homology of the general linear group. For any ring R, one has

Ki(R) = πi(K0(R) × BGL(R)+) .

Since BGL(R)+ is an H-space, by Hurewicz’s theorem all Ki are finitely generated
if and only if K0(R) is finitely generated and all Hi(BGL(R)+, Z) = Hi(GL(R), Z) are
finitely generated. At the time when Quillen proved the theorems, he needed to go
through delicate arguments involving (in the dimension 1 case) homology of the
Steinberg module. However, later stability theorems may be used to simplify the
argument, except in the function field case: by van der Kallen and Maazen [98],
Hi(GL(R), Z) = Hi(GLN(R), Z) for N large (depending on i). If R is finite, this
finishes the proof. If R is a localised number ring, finite generation depends on
a theorem of Raghunathan [157] which ultimately uses the action of SLN(R) on
certain symmetric spaces, hence Riemannian geometry… There is a similarity
with Dirichlet’s proof of his unit theorem (N = 1).
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For curves over a finite field, Quillen’s proof, passing through Steinberg modules,
is mainly related to the fact that semi-stable vector bundles over a curve admit
moduli. It would be useful to combine this idea with the van der Kallen–Maazen
stability theorem in order to simplify the proof. We shall give a completely different
proof in Remark 71 3).

The Beilinson–Soulé Conjecture Again
The following result was prefigured in [84]:

39 Theorem 39: ([87]) Conjecture 36 ⇒ Conjecture 5.

Sketch
We shall actually sketch a proof of the slightly weaker result that Conjecture 37

⇒ Conjecture 5 for X regular of finite type over Z[1|2]. There are long exact
sequences

· · · → Hi(X, Z(2)(n))
2→ Hi(X, Z(2)(n)) → Hi(X, Z|2(n)) → · · ·

For i < 0, Theorem 21 + Theorem 19⇒Hi(X, Z|2(n)) = 0. Since the Hj(X, Z(2)(n))
are finitely generated over Z(2), this does the proof for i < 0. For i = 0, we need
a little more: after reducing to a finitely generated field K, a dyadic argument using
that K contains only finitely many roots of unity. With even more effort one can
catch the Merkurjev–Suslin Conjecture 8.

To get the actual statement of the theorem, one has to check that in the spectral
sequence (4.6), the appropriate E∞ terms are uniquely 2-divisible as subquotients
of motivic cohomology groups, and that then the corresponding K-groups are
also almost uniquely divisible, hence vanish up to a group of finite exponent, and
therefore the motivic groups too. This back and forth uses the degeneration of
(4.6) up to small torsion and is a bit messy; the arguments in [84] give a good
idea of it. (Note that the quasi-degeneration of the spectral sequence implies that
a given E∞-term is equal to the corresponding E2-term up to groups of finite
exponent.) It may not be extremely interesting to make this proof completely
explicit.

Motivic Cohomology of Finite and Global Fields
In this subsection we want to indicate a proof of

40 Theorem 40 Conjecture 37 holds for dim X ≤ 1.
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Sketch
As in the proof of Proposition 38 we may restrict to X regular connected. In view

of Proposition 38, we may try and deduce it from Conjecture 36 via the spectral
sequence (4.6).

If one tries the crude approach via Adams operations, one runs into the problem
indicated at the end of Sect. 4.2: we only get that the groups Hi(X, Z(n)) are finitely
generated up to some group of finite exponent (bounded in terms of i and n). We
are going to get by by granting the Beilinson–Lichtenbaum Conjecture 17. The
main point is:

41Lemma 41 The Beilinson–Soulé Conjecture 5 is true for dim X ≤ 1; moreover
Hi(X, Z(n)) = 0 for i ≥ dim X + 2 (up to a finite 2-group if the function field of X
is formally real).

There are three very different proofs of this lemma. The first combines the rank
computations of Borel [24] with the results of Soulé [173,174], cf. [77, p. 327, Ex. 3].
The second uses the proof of the rank conjecture for number fields (the rank
filtration is opposite to the gamma filtration) by Borel and Yang [27]. The third is
to apply Theorem 39 in this special case: see [88, proof of Th. 4.1].

Given Lemma 41, (4.6) degenerates at E2 for dimension reasons, except in the
formally real case. When it degenerates at E2 the finite generation conclusion is
immediate; in the formally real case one gets relationships between K-theory and
motivic cohomology similar to those of Theorem 33 and the conclusion follows
again.

To get this finite generation result for motivic cohomology, we have used a very
circuitous and quite mathematically expensive route: Quillen’s finite generation
theorems for K-theory (involving the homology of GLn and Riemannian geome-
try), the Bloch–Lichtenbaum spectral sequence and finally the Bloch–Kato conjec-
ture! In characteristic 0 this seems to be the only available route at the moment.
In characteristic p, however, we shall see in Remark 71 3) that Frobenius provides
a shortcut allowing us to avoid the passage through K-theory.

Ranks, Torsion and Zeta Functions 4.7.2

The primeval formula in this subject is certainly Dedekind’s analytic class number
formula: let K be a number field, ζK its Dedekind zeta function, (r1, r2) its signature,
h its class number, w the number of its roots of unity and R its regulator. Then

lim
s→0

s−r1−r2+1ζK (s) = −
hR

w
. (4.26)

So we recover analytically the rank r1 + r2 − 1 of the units O∗
K as well as a number

involving h, R and w. Up to the rational number h|w, the special value of ζK (s) at
s = 0 is the regulator. Deligne, Lichtenbaum, Soulé and Beilinson have formulated
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conjectures generalising this formula. These conjectures really are for two very
different types of zeta or L-functions:

The zeta function of an arithmetic scheme (Lichtenbaum, Soulé).
The “Hasse–Weil” L-functions associated to Hi of a smooth projective variety
over a number field K, or more generally to a K-motive for absolute Hodge
cycles (Deligne, Beilinson, Bloch–Kato…)

They have shaped the development of algebraic K-theory and later motivic coho-
mology and the theory of motives ever since they were formulated. Here I am only
going to discuss the first case: the second one is much harder to even state and
completely beyond the scope of these notes.

Soulé’s Conjecture4.7.3

Lichtenbaum formulated very precise conjectures, at least in special cases, while
Soulé formulated a general conjecture but only for orders of poles. Let me start
with this one. Recall that an arithmetic scheme is a scheme of finite type over Z. If
X is an arithmetic scheme, its zeta function9 is

ζ(X, s) =
∏

x∈X(0)

(1 − N(x)−s)−1 ,

where X(0) is the set of closed points of X and, for x ∈ X(0), N(x) = |κ(x)|, the
cardinality of the residue field at x. This formal expression has some obvious
properties:
1. ζ(X, s) only depends on the reduced structure of X.
2. If Z is closed in X with open complement U , then

ζ(X, s) = ζ(U, s)ζ(Z, s) . (4.27)

3. ζ(X × A1, s) = ζ(X, s − 1) . (4.28)

4. If f : X → Y is a morphism, then

ζ(X, s) =
∏

y∈Y0)

ζ(Xy, s) , (4.29)

where Xy is the fibre of f at y.

Using this, one easily proves that ζ(X, s) converges absolutely for Re(s) > dim X by
reducing to Riemann’s zeta function (see [169, Proof of Theorem 1] for details),
hence is analytic in this domain as a Dirichlet series. It is conjectured to have
a meromorphic continuation to the whole complex plane: this is known at least in
the half-plane Re(s) > dim X − 1|2 [169, Th. 2].

9 This notion goes back to Artin, Hasse and Weil. To the best of my knowledge, the place
where it is first defined in this generality is Serre [168].
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Finally, if X is defined over a finite field k with q elements, then one has the
famous formula (Grothendieck–Artin-Verdier):

ζ(X, s) =
2d∏

i=0

det
(
1 − FXq−s | Hi

c(X, Ql)
)(−1)i+1

, (4.30)

where H∗
c (X, Ql) is the Ql-adic cohomology with compact supports of the geo-

metric fibre X [SGA 5, Exp. XV]. In particular ζ(X, s) is a rational function in q−s

(a result originally proven by Dwork [42]) and the meromorphic continuation is
obvious.

If X = Spec OK for a number field K, we recover the Dedekind zeta function
of K.

42Conjecture 42: (Soulé Conjecture [175, Conj.2.2]) For any n ∈ Z, we have

ords=n ζ(X, s) =
∑

i∈Z

(−1)i+1 dimQ K ′
i (X)(n) ,

where K ′
i (X)(n) is the part of weight n of K ′

i (X) under the homological Adams
operations.

43Remark 43
1) This is a conjecture built over conjectures! First, it presupposes the meromor-

phic continuation of ζ(X, s). Then, implicitely, the dimensions involved in this
formula are finite and almost all 0: this would be a consequence of Conjec-
ture 36, via Theorem 39.

2) Using (4.11), we may now rewrite the right hand side as
∑

i∈Z

(−1)i+1 dimQ HBM
2n−i(X, Q(n)) =

∑

j∈Z

(−1)j+1 dimQ HBM
j (X, Q(n)) ,

which looks much more like an Euler–Poincaré characteristic.

For a conjecture on the special values of this zeta function, see Theorem 72.

Example 44. Let X = Spec OK , where K is a number field. It is known that
Ki(X)(n) = Ki(X)(1−n) = 0 for i ≠ 2(1 − n) − 1 = 1 − 2n, except

that Ki(X)(0) = 0 for i ≠ 0; moreover K0(X)(0) = K0(X) ⊗ Q and K1−2n(X)(1−n) =
K1−2n(X) ⊗ Q. Hence the conjecture reads, replacing n by 1 − n:

ords=1−n ζ(X, s) =





− dimQ K0(X) ⊗ Q for n = 0

dimQ K2n−1(X) ⊗ Q for n > 0 .
(4.31)



392 Bruno Kahn

For n = 0, this says that ζ(X, s) has a pole of order 1 at s = 1, which is classical.
For n = 1, it follows from (4.26). For n > 1, it is easy to compute the left hand side
via the functional equation: one finds

gn := ords=1−n ζ(X, s) =





r1 + r2 if n is odd

r2 if n is even .

It is a theorem of Borel [24] that the right hand side has the same value, so
that (4.31) is true (of course, Soulé’s conjecture was only formulated much later);
this prompted Lichtenbaum’s conjecture (or question) 46 below, which in turn
prompted further work of Borel in this direction [25], see Theorem 47.

Let us toy with the Soulé conjecture as we toyed with the Beilinson–Soulé con-
jecture. From (4.27) and (4.4) (or the easier localisation theorem of Quillen for
K ′-theory), one deduces that if X = U ∪Z and the conjecture is true for two among
X, U, Z, then it is true for the third. From this follows easily:

45 Lemma 45 The following conditions are equivalent:
(i) Conjecture 42 is true for all X.
(ii) Conjecture 42 is true for all X affine and regular.
(iii) Conjecture 42 is true for all X projective over Z.

One would like to refine this lemma further, reducing to X as in Lemma 7 c) (or
d) if we restrict to Xs of positive characteristic). Unfortunately I don’t see how
to do this: unlike an abelian group, a number does not have direct summands!
This reduction will work however if we know some strong form of resolution of
singularities (e.g. for dim X ≤ 2, by Abyankhar). This approach is probably too
crude, see Theorem 58.

Soulé’s conjecture is true for n > d = dim X because both sides of the equality
are then 0. For n = d it is true by [169, Th. 6]. For n = d − 1 and X regular and
irreducible, it was formulated by Tate in [189] and implies the Birch–Swinnerton–
Dyer conjecture (in fact, is equivalent to it under some strong enough form of
resolution of singularities, see above); more generally, it is compatible with the
Beilinson conjectures in a suitable sense. For details on all this, see Soulé [175, 2.3
and 4.1]. Finally, it is equivalent to a part of Lichtenbaum’s second conjecture if X
is smooth projective over a finite field, see Sect. 4.7.6.

We shall now state the two conjectures of Lichtenbaum on special values of
zeta functions: the first concerns Dedekind zeta functions and the second those of
smooth projective varieties over a finite field.
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Lichtenbaum’s First Conjecture:
Rings of Algebraic Integers 4.7.4

(See Goncharov’s chapter for many more details on this subsection, including the
relationship with polylogarithms.)

To state this conjecture, recall that K2n(OK) is finite because it is finitely generated
(Proposition 38) and has rank 0 (Borel [24]). Next, Borel defined a regulator

ρn : K2n−1(OK) ⊗ R → Rgn

which is an isomorphism by [24]. Let Rn(K) be the absolute value of the determinant
of ρn with respect of a basis of K2n−1(OK)|tors and the canonical basis of Rgn .
Lichtenbaum asks prudently:

46Conjecture 46: (Lichtenbaum [123, Question 4.2]) When is it true that

lim
s→1−n

(s + n − 1)−gn ζK (s) = ± |K2n−2(OK )|
|K2n−1(OK)tors|Rn(K) ? (4.32)

Note that the sign is not mysterious at all: it is easy to get as follows. If we restrict
ζK(s) to s real, it takes real values. For s > 0 it is positive. Since it has a single pole
at s = 1, it is negative for s < 1 in the neighbourhood of s = 1. Between s = 0 and
s = 1, its only possible zero is for s = 1|2. But the functional equation shows that
this possible zero has even order (I am indebted to Pierre Colmez for this trick).
Therefore its value for s > 0 near 0 is still negative and the sign at s = 0 is −1. Then
it in known that the only zeroes or poles are at negative integers, and the above
reasoning gives the sign in (4.32) immediately. One finds

(−1)gn−1+gn−2+…+g1+1 =





(−1)

n
2 r1+r2 if n is even

(−1)
n−1

2 r1 if n is odd > 1 .
(4.33)

This computation also appears in Kolster [111] (using the functional equation).
In [25], Borel gave the following partial answer:

47Theorem 47
lim

s→1−n
(s + n − 1)−gn ζK (s) = Rn(K)

up to a nonzero rational number.

Here are some comments on Conjecture 46. Besides (4.26) and Borel’s computation
of the ranks of K-groups in [24], it was inspired by an earlier conjecture of Birch
and Tate (the case n = 2) when K is totally real [17], [191] and by a conjecture of
Serre [171, p. 164] that, still for K totally real and n even, ζK(1 − n)|H0(K, Q|Z(n))|
should be an integer; this conjecture was proven later by Deligne–Ribet [40]. This
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case is much simpler because then gn = 0 and it had been proven long ago by
Siegel that the left hand side of (4.32) was a rational number. In this special case,
Lichtenbaum initially conjectured the following equality:

ζK (1 − n) = ±
∏

l prime

∣∣H1(OK[1|l], Ql|Zl(n))
∣∣

∣∣H0(OK[1|l], Ql|Zl(n))
∣∣ .

Under this form, the conjecture was proven by Mazur–Wiles for K abelian
over Q [131], and then by Wiles in general, except perhaps for l = 2 [212], as
a consequence of their proofs of Iwasawa’s Main Conjecture. Still in this special
case, Quillen’s conjectures (4.24) and (4.25) prompted the K-theoretic formulation
(4.32), up to a power of 2 since (4.24) and (4.25) were formulated only for l odd
and computations showed that the 2-primary part of the formula was false. This is
now explained, for example, by Theorem 33: the correct formula, still in the case
where K is totally real and n is even, is (cf. [88, Cor. 1], [160])

ζK(1 − n) = ±2r1
|K2n−2(OK)|
|K2n−1(OK)| = ±|H2(OK , Z(n))|

|H1(OK , Z(n))| .

We could say that this conjecture is essentially proven now if one believes that
the proof of the Bloch–Kato conjecture (for Milnor’s K-theory) is complete.

How about the general conjecture? First there was an issue on the correct
normalisation of the Borel regulator, as Borel’s original definition does not give
Theorem 47, but the same formula with the right hand side multiplied by πgn . The
normalisation issue is basically accounted for by the difference between the Hodge
structures Z and Z(1) = 2πiZ: we refer to [30, Ch. 9] for a very clear discussion
(see also [26]). Then Beilinson formulated his general conjectures which should
have Borel’s theorem as a special case: there was therefore the issue of comparing
the Borel and the Beilinson regulators.10 This was done by Beilinson himself up
to a nonzero rational number (see [158]), and finally Burgos [30] showed that the
Beilinson and Borel regulator maps differ by a factor 2, hence the corresponding
determinants differ by 2gn .

Let me give what I believe is the correct formulation in terms of motivic co-
homology and a version of Beilinson’s regulator (see also for example [110, 111]).
This will be the only allusion to Beilinson’s point of view in this survey. We define
Hi(OK , Z(n)) as Levine does in [119] and [121], using a suitable version of Bloch’s
cycle complexes for schemes over Z. Then the construction of a motivic cycle class
map yields “regulator” maps to Deligne’s cohomology (see §6.1 in Levine’s chapter;
note that H1(OK , Q(n))

∼→ H1(K, Q(n)) for n ≥ 2 and that the regulator is just
Dirichlet’s regulator for n = 1)

ρ′
n : H1(OK , Z(n)) ⊗ R → H1

D(OK ⊗Z R, R(n)) ,

10 The great superiorities of the Beilinson regulator over the Borel regulator are its conceptual
definition, its functoriality and its computability in certain cases. On the other hand, no
proof of Theorem 47 directly in terms of the Beilinson regulator is known at present.
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which can be compared to Beilinson’s regulator, the latter being essentially a Chern
character. The Lichtenbaum conjecture should then read

lim
s→1−n

(s + n)−gn ζK (s) = εn
|H2(OK , Z(n))|

|H1(OK , Z(n))tors|R′
n(K) , (4.34)

where R′
n(K) is the absolute value of the determinant of ρ′

n with respect to integral
bases and εn is as in (4.33).

The best formulation would be in terms of étale motivic cohomology with
compact supports à la Kato–Milne [137, p. 203], but this would lead us too far.
(Lichtenbaum is currently working on a conjectural formula involving cohomology
groups defined by means of the Weil groups, in the spirit of his Weil-étale topology
in characteristic p which we shall explain in Sect. 4.7.8 [127].)

As for the general case of the Lichtenbaum conjecture, it is now proven with
the same caveat (Bloch–Kato conjecture) for K abelian over Q, by the work of
Fleckinger–Kolster–Nguyen Quang Do [47] (see also [15] and [16, appendix]). For
nonabelian K we are still far from a proof.

Note that, if one is only interested in totally real K and even n, one may re-
formulate Conjecture 46 purely in terms of étale cohomology, and if one is only
interested in Theorem 47 one may reformulate things in terms of the homology
of GLn(OK). In both cases one can get rid of algebraic K-theory and motivic co-
homology. However, if one wants the general case, there is no way to avoid them.
This encapsulates the beauty and the depth of this conjecture!

48Remark 48 In the sequel we shall amply discuss varieties over finite fields. Let us
make here a few comments on the 1-dimensional case. Let X be a smooth projective
curve over Fp. By the already mentioned theorem of Quillen [66], the groups Ki(X)
are finitely generated. On the other hand, their rank was computed by the work of
Harder [73]: for i > 0 it is 0, hence Ki(X) is finite. Harder computes the rank of the
homology of SLn(A), where A is the coordinate ring of an affine open subset of X,
very much in the style of Borel [24], hence using Riemannian geometry.

There are two completely different proofs of this rank computation. The first
one is due to Soulé [176, 2.3.4] and uses motivic methods: see Sect. 4.8.2 below. The
second one uses the Milnor conjecture (Theorem 21): by the spectral sequence (4.6)
(or the isomorphism (4.9)) it is enough to show that Hi(X, Q(n)) = 0 for i ≠ 2n.
This can be done as for the proof of Theorem 39. This argument relies on knowing
the finite generation of the Ki(X) while Harder’s and Soulé’s proofs do not. On the
other hand, we shall get the finite generation of Hi(X, Z(n)) directly in Sect. 4.8,
without appealing to Quillen’s theorem but using the Bloch–Kato conjecture.

The Tate, Beilinson and Parshin Conjectures 4.7.5

For the rest of this section, k is a finite field and X is a smooth projective k-
variety. We also give ourselves a nonnegative integer n. Before introducing the



396 Bruno Kahn

second conjecture of Lichtenbaum, it is appropriate to recall two closely-related
conjectures. The first one is the famous Tate conjecture:

49 Conjecture 49: (Tate Conjecture) ords=n ζ(X, s) = − dimQ An
num(X, Q).

The second one, due to Beilinson, is a special case of his conjectures on filtrations
on Chow groups [81].

50 Conjecture 50: (Beilinson Conjecture) An
rat(X, Q) = An

num(X, Q).

There is a third related conjecture, due to Beilinson and Parshin:

51 Conjecture 51: (Beilinson–Parshin Conjecture) Ki(X) is torsion for i > 0.

In view of (4.10), the Beilinson–Parshin conjecture may be reformulated in terms
of motivic cohomology as follows: Hi(X, Q(n)) = 0 for i ≠ 2n. In particular, this
conjecture is a strong reinforcement of the Beilinson–Soulé conjecture for schemes
of characteristic p (compare Lemma 7).

Geisser has proven:

52 Theorem 52: ([56, Th. 3.3]) Conjecture 49 + Conjecture 50 ⇒ Conjecture 51.

Similarly, the Bass Conjecture 36 implies Conjecture 51, just as it implies Conjec-
ture 5 [87].

Let us compare these conjectures with Soulé’s Conjecture 42 restricted to smooth
projective varieties over Fp. Using the functional equation, Conjecture 49 may be
reformulated as follows: ords=n ζ(X, s) = − dimQ Anum

n (X, Q). On the other hand,
Conjecture 42 predicts that the value of the left hand side should be

∑
i∈Z(−1)i+1

dimQ HBM
i (X, Q(n)) (see Remark 43 2)). Under Conjecture 51, this reduces to

− dimQ HBM
2n (X, Q(n)) = − dimQ CHn(X) ⊗ Q. Hence, assuming the Parshin con-

jecture, among the Soulé, the Tate and the Beilinson conjecture, any two imply
the third. In particular, the Tate conjecture plus the Beilinson conjecture imply the
Soulé conjecture for smooth projective varieties – but see in fact Theorem 58 below.
Alternatively, we may replace the use of the functional equation by the observation
that dimQ An

num(X, Q) = dimQ Ad−n
num(X, Q), where d = dim X.

The Tate conjecture is known in codimension 1 for abelian varieties, by Tate’s
theorem [190]; it is trivial in dimension 0. Besides this it is known in many
scattered cases, all being either abelian varieties or varieties “of abelian type”, see
examples 75 below. In particular, Soulé deduced it from [190] for products of 3
curves by a very simple motivic argument, and then for all varieties of abelian type
of dimension ≤ 3 (in a slightly restricted sense compared to the one of [95], see
Example 75 1)) by a dévissage argument from the former case [176, Th. 4 (i)].
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The Beilinson conjecture is trivial in codimension 1; in dimension 0 it is true
for any variety by a theorem of Kato and Saito [102]. Soulé proved it in the same
cases as the Tate conjecture (loc. cit. ), and in particular his Conjecture 42 is true
for this type of varieties. Besides this, it was unknown except for trivial cases like
projective homogeneous varieties until Theorem 76 below, which proves new cases
of it.

Finally, let us give a consequence of Conjecture 51 for fields, using de Jong’s
alteration theorem (cf. [56, Th. 3.4]):

53Lemma 53 If Conjecture 51 holds for all smooth projective varieties over Fp, then
for any field K of characteristic p and any n ≥ 0,
(i) Hi(K, Q(n)) = 0 for i ≠ n.
(ii) KM

n (K) is torsion as soon as n > trdeg(K|Fp) (Bass–Tate conjecture).

The proof goes exactly as in that of Lemma 7 (recall that Hi(K, Z(n)) = 0 for i > n
anyway). As for the consequence on Milnor’s K-theory, one uses Theorem 2 and
the fact that H2n(X, Z(n)) = CHn(X) = 0 for n > dim X.

Lichtenbaum’s Second Conjecture:
Varieties over Finite Fields 4.7.6

This conjecture, which appears in [124], was formulated in two steps, in terms of
a not yet constructed “arithmetic cohomology theory”, later rechristened “motivic
cohomology”. It is important to notice that Lichtenbaum formulated it for the étale
hypercohomology of certain complexes. Here it is:
1. Hi

ét(X, Z(n)) = 0 for i large.
2. H2n

ét (X, Z(n)) is a finitely generated abelian group.
3. Hi

ét(X, Z(n)) is finite for i ≠ 2n, 2n + 2, 0 for i ≤ 0 when n > 0.
4. H2d+2

ét (X, Z(d)) is canonically isomorphic to Q|Z, where d = dim X.
5. The pairing

Hi
ét(X, Z(n)) × H2d+2−i

ét (X, Z(d − n)) → H2d+2
ét (X, Z(d))

∼→ Q|Z

is “perfect” in the sense that it defines a perfect duality of finite groups for
i ≠ 2n and a perfect duality between a finitely generated group and a group of
finite cotype pour i = 2n. In particular, rg H2d

ét (X, Z(d)) = 1.
6. The groups H2n

ét (X, Z(n)) and H2d−2n
ét (X, Z(d − n)) have the same rank m(n).

7. m(n) is the order of the pole of ζ(X, s) at s = n.
8. lim

s→n
(1 − qn−s)m(n)ζ(X, s) = ±qχ(X,OX ,n)χ(X, Z(n)), with

χ(X, Z(n)) =

∏

i≠2n,2n+2

∣∣Hi
ét(X, Z(n))

∣∣(−1)i ·
∣∣H2n

ét (X, Z(n))tors

∣∣ ∣∣H2n+2
ét (X, Z(n))cotors

∣∣

Rn(X)
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where Rn(X) is the absolute value of the determinant of the pairing

H2n
ét (X, Z(n))|tors × H2d−2n

ét (X, Z(d − n))|tors → H2d
ét (X, Z(d))|tors

∼→ Z

relatively to arbitrary bases of
H2n

ét (X,Z(n))

tors and
H2d−2n

ét (X,Z(d−n))

tors , and

χ(X, OX , n) =
∑

0≤i≤n
0≤j≤d

(−1)i+j(n − i)hij, hij = dim Hj(X, Ωi) .

Let us examine these predictions in terms of the present state of knowledge.
Statement 1 is known: for i > 2n+1, Hi−1

ét (X, Q|Z(n))
∼→ Hi

ét(X, Z(n)) by Theorem 14
and the discussion before Theorem 2; but cd(X) = 2d + 1 since a finite field has
étale cohomological dimension 1. So we may take i > 2d + 2. Similarly, Statement 4
is known, as well as the fact that rkH2d

ét (X, Z(d)) = 1.
For the other statements, the following remarks are in order. Statement 6 is

a formal consequence of the part of 5 which predicts a nondegenerate pairing
between the two groups. In view of Theorem 14 and the fact that H2n(X, Z(n)) =
CHn(X), Statement 7 follows from the conjunction of Conjectures 49 and 50;
given 3 and 5 it is equivalent to Soulé’s conjecture 42. Finally, statements 2, 3
and 5 are striking in that they predict finite generation properties of étale motivic
cohomology, but in a rather scattered way. This will be corrected (by an idea of
Lichtenbaum!) in Sect. 4.7.8.

Motivic Reformulation
of the Tate and Beilinson Conjectures4.7.7

One major point of this whole story is that Conjectures 49 and 50 really have to
be considered together. Then they have a very nice and very powerful reformula-
tion: this was the subject of [90]. I wrote it using Voevodsky’s version of motivic
cohomology, which made a rather simple construction but necessitated some un-
desirable assumptions on resolution of singularities in characteristic p. The version
with Bloch’s higher Chow groups, developed in [93], involves more technicality but
is free of resolution of singularities assumptions. Let me explain it now.

For l ≠ p, define

Zl(n)c = R lim← µ⊗n
ls .

This is an object of D+((Sm|Fp)ét), whose hypercohomology computes Jannsen’s
continuous étale cohomology H∗

cont(X, Zl(n)) [76] for smooth varieties X over Fp.
Naturally, by Deligne’s finiteness theorem for étale cohomology [SGA 4 1/2, Th.
Finitude], we have

Hi
cont(X, Zl(n)) = lim← Hi

ét(X, µ⊗n
ls )
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but this is a theorem rather than a definition. In any case, the quasi-isomorphisms
of Theorem 13 a) can now be assembled into a morphism in D((Sm|Fp)ét) [93,
§1.4]:

α∗Z(n) ⊗ Zl → Zl(n)c .

If one is looking for a quasi-isomorphism then this morphism is not yet quite
right: for example, for n = 0 the left hand side is Zl while the isomorphisms
H1

cont(Fq, Zl)
∼→ Zl for all q yield H1(Zl(0)c)

∼→ Ql [90, §4 and Th. 6.3]. Using
cup-product, let us perform the minimal modification correcting this: we get
a morphism

α∗Z(n)
L⊗ Zl(0)c → Zl(n)c . (4.35)

54Theorem 54: ([93, Th. 3.4]) The following statements are equivalent:
(i) Conjectures 49 and 50 are true for all X, n.
(ii) (4.35) is an isomorphism for any n.
(iii) Zl(n)c is malleable for any n > 0 (see p. 378).

For l = p one can define a morphism analogous to (4.35), using instead of Zl(n)c

the object

Zp(n)c := R lim← νs(n)[−n] ,

where νs(n) is the sheaf of logarithmic de Rham–Witt differential forms:

α∗Z(n)
L⊗ Zp(0)c → Zp(n)c . (4.36)

see [95, §3.5]. Then an equivalent condition to the above is (cf. [95, §3.6], [58]):

(ii) bis (4.36) yields an isomorphism on the hypercohomology of any smooth
projective X.

Note that (i) involves only algebraic cycles, (iii) involves only cohomology and
(ii) is a comparison between them. Also, (i) does not involve l, hence (ii) and (iii)
are independent of l.

In fact, in [90, §4] we construct a complex of length 1 of GFp -modules Zc such
that for all l (including l = p) there is a canonical isomorphism

Zl(0)c � π∗Zc ⊗ Zl , (4.37)

where π is the projection of the big étale site of Spec Fp onto its small étale site
(ibid., Th. 4.6 b) and 6.3). So, strikingly, (ii) predicts the existence of a canonical
integral structure on arithmetic l-adic cohomology, independent of l. (One should
not confuse this prediction with the “independence of l” conjectures for geometric
l-adic cohomology.)



400 Bruno Kahn

Sketch
The equivalence between (ii) and (iii) follows from Theorem 20: the fact that

Condition 2 in it is satisfied follows from the results of [94]. The proof of the
equivalence between (i) and (ii) is not really difficult: first, by Theorem 13 a),
(ii) ⊗L Z|lν is true, so (ii) and (ii) ⊗ Q are equivalent. Using de Jong, we get as in
Lemma 7 that (ii) ⊗ Q holds if and only if it holds for every smooth projective
variety X. Then one examines the two sides of the maps

Hi
ét(X, Q(n) ⊗ Ql(0)c) → Hi

cont(X, Ql(n))

and one deduces via the “Riemann hypothesis” (Weil conjecture) and some of
the folklore in [192] that isomorphism for all i and n is equivalent to the con-
junction of conjectures 49, 50 and 51. One concludes by Theorem 52. See [93] for
details.

55 Definition 55: (Tate–Beilinson Conjecture) For simplicity, we call the equivalent
conjectures of Theorem 54 the Tate–Beilinson conjecture.

Some Consequences
Besides being clearly of a motivic nature, the main point of the Tate–Beilinson
conjecture under the form (ii) in Theorem 54 is that it allows one to pass easily
from smooth projective varieties to general smooth varieties, or even to arbitrary
schemes of finite type over Fp. It has remarkable consequences: one could say that
it implies almost everything that one expects for varieties over finite fields. We
have already seen that it implies the Beilinson–Parshin conjecture (via Geisser’s
Theorem 52), hence the Beilinson–Soulé conjecture in characteristic p. But there
is much more. Let us first give some motivic consequences.

By [139, Remark 2.7 and Theorem 2.49], Conjecture 49 implies:
For any finite field k, Motnum(k, Q) is generated by motives of abelian varieties
and Artin motives.
Every mixed motive over a finite field is a direct sum of pure motives.

The last statement is a bit vague as long as one does not have a precise definition of
a mixed motive, as was the case when Milne wrote his article. Since now we have
at least triangulated categories of motives at our disposal, let me give a precise
theorem.

56 Theorem 56 Suppose that the Tate–Beilinson Conjecture 55 holds. Then, for any
finite field k:
(i) Voevodsky’s triangulated category DMgm(k, Q) is semi-simple in the sense

that any exact triangle is a direct sum of split exact triangles.



Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry 401

(ii) The functor δ of (4.15) induces an equivalence of categories

∆ : Motnum(k, Q)(Z) ∼→ DMgm(k, Q)

(Mi) 	→
⊕

i∈Z

δ(Mi)[i] .

(iii) Equivalently, (4.15) induces an equivalence of categories

∆ : Db(Motnum(k, Q))
∼→ DMgm(k, Q) .

Proof First we check that, for M, N ∈ Motrat(k, Q) = Motnum(k, Q)

HomDM(δ(M), δ(N)[i]) =





0 for i ≠ 0

HomMot(M, N) for i = 0 .

For this, we reduce by duality to the case where M = 1, and then to the case
where N is of the form h(X)(n) for X smooth projective. Then the left hand side is
Hi+2n(X, Q(n)) by [199, Cor. 3.2.7] and the cancellation theorem of Voevodsky [203],
and the conclusion follows from Theorem 52.

This implies that ∆ is fully faithful. To see that it is essentially surjective, using
de Jong it now suffices to show that its essential image is thick, i.e. stable under
exact triangles and direct summands. This follows from the following trivial but
very useful lemma (cf. [6, Lemma A.2.13]): in a semi-simple abelian category, any
morphism is the direct sum of an isomorphism and a 0 morphism. The same
lemma implies that DMgm(k, Q) is semi-simple. Finally, (iii) is equivalent to (ii)
because Motnum(k, Q) is semi-simple.

57Remark 57
1) This implies trivially a number of conjectures: the existence of a motivic t-

structure on DMgm(k, Q), the semi-simplicity of Galois action, independence
of l …

2) Theorem 56 (i) extends to DM(k, Q), hence to SH(k, Q) (see 4.4.5).

Next, the Tate–Beilinson conjecture implies the Lichtenbaum conjecture of the
previous section. This was proven in [90] after localising at l and under resolution
of singularities, but using the higher Chow groups version of Z(n) we can get rid
of the last assumption. Localising at l can also be got rid of. In fact one can get
a version of the Lichtenbaum conjecture for arbitrary, not just smooth projective,
schemes of finite type over Fp: (ii) is especially well-adapted to this. We shall give
details on this in Theorem 72. For the moment, let us sketch a proof of:
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58 Theorem 58 The Tate–Beilinson Conjecture 55 implies the Soulé Conjecture 42.

Sketch
We shall derive the form of Remark 43 2). In view of (4.30), it is sufficient to

prove the stronger equality

ords=n det
(
1 − FXq−s | Hi

c(X, Ql)
)

= dimQ HBM
i (X, Q(n))

for all X, i, n. Now the morphism (4.35) has a homological version

HBM,ét
i (X, Z(n) ⊗ Zl(0)c) → Hc,cont

i (X, Zl(n)) , (4.38)

where the left hand side is Borel–Moore étale motivic homology as explained in
Sect. 4.5.4 (see the end for the coefficients Zl(0)c) and the right hand side is the
continuous version of Borel–Moore étale homology (relative to Fp).

59 Lemma 59 Under the Tate–Beilinson Conjecture 55, (4.38) is an isomorphism for
any X, i, n.

This is easily proven by a dévissage using the localisation exact sequence plus
Poincaré duality for both sides. �

From this one deduces isomorphisms

HBM
i (X, Q(n)) ⊗ Ql

∼→ Hc,cont
i (X, Ql(n))G

with G = GFp , and moreover that G acts semi-simply on Hi
c,cont(X, Ql(n)) at the

eigenvalue 1 (this means that the characteristic subspace corresponding to the
eigenvalue 1 is semi-simple). Since Hi

c,cont(X, Ql(n)) is dual to Hc,cont
i (X, Ql(−n)),

the result follows.

The first instance I know of this dévissage argument is [78, Th. 12.7]. Jannsen
assumed resolution of singularities there but this is now unnecessary thanks to de
Jong’s theorem.

Since any finitely generated field K over Fp is a filtering direct limit of finitely
generated smooth Fp-algebras and any smooth variety over K is a filtering inverse
limit of smooth varieties over Fp, one also gets consequences of the Tate–Beilinson
conjecture for such varieties. Typically:

60 Theorem 60: ([90, Th. 8.32]) The Tate–Beilinson Conjecture 55 implies the fol-
lowing for any finitely generated field K|Fp and any smooth projective variety
X|K:
(i) (Tate conjecture) The map CHn(X) ⊗ Ql → H2n

cont(X, Ql(n))GK is surjective,
where GK = Gal(K|K).
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(ii) The action of GK on H∗
cont(X, Ql) is semi-simple.

(iii) The cycle map CHi(X) ⊗ Ql → H̃2i
cont(X|Fp, Ql(i)) is injective for all i.

In (iii), the group H̃2i
cont(X|Fp, Ql(i)) is by definition the direct limit of the

H2i
cont(X, Ql(i)), where X runs through the smooth models of X of finite type

over Fp.

Sketch
Extend X to a smooth, projective morphism f : X → U over a suitable smooth

model U of K. By Hard Lefschetz and Deligne’s degeneration criterion [38], the
Leray spectral sequence

E
pq
2 = H

p
cont(U, Rqf l−adic

∗ Ql(n)) ⇒ H
p+q
cont(X, Ql(n))

degenerates. (i) follows rather easily from this and the conjecture. The semi-
simplicity statement (ii) is only proven in [90] at the eigenvalue 1: the proof consists
roughly of “hooking” the geometric semi-simplicity theorem of Deligne [34, Cor.
3.4.13] on the arithmetic semi-simplicity (special case K = k). One can however
prove it in general by using some folklore ([80, 105] and the argument in [46, pp.
212–213]11), cf. [96]. The proof of (iii) is a simple direct limit argument.

Here are two other nice consequences (the proofs are the same as for [95, Cor. 2.6
and Th. 4.6], using Theorem 26 a)):

61Theorem 61 Assume the Tate–Beilinson and the Bloch–Kato conjectures 55 and 16.
Then
a) Gersten’s conjecture for algebraic K-theory holds for any discrete valuation

ring (hence for any local ring of a scheme smooth over a discrete valuation ring
by Gillet–Levine [64]).

b) For any field K of characteristic p one has canonical isomorphisms

KM
n (K) ⊕

⊕

0≤i≤n−1

H2i−n−1
(
K, (Q|Z)′(i)

) ∼→ Kn(K) ,

where (Q|Z)′(i) = lim→ (m,char k)=1
µ⊗i

m . The spectral sequence (4.6) canonically

degenerates.

By [192, Prop. 2.6 and Th. 3.1]), Theorem 60 (i) and (ii) imply the standard
conjecture HN on page 368 (hence the other ones: B and C). On the other hand,
by an argument similar to that in [81, Lemma 2.7], (iii) implies the filtration
conjecture of Bloch–Beilinson–Murre. As was proved by Peter O’Sullivan, the latter

11 Which I am grateful to Yves André for explaining me.
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implies Voevodsky’s conjecture 10 (see [3, Th. 11.5.3.1]). Also, under the Bloch–
Beilinson–Murre conjecture, Hanamura’s vanishing conjecture (Van) in [71, III]
may be reformulated as follows: for any smooth projective X|K, one has

Hq(h≥iX, Q(n)) = 0 for





q ≤ i if q ≠ 2n

q < i if q = 2n ,

where h≥i(X) denotes the part of weight ≥ i of h(X) ∈ Motrat(K, Q) under the
Bloch–Beilinson–Murre filtration. It would be sufficient to have this vanishing in
order to get a motivic t-structure on his category, but I have not derived it from the
Tate–Beilinson conjecture. Presumably one should first prove a version of (Van)
relative to a smooth model of K and then pass to the limit as we did for the
Beilinson–Soulé conjecture: this looks feasible but fairly technical.

Another conjecture I don’t know how to derive from the Tate–Beilinson conjec-
ture is the Hodge index standard conjecture, see [109, §5].

Lichtenbaum’s Weil-étale Topology;
Reformulation of his Second Conjecture4.7.8

In [126], Lichtenbaum introduced a new Grothendieck topology on schemes of
characteristic p: he christened it Weil-étale topology. This leads to a fundamental
clarification of the formulation of his previous conjectures, and of what should be
true or not in terms of finite generation conjectures.

Roughly, Lichtenbaum replaces the Galois group Gal(Fq|Fq) � Ẑ by its dense
subgroup generated by Frobenius (� Z) and extends this idea (which of course
goes back to Weil) to schemes of higher dimension. The corresponding coho-
mology theory should be called Weil-étale cohomology. I find this terminology
awkward because it can create confusion with a “Weil cohomology”, especially as
most known Weil cohomology theories in characteristic p are based on étale coho-
mology! For this reason, and also as a tribute to Lichtenbaum’s paternity, I prefer
to rechristen it Lichtenbaum cohomology, while keeping his notation H∗

W (X, F )
which recalls Weil’s contribution.

We may take the hypercohomology of Bloch’s cycle complexes (or the Suslin–
Voevodsky complexes) in the Weil-étale topology and get Lichtenbaum motivic
cohomology12 Hi

W (X, Z(n)). The various motivic cohomology groups map to each
other as follows:

Hi(X, Z(n)) → Hi
ét(X, Z(n)) → Hi

W (X, Z(n)) .

Lichtenbaum’s cohomology has been developed by Geisser in [58]. His main
results are the following:

12 Thereby conflicting with a terminology briefly introduced by Voevodsky for étale motivic
cohomology…
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62Theorem 62: (Geisser) Let ε be the projection of the Weil-étale site onto the
(usual) étale site. Then for any complex of étale sheaves C,
(i) There is a quasi-isomorphism

Rε∗ε∗C � C
L⊗ Rε∗ε∗Z .

(ii) There are long exact sequences

· · · → Hi
ét(X, C) → Hi

W (X, ε∗C)

→ Hi−1
ét (X, C) ⊗ Q

∂→ Hi+1
ét (X, C) → · · · (4.39)

Moreover Rε∗ε∗Z � Zc, where Zc is the complex alluded to in (4.37).

As important special cases, which give a feel of Lichtenbaum cohomology, we get:

63Corollary 63

(i) Hi
ét(X, C)

∼→ Hi
W (X, ε∗C) if the cohomology sheaves of C are torsion.

(ii) Hi
W (X, ε∗C) � Hi

ét(X, C) ⊕ Hi−1
ét (X, C) if the cohomology sheaves of C are

Q-vector spaces.

In the isomorphism of (ii), a very important element shows up: the generator e of
H1

W (Fp, Z) � Z (normalised, say, by sending the geometric Frobenius to 1).
The sequence (4.39) is completely similar to one derived from the Tate–Beilinson

conjecture in [90, Prop. 9.12] – except that it is not conjectural. With this and the
last result of Theorem 62, everything falls into place and we are able to give a much
more understandable reformulation of Conjecture (ii) in Theorem 54:

64Theorem 64 The Tate–Beilinson conjecture is also equivalent to the following one:
the map

(εα)∗Z(n) ⊗ Zl → ε∗Zl(n)c

induces isomorphisms on Weil-étale cohomology groups

H∗
W (X, Z(n)) ⊗ Zl

∼→ H∗
cont(X, Zl(n)) (4.40)

for all smooth X if l ≠ p (resp. for all smooth projective X if l = p).

Geisser’s theorem also allows us to reformulate Lichtenbaum’s conjectures in terms
of Lichtenbaum motivic cohomology (cf. [95, Cor. 3.8]):
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65 Conjecture 65 Let X be a smooth projective variety over Fp, and d = dim X.
a) The pairing

H2n
W (X, Z(n)) × H2d−2n

W (X, Z(d − n)) → H2d
W (X, Z(d)) → Z (4.41)

is nondegenerate modulo torsion for all n.
b) For any (i, n), the pairing

Hi
W (X, Z(n))tors × H2d+1−i

W

(
X, Q|Z(d − n)

) → H2d+1
W (X, Q|Z(d))

∼→ Q|Z

induces a perfect pairing of finite groups

Hi
W (X, Z(n))tors × H2d+2−i

W (X, Z(d − n))tors → Q|Z .

c) Hi
W (X, Z(n)) is finitely generated, finite for i |∈ {2n, 2n + 1} and 0 for i ≤ 0 (if

n > 0).
d) The kernel and cokernel of cup-product by e (generator of H1

W (Fp, Z))

H2n
W (X, Z(n)) → H2n+1

W (X, Z(n))

are finite.
e) The canonical homomorphism

Hi
ét(X, Z(n)) → Hi

W (X, Z(n))

is an isomorphism for i ≤ 2n.

Concerning the zeta function ζ(X, s), the following much nicer reformulation is
due to Geisser (op. cit.):

66 Conjecture 66
1. ords=nζ(X, s) = −rk CHn(X) := −m(n).
2. lim

s→n
(1 − qn−s)m(n)ζ(X, s) = ±qχ(X,OX ,n)χ(X, Z(n)), where

χ(X, Z(n)) =
∏

i

∣∣Hi
W (X, Z(n))tors

∣∣(−1)i · Rn(X)−1 ,

χ(X, OX , n) =
∑

0≤i≤n
0≤j≤d

(−1)i+j(n − i)hij, hij = dim Hj(X, Ωi)

and Rn(X) is the absolute value of the determinant of the pairing (4.41)
(modulo torsion) with respect to arbitrary bases of H2n

W (X, Z(n))|tors and
H2d−2n

W (X, Z(d − n))|tors.

Here I would like to correct a mistake in [95, Remark 3.11] about the sign. It is stated
there that this sign is (−1)

∑
a>n m(a). However, the Weil conjecture only says that
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the real zeroes of ζ(X, s) are half integers, so the correct formula is (−1)
∑

a|2>n m(a|2),
where a is an integer. By semi-simplicity, the value of m(a|2) is the multiplicity of
the eigenvalue qa|2 (positive square root) for the action of Frobenius on Ha(X, Ql).
This multiplicity may well be nonzero, for example if X is a supersingular elliptic
curve: I am grateful to A. Chambert-Loir for raising this issue. I have no idea
how to relate m(a|2) to cycle-theoretic invariants: there are no half Tate twists or
half-dimensional Chow groups…

67Theorem 67 The Tate–Beilinson Conjecture 55 implies Conjectures 65 and 66
(hence Lichtenbaum’s conjectures in Sect. 4.7.6).

Sketch
(For details, see [95].) By the finiteness results on étale cohomology, the right

hand side, hence the left hand side of (4.40) is a finitely generated Zl-module.
Hence, by faithful flatness, H∗

W (X, Z(n)) ⊗ Z(l) is a finitely generated Z(l)-module.
From there it is tempting to descend directly to Z, but this is wrong as Lichtenbaum
pointed out several years ago: for example, the Z-module M =

⊕
Z|l is such that

M ⊗Z Z(l) is finitely generated over Z(l) for all l, while it is certainly not finitely
generated. For a torsion-free example, take the subgroup of Q formed of all fractions
with square-free denominator.13 A correct proof uses a duality argument, which
is encapsulated in Lemma 68 below. (Arithmetic) Poincaré duality for continuous
étale cohomology allows us to apply this duality argument. This basically explains
the proof of a), b), c) and d); as for e), it follows from (4.39) and the Beilinson–
Parshin Conjecture 51. Finally, the deduction of Conjecture 66 is not especially
new and goes back to Milne [138, Th. 4.3 and Cor. 5.5] (see also [90, Cor. 7.10 and
Th. 9.20] and [58, Proof of Th. 8.1]).

68Lemma 68: [95, Lemma 3.9] Let R be a commutative ring and A × B → R
a pairing of two flat R-modules A, B.
a) Suppose that this pairing becomes non-degenerate after tensoring by Rl for

some prime ideal l of R, where Rl denotes the completion of R at l. Then it is
non-degenerate.

b) Suppose that R is a noetherian domain and let K be its field of fractions. If,
moreover, dimK A ⊗ K < ∞ or dimK B ⊗ K < ∞, then A and B are finitely
generated. �

13 One should be careful that this mistake can be found in the literature, e.g. see in [136,
Proof of Th. 12.5] the proof that the group of morphisms between two abelian varieties is
finitely generated; the corresponding proof in [148, p. 177] is completely correct. Lemma 68
will also justify the proof of [135, Ch. VI, Th. 11.7].
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69 Corollary 69 Under the Tate–Beilinson Conjecture 55:
a) dimQ Hi(X, Q(n)) < ∞ for all i, n.
b) Assuming further the Beilinson–Lichtenbaum Conjecture 17, Hi(X, Z(n)) is

finitely generated for any i ≤ n + 2.

70 Corollary 70 Under the Tate–Beilinson conjecture 55 and the Bloch–Kato Conjec-
ture 16, the Bass and motivic Bass conjectures 36 and 37 are true in the following
cases for smooth projective varieties X over Fp:
(i) d = dim X ≤ 3.
(ii) (for Conjecture 37 b):) n ≤ 2.

Proof
(i) It suffices to prove Conjecture 37 (for Conjecture 36, use the spectral sequence

(4.6)). Independently of any conjecture one has Hi(X, Z(n)) = 0 for i > n + d.
For i = n + d, by the coniveau spectral sequence for motivic cohomology, this
a group is a quotient of

⊕

x∈X(0)

Hn−d
(
k(x), Z(n − d)

)
.

The latter group is 0 for n < d and also for n ≥ d + 2 by Theorem 2,
since Milnor’s K-groups of finite fields vanish in degree ≥ 2. So far we have
only used that X is smooth. Suppose now X smooth projective: for n = d,
Hn+d(X, Z(n)) = CH0(X) is finitely generated by Bloch [18] (see also Kato–
Saito [102]), and for n = d + 1 it is isomorphic to k∗ by Akhtar [7]. If d ≤ 3,
this plus Corollary 69 b) covers all motivic cohomology.

(ii) Same argument, noting that for n ≤ 2 Corollary 69 b) again covers all the
motivic cohomology of X.

71 Remark 71
1) Trying to extend Corollary 70 to open varieties via de Jong’s theorem is a little

delicate: we can apply part 2 of the argument in the proof of Lemma 7 provided
we have an a priori control of the torsion of the motivic cohomology groups
involved. By the Beilinson–Lichtenbaum conjecture, the group Hi(X, Z|m(n)) is
finite for any smooth variety X as long as i ≤ n+1. This implies that mHi(X, Z(n))
is finite as long as i ≤ n + 2, so that Corollary 70 goes through for arbitrary
smooth varieties as long as d ≤ 2 or n ≤ 2, because then this finiteness
covers all motivic cohomology groups. For d = 3 we have a problem with
H6(X, Z(3)) and H7(X, Z(4)), however. Unfortunately, Abyankhar’s resolution
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of singularities for 3-folds in characteristic > 5 [1, Th. (13.1)] only works over
an algebraically closed field.

2) For singular schemes X, we may introduce Lichtenbaum Borel–Moore motivic
homology groups as in Sect. 4.5.4, using the Lichtenbaum topology rather than
the étale topology, or define them as

HBM,W
i

(
X, Z[1|p](n)

)
= HBM,ét

i

(
X, Z[1|p](n)

L⊗ Zc
)

cf. (4.37) and (4.38). Then, under the Tate–Beilinson conjecture, the groups
HW ,BM

i (X, Z[1|p](n)) are all finitely generated Z[1|p]-modules. This follows by
dévissage from the smooth projective case.

3) Corollary 70 applies trivially when X is a curve. Hence we get (under the Bloch–
Kato conjecture) that all the motivic cohomology of X is finitely generated, by
a method totally different from that in the proof of Theorem 40! Using the
spectral sequence (4.6) we can then recover Quillen’s finite generation theorem
for algebraic K-theory…

Finally, let us give a version of Conjecture 66 for an arbitrary Fp-scheme of finite
type, and explain that it follows from the Tate–Beilinson conjecture. It rests on
Remark 71 2).

72Theorem 72 Let X be a scheme of finite type over Fp. If the Tate–Beilinson
Conjecture 55 holds, then, for any n ∈ Z:
(i) ords=n ζ(X, s) =

∑
i∈Z(−1)ii rkHW ,BM

i (X, Z[1|p](n)) := −m(n).
(ii) The cohomology groups of the complex

… → HW ,BM
i (X, Z[1|p](n))

·e→ HW ,BM
i−1 (X, Z[1|p](n)) → …

are finite, where e is the canonical generator of H1
W (Fp, Z) � Z.

(iii) Up to ± a power of p, one has

lim
s→n

(1 − qn−s)m(n)ζ(X, s) = χ
(
HW ,BM

∗ (X, Z[1|p](n)), ·e) .

Sketch
A version of this for l-adic cohomology with compact supports was proven in [90,

Th. 7.8] under the assumption that Galois acts semi-simply at the eigenvalue 1 (cf.
Remark 57 1). One passes from there to Borel–Moore l-adic homology by arithmetic
duality (cf. loc. cit., Th. 3.17). It is actually simpler to redo the proof of [90, Th.
7.8] with Borel–Moore l-adic homology by using a description of ζ(X, s) in these
terms, which only involves duality for the geometric groups with Ql coefficients.
One then concludes thanks to Lemma 59.
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73 Remark 73
1) This approach does not handle the missing power of p. This has recently

been achieved by Geisser [60]: his point of view is to define a compactly sup-
ported version of Lichtenbaum’s cohomology. To get the right groups he refines
Lichtenbaum’s topology by adding cdh coverings to it, which unfortunately
forces him to assume resolution of singularities. Presumably, the correspond-
ing non-compactly supported cohomology (for smooth schemes) involves the
logarithmic part of Mokrane’s de Rham–Witt cohomology with logarithmic
poles at infinity [142] (whose definition unfortunately also assumes resolution
of singularities), glued to motivic cohomology in a similar way as (4.19). Can
one give a direct definition of this motivic cohomology?

2) In characteristic 0, Lichtenbaum has an exactly parallel formulation of an
integral conjecture for the special values of the zeta function, in terms of his
cohomology still under development [127].

Unconditional Results: Varieties
of Abelian Type over Finite Fields4.8

Main Result4.8.1

We shall give cases in which we can prove the Tate–Beilinson Conjecture 55. Namely,
let A = Motrat(k, Q).

74 Definition 74
a) Let Aab be the thick rigid subcategory of A generated by Artin motives and

motives of abelian varieties.
b) B(k) = {X | h(X) ∈ Aab}.
c) Btate(k) = {X ∈ B(k) | the Tate conjecture holds for the l-adic cohomology of X

for some l ≠ char k}.

(In c), this does not depend on l because Frobenius acts semi-simply on H∗(X, Ql).)

Example 75 .
1) X ∈ B(k) and dim X ≤ 3 ⇒ X ∈ Btate(k). This is a slight strengthening of

Soulé [176, Th. 4 i)]: the problem is that Soulé works with a collection A(k) of
varieties such that, clearly, A(k) ⊆ B(k), but I don’t know if equality holds, so
that this claim unfortunately does not follow from [176], contrary to what was
indicated in [95, Example 1 b)]. For this reason I shall justify it in Sect. 4.8.5.

2) Products of elliptic curves are in Btate(k) (Spieß [179]).
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3) There are many examples of abelian varieties in Btate(k) (Zarhin, Lenstra,
Milne): powers of simple abelian varieties “of K3 type” or “of ordinary type”,
etc. [112, 140, 213].

4) Certain Fermat hypersurfaces (Tate, Katsura–Shioda [103, 189]).

The main result of [95] is:

76Theorem 76 Conjectures 49 and 50 are true for X ∈ Btate(k).

Of course, it is not difficult to get Conjecture 49: indeed, Galois action on the l-adic
cohomology of X is semi-simple (reduce to an abelian variety A and use the fact that
the arithmetic Frobenius is the inverse of the geometric Frobenius, which is central
in the semi-simple algebra End(A) ⊗ Q). By [192], this plus the cohomological Tate
conjecture imply Conjecture 49. What is new is to obtain Conjecture 50. We shall
explain in the sequel of this section how this follows from the Kimura–O’Sullivan
theory of “finite dimensional” Chow motives.

In the previous sections, we referred to [95] for proofs or details of proofs
on some consequences of the Tate–Beilinson conjecture. In loc. cit. , the cor-
responding proofs are given for varieties in Btate(k), and yield unconditional
theorems.

The Soulé–Geisser Argument 4.8.2

This argument is first found in Soulé’s paper [176] and was amplified by Geisser
in [56]14. It is really a weight argument and is very simple to explain: suppose that
Frobenius acts on some group H and that

For one reason we know that it acts by multiplication by some power of p,
say pn.
For another reason we know that it is killed by some polynomial P with integral
coefficients.

If we can prove that P(pn) ≠ 0, then we get that H ⊗ Q = 0 (more precisely, that H
is torsion of exponent dividing P(pn)).

Typically, H will be a Hom group between a certain motive M and a Tate motive
(M might also be a shift of a pure motive in DMgm(k)). The issue is then to show
that the characteristic polynomial of the Frobenius endomorphism of M, assuming
that this polynomial exists, is not divisible by T − pn. A nilpotence theorem will
allow us to prove this below.

14 The reader should also look at Coombes’ paper [33] where the author uses Soulé’s work to
get a K-cohomological variant of Lichtenbaum’s conjecture for the zeta function of a rational
surface over a finite field: I am grateful to the referee for pointing out this paper.
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The Kimura–O’Sullivan Theory4.8.3

This theory was developed independently by S. I. Kimura [106] and P. O’Sulli-
van [151]. An abstract version (which is also most of O’Sullivan’s point of view) is
developed in [6, §9]. See also André’s recent Bourbaki talk [4].

77 Definition 77 Let A be a Q-linear tensor category. An object M ∈ A is even if some
exterior power of M vanishes, odd if some symmetric power of M vanishes, finite
dimensional if it is a direct sum of a even and an odd object.

(Kimura says evenly and oddly finite dimensional; O’Sullivan says positive and
negative, and semi-positive instead of finite-dimensional.)

There are two reasons why finite dimensionality is an important notion: first its
remarkable stability properties, and second Kimura’s nilpotence theorem.

78 Theorem 78: (Kimura [106, Cor. 5.11, Prop. 6.9], O’Sullivan) Suppose A rigid.
Then the full subcategory Akim of A formed of finite dimensional objects is thick
and rigid, i.e. stable under direct sums, direct summands, tensor products and
duals.

Kimura developed his theory for A = Motrat(K, Q) (K a field) and proved a nilpo-
tence theorem for correspondences on a finite dimensional motive which are
homologically equivalent to 0. This theorem was slightly strengthened in [6], re-
placing homological by numerical equivalence (and nil by nilpotent). See [6, Prop.
9.1.14] for an abstract statement. In the case of Chow motives, this gives:

79 Theorem 79 Let M ∈ A = Motrat(K, Q) and M its image in A = Motnum(k, Q).
Then the kernel of A(M, M) → A(M, M) is a nilpotent ideal.

All this theory would be nice but rather formal if one had no examples of finite
dimensional motives. Fortunately, there are quite a few:

80 Theorem 80: (Kimura [106, Th. 4.2], O’Sullivan) For A=Motrat(K, Q), Akim⊃Aab.

The proof is essentially a reformulation of Šermenev’s proof of the Künneth de-
composition of the Chow motive of an abelian variety [181].

81 Conjecture 81: (Kimura–O’Sullivan Conjecture) Let K be a field and A =
Motrat(K, Q). Then A = Akim.

By [6, Ex. 9.2.4], this conjecture follows from the standard conjecture on Künneth
projectors and the existence of the Bloch–Beilinson–Murre filtration.
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The Proof 4.8.4

The proof of Conjecture 50 in Theorem 76 is fairly simple: the nilpotence theorem 79
is used three times. First, decompose the numerical motive h(X) into a direct sum
of simple motives by Jannsen’s Theorem 9. By nilpotence, this decomposition lifts
to Chow motives, hence we may replace h(X) by a Chow motive S whose numerical
image S is simple. We need to show that

A(S, Ln)
∼→ A(S, L

n
) (4.42)

for any n, where L is the Lefschetz motive. Then we have the usual dichotomy:
a) S � L

n
. Then, by nilpotence, S � Ln and this is obvious.

b) S �� L
n
. Then the right hand side of (4.42) is 0 and we have to show that the left

hand side is also 0. By [139, Prop. 2.6], the characteristic polynomial P of the
Frobenius endomorphism FS of S is not T − qn. But, by nilpotence, there is an
N > 0 such that P(FS)N = 0. The conclusion now follows by the Soulé–Geisser
argument. �

Justification of Example 75 1) 4.8.5

We shall actually prove directly:

82Theorem 82 If X ∈ B(k) and d = dim X ≤ 3, then the Tate–Beilinson conjecture
holds for X.

Proof In general, let M ∈ Akim and M be its image in A. By Theorem 79, the weight

grading M =
⊕

M
(i)

(cf. p. 368) lifts to a grading M =
⊕

M(i).15 For simplicity,
we shall say that an object M ∈ A is of weight i if M is of weight i, so that M(i) is
of weight i. Also, if X is smooth projective and h(X) ∈ Akim, we simply write hi(X)
for h(X)(i).

Let M be of weight 2n; consider the following property:

(*) The natural homomorphism

A(M, L2n) ⊗ Ql → (
Hl(M)(n)

)G

is an isomorphism.

15 This grading is not necessarily unique, but the idempotents defining it are unique up to
conjugation, hence the M(i) are unique up to isomorphism.
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We need a lemma:

83 Lemma 83 Let A(2)
ab be the full subcategory of Aab formed of motives of weight 2.

Then
a) Property (*) holds for all objects of A(2)

ab .
b) If M ∈ A(2)

ab , then M∨(1) ∈ A(2)
ab .

Proof
a) We immediately reduce to the case where M is of the form h2(A ⊗k L) for

A an abelian variety and L a finite extension of k; then it follows from Tate’s
theorem [190] and the finiteness of Pic0(A) = A∨(k).

b) We reduce to the same case as in a). Thanks to Lieberman [128], any polarisation
of A induces via Poincaré duality an isomorphism h

2
(A⊗kL)∨ � h

2
(A⊗kL)(−1);

by Theorem 79 this lifts to an isomorphism h2(A ⊗k L)∨ � h2(A ⊗k L)(−1). �

Let now X be as in Theorem 82. We must prove that, for all n, h2n(X) verifies (*).
For n = 0 it is trivial. For n = 1, it follows from Lemma 83 a). For n = d − 1, it
follows from Poincaré duality (lifted to A by Theorem 79) and Lemma 83 b). For
n = d, it also follows by Poincaré duality from the case d = 0 by the same argument
as in the proof of Lemma 83 b). If d ≤ 3, this covers all values of n.

84 Corollary 84 If X ∈ B(k) and dim X ≤ 3, under the Bloch–Kato Conjecture 16 all
motivic cohomology groups of X are finitely generated.

This follows from Theorem 82 and Corollary 70 (i). �

85 Definition 85 A finitely generated field K|Fp is of abelian type if it is the function
field of a smooth projective variety of abelian type.

86 Corollary 86 Let X be an Fp-scheme of finite type. Assume that dim X ≤ 2 and that
the function fields of all its irreducible components of dimension 2 are of abelian
type. Then the conclusions of Theorem 72 hold for X.

Proof This is just an effective case of Theorem 72. The point is that in the dévissage,
the closed subvarieties one encounters are all of dimension ≤ 1 and all smooth
projective curves are of abelian type.
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Questions and Speculations 4.9

The Finite Generation Issue 4.9.1

Recall that, by Theorem 67, the Tate–Beilinson conjecture implies the finite gen-
eration of the Lichtenbaum cohomology groups Hi

W (X, Z(n)) for any smooth pro-
jective variety X|Fp and any i, n, and that by Remark 71 2) this in turn implies the
finite generation of HW ,BM

i (X, Z(n)) ⊗ Z[1|p] over Z[1|p] for any scheme X of finite
type over Fp. In particular, HW ,BM∗ (X, Q(n)) is a finite-dimensional Q-vector space
which implies by an analogue of Corollary 63 (ii) (or by dévissage from the smooth
case) the same result for usual Borel–Moore motivic homology HBM∗ (X, Q(n)).

On the other hand, Corollary 70 and Remark 71 1) show that under the
Beilinson–Lichtenbaum and the Tate–Beilinson conjecture, Hi(X, Z(n)) is finitely
generated for X smooth in a certain range. The first case not reached is CH3(X)
for X a smooth projective 4-fold. It is explained in [95, Remark 4.10] that, under
the two conjectures, the following conditions are equivalent:
1. CH3(X) is finitely generated.
2. CH3(X)tors is finite.
3. H0

Zar(X, H4
ét((Q|Z)′(3)) is finite (it is a priori of finite exponent).

I don’t see any argument allowing one to deduce finite generation in this case from
known conjectures. The only one I can think of is Kato’s conjecture:

87Conjecture 87: (Kato Conjecture [101, Conj. (0.3)]) For any smooth projective
variety X of dimension d over Fp and any m ≥ 1, the homology in degree i of the
Gersten complex

0 →
⊕

x∈X(d)

Hd+1
ét (k(x), Z|m(d)) → … →

⊕

x∈X(0)

H1
ét(k(x), Z|m) → 0

is





0 if i > 0

Z|m if i = 0
, the last isomorphism being induced by the trace map.

This conjecture is class field theory for d = 1; it has been proven by Kato for
d = 2 [101], by Colliot-Thélène for general d and i ≥ d − 3 if m is prime to p [31]
and by Suwa under the same condition if m is a power of p [188].

However it does not seem to bear on the issue, except in limit cases (see below).
I am therefore tempted to think that there is a counterexample to Conjecture 37. It
might involve infinite 2-torsion; however if it involves infinite l-torsion for some odd
prime l, it will yield an example where K0(X) is not finitely generated, disproving
the original Bass conjecture (since the natural map CH3(X) → gr3 K0(X) has
kernel killed by (3 − 1)! = 2).
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This also sheds some doubt in my mind on [146, Conj. 1.1.4] (a homotopy-
theoretic Bass conjecture), which should however be correct if one replaces the
Nisnevich topology by Lichtenbaum’s topology.

What about this? As far as one is concerned by application to number-theoretic
conjectures like the Soulé conjecture or the Lichtenbaum conjectures, this is not
very serious: concerning the orders of zeroes, the ranks will still be finite and almost
always 0, and the groups involved in special values are Lichtenbaum cohomology
groups anyway. If one wants to get back a version of the Bass conjecture for algebraic
K-theory, all one has to do is to define a “Lichtenbaum K-theory” similar to étale
K-theory:

KW (X) := H·
W (X, K)

where the notation means hypercohomology à la Thomason ([193]; see §5 in
Geisser’s chapter) for the Weil-étale topology.

On the other hand, it is quite amusing to remark that the étale topology, not
the Zariski topology, shows up in the Lichtenbaum conjectures 4.7.6. In fact the
Bloch–Kato or Beilinson–Lichtenbaum conjectures do not seem to play any rôle
either in their formulation or in their (partial) proofs. (Even if we gave several
examples where the Milnor conjecture gives vanishing or finiteness results, it was
not used in the proofs of [95].) This also means that, in characteristic 0, the correct
formulation (for, say, the zeta function) most certainly involves an étale-related
version of motivic cohomology. In small Krull dimension it may be replaced by
plain motivic cohomology but this will not work from dimension 3 onwards,
as one already sees in characteristic p. For rings of integers of number fields,
the original Lichtenbaum formulation 46 led to the Quillen–Lichtenbaum and the
Beilinson–Lichtenbaum conjectures and a huge development of algebraic K-theory
and motivic cohomology. The Bloch–Kato conjecture is needed to prove it (in the
cases one can) under this form. If it is indeed étale motivic cohomology rather
than ordinary motivic cohomology that is relevant, all this work will have been the
result of a big misunderstanding!

Let me give one nice consequence of Kato’s Conjecture 87, or rather of its partial
proof by Colliot-Thélène–Suwa:

88 Theorem 88 Let X be smooth projective of dimension d over Fp. Then the map

CHd(X) → H2d
ét (X, Z(d))

is bijective.

Proof For d = 2, this follows from the short exact sequence [86]

0 → CH2(X) → H4
ét(X, Z(2)) → H0(X, H3(Q|Z(2))) → 0



Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry 417

and Kato’s theorem. In general, consider the coniveau spectral sequence for étale
motivic cohomology

E
p,q
1 =

⊕

x∈X(p)

H
q−p
ét (k(x), Z(d − p)) ⇒ H

p+q
ét (X, Z(d)) .

We have E
p,q
1 = 0 for p > d for dimension reasons. For q > d there are exact

sequences

H
q−p−1
ét

(
k(x), Q|Z(d − p)

) → H
q−p
ét

(
k(x), Z(d − p)

) → H
q−p
ét

(
k(x), Q(d − p)

)
.

By Theorem 14, the last group is 0. The first is 0 pour q − 1 > d + 1 for
cohomological dimension reasons. Hence E

p,q
1 = 0 for q ≥ d + 3. Moreover,

Ed−1,d+1
1 = Ed−2,d+1

1 = 0 by Hilbert 90 and Hilbert 90 in weight 2 (Merkurjev–
Suslin theorem). Finally, Ed−2,d+2

2 = 0 by the Colliot-Thélène–Suwa theorem. Hence
E

p,2d−p
2 = 0 except for p = d and there are no differentials arriving to Ed,d

2 = CHd(X).
The proof is complete.

Characteristic 0 4.9.2

In characteristic 0, things are considerably more complicated. If we start with the
Beilinson Conjecture 50, its analogue for smooth projective Q-varieties predicts
a two-layer filtration on their Chow groups; cycles homologically (i.e. , conjec-
turally, numerically) equivalent to 0 should be detected by an Abel–Jacobi map to
Deligne–Beilinson cohomology.

Concerning the Tate–Beilinson Conjecture 55, the only thing I can do is to
conjecture that there is a conjecture.

89Conjecture 89 There is a conjecture in the form of that in Theorem 64 in character-
istic 0, where the left hand side is a form of motivic cohomology and the right hand
side is a form of an absolute cohomology theory in the sense of Beilinson [11].

Presumably the left hand side would be motivic hypercohomology with respect
to the “Weil topology in characteristic 0” that Lichtenbaum is currently develop-
ing [127]. As for the right hand side, I feel that it should probably be a mixture of
the various (absolute counterparts of the) classical cohomology theories: l-adic,
Betti, de Rham, p-adic, so as to involve the comparison isomorphisms. This for-
mulation should be as powerful as in characteristic p and account for most motivic
conjectures in characteristic 0.

This being said, there is a basic problem to start the construction: if we take the
l-adic cohomology of a ring of integers OS (in which l is invertible), it is nonzero
even for negative Tate twists: by Tate and Schneider [165] we have

2∑

i=0

(−1)i+1 dimQl Hi(OS, Ql(n)) =





r2 if n is even

r1 + r2 if n is odd
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hence there is no chance to compare it in the style of Theorem 20 with motivic
cohomology, which vanishes in negative weights. The first thing to do would be to
modify l-adic cohomology in order to correct this phenomenon: although this is
clearly related to real and complex places, I have no idea how to do this. Note that
Lichtenbaum’s theory will be for Arakelov varieties.

One definitely needs new insights in order to follow this line of investigation!
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Introduction 5.1

Mixed Motives 5.1.1

During the early and mid-eighties, Beilinson [2] and Deligne [24] independently
described a conjectural abelian tensor category of mixed motives over a given
base field k, MMk, which, in analogy to the category of mixed Hodge structures,
should contain Grothendieck’s category of pure (homological) motives as the full
subcategory of semi-simple objects, but should have a rich enough structure of
extensions to allow one to recover the weight-graded pieces of algebraic K-theory.
More specifically, one should have, for each smooth scheme X of finite type over
a given field k, an object h(X) in the derived category Db(MMk), as well as Tate
twists h(X)(n), and natural isomorphisms

HomDb(MMk)(1, h(X)(n)[m]) ⊗Q =̃ K2n−m(X)(n) ,

where Kp(X)(n) is the weight n eigenspace for the Adams operations. The abelian
groups

H
p
M(X,Z(q)) := HomDb(MMk)(1, h(X)(q)[p])

should form the universal Bloch–Ogus cohomology theory on smooth k-schemes
of finite type; as this theory should arise from mixed motives, it is called motivic
cohomology.

This category MMk should on the one hand give a natural framework for
Beilinson’s unified conjectures on the relation of algebraic K-theory to values of
L-functions, and on the other hand, give a direct relation of singular cohomology
and the Chow ring. For this, conjectures of Beilinson, Bloch and Murre [74] suggest
a decomposition (withQ-coefficients)

h(X)Q = ⊕2d
i=0hi(X)[−i]

for X a smooth projective variety of dimension d over k, with the hi(X) semi-simple
objects in MMk ⊗Q. This yields a decomposition

H2n(X,Q(n)) = ⊕2d
i=0Ext2n−i

MMk⊗Q (1, hi(X)(n)) ;

since one expects H2n(X,Q(n)) = K0(X)(n) = CHn(X)Q , this would give an in-
teresting decomposition of the Chow group CHn(X)Q . For instance, the expected
properties of the hi(X) would lead to a proof of Bloch’s conjecture:

1Conjecture 1 Let X be a smooth projective surface overC such that H2(X, OX) = 0.
Let A2(X) be the kernel of the degree map CH2(X) → Z. Then the Albanses map
αX : A2(X) → Alb(X)(C) is an isomorphism.

The relation of the conjectural category of mixed motives to various generalizations
of Bloch’s conjecture and other fascinating conjectures of a geometric nature,
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as well as to values of L-functions, has been widely discussed in the literature
and we will not discuss these topics in any detail in this article. For some more
details on the conjectured properties of MMk and applications, we refer the reader
to [21, 52, 53, 75, 80–82, 103], as well as additional articles in [104] and the article
of Goncharov [35] in this volume.

The category MMk has yet to be constructed. However, in the nineties, progress
was made toward the construction of the derived category Db(MMk), that is,
the construction of a triangulated tensor category DM(k) that has many of the
structural properties expected of Db(MMk). In particular, we now have a very
good candidate for motivic cohomology H

p
M(X,Z(q)), which, roughly speaking,

satisfies all the expected properties which can be deduced from the existence of
a triangulated tensor category of mixed motives, without assuming there is an
underlying abelian category whose derived category is DM(k), or even that DM(k)
has a reasonable t-structure.

In addition to the triangulated candidates for Db(MMk), there are also con-
structions of candidates for MMk; these however are not known to have all the
desired properties, e.g., the correct relation to K-theory.

In this article, we will outline the constructions and basic properties of various
versions of categories of mixed motives which are now available. We will also cover
in some detail the known theory of the subcategory of mixed Tate motives, that
is, the subcategory (either triangulated or abelian) generated by the rational Tate
objectsQ(n).

We will make some mention of the relevance of these construction for the mod
n-theory, the Beilinson–Lichtenbaum conjectures and the Bloch–Kato conjectures,
but as these themes have been amply explained elsewhere (see e.g. [32, 55]), we
will not make more than passing reference to this topic.

The discussion of mixed Tate motivic categories in Sect. 5.5 is based in large part
on a seminar on this topic that ran during the fall of 2002 at the University of Essen
while I was visiting there. I would like to thank the participants of that seminar, and
especially Sviataslav Archava, Najmuddin Fakhruddin, Marco Schlichting, Stefan
Müller-Stach and Helena Verrill, and for their lectures and discussions; a more
detailed discussion of mixed Tate motivic categories arising from this seminar is
now in the process of being written. I would also like to thank the Mathematics
Department at the University of Essen and especially my hosts, Hélène Esnault
and Eckart Viehweg, for their hospitality and support, which helped so much in
the writing of this article.

Notations and Conventions5.1.2

If A(−) is a simplicial abelian group n �→ A(n), we have the associated (homologi-
cal) complex A(∗), with A(∗)n = A(n) and dn : A(n) → A(n−1) the alternating sum

dn :=
n∑

j=0

(−1)jA(δj) ,

where the δj are the standard co-face maps.
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We let C±(Ab) denote the category of cohomological complexes, bounded below
(+) or bounded above (−). We let C±(Ab) denote the category of homological
complexes, bounded below (+) or bounded above (−). In both categories, we have
the suspension operation C �→ C[1], and cone sequences

A
f→ B → Cone(f ) → A[1] .

Thus, in the cohomological category (A[1])n = An+1 and in the homological cate-
gory (A[1])n = An−1. We extend these notations to the respective derived categories.

For a scheme S, we let SchS denote the category of schemes of finite type over S,
SmS the full sub-category of smooth quasi-projective S-schemes. If S = Spec A for
some ring A, we write SchA and SmA for SchSpec A and SmSpec A.

For a noetherian commutative ring R, we let R-mod denote the category of
finitely generated R-modules; for a field F, we let F-Vec be the category of vector
spaces over F (not necessarily of finite dimension). If G is a pro-finite group, we
letQp[G]-mod denote the category of finitely dimensionalQp-vector spaces with
a continuous G-action.

Motivic Complexes 5.2

In this first section, we begin with a discussion of Bloch’s seminal work in the
weight-two case. We then give an overview of the conjectures of Beilinson and
Lichtenbaum on absolute cohomology, as a prelude to our discussion of mixed
motives and motivic cohomology. After this, we describe two constructions of
theories of absolute cohomology: Bloch’s construction of the higher Chow groups,
and the Friedlander–Suslin construction of motivic complexes. For later use, we
also give some details on associated cubical versions of these complexes.

The relation of the Zariski cohomology of Gm to K0 and K1 was well-known
from the very beginning: the Picard group H1(XZar,Gm) appears as a quotient
of the reduced K0 and the group of global units H0(XZar,Gm) is likewise a quo-
tient of K1(X), both via a determinant mapping. Hilbert’s theorem 90 says that
Hi(XZar,Gm) → Hi(Xét,Gm) is an isomorphism for i = 0, 1; the Kummer se-
quence

1 → µn → Gm
×n→ Gm → 1

relates the torsion and cotorsion in H∗(Xét,Gm) to H∗(X, µn). Rationally,
H1(XZar,Gm) and H0(X,Gm) give the weight-one portion of K0(X) and K1(X),
respectively (the weight-zero portion of K0 is similarly given by H0(XZar,Z)).

The idea behind motivic complexes is, rather than arranging K-theory by the
K-theory degree, one can also collect together the pieces of the same weight (for
the Adams operations), and by doing so, one should be able to construct the uni-
versal Bloch–Ogus cohomology theory with integral coefficients. For weight one,
this is given by the cohomology of the single sheaf Gm, but for weight n > 1,
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one would need a complex of length at least n − 1. Later on, the complexes as-
sumed a secondary role as explicit representatives for the total derived functors
R HomDb(MMk)(1, h0(X)(n)), where MMk is the conjectural category of mixed mo-
tives over k, see Sect. 5.3.1.

Our discussion is historically out of order, in that quasi-isomorphism of Bloch’s
complexes with the Friedlander–Suslin construction was only constructed after
Voevodsky introduced the machinery of finite correspondences [100] and showed
how to adapt Quillen’s proof of Gersten’s conjecture to this setting in the course of
his construction of a triangulated category of mixed motives. However, it is now
apparant that one can deduce the Mayer–Vietoris properties of the Friedlander–
Suslin complexes from Bloch’s complexes, and conversely, one can acheive a more
natural functoriality for Bloch’s complexes from the Friedlander–Suslin version,
without giving any direct relation to categories of mixed motives.

Weight-two Complexes5.2.1

Before a general framework emerged in the early ’80’s, there was a lively develop-
ment of the weight-two case, starting with Bloch’s Irvine notes [8], in which he
related:
1. the relations defining K2 of a field F
2. the indecomposable K3 of F
3. the values of the dilogarithm function
4. the Borel regulator on K3 of a number field.

These relations were made more precise by Suslin’s introduction of the 5-term
dilogarithm relation [87,88], uniting Bloch’s work with Dupont and Sah’s study [30]
of the homology of SL2 and the scissors congruence group. Lichtenbaum [68],
building on Bloch’s introduction of the relative K2 of the semi-local ring F[t]t(1−t),
constructed a length-two complex which computed the weight-two portions of
K2 and K3, up to inverting small primes. These constructions formed the basis
for the general picture, as conjectured by Beilinson and Lichtenbaum, as well as
the later constructions of Goncharov [38, 39], Bloch [13] and Voevodsky–Suslin–
Friedlander [100].

Bloch’s Complexes
In [8], Bloch constructs 3 complexes:
(1) Let F be a field. Let R(F) = F[t]t(1−t), i.e., the localization of the polynomial ring
F[t] formed by inverting all polynomials P(t) with P(0)P(1) ≠ 0. Let I(F) = t(1−t)R.
We have the relative K-groups Kn(R; I), which fit into a long exact sequence

· · · → Kn+1(R|I) → Kn(R; I) → Kn(R) → Kn(R|I) → · · · .

Using the localization sequence in K-theory, we have the boundary map

K2(R) → ⊕x∈A 1
F \{0,1},

x closed

k(x)∗ ;
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composing with K2(R; I) → K2(R) gives the length-one complex

K2(R; I)
∂→ ⊕x∈A 1

F \{0,1},
x closed

k(x)∗ . (5.1)

Bloch shows

2Proposition 2 There are canonical isomorphisms

ker ∂ =̃ K ind
3 (F)

coker∂ =̃ K2(F)

Here K ind
3 (F) is the quotient of K3(F) by the image of the cup-product map

K1(F)⊗3 → K3(F).

To make the comparision with the other two complexes, one needs an extension of
Matsumoto’s presentation of K2 of a field to the relative case: For a semi-local PID A
with Jacobson radical J and quotient field L, there is an isomorphism (cf. [101])

K2(A, J) =̃ (1 + J)∗ ⊗Z L∗|〈f ⊗ (1 − f ) | f ∈ 1 + J〉 .

In particular, K2(R, I) contains the subgroup of symbols {1 + I, F∗}; taking the quo-
tient of (5.1) by this subgroup yields the exact sequence (assuming F algebraically
closed)

0 → K ind
3 (F)

Tor1(F∗, F∗)
→ K2(R, I)

{1 + I, F∗} → F∗ ⊗ F∗ → K2(F) → 0 .

(2) Let A(F) be the free abelian group on F \ {0, 1}, and form the complex

A(F)
λ→ F∗ ⊗ F∗

by sending x ∈ F \ {0, 1} to λ := x ⊗ (1 − x) ∈ F∗ ⊗ F∗. By Matsumoto’s theorem,
K2(F) = coker(λ). Let B(F) be the kernel of λ, giving the exact sequence

0 → B(F) → A(F) → F∗ ⊗ F∗ → K2(F) → 0 .

(3) Start with the exponential sequence

0 → Z→ C
exp 2πi→ C

∗ → 1 .

Tensor with C∗ (over Z), giving the complex C ⊗ C∗ → C
∗ ⊗ C∗ and the exact

sequence

0 → Tor1(C∗,C∗) → C
∗ → C⊗ C∗ → C

∗ ⊗ C∗ → 1 .
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The image of Tor1(C∗,C∗) inC∗ is the torsion subgroup; let C̃∗ be the torsion-free
quotient, yielding the exact sequence

0 → C̃
∗ → C⊗ C∗ → C

∗ ⊗ C∗ → 1 .

To relate these three complexes, Bloch defines two maps on A(C). For x ∈
C \ {0, 1}, let ε(x) ∈ C⊗ C∗ be defined by

ε(x) :=
[

1

2πi
log(1 − x) ⊗ x

]
+

[
1 ⊗ exp

(
−1

2πi

∫ x

0
log(1 − t)

dt

t

)]
.

In this formula, define

log(1 − t) := −

∫ t

0

dt

1 − t
,

and use the same path of integration for all the integrals. Bloch shows that ε(x) is
then well-defined and independent of the choice of path from 0 to x. Extending ε
to A(C) by linearity gives the commutative triangle

A(C)

��

ε

vv
vv
vv
vv
v

��

λ

II
II

II
II

I

C⊗ C∗ ��

exp 2πi⊗id

C
∗ ⊗ C∗ .

The second map η : A(C) → K2(R(C), I(C)) is defined explicitly by

η(x) :=
{

1 −
xt2

(t − 1)3 − xt2(t − 1)
,

t

t − 1

}6

∈ K2(R(C), I(C)) .

This all yields the commutative diagram

0 �� K3(C )ind

Tor1(C ∗ ,C ∗ )
�� K2(R,I)

{1+I,C ∗} ��
∂

C
∗ ⊗ C∗ �� K2(C) �� 0

0 �� B(C) ��

OO
Ψ

��
θ

A(C) ��
λ

��
ε

OO
η

C
∗ ⊗ C∗ �� K2(C) �� 0

0 ��
C̃

∗ �� C⊗ C∗ ��

exp 2πi⊗id

C
∗ ⊗ C∗ �� K2(C) �� 0

where Ψ and θ are the maps induced by ε and η.
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The Dilogarithm
Composing ε with

C⊗ C∗ real part⊗id→ R⊗ C∗ id⊗log |−|→ R⊗ R multiply→ R

yields the map D : A(C) → R. On generators x ∈ C \ {0, 1}, D(x) is the Bloch–
Wigner dilogarithm

D(x) = arg(1 − x) log |x| − Im
(∫ x

0
log(1 − t)

dt

t

)
.

Bloch shows how to relate D to the Borel regulator on K3(C) via the map θ. If F ⊂ C
is a number field and one has explicit elements in B(F) which form a basis for
K3(F)ind, this gives an explict formula for the value of the Borel regulator for K3(F).

Example 3. Let F = Q(ζ), where ζ = exp( 2πi
�

) and � is an odd prime. An easy
calculations shows that �[ζi] is in B(F) for all i; one shows that

�[ζ1], …, �[ζ�−1|2] maps to a basis of K3(F)Q under θ. Using the explicit formula

D(ζi) = Im

( ∞∑

m=1

ζmi

m2

)

,

Bloch computes: the lattice in R�−1)|2 generated by the vectors

(
D(�[ζi)]

)
, …, D

(
�[ζij)]

)
, …, D

(
�[ζi(�−1)|2)]

)
; i = 1, …,

� − 1

2
,

has volume 2−(�−1)|2�3(�−1)|4 ∏
χodd |L(2, χ)|, where χ runs over the odd characters

of (Z|lZ)∗ and L(s, χ) :=
∑

χ(n)n−s is the Dirichlet L-function.

The Bloch–Suslin Complex
Suslin [87] refined Bloch’s construction of the complex A(F) → F∗ ⊗ F∗ by
imposing the five-term relation satisfied by the dilogarithm function:

[x] − [y] + [y|x] −

[
y − 1

x − 1

]
+

[
y(x − 1)

x(y − 1)

]
.

One checks that this element goes to zero in F∗ ∧ F∗, giving the complex

A(F)
λ→ Λ2F∗ (5.2)

with A(F) being the above-mentioned quotient of A(F), and λ(x) = x ∧ (1 − x).
Since {x, y} = {y, x}−1 in K2(F), the cokernel of λ is still K2(F); Suslin shows

4Proposition 4 Let F be an infinite field. There is a natural isomorphism

ker λ =̃ K ind
3 (F)|T̃or1(F∗, F∗) ,

where T̃or1(F∗, F∗) is an extension of Tor1(F∗, F∗) by Z|2.



438 Marc Levine

Higher Weight
The construction of the Bloch–Suslin complex (5.2) has been generalized by Gon-
charov [38, 39] to give complexes C(n) of the form

AF(n) → AF(n − 1) ⊗ F∗ → AF(n − 2) ⊗ Λ2F∗ → · · ·
→ AF(2) ⊗ Λn−2F∗ → ΛnF∗

These are homological complexes with ΛnF∗ in degree n.
The groups AF(i) are defined inductively: Each AF(i) is a quotient ofZ[F∪{∞}];

denote the generator corresponding to x ∈ F as [x]i. For i > 2, the map

AF(i) ⊗ Λn−iF∗ → AF(i − 1) ⊗ Λn−i+1F∗

sends [x]i⊗η to [x]i−1⊗x∧η for x ≠ 0, ∞ and sends [0]i, and [∞]i to 0. AF(1) = F∗,
with [x]1 mapping to x ∈ F∗ and AF(2) is the Bloch–Suslin construction A(F) (set
[0]i = [1]i = [∞]i = 0 for i = 1, 2). The map

AF(2) ⊗ Λn−2F∗ → ΛnF∗

sends [x]2 ∧ η to x ∧ (1 − x) ∧ η for x ≠ 0, 1, ∞.
To define AF(i) as a quotient of AF(i) := Z[F ∪ {∞}] for i > 2, Goncharov

imposes “all rational relations”: Let BF(i) be the kernel of

AF(i) → AF(i − 1) ⊗ F∗,

[x] �→ [x]i−1 ⊗ x .

For
∑

j nj[xj(t)] in BF(t)(i), t a variable, each xj(t) defines a morphism xj : P1
F → P

1
F ,

and so xj(a) ∈ F ∪ {∞} is well-defined for all a ∈ F. Let RF(i) ⊂ AF(i) be the
subgroup generated by [0], [∞] and elements of the form

∑

j

nj[xj(1)] −
∑

j

nj[xj(0)] ,

with
∑

j nj[xj(t)] ∈ BF(t)(i), and set AF(i) := AF(i)|RF(i). One checks that this
does indeed form a complex.

The role of these complexes and their applications to a number of conjectures
is explained in detail in Goncharov’s article [35]. We will only mention that the
homology Hp(C(n)) is conjectured to be the weight n K-group Kp(F)(n) for n ≤
p ≤ 2n − 1.

5 Remark 5 In addition to inspiring later work on the construction of motivic
complexes, Bloch’s introduction of the relative K2 to study K ind

3 was later picked up
by Merkurjev–Suslin [71] and Levine [66] in their computation of the torsion and
co-torsion of K ind

3 of fields.
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Beilinson–Lichtenbaum Complexes 5.2.2

In the early ’80’s Beilinson and Lichtenbaum gave conjectures for versions of
universal cohomology which would arise as hypercohomology (in the Zariski,
resp. étale topology) of certain complexes of sheaves. The conjectures describe
sought-after properties of these representing complexes.

Beilinson’s Conjectures
In [5], Beilinson gives a simultaneous generalization of a number of conjectures on
values of L-functions (see Kahn’s article [56] for details). A major part of this work
involved generalizing the Borel regulator using Deligne cohomology and Gillet’s
Chern classes for higher K-theory. He also states:

“It is thought that for any schemes[sic] there exists a universal cohomology
theory H

j
A(X,Z(i)) satisfying Poincaré duality and related to Quillen’s K-theory in

the same way as in topology the singular cohomology is related to K-theory. H∗
A

must be closely related to the Milnor ring”.
The reader should note that, at this point, Beilinson is speaking of a “univer-

sal” cohomology theory, but not “motivic” cohomology. In particular, one should
expect that the rational version H

j
A(X,Q(i)) is weight-graded K-theory, and the

integral version is related to Milnor K-theory, but there is as yet no direct connec-
tion to motives. In any case, here is a more precise formulation describing absolute
cohomology:

6Conjecture 6: Beilinson [6] For X ∈ Smk there are complexes ΓZar(r), r ≥ 0, in
the derived category of sheaves of abelian groups on XZar, (functorial in X) with
functorial graded product, and
(0) ΓZar(0) =̃ Z, ΓZar(1) =̃ Gm[−1]
(1) ΓZar(r) is acyclic outside [1, r] for r ≥ 1.
(2) ΓZar(r) ⊗L

Z|n =̃ τ≤rRαµ⊗r
n if n is invertible on X, where α : Xét → XZar is the

change of topology morphism.
(3) grr

γKj(X) ⊗Q =̃ H2r−i(XZar, ΓZar(r))Q (or up to small primes)
(4) H r(ΓZar(r)) = KM

r .

Here KM
r is the sheaf of Milnor K-groups, where the stalk KM

r,x for x ∈ X is the
kernel of the symbol map

KM
r (k(X)) → ⊕x∈X(1) KM

r−1(k(x)) .

Lichtenbaum’s Conjectures
Lichtenbaum’s conjectures seem to be motivated more by the search for an integral
cohomology theory that would explain the values of L-functions. As the �-part
of these values was already seen to have a close connection with �-adic étale
cohomology, it is natural that these complexes would be based on the étale topology.
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7 Conjecture 7: Lichtenbaum [67, 69] For X ∈ Smk there are complexes Γét(r),
r ≥ 0, in the derived category of sheaves of abelian groups on Xét, (functorial in X)
with functorial graded product, and
(0) Γét(0) =̃ Z, Γét(1) =̃ Gm[−1]
(1) Γét(r) is acyclic outside [1, r] for r ≥ 1.
(2) Rr+1αΓét(r) = 0
(3) Γét(r) ⊗L

Z|n =̃ µ⊗r
n if n is invertible on X.

(4) grr
γK

ét
j =̃ H2r−i(Γ(r)) (up to small primes), where Két

j and H2r−i(Γét(r)) are
the respective Zariski sheaves.

(5) For a field F, Hr(Γét(r)(F)) = KM
r (F).

The two constructions should be related by

τ≤rRα∗Γét(r) = Γ(r) ; Γét(r) = α∗ΓZar(r) .

The relations (2) and (4) in Beilinson’s conjectures and (2), (3) and (5) in Lichten-
baum’s version are generalizations of the Merkujev–Suslin theorem (the case r = 2);
Lichtenbaum’s condition (2) is a direct generalization of the classical Hilbert Theo-
rem 90, and also the generalization for K2 due to Merkurjev and Suslin [72]. These
conjectures, somewhat reinterpreted for motivic cohomology, are now known as
the Beilinson–Lichtenbaum conjectures (see [32] and also Sect. 5.2.4 for additional
details).

Bloch’s Cycle Complexes5.2.3

In [13], Bloch gives a construction for complexes on XZar which satisfy some of
the conjectured properties of Beilinson, and whose étale sheafification satisfies
some of the properties conjectured by Lichtenbaum. The construction and basic
properties of these complexes are discussed in [32]; we will use his notations here,
but restrict ourselves mainly to the case of schemes of finite type over a field.

Cycle Complexes and Higher Chow Groups
Fix a field k. In [13], Bloch constructs, for each k-scheme X of finite type and equi-
dimensional over k, and each integer q ≥ 0, a simplicial abelian group n �→ zq(X, n).
The associated homological complex zq(X, ∗) is called Bloch’s cycle complex and
the higher Chow groups CHq(X, n) are defined by

CHq(X, n) := Hn(zq(X, ∗)) .

We recall some details of this construction here for later use.
The algebraic n-simplex is the scheme

∆n := SpecZ[t0, …, tn]
/(

n∑

i=0

ti − 1

)

.
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The vertex vn
i of ∆n is the closed subscheme defined by tj = 0, j ≠ i. More generally,

a face of ∆n is a closed subscheme defined by equations of the form ti1 = … = … tis =
0. We let v(n) denote the set of vertices of ∆n; sending i to vn

i defines a bijection
νn : n → v(n). The choice of an index i ∈ n determines an isomorphism ∆n =̃ An

via the coordinates t0, …, ti−1, ti+1, …, tn. Note that each face F ⊂ ∆n is isomorphic
to ∆m for some m ≤ n, we set dim F := m. Let Rn denote the coordinate ring
Z[t0, …, tn]|

(∑n
i=0 ti − 1

)
.

If g : n → m is a map of sets, let g∗ : Rm → Rn be the map defined by
g∗(ti) =

∑
j∈g−1(i) tj (so g∗(ti) = 0 if i is not in the image of g). We thus have the

map ∆(g) : ∆n → ∆m, and this forms the cosimplicial scheme ∆∗ : ∆ → Sch. More
generally, if X is a k-scheme, we have the cosimplicial k-scheme X × ∆∗.

8Definition 8 For a finite type k-scheme X and integer n, let zp(X, n) ⊂ zp+n(X ×∆n)
be the subgroup generated by integral closed subscheme W of X × ∆n with

dimk

(
W ∩ (X × F)

) ≤ dim F + p

for each face F of ∆n.
If X is locally equi-dimensional over k, let zp(X, n) ⊂ zp(X×∆n) be the subgroup

generated by integral closed subscheme W of X × ∆n with

codimX×F

(
W ∩ (X × F)

) ≥ p

for each face F of ∆n.
For g : n → m a map in ∆, we let g∗ : zp(X, m) → zp(X, n) be the map induced

by

g∗(w) := (id × g)∗ : zp+m(X × ∆m)id×g → zp+n(X × ∆n) .

If X is locally equi-dimensional over k, the map g∗ : zp(X, m) → zp(X, n) is defined
similarly.

The assignment

n �→ zp(X, n) ,

(g : n → m) �→ (
g∗ : zp(X, m) → zp(X, n)

)

forms the simplicial abelian group zp(X, −). We let zp(X, ∗) denote the associated
complex of abelian groups. If X is locally equi-dimensional over k, we have the sim-
plicial abelian group zp(X, −) and the complex zp(X, ∗); if X has pure dimension d
over k, then zp(X, −) = zd−p(X, −).

9Definition 9 Let X be a k-scheme of finite type. Set

CHp(X, n) := πn(zp(X, −)) = Hn(zp(X, ∗)) .
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If X is locally equi-dimenisonal over k, we set

CHp(X, n) := πn(zp(X, −)) = Hn(zp(X, ∗)) .

Elementary Functorialities
The complexes zp(X, ∗) and groups CHp(X, n) satisfy the following functorialities:
1. Let f : Y → X be a proper map in Schk. Then the maps (f × id∆n )∗ give rise to

the map of complexes

f∗ : zp(Y , ∗) → zp(X, ∗)

yielding f∗ : CHp(X, n) → CHp(Y , n). The maps f∗ satisfy the functoriality
(gf )∗ = g∗ ◦ f∗ for composable proper maps f , g.

2. Let f : Y → X be an equi-dimensional l.c.i. map in Schk with fiber dimension
d. Then the maps (f × id∆n )∗ give rise to the map of complexes

f ∗ : zp(X, −) → zp+d(Y , −) ,

yielding f ∗ : CHp(X, n) → CHp+d(Y , n). The maps f ∗ satisfy the functoriality
(gf )∗ = g∗ ◦ f ∗ for composable equi-dimensional l.c.i. maps f , g.

Classical Chow Groups
The groups CHp(X, 0) are by definition the cokernel of the map

δ∗
0 − δ∗

1 : zp+1(X, 1) → zp(X, 0) = zp(X) .

From this, one has the identity CHp(X, 0) = CHp(X).

10 Remark 10 All the above extends to schemes essentially of finite type over k by
taking the evident direct limit over finite-type models. One can also extend the
definitions to scheme ove finite type over a regular base B of Krull dimension one:
for X → B finite type and locally equi-dimensional, the definition of zp(X, ∗) is
word-for-word the same. The definition of zp(X, −) for X a finite-type B-scheme
requires only a reasonable notion of dimension to replace dimk. The choice made
in [62] is as follows: Suppose that B is integral with generic point η. Let p : W →
B be of finite type, with W integral. If the generic fiber Wη is non-empty, set
dim W := dimk(η) Wη + 1; if on the other hand p(W) = x is a closed point of B, set
dim W := dimk(x) W . In particular, one has a good definition of the higher Chow
groups CHp(X, n) for X of finite type over the ring of integers OF in a number
field F.

Fundamental Properties and their Consequences
We now list the fundamental properties of the complexes zp(X, ∗).
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11Theorem 11: Homotopy property [13] Let X be in Schk and let π : X × A1 → X
be the projection. Then the map π∗ : zp(X, ∗) → zp+1(X × A1, ∗) is a quasi-
isomorphism, i.e., the map π∗ : CHp(X, n) → CHp+1(X×A1, n) is an isomorphisms
for n = 0, 1, ….

12Theorem 12: Localization [10] Let X be in Schk, let i : W → X be a closed
subscheme and j : U → X the open complement X \ W . Then the sequence

zp(W , ∗)
i∗→ zp(X, ∗)

j∗→ zp(U, ∗)

induces a quasi-isomorphism

zp(W , ∗) → Cone(zp(X, ∗)
j∗→ zp(U, ∗))[−1] .

13Definition 13 Let f : Y → X be a morphism in Schk, with Y and X locally
equi-dimensional over k. Let zp(X, n)f ⊂ zp(X, n) be the subgroup generated by
irreducible W ⊂ X × ∆n with 1 · W ∈ zp(X, n) and 1 · Z ∈ zp(Y , n) for each
irreducible component Z of (id × f )−1(W). This forms a subcomplex zp(X, ∗)f of
zp(X, ∗).

14Theorem 14: Moving Lemma [63, part I, chapt. II, §3.5] Let f : Y → X be a mor-
phism in Schk with X in Smk. Suppose X is either affine or projective over k. Then
the inclusion zp(X, ∗)f → zp(X, ∗) is a quasi-isomorphism.

These results have the following consequences.

Mayer–Vietoris
Let X be in Schk, U , V ⊂ X open subschemes with X = U ∪ V . Then the sequence
(the maps are the evident restriction maps)

zp(X, ∗) → zp(U, ∗) ⊕ zp(V , ∗) → zp(U ∩ V , ∗)

gives a quasi-isomorphism

zp(X, ∗) → Cone
(
zp(U, ∗) ⊕ zp(V , ∗) → zp(U ∩ V , ∗)

)
[−1] .

This yields a long exact Mayer–Vietoris sequence for the higher Chow groups.

Functoriality
Let f : Y → X be a morphism in Schk with X ∈ Smk and Y locally equi-dimensional
over k. Take an affine cover U = {U1, …, Um} of X, and let V := {V1, …, Vm} be the
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cover Vj := f −1(Uj) of Y . For I ⊂ {1, …, m} let UI = ∩i∈IUi, define VI similarly, and
let fI : UI → VI be the morphism induced by f .

Form the Čech complex zp(U, ∗) as the total complex of the evident double
complex

⊕iz
p(Ui, ∗) → ⊕i<jz

p(Ui ∩ Uj, ∗) → · · · → zp(∩m
i=1Ui, ∗)

and define zp(V, ∗) similarly. Replacing zp(UI , ∗) with zp(UI , ∗)fI yields the sub-
complex zp(U, ∗)f of zp(U, ∗); the pull-backs f ∗

I yield the map of complexes

f ∗ : zp(U, ∗)f → zp(V, ∗) .

By the moving lemma (Theorem 14), the inclusion zp(U, ∗)f → zp(U, ∗) is a quasi-
isomorphism. We thus have the morphism f ∗ : zp(X, ∗) → zp(Y , ∗) in D−(Ab)
defined by the zig-zag diagram

zp(X, ∗) → zp(U, ∗) ← zp(U, ∗)f
f ∗
→ zp(V, ∗) ← zp(Y , ∗) .

One shows that this makes the assignment X �→ zp(X, ∗) ∈ D−(Ab) into a func-
tor zp(−, ∗) : Smop

k → D−(Ab). In particular, X �→ CHp(X, n) becomes a functor

CHp(−, n) : Smop
k → Ab .

Products
The cycle complexes admit natural associative and commutative external products

∪X,Y : zp(X, ∗) ⊗ zq(Y , ∗) → zp+q(X × Y , ∗)

in D−(Ab); for X smooth over k, one has natural cup products in D−(Ab)

∪X := δ∗ ◦ ∪X,X :: zp(X, ∗) ⊗ zq(X, ∗) → zp+q(X, ∗) ,

where δ : X → X ×k X is the diagonal. The cup products make ⊕pzp(X, ∗) an
associative commutative ring in the derived category, with unit the fundamental
class 1 · X ∈ z0(X, 0). In particular, this makes ⊕p,q CHp(X, q) into a bigraded ring
(commutative in the p-grading, graded-commutative in the q-grading), functorial
in X.

One easily verifies the projection formula

p∗(p∗α ∪ β) = α ∪ p∗β

for a proper map p : Y → X in Smk.
The external products are essentially given by the usual external product of

cycles. However, as the external product of cycle on X × ∆n and a cycle on Y × ∆m

yields a cycle on X×Y×∆n×∆m, not a cycle on X×Y×∆n+m, the natural target of the
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external product is the total complex of the double complex zp+q(X×kY , ∗, ∗), where
zp(X×Y , n, m) is the subgroup of zp(X×Y×∆n×∆m) of cycles in good position with
respect to “bi-faces” X × Y × F × F′. One then needs to map Tot zp+q(X ×k Y , ∗, ∗)
back to zp+q(X ×k Y , ∗), in the derived category. There are two techniques for doing
this:
1. Use the standard triangulation of ∆n × ∆m into n + m-simplices
2. Show that the inclusion

zp+q(X ×k Y , ∗) = zp+q(X ×k Y , ∗, 0) ⊂ Tot zp+q(X ×k Y , ∗, ∗)

is a quasi-isomorphism

Both these techniques work and give the same product structure, see e.g. [64]
or [33] for details.

Projective Bundle Formula
For an invertible sheaf L on X ∈ Smk, we may choose a Cartier divisor D on
X with OX(D) =̃ L. Sending L to the class of D in CH1(X, 0) = CH1(X) gives
a homomorphism

c1 : Pic(X) → CH1(X, 0) .

If E → X is a locally free sheaf of rank n + 1, and q : P(E) → X the associated
P

n-bundle ProjOX
(Sym∗ E), we have the tautological invertible (quotient) sheaf

O(1) onP(E); let ξ := c1(O(1)). CH∗(P(E), ∗) is a CH∗(X, ∗)-module via q∗; in fact,
CH∗(P(E), ∗) is a free CH∗(X, ∗)-module with basis 1, ξ, …, ξn.

Relation with K-Theory
Once one has the projective bundle fomula, one can apply the technique of
Gillet [34] to give natural Chern class maps

cp,q : K2q−p(X) → CHq(X, 2q − p)

and a multiplicative Chern character

ch∗ : K∗(X)Q → ⊕p,q CHp(X, q)Q

We let Kn(X)(p) denote the weight p subspace of Kn(X)Q , i.e.

Kn(X)(p) =
{

x ∈ Kn(X)Q )
∣∣ ψk(x) = kp · x for all k ≥ 2

}
,

where ψk is the kth Adams operation on Kn(X).

15Theorem 15: [10,64] Let X be in Smk. The Chern character gives a isomorphism

Kn(X)(p) → CHp(X, n)Q .
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Milnor K-Theory
As a special case of Theorem 15, we have the isomorphism

CHn(F, n)Q =̃ Kn(F)(n)

for F a field. From work of Suslin [89], we know that the canonical map of Milnor
K-theory to Quillen K theory identifies KM

n (F)Q with Kn(F)(n). In fact, one has

16 Theorem 16: Nestorenko–Suslin [76], Totaro [92] Let F be a field. There is a nat-
ural isomorphism

KM
n (F) =̃ CHn(F, n) .

The case n = 1 is a special case of the result in [13]:

17 Proposition 17 Let X be in Smk. Sending a unit u ∈ H0(X, O∗
X) to the subscheme

(u − 1)t1 = u of X × ∆1 defines an isomorphism H0(X, O∗
X) =̃ CH1(X, 1). For n ≠ 1,

CH1(X, n) = 0.

Suslin Homology and Friedlander–Suslin Cohomology5.2.4

We describe Suslin’s construction of “abstract homology” for algebraic varieties,
and various modifications. For further details on this construction, we refer the
reader to the article [42] in this volume.

Finite Cycles and Quasi-finite Cycles

18 Definition 18 Take Y in Smk and X in Schk.
(1) Let zfin(X)(Y) be the subgroup of z∗(Y ×k X) generated by integral closed

subschemes W ⊂ Y ×k X such that p1 : W → Y is finite and dominant over an
irreducible component of Y .

(2) Let zq.fin(X)(Y) be the subgroup of z∗(Y ×k X) generated by integral closed
subschemes W ⊂ Y ×k X such that p1 : W → Y is quasi-finite and dominant
over an irreducible component of Y .

For a morphism f : Y ′ → Y in Smk, the morphism f × id : Y ′ ×k X → Y ×k X
is an l.c.i.-morphism; the finiteness, resp., quasi-finiteness conditions imply that
cycle-pull-back gives well-defined homomorphisms

f ∗ : zfin(X)(Y) → zfin(X)(Y ′) ; f ∗ : zq.fin(X)(Y) → zq.fin(X)(Y) ,

making zfin(X) and zq.fin(X) into presheaves of abelian groups on Smk. It is easy to
see that these are in fact sheaves for the étale topology on Smk.

Let F be a presheaf of abelian groups on Smk. For Y ∈ Smk, we may apply F to
the cosimplicial scheme Y × ∆∗, giving the simplicial abelian group F (Y × ∆∗).
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19Definition 19 Let F be a presheaf of abelian groups on Smk.
(1) The Suslin complex CSus∗ (F ) is the complex of presheaves

Y �→ CSus
∗ (F )(Y) ,

where CSus∗ (F )(Y) is the complex associated to the simplicial abelian group
F (Y × ∆∗).

(2) For Y ∈ Smk, writeZFS,Y (q) for the (cohomological) complex of sheaves on YZar

U �→ C2q−∗(zq.fin(Aq))(U) .

and ZFS(q) for the corresponding complex of sheaves on SmNis
k .

(3) For X ∈ Schk, and abelian group A, the Suslin homology of X, HSus∗ (X, A) is
defined by

HSus
n (X, A) := Hn

(
CSus

∗ (zfin(X)(k) ⊗ A)
)

.

(4) For Y ∈ Smk, the Friedlander–Suslin cohomology H
p
FS(Y , A(q)) is defined by

H
p
FS(Y , A(q)) := Hp

(
YZar,ZFS,Y (q) ⊗ A

)
.

20Remark 20 Let F be a presheaf on Smk. The homology presheaf on Smk

Y �→ Hn(CSus
∗ (F )(Y))

is homotopy invariant, i.e., the natural map

p∗ : Hn(CSus
∗ (F )(Y)) → Hn

(
CSus

∗ (F )(Y × A1)
)

is an isomorphism. See e.g. [100, chapt. 3, prop. 3.6] for a proof.

Comparison with the Higher Chow Groups
For

W ∈ zq.fin(Aq)(Y × ∆n) ⊂ zq(Y × Aq × ∆n) ,

and F ⊂ ∆n a face, the intersection W ∩ (Y × Aq × F) is quasi-finite over Y × F,
hence

codimY×A q×F W ∩ (Y × Aq × F) ≥ q .

Thus, we have inclusions

zq.fin(Aq)(Y × ∆n) ⊂ zq(Y × Aq, n) ⊂ zq(Y × Aq × ∆n) ,

giving the inclusion of complexes

αq
Y : C∗(zq.fin(Aq))(Y) → zq(Y × Aq, ∗) .
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LetZBl,Y (q) be the sheaf of (cohomological) complexes on YZar associated to the
presheaf

U �→ zq(U × Aq, 2q − ∗) .

The maps αq
U thus give the map of sheaves of complexes

αq : ZFS,Y (q) → ZBl,Y (q)

The main result of this section is

21 Theorem 21: Suslin [100, chapt. 6] The map αq : ZFS,Y (q) → ZBl,Y (q) is a quasi-
isomorphism for all Y ∈ Smk.

22 Corollary 22 Let Y be in Smk. Then αq induces an isomophism

H
p
FS(Y ,Z(q)) → CHq(Y , 2q − p) .

Proof of the corollary
By the Mayer–Vietoris property for the complexes zq(U × Aq, ∗), the natural

map

H2q−n

(
zq(Y × Aq, ∗)

) → H
n(YZar,ZBl,Y (q))

is an isomorphism for all n. By the homotopy property (Theorem 11), the pull-back
map

p∗ : zq(Aq, ∗) → zq(Y × Aq, ∗)

is a quasi-isomorphism, so we have the isomorphisms

CHq(Y , 2q − n) = H2q−n(zq(Y , ∗)) =̃ H2q−n

(
zq(Y × Aq, ∗)

)
.

Thus, we have isomorphisms

H
p
FS(Y ,Z(q)) = Hp(YZar,ZFS,Y (q)) =̃ CHq(Y , 2q − p) .

The proof of Theorem 21 goes in two steps: First one uses Suslin’s technique [100,
chapt. 6, thm. 2.1] to show that C∗(zq.fin(Aq)(Spec F)) → zq(A

q
F , ∗) is a quasi-

isomorphism for F a field. One may then use any one of several versions of a result
of Voevodsky, that for F a homotopy invariant presheaf with transfers, O the local
ring of a smooth point on a scheme of finite type over k with quotient field F, the
map

F (O) → F (F)
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is injective. One particular nice way to do this is the version due to Ojanguran–
Panin [79], which allows one to use a fairly restricted form of transfers, namely:
1. For f : X → Y a finite separable morphism in Smk, there is a homomorphism

f∗ : F (X) → F (Y).
2. Let f : X → Y be as in (1), let iD : D → Y be the inclusion of a smooth divisor,

and suppose that f : E := X ×Y D → D is étale. Let iE : E → X be the inclusion.
Then f ∗ ◦ i∗E = i∗D ◦ f∗.

It is not hard, using the moving lemma (Theorem 14) to show that the presheaf

Y �→ Hn(Cone(αq
Y ))

has the structure of a presheaf on Smk with Ojanguran–Panin transfers; as this
presheaf vanishes on fields, it follows that αq is a quasi-isomorphism.

23Remark 23 Via Proposition 17 and Theorem 21, we have an isomorphism

u : Gm[−1] → ZFS(1)

in D−(ShNis(Smk)).

The mod-n Theory
Suslin and Voevodsky show in [86] that, for an algebraically closed field k and n
prime to the characteristic of k, and for A a regular Henselian local k algebra with
residue field k, there is a natural isomorphism of complexes

ZFS(q)(Spec A) ⊗L
Z|n =̃ µ⊗q

n (Spec A)

(actually, this is only shown for k of characteristic zero, but using de Jong’s theory
of alterations, the same argument works in positive characteristics). This verifies
part (3) of Lichtenbaum’s conjectures 7.

The analogous conjecture, part (2) of Beilinson’s conjectures 6, which essentially
asserts the existence of a natural isomorphism

Hp(F,Z|n(q)) =̃ H
p
ét(F, µ⊗q

n )

for fields F finitely generated over a chosen base-field k (not necessarily alge-
braically closed) was shown in [90] and later in [33] to be equivalent to the Bloch–
Kato conjecture:

24Conjecture 24: [17] Let F be a field, n an integer prime to the characteristic of
F. Then the Galois symbol

θ : KM
q (F)|n → H

p
Gal(F, µ⊗q

n )

is an isomorphism.
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Here, the Galois symbol is the map sending a symbol {a1, …, aq} ∈ KM
q (F) to the

cup product l(a1)∪…∪ l(aq), where l(a) ∈ H1
Gal(F, µn) is the image of a ∈ F∗ under

the Kummer sequence

H0
Gal(F,Gm)

×n→ H0
Gal(F,Gm) → H1

Gal(F, µn) .

One reduces directly to the case n = �ν, � a prime. The case � = 2 is also known as
part of the Milnor conjecture [73] proven by Voevodsky [98, 99]. The case of odd �

has been recently reduced by Voevodsky [93] to results of Rost (as yet unpublished)
on the construction and properties of so-called “generic splitting varieties”.

Cubical Versions5.2.5

One can also use cubes instead of simplices to define the various versions of
the cycle complexes. The major advantage is that the product structure for the
cubical complexes is easier to define, and with Q-coefficients, one can construct
cycle complexes which have a strictly commutative and associative product. This
approach is used by Hanamura in his construction of a category of mixed motives,
as well as in the construction of categories of Tate motives by Bloch, Bloch–Kriz
and Kriz–May.

Cubical Complexes
Let (�1, ∂�1) denote the pair (A1, {0, 1}), and (�n, ∂�n) the n-fold product of
(�1, ∂�1). Explicitly,�n = An, and ∂�n is the divisor

∑n
i=1(xi = 0) +

∑n
i=1(xi = 1),

where x1, …, xn are the standard coordinates on An. A face of �n is a face of the
normal crossing divisor ∂�n, i.e., a subscheme defined by equations of the form
ti1 = ε1, …, tis = εs, with the εj in {0, 1}. If a face F has codimension m in �n, we
write dim F = n − m.

For ε ∈ {0, 1} and j ∈ {1, …, n} we let ιj,ε : �n−1 → �n be the closed embedding
defined by inserting an ε in the jth coordinate. We let πj : �n → �n−1 be the
projection which omits the jth factor.

25 Definition 25 Let X be in Schk. Let ẑp(X, n)cb be the subgroup of zp+n(X × �n)
generated by integral subschemes W ⊂ X ×�n such that

dimk W ∩ (X × F) ≤ p + dim F .

If X is equi-dimensional over k of dimension d, we write ẑ p(X, n)cb for ẑd−p(X, n)cb

and extend to locally equi-dimensional X by taking direct sums over the connected
components of X.

Clearly the pull-back of cycles ι∗j,ε : ẑp(X, n)cb → ẑp(X, n − 1)cb and π∗
j :

ẑp(X, n − 1)cb → ẑp(X, n)cb are defined. We let zp(X, n)cb be the quotient

zp(X, n)cb := ẑp(X, n)cb
/ n∑

j=1

π∗
j

(
ẑp(X, n − 1)cb) .
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One easily checks that

n∑

j=1

(−1)j−1ι∗j,1 −
n∑

j=1

(−1)j−1ι∗j,0 : ẑp(X, n)cb → ẑp(X, n − 1)cb

descends to

dn : zp(X, n)cb → zp(X, n − 1)cb

and that dn−1 ◦ dn = 0. Thus, we have the complex zp(X, ∗)cb, and for X locally
equi-dimensional over k the complex zp(X, ∗)cb.

We let ZBl,X(p)cb denote the sheafification of the presheaf on XZar, U �→ zp(U ×
A

p, ∗)cb.
Replacing zp(X, n)cb with zq.fin(Ap)(X × �n)|

∑n
j=1 π∗

j zq.fin(Ap)(X × �n−1) and
using the similarly defined differential, we have the cubical version of Suslin’s
complex, Ccb∗ (zq.fin(Ap)(X)) and the sheaf of complexes ZFS,X(p)cb on XZar.

Cubes and Simplices
The main comparison results are

26Theorem 26 Let X be in Schk.
(1) There is an isomorphism in D−(Ab)

zp(X, ∗)cb =̃ zp(X, ∗) ,

natural with respect to flat pull-back and proper push-forward.
(2) There is a natural (in the same sense as above) isomorphism in D−(Ab)

Ccb
∗ (zq.fin(Ap))(X) =̃ C∗(zq.fin(Ap)(X)) .

The proof of (1) is given in, e.g., [64, thm. 4.7]; the same argument (in fact somewhat
easier) also proves (2).

This has as immediate corollary:

27Corollary 27 For X ∈ Smk, there is an isomorphism in the derived category of
sheaves on XZar

ZBl,X(p)cb =̃ ZFS,X(p)cb ,

natural with respect to pull-back by maps in Smk.

28Remark 28 Let f : Y → X be a morphism in Schk, with X and Y locally equi-
dimensional over k. One can define the subcomplex zp(X, ∗)cb

f ⊂ zp(X, ∗)cb as
the cubical version of the subcomplex zp(X, ∗)f ⊂ zp(X, ∗). The argument of [64,
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thm. 4.7] mentioned above shows in addition that the isomorphism zp(X, ∗)cb =̃
zp(X, ∗) induces an isomorphism zp(X, ∗)cb

f =̃ zp(X, ∗)f , and thus, in case X is in
Smk and is affine, the inclusion zp(X, ∗)cb

f → zp(X, ∗)cb is a quasi-isomorphism.
Thus, sending X to zp(X, ∗)cb extends to a functor

zp(−, ∗)cb : Smop
k → D−(Ab) .

This explains the naturality assertion in the above corollary.

Products
As already mentioned, the cubical complexes are convenient for defining products.
Indeed, the simple external product of cycles (after rearranging the terms in the
product) defines the map of complexes

∪X,Y : zp(X, ∗)cb ⊗ zq(Y , ∗)cb → zp+q(X ×k Y , ∗)cb

Thus, we have a cup product

∪X := δ∗
X ◦ ∪X,X : zp(X, ∗)cb ⊗ zq(X, ∗)cb → zp+q(X, ∗)cb

in D−(Ab), and the isomorphism of Theorem 26 respects the two products.

Alternating Complexes
The symmetric group Σn acts on zp(X, n)cb be permuting the factors of �n. Ex-
tending coefficients to Q, we let zp(X, n)Alt be the subspace of zp(X, n)cb

Q on which
Σn acts by the sign representation, and letπAlt

n : zp(X, n)cb
Q → zp(X, n)Alt be the

(Σ-equivariant) projection on this summand. One checks (see [11, lemma 1.1])
that the differential on zp(X, ∗)cb

Q descends to give a map

dAlt
n : zp(X, n)Alt → zp(X, n − 1)Alt

forming the subcomplex zp(X, ∗)Alt of zp(X, ∗)cb
Q .

29 Lemma 29: [64, thm. 4.11] The inclusion zp(X, ∗)Alt → zp(X, ∗)cb
Q is a quasi-

isomorphism, with inverse the alternating projection πAlt : zp(X, ∗)cb
Q → zp(X, ∗)Alt.

We may define an external product on the alternating complexes by

∪Alt
X,Y := πAlt

p+q ◦ ∪X,Y : zp(X, ∗)Alt ⊗ zq(Y , ∗)Alt → zp+q(X ×k Y , ∗)Alt .

This agrees (up to homotopy) with the product on z∗(−, ∗)cb
Q .

In particular, for X = Spec k, we have the commutative, associative product

∪Alt : zp(k, ∗)Alt ⊗Q zq(k, ∗)Alt → zp+q(k, ∗)Alt ,
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satisfying the Leibniz rule

d(a ∪Alt b) = da ∪Alt b + (−1)deg aa ∪Alt b .

We will see in Sect. 5.5.2 how the complexes zq(k, ∗)Alt form a (graded) com-
mutative differential graded algebra overQ, which may be used to give a concrete
description of the category of mixed Tate motives over k.

Abelian Categories of Mixed Motives 5.3

We will now proceed to examine the framework proposed by Beilinson and Deligne
for a category of mixed motives in somewhat more detail. Before doing so, how-
ever, we will fix some ideas concerning Bloch–Ogus cohomology and Tannakian
categories. Having done this, we give a formulation of some of the hoped-for
properties of the abelian category of mixed motives, and then describe two very
different approaches to a construction. The first, following Jannsen and Deligne,
attempts to define a “mixed motive” by its singular/étale/de Rham realizations.
The second, due to Nori, first considers the ring of natural endomorphisms of
the singular cohomology functor on pairs of schemes, and then defines a mixed
motive as a module over this ring (roughly speaking). As we mentioned in the
introduction, it is not at all clear what relation K-theory has to the cohomology
theory arising from these constructions.

We will not discuss the theory of “pure” motives here at all. As a reference, we
refer the reader to the relevant articles in [104], as well as [56, sect. 3] in this volume,
where in addition some of the material in this section is handled in shorter form.

Background and Conjectures 5.3.1

We formulate a version of Bloch–Ogus cohomology, somewhat modified from the
original definition in [19] to fit our purposes. We recall some notions from the
theory of Tannakian categories, and then give a version of the properties one would
like in an abelian category of mixed motives.

Bloch–Ogus Cohomology
Let ShZar(k) be the category of sheaves of abelian groups on the big Zariski site
Smk. Let Γ(∗) := ⊕nΓ(n) be a graded object in C(ShZar(k)) (with Γ(n) in graded
degree 2n), together with a graded product µ : Γ(∗)⊗L Γ(∗) → Γ(∗) in D(ShZar(k)).
For X ∈ Smk, we set

Hn
Γ(X, m) := Hn(XZar, Γ(m))

and for W ⊂ X a closed subset, set

Hn
Γ,W (X, m) := Hn

W (XZar, Γ(m)) .
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We note that, if W ⊂ W ′ ⊂ X are closed subsets of X ∈ Smk, we have the natural
map

Hn
Γ,W (X, m) → Hn

Γ,W ′(X, m) .

30 Definition 30 We say that Γ(∗) defines a Bloch–Ogus cohomology theory if
1. The product µ is associative and commutative in D(ShZar(k)).
2. Γ(∗) is homotopy invariant: p∗ : H∗

Γ(X, m) → H∗
Γ(X × A1, m) is an isomor-

phism for all m.
3. Γ(∗) satisfies purity: Let W ⊂ X be a closed subset, with X ∈ Smk. If

codimX W ≥ q for some integer q, then H
p
Γ,W (X, q) = 0 for p < 2q.

4. Γ(∗) admits natural cycle classes: Let W ⊂ X be an irreducible closed codi-
mension q subset with X in Smk. Then there is a fundamental class [W] ∈
H

2q
Γ,W (X, q) satisfying:

a) Naturality: Let z :=
∑

i niWi be in zq(X), let W be the support of z, and set
cl(z) =

∑
i ni[Wi] ∈ H

2q
Γ,W (X, q). Let f : Y → X be a morphism in Smk such

that f −1(W) has codimension q on Y . Then

f ∗(cl(z)) = cl(f ∗(z)) ∈ H
2q
Γ,f −1(W)

(Y , q) .

b) Gysin isomorphism: Suppose that W ⊂ X is a pure codimension q closed
subset, with X and W in Smk. Suppose that the inclusion i : W → X is split
by a smooth morphism p : X → W . Then the composition

Hn
Γ(W , m)

p∗
→ Hn

Γ(X, m)
∪[W]→ H

n+2q
Γ,W (X, m + q)

is an isomorphism.
c) Products: For Xi ∈ Smk, zi ∈ zqi (Xi) with support Wi, i = 1, 2, we have

cl(z1 × z2) = p∗
1 cl(z1) ∪ p∗

2 cl(z2)

in H
2q1+2q2
Γ,W1×W2

(X1 ×k X2, q1 + q2).

5. Coefficients: For p : X → Spec k in Smk, X irreducible, the map

p∗ : H0
Γ(Spec k, 0) → H0

Γ(X, 0)

is an isomorphism.

The functor X �→ ⊕p,qH
p
Γ(X, q) is called the Bloch–Ogus theory on Smk represented

by Γ(∗). The ring H0
Γ(Spec k, 0) is called the coefficient ring of the theory Γ.

31 Remark 31 This notion of a Bloch–Ogus cohomology theory is somewhat more
general than that considered by Gillet in [34], in that Gillet requires
1. A structure mapGm[−1] → Γ(1) in D(ShZar(Smk)).
2. The complexes Γ(n) should be in C+(ShZar(k)).
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The existence of the structure map (1) follows from the cycle class map discussed
in Sect. 5.6.1; see Remark 119 for a precise statement. Allowing the Γ(q) to be
unbounded forces one to take a bit more care in the definition of the universal
Chern classes on the simplicial ind-scheme BGL, in that one needs to use the
extended total complex to define Γ(n)(BGLN):

Γ(n)(BGLN )m :=
∏

p≥0

Γ(n)m−p(BGLN)p ,

and then take

Γ(n)(BGL) := lim
N

Γ(n)(BGLN) .

Having made this definition, Gillet’s argument extends word-for-word to allow for
Γ(n) ∈ C(ShZar(k)), giving a good theory of Chern classes

c
q,p
Γ : K2q−p(X) → H

p
Γ(X, q)

for a Bloch–Ogus theory in our sense.

Example 32. The standard cohomology theories: singular cohomology, �-adic
étale cohomology, de Rham cohomology and Deligne cohomology,

are all examples which can be fit into the framework of the above. Also, motivic
cohomology, represented by Γ(n) := ZFS(n) (see Sect. 5.2.4), is an example.

Tannakian Formalism
We use [22, 28, 83] as references for this section.

Let F be a field. An F-linear abelian tensor category A is called rigid if there
exists internal Homs in A, i.e., for each pair of objects A, B of A, there is an object
Hom(A, B) and a natural isomorphism of functors

(
C �→ HomA(A ⊗ C, B)

)
=̃

(
C �→ HomA(C, Hom(A, B))

)
.

For example, the abelian tensor category of finite-dimensional F-vector spaces,
F-mod, has the internal Hom Hom(V , W) := V∨ ⊗ W .

An F-linear rigid abelian tensor categoryA is a Tannakian category if there exists
an exact faithful F-linear tensor functor to F′-mod for some field extension F′ of F;
such a functor is called a fiber functor. If a fiber functor to F-mod exists, we call A
a neutral Tannakian category.

The primary example of a neutral Tannakian category is the category RepF(G)
of representations of an affine group scheme G over F in finite dimensional
F-vector spaces; the forgetful functor RepF(G) → F-mod is the evident fiber
functor. Note that, if A is the Hopf algebra Γ(G, OG), so that G = Spec A, then
RepF(G) is isomorphic to the category of co-representations of A in F-mod,
co-repF(A).
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Neutral Tannakian categories are of interest because they are all given as cate-
gories of representations: If A is a Tannakian category over F with fiber functor
ω : A → F-mod, then there is an affine group scheme G over F with a canonical
isomorphism

G(F) =̃ Aut(ω)

and an equivalence of A with RepF(G) with ω going over to the forgetful functor. G
is canonically determined byAand ω, and different choices of ω lead to isomorphic
G’s. G is called the Galois group of A.

The Category of Mixed Motives
In [2] and [24], a framework for a category of mixed motives over a base field k is
proposed. There are many articles describing the consequences of such a theory,
e.g., [21, 53, 75]. We give here a quick description of the properties one should
expect in this category, derived from [2] and [24].

33 Conjecture 33 Let k be a field. There is a rigid tensor category MMk containing
“Tate objects” Z(n), n ∈ Z, and a functor

h : Smop
k → Db(MMk)

such that
1. Setting H

p
M(X,Z(q)) := Extp

MMk
(1, h(X) ⊗ Z(q)), the functor X �→

⊕p,qH
p
M(X,Z(q)) is the universal Bloch–Ogus cohomology theory on Smk.

2. Let Γ be a Bloch–Ogus theory on Smk, and RΓ : Smop
k → D(Ab) the functor

X �→ Γ̃(q)(X), where Γ̃(q)(X) is as in Sect. 5.3.1 the global sections on X of
a functorial flasque model for Γ(q). Then there is a “realization functor”

�Γ : MMk → D(Ab)

such that the induced map Db�Γ : Db(MMk) → D(Ab) yields a factorization
of RΓ as Db�Γ ◦ R. Applying Hp yields the canonical natural transformation

H
p
M(X,Z(q)) → H

p
Γ(X, q)

given by (1).
3. In the Q-extension MMk ⊗ Q, the full subcategory of semi-simple objects is

equivalent to the category Mk of homological motives over k, and for each
X ∈ Smk, the object hi(X)(q) := Hi(h(X)) ⊗Q(q) is in Mk.

4. For X smooth and projective over k, there is a decomposition (not necessarily
unique) in Db(MMk ⊗Q)

h(X)Q = ⊕2 dimk X
i=0 hi(X)[−i] .
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5. Let σ : k → C, and let �sing,σ be the realization functor corresponding to sin-
gular cohomology H∗

sing(Xσ(C),Z(2πi)j), where Xσ(C) is the analytic manifold
of C-points of X ×k C. Then the functor

H0 ◦ �sing,σ : MMk ⊗Q→ Q-mod

is a fiber functor, making MMk ⊗Q a neutral Tannakian category overQ. Also,
if �ét,� is the realization functor corresponding to X �→ H∗

ét(X ×k k,Ql(∗)),
then

H0 ◦ �ét,� : MMk ⊗Q� → Q�-mod

is a fiber functor, making MMk ⊗Q� a neutral Tannakian category overQ�.
6. For each object M in MMk, there is a natural finite weight filtration

0 = Wn−1M ⊂ WnM ⊂ … ⊂ WmM = M .

The graded quotients gr∗
W M are in Mk (after passing to theQ-extension). For

M = hi(X), the weight filtration is sent to the weight filtration for singular
cohomology, respectively étale cohomology, under the respective realization
functor.

7. There are natural isomorphisms

H
p
M(X,Z(q)) ⊗Q =̃ K2q−p(X)(q) .

These should arise from a natural spectral sequence of Atiyah–Hirzebruch
type

E
p,q
2 = H

p−q
M (X,Z(−q)) ⇒ K−p−q(X) ,

which degenerates at E2 after tensoring withQ.

34Remark 34 Rather than limiting oneself to motives over a field k, Beilinson suggests
in [2] that one should look for a theory of “mixed motivic sheaves” MM|S over
a base-scheme S, analogous to the category of say sheaves of abelian groups or
perverse sheaves or constructible étale sheaves, or mixed Hodge modules. In any
case, one would want to have the Grothendieck–Verdier formalism of four functors
f∗, f ∗, f! and f !, as well as a relation with K-theory and the realization properties
analogous to Db(MMk). However, as suggested by Deligne [21], one might ask
rather for a triangulated tensor category D(S) with a t-structure whose heart is the
abelian category MM|S, but without necesarily requiring that Db(MM|S) = D(S).
Voevodsky [95] has axiomatized the situation in his theory of “crossed functors”,
and has announced a construction of a category of mixed motives over S which
satisfies the necessary conditions. As the theory is still in its beginning stages, we
will not discuss these results further.
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The Motivic Galois Groups
Suppose k admits an embedding σ : k → C, giving us the fiber functor Fσ :=
H0 ◦�sing overQ corresponding to singular cohomology. Let MotGalk be the Galois
group of the Tannakian category MMk ⊗Q, and let MotGalss

k be the Galois group
for the semi-simple subcategory Mk. Taking the associated graded for the weight
filtration defines a functor MMk → Mk, and hence a homomorphism MotGalss

k →
MotGalk splitting the map induced by the restriction functor MotGalk → MotGalss

k .
The map MotGalss

k → MotGalk is thought of as an analog of the map on the
algebraic π1:

π1(X, ∗) → π1(X, ∗)

corresponding to the projection X := X ×k k → X for a scheme X over k. The split
surjection MotGalk → MotGalss

k yields the exact sequence

1 → Ûk → MotGalk → MotGalss
k → 1 ;

Ûk is a connected pro-unipotent algebraic group scheme over Q, encoding the
extension information in MMk.

One can restrict to the category of mixed Tate motives TMk, i.e., the full abelian
subcategory (of MMk ⊗ Q) closed under extensions and generated by the Tate
objectsQ(n), n ∈ Z. The abelian subcategory TMk of TMk generated by theQ(n)’s
is equivalent to the category of graded finite dimensional Q-vector spaces, i.e.,
the category of representations of Gm in Q-mod. As taking the associated graded
for the weight filtration defines an exact tensor functor TMk → TMk splitting the
inclusion, we have the split surjection

Gal TMk → Gm → 1

with kernel Uk a pro-unipotent algebraic group with Gm-action. Since the action
ofGm just gives the information of a grading, we thus have an equivalence of TMk

with the category of graded representations of Uk on finite dimensional Q-vector
spaces. More about this in Sect. 5.5 on Tate motives.

Motives by Compatible Realizations5.3.2

Building on Deligne’s theory of absolute Hodge cycles [28], Jannsen [54] constructs
an abelian category of “simultaneous realizations”, as an attempt to capture the idea
of a mixed motive by looking at structures modeled on singular, de Rham and étale
cohomology, together with comparison isomorphisms between these structures.
The known comparisons between singular, de Rham and étale cohomology of
a scheme X yields objects Hn(X) in this category, and a reasonable approximation
to a good catgory of motives is the sub-abelian category generated by these and
their duals. Deligne has also given a construction from this point of view in [23],
adding a crystalline component to the collection of realizations. The viewpoint of
compatible realizations has also been used in the setting of triangulated categories
by Huber [48], see Sect. 5.4.2 for some details of this construction.
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The Category of Realizations
Let k be a field finitely generated over Q, k the algebraic closure of k. Let Gk =
Gal(k.k). Form the category of mixed realizations MRk, with objects tuples of the
form H := (HDR, H�, Hσ , I∞,σ, I�,σ), with � running over prime numbers, σ over
embeddings k → C and σ over embeddings k → C, where
(a) HDR is a finite dimensional k-vector space with an exhaustive decreasing filtra-

tion FnHDR, and an exhaustive increasing filtration WnHDR.
(b) H� is a finite-dimensional Q�-vector space with a continuous Gk-action, and

an exhaustive increasing Gk-stable filtration WnH�.
(c) Hσ is a Q-mixed Hodge structure: Hσ is a finite dimensional Q-vector space

with an exhaustive decreasing filtration Fn on Hσ ⊗ C, and an exhaustive
increasing filtration Wn on Hσ inducing a pureQ-Hodge structure of weight m
on grW

n Hσ , i.e., there is a direct sum decomposition

(grW
n Hσ) ⊗ C = ⊕p+q=mHp,q

with Hq,p = Hp,q and with

grW
n FaHσ ⊗ C = ⊕p≥aHp,q .

(d) I∞,σ : Hσ ⊗Q C → HDR ⊗k C is an isomorphism, identifying the F- and
W-filtrations.

(e) I�,σ : Hσ ⊗Q Q� → H� is an isomorphism identifying the W-filtrations. In
addition, for each ρ ∈ Gk, the diagram

H�

Hσ ⊗Q�

��I�,σ wwwwwwwww

��I�,σρ
GG

GG
GG

GG
G

H�

OO

ρ

commutes.

The various W-filtrations (resp. F-filtrations) are called weight filtrations (resp.
Hodge filtrations) and the isomorphisms I are called comparison isomorphisms.

Morphisms H → H′ in MRk are (k,Q�,Q)-linear maps

(HDR, H�, Hσ) → (H′
DR, H′

�, H′
σ)

respecting the various filtrations and comparison isomorphisms. Defining the
operations componentwise, one has a tensor product, dual and internal Hom.
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In addition, for H = (HDR, H�, Hσ), the weight-filtrations on HDR, H�, Hσ are all
compatible via the comparison isomorphisms, so we have the functor

Wn : MRk → MRk

Wn((HDR, H�, Hσ)) := (WnHDR, WnH�, WnHσ) .

From the exactness of Wn in the category ofQ-mixed Hodge structures, it follows
that Wn is exact.

Tannakian Structure
The main structural result for MRk is

35 Theorem 35: [54, theorem 2.13] MRk is a neutral Tannakian category overQ.

In fact, the functor H �→ Hσ for a single choice of σ gives the fiber functor.

The Category of Mixed Motives
Let (X, Y) be a pair consisting of a finite type k-scheme X and a closed subscheme Y .
For an embedding σ : k → C, let (Xσ , Yσ) be the pair of topological spaces given
by the C-points of (X ×k C, Y ×k C), with the C-topology. Let Hn(Xσ, Yσ ;Q) be
the singular cohomology of the pair (Xσ, Yσ). Let Hn

ét(X, Y ;Q�) be the Q�-étale
cohomology of the pair and let HDR(X, Y) be the deRham cohomology.

Let X be a smooth quasi-projective k-scheme and take Y = ∅. Give Hn(Xσ, ;Q)
the mixed Hodge structure of Deligne [26]. Give Hn

DR(X) the analogous weight and
Hodge filtration: Take a smooth projective variety X containing X as a dense open
subscheme with normal crossing divisor D := X \ X at infinity. One then has

Hn
DR(X) = Hn

(
X, Ω∗

X|k(log D)
)

.

The stupid filtration on the deRham complex Ω∗
X|k(log D) gives the Hodge filtration

on Hn
DR(X) and the weight-filtration on Ω∗

X|k(log D) by number of components in
the polar locus of a form induces (after shift by n) the weight-filtration on Hn

DR(X).
Similarly, we identify the dual of the relative cohomology H2 dim X−n

ét (Xk, Dk,Q�)
with Hn

ét(Xk;Q�); the skeletal filtration on D induces the weight-filtration on
H2 dim X−n

ét (Xk, Dk,Q�) and thus on Hn
ét(Xk;Q�).

The classical deRham theorem gives comparison isomorphisms

I∞,σ : Hn(Xσ,Q) ⊗ C→ Hn
DR(X) ⊗k C

and Artin’s comparison isomorphism yields

I�,σ :: Hn(Xσ ,Q) ⊗Q� → Hn
ét(Xk,Q�) .
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Jannsen shows that setting

Hσ := Hn(Xσ , Q)

HDR := Hn
DR(X)

H� := Hn
ét(Xk;Q�)

with the above filtrations and comparison isomorphisms defines an object Hn(X)
in MRk, functorial in X, giving the functor

Hn : Smop
k → MRk

36Definition 36 Jannsen’s category of mixed motives by realizations over k, JMMk, is
the smallest full Tannakian subcategory of MRk containing all the objects Hn(X)
for X smooth and quasi-projective over k. The objects of JMMk are called mixed
motives. The smallest Tannakian subcategory Mk of JMMk containing all objects
Hn(X) for X smooth and projective over k, and closed under taking direct sum-
mands is called the subcategory of pure motives.

37Remark 37 As mentioned above, Deligne [23] has also described a category of
motives over Q by compatible realizations, adding a crystalline component to
the list of possible realizations. This yields a category analogous to the category
MRQ . However, Deligne gives no precise definition of the subcategory analogous to
JMMQ , saying that the objects should be those systems of compatible realizations
of geometric origin but explicitly leaving the definition of this term open.

38Remark 38
(1) Jannsen shows that the objects of JMMk are exactly the subquotients of Hn(U)⊗

Hm(V)∨ for smooth, quasi-projective U and V over k. In addition, JMMk is
stable under the functors Wn and grW

n .
(2) For each M ∈ JMMk, the weight-filtration W∗M is finite and exhaustive, and the

graded pieces grW
n M are all pure motives. Thus each mixed motive is a successive

extension of pure motives. The category of pure motives is semi-simple.
(3) The method of cubical hyperresolutions of Guillen and Navarro–Aznar [41]

extends Hn to a functor on arbitrary pairs of finite type k-schemes sending
(X, Y) to the deRham/étale/singular cohomology

Hn(X, Y) :=
(
Hn

DR(X, Y), Hn
ét

(
X, Y ,Q�

)
, Hn

σ
(
Xσ , Yσ ,Q

))

with the canonical mixed Hodge over Q/weight filtration/Q-mixed Hodge
structure gives an object in JMMk. Also, for a triple (X, Y , Z), the connect-
ing morphism Hn(X, Y) → Hn+1(Y , Z) is a morphism in JMMk.
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Motives by Tannakian Formalism5.3.3

Let k be a subfield ofC. For a pair consisting of a finite type k-scheme X and a closed
subscheme Y , one has the singular homology H∗(X(C), Y(C);Z), which we denote
by H∗(X, Y). Nori constructs an abelian category of mixed motives by considering
the ring of all natural endomorphisms α of the functor (X, Y) �→ H∗(X, Y), with
the additional requirement that α should commute with all boundary maps ∂i :
Hi(X, Y) → Hi−1(Y , Z) for all triples X ⊃ Y ⊃ Z. The external products in
homology make this ring into a bi-algebra; dualizing and inverting the resulting
character corresponding to the Tate object H2(P1,Z) yields a Hopf algebra χmot. The
category of co-modules of χmot in finitely generated abelian groups is then Nori’s
abelian category of mixed motives. In this section, we give some details regarding
this construction. Some of these results involve relations with the triangulated
categories of motives constructed by Voevodsky; for the notations involved, we
refer the reader to Sect. 5.4.5.

39 Remark 39 Unfortunately, there are at present no public manuscripts detail-
ing Nori’s construction. We have relied mainly on [31], with some additional
detail coming from [77]. Hopefully, one of these will soon be available to the
public.

A Universal Construction
A small diagram D consists of a set of objects O(D) and for each pair of objects
(p, q) a set of morphisms M(p, q) (but no composition law). If C is a category,
a representation of D in C, F : D → C is given by assigning an object Fp of C
for each p ∈ O(D), and a morphism Fm : Fp → Fq in C for each m ∈ M(p, q).
For a noetherian commutative ring R, we let R-mod denote the abelian category of
finite R-modules.

Example 40. Let H∗Schk be the diagram with objects the triples (X, Y , i), where
X is a k-scheme of finite type, Y a closed subscheme of X and i an

integer. There are two types of morphisms: for f : X → X′ a morphism of k-schemes
which restricts to a morphism of closed subschemes Y → Y ′ (i.e. a morphism of
pairs f : (X, Y) → (X′, Y ′)), we have the morphism f∗ : (X, Y , i) → (X′, Y ′, i).
For a triple (X, Y , Z) of closed subschemes X ⊃ Y ⊃ Z, we have the morphism
d : (X, Y , i) → (Y , Z, i − 1).

Sending (X, Y , i) to Hi(X, Y) := Hi(X(C), Y(C);Z), f∗ : (X, Y , i) → (X′, Y ′, i)
to f∗ : Hi(X, Y) → Hi(X′, Y ′) and d : (X, Y , i) → (Y , Z, i − 1) to the boundary
map ∂i : Hi(X, Y) → Hi−1(Y , Z) in the long exact homology sequence of the triple
(X(C), Y(C), Z(C)) defines a represention

H∗ : H∗Schk → Ab .
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Reversing the arrow f∗ to f ∗ : (X′, Y ′, i) → (X, Y , i) and changing d to d :
(X, Y , i) → (Y , Z, i + 1) gives the cohomological version H∗Schk and the represen-
tation

H∗ : H∗Schk → Ab ,

H∗((X, Y , i)) = Hi(X, Y) := Hi(X(C), Y(C);Z).

The main theorem regarding representations of diagrams is

41Theorem 41 Let T : D → R-mod be a representation of a small diagram D.
Then there is an R-linear abelian category C(T), a faithful exact R-linear functor
ffT : C(T) → R-mod and a representation T̃ : D → C(T) such that
1. ffT ◦ T̃ = T
2. T̃ is universal: if A is an R-linear abelian category with a faithful exact R-

linear functor f : A → R-mod and F : D → A is a representation such that
f ◦ F = T, then there is a unique R-linear functor L(F) : C(T) → A such that
the diagram

C(T)

��

ffT

GG
GG

GG
GG

G

��

L(F)D

��T̃ ��������

��F CC
CC

CC
CC

C
R-mod

A

��

f

vvvvvvvvv

commutes.

The construction of T̃ : D → C(T) follows the Tannakian pattern: Suppose first
that D is a finite set. Let End(T) be ring of (left) endomorphisms of T, that is,
the subset of

∏
p∈O(D) EndR(Tp) consisting of all tuples e =

∏
p ep such that, for all

m ∈ M(p, q), the diagram

Tp ��
Tm

��
ep

Tq

��
eq

Tp ��

Tm

Tq
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commutes. It is clear that End(T) is a sub-R-algebra of the product algebra∏
p∈O(D) EndR(Tp); since each Tp is a finite R-module and D is finite, End(T) is an

R-algebra, finite as an R-module. We let C(T) be the category of finitely generated
End(T)-modules, and ffT : C(T) → R-mod the forgetful functor. By construction,
each Tp is a left End(T)-module by the projection End(T) → EndR(Tp), and each
map Tm : Tp → Tq is End(T)-linear. This yields the lifting T̃ : D → C(T).

In general, we apply the above construction to all finite subsets O(F) of O(D), i.e.,
to all “finite, full” subdiagrams F of D (where we use the same sets of morphisms
M(p, q) for all F). If F ⊂ F′ ⊂ D are two such finite full subdiagrams, the projection

∏

p∈O(F′)
EndR(Tp) →

∏

p∈O(F)

EndR(Tp)

yields a homomorphism End(T|F′) → End(T|F), and hence an exact faithful func-
tor C(T|F) → C(T|F′). Define

C(T) := lim→
finite F⊂D

C(T|F) ;

the forgetful functors C(T|F) → R-mod and the liftings T̃|F fit together to give
ffT : C(T) → R-mod and T̃ : D → C(T).

To prove the universality, it suffices to consider the case of a small abelian
category A with a faithful exact functor f : A → R-mod. Let D(A) be the diagram
associated to A, i.e., the objects and morphisms are the same as A, just forget the
composition law. The above construction is obviously natural in D, so we have the
commutative diagram

D ��
D(F)

��
T̃

D(A)

��
F̃

��
id

A

�� F̂xx
xx
xx
xx
x

C(T) ��

C(D(F))

C(D(A))

with F̂ an exact R-linear functor. Nori shows that F̂ is an equivalence; an inverse to
F̂ yields the desired functor C(T) → A.

Abelian Categories of Effective Motives
We apply the universal construction to the representations H∗ and H∗.

42 Definition 42 Let k be a subfield ofC. Let EHM(k) = C(H∗) and ECM(k) = C(H∗).

Nori shows that these categories are independent of the choice of embedding
k ⊂ C. The universal property of the C-construction yields faithful exact functors
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ECM(k) → MHS (5.3)

ECM(k) → Gal(k)-Rep

ECM(k) → Period(k)

Here MHS is the category of mixed Hodge structures, Gal(k)-Rep is the category
of representations of Gal(k|k) on finitely generated abelian groups, and Period(k)
is the category of tuples (L, V , φ, ∇), where L is a finitely generated abelian group,
V a finite-dimensional k-vector space, φ : L ⊗ C → V ⊗k C an isomorphism of
C-vector spaces and ∇ : V → Ω1

k ⊗ V the Gauß-Manin connection, i.e. aQ-linear
connection with ∇2 = 0 and with regular singular points at infinity. Similarly,
using Remark 38(3), the universal property yields an exact faithful functor

ECM(k) → JMMk

The Basic Lemma and Applications
We have the functors Hi from pairs of finite-type k-schemes to EHM(k); in order
to define the total derived functor

m : Schk → Db(EHM(k)) ,

Nori shows that affine finite type k-schemes have a type of “cellular decomposition”
which, from the point of cohomology, looks like the usual cellular decomposition
of a CW-complex. Specifically, the basic result is

43Theorem 43: [78] Let X be a finite type affine k-scheme of dimension n over
k ⊂ C. Let Z ⊂ X be a closed subset with dim Z ≤ n − 1. Then there exists a closed
subset Y of X containing Z such that
1. dim Y ≤ n − 1
2. Hi(X, Y) = 0 for i ≠ n
3. Hn(X, Y) is a finitely generated abelian group.

44Remark 44 Nori has mentioned to me that at the time of his proof of Theorem 43, he
was unaware that Beilinson had already proven this result (actually, a stronger re-
sult, as Beilinson proves the above in characteristic p > 0 as well) in [3, lemma 3.3],
by a different argument. He has also remarked that the same method was used by
Kari Vilonen in his Harvard University Masters’ thesis to prove Artin’s comparison
theorem.

To construct m, let X be an affine k-scheme of finite type. Applying Theorem 43
repeatedly, there is a filtration X∗ of X by closed subsets

∅ = X−1 ⊂ X0 ⊂ … ⊂ Xn−1 ⊂ Xn = X
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such that Hi(Xj, Xj−1) = 0 for i ≠ j and Hj(Xj, Xj−1) is a finitely generated abelian
group for all j. Call such a filtration a good filtration of X. Form the complex C∗(X∗)
with Cj = Hj(Xj, Xj−1) and with differential the boundary map Hj(Xj, Xj−1) →
Hj−1(Xj−1, Xj−2). This is clearly a complex in EHM(k), and is natural in EHM(k)
with respect to morphisms f : X → X′ which are compatible with the chosen
filtrations X∗ and X′∗.

Let lim→ EHM(k) be the category of ind-systems in EHM(k), and let
Ch(lim→ EHM(k)) be the category of chain complexes in lim→ EHM(k) which
have bounded homology in EHM(k). Taking the system of good filtrations X∗ of X
(or equivalently, all filtrations) yields the functor

C∗ : Aff(k) → Ch(lim→ EHM(k)) .

Here Aff(k) is the category of affine k-schemes of finite type.
Passing to the derived categories

D(Ch(lim→ EHM(k))) ∼ Db(EHM(k))

and using a Čech construction yields the functor

m : Schk → Db(EHM(k)) .

As a second application, replace the diagram category H∗Schk with the diagram
category H∗Sch′

k of “good triples” (X, Y , i), i.e., those having Hj(X, Y) = 0 for j ≠ i,
and let EHM(k)′ = C(H′∗), where H′∗ : H∗Sch′

k → Ab is the restriction of H∗. Nori
shows

45 Proposition 45 The natural map EHM(k)′ → EHM(k) is an equivalence of abelian
categories.

As applications of this result, Nori defines a tensor structure on EHM(k) by con-
sidering the map of diagrams:

× : H∗Sch′
k × H∗Sch′

k → H∗Sch′
k

(X, Y) × (X′, Y ′) = (X ×k X′, X ×k Y ′ ∪ Y ×k X′) .

and the representation H∗ × H∗ : H∗Sch′
k × H∗Sch′

k → Ab × Ab. This gives the
commutative diagram

H∗Sch′
k × H∗Sch′

k

��
H∗×H∗

��
×

H∗Sch′
k

��
H∗

Ab × Ab ��

⊗
Ab
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Noting that C(H∗ × H∗) = EHM(k)′ × EHM(k)′, the universal property of C yields
the exact functor

⊗ : EHM(k)′ × EHM(k)′ → EHM(k)′ ;

via Proposition 45, this gives the tensor product operation

⊗ : EHM(k) × EHM(k) → EHM(k) .

Nori constructs a duality functor

∨ : EHM(k)′ → ECM(k)op

respecting the representations H∗ and H∗ via the usual duality

Hom(−,Z) : Ab → Ab ,

by sending a good pair (X, Y , n) to (X, Y , n), noting that

Hn(X, Y) = Hn(X, Y)∨

for a good pair (X, Y). This induces an equivalence on the derived categories

∨ : Db(EHM(k)) → Db(ECM(k))op .

Finally, using Theorem 43, Nori shows that the restriction of C∗ to Smk factors
through the embedding Γ : Smk → Cor(k) (see Sect. 5.4.5 for the notation):

46Proposition 46 Let W ⊂ X ×k Y be an effective finite correspondence, X, Y in Smk

and affine. Then there is a map W∗ : C∗(X) → C∗(Y), satisfying
1. For a morphism f : X → Y with graph Γ, f∗ = Γ∗.
2. (W ◦ W ′)∗ = W∗ ◦ W ′∗.

Using this result, Nori shows that the restriction of m to Smk extends to a functor

Π : DMeff
gm(k) → Db(EHM(k)) .

making

DMeff
gm(k)

��

ΠCor(k)

��nnnnnnn

		QQ
QQ

QQ

Db(EHM(k))

commute.
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Motives
For a finite subdiagram F of H∗Schk, let A(F) be the dual of End(H∗|F):

A(F) := Hom(End(H∗|F),Z) .

Let A be the limit

A := lim→
F

A(F) .

The ring structure on End(H∗|F) makes A(F) and A into a co-algebra (overZ). Nori
shows

47 Lemma 47 EHM(k)′ is equivalent to the category of left comodules M over A, which
are finitely generated as abelian groups.

The tensor product on EHM(k)′ induces a comultiplication

End(H∗|F) ⊗ End(H∗|F′) → End(H∗|F·F′) ,

where O(F ·F′) is the set of triples of the form (X, Y , i)× (X′, Y ′, i′) for (X, Y , i) ∈ F,
(X′, Y ′, i′) ∈ F′. This yields a commutative, associative multiplication A ⊗ A → A,
making A into a bi-algebra over Z.

Let Z(1) = H1(Gm), as an object of EHM(k)′. As a Z-module, Z(1) = Z. If F is
a finite diagram containing (Gm, ∅, 1), then Z(1) is an End(H∗|F)-module; sending
a ∈ End(H∗|F) to a · 1 ∈ Z(1) = Z determines an element

χF ∈ A(F) = Hom(End(H∗|F),Z) .

The image of χF in A is independent of the choice of F, giving the element χ ∈ A.
Let Aχ be the localization of A by inverting χ.

48 Theorem 48 Aχ is a Hopf algebra.

Let Gmot(k) be the corresponding affine group-scheme Spec Aχ.

49 Definition 49 Nori’s category of mixed motives over k, NMM(k), is the category
of representations of Gmot(k) in finitely generated Z-modules, i.e., the category of
co-modules over Aχ which are finitely generated as an abelian group.

Since ⊗Z(1) : NMM(k) → NMM(k) is invertible, the functor Π : DMeff
gm(k) →

Db(EHM(k)) extends to

Π : DMgm(k) → Db(NMM(k)) . (5.4)

Similarly, the functors (5.3) and the functor ECM(k) → JMMk extend to functors
on NMMk.
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There are a number of classical conjectures one can restate or generalize using
this formalism. For example, Beilinson’s conjectures on the existence of an abelian
category of mixed motives over k with the desired properties can be restated
as

50Conjecture 50 The functor ΠQ : DMeff
gm(k)Q → Db(EHM(k)Q ) is fully faithful.

The Hodge conjecture can be generalized as

51Conjecture 51 The functor hs : ECM(k) → MHS induces a fully faithful functor
NMM(k)Q → MHSQ . Equivalently, the map from the Mumford–Tate group MT to
Gmot(k) corresponding to hs gives a surjective map MT → Gmot(k)Q . Equivalently,
for all V in NMM(k), the map

HomNMM(k)(1, V)Q → HomMHSQ (1, hs(V))

is surjective.

Suppose that k is finitely generated overQ. Using the universal property of NMM(k)
with respect to p-adic étale cohomology, one has an exact functor

NMM(k) → Qp[Gal(k|k)]-mod ,

equivalently, a homomorphism of Gal(k|k) to the Qp-points of Gmot(k). The Tate
conjecture generalizes to

52Conjecture 52 The image of Gal(k|k) → Gmot(k)(Qp) is Zariski dense in Gmot(k)Q p .
Equivalently, let NMM(k)Q p be theQp-extension of NMM(k). Then the functor

NMM(k)Q p → Qp[Gal(k|k)]-mod

induced by NMM(k) → Qp[Gal(k|k)]-mod is fully faithful.

Triangulated Categories of Motives 5.4

One can attempt a construction of a triangulated category of motives, which should
ideally have the properties expected by the derived category of Beilinson’s conjec-
tural abelian category of mixed motives. In this direction there are two essentially
different approaches: One, due to Huber, is via simultaneous realizations, and the
second (the approach used by Hanamura, Levine and Voevodsky) builds a category
out of some form of algebraic cycles or correspondences.

The main problem in the second approach is that the composition of arbitrary
correspondences is not defined, unless one passes to a suitable equivalence relation.
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If however, one imposes the equivalence relation first (as in Grothendieck’s con-
struction) one would lose most of the extension data that the category of motives is
supposed to capture. Thus, one is forced to modify the notion of correspondence in
some way so that all compositions are defined. Hanamura, Levine and Voevodsky
all use different approaches to solving this problem. The constructions of Levine
and Voevodsky both lead to equivalent categories; while it is not at present clear
that Hanamura’s construction is also equivalent to the other two (at least with Q-
coefficients) the resulting Q-motivic cohomology is the same, and so one expects
that this category is equivalent as well.

The Structure of Motivic Categories5.4.1

All the constructions of triangulated categories of motives enjoy some basic struc-
tural properties, which we formulate in this section. We give both a cohomological
as well as a homological formulation.

Let A be a subring of R which is a Dedekind domain. By a cohomological
triangulated category of motives over a field k with A-coefficients, we mean an
A-linear triangulated tensor category D , equipped with a functor

h : Smop
k → D

and Tate objects A(n), n ∈ Z, with the following properties (we write f ∗ for h(f )):
1. Additivity. h(X � Y) = h(X) ⊕ h(Y).
2. Homotopy. The map p∗ : h(X) → h(X × A1) is an isomorphism.
3. Mayer–Vietoris. Let U∪V be a Zariski open cover of X ∈ Smk, iU : U∩V → U ,

iV : U∩V → V , jU : U → X and jV : V → X the inclusions. Then the sequence

h(X)
(j∗U ,j∗V )→ h(U) ⊕ h(V)

(i∗U ,−i∗V )→ h(U ∩ V)

extends canonically and functorially to a distinguished triangle.
4. Künneth isomorphism. For α ∈ D , write α(n) for α ⊗ A(n). There are associa-

tive, commutative external products

∪X,Y : h(X)(n) ⊗ h(Y)(m) → h(X ×k Y)(n + m)

which are isomorphisms. A(0) is the unit for the tensor structure. We let

∪X : h(X) ⊗ h(X) → h(X)

be the composition δ∗
X ◦ ∪X,X , where δX : X → X ×k X is the diagonal.

53 Remark 53 For the definition of an A-linear triangulated tensor category, we refer
the reader to [70, chapt. 8A]
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5. Gysin distinguished triangle. For each closed codimension q embedding in
Smk, i : W → X, there is a distinguished triangle

h(W)(−d)[−2d]
i∗→ h(X)

j∗→ h(X \ W) → h(W)(−d)[1 − 2d]

which is natural in the pair (W , X). Here j : X \ W → X is the inclusion, and
“natural” means with respect to both to morphisms of pairs f : (W ′, X′) →
(W , X) such that W ′ is the pull-back of W , as well as the functoriality (i1 ◦i2)∗ =
i1∗ ◦ i2∗ for a composition of closed embeddings in Smk. Also, if i : W → X
is an open component of X, then i∗ is the inclusion of the summand h(W) of
h(X) = h(W) ⊕ h(X \ W).

6. Cycle classes. For X ∈ Smk, there are homomorphisms

clq : CHq(X) → HomD(A(0), h(X)(q)[2q]) .

The maps clq are compatible with external products, and pull-back morphisms.
If i : W → X is a codimension d closed embedding in Smk, and Z is in
CHq−d(W), then clq(i∗(Z)) = i∗ ◦ clq−d(Z).

7. Unit. The map cl0([Spec k]) : A(0) → h(Spec k) is an isomorphism.
8. Motivic cohomology. For X ∈ Smk, set

Hp(X, A(q)) := HomD(A(0), h(X)(q)[p]) .

As a consequence of the above axioms, the bi-graded group ⊕p,qHp(X, A(q))
becomes a bi-graded commutative ring (with product ∪X), with Hp(X, A(q))
in bi-degree (p, 2q). The element cl0(1 · X) is the unit.

9. Projective bundle formula. Let E be a rank n + 1 locally free sheaf on X ∈ Smk

with associated Pn-bundle P(E) → X and invertible quotient tautological
sheaf O(1). Let c1(O(1)) ∈ CH1(P(E)) be the 1st Chern class of O(1), and set

ξ := cl1(c1(O(1)) ∈ H2(P(E), A(1)) .

Letting αi : h(X)(−i)[−2i] → h(P(E)) be the map (− ∪P(E) ξi) ◦ q∗, the sum

n∑

i=0

αi : ⊕n
i=0h(X)(−i)[−2i] → h(P(E))

is an isomorphism.

54Remark 54 It follows from (4) and (7) that A(n) ⊗ A(m) is canonically isomorphic
to A(n + m), and thus we have isomorphisms

HomD(α, β) =̃ HomD(α(n), β(n))

for all α, β in D and all n ∈ Z.
All the properties of h(X) induce related properties for H∗(X, A(∗)) by taking

long exact sequences associated to HomD(A(0), −).
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Using (5) and (9), one can define a push-forward map

f∗ : h(Y)(−d)[−2d] → h(X)

for a projective morphism f : Y → X of relative dimension d. For this, one factors f
as q◦i, with i : Y → P

n ×X a closed embedding and q : Pn ×X → X the projection.
We use (5) to define i∗ and let

q∗ : h(Pn × X) → h(X)(−n)[−2n]

be the inverse of the isomorphism
∑n

i=0 αi of (9) (with E = On+1
X ) followed by the

projection onto h(X)(−n)[−2n]. One sets f∗ := q∗ ◦ i∗, shows that f∗ is independent
of the choices made and that (fg)∗ = f∗g∗. For details on this construction, see,
e.g., [63, part 1, chapt. III, §2].

55 Remark 55 To define a homological triangulated category D of motives over a field
k with A-coefficients, one replaces the functor h with an additive functor

m : Smk → D

and denote m(f ) by f∗. The properties (1)-(4) remain the same, reversing the arrows
in (2) and (3). The Gysin map i∗ in (5) becomes i∗ : m(X) → m(W)(d)[2d].

We define Hp(X, A(q)) := HomD(m(X)(−q)[−p], A(0)). The cycle classes in (6)
become maps clq : CHq(X) → H2q(X, A(q)), with the same functoriality and
properties as in (6) and (8). The projective bundle formula (9) becomes the iso-
morphism

n∑

i=0

αi : ⊕n
i=0m(X)(i)[2i] → m(P(E)) .

One uses the projective bundle formula to define a pull-back map

q∗ : m(X)(n)[2n] → m(P(E))

by setting q∗ := αn. This allows one to define a functorial Gysin map f ∗ :
m(X)(d)[2d] → m(Y), for f : Y → X projective of relative dimension d, as
we defined f∗ in the cohomological setting.

In short, the opposite of a cohomological category of motives is a homological
category of motives, after changing the signs in the Tate objects.

56 Definition 56 Let D be a cohomological triangulated category of motives over k
with A-coefficients. A duality on D is an exact pseudo-tensor functor ∨ : D →
Dop, together with maps δα : A(0) → α∨ ⊗ α, εα : α ⊗ α∨ → A(0) for each α in
D , such that
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1. For each α in D , (εα ⊗ idα)◦(idα ⊗δα) = idα and (idα ⊗εα)◦(δα ⊗ idα) = idα∨ .
2. For each smooth projective X of dimension d over k, h(X)∨ = h(X)(d)[2d] and

δh(X) and εh(X) are the compositions of pull-back and push-forward for

Spec (k) ← X
∆X→ X ×k X

In the homological case, we just change (2) to

m(X)∨ = m(X)(−d)[−2d] .

57Remark 57 A duality on D is a duality in the usual sense of tensor categories, that
is, for each α, β in D , α∨ ⊗ β is an internal Hom object in D . In fact, the map

HomD(α ⊗ γ, β) → HomD(γ, α∨ ⊗ β)

induced by sending f : α ⊗ γ → β to the composition

γ =̃ A(0) ⊗ γ δ⊗id→ α∨ ⊗ α ⊗ γ
id⊗f→ α∨ ⊗ β

is an isomorphism for all α, β and γ, with inverse similarly constructed using εα
instead of δα. For details, see [63, part 1, chapt. IV, §1]

58Definition 58 Let D be a (co)homological triangulated category of motives over
k, with coefficients in A. We say that D is a fine category of motives if, for each
X ∈ Smk there are homomorphisms

clp,q : CHq(X, 2q − p) → Hp(X, A(q))

satisfying:
1. cl2q,q = clq

2. The maps clp,q are functorial with respect to pull-back, products and push-
forward for closed embeddings in Smk.

3. The maps cl∗,q commute with the boundary maps in the Mayer–Vietoris se-
quences for H∗(−, A(q)) and CHq(−, 2q − ∗).

4. The A-linear extension of clp.q,

clp,q
A : CHq(X, 2q − p) ⊗ A → Hp(X, A(q))

is an isomorphism for all X ∈ Smk and all p, q.

An Overview
We give below sketches of four constructions of triangulated categories of motives,
due to Huber, Hanamura, Levine and Voevodsky. Huber’s construction yields a co-
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homological triangulated category of motives over k withQ-coefficients, with dual-
ity. Hanamura’s construction, assuming k admits resolution of singularties, yields
a fine cohomological triangulated category of motives over k with Q-coefficients,
with duality. Levine’s construction yields a fine cohomological triangulated cat-
egory of motives over k with Z-coefficients; the category has duality if k admits
resolution of singularities. Voevodsky’s construction yields a fine homological
triangulated category of motives over k with Z-coefficients; the category has du-
ality if k admits resolution of singularties. In addition, if if k admits resolution of
singularties, Levine’s category is equivalent to Voevodsky’s category.

Huber’s Construction5.4.2

Let k be a field finitely generated over Q. Huber’s construction of a triangulated
category of mixed motives over k [48] is, roughly speaking, a combination of
Jannsen’s abelian category MRk of compatible realizations, and Beilinson’s cate-
gory of mixed Hodge complexes [4]. In somewhat more detail, Huber considers
compatible systems of bounded below complexes and comparison maps

(
(CDR, W∗, F∗)(C�, W∗), (Cσ, W∗), (C′

σ, W∗), (C′
�, W∗)

)

Iσ : CDR ⊗k C→ C′
σ

I′
σ : Cσ ⊗Q C→ C′

σ

I′
�,σ : Cσ ⊗Q Q� → C′

�

I�,σ : C� → C′
�

where
1. σ runs over embedding k → C and � runs over prime numbers.
2. CDR is a bounded below complex of finite dimensional bi-filtered k-vector

spaces, with strict differentials. W∗ is an increasing filtration and F∗ is a de-
creasing filtration

3. Cσ (resp. C′
σ) is a bounded below complex of finite dimensionQ-vector spaces

(resp.C-vector spaces), with decreasing filtration W∗ and with strict differen-
tials.

4. C′
� (resp. C�) is a bounded below complex of finite dimensionQ�-vector spaces

(resp. with continuous Gk-action), with decreasing filtration W∗ and with strict
differentials.

5. Iσ , I′
σ I′

�,σ and I�,σ are filtered quasi-isomorphisms of complexes (with respect
to the W-filtrations).

6. For each n, the tuple of cohomologies (Hn(CDR), Hn(C�), Hn(Cσ)) with the
induced filtrations is an object in MRk, where we give Hn(Cσ) ⊗ C the Hodge
filtration induced from the F-filtration on Hn(CDR).

7. The Gk-module Hn(C�) is mixed (we don’t define this term here, see [48,
definition 9.1.4] for a precise definition. Roughly speaking, the Gk-action
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should arise from an inverse system of actions on finitely generated Z|�ν-
modules and grm

W Hn(C�)) should be pure of weight m for almost all Frobenius
elements in Gk).

Inverting quasi-isomorphisms of tuples yields Huber’s triangulated tensor cate-
gory of mixed motives, DMR(k).

The category DMR(k) has the structural properties given in Sect. 5.4.1 for a co-
homological triangulated category of motives over k withQ-coefficients, and with
duality. In addition, the functor h : Smo

k p → DMR(k) extends to smooth simplicial
schemes over k. This extension is important in the applications given by Huber
and Wildeshaus [51] to the Tamagawa number conjecture of Bloch and Kato.

Hanamura’s Construction 5.4.3

We give a sketch of Hanamura’s construction of the category D(k) as the pseudo-
abelianization of a subcategoryDfin(k); in [46]D(k) is constructed as a subcategory
of a larger category Dinf (k), which we will not describe here.

The basic object is a higher correspondence: Let X and Y be irreducible smooth
projective varieties over k. Let

HCor((X, n), (Y , m))a := zm−n+dimk X(X × Y , −a)Alt .

For irreducible W ∈ HCor((X, n), (Y , m))a, W ′ ∈ HCor((Y , m), (Z, l))b we say that
W ′ ◦ W is defined if the external product W ∪X×Y ,Y×Z W ′ is in the subcomplex

zl−n+dimk X+dimk Y (X × Y × Y × Z, ∗)Alt
idX×δY ×idZ

⊂ zl−n+dimk X+dimk Y (X × Y × Y × Z, ∗)Alt .

In general, if W =
∑

i niWi, W ′ =
∑

i mjW ′
j , we say W ′ ◦ W is defined if W ′

j ◦ Wi is
defined for all i, j.

If W ′ ◦ W is defined, we set

W ′ ◦ W := pX×Z∗
(
(idX × δY × idZ)∗(W ∪X×Y ,Y×Z W ′)

)
.

The definition of the complex HCor is extended to formal symbols, i.e. finite
formal sums ⊕α(Xα, nα), by the formula

HCor(⊕α(Xα, nα), ⊕β(Yβ, mβ)) :=
∏

α

⊕βHCor((Xα, nα), (Yβ, mβ)) .

0 is the empty sum. We let 1 denote the formal symbol (Spec k, 0).
If K = ⊕α(Xα, nα) is a formal symbol, we set z0(K) := HCor(1, K). Thus,

z0((X, n))∗ = zn(X, −∗). We set (X, n)∨ := (X, dimk X − n) and extend to formal
symbols by linearity. Similarly, we define a tensor product operation K ⊗ L as the
bilinear extension of (X, n) ⊗ (Y , m) := (X ×k Y , n + m).

59Definition 59 A diagram K := (Km, f m,n) consists of formal symbols Km, m ∈ Z,
together with elements f m,n ∈ HCor(Kn, Km)n−m+1, n < m such that:
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1. For all but finitely many m, Km = 0.
2. For all sequences m1 < … < ms the composition f ms,ms−1 ◦…◦ f m2,m1 is defined.
3. For all n < m we have the identity

(−1)m∂f m,n +
∑

l

f m,l ◦ f l,n = 0 .

Here ∂ is the differential in the complex HCor(Kn, Km)∗.

The yoga of duals and tensor products of usual complexes in an additive category
extend to give operations K �→ K∨ and (K, L) �→ K ⊗ L for diagrams; we refer the
reader to [63, part 2, chapt. II, §1] or [46] for detailed formulas.

The diagrams (resp. finite diagrams) are objects in a triangulated category
Dfin(k). In order to describe the morphisms HomDfin(k)(K, L), we need the notion
of a distinguished subcomplex of zp(X, ∗)Alt.

60 Definition 60 Let X be a smooth projective variety. A distinguished subcomplex
of zp(X, ∗)Alt is a subcomplex of the form zp(X, ∗)Alt

f for some projective map
f : Y → X in Schk, with Y locally equi-dimensional over k. If K = ⊕α(Xα, nα) is
a formal symbol, a distinguished subcomplex of z0(K) is a subcomplex of the form
⊕αznα (Xα, −∗)fα , with fα : Yα → Xα as above.

For f : (X, n) → (Y , m) in HCor((X, n), (Y , m))∗, we say that f is defined on
a distinguished subcomplex z0((X, n))′ := zn(X, −∗)′ if f ◦ η is defined for all
η ∈ zn(X, −∗)′ (where we identify zn(X, −∗) with HCor(1, (X, n)). This notion
extends in the evident manner to f ∈ HCor(K, K ′) for formal symbols K and K ′.

Let K = (Km, f m,n) be a diagram. A collection of distinguished subcomplexes
m �→ z0(Km)′ is admissible for K if, for each sequence m1 < … < ms, the corre-
spondence f ms,ms−1∗ ◦…◦f m2,m1∗ is defined on z0(Km1 )′ and maps z0(Km1 )′ to z0(Kms )′.
If a collection m �→ z0(Km)′ is admissible for K, we define the corresponding cycle
complex for K, z0(K)′, by

z0(K)′j := ⊕iz
0(Ki)′j+i

with differential dj : z0(K)′j → z0(K)′j+1 given by

dj :=
∑

i

(−1)i∂i +
∑

i,i′
f i′,i
∗ .

Here ∂i is the differential in z0(Ki)∗.

61 Lemma 61 For each formal symbol K, there is an admissible collection of dis-
tinguished complexes, and two different choices of such admissible collections,
m �→ z0(Km)′ and m �→ z0(Km)′′, result in canonically quasi-isomorphic cycle
complexes z0(K)′ and z0(K)′′.
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Thus, we may denote by z0(K) the image of a z0(K)′ in D(Ab).

62Definition 62 Let K and L be diagrams. Set

HomDfin(k)(K, L) := H0(z0(K∨ ⊗ L)) .

Unwinding this definition, we see that the complex z0(K∨ ⊗ L) is built out of the
complexes HCor(Km, Ln), and so a morphism φ : K → L is built out of higher
correspondences φn,m : Km → Ln, which satisfy some additional compatibility
conditions. In particular, the composition of higher correspondences induces an
associative composition

HomDfin(k)(L, M) ⊗ HomDfin(k)(K, L) → HomDfin(k)(K, M) .

One mimics the definition of the translation operator and cone operator of
complexes (this type of extension was first considered by Kapranov in the con-
struction of the category of complexes over a DG-category, see [58, 63] or [46] for
details).

63Theorem 63: Hanamura, [46,47] The category Dfin(k) with the above structures
of shift, cone sequence, dual and tensor product is a rigid triangulated tensor
category.

“Rigid” means that, setting Hom(K, L) := K∨ ⊗ L, the objects Hom(K, L) form an
internal Hom object in Dfin(k).

64Definition 64 The triangulated tensor category D(k) is the pseudo-abelian hull
of Dfin(k).

By the results of [1], D(k) has a canonical structure of a triangulated tensor
category.

For X a smooth projective k-scheme, set QX(n) := (X, n)[−2n]; we write Q(n)
forQSpec k(n). More or less by construction we have

HomD(k)(Q(0),QX(n)[m]) = H2n−m(zn(X, ∗)Alt) = CHn(X, 2n − m)Q . (5.5)

Sending X toQX(0) := h(X) defines a functor

h : SmProjop
k → D(k) ,

where SmProjk is the full subcategory of Schk with objects the smooth projective
k-schemes.
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65 Remark 65 Suppose that k admits resolution of singularities, and let X be a smooth
irreducible quasi-projective k-scheme of dimension n. Let X ⊃ X be a smooth
projective k-scheme containing X as a dense open subscheme, such that the com-
plement D := X \ X is a strict normal crossing divisor.

Write D =
∑m

i=1 Di, with the Di irreducible. For I ⊂ {1, …, m} let DI := ∩i∈IDi,
and let D(i) =

∐
|I|=i DI (so D(0) = X).

Consider the diagram (X, X) :=

(D(n), −n) → (D(n−1), −n + 1) → · · · → (D(1), −1)) → (D(0), 0) ,

where the correspondence (D(i), −i) → (D(i−1), −i + 1) is the signed sum of in-
clusions iI,j : DI∪{j} → DI , |I| = i − 1, j �∈ I, and the sign is (−1)r if there are
exactly r elements i ∈ I with i < j. Hanamura [44] shows that (X, X) in D(k) is
independent of the choice of X (up to canonical isomorphism) and that sending X
toQX(0) := (X, X) extends the functor h on SmProjk to

h : Smop
k → D(k) .

The identification (5.5) extends to a canonical isomorphism

HomD(k)(Q(0), h(X)(n)[m]) =̃ CHn(X, 2n − m)

for X ∈ Smk.
Using the method of cubical hyperresolutions [41], Hanamura [44] extends h

further to a functor

h : Schop
k → D(k) .

In any case, assuming resolution of singularities for k, the category D(k) is a fine
cohomological triangulated category of motives over k, with Q coefficients and
with duality.

66 Remark 66 In [45], Hanamura shows that, assuming the standard conjectures
of Grothendieck along with extensions by Murre and Soulé–Beilinson, there is
t-structure on D(k) whose heart H is a good candidate for MMk. It is not clear
what relation H has to say Nori’s category NMMk.

Levine’s Construction5.4.4

Rather than using the moving lemma for the complexes zp(X, ∗) as above, Levine
adds extra data to the category Smk so that pull-back of cycles becomes a well-
defined operation.
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The Category L(k)

67Definition 67 Let L(k) be the category of pairs (X, f : X′ → X) where
1. f is a morphism in Smk.
2. f admits a section s : X → X′, with s a smooth morphism.

The choice of the section s is not part of the data. For (X, f : X′ → X) and
(Y , g : Y ′ → Y) in L(k), HomL(k)((X, f ), (Y , g)) is the subset of HomSmk (X, Y)
consisting of those maps h : X → Y such that there exists a smooth morphism
q : X′ → Y ′ making

X′ ��
q

��
f

Y ′

��
g

X ��

h

Y

commute. Composition is induced by the composition in Smk.

The condition that f : X′ → X admit a smooth section is just saying that X′ admits
a decomposition as a disjoint union X′ = X′

0

∐
X′

1 where f restricted to X′
0 is an

isomorphism X′
0 =̃ X.

68Definition 68 For (X, f : X′ → X) ∈ Smk, let zq(X)f be the subgroup of zq(X)
generated by integral codimension q closed subschemes W ⊂ X such that

codimX′ f −1(W) ≥ q .

The basic fact that makes things work is

69Lemma 69 Let h : (X, f ) → (Y , g) be a morphism in L(k). Then
1. h∗ is defined on zq(X)f , i.e. for all W ∈ zq(X)f ,

codimY h−1(supp (W)) ≥ q .

2. h∗ maps zq(X)f to zq(Y)g .

The proof is elementary.

The Category Amot(k)
We use the cycle groups zq(X)f to construct a graded tensor category Amot(k) in
a series of steps.
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(i) A1(k) has objects ZX(n)f [m] for (X, f ) ∈ L(k), X irreducible, and n, m ∈ Z.
The morphism-groups are given by

HomA1(k)

(
ZX(n)f [m],ZY (n′)g[m′]

)

=





Z[HomL(k)((Y , g), (X, f ))] if n = n′, m = m′

0 otherwise .

We also allow finite formal direct sums, with the Hom-groups defined for
such sums in the evident manner. The composition is induced from the com-
position in L(k). We write ZX(n)f for ZX(n)f [0], ZX(n) for ZX(n)id and Z(n)
for ZSpec k(n). For p : (Y , m) → (X, n) in L(k), we write the corresponding
morphism in A1(k) as p∗ : ZX(n)f → ZY (m)g .
Setting ZX(n)f ⊗ ZY (m)g := ZX×kY (n + m)f ×g extends to give A1(k) the
structure of a tensor category, graded with respect to the shift operator
ZX(n)f [m] �→ ZX(n)f [m + 1].

(ii) A2(k) is formed from A1(k) by adjoining (as a graded tensor category) an
object ∗ and morphisms

[Z] : ∗ → ZX(n)f [2n]

for each Z ∈ zn(X)f , with the relations:
1. [aZ + bW] = a[Z] + b[W]; Z, W ∈ zn(X)f , a, b ∈ Z.
2. p∗ ◦ [Z] = [p∗(Z)] for p : (Y , g) → (X, f ) in L(k) and Z ∈ zn(X)f .
3. The exchange involution τ∗,∗ : ∗ ⊗ ∗ → ∗ ⊗ ∗ is the identity.
4. For Z ∈ zn(X)f , W ∈ zm(Y)g , [Z] ⊗ [W] = [Spec k] ⊗ [Z × W] =

[Z × W] ⊗ [Spec k] as maps ∗ ⊗ ∗ → ZX×kY (n + m)f ×g[2n + 2m].

(iii) Amot(k) is the full additive subcategory of A2(k) with objects sums of ∗⊗m ⊗
ZX(n)f , m ≥ 0.

The Categories Db
mot(k) and DM(k)

Let Cb(Amot(k)) be the category of bounded complexes over Amot(k), and Kb
mot(k)

the homotopy category Kb(Amot(k)). Kb
mot(k) is a triangulated tensor category,

where the shift operator and distinguished triangles are the usual ones. Note that
one needs to modify the definition of morphisms in Cb(Amot(k)) slightly to allow
one to identify the shift in Amot(k) with the usual shift of complexes (see [63,
part 2, chapt. II, §1.2] for details). The tensor product in Amot(k) makes Kb

mot(k)
a triangulated tensor category.

To form Db
mot(k), we localize Kb

mot(k); we first need to introduce some notation.
Let (X, f : X′ → X) be in L(k), let W ⊂ X be a closed subset, and j : U → X be

the open complement. Define ZW
X (n)f by

Z
W
X (n)f := Cone(j∗ : ZX(n)f → ZU (n)fU )[−1] ,
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where fU : U ′ → U is the projection U×X X′ → U . If Z is in zn(X)f and is supported
in W , then j∗Z = 0, so the morphism [Z] : ∗ → ZX(n)f [2n] lifts canonically to the
morphism

[Z]W : ∗ → Z
W
X (n)f [2n]

(in Cb(A2(k))).
If C is a triangulated category, and S a collection of morphisms, we let C[S−1]

be the localization of C with respect to the thick subcategory generated by objects
Cone(f ), f ∈ S. IfC is a triangulated tensor category, letC[S−1]⊗ be the triangulated
tensor category formed by localizing C with respect to the small thick subcategory
containing the object Cone(f ), f ∈ S, and closed under ⊗X for X in C; C[S−1]⊗
is a triangulated tensor category, called the triangulated tensor category formed
from C by inverting the morphisms in S. We can extend these notions to inverting
finite zig-zag diagrams by taking the cone of the direct sum of the sources mapping
to the direct sum of the targets.

70Definition 70 Let Db
mot(k) be the triangulated tensor category formed from Kb

mot(k)
by localizing as a triangulated tensor category:
1. Homotopy. For all X in Smk, invert the map p∗ : ZX(n) → ZX×A 1 (n).
2. Nisnevich excision. Let (X, f : X′ → X) be in L(k), and let p : Y → X be an

étale map, W ⊂ X a closed subset such that p : p−1(W) → W is a isomorphism.

Then invert the map p∗ : ZW
X (n) → Z

p−1(W)
Y (n).

3. Unit. Invert the map [Spec k] ⊗ id∗ : ∗ ⊗ 1 → 1 ⊗ 1 = 1.
4. Moving lemma. For all (X, f ) in L(k), invert the map id∗ : ZX(n)f → ZX(n).
5. Gysin isomorphism. Let q : P → X be a smooth morphism in Smk with section

s and let W = s(X) ⊂ P. Let d = dimX P. Invert the zig-zag diagram:

ZX(−d)[−2d]
q∗
→ ZP(−d)[−2d] = 1 ⊗ ZP(−d)[−2d]

[Spec k]⊗id← ∗ ⊗ ZP(−d)[−2d]
[W]W ⊗id→ Z

W
P (d)[2d] ⊗ ZP(−d)[−2d]

= ZW×P
P×P (0)

id∗← Z
W×P
P×P (0)δP

δ∗
P→ Z

W
P (0) ,

where δP : P → P × P is the diagonal.

71Remark 71 Our description of Db
mot(k) is slightly different than that given in [63],

but yields an equivalent triangulated tensor category Db
mot(k). The categroy Amot(k)

described here is denoted A0
mot(V)∗ in [63].

The categoryDM(k) is now defined as the pseudo-abelianization of Db
mot(k). By [1],

DM(k) inherits the structure of a triangulated tensor category from Db
mot(k).
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Gysin Isomorphism
Let i : W → X be a codimension d closed embedding in Smk. If i is split by a smooth
morphism p : X → W , one uses the Gysin isomorphism of Definition 70(5) to
define i∗ : ZW (−d)[−2d] → ZX(0); in general one uses the standard method of
deformation to the normal bundle to reduce to this case.

Duality
Assuming that k admits resolution of singularities, the category DM(k) has a an
exact pseudo-tensor duality involution ∨ : DM(k) → DM(k)op; for smooth
projective X of dimension d over k one has

(ZX(n))∨ = ZX(d − n)[2d] .

To construct ∨, the method of [63] is to note that, in a tensor category C, the
dual of an object X can be viewed as a triple (X∨, δ, ε) with δ : 1 → X ⊗ X∨,
ε : X∨ ⊗ X → 1, and with

(ε ⊗ idX) ◦ (idX ⊗ δ) = idX .

In DM(k), for X smooth and projective of dimension d over k, the diagonal [∆] :
1 → ZX×X(d)[2d] gives δ, and ε is the composition pX∗ ◦δ∗

X , where δX : X → X ×X
is the diagonal inclusion and pX : X → Spec k is the structure morphism. One
then shows

72 Lemma 72: [63, part 1, chapt. IV, lemma 1.2.3] Let D be a triangulated tensor
category, S a collection of objects of D. Suppose that
1. There is a tensor category C such that D is the localization of Kb(C) (as

a triangulated tensor category.
2. Each X ∈ S admits a dual (X∨, δ, ε).

Then the smallest triangulated tensor subcategory of D containing S, D(S), admits
a duality involution ∨ : D(S) → D(S)op, extending the given duality on S.

If k satisfies resolution of singularities, the motivesZX (n), X smooth and projective
over k, n ∈ Z, generate Db

mot(k) as a tensor triangulated category, so the given
duality extends to Db

mot(k), and then to the pseudo-abelianization DM(k). As for
Hanamura’s category, the functor h : Smop

k → DM(k), h(X) := ZX(0), extends to

h : Schop
k → DM(k) ,

assuming k satisfies resolution of singularities.
Summing up, the category DM(k) is fine cohomological triangulated category

of motives over k with Z-coefficients. DM(k) has duality if k admits resolution of
singularities.
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Voevodsky’s Construction 5.4.5

Voevodsky constructs a number of categories: the category of geometric motives
DMgm(k) with its effective subcategory DMeff

gm(k), as well as a sheaf-theoretic con-
struction DMeff

− , containing DMeff
gm(k) as a full dense subcategory. In contrast to

almost all other constructions, these are based on homology rather than coho-
mology as the starting point, in particular, the motives functor from Smk to these
categories is covariant.

To solve the problem of the partially defined composition of correspondences,
Voevodsky introduces the notion of finite correspondences, for which all compo-
sitions are defined.

Finite Correspondences and Geometric Motives

73Definition 73 Let X and Y be in Smk. The group c(X, Y) is the subgroup of
zdimk X(X ×k Y) generated by integral closed subschemes W ⊂ X ×k Y such that
1. the projection p1 : W → X is finite
2. the image p1(W) ⊂ X is an irreducible component of X.

The elements of c(X, Y) are called the finite correspondences from X to Y .

The following basic lemma is easy to prove:

74Lemma 74 Let X, Y and Z be in Smk, W ∈ c(X, Y), W ′ ∈ c(Y , Z). Suppose that X
and Y are irreducible. Then each irreducible component C of |W | × Z ∩ X × |W ′|
is finite over X (via the projection p1) and p1(C) = X.

It follows from this lemma that, for W ∈ c(X, Y), W ′ ∈ c(Y , Z), we may define the
composition W ′ ◦ W ∈ c(X, Z) by

W ′ ◦ W := p∗(p∗
3(W) · p∗

1(W ′)) ,

where p1 : X ×k Y ×k Z → X and p3 : X ×k Y ×k Z → Z are the projections,
and p : |W | × Z ∩ X × |W ′| → X ×k Z is the map induced by the projection
p13 : X ×k Y ×k Z → X ×k Z. The associativity of cycle-intersection implies that
this operation yields an associative bilinear composition law

◦ : c(Y , Z) × c(X, Y) → c(X, Z) .

75Definition 75 The category Cor(k) is the category with the same objects as Smk,
with

HomCor(k)(X, Y) := c(X, Y) ,

and with the composition as defined above.
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For a morphism f : X → Y in Smk, the graph Γf ⊂ X ×k Y is in c(X, Y), so sending
f to Γf defines a faithful functor

Smk → Cor(k) .

We write the morphism corresponding to Γf as f∗, and the object corresonding to
X ∈ Smk as [X].

The operation ×k (on smooth k-schemes and on cycles) makes Cor(k) a tensor
category. Thus, the bounded homotopy category Kb(Cor(k)) is a triangulated tensor
category.

76 Definition 76 The category DMeff
gm(k) of effective geometric motives is the localiza-

tion of Kb(Cor(k)), as a triangulated tensor category, by
1. Homotopy. For X ∈ Smk, invert p∗ : X × A1 → X
2. Mayer–Vietoris. Let X be in Smk, with Zariski open subschemes U, V such that

X = U ∪V . Let iU : U ∩V → U , iV : U ∩V → V , jU : U → X and jV : V → X
be the inclusions. Since (jU∗ + jV∗)◦ (iU∗, −iV∗) = 0, we have the canonical map

Cone
(
[U ∩ V]

(iU∗,−iV∗)→ [U] ⊕ [V]
) (jU∗+jV∗)→ [X] .

Invert this map.

To define the category of geometric motives, DMgm(k), we invert the Lefschetz
motive. For X ∈ Smk, the reduced motive [̃X] is defined as

[̃X] := Cone
(
p∗ : [X] → [Spec k]

)
.

Set Z(1) := [̃P1][2], and set Z(n) := Z(1)⊗n for n ≥ 0.

77 Definition 77 The category DMgm(k) is defined by inverting the functor ⊗Z(1) on
DMeff

gm(k), i.e.,

HomDMgm(k)(X, Y) := lim
n

HomDMeff
gm(k)(X ⊗ Z(n), Y ⊗ Z(n)) .

78 Remark 78 In order that DMgm(k) be again a triangulated category, it suffices that
the commutativity involution Z(1) ⊗ Z(1) → Z(1) ⊗ Z(1) be the identity, which
is in fact the case.

Of course, there arises the question of the behavior of the evident functor
DMeff

gm(k) → DMgm(k). Here we have

79 Theorem 79: Voevodsky [97] The functor DMeff
gm(k) → DMgm(k) is a fully faithful

embedding.
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The first proof of this result (in [100]) used resolution of singularities, but the later
proof in [97] does not, and is valid in all characteristics.

Sheaves with Transfer
The sheaf-theoretic construction of mixed motives is based on the notion of a Nis-
nevich sheaf with transfer.

Let X be a k-scheme of finite type. A Nisnevich cover U → X is an étale
morphism of finite type such that, for each finitely generated field extension F of
k, the map on F-valued points U(F) → X(F) is surjective. The small Nisnevich
site of X, XNis has underlying category finite type étale X-schemes with covering
families finite families Ui → X such that �iUi → X is a Nisnevich cover The
big Nisnevich site over k, with underlying category Smk, is defined similarly. We
let ShNis(k) denote the categories of Nisnevich sheaves of abelian groups on Smk,
and ShNis(X) the category of Nisnevich sheaves on X. For a presheaf F on Smk

or XNis, we let FNis denote the associated sheaf. We often denote H∗(XNis, FNis) by
H∗(XNis, F ).

For a category C with finite coproducts, we have the category of presheaves of
abelian groups on C, i.e., the category of additive functors Cop → Ab.

80Definition 80
(1) The category PST(k) of presheaves with transfer is the category of presheaves

of abelian groups on Cor(k). The category of Nisnevich sheaves with transfer
on Smk, ShNis(Cor(k)), is the full subcategory of PST(k) with objects those F
such that, for each X ∈ Smk, the restriction of F to XNis is a sheaf.

(2) Let F be a presheaf of abelian groups on Smk. We call F homotopy invariant if
for all X ∈ Smk, the map

p∗ : F(X) → F(X × A1)

is an isomorphism.
(3) Let F be a presheaf of abelian groups on Smk. We call F strictly homotopy

invariant if for all q ≥ 0, the cohomology presheaf X �→ Hq(XNis, FNis) is
homotopy invariant.

The category ShNis(Cor(k)) is an abelian category with enough injectives, and we
have the derived category D−(ShNis(Cor(k))). For

F∗ ∈ D−(ShNis(Cor(k))) ,

we have the cohomology sheaf, Hq(F∗), i.e., the Nisnevich sheaf with transfer
associated to the presheaf

X �→ (
ker dq : Fq(X) → Fq+1(X)

)
|dq−1(Fq−1(X)) .
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81 Definition 81 The category DMeff
− (k) is the full subcategory of

D−(ShNis(Cor(k)))

consisting of those F∗ whose cohomology sheaves are strictly homotopy invariant.

The Localization Theorem
The category DMeff

− (k) is a localization of D−(ShNis(Cor(k))). To show this, one uses
the Suslin complex of a sheaf with transfers.

82 Definition 82 Let F be in ShNis(Cor(k)). Define CSus(F) to be the sheafification of
the complex of presheaves

X �→ (· · · → F(X × ∆n) → F(X × ∆n−1) → · · · → F(X)
)

,

where the differentials are the usual alternating sum of restriction maps,
and F(X × ∆n) is in degree −n. For F∗ ∈ D−(ShNis(Cor(k))), define LA 1 (F∗) in
D−(ShNis(Cor(k))) as the total derived functor of F �→ CSus(F) .

For F ∈ C−(ShNis(Cor(k))), we let FA 1
be the sheafification of the complex of

presheaves X �→ F(X × A1); the projection X × A1 → X defines the natural map
p∗ : F → FA 1

.

83 Definition 83 Let D−
A 1 (ShNis(Cor(k))) be the localization of the triangulated cat-

egory D−(ShNis(Cor(k))) with respect to the localizing subcategory generated by
objects of the form Cone(p∗ : F → FA 1

).

84 Theorem 84: [100, chapt. 5, prop. 3.2.3]
(1) For each F ∈ D−(ShNis(Cor(k))), LA 1 (F) is in DMeff

− (k). The resulting functor

LA 1 : D−(ShNis(Cor(k))) → DMeff
− (k)

is exact and is left-adjoint to the inclusion

DMeff
− (k) → D−(ShNis(Cor(k))) .

(2) The functor LA 1 descends to an equivalence of triangulated categories

LA 1 : D−
A 1 (ShNis(Cor(k))) → DMeff

− (k) .

This result enables one to make DMeff
− (k) into a tensor category as follows. Let

Ztr(X) denote the representable Nisnevich sheaf with transfers Y �→ c(Y , X).
Define Ztr(X) ⊗ Ztr(Y) := Ztr(X ×k Y). One shows that this operation extends
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to give D−(ShNis(Cor(k))) the structure of a triangulated tensor category; the
localizing functor LA 1 then induces a tensor operation on D−

A 1 (ShNis(Cor(k))),
making D−

A 1 (ShNis(Cor(k))) a triangulated tensor category.
Explicity, in DMeff

− (k), this gives us the functor

m : Smk → DMeff
− (k) ,

defined by m(X) := CSus(Ztr(X)), and the formula

m(X ×k Y) = m(X) ⊗ m(Y) .

The Embedding Theorem
We now have the two functors

Smk

��m FF
FF

FF
FF

F

��
[−]

DMeff
gm(k)

DMeff
− (k).

(5.6)

85Theorem 85 There is a unique exact functor i : DMeff
gm(k) → DMeff

− (k) filling in
the diagram (5.6). i is a fully faithful embedding and a tensor functor. In addition,
DMeff

gm is dense in DMeff
− (k).

Here “dense” means that every object X in DMeff
− (k) fits in a distinguished triangle

⊕αi(Aα) → ⊕βi(Bβ) → X → ⊕αi(Aα)[1] ,

where the Aα and the Bβ are in DMeff
gm(k), and the direct sums exist in DMeff

− (k).

Applications of the Embedding Theorem
The embedding theorem allows one to apply sheaf-theoretic constructions to
DMgm(k), with some restrictions. As an example, the bi-functor RHom(−, −) on
D−(ShNis(Cor(k)) induces an internal Hom in DMeff

− (k) by restriction. One then
gets an internal Hom in DMgm(k) (assuming resolution of singularities) by setting

HomDMgm(k)(A, B) := HomDMeff
− (k)(A ⊗ Z(n), B ⊗ Z(n + m)) ⊗ Z(−m)

for n, m sufficiently large. Also, using the embedding theorem, one has

86Theorem 86 For X ∈ Smk, there is a natural isomorphism

HomDMeff
gm(k)(m(X),Z(q)[p]) =̃ H

p
FS(X,Z(q)) := Hp(XNis,ZFS(q)) .
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From this, Theorem 79 and Corollary 22, we have

87 Corollary 87 For X ∈ Smk, there is a natural isomorphism

HomDMgm(k)(m(X),Z(q)[p]) =̃ CHq(X, 2q − p) .

Once one has this description of the morphisms in DMgm(k), it follows easily that
DMgm(k) is a fine homological triangulated category of motives over k with Z-
coefficients, and that DMgm(k) has duality if k admits resolution of singularities.

Comparison Results
We state the main comparison theorem relating Levine’s DM(k) and Voevodsky’s
DMgm(k). We note that replacing the functor m : Smk → DMgm(k) with

h : Smop
k → DMgm(k)

h(X) := HomDMgm(k)(m(X),Z)

changes DMgm(k) from a homological category of motives to a cohomological
category of motives.

88 Theorem 88: [63, part 1, chapt. VI, theorem 2.5.5] Let k be a field admitting res-
olution of singularities. Sending ZX(n) in DM(k) to

HomDMgm(k)(m(X),Z(n))

in DMgm(k), for X ∈ Smk, extends to a pseudo-tensor equivalence of cohomological
categories over motives over k

DM(k) → DMgm(k) ,

i.e., an equivalence of the underlying triangulated tensor categories, compatible
with the respective functors h on Smop

k .

Mixed Tate Motives5.5

Let G = Gal(k|k) for some field k, and let � be a prime not dividing the charac-
teristic. In the category of continuous representations of G in finite dimensional
Q�-vector spaces, one has the Tate objects Q�(n); the subcategory formed by the
successive extension of the Tate objects turns out to contain a surprising amount
of information. Analogously, one has the Tate Hodge structureQ(n) and the sub-
category of the category of admissible variations of mixed Hodge structures over
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a base-scheme B consisting of successive extensions of the Q(n); this subcategory
gives rise, for example, to all the multiple polylogarithm functions. In this section,
we consider the motivic version of these constructions, looking at categories of
mixed motives generated by Tate objects.

We begin with an abstract approach by considering the triangulated subcategory
of DMgm(k) ⊗Q generated by the Tate objectsQ(n). Via the Tannakian formalism,
this quickly leads to the search for a concrete description of this category as a cat-
egory of representations of the motivic Lie algebra or dually, co-representations
of the motivic co-Lie algebra. We outline constructions in this direction due to
Bloch [11], Bloch–Kriz [18] and Kriz–May [61], in which the motivic cycle algebra,
built out of the alternating version of Bloch cycle complex described in Sect. 5.2.5,
plays a central role. The work of Kriz and May shows how all the representation-
theoretic constructions are related and a theorem of Spitzweck [85] allows us to
relate all these to the abstract construction inside DMgm.

The Triangulated Category of Mixed Tate Motives 5.5.1

Since we now have a reasonable definition of “the” triangulated category of mixed
motives over a field k, especially with Q-coefficients, it makes sense to define the
triangulated category of mixed Tate motives as the full triangulated subcategory
generated by the (rational) Tate objects Q(n), n ∈ Z. Since the cohomological
formulation has been used most often in the literature, we will do so as well. We
will assume in this section that the base field k admits resolution of singularities,
for simplicity.

Concretely, this means we replace the functor m : Smk → DMgm(k) with the
functor h : Smop

k → DMgm(k),

h(X) := Hom(m(X),Z) .

To give an example to fix ideas, the projective bundle formula gives the isomor-
phism

h(Pn) =̃ ⊕n
j=0Z(−j)[−2j] .

89Definition 89 Let k be a field. The triangulated category of Tate motives, DTM(k),
is the full triangulated subcategory of DMgm(k)op ⊗Q generated by the Tate objects
Q(n), n ∈ Z.

As the duality involution ∨ : DMgm(k) → DMgm(k)op is an equivalence of trian-
gulated tensor categories, and Q(n)∨ = Q(−n), we have a duality involution on
DTM(k), giving an equivalence

∨ : DTM(k) → DTM(k)∨ .
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The Weight-structure
The category DTM(k) admits a natural weight-filtration: Let DTM(k)≤n be the full
triangulated subcategory of DTM(k) generated by the Tate objects Z(−m) with
m ≤ n. This gives the tower of subcategories

… ⊂ DTM(k)≤n ⊂ DTM(k)≤n+1 ⊂ … ⊂ DTM(k)

Dually, let DTM(k)>n be the full triangulated subcategory of DTM(k) generated by
the Tate objects Z(−m) with m > n.

The basic fact upon which the subsequenct construction rests is:

90 Lemma 90 For X ∈ DTM(k)≤n, Y ∈ DTM(k)>n, we have

HomDTM(k)(X, Y) = 0 .

Proof For generators X = Q(−a)[s], Y = Q(−b)[t], a ≤ n < b, this follows from

HomDTM(k)(Q(−a)[s],Q(−b)[t]) = HomDTM(k)(Q,Q(a − b)[t − s])

= CHa−b(Spec k, 2(a − b) − t + s) ⊗Q
which is zero since a − b < 0. The general result follows easily from this.

By various methods (see, e.g., [65] or [57]), one can use the lemma to show that
the inclusion in : DTM(k)≤n → DTM(k) admits a right adjoint rn : DTM(k) →
DTM(k)≤n. This gives us the functor

Wn : DTM(k) → DTM(k) ,

Wn := in ◦ rn, and the canonical map ιn : WnX → X for X in DTM(k). One shows
as well that Cone(ιn) is in DTM(k)>n, giving the canonical distinguished triangle

WnX → X → W>nX → WnX[1] ,

where W>nX := Cone(ιn).

91 Remark 91 As pointed out in [57], one can perfectly well define an integral version
DTM(k)Z of DTM(k) as the triangulated subcategory of DMgm(k) generated by the
Tate objects Z(n). The argument for weight filtration in DTM(k) works perfectly
well to give a weight filtration in DTM(k)Z .
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The t-structure and Vanishing Conjecture
One can ask if the Beilinson formulation for mixed motives holds at least for
mixed Tate motives. The first obstruction is the so-called Beilinson–Soulé vanishing
conjecture (see [84]):

92Conjecture 92 Let F be a field. Then Kp(F)(q) = 0 if 2q ≤ p and p > 0.

Thus, the Beilinson–Soulé vanishing conjecture is just the rational version of the
acyclicity portion of the Beilinson–Lichtenbaum conjectures.
Translating to motivic cohomology, this says

93Conjecture 93 Let F be a field. Then Hp(F,Q(q)) = 0 if p ≤ 0 and q > 0.

Since we have

HomDTM(k)(Q,Q(q)[p]) = Hp(k,Q(q)) ,

we find a relation between the vanishing conjecture and the structure of the
triangulated Tate category.

For example, if there were an abelian category TM(k) with DTM(k) equivalent
to the derived category Db(TM(k)), in such a way that the Tate objects Q(n) were
all in TM(k), then we would have

HomDTM(k)(Q,Q(q)[p]) = Extp
TM(k)(Q,Q(q)) ,

which would thus be zero for p < 0.
Suppose further that TM(k) is a rigid tensor category, inducing the tensor

and duality on DTM(k), with functorial exact weight filtration W∗, inducing the
functors Wn on DTM(k), and that taking the associated graded with respect to W∗
induces a faithful exact functor toQ-vector-spaces

grW
∗ : TM(k) → VecQ .

Then, as each map f : Q→ Q(a), a ≠ 0 has gr∗f = 0, it follows that

HomTM(k)(Q,Q(q)) = 0

for q ≠ 0 as well.
In short, the existence of an abelian category of mixed Tate motives TM(k) with

good properties implies the vanishing conjectures of Beilinson and Soulé.
There is a partial converse to this, namely,

94Theorem 94: [65] Let k be a field, and suppose that the Beilinson–Soulé vanishing
conjectures hold for k. Then there is a t-structure on DTM(k) with heart TM(k)
satisfying:
1. TM(k) contains all the Tate objects Q(n). The Q(n) generate TM(k) as an

abelian category, closed under extensions in DTM(k).
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2. The tensor operation and duality on DTM(k) restrict to TM(k), making TM(k)
a rigid tensor category

3. The funtors Wn map TM(k) into itself, giving each object X of TM(k) a func-
torial finite weight-filtration

0 = WM+1X ⊂ WM(X) ⊂ … ⊂ WN (X) = X .

4. Taking associated graded for the weight-filtration gives a faithful exact tensor
functor

⊕ngrW
n : TM(k) → Q-mod

to finite dimensional Q-vector spaces, making TM(k) a neutral Q-Tannakian
category.

5. There are canonical natural maps

φp(X, Y) : Extp
TM(k)(X, Y) → HomDTM(k)(X, Y[p])

for X, Y in TM(k). φp(X, Y) is an isomorphism for p = 0, 1, and an injection
for p = 2.

We will describe below a criterion for DTM(k) to be the derived category Db(TM(k)).
Looking at part (4) above, the Tannakian formalism as explained in Sect. 5.3.1

gives an identification of TM(k) with the category of graded representations of
a graded pro-unipotent affine algebraic group over Q, or what amounts to the
same thing, a graded pro-nilpotent Lie algebra over Q, called the motivic Lie
algebra. There have been a number of constructions of candidates for the motivic
Lie algebra, or the associated Hopf algebra, which we will discuss below.

95 Remark 95 The works of Terasoma [91], Deligne–Goncharov [27], Goncharov [36,
37], Goncharov–Manin [40] and others has drawn a close connection between the
mixed Tate category and values of the Riemann zeta function, polylogarithms and
multi-zeta functions; due to lack of space, we will not discuss these works here.
See the article [35] in this volume for further details.

The Bloch Cycle Algebra and Lie Algebra5.5.2

96 Definition 96
(1) Let F be a field. A cdga (A∗, d, ·) over F consists of a unital, graded-commutative

F-algebra (A∗ := ⊕n∈Z An, ·) together with a graded homomorphism d = ⊕ndn,
dn : An → An+1, such that
1. dn+1 ◦ dn = 0.
2. dn+m(a · b) = dna · b + (−1)na · dmb; a ∈ An, b ∈ Am.
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A∗ is called connected if An = 0 for n < 0 and A0 = F · 1, cohomologically
connected if Hn(A∗) = 0 for n < 0 and H0(A∗) = F · 1.

(2) An Adams-graded cdga is a cdga A together with a direct sum decomposition
into subcomplexes A∗ := ⊕r≥0A∗(r) such that A∗(r) · A∗(s) ⊂ A∗(r + s). An
Adams-graded cdga is (cohomologically) connected if the underlying cdga is
(cohomologically) connected.

For x ∈ An(r), we called n the cohomological degree of x, n := deg x, and r the
Adams degree of x, r := |x|.

Example 97. Let k be a field. Recall from Sect. 5.2.5 the alternating cycle complexes
zp(k, ∗)Alt with commutative associative product

∪Alt : zp(k, ∗) ⊗ zq(k, ∗) → zp+q(k, ∗) .

Bloch [11] has defined the motivic cdga over k, N ∗
k (∗), as the Adams-graded cdga

overQ with

N m
k (r) :=





zr(k, 2r − m)Alt for r > 0

z0(k, 0)Alt(= Q · [Spec k]) for r = 0 .

and product

· : N m
k (r) ⊗ N n

k (s) → N m+n
k (r + s)

given by ∪Alt. The unit is 1 · [Spec k] ∈ N 0(0).

98Remark 98 The Beilinson–Soulé vanishing conjecture for the field k is exactly the
statement that N ∗

k (∗) is cohomologically connected.

Bloch defines a graded co-Lie algebra M(∗) = ⊕r>0M(r) as follows: Start with
the cycle cdga N . Let N 0

+ := ⊕r≥0N 0(r), and let J ⊂ N be the differential ideal
generated by ⊕n<0,rN

n(r) ⊕ N 0
+ . Let N be the quotient cdga N |J. Bloch shows

99Lemma 99

(1) The product Λ2N
1 → N

2
is injective

(2) Let Mk = {x ∈ N
1 | dx is in Λ2N

1 ⊂ N
2}. Then

dMk ⊂ Λ2Mk ⊂ Λ2N
1 ⊂ N

2
.

(3) The map d : Mk → Λ2Mk makes Mk into an Adams graded co-Lie algebra
overQ.
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100 Definition 100 The category of Bloch–Tate mixed motives over k, BTMk, is the
category of graded co-representations of Mk in Q-mod, that is, the category of
finite-dimensional gradedQ-vector spaces V(∗) = ⊕rV(r) together with a graded,
degree zeroQ-linear map

ρ : V(∗) → Mk ⊗Q V(∗)

satisfying the co-associativity condition (id ∧ ρ) ◦ ρ = (∂ ⊗ id) ◦ ρ as maps
V(∗) → Λ2Mk ⊗ V(∗).

BTMk contains the Tate-objects Q(n), n ∈ Z, where Q(n) is the vector space Q
supported in degree −n, with zero co-action ρ. There is a map H1(N ∗(r)) →
Ext1

BTMk
(Q(0),Q(r)) by sending η ∈ Z1(N ∗(r)) to the class of the extension

0 → Q(r) → Vη → Q(0) → 0 ,

where Vη = Q(0) ⊕Q(r) as a gradedQ-vector space, with co-action ρ given by

ρ(a, b) = η ⊗ (0, a) .

One checks that changing η by a co-boundary does not affect the extension class.

Categories Arising from a cdga5.5.3

As we will see below, the construction of mixed Tate motives via co-representations
of the Bloch co-Lie algebra Mk is reasonable only under the so-called 1-minimal
conjecture. Bloch and Kriz [18] have given another construction of a co-Lie algebra,
and at the same time the associated Hopf algebra, by using the bar construction of
Nk. Kriz and May [61] have given a construction of a triangulated category, which
derives more directly from the cdga Nk; in case Nk is cohomologically connected,
this triangulated category has a heart which turns out to be equivalent to the
category of graded co-modules over the Bloch–Kriz co-Lie algebra.

Before we go into this, we discuss some of the general theory of the bar construc-
tion of a cdga and related constructions. We have taken this material from [61].

The Bar Construction
We recall the definition of the reduced bar construction of an augmented cdga
ε : A∗ → k over a field F of characteristic zero. Let A

∗ be the kernel of ε, and form
the tensor algebra

T∗
k A

∗ = ⊕(n1,…,nm)A
n1 ⊗F … ⊗F A

nm

with A
n1 ⊗F … ⊗F A

nm in total degree
∑

j nj − m, together with a copy of F in
degree 0, corresponding to the empty tensor product, which we write as F · 1.



Mixed Motives 495

Denote a decomposable element of A
n1 ⊗F … ⊗F A

nm in T∗
k A

∗ as [x1| … |xm],
xj ∈ Anj , and define the map d by

d([x1| … |xm]) =
∑

j

(−1)
∑j−1

i=1 deg(xi)[x1| … |dxj| … |xm]

+
∑

j

(−1)j[x1| … |xjxj+1| … |xm] .

Set d(F · 1) = 0. This forms the complex (B(A), d).
The shuffle product

[x1| … |xm] ∪ [xn+1| … |xm+n] :=
m!n!

(m + n)!

∑

σ

sgn(σ)[xσ(1)| … |xσ(n+m)] ,

where σ ∈ Σn+m ranges over all permutations with σ(1) < … < σ(n) and σ(n+1) <
… < σ(n + m), defines a product on B(A), satisfying the Leibniz rule with respect
to d. The map

δ : B(A) → B(A) ⊗ B(A)

δ([x1| … |xm]) :=
m∑

i=0

[x1| … |xi] ⊗ [xi+1| … |xm]

(the empty tensor being 1) defines a coproduct on B(A).
This all makes (B(A), d, ∪, δ) into a differential graded Hopf algebra over k, which

is graded-commutative with respect to the product ∪. The cohomology H∗(B(A))
is thus a graded Hopf algebra over k, in particular H0(B(A)) is a commutative Hopf
algebra over k.

Let I(A) be the kernel of the augmentation H0(B(A)) → k. The coproduct δ on
H0(B(A)) induces the structure of a co-Lie algebra on γA := I(A)|I(A)2.

Suppose A = ⊕r≥0A∗(r) is an Adams-graded cdga over k. We give B(A) the
Adams grading B(A) = ⊕r≥0B(A)(r) where the Adams degree of [x1| … |xm] is

|[x1| … |xm]| :=
∑

j

|xj| .

Thus H0(B(A)) = ⊕r≥0H0(B(A)(r)) becomes a graded Hopf algebra over k, commu-
tative as a k-algebra. We also have the Adams-graded co-Lie algebra γA = ⊕r>0γA(r).

101Remark 101 Let A be an Adams-graded cdga over a field F of characteristic
zero. The Adams grading makes G := Spec H0(B(A)) into a graded pro-unipotent
affine group-scheme (i.e., G comes equipped with an action of Gm). Thus γA is
a graded nilpotent co-Lie algebra, and there is an equivalence of categories be-
tween the graded co-representations of H0(B(A)) in finite dimensional graded
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F-vector spaces, co-repF(H0(B(A))), and the graded co-representations of γA in
finite dimensional graded F-vector spaces, co-repF(γA).

Weight Filtrations and Tate Objects
Let A be an Adams-graded cdga over a field F of characteristic zero, and let
M = ⊕rM(r) be a graded co-module for γA, finite dimensional as an F-vector space.
Let WnM = ⊕r≤nM(r). As γA is positively graded, WnM is a γA-sub-comodule of
M. Thus, each M has a finite functorial weight filtration, and the functor grn

W is
exact. We say that M has pure weight n if WnM = M and Wn−1M = 0.

We have the Tate object F(n), being the 1-dimensional F-vector space, concen-
trated in Adams degree −n, and with trivial (i.e. 0) co-action F(n) → γA ⊗ F(n).
Clearly gr−n

W M =̃ F(n)a for some a, so all objects in co-repF(γA) are successive
extensions of Tate objects. The full subcategory of objects of pure weight n is
equivalent to F-mod.

Sending M to gr∗
W M := ⊕ngrn

W M defines a fiber functor

gr∗
W : co-repF(γA) → F-mod

making co-repF(γA) a neutral F-Tannakian category.

The Category of Cell-modules
The approach of Kriz and May [61] is to define a triangulated category directly
from the Adams graded cdga N without passing to the bar construction or using
a co-Lie algebra, by considering a certain type of dg-modules over N . We recall
some of their work here.

Let A∗ be a graded algebra over a field F. We let A[n] be the left A∗-module
which is Am+n in degree m, with the A∗-action given by left multiplication. If
A∗(∗) = ⊕n,rAn(r) is a bi-graded F-algebra, we let A〈r〉[n] be the left A∗(∗)-module
which is Am+n(r + s) in bi-degree (m, s), with action given by left multiplication.

102 Definition 102 Let A be a cdga over a field F of characteristic zero.
(1) A dg-A-module (M∗, d) consists of a complex M∗ = ⊕nMn with differential d,

together with a graded, degree zero map ρ : A∗ ⊗F M∗ → M∗ which makes M∗
into a graded A∗-module, and satisfies the Leibniz rule

d(a · m) = da · m + (−1)deg aa · m ; a ∈ A∗, m ∈ M∗ ,

where we write a · m for ρ(a ⊗ m).
(2) If A = ⊕r≥0A∗(r) is an Adams-graded cdga, an Adams-graded dg-A-module

is a dg-A-module M∗ together with a decomposition into subcomplexes M∗ =
⊕sM∗(s) such that A∗(r) · M∗(s) ⊂ M∗(r + s).

(3) An Adams-graded dg-A-module M is a cell module if M is free and finitely
generated as a bi-graded A-module, where we forget the differential structure.
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That is, there are elements bj ∈ Mnj (rj), j = 1, …, s, such that the maps a �→ a ·bj

induces an isomorphism of bi-graded A-modules

⊕s
j=0A〈rj〉[nj] → M .

The Derived Category
Let A be an Adams-graded cdga over a field F, and let M and N be Adams-
graded dg-A-modules. Let Hom(M, N) be the Adams-graded dg-A-module with
Hom(M, N)n(r) the A-module maps f : M → N with f (Ma(s)) ⊂ Na+n(r + s), and
differential d defined by df (m) = d(f (m)) + (−1)n+1f (dm) for f ∈ Hom(M, N)n(r).
Similarly, let M ⊗ N be the Adams-graded dg-A-module

(M ⊗ N)n(r) = ⊕a+b=n, s+t=rM
a(s) ⊗F Nb(t) ,

with differential d(m ⊗ n) = dm ⊗ n + (−1)deg mm ⊗ dn.
For f : M → N a morphism of Adams-graded dg-A-modules, we let Cone(f )

be the Adams-graded dg-A-module with

Cone(f )n(r) := Nn(r) ⊕ Mn+1(r)

and differential d(n, m) = (dn + f (m), −dm). Let M[1] be the Adams-graded dg-A-
module with M[1]n(r) := Mn+1(r) and differential −d, where d is the differential of
M. A sequence of the form

M
f→ N

i→ Cone(f )
j→ M[1] ,

where i and j are the evident inclusion and projection, is called a cone sequence.

103Definition 103
(1) The category KCM(A) is the F-linear triangulated category with objects the

cell-A-modules M, morphisms

HomK (M, N) := H0(Hom(M, N))

with evident composition law, translation M �→ M[1] and distinguished tri-
angles those sequences isomorphic to a cone sequence.

(2) The category DCM(A) is the localization of KCM(A) with respect to quasi-
isomorphisms, that is, invert the maps f : M → N which induce an isomor-
phism on cohomology H∗(M) → H∗(N).

We note that the tensor product and internal Hom of cell modules gives KCM(A)
and DCM(A) the structure of rigid triangulated tensor categories.

The following is a useful result (see [61, proposition 4.2]):
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104 Proposition 104 Let φ : A → A′ be a quasi-isomorphism of Adams graded cdgas.
Then φ induces an equivalence of triangulated tensor categories DCM(A) →
DCM(A′).

The Weight and t-structures
It is easy to describe the weight filtration in DCM(A). Indeed, let M = ⊕jA〈rj〉[nj]
be a cell A-module with basis {bj}. The differential d is determined by

dbj =
∑

i

aijbi .

As A∗(r) = 0 if r < 0, and d is of weight 0 with respect to the Adams grading, it
follows that |bi| ≤ |bj| if aij ≠ 0. We may thus set

WnM := ⊕rj≤nA〈rj〉[nj] ⊂ M ,

with differential the restriction of d. One shows that this gives a well-defined exact
functor Wn : DCM(A) → DCM(A), and a natural finite weight filtration

0 = Wn−1 → WnM → · · · → Wm−1M → WmM = M

for M in DCM(A). Let F(n) be the “Tate object” A〈−n〉.
For the t-structure, one needs to assume that A is cohomologically connected;

by Proposition 104 we may assume that A is connected. Let ε : A → k be the
augmentation given by projection on A0(0), and define

DCM(A)≤0 :=
{

M | Hn(M ⊗A k) = 0 for n > 0
}

DCM(A)≥0 :=
{

M | Hn(M ⊗A k) = 0 for n < 0
}

H(A) :=
{

M | Hn(M ⊗A k) = 0 for n ≠ 0
}

One shows that this defines a t-structure (DCM(A)≤0, DCM(A)≥0) on DCM(A)
with heart H(A). Also, the F(n) are in H(A) and these generate H(A), oin that the
smallest full abelian subcategory of H(A) containing all the F(n) and closed under
subquotients and extensions is all of H(A).

The subcategory of H(A) consisting of objects of pure weight n is equivalent to
F-mod with generator the Tate object F(−n), giving us the fiber functor

gr∗
W : H(A) → F-mod

which makes H(A) a neutral F-Tannakian category.

Minimal Models
A cdga A over a field F of characteristic zero is said to be generalized nilpotent if
1. As a graded F-algebra, A = Sym∗ E for some Z-graded F-vector space E, i.e.,

A = Λ∗Eodd ⊗ Sym∗ Eev. In addition, En = 0 for n ≤ 0.
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2. E is an increasing union of graded subspaces

0 = E−1 ⊂ E0 ⊂ … ⊂ En ⊂ … ⊂ E

with dEn ⊂ Sym∗ En−1.

Note that a generalized nilpotent cdga is automatically connected.
Let A be a cohomologically connected cdga. An n-minimal model of A is a map

of cdgas

s : M{n} → A ,

with M{n} generalized nilpotent and generated (as an algebra) in degrees ≤ n,
such that s induces an isomorphism on Hm for m ≤ n and an injection on Hn+1.
One shows that this characterizes s : M{n} → A, up to unique isomorphism, so
we may speak of the n-minimal model of A. Similarly, the minimal model of A
is a quasi-isomorphism M{∞} → A with M{∞} generalized nilpotent; we can
recover M{n} as the sub-cdga of M{∞} generated by ⊕0≤i≤nM{∞}i. We call A
n-minimal if M{n} = M{∞}. With the obvious changes, we have all these notions
in the Adams-graded setting.

105Remark 105 In rational homotopy theory, the rational homotopy type correspond-
ing to a cdga A is a K(π, 1) if and only if A is 1-minimal, so a 1-minimal cdga is
often called a K(π, 1).

Let A be a cohomologically connected cdga with 1-minimal model M{1}, let QA =
M{1}1 with map ∂ : QA → Λ2QA the differential d : M{1}1 → Λ2M{1}1 = M{1}2.
Then (QA, ∂) is a co-Lie algebra over F. If A is an Adams-graded cdga, then QA
becomes an Adams-graded co-Lie algebra. We can also form the co-Lie algebra γA

as in §5.5.3.

Putting it all Together
In [61] the relations between the various constructions we have presented above
are discussed. We recall the main points here.

106Theorem 106 Let A be an Adams graded cdga over a field F of characteristic zero.
Suppose the A is cohomologically connected.
(1) There is a functor ρ : Db(co-repF(H0(B(A)))) → DCM(A). ρ respects the

weight filtrations and sends Tate objects to Tate objects. ρ induces a functor on
the hearts

H(ρ) : co-repF(H0(B(A))) → H(A)

which is an equivalence of filtered Tannakian categories, respecting the fiber
functors gr∗

W .
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(2) Let MA{1} be the 1-minimal model of A. Then there are isomorphisms of graded
Hopf algebras H0(B(A)) =̃ H0(B(MA{1})) and graded co-Lie algebras

QA =̃ γMA{1} =̃ γA .

(3) The functor ρ is an equivalence of triangulated categories if and only if A is a
K(π, 1) (i.e., A is 1-minimal).

Categories of Mixed Tate Motives5.5.4

We are now ready to apply the machinery of Sect. 5.5.3.

Tate Motives as Modules

107 Definition 107 Let k be a field.
(1) The Bloch–Kriz category of mixed Tate motives over k, BKTMk, is the cat-

egory co-repQ (H0(B(Nk))) of graded co-representations of the Hopf algebra
H0(B(Nk)) in finite dimensional gradedQ-vector spaces, equivalently, the cat-
egory co-repQ (γNk ) of graded co-representations of the co-Lie algebra γNk in
finite dimensional gradedQ-vector spaces.

(2) The Kriz–May triangulated category of mixed Tate motives over k, DTk, is the
derived category DCM(Nk) of cell modules over Nk.

108 Remark 108 One can show that, assuming Nk is 1-minimal, the co-Lie algebra Mk

is QN k. In general, there is a map of co-Lie algebras

φ : γNk → Mk ,

and hence a functor

φ∗ : BKTMk = co-rep(γNk ) → co-rep(Mk) = BTMk .

Applying Theorem 106 to the situation at hand, we have

109 Theorem 109 Let k be a field. Suppose Nk is cohomologically connected, i.e., the
Beilinson–Soulé vanishing conjecture holds for k.
1. There is an exact tensor functor ρ : Db(BKTMk) → DTk, preserving the

weight-filtrations and sending Tate objects to Tate objects.
2. The functor ρ induces an equivalence of filtered Q-Tannakian categories

BKTMk → H(Nk), respecting the fiber functors gr∗
W .
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3. The functor ρ is an equivalence of triangulated categories if and only if Nk is
a K(π, 1). In particular, if Nk is a K(π, 1), then

Extp
BKTMk

(Q,Q(q)) = Hp(k,Q(q)) = K2q−p(k)(q)

for all p and q.

The very last assertion follows from the identities (assuming ρ an equivalence)

Extp
BKTMk

(Q,Q(q)) = HomDTk (Q,Q(q)[p])

= Hp(N ∗(q))

= Hp(k,Q(q)) .

110Remark 110 If the Beilinson–Soulé vanishing conjecture fails to hold for k, then
there is no hope of an equivalence of triangulated categories Db(BKTMk) →
DTk, as the lack of cohomological connectness for Nk is equivalent to having
HomDTk (Q,Q(q)[p]) ≠ 0 for some q > 0 and p < 0.

It is not clear if the lack of cohomological connectness of Nk gives an obstruc-
tion to the existence of a reasonable functor ρ : Db(BKTMk) → DTk (say, with
ρ(Q(n)) = Q(n)).

Tate Motives as Voevodsky Motives
The following result, extracted from [85, theorem 2], shows how the Kriz–May
triangulated category serves as a bridge between the Bloch–Kriz category of co-
modules, and the more natural, but also more abstract, category of Tate motives
sitting inside of Voevodsky’s category DMgm.

111Theorem 111 Let k be a field. There is a natural exact tensor functor

φ : DTk → DMgm(k)

which induces an equivalence of triangulated tensor categories DTk → DTM(k).
The functor φ is compatible with the weight filtrations in DTk and DTM(k). If Nk

is cohomologically connected, then φ induces an equivalence of abelian categories

H(Nk) → TM(k) .

Note that this gives a module-theoretic description of DTM(k) for all fields k,
without assuming any conjectures. This result also gives a context for the K(π, 1)-
conjecture:
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112 Conjecture 112 Let k be a field. Then the cycle cdga Nk is a K(π, 1).

Indeed the conjecture would imply that all the different candidates for an abelian
category of mixed Tate motives over k agree: If Nk is 1-minimal, the Nk is cohomo-
logically connected. By Theorem 111, the abelian categories H(Nk) and TM(k) are
equivalent, as well as the triangulated categories DTk = DCM(Nk) and DTM(k). By
Theorem 109, we have an equivalence of triangulated categories Db(H(Nk)) and
DTk, and H(Nk) is equivalent to the Bloch–Kriz category BKTMk. By Remark 108,
the graded co-Lie algebras QN k and Mk agree, so we have equivalences of abelian
categories

BTM(k) ∼ BKTM(k) ∼ TM(k) ∼ HDTk

and triangulated categories

Db(TM(k)) ∼ DTM(k) .

All these equivalences respect the tensor structure, the weight filtrations and
duality.

Spitzweck’s Representation Theorem5.5.5

We sketch a proof of Thereom 111.

Cubical Complexes in DMeff
− (k)

To give a representation of DTk into DMgm, it is convenient to use a cubical version
of the Suslin-complex C∗.

113 Definition 113 Let F be presheaf on Smk. Let Ccb
n (F ) be the presheaf

Ccb
n (F )(X) := F (X ×�n)|

n∑

j=1

π∗
j (F (X ×�n−1)) .

and let Ccb∗ (F ) be the complex with differential

dn =
n∑

j=1

(−1)j−1F(ιj,1) −
n∑

j=1

(−1)j−1F(ιj,0) .

If F is a Nisnevich sheaf, then Ccb∗ (F ) is a complex of Nisnevich sheaves, and if F
is a Nisnevich sheaf with transfers, then Ccb∗ (F ) is a complex of Nisnevich sheaves
with transfers. We extend the construction to bounded above complexes of sheaves
(with transfers) by taking the total complex of the evident double complex.

For a presheaf F , let CAlt
n (F ) ⊂ Ccb

n (F )Q denote as above the subspace of
alternating elements with respect to the action of Σn on�n, forming the subcomplex



Mixed Motives 503

CAlt∗ (F ) ⊂ Ccb∗ (F )Q . We extend this to bounded above complexes of presheaves
as well.

The arguments used in §5.2.5 to compare Bloch’s cycle complex with the cubical
version show

114Lemma 114 Let F be a bounded above complex of presheaves on Smk.
1. There is a natural isomorphism CSus∗ (F ) =̃ Ccb∗ (F ) in the derived category of

presheaves on Smk. If F is a presheaf with transfer, we have an isomorphism
CSus∗ (F ) =̃ Ccb∗ (F ) in the derived category D−(PST(k)).

2. The inclusion CAlt∗ (F )(Y) ⊂ Ccb∗ (F )Q (Y) is a quasi-isomorphism for all Y ∈
Smk.

In particular, Ccb∗ (F ) has homotopy invariant cohomology sheaves, so we have the
functors

Ccb
∗ : C−(ShNis(k)) → DMeff

− (k) .

CAlt
∗ : C−(ShNis(k)) → DMeff

− (k) ⊗Q .

Taking the usual Suslin complex also gives us a functor

CSus
∗ : C−(ShNis(k)) → DMeff

− (k) .

and we thus have the isomorphism of functors CSus∗ → Ccb∗ and CAlt∗ → (Ccb∗ )Q .

The Cycle cdga in DMeff
− (k)

We apply this construction to F = Zq.fin(Aq). The symmetric group Σq acts on this
sheaf by permuting the coordinates inAq, we let N

gm
k (q) ⊂ CAlt∗ (Zq.fin(Aq)) be the

subsheaf of symmetric sections with respect to this action.

115Lemma 115 The inclusion N
gm

k (q) ⊂ CAlt∗ (Zq.fin(Aq)) is an isomorphism in
DMeff

− (k)

Proof Roughly speaking, it follows from Theorem 26, Lemma 29 and Lemma 114
that the inclusion

CAlt
∗ (Zq.fin(Aq))(Y) → zq(Y × Aq, ∗)Alt

is a quasi-isomorphism for each Y ∈ Smk. As the pull-back

zq(Y × Aq, ∗)Alt → zq(Y × Aq, ∗)Alt

is also a quasi-isomorphism by the homotopy property, Σq acts trivially on zq(Y ×
A

q, ∗)Alt, in D−(Ab).
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For X, Y ∈ Smk, the external product of correspondences gives the associative
external product

Ccb
n (Zq.fin(Aq))(X) ⊗ Ccb

m (Zq.fin(Ap))(Y) → Ccb
n+m(Zq.fin(Ap+q))(X ×k Y)

Taking X = Y and pulling back by the diagonal X → X ×k X gives the cup product
of complexes of sheaves

∪ : Ccb
∗ (Zq.fin(Ap) ⊗ Ccb

∗ (Zq.fin(Aq)) → Ccb
∗ (Zq.fin(Ap+q)) .

Taking the alternating projection with respect to the�∗ and symmetric projection
with respect to the A∗ yields the associative, commutative product

· : N
gm

k (p) ⊗ N
gm

k (q) → N
gm

k (p + q) ,

which makes N
gm

k := ⊕r≥0N
gm

k (r) into an Adams-graded cdga object in
C−(ShNis(k)).

In particular, if a is in N
gm

k , multiplication by a gives an endomorphism a · − :
N

gm
k → N

gm
k .

A Replacement for Nk
Let

Nk(A∗)n(r) :=
(
zr(Ar, 2r − n)Alt)sym

,

where sym means the symmetric subspace with respect to the Σr-action on Ar

by permuting the coordinates. Taking the external product and the alternating
and symmetric projections defines an Adams-graded cdga Nk(A∗). We have the
evident inclusion

i : N
gm

k → Nk(A∗) ,

and the pull-back via the maps πr : Ar → Spec k defines

π∗ : Nk → Nk(A∗) .

As above, i and π∗ are both quasi-isomorphisms of cdgas. Thus, we have the
equivalence of triangulated tensor categories

DTk := DCM(Nk) ∼ DCM(Nk(A∗)) ∼ DCM(N
gm

k ) .

The Functor DTk → DMgm(k)Q
We are now ready to define our representation of DTk := DCM(Nk) into DMgm(k)Q .
Let N = N

gm
k . We actually define a functor

φ : DCM(N )′ → DMgm(k)Q
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where DCM(N )′ is the category of cell-N -modules with a choice of basis. As this
is equivalent to DCM(N ), which in turn is equivalent to DTk, the functor φ suffices
for our purposes.

Let M = ⊕jN mj be a cell N -module, with basis {mj} and differential d given
by

dmj =
∑

i

aijmi .

Encoding d as the matrix (aij), the condition d2 = 0 translates as

(aij) · (aij) = (daij) , (5.7)

where daij is the differential in N . Let φ(M, d) be the complex of sheaves
⊕jN

gm
k (rj)[nj]µj, where µj is a formal basis element. The differential δ in φ(M, d)

characterized by

δ(µj) :=
∑

ij

aijµi ,

and the requirement that δ satisfy the Leibniz rule

δ(a · µj) = da · µj + (−1)deg(a)a · δ(µj)

for a a local section of N
gm

k (rj)[nj]. The matrix equation (5.7) ensures that δ2 = 0,
giving a well-defined object of DMeff

− (k).
If f : M → N is a morphism of cell N -modules, , we choose bases {mj} for M

and {nj} for N, let {µj} and {νj} be the corresponding bases for φ(M) and φ(N). If
f (mj) =

∑
i fijni, then define φ(f ) by φ(f )(µj) =

∑
i fij.

One easily checks that φ respects tensor products, the translation functor and
cone sequences, so yields a well-defined exact tensor functor

φ : DCM(N
gm

k )′ → DMgm(k)Q .

By construction, φ(Q(n)) is the object N
gm

k (n) of DMgm(k)Q , which by Lemma 114
and Lemma 115 is isomorphic to CSus∗ (Zq.fin(An))Q =̃ Q(n) in DMgm(k)Q . Further-
more, we have

HomDTk (Q(0),Q(n)[m]) = Hm(Nk(n)) =̃ CHn(k, 2n − m) ,

which agrees with HomDTM(k)(Q(0),Q(n)[m]); it is not hard to see that φ induces
the identity maps between these two Hom-groups. Since the Q(n)’s are gener-
ators of DTk, it follows that φ is fully faithful; since DTM(k) is generated by the
Q(n)’s, φ is therefore an equivalence. This completes the proof of the representation
Theorem 111.
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Cycle Classes, Regulators and Realizations5.6

If one uses the axioms of Sect. 5.3.1 for a Bloch–Ogus cohomology theory, mo-
tivic cohomology becomes the universal Bloch–Ogus theory on Smk. The various
regulators on higher K-theory can then be factored through the Chern classes
with values in motivic cohomology. Pushing this approach a bit further gives
rise to “realization functors” from the triangulated category of mixed motives
to the category of sheaves of abelian groups on SmZar

k . In this section, we give
a sketch of these constructions. See also the article of Goncharov [35] in this
volume.

There are other methods available for defining realization functors which we
will mention as well.

Cycle Classes5.6.1

We fix a Bloch–Ogus cohomology theory Γ on Smk. In this section, we describe
how one constructs functorial cycle classes

clq,p
Γ : CHq(X, 2q − p) → H

p
Γ(X, q) ,

and describe some of their basic properties. We refer to Sect. 5.3.1 for the notation.

Relative Cycle Classes
The main point of the construction is to use the purity property of Γ to extend
the cycle classes to the relative case. Let D =

∑m
i=1 Di be a strict normal crossing

divisor on some Y ∈ Smk, that is, for each subset I ⊂ {1, …, m}, the subscheme
DI := ∩j∈IDj of Y is smooth over k and of pure codimension |I| on Y . We include
the case I = ∅ in the notation; explicitly D∅ = Y .

Let Γ̃(∗) be a flasque model for Γ(∗), e.g., for each X ∈ Smk, Γ̃(n)(X) is the
complex of global sections of the Godement resolution of the restriction of Γ(n) to
XZar; in particular, we have

Hn
Γ(X, q) = Hn(̃Γ(q)(X)) .

Let Γ̃(q)(X; D) be the iterated shifted cone of the restriction maps for the inclu-
sions Di → X, that is, if m = 1, D = D1, then

Γ̃(q)(X; D) := Cone
(
i∗D : Γ̃(q)(X) → Γ̃(q)(D)

)
[−1]

and in general, Γ̃(q)(X; D) is defined inductively as

Γ̃(q)(X; D) := Cone

(

Γ̃(q)

(
X;

m−1∑

i=1

Di

)
i∗D1→ Γ̃(q)

(
D1;

m−1∑

i=1

D1 ∩ Di

))

[−1] .
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One can also define Γ̃(q)(X; D) as the total complex associated to the m-cube of
complexes

I �→ Γ̃(q)(DI) ,

from which one sees that the definition of Γ̃(q)(X; D) is independent of the ordering
of the Di. Define the relative cohomology by

H∗
Γ(X; D, q) := H∗(̃Γ(q)(X; D)) .

For W ⊂ X a closed subset, we have relative cohomology with supports, defined
as

H∗
Γ,W (X; D, q) := H∗(̃ΓW (q)(X; D)) ,

where

Γ̃W (q)(X; D) = Cone
(
j∗ : Γ̃(q)(X; D) → Γ̃(q)(X \ W ; j∗D)

)
[−1] ,

and j : X \ W → X is the inclusion.
Let D′ =

∑r
i=1 D′

i be a SNC divisor on X containing D. Let zq(X)D′ denote the
subgroup of zq(X) generated by integral codimension q subschemes W such that

codimD′
I
(W ∩ D′

I) ≥ q

for all I ⊂ {1, …, r}, and let zq(X; D)D′ denote the kernel of the restriction map

zq(X)D′

∑
j i∗j→ ⊕m

j=1zq(Dj) .

If W ⊂ X is a closed subset, let z
q
W (X; D)D′ be the subgroup of zq(X; D)D′ consisting

of cycles supported in W ; we write z
q
W (X; D) for z

q
W (X; D)D.

116Lemma 116 Let W ⊂ X be a closed subset, D =
∑m

i=1 Di a strict normal crossing
divisor on X ∈ Smk. Let A be the ring H0

Γ(Spec k, 0).
1. If codimDI (W∩DI) > q for all I, then H∗

Γ,W (Y ; D, q) = 0. If codimDI (W∩DI) ≥ q
for all I, then H∗

Γ,W (Y ; D, q) = 0 for all p < 2q
2. Suppose that codimDI (W ∩ DI) ≥ q for all I. Then the cycle class map cl define

an isomorphism

cl : z
q
W (X; D) ⊗ A → H

2q
W (X; D, q) .

Proof For m = 0, (1) is just the purity property of Definition 30(3). The property (5)
and the Gysin isomorphism (4)(b) of 30 give the isomorphism of (2) for W smooth,
and one uses purity again to extend to arbitrary W . In general, one uses the long
exact cohomology sequences associated to a cone and induction on m.
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Higher Chow Groups and Relative Chow Groups
Identifying the higher Chow groups with “relative Chow groups”, making a similar
identification for Γ-cohomology, and using the relative cycle map completes the
construction.

For m ≥ 0, let ∂n
X and Λn

X be the SNC divisors
∑n

i=0(ti = 0) and
∑n−1

i=0 (ti = 0) on
X × ∆n, respectively. For a commutative ring A, we have the higher Chow groups
with A-coefficients

CHq(X, n; A) := Hn(zq(X, ∗) ⊗ A) .

Define motivic cohomology with A-coefficients, Hp(X, A(q)), by

Hp(X, A(q)) := CHq(X, 2q − p; A) .

117 Lemma 117 There is an exact sequence

zq(X × ∆n+1, Λn+1
X )∂n+1

X
⊗ A

restn+1=0→ zq(X × ∆n, ∂n
X) ⊗ A → CHq(X, n; A) → 0 .

Proof By the Dold–Kan theorem [29], the inclusion of the normalized subcomplex

Nzq(X, ∗) → zq(X, ∗)

is a quasi-isomorphism. Since Nzq(X, n) = zq(X × ∆n, Λn
X)∂n

X
with differential

restn+1=0 : zq(X × ∆n+1, Λn+1
X )∂n+1

X
→ zq(X × ∆n, Λn

X)∂n
X

the result follows.

118 Lemma 118 Let X be in Smk. Then H∗
Γ(X × ∆n; Λn

X , q) = 0 for all q and there is
a natural isomorphism

H
p
Γ(X × ∆n; ∂n

X , q) =̃ H
p−n
Γ (X, q)

Proof This follows from the homotopy property of Γ and induction on n.

We can now define the cycle class map

CHq(X, n; A)
clq(n)→ H

2q−n
Γ (X, q) ,

where A is the coefficient ring H0
Γ(Spec k, 0); we then have

clq,p : Hp(X, A(q)) → H
p
Γ(X, q)

by clq,p := clq(2q − p).
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Indeed, from Lemma 116, we have natural isomorphisms

zq(X × ∆n, ∂n
X) ⊗ A =̃ lim→

W

H
2q
Γ,W (X × ∆n; ∂n

X , q)

zq(X × ∆n+1, Λn+1
X )∂n+1

X
⊗ A =̃ lim→

W ′
H

2q
Γ,W ′(X × ∆n+1; Λn+1

X , q) ,

where W runs over codimension q closed subsets of X × ∆n, “in good position”
with respect to the faces of ∆n, and W ′ runs over codimension q closed subsets
of X × ∆n+1, “in good position” with respect to the faces of ∆n+1. “Forgetting the
supports” gives maps

lim→
W

H
2q
Γ,W (X × ∆n; ∂n

X , q) → H
2q
Γ (X × ∆n; ∂n

X , q)

lim→
W ′

H
2q
Γ,W ′(X × ∆n+1; Λn+1

X , q) → H
2q
Γ (X × ∆n+1; Λn+1

X , q)

Putting these together and using and Lemma 117 and Lemma 118 gives the desired
cycle class maps

clq(n) : CHq(X, n; A) → H
2q−n
Γ (X, q) .

119Remark 119 With a bit more work, one can achieve the maps clq,p as maps

clq : ZFS(q) ⊗L A → Γ(q) (5.8)

in D(ShZar(k)), compatible with the multiplicative structure. Using Remark 23, we
have the structure map

cl1 ◦ u : Gm[−1] → Γ(1)

promised in Sect. 5.3.1.
For additional details, we refer the reader to [33] ([33] considers clq as a map

from the cycle complexes ZBl(q) instead, but one can easily recover the statements
made above from this).

In any case, we have:

120Theorem 120 Fix a coefficient ring A. Motivic cohomology with A-coefficients,
H∗(−, A(∗)), as the Bloch–Ogus theory on Smk represented by ZFS(∗) ⊗L A, is the
universal Bloch–Ogus cohomology theory with coefficient ring A, in the sense of
Definition 30.

121Remark 121 With minor changes, the cycle classes described here extend to the
case of scheme smooth and quasi-projective over a Dedkind domain, for example,
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over a localization of a ring of integers in a number field, using the extension of
the cycle complexes described in Remark 10. For instance, we have cycle classes

clq,p : Hp(X,Z|n(q)) := CHq(X, 2q − p;Z|n) → H
p
ét(X,Z|n(q))

for X → Spec (OF[1|n]) smooth and quasi-projective, F a number field.

Explicit Formulas
The abstract approach outlined above does not lend itself to easy computations
in explicit examples, except perhaps for the case of units and Milnor K-theory.
Goncharov explains in his article [35] how one can give a fairly explicit formula
for the cycle class map to real Deligne cohomology; this has been refined recently
in [59] and [60] to give formulas for the map to integral Deligne cohomology.
Although this search for explicit formulas may at first seem to be merely a com-
putational convenience, in fact such formulas lie at the heart of some important
conjectures, for instance, Zagier’s conjecture on relating values of L-functions to
polylogarithms [102].

Regulators
The classical case of a regulator is the Dirichlet regulator, which is the co-volume of
the lattice of units of a number field under the embedding given by the logarithm
of the various absolute values. The term “regulator” now generally refers to a real-
valued invariant of some K-group, especially if there is some link with the classical
case.

The Dirichlet construction was first generalized to higher K-theory of number
rings by Borel [20] using group cohomology, and was later reinterpreted by Beilin-
son [5] as a lattice co-volume arising from a Gillet-type Chern class to real Deligne
cohomology. In the context of the cycle class maps described above, we only wish
to remark that it is easy to show that Gillet’s Chern class c

p,q
Γ : K2q−p(X) → H

p
Γ(X, q)

factors as

K2q−p(X)
cp,q→ Hp(X,Z(q))

cl
q
Γ→ H

p
Γ(X, q) .

for Γ(∗) a Bloch–Ogus cohomology theory.

Realizations5.6.2

Extending the Cycle Class Map
In this section, we describe the method used by Levine [63, part 1, chapt. V] for
defining a realization functor on DM(k) associated to a Bloch–Ogus cohomology
theory Γ (see [63, part 1, chapt. V, theorem 1.3.1] for a precise statement, but note
the remark below). We retain the notation of Sect. 5.6.1.
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122Remark 122 There is an error in the statement of [63, part 1, chapt. V, definition
1.1.6 and theorem 1.3.1]: The graded complex of sheaves F should be of the form
F = ⊕q∈ZF (q), not ⊕qge0F (q), as it is stated in loc. cit.. In Definition 1.1.6, the
axioms (ii) and (iii) are for q ≥ 0, whereas the axiom (iv) is for all q1, q2 and axiom
(v) is for all q. I am grateful to Bruno Kahn for pointing out this error.

One would at first like to extend the assignment ZX(q) �→ Γ̃(q)(X) to a functor

�Γ : DM(k) → D(Ab) .

There are essentially two obstructions to doing this:
1. In DM(k), we have the isomorphism

ZX(q) ⊗ ZY (q′) =̃ ZX×Y (q + q′) ,

but there is no requirement that the external products for Γ induce an analo-
gous isomorphism in D(Ab),

Γ̃(q)(X) ⊗L Γ̃(q′)(Y) =̃ Γ̃(q + q′)(X × Y) .

In fact, in many naturally occuring examples, the above map is not an isomor-
phism.

2. The object Γ(∗) = ⊕qΓ(q) is indeed a commutative ring-object in the derived
category of sheaves on SmZar

k , but the commutativity and assciativity properties
of the product may not lift to similar properties on the level of the representing
complexes Γ̃(q)(X).

To avoid these problems, one considers a refinement of a Bloch–Ogus theory,
namely a geometric cohomology theory on Sm?k [63, part 1, chapt. V, def. 1.1.6],
where ? is a Grothendieck topology, at least as fine as the Zariski topology, having
enough points (e.g., the étale, Zariski or Nisnevich topologies). Let A be a com-
mutative ring and let Sh?A(Smk) be the category of sheaves of A-modules on Sm?k .
Essentially, a geometric cohomology Γ is given by a graded commutative ring
object Γ̂(∗) = ⊕q∈Z Γ̂(q) in C(Sh?A(Smk)), such that
1. All stalks of the sheaves Γ̂(q)n are flat A-modules.
2. For X in Smk, let pX : X → Spec k denote the projection. Then for X and Y in

Smk, the product map

RpX∗(̂Γ(q)|X) ⊗L RpY∗(̂Γ(q′)|Y ) → RpX×Y∗(̂Γ(q + q′)|X×Y )

is an isomorphism in D(Sh?A(Spec k)).
3. Let α : Sm?k → SmZar

k be the change of topology morphism, and let Γ(n) :=
Rα∗Γ̂(n). Then Γ(∗) := ⊕n≥0Γ(n) defines a Bloch–Ogus cohomology theory
on Smk, in the sense of Sect. 5.3.1.
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4. Let 1 denote the unit in Sh?A(Spec k) and ̂[Spec k] : 1 → Γ̂(0)|Spec k the map
in D(Sh?A(Spec k)) corresponding to the cycle class [Spec k] ∈ H0

Γ(Spec k, 0).
Then ̂[Spec k] is an isomorphism.

Examples of such theories include: de Rham cohomology, singular cohomology,
étale cohomology with mod n coefficients.

Having made this refinement, one is able to extend to assignment ZX(q) �→
RpX∗(̂Γ(q)|X) to a good realization functor:

123 Theorem 123: [63, part 1, chapt. V, thm. 1.3.1] Let Γ be a geometric cohomology
theory on Sm?k , and let A := H0

Γ(Spec k, 0). Then sending ZX(q) to RpX∗(̂Γ(q)|X)
extends to an exact pseudo-tensor functor

�Γ : DM(k)A → D(Sh?A(Spec k)) .

Here Sh?A(Spec k) is the category of sheaves of A-modules on Spec k, for the ?-
topology. DM(k)A is the extension of DM(k) to an A-linear triangulated category
formed by taking the A-extension of the additive category Amot(k) and applying
the construction used in Sect. 5.4.4 to form DM(k) (this is not the same as the
standard A-extension DM(k) ⊗ A if for instance A is not flat over Z).

The rough idea is to first extend the assignment

ZX(q) �→ RpX∗(̂Γ(q)|X)

to the additive category Amot(k)⊗A (notation as in Sect. 5.4.4) by sending the cycle
map [Z] : ∗ → ZX(d)[2d] to a representative of the cycle class with supports in
codimension q for the cohomology theory Γ. The lack of a canonical representative
creates problems, so we replace Amot(k) with a DG-category Amot(k) for which
the relations among the cycle maps [Z] are only satisfied up to homotopy and “all
higher homotopies”. Proceeding along this line, one constructs a functor

�(∗)
Γ : Kb(Amot(k) ⊗ A) → K(Sh?A(Spec k)) .

One then “forgets supports” in the theory Γ and passes to the derived category

�K
Γ : Kb(Amot(k) ⊗ A) → D(Sh?A(Spec k)) .

Now let Db(Amot(k)⊗A) be the localization of Kb(Amot(k)⊗A) as a triangulated
tensor category, formed by inverting the same generating set of maps we used to
form Db(Amot(k)) from Kb(Amot(k)). The Bloch–Ogus axioms for Γ imply that �K

Γ
extends to a functor on Db(Amot(k) ⊗ A); one then extends to the pseudo-abelian
hull of Db(Amot(k) ⊗ A) and proves that this pseudo-abelian hull is equivalent to
our original category DM(k)A.
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124Remark 124 Although theories such as Beilinson’s absolute Hodge cohomology,
Deligne cohomology, or �-adic étale cohomology do not fit into the framework
of a geometric cohomology theory, the method of construction of the realization
functor does go through to give realization functors for these theories as well. We
refer the reader to [63, part 1, chapt. V, §2] for these constructions.

We would like to correct an error in our construction of the absolute Hodge
realization, pointed out to us by Pierre Deligne: In diagram (2.3.8.1), pg. 279,
defining the object D[X, X], the operation Dec is improperly applied, and the
functor p(X,X)∗ (top of page 278) is incorrectly defined. To correct this, one changes
p(X,X)∗ by first taking global sections as indicated in diagram (2.3.6,8), and then
applying the operation Dec to all the induced W-filtrations on the global sections.
One also deletes the operation Dec from all applications in the diagram (2.3.8.1)
defining D[X, X]. With these changes, the construction goes through as described
in [63].

Huber’s Method
Huber constructs realizations for the rational Voevodsky category DMgm(k)Q
in ([49, 50]) using a method very similar to the construction used by Nori to
prove Proposition 46. The idea is the following: Suppose the base field is C. Let
W → X be a finite dominant morphism, with X ∈ Smk, and W and X irre-
ducible. Let W ′ → X be the normalization of X in the Galois closure of k(W)|k(X),
let G = Gal(k(W ′)|k(X)), and let C∗(X) denote the singular cochain complex of
X(C) with Q-coefficients. Then G acts on C∗(W ′), and in fact the natural map
C∗(X) → C∗(W ′) gives a quasi-isomorphism

C∗(X) → C∗(W ′)G ,

where C∗(W ′)G is the subcomplex of C∗(W ′) of G-invariant cochains. Also, since
we have Q-coefficients, there is a projection π : C∗(W ′) → C∗(W ′)G. Thus, one
can define the pushforward πW |X∗ : C∗(W) → C∗(X) as the composition in
D+(Q-mod)

C∗(W)
1
d p∗
→ C∗(W ′) π→ C∗(W ′)G ∼← C∗(X) ,

where p : W ′ → W is the projection and d is the degree of p. Now, if W =
∑

i niWi

is in Cor(X, Y), we have the map

W∗ : C∗(Y) → C∗(X)

in D+(Q-mod) defined as the sum
∑

i niWi∗, where Wi∗ is the composition

C∗(Y)
π∗

Wi |Y→ C∗(Wi)
πWi |X∗→ C∗(X) ,

where πWi|Y : Wi → Y is the evident map.
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Refining this to give maps on the level of complexes, the assignment X �→ C∗(X)
extends to a functor

Rsing : Cor(C)
op
Q → C+(Q-Vec) ;

the properties of singular cohomology as a Bloch–Ogus theory imply that Rsing

extends to an exact functor

�sing : DMgm(C)Q → D+(Q-mod) .

Two essential problems occur in this approach:
1. For many interesting theories Γ (e.g. de Rham cohomology), even though

there are extensions of Γ to complexes on all reduced normal quasi-projective
k-schemes, it is often not the case that Γ(q)(X) → Γ(q)(W ′)G is a quasi-
isomorphism, as was the case for singular cohomology.

2. It is not so easy (even in the case of singular cohomology) to refine the map
πW |X∗ to give a functorial map on the level of complexes.

Huber overcomes these difficulties to give realizations for singular cohomology,
as described above, as well as for Q�-étale cohomology, and rational Deligne
cohomology.

125 Remark 125 Deligne and Goncharov [27] have defined Hodge, Betti and �-adic
realizations on Voevodsky’s category DMgm(k). It seems that their method would
define realizations of DMgm(k) for a wide range of cohomology theories, but at
present there does not seem to be any such construction in the literature.

Nori’s Realizations
Using the functor (5.4) (see just below Definition 49)

Π : DMgm(k) → Db(NMM(k)) ,

and the universal property of the category NMM(k) (derived from the universal
property of ECM(k)), one has integral realization functors from DMgm(k) for: sin-
gular cohomology, �-adic étale cohomology, de Rham cohomology, and Beilinson’s
absolute Hodge cohomology. These do not seem to have been used at all in the
literature up to now, so we hope that a good version of Nori’s work will appear
soon.

Bloch–Kriz Realizations
We conclude our overview of realizations by briefly discussing the method used
in [18] for constructing realizations of the Tate category BKTMk. Denote the motivic
Hopf algebra H0(B(Nk)) by χmot(k) (see Definition 107 for the notation).
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One can consider for instance the category of continuous Gk := Gal(k|k) repre-
sentations M in finite dimensional Q�-vector spaces, such that M has a finite fil-
tration W∗M with quotients grW

n M being given by the nth power of the cyclotomic
character. This forms a Tannakian Q�-category, classified by an Adams-graded
Hopf algebra χét,�(k). Thus, in order to define an étale realization of the category
BKTMk = co-rep(χmot(k)), it suffices to give a homomorphism of Hopf algebras

φét : χmot(k) → χét,�(k) .

Using a modification of the cycle-class method discussed in Sect. 5.6.1, they show
that the cycle class map (5.8), for Γ(∗) = Q�-étale cohomology, can be refined to
give rise to such a homomorphism φét, and hence a realization functor

φét : BKTMk → co-rep(χét,�(k)) → Q�[Gk]-mod .

It would be interesting to compare this realization functor with the one given by
Spitzweck’s representation theorem and Nori’s realization functor.

A similar method yields a description of real mixed Hodge structures as the
Tannakian category of co-representations of an Adams graded Hopf algebra χHdg

over R, and a realization homomorphism

φHdg : χmot(C) → χHdg .

Again, it would be interesting to compare this with Nori’s approach, and to see if
the refined cycle classes of [59, 60] allow one to give a more explicit description
of φHdg.
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Introduction1.1

In his 1937 paper [86], Ernst Witt introduced a group structure – and even a ring
structure – on the set of isometry classes of anisotropic quadratic forms, over an
arbitrary field k. This object is now called the Witt group W(k) of k. Since then,
Witt’s construction has been generalized from fields to rings with involution, to
schemes, and to various types of categories with duality. For the sake of efficacy,
we review these constructions in a non-chronological order. Indeed, in Sect. 1.2,
we start with the now “classical framework” in its most general form, namely over
exact categories with duality. This folklore material is a basically straightforward
generalization of Knebusch’s scheme case [41], where the exact category was the
one of vector bundles. Nevertheless, this level of generality is hard to find in the
literature, like e.g. the “classical sublagrangian reduction” of Sect. 1.2.5. In Sect. 1.3,
we specialize this classical material to the even more classical examples listed above:
schemes, rings, fields. We include some motivations for the use of Witt groups.

This chapter focusses on the theory of Witt groups in parallel to Quillen’s K-
theory and is not intended as a survey on quadratic forms. In particular, the
immense theory of quadratic forms over fields is only alluded to in Sect. 1.3.4; see
preferably the historical surveys of Pfister [66] and Scharlau [72]. Similarly, we do
not enter the arithmetic garden of quadratic forms: lattices, codes, sphere packings
and so on. In fact, even Witt-group-like objects have proliferated to such an extent
that everything could not be included here. However, in the intermediate Sect. 1.4,
we provide a very short guide to various sources for the connections between Witt
groups and other theories.

The second part of this chapter, starting in Sect. 1.5, is dedicated to the Witt
groups of triangulated categories with duality, and to the recent developments of
this theory. In Sect. 1.6, we survey the applications of triangular Witt groups to the
above described classical framework.

Usual Witt Groups: General Theory1.2

Duality and Symmetric Spaces1.2.1

1 Definition 1 A category with duality is a triple (C, ∗, ϖ) made of a category C and
an involutive endo-functor ∗ : Cop → C with given isomorphism

ϖ : IdC
�→ ∗ ◦ ∗

and subject to the condition below. Write as usual M∗ := ∗(M) for the dual of
an object M ∈ C and similarly for morphisms. Then M �→ M∗ is a functor and
ϖM : M

∼→(M∗)∗ is a natural isomorphism such that:

(ϖM)∗ ◦ ϖM∗ = idM∗ for any object M ∈ C.
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2Definition 2 A symmetric space in (C, ∗, ϖ) – or simply in C – consists of a pair
(P, ϕ) where P is an object of C and where ϕ : P

∼→P∗ is a symmetric isomorphism,
called the symmetric form of the space (P, ϕ). The symmetry of ϕ reads ϕ∗ ◦ϖP = ϕ,
i.e. ϕ∗ = ϕ when P is identified with P∗∗ via ϖP:

P
ϕ→ P∗

ϖP ↓=̃ ||
P∗∗ →

ϕ∗ P∗

Note that the notion of “symmetry” depends on the chosen identification ϖ of
objects of C with their double dual. This allows us to treat skew-symmetric forms
as symmetric forms in (C, ∗, −ϖ). Nevertheless, when clear from the context, we
drop ϖ from the notations and identify P∗∗ with P.

3Remark 3 We shall focus here on “non-degenerate” or “unimodular” forms, that
is, we almost always assume that ϕ is an isomorphism. In good cases, one can
consider the non-unimodular forms as being unimodular in a different category
(of morphisms). See Bayer-Fluckiger–Fainsilber [16].

4Definition 4 Two symmetric spaces (P, ϕ) and (Q, ψ) are called isometric if there
exists an isometry h : (P, ϕ)

∼→(Q, ψ), that is an isomorphism h : P
∼→Q in the

category C respecting the symmetric forms, i.e. h∗ψ h = ϕ.

5Definition 5 A morphism of categories with duality
(
C, ∗C , ϖC

) → (
D , ∗D , ϖD

)

consists of a pair (F, η) where F : C → D is a functor and η : F ◦ ∗C �→ ∗D ◦ F
is an isomorphism respecting ϖ, i.e. for any object M of C, the following diagram
commutes:

F(M)
F
(

ϖC
M

)

→ F(M∗∗)

ϖD
F(M)↓ ↓ηM∗

F(M)∗∗ →
(ηM )∗

F(M∗)∗ ,

where (−)∗ is (−)∗C
or (−)∗D

depending on the context, in the obvious way.

6Definition 6 An additive category with duality is a category with duality (A, ∗, ϖ)
where A is additive and where ∗ is an additive functor,i.e. (A ⊕ B)∗ = A∗ ⊕ B∗ via
the natural morphism.
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7 Remark 7 The identification ϖ necessarily respects the additivity, i.e. ϖA⊕B =
ϖA ⊕ ϖB. This is a general fact for natural transformations between additive
functors. Similarly, we need not consider ϖ in the following:

8 Definition 8 A morphism of additive categories with duality is simply a morphism
of categories with duality (F, η) in the sense of Def. 5, such that the functor F is
additive.

Example 9. In an additive category with duality (A, ∗, ϖ), one can produce
symmetric spaces (P, ϕ) as follows. Take any object M ∈ A. Put

P := M ⊕ M∗ and

ϕ :=
( 0 idM∗

ϖM 0

)
: M ⊕ M∗

︸ ︷︷ ︸
=P

�→ M∗ ⊕ M∗∗
︸ ︷︷ ︸

=P∗
.

Note that the symmetry of ϕ uses the assumption (ϖM)∗ = (ϖM∗)−1. This space
(P, ϕ) is called the hyperbolic space (over M) and is denoted by H(M).

10 Definition 10 Let (A, ∗, ϖ) be an additive category with duality. Let (P, ϕ) and
(Q, ψ) be symmetric spaces. We define the orthogonal sum of these spaces as being
the symmetric space (P, ϕ) ⊥ (Q, ψ) :=

(
P ⊕ Q ,

( ϕ 0
0 ψ

))
.

11 Definition 11 Let (F, η) : (C, ∗C , ϖC) → (D , ∗D , ϖD) be a morphism of categories
with duality and let (P, ϕ) be a symmetric space in C. Then

F
(
P, ϕ

)
:=

(
F(P) , ηP ◦ F(ϕ)

)

is a symmetric space in D , called the image by F of the space (P, ϕ).

It is clear that two isometric symmetric spaces in C have isometric images by F.
If we assume moreover that F is a morphism of additive categories with duality, it
is also clear that the image of the orthogonal sum is isometric to the orthogonal
sum of the images; similarly, the image of the hyperbolic space H(M) over any
M ∈ C is then isometric to H

(
F(M)

)
.

Exact Categories with Duality1.2.2

12 Remark 12 The reader is referred to the original Quillen [68] or to the minimal
Keller [40, App. A] for the definition of an exact category. The basic example of
such a category is the one of vector bundles over a scheme. We denote by� and
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by� the admissible monomorphisms and epimorphisms, respectively. Note that
being exact (unlike additive) is not an intrinsic property. By a split exact category
we mean an additive category where the admissible exact sequences are exactly
the split ones. The basic example of the latter is the split exact category of finitely
generated projective modules over a ring.

13Definition 13 An exact category with duality is an additive category with duality
(E , ∗, ϖ) in the sense of Def. 6, where the category E is exact and such that the
functor ∗ is exact. So, E is an exact category, M �→ M∗ is a contravariant endo-
functor on E , ϖM : M

∼→M∗∗ is a natural isomorphism such that (ϖM)∗ = (ϖM∗)−1

and for any admissible exact sequence A
α� B

π� C, the following (necessarily
exact) sequence is admissible:

C∗ π∗
� B∗ α∗

� A∗

Example 14. The key example of an exact category with duality is the one of vector
bundles over a scheme with the usual duality, see Sect. 1.3.1 below.

Note also that any additive category with duality can be viewed as a (split) exact
category with duality.

15Definition 15 A morphism of exact categories with duality (F, η) is a morphism of
categories with duality (Def. 5) such that F is exact, i.e. F sends admissible short
exact sequences to admissible short exact sequences. Such a functor F is necessarily
additive.

Lagrangians and Metabolic Spaces 1.2.3

16Definition 16 Let (E , ∗, ϖ) be an exact category with duality (see Def. 13). Let (P, ϖ)
be a symmetric space in E . Let α : L � P be an admissible monomorphism. The
orthogonal in (P, ϕ) of the pair (L, α) is as usual

(L, α)⊥ := ker(α∗ϕ : P → L∗) .

Explicitly, consider an admissible exact sequence L
α� P

π� M and dualize it to
get the second line below:

.
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This describes (L, α)⊥ := ker(α∗ϕ) as the pair
(

M∗ , ϕ−1π∗ : M∗ � P
)
. We shall

write L⊥ instead of M∗ when the monomorphism α is understood.

17 Definition 17 An (admissible) sublagrangian of a symmetric space (P, ϕ) is an
admissible monomorphism α : L � P such that the following conditions are
satisfied:
(a) the form ϕ vanishes on L, that is α∗ϕ α = 0 : L → L∗ ,
(b) the induced monomorphism β : L → L⊥ is admissible; in the above notations

β is the unique morphism such that (ϕ−1π∗) ◦ β = α.

18 Remark 18 For condition (b), consider the diagram coming from above:

L
α� P

π� (L⊥)∗

β↓ �↓ϕ ↓β∗

L⊥ �
π∗ P∗ �

α∗ L∗ .

(1.1)

Since α∗ ◦ (ϕ α) = 0, there exists a unique β : L → L⊥ as claimed. Observe
that β∗ makes the right square commutative by symmetry (we drop the ϖ’s).
This β is automatically a monomorphism since α is, and β∗ is automatically an
epimorphism. Condition (b) only requires them to be admissible. However, in
many cases, it is in fact automatic, namely when the exact category E can be
embedded into some abelian category ι : E ↪→ A in such a way that a morphism q
in E is an admissible epimorphism in E if and only if ι(q) is an epimorphism in A.
This can always be achieved if E is semi-saturated, i.e. if any split epimorphism is
admissible, in particular if E is idempotent complete (see [79, App. A]). So, in real
life, condition (b) is often dropped.

19 Definition 19 An (admissible) lagrangian of a symmetric space (P, ϕ) is an admis-
sible sublagrangian (L, α) such that L = L⊥, i.e. a sublagrangian as in Def. 17 such
that the morphism β : L� L⊥ is an isomorphism.

Note that (L, α) is a lagrangian of the space (P, ϕ) if and only if the following is an
admissible exact sequence – compare diagram (1.1):

L
α� P

α∗ϕ
� L∗ . (1.2)

20 Definition 20 A symmetric space (P, ϕ) is called metabolic if it possesses an ad-
missible lagrangian, i.e. if there exists an exact sequence as above.
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Example 21. Assume that the exact sequence (1.2) is split exact. Such a metabolic
symmetric space is usually called split metabolic. A symmetric space

is split metabolic if and only if it is isometric to a space of the form
(

L ⊕ L∗ ,

(
0 1

ϖL ξ

))

for some object L and some symmetric morphism ξ = ξ∗. In particular, any
hyperbolic space H(L) is split metabolic with ξ = 0. If we assume further that
2 is invertible in E (see Rem. 69), then any split metabolic space is isometric to
a hyperbolic space H(L) via the automorphism h of L ⊕ L∗ defined by:

(
1 0

− 1
2 ξ 1

︸ ︷︷ ︸
h∗

)
·
(

0 1

ϖL ξ

)
·
(

1 − 1
2 ξ

0 1
︸ ︷︷ ︸

h

)
=

(
0 1

ϖL 0

)
·

Note that a symmetric space is split metabolic if and only if it is metabolic for
the split exact structure of the additive category E . See Ex. 39 below for an exact
sequence like (1.2) which does not split (when the category E is not split) and Ex. 38
for a split-metabolic space which is not hyperbolic (when 2 is not invertible).

Example 22. Let (A, ∗, ϖ) be an additive category with duality and let (P, ϕ) be
a symmetric space. Then the sequence

P
α:=

(
1
1

)

� P ⊕ P
(−ϕ ϕ)
� P∗

is split exact and the second morphism is equal to α∗ ◦ ( ϕ 0
0 −ϕ

)
. This proves that the

symmetric space (P, ϕ)⊥(P, −ϕ) is split metabolic in (A, ∗, ϖ) and hence in any
exact category.

23Remark 23 It is easy to prove that the only symmetric space structure on the zero
object is metabolic, that any symmetric space isometric to a metabolic one is also
metabolic, that the orthogonal sum of metabolic spaces is again metabolic and that
the image (see Def. 11) of a metabolic space by a morphism of exact categories with
duality is again metabolic. For the latter, the image of a lagrangian is a lagrangian
of the image.

The Witt Group of an Exact Category with Duality 1.2.4

We only consider additive categories which are essentially small, i.e. whose class of
isomorphism classes of objects is a set.
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24 Definition 24 Let (A, ∗, ϖ) be an additive category with duality (6). Denote by
MW(A, ∗, ϖ) the set of isometry classes of symmetric spaces in A. The orthogonal
sum gives a structure of abelian monoid on MW(A, ∗, ϖ).

25 Definition 25 Let (E , ∗, ϖ) be an exact category with duality (13). Let NW(E , ∗, ϖ)
be the subset of MW(E , ∗, ϖ) of the classes of metabolic spaces. This defines
a submonoid of MW(E , ∗, ϖ) by Rem. 23.

26 Remark 26 Let (M, +) be an abelian monoid (i.e. “a group without inverses”)
and let N be a submonoid of M (i.e. 0 ∈ N and N + N ⊂ N). Consider the
equivalence relation: for m1, m2 ∈ M, define m1 ∼ m2 if there exists n1, n2 ∈ N
such that m1 + n1 = m2 + n2. Then the set of equivalence classes M|∼ inherits
a structure of abelian monoid via [m] + [m′] := [m + m′]. It is denoted by M|N.
Assume that for any element m ∈ M there is an element m′ ∈ M such that
m + m′ ∈ N, then M|N is an abelian group with −[m] = [m′]. It is then canonically
isomorphic to the quotient of the Grothendieck group of M by the subgroup
generated by N.

27 Definition 27: (Knebusch) Let (E , ∗, ϖ) be an exact category with duality. The
Witt group of E is the quotient of symmetric spaces modulo metabolic spaces, i.e.

W(E , ∗, ϖ) :=
MW(E , ∗, ϖ)

NW(E , ∗, ϖ)
.

This is an abelian group. We denote by [P, ϕ] the class of a symmetric space (P, ϕ)
in W(E), sometimes called the Witt class of the symmetric space (P, ϕ). We have
−[P, ϕ] = [P, −ϕ] by Ex. 22 and the above Remark.

28 Definition 28 Two symmetric spaces (P, ϕ) and (Q, ψ) which define the same Witt
class, [P, ϕ] = [Q, ψ], are called Witt equivalent. This amounts to the existence
of metabolic spaces (N1, θ1) and (N2, θ2) and of an isometry (P, ϕ)⊥(N1, θ1) �
(Q, ψ)⊥(N2, θ2).

29 Remark 29 A Witt class [P, ϕ] = 0 is trivial in W(E) if and only if there exists a split
metabolic space (N, θ) with (P, ϕ)⊥(N, θ) metabolic, or equivalently, if and only
if there exists a metabolic space (N, θ) with (P, ϕ)⊥(N, θ) split metabolic. This
follows easily from the definition, by stabilizing with suitable symmetric spaces
inspired by Ex. 22. However, we will see in Ex. 40 below that a symmetric space
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(P, ϕ) with [P, ϕ] = 0 needs not be metabolic itself, even when E is a split exact
category.

30Remark 30 It is easy to check that W(−) is a covariant functor from exact categories
with duality to abelian groups, via the construction of Def. 11.

The Sublagrangian Reduction 1.2.5

We now explain why the Witt-equivalence relation (Def. 28) is of interest for
symmetric spaces. Two spaces are Witt equivalent in particular if we can obtain
one of them by “chopping off” from the other one some subspace on which the
symmetric form is trivial, i.e. by chopping off a sublagrangian.

Let (E , ∗, ϖ) be an exact category with duality. Let (P, ϕ) be a symmetric space
in E and let (L, α) be an admissible sublagrangian (Def. 17) of the space (P, ϕ).
Recall from (1.1) that we have a commutative diagram

(1.3)

where we also introduce the cokernel Q in E of the admissible monomorphism β,
displayed in the first column. The third column is the dual of the first.

Now consider the morphism s := π ϕ−1π∗ : L⊥ → (L⊥)∗. This is nothing but the
form ϕ “restricted” to the orthogonal L⊥ via the monomorphism ϕ−1π∗ : L⊥ � P
from Def. 16. Observe that the morphism s is symmetric: s∗ = s, that s β = 0 and
that β∗ s = 0. From this, we deduce easily (in two steps) the existence of a unique
morphism

ψ : Q → Q∗ such that s = µ∗ ψµ. (1.4)

One checks that ψ∗ also satisfies equation (1.4). Therefore ψ is symmetric: ψ = ψ∗.
Below, we shall get for free that ψ is an isomorphism, and hence defines a form on
Q = L⊥|L, but note that we could deduce it immediately from the Snake Lemma in
some “ambient abelian category”.
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31 Lemma 31 The following left hand square is a push-out:

(1.5)

and the diagram commutes and has admissible exact lines.

Proof One checks directly that the left-hand square satisfies the universal property
of the push-out: use that if two test-morphisms x : P → Z and y : L⊥ → Z are
such that xα = yβ then the auxiliary morphism w := y − x ϕ−1π∗ : L⊥ → Z factors
uniquely as w = wµ because of w β = 0 and hence (x w) : P ⊕Q → Z is the wanted
morphism. It follows from the axioms of an exact category that the morphism
γ :=

(
ϕ−1π∗

µ

)
: L⊥ � P ⊕ Q is an admissible monomorphism. It is a general fact

that the two monomorphisms α and γ must then have the same cokernel, and it is
easy to prove (using that µ is an epimorphism) that Coker(γ) is as in the second
line of (1.5).

Comparing that second line of (1.5) to its own dual and using symmetry of ϕ
and ψ, we get the following commutative diagram with exact lines:

.

This proves two things. First
( ϕ 0

0 −ψ
)

is an isomorphism and hence ψ is an isomor-
phism, i.e. (Q, ψ) is a symmetric space, as announced. Secondly, our monomor-
phism γ : L⊥ � P ⊕ Q is a lagrangian of the space (P, ϕ)⊥(Q, −ψ). This means
that the space (P, ϕ)⊥(Q, −ψ) is metabolic, i.e. [P, ϕ] = [Q, ψ] in the Witt group.
So we have proven the following folklore result:

32 Theorem 32 Let (E , ∗, ϖ) be an exact category with duality. Let (P, ϕ) be a sym-
metric space in E and let (L, α) be an admissible sublagrangian of the space (P, ϕ).
Consider the orthogonal L⊥ and the quotient L⊥|L. Then there is a unique form ψ
on L⊥|L which is induced by the restriction of ϕ to L⊥. Moreover, the symmetric
space (L⊥|L , ψ) is Witt equivalent to (P, ϕ).
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33Remark 33 A sort of converse holds: any two Witt equivalent symmetric spaces
can be obtained from a common symmetric space by the above sublagrangian
reduction, with respect to two different sublagrangians. This is obvious since
a metabolic space with lagrangian L reduces to zero: L⊥|L = 0.

34Remark 34 Observe that L⊥|L is a subquotient of P and hence should be thought
of as “smaller” than P. If L⊥|L still possesses an admissible sublagrangian, we can
chop it out again. And so on. If the category E is reasonable, this process ends with
a space possessing no admissible sublagrangian – this could be called (admissibly)
anisotropic. Even then, such an admissibly anisotropic symmetric space needs not
be unique up to isometry in the Witt class of the symmetric space (P, ϕ) that we
start with. See more in Rem. 56.

Usual Witt Groups:
Examples and Motivations 1.3

Still in a very anti-chronological order, we specialize the categorical definitions of
the previous section to more classical examples.

Schemes 1.3.1

The origin is Knebusch [41]. The affine case is older: see the elegant Milnor–
Husemoller [50]. A modern reference is Knus [42, Chap. VIII].

Let X be a scheme and let VBX be the category of locally free coherent OX-
modules (i.e. vector bundles). Let L be a line bundle over X. One defines a duality
∗ : VBX → VBX by E∗ := HomOX (E, OX) ⊗OX L, which is the usual duality twisted
by the line bundle L. One defines the natural identification ϖ : E

∼→E∗∗ in the
usual way. For L = OX , this E∗ is of course the usual dual and ϖ is locally given
by mapping an element e to the evaluation at e. The triple (VBX , ∗, ϖ) is an exact
category with duality in the sense of Def. 13. We can thus apply Def. 27 to get
Knebusch’s original one [41]:

35Definition 35 With the above notations, the usual Witt group of a scheme X with
values in the line bundle L is the Witt group (Def. 27):

W(X, L) := W(VBX , ∗, ϖ).

The special case L = OX is the usual usual Witt group W(X).
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36 Remark 36 Let R be a commutative ring. We define W(R) as W(Spec(R)); this
common convention of dropping the “Spec(−)” applies everywhere below. The
category VBR is simply the category of finitely generated projective R-modules,
which is a split exact category. So, here, metabolic spaces are the split-metabolic
ones. If 1

2 ∈ R, these are simply the hyperbolic spaces, yielding the maybe better
known definition of the Witt group of a commutative ring.

37 Remark 37 When L = OX , then the group W(X) is indeed a ring, with product
induced by the tensor product: (E, ϕ) · (F, ψ) = (E⊗OX F , ϕ ⊗OX ψ).

We now produce examples proving “strictness” of the trivial implications:
hyperbolic ⇒ split metabolic ⇒ metabolic ⇒ trivial in the Witt group.

Example 38. Over the ring R = Z, the symmetric space (R2,
(

0 1
1 1

)
) is split metabolic

but not hyperbolic (the hyperbolic space H(R) = (R2, ψ) has the
property that ψ(v, v) ∈ 2R for any v ∈ R2 but the above form represents 1).

Example 39. An example of a metabolic space which is not split-metabolic cannot
exist in the affine case. Choose an exact sequence OX � P � OX ,

say on an elliptic curve X, with P indecomposable. Then ∧2P is trivial and hence
P has a structure of skew-symmetric space. It is metabolic with the (left) OX as
lagrangian but cannot be split metabolic since P itself is indecomposable as module.
An example of a symmetric such space can be found in Knus–Ojanguren [44, last
remark]. They produce a metabolic symmetric space, which is not split metabolic,
as can be seen on its Clifford algebra.

Example 40. (Ojanguren) Let A := R[X, Y , Z]|X2 + Y2 + Z2 − 1 and let P be the
indecomposable projective A-module of rank 2 corresponding to

the tangent space of the sphere. The rank 4 projective module E := EndA(P) is
equipped with the symmetric bilinear form ϕ : E

∼→E∗, where ϕ(f )(g) = 1
2 (q(f +

g) − q(f ) − q(g)), for any f , g ∈ E, is the form associated to the quadratic form
q(f ) := det(f ). Then [E, ϕ] = 0 in W(A) but the symmetric space (E, ϕ) is not
metabolic.

If Q is the field of fractions of A, it is easy to write ϕ ⊗A Q and to check it
is hyperbolic. Hence the class [E, ϕ] belongs to the kernel of the homomorphism
W(A) → W(Q), which is known to be injective (A is regular and dim(A) ≤ 3,
see e.g. Thm. 95 below). Hence [E, ϕ] = 0 and (E, ϕ) is stably metabolic. To see
that this symmetric space is not metabolic, assume the contrary. Here, a metabolic
space is hyperbolic (affine case and 1

2 ∈ A). So, we would have (E, ϕ) � H(M) for
some projective module M of rank 2. Using the hyperbolic form on H(M) and the
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presence of idP ∈ E with q(id) = det(id) = 1, one can find an element f ∈ E such
that q(f ) = −1, that is an endomorphism f : P → P with determinant −1. Such
an endomorphism cannot exist since it would yield a fibrewise decomposition of
P into two eigenspaces, and hence would guarantee the unlikely triviality of the
tangent space of the sphere.

(By the way, one can show that W(A) =̃ Z⊕ Z|2, see [42, § VIII.6.2].)

41Remark 41 The simplest schemes are the points X = Spec(k) for k a field, or
k a local ring, containing 1

2 . In these cases, the Witt group allows a complete
classification of quadratic forms – see Sect. 1.3.4. With this in mind, several people
got interested in the map W(A) → W(Q) for A a domain with field of fractions Q.
This is commented upon in Sect. 1.6.2.

Example 42. For elementary examples of Witt groups of affine schemes (i.e. com-
mutative rings) like for W(Z) = W(R) = Z, or, q being a power of

a prime, for W(Fq) = Z|2 when q is even, W(Fq) = Z|2[ε]/(ε2) or Z|4 when q ≡ 1
or 3 mod 4 respectively, or for W(Q) = W(Z) ⊕ ⊕

p∈P W(Fp), or for Witt groups
of other fields, or of Dedekind domains, and so on, the reader is referred to the
already mentioned [50] or to Scharlau [71].

Example 43. As a special case of Karoubi’s Thm. 53, we see that for any com-
mutative ring R containing 1

2 , for instance R = k a field of odd
characteristic, the Witt group of the affine space over R is canonically isomorphic
to the one of R:

W(An
R) = W(R) .

(See also Thm. 86 below.) The case of the projective space over a field is a celebrated
result of Arason [1] (compare Walter’s Thm. 104 below):

44Theorem 44: (Arason) Let k be a field of characteristic not 2 and let n ≥ 1. Then
W(Pn

k) = W(k).

This has been extended to Brauer–Severi varieties:

45Theorem 45: (Pumplün) Let k be a field of characteristic not 2. Let A be a central
simple k-algebra and X the associated Brauer–Severi variety.
(i) The natural morphism W(k) → W(X) is surjective.
(ii) When A is of odd index, W(k) → W(X) is injective.

See [67], where further references and partial results for twisted dualities are to be
found. Injectivity fails for algebras with even index, in general.



552 Paul Balmer

Example 46. Here is an example of the possible use of Witt groups in algebraic
geometry. The problem of Lüroth, to decide whether a unirational

variety is rational, is known to have a positive answer for curves over arbitrary fields
(Lüroth), for complex surfaces (Castelnuovo), and to fail in general. Simple counter-
examples, established by means of Witt groups, are given in Ojanguren [57], where
an overview can be found. See also [20, Appendix].

Here is another connection between Witt groups and algebraic geometry.

47 Theorem 47: (Parimala) Let R be a regular finitely generated R- or C-algebra of
Krull dimension 3. Then the Witt group W(R) is finitely generated if and only if
the Chow group CH2(R)|2 is finite.

See [64, Thm. 3.1] where examples are given; compare also Totaro’s Thm. 99
below. This important paper of Parimala significantly contributed to the study
of connections between Witt groups and étale cohomology. Abundant work re-
sulted from this, among which the reader might want to consider Colliot-Thélène –
Parimala [21], which relates to the subject of real connected components discussed
below in Sect. 1.3.2. In this direction, see also Scheiderer [73].

We end this Section by a short guide to the literature for a selection of results in
Krull dimension 1 and 2. The reader will find additional information in Knus [42,
§ VIII.2]. For Witt groups of fields (dim = 0), see Sect. 1.3.4.

In dimension 1, we have:

Dedekind domains: If D is a Dedekind domain with field of fractions Q, there is an
exact sequence: 0 → W(D) → W(Q)

∂→⊕p W(D|p) where the sum runs over the
non-zero primes p of D and where ∂ is the classical second residue homomorphism,
which depends on choices of local parameters. See [50, Chap. IV].

Elliptic curves: There is a series of articles by Arason, Elman and Jacob, describing
the Witt group of an elliptic curve with generators and relations. See Arason–
Elman–Jacob [2] for an overview and for further references. See also the work of
Parimala–Sujatha [65].

Real curves: For curves over R, the story stretches from the original work of
Knebusch [41, § V.4] to the most recent work of Monnier [53]. Note that the
latter gives a systematic overview including singular curves, which were already
considered in Dietel [23]. See also Rem. 49 below.

In dimension 2, we have:

Complex surfaces: Fernández-Carmena [24, Thm. 3.4] proved among other things
the following result: if X is a smooth complex quasi-projective surface then W(X) �
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(Z|2)1+s+q+b where s, q and b are the number of copies ofZ|2 in OX(X)∗/(OX(X)∗)2,
in 2Pic(X) and in 2Br(X) respectively.

Real surfaces: The main results are due to Sujatha [75, Thms. 3.1 and 3.2] and
look as follows. See also Sujatha - van Hamel [76] for further developments.

48Theorem 48: (Sujatha) Let X be a smooth projective and integral surface overR.
(i) Assume that X(R) �= ∅ and has s real connected components. Then

W(X) � Zs ⊕ (Z|2)m ⊕ (Z|4)n.

(ii) Assume that X(R) = ∅. Then

W(X) � (Z|2)m ⊕ (Z|4)n ⊕ (Z|8)t .

Moreover, the integers m, n and t can be described in terms of 2-torsion of the
Picard and Brauer groups of X, and of the level of R(X) in case (ii).

49Remark 49 For an algebraic variety X over R, the formulas describing W(X),
which can be found in the above literature, basically always look as follows: W(X) =
Z

s⊕(2-primary torsion part), where s is the number of real connected components
of X(R) and where cohomological invariants are used to control the 2-primary
torsion part. See Mahé’s result 51.

50Remark 50 Further results on Witt groups of schemes have been obtained by
means of triangular Witt groups and are presented in Sect. 1.6. Even in low di-
mension, say up to 3, the situation is quite clarified by the corollaries of Thm. 91
below.

Motivation From Real Algebraic Geometry 1.3.2

There is a long lasting love-story between quadratic forms and real algebraic
geometry, originating in their common passion for sums of squares. For a survey,
see [18, Chap. 15]; early ideas are again in Knebusch [41, Chap. V].

A nice application of Witt groups to real geometry is the following problem,
stated by Knebusch. Let X be an algebraic variety over R. Consider the set of real
points X(R) with the real topology. Then its connected components are conjec-
tured to be in one-to-one correspondence with signatures of W(X), that are ring
homomorphisms W(X) → Z. Basically, the construction goes as follows. Pick
a closed point x in X(R); its residue fieldR(x) isR and hence localization produces
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a homomorphism W(X) → W(R(x)) = Z and one can show that this homomor-
phism only depends on the connected component Cx of X(R) where x was chosen.
In this way, one obtains the following pairing, where CC(X(R)) denotes the above
set of real connected components

λ : CC(X(R)) × W(X) → Z

Cx , ϕ �→ ϕ(x) ∈ W(R(x)) = Z .

This can be read either as a map Λ : CC(X(R)) → Homrings(W(X),Z) or as a ring
homomorphism Λ∗ : W(X) → Cont(X(R),Z), the total signature map.

51 Theorem 51: (Mahé) Let X = Spec(A) be an affine real algebraic variety. Then
the map Λ is a bijection between the set of connected components of the real
spectrum Specr(A) and the set of signatures W(A) → Z.

See [47, Cor.3.3] for the above and see Houdebine–Mahé [31] for the extension
to projective varieties. In fact, a key ingredient in the proof consists in showing
that the cokernel of the total signature Λ∗ : W(X) → Cont(X(R),Z) is a 2-primary
torsion group. Knowing this, it is interesting to try understanding the precise
exponent of this 2-primary torsion group. Such exponents are obtained in another
work of Mahé [48], and more recently by Monnier [52].

Rings with Involution, Polynomials and Laurent Rings1.3.3

52 Definition 52 A ring with involution is a pair (R, σ) consisting of an associative
ring R and an involution σ : R → R, i.e. an additive homomorphism such that
σ(r · s) = σ(s) · σ(r), σ(1) = 1 and σ2 = idR.

For a left R-module M we can define its dual M∗ = HomR(M, R), which is
naturally a right R-module via (f · r)(x) := f (x) · r for all x ∈ M, r ∈ R and f ∈ M∗.
It inherits a left R-module structure via r · f := f ·σ(r), that is (r · f )(x) = f (x) ·σ(r).
There is a natural R-homomorphism ϖM : M → M∗∗ given by (ϖM(m))(f ) :=
σ(f (m)). When P ∈ R–Proj is a finitely generated projective left R-module, this
homomorphism ϖP is an isomorphism. Hence the category (R–Proj, ∗, ϖ) is an
additive category with duality. The same holds for (R–Proj, ∗, ε · ϖ) for any central
unit ε ∈ R× such that σ(ε) · ε = 1, like for instance ε = −1. The Witt group obtained
this way is usually denoted

Wε(R) := W(R–Proj , ∗ , ε · ϖ)

and is called the Witt group of ε-hermitian bilinear forms over R.
This part of Witt group theory is of course quite important, and the reader is

referred to the very complete Knus [42] for more information. We mention here
two big K-theory like results.
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53Theorem 53: (Karoubi) Let R be a ring with involution containing 1
2 . Then

Wε(R[T]) = Wε(R), where R[T] has the obvious involution fixing T.

See Karoubi [37, Part II]. An elementary proof is given in Ojanguren–Panin [59,
Thm. 3.1], who also prove a general theorem for the Witt group of the ring of
Laurent polynomials, giving in particular:

54Theorem 54: (Ranicki) Let R be a regular ring with involution containing 1
2 . Then

the following homomorphism

Wε(R) ⊕ Wε(R) → Wε (
R[T, T−1]

)
(α, β) �→ α + β · 〈T〉

is an isomorphism, where the involution on R[T, T−1] fixes the variable T.

See Ranicki [69] where regularity is not required (neither is it in [59]) and where
suitable Nil-groups are considered. Compare Thm. 103 below.

Semi-local Rings and Fields 1.3.4

Recall that a commutative ring R is semi-local if it has only finitely many maximal
ideals. Local rings and fields are semi-local.

55Theorem 55: (Witt Cancellation) Let R be a commutative semi-local ring in
which 2 is invertible. If (P1, ϕ1), (P2, ϕ2) and (Q, ψ) are symmetric spaces such
that (P1, ϕ1)⊥(Q, ψ) is isometric to (P2, ϕ2)⊥(Q, ψ), then (P1, ϕ1) and (P2, ϕ2) are
isometric.

This was first proven for fields by Witt [86]. This result and much more infor-
mation on these cancellation questions can be found in Knus [42, Chap. VI].

56Remark 56 The above result is wrong for non-commutative semi-local rings, i.e.
rings R such that R| rad(R) is semi-simple. Keller [39] gives a very explicit counter-
example, constructed as follows: let k be a field of odd characteristic; let A0 be
the semi-localization of k[X, Y]|(X2 + Y2 − 1) at the maximal ideals ξ = (0, 1) and
η = (0, −1); let B ⊂ A0 be the subring of those f ∈ A0 such that f (ξ) = f (η);
finally define the non-commutative semi-local ring to be A =

{(
b r
s a0

) ∣∣ b ∈ B , a0 ∈
A0 , r, s ∈ rad(A0)

}
with transposition as involution. Then there are two symmetric

forms on the same projective right A-module N :=
(

1 0
0 0

)·A which are not isometric
but become isometric after adding the rank one space (A, 〈1〉). See more in [39] or
in [42, VI.5.1].

57Remark 57 Let R be a commutative semi-local ring containing 1
2 , with Spec(R)

connected (otherwise do everything component by component). Then any finitely
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generated projective R-module if free. Using the sublagrangian reduction 32 and
the above Witt cancellation, we know that any symmetric space (P, ϕ) over R can
be written up to isometry as

(P, ϕ) � (P0, ϕ0)⊥ H(Rm)

for m ∈ N and for (P0, ϕ0) without admissible sublagrangian – let us say that
the space (P0, ϕ0) is (admissibly) anisotropic – and we know that the number m
and the isometry class of (P0, ϕ0) are unique. Moreover, the spaces (P, ϕ) and
(P0, ϕ0) are Witt equivalent and by Witt cancellation again, there is exactly one
(admissibly) anisotropic space in one Witt class. This establishes the following
result, the original motivation for studying Witt groups:

58 Corollary 58 Let R be a commutative semi-local ring containing 1
2 (for instance

a field of characteristic not 2). The determination of the Witt group W(R) allows
the classification up to isometry of all quadratic forms over R.

59 Remark 59 Reading the above Corollary backwards, we avoid commenting the
huge literature on Witt groups of fields, by referring the reader to the even bigger
literature on quadratic forms at large. See in particular Lam [45], Scharlau [71] and
Serre [74]. For instance, there exist so-called structure theorems for Witt groups of
fields, due to Witt, Pfister, Scharlau and others, and revisited in Lewis [46], where
further references can also be found. In fact, several results classically known
for fields extend to (commutative) semi-local rings. See [41, Chap. II] again or
Baeza [3].

A Glimpse at Other Theories1.4

Our Chapter focusses on the internal theory of Witt groups but the reader might
be interested in knowing which are the neighbor theories, more or less directly
related to Witt groups. We give here a rapid overview with references.

Quadratic forms: When 2 is not a unit one must distinguish quadratic forms from
the symmetric forms we mainly considered. See the classical references already
given in Remark 59. The Witt group of quadratic forms can also be defined, see for
instance Milnor–Husemoller [50, App. 1]. See also the recent Baeza [4] for quadratic
forms over fields of characteristic two. The reader looking for a systematic treatise
including quadratic forms and their connections with algebraic groups should
consider the book [43].

Motivic approach: Techniques from algebraic geometry, Chow groups and mo-
tives, have been used to study quadratic forms over fields, by means of the corre-
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sponding quadrics. See the work of Izhboldin, Kahn, Karpenko, Merkurjev, Rost,
Sujatha, Vishik and others, which is still in development and for which we only
give here a sample of references: [32–35, 38] among many more.

Topological Witt groups: Let M be a smooth paracompact manifold and let
R = C∞(M,R) be the ring of smooth real-valued functions on M. It is legitimate,
having Swan–Serre’s equivalence in mind, to wonder if the Witt group of such
a ring R can be interpreted in terms of the manifold M. The answer is that W(R)
is isomorphic to KO(M) the real (topological) K0 of M, that is the Grothendieck
group of isomorphism classes of real vector bundles over M. This is due to Lusztig
see [50, § V.2]. This should not be mistaken with the Witt group of real algebraic
varieties discussed above.

Cohomological invariants: We already mentioned briefly in Rem. 49 the impor-
tance of cohomological invariants in the part dedicated to real algebraic geometry.
For quadratic forms over fields, the relation between Witt groups and Galois coho-
mology groups is the essence of the famous Milnor Conjecture [49], now proven by
Voevodsky, see e.g. Orlov, Vishik and Voevodsky [60]. See also Pfister’s historical
survey [66].
For a scheme X, there is a homomorphism rk : W(X) → Cont(X,Z|2), the reduced
rank, to the continuous (hence locally constant) functions from X to Z|2, which
sends a symmetric space to its rank modulo 2 (metabolic spaces have even rank).
The fundamental ideal I(X) of W(X) is the kernel of this homomorphism.

Following [42, § VIII.1], we denote by Disc(X) the abelian group of isometry
classes of symmetric line bundles, with ⊗ as product. We denote by δ : I(X) →
Disc(X) the signed discriminant, which sends the class of an even-rank symmetric
space (E, ϕ) of rank 2m to the symmetric bundle 〈(−1)m〉 · (∧mE, ∧mϕ).

One can define further the Witt invariant, which takes values in the Brauer
group, see Knus [42, § IV.8] and which is defined by means of Clifford algebras. See
also Barge–Ojanguren [15] for the lift of the latter to K-theory. Higher invariants
are not known in this framework. One can try to define general invariants into
subquotients of K-theory groups, for arbitrary exact categories or in more general
frameworks. This was started by Szyjewski in [77] and remains “in progress” for
higher ones.

Grothendieck–Witt groups: One often considers also GW the Grothendieck–Witt
group, which is defined by the same generators as the Witt group but with less
relations; namely if a space (P, ϕ) is metabolic with lagrangian L then one sets
the relation (P, ϕ) − H(L) = 0 in the Grothendieck–Witt group, instead of the
relation (P, ϕ) = 0 ( = H(L) ) in the Witt group. There is a group homomorphism
K0 → GW, induced by the hyperbolic functor L �→ H(L) and whose cokernel is
the Witt group. We intentionally do not specify what sort of categories we define
GW(−) for, because it applies whenever the Witt group is defined. For instance,
in the triangular framework of the next two sections, it is also possible to define
Grothendieck–Witt groups, as recently done by Walter [83].
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Hermitian K-theory, Karoubi’s Witt groups: The above Grothendieck -Witt group
is equal to Kh

0 , the 0-th group of Karoubi’s hermitian K-theory. For a recent ref-
erence, see Hornbostel [29], where hermitian K-theory is extended to exact cat-
egories. There are higher and lower hermitian K-theory groups Kh

n and natural
homomorphisms Hyp : Kn → Kh

n from K-theory towards hermitian K-theory,
which fit in Karoubi’s “Fundamental Theorem” long exact sequence. Karoubi’s
Witt groups are defined in a mixed way, namely as the cokernels of these homo-
morphisms Hyp : Kn → Kh

n . For regular rings, these groups coincide with the
triangular Witt groups, see more in [36] or in [30].

L-theory: We refer the reader to Williams [85] in this Handbook or to Ran-
icki [70] for the definition of the quadratic and symmetric L-theory groups of
Wall–Mischenko–Ranicki and for further references. We shortly compare them to
the triangular Witt groups to come. First, like triangular Witt groups, L-groups are
algebraic, that is, their definition does not require the above hermitian K-theory.
Secondly, unlike triangular Witt groups, L-groups also work when 2 is not assumed
invertible and this is of central importance in surgery theory. Unfortunately, it does
not seem unfair to say that the definition of these L-groups is rather involved and
requires some heavy use of complexes.
The advantage of triangular Witt theory is two-fold: first, it applies to non-split
exact categories and hence to schemes, and secondly, by its very definition, it
factors via triangulated categories, freeing us from the burden of complexes.

Note that both theories coincide over split exact categories under the assump-
tion that 2 is invertible and that even in the non-split case, the derived Witt groups
of an exact category have a formation-like presentation by generators and relations
(see Walter [83]). In the present stage of the author’s understanding, the triangular
theory of Witt groups, strictly speaking, does not exist without the “dividing by
2” assumption. Nevertheless, even when 2 is not assumed invertible, there are
good reasons to believe that a sort of “L-theory of non-necessarily-split exact cat-
egories” should exist, unfolding the higher homotopies in a Waldhausen-category
framework, using weak-equivalences, cofibrations and so on, but most probably
renouncing the elegant simplicity of the triangular language...

Triangular Witt Groups: General Theory1.5

The second half of this Chapter is dedicated to triangular Witt groups, i.e. Witt
groups of triangulated categories with duality. The style is quite direct and a reader
needing a more gentle introduction is referred to [10].

Basic Notions and Facts1.5.1

All definitions and results of this section are to be found in [6].
For the definition of a triangulated category we refer to Verdier’s original

source [81], to Weibel [84, Chap. 10], or to [6, § 1], where the reader can find
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Axiom (TR 4+), the enriched version of the Octahedron Axiom, due to Bĕılinson,
Bernstein and Deligne [17]. All known triangulated categories and all triangulated
categories considered below satisfy this enriched axiom. Note that a triangulation
is an additional structure, not intrinsic, on an additive category K , which consists
of a translation or suspension T : K → K plus a collection of distinguished
triangles satisfying some axioms. The fundamental idea is to replace admissible
exact sequences by distinguished triangles.

60Definition 60 Let δ = 1 or −1. A triangulated category with δ-duality is an additive
category with duality (K ,#, ϖ) in the sense of Def. 6, where K is moreover
triangulated, and satisfying the following conditions:
(a) The duality# is a δ-exact functor Kop → K , which means that

T ◦# =̃ # ◦ T−1

(we consider this isomorphism as an equality) and, more important, that for
any distinguished triangle A

u→ B
v→ C

w→ T(A) in K , the following triangle
is exact:

C#
v#→ B#

u#→ A#
δ·T(w#)→ T(w#) .

(b) The identification ϖ between the identity and the double dual is compatible
with the triangulation, which means ϖT(M) = T(ϖM) for all M ∈ K .

Note that all “additive notions” presented in Sect. 1.2.1 also make sense in this
framework, as for instance the monoid MW(K ,#, ϖ) of symmetric spaces (Def. 24).
We now explain how the other classical notions which depended on the exact cat-
egory structure (absent here) can be replaced.

61Definition 61 A symmetric space (P, ϕ) is called neutral (or metabolic if no confu-
sion occurs) when it admits a lagrangian, i.e. a triple (L, α, β) such that α : L → P
is a morphism, such that the following triangle is distinguished

L
α→ P

α#ϕ→ L#
β→ T(L)

and such that β : L# → T(L) is δ-symmetric, which here means:

δ · T(β#) = ϖT(L) ◦ β .

In short, the symmetric short exact sequence L � P � L∗ is replaced by the
above symmetric distinguished triangle. Note that we still have α#ϕα = 0, that
is (L, α) is a sublagrangian. (By the way, there is a triangular partial analogue of
the sublagrangian reduction, called the sublagrangian construction, which can be
found in [6, § 4] or, in a simpler case, in [5, § 3].)
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62 Definition 62 Let (K ,#, ϖ) be a triangulated category with δ-duality. As before,
its Witt group is the following quotient of abelian monoids:

W(K ,#, ϖ) :=
MW(K ,#, ϖ)

NW(K ,#, ϖ)
,

where NW(K ,#, ϖ) is the submonoid of MW(K ,#, ϖ) consisting of the classes
of neutral spaces.

63 Definition 63 Let (K ,#, ϖ) be a triangulated category with δ-duality. Let n ∈ Z
arbitrary. Then the square of the functor Tn ◦# : Kop → K is again isomorphic
to the identity, but this functor Tn# is only δn-exact, where δn := (−1)n · δ. We
define the n-th shifted duality on K to be

Tn
(
(K ,#, ϖ)

)
:=

(
K , Tn ◦# , εn · ϖ

)
,

where εn := (−1)
n(n+1)

2 · δn.

It is easy to check that Tm
(
Tn(K ,#, ϖ)

)
= Tm+n(K ,#, ϖ) for any m, n ∈ Z,

keeping in mind that the δn-exactness of Tn# is given by δn = (−1)n · δ.

64 Definition 64 The n-th shifted Witt group of (K ,#, ϖ), or simply of K , is defined
as the Witt group of Tn(K ,#, ϖ):

Wn(K ,#, ϖ) := W
(
Tn(K ,#, ϖ)

)
.

65 Proposition 65 For any n ∈ Z we have a natural isomorphism, induced by T :
K → K , between Wn(K ,#, ϖ) and Wn+2(K ,#, − ϖ). In particular, we have the
4-periodicity: Wn(K ,#, ϖ) =̃ Wn+4(K ,#, ϖ).

See [6, Prop. 2.14]. In fact, these isomorphisms are induced by equivalences of
the underlying triangulated categories with duality.

Example 66. Assume that (K ,#, ϖ) is a triangulated category with exact du-
ality (that is δ = +1). Then so is T2(K ,#, ϖ) and the latter is

isomorphic to (K ,#, −ϖ). The other two T1(K ,#, ϖ) and T3(K ,#, ϖ) are both
categories with skew-exact duality (that is δ1 = δ3 = −1), respectively isomorphic
to (K , T# , −ϖ) and (K , T# , ϖ).

67 Definition 67 A morphism of triangulated categories with duality (F, η) is a mor-
phism of categories with duality (Def. 5) such that F is an exact functor, i.e. F
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sends distinguished triangles to distinguished triangles. More precise definitions
are available in [14] or in [27]. With this notion of morphism, all the groups Wn(−)
constructed above become functorial.

The following very useful result [6, Thm. 3.5] contrasts with the classical frame-
work (compare Ex. 40):

68Theorem 68 Let K be a triangulated category with duality containing 1
2 (see 69).

Then a symmetric space (P, ϕ) which is Witt-equivalent to zero, i.e. such that
[P, ϕ] = 0 ∈ W(K), is necessarily neutral.

Agreement and Localization 1.5.2

69Definition 69 Let A be an additive category (e.g. a triangulated category). We say
that “ 1

2 ∈ A ” when the abelian groups HomA(M, N) are uniquely 2-divisible for
all objects M, N ∈ A, i.e. if A is a Z[ 1

2 ]-category.

The main result connecting usual Witt groups to the triangular Witt groups is
the following.

70Theorem 70 Let (E , ∗, ϖ) be an exact category with duality such that 1
2 ∈ E . Equip

the derived category Db(E) with the duality # derived from ∗. Then the obvious
functor E → Db(E), sending everything in degree 0, induces an isomorphism

W(E , ∗, ϖ)
�→ W

(
Db(E),#, ϖ

)
.

This is the main result of [7, Thm. 4.3], under the mild assumption that E is
semi-saturated. The general case is deduced from this in [14, after Thm. 1.4].

Example 71. The above Theorem provides us with lots of (classical) examples:
all those described in Sect. 1.3, the most important being schemes.

So, if X is a scheme “containing 1
2 ” (i.e. a scheme over Z[ 1

2 ]) and if the bounded
derived category K(X) := Db(VBX) of vector bundles over X is equipped with the
derived duality twisted by a line bundle L (e.g. L = OX), then W0

(
K(X)

)
is the

usual Witt group of Knebusch W(X, L) and similarly W2
(
K(X)

)
is the usual Witt

group of skew-symmetric forms W−(X, L). The Witt groups

Wn
(
Db(VBX)

)

are often called the n-th derived Witt groups of X. They are functorial (contravari-
ant) for any morphism of scheme. Other triangulated categories with duality can
be associated to a scheme X, see 78 below.
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72 Remark 72 Let us stress that the definitions of Sect. 1.5.1 also make sense when 2 is
not assumed invertible. The 1

2 -assumption is used to prove results, like Thm. 70 for
instance. As already mentioned, in the case of the derived category (Db(E),#, ϖ) of
an exact category with duality (E , ∗, ϖ), Walter has a description of W1 and of W3

in terms of formations, generalizing the “split” L-theoretic definitions. See [83].

The key computational device in the triangular Witt group theory is the follow-
ing localization theorem.

73 Theorem 73 Let (K ,#, ϖ) be a triangulated category with duality such that 1
2 ∈ K .

Consider a thick subcategory J ⊂ K stable under the duality, meaning that
(J)# ⊂ J. Induce dualities from K to J and to L := K |J. We have, so to speak,
an exact sequence of triangulated categories with duality:

J�K � L.

Then, there is a 12-term periodic long exact sequence of Witt groups:

· · · → Wn−1(L)
∂→ Wn(J) → Wn(K) → Wn(L)

∂→ Wn+1(J) → · · ·

where the connecting homomorphisms ∂ can be described explicitly.

This is [6, Thm. 6.2], with the easily removable extra hypothesis that K is
“weakly cancellative” (see [14, Thm. 2.1] for how to remove it).

74 Remark 74 In applications, one often knows K and a localization K � L, like in
the case of the derived category of a regular scheme and of an open subscheme.
Then the J is defined as the kernel of this localization and the relative Witt groups
are defined to be the Witt groups of J. See Sect. 1.6.1.

Products and Cofinality1.5.3

The product structures on the groups Wn have been discussed in Gille–Nena-
shev [27]. Inspired by the situation of a triangulated category with duality and
compatible tensor product, they consider the general notion of (external) dualizing
pairing [27, Def. 1.11].

75 Theorem 75: (Gille–Nenashev) Let� : K ×L → M be a dualizing pairing. This
induces naturally a left and a right pairing

Wr(K) × Ws(L)
∗l→∗r

Wr+s(M)
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differing by signs, having the following properties:
i. When K = L = M, both products turn ⊕

n∈Z
Wn(K) into a graded ring.

ii. The multiplicative structure is compatible with localization.
iii. The multiplicative structure is compatible with 4-periodicity.

Points (i) and (ii) are in [27, Thm. 2.9 and 2.11], for (iii) see [11, App. 1].
The behaviour of Witt groups with respect to idempotent completion can be

controlled with the following result of [30], whose proof uses the technicalities
(and not only the front results) of [6]. See [30, App. I].

76Theorem 76: (Hornbostel–Schlichting) Let B be a triangulated category with δ-
duality (δ = ±1) and A a full triangulated subcategory which is cofinal (i.e. any
object b ∈ B is a direct summand of an object of A). Then there is a 12-term
periodic long exact sequence

· · · → Wn(A) → Wn(B) → Ĥn
(
Z|2Z , K0(B)|K0(A)

) → Wn+1(A) → · · ·

involving Tate cohomology groups of Z|2Z with coefficients in K0(B)|K0(A), on
which Z|2Z acts via the duality, and where K0 is the 0-th K-theory group.

Witt Groups of Schemes Revisited 1.6

Witt Cohomology Theories 1.6.1

Consider a scheme X containing 1
2 . Consider a presheaf (K ,#, ϖ) of triangulated

categories with duality on the scheme X. That is: for each Zariski-open U ↪→
X, we give a triangulated category with duality K(U) and a restriction qV ,U :
K(U) → K(V) for each inclusion V ↪→ U , which is assumed to be a localization
of triangulated categories, in a compatible way with the duality, and with the usual
presheaf condition.

For each U ⊂ X one can then consider the Witt groups of K(U), which we
denote

Wn
(
K(U)

)
.

Here is a list of such presheaves, with their presheaves of Witt groups.

Example 77. Assume that X is regular (that is here: noetherian, separated and the
local rings OX,x are regular for all x ∈ X). For each open U ⊂ X,

put K(U) := Db(VBU) the bounded derived category of vector bundles over U .
Regularity is used to insure that the restriction K(X) → K(U) is a localization.
By 71, the 0-th and 2-nd Witt groups of K(U) are the usual Witt groups of U of
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symmetric and skew-symmetric forms, respectively. The latter result remains true
without regularity of course.

Example 78. Assume that X is Gorenstein of finite Krull dimension. For each
open U ⊂ X, put K(U) := Db

Coh(QCohU ) the derived category of
bounded complexes of quasi-coherent OU -modules with coherent homology. The
duality is the derived functor of HomOU (−, OU ). See details in Gille [25, § 2.5]. The
Witt group obtained this way

W̃n(U) := Wn
(
Db

Coh(QCohU )
)

is called the n-th coherent Witt groups of U . The groups W̃n(−) are only functorial
for flat morphisms of schemes. They do not agree with derived Witt groups of 71
in general but do in the regular case, since the defining triangulated categories are
equivalent.

Example 79. Let X be a scheme containing 1
2 . One can equip the category of

perfect complexes over X with a duality, essentially as above. The
Witt group obtained this way could be called the perfect Witt groups. Nevertheless,
the presheaf of triangulated categories U �→ Dperf (U) would fit in the above
approach only when U �→ K0(U) is flasque (it is not clear if this is really much
more general than 77). Without this assumption, there will be a 2-torsion noise
involved in the localization sequence below, by means of Thm. 76.

To any such data, we can associate relative Witt groups, as follows.

80 Definition 80 Let X be a scheme and U �→ K(U) a presheaf of triangulated
categories with duality as above. Let Z ⊂ X be a closed subset. Let us define
Wn

Z , the Witt groups with supports in Z as the Witt groups of the kernel category
KZ(X) := ker

(
K(X)�K(X \ Z)

)

Wn
Z

(
K(X)

)
:= Wn

(
KZ(X)

)
.

More generally, for any U ⊂ X, one defines Wn
Z(K(U)) as being Wn

Z∩U(K(U)).

We have the following cohomological behaviour.

81 Theorem 81 With the above notations, we have a 12-term periodic long exact
sequence

· · · → Wn−1(U) → Wn
Z(X) → Wn(X) → Wn(U) → Wn+1

Z (X) → · · ·

where Wn(−) is a short for Wn(K(−)), when the triangulated categories K(−) are
clear from the context and similarly for Wn

Z (−).
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This follows readily from the Localization Theorem 73. This was considered
for derived Witt groups in [8, Thm. 1.6], and for coherent Witt groups in [25,
Thm. 2.19]. We turn below to the question of identifying the groups W∗

Z(X) with
some groups W∗(Z), but we first obtain as usual the following:

82Corollary 82 Assume that our presheaf K of triangulated categories is natural in
X and excisive with respect to a class C of morphisms of schemes, i.e. for any
morphism f : Y → X in C and for any closed subset Z ⊂ X such that f −1(Z)

∼→Z
(with reduced structures), then the induced functor

f ∗ : KZ(X) → Kf −1(Z)(Y)

is an equivalence. (This is the case for K(X) = Db(VBX) from Ex. 77 and C =
flat morphisms of regular schemes; it is also the case for K(X) = Db

Coh(QCohX)
from Ex. 78 and C= flat morphisms of Gorenstein schemes.) Then, for any such
morphism f : Y → X, any Z ⊂ X such that Z′ := f −1(Z)

∼→Z, there is a Mayer–
Vietoris long exact sequence:

· · · → Wn−1(Y \ Z′) → Wn(X) → Wn(Y) ⊕ Wn(X \ Z) → Wn(Y \ Z′) → · · ·

where Wn(−) is a short for Wn(K(−)). (So this applies to derived Witt groups over
regular schemes and to coherent Witt groups over Gorenstein schemes.)

83Remark 83 This holds in particular in the usual situation where Y := U is an open
subset, where f : U ↪→ X is the inclusion and where Z ⊂ U . In this case, putting
V := X \ Z, we have X = U ∪ V and Y \ f −1(Z) = U ∩ V , recovering in this way the
usual Mayer–Vietoris long exact sequence. The above generality is useful though,
since it applies to elementary distinguished squares in the Nisnevich topology for
instance. Observe that this result is a direct consequence of the following three
things: first, the very definition of relative Witt groups via triangulated categories;
secondly, the excision property of triangulated categories themselves; thirdly, of
course, the localization theorem.

We now turn to dévissage (in the affine case).

84Theorem 84: (Gille) Let R be a Gorenstein Z[ 1
2 ]-algebra of finite Krull dimen-

sion n and let J ⊂ R be an ideal generated by a regular sequence of length l ≤ n.
Then the closed immersion ι : Spec(R|J) → Spec(R) induces an isomorphism:

W̃i(R|J)
�→ W̃i+l

J (R)

where, of course, W̃j
J (R) := W̃j

Z(R) is the j-th coherent Witt group of R with supports
in the closed subset Z = V(J) of Spec(R) defined by J.
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This is [25, Thm. 4.1]. Since coherent and derived Witt groups agree in the
regular case, one has the obvious and important:

85 Corollary 85: (Gille) Let R be a regular Z[ 1
2 ]-algebra of finite Krull dimension

and let J ⊂ R be an ideal generated by a regular sequence of length l. Assume
moreover that R|J is itself regular. Then there is an isomorphism of derived Witt
groups:

Wi(R|J)
�→ Wi+l

J (R) .

It is natural to ask if the cohomology theory obtained by derived (and coherent)
Witt groups is homotopy invariant. The following result is a generalization of
Karoubi’s Theorem 53.

86 Theorem 86 Let X be a regular scheme containing 1
2 . Then the natural homomor-

phism of derived Witt groups Wi(X) → Wi(A1
X) is an isomorphism for all i ∈ Z.

(In particular, for i = 0, this is an isomorphism of classical Witt groups.)

This is [8, Cor. 3.3] and has then been generalized in [26] as follows (using
coherent Witt group versions of the result):

87 Theorem 87: (Gille) Let X be a regular scheme containing 1
2 and let E → X

be an affine bundle. Then the natural homomorphism Wi(X) → Wi(E) is an
isomorphism for all i ∈ Z.

Local to Global1.6.2

Recall our convention: regular means regular, noetherian and separated.
Consider an integral scheme X, for instance (the spectrum of) a domain R, and

consider its function field Q (the field of fractions of R). It is natural to study the
homomorphism

W(X) → W(Q)

e.g. because the Witt groups of fields are better understood (see Cor. 58). It is
immediate that for R = R[X, Y]|(X2 + Y2), the map Z � W(R) → W(R) is
split injective but that W(Q) is 2-torsion, since −1 is a square in Q and hence
that 2 · [P, ϕ] = [(P, ϕ)⊥(P, ϕ)] = [(P, ϕ)⊥(P, −ϕ)] = 0. So the homomorphism
W(R) → W(Q) is not injective in general.

For regular schemes of dimension up to 3, injectivity of W(X) → W(Q) holds:
see Thm 95 below. It is well-known to fail in dimension 4 already, even for affine
regular schemes. For an example of this, see Knus [42, Ex. VIII.2.5.3]. Never-
theless, injectivity remains true in the affine complex case, see Pardon [62] and
Totaro [80]. In [9] it is proven that the kernel of W(X) → W(Q) is nilpotent with
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explicit exponent, generalizing earlier results of Craven–Rosenberg–Ware [22] and
Knebusch [41].

88Theorem 88 Let X be a regular scheme containing 1
2 and of finite Krull dimension

d. Then there is an integer N, depending only on [ d4 ] such that the N-th power of
the kernel of W(X) → W(Q) is zero in W(X).

One can always take N = 2[ d
4 ] and one can take N = [ d4 ] + 1 if the conjectural

injectivity W(OX,x) ↪→ W(Q) holds for all x ∈ X. This is indeed the case when
X is defined over a field, as we discuss below. Moreover, Example [9, Cor. 5.3]
show that [ d4 ] + 1 is the best exponent in all dimensions. We have alluded to the
following conjecture of Knebusch, which is a special case of a general conjecture
of Grothendieck:

89Conjecture 89 Let R be a regular (semi-)local domain containing 1
2 and let Q be its

field of fractions. Then the natural homomorphism W(R) → W(Q) is injective.

The key result about this conjecture was obtained by Ojanguren in [56] and
says that the conjecture holds if R is essential of finite type over some ground field.
Conjecture 89 has been upgraded as follows by Pardon [61]:

90Conjecture 90: (Gersten Conjecture for Witt groups) Let R be a regular (semi-)
local ring containing 1

2 . There exists a complex

0 → W(R) →
⊕

x∈X(0)

W(κ(x)) →
⊕

x∈X(1)

W(κ(x)) → · · · →
⊕

x∈X(d)

W(κ(x)) → 0

and it is exact ; where X is Spec(R), X(p) are the primes of height p and d = dim(X).
The complex is now admitted to be the one of 91 below.

For a long time, it remained embarrassing not even to know a complex as above
(call this a Gersten–Witt complex), which one would then conjecture to be exact. In
the case of K-theory, the complex is directly obtained from the coniveau filtration.
Analogously, by means of triangular Witt groups and of the localization theorem, it
became possible to construct Gersten–Witt complexes for all regular schemes [14,
Thm. 7.2]:

91Theorem 91: (Balmer–Walter) Let X be a regular scheme containing 1
2 and of

finite Krull dimension d. Then there is a convergent (cohomological) spectral
sequence E

p,q
1 ⇒ Wp+q(X) whose first page is isomorphic to copies of a Gersten–

Witt complex for X in each line q ≡ 0 modulo 4 and whose other lines are zero.
These isomorphisms involve local choices but a canonical description of the first
page is:

E
p,q
1 := Wp+q

(
D(p) | D(p+1)

)
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where D(p) = D(p)(X) is the full subcategory of Db(VBX) of those complexes having
support of their homology of codimension ≥ p.

This was reproven and adapted to coherent Witt groups with supports in
Gille [25, Thm. 3.14]. Using Thm. 91, the following Corollaries are immediate:

92 Corollary 92 Let X be regular integral Z[ 1
2 ]-scheme of dimension 1. Let x0 be the

generic point and Q = κ(x0) be the function field of X. There is an exact sequence:

0 → W(X) → W(Q)
∂→

⊕

x∈X\{x0}
W(κ(x)) → W1(X) → 0

and we have W2(X) = W3(X) = 0.

Example 93. The above applies in particular to Dedekind domains containing 1
2 .

For instance for D := R[X, Y]|(X2 + Y2 − 1), it follows from [50,
Ex. IV.3.5] that W1(D) � Z. Here, W(D) = Z⊕ Z|2, see [42, VIII.6.1].

94 Corollary 94 Let X be a regular scheme containing 1
2 and of Krull dimension d ≤ 4.

Let Wnr(X) be the unramified Witt group of X. The homomorphism W(X) →
Wnr(X) is surjective.

95 Corollary 95 Let X be a regular integral Z[ 1
2 ]-scheme of Krull dimension 3 and of

function field Q. Then, the above Gersten–Witt complex

0 → W(X) → W(Q) →
⊕

x∈X(1)

W(κ(x)) →
⊕

x∈X(2)

W(κ(x)) →
⊕

x∈X(3)

W(κ(x)) → 0

is exact at W(X) and at W(Q) and its homology in degree i (that is, where X(i)

appears) is isomorphic to Wi(X) for i = 1, 2, 3.

See [14, § 10] for detailed results and definitions as well as for the following:

96 Corollary 96 Let X be regular scheme containing 1
2 and of dimension at most 7.

Then, with the notations of Thm. 91, there is an exact sequence:

0 → E2
4,0 → W0(X) → E2

0,0 → E2
5,0 → W1(X) → E2

1,0

↓
. 0 ← E2

3,0 ← W3(X) ← E2
7,0 ← E2

2,0 ← W2(X) ← E2
6,0

Note that E2
p,0 is the p-th homology group of the Gersten–Witt complex of X.

97 Corollary 97 The Gersten Conjecture holds in low dimension up to 4.
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This is [14, Thm. 10.4] in the local case. For semi-local, one needs [9, Cor. 3.6]
plus the local vanishing of shifted Witt groups, which holds in any dimension:

98Theorem 98: (Balmer–Preeti) Let R be a semi-local commutative ring contain-
ing 1

2 . Then Wi(R) = 0 for i �≡ 0 modulo 4.

This is [7, Thm. 5.6] for local rings and will appear in [13] in general.
Totaro [80] used the above spectral sequence 91 in combination with the Bloch–

Ogus and the Pardon spectral sequences (see [63] for the latter) to bring several
interesting computations. He provides an example of a smooth affine complex 5-
fold U such that W(U) → W(C(U)) is not injective and also gives a global complex
version of Parimala’s result 47 (note that being finitely generated over W(C) = Z|2
means being finite), see [80, Thm. 1.4]:

99Theorem 99: (Totaro) Let X be a smooth complex 3-fold. Then the Witt group
W(X) is finite if and only if the Chow group CH2(X)|2 is finite.

We return to the Gersten Conjecture 90. In [58], Ojanguren and Panin es-
tablished Purity, which is exactness of the complex at the first two places, for
regular local rings containing a field. Using the general machinery of homo-
topy invariant excisive cohomology theories, as developed in Colliot-Thélène–
Hoobler–Kahn [19], the author established the geometric case of the following
result in [8]:

100Theorem 100 The Gersten Conjecture 90 holds for semi-local regular k-algebras
over any field k of characteristic different from 2.

Like for the original K-theoretic Gersten Conjecture, the geometric case [8,
Thm. 4.3] is the crucial step. It can then be extended to regular local k-algebras
via Popescu’s Theorem, by adapting to Witt groups ideas that Panin introduced in
K-theory. This is done in [12]. Now that we have the vanishing of odd-indexed Witt
groups for semi-local rings as well, see Thm. 98, this Panin–Popescu extension also
applies to semi-local regular k-algebras, as announced in the statement. Details of
this last step have been checked in [51].

Computations 1.6.3

Here are some computations using triangular Witt groups:

101Theorem 101: (Gille) Let R be a GorensteinZ[ 1
2 ]-algebra of finite Krull dimension

and n ≥ 1. Consider the hyperbolic affine (2n − 1)-sphere

Σ2n−1
R := Spec

(
R [ T1, … , Tn , S1, … , Sn ]

/ (
1 −

n∑

i=1
TiSi

))
.



570 Paul Balmer

Then its coherent Witt groups are W̃i(Σ2n−1
R ) = W̃i(R) ⊕ W̃i+1−n(R). In particular

for R regular, these are derived Witt groups. In particular for R = k a field, or
a regular semi-local ring, the classical Witt groups of Σ2n−1

k is

W(Σ2n−1
k ) =





W(k) ⊕ W(k) if n ≡ 1 modulo 4

W(k) if n �≡ 1 modulo 4 .

102 Theorem 102: (Balmer–Gille) Let X be a regular scheme containing 1
2 and

let n ≥ 2. Consider the usual punctured affine space Un
X ⊂ A

n
X defined by

U
n
X =

⋃n
i=1{ Ti �= 0 }. Then its total graded Witt ring Wtot :=

⊕
i∈Z |4 Wi is:

Wtot(Un
X) � Wtot(X)[ ε ] / ε2 = Wtot(X) ⊕ Wtot(X) · ε

where ε ∈ Wn−1(Un
X) is of degree n − 1 and squares to zero: ε2 = 0.

The element ε is given quite explicitly in [11] by means of Koszul complexes.
The above hypothesis n ≥ 2 is only needed for proving ε2 = 0. For n = 1, the
schemeU1

X = X × Spec
(
Z[T, T−1]

)
is the scheme of Laurent “polynomials” over X

and one has the following generalization of Thm. 54:

103 Theorem 103 Let X be a regular scheme containing 1
2 . Consider the scheme of

Laurent polynomials X[ T, T−1] = U1
X . There is an isomorphism:

Wi(X) ⊕ Wi(X) � Wi
(
X[ T, T−1]

)

given by (α, β) �→ α + β · 〈T〉 where 〈T〉 is the rank one space with form T.

The most striking computation obtained by means of triangular Witt groups is
probably the following generalization of Arason’s Theorem 44:

104 Theorem 104: (Walter) Let X be a scheme containing 1
2 and r ≥ 1. Let Pr

X be the
projective space over X. Let m ∈ Z|2. Consider O(m) ∈ Pic(Pr

X)|2.

For r even, Wi
(
P

r
X , O(m)

)
=





Wi(X) for m even

Wi−r(X) for m odd.

For r odd, Wi
(
P

r
X , O(m)

)
=





Wi(X) ⊕ Wi−r(X) for m even

0 for m odd.

This is indeed a special case of a general projective bundle theorem, for Witt and
Grothendieck–Witt groups, which is to appear in [82]. Walter has also announced
results for (Grothendieck–)Witt groups of quadratics, which are in preparation.
The case of Grassmannians was started by Szyjewski in [78] and might also follow.



Witt Groups 571

Witt Groups andA1-Homotopy Theory 1.6.4

Using the above cohomological behaviour of Witt groups, Hornbostel [28, Cor. 4.9
and Thm. 5.7] establishes the following representability result.

105Theorem 105: (Hornbostel) Witt groups are representable both in the unstable
and the stable A1-homotopy categories of Morel and Voevodsky.

This is one ingredient in Morel’s announced proof of the following:

106Theorem 106: (Morel) Let k be a (perfect) field of characteristic not 2. Let SHk

be the stable A1-homotopy category over k. Then the graded ring
⊕

n∈Z
HomSHk (S0,Gm

∧n)

is isomorphic to the Milnor–Witt K-theory of k. In particular, HomSHk (S0, S0) is iso-
morphic to the Grothendieck–Witt group of k and for all n < 0, HomSHk (S0,Gm

∧n)
is isomorphic to the Witt group of k.

Of course, this result requires further explanations (which can be found in [55,
§ 6] or in [54]) but the reader should at least close this Chapter remembering that
Witt groups quite miraculously appear at the core of the stable homotopy category
SHk , disguised as “motivic stable homotopy groups of spheres”, objects which, at
first sight, do not involve any quadratic form.
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Historically, one of the earliest motivations for the development of K-theory was the
need to put on a firm algebraic foundation a number of invariants or obstructions
that appear in topology. The primary purpose of this chapter is to examine many
of these K-theoretic invariants, not from a historical point of view, but rather
a posteriori, now that K-theory is a mature subject.

There are two reasons why this may be a useful exercise. First, it may help to
show K-theorists brought up in the “algebraic school” how their subject is related to
topology. And secondly, clarifying the relationship between K-theory and topology
may help topologists to extract from the wide body of K-theoretic literature the
things they need to know to solve geometric problems.

For purposes of this article, “geometric topology” will mean the study of the
topology of manifolds and manifold-like spaces, of simplicial and CW-complexes,
and of automorphisms of such objects. As such, it is a vast subject, and so
it will be impossible to survey everything that might relate this subject to K-
theory. I instead hope to hit enough of the interesting areas to give the reader
a bit of a feel for the subject, and the desire to go off and explore more of the
literature.

Unless stated otherwise, all topological spaces will be assumed to be Hausdorff
and compactly generated. (A Hausdorff space X is compactly generated if a subset C
is closed if and only if C ∩ K is closed, or equivalently, compact, for all compact
subsets K of X. Sometimes compactly generated spaces are called k-spaces. The
k stands both for the German Kompakt and for Kelley, who pointed out the ad-
vantages of these spaces.) This eliminates certain pathologies that cause trouble
for the foundations of homotopy theory. “Map” will always mean “continuous
map.” A map f : X → Y is called a weak equivalence if its image meets every path
component of Y and if f∗ : πn(X, x) → πn(Y , f (x)) is an isomorphism for every
x ∈ X.

The Wall Finiteness Obstruction
and Its Variants2.1

We begin this survey with the “Wall finiteness obstruction,” not because it came
first historically (Whitehead torsion dates back much earlier) and not because it is
most important (again, most geometric topologists would argue that Whitehead
torsion is more fundamental) but because most algebraic treatments of K-theory
usually begin with K0 of a ring or a category.

The discussion here will be brief; for a more complete treatment, see [33].
A basic theorem of homotopy theory states that every space X has a CW-

approximation; in other words, there is a CW-complex Y and a weak equivalence
Y → X. More is true; the Y is unique up to homotopy equivalence and can be chosen
functorially in X. In fact one can take Y = |S•(X)| to be the geometric realization
of the simplicial set S•(X) of singular n-simplices in X [59, Chaps. 10, 16].
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One says a space X is dominated by a space Y if there are maps f : X → Y and
g : Y → X such that g ◦ f � 1X , where the symbol � denotes “is homotopic to.”
A corollary of the CW-approximation theorem is that if a space X is dominated
by a CW-complex, then it is homotopy-equivalent to a CW-complex. We say X
is finitely dominated if it is dominated by a finite CW-complex. Clearly this is
a necessary condition for X to be homotopy-equivalent to a finite CW-complex.
The condition of being finitely dominated is sometimes not so hard to check. For
example, a famous theorem of Borsuk [9, p. 1093] implies that any compact, locally
contractible, and finite dimensional metric space is a retract of a finite polyhedron,
hence in particular is finitely dominated.

1Theorem 1: (Wall [100,101]) Let X be a path-connected and locally 1-connected
space, and let C∗(X) be its singular chain complex. Note that the singular chain
complex C∗(X̃) of the universal cover X̃ can be regarded as a complex of free R-
modules, where R = Zπ1(X), and that C∗(X) = Z ⊗R C∗(X̃). Then if X is finitely
dominated, π1(X) is finitely presented and C∗(X̃) is chain homotopy-equivalent
to a finite complex C∗ of finitely generated projective R-modules. The “Euler
characteristic” of this complex,

χ(X) =
∑

i

(−1)i[Ci] ,

is well defined in K̃0(R) (the quotient of K0(R) by the copy of Z coming from the
finitely generated free R-modules), and vanishing of χ(X) in K̃0(R) is necessary
and sufficient for X to be homotopically finite (homotopy-equivalent to a finite
CW-complex).

Proof We give a brief sketch. If X is finitely dominated, then π1(X) is an algebraic
retract of a finitely presented group, hence is itself finitely presented. First we note
that the Euler characteristic χ(X) is well defined. The key thing to prove is that if
there is a chain equivalence h : C∗ → C′∗, then

∑
i(−1)i[Ci] =

∑
i(−1)i[C′

i]. But
this is true even for the K0(R)-valued Euler characteristic (not only for its image
in K̃0(R)), by the Euler–Poincaré principle.

Clearly, if there is an equivalence Z → X with Z a finite CW-complex, then C∗(X̃)
is chain homotopy-equivalent to C∗(Z̃), which in dimension j is a free R-module
with one generator for each j-cell in Z. Thus [Ci(Z̃)] lies in the subgroupZ of K0(R)
generated by the free modules, and maps to 0 in K̃0(R), so χ(X) = χ(Z) = 0.

Wall’s main contribution was to prove sufficiency of the condition. First one
shows that if χ(X) = 0, then C∗(X̃) is chain equivalent to a finite complex of
finitely generated free R-modules. This is elementary; start with an equivalent
finite complex C∗ of projective modules, say of dimension n, and choose a finitely
generated projective R-module Q0 such that C0 ⊕ Q0 is free. Then the direct sum
of C∗ with the complex

Q0
=̃← Q0 ← 0 ← · · ·
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is still equivalent to C∗(X̃) and is free in degree 0. Proceed similarly by induction.
Since χ(X) = 0, once the (n − 1)-st module has been made free, the n-th module is
stably free. So making Qn−1 larger if necessary, one can arrange that all the modules
are now free (and still finitely generated).

The last step is to build a finite CW-complex Z modeling the free chain complex
from the last step, and to construct the required homotopy equivalence h. The Z
and the h are constructed simultaneously by starting with a 2-complex Z(2) with
the correct fundamental group (recall π1(X) is finitely presented) and with the
correct C1 and C2, along with a map h(2) : Z(2) → X inducing an isomorphism
on π1. Then one attaches cells and extends the map by induction on the dimension.
This is an exercise in obstruction theory. Eventually one gets the desired complex
Z and a map h : Z → X which is an isomorphism on π1 and which induces a ho-
mology isomorphism Z̃ → X̃. By Whitehead’s Theorem, this map is a homotopy
equivalence.

One situation where the Wall finiteness obstruction comes into play is the
spherical space form problem. This is the problem of determining what finite
groups G can act freely on Sn. Of course, there are certain obvious examples, namely
groups which act freely and isometrically on Sn with its standard metric. These are
classified in [105]. The necessary and sufficient condition for G to act freely and
isometrically on some Sn is that for all primes p and q, not necessarily distinct, all
subgroups of G of order pq must be cyclic. But if one doesn’t require the action to
be isometric (or even smooth), there are many more examples. The one obvious
necessary condition is a homological one. For if X is a connected CW-complex
with finite fundamental group G and with universal cover X̃ homotopy-equivalent
to Sn, then the spectral sequence

Hp(G, Hq(X̃,Z)) ⇒ Hp+q(X,Z)

of the homotopy fibration X̃ → X → BG implies that G has periodic cohomology
of period n + 1, and thus that the Sylow subgroups of G are all either cyclic or
generalized quaternion [17, Ch. XVI, §9, Application 4]. Conversely, if G satisfies
this condition, Swan [87] showed that there is a periodic resolution of the trivial
G-module Z by finitely generated projective ZG-modules. In effect, the finiteness
obstruction of this resolution is an obstruction to G acting freely and cellularly
on a finite homotopy n-sphere. (We are explaining this a posteriori; Swan’s paper
predated Wall’s, but the principle is the same.) But since K̃0(ZG) is finite for G
finite, one can kill off the obstruction by replacing the period by a suitably large
multiple. Thus the result of [87] is that, after replacing the period of G by a suitably
large multiple if necessary, G acts freely and cellularly on a finite n-dimensional
CW-complex complex X̃ homotopy-equivalent to Sn, n one less than this larger
period. For an explanation of how one then checks if X can be chosen to be
a smooth manifold, see [88], [58], and [26]. The result of the analysis is that there
is a simple necessary and sufficient condition for G to act freely and smoothly on
some sphere:
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2Theorem 2: (Madsen–Thomas–Wall [58]) A finite group G acts freely and
smoothly on a sphere Sn for some n if and only if G has periodic cohomology,
and if, in addition, every subgroup of G of order 2p, p an odd prime, is cyclic.

However, it is not always easy to tell from knowledge of G what is the minimal
value of n. The necessity of the “2p condition” is due to Milnor [60], and follows
from the following geometric result:

3Theorem 3: (Milnor [60]) Let T : Sn → Sn be a map of period 2 without fixed
points, and let f : Sn → Sn be a map of odd degree. Then there is a point x ∈ Sn

with Tf (x) = fT(x).

Proof of necessity of the Madsen–Thomas–Wall condition from Theorem 3
Suppose G acts freely on a sphere and there is some subgroup H of G of order 2p
which is not cyclic. Then H is dihedral. Let T be the action of the generator of H of
order 2, and let f be the action of the generator of H of order p. Then by Theorem 3,
Tf T−1f −1 has a fixed point. Since G acts freely, that means Tf T−1f −1 = 1, so the
two generators of H commute with each other, a contradiction.

Another application is to the problem of when a non-compact manifold M is
homeomorphic to the interior of a compact manifold W with boundary. Clearly
this implies that M should be homologically finite. Since any compact topolog-
ical manifold W , even with boundary, has the homotopy type of a finite CW-
complex, an additional necessary condition is that the Wall obstruction of M
should vanish. The highly influential thesis of Siebenmann [78] showed that in
high dimensions, this condition and an obvious “tameness” condition are suffi-
cient.

Flat Bundles and K-Theory 2.2

Another connection between geometric topology (or more precisely, geometry
and topology of manifolds) and algebraic K-theory comes from the study of flat
vector bundles. Suppose M is a smooth manifold and E → M is a smooth vector
bundle over M. A connection on E is a way of differentiating sections of E. More
precisely, a connection is a map

∇ : Γ∞(E) → Γ∞(E ⊗ T∗M) ,

where Γ∞ denotes “smooth sections,” which we also think of as a bilinear pairing
Γ∞(E)×Γ∞(TM) → Γ∞(E), (s, X) �→ ∇X(s), satisfying the “Leibniz rule” ∇X(fs) =
X(f ) · s + f ∇X(s) for f ∈ C∞(M). (See for example [29, pp. 56–60].) A connection
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is flat if it satisfies the analogue of the identity d2 = 0 for the exterior derivative,
or in other words if [∇X , ∇Y ] = ∇[X,Y] for all vector fields X and Y . This condition
turns out to be equivalent [29, Cor. 3.22] to saying that there is a reduction of
the structure group of the bundle from G = GL(n,R) or GL(n,C) to a discrete
group. Now isomorphism classes of ordinary vector bundles are determined by
their “transition functions,” and are thus parameterized by the non-abelian sheaf
cohomology group H1(M, G), G the sheaf of germs of G-valued functions on M.
Equivalently, they are classified by homotopy classes of maps M → BG. In the
same way, isomorphism classes of flat vector bundles (where we keep track of
the flat structure ∇) are parameterized by non-abelian sheaf cohomology of the
constant sheaf, H1(M, Gδ) = Hom(π1(M), Gδ) or by homotopy classes of maps
M → BGδ, where Gδ denotes G with the discrete topology. Via the plus construction
BGL(n,C)δ → BGL(∞,C)δ → B

(
GL(∞,C)δ

)+
, we see that flat complex vector

bundles give classes in H0(X; K(C)), the cohomology of X with coefficients in the
(algebraic, not topological) K-theory spectrum of C. In particular, flat complex
vector bundles over homology n-spheres can be viewed as representing classes
in H0(Sn; K(C)) = πn(K(C)) = Kn(C), and it is easy to see that every class in
Kn(C) arises from some flat vector bundle over a homology n-sphere. In a similar
vein, Hausmann and Vogel [40, Corollary 4.2] have shown that for any ring A and
n ≥ 5, Kn(A) can be described as the “homology sphere bordism” of BGL(A), i.e.,
as the group of equivalence classes of pairs (Σn, f ), where Σn is a (based) oriented n-
dimensional PL manifold which is an integral homology sphere1, f : Σn → BGL(A)
(and sends basepoint to basepoint), and (Σn

1 , f1) � (Σn
2 , f2) if and only if there exists

a compact manifold Wn+1 with ∂M = Σ1�−Σ2, there exists a map F : W → BGL(A)
extending f1 and f2 (sending a “base arc” joining the basepoints of the boundary
components to the basepoint of BGL(A)), and the inclusions Σj ↪→ W are integral
homology equivalences.

We return again to the study of flat real or complex vector bundles. Suslin has
shown [85] that for k any infinite field (in particular for k = R or C), the inclusion
GL(n, k)δ ↪→ GL(∞, k)δ induces an isomorphism on Hj( ; Z) for j ≤ n. Thus for
studying characteristic classes of flat vector bundles on n-dimensional spaces, it’s
enough to look at flat vector bundles of rank ≤ n. There are stability theorems
saying that the map B

(
GL(n, k)δ

)+ → B
(
GL(∞, k)δ

)+
is (n|2)-connected, and it’s

plausible that this map is even n-connected. Hence for computing Kn(R) or Kn(C),
it’s enough to look at flat vector bundles of rank ≤ 2n, and it may even be that
every class in Kn(R) or Kn(C) is represented by a flat vector bundle of rank n. But
while the map πn

(
B

(
GL(n,R)δ

)+
)

→ Kn(R) may be surjective, it is known not to
be injective; we will see why in a moment.

Various natural geometric questions about flat bundles can now be reduced (at
least in part) to K-theory, and vice versa. (However, if one is interested in bundles
not in the stable range, e.g., with rank equal to the dimension of the base space,
then unstable K-theory is required.) We give only a few representative examples.

1 We use PL manifolds rather than smooth ones to avoid complications coming from the
finite group Θn of exotic n-spheres.
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First we should say something about characteristic classes. A basic fact about
flat vector bundles is that since the real (or rational) Chern or Pontrjagin classes
of a vector bundle can be computed from the curvature of a connection using
Chern–Weil theory, and since a flat connection has (by definition) curvature zero,
these classes for a flat vector bundle necessarily vanish [29, 9.1 and 9.2]. Hence the
Chern or Pontrjagin classes of a flat vector bundle are torsion. Since K

top
2n (C) =̃ Z

is determined by Chern classes, it follows that the natural map from algebraic to
topological K-theory, K2n(C) → K

top
2n (C), coming from the obvious continuous

map GL(n,C)δ → GL(n,C), vanishes for n > 0. (However the map of spectra
K→ K

top induces isomorphisms on homotopy groups with finite coefficients by
a famous theorem of Suslin [86], which is related to the fact that the Chern classes
of flat bundles can carry non-trivial torsion information.)

One might guess on the basis of the above that all rational invariants of
flat vector bundles have to vanish, but celebrated work of Milnor [61] shows
that this is not the case for the Euler class of an oriented real vector bun-
dle. More precisely, Milnor showed that if M2 is a closed oriented surface of
genus g ≥ 2, so that the oriented rank-two real vector bundles E over M are
classified by 〈e(E), [M]〉 ∈ Z, where e(E) is the Euler class in H2(M,Z), then
E admits a flat connection if and only if |〈e(E), [M]〉| < g. (See also [29, §9
and Corollary 9.18] for a nice exposition.) This theorem prompted a huge ex-
plosion of interest in characteristic classes of flat vector bundles. For exam-
ple, Deligne and Sullivan [27] showed that every flat complex vector bundle
over a finite CW-complex becomes trivial on some finite cover. Using some of
the ideas of Milnor, Smillie [81] showed there are flat manifolds with non-zero
Euler characteristic in all even dimensions greater than or equal to four. This
in turn motivated a more complete study by Hausmann [39] of what mani-
folds can admit a flat structure, i.e., a flat connection on the tangent bundle.
For example, he showed that (in dimension ≥ 5) a stably parallelizable closed
manifold M2m is semi-s-cobordant to a manifold M′ with a Z-flat structure
(coming from a map π1(M′) → BSL(2m,Z)) if and only if it is parallelizable.
Here M semi-s-cobordant to M′ means that there is a compact manifold W2m+1

with boundary ∂W = M � M′ such that the inclusion M ↪→ W is a sim-
ple homotopy equivalence. (If the same is true for M′ ↪→ W , then M and M′
are called s-cobordant, hence diffeomorphic if they have dimension ≥ 5; see
Sect. 2.3 below.) In particular, every parallelizable closed manifold is homology-
equivalent to a closed manifold with a Z-flat structure. Hausmann’s methods
proved at the same time that the natural map πn

(
B

(
GL(n,R)δ

)+
)

→ Kn(R)

cannot be injective for n = 2m even, for the image of the Euler class e un-
der the restriction map Hn(BSL(n,R),Q) → Hn(BSL(n,R)δ,Q) is non-zero on
the image of the Hurewicz map πn

((
BGL(n,R)δ

)+
)

= πn

((
BSL(n,R)δ

)+
)

→
Hn

((
BSL(n,R)δ

)+
,Z

)
=̃ Hn(SL(n,R)δ,Z), but does not lie in the image of the

restriction map Hn(BSL(∞,R)δ,Q) → Hn(BSL(n,R)δ,Q). Note that this now im-
plies that the map B

(
GL(n,R)δ

)+ → B
(
GL(∞,R)δ

)+
cannot be (n+1)-connected.
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The vanishing of rational characteristic classes of flat bundles makes it possible
to define secondary characteristic classes, which can be used to detect some of the
K-theory of fields. For simplicity we consider only complex vector bundles. From
the long exact sequence

· · · → H2k−1(X,C×)
∂→ H2k(X,Z) → H2k(X,C) → H2k(X,C×)

∂→ · · · , (2.1)

it follows that any integral torsion cohomology class in degree 2k lifts to a class
of degree 2k − 1 with coefficients in C×. A choice of such a lifting for the k-th
Chern class of a flat rank-n vector bundle (E, ∇) over X, defined using the flat
connection ∇, was (essentially) given by Chern and Simons [23], [24] and is
called the Chern–Simons class. For example, a flat structure on a complex line
bundle over X is given simply by a homomorphism π1(X) → C

×, and thus
defines a class in H1(X,C×). In general, Chern and Simons consider the case,
which one can always reduce to, where X is a smooth manifold, and then they use
the connection ∇ to construct a closed differential form on the principal GL(n)-
bundle associated to E, whose restriction to each fiber is integral. One can then
view this form as defining a (C|Z =̃ C×)-valued class on the base. An alternative
approach to the construction of the Chern–Simons classes for flat bundles may
be found in [29, Exercise 3, pp. 163–164]. The approach there involves the space
F = GL(n,C)|GL(k−1,C), which is (2k−2)-connected and satisfies H2k−1(F,Z) =̃ Z.
For the reader’s convenience, we fill in some of the missing details.

4 Proposition 4 The space F = GL(n,C)|GL(k − 1,C) is (2k − 2)-connected and
satisfies H2k−1(F,Z) =̃ Z.

Proof There are deformation retractions from GL(n,C) down to U(n), and from
GL(k − 1,C) down to U(k − 1). Since U(k) acts transitively on the unit sphere S2k−1

inCk, with U(k − 1) the stabilizer of a point, F has the homotopy type of S2k−1 when
k = n, and then the result is obvious. If n > k, we have a fibration

U(k)|U(k − 1) → U(n)|U(k − 1) → U(n)|U(k) ,

and since U(n)|U(k) is at least 2k-connected, the result follows.

The fact that F is highly connected is then used as follows.

5 Proposition 5 Again let F = GL(n,C)|GL(k − 1,C). There is a “filling” σ of F by
singular simplices up through dimension 2k − 1, or in other words a family of
singular simplices

σ(g1, · · · , gq) : ∆q → F, g1, · · · , gq ∈ GL(n,C), q ≤ 2k − 1 ,
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which satisfy

σ(g1, · · · , gq) ◦ εi =






g1 · σ(g2, · · · , gq), i = 0 ,

σ(g1, · · · , gigi+1, · · · , gq), 0 < i < q ,

σ(g1, · · · , gq−1), i = q .

(2.2)

where the εi are the face maps.

Proof This is proved by induction on q. To start the induction, let σ(∆0) be the origin
o = e GL(k − 1,C) in F. Assume σ is defined for smaller values of q; then one can
check that (2.2) defines σ(g1, · · · , gq) on the boundary of ∆q in a consistent way. (For
example, we need to check that the formulas for σ(g1, · · · , gq)◦ ε0 = g1 ·σ(g2, · · · , gq)
and for σ(g1, · · · , gq) ◦ ε1 = σ(g1g2, · · · , gq) agree on the intersection of the 0-th
face and the 1-th face, which is a (q − 2)-simplex. So we need to check that
g1 · σ(g2, · · · , gq) ◦ ε0 = σ(g1g2, · · · , gq) ◦ ε0; both are given by g1g2 · σ(g3, · · · , gq).
The other verifications are similar.) Thus we just need to fill in. But for q ≤
2k − 1, πq−1(F) = 0, and thus any map Sq−1 =̃ ∂∆q → F extends continuously
to ∆q.

6Proposition 6 There is a GL(n,C)-invariant closed (2k − 1)-form ω on F, repre-
senting the de Rham class of a generator of H2k−1(F,Z).

Proof Since H2k−1(F,Z) =̃ Z by Proposition 4, and in fact by the proof of that
proposition there is a preferred generator (coming from the usual orientation of
S2k−1), there is a canonical de Rham class representing this generator in H2k−1(F,R).
This de Rham class may be realized by a U(n)-invariant closed real form, since U(n)
is compact. (Just “average” any closed form in the de Rham class with respect to
Haar measure on the compact group.) Then since GL(n,C) is the complexification
of U(n) and acts transitively on F, we may complexify to a GL(n,C)-invariant
complex closed form.

7Proposition 7 Define a group cochain s on GL(n,C)δ (with values in C|Z) by the
formula

s(g1, · · · , g2k−1) =
∫

∆2k−1
σ(g1, · · · , g2k−1)∗(ω) (reduced mod Z) .

Then s is a cocycle and its cohomology class in H2k−1
(
BGL(n,C)δ,C|Z

)
is a lifting

of the k-th Chern class for flat bundles.
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Proof Let G = GL(n,C). By definition,

δs(g1, · · · , g2k) = s(g2, · · · , g2k)

+
∑

0<i<2k

(−1)is(g1, · · · , gigi+1, · · · , g2k) + s(g1, · · · , g2k−1)

=
∫

∆2k−1

(
σ(g2, · · · , g2k)∗(ω)

+
∑

0<i<2k

(−1)iσ(g1, · · · , gigi+1, · · · , g2k)∗(ω)

+ σ(g1, · · · , g2k−1)∗(ω)
)

=
∫

C(g1,· · ·,g2k)
ω ,

(2.3)

where C(g1, · · · , g2k) is the singular chain

g1 · σ(g2, · · · , g2k) +
∑

0<i<2k

(−1)iσ(g1, · · · , gigi+1, · · · , g2k) + σ(g1, · · · , g2k−1) .

(Note that we’ve used G-invariance of ω to replace σ(g2, · · · , g2k) by g1 ·σ(g2, · · · , g2k)
here.) By the defining property (2.2) of σ, C(g1, · · · , g2k) is a singular cycle. But ω
represents an integral de Rham class, so its integral over C(g1, · · · , g2k) vanishes in
C|Z. Thus s is a group cocycle.

It remains to show that ∂[s] = ck in the sequence (2.1). But by the calculation
in (2.3), ∂[s] is represented by the group cocycle whose value on (g1, · · · , g2k) is
given by

∫
C(g1,· · ·,g2k) ω, C(g1, · · · , g2k) as above. We can see that this is the primary

obstruction to triviality of the universal bundle over BGδ with fiber F (associated
to the universal principal G-bundle over BGδ). Indeed, it was the homotopy group
π2k−1(F) which in the proof of Proposition 5 gave the obstruction to extending the
filling σ to dimension 2k, and had we been able to do this, C(g1, · · · , g2k) would
be the boundary of σ(g1, · · · , g2k) and thus

∫
C(g1,· · ·,g2k) ω would have vanished. The

definition of Chern classes by obstruction theory then gives the result.

Whitehead and Reidemeister Torsion2.3

One of the early sources for the development of K-theory is the geometric in-
variant known as Whitehead torsion, for which convenient textbook treatments
are [25] and [76]. However, the best condensed reference is still probably Milnor’s
classic survey article, [63]. Another good exposition is in [64]. In its essence, the



K-Theory and Geometric Topology 587

idea of Whitehead torsion is to measure the extent to which a given homotopy
equivalence, say between finite polyhedra, is of the “trivial” sort. Here “trivial” ho-
motopy equivalences are generated by three basic kinds of operations: simplicial
homeomorphisms (possibly after subdivision of some simplices) and elementary
expansions and collapses. Expansions and their duals, collapses, are best illustrated
by a picture (Fig. 2.1).

In other words, we say X′ collapses to X if X′ = X ∪ σn, where σn is an n-
simplex attached to X along one of its codimension-one faces, and then clearly
we can “squash” X′ down to X, and this gives a homotopy equivalence from X′
to X. A homotopy equivalence between finite polyhedra is called simple if it can
be constructed out of a chain of simplicial homeomorphisms (after subdivision)
and elementary collapses and expansions. There is a similar notion for finite
CW-complexes as well: in the CW-context, X′ collapses to X if X′ is obtained
from X by attaching first an (n − 1)-cell with a null-homotopic attaching map
Sn−2 → X, and then an n-cell bounded in the obvious way by this (n − 1)-cell,
the same way Dn is bounded by Sn−1. It is easy to see that a polyhedral collapse
is a special case of a cellular collapse, since attaching σn to X as in Fig. 2.1 is
the same as first attaching the boundary of σn and then filling in with an n-cell.
Any homotopy equivalence h : X → X′ of (connected) finite polyhedra or finite
CW-complexes has an invariant τ(h) ∈ Wh(π1(X)), where Wh(π) is a certain
quotient of K1(Zπ), and this invariant is trivial exactly when h is simple. We
will content ourselves with describing this invariant in the simplest case. If h is
an inclusion map and (X′, X) is a finite relative CW-complex, with all relative
cells of dimensions n − 1 and n (so that X′ is obtained from X by attaching first
(n − 1)-cells and then n-cells), then since h is a homotopy equivalence, the relative
cellular chain complex of the universal covers, C∗(X̃′, X̃), reduces simply to an
isomorphism ∂ : Cn → Cn−1 of finitely generated free Zπ1(X)-modules. We have
obvious bases for the chain modules Cn and Cn−1 which only depend on a choice
of orientation for each relative cell of (X′, X) and a choice of an inverse image
for this cell in X̃′. Since the cellular boundary map ∂ is an isomorphism, one
can think of ∂ as defining an invertible matrix with entries in Zπ1(X). Now of
course the matrix depends on the choice of bases for the free Zπ1(X)-modules
involved, but the ambiguity in the choice only affects the K1-class of the matrix by
at most a sign (coming from the choices of orientations) and an element of π1(X)

Figure 2.1. An elementary expansion (or collapse, depending on whether one reads the picture from

right to left or left to right)
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(coming from the choices of inverse images in X̃′ for the cells of (X′, X)). Thus if
we define Wh(π1(X)) to be the quotient of K1(Zπ1(X)) by the subgroup generated
by the canonical images of Z× =̃ {±1} and of π1(X), we obtain an invariant in
this group independent of all choices.2 One can show that this invariant vanishes
if and only if the homotopy equivalence is simple. The “if” direction is rather
straightforward from the definitions. The “only if” definition requires showing
that that an elementary matrix corresponds geometrically to a collapse. (This
requires “unhooking” one of the cells involved.)

It would appear that the construction of Whitehead torsion is highly depen-
dent on a choice of simplicial or cellular structures for the spaces involved,
but a deep and surprising theorem of Chapman says that this dependence is
illusory.

8 Theorem 8: Chapman [19] If X and X′ are connected finite polyhedra and
h : X → X′ is a (simplicial) homotopy equivalence, then τ(h) is a topological
invariant. In other words, if we can fit h into a commutative diagram

X
h→ X′

f ↓ ↓ f ′

Y
h′→ Y ′ ,

where Y and Y ′ are also finite polyhedra, h′ is a simplicial homotopy equivalence,
and f and f ′ are homeomorphisms, then τ(h) = τ(h′).

This suggests that Whitehead torsion has some deeper significance, and in fact
it plays a basic role in the classification of manifolds, for the following reason. If M
and M′ are compact connected n-manifolds (smooth, let’s say), an (n+1)-manifold
with boundary W is called a cobordism between M and M′ if ∂W = M � M′. (If W ,
M, and M′ are oriented, then W should induce the opposite of the given orientation
on M′, so that M × [0, 1] is an allowable cobordism from M to itself.) We call W an
h-cobordism if the inclusions M ↪→ W and M′ ↪→ W are homotopy equivalences,
in which cases the torsions τ(W , M) and τ(W , M′) are defined. We call W an

s-cobordism if the inclusions M ↪→ W and M′ ↪→ W are simple homotopy
equivalences, i.e., the torsions τ(W , M) and τ(W , M′) both vanish. An h-cobordism
is called trivial if it is diffeomorphic to M×[0, 1]. When this is the case, note that M′
is automatically diffeomorphic to M, and τ(W , M) and τ(W , M′) are both trivial.
Smale’s famous h-cobordism theorem [62] asserts that every simply connected
h-cobordism is trivial if n ≥ 5. However, this cannot possibly be true in the non-
simply connected case because of the Whitehead torsion obstruction, and the
substitute is the s-cobordism theorem.

2 Strictly speaking, τ(X′, X) is this class multiplied by a sign depending on the parity of n;
that’s because when there are relative cells of many dimensions, what we want is a kind of
multiplicative analogue of the Euler characteristic.
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9Theorem 9: s-cobordism theorem [52] Suppose Wn+1 is an h-cobordism between
connected smooth manifolds M and M′, and suppose n ≥ 5. If τ(W , M) = 0, then
W is trivial. Moreover, if n ≥ 5, then every element of Wh(π1(M)) can be realized
by an h-cobordism from M to some homotopy-equivalent manifold M′.

The same statement holds in the PL category, for which a suitable reference
is [76], and even (thanks to the work of Kirby–Siebenmann [54]) in the topological
category.

The importance of Whitehead torsion for geometric topology makes it impor-
tant to understand the Whitehead group Wh(π) for various classes of groups π.
It is not too hard to prove that Wh(π) = 0 for π of order ≤ 4 and that Wh(π)
is infinite cyclic for π of order 5. More generally, the most basic fact about the
Whitehead group for finite groups is:

10Theorem 10: Bass – see [66], Theorems 2.5 and 2.6 Suppose π is a finite group.
Then Wh(π) is finitely generated, and rk(Wh(π)) is the difference between the
number of irreducible representations of π over R and the number of irreducible
representations of π overQ.

Just as an example, if π is of order p, an odd prime, π has (p − 1)|2 inequivalent
two-dimensional irreducible representations over R, but one (p − 1)-dimensional
irreducible representation over Q (since Qπ =̃ Q × Q(ζ), ζ a primitive p-th root
of unity, and [Q(ζ) : Q] = p − 1), so rk(Wh(π)) = p−1

2 + 1 − 2 = (p − 3)|2.
However, computing the exact structure of Wh(π) for finite groups π is difficult,

though in principle understood. The best survey on this is the book [66] by
Oliver.

For infinite groups π, there is a widespread belief that Wh(π) should be at-
tributable to the torsion in π. (For an exact formulation of a conjecture to this
effect, see the chapter by Lück and Reich.) But still open is the most fundamental
version of this conjecture:

11Conjecture 11 The Whitehead group Wh(π) vanishes for any torsion-free group π.

There are many situations in geometric topology where Whitehead torsion is not
well defined, but one can still define a torsion-like invariant called Reidemeister
torsion. For example, if X is a finite connected CW-complex with fundamental
group π, it may be that the reduced cellular chain complex C∗(X̃) is not acyclic
(i.e., Hj(X,Zπ) ≠ 0 for some j > 0), so that τ(X, ∗) is undefined, and yet C∗(X, V)
may be acyclic for some local coefficient system V . In this case, we can define the
Reidemeister torsion of X with coefficients in V . Roughly speaking, the difference
between Whitehead and Reidemeister torsion is this. An n × n matrix a with
entries in Zπ defines a class in Wh(π) if the matrix is invertible. However, it may
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be that the matrix is not invertible, but its image under some representation of π is
invertible. For example, suppose one has an orthogonal or unitary representation
π → O(m) or π → U(m). Then this induces a ring homomorphism Zπ →
Mm(R) or Mm(C), under which the group of units Z× × π maps to matrices
with determinant of absolute value 1. So the absolute value of the determinant
| det(a)| ∈ R×

+ is unchanged if we change a by an element of the image ofZ× ×π ⊆
GL(1,Zπ) ↪→ GL(n,Zπ). The simplest geometric example is the case of X = S1

and the representation of π1(S1) =̃ Z sending the generator to eiθ, 0 < θ < 2π.
The cellular chain complex of S1 with coefficients in the associated local system is

C
eiθ−1→ C, so the complex is acyclic (under the assumption 0 < θ < 2π) and the

torsion is |eiθ − 1| = 2| sin(θ|2)|.
There are two important classical examples of Reidemeister torsion. If X is

the complement of a knot in S3 and one takes the representation π1(X) → C
×

sending a generator of H1(X) = π1(X)ab =̃ Z to a transcendental number t, then the
Reidemeister torsion becomes essentially (except for a trivial factor) the Alexander
polynomial ∆(t) of the knot [63, Example 2, p. 387]. The second important case
is where X is a lens space, the quotient of S2n−1 by a free linear action of a cyclic
group π = Z|m on Cn. In this case, the Reidemeister torsion is the essential
invariant for classifying lens spaces with fixed dimension and fundamental group
up to homeomorphism. More precisely (see [63, §12] for details), the lens spaces
with fundamental group π and dimension 2n − 1 are classified by n elements
r1, · · · , rn ∈ (Z|m)×, modulo a certain equivalence relation, and the Reidemeister
torsion (for the representation of π sending the generator to a primitive m-th root
of unity t) turns out to be

n∏

j=1

(
trj − 1

)
,

modulo multiplication by factors of ±tk. The torsion is of course an invariant
of the simple homotopy type, and by Chapman’s Theorem (Theorem 8), even
a homeomorphism invariant. From this one can prove that two lens spaces are
homeomorphic if and only if they are isometric, which is certainly not obvious.
(On the other hand, there are plenty of examples of lens spaces which are homotopy
equivalent but not simple homotopy equivalent, and also plenty of examples of
lens spaces with the same dimension and fundamental group which are not even
homotopy equivalent.)

One of the most remarkable things about Reidemeister torsion is its relation to
a global analytic invariant in Riemannian geometry, the analytic torsion of Ray
and Singer [73]. Ray and Singer defined the analytic torsion by reformulating the
definition of the Reidemeister torsion in terms of the “combinatorial Laplacian,”
then replacing this operator in the definition by the Laplace–Beltrami operator
of Riemannian geometry. They conjectured that the resulting invariant, given in
terms of the spectrum of the Laplacian on differential forms, coincides with the
Reidemeister torsion, and this conjecture was eventually proven by Cheeger [22]
and Müller [65], working independently.
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Various generalizations of the Cheeger–Müller theorem, for example, replacing
ordinary determinants by the Kadison–Fuglede determinant3 on a finite von Neu-
mann algebra (e.g., [12]), or allowing manifolds with boundary or non-compact
manifolds, are a major topic of current research.

Controlled K-Theory and Connections
with Negative K-Theory 2.4

One of the most interesting areas where algebraic K-theory and geometric topology
come together is in the subject of controlled K-theory. In this theory, one studies
not just projective modules over a ring and morphisms between them, but also the
effect of imposing conditions on the “placement” or “support” of the modules or
morphisms.

Probably the simplest example of controlled K-theory is an elegant description
of negative K-theory by Pedersen [69], which led to a description by Pedersen and
Weibel [68], [67] of the homology theory attached to the (nonconnective) K-theory
spectrum K(R) of a ring R. These examples lead to what is often called K-theory
with bounded control. Say one is given a ring R and a (non-empty) metric space
(X, d). One considers the category CX(R) of “locally finitely generated” configura-
tions of projective modules over X, i.e., maps x �→ Px from X to finitely generated
projective R-modules, such that

⊕
x∈B Px is finitely generated for each set B ⊆ X

of finite diameter. Morphisms are R-module endomorphisms of
⊕

x∈X Px whose
component Px → Py vanishes once d(x, y) is sufficiently large. Applying the usual
K-theoretic constructions gives a K-theory spectrum K(R; X) and thus groups
Ki(R; X) = πi(K(R; X)). Here only the “large scale” geometry of X is relevant.
For example, if X has finite diameter, K(R; X) � K(R; pt) = K(R), and similarly
K(R;Rn) � K(R;Zn) (if Rn and Zn are given the usual metrics). In this language,
the main theorem of [69] asserts thatK(R;Zn) is the usual non-connective n-fold
delooping ofK(R), and thus K0(R;Zn) =̃ K−n(R). Then the papers [68] and [67] go
on to show that ifO(Y) is the infinite open cone on a compact space Y , with the usual
metric (so that if Y is embedded in Sn−1 ⊂ Rn, O(Y) is an R×

+ -invariant subset of
R

n, from which it inherits the induced metric), then Ki(R; O(Y)) =̃ H̃i−1(Y ;K(R)).
The boundedly controlled K-theory K(R; X) appears in many geometric ap-

plications, both directly and implicitly. Examples include the thin h-cobordism
theorem of Quinn [70, Theorem 2.7] (this predated the above formulation of the
theory, but involves some of the same ideas), the bounded s-cobordism theorem
of Ferry and Pedersen [34, Theorem 2.17], and the work of Gunnar Carlsson [16]
on the K-theoretic version of the Novikov conjecture. (See also Carlsson’s chapter
in this volume for more details.)

For applications to geometric topology, sometimes K-theory with epsilon con-
trol is more relevant. The best motivation for this subject is the Chapman–Ferry

3 On a II1 factor A, this “determinant” gives an isomorphism K1(A) → R
×
+ [57].
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Theorem ([32], [21]), which asserts that a homotopy equivalence h : M′ → M
between closed manifolds M and M′ of dimension n ≥ 5 is homotopic to a homeo-
morphism once it is “sufficiently controlled.” To explain what this means, recall that
the definition of a homotopy equivalence means that there is a map h′ : M → M′
and there are homotopies H1 : h ◦ h′ � idM , H2 : h′ ◦ h � idM′ . For h to be “suf-
ficiently controlled” means that if we fix a metric d on M, d(H1(x, t), x) ≤ ε and
d(h◦H2(y, t), h(y)) ≤ ε for all x ∈ M, y ∈ M′, and all t ∈ [0, 1]. The theorem asserts
that given M and d, there is an ε > 0 such that all ε-controlled homotopy equiv-
alences h : M′ → M are homotopic (even ε-homotopic) to homeomorphisms.
While neither the statement nor the proof of the Chapman–Ferry Theorem in-
volves K-theory directly, one can see that there has to be a connection. In fact,
for the theorem to be true, it is clearly necessary (because of Theorem 8) for
τ(h) = 0 ∈ Wh(π1(M)) once h is sufficiently controlled, which is not immediately
obvious.

A treatment of ε-controlled Whitehead torsion and an associated controlled
s-cobordism theorem [20, §14] many be found in [20]. Chapman also states and
proves [20, §§6–8] an ε-controlled version of the Wall finiteness obstruction (The-
orem 1). This concerns the situation where one has a space X with a reference map
p : X → B, B a metric space. We say X is ε-dominated by a space Y if there are maps
f : X → Y and g : Y → X such that g ◦ f �ε 1X , where the symbol �ε denotes “is
ε-homotopic to,” i.e., there is a homotopy whose composition with p doesn’t move
points more than a distance ε. Chapman answers the question of when an ε-finitely
dominated space is ε-homotopy equivalent to a finite polyhedron.

One can formulate many similar theorems that involve controlled versions of
Whitehead torsion or similar K-theoretic obstructions. Examples are the thin
h-cobordism theorem of Quinn ([70, Theorem 2.7] and [71, Theorem 2.1.1]).

Equivariant and Stratified Situations2.5

So far, we have mostly discussed the topology of smooth, topological, or PL mani-
folds just by themselves. But K-theory also comes into play in the study of actions
of groups (let’s say finite groups for simplicity) on such manifolds, or in the study
of stratified spaces such as complex algebraic or analytic varieties. (Such a variety
has a dense open subset which is smooth; the complement of this smooth set, the
singular set, is of smaller dimension and itself contains a dense smooth set, etc.)
The connection between these two topics may be seen in the fact that if a finite
group G acts (smoothly, say) on a manifold M, then there is a dense open subset
consisting of “principal orbits” (where the stabilizers are as small as possible), and
once again the complement of this set is of smaller dimension and consists of more
“singular” orbits.

The simplest example of a singular space is the one-point compactification
X = M+ of a non-compact manifold M, or equivalently, a compact space with
exactly one singular point. Detailed study of this example can tell us much about
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the general case. Just as an example, a natural question is how to formulate the
s-cobordism theorem for such spaces. This problem is clearly equivalent to that of
formulating a (proper) s-cobordism theorem for non-compact manifolds, which
was done by Siebenmann in [79]:

12Theorem 12: (proper s-cobordism theorem [79]) Suppose Wn+1 is a proper h-
cobordism between connected smooth non-compact manifolds M and M′, and
suppose n ≥ 5. (In other words, ∂W = M � M′, and the inclusions M ↪→ W and
M′ ↪→ W are proper homotopy equivalences.) Then a Whitehead torsion invariant
τ(W , M) is defined in a group Whp(M), and if τ(W , M) = 0, then W is isomorphic
(in the appropriate category) to M × [0, 1]. Moreover, if n ≥ 5, then every element
of Whp(M) is realized by an h-cobordism. Assuming for simplicity that M has one
end E and that E is tame, i.e., that for sufficiently large compact C ⊂ M, M � C
is connected and its fundamental group π1(E) is independent of C, the group
Whp(M) fits into an exact sequence

Wh
(
π1(E)

) → Wh
(
π1(M)

) → Whp(M) → K̃0

(
Zπ1(E)

) → K̃0

(
Zπ1(M)

)
.

A direct algebraic description of the obstruction group Whp(M) is given in [31].
A non-obvious corollary of this theorem is that simple homotopy type has a ge-

ometrical meaning: two finite-dimensional CW-complexes have the same simple
homotopy type if and only if they have piecewise linearly homeomorphic (closed)
regular neighborhoods in some Euclidean spaces. (For finite CW-complexes this
result is classical and is discussed in [103, pp. 22–23].) One direction is clear: if X
and X′ are finite-dimensional CW-complexes with piecewise linearly homeomor-
phic (closed) regular neighborhoods, then since a PL homeomorphism is simple,
we obtain a simple homotopy equivalence from X to X′ (via the intermediary of
the regular neighborhoods). To prove the other direction, observe that a simple
homotopy equivalence X ≈ X′ can without loss of generality be taken to be the
inclusion of one end of a mapping cylinder. Taking a regular neighborhood in
a sufficiently large Euclidean space, one can convert this mapping cylinder into
a proper h-cobordism, where the two ends of the cobordism are regular neigh-
borhoods of X and X′. Then simplicity of X ≈ X′ says by Theorem 12 that the
h-cobordism is a product, and the result follows.

Next, we discuss some applications of algebraic K-theory to the study of actions
of finite groups on complexes or manifolds. Some of this could be (and has been)
generalized to actions of more general compact Lie groups or to proper actions
of infinite discrete groups, but even the case of finite groups is too complicated to
treat in detail here.

An easy place to begin is with the Wall finiteness obstruction. Let G be a finite
group and let X be a G-CW-complex. The notions of finite domination and finite-
ness make sense in the equivariant world (we replace homotopies by G-homotopies,
homotopy equivalences by G-homotopy equivalences). So it is natural to ask, as-
suming X is G-dominated by a finite G-CW-complex, whether X is G-homotopy
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equivalent to a finite G-CW-complex. One case we have effectively already done – if
X is connected and simply connected and the action of G on X is free, so Y = X|G
has fundamental group G, then this reduces to the question of whether Y is finitely
dominated, which is the case if and only of the usual Wall obstruction in K̃0(ZG)
vanishes. The more general situation was first treated by Baglivo [6], who studied
the case where X is connected in the equivariant sense, i.e., where XH is connected
and non-empty for every subgroup H ⊆ G. More general cases were treated by
Lück [56] and others – see [3] for a survey of the many approaches.

The equivariant Wall obstruction appears in a number of problems about group
actions, in combination with the Swan homomorphism

σ :
(
Z||G|)× → K̃0(ZG) ,

the boundary map σ in the Mayer–Vietoris sequence in K-theory

· · · → K1(Z) ⊕ K1

(
ZG|(n)

) → K1(Z||G|) σ→ K̃0(ZG) → · · ·

associated to the pull-back square

ZG � ZG|(n)

ε

Z � Z||G| .

Here ε : ZG � Z is the augmentation map (sending each element of G to 1) and
n =

∑
g∈G g is the “norm element” ofZG. The relevance of the map σ in this context

was first noticed in [5].
Let G be a finite group and let X be a G-CW-complex. Then X is called Smith

acyclic if, for each subgroup H of G of prime power order pr, r ≥ 1, H̃∗(XH ,Fp) = 0.
A famous result of P. A. Smith [82] says that the singular set (the set of points with
non-trivial stabilizer) of an action of G on a finite-dimensional contractible space
is Smith acyclic, and it is natural to ask about the converse.

13 Theorem 13: ([5], Proposition 0.4) Let G a finite group, and let X be a Smith
acyclic finite G-CW-complex for which every point has a non-trivial stabilizer.
Then X is the singular set for an action of G on a contractible finite G-CW-complex
if and only if

∑

i

(−1)iσ
(
H̃i(X,Z||G|)) = 0 (2.4)

in K̃0(ZG). (The Smith acyclicity of X implies that each H̃i(X,Z||G|) is of order
prime to |G|, so that we can think of it as representing an element of

(
Z||G|)×

, and
thus (2.4) makes sense.)

The “only if” direction of this theorem follows from making precise the equivari-
ant Wall obstruction. If “if” direction is proved by a direct inductive construction,
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where we add equivariant cells of type ei × G to X, analogous to the proof of
Theorem 1.

Theorem 13 paved the way for the study of many problems about extension
of group actions and “homology propagation.” The latter has to do with showing
that, roughly speaking, if two manifolds have similar homology, then they carry
similar group actions. Results of this type may be found in [5, 14, 102], and [15],
just to cite a few sources.

Still another application of the equivariant Wall finiteness obstruction, but
one requiring controlled topology also, may be found in a dramatic theorem of
Steinberger and West [84]: a locally linear action of a finite group G on a manifold
M, assuming all components of the fixed point sets of all subgroups have dimension
≥ 6 and none has codimension 1 or 2 in another, can be given an equivariant handle
structure if and only if, for each ε > 0, M is equivariantly ε-homotopy equivalent
to a finite G-CW-complex.

The equivariant Whitehead group WhG(X) and its basic properties were defined
by Illman [50]. Anderson [1], Hauschild [38], and Illman later [51] showed that
the equivariant Whitehead group WhG(X) can be expressed as a direct sum of
ordinary Whitehead groups Wh((WH)∗

α). The sum is over equivalence classes of
connected components XH

α of fixed sets XH , where H runs over the subgroups
of G. The group (WH)α is defined as (WH)α = {w ∈ WH : w · XH

α = XH
α }, where

WH = NG(H)|H. Finally, the group (WH)∗
α is an extension of (WH)α by π1(XH

α ). As
expected, the equivariant Whitehead group appears in the equivariant s-cobordism
theorem in [83] and in [4].

Finally, we return to the case of more general stratified spaces. This case gets
to be quite complicated, and the best place for the novice to begin is first with the
survey article [42] and then with Weinberger’s book [103]. As explained in [42,
§1], many definitions and categories of stratified sets have been proposed. In all
cases, we want to consider locally finite partitions Σ of a locally compact, separable
metric space X into pairwise disjoint, locally closed subsets Xi, called the (pure)
strata, each of which is a topological manifold, with cl Xi ∩ Xj �= ∅ if and only if
Xj ⊆ cl Xi. The index set is then partially ordered by j ≤ i if and only if Xj ⊆ cl Xi.
The closed sets cl Xi are often called the closed strata. The differences between the
various categories of stratified spaces have to do with “gluing” conditions on how
the strata are joined. Essentially all of the definitions apply to “good” stratified
spaces, like projective algebraic varieties overC, but they do not necessarily apply
to orbit spaces of finite groups acting locally linearly on topological manifolds,
where one needs a weak form of the definition.

For many purposes, the best theory of stratified spaces to use is that of Browder
and Quinn [11] – see also [103, §§6–10]. In this theory one keeps track of mapping
cylinder neighborhoods. In other words, if Xi is a stratum and

ΣXi =def (cl Xi � Xi) =
⋃{Xj | j � i} ,

we suppose there is a closed neighborhood Ni of ΣXi in Xi = cl Xi and a map
νi : ∂Ni → ΣXi such that:
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Figure 2.2. A mapping cylinder neighborhood

1. ∂Ni is a codimension-1 submanifold of Xi,
2. Ni is the mapping cylinder of νi (with ∂Ni and ΣXi corresponding to the top

and bottom of the cylinder),
3. if j � i and Wj = Xj � int Nj, then νi|ν−1

i (Wj) : ν−1
i (Wj) → Wj is a submersion

(in the appropriate category).

(See Fig. 2.2). Such mapping cylinder neighborhoods do not always exist in the
weakest types of stratified sets, but an obstruction theory for their existence was
given in [72, Theorem 1.7].

In the PL Browder–Quinn theory, Whitehead torsion and the s-cobordism the-
orem take an especially nice form. The appropriate obstruction group for a PL
stratified space X with strata Xi as above is simply

WhBQ(X) =
⊕

i

Wh(cl Xi) .

An h-cobordism W of stratified spaces, based on X, is itself a stratified space with
boundary X � X′, where the inclusions of X and X′ into W are stratified homotopy
equivalences, and the neighborhood data for the strata of Z are the pullbacks with
respect to the retractions of the data for X (and of X′).

14 Theorem 14: (Stratified s-cobordism theorem [103, §6]) Let X be a PL stratified
space in the sense of Browder–Quinn above. Then assuming all strata have di-
mension ≥ 5, PL h-cobordisms of PL stratified spaces based on X are in natural
bijection with WhBQ(X).

One thing to keep in mind, however, is that in the stratified (or equivariant)
world, the parallelism between the three categories of topological, PL, and smooth
manifolds breaks down. The stratified topological s-cobordism theorem is quite dif-
ferent from the PL one, and involves a rather different obstruction group Whtop(X).
One can already see this in the case of the one-point compactification X = M+ of
a non-compact manifold M, say with M PL (or even smooth). The space X has two
strata, M and a point, so WhBQ(X) = Wh(π1(X)), whereas Whtop(X) = Whp(M),
the proper Whitehead group that appears in Theorem 12 (see [103, pp. 131–132]
for an explanation of why this is the case). Also note that since Whtop(X) is a kind
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of “relative” Whitehead group, it can involve K0 and lower K-groups of the strata,
not just Whitehead groups of the closed strata as in the case of WhBQ(X).

Waldhausen’s A-Theory 2.6

For some of the applications of K-theory to geometric topology, one needs a vari-
ant of algebraic K-theory called the algebraic K-theory of spaces, A-theory, or
Waldhausen K-theory. There are several equivalent versions of the definition of
Waldhausen’s A(X), but all of them are somewhat involved. So it’s worth giving the
informal definition first. If X is a pointed space, let Q

(
(ΩX)+

)
= Ω∞Σ∞ (

(ΩX)+

)
be

the infinite loop space whose homotopy groups are the stable homotopy groups of
(ΩX)+, the loop group of X with a disjoint basepoint attached. The space Q

(
(ΩX)+

)

can be viewed as a “ring up to homotopy,” the multiplication coming from concate-
nation of loops in ΩX. If X is path-connected, then π0(ΩX) = π1(X) is an actual
group, and there is a map Q

(
(ΩX)+

) → Zπ1(X) from Q
(
(ΩX)+

)
to a genuine

ring, the group ring of π1(X). (The map Q(∗+) = Q(S0) → Z sends a stable map
S0 → S0, i.e., a map Sn → Sn for some n, to its degree.) Waldhausen’s A(X) [93]
is the K-theory space (the space whose homotopy groups are the K-groups) of
the ring up to homotopy Q

(
(ΩX)+

)
, and the map Q

(
(ΩX)+

) → Zπ1(X) induces
a “linearization map” L : A(X) → K(Zπ1(X)) which is close to being an equiva-
lence in “low degrees.” More precisely, the space A(X) splits as Q(X+) × Whdiff(X)
([94], [95], and [99]) for a certain homotopy functor Whdiff to be discussed further
in Sect. 2.7 below, but related to the (higher) Whitehead groups of π1(X). The
homotopy fiber of

L : A(∗) → K(Z) = Z× BGL(Z)+

has finite homotopy groups, and localized at a prime p is known to be (2p − 3)-
connected, with its first homotopy group isomorphic to Z|p in degree 2p − 2
([97], [55, Theorem 1.2]).

The main foundational paper on A(X), giving a rigorous definition and proving
the key properties, is [98]. As this is a 100-page technical tour de force, there is
no hope to explain it all here, so we will just quickly summarize some of the key
points. The longest part of the paper explains a method for defining the K-theory
of a category with cofibrations and weak equivalences. Such a category C has a zero
object and satisfies certain axioms modeled on the properties of the category
of finite pointed simplicial sets, where the cofibrations and weak equivalences
are defined as usual in homotopy theory. Other examples of this structure are
exact categories in the sense of Quillen, with the admissible monomorphisms as
cofibrations and the isomorphisms as weak equivalences.

Given a category C with cofibrations and weak equivalences, Waldhausen in-
troduces the simplicial category wS•C. The category wSnC in degree n of this
simplicial category has as its objects the diagrams

Y1 � Y2 � · · ·� Yn ,
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with the arrows� denoting cofibrations, and as its morphisms the diagrams

Y1 � Y2 � · · · � Yn

� ↓ � ↓ � � ↓
Z1 � Z2 � · · · � Zn

with the vertical arrows weak equivalences. One also needs to specify choices of
quotients Yj|Yi. Thus, for example, wS0C is the trivial category consisting only of the
0-object and the 0-morphism, and wS1C is (equivalent to) the category wC of weak
equivalences in C. The K-theoryK(C) of the category C can then be defined to be
Ω|wS•C|. This turns out to be an infinite loop space [98, p. 342]. Also, Waldhausen
shows that this definition is essentially equivalent to the usual definition (via the
+-construction or Q-construction) of Quillen K-theory (when both make sense).
The equivalence wC

�→ wS1C gives rise to a map Σ|wC| ↪→ |wS•C|, and thus to
a dual map

|wC| → Ω|wS•C| =def K(C) .

The algebraic K-theory of a space X (which we think of as a simplicial set – passage
from simplicial sets to spaces is given by the geometric realization functor | · |)
is then defined to be K(Rf (X)), where Rf (X) is the category of finite retractive
spaces over X, or in other words, simplicial sets Y equipped with an inclusion
X ↪→ Y , plus a retraction r : Y → X, so that Y consists of the union of X and
finitely many additional simplices. The map X �→ A(X) is a homotopy functor of
X [98, Proposition 2.1.7], and there is a pairing A(X) ∧ A(X′) → A(X × X′) [96,
pp. 400–402]. The map |wRf (∗)| → A(∗) is characterized by a certain additivity
property [96, Lemmas 1.1 and 1.2]; on the level of π0, it sends a homotopy equiv-
alence class of finite spaces (or simplicial sets) to π0(A(∗)) = Z, and turns out to
be the Euler characteristic. Other applications of the algebraic K-theory of spaces
will be mentioned in the following section, Sect. 2.7. But we just mention that A(X)
satisfies an analogue of the “fundamental theorem of K-theory” (the calculation
of K∗(R[t, t−1]) in terms of K∗(R)):

15 Theorem 15: ([44, 45, 77]) There is a splitting of A(X × S1) as

A(X × S1) � A(X) × Ω−1A(X) × “Nil term” × “Nil term” .

(This notation isn’t completely precise but is meant to imply that the second factor is
a delooping of A(X). More details may be found in the original papers.) The two Nil
terms are homeomorphic, and the “canonical involution” on A(X ×S1) (analogous
to the involution on K-theory of rings coming from the conjugate transpose on
matrices) interchanges the two Nil terms and restricts to the canonical involutions
on the other two factors.

Given that the definition of A-theory involves so much abstract machinery, it
is perhaps surprising that so much is known about how to calculate A(X). One
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of the key tools in this regard is the cyclotomic trace of Bökstedt, Hsiang, and
Madsen [8], a functorial map Trc : A(X) → TC(X; p) from A-theory to topological
cyclic homology. (To define this map, it is necessary to first fix a prime p.) There
is a beautiful theorem of Dundas about the fiber of this map after p-completion:

16Theorem 16: Dundas [28] If X is connected, then the diagram

A(X)∧
p

Trc→ TC(X; p)∧
p

L ↓ ↓
K(Zπ1(X))∧

p
Trc→ TC(Zπ1(X); p)∧

p

is homotopy Cartesian (i.e., is a homotopy pullback square).

In particular, the fiber of the cyclotomic trace map (after p-completion) only
depends on π1(X), and not on the rest of the homotopy type of X. (This was earlier
proved in [7].) And after p-completion, the homotopy fiber of the linearization
map from A-theory to K-theory of the group ring can be computed entirely from
TC-theory.

K-Theory and Pseudo-Isotopy 2.7

Let M be a compact smooth manifold (for now without boundary, but we will be
forced to consider manifolds with boundary later). The space of pseudo-isotopies
(or concordances) of M is defined to be

C(M) = Diff
(
M × I rel (M × {0} ∪ ∂M × I)

)
,

with the C∞ topology. (See Fig. 2.3.) This is of course a topological group under
composition of diffeomorphisms. A basic problem in manifold topology is to un-
derstand this space, and especially its set of connected components. This problem
is closely related to computing π0(Diff(M)), the group of diffeomorphisms of M
modulo isotopy. The reason is that, on the one hand, an isotopy of diffeomorphisms

Figure 2.3. A pseudo-isotopy
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of M clearly induces a pseudo-isotopy. But not every pseudo-isotopy comes from
an isotopy, since the “level sets” M ×{t} don’t have to be preserved for t > 0. (Again
see Fig. 2.3.) But C(M) acts continuously on Diff(M) by h · g = h|M×{1}g, and the
(open) orbit of the identity is the group of diffeomorphisms pseudo-isotopic to
the identity. So if C(M) is path-connected, pseudo-isotopic diffeomorphisms are
isotopic. The first major result about π0(C(M)) was a difficult theorem of Cerf [18]:
C(M) is path-connected if M is simply connected and dim M ≥ 6.4 However, it
was soon discovered that even in high dimensions, C(M) can be disconnected if
π1(M) is non-trivial, and Hatcher and Wagoner [37] (originally working indepen-
dently) discovered a remarkable connection between π0(C(M)) and the K-group
K2(Zπ1(M)). This eventually led to an exact sequence for π0(C(M)):

K3(Zπ1(M)) → Wh+
1 (π1(M); Z|2 × π2(M))

→ π0(C(M)) → Wh2(π1(M)) → 0 . (2.5)

Here Wh2(π1(M)) denotes the quotient of K2(Zπ1(M)) by its intersection (when
we think of K2 as a subgroup of the Steinberg group) with the subgroup of the
Steinberg group St(Zπ1(M)) generated by the special elements wij(g), g ∈ π1(M).
This insures that we divide K2 by its trivial part (the image of K2(Z) =̃ Z|2).
(See [74, Definition 4.4.25].) The second term in (2.5) is to be interpreted using the
definition

Wh+
1 (π; A) = H0(π, Aπ)|H0(π, A) .

Note that we need to keep track of the action of π1(M) on π2(M) to compute this.
Hatcher and Wagoner [37] constructed the surjection π0(C(M)) → Wh2(π1(M))
in (2.5), Hatcher [37] extended the exact sequence to Wh+

1 , and K. Igusa [47]
corrected a mistake of Hatcher and extended the sequence to K3.

The exact sequence (2.5), along with Igusa’s work in [47] showing how the first
Postnikov invariant k1(M) ∈ H3(π1(M), π2(M)) can affect π0(C(M)), makes it
clear that calculation of the topology of C(M) must in general be quite complicated.
Since this problem is hard and “unstable,” it is useful to “stabilize.” One can define
a suspension map σ : C(M) → C(M × I). (The subtlety here is that if M has
a boundary, M × I is a manifold with corners, but still, there is no problem in
suspending a pseudo-isotopy ϕ to ϕ×idI .) The inductive limitP (M) = lim→ C(M×In)

turns out to be an infinite loop space whose structure can be calculated in many
cases; more about this later. Then one can obtain results about C(M) itself thanks
to a second result of Igusa (quite technical to prove):

17 Theorem 17: [48] The suspension map σ : C(M) → C(M × I) is k-connected if
dim M ≥ max(2k + 7, 3k + 4).

4 There is an obvious analogue of C(M), denoted CPL(M), for PL manifolds, where we
replace Diff by the group of PL automorphisms. The analogue of Cerf ’s theorem holds for
this as well [75].
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Igusa’s proof follows an outline in [35] of an analogous theorem for CPL of a PL
manifold, but there are problems with the PL proof given there, due to the fact that
pushouts do not exist for most pairs of maps of polyhedra. However, concordance
stability for smooth manifolds implies stability for PL or topological concordances,
for manifolds that have a smooth structure, by a result of Burghelea and Lashof [13].

Before proceeding to the more technical aspects of pseudo-isotopy, it might be
worth explaining the rough idea of why π0(C(M)) is related to K2 (and in fact
surjects onto Wh2(π1(M))). The ideas here come from the papers of Cerf [18] and
Hatcher–Wagoner [37] quoted above. The starting point of the proof is an obser-
vation of Cerf that C(M) is homotopy-equivalent to the space E(M) of functions
f : M × [0, 1] → [0, 1] which are smooth, have no critical points, and satisfy
f (x, 0) = 0 and f (x, 1) = 1 for all x ∈ M. The homotopy equivalence is simply the
map that sends h ∈ C(M) to f : (x, t) �→ p2 ◦h(x, t), where p2 : M×[0, 1] → [0, 1]
is projection onto the 2nd coordinate. A homotopy inverse E(M) → C(M) to this
map is constructed by fixing a Riemannian metric on M and sending f ∈ E(M)
to the pseudo-isotopy constructed from its gradient flow. So given h ∈ C(M), its
obstruction in Wh2(π) will be constructed using a path ft of smooth functions
M × [0, 1] → [0, 1] with f0 = p2 and f1 = p2 ◦ h. If this path can be deformed to
one with no critical points, then h must lie in the identity component of C(M). One
starts by using the usual ideas of differential topology to deform f to a “generic”
function with non-degenerate isolated critical points, and then analyzes what hap-
pens as one goes from one critical point to the next (so far this is like the start of the
proof of the h-cobordism theorem). In the simplest case where all the critical points
are either of index i or index i + 1, one gets for each t a realization of M × [0, 1] as
being obtained from M × [0, 1] by attaching i-handles and (i + 1)-handles. Since
M × [0, 1] is topologically a product, these handles have to cancel as far as their
effect on (π1(M)-equivariant) homology of the universal cover is concerned, so
one gets an intersection matrix A(t) in GL(Zπ1(M)) measuring how the i-handles
(coming from critical points of index i) are cancelled by the (i + 1)-handles. The
function t �→ A(t) also has to be piecewise constant, with jumps just at the critical
values of t. For t close to 0, A(t) is the identity matrix; near t = 1 it is a prod-
uct of a permutation matrix and a diagonal matrix with entries of the form ±g,
g ∈ π1(M); and in between it changes finitely many times by certain elementary
matrices ejk(±g). So if one takes the Steinberg generators xjk(±g) corresponding
to the ejk(±g), one finds that their product gives rise to an element of St(Zπ1(M))
which lifts A(1). However there is a canonical way to lift any product of a permu-
tation matrix and a diagonal matrix, and in particular A(1), as a product of the
wjk(±g)’s. Dividing, one gets an element of K2(Zπ) which is well-defined modulo
the subgroup of St(Zπ1(M)) generated by all wij(g), g ∈ π1(M), i.e., an element
of Wh2(π1(M)). One can show that this element doesn’t change under smooth
deformation, so it gives an obstruction to being able to deform f to a function
without critical points.

A program for studying the stabilized pseudo-isotopy space P PL(M) in the
PL category, by relating it to more homotopy-theoretic objects, was sketched
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in [36] and [35] without rigorous proofs. A vast generalization of the program
was developed and carried out by Waldhausen. He introduced homotopy func-
tors WhPL and Whdiff with the properties that Ω2Whdiff(M) � P (M) for compact
smooth manifolds and Ω2WhPL(M) � P PL(M) for compact PL manifolds. As we
mentioned before (near the beginning of section 2.6), Waldhausen showed that
Whdiff(X) is one factor in A(X). (The other factor is Q(X+).) There is also a map
A(X) → WhPL(X), and its homotopy fiber is a homology theory, but it’s a little
harder to understand. The correct analogue of the formula (2.5) for general X is
an exact sequence [46, Theorem 13.1]:

π3(A(X)) → K3(Zπ1(X)) → H0(π1(X),
(
π2(X) ⊕ Z|2

)
π1(X))

→ π2(A(X)) → K2(Zπ1(X)) → 0 .

The machinery that’s known for computing A(X) (at least rationally) in some
circumstances thus implies quite a lot of information about pseudo-isotopies and
groups of homeomorphisms and diffeomorphisms of manifolds. For example,
Farrell and Jones [30, Corollaries 10.6 and 10.7] compute the rational homo-
topy groups πj(Homeo(M)) ⊗Z Q and πj(Diff(M)) ⊗Z Q for M a real hyperbolic
manifold of dimension m > 10 and j in a stable range (≤ (m − 4)|3). The connec-
tion between A(X) and pseudo-isotopies also makes it possible to study not only
“higher” Whitehead torsion (as in [35]), but also higher Reidemeister torsion (as
in [49]).

We should point out also that there are controlled versions of pseudo-isotopy
theory, which are related to negative K-theory (e.g., [2], [43], and [41]).

K-Theory and Symbolic Dynamics2.8

Among the lesser known applications of K-theory to geometric topology are ap-
plications to symbolic dynamics, the study of invariant subspaces of the shift map
acting on infinite sequences of letters from some alphabet. To fix notation, con-
sider the full n-shift, X+

n = {0, 1, · · · , n − 1}N or Xn = {0, 1, · · · , n − 1}Z with the
product topology. (Topologically, X+

n and Xn are both Cantor sets if n > 1.) Let
σn : Xn → Xn and σ+

n : X+
n → X+

n be the shift map that shifts a sequence one unit
to the left. The map σn is a self-homeomorphism of Xn, called the two-sided n-shift,
and σ+

n is a surjective (but non-invertible) self-map of X+
n , called the one-sided

n-shift.
A subshift of finite type is a pair (XA, σA), where A is an n × n matrix with

entries in {0, 1}, where XA is the closed σn-invariant subset of Xn consisting of
sequences (xk) with allowable transitions, i.e., with Axk,xk+1 = 1 for all k, and where
σA = σn|XA . The one-sided subshift of finite type (X+

A , σ+
A) is defined similarly

from (X+
n , σ+

n ). The first basic problem of symbolic dynamics is to classify the
pairs (XA, σA) and (X+

A , σ+
A) up to topological conjugacy. Note that keeping track
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of the shift structure is essential here, since all XA’s and X+
A ’s are Cantor sets5 and

are thus homeomorphic to one another, regardless of the values of n and of the
matrix A.

One might, of course, wonder why we are considering homeomorphisms of
Cantor sets when we promised at the beginning of this article to restrict attention to
“topology of manifolds and manifold-like spaces, of simplicial and CW-complexes,
and of automorphisms of such objects.” The reason is that as amply demonstrated
by Smale [80], Bowen [10], and others, any attempt to study the dynamics of smooth
self-maps of manifolds inevitably leads to problems of symbolic dynamics.

For purposes of studying the conjugacy problem for the pairs (XA, σA), it’s
convenient to allow A to be any square matrix with entries in N, the non-negative
integers. There is a canonical way to do this [91, pp. 272–273] without changing
the definition of XA in the case of a 0-1 matrix, and so that the 1 × 1 matrix (n)
and the n × n matrix with all entries equal to 1 both give rise to Xn. However,
any XA can be rewritten as XA# for some 0-1 matrix A# (usually of larger size
than A).

The key initial work on the conjugacy problem for the pairs (XA, σA) was done
by Williams [104], who showed that σA and σB are topologically conjugate if
there are rectangular (not necessarily square!) matrices R and S with entries
in N such that RS = A, SR = B. This relation is called elementary strong shift
equivalence over N, but this is a slight misnomer: it is not an equivalence relation.
The equivalence relation it generates (on square matrices of arbitrary size with
entries inN) is called strong shift equivalence overN, and Williams proved that σA

and σB are topologically conjugate if and only if the matrices A and B are strong
shift equivalent over N. Williams also gave a necessary and sufficient condition
for topological conjugacy of the one-sided shifts σ+

A and σ+
B in terms of conjugacy

of “total amalgamations,” and this criterion is computable. However, strong shift
equivalence is not especially computable – the problem is that there is no obvious
way to bound the length of a chain of elementary strong shift equivalences. Thus
Williams also introduced another equivalence relation. Two square matrices A
and B with entries in N are called shift equivalent over N if there are rectangular
matrices R and S with entries inN such that AR = RB, SA = BS, and for some k ≥ 1,
Ak = RS and Bk = SR. It turns out that shift equivalence over N is computable and
that the matrices A and B are shift equivalent over N if and only if σk

A and σk
B are

topologically conjugate for all sufficiently large k. An unsolved problem for many
years, called the shift equivalence problem, was whether shift equivalence implies
strong shift equivalence (over N), or equivalently, if conjugacy of σk

A and σk
B for all

large k implies conjugacy of σA and σB.
The (negative) solution to the shift equivalence problem heavily involves K-

theory. First of all, shift equivalence turns out to be connected with the ordering
on K0 of a ring, a certain C∗-algebra associated to the shift. As a result, one can for
example prove:

5 This is assuming we are not in one of the uninteresting cases where XA or X+
A contains an

isolated point, as when A = (1).
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18 Theorem 18: [91, Corollary 2.13] If A, B ∈ GL(n,Z) ∩ Mn(N), then A and B are
shift equivalent over N if and only if A and B are conjugate in GL(n,Z).

Also, if one drops the requirement that the matrices defining a shift equivalence
have non-negative entries and thus considers shift equivalence and strong shift
equivalence over Z, then these two conditions are indeed equivalent [90].

However, overN, Kim and Roush [53] showed that shift equivalence and strong
shift equivalence are not equivalent, even for primitive matrices (the most impor-
tant case). While their original construction did not directly involve K-theory, it
was partially motivated by work of Wagoner [89] relating Aut(σA) to K2, and in [92],
Wagoner, Kim, and Roush showed that one can indeed construct a counterexam-
ple to the shift equivalence problem using an invariant based on K2(Z[t]|(t2)).
A good introduction to this work may be found in [91]. If one looks carefully, one
can see the connection with the ideas of Cerf theory and the connection between
pseudo-isotopy and K2.

References
1. Douglas R. Anderson. Torsion invariants and actions of finite groups. Michi-

gan Math. J., 29(1):27–42, 1982.
2. Douglas R. Anderson and W. C. Hsiang. The functors K−1 and pseudo-

isotopies of polyhedra. Ann. of Math. (2), 105(2):201–223, 1977.
3. Paweł Andrzejewski. Equivariant finiteness obstruction and its geometric

applications – a survey. In Algebraic topology, Poznań 1989, volume 1474 of
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Introduction 3.1

Suppose R is a ring with an (anti)-involution −: R → R, and with choice of central
unit ε such that εε = 1. Then one can ask for a computation of KQuad(R, −, ε),
the K-theory of quadratic forms. Let H : KR → KQuad(R, −, ε) be the hyperbolic
map, and let F : KQuad(R, −, ε) → KR be the forget map. Then the Witt groups

W0(R, −, ε) = coker
(

K0R
H→ K0Quad(R, −, ε)

)

W1(R, −, ε) = ker
(

F : KQuad1(R, −, ε)
F→ K1R

)

have been highly studied. See [6], [29, 32, 42, 46, 68], and [86]–[89]. However, the
higher dimensional quadratic K-theory has received considerably less attention,
than the higher K-theory of f.g. projective modules. (See however, [34,35,39], and
[36].)

Suppose M is an oriented, closed topological manifold of dimension n. We let

G(M) = simplicial monoid of homotopy automorphisms of M ,

Top(M) = sub-simplicial monoid of self-homeomorphisms of M , and

S(M) = � G(N)|Top(N) ,

where we take the disjoint union over homeomorphisms classes of manifolds
homotopy equivalent to M. Then S(M) is called the moduli space of manifold
structures on M.

In classical surgery theory (see Sect. 3.3) certain subquotients of KjQuad(R, −, ε)
with j = 0, 1; R = Zπ1M; and ε = ±1 are used to compute π0S(M).

The main goals of this survey article are as follows:
1. Improve communication between algebraists and topologists concerning

quadratic forms
2. Call attention to the central role of periodicity.
3. Call attention to the connections between KQuad(R, −, ε) and S(M), not just

π0S(M).
4. Stimulate interest in the higher dimensional quadratic K-groups.

The functor which sends a f.g. projective module P to HomR(P, R) induces an
involution T on K(R). For any i, j ∈ Z and any T-invariant subgroup X ⊂ Kj(R),
topologists (see Sect. 3.5) have defined groups LX

i (R). The subgroup X is called the
decoration for the L-group. Here are a few properties:

1. Periodicity LX
i (R) � LX

i+4(R)

2. LK0
2i (R) � W0

(
R, −, (−1)i

)

3. LK2
2i+1(R) � W1

(
R, −, (−1)i

)

4. L
Kj
i (R) � L

Oj−1
i (R), where Oj−1 is the trivial subgroup of Kj−1(R)
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5. Rothenberg Sequences If X ⊂ Y ⊂ Kj(R), we get an exact sequence

· · · → LX
i (R) → LY

i (R) → Ĥi
(
Z|2, Y |X

) → ... .

6. Shaneson Product Formula For all i, j ∈ Z,

L
Kj+1
i+1

(
R[t, t−1]

)
=̃ L

Kj+1
i+1 (R) ⊕ L

Kj
i (R) ,

where we extend the involution on R to the Laurent ring R[t, t−1] by t = t−1.

Notice that LX
i (R) ⊗ Z[ 1

2 ] is independent of X. Different choices for X are used
to study various geometric questions. The classification of compact topological
manifolds uses X ⊂ K1 (See Sect. 3.3). The study of open manifolds involves
X ⊂ Kj, with j < 1, (See [25,31,50,54,65] and [71]). The study of homeomorphisms
of manifolds involves X ⊂ Kj, with j > 1, (see Sect. 3.6).

Localization Sequences: Suppose S is a multiplicative system in the ring R. Then
we get an exact sequence

· · · → Ki(R, S) → Ki(R) → Ki(S−1R) → · · · ,

where Ki(R, S) is the K-theory of the exact category of S-torsion R-modules of
homological dimension 1. In the case of L-theory(with appropriate choice of dec-
orations) one gets an analogous exact sequence using linking forms on torsion
modules (see [61, 64], and [53]). However, what is striking about the L-theory
localization is that it is gotten by splicing together two 6-term exact sequences.
One of these involves (R, −, +1) quadratic forms and the other involves (R, −, −1)
quadratic forms. The resulting sequence is then 12-fold periodic. In fact L-theory
satisfies many other such periodic exact sequences (see [64]).

Let L<−∞>
i (R) be the direct limit of LK0

i (R) → LK−1
i (R) → · · ·.

Let K(R) be the K-theory spectrum constructed by Wagoneer [78] where for
all i ∈ Z, Ki(R) � πi(K(R)). Similarly, let KQuad(R, −, ε) be the spectrum where
for all i ∈ Z, KQuadi(R, −, ε) � πi(KQuad(R, −, ε)). Similarly, let KHerm(R, −, ε)
be the K-theory spectrum for Hermitian forms (see Sects. 3.2 and 3.4). There is
a functor Quad(R, −, ε) → Herm(R, −, ε) which induces a homotopy equivalence
on K-theory when 2 is a unit in R.

Given a spectrum K equipped with an action by a finite group G we get the
norm homotopy fibration sequence

H∗(G,K)
N→ H

∗(G,K) → Ĥ
∗(G,K) ,

whereH∗(G,K) is the homotopy orbit spectrum of G acting onK,H∗(G,K) is the
homotopy fixed spectrum, and N is the norm map.

The key example for us is K = K(R), G = Z|2, and the action is given by the
involution T.
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1Theorem 1: (Hermitian K-theory Theorem) There exists a homotopy cartesian
diagram

KHerm(R, −, ε) → L(R, −, ε)

F̃ ↓ ↓
H

∗ (
Z|2,K(R)

) → Ĥ
∗ (
Z|2,K(R)

)

with the following properties.
1. If 2 is a unit in R, then for i = 0 or 1,

πiL(R, −, +1) � L<−∞>
i (R)

πiL(R, −, −1) � L<−∞>
i+2 (R)

2. Periodicity: If 2 is a unit in R, then Ω2L(R, −, ε) � L(R, −, −ε).

3. The composition KHerm(R, −, ε)
F̃→ H

∗(Z|2,K(R)) → K(R) is the forgetful
map F.

4. The homotopy fiber ofKHerm(R, −, ε)→L(R, −, ε) is a map H̃:H∗
(
Z|2,K(R)

)

→ KHerm(R, −, ε) such that the composition K(R) → H∗
(
Z|2,K(R)

) H̃→
KHerm(R, −, ε) is the hyperbolic map.

We call F̃ the enhanced forgetful map, and H̃ the enhanced hyperbolic map.

Before we state an analogous theorem for S(M) we need to introduce some
more background.

Let hcob(M) be the simplicial set of h-cobordisms on M and let hcob(M) → S(M)
be the map which sends an h-cobordism h : (W , ∂W) → (M × I, M × ∂I) to
h|M1 : M1 → M × 1 where ∂W = M � M1. Let HCOB(M) be the homotopy colimit
of

hcob(M) → hcob(M × I) → hcob(M × I2) · · ·

Igusa has shown that if M is smoothable, then the map hcob(M) → HCOB(M)
is at least k + 1-connected where n = dimM ≥ max(2k + 7, 3k + 4).

Let ΩWH
(
Zπ1(M)

)
be the homotopy fiber of the assembly mapH∗(M,KZ) →

KZπ1(M). For n > 4, the s-cobordism theorem yields a bijection π0

(
hcob(M)

) →
π0

(
ΩWH

(
Zπ1(M)

))
. Waldhausen [80] and Vogel [76, 77] has shown how in

the definition of KZπ1(M) we can replace π1(M) with the loop space of M
and Z with the sphere spectrum. This yields A(M), the K-theory of the space
M. There exists a linearization map A(M) → KZπ1(M) which is 2-connected.
Furthermore, there exists a homotopy equivalence HCOB(M) → ΩWH(M),
where ΩWH(M) is the homotopy fiber of the assembly map H∗

(
M,A(∗)

) →
A(M).

Constructions of Ranicki yield spectrum LX(R) such that πi(LX(R)) � LX
i (R).

Let L be the 1-connected cover of LK0 (Z).
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2 Theorem 2: (Manifold Structure Theorem) Poincaré duality yields an involution
on WH(M), and there exists a homotopy commutative diagram

S(M) → S−∞(M)

↓ ↓
H

∗(Z|2, ΩWH(M)) → Ĥ
(
Z|2, ΩWH(M)

)

with the following properties.
1. There exists a homotopy equivalence between S−∞(M) and the −1-connected

cover of Ωn of the homotopy fiber of the assembly map

H∗
(
M,L

) → L
<−∞>

(
Zπ1(M)

)
.

(See[47] for background on assembly maps.)
2. Periodicity: There exists a map S−∞(M) → Ω4S<−∞>(M) which induces an

isomorphisms on πi for i > 0.
3. The composition π0

(
S(M)

) → π0

(
H

∗ (
Z|2, ΩWH(M)

)) → π0

(
ΩWH(M)

)

sends a homotopy equivalence h1 : M1 → M to the Whitehead torsion
of h1.

4. The map hcob(M) → S(M) factors thru the homotopy fiber of S(M) →
S−∞(M).

5. If M is a smoothable manifold, then the above homotopy commutative dia-
gram is homotopy cartesian thru dimension k + 1 where dimM ≥ max(2k + 7,
3k + 4).

Notice the strong analogy between these two theorems.
In Sect. 3.2 we use the hyperbolic and forgetful maps to define LK1(R)

i (R) for i ∈ Z.
The product formula is then used to define LKj(R)(R) for j ≤ 0 and (R, −, ε) any
Hermitian ring. In Sect. 3.3 we explain how LK1(R)

i (R) is used to classify manifolds
up to homeomorphism. In Sect. 3.4 we use constructions of Thomason and Karoubi
to define LX

i (R) for X any Z|2-invariant subgroup of Kj(R) for any i, j ∈ Z under
the assumption that 2 is a unit in R. This assumption is needed in order to be able
to use Karoubi Periodicity. In Sect. 3.4 we also discuss the Hermitian K-theory
Theorem. In Sect. 3.5 we discuss Ranicki’s approach to L-theory via structures
on chain complexes. This yields a periodicity theorem where we do not have to
assume 2 is a unit, and for any i, j ∈ Z and any T-invariant subgroup X ⊂ Kj(R),
we define LX(R) where (R, −, ε) is any Hermitian ring. In Sect. 3.6 we discuss the
Manifold Structure Theorem. Also Ranicki’s quadratic chain complexes are used
to show that the relationship between these two theorems is much more than just
an analogy.
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Basic Algebraic Definitions 3.2

See [6, 57, 85, 88] and [40].

K-Theory of Quadratic Forms 3.2.1

A hermitian ring , denoted by (R, −, ε) is a ring R equipped with an anti-involution
− : R → R and a preferred element ε ∈ center(R) such ε · ε = 1.

Let P be a finitely generated projective right R-module. A (−, ε)-sesquilinear
form on P is a biadditive map β : P × P → R such that β(p1r1, p2r2) = r1β(p1, p2)r2

where pi ∈ P and ri ∈ R, for i = 1, 2.
We let Sesq(P)=group of all (−, ε)-sesquilinear forms on P. Let Tε : Sesq(P) →

Sesq(P) be the involution: Tε(β)(p1, p2) = β(p2, p1)ε. We make P∗ = HomR(P, R)
a right R-module by αr(p) = rα(p), where α ∈ P∗, r ∈ R and, p ∈ P. If f : P → Q is
a map of right R modules, then f ∗ : Q∗ → P∗ is the dual of f . A form β ∈ Sesq(P)
is nonsingular iff ad(β) : P → P∗ is an isomorphism where adβ(p) = β(p, −).

A (−, ε)-hermitian form on P is an element β ∈ ker(1 − Tε). A (−, ε)-hermitian
module is a pair (P, β) where P is a finitely generated projective R module and β is
a hermitian form on P. A map from (P1, β1) to (P2, β2) is an R-linear map f : P1 → P2

such that β1 = β2 ◦ (f × f ). The sum (P1, β1) ⊥ (P2, β2) = (P1 ⊕ P2, β1 ⊥ β2) of two
hermitian modules is given by (β1 ⊥ β2)(p1 + p2, p′

1 + p′
2) = β1(p1, p′

1) + β2(p2, p′
2).

We let Herm(R, −, ε)) denote the category of non-singular (−, ε) hermitian mod-
ules. It is a symmetric monoidal category. We let KHerm(R,, ε) denote the infinite
loop space gotten by applying the May–Segal machine [1]. For i ≥ 0, we let
KHermi(R,, ε) denote the i-th homotopy group of KHerm(R,, ε). Later in Sect. 3.4
we’ll introduce the notion of the suspensions of a hermitian ring which will yield
disconnected deloopings of KHerm(R, −, ε)) and the definition of KHermi(R, −, ε)
for i < 0.

A (−, ε)-quadratic module is a pair (P, α) where P is a f.g. projective right R
module and α ∈ Sesq(P). Notice that β = (1 + Tε)α is a hermitian form, and we
say that α is a quadratic form with associated pairing β. A map from (P1, α1) to
(P2, α2) is a R-linear map f : P1 → P2 such that (α1 − (α2 ◦ (f × f )) ∈ im(1 − Tε).
We say (P, α) is nonsingular if (1 + Tε)α is a nonsingular hermitian form. The sum
(P1, α1) ⊥ (P2, α2) = (P1 ⊕ P2, α1 ⊥ α2) of two quadratic modules is given by
(α1 ⊥ α2)(p1 + p2, p′

1 + p′
2) = α1(p1, p′

1) + α2(p2, p′
2). (In [85] Wall shows that this

way of viewing quadratic forms is equivalent to the classical definition.)
We let Quad(R, −, ε) denote the category of nonsingular quadratic modules. We

let KQuad(R, −, ε) denote the infinite loop space gotten by applying the May–Segal
machine [1]. For i ≥ 0, we let KQuadi(R, −, ε) denote the i-th homotopy group of
KQuad(R, −, ε).

3Theorem 3 If 2 is a unit in R, then the functor Quad(R, −, ε) → Herm(R, −, ε)
which sends (P, α) to (P, (1 + Tε)α) is an equivalence of categories and induces
a homotopy equivalence KQuad(R, −, ε) → KHerm(R, −, ε).
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Let isoP (R) be the category with objects finitely generated projective mod-
ules, and maps R-linear isomorphisms. The hyperbolic functor H : isoP (R) →
Quad(R, −, ε) is defined as follows:

objects : P �→
(

P ⊕ P∗,

[
0 0

eval 0

])

,

maps : (f : P → Q) �→ f ⊕ (
f −1

)∗
,

where eval(p, α) = α(p) for P ∈ P and α ∈ P∗.
We let GQ2l(R, −, ε) := Aut

(
H(Rl)

)
, and GQ(R, −, ε) is the direct limit of the di-

rect system
{

GQ2l(R, −, ε), θ2l

}
where θ2l : GQ2l(R, −, ε) → GQ2l+2(R, −, ε) is given

by

(
A B

C D

)

→






A 0 B 0

0 1 0 0

C 0 D 0

0 0 0 1






.

Recall that if X is a connected topological space and π1(X) is a quasi-perfect group,
i.e. [π1(X), π1(X)] is perfect, then the Quillen plus construction is a map X → X+

which abelianizes π1 and which induces an isomorphism on homology for all local
coefficient systems on X+.

4 Theorem 4 The group GQ(R, −, ε) is quasi-perfect and KQuad(R, −, ε) is homotopy
equivalent to KQuad0(R, −, ε) × BGQ(R, −, ε)+.

See [6, 57], and [29] for information on the group GQ(R, −, ε), in particular
about generators for the commmutator subgroup.

The hyperbolic functor induces a map of infinite loop spaces H : KR →
KQuad(R, −, ε) and we let KQuad(−1)(R, −, ε) be the homotopy fiber of the de-

loop of H. Thus we get a homotopy fibration sequence KR
H→ KQuad(R, −, ε) →

KQuad(−1)(R, −, ε).
The forgetful functor F : Quad(R, −, ε) → isoP (R) is given as follows:

objects : (P, α) �→ P ,

maps : [ f : (P, α) → (P′, α′)] �→ f .

This induces a map of infinite loop spaces F : KQuad(R, −, ε) → K(R) and we
let KQuad(1)(R, −, ε) denote the homotopy fiber.

Let T : isoP (R) → isoP (R) be functor which sends an object P to P∗ and which
sends a map f to

(
f −1

)∗
. Then T induces a homotopy involution on KiR for all i.

Also the composition F ◦ H : Ki(R) → Ki(R) equals 1 + T.
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5Theorem 5: (Karoubi Periodicity)
Asume 2 is a unit in R. Then the 2nd loop space of KQuad(−1)(R, −, ε) is homotopy
equivalent to KQuad(1)(R, −, −ε).

In Sect. 3.3 we’ll see that part (2) of the Hermitian K-theory Theorem follows
from Karoubi Periodicity.

Giffen has suggested that there should be a version of Karoubi Periodicity
without the assumption that 2 is a unit. Let Even(R, −, ε) be the category of even
hermitian forms and let Split(R, −, ε) be the category of split quadratic forms (see
[64] for definitions). Then we get forgetful functors

Split(R, −, ε) → Quad(R, −, ε) → Even(R, −, ε) → Herm(R, −, ε) ,

which are equivalences when 2 is a unit in R. We can define analogues of
KQuad(1)(R, −, −ε) and KQuad(−1)(R, −, ε) for each of these categories, Giffen’s idea
is that the 2nd loop space of KQuad(−1)(R, −, ε) should be homotopy equivalent to
KEven(1)(R, −, −ε). There should also be a similar result for each adjacent pair of
categories.

L-Theory of Quadratic Forms 3.2.2

When we are using only one involution on our ring R we’ll write (R, ε) as short for
(R, −, ε).

Let Fj : KQuadj(R, ε) → KjR be the map induced by the forgetful functor F.
Let Hj : KjR → KQuadj(R, ε) be the map induced by the hyperbolic functor.

Based L-Groups Following [88]

LS
2i(R) = LK2

2i (R) := ker
(
disc : π0

(
KQuad(1)(R, (−1)i) → K1R

))

LS
2i+1(R) = LK2

2i+1(R) := ker
(
F1 : KQuad1

(
R, (−1)i

) → K1R
)

,

where π0(KQuad(1)(R, (−1)i) can be identified as the K0 of the category of based,
even rank quadratic forms and “disc” is the discriminate map.

Free L-Groups

LK1
2i (R) := ker

(
F0 : KQuad0

(
R, (−1)i

) → K0R
)

LK1
2i+1(R) := coker

(
H1 : K1R → KQuad1

(
R, (−1)i

))

Remarks: In the next section we’ll explain how these free L-groups are used to
classify compact manifolds.

Projective L-Groups

For i ∈ Z, LK0
2i (R) = L

p
2i(R) := coker

(
K0R

H0→ KQuad0

(
R, (−1)i

))
. If 2 is a unit in R,
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then L
p
0(R) is often denoted by W(R). If R is also commutative, then tensor product

of forms makes W(R) into a ring called the Witt ring.(See [7, 46, 51], and [68].)
Remarks: the letter “p” stands for “projective”.

See [57] where Ranicki defined L
p
2i−1(R). in terms of “formations”.

Also he proved the following Shaneson Product Formula

L
Kj
i (R) =̃ coker

(
L

Kj+1
i+1 (R) → L

Kj+1
i+1

(
R[t, t−1]

))

for all i, j = 0 or 1 and where we extend the involution on R to the Laurent ring
R[t, t−1] by t = t−1.

Ranicki also constructed the Rothenberg Sequence

· · · → L
Kj+1
i (R) → L

Kj
i (R) → Ĥi

(
Z|2, Kj(R)

) → · · ·

for all i ∈ Z, and j = 0 or 1.

“Lower” L-Groups
This product formula suggests the following downward inductive definition:
For j < 0 and any i ∈ Z,

L
Kj
i (R) := coker

(
L

Kj+1
i+1 (R) → L

Kj+1
i+1

(
R[t, t−1]

))

Notice how this is analogous to Bass’s definition of Kj(R) for j < 0 (see[8]).
By using the fundamental theorem of algebraic K-theory, and the fact that the

involution T interchanges the two Nil terms in Kj(R[t, t−1] it is to easy that

Ĥi+1
(
Z|2, Kj+1

(
R[t, t−1]

))
=̃ Ĥi+1

(
Z|2, Kj+1(R)

) ⊕ Ĥi
(
Z|2, Kj(R)

)

for all i, i ∈ Z.
Then one can deduce the following Rothenberg exact sequence

· · · → LKj+1 (R) → LKj R → Ĥ
(
Z|2, Kj(R)

) → · · ·

for all i ∈ Z and all j < 0.
Recall that it was much harder to find the “correct” definition for high dimen-

sional K-theory than for low dimensional K-theory. Similarly, the definition of
L

Kj
i (R) for j ≥ 1 is harder than for j ≤ 1. See Sect. 3.5 for the definition of L-groups

with “higher” decorations for all Hermitian rings. In Sect. 3.4 we use Karoubi
periodicity to give another description when 2 is a unit in the Hermitian ring.

Classification of Manifolds
up to Homeomorphism3.3

Surgery theory was invented by Kervaire–Milnor, Browder, Novikov, Sullivan, and
Wall [87]. The reader is encouraged to look at the following new introductions to
the subject [48, 66], and [30].
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Poincaré Complexes
We first introduce the homotopy theoretic analogue of a closed manifold. A con-
nected finite CW complex X is an (oriented) n-dimensional Poincaré complex with
fundamental class [X] ∈ Hn(X) if [X] ∩ −: H∗(X; Λ) → Hn−∗(X; Λ) is an iso-
morphism for every Zπ-module Λ, where π = π1(X). Assume q >> n, then X
has a preferred Sq−1 spherical fibration SX such that Thom(SX) has a reduction,
i.e. a map cX : Sn+q → Thom(SX) which induces an isomorphism on Hn+q. We
call SX the Spivak fibration for X, and given any Sq−1-fibration η equipped with
a reduction c, there exists a map of spherical fibrations γ : η → SX which
sends c to cX . The map γ is unique up to fiber homotopy. Notice that if X
is a closed manifold embedded in Sn+q with normal bundle νX , then the map
cX : Sn+q → (Sn+q|

(
Sn+q − tubular nghd

)
) � Thom(νX) is a reduction.

Manifold Structures
If X is an (oriented) n-dimensional Poincaré complex, we let S(X) denote the
simplicial set of topological manifold structures on X. An element in π0(S(X)) is
represented by a homotopy equivalence h : M → X where M is a closed topological
manifold. A second homotopy equivalence h1 : M1 → X represents the same
element if there exist a homeomorphism α : M → M1 such that h is homotopic to
h1 ◦ α. A k-simplex in S(X) is given by a fiber homotopy equivalence M × ∆k →
X × ∆k over ∆k.
Let’s consider the following two questions.

(Existence) When is S(X) nonempty?
(Classification) Suppose h : M → X and h1 : M1 → X represent [h] and [h1] in
π0(S(X)). How do we decide when [h] = [h1]?

We break these two questions into a series of subquestions.

Existence Step I: Euclidean bundle structure on the Spivak fibration
Question 1E: (Homotopy Theory) Does there exist a topological Rq bundle η over
X with a reduction c : Sn+q → Thom(η)?

Notice the answer to 1E is yes iff the map SX : X → BG which classifies SX factors
thru BTop, the classifying space for stable Euclidean bundles. Also suppose h :
M → X is a homotopy equivalence where M is a closed topological manifold.
If g is a homotopy inverse to h, then ηh = g∗νM has a reduction ch : Sn+q cM→
Thom(νM) → Thom(ηh). We call the pair (ηh, ch) the normal invariant of the
manifold structure h.

This construction yields a map of simplicial sets n : S(X) → Lift(SX), where
Lift(SX) is the simplicial set of lifts of SX thru BTop.

Existence Step II: Surgery Problem
Suppose the answer to 1E is yes. Then by replacing c by a map transversal to the
copy of X given by the zero section in Thom(η), we get a pair (f : M → X, f̂ ), where
M = c−1(zero section), f = c|M , and f̂ : νM → η is the bundle map covering f given
by transversality. The pair (f , f̂ ) is an example of a surgery map. Notice that f might
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not be a homotopy equivalence, but we can assume that f induces an isomorphism
on Hn. A second surgery map (f1 : M1 → X, f̂1) is normal cobordant to (f , f̂ ) iff there
exists a manifold (W , ∂W) ⊂ (Sn+q × I, Sn+q × ∂I) with ∂W = M � M1, and maps
F : W → X × I, F̂ : νW → η × I such that F|M = f , f |M1 = f1, F̂|νM = f̂ , and F̂|νM1

=
γ ◦ f̂1, where γ : η → η1 is a bundle isomorphism. The pair

(
η, c : Sn+q → Thom(η)

)

determines (f , f̂ ) up to normal cobordism.

Question 2E: (Surgery Theory) Is (f , f̂ ) normal cobordant to a homotopy equiva-
lence?

Given a group ring Zπ we let −: Zπ → Zπ be the anti-involution
∑

g∈π

ngg �→
∑

g∈π

ngg−1 .

We need the following minor variation of the free L-groups. Let

Lh
2i(Zπ) := LK1

2i (Zπ), and

Lh
2i+1(Zπ) := LK1

2i (Zπ) modulo the subgroup generated by
(

0 1

±1 0

)
.

Here “h” stands for homotopy equivalence.

6 Theorem 6: (Surgery Theorem) Assume n > 4. An n-dimensional surgery prob-
lem (f : Mn → X, f̂ ) determines an element σ(f , f̂ ) ∈ Lh

n(Zπ) such that σ(f , f̂ ) = 0
iff (f , f̂ ) is normal cobordant to a homotopy equivalence.

There is also a relative version of this where the closed manifold M is replaced by
a compact manifold with boundary (M, ∂M), the Poincaré complex X is replaced
by a Poincaré pair (X, Y) i.e. [X, Y] ∩ −: H∗(X; Λ) → Hn−∗(X, Y ; Λ) is an isomor-
phism, and f : (M, ∂M) → (X, Y) is such that f |∂M : ∂M → Y is a homotopy
equivalence. Then (f , f̂ ) still determines an element in Lh

n

(
Zπ1(X)

)
which is trivial

iff (f , f̂ ) is normal cobordant (rel the boundary) to a homotopy equivalence of
pairs.

The first paragraph of the Surgery Theorem yields a map
σ : π0(Lift(SX)) → Lh

n(Zπ) such that π0S(X)
n→ π0Lift(SX)

σ→ Lh
n(Zπ) is exact at

π0Lift(SX).

From Geometry to Quadratic Forms
A detailed explanation of the Surgery Theorem is given in [48] and [66]. Here we’ll
just give a brief outline.
First we’ll introduce some terminology.

Suppose Vm is a cobordism from ∂−V to ∂+V , i.e. ∂V = ∂−V � ∂+V . Given an
embedding g : � (Si−1 × Dm−i) → ∂+V , we let V ′ be the result of using g to attach
handles of index i to V , i.e. V ′ = V ∪g (�(Di × Dm−i). Then V ′ is a cobordism from
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∂−V to a new manifold ∂+V ′, and we say that ∂+V ′ is the result of doing surgery
on g.

Suppose (F : W → X × I, F̂)) is a normal cobordism from (f : M → X, f̂ ) to
some other surgery problem. Then W has a filtration (M × I) = W0 ⊂ W1 ⊂ · · · ⊂
Wn = W where for each i, Wi+1 = Wi ∪ (handles of index i + 1).

Our surgery problem (f : M → X, f̂ ) is a homotopy equivalence iff f induces an

isomorphism on π1, and f̃∗ : Hj(M̃) → Hj(X̃) is an isomorphism for each j, where
f̃ : M̃ → X̃ is a π-equivariant map of universal covers over f .

Special case: n = 2i > 4
Then up to normal cobordism there is no obstruction to arranging that (f , f̂ )
induces an isomorphism on π1, f̃∗ : Hj(M̃) → Hj(X̃) is an isomorphism for j ≠ i,
and kernel(Hi(M̃) → Hi(X̃)) � πi+1(f ) is a free Zπ-module of even rank 2l. Any
element a ∈ πi+1(f ) is presented by a continuous map ∂a : Si = ∂Di+1 → M plus an
extension of f ◦∂a to Di+1. This extension plus the bundle map f̂ determines a regular
homotopy class of immersions â : Si × Di → M. Notice that if this immersion is
in fact an embedding then one can do surgery on â. By considering transversal
intersections of these immersions one gets a nonsingular (−1)i-Hermitian form
β : πi+1(f ) × πi+1(f ) → Zπ. By considering transversal self intersections one gets
a quadratic form α such that (1 + T−1i )α = β. (See [85] and [48].)
Suppose we have an isomorphism of quadratic forms H

(
(Zπ)l

) → πi+1(f ). Let
(ak, k = 1, ...l) be a basis for the image of (Zπ)l ⊂ H

(
(�)l

) → πi+1(f ). Then there
exists an embedding g = �âk : � Si × Di → M such that if we do surgery on g we
get a normal cobordism to a homotopy equivalence.

Special case: n = 2i + 1 > 3
Suppose one has a nonsingular (−1)i-quadratic form (P, α), plus two isomorphisms
A1, A2 : H

(
(Zπ)l

) → (P, α). Then A−1
2 ◦ A2 is an element in GQ2l(Zπ, (−1)i which

maps to Lh
2i+1(Zπ). Roughly speaking this is what one gets from a 2i+1-dimensional

surgery problem after it is made highly connected. To make this precise it is best
to introduce the notion of formations. See [57] and [66].

Classification:
Suppose h : M → X and h1 : M1 → X represent [h] and [h1] in π0(S(X)).

Classification Step I: Normal invariant
Question 1C: (Homotopy Theory) Are the normal invariants (ηh, ch) and (ηh1 , ch1 )
equivalent?

(To simplify notation let (η, c) := (ηh, ch) and (η1, c1) := (ηh1 , ch1 ).)
In other words does there exist a bundle isomorphism γ : η → η1 and a ho-

motopy H : Sn+q × I → Thom(η1) such that H|Sn+q × 0 = Thom(γ) ◦ c, and
H|Sn+q × 1 = c1. If γ and H exist, then we can choose H so that it is transver-
sal to X × I. This then yields a normal cobordism (F : W → X × I, F̂ : νW → η1)
from h : M → X to h1 : M1 → X.
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Suppose n(h), n(h1) : X → BTop are the lifts of SX : X → BG which classify
(ηh, ch) and (ηh1 , ch1 ) respectively. Then n(h) and n(h1) are homotopic as lifts iff
(ηh, ch) and (ηh1 , ch1 ) are equivalent. Furthermore, the group [X, G|Top] acts simply
transitively on the set of homotopy class of lifts of SX . See [49] for results of Sullivan
and others on the space G|Top.

Classification Step II: Relative surgery problem
Question 2C: (Surgery Theory) Suppose (F : W → X×I, F̂ : νW → η1) is a solution
to 1C. Is (F, F̂) normal cobordant (rel boundary) to an h-cobordism?

Here W is an h-cobordism from M to M1 iff the two inclusion maps M ⊂ W and
M1 ⊂ W are homotopy equivalences.

Notice that the second paragraph of the Surgery Theorem yields an element
σ(F, F̂) ∈ Lh

n+1(Zπ) which is 0 iff the answer to 2C is yes.

Classification Step III: H-cobordism problem
Question 3C: (Product Structure on H-cobordisms) Suppose W is an h-cobordism
from M to M1. When is W homeomorphic to M × I?

Let hcob(M) = S(M × I, M × 0) be the simplicial set of topological manifold
structures on M × I rel M × 0. Thus an element in π0(hcob(M) is represented by
an h-cobordism from M to some other manifold. Two such h-cobordism represent
the same element iff there exists a diffeomorphisms between them which is the
identity on M.

We let Wh1(π) := coker
({±π} → Gl1(Zπ) → K1(Zπ)

)
.

7 Theorem 7: (S-Cobordism Theorem) Assume n > 4. There exists a bijection
τ : π0(hcob(M)) → Wh1(π1(M)) such that the product h-cobordism M × I maps
to the unit element.

Suppose R is a ring such that Rn � Rm implies that n = m. Let B be a nontrivial
subgroup of K1(R). Let g : Rn ∼→ P and g1 : Rn ∼→ P be two bases for a f.g. R-module
P. The bases g and g1 are said to be B-equivalent iff the map GLn(R) → K1(R) sends
g−1 ◦ g1 to an element in B. We say that P is B-based if it is equipped with an
B-equivalence class of basis. Notice that an isomorphism between two f.g. B-based
modules determines an element in K1(R)|B. More generally an R-chain homotopy
equivalence g between two f.g. B-based, R-chain complexes determines an element,
τ(g) ∈ K1(R)|B called the torsion of g, (See [48, 2.2]).

Geometric Example: Suppose f : A1 → A2 is a homotopy equivalence between
finite CW complexes with fundamental groups isomorphic to π. Then the universal
covers Ã1 and Ã2 are also CW complexes, and the CW -chain complexes C(Ã1) are
C(Ã2) are B-based, where B = im

({±π} → Gl1(Zπ) → K1(Zπ)
)
. If f̃ : Ã1 → Ã2 is

a π-equivariant map covering f , we let τ(f ) = τ
(
C(̃f )

) ∈ Wh1(π).
The map τ in the s-cobordism theorem sends an h-cobordism M ⊂ W ⊃ M1 to

τ(M ⊂ W).
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Let Sh(M) = (π0

(
S(M)

)
|h-cobordisms) = orbit set of the action of Wh1

(
π1(M)

)

on π0

(
S(M)

)
.

8Theorem 8: (Wall’s h-Realization Theorem) Assume n > 4. There is an action of
Lh

n+1(Zπ) on Sh(M) such that the normal invariant map π0S(M) → π0Lift(SM)
factors thru an injection Sh(M)|Lh

n+1(Zπ) → π0Lift(SM).

Let τ : π0S(M) → Wh1(π) be the map which sends h : M1 → M to τ(h). Let
Ss(M) = ker

(
τ : π0S(M) → Wh1(π)

)
.

Let Ls
2i(Zπ) = LB

2i(Zπ), and let Ls
2i+1(Zπ) = LB

2i+1(Zπ) modulo the subgroup

generated by
(

0 1

±1 0

)
, where B = im

({±π} → Gl1(Zπ) → K1(Zπ)
)
.

9Theorem 9: (Wall’s s-Realization Theorem) Assume n > 4. There is an action of
Ls

n+1(Zπ) on Ss(M) such that the restriction of the normal invariant map Ss(M) ⊂
π0S(M) → π0Lift(SM) factors thru an injection Ss(M)|Ls

n+1(Zπ) → π0Lift(SM).

Higher Hermitian K-Theory 3.4

Homotopy Fixed Spectrum, Homotopy Orbit Spectrum,
and the Norm Fibration Sequence 3.4.1

See [2, 28, 72–74], and [41]. SupposeK is an Ω-spectrum equipped with an action
by a finite group G.

Classical Example: Suppose K is the Eilenberg–MacLane spectrum H(A) where
π0(H(A)) = A, a G-module.

Let

H
∗(G;K) = KhG = FG(Σ∞EG+,K) , and

H∗(G;K) = KhG = Ω∞(Σ∞EG+ ∧G K) ;

where FG is the function spectrum of G-equivariant maps, and where Ω∞ is the
functor which converts a spectrum to a homotopy equivalent Ω-spectrum.

Notice that

πi

(
H

∗ (
G;H(A)

))
= H−i(G; A) , and

πi

(
H∗

(
G;H(A)

))
= Hi(G; A) .



626 Bruce Williams

For general K, there exist spectral sequences which abut to π∗
(
H

∗(G;K)
)

and
to π∗

(
H

∗(G;K)
)
, where E2 is H∗ (

G; π∗K
)

and H∗
(
G; π∗K

)
respectively.

The map EG → pt induces maps H∗ (
G;K

) → K and K → H∗
(
G;K

)
. Let

n : K→ K be the map given by
∏

g∈G g.
Then Adem–Dwyer–Cohen [2], and May–Greenlees [28] have constructed

a norm fibration sequence

H∗(G;K)
N→ H

∗(G;K) → Ĥ
∗(G;K) ,

where the following diagram is homotopy commutative

K
n→ K

↓ ↑
H∗(G;K)

N→ H
∗(G;K) ,

see also [91]. Furthermore, πi

(
Ĥ

∗ (
G;H(A)

)) � Ĥi(G; A) in the sense of Tate,

see [69]. Thus Ĥ∗(G;K) is called the Tate spectrum for G acting onK.

Thomason’s Homotopy Limit
and Homotopy Colimit Problems3.4.2

If G is a finite group, then G is the category with a single object, and maps are
elements of the group G. Composition of maps is given by multiplication in G. Let
Cat be the category of small categories. An action of G on a category C is a functor
G → Cat which sends the single object in G to C. Let SymMon be the category

with objects small symmetric monoidal categories, and maps symmetric monoidal
functors. The category of G symmetric monoidal categories, G − SymMon, is then
the category of functors from G into SymMon.

Suppose C is a G-symmetric monoidal category. Constructions of Thomason,
then yield the following commutative diagram which commutes up to a preferred
homotopy. (See [72–74], [43] and the next two page of this paper.)

K(ChG)
T̃r→ K(ChG)

↓ F̃ ↓
H∗(G, KC)

N→ H
∗(G, KC)

In [74] Thomason showed that the left vertical map is a homotopy equiva-
lence, and in [72] he observed that many fundamental questions can be viewed
as asking when the right vertical map becomes an equivalence after some sort of
completion.

Examples: We’ll ignore the complication that each of the following categories
should be replaced with equivalent small categories,
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1. (Segal Conjecture) Let C be the category of finite sets, equipped with the trivial
action by G. Then K(ChG) � K(finite G−sets) is equivalent to∨Σ∞B(NGH|H)+,
where we wedge over the set of conjugacy classes of subgroups of G. Also
H

∗(G, KC) is equivalent to the function spectrum F(Σ∞BG+,S), where S is the
sphere spectrum. The Segal Conjecture as proved by Carlsson states that in this
case the map K(ChG) → H

∗(G, KC) becomes an equivalence after completion

with respect to I(G) = kerK0(finite G − sets)
rank→ Z. (See [16])

2. (Quillen–Lichtenbaum) Let C = P (F) where the field F is a finite, Galois
extension of a field f . Let G = Gal(F|f ). If g ∈ G and V is a F-module with

multiplication m : F × V → V , then F × V
g×id→ F × V

m→ V is a new F-module
structure on V . This yields an action of G onP (F) such that K(P (F)hG) � K(f ).
Then Thomason [73] has shown that a version of the Quillen–Lichtenbaum
Conjecture can be reduced to showing that the map Kf → H

∗(G, KF) is an
equivalence after profinite completion.

3. (Hermitian K-theory) Suppose (R, −, ε) is a hermitian ring. Then Tε is “almost”
an involution on P (R) in that there exists a natural equivalence between T2

ε
and id. We can rectify this to get an honest action by Z|2 via the following
construction. Let P̃(R, −, ε) be the category where an object is a triple (P, Q, h :
P

∼→ Q∗), where P and Q are objects in P (R) and h is an isomorphism.

A map from (P, Q, P
h→ Q∗) to (P1, Q1, P1

h1→ Q∗
1). is given by a pair of R-

module isomorphisms f : P → P1 and g : Q → Q1 such that h = g∗ ◦ h1 ◦ f .
Then P̃(R, −, ε) is equivalent to isoP (R). Furthermore we get an involution

T̃ε : P̃(R, −, ε) → P̃(R, −, ε) that sends (P, Q, h) to (Q, P, Q
η−,ε→ Q∗∗ h∗→ P∗),

where Q
η−,ε→ Q∗∗ is the natural equivalence η−,ε(q)(f ) = εf (q) for all q ∈ Q and

all f ∈ Q∗. Then P̃(R, −, ε)hZ |2 is equivalent to KHerm(R, −, ε).

Conjecture: The map F̃ : KHerm(R, −, ε) → H
∗(Z|2, KR) becomes an equiv-

alence under profinite completion. (See [23] and [9].)

Let EG be the transport category for the group G. Thus Obj(EG) = G, and
MapEG(g1, g2) has just one element for each pair ordered (g1, g2). Then G acts on
EG via multiplication in G. Notice that the classifying space BEG is contractible and
the induced action of G on BEG is free. Thomason defines ChG as FunG(EG, C), the
category of G-equivariant functors from EG to C. Notice that an object in ChG can
be viewed as a pair (x, α) where x is an object in C and α is a function assigning
to each g ∈ G an isomorphism α(g) : x → gx. The function α must satisfy the
identities α(1) = 1 and α(gh) = gα(h) · α(g). Then we get the transfer functor:

Tr : C → ChG

x �→
(∑

g∈G

gx, α
)

,

where α(h) :
∑

gx
∼→ h

∑
gx is the obvious permutation isomorphism.
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See [74] and [41] for the construction of ChG and the factorization

Tr : C → ChG
T̃r→ ChG .

When C = P (R, −, ε), Tr is the hyperbolic functor.

Karoubi Periodicity3.4.3

See [39] and [43–45].
Let H̃ be the composition

H∗(Z|2, KR) � K(P̃ (R, −, ε))hZ |2
T̃r→ KHerm(R, −, ε) .

We want to improve the following homotopy commutative diagram in a couple
of ways:

H∗(Z|2, KR)
H̃→ KHerm(R, −, ε)

id ↓ F̃ ↓
H∗(Z|2, KR)

N→ H
∗(Z|2, KR)

1. We want to replace the (−1)-connective spectra KR and KHerm(R, −, ε) with
spectra KR and KHerm(R, −, ε) where for all i ∈ Z, Ki(R) = πi(KR) and
KHermi(R, −, ε) = πi(K(R, −, ε)).

2. We want to use Karoubi periodicity to show that when 2 is a unit in R, then
Ω2L(R, −, ε) � L(R, −, −ε) where L(R, −, ε) is the deloop of the homotopy

fiber of the mapH∗
(
Z|2,KR

) H̃→ KHerm(R, −, ε).

Disconnected K-theory
For any ring R we let CR, the cone of R, be the ring of infinite matrices (aij), (i, j) ∈
N × N such that each row and each column has only a finite number of nonzero
entries. let SR, the suspension of R, be CR modulo the ideal of matrices with only
a finite number of nonzero rows and columns. Gersten and Wagoneer [78] have
shown that KCR � ∗ and that ΩKSR � KR. This yields a spectrum KR such that
KR is the (−1)-connected cover of KR and for i < 0, πi(KR) � KiR in the sense of
Bass.
If φ : R1 → R2 is a ring homomorphism, we let

Γ(φ) = lim
(

SR1
Sφ→ SR2 ← CR2

)

and following Wagoneer [78] we get a homotopy fibration sequence

KR1 → KR2 → K
(
Γ(φ)

)
.

Suppose (R, −, ε) is a hermitian ring. We then get hermitian rings C(R, −, ε)
and S(R, −, ε) with underlying rings CR and SR respectively. The anti-involution

of the matrix rings CR and SR is given by M �→ M
t
, i.e. apply − componentwise
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and then take the matrix transpose. The choice of central unit is εI where I is
the identity matrix. Then Karoubi has shown that KHermC(R, −, ε) � ∗ and that
ΩKHermS(R, −, ε) � KHerm(R, −, ε). This yields the spectrumKHerm(R, −, ε) with
(−1)-connected cover
KHerm

(
R, −, ε/.

If φ : (R1, −1, ε1) → (R2, −2, ε2) is a map of hermitian rings, then Γ(φ) inherits
hermitian structure and we get a homotopy fibration sequence

KHerm(R1, −1, ε1) → KHerm(R2, −2, ε2) → KHerm
(
Γ(φ)

)
.

Karoubi’s Hyperbolic and Forgetful Tricks 3.4.4

For any hermitian ring (R, −, ε) we let (R×Rop, s, ε×ε) be the hermitian ring where
s(a, b) = (b, a).

10Theorem 10: (Forgetful Trick) Let d : R → R × Rop send r to (r, r). Then we get
the following commutative diagram

KHerm(R, −, ε)
d→ KHerm

(
R × Rop, s, ε × ε

)

id ↓ � ↓
KHerm(R, −, ε)

F→ KR ,

where F is the forgetful map.

Thus if V(R, −, ε) = Γ(d), we get a homotopy fibration

KHerm(R, −, ε)
F→ KR → KHerm

(
V(R, −, ε)

)

with connecting homomorphism ∂ : ΩKHerm
(
V(R, −, ε)

) → KHerm(R, −, ε).
LetKHerm(1)(R, −, ε) = ΩKHerm

(
V(R, −, ε)

)
.

We can iterate the construction of V and let

KHerm(j)(R, −, ε) = Ωj
KHerm

(
Vj(R, −, ε)

)
, for j = 1, 2 · · · .

Also we letKHerm(∞)(R, −, ε) be the homotopy limit of the diagram

· · · → KHerm(j)(R, −, ε) → KHerm(j−1)(R, −, ε) → · · ·KHerm(R, −, ε) .

11Theorem 11: (Kobal’s Forgetful Theorem) There exists a homotopy fibration

KHerm(∞)(R, −, ε) → KHerm(R, −, ε)
F̃→ H

∗(Z|2,K)

such that the following diagram commutes

KHerm(R, −, ε)
F̃→ H

∗(Z|2, K(R))

↓ ↓
KHerm(R, −, ε)

F̃→ H
∗(Z|2,K(R)) .
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For any hermitian ring (R, −, ε) we let (M2(R), γ, εI) be the hermitian ring where

γ

(
a b

c d

)

=

(
d b

c a

)

.

12 Theorem 12: (Hyperbolic Trick) If e : (R × Rop, s, ε × ε) → (M2(R), γ, εI) is given

by e(a, b) =

(
a o

0 b

)

, then we get the following commutative diagram

KHerm(R × Rop, s, ε × ε)
e→ KHerm(M2(R), γ, εI)

� ↓ � ↓
KR

H→ KHerm(R, −, ε)

where H is the hyperbolic map.

Thus if U(R, −, ε) = Γ(e), we get a homotopy fibration

KR
H→ KHerm(R, −, ε) → KU(R, −, ε) .

LetKHerm(−1)(R, −, ε) = KHerm
(
U(R, −, ε)

)
.

We can iterate the construction of U and let

KHerm(−j)(R, −, ε) = KHerm
(
Uj(R, −, ε)

)
, for j = 1, 2, · · · .

Also we let L(R, −, ε) be the homotopy colimit of the diagram

KHerm(R, −, ε) → KHerm(−1)(R, −, ε) → · · ·KHerm(−j)(R, −, ε) · · ·

13 Theorem 13: (Kobal’s Hyperbolic Theorem) There exists a homotopy fibration
sequence

H∗(Z|2,KR)
H̃→ KHerm(R, −, ε) → L(R, −, ε)

such that the following diagram commutes

H∗(Z|2, KR)
H̃→ KHerm(R, −, ε)

↓ ↓
H∗(Z|2,KR)

H̃→ KHerm(R, −, ε)

where the top horizontal map was described earlier using results of Thomason.

Let KHerm(0)(R, −, ε) = KHerm(R, −, ε), and for all j ∈ Z we let KH(j) =
KHerm(j)(R, −, ε).
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Twists and Dimension Shifting for Cohomology 3.4.5

Consider the short exact sequence of Z [Z|2]-modules

Z
<−1> → Z [Z|2] ε→ Z

where ε(n + mT) = n + m. Here T ∈ Z|2 acts trivially on Z and Z<−1> is a copy of
Z with the nontrivial action by Z|2.

Let J : Z [Z|2]-modules → Z [Z|2]-modules be the functor which sends a mod-
ule P to P ⊗Z Z

<−1> where Z|2 acts diagonally. Then for j = 1, 2, · · · we let
P<−j> = Jj(P). We let P<0> = P. Notice that P<−2> =̃ P as Z [Z|2]-modules.

If we apply H∗(Z|2; P⊗Z ?) to the above sequence we get a long exact sequence
with connecting homomorphism ∂ : H∗(Z|2; P) → H∗−1(Z|2; P<−1>).

If K is a spectrum with an action by Z|2 we can perform an analogous con-
struction by replacingZ by the sphere spectrum. In particular we get a connecting
homomorphismsH∗(Z|2;K) → H

∗(Z|2; Ω−1
K

<−1>).

Warning: K<−2> is not necessarily equivariantly equivalent to K. Consider the
special case when K is the sphere spectrum with the trivial action and compare
homotopy orbits.

There is a homotopy equivalence between Ĥ∗(Z|2;K) and the homotopy colimit
of the diagram

H
∗ (
Z|2;K

) → H
∗ (
Z|2; Ω−1

K
<−1>

) → · · ·H∗ (
Z|2; Ω−j

K
<−j>

) → · · · ,

such that the map H∗(Z|2;K) → Ĥ
∗(Z|2;K) from the norm fibration sequence

gets identified with the map

H
∗(Z|2;K) → hcolimjH

∗(Z|2; Ω−j
K

<−j>) .

Consider the following commutative diagram

KHerm(−j)(R, −, ε) → KHerm(−j−1)(R, −, ε) → · · ·
F̃ ↓ F̃ ↓

H∗ (
Z|2, KUj(R, −, ε)

) → H∗ (
Z|2, KUj+1(R, −, ε)

) → · · · .

Notice that each square in this diagram is homotopy cartesian (compare the
horizontal homotopy fibers.) One can than conclude that the square in the Hermi-
tian K-theory Theorem is homotopy cartesian by observing that it is equivalent to
the following homotopy cartesian square.

KHerm
(
U0(R, −, ε)

) → hcolimj KHerm
(
Uj(R, −, ε)

)

↓ ↓
H∗ (
Z|2, KU0(R, −, ε)

) → hcolimjH∗ (
Z|2, KUj(T, −, ε)

)
.

If we replace (R, −, ε) by Uj(R, −, ε) we get the same Karoubi tower, but shifted
to the left j steps. Similarly, if we replace (R, −, ε) by Vj(R, −, ε) we get the same
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Karoubi tower, but shifted to the right j steps. This observation plus the Karoubi
Periodicity theorem in Sect. 3.2 yields the following.

14 Theorem 14: (Generalized Karoubi Periodicity) Assume 2 is a unit in R. Then the
2nd loop space of KHerm(j)(R, −, ε) is homotopy equivalent to KHerm(j+2)(R, −, −ε).
Thus Ω2L(R, −, ε) � L(R, −, −ε).

General Definition of L-Groups (when 2 is a Unit)3.4.6

Let KHerm(0)(R, −, ε) = KHerm(R, −, ε), and for all j ∈ Z we let KH(j) =
KHerm(j)(R, −, ε).

The following diagram is called the Karoubi Tower.

Ωj+1
KR Ωj

KR

H(j+1) ↓ H(j) ↓
· · · → KH(j+1) → KH(j) → · · ·

F(j+1) ↓ F(j) ↓
Ωj+1
KR Ωj

KR .

where for each j ∈ Z

Ω(j+1)
KR

H(j+1)→ KH(j+1) → KH(j) F(j)→ Ω(j)
KR

is a homotopy fibration sequence.

Furthermore, Ωj
KR

F(j)◦H(j)→ Ωj
KR is homotopic to Ωj of I ± Tε.

The F(j) for j > 0 can be viewed as higher order forgetful maps. The H(j) for j < 0
can be viewed as higher order hyperbolic maps .

Let πkF(j) and πkH(j) be the induced maps on the k-th homotopy groups.
For any Tε-invariant subgroup X ⊂ Kj(R) we let

LX
2i(R) :=

(
π0F(j)

)−1
(X)

(
π0H(j)

)
(X)

, where ε = (−1)i

LX
2i+1(R) :=

(
π1F(j−1)

)−1
(X)

(
π1H(j−1)

)
(X)

, where ε = (−1)i .

15 Proposition 15: (Rothenberg Sequence) (Assume 2 is a unit in R.) For any i, j ∈ Z
we get an exact sequence

· · · → L
Kj+1
i (R) → L

Kj
i (R) → Ĥi

(
Z|2, Kj

) → · · ·
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Following [88] the proof of this is an easy diagram chase except for exactness at
the middle term of

L
Kj

4k+2(R) → Ĥ0
(
Z|2, Kj

) → L
Kj+1

4k+1(R) .

The proof of this step uses the commutativity of the following diagram

Ω2KHerm(j−2)(R, ε)
Ω2F(j−2)→ Ω2Ωj−2

KR

Periodicity ↓ =̃ ↓

KHerm(j)(R, −ε)
F(j)→ Ωj

KR .

It is fairly easy to see that when 2 is a unit in R, Theorem 1.1 implies that
L

Kj
i (R) =̃ L

Kj
i (R) for all i ∈ Z and j = 1 or 2 (see [40] for details).

16Proposition 16: (Shaneson Product Formula) Assume 2 is a unit in R. For all
i ∈ Z, and j ≤ 1

L
Kj+1
i+1 (R) ⊕ L

Kj
i (R) =̃ L

Kj+1
i+1

(
R[t, t−1]

)
,

The map L
Kj+1
i+1 (R) → L

Kj+1
i+1

(
R[t, t−1]

)
is induced by a map of Hermitian rings.

Karoubi [39] has constructed pairings KH(j1)(R1, ε1) × KH(j2)(R2, ε2) →
KH(j1+j2)(R1 ⊗ R2, ε1 ⊗ ε2). There exists an element σ ∈ KHerm1

(
Z[ 1

2 ] [t, t−1]
)

such that when i is even, the map L
Kj
i (R) → L

Kj+1
i+1

(
R[t, t−1]

)
is induced by

pairing with σ. When i is odd, the map uses periodicity plus pairing with σ.
The element σ can be viewed as the “round” symmetric signature of the circle
(see [65]).

When j = 1 one can see that the sum of these two maps is an isomorphism
by using the Shaneson product formula from Sect. 3.2. One then does downward
induction on j using the Rothenberg sequences.

17Theorem 17 Assume 2 is a unit in R. Then

L
Kj
i (R) =̃ L

Kj
i (R)

for all i ∈ Z and j ≤ 1.

We already noted this is true when j = 1. We then do downward induction of j
by using the fact that both sides satisfy a Shaneson Product formula.
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Symmetric and Quadratic Structures
on Chain Complexes3.5

See [62–64, 67], and [58]. Connections between geometric topology and algebra
can be greatly enhanced by using chain complex descriptions of K-theory and
L-theory. Also we want a version of periodicity without the assumption that 2 is
a unit.

For example, a parameterized version of Whitehead torsion is gotten by applying
Waldhausen’s S. construction to the category of f.g. projective R-chain complexes
to get a more “geometric” model for KR. (See [79–84], and [22])

Our goal in this section is to give a quick introduction to some of the key ideas
from the work of Ranicki on L-theory (see also [52]).

Let (R, −, +1) be a hermitian ring. Recall that in Sect. 3.2, symmetric (i.e. hermi-
tian) forms on a module P were defined using the group Sesq(P) equipped with the
involution Tε. Quadratic forms were defined using the map Nε = I +Tε : Sesq(P) →
Sesq(P).

Symmetric Complexes3.5.1

Given a chain complex

C : · · · → Cr+1
d→ Cr

d→ Cr−1 → · · · C0 → 0

of f.g. projective R modules write Cr = (Cr)∗. Let Cn−∗ be the chain complex with
Cn−∗

r = Cn−r and dn−∗
C = (−1)rdC : Cn−r → Cn−r+1.

The duality isomorphisms

T : HomR(Cp, Cq) → HomR(Cq, Cp); φ �→ (−1)pqφ∗

are involutions with the property that the dual of a chain map f : Cn−∗ → C is
a chain map Tf : Cn−∗ → C, with T(Tf ) = f .

Let

W : · · · → Z [Z|2] 1+T→ Z [Z|2] 1−T→ Z [Z|2] 1+T→ Z [Z|2] 1−T→ Z [Z|2]

be the free Z [Z|2]-module resolution of Z.
A n-dimensional symmetric chain complex is a pair (C, φ) where C is an n-di-

mensional f.g. projective chain complex and φ is an n-dim cycle in the Z-module
chain complex

HomZ [Z |2]
(
W , HomR(C∗, C)

)
.

The element φ can be viewed as a chain map φ0 : Cn−∗ → C, plus a chain
homotopy φ1 from φ0 to Tφ0, plus a second order homotopy from φ1 to Tφ1, etc.

The pair (C, φ) is Poincaré i.e. nonsingular, if φ0 is a homotopy equivalence.
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Model Example: (Mǐsčenko) Let Xn be an oriented Poincaré complex with universal
cover X̃ and cellularZπ-chain complex C(X̃), where π = π1(X). Then capping with
the fundamental class [X] yields a chain homotopy equivalence φ0 : C(X̃)n−∗ →
C(X̃). The higher chain homotopies φ1, φ2, · · · are given by an analogue of the
construction of the Steenrod squares.

By using Poincaré duality for a compact manifold with boundary (W , ∂W)
as a model, Ranicki also introduced the notion of Poincaré symmetric pairs of
complexes and bordism of Poincaré symmetric complexes. Then the n-th (pro-
jective) symmetric L-group, Ln

p(R), is defined as the group of bordism classes of
n-dimensional Poincaré symmetric chain complexes. One also gets symmetric L-
groups with other decorations such as Ln

h(Zπ) and Ln
s (Zπ) by using free or based

chain complexes.
An oriented Poincaré complex X, then determines an element σ∗

h(X) ∈ Ln
h(Zπ)

called the symmetric signature of X. If n = 4k, then the image of σ∗
h(X) under the

map L4k
s (Zπ) → L4k

s (Z) � Z is just the signature of the the pairing.

H2k(X,R) × H2k(X,R) → H4k(X,R) � R
given by cup products. If X is a manifold M, then σ∗

hX) has a preferred lifting to
σ∗

s (M) ∈ Ln
s (Zπ).

It is easy to see that L0
p(R, −, +1) � K0Herm(R, −, +1)|metabolic forms, (see

[64] p.66, [64] p.74, and [6] p.12).

Quadratic Chain Complexes 3.5.2

Recall from Sect. 3.4 that given a spectrum K with action by Z|2 we get a norm
map

N : Ω∞(Σ∞EZ|2+ ∧Z |2 K) → FZ |2
(
Σ∞EZ|2+,K

)
.

Similarly, we get a norm map for the Z [Z|2]-chain complex HomR(C∗, C).

N : W ⊗Z [Z|2]HomR(C∗, C) → HomZ [Z|2]
(
W , Homr(C

∗, C)
)

.

(Notice that W is the cellular chain complex for EZ|2. )
An n-dimensional quadratic chain complex is a pair (C, ψ) where C is an n-di-

mensional f.g. projective chain complex and ψ is an n-cycle in W ⊗Z [Z|2]HomR(
C∗, C

)
. Notice that then (C, N(ψ)) is an n-dim symmetric chain complex. If(

C, N(ψ)
)

is Poincaré, we say (C, ψ) is Poincaré. Similarly there are notions of
quadratic pairs and quadratic bordism. The n-th (projective) quadratic L-group,
L

p
n(R), is the the bordism group of n-dimensional Poincaré quadratic chain com-

plexes. One also gets quadratic L-groups with other decorations such as Lh
n(Zπ)

and Ls
n(Zπ) by using free or based chain complexes.

The norm map N induces a map 1 + T : Ln(R) → Ln(R) for any choice of
decoration. If 2 is a unit in R, then 1 + T is an isomorphism. Furthermore for all
rings R, 1 + T : Ln(R) ⊗ Z[ 1

2 ] → Ln(R) ⊗ Z[ 1
2 ] is an isomorphism.
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Suppose ε is any central unit in R such that εε = 1. If we replace T by
Tε : HomR(Cp, Cq) → HomR(Cq, Cp); φ �→ (−1)pqεφ∗ we get the quadratic groups
Ln(R, ε).

It is easy to see that if n = 0 or 1, then these quadratic chain complex descriptions
of the quadratic L-groups are consistent with the definitions in Sect. 3.2. The
following result implies consistency for all n.

18 Theorem 18: (Ranicki Periodicity) For all n ≥ 0, and for all rings R, L
p
n(R, −ε) �

L
p
n+2(R, ε).

Model Example: Suppose (f : Mn → X, f̂ ) is a surgery problem where f induces an
isomorphism on π1. Let C(f ) be the mapping cone of C(M̃) → C(X̃). It is easily seen
that C(f ) admits Poinare symmetric structure which represents σ∗

h(X) − σ∗
h(M) in

Ln
h(Zπ1(M)). However, Ranicki [63] has shown that the bundle map f̂ determines

an element σh∗(f , f̂ ) ∈ Lh
n(Zπ1(X)) such that N(σ∗(f , f̂ )) = σ∗

h(X) − σ∗
h(M). Under

Ranicki Periodicity, σh∗(f , f̂ ) gets identified with the surgery obstruction discussed
in Sect. 3.3.

There are operations on symmetric and quadratic chain complexes which are
algebraic analogs of surgery on a manifold. This algebraic surgery is what is used
to prove the Ranicki Periodicity Theorem. It would be good to have a better
understanding of the relationship between Karoubi and Ranicki Periodicity (Also
see Sharpe Periodicity [70] [40].)

Applications of Quadratic Chain Complexes
Besides bordism and surgery there are other geometric operations such as transver-
sality which have quadratic chain complex analogues. Ranicki’s chain complex
description of L-theory has helped to yield many important results.
1. (Instant descriptions of the surgery obstruction)

Given a surgery problem (f , f̂ ), σ∗(f , f̂ ) ∈ Ln(Zπ1(X)) is defined without first
making f highly connected.

2. (Product Formula)
Suppose Nk is a k-dimensional manifold. There exists a pairing

µ : Lk
(
Zπ1(N)

) × Ln

(
Zπ1(X)

) → Lk+n

(
Z[π1N × π1X]

)

such that the surgery obstruction for idN × (f , f̂ ) is µ
(

σ∗(M), σ∗(f , f̂ )
)

.
3. (Relative L-groups)

Suppose f : R1 → R2 is a map of rings with involution. Then there exist
4-periodic relative L-groups, Ln(f ) such that with appropriate choice of deco-
rations there exists a long exact sequence

· · · → Ln(R1) → Ln(R2) → Ln(f ) → Ln−1(R1) → · · · .
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Here Ln(f ) is defined in terms of n-Poincaré quadratic R2-pairs where the
“boundary” is induced by f from a (n − 1)-dim Poincaré quadratic R1-chain
complex. When f is a localizing map, then Ln(f ) has a description in terms
of quadratic linking pairings [53, 61, 64]. When a group G is the result of
an amalgamated product or a HNN construction, one gets Mayer–Vietoris
sequences for L-theory analogous to those given by Waldhausen for K-theory
[15, 59, 60].

4. (L-theory Spectrum)
Quinn [55, 56] and Ranicki [58, 65] have constructed Ω-spectra LX(Zπ) and
LX(Zπ) with decorations X ⊂ Kj(Zπ), j < 2 such that πnL

X
(
Zπ

)
) � LX

n (Zπ)
and πn

(
LX(Zπ)

) � Ln
X(Zπ). A k-simplex in the infinite loop space associated

toLp(Zπ) is given by a pair (C, φ) whereC is a functor from the category of faces
of the standard k-simplex ∆k to the category of f.g. proj. chain complexes ofZπ-
modules, and where φ is a Poincaré symmetric structure on such a functor.
Thus a 1-simplex is a symmetric bordism, a 2-simplex is a second order
symmetric bordism,etc. The definitions of Lh(Zπ) and Ls(Zπ) are similar
except projective is replaced by free and based respectively.
Suppose we let Ls = L<2>,Lh = L<1>,Lp = L<0>, and LKj = L<j> for j =
−1, −2, −3, · · ·. Let C∞ be the infinite cyclic group Then for j = 2, 1, 0, · · ·, we get
thatL<j>(Zπ) is homotopy equivalent to the homotopy fiber of L<j+1>(Zπ) →
L

<j+1>
(
Z[π × C∞]

)
. Notice that the map Lh(Zπ) → L

p(Zπ) is induced by
commutativity of the following diagram

L
s
(
Zπ

) → L
s
(
Z[π × C∞]

)

↓ ↓
L

h
(
Zπ

) → L
h
(
Z[π × C∞]

)
.

Then by downward induction on j we get maps L<j>(Zπ) → L
<j−1>(Z[π]) for

j = 2, 1, 0, · · ·.
Let L<−∞>(Zπ) be the homotopy colimit of

L
p(Zπ) → L<−1>(Zπ) → · · · L<−j>(Zπ) → · · · .

Open Question: Are L<−∞>(Z[ 1
2 ]π) and L(Z[ 1

2 ]π, −, +1) homotopy equiva-
lent?

5. (Block Space of Homeomorphisms)
Suppose M is a compact manifold, and Top(M) is the singular complex of
the topological group of homeomorphisms of M. A k-simplex in Top(M) is
given by a homeomorphism h : ∆k × M → ∆k × M which commutes with
projection to ∆k. Classical surgery is not strong enough to determine Top(M)
itself so we introduce a pseudo or block version T̃op(M); where a k-simplex is
a homeomorphism h : ∆k × M → ∆k × M such that for any face τ ⊂ ∆k, h(τ ×
M) ⊂ (τ × M). Notice that we get an inclusion of simplicial groups Top(M) ⊂
T̃op(M). If G(M) is the simplicial monoid of homotopy automorphisms we get
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a similar inclusion G(M) ⊂ G̃(M) but in this case the inclusion is a homotopy
equivalence. For a Poincaré complex X we let

S̃(X) = �G̃(N)|T̃op(N) ,

where we take the disjoint union over homeomorphism classes of manifolds
homotopy equivalent to X.
Notice that a component of S̃(X) is represented by a homotopy equivalence
N → X.
If X is a manifold M, we let S̃s(M) be the union of the components of S̃(M)
represented by simple homotopy equivalences. The ideas described in Sect. 3.3
can be used to prove the following theorem. (See [5, 58], and [14].)

19 Theorem 19: (Surgery Exact Sequence) Assume n > 4. Suppose M is a n-di-
mensional closed oriented manifold. There exists a homotopy equivalence between
S̃s(M) and the union of certain components of the −1-connected cover of Ωn of
the homotopy fiber of the assembly map

H∗(M,L) → L
s(Zπ1(M)) ,

where L is the 1-connected cover of Lp(Z).

The question of which components involves resolving homology manifolds
(see [10] and [58]).
The homotopy fiber of S(M) → S̃(M) over the “identity vertex” id : M →
M is equivalent to T̃op(M)|Top(M). It is easy to see that there is an exact
sequence π1hcob(M) → π0Top(M) → π0T̃op(M). Hatcher [33] has shown
that here exists a spectral sequence which abuts to π∗(T̃op(M)|Top(M)) and
E2 of the spectral sequence is given in terms of π∗

(
hcob(M × Ij)

)
. Recall from

the introduction that HCOB(M) is the homotopy colimit of

hcob(M) → hcob(M × I) → hcob(M × I2) · · · .

In [90] it is shown that there exists an involution on the infinite loop space
HCOB(M) such that if HCOBs(M) is the 0-connected cover of HCOB(M) then
there exists a map T̃op(M)|Top(M) → H∗(Z|2, HCOBs(M)) which is at least
k + 1 connected where dim M ≥ max(2k + 7, 3k + 4) and M is smoothable.

6. (Map from L-theory to Tate of K-theory)
In order to study S(M) instead of S̃(M) in the next section we need to under-
stand how to “glue together” L-theory with higher K-theory. Suppose R is any
ring with involution, and X ⊂ Kj(R) is an involution invariant subgroup. We
let cX : KX(R) → K(R) be such that πi(KX(R)) = 0, for i < j, πj(KX(R)) = X,
and cX induces an isomorphism on πi for i > j. Then one can construct the
following homotopy cartesian square,

L
X(R) → L

<−∞>(R)

ΞX ↓ Ξ ↓
Ĥ(Z|2,KX(R)) → Ĥ(Z|2,K(R)) .
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It is then very easy to see that we get the Rothenberg sequences and Shaneson
formulae mentioned in the introduction. If j < 2, this LX(R) is consistent with
the one constructed by Quinn and Ranicki.
The map Ξ is constructed by using the Thomason homotopy limit problem
map K(ChG) → H

∗(G, KC) plus a “bordism-like” model for Ĥ(Z,K(R)),
see [91,92]. It would be good to have a better understanding of the relationship
between Ξ and the right vertical map in the Hermitian K-theory Theorem.

Manifold Structures 3.6

Let Mn be a connected, oriented, closed manifold.
Our first goal is to explain the following tower of simplicial sets

S(M) → Sb(M × R1) → · · · → Sb(M × Rj) → · · · .

Given two spaces over Rj, X
p→ R

j and Y
q→ R

j, we say that a continuous map
f : X → Y is bounded if there exists K ∈ R such that for all x ∈ X, |p(x)−q(h(x))| <
K. When we write M ×Rj we mean the space over Rj given by the projection map
M × Rj → R

j.
Given p : X → R

j we get the following diagram of simplicial monoids

Topb(p) → Gb(p)

↓ ↓
T̃op

b
(p) → G̃b(p) ,

where the superscript “b” denotes the fact we are using bounded versions of
the simplicial monoids defined in previous sections. The map Gb(p) → G̃b(p) is
a homotopy equivalence. Furthermore, the map G(M) → Gb(M × Rj) gotten by
crossing with id

R j is a homotopy equivalence.
We say that p : Vm → R

j is an m-dimensional manifold approximate fibration if
V is an m-dimensional manifold, p is proper, and p satisfies the ε-homotopy lifting
property for all ε ≥ 0, (see [37]).

Key Example: (Siebenmann and Hughes–Ranicki [37, Chap.16]) Assume n > 4.
Let Wn be a manifold with a tame end ε, Then ε has a neighborhood which is the
total space of a manifold approximate fibration over R1.

Let

Sb(Mn × Rj) := � Gb
(
p : Vn+j → R

j
) /

Top
(
p : Vn+j → R

j
)

,

where we take the disjoint union over bounded homeomorphism classes of (n + j)-
dimensional manifold approximate fibrations homotopy equivalent to M. Notice
that if j = 0, then Sb(M × Rj) = S(M).
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Crossing with the identity map onR1 gives maps Sb(M ×Rj) → Sb(M ×Rj+1),
and Topb(M × Rj) → Topb(M × Rj+1). Let S−∞(M) = hcolimjS

b(M × Rj).
Let hcobb(M × Rj) be the simplicial set of bounded h-cobordisms on M × Rj.

Then there exists a homotopy fibration (see [3, 4])

hcobb(M × Rj)
P→ Sb(M × Rj) → Sb(M × Rj+1) .

Furthermore Ωhcobb(M ×Rj) � hcobb(M × I ×Rj−1). This makes HCOB(M) =
hcolimihcobb(M × Ii) into the 0-th space of an Ω-spectrum with j-th delooping
given by HCOB(M × Rj) = hcolimihcobb(M × Ii × Rj).

Let π = π1(M), then (see [3])

πk(HCOB(M)) =






Wh1(π), for k = 0

K̃0(Zπ), for k = −1

Kk+1(Zπ), for k < −1 .

Anderson and Hsiang have conjectured that for k < 1, Kk(Zπ) is trivial.
Carter [17] has proved this for finite groups. Farrell and Jones [24] have proved
this for virtually infinite cyclic groups

Let A(X) be Waldhausen’s algebraic K-theory of the connected space X, see [80].
Let A(X) be the disconnected Ω-spectrum constructed by Vogel [76] [77] such
that A(X) → A(X) induces an isomorphism on homotopy groups in positive
dimensions. Also there exists a linearization mapA(X) → K(Zπ1(X)) which is 1-
connected. Let ΩWH(X) be the homotopy fiber of the assembly mapH∗(X,A(∗)) →
A(X). Then we get
(1:) There exists a homotopy equivalence HCOB(M) → ΩWH(M). (See [79–84],

and [22, §9].)
(2:) There exists a homotopy fibration sequence

Top−∞(M)|Top(M) → S(M) → S−∞(M) ,

where Top−∞(M) = hcolimjTopb(M × Rj).
(3:) There exists an involution T on ΩWH(M) and a map

ψ : Top−∞(M)|Top(M) → H∗
(
Z|2, ΩWH(M)

)

which is at least k + 1 connected where k satisfies dim M ≥ max(2k + 7, 3k + 4)
and M is smoothable. (See [90].)

Higher Whitehead Torsion3.6.1

Recall the Whitehead torsion map τ : π0(S(M)) → Wh1(M). We want to promote
τ to a map of spaces S(M) → ΩWH(M) and analogous maps for S(M × Rj).
(See [18–21] and [38].)
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Let Q be the Hilbert cube, and let Sb
Q(M × Rj) be the same as Sb(M × Rj) but

instead of using finite dimensional manifolds we use Hilbert cube manifolds. Then
ΩSb

Q(M ×Rj) � Sb
Q(M ×Rj−1). Thus Sb

Q(M ×Rj) is an infinite loop space for all j.
We’ll abuse notation and let Sb

Q(M × Rj) also denote the associated Ω-spectrum.
We get the following properties.
(1:)Sb

Q(M × Rj) � HCOB(M × Rj) � the j-th delooping of ΩWH(M)

(2:) The map S(M)
×Q→ SQ(M) induces the torsion map τ when we apply π0.

(3:) The map Sb(M × Rj−1) → Sb(M × Rj) has a lifting to the homotopy fiber

of Sb(M × Rj)
×Q→ Sb

Q(M × Rj) which is at least j + k + 1 connected where
dim M ≥ max(2k + 7, 3k + 4) and M is smoothable.

(4:) There exists a homotopy commutative diagram

hcob(M × Rj)
P→ Sb(M × Rj)

↓ ↓
Ω1−jWH(M)

1+(−1)jT→ Ω1−jWH(M) ;

where the left vertical map is the composition hcob(M × Rj) → HCOB(M ×
R

j) � Ω1−jWH(M). and the right vertical map is the composition T : Sb(M ×
R

j)
×Q→ Sb

Q(M × Rj) � Ω1−jWH(M).

Notice the analogy between the following tower and the right half of the Karoubi
Tower described in Sect. 3.4.

hcob(M) hcobb(M × R1) hcobb(M × Rj)

P ↓ P ↓ P ↓
S(M) → Sb(M × R1) → · · · Sb(M × Rj) → · · ·
T ↓ T ↓ T ↓

ΩWH(M) WH(M) Ω1−jWH(M)

Bounded Block Structure Spaces 3.6.2

In order to use surgery theory to compute S−∞(M) we need to introduce the block
or pseudo version of Sb(M × Rj).

Let

S̃b(Mn × Rj) := � G̃b(p : Vn+j → R
j)|T̃op(p : Vn+j → R

j) ,

where we take the disjoint union over bounded homeomorphism classes of (n + j)-
dimensional manifold approximate fibrations homotopy equivalent to M. Notice
that if j = 0, then S̃b(M × Rj) = S̃(M).

Notice that crossing with the identity map on R1 gives a map S̃b(M × Rj) →
S̃b(M × Rj+1). Let S̃−∞(M) = hcolimjS̃b(M × Rj).
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20 Theorem 20: (Stabilization Kills the Difference Between Honest and Pseudo) The
maps Sb(M × Rj) → S̃b(M × Rj), for j = 0, 1, · · · induce a homotopy equivalence
S−∞(M) � S̃−∞(M). (See [90].)

Since π0(Sb(M × Rj)) � π0(S̃b(M × Rj)) we get a “torsion map” π0(S̃b(M ×
R

j)) → π1−j(ΩWH(M)). Let S̃b,s(M × Rj) be the union of the components of
S̃b(M × Rj) with trivial torsion.

21 Theorem 21: (Bounded Surgery Exact Sequence) Assume n + j > 4. Suppose M
is a n-dimensional closed oriented manifold. There exists a homotopy equivalence
between S̃b,s(M × Rj) and the −1-connected cover of Ωn of the homotopy fiber of
the assembly map

H
∗(M,L) → L

<2−j>
(
Zπ1(M)

)
,

where L is the 1-connected cover of Lp(Z).

Thus we get that S−∞(M) � S̃−∞(M) is homotopy equivalent to the −1-
connected cover of Ωn of the homotopy fiber of the assembly map

H∗(M,L) → L
<−∞>(Zπ1(M)) .

Notice that so far we have explained the top horizontal map in the Manifold
Structure Theorem from the introduction. Also we have outlined the proofs of the
following parts of that theorem: (1), (2), (3) , and (4).

The diagram in the Manifold Structure Theorem is then a consequence of
constructing an involution T on ΩWH(M) and factorizations T̃ of T : S(M ×
R

j) → Ω1−jWH(M) thru H∗(Z|2, Ω1−jWH(M)) for j = 0, 1, 2, · · · such that we get
commutative diagrams

S(M × Rj) → S(M × Rj+1) → · · ·
T̃ ↓ T̃ ↓

H
∗(Z|2, Ω1−jWH(M)<j>) → H

∗(Z|2, Ω−jWH(M)<j+1>) → · · · .

More About Torsion3.6.3

First we’ll recall more about the construction of the map T : S(M) → ΩWH(M).
Recall that ΩWh(M) is the homotopy fiber of the assembly mapH∗(M; A(∗)) →

A(M), and that ΩWh(M) is the (−1)-connected cover of ΩWH(M).
Suppose G is a simplicial monoid and A is a simplicial G-set. Then AhG =

MapG(EG, A) = Sec(EG ×G A → BG), where Sec( ) denotes the simplicial set of
sections.
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Notice that ΩWh(M) is also the homotopy fiber of

EG(M) ×G(M) H∗(M; A(∗)) → EG(M) ×G(M) A(M) ,

where G(M) is the simplicial monoid of homotopy automorphisms of M. The
map T is constructed by first constructing χ ∈ A(X)hG(X) and then a lifting
χ% : BTop(M) → EG(M) ×G(M) H∗(M; A(∗)) of the composition BTop(M) →
BG(M)

χ→ EG(M) ×G(M) A(M).
Thus χ% ∈ H∗(M; A(∗))hTop(M).

Construction of of χ :
For any space X, R(X) is the category of retractive spaces over the topological

space X. Thus an object in R(X) is a diagram of topological spaces W
r→←
s

X such

that rs = idX and s is a closed embedding having the homotopy extension property.
The morphisms in R(X) are continuous maps over and relative to X. A morphism
is a cofibration if the underlying map of spaces is a closed embedding having the
homotopy extension property. A morphism is a weak equivalence if the underlying
map of spaces is a homotopy equivalence.
Let Rfd(X) be the full subcategory of homotopy finitely dominated retractive spaces
over X (see [22, +II,Sec.6] for details). Then Rfd(X) is a category with cofibrations
and weak equivalences, i.e. a Waldhausen category, and A(X) is the K-theory of
Rfd(X).

If X is a finitely dominated CW complex we let χ(X) be the vertex in A(X)

represented by the retraction space X � X
r→←
s

X where r is the identity on each

copy of X, and s is the inclusion into the first copy of X. Suppose p : E → B is
a fibration with finitely dominated fibers, then it is shown in [22] that the rule
b �→ χ(p−1(b)) ∈ A(p−1(b)) for each b ∈ B is continuous. If we apply this to
the universal M-fibration over BG(M), this continuous rule is the desired map
χ : BG(M) → EG(M) ×G(M) A(M).

The lifting χ% is constructed using controlled topology in [22].
The construction of T : S(M × Rj) → Ω1−jWH(M) for j > 0 is similar except

A(X) is replaced by Vogell’s Ab(X × Rj) where ΩjAb(X × Rj) � A(X).

Poincaré Duality and Torsion 3.6.4

Recall Thomason’s map K
(
ChZ |2

) → H
∗ (
Z|2; K(C)

)
where C is a Z|2-symmetric

monoidal category.
Recall that Waldhausen used his S. construction to define K-theory for Wald-

hausen, i.e. categories with cofibrations and weak equivalences. In [92] axioms are
given for the notion of duality D in a Waldhausen category C. Duality in C can be
used to define non-singular pairings in C and an involution so that one gets a map
K

(
non-singular D-pairings in C

) → H
∗ (
Z|2; K(C)

)
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Examples:
(1): Suppose C = Ch(R) is the category of f.g. projective chain complexes over R
which is equipped with an (anti)-involution. The weak equivalences are the chain
homotopy equivalences. The cofibrations are the chain maps which are split mono
in each dimensional For each n = 0, 1, 2, · · · there exists a duality Dn-such that the
non-singular Dn-pairings are n-dimensional Poincaré symmetric complexes in the
sense of Ranicki.
(2): Suppose C = Rfd(X), where X is equipped with a spherical fibration η. Then by
essentially just following Vogel [75,91,92,94] one gets dualities Dn for n = 0, 1, 2, · · ·
such that if X is an n-dimensional Poincaré complex and η is the Spivak fibration

of X, then the retractive space X � X
r→←
s

X has a preferred non-singular self

Dn-pairing. The homotopy invariance of the Spivak fibration and this preferred
pairing implies that we have a lifting of of χ toH∗(Z|2; A(X))hG(X).
(3): Same as (2) except weak equivalence are controlled (see [22, §2 and §7]) and X =
M is a closed manifold. Then we get the desired χ% ∈ H∗(Z|2;H∗(M; A(∗))hTop(M).

The construction of T̃ : S(M×Rj) → H
∗ (
Z|2; Ω1−jWH(M)

)
for j > 0 is similar.

With the exception of showing that the square in the Manifold Structure Theo-
rem is homotopy cartesian for a certain range, we are now done.

Homotopy Cartesian for a Range3.6.5

For j = 0, 1, 2, · · · we get the following homotopy commutative diagram.

S(M × Rj) → S(M × Rj+1)
T̃ ↓ T̃ ↓

H
∗(Z|2, Ω1−jWH(M)<j>) → H

∗(Z|2, Ω−jWH(M)<j+1>) .

The top horizontal homotopy fiber is hcob(M ×Rj), the bottome horizontal homo-
topy fiber is Ω1−jWH(M)<j>). The induced map Σ between them is the composition
of the stabilization map hcob(M × Rj)) → HCOB(M × Rj)) and the equivalence
HCOB(M × Rj)) � Ω1−jWH(M). By Anderson–Hsiang [3] hcob(M × Rj)) →
HCOB(M ×Rj)) induces an isomorphism on πk for k ≤ j. Also if we loop this map
j times we get the stabilization map hcob(M) → HCOB(M) which Igusa has shown
is at least k + 1 connected where k satisfies dim M ≥ max(2k + 7, 3k + 4) and M is
smoothable. The connectivity of hcob(M) → HCOB(M) is called the h-cobordism
stable range.

By combining this with Sect. 3.4.5 we get part (5) of the Manifold Structure
Theorem.

More on Connections Between Quadratic Forms
and Manifold Structures3.6.6

Let Ss(M) be the components of S(M) with trivial torsion. Let ΩWhs(M) be the
0-connected cover of ΩWH(M) Then we get the following homotopy commutative
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diagram which is homotopy cartesian for the same range as the diagram in the
Manifold Structure Theorem.

Ss(M) → S̃s(M)

↓ ↓
H

∗ (
Z|2; ΩWhs(M)

) → Ĥ
∗ (
Z|2; ΩWhs(M)

)
.

It is natural to ask for a so-called “super simple” form of surgery theory such
that its assembly map determines Ss(M) (at least in the h-cobordism stable range)
in the same way that Ls determines S̃s(M) via the surgery exact sequence. This
leads one to ask for an algebraic description of the the right vertical map in the
above diagram. In particular one might ask how this map is related to the right
vertical map in the Hermitian K-theory Theorem, or the map Ξp : Lp(Zπ1(M)) →
Ĥ

∗ (
Z|2, K

(
Zπ1(M)

))
from Sect. 3.5.

Suppose (C, D) is a Waldhausen category with duality such as examples (1),
(2), and (3). Then we get a quadratic L-theory spectrum L∗(C, D), a symmetric
L-theory spectrum L∗(C, D), a 1 + T map L∗(C, D) → L

∗(C, D), an involution on
KC, and a map Ξ : L∗ (

C, D
) → Ĥ

∗(Z; K(C)). (It might be interesting to compare
this L-theory of Waldhausen categories with duality with Balmer’s notion of Witt
groups for triangulated categories [7].) Examples:
(1): Suppose C = ChR and D = Dn, then L∗(ChRC, Dn) = Lp

n(R) = Ωn
L

p(R).
Similarly L∗(ChRC, Dn) = Ωn

Lp(R).
(2): Suppose C = Rfd(X) where X is equipped with the oriented spherical fibra-
tion η. Then for n = 0, 1, · · · we get a homotopy equivalence L∗

(
Rfd(X), Dn

) →
L

p
n
(
Zπ1(X)

)
, but the analogous map for symmetric L-theory is not an equivalence.

Thus we get a map Ξ : L
p
n
(
Zπ1(X)

) → Ĥ
∗ (
Z; A(X)

)
.

(3): By using the controlled version of example (2) we get that Ξ is natural with
respect to assembly maps, i.e. we get the following diagram which commutes up
to a preferred homotopy.

H∗
(
M;L

p
n
(
Z
)) → L

p
(
Zπ1(X)

)

↓ ↓
Ĥ

∗ (
Z|2;H∗

(
M; A(∗)

)) → Ĥ
∗ (
Z|2; A(M)

)
.

There is an analogous s-version of this diagram. By the Surgery Exact Sequence
the induced map on the horizontal homotopy fibers of the s-version is a map

S̃s(M) → Ĥ
∗ (
Z|2; ΩWhs(M)

)

which can be identified with the right vertical map in the previous diagram.

Localize at Odd Primes 3.6.7

If we localize at odd primes, it is easy to see that Ss(M) � S̃s(M)×T̃op(M)|Top(M),
see [12, 13], or [93, 1.5.2]. Burghelea and Fiedorowicz [11, 12] have used this to
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show that in the h-cobordism stable range Ss(M) can be rationally computed using
KHerm(ZΩM), where ΩM is the simplicial group gotten by applying Kan’s G-
functor to the singular complex of M. In order to get a similar result at odd primes
one needs to replace Z with the sphere spectrum, see [26] and [27].
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École Norm. Sup. (4) 22 (1989), no. 4, 675–677. MR 91j:14013

74. Robert W. Thomason, First quadrant spectral sequences in algebraic K-theory
via homotopy colimits, Comm. Algebra 10 (1982), no. 15, 1589–1668. MR
83k:18006

75. Wolrad Vogell, The involution in the algebraic K-theory of spaces, Algebraic
and geometric topology (New Brunswick, N.J., 1983), Lecture Notes in Math.,
vol. 1126, Springer, Berlin, 1985, pp. 277–317. MR 87e:55009

76. , Algebraic K-theory of spaces, with bounded control, Acta Math. 165
(1990), no. 3-4, 161–187. MR 92b:19001

77. , Boundedly controlled algebraic K-theory of spaces and its linear coun-
terparts, J. Pure Appl. Algebra 76 (1991), no. 2, 193–224. MR 92m:19004

78. J.B. Wagoner, Delooping classifying spaces in algebraic K-theory, Topology 11
(1972), 349–370. MR 50 #7293

79. Friedhelm Waldhausen, Algebraic K-theory of spaces, a manifold approach,
Current trends in algebraic topology, Part 1 (London, Ont., 1981), CMS
Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 141–184.
MR 84f:18025

80. , Algebraic K-theory of spaces, Algebraic and geometric topology (New
Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin,
1985, pp. 318–419. MR 86m:18011

81. , Algebraic K-theory of spaces, concordance, and stable homotopy the-
ory, Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), Ann. of
Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987, pp. 392–417.
MR 89b:57019

82. , An outline of how manifolds relate to algebraic K-theory, Homo-
topy theory (Durham, 1985), London Math. Soc. Lecture Note Ser., vol. 117,
Cambridge Univ. Press, Cambridge, 1987, pp. 239–247. MR 89c:18017

83. Friedhelm Waldhausen and Wolrad Vogell, Spaces of pl manifolds and cate-
gories of simple maps (the non-manifold part), preprint, Bielefeld University.

84. , Spaces of pl manifolds and categories of simple maps (the manifold
part), preprint, Bielefeld University.

85. C.T.C. Wall, On the axiomatic foundations of the theory of Hermitian forms,
Proc. Cambridge Philos. Soc. 67 (1970), 243–250. MR 40 #4285



Quadratic K-Theory and Geometric Topology 651

86. , On the classification of hermitian forms. I. Rings of algebraic integers,
Compositio Math. 22 (1970), 425–451. MR 43 #7425

87. , Surgery on compact manifolds, Academic Press, London, 1970, Lon-
don Mathematical Society Monographs, No. 1. MR 55 #4217

88. , Foundations of algebraic L-theory, Algebraic K-theory, III: Hermitian
K-theory and geometric applications (Proc. Conf., Battelle Memorial Inst.,
Seattle, Wash., 1972), Springer, Berlin, 1973, pp. 266–300. Lecture Notes in
Math., Vol. 343. MR 50 #10018

89. , Classification of Hermitian Forms. VI. Group rings, Ann. of Math. (2)
103 (1976), no. 1, 1–80. MR 55 #5720

90. Michael Weiss and Bruce Williams, Automorphisms of manifolds and algebraic
K-theory. I, K-Theory 1 (1988), no. 6, 575–626. MR 89h:57012

91. , Automorphisms of manifolds and algebraic K-theory. II, J. Pure Appl.
Algebra 62 (1989), no. 1, 47–107. MR 91e:57055

92. , Duality in Waldhausen categories, Forum Math. 10 (1998), no. 5,
533–603. MR 99g:19002

93. , Automorphisms of manifolds, Surveys on surgery theory, Vol. 2, Ann.
of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 165–
220. MR 2002a:57041

94. Michael S. Weiss and Bruce Williams, Products and duality in Waldhausen
categories, Trans. Amer. Math. Soc. 352 (2000), no. 2, 689–709. MR 2000c:19005





Part IV
K-Theory and Operator Algebras





IV.1Bivariant K- and Cyclic Theories*
Joachim Cuntz

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

1.2 Topological K-Theory and K-Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Topological K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659
The Dual Theory: Ext and K-Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

1.3 KK-Theory and E-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

1.4 Other Bivariant Theories on Categories Related to C∗-Algebras . . . 667

Equivariant KK- and E-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667
KK-Theory for C∗-Algebras over a Topological Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
KK-Theory for Projective Systems of C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 668
Bivariant Theories as Triangulated Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Index Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
K-Theory of Group-algebras, Novikov Conjecture,
Baum–Connes Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
Existence of Positive Scalar Curvature Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 676
Applications in the Classification of Nuclear C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . 676
Classification of Topological Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677

1.6 Bivariant K-Theory for Locally Convex Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

1.7 Bivariant Cyclic Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Operators on Differential Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
The Periodic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
Local Cyclic Cohomology and Bivariant Local Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

∗ Research supported by the Deutsche Forschungsgemeinschaft.



1.8 Bivariant Chern Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

The Bivariant Chern–Connes Character for Locally Convex Algebras . . . . . . . . . 695
The Chern Character for C∗-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699



Bivariant K- and Cyclic Theories 657

Summary. Bivariant K-theories generalize K-theory and its dual, often called K-homology,
at the same time. They are a powerful tool for the computation of K-theoretic invariants, for
the formulation and proof of index theorems, for classification results and in many other
instances. The bivariant K-theories are paralleled by different versions of cyclic theories
which have similar formal properties. The two different kinds of theories are connected by
characters that generalize the classical Chern character. We give a survey of such bivariant
theories on different categories of algebras and sketch some of the applications.

Introduction 1.1

Topological K-theory was introduced in the sixties, [2]. On the category of compact
topological spaces it gives a generalized cohomology theory. It was used in the
solution of the vector field problem on spheres [1] and in the study of immersion
and embedding problems. A major motivating area of applications was the study
of Riemann–Roch type and index theorems [4].

Soon it became clear that K-theory could be generalized without extra cost and
keeping all the properties, including Bott periodicity, from commutative algebras
of continuous functions on locally compact spaces to arbitrary Banach algebras.

Kasparov himself was initially motivated by the study of the Novikov conjecture.
He used his equivariant theory to prove powerful results establishing the conjecture
in important cases, [44, 45]. Another application of the theory to geometry is the
work of Rosenberg on obstructions to the existence of metrics with positive scalar
curvature, [70].

In the classification of nuclear C∗-algebras, the theory has been used to obtain
a classification by K-theory that went beyond all expectations, [48, 49, 61].

There are many different descriptions of the elements of bivariant KK-theory
and E-theory. They can be defined using Kasparov-modules, asymptotic mor-
phisms or classifying maps for extensions or in still other ways. Each picture has
its own virtues. The point of view that elements of KK are described by n-step
extensions of A by K ⊗ B, with Kasparov product corresponding to the Yoneda
concatenation product of extensions, was for the first time developed by Zekri
in [81]. Here K denotes the algebra of compact operators on a Hilbert space and
⊗ denotes the C∗-tensor product.

Already from the start it was clear that one did not have to restrict to the case
where the objects of the category are just C∗-algebras. In fact, already the first
paper by Kasparov on the subject treated the case of C∗-algebras with several ad-
ditional structures, namely the action of a fixed compact group, aZ|2-grading and
a complex conjugation. In the following years, versions of KK-theory were intro-
duced for C∗-algebras with the action of a locally compact group, for C∗-algebras
fibered over a locally compact space, for projective systems of C∗-algebras and for
C∗-algebras with a specified fixed primitive ideal space. A general framework that
covers all the latter three cases has been described in [9].
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Cyclic homology and cohomology was developed as an algebraic pendant to al-
gebraic and topological K-theory [14,75]. It can be used to accommodate character-
istic classes for certain elements of K-theory and K-homology [14, 39]. Motivated
by the apparent parallelism to K-theory, bivariant cyclic theories were introduced
in [30, 37, 54, 65]. For instance, the periodic bivariant cyclic theory can be viewed
also as an additive (here even linear) category HP∗ whose objects are algebras
(over a field of characteristic 0) and whose morphism sets are the Z|2-graded
vector spaces HP∗(A, B). This category has formally exactly the same properties
as KK or E. One way of describing these properties is to say that KK, E and HP∗
all form triangulated categories, [74]. The formalism of triangulated categories
allows one to form easily quotient categories which are again triangulated and
thus have the relevant properties, in order to enforce certain isomorphisms in the
category. In [74], this technique is used to introduce and study bivariant theories
for C∗-algebras whose restrictions to the category of locally compact spaces give
connective K-theory and singular homology.

It certainly seems possible to construct bivariant versions of algebraic (Quillen)
K-theory – a very promising attempt is in [59]. However, if one wants to have the
important structural element of long exact sequences associated with an extension,
one has to make the theory periodic by stabilizing with a Bott extension. Since
this extension is not algebraic, it appears that one cannot avoid the assumption of
some kind of topology on the class of algebras considered. This assumption can
be weakened to a large extent.

Since the construction of KK-theory and of E-theory used techniques which are
quite specific to C∗-algebras (in particular the existence of central approximate
units) it seemed for many years that similar theories for other topological alge-
bras, such as Banach algebras or Fréchet algebras, would be impossible. However,
in [28] a bivariant theory kk with all the desired properties was constructed on
the category of locally convex algebras whose topology is described by a family of
submultiplicative seminorms (“m-algebras”). The definition of kk∗(A, B) is based
on “classifying maps” for n-step extensions of A by K ⊗ B, where this time K is
a Fréchet algebra version of the algebra of compact operators on a Hilbert space
and ⊗ denotes the projective tensor product. The product of the bivariant theory
kk∗ corresponds to the Yoneda product of such extensions. This theory allows to
carry over the results and techniques from C∗-algebras to this much more general
category. It allows the construction of a bivariant multiplicative character into
cyclic homology, i.e. of a functor from the additive category kk to the linear cate-
gory HP which is compatible with all the structure elements. Since ordinary cyclic
theory gives only pathological results for C∗-algebras such a character say from
KK∗ or from E∗ to HP∗ cannot make sense.

Another bivariant cyclic theory HEloc, the local theory, which does give good
results for C∗-algebras, was developed by Puschnigg [65]. The local theory is
a far reaching refinement of Connes’ entire cyclic theory [15]. As a consequence,
Puschnigg defines a bivariant character from KK to HEloc which even is a rational
isomorphism for a natural class of C∗-algebras.
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The general picture that emerges shows that the fundamental structure in bi-
variant K-theory is the extension category consisting of equivalence classes of
n-step extensions of the form

0 → B → E1 → … → En → A → 0

with the product given by Yoneda product. The crucial point is of course to be able
to compare extensions of different length. As a general rule, K-theoretic invariants
can be understood as obstructions to lifting problems in extensions.

A very good source for the first two chapters is [8]. The choice of topics and
emphasis on certain results is based on the preferences and the own work of the
author. I am indebted to R. Meyer for his contribution to the chapter on local cyclic
theory.

Topological K-Theory and K-Homology 1.2

Topological K-Theory 1.2.1

Topological K-theory was introduced, following earlier work of Grothendieck and
Bott, by Atiyah and Hirzebruch in connection with Riemann–Roch type theo-
rems [2]. For a compact space X, the abelian group K0(X) can be defined as the
enveloping group for the abelian semigroup defined by isomorphism classes of
complex vector bundles over X with direct sum inducing addition.

The reduced K-theory group K̃0(X) is defined as the K0-group of X, divided
by the subgroup generated by the image in K0 of the trivial line bundle on X.
Groups K−n(X) can then be defined as the reduced K0-group of the reduced n-fold
suspension SnX of X. As it turns out, using clutching functions for the gluing of
vector bundles, K−1(X) = K̃0(SX) can be identified with the group of homotopy
classes of continuous maps from X to the infinite unitary group U∞.

The Bott periodicity theorem then asserts that K−n−2(X) =̃ K−n(X). This period-
icity shows that the family of groups K−n(X) consists only of two different groups,
denoted by K0(X) and K1(X).

Given a compact subspace Y of X one denotes by Ki(X, Y) the reduced K-theory
groups of the quotient space X|Y .

1Theorem 1 Let X, Y be as above. There is a periodic cohomology exact sequence
of the following form

K0(X, Y) ��
i∗

K0(X) ��
j∗

K0(Y)

��

K1(Y)

OO

K1(X)oo
j∗

K1(X, Y) .oo
i∗

(1.1)



660 Joachim Cuntz

Now the Serre–Swan theorem shows that isomorphism classes of finite-dimen-
sional complex vector bundles over X correspond to isomorphism classes of finitely
generated projective modules over the algebra C(X) of continuous complex-valued
functions on X. Therefore K0(X) can be equivalently defined as the envelop-
ing group of the semigroup of isomorphism classes of such projective modules
over the C∗-algebra C(X), i.e. as the algebraic K0-group K0(C(X)) of the unital
ring C(X).

The reduced suspension of a topological space corresponds to the following
operation on C∗-algebras or Banach algebras. Given such an algebra A, the suspen-
sion SA is defined as the (non-unital!) algebra C0((0, 1), A) of continuous A-valued
functions on the unit interval, vanishing at 0 and 1. Using n-fold suspensions
we can, as for spaces, define higher groups K−n(A) as K̃0(S̃nA). Of course, SnA is
a non-unital algebra. Just as for non-compact spaces, we have to define K0(I) for
a non-unital algebra I in an awkward way as K̃0(̃I), where Ĩ denotes I with unit
adjoined.

Some of the standard proofs of Bott periodicity carry over immediately from
locally compact spaces to Banach algebras. So does the proof of the K-theory exact
sequence (1) associated to an extension of the form

0 → I
i→ A

q→ B → 0

of Banach algebras. It takes the following form

K0(I) ��
K(i)

K0(A) ��
K(q)

KK0(B)

��

K1(B)

OO

K1(A)oo
K(q)

K1(I) .oo
K(i)

(1.2)

This generalizes the sequence (1) if we take A = C(X), B = C(Y) and for I the ideal
in C(X) consisting of functions vanishing on Y . Note that of course I is not unital
in general, so again we have to define K0(I) in an artificial way as K̃0(̃I).

The Dual Theory: Ext and K-Homology1.2.2

One of the major motivations for the interest in topological K-theory was of course
its use in the formulation and the proof of the celebrated Atiyah–Singer index
theorem [4]. It is natural to try to interpret the index of an elliptic operator on
a vector bundle as a pairing between a K-theory class and a class in a dual “K-
homology” theory (for instance between the K-theory class given by the symbol
and the K-homology class given by the extension of pseudodifferential operators,
or as the pairing between a K-homology class defined by an untwisted elliptic
operator and the K-theory class of a vector bundle by which it is twisted). Atiyah
proposed abstract elliptic operators over a space X as possible cycles for a dual
theory Ell(X). This proposal was taken up and developed by Kasparov in [40].
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Independently and earlier however such a theory was discovered by Brown–
Douglas–Fillmore in connection with the investigation of essentially normal op-
erators. Their theory Ext(X) is based on extensions of the form

0 → K → E → C(X) → 0 ,

where K is the standard algebra of compact operators on a separable infinite-
dimensional Hilbert space H and E is a subalgebra of L(H) (necessarily a C∗-
algebra). As equivalence relation for such extensions they used unitary equivalence.
There is a natural direct sum operations on such extensions, based on the fact that
the algebra M2(K) of 2 × 2-matrices over K is isomorphic to K .

Every essentially normal operator T ∈ L(H) (essentially normal means that
T∗T − TT∗ is compact) defines such an extension by choosing for E the C∗-algebra
generated by T together with K and taking for X the essential spectrum of T, i.e.
the spectrum of the image of T in L(H)|K .

The theory Ext(A) was also developed to some extent for more general C∗-
algebras A in place of C(X). A very important result in that connection is Voicules-
cu’s theorem. It asserts that, for separable A, any two trivial (i.e. admitting a split-
ting by a homomorphism) extensions are equivalent and shows that their class
gives a neutral element in Ext(A). Some important questions like the homotopy
invariance of Ext remained open.

The pairing between an element e in Ext(X) and an element ζ of K1(X), repre-
sented by an invertible element z in Mn(C(X)) can be nicely described in terms
of the Fredholm index. In fact, any preimage of z in the extension defining e is
a Fredholm operator. The pairing 〈ζ, e〉 is exactly given by its index.

KK-Theory and E-Theory 1.3

It was Kasparov who revolutionized the subject by his fundamental work in [41]
(independently, at about the same time, Pimsner–Popa–Voiculescu had started to
develop a bivariant Ext-theory, [62]). Formally Kasparov’s bivariant theory is based
on a combination of the ingredients of K-theory and K-homology. The elements
of his bivariant groups KK(A, B) , for C∗-algebras A and B are represented by
a “virtual” finitely generated projective module over B (given as the “index” of an
abstract elliptic operator) on which A acts by endomorphisms.

More specifically, Kasparov works with Hilbert B-modules. This is a straight-
forward generalization of an ordinary Hilbert space over C with C-valued scalar
product to a space (i.e. module) over B with a B-valued inner product ( · | · ). The
axioms for this inner product are quite natural and we don’t want to reproduce
them here. One uses the notation L(H) to denote the algebra of all operators on
H that admit an adjoint (such operators are automatically bounded and B-module
maps). The closed subalgebra of L(H) generated by all rank 1 operators of the
form θx,y : z �→ x (y | z) is denoted by K(H) (the algebra of “compact” operators
on H). It is a closed ideal in L(H).
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Kasparov then considers triples of the following form.

2 Definition 2 (a) An odd A-B Kasparov module is a triple (H, ϕ, F) consisting of
a countably generated Hilbert B-module H, a *-homomorphism ϕ : A → L(H)
and a selfadjoint F ∈ L(H) such that, for each x ∈ A the following expressions are
in K(H):

ϕ(x)(F − F2) (KM1)
Fϕ(x) − ϕ(x)F (KM2)

(b) An even A-B Kasparov module is a triple (H, ϕ, F) satisfying exactly the same
conditions as under (a) where however in addition H = H+ ⊕ H− is Z|2 graded, ϕ
is of degree 0 (i.e. ϕ(x) respects the decomposition of H for each x ∈ A) and F is
odd (i.e. maps H+ to H− and vice versa).

One denotes by E0(A, B) and E1(A, B) the sets of isomorphism classes of even,
respectively odd A-B Kasparov modules.

Kasparov defines two equivalence relations on these sets of modules:
compact perturbation of F together with stabilization by degenerate elements
(i.e. for which the expressions in (KM1), (KM2) are exactly 0)
homotopy

He shows the quite non-trivial result that both equivalence relations do in fact
coincide. If we divide E0(A, B) and E1(A, B) with respect to these equivalence
relations, we obtain abelian groups KK0(A, B) and KK1(A, B) (where the addition
is induced by direct sum of Kasparov modules).

Specializing to the case where one of the variables of KK isC, we obtain K-theory
and K-homology:

KK∗(C, A) = K∗(A) KK∗(A,C) = K∗(A) .

To understand the connection with the usual definition of K0, as sketched in
Chapter 1, assume that A is unital. An element of K0(A) is then represented by
a finitely generated projective module M over A. Considering the Kasparov mod-
ule (M ⊕ 0, ϕ, 0), where ϕ is the natural action of A on M, we obtain an element
of KK0(A, B). The crucial point of Kasparov’s theory is the existence of an inter-
section product (which of course generalizes the pairing between K-theory and
K-homology).

3 Theorem 3 There is an associative product

KKi(A, B) × KKj(B, C) → KKi+j(A, C)

(i, j ∈ Z|2; A, B and C C∗-algebras), which is additive in both variables.

Further basic properties are described in the following theorem.
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4Theorem 4 The bivariant theory KK∗ has the following properties
(a) There is a bilinear, graded commutative, exterior product

KKi(A1, A2) × KKj(B1, B2) → KKi+j(A1 ⊗ A2, B1 ⊗ B2)

(using the minimal or maximal tensor product of C∗-algebras).
(b) Each homomorphism ϕ : A → B defines an element KK(ϕ) in the group

KK0(A, B). If ψ : B → C is another homomorphism, then

KK(ψ ◦ ϕ) = KK(ϕ) · KK(ψ)

KK∗(A, B) is a contravariant functor in A and a covariant functor in B. If
α : A′ → A and β : B → B′ are homomorphisms, then the induced maps, in the
first and second variable of KK∗, are given by left multiplication by KK(α) and
right multiplication by KK(β).

(c) KK∗(A, A) is, for each C∗-algebra A, a Z|2-graded ring with unit element
KK(idA).

(d) The functor KK∗ is invariant under homotopies in both variables.
(e) The canonical inclusion ι : A → K⊗̂A defines an invertible element in

KK0(A, K ⊗ A). In particular, KK∗(A, B) =̃ KK∗(K ⊗ A, B) and KK∗(B, A) =̃
KK∗(B, K ⊗ A) for each C∗-algebra B (recall that K denotes the standard alge-
bra of compact operators on a separable infinite-dimensional Hilbert space).

(f) (Bott periodicity) There are canonical elements in KK1(A, SA) and in KK1(SA, A)
which are inverse to each other (recall that the suspension SA of A is defined as
the algebra C0((0, 1), A) of continuous A-valued functions on [0, 1] vanishing
in 0 and 1).

Every odd Kasparov A-B module (H, ϕ, F) gives rise to an extension

0 → K(H) → E → A′ → 0

by putting P = 1|2(F + 1), E = Pϕ(A)P and taking A′ to be the image of E in
L(H)|K(H). Using stabilization, i.e. adding a degenerate Kasparov module to
(H, ϕ, F), we can always arrange that K(H) =̃ K ⊗ B, ϕ is injective and A′ =̃ A.
We thus get an extension

0 → K ⊗ B → E → A → 0

Conversely, it is easy to see using the Stinespring theorem that every extension
admitting a completely positive splitting arises that way. In particular, every such
extension

E : 0 → I → A → B → 0

defines an element of KK1(B, I), which we denote by KK(E).
For computations of KK and other K-theoretic invariants, the following long

exact sequences associated to an extension are an indispensable tool.
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5 Theorem 5 Let D be any separable C∗-algebra. Every extension of C∗-algebras
admitting a completely positive linear splitting

E : 0 → I
i→ A

q→ B → 0

induces exact sequences in KK∗(D, · ) and KK∗( · , D) of the following form:

KK0(D, I) ��
·KK(i)

KK0(D, A) ��
·KK(q)

KK0(D, B)

��

KK1(D, B)

OO

KK1(D, A)oo
·KK(q)

KK1(D, I)oo
·KK(i)

(1.3)

and

KK0(I, D)

��

KK0(A, D)oo
KK(i)·

KK0(B, D)oo
KK(q)·

KK1(B, D) ��
KK(q)·

KK1(A, D) ��
KK(i)·

KK1(I, D) .

OO (1.4)

The vertical arrows in (1.3) and (1.4) are (up to a sign) given by right and left
multiplication, respectively, by the class KK(E) described above.

A standard strategy to establish these long exact sequences, used for the first time
in [24], goes as follows. Establish first, for any star homomorphism α : A → B
mapping cone exact sequences of the form

KK0(D, Cα) → KK0(D, A)
·KK(α)→ KK0(D, B)

and

KK0(Cα, D) ← KK0(A, D)
KK(α)·← KK0(B, D) ,

where Cα denotes the mapping cone for α. Using suspensions, these sequences
can be extended to long exact sequences. To prove the exact sequences in 5 it then
remains to show that the natural inclusion map from the ideal I into the mapping
cone Cq for the quotient map q in the given extension E, gives an isomorphism
in KK.

Kasparov in fact treats his theory more generally in the setting of C∗-algebras
with a Z|2-grading. Using Clifford algebras he gets a very efficient formalism
leading for instance to an elegant proof of Bott periodicity which also admits
useful generalizations. His original proof of the existence and associativity in this
setting however is a technical tour de force which is very difficult to follow.

A simple construction of the product was based in [26] on a rather different
description of KK which also revealed some of the abstract properties of the theory.
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Given a C∗-algebra A, let QA denote the free product A ∗ A. It is defined by the
universal property that there are two inclusion maps ι, ι : A → A ∗ A, such that,
given any two homomorphisms α, α : A → B, there is a unique homomorphism
α ∗ α : A ∗ A → B such that α = (α ∗ α) ◦ ι and α = (α ∗ α) ◦ ι.

Thus in particular there is a natural homomorphism π = id ∗ id : QA → A. We
denote by qA the kernel of π. We obtain an extension

0 → qA → QA → A → 0 ,

which is trivial and in fact has two different natural homomorphism splittings
given by ι and ι. The following theorem holds

6Theorem 6 The group KK0(A, B) can be described as [qA, K ⊗ B] (where [X, Y]
denotes the set of homotopy classes of homomorphisms from X to Y).

KK1 can be obtained from this by taking suspensions in one of the two variables. The
proof of the theorem uses the following observation. Given an even A-B Kasparov
module (H, ϕ, F), one can always arrange that F2 = 1 and that K(H) =̃ K ⊗ A.
Then, setting ϕ = AdF ◦ ϕ, we get a pair of homomorphisms ϕ, ϕ from A to L(H),
therefore a unique homomorphism from the free product QA to L(H). Since by
the condition on a Kasparov module, ϕ(x) − ϕ(x) is in K(H) for each x ∈ A, this
homomorphism has to map the ideal qA to K(H) =̃ K ⊗ A.

The existence and associativity of the product follows from the following theo-
rem which can be proved using standard C∗-algebra techniques.

7Theorem 7 The natural map π : q(qA) → qA is a homotopy equivalence after
stabilizing by 2×2-matrices, i.e. there exists a homomorphism η : qA → M2(q(qA))
such that π ◦ η and η ◦ π are both homotopic to the natural inclusions of qA, q(qA)
into M2(qA), M2(q(qA)), respectively.

The product between KK0(A1, A2) = [qA1, K ⊗ A2] and KK0(A2, A3) = [qA2,
K ⊗ A3] is then defined as follows:

Let ϕ : qA1 → K ⊗ A2 and ψ : qA2 → K ⊗ A3 represent elements of these two
groups. The product is defined as the homotopy class of the following composition

q(qA1)
q(ϕ)→ q(K ⊗ A2) → K ⊗ q(A2)

idK⊗ψ→ K ⊗ K ⊗ A3 .

The arrow in the middle is the natural map. If we now identify K ⊗ K ⊗ A3 with
K ⊗ A3 and q(qA1) with qA1 using Theorem 7 we obtain the desired element of
KK0(A1, A3). The associativity of this product is more or less obvious.

Building on this construction, Zekri, [81], used an algebra εA (which in fact is
isomorphic to the crossed product qA�Z|2) to describe KKn(A, B) as [εnA, K ⊗A]
(where εnA = ε(ε(… εA …))). The algebra εA is the universal ideal in an extension
of A admitting a completely positive splitting. Therefore every n-step extension

0 → B → E1 … → En → A → 0
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with completely positive splittings has a classifying map εnA → B and gives an
element in KKn(A, B). Zekri showed that the Kasparov product of such elements
corresponds to the Yoneda product of the original extensions.

It was noted in [25] that KK is a functor which is universal with respect to three
natural properties in the following way. Let E be a functor from the category of
separable C∗-algebras to the category of abelian groups satisfying:

E is homotopy invariant, i.e. two homotopic homomorphisms A → B induce
the same map E(A) → E(B)
E is stable, i.e. the natural inclusion A → K ⊗ A induces an isomorphism
E(A) → E(K ⊗ A)
E is split exact, i.e. every extension 0 → I → A

q→ B → 0 which splits in
the sense that there is a homomorphism A → E which is a right inverse for q
induces a split exact sequence 0 → E(I) → E(A) → E(B) → 0

Then KK acts on E, i.e. every element of KK(A, B) induces a natural map
E(A) → E(B).

A more streamlined formulation of this result was given by Higson. He noted
that KK defines an additive category (i.e. a category where the Hom-sets are abelian
groups and the product of morphisms is bilinear) by taking separable C∗-algebras
as objects and KK0(A, B) as set of morphisms between the objects A and B. Then
KK is the universal functor into an additive category which is homotopy invariant,
stable and split exact in both variables.

More importantly, using abstract ideas from category theory, Higson con-
structed a new theory, later called E-theory. One shortcoming of KK is the fact
that only extensions with a completely positive linear splitting induce long exact
sequences. In fact, an important counterexample has been constructed by G. Skan-
dalis, [73], showing that there exist extensions that do not give rise to a long exact
sequence in KK (this example also limits the range of validity for some other im-
portant properties of KK). Higson now takes the additive category KK and forms
a category of fractions E with morphism sets E(A, B) by inverting in KK all mor-
phisms induced by an inclusion I → A of a closed ideal I into a C∗-algebra A,
for which the quotient A|I is contractible. The category E is additive with a natu-
ral functor from the category of separable C∗-algebras into E (which factors over
KK). In E, every extension of C∗-algebras (not necessarily admitting a completely
positive splitting) induces long exact sequences in E( · , D) and E(D, · ) as in (1.3)
and (1.4). Moreover, E is the universal functor into an additive category which is
homotopy invariant, stable and half-exact.

Later, a more concrete description of E(A, B) was given by Connes and Higson
in terms of what they call asymptotic morphisms from A to B. An asymptotic
morphism from A to B is a family of maps (ϕt , t ∈ R) from A to B such that the
expressions ϕt(x)ϕt(y) − ϕt(xy), ϕt(x) + λϕt(y) − ϕt(x + λy), ϕt(x)∗ − ϕt(x∗) all tend
to 0 for t → ∞ and x, y ∈ A, λ ∈ C. Connes and Higson then define E(A, B) as

E(A, B) = [[A ⊗ C0(R), K ⊗ B ⊗ C0(R)]] ,
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where [[ · , · ]] denotes the set of homotopy classes of asymptotic morphisms. The
category E has the properties of KK listed in 4, except that the exterior product
in 4(a) only exists with respect to the maximal tensor product of C∗-algebras.

To understand the connection between the bivariant theories KK and E on the
one hand, and (monovariant) K-theory on the other hand, the so-called universal
coefficient theorem (UCT) is quite useful. Let N denote the class of C∗-algebras
which are isomorphic in KK to an abelian C∗-algebra. This class is in fact quite large.
Using some of the standard computations of KK-groups it can be shown that it is
invariant under extensions, inductive limits, crossed products by Z or amenable
groups etc. Therefore it contains many if not most of the algebras occuring in
applications, since those are often constructed using operations under which N
is stable. Moreover, the convolution C∗-algebra for every amenable groupoid is in
N , [76]. It is however an open problem, if every nuclear C∗-algebra is in N .

The universal coefficient theorem (UCT) is the following formula

8Theorem 8 ( [71]) Let A and B be separable C∗-algebras with A in N . Then there
is an exact sequence

0 → Ext 1(K∗A, K∗B) → KK0(A, B) → Hom 0(K∗A, K∗B) → 0 ,

where Ext 1 is odd, i.e. pairs K0 with K1 and K1 with K0 and Hom 0 is even.

Of course there is an analogous formula for KK1. If A = B, then the image of the
Ext-term on the left is a nilpotent ideal (with square 0) in the ring KK0(A, A). The
product of elements in the Ext-term with elements in the Hom term is obvious.
Moreover, the extension splits (unnaturally) as an extension of rings.

If A is in N , then KK(A, B) = E(A, B), therefore the UCT holds in exactly the
same generality for E-theory. The counterexample of Skandalis, [73], shows that
there are C∗- algebras A for which the UCT for KK(A, · ) fails and which therefore
are not in N . On the other hand, a separable C∗-algebra A satisfies the UCT for
KK(A, B) with arbitrary B if and only if it is in N .

Other Bivariant Theories on Categories
Related to C∗-Algebras 1.4

Equivariant KK- and E-Theory 1.4.1

A new element however was introduced by Kasparov in [44] where he introduced
equivariant KK-theory with respect to the action of any locally compact group
and applied this theory to prove important cases of the Novikov conjecture (for
discrete subgroups of connected Lie groups). The equivariant theory for locally



668 Joachim Cuntz

compact groups is technically much more delicate than for compact groups (where
for instance the operator F in a Kasparov module can be assumed to be invari-
ant). Equivariant E-theory can be defined in a very natural way using eqivariant
asymptotic morphisms [33].

The equivariant theory plays an important role in the study (in fact already in
the formulation) of the Baum–Connes and Novikov conjectures.

Equivariant KK-theory for the action of a Hopf C∗-algebra H has been studied
in [5] where also the following elegant duality result is proved for crossed products
by the action of the two Hopf algebras H = C∗

redG and Ĥ = C0(G) associated with
a locally compact group G.

9 Theorem 9 Let H and Ĥ be the two Hopf C∗-algebras associated with a locally
compact group G and let A and B be C∗-algebras with an action of H. Then there
is an isomorphism

KKH(A, B) =̃ KKĤ(A�r H, B�r H) .

The same holds if we interchange H and Ĥ (and the action of Ĥ is non-degenerate).

KK-Theory for C∗-Algebras over a Topological Space1.4.2

In his work on the Novikov conjecture, Kasparov used , besides the equivariant
KK-theory for the action of a locally compact group in addition a KK-theory on
a category of C∗-algebras which are in a well defined technical sense bundles over
a fixed locally compact space X. A generalization of this equivariant theory to
T0-spaces was used by Kirchberg in his work on the classification of non-simple
nuclear purely infinite C∗-algebras (the T0-space in question here being the ideal
space of the given C∗-algebra.

The equivariant theories for the action of a group and the action of a space can
be generalized simultaneously to a KK-theory which is equivariant for the action
of a groupoid, [51].

KK-Theory for Projective Systems of C∗-Algebras1.4.3

If X is a noncompact locally compact space, then the algebra C(X) is not a C∗-
algebra, but an inductive limit of C∗-algebras (for instance it can be viewed as the
projective limit of the projective system of C∗-algebras (C(K))K , where K ranges
over all compact subsets of X). There are many other natural examples of projective
limits of C∗-algebras. It is therefore natural to look for a definition of KK or E-
theory to such algebras. This has been done first by Weidner and independently
partially by Phillips in [60, 79].

Recently A. Bonkat has developed in his thesis [9] KK-theories on various
categories of projective systems of C∗-algebras. The objects of the categories he
considers, are projective systems of C∗-algebras admitting a cofinal countable sub-
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system. For different choices of morphism sets he obtains as special cases the
bivariant theories of Weidner and Phillips but also the theories of Kasparov and
Kirchberg for C∗-algebras fibered over a T0-space mentioned in Section 1.4.2.
Another interesting example where Bonkat’s approach applies is the category
of 1-step extensions of C∗-algebras. Bonkat proves a UCT for KK on this cat-
egory which allows him to compute these groups quite explicitly in interesting
cases.

Bivariant Theories as Triangulated Categories 1.4.4

Methods from category theory were first used by N. Higson, when he constructed
E-theory as a category of fractions from KK-theory. It has turned out later that
similar constructions of quotients of bivariant theories can be used in different
instances. Usually one forms such quotients in order to enforce certain proper-
ties on a bivariant theory. This means that one inverts certain maps which one
wants to induce isomorphisms in the theory. More or less equivalently (using map-
ping cones) one divides by a “null”-subcategory. The framework best suited for
that purpose seems to be the one of triangulated categories. A triangulated cate-
gory is an additive category with a suspension operation on objects and abstract
mapping cone sequences (called “triangles”) satisfying a rather long list of com-
patibility relations. For triangulated categories there is a very smooth way to form
quotient categories which are again triangulated. Technically, this is described as
follows.

10Definition 10 Let F : T1 → T2 be a functor between triangulated categories pre-
serving the triangulated structure. One denotes by ker(F) the full triangulated
subcategory of T1 whose objects map to objects isomorphic to 0 in T2.

11Theorem 11 Let T be an essentially small triangulated category and R a trian-
gulated subcategory. Then there exists a triangulated quotient category (Verdier
quotient) T|R and a functor F : T→ T|R preserving the triangulated structure,
with the universal property thatR ⊂ ker(F).

KK-theory and E-theory as well as some other variants of bivariant theories can be
viewed as a triangulated category. The technology of triangulated categories and
their quotient categories has been applied in this connection first by Puschnigg, [65]
to construct his “local” cyclic homology as a quotient of the bivariant entire theory.
Triangulated categories have also been used by Valqui [77] as a framework for
bivariant periodic cyclic theory.

The method to use triangulated categories and their quotient categories in order
to enforce certain properties on a bivariant theory has been used systematically
recently also by A. Thom in his thesis, [74]. The basic triangulated category in his
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approach is stable asymptotic homotopy as defined by Connes and Dadarlat [16,
32]. The set of morphisms between two C∗-algebras A and B is defined in this
category as

lim→
n

[[SnA, SnB]] ,

where Sn denotes n-fold suspension and [[ · , · ]] homotopy classes of asymptotic
morphisms. In the stable asymptotic homotopy category the mapping cone Cq of

the quotient map q in an extension 0 → I → E
q→ A → 0 is isomorphic to I. Thom

constructs various bivariant theories as quotient categories of the fundamental
stable homotopy category. In that way he obtains for instance bivariant connective
K-theory and bivariant singular homology.

Using this approach one can also construct E-theory or similar theories as
quotients of the stable asymptotic homotopy category. We mention also that the
approach in [28] gives another method to construct bivariant theories for many
categories of C∗-algebras or other algebras with specified properties.

Applications1.5

Many computations of K-theoretic invariants for C∗-algebras can be greatly sim-
plified and generalized using bivariant K-theory. This is true for many of the
computations of the early days, e.g. [13, 21, 63, 64] which were based at the begin-
ning on more concrete considerations involving idempotents or invertible elements
in algebras. The general method to compute the K-theoretic invariants for a given
algebra A consists in constructing an isomorphism in KK with an algebra B for
which this computation is simpler.

On the other hand KK∗ defines a novel recipient for many new invariants that
could not be defined before, such as bivariant symbol classes, equivariant K-
homology classes, classes classifying extensions or bivariant classes associated
with bundles and many more.

Index Theorems1.5.1

Every elliptic pseudodifferential operator T of order 0 from sections of a vector
bundle E1 over X to sections of another bundle E2 determines, by the very definition
of a Kasparov module, an element [T] = (H, ϕ, F) in KK0(C(X),C). In fact, taking
H = H1 ⊕ H2, where Hi denotes the Hilbert space of L2-sections in Ei, we may
always assume that T is normalized so that 1 − T∗T and 1 − TT∗ are compact. We
let then act C(X) by multiplication on H and put

F =

(
0 T

T∗ 0

)

.
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Kasparov proved an especially elegant and illuminating form of the index theorem
which determines this K-homology class, [40, 42].

If X is a (not necessarily closed) manifold, then the cotangent bundle T∗X
considered as a manifold carries an almost complex structure. Therefore there is
the Dolbeault operator D = ∂ + ∂

∗
: V → V , where V denotes the space of smooth

sections with compact support of the bundle of differential forms Λ0,∗ associated
to the almost complex structure. D extends to a selfadjoint operator and we can
define the bounded operator

F =
D√

1 + D2

on the Hilbert space H of L2-sections of Λ0,∗. In fact, H splits naturally as a direct
sum H = H+ ⊕ H− of sections of even and odd forms. Moreover, C0(X) acts on H
by multiplication. We therefore get a natural Kasparov module (H, ϕ, F) and thus
an element of KK(C0(T∗X),C), denoted by [∂X] (this element and variants of it
play an important role in the work of Kasparov on the Novikov conjecture as the
so called Dirac element).

It is important to note that, in the case of X = Rn, the product with this element
induces the Bott periodicity map K∗(C0(R2n)) → K∗(C). In this case there is
a natural inverse η in KK(C, C0(T∗X)) to [∂X] ∈ KK(C0(T∗X),C), called the dual
Dirac element (the “Fourier transform” of [∂X]).

Assume now that X is a closed manifold and T is an elliptic pseudodifferential
operator of order 0 from L2-sections of a vector bundle E1 → X to sections of
E2 → X. Let T∗X

π→ X be the projection map for the cotangent bundle. The (full)
symbol σ(T) of T can be viewed as a morphism of vector bundles from π∗E1 to
π∗E2. We obtain a Kasparov module (L, ψ, σ), where L = L1 ⊕ L2 denotes the space
of L2-sections of π∗(E1 ⊕ E2), ψ denotes action by multiplication and σ is the
sum of σ(T) : L1 → L2 and σ(T)∗ : L2 → L1. This gives an element denoted by
[σ(T)] in KK0(C0(X), C0(T∗X)). The product with the class [1] of the trivial line
bundle in KK(C, C0(X)) gives the usual K-theory symbol class [Σ(T)] used in the
formulation of the Atiyah–Singer theorem.

Kasparov now shows that the K-homology class [T] in KK0(C(X),C) deter-
mined by T is given by the following formula.

12Theorem 12 We have [T] = [σ(T)] · [∂X]

Note that the usual index of T is simply obtained by pairing the K-homology class
[T] with the K0-class given by 1 (the trivial line bundle). Thus the standard form
of the Atiyah–Singer theorem saying that the analytic index ind a(T) equals the
topological index ind t(T) follows from 12.

In fact, the analytic index is given by ind a(T) = 1 · [T] and therefore by
Kasparovs theorem by

1 · [σ(T)] · [∂X] = [Σ(T)] · [∂X] .
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Using an embedding of X in Rn and identifying the cotangent bundle of a tubular
neighbourhood N of X in this embedding with a bundle over T∗X, we get the
following diagram whose commutativity is easy to check:

K∗(T∗X)=̃ K∗(T∗N) → K∗(R2n)

↓ ·[∂X] ↓ ·[∂Rn ]

Z = Z

(K∗ here means K-theory with compact supports, e.g. K∗(Rn) = K∗(C0(Rn)).
According to Kasparov’s theorem 12, the first vertical arrow applied to [Σ(T)] gives
the analytic index, while the composition of the first horizontal and the second
vertical arrow gives the usual definition of the topological index.

To make the connection with the formulation of the index formula using de
Rham cohomology and differential forms, Kasparov notes that the Chern character
ch([∂X]) is Poincaré dual in de Rham cohomology for T∗X to the Todd class of the
complexified cotangent bundle of X (viewed as a bundle over T∗X). Thus applying
the Chern character one obtains the usual formula

ind a(T) =
∫

T∗M
Td(T∗M ⊗ C) ∧ ch([Σ(T)]) .

From this theorem or at least from its proof, one obtains many other index the-
orems. Instances are the index theorem for families or the Miscenko–Fomenko
index theorem for pseudodifferential operators with coefficients in a C∗-algebra.

Another important and typical index theorem using C∗-algebras is the longitu-
dinal index theorem for foliated manifolds [18]. A foliated manifold is a smooth
compact manifold M together with an integrable subbundle F of the tangent bundle
for M. The algebra of longitudinal pseudodifferential operators on (M, F) (differ-
entiation only in direction of the leaves) can be completed to a C∗-algebra Ψ�. The
principal symbol of an element in Ψ� is a function on the dual bundle F∗. The
kernel of the symbol map σ is the foliation C∗algebra C∗(M, F) which is something
like a crossed product of C(M) by translation by Rk in the direction of F with
holonomy resolved. One obtains an exact sequence

0 → C∗(M, F) → Ψ�
σ→ C0(F∗) → 0 . (1.5)

A longitudinal pseudodifferential operator T is called elliptic if its image σ(T)
in (matrices over) C0(F∗) (its principal symbol) is invertible. The analytic index
of T is by definition the image under the boundary map in the K-theory long
exact sequence, of the class in K1(F∗) defined by σ(T), in K0(C∗(M, F)). The
index theorem computes this boundary map and thereby allows to obtain explicit
formulas for ind a(T).

The computation is in terms of the topological index ind t which is a map from
K1(F∗) to K0(C∗(M, F)) defined using an embedding procedure analogous to the
classical case above. It is constructed as follows. Embed M into Rn, define, M′
as M × Rn and define a foliation F′ on M′ as the product of F with the trivial
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foliation by points on Rn. For this new foliated manifold we have that C∗(M′, F′)
is isomorphic to C∗(M, F) ⊗ C(Rn) and therefore has the same K-theory (with
a dimension shift depending on the parity of n). It has the advantage however that
M′ admits a submanifold N which is transverse to the foliation F′. In fact, one can
embed the bundle F in the trivial bundle M × Rn and take for N the orthogonal
complement to F. Now, for any submanifold N transverse to the foliation F′, the C∗-
algebra C∗(M′, F′) contains K ⊗C0(N) (crossed product of functions on a tubular
neighbourhood of N by translation by Rk in leaf direction).

The topological index is defined as the composition of the following maps

K∗(F∗) =̃ K∗(N) → K∗(C∗(M′, F′)) =̃ K∗(C∗(M, F)) .

The index theorem then states that the boundary map in the long exact K-theory
sequences associated to the extension 1.5 is exactly this map ind t .

13Theorem 13: ([18]) For every longitudinally elliptic pseudodifferential operator
on the foliated manifold (M, F) one has ind a(T) = ind t(T).

In order to prove the theorem, Connes and Skandalis compute a specific Kasparov
product.

K-Theory of Group-algebras, Novikov Conjecture,
Baum–Connes Conjecture 1.5.2

Let M be a compact connected oriented smooth manifold. The signature σ(M) of
M can be written as 〈L(M), [M]〉, where L(M) is the Hirzebruch polynomial in the
Pontryagin classes. The signature is homotopy invariant: if two manifolds M and M′
are homotopy equivalent via an orientation preserving map, then σ(M) = σ(M′).
For simply connected manifolds the signature is the only characteristic number of
M with this property.

For non-simply connected manifolds however the “higher signatures” are fur-
ther candidates for homotopy invariants. If π denotes the fundamental group and
f : M → Bπ the classifying map then for any x ∈ H∗(Bπ,Q) we can define the
twisted signature σx(M) = 〈x, f∗L(M)′〉, where L(M)′ is the Poincaré dual to L(M).
The Novikov conjecture asserts that the numbers σx(M) are homotopy invariants
for all x or, equivalently, that f∗L(M)′ is an oriented homotopy invariant.

Let [d + δ] denote the K-homology class in K0(M) = K0(C(M)) defined by
the signature operator d + δ. Using the Chern character isomorphism between
H∗(Bπ,Q) and RK0(Bπ) ⊗ Q := lim→ K0(X) ⊗ Q, where the limit is taken over all

compact subsets X of Bπ and the fact that, by the Atiyah–Singer theorem, the index
of d + δ is given by pairing with L(M) (i.e. the image under the Chern character of
the K-homology class defined by d + δ is L(M)′) the conjecture is equivalent to the
fact that f∗([d + δ]) ∈ RK0(Bπ) ⊗Q is a homotopy invariant.
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The K-theoretic approach to a proof of the Novikov conjecture now considers
the reduced group C∗-algebra C∗

redπ (i.e. the closure of the algebra of operators
generated by the elements of π in the left regular representation). There is a natural
construction that associates to every element in RK0(Bπ) a projection in a matrix
algebra over C∗

redπ and therefore an element of K0(C∗
redπ). This defines a map

β : RK0(Bπ) → K0(C∗
redπ). A construction of Miscenko using algebraic surgery

shows that β(f∗(d + δ)) is always a homotopy invariant.
The Novikov conjecture for π therefore follows from the following “strong

Novikov conjecture” (Rosenberg) for π.

14 Conjecture 14: (SNC) The map β : RK0(Bπ) → K0(C∗
redπ) is rationally injective.

This strong Novikov conjecture was proved by Miscenko in the case that Bπ is
a closed manifold with non-positive sectional curvature and by Kasparov in the
case that Bπ is a (not necessarily compact) complete Riemannian manifold with
non-positive sectional curvature (in both cases β itself is already injective). This
covers the case where π is a closed torsion-free discrete subgroup of a connected Lie
group G, since in this case one can take π\G|K for Bπ. Using the special structure
of discrete subgroups of Lie groups one can reduce to the torsion-free case.

Kasparov’s proof of SNC for groups as above uses the following two theorems
which are of independent interest.

Assume that G is a separable locally compact group acting on the complete
Riemannian manifold X by isometries. The Dolbeault operator used in 1.5.1 is
G-invariant and defines an element [∂X] in KKG

0 (C(T∗X),C).

15 Theorem 15 Let X be simply connected with non-positive sectional curvature.
Then the element [∂X] is right invertible, i.e. there exists a right inverse δX in
KKG

0 (C, C(T∗X)) such that [∂X] · δX = 1 in KKG
0 (C(T∗X)), C(T∗X)).

In the presence of a Spinc-structure on X, ∂X can also be viewed as a Dirac operator.
The element δX is constructed using a “Fourier transform” of ∂X and is therefore
usually called the dual Dirac element.

16 Theorem 16 Let G be connected, K a maximal compact subgroup and X = G|K.
Then there is a right inverse δX to [∂X] as in 15. The element γG = δX · [∂X] in
KKG(C,C) is an idempotent and does not depend on the choice of K or δX .

For all C∗-algebras A and B with an action of G by automorphisms, the natural
restriction map

KKG
∗ (A, B) → KKK

∗ (A; B)

is an isomorphism on γG KKG∗ (A, B) and has kernel (1 − γG)KKG∗ (A, B) (note that
KKG(C,C) acts on KKG∗ (A, B) by tensoring).
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It is clear from the considerations above that the K-theoretic proof of the Novikov
conjecture for a given group π depends on a partial computation of the K-theory
of the group C∗-algebra C∗

redπ.
The Baum–Connes conjecture proposes a general formula for K∗(C∗

redπ) by
refining the map β : RK0(Bπ) → K0(C∗

redπ). For the Baum–Connes conjecture one
uses a map whose construction is similar to the one of β, but one modifies the
left-hand side [7]. There is a universal contractible space EG on which G acts
properly. An action of a discrete group G on a Hausdorff space X is called proper
if any two points x, y, in X have neighbourhoods U and V such that only finitely
many translates of U by elements in G intersect V (in particular all stabilizer
groups are finite). The left hand side of the Baum–Connes conjecture then is the
equivariant K-homology KKG∗ (EG,C) (again defined using an inductive limit over
all G-compact subspaces X of EG). The map analogous to β is called µ and the
conjecture predicts that

KKG
∗ (EG,C)

µ→ K∗(C∗
redG)

is always an isomorphism. Since the left hand side is an object involving only the
equivariant theory of ordinary spaces it can be understood using methods from
(“commutative”) topology and there are means to compute it, [6]. The construction
also works for groups which are not discrete.

The Baum–Connes conjecture contains the Novikov conjecture and the gen-
eralized Kadison conjecture and plays an important motivating role in current
research on topological K-theory. While counterexamples to the more general
conjecture “with coefficients” have recently been announced by various authors
(Higson, Lafforgue–Skandalis, Yu), it is known to hold in many cases of interest
(see e.g. [12, 36, 38, 43, 44, 50, 56]).

A general strategy which is used in basically all proofs of the Baum–Connes
conjecture for different classes of groups, has been distilled in [33, 76]. It uses
actions on so-called proper algebras and abstract versions of “Dirac-” and “dual
Dirac-” elements.

17Definition 17 Let Γ be a discrete group and let A be a C∗-algebra with an action
of Γ. We say that A is proper if there exists a locally compact proper Γ-space X
and a Γ-equivariant homomorphism from C0(X) into the center of the multiplier
algebra of A such that C0(X)A is dense in A.

18Theorem 18 Let Γ be a countable group and let A be a proper Γ-C∗-algebra. Suppose
that there are elements α in KKΓ∗ (A,C) and β in KKΓ∗ (C, A) such that β · α = 1.
Then the Baum–Connes conjecture holds for Γ.

Let X be a complete Riemannian manifold with non-positive sectional curvature
on which Γ acts properly and isometrically (an important special case being Γ
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a discrete subgroup of a connected Lie group and X = G|K). The elements con-
structed by Kasparov in 15 define elements α = [∂X] and β = δX for the proper
algebra C0(X) such that α · β = 1. If for these elements the element γ = β · α is also
equal to 1, then the Baum–Connes conjecture holds for Γ.

Lafforgue has shown that in some cases where γ is different from 1, this element
can still act as the identity on the corresponding K-groups by mapping KK∗ to
a Banach algebra version of bivariant K-theory which allows more homotopies
and Morita equivalences using analogues of Kasparov modules involving Banach
modules. He deduced from this the validity of the Baum–Connes conjecture for
a class of groups that contains certain property T groups.

Existence of Positive Scalar Curvature Metrics1.5.3

Let M be a closed smooth spin manifold. J. Rosenberg [70] used the Miscenko–
Fomenko index theorem to prove necessary conditions on M for the existence of
a Riemannian metric with positive scalar curvature on M. In particular he showed
that, if SNC holds for the fundamental group π of M, then the higher Â-genera of
the form

〈
Â(M) ∪ f ∗(x), [M]

〉

vanish for all x ∈ H∗(Bπ,Q) (here f : M → Bπ is the natural classifying map).
This necessary condition can easily be used to show that many manifolds (with
fundamental group for which SNC is known to hold) cannot admit a metric with
positive scalar curvature. Much more can be said, see [71].

Applications in the Classification of Nuclear C∗-Algebras1.5.4

The interest in K-theoretic methods among operator algebraists was strongly mo-
tivated by the fact that K-theoretic invariants allowed to distinguish C∗-algebras
which looked otherwise very similar. One of the first computations of that kind was
the one by Pimsner–Popa and, independently, Paschke–Salinas of the Ext-groups
for the algebras On. The algebra On is defined as the C∗-algebra with genera-
tors s1, …, sn and relations s∗i si = 1,

∑n
1 sis∗i = 1. The algebra O∞ has generators

s1, s2, … and relations s∗i si = 1, s∗i sj = 0, j ≠ i, [20]. The result of Pimsner–Popa
and Paschke–Salinas is that Ext(On) = Z|(n − 1), so that in particular, they are not
isomorphic for different n. Another striking application of K-theory were the influ-
ential results of Pimsner–Voiculescu on the K-theory of noncommutative tori [63]
and – later – of the reduced group C∗-algebras of free groups [64]. Again these
computations showed that noncommutative tori with different twist or reduced
group C∗-algebras of free groups with different number of generators could not be
isomorphic.

The effectiveness of K-theory in the classification of nuclear C∗-algebras has
however proved to go beyond all expectations of these early days. In fact it turned
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out that up to a notion of stable isomorphism, nuclear simple C∗-algebras are in
a sense completely classified by KK-theory.

A simple C∗-algebra A is called purely infinite if for all x, y ∈ A with x nonzero,
there are a, b ∈ A such that y = axb. The most standard examples of purely
infinite algebras are the algebras On, n = 2, 3, …, ∞ mentioned above. They have
K0(On) = Z|n, n = 2, 3, …, K0(O∞) = Z and K1(On) = 0, n = 2, 3, …, ∞. If A is any
simple C∗-algebra, then K∗(A ⊗ O∞) = K∗(A). Moreover A ⊗ O∞ is automatically
purely infinite and A ⊗ O∞ ⊗ O∞ =̃ A ⊗ O∞. Thus A ⊗ O∞ may be viewed
as a purely infinite stabilization of A. This shows the interest of the following
astonishing and deep theorem obtained independently by Kirchberg and Phillips
after groundbreaking work of Kirchberg.

Recall that a C∗-algebra is called stable if A =̃ K ⊗ A.

19Theorem 19: (cf. [69], 8.4.1) Let A and B be purely infinite simple nuclear
algebras.
(a) Assume that A and B are stable. Then A and B are isomorphic if and only if

they are isomorphic in KK. Moreover, for each invertible element x in KK there
exists an isomorphism ϕ : A → B with KK(ϕ) = x.

(b) Assume that A and B are stable and belong to the UCT class N . Then A is
isomorphic to B if and only if K0(A) =̃ K0(B) and K1(A) =̃ K1(B). Moreover, for
each pair of isomorphisms αi : Ki(A) → Ki(B), i = 1, 2, there is an isomorphism
ϕ : A → B with Ki(ϕ) = αi, i = 1, 2.

(c) Assume that A and B are unital. Then A and B are isomorphic if and only if there
exists an invertible element x in KK(A, B) such that [1A] · x = [1B] (where ·
denotes Kasparov product and [1A], [1B] the elements of K0A = KK(C, A),
K0(B) = KK(C, B) defined by the units of A and B). For each such element x,
there is an isomorphism ϕ : A → B with KK(ϕ) = x.

(d) Assume that A and B are unital and belong to the UCT class N . Then A is
isomorphic to B if and only if there exist isomorphisms αi : Ki(A) → Ki(B),
i = 1, 2 such that α0([1A]) = [1B]. Moreover, for each such pair of isomorphisms,
there is an isomorphism ϕ : A → B with Ki(ϕ) = αi, i = 1, 2.

There are many examples of purely infinite nuclear algebras in the UCT class with
the same K-groups but constructed in completely different ways. By the theorem
these algebras have to be isomorphic, but in general it is impossible to find an
explicit isomorphism.

Classification of Topological Dynamical Systems 1.5.5

A topological dynamical system is an action of Z on a compact space X by home-
omorphisms. With such systems one can associate various noncommutative C∗-
algebras, the most obvious one being the crossed product C(X)� Z.

Interesting for applications are in particular systems where X is a Cantor space.
The K-theory of the crossed product for such a system has been analyzed and been
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used to obtain results on various notions of orbit equivalence for such systems
in [34].

Besides the crossed product one can also associate other C∗-algebras con-
structed from groupoids associated with the system. Such a construction can be
applied to subshifts of finite type. A subshift of finite type is defined by an n × n-
matrix A = (a(ij)) with entries a(ij) in {0, 1}. The shift space XA consists of all
families (ck)k∈Z with ck ∈ {1, …, n} and a(ckck+1) = 1 for all k. The subshift is
given by the shift transformation σA on XA. A groupoid associated with (XA, σA)
gives the C∗-algebra OA considered in [23]. It is a homeomorphism invariant
for the suspension flow space associated to the transformation (XA, σA). The K-
groups for OA recover invariants of flow equivalence discovered by Bowen and
Franks, [10]:

K0(OA) = Zn|(1 − A)Zn

K1(OA) = Ker (1 − A) .

If a topological Markov chain (XC, σC) is not minimal, then it can be decomposed
into two components (XA, σA) and (XB, σB). Correspondingly, the matrix C can be
written in the form

C =

(
A X

0 B

)

.

The corresponding C∗-algebra OC contains K⊗OB as an ideal with OA as quotient.
The corresponding extension

0 → K ⊗ OB → OC → OA → 0

defines an element of KK1(OA, OB) which describes how the suspension spaces for
(XA, σA) and (XB, σB) are glued to give the one for (XC, σC).

In [22], it was proved that

KK1(OA, OB) =̃ K1(OA) ⊗ K0(OB) ⊕ Hom
(
K0(OA), K1(OB)

)
.

The two summands can be described as equivalence classes of n × m-matrices.
In fact they are the cokernels and kernels, for right multiplication by B, in the
cokernel for left multiplication by A, on the space Mn,m(Z) of n × m-matrices.

It has been shown that, for the case of reducible topological Markov chains
(XC, σC) with two components, this extension invariant together with the flow
equivalence invariants for the components give complete invariants of flow equiv-
alence for (XC, σC).

We mention that in many similar cases such as the C∗-algebras associated with
a non-minimal foliation the extension invariant for the corresponding extension
of the associated C∗-algebras can in principle be used to describe the way that the
big system is composed from its components.
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Bivariant K-Theory
for Locally Convex Algebras 1.6

KK-theory and E-theory both use techniques which are quite specific to the cat-
egory of C∗-algebras (in particular, central approximate identities play a crucial
role). Therefore similar bivariant theories for other categories of algebras seemed
for many years out of reach. Since ordinary and periodic cyclic theory give only
pathological results for C∗-algebras, this made it in particular impossible to com-
pare bivariant K-theory with cyclic theory via a Chern character.

A bivariant K-theory was developed finally in [28] for a large category of locally
convex algebras (“m-algebras”). Since in this category one has less analytic tools at
one’s disposal, the construction had to be based on a better understanding of the
underlying algebraic structure in bivariant K-theory. The definition is formally
similar to the qA-picture described briefly in chapter 1. The underlying idea is to
represent elements of the bivariant theory by extensions of arbitrary length and
the product by the Yoneda product of extensions.

A locally convex algebra A is, in general, an algebra with a locally convex
topology for which the multiplication A × A → A is (jointly) continuous. In the
present survey we restrict our attention however to locally convex algebras that
can be represented as projective limits of Banach algebras.

A locally convex algebra A that can be represented as a projective limit of Banach
algebras can equivalently be defined as a complete locally convex algebra whose
topology is determined by a family {pα} of submultiplicative seminorms, [55].
Thus for each α we have pα(xy) ≤ pα(x)pα(y). The algebra A is then automati-
cally a topological algebra, i.e. multiplication is (jointly) continuous. We call such
algebras m-algebras. The unitization Ã of an m-algebra is again an m-algebra
in a natural way. Also the completed projective tensor product A⊗̂B of two m-
algebras is again an m-algebra.

Since cyclic theory is homotopy invariant only for differentiable homotopies
(called diffotopies below), we have to set up the theory in such a way that it uses
only diffotopies in place of general homotopies.

20Definition 20 Two continuous homomorphisms α, β : A → B between two m-
algebras are called differentiably homotopic or diffotopic, if there is a continuous
homomorphism ϕ from A to the algebra C∞([0, 1], B) of infinitely differentiable
B-valued functions on the unit interval [0, 1], such that the composition of ϕ with
the evaluation maps C∞([0, 1], B) → B at 0 and 1 give α and β, respectively.

It is not hard to see (though not completely obvious) that diffotopy is an equivalence
relation.

The m-algebra K of “smooth compact operators” consists of allN×N-matrices
(aij) with rapidly decreasing matrix elements aij ∈ C, i, j = 0, 1, 2, …. The topology
on K is given by the family of norms pn, n = 0, 1, 2, …, which are defined by
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pn

(
(aij)

)
=

∑

i,j

|1 + i + j|n |aij|

It is easily checked that the pn are submultiplicative and that K is complete. Thus K
is an m-algebra. As a locally convex vector space, K is isomorphic to the sequence
space s and therefore is nuclear in the sense of Grothendieck. The algebra K of
smooth compact operators is of course smaller than the C∗-algebra of compact
operators on a separable Hilbert space which we used in the previous sections. It
plays however exactly the same role in the theory. We hope that the use of the same
symbol K will not lead to confusion.

The map that sends (aij) ⊗ (bkl) to the N2 × N2-matrix (aijbkl)(i,k)(j,l)∈N 2×N 2

obviously gives an isomorphism Θ between K⊗̂K and K .

21 Definition 21 Let A and B be m-algebras. For any homomorphism ϕ : A → B of
m-algebras, we denote by 〈ϕ〉 the equivalence class of ϕ with respect to diffotopy
and we set

〈A, B〉 =
{〈ϕ〉| ϕ is a continuous homomorphism A → B

}

For two continuous homomorphisms α, β : A → K⊗̂B we define the direct sum
α ⊕ β as

α ⊕ β =

(
α 0

0 β

)

: A → M2(K⊗̂B) =̃ K⊗̂B .

With the addition defined by 〈α〉 + 〈β〉 = 〈α ⊕ β〉 the set 〈A, K⊗̂B〉 of diffotopy
classes of homomorphisms from A to K⊗̂B is an abelian semigroup with 0-
element 〈0〉.

Let V be a complete locally convex space. We define the smooth tensor algebra TsV
as the completion of the algebraic tensor algebra

TV = V ⊕ V ⊗V ⊕ V⊗3 ⊕ …

with respect to the family { p̂ } of seminorms, which are given on this direct sum as

p̂ = p ⊕ p⊗p ⊕ p⊗3 ⊕ … ,

where p runs through all continuous seminorms on V . The seminorms p̂ are
submultiplicative for the multiplication on TV . The completion TsV therefore is
an m-algebra.

We denote by σ : V → TsV the map, which maps V to the first summand
in TV . The map σ has the following universal property: Let s : V → A be any
continuous linear map from V to an m-algebraA. Then there is a unique continuous
homomorphism τs : TsV → A of m-algebras such that τs ◦ σ = s. It is given by

τs(x1 ⊗ x2 ⊗ … ⊗ xn) = s(x1)s(x2) … s(xn)
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The smooth tensor algebra is differentiably contractible, i.e., the identity map on
TsV is diffotopic to 0. A differentiable family ϕt : TsV → TsV of homomorphisms
for which ϕ0 = 0, ϕ1 = id is given by ϕt = τtσ , t ∈ [0, 1].

If A is an m-algebra, by abuse of notation, we write TA (rather than TsA)
for the smooth tensor algebra over A. Thus TA is again an m-algebra. For any
m-algebra A there exists a natural extension

0 → JA → TA
π→ A → 0 . (1.6)

Here π maps a tensor x1 ⊗ x2 ⊗ … ⊗ xn to x1x2 … xn ∈ A and JA = Ker π. This
extension is universal in the sense that, given any extension 0 → I → E → A → 0
of A, admitting a continuous linear splitting, there is a morphism of extensions

0 �� JA ��

��
γ

TA ��

��
τ

A ��

��
id

0

0 �� I �� E �� A �� 0 .

The map τ : TA → E is obtained by choosing a continuous linear splitting s : A →
E in the given extension and mapping x1 ⊗ x2 ⊗ … ⊗ xn to s(x1)s(x2) … s(xn) ∈ E.
Then γ is the restriction of τ.

22Definition 22 The map γ : JA → I in this commutative diagram is called the
classifying map for the extension 0 → I → E → A → 0.

If s and s′ are two different linear splittings, then for each t ∈ [0, 1] the map
st = ts + (1 − t)s′ is again a splitting. The corresponding maps γt associated with
st form a diffotopy between the classifying map constructed from s and the one
constructed from s′. The classifying map is therefore unique up to diffotopy.

For an extension admitting a homomorphism splitting the classifying map is
diffotopic to 0.

An extension of A of length n is an exact complex of the form

0 → I → E1 → E2 … → En → A → 0 ,

where the arrows or boundary maps (which we denote by ϕ) are continuous
homomorphisms between m-algebras. We call such an extension linearly split,
if there is a continuous linear map s of degree −1 on this complex, such that
sϕ + ϕs =id. This is the case if and only if the given extension is a Yoneda product
(concatenation) of n linearly split extensions of length 1: I → E1 → Im ϕ1,
Ker ϕ2 → E2 → Im ϕ2, … .

JA is, for each m-algebra A, again an m-algebra. By iteration we can therefore
form J2A = J(JA), …, JnA = J(Jn−1A).
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23 Proposition 23 For any linearly split extension

0 → I → E1 → E2 … → En → A → 0

of A of length n there is a classifying map γ : JnA → I which is unique up to
diffotopy.

Proof Compare with the free n-step extension

0 → JnA → T(Jn−1A) → T(Jn−2A) → … → TA → A → 0 .

24 Proposition 24 J (and Jn) is a functor, i.e. each continuous homomorphismA → B
between m-algebras induces a continuous homomorphism JA → JB.

Consider now the set Hk = 〈JkA, K⊗̂B〉, where H0 = 〈A, K⊗̂B〉. Each Hk is an
abelian semigroup with 0-element for the K-theory addition defined in 21. Morally,
the elements of Hk are classifying maps for linearly split k-step extensions. In
applications all elements arise that way.

To define a map S : Hk → Hk+2, we use the classifying map ε for the two-step
extension which is obtained by composing the so called Toeplitz extension

0 → K⊗̂A → T0⊗̂A → A(0, 1) → 0

with the cone or suspension extension

0 → A(0, 1) → A[0, 1) → A → 0 .

Here, A(0, 1) and A[0, 1) denote the algebras of smooth A-valued functions on the
interval [0, 1], that vanish in 0 and 1, or only in 1, respectively, and whose derivatives
all vanish in both endpoints. The smooth Toeplitz algebraT0 is a standard extension
ofC(0, 1) where a preimage of an element eih inC(0, 1)̃ has Fredholm index 1, for
each monotone function h in C(0, 1] such that h(0) = 0 and h(1) = 1.

25 Definition 25 For each m-algebra A, we define the periodicity map εA : J2A →
K⊗̂A as the classifying map for the standard two-step Bott extension

0 → K⊗̂A → T0⊗̂A → A[0, 1) → A → 0 .

We can now define the Bott map S. For 〈α〉 ∈ Hk, α : JkA → K⊗̂B we set
S〈α〉 = 〈(idK⊗̂α) ◦ ε〉. Here ε : Jk+2A → K ⊗ JkA is the ε-map for JkA.

If an element γ of Hk is given as a classifying map for an extension of length k,
then Sγ is the classifying map for the Yoneda product of the given extension with
the Bott extension.
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Let ε− : Jk+2A → K ⊗ JkA be the map which is obtained by replacing, in
the definition of ε, the Toeplitz extension by the inverse Toeplitz extension. The
sum ε ⊕ ε− is then diffotopic to 0. Therefore S〈α〉 + S−〈α〉 = 0, putting S−〈α〉 =
〈(idK ⊗ α) ◦ ε−〉.

26Definition 26 Let A and B be m-algebras and ∗ = 0 or 1. We define

kk∗(A, B) = lim→
k

H2k+∗ = lim→
k

〈J2k+∗A, K⊗̂B〉 .

The preceding discussion shows that kk∗(A, B) is not only an abelian semigroup,
but even an abelian group (every element admits an inverse). A typical element of
kk∗(A, B) is given by a classifying map of a linearly split extension

0 → K ⊗ B → E1 → E2 … → En → A → 0

In the inductive limit, we identify such an extension with its composition with the
Bott extension for A on the right hand side.

As usual for bivariant theories, the decisive element, which is also the most
difficult to establish, is the composition product.

27Theorem 27 There is an associative product

kki(A, B) × kkj(B, C) → kki+j(A, C)

(i, j ∈ Z|2; A, B and C m-algebras), which is additive in both variables.

Neglecting the tensor product by K , the product of an element represented by
ϕ ∈ 〈JkA, K⊗̂B〉 and an element represented by ψ ∈ 〈JlB, K⊗̂C〉 is defined as
〈ψ ◦ Jl(ϕ)〉. Thus for elements of kk which are given as classifying maps for higher
length extensions, the product simply is the classifying map for the Yoneda product
of the two extensions. The fact that this is well defined, i.e. compatible with the
periodicity map S, demands a new idea, namely the “basic lemma” from [28].

28Lemma 28 Assume given a commutative diagram of the form

0 0 0

↓ ↓ ↓
0 → I → A01 → A02 → 0

↓ ↓ ↓
0 → A10 → A11 → A12 → 0

↓ ↓ ↓
0 → A20 → A21 → B → 0

↓ ↓ ↓
0 0 0 ,
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where all the rows and columns represent extensions of m-algebras with continuous
linear splittings.

Let γ+ and γ− denote the classifying maps J2B → I for the two extensions of
length 2

0 → I → A10 → A21 → B → 0

0 → I → A01 → A12 → B → 0

associated with the two edges of the diagram. Then γ+ ⊕ γ− is diffotopic to 0.

This lemma implies that, the classifying maps for the compositions of a linearly
split extension

0 → B → E1 → E2 … → En → A → 0

with the Bott extension for B on the left or with the Bott extension for A on the
right hand side are diffotopic.

The usual properties of a bivariant K-theory as listed in 4 and in particular the
long exact sequences 1.3 and 1.4 in 5 for linearly split extensions of m-algebras can
then be deduced for kk in a rather standard fashion.

Moreover, the following important theorem holds.

29 Theorem 29 For every Banach algebra A, the groups kk∗(C, A) and K∗A are
naturally isomorphic.

In particular kk0(C,C) = Z and kk1(C,C) = 0. Phillips, [60], has developed
a topological K-theory K∗ for Fréchet m-algebras that extends the theory from
Banach algebras. Also for that theory one finds that kk∗(C, A) =̃ K∗A for each
Fréchet m-algebra A.

30 Remark 30 A version of bivariant K-theory for general locally convex algebras –
not just m-algebras – has been worked out in [29]. In [29] a slightly different (but
basically equivalent) approach is used to define the bivariant theory which can
also be used to construct the bivariant theory for m-algebras described above.
It is motivated by the thesis of A. Thom [74]. The theory is constructed as
noncommutative stable homotopy, i.e. as an inductive limit over suspensions of
both variables (using a noncommutative suspension for the first variable), rather
than as an inductive limit over the inverse Bott maps ε as above. This simpli-
fies some of the arguments and also clarifies the fact that Bott periodicity be-
comes automatic once we stabilize by (smooth) compact operators in the second
variable.
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Bivariant Cyclic Theories 1.7

The Algebra ΩA of Abstract Differential Forms
over A and its Operators 1.7.1

There are many different but essentially equivalent descriptions of the complexes
used to define cyclic homology. The most standard choice is the cyclic bicomplex.
For our purposes it is more convenient to use the (B, b)-bicomplex. B and b are
operators on the algebra ΩA of abstract differential forms over A.

Given an algebra A, we denote by ΩA the universal algebra generated by all x ∈ A
with relations of A and all symbols dx, x ∈ A, where dx is linear in x and satisfies
d(xy) = xdy + d(x)y. We do not impose d1 = 0, i.e., if A has a unit, d1 ≠ 0. ΩA is
a direct sum of subspaces ΩnA generated by linear combinations of x0dx1 … dxn,
and dx1 … dxn, xj ∈ A. This decomposition makes ΩA into a graded algebra. As
usual, we write deg(ω) = n if ω ∈ ΩnA.

As a vector space, for n ≥ 1,

ΩnA =̃ Ã ⊗ A⊗n =̃ A⊗(n+1) ⊕ A⊗n (1.7)

(where Ã is A with a unit adjoined, and 1⊗x1 ⊗…⊗xn corresponds to dx1 … dxn).
The operator d is defined on ΩA by

d(x0dx1 … dxn) = dx0dx1 … dxn

d(dx1 … dxn) = 0
(1.8)

The operator b is defined by

b(ωdx) = (−1)deg ω[ω, x]

b(dx) = 0 , b(x) = 0 , x ∈ A, ω ∈ ΩA
(1.9)

Then, by definition, d2 = 0 and one easily computes that also b2 = 0.
Under the isomorphism in Equation (1.7) d becomes

d(x0 ⊗ … ⊗ xn) = 1 ⊗ x0 ⊗ … ⊗ xn x0 ∈ A

d(1 ⊗ x1 ⊗ … ⊗ xn) = 0

while b corresponds to the usual Hochschild operator

b(x̃0 ⊗ x1 ⊗ … ⊗ xn) =

x̃0x1 ⊗ … ⊗ xn +
n∑

j=2

(−1)j−1x̃0 ⊗ … ⊗ xj−1xj ⊗ … ⊗ xn

+ (−1)nxnx̃0 ⊗ x1 ⊗ … ⊗ xn−1, x̃0 ∈ Ã, x1, …, xn ∈ A .
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Another important natural operator is the degree (or number) operator:

N(ω) = deg(ω)ω . (1.10)

We also define the Karoubi operator κ on ΩA by

κ = 1 − (db + bd) . (1.11)
Explicitly, κ is given by

κ(ωdx) = (−1)deg ωdx ω .

The operator κ satisfies (κn − 1)(κn+1 − 1) = 0 on Ωn. Therefore, by linear algebra,
there is a projection operator P on ΩA corresponding to the generalized eigenspace
for 1 of the operator κ = 1 − (db + bd).

31 Lemma 31 Let L = (Nd)b + b(Nd). Then ΩA = Ker L ⊕ Im L and P is exactly the
projection onto Ker L in this splitting.

Proof This follows from the identity

L = (κ − 1)2(κn−1 + 2κn−2 + 3κn−3 + … + (n − 1)κ + n) .

The operator L thus behaves like a “selfadjoint” operator. It can be viewed as an
abstract Laplace operator on the algebra of abstract differential forms ΩA. The
elements in the image of P are then “abstract harmonic forms”.

By construction, P commutes with b, d, N. Thus setting B = NPd one finds
Bb + bB = PL = 0 and B2 = 0.

Explicitly, B is given on ω ∈ Ω by the formula

B(ω) =
n∑

j=0

κjdω .

Under the isomorphism in Equation (1.7), this corresponds to:

B(x0dx1 … dxn) = dx0dx1 … dxn + (−1)ndxndx0 … dxn−1

+ … + (−1)nndx1 … dxndx0

The preceding identities show that we obtain a bicomplex – the (B, b)-bicomplex –
in the following way ↓ b ↓ b ↓ b ↓ b

Ω3A
B← Ω2A

B← Ω1A
B← Ω0A

↓ b ↓ b ↓ b

Ω2A
B← Ω1A

B← Ω0A

↓ b ↓ b

Ω1A
B← Ω0A

↓ b

Ω0A .

(1.12)
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One can rewrite the (B, b)-bicomplex (1.12) using the isomorphism ΩnA =̃ A⊗(n+1)⊕
A⊗n in Equation (1.7). An easy computation shows that the operator b : ΩnA →
Ωn−1A corresponds under this isomorphism to the operator A⊗(n+1) ⊕ A⊗n →
A⊗n ⊕ A⊗(n−1) which is given by the matrix

(
b (1 − λ)

0 −b′

)

where b′, b and λ are the operators in the usual cyclic bicomplex.
Similarly, the operator B : ΩnA → Ωn+1A corresponds to the operator A⊗(n+1) ⊕

A⊗n → A⊕(n+2) ⊕ A⊗(n+1) given by the 2 × 2-matrix
(

0 0

Q 0

)

,

where Q = 1 + λ + λ2 + … λn.
This shows that the (B, b)-bicomplex is just another way of writing the usual

cyclic bicomplex which is based on the operators b, b′, λ and Q. The total complex
DΩ for the (B, b)-bicomplex is exactly isomorphic to the total complex for the cyclic
bicomplex. We define

32Definition 32 The cyclic homology HCnA is the homology of the complex

→ DΩ
n

B′−b→ DΩ
n−1

B′−b→ …
B′−b→ DΩ

1
B′−b→ DΩ

0 → 0

where

DΩ
2n = Ω0A ⊕ Ω2A ⊕ … ⊕ Ω2nA

DΩ
2n+1 = Ω1A ⊕ Ω3A ⊕ … ⊕ Ω2n+1A

and B′ is the truncated B-operator, i.e., B′ = B on the components ΩkA of DΩ
n ,

except on the highest component ΩnA, where it is 0.
The Hochschild homology HHn(A) is the homology of the first column in 1.12,

i.e. of the complex

→ ΩnA
b→ Ωn−1A

b→ …
b→ Ω1A

b→ Ω0A → 0

33Remark 33 Assume that A has a unit 1. We may introduce in ΩA the additional
relation d(1) = 0, i.e., divide by the ideal M generated by d(1) (this is equivalent
to introducing the relation 1 · ω = ω for all ω in ΩA). We denote the quotient by
ΩA. Now M is a graded subspace, invariant under b and B, and its homology with
respect to b is trivial. The preceding proposition is thus still valid if we use ΩA in
place of ΩA. The convention d(1) = 0 is often used (implicitly) in the literature. In
some cases it simplifies computations considerably. There are however situations
where one cannot reduce the computations to the unital situation (in particular
this is true for the excision problem).
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The Periodic Theory1.7.2

The periodic theory is the one that has the really good properties like diffotopy
invariance, Morita invariance and excision. It generalizes the classical de Rham
theory to the non-commutative setting.

Periodic Cyclic Homology
Let A be an algebra. We denote by Ω̂A the infinite product

Ω̂A =
∏

n

ΩnA

and by Ω̂evA, Ω̂oddA its even and odd part, respectively. Ω̂A may be viewed as the
(periodic) total complex for the bicomplex

↓−b ↓−b ↓−b ↓−b

← Ω3A
B← Ω2A

B← Ω1A
B← Ω0A

↓−b ↓−b ↓−b

← Ω2A
B← Ω1A

B← Ω0A

↓−b ↓−b

← Ω1A
B← Ω0A

↓−b

← Ω0A

Similarly, the (continuous for the filtration topology) dual (Ω̂A)′ of Ω̂A is

(Ω̂A)′ =
⊕

n

(ΩnA)′ .

34 Definition 34 The periodic cyclic homology HP∗(A), ∗ = 0, 1, is defined as the
homology of the Z|2-graded complex

Ω̂evA
B−b→←
B−b

Ω̂oddA

and the periodic cyclic cohomology HP∗(A), ∗ = 0, 1, is defined as the homology
of the Z|2-graded complex

(Ω̂evA)′ B−b←→
B−b

(Ω̂oddA)′ .

Now by definition, S is the projection

DΩ
n = Ωn ⊕ Ωn−2 ⊕ … → DΩ

n−2 = Ωn−2 ⊕ Ωn−4 ⊕ …
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where DΩ
n is as in 32. Therefore we get

Ω̂A = lim←
S

(DΩ
2n ⊕ DΩ

2n+1)

and

(Ω̂A)′ = lim→
S′

(DΩ
2n ⊕ DΩ

2n+1)′ .

We deduce

35Proposition 35 For any algebra A and ∗ = 0, 1 one has

HP∗(A) = lim→
S

HC2n+∗A

and an exact sequence

0 → lim←
S

1HC2n+∗+1A → HP∗A → lim←
S

HC2n+∗A → 0

(where as usual lim←
S

1HC2n+∗+1A is defined as

(∏

n

HC2n+∗+1A
) /

(1 − s)
(∏

n

HC2n+∗+1A
)

s being the shift on the infinite product).

The Bivariant Theory
Now Ω̂A is in a natural way a complete metric space (with the metric induced by the
filtration on ΩA – the distance of families (xn) and (yn) in

∏
ΩnA is≤ 2−k if the k first

xi and yi agree). We call this the filtration topology and denote by Hom (Ω̂A, Ω̂B)
the set of continous linear maps Ω̂A → Ω̂B. It can also be described as

Hom (Ω̂A, Ω̂B) = lim←
m

lim→
n

Hom
(⊕

i≤n

ΩiA,
⊕

j≤m

ΩjB
)

.

It is a Z|2-graded complex with boundary map

∂ϕ = ϕ ◦ ∂ − (−1)deg(ϕ)∂ ◦ ϕ

where ∂ = B − b.

36Definition 36 Let A and B be algebras. Then the bivariant periodic cyclic homology
HP∗(A, B) is defined as the homology of the Hom-complex

HP∗(A, B) = H∗(Hom (Ω̂A, Ω̂B)) ∗ = 0, 1 .
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It is not difficult to see that the Z|2-graded complex Ω̂C is (continuously with
respect to the filtration topology) homotopy equivalent to the trivial complex

C→← 0 .

Therefore

HP∗(C, B) = HP∗(B) and HP∗(A,C) = HP∗(A) .

There is an obvious product

HPi(A1, A2) × HPj(A2, A3) → HPi+j(A1, A3)

induced by the composition of elements in Hom (Ω̂A1, Ω̂A2) and Hom (Ω̂A2, Ω̂A3),
which we denote by (x, y) �→ x · y. In particular, HP0(A, A) is a unital ring with
unit 1A given by the identity map on Ω̂A.

An element α ∈ HP∗(A, B) is called invertible if there exists β ∈ HP∗(B, A) such
that α · β = 1A ∈ HP0(A, A) and β · α = 1B ∈ HP0(B, B). An invertible element
of degree 0, i.e., in HP0(A, B) will also be called an HP-equivalence. Such an HP-
equivalence exists in HP0(A, B) if and only if the supercomplexes Ω̂A and Ω̂B are
continuously homotopy equivalent. Multiplication by an invertible element α on
the left or on the right induces natural isomorphisms HP∗(B, D) =̃ HP∗(A, D) and
HP∗(D, A) =̃ HP∗(D, B) for any algebra D.

37 Remark 37 One can also define a Z-graded version of the bivariant cyclic the-
ory, [37], as follows. Say that a linear map α : Ω̂A → Ω̂B, continuous for the
filtration topology, is of order ≤ k if α(FnΩ̂A) ⊂ Fn−kΩ̂B for n ≥ k, where FnΩ̂A is
the infinite product of b(Ωn+1), Ωn+1, Ωn+2, … . We denote by Hom k(Ω̂A, Ω̂B) the
set of all maps of order ≤ k. This is, for each k, a subcomplex of the Z|2-graded
complex Hom (Ω̂A, Ω̂B). We can define

HCn(A, B) = Hi(Hom n(Ω̂A, Ω̂B)) where i ∈ {0, 1}, i ≡ n mod 2 .

The bivariant theory HCn(A, B) has a product HCn(A, B) × HCm(B, C) →
HCn+m(A, C) and satisfies

HCn(C, B) = HCn(B) and HCn(A,C) = HCn(A) .

In general, there exist elements in HP∗(A, B) which are not in the range of the
natural map HC2n+∗(A, B) → HP∗(A, B) for any n, [30].

The bivariant periodic theory HP∗ defines a linear category that has formally
exactly the same properties (cf. 4) as the bivariant K-theories described above.
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38Theorem 38 HP∗ has the following properties
(a) There is an associative product

HPi(A, B) × HPj(B, C) → HPi+j(A, C)

(i, j ∈ Z|2), which is additive in both variables.
(b) There is a bilinear, graded commutative, exterior product

HPi(A1, A2) × HPj(B1, B2) → HPi+j(A1⊗̂A2, B1⊗̂B2) .

(c) Each homomorphism ϕ : A → B defines an element HP(ϕ) in HP0(A, B). If
ψ : B → C, is another homomorphism, then

HP(ψ ◦ ϕ) = HP(ϕ) · HP(ψ)

HP∗(A, B) is a contravariant functor in A and a covariant functor in B. If
α : A′ → A and β : B → B′ are homomorphisms, then the induced maps, in the
first and second variable of HP∗, are given by left multiplication by HP(α) and
right multiplication by HP(β).

(d) HP∗(A, A) is, for each algebra A, a Z|2-graded ring with unit element HP(idA).
(e) The functor HP∗ is invariant under diffotopies in both variables.
(f) The canonical inclusion ι : A → K ⊗ A defines an invertible element in

HP0(A, K ⊗ A), where K denotes the algebra of smooth compact operators
considered in the previous. In particular, HP∗(A, B) =̃ HP∗(K ⊗ A, B) and
HP∗(B, A) =̃ HP∗(B, K ⊗ A) for each algebra B.

(g) Let 0 → S → P → Q → 0 be an extension of algebras and A an algebra. There
are two natural six-term exact sequences

HP0(A, S) �� HP0(A, P) �� HP0(A, Q)

��

HP1(A, Q)

OO

HP1(A, P)oo HP1(A, S)oo

and

HP0(S, A)

��

HP0(P, A)oo HP0(Q, A)oo

HP1(Q, A) �� HP1(P, A) �� HP1(S, A) ,

OO

where the horizontal arrows are induced by the maps in the given extension and
the vertical arrows are products by a canonical element in HP1(Q, S) associated
with the extension.
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The bivariant cyclic theory HP∗ makes sense without any basic modifications
for arbitrary locally convex algebras. One only has to impose continuity on all
maps and use completed projective tensor products instead of algebraic tensor
products everywhere. The theorem above then remains valid (again replacing
tensor products by completed projective tensor products). Only in the proof of the
long exact sequences one has to be a little more careful than in the purely algebraic
case, cf. [27, 77].

An equivariant version, for the action of a discrete group, of bivariant cyclic
theory has been developed by C. Voigt, [78].

Local Cyclic Cohomology and Bivariant Local Theory1.7.3

Connes used inductive limit topologies with respect to bounded (if A is e.g. a Ba-
nach algebra) or finite subsets of A on the algebra Ω(A) to define his entire cyclic
cohomology. This idea can be considerably extended. R. Meyer developed an
elegant framework of bivariant entire theory for bornological algebras (i.e. alge-
bras with a system of “bounded” sets). Even more significantly, Puschnigg took
Connes’ idea as a basis to establish the bivariant “local” theory which furnishes
the “correct” homological invariants for Banach algebras and in particular for
C∗-algebras.

If A is a Fréchet algebra, for each precompact subset C of A, we take on Ω(A)
the seminorm (Minkowski functional) defined by the absolutely convex hull of the
union of all sets of the form CdC … dC or dCdC … dC in ΩA. We denote the Banach
space obtained as the completion of ΩA with respect to this seminorm (after first
dividing by its nullspace) as (ΩA)C and thus obtain an inductive system ((ΩA)C)
of Banach spaces. It is well known that such inductive systems form a category, the
category of “Ind-spaces”, with morphism sets between two such systems (Ki)I and
(Lj)J defined by

Hom
(
(Ki), (Lj)

)
= lim← I

lim→ J
Hom (Ki, Lj) .

On ΩA we now have to consider the boundary operator 2
N B − N

2 b, where N denotes
the degree operator on ΩA (see (1.10)), rather than just B − b. In the algebraic
setting this makes no difference, since the complex (Ω̂A, B − b) is isomorphic to
(Ω̂A, 2

N B − N
2 b). In the topological setting however the difference is crucial. The

conceptual explanation for the choice of 2
N B − N

2 b is the description of the cyclic
complex in terms of the “X-complex” for a quasifree resolution of A, [30].

The operator 2
N B − N

2 b defines maps of Ind-spaces
(
(ΩevA)C

)←→
(
(ΩoddA)C

)

and thus a Z|2-graded Ind-complex.
To define H∗

loc we observe the following. The category Ho (Ind) of inductive
systems ofZ|2-graded complexes of normed spaces with homotopy classes of chain
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maps as morphisms is a triangulated category. The subclass N of inductive systems
isomorphic to a system of contractible complexes is a “null system” in Ho (Ind).
Thus the corresponding quotient category Ho (Ind)|N is again a triangulated
category. In this quotient category all elements of N become isomorphic to the
zero object.

In the following definition, we view C as a constant inductive system of com-
plexes with zero boundary as usual.

39Definition 39 Let K = (Ki)i∈I and L = (Lj)j∈J be two inductive systems of complexes.
Define Hloc

0 (K, L) to be the space of morphisms K → L in the category Ho (Ind)|N
and Hloc

n (K, L) the space of morphisms K[n] → L. Let

H∗
loc(K) := Hloc

∗ (K,C) , Hloc
∗ (L) := Hloc

∗ (C, L) .

One can compute Hloc∗ (K, L) via an appropriate projective resolution of K (see [65]).
An analysis of this resolution yields that there is a spectral sequence whose E2-term
involves the homologies H∗(L(Ki, Lj)) and the derived functors of the projective
limit functor lim← , and which converges to Hloc∗ (K, L) under suitable assumptions.
For countable inductive systems, the derived functors Rp lim← with p ≥ 2 vanish.
Hence the spectral sequence degenerates to a Milnor lim←

1-exact sequence

0 → lim←
1
I

lim→ J
H∗−1

(
L(Ki, Lj)

) → Hloc
∗ (K, L)

→ lim← I
lim→ J

H∗
(
L(Ki, Lj)

) → 0

if I is countable. In the local theory we have this exact sequence for arbitrary
countable inductive systems (Ki). In particular, for K = C we obtain

Hloc
∗ (L) = lim→ H∗(Lj) .

Since the inductive limit functor is exact, Hloc∗ (L) is equal to the homology of the
inductive limit of L.

The completion of an inductive system of normed spaces (Xi)i∈I is defined
entry-wise: (Xi)c := (Xc

i )i∈I .

40Definition 40 Let A and B be Fréchet algebras. We define local cyclic cohomology,
local cyclic homology, and bivariant local cyclic homology by

HE∗
loc(A) := H∗

loc(ΩA) ,

HEloc
∗ (B) := Hloc

∗ (ΩB) ,

HEloc
∗ (A, B) := Hloc

∗ (ΩA, ΩB) .

where ΩA denotes the Ind-space ((ΩA)C).
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As usual, we have HEloc∗ (A,C) =̃ HE∗
loc(A) and HEloc∗ (C, A) =̃ HEloc∗ (A). The com-

position of morphisms gives rise to a product on HEloc∗ .
The main advantage of local cyclic cohomology is that it behaves well when

passing to “smooth” subalgebras.

41 Definition 41 Let A be a Fréchet algebra, let B be a Banach algebra with closed unit
ball U and let j : A → B be an injective continuous homomorphism with dense
image. We call A a smooth subalgebra of B iff S∞ :=

⋃
Sn is precompact whenever

S ⊂ A is precompact and j(S) ⊆ rU for some r < 1.

Let A ⊆ B be a smooth subalgebra. Then an element a ∈ A that is invertible in B is
already invertible in A. Hence A is closed under holomorphic functional calculus.

Whereas the inclusion of a smooth subalgebra A → B induces an isomorphism
K∗(A) =̃ K∗(B) in K-theory, the periodic or entire cyclic theories of A and B may
differ drastically. However, local theory behaves like K-theory in this situation:

42 Theorem 42 Let j : A → B be the inclusion and let j∗ ∈ HEloc
0 (A, B) be the

corresponding element in the bivariant local cyclic homology.
If B has Grothendieck’s approximation property, then j∗ is invertible.

Again HEloc∗ defines a linear category with objects Fréchet algebras and morphism
sets HEloc∗ (A, B). It has the properties listed in 3, 4, 5 for C∗-algebras but in a signifi-
cantly more flexible form. In particular, it applies also to arbitrary Fréchet algebras.
Moreover, tensor products by C∗-algebras and C0(0, 1) can be replaced by smooth
subalgebras of these tensor products, etc. In some important cases, such as the one
of certain group C∗-algebras it can be computed directly [67]

Bivariant Chern Characters1.8

The construction of characteristic classes in cyclic cohomology or homology asso-
ciated to K-theory or K-homology elements has been one of the major guidelines
for the development of cyclic theory, [14, 39].

After the development of a well understood machinery for cyclic homology
and also of a corresponding bivariant theory with properties similar to those of
bivariant K-theory, [31], the principal obstruction to the definition of a bivariant
Chern character from bivariant K-theory to bivariant cyclic homology consisted
in the fact that both theories were defined on different categories of algebras.

Bivariant K-theories were defined for categories of C∗-algebras. For C∗-algebras
however the standard cyclic theory gives only trivial and pathological results. (One
basic reason for that is the fact that cyclic theory is invariant only under differ-
entiable homotopies, not under continuous ones. Thus for instance the algebra
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C0([0, 1]) of continuos functions on the interval is not equivalent for cyclic theory
to C.) On the other hand, cyclic theory gives good results for many locally convex
algebras where a bivariant K-theory was not available.

There are two ways out of this dilemma. The first one consists in defining bivari-
ant K-theory with good properties for locally convex algebras, [28] and the second
one in developing a cyclic theory which gives good results for C∗-algebras, [65]. In
both cases, once the suitable theories are constructed, the existence of the bivariant
character follows from the abstract properties of the theories.

The Bivariant Chern–Connes Character
for Locally Convex Algebras 1.8.1

In this section we describe the construction of a bivariant multiplicative trans-
formation from the bivariant theory kk∗ described in Chapter 1.6 to the bivariant
theory HP∗ on the category of m-algebras. As a very special case it will furnish the
correct frame for viewing the characters for idempotents, invertibles or Fredholm
modules constructed by Connes, Karoubi and others.

Consider a covariant functor E from the category of m-algebras to the category
of abelian groups which satisfies the following conditions:
(E1) E is diffotopy invariant, i.e., the evaluation map evt in any point t ∈ [0, 1]

induces an isomorphism E(evt) : E(A[0, 1]) → E(A).
(E2) E is stable, i.e., the canonical inclusion ι : A → K⊗̂A induces an isomor-

phism E(ι) : E(A) → E(K⊗̂A).
(E3) E is half-exact, i.e., each extension 0 → I → A → B → 0 admitting

a continuous linear splitting induces a short exact sequence E(I) → E(A) →
E(B).

(The same conditions can of course be formulated analogously for a contravariant
functor E.) In (E1), A[0, 1] denotes, as in section 1.6, the algebra of smooth A-
valued functions on [0,1] whose derivatives vanish in 0 and 1. Similarly, A(0, 1)
consists of functions that, in addition, vanish at the endpoints. We note that
a standard construction from algebraic topology, using property (E1) and mapping
cones, permits to extend the short exact sequence in (E3) to an infinite long exact
sequence of the form

… → E(B(0, 1)2) → E(I(0, 1)) → E(A(0, 1))

→ E(B(0, 1)) → E(I) → E(A) → E(B)

see, e.g., [41] or [8].

43Theorem 43 Let E be a covariant functor with the properties (E1), (E2), (E3). Then
we can associate in a unique way with each h ∈ kk0(A, B) a morphism of abelian
groups E(h) : E(A) → E(B), such that E(h1 · h2) = E(h2) ◦ E(h1) for the product
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h1 · h2 of h1 ∈ kk0(A, B) and h2 ∈ kk0(B, C) and such that E(kk(α)) = E(α) for
each morphism α : A → B of m-algebras (recall that kk(α) denotes the element
of kk0(A, B) induced by α).

An analogous statement holds for contravariant functors.

Proof Let h be represented by η : J2nA → K⊗̂B. We set

E(h) = E(ι)−1E(η)E(εn)−1E(ι)

where εn is the classifying map for the iterated Bott extension used in the definition
of kk∗ and ι denotes the inclusion of an algebra into its tensor product by K . It is
clear that E(h) is well-defined and that E(kk(α)) = E(α).

The preceding result can be interpreted differently, see also [8,35]. For this, consider
again kk0 as an additive category, whose objects are the m-algebras, and where the
morphism set between A and B is given by kk0(A, B). This category is additive in
the sense that the morphism set between two objects forms an abelian group and
that the product of morphisms is bilinear.

We denote the natural functor from the category of m-algebras to the category
kk0, which is the identity on objects, by kk.

44 Corollary 44 Let F be a functor from the category of m-algebras to an additive
category C, such that F(β◦α) = F(α) ·F(β), for any two homomorphisms α : A1 →
A2 and β : A2 → A3 between m-algebras.

We assume that for each B, the contravariant functor C(F( · ), F(B)) and the
covariant functor C(F(B), F( · )) on the category of m-algebras satisfy the proper-
ties (E1), (E2), (E3). Then there is a unique covariant functor F′ from the category
kk0 to C, such that F = F′ ◦ kk.

45 Remark 45 Property (E3) implies that any such functor F′ is automatically additive:

F′(h + g) = F′(h) + F′(g)

As a consequence of the preceding corollary we get a bilinear multiplicative trans-
formation from kk0 to HP0 – the bivariant Chern–Connes character.

46 Corollary 46 There is a unique (covariant) functor ch : kk0 → HP0, such that
ch(kk(α)) = HP0(α) ∈ HP0(A, B) for every morphism α : A → B of m-algebras.
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Proof This follows from 44, since HP0 satisfies conditions (E1), (E2) and (E3) in
both variables.

The Chern–Connes-character ch is by construction compatible with the composi-
tion product on kk0 and HP0. It also is compatible with the exterior product on kk0

(as in 4(a)), and the corresponding product on HP0, see [31], p.86.
It remains to extend ch to a multiplicative transformation from the Z|2-graded

theory kk∗ to HP∗ and to study the compatibility with the boundary maps in the
long exact sequences associated to an extension for kk and HP.

The natural route to the definition of ch in the odd case is the use of the identity
kk1(A, B) = kk0(JA, B).

Since HP satisfies excision in the first variable and since HP∗(TA, B) = 0 for
all B (TA is contractible), we find that

HP0(JA, B) =̃ HP1(A, B) . (1.13)

However, for the product kk1 × kk1 → kk0 we have to use the identification

kk0(J2A, B) =̃ kk0(A, B) ,

which is induced by the ε-map J2A → K⊗̂A. This identification is different from
the identification HP0(J2A, B) =̃ HP0(A, B) which we obtain by applying (1.13)
twice. In fact, we have

47Proposition 47 Under the natural identification

HP0(J2A, K⊗̂A) =̃ HP0(A, A)

from (1.13) , the element ch(ε) corresponds to (2πi)−1.

We are therefore lead to the following definition.

48Definition 48 Let u be an element in kk1(A, B) and let u0 be the corresponding
element in kk0(JA, B). We set

ch(u) =
√

2πi ch(u0) ∈ HP1(A, B) =̃ HP0(JA, B) .

49Theorem 49 The thus defined Chern–Connes character ch : kk∗ → HP∗ is multi-
plicative, i.e., for u ∈ kki(A, B) and v ∈ kkj(B, C) we have

ch(u · v) = ch(u) · ch(v) .
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It follows that the character is also compatible with the boundary maps in the six-
term exact sequences induced by an extension in both variables of kk∗ and HP∗.

For m-algebras, the bivariant character ch constructed here is a far reaching gen-
eralization of the Chern characters from K-Theory and K-homology connsidered
by Connes, Karoubi and many others.

The Chern Character for C∗-Algebras1.8.2

Bivariant local cyclic homology is exact for extensions with a bounded linear
section, homotopy invariant for smooth homotopies and stable with respect to
tensor products with the trace class operators �1(H). Using Theorem 42, we can
strengthen these properties considerably:

50 Theorem 50 Let A be a C∗-algebra. The functors B �→ HEloc∗ (A, B) and B �→
HEloc∗ (B, A) are split exact, stable homotopy functors on the category of C∗-algebras.

For separable C∗-algebras, there is a natural bivariant Chern character

ch : KK∗(A, B) → HEloc
∗ (A, B) .

The Chern character is multiplicative with respect to the Kasparov product on the
left and the composition product on the right hand side.

If both A and B satisfy the universal coefficient theorem in Kasparov theory,
then there is a natural isomorphism

HEloc
∗ (A, B) =̃ Hom

(
K∗(A) ⊗Z C, K∗(B) ⊗Z C

)
.

Proof Since C∞([0, 1], A) ⊆ C([0, 1], A) is a smooth subalgebra, Theorem 42
and smooth homotopy invariance imply continuous homotopy invariance. The
projective tensor product of A by the algebra K of smooth compact operators
is a smooth subalgebra of the C∗-algebraic stabilization of A. Hence Theorem 42
and stability with respect to K imply C∗-algebraic stability (i.e. invariance under
C∗-tensor product by the C∗-version of K).

The existence of the bivariant Chern character follows from these homological
properties by the universal property of Kasparov’s KK-theory as in the previous
section.

The last assertion is trivial for A = B = C. The class of C∗-algebras for which it
holds is closed under KK-equivalence, inductive limits and extensions with com-
pletely positive section. Hence it contains all C∗-algebras satisfying the universal
coefficient theorem (see [8]).
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Summary. We give a survey of the meaning, status and applications of the Baum–Connes
Conjecture about the topological K-theory of the reduced group C∗-algebra and the Farrell–
Jones Conjecture about the algebraic K- and L-theory of the group ring of a (discrete)
group G.

Keywords: K- and L-groups of group rings and group C∗-algebras, Baum–Connes Conjec-
ture, Farrell–Jones Conjecture.

Mathematics subject classification 2000: 19A31, 19B28, 19D99, 19G24, 19K99, 46L80.

Introduction 2.1

This survey article is devoted to the Baum–Connes Conjecture about the topolog-
ical K-theory of the reduced group C∗-algebra and the Farrell–Jones Conjecture
about the algebraic K- and L-theory of the group ring of a discrete group G. We
will present a unified approach to these conjectures hoping that it will stimu-
late further interactions and exchange of methods and ideas between algebraic
and geometric topology on the one side and non-commutative geometry on the
other.

Each of the above mentioned conjectures has already been proven for aston-
ishingly large classes of groups using a variety of different methods coming from
operator theory, controlled topology and homotopy theory. Methods have been
developed for this purpose which turned out to be fruitful in other contexts. The
conjectures imply many other well-known and important conjectures. Examples
are the Borel Conjecture about the topological rigidity of closed aspherical mani-
folds, the Novikov Conjecture about the homotopy invariance of higher signatures,
the stable Gromov–Lawson–Rosenberg Conjecture about the existence of Rieman-
nian metrics with positive scalar curvature and the Kadison Conjecture about
idempotents in the reduced C∗-algebra of a torsionfree discrete group G.

Formulation of the Conjectures
The Baum–Connes and Farrell–Jones Conjectures predict that for every discrete
group G the following so called “assembly maps” are isomorphisms.

KG
n

(
EFIN (G)

) → Kn(C∗
r (G)) ;

HG
n

(
EVCY(G); KR

) → Kn(RG) ;

HG
n

(
EVCY(G); L〈−∞〉

R

) → L〈−∞〉
n (RG) .

Here the targets are the groups one would like to understand, namely the topolog-
ical K-groups of the reduced group C∗-algebra in the Baum–Connes case and the
algebraic K- or L-groups of the group ring RG for R an associative ring with unit.
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In each case the source is a G-homology theory evaluated on a certain classify-
ing space. In the Baum–Connes Conjecture the G-homology theory is equivariant
topological K-theory and the classifying space EFIN (G) is the classifying space of
the family of finite subgroups, which is often called the classifying space for proper
G-actions and denoted EG in the literature. In the Farrell–Jones Conjecture the
G-homology theory is given by a certain K- or L-theory spectrum over the orbit
category, and the classifying space EVCY(G) is the one associated to the family
of virtually cyclic subgroups. The conjectures say that these assembly maps are
isomorphisms.

These conjectures were stated in [28, conjecture 3.15 on page 254] and [111, 1.6
on page 257]. Our formulations differ from the original ones, but are equivalent.
In the case of the Farrell–Jones Conjecture we slightly generalize the original
conjecture by allowing arbitrary coefficient rings instead of Z. At the time of
writing no counterexample to the Baum–Connes Conjecture 59 or the Farrell–
Jones Conjecture 58 is known to the authors.

One can apply methods from algebraic topology such as spectral sequences and
Chern characters to the sources of the assembly maps. In this sense the sources are
much more accessible than the targets. The conjectures hence lead to very concrete
calculations. Probably even more important is the structural insight: to what extent
do the target groups show a homological behaviour. These aspects can be treated
completely analogously in the Baum–Connes and the Farrell–Jones setting.

However, the conjectures are not merely computational tools. Their importance
comes from the fact that the assembly maps have geometric interpretations in
terms of indices in the Baum–Connes case and in terms of surgery theory in the
Farrell–Jones case. These interpretations are the key ingredient in applications
and the reason that the Baum–Connes and Farrell–Jones Conjectures imply so
many other conjectures in non-commutative geometry, geometric topology and
algebra.

A User’s Guide
We have tried to write the text in a way such that one can read small units in-
dependently from the rest. Moreover, a reader who may only be interested in the
Baum–Connes Conjecture or only in the Farrell–Jones Conjecture for K-theory or
for L-theory can ignore the other parts. But we emphasize again that one basic idea
of this paper is to explain the parallel treatment of these conjectures.

A reader without much prior knowledge about the Baum–Connes Conjecture
or the Farrell–Jones Conjecture should begin with Chapt. 2.2. There, the special
case of a torsionfree group is treated, since the formulation of the conjectures is
less technical in this case and there are already many interesting applications. The
applications themselves however, are not needed later. A more experienced reader
may pass directly to Chapt. 2.3.

Other (survey) articles on the Farrell–Jones Conjecture and the Baum–Connes
Conjecture are [111, 128, 147, 225, 307].
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Notations and Conventions
Here is a briefing on our main notational conventions. Details are of course dis-
cussed in the text. The columns in the following table contain our notation for:
the spectra, their associated homology theory, the right hand side of the corre-
sponding assembly maps, the functor from groupoids to spectra and finally the
G-homology theory associated to these spectra valued functors.

BU Kn(X) Kn(C∗
r G) Ktop HG

n (X; Ktop)

K(R) Hn(X; K(R)) Kn(RG) KR HG
n (X; KR)

L〈j〉(R) Hn(X; L〈j〉(R)) L
〈j〉
n (RG) L〈j〉

R HG
n (X; L〈j〉

R )

We would like to stress that K without any further decoration will always refer to
the non-connective K-theory spectrum. L〈j〉 will always refer to quadratic L-theory
with decoration j. For a C∗- or Banach algebra A the symbol Kn(A) has two possible
interpretations but we will mean the topological K-theory.

A ring is always an associative ring with unit, and ring homomorphisms are
always unital. Modules are left modules. We will always work in the category of
compactly generated spaces, compare [295] and [330, I.4]. For our conventions
concerning spectra see Sect. 2.7.2. Spectra are denoted with boldface letters such
as E.
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The Conjectures in the Torsion Free Case 2.2

In this chapter we discuss the Baum–Connes and Farrell–Jones Conjectures in
the case of a torsion free group. Their formulation is less technical than in the
general case, but already in the torsion free case there are many interesting and
illuminating conclusions. In fact some of the most important consequences of
the conjectures, like for example the Borel Conjecture (see Conjecture 27) or
the Kadison Conjecture (see Conjecture 39), refer exclusively to the torsion free
case. On the other hand in the long run the general case, involving groups with
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torsion, seems to be unavoidable. The general formulation yields a clearer and
more complete picture, and furthermore there are proofs of the conjectures for
torsion free groups, where in intermediate steps of the proof it is essential to have
the general formulation available (compare Sect. 2.8.9).

The statement of the general case and further applications will be presented in
the next chapter. The reader may actually skip this chapter and start immediately
with Chapt. 2.3.

We have put some effort into dealing with coefficient rings R other than the
integers. A topologist may a priori be interested only in the case R = Z but other
cases are interesting for algebraists and also do occur in computations for integral
group rings.

Algebraic K-Theory – Low Dimensions2.2.1

A ring R is always understood to be associative with unit. We denote by Kn(R)
the algebraic K-group of R for n ∈ Z. In particular K0(R) is the Grothendieck
group of finitely generated projective R-modules and elements in K1(R) can be
represented by automorphisms of such modules. In this section we are mostly
interested in the K-groups Kn(R) with n ≤ 1. For definitions of these groups we
refer to [221, 266, 286, 299, 323] for n = 0, 1 and to [22] and [268] for n ≤ 1.

For a ring R and a group G we denote by

A0 = K0(i) : K0(R) → K0(RG)

the map induced by the natural inclusion i : R → RG. Sending (g, [P]) ∈ G×K0(R)
to the class of the RG-automorphism

R[G] ⊗R P → R[G] ⊗R P, u ⊗ x 	→ ug−1 ⊗ x

defines a map Φ : Gab ⊗Z K0(R) → K1(RG), where Gab denotes the abelianized
group. We set

A1 = Φ ⊕ K1(i) : Gab ⊗Z K0(R) ⊕ K1(R) → K1(RG) .

We recall the notion of a regular ring. We think of modules as left modules
unless stated explicitly differently. Recall that R is Noetherian if any submodule of
a finitely generated R-module is again finitely generated. It is called regular if it is
Noetherian and any R-module has a finite-dimensional projective resolution. Any
principal ideal domain such as Z or a field is regular.

The Farrell–Jones Conjecture about algebraic K-theory implies for a torsion
free group the following conjecture about the low dimensional K-theory groups.

1 Conjecture 1: (The Farrell–Jones Conjecture for Low Dimensional K-theory and
Torsion Free Groups.) Let G be a torsion free group and let R be a regular ring.
Then

Kn(RG) = 0 for n ≤ −1
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and the maps

K0(R)
A0→ K0(RG) and

Gab ⊗Z K0(R) ⊕ K1(R)
A1→ K1(RG)

are both isomorphisms.

Every regular ring satisfies Kn(R) = 0 for n ≤ −1 [268, 5.3.30 on page 295]
and hence the first statement is equivalent to Kn(i) : Kn(R) → Kn(RG) being an
isomorphism for n ≤ −1. In Remark 15 below we explain why we impose the
regularity assumption on the ring R.

For a regular ring R and a group G we define WhR
1 (G) as the cokernel of the map

A1 and WhR
0 (G) as the cokernel of the map A0. In the important case where R = Z

the group WhZ1 (G) coincides with the classical Whitehead group Wh(G) which
is the quotient of K1(ZG) by the subgroup consisting of the classes of the units
±g ∈ (ZG)inv for g ∈ G. Moreover for every ring R we define the reduced algebraic
K-groups K̃n(R) as the cokernel of the natural map Kn(Z) → Kn(R). Obviously
WhZ0 (G) = K̃0(ZG).

2Lemma 2 The map A0 is always injective. If R is commutative and the natural map
Z→ K0(R), 1 	→ [R] is an isomorphism, then the map A1 is injective.

Proof The augmentation ε : RG → R, which maps each group element g to 1, yields
a retraction for the inclusion i : R → RG and hence induces a retraction for A0.
If the map Z→ K0(R), 1 	→ [R] induces an isomorphism and R is commutative,
then we have the commutative diagram

Gab ⊗Z K0(R) ⊕ K1(R)

��

=̃

��
A1

K1(RG)

��

K1(RGab)

�� (det,K1(ε))

Gab ⊕ K1(R) �� RGinv
ab ⊕ K1(R) ,

where the upper vertical arrow on the right is induced from the map G → Gab

to the abelianization. Since RGab is a commutative ring we have the determinant
det : K1(RGab) → (RGab)inv. The lower horizontal arrow is induced from the ob-
vious inclusion of Gab into the invertible elements of the group ring RGab and in
particular injective.
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In the special case R = Z Conjecture 1 above is equivalent to the following
conjecture.

3 Conjecture 3: (Vanishing of Low Dimensional K-theory for Torsionfree Groups
and Integral Coefficients.) For every torsion free group G we have

Kn(ZG) = 0 for n ≤ −1, K̃0(ZG) = 0 and Wh(G) = 0 .

4 Remark 4: (Torsionfree is Necessary.) In general K̃0(ZG) and Wh(G) do not vanish
for finite groups. For example K̃0(Z[Z|23]) =̃ Z|3 [221, pp. 29,30] and Wh(Z|p) =̃
Z

p−3
2 for p an odd prime [70, 11.5 on page 45]. This shows that the assumption that

G is torsion free is crucial in the formulation of Conjecture 1 above.
For more information on K̃0(ZG) and Whitehead groups of finite groups see for

instance [22, chapt. XI], [79, 220, 231, 232] and [299].

Applications I2.2.2

We will now explain the geometric relevance of the groups whose vanishing is
predicted by Conjecture 3.

The s-Cobordism Theorem and the Poincaré Conjecture
The Whitehead group Wh(G) plays a key role if one studies manifolds because of
the so called s-Cobordism Theorem. In order to state it, we explain the notion of
an h-cobordism.

Manifold always means smooth manifold unless it is explicitly stated differently.
We say that W or more precisely (W ; M−, f −, M+, f +) is an n-dimensional cobordism
over M− if W is a compact n-dimensional manifold together with the following:
a disjoint decomposition of its boundary ∂W into two closed (n − 1)-dimensional
manifolds ∂−W and ∂+W , two closed (n − 1)-dimensional manifolds M− and
M+ and diffeomorphisms f − : M− → ∂−W and f + : M+ → ∂+W . The cobor-
dism is called an h-cobordism if the inclusions i− : ∂−W → W and i+ : ∂+W →
W are both homotopy equivalences. Two cobordisms (W ; M−, f −, M+, f +) and
(W ′; M−, f ′−, M′+, f ′+) over M− are diffeomorphic relative M− if there is a diffeo-
morphism F : W → W ′ with F ◦ f − = f ′−. We call a cobordism over M− trivial,
if it is diffeomorphic relative M− to the trivial h-cobordism given by the cylinder
M− × [0, 1] together with the obvious inclusions of M− × {0} and M− × {1}. Note
that “trivial” implies in particular that M− and M+ are diffeomorphic.

The question whether a given h-cobordism is trivial is decided by the Whitehead
torsion τ(W ; M−) ∈ Wh(G) where G = π1(M−). For the details of the definition
of τ(W ; M−) the reader should consult [70, 220] or chapt. 2 in [200]. Compare
also [266].
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5Theorem 5: (s-Cobordism Theorem.) Let M− be a closed connected oriented
manifold of dimension n ≥ 5 with fundamental group G = π1(M−). Then
(i) An h-cobordism W over M− is trivial if and only if its Whitehead torsion

τ(W , M−) ∈ Wh(G) vanishes.
(ii) Assigning to an h-cobordism over M− its Whitehead torsion yields a bijection

from the diffeomorphism classes relative M− of h-cobordisms over M− to the
Whitehead group Wh(G).

The s-Cobordism Theorem is due to Barden, Mazur and Stallings. There are also
topological and PL-versions. Proofs can be found for instance in [173], [176,
Essay III], [200] and [272, pp. 87–90].

The s-Cobordism Theorem tells us that the vanishing of the Whitehead group
(as predicted in Conjecture 3 for torsion free groups) has the following geometric
interpretation.

6Consequence 6 For a finitely presented group G the vanishing of the Whitehead
group Wh(G) is equivalent to the statement that each h-cobordism over a closed
connected manifold M− of dimension dim(M−) ≥ 5 with fundamental group
π1(M−) =̃ G is trivial.

Knowing that all h-cobordisms over a given manifold are trivial is a strong and
useful statement. In order to illustrate this we would like to discuss the case where
the fundamental group is trivial.

Since the ring Z has a Gaussian algorithm, the determinant induces an isomor-

phism K1(Z)
=̃→ {±1} (compare [268, theorem 2.3.2]) and the Whitehead group

Wh({1}) of the trivial group vanishes. Hence any h-cobordism over a simply con-
nected closed manifold of dimension ≥ 5 is trivial. As a consequence one obtains
the Poincaré Conjecture for high dimensional manifolds.

7Theorem 7: (Poincaré Conjecture.) Suppose n ≥ 5. If the closed manifold M is
homotopy equivalent to the sphere Sn, then it is homeomorphic to Sn.

Proof We only give the proof for dim(M) ≥ 6. Let f : M → Sn be a homotopy
equivalence. Let Dn

− ⊂ M and Dn
+ ⊂ M be two disjoint embedded disks. Let W

be the complement of the interior of the two disks in M. Then W turns out to be
a simply connected h-cobordism over ∂Dn

−. Hence we can find a diffeomorphism

F :
(
∂Dn

− × [0, 1]; ∂Dn
− × {0}, ∂Dn

− × {1}) → (
W ; ∂Dn

−, ∂Dn
+

)
,

which is the identity on ∂Dn
− = ∂Dn

− × {0} and induces some (unknown) dif-
feomorphism f + : ∂Dn

− × {1} → ∂Dn
+. By the Alexander trick one can extend
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f + : ∂Dn
− = ∂Dn

− × {1} → ∂Dn
+ to a homeomorphism f + : Dn

− → Dn
+. Namely, any

homeomorphism f : Sn−1 → Sn−1 extends to a homeomorphism f : Dn → Dn by
sending t · x for t ∈ [0, 1] and x ∈ Sn−1 to t · f (x). Now define a homeomorphism
h : Dn

− × {0} ∪i− ∂Dn
− × [0, 1] ∪i+ Dn

− × {1} → M for the canonical inclusions
ik : ∂Dn

− × {k} → ∂Dn
− × [0, 1] for k = 0, 1 by h|Dn

−×{0} = id, h|∂Dn
−×[0,1] = F and

h|Dn
−×{1} = f +. Since the source of h is obviously homeomorphic to Sn, Theorem 7

follows.

The Poincaré Conjecture (see Theorem 7) is at the time of writing known in all
dimensions except dimension 3. It is essential in its formulation that one concludes
M to be homeomorphic (as opposed to diffeomorphic) to Sn. The Alexander trick
does not work differentiably. There are exotic spheres, i.e. smooth manifolds which
are homeomorphic but not diffeomorphic to Sn [218].

More information about the Poincaré Conjecture, the Whitehead torsion and
the s-Cobordism Theorem can be found for instance in [50, 70, 86, 131, 132, 141,
173, 200, 219, 220, 266] and [272].

Finiteness Obstructions
We now discuss the geometric relevance of K̃0(ZG).

Let X be a CW-complex. It is called finite if it consists of finitely many cells.
It is called finitely dominated if there is a finite CW-complex Y together with
maps i : X → Y and r : Y → X such that r ◦ i is homotopic to the identity on
X. The fundamental group of a finitely dominated CW-complex is always finitely
presented.

While studying existence problems for spaces with prescribed properties (like
for example group actions), it happens occasionally that it is relatively easy
to construct a finitely dominated CW-complex within a given homotopy type,
whereas it is not at all clear whether one can also find a homotopy equivalent
finite CW-complex. Wall’s finiteness obstruction, a certain obstruction element
õ(X) ∈ K̃0(Zπ1(X)), decides the question.

8 Theorem 8: (Properties of the Finiteness Obstruction.) Let X be a finitely domi-
nated CW-complex with fundamental group π = π1(X).
(i) The space X is homotopy equivalent to a finite CW-complex if and only if

õ(X) = 0 ∈ K̃0(Zπ).
(ii) Every element in K̃0(ZG) can be realized as the finiteness obstruction õ(X)

of a finitely dominated CW-complex X with G = π1(X), provided that G is
finitely presented.

(iii) Let Z be a space such that G = π1(Z) is finitely presented. Then there
is a bijection between K̃0(ZG) and the set of equivalence classes of maps
f : X → Z with X finitely dominated under the equivalence relation explained
below.
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The equivalence relation in (iii) is defined as follows: Two maps f : X → Z and
f ′ : X′ → Z with X and X′ finitely dominated are equivalent if there exists a com-
mutative diagram

X

��
f

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
QQ

QQ
Q

��
j

X1

��

f1

DD
DD

DD
DD

DD
D

��
h

X2

��

f2

X3

��

f3

zz
zz
zz
zz
zz
z

oo
h′

X′

vv
f ′

ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
ll
l

oo
j′

Z ,

where h and h′ are homotopy equivalences and j and j′ are inclusions of sub-
complexes for which X1, respectively X3, is obtained from X, respectively X′, by
attaching a finite number of cells.

The vanishing of K̃0(ZG) as predicted in Conjecture 3 for torsion free groups
hence has the following interpretation.

9Consequence 9 For a finitely presented group G the vanishing of K̃0(ZG) is equiv-
alent to the statement that any finitely dominated CW-complex X with G =̃ π1(X)
is homotopy equivalent to a finite CW-complex.

For more information about the finiteness obstruction we refer for instance to [125,
126, 196, 224, 257, 266, 308, 317] and [318].

Negative K-Groups and Bounded h-Cobordisms
One possible geometric interpretation of negative K-groups is in terms of bounded
h-cobordisms. Another interpretation will be explained in Sect. 2.2.4 below.

We consider manifolds W parametrized over Rk, i.e. manifolds which are
equipped with a surjective proper map p : W → R

k. We will always assume that
the fundamental group(oid) is bounded, compare [239, definition 1.3]. A map
f : W → W ′ between two manifolds parametrized overRk is bounded if {p′ ◦ f (x)−
p(x) | x ∈ W} is a bounded subset of Rk.

A bounded cobordism (W ; M−, f −, M+, f +) is defined just as in Sect. 2.2.2 but
compact manifolds are replaced by manifolds parametrized over Rk and the
parametrization for M± is given by pW ◦ f ±. If we assume that the inclusions
i± : ∂±W → W are homotopy equivalences, then there exist deformations r± : W×
I → W , (x, t) 	→ r±

t (x) such that r±
0 = idW and r±

1 (W) ⊂ ∂±W .
A bounded cobordism is called a bounded h-cobordism if the inclusions i± are

homotopy equivalences and additionally the deformations can be chosen such that
the two sets

S± =
{

pW ◦ r±
t (x) − pW ◦ r±

1 (x)
∣∣ x ∈ W , t ∈ [0, 1]

}

are bounded subsets of Rk.
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The following theorem (compare [239] and [327, appendix]) contains the s-
Cobordism Theorem 5 as a special case, gives another interpretation of elements
in K̃0(Zπ) and explains one aspect of the geometric relevance of negative K-groups.

10 Theorem 10: (Bounded h-Cobordism Theorem.) Suppose that M− is paramet-
rized over Rk and satisfies dim M− ≥ 5. Let π be its fundamental group(oid).
Equivalence classes of bounded h-cobordisms over M− modulo bounded diffeo-
morphism relative M− correspond bijectively to elements in κ1−k(π), where

κ1−k(π) =






Wh(π) if k = 0 ,

K̃0(Zπ) if k = 1 ,

K1−k(Zπ) if k ≥ 2 .

More information about negative K-groups can be found for instance in [8, 22, 57,
58, 113, 213, 238, 239, 252, 259, 268] and [327, appendix].

Algebraic K-Theory – All Dimensions2.2.3

So far we only considered the K-theory groups in dimensions ≤ 1. We now want
to explain how Conjecture 1 generalizes to higher algebraic K-theory. For the
definition of higher algebraic K-theory groups and the (connective) K-theory
spectrum see [35, 52, 158, 249, 268, 292, 315] and [323]. We would like to stress that
for us K(R) will always denote the non-connective algebraic K-theory spectrum
for which Kn(R) = πn(K(R)) holds for all n ∈ Z. For its definition see [52, 194]
and [237].

The Farrell–Jones Conjecture for algebraic K-theory reduces for a torsion free
group to the following conjecture.

11 Conjecture 11: (Farrell–Jones Conjecture for Torsion Free Groups and K-theory.)
Let G be a torsion free group. Let R be a regular ring. Then the assembly map

Hn(BG; K(R)) → Kn(RG)

is an isomorphism for n ∈ Z.

Here Hn(−; K(R)) denotes the homology theory which is associated to the spec-
trum K(R). It has the property that Hn(pt; K(R)) is Kn(R) for n ∈ Z, where here and
elsewhere pt denotes the space consisting of one point. The space BG is the classi-
fying space of the group G, which up to homotopy is characterized by the property
that it is a CW-complex with π1(BG) =̃ G whose universal covering is contractible.
The technical details of the construction of Hn(−; K(R)) and the assembly map will
be explained in a more general setting in Sect. 2.3.1.

The point of Conjecture 11 is that on the right-hand side of the assembly map
we have the group Kn(RG) we are interested in, whereas the left-hand side is
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a homology theory and hence much easier to compute. For every homology theory
associated to a spectrum we have the Atiyah–Hirzebruch spectral sequence, which
in our case has E2

p,q = Hp(BG; Kq(R)) and converges to Hp+q(BG; K(R)).
If R is regular, then the negative K-groups of R vanish and the spectral sequence

lives in the first quadrant. Evaluating the spectral sequence for n = p + q ≤ 1 shows
that Conjecture 11 above implies Conjecture 1.

12Remark 12: (Rational Computation.) Rationally an Atiyah–Hirzebruch spectral
sequence collapses always and the homological Chern character gives an isomor-
phism

ch :
⊕

p+q=n

Hp(BG;Q) ⊗Q (Kq(R) ⊗Z Q)
=̃→ Hn(BG; K(R)) ⊗Z Q .

The Atiyah–Hirzebruch spectral sequence and the Chern character will be dis-
cussed in a much more general setting in Chapt. 2.9.

13Remark 13: (Separation of Variables.) We see that the left-hand side of the iso-
morphism in the previous remark consists of a group homology part and a part
which is the rationalized K-theory of R. (Something similar happens before we
rationalize at the level of spectra: The left hand side of Conjecture 11 can be
interpreted as the homotopy groups of the spectrum BG+∧K(R).) So essentially
Conjecture 11 predicts that the K-theory of RG is built up out of two independent
parts: the K-theory of R and the group homology of G. We call this principle sep-
aration of variables. This principle also applies to other theories such as algebraic
L-theory or topological K-theory. See also Remark 179.

14Remark 14: (K-theory of the Coefficients.) Note that Conjecture 11 can only help
us to explicitly compute the K-groups of RG in cases where we know enough about
the K-groups of R. We obtain no new information about the K-theory of R itself.
However, already for very simple rings the computation of their algebraic K-theory
groups is an extremely hard problem.

It is known that the groups Kn(Z) are finitely generated abelian groups [248].
Due to Borel [39] we know that

Kn(Z) ⊗Z Q =̃






Q if n = 0 ;

Q if n = 4k + 1 with k ≥ 1 ;

0 otherwise .

Since Z is regular we know that Kn(Z) vanishes for n ≤ −1. Moreover, K0(Z) =̃
Z and K1(Z) =̃ {±1}, where the isomorphisms are given by the rank and the
determinant. One also knows that K2(Z) =̃ Z|2, K3(Z) =̃ Z|48 [189] and K4(Z) =̃
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0 [264]. Finite fields belong to the few rings where one has a complete and explicit
knowledge of all K-theory groups [247]. We refer the reader for example to [177,
226,265,322] and Soulé’s article in [193] for more information about the algebraic
K-theory of the integers or more generally of rings of integers in number fields.

Because of Borel’s calculation the left hand side of the isomorphism described
in Remark 12 specializes for R = Z to

Hn(BG;Q) ⊕
∞⊕

k=1

Hn−(4k+1)(BG;Q) (2.1)

and Conjecture 11 predicts that this group is isomorphic to Kn(ZG) ⊗Z Q.

Next we discuss the case where the group G is infinite cyclic.

15 Remark 15: (Bass–Heller–Swan Decomposition.) The so called Bass–Heller–
Swan-decomposition, also known as the Fundamental Theorem of algebraic
K-theory, computes the algebraic K-groups of R[Z] in terms of the algebraic
K-groups and Nil-groups of R:

Kn(R[Z]) =̃ Kn−1(R) ⊕ Kn(R) ⊕ NKn(R) ⊕ NKn(R) .

Here the group NKn(R) is defined as the cokernel of the split injection Kn(R) →
Kn(R[t]). It can be identified with the cokernel of the split injection Kn−1(R) →
Kn−1(Nil(R)). Here Kn(Nil(R)) denotes the K-theory of the exact category of nilpo-
tent endomorphisms of finitely generated projective R-modules. For negative n it
is defined with the help of Bass’ notion of a contracting functor [22] (see also [57]).
The groups are known as Nil-groups and often denoted Niln−1(R).

For proofs of these facts and more information the reader should consult [22,
chapt. XII], [25], [135, theorem on page 236], [249, corollary in §6 on page 38], [268,
theorems 3.3.3 and 5.3.30], [292, theorem 9.8] and [300, theorem 10.1].

If we iterate and use R[Zn] = R[Zn−1][Z] we see that a computation of Kn(RG)
must in general take into account information about Ki(R) for all i ≤ n. In particular
we see that it is important to formulate Conjecture 11 with the non-connective K-
theory spectrum.

Since S1 is a model for BZ, we get an isomorphism

Hn(BZ; K(R)) =̃ Kn−1(R) ⊕ Kn(R)

and hence Conjecture 11 predicts

Kn(R[Z]) =̃ Kn−1(R) ⊕ Kn(R) .

This explains why in the formulation of Conjecture 11 the condition that R is
regular appears. It guarantees that NKn(R) = 0 [268, theorem 5.3.30 on page 295].
There are weaker conditions which imply that NKn(R) = 0 but “regular” has the
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advantage that R regular implies that R[t] and R[Z] = R[t±1] are again regular,
compare the discussion in sect. 2 in [23].

The Nil-terms NKn(R) seem to be hard to compute. For instance NK1(R) either
vanishes or is infinitely generated as an abelian group [95]. In Sect. 2.5.2 we will
discuss the Isomorphism Conjecture for NK-groups. For more information about
Nil-groups see for instance [73, 74, 146, 324] and [325].

Applications II 2.2.4

The Relation to Pseudo-Isotopy Theory
Let I denote the unit interval [0, 1]. A topological pseudoisotopy of a compact
manifold M is a homeomorphism h : M × I → M × I, which restricted to
M × {0} ∪ ∂M × I is the obvious inclusion. The space P(M) of pseudoiso-
topies is the (simplicial) group of all such homeomorphisms. Pseudoisotopies
play an important role if one tries to understand the homotopy type of the
space Top(M) of self-homeomorphisms of a manifold M. We will see below in
Sect. 2.2.6 how the results about pseudoisotopies discussed in this section com-
bined with surgery theory lead to quite explicit results about the homotopy groups
of Top(M).

There is a stabilization map P(M) → P(M×I) given by crossing a pseudoisotopy
with the identity on the interval I and the stable pseudoisotopy space is defined
as P (M) = colimk P(M × Ik). In fact P (−) can be extended to a functor on all
spaces [144]. The natural inclusion P(M) → P (M) induces an isomorphism on
the i-th homotopy group if the dimension of M is large compared to i, see [43]
and [157].

Waldhausen [314, 315] defines the algebraic K-theory of spaces functor A(X)
and the functor WhPL(X) from spaces to spectra (or infinite loop spaces) and
a fibration sequence

X+∧A(pt) → A(X) → WhPL(X) .

Here X+∧A(pt) → A(X) is an assembly map, which can be compared to the
algebraic K-theory assembly map that appears in Conjecture 11 via a commutative
diagram

Hn(X; A(pt))

��

�� πn(A(X))

��

Hn(Bπ1(X); K(Z)) �� Kn(Zπ1(X)) .

In the case where X � BG is aspherical the vertical maps induce isomorphisms
after rationalization for n ≥ 1, compare [314, proposition 2.2]. Since Ω2 WhPL(X) �
P (X) (a guided tour through the literature concerning this and related results can
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be found in [91, sect. 9]), Conjecture 11 implies rational vanishing results for the
groups πn(P (M)) if M is an aspherical manifold. Compare also Remark 111.

16 Consequence 16 Suppose M is a closed aspherical manifold and Conjecture 11
holds for R = Z and G = π1(M), then for all n ≥ 0

πn(P (M)) ⊗Z Q = 0 .

Similarly as above one defines smooth pseudoisotopies and the space of stable
smooth pseudoisotopies P Diff(M). There is also a smooth version of the Whitehead
space WhDiff(X) and Ω2 WhDiff(M) � P Diff(M). Again there is a close relation to
A-theory via the natural splitting A(X) � Σ∞(X+) ∨ WhDiff(X), see [316]. Here
Σ∞(X+) denotes the suspension spectrum associated to X+. Using this one can
split off an assembly map Hn(X; WhDiff(pt)) → πn(WhDiff(X)) from the A-theory
assembly map. Since for every space πn(Σ∞(X+)) ⊗Z Q =̃ Hn(X;Q) Conjecture 11
combined with the rational computation in (2.1) yields the following result.

17 Consequence 17 Suppose M is a closed aspherical manifold and Conjecture 11
holds for R = Z and G = π1(M). Then for n ≥ 0 we have

πn(P Diff(M)) ⊗Z Q =
∞⊕

k=1

Hn−4k+1(M;Q) .

Observe that the fundamental difference between the smooth and the topological
case occurs already when G is the trivial group.

Negative K-Groups and Bounded Pseudo-Isotopies
We briefly explain a further geometric interpretation of negative K-groups, which
parallels the discussion of bounded h-cobordisms in Sect. 2.2.2.

Let p : M × Rk → R
k denote the natural projection. The space Pb(M;Rk) of

bounded pseudoisotopies is the space of all self-homeomorphisms h : M×Rk×I →
M × Rk × I such that restricted to M × Rk × {0} the map h is the inclusion and
such that h is bounded, i.e. the set {p ◦ h(y) − p(y) | y ∈ M ×Rk × I} is a bounded
subset of Rk. There is again a stabilization map Pb(M;Rk) → Pb(M × I;Rk) and
a stable bounded pseudoisotopy space Pb(M;Rk) = colimj Pb(M × Ij;Rk). There
is a homotopy equivalence Pb(M;Rk) → ΩPb(M;Rk+1) [144, appendix II] and
hence the sequence of spaces Pb(M;Rk) for k = 0, 1, … is an Ω-spectrum P(M).
Analogously one defines the differentiable bounded pseudoisotopies P diff

b (M;Rk)
and an Ω-spectrum Pdiff(M). The negative homotopy groups of these spectra have
an interpretation in terms of low and negative dimensional K-groups. In terms
of unstable homotopy groups this is explained in the following theorem which is
closely related to Theorem 10 about bounded h-cobordisms.
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18Theorem 18: (Negative Homotopy Groups of Pseudoisotopies.) Let G = π1(M).
Suppose n and k are such that n + k ≥ 0, then for k ≥ 1 there are isomorphisms

πn+k(Pb(M;Rk)) =






Wh(G) if n = −1 ,

K̃0(ZG) if n = −2 ,

Kn+2(ZG) if n < −2 .

The same result holds in the differentiable case.

Note that Conjecture 11 predicts that these groups vanish if G is torsionfree. The
result above is due to Anderson and Hsiang [8] and is also discussed in [327,
appendix].

L-Theory 2.2.5

We now move on to the L-theoretic version of the Farrell–Jones Conjecture. We
will still stick to the case where the group is torsion free. The conjecture is obtained
by replacing K-theory and the K-theory spectrum in Conjecture 11 by 4-periodic
L-theory and the L-theory spectrum L〈−∞〉(R). Explanations will follow below.

19Conjecture 19: (Farrell–Jones Conjecture for Torsion Free Groups and L-theory.)
Let G be a torsion free group and let R be a ring with involution. Then the as-
sembly map

Hn(BG; L〈−∞〉(R)) → L〈−∞〉
n (RG)

is an isomorphism for n ∈ Z.

To a ring with involution one can associate (decorated) symmetric or quadratic
algebraic L-groups, compare [44, 45, 256, 259] and [332]. We will exclusively deal
with the quadratic algebraic L-groups and denote them by L

〈j〉
n (R). Here n ∈ Z and

j ∈ {−∞} � {j ∈ Z | j ≤ 2} is the so called decoration. The decorations j = 0, 1
correspond to the decorations p, h and j = 2 is related to the decoration s appearing
in the literature. Decorations will be discussed in Remark 21 below. The L-groups
L

〈j〉
n (R) are 4-periodic, i.e. L

〈j〉
n (R) =̃ L

〈j〉
n+4(R) for n ∈ Z.

If we are given an involution r 	→ r on a ring R, we will always equip RG with
the involution that extends the given one and satisfies g = g−1. On Z, Q and R we
always use the trivial involution and on C the complex conjugation.

One can construct an L-theory spectrum L〈j〉(R) such that πn(L〈j〉(R)) = L
〈j〉
n (R),

compare [258, § 13]. Above and in the sequel Hn(−; L〈j〉(R)) denotes the homology
theory which is associated to this spectrum. In particular we have Hn(pt; L〈j〉(R)) =
L

〈j〉
n (R). We postpone the discussion of the assembly map to Sect. 2.3.1 where we

will construct it in greater generality.
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20 Remark 20: (The Coefficients in the L-theory Case.) In contrast to K-theory
(compare Remark 14) the L-theory of the most interesting coefficient ring R = Z is
well known. The groups L

〈j〉
n (Z) for fixed n and varying j ∈ {−∞}�{j ∈ Z | j ≤ 2}are

all naturally isomorphic (compare Proposition 23 below) and we have L
〈j〉
0 (Z) =̃ Z

and L
〈j〉
2 (Z) =̃ Z|2, where the isomorphisms are given by the signature divided

by 8 and the Arf invariant, and L
〈j〉
1 (Z) = L

〈j〉
3 (Z) = 0, see [41, chapt. III], [256,

proposition 4.3.1 on page 419].

21 Remark 21: (Decorations.) L-groups are designed as obstruction groups for
surgery problems. The decoration reflects what kind of surgery problem one
is interested in. All L-groups can be described as cobordism classes of suitable
quadratic Poincaré chain complexes. If one works with chain complexes of finitely
generated free based R-modules and requires that the torsion of the Poincaré
chain homotopy equivalence vanishes in K̃1(R), then the corresponding L-groups
are denoted L〈2〉

n (R). If one drops the torsion condition, one obtains L〈1〉
n (R), which

is usually denoted Lh(R). If one works with finitely generated projective modules,
one obtains L〈0〉(R), which is also known as Lp(R).

The L-groups with negative decorations can be defined inductively via the
Shaneson splitting, compare Remark 26 below. Assuming that the L-groups with
decorations j have already been defined one sets

L
<j−1>
n−1 (R) = coker

(
L<j>

n (R) → L<j>
n (R[Z])

)
.

Compare [259, definition 17.1 on page 145]. Alternatively these groups can be
obtained via a process which is in the spirit of Sects. 2.2.2 and 2.2.4. One can
define them as L-theory groups of suitable categories of modules parametrized
overRk. For details the reader could consult [55, sect. 4]. There are forgetful maps
L

〈j+1〉
n (R) → L

〈j〉
n (R). The group L〈−∞〉

n (R) is defined as the colimit over these maps.
For more information see [254, 259].

For group rings we also define Ls
n(RG) similar to L〈2〉

n (RG) but we require the
torsion to lie in im A1 ⊂ K̃1(RG), where A1 is the map defined in Sect. 2.2.1.
Observe that Ls

n(RG) really depends on the pair (R, G) and differs in general from
L〈2〉

n (RG).

22 Remark 22: (The Interplay of K- and L-theory.) For j ≤ 1 there are forgetful
maps L

〈j+1〉
n (R) → L

〈j〉
n (R) which sit inside the following sequence, which is known

as the Rothenberg sequence [256, proposition 1.10.1 on page 104], [259, 17.2].

… → L〈j+1〉
n (R) → L〈j〉

n (R) → Ĥn(Z|2; K̃j(R))

→ L
〈j+1〉
n−1 (R) → L

〈j〉
n−1(R) → … (2.2)
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Here Ĥn(Z|2; K̃j(R)) is the Tate-cohomology of the group Z|2 with coefficients
in the Z[Z|2]-module K̃j(R). The involution on K̃j(R) comes from the involution
on R. There is a similar sequence relating Ls

n(RG) and Lh
n(RG), where the third

term is the Z|2-Tate-cohomology of WhR
1 (G). Note that Tate-cohomology groups

of the group Z|2 are always annihilated by multiplication with 2. In particular
L

〈j〉
n (R)

[
1
2

]
= L

〈j〉
n (R) ⊗Z Z

[
1
2

]
is always independent of j.

Let us formulate explicitly what we obtain from the above sequences for
R = ZG.

23Proposition 23 Let G be a torsion free group, then Conjecture 3 about the vanishing
of Wh(G), K̃0(ZG) and K−i(ZG) for i ≥ 1 implies that for fixed n and varying
j ∈ {−∞} � {j ∈ Z | j ≤ 1} the L-groups L

〈j〉
n (ZG) are all naturally isomorphic and

moreover L〈1〉
n (ZG) = Lh

n(ZG) =̃ Ls
n(ZG).

24Remark 24: (Rational Computation.) As in the K-theory case we have an Atiyah–
Hirzebruch spectral sequence:

E2
p,q = Hp

(
BG; L〈−∞〉

q (R)
) ⇒ Hp+q

(
BG; L〈−∞〉(R)

)
.

Rationally this spectral sequence collapses and the homological Chern character
gives for n ∈ Z an isomorphism

ch :
⊕

p+q=n

Hp(BG;Q) ⊗Q

(
L〈−∞〉

q (R) ⊗Z Q
) =̃→ Hn

(
BG; L〈−∞〉(R)

)⊗Z Q . (2.3)

In particular we obtain in the case R = Z from Remark 20 for all n ∈ Z and all
decorations j an isomorphism

ch :
∞⊕

k=0

Hn−4k(BG;Q)
=̃→ Hn(BG; L〈j〉(Z)) ⊗Z Q . (2.4)

This spectral sequence and the Chern character above will be discussed in a much
more general setting in Chapt. 2.9.

25Remark 25: (Torsion Free is Necessary.) If G is finite, R = Z and n = 0, then
the rationalized left hand side of the assembly equals Q, whereas the right hand
side is isomorphic to the rationalization of the real representation ring. Since the
group homology of a finite group vanishes rationally except in dimension 0, the
previous remark shows that we need to assume the group to be torsion free in
Conjecture 19.
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26 Remark 26: (Shaneson splitting.) The Bass–Heller–Swan decomposition in
K-theory (see Remark 15) has the following analogue for the algebraic L-groups,
which is known as the Shaneson splitting [284]

L〈j〉
n (R[Z]) =̃ L

〈j−1〉
n−1 (R) ⊕ L〈j〉

n (R) . (2.5)

Here for the decoration j = −∞ one has to interpret j −1 as −∞. Since S1 is a model
for BZ, we get an isomorphisms

Hn(BZ; L〈j〉(R)) =̃ L
〈j〉
n−1(R) ⊕ L〈j〉

n (R) .

This explains why in the formulation of the L-theoretic Farrell–Jones Conjecture
for torsion free groups (see Conjecture 19) we use the decoration j = −∞.

As long as one deals with torsion free groups and one believes in the low dimen-
sional part of the K-theoretic Farrell–Jones Conjecture (predicting the vanishing
of Wh(G), K̃0(ZG) and of the negative K-groups, see Conjecture 3) there is no dif-
ference between the various decorations j, compare Proposition 23. But as soon as
one allows torsion in G, the decorations make a difference and it indeed turns out
that if one replaces the decoration j = −∞ by j = s, h or p there are counterexamples
for the L-theoretic version of Conjecture 58 even for R = Z [123].

Even though in the above Shaneson splitting (2.5) there are no terms analogous
to the Nil-terms in Remark 15 such Nil-phenomena do also occur in L-theory, as
soon as one considers amalgamated free products. The corresponding groups are
the UNil-groups. They vanish if one inverts 2 [49]. For more information about
the UNil-groups we refer to [15, 46, 47, 74, 77, 96, 260].

Applications III2.2.6

The Borel Conjecture
One of the driving forces for the development of the Farrell–Jones Conjectures is
still the following topological rigidity conjecture about closed aspherical mani-
folds, compare [107]. Recall that a manifold, or more generally a CW-complex,
is called aspherical if its universal covering is contractible. An aspherical CW-
complex X with π1(X) = G is a model for the classifying space BG. If X is an
aspherical manifold and hence finite dimensional, then G is necessarily torsionfree.

27 Conjecture 27: (Borel Conjecture.) Let f : M → N be a homotopy equivalence
of aspherical closed topological manifolds. Then f is homotopic to a homeomor-
phism. In particular two closed aspherical manifolds with isomorphic fundamental
groups are homeomorphic.

Closely related to the Borel Conjecture is the conjecture that each aspherical finitely
dominated Poincaré complex is homotopy equivalent to a closed topological man-
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ifold. The Borel Conjecture 27 is false in the smooth category, i.e. if one replaces
topological manifold by smooth manifold and homeomorphism by diffeomor-
phism [106].

Using surgery theory one can show that in dimensions ≥ 5 the Borel Conjecture
is implied by the K-theoretic vanishing Conjecture 3 combined with the L-theoretic
Farrell–Jones Conjecture.

28Theorem 28: (The Farrell–Jones Conjecture Implies the Borel Conjecture.) Let G
be a torsion free group. If Wh(G), K̃0(ZG) and all the groups K−i(ZG) with i ≥ 1
vanish and if the assembly map

Hn(BG; L〈−∞〉(Z)) → L〈−∞〉
n (ZG)

is an isomorphism for all n, then the Borel Conjecture holds for all orientable
manifolds of dimension ≥ 5 whose fundamental group is G.

The Borel Conjecture 27 can be reformulated in the language of surgery theory
to the statement that the topological structure set Stop(M) of an aspherical closed
topological manifold M consists of a single point. This set is the set of equivalence
classes of homotopy equivalences f : M′ → M with a topological closed manifold
as source and M as target under the equivalence relation, for which f0 : M0 → M
and f1 : M1 → M are equivalent if there is a homeomorphism g : M0 → M1 such
that f1 ◦ g and f0 are homotopic.

The surgery sequence of a closed orientable topological manifold M of dimen-
sion n ≥ 5 is the exact sequence

… → Nn+1

(
M × [0, 1], M × {0, 1}) σ→ Ls

n+1(Zπ1(M))
∂→ Stop(M)

η→ Nn(M)
σ→ Ls

n(Zπ1(M)) ,

which extends infinitely to the left. It is the basic tool for the classification of
topological manifolds. (There is also a smooth version of it.) The map σ appearing
in the sequence sends a normal map of degree one to its surgery obstruction. This
map can be identified with the version of the L-theory assembly map where one
works with the 1-connected cover Ls(Z)〈1〉 of Ls(Z). The map Hk(M; Ls(Z)〈1〉) →
Hk(M; Ls(Z)) is injective for k = n and an isomorphism for k > n. Because of the K-
theoretic assumptions we can replace the s-decoration with the 〈−∞〉-decoration,
compare Proposition 23. Therefore the Farrell–Jones Conjecture 19 implies that the
maps σ : Nn(M) → Ls

n(Zπ1(M)) andNn+1(M×[0, 1], M×{0, 1}) σ→ Ls
n+1(Zπ1(M))

are injective respectively bijective and thus by the surgery sequence that Stop(M) is
a point and hence the Borel Conjecture 27 holds for M. More details can be found
e.g. in [127, pages 17,18,28], [258, chapt. 18].

For more information about surgery theory we refer for instance to [41, 44, 45,
121, 122, 167, 178, 253, 293, 294], and [320].
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Automorphisms of Manifolds
If one additionally also assumes the Farrell–Jones Conjectures for higher K-theory,
one can combine the surgery theoretic results with the results about pseudoiso-
topies from Sect. 2.2.4 to obtain the following results.

29 Theorem 29: (Homotopy Groups of Top(M).) Let M be an orientable closed as-
pherical manifold of dimension > 10 with fundamental group G. Suppose the
L-theory assembly map

Hn(BG; L〈−∞〉(Z)) → L〈−∞〉
n (ZG)

is an isomorphism for all n and suppose the K-theory assembly map

Hn(BG; K(Z)) → Kn(ZG)

is an isomorphism for n ≤ 1 and a rational isomorphism for n ≥ 2. Then for
1 ≤ i ≤ (dim M − 7)|3 one has

πi(Top(M)) ⊗Z Q =

{
center(G) ⊗Z Q if i = 1 ,

0 if i > 1 .

In the differentiable case one additionally needs to study involutions on the higher
K-theory groups. The corresponding result reads:

30 Theorem 30: (Homotopy Groups of Diff(M).) Let M be an orientable closed as-
pherical differentiable manifold of dimension > 10 with fundamental group G.
Then under the same assumptions as in Theorem 29 we have for 1 ≤ i ≤
(dim M − 7)|3

πi(Diff(M)) ⊗Z Q =






center(G) ⊗Z Q if i = 1 ;
⊕∞

j=1 H(i+1)−4j(M;Q) if i > 1 and dim M odd ;

0 if i > 1 and dim M even .

See for instance [97], [109, sect. 2] and [120, lecture 5]. For a modern survey on
automorphisms of manifolds we refer to [329].

The Baum–Connes Conjecture in the Torsion Free Case2.2.7

We denote by K∗(Y) the complex K-homology of a topological space Y and by
K∗(C∗

r (G)) the (topological) K-theory of the reduced group C∗-algebra. More ex-
planations will follow below.

31 Conjecture 31: (Baum–Connes Conjecture for Torsion Free Groups.) Let G be
a torsion free group. Then the Baum–Connes assembly map

Kn(BG) → Kn(C∗
r (G))

is bijective for all n ∈ Z.
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Complex K-homology K∗(Y) is the homology theory associated to the topological
(complex) K-theory spectrum Ktop (which is is often denoted BU) and could also
be written as K∗(Y) = H∗(Y ; Ktop). The cohomology theory associated to the
spectrum Ktop is the well known complex K-theory defined in terms of complex
vector bundles. Complex K-homology is a 2-periodic theory, i.e. Kn(Y) =̃ Kn+2(Y).

Also the topological K-groups Kn(A) of a C∗-algebra A are 2-periodic. Whereas
K0(A) coincides with the algebraically defined K0-group, the other groups Kn(A)
take the topology of the C∗-algebra A into account, for instance Kn(A)=πn−1(GL(A))
for n ≥ 1.

Let B(l2(G)) denote the bounded linear operators on the Hilbert space l2(G)
whose orthonormal basis is G. The reduced complex group C∗-algebra C∗

r (G) is the
closure in the norm topology of the image of the regular representation CG →
B(l2(G)), which sends an element u ∈ CG to the (left) G-equivariant bounded
operator l2(G) → l2(G) given by right multiplication with u. In particular one has
natural inclusions

CG ⊆ C∗
r (G) ⊆ B(l2(G))G ⊆ B(l2(G)) .

It is essential to use the reduced group C∗-algebra in the Baum–Connes Conjecture,
there are counterexamples for the version with the maximal group C∗-algebra,
compare Sect. 2.5.1.For information about C∗-algebras and their topological K-
theory we refer for instance to [37, 71, 80, 154, 188, 228, 279] and [321].

32Remark 32: (The Coefficients in the Case of Topological K-theory.) If we special-
ize to the trivial group G = {1}, then the complex reduced group C∗-algebra reduces
to C∗

r (G) = C and the topological K-theory is well known: by periodicity it suffices
to know that K0(C) =̃ Z, where the homomorphism is given by the dimension,
and K1(C) = 0. Correspondingly we have Kq(pt) = Z for q even and Kq(pt) = 0 for
odd q.

33Remark 33: (Rational Computation.) There is an Atiyah–Hirzebruch spectral
sequence which converges to Kp+q(BG) and whose E2-term is E2

p,q = Hp(BG; Kq(pt)).
Rationally this spectral sequence collapses and the homological Chern character
gives an isomorphism for n ∈ Z

ch :
⊕

k∈Z
Hn−2k(BG;Q) =

⊕

p+q=n

Hp(BG;Q) ⊗Q

(
Kq(C) ⊗Z Q

)

=̃→ Kn(BG) ⊗Z Q . (2.6)

34Remark 34: (Torsionfree is Necessary.) In the case where G is a finite group the
reduced group C∗-algebra C∗

r (G) coincides with the complex group ring CG and
K0(C∗

r (G)) coincides with the complex representation ring of G. Since the group
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homology of a finite group vanishes rationally except in dimension 0, the pre-
vious remark shows that we need to assume the group to be torsion free in
Conjecture 31.

35 Remark 35: (Bass–Heller–Swan-Decomposition for Topological K-theory.) There
is an analogue of the Bass–Heller–Swan decomposition in algebraic K-theory (see
Remark 15) or of the Shaneson splitting in L-theory (see Remark 26) for topological
K-theory. Namely we have

Kn

(
C∗

r (G × Z)
)

=̃ Kn(C∗
r (G)) ⊕ Kn−1(C∗

r (G)) ,

see [243, theorem 3.1 on page 151] or more generally [244, theorem 18 on page 632].
This is consistent with the obvious isomorphism

Kn

(
B(G × Z)

)
= Kn(BG × S1) =̃ Kn−1(BG) ⊕ Kn(BG) .

Notice that here in contrast to the algebraic K-theory no Nil-terms occur (see
Remark 15) and that there is no analogue of the complications in algebraic L-theory
coming from the varying decorations (see Remark 26). This absence of Nil-terms
or decorations is the reason why in the final formulation of the Baum–Connes
Conjecture it suffices to deal with the family of finite subgroups, whereas in the
algebraic K- and L-theory case one must consider the larger and harder to handle
family of virtually cyclic subgroups. This in some sense makes the computation of
topological K-theory of reduced group C∗-algebras easier than the computation of
Kn(ZG) or Ln(ZG).

36 Remark 36: (Real Version of the Baum–Connes Conjecture.) There is an obvious
real version of the Baum–Connes Conjecture. It says that for a torsion free group
the real assembly map

KOn(BG) → KOn

(
C∗

r (G;R)
)

is bijective for n ∈ Z. We will discuss in Sect. 2.5.1 below that this real version of
the Baum–Connes Conjecture is implied by the complex version Conjecture 31.

Here KOn(C∗
r (G;R)) is the topological K-theory of the real reduced group C∗-

algebra C∗
r (G;R). We use KO instead of K as a reminder that we work with real C∗-

algebras. The topological real K-theory KO∗(Y) is the homology theory associated
to the spectrum BO, whose associated cohomology theory is given in terms of real
vector bundles. Both, topological K-theory of a real C∗-algebra and KO-homology
of a space are 8-periodic and KOn(pt) = Kn(R) is Z, if n = 0, 4 (8), is Z|2 if
n = 1, 2 (8) and is 0 if n = 3, 5, 6, 7 (8).

More information about the K-theory of real C∗-algebras can be found
in [281].
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Applications IV 2.2.8

We now discuss some consequences of the Baum–Connes Conjecture for Torsion
Free Groups 31.

The Trace Conjecture in the Torsion Free Case
The assembly map appearing in the Baum–Connes Conjecture has an interpreta-
tion in terms of index theory. This is important for geometric applications. It is
of the same significance as the interpretation of the L-theoretic assembly map as
the map σ appearing in the exact surgery sequence discussed in Sect. 2.2.5. We
proceed to explain this.

An element η ∈ K0(BG) can be represented by a pair (M, P∗) consisting of
a cocompact free proper smooth G-manifold M with Riemannian metric together
with an elliptic G-complex P∗ of differential operators of order 1 on M [29]. To
such a pair one can assign an index indC∗

r (G)(M, P∗) in K0(C∗
r (G)) [223] which

is the image of η under the assembly map K0(BG) → K0(C∗
r (G)) appearing in

Conjecture 31. With this interpretation the surjectivity of the assembly map for
a torsion free group says that any element in K0(C∗

r (G)) can be realized as an index.
This allows to apply index theorems to get interesting information.

Here is a prototype of such an argument. The standard trace

trC∗
r (G) : C∗

r (G) → C (2.7)

sends an element f ∈ C∗
r (G) ⊆ B(l2(G)) to 〈f (1), 1〉l2(G). Applying the trace to

idempotent matrices yields a homomorphism

trC∗
r (G) : K0(C∗

r (G)) → R .

Let pr : BG → pt be the projection. For a group G the following diagram
commutes

K0(BG)

��
K0(pr)

��
A

K0(C∗
r (G)) ��

trC∗
r (G)

R

K0(pt) ��
=̃

K0(C) ��

trC

=̃

Z .

OO
i (2.8)

Here i : Z → R is the inclusion and A is the assembly map. This non-trivial
statement follows from Atiyah’s L2-index theorem [12]. Atiyah’s theorem says
that the L2-index trC∗

r (G) ◦A(η) of an element η ∈ K0(BG), which is represented
by a pair (M, P∗), agrees with the ordinary index of (G\M; G\P∗), which is
trC ◦K0(pr)(η) ∈ Z.

The following conjecture is taken from [27, page 21].
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37 Conjecture 37: (Trace Conjecture for Torsion Free Groups.) For a torsion free
group G the image of

trC∗
r (G) : K0(C∗

r (G)) → R

consists of the integers.

The commutativity of diagram (2.8) above implies

38 Consequence 38 The surjectivity of the Baum–Connes assembly map

K0(BG) → K0(C∗
r (G))

implies Conjecture 37, the Trace Conjecture for Torsion Free Groups.

The Kadison Conjecture

39 Conjecture 39: (Kadison Conjecture.) If G is a torsion free group, then the only
idempotent elements in C∗

r (G) are 0 and 1.

40 Lemma 40 The Trace Conjecture for Torsion Free Groups 37 implies the Kadison
Conjecture 39.

Proof Assume that p ∈ C∗
r (G) is an idempotent different from 0 or 1. From p

one can construct a non-trivial projection q ∈ C∗
r (G), i.e. q2 = q, q∗ = q, with

im(p) = im(q) and hence with 0 < q < 1. Since the standard trace trC∗
r (G) is faithful,

we conclude trC∗
r (G)(q) ∈ R with 0 < trC∗

r (G)(q) < 1. Since trC∗
r (G)(q) is by definition

the image of the element [im(q)] ∈ K0(C∗
r (G)) under trC∗

r (G) : K0(C∗
r (G)) → R, we

get a contradiction to the assumption im(trC∗
r (G)) ⊆ Z.

Recall that a ring R is called an integral domain if it has no non-trivial zero-divisors,
i.e. if r, s ∈ R satisfy rs = 0, then r or s is 0. Obviously the Kadison Conjecture 39
implies for R ⊆ C the following.

41 Conjecture 41: (Idempotent Conjecture.) Let R be an integral domain and let G
be a torsion free group. Then the only idempotents in RG are 0 and 1.

The statement in the conjecture above is a purely algebraic statement. If R = C, it
is by the arguments above related to questions about operator algebras, and thus
methods from operator algebras can be used to attack it.
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Other Related Conjectures
We would now like to mention several conjectures which are not directly implied
by the Baum–Connes or Farrell–Jones Conjectures, but which are closely related
to the Kadison Conjecture and the Idempotent Conjecture mentioned above.

The next conjecture is also called the Kaplansky Conjecture.

42Conjecture 42: (Zero-Divisor-Conjecture.) Let R be an integral domain and G be
a torsion free group. Then RG is an integral domain.

Obviously the Zero-Divisor-Conjecture 42 implies the Idempotent Conjecture 41.
The Zero-Divisor-Conjecture for R = Q is implied by the following version of the
Atiyah Conjecture (see [202, lemma 10.5 and lemma 10.15]).

43Conjecture 43: (Atiyah-Conjecture for Torsion Free Groups.) Let G be a torsion
free group and let M be a closed Riemannian manifold. Let M → M be a regular
covering with G as group of deck transformations. Then all L2-Betti numbers
b(2)

p (M; N (G)) are integers.

For the precise definition and more information about L2-Betti numbers and the
group von Neumann algebra N (G) we refer for instance to [202, 205].

This more geometric formulation of the Atiyah Conjecture is in fact implied by
the following more operator theoretic version. (The two would be equivalent if one
would work with rational instead of complex coefficients below.)

44Conjecture 44: (Strong Atiyah-Conjecture for Torsion Free Groups.) Let G be
a torsion free group. Then for all (m, n)-matrices A over CG the von Neumann
dimension of the kernel of the induced G-equivariant bounded operator

r(2)
A : l2(G)m → l2(G)n

is an integer.

The Strong Atiyah-Conjecture for Torsion Free Groups implies both the Atiyah-
Conjecture for Torsion Free Groups 43 [202, lemma 10.5 on page 371] and the
Zero-Divisor-Conjecture 42 for R = C [202, lemma 10.15 on page 376].

45Conjecture 45: (Embedding Conjecture.) Let G be a torsion free group. ThenCG
admits an embedding into a skewfield.

Obviously the Embedding Conjecture implies the Zero-Divisor-Conjecture 42 for
R = C. If G is a torsion free amenable group, then the Strong Atiyah-Conjecture
for Torsion Free Groups 44 and the Zero-Divisor-Conjecture 42 for R = C are
equivalent [202, lemma 10.16 on page 376]. For more information about the Atiyah
Conjecture we refer for instance to [192], [202, chapt. 10] and [261].
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Finally we would like to mention the Unit Conjecture.

46 Conjecture 46: (Unit-Conjecture.) Let R be an integral domain and G be a torsion
free group. Then every unit in RG is trivial, i.e. of the form r · g for some unit
r ∈ Rinv and g ∈ G.

The Unit Conjecture 46 implies the Zero-Divisor-Conjecture 42. For a proof of this
fact and for more information we refer to [187, proposition 6.21 on page 95].

L2-Rho-Invariants and L2-Signatures
Let M be a closed connected orientable Riemannian manifold. Denote by η(M) ∈ R
the eta-invariant of M and by η(2)(M̃) ∈ R the L2-eta-invariant of the π1(M)-
covering given by the universal covering M̃ → M. Let ρ(2)(M) ∈ R be the L2-rho-
invariant which is defined to be the difference η(2)(M̃) − η(M). These invariants
were studied by Cheeger and Gromov [64, 65]. They show that ρ(2)(M) depends
only on the diffeomorphism type of M and is in contrast to η(M) and η(2)(M̃)
independent of the choice of Riemannian metric on M. The following conjecture
is taken from Mathai [214].

47 Conjecture 47: (Homotopy Invariance of the L2-Rho-Invariant for Torsionfree
Groups.) If π1(M) is torsionfree, then ρ(2)(M) is a homotopy invariant.

Chang–Weinberger [62] assign to a closed connected oriented (4k−1)-dimensional
manifold M a Hirzebruch-type invariant τ(2)(M) ∈ R as follows. By a result of
Hausmann [145] there is a closed connected oriented 4k-dimensional manifold
W with M = ∂W such that the inclusion ∂W → W induces an injection on the
fundamental groups. Define τ(2)(M) as the difference sign(2)(W̃) − sign(W) of the
L2-signature of the π1(W)-covering given by the universal covering W̃ → W and
the signature of W . This is indeed independent of the choice of W . It is reasonable
to believe that ρ(2)(M) = τ(2)(M) is always true. Chang–Weinberger [62] use τ(2) to
prove that if π1(M) is not torsionfree there are infinitely many diffeomorphically
distinct manifolds of dimension 4k + 3 with k ≥ 1, which are tangentially simple
homotopy equivalent to M.

48 Theorem 48: (Homotopy Invariance of τ(2)(M) and ρ(2)(M).) Let M be a closed
connected oriented (4k − 1)-dimensional manifold M such that G = π1(M) is
torsionfree.
(i) If the assembly map K0(BG) → K0(C∗

max(G)) for the maximal group C∗-
algebra is surjective (see Sect. 2.5.1), then ρ(2)(M) is a homotopy invariant.

(ii) Suppose that the Farrell–Jones Conjecture for L-theory 19 is rationally true
for R = Z, i.e. the rationalized assembly map

Hn(BG; L〈−∞〉(Z)) ⊗Z Q→ L〈−∞〉
n (ZG) ⊗Z Q
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is an isomorphism for n ∈ Z. Then τ(2)(M) is a homotopy invariant. If
furthermore G is residually finite, then ρ(2)(M) is a homotopy invariant.

Proof
(i) This is proved by Keswani [174, 175].
(ii) This is proved by Chang [61] and Chang–Weinberger [62] using [210].

49Remark 49 Let X be a 4n-dimensional Poincaré space over Q. Let X → X be
a normal covering with torsion-free covering group G. Suppose that the assembly
map K0(BG) → K0(C∗

max(G)) for the maximal group C∗-algebra is surjective (see
Sect. 2.5.1) or suppose that the rationalized assembly map for L-theory

H4n(BG; L〈−∞〉(Z)) ⊗Z Q→ L〈−∞〉
4n (ZG) ⊗Z Q

is an isomorphism. Then the following L2-signature theorem is proved in Lück–
Schick [211, theorem 2.3]

sign(2)(X) = sign(X) .

If one drops the condition that G is torsionfree this equality becomes false.
Namely, Wall has constructed a finite Poincaré space X with a finite G covering
X → X for which sign(X) �= |G| · sign(X) holds (see [258, example 22.28], [319,
corollary 5.4.1]).

50Remark 50 Cochran–Orr–Teichner give in [69] new obstructions for a knot to be
slice which are sharper than the Casson–Gordon invariants. They use L2-signatures
and the Baum–Connes Conjecture 59. We also refer to the survey article [68] about
non-commutative geometry and knot theory.

Applications V 2.2.9

Novikov Conjectures
The Baum–Connes and Farrell–Jones Conjectures discussed so far imply obviously
that for torsion free groups the rationalized assembly maps

H∗(BG; K(Z)) ⊗Z Q → K∗(ZG) ⊗Z Q

H∗(BG; L〈−∞〉(Z)) ⊗Z Q → L〈−∞〉
∗ (ZG) ⊗Z Q

K∗(BG) ⊗Z Q → K∗(C∗
r (G)) ⊗Z Q
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are injective. For reasons that will be explained below these “rational injectivity
conjectures” are known as “Novikov Conjectures”. In fact one expects these in-
jectivity results also when the groups contain torsion. So there are the following
conjectures.

51 Conjecture 51: (K- and L-theoretic Novikov Conjectures.) For every group G the
assembly maps

H∗(BG; K(Z)) ⊗Z Q → K∗(ZG) ⊗Z Q

H∗(BG; Lp(Z)) ⊗Z Q → L
p
∗(ZG) ⊗Z Q

K∗(BG) ⊗Z Q → K∗(C∗
r (G)) ⊗Z Q

are injective.

Observe that, since the Z|2-Tate cohomology groups vanish rationally, there is no
difference between the various decorations in L-theory because of the Rothenberg
sequence. We have chosen the p-decoration above.

The Original Novikov Conjecture
We now explain the Novikov Conjecture in its original formulation.

Let G be a (not necessarily torsion free) group and u : M → BG be a map from
a closed oriented smooth manifold M to BG. Let L(M) ∈ ∏

k≥0 Hk(M;Q) be the
L-class of M, which is a certain polynomial in the Pontrjagin classes and hence
depends a priori on the tangent bundle and hence on the differentiable structure
of M. For x ∈ ∏

k≥0 Hk(BG;Q) define the higher signature of M associated to x and
u to be

signx(M, u) :=
〈
L(M) ∪ u∗x, [M]

〉 ∈ Q . (2.9)

The Hirzebruch signature formula says that for x = 1 the signature sign1(M, u)
coincides with the ordinary signature sign(M) of M, if dim(M) = 4n, and is zero,
if dim(M) is not divisible by four. Recall that for dim(M) = 4n the signature
sign(M) of M is the signature of the non-degenerate bilinear symmetric pairing
on the middle cohomology H2n(M;R) given by the intersection pairing (a, b) 	→
〈a∪b, [M]〉. Obviously sign(M) depends only on the oriented homotopy type of M.
We say that signx for x ∈ H∗(BG;Q) is homotopy invariant if for two closed oriented
smooth manifolds M and N with reference maps u : M → BG and v : N → BG we
have

signx(M, u) = signx(N, v)

if there is an orientation preserving homotopy equivalence f : M → N such that
v ◦ f and u are homotopic.
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52Conjecture 52: (Novikov Conjecture.) Let G be a group. Then signx is homotopy
invariant for all x ∈ ∏

k≥0 Hk(BG;Q).

By Hirzebruch’s signature formula the Novikov Conjecture 52 is true for x = 1.

Relations between the Novikov Conjectures
Using surgery theory one can show [260, proposition 6.6 on page 300] the following.

53Proposition 53 For a group G the original Novikov Conjecture 52 is equivalent to
the L-theoretic Novikov Conjecture, i.e. the injectivity of the assembly map

H∗(BG; Lp(Z)) ⊗Z Q→ L
p
∗(ZG) ⊗Z Q .

In particular for torsion free groups the L-theoretic Farrell–Jones Conjecture 19
implies the Novikov Conjecture 52. Later in Proposition 95 we will prove in par-
ticular the following statement.

54Proposition 54 The Novikov Conjecture for topological K-theory, i.e. the injectivity
of the assembly map

K∗(BG) ⊗Z Q→ K∗(C∗
r (G)) ⊗Z Q

implies the L-theoretic Novikov Conjecture and hence the original Novikov
Conjecture.

For more information about the Novikov Conjectures we refer for instance to [38,
52, 55, 81, 120, 127, 179, 258] and [269].

The Zero-in-the-Spectrum Conjecture
The following Conjecture is due to Gromov [136, page 120].

55Conjecture 55: (Zero-in-the-spectrum Conjecture.) Suppose that M̃ is the uni-
versal covering of an aspherical closed Riemannian manifold M (equipped with
the lifted Riemannian metric). Then zero is in the spectrum of the minimal
closure

(∆p)min : L2Ωp(M̃) ⊃ dom(∆p)min → L2Ωp(M̃) ,

for some p ∈ {0, 1, …, dim M}, where ∆p denotes the Laplacian acting on smooth
p-forms on M̃.
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56 Proposition 56 Suppose that M is an aspherical closed Riemannian manifold with
fundamental group G, then the injectivity of the assembly map

K∗(BG) ⊗Z Q→ K∗(C∗
r (G)) ⊗Z Q

implies the Zero-in-the-spectrum Conjecture for M̃.

Proof We give a sketch of the proof. More details can be found in [195, corollary 4].
We only explain that the assumption that in every dimension zero is not in the
spectrum of the Laplacian on M̃, yields a contradiction in the case that n =
dim(M) is even. Namely, this assumption implies that the C∗

r (G)-valued index of
the signature operator twisted with the flat bundle M̃×G C∗

r (G) → M in K0(C∗
r (G))

is zero, where G = π1(M). This index is the image of the class [S] defined by the
signature operator in K0(BG) under the assembly map K0(BG) → K0(C∗

r (G)).
Since by assumption the assembly map is rationally injective, this implies [S] = 0
in K0(BG) ⊗Z Q. Notice that M is aspherical by assumption and hence M = BG.
The homological Chern character defines an isomorphism

K0(BG) ⊗Z Q = K0(M) ⊗Z Q
=̃→
⊕

p≥0

H2p(M;Q) ,

which sends [S] to the Poincaré dual L(M) ∩ [M] of the Hirzebruch L-class
L(M) ∈ ⊕

p≥0 H2p(M;Q). This implies that L(M)∩[M] = 0 and hence L(M) = 0.
This contradicts the fact that the component of L(M) in H0(M;Q) is 1.

More information about the Zero-in-the-spectrum Conjecture 55 can be found for
instance in [195] and [202, sect. 12].

The Conjectures in the General Case2.3

In this chapter we will formulate the Baum–Connes and Farrell–Jones Conjectures.
We try to emphasize the unifying principle that underlies these conjectures. The
point of view taken in this chapter is that all three conjectures are conjectures about
specific equivariant homology theories. Some of the technical details concerning
the actual construction of these homology theories are deferred to Chapt. 2.7.

Formulation of the Conjectures2.3.1

Suppose we are given
A discrete group G;
A family F of subgroups of G, i.e. a set of subgroups which is closed under
conjugation with elements of G and under taking finite intersections;
A G-homology theory HG∗ (−).
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Then one can formulate the following Meta-Conjecture.

57Meta-Conjecture 57 The assembly map

AF : HG
n (EF (G)) → HG

n (pt)

which is the map induced by the projection EF (G) → pt, is an isomorphism for
n ∈ Z.

Here EF (G) is the classifying space of the family F, a certain G-space which
specializes to the universal free G-space EG if the family contains only the trivial
subgroup. A G-homology theory is the “obvious” G-equivariant generalization of
the concept of a homology theory to a suitable category of G-spaces, in particular
it is a functor on such spaces and the map AF is simply the map induced by the
projection EF (G) → pt. We devote the Sects. 2.3.1 to 2.3.1 below to a discussion
of G-homology theories, classifying spaces for families of subgroups and related
things. The reader who never encountered these concepts should maybe first take
a look at these subsections.

Of course the conjecture above is not true for arbitrary G, F and HG∗ (−), but the
Farrell–Jones and Baum–Connes Conjectures state that for specific G-homology
theories there is a natural choice of a family F = F (G) of subgroups for every
group G such that AF (G) becomes an isomorphism for all groups G.

Let R be a ring (with involution). In Proposition 156 we will describe the
construction of G-homology theories which will be denoted

HG
n (−; KR), HG

n (−; L〈−∞〉
R ) and HG

n (−; Ktop) .

If G is the trivial group, these homology theories specialize to the (non-equivariant)
homology theories with similar names that appeared in Chapt. 2.2, namely to

Hn(−; K(R)), Hn(−; L〈−∞〉(R)) and Kn(−) .

Another main feature of these G-homology theories is that evaluated on the one
point space pt (considered as a trivial G-space) we obtain the K- and L-theory of
the group ring RG, respectively the topological K-theory of the reduced C∗-algebra
(see Proposition 156 and Theorem 158 (iii))

Kn(RG) =̃ HG
n (pt; KR) ,

L〈−∞〉
n (RG) =̃ HG

n (pt; L〈−∞〉
R ) and

Kn(C∗
r (G)) =̃ HG

n (pt; Ktop) .

We are now prepared to formulate the conjectures around which this article is
centered. Let FIN be the family of finite subgroups and let VCY be the family of
virtually cyclic subgroups.
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58 Conjecture 58: (Farrell–Jones Conjecture for K- and L-theory.) Let R be a ring
(with involution) and let G be a group. Then for all n ∈ Z the maps

AVCY : HG
n

(
EVCY(G); KR

) → HG
n

(
pt; KR

)
=̃ Kn(RG) ;

AVCY : HG
n

(
EVCY(G); L〈−∞〉

R

) → HG
n

(
pt; L〈−∞〉

R

)
=̃ L〈−∞〉

n (RG) ,

which are induced by the projection EVCY(G) → pt, are isomorphisms.

The conjecture for the topological K-theory of C∗-algebras is known as the Baum–
Connes Conjecture and reads as follows.

59 Conjecture 59: (Baum–Connes Conjecture.) Let G be a group. Then for all n ∈ Z
the map

AFIN : HG
n

(
EFIN (G); Ktop) → HG

n

(
pt; Ktop) =̃ Kn(C∗

r (G))

induced by the projection EFIN (G) → pt is an isomorphism.

We will explain the analytic assembly map indG : KG
n (X) → Kn(C∗

r (G)), which can
be identified with the assembly map appearing in the Baum–Connes Conjecture 59
in Sect. 2.8.2.

60 Remark 60 Of course the conjectures really come to life only if the abstract point
of view taken in this chapter is connected up with more concrete descriptions
of the assembly maps. We have already discussed a surgery theoretic description
in Theorem 28 and an interpretation in terms index theory in Sect. 2.2.8. More
information about alternative interpretations of assembly maps can be found in
Sects. 2.8.2 and 2.8.8. These concrete interpretations of the assembly maps lead
to applications. We already discussed many such applications in Chapt. 2.2 and
encourage the reader to go ahead and browse through Chapt. 2.4 in order to get
further ideas about these more concrete aspects.

61 Remark 61: (Relation to the “classical” assembly maps.) The value of an equiv-
ariant homology theory HG∗ (−) on the universal free G-space EG = E{1}(G) (a free
G-CW-complex whose quotient EG|G is a model for BG) can be identified with the
corresponding non-equivariant homology theory evaluated on BG, if we assume
that HG∗ is the special value of an equivariant homology theory H?∗ at ? = G. This
means that there exists an induction structure (a mild condition satisfied in our
examples, compare Sect. 2.7.1), which yields an identification

HG
n (EG) =̃ H {1}

n (BG) = Hn(BG) .
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Using these identifications the “classical” assembly maps, which appeared in
Chapt. 2.2 in the versions of the Farrell–Jones and Baum–Connes Conjectures
for torsion free groups (see Conjectures 11, 19 and 31),

Hn(BG; K(R)) =̃ HG
n (EG; KR) → HG

n (pt; KR) =̃ Kn(RG) ;

Hn(BG; L〈−∞〉(R)) =̃ HG
n (EG; L〈−∞〉

R ) → HG
n (pt; L〈−∞〉

R ) =̃ L〈−∞〉
n (RG) ;

and Kn(BG) =̃ HG
n (EG; Ktop) → HG

n (pt; Ktop) =̃ Kn(C∗
r (G)) ,

correspond to the assembly maps for the family F = {1} consisting only of the
trivial group and are simply the maps induced by the projection EG → pt.

62Remark 62: (The choice of the right family.) As explained above the Farrell–Jones
and Baum–Connes Conjectures 58 and 59 can be considered as special cases of the
Meta-Conjecture 57. In all three cases we are interested in a computation of the
right hand side HG

n (pt) of the assembly map, which can be identified with Kn(RG),
L〈−∞〉

n (RG) or Kn(C∗
r (G)). The left hand side HG

n (EF (G)) of such an assembly map is
much more accessible and the smaller F is, the easier it is to compute HG

n (EF (G))
using homological methods like spectral sequences, Mayer–Vietoris arguments
and Chern characters.

In the extreme case where F = ALL is the family of all subgroups the assembly
map AALL : HG

n (EALL(G)) → HG
n (pt) is always an isomorphism for the trivial

reason that the one point space pt is a model for EALL(G) (compare Sect. 2.3.1) and
hence the assembly map is the identity. The goal however is to have an isomorphism
for a family which is as small as possible.

We have already seen in Remark 4, Remark 25 and Remark 34 that in all three
cases the classical assembly map, which corresponds to the trivial family, is not
surjective for finite groups. This forces one to include at least the family FIN of
finite groups. The K- or L-theory of the finite subgroups of the given group G will
then enter in a computation of the left hand side of the assembly map similar as
the K- and L-theory of the trivial subgroup appeared on the left hand side in the
classical case, compare e.g. Remark 14. In the Baum–Connes case the family FIN
seems to suffice. However in the case of algebraic K-theory we saw in Remark 15 that
already the simplest torsion free group, the infinite cyclic group, causes problems
because of the Nil-terms that appear in the Bass–Heller–Swan formula. The infinite
dihedral group is a “minimal counterexample” which shows that the family FIN
is not sufficient in the L〈−∞〉

Z -case. There are non-vanishing UNil-terms, compare
Proposition 75 and its proof. Also the version of the L-theoretic Farrell–Jones
Conjecture with the decoration s, h = 〈1〉 or p = 〈0〉 instead of 〈−∞〉 is definitely
false. Counterexamples are given in [123]. Recall that there were no Nil-terms in
the topological K-theory context, compare Remark 35.

The choice of the family VCY of virtually cyclic subgroups in the Farrell–Jones
conjectures pushes all the Nil-problems appearing in algebraic K- and L-theory
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into the source of the assembly map so that they do not occur if one tries to prove
the Farrell–Jones Conjecture 58. Of course they do come up again when one wants
to compute the source of the assembly map.

We now take up the promised detailed discussion of some notions like equivari-
ant homology theories and classifying spaces for families we used above. The
reader who is familiar with these concepts may of course skip the following
subsections.

G-CW-Complexes
A G-CW-complex X is a G-space X together with a filtration X−1 = ∅ ⊆ X0 ⊆ X1 ⊆
… ⊆ X such that X = colimn→∞ Xn and for each n there is a G-pushout

∐
i∈In

G|Hi × Sn−1 ��

∐
i∈In qn

i

��

Xn−1

��
∐

i∈In
G|Hi × Dn ��

∐
i∈In Qn

i

Xn .

This definition makes also sense for topological groups. The following alternative
definition only applies to discrete groups. A G-CW-complex is a CW-complex with
a G-action by cellular maps such that for each open cell e and each g ∈ G with
ge ∩ e �= ∅ we have gx = x for all x ∈ e. There is an obvious notion of a G-CW-pair.

A G-CW-complex X is called finite if it is built out of finitely many G-cells
G|Hi ×Dn. This is the case if and only if it is cocompact, i.e. the quotient space G\X
is compact. More information about G-CW-complexes can be found for instance
in [197, sects. 1 and 2], [304, sects. II.1 and II.2].

Families of Subgroups
A family F of subgroups of G is a set of subgroups of G closed under conjugation,
i.e. H ∈ F , g ∈ G implies g−1Hg ∈ F , and finite intersections, i.e. H, K ∈ F
implies H ∩ K ∈ F . Throughout the text we will use the notations

{1}, F CY, FIN , CYC, VCYI , VCY and ALL

for the families consisting of the trivial, all finite cyclic, all finite, all (possibly
infinite) cyclic, all virtually cyclic of the first kind, all virtually cyclic, respectively
all subgroups of a given group G. Recall that a group is called virtually cyclic if it
is finite or contains an infinite cyclic subgroup of finite index. A group is virtually
cyclic of the first kind if it admits a surjection onto an infinite cyclic group with
finite kernel, compare Lemma 71.



The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory 739

Classifying Spaces for Families
Let F be a family of subgroups of G. A G-CW-complex, all whose isotropy groups
belong to F and whose H-fixed point sets are contractible for all H ∈ F , is called
a classifying space for the family F and will be denoted EF (G). Such a space is
unique up to G-homotopy because it is characterized by the property that for
any G-CW-complex X, all whose isotropy groups belong to F , there is up to G-
homotopy precisely one G-map from X to EF (G). These spaces were introduced
by tom Dieck [303], [304, I.6].

A functorial “bar-type” construction is given in [82, sect. 7].
If F ⊂ G are families of subgroups for G, then by the universal property there

is up to G-homotopy precisely one G-map EF (G) → EG(G).
The space E{1}(G) is the same as the space EG which is by definition the total

space of the universal G-principal bundle G → EG → BG, or, equivalently, the
universal covering of BG. A model for EALL(G) is given by the space G|G = pt
consisting of one point.

The space EFIN (G) is also known as the classifying space for proper G-actions
and denoted by EG in the literature. Recall that a G-CW-complex X is proper if
and only if all its isotropy groups are finite (see for instance [197, theorem 1.23 on
page 18]). There are often nice models for EFIN (G). If G is word hyperbolic in the
sense of Gromov, then the Rips-complex is a finite model [216, 217].

If G is a discrete subgroup of a Lie group L with finitely many path components,
then for any maximal compact subgroup K ⊆ L the space L|K with its left G-action
is a model for EFIN (G) [2, corollary 4.14]. More information about EFIN (G) can
be found for instance in [28, sect. 2], [180, 199, 206, 207] and [282].

G-Homology Theories
Fix a group G and an associative commutative ring Λ with unit. A G-homology
theory HG∗ with values in Λ-modules is a collection of covariant functors HG

n
from the category of G-CW-pairs to the category of Λ-modules indexed by n ∈ Z
together with natural transformations

∂G
n (X, A) : HG

n (X, A) → HG
n−1(A) := HG

n−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:
(i) G-homotopy invariance

If f0 and f1 are G-homotopic maps (X, A) → (Y , B) of G-CW-pairs, then
HG

n (f0) = HG
n (f1) for n ∈ Z.

(ii) Long exact sequence of a pair
Given a pair (X, A) of G-CW-complexes, there is a long exact sequence

…
HG

n+1(j)→ HG
n+1(X, A)

∂G
n+1→ HG

n (A)
HG

n (i)→ HG
n (X)

HG
n (j)→ HG

n (X, A)
∂G

n→ HG
n−1(A)

HG
n−1(i)→ … ,

where i : A → X and j : X → (X, A) are the inclusions.
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(iii) Excision
Let (X, A) be a G-CW-pair and let f : A → B be a cellular G-map of G-CW-
complexes. Equip (X ∪f B, B) with the induced structure of a G-CW-pair.
Then the canonical map (F, f ) : (X, A) → (X ∪f B, B) induces for each n ∈ Z
an isomorphism

HG
n (F, f ) : HG

n (X, A)
=̃→ HG

n (X ∪f B, B) .

(vi) Disjoint union axiom
Let {Xi | i ∈ I} be a family of G-CW-complexes. Denote by ji : Xi → ∐

i∈I Xi

the canonical inclusion. Then the map

⊕

i∈I

HG
n (ji) :

⊕

i∈I

HG
n (Xi)

=̃→ HG
n

(
∐

i∈I

Xi

)

is bijective for each n ∈ Z.

Of course a G-homology theory for the trivial group G = {1} is a homology theory
(satisfying the disjoint union axiom) in the classical non-equivariant sense.

The disjoint union axiom ensures that we can pass from finite G-CW-complexes
to arbitrary ones using the following lemma.

63 Lemma 63 Let HG∗ be a G-homology theory. Let X be a G-CW-complex and
{Xi | i ∈ I} be a directed system of G-CW-subcomplexes directed by inclusion
such that X = ∪i∈IXi. Then for all n ∈ Z the natural map

colimi∈I HG
n (Xi)

=̃→ HG
n (X)

is bijective.

Proof Compare for example with [301, proposition 7.53 on page 121], where the
non-equivariant case for I = N is treated.

Example 64. (Bredon Homology.) The most basic G-homology theory is Bredon
homology. The orbit categoryOr(G) has as objects the homogeneous

spaces G|H and as morphisms G-maps. Let X be a G-CW-complex. It defines
a contravariant functor from the orbit category Or(G) to the category of CW-
complexes by sending G|H to mapG(G|H, X) = XH . Composing it with the functor
cellular chain complex yields a contravariant functor

Cc
∗(X) : Or(G) → Z-CHCOM

into the category of Z-chain complexes. Let Λ be a commutative ring and let

M : Or(G) → Λ-MODULES
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be a covariant functor. Then one can form the tensor product over the orbit
category (see for instance [197, 9.12 on page 166]) and obtains the Λ-chain complex
Cc∗(X)⊗ZOr(G) M. Its homology is the Bredon homology of X with coefficients in M

HG
∗ (X; M) = H∗(Cc

∗(X) ⊗ZOr(G) M) .

Thus we get a G-homology theory HG∗ with values in Λ-modules. For a trivial group
G this reduces to the cellular homology of X with coefficients in the Λ-module M.

More information about equivariant homology theories will be given in Sect. 2.7.1.

Varying the Family of Subgroups 2.3.2

Suppose we are given a family of subgroups F ′ and a subfamily F ⊂ F ′. Since all
isotropy groups of EF (G) lie in F ′ we know from the universal property of EF ′(G)
(compare Sect. 2.3.1) that there is a G-map EF (G) → EF ′(G) which is unique
up to G-homotopy. For every G-homology theory HG∗ we hence obtain a relative
assembly map

AF →F ′ : HG
n (EF (G)) → HG

n (EF ′(G)) .

If F ′ = ALL, then EF ′(G) = pt and AF →F ′ specializes to the assembly map AF

we discussed in the previous section. If we now gradually increase the family, we
obtain qa factorization of the classical assembly A = A{1}→ALL into several relative
assembly maps. We obtain for example from the inclusions

{1} ⊂ F CY ⊂ FIN ⊂ VCY ⊂ ALL

for every G-homology theory HG
n (−) the following commutative diagram.

HG
n (EG) ��

A

��

HG
n (pt)

HG
n (EF CY(G)) �� HG

n (EFIN (G)) ��

��AFIN pppppppppppp

HG
n (EVCY(G)) .

OO

AVCY
(2.10)

Here A is the “classical” assembly map and AFIN and AVCY are the assembly maps
that for specific G-homology theories appear in the Baum–Connes and Farrell–
Jones Conjectures.

Such a factorization is extremely useful because one can study the relative
assembly map AF →F ′ in terms of absolute assembly maps corresponding to groups
in the bigger family. For example the relative assembly map

AFIN →VCY : HG
n (EFIN (G)) → HG

n (EVCY(G))
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is an isomorphism if for all virtually cyclic subgroups V of G the assembly map

AFIN = AFIN →ALL : HV
n (EFIN (V)) → HV

n (pt)

is an isomorphism. Of course here we need to assume that the G-homology the-
ory HG∗ and the V-homology theory HV∗ are somehow related. In fact all the
G-homology theories HG∗ we care about are defined simultaneously for all groups
G and for varying G these G-homology theories are related via a so called “induc-
tion structure”. Induction structures will be discussed in detail in Sect. 2.7.1.

For a family F of subgroups of G and a subgroup H ⊂ G we define a family of
subgroups of H

F ∩ H = {K ∩ H | K ∈ F } .

The general statement about relative assembly maps reads now as follows.

65 Theorem 65: (Transitivity Principle.) Let H?∗ (−) be an equivariant homology
theory in the sense of Sect. 2.7.1. Suppose F ⊂ F ′ are two families of subgroups
of G. Suppose that K ∩ H ∈ F for each K ∈ F and H ∈ F ′ (this is automatic if
F is closed under taking subgroups). Let N be an integer. If for every H ∈ F ′ and
every n ≤ N the assembly map

AF ∩H→ALL : HH
n (EF ∩H(H)) → HH

n (pt)

is an isomorphism, then for every n ≤ N the relative assembly map

AF →F ′ : HG
n (EF (G)) → HG

n (EF ′(G))

is an isomorphism.

Proof If we equip EF (G) × EF ′(G) with the diagonal G-action, it is a model for
EF (G). Now apply Lemma 153 in the special case Z = EF ′(G).

This principle can be used in many ways. For example we will derive from it that
the general versions of the Baum–Connes and Farrell–Jones Conjectures specialize
to the conjectures we discussed in Chapt. 2.2 in the case where the group is torsion
free. If we are willing to make compromises, e.g. to invert 2, to rationalize the
theories or to restrict ourselves to small dimensions or special classes of groups,
then it is often possible to get away with a smaller family, i.e. to conclude from the
Baum–Connes or Farrell–Jones Conjectures that an assembly map with respect
to a family smaller than the family of finite or virtually cyclic subgroups is an
isomorphism. The left hand side becomes more computable and this leads to new
corollaries of the Baum–Connes and Farrell–Jones Conjectures.
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The General Versions Specialize to the Torsion Free Versions
If G is a torsion free group, then the familyFIN obviously coincides with the trivial
family {1}. Since a nontrivial torsion free virtually cyclic group is infinite cyclic we
also know that the family VCY reduces to the family of all cyclic subgroups,
denoted CYC.

66Proposition 66 Let G be a torsion free group.
(i) If R is a regular ring, then the relative assembly map

A{1}→CYC : HG
n (E{1}(G); KR) → HG

n (ECYC(G); KR)

is an isomorphism.
(ii) For every ring R the relative assembly map

A{1}→CYC : HG
n (E{1}(G); L〈−∞〉

R ) → HG
n (ECYC(G); L〈−∞〉

R )

is an isomorphism.

Proof Because of the Transitivity Principle 65 it suffices in both cases to prove that
the classical assembly map A = A{1}→ALL is an isomorphism in the case where
G is an infinite cyclic group. For regular rings in the K-theory case and with the
−∞-decoration in the L-theory case this is true as we discussed in Remark 15
respectively Remark 26.

As an immediate consequence we obtain.

67Corollary 67
(i) For a torsion free group the Baum–Connes Conjecture 59 is equivalent to its

“torsion free version” Conjecture 31.
(ii) For a torsion free group the Farrell–Jones Conjecture 58 for algebraic K-

is equivalent to the “torsion free version” Conjecture 11, provided R is
regular.

(iii) For a torsion free group the Farrell–Jones Conjecture 58 for algebraic L-theory
is equivalent to the “torsion free version” Conjecture 19.

The Baum–Connes Conjecture and the Family VCY
Replacing the family FIN of finite subgroups by the family VCY of virtually cyclic
subgroups would not make any difference in the Baum–Connes Conjecture 59. The
Transitivity Principle 65 and the fact that the Baum–Connes Conjecture 59 is known
for virtually cyclic groups implies the following.
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68 Proposition 68 For every group G and every n ∈ Z the relative assembly map for
topological K-theory

AFIN →VCY : HG
n (EFIN (G); Ktop) → HG

n (EVCY(G); Ktop)

is an isomorphism.

The Baum–Connes Conjecture and the Family F CY
The following result is proven in [215].

69 Proposition 69 For every group G and every n ∈ Z the relative assembly map for
topological K-theory

AF CY→FIN : HG
n (EF CY(G); Ktop) → HG

n (EFIN (G); Ktop)

is an isomorphism.

In particular the Baum–Connes Conjecture predicts that the F CY-assembly map

AF CY : HG
n (EF CY(G); Ktop) → Kn(C∗

r (G))

is always an isomorphism.

Algebraic K-Theory for Special Coefficient Rings
In the algebraic K-theory case we can reduce to the family of finite subgroups if we
assume special coefficient rings.

70 Proposition 70 Suppose R is a regular ring in which the orders of all finite subgroups
of G are invertible. Then for every n ∈ Z the relative assembly map for algebraic
K-theory

AFIN →VCY : HG
n (EFIN (G); KR) → HG

n (EVCY(G); KR)

is an isomorphism. In particular if R is a regular ring which is a Q-algebra (for
example a field of characteristic 0) the above applies to all groups G.

Proof We first show that RH is regular for a finite group H. Since R is Noetherian
and H is finite, RH is Noetherian. It remains to show that every RH-module M has
a finite dimensional projective resolution. By assumption M considered as an R-
module has a finite dimensional projective resolution. If one applies RH ⊗R − this
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yields a finite dimensional RH-resolution of RH ⊗R res M. Since |H| is invertible,
the RH-module M is a direct summand of RH ⊗R res M and hence has a finite
dimensional projective resolution.

Because of the Transitivity Principle 65 we need to prove that theFIN -assembly
map AFIN is an isomorphism for virtually cyclic groups V . Because of Lemma 71
we can assume that either V =̃ H � Z or V =̃ K1 ∗H K2 with finite groups H,
K1 and K2. From [313] we obtain in both cases long exact sequences involving
the algebraic K-theory of the constituents, the algebraic K-theory of V and also
additional Nil-terms. However, in both cases the Nil-terms vanish if RH is a regular
ring (compare theorem 4 on page 138 and the remark on page 216 in [313]). Thus
we get long exact sequences

… → Kn(RH) → Kn(RH) → Kn(RV) → Kn−1(RH) → Kn−1(RH) → …

and

… → Kn(RH) → Kn(RK1) ⊕ Kn(RK2) → Kn(RV)

→ Kn−1(RH) → Kn−1(RK1) ⊕ Kn−1(RK2) → … .

One obtains analogous exact sequences for the sources of the various assembly
maps from the fact that the sources are equivariant homology theories and one
can find specific models for EFIN (V). These sequences are compatible with the
assembly maps. The assembly maps for the finite groups H, K1 and K2 are bijective.
Now a Five-Lemma argument shows that also the one for V is bijective.

In particular for regular coefficient rings R which are Q-algebras the K-theoretic
Farrell–Jones Conjecture specializes to the conjecture that the assembly map

AFIN : HG
n (EFIN (G); KR) → HG

n (pt; KR) =̃ Kn(RG)

is an isomorphism.
In the proof above we used the following important fact about virtually cyclic

groups.

71Lemma 71 If G is an infinite virtually cyclic group then we have the following
dichotomy.
(I) Either G admits a surjection with finite kernel onto the infinite cyclic group

Z, or
(II) G admits a surjection with finite kernel onto the infinite dihedral group

Z|2 ∗ Z|2.

Proof This is not difficult and proven as lemma 2.5 in [113].
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Splitting off Nil-Terms and Rationalized Algebraic K-Theory
Recall that the Nil-terms, which prohibit the classical assembly map from being
an isomorphism, are direct summands of the K-theory of the infinite cyclic group
(see Remark 15). Something similar remains true in general [16].

72 Proposition 72
(i) For every group G, every ring R and every n ∈ Z the relative assembly map

AFIN →VCY : HG
n (EFIN (G); KR) → HG

n (EVCY(G); KR)

is split-injective.
(ii) Suppose R is such that K−i(RV) = 0 for all virtually cyclic subgroups V of G and

for sufficiently large i (for example R = Z will do, compare Proposition 78).
Then the relative assembly map

AFIN →VCY : HG
n

(
EFIN (G); L〈−∞〉

R

) → HG
n

(
EVCY(G); L〈−∞〉

R

)

is split-injective.

Combined with the Farrell–Jones Conjectures we obtain that the homology group
HG

n (EFIN (G); KR) is a direct summand in Kn(RG). It is much better understood
(compare Chapt. 2.9) than the remaining summand which is isomorphic to
HG

n (EVCY(G), EFIN (G); KR). This remaining summand is the one which plays
the role of the Nil-terms for a general group. It is known that for R = Z the
negative dimensional Nil-groups which are responsible for virtually cyclic groups
vanish [113]. They vanish rationally, in dimension 0 by [76] and in higher dimen-
sions by [182]. For more information see also [75]. Analogously to the proof of
Proposition 70 we obtain the following proposition.

73 Proposition 73 We have

HG
n

(
EVCY(G), EFIN (G); KZ

)
= 0 for n < 0 and

HG
n

(
EVCY(G), EFIN (G); KZ

)⊗Z Q = 0 for all n ∈ Z .

In particular the Farrell–Jones Conjecture for the algebraic K-theory of the integral
group ring predicts that the map

AFIN : HG
n (EFIN (G); KZ ) ⊗Z Q→ Kn(ZG) ⊗Z Q

is always an isomorphism.
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Inverting 2 in L-Theory

74Proposition 74 For every group G, every ring R with involution, every decoration
j and all n ∈ Z the relative assembly map

AFIN →VCY : HG
n

(
EFIN (G); L〈j〉

R

) [1

2

]
→ HG

n

(
EVCY(G); L〈j〉

R

) [1

2

]

is an isomorphism.

Proof According to the Transitivity Principle it suffices to prove the claim for
a virtually cyclic group. Now argue analogously to the proof of Proposition 70
using the exact sequences in [48] and the fact that the UNil-terms appearing there
vanish after inverting two [48]. Also recall from Remark 22 that after inverting 2
there are no differences between the decorations.

In particular the L-theoretic Farrell–Jones Conjecture implies that for every deco-
ration j the assembly map

AFIN : HG
n

(
EFIN (G); L〈j〉

R

) [1

2

]
→ L〈j〉

n (RG)

[
1

2

]

is an isomorphism.

L-Theory and Virtually Cyclic Subgroups of the First Kind
Recall that a group is virtually cyclic of the first kind if it admits a surjection with
finite kernel onto the infinite cyclic group. The family of these groups is denoted
VCYI .

75Proposition 75 For all groups G, all rings R and all n ∈ Z the relative assembly
map

AFIN →VCYI
: HG

n

(
EFIN (G); L〈−∞〉

R

) → HG
n

(
EVCYI

(G); L〈−∞〉
R

)

is an isomorphism.

Proof The point is that there are no UNil-terms for infinite virtually cyclic groups of
the first kind. This follows essentially from [254] and [255] as carried out in [204].
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Rationally FIN Reduces to F CY
We will see later (compare Theorem 172, 173 and 178) that in all three cases, topo-
logical K-theory, algebraic K-theory and L-theory, the rationalized left hand side
of the FIN -assembly map can be computed very explicitly using the equivariant
Chern-Character. As a by-product these computations yield that after rationalizing
the family FIN can be reduced to the family F CY of finite cyclic groups and that
the rationalized relative assembly maps A{1}→F CY are injective.

76 Proposition 76 For every ring R, every group G and all n ∈ Z the relative assembly
maps

AF CY→FIN : HG
n (EF CY(G); KR) ⊗Z Q→ HG

n (EFIN (G); KR) ⊗Z Q

AF CY→FIN : HG
n (EF CY(G); L〈−∞〉

R ) ⊗Z Q→ HG
n (EFIN (G); L〈−∞〉

R ) ⊗Z Q

AF CY→FIN : HG
n (EF CY(G); Ktop) ⊗Z Q→ HG

n (EFIN (G); Ktop) ⊗Z Q

are isomorphisms and the corresponding relative assembly maps A{1}→F CY are all
rationally injective.

Recall that the statement for topological K-theory is even known integrally, com-
pare Proposition 69. Combining the above with Proposition 73 and Proposition 74
we see that the Farrell–Jones Conjecture predicts in particular that the F CY-
assembly maps

AF CY : HG
n (EF CY(G); L〈−∞〉

R ) ⊗Z Q→ L〈−∞〉
n (RG) ⊗Z Q

AF CY : HG
n (EF CY(G); KZ ) ⊗Z Q→ Kn(ZG) ⊗Z Q

are always isomorphisms.

More Applications2.4

Applications VI2.4.1

Low Dimensional Algebraic K-Theory
As opposed to topological K-theory and L-theory, which are periodic, the algebraic
K-theory groups of coefficient rings such as Z, Q or C are known to be bounded
below. Using the spectral sequences for the left hand side of an assembly map
that will be discussed in Sect. 2.9.4, this leads to vanishing results in negative
dimensions and a concrete description of the groups in the first non-vanishing
dimension.

The following conjecture is a consequence of the K-theoretic Farrell–Jones
Conjecture in the case R = Z. Note that by the results discussed in Proposition 72
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we know that in negative dimensions we can reduce to the family of finite subgroups.
Explanations about the colimit that appears follow below.

77Conjecture 77: (The Farrell–Jones Conjecture for Kn(ZG) for n ≤ −1.) For every
group G we have

K−n(ZG) = 0 for n ≥ 2 ,

and the map

colimH∈SubFIN (G) K−1(ZH)
=̃→ K−1(ZG)

is an isomorphism.

We can consider a familyF of subgroups of G as a categorySubF (G) as follows. The
objects are the subgroups H with H ∈ F . For H, K ∈ F let conhomG(H, K) be the
set of all group homomorphisms f : H → K, for which there exists a group element
g ∈ G such that f is given by conjugation with g. The group of inner automorphism
inn(K) consists of those automorphisms K → K, which are given by conjugation
with an element k ∈ K. It acts on conhom(H, K) from the left by composition.
Define the set of morphisms inSubF (G) from H to K to be inn(K)\ conhom(H, K).
Composition of group homomorphisms defines the composition of morphisms in
SubF (G). We mention that SubF (G) is a quotient category of the orbit category
OrF (G) which we will introduce in Sect. 2.7.4. Note that there is a morphism from
H to K only if H is conjugate to a subgroup of K. Clearly Kn(R(−)) yields a functor
from SubF (G) to abelian groups since inner automorphisms on a group G induce
the identity on Kn(RG). Using the inclusions into G, one obtains a map

colimH∈SubF (G) Kn(RH) → Kn(RG) .

The colimit can be interpreted as the 0-th Bredon homology group

HG
0

(
EF (G); Kn(R(?))

)

(compare Example 64) and the map is the edge homomorphism in the equivariant
Atiyah–Hirzebruch spectral sequence discussed in Sect. 2.9.4. In Conjecture 77 we
consider the first non-vanishing entry in the lower left hand corner of the E2-term
because of the following vanishing result [113, theorem 2.1] which generalizes
vanishing results for finite groups from [57].

78Proposition 78 If V is a virtually cyclic group, then K−n(ZV) = 0 for n ≥ 2.

If our coefficient ring R is a regular ring in which the orders of all finite subgroups
of G are invertible, then we know already from Sect. 2.3.2 that we can reduce to
the family of finite subgroups. In the proof of Proposition 70 we have seen that
then RH is again regular if H ⊂ G is finite. Since negative K-groups vanish for
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regular rings [268, 5.3.30 on page 295], the following is implied by the Farrell–Jones
Conjecture 58.

79 Conjecture 79: (Farrell–Jones Conjecture for K0(QG).) Suppose R is a regular
ring in which the orders of all finite subgroups of G are invertible (for example
a field of characteristic 0), then

K−n(RG) = 0 for n ≥ 1

and the map

colimH∈SubFIN (G) K0(RH)
=̃→ K0(RG)

is an isomorphism.

The conjecture above holds if G is virtually poly-cyclic. Surjectivity is proven
in [227] (see also [67] and chapt. 8 in [235]), injectivity in [271]. We will show in
Lemma 87 (i) that the map appearing in the conjecture is always rationally injective
for R = C.

The conjectures above describe the first non-vanishing term in the equivariant
Atiyah–Hirzebruch spectral sequence. Already the next step is much harder to
analyze in general because there are potentially non-vanishing differentials. We
know however that after rationalizing the equivariant Atiyah–Hirzebruch spectral
sequence for the left hand side of the FIN -assembly map collapses. As a con-
sequence we obtain that the following conjecture follows from the K-theoretic
Farrell–Jones Conjecture 58.

80 Conjecture 80 For every group G, every ring R and every n ∈ Z the map

colimH∈SubFIN (G) Kn(RH) ⊗Z Q→ Kn(RG) ⊗Z Q

is injective.

Note that for K0(ZG) ⊗Z Q the conjecture above is always true but not very
interesting, because for a finite group H it is known that K̃0(ZH) ⊗Z Q = 0,
compare [298, proposition 9.1], and hence the left hand side reduces to K0(Z)⊗ZQ.
However, the full answer for K0(ZG) should involve the negative K-groups, compare
Example 176.

Analogously to Conjecture 80 the following can be derived from the K-theoretic
Farrell–Jones Conjecture 58, compare [208].

81 Conjecture 81 The map

colimH∈SubFIN (G) Wh(H) ⊗Z Q→ Wh(G) ⊗Z Q

is always injective.
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In general one does not expect this map to be an isomorphism. There should be
additional contributions coming from negative K-groups. Conjecture 81 is true for
groups satisfying a mild homological finiteness condition, see Theorem 145.

82Remark 82: (The Conjectures as Generalized Induction Theorems.) The above
discussion shows that one may think of the Farrell–Jones Conjectures 58 and
the Baum–Connes Conjecture 59 as “generalized induction theorems”. The proto-
type of an induction theorem is Artin’s theorem about the complex representation
ring RC (G) of a finite group G. Let us recall Artin’s theorem.

For finite groups H the complex representation ring RC (H) coincides with
K0(CH). Artin’s Theorem [283, theorem 17 in 9.2 on page 70] implies that the
obvious induction homomorphism

colimH∈SubCYC (G) RC (H) ⊗Z Q
=̃→ RC (G) ⊗Z Q

is an isomorphism. Note that this is a very special case of Theorem 172 or 173,
compare Remark 177.

Artin’s theorem says that rationally one can compute RC (G) if one knows all
the values RC (C) (including all maps coming from induction with group homo-
morphisms induced by conjugation with elements in G) for all cyclic subgroups
C ⊆ G. The idea behind the Farrell–Jones Conjectures 58 and the Baum–Connes
Conjecture 59 is analogous. We want to compute the functors Kn(RG), Ln(RG) and
Kn(C∗

r (G)) from their values (including their functorial properties under induc-
tion) on elements of the family FIN or VCY.

The situation in the Farrell Jones and Baum–Connes Conjectures is more com-
plicated than in Artin’s Theorem, since we have already seen in Remarks 15, 26
and 35 that a computation of Kn(RG), L〈−∞〉

n (RG) and Kn(C∗
r (G)) does involve also

the values Kp(RH), L〈−∞〉
p (RH) and Kp(C∗

r (H)) for p ≤ n. A degree mixing occurs.

G-Theory
Instead of considering finitely generated projective modules one may apply the
standard K-theory machinery to the category of finitely generated modules. This
leads to the definition of the groups Gn(R) for n ≥ 0. For instance G0(R) is the
abelian group whose generators are isomorphism classes [M] of finitely generated
R-modules and whose relations are given by [M0] − [M1] + [M2] for any exact
sequence 0 → M0 → M1 → M2 → 0 of finitely generated modules. One may ask
whether versions of the Farrell–Jones Conjectures for G-theory instead of K-theory
might be true. The answer is negative as the following discussion explains.

For a finite group H the ring CH is semisimple. Hence any finitely gener-
ated CH-module is automatically projective and K0(CH) = G0(CH). Recall that
a group G is called virtually poly-cyclic if there exists a subgroup of finite index
H ⊆ G together with a filtration {1} = H0 ⊆ H1 ⊆ H2 ⊆ … ⊆ Hr = H such that
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Hi−1 is normal in Hi and the quotient Hi|Hi−1 is cyclic. More generally for all n ∈ Z
the forgetful map

f : Kn(CG) → Gn(CG)

is an isomorphism if G is virtually poly-cyclic, since then CG is regular [273,
theorem 8.2.2 and theorem 8.2.20] and the forgetful map f is an isomorphism for
regular rings, compare [268, corollary 53.26 on page 293]. In particular this applies
to virtually cyclic groups and so the left hand side of the Farrell–Jones assembly
map does not see the difference between K- and G-theory if we work with complex
coefficients. We obtain a commutative diagram

colimH∈SubFIN (G) K0(CH)

��
=̃

�� K0(CG)

��
f

colimH∈SubFIN (G) G0(CH) �� G0(CG)

(2.11)

where, as indicated, the left hand vertical map is an isomorphism. Conjecture 79,
which is implied by the Farrell–Jones Conjecture, says that the upper horizontal
arrow is an isomorphism. A G-theoretic analogue of the Farrell–Jones Conjecture
would say that the lower horizontal map is an isomorphism. There are however
cases where the upper horizontal arrow is known to be an isomorphism, but the
forgetful map f on the right is not injective or not surjective:

If G contains a non-abelian free subgroup, then the class [CG] ∈ G0(CG)
vanishes [202, theorem 9.66 on page 364] and hence the map f : K0(CG) → G0(CG)
has an infinite kernel ([CG] generates an infinite cyclic subgroup in K0(CG)). The
Farrell–Jones Conjecture for K0(CG) is known for non-abelian free groups.

The Farrell–Jones Conjecture is also known for A =
⊕

n∈Z Z|2 and hence K0(CA)
is countable, whereas G0(CA) is not countable [202, example 10.13 on page 375].
Hence the map f cannot be surjective.

At the time of writing we do not know a counterexample to the statement that
for an amenable group G, for which there is an upper bound on the orders of its
finite subgroups, the forgetful map f : K0(CG) → G0(CG) is an isomorphism. We
do not know a counterexample to the statement that for a group G, which is not
amenable, G0(CG) = {0}. We also do not know whether G0(CG) = {0} is true for
G = Z ∗ Z.

For more information about G0(CG) we refer for instance to [202, sect. 9.5.3].

Bass Conjectures
Complex representations of a finite group can be studied using characters. We
now want to define the Hattori–Stallings rank of a finitely generated projective
CG-module which should be seen as a generalization of characters to infinite
groups.
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Let con(G) be the set of conjugacy classes (g) of elements g ∈ G. Denote by
con(G)f the subset of con(G) consisting of those conjugacy classes (g) for which
each representative g has finite order. Let class0(G) and class0(G)f be theC-vector
space with the set con(G) and con(G)f as basis. This is the same as the C-vector
space ofC-valued functions on con(G) and con(G)f with finite support. Define the
universal C-trace as

tru
CG : CG → class0(G),

∑

g∈G

λg · g 	→
∑

g∈G

λg · (g) . (2.12)

It extends to a function tru
CG : Mn(CG) → class0(G) on (n, n)-matrices overCG by

taking the sum of the traces of the diagonal entries. Let P be a finitely generated
projective CG-module. Choose a matrix A ∈ Mn(CG) such that A2 = A and the
image of the CG-map rA : CGn → CGn given by right multiplication with A is
CG-isomorphic to P. Define the Hattori-Stallings rank of P as

HSCG(P) = tru
CG(A) ∈ class0(G) . (2.13)

The Hattori–Stallings rank depends only on the isomorphism class of the CG-
module P and induces a homomorphism HSCG : K0(CG) → class0(G).

83Conjecture 83: (Strong Bass Conjecture for K0(CG).)
The C-vector space spanned by the image of the map

HSCG : K0(CG) → class0(G)

is class0(G)f .

This conjecture is implied by the surjectivity of the map

colimH∈SubFIN (G) K0(CH) ⊗Z C→ K0(CG) ⊗Z C , (2.14)

(compare Conjecture 79) and hence by the K-theoretic Farrell–Jones Conjecture
for K0(CG). We will see below that the surjectivity of the map (2.14) also implies
that the map K0(CG)⊗Z C→ class0(G), which is induced by the Hattori–Stallings
rank, is injective. Hence we do expect that the Hattori–Stallings rank induces an
isomorphism

K0(CG) ⊗Z C =̃ class0(G)f .

There are also versions of the Bass conjecture for other coefficients than C. It
follows from results of Linnell [191, theorem 4.1 on page 96] that the following
version is implied by the Strong Bass Conjecture for K0(CG).

84Conjecture 84: (The Strong Bass Conjecture for K0(ZG).) The image of the com-
position

K0(ZG) → K0(CG)
HSCG→ class0(G)
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is contained in theC-vector space of those functions f : con(G) → Cwhich vanish
for (g) ∈ con(g) with g �= 1.

The conjecture says that for every finitely generated projective ZG-module P the
Hattori–Stallings rank of CG ⊗ZG P looks like the Hattori–Stallings rank of a free
CG-module. A natural explanation for this behaviour is the following conjecture
which clearly implies the Strong Bass Conjecture for K0(ZG).

85 Conjecture 85: (Rational K̃0(ZG)-to-K̃0(QG)-Conjecture.) For every group G the
map

K̃0(ZG) ⊗Z Q→ K̃0(QG) ⊗Z Q

induced by the change of coefficients is trivial.

Finally we mention the following variant of the Bass Conjecture.

86 Conjecture 86: (The Weak Bass Conjecture.) Let P be a finitely generated pro-
jective ZG-module. The value of the Hattori–Stallings rank of CG ⊗ZG P at the
conjugacy class of the identity element is given by

HSCG(CG ⊗ZG P)((1)) = dimZ (Z⊗ZG P) .

Here Z is considered as a ZG-module via the augmentation.

The K-theoretic Farrell–Jones Conjecture implies all four conjectures above. More
precisely we have the following proposition.

87 Proposition 87
(i) The map

colimH∈SubFIN (G) K0(CH) ⊗Z Q→ K0(CG) ⊗Z Q

is always injective. If the map is also surjective (compare Conjecture 79) then
the Hattori–Stallings rank induces an isomorphism

K0(CG) ⊗Z C =̃ class0(G)f

and in particular the Strong Bass Conjecture for K0(CG) and hence also the
Strong Bass Conjecture for K0(ZG) hold.

(ii) The surjectivity of the map

AVCY : HG
0 (EVCY(G); KZ ) ⊗Z Q→ K0(ZG) ⊗Z Q

implies the Rational K̃0(ZG)-to-K̃0(QG) Conjecture and hence also the Strong
Bass Conjecture for K0(ZG).
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(iii) The Strong Bass Conjecture for K0(CG) implies the Strong Bass Conjecture
for K0(ZG). The Strong Bass Conjecture for K0(ZG) implies the Weak Bass
Conjecture.

Proof (i) follows from the following commutative diagram, compare [198, lemma
2.15 on page 220].

colimH∈SubFIN (G) K0(CH) ⊗Z C

��
=̃

�� K0(CG) ⊗Z C

��

colimH∈SubFIN (G) class0(H) ��
=̃

class0(G)f ��
i

class0(G) .

Here the vertical maps are induced by the Hattori–Stallings rank, the map i
is the natural inclusion and in particular injective and we have the indicated
isomorphisms.

(ii) According to Proposition 73 the surjectivity of the map AVCY appearing in 87
implies the surjectivity of the corresponding assembly map AFIN (rationalized
and with Z as coefficient ring) for the family of finite subgroups. The map AFIN

is natural with respect to the change of the coefficient ring from Z to Q. By
Theorem 173 we know that for every coefficient ring R there is an isomorphism
from

⊕

p,q,p+q=0

⊕

(C)∈(F CY)

Hp(BZGC;Q) ⊗Q [WG C] ΘC · Kq(RC) ⊗Z Q

to the 0-dimensional part of the left hand side of the rationalized FIN -assembly
map AFIN . The isomorphism is natural with respect to a change of coefficient
rings. To see that the Rational K̃0(ZG)-to-K̃0(QG) Conjecture follows, it hence
suffices to show that the summand corresponding to C = {1} and p = q = 0 is
the only one where the map induced from Z → Q is possibly non-trivial. But
Kq(QC) = 0 if q < 0, becauseQC is semisimple and hence regular, and for a finite
cyclic group C ≠ {1} we have by [198, lemma 7.4]

ΘC · K0(ZC) ⊗Z Q = coker
(⊕

D�C

K0(ZD) ⊗Z Q → K0(ZC) ⊗Z Q

)
= 0 ,

since by a result of Swan K0(Z) ⊗Z Q → K0(ZH) ⊗Z Q is an isomorphism for
a finite group H, see [298, proposition 9.1].

(iii) As already mentioned the first statement follows from [191, theorem 4.1 on
page 96]. The second statement follows from the formula

∑

(g)∈con(G)

HSCG(C⊗Z P)(g) = dimZ (Z⊗ZG P) .
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The next result is due to Berrick, Chatterji and Mislin [36, theorem 5.2]. The
Bost Conjecture is a variant of the Baum–Connes Conjecture and is explained in
Sect. 2.5.1.

88 Theorem 88 If the assembly map appearing in the Bost Conjecture 104 is rationally
surjective, then the Strong Bass Conjecture for K0(CG) (compare 83) is true.

We now discuss some further questions and facts that seem to be relevant in the
context of the Bass Conjectures.

89 Remark 89: (Integral K̃0(ZG)-to-K̃0(QG)-Conjecture.) We do not know a coun-
terexample to the Integral K̃0(ZG)-to-K̃0(QG) Conjecture, i.e. to the statement that
the map

K̃0(ZG) → K̃0(QG)

itself is trivial. But we also do not know a proof which shows that the K-theoretic
Farrell–Jones Conjecture implies this integral version. Note that the Integral
K̃0(ZG)-to-K̃0(QG) Conjecture would imply that the following diagram commutes.

K0(ZG)

��
p∗

�� K0(QG)

K0(Z) ��
dimZ

=̃
Z .

OO
i

Here p∗ is induced by the projection G → {1} and i sends 1 ∈ Z to the class ofQG.

90 Remark 90: (The passage from K̃0(ZG) to K̃0(N(G)).) Let N(G) denote the group
von Neumann algebra of G. It is known that for every group G the composition

K̃0(ZG) → K̃0(QG) → K̃0(CG) → K̃0(C∗
r (G)) → K̃0(N (G))

is the zero-map (see for instance [202, theorem 9.62 on page 362]). Since the group
von Neumann algebra N (G) is not functorial under arbitrary group homomor-
phisms such as G → {1}, this does not imply that the diagram

K0(ZG)

��
p∗

�� K0(N (G))

K0(Z) ��
dimZ

=̃
Z

OO
i
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commutes. However, commutativity would follow from the Weak Bass Conjec-
ture 86. For a discussion of these questions see [93].

More information and further references about the Bass Conjecture can be found
for instance in [24], [36, sect. 7], [42, 92, 93, 118, 191] [202, sect. 9.5.2], and [225,
pp. 66ff].

Applications VII 2.4.2

Novikov Conjectures
In Sect. 2.2.9 we discussed the Novikov Conjectures. Recall that one possible
reformulation of the original Novikov Conjecture says that for every group G the
rationalized classical assembly map in L-theory

A : Hn(BG; Lp(Z)) ⊗Z Q→ Lp
n(ZG) ⊗Z Q

is injective. Since A can be identified with A{1}→ALL and we know from Sect. 2.3.2
that the relative assembly map

A{1}→FIN : HG
n (E{1}(G); Lp

Z ) ⊗Z Q→ HG
n (EFIN (G); Lp

Z ) ⊗Z Q

is injective we obtain the following proposition.

91Proposition 91 The rational injectivity of the assembly map appearing in L-
theoretic Farrell–Jones Conjecture (Conjecture 58) implies the L-theoretic Novikov
Conjecture (Conjecture 51) and hence the original Novikov Conjecture 52.

Similarly the Baum–Connes Conjecture 59 implies the injectivity of the rationalized
classical assembly map

A : Hn(BG; Ktop) ⊗Z Q→ Kn(C∗
r (G)) ⊗Z Q .

In the next subsection we discuss how one can relate assembly maps for topological
K-theory with L-theoretic assembly maps. The results imply in particular the
following proposition.

92Proposition 92 The rational injectivity of the assembly map appearing in the
Baum–Connes Conjecture (Conjecture 59) implies the Novikov Conjecture (Con-
jecture 52).

Finally we would like to mention that by combining the results about the ratio-
nalization of A{1}→FIN from Sect. 2.3.2 with the splitting result about AFIN →VCY

from Proposition 72 we obtain the following result
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93 Proposition 93 The rational injectivity of the assembly map appearing in the
Farrell–Jones Conjecture for algebraic K-theory (Conjecture 58) implies the K-
theoretic Novikov Conjecture, i.e. the injectivity of

A : Hn(BG; K(R)) ⊗Z Q→ Kn(RG) ⊗Z Q .

94 Remark 94: (Integral Injectivity Fails.) In general the classical assembly maps
A = A{1} themselves, i.e. without rationalizing, are not injective. For example one
can use the Atiyah–Hirzebruch spectral sequence to see that for G = Z|5

H1(BG; Ktop) and H1(BG; L〈−∞〉(Z))

contain 5-torsion, whereas for every finite group G the topological K-theory ofCG
is torsionfree and the torsion in the L-theory of ZG is always 2-torsion, compare
Proposition 169 (i) and Proposition 171 (i).

Relating Topological K-Theory and L-Theory
For every real C∗-algebra A there is an isomorphism L

p
n(A)[1|2]

=̃→Kn(A)[1|2] [269].
This can be used to compare L-theory to topological K-theory and leads to the
following result.

95 Proposition 95 LetF ⊆ FIN be a family of finite subgroups of G. If the topological
K-theory assembly map

AF : HG
n

(
EF (G); Ktop)

[
1

2

]
→ Kn(C∗

r (G))

[
1

2

]

is injective, then for an arbitrary decoration j also the map

AF : HG
n

(
EF (G); L〈j〉

Z

) [1

2

]
→ L〈j〉

n (ZG)

[
1

2

]

is injective.

Proof First recall from Remark 22 that after inverting 2 there is no difference
between the different decorations and we can hence work with the p-decoration.
One can construct for any subfamily F ⊆ FIN the following commutative
diagram [200, sect. 7.5]
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HG
n

(
EF (G); Lp

Z [1|2]
)

��
A1

F

��
i1 =̃

L
p
n(ZG)[1|2]

��
j1 =̃

HG
n

(
EF (G); Lp

Q [1|2]
)

��
A2

F

��
i2 =̃

L
p
n(QG)[1|2]

��
j2

HG
n

(
EF (G); Lp

R [1|2]
)

��
A3

F

��
i3 =̃

L
p
n(RG)[1|2]

��
j3

HG
n

(
EF (G); Lp

C∗
r (?;R )[1|2]

)
��

A4
F

��
i4 =̃

L
p
n(C∗

r (G;R))[1|2]

��
j4 =̃

HG
n

(
EF (G); Ktop

R [1|2]
) ��

A5
F

��
i5

Kn(C∗
r (G;R))[1|2]

��
j5

HG
n

(
EF (G); Ktop

C [1|2]
) ��

A6
F

Kn(C∗
r (G))[1|2]

Here

Lp
Z [1|2], Lp

Q [1|2], Lp
R [1|2], LC∗

r (?;R )[1|2] ,

Ktop
R [1|2] and Ktop

C [1|2]

are covariantOr(G)-spectra (compare Sect. 2.7.2 and in particular Proposition 156)
such that the n-th homotopy group of their evaluations at G|H are given by

Lp
n(ZH)[1|2], Lp

n(QH)[1|2], Lp
n(RH)[1|2], Lp

n(C∗
r (H;R))[1|2] ,

Kn(C∗
r (H;R))[1|2] respectively Kn(C∗

r (H))[1|2] .

All horizontal maps are assembly maps induced by the projection pr : EF (G) →
pt. The maps ik and jk for k = 1, 2, 3 are induced from a change of rings. The
isomorphisms i4 and j4 come from the general isomorphism for any real C∗-
algebra A

Lp
n(A)[1|2]

=̃→ Kn(A)[1|2]

and its spectrum version [269, theorem 1.11 on page 350]. The maps i1, j1, i2 are
isomorphisms by [256, page 376] and [258, proposition 22.34 on page 252]. The
map i3 is bijective since for a finite group H we have RH = C∗

r (H;R). The maps i5
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and j5 are given by extending the scalars from R to C by induction. For every real
C∗-algebra A the composition

Kn(A)[1|2] → Kn(A ⊗R C)[1|2] → Kn(M2(A))[1|2]

is an isomorphism and hence j5 is split injective. An Or(G)-spectrum version of
this argument yields that also i5 is split injective.

96 Remark 96 One may conjecture that the right vertical maps j2 and j3 are iso-
morphisms and try to prove this directly. Then if we invert 2 everywhere the
Baum–Connes Conjecture 59 for the real reduced group C∗-algebra, would be
equivalent to the Farrell–Jones Isomorphism Conjecture for L∗(ZG)[1|2].

Applications VIII2.4.3

The Modified Trace Conjecture
Denote by ΛG the subring of Q which is obtained from Z by inverting all orders
|H| of finite subgroups H of G, i.e.

ΛG = Z
[|H|−1 | H ⊂ G, |H| < ∞]

. (2.15)

The following conjecture generalizes Conjecture 37 to the case where the group
need no longer be torsionfree. For the standard trace compare (2.7).

97 Conjecture 97: (Modified Trace Conjecture for a group G.) Let G be a group. Then
the image of the homomorphism induced by the standard trace

trC∗
r (G) : K0(C∗

r (G)) → R (2.16)

is contained in ΛG.

The following result is proved in [203, theorem 0.3].

98 Theorem 98 Let G be a group. Then the image of the composition

KG
0 (EFIN (G)) ⊗Z ΛG AFIN ⊗Z id→ K0(C∗

r (G)) ⊗Z ΛG
trC∗

r (G)→ R

is ΛG. Here AFIN is the map appearing in the Baum–Connes Conjecture 59. In
particular the Baum–Connes Conjecture 59 implies the Modified Trace Conjecture.

The original version of the Trace Conjecture due to Baum and Connes [27, page 21]
makes the stronger statement that the image of trC∗

r (G) : K0(C∗
r (G)) → R is the

additive subgroup of Q generated by all numbers 1
|H| , where H ⊂ G runs though
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all finite subgroups of G. Roy has constructed a counterexample to this version
in [274] based on her article [275]. The examples of Roy do not contradict the
Modified Trace Conjecture 97 or the Baum–Connes Conjecture 59.

The Stable Gromov–Lawson–Rosenberg Conjecture
The Stable Gromov–Lawson–Rosenberg Conjecture is a typical conjecture relating
Riemannian geometry to topology. It is concerned with the question when a given
manifold admits a metric of positive scalar curvature. To discuss its relation with
the Baum–Connes Conjecture we will need the real version of the Baum–Connes
Conjecture, compare Sect. 2.5.1.

Let ΩSpin
n (BG) be the bordism group of closed Spin-manifolds M of dimension n

with a reference map to BG. Let C∗
r (G;R) be the real reduced group C∗-algebra and

let KOn(C∗
r (G;R)) = Kn(C∗

r (G;R)) be its topological K-theory. We use KO instead
of K as a reminder that we here use the real reduced group C∗-algebra. Given an
element [u : M → BG] ∈ ΩSpin

n (BG), we can take the C∗
r (G;R)-valued index of the

equivariant Dirac operator associated to the G-covering M → M determined by u.
Thus we get a homomorphism

indC∗
r (G;R ) : ΩSpin

n (BG) → KOn(C∗
r (G;R)) . (2.17)

A Bott manifold is any simply connected closed Spin-manifold B of dimension
8 whose Â-genus Â(B) is 8. We fix such a choice, the particular choice does not
matter for the sequel. Notice that indC∗

r ({1};R )(B) ∈ KO8(R) =̃ Z is a generator
and the product with this element induces the Bott periodicity isomorphisms

KOn(C∗
r (G;R))

=̃→ KOn+8(C∗
r (G;R)). In particular

indC∗
r (G;R )(M) = indC∗

r (G;R )(M × B) , (2.18)

if we identify KOn(C∗
r (G;R)) = KOn+8(C∗

r (G;R)) via Bott periodicity.

99Conjecture 99: (Stable Gromov–Lawson–Rosenberg Conjecture.) Let M be
a closed connected Spin-manifold of dimension n ≥ 5. Let uM : M → Bπ1(M)
be the classifying map of its universal covering. Then M × Bk carries for some
integer k ≥ 0 a Riemannian metric with positive scalar curvature if and only if

indC∗
r (π1(M);R )([M, uM]) = 0 ∈ KOn

(
C∗

r (π1(M);R)
)

.

If M carries a Riemannian metric with positive scalar curvature, then the index of
the Dirac operator must vanish by the Bochner–Lichnerowicz formula [267]. The
converse statement that the vanishing of the index implies the existence of a Rie-
mannian metric with positive scalar curvature is the hard part of the conjecture.
The following result is due to Stolz. A sketch of the proof can be found in [297,
sect. 3], details are announced to appear in a different paper.
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100 Theorem 100 If the assembly map for the real version of the Baum–Connes Con-
jecture (compare Sect. 2.5.1) is injective for the group G, then the Stable Gromov–
Lawson–Rosenberg Conjecture 99 is true for all closed Spin-manifolds of dimen-
sion ≥ 5 with π1(M) =̃ G.

The requirement dim(M) ≥ 5 is essential in the Stable Gromov–Lawson–Rosenberg
Conjecture, since in dimension four new obstructions, the Seiberg–Witten invari-
ants, occur. The unstable version of this conjecture says that M carries a Rieman-
nian metric with positive scalar curvature if and only if indC∗

r (π1(M);R )([M, uM]) = 0.
Schick [278] constructs counterexamples to the unstable version using minimal
hypersurface methods due to Schoen and Yau (see also [90]). It is not known at
the time of writing whether the unstable version is true for finite fundamental
groups. Since the Baum–Connes Conjecture 59 is true for finite groups (for the
trivial reason that EFIN (G) = pt for finite groups G), Theorem 100 implies that
the Stable Gromov–Lawson Conjecture 99 holds for finite fundamental groups (see
also [270]).

The index map appearing in (2.17) can be factorized as a composition

indC∗
r (G;R ) : ΩSpin

n (BG)
D→ KOn(BG)

A→ KOn(C∗
r (G;R)) , (2.19)

where D sends [M, u] to the class of the G-equivariant Dirac operator of the G-
manifold M given by u and A = A{1} is the real version of the classical assembly
map. The homological Chern character defines an isomorphism

KOn(BG) ⊗Z Q
=̃→
⊕

p∈Z
Hn+4p(BG;Q) .

Recall that associated to M there is the Â-class

Â(M) ∈
∏

p≥0

Hp(M;Q) (2.20)

which is a certain polynomial in the Pontrjagin classes. The map D appearing
in (2.19) sends the class of u : M → BG to u∗(Â(M) ∩ [M]), i.e. the image of the
Poincaré dual of Â(M) under the map induced by u in rational homology. Hence
D([M, u]) = 0 if and only if u∗(Â(M) ∩ [M]) vanishes. For x ∈ ∏

k≥0 Hk(BG;Q)
define the higher Â-genus of (M, u) associated to x to be

Âx(M, u) =
〈
Â(M) ∪ u∗x, [M]

〉
=
〈
x, u∗

(
Â(M) ∩ [M]

)〉 ∈ Q . (2.21)

The vanishing of Â(M) is equivalent to the vanishing of all higher Â-genera
Âx(M, u). The following conjecture is a weak version of the Stable Gromov–
Lawson–Rosenberg Conjecture.

101 Conjecture 101: (Homological Gromov–Lawson–Rosenberg Conjecture.) Let G be
a group. Then for any closed Spin-manifold M, which admits a Riemannian metric
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with positive scalar curvature, the Â-genus Âx(M, u) vanishes for all maps u : M →
BG and elements x ∈ ∏

k≥0 Hk(BG;Q).

From the discussion above we obtain the following result.

102Proposition 102 If the assembly map

KOn(BG) ⊗Z Q→ KOn(C∗
r (G;R)) ⊗Z Q

is injective for all n ∈ Z, then the Homological Gromov–Lawson–Rosenberg Con-
jecture holds for G.

Generalizations and Related Conjectures 2.5

Variants of the Baum–Connes Conjecture 2.5.1

The Real Version
There is an obvious real version of the Baum–Connes Conjecture, which predicts
that for all n ∈ Z and groups G the assembly map

AR
FIN : HG

n (EF (G); Ktop
R ) → KOn(C∗

r (G;R))

is an isomorphism. Here HG
n (−; Ktop

R ) is an equivariant homology theory whose
distinctive feature is that HG

n (G|H; Ktop
R ) =̃ KOn(C∗

r (H;R)). Recall that we write
KOn(−) only to remind ourselves that the C∗-algebra we apply it to is a real C∗-
algebra, like for example the real reduced group C∗-algebra C∗

r (G;R). The following
result appears in [31].

103Proposition 103 The Baum–Connes Conjecture 59 implies the real version of the
Baum–Connes Conjecture.

In the proof of Proposition 95 we have already seen that after inverting 2 the “real
assembly map” is a retract of the complex assembly map. In particular with 2-
inverted or after rationalizing also injectivity results or surjectivity results about
the complex Baum–Connes assembly map yield the corresponding results for the
real Baum–Connes assembly map.

The Version for Maximal Group C∗-Algebras
For a group G let C∗

max(G) be its maximal group C∗-algebra, compare [242, 7.1.5
on page 229]. The maximal group C∗-algebra has the advantage that every homo-
morphism of groups φ : G → H induces a homomorphism C∗

max(G) → C∗
max(H)

of C∗-algebras. This is not true for the reduced group C∗-algebra C∗
r (G). Here
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is a counterexample: since C∗
r (F) is a simple algebra if F is a non-abelian free

group [245], there is no unital algebra homomorphism C∗
r (F) → C∗

r ({1}) = C.
One can construct a version of the Baum–Connes assembly map using an

equivariant homology theory HG
n (−; Ktop

max) which evaluated on G|H yields the
K-theory of C∗

max(H) (use Proposition 156 and a suitable modification of Ktop,
compare Sect. 2.7.3).

Since on the left hand side of a FIN -assembly map only the maximal group C∗-
algebras for finite groups H matter, and clearly C∗

max(H) = CH = C∗
r (H) for such

H, this left hand side coincides with the left hand side of the usual Baum–Connes
Conjecture. There is always a C∗-homomorphism p : C∗

max(G) → C∗
r (G) (it is an

isomorphism if and only if G is amenable [242, theorem 7.3.9 on page 243]) and
hence we obtain the following factorization of the usual Baum–Connes assembly
map

Kn(C∗
max(G))

��
Kn(p)

HG
n (EFIN (G); Ktop) ��

AFIN

��Amax
FIN mmmmmmmmmmmmm

Kn(C∗
r (G)) .

(2.22)

It is known that the map Amax
FIN is in general not surjective. The Baum–Connes

Conjecture would imply that the map is Amax
FIN is always injective, and that it is

surjective if and only if the vertical map Kn(p) is injective.
A countable group G is called K-amenable if the map p : C∗

max(G) → C∗
r (G)

induces a KK-equivalence (compare [78]). This implies in particular that the
vertical map Kn(p) is an isomorphism for all n ∈ Z. Note that for K-amenable
groups the Baum–Connes Conjecture holds if and only if the “maximal” version
of the assembly map Amax

FIN is an isomorphism for all n ∈ Z. A-T-menable groups
are K-amenable, compare Theorem 120. But K0(p) is not injective for every infinite
group which has property (T) such as for example SLn(Z) for n ≥ 3, compare for
instance the discussion in [163]. There are groups with property (T) for which
the Baum–Connes Conjecture is known (compare Sect. 2.6.1) and hence there are
counterexamples to the conjecture that Amax

FIN is an isomorphism.
In Theorem 48 and Remark 49 we discussed applications of the maximal C∗-

algebra version of the Baum–Connes Conjecture.

The Bost Conjecture
Some of the strongest results about the Baum–Connes Conjecture are proven using
the so called Bost Conjecture (see [186]). The Bost Conjecture is the version of
the Baum–Connes Conjecture, where one replaces the reduced group C∗-algebra
C∗

r (G) by the Banach algebra l1(G) of absolutely summable functions on G. Again
one can use the spectra approach (compare Sects. 2.7.2 and 2.7.3 and in partic-
ular Proposition 156) to produce a variant of equivariant K-homology denoted
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HG
n (−; Ktop

l1
) which this time evaluated on G|H yields Kn(l1(H)), the topological

K-theory of the Banach algebra l1(H).
As explained in the beginning of Chapt. 2.3, we obtain an associated assembly

map and we believe that it coincides with the one defined using a Banach-algebra
version of KK-theory in [186].

104Conjecture 104: (Bost Conjecture.) Let G be a countable group. Then the assembly
map

Al1
FIN : HG

n (EFIN (G); Ktop
l1

) → Kn(l1(G))

is an isomorphism.

Again the left hand side coincides with the left hand side of the Baum–Connes
assembly map because for finite groups H we have l1(H) = CH = C∗

r (H). There is
always a homomorphism of Banach algebras q : l1(G) → C∗

r (G) and one obtains
a factorization of the usual Baum–Connes assembly map

Kn(l1(G))

��
Kn(q)

HG
n (EFIN (G); Ktop)

��Al1
FIN mmmmmmmmmmmmm

��
AFIN

Kn(C∗
r (G)) .

Every group homomorphism G → H induces a homomorphism of Banach al-
gebras l1(G) → l1(H). So similar as in the maximal group C∗-algebra case this
approach repairs the lack of functoriality for the reduced group C∗-algebra.

The disadvantage of l1(G) is however that indices of operators tend to take values
in the topological K-theory of the group C∗-algebras, not in Kn(l1(G)). Moreover
the representation theory of G is closely related to the group C∗-algebra, whereas
the relation to l1(G) is not well understood.

For more information about the Bost Conjecture 104 see [186, 288].

The Baum–Connes Conjecture with Coefficients
The Baum–Connes Conjecture 59 can be generalized to the Baum–Connes Con-
jecture with Coefficients. Let A be a separable C∗-algebra with an action of the
countable group G. Then there is an assembly map

KKG
n (EFIN (G); A) → Kn(A� G) (2.23)

defined in terms of equivariant KK-theory, compare Sects. 2.8.3 and 2.8.4.

105Conjecture 105: (Baum–Connes Conjecture with Coefficients.) For every separa-
ble C∗-algebra A with an action of a countable group G and every n ∈ Z the
assembly map (2.23) is an isomorphism.
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There are counterexamples to the Baum–Connes Conjecture with Coefficients,
compare Remark 122. If we take A = C with the trivial action, the map (2.23)
can be identified with the assembly map appearing in the ordinary Baum–Connes
Conjecture 59.

106 Remark 106: (A Spectrum Level Description.) There is a formulation of the Baum–
Connes Conjecture with Coefficients in the framework explained in Sect. 2.7.2.
Namely, construct an appropriate covariant functor Ktop(A � GG(−)) : Or(G) →
SPECTRA such that

πn

(
Ktop(A� GG(G|H))

)
=̃ Kn(A�H)

holds for all subgroups H ⊆ G and all n ∈ Z, and consider the associated G-
homology theory HG∗ (−; Ktop(A� GG(−))). Then the map (2.23) can be identified
with the map which the projection pr : EFIN (G) → pt induces for this homology
theory.

107 Remark 107: (Farrell–Jones Conjectures with Coefficients.) One can also formu-
late a “Farrell–Jones Conjecture with Coefficients”. (This should not be confused
with the Fibered Farrell–Jones Conjecture discussed in Sect. 2.5.2.) Fix a ring S and
an action of G on it by isomorphisms of rings. Construct an appropriate covariant
functor K(S� GG(−)) : Or(G) → SPECTRA such that

πn

(
K(S� GG(G|H))

)
=̃ Kn(S�H)

holds for all subgroups H ⊆ G and n ∈ Z, where S � H is the associated twisted
group ring. Now consider the associated G-homology theory HG∗ (−; K(S�GG(−))).
There is an analogous construction for L-theory. A Farrell–Jones Conjecture with
Coefficients would say that the map induced on these homology theories by the
projection pr : EVCY(G) → pt is always an isomorphism. We do not know whether
there are counterexamples to the Farrell–Jones Conjectures with Coefficients, com-
pare Remark 122.

The Coarse Baum Connes Conjecture
We briefly explain the Coarse Baum–Connes Conjecture, a variant of the Baum–
Connes Conjecture, which applies to metric spaces. Its importance lies in the
fact that isomorphism results about the Coarse Baum–Connes Conjecture can be
used to prove injectivity results about the classical assembly map for topological
K-theory. Compare also Sect. 2.8.10.

Let X be a proper (closed balls are compact) metric space and HX a separable
Hilbert space with a faithful nondegenerate ∗-representation of C0(X), the algebra
of complex valued continuous functions which vanish at infinity. A bounded linear
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operator T has a support supp T ⊂ X × X, which is defined as the complement
of the set of all pairs (x, x′), for which there exist functions φ and φ′ ∈ C0(X)
such that φ(x) ≠ 0, φ′(x′) ≠ 0 and φ′Tφ = 0. The operator T is said to be a finite
propagation operator if there exists a constant α such that d(x, x′) ≤ α for all pairs
in the support of T. The operator is said to be locally compact if φT and Tφ are
compact for every φ ∈ C0(X). An operator is called pseudolocal if φTψ is a compact
operator for all pairs of continuous functions φ and ψ with compact and disjoint
supports.

The Roe-algebra C∗(X) = C(X, HX) is the operator-norm closure of the ∗-
algebra of all locally compact finite propagation operators on HX . The algebra
D∗(X) = D∗(X, HX) is the operator-norm closure of the pseudolocal finite prop-
agation operators. One can show that the topological K-theory of the quotient
algebra D∗(X)|C∗(X) coincides up to an index shift with the analytically defined
(non-equivariant) K-homology K∗(X), compare Sect. 2.8.1. For a uniformly con-
tractible proper metric space the coarse assembly map Kn(X) → Kn(C∗(X)) is the
boundary map in the long exact sequence associated to the short exact sequence
of C∗-algebras

0 → C∗(X) → D∗(X) → D∗(X)|C∗(X) → 0 .

For general metric spaces one first approximates the metric space by spaces with
nice local behaviour, compare [263]. For simplicity we only explain the case, where
X is a discrete metric space. Let Pd(X) the Rips complex for a fixed distance d,
i.e. the simplicial complex with vertex set X, where a simplex is spanned by every
collection of points in which every two points are a distance less than d apart.
Equip Pd(X) with the spherical metric, compare [335].

A discrete metric space has bounded geometry if for each r > 0 there exists a
N(r) such that for all x the ball of radius r centered at x ∈ X contains at most N(r)
elements.

108Conjecture 108: (Coarse Baum–Connes Conjecture.) Let X be a proper discrete
metric space of bounded geometry. Then for n = 0, 1 the coarse assembly map

colimd Kn(Pd(X)) → colimd Kn

(
C∗(Pd(X))

)
=̃ Kn(C∗(X))

is an isomorphism.

The conjecture is false if one drops the bounded geometry hypothesis. A coun-
terexample can be found in [336, sect. 8]. Our interest in the conjecture stems from
the following fact, compare [263, chapt. 8].

109Proposition 109 Suppose the finitely generated group G admits a classifying space
BG of finite type. If G considered as a metric space via a word length metric
satisfies the Coarse Baum–Connes Conjecture 108 then the classical assembly map
A : K∗(BG) → K∗(C∗

r G) which appears in Conjecture 31 is injective.



768 Wolfgang Lück, Holger Reich

The Coarse Baum–Connes Conjecture for a discrete group G (considered as a met-
ric space) can be interpreted as a case of the Baum–Connes Conjecture with
Coefficients 105 for the group G with a certain specific choice of coefficients,
compare [339].

Further information about the coarse Baum–Connes Conjecture can be found
for instance in [151, 152, 154, 263, 334, 335, 337, 340], and [338].

The Baum–Connes Conjecture for Non-Discrete Groups
Throughout this subsection let T be a locally compact second countable topological
Hausdorff group. There is a notion of a classifying space for proper T-actions ET
(see [28, sects. 1 and 2] [304, sect. I.6], [207, sect. 1]) and one can define its
equivariant topological K-theory KT

n (ET). The definition of a reduced C∗-algebra
C∗

r (T) and its topological K-theory Kn(C∗
r (T)) makes sense also for T. There is an

assembly map defined in terms of equivariant index theory

AK : KT
n (ET) → Kn(C∗

r (T)) . (2.24)

The Baum–Connes Conjecture for T says that this map is bijective for all n ∈ Z [28,
conjecture 3.15 on page 254].

Now consider the special case where T is a connected Lie group. Let K be the
family of compact subgroups of T. There is a notion of a T-CW-complex and of
a classifying space EK(T) defined as in Sects. 2.3.1 and 2.3.1. The classifying space
EK(T) yields a model for ET. Let K ⊂ T be a maximal compact subgroup. It is
unique up to conjugation. The space T|K is contractible and in fact a model for
ET (see [1, appendix, theorem A.5], [2, corollary 4.14], [207, sect. 1]). One knows
(see [28, proposition 4.22], [170])

KT
n (ET) = KT

n (T|K) =

{
RC (K) n = dim(T|K) mod 2 ,

0 n = 1 + dim(T|K) mod 2 ,

where RC (K) is the complex representation ring of K.
Next we consider the special case where T is a totally disconnected group.

Let KO be the family of compact-open subgroups of T. A T-CW-complex and
a classifying space EKO(T) for T and KO are defined similar as in Sect. 2.3.1
and 2.3.1. Then EKO(T) is a model for ET since any compact subgroup is contained
in a compact-open subgroup, and the Baum–Connes Conjecture says that the
assembly map yields for n ∈ Z an isomorphism

AKO : KT
n (EKO(T)) → Kn(C∗

r (T)) . (2.25)

For more information see [30].

Variants of the Farrell–Jones Conjecture2.5.2

Pseudoisotopy Theory
An important variant of the Farrell–Jones Conjecture deals with the pseudoisotopy
spectrum functor P, which we already discussed briefly in Sect. 2.2.4. In fact it is
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this variant of the Farrell–Jones Conjecture (and its fibered version which will be
explained in the next subsection) for which the strongest results are known at the
time of writing.

In Proposition 157 we will explain that every functor E : GROUPOIDS →
SPECTRA, which sends equivalences of groupoids to stable weak equivalences
of spectra, yields a corresponding equivariant homology theory HG

n (−; E). Now
whenever we have a functor F : SPACES → SPECTRA, we can precompose it
with the functor “classifying space” which sends a groupoid G to its classifying
space BG. (Here BG is simply the realization of the nerve of G considered as
a category.) In particular this applies to the pseudoisotopy functor P. Thus we
obtain a homology theory HG

n (−; P ◦ B) whose essential feature is that

HG
n (G|H; P ◦ B) =̃ πn(P(BH)) ,

i.e. evaluated at G|H one obtains the homotopy groups of the pseudoisotopy spec-
trum of the classifying space BH of the group H. As the reader may guess there is
the following conjecture.

110Conjecture 110: (Farrell–Jones Conjecture for Pseudoisotopies of Aspherical
Spaces.) For every group G and all n ∈ Z the assembly map

HG
n (EVCY(G); P ◦ B) → HG

n (pt; P ◦ B) =̃ πn(P(BG))

is an isomorphism. Similarly for Pdiff, the pseudoisotopy functor which is defined
using differentiable pseudoisotopies.

A formulation of a conjecture for spaces which are not necessarily aspherical will
be given in the next subsection, see in particular Remark 115.

111Remark 111: (Relating K-theory and Pseudoisotopy Theory.) We already outlined
in Sect. 2.2.4 the relationship between K-theory and pseudoisotopies. The com-
parison in positive dimensions described there can be extended to all dimensions.
Vogell constructs in [309] a version of A-theory using retractive spaces that are
bounded over Rk (compare Sects. 2.2.2 and 2.2.4). This leads to a functor A−∞
from spaces to non-connective spectra. Compare also [56, 310, 311] and [326]. We
define Wh−∞

PL via the fibration sequence

X+∧A−∞(pt) → A−∞(X) → Wh−∞
PL (X) ,

where the first map is the assembly map. The natural equivalence

Ω2Wh−∞
PL (X) � P(X)

seems to be hard to trace down in the literature but should be true. We will assume
it in the following discussion.

Precompose the functors above with the classifying space functor B to obtain
functors from groupoids to spectra. The pseudoisotopy assembly map which ap-
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pears in Conjecture 110 is an isomorphism if and only if the A-theory assembly
map

HG
n+2

(
EVCY(G); A−∞ ◦ B

) → HG
n+2(pt; A−∞ ◦ B) =̃ πn+2(A−∞(BG))

is an isomorphism. This uses a 5-lemma argument and the fact that for a fixed
spectrum E the assembly map

HG
n

(
EF (G); BGG(−)+∧E

) → HG
n

(
pt; BGG(−)+∧E

)

is always bijective. There is a linearization map A−∞(X) → K(ZΠ(X)⊕) (see
the next subsection for the notation) which is always 2-connected and a rational
equivalence if X is aspherical (recall that K denotes the non-connective K-theory
spectrum). For finer statements about the linearization map, compare also [230].

The above discussion yields in particular the following, compare [111, 1.6.7 on
page 261].

112 Proposition 112 The rational version of the K-theoretic Farrell–Jones Conjec-
ture 58 is equivalent to the rational version of the Farrell–Jones Conjecture for
Pseudoisotopies of Aspherical Spaces 110. If the assembly map in the conjecture
for pseudoisotopies is (integrally) an isomorphism for n ≤ −1, then so is the
assembly map in the K-theoretic Farrell–Jones Conjecture for n ≤ 1.

Fibered Versions
Next we present the more general fibered versions of the Farrell–Jones Conjectures.
These fibered versions have better inheritance properties, compare Sect. 2.6.4.

In the previous section we considered functors F : SPACES→ SPECTRA, like
P, Pdiff and A−∞, and the associated equivariant homology theories HG

n (−; F ◦ B)
(compare Proposition 157). Here B denotes the classifying space functor, which
sends a groupoid G to its classifying space BG. In fact all equivariant homology
theories we considered so far can be obtained in this fashion for special choices of
F. Namely, let F be one of the functors

K(RΠ(−)⊕), L〈−∞〉(RΠ(−)⊕) or Ktop(C∗
r Π(−)⊕) ,

where Π(X) denotes the fundamental groupoid of a space, RG⊕ respectively C∗
r G⊕

is the R-linear respectively the C∗-category associated to a groupoid G and K,
L〈−∞〉 and Ktop are suitable functors which send additive respectively C∗-categories
to spectra, compare the proof of Theorem 158. There is a natural equivalence
G → ΠBG. Hence, if we precompose the functors above with the classifying space
functor B we obtain functors which are equivalent to the functors we have so far
been calling

KR, L〈−∞〉
R and Ktop ,
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compare Theorem 158. Note that in contrast to these three cases the pseudoiso-
topy functor P depends on more than just the fundamental groupoid. However
Conjecture 110 above only deals with aspherical spaces.

Given a G-CW-complex Z and a functor F from spaces to spectra we obtain
a functor X 	→ F(Z ×G X) which digests G-CW-complexes. In particular we can
restrict it to the orbit category to obtain a functor

F(Z ×G −): Or(G) → SPECTRA .

According to Proposition 156 we obtain a corresponding G-homology theory

HG
n

(
−; F(Z ×G −)

)

and associated assembly maps. Note that restricted to the orbit category the functor
EG ×G − is equivalent to the classifying space functor B and so HG

n (−; F ◦ B) can
be considered as a special case of this construction.

113Conjecture 113: (Fibered Farrell–Jones Conjectures.) Let R be a ring (with invo-
lution). Let F : SPACES→ SPECTRA be one of the functors

K(RΠ(−)⊕), L〈−∞〉(RΠ(−)⊕), P(−), Pdiff(−) or A−∞(−) .

Then for every free G-CW-complex Z and all n ∈ Z the associated assembly map

HG
n

(
EVCY(G); F(Z ×G −)

) → HG
n

(
pt; F(Z ×G −)

)
=̃ πn(F(Z|G))

is an isomorphism.

114Remark 114: (A Fibered Baum–Connes Conjecture.) With the family FIN in-
stead of VCY and the functor F = Ktop(C∗

r Π(−)⊕) one obtains a Fibered Baum–
Connes Conjecture.

115Remark 115: (The Special Case Z = X̃.) Suppose Z = X̃ is the universal covering
of a space X equipped with the action of its fundamental group G = π1(X).
Then in the algebraic K- and L-theory case the conjecture above specializes to
the “ordinary” Farrell–Jones Conjecture 58. In the pseudoisotopy and A-theory
case one obtains a formulation of an (unfibered) conjecture about πn(P(X)) or
πn(A−∞(X)) for spaces X which are not necessarily aspherical.

116Remark 116: (Relation to the Original Formulation.) In [111] Farrell and Jones
formulate a fibered version of their conjectures for every (Serre) fibration Y → X
over a connected CW-complex X. In our set-up this corresponds to choosing Z to
be the total space of the fibration obtained from Y → X by pulling back along the
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universal covering projection X̃ → X. This space is a free G-space for G = π1(X).
Note that an arbitrary free G-CW-complex Z can always be obtained in this fashion
from a map Z|G → BG, compare [111, corollary 2.2.1 on page 264].

117 Remark 117: (Relating K-theory and Pseudoisotopy Theory in the Fibered Case.)
The linearization map πn(A−∞(X)) → Kn(ZΠ(X)) is always 2-connected, but for
spaces which are not aspherical it need not be a rational equivalence. Hence the
comparison results discussed in Remark 111 apply for the fibered versions only in
dimensions n ≤ 1.

The Isomorphism Conjecture for NK-Groups
In Remark 15 we defined the groups NKn(R) for a ring R. They are the simplest
kind of Nil-groups responsible for the infinite cyclic group. Since the functor KR is
natural with respect to ring homomorphism we can define NKR as the (objectwise)
homotopy cofiber of KR → KR[t]. There is an associated assembly map.

118 Conjecture 118: (Isomorphism Conjecture for NK-groups.) The assembly map

HG
n (EVCY(G); NKR) → HG

n (pt; NKR) =̃ NKn(RG)

is always an isomorphism.

There is a weak equivalence KR[t] � KR ∨ NKR of functors from GROUPOIDS to
SPECTRA. This implies for a fixed family F of subgroups of G and n ∈ Z that
whenever two of the three assembly maps

AF : HG
n (EF (G); KR[t]) → Kn(R[t][G]) ,

AF : HG
n (EF (G); KR) → Kn(R[G]) ,

AF : HG
n (EF (G); NKR) → NKn(RG)

are bijective, then so is the third (compare [19, sect. 7]). Similarly one can define
a functor ER from the categoryGROUPOIDS toSPECTRA and weak equivalences

KR[t,t−1] → ER ← KR ∨ ΣKR ∨ NKR ∨ NKR ,

which on homotopy groups corresponds to the Bass–Heller–Swan decomposition
(see Remark 15). One obtains a two-out-of-three statement as above with the
KR[t]-assembly map replaced by the KR[t,t−1]-assembly map.

Algebraic K-Theory of the Hecke Algebra
In Sect. 2.5.1 we mentioned the classifying space EKO(G) for the family of compact-
open subgroups and the Baum–Connes Conjecture for a totally disconnected
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group T. There is an analogous conjecture dealing with the algebraic K-theory
of the Hecke algebra.

Let H(T) denote the Hecke algebra of T which consists of locally constant
functions G → C with compact support and inherits its multiplicative structure
from the convolution product. The Hecke algebra H(T) plays the same role for
T as the complex group ring CG for a discrete group G and reduces to this
notion if T happens to be discrete. There is a T-homology theory HT∗ with the
property that for any open and closed subgroup H ⊆ T and all n ∈ Z we have
HT

n (T|H) = Kn(H(H)), where Kn(H(H)) is the algebraic K-group of the Hecke
algebra H(H).

119Conjecture 119: (Isomorphism Conjecture for the Hecke-Algebra.) For a totally
disconnected group T the assembly map

AKO : HT
n (EKO(T)) → HT(pt) = Kn(H(T)) (2.26)

induced by the projection pr : EKO(T) → pt is an isomorphism for all n ∈ Z.

In the case n = 0 this reduces to the statement that

colimT|H∈OrKO(T) K0(H(H)) → K0(H(T)) . (2.27)

is an isomorphism. For n ≤ −1 one obtains the statement that Kn(H(G)) = 0.
The group K0(H(T)) has an interpretation in terms of the smooth representations
of T. The G-homology theory can be constructed using an appropriate functor
E : OrKO(T) → SPECTRA and the recipe explained in Sect. 2.7.2. The desired
functor E is given in [276].

Status of the Conjectures 2.6

In this section, we give the status, at the time of writing, of some of the conjectures
mentioned earlier. We begin with the Baum–Connes Conjecture.

Status of the Baum–Connes-Conjecture 2.6.1

The Baum–Connes Conjecture with Coefficients
We begin with the Baum–Connes Conjecture with Coefficients 105. It has better
inheritance properties than the Baum–Connes Conjecture 59 itself and contains it
as a special case.

120Theorem 120: (Baum–Connes Conjecture with Coefficients and a-T-menable
Groups.) The discrete group G satisfies the Baum–Connes Conjecture with Coef-
ficients 105 and is K-amenable provided that G is a-T-menable.
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This theorem is proved in Higson–Kasparov [149, theorem 1.1], where more
generally second countable locally compact topological groups are treated (see
also [164]).

A group G is a-T-menable, or, equivalently, has the Haagerup property if G admits
a metrically proper isometric action on some affine Hilbert space. Metrically
proper means that for any bounded subset B the set {g ∈ G | gB ∩ B �= ∅}
is finite. An extensive treatment of such groups is presented in [66]. Any a-T-
menable group is countable. The class of a-T-menable groups is closed under
taking subgroups, under extensions with finite quotients and under finite products.
It is not closed under semi-direct products. Examples of a-T-menable groups are
countable amenable groups, countable free groups, discrete subgroups of SO(n, 1)
and SU(n, 1), Coxeter groups, countable groups acting properly on trees, products
of trees, or simply connected CAT(0) cubical complexes. A group G has Kazhdan’s
property (T) if, whenever it acts isometrically on some affine Hilbert space, it has
a fixed point. An infinite a-T-menable group does not have property (T). Since
SL(n,Z) for n ≥ 3 has property (T), it cannot be a-T-menable.

Using the Higson–Kasparov result Theorem 120 and known inheritance prop-
erties of the Baum–Connes Conjecture with Coefficients (compare Sect. 2.6.4
and [233, 234]) Mislin describes an even larger class of groups for which the
conjecture is known [225, theorem 5.23].

121 Theorem 121: (The Baum–Connes Conjecture with Coefficients and the Class of
Groups LHETH .) The discrete group G satisfies the Baum–Connes Conjecture
with Coefficients 105 provided that G belongs to the class LHETH .

The class LHETH is defined as follows. Let HTH be the smallest class of groups
which contains all a-T-menable groups and contains a group G if there is a 1-dimen-
sional contractible G-CW-complex whose stabilizers belong already to HTH . Let
HETH be the smallest class of groups containing HTH and containing a group G
if either G is countable and admits a surjective map p : G → Q with Q and p−1(F) in
HETH for every finite subgroup F ⊆ Q or if G admits a 1-dimensional contractible
G-CW-complex whose stabilizers belong already to HETH . Let LHETH be the
class of groups G whose finitely generated subgroups belong to HETH .

The class LHETH is closed under passing to subgroups, under extensions with
torsion free quotients and under finite products. It contains in particular one-
relator groups and Haken 3-manifold groups (and hence all knot groups). All
these facts of the class LHETH and more information can be found in [225].

Vincent Lafforgue has an unpublished proof of the Baum–Connes Conjecture
with Coefficients 105 for word-hyperbolic groups.

122 Remark 122 There are counterexamples to the Baum–Connes Conjecture with
(commutative) Coefficients 105 as soon as the existence of finitely generated groups
containing arbitrary large expanders in their Cayley graph is shown [150, sect. 7].
The existence of such groups has been claimed by Gromov [138, 139]. Details of
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the construction are described by Ghys in [134]. At the time of writing no coun-
terexample to the Baum–Connes Conjecture 59 (without coefficients) is known to
the authors.

The Baum–Connes Conjecture
Next we deal with the Baum–Connes Conjecture 59 itself. Recall that all groups
which satisfy the Baum–Connes Conjecture with Coefficients 105 do in particular
satisfy the Baum–Connes Conjecture 59.

123Theorem 123: (Status of the Baum–Connes Conjecture.) A group G satisfies the
Baum–Connes Conjecture 59 if it satisfies one of the following conditions.
(i) It is a discrete subgroup of a connected Lie groups L, whose Levi–Malcev

decomposition L = RS into the radical R and semisimple part S is such that S
is locally of the form

S = K × SO(n1, 1) × … × SO(nk, 1) × SU(m1, 1) × … × SU(ml, 1)

for a compact group K.
(ii) The group G has property (RD) and admits a proper isometric action on

a strongly bolic weakly geodesic uniformly locally finite metric space.
(iii) G is a subgroup of a word hyperbolic group.
(vi) G is a discrete subgroup of Sp(n, 1).

Proof The proof under condition 123 is due to Julg–Kasparov [166]. The proof
under condition 123 is due to Lafforgue [183] (see also [288]). Word hyperbolic
groups have property (RD) [84]. Any subgroup of a word hyperbolic group satisfies
the conditions appearing in the result of Lafforgue and hence satisfies the Baum–
Connes Conjecture 59 [222, theorem 20]. The proof under condition 123 is due to
Julg [165].

Lafforgue’s result about groups satisfying condition 123 yielded the first examples
of infinite groups which have Kazhdan’s property (T) and satisfy the Baum–Connes
Conjecture 59. Here are some explanations about condition 123.

A length function on G is a function L : G → R≥0 such that L(1) = 0, L(g) =
L(g−1) for g ∈ G and L(g1g2) ≤ L(g1) + L(g2) for g1, g2 ∈ G holds. The word length
metric LS associated to a finite set S of generators is an example. A length function
L on G has property (RD) (“rapid decay”) if there exist C, s > 0 such that for any
u =

∑
g∈G λg · g ∈ CG we have

‖ρG(u)‖∞ ≤ C ·
(∑

g∈G

|λg |2 · (1 + L(g))2s

)1|2

,
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where ‖ρG(u)‖∞ is the operator norm of the bounded G-equivariant operator
l2(G) → l2(G) coming from right multiplication with u. A group G has property
(RD) if there is a length function which has property (RD). More information about
property (RD) can be found for instance in [63, 184] and [307, chapt. 8]. Bolicity
generalizes Gromov’s notion of hyperbolicity for metric spaces. We refer to [169]
for a precise definition.

124 Remark 124 We do not know whether all groups appearing in Theorem 123 satisfy
also the Baum–Connes Conjecture with Coefficients 105.

125 Remark 125 It is not known at the time of writing whether the Baum–Connes
Conjecture is true for SL(n,Z) for n ≥ 3.

126 Remark 126: (The Status for Topological Groups.) We only dealt with the Baum–
Connes Conjecture for discrete groups. We already mentioned that Higson–Kaspa-
rov [149] treat second countable locally compact topological groups. The Baum–
Connes Conjecture for second countable almost connected groups G has been
proven by Chabert–Echterhoff–Nest [60] based on the work of Higson–Kaspa-
rov [149] and Lafforgue [186]. The Baum–Connes Conjecture with Coefficients 105
has been proved for the connected Lie groups L appearing in Theorem 123 (i)
by [166] and for Sp(n, 1) by Julg [165].

The Injectivity Part of the Baum–Connes Conjecture
In this subsection we deal with injectivity results about the assembly map ap-
pearing in the Baum–Connes Conjecture 59. Recall that rational injectivity already
implies the Novikov Conjecture 52 (see Proposition 92) and the Homological Stable
Gromov–Lawson–Rosenberg Conjecture 101 (see Propositions 102 and 76).

127 Theorem 127: (Rational Injectivity of the Baum–Connes Assembly Map.) The as-
sembly map appearing in the Baum–Connes Conjecture 59 is rationally injective
if G belongs to one of the classes of groups below.
(i) Groups acting properly isometrically on complete manifolds with non-positive

sectional curvature.
(ii) Discrete subgroups of Lie groups with finitely many path components.
(iii) Discrete subgroups of p-adic groups.

Proof The proof of assertions (i) and (ii) is due to Kasparov [171], the one of
assertion (iii) to Kasparov–Skandalis [172].
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A metric space (X, d) admits a uniform embedding into Hilbert space if there exist
a separable Hilbert space H, a map f : X → H and non-decreasing functions ρ1

and ρ2 from [0, ∞) → R such that ρ1(d(x, y)) ≤ ‖f (x) − f (y)‖ ≤ ρ2(d(x, y))
for x, y ∈ X and limr→∞ ρi(r) = ∞ for i = 1, 2. A metric is proper if for each
r > 0 and x ∈ X the closed ball of radius r centered at x is compact. The question
whether a discrete group G equipped with a proper left G-invariant metric d admits
a uniform embedding into Hilbert space is independent of the choice of d, since
the induced coarse structure does not depend on d [289, page 808]. For more
information about groups admitting a uniform embedding into Hilbert space we
refer to [87, 140].

The class of finitely generated groups, which embed uniformly into Hilbert
space, contains a subclass A, which contains all word hyperbolic groups, finitely
generated discrete subgroups of connected Lie groups and finitely generated
amenable groups and is closed under semi-direct products [338, definition 2.1,
theorem 2.2 and proposition 2.6]. Gromov [138, 139] has announced examples of
finitely generated groups which do not admit a uniform embedding into Hilbert
space. Details of the construction are described in Ghys [134].

The next theorem is proved by Skandalis–Tu–Yu [289, theorem 6.1] using ideas
of Higson [148].

128Theorem 128: (Injectivity of the Baum–Connes Assembly Map.) Let G be a count-
able group. Suppose that G admits a G-invariant metric for which G admits a uni-
form embedding into Hilbert space. Then the assembly map appearing in the
Baum–Connes Conjecture with Coefficients 105 is injective.

We now discuss conditions which can be used to verify the assumption in Theo-
rem 128.

129Remark 129: (Linear Groups.) A group G is called linear if it is a subgroup of
GLn(F) for some n and some field F. Guentner–Higson–Weinberger [140] show
that every countable linear group admits a uniform embedding into Hilbert space
and hence Theorem 128 applies.

130Remark 130: (Groups Acting Amenably on a Compact Space.) A continuous ac-
tion of a discrete group G on a compact space X is called amenable if there exists
a sequence

pn : X → M1(G) =
{

f : G → [0, 1]
∣∣∣
∑

g∈G

f (g) = 1

}

of weak-∗-continuous maps such that for each g ∈ G one has

lim
n→∞ sup

x∈X

∥∥g ∗ (pn(x) − pn(g · x)
)∥∥

1
= 0 .
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Note that a group G is amenable if and only if its action on the one-point-space is
amenable. More information about this notion can be found for instance in [5, 6].

Higson–Roe [153, theorem 1.1 and proposition 2.3] show that a finitely gener-
ated group equipped with its word length metric admits an amenable action on
a compact metric space, if and only if it belongs to the class A defined in [338,
definition 2.1], and hence admits a uniform embedding into Hilbert space. Hence
Theorem 128 implies the result of Higson [148, theorem 1.1] that the assembly
map appearing in the Baum–Connes Conjecture with Coefficients 105 is injective
if G admits an amenable action on some compact space.

Word hyperbolic groups and the class of groups mentioned in Theorem 127 (ii)
fall under the class of groups admitting an amenable action on some compact
space [153, sect. 4].

131 Remark 131 Higson [148, theorem 5.2] shows that the assembly map appearing
in the Baum–Connes Conjecture with Coefficients 105 is injective if EG admits an
appropriate compactification. This is a C∗-version of the result for K-and L-theory
due to Carlsson–Pedersen [55], compare Theorem 146.

132 Remark 132 We do not know whether the groups appearing in Theorem 127
and 128 satisfy the Baum–Connes Conjecture 59.

Next we discuss injectivity results about the classical assembly map for topological
K-theory.

The asymptotic dimension of a proper metric space X is the infimum over all
integers n such that for any R > 0 there exists a cover U of X with the property that
the diameter of the members of U is uniformly bounded and every ball of radius
R intersects at most (n + 1) elements of U (see [137, page 28]).

The next result is due to Yu [337].

133 Theorem 133: (The C∗-Theoretic Novikov Conjecture and Groups of Finite
Asymptotic Dimension.) Let G be a group which possesses a finite model for BG
and has finite asymptotic dimension. Then the assembly map in the Baum–Connes
Conjecture 31

Kn(BG) → Kn(C∗
r (G))

is injective for all n ∈ Z.

The Coarse Baum–Connes Conjecture
The coarse Baum–Connes Conjecture was explained in Sect. 2.5.1. Recall the de-
scent principle (Proposition 109): if a countable group can be equipped with a G-
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invariant metric such that the resulting metric space satisfies the Coarse Baum–
Connes Conjecture, then the classical assembly map for topological K-theory is
injective.

Recall that a discrete metric space has bounded geometry if for each r > 0 there
exists a N(r) such that for all x the ball of radius N(r) centered at x ∈ X contains
at most N(r) elements.

The next result is due to Yu [338, theorem 2.2 and proposition 2.6].

134Theorem 134: (Status of the Coarse Baum–Connes Conjecture.) The Coarse
Baum–Connes Conjecture 108 is true for a discrete metric space X of bounded ge-
ometry if X admits a uniform embedding into Hilbert space. In particular a count-
able group G satisfies the Coarse Baum–Connes Conjecture 108 if G equipped with
a proper left G-invariant metric admits a uniform embedding into Hilbert space.

Also Yu’s Theorem 133 is proven via a corresponding result about the Coarse
Baum–Connes Conjecture.

Status of the Farrell–Jones Conjecture 2.6.2

Next we deal with the Farrell–Jones Conjecture.

The Fibered Farrell–Jones Conjecture
The Fibered Farrell–Jones Conjecture 113 was discussed in Sect. 2.5.2. Recall that it
has better inheritance properties (compare Sect. 2.6.4) and contains the ordinary
Farrell–Jones Conjecture 58 as a special case.

135Theorem 135: (Status of the Fibered Farrell–Jones Conjecture.)
(i) Let G be a discrete group which satisfies one of the following conditions.

(a) There is a Lie group L with finitely many path components and G is a co-
compact discrete subgroup of L.

(b) The group G is virtually torsionfree and acts properly discontinuously, co-
compactly and via isometries on a simply connected complete nonpositively
curved Riemannian manifold.

Then
(1) The version of the Fibered Farrell–Jones Conjecture 113 for the topological

and the differentiable pseudoisotopy functor is true for G.
(2) The version of the Fibered Farrell–Jones Conjecture 113 for K-theory and

R = Z is true for G in the range n ≤ 1, i.e. the assembly map is bijective for
n ≤ 1.

Moreover we have the following statements.
(ii) The version of the Fibered Farrell–Jones Conjecture 113 for K-theory and

R = Z is true in the range n ≤ 1 for braid groups.
(iii) The L-theoretic version of the Fibered Farrell–Jones Conjecture 113 with

R = Z holds after inverting 2 for elementary amenable groups.
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Proof (i) For assertion (1) see [111, theorem 2.1 on page 263], [111, proposition 2.3]
and [119, theorem A]. Assertion (2) follows from (1) by Remark 117.

(ii) See [119].
(iii) is proven in [117, theorem 5.2]. For crystallographic groups see also [333].

A surjectivity result about the Fibered Farrell–Jones Conjecture for Pseudoiso-
topies appears as the last statement in Theorem 139.

The rational comparison result between the K-theory and the pseudoisotopy
version (see Proposition 112) does not work in the fibered case, compare Re-
mark 117. However, in order to exploit the good inheritance properties one can
first use the pseudoisotopy functor in the fibered set-up, then specialize to the
unfibered situation and finally do the rational comparison to K-theory.

136 Remark 136 The version of the Fibered Farrell–Jones Conjecture 113 for L-theory
and R = Z seems to be true if G satisfies the condition (a) appearing in Theorem 135.
Farrell and Jones [111, remark 2.1.3 on page 263] say that they can also prove this
version without giving the details.

137 Remark 137 Let G be a virtually poly-cyclic group. Then it contains a maximal
normal finite subgroup N such that the quotient G|N is a discrete cocompact
subgroup of a Lie group with finitely many path components [331, theorem 3,
remark 4 on page 200]. Hence by Sect. 2.6.4 and Theorem 135 the version of the
Fibered Farrell–Jones Conjecture 113 for the topological and the differentiable
pseudoisotopy functor, and for K-theory and R = Z in the range n ≤ 1, is true for
G. Earlier results of this type were treated for example in [100, 105].

The Farrell–Jones Conjecture
Here is a sample of some results one can deduce from Theorem 135.

138 Theorem 138: (The Farrell–Jones Conjecture and Subgroups of Lie groups.) Sup-
pose H is a subgroup of G, where G is a discrete cocompact subgroup of a Lie group
L with finitely many path components. Then
(i) The version of the Farrell–Jones Conjecture for K-theory and R = Z is true

for H rationally, i.e. the assembly map appearing in Conjecture 58 is an
isomorphism after applying − ⊗Z Q.

(ii) The version of the Farrell–Jones Conjecture for K-theory and R = Z is true
for H in the range n ≤ 1, i.e. the assembly map appearing in Conjecture 58 is
an isomorphism for n ≤ 1.



The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory 781

Proof The results follow from Theorem 135, since the Fibered Farrell–Jones Conjec-
ture 113 passes to subgroups [111, theorem A.8 on page 289] (compare Sect. 2.6.4)
and implies the Farrell–Jones Conjecture 58.

We now discuss results for torsion free groups. Recall that for R = Z the K-theoretic
Farrell–Jones Conjecture in dimensions ≤ 1 together with the L-theoretic version
implies already the Borel Conjecture 27 in dimension ≥ 5 (see Theorem 28).

A complete Riemannian manifold M is called A-regular if there exists a sequence
of positive real numbers A0, A1, A2, … such that ‖∇nK‖ ≤ An, where ‖∇nK‖ is the
supremum-norm of the n-th covariant derivative of the curvature tensor K. Every
locally symmetric space is A-regular since ∇K is identically zero. Obviously every
closed Riemannian manifold is A-regular.

139Theorem 139: (Status of the Farrell–Jones Conjecture for Torsionfree Groups.)
Consider the following conditions for the group G.
(i) G = π1(M) for a complete Riemannian manifold M with non-positive sec-

tional curvature which is A-regular.
(ii) G = π1(M) for a closed Riemannian manifold M with non-positive sectional

curvature.
(iii) G = π1(M) for a complete Riemannian manifold with negatively pinched

sectional curvature.
(iv) G is a torsion free discrete subgroup of GL(n,R).
(v) G is a torsion free solvable discrete subgroup of GL(n,C).
(vi) G = π1(X) for a non-positively curved finite simplicial complex X.
(vii) G is a strongly poly-free group in the sense of Aravinda–Farrell–Roushon [10,

definition 1.1]. The pure braid group satisfies this hypothesis.
Then
(1) Suppose that G satisfies one of the conditions (i) to (vii). Then the K-theoretic

Farrell–Jones Conjecture is true for R = Z in dimensions n ≤ 1. In particular
Conjecture 3 holds for G.

(2) Suppose that G satisfies one of the conditions (i), (ii), (iii) or (iv). Then G
satisfies the Farrell–Jones Conjecture for Torsion Free Groups and L-theory 19
for R = Z.

(3) Suppose that G satisfies (ii). Then the Farrell–Jones Conjecture for Pseudoiso-
topies of Aspherical Spaces 110 holds for G.

(4) Suppose that G satisfies one of the conditions (i), (iii), or (iv). Then the as-
sembly map appearing in the version of the Fibered Farrell–Jones Conjecture
for Pseudoisotopies 113 is surjective, provided that the G-space Z appearing
in Conjecture 113 is connected.

Proof Note that (ii) is a special case of (i) because every closed Riemannian
manifold is A-regular. If M is a pinched negatively curved complete Riemannian
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manifold, then there is another Riemannian metric for which M is negatively
curved complete and A-regular. This fact is mentioned in [115, page 216] and
attributed there to Abresch [3] and Shi [285]. Hence also (iii) can be considered
as a special case of (i). The manifold M = G\GL(n,R)|O(n) is a non-positively
curved complete locally symmetric space and hence in particular A-regular. So (iv)
is a special case of (i).

Assertion (1) under the assumption (i) is proved by Farrell–Jones in [115,
proposition 0.10 and lemma 0.12]. The earlier work [110] treated the case (ii).
Under assumption (v) assertion (1) is proven by Farrell–Linnell [117, theorem 1.1].
The result under assumption (vi) is proved by Hu [156], under assumption (vii) it
is proved by Aravinda–Farrell–Roushon [10, theorem 1.3].

Assertion (2) under assumption (i) is proven by Farrell–Jones in [115]. The
case (ii) was treated earlier in [112].

Assertion (3) is proven by Farrell–Jones in [110] and assertion (4) by Jones
in [160].

140 Remark 140 As soon as certain collapsing results (compare [114], [116]) are ex-
tended to orbifolds, the results under (4) above would also apply to groups with
torsion and in particular to SLn(Z) for arbitrary n.

The Farrell–Jones Conjecture for Arbitrary Coefficients
The following result due to Bartels–Reich [21] deals with algebraic K-theory for
arbitrary coefficient rings R. It extends Bartels–Farrell-Jones–Reich [19].

141 Theorem 141 Suppose that G is the fundamental group of a closed Rieman-
nian manifold with negative sectional curvature. Then the K-theoretic part of the
Farrell–Jones Conjecture 58 is true for any ring R, i.e. the assembly map

AVCY : HG
n (EVCY(G); KR) → Kn(RG)

is an isomorphism for all n ∈ Z.

Note that the assumption implies that G is torsion free and hence the family VCY
reduces to the family CYC of cyclic subgroups. Recall that for a regular ring R the
theorem above implies that the classical assembly

A : Hn(BG; K(R)) → Kn(RG)

is an isomorphism, compare Proposition 66 (i).

Injectivity Part of the Farrell–Jones Conjecture
The next result about the classical K-theoretic assembly map is due to Bökstedt–
Hsiang–Madsen [38].
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142Theorem 142: (Rational Injectivity of the Classical K-Theoretic Assembly Map.)
Let G be a group such that the integral homology Hj(BG;Z) is finitely generated
for each j ∈ Z. Then the rationalized assembly map

A : Hn(BG; K(Z)) ⊗Z Q =̃ HG
n (E{1}(G); KZ ) ⊗Z Q→ Kn(ZG) ⊗Z Q

is injective for all n ∈ Z.

Because of the homological Chern character (see Remark 12) we obtain for the
groups treated in Theorem 142 an injection

⊕

s+t=n

Hs(BG;Q) ⊗Q (Kt(Z) ⊗Z Q) → Kn(ZG) ⊗Z Q . (2.28)

Next we describe a generalization of Theorem 142 above from the trivial family
{1} to the familyFIN of finite subgroups due to Lück–Reich–Rognes–Varisco [208].
Let Kcon

Z : GROUPOIDS → SPECTRA be the connective version of the functor
KZ of (2.37). In particular Hn(G|H; Kcon

Z ) is isomorphic to Kn(ZH) for n ≥ 0 and
vanishes in negative dimensions. For a prime p we denote byZp the p-adic integers.
Let Kn(R;Zp) denote the homotopy groups πn(Kcon(R) p̂ ) of the p-completion of
the connective K-theory spectrum of the ring R.

143Theorem 143: (Rational Injectivity of the Farrell–Jones Assembly Map for Con-
nective K-theory.) Suppose that the group G satisfies the following two conditions:
(H) For each finite cyclic subgroup C ⊆ G and all j ≥ 0 the integral homology

group Hj(BZGC;Z) of the centralizer ZGC of C in G is finitely generated.
(K) There exists a prime p such that for each finite cyclic subgroup C ⊆ G and

each j ≥ 1 the map induced by the change of coefficients homomorphism

Kj(ZC;Zp) ⊗Z Q→ Kj(ZpC;Zp) ⊗Z Q

is injective.

Then the rationalized assembly map

AVCY : HG
n (EVCY(G); Kcon

Z ) ⊗Z Q→ Kn(ZG) ⊗Z Q

is an injection for all n ∈ Z.

144Remark 144 The methods of Chapter 2.9 apply also to Kcon
Z and yield under

assumption (H) and+(K) an injection
⊕

s+t=n,t≥0

⊕

(C)∈(F CY)

Hs(BZGC;Q) ⊗Q [WG C] θC · Kt(ZC) ⊗Z Q

→ Kn(ZG) ⊗Z Q .

Notice that in the index set for the direct sum appearing in the source we require
t ≥ 0. This reflects the fact that the result deals only with the connective K-
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theory spectrum. If one drops the restriction t ≥ 0 the Farrell–Jones Conjecture 58
predicts that the map is an isomorphism, compare Sect. 2.3.2 and Theorem 173. If
we restrict the injection to the direct sum given by C = 1, we rediscover the map
(2.28) whose injectivity follows already from Theorem 142.

The condition (K) appearing in Theorem 143 is conjectured to be true for all
primes p (compare [280,290] and [291]) but no proof is known. The weaker version
of condition (K), where C is the trivial group is also needed in Theorem 142. But that
case is known to be true and hence does not appear in its formulation. The special
case of condition (K), where j = 1 is implied by the Leopoldt Conjecture for abelian
fields (compare [229, IX, § 3]), which is known to be true [229, theorem 10.3.16].
This leads to the following result.

145 Theorem 145: (Rational Contribution of Finite Subgroups to Wh(G).) Let G be
a group. Suppose that for each finite cyclic subgroup C ⊆ G and each j ≤ 4 the
integral homology group Hj(BZGC) of the centralizer ZGC of C in G is finitely
generated. Then the map

colimH∈SubFIN (G) Wh(H) ⊗Z Q→ Wh(G) ⊗Z Q .

is injective, compare Conjecture 81.

The result above should be compared to the result which is proven using Fuglede–
Kadison determinants in [209, sect. 5], [202, theorem 9.38 on page 354]: for every
(discrete) group G and every finite normal subgroup H ⊆ G the map Wh(H) ⊗ZG

Z→ Wh(G) induced by the inclusion H → G is rationally injective.
The next result is taken from Rosenthal [271], where the techniques and results

of Carlsson–Pedersen [55] are extended from the trivial family {1} to the family of
finite subgroups FIN .

146 Theorem 146 Suppose there exists a model E for the classifying space EFIN (G)
which admits a metrizable compactification E to which the group action extends.
Suppose E

H is contractible and EH is dense in E
H for every finite subgroup H ⊂ G.

Suppose compact subsets of E become small near E − E. Then for every ring R the
assembly map

AFIN : HG
n (EFIN (G); KR) → Kn(RG)

is split injective.

A compact subset K ⊂ E is said to become small near E − E if for every neighbour-
hood U ⊂ E of a point x ∈ E − E there exists a neighbourhood V ⊂ E such that
g ∈ G and gK ∩V ≠ ∅ implies gK ⊂ U . Presumably there is an analogous result for
L〈−∞〉-theory under the assumption that K−n(RH) vanishes for finite subgroups H
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of G and n large enough. This would extend the corresponding result for the family
F = {1} which appears in Carlsson–Pedersen [55].

We finally discuss injectivity results about assembly maps for the trivial family.
The following result is due to Ferry–Weinberger [129, corollary 2.3] extending
earlier work of Farrell–Hsiang [99].

147Theorem 147 Suppose G = π1(M) for a complete Riemannian manifold of non-
positive sectional curvature. Then the L-theory assembly map

A : Hn(BG; Lε
Z ) → Lε

n(ZG)

is injective for ε = h, s.

In fact Ferry–Weinberger also prove a corresponding splitting result for the classi-
cal A-theory assembly map. In [155] Hu shows that a finite complex of non-positive
curvature is a retract of a non-positively curved PL-manifold and concludes split
injectivity of the classical L-theoretic assembly map for R = Z.

The next result due to Bartels [17] is the algebraic K- and L-theory analogue of
Theorem 133.

148Theorem 148: (The K-and L-Theoretic Novikov Conjecture and Groups of Finite
Asymptotic Dimension.) Let G be a group which admits a finite model for BG.
Suppose that G has finite asymptotic dimension. Then
(i) The assembly maps appearing in the Farrell–Jones Conjecture 11

A : Hn(BG; K(R)) → Kn(RG)

is injective for all n ∈ Z.
(ii) If furthermore R carries an involution and K−j(R) vanishes for sufficiently

large j, then the assembly maps appearing in the Farrell–Jones Conjecture 19

A : Hn(BG; L〈−∞〉(R)) → L〈−∞〉
n (RG)

is injective for all n ∈ Z.

Further results related to the Farrell–Jones Conjecture 58 can be found for instance
in [9, 33].

List of Groups Satisfying the Conjecture 2.6.3

In the following table we list prominent classes of groups and state whether they
are known to satisfy the Baum–Connes Conjecture 59 (with coefficients 105) or
the Farrell–Jones Conjecture 58 (fibered 113). Some of the classes are redundant.
A question mark means that the authors do not know about a corresponding result.
The reader should keep in mind that there may exist results of which the authors
are not aware.
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type of group Baum–Connes Con-
jecture 59 (with co-
efficients 105)

Farrell–Jones Con-
jecture 58 for K-the-
ory for R=Z (fibered
113)

Farrell–Jones Conjec-
ture 58 for L-theory
for R=Z (fibered 113)

a-T-menable groups true with coeffi-
cients (see Theorem
120)

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

amenable groups true with coeffi-
cients (see Theorem
120)

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

elementary amen-
able groups

true with coeffi-
cients (see Theorem
120)

? true fibered after in-
verting 2 (see Theo-
rem 135)

virtually poly-cyclic true with coeffi-
cients (see Theorem
120)

true rationally, true
fibered in the range
n ≤ 1 (compare Re-
mark 137)

true fibered after in-
verting 2 (see Theo-
rem 135)

torsion free virtu-
ally solvable sub-
groups of GL(n, C )

true with coeffi-
cients (see Theorem
120)

true in the range ≤1
[117, theorem 1.1]

true fibered after in-
verting 2 [117, corol-
lary 5.3]

discrete subgroups
of Lie groups with
finitely many path
components

injectivity true (see
Theorem 128 and
Remark 130)

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

subgroups of
groups which are
discrete cocom-
pact subgroups of
Lie groups with
finitely many path
components

injectivity true (see
Theorem 128 and
Remark 130)

true rationally, true
fibered in the range
n ≤ 1 (see Theorem
135)

probably true fibered
(see Remark 136). In-
jectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

linear groups injectivity is true
(see Theorem 128
and Remark 129)

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

arithmetic groups injectivity is true
(see Theorem 128
and Remark 129)

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

torsion free dis-
crete subgroups of
GL(n, R )

injectivity is true
(see Theorem 128
and Remark 130)

true in the range n ≤
1 (see Theorem 139)

true (see Theorem
139)
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type of group Baum–Connes Con-
jecture 59 (with co-
efficients 105)

Farrell–Jones Con-
jecture 58 for K-the-
ory for R=Z (fibered
113)

Farrell–Jones Conjec-
ture 58 for L-theory
for R=Z (fibered 113)

Groups with fi-
nite BG and finite
asymptotic dimen-
sion

injectivity is true
(see Theorem 133)

injectivity is true
for arbitrary coeffi-
cients R (see Theo-
rem 148)

injectivity is true for
regular R as coeffi-
cients (see Theorem
148)

G acts properly and
isometrically on a
complete Rieman-
nian manifold M
with non-positive
sectional curvature

rational injectivity is
true (see Theorem
127)

? rational injectivity
is true (see Proposi-
tions 74 and 95)

π1(M) for a com-
plete Riemannian
manifold M with
non-positive sec-
tional curvature

rationally injective
(see Theorem 127)

? injectivity true (see
Theorem 147)

π1(M) for a com-
plete Riemannian
manifold M with
non-positive sec-
tional curvature
which is A-regular

rationally injective
(see Theorem 127)

true in the range n ≤
1, rationally surjec-
tive (see Theorem
139)

true
(see Theorem 139)

π1(M) for a com-
plete Riemannian
manifold M with
pinched negative
sectional curvature

rational injectivity is
true (see Theorem
128)

true in the range n ≤
1, rationally surjec-
tive (see Theorem
139)

true
(see Theorem 139)

π1(M) for a closed
Riemannian man-
ifold M with non-
positive sectional
curvature

rationally injective
(see Theorem 127)

true fibered in the
range n ≤ 1, true
rationally (see The-
orem 139)

true
(see Theorem 139)

π1(M) for a closed
Riemannian mani-
fold M with negative
sectional curvature

true for all sub-
groups (see Theo-
rem 123)

true for all coeffi-
cients R (see Theo-
rem 141)

true
(see Theorem 139)



788 Wolfgang Lück, Holger Reich

type of group Baum–Connes Con-
jecture 59 (with co-
efficients 105)

Farrell–Jones Con-
jecture 58 for K-
theory and R = Z

(fibered 113)

Farrell–Jones Conjec-
ture 58 for L-theory
for R=Z (fibered 113)

word hyperbolic
groups

true for all sub-
groups (see Theo-
rem 123). Unpub-
lished proof with co-
efficients by V. Laf-
forgue

? injectivity is true
after inverting 2 (see
Propositions 74 and
95)

one-relator groups true with coeffi-
cients (see Theorem
121)

rational injectivity is
true for the fibered
version (see [20])

injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

torsion free one-
relator groups

true with coeffi-
cients (see Theorem
121)

true for R regular
[313, theorem 19.4
on page 249 and the-
orem 19.5 on page
250]

true after inverting 2
[47, corollary 8]

Haken 3-manifold
groups (in particu-
lar knot groups)

true with coeffi-
cients (see Theorem
121)

true in the range
n ≤ 1 for R regular
[313, theorem 19.4
on page 249 and the-
orem 19.5 on page
250]

true after inverting 2
[47, corollary 8]

SL(n, Z), n ≥ 3 injectivity is true compare Remark
140

injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

Artin’s braid group
Bn

true with coeffi-
cients [225, theorem
5.25], [277]

true fibered in the
range n ≤ 1, true ra-
tionally [119]

injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

pure braid group Cn true with coeffi-
cients

true in the range n ≤
1 (see Theorem 139)

injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

Thompson’s group
F

true with coeffi-
cients [94]

? injectivity is true af-
ter inverting 2 (see
Propositions 74 and
95)

149 Remark 149 The authors have no information about the status of these conjectures
for mapping class groups of higher genus or the group of outer automorphisms of
free groups. Since all of these spaces have finite models for EFIN (G) Theorem 143
applies in these cases.
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Inheritance Properties 2.6.4

In this Subsection we list some inheritance properties of the various conjectures.

Directed Colimits
Let {Gi | i ∈ I} be a directed system of groups. Let G = colimi∈I Gi be the colimit.
We do not require that the structure maps are injective. If the Fibered Farrell–Jones
Conjecture 113 is true for each Gi, then it is true for G [117, theorem 6.1].

Suppose that {Gi | i ∈ I} is a system of subgroups of G directed by inclusion such
that G = colimi∈I Gi. If each Gi satisfies the Farrell–Jones Conjecture 58, the Baum–
Connes Conjecture 59 or the Baum–Connes Conjecture with Coefficients 105, then
the same is true for G [32, theorem 1.1], [225, lemma 5.3]. We do not know
a reference in Farrell–Jones case. An argument in that case uses Lemma 63, the
fact that Kn(RG) = colimi∈I Kn(RGi) and that for suitable models we have EF (G) =⋃

i∈I G ×Gi EF ∩Gi (Gi).

Passing to Subgroups
The Baum–Connes Conjecture with Coefficients 105 and the Fibered Farrell–Jones
Conjecture 113 pass to subgroups, i.e. if they hold for G, then also for any subgroup
H ⊆ G. This claim for the Baum–Connes Conjecture with Coefficients 105 has been
stated in [28], a proof can be found for instance in [59, theorem 2.5]. For the Fibered
Farrell–Jones Conjecture this is proved in [111, theorem A.8 on page 289] for the
special case R = Z, but the proof also works for arbitrary rings R.

It is not known whether the Baum–Connes Conjecture 59 or the Farrell–Jones
Conjecture 58 itself passes to subgroups.

Extensions of Groups
Let p : G → K be a surjective group homomorphism. Suppose that the Baum–
Connes Conjecture with Coefficients 105 or the Fibered Farrell–Jones Conjec-
ture 113 respectively holds for K and for p−1(H) for any subgroup H ⊂ K which
is finite or virtually cyclic respectively. Then the Baum–Connes Conjecture with
Coefficients 105 or the Fibered Farrell–Jones Conjecture 113 respectively holds for
G. This is proved in [233, theorem 3.1] for the Baum–Connes Conjecture with Coef-
ficients 105, and in [111, proposition 2.2 on page 263] for the Fibered Farrell–Jones
Conjecture 113 in the case R = Z. The same proof works for arbitrary coefficient
rings.

It is not known whether the corresponding statement holds for the Baum–
Connes Conjecture 59 or the Farrell–Jones Conjecture 58 itself.

Let H ⊆ G be a normal subgroup of G. Suppose that H is a-T-menable. Then
G satisfies the Baum–Connes Conjecture with Coefficients 105 if and only if G|H
does [59, corollary 3.14]. The corresponding statement is not known for the Baum–
Connes Conjecture 59.
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Products of Groups
The group G1 × G2 satisfies the Baum–Connes Conjecture with Coefficients 105
if and only if both G1 and G2 do [59, theorem 3.17], [233, corollary 7.12]. The
corresponding statement is not known for the Baum–Connes Conjecture 59.

Let D∞ = Z|2 ∗ Z|2 denote the infinite dihedral group. Whenever a version of
the Fibered Farrell–Jones Conjecture 113 is known for G = Z × Z, G = Z × D∞
and D∞ × D∞, then that version of the Fibered Farrell–Jones Conjecture is true
for G1 × G2 if and only if it is true for G1 and G2.

Subgroups of Finite Index
It is not known whether the Baum–Connes Conjecture 59, the Baum–Connes
Conjecture with Coefficients 105, the Farrell–Jones Conjecture 58 or the Fibered
Farrell–Jones Conjecture 113 is true for a group G if it is true for a subgroup H ⊆ G
of finite index.

Groups Acting on Trees
Let G be a countable discrete group acting without inversion on a tree T. Then
the Baum–Connes Conjecture with Coefficients 105 is true for G if and only if it
holds for all stabilizers of the vertices of T. This is proved by Oyono-Oyono [234,
theorem 1.1]. This implies that Baum–Connes Conjecture with Coefficients 105 is
stable under amalgamated products and HNN-extensions. Actions on trees in the
context the Farrell–Jones Conjecture 58 will be treated in [20].

Equivariant Homology Theories2.7

We already defined the notion of a G-homology theory in Sect. 2.3.1. If G-homology
theories for different G are linked via a so called induction structure one obtains
the notion of an equivariant homology theory. In this section we give a precise
definition and we explain how a functor from the orbit category Or(G) to the
category of spectra leads to a G-homology theory (see Proposition 156) and how
more generally a functor from the category of groupoids leads to an equivariant
homology theory (see Proposition 157). We then describe the main examples of
such spectra valued functors which were already used in order to formulate the
Farrell–Jones and the Baum–Connes Conjectures in Chapt. 2.3.

The Definition of an Equivariant Homology Theory2.7.1

The notion of a G-homology theory HG∗ with values in Λ-modules for a commu-
tative ring Λ was defined in Sect. 2.3.1. We now recall the axioms of an equivariant
homology theory from [201, sect. 1]. We will see in Sect. 2.7.3 that the G-homology
theories we used in the formulation of the Baum–Connes and the Farrell–Jones
Conjectures in Chapt. 2.3 are in fact the values at G of suitable equivariant homol-
ogy theories.
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Let α : H → G be a group homomorphism. Given a H-space X, define the
induction of X with α to be the G-space indα X which is the quotient of G × X
by the right H-action (g, x) · h := (gα(h), h−1x) for h ∈ H and (g, x) ∈ G × X. If
α : H → G is an inclusion, we also write indG

H instead of indα.
An equivariant homology theory H?∗ with values in Λ-modules consists of a G-

homology theory HG∗ with values in Λ-modules for each group G together with the
following so called induction structure: given a group homomorphism α : H → G
and a H-CW-pair (X, A) such that ker(α) acts freely on X, there are for each n ∈ Z
natural isomorphisms

indα : HH
n (X, A)

=̃→ HG
n (indα(X, A))

satisfying the following conditions.
(i) Compatibility with the boundary homomorphisms

∂G
n ◦ indα = indα ◦∂H

n .
(ii) Functoriality

Let β : G → K be another group homomorphism such that ker(β ◦ α) acts
freely on X. Then we have for n ∈ Z

indβ◦α = HK
n (f1) ◦ indβ ◦ indα : HH

n (X, A) → HK
n (indβ◦α(X, A)) ,

where f1 : indβ indα(X, A)
=̃→ indβ◦α(X, A), (k, g, x) 	→ (kβ(g), x) is the nat-

ural K-homeomorphism.
(iii) Compatibility with conjugation

For n ∈ Z, g ∈ G and a G-CW-pair (X, A) the homomorphism

indc(g) : G→G : HG
n (X, A) → HG

n (indc(g) : G→G(X, A))

agrees with HG
n (f2), where the G-homeomorphism

f2 : (X, A) → indc(g) : G→G(X, A)

sends x to (1, g−1x) and c(g) : G → G sends g′ to gg′g−1.

This induction structure links the various homology theories for different groups G.
If the G-homology theory HG∗ is defined or considered only for proper G-CW-

pairs (X, A), we call it a proper G-homology theory HG∗ with values in Λ-modules.

Example 150. Let K∗ be a homology theory for (non-equivariant) CW-pairs with
values in Λ-modules. Examples are singular homology, oriented

bordism theory or topological K-homology. Then we obtain two equivariant ho-
mology theories with values in Λ-modules, whose underlying G-homology theo-
ries for a group G are given by the following constructions

HG
n (X, A) = Kn(G\X, G\A) ;

HG
n (X, A) = Kn(EG ×G (X, A)) .
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Example 151. Given a proper G-CW-pair (X, A), one can define the G-bordism
group ΩG

n (X, A) as the abelian group of G-bordism classes of maps
f : (M, ∂M) → (X, A) whose sources are oriented smooth manifolds with cocom-
pact orientation preserving proper smooth G-actions. The definition is analogous
to the one in the non-equivariant case. This is also true for the proof that this defines
a proper G-homology theory. There is an obvious induction structure coming from
induction of equivariant spaces. Thus we obtain an equivariant proper homology
theory Ω?∗.

Example 152. Let Λ be a commutative ring and let

M : GROUPOIDS→ Λ-MODULES

be a contravariant functor. For a group G we obtain a covariant functor

MG : Or(G) → Λ-MODULES

by its composition with the transport groupoid functor GG defined in (2.30).
Let HG∗ (−; M) be the G-homology theory given by the Bredon homology with
coefficients in MG as defined in Example 64. There is an induction structure
such that the collection of the HG(−; M) defines an equivariant homology theory
H?∗(−; M). This can be interpreted as the special case of Proposition 157, where the
covariant functor GROUPOIDS → Ω-SPECTRA is the composition of M with
the functor sending a Λ-module to the associated Eilenberg–MacLane spectrum.
But there is also a purely algebraic construction.

The next lemma was used in the proof of the Transitivity Principle 65.

153 Lemma 153 Let H?∗ be an equivariant homology theory with values in Λ-modules.
Let G be a group and let F a family of subgroups of G. Let Z be a G-CW-complex.
Consider N ∈ Z ∪ {∞}. For H ⊆ G let F ∩ H be the family of subgroups of H
given by {K ∩ H | K ∈ F }. Suppose for each H ⊂ G, which occurs as isotropy
group in Z, that the map induced by the projection pr : EF ∩H(H) → pt

HH
n (pr) : HH

n (EF ∩H(H)) → HH
n (pt)

is bijective for all n ∈ Z, n ≤ N.
Then the map induced by the projection pr2 : EF (G) × Z → Z

HG
n (pr2) : HG

n (EF (G) × Z) → HG
n (Z)

is bijective for n ∈ Z, n ≤ N.

Proof We first prove the claim for finite-dimensional G-CW-complexes by induc-
tion over d = dim(Z). The induction beginning dim(Z) = −1, i.e. Z = ∅, is trivial.
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In the induction step from (d − 1) to d we choose a G-pushout

∐
i∈Id

G|Hi × Sd−1 ��

��

Zd−1

��
∐

i∈Id
G|Hi × Dd �� Zd .

If we cross it with EF (G), we obtain another G-pushout of G-CW-complexes. The
various projections induce a map from the Mayer–Vietoris sequence of the latter G-
pushout to the Mayer–Vietoris sequence of the first G-pushout. By the Five-Lemma
it suffices to prove that the following maps

HG
n (pr2) : HG

n

(
EF (G) ×

∐

i∈Id

G|Hi × Sd−1
)

→ HG
n

(∐

i∈Id

G|Hi × Sd−1
)

;

HG
n (pr2) : HG

n (EF (G) × Zd−1) → HG
n (Zd−1) ;

HG
n (pr2) : HG

n

(
EF (G) ×

∐

i∈Id

G|Hi × Dd
)

→ HG
n

(∐

i∈Id

G|Hi × Dd
)

are bijective for n ∈ Z, n ≤ N. This follows from the induction hypothesis for the
first two maps. Because of the disjoint union axiom and G-homotopy invariance
of H?∗ the claim follows for the third map if we can show for any H ⊆ G which
occurs as isotropy group in Z that the map

HG
n (pr2) : HG

n (EF (G) × G|H) → HG(G|H) (2.29)

is bijective for n ∈ Z, n ≤ N. The G-map

G ×H resH
G EF (G) → G|H × EF (G) (g, x) 	→ (gH, gx)

is a G-homeomorphism where resH
G denotes the restriction of the G-action to an

H-action. Obviously resH
G EF (G) is a model for EF ∩H(H). We conclude from the

induction structure that the map (2.29) can be identified with the map

HG
n (pr) : HH

n (EF ∩H(H)) → HH(pt) ,

which is bijective for all n ∈ Z, n ≤ N by assumption. This finishes the proof in the
case that Z is finite-dimensional. The general case follows by a colimit argument
using Lemma 63.

Constructing Equivariant Homology Theories 2.7.2

Recall that a (non-equivariant) spectrum yields an associated (non-equivariant)
homology theory. In this section we explain how a spectrum over the orbit category
of a group G defines a G-homology theory. We would like to stress that our
approach using spectra over the orbit category should be distinguished from
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approaches to equivariant homology theories using spectra with G-action or the
more complicated notion of G-equivariant spectra in the sense of [190], see for
example [53] for a survey. The latter approach leads to a much richer structure but
only works for compact Lie groups.

We briefly fix some conventions concerning spectra. We always work in
the very convenient category SPACES of compactly generated spaces (see [295],

[330, I.4]). In that category the adjunction homeomorphism map(X × Y , Z)
=̃→

map(X, map(Y , Z)) holds without any further assumptions such as local compact-
ness and the product of two CW-complexes is again a CW-complex. Let SPACES+

be the category of pointed compactly generated spaces. Here the objects are (com-
pactly generated) spaces X with base points for which the inclusion of the base
point is a cofibration. Morphisms are pointed maps. If X is a space, denote by X+

the pointed space obtained from X by adding a disjoint base point. For two pointed
spaces X = (X, x) and Y = (Y , y) define their smash product as the pointed space

X ∧ Y = X × Y |
({x} × Y ∪ X × {y}) ,

and the reduced cone as

cone(X) = X × [0, 1]|
(
X × {1} ∪ {x} × [0, 1]

)
.

A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence of pointed spaces {E(n) | n ∈
Z} together with pointed maps called structure maps σ(n) : E(n) ∧ S1 → E(n + 1).
A map of spectra f : E → E′ is a sequence of maps f (n) : E(n) → E′(n) which are
compatible with the structure maps σ(n), i.e. we have f (n + 1) ◦ σ(n) = σ′(n) ◦(
f (n) ∧ idS1

)
for all n ∈ Z. Maps of spectra are sometimes called functions in the

literature, they should not be confused with the notion of a map of spectra in the
stable category (see [4, III.2.]). The category of spectra and maps will be denoted
SPECTRA. Recall that the homotopy groups of a spectrum are defined by

πi(E) = colimk→∞ πi+k(E(k)) ,

where the system πi+k(E(k)) is given by the composition

πi+k(E(k))
S→ πi+k+1(E(k) ∧ S1)

σ(k)∗→ πi+k+1(E(k + 1))

of the suspension homomorphism S and the homomorphism induced by the
structure map. A weak equivalence of spectra is a map f : E → F of spectra
inducing an isomorphism on all homotopy groups.

Given a spectrum E and a pointed space X, we can define their smash product
X ∧ E by (X ∧ E)(n) := X ∧ E(n) with the obvious structure maps. It is a classical
result that a spectrum E defines a homology theory by setting

Hn(X, A; E) = πn

(
(X+ ∪A+ cone(A+)) ∧ E

)
.

We want to extend this to G-homology theories. This requires the consideration
of spaces and spectra over the orbit category. Our presentation follows [82], where
more details can be found.
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In the sequel C is a small category. Our main example is the orbit category
Or(G), whose objects are homogeneous G-spaces G|H and whose morphisms are
G-maps.

154Definition 154 A covariant (contravariant) C-space X is a covariant (contravariant)
functor

X : C → SPACES .

A map between C-spaces is a natural transformation of such functors. Analogously
a pointed C-space is a functor from C to SPACES+ and a C-spectrum a functor to
SPECTRA.

Example 155. Let Y be a left G-space. Define the associated contravariantOr(G)-
space mapG(−, Y) by

mapG(−, Y) : Or(G) → SPACES, G|H 	→ mapG(G|H, Y) = YH .

If Y is pointed then mapG(−, Y) takes values in pointed spaces.

Let X be a contravariant and Y be a covariant C-space. Define their balanced
product to be the space

X ×C Y :=
∐

c∈ob(C)

X(c) × Y(c)| ∼ ,

where∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy) for all morphisms
φ : c → d in C and points x ∈ X(d) and y ∈ Y(c). Here xφ stands for X(φ)(x) and
φy for Y(φ)(y). If X and Y are pointed, then one defines analogously their balanced
smash product to be the pointed space

X ∧C Y =
∨

c∈ob(C)

X(c) ∧ Y(c)| ∼ .

In [82] the notation X ⊗C Y was used for this space. Doing the same construction
level-wise one defines the balanced smash product X∧C E of a contravariant pointed
C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case. Details
can be found in [82, lemma 4.4], where also cohomology theories are treated.

156Proposition 156: (Constructing G-Homology Theories.) Let E be a covariant
Or(G)-spectrum. It defines a G-homology theory HG∗ (−; E) by

HG
n (X, A; E) = πn

(
mapG

(
−, (X+ ∪A+ cone(A+))

) ∧Or(G) E
)

.

In particular we have

HG
n (G|H; E) = πn(E(G|H)) .
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Recall that we seek an equivariant homology theory and not only a G-homology
theory. If theOr(G)-spectrum in Proposition 156 is obtained from aGROUPOIDS-
spectrum in a way we will now describe, then automatically we obtain the desired
induction structure.

Let GROUPOIDS be the category of small groupoids with covariant functors
as morphisms. Recall that a groupoid is a category in which all morphisms are
isomorphisms. A covariant functor f : G0 → G1 of groupoids is called injective, if
for any two objects x, y in G0 the induced map morG0 (x, y) → morG1 (f (x), f (y))
is injective. Let GROUPOIDSinj be the subcategory of GROUPOIDS with the
same objects and injective functors as morphisms. For a G-set S we denote by
GG(S) its associated transport groupoid. Its objects are the elements of S. The set
of morphisms from s0 to s1 consists of those elements g ∈ G which satisfy gs0 = s1.
Composition in GG(S) comes from the multiplication in G. Thus we obtain for
a group G a covariant functor

GG : Or(G) → GROUPOIDSinj, G|H 	→ GG(G|H) . (2.30)

A functor of small categories F : C → D is called an equivalence if there exists
a functor G : D → C such that both F ◦ G and G ◦ F are naturally equivalent to
the identity functor. This is equivalent to the condition that F induces a bijection
on the set of isomorphisms classes of objects and for any objects x, y ∈ C the map
morC(x, y) → morD(F(x), F(y)) induced by F is bijective.

157 Proposition 157: (Constructing Equivariant Homology Theories.) Consider a co-
variant GROUPOIDSinj-spectrum

E : GROUPOIDSinj → SPECTRA .

Suppose that E respects equivalences, i.e. it sends an equivalence of groupoids to
a weak equivalence of spectra. Then E defines an equivariant homology theory
H?∗(−; E), whose underlying G-homology theory for a group G is the G-homology
theory associated to the covariantOr(G)-spectrum E ◦ GG : Or(G) → SPECTRA

in the previous Proposition 156, i.e.

HG
∗ (X, A; E) = HG

∗ (X, A; E ◦ GG) .

In particular we have

HG
n (G|H; E) =̃ HH

n (pt; E) =̃ πn(E(I(H))) ,

where I(H) denotes H considered as a groupoid with one object. The whole con-
struction is natural in E.

Proof We have to specify the induction structure for a homomorphism α : H → G.
We only sketch the construction in the special case where α is injective and A = ∅.
The details of the full proof can be found in [276, theorem 2.10 on page 21].
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The functor induced by α on the orbit categories is denoted in the same way

α : Or(H) → Or(G), H|L 	→ indα(H|L) = G|α(L) .

There is an obvious natural equivalence of functorsOr(H) → GROUPOIDSinj

T : GH → GG ◦ α .

Its evaluation at H|L is the equivalence of groupoids GH(H|L) → GG(G|α(L))
which sends an object hL to the object α(h)α(L) and a morphism given by h ∈ H
to the morphism α(h) ∈ G. The desired isomorphism

indα : HH
n (X; E ◦ GH) → HG

n (indα X; E ◦ GG)

is induced by the following map of spectra

mapH(−, X+) ∧Or(H) E ◦ GH id ∧E(T)→ mapH(−, X+) ∧Or(H) E ◦ GG ◦ α

�← (α∗ mapH(−, X+)) ∧Or(G) E ◦ GG �← mapG(−, indα X+) ∧Or(G) E ◦ GG .

Here α∗ mapH(−, X+) is the pointed Or(G)-space which is obtained from the
pointedOr(H)-space mapH(−, X+) by induction, i.e. by taking the balanced prod-
uct over Or(H) with the Or(H)-Or(G) bimodule morOr(G)(??, α(?)) [82, defini-
tion 1.8]. Notice that E◦GG ◦α is the same as the restriction of theOr(G)-spectrum
E ◦ GG along α which is often denoted by α∗(E ◦ GG) in the literature [82, defini-
tion 1.8]. The second map is given by the adjunction homeomorphism of induction
α∗ and restriction α∗ (see [82, lemma 1.9]). The third map is the homeomor-
phism of Or(G)-spaces which is the adjoint of the obvious map of Or(H)-spaces
mapH(−, X+) → α∗ mapG(−, indα X+) whose evaluation at H|L is given by indα.

K- and L-theory Spectra over Groupoids 2.7.3

Let RINGS be the category of associative rings with unit. An involution on a R is
a map R → R, r 	→ r satisfying 1 = 1, x + y = x + y and x · y = y · x for all x, y ∈ R.
Let RINGSinv be the category of rings with involution. Let C∗-ALGEBRAS be the
category of C∗-algebras. There are classical functors for j ∈ −∞ � {j ∈ Z | j ≤ 2}

K : RINGS→ SPECTRA ; (2.31)

L〈j〉 : RINGSinv → SPECTRA ; (2.32)

Ktop : C∗-ALGEBRAS→ SPECTRA . (2.33)

The construction of such a non-connective algebraic K-theory functor goes back to
Gersten [133] and Wagoner [312]. The spectrum for quadratic algebraic L-theory
is constructed by Ranicki in [258]. In a more geometric formulation it goes back to
Quinn [250]. In the topological K-theory case a construction using Bott periodicity
for C∗-algebras can easily be derived from the Kuiper–Mingo Theorem (see [281,
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sect. 2.2]). The homotopy groups of these spectra give the algebraic K-groups of
Quillen (in high dimensions) and of Bass (in negative dimensions), the decorated
quadratic L-theory groups, and the topological K-groups of C∗-algebras.

We emphasize again that in all three cases we need the non-connective versions
of the spectra, i.e. the homotopy groups in negative dimensions are non-trivial in
general. For example the version of the Farrell–Jones Conjecture where one uses
connective K-theory spectra is definitely false in general, compare Remark 15.

Now let us fix a coefficient ring R (with involution). Then sending a group
G to the group ring RG yields functors R(−) : GROUPS → RINGS, respec-
tively R(−) : GROUPS → RINGSinv, where GROUPS denotes the category of
groups. Let GROUPSinj be the category of groups with injective group homo-
morphisms as morphisms. Taking the reduced group C∗-algebra defines a functor
C∗

r : GROUPSinj → C∗-ALGEBRAS. The composition of these functors with the
functors (2.31), (2.32) and (2.33) above yields functors

KR(−) : GROUPS→ SPECTRA ; (2.34)

L〈j〉R(−) : GROUPS→ SPECTRA ; (2.35)

KtopC∗
r (−) : GROUPSinj → SPECTRA . (2.36)

They satisfy

πn(KR(G)) = Kn(RG) ;

πn(L〈j〉R(G)) = L〈j〉
n (RG) ;

πn(KtopC∗
r (G)) = Kn(C∗

r (G)) ,

for all groups G and n ∈ Z. The next result essentially says that these functors can
be extended to groupoids.

158 Theorem 158: (K- and L-theory Spectra over Groupoids.) Let R be a ring (with
involution). There exist covariant functors

KR : GROUPOIDS→ SPECTRA ; (2.37)

L〈j〉
R : GROUPOIDS→ SPECTRA ; (2.38)

Ktop : GROUPOIDSinj → SPECTRA (2.39)

with the following properties:
(i) If F : G0 → G1 is an equivalence of (small) groupoids, then the induced maps

KR(F), L〈j〉
R (F) and Ktop(F) are weak equivalences of spectra.

(ii) Let I : GROUPS → GROUPOIDS be the functor sending G to G con-
sidered as a groupoid, i.e. to GG(G|G). This functor restricts to a functor
GROUPSinj → GROUPOIDSinj.
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There are natural transformations from KR(−) to KR ◦ I, from L〈j〉R(−) to
L〈j〉

R ◦ I and from KC∗
r (−) to Ktop ◦ I such that the evaluation of each of these

natural transformations at a given group is an equivalence of spectra.
(iii) For every group G and all n ∈ Z we have

πn(KR ◦ I(G)) =̃ Kn(RG) ;

πn(L〈j〉
R ◦ Iinv(G)) =̃ L〈j〉

n (RG) ;

πn(Ktop ◦ I(G)) =̃ Kn(C∗
r (G)) .

Proof We only sketch the strategy of the proof. More details can be found in [82,
sect. 2].

Let G be a groupoid. Similar to the group ring RG one can define an R-linear cat-
egory RG by taking the free R-modules over the morphism sets of G. Composition
of morphisms is extended R-linearly. By formally adding finite direct sums one ob-
tains an additive category RG⊕. Pedersen–Weibel [237] (compare also [51]) define
a non-connective algebraic K-theory functor which digests additive categories and
can hence be applied to RG⊕. For the comparison result one uses that for every ring
R (in particular for RG) the Pedersen–Weibel functor applied to R⊕ (a small model
for the category of finitely generated free R-modules) yields the non-connective
K-theory of the ring R and that it sends equivalences of additive categories to equiv-
alences of spectra. In the L-theory case RG⊕ inherits an involution and one applies
the construction of [258, example 13.6 on page 139] to obtain the L〈1〉 = Lh-version.
The versions for j ≤ 1 can be obtained by a construction which is analogous to the
Pedersen–Weibel construction for K-theory, compare [55, sect. 4]. In the C∗-case
one obtains from G a C∗-category C∗

r (G) and assigns to it its topological K-theory
spectrum. There is a construction of the topological K-theory spectrum of a C∗-
category in [82, sect. 2]. However, the construction given there depends on two
statements, which appeared in [130, proposition 1 and proposition 3], and those
statements are incorrect, as already pointed out by Thomason in [302]. The con-
struction in [82, sect. 2] can easily be fixed but instead we recommend the reader
to look at the more recent construction of Joachim [159].

Assembly Maps in Terms of Homotopy Colimits 2.7.4

In this section we describe a homotopy-theoretic formulation of the Baum–Connes
and Farrell–Jones Conjectures. For the classical assembly maps which in our set-up
correspond to the trivial family such formulations were described in [328].

For a group G and a family F of subgroups we denote byOrF (G) the restricted
orbit category. Its objects are homogeneous spaces G|H with H ∈ F . Morphisms
are G-maps. If F = ALL we get back the (full) orbit category, i.e. Or(G) =
OrALL(G).
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159 Meta-Conjecture 159: (Homotopy-Theoretic Isomorphism Conjecture.) Let G be
a group and F a family of subgroups. Let E : Or(G) → SPECTRA be a covariant
functor. Then

AF : hocolimOrF (G) E|OrF (G) → hocolimOr(G) E � E(G|G)

is a weak equivalence of spectra.

Here hocolim is the homotopy colimit of a covariant functor to spectra, which
is itself a spectrum. The map AF is induced by the obvious functor OrF (G) →
Or(G). The equivalence hocolimOr(G) E � E(G|G) comes from the fact that G|G
is a final object in Or(G). For information about homotopy-colimits we refer
to [40], [82, sect. 3] and [88].

160 Remark 160 If we consider the map on homotopy groups that is induced by the map
AF which appears in the Homotopy-Theoretic Isomorphism Conjecture above,
then we obtain precisely the map with the same name in Meta-Conjecture 57 for
the homology theory HG∗ (−; E) associated with E in Proposition 156, compare [82,
sect. 5]. In particular the Baum–Connes Conjecture 59 and the Farrell–Jones Con-
jecture 58 can be seen as special cases of Meta–Conjecture 159.

161 Remark 161: (Universal Property of the Homotopy-Theoretic Assembly Map.)
The Homotopy-Theoretic Isomorphism Conjecture 159 is in some sense the most
conceptual formulation of an Isomorphism Conjecture because it has a univer-
sal property as the universal approximation from the left by a (weakly) excisive
F -homotopy invariant functor. This is explained in detail in [82, sect. 6]. This
universal property is important if one wants to identify different models for the
assembly map, compare e.g. [19, sect. 6] and [142].

Naturality under Induction2.7.5

Consider a covariant functor E : GROUPOIDS → SPECTRA which respects
equivalences. Let H?∗(−; E) be the associated equivariant homology theory (see
Proposition 157). Then for a group homomorphism α : H → G and H-CW-pair
(X, A) we obtain a homomorphism

indα : HH
n (X, A; E) → HG

n (indα(X, A); E)

which is natural in (X, A). Note that we did not assume that ker(α) acts freely on X.
In fact the construction sketched in the proof of Proposition 157 still works even
though indα may not be an isomorphism as it is the case if ker(α) acts freely. We
still have functoriality as described in 2.7.1 towards the beginning of Sect. 2.7.1.
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Now suppose that H and G are families of subgroups for H and G such that
α(K) ∈ G holds for all K ∈ H . Then we obtain a G-map f : indα EH (H) →
EG(G) from the universal property of EG(G). Let p : indα pt = G|α(H) → pt be
the projection. Let I : GROUPS → GROUPOIDS be the functor sending G to
GG(G|G). Then the following diagram, where the horizontal arrows are induced
from the projections to the one point space, commutes for all n ∈ Z.

HH
n (EH (H); E) ��

AH

��
HG

n (f )◦indα

HH
n (pt; E) = πn(E(I(H)))

��
HG

n (p)◦indα=πn(E(I(α)))

HG
n (EG(G); E) ��

AG

HG
n (pt; E) = πn(E(I(G))) .

If we take the special case E = KR and H = G = VCY, we get the following
commutative diagram, where the horizontal maps are the assembly maps appearing
in the Farrell–Jones Conjecture 58 and α∗ is the change of rings homomorphism
(induction) associated to α.

HH
n (EVCY(H); KR) ��

AVCY

��
HG

n (f )◦indα

Kn(RH)

��
α∗

HG
n (EVCY(G); KR) ��

AVCY

Kn(RG) .

We see that we can define a kind of induction homomorphism on the source of the
assembly maps which is compatible with the induction structure given on their
target. We get analogous diagrams for the L-theoretic version of the Farrell–Jones-
Isomorphism Conjecture 58, for the Bost Conjecture 104 and for the Baum–Connes
Conjecture for maximal group C∗-algebras (see (2.22) in Sect. 2.5.1).

162Remark 162 The situation for the Baum–Connes Conjecture 59 itself, where one
has to work with reduced C∗-algebras, is more complicated. Recall that not ev-
ery group homomorphism α : H → G induces a homomorphisms of C∗-algebras
C∗

r (H) → C∗
r (G). (It does if ker(α) is finite.) But it turns out that the source

HH
n (EFIN (H); Ktop) always admits such a homomorphism. The point is that the

isotropy groups of EFIN (H) are all finite and the spectra-valued functor Ktop

extends from GROUPOIDSinj to the category GROUPOIDSfinker, which has
small groupoids as objects but as morphisms only those functors f : G0 → G1

with finite kernels (in the sense that for each object x ∈ G0 the group homo-
morphism autG0 (x) → autG1 (f (x)) has finite kernel). This is enough to get for
any group homomorphism α : H → G an induced map indα : HH

n (X, A; Ktop) →
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HG
n (indα(X, A); Ktop) provided that X is proper. Hence one can define an induction

homomorphism for the source of the assembly map as above.
In particular the Baum–Connes Conjecture 59 predicts that for any group ho-

momorphism α : H → G there is an induced induction homomorphism α∗ :
Kn(C∗

r (H)) → Kn(C∗
r (G)) on the targets of the assembly maps although there is no

induced homomorphism of C∗-algebras C∗
r (H) → C∗

r (G) in general.

Methods of Proof2.8

In Chapt. 2.3, we formulated the Baum–Connes Conjecture 58 and the Farrell–Jones
Conjecture 59 in abstract homological terms. We have seen that this formulation
was very useful in order to understand formal properties of assembly maps. But in
order to actually prove cases of the conjectures one needs to interpret the assembly
maps in a way that is more directly related to geometry or analysis. In this chapter
we wish to explain such approaches to the assembly maps. We briefly survey some
of the methods of proof that are used to attack the Baum–Connes Conjecture 59
and the Farrell–Jones Conjecture 58.

Analytic Equivariant K-Homology2.8.1

Recall that the covariant functor Ktop : GROUPOIDSinj → SPECTRA introduced
in (2.39) defines an equivariant homology theory H?∗(−; Ktop) in the sense of
Sect. 2.7.1 such that

HG
n (G|H; Ktop) = HH

n (pt; Ktop) =





R(H) for even n ;

0 for odd n ,

holds for all groups G and subgroups H ⊆ G (see Proposition 157). Next we want
to give for a proper G-CW-complex X an analytic definition of HG

n (X; Ktop).
Consider a locally compact proper G-space X. Recall that a G-space X is called

proper if for each pair of points x and y in X there are open neighborhoods Vx of
x and Wy of y in X such that the subset {g ∈ G | gVx ∩ Wy �= ∅} of G is finite.
A G-CW-complex X is proper if and only if all its isotropy groups are finite [197,
theorem 1.23]. Let C0(X) be the C∗-algebra of continuous functions f : X → C

which vanish at infinity. The C∗-norm is the supremum norm. A generalized elliptic
G-operator is a triple (U, ρ, F), which consists of a unitary representation U : G →
B(H) of G on a Hilbert space H, a ∗-representation ρ : C0(X) → B(H) such that
ρ(f ◦ lg−1 ) = U(g) ◦ ρ(f ) ◦ U(g)−1 holds for g ∈ G, and a bounded selfadjoint G-
operator F : H → H such that the operators ρ(f )(F2 − 1) and [ρ(f ), F] are compact
for all f ∈ C0(X). Here B(H) is the C∗-algebra of bounded operators H → H,
lg−1 : H → H is given by multiplication with g−1, and [ρ(f ), F] = ρ(f )◦F − F ◦ρ(f ).
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We also call such a triple (U, ρ, F) an odd cycle. If we additionally assume that
H comes with a Z|2-grading such that ρ preserves the grading if we equip C0(X)
with the trivial grading, and F reverses it, then we call (U, ρ, F) an even cycle. This
means that we have an orthogonal decomposition H = H0 ⊕ H1 such that U , ρ and
F look like

U =

(
U0 0

0 U1

)

ρ =

(
ρ0 0

0 ρ1

)

F =

(
0 P∗

P 0

)

.

An important example of an even cocycle is described in Sect. 2.8.5. A cycle (U, ρ, f )
is called degenerate, if for each f ∈ C0(X) we have [ρ(f ), F] = ρ(f )(F2 − 1) = 0.
Two cycles (U0, ρ0, F0) and (U1, ρ1, F1) of the same parity are called homotopic,
if U0 = U1, ρ0 = ρ1 and there exists a norm continuous path Ft , t ∈ [0, 1] in
B(H) such that for each t ∈ [0, 1] the triple (U0, ρ0, Ft) is again a cycle of the
same parity. Two cycles (U0, ρ0, F0) and (U1, ρ1, F1) are called equivalent, if they
become homotopic after taking the direct sum with degenerate cycles of the same
parity. Let KG

n (C0(X)) for even n be the set of equivalence classes of even cycles
and KG

n (C0(X)) for odd n be the set of equivalence classes of odd cycles. These
become abelian groups by the direct sum. The neutral element is represented by
any degenerate cycle. The inverse of an even cycle is represented by the cycle
obtained by reversing the grading of H. The inverse of an odd cycle (U, ρ, F) is
represented by (U, ρ, −F).

A proper G-map f : X → Y induces a map of C∗-algebras C0(f ) : C0(Y) → C0(X)
by composition and thus in the obvious way a homomorphism of abelian groups
KG

0 (f ) : KG
0 (C0(X)) → KG

0 (C0(Y)). It depends only on the proper G-homotopy
class of f . One can show that this construction defines a G-homology theory on
the category of finite proper G-CW-complexes. It extends to a G-homology theory
KG∗ for all proper G-CW-complexes by

KG
n (X) = colimY∈I(X) KG

n (C0(Y)) , (2.40)

where I(X) is the set of proper finite G-CW-subcomplexes Y ⊆ X directed by
inclusion. This definition is forced upon us by Lemma 63. The groups KG

n (X)
and KG

n (C0(X)) agree for finite proper G-CW-complexes, in general they are
different.

The cycles were introduced by Atiyah [11]. The equivalence relation, the group
structure and the homological properties of KG

n (X) were established by Kas-
parov [168]. More information about analytic K-homology can be found in Higson–
Roe [154].

The Analytic Assembly Map 2.8.2

For for every G-CW-complex X the projection pr : X → pt induces a map

HG
n (X; Ktop) → HG

n (pt; Ktop) = Kn(C∗
r (G)) . (2.41)
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In the case where X is the proper G-space EFIN (G) we obtain the assembly map
appearing in the Baum–Connes Conjecture 59. We explain its analytic analogue

indG : KG
n (X) → Kn(C∗

r (G)) . (2.42)

Note that we need to assume that X is a proper G-space since KG
n (X) was only defined

for such spaces. It suffices to define the map for a finite proper G-CW-complex X.
In this case it assigns to the class in KG

n (X) = KG
n (C0(X)) represented by a cycle

(U, ρ, F) its G-index in Kn(C∗
r (G)) in the sense of Mishencko–Fomenko [223].

At least in the simple case, where G is finite, we can give its precise definition.
The odd K-groups vanish in this case and K0(C∗

r (G)) reduces to the complex
representation ring R(G). If we write F in matrix form as in (2.8.1) then P : H →
H is a G-equivariant Fredholm operator. Hence its kernel and cokernel are G-
representations and the G-index of F is defined as [ker(P)] − [coker(P)] ∈ R(G).
In the case of an infinite group the kernel and cokernel are a priori not finitely
generated projective modules over C∗

r (G), but they are after a certain pertubation.
Moreover the choice of the pertubation does not affect [ker(P)] − [coker(P)] ∈
K0(C∗

r (G)).
The identification of the two assembly maps (2.41) and (2.42) has been carried

out in Hambleton–Pedersen [142] using the universal characterization of the as-
sembly map explained in [82, sect. 6]. In particular for a proper G-CW-complex X
we have an identification HG

n (X; Ktop) =̃ KG
n (X). Notice that HG

n (X; Ktop) is defined
for all G-CW-complexes, whereas KG

n (X) has only been introduced for proper
G-CW-complexes.

Thus the Baum–Connes Conjecture 59 gives an index-theoretic interpretations
of elements in K0(C∗

r (G)) as generalized elliptic operators or cycles (U, ρ, F). We
have explained already in Sect. 2.2.8 an application of this interpretation to the
Trace Conjecture for Torsionfree Groups 37 and in Sect. 2.4.3 to the Stable Gromov–
Lawson–Rosenberg Conjecture 99.

Equivariant KK-Theory2.8.3

Kasparov [170] developed equivariant KK-theory, which we will briefly explain
next. It is one of the basic tools in the proofs of theorems about the Baum–Connes
Conjecture 59.

A G-C∗-algebra A is a C∗-algebra with a G-action by ∗-automorphisms. To any
pair of separable G-C∗-algebras (A, B) Kasparov assigns abelian groups KKG

n (A, B).
If G is trivial, we write briefly KKn(A, B). We do not give the rather complicated
definition but state the main properties.

If we equip C with the trivial G-action, then KKG
n (C0(X),C) reduces to the

abelian group KG
n (C0(X)) introduced in Sect. 2.8.1. The topological K-theory Kn(A)

of a C∗-algebra coincides with KKn(C, A). The equivariant KK-groups are covariant
in the second and contravariant in the first variable under homomorphism of C∗-
algebras. One of the main features is the bilinear Kasparov product

KKG
i (A, B) × KKG

j (B, C) → KKi+j(A, C), (α, β) 	→ α ⊗B β . (2.43)
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It is associative and natural. A homomorphism α : A → B defines an element in
KK0(A, B). There are natural descent homomorphisms

jG : KKG
n (A, B) → KKn(A�r G, B�r G) , (2.44)

where A�r G and B�r G denote the reduced crossed product C∗-algebras.

The Dirac-Dual Dirac Method 2.8.4

A G-C∗-algebra A is called proper if there exists a locally compact proper G-space X
and a G-homomorphism σ : C0(X) → B(A), f 	→ σf satisfying σf (ab) = aσf (b) =
σf (a)b for f ∈ C0(X), a, b ∈ A and for every net {fi | i ∈ I}, which converges
to 1 uniformly on compact subsets of X, we have limi∈I ‖ σfi (a) − a ‖= 0 for all
a ∈ A. A locally compact G-space X is proper if and only if C0(X) is proper as
a G-C∗-algebra.

Given a proper G-CW-complex X and a G-C∗-algebra A, we put

KKG
n (X; A) = colimY∈I(X) KKG

n (C0(Y), A) , (2.45)

where I(Y) is the set of proper finite G-CW-subcomplexes Y ⊆ X directed by
inclusion. We have KKG

n (X;C) = KG
n (X). There is an analytic index map

indA
G : KKG

n (X; A) → Kn(A�r G) , (2.46)

which can be identified with the assembly map appearing in the Baum–Connes
Conjecture with Coefficients 105. The following result is proved in Tu [305] ex-
tending results of Kasparov–Skandalis [169, 172].

163Theorem 163 The Baum–Connes Conjecture with coefficients 105 holds for
a proper G-C∗-algebra A, i.e. indA

G : KKG
n (EFIN (G); A) → Kn(A� G) is bijective.

Now we are ready to state the Dirac-dual Dirac method which is the key strategy
in many of the proofs of the Baum–Connes Conjecture 59 or the Baum–Connes
Conjecture with coefficients 105.

164Theorem 164: (Dirac-Dual Dirac Method.) Let G be a countable (discrete) group.
Suppose that there exist a proper G-C∗-algebra A, elements α ∈ KKG

i (A,C), called
the Dirac element, and β ∈ KKG

i (C, A), called the dual Dirac element, satisfying

β ⊗A α = 1 ∈ KKG
0 (C,C) .

Then the Baum–Connes Conjecture 59 is true, or, equivalently, the analytic index
map

indG : KG
n (X) → Kn(C∗

r (G))

of 2.42 is bijective.
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Proof The index map indG is a retract of the bijective index map indA
G from

Theorem 163. This follows from the following commutative diagram

KG
n (EFIN (G))

��
indG

��
−⊗C β

KKG
n (EFIN (G); A)

��
indA

G

��
−⊗Aα

KG
n (EFIN (G))

��
indG

Kn(C∗
r (G)) ��

−⊗C∗
r (G)jG(β)

Kn(A�r G) ��
−⊗Aor jG(α)

Kn(C∗
r (G))

and the fact that the composition of both the top upper horizontal arrows and
lower upper horizontal arrows are bijective.

An Example of a Dirac Element2.8.5

In order to give a glimpse of the basic ideas from operator theory we briefly
describe how to define the Dirac element α in the case where G acts by isometries
on a complete Riemannian manifold M. Let TC M be the complexified tangent
bundle and let Cliff(TC M) be the associated Clifford bundle. Let A be the proper
G-C∗-algebra given by the sections of Cliff(TC M) which vanish at infinity. Let H
be the Hilbert space L2(∧T∗

C M) of L2-integrable differential forms on TC M with
the obvious Z|2-grading coming from even and odd forms. Let U be the obvious
G-representation on H coming from the G-action on M. For a 1-form ω on M and
u ∈ H define a ∗-homomorphism ρ : A → B(H) by

ρω(u) := ω ∧ u + iω(u) .

Now D = (d + d∗) is a symmetric densely defined operator H → H and defines
a bounded selfadjoint operator F : H → H by putting F = D√

1+D2
. Then (U, ρ, F)

is an even cocycle and defines an element α ∈ KG
0 (M) = KKG

0 (C0(M),C). More
details of this construction and the construction of the dual Dirac element β under
the assumption that M has non-positive curvature and is simply connected, can
be found for instance in [307, chapt. 9].

Banach KK-Theory2.8.6

Skandalis showed that the Dirac-dual Dirac method cannot work for all groups [287]
as long as one works with KK-theory in the unitary setting. The problem is that
for a group with property (T) the trivial and the regular unitary representation
cannot be connected by a continuous path in the space of unitary representations,
compare also the discussion in [163]. This problem can be circumvented if one
drops the condition unitary and works with a variant of KK-theory for Banach
algebras as worked out by Lafforgue [183, 185, 186].
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Controlled Topology and Algebra 2.8.7

To a topological problem one can often associate a notion of “size”. We de-
scribe a prototypical example. Let M be a Riemannian manifold. Recall that an
h-cobordism W over M = ∂−W admits retractions r± : W × I → W , (x, t) 	→
r±

t (x, t) which retract W to ∂±W , i.e. which satisfy r±
0 = idW and r±

1 (W) ⊂
∂±W . Given ε > 0 we say that W is ε-controlled if the retractions can be cho-
sen in such a way that for every x ∈ W the paths (called tracks of the h-
cobordism) p±

x : I → M, t 	→ r−
1 ◦ r±

t (x) both lie within an ε-neighbourhood
of their starting point. The usefulness of this concept is illustrated by the following
theorem [124].

165Theorem 165 Let M be a compact Riemannian manifold of dimension ≥ 5. Then
there exists an ε = εM > 0, such that every ε-controlled h-cobordism over M is
trivial.

If one studies the s-Cobordism Theorem 5 and its proof one is naturally lead to
algebraic analogues of the notions above. A (geometric) R-module over the space X
is by definition a family M = (Mx)x∈X of free R-modules indexed by points of X
with the property that for every compact subset K ⊂ X the module ⊕x∈K Mx is
a finitely generated R-module. A morphism φ from M to N is an R-linear map
φ = (φy,x) : ⊕x∈X Mx → ⊕y∈XNy. Instead of specifying fundamental group data by
paths (analogues of the tracks of the h-cobordism) one can work with modules and
morphisms over the universal covering X̃, which are invariant under the operation
of the fundamental group G = π1(X) via deck transformations, i.e. we require
that Mgx = Mx and φgy,gx = φy,x. Such modules and morphisms form an additive
category which we denote by CG(X̃; R). In particular one can apply to it the non-
connective K-theory functor K (compare [237]). In the case where X is compact
the category is equivalent to the category of finitely generated free RG-modules
and hence π∗KCG(X̃; R) =̃ K∗(RG). Now suppose X̃ is equipped with a G-invariant
metric, then we will say that a morphism φ = (φy,x) is ε-controlled if φy,x = 0,
whenever x and y are further than ε apart. (Note that ε-controlled morphisms
do not form a category because the composition of two such morphisms will in
general be 2ε-controlled.)

Theorem 165 has the following algebraic analogue [251] (see also sect. 4
in [240]).

166Theorem 166 Let M be a compact Riemannian manifold with fundamental group G.
There exists an ε = εM > 0 with the following property. The K1-class of every G-
invariant automorphism of modules over M̃ which together with its inverse is
ε-controlled lies in the image of the classical assembly map

H1(BG; KR) → K1(RG) =̃ K1(CG(M̃; R)) .
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To understand the relation to Theorem 165 note that for R = Z such an ε-
controlled automorphism represents the trivial element in the Whitehead group
which is in bijection with the h-cobordisms over M, compare Theorem 5.

There are many variants to the simple concept of “metric ε-control” we used
above. In particular it is very useful to not measure size directly in M but instead
use a map p : M → X to measure size in some auxiliary space X. (For example we
have seen in Sects. 2.2.2 and 2.2.4 that “bounded” control over Rk may be used in
order to define or describe negative K-groups.)

Before we proceed we would like to mention that there are analogous control-
notions for pseudoisotopies and homotopy equivalences. The tracks of a pseu-
doisotopy f : M × I → M × I are defined as the paths in M which are given by the
composition

px : I = {x} × I ⊂ M × I
f→ M × I

p→ M

for each x ∈ M, where the last map is the projection onto the M-factor. Suppose
f : N → M is a homotopy equivalence, g : M → N its inverse and ht and h′

t are
homotopies from f ◦ g to idM respectively from g ◦ f to idN then the tracks are
defined to be the paths in M that are given by t 	→ ht(x) for x ∈ M and t 	→ f ◦h′

t(y)
for y ∈ N. In both cases, for pseudoisotopies and for homotopy equivalences, the
tracks can be used to define ε-control.

Assembly as Forget Control2.8.8

If instead of a single problem over M one defines a family of problems over
M × [1, ∞) and requires the control to tend to zero for t → ∞ in a suitable
sense, then one obtains something which is a homology theory in M. Relaxing
the control to just bounded families yields the classical assembly map. This idea
appears in [252] in the context of pseudoisotopies and in a more categorical fashion
suitable for higher algebraic K-theory in [55] and [241]. We spell out some details
in the case of algebraic K-theory, i.e. for geometric modules.

Let M be a Riemannian manifold with fundamental group G and let S(1|t) be
the space of all functions [1, ∞) → [0, ∞), t 	→ δt such that t 	→ t · δt is bounded.
Similarly let S(1) be the space of all functions t 	→ δt which are bounded. Note
that S(1|t) ⊂ S(1). A G-invariant morphism φ over M̃ × [1, ∞) is S-controlled for
S = S(1) or S(1|t) if there exists an α > 0 and a δt ∈ S (both depending on the
morphism) such that φ(x,t),(x′ ,t′) ≠ 0 implies that |t−t′| ≤ α and dM̃(x, x′) ≤ δmin{t,t′}.
We denote by CG(M̃ × [1, ∞), S; R) the category of all S-controlled morphisms.
Furthermore CG(M̃ × [1, ∞), S; R)∞ denotes the quotient category which has the
same objects, but where two morphisms are identified, if their difference factorizes
over an object which lives over M̃ × [1, N] for some large but finite number N. This
passage to the quotient category is called “taking germs at infinity”. It is a special
case of a Karoubi quotient, compare [51].
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167Theorem 167: (Classical Assembly as Forget Control.) Suppose M is aspherical,
i.e. M is a model for BG, then for all n ∈ Z the map

πn

(
KCG

(
M̃ × [1, ∞), S(1|t); R

)∞) → πn

(
KCG

(
M̃ × [1, ∞), S(1); R

)∞)

can be identified up to an index shift with the classical assembly map that appears
in Conjecture 11, i.e. with

Hn−1(BG; K(R)) → Kn−1(RG) .

Note that the only difference between the left and the right hand side is that on
the left morphism are required to become smaller in a 1|t-fashion, whereas on the
right hand side they are only required to stay bounded in the [1, ∞)-direction.

Using so called equivariant continuous control (see [7] and [19, sect. 2] for the
equivariant version) one can define an equivariant homology theory which applies
to arbitrary G-CW-complexes. This leads to a “forget-control description” for the
generalized assembly maps that appear in the Farrell–Jones Conjecture 58. Alter-
natively one can use stratified spaces and stratified Riemannian manifolds in order
to describe generalized assembly maps in terms of metric control. Compare [111,
3.6 on p. 270] and [252, appendix].

Methods to Improve Control 2.8.9

From the above description of assembly maps we learn that the problem of prov-
ing surjectivity results translates into the problem of improving control. A com-
bination of many different techniques is used in order to achieve such control-
improvements. We discuss some prototypical arguments which go back to [98]
and [102] and again restrict attention to K-theory. Of course this can only give
a very incomplete impression of the whole program which is mainly due to Farrell–
Hsiang and Farrell–Jones. The reader should consult [120] and [162] for a more
detailed survey.

We restrict to the basic case, where M is a compact Riemannian manifold with
negative sectional curvature. In order to explain a contracting property of the
geodesic flow Φ : R × SM̃ → SM̃ on the unit sphere bundle SM̃, we introduce
the notion of foliated control. We think of SM̃ as a manifold equipped with the
one-dimensional foliation by the flow lines of Φ and equip it with its natural
Riemannian metric. Two vectors v and w in SM̃ are called foliated (α, δ)-controlled
if there exists a path of length α inside one flow line such that v lies within distance
δ|2 of the starting point of that path and w lies within distance δ|2 of its endpoint.

Two vectors v and w ∈ SM̃ are called asymptotic if the distance between their
associated geodesic rays is bounded. These rays will then determine the same point
on the sphere at infinity which can be introduced to compactify M̃ to a disk. Recall
that the universal covering of a negatively curved manifold is diffeomorphic toRn.



810 Wolfgang Lück, Holger Reich

Suppose v and w are α-controlled asymptotic vectors, i.e. their distance is smaller
than α > 0. As a consequence of negative sectional curvature the vectors Φt(v) and
Φt(w) are foliated (Cα, δt)-controlled, where C > 1 is a constant and δt > 0 tends
to zero when t tends to ∞. So roughly speaking the flow contracts the directions
transverse to the flow lines and leaves the flow direction as it is, at least if we only
apply it to asymptotic vectors.

This property can be used in order to find foliated (α, δ)-controlled represen-
tatives of K-theory classes with arbitrary small δ if one is able to define a suitable
transfer from M to SM̃, which yields representatives whose support is in an asymp-
totic starting position for the flow. Here one needs to take care of the additional
problem that in general such a transfer may not induce an isomorphism in K-
theory.

Finally one is left with the problem of improving foliated control to ordinary
control. Corresponding statements are called “Foliated Control Theorems”. Com-
pare [18, 101, 103, 104] and [108].

If such an improvement were possible without further hypothesis, we could
prove that the classical assembly map, i.e. the assembly map with respect to the
trivial family is surjective. We know however that this is not true in general. It fails
for example in the case of topological pseudoisotopies or for algebraic K-theory
with arbitrary coefficients. In fact the geometric arguments that are involved in
a “Foliated Control Theorem” need to exclude flow lines in SM̃ which correspond
to “short” closed geodesic loops in SM. But the techniques mentioned above can
be used in order to achieve ε-control for arbitrary small ε > 0 outside of a suitably
chosen neighbourhood of “short” closed geodesics. This is the right kind of control
for the source of the assembly map which involves the family of cyclic subgroups.
(Note that a closed a loop in M determines the conjugacy class of a maximal infinite
cyclic subgroup inside G = π1(M).) We see that even in the torsionfree case the
class of cyclic subgroups of G naturally appears during the proof of a surjectivity
result.

Another source for processes which improve control are expanding self-maps.
Think for example of an n-torus Rn|Zn and the self-map fs which is induced
by ms : Rn → R

n, x → sx for a large positive integer s. If one pulls an auto-
morphism back along such a map one can improve control, but unfortunately
the new automorphism describes a different K-theory class. Additional algebraic
arguments nevertheless make this technique very successful. Compare for exam-
ple [98]. Sometimes a clever mixture between flows and expanding self-maps is
needed in order to achieve the goal, compare [105]. Recent work of Farrell–Jones
(see [114–116] and [161]) makes use of a variant of the Cheeger–Fukaya-Gromov
collapsing theory.

168 Remark 168: (Algebraicizing the Farrell–Jones Approach.) In this Subsection we
sketched some of the geometric ideas which are used in order to obtain control
over an h-cobordism, a pseudisotopy or an automorphism of a geometric module
representing a single class in K1. In Sect. 2.8.8 we used families over the cone
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M × [1, ∞) in order to described the whole algebraic K-theory assembly map
at once in categorical terms without ever referring to a single K-theory element.
The recent work [21] shows that the geometric ideas can be adapted to this more
categorical set-up, at least in the case where the group is the fundamental group of
a Riemannian manifold with strictly negative curvature. However serious difficul-
ties had to be overcome in order to achieve this. One needs to formulate and prove
a Foliated Control Theorem in this context and also construct a transfer map to
the sphere bundle for higher K-theory which is in a suitable sense compatible with
the control structures.

The Descent Principle 2.8.10

In Theorem 167 we described the classical assembly map as a forget control map
using G-invariant geometric modules over M̃ × [1, ∞). If in that context one does
not require the modules and morphisms to be invariant under the G-action one
nevertheless obtains a forget control functor between additive categories for which
we introduce the notation

D(1|t) = C
(
M̃ × [1, ∞), S(1|t); R

)∞ → D(1) = C
(
M̃ × [1, ∞), S(1); R

)∞
.

Applying K-theory yields a version of a “coarse” assembly map which is the
algebraic K-theory analogue of the map described in Sect. 2.5.1. A crucial feature
of such a construction is that the left hand side can be interpreted as a locally finite
homology theory evaluated on M̃. It is hence an invariant of the proper homotopy
type of M̃. Compare [7] and [326]. It is usually a lot easier to prove that this coarse
assembly map is an equivalence. Suppose for example that M has non-positive
curvature, choose a point x0 ∈ M (this will destroy the G-invariance) and with
increasing t ∈ [1, ∞) move the modules along geodesics towards x0 . In this way one
can show that the coarse assembly map is an isomorphism. Such coarse assembly
maps exist also in the context of algebraic L-theory and topological K-theory,
compare [151, 263].

Results about these maps (compare e.g. [17, 55, 336, 338]) lead to injectivity
results for the classical assembly map by the “descent principle” (compare [52, 55,
263]) which we will now briefly describe in the context of algebraic K-theory. (We
already stated an analytic version in Sect. 2.5.1.) For a spectrum E with G-action
we denote by EhG the homotopy fixed points. Since there is a natural map from
fixed points to homotopy fixed points we obtain a commutative diagram

K(D(1|t))G ��

��

K(D(1))G

��

K(D(1|t))hG �� K(D(1))hG .
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If one uses a suitable model K-theory commutes with taking fixed points and
hence the upper horizontal map can be identified with the classical assembly map
by Theorem 167. Using that K-theory commutes with infinite products [54], one
can show by an induction over equivariant cells, that the vertical map on the
left is an equivalence. Since we assume that the map K(D(1|t)) → K(D(1)) is
an equivalence, a standard property of the homotopy fixed point construction
implies that the lower horizontal map is an equivalence. It follows that the upper
horizontal map and hence the classical assembly map is split injective. A version of
this argument which involves the assembly map for the family of finite subgroups
can be found in [271].

Comparing to Other Theories2.8.11

Every natural transformation of G-homology theories leads to a comparison be-
tween the associated assembly maps. For example one can compare topological
K-theory to periodic cyclic homology [72], i.e. for every Banach algebra completion
A(G) of CG inside C∗

r (G) there exists a commutative diagram

K∗(BG)

��

�� K∗(A(G))

��

H∗(BG; HP∗(C)) �� HP∗(A(G)) .

This is used in [72] to prove injectivity results for word hyperbolic groups. Similar
diagrams exist for other cyclic theories (compare for example [246]).

A suitable model for the cyclotomic trace trc : Kn(RG) → TCn(RG) from (con-
nective) algebraic K-theory to topological cyclic homology [38] leads for every
family F to a commutative diagram

Hn(EF (G); Kcon
Z )

��

�� Kcon
n (ZG)

��

Hn(EF (G); TCZ ) �� TCn(ZG) .

Injectivity results about the left hand and the lower horizontal map lead to in-
jectivity results about the upper horizontal map. This is the principle behind
Theorem 142 and 143.

Computations2.9

Our ultimate goal is to compute K- and L-groups such as Kn(RG), L〈−∞〉
n (RG) and

Kn(C∗
r (G)). Assuming that the Baum–Connes Conjecture 59 or the Farrell–Jones

Conjecture 58 is true, this reduces to the computation of the left hand side of the
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corresponding assembly map, i.e. to HG
n (EFIN (G); Ktop), HG

n (EVCY(G); KR) and
HG

n (EVCY(G); L〈−∞〉
R ). This is much easier since here we can use standard methods

from algebraic topology such as spectral sequences, Mayer–Vietoris sequences and
Chern characters. Nevertheless such computations can be pretty hard. Roughly
speaking, one can obtain a general reasonable answer after rationalization, but
integral computations have only been done case by case and no general pattern is
known.

K- and L-Groups for Finite Groups 2.9.1

In all these computations the answer is given in terms of the values of Kn(RG),
L〈−∞〉

n (RG) and Kn(C∗
r (G)) for finite groups G. Therefore we briefly recall some of

the results known for finite groups focusing on the case R = Z

Topological K-Theory for Finite Groups
Let G be a finite group. By rF(G), we denote the number of isomorphism classes of
irreducible representations of G over the field F. By rR (G;R), rR (G;C), respectively
rR (G;H) we denote the number of isomorphism classes of irreducible real G-
representations V , which are of real, complex respectively of quaternionic type,
i.e. autRG(V) is isomorphic to the field of real numbers R, complex numbers C or
quaternions H. Let RO(G) respectively R(G) be the real respectively the complex
representation ring.

Notice that CG = l1(G) = C∗
r (G) = C∗

max(G) holds for a finite group, and
analogous for the real versions.

169Proposition 169 Let G be a finite group.
(i) We have

Kn(C∗
r (G)) =̃





R(G) =̃ ZrC (G) for n even ;

0 for n odd .

(ii) There is an isomorphism of topological K-groups

Kn(C∗
r (G;R)) =̃ Kn(R)rR (G;R ) × Kn(C)rR (G;C ) × Kn(H)rR (G;H ) .

Moreover Kn(C) is 2-periodic with valuesZ, 0 for n = 0, 1, Kn(R) is 8-periodic
with values Z, Z|2, Z|2, 0, Z, 0, 0, 0 for n = 0, 1, … , 7 and Kn(H) = Kn+4(R)
for n ∈ Z.

Proof One gets isomorphisms of C∗-algebras

C∗
r (G) =̃

rC (G)∏

j=1

Mni (C)
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and

C∗
r (G;R) =̃

rR (G;R )∏

i=1

Mmi (R) ×
rR (G;C )∏

i=1

Mni (C) ×
rR (G;H )∏

i=1

Mpi (H)

from [283, theorem 7 on page 19, corollary 2 on page 96, page 102, page 106]. Now
the claim follows from Morita invariance and the well-known values for Kn(R),
Kn(C) and Kn(H) (see for instance [301, page 216]).

To summarize, the values of Kn(C∗
r (G)) and Kn(C∗

r (G;R)) are explicitly known for
finite groups G and are in the complex case in contrast to the real case always
torsion free.

Algebraic K-Theory for Finite Groups
Here are some facts about the algebraic K-theory of integral group rings of finite
groups.

170 Proposition 170 Let G be a finite group.
(i) Kn(ZG) = 0 for n ≤ −2.
(ii) We have

K−1(ZG) =̃ Zr ⊕ (Z|2)s ,

where

r = 1 − rQ (G) +
∑

p | |G|
rQ p (G) − rFp (G)

and the sum runs over all primes dividing the order of G. (Recall that rF(G)
denotes the number of isomorphism classes of irreducible representations of
G over the field F.) There is an explicit description of the integer s in terms of
global and local Schur indices [58]. If G contains a normal abelian subgroup
of odd index, then s = 0.

(iii) The group K̃0(ZG) is finite.
(iv) The group Wh(G) is a finitely generated abelian group and its rank is rR (G) −

rQ (G).
(v) The groups Kn(ZG) are finitely generated for all n ∈ Z.
(vi) We have K−1(ZG) = 0, K̃0(ZG) = 0 and Wh(G) = 0 for the following finite

groups G = {1}, Z|2, Z|3, Z|4, Z|2 × Z|2, D6, D8, where Dm is the dihedral
group of order m.
If p is a prime, then K−1(Z[Z|p]) = K−1(Z[Z|p × Z|p]) = 0.
We have

K−1(Z[Z|6]) =̃ Z, K̃0(Z[Z|6]) = 0, Wh(Z|6) = 0

K−1(Z[D12]) =̃ Z, K̃0(Z[D12]) = 0, Wh(D12) = 0 .
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(vii) Let Wh2(G) denote the cokernel of the assembly map

H2(BG; K(Z)) → K2(ZG) .

We have Wh2(G) = 0 for G = {1},Z|2,Z|3 andZ|4. Moreover | Wh2(Z|6)| ≤ 2,
| Wh2(Z|2 × Z|2)| ≥ 2 and Wh2(D6) = Z|2.

Proof (i) and (ii) are proved in [58].
(iii) is proved in [298, proposition 9.1 on page 573].
(iv) This is proved for instance in [232].
(v) See [181, 248].
(vi) and (vii) The computation K−1(ZG) = 0 for G = Z|p orZ|p×Z|p can be found
in [22, theorem 10.6, p. 695] and is a special case of [58].

The vanishing of K̃0(ZG) is proven for G = D6 in [262, theorem 8.2] and
for G = D8 in [262, theorem 6.4]. The cases G = Z|2,Z|3,Z|4,Z|6, and (Z|2)2 are
treated in [79, corollary 5.17]. Finally, K̃0(ZD12) = 0 follows from [79, theorem 50.29
on page 266] and the fact that QD12 as a Q-algebra splits into copies of Q and
matrix algebras overQ, so its maximal order has vanishing class group by Morita
equivalence.

The claims about Wh2(Z|n) for n = 2, 3, 4, 6 and for Wh2((Z|2)2) are taken
from [85, proposition 5], [89, p. 482] and [296, pp. 218 and 221].

We get K2(ZD6) =̃ (Z|2)3 from [296, theorem 3.1]. The assembly map
H2(BZ|2; K(Z)) → K2(Z[Z|2]) is an isomorphism by [89, theorem on p. 482].
Now construct a commutative diagram

H2(BZ|2; K(Z)) ��
=̃

��=̃

H2(BD6; K(Z))

��

K2(Z[Z|2]) �� K2(ZD6)

whose lower horizontal arrow is split injective and whose upper horizontal arrow
is an isomorphism by the Atiyah–Hirzebruch spectral sequence. Hence the right
vertical arrow is split injective and Wh2(D6) = Z|2.

Let us summarize. We already mentioned that a complete computation of Kn(Z) is
not known. Also a complete computation of K̃0(Z[Z|p]) for arbitrary primes p is
out of reach (see [221, pp. 29,30]). There is a complete formula for K−1(ZG) and
Kn(ZG) = 0 for n ≤ −2 and one has a good understanding of Wh(G) (see [232]).
We have already mentioned Borel’s formula for Kn(Z) ⊗Z Q for all n ∈ Z (see
Remark 14). For more rational information see also 177.
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Algebraic L-Theory for Finite Groups
Here are some facts about L-groups of finite groups.

171 Proposition 171 Let G be a finite group. Then
(i) For each j ≤ 1 the groups L

〈j〉
n (ZG) are finitely generated as abelian groups

and contain no p-torsion for odd primes p. Moreover, they are finite for odd n.
(ii) For every decoration 〈j〉 we have

L〈j〉
n (ZG)[1|2] =̃ L〈j〉

n (RG)[1|2] =̃






Z[1|2]rR (G) n ≡ 0 (4) ;

Z[1|2]rC (G) n ≡ 2 (4) ;

0 n ≡ 1, 3 (4) .

(iii) If G has odd order and n is odd, then Lε
n(ZG) = 0 for ε = p, h, s.

Proof (i) See for instance [143].
(ii) See [258, proposition 22.34 on page 253].
(iii) See [13] or [143].

The L-groups of ZG are pretty well understood for finite groups G. More informa-
tion about them can be found in [143].

Rational Computations for Infinite Groups2.9.2

Next we state what is known rationally about the K- and L-groups of an infinite
(discrete) group, provided the Baum–Connes Conjecture 59 or the relevant version
of the Farrell–Jones Conjecture 58 is known.

In the sequel let (F CY) be the set of conjugacy classes (C) for finite cyclic
subgroups C ⊆ G. For H ⊆ G let NGH = {g ∈ G | gHg−1 = H} be its normalizer,
let ZGH = {g ∈ G | ghg−1 = h for h ∈ H} be its centralizer, and put

WGH := NGH|(H · ZGH) ,

where H · ZGH is the normal subgroup of NGH consisting of elements of the form
hu for h ∈ H and u ∈ ZGH. Notice that WGH is finite if H is finite.

Recall that the Burnside ring A(G) of a finite group is the Grothendieck group
associated to the abelian monoid of isomorphism classes of finite G-sets with
respect to the disjoint union. The ring multiplication comes from the cartesian
product. The zero element is represented by the empty set, the unit is represented
by G|G = pt. For a finite group G the abelian groups Kq(C∗

r (G)), Kq(RG) and
L〈−∞〉(RG) become modules over A(G) because these functors come with a Mackey
structure and [G|H] acts by indG

H ◦ resH
G .
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We obtain a ring homomorphism

χG : A(G) →
∏

(H)∈FIN

Z, [S] 	→ (|SH|)(H)∈FIN ,

which sends the class of a finite G-set S to the element given by the cardinalities
of the H-fixed point sets. This is an injection with finite cokernel. This leads to an
isomorphism ofQ-algebras

χG
Q := χG ⊗Z idQ : A(G) ⊗Z Q

=̃→
∏

(H)∈(FIN )

Q . (2.47)

For a finite cyclic group C let

θC ∈ A(C) ⊗Z Z[1||C|] (2.48)

be the element which is sent under the isomorphism χC
Q : A(C)⊗ZQ

=̃→∏
(H)∈FIN Q

of (2.47) to the element, whose entry is one if (H) = (C) and is zero if (H) �=
(C). Notice that θC is an idempotent. In particular we get a direct summand
θC · Kq(C∗

r (C)) ⊗Z Q in Kq(C∗
r (C)) ⊗Z Q and analogously for Kq(RC) ⊗Z Q and

L〈−∞〉(RG) ⊗Z Q.

Rationalized Topological K-Theory for Infinite Groups
The next result is taken from [203, theorem 0.4 and page 127]. Recall that ΛG is the
ring Z ⊆ ΛG ⊆ Q which is obtained from Z by inverting the orders of the finite
subgroups of G.

172Theorem 172: (Rational Computation of Topological K-theory for Infinite
Groups.) Suppose that the group G satisfies the Baum–Connes Conjecture 59.
Then there is an isomorphism

⊕

p+q=n

⊕

(C)∈(F CY)

Kp(BZGC) ⊗Z[WG C] θC · Kq(C∗
r (C)) ⊗Z ΛG

=̃→ Kn(C∗
r (G)) ⊗Z ΛG .

If we tensor withQ, we get an isomorphism

⊕

p+q=n

⊕

(C)∈(F CY)

Hp(BZGC;Q) ⊗Q [WG C] θC · Kq(C∗
r (C)) ⊗Z Q

=̃→ Kn(C∗
r (G)) ⊗Z Q .
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Rationalized Algebraic K-Theory for Infinite Groups
Recall that for algebraic K-theory of the integral group ring we know because of
Proposition 73 that in the Farrell–Jones Conjecture we can reduce to the family of
finite subgroups. A reduction to the family of finite subgroups also works if the
coefficient ring is a regular Q-algebra, compare 70. The next result is a variation
of [201, theorem 0.4].

173 Theorem 173: (Rational Computation of Algebraic K-theory.) Suppose that the
group G satisfies the Farrell–Jones Conjecture 58 for the algebraic K-theory of RG,
where either R = Z or R is a regular ring withQ ⊂ R. Then we get an isomorphism

⊕

p+q=n

⊕

(C)∈(F CY)

Hp(BZGC;Q) ⊗Q [WG C] θC · Kq(RC) ⊗Z Q
=̃→ Kn(RG) ⊗Z Q .

174 Remark 174 If in Theorem 173 we assume the Farrell–Jones Conjecture for the
algebraic K-theory of RG but make no assumption on the coefficient ring R, then
we still obtain that the map appearing there is split injective.

Example 175. (The Comparison Map from Algebraic to Topological K-theory.) If
we consider R = C as coefficient ring and apply − ⊗Z C instead

of − ⊗Z Q , the formulas simplify. Suppose that G satisfies the Baum–Connes
Conjecture 59 and the Farrell–Jones Conjecture 58 for algebraic K-theory with C
as coefficient ring. Recall that con(G)f is the set of conjugacy classes (g) of elements
g ∈ G of finite order. We denote for g ∈ G by 〈g〉 the cyclic subgroup generated
by g.

Then we get the following commutative square, whose horizontal maps are
isomorphisms and whose vertical maps are induced by the obvious change of
theory homorphisms (see [201, theorem 0.5])

⊕
p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉;C) ⊗Z Kq(C) ��
=̃

��

Kn(CG) ⊗Z C

��
⊕

p+q=n

⊕
(g)∈con(G)f

Hp(ZG〈g〉;C) ⊗Z K
top
q (C) ��

=̃

Kn(C∗
r (G)) ⊗Z C

The Chern character appearing in the lower row of the commutative square above
has already been constructed by different methods in [26]. The construction
in [201] works also for Q (and even smaller rings) and other theories like al-
gebraic K- and L-theory. This is important for the proof of Theorem 98 and to get
the commutative square above.
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Example 176. (A Formula for K0(ZG) ⊗Z Q.) Suppose that the Farrell–Jones
Conjecture is true rationally for K0(ZG), i.e. the assembly map

AVCY : HG
0 (EVCY(G); KZ ) ⊗Z Q→ K0(ZG) ⊗Z Q

is an isomorphism. Then we obtain

K0(ZG) ⊗Z Q =̃

K0(Z) ⊗Z Q⊕
⊕

(C)∈(F CY)

H1(BZGC;Q) ⊗Q [WG C] θC · K−1(RC) ⊗Z Q .

Notice that K̃0(ZG)⊗Z Q contains only contributions from K−1(ZC)⊗Z Q for finite
cyclic subgroups C ⊆ G.

177Remark 177 Note that these statements are interesting already for finite groups.
For instance Theorem 172 yields for a finite group G and R = C an isomorphism

⊕

(C)∈(F CY)

ΛG ⊗ΛG[WGC] θC · R(C) ⊗Z ΛG =̃ R(G) ⊗Z ΛG .

which in turn implies Artin’s Theorem discussed in Remark 82.

Rationalized Algebraic L-Theory for Infinite Groups
Here is the L-theory analogue of the results above. Compare [201, theorem 0.4].

178Theorem 178: (Rational Computation of Algebraic L-theory for Infinite Groups.)
Suppose that the group G satisfies the Farrell–Jones Conjecture 58 for L-theory.
Then we get for all j ∈ Z, j ≤ 1 an isomorphism
⊕

p+q=n

⊕

(C)∈(F CY)

Hp(BZGC;Q) ⊗Q [WG C] θC · L〈j〉
q (RC) ⊗Z Q

=̃→ L〈j〉
n (RG) ⊗Z Q .

179Remark 179: (Separation of Variables.) Notice that in Theorem 172, 173 and 178
we see again the principle we called separation of variables in Remark 13. There is
a group homology part which is independent of the coefficient ring R and the K-
or L-theory under consideration and a part depending only on the values of the
theory under consideration on RC or C∗

r (C) for all finite cyclic subgroups C ⊆ G.

Integral Computations for Infinite Groups 2.9.3

As mentioned above, no general pattern for integral calculations is known or
expected. We mention at least one situation where a certain class of groups can
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be treated simultaneously. Let MFI be the subset of FIN consisting of elements
in FIN which are maximal in FIN . Consider the following assertions on the
group G.
(M) M1, M1 ∈ MFI, M1 ∩ M2 �= 1 ⇒ M1 = M2;
(NM) M ∈ MFI ⇒ NGM = M;
(VCLI) If V is an infinite virtually cyclic subgroup of G, then V is of type I (see

Lemma 71);
(FJKN) The Isomorphism Conjecture of Farrell–Jones for algebraic K-theory 58

is true for ZG in the range n ≤ N for a fixed element N ∈ Z � {∞}, i.e.

the assembly map A : HG
n (EVCY(G); KR)

=̃→ Kn(RG) is bijective for n ∈ Z
with n ≤ N.

Let K̃n(C∗
r (H)) be the cokernel of the map Kn(C∗

r ({1})) → Kn(C∗
r (H)) and L

〈j〉
n (RG)

be the cokernel of the map L
〈j〉
n (R) → L

〈j〉
n (RG). This coincides with L̃

〈j〉
n (R), which

is the cokernel of the map L
〈j〉
n (Z) → L

〈j〉
n (R) if R = Z but not in general. Denote

by WhR
n (G) the n-th Whitehead group of RG which is the (n − 1)-th homotopy

group of the homotopy fiber of the assembly map BG+ ∧ K(R) → K(RG). It agrees
with the previous defined notions if R = Z. The next result is taken from [83,
theorem 4.1].

180 Theorem 180 Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite subgroup
of G is invertible in Λ. Let (MFI) be the set of conjugacy classes (H) of subgroups
of G such that H belongs to MFI. Then:
(i) If G satisfies (M), (NM) and the Baum–Connes Conjecture 59, then for n ∈ Z

there is an exact sequence of topological K-groups

0 →
⊕

(H)∈(MFI)

K̃n(C∗
r (H)) → Kn(C∗

r (G)) → Kn(G\EFIN (G)) → 0 ,

which splits after applying − ⊗Z Λ.
(ii) If G satisfies (M), (NM), (VCLI) and the L-theory part of the Farrell–Jones

Conjecture 58, then for all n ∈ Z there is an exact sequence

… → Hn+1

(
G\EFIN (G); L〈−∞〉(R)

) →
⊕

(H)∈(MFI)

L
〈−∞〉
n (RH)

→ L〈−∞〉
n (RG) → Hn

(
G\EFIN (G); L〈−∞〉(R)

) → …

It splits after applying − ⊗Z Λ, more precisely

L〈−∞〉
n (RG) ⊗Z Λ → Hn

(
G\EFIN (G); L〈−∞〉(R)

)⊗Z Λ

is a split-surjective map of Λ-modules.
(iii) If G satisfies the assertions (M), (NM) and the Farrell–Jones Conjecture 58

for Ln(RG)[1|2], then the conclusion of assertion (ii) still holds if we invert
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2 everywhere. Moreover, in the case R = Z the sequence reduces to a short
exact sequence

0 →
⊕

(H)∈(MFI)

L̃〈j〉
n (ZH)

[
1

2

]
→ L〈j〉

n (ZG)

[
1

2

]

→ Hn

(
G\EFIN (G); L(Z)

) [1

2

]
→ 0 ,

which splits after applying − ⊗Z[ 1
2 ]

Λ
[

1
2

]
.

(iv) If G satisfies (M), (NM), and (FJKN), then there is for n ∈ Z, n ≤ N an
isomorphism

Hn

(
EVCY(G), EFIN (G); KR

)⊕
⊕

(H)∈(MFI)

WhR
n (H)

=̃→ WhR
n (G) ,

where WhR
n (H) → WhR

n (G) is induced by the inclusion H → G.

181Remark 181: (Role of G\EFIN (G).) Theorem 180 illustrates that for such com-
putations a good understanding of the geometry of the orbit space G\EFIN (G) is
necessary.

182Remark 182 In [83] it is explained that the following classes of groups do satisfy
the assumption appearing in Theorem 180 and what the conclusions are in the
case R = Z. Some of these cases have been treated earlier in [34, 212].

Extensions 1 → Z
n → G → F → 1 for finite F such that the conjugation

action of F on Zn is free outside 0 ∈ Zn;
Fuchsian groups F;
One-relator groups G.

Theorem 180 is generalized in [204] in order to treat for instance the semi-direct
product of the discrete three-dimensional Heisenberg group byZ|4. For this group
G\EFIN (G) is S3.

A calculation for 2-dimensional crystallographic groups and more general co-
compact NEC-groups is presented in [212] (see also [236]). For these groups the
orbit spaces G\EFIN (G) are compact surfaces possibly with boundary.

Example 183. Let F be a cocompact Fuchsian group with presentation

F =
〈
a1, b1, … , ag , bg , c1, … , ct | c

γ1
1 = … = c

γt
t = c−1

1 · · · c−1
t [a1, b1] · · · [ag , bg] = 1

〉

for integers g, t ≥ 0 and γi > 1. Then G\EFIN (G) is a closed orientable surface
of genus g. The following is a consequence of Theorem 180 (see [212] for more
details).
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There are isomorphisms

Kn(C∗
r (F)) =̃






(
2 +

∑t
i=1(γi − 1)

) · Z n = 0 ;

(2g) · Z n = 1 .

The inclusions of the maximal subgroups Z|γi = 〈ci〉 induce an isomorphism

t⊕

i=1

Whn(Z|γi)
=̃→ Whn(F)

for n ≤ 1.
There are isomorphisms

Ln(ZF)[1|2] =̃






(
1 +

∑t
i=1[

γi
2 ]
) · Z[1|2] n ≡ 0 (4) ;

(2g) · Z[1|2] n ≡ 1 (4) ;
(
1 +

∑t
i=1[

γi−1
2 ]
) · Z[1|2] n ≡ 2 (4) ;

0 n ≡ 3 (4) ,

where [r] for r ∈ R denotes the largest integer less than or equal to r.
From now on suppose that each γi is odd. Then the number m above is odd and
we get for for ε = p and s

Lε
n(ZF) =̃






Z|2
⊕(

1 +
∑t

i=1
γi−1

2

) · Z n ≡ 0 (4) ;

(2g) · Z n ≡ 1 (4) ;

Z|2
⊕(

1 +
∑t

i=1
γi−1

2

) · Z q ≡ 2 (4) ;

(2g) · Z|2 n ≡ 3 (4) .

For ε = h we do not know an explicit formula. The problem is that no general
formula is known for the 2-torsion contained in L̃h

2q(Z[Z|m]), for m odd, since
it is given by the term Ĥ2(Z|2; K̃0(Z[Z|m])), see [14, theorem 2].

Information about the left hand side of the Farrell–Jones assembly map for alge-
braic K-theory in the case where G is SL3(Z) can be found in [306].

Techniques for Computations2.9.4

We briefly outline some methods that are fundamental for computations and for
the proofs of some of the theorems above.

Equivariant Atiyah–Hirzebruch Spectral Sequence
Let HG∗ be a G-homology theory with values in Λ-modules. Then there are two
spectral sequences which can be used to compute it. The first one is the rather
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obvious equivariant version of the Atiyah–Hirzebuch spectral sequence. It converges
to HG

n (X) and its E2-term is given in terms of Bredon homology

E2
p,q = HG

p (X; HG
q (G|H))

of X with respect to the coefficient system, which is given by the covariant functor
Or(G) → Λ-MODULES, G|H 	→ HG

q (G|H). More details can be found for
instance in [82, theorem 4.7].

p-Chain Spectral Sequence
There is another spectral sequence, the p-chain spectral sequence [83]. Consider
a covariant functor E : Or(G) → SPECTRA. It defines a G-homology theory
HG∗ (−; E) (see Proposition 156). The p-chain spectral sequence converges toHG

n (X)
but has a different setup and in particular a different E2-term than the equivariant
Atiyah–Hirzebruch spectral sequence. We describe the E1-term for simplicity only
for a proper G-CW-complex.

A p-chain is a sequence of conjugacy classes of finite subgroups

(H0) < … < (Hp)

where (Hi−1) < (Hi) means that Hi−1 is subconjugate, but not conjugate to (Hi).
Notice for the sequel that the group of automorphism of G|H inOr(G) is isomorphic
to NH|H. To such a p-chain there is associated the NHp|Hp-NH0|H0-set

S((H0) < … < (Hp))

= map(G|Hp−1, G|Hp)G ×NHp−1 |Hp−1 … ×NH1|H1 map(G|H0, G|H1)G .

The E1-term E1
p,q of the p-chain spectral sequence is

⊕

(H0)<…<(Hp)

πq

((
XHp ×NHp|Hp S((H0) < … < (Hp))

)
+

∧NH0|H0 E(G|H0)
)

,

where Y+ means the pointed space obtained from Y by adjoining an extra base
point. There are many situations where the p-chain spectral sequence is much
more useful than the equivariant Atiyah–Hirzebruch spectral sequence. Sometimes
a combination of both is necessary to carry through the desired calculation.

Equivariant Chern Characters
Equivariant Chern characters have been studied in [201] and [203] and allow to
compute equivariant homology theories for proper G-CW-complexes. The exis-
tence of the equivariant Chern character says that under certain conditions the
Atiyah–Hirzebruch spectral sequence collapses and, indeed, the source of the
equivariant Chern character is canonically isomorphic to

⊕
p+q E2

p,q, where E2
p,q is

the E2-term of the equivariant Atiyah–Hirzebruch spectral sequence.
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The results of Sect. 2.9.2 are essentially proved by applying the equivariant Chern
character to the source of the assembly map for the family of finite subgroups.
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74. F. X. Connolly and T. Koźniewski. Nil groups in K-theory and surgery theory.
Forum Math., 7(1):45–76, 1995.

75. F. X. Connolly and S. Prassidis. On the exponent of the cokernel of the
forget-control map on K0-groups. Fund. Math., 172(3):201–216, 2002.

76. F. X. Connolly and S. Prassidis. On the exponent of the NK0-groups of
virtually infinite cyclic groups. Canad. Math. Bull., 45(2):180–195, 2002.

77. F. X. Connolly and A. Ranicki. On the calculation of UNIL∗.
arXiv:math.AT/0304016v1, 2003.

78. J. Cuntz. K-theoretic amenability for discrete groups. J. Reine Angew. Math.,
344:180–195, 1983.

79. C. W. Curtis and I. Reiner. Methods of representation theory. Vol. II. John
Wiley & Sons Inc., New York, 1987. With applications to finite groups and
orders, A Wiley-Interscience Publication.

80. K. R. Davidson. C∗-algebras by example, volume 6 of Fields Institute Mono-
graphs. American Mathematical Society, Providence, RI, 1996.

81. J. F. Davis. Manifold aspects of the Novikov conjecture. In Surveys on surgery
theory, Vol. 1, pages 195–224. Princeton Univ. Press, Princeton, NJ, 2000.

82. J. F. Davis and W. Lück. Spaces over a category and assembly maps in iso-
morphism conjectures in K- and L-theory. K-Theory, 15(3):201–252, 1998.

83. J. F. Davis and W. Lück. The p-chain spectral sequence. Preprintreihe SFB
478 – Geometrische Strukturen in der Mathematik, Heft 257, Münster. To
appear in a special issue of K-Theory dedicated to H. Bass, 2002.

84. P. de la Harpe. Groupes hyperboliques, algèbres d’opérateurs et un théorème
de Jolissaint. C. R. Acad. Sci. Paris Sér. I Math., 307(14):771–774, 1988.

85. R. K. Dennis, M. E. Keating, and M. R. Stein. Lower bounds for the order of
K2(�G) and Wh2(G). Math. Ann., 223(2):97–103, 1976.

86. S. K. Donaldson. Irrationality and the h-cobordism conjecture. J. Differential
Geom., 26(1):141–168, 1987.

87. A. N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu. Uniform embeddings
into Hilbert space and a question of Gromov. Canad. Math. Bull., 45(1):60–70,
2002.

88. E. Dror Farjoun. Homotopy and homology of diagrams of spaces. In Algebraic
topology (Seattle, Wash., 1985), pages 93–134. Springer-Verlag, Berlin, 1987.

89. M. J. Dunwoody. K2(Zπ) for π a group of order two or three. J. London Math.
Soc. (2), 11(4):481–490, 1975.

90. W. Dwyer, T. Schick, and S. Stolz. Remarks on a conjecture of Gromov and
Lawson. In High-dimensional manifold topology, pages 159–176. World Sci.
Publishing, River Edge, NJ, 2003.

91. W. Dwyer, M. Weiss, and B. Williams. A parametrized index theorem for the
algebraic K-theory Euler class. Acta Math., 190(1):1–104, 2003.

92. B. Eckmann. Cyclic homology of groups and the Bass conjecture. Comment.
Math. Helv., 61(2):193–202, 1986.

93. B. Eckmann. Projective and Hilbert modules over group algebras, and finitely
dominated spaces. Comment. Math. Helv., 71(3):453–462, 1996.



The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory 829

94. D. S. Farley. Proper isometric actions of Thompson’s groups on Hilbert space.
Int. Math. Res. Not., (45):2409–2414, 2003.

95. F. T. Farrell. The nonfiniteness of Nil. Proc. Amer. Math. Soc., 65(2):215–216,
1977.

96. F. T. Farrell. The exponent of UNil. Topology, 18(4):305–312, 1979.
97. F. T. Farrell and W. C. Hsiang. On the rational homotopy groups of the diffeo-

morphism groups of discs, spheres and aspherical manifolds. In Algebraic
and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford,
Calif., 1976), Part 1, Proc. Sympos. Pure Math., XXXII, pages 325–337. Amer.
Math. Soc., Providence, R.I., 1978.

98. F. T. Farrell and W. C. Hsiang. The topological-Euclidean space form problem.
Invent. Math., 45(2):181–192, 1978.

99. F. T. Farrell and W. C. Hsiang. On Novikov’s conjecture for nonpositively
curved manifolds. I. Ann. of Math. (2), 113(1):199–209, 1981.

100. F. T. Farrell and W. C. Hsiang. The Whitehead group of poly-(finite or cyclic)
groups. J. London Math. Soc. (2), 24(2):308–324, 1981.

101. F. T. Farrell and L. E. Jones. h-cobordisms with foliated control. Bull. Amer.
Math. Soc. (N.S.), 15(1):69–72, 1986.

102. F. T. Farrell and L. E. Jones. K-theory and dynamics. I. Ann. of Math. (2),
124(3):531–569, 1986.

103. F. T. Farrell and L. E. Jones. Foliated control with hyperbolic leaves. K-Theory,
1(4):337–359, 1987.

104. F. T. Farrell and L. E. Jones. Foliated control theory. I, II. K-Theory, 2(3):357–
430, 1988.

105. F. T. Farrell and L. E. Jones. The surgery L-groups of poly-(finite or cyclic)
groups. Invent. Math., 91(3):559–586, 1988.

106. F. T. Farrell and L. E. Jones. Negatively curved manifolds with exotic smooth
structures. J. Amer. Math. Soc., 2(4):899–908, 1989.

107. F. T. Farrell and L. E. Jones. A topological analogue of Mostow’s rigidity
theorem. J. Amer. Math. Soc., 2(2):257–370, 1989.

108. F. T. Farrell and L. E. Jones. Foliated control without radius of injectivity
restrictions. Topology, 30(2):117–142, 1991.

109. F. T. Farrell and L. E. Jones. Rigidity in geometry and topology. In Proceedings
of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), pages
653–663, Tokyo, 1991. Math. Soc. Japan.

110. F. T. Farrell and L. E. Jones. Stable pseudoisotopy spaces of compact non-
positively curved manifolds. J. Differential Geom., 34(3):769–834, 1991.

111. F. T. Farrell and L. E. Jones. Isomorphism conjectures in algebraic K-theory.
J. Amer. Math. Soc., 6(2):249–297, 1993.

112. F. T. Farrell and L. E. Jones. Topological rigidity for compact non-positively
curved manifolds. In Differential geometry: Riemannian geometry (Los An-
geles, CA, 1990), pages 229–274. Amer. Math. Soc., Providence, RI, 1993.

113. F. T. Farrell and L. E. Jones. The lower algebraic K-theory of virtually infinite
cyclic groups. K-Theory, 9(1):13–30, 1995.



830 Wolfgang Lück, Holger Reich

114. F. T. Farrell and L. E. Jones. Collapsing foliated Riemannian manifolds. Asian
J. Math., 2(3):443–494, 1998.

115. F. T. Farrell and L. E. Jones. Rigidity for aspherical manifolds with π1 ⊂
GLm(R). Asian J. Math., 2(2):215–262, 1998.

116. F. T. Farrell and L. E. Jones. Local collapsing theory. Pacific J. Math., 210(1):1–
100, 2003.

117. F. T. Farrell and P. A. Linnell. K-theory of solvable groups. Proc. London
Math. Soc. (3), 87(2):309–336, 2003.

118. F. T. Farrell and P. A. Linnell. Whitehead groups and the Bass conjecture.
Math. Ann., 326(4):723–757, 2003.

119. F. T. Farrell and S. K. Roushon. The Whitehead groups of braid groups vanish.
Internat. Math. Res. Notices, (10):515–526, 2000.

120. T. Farrell. The Borel conjecture. In T. Farrell, L. Göttsche, and W. Lück,
editors, High dimensional manifold theory, number 9 in ICTP Lecture
Notes, pages 225–298. Abdus Salam International Centre for Theoret-
ical Physics, Trieste, 2002. Proceedings of the summer school “High
dimensional manifold theory” in Trieste May/June 2001, Number 1.
http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.

121. T. Farrell, L. Göttsche, and W. Lück, editors. High dimensional manifold
theory. Number 9 in ICTP Lecture Notes. Abdus Salam International Centre
for Theoretical Physics, Trieste, 2002. Proceedings of the summer school
“High dimensional manifold theory” in Trieste May/June 2001, Number 1.
http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.

122. T. Farrell, L. Göttsche, and W. Lück, editors. High dimensional manifold
theory. Number 9 in ICTP Lecture Notes. Abdus Salam International Centre
for Theoretical Physics, Trieste, 2002. Proceedings of the summer school
“High dimensional manifold theory” in Trieste May/June 2001, Number 2.
http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.

123. T. Farrell, L. Jones, and W. Lück. A caveat on the isomorphism conjecture in
L-theory. Forum Math., 14(3):413–418, 2002.

124. S. Ferry. The homeomorphism group of a compact Hilbert cube manifold is
an anr. Ann. Math. (2), 106(1):101–119, 1977.

125. S. Ferry. A simple-homotopy approach to the finiteness obstruction. In Shape
theory and geometric topology (Dubrovnik, 1981), pages 73–81. Springer-
Verlag, Berlin, 1981.

126. S. Ferry and A. Ranicki. A survey of Wall’s finiteness obstruction. In Surveys
on surgery theory, Vol. 2, volume 149 of Ann. of Math. Stud., pages 63–79.
Princeton Univ. Press, Princeton, NJ, 2001.

127. S. C. Ferry, A. A. Ranicki, and J. Rosenberg. A history and survey of the
Novikov conjecture. In Novikov conjectures, index theorems and rigidity,
Vol. 1 (Oberwolfach, 1993), pages 7–66. Cambridge Univ. Press, Cambridge,
1995.



The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory 831

128. S. C. Ferry, A. A. Ranicki, and J. Rosenberg, editors. Novikov conjectures,
index theorems and rigidity. Vol. 1. Cambridge University Press, Cambridge,
1995. Including papers from the conference held at the Mathematisches
Forschungsinstitut Oberwolfach, Oberwolfach, September 6–10, 1993.

129. S. C. Ferry and S. Weinberger. Curvature, tangentiality, and controlled topol-
ogy. Invent. Math., 105(2):401–414, 1991.

130. Z. Fiedorowicz. The Quillen-Grothendieck construction and extension
of pairings. In Geometric applications of homotopy theory (Proc. Conf.,
Evanston, Ill., 1977), I, pages 163–169. Springer-Verlag, Berlin, 1978.

131. M. H. Freedman. The topology of four-dimensional manifolds. J. Differential
Geom., 17(3):357–453, 1982.

132. M. H. Freedman. The disk theorem for four-dimensional manifolds. In Pro-
ceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw,
1983), pages 647–663, Warsaw, 1984. PWN.

133. S. M. Gersten. On the spectrum of algebraic K-theory. Bull. Amer. Math. Soc.,
78:216–219, 1972.

134. É. Ghys. Groupes aléatoires (d’après Misha Gromov,... ). Astérisque, (294):viii,
173–204, 2004.

135. D. Grayson. Higher algebraic K-theory. II (after Daniel Quillen). In Algebraic
K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pages 217–
240. Lecture Notes in Math., Vol. 551. Springer-Verlag, Berlin, 1976.

136. M. Gromov. Large Riemannian manifolds. In Curvature and topology of Rie-
mannian manifolds (Katata, 1985), pages 108–121. Springer-Verlag, Berlin,
1986.

137. M. Gromov. Asymptotic invariants of infinite groups. In Geometric group
theory, Vol. 2 (Sussex, 1991), pages 1–295. Cambridge Univ. Press, Cambridge,
1993.

138. M. Gromov. Spaces and questions. Geom. Funct. Anal., (Special Volume, Part
I):118–161, 2000. GAFA 2000 (Tel Aviv, 1999).

139. M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73–
146, 2003.

140. E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear
groups. preprint, 2003.

141. I. Hambleton. Algebraic K- and L-theory and applications to the
topology of manifolds. In T. Farrell, L. Göttsche, and W. Lück, ed-
itors, High dimensional manifold theory, number 9 in ICTP Lecture
Notes, pages 299–369. Abdus Salam International Centre for Theoret-
ical Physics, Trieste, 2002. Proceedings of the summer school “High
dimensional manifold theory” in Trieste May/June 2001, Number 1.
http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.

142. I. Hambleton and E. K. Pedersen. Identifying assembly maps in K- and
L-theory. Math. Annalen, 328(1):27–58, 2004.

143. I. Hambleton and L. R. Taylor. A guide to the calculation of the surgery
obstruction groups for finite groups. In Surveys on surgery theory, Vol. 1,
pages 225–274. Princeton Univ. Press, Princeton, NJ, 2000.



832 Wolfgang Lück, Holger Reich

144. A. E. Hatcher. Concordance spaces, higher simple-homotopy theory, and
applications. In Algebraic and geometric topology (Proc. Sympos. Pure Math.,
Stanford Univ., Stanford, Calif., 1976), Part 1, pages 3–21. Amer. Math. Soc.,
Providence, R.I., 1978.

145. J.-C. Hausmann. On the homotopy of nonnilpotent spaces. Math. Z.,
178(1):115–123, 1981.

146. L. Hesselholt and I. Madsen. On the K-theory of nilpotent endomorphisms.
In Homotopy methods in algebraic topology (Boulder, CO, 1999), volume 271
of Contemp. Math., pages 127–140. Amer. Math. Soc., Providence, RI, 2001.

147. N. Higson. The Baum-Connes conjecture. In Proceedings of the Interna-
tional Congress of Mathematicians, Vol. II (Berlin, 1998), pages 637–646
(electronic), 1998.

148. N. Higson. Bivariant K-theory and the Novikov conjecture. Geom. Funct.
Anal., 10(3):563–581, 2000.

149. N. Higson and G. Kasparov. E-theory and KK-theory for groups which act
properly and isometrically on Hilbert space. Invent. Math., 144(1):23–74,
2001.

150. N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum-
Connes conjecture. Geom. Funct. Anal., 12(2):330–354, 2002.

151. N. Higson, E. K. Pedersen, and J. Roe. C∗-algebras and controlled topology.
K-Theory, 11(3):209–239, 1997.

152. N. Higson and J. Roe. On the coarse Baum-Connes conjecture. In Novikov
conjectures, index theorems and rigidity, Vol. 2 (Oberwolfach, 1993), pages
227–254. Cambridge Univ. Press, Cambridge, 1995.

153. N. Higson and J. Roe. Amenable group actions and the Novikov conjecture.
J. Reine Angew. Math., 519:143–153, 2000.

154. N. Higson and J. Roe. Analytic K-homology. Oxford University Press, Oxford,
2000. Oxford Science Publications.

155. B. Hu. Retractions of closed manifolds with nonpositive curvature. In Ge-
ometric group theory (Columbus, OH, 1992), volume 3 of Ohio State Univ.
Math. Res. Inst. Publ., pages 135–147. de Gruyter, Berlin, 1995.

156. B. Z. Hu. Whitehead groups of finite polyhedra with nonpositive curvature.
J. Differential Geom., 38(3):501–517, 1993.

157. K. Igusa. The stability theorem for smooth pseudoisotopies. K-Theory, 2(1-
2):vi+355, 1988.

158. H. Inassaridze. Algebraic K-theory, volume 311 of Mathematics and its Ap-
plications. Kluwer Academic Publishers Group, Dordrecht, 1995.

159. M. Joachim. K-homology of C∗-categories and symmetric spectra represent-
ing K-homology. Math. Annalen, 328:641–670, 2003.

160. E. Jones. A paper for F.T. Farrell on his 60-th birthday. In T. Farrell,
L. Göttsche, and W. Lück, editors, High dimensional manifold theory, pages
200–260. 2003. Proceedings of the summer school “High dimensional man-
ifold theory” in Trieste May/June 2001.



The Baum–Connes and the Farrell–Jones Conjectures in K- and L-Theory 833

161. L. Jones. A paper for F.T. Farrell on his 60-th birthday. preprint, to appear in
the Proceedings of the school/conference on “High-dimensional Manifold
Topology” in Trieste, May/June 2001.

162. L. Jones. Foliated control theory and its applications. In T. Farrell, L. Göttsche,
and W. Lück, editors, High dimensional manifold theory, number 9 in
ICTP Lecture Notes, pages 405– 460. Abdus Salam International Centre
for Theoretical Physics, Trieste, 2002. Proceedings of the summer school
“High dimensional manifold theory” in Trieste May/June 2001, Number 2.
http://www.ictp.trieste.it/˜pub_off/lectures/vol9.html.

163. P. Julg. Remarks on the Baum-Connes conjecture and Kazhdan’s property
T. In Operator algebras and their applications (Waterloo, ON, 1994/1995),
volume 13 of Fields Inst. Commun., pages 145–153. Amer. Math. Soc., Provi-
dence, RI, 1997.

164. P. Julg. Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-
Connes. Astérisque, (252):Exp. No. 841, 4, 151–183, 1998. Séminaire Bour-
baki. Vol. 1997/98.

165. P. Julg. La conjecture de Baum-Connes à coefficients pour le groupe Sp(n, 1).
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Summary. For a Banach algebra, one can define two kinds of K-theory: topological K-
theory, which satisfies Bott periodicity, and algebraic K-theory, which usually does not.
It was discovered, starting in the early 80’s, that the “comparison map” from algebraic to
topological K-theory is a surprisingly rich object. About the same time, it was also found
that the algebraic (as opposed to topological) K-theory of operator algebras does have some
direct applications in operator theory. This article will summarize what is known about
these applications and the comparison map.

Some Problems in Operator Theory3.1

Toeplitz Operators and K-Theory3.1.1

The connection between operator theory and K-theory has very old roots, although
it took a long time for the connection to be understood. We begin with an example.
Think of S1 as the unit circle in the complex plane and let H ⊂ L2(S1) be the
Hilbert space H2 of functions all of whose negative Fourier coefficients vanish. In
other words, if we identify functions with their formal Fourier expansions,

H =

{ ∞∑

n=0

cnzn with
∞∑

n=0

|cn|2 < ∞
}

.

Now let f ∈ C(S1) and let Mf be the operator of multiplication by f on L2(S1).
This operator does not necessarily map H into itself, so let P : L2(S1) → H be
the orthogonal projection and let Tf = PMf , viewed as an operator from H to
itself. This is called the Toeplitz operator with continuous symbol f . In terms of
the orthonormal basis e0(z) = 1, e1(z) = z, e2(z) = z2, · · · of H , Tf is given by the
(one-sided) infinite matrix with entries 〈Tf ei, ej〉 = cj−i, where f (z) =

∑
cnzn is the

formal Fourier expansion of f . This is precisely a Toeplitz matrix, i.e., a matrix
with constant entries along any diagonal. The operator Tf may also be viewed as
a singular integral operator, since by the Cauchy integral formula, one has

Tf ϕ(z) =
1

2πi

∮

S1

f (ζ)ϕ(ζ)

ζ − z
dζ

for |z| < 1, and the same formula is “formally” valid for |z| = 1.
A natural question now arises: when is Tf invertible? And when this is the case,

can one give a formula for the inverse? In other words, how does one solve the
singular integral equation Tf ϕ(z) = g(z)? The following result is “classical” and
was first proved by Krein back in the 1950’s, though his formulation looked quite
different.

1 Theorem 1 Let Tf be the Toeplitz operator on H2 defined as above, for f ∈ C(S1).
Then Tf is invertible if and only if f is everywhere non-vanishing (so that f can be
viewed as a map S1 → C

×) and if the winding number of f , i.e., the degree of the
map f

|f | : S1 → S1, is zero.
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Sketch of a modern proof
(For more details, see [18, chapt. 7, especially theorem 7.23 and proposi-

tion 7.24].) Let T be the C∗-algebra1 generated by all the operators Tf , f ∈ C(S1),
i.e., the norm closure of the algebra generated by these operators and their adjoints.
T is called the Toeplitz algebra. The first thing to observe is that there is a surjective
∗-homomorphism σ : T → C(S1), the “symbol map,” induced by Tf �→ f , fitting
into a short exact sequence of C∗-algebras

0 → K → T
σ→ C(S1) → 0 , (3.1)

where K is the algebra of compact operators on H2. In particular, T is commutative
modulo compact operators.

To begin with, it is obvious that

T∗
f = (PMf P)∗∣∣

H2 = (PM∗
f P)

∣∣
H2 = (PMf P)

∣∣
H2 = Tf

and that the map f �→ Tf is linear, and

‖Tf ‖ = ‖PMf ‖ ≤ ‖P‖ ‖Mf ‖ = ‖f ‖∞ .

So since polynomials in z are dense in C(S1), for proving commutativity of T
modulo compacts and multiplicativity of σ it is enough to check that Tzj Tzk ≡ Tzj+k

mod K . This is immediate since

Tzj Tzk em = Tzj+k em = em+j+k

for m sufficiently large (m ≥ |j| + |k|). Thus T |(T ∩ K) is commutative, and σ by
construction is surjective. Next, we show that K ⊂ T . For this it suffices to show
that the action of T ∩ K on H is irreducible, and since Tz is the unilateral shift
(sending ej �→ ej+1), which is known to be irreducible, the result follows. (In fact,
the rank-one operators ξ �→ 〈ξ, ej〉ek, which generate a dense subalgebra of K , can
all be written as polynomials in Tz and its adjoint Tz−1 . For example, Tz−1 Tz −TzTz−1

is orthogonal projection onto the span of e0.) Finally, we need to show that the
kernel of σ is precisely K ; this can be checked by showing that the map f �→ Tf

mod K is an isometry – a detailed proof is in [18, proof of Theorem 7.11].
Now we get to the more interesting part of the proof, the part that involves

K-theory. The idea is to use the long exact K-theory sequences

K1(T )

��

��

σ∗
K1(C(S1)) ��

∂

��

K0(K) = Z

0 = K1(L) �� K1(Q) ��

∂

K0(K) = Z

(3.2)

1 By definition, a C∗-algebra is a Banach algebra with involution ∗, isometrically
∗-isomorphic to a norm-closed self-adjoint algebra of operators on a Hilbert space.
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associated to (3.1) and to the algebraLof all bounded linear operators on H2 and its
quotient Q = L|K , the so-called Calkin algebra. The downward-pointing arrows
here are induced by the inclusion T ↪→ L. Note that we are using excision for
K0 to identify the relative groups K0(T , K) and K0(L, K) with K0(K) = Z. Now
one can show that ∂([f ]) is (up to a sign depending on orientation conventions)
the winding number of f . (To prove this, one can first show that ∂([f ]) only
depends on the homotopy class of f as a map S1 → C

×, and then compute for
f (z) = z, which generates π1(S1).) If Tf is invertible, then from (3.1), σ(Tf ) = f is
invertible. And by exactness of (3.2), ∂([f ]) = 0, so the winding number condition
in the theorem is satisfied. In the other direction, suppose f is invertible in C(S1).
Then f defines a class in K1(C(S1)) and ∂([f ]) is an obstruction to lifting f to
an invertible element of T . So if the winding number condition in the theorem
is satisfied, the obstruction vanishes. From the bottom part of the commuting
diagram (3.2), together with the interpretation of the inverse image of Q× in L as
the set of Fredholm operators and ∂ : K1(Q) → K0(K) as the Fredholm index, Tf

is a Fredholm operator of index 0. Thus dim ker Tf = dim ker T∗
f = dim ker Tf . But

one can show that ker Tf and ker Tf can’t both be non-trivial [18, proposition 7.24],
so Tf is invertible.

K-Theory of Banach Algebras3.1.2

The connection between Fredholm operators and K-theory, which appeared to
some extent in the above proof, first appeared in [33]. This marked the beginning
of formal connections between operator theory and K-theory. About the same time,
Wood [69] noticed that topological K-theory can be defined for Banach algebras,
in such a way that Bott periodicity holds, just as it does for topological K-theory
of spaces. However, it took a while for specialists in Banach algebras to notice the
possibilities that K-theory afforded for solving certain kinds of problems. Direct
applications of K-theory to operator algebras did not surface until the early 70’s,
with publication of works like [58] and [11]. In the rest of this section, we will
discuss a few of the other early connections between K-theory and problems in
operator algebras, and in Sect. 3.2 which follows, we will discuss some of the
motivation for studying the comparison map between algebraic and topological
K-theory for Banach algebras.

In [58] and [59], Taylor began to consider direct applications of K-theory of
Banach algebras to problems in harmonic analysis. Part of the motivation was to
give new proofs of results like the Cohen idempotent theorem (which says that the
idempotent finite measures on a locally compact abelian group are generated by
those of the form χ(h) dh, with H a compact subgroup, dh its Haar measure, and χ
a character on H). One of the things he found was:

2 Theorem 2: Taylor If A is a unital commutative Banach algebra and if X is its max-
imal ideal space, then the Gelfand transform A → C(X) induces an isomorphism
on topological K-theory.
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An immediate corollary is that topological K-theory vanishes for the radical of
A (the intersection of all the maximal ideals), and thus for purposes of studying
topological K-theory, it is no loss of generality to assume that A is semisimple, or
even that A is a C∗-algebra. The corresponding result for algebraic K1 is easily seen
to be false, however. (Just consider the algebra of dual numbers, C[x]|(x2).)

Essentially Normal Operators 3.1.3

At about the same time, interest in K-theory for C∗-algebras began to explode,
thanks to the work of Brown, Douglas, and Fillmore (“BDF” [7,8]) on extensions of
C∗-algebras, followed quickly by the work of Kasparov on “operator K-homology”
([40, 41]). The BDF work grew out of the study of a rather concrete problem in op-
erator theory: classification of essentially normal operators, bounded operators T
on an infinite-dimensional separable Hilbert space H for which T∗T − TT∗ is
compact. Given such an operator, 1, T, T∗, and K (the algebra of compact oper-
ators) generate a C∗-algebra E ⊂ L containing K as an ideal and with E|K = A
a unital commutative C∗-algebra, hence with A =̃ C(X), where X is the “essential
spectrum” of T. Thus T defines an extension of C∗-algebras

0 → K → E
q→ C(X) → 0 . (3.3)

The similarity with (3.1) is not an accident; in fact, the Toeplitz extension is the
special case where H = H2 and T is the Toeplitz operator Tz. The original problem
was to determine when T can be written in the form N + K with N normal (i.e.,
N∗N = NN∗) and K compact. (Clearly any operator T of the form N + K satisfies
the original condition T∗T − TT∗ ∈ K .) If we can write T = N + K in this fashion,
then the map q(T) �→ N defines a splitting of the exact sequence (3.3) (assuming
we choose N so that its spectrum is no larger than the essential spectrum of T).
So classification of essentially normal operators comes down to classification of
C∗-algebra extensions by K , modulo split extensions. This was the motivation for
the BDF project.

The important discovery in the BDF work was that extensions of the form (3.3)
(modulo split extensions, in some sense) can be made into an abelian group Ext(X),
and that Ext is part of a homology theory which is dual to (topological) K-theory.
The addition operation on extensions makes use of the fact that M2(K) =̃ K .
Given two such extensions E1 and E2, then

E1 ⊕A E2 =def
{

(e1, e2) ∈ E1 ⊕ E2 : e1 ≡ e2 mod K
}

is an extension of A by K ⊕K , and if we add to E1 ⊕A E2 ⊂ L ⊕L ⊂ M2(L) =̃ L
the ideal M2(K) =̃ K , we get an extension of A by K . In fact, Ext extends
to a contravariant functor on a the category of separable nuclear C∗-algebras
(where we replace A = C(X) by more general C∗-algebras) – the duality with
K-theory comes from the fact that the long exact K-theory sequence of (3.3)
gives a homomorphism ∂ : K1(A) → K0(K) = Z just as in the above proof of
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Theorem 1. And should this “primary obstruction” to splitting of (3.3) vanish,
there is a secondary obstruction that comes from the exact sequence

0 → K0(K) = Z→ K0(E)
q∗→ K0(A) → K−1(K) = 0 ,

which defines an element of Ext1
Z

(K0(A),Z). In fact, Brown showed [11] that these
invariants give rise to a “universal coefficient theorem” (UCT) exact sequence

0 → Ext1
Z

(K0(X),Z) → Ext(X) → HomZ (K−1(X),Z) → 0 .

Smooth Extensions and K23.1.4

A bounded operator T on a Hilbert space H is said to be of determinant class if
T − 1 belongs to the ideal L1 ⊆ L(H) of trace-class operators. There is a well-
defined notion of determinant for operators of determinant class. As expected, it
is defined to be 0 if T is not invertible. If T is invertible, then one can show that
T = exp(S) for some trace-class operator S, and we define det T = det(exp(S)) to be
eTr(S), according to the usual relationship between the trace and the determinant.
(One needs to check that this is independent of the choice of S.) The determinant
defined this way is multiplicative (on operators of determinant class); in fact it
defines a homomorphism det : K1(L, L1) → C

×. Using this notion of determinant,
Helton and Howe [28] defined an interesting invariant for a special subclass of
the essentially normal operators. It was then shown by Brown ([10, 11]) that this
invariant can be viewed as having something to do with algebraic K2. The idea is
this. Suppose one has an extension of the form (3.3), and suppose X is a smooth
manifold (possibly with boundary). Inside E, which is an extension of C(X) by K ,
suppose one has a subalgebra A which is an extension

0 → L1 → A
q→ C∞(X) → 0 . (3.4)

of C∞(X) by L1, the trace-class operators. Thus operators T in A are not only
essentially normal; they have trace-class self-commutators (i.e., T∗T − TT∗ ∈ L1).
Suppose T and S are two invertible operators in A. Then the images modulo L1

of T, T∗, S, and S∗ commute, and so the multiplicative commutator TST−1S−1 is 1
modulo L1, and so is of determinant class. In particular, det(TST−1S−1) is defined.
Brown noticed that

det(TST−1S−1) = det ◦∂
({q(T), q(S)}) ,

where ∂ : K2(C∞(X)) → K1(A, L1) is the connecting map in the long exact K-
theory sequence of (3.4), we view det as a function on K1(A, L1) via the natural
map K1(A, L1) → K1(L, L1), and {q(T), q(S)} ∈ K2(C∞(X)) is the Steinberg
symbol of the functions q(T) and q(S). In particular, one obtains the relation
det(TST−1S−1) = 1 when the symbols satisfy q(T) + q(S) = 1, which is not at all
obvious from the operator-theoretic point of view.
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Multiplicative Commutators 3.1.5

Algebraic K1 and K2 are also related to a number of other problems about multi-
plicative commutators in various operator algebras. For example, one has:

3Theorem 3: Brown and Schochet [9] K1(L, K) = 0.

This is proved by showing explicitly that every invertible operator ≡ 1 mod K
is a product of a finite number of (multiplicative) commutators of such operators.
Thus there is a huge difference between the algebraic K-theory of K and that of
L1. (Recall that we have the determinant map det : K1(A, L1) → C

×, which is
surjective.) Brown and Schochet also remark [9, remark 3] that their methods also
show that K1(K̃ , K) = 0, with K̃ = K + C · 1 the algebra obtained by adjoining
a unit to K . (The two statements are not the same since K1 does not in general
satisfy the excision property.) A subsequent paper [12], using refinements of the
same techniques, showed that the group of invertible operators in L which are ≡ 1
mod K is perfect, with all even cohomology groups nontrivial. These groups are
of course related by the Hurewicz homomorphism to the higher algebraic K-theory
K∗(L, K) (about which we will say more later). A related later paper by de la Harpe
and Skandalis [17] showed that if A is a stable C∗-algebra, i.e., if A =̃ A ⊗ K ,2 then
the connected component of the identity in the group of invertible operators of the
form 1 + a, a ∈ K , is always perfect.

AF Algebras and Dimension Groups 3.1.6

One other important source for interest in K-theory of operator algebras comes
from the study of so-called AF algebras, or C∗-algebra inductive limits of finite-
dimensional semisimple algebras overC. (The abbreviation AF stands for “approx-
imately finite-dimensional.”) Such algebras were first introduced by Bratteli [5],
who showed how to classify them by means of equivalence classes of certain com-
binatorial constructs now called “Bratteli diagrams.” However, this method of
classification was almost uncomputable. A major breakthrough came a few years

2 Here A ⊗ K is the C∗-algebra completion of the algebraic tensor product A � K . For
general C∗-algebras A and B, there can be more than one C∗-algebra completion of A � B,
but there is always a maximal one A ⊗max B, defined by completing A � B in the norm

∥∥∑n
i=1ai ⊗ bi

∥∥
max = sup

{∥∥∑n
i=1ρ1(ai)ρ2(bi)

∥∥ : ρ1 and ρ2

commuting representations of A and B
}

,

as well as a minimal one A ⊗min B, the completion of A � B ⊂ L(H1 ⊗ H2) when A is
represented on a Hilbert space H1 and B is represented on a Hilbert space H2. (One can
show this is independent of the choices of faithful representations of A and B.) But if one of
the two algebras is nuclear, and in particular if B is commutative or B = K , all completions
coincide.
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later when Elliott [20] showed that AF algebras are classified by their K0 groups, to-
gether with the natural ordering on K0 induced by the monoid of finitely generated
projective modules, and in the unital case, the “order unit” corresponding to the
rank-one free module. (The invariant consisting of K0 and this extra order struc-
ture is often called the dimension group.) This classification theorem was made
even more satisfying by a subsequent paper of Effros, Handelman, and Shen [19],
which gave an abstract characterization of the possible dimension groups of AF
algebras – they are exactly the unperforated ordered abelian groups satisfying the
Riesz interpolation property. There has been much subsequent literature on clas-
sification of various classes of C∗-algebras via topological K-theory and the order
structure on it, but we do not go into this here.

“Lie Groups Made Discrete”
and Early Explorations3.2

Topological K-theory, first introduced for compact spaces by Atiyah and Hirze-
bruch, was extended to Banach algebras as early as the work of Wood [69] in the
mid-60’s. As higher algebraic K-theory began to be developed in the 1970’s, the
question arose of trying to understand the similarities and differences between
the two theories in the cases where both of them made sense. These explorations
eventually went off in two different directions, with a certain overlap between
them. The first of the directions had to do with relating purely algebraic and topo-
logical or “quasi-topological” K-theories for algebraic varieties, especially over
C. This subject is intimately connected with the Riemann–Roch problem (see [4]
and [60], for example) and led to the development of semi-topological K-theory
(see [23]). This line of development will not be the primary theme of this article,
but the interested reader should consult the chapter by Friedlander and Walker for
a treatment of at least some of this topic. Instead we will discuss another thread
in the subject, of relating algebraic and topological K-theory for Banach algebras
in general and for C∗-algebras in particular. This subject is also related to the use
of algebraic K-theory as a language for discussing certain problems in operator
theory.

Basic Concepts and Notations3.2.1

In order to make it possible to give precise statements for all results, we begin
by establishing some definitions and notation. The definitions here do not always
coincide with those in use when the results were first established, but we have
translated everything into terms consistent with these “modern” definitions.

First we need to make precise exactly what we mean by algebraic and topological
K-theory for Banach algebras. Let A be a Banach algebra over F = R or C. (The
Banach norm ‖ · ‖ on A is implicit.) For the moment we assume A is unital, though
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it will be necessary from time to time to talk about non-unital Banach algebras as
well. (Just as an example, stable C∗-algebras, which already appeared in Sect. 3.1.5
above, are necessarily non-unital.) By Kn(A) we will mean the usual (Quillen)
algebraic K-groups of A for n ≥ 0. However, since the topological K-groups
K

top
n (A) are periodic in n (with period 2 if F = C, period 8 if F = R), and since we

want to compare Kn(A) with K
top
n (A), it is also necessary to have a good definition

of Kn(A) for n < 0. Accordingly, we let K(A) be the non-connective delooping of
the algebraic K-theory spectrum of A, as defined in [25] and [64], and let Kn(A)
denote the n-th homotopy group ofK(A), whether or not n is positive. The groups
Kn(A) for n < 0 then agree with the “Bass negative K-groups” defined in [37] or [3],
and in fact all the standard constructions of deloopings of the algebraic K-theory
spectrum are known to be naturally equivalent [44, §§5–6].

By the same token, we let Ktop(A) be the topological K-theory spectrum of A.
This is an Ω-spectrum in which every second (or eighth, depending on whether
F = C or R) space is GL(A), the infinite general linear group of A, with the
Hausdorff group topology defined by the norm on A (not the discrete topology
on GL(A), which we’ll denote by GL(A)δ, used to define K(A)). More specifically,
when F = C,Ktop(A) is given by the homotopy equivalences

K0(A) × BGL(A)
�→ ΩGL(A) ,

GL(A)
�→ ΩBGL(A) = Ω(K0(A) × BGL(A))

of the Bott Periodicity Theorem [69], and by similar maps when F = R. The
homotopy groups K

top
n (A) ofKtop(A) are thus periodic in n (with period 2 if F = C,

period 8 if F = R).
Basic to what follows is [49, theorem 1.1]:

4Theorem 4 Let A be a Banach algebra (over F = R or C). There is a functorial
“comparison map” of spectra c : K(A) → K

top(A) induced by the “change of
topology” map GL(A)δ → GL(A). The induced map c∗ : K0(A) → K

top
0 (A) is

the identity, and the induced map c∗ : K1(A) → K
top
1 (A) is the quotient map

GL(A)|E(A) → GL(A)|GL(A)0. (Here E(A) is the group generated by the elementary
matrices, and GL(A)0 ⊇ E(A) is the identity component of GL(A).)

Recall also thatK(A) is aK(F)-module spectrum and thatKtop(A) is aKtop(F)-
module spectrum. The map c is compatible with the product structures, in that
the diagram

K(F) ×K(A) ��

µ

��
(cF ,cA)

K(A)

��
c

K
top(F) ×Ktop(A) ��

µtop

K
top(A) ,

µ denoting the multiplication maps, is homotopy commutative.
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Proof (Sketch)
The “change of topology” map of topological groups

GL(A)δ → GL(A)

induces a map of classifying spaces BGL(A)δ → BGL(A). Apply the Quillen +-
construction. Since BGL(A) is already an H-space, this does nothing to BGL(A),
and we get a map (BGL(A)δ)+ → BGL(A) and thus a map K0(A) × (BGL(A)δ)+ →
K0(A) × BGL(A). This is an infinite loop space map, and induces a map c of
connective K-theory spectra K(A)〈0〉 → K

top(A)〈0〉 with the desired properties.
So it’s only necessary to deloop it. This could be done using the Pedersen–Weibel
construction in [44], or we can do it inductively, one step at a time, as follows.
The single delooping of K0(A) × (BGL(A)δ)+, which on the spectrum level we’ll
denote by Σ(K(A)〈−1〉), is a direct summand in the K-theory space of the Laurent
polynomial ring A[t, t−1], i.e., in K0(A[t, t−1]) × (BGL(A[t, t−1])δ)+. Now by Stone–
Weierstraß, A[t, t−1] is a dense subalgebra of the Banach algebra C(S1, A) (in the
complex case), or of

{
f ∈ C(S1, AC ) : f (z−1) = f (z)

}

in the real case. (Note this is not the same as the algebra of real-valued continuous
functions S1 → A, since the Laurent polynomial variable t should be identified
with the complex variable z on the unit circle in the complex plane, and z−1 = z.)
Let us denote the completion of A[t, t−1] in both cases by ΣA, and call it the
“suspension” of A. As before we have a map of spectra K(ΣA)〈0〉 → K

top(ΣA)〈0〉.
However, by the Fundamental Theorem of K-theory,

K(A[t, t−1]) � K(A) ⊕ ΣK(A) ⊕ Nil terms ,

and similarly Ktop(ΣA) � Ktop(A) ⊕ ΣKtop(A) by Bott periodicity (for KR in the
real case). We thus obtain a commutative diagram of spectra

Σ(K(A)〈−1〉) ��

Σ(c delooped)

� �

��
�

�

�

Σ(Ktop(A)〈−1〉)
� �

��
�

�

�

K(A[t, t−1])〈0〉 �� K(ΣA)〈0〉 ��

cΣA

K
top(ΣA)〈0〉 ,

with the vertical dotted arrows split inclusions, which gives the inductive step.
The compatibility of the map c with products follows from the way the prod-

ucts are defined. The product in topological K-theory comes from a group ho-
momorphism µtop : GL(F) × GL(A) → GL(A) (see for example [48, theorem
5.3.1, pp. 280–281], and the product in algebraic K-theory comes from a map
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µ : GL(F) × GL(A) → GL(A) defined by exactly the same formula, so clearly the
diagram

GL(F)δ × GL(A)δ ��

µ

��

GL(A)δ

��

GL(F) × GL(A) ��

µtop

GL(A) ,

commutes. So apply the classifying space functor, the plus construction, etc.

Now we can formulate the basic problems to be studied in this article:

5Problem 5
1. How close is the map c : K(A) → K

top(A) to being an equivalence?
2. When c is far from being an equivalence, can we still say anything intelligent

aboutK(A)?

We will sometimes consider K-theory with coefficients. With A as before,K(A;Z|n),
the algebraic K-theory spectrum with coefficients in Z|n, is obtained by smashing
K(A) with the mod n Moore spectrum (the cofiber of the map S

n→ S of degree n,
where S is the sphere spectrum). This definition agrees in positive degrees with,
but is not precisely identical to, the (older) definition of mod n K-theory in [6].

Direct Calculation in the Abelian Case 3.2.2

In considering Problems 5(1–2), one must certainly begin with the case of the
simplest Banach algebras, namely the archimedean local fields R and C, and after
that with commutative Banach algebras. Taylor’s Theorem 2 shows that the study of
the commutative case reduces to the study of the algebras of continuous functions,
CR (X) and CC (X). Already in [43, §7], Milnor did a direct analysis of these cases
in low dimensions, and found:

6Theorem 6 Let X be a compact Hausdorff space, letF = R orC, and let A = CF (X).
Then the map c∗ : Kj(A) → K

top
j (A) is surjective for j = 1, with kernel C(X,F×)0,

the identity component of the continuous functions from X to F×. If F = R, since
R

×
0 = R×

+ is contractible,

exp: CR (X)
=̃→ C(X,R×)0 ,

while if F = C, since C× has the homotopy type of a circle,

exp: CC (X)� C(X,C×)0

with kernel C(X,Z) and with C(X,C×)|C(X,C×)0 =̃ H1(X,Z) (Čech cohomology).
Furthermore, c∗ is surjective also for j = 2 and F = R.
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This shows in particular that c∗ can have a huge kernel when j = 1, since CR (X)
is always a Q-vector space of uncountable dimension. It is also true that c∗ can
have a huge kernel when j = 2, since for example by [43, theorem 11.10], K2(R)
and K2(C) must be uncountable, while on the other hand K

top
2 (R) = Z|2 and

K
top
2 (C) = Z. So in general we cannot expect c∗ to be close to an isomorphism, and

we can already see that the presence of large uniquely divisible groups is part of
the explanation. This suggests that examining c∗ with finite coefficients might be
more valuable.

“Lie Groups Made Discrete” and Suslin’s Theorems
on K∗(R), K∗(C)3.2.3

The algebraic K-theory of F = R or C is more accessible than that of general
Banach algebras, since it can be obtained from applying the Quillen +-construction
to BGL(F)δ, and GL(F) is an inductive limit of Lie groups. Thus understanding
K(F;Z|n) is related to understanding the group homology with finite coefficients
of “Lie groups made discrete.” This was studied by Friedlander (as early as the
mid-1970’s) and Friedlander–Mislin (see, e.g., [22]), using the machinery of étale
homotopy theory, and by Milnor [42].

The most optimistic possible conjecture is that for any Lie group G, the natural
map BGδ → BG is a homology isomorphism with finite coefficients. As Milnor
shows in [42], this is indeed the case for solvable Lie groups. Milnor also proves
that for G any Lie group with finitely many components, the map H∗(BG;Z|n) →
H∗(BGδ;Z|n) is split injective.3

Around the same time as Milnor’s work, Suslin began to investigate K(F;Z|n)
(for F = R or C, as well as for more general local or algebraically closed fields) by
using completely different techniques coming from algebraic geometry. We quickly
summarize his remarkable results.

7 Theorem 7: Suslin [52] If F ↪→ L is an extension of algebraically closed fields,
then for any positive integer n, the induced map K(F;Z|n) → K(L;Z|n) is an
equivalence.

Comments on the proof
Suslin begins by observing that L = lim→ A, where A runs over the finitely gener-

ated F-subalgebras of L. Since F is algebraically closed, the Nullstellensatz implies
that for any such A, the map F ↪→ A has an F-linear algebra splitting, and in par-
ticular, K∗(F;Z|n) → K∗(A;Z|n) is split injective. Thus K∗(F;Z|n) → K∗(L;Z|n)

3 One might even hope that injectivity would be true for more general locally compact
groups, but this cannot even be the case for general profinite groups, as demonstrated
in [50].



Algebraic and topological K-theory 855

is injective. However, this is the “trivial” part of the proof, as it would have applied
just as well to the integral K-groups.

The finite coefficients are used (though the divisibility of L× and of Pic0(C), C
a smooth curve over L) in the course of proving the rigidity theorem 8 below. This
is then applied with A a smooth finitely generated F-subalgebra of L, h0 : A → L
the inclusion, and h1 : A → L factoring through a an F-algebra homomorphism
A → F. Passage to the limit over all such A’s gives the surjectivity of K∗(F;Z|n) →
K∗(A;Z|n).

The proof is completed with:

8Theorem 8: Suslin rigidity theorem [52] If F ↪→ L is an extension of alge-
braically closed fields, if A is a smooth affine F-algebra without zero-divisors,
and if h0, h1 : A → L are two F-homomorphisms, then for any positive integer n,
(h0)∗ � (h1)∗ as mapsK∗(A;Z|n) → K∗(L;Z|n).

Theorem 7 implies:

9Corollary 9 If F is an algebraically closed field of characteristic 0, thenK(F;Z|n) �
K(C;Z|n). And if F is an algebraically closed field of characteristic p > 0, then for
(n, p) = 1, Ki(F;Z|n) =̃ K

top
i (C;Z|n), while Ki(F;Z|p) = 0 for i > 0.

Proof Theorem 7 implies that the homotopy type of K(F;Z|n) is the same as for
F = Q (in the characteristic 0 case) or for F = Fp (in the characteristic p case).
The first statement follows from Theorem 7 applied toQ ↪→ C; the second follows
from Quillen’s calculation [46] of the homotopy type ofK(Fq).

More relevant for our purposes is:

10Theorem 10: Suslin [54] Let F = R or C. Then the comparison map c of The-

orem 4 induces isomorphisms c∗ : Kj(F;Z|n)
=̃→ K

top
j (F;Z|n) for all positive in-

tegers n and for all j ≥ 0. We can rephrase this by saying that c induces an
equivalence of spectra K(F;Z|n)

�→ K
top(F;Z|n)〈0〉, where the spectrum on the

right is the connective topological K-theory spectrum, often denoted bu(Z|n) or
bo(Z|n).

Comparison of this result with Corollary 9 yields the remarkable conclusion that for
algebraically closed fields F, the homotopy type ofK(F;Z|n) is almost independent
of F. (The only variations show up when n is a multiple of the characteristic.)
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However, this is taking us somewhat far afield, as our interest here is in Banach
algebras. The proof of Theorem 10 follows a surprising detour; it depends on:

11 Theorem 11: Gabber [24], Gillet–Thomason [26] Let A be a commutative ring in
which the integer n > 0 is invertible, and let I be an ideal of A contained in the
radical of A, such that the pair (A, I) is Henselian. (This means that the conclusion
of Hensel’s Lemma holds for the map A � A|I, i.e., that if f ∈ A[t] and if the
reduction f ∈ (A|I)[t] of f mod I has a root α ∈ A|I such that f

′
(α) is a unit in A|I,

then α can be lifted to a root α of f in A.) Then K∗(A, A|I;Z|n) = 0.

Comments on the proof of Theorem 10
Theorem 11 has a fairly obvious application to the computation of K∗(Qp;Z|n)

or of mod n K-theory of other non-archimedean local fields F, since if O is the
ring of integers in F and p is its maximal ideal, then (O, p) is Henselian, but the
most ingenious part of [54] is the development of a trick for handling the case of
the archimedean fields R and C.

First there is a relatively straightforward reduction of the problem to proving
that the identity map BSLk(F)δ → BSLk(F) induces an isomorphism on mod n
homology in a range of dimensions (depending on k but increasing to infinity as
k → ∞). But since Gk = SLk(F) is a Lie group, it turns out that there is a good
model for the fiber of the map BGδ

k → BGk, which Suslin denotes (BGk)ε, obtained
by fixing a left-invariant Riemannian metric on Gk and choosing ε small enough so
that if Uε denotes the open ε-ball around the identity e of Gk, then there is a unique
geodesic arc joining any two points in Uε. This guarantees that any intersection
of left translates of Uε, if non-empty, is contractible. One then takes (BGk)ε to
be the geometric realization of the simplicial set whose m-simplices are m-tuples
[g1, …, gm] such that Uε ∩ g1Uε ∩ … ∩ gmUε �= ∅.

Now because of the Serre spectral sequence of the fibration

(BGk)ε → BGδ
k → BGk

as well as Milnor’s results, it turns out it suffices to prove that the natural map
(BGk)ε → BGk induces the zero map on mod n homology. To prove this, one
similarly translates Theorem 11 into a statement about mod n homology, namely
that the map BGLk(R, I) → BGL(R, I) induces the zero map on mod n homology
in the limit as k → ∞. This is then used in a strange way – we take R to be the local

ring of germs of F-valued continuous functions on

j
︷ ︸︸ ︷
Gk × · · · × Gk near (e, …, e),

and I to be its maximal ideal of functions vanishing at (e, …, e). Disentangling
everything turns out to give the result one needs in degree j, since j-chains on
(BGk)ε (where one can pass to the limit as ε → 0) are basically elements of R.

One can also find an exposition of the proof in [51].
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Karoubi’s Early Work on Algebraic K-Theory
of Operator Algebras 3.2.4

The first substantial work on Problems 5 for infinite-dimensional Banach algebras,
aside from the few special results already mentioned, was undertaken by Karoubi.
In this subsection we summarize some of the results in two important papers of
Karoubi, [38] and [39]. In all of this section, all Banach and C∗-algebras will be
over C, not R.

In the category of C∗-algebras, it is rather artificial to restrict attention to unital
algebras, so at this point it’s necessary to say something about algebraic K-theory
for non-unital algebras (over a field of characteristic zero). The problem is that
algebraic K-theory does not in general satisfy excision, so that the algebraic K-
theory of a non-unital algebra A should be interpreted as the relative K-theory of
a pair (B, A), where B is an algebra containing A as an ideal. When A is a nonunital
C∗-algebra, there are two canonical choices for B, both of which are C∗-algebras:
Ã = A + 1 · C, the algebra obtained by adjoining a unit to A, and M(A), the
multiplier algebra of A. The latter, first introduced in [34] and [13], is the largest
unital C∗-algebra containing A as an essential ideal, just as Ã is the smallest such
C∗-algebra. For example, if X is a locally compact Hausdorff space and if A = C0(X),
Ã = C(X+) and M(A) = C(βX), where X+ is the one-point compactification of X
and βX is the Stone–Čech compactification of X. It turns out that M(K) = L, the
algebra of bounded operators on the same Hilbert space where K is the algebra
of compact operators. Below, when we talk about the algebraic K-theory of K , we
will implicitly mean the K-theory of (L, K). (Later on, in Sect. 3.3.2, it will turn
out it doesn’t matter, and the pair (K̃ , K) would give the same results.)

Karoubi noticed that the periodicity of Ktop(C) can be attributed to two special
elements, the Bott element β ∈ K

top
2 (C) and the inverse Bott element β−1 ∈ K

top
−2 (C).

The class β, once we use finite coefficients, does lie in the image of the comparison
map K2(C;Z|n) → K

top
2 (C;Z|n) of Theorem 4. (This follows immediately from

Theorem 10, but it can also be proved directly – see [38, proposition 5.5].) However,
β−1 cannot lie in the image of the comparison map, even with finite coefficients,
since C is a regular ring and thus its negative K-groups vanish. However, Karoubi
noticed that topological K-theory is the same for C and for the algebra K of
compact operators. (More precisely, the non-unital homomorphism C ↪→ K
sending 1 to a rank-one projection induces an isomorphism on topological K-
theory. The excision property of topological K-theory implies functoriality for
non-unital homomorphisms.) And there is an algebraic inverse Bott element in
K−2(K) which maps to β−1 ∈ K

top
−2 (C) under the composite

K−2(K)
cK→ K

top
−2 (K)

=̃→ K
top
−2 (C) =̃ Z .

Karoubi proves this using two simple observations. The first is:

12Theorem 12: [38, théorème 3.6] If A is a C∗-algebra (with or without unit), the
map c : K−1(A) → K

top
−1 (A) is surjective.
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Sketch of proof [38, §III]
It suffices to consider the case where A has a unit (since if A is non-unital,

K−1(A) =̃ K−1(Ã), where Ã is the C∗-algebra obtained by adjoining a unit to
A). Recall that the Bass definition of K−1(A) is in terms of a direct summand in
K0(A[t, t−1]), and that the Laurent polynomial ring A[t, t−1] embeds densely in
C(S1, A). But K0(C(S1, A)) =̃ K0(A) ⊕ K

top
1 (A), and K

top
1 (A) =̃ K

top
−1 (A) by Bott

periodicity. So we just need to show that the summand K−1(A) in K0(A[t, t−1])
surjects onto K

top
1 (A) under the map induced by the inclusion A[t, t−1] ↪→ C(S1, A).

Since elements of K
top
1 (A) are represented by unitary matrices over A and we can

always replace A by Mr(A) for some r, it suffices to show that if u ∈ A is unitary
(i.e., u is invertible and u−1 = u∗), the corresponding class in K

top
1 (A) lies in the

image of K0(A[t, t−1]). Since the C∗-algebra generated by u is a quotient of C(S1)
(since u is normal and has spectrum in the unit circle), under a ∗-homomorphism
sending the standard generator z of C(S1) (the indentity map S1 → S1 ⊂ C, when
we think of S1 as the unit circle in the complex plane) to u, it suffices to deal with
the case where A = C(S1) and we are considering the class [z]. Then we just need
to show that the Bott element in K

top
1 (C(S1)) =̃ K0(C(T2)) lies in the image of

K0(C(S1)[t, t−1]). However, one can write the Bott element out in terms of a very
explicit 2 × 2 matrix with entries that are functions of z and t that are Laurent
polynomials in the t-variable (see [38, pp. 269–270]), so that does it.

Now we obtain the desired result on the inverse Bott element as follows:

13 Theorem 13: Karoubi The comparison map c : K−2(K) → K
top
−2 (K) is surjective.

Proof Consider the exact sequence of C∗-algebras

0 → K → L → Q = L|K → 0 ,

where Q is the Calkin algebra. Since L, the algebra of all bounded operators on
a separable Hilbert space, is “flasque” by the “Eilenberg swindle” (all finitely gen-
erated projective L-modules are stably isomorphic to 0), all its K-groups, whether
topological or algebraic, vanish. So now consider the commutative diagram of
exact sequences:

0 = K−1(L) �� K−1(Q) ��

����

K−2(K) ��

��

0 = K−2(L)

0 = K
top
−1 (L) �� K

top
−1 (Q) �� K

top
−2 (K) �� 0 = K

top
−2 (L) ,

where the surjectivity of the arrow K−1(Q) → K
top
−1 (Q) follows from Theorem 12.

The result follows by diagram chasing.
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In fact because of the multiplicative structure on K-theory one can do much better
than this, and Karoubi managed to prove:

14Theorem 14: Karoubi The comparison map c : K∗(K ;Z|n) → K
top
∗ (K ;Z|n) is an

isomorphism (in all degrees), and the map c : Kj(K) → K
top
j (K) is surjective for

all j and an isomorphism for j ≤ 0.

Proof The first step is to prove the statement about K-theory with finite coefficients.
Choose γ ∈ K−2(K) mapping to β−1 ∈ K

top
−2 (K); this is possible by Theorem 13. Let

βn be the mod n Bott element in K2(C;Z|n). (Recall Suslin’s Theorem 10.) Then the
cup-product βn · γ ∈ K0(K ;Z|n) =̃ Z|n maps to β · β−1 = 1 ∈ K

top
0 (K ;Z|n) =̃ Z|n

(by the last part of Theorem 4, the compatibility with products), and so is 1. So the
product with γ is inverse to the product with βn on K∗(K ;Z|n), and so K∗(K ;Z|n)
is Bott-periodic and canonically isomorphic to K

top
∗ (K ;Z|n) = Z|n[β, β−1].

Now we lift the mod n result to an integral result for K2 . Recall that by Theorem 3,
K1(K) = 0. Because of this fact and the above result on mod n K-theory, we have
the commuting diagram of long exact sequences

· · · �� K2(K) ��

n

��
c

K2(K) ��

��
c

K2(K ;Z|n) =̃ Z|n ��

��
c=̃

K1(K) = 0

0 �� K
top
2 (K) =̃ Z ��

n

K
top
2 (K) =̃ Z �� Ktop(K ;Z|n) =̃ Z|n �� K

top
1 (K) = 0 .

From this it follows that the comparison map c : K2(K) → K
top
2 (K) =̃ Z hits

a generator mod n for each n, and thus this map is integrally surjective.
Hence we can choose an algebraic Bott element δ ∈ K2(K) mapping to β ∈

K
top
2 (K). We could then deduce that multiplication by γ is inverse to multiplication

by δ, and thus that the algebraic K-theory of K is Bott-periodic and canonically
isomorphic to the topological K-theory, provided we had a good cup-product
structure on K-theory for non-commutative rings. Unfortunately there is a problem
with this that comes from failure of excision in algebraic K-theory in positive
degrees. This is exactly why Karoubi can only conclude that c : Kj(K) → K

top
j (K)

is surjective for all j and an isomorphism for j ≤ 0.

The above result on the K-theory of K (or rather, Karoubi’s first partial results
in this direction, since the paper [38] predated Theorem 14) motivated a rather
audacious conjecture in [38] about the K-theory of stable C∗-algebras, which came
to be known as the Karoubi Conjecture.

15Conjecture 15: Karoubi Conjecture [38] For any stable C∗-algebra A, the com-
parison map c : K(A) → K

top(A) is an equivalence.
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The original formulation of this conjecture in Karoubi’s paper seems a bit vague
about what definition of algebraic K-theory should be used here for non-unital
algebras. Fortunately we shall see later (Sect. 3.3.2) that all possible definitions
coincide. In fact it would appear that Karoubi wants to work with K∗(A⊗L, A⊗K),
which presents a problem since the minimal C∗-algebra tensor product is not
an exact functor in general. Fortunately all the difficulties resolve themselves
a posteriori.

It is also worth mentioning that Karoubi’s paper [39] deals not only with C∗-
algebras, but also with Banach algebras, especially the Schatten ideals Lp(H) in
L(H). (The ideal Lp(H), 1 ≤ p < ∞ is contained in K(H); a compact operator T
lies in Lp(H) when the eigenvalues (counted with multiplicities) of the self-adjoint
compact operator (T∗T)

1
2 form an lp sequence. Thus L1 is the ideal of trace-class

operators discussed previously.) All the ideals Lp have the same topological K-
theory, but roughly speaking, the algebraic K-theory of Lp becomes more and
more “stable” (resembling the K-theory of K) as p → ∞. This is reflected in:

16 Theorem 16: Karoubi, [39, propositions 3.5 and 3.9, corollaire 4.2, and théo-
rème 4.13] For all p ≥ 1, K−1(Lp) = 0 and c : K−2(Lp) → K

top
−2 (Lp) =̃ Z is

surjective. However, for integers n ≥ 1, c : K2n(Lp) → K
top
2n (Lp) =̃ Z is the 0-map

for p ≤ 2n − 1 and is surjective for n = 1, p > 1.

The result for K2 suggests that by using products one should obtain surjectivity
of c : K2n(Lp) → K

top
2n (Lp) =̃ Z for p large enough compared with n, but failure

of excision gets in the way of proving this in an elementary fashion. This issue is
discussed in more detail in [68, §2], where additional results along these lines are
obtained.

Recent Progress on Algebraic K-Theory
of Operator Algebras3.3

Algebraic K-Theory Invariants for Operator Algebras3.3.1

For some purposes, it is useful to study the homotopy fiber Krel(A) of the com-
parison map c : K(A) → K

top(A) of Theorem 4. We call this spectrum (or the set
of its homotopy groups) the relative K-theory; it measures the difference between
the algebraic and topological theories. Obviously we get a long exact sequence of
K-groups

· · · → K
top
j+1 (A) → Krel

j (A) → Kj(A)
c→ K

top
j (A) → Krel

j−1(A) → · · · . (3.5)

Since (for any unital Banach algebra A) K1(A) surjects onto K
top
1 (A) and K0(A) →

K
top
0 (A) is an isomorphism, Krel

0 (A) = 0. We have Krel
j (C) = Z for j = −3, −5, · · · and
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Krel
j (C) = 0 for other negative values of j. The Karoubi Conjecture (Conjecture 15)

amounts to the assertion thatKrel(A) is trivial for stable C∗-algebras.
A number of papers in the literature, such as [14, 15, 35], and [36], attempt

to detect classes in relative K-theory through secondary index invariants or reg-
ulators. (“Primary” index invariants detect classes in topological K-theory.) For
example, suppose τ is a p-summable Fredholm module over A. This consists of
a representation of A on a Hilbert space H , together with an operator F ∈ L(H)
that satisfies F2 = 1 and that commutes with A modulo the Schatten class Lp(H).
When p is even, one additionally requires that H is Z|2-graded, that the action of
A on H preserves the grading, and that T is odd with respect to the grading. (The
prototype for this situation is the case where A = C∞(M), M a compact (p − 1)-
dimensional smooth manifold, and T is obtained by functional calculus from
a first-order elliptic differential operator, such as the Dirac operator or signature
operator.) In [14] and [15], Connes and Karoubi set up, for each (p + 1)-summable
Fredholm module τ, a commutative diagram with exact rows, where the top row
comes from (3.5):

Kp+2(A) ��

c

K
top
p+2(A)

��
Indτ

�� Krel
p+1(A)

��
Indsec

τ

�� Kp+1(A)

��
Indsec

τ

��

c

K
top
p+1(A)

0 �� Z ��

2πi

C ��

exp

C
× �� 0 .

The downward arrow Indτ is the usual index and the downward arrows Indsec
τ are

the secondary index invariants. When A = C∞(S1) (this is only a Fréchet algebra,
but standard properties of topological K-theory for Banach algebras apply to it as
well) and τ corresponds to the smooth Toeplitz extension (3.4), Indsec

τ recovers the
determinant invariant discussed above in Sect. 3.1.4. Other papers such as [35]
and [36] relate other secondary invariants defined analytically (for example, via
the eta invariant) to the Connes–Karoubi construction.

The Work of Suslin–Wodzicki on Excision 3.3.2

As we saw in Sect. 3.2.4, the Karoubi Conjecture (Conjecture 15) and related con-
jectures about the K-theory of operator algebras are dependent on understanding
to what extent the K-theory of nonunital Banach algebras satisfies excision. Work
on this topic was begun by Wodzicki ([66,67]) and completed in collaboration with
Suslin [55]. Wodzicki started by studying excision in cyclic homology, then moved
on to the study of rational K-theory, and finally Suslin and Wodzicki clarified the
status of excision in integral algebraic K-theory. As the papers [67] and [55] are
massive and deep, there is no room to discuss them here in detail, so we will be
content with a short synopsis. For simplicity we specialize the results to algebras
over a field F of characteristic 0, the only case of interest to us. Then (in [66]) Wodz-
icki calls an F-algebra A homologically unital, or H-unital for short, if the standard
bar complex B•(A) is acyclic, i.e., if TorÃ

• (F, F) = 0, where Ã = A + F · 1 is A with
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unit adjoined. In [66] and [67], Wodzicki shows that C∗-algebras, Banach algebras
with bounded approximate unit [66, proposition 5], and many familiar Fréchet
algebras such as S(Rn) [67, corollary 6.3], are H-unital. Furthermore, any tensor
product (over F) of an H-unital algebra with a unital F-algebra is H-unital [67,
corollary 9.7]. The main result of [66] is that an F-algebra satisfies excision in
cyclic homology if and only if it is H-unital. It is also pointed out, as a consequence
of Goodwillie’s Theorem [27], that if an F-algebra satisfies excision in rational
algebraic K-theory, then it must satisfy excision in cyclic homology and thus be
H-unital.

In [55], Suslin and Wodzicki managed to prove the converse, that if A is an
H-unital F-algebra, then A satisfies excision in rational algebraic K-theory, i.e.,
K•(B, A) ⊗Z Q is independent of B, for B an F-algebra containing A as an ideal.
Since Weibel had already shown [65] that K-theory with Z|p-coefficients satisfies
excision forQ-algebras, this implies:

17 Theorem 17: Suslin–Wodzicki [55] Let A be an algebra over a field F of character-
istic 0. Then A satisfies excision for algebraic K-theory if and only if A is H-unital.
In particular, C∗-algebras satisfy excision for algebraic K-theory.

The proof of the Suslin–Wodzicki Theorem is rather complicated, but ultimately,
via the use of the Volodin approach to K-theory, it comes down to showing that
the inclusion

A ↪→ A1 =

(
A A

0 0

)

induces an isomorphism on Lie algebra homology HLie• (gl(A)) =̃ HLie• (gl(A1)).
This in turn follows from showing that HC•(A) =̃ HC•(A1), which can be deduced
from the H-unitality of A. (By the way, if one is only interested in C∗-algebras A,
then since they satisfy A2 = A, the proof in [55] can be shortened somewhat, as
explained on page 89.)

Resolution of the Karoubi Conjecture3.3.3

The Karoubi Conjecture is now known to be true, thanks to a combination of
the work of Higson [29] and the Suslin–Wodzicki Theorem discussed above in
Sect. 3.3.2. The method of Higson is somewhat indirect, and is based on the
following intermediate result of independent interest:

18 Theorem 18: [29, theorem 3.2.2] Let k be a functor from the category of C∗-
algebras and ∗-homomorphisms (or a suitable full subcategory, such as the cate-
gory of separable C∗-algebras) to the category of abelian groups. Assume that k is
stable, i.e., that the morphism A → A ⊗ K (C∗-algebra tensor product) given by
a �→ a ⊗ e, where e is a rank-one projection in K , always induces an isomorphism
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k(A) → k(A ⊗ K). Also assume that k is split exact, i.e., that it sends split short
exact sequences of C∗-algebras to split short exact sequences of abelian groups.
Then k is homotopy-invariant.

A few ideas from the proof
The idea is to use the hypotheses to construct a pairing of k with Fredholm

modules. More precisely, suppose ϕ = (ϕ+, ϕ−) is a Fredholm pair; i.e., ϕ+ and ϕ−

are ∗-representations of a C∗-algebra B on a Hilbert space H , such that ϕ+(a) −
ϕ−(a) ∈ K(H) for all a ∈ B. From this data, by a construction originally due to
Cuntz, one gets a split short exact sequence (for any C∗-algebra A)

0 �� A ⊗ K �� A ⊗ Bϕ ��

p

A ⊗ B
qq

1⊗ϕ

�� 0 ,

where Bϕ = {(b, x) ∈ B⊕L(H) | ϕ(b)−x ∈ K(H)}. (Note that this is independent
of whether one uses ϕ+ or ϕ−.) Since k was assumed stable and split exact, we get
a map

ϕ∗ : k(A ⊗ B) → ker(p∗)
=̃→ k(A ⊗ K)

=̃→ k(A)

with certain good functorial properties. The next step (which is not so difficult)
is to show that this pairing can be expressed a pairing with Fredholm mod-
ules of the more conventional sort (where one has a ∗-representation ϕ of B
on a Hilbert space H and a unitary operator F that commutes with the repre-
sentation modulo compacts). One simply lets ϕ+ = ϕ, ϕ− = Ad(F) ◦ ϕ. Then
one shows that this pairing is invariant under operatorial homotopy, i.e., norm-
continuous deformation of the F, keeping ϕ fixed and with the “commutation
modulo compacts” condition satisfied at all times. The final, and hardest, step is
to construct an operatorial homotopy (ϕ, {Ft}t∈[0,1]) of Fredholm modules over
C([0, 1]), such that the pairing of k with (ϕ, F0), k(A ⊗ C([0, 1])) → k(A), corre-
sponds to evaluation of functions at 0, and the pairing of k with (ϕ, F1) corresponds
to evaluation of functions at 1. This step of the proof is highly reminiscent of the
proof [41, §6, theorem 1] that operatorial homotopy invariance of Kasparov’s KK-
functor implies homotopy invariance in the most general sense, and establishes
the theorem.

From this and the Suslin–Wodzicki Theorem we immediately deduce

19Theorem 19 The Karoubi Conjecture is true. In other words, if A =̃ A ⊗ K is
a stable C∗-algebra, then the comparison map c : K(A) → K

top(A) of Theorem 4
is an equivalence.
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Proof For each integer j, let kj(A) = Kj(A ⊗ K). Then kj is a functor from C∗-
algebras to abelian groups – note that since A is H-unital, we do not need to specify
which unital algebra contains A ⊗ K as an ideal, by Theorem 17. We claim this
functor is split exact. Indeed, if

0 �� A �� B �� C
ss

�� 0

is split exact, then so is

0 �� A ⊗ K �� B ⊗ K �� C ⊗ K
qq

�� 0

(because the C∗-algebra tensor product with K is an exact functor, since K is
nuclear), and we can apply the long exact sequence in K-theory. Furthermore, kj

is stable, since if e is a rank-one projection in K and ϕ : A → A ⊗ K is given by
a �→ a⊗e, then kj(ϕ) : Kj(A⊗K) → Kj(A⊗K ⊗K) is the morphism on K-theory

induced by a ⊗ e �→ a ⊗ e ⊗ e, and there is an isomorphism K ⊗K
=̃→ K sending

e ⊗ e �→ e. Hence by Theorem 18, kj is homotopy-invariant.
Now we conclude the proof by showing by induction that c∗ : kj(A) → K

top
j (A)

is an isomorphism for all C∗-algebras A and all j. Clearly this is true for j = 0.
Next, we prove it for j positive. Assume by induction that c∗ : kj(A) → K

top
j (A) is an

isomorphism for all C∗-algebras A. We have a short exact sequence of C∗-algebras:

0 → C0((0, 1)) ⊗ A → C0([0, 1)) ⊗ A → A → 0 .

The middle algebra is contractible, so by the homotopy invariance result just
proved, kj+1(C0([0, 1)) ⊗ A) = 0 and kj(C0([0, 1)) ⊗ A) = 0. A similar result
holds for topological K-theory. Thus the long exact sequences in K-theory give
a commuting diagram

kj+1(A) ��

∂

=̃

��
c∗

Kj(C0((0, 1)) ⊗ A)

��
c∗ =̃

K
top
j+1 (A) ��

∂

=̃

K
top
j (C0((0, 1)) ⊗ A) .

and thus c∗ : kj+1(A) → K
top
j+1 (A) is an isomorphism. This completes the inductive

step.
The result for j ≤ 0 is already contained in [38, théorème 5.18] and is essentially

identical to the proof of Theorem 14, using the product structure on K∗(K).

Unfortunately this proof does not necessarily explain “why” the Karoubi Conjec-
ture is true, since, unlike the proof of the Brown–Schochet Theorem (Theorem 3),
it is not constructive.
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A number of modifications or variants on Theorem 19 are now known. For
example, one has the “unstable Karoubi Conjecture” in [53]: if A is a stable C∗-
algebra, then the natural map B(GLn(A)δ) → BGLn(A) is an isomorphism on
integral homology for all n. Here GLn(A) is to be interpreted as GLn(Ã, A), i.e.,
the group of matrices in GLn(Ã) which are congruent to 1 modulo A. There is
a Fréchet analogue of the Karoubi Conjecture in [57], with K replaced by the
algebra of smoothing operators, or in other words by infinite matrices with rapidly
decreasing entries, a version of the theorem for certain generalized stable algebras
in [31], and a pro-C∗-algebra analogue in [32].

Other Miscellaneous Results 3.3.4

In this final section, we mention a number of other results and open problems
related to algebraic K-theory of operator algebras. These involve K-regularity,
negative K-theory, and K-theory with finite coefficients.

K-Regularity
We begin with a few results about K-regularity, or in other words, results that say
that C∗-algebras behave somewhat like regular rings with respect to algebraic K-
theory. As motivation for this subject, note that in [56], Swan defined a commutative
ring R with unit, and with no nilpotent elements, to be seminormal if for any b, c ∈ R
with b3 = c2, there is an element a ∈ R with a2 = b and a3 = c. This condition
guarantees that Pic R[X1, · · · , Xn] =̃ Pic R for all n, which we can call Pic-regularity.
Swan’s condition is clearly satisfied for commutative C∗-algebras, since if R = C(X)
for some compact Hausdorff space X, and if b and c are as indicated, one can take

a(x) =





c(x)|b(x), b(x) ≠ 0 ,

0, b(x) = c(x) = 0 ,

and check that a is continuous and thus lies in R. Hence commutative C∗-algebras
are Pic-regular. This suggests that they might be K-regular as well, since Pic and
K0 are closely related.

In [29, §6], Higson proved the K-regularity of stable C∗-algebras as part of his
work on the Karoubi Conjecture. In other words, we have

20Theorem 20: Higson; see also [31, theorem 18] If A is a stable C∗-algebra, then
for any n, the natural map K(A) → K(A[t1, · · · , tn]) (which is obviously split by
the map induced by sending tj �→ 0) is an equivalence. In other words, stable
C∗-algebras are K-regular.

Proof For any j, the functor kn
j = A �→ Kj(A[t1, · · · , tn]) satisfies the conditions of

Theorem 18. (Here we are using the fact that H-unitality of A implies H-unitality of
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the polynomial ring A[t1, · · · , tn].) Hence kn
j is a homotopy functor. So we have an

isomorphism kn
j (A ⊗ C([0, 1])) =̃ kn

j (A) induced in one direction by the inclusion
of A in A ⊗ C([0, 1]) =̃ C([0, 1], A) and in the other direction by evaluation at
either 0 or 1. Now consider the homomorphism ϕ from C([0, 1], A)[t1, · · · , tn] to
itself defined by

ϕ(f )(s, t1, · · · , tn) = f (s, st1, · · · , stn), s the coordinate on [0, 1] .

Then ϕ followed by evaluation at s = 1 is the identity on A[t1, · · · , tn], so it induces
the identity on Kj(A[t1, · · · , tn]), but on the other hand, ϕ followed by evaluation at
s = 0 sends A[t1, · · · , tn] to A. Hence Kj(A[t1, · · · , tn]) factors through Kj(A).

Other results on K-regularity of C∗-algebras may be found in [49]. For example,
there is some evidence there that all C∗-algebras should be K0-regular (i.e., that
one should have isomorphisms K0(A[t1, · · · , tn]) =̃ K0(A) for all n, when A is a C∗-
algebra). There are simple counterexamples there to show this cannot be true
for Banach algebras. Commutative C∗-algebras are in some sense at the opposite
extreme from stable C∗-algebras, and for these one has basically the same K-
regularity result, though the method of proof is totally different.

21 Theorem 21: Rosenberg [49, theorem 3.1] If A is a commutative C∗-algebra, then
for any n, the natural mapK(A) → K(A[t1, · · · , tn]) (which is obviously split by the
map induced by sending tj �→ 0) is an equivalence. In other words, commutative
C∗-algebras are K-regular.

As observed in [49], to prove the general case, one may by excision (Sect. 3.3.2)
reduce to the case where A is unital, and one may by a transfer argument reduce
to the case F = C. So we may take A = C(Y). It was also observed in [49] that
any finitely generated subalgebraC[f1, …, fn] of A is reduced (contains no nilpotent
elements), hence by the Nullstellensatz is isomorphic to the algebraC[X] of regular
functions on some affine algebraic set X ⊆ CN , N ≤ n, not necessarily irreducible.
Then the inclusion C[f1, …, fn] ↪→ A is dual to a continuous map Y → X. Thus it
suffices to show:

22 Theorem 22 Let A = C(Y), where Y is a compact Hausdorff space, be a (complex)
commutative C∗-algebra, and let X ⊆ CN be an affine algebraic set. Suppose one is
given a continuous map ϕ : Y → X, and let ϕ∗ : C[X] → C(Y) be the dual map on
functions. Then (ϕ∗)∗ vanishes identically on NjKm(A) for any j ≥ 0 and m ≥ 0.

Proof The proof of this given in [49] was based on the (basically correct) idea
of chopping up Y and factoring ϕ through smooth varieties, but the technical
details were incorrect.4 Indeed, as pointed out to me by Mark Walker, it was

4 I thank Mark Walker for pointing this out to me.
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claimed in [49] that one can find a closed covering of X such that a resolution of
singularities p : X̂ → X of X (in the sense of [30]) splits topologically over each
member of the closed cover, and this simply isn’t true. (It would be OK with a locally
closed cover, however.) Walker [personal communication] has found another proof
of Theorem 20; see also [23, theorem 5.3]; to set the record straight, we give still
another proof here.

Let p : X̂ → X be a resolution of singularities of X (in the sense of [30]).5 This
has the following properties of interest to us:
1. X̂ is a smooth quasiprojective variety (not necessarily irreducible, since we

aren’t assuming this of X), and p is a proper surjective algebraic morphism.
2. There is a Zariski-closed subset X1 of X, such that X \X1 is a smooth quasipro-

jective variety Zariski-dense in X, and such that if X̂1 = p−1(X1), then p gives
an isomorphism from X̂ \ X̂1 to X \X1, and a proper surjective morphism from
X̂1 to X1.

We now prove the theorem by induction on the dimension of X. To start the
induction, if dim X = 0, then X is necessarily smooth and the theorem is trivial. So
assume we know the result when X has smaller dimension, and observe that the
inductive hypothesis applies to the singular set X1. Also note, as observed in [49],
that there is no loss of generality in assuming Y ⊆ X. Let Y1 = Y ∩ X1. From the
diagram

Y1
� �

��

��
ϕ

Y ��

��
ϕ

(Y , Y1)

��
ϕ

X1
� �

�� X �� (X, X1) ,

we get a commuting diagram of exact sequences of K-groups

NjKm+1(X1) ��

∂

��
(ϕ∗)∗

NjKm(X, X1) ��

��
(ϕ∗)∗

NjKm(X) ��

��
(ϕ∗)∗

· · ·

NjKm+1(C(Y1)) ��

∂

NjKm(C0(Y \ Y1)) �� NjKm(C(Y)) �� · · ·

· · · �� NjKm(X) ��

��
(ϕ∗)∗

NjKm(X1) ��

∂

��
(ϕ∗)∗

NjKm−1(X, X1)

��
(ϕ∗)∗

· · · �� NjKm(C(Y)) �� NjKm(C(Y1)) ��

∂

NjKm−1(C0(Y \ Y1)) .

5 We don’t need the full force of the existence of a such a resolution, but it makes the
argument a little easier. The interested reader can think of how to formulate everything
without using X̂.



868 Jonathan Rosenberg

Here we have used excision (Sect. 3.3.2) on the bottom rows and have identified K-
theory of the coordinate ring of an affine variety with the K-theory of its category
of vector bundles. The K-groups of (X, X1) denote relative K-theory of vector
bundles in the sense of [16], and NK-theory for varieties is defined by setting
NKm(X) = ker(Km(X × A1) → Km(X)), etc. By inductive hypothesis, the maps

NjKm(X1)
(ϕ∗)∗→ NjKm+1(C(Y1)) vanish, so by diagram chasing, it’s enough to show

that the maps NjKm(X, X1) → NjKm(C0(Y \ Y1)) vanish.
Since X \ X1 is smooth, one might think this should be automatic, but that’s

not the case since algebraic K-theory doesn’t satisfy excision. However, we are
saved by the fact that we have excision in the target algebra. The map p : X̂ → X
is an isomorphism from X̂ \ X̂1 to X \ X1, and induces maps p∗ : NjKm(X, X1) →
NjKm(X̂, X̂1). Since ϕ lifts over Y \ Y1, the map NjKm(X, X1) → NjKm(C0(Y \ Y1))
factors through NjKm(X̂, X̂1). (Here the approach of [16] is essential since X̂ may
not be affine, and so we can’t work just with K-theory of rings.) But NjKm(X̂, X̂1)
vanishes since X̂ and X̂1 are smooth.

Negative K-Theory
In [47] and [49], the author began a study of the negative algebraic K-theory of C∗-
algebras. The most manageable case to study should be commutative C∗-algebras.
By Theorem 21, such algebras are K-regular, so they satisfy the Fundamental
Theorem in the simple form Kj(A[t, t−1]) =̃ Kj(A)⊕Kj−1(A). A conjecture from [47]
and [49], complementary to the results of Higson in [29], is:

23 Conjecture 23: Rosenberg Negative K-theory is a homotopy functor on the cate-
gory of commutative C∗-algebras. Thus X �→ Kj(C0(X)) is a homotopy functor on
the category of locally compact Hausdorff spaces and proper maps when j ≤ 0.

24 Corollary 24 On the category of (second countable) locally compact Hausdorff
spaces, X �→ Kj(C0(X)) coincides with connective K-theory bu−j(X), for j ≤ 0.

Proof (from [49]) that the Corollary follows from the Conjecture
Let

k−j(X) =





K

top
j (C0(X)), j > 0

Kj(C0(X)), j ≤ 0 .

Then Conjecture 24 implies that k∗ is a homotopy functor, and it satisfies the
excision and long exact sequence axioms, by Theorem 17 and the long exact
sequences in algebraic and topological K-theory, pasted together at j = 0, where
they coincide. It is also clear that k∗ is additive on infinite disjoint unions, i.e., that
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k∗( ∐
i Xi

)
=

⊕
i k∗(Xi). Thus it is an additive cohomology theory (with compact

supports). There is an obvious natural transformation of cohomology theories
k∗ → K∗ (ordinary topological K-theory with compact supports), induced by
c∗ : Kj(C0(X)) → K

top
j (C0(X)), which is an isomorphism on k−j, j ≤ 0. And k∗ is

a connective theory, since C is a regular ring and thus k−j(pt) = Kj(C) = 0 for
j < 0. Thus by the universal property of the connective cover of a spectrum [2,
p. 145], k∗ → K∗ factors through bu∗. Since k∗(X) → K∗(X) is an isomorphism for
X a point, it is an isomorphism for any X with X+ a finite CW-complex, and then
by additivity, for X+ any compact metric space (since any compact metric space is
a countable inverse limit of finite complexes).

While a proof of Conjecture 24 is outlined in [47], Mark Walker has kindly pointed
out that the proof is faulty. The author still believes that the same method should
work, and indeed it does in certain special cases, but it seems to be hard to get
the technical details to work. In fact, it is even conceivable that negative K-theory
is a homotopy functor for arbitrary C∗-algebras, but a proof of this would require
a totally new technique.

K-Theory with Finite Coefficients
In this last section, we discuss results on K-theory with finite coefficients that
generalize Theorem 10. These results can be viewed as analytic counterparts to
the work of Friedlander–Mislin and Milnor discussed above in Sect. 3.2, and to the
results of Thomason ([60–63]) for algebraic varieties.

25Theorem 25: Fischer [21], Prasolov ([1, 45]) Let A be a commutative C∗-algebra.
Then the comparison map for A with finite coefficients,

c : Ki(A;Z|n) → Ktop
i (A;Z|n)

is an isomorphism for i ≥ 0.

The method of proof of this theorem is copied closely from the proof of Suslin’s
theorem, Theorem 10. Thus it relies on Theorem 11 on Henselian rings, and is
quite special to the commutative case. However, it is conceivable that one has:

26Conjecture 26: Rosenberg [47, conjecture 4.1] Let A be a C∗-algebra. Then the
comparison map for A with finite coefficients,

c : Ki(A;Z|n) → Ktop
i (A;Z|n)

is an isomorphism for i ≥ 0.

In support of this, we have:
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27 Theorem 27: Rosenberg [47, theorem 4.2] Let A be a type I C∗-algebra which
has a finite composition series, each of whose composition factors has the form
A ⊗ Mn(F) (n ≥ 0) or A ⊗ K , where A is commutative. Then the comparison map
for A with finite coefficients,

c : Ki(A;Z|n) → Ktop
i (A;Z|n)

is an isomorphism for i ≥ 0.

This is proved by piecing together Theorems 25 and 19, using excision (Theo-
rem 17). The main obstruction to extending the proof to more general classes
of C∗-algebras is the lack of a good result on (topological) inductive limits of
C∗-algebras. Such a result would necessarily be delicate, because we know that
algebraic K-theory behaves differently under algebraic inductive limits and topo-
logical inductive limits. For example, the algebraic inductive limit lim→ Mn(C) has
the same K-theory as C, and thus its negative K-theory vanishes, whereas the
C∗-algebra inductive limit lim→ Mn(C) is K , which has infinitely many non-zero
negative K-groups.
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Introduction1.1

The semi-topological K-theory of a complex variety X, written Ksst∗ (X), interpo-
lates between the algebraic K-theory, K

alg
∗ (X), of X and the topological K-theory,

K∗
top(Xan), of the analytic space Xan associated to X. (The superscript “sst” stands for

“singular semi-topological”.) In a similar vein, the real semi-topological K-theory,
written KRsst∗ (Y), of a real variety Y interpolates between the algebraic K-theory
of Y and the Atiyah Real K-theory of the associated space with involution YR (C).
We intend this survey to provide both motivation and coherence to the field of
semi-topological K-theory. We explain the many foundational results contained in
the series of papers by the authors [27, 31, 32], as well as in the recent paper by the
authors and Christian Haesemeyer [21]. We shall also mention various conjectures
that involve challenging problems concerning both algebraic cycles and algebraic
K-theory.

Our expectation is that the functor Ksst∗ (−) is better suited for the study of
complex algebraic varieties than either algebraic K-theory or topological K-theory.
For example, applied to the point X = SpecC, K

alg
i (−) yields uncountable abelian

groups for i > 0, whereas Ksst
i (SpecC) is 0 for i odd and Z for i even (i.e., it

coincides with the topological K-theory of a point). On the other hand, topological
K-theory is a functor on homotopy types and ignores finer algebro-geometric
structure of varieties, whereas semi-topological and algebraic K-theory agree on
finite coefficients

K
alg
∗ (−,Z|n) =̃ Ksst

∗ (−,Z|n) (1.1)

and the rational semi-topological K-groups Ksst∗ (X,Q) contain information about
the cycles on X and, conjecturally, the rational Hodge filtration on singular coho-
mology H∗(Xan,Q).

To give the reader some sense of the definition of semi-topological K-theory, we
mention that Ksst

0 (X) is the Grothendieck group of algebraic vector bundles modulo
algebraic equivalence: two bundles on X are algebraically equivalent if each is given
as the specialization to a closed point on a connected curve C of a common vector
bundle on C × X. In particular, the ring Ksst

0 (X) (with product given by tensor
product of vector bundles) is rationally isomorphic to the ring A∗(X) of algebraic
cycles modulo algebraic equivalence (with the product given by intersection of
cycles) under the Chern character map

ch : Ksst
0 (X,Q)

=̃→A∗(X,Q) .

This should be compared with the similar relationship between K
alg
0 (X) and the

Chow ring CH∗(X) of algebraic cycles modulo rational equivalence. Taking into
consideration also the associated topological theories, we obtain the following
heuristic diagram, describing six cohomology theories of interest.

As we discuss below, the authors have constructed a precise counter-part of this
heuristic diagram by establishing a homotopy commutative diagram of spectra –
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Table 1.1. Six cohomology theories together with their “base values” for a smooth variety X

K-theory Cohomology (i.e., cycle theory)

Algebraic K-theory, K
alg
∗ (−) Motivic Cohomology, H∗

M(−,Z(∗))

K
alg
0 (X) = algebraic vector bundles

modulo rational equivalence
H2∗

M(X,Z(∗)) = CH∗(X) = cycles
modulo rational equivalence

Semi-topological K-theory, Ksst∗ (−) Morphic Cohomology, L∗H∗(−)

Ksst
0 (X) = algebraic vector bundles

modulo algebraic equivalence
L∗H2∗(X) = A∗(X) = cycles modulo
algebraic equivalence

Topological K-theory, K∗
top(−) Singular Cohomology, H∗

sing(−)

K0
top(Xan) = topological vector

bundles modulo topological
equivalence

H2∗
sing(Xan) = integral, rectifiable

cycles modulo topological
equivalence

see (1.9) in Sect. 1.3 below. For example, there are Chern character maps joining the
theories in the left column and the theories (with rational coefficients) in the right
column, and if X is smooth, these Chern character maps are rational isomorphisms
in all degrees. In particular, such isomorphisms extend the rational isomorphism
Ksst

0 (−)Q =̃ A∗(−)Q mentioned above.
For certain special varieties X (e.g., projective smooth toric varieties), the natural

map

Ksst
∗ (X) → K−∗

top(Xan)

is an isomorphism whenever ∗ ≥ 0 (see [21]). Such an isomorphism can be
interpreted (as we now interpret the Lawson Suspension Theorem for X = Pn)
as asserting that some construction involving algebraic morphisms is a “small"
homotopy-theoretic model for an analogous construction involving continuous
maps between analytic spaces. In general, however, Ksst∗ (X) differs considerably
from topological K-theory; for example, Ksst

0 (X) need not be finitely generated even
for a smooth projective variety X. Nonetheless, there are natural transformations

Kalg(−) → K sst(−) → Ktop(−)

from (Sch|C) to Spectra with many good properties, perhaps the most striking of
which is the isomorphism for finite coefficients mentioned above (1.1). Under-
standing multiplication in Ksst∗ (X) by the Bott element

β ∈ Ksst
2 (SpecC) =̃ K−2

top(pt)
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is also interesting: for X is smooth, the natural map Ksst∗ (X) → K−∗
top(Xan) induces

an isomorphism

Ksst
∗ (X)[β−1] =̃ K−∗

top(Xan)[β−1] = KU−∗(Xan)

upon inverting the Bott element. On the other hand, the kernel of Ksst
0 (X) →

K0
top(Xan) is rationally isomorphic to the Griffiths group (of algebraic cycles on X

homologically equivalent to 0 modulo those algebraically equivalent to 0). More-
over, a filtration on K∗

top(X)⊗Qassociated toK sst(−) → Ktop(−) and multiplication
by β ∈ Ksst

2 (pt) is conjecturally equivalent to the rational Hodge filtration.
To formulate K-theories, we require some process of “homotopy theoretic group

completion” as first became evident in Quillen’s formulation of algebraic K-theory
of rings using the Quillen plus construction. This can be contrasted with the
simpler constructions of cohomology theories: these derive from structures (e.g.,
the monoid of effective cycles) which are commutative, whereas the direct sum of
vector bundles is only commutative up to coherent isomorphism. For this reason,
the constructions we present involve use of the machinery of operads and the
utilization of certain other homotopy-theoretic techniques.

As the reader will see, the analytic topology on a real or complex variety is used
in the construction of semi-topological K-theory. Thus far, there is no reason-
able definition of semi-topological K-theory for varieties over other base fields,
although one might anticipate that p-adic fields and real closed fields might lend
themselves to such a theory.

We conclude this introduction with a few brief comments to guide the reader to-
ward more details about the topics we discuss. First, the original paper of H.B. Law-
son [39] initiated the study of the analytic spaces of Chow varieties, varieties that
parametrize effective algebraic cycles on a complex projective variety. Lawson’s
remarkable theorem enables one to compute the homotopy groups of the topolog-
ical abelian group of algebraic cycles of a given dimension on a projective space Pn

(i.e., his theorem enables one to compute what is now known as the Lawson ho-
mology of Pn). In [14] the first author pointed out that the group of connected
components of the topological abelian group of r-cycles on a complex projective
variety X is naturally isomorphic to the group of algebraic r-cycles on X modulo
algebraic equivalence. A key insight was provided by Lawson and M.-L. Michel-
son [41] who proved that the universal total Chern class can be interpreted as
a map induced by the inclusion of linear cycles on projective spaces into all al-
gebraic cycles. Important formal properties of Lawson homology were developed
by the first author in collaboration with O. Gabber [20] and by P. Lima-Filho [46].
B. Mazur and the first author investigated filtrations on homology associated with
Lawson homology in [24], and the first author studied complementary filtrations
on cycles in [15, 19]. H.B. Lawson and the first author introduced the concept of
a cocycle leading to morphic cohomology theory [23] and established a duality
relationship between morphic cohomology and Lawson homology in [22]. Con-
sideration of quasi-projective varieties using similar methods has led to awkward
questions of point-set topology, so that plausible definitions are difficult to handle



Semi-topological K-theory 881

when the varieties are not smooth (cf. [28]). When contemplating the formulation
of semi-topological K-theory for quasi-projective varieties, the authors introduce
singular semi-topological complexes, which appear to give a good formulation of
morphic cohomology for any quasi-projective algebraic variety [32].

As Lawson homology and morphic cohomology developed, it became natural
to seek a companion K-theory. In [23], H.B. Lawson and the first author showed
how to obtain characteristic classes in morphic cohomology for algebraic vector
bundles. “Holomorphic K-theory” was briefly introduced by Lawson, Lima-Filho,
and Michelsohn in [40]. Following an outline of the first author [16], the authors
established the foundations and general properties of semi-topological K-theory
in a series of papers [27, 31, 32] and extended this theory to real quasi-projective
varieties in [30]. Many of the results sketched in this survey were first formulated
and proved in these papers. A surprisingly difficult result proved by the authors
is the assertion that there is a natural rational isomorphism (given by the Chern
character) relating semi-topological K-theory and morphic cohomology of smooth
varieties [32, 4.7].

Most recently, the authors together with C. Haesemeyer established a spectral
sequence relating morphic cohomology and semi-topological K-theory compatible
with the motivic and Atiyah–Hirzebruch spectral sequences [21]. Moreover, that
paper uses the notion of integral weight filtrations on Borel–Moore homology (due
to Deligne [11] and Gillet–Soulé [33]), which, in conjunction with the spectral
sequence, enable them to establish that Ksst∗ (X) → K−∗

top(Xan) is an isomorphism
for many of the special varieties for which one might hope this to be true.

The subject now is ready for the computation of Ksst∗ (−) for more complicated
varieties and for applications of this theory to the study of geometry. Since many of
the most difficult and long-standing conjectures about complex algebraic varieties
are related to such computations, one suspects that general results will be difficult
to achieve. We anticipate that the focus on algebraic equivalence given by morphic
cohomology and semi-topological K-theory might lead to insights into vector
bundles and algebraic cycles on real and complex varieties.

Definition of Semi-topological K-Theory 1.2

Originally [31] semi-topological K-theory was defined only for projective, weakly
normal complex algebraic varieties and these original constructions involved con-
sideration of topological spaces of algebraic morphisms from such a variety X
to the family of Grassmann varieties Grassn(CN). The assumption that X is pro-
jective implies that the set of algebraic morphisms Hom(X, Grassn(CN)) coin-
cides with the set of closed points of an ind-variety, and thus we may topologize
Hom(X, Grassn(CN)) by giving it the associated analytic topology. If, in addi-
tion, X is weakly normal, then Hom(X, Grassn(CN)) maps injectively to Maps(Xan,
Grassn(CN)an), the set of all continuous maps, and we may also endow Hom(X,
Grassn(CN)) with the subspace topology of the space Maps(Xan, Grassn(CN)an), the
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set Maps(Xan, Grassn(CN)an) endowed with the usual compact-open topology. In
fact, these topologies coincide, and Mor(X, Grassn(CN)) denotes this topological
space. The collection of spaces Mor(X, Grassn(CN)) for varying n and N leads to
the construction of a spectrum K semi(X) whose homotopy groups are the semi-
topological K-groups of X.

The authors [31] subsequently extended the theory so constructed to all quasi-
projective complex varieties U by providing the set of algebraic morphisms
Hom(Uw, Grassn(CN)) (where Uw → U is the weak normalization of U) with
a natural topology (again using Mor(U, Grassn(CN))an to denote the resulting
space). We were, however, unable to verify many of the desired formal properties
of this construction Ksemi∗ (−) when applied to non-projective varieties.

Inspired by a suggestion of V. Voevodsky, the authors reformulated semi-
topological K-theory in [27]. The resulting functor from quasi-projective complex
varieties to spectra, K sst(−), when applied to a weakly normal projective variety X
gives a spectrum weakly homotopy equivalent to the spectrum K semi(X). We have
shown that the functor U �→ Ksst∗ (U) satisfies many desirable properties, and thus
now view the groups Ksst∗ as the semi-topological K-groups of a variety.

In this section, we begin with the definition of K semi(X) (restricted to weakly
normal, projective complex varieties). Although supplanted by the more general
construction K sst discussed below, the motivation underlying the construction of
K semi is more geometric and transparent.

We shall see that the definition is formulated so that there are natural homotopy
classes of maps of spectra

Kalg(X) → K semi(X) → Ktop(Xan) . (1.2)

(Here, Ktop(Xan) denotes the (−1)-connected cover of ku(Xan), the mapping spec-
trum from Xan to bu.) These maps are induced by the natural maps of simplicial
sets given in degree d by

Hom
(
∆d × X, Grassn(CN)

) → Maps
(

∆d
top, Mor

(
X, Grassn(CN)

)an
)

→ Maps
(

∆d
top, Maps

(
Xan, Grassn(CN)

)an
)

.

In formulating K semi(−) (and later K sst(−)), we are motivated by the property that
if one applies the connected component functor π0(−) to the maps of (1.2), then
one obtains the natural maps

K
alg
0 (X) → K

alg
0 (X)|algebraic equivalence → K0

top(Xan)

from the Grothendieck group of algebraic vector bundles to the Grothendieck
group of algebraic vector bundles modulo algebraic equivalence to the Grothen-
dieck group of topological vector bundles.

The reader will find that in order to define the spectra appearing in (1.2), we
use operads to stabilize and group complete the associated mapping spaces. This
use of operads makes the following discussion somewhat technical.
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Semi-topological K-Theory of Projective Varieties:
1.2.1

Let X be a projective, weakly normal complex variety and define Grass(CN) =∐
n Grassn(CN) where Grassn(CN) is the projective variety parameterizing rank

n quotient complex vector spaces of CN . Since X and Grass(CN) are projec-
tive varieties, the set Hom(X, Grass(CN)) is the set of closed points of an in-
finite disjoint union (indexed by degree) of quasi-projective complex varieties.
We write this ind-variety as Mor(X, Grass(CN)) and we let Mor(X, Grass(CN))an

denote the associated topological space endowed with the analytic topology.
Since X is weakly normal, one can verify that Mor(X, Grass(CN))an is naturally
a subspace of Maps(Xan, Grass(CN)an), the space of all continuous maps en-
dowed with the compact-open topology. Considering the system of ind-varieties
Mor(X, Grass(CN) for N ≥ 0, where the map Grass(CN) → Grass(CN+1) is given
by composing with the projection map CN+1 → C

N onto the first N coordinates,
gives the ind-variety Mor(X, Grass) and the associated space

Mor(X, Grass)an = lim→
N

Mor
(
X, Grass(CN)

)an
,

which we may identify with a subspace of Maps(Xan, Grassan).
The following proposition indicates that the space Mor(X, Grass)an possesses

interesting K-theoretic information. We shall say that two algebraic bundles V1 →
X, V2 → X are algebraically equivalent if there exists a connected smooth curve C
and an algebraic vector bundle V → C × X such that each of V1 → X, V2 → X
is given by restriction of V to some C-point of C. We define algebraic equivalence
on either the monoid of isomorphism classes of algebraic vector bundles or the
associate Grothendieck group K

alg
0 (X) to be equivalence relation generated by

algebraic equivalence of bundles.

1Proposition 1 (cf. [31, 2.10, 2.12]) There is a natural isomorphism of abelian
monoids

π0

(
Mor(X, Grass)an

)
=̃

{algebraic vector bundles on X generated by global sections}
algebraic equivalence

,

(where the abelian monoid law for the left-hand side is described below). Moreover,
the group completion of the above map can be identified with the following natural
isomorphism of abelian groups

Ksemi
0 (X) = π0

(
Mor(X, Grass)an

)+ =̃
K0(X)

algebraic equivalence
.

The proof of Proposition 1 is straight-forward, perhaps disguising several in-
teresting and important features. First, the condition that two points in Mor
(X, Grass)an lie in the same topological component is equivalent to the condition
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that they lie in the same Zariski component of the ind-variety Mor(X, Grass).
Second, upon group completion, one obtains all (virtual) vector bundles so that
one may drop the condition that the vector bundles be generated by their global
sections.

To define the higher semi-topological K-groups, we introduce the structure of
an H-space on Mor(X, Grass). Direct sum of bundles determines algebraic pairings

Mor
(
X, Grassn(CN)

) × Mor
(
X, Grassm(CM)

) → Mor
(
X, Grassn+m(CN+M)

)
,

for all M, N. Once one chooses a linear injection C∞ ⊕ C∞ ↪→ C
∞, these

pairing may be stabilized in a suitable fashion by letting M, N �→ ∞ to en-
dow Mor(X, Grass) with an operation. Under this operation, the associated space
Mor(X, Grass)an is a homotopy-commutative H-space. Using one of several tech-
niques of infinite loop spaces, one shows that this H-space admits a homotopy-
theoretic group completion

Mor(X, Grass)an → (
Mor(X, Grass)an

)h+
;

by definition, this is a map of H-spaces which induces group completion on π0 and
whose map on (integral, singular) homology can be identified with the map

H∗
(
Mor(X, Grass)an

) → Z[π+
0 ] ⊗Z[π0 ] H∗

(
Mor(X, Grass)an

)
.

2 Definition 2 Let X be a weakly normal, projective complex variety. We define

Mor(X, Grass)an → K semi(X)

to be a homotopy-theoretic group completion of the homotopy commutative H-
space Mor(X, Grass)an. We call K semi(X) the semi-topological K-theory space of X,
and we define the semi-topological K-groups of X by the formula

Ksemi
n (X) = πn

(
K semi(X)

)
, n ≥ 0 .

In particular, Ksemi
0 (X) is naturally isomorphic to K

alg
0 (X)|(algebraic equivalence).

For any finitely generated abelian group A, we define the semi-topological K-groups
of X with coefficients in A by the formula

Ksst
n (X, A) = πn

(
K semi(X; A)

)
, n ≥ 0 .

3 Remark 3 An equivalent construction of K semi(X) is given by Lawson, Lima-Filho,
and Michelsohn in [40]. See also [49]. In these papers, the term “holomorphic
K-theory” is used instead of “semi-topological K-theory”.

The construction of the group-like H-space K semi(X) from the H-space Mor(X,
Grass)an can be enriched to yield an Ω-spectrum in several ways. For example,
one can let I = {I(n), n ≥ 0}, denote the E∞-operad with I(n) defined to be the
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contractible space of all linear injections from (C∞)⊕n intoC∞. (Thus I is closely
related to the linear isometries operad.) Then I “acts” on Mor(X, Grass)an via
a family of pairings

I(n) × (
Mor(X, Grass)an

)n → Mor(X, Grass)an , n ≥ 0 .

Intuitively, this action can be describe as follows: given a point in I(n) and n quo-
tients of the form O∞

X � Ei, the point of I(n) allows one to move the n quotient
objects into general position so that the sum of these maps is surjective. In par-
ticular, the case n = 2 together with a specific choice of a point in I(2) defines
the H-space operation for Mor(X, Grass)an given above. Such an action of the
operad I determines an Ω-spectrum Ω∞Mor(X, Grass)an using the machinery
of May [50, §14], and the 0-th space of this spectrum provides a model for the
homotopy-theoretic group completion K semi(X).

It is useful to know that the algebraic K-theory space defined for a variety Y
over an arbitrary field F admits a parallel construction. Recall that the standard
algebraic k-simplex ∆k over Spec F is the affine variety Spec F[x0, … , xk]|(Σixi −
1) and that these standard simplices determine a cosimplicial variety ∆•

F . The
simplicial set d �→ Hom(X ×F ∆d

F , Grass(F∞)) admits the structure of a homotopy-
commutative H-space (if “space” is interpreted to mean “simplicial set”). In fact,
Hom(X ×F ∆•

F , Grass(F∞)) is an I(∆•
F)-space where I(∆•

F) is a suitable simplicial
analogue of the E∞-operad I introduced above. The following result is due to the
second author and D. Grayson.

4Theorem 4 (cf. [31, 6.8] [35, 3.3]) Given a smooth, algebraic variety X over a field F,
the homotopy-theoretic group completion of the homotopy-commutative H-space

Hom
(
X ×F ∆•

F , Grass(F∞)
)

is weakly homotopy equivalent to Kalg(X), the algebraic K-theory space of X.
In fact, the spectrum associated to the I(∆•)-space Hom(X ×F ∆•

F , Grass(F∞)) is
weakly equivalent to the algebraic K-theory spectrum of X.

Theorem 4 leads easily to the existence of a natural map

Kalg(X) → K semi(X)

of spectra (more precisely, Kalg(X) → Sing.(K semi(X)) representing the algebraic
K-theory and semi-topological K-theory of smooth, projective complex varieties.
Furthermore, if we replace Mor(X, Grass)an by Maps(Xan, Grassan), then we can
proceed with the same construction as above to form a space (in fact, an Ω-
spectrum) Ktop(Xan) that receives a map from K semi(X). It follows from [51, I.1]
that we have

K−n
top(Xan) := πnKtop(Xan) =̃ ku−n(Xan) , n ≥ 0 ,

where ku∗ denotes the connective topological K-theory of a space (i.e., the gen-
eralized cohomology theory represented by the connective spectrum bu). In
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other words, the spectrum Ktop(Xan) is the (−1)-connected cover of the mapping
spectrum from Xan to bu. Moreover, the subspace inclusion Mor(X, Grass)an ⊂
Maps(Xan, Grassan) induces a natural map K semi(X) → Ktop(Xan) such that the
composition

Kalg(X) → K semi(X) → Ktop(X) (1.3)

induces the usual map from algebraic to topological K-theory.
When X = SpecC, we clearly have K semi(SpecC) = Ktop(pt). A more interest-

ing computation is the following integral analogue of the Quillen–Lichtenbaum
conjecture for smooth projective complex curves.

5 Theorem 5 (cf. [31, 7.5]) If C is a smooth, projective complex curve, then the
natural map

K semi(C) → Ktop(Can)

is a weak homotopy equivalence, inducing isomorphisms

Ksemi
n (C) =̃ K−n

top(Can) , n ≥ 0 .

The proof of Theorem 5 uses a result of F. Kirwan [38, 1.1] on the moduli space
of vector bundles on curves. Specifically, Kirwan shows that the composition of

Ad(n)an → Mor(C, Grassn(C∞))an
d → Maps(Can, Grassn(C∞)an)d

induces an isomorphism in cohomology up to dimension k provided

d ≥ 2n(2g + k + 1) + n max(k + 1 + n(2g + k + 1),
1

4
n2g) . (1.4)

Here, g is the genus of C, the subscripts d refer to taking the open and closed
subspaces consisting of degree d maps, and Ad(n) refers to the subvariety of
Mord(C, Grassn(C∞)) parameterizing quotients O∞

X � V satisfying the extra
condition that H1(C, V) = 0. Theorem 5 is deduced from this result of Kirwan by
showing that the homotopy-theoretic group completions of each of the spaces in
the chain

∐

d,n

Ad(n)an →
∐

d,n

Mord

(
C, Grassn(C∞)

)an →
∐

d,n

Maps
(
Can, Grassn(C∞)an

)
d

can be obtained by taking suitable limits (technically, mapping telescopes) of
self-maps of each of the spaces. The point is that the first map here becomes an
equivalence upon taking such limits since the condition defining Ad(n) as a sub-
variety of Mord(C, Grassn(C∞))an becomes trivial, and the second map becomes
an equivalence since the inequality (1.4) is met in all degrees in the limit.

For higher dimensional varieties X, the map K semi(X) → Ktop(Xan) is rarely
a weak homotopy equivalence. For example, if S is a smooth, projective complex
surface, the map K semi(S) → Ktop(San) usually fails to induce an isomorphism
at π0 (although it does induce an isomorphism on all higher homotopy groups.) In
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fact, Ksemi
0 (S,Q) =̃ K0

top(San,Q) if and only if H2(San,Q) consists only of algebraic
cohomology classes [21, 6.17].

Semi-topological K-Theory
of Quasi-projective Varieties: 1.2.2

The extension of the definition of semi-topological K-theory from projective com-
plex varieties to quasi-projective complex varieties has a somewhat confusing
history. Initially, the authors (see especially [31]) carried out this extension in
seemingly the most natural way possible: one imposes a suitable topology on the
set Hom(Xw, Grass) to form a space Mor(X, Grass)an and then repeats the construc-
tions of the previous section to yield a group-like H-space (in fact, a spectrum)
K semi(X). We will not go into the details of the topology on Mor(X, Grass)an – we
refer the interested reader to [28] for a careful description.

It gradually became apparent that annoying point-set topology considerations
prevents one from establishing the desired formal properties of the theory K semi(−)
for arbitrary quasi-projective varieties. On the other hand, the authors have de-
veloped a closely related and conjecturally equivalent theory that allows for such
properties to be proven. This newer theory, K sst , is now viewed by the authors as
the semi-topological K-theory.

To motivate the definition of K sst(−), we return to the case of weakly nor-
mal, projective complex varieties and consider what happens if we replace spaces
with singular simplicial sets in the construction of K semi(−). That is, for such
a variety X we replace the space Mor(X, Grass)an with the simplicial set d �→
Maps(∆d

top, Mor(X, Grass)an) and we replace the E∞ topological operad I with the
associated simplicial one, I(∆•

top), defined by I(∆•
top)(n) =

(
d �→ Maps(∆d

top, I(n))
)
.

An important observation is that since ∆d
top is compact and since Mor(X, Grass)an

is an inductive limit of analytic spaces associated to quasi-projective varieties, we
have the natural isomorphism

Maps
(

∆d
top, Mor(X, Grass)an

)
=̃ lim→

∆d
top→Uan

Hom(U × X, Grass) ,

where the limit ranges over the filtered category whose objects are continuous maps
∆d

top → Uan, with U a quasi-projective complex variety, and in which a morphism is
given by a morphism of varieties U → V causing the evident triangle to commute.
In other words, if we define

Hom(∆d
top × X, Grass) = lim→

∆d
top→Uan

Hom(U × X, Grass)

then we have Maps(∆d
top, Mor(X, Grass)) =̃ Hom(∆d

top × X, Grass).
For readers inclined to categorical constructions it might be helpful to observe

that Hom(∆d
top × X, Grass) is the result of applying to the topological space ∆d

top
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the Kan extension of the presheaf Hom(− × X, Grass) on Sch|C along the functor
Sch|C→ Top given by U �→ Uan.

Just as in the construction of K semi, it’s easy to show that we have the action of
the simplicial E∞ operad I(∆•

top) on the simplicial set Hom(∆•
top × X, Grass), and

hence we obtain an associated Ω-spectrum

Ω∞| Hom(∆•
top × X, Grass)| .

Finally, this Ω-spectrum is readily seen to be equivalent to the spectrum K semi(X)
constructed above (assuming X is projective and weakly normal).

The idea in defining K sst , then, is to just take the simplicial set Hom(X ×
∆•

top, Grass) itself for the starting point of the construction. For observe that the
definition of this simplicial set does not depend on X being either projective or
weakly normal, and so we may use it for arbitrary varieties. Theorem 4 suggests
another alternative – one could simply take the algebraic K-theory functor taking
values in spectra, Kalg , and “semi-topologize” it by applying it degree-wise to
∆•

top × X via the Kan extension formula. The following proposition shows that the
two constructions result in equivalent theories.

6 Proposition 6 (cf. [27, 1.3]) For any quasi-projective complex variety X, there are
natural weak homotopy equivalences of spectra

|d �→ Kalg(∆d
top × X)| → Ω∞| Hom(∆•

top × ∆• × X, Grass)|
← Ω∞| Hom(∆•

top × X, Grass)|
where Kalg(−) : (Sch|C) → Spectra is a fixed choice of a functorial model of the
algebraic K-theory spectrum of quasi-projective complex varieties and Kalg (∆d

top×
X) is the value of the Kan extension of Kalg(− × X) applied to ∆d

top.

The choice of |d �→ Kalg(∆d
top×X)| as the primary definition of semi-topological

K-theory is justified by the “Recognition Principle”, which appears below as The-
orem 12. As we shall see, this definition is but one of an interesting collection of
“singular semi-topological constructions”.

7 Definition 7 For any quasi-projective complex variety X, the (singular) semi-
topological K-theory spectrum of X is the Ω-spectrum

K sst(X) = K(∆•
top × X) = |d �→ Kalg(∆d

top × X)| .

The semi-topological K-groups of X with coefficients in the abelian group A are
given by

Ksst
n (X, A) = πnK

sst(X, A) , n ≥ 0 .

We find that we may easily construct maps as in (1.3) for any quasi-projective
complex variety.
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8Proposition 8 (cf. [27, 1.4]) There are natural maps of spectra (in the stable
homotopy category)

Kalg(X) → K sst(X) → Ktop(Xan) . (1.5)

Furthermore, if X is projective and weakly normal, there is a weak equivalence of
spectra

K sst(X) � K semi(X) .

The map Kalg(X) → K sst(X) is the canonical map Kalg(∆0
top × X) → |d �→

K(∆d
top × X)|. The map K sst(X) → Ktop(Xan) is the map in the stable homotopy

category (using Proposition 6) associated to the map

Ω∞| Hom(∆•
top × X, Grass)| → Ktop(Xan)

that is given by the adjoint of the map | Sing•(−)| → id together with the natural
inclusion Hom(−, Grass) ⊂ Maps((−)an, Grassan).

Upon taking homotopy groups with coefficients in an abelian group A, we thus
have the chain of maps

K
alg
∗ (X, A) → Ksst

∗ (X, A) → K−∗
top(Xan, A) (1.6)

whose composition is the usual map from algebraic to topological K-theory with
coefficients in A.

The following property of K sst(−) is one indication that Definition 7 is a suitable
generalization of K semi(−) to all quasi-projective complex varieties.

9Proposition 9 [30, 2.5] For any quasi-projective complex variety X, there is a nat-
ural isomorphism

K sst
0 (X) =̃

K
alg
0 (X)

algebraic equivalence
.

The Recognition Principle 1.2.3

The formulation of K sst(−) in Definition 7 is a special case of the following singular
topological construction.

10Definition 10 Let F be a contravariant functor from Sch|C to a suitable category C
(such as chain complexes of abelian groups, spaces, or spectra). For any compact
Hausdorff space T and variety X ∈ Sch|C, define

F (T × X) = lim→
T→Uan

F (U × X) .
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Define F sst to be the functor from Sch|C to C by

F sst(X) = Tot
(

d �→ F (∆d
top × X)

)
,

where Tot refers to a suitable notion of “total object” (such as total complex of
a bicomplex or geometric realization of a bisimplicial space or spectrum). We call
F sst the singular semi-topological functor associated to F .

The usefulness of this singular semi-topological construction arises in large
part from the validity of the following Recognition Principle. This theorem should
be compared with an analogous theorem of V. Voevodsky [58, 5.9].

11 Theorem 11 [32, 2.7] Suppose F → G is a natural transformation of contravariant
functors from Sch|C to chain complexes of abelian groups, group-like H-spaces,
or spectra. Suppose this map is a weak equivalence locally in the h-topology (for
example, suppose it is a weak equivalence on all smooth varieties). Then the
associated map

Tot
(

d �→ F (∆d
top)

)
→ Tot

(
d �→ G(∆d

top)
)

is a weak homotopy equivalence.

As a sample application (many more will be discussed below) of the Recognition
Principle, we have following theorem relating algebraic and semi-topological K-
theory. The authors had originally established the validity of Theorem 12 using
a much more involved argument (see [27, 3.8]), an argument which pointed the
way toward the formulation and applications of Theorem 11.

12 Theorem 12 (cf. [27, 3.7]) For a quasi-projective complex variety X and positive
integer n, we have an isomorphism

Kalg
q

(
X;Z|n

) =̃→Ksst
q

(
X;Z|n

)
, q ≥ 0 .

Sketch of Proof

Via an evident spectral sequence argument, it suffices to prove K
alg
q (X;Z|n) →(

d �→ K
alg
q (∆d

top × X;Z|n)
)

is a homotopy equivalence of simplicial abelian groups
(the source being constant). By the Recognition Principle, it suffices to prove the
map of presheaves K

alg
q (X;Z|n) → K

alg
q (− × X;Z|n) is locally an isomorphism in

the h topology (where again the source is constant). This holds already for the étale
topology by Suslin rigidity [55].
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Semi-topological K-Theory for Real Varieties 1.2.4

In this section, we summarize results of [30] which show that the semi-topological
K-theory for real varieties satisfies analogues of the pleasing properties of K sst(−)
for complex varieties. We take these properties as confirmation that the defini-
tion of KRsst(−) given here is the “correct” analogue of K sst(−), but are frus-
trated by the fact that this extension does not suggest a generalization to other
fields.

The reader should observe that the definition of KRsst(−) below is so formulated
that if Y is a quasi-projective complex variety then (see Proposition 18)

KRsst(Y |R ) = K sst(Y) ,

where Y |R denotes the complex variety Y regarded as a real variety via restriction
of scalars. Thus, any result concerning KRsst(−) that applies to all quasi-projective
real varieties incorporates the analogous statement for K sst(−) applied to quasi-
projective complex varieties.

As in the complex case, the motivation for the definition of real semi-topological
K-theory is most easily seen in the projective case first, and in this case we first
define KRsemi, an equivalent but more geometric version of KRsst defined be-
low.

13Definition 13 Let Y be a projective real variety. We define

MorR (Y , Grass)an = lim→
N

MorR
(
Y , Grass(RN)

)
(R) ,

where MorR (Y , Grass(RN))(R) denotes the space of real points of the real ind-
variety MorR (Y , Grass(RN)) parameterizing morphisms over R from Y to
Grass(RN). As in the complex setting, MorR (Y , Grass)an admits the structure of
a homotopy-commutative H-space and we let

MorR (Y , Grass)an → KRsemi(Y)

denote the homotopy-theoretic group completion. We call KRsemi(Y) the real
semi-topological K-theory space.

As in the complex case, for Y a projective, weakly normal real variety, we have
that

Maps
(

∆d
top, MorR (Y , Grass)

)
= lim→

∆d
top→U(R )

Hom(U ×R Y , Grass) ,

where the limit ranges over pairs (U, ∆d
top → U(R)) consisting of a real variety U

and a continuous maps from ∆d
top to the its space of real points U(R). As before,

this leads naturally to the following definition:
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14 Definition 14 For a quasi-projective real variety Y , the real (singular) semi-
topological K-theory space of Y is defined by

KRsst(Y) ≡ |d �→ Kalg(∆d
top ×R Y)|

where

Kalg(∆d
top ×R Y) = lim→

∆d
top→U(R )

Kalg(U ×R Y) .

The real (singular) semi-topological K-groups of Y are defined by

KRsst
n (Y) = πnKR

sst(Y) .

In other words, the theory KRsst is induced from algebraic K-theory using Kan
extension along the functor Sch|R→ Top sending U to U(R).

15 Proposition 15 (cf. [30, 2.5] If Y is a weakly normal, projective real variety, then
there is a natural weak equivalence of spectra

KRsemi(Y) � KRsst(Y) .

The explicit description of KRsst
0 (Y) is perhaps a bit unexpected. If V1 →

X, V2 → Y are algebraic vector bundles on the real variety Y , then we say that
V1, V2 are real algebraically equivalent if there exists a smooth, connected real
curve C, an algebraic vector bundle V → Y × C, and real points c1, c2 ∈ C(R)
lying in the same real analytic component of C(R) such that Vi → Y is the fibre of
V → Y ×C over Y ×{ci}. We refer to the equivalence relation on K

alg
0 (Y) generated

by real algebraic equivalence as real algebraic equivalence.
The condition that two bundles be joined via real algebraic equivalence is

significantly stronger than what might be termed “algebraic equivalence for real
varieties” (i.e., requiring only that c1, c2 belong to the same algebraic component
of C). Nevertheless, the next proposition and the subsequent theorem indicated
that this stronger condition is the appropriate one.

16 Proposition 16 (cf. [30, 1.6]) For any quasi-projective real variety Y ,

KRsst
0 (Y) =̃

K
alg
0 (Y)

real algebraic equivalence
.

If Y is a real variety, we write YR (C) for the topological space Y(C)an equipped
with the involution y �→ y induced by complex conjugation – in Atiyah’s ter-
minology [4] YR (C) is a Real space. As with any Real space, we may associated
to YR (C) its Atiyah’s Real K-theory space KRtop(YR (C)). We remind the reader
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that KRtop(YR (C)) is constructed using the category of Real vector bundles. Such
a bundle is a complex topological vector bundle V → YR (C) equipped with an in-
volution τ : V → V covering the involution of YR (C) such that for each y ∈ YR (C),
the map Cr =̃ Vy

τ→Vy =̃ Cr is given by complex conjugation.

17Proposition 17 (cf. [30, 2.5, 4.3] For a quasi-projective real variety Y , there is
a natural (up to weak equivalence) triple of spectra

Kalg(Y) → KRsst(Y) → KRtop

(
YR (C)

)
. (1.7)

We may of course view any quasi-projective complex variety Y as a quasi-
projective real variety Y |R via restriction of scalars, and, conversely, any real
variety U admits a base change UC = U ×Spec R SpecC to a complex variety. If
Y is a quasi-projective complex variety, then (Y |R )C = Y

∐
Y and the non-trivial

element of the Galois group Gal(C|R) acts on (Y |R )C by interchanging the copies
of Y . It follows that Hom(U ×R Y |R , Grass) = Hom(UC ×C Y , Grass) for any real
variety U , from which the following result may be deduced.

18Proposition 18 [30, 2.4, 4.3] If Y is a complex, quasi-projective variety and X = Y |R ,
then

KRsst(X) = K sst(Y) and KRtop

(
XR (C)

)
= Ktop(Y)

and, moreover, in this case the maps of (1.7) coincide with the maps of (1.5).

The following theorem, generalizing Theorems 5 and 12, provides further evi-
dence of the “correctness” of our definition of KRsst(−).

19Theorem 19 (cf. [30, 3.9, 6.9]) Let Y be a quasi-projective real variety. Then

K
alg
∗ (Y ,Z|n) =̃ KRsst

∗ (Y ,Z|n)

for any positive integer n.
Furthermore, if C is a smooth real curve, then

KRsst
q (C) =̃ KR

−q
top

(
CR (C)

)
, q ≥ 0 .

For example, if C is a smooth, projective real curve of genus g such that C(R) ≠ ∅,
then we have

KRsemi
0 (C) =̃ Z⊕ Z⊕ (Z|2)c−1 ,

where c is the number of connected components of the space C(R)an (cf. [30,
1.7]). This example shows that real algebraic equivalence differs from algebraic
equivalence for real varieties, since modding out K0(C) by the latter equivalence
relation yields the group Z⊕ Z (cf. [30, 1.8]).
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We interpret the next theorem as asserting that the triple (1.7) for the real variety
Y is a retract of the triple (1.5) for its base change to C, YC , once one inverts the
prime 2. In establishing this theorem, the authors first constructed a good transfer
map π∗ : K sst(YC ) → K sst(Y) (see [30, §5]).

20 Theorem 20 (cf. [30, 5.4, 5.6]) Let Y be a quasi-projective real variety and let

π : YC = Y ×Spec R SpecC→ Y

denote the natural map of R-varieties. Then we have a homotopy commutative
diagram of spectra

K(Y) → KRsst(Y) → KRtop(YR (C))

↓ π∗ ↓ π∗ ↓ π∗

K(YC ) → K sst(YC ) → Ktop(Y(C)an)

↓ π∗ ↓ π∗ ↓ π∗

K(Y) → KRsst(Y) → KRtop(YR (C))

(1.8)

with the property that the vertical compositions are weakly equivalent to multipli-
cation by 2 with respect to the H-space structures.

The reader seeking to extend the construction of K sst(−) and KRsst(−) to
varieties over some other ground field F would likely have to address the following
two questions:

What is the correct notion of “F-algebraic equivalence” if F is not algebraically
closed and not equal to R? Specifically, what condition on a pair of F-points of
a variety is analogous to the condition that two points c1, c2 ∈ C(R) lie in the
same real analytic component of C(R)an?
What should play the role of KRtop(−) or Ktop if F is not equal to R or C?

Algebraic, Semi-topological,
and Topological Theories1.3

In this section we state the major results relating semi-topological K-theory to al-
gebraic K-theory, topological K-theory, and morphic cohomology and we provide
some indications of proofs.

The connections between semi-topological K-theory and these other cohomol-
ogy theories are well summarized by the existence of and properties enjoyed by
the commutative diagram

K
alg
∗ (X; A) → Ksst∗ (X; A) → K−∗

top(Xan; A)
| | |
| | |
| | |

⊕

q
H

2q−∗
M (X, A(q)) → ⊕

q
LqH2q−∗(X; A) → ⊕

q
H

2q−∗
sing (Xan; A) ,

(1.9)
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where X is a smooth, quasi-projective complex variety and A is an arbitrary abelian
group. In this diagram, the top row is the chain of maps (1.6) defined in the previous
section, and the maps in the bottom row are defined in a similar manner below. The
vertical arrows are dashed to indicate that one must interpret them non-literally in
one of three ways: (1) One may interpret them as homomorphisms from K-theories
to cycle theories (heading downward in the diagram) whose targets land, to put
it a bit imprecisely, in the groups of units of the ring cohomology theories along
the bottom row – that is, one may take these arrows to be total Chern class maps;
(2) one may interpret them as natural transformations of ring theories from K-
theories to cycles theories (heading downward in the diagram) provided one takes
A = Q – that is, one may take these arrows to be Chern character maps; or (3) one
may interpret these dashed lines as indicating the existence of three compatible
spectral sequences whose E2-terms are cycles theories and whose abutments are
K-theories. We discuss the first two interpretations of these vertical arrows in this
section and leave the spectral sequence interpretation for the next.

Motivic, Morphic, and Singular Cohomology 1.3.1

Before describing the many nice properties enjoyed by diagram (1.9), we first
remind the reader of the definition of morphic cohomology and define the maps
along the bottom row of this diagram.

Once again, the definition of morphic cohomology is more intuitive in the case
of projective varieties, and, in fact, we first describe Lawson homology, the homol-
ogy theory dual to morphic cohomology for smooth varieties, in this case. The
definition of Lawson homology can be motivated by the Dold–Thom Theorem [12]
that gives the isomorphism

πn

((�dSd(Y)
)+

)
=̃ Hsing

n (Y) ,

where Y is a compact space, Sd(−) denotes taking the d-th symmetric power of
a space, and (−)+ denotes forming the topological abelian group associated to
a topological abelian monoid via (naive) group completion. Observe that if we take
Y to be the analytic realization of a projective variety X, then Sd(Xan) is the space
of effective 0-cycles of degree d on X and this space coincides with the analytic
realization of the Chow variety C0,d(X). Thus, in this context, the Dold–Thom
theorem becomes

πnZ0(X)an =̃ Hsing
n (Xan) , where Z0(X)an =

(∐

d

C0,d(X)an

)+

.

Observe that Z0(X)an coincides the space of all 0-cycles on X. A fascinating
theorem of F. Almgren [2] generalizes the Dold–Thom Theorem by asserting that
for sufficiently well-behaved spaces Y (i.e., for Lipschitz neighborhood retracts)
and for any r ≥ 0 the topological abelian group Zcurr

r (Y) of “integral r-cycles” (i.e.,
closed rectifiable currents on Y) has the property that

πnZ
curr
r (Y) = H

sing
n+r (Y) .
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This result motivated Blaine Lawson to investigate spaces of algebraic r-cycles on
a complex projective variety X as a “small model” for the space of integral 2r-cycles
on Xan. Namely, the collection of effective r-cycles for any r ≥ 0 of a fixed degree
d on a projective variety X is given as the set of closed points of the Chow variety
Cr,d(X). Letting Cr(X) =

∐
d Cr,d(X), we see that Cr(X)an is a topological abelian

monoid under addition of cycles. We define

Zr(X)an =
(
Cr(X)an

)+
,

the associated topological abelian group given by (naive) group completion. (Up
to homotopy, one may equivalently use a homotopy-theoretic group completion,
defined by the bar construction, in place of naive group completion [47].) Then
Zr(X)an is the topological space of all r-cycles on X, and the Lawson homology
groups are defined to be the homotopy groups of this space:

21 Definition 21 For a projective, complex variety X, we define the Lawson homology
groups of X to be

LrHn(X) = πn−2rZr(X)an ,

where

Zr(X)an =
(
Cr(X)an

)+
and Cr(X) =

∐

d

Cr,d(X) .

In fact, this definition generalizes in a straightforward fashion to quasi-projective
varieties. Namely, for U quasi-projective, one chooses a compactification U ⊂ X
(i.e., an open, dense embedding with X projective) and defines

LrHn(U) = πn−2rZr(X)an|Zr(X − U)an

where Zr(X)an|Zr(X − U)an denotes the quotient topological abelian group. By the
Dold–Thom Theorem [12], we have

L0Hn(U) = HBM
n (Uan) , for all n ,

where HBM denotes Borel–Moore homology, and it is easy to prove (cf. [20]) that

LrH2r(X) = π0Zr(X)an =̃ Ar(X)

where Ar(X) denotes the group of cycles of dimension r on X modulo algebraic
equivalence.

The definition of the morphic cohomology groups is also quite natural. The key
motivational observation is that the quotient topological group

Z0(Pq)an|Z0(Pq−1)an

is a model for the Eilenberg–MacLane space K(Z, 2q) by the Dold–Thom theo-
rem, and thus represents the functor H

2q
sing(−,Z). That is, the homotopy groups of
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Maps(Y , Z0(Pq)an|Z0(Pq−1)an) give the singular homology groups of a space Y .
Replacing Maps(−, −) by Mor(−, −)an as in the definition of K semi, we arrive at the
definition of morphic cohomology for projective varieties.

22Definition 22 For a smooth, projective complex variety X, we define the morphic
cohomology groups of X to be

LqHn(X) = π2q−nMor
(
X, Z0(Pq)|Z0(Pq−1)

)an

where we define

Mor
(
X, Z0(Pq)|Z0(Pq−1)

)an =
[
Mor

(
X, C0(Pq)

)an]+ |
[
Mor

(
X, C0(Pq−1)

)an]+
.

As before, the definition extends naturally to all quasi-projective varieties, but
we omit the details.

The connection between morphic cohomology and singular cohomology can
be seen from the definition of the former: since Mor(−, −)an is a subspace of
Maps((−)an, (−)an), we obtain a natural map

Mor(X, Z0(Pq)|Z0(Pq−1))an → Maps(Xan, Z0(Pq)an|Z0(Pq−1)an)

which induces the map

LqHn(X) → Hn
sing(Xan) .

The connection between morphic cohomology and motivic cohomology is sug-
gested by the following fact:

23Proposition 23 (cf. [26, 4.4, 8.1], [56, 2.1]) For a smooth, quasi-projective complex
variety X, we have

πn Hom
(
X × ∆•, Z0(Pq)|Z0(Pq−1)

)
=̃ H

2q−n
M

(
X,Z(q)

)

where Hom(X × ∆•, Z0(Pq)|Z0(Pq−1)) denotes the quotient simplicial abelian
group

Hom
(
X × ∆•, C0(Pq)

)+ | Hom
(
X × ∆•, C0(Pq−1)

)+
.

(Here, the superscript + signifies taking degree-wise group completion of a sim-
plicial abelian monoid.)

For a projective variety X, it’s not hard to establish the isomorphism

LqHn(X) =̃ π2q−n Hom
(

X × ∆•
top, C0(Pq)

)+ /
Hom

(
X × ∆•

top, C0(Pq−1)
)+

in much the same way that the equivalence K semi � K sst is proven for such
varieties. Indeed, we may thus use this isomorphism to define morphic cohomology
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for non-projective varieties. Although less “geometric”, the construction given in
the following definition of morphic cohomology is more amenable.

24 Definition 24: Revised Definition of Morphic Cohomology For a smooth, quasi-
projective complex variety X, the morphic cohomology groups of X are defined to
be

LqHn(X) = π2q−n Hom
(

X × ∆•
top, Z0(Pq)|Z0(Pq−1)

)
,

where

Hom
(

X × ∆•
top, Z0(Pq)|Z0(Pq−1)

)
=

Hom
(

X × ∆•
top, C0(Pq)

)+ /
Hom

(
X × ∆•

top, C0(Pq−1)
)+

.

(The superscripts + denote taking degree-wise group completion of a simplicial
abelian monoid.)

In other words, we simply define morphic cohomology to be the “semi-topolo-
gized” theory associated to motivic cohomology.

25 Definition 25 The maps along the bottom row of (1.9) are given by applying π∗ to
the sequence of natural maps

Hom
(
X × ∆•, Z0(Pq)|Z0(Pq−1)

) → Hom
(

X × ∆•
top, Z0(Pq)|Z0(Pq−1)

)

→ Maps
(

Xan × ∆•
top, Z0(Pq)an|Z0(Pq−1)an

)
.

In summary, we have the following heuristic overview: Motivic, morphic, and
singular cohomology are defined as the homotopy groups of, respectively, the
“algebraic space” of algebraic morphisms, the topological space of algebraic mor-
phisms, and the topological space of topological morphisms from a given variety
to the object Z0(Pq)|Z0(Pq−1). Moreover, the maps joining these three theories are
given by the canonical maps from the algebraic space of algebraic morphisms to the
topological space of algebraic morphisms to the topological space of topological
morphisms.

The Chern Class Maps1.3.2

The relation between semi-topological K-theory and morphic cohomology is
given, as one would expect, by the total Chern class map and the closely re-
lated Chern character. The former has the advantage that it is defined integrally,
whereas the later has the advantage that it determines a natural transformation
of ring-valued cohomology theories. Each map induces a rational isomorphism
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from the rational semi-topological K-groups to the rational morphic cohomol-
ogy groups of a smooth, quasi-projective complex variety. These isomorphisms
generalize the isomorphisms on π0 groups

c : Ksst
0 (X)Q

=̃→A0(X)Q ×
(

{1} ×
⊕

q≥1

Aq(X)Q

)×

and

ch : Ksst
0 (X)Q

=̃→A∗(X)Q = L∗H2∗(X;Q) .

The first of these isomorphisms, the total Chern class map

c(α) =
(
rank(α), 1 + c1(α) + · · ·

)
,

is an isomorphism of abelian groups, where the group law for the second compo-
nent of the target is given by cup product (i.e., intersection of cycles). The second
of these isomorphisms, the Chern character, is an isomorphism of rings and is
defined via the usual universal polynomials (withQ coefficients) in the individual
Chern classes ci, i ≥ 1. Each of these isomorphisms may be deduced easily from
the corresponding and well-known isomorphisms relating K

alg
0 (X) and CH∗(X) by

simply modding out by algebraic equivalence.
Lawson and Michelsohn recognized that sending an arbitrary subspace W ⊂

C
N+1 to the linear cycle P(W∗) ⊂ P((CN+1)∗) =̃ PN stablizes (by letting N ap-

proach infinity) to give the universal total Chern class map [41]. (Here, P(W∗) =
Proj(S∗(W∗)) is the projective variety parameterizing one dimensional subspaces
of W∗, the linear dual of W .) Indeed, in [9], Boyer, Lawson, Lima-Filho, Mann, and
Michelsohn show that this model of the total Chern class is a map of infinite loop
spaces, thereby answering a question of G. Segal. This result is extended in Theo-
rem 27 below. We find it more convenient when stabilizing with respect to N and
when considering the pairing determined by external direct sum of vector spaces
to send a quotient space of the formCN+1 � V to the linear cycleP(V) ⊂ PN . This
becomes a model for the total Segre class. The total Segre and Chern class maps
differ only slightly: We define Seg(α) = (rank(α), 1 − s1(α) + s2(α) − · · ·) where sq

are the Segre class maps, defined by the formula

1 + s1(x) + s2(x) + · · · =
(
1 + c1(x) + c2(x) + · · ·

)−1
.

It follows from [32, 1.4] that there is a natural isomorphism of the form

Hom
(

X × ∆•
top, Cr(P

N)
)+

=̃

N−r⊕

q=0

Hom
(

X × ∆•
top, C0(Pq)

)+ /
Hom

(
X × ∆•

top, C0(Pq−1)
)+
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from which one deduces the isomorphism

πn

(
Hom

(
X × ∆•

top, Cr(P
∞)

)+
)

=̃
⊕

q≥0

LqH2q−n(X) ,

for any r ≥ 0 and any smooth, quasi-projective complex variety X. Thus, morphic
cohomology is “represented” by the ind-variety Cr(P∞) for any r ≥ 0 just as
semi-topological K-theory is represented by Grass(C∞). Now, a point in the latter
ind-variety is given by a quotient C∞ � V (that factors through CN for N >> 0),
which in turn determines an effective cycleP(V) ⊂ P∞ of degree 1 and dimension
dim(V) − 1 by taking associated projective spaces. Thus we have a map

Grass(C∞) →
∐

r

Cr−1(P∞)+
1 , (1.10)

where Cr−1(P∞)+
1 denotes the subset of the abelian group Cr−1(P∞)+ consisting

of (not necessarily effective) cycles of degree 1. (As a technical point, when r = 0
one sets C−1(P∞)+ = Z, the free abelian group generated by the “empty cycle”
which has degree 1 by convention.) In essence, the map (1.10) induces the total
Segre class map by taking homotopy-theoretic group completions, although some
further details are needed to make this precise.

The ind-variety
∐

r Cr−1(P∞) admits a natural product given by linear join of
cycles. Namely, we first specify a linear embedding P∞ ∐

P
∞ ↪→ P

∞ by choosing
a surjectionC∞ � C∞ ⊕C∞ of vector spaces. Then given a pair of effective cycles
α and β in P∞, we may embed them as cycles in general position in P∞ by use of
this embedding (regarding α as a cycle on the first copy of P∞ and β as a cycle on
the second), so that their linear join (i.e., the cycle formed by the union of all lines
intersecting both α and β) is well-behaved. This pairing extends to all cycles by
linearity and restricts to a pairing

∐

r

Cr−1(P∞)+
1 ×

∐

r

Cr−1(P∞)+
1 →

∐

r

Cr−1(P∞)+
1

since the linear join of cycles having degrees d and e has degree de. For a complex
variety X, this product endows

(

Hom

(

X × ∆•
top,

∐

r

Cr−1

(
P

∞)
)an)+

1

with the structure of a homotopy-commutative H-space, whose associated homo-
topy-theoretic group completion is written H sst

mult(X). It is apparent from its defini-
tion that the space H sst

mult(X) should be be closely related to the morphic cohomol-
ogy of X and, since cup product in morphic cohomology can be defined by linear
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join, that the H-space structure of this space should be related to cup product. The
precise connection is given by the isomorphism of groups

πnH
sst
mult(X) =̃ L0H−n(X) ×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

,

where
(
{1} × ⊕

q≥1 LqH2q−n(X)
)×

is a subgroup of the multiplicative group of
units of the ring L∗H∗(X).

A key observation is that the map (1.10) is additive in that it takes direct sum to
linear join – that is, given any quasi-projective variety X, the induced map

Hom(X × ∆•
top, Grass(C∞)) →

(

Hom
(

X × ∆•
top,

∐

r

Cr−1(P∞)
)an

)+

1

,

is a map of H-spaces. In fact, it can easily be enriched to be a map of I-spaces,
where I is the the E∞ operad discussed above. Upon taking the homotopy-theoretic
group completion of this map, we obtain the total Segre class map

Segsst : K sst(X) → H sst
mult(X) ,

which is a map of group-like H-spaces (in fact, of spectra). Upon taking homotopy
groups, we get

Segsst : Ksst
n (X) → L0H−n(X) ×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

.

26Remark 26 Lima-Filho [49, 4.1] has constructed a similar map of spectra, for just
projective varieties, resulting in a total Chern class map.

The above construction of the (semi-topological) total Segre class involves, in
a suitable sense, only constructions on the ind-varieties Grass(C∞) and

∐
rCr−1(P∞)

representing semi-topological K-theory and morphic cohomology. Given that
Grass(C∞) and

∐
r Cr−1(P∞) (resp., the corresponding analytic spaces) can also

be used to define algebraic K-theory and motivic cohomology (resp., topological
K-theory and singular cohomology), it is unsurprising that one also obtains total
Segre class maps

Segalg : Kalg
n (X) → H−n

M (X,Z(0)) ×


{1} ×
⊕

q≥1

H
2q−n
M (X,Z(q))





×

and

Segtop : K−n
top → H−n

sing(X,Z) ×


{1} ×
⊕

q≥1

H2q−n
sing (X,Z)





×
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in the algebraic and topological setting via highly analogous constructions. We
obtain the following theorem.

27 Theorem 27 (cf. [30, 8.6]) For any quasi-projective variety X, the total Segre class
maps

Segalg : Kalg
n (X) → L0H−n(X) ×



{1} ×
⊕

q≥1

LqH2q−n(X)





×

,

Segsst : Ksst
n (X) → H−n

M (X,Z(0)) ×


{1} ×
⊕

q≥1

H
2q−n
M (X,Z(q))





×

, and

Segtop : K−n
top → H−n

sing(X,Z) ×


{1} ×
⊕

q≥1

H2q−n
sing (X,Z)





×

are induced by natural transformations of H-spaces (in fact, of spectra). Moreover,
they form the vertical arrows of the commutative diagram (1.9), provided one
interprets the entries along the bottom row as groups in a suitable fashion.

The topological version of this theorem was first proven by Boyer et al in [9],
settling in the affirmative a conjecture of Segal that the total Chern class map is
a natural transformation of generalized cohomology theories. In addition, Lima-
Filho [49, §4] has established an equivalent version (in the special case where X is
projective) of the right half of diagram (1.9) in which the verticle arrows are the
total Chern class maps.

By applying the familiar universal polynomials (which have coefficients in Q)
that define the Chern character from the individual Chern classes, we obtain the
Chern character maps

chalg : K
alg
∗ (X) → H∗

M(X;Q(∗)) ,

chsst : Ksst
∗ (X) → L∗H∗(X;Q) , and

chtop : K∗
top(Xan) → H∗

sing(X;Q) .

28 Theorem 28 (cf. [32, 4.7] For a smooth, quasi-projective complex variety X, the
Chern character maps are ring maps and they induce rational isomorphisms:

chalg : K
alg
∗ (X)Q

=̃→H∗
M(X;Q(∗)) ,

chsst : Ksst
∗ (X)Q

=̃→L∗H∗(X;Q) , and

chtop : K∗
top(Xan)Q

=̃→H∗
sing(X;Q) .
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Sketch of Proof
The result is well-known in the algebraic [7, 42] and topological [5] settings.

For the semi-topological context, the proof is easy to describe at a heuristic level
(although the rigorous details turn out to be more complicated than one might
guess): One first shows, without much difficulty, that it suffices to prove that
the semi-topological total Segre class map induces an isomorphism on ratio-
nal homotopy groups. Since this is a map of H-spaces and since the result is
known in the algebraic context for all smooth varieties, the Recognition Principle
(Theorem 11) implies the desired result. (One difficulty in making this argu-
ment rigorous is proving that the usual Chern character isomorphism in alge-
braic K-theory coincides with the map given by universal polynomials from the
map Segalg .)

29Remark 29 Cohen and Lima-Filho [10] have claimed a proof of the second isomor-
phism of Theorem 28, but their proof is invalid.

Finite Coefficients and the Bott Element 1.3.3

In this section, we describe two important properties of the horizontal maps in
the diagram (1.9) – that is, we describe results about the comparison of algebraic
and semi-topological theories and about the comparison of semi-topological and
topological theories.

The first property is given by the following result, the first half of which has
already been stated above as Theorem 12.

30Theorem 30 (cf. [27, 3.7], [54]) The left-hand horizontal maps of (1.9) are iso-
morphisms if X is smooth and A = Z|n for n > 0. That is, for n > 0 we have
isomorphisms

Kalg
m (X;Z|n)

=̃→Ksst
m (X;Z|n)

and

H
p
M(X,Z|n(q))

=̃→LqHp(X,Z|n)

for all integers p, q, m and all quasi-projective complex varieties X.

31Remark 31 In fact, this theorem is valid even for X singular. For the second
isomorphism, one must define the morphic cohomology so that cdh descent
holds.
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As mentioned in the sketch of proof of Theorem 12, the first isomorphism follows
from the Recognition Principle and rigidity for algebraic K-theory with finite coef-
ficients. The second isomorphism was proven originally by Suslin–Voevodsky [54]
but the Recognition Principle can also be used to give another proof (but one
which mimics much of Suslin–Voevodsky’s original proof): The map in ques-
tion is induced by the natural transformation of functors from Sch|C to chain
complexes

z
equi
0 (X × ∆•,Pq)|zequi

0 (X × ∆•,Pq−1) ⊗ Z|n

→ z
equi
0 (− × X × ∆•,Pq)|zequi

0 (− × X × ∆•,Pq−1) ⊗ Z|n

(with the first one being constant). By rigidity [54], this map is locally a quasi-
isomorphism for the étale topology, and hence the induced map

z
equi
0 (X × ∆•,Pq)|zequi

0 (X × ∆•,Pq−1) ⊗ Z|n

→ z
equi
0 (∆•

top × X × ∆•,Pq)|zequi
0 (∆•

top × X × ∆•,Pq−1) ⊗ Z|n

is a quasi-isomorphism by the Recognition Principle. These complexes define
the motivic cohomology and morphic cohomology of smooth varieties, respec-
tively.

Since using finite coefficients makes the maps from algebraic theories to semi-
topological theories into equivalences, one might ask what modification of the
maps from semi-topological theories to topological theories converts them to
equivalences. The answer is that one needs only invert the Bott element (for
K-theory) and the s element (for cycle theories). In other words, the integral
analogue of Thomason’s theorem [57, 4.11] relating Bott inverted algebraic K-
theory and topological K-theory with finite coefficients holds in the context of
semi-topological K-theory.

Note that since we have the isomorphism Ksst∗ (SpecC) =̃ K−∗
top(pt) we have in

particular that Ksst
2 (SpecC) =̃ Z. Let β be the generator of Ksst

2 (SpecC) associated
to the canonical map S2 = P1(C) → Grass induced by the surjection C∞ � C2

(defined by projection onto the first 2 coordinate) and call β the “Bott element”.
Obviously, under the map from semi-topological K-theory to topological K-theory,
β maps to the usual Bott element in topology. Moreover, it’s evident that that under
the composition

Ksst
2 (SpecC) → Ksst

2 (SpecC;Z|n) =̃ K
alg
2 (SpecC,Z|n) =̃ µn(C) , n > 0 ,

the element β maps to a generator of µn(C) (i.e., a primitive n-th root of unity), so
that β maps to the Bott element in algebraic K-theory with finite coefficients.

Since Ksst∗ (X) is a (graded) module over the (graded) ring Ksst∗ (SpecC) =̃ Z[β], we
may formally invert the action of β on Ksst∗ (X). Doing the same to K∗

top(Xan) results
in the 2-periodic (non-connective) K-theory ring KU∗(Xan). Clearly, Ksst∗ (X) [β−1]
maps to KU∗(Xan), and the theorem is simply that this map is an isomorphism in
all degrees:
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32Theorem 32 (cf. [32], [60]) For a smooth, quasi-projective complex variety X, the
upper right-hand horizontal map of (1.9) become isomorphisms upon inverting
the Bott element:

Ksst
∗ (X)

[
β−1

] =̃→K−∗
top(Xan)

[
β−1

]
= KU−∗(Xan) .

We know of three separate proofs of this theorem, two of which use the analogous
result for morphic cohomology. This result involves inverting the so-called “s
operation” in morphic cohomology, defined originally by the first author and
B. Mazur [24] in the context of Lawson homology. The original definition involved
a map defined on the level of cycle spaces; the definition given here is equivalent,
under duality, to the induced map on homotopy groups.

33Definition 33 For a quasi-projective complex variety X, the s operation

s : LtHn(X) → Lt+1Hn(X)

is defined as multiplication by the s element s ∈ L1H0(SpecC), which is given by
s = c2,1(β) where c2,1 : Ksst

2 (SpecC) → L1H0(SpecC) is the Chern class map.

The element s is a generator of L1H0(SpecC) =̃ Z and it clearly maps to a unit
of the graded ring H∗

sing(Xan), for all X, but is never a unit in the bigraded ring
L∗H∗(X). Let LtHn(X)[s−1] denote the degree (t, n) piece of the result of inverting
s in the bi-graded ring L∗H∗(X).

34Proposition 34 For a smooth, quasi-projective complex variety X, the canonical
map

LtHn(X)
[
s−1

] → Hn
sing(Xan)

is an isomorphism for all t, n.

The proposition follows directly from the facts that morphic cohomology is
isomorphic to Lawson homology, that under this isomorphism multiplication
by s corresponds to cap product by s (which is a map of the form LtHn(X) →
Lt−1Hn(X)), and that LtHn(X) =̃ HBM

n (Xan) for t ≤ 0.
One proof of Theorem 32 (cf. [32, 5.8]) is given by establishing the desired

isomorphism in the case of Z|n coefficients and Q coefficients separately. For
Z|n coefficients, by using Theorem 30 it suffices to establish the analogous result
comparing Bott inverted algebraic K-theory with Z|n coefficients to topological
K-theory with Z|n coefficients – that this map is an isomorphism is (a special case
of) Thomason’s theorem [57, 4.11]. For Q coefficients, the result follows directly
from the rational isomorphisms of Theorem 28, using Proposition 34 and the fact
that chsst(β) = s.
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A second proof is quite similar to the proof of the Q coefficients case above,
except that one uses the integral “Atiyah–Hirzebruch-like” spectral sequence relat-
ing morphic cohomology and semi-topological K-theory that has been established
by the authors and Christian Haesemeyer [21, 2.10]. This spectral sequence is de-
scribed in the next section. Here again the point is that inverting the Bott element
corresponds under this spectral sequence to inverting the s element in morphic
cohomology, and thus Proposition 34 applies.

The third proof of Theorem 32 does not use morphic cohomology in any fashion,
but it applies only to smooth, projective varieties. This proof is given by the second
author in [60].

Note that the whereas the first proof uses Thomason’s theorem, the latter two
proofs do not. In light of Theorem 12, these proofs therefore represent, in particular,
new proofs of Thomason’s theorem for the special case of smooth complex varieties.

We close this section by presenting diagram (1.9) again, this time with arrows
suitable decorated to indicate their properties:

K
alg
∗ (X)

Z |n-equiv.→ Ksst∗ (X)
1
β -equiv.→ K−∗

top(Xan)
| | |
| | |
↓ Q -equiv. ↓ Q -equiv. ↓ Q -equiv.

⊕
q H

2q−∗
M

(
X,Z(q)

) Z |n-equiv.→ ⊕
q LqH2q−∗(X)

1
s -equiv.→ ⊕

q H
2q−∗
sing (Xan) · · ·

(1.11)

Real Analogues1.3.4

The real analogues of the results of Sect. 1.3.3 are developed by the authors
in [30]. In particular, the real morphic cohomology of the variety X defined
over R is formulated in terms of morphisms defined over R from X to Chow vari-
eties, and semi-topological real Chern and Segre classes are defined. Moreover, the
real analogue of Theorem 12 is proved. In [32], the semi-topological real total Segre
class is shown to be a rational isomorphism for smooth, quasi-projective varieties
defined over R. Indeed, once one inverts the prime 2, the semi-topological total
Segre class is a retract of the semi-topological total Segre class of the complexified
variety XC , thanks to an argument using transfers.

Spectral Sequences and Computations1.4

In this section we describe the construction of the “semi-topological Atiyah–
Hirzebruch spectral sequence” relating morphic cohomology to semi-topological
K-theory. We also provide computations of semi-topological K-groups for certain
special varieties. These computations essentially all boil down to proving that
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for certain varieties, the map from semi-topological to topological K-theory is
an isomorphism, at least in a certain range. These two topics are related, since
the primary technique exploited in this section for such computations is the fact
that the map from Lawson homology to Borel–Moore singular homology is an
isomorphism in certain degrees for a special class of varieties. Such isomorphisms,
in the case of smooth varieties, imply isomorphisms from morphic cohomology to
singular cohomology, which, by using the spectral sequence, imply isomorphisms
relating semi-topological to topological K-theory. Nearly all of the results in this
section are found in the recent paper [21] of the two authors and C. Haesemeyer.

The Spectral Sequence 1.4.1

The “classcal” Atiyah–Hirzebruch spectral sequence relates the singular cohomol-
ogy groups of a finite dimensional CW complex Y with its topological K-groups,
and is given by

E
p,q
2 (top) = Hp−q

sing (Y ,Z) ⇒ kup+q(Y) .

Recall that ku∗ denotes the generalized cohomology theory associated to the (−1)-
connected spectrum bu. (In non-positive degrees, ku∗ coincides with K∗

top.) One
method of constructing this spectral sequence is to observe that the homotopy
groups of the spectrum bu are π2nbu = Z, π2n+1bu = 0, for n ≥ 0. Thus, the
Postnikov tower of the spectrum bu is the tower of spectra

· · · → bu[4] → bu[2] → bu

and there are fibration sequences

bu[2q + 2] → bu[2q] → K(Z, 2q) , q ≥ 0 ,

where K(Z, 2q) denotes the Eilenberg–Maclane spectrum whose only non-vani-
shing homotopy group is Z in degree 2q. By applying Maps(Y , −), one obtains the
tower of spectra

· · · → Maps
(
Y , bu[4]

) → Maps
(
Y , bu[2]

) → Maps
(
Y , bu

)
(1.12)

and fibration sequences of spectra

Maps
(
Y , bu[2q + 2]

) → Maps
(
Y , bu[2q]

) → Maps
(
Y , K(Z, 2q)

)
, q ≥ 0 .

These data determine a collection of long exact sequences that form an exact
couple, and the isomorphisms

πnMaps
(
Y , K(Z, 2q)

)
=̃ H2q−n

sing (Y ,Z) and πnMaps
(
Y , bu

)
= ku−n(Yan) , n ∈ Z,

show that the associated spectral sequence has the form indicated above.
One of the more significant developments in algebraic K-theory in recent years is

the construction of a purely algebraic analogue of the Atiyah–Hirzebruch spectral
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sequence, one which relates the motivic cohomology groups of a smooth variety
to its algebraic K-groups. The construction of this spectral sequence is given (in
various forms) in the papers [8, 25, 34, 43, 53]. To construct the spectral sequence
for arbitrary smooth varieties (as is done in [25, 34, 43, 53]), the essential point is
to reproduce the tower (1.12) at the algebraic level. Namely, for a smooth, quasi-
projective variety over an arbitrary ground field F, one constructs a natural tower
of spectra

· · · → K(q+1)(X) → K(q)(X) → · · · → K(1)(X) → K(0)(X) = Kalg(X) (1.13)

together with natural fibration sequences of the form

K(q+1)(X) → K(q)(X) → HM(X,Z(q)) , (1.14)

where HM(X,Z(q)) is a suitable spectrum (in fact, a spectrum associated to a chain
complex of abelian groups) whose homotopy groups give the motivic cohomology
groups of X:

πnHM(X,Z(q)) = H
2q−n
M (X,Z(q)) .

Such a tower and collection of fibration sequences leads immediately to the motivic
spectral sequence:

E
p,q
2 (alg) = H

p−q
M (X,Z(q)) ⇒ K

alg
−p−q(X) .

The semi-topological spectral sequence is defined by simply “semi-topologizing”
the motivic version. That is, once one observes that the spectra appearing in (1.13)
and (1.14) are defined for all X ∈ Sch|C (not just smooth varieties) and that they
represent functors from Sch|C to spectra (see [25] and [21, §2]), then one may
form the tower

· · · → K(q+1)(X × ∆•
top) → K(q)(X × ∆•

top) → · · ·

· · · → K(1)(X × ∆•
top) → K(0)(X × ∆•

top) = Kalg(X × ∆•
top)

(1.15)

and the collection of fibration sequences

K(q+1)(X × ∆•
top) → K(q)(X × ∆•

top) → HM(X × ∆•
top,Z(q)) (1.16)

in the usual manner. Since we have K sst(X) = Kalg(X × ∆•
top) and we also have

(essentially by definition – at least, using the definition given in this paper)

πnHM(X × ∆•
top,Z(q)) = LqH2q−n(X) ,

the collection of long exact sequences associated to (1.16) determines the semi-
topological spectral sequence

E
p,q
2 (sst) = LqHp−q(X) ⇒ Ksst

−p−q(X) . (1.17)
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Moreover, just as there is a natural map K sst(X) → Ktop(Xan), one can define
natural maps K(q)(X × ∆•

top) → Maps(Xan, bu[2q]) for all q ≥ 0 [21, 3.4], and thus
one obtains a map from the semi-topological version of the Atiyah–Hirzebruch
spectral sequence to the classical one. There is an obvious map from the motivic
spectral sequence to the semi-topological spectral sequence, and thus we have the
following theorem.

35Theorem 35 [21, 3.6] For a smooth, quasi-projective complex variety X, we have
natural maps of convergent spectral sequences of “Atiyah–Hirzebruch type”

E
p,q
2 (alg) = H

p−q
M (X,Z(q)) ⇒ K

alg
−p−q(X)

↓
E

p,q
2 (sst) = LqHp−q(X) ⇒ Ksst

−p−q(X)
↓

E
p,q
2 (top) = H

p−q
sing (Y ,Z) ⇒ kup+q(Y)

given by the usual maps from motivic to morphic to singular cohomology and
from algebraic to semi-topological to topological K-theory.

Generalized Cycle Map and Weights 1.4.2

The concept of a weight filtration on the singular cohomology of a complex variety
was introduce by Deligne [11] (for rational coefficients). This notion was extended
to arbitrary coefficients in a paper of Gillet-Soulé [33]. For our purposes, the
analogous notion of a weight filtration for Borel–Moore singular cohomology,
HBM∗ , turns out to be of more use.

For any U , the weight filtration on HBM
n (Uan) has the form

· · · ⊂ WtH
BM
n (Uan) ⊂ Wt+1HBM

n (Uan) ⊂ · · · ⊂ HBM
n (Uan)

and is “concentrated” in the range −n ≤ t ≤ d − n, where d = dim(U), in the sense
that WtHBM

n (Uan) = 0 for t < −n and WtHBM
n (Uan) = HBM

n (Uan) for t ≥ d−n. (That
the filtration is concentrated in this range is not so obvious from the definition
below, but see [33, §2].) We have found it useful to consider a slight variation on the
groups WtHBM

n (Uan), which are written W̃tHBM
n (U). The groups W̃tHBM

n (U) do not
form a filtration on HBM

n (Uan), but rather map surjectively to WtHBM
n (Uan) (with

torsion kernel). The groups W̃tHBM
n (U), however, enjoy better formal properties

than do the groups comprising the weight filtration.
The essential idea underlying the definition of the weight filtration is that the

n-th homology group of a smooth, projective complex variety X is of pure weight
−n, by which we mean

WtH
BM
n (Xan) =





0 , if t < −n and

HBM
n (Xan) , if t ≥ −n ,
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and, more generally, elements in HBM∗ (Uan) have weight t if they “come from”
elements of weight t in HBM∗ (Xan) for X smooth and projective under a suitable
construction.

In detail, given a quasi-projective complex variety U , one chooses a projective
compactification U (so that U ⊂ U is open and dense) and lets Y = U −U be the re-
duced closed complement. One then constructs a pair of “smooth hyperenvelopes”
U• → U and Y• → Y together with a map Y• → U• of such extending the map
Y ↪→ U. In general, a “smooth hyperenvelope” X• → X is an augmented simplicial
variety such that each Xn is smooth and the induced map Xn → (coskn−1(X•))n

is a proper map that is surjective on F-points for any field F. Loosely speaking,
such a smooth hyper-envelope over X is formed by first choosing a resolution of
singularities X0 → X of X (more specifically, a projective map with X0 smooth
that induces a surjection on F-points for any field F), then by choosing a resolution
of singularities X1 → X0 ×X X0 = (cosk0(X•))1, then by choosing a resolution of
singularities X2 → (cosk2(X•))1, and so on.

Let Z Sing•(−) denote the functor taking a space to the chain complex that
computes its singular homology (i.e., Z Sing•(−) is the chain complex associated
to the simplicial abelian group d �→ ZMaps(∆d

top, −)). Then the total complex
associated to the map of bicomplexes (i.e., the tri-complex)

Z Sing•(Yan
• ) → Z Sing•(U

an
• )

gives the Borel–Moore homology of Uan. That is, letting Ui = Ui
∐

Yi−1 (with
Y−1 = ∅), we have

HBM
n (Uan) =̃ hn

(
Tot

(
· · · → Z Sing•(U1) → Z Sing•(U0)

))
.

Observe that the definition of WtHn for a smooth, projective variety X given below
amounts to setting

WtHn(X) = hn(tr≥−tZ Sing•(Xan)) ,

where tr≥−t denotes the good truncation of chain complexes at homological degree
−t. In heuristic terms, the weight filtration on HBM∗ (Uan) is defined from the “left-
derived functor” of tr≥−t , if we interpret the smooth, projective varieties Ui as
forming a resolution of U .

This idea is formalized in the following definition, which also includes a defini-
tion of related functors W̃tHBM

n .

36 Definition 36 Given a quasi-projective complex variety U , define

W̃tH
BM
n (U) = hn

(
· · · → tr≥−tZ Sing•(U1) → tr≥−tZ Sing•(U0)

)
,

where tr≥−t denotes the good truncation of a chain complex at homological degree
−t and the Ui’s are constructed as above.
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Define WtHBM
n (Uan) to be the image of W̃tHBM

n (U) in HBM
n (Uan) under the

canonical map:

WtH
BM
n (Uan) = image(W̃tH

BM
n (Uan) → HBM

n (Uan)) .

For an alternative formulation of the weight filtration, observe that associ-
ated to the bicomplex · · · → Z Sing•(U1) → Z Sing•(U0), we have the spectral
sequence

E2
p,q = hp

(
· · · → Hq(Uan

1 ) → Hq(Uan
0 )

) ⇒ HBM
p+q(Uan) . (1.18)

The weight filtration on HBM∗ (Uan) may equivalently be defined to be the filtration
induced by this spectral sequence [33, §3]:

WtH
BM
n (Uan) = image

(
hn

(
Z Sing•(Un+t) → · · · → Z Sing•(U0)

) → HBM
n (Uan)

)
.

In other words, the groups WtHBM
n (Uan) are the D∞ terms of the spectral sequence

(1.18). What’s more, the groups W̃tHBM
n (U) are equal to the D2 terms of this spec-

tral sequence. This implies that for a situation in which the spectral sequence
(1.18) degenerates at the E2 terms, the map W̃tHBM

n (U) → WtHBM
n (Uan) is an

isomorphism for all t and n. In particular, since (1.18) degenerates rationally by
Deligne’s result [11], we have W̃tHBM

n (U)Q =̃ WtHBM
n (Uan)Q .

For a simple example, suppose U happens to be smooth and admits a smooth
compactification X such that Y = X − U is again smooth. Then the spectral
sequence (1.18) degenerates (integrally) and it really just amounts to a single long
exact sequence

· · · → Hsing
n (Yan) → Hsing

n (Xan) → HBM
n (Uan) → H

sing
n−1(Yan) → · · · .

It follows that W̃tHBM
n (U) = WtHBM

n (Uan) and

WtH
BM
n (Uan) =






0 , if t < −n ,

image
(
H

sing
n (Xan) → HBM

n (Uan)
)

, if t = −n , and

HBM
n

(
Uan

)
, if t > −n .

Thus, in this situation the information encoded by the weight filtration on HBM∗ (Uan)
concerns which classes in HBM∗ (Uan) can be lifted to the homology of a smooth
compactification H∗(Xan).

It is a non-trivial theorem, due to Deligne [11] for Q-coefficients and Gillet–
Soulé [33, §2] in general, that the weight W∗HBM∗ filtration is independent of
the choices made in its construction. Using their techniques, the authors and
Christian Haesemeyer have also proven that W̃tHBM is independent of the choices
made [21, 5.9].
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Computations1.4.3

The generalized cycle map (see [24] and [48]) is the map from the Lawson homology
of a complex variety X to its Borel–Moore homology

LtHn(X) → Hsing
n (Xan) .

For smooth varieties, the generalized cycle map corresponds under duality to the
map from morphic cohomology to singular cohomology

Ld−tH2d−n(X) → H2d−n
sing (Xan)

described in Sect. 1.3.1. For projective (but possibly singular) varieties, the gener-
alized cycle map is defined by applying πn−2t to the diagram of spaces

Zt(X)
s→ Ω2tZt(X × At)

∼← Ω2tZ0(X) ,

where the first map is the “s map” defined by Friedlander and Mazur [24] (see also
Definition 33) and the second map is the homotopy equivalence induced by flat
pullback of cycles along the projection X × At → X. This definition is extended
to quasi-projective varieties in [20].

Observe that the singular chain complex associated to the space Ω2tZ0(X) is
quasi-isomorphic to tr≥−2tZ Sing•(Xan)[2t], the complex used to define W̃2tHBM∗ .
This observation leads to a proof that the generalized cycle class map from LtHn

lands in the weight −2t part of Borel–Moore homology. This fact, as well as
other properties relating the weight filtration on Borel–Moore homology and the
generalized cycle map, is formalized by the following result.

37 Proposition 37 (cf. [21, 5.11, 5.12])
1. For any quasi-projective variety U , the generalized cycle map factors as

LtHn(U) → W̃−2tH
BM
n (U)�W−2tH

BM
n (U) ⊂ HBM

n (U) ,

and each of these maps is covariantly functorial for proper morphisms and con-
travariantly functorial for open immersions. The map Lt Hn(U)→W̃−2tHBM

n (U)
is called the refined cycle map.

2. Each of the theories LtH∗(−), W̃tHBM∗ (−), HBM∗ ((−)an) has a long exact lo-
calization sequence associated to an open immersion U ⊂ X with closed
complement Y = X − U , and the maps

LtH∗(−) → W̃tH
BM
∗ (−) → HBM

∗ ((−)an)

are compatible with these long exact sequences.

38 Remark 38 The weight filtration itself, WtHBM∗ (−), is not always compatible with
localization sequences, and the construction W̃tHBM∗ was introduced to rectify this
defect.
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The first part of Proposition 37 clearly provides an obstruction for the gen-
eralized cycle map to be an isomorphism in certain degrees for certain kinds of
varieties.

39Definition 39 Define C to be the collection of smooth, quasi-projective complex va-
rieties U such that the refined cycle map LtHn(U) → W̃tHn(U) is an isomorphism
for all t and n.

40Theorem 40 (cf. [21, 6.3]) Assume X is a quasi-projective complex variety of
dimension d that belongs to the class C and let A be any abelian group.
1. The generalized cycle map

LtHn(X, A) → HBM
n (Xan, A)

is an isomorphism for n ≥ d + t and a monomorphism for n = d + t − 1. If X
is smooth and projective, this map is an isomorphism for n ≥ 2t.

2. If X is smooth, the canonical map

Ksst
q (X, A) → K

−q
top(Xan, A)

is an isomorphism for q ≥ d − 1 and a monomorphism for q = d − 2. If X is
smooth and projective, this map is an isomorphism for q ≥ 0.

The proof of the first part of Theorem 40 is achieved via a careful analysis of the
spectral sequence (1.18), and the proof of the second part follows from a careful
analysis of the semi-topological spectral sequence and its comparison with the
classical Atiyah–Hirzebruch spectral sequence (Theorem 35).

The conclusion of the second part of Theorem 40 (in the not-necessarily-
projective case) is what we term the Semi-topological Quillen–Lichtenbaum Con-
jecture, discussed in more detail in Sect. 1.5 below.

The validity of the following assertions for the class C is the primary reason the
groups W̃∗HBM∗ (−) were introduced. The corresponding statement for the class of
varieties for which LtHn(−) → W−2tHBM

n ((−)an) is an isomorphism in all degrees
is false.

41Proposition 41 (cf. [21, 6.9]) The class C is closed under the following construc-
tions:
1. Closure under localization: Let Y ⊂ X be a closed immersion with Zariski

open complement U . If two of X, Z, and U belong to C, so does the third.
2. Closure for bundles: For a vector bundle E → X, the variety X belongs to C if

and only if P(E) does. In this case, E belongs to C as well.
3. Closure under blow-ups: Let Z ⊂ X be a regular closed immersion and such

that Z belongs to C. Then X is in C if and only if the blow-up XZ of X along Z
is in C.
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Recall that the class of linear varieties is the smallest collection L of complex
varieties such that (1) An belongs to L, for all n ≥ 0, and (2) if X is a quasi-
projective complex variety, Z ⊂ X is a closed subscheme, U = X − Z is the open
complement, and Z and either X or U belongs to L, then so does the remaining
member of the triple (X, Z, U). Examples of linear varieties include toric and
cellular varieties.

42 Theorem 42 (cf. [21, §6]) The following complex varieties belong to C:
1. A quasi-projective curve.
2. A smooth, quasi-projective surface having a smooth compactification with all

of H2
sing algebraic.

3. A smooth projective rational three-fold.
4. A smooth quasi-projective linear variety (e.g., a smooth quasi-projective toric

variety).
5. A toric fibration (e.g., an affine or projective bundle) over one of the above

varieties.

In particular, if X is smooth and one of the above types of varieties, then for any
abelian group A the natural map

Ksst
n (X, A) → K−n

top(Xan, A)

is an isomorphism for n ≥ dim(X) − 1 and a monomorphism for n = dim(X) − 2.
If X is in addition projective, this map is an isomorphism for all n ≥ 0.

As mentioned in the introduction, when X is a smooth, projective complex
variety belonging to C, Theorem 42 implies that the subspace inclusion

Mor(X, Grass) ⊂ Maps(Xan, Grassan)

becomes a homotopy equivalence upon taking homotopy-theoretic group com-
pletions. In fact, both homotopy-theoretic group completions can be described
precisely by taking mapping telescopes of self-maps (essentially defined as “ad-
dition by a fixed ample line bundle”) of the spaces above [31, 3.5]. This result
therefore gives examples when the stabilized space of all continuous maps be-
tween two complex (ind-)varieties can represented up-to-homotopy equivalence
by the stabilized space of all algebraic morphisms between them.

Conjectures1.5

In this section, we discuss various conjectures relating semi-topological K-theory
to topological K-theory and relating morphic cohomology to singular cohomology.
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Integral Versions of the “Classical” Conjectures 1.5.1

One important feature of semi-topological K-theory and morphic cohomology is
that they allow for the formulation of plausible analogues for arbitrary coefficients
of the classical conjectures in algebraic K-theory and motivic cohomology for finite
coefficients. For example, the Quillen–Lichtenbaum and Beilinson–Lichtenbaum
Conjectures, each of which concerns theories with Z|n-coefficients, admit inte-
gral analogues in the semi-topological world. Moreover, in light of Theorem 30,
these semi-topological conjectures imply their classical counter-parts (for complex
varieties).

Perhaps the most fundamental of these conjectures, formulated originally by
A. Suslin, concerns a conjectural description of morphic cohomology in terms
of singular cohomology. To understand Suslin’s Conjecture, as we have termed it,
recall that if we define Zsst to be the complex of abelian sheaves

Z
sst(t) = Hom

(
− × ∆•

top, C0

(
P

t
))+ /

Hom
(

− × ∆•
top, C0

(
P

t−1
))+

[−2t] ,

then the morphic cohomology groups of a smooth variety X are given by

LtHn(X) = hn−2tΓ(X,Zsst(t)) .

In fact, Zariski descent for morphic cohomology [18] implies that

LtHn(X) =̃ Hn−2t
Zar (X,Zsst(t))

for X smooth, where HZar denotes taking the hypercohomology in the Zariski
topology. The comparison ofZsst(t) with singular cohomology uses the morphism
of sites ε : CWopen → (Sch|CZar), where CW denotes the category of topological
spaces homeomorphic to finite dimensional CW-complexes, associated to the
functor U �→ Uan taking a complex variety to its associated analytic space. If Z
denotes the sheaf associated to the constant presheaf T �→ Z defined on CW , then
we have

Hn
sing(Xan,Z) =̃ Hn

sheaf (Xan,Z) =̃ Hn
Zar(Xan,Rε∗Z) ,

for any X ∈ Sch|C. It’s not hard to see that the map from morphic cohomology to
singular cohomology is induced by a map of chain complexes of sheaves

Z
sst(q) → Rε∗Z .

More generally, for any abelian group A, if we define Asst(q) = Zsst(q) ⊗ A, then
there is a natural map

Asst(q) → Rε∗A

of complexes of sheaves that induces the map from morphic cohomology with
A-coefficients to singular cohomology with A-coefficients.

To formulate Suslin’s Conjecture, we need the following result:
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43 Theorem 43 [21, 7.3] For any abelian group A, the map Asst(q) → Rε∗A factors
(in the derived category of sheaves) as

Asst(q) → tr≤q
Rε∗A → Rε∗A ,

where tr≤q represents the “good truncation” at degree q of a cochain complex.

The proof of Theorem 43 may be of independent interest, and so we sketch it here.
(This is proved formally in [21], building on ideas from [13].) It suffices to prove
LtHn(−, A) vanishes locally on a smooth variety whenever n > t. Using duality
relating morphic cohomology to Lawson homology [17, 22], we see that it suffices
to prove that LtHm(−, A) vanishes at the generic point of X for m < t + dim(X).
Localization for Lawson homology and the rational injectivity of the Hurewicz map
for a topological abelian group shows that it suffices to verify that the canonical
map

lim→
Y⊂X,codim(Y)≥1

Hsing
m (Zt(Y), A) → Hsing

m (Zt(X), A)

is an isomorphism for n < d − t − 1 and a surjection for n = d − t − 1. For a given
X and a given t ≥ 0, the proof of this statement can be reduced to proving the
analogous statements for

lim→
Y⊂X,codim(Y)≥1

Hsing
m (Ct,e(Y), A) → Hsing

m (Ct,e(X), A) , e > 0 .

Finally, these statements concerning the (singular) algebraic varieties Ct,e(X) are
then proved using the Lefschetz theorem as proved by Andreotti and Frankel [3].

44 Conjecture 44: Suslin’s Conjecture For any abelian group A, the map of complexes

Asst(q) → tr≤q
Rε∗A

is a quasi-isomorphism on the category of smooth, quasi-projective complex va-
rieties.

Equivalently (see [21, 7.9]), for all smooth, quasi-projective complex varieties X,
the map

LtHn(X, A) → Hn
sing(X, A)

is an isomorphism for n ≤ t and a monomorphism for n = t + 1.

Suslin’s Conjecture is clearly analogous to the Beilinson–Lichtenbaum Conjec-
ture, which can be stated as follows.

45 Conjecture 45: Beilinson–Lichtenbaum Conjecture (See [6] and [45].) Let F be
an arbitrary field, let π : (Sch|F)ét → (Sch|F)Zar be the evident morphism of sites,
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and let m be a positive integer not divisible by the characteristic of F. Then the
canonical map of complexes of sheaves on (Sm|F)Zar

Z|m(q) → tr≤q
Rπ∗µ⊗q

m

is a quasi-isomorphism.
Equivalently, for all smooth, quasi-projective F-varieties X, the map

Hn
M(X,Z|n(q)) → Hn

ét(X, µ⊗q
m )

is an isomorphism for n ≤ t and a monomorphism for n = t + 1.

In light of Theorem 30 and the fact that étale and singular cohomology with
finite coefficients of complex varieties coincide, the following result is evident.

46Proposition 46 Suslin’s Conjecture implies the Beilinson–Lichtenbaum Conjecture
for complex varieties.

In a parallel fashion, the Quillen–Lichtenbaum Conjecture, which asserts an
isomorphism between algebraic and topological K-theory with finite coefficients
in a certain range, admits an integral, semi-topological analogue:

47Conjecture 47: Semi-topological Quillen–Lichtenbaum Conjecture For a smooth,
quasi-projective complex variety X and abelian group A, the canonical map

Ksst
n (X, A) → K−n

top(X, A)

is an isomorphism for n ≥ dim(X) − 1 and a monomorphism for n = dim(X) − 2.

Using the isomorphism of Theorem 30, we see in the case A = Z|m that this
conjecture is equivalent to the assertion that

Kalg
n (X,Z|m) → K−n

top(X,Z|m)

is an isomorphism for n ≥ dim(X) − 1 and a monomorphism for n = dim(X) − 2.
This special case is the “classical” Quillen–Lichtenbaum Conjecture (see [52] and
[44]) for complex varieties.

Evidence for the semi-topological Quillen–Lichtenbaum Conjecture is supplied
by Theorem 32, which may be interpreted as saying the map Ksst∗ (X) → K−∗

top(Xan)
is an isomorphism “stably”. In addition, we have the following result establishing
split surjectivity of this map in a range.

48Theorem 48 For a smooth, quasi-projective complex variety X, the map

Ksst
n (X) → K−n

top(Xan)

is a split surjection for n ≥ 2 dim(X).
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When X is projective, this is proven by the second author in [60] using the theory
of “semi-topological K-homology”. Thanks to the recently established motivic
spectral sequence (1.17), a proof for the gereral case is obtained by mimicking the
argument of [29, 1.4].

Using the semi-topological Atiyah–Hirzebruch spectral sequence (1.17), one
may readily deduce that Suslin’s Conjecture implies the semi-topological Quillen–
Lichtenbaum Conjecture.

49 Theorem 49 [21, 6.1] For a smooth, quasi-projective complex variety X and an
abelian group A, if

LqHn(X, A) → Hn(Xan, A)

is an isomorphism for n ≤ q and a monomorphism for n = q + 1, then the map

Ksst
i (X, A) → ku−i(Xan, A)

is an isomorphism for i ≥ dim(X) − 1 and a monomorphism for i = dim(X) − 2.
In other words, Suslin’s Conjecture implies the semi-topological Quillen–Lich-

tenbaum Conjecture.

The results described in Sect. 1.4.3 lead to the following theorem:

50 Theorem 50 (cf. [21, 7.14]) Suslin’s Conjecture and the semi-topological Quillen–
Lichtenbaum Conjectures hold for the following complex varieties:
1. smooth quasi-projective curves,
2. smooth quasi-projective surfaces,
3. smooth projective rational three-folds,
4. smooth quasi-projective linear varieties (for example, smooth quasi-projective

toric and cellular varieties), and
5. smooth toric fibrations (e.g., affine and projective bundles) over one of the

above varieties.

Consequently, the “classical” Quillen–Lichtenbaum Conjecture and the Beilinson–
Lichtenbaum Conjecture hold for these varieties.

We remind the reader that Voevodsky (using results of M. Rost) has recently
proven the Beilinson–Lichtenbaum and “classical” Quillen–Lichtenbaum Conjec-
tures [59].

K-Theoretic Analogue of the Hodge Conjecture1.5.2

The Hodge conjecture [37] concerns which rational singular cohomology classes
of a smooth, complex variety arise from cycles – more precisely, it asserts that
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for a smooth, projective complex variety X, every class in H
p,p
sing(Xan,Q) lies in the

image of the rational cycle class map Ap(X)Q → H
2p
sing(Xan,Q), where

Hp,p(Xan,Q) = H2p
sing(Xan,Q) ∩ Hp,p(Xan,C)

and Hp,p(Xan,C) refers to the Hodge decomposition of a complex Kahler mani-
fold. It is easy to show the image of the rational cycle class map is contained in
H

p,p
sing(Xan,Q), and thus the Hodge Conjecture becomes (in the language of morphic

cohomology) that the rational cycle class map

LpH2p(X,Q) → Hp,p(Xan,Q)

is a surjection.
The Generalized Hodge Conjecture, as corrected by Grothendieck [36], asserts

that the Hodge filtration and the coniveau filtration on the rational homology of
a smooth, projective complex variety coincide. The rational Hodge filtration is
given as

Hm
sing(Xan,Q) = F0

hHm
sing(Xan,Q) ⊃ F1

hHm
sing(Xan,Q) ⊃ F2

hHm
sing(Xan,Q) ⊃ · · · ,

where F
j
hHm

sing(Xan,Q) is defined by Grothendieck [36] to be the maximal sub-mixed
Hodge structure of Hm

sing(Xan,Q) contained in Hm
sing(Xan,Q)∩⊕

p≥j H
p,m−p
sing (Xan,C).

The coniveau filtration, N∗Hm
sing(Xan,Q), is given by

NjHm
sing(Xan,Q) =

⋃

Y⊂X
codim(Y) = j

ker
(

Hm
sing(Xan,Q) → Hm

sing((X − Y)an,Q)
)

The containment NjHm
sing(Xan,Q) ⊂ F

j
hHm

sing(Xan,Q) always holds, and so the Gen-
eralized Hodge Conjecture amounts to the assertion that the opposite containment
also holds – i.e., every class in F

j
hHm

sing(Xan,Q) vanishes on the complement of
a closed subscheme of codimension j.

For any smooth, quasi-projective complex variety X, the topological filtration
of Hm

sing(Xan) is given by considering the images of the powers of the s map:

TjHm
sing(Xan,Z) = image

(
Lm−jHm(X) → Hm

sing(Xan,Z)
)

.

(We set Tj = T0 if j < 0.) Recall that Suslin’s Conjecture predicts that the map
LmHm(X) → Hm

sing(Xan,Z) is an isomorphism, so that, conjecturally, TjHm
sing(Xan,Z)

may be identified with the image of sj : Lm−jHm
sing(X) → LmHm(X).

The following result of the first author and B. Mazur (originally stated in the
context of Lawson homology) relates the three filtrations above. Note that we have
modified the indexing conventions here from those of the original.
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51 Proposition 51 (cf. [24]) For a smooth, projective complex variety X, we have

TjHm
sing(Xan,Q) ⊂ NjHm

sing(Xan,Q) ⊂ F
j
hHm

sing(Xan,Q) ,

for all j and m.

The following conjecture thus represents a (possibly stronger) version of the
Generalized Hodge Conjecture:

52 Conjecture 52: Friedlander–Mazur Conjecture (cf. [24] ) For a smooth, projective
complex variety, we have

TjHm
sing(Xan,Q) = F

j
hHm

sing(Xan,Q) ,

for all m and j.

Proposition 51 shows that the Friedlander–Mazur Conjecture implies the Gener-
alized Hodge Conjecture. In the case of abelian varieties, S. Abdulali has established
the following converse.

53 Theorem 53 (cf. [1]) For abelian varieties for which the Generalized Hodge Con-
jecture is known the Friedlander–Mazur Conjecture also holds.

Semi-topological K-theory provides another perspective on the Hodge Conjec-
ture, one which could prove to be of some use. Since the topological filtration on
singular cohomology is defined in terms of the s map, it is natural to define the
topological filtration on topological K-theory in terms of the Bott map (i.e., multi-
plication by the Bott element) in semi-topological K-theory. That is, an element of
K0

top(Xan) lies in the j-th filtered piece of the topological filtration if it comes from
semi-topogical K-theory after applying the j-th power of the Bott map:

TjK0
top(Xan) = (1.19)

image

(
Ksst

2d−2j(X)
βj

→ Ksst
2d (X) → K−2d

top (Xan)
βd

→̃
=

K0
top(Xan)

)
.

(As before, Tj = T0 for j < 0.) The form of this definition appears more sensible
once one recalls that the map

Ksst
2d (X) → K−2d

top (Xan)

is known to be a split surjection (see Theorem 48). We thus have a filtration of the
form

K0
top(Xan) = T0K0

top(Xan) ⊃ T1K0
top(Xan) ⊃ · · · TdK0

top(Xan) ⊃ Td+1K0
top(Xan) = 0 ,
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for a smooth, quasi-projective complex variety X. In fact, for j ≤ d+1
2 , the semi-

topological Quillen–Lichtenbaum Conjecture predicts that each map in (1.19) is
an isomorphism, so that conjecturally we have T0K0

top(Xan) = T1K0
top(Xan) = · · · =

T
d+1

2 K0
top(Xan).

Rationally, under the Chern character isomorphism, the Bott element in K-
theory corresponds to the s element in cohomology, and thus the topological
filtrations for K-theory and cohomology defined above are closely related. The
precise statement is the following.

54Theorem 54 (cf. [32, 5.9]) For any smooth, quasi-projective complex variety X of
dimension d, the Chern character restricts to an isomorphism

chtop : TjK0
top(Xan)Q

=̃→
⊕

q≥0

Tq+j−dH2q
sing(Xan,Q) ,

for all j. In other words, the weight q piece of TjK0
top(Xan)Q is mapped isomorphically

via the Chern character to Tq+j−dH
2q
sing(Xan,Q).

Using the Chern character isomorphism, one can transport the rational Hodge
Filtration in singular cohomology to a filtration of K0

top(X)Q . In this manner, the
Friedlander–Mazur Conjecture, which implies the Generalized Hodge Conjecture,
can be stated in purely K-theoretic terms. It would be interesting to find an intrinsic
description of the “Hodge filtration” of K0

top(X)Q .
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Norm. Sup., 18:437–552, 1985.

58. Vladimir Voevodsky. Cohomological theory of presheaves with transfers. In
Cycles, transfers, and motivic homology theories, pages 87–137. Princeton
Univ. Press, Princeton, NJ, 2000.

59. Vladimir Voevodsky. On motivic cohomology with Z|l-coefficients. Preprint.
Available at http://www.math.uiuc. edu/K-theory/0639/, June 2003.

60. Mark E. Walker. Semi-topological K-homology and Thomason’s theorem.
K-Theory, 26(3):207–286, 2002.



V.2Equivariant K-Theory *
Alexander S. Merkurjev

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927

2.2 Basic Results in the Equivariant K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928
Torsors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
Basic Results in Equivariant K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 932

2.3 Category C(G) of G-Equivariant K-Correspondences . . . . . . . . . . . . . . . . . . . 934

2.4 Equivariant K-Theory of Projective Homogeneous Varieties . . . . . . . . . 936

Split Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936
Quasi-split Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937
General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 937

2.5 K-Theory of Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938

K-Theory of Toric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938
K-Theory of Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 939

2.6 Equivariant K-Theory of Solvable Algebraic Groups . . . . . . . . . . . . . . . . . . . . . . 940

Split Unipotent Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 940
Split Algebraic Tori. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 941
Quasi-trivial Algebraic Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944
Coflasque Algebraic Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 944

2.7 Equivariant K-Theory of some Reductive Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 945

Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 945
K-Theory of Simply Connected Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946

2.8 Equivariant K-Theory of Factorial Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 948

∗ This work has been supported by the NSF grant DMS 0098111.



2.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950

K-Theory of Classifying Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 950
Equivariant Chow Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Group Actions on the K ′-Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 952

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 953



Equivariant K-Theory 927

Introduction 2.1

The equivariant K-theory was developed by R. Thomason in [21]. Let an algebraic
group G act on a variety X over a field F. We consider G-modules, i.e., OX-modules
over X that are equipped with an G-action compatible with one on X. As in the
non-equivariant case there are two categories: the abelian category M(G; X) of
coherent G-modules and the full subcategory P (G; X) consisting of locally free
OX-modules. The groups K ′

n(G; X) and Kn(G; X) are defined as the K-groups of
these two categories respectively.

In the second section we present definitions and formulate basic theorems in the
equivariant K-theory such as the localization theorem, projective bundle theorem,
strong homotopy invariance property and duality theorem for regular varieties.

In the following section we define an additive category C(G) of G-equivariant
K-correspondences that was introduced by I. Panin in [15]. This category is analo-
gous to the category of Chow correspondences presented in [9]. Many interesting
functors in the equivariant K-theory of algebraic varieties factor through C(G).
The category C(G) has more objects (for example, separable F-algebras are also the
objects of C(G)) and has much more morphisms than the category of G-varieties.
For instance, every projective homogeneous variety is isomorphic to a separable
algebra (Theorem 16).

In Sect. 2.4, we consider the equivariant K-theory of projective homogeneous
varieties developed by I. Panin in [15]. The following section is devoted to the
computation of the K-groups of toric models and toric varieties (see [12]).

In Sects. 2.6 and 2.7, we construct a spectral sequence

E2
p,q = TorR(G)

p

(
Z, K ′

q(G; X)
)

⇒ K ′
p+q(X) ,

where G is a split reductive group with the simply connected commutator subgroup
and X is a G-variety.

The rest of the paper addresses the following question. Let G be an algebraic
group. Under what condition on G the G-action on a G-variety X can be extended
to a linear action on every vector bundle E → X making it a G-vector bundle on
X? If X = G and E is a line bundle, then the existence of a G-structure on E implies
that E is trivial. Thus, if the answer is positive, the Picard group Pic(G) must be
trivial. It turns out that the triviality of Pic(G) implies positive solution at least
stably, on the level of coherent G-modules. We prove that for a factorial group G
the restriction homomorphism K ′

0(G; X) → K0(X) is surjective (Theorem 39). Our
exposition is different from the one presented in [11].

In the last section we consider some applications.
We use the word variety for a separated scheme of finite type over a field. If X is

a variety over a field F and L|F is a field extension, then we write XL for the variety
X ⊗F L over L. By Xsep we denote XFsep , where Fsep is a separable closure of F. If R
is a commutative F-algebra, we write X(R) for the set MorF(Spec R, X) of R-points
of X.

An algebraic group is a smooth affine group variety of finite type over a field.
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Basic Results in the Equivariant K-Theory2.2

In this section we review the equivariant K-theory developed by R. Thomason
in [21].

Definitions2.2.1

Let G be an algebraic group over a field F. A variety X over F is called a G-variety
if an action morphism θ : G × X → X of the group G on X is given, which
satisfies the usual associative and unital identities for an action. In other words,
to give a structure of a G-variety on a variety X is to give, for every commutative
F-algebra R, a natural in R action of the group of R-points G(R) on the set X(R).

A G-module M over X is a quasi-coherent OX-module M together with an
isomorphism of OG×X-modules

ρ = ρM : θ∗(M)
∼→ p∗

2(M) ,

(where p2 : G × X → X is the projection), satisfying the cocycle condition

p∗
23(ρ) ◦ (idG × θ)∗(ρ) = (m × idX)∗(ρ) ,

where p23 : G × G × X → G × X is the projection and m : G × G → G is the
product morphism (see [14, Ch. 1, §3] or [21]).

A morphism α : M → N of G-modules is called a G-morphism if

ρN ◦ θ∗(α) = p∗
2(α) ◦ ρM .

Let M be a quasi-coherent OX-module. For a point x : Spec R → X of X over
a commutative F-algebra R, write M(x) for the R-module of global sections of
the sheaf x∗(M) over Spec R. Thus, M defines the functor sending R to the family
{M(x)} of R-modules indexed by the R-valued point x ∈ X(R). To give a G-module
structure on M is to give natural in R isomorphisms of R-modules

ρg,x : M(x) → M(gx)

for all g ∈ G(R) and x ∈ X(R) such that ρgg′,x = ρg,g′x ◦ ρg′,x.

Example 1 . Let X be a G-variety. A G-vector bundle on X is a vector bundle
E → X together with a linear G-action G × E → E compatible with

the one on X. The sheaf of sections P of a G-vector bundle E has a natural structure
of a G-module. Conversely, a G-module structure on the sheaf P of sections of
a vector bundle E → X yields structure of a G-vector bundle on E. Indeed, for
a commutative F-algebra R and a point x ∈ X(R), the fiber of the map E(R) → X(R)
over x is canonically isomorphic to P(x).
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We write M(G; X) for the abelian category of coherent G-modules over a G-
variety X and G-morphisms. We set for every n ≥ 0:

K ′
n(G; X) = Kn

(
M(G; X)

)
.

A flat morphism f : X → Y of varieties over F induces an exact functor

M(G; Y) → M(G; X), M 
→ f ∗(M)

and therefore defines the pull-back homomorphism

f ∗ : K ′
n(G; Y) → K ′

n(G; X) .

A G-projective morphism f : X → Y is a morphism that factors equivariantly as
a closed embedding into the projective bundle variety P(E), where E is a G-vector
bundle on Y . Such a morphism f yields the push-forward homomorphisms [21,
1.5]

f∗ : K ′
n(G; X) → K ′

n(G; Y) .

If G is the trivial group, then M(G; X) = M(X) is the category of coherent
OX-modules over X and therefore, K ′

n(G; X) = K ′
n(X).

Consider the full subcategory P (G; X) of M(G; X) consisting of locally free OX-
modules. This category is naturally equivalent to the category of vector G-vector
bundles on X (Example 1). The category P (G; X) has a natural structure of an
exact category. We set

Kn(G; X) = Kn

(
P (G; X)

)
.

The functor Kn(G; ∗) is contravariant with respect to arbitrary G-morphisms of
G-varieties. If G is a trivial group, we have Kn(G; X) = Kn(X).

The tensor product of G-modules induces a ring structure on K0(G; X) and
a module structure on Kn(G; X) and K ′

n(G; X) over K0(G; X).
The inclusion of categories P (G; X) ↪→ M(G; X) induces an homomorphism

Kn(G; X) → K ′
n(G; X) .

Example 2 . Let µ : G → GL(V) be a finite dimensional representation of an
algebraic group G over a field F. One can view the G-module V as

a G-vector bundle on Spec F. Clearly, we obtain an equivalence of the abelian
category Rep(G) of finite dimensional representations of G and the categories
P (G; Spec F) = M(G; Spec F). Hence there are natural isomorphisms

R(G)
∼→ K0(G; Spec F)

∼→ K ′
0(G; Spec F) ,

where R(G) = K0

(
Rep(G)

)
is the representation ring of G. For every G-variety X

over F, the pull-back map

R(G) � K0(G; Spec F) → K0(G; X)
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with respect to the structure morphism X → Spec F is a ring homomorphism,
making K0(G; X) (and similarly K ′

0(G; X)) a module over R(G). Note that as a group,
R(G) is free abelian with basis given by the classes of all irreducible representations
of G over F.

Let π : H → G be an homomorphism of algebraic groups over F and let X be a
G-variety over F. The composition

H × X
π×idX→ G × X

θ→ X

makes X an H-variety. Given a G-module M with the G-module structure defined by
an isomorphism ρ, we can introduce an H-module structure on M via (π×idX)∗(ρ).
Thus, we obtain exact functors

Resπ : M(G; X) → M(H; X) , Resπ : P (G; X) → P (H; X)

inducing the restriction homomorphisms

resπ : K ′
n(G; X) → K ′

n(H; X) , resπ : Kn(G; X) → Kn(H; X) .

If H is a subgroup of G, we write resG|H for the restriction homomorphism resπ,
where π : H ↪→ G is the inclusion.

Torsors2.2.2

Let G and H be algebraic groups over F and let f : X → Y be a G×H-morphism of
G × H-varieties. Assume that f is a G-torsor (in particular, G acts trivially on Y).
Let M be a coherent H-module over Y . Then f ∗(M) has a structure of a coherent
G×H-module over X given by p∗(ρM), where p is the composition of the projection
G × H × X → H × X and the morphism idH × f : H × X → H × Y .

Thus, there are exact functors

f 0 :M(H; Y) → M(G × H; X) , M 
→ p∗(M) ,

f 0 :P (H; Y) → P (G × H; X) , P 
→ p∗(P) .

3 Proposition 3 (Cf. [21, Prop. 6.2]) The functors f 0 are equivalences of categories.
In particular, the homomorphisms

K ′
n(H; Y) → K ′

n(G × H; X) ,

Kn(H; Y) → Kn(G × H; X) ,

induced by f 0, are isomorphisms.
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Proof Under the isomorphisms

G × X →̃X ×Y X , (g, x) 
→ (gx, x) ,

G × G × X →̃X ×Y X ×Y X , (g, g′, x) 
→ (gg′x, g′x, x)

the action morphism θ is identified with the first projection p1 : X ×Y X → X
and the morphisms m × id, id × θ are identified with the projections p13, p12 :
X ×Y X ×Y X → X ×Y X. Hence, the isomorphism ρ giving a G-module structure
on aOX-module M can be identified with the descent data, i.e. with an isomorphism

ϕ : p∗
1(M)

∼→ p∗
2(M)

of OX×Y X-modules satisfying the usual cocycle condition

p∗
23(ϕ) ◦ p∗

12(ϕ) = p∗
13(ϕ) .

More generally, a G × H-module structure on M is the descent data commuting
with an H-module structure on M. The statement follows now from the theory of
faithfully flat descent [13, Prop.2.22].

Example 4 . Let f : X → Y be a G-torsor and let ρ : G → GL(V) be a finite
dimensional representation. The group G acts linearly on the affine

spaceA(V) of V , so that the product X ×A(V) is a G-vector bundle on X. We write
Eρ for the vector bundle on Y such that f ∗(Eρ) � X×A(V), i.e., Eρ = G\(X×A(V)

)
.

The assignment ρ 
→ Eρ gives rise to a group homomorphism

r : R(G) → K0(Y) .

Note that the homomorphism r coincides with the composition

R(G)
∼→ K0(G; Spec F)

p∗
→ K0(G; X)

∼→ K0(Y) ,

where p : X → Spec F is the structure morphism.

Let G be an algebraic group over F and let H be a subgroup of G.

5Corollary 5 For every G-variety X, there are natural isomorphisms

Kn

(
G; X × (G|H)

) � Kn(H; X) , K ′
n

(
G; X × (G|H)

) � K ′
n(H; X) .

Proof Consider X × G as a G × H-variety with the action morphism given by the
rule (g, h) · (x, g′) = (hx, gg′h−1). The statement follows from Proposition 3 applied
to the G-torsor p2 : X × G → X and to the H-torsor X × G → X × (G|H) given by
(x, g) 
→ (gx, gH).
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Let ρ : H → GL(V) be a finite dimensional representation. Consider G as an
H-torsor over G|H with respect to the H-action given by h ∗ g = gh−1. The vector
bundle Eρ = H\(G ×A(V)

)
constructed in Example 4 has a natural structure of a

G-vector bundle. Corollary 5 with X = Spec F implies:

6 Corollary 6 The assignment ρ 
→ Eρ gives rise to an isomorphism
R(H)

∼→ K0(G; G|H).

7 Corollary 7 There is a natural isomorphism Kn(G|H)
∼→ Kn(H; G).

Proof Apply Proposition 3 to the H-torsor G → G|H.

Basic Results in Equivariant K-Theory2.2.3

We formulate basic statements in the equivariant algebraic K-theory developed by
R. Thomason in [21]. In all of them G is an algebraic group over a field F and X is
a G-variety.

Let Z ⊂ X be a closed G-subvariety and let U = X \ Z. Since every coherent
G-module over U extends to a coherent G-module over X [21, Cor. 2.4], the
categoryM(G; U) is equivalent to the factor category ofM(G; X) by the subcategory
M′ of coherent G-modules supported on Z. By Quillen’s devissage theorem [17,
§5, Th. 4], the inclusion of categories M(G; Z) ⊂ M′ induces an isomorphism
K ′

n(G; Z)
∼→ K ′

n(M′). The localization in algebraic K-theory [17, §5, Th. 5] yields
connecting homomorphisms

K ′
n+1(G; U)

δ→ K ′
n(M′) � K ′

n(G; Z)

and the following:

8 Theorem 8 [21, Th. 2.7] (Localization) The sequence

… → K ′
n+1(G; U)

δ→ K ′
n(G; Z)

i∗→ K ′
n(G; X)

j∗→ K ′
n(G; U)

δ→ … ,

where i : Z → X and j : U → X are the embeddings, is exact.

9 Corollary 9 Let X be a G-variety. Then the natural closed G-embedding f : Xred →
X induces the isomorphism f∗ : Kn(G; Xred) → Kn(G; X).

Let X be a G-variety and let E be a G-vector bundle of rank r + 1 on X. The
projective bundle variety P(E) has natural structure of a G-variety so that the
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natural morphism p : P(E) → X is G-equivariant. We write L for the G-module
of sections of the tautological line bundle on P(E).

A modification of the Quillen’s proof [17, §8] of the standard projective bundle
theorem yields:

10Theorem 10 [21, Th. 3.1] (Projective bundle theorem) The correspondence

(a0, a1, … , ar) 
→
r∑

i=0

[
L⊗i

] ⊗ p∗ai

induces isomorphisms

Kn(G; X)r+1 → Kn

(
G;P(E)

)
, K ′

n(G; X)r+1 → K ′
n

(
G;P(E)

)
.

Let X be a G-variety and let E → X be a G-vector bundle on X. Let f : Y → X be
a torsor under the vector bundle variety E (considered as a group scheme over X)
and G acts on Y so that f and the action morphism E ×X Y → Y are G-equivariant.
For example, one can take the trivial torsor Y = E.

11Theorem 11 [21, Th. 4.1] (Strong homotopy invariance property) The pull-back
homomorphism

f ∗ : K ′
n(G; X) → K ′

n(G; Y)

is an isomorphism.

The idea of the proof is construct an exact sequence of G-vector bundles on X:

0 → E → W
ϕ→ A

1
X → 0 ,

where A1
X is the trivial line bundle, such that ϕ−1(1) � Y . Thus, Y is isomorphic

to the open complement of the projective bundle variety P(E) in P(V). Then one
uses the projective bundle theorem and the localization to compute the equivariant
K ′-groups of Y .

12Corollary 12 Let G → GL(V) be a finite dimensional representation. Then the
projection p : X × A(V) → X induces the pull-back isomorphism

p∗ : K ′
n(G; X)

∼→ K ′
n

(
G; X × A(V)

)
.

Let X be a regular G-variety. By [21, Lemma 5.6], every coherent G-module
over X is a factor module of a locally free coherent G-module. Therefore, every
coherent G-module has a finite resolution by locally free coherent G-modules. The
resolution theorem [17, §4, Th. 3] then yields:
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13 Theorem 13 [21, Th. 5.7] (Duality for regular varieties) Let X be a regular G-
variety over F. Then the canonical homomorphism Kn(G; X) → K ′

n(G; X) is an
isomorphism.

Category C(G) of G-Equivariant
K-Correspondences2.3

Let G be an algebraic group over a field F and let A be a separable F-algebra, i.e. A is
isomorphic to a product of simple algebras with centers separable field extensions
of F. An G-A-module over a G-variety X is a G-module M over X which is endowed
with the structure of a left A⊗F OX-module such that the G-action on M is A-linear.
An G-A-morphism of G-A-modules is a G-morphism that is also a morphism of
A ⊗F OX-modules.

We consider the abelian category M(G; X, A) of G-A-modules and G-A-mor-
phisms and set

K ′
n(G; X, A) = Kn(M(G; X, A)) .

The functor K ′
n(G; ∗, A) is contravariant with respect to flat G-A-morphisms

and is covariant with respect to projective G-A-morphisms of G-varieties. The
categoryM(G; X, F) is isomorphic toM(G; X), and thus it follows that K ′

n(G; X, F) =
K ′

n(G; X).
Consider also the full subcategory P (G; X, A) of M(G; X, A) consisting of all

G-A-modules which are locally free OX-modules. The K-groups of the category
P (G; X, A) are denoted by Kn(G; X, A). The group Kn(G; X, F) coincides with
Kn(G; X).

In [15], I. Panin has defined the category of G-equivariant K-correspondences
C(G) whose objects are the pairs (X, A), where X is a smooth projective G-variety
over F and A is a separable F-algebra. Morphisms in C(G) are defined as follows:

MorC(G)((X, A), (Y , B)) = K0(G; X × Y , A
op ⊗F B) ,

where A
op

stands for the algebra opposite to A. If u : (X, A) → (Y , B) and v :
(Y , B) → (Z, C) are two morphisms in C(G), then their composition is defined by
the formula

v ◦ u = p13∗(p∗
23(v) ⊗B p∗

12(u)) ,

where p12, p13 and p23 are the projections from X ×Y ×Z to X ×Y , X ×Z and Y ×Z
respectively. The identity endomorphism of (X, A) in C(G) is the class [A ⊗F O∆],
where ∆ ⊂ X × X is the diagonal, in the group

K ′
0(G; X × X, A

op ⊗F A) � K0(G; X × X, A
op ⊗F A) = EndC(G)(X, A) .
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We will simply write X for (X, F) and A for (Spec F, A) in C(G).
The category C(G) for the trivial group G is simply denoted by C. There is the

forgetful functor C(G) → C.
Note that an element u ∈ K0(G; X × Y , A

op ⊗F B), i.e. a morphism u : (X, A) →
(Y , B) can be considered also as a morphism u

op
: (Y , B

op
) → (X, A

op
). Thus, the

category C(G) has the involution functor taking (X, A) to (X, A
op

).
For every variety Z over F and every n ∈ Z we have the realization functor

KZ
n : C(G) → Abelian Groups ,

taking a pair (X, A) to K ′
n(G; Z × X, A) and a morphism

v ∈ HomC(G)

(
(X, A), (Y , B)

)
= K0(G; X × Y , A

op ⊗F B)

to

KZ
n (v) : K ′

n(G; Z × X, A) → K ′
n(G; Z × Y , B)

given by the formula

KZ
n (v)(u) = v ◦ u .

Note that we don’t need to assume Z neither smooth nor projective to define KZ
n .

We simply write Kn for K
Spec F
n .

Example 14 . Let X be a smooth projective variety over F. The identity [OX] ∈
K0(X) defines two morphisms u : X → Spec F and v : Spec F → X

in C. If p∗[OX] = 1 ∈ K0(F), where p : X → Spec F is the structure morphism
(for example, if X is a projective homogeneous variety), then the composition
u ◦ v in C is the identity. In other words, the morphism p splits canonically in
C, i.e., the point Spec F is a canonical “direct summand" of X in C, although X
may have no rational points. The application of the resolution functor KZ

n for
a variety Z over F shows that the group K ′

n(Z) is a canonical direct summand of
K ′

n(X × Z).

Let G be a split reductive group over a field F with simply connected commutator
subgroup and let B ⊂ G be a Borel subgroup. By [20, Th.1.3], R(B) is a free R(G)-
module.

The following statement is a slight generalization of [15, Th. 6.6].

15Proposition 15 Let Y = G|B and let u1, u2, ..., um be a basis of R(B) = K0(G; Y) over
R(G). Then the element

u = (ui) ∈ R(B)m = K0(G; Y)m = K0(G; Y , Fm)

defines an isomorphism Fm ∼→ Y in the category C(G).
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Proof Denote by p : G|B → Spec F the structure morphism. Since G|B is a projec-
tive variety, the push-forward homomorphism

p∗ : R(B) = K0(G; G|B) → K0(G; Spec F) = R(G)

is well defined. The R(G)-bilinear form on R(B) defined by the formula

〈u, v〉G = p∗(u · v)

is unimodular ([6], [15, Th. 8.1.], [11, Prop. 2.17]).
Let v1, v2, ..., vm be the dual R(G)-basis of R(B) with respect to the unimodular

bilinear form. The element v = (vi) ∈ K0(G; Y , Fm) can be considered as a mor-
phism Y → Fm in C(G). The fact that u and v are dual bases is equivalent to
the equality v ◦ u = id. In order to prove that u ◦ v = id it suffices to show that
the R(G)-module K0(G, Y × Y) is generated by m2 elements (see [15, Cor. 7.3]).
It is proved in [15, Prop. 8.4] for a simply connected group G, but the proof goes
through for a reductive group G with simply connected commutator subgroup.

Equivariant K-Theory of Projective
Homogeneous Varieties2.4

Let G be a semisimple group over a field F. A G-variety X is called homogeneous
(resp. projective homogeneous) if Xsep is isomorphic (as a Gsep-variety) to Gsep|H
for a closed (resp. a (reduced) parabolic) subgroup H ⊂ Gsep.

Split Case2.4.1

Let G be a simply connected split algebraic group over F, let P ⊂ G be a parabolic
subgroup and set X = G|P. The center C of G is a finite diagonalizable group scheme
and C ⊂ P; we write C∗ for the character group of C. For a character χ ∈ C∗, we
say that a representation ρ : P → GL(V) is χ-homogeneous if the restriction of ρ
on C is given by multiplication by χ. Let R(P)(χ) be the subgroup of R(P) generated
by the classes of χ-homogeneous representations of P.

By [20, Th.1.3], there is a basis u1, u2, ..., uk of R(P) over R(G) such that each
ui ∈ R(P)(χi) for some χi ∈ C∗. As in the proof of Proposition 15, the elements ui

define an isomorphism u : E → X in the category C(G), where E = Fk.
For every i = 1, 2, ..., k, choose a representation ρi : G → GL(Vi) such that

[ρi] ∈ R(G)(χi). Consider the vector spaces Vi as G-vector bundles on Spec F with
trivial G-action. The classes of the dual vector spaces

vi = [V∗
i ] ∈ K0

(
G; Spec F, End(V∗

i )
)
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define isomorphisms vi : End(Vi) → F in C(G). Let V be the E-module V1 × V2 ×
· · · × Vk. Taking the product of all the vi we get an isomorphism v : EndE(V) → E
in C(G). The composition w = u ◦ v is then an isomorphism w : EndE(V) → X.

Now we let the group G act on itself by conjugation, on X by left transla-
tions, on w via the representations ρi. Let G = G|C be the adjoint group asso-
ciated with G. We claim that all the G-actions factor through G. This is obvious
for the actions on G and X. Since the elements ui are χi-homogeneous and the
center C acts on V∗

i via ρi by the character χ−1
i , the class w also admits a G-

structure.

Quasi-split Case 2.4.2

Let G be a simply connected quasi-split algebraic group over F, let P ⊂ G
be a parabolic subgroup and set X = G|P. The absolute Galois group Γ =
Gal(Fsep|F) acts naturally on the representation ring R(Psep). By [20, Th.1.3], the
basis u1, u2, ..., uk ∈ R(Psep) over R(Gsep) considered in 2.4.1, can be chosen Γ-
invariant. Let E be the étale F-algebra corresponding to the Γ-set of the ui’s. As in
the proof of Proposition 15, the element u ∈ K0(G; X, E) defines an isomorphism
u : E → X in the category C(G).

Since the group Γ permutes the χi defined in 2.4.1, one can choose the represen-
tations ρi whose classes in the representation ring R(Gsep) are also permuted by Γ.
Hence as in 2.4.1, there is an E-module V and an isomorphism w : EndE(V) → X
which admits a G-structure.

General Case 2.4.3

Let G be a simply connected algebraic group over F, let X be a projective ho-
mogeneous variety of G. Choose a quasi-split inner twisted form Gq of G. The
group G is obtained from Gq by twisting with respect to a cocycle γ with co-
efficients in the quasi-split adjoint group G

q
. Let Xq be the projective homoge-

neous Gq-variety which is a twisted form of X. As in 2.4.2, find an isomorphism
wq : EndE(V) → Xq in C(Gq) for a certain étale F-algebra E and an E-module V .
Note that all the structures admit G

q
-operators. Twisting by the cocycle γ we get

an isomorphism w : A → X in C(G) for a separable F-algebra A with center E. We
have proved

16Theorem 16 (Cf. [15, Th. 12.4]) Let G be a simply connected group over a field
F and let X be a projective homogeneous G-variety. Then there exist a separable
F-algebra A and an isomorphism A � X in the category C(G). In particular,
K∗(G; X) � K∗(G; A) and K∗(X) � K∗(A).

17Corollary 17 The restriction homomorphism K0(G; X) → K0(X) is surjective.
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Proof The statement follows from the surjectivity of the restriction homomor-
phism K0(G; A) → K0(A).

We will generalize Corollary 17 in Theorem 39.

K-Theory of Toric Varieties2.5

Let a torus T act on a normal geometrically irreducible variety X defined over
a field F. The variety X is called a toric T-variety if there is an open orbit which
is a principal homogeneous space of T. A toric T-variety is called a toric model of
T if the open orbit has a rational point. A choice of a rational point x in the open
orbit gives an open T-equivariant embedding T ↪→ X, t 
→ tx.

K-Theory of Toric Models2.5.1

We will need the following:

18 Proposition 18 [12, Proposition 5.6] Let X be a smooth toric T-model defined over
a field F. Then there is a torus S over F, an S-torsor π : U → X and an S-equivariant
open embedding of U into an affine space A over F on which S acts linearly.

19 Remark 19 It turns out that the canonical homomorphism S∗
sep → Pic(Xsep) is an

isomorphism, so that π : U → X is the universal torsor in the sense of [2, 2.4.4].
Thus, the Proposition 18 asserts that the universal torsor of X can be equivariantly
imbedded into an affine space as an open subvariety.

Let ρ : S → GL(V) be a representation over F. Suppose that there is an action of
an étale F-algebra A on V commuting with the S-action. Then A acts on the vector
bundle Eρ (see Example 4), therefore, Eρ defines an element uρ ∈ K0(X, A), i.e.,
a morphism uρ : A → X in C. The composition

K0(A)
αρ→ R(S)

r→ K0(X) ,

where r is defined in Example 4 and αρ is induced by the exact functor M 
→
M ⊗A V , is given by the rule x 
→ uρ ◦ x.

Let ρ be an irreducible representation. Since S is a torus, ρ is the corestriction
in a finite separable field extension Lρ|F of a 1-dimensional representation of S.
Thus, there is an action of Lρ on V that commutes with the S-action. Note that
the element uρ defined above is represented by an element of the Picard group
Pic(X ⊗F Lρ).
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Now we consider two irreducible representations ρ and µ of the torus S over F,
and apply the construction described above to the torus S×S and its representation

ρ ⊗ µ : S × S → GL(Vρ ⊗F Vµ) .

The composition

K0(Lρ ⊗F Lµ)
αρ,µ→ R(S × S)

r→ K0(X × X)

coincides with the map

x 
→ u
op

ρ ◦ x ◦ uµ ,

where the composition is taken in C and uµ : X → Lµ, u
op

ρ : Lρ → X, x : Lµ → Lρ
are considered as the morphisms in C.

Now let Φ be a finite set of irreducible representations of S. Set

A =
∏

ρ∈Φ

Lρ, u =
∑

ρ∈Φ

uρ, α =
∑

ρ,µ∈Φ

αρ,µ .

The element uρ is represented by an element of the Picard group Pic(X ⊗F A).
Then the composition

K0(A ⊗F A)
α→ R(S × S)

r→ K0(X × X)

is given by the rule x 
→ u
op ◦ x ◦ u, where u is considered as a morphism X → A.

The homomorphism r coincides with the composition

R(S × S) = K0(S × S; Spec F)
∼→ K0(S × S;A× A)�

K0(S × S; U × U) = K0(X × X)

and hence r is surjective. By the representation theory of algebraic tori, the sum of
all the αρ,µ is an isomorphism. It follows that for sufficiently large (but finite!) set
Φ of irreducible representations of S the identity idX ∈ K0(X × X) belongs to the
image of r◦α. In other words, there exists x ∈ K0(A⊗F A) such that u

op ◦x◦u = idX

in C, i.e. v = u
op ◦x is a left inverse to u : X → A in C. We have proved the following:

20Theorem 20 [12, Th. 5.7] Let X be a smooth projective toric model of an algebraic
torus defined over a field F. Then there exist an étale F-algebra A and elements u,
v ∈ K0(X, A) such that the composition X

u→ A
v→ X in C is the identity and u is

represented by a class in Pic(X ⊗F A).

K-Theory of Toric Varieties 2.5.2

Let T be a torus over F. The natural G-equivariant bilinear map

T(Fsep) ⊗ T∗
sep → F×

sep , x ⊗ χ 
→ χ(x)



940 Alexander S. Merkurjev

induces a pairing of the Galois cohomology groups

H1
(
F, T(Fsep)

) ⊗ H1(F, T∗
sep) → H2(F, F×

sep) = Br(F) ,

where Br(F) is the Brauer group of F. There is a natural isomorphism Pic(T) �
H1(F, T∗

sep) (see [23]). A principal homogeneous T-space U defines an element
[U] ∈ H1

(
F, T(Fsep)

)
. Therefore, the pairing induces the homomorphism

λU : Pic(T) → Br(F) , [Q] 
→ [U] ∪ [Q] .

Let X be a toric variety of the torus T with the open orbit U which is a principal
homogeneous space over T.

21 Theorem 21 [12, Th. 7.6] Let Y be a smooth projective toric variety over a field
F. Then there exist an étale F-algebra A, a separable F-algebra B of rank n2 over
its center A and morphisms u : Y → B, v : B → Y in C such that v ◦ u = id. The
morphism u is represented by a locally free OY -module in P (Y , B) of rank n. The
class of the algebra B in Br(A) belongs to the image of λUA : Pic(TA) → Br(A).

22 Corollary 22 The homomorphism Kn(u) : Kn(X) → Kn(A) identifies Kn(X)
with the direct summand of Kn(A) which is equal to the image of the projec-
tor Kn(u◦v) : Kn(A) → Kn(A). In particular, K0(X) is a free abelian group of finite
rank.

Equivariant K-Theory of Solvable
Algebraic Groups2.6

We consider separately the equivariant K-theory of unipotent groups and algebraic
tori.

Split Unipotent Groups2.6.1

A unipotent group U is called split if there is a chain of subgroups of U with
the subsequent factor groups isomorphic to the additive group Ga. For example,
the unipotent radical of a Borel subgroup of a (quasi-split) reductive group is
split.

23 Theorem 23 Let U be a split unipotent group and let X be a U-variety. Then the
restriction homomorphism K ′

n(U; X) → K ′
n(X) is an isomorphism.
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Proof Since U is split, it is sufficient to prove that for a subgroup U ′ ⊂ U
with U|U ′ � Ga, the restriction homomorphism K ′

n(U; X) → K ′
n(U ′; X) is an

isomorphism. By Corollary 5, this homomorphism coincides with the pull-back
K ′

n(U; X) → K ′
n(U; X × Ga) with respect to the projection X × Ga → X, that is an

isomorphism by the homotopy invariance property (Corollary 12).

Split Algebraic Tori 2.6.2

Let T be a split torus over a field F. Choose a basis χ1, χ2, ..., χr of the character
group T∗. We define an action of T on the affine spaceAr by the rule t · x = y where
yi = χi(t)xi. Write Hi (i = 1, 2, ..., r) for the coordinate hyperplane in Ar defined by
the equation xi = 0. Clearly, Hi is a closed T-subvariety inAr and T = Ar − ∪r

i=1Hi.
For every subset I ⊂ {1, 2, ..., r} set HI = ∩i∈IHi.

In [8], M. Levine has constructed a spectral sequence associated to a family of
closed subvarieties of a given variety. This sequence generalizes the localization
exact sequence. We adapt this sequence to the equivariant algebraic K-theory and
also change the indices making this spectral sequence of homological type.

Let X be a T-variety over F. The family of closed subsets Zi = X × Hi in X ×Ar

gives then a spectral sequence

E1
p,q =

∐

|I|=p

K ′
q(T; X × HI) ⇒ K ′

p+q(T; X × T) .

By Corollary 5, the group K ′
p+q(T; X × T) is isomorphic to K ′

p+q(X).
In order to compute E1

p,q, note that HI is an affine space over F, hence the pull-
back K ′

q(T; X) → K ′
q(T; X × HI) is an isomorphism by the homotopy invariance

property (Corollary 12). Thus,

E1
p,q =

∐

|I|=p

K ′
q(T; X) · eI

and by [8, p.419], the differential map d : E1
p+1,q → E1

p,q is given by the formula

d(x · eI) =
p∑

k=0

(−1)k(1 − χ−1
ik

)x · eI−{ik} , (2.1)

where I = {i0 < i1 < · · · < ip}.
Consider the Kozsul complex C∗ built upon the free R(T)-module R(T)r and the

system of the elements 1 − χ−1
i ∈ R(T). More precisely,

Cp =
∐

|I|=p

R(T) · eI

and the differential d : Cp+1 → Cp is given by the rule formally coinciding with
(2.1), where x ∈ R(T).
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The representation ring R(T) is the group ring over the character group T∗. The
Kozsul complex gives the resolution C∗ → Z → 0 of Z by free R(T)-modules,
where we viewZ as a R(T)-module via the rank homomorphism R(T) → Z taking
the class of a representation to its dimension. It follows from (2.1) that the complex
E1∗,q coincides with

C∗ ⊗R(T) K ′
q(T; X) .

Hence, being the homology group of E1∗,q, the term E2
p,q is equal to

TorR(T)
p

(
Z, K ′

q(T; X)
)

.

We have proved:

24 Proposition 24 Let T be a split torus over a field F and let X be a T-variety. Then
there is a spectral sequence

E2
p,q = TorR(T)

p

(
Z, K ′

q(T; X)
) ⇒ K ′

p+q(X) .

We are going to prove that if X is smooth projective, the spectral sequence
degenerates.

Let G be an algebraic group and let H ⊂ G be a subgroup. Suppose that there
exists a group homomorphism π : G → H such that π|H = idH . For a smooth
projective G-variety X we write Ẋ for the variety X together with the new G-action
g ∗ x = π(g)x.

25 Lemma 25 If the restriction homomorphism K0(G; Ẋ × X) → K0(H; X × X) is
surjective, then the restriction homomorphism K ′

n(G; X) → K ′
n(H; X) is a split

surjection.

Proof Since the restriction map

resG|H : HomC(G)(Ẋ, X) = K0(G; Ẋ × X) →
K0(H; X × X) = HomC(H)(X, X)

is surjective, there is v ∈ HomC(G)(Ẋ, X) such that resG|H(v) = idX in C(G).
Consider the diagram

K ′
n(H; X)

resπ→ K ′
n(G; Ẋ)

Kn(v)→ K ′
n(G; X)

resG|H ↓ resG|H ↓
K ′

n(H; X) == K ′
n(H; X) ,

where the square is commutative since resG|H(v) = idX . The equality resG|H ◦ resπ =
id implies that the composition in the top row splits the restriction homomorphism
K ′

n(G; X) → K ′
n(H; X).
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Let T be a split torus over F, and let χ ∈ T∗ be a character such that T∗|(Z · χ)
is a torsion-free group. Then T ′ = ker(χ) is a subtorus in T. Denote by π : T → T ′
a splitting of the embedding T ′ ↪→ T.

26Proposition 26 Let X be a smooth projective T-variety. Then the restriction
homomorphism K ′

n(T; X) → K ′
n(T ′; X) is a split surjection.

Proof We use the notation Ẋ as above. Since T|T ′ � Gm, by Corollary 12, Corollary 5
and the localization (Theorem 8), we have the surjection

K ′
0(T; Ẋ × X)

∼→ K ′
0(T; Ẋ × X × A1

F) →→ K ′
0(T; Ẋ × X × Gm) � K ′

0(T ′; X × X)

which is nothing but the restriction homomorphism. The statement follows from
Lemma 25.

27Corollary 27 The sequence

0 → K ′
n(T; X)

1−χ→ K ′
n(T; X)

res→ K ′
n(T ′; X) → 0

is split exact.

Proof We consider X ×A1
F as a T-variety with respect to the T-action onA1

F given
by the character χ. In the localization exact sequence

… → K ′
n(T; X)

i∗→ K ′
n(T; X × A1

F)
j∗→ K ′

n(T; X × Gm)
δ→ … ,

where i : X = X × {0} ↪→ X × A1
F and j : X × Gm ↪→ X × A1

F are the embeddings,
the second term is identified with K ′

n(T; X) by Corollary 12 and the third one with
K ′

n(T ′; X) since T|T ′ � Gm as T-varieties (Corollary 5). With these identifications,
j∗ is the restriction homomorphism which is a split surjection by Proposition 26.
By the projection formula, i∗ is the multiplication by i∗(1). Let t be the coordinate
of A1. It follows from the exactness of the sequence of T-modules over X × A1

F :

0 → OX×A 1 [χ−1]
t→ OX×A 1 → i∗(OX) → 0

that i∗(1) = 1 − χ−1.

28Proposition 28 Let T be a split torus and let X be a smooth projective T-variety.
Then the spectral sequence in Proposition 24 degenerates, i.e.,

TorR(T)
p

(
Z, K ′

n(T; X)
)

=

{
K ′

n(X) , if p = 0 ,

0 , if p > 0 .
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Proof Let χ1, χ2 … , χr be aZ-basis of the character group T∗. Since R(T) is a Laurent
polynomial ring in the variables χi, and by Corollary 27, the elements 1−χi ∈ R(T)
form a R(T)-regular sequence, the result follows from [19, IV-7].

Quasi-trivial Algebraic Tori2.6.3

An algebraic torus T over a field F is called quasi-trivial if the character Galois
module T∗

sep is permutation. In other words, T is isomorphic to the torus GL1(C) of
invertible elements of an étale F-algebra C. The torus T = GL1(C) is embedded as
an open subvariety of the affine space A(C). By the classical homotopy invariance
and localization, the pull-back homomorphism

Z · 1 = K0

(
A(C)

) → K0(T)

is surjective. We have proved

29 Proposition 29 For a quasi-trivial torus T, one has K0(T) = Z · 1.

We generalize this statement in Theorem 30.

Coflasque Algebraic Tori2.6.4

An algebraic torus T over F is called coflasque if for every field extension L|F the
Galois cohomology group H1(L, T∗

sep) is trivial, or equivalently, if Pic(TL) = 0. For
example, quasi-trivial tori are coflasque.

30 Theorem 30 Let T be a coflasque torus and let U be a principal homogeneous
space of T. Then K0(U) = Z · 1.

Proof Let X be a smooth projective toric model of T (for the existence of X see [1]).
The variety Y = T\(X × U) is then a toric variety of T that has an open orbit
isomorphic to U .

By Theorem 21, there exist an étale F-algebra A, a separable F-algebra B of rank
n2 over its center A and morphisms u : Y → B, v : B → Y in C such that v ◦ u = id.
The morphism u is represented by a locally free OY -module in P (Y , B) of rank n.
The class of the algebra B in Br(A) belongs to the image of λUA : Pic(TA) → Br(A).
The torus T is coflasque, hence the group Pic(TA) is trivial and therefore, the
algebra B splits, B � Mn(A), so that K0(B

op
) is isomorphic canonically to K0(A).

Applying the realization functor to the morphism u
op

: B
op → Y we get a (split)

surjection

K0(u
op

) : K0(B
op

) → K0(Y) .
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Under the identification of K0(B
op

) with K0(A) we get a (split) surjection

K0(w
op

) : K0(A) → K0(Y) ,

where w is a certain element in K0(Y , A) represented by a locally free OY -module
of rank one, i.e., by an element of Pic(Y ⊗F A).

It follows that K0(Y) is generated by the push-forwards of the classes of OY -
modules from Pic(YE) for all finite separable field extensions E|F. Since the pull-
back homomorphism K0(Y) → K0(U) is surjective, the analogous statement holds
for the open subset U ⊂ Y . But by [18, Prop. 6.10], there is an injection Pic(UE) ↪→
Pic(TE) = 0, hence Pic(UE) = 0 and therefore K0(U) = Z · 1.

Equivariant K-Theory
of some Reductive Groups 2.7

Spectral Sequence 2.7.1

Let G be a split reductive group over a field F. Choose a maximal split torus T ⊂ G.
Let X be a G-variety. The group K ′

n(G; X) (resp. K ′
n(T; X)) is a module over the

representation ring R(G) (resp. R(T)). The restriction map K ′
n(G; X) → K ′

n(T; X) is
an homomorphism of modules with respect to the restriction ring homomorphism
R(G) → R(T) and hence it induces an R(T)-module homomorphism

η : R(T) ⊗R(G) K ′
n(G; X) → K ′

n(T; X) .

31Proposition 31 Assume that the commutator subgroup of G is simply connected.
Then the homomorphism η is an isomorphism.

Proof Let B ⊂ G be a Borel subgroup containing T. Set Y = G|B. By Proposition 15,
there is an isomorphism u : Fm ∼→ Y in the category C(G) defined by some
elements u1, u2, … , um ∈ K0(G; Y) = R(B) that form a basis of R(B) over R(G).
Applying the realization functor (see Sect. 2.3)

KX
n : C(G) → Abelian Groups ,

to the isomorphism u, we obtain an isomorphism

K ′
n(G; X)m ∼→ K ′

n(G; X × Y) .

Identifying K ′
n(G; X)m with R(B) ⊗R(G) K ′

n(G; X) using the same elements ui we get
a canonical isomorphism

R(B) ⊗R(G) K ′
n(G; X)

∼→ K ′
n(G; X × Y) .
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Composing this isomorphism with the canonical isomorphism (Corollary 5)

K ′
n(G; X × Y)

∼→ K ′
n(B; X) ,

and identifying K ′
n(B; X) with K ′

n(T; X) via the restriction homomorphism (Theo-
rem 23) we get the isomorphism η.

Since R(T) is free R(G)-module by [20, Th.1.3], in the assumptions of Proposi-
tion 31 one has

TorR(G)
p (Z, K ′

n(G; X)) � TorR(T)
p (Z, K ′

n(T; X)) , (2.2)

where we view Z as a R(G)-module via the rank homomorphism R(G) → Z.
Proposition 24 then yields:

32 Theorem 32 [11, Th. 4.3] Let G be a split reductive group defined over F with the
simply connected commutator subgroup and let X be a G-variety. Then there is
a spectral sequence

E2
p,q = TorR(G)

p (Z, K ′
q(G; X)) ⇒ K ′

p+q(X) .

33 Corollary 33 The restriction homomorphism K ′
0(G; X) → K ′

0(X) induces an
isomorphism Z⊗R(G) K ′

0(G; X) � K ′
0(X).

In the smooth projective case, Proposition 28 and (2.2) give the following gen-
eralization of Corollary 33:

34 Corollary 34 If X is a smooth projective G-variety, then the spectral sequence in
Theorem 32 degenerates. i.e.,

TorR(G)
p (Z, K ′

n(G; X)) =

{
K ′

n(X) , if p = 0 ,

0 , if p > 0 .

K-Theory of Simply Connected Group2.7.2

The following technical statement is very useful.

35 Proposition 35 Let G be an algebraic group over F and let f : X → Y be a
G-torsor over F. For every point y ∈ Y let Xy be the fiber f −1(y) of f over y (so
that Xy is a principal homogeneous space of G over the residue field F(y)). Assume
that K0(Xy) = Z · 1 for every point y ∈ Y . Then the restriction homomorphism
K ′

0(Y) � K ′
0(G; X) → K ′

0(X) is surjective.
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Proof We prove that the restriction homomorphism resX : K ′
0(G; X) → K ′

0(X) is
surjective by induction on the dimension of X. Assume that we have proved the
statement for all varieties of dimension less than the dimension of X. We would
like to prove that resX is surjective.

We prove this statement by induction on the number of irreducible components
of Y . Suppose first that Y is irreducible. By Corollary 9, we may assume that Y is
reduced.

Let y ∈ Y be the generic point and let v ∈ K ′
0(X). Since K ′

0(Xy) = K0(Xy) = Z · 1,
the restriction homomorphism K ′

0(G; Xy) → K ′
0(Xy) is surjective. It follows that

there exists a non-empty open subset U ′ ⊂ Y such that the pull-back of v in
K ′

0(U), where U = f −1(U ′), belongs to the image of the restriction homomorphism
K ′

0(G; U) → K ′
0(U). Set Z = X \ U (considered as a reduced closed subvariety

of X). Since dim(Z) < dim(X) and Z → Y \ U ′ is a G-torsor, by the induction
hypothesis, the left vertical homomorphism in the commutative diagram with the
exact rows

K ′
0(G; Z)

i∗→ K ′
0(G; X)

j∗→ K ′
0(G; U) → 0

resZ ↓ resX ↓ resU ↓
K ′

0(Z)
i∗→ K ′

0(X)
j∗→ K ′

0(U) → 0

is surjective. Hence, by diagram chase, v ∈ im(resX).
Now let Y be an arbitrary variety. Choose an irreducible component Z′ of Y

and set Z = f −1(Z′), U = X \ Z. The number of irreducible components of U is
less than one of X. By the first part of the proof and the induction hypothesis, the
homomorphisms resZ and resU in the commutative diagram above are surjective.
It follows that resX is also surjective.

I. Panin has proved in [16] that for a principal homogeneous space X of a simply
connected group of inner type, K0(X) = Z · 1. In the next statement we extend this
result to arbitrary simply connected groups (and later in Theorem 38 - to factorial
groups).

36Proposition 36 Let G be a simply connected group and let X be a principal
homogeneous space of G. Then K0(X) = Z · 1.

Proof Suppose first that G is a quasi-split group. Choose a maximal torus T of
a Borel subgroup B of G. A fiber of the projection f : T\X → B\X is isomorphic to
the unipotent radical of B and hence is isomorphic to an affine space. By [17, §7,
Prop. 4.1], the pull-back homomorphism

f ∗ : K0(B\X) → K0(T\X)

is an isomorphism.
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The character group T∗ is generated by the fundamental characters and there-
fore, T∗ is a permutation Galois module, so that T is a quasi-trivial torus. Every
principal homogeneous space of T is trivial, hence by Propositions 29 and 35, the
restriction homomorphism

K0(T\X) = K0(T; X) → K0(X)

is surjective. Thus, the pull-back homomorphism g∗ : K0(B\X) → K0(X) with
respect to the projection g : X → B\X is surjective.

Let G1 be the algebraic group of all G-automorphisms of X. Over Fsep, the groups
G and G1 are isomorphic, so that G1 is a simply connected group. The variety X
can be viewed as a G1-torsor [10, Prop. 1.2]. In particular, B\X is a projective
homogeneous variety of G1.

In the commutative diagram

K0(G1; B\X) → K0(G1; X)
res↓ res↓

K0(B\X)
g∗
→ K0(X)

the left vertical homomorphism is surjective by Corollary 17. Since g∗ is also
surjective, so is the right vertical restriction. It follows from Proposition 3 that

K0(G1; X) = K0(Spec F) = Z · 1 ,

hence, K0(X) = Z · 1.
Now let G be an arbitrary simply connected group. Consider the projective

homogeneous variety Y of all Borel subgroups of G. For every point y ∈ Y ,
the group GF(y) is quasi-split. The fiber of the projection X × Y → Y over y is
the principal homogeneous space XF(y) of GF(y). By the first part of the proof,
K0(XF(y)) = Z · 1. Hence by Proposition 35, the pull-back homomorphism

K0(Y) → K0(X × Y)

is surjective. It follows from Example 14 that the natural homomorphism Z · 1 =
K0(F) → K0(X) is a direct summand of this surjection and therefore, is surjective.
Therefore, K0(X) = Z · 1.

Equivariant K-Theory of Factorial Groups2.8

An algebraic group G over a field F is called factorial if for any finite field extension
E|F the Picard group Pic(GE) is trivial.

37 Proposition 37 [11, Prop. 1.10] A reductive group G is factorial if and only if the
commutator subgroup G′ of G is simply connected and the torus G|G′ is coflasque.

In particular, simply connected groups and coflasque tori are factorial.
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38Theorem 38 Let G be a factorial group and let X be a principal homogeneous
space of G. Then K0(X) = Z · 1.

Proof Let G′ be the commutator subgroup of G and let T = G|G′. The group G′ is
simply connected and the torus T is coflasque. The variety X is a G′-torsor over
Y = G′\X. By Propositions 35 and 36, the restriction homomorphism

K0(Y) = K0(G′; X) → K0(X)

is surjective. The variety Y is a principal homogeneous space of T and by Theo-
rem 30, K0(Y) = Z · 1, whence the result.

39Theorem 39 [11, Th. 6.4] Let G be a reductive group defined over a field F. Then
the following condition are equivalent:
1. G is factorial.
2. For every G-variety X, the restriction homomorphism

K ′
0(G; X) → K ′

0(X)

is surjective.

Proof (1) ⇒ (2). Consider first the case when there is a G-torsor X → Y . Then the
restriction homomorphism K0(G; X) → K0(X) is surjective by Proposition 35 and
Theorem 38.

In the general case, choose a faithful representation G ↪→ S = GL(V). Let A be
the affine space of the vector space End(V) so that S is an open subvariety in A.
Consider the commutative diagram

K ′
0(G; X)

∼→ K ′
0(G;A× X) → K ′

0(G; S × X)
res↓ res↓ res↓

K ′
0(X)

∼→ K ′
0(A× X) → K ′

0(S × X) .

The group G acts freely on S × X so that we have a G-torsor S × X → Y . In
fact, Y exists in the category of algebraic spaces and may not be a variety. One
should use the equivariant K ′-groups of algebraic spaces as defined in [21]. By the
first part of the proof, the right vertical map is surjective. By localization, the right
horizontal arrows are the surjections. Finally, the composition in the bottom row
is an isomorphism since it has splitting K ′

0(S × X) → K ′
0(X) by the pull-back with

respect to the closed embedding X = {1} × X ↪→ S × X of finite Tor-dimension
(see [17, §7, 2.5]). Thus, the left vertical restriction homomorphism is surjective.

(2) ⇒ (1). Taking X = GE for a finite field extension E|F, we have a surjective
homomorphism

Z · 1 = K0(E) = K0(G; GE) → K0(GE) ,
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i.e. K0(GE) = Z · 1. Hence, the first term of the topological filtration K0(GE)(1) of
K0(GE) (see [17, §7.5]), that is the kernel of the rank homomorphism K0(GE) → Z,
is trivial. The Picard group Pic(GE) is a factor group of K0(GE)(1) and hence is also
trivial, i.e., G is a factorial group.

In the end of the section we consider the smooth projective case.

40 Theorem 40 [11, Th. 6.7] Let G be a factorial reductive group and let X be a smooth
projective G-variety over F. Then the restriction homomorphism

K ′
n(G; X) → K ′

n(X)

is split surjective.

Proof Consider the smooth variety X × X with the action of G given by g(x, x′) =
(x, gx′). By Theorem 39, the restriction homomorphism
K ′

0(G; X × X) → K ′
0(X × X) is surjective. Hence by Lemma 25, applied to the

trivial subgroup of G, the restriction homomorphism K ′
n(G; X) → K ′

n(X) is a split
surjection.

Applications2.9

K-Theory of Classifying Varieties2.9.1

Let G be an algebraic group over a field F. Choose a faithful representation µ : G ↪→
GLn and consider the factor variety X = GLn |µ(G). For every field extension E|F,
the set H1(E, G) of isomorphism classes of principal homogeneous spaces of G over
E can be identified with the orbit space of the action of GLn(E) on X(E) [7, Cor. 28.4]:

H1(E, G) = GLn(E)\X(E) .

The variety X is called a classifying variety of G. The GLn(E)-orbits in the set X(E)
classify principal homogeneous spaces of G over E.

We can compute the Grothendieck ring of a classifying variety X of G. M. Rost
used this result for the computation of orders of the Rost’s invariants (see [5]).
As shown in Example 4, the G-torsor GLn → X induces the homomorphism
r : R(G) → K0(X) taking the class of a finite dimensional representation ρ : G →
GL(V) to the class the vector bundle Eρ.

41 Theorem 41 Let X be a classifying variety of an algebraic group G. The homomor-
phism r gives rise to an isomorphism

Z⊗R(GLn) R(G) � K0(X) .
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In particular, the group K0(X) is generated by the classes of the vector bundles Eρ
for all finite dimensional representations ρ of G over F.

Proof The Corollary 33 applied to the smooth GLn-variety X yields an isomorphism

Z⊗R(GLn) K0(GLn; X) � K0(X) .

On the other hand,

K0(GLn; X) � R(G)

by Corollary 6.

Note that the structure of the representation ring of an algebraic group is fairly
well understood in terms of the associated root system and indices of the Tits
algebras of G (see [22], [5, Part 2, Th. 10.11]).

Equivariant Chow Groups 2.9.2

For a variety X over a field F we write CHi(X) for the Chow group of equivalence
classes of dimension i cycles on X [4, I.1.3]. Let G be an algebraic group G over F.
For X a G-variety, D. Edidin and W. Graham have defined in [3] the equivariant
Chow groups CHG

i (G). There is an obvious restriction homomorphism

res : CHG
i (X) → CHi(X) .

42Theorem 42 Let X be a G-variety of dimension d, where G is a factorial group.
Then the restriction homomorphism

res : CHG
d−1(X) → CHd−1(X)

is surjective.

Proof The proof is essentially the same as the one of Theorem 39. We use the
homotopy invariance property and localization for the equivariant Chow groups.
In the case of a torsor the proof goes the same lines as in Proposition 35. The only
statement to check is the triviality of CH1(Y) = Pic(Y) for a principal homogeneous
space Y of G. By [18, Prop. 6.10], the group Pic(Y) is isomorphic to a subgroup of
Pic(G), which is trivial since G is a factorial group.

Let PicG(X) denote the group of line G-bundles on X. If X is smooth irreducible,
the natural homomorphism PicG(X) → CHG

d−1(X) is an isomorphism [3, Th. 1].



952 Alexander S. Merkurjev

43 Corollary 43 (Cf. [14, Cor. 1.6]) Let X be a smooth G-variety, where G is a factorial
group. Then the restriction homomorphism

PicG(X) → Pic(X)

is surjective. In other words, every line bundle on X has a structure of a G-vector
bundle.

Group Actions on the K ′-Groups2.9.3

Let G be an algebraic group and let X be a G-variety over F. For every element
g ∈ G(F) write λg for the automorphism x 
→ gx of X. The group G(F) acts naturally
on K ′

n(X) by the pull-back homomorphisms λ∗
g .

44 Theorem 44 [11, Prop.7.20] Let G be a reductive group and let X be a G-variety.
Then
1. The group G(F) acts trivially on K ′

0(X).
2. If X is smooth and projective, the group G(F) acts trivially on K ′

n(X) for every
n ≥ 0.

Proof By [11, Lemma 7.6], there exists an exact sequence

1 → P → G̃
π→ G → 1

with a factorial reductive group G̃ and a quasi-trivial torus P. It follows from the
exactness of the sequence

G̃(F)
π(F)→ G(F) → H1(F, P(Fsep))

and triviality of H1(F, P(Fsep)) (Hilbert Theorem 90) that the homomorphism
π(F) : G̃(F) → G(F) is surjective. Hence, we can replace G by G̃ and assume that
G is factorial.

By definition of a G-module M, the isomorphism

ρ : θ∗(M)
∼→ p∗

2(M) ,

where θ : G × X → X is the action morphism, induces an isomorphism of two
compositions θ∗ ◦ res and p∗

2 ◦ res in the diagram

M(G; X)
res→ M(X)

θ∗→
p∗

2

M(G × X) .

Hence the compositions

K ′
n(G; X)

res→ K ′
n(X)

θ∗→
p∗

2

K ′
n(G × X)

are equal.
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For any g ∈ G(F) write εg for the morphism X → G × X, x 
→ (g, x). Then
clearly p2 ◦ εg = idX and θ ◦ εg = λg . The pull-back homomorphism ε∗

g is defined
since εg is of finite Tor-dimension [17, §7, 2.5]. Thus, we have ε∗

g ◦ p∗
2 = id and

ε∗
g ◦ θ∗ = λ∗

g on K ′
n(X), hence

res = ε∗
g ◦ p∗

2 ◦ res = ε∗
g ◦ θ∗ ◦ res = λ∗

g ◦ res : K ′
n(G; X) → K ′

n(X) .

By Theorem 39, the restriction homomorphism res is surjective for n = 0, hence
λ∗

g = id. In the case of smooth projective X the restriction is surjective for every
n ≥ 0 (Theorem 40), hence again λ∗

g = id.

45Corollary 45 Let G be a reductive group and let X be a smooth G-variety. Then the
group G(F) acts trivially on Pic(X).

Proof The Picard group Pic(X) is isomorphic to a subfactor of K0(X) and G(F) acts
trivially on K0(X) by Theorem 44.
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Introduction 3.1

The Iwasawa algebra Λ is a power series ring Z�[[T]], � a fixed prime. It arises in
number theory as the pro-group ring of a certain Galois group, and in homotopy
theory as a ring of operations in �-adic complex K-theory. Furthermore, these two
incarnations of Λ are connected in an interesting way by algebraic K-theory. The
main goal of this paper is to explore this connection, concentrating on the ideas
and omitting most proofs.

Let F be a number field. Fix a prime � and let F∞ denote the �-adic cyclotomic
tower – that is, the extension field formed by adjoining the �n-th roots of unity
for all n ≥ 1. The central strategy of Iwasawa theory is to study number-theoretic
invariants associated to F by analyzing how these invariants change as one moves
up the cyclotomic tower. Number theorists would in fact consider more general
towers, but we will be concerned exclusively with the cyclotomic case. This case
can be viewed as analogous to the following geometric picture: Let X be a curve
over a finite field F, and form a tower of curves over X by extending scalars to the
algebraic closure of F, or perhaps just to the �-adic cyclotomic tower of F. This
analogy was first considered by Iwasawa, and has been the source of many fruitful
conjectures.

As an example of a number-theoretic invariant, consider the norm inverse limit
A∞ of the �-torsion part of the class groups in the tower. Then A∞ is a profinite
module over the pro-group ring Λ′

F = Z�[[G(F∞|F)]]. Furthermore, Λ′
F = ΛF[∆F],

where ΛF =̃ Λ, and ∆F is a cyclic group of order dividing � − 1 (if � is odd)
or dividing 2 (if � = 2). The beautiful fact about the Iwasawa algebra is that
finitely-generated modules over it satisfy a classification theorem analogous to the
classification theorem for modules over a principal ideal domain. The difference
is that isomorphisms must be replaced by pseudo-isomorphisms; these are the
homomorphisms with finite kernel and cokernel. Then the game is to see how
modules such as A∞ fit into this classification scheme. For a survey of Iwasawa
theory, see [13].

The Iwasawa algebra also arises in homotopy theory. Let K denote the periodic
complex K-theory spectrum, and K̂ denote its �-adic completion in the sense

of Bousfield. Then the ring of degree zero operations [K̂ , K̂] is isomorphic to
Λ′ = Λ[∆], where Λ is again a power series ring over Z�, and ∆ is cyclic of order
� − 1 (if � is odd) or of order 2 (if � = 2). The isomorphism comes about by
regarding Λ′ as the pro-group ring of the group of �-adic Adams operations. Hence
the classification theory for Λ-modules can be applied to K̂

·
X = K̂

0
X ⊕ K̂

1
X, at

least when X is a spectrum with K̂
·
X finitely-generated over Λ.

One can go further by passing to LK(1)S, the Bousfield K(1)-localization of the
stable homotopy category S. This is a localized world in which all spectra with
vanishing K̂

·
have been erased. The category LK(1)S is highly algebraic; for exam-

ple, for � odd its objects are determined up to a manageable ambiguity by K̂
·
X as

Λ′-module. This suggests studying LK(1)S from the perspective of Iwasawa theory.
Call the objects X with K̂

·
X finitely-generated as Λ-module K̂-finite. The K̂-finite



958 Stephen A. Mitchell

objects are the ones to which Iwasawa theory directly applies; they can be charac-
terized as the objects whose homotopy groups are finitely-generated Z�-modules,
and as the objects that are weakly dualizable in the sense of axiomatic stable homo-
topy theory. Within this smaller category there is a notion of pseudo-equivalence
in LK(1)S analogous to pseudo-isomorphism for Λ-modules, an analogous classi-
fication theorem for objects, and an Iwasawa-theoretic classification of the thick
subcategories [15].

Algebraic K-theory provides a link from the number theory to the homotopy
theory. Let R = OF[ 1

�
], and let KR denote the algebraic K-theory spectrum of R.

By deep work of Thomason [44], the famous Lichtenbaum–Quillen conjectures
can be viewed as asserting that the �-adic completion KR∧ is essentially K(1)-
local, meaning that for some d ≥ 0 the natural map KR∧→LK(1)KR induces an
isomorphism on πn for n ≥ d; here d = 1 is the expected value for number rings.
Since the Lichtenbaum–Quillen conjectures are now known to be true for � = 2, by
Voevodsky’s work on the Milnor conjecture, Rognes–Weibel [41] andØstvær [39],
it seems very likely that they are true in general. In any case, it is natural to ask
how LK(1)KR fits into the classification scheme alluded to above.

The first step is to compute K̂
·
KR. Let M∞ denote the Galois group of the

maximal abelian �-extension of F∞ that is unramified away from �. We call M∞
the basic Iwasawa module.

1 Theorem 1 [9,33] Let � be any prime. Then there are isomorphisms of Λ′-modules

K̂
n
KR =̃






Λ′ ⊗Λ′
F

Z� if n = 0

Λ′ ⊗Λ′
F

M∞ if n = −1 .

For � odd this theorem depends on Thomason [44]. For � = 2 it depends on the
work of Rognes–Weibel and Østvær cited above. Theorem 1 leads to a complete
description of the homotopy-type LK(1)KR, and hence also KR∧ in cases where the
Lichtenbaum–Quillen conjecture is known.

It is known that M∞ is a finitely-generated ΛF-module. Many famous con-
jectures in number theory can be formulated in terms of its Iwasawa invariants,
including the Leopoldt conjecture, the Gross conjecture, and Iwasawa’s µ-invariant
conjecture. Consequently, all of these conjectures can be translated into topolog-
ical terms, as conjectures about the structure of K̂

·
KR or the homotopy-type of

LK(1)KR.
As motivation for making such a translation, we recall a theorem of Soulé. One

of many equivalent forms of Soulé’s theorem says that A∞ contains no negative Tate
twists of Z�. This is a purely number-theoretic assertion. The only known proof,
however, depends in an essential way on higher K-theory and hence on homotopy
theory. It reduces to the fact that the homotopy groups π2nKR are finite for n > 0.
There are at least two different ways of proving this last assertion – one can work
with either the plus construction for BGL(R), or Quillen’s Q-construction – but they
both ultimately reduce to finiteness theorems for general linear group homology
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due to Borel, Borel–Serre, and Raghunathan. These are in essence analytic results.
One can therefore view Soulé’s theorem as a prototype of the strategy:

(analytic input) ⇒ (estimates on the homotopy-type KR)

⇒ (number-theoretic output)

Notice, however, that only the bare homotopy groups of KR have been exploited
to prove Soulé’s theorem. The homotopy-type of KR contains far more informa-
tion, since it knows everything about the basic Iwasawa module M∞. For example,
the homotopy groups alone cannot decide the fate of the algebraic Gross conjec-
ture; as explained in Sect. 3.6.1, this is a borderline case one step beyond Soulé’s
theorem, for which one additional bit of structure would be needed. For Iwasawa’s
µ-invariant conjecture, on the other hand, knowledge of π∗KR alone is of little use.
But certain crude estimates on the homotopy-type of KR would suffice, and the

conjecture is equivalent to the assertion that K̂
−1

KR is �-torsionfree.
There is a curious phenomenon that arises here. By its definition, the spectrum

KR has no homotopy groups in negative degrees. But K(1)-localizations are never
connective, and much of the number theory is tied up in the negative homotopy
groups of LK(1)KR. For example, the Leopoldt conjecture is equivalent to the finite-
ness of π−2LK(1)KR. Even the Gross conjecture mentioned above involves the part
of π0LK(1)KR that doesn’t come from KR, and indirectly involves π−1LK(1)S0 =̃ Z�.
It is tempting to think of KR as a sort of homotopical L-function, with LK(1)KR
as its analytic continuation and with functional equation given by some kind of
Artin–Verdier–Brown–Comenetz duality. (Although in terms of the generalized
Lichtenbaum conjecture on values of �-adic L-functions at integer points – see
Sect. 3.6 – the values at negative integers are related to positive homotopy groups of
LK(1)KR, while the values at positive integers are related to the negative homotopy
groups!) Speculation aside, Theorem 1.1 shows that all of these conjectures are
contained in the structure of K̂

−1
KR.

Another goal of this paper is to explain some examples of the actual or conjec-
tural homotopy-type KR in cases where it can be determined more or less explicitly.
For example, if one assumes not only the Lichtenbaum–Quillen conjecture, but also
the Kummer–Vandiver conjecture, then one can give a fairly explicit description of
the �-adic homotopy-type of KZ. Most interesting of all at present is the case � = 2,
since in that case the Lichtenbaum–Quillen conjecture itself is now known. Then
KR∧ can be described completely in Iwasawa-theoretic terms; and if the Iwasawa
theory is known one obtains an explicit description of the homotopy-type KR∧.

Organization of the paper: Sect. 3.2 introduces the theory of modules over the
Iwasawa algebra. Sect. 3.3 is an overview of K(1)-local homotopy theory, including
the K̂-based Adams spectral sequence and the structure of the category LK(1)S.
Here we take the viewpoint of axiomatic stable homotopy theory, following [17,18].
But we also refine this point of view by exploiting the Iwasawa algebra [15]. In
Sect. 3.4 we study the Iwasawa theory of the �-adic cyclotomic tower of a number
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field, using a novel étale homotopy-theoretic approach due to Bill Dwyer. Sect. 3.5
is a brief discussion of algebraic K-theory spectra and the Lichtenbaum–Quillen
conjectures for more general schemes. Although our focus in this paper is on
OF[ 1

�
], it will be clear from the discussion that many of the ideas apply in a much

more general setting. In Sect. 3.6 we explain some standard conjectures in number
theory, and show how they can be reintrepreted homotopically in terms of the
spectrum KR. We also discuss the analytic side of the picture; that is, the connection
with L-functions. In particular, we state a generalized Lichtenbaum conjecture on
special values of L-functions, and prove one version of it. Sect. 3.7 is a study of
the example KZ. Finally, Sect. 3.8 is devoted to KR at the prime 2. Here we start
from scratch with KZ[ 1

2 ] and Bökstedt’s JKZ construction, and then study KR in
general.

Acknowledgements: I would like to thank Ethan Devinatz and John Palmieri for
helpful conversations. I would also like to thank Ralph Greenberg for many helpful
conversations and tutorials on number theory; any errors or misconceptions that
remain are, of course, the responsibility of the author alone.

The Iwasawa Algebra3.2

In this section we introduce the Iwasawa algebra Λ and some basic properties of
its modules, as well as the related algebra Λ′. General references for this material
include [38] and [46]. We also define Tate twists, and discuss some properties of
modules over Λ′ in the case � = 2 that are not so well known.

Definition of Λ and Λ′3.2.1

Let Γ′ denote the automorphism group ofZ|�∞. Thus Γ′ is canonically isomorphic
to the �-adic units Z×

� , with the isomorphism c : Γ′→Z×
� given by γ(x) = c(γ)x for

γ ∈ Γ′, x ∈ Z|�∞. In fact, if A is any abelian group isomorphic to Z|�∞, we again
have a canonical isomorphism Γ′ =̃ Aut A, defined in the same way. In particular,
Γ′ is canonically identified with the automorphism group of the group of �-power
roots of unity in any algebraically closed field of characteristic different from�. Note
also that there is a unique product decomposition Γ′ = Γ×∆, where Γ corresponds
under c to the units congruent to 1 mod � (resp. 1 mod 4) if � is odd (resp. � = 2),
and ∆ corresponds to the � − 1-st roots of unity (resp. ±1) if � is odd (resp. � = 2).
The restriction of c to ∆ is denoted ω and called the Teichmuller character.

We write Λ for Z�[[Γ]] and Λ′ for Z�[[Γ′]]. Let γ0 be a topological generator of
Γ. To be specific, we take c(γ0) = 1 + � if � is odd, and c(γ0) = 5 if � = 2. Then it
was observed by Serre that there is an isomorphism of profinite rings

Z�[[Γ]] =̃ Z�[[T]] ,

such that γ0 �→ T + 1. Note that Λ′ = Λ[∆].
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The ring Λ is a regular noetherian local domain of Krull dimension two. In
particular, it has global dimension two, and every module over it admits a projective
resolution of length at most two. It is also complete with respect to its maximal
ideal M = (�, T), with residue field Z|�, and therefore is a profinite topological
ring.

The height one prime ideals are all principal, and are of two types. First there is
the prime �, which plays a special role. Second, there are the prime ideals generated
by the irreducible distinguished polynomials f (T). Here a polynomial f ∈ Z�[T]
is distinguished if it is monic and f (T) = Tn mod �, n = deg f . Note that each height
one prime is now equipped with a canonical generator; we will occasionally not
bother to distinguish between the ideal and its generator.

Modules over the Iwasawa Algebra 3.2.2

An elementary cyclic module is a Λ-module that is either free of rank one or of
the form Λ|qi, where q is either � or an irreducible distinguished polynomial. A
finitely-generated Λ-module E is elementary if it is a direct sum of elementary
cyclic modules. The primes q and exponents i that appear are uniquely determined
by E, up to ordering.

A pseudo-isomorphism is a homomorphism of Λ-modules with finite kernel and
cokernel. The main classification theorem then reads:

2Theorem 2 Let M be a finitely-generated Λ-module. Then there is an elementary
module E and a pseudo-isomorphism φ : M→E. Up to isomorphism, E is uniquely
determined by M.

3Remark 3 If M is a Λ-torsion module, then one can also find a pseudo-isomorphism
ψ : E→M. In general, however, this isn’t true; if M is Λ-torsionfree but not free,
there is no pseudo-isomorphism from a free module to M.

Recall that the support of a module M, denoted Supp M, is the set of primes q such
that Mq ≠ 0. Note that Supp M is closed under specialization, i.e., if q ∈ Supp M
and q ⊂ q′, then q′ ∈ Supp M. For example, the nonzero finite modules are the
modules with support {M}, while the Λ-torsion modules are the modules with
(0) |∈ Supp M. Now let N be a finitely-generated torsion module and let q1, ..., qm be
the height one primes in Supp M. These are, of course, precisely the q’s that appear
in the associated elementary module E. Thus we can write

E = E1 ⊕ … ⊕ Em Ei = ⊕ri
j=1Λ|q

sij
i .

The data (q1; s11, … , s1r1 ), … , (qm; sm1, … , smrm ) constitute the torsion invariants of
N. The multiplicity of qi in N is ni =

∑
j sij, the frequency is ri, and the lengths are

the exponents sij. The divisor of N is the formal sum D(N) =
∑

niqi. Sometimes we
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write 〈q, N〉 for the multiplicity of q in N. In the case of the prime �, the multiplicity
is also denoted µ(N). If M is an arbitrary finitely-generated Λ-module, the above
terms apply to its Λ-torsion submodule tM.

Thus one can study finitely-generated Λ-modules M up to several increasingly
coarse equivalence relations:

Up to isomorphism. This can be difficult, but see for example [20].
Up to pseudo-isomorphism. At this level M is determined by its Λ-rank and
torsion invariants.
Up to divisors. If we don’t know the torsion invariants of M, it may still be
possible to determine the divisor

∑
niqi of tM. This information can be con-

veniently packaged in a characteristic series for tM; that is, an element g ∈ Λ
such that g = u

∏
qni

i for some unit u ∈ Λ.
Up to support. Here we ask only for the Λ-rank of M and the support of tM.

We mention a few more interesting properties of Λ-modules; again, see [38] for
details and further information.

A finitely-generated Λ-module M has a unique maximal finite submodule,
denoted M0.

4 Proposition 4 M has projective dimension at most one if and only if M0 = 0.

Now let M∗ denote the Λ-dual HomΛ(M, Λ).

5 Proposition 5 If M is a finitely-generated Λ-module, then M∗ is a finitely-generated
free module. Furthermore, the natural map M→M∗∗ has kernel tM and finite
cokernel.

We call the cokernel of the map M→M∗∗ the freeness defect of M; it is zero if
and only if M|tM is free. In fact:

6 Proposition 6 Suppose N is finitely-generated and Λ-torsionfree, and let N→F
be any pseudo-isomorphism to a free module (necessarily injective). Then F|N is
Pontrjagin dual to Ext1

Λ(N, Λ), and is isomorphic to the freeness defect of N.

In particular, then, F|N is independent of F and the choice of pseudo-isomor-
phism.

Call a finitely-generated Λ-module L semi-discrete if Γ acts discretely on L. Thus
L is finitely-generated as Z�-module with Γn, the unique subgroup of index �n of
Γ, acting trivially on L for some n. The semi-discrete modules fit into the pseudo-
isomorphism theory as follows: Let ωn = (1 + T)�

n

− 1. Then ωn = ν0ν1 … νn

for certain irreducible distinguished polynomials vi; in fact, the νi’s are just the
cyclotomic polynomials. We call these the semi-discrete primes because they are
pulled back from Z�[Z|�n] under the map induced by the natural epimorphism
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from Γ to the discrete group Z|�n. Clearly L is semi-discrete if and only if it has
support in the semi-discrete primes and each νi occurs with length at most one.
Finally, note that for any finitely-generated Λ-module M, the ascending chain

MΓ ⊂ MΓ1 ⊂ MΓ2 ⊂ … .

terminates. Hence M has a maximal semi-discrete submodule Mδ, with Mδ = MΓn

for n >> 0.

Tate Twisting 3.2.3

Let M be a Λ-module. The n-th Tate twist M(n) has the same underlying Z�-module,
but with the Γ-action twisted by the rule

γ · x = c(γ)nγx .

If Z� has trivial Γ-action, then clearly

M(n) = M ⊗Z�
(Z�(n))

as Λ-modules. Thinking of Λ as the power series ring Z�[[T]], we can interpret
this twisting in another way. Given any automorphism φ of Λ – where we mean
automorphism as topological ring – any module M can be twisted to yield a new
module Mφ in which λ ·x = φ(λ)x. In particular, any linear substitution T �→ cT +d
with c, d ∈ Z�, c a unit and d = 0 mod � defines such an automorphism. Among
these we single out the case c = c0, d = c0 − 1. This automorphism will be denoted
τ and called the Tate automorphism, the evident point being that M(1) = Mτ.

Note that τ permutes the height one primes. In particular, we write τn = τn(T).
Written as an irreducible distinguished polynomial, τn = (T − (cn

0 − 1)). These are
the Tate primes, which will play an important role in the sequel.

Modules over Λ′ 3.2.4

Suppose first that � is odd. Then the entire theory of finitely-generated Λ-modules
extends in a straightforward way to Λ′-modules. The point is that Λ′ = Λ[∆], and
∆ is finite of order prime to �. Hence Λ′ splits as a direct product of topological
rings into � − 1 copies of Λ, and similarly for its category of modules. Explicitly,
there are idempotents ei ∈ Z�[∆] ⊂ Λ′, 0 ≤ i ≤ � − 2, such that for any module M
we have M = ⊕eiM as Λ′-modules, with ∆ acting on eiM as ωi. Hence we can apply
the structure theory to the summands eiM independently.

We also have Spec Λ′ =
∐i=�−2

i=0 Spec Λ. If q ∈ Spec Λ and n ∈ Z, we write
(q, n) for the prime q in the n-th summand, n of course being interpreted modulo
� − 1. Tate-twisting is defined as before, interpreting Λ′ as Z�[[Γ′]]. In terms of the
product decomposition above, this means that τ′ permutes the factors by (q, n) �→
(τ(q), n+1). The extended Tate primes are defined by τ′

n = (τn, n). Sometimes we will
want to twist the ∆-action while leaving the Γ-action alone; we call this ∆-twisting.
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Semi-discrete primes are defined just as for Λ. Note that the semi-discrete primes
are invariant under ∆-twisting.

If � = 2, the situation is considerably more complicated, and indeed does
not seem to be documented in the literature. The trouble is that now ∆ has or-
der 2. Thus we still have that Λ′ is a noetherian, profinite, local ring, but it does
not split as a product of Λ’s, and modules over it can have infinite projective
dimension. Letting σ denote the generator of ∆, we will sometimes use the nota-
tion en as above for the elements 1 + σ (n even) or 1 − σ (n odd), even though
these elements are not idempotent. The maximal ideal is (2, T, 1 − σ), and there
are two minimal primes (1 ± σ). The prime ideal spectrum can be written as
a pushout

Spec Λ|2 → Spec Λ
↓ ↓

Spec Λ → Spec Λ′ .

The extended Tate twist τ′ is still simple enough; it merely acts by τ combined with
an exchange of the two Spec Λ factors.

The pseudo-isomorphism theory is more complicated. For modules with van-
ishing µ-invariant, we have the following:

7 Theorem 7 Let M be a finitely-generated Λ′-module with µ(M) = 0. Then M is
pseudo-isomorphic to a module of the form

E = E+ ⊕ E− ⊕ Ef ,

where E+ (resp. E−) is an elementary Λ-module supported on the distinguished
polynomials, with σ acting trivially (resp. acting as −1), and Ef is Λ-free.

This is far from a complete classification, however, since we need to analyze Ef .
Let Λ[ denote Λ with σ acting as −1, and let Λ unadorned denote Λ with the trivial
σ action. Next, let Ln denote Λ ⊕ Λ with σ acting by the matrix

(
1 Tn

0 −1

)

and let L∗
n denote its Λ-dual. Note that L0 is free over Λ′ of rank one, and hence

L0 =̃ L∗
0 , but with that exception no two of these modules are isomorphic.

We pause to remark that these modules Ln, L∗
n arise in nature, in topology

as well as in number theory. In topology the module L∗
1 occurs as the 2-adic

topological K-theory of the cofibre of the unit map S0→K̂ ; that is, the first stage
of an Adams resolution for the sphere (see Sect. 3.3.4 below). The modules L1, L2

occur in the Iwasawa theory of 2-adic local fields; for example, the torsion-free
quotient of the basic Iwasawa module M∞ associated to Q2 is isomorphic to L2

(see [36]).
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8Theorem 8 Let N be a finitely-generated Λ-free Λ′-module. Then N is isomorphic
as Λ′-module to a direct sum of modules of the form Λ, Λ[, Ln (n ≥ 0), and L∗

n
(n ≥ 1), with the number of summands of each type uniquely determined by N.
Furthermore
(a) Such modules N of fixed Λ-rank are classified by their Tate homology groups

H∗(σ; N), regarded as modules over the principal ideal domain Λ|2;
(b) Any pseudo-isomorphism between two such modules is an isomorphism.

This gives a complete classification up to pseudo-isomorphism in the case µ = 0.
The proof of Theorem 8 given in [36] is ad hoc; it would be nice to have a more
conceptual proof.

K(1)-local Homotopy Theory 3.3

K-theoretic localization has been studied extensively by Bousfield, who indeed
invented the subject. Many of the results in this section either come directly from
Bousfield’s work or are inspired by it. The most important references for us are [3,4]
and [5]; we will not attempt to give citations for every result below.

We will also take up the viewpoint of axiomatic stable homotopy theory, fol-
lowing Hovey, Palmieri and Strickland [18]. Further motivation comes from the
elegant Hovey–Strickland memoir [17], in which K(n)-localization for arbitrary
n is studied. In the latter memoir the case n = 1 would be regarded as the trivial
case; even in the trivial case, however, many interesting and nontrivial things can
be said. In particular we will use Iwasawa theory to study the finer structure of
LK(1)S. Although the connection with Iwasawa theory has been known since the
beginning [4] [40], it seems not to have been exploited until now.

We begin in Sect. 3.3.1 with a discussion of�-adic completion. All of our algebraic
functors will take values in the category of Ext-�-complete abelian groups, so we
have included a brief introduction to this category. The short Sect. 3.3.2 introduces
K̂ and connects its ring of operations with the Iwasawa algebra. Some important
properties of K(1)-localization are summarized in Sect. 3.3.3.

Section 3.3.4 discusses the K̂-based Adams spectral sequence. In fact the spec-
tral sequence we use is the so-called modified Adams spectral sequence, in a ver-
sion for which the homological algebra takes place in the category of compact
Λ′-modules.

Section 3.3.5 studies the structure of the category LK(1)S, beginning with some
remarks concerning the small, dualizable, and weakly dualizable objects of LK(1)S.
This last subcategory is the category in which we will usually find ourselves; it
coincides with the thick subcategory generated by K̂ itself, and with the sub-
category of objects X such that K̂

·
X is a finitely-generated Λ′-module. Most of

the results here are special cases of results from [17], and ultimately depend on
the work of Bousfield cited above. We also briefly discuss the Picard group of
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LK(1)S [16]. In Sect. 3.3.6, we summarize some new results from [15], with � odd,
including a spectrum analogue of the classification of Iwasawa modules, and an
Iwasawa-theoretic classification of thick subcategories of the subcategory of weakly
dualizable objects.

We remark that according to an unpublished paper of Franke [12], for � odd
LK(1)S is equivalent to a certain category of chain complexes. We will not make
any use of this, however. Nor will we make any use of Bousfield’s united K-theory
[5], but the reader should be aware of this homologically efficient approach to
2-primary K-theory.

�-Adic Completion of Spectra3.3.1

Fix a spectrum E. A spectrum Y is said to be E-acyclic if E ∧ Y =̃ ∗, and E-local if
[W , Y] = 0 for all E-acyclic W . There is a Bousfield localization functor LE : S→S
and a natural transformation Id→LE such that LEX is E-local and the fibre of
X→LEX is E-acyclic [3].

The �-adic completion of a spectrum is its Bousfield localization with respect to
the mod � Moore spectrum MZ|�. We usually write X∧ for LMZ|�X. Note that the
MZ|�-acyclic spectra are the spectra with uniquely �-divisible homotopy groups.
The �-adic completion can be constructed explicitly as the homotopy inverse
limit holimnX ∧ MZ|�n, or equivalently as the function spectrum F (N , X), where
N = Σ−1MZ|�∞. Resolving N by free Moore spectra, it is easy to see that there is
a universal coefficient sequence

0→Ext (Z|�∞, [W , X])→[W , X∧]→Hom (Z|�∞, [Σ−1W , X])→0 .

To see what this has to do with �-adic completion in the algebraic sense, we need
a short digression.

An abelian group A is Ext-�complete if

Hom (Z[1|�], A) = 0 = Ext (Z[1|�], A) .

Thus the full subcategory E of all Ext-� complete abelian groups is an abelian
subcategory closed under extensions. In fact it is the smallest abelian subcategory
containing the �-complete abelian groups. The category E enjoys various pleasant
properties, among which we mention the following:

An Ext-� complete abelian group has no divisible subgroups.
The objects of E have a natural Z�-module structure.
E is closed under arbitrary inverse limits.
If A, B are in E , then so are Hom (A, B) and Ext (A, B).
For any abelian group A, Hom (Z|�∞, A) and Ext (Z|�∞, A) are Ext-� complete.
The functor eA = Ext (Z|�∞, A) is idempotent with image E . The kernel of the
evident natural transformation A→eA is Div A, the maximal divisible subgroup
of A.
If A is finitely-generated, eA is just the usual �-adic completion A∧.
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Here it is important to note that although an Ext-� complete abelian group has no
divisible subgroups, it may very well have divisible elements. A very interesting
example of this phenomenon arises in algebraic K-theory, in connection with the
so-called “wild kernel”; see [1].

We remark that although E is not closed under infinite direct sums, it neverthe-
less has an intrinsic coproduct for arbitary collections of objects:

∐
Aα = e(⊕Aα).

HenceE has arbitrary colimits, and these are constructed applying e to the ordinary
colimit.

Finally, we note that any profinite abelian �-group is Ext-� complete, and fur-
thermore if A, B are profinite then Homcont(A, B) is Ext-� complete. To see this, let
A = lim Aα, B = lim Bβ with Aα, Bβ finite, and recall that the continuous homomor-
phisms are given by

limβcolimαHom (Aα, Bβ) .

Any group with finite �-exponent is Ext-� complete, whence the claim. Thus the
category of profinite abelian �-groups and continuous homomorphisms embeds
as a non-full subcategory of E , compatible with the intrinsic Hom and Ext. This
ends our digression.

Returning to the topology, the universal coefficient sequence shows that if X, Y
are �-complete, [X, Y] is Ext-� complete. Now let Stor denote the full subcategory
of �-torsion spectra; that is, the spectra whose homotopy groups are �-torsion
groups. Then the functors

F(N , −) : Stor→S∧ (−) ∧ N : S∧→Stor

are easily seen to be mutually inverse equivalences of categories. In fact, these
functors are equivalences of abstract stable homotopy theories in the sense of [18].
To make sense of this, it is crucial to distinguish between various constructions
performed in the ambient category S and the intrinsic analogues obtained by re-
flecting back into Stor, S

∧. For example, S∧ is already closed under products and
function spectra, so the ambient and intrinsic versions coincide, whereas intrinsic
coproducts and smash products must be defined by completing the ambient ver-
sions. In Stor it is the reverse: For smash product and coproducts the ambient and
intrinsic versions coincide, while intrinsic products and function spectra must be
defined by (

∏
Xα)∧N and F (X, Y)∧N , respectively. Note also that N is the unit

in Stor.
One also has to be careful about “small” objects. In the terminology of [18], an

object W of S∧is small if the natural map

⊕ [W , Xα]→
[

W ,
∐

Xα

]

is an isomorphism. The symbol
∐

on the right refers to the intrinsic coproduct –
that is, the completed wedge. With this definition, the completed sphere (S0)∧ is
not small. The problem is that an infinite direct sum of Z� ’s is not Ext-� complete.
As we have just seen, however, the category E has its own intrinsic coproduct, and
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it is easy to see that the functor [(S0)∧, −] does commute with intrinsic coproducts
in this sense. Thus there are two variants of “smallness” in the �-complete world. To
avoid confusion, however, we will keep the definition given above, and call objects
that commute with intrinsic coproducts quasi-small. It follows immediately that
an object is quasi-small if and only if it is F -small in the sense of [18]. We also
find that the small objects in S∧ are the finite �-torsion spectra.

�-Adic Topological K-Theory3.3.2

Let K̂ denote the �-completion of the periodic complex K-theory spectrum. We
will use the notation K̂

·
X = K̂

0
X ⊕ K̂

1
X. Then the ring of operations K̂

∗
K̂ is

completely determined by K̂
·
K̂ , and has an elegant description in terms of the

Iwasawa algebra ([27]; see also [30]).

9 Proposition 9 K̂
0
K̂ is isomorphic to Λ′. The isomorphism is uniquely determined

by the correspondence ψk ↔ γ with c(γ) = k (k ∈ Z, � prime to k). Furthermore,
K̂

1
K̂ = 0.

Using the idempotents ei ∈ Z�[∆], we obtain a splitting

K̂ =̃
�−2∨

i=0

eiK̂ .

The zero-th summand is itself a (2� − 2)-periodic ring spectrum, called the Adams
summand and customarily denoted E(1)∧; furthermore, eiK̂ =̃ Σ2iE(1)∧. Smashing
with the Moore spectrum yields a similar decomposition, whose Adams summand
e0K ∧ MZ|� is usually denoted K(1) – the first Morava K-theory.

Note also that K̂
0
S2n = Z�(n). More generally, K̂

0
S2n ∧ X = K̂

0
X(n). Thus Tate

twisting corresponds precisely to double suspension.
One striking consequence of Proposition 9 is that the theory of Iwasawa modules

can now be applied to K-theory. This will be one of the major themes of our paper.

K(1)-Localization3.3.3

We will be working almost exclusively in the K(1)-local world. We cannot give
a thorough introduction to this world here, but we will at least mention a few
salient facts.
1. LK(1)X = (LKX)∧. The functor LK is smashing in the sense that LKX =

X ∧ LKS0, but completion is not smashing and neither is LK(1).
2. A spectrum X is K(1)-acyclic if and only if K̂

∗
X = 0.

3. K(1)-local spectra X manifest a kind of crypto-periodicity (an evocative term
due to Bob Thomason). Although X itself is rarely periodic, each reduction
X∧MZ|�n is periodic, with the period increasing as n gets larger. A similar peri-
odicity is familiar in number theory, for example in the Kummer congruences.
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4. The crypto-periodicity has two striking consequences: (i) If X is both K(1)-
local and connective, then X is trivial; and (ii) The functor LK(1) is invariant
under connective covers, in the sense that if Y→X has fibre bounded above,
then LK(1)Y→LK(1)X is an equivalence. Hence the K(1)-localization of a spec-
trum depends only on its “germ at infinity” (another evocative term, due to
Bill Dwyer this time).

5. The K(1)-local sphere fits into a fibre sequence of the form

LK(1)S
0→K̂

ψq−1→ K̂

for � odd, or

LK(1)S
0→KO∧ ψq−1→ KO∧

for � = 2. Here q is chosen as follows: If � is odd, q can be taken to be any
topological generator of Z×

� . In terms of the Iwasawa algebra, we could replace
ψq − 1 by e0T. If � = 2, any q = ±3 mod 8 will do; the point is that q, −1 should
generate Z×

2 . In the literature q = 3 is the most popular choice, but q = 5 fits
better with our conventions on Γ. One can identify K̂O

0
K̂O canonically with

Λ, and then ψq − 1 corresponds to T. In any event, the homotopy groups of
LK(1)S0 can be read off directly from these fibre sequences.

6. There is an equivalence of stable homotopy categories

LKStor =̃ LK(1)S

given by the same functors discussed earlier in the context of plain �-adic com-
pletion. The expression on the left is unambiguous; LK (Stor) and (LKS)tor

are the same.

The K̂-Based Adams Spectral Sequence 3.3.4

The functorsK̂
n

take values in the category of compact Λ′-modules and continuous
homomorphisms. This puts us in the general setting of “compact modules over
complete group rings”, a beautiful exposition of which can be found in [38],
Chapter V, Sect. 3.2. In particular, there is a contravariant equivalence of categories

(discrete torsion Λ′-modules) =̃ (compact Λ′-modules)

given by (continuous) Pontrjagin duality. This fits perfectly with the equivalence

LKStor =̃ LK(1)S

mentioned earlier, since there are universal coefficient isomorphisms

K̂
n
X =̃ (Kn−1X ∧ N )# ,

where# denotes Pontrjagin duality.
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Furthermore, homological algebra in either of the equivalent categories above
is straightforward and pleasant; again, see [38] for details. The main point to bear
in mind is that Hom and Ext will always refer to the continuous versions; that
is, to Hom and Ext in the category of compact Λ′-modules (or occasionally in
the category of discrete torsion Λ′-modules). We note also that if M is finitely-
generated over Λ and N is arbitrary, the continuous Ext

p

Λ′(M, N) is the same as
the ordinary Ext ([38], 5.2.22).

The Adams spectral sequence we will use is the so-called “modified” Adams
spectral sequence, as discussed for example in [6] and [17], except that we prefer
to work with compact Λ′-modules rather than with discrete torsion modules or
with comodules. The “modified” spectral sequence works so beautifully here that
we have no need for its unmodified antecedent, and consequently we will drop
“modified” from the terminology.

Call W ∈ LK(1)S projective if (i) K̂
·
W is projective as compact Λ′-module; and

(ii) for any X ∈ LK(1)S, the natural map

[X, W]→HomΛ′
(
K̂

·
W , K̂

·
X

)

is an isomorphism. There is the obvious analogous notion of injective object in
LKStor, and clearly W is projective if and only if W ∧ N is injective. It is not hard
to show:

10 Proposition 10
(a) If M = M0 ⊕ M1 is any Z|2-graded projective compact Λ′-module, there is

a projective spectrum W with K̂
·
W =̃ M.

(b) LK(1)S has enough projectives, in the sense that for every X there exists
a projective W and a map X→W inducing a surjection on K̂

·
.

Hence for any X we can iterate the construction of (b) to obtain an Adams resolution

X ← − X1 ← − X2 ← −
↓ ↗ ↓ ↗ ↓ ↗

W0 W1 W2 ,

where the triangles are cofibre sequences and the horizontal arrows shift dimen-
sions and induce zero on K̂

∗
. If Y is another object, applying the functor [Y , −]

yields an exact couple and a spectral sequence with

Es,t
2 = Exts

Λ′
(
K̂

·
X, K̂

·ΣtY
)

and abutment [Σt−sY , X]. This is the (modified) Adams spectral sequence. It could
be displayed as a right half-plane cohomology spectral sequence, but the custom
in homotopy theory is to put t − s on the horizontal axis and s on the vertical
axis. This yields a display occupying the upper half-plane, with the differential dr

going up r and to the left 1, and with the i-th column of E∞ corresponding to the
associated graded module of [ΣiY , X]. Here the filtration on [Y , X] is the obvious
one obtained from the tower: Filtration n consists of the maps that lift to Xn.



K(1)-Local Homotopy Theory, Iwasawa Theory and Algebraic K-Theory 971

It is easy to check that from E2 on, the spectral sequence does not depend on
the choice of Adams resolution. The filtration is also independent of this choice,
and in fact has an alternate, elegant description: Let An[Y , X] denote the subgroup
of maps that factor as a composite of n maps each of which induces the zero
homomorphism on K̂

·
. This is the Adams filtration, and it coincides with the

filtration obtained from any Adams resolution.
It remains to discuss convergence. In fact the Adams spectral sequence converges

uniformly to the associated graded object of the Adams filtration. By “uniformly”
we mean that there is a fixed d such that Ad[Y , X] = 0, and the spectral sequence
collapses at Ed. The simplest way for this to happen is to have every d-fold composite
of maps in the tower Xn+d→ … →Xn be null; then we say the tower is uniformly
d-convergent. This would be useful even if d depended on X, Y , but in the present
situation we will have d depending only on whether � = 2 or � odd.

If � is odd, every compact Λ′-module has projective dimension ≤ 2, and hence
every X ∈ LK(1)S admits an Adams resolution of length ≤ 2. So we can trivially take
d = 3, and furthermore the spectral sequence is confined to the lines s = 0, 1, 2,
with d2 the only possible differential. In general, this d2 is definitely nonzero.

If � = 2, then Λ′ has infinite global dimension, and most objects will not admit
a finite Adams resolution. Nevertheless, it is easy to see that the Adams tower is
uniformly convergent with d ≤ 6. For if K̂

·
X is Λ-projective, then one can use

W0 = X ∧ Cη as the first term of an Adams resolution, where Cη is the mapping
cone of η ∈ π1S0. Then the cofibre X1 is again Λ-projective, so one can iterate
the process to obtain an Adams resolution in which the maps Xn→Xn−1 are all
multiplications by η. Since η4 = 0, we can take d = 4 in this case. If K̂

·
X is only

Z2-projective, then any choice of X1 is Λ-projective, and we can take d = 5. Finally,
if X is arbitrary then any choice of X1 is Z2-projective, and one can take d = 6.
(Compare [17], Proposition 6.5.)

As an illustration of the Adams spectral sequence, we compute the Z�-ranks of
π∗X in terms of K̂

∗
X. The following proposition is valid at any prime �.

11Proposition 11 Suppose K̂
·
X is finitely-generated over Λ′. Then

rankZ�
π2mX = rankΛemK̂

0
X +

〈
τ′

m, K̂
0
X

〉
+

〈
τ′

m, K̂
1
X

〉

rankZ�
π2m+1X = rankΛemK̂

1
X +

〈
τ′

m, K̂
1
X

〉
+

〈
τ′

m+1, K̂
0
X

〉
.

The proof is straightforward, part of the point being that all the groups above
the 1-line in the Adams E2-term are finite, and even when � = 2 only finitely many
of these survive in each topological degree.

When the terms involving, say, K̂
0

vanish, we can turn these formulae around
to get

〈
τ′

m, K̂
1
X

〉
= rankZ�

π2mX

rankΛemK̂
1
X = rankZ�

π2m+1X − rankZ�
π2mX .
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The Structure of LK(1)S: General Results3.3.5

To begin, we have:

12 Theorem 12 LK(1)S has no proper nontrivial localizing subcategories.

This means that a natural transformation of cohomology theories on LK(1)S is
an isomorphism provided that it is an isomorphism on a single nontrivial object.
Next, recall that a full subcategory C of a stable homotopy category is thick if it is
closed under retracts and under cofibrations (meaning that if X→Y→Z is a cofibre
sequence and any two of X, Y , Z lie in C, so does the third). We write Th(X) for the
thick subcategory generated by an object X; objects of this category are said to be
X-finite. Recall also that W ∈ LK(1)S is small if for any collection of objects Xα, the
natural map

⊕ [W , Xα]→
[

W ,
∐

Xα

]

is an isomorphism. Here the coproduct on the right is the intrinsic coproduct; that
is, the K(1)-localization of the wedge.

13 Theorem 13 The following are equivalent:
(a) X is small.
(b) K̂

·
X is finite.

(c) X is MZ|�-finite.
(d) X = LK(1)F for some finite �-torsion spectrum F.

Next recall (again from [18]) that an object X is dualizable if the natural map

F (X, S) ∧ Y→F (X, Y)

is an equivalence for all Y . Here the smash product on the left is the intrinsic
smash product; that is, the K(1)-localization of the ordinary smash product. This
property has the alternate name “strongly dualizable”, but following [18] we will
say simply that X is dualizable. If we were working in the ordinary stable homotopy
category S, the small and dualizable objects would be the same, and would coincide
with the finite spectra. In LK(1)S, however, the dualizable objects properly contain
the small objects:

14 Theorem 14 The following are equivalent:
(a) X is dualizable.
(b) K̂

·
X is a finitely-generated Z�-module.

(c) X is quasi-small.

Recall that quasi-small means that the map occuring in the definition of small
object becomes an isomorphism after Ext-�-completion of the direct sum in its
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source; this is equivalent to being F -small in the sense of [18]. Of course the
localization of any finite spectrum is dualizable, but these are only a small subclass
of all dualizable objects. We will return to this point in the next section.

Let DX = F (X, S). An object X is weakly dualizable if the natural map X→D2X
is an equivalence. Now there is another kind of duality in stable homotopy theory:
Brown–Comenetz duality, an analogue of Pontrjagin duality. In LK(1)S we define
it as follows [17]: Fix an object A ∈ LK(1)S and consider the functor X �→ (π0A ∧
X ∧N )#, where (−)# denotes the �-primary Pontrjagin dual Hom (−,Z|�∞). This
functor is cohomological, and therefore by Brown representability there is a unique
spectrum dA representing it; we call dA the Brown–Comenetz dual of A. It is easy to
see that dA = F (A, dS), and so understanding Brown–Comenetz duality amounts
to understanding dS. It turns out that in LK(1)S life is very simple, at least for �

odd: dS is just LK(1)S2. Hence Brown–Comenetz duality is just a Tate-twisted form
of functional duality, with the appearance of the twist strongly reminiscent of
number theory. If � = 2 the situation is, as usual, somewhat more complicated. Let
V denote the cofibre of ε : ΣMZ|2→S0, where ε is one of the two maps of order 4.
Then the Brown–Comenetz dual of LK(1)S0 is Σ2LK(1)V .

As another example, note that the universal coefficient isomorphism given at
the beginning of Sect. 3.3.4 says precisely that dK̂ =̃ ΣK̂ .

Some parts of the following theorem are special cases of the results of [17]; the
rest can be found in [15].

15Theorem 15 The following are equivalent:
(a) X is weakly dualizable.
(b) X is K̂-finite.
(c) K̂

·
X is finitely-generated over Λ.

(d) πnX is finitely-generated over Z� for all n.
(e) The natural map X→d2X is an equivalence.

A K(1)-local spectrum is invertible if X ∧ Y =̃ S for some Y . Here the smash
product is of course the intrinsic smash product, and S is the K(1)-local sphere.
The set (and it is a set) of weak equivalence classes of such X forms a group under
smash product, called the Picard group (see [16]). It is not hard to show that X is
invertible if and only if K̂

·
X is free of rank one as Z�-module. For simplicity we

restrict our attention to the subgroup of index two of Pic LK(1)S consisting of the
X with K̂

1
X = 0, denoted Pic0 LK(1)S. There is a natural homomorphism

φ : Pic0 LK(1)S→Pic Λ′ ,

where Pic Λ′ =̃ Z×
� is the analogous Picard group for the category of Λ′-modules.

It is not hard to show that φ is onto at all primes �, and is an isomorphism if � is
odd. The subtle point is that φ has a nontrivial kernel when � = 2. In fact, Ker φ
has order two and is generated by the object LK(1)V defined above.

As an example for � odd we mention the ∆-twists of the sphere. Let χ be a power
of the Teichmuller character; in other words, χ is pulled back along the projection
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Γ′→∆. Let S0
χ denote the corresponding invertible spectrum. Thus Γ acts trivially

on K̂
0
S0

χ, but ∆ acts via χ. We call these spectra ∆-twists of the sphere. It turns
out that they arise in nature in an interesting way. Since ∆ =̃ Aut Z|�, ∆ acts on
the suspension spectrum of the classifying space BZ|�. Hence the idempotents ei

defined above can be used to split BZ|�, in exactly the same way that we used them
to split K̂ . Then for 0 ≤ i ≤ � − 2, eiLK(1)BZ|� =̃ S0

ωi . For i = 0 one concludes that
LK(1)BΣ� =̃ LK(1)S0. For i ≠ 0 mod � − 1, however, S0

ωi cannot be the localization of
a finite spectrum.

Note that maps out of invertible spectra can be viewed as �-adic interpolations
of ordinary homotopy groups.

Iwasawa Theory for K̂-Finite Spectra3.3.6

If X ∈ Th(K̂) then we can apply the classification theory for Λ-modules. In this
section we assume � is odd. Most of the results below are from [15], where details
and further results can be found.

Let C be a thick subcategory of LK(1)S. A map X→Y is a C-equivalence if
its fibre lies in C. In the case when C is the category of small objects, we call
a C-equivalence a pseudo-equivalence. An object X of LK(1)S is elementary if (i)
X =̃ X0

∨
X1, where K̂

1
X0 = 0 = K̂

0
X1, and (ii) K̂

·
X is elementary as Λ-module.

An elementary object X is determined up to equivalence by K̂
·
X as Λ′-module.

Hence if E· is a Z|2-graded elementary Λ′-module, it makes sense to write ME for
the corresponding elementary object.

16 Theorem 16 Any K̂-finite X is pseudo-equivalent to an elementary spectrum ME.

There need not be any pseudo-equivalence X→ME or ME→X. In general, one
can only find a third object Y and pseudo-equivalences

X→Y ← ME .

The next result provides a simple but interesting illustration.

17 Theorem 17 X is the K(1)-localization of a finite spectrum if and only if X is
pseudo-equivalent to a finite wedge of spheres.

Notice that the collection of localizations of finite spectra does not form a thick
subcategory. It is easy to see why this fails: The point is that LK(1)S0 has nontrivial
negative homotopy groups, and no nontrivial element of such a group can be in the
image of the localization functor. In particular, π−1LK(1)S0 = Z�, and the cofibre
of a generator is not the localization of any finite spectrum. Oddly enough, this
cofibre comes up in connection with the Gross conjecture from algebraic number
theory (see below).

It is possible to classify thick subcategories of the K̂-finite spectra. Define the
support of X, denoted Supp X, to be the union of the supports of the Λ′-modules
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K̂
n
X, n ∈ Z. Note that Supp X is invariant under Tate twisting and hence will

typically contain infinitely many height one primes. On the other hand, it is clear
that Supp X is generated by Supp K̂

0
X

∐
Supp K̂

1
X under Tate twisting.

A subset A of Spec Λ′ will be called fit if it is closed under specialization and
under Tate twisting. For any subset A, we let CA denote the full subcategory of
LK(1)S consisting of objects whose support lies in the fit subset generated by A.
If A is given as a subset of Spec Λ only, we interpret this to mean taking closure
under ∆-twisting as well. In other words, we take the fit subset generated by all
(q, i), q ∈ A. It is easy to see that CA is a thick subcategory. Note for example:

If A = {M}, CA consists of the small objects;
If A is the collection of all irreducible distinguished polynomials, CA consists
of the dualizable objects.

18Theorem 18 Let C be a thick subcategory of Th(K̂). Then there is a unique fit set
of primes A such that C = CA.

Some further examples:
Let C be the collection of objects X with finite homotopy groups. Then A is
generated by the complement of the set of extended Tate primes (in the set of
height one primes).
Let C be the collection of objects X with almost all homotopy groups finite.
Then A is generated by the set of all height one primes.
Let C = Th(LK(1)S0). Then A is generated by the set of extended Tate primes.
Let C be the thick subcategory generated by the invertible spectra. Then A is
generated by the set of linear distinguished polynomials.

The semi-discrete primes are also of interest. Note, for example, that if G is a fi-
nite group then K̂

·
BG is semi-discrete; this follows from the famous theorem of

Atiyah computing K̂
·
BG in terms of the representation ring of G. In the next two

propositions, the spectra occuring are implicitly localized with respect to K(1).

19Proposition 19 Let A be the set of semi-discrete primes.
a) CA is generated by the suspension spectra BC, C ranging over finite cyclic

�-groups.
b) Fix a prime p ≠ �. Then CA is generated by the spectra KFq, q ranging over the

powers of p.

20Proposition 20 For any S-arithmetic group G, the classifying space BG is in CA,
where A is the set of semi-discrete primes.

This last proposition is an easy consequence of well-known theorems of Borel-
Serre; the point is that BG has a finite filtration whose layers are finite wedges of
suspensions of classifying spaces of finite groups.
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Iwasawa Theory3.4

We assume throughout this section that � is odd.
We begin by introducing our notation for various objects and Iwasawa modules

associated to the �-adic cyclotomic tower (Sect. 3.4.1). In Sect. 3.4.2 we use Dwyer’s
étale homotopy theory approach to prove many of the classical theorems of Iwasawa
theory.

Notation3.4.1

We regret having to subject the reader to a barrage of notation at this point, but
we might as well get it over with, and at least have all the notation in one place for
easy reference. Fix the number field F and odd prime �. Recall that r1 and r2 denote
respectively the number of real and complex places of F.

Warning: Some of our notation conflicts with standard useage in number theory.
The main example is that for us, A∞ and A′∞ refer to norm inverse of �-class
groups, not the direct limits. Thus our A∞, A′∞ would usually be denoted X∞, X′∞
in the number theory literature.

The Cyclotomic Tower
By the cyclotomic tower we mean the �-adic cyclotomic tower defined as follows:
F0 is the extension obtained by adjoining the �-th roots of unity to F. We let d = dF

denote the degree of F0 over F; note that d divides � − 1. The Galois group G(F0|F)
will be denoted ∆F ; it is a cyclic group of order d.

F∞ is the extension obtained by adjoining all the �-power roots of unity to F.
The Galois group G(F∞|F0) will be denoted ΓF ; it is isomorphic as profinite group
to Z�. More precisely, the natural map ΓF→ΓQ is an isomorphism onto a closed
subgroup of index �m for some m = mF . Note that when �-th roots of unity are
adjoined, we may have accidentally adjoined �j-th roots for some finite j as well.
The Galois group G(F∞|F) will be denoted Γ′

F ; it splits uniquely as Γ′ × ∆F .
It follows that there is a unique sequence of subextensions Fn|F0 whose union is

F∞, and with Fn of degree � over Fn−1 for all n ≥ 1. Our cyclotomic tower over F is
this tower F ⊂ F0 ⊂ F1 ⊂ …

For 0 ≤ n ≤ ∞, we write On for OFn and Rn for OFn [1|�]. Further variations of
this obvious notational scheme will be used without comment.

Let ΛF and Λ′
F denote respectively the pro-group rings of ΓF and Γ′

F . Thus
ΛF ⊂ Λ, and at the same time ΛF is abstractly isomorphic to Λ as profinite ring; in
particular, ΛF is a power series ring over Z�. We need a separate notation, however,
for its power series generator. Set

TF = (1 + T)�
m

− 1 ,

where m = mF is as above. Then ΛF is identified with Z�[[TF]] ⊂ Z�[[T]] = Λ.
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Some Important Modules Over the Iwasawa Algebra of F
Starting from basic algebraic objects attached to number rings – class groups, unit
groups and so on – we can construct associated Λ′

F-modules in two ways: (i) By
taking �-adic completions at each level of the cyclotomic tower and passing to the
inverse limit over the appropriate norm maps, thereby obtaining a profinite Λ′

F-
module; or (ii) passing to the direct limit over the appropriate inclusion-induced
maps in the cyclotomic tower – in some cases, after first tensoring with Z|�∞ –
thereby obtaining, typically, a discrete torsion Λ′

F-module.
The basic examples:

Primes over �: Let S denote the set of primes dividing � in OF , and let s denote the
cardinality of S. Each β ∈ S is ramified in the cyclotomic tower, and furthermore
there is some finite j such that all β ∈ Sj are totally ramified in O∞|Oj. Thus S∞,
the set of all primes over � in O∞, is finite, and the permutation representation of
Γ′

F given by Z�S∞ is the same thing as the norm inverse limit of the representations
Z�Sn. As with any permutation representation, there is a canonical epimorphism to
the trivial module. Let B∞ denote the kernel. Thus there is a short exact sequence
of semidiscrete Λ′

F-modules

0→B∞→Z�S∞→Z�→0 .

The letter B is chosen to suggest the Brauer group, since it follows from class
field theory that B is naturally isomorphic to Hom(Z|�∞, Br R), the Tate module of
the Brauer group of R.

Class groups: Let A (resp. A′) denote the �-torsion subgroup of the class group
of OF (resp. of R). Passing to the norm inverse limit with the A′s yields profinite
Λ′

F-modules

A∞ = limnAn A′
∞ = limnA′

n .

Passing to the direct limit yields discrete torsion Λ′
F-modules

A∞ = colimnAn A′
∞ = colimnA′

n .

Note that there is a short exact sequence of the form 0→J∞→A∞→A′∞→0,
where J∞ is a certain quotient of Z�S∞ and in particular is semidiscrete.

Unit groups: Let E (resp. E′) denote the �-adic completion of the unit group O×
F

(resp. R×). Do not confuse this construction with taking units of the associated
local rings.

Passing to the norm inverse limit yields profinite Λ′
F-modules

E∞ = limn(O×
n )∧ E′

∞ = limn(R×
n )∧ .

Let E (resp. E ′) denote O×
F ⊗ Z|�∞ (resp. R× ⊗ Z|�∞). Passing to the direct limit

in the cyclotomic tower yields discrete torsion Λ′
F-modules

E∞ = colimnO
×
n ⊗ Z|�∞ E ′

∞ = colimnR×
n ⊗ Z|�∞ .
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Local unit groups: For each prime β ∈ S, let FP denote the local field obtained by
P -adic completion. Let

U =
∏

β∈S

(F×
β )∧ ,

where as usual (−)∧ denotes �-adic completion. Let U∞ denote the norm inverse
limit of the Un’s. In view of the above remarks on primes over �, the number of
factors in the product defining Un stabilizes to s∞. This leads easily to the following
description of the norm inverse limit U∞: For each fixed prime β over � in OF ,
let U∞,β denote the norm inverse limit of the completed unit groups for the �-
adic cyclotomic tower over the completion Fβ. Let Λ′

Fβ denote the pro-group ring
analogous to Λ′

F . Then as Λ′
F-modules we have

U∞ =̃ ⊕β∈SΛ′
F ⊗Λ′

Fβ
U∞,β .

�-extensions unramified away from �: Let Mn denote the Galois group of the maxi-
mal abelian �-extension of Fn that is unramified away from �. Passing to the inverse
limit over n yields M∞, the maximal abelian �-extension of F∞ that is unramified
away from �. Note that M∞ is a profinite Γ′

F-module by conjugation, and hence
a profinite Λ′

F-module.

Algebraic and etale K-groups: One can play the same game using the algebraic
K-groups K∗Rn in the cyclotomic tower. If the Lichtenbaum–Quillen conjecture
are true, however, these do not yield much new. Taking norm inverse limits of
�-completed groups to illustrate, the reason is that these groups become more and
more periodic (conjecturally) as n→∞, while in low degrees K∗R is essentially
determined by the class group, unit group, and Brauer group – all of which we have
already taken into account above.

In étale K-theory, however, there is one small but very useful exception. Equiv-
alently, we can take K(1)-localized K-theory π∗LK(1)KR, and in any case we are
in effect just looking at étale cohomology H∗(R; Z�(n)) for ∗ = 1, 2. In particular
there is a short exact sequence

0→H2(R; Z�(1))→Két
0 R→Z�→0 ,

where the first term in turn fits into a short exact sequence

0→A′→H2(R; Z�(1))→B→0 .

Writing Ln = H2(Rn; Z�(1)), we may again pass to an inverse limit in the cyclo-
tomic tower, yielding a short exact sequence of Λ′

F-modules

0→A′
∞→L∞→B∞→0 .

As we will see below, L∞ is in many ways better behaved than A′∞.
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Iwasawa Theory for the Cyclotomic Extension 3.4.2

The beautiful fact is that virtually all of the profinite modules considered in the
previous section are finitely-generated ΛF-modules. (In the case of the algebraic
K-groups, this would follow from the Lichtenbaum–Quillen conjecture; can it be
shown directly?) Then one can ask: What are the ΛF-ranks? What are the torsion
invariants?

Finding the torsion invariants explicitly is an extremely difficult problem, but
one can ask for qualitative information of a more general nature. In this section
we will sketch an approach based on Poincaré–Artin–Verdier duality and étale
homotopy theory. Some of this material comes from unpublished joint work of Bill
Dwyer and the author, but the key ideas below are due to Dwyer, and the author
is grateful for his permission to include this work here. While the method comes
with a certain cost in terms of prerequisites, it yields many of the classical results
(compare e.g. [19, 38, 46]) in an efficient, conceptual fashion.

We point out that number theorists usually study much more general Z�-
extensions, not just the cyclotomic one. It would be interesting to apply this
approach to the more general setting. Also, for us the �-adic cyclotomic exten-
sion never means just the Z�-extension it contains; we invariably adjoin all the
�-power roots of unity and work with modules over Λ′

F . On the other hand, since
it is usually easy to descend from F0 to F, we will sometimes assume for simplicity
that F contains the �-th roots of unity.

Duality and the Seven-term Exact Sequence
We begin by considering the natural map

i :
∐

β|�
Spec Fβ→Spec R ,

in the étale topology. Let us abbreviate the target of i as Y , and the source as ∂Y . One
can define homology groups H∗(∂Y ; Z�(n)) by considering the s components of ∂Y
separately and simply taking Galois homology as in [38]. Then local class field
theory says that ∂Y behaves like a nonorientable 2-manifold with s components,
in that there are natural local duality isomorphisms

Hk

(
∂Y ; Z�(n)

)
=̃ H2−k

(
∂Y ; Z�(1 − n)

)
.

One could define homology groups for Y in a similar ad hoc way. Let ΩF denote
the maximal �-extension of F∞ that is unramified away from �. Then the étale
cohomology for Y is the same as the profinite group cohomology of the Galois
group G(ΩF|F), so we could define homology by the same device. But we also
want to define relative homology for the pair Y , ∂Y , and here the ad hoc approach
begins to break down. Instead, we will use pro-space homology as in [7]. It is then



980 Stephen A. Mitchell

possible to regard H∗(Y , ∂Y ; Z�(n)) as the homology of the “cofibre” of i. Then
(Y , ∂Y) behaves like a nonorientable 3-manifold with boundary, in that Artin–
Verdier duality (or rather a special case of it usually called Poincaré duality) yields
duality isomorphisms

Hk

(
Y ; Z�(n)

)
=̃ H3−k

(
Y , ∂Y ; Z�(1 − n)

)

and similarly with the roles of H∗, H∗ reversed. A general discussion and proof of
Artin–Verdier duality can be found in [28]. The proof makes use of local duality and
a relatively small dose of global class field theory, including the Hilbert classfield.

Bearing in mind that H2(∂Y ; Z�) = 0 by local duality, we get a seven-term exact
sequence (with trivial Z� coefficients understood)

0→H2Y→H2(Y , ∂Y)→H1(∂Y)→H1Y→H1(Y , ∂Y)→Z�S→Z�→0 .

Taking into account both local and Artin–Verdier duality, and using notation
from the previous section, we have at each stage of the cyclotomic tower a seven-
term exact sequence

0→Dn→E′
n→U ′

n→Mn→Ln→Z�Sn→Z�→0 .

Here we have abbreviated H2(Yn) as Dn; this group is the Leopoldt defect as will be
explained below. Recall that E′

n , U ′
n are �-completed global and local unit groups,

Mn is the Galois group of the maximal abelian �-extension unramified away from �,
Ln is the interesting part of the zero-th étale K-theory, and Sn is the set of primes
dividing �.

Taking norm inverse limits we obtain a seven-term exact sequence of profinite
Λ′

F-modules

0→D∞→E′
∞→U ′

∞→M∞→L∞→Z�S∞→Z�→0 .

Note that we deduce at once a standard result of class field theory, namely a
short exact sequence

0→U ′
∞|E′

∞→M∞→A′
∞→0 ,

We will see later that D∞ = 0, justifying the notation. If the Leopoldt conjecture
holds (see Sect. 3.6), then all the Dn’s vanish as well. Thus an optimistic title for
this section would be “Duality and the six-term exact sequence”.

The Local Case
We digress to consider the local case, as both warm-up and input for the global
case.

Let K be a finite extension of Q�, � odd. Then in a notation that should be
self-explanatory, we have K∞, Λ′

K , MK,∞, U ′
K,∞, etc. For example, MK,∞ is the

Galois group of the maximal abelian �-extension of K∞. Local class field theory
gives isomorphisms

MK,m =̃ U ′
K,m ,
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m ≤ ∞. Our goal is to determine explicitly the structure of MK,∞ as Λ′
K -module.

For simplicity we will assume µ� ⊂ K, and to avoid notational clutter we will drop
the subscript K from ΛK , etc. First, there is a Serre spectral sequence

Hp(Γ; HqK∞) ⇒ Hp+qK .

From this we obtain at once a short exact sequence

0→(M∞)Γ→H1K→Z�→0 .

Since H1K =̃ H1(K; Z�(1)) =̃ U ′ by local duality, this shows that (M∞)Γ has
Z�-rank d, where d = [K : Q�].

Second, there is a universal coefficient spectral sequence

Ext
p
Λ

(
HqK∞, Λ(1)

) ⇒ H2−p−qK∞ .

Notice here that the Tate twist Λ(1) is isomorphic to Λ as Λ-modules, but the
twist is necessary in order to come out with the right Λ-module structure on the
E∞-term. In fact the natural abutment of the spectral sequence is Hp+q(K; Λ(1)),
but this group is isomorphic to the homology group above by local duality plus
a form of Shapiro’s lemma. This spectral sequence yields at once a short exact
sequence

0→Ext1
Λ

(
Z�, Λ(1)

)→M∞→HomΛ
(
M∞, Λ(1)

)→0 .

Since Λ-duals are always free, combining these results yields:

21Proposition 21 There are isomorphisms of Λ-modules

U ′
∞ =̃ M∞ =̃ Λd ⊕ Z�(1) .

Now recall that for a number field F we defined a norm inverse limit of local
units U ′∞, using all the primes over �. Again assuming for simplicity that F contains
the �-th roots of unity, we have:

22Corollary 22 If F is a number field,

U ′
∞ =̃ ΛF

2r2 ⊕
(
⊕β∈SΛF ⊗ΛFβ

Z�(1)
)

.

The Global Case
We consider four miniature spectral sequences associated to the cyclotomic tower.
They are miniature in the sense that they are first quadrant spectral sequences
occupying a small rectangle near the origin. The first three collapse automatically.
Since we are concerned mainly with the ΛF-structure here, we will ignore the ∆F

module structure for the time being. To avoid notational clutter, in this section we
will drop the subscript F from ΓF , ΛF , etc.
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First spectral sequence: There is a Serre spectral sequence

Hp(Γ; HqY∞) ⇒ Hp+qY0 .

From it we obtain immediately:

23 Proposition 23 There are short exact sequences
a)

0→(D∞)Γ→D0→(M∞)Γ→0

and
b)

0→(M∞)Γ→M0→Z�→0 .

In particular, as a corollary of (b) we get:

24 Corollary 24 M∞ is a finitely-generated Λ-module.

Proof By a version of Nakayama’s lemma, it suffices to show (M∞)Γ is finitely-
generated as Z�-module. Hence by (b), it suffices to show M0 = H1(F0; Z�) is
finitely-generated as Z�-module. This in turn reduces to showing H1(F0; µ�) is
finite. But there is a Kummer exact sequence

0→R×
0 |�→H1(F0; µ�)→A0[�]→0 ,

where A0[�] denotes the elements annihilated by �, so this follows from the finite-
generation of the unit group and finiteness of the class group.

Second spectral sequence: There is a relative Serre spectral sequence

Hp
(
Γ; Hq(Y∞, ∂Y∞)

) ⇒ Hp+q(Y0, ∂Y0) .

From it we obtain immediately:

25 Proposition 25
a) (L∞)Γ = L0.
b) There is a short exact sequence

0→(E′
∞)Γ→E′

0→(L∞)Γ→0 .

In particular, as a corollary of (a) we get:

26 Corollary 26 L∞, A′∞, and hence A∞ are finitely-generated Λ-modules.
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This follows because L0 is a finitely-generated Z�-module – thanks to the fact
that both the class group and S∞ are finite.

The analogue of Proposition 25a for A′∞ is false; this is one reason that L∞ is
easier to work with. In fact Proposition 25a yields an interesting corollary. For
a fixed β ∈ S0, let sβ denote the number of primes over β in S∞.

27Corollary 27 Let �ν denote the minimum value of sβ, β ∈ S. Then the cokernel of
the natural map φ : (A′∞)Γ→A′

0 is cyclic of order �ν.
In particular, φ is onto if and only if at least one β ∈ S0 is nonsplit (i.e., inert or

ramified) in F1|F0.

Proof There are isomorphisms

Coker φ =̃ Ker
(
(B∞)Γ→B0

)
=̃ Coker

(
(Z�S∞)Γ→Z�

)
=̃ Z|�ν ,

where the first follows from Proposition 25a and the snake lemma, the second is
elementary, and the third is obvious.

28Remark 28 The kernel of φ is isomorphic to the image of the boundary map
BΓ∞→(A′∞)Γ, or equivalently the cokernel of LΓ∞→BΓ∞. This seems harder to ana-
lyze, although it follows for example that if s0 = 1 then φ is injective. If s∞ = 1 then
B∞ = 0 and φ is an isomorphism.

Next we illustrate the significance of part (b). Note that (E′∞)Γ is the subgroup
of universal norms in E′

0; that is, the units which are in the image of the norm map
from every level of the tower. (Clearly (E′∞)Γ is contained in the universal norms,
and a lim1 argument shows every universal norm comes from E′∞.) Hence if s = 1
and (A′∞)Γ = 0, every element of E′

0 is a universal norm. We also get a theorem
of Kuz’min on the Gross–Sinnott kernel (see [24], Theorem 3.3): Let N F denote
the subgroup of E′

0 consisting of elements that are local universal norms at every
prime over �.

29Corollary 29 There is a canonical short exact sequence

0→(E′
∞)Γ→N F→(A′

∞)Γ→0 .

Proof This is immediate from the commutative diagram of short exact sequences

0 → (E′∞)Γ → E′
0 → LΓ∞ → 0

↓ ↓ ↓
0 → (U ′∞)Γ → U ′

0 → (Z�S∞)Γ → 0 .

The second spectral sequence also shows that (E′∞)Γ = 0, but this was obvious
a priori.
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Third spectral sequence: There is a universal coefficient spectral sequence

Ext
p

Λ
(
HqY∞, Λ(1)

) ⇒ H3−p−q(Y∞, ∂Y∞) .

Notice here that the Tate twist Λ(1) is isomorphic to Λ as Λ-modules, but the twist
is necessary in order to come out with the right Λ-module structure on the E∞-
term. In fact the natural abutment of the spectral sequence is Hp+q(Y0; Λ(1)), but
this group is isomorphic to the homology group above by Artin–Verdier duality
plus a form of Shapiro’s lemma. Recalling that Λ has global dimension two, we
obtain at once:

30 Proposition 30
a) There is a short exact sequence

0→Z�(1)→E′
∞→HomΛ(M∞, Λ)(1)→0

b) There is an isomorphism L∞ =̃ Ext1
Λ(M∞, Λ)(1)

c) Ext2
Λ(M∞, Λ) = 0. Hence M∞ has no nonzero finite submodules, and has

projective dimension at most one.

Since any module of the form Ext1
Λ(N, Λ) is a Λ-torsion module, part (b) shows at

once:

31 Corollary 31 L∞ is a Λ-torsion module. Hence A∞ and A′∞ are also Λ-torsion
modules.

Next we have:

32 Corollary 32 E′∞ =̃ Λr2 ⊕ Z�(1). Moreover, M∞ has Λ-rank r2.

Proof Any module of the form HomΛ(N, Λ) with N finitely-generated is a free
module. By Proposition 30a we conclude that E′∞ =̃ Z�(1) ⊕ Λt for some t. Fur-
thermore t is the Z�-rank of (E′∞)Γ. Now since L∞ is a finitely-generated Λ-torsion
module, (L∞)Γ and (L∞)Γ have the same Z�-rank; hence (L∞)Γ has rank s0 − 1.
Then Proposition 25b shows that (E′∞)Γ has rank r2. This completes the proof of
the first statement. The second is then immediate from Proposition 30a.

33 Corollary 33 The freeness defect of M∞|tM∞ is Pontrjagin dual to the maximal
finite submodule of A′∞.

Proof By Proposition 2.4, the freeness defect is Pontrjagin dual to Ext1
Λ(M∞|

tM∞, Λ), and this latter group is easily seen to be isomorphic to the maximal finite
submodule of Ext1

Λ(M∞, Λ). Now use Proposition 30b.
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We also get an important corollary on the Leopoldt defect groups Dn.

34Corollary 34
a) The norm inverse limit D∞ = H2(Y∞; Z�) vanishes.
b) D0 = MΓ.
c) The direct limit D∞ is just Dn for large enough n, and is in fact isomorphic to

the maximal semidiscrete submodule Mδ∞.

Proof
a) Note that we have now computed the Λ-rank of every term in the seven-term

exact sequence except D∞. Counting ranks then forces rankΛD∞ = 0; in other
words, D∞ is a Λ-torsion module. But the seven-term exact sequence also
shows that it embeds in E′∞|Z�(1), and so is Λ-torsionfree. Hence it is zero.

b) This is now immediate from Proposition 23a.
c) This follows from the validity of (b) at each level of the cyclotomic tower.

Fourth spectral sequence:
Reversing the roles of Y and (Y , ∂Y) in the third spectral sequence yields our

last spectral sequence:

Ext
p

Λ
(
Hq(Y∞, ∂Y∞), Λ(1)

) ⇒ H3−p−qY∞ .

Some of the information from this spectral sequence is already known: We find
that HomΛ(L∞, Λ) = 0, confirming that L∞ is a Λ-torsion module; we find that
Ext2

Λ(E′∞, Λ) = 0, confirming that E′∞ has no finite submodules. The remaining
parts of the spectral sequence yield an exact sequence

0→Ext1
Λ

(
L∞, Λ(1)

) →M∞→HomΛ
(
E′

∞, Λ(1)
) d2→ Ext2

Λ
(
L∞, Λ(1)

)→0 .

and an isomorphism Z� =̃ Ext1
Λ(E′∞, Λ(1)).

The isomorphism yields no new information, but we get something interesting
from the exact sequence. First we should justify the surjectivity of the indicated d2.
This can be seen by direct inspection, or as follows: We have seen in Corollary 33 that
the freeness defect of M∞|tM∞ is Pontrjagin dual to the maximal finite submodule
of L∞, which in turn is dual to the indicated Ext2. Hence d2 is surjective. Thus we
have:

35Corollary 35
a) The torsion submodule tM∞ of M∞ is isomorphic to Ext1

Λ(L∞, Λ(1)). Hence
there is a short exact sequence

0→Ext1
Λ

(
B∞, Λ(1)

)→tM∞→Ext1
Λ

(
A′

∞, Λ(1)
)→0 .

b) The torsion-free quotient of M∞ embeds with finite index in the free module
HomΛ(E′∞, Λ(1)).
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One can also get the following theorem of Iwasawa, in effect by the ordinary
universal coefficient theorem:

36 Theorem 36 There is a short exact sequence of Λ′-modules

0→(A′
∞)#(1)→M∞→(E ′

∞)#(1)→0 .

Algebraic K-Theory Spectra3.5

We continue to fix a prime �.
Let X be a sufficiently nice scheme. By this we mean that X is a separated

noetherian regular scheme of finite Krull dimension and with all residue fields of
characteristic different from �, and that we reserve the right to impose additional
hypotheses as needed. In the present context, it is common to assume also that X
has finite étale cohomological dimension for �-torsion sheaves, written cd�

étX < ∞.
We will, however, avoid this last hypothesis as much as possible.

Now let H·
ét(X, K) denote the Thomason–Jardine hypercohomology spectrum

associated to the algebraic K-theory presheaf on the étale site of X. Up to con-
nective covers, the �-adic completion of this spectrum is equivalent to the Dwyer–
Friedlander étale K-theory spectrum of X. See [22, 44] or [34] for details. The key
fact about H·

ét(X, K) is that it admits a conditionally convergent right half-plane
cohomology spectral sequence

E
p,−q
2 = H

p
ét

(
X; Z�

(q

2

))
⇒ πq−pH

·
ét(X, K)∧ .

Here Z�( q
2 ) is to be interpreted as zero if q is odd, and as always our étale cohomology

groups are continuous étale cohomology groups in the sense of Jannsen [21]. The
condition cd�

étX < ∞ is often invoked to to ensure actual convergence of the spectral
sequence, but it is not a necessary condition.

There is a natural augmentation map η : KX→H·
ét(X, K). The Dwyer–Friedlander

spectrum-level version of the Lichtenbaum–Quillen conjecture can then be stated
as follows:

37 Conjecture 37 Let X be a sufficiently nice scheme. Then for some d ≥ 0, the
completed augmentation

η∧ : (KX)∧→H·
ét(X, K)∧

induces a weak equivalence on d − 1-connected covers.

In a monumental paper [44], Thomason proved the K(1)-local Lichtenbaum–
Quillen conjecture.
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38Theorem 38 (Thomason) Let X be a sufficiently nice scheme. Then LK(1)η is a weak
equivalence .

For Thomason, “sufficiently nice” includes several further technical hypotheses,
including cd�

étX < ∞. He also assumes
√

−1 ∈ X in the case � = 2. But for
� = 2 the Lichtenbaum–Quillen conjecture itself has now been proved in many
cases [41] [39], and in those cases the assumption

√
−1 ∈ X can be dropped.

Now (H·
ét(X, K))∧ is essentially K(1)-local, meaning that the map to its K(1)-

localization induces a weak equivalence on some connected cover. Hence the
Lichtenbaum–Quillen conjecture can be re-interpreted as follows:

39Conjecture 39 Let X be a sufficiently nice scheme. Then (KX)∧ is essentially K(1)-
local.

Thomason’s theorem (or the actual Lichtenbaum–Quillen conjecture, when
known) also has the corollary:

40Corollary 40 K̂
∗
KX =̃ K̂

∗
H

·
ét(X, K).

Since K̂
∗
H

·
ét(X, K) is computable, this leads to explicit computations of K̂

∗
KX

([9, 10, 33]).
It is natural to ask how LK(1)KX fits into the K(1)-local world described in

Sect. 3.3. We will assume that X satisfies the K(1)-local Lichtenbaum–Quillen
conjecture. Thus X could be any scheme satisfying the hypotheses of Thomason’s
theorem, or any scheme for which the actual Lichtenbaum–Quillen conjecture is
known. In many interesting cases, LK(1)KX belongs to the thick subcategory of
K̂-finite spectra:

41Proposition 41 Suppose that (a) Hi
ét(X;Z|�(m)) is finite for every i, m; and (b)

the descent filtration on πn(H·
ét(X, K))∧ terminates for each n. Then LK(1)KX is

K̂-finite.

Proof By (a), Hi
ét(X; Z�(m)) is a finitely-generated Z�-module for all i, m. Hence by

(b) and the descent spectral sequence, the same is true of πn(H·
ét(X, K))∧. Using

Theorem 15 and the fact that (H·
ét(X, K))∧ is essentially K(1)-local, it follows that

LK(1)H
·
ét(X, K) is K̂-finite. Since LK(1)KX =̃ LK(1)H

·
ét(X, K) by assumption, this

completes the proof.
There are many examples of schemes X satisfying conditions (a) and (b). The

most important for our purposes is X = Spec R, where R = OF[ 1
�

] as in Sect. 3.4.1.
Condition (b) holds even when � = 2 and F has a real embedding; in this case
descent filtration 5 vanishes. See for example [35], Proposition 2.10.

Given such an X, we can then analyze LK(1)KX up to pseudo-equivalence, or up
to some weaker mod C equivalence in the sense of Sect. 3.3.6. The case X = Spec R
is the topic of the next section.
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K-Theoretic Interpretation of some
Conjectures in Iwasawa Theory3.6

A fundamental problem of Iwasawa theory is to determine the pseudo-isomorphism-
type of M∞. In Corollary 32 we determined the rank; the much more difficult
question that remains is to determine the torsion invariants. Several classical con-
jectures from number theory – the Leopoldt conjecture and Iwasawa’s µ-invariant
conjecture, for example – have interpretations in terms of the basic Iwasawa module
M∞. Using a theorem of the author and Bill Dwyer, we show how to to reinterpret
these conjectures in terms of the homotopy-type of KR (Sects. 3.6.1, 3.6.2). In the
case of totally real fields, these conjectures have an analytic interpretation also, in
terms of �-adic L-functions. In Sect. 3.6.3 we indicate how to make the connection
between the algebraic and analytic points of view, and discuss the generalized
Lichtenbaum conjecture.

Conjectures Concerning the Semi-discrete Primes3.6.1

As a first step we consider the multiplicity of the extended Tate primes τ′
n = (τn, n)

in M.

42 Conjecture 42: (Basic Conjecture I)

〈τ′
n, M∞〉 =

{
0 if n ≠ 1

s − 1 if n = 1

Note that since M∞ has no nonzero finite submodules, for n ≠ 1 the conjecture
has the more transparent reformulation

HomΛ′
F

(Z�(n), M∞) = 0 .

In the case n = 1 it is known (see below) that

rankZ�
HomΛ′

F
(Z�(n), M∞) = s − 1 .

Hence the content of the conjecture is that e1M∞ does not involve any elementary
factors of the form ΛF|τk

1 for k > 1.
I don’t know where this conjecture was first formulated, although it seems to

be standard; see [24]. For the case n ≠ 1 it is equivalent to a conjecture in Galois
(or étale) cohomology of Schneider [42]. For n = 1 it is an algebraic version
of a conjecture of Gross [14]. In all cases there are analytic analogues of the
conjecture for totally real fields, expressed in terms of special values of �-adic
L-functions. The link between the algebraic and analytic versions is provided by
Iwasawa’s Main Conjecture as proved by Wiles [47], as will be discussed briefly
below.
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If we consider the Basic Conjecture for all the Fm ’s at once, it can be formulated in
another way. If S is a set of height one primes of Λ, and M, N are finitely-generated
Λ-modules, write

M ∼S N

if M and N have the same elementary summands at all primes in S. Equivalently,
the torsion submodules are isomorphic after localizing at any prime in S. Let Sδ
denote the set of semi-discrete primes in Λ, and let 〈Sδ〉 denote the fit subset it
generates.

43Conjecture 43: (Basic Conjecture II)

M∞ ∼〈Sδ〉 B∞(1) .

Equivalently, (M∞(−n))δ = 0 for n ≠ 1, and M∞(−1) ∼Sδ B∞ .

It is easy to see that Conjecture II is equivalent to Conjecture I for all the Fn’s. It
can also be interpreted as giving the torsion invariants of M∞ at the Tate twists
of the semi-discrete primes; it says that νi only occurs 1-twisted with length one,
and with frequency determined in a simple way by the splitting behaviour of the
primes over � in the cyclotomic tower.

The conjecture has an equivalent formulation in terms of class groups:

44Conjecture 44: (Basic Conjecture III)
For all n ∈ Z, 〈τ′

n, A′∞〉 = 0. Equivalently (if we consider all Fm at once), for all
n ∈ Z we have

(A′
∞(−n))δ = 0 .

The equivalence of I–II with III is immediate from the formula for tM∞ given
in Corollary 35.

We will see that these conjectures incorporate versions of the Leopoldt and Gross
conjectures, and that the case n > 1 has been proved by Soulé. First, however, we
bring topological K-theory back into the picture.

The following theorem was proved by Bill Dwyer and the author in [9]; see
also [33].

45Theorem 45

K̂
0
KR =̃ Λ′ ⊗Λ′

F
Z�

K̂
−1

KR =̃ Λ′ ⊗Λ′
F

M∞

This theorem yields a description of the homotopy-type LK(1)KR, and hence
conjecturally of KR itself. First of all – since we are working at an odd prime � –
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one can always find a certain residue field F of R such that KR→KF is a retraction
at �. More explicitly, one chooses F so that if F∞ is the �-adic cyclotomic extension
of F, then G(F∞|F) = Γ′

F . The existence of such residue fields follows from the
Tchebotarev density theorem. Let KredR denote the fibre of this map – the reduced
K-theory spectrum of R. Then KredR is the fibre of a map between wedges of
copies of Σ−1K̂ , where the map is given by a length one resolution of M∞ as
Λ′

F-module.
Theorem 45 also shows that the Basic Conjecture may be translated into a conjec-

ture about the action of the Adams operations on K̂
−1

KR. It can also be formulated
in terms of the homotopy groups of LK(1)KR. For the case n ≠ 1 we have:

46 Proposition 46 For n ≠ 1, the following are equivalent:
a) The Basic Conjecture for n
b) K̂

2n−1
KR has no nonzero fixed points for the Adams operations.

c) π2n−2LK(1)KR is finite.

The equivalence of (a) and (b) is immediate from Theorem 45; note that (b) is
just another way of saying that 〈τ′

n, K̂
−1

KR〉 = 0. The equivalence of (b) and (c) is
immediate from the Adams spectral sequence; cf. Proposition 11. The case n = 1
will be discussed further below.

In terms of the category of K̂-finite spectra discussed in Sect. 3.3.5, we can
reformulate the Basic Conjecture in its second version as follows: Fix a residue
field F of R as above. Now let β1, … , βs denote the primes over � in R0, and let di

denote the number of primes over βi in R∞. Finally, let Fi denote the extension of
F of degree di.

47 Proposition 47 Assume for simplicity that µ� ⊂ F. Let A denote the complement
of the set of Tate-twisted semi-discrete primes (in the set of height one primes of
Λ′), and let C = CA. Then Basic Conjecture II is equivalent to the existence of
a mod C equivalence

LK(1)KR ∼C LK(1)

(

KF
∨

ΣKF1

∨
ΣKF2

∨
…

∨
ΣKFs

∨
(

r2∨
Σ−1K̂

))

,

where KF1 denotes the cofibre of the natural map KF→KF1. (The ordering of the
βi’s is immaterial.)

We next consider various special cases of the Basic Conjecture.

Soulé’s Theorem: This is the case n ≥ 2 of the Basic Conjecture, which was proved
in [43]. A proof can be given as follows: It suffices to show that π2nLK(1)KR is finite
for n ≥ 1. By theorems of Borel and Quillen the groups π2nKR are finite for n ≥ 1,
so if the Lichtenbaum–Quillen conjecture holds for R we are done. But in fact all
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we need is that π2nKR maps onto π2nLK(1)KR, and then the surjectivity theorem of
Dwyer and Friedlander [9] completes the proof.

The Leopoldt Conjecture. The Leopoldt conjecture asserts that the map φ : E′→U ′
from global to local �-adically completed units is injective. The kernel D of φ is the
Leopoldt defect defined earlier. There are several interesting equivalent versions
(see [38]):

48Theorem 48 The following are equivalent:
1) The Leopoldt conjecture for F

2) M
Γ′

F∞ = 0
3) F has exactly r2 + 1 independent Z�-extensions

Note this is the case n = 0 of Basic Conjecture I.
In topological terms, we then have:

49Proposition 49 The following are equivalent:
1) The Leopoldt conjecture for F
2) There are no nonzero fixed points for the action of the Adams operations

on K̂
−1

KR.
3) π−2LK(1)KR is finite.

Here we encounter a recurring and tantalizing paradox: On the one hand, the
algebraic K-groups of R vanish by definition in negative degrees; on the face
of it, then, they are useless for analyzing condition (3) above in the spirit of
Soulé’s theorem. On the other hand, we know that LK(1)KR is determined by any
of its connective covers, and hence if Lichtenbaum–Quillen conjecture holds it is
determined, in principle, by KR. The problem lies in making this determination
explicit. Smashing with a Moore spectrum MZ|�ν makes the homotopy groups
periodic, thereby relating negative homotopy to positive homotopy, but it is difficult
to get much mileage of out this.

The Gross Conjecture. The case n = 1 of Basic Conjecture I is an algebraic version of
the Gross conjecture [14]. For simplicity we will assume µ� ⊂ R, so that Λ′

F = ΛF .
Since the original Gross conjecture concerns totally real fields, this might seem like
a strange assumption, but in the version to be discussed here the assumption can be
eliminated by a simple descent. The algebraic Gross conjecture says that τ1 occurs
with multiplicity s − 1 in M∞. The multiplicity is at least s − 1 by Corollary 35a.
More precisely, we have:

50Proposition 50 τ1 occurs in M∞ with frequency s − 1. In other words,

rankZ�
HomΛF

(Z�(1), M∞) = s − 1 .
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Proof Let ν denote the frequency. Using Theorem 45, Proposition 11 and Corol-
lary 32, we have

rankZ�
π1LK(1)KR = r2 + ν .

But π1LK(1)KR =̃ π1KR∧ =̃ (R×)∧, and (R×)∧ has rank r2 + s − 1 as desired. (This
is just Soulé’s étale cohomology argument translated into topological terms.)

Now the homotopy groups by themselves can only detect the frequencies of the
τn’s, not the multiplicities. Nevertheless, there is a curious homotopical interpre-
tation of the Gross conjecture that we now explain.

Let ξ denote a generator of π−1LK(1)S0 =̃ Z�, and recall that ξ has Adams filtration
one.

51 Theorem 51 The Gross conjecture holds for R if and only if multiplication by ξ:

π1LK(1)KR→π0LK(1)KR

has rank s − 1.

Proof The algebraic Gross conjecture holds for R if and only if

rankZ�
HomΛF

(M∞, ΛF|τ2
1) = 2r2 + s − 1 .

Now let X denote the cofibre of ξ : LK(1)S−1→LK(1)S0. Then X can be described
as the unique object of LK(1)S with K̂

1
X = 0 and K̂

0
X = Λ|T2 (with trivial ∆

action). The usual Adams spectral sequence argument shows that the Z�-rank of
[ΣX, LK(1)KR] is the same as the rank of the Hom term appearing in the lemma
above. Now consider the exact sequence

π2LK(1)KR
ξ→ π1LK(1)KR→[ΣX, LK(1)KR]→π1LK(1)KR

ξ→ π0LK(1)KR .

Since π2LK(1)KR =̃ (K2R)∧ is finite, we see that [ΣX, LK(1)KR] has the desired rank
2r2 + s − 1 if and only if ξ : π1LK(1)KR→π0LK(1)KR has rank s − 1.

52 Remark 52 Recall here that π0LK(1)KR =̃ Két
0 R, and that there is a short exact

sequence

0→L→π0LK(1)KR→Z�→0

with L =̃ H2
ét(R; Z�(1)) and rankZ�

L = s − 1. Since ξ has Adams filtration one, the
image of multiplication by ξ lies in L.
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Iwasawa’s µ-Invariant Conjecture 3.6.2

Recall that if M is a finitely-generated Λ-module, µ(M) denotes the multiplicity of
the prime � in the associated elementary module E; in other words, it measures
the number of Λ|�a’s occuring in E, weighted by the exponents a.

53Conjecture 53: (Iwasawa’s µ-invariant conjecture) For any number field F,
µ(M∞) = 0. Equivalently, µ(A∞) = 0.

The A∞ version of the conjecture was motivated by the analogy with curves
over a finite field; see [38] or [13]. Note that since M0∞ = 0, for M∞ the conjecture
is equivalent to the statement that M∞ is �-torsion-free.

54Proposition 54 The following are equivalent:
1) Iwasawa’s µ-invariant conjecture
2) K̂

−1
KR is �-torsion-free

3) (Here we assume µ� ⊂ R for simplicity.) If C denotes the thick subcategory
of dualizable K(1)-local spectra, LK(1)KR is equivalent mod C to a wedge of r2

copies of Σ−1K̂ .

The equivalence of (1) and (2) is immediate from Theorem 45, together with
the fact that M∞ has no finite submodules. The equivalence of (2) and (3) is
an easy consequence of Theorem 45, the fact that M∞ has Λ-rank r2, and the
characterization of dualizable objects in Sect. 3.3.5.

Totally Real Fields 3.6.3

When the number field F is totally real, the Basic Conjectures can be formulated
in terms of special values of �-adic L-functions. Since the connection is not always
easy to extract from the literature, we give a brief discussion here. See [38] or [13]
for further information.

Algebraic Aspects
On the algebraic side, the Iwasawa theory of totally real fields simplifies somewhat
for the following reason. Let F be such a field, let F0 denote as usual the extension
obtained by adjoining the �-th roots of unity, and let F+

0 denote the fixed field of
complex conjugation – that is, the unique element σ of order 2 in ∆F – acting on
F0. Then σ acts on the various Iwasawa modules M∞, A′∞, etc. associated to F
as above, and these split into ±1-eigenspaces: M∞ = M+∞ ⊕ M−∞, and so on. In
terms of the idempotents ei of Z�∆F , , we are merely sorting the summands eiM
according to the parity of i. Now it is not hard to show that every unit of O0 is
the product of a unit of O+

0 and root of unity. The next result then follows easily
from Corollary 32.
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55 Proposition 55 E−∞ = (E′∞)− = Z�(1), and therefore M+∞ is a ΛF-torsion module.

Here the second statement follows from Corollary 35; note the Tate twist there
that reverses the ±1-eigenspaces of σ.

As an illustration we compare the Iwasawa modules tM+∞ and A−∞. Define J∞ by
the short exact sequence

0→J∞→A∞→A′
∞→0 ,

and note that there is an exact sequence of Λ′
F-modules

0→E∞→E′
∞→Z�S∞→J∞→0 .

Taking (−1)-eigenspaces, the proposition yields:

56 Corollary 56 (Z�S∞)− =̃ J−∞.

Now recall from Sect. 3.2.3 the divisor D of a module, and note that D is additive
on short exact sequences. Hence we have the divisor equation

D(A−
∞) = D((A′

∞)−) + D(B−
∞) .

Finally, for a Λ′
F-module N let Ṅ denote N with the twisted Γ′

F-action γ · x =
c(γ)γ−1x; note this twist takes Z�(n) to Z�(1 − n). Then Corollary 35 yields the
important fact:

57 Corollary 57 D ˙(A−∞) = D(tM+∞).

A conjecture of Greenberg (see [13]) asserts that A+∞ is finite. Assuming this
conjecture, the contributions of the units and the class group to M∞ can be neatly
separated into the + and − summands. In fact the torsion-free and torsion parts
would then also separate into the + and − summands, except for the part coming
from B∞. Even without the Greenberg conjecture, this splitting into + and −
summands is very useful; see for example the reflection principle as discussed
in [46], Sect. 10, or [38], XI, Sect. 4.

L-functions
On the analytic side, the totally real fields are distinguished by their interesting
�-adic L-functions. Now an L-function typically involves a choice of Dirichlet
character, or more generally a representation of the Galois group, so we emphasize
from the outset that we are only going to consider a very special case: characters of
∆F . These are the characters ωi, where ω is the Teichmuller character and 0 ≤ i ≤ d
(d = [F0 : F]).

The following theorem was first proved for abelian fields F by Leopoldt and
Kubota. It was proved in general, for arbitrary abelian L-functions, by Deligne and
Ribet.
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58Theorem 58 Let F be a totally real field, and assume � is odd. For each character
χ = ωi of ∆F with i even, there is a unique continuous function

L�(s, χ) : Z� − {1}→Q�

such that for all n ≥ 1

L�(1 − n, χ) = L(1 − n, χω−n)
∏

β|�
(1 − χω−n(β)N(β)n−1) .

Moreover, there are unique power series gi(T) ∈ ΛF such that

L�(1 − s, χ) =

{
gi(cs

0 − 1) if i ≠ 0

gi(cs
0 − 1)|(cs

0 − 1) if i = 0 .

Several remarks are in order. The L-function appearing on the right of the
first equality is a classical complex L-function. The indicated values, however, are
known to lie in Q(µ�−1) and hence may be regarded as lying in Q�. One could
try to define L� for odd χ or arbitrary F by the same interpolation property, but
then the classical L-function values on the righthand side would be zero; indeed
the functional equation for such L-functions (see [37], pp. 126–7 for a short and
clear overview of this equation) shows that for n ≥ 1 L(1 − n, ωj) is nonzero
if and only if F is totally real and j = n mod 2. Thus L� would be identically
zero.

Turning to the Euler factors, recall that N(β) is the cardinality of the associated
residue field and that for any character χ, χ(β) is defined as follows: Let Fχ denote
the fixed field of the kernel of χ, so that χ is pulled back from a faithful character of
G(Fχ|F). If β is unramified in Fχ|F, we set χ(β) = χ(σβ), where σβ is the associated
Frobenius element. In practical terms, this means that χ(β) = 1 if and only if β
splits completely in Fχ. If β is ramified, we set χ(β) = 0.

Iwasawa’s Main Conjecture – motivated by the analogy with curves over a finite
field – predicted that the power series gi were twisted versions of characteris-
tic series for the appropriate eigenspaces of A∞. The conjecture was proved by
Wiles [47], and can also be formulated in terms of M∞; the two versions are related
by Corollary 57.

59Theorem 59 With the notation of the preceeding theorem, the power series gi(T)
is a characteristic series for the ΛF-module eiM∞.

Analytic Versions of the Basic Conjecture
Combining these two results, we can now translate Basic Conjecture I for F0 into
a statement about zeros of L�(s, χ). The translation is not perfect; for example, as
it stands we can only hope to get information about the even eigenspaces eiM∞. If
we assume Greenberg’s conjecture, however, the torsion in the odd eigenspaces all
comes from B∞(1). Let us consider case by case:
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The case n > 1: Note that τn is in the support of eiM – or in other words, Z�(n)
occurs in eiM – if and only if the characteristic series for eiM vanishes at cn

0 − 1.
By Wiles theorem and the second part of the Deligne–Ribet theorem, this in turn
is equivalent to the vanishing of L�(1 − n, ωi). Assuming Greenberg’s conjecture,
we get the clean statement that Basic Conjecture I for n > 1 is equivalent to the
nonvanishing of the L�(1 − n, ωi). Now observe that the Euler factors appearing
in the definition of L�(s, χ) are units in Z� when n > 1. Hence L�(1 − n, ωi) = 0 if
and only if L(s, χω−n) = 0. But as noted above, for n ≥ 1, L(1 − n, ωj) is nonzero if
and only if F is totally real and j = n mod 2. Here we have j = i − n with i even. This
yields Basic Conjecture I for n > 1; that is, Soulé’s theorem – at least for the even
eigenspaces eiM.

The case n = 1: In this case a typical Euler factor has the form 1 − χω−1(P ), and
hence will vanish precisely when β splits completely in Fχω−1

. Let mχ denote the
total number of such primes β. Note that the classical L-function factor does not
vanish. Then it is natural to conjecture that L�(s, χ) has a zero of order mχ at s = 0. I
will call this the analytic Gross conjecture, even though it is only a part of a special
case of the general conjecture made by Gross in [14]; the general version not only
considers much more general characters but also predicts the exact value of the
leading coefficient. In view of Wiles’ theorem, we see at once that the analytic
Gross conjecture is equivalent to the algebraic Gross conjecture given earlier, but
restricted to the even eigenspaces eiM. Once again, if we assume Greenberg’s
conjecture, the algebraic Gross conjecture for the odd eigenspaces is automatic.

The case n = 0: Here we are just outside the range where L�(1 − n, χ) is specified by
Theorem 58. On the other hand, Wiles’ theorem tells us that if χ is nontrivial then
L�(1, χ) is defined, and is nonzero if and only if the algebraic Leopoldt conjecture
holds for eiM (χ = ωi). If χ = ω0 is the trivial character, so that L�(s, χ) is the �-
adic zeta function ζ�(s), then a theorem of Colmez says that the algebraic Leopoldt
conjecture for e0M is equivalent to the assertion that ζ�(s) has a simple pole at
s = 1. Indeed this last equivalence would follow immediately from Wiles’ theorem,
but Wiles’ proof uses Colmez’ theorem, so such an argument would be circular. In
any case, we can now formulate an analytic Leopoldt conjecture – nonvanishing
of L�(1, χ) when χ is nontrivial, and the simple pole when χ is trivial – and
the analytic form is equivalent to the algebraic Leopoldt conjecture for the even
eigenspaces eiM∞.

The case n < 0: Again we are outside the range where L�(1 − n, χ) is specified.
But in this case the classical values L(1 − n, χ) are obviously nonzero, by the Euler
product formula. So (as far as I know) it is a reasonable conjecture that L�(1 − n, χ)
is also nonzero. Again, this corresponds to Basic Conjecture I for n < 0 and even
eigenspaces.

The Generalized Lichtenbaum Conjecture
Finally, this is a good place to mention the generalized Lichtenbaum conjecture – or
theorem, depending on which version of it is considered. Here is a version that
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is known: For x, y ∈ Q�, write x ∼� y if ν�x = ν�y. Recall that d = [F0 : F],
and let ei, 0 ≤ i < d, denote the idempotents in Z�[∆F] corresponding to the
characters ωi.

60Theorem 60 Let F be a totally real field, and assume � is odd. Then for n > 1 and
i = n mod 2,

L(1 − n, ωi) ∼�
| e−iπ2n−2LK(1)KR0 |
| e−iπ2n−1LK(1)KR0 | .

61Remark 61 If the Lichtenbaum–Quillen conjecture is true for R0, then the homotopy
groups in the fraction can be replaced by the corresponding �-completed K-
groups of R0. These homotopy groups coincide with the étale cohomology groups
H2

ét(R0; Z�(n)) (the numerator) and H1
ét(R0; Z�(n)) (the denominator). In this form,

a more general version of Theorem 60 is given in [24].

We sketch the proof, leaving the details to the reader. We use the abbreviation
πm = πmLK(1)KR. Of course we should first show that the groups appearing in
the fraction are finite, so that the theorem makes sense. For the numerator this
is clear from Soulé’s theorem, even before applying the idempotent e−i. For the
denominator we have:

62Lemma 62

e−iπ2n−1 =̃

{
Z�|(cn

0 − 1) if i + n = 0 mod d

0 otherwise .

The proof is similar to some of the arguments below, but easier. Now using
Wiles’ theorem we have

L(1 − n, ωi) ∼� L�(1 − n, ωi+n) ∼�

{
gi+n(cn

0 − 1) if i + n ≠ 0 mod d

gi+n(cn
0 − 1)|(cn

0 − 1) if i + n = 0 mod d .

Furthermore, for any power series g prime to τn we have g(cn
0 − 1) ∼�| Z�(n)|g |.

The next lemma is an interesting exercise in Λ-modules:

63Lemma 63 Suppose M, N are finitely-generated Λ-torsion modules with disjoint
support, and M0 = 0 = N0. Then Ext1

Λ(M, N) is finite, and | Ext1
Λ(M, N) | depends

only on the divisor of M. In fact, if f is a characteristic series for M,

| Ext1
Λ(M, N) |=| N|fN | .
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We conclude that

gi+n(cn
0 − 1) ∼�

∣∣∣Ext1
ΛF

(
ei+nM∞, Z�(n)

) ∣∣∣ =
∣∣∣e−iExt1

ΛF

(
M∞, Z�(n)

) ∣∣∣

=
∣∣∣e−iExt1

Λ′
(
K̂

·
KR0, K̂

·
S2n−2

) ∣∣∣ =
∣∣∣e−iπ2n−2

∣∣∣ .

Taking into account the first lemma, Theorem 60 follows.
Note that taking i = 0 yields the more familiar formula for the Dedekind zeta

function:

ζF(1 − n) ∼�
| π2n−2LK(1)KR |
| π2n−1LK(1)KR | .

for n > 1 even. If we formulate the theorem in terms of the �-adic L-function, we
can conjecturally get values at positive integers also:

64 Corollary 64 Let F be a totally real field, and assume � is odd. Suppose also that
Basic Conjecture I holds for F0. Then for all n ≠ 0, 1 and i = n mod 2,

L�(1 − n, ωi+n) ∼�
| e−iπ2n−2LK(1)KR0 |
| e−iπ2n−1LK(1)KR0 | .

The proof is the same as before. Note that we cannot take n = 0 because
e0π−1LK(1)KR0 =̃ π−1LK(1)KR always contains a copy of Z� in Adams filtration one
coming from π−1LK(1)S0 under the unit map S0→KR; this Z� is also detected by
mapping to a suitable residue field. We cannot take n = 1 because the primes over
� contribute to the ranks of π0 and π1.

The K-Theory of3.7

SinceQ is totally real, the material of the previous section applies to it. Furthermore,
for any prime � there is a unique prime over � in Q∞; in other words, s∞ = 1.
Hence B∞ = 0, and A∞ = A′∞ = L∞, simplifying the analysis further. Note also
that Γ′

Q
= Γ′, and hence Λ′

Q
= Λ′.

Many of the conjectures mentioned above are known for abelian fields, and in
particularQ, where the proofs are often easier. For example, the Leopoldt and Gross
conjectures, and Iwasawa’s µ-invariant conjecture, are known for abelian fields.
Iwasawa’s Main Conjecture, which was proved by Mazur–Wiles in the abelian
case and by Wiles in general, has a much easier proof for the case Q; see [46].
Furthermore the L-function values appearing in the generalized Lichtenbaum
conjecture can be computed a priori in a more elementary form (see [46], Sect. 3.4):

65 Proposition 65 L(1 − n, χ) = −Bn,χ
n , where Bn,χ is the n-th generalized Bernouilli

number.
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We recall that Bn,ω0 = Bn; here Bn is the usual Bernouilli number, in the notation
for which Bn = 0 if n > 1 is odd.

In the case F = Q there is an older and stronger version of the Greenberg
conjecture, namely the Kummer–Vandiver conjecture. This conjecture asserts that
for any prime �, � does not divide the order of the class group of Q+

0 . Recall that
for � odd,Q0 meansQ with the �-th roots of unity adjoined, while the “+” means
take the maximal real subfield. It is known to be true for all primes � up to eight
million or so. In our notation, the conjecture says that A+

0 = 0.

66Proposition 66 Suppose the Kummer–Vandiver conjecture holds for the prime �.
Then A+

n = 0 for all n, and hence A+∞ = 0.

The proof is immediate, since B∞ = 0 and An = A′
n for all n; hence (A∞)Γn = An

for all n by Proposition 25a.

67Theorem 67 Suppose the Kummer–Vandiver conjecture holds for �. Then if M∞
is the basic Iwasawa module associated to R = Z[1|�], we have

eiM∞ =̃

{
Λ if i odd

Λ|gi if i even

where gi is the power series associated to the �-adic L-function L�(s, ωi) as in
Theorem 58. Furthermore, e0M∞ = 0.

Proof If i is odd, then the Kummer–Vandiver conjecture and the formula for

tM given in Corollary 35 imply that M−∞ is Λ-torsionfree of rank r2Q0 = �−1
2 .

Moreover, by Corollary 35 the freeness defect vanishes and hence M−∞ is actually
free of rank r2, and indeed M−∞ is the twisted Λ-dual of E′∞. A standard argument
with Dirichlet’s unit theorem then shows that all the odd characters occur; that is,
eiM is free of rank one for each odd i.

If i is even, then eiM∞ is Λ-torsion. The Main Conjecture then shows that eiM∞
has characteristic series gi, but in this case a more elementary argument proves
a much stronger statement, namely that eiM∞ =̃ Λ|gi ([46], Theorem 10.16; this
step does not depend on the Kummer–Vandiver conjecture). When i = 0, g0 is the
numerator of the �-adic zeta function, which has a simple pole at s = 1. Hence g0(0)
is a unit in Z�, g0 is a unit in Λ, and Λ|g0 = 0. Again, see [46] for further details.

Now write Bm|m = cm|dm, where cm and dm are relatively prime.
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68 Theorem 68 Assume the Lichtenbaum–Quillen conjecture and the Kummer–
Vandiver conjecture at all primes. Then for n ≥ 2 the K-groups of Z are given as
follows, where n = 2m − 2 or n = 2m − 1 as appropriate:

n mod 8 πn

0 0

1 Z⊕ Z|2
2 Z|cm ⊕ Z|2
3 Z|4dm

4 0

5 Z

6 Z|cm

7 Z|2dm

Proof The 2-primary part of this result will be discussed in the next section. So
we assume � is odd, and show that the theorem holds at �.

Given the structure of M∞, and assuming the Lichtenbaum–Quillen conjecture,
there are two ways to proceed. First, one can easily compute the étale cohomology
groups occurring in the descent spectral sequence by using the universal coefficient
spectral sequence

Ext
p

Λ′(Hét
q R, Z�(m)) ⇒ H

p+q
ét (R; Z�(m)) ;

the descent spectral sequence collapses and one can read off the result from the
Kummer–Vandiver conjecture. Alternatively, in the spirit of this paper, one can
use the K̂-based Adams spectral sequence. This is what we will do; in any case
the calculations involved are almost identical because in this simple situation the
Adams and descent spectral sequences are practically the same thing.

Now we know that as Λ′-modules

K̂
n
KZ =̃

{
M∞ if n = −1

Z� if n = 0 .

Assuming the Lichtenbaum–Quillen conjecture, KZ∧ is essentially K(1)-local,
so we can use the K̂-based Adams spectral sequence to compute its homotopy.
Displayed in its customary upper half-plane format, the Adams spectral sequence
will have only two nonzero rows, namely filtrations zero and one. Hence the spectral
sequence collapses, and there are no extensions because the bottom row is always
Z�-torsionfree. First of all we have

E2m,0
2 = HomΛ′(Z�, Z�(m)) =̃

{
Z� if m = 0

0 otherwise
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E2m+1,0
2 = HomΛ′(M∞(−1), Z�(m)) =̃

{
Z� if m even

0 if m odd .

The (−1)-twist occurs because we set up our Adams spectral sequence using K̂
·

where · = 0, 1; since K̂
−1

KZ[ 1
�

] = M∞ we then have K̂
1
KZ[ 1

�
] = M∞(−1). This

accounts for all the non-torsion in the theorem. Next we have

E2m−1,1
2 = ExtΛ′(Z�, Z�(m)) =̃

{
Z�|(cm

0 − 1) if m = 0 mod � − 1

0 otherwise

Recall our convention that c0 = 1+�, although the choice doesn’t really matter. The
Clausen–von Staudt theorem then implies that the denominator of the indicated
Bernouilli number and ((1 + �)m − 1) have the same powers of �. This accounts for
everything in degrees n = 3 mod 4, as well as the absence of �-torsion in degrees
n = 1 mod 4. Now let m be even. Then

E2m,1
2 = Ext1

Λ′(M∞(−1), Z�(m)) = 0

because ei(M∞(−1)) is Λ-free for i even. This proves the theorem in degrees
n = 0 mod 4. Finally,

E2m−2,1
2 = Ext1

Λ′(Λ|gm, Z�(m)) .

If m = 0 mod � − 1, then Λ|gm = 0. Since then � does not divide cm, by the Clausen–
von Staudt theorem, the theorem is proved for this case. If m ≠ 0 mod � − 1, the Ext
group above is isomorphic to Z�|gm(cm

0 − 1), and hence is cyclic of order �ν, where
ν = ν�(gm(cm

0 − 1)). But

gm(cm
0 − 1) ∼� L�(1 − m, ωm) ∼� L(1 − m, ω0) = −

Bm

m
.

This completes the proof.

Theorem 68 has the following converse (cf. [25]):

69Theorem 69 Suppose (K4nZ)� = 0 for 2n ≤ � − 3. Then the Kummer–Vandiver
conjecture holds at �.

Proof sketch: Suppose the Kummer–Vandiver conjecture fails at �. Then for some
even i, 0 ≤ i ≤ �−3, ei(M∞(−1)) is not free (either because of a torsion submodule,
or because the torsion-free part is not free). It follows that

E2m,1
2 = Ext1

Λ′(ei(M∞(−1)), Z�(m)) ≠ 0 for all m = i mod � − 1 .
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Taking i = 2n, we conclude that (K4nZ)� ≠ 0. (Here we do not need the
Lichtenbaum–Quillen conjecture, because of the Dwyer–Friedlander surjectivity
theorem [9].)

We conclude by discussing the conjectural homotopy-type of KZ[ 1
�

]. Consider
first LK(1)KZ[ 1

�
]. For a Λ-module M, write M[i] for the Λ′-module obtained by

letting ∆ act on M as ωi. Then we have seen above that

K̂
0
KZ[

1

�
] =̃ Z�[0]

and

K̂
−1

KZ[
1

�
] =̃ Λ[1] ⊕ Λ[3] ⊕ … ⊕ Λ[� − 2] ⊕ (Λ|g2)[2] ⊕ … ⊕ (Λ|g�−3)[� − 3] .

Since these Λ′-modules have projective dimension one, LK(1)KZ[ 1
�

] splits into

wedge summands corresponding to the indicated module summands. The K̂
0

term contributes a copy of LK(1)S0. Each Λ[i] contributes a desuspended Adams
summand of K̂ ; taken together, these free summands contribute a copy of ΣKO∧.
Finally, let Xi denote the fibre of gi : Σ−1eiK̂→Σ−1eiK̂ . Then we have

LK(1)KZ[
1

�
] =̃ LK(1)S

0
∨

ΣKO∧ ∨
X2

∨
…

∨
X�−3 .

Of course this description is only “explicit” to the extent that one knows the gi’s
explicitly, at least up to units. But even our assumption of the Kummer–Vandiver
conjecture does not yield this information. There is an auxiliary conjecture –
see [46], Corollary 10.17 and its proof – that implies gi is a unit times a certain linear
distinguished polynomial. In any event, if the Lichtenbaum–Quillen conjecture
holds at � we conclude:

KZ[
1

�
]∧ =̃ j∧

∨
Σbo∧ ∨

Y2

∨
…

∨
Y�−3 ,

where j∧ is the completed connective J-spectrum, bo is the (−1)-connected cover
of KO, and the Y ’s are the (−1)-connected covers of the X’s.

The spectrum j∧ has the following algebraic model: Let p be any prime that
generates the �-adic units; such primes exist by Dirichlet’s theorem on arithmetic
progressions. Then j∧ =̃ KF∧

p , and the retraction map KZ[ 1
�

]∧→j∧ in the conjec-
tural equivalence above would correspond to the mod p reduction map in algebraic
K-theory.

We remark also that when � is a regular prime, all the X’s and Y ’s are contractible.
Even when � is irregular, the proportion of nontrivial Y ’s tends to be low. For
example, when � = 37 – the smallest irregular prime – there will be just one
nontrivial summand Y32, while for � = 691 – the first prime to appear in a Bernouilli
numerator, if the Bernouilli numbers are ordered as usual – there are two: Y12, Y200.
These assertions follow from the tables in [46], p. 350.



K(1)-Local Homotopy Theory, Iwasawa Theory and Algebraic K-Theory 1003

Homotopy-type of KR at the Prime 2 3.8

In this section we work at the prime 2 exclusively. If the number field F has at least
one real embedding – and to avoid trivial exceptions, we will usually assume that
it does – then R has infinite étale cohomological dimension for 2-torsion sheaves.
This makes life harder. It is also known, however, that the higher cohomology all
comes from the Galois cohomology of R, and after isolating the contribution of
the reals, one finds that life is not so hard after all.

On the topological side, the element of order 2 in Γ′ causes trouble in a similar
way. In particular, the ring of K̂-operations Λ′ has infinite global dimension.
Perhaps the best way around this problem would be to work with Bousfield’s
united K-theory [5], which combines complex, real and self-conjugate K-theory so
as to obtain, loosely speaking, a ring of operations with global dimension two. We
hope to pursue this approach in a future paper, but we will not use united K-theory
here.

The Construction JKR 3.8.1

We begin by turning back the clock two or three decades. After Quillen’s landmark
work on the K-theory of finite fields, it was natural to speculate on the K-theory of
Z. The ranks of the groups were known, as well as various torsion subgroups at 2:
(i) a cyclic subgroup in degrees n = 7 mod 8 coming from the image of the classical
J-homomorphism in π∗S0; (ii) a similar cyclic subgroup in degrees n = 3 mod 8, of
order 16 and containing the image of J with index 2; and (iii) subgroups of order
2 in degrees n = 1, 2 mod 8, again coming from π∗S0 and detected by the natural
map KZ→bo.

The simplest guess compatible with this data is the following (I first heard
this, or something like it, from Mark Mahowald): Define JKZ[ 1

2 ] by the following
homotopy fibre square:

JKZ[ 1
2 ] → bo∧

↓ ↓
KZ∧

3 →
θ

bu∧ ,

where θ is Quillen’s Brauer lift, as extended to spectra by May. Then the algebraic
data was consistent with the conjecture that KZ[ 1

2 ]∧ =̃ JKZ[ 1
2 ]. But on the face of

it, there is not even an obvious map from KZ[ 1
2 ]∧ to JKZ[ 1

2 ]. There are natural
maps from KZ[ 1

2 ] to KF3 and bo, but no apparent reason why these maps should
be homotopic when pushed into bu.

Nevertheless, Bökstedt showed in [2] that there is a natural map from KZ[ 1
2 ]∧ to

JKZ[ 1
2 ]. The clearest way to construct such a map is to appeal to the work of Suslin.



1004 Stephen A. Mitchell

Choose an embedding of the 3-adic integers Z3 intoC, and form the commutative
diagram of rings

Z[ 1
2 ] → R

↓ ↓
Z3 → C .

Applying the completed K-theory functor yields a strictly commutative diagram
of spectra

KZ[ 1
2 ]∧ → KR∧

↓ ↓
KZ∧

3 → KC∧ .

But by the well-known work of Suslin, KR∧ is bo∧, KC∧ is bu∧, and there is
a commutative diagram

KZ∧
3 → KC∧

=̃ ↓ ↗
KF∧

3

θ

,

in which the vertical map is an equivalence. Here the Brauer lift θ should be chosen
to be compatible with the embedding of Z3; alternatively, one could even use the
above diagram to define the Brauer lift. In any case, this yields the desired map
φ : KZ[ 1

2 ]∧→JKZ[ 1
2 ].

Of course this map is not canonical, as it stands. A priori, it depends on the
choice of embedding of the 3-adic integers and on the choice of Brauer lift θ.
Furthermore, the choice of the prime 3 was arbitrary to begin with; in fact, one
could replace 3 by any prime p = ±3 mod 8. The alternatives 3 and -3 mod 8
definitely yield nonequivalent spectra KF∧

p , but the homotopy-type of JKZ[ 1
2 ] is

the same.

The 2-Adic Lichtenbaum–Quillen Conjecture forZ[1|2]3.8.2

Building on work of Voevodsky, Rognes and Weibel [41] proved the algebraic
form of the 2-adic Lichtenbaum–Quillen conjecture for number rings; that is, they
computed π∗KR∧ in terms of the étale cohomology groups H∗́

et(R;Z2(n)). In the
case R = Z[ 1

2 ], the computation shows that π∗KZ[ 1
2 ]∧ =̃ π∗JKZ[ 1

2 ], but not that
the isomorphism is induced by the map φ defined above. On the other hand,
Bökstedt also showed that φ is surjective on homotopy groups. Since the groups
in question are finitely-generated Z2-modules, it follows that the naive guess is in
fact true:

70 Theorem 70 There is a weak equivalence KZ[ 1
2 ]∧ =̃→ JKZ[ 1

2 ].
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This result has many interesting consequences. For example, it leads immedi-
ately to a computation of the mod 2 homology of GLZ[ 1

2 ], since one can easily
compute H∗Ω∞

0 JKZ[ 1
2 ]; cf. [32]. Note this also gives the 2-primary part of Theo-

rem 68. We also have:

71Corollary 71 KZ[ 1
2 ]∧ is essentially K(1)-local; in fact, KZ[ 1

2 ]∧→LK(1)KZ[ 1
2 ] in-

duces an equivalence on (−1)-connected covers.

This is immediate since JKZ[ 1
2 ] has the stated properties.

Before stating the next corollary, we need to discuss the connective J-spectrum
at 2. Perhaps the best definition is to simply take the (−1)-connected cover of
LKS0; or, for present purposes, the (−1)-connected cover of LK(1)S0. As noted
earlier, for any q = ±3 mod 8 there is a noncanonical equivalence LK(1)S0 =̃ JO(q)∧,
where JO(q) is the fibre of ψq − 1 : KO→KO. The (−1)-connected cover jo(q)∧ has
homotopy groups corresponding to the image of the classical J-homomorphism
and the Adams µ-family in degrees n = 1, 2 mod 8, with one small discrepancy:
There are extra Z|2 summands in π0 and π1. These elements can be eliminated
via suitable fibrations, although there is no real need to do so. Nevertheless, to be
consistent with received notation we will let j̃ denote the (−1)-connected cover of
LK(1)S0, while j∧ will denote the 2-adic completion of the traditional connective
j-spectrum, in which the two spurious Z|2’s have been eliminated. These are both
ring spectra, and the natural map j∧→̃j is a map of ring spectra.

We remark that these spectra have interesting descriptions in terms of algebraic
K-theory: We have j̃ =̃ KOF∧

q , where KOFq is the K-theory spectrum associated to
the category of nondegenerate quadratic spaces over Fq ([11], p. 84ff and p. 176ff),
while j∧ =̃ KNDF∧

q , where ND refers to the property “determinant times spinor
norm equals 1” ([11], p. 68).

72Corollary 72 Let X be any module spectrum over KZ[ 1
2 ]∧. For example, X could

be the completed K-theory spectrum of any Z[ 1
2 ]-algebra (not necessarily com-

mutative), or scheme over SpecZ[ 1
2 ], or category of coherent sheaves over such

a scheme.
Then X has a natural module structure over the 2-adic connective J-spectrum j∧ ;

in fact, it has a natural module structure over j̃.

This result follows from the previous corollary. By taking connective covers in
the diagram

S0 → LK(1)KZ[ 1
2 ]

↓
LK(1)S0

we get unique maps of ring spectra j∧→KZ[ 1
2 ]∧ or j̃→KZ[ 1

2 ]∧ factoring the unit
map.
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73 Corollary 73 After localization at 2, the induced homomorphism π∗S0→K∗Z fac-
tors through π∗j∧.

This corollary was proved for all � in [29], by a completely different method
independent of the Lichtenbaum–Quillen conjecture. It is also known that the
homotopy of j∧ injects into K∗Z, with only the following exception:

74 Corollary 74 Let Im Jn ⊂ πnS0 denote the image of the classical J-homomorphism.
Then for n > 1 and n = 0, 1 mod 8, Im Jn maps to zero in KnZ.

This is immediate since π8kJKZ = 0 for k > 0, and Im J8k+1 = ηIm J8k. As far as I
know, the only other proof of this fact is the original proof of Waldhausen [45].

The 2-Adic Lichtenbaum–Quillen Conjecture
for GeneralR3.8.3

In the general case a more sophisticated, systematic construction is required.
One approach is the étale K-theory spectrum of Dwyer and Friedlander [7]. Their
spectrum KétR can be thought of as a kind of twisted bu∧-valued function spectrum
on Spec R, where the latter is thought of as a space in its étale topology. In fact this
“space” is in essence the classifying space of the Galois group G(Ω|F), where Ω is
the maximal algebraic extension of F unramified away from 2; the only subtlety is
that one must take into account the profinite topology on this Galois group.

Consider first the case R = Z[ 1
2 ]. Then the 2-adic cohomological type of

SpecZ[ 1
2 ] turns out to be very simple [8]. Define a homomorphism ξ from the

free product (Z|2)∗Z to G(Ω|F) by sending the involution to complex conjugation
and sending the free generator to any lift of γq ∈ ΓQ, where q = ±3 mod 8 as
discussed above. This yields a map of classifying spaces

Bξ : RP∞ ∨
S1→

(
SpecZ[

1

2
]

)

ét

inducing an isomorphism on cohomology with locally constant 2-torsion coeffi-
cients. Hence we can replace (SpecZ[ 1

2 ])ét with RP∞ ∨
S1 as the domain of our

twisted function spectrum. The upshot is that up to connective covers there is a
homotopy fibre square (suppressing 2-adic completions)

KétZ[ 1
2 ] → buhZ|2

↓ ↓
buhZ → bu

corresponding to the pushout diagram of spaces

∗ → RP∞
↓ ↓
S1 → RP∞ ∨

S1 .
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Here (−)hG denotes the homotopy-fixed point construction FG(EG, −). Since – up
to connective covers – we have buhZ|2 = bo and buhZ = KFq, we recover the
spectrum JKZ[ 1

2 ].
For general R the cohomological type of (Spec R)ét is not so simple; we have to

just take KétR as it comes.
Another approach, due in different versions to Thomason and Jardine, starts

from algebraic K-theory as a presheaf of spectra on the Grothendieck site (Spec R)ét .
This leads to the étale hypercohomology spectrum H·

ét(Spec R; K) discussed in
Sect. 3.5.

The strong form of the Lichtenbaum–Quillen conjecture was proved by Rognes–
Weibel for purely imaginary fields, and by Østvær [39] for fields with a real
embedding:

75Theorem 75 The natural map KR∧→H·
ét(Spec R; K)∧ induces a weak equivalence

on 0-connected covers.

As before, we get the corollary:

76Corollary 76 KR∧ is essentially K(1)-local. In fact, the natural map KR∧→LK(1)KR
induces an equivalence on 0-connected covers.

The map on π0 in the corollary is injective, but gives an isomorphism if and
only if there is a unique prime dividing 2 in OF .

To analyze the homotopy-type of KR∧, then, it suffices to analyze the homotopy-
type of LK(1)KR = LK(1)H

·
ét(Spec R; K)∧. Now the topological K-theory of KR is given

by the same formula as before:

K̂
i
KR =̃






Λ′ ⊗Λ′
F

M∞ if i = −1

Λ′ ⊗Λ′
F
Z2 if i = −0 .

The difference is that when F has at least one real embedding, both K̂
0

and K̂
−1

have infinite projective dimension as Λ′-modules, which complicates the analysis.
To get around this we isolate the real embeddings, since these are the source of the
homological difficulties. Define KrelR by the fibre sequence

KrelR→KR→
r1∏

bo .

We can then compute the topological K-theory of the relative term. Althought
the basic Iwasawa module M∞ will have infinite projective dimension, it fits into
a canonical short exact sequence of Λ′

F-modules

0→M∞→N∞→ΛF
r1→0 ,

where N∞ has projective dimension one as Λ′
F-module. We then have:
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77 Theorem 77

K̂
i
KrelR =̃

{
Λ′ ⊗Λ′

F
N∞ if i = −1

0 if i = −0

Then the homotopy-type of KrelR is completely determined by the Λ′
F-module

N∞, in exactly the same way that the homotopy-type of KredR is completely de-
termined by M∞ in the odd-primary case. Finally, one can explicitly compute the
connecting map

∏r1 bo→ΣKrelR, yielding a complete description of the homotopy-
type of KR.

0Theorem 77 cannot be proved from the fibre sequence defining KrelR alone;
this only gives K̂

∗
KrelR up to an extension, and it is essential to determine this

extension explicitly. The proof makes use of an auxiliary Grothendieck site asso-
ciated to Spec R, defined by Zink [48]. In effect, one partially compactifies Spec R
by adjoining the real places as points at infinity. Up to connective covers KrelR is
the hypercohomology of a relative K-theory presheaf on the Zink site, and this
description leads to the computation above.
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Summary. The purpose of this survey is to explain the open problems in the K-theory of
triangulated categories. The survey is intended to be very easy for non-experts to read; I
gave it to a couple of fourth-year undergraduates, who had little trouble with it. Perhaps the
hardest part is the first section, which discusses the history of the subject. It is hard to give
a brief historical account without assuming prior knowledge. The students are advised to
skip directly to Sect. 4.2.

Historical Survey4.1

The fact that the groups K0 and K1 are related to derived categories is so obvious
that it was observed right at the beginnings of the subject. We remind the reader.

Let A be a small abelian (or exact) category. Let Db(A) be its bounded derived
category.1 The category Db(A) is a triangulated category. What we will now do is
define, for every triangulated category T, an abelian group K0(T). This definition
has the virtue that there is a natural isomorphism K0(A) = K0

(
Db(A)

)
. By K0(A) we

understand the usual Grothendieck group of the exact categoryA, while K0

(
Db(A)

)

is as follows:

1 Definition 1 Let T be a small triangulated category. Consider the abelian group
freely generated by the isomorphism classes [X] of objects X ∈ T. The group K0(T)
is obtained by dividing by the relations generated by all expressions [X]−[Y]+[Z],
where there exists a distinguished triangle

X �� Y �� Z �� ΣX .

The relation between K1(A) and Db(A) is not so simple. For example it was
not known, until quite recently, how to give a definition of K1(A) which builds
on Db(A). But the fact that K1 is related (more loosely) to derived categories was
known. This goes back to Whitehead’s work on determinants of automorphisms
of chain complexes and simple homotopy type.

Practically as soon as higher K-theory was defined, its relation with derived
category was implicit. One of the first theorems in Quillen’s foundational paper on
the subject is the resolution theorem [77, Theorem 3 and Corollary 1 of §4]. The
theorem says approximately the following:

2 Theorem 2 (Modified version of Quillen’s theorem) Let i : A → B be a fully
faithful, exact embedding of the exact categoryA into the exact categoryB. Assume
that the induced map of bounded derived categories Db(i) : Db(A) → Db(B) is an
equivalence. Then the induced map in Quillen’s K-theory K(i) : K(A) → K(B) is
a homotopy equivalence.

1 For an abelian category A, the definition of Db(A) is classical. See Verdier [94], or
Hartshorne [41, Chapter I]. When A is only an exact category there was some confusion
about how to define Db(A); see [64].
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The reader is referred to Quillen’s original paper, or to Theorem 73 of this
article, for Quillen’s precise formulation (which does not explicitly mention derived
categories).

To make K-theory into a useful tool, it is important to understand how K(A)
changes with A. Let f : B→ C be an exact functor of exact categories. It induces
a continuous map K(f ) : K(B) → K(C). The homotopy fiber of this map is
a spectrum, and it turns out to be very useful to describe it in some computable
way, for example as K(A) for some A. The first theorem of this sort was Quillen’s
localisation theorem [77, Theorem 5 of §5]. Quillen’s theorem was very powerful,
with many important consequences, for example in algebraic geometry. But, while
on the subject of the algebro-geometric applications, it should be noted that to
apply the theorem effectively one had to restrict to smooth varieties, or varieties
with very mild singularities. Important work followed, trying to generalise this to
singular varieties. The reader is referred to Levine [57,58] and Weibel [97,98]. The
definitive treatment did not come until Thomason [89], and for his work Thomason
needed a more powerful foundational basis. It turns out that the homotopy fiber
of the map K(f ) above can be expressed as K(A), but only if we are willing to
understand by this the Waldhausen K-theory of a suitable Waldhausen categoryA.
In other words, to obtain a sufficiently powerful general theorem one needed the
domain of the K-theory functor to be expanded. Progress depended on K-theory
being defined in greater generality.

Walhausen’s work [96] provided a far more general setting for studying K-
theory. To every Waldhausen model category C one attaches a K-theory spectrum
K(C). There is a brief discussion of Waldhausen model categories, and of their
relation with triangulated categories, in Sect. 4.3. For our purposes the important
observation is that, once again, there is a clear relation with triangulated categories.
To each Waldhausen category C one can associate a triangulated category ho(C).
Waldhausen’s approximation theorem says that, under some technical hypotheses,

3Theorem 3 (Waldhausen Approximation Theorem, without the technical hypothe-
ses) Suppose i : C → D is an exact functor of Waldhausen model categories.
Suppose the induced map of triangulated categories

ho(i) : ho(C) → ho(D)

is an equivalence. Then the K-theory map K(i) : K(C) → K(D) is a homotopy
equivalence.

All of this suggests very naturally that K-theory and triangulated categories
ought to be related. We still do not understand the relation, and this survey is
mainly about the many open problems in the field.

But while we are still on the history of the problem, let me discuss the work that
has been done. In the light of Waldhausen’s approximation theorem, it is natural
to ask whether Waldhausen’s K-theory depends only on triangulated categories.
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Given a Waldhausen category C, Waldhausen defined a spectrum K(C). Does this
spectrum only depend on ho(C)? If so, is the dependence functorial? I believe the
question was first asked in Thomason [89].

The answer turns out to be No. In a paper by myself [65] I produce an example of
a pair of Waldhausen categories C andD, and a triangulated functor f : ho(C) →
ho(D) which cannot possibly induce a map in Waldhausen K-theory. More recently
Schlichting [85] produces a pair of Waldhausen categories C andD, with ho(C) �
ho(D) but K(C) �� K(D).

This establishes that Waldhausen’s K-theory K(C) depends on more than just
ho(C). But it still leaves unresolved the question of whether we can recover Quillen’s
K-theory of an abelian (or exact?) categoryA from the triangulated category Db(A).
This question has interested people since the 1980’s. Kapranov tells me that they
held a seminar about it in Moscow at the time. There were several counterexamples
produced. The reader can see some of them in Hinich and Schechtman [42,43] and
Vaknin [91, 92]. By the mid 1980’s, the consensus was that it could not be done.

Then in the late 1980’s and early 1990’s I proved a theorem, establishing the un-
expected. For abelian categories, all of Quillen’s higher K-theory may be recovered
directly from the derived category. In the first half of this survey I state carefully
the results I proved, and in the second half I explain the many open problems that
remain.

Still in the historical survey, I should mention that Matthias Künzer also worked
on this. He produced a construction and several very interesting conjectures.
Unfortunately none of this ever appeared in print. His constructions were actually
quite similar to mine. The key difference was that his constructions did not come
with coherent differentials (these will de described in detail in Definition 21). For
what it may be worth, let me quote Thomason who said that the key input in my
work was the coherent differentials.

Also deserving mention is the fascinating work of Maltsiniotis, Cisinski and
(somewhat later) Garkusha. Their work begins with something intermediate be-
tween the Waldhausen category C and its triangulated category ho(C). Starting
from the derivator associated to C, one can define a K-theory by modifying Wald-
hausen’s construction in a straight-forward way. It is interesting to study this, and
the reader can find excellent accounts in

http://www.math.jussieu.fr/˜maltsin/Gtder.html
http://www.ictp.trieste.it/˜garkusha/papers/sdc.ps

For a recent result, about the limitations on what one can expect to achieve using
derivators, see Toën [90, Proposition 2.17 and Corollary 2.18].

Introduction4.2

The aim of this manuscript is to explain just how little we know about the K-
theory of triangulated categories. There are many fascinating open problems
in the subject. I am going to try to make the point that a bright young math-
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ematician, with plenty of imagination, could make impressive progress in the
field. What we now know is enough to establish that the field is interesting.
But the most basic, immediate questions that beg to be answered are completely
open.

The best way to explain how little we know is to tell you all of it. Therefore we
begin with a fairly careful account of all the existing theorems in the field.

Unfortunately, this requires us to be a little technical. It forces us to introduce
five simplicial sets and four maps connecting them. Let T be a triangulated cate-
gory with a bounded t-structure. Let A be the heart. Suppose T has at least one
Waldhausen model. The first half of the manuscript produces five simplicial sets
and four maps

S∗(A) ��
α

wS∗(T) ��
β

S∗(dT) ��
γ

S∗(vT) ��
δ

S∗(GrbA) .

The only simplicial set the reader might already be familiar with is S∗(A), the
Waldhausen S∗-construction applied to the abelian categoryA.

The main theorem is Theorem 50. It tells us
(i) The composite δγβα induces a homotopy equivalence.
(ii) The map α induces a homotopy equivalence.
(iii) The simplicial set S∗(vT) has a homotopy type which depends only on A.

That is, S∗(vT) =̃ S∗
(

vDb(A)
)
.

Perhaps part (i) of this is the most striking. Each of the simplicial sets wS∗(T),
S∗(dT) and S∗(vT) defines a K-theory for our triangulated category T. We have
three candidates for what the right definition might be. By Theorem 50(i), all
of them contain the Quillen K-theory of A as a retract. Any half-way sensible
definition of the K-theory of derived categories contains Quillen’s K-theory. Pass-
ing to the derived category most certainly does not lose K-theoretic informa-
tion.

I have tried to organise the material so that the introductory part, the part where
we define the four simplicial maps α, β, γ and δ, is short. I tried to condense this
part of the manuscript without sacrificing the accuracy. It is helpful to have the
exact statements of the theorems we now know. It helps delineate the extent of our
ignorance.

After setting up the simplicial machinery and stating Theorem 50, we very
briefly explain how it can be used to draw very strong conclusions about K-
theory. This part is very brief. As I have already said, we focus mostly on the
shortcomings of the theory, as it now stands. This allows us to highlight the many
open problems.

In this entire document we will consider only small categories. The abelian
categories, triangulated categories and Walhausen model categories will all be
small categories.
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Waldhausen Model Categories and
Triangulated Categories4.3

In this survey we assume some familiarity with triangulated categories. It also
helps to know a little bit about their models. This modest introductory section will
attempt to provide the very minimum, bare essentials. Instead of developing the
axiomatic formalism, we will give the key examples of interest.

Example 4 . Let A be an abelian category. The category C(A) is the category of
chain complexes inA. The objects are the chain complexes

· · · ��
∂

xi−1 ��
∂

xi ��
∂

xi+1 ��
∂

· · · ,

where ∂∂ = 0. The morphisms are the chain maps; that is the commutative dia-
grams

· · · �� xi−1 ��

��
fi−1

xi ��

��
fi

xi+1 ��

��
fi+1

· · ·

· · · �� yi−1 �� yi �� yi+1 �� · · · .

So far, we have defined a category.
It is customary to consider C(A) as a Waldhausen category. This means endowing
it with a great deal of extra structure. First of all, we consider three subcategories
cC(A), fC(A) and wC(A). These subcategories all have the same objects, namely
all the objects of C(A). It is the morphisms that are restricted. The restrictions
are
(i) A morphism in cC(A), also called a cofibration in C(A), is a chain map

of chain complexes so that, for every i ∈ Z, the map fi : xi → yi is a split
monomorphism. (The splittings are not assumed to be chain maps).

(ii) A morphism in fC(A), also called a fibration in C(A), is a chain map of chain
complexes so that, for every i ∈ Z, the map fi : xi → yi is a split epimorphism.
(Once again, the splittings are not assumed to be chain maps).

(iii) A morphism in wC(A), also called a weak equivalence in C(A), is a chain
map of chain complexes inducing an isomorphism in homology.

One also assumes that there is a functor, called the cylinder functor, taking
a morphism in C(A) to an object, called the mapping cylinder. Let me not remind
the reader of the detail of this construction. In Example 6 we will see the related
construction of the mapping cone, which is more relevant for us. An important
consequence of the existence of mapping cylinders (or mapping cones) is that the
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category C(A) has an automorphism, called the suspension functor, and denoted
Σ : C(A) → C(A). It takes the complex

· · · ��
∂

xi−1 ��
∂

xi ��
∂

xi+1 ��
∂

· · ·

to the complex

· · · ��
−∂

xi ��
−∂

xi+1 ��
−∂

xi+2 ��
−∂

· · · .

In other words, Σ shifts the degrees by one, and changes the sign of the differen-
tial ∂.

5Remark 5 The data above, that is the three subcategories cC(A), fC(A) and wC(A)
and the cylinder functor, satisfy a long list of compatibility conditions. We omit
all of them. The interested reader can find a much more thorough treatment in
Chapter 1 of Thomason’s [89]. Thomason calls the categories satisfying this long
list of properties biWaldhausen complicial categories. In this paper we will call
them Waldhausen model categories, or just Waldhausen categories for brevity. The
experts, please note: what we call Waldhausen model categories is exactly the same
as Thomason’s biWaldhausen complicial categories. This allows us to freely quote
results from [89].

Example 6. Suppose we start with a Waldhausen model category, like C(A). We
can form a category, often denoted hoC(A). It is called the homotopy

category of C(A), and is obtained from C(A) by formally inverting the weak
equivalences. In the case of the Waldhausen category C(A), the category hoC(A)
is usually called the derived category of A, and denoted D(A). The suspension
functor descends to an automorphism of hoC(A) = D(A). The category D(A)
is a triangulated category; it satisfies a very short list of axioms. Basically, the
only construction one has is the mapping cone. Suppose we are given two chain
complexes X and Y , and a map of chain complexes f : X → Y . That is, we are given
a commutative diagram

· · · ��
∂

xi−1 ��
∂

��
fi−1

xi ��
∂

��
fi

xi+1 ��
∂

��
fi+1

· · ·

· · · ��

∂

yi−1 ��

∂

yi ��

∂

yi+1 ��

∂

· · · .
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We can form the mapping cone, which is a chain complex

· · · �� xi⊕yi−1
��






−∂ 0

fi ∂






xi+1⊕yi
��






−∂ 0

fi+1 ∂






xi+2⊕yi+1
�� · · · .

It turns out that this mapping cone, which we will denote Cone(f ), is well-defined
in the category hoC(A) = D(A). One can look at the maps

X ��
f

Y ��
g

Cone(f ) .

Of course, there is nothing to stop us from iterating this process. We can continue
to

X ��
f

Y ��
g

Cone(f ) ��
h

Cone(g) ��
i

Cone(h) ��
j

· · · .

Contrary to what we might expect, this process soon begins to iterate. There is
a natural commutative square in D(A), where the vertical maps are isomorphisms

Cone(g) ��
i

��
�|

Cone(h)

��
�|

ΣX ��
−Σf

ΣY .

That is, up to suspension and sign, the diagram is periodic with period 3. We call
any diagram

X → Y → Z → ΣX

isomorphic to

X ��
f

Y ��
g

Cone(f ) ��
h

Cone(g)

a distinguished triangle in D(A). There is a very short list of axioms which distin-
guished triangles satisfy, and that is all the structure there is in D(A). The axiomatic
treatment may be found, for example, in Verdier’s thesis [94], in Hartshorne [41,
Chapter 1], or in the recent book [73].
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7Remark 7 It is quite possible for a single triangulated category T to have many
different Waldhausen models. For instance, there are many known examples of
abelian categories A and B, with D(A) = D(B).2 The models C(A) and C(B) are
quite different, non-isomorphic Waldhausen categories. The passage from C(A)
to hoC(A) = D(A) loses a great deal of information. What we will try to explain is
that higher K-theory is not among the information which is lost.

Virtual Triangles 4.4

We need to remind the reader briefly of some of the results in Vaknin’s [93]. In any
triangulated category T, Vaknin defined a hierarchy of triangles. When we use the
word triangle without an adjective, we mean a diagram

A ��
u

B ��
v

C ��
w

ΣA

so that vu = wv = {Σu}w = 0. Vaknin defines classes of triangles

splitting ⊂ distinguished ⊂ exact ⊂ virtual .

The definitions are as follows.
(i) A splitting triangle is a direct sum of three triangles

A ��
1

A �� 0 �� ΣA

0 �� B ��
1

B �� 0

Σ−1C �� 0 �� C ��
1

C .

(ii) A distinguished triangle is part of the structure that comes for free, just
because T is a triangulated category.

(iii) A triangle

A ��
u

B ��
v

C ��
w

ΣA

2 The first example may have been the one in Beilinson’s 1978 article [11]. By now, a quarter
of a century later, we know a wealth of other examples. A very brief discussion is included
in an appendix; see Sect. 4.17.
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is exact if there exist maps u′, v′ and w′ so that the following three triangles

A ��
u′

B ��
v

C ��
w

ΣA

A ��
u

B ��
v′

C ��
w

ΣA

A ��
u

B ��
v

C ��
w′

ΣA

are all distinguished.
(iv) A triangle T is virtual if there exists a splitting triangle S so that S ⊕ T is

exact.

The important facts for us to observe here are

8 Lemma 8 All distinguished triangles are virtual.

9 Lemma 9 Homological functors take virtual triangles to long exact sequences.

Proof Lemma 8 may be found in Vaknin’s [93, Remark 1.4]. For Lemma 9, see [93,
Definition 1.6 and Theorem 1.11].

Categories with Squares4.5

The input we will need to define K-theory is a category with squares. In Sect. 4.7
we will see how, starting with a category with squares, one can define a K-theory.
This section prepares the background. We will see the definition of a category with
squares, and also the key examples of interest.

10 Definition 10 An additive categoryTwill be called a category with squares provided
(i) T has an automorphism Σ : T→ T.
(ii) T comes with a collection of special squares

C �� D

hh

(1)

A ��

OO

B

OO
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This means that the square

C �� D

A ��

OO

B

OO

is commutative in T, and there is a map D → ΣA, which we denote by the curly
arrow

D

hh

(1)

A

The (1) in the label of the arrow is to remind us that the map is of degree 1, that
is a map D → ΣA.

11Definition 11 Given two categories with squares, a special functor

F : S→ T

is an additive functor such that
(i) There is a natural isomorphism ΣF =̃ FΣ.
(ii) The functor F takes special squares in S to special squares in T.

The next definition is a convenient tool in the discussion of the examples.

12Definition 12 Let T be an additive category with an automorphism Σ : T → T.
Suppose we are given a square

C ��
δ

D

hh

µ

A ��
α

OO

β

B

OO
γ
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The fold of this square will be the the sequence

A ��






α
−β






B ⊕ C ��

(

γ δ
)

D ��
µ

ΣA .

Example 13. Let T be a triangulated category. Then T is an additive category, and
it comes with an automorphism Σ : T → T. A square is defined to

be special if and only if its fold is a distinguished triangle in T. When we think of
the triangulated category T as being the category with squares defined above, then
we will denote it as dT.

Example 14. Given a triangulated category T, we wish to consider yet another
possible structure one can give it, as a category with squares. The

suspension functor Σ : T → T is the same as in dT. But there are more spe-
cial squares. In the category which we will call vT, a square will be special if
and only if its fold is a virtual triangle, in the sense of Vaknin [93] (see also
Sect. 4.4).

Example 15. LetA be an abelian category. Let GrbA be the category of bounded,
graded objects in A. We remind the reader. A graded object of A is

a sequence of objects {ai | i ∈ Z, ai ∈ A}. The sequence {ai} is bounded if ai = 0
except for finitely many i ∈ Z.

We define the functor Σ : GrbA→ GrbA to be the shift. That is,

Σ{ai} = {bi}
with bi = ai+1. A square in GrbA is defined to be special if the fold

A ��






α
−β






B ⊕ C ��

(

γ δ
)

D ��
µ

ΣA

gives a long exact sequence inA. That is, the fold gives us a sequence

· · · �� Di−1
�� Ai �� Bi ⊕ Ci

�� Di
�� Ai+1 �� · · ·

and we require that this sequence be exact everywhere.
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Example 16 . In Definition 11, a special functor S → T was defined to be an
additive functor taking special squares in S to special squares in

T. Let T be a triangulated category. Lemma 8 tells us that the identity functor
1 : T → T gives a special functor γ : dT → vT. Any special square in dT is
automatically a special square in vT.

Let H : T → A be a homological functor from the triangulated category T to
the abelian category A. Suppose H is bounded. That is, for each t ∈ T there exists
N ∈ N with H(Σit) = 0 unless −N < i < N. By Lemma 9, H takes virtual triangles
in T to long exact sequences in A. The functor taking t ∈ T to the graded object
{H(Σit) | i ∈ Z} is a special functor

δ : vT→ GrbA

of categories with squares. Summarising, we have produced special functors

dT ��
γ

vT ��
δ

GrbA .

In some very simple cases, for example ifT = Db(k) is the derived category of a field
k and H is ordinary homology, the maps γ and δ are equivalences of categories
with squares.

Regions 4.6

In Sect. 4.5 we learned what is meant by a category with squares. We learned
the definition, and the three examples we will refer to in this article. In the cur-
rent section we will study regions R ⊂ Z × Z, and then in Sect. 4.7 we put
it all together. The K-theory of a category with squares T is defined from the
simplicial set of certain functors from regions R ⊂ Z × Z to the category with
squares T.

Let us agree first that, from this point on, Z will be understood to be a category.
The objects are the integers, and

Hom(i, j) =






∅ if i > j

1 if i ≤ j .

That is, Hom(i, j) is either empty or has one element. It is non-empty exactly when
i ≤ j. There is only one possible composition law.

17Definition 17 A region will mean a full subcategory R ⊂ Z× Z.
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18 Definition 18 Let R1 and R2 be two regions. A morphism of regions R1 → R2 is
a functor F : R1 → R2, so that there exist two functors f1 : Z → Z, f2 : Z → Z

and a commutative square

R1
��

F

� �

��

R2
� �

��

Z× Z ��
f1×f2

Z× Z .

19 Remark 19 In this article, the regions we most care about are

Rn =
{

(x, y) ∈ Z× Z | 0 ≤ x − y ≤ n + 1
}

.

We consider them when n ≥ 0. The picture is

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
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Part of the reason we care about the Rn’s is the following.

20 Remark 20 Recall the category ∆ of finite ordered sets. The objects are n =
{0, 1, … , n}. The morphisms are the order preserving maps. I assert that there is
a functor θ from ∆ to the category of regions in Z× Z. We define the functor θ as
follows.
(i) On objects: For an object n ∈ ∆, put θ(n) = Rn, as in Remark 19.
(ii) On morphisms: Suppose we are given a morphism ϕ : m → n in ∆. We

define f : Z → Z as follows. Any integer in Z can be expressed, uniquely, as
a(m + 1) + b, with 0 ≤ b ≤ m. Put

f (a(m + 1) + b) = a(n + 1) + ϕ(b) .

Then f is an order-preserving map Z→ Z (that is, a functor when we view Z
as a category). The reader can show that

f × f : Z× Z→ Z× Z
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takes Rm ⊂ Z× Z into Rn ⊂ Z× Z. We define θ(ϕ) to be the map Rm → Rn

induced by f × f : Z× Z→ Z× Z.

It is useful to note that θ(ϕ) takes the boundary of the region θ(m) = Rm to the
boundary of the region θ(n) = Rn. More explicitly, the boundary point (y, y) ∈
Rm gets mapped to the boundary point

(
f (y) , f (y)

) ∈ Rn. The boundary point
(y + m + 1 , y) ∈ Rm gets mapped to the boundary point

(
f (y) + n + 1 , f (y)

) ∈ Rn.

The Simplicial Set 4.7

Now we know what we mean by
(i) Regions in Z× Z.
(ii) Categories with squares.

It is time to put it together and define K-theory. The key ingredient is

21Definition 21 Let T be a category with squares. Let R be a region in Z × Z. An
augmented diagram for the pair (R,T) is defined to be
(i) A functor F : R→ T.
(ii) Suppose we are given four integers i ≤ i′ and j ≤ j′. These four integers

define a commutative square in Z× Z, namely

(i, j′) �� (i′, j′)

(i, j) ��

OO

(i′, j)

OO

.

If this square happens to be contained in the region R, then the functor F, of
part (i) above, takes it to a commutative square in T

F(i, j′) �� F(i′, j′)

F(i, j) ��

OO

F(i′, j)

OO

.

We require that all such squares extend to special squares in T. That is, we must
be given a map

δi′,j′
i,j : F(i′, j′) �� ΣF(i, j)

yielding a special square.
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(iii) The maps δi′,j′
i,j should be compatible, in the following sense. Suppose we are

given two squares in Z × Z, one inside the other. That is, we have integers
I ≤ i ≤ i′ ≤ I′ and J ≤ j ≤ j′ ≤ J ′, giving in Z× Z the commutative diagram

(I, J ′) �� (i, J ′) �� (i′, J ′) �� (I′, J ′)

(I, j′) ��

OO

(i, j′) ��

OO

(i′, j′) ��

OO

(I′, j′)

OO

(I, j) ��

OO

(i, j) ��

OO

(i′, j) ��

OO

(I′, j)

OO

(I, J) ��

OO

(i, J) ��

OO

(i′, J) ��

OO

(I′, J)

OO

.

Suppose the small, middle square and the outside, large square both lie entirely
in R. That is, we have two squares in R, one contained in the other

(i, j′) �� (i′, j′) (I, J ′) �� (I′, J ′)

(i, j) ��

OO

(i′, j)

OO

(I, J) ��

OO

(I′, J) .

OO

Part (ii) above gives us two maps

δi′,j′
i,j : F(i′, j′) �� ΣF(i, j)

δI′,J′
I,J : F(I′, J ′) �� ΣF(I, J) .

The compatibility requirement is that δi′,j′
i,j should be the composite

F(i′, j′) ��
F(α)

F(I′, J ′) ��
δI′ ,J′

I,J

ΣF(I, J) ��
ΣF(β)

ΣF(i, j) ,

where β : (I, J) → (i, j) and α : (i′, j′) → (I′, J ′) are the unique maps in Z× Z.
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22Remark 22 The definition of augmented diagrams is clearly functorial in the pairs
R,T. Given a morphism of regions f : R→ R′ and a special functor of categories
with squares g : T→ T′, then composition induces a natural map

{
Augmented diagrams

for the pair (R′,T)

}
��

(f ,g)
{

Augmented diagrams

for the pair (R,T′)

}

.

This says that there is a functor

{
Regions

R ⊂ Z× Z

}op

×
{

Categories

with squares

}
��

Φ
{Sets} ,

which takes the pair (R,T) ∈ {Regions} × {Categories with squares} to

Φ(R,T) =

{
Augmented diagrams

for the pair (R,T)

}

.

This functor is contravariant in the region R, covariant in T (the category with
squares).

Now, finally, we come to our simplicial set.

23Definition 23 Remark 20 provides us with a functor

θ : ∆ → {regions in Z× Z} .

Remark 22 gives a functor

Φ :

{
Regions

R ⊂ Z× Z

}op

×
{

Categories

with squares

}
�� {Sets} .

Let T be a category with squares. Then the functor taking (−) ∈ ∆ to

Φ
(
θ(−),T

)

is a functor ∆op → {Sets}. We wish to consider a simplicial subset

S∗(T) ⊂ Φ
(
θ(−),T

)
.

The elements of Sn(T) form a subset of

Φ
(
θ(n

)
,T) = Φ(Rn,T) .
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The set Φ(Rn,T) consists of all augmented diagrams for the pair (Rn,T). The
subset Sn(T) are the augmented diagrams which vanish on the boundary. Recall:
An augmented diagram gives, among other things, a functor F : Rn → T. The
augmented diagram belongs to Sn(T) if

F(y, y) = 0 = F(y + n + 1 , y) .

24 Remark 24 At the end of Remark 20 we noted that, if ϕ : m → n is any morphism
in ∆, then θ(ϕ) takes points on the boundary of the regionRm = θ(m) to boundary
points of Rn = θ(n). Augmented diagrams which vanish on the boundary of Rn

therefore go to augmented diagrams vanishing on the boundary ofRm, and hence
S∗(T) really is a simplicial subset of Φ

(
θ(−),T

)
.

25 Remark 25 It is clear that S∗(T) is functorial in T. Given a special functor of
categories with squares S→ T, then composition induces a map

S∗(S) → S∗(T).

In Example 16 we saw that, given a triangulated category T, an abelian categoryA
and a bounded homological functor H : T → A, there are special functors of
categories with squares

dT ��
γ

vT ��
δ

GrbA .

We conclude that there are simplicial maps of simplicial sets

S∗(dT) ��
γ

S∗(vT) ��
δ

S∗(GrbA) .

Note that, in an abuse of notation, the letter γ stands for both the map dT → vT

and for the map it induces on the simplicial sets, and similarly for the letter δ.

26 Definition 26 For a category with squares T, its K-theory K(T) is defined to be the
loop space of the geometric realisation of the simplicial set S∗(T). In symbols:

K(T) = Ω|S∗(T)| .

27 Remark 27 Taking loop spaces of the geometric realisation of the maps in Re-
mark 25, we deduce continuous maps of spaces

K(dT) ��
γ

K(vT) ��
δ

K(GrbA) .
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What It All Means 4.8

Until now our treatment has been very abstract. We have constructed certain
simplicial sets and simplicial maps. It might be helpful to work out explicitly what
are the low-dimensional simplices. The definition says

Sn(T) =






Augmented diagrams

for the pair (Rn,T)

∣∣∣∣∣∣∣∣∣

The functor F : Rn → T, given

as part of the data of the

augmented diagram, satisfies

F(y, y) = 0 = F(y + n + 1 , y)






.

Let us now work this out, in low dimensions, for the category with squares dT.

28Case 28 S0(dT) is easy to compute. The regionR0 is the region 0 ≤ x − y ≤ 1, and
all the points are boundary points. That is, for every (x, y) ∈ R0 we have that x − y
is either 0 or 1. There is only one element in S0(T). It is the diagram

0 ��

0 �� 0

OO

�� 0

OO

29Case 29 Slightly more interesting is S1(dT). The region R1 is 0 ≤ x − y ≤ 2, and
the boundary consists of the points where x − y is 0 or 2. A simplex is therefore
a diagram

0

0 �� xn+1

OO

�� 0

0 �� xn

OO

�� 0

OO

0 �� xn−1

OO

�� 0

OO

0

OO
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In this diagram, each square

0 �� xn+1

xn

OO

�� 0

OO

is a special square. It comes with a map δn : xn+1 → Σxn. In the case of the
category with squares dT, the fact that the square is special means that we have
a distinguished triangle

xn �� 0 �� xn+1 ��
δn

Σxn .

In other words, the map δn : xn+1 → Σxn must be an isomorphism. The diagram
defining the simplex is canonically isomorphic to

0

0 �� Σx0

OO

�� 0

0 �� x0

OO

�� 0

OO

0 �� Σ−1x0

OO

�� 0

OO

0

OO

.

Up to canonical isomorphism, the simplices in S1(dT) are just the objects of T.

30 Case 30 Next we consider S2(dT). The regionR2 is 0 ≤ x−y ≤ 3, and the boundary
consists of the points where x − y is 0 or 3. A 2-simplex is a diagram
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0

0 �� y′

OO

�� z′ �� 0

0 �� z

OO

�� x′

OO

�� 0

OO

0 �� x

OO

�� y

OO

�� 0

OO

0

OO

.

The special squares

0 �� x′ 0 �� y′ 0 �� z′

x ��

OO

0

OO

y ��

OO

0

OO

z ��

OO

0

OO

have differentials

δx : x′ → Σx , δy : y′ → Σy , δz : z′ → Σz .

As in Case 29 above, these differentials must be isomorphisms. The diagram as
a whole is therefore canonically isomorphic to

0

0 �� Σy

OO

��
v′

Σz �� 0

0 �� z

OO

��
w

Σx

OO
u′

�� 0

OO

0 �� x

OO

��
u

y

OO
v

�� 0

OO

0

OO

.
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The isomorphism is such that, in the special squares

0 �� Σx 0 �� Σy 0 �� Σz

x ��

OO

0

OO

y ��

OO

0

OO

z ��

OO

0

OO

the differentials are all identity maps. Next we will use the fact that the differentials
are coherent, to compute the maps in the diagram.

Consider the following little bit of the larger diagram above

0 �� Σy

0 �� z

OO

��
w

Σx

OO

u′

x

OO

��
u

y

OO

v

�� 0

OO

.

There are three squares in this bit, namely

0 �� Σx 0 �� Σy z ��
w

Σx

x ��

OO

0

OO

y ��

OO

0

OO

y ��

OO

v

0

OO

.

These are three special squares, with compatible differentials. The differentials of
the first two squares are

δx = 1 : Σx → Σx , δy = 1 : Σy → Σy .

The compatibility says that the differential of the third square

z ��
w

Σx

y ��

OO

v

0

OO
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can be computed as either of the composites

Σx ��
δx

Σx ��
Σu

Σy

Σx ��
u′

Σy ��
δy

Σy .

We conclude that u′ = Σu. The diagram

0 �� Σy ��
v′

Σz

z

OO

��
w

Σx

OO

u′

�� 0

OO

y

OO

v

�� 0

OO

permits us to compute that v′ = Σv, and so on. The simplex becomes

0

0 �� Σy

OO

��
Σv

Σz �� 0

0 �� z

OO

��
w

Σx

OO

Σu

�� 0

OO

0 �� x

OO

��
u

y

OO

v

�� 0

OO

0

OO

.
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In this diagram there are many special squares. So far, we have focused mainly
on the special squares of the form

0 �� ΣA

A

OO

�� 0

OO

,

where the differential ΣA → ΣA is the identity. But there are other special squares.
For example

0 �� z

x

OO

��
u

y

OO

v

.

The differential of this special square may be computed from the fact that, in the
diagram

0 �� z ��
w

Σx

x

OO

��
u

y

OO

v

�� 0

OO

the larger special square

0 �� Σx

x ��

OO

0

OO

has for its differential the map 1 : Σx → Σx. Compatibility tells us that the
differential of

0 �� z

x

OO

��
u

y

OO

v
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must be w : z → Σx. But in Example 13 we defined special squares in dT to be
squares

C ��
δ

D

hh

µ

A ��
α

OO

β

B

OO
γ

for which the sequence

A ��






α
−β






B ⊕ C ��

(

γ δ
)

D ��
µ

ΣA

is a distinguished triangle. In our case, this becomes a distinguished triangle

x
u→ y

v→ z
w→ Σx .

One of the miracles here is that the signs take care of themselves. The special
square

z ��
w

Σx

y

OO

v

�� 0

OO

has a differential, which is easily computed to be Σu : Σx → Σy. This gives
a distinguished triangle

y
−v→ z

w→ Σx
Σu→ Σy .

The fact that the morphism v : y → z in the square is vertical automatically takes
care of the sign.
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We conclude that the only real restriction on the diagram

0

0 �� Σy

OO

��
Σv

Σz �� 0

0 �� z

OO

��
w

Σx

OO
Σu

�� 0

OO

0 �� x

OO

��
u

y

OO
v

�� 0

OO

0

OO

is the fact that

x
u→ y

v→ z
w→ Σx

is a distinguished triangle. The other special squares give distinguished triangles
which are just rotations of the above. In conclusion: Any element in S2(dT) is
canonically isomorphic to a diagram which arises as above from a distinguished
triangle

x
u→ y

v→ z
w→ Σx.

There are three face maps

S2(dT)
������ S1(dT) .

In the above, we identified the elements of S2(dT) with distinguished triangles in
T. In Case 29, we identified the elements of S1(dT) with the objects of T. The face
maps above take the distinguished triangle

x
u→ y

v→ z
w→ Σx

to z, y and x, respectively.

31 Remark 31 We now have an explicit identification of the elements of S2(dT) and
S1(dT), and of the three face maps

S2(dT)
������ S1(dT) .
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Using this, one can compute the first homology group of the space |S∗(dT)|. Since
|S∗(dT)| is an H-space, we have

H1|S∗(dT)| = π1|S∗(dT)| = π0K(dT) .

An explicit computation easily shows this to be the usual Grothendieck group of
Definition 1.

32Remark 32 In Case 29 we saw that the diagram for a 1-simplex has objects
which repeat (up to suspension). In Case 30 we saw that the morphisms in a 2-
simplex also repeat, again up to suspension. Take an element x ∈ Sn(dT), with
n ≥ 2. Then x is a diagram in T. The objects of this diagram are all objects of
1-dimensional faces of x, and the morphisms are all composites of morphisms in
2-dimensional faces of x. From Cases 29 and 30 we conclude that the entire diagram
is periodic.

More explicitly, a fundamental region for the diagram x ∈ Sn(dT) is given
by

Dn =






(a, b) ∈ Z× Z

∣∣∣∣∣∣∣∣∣

0 ≤ a ≤ n

0 ≤ b ≤ n

0 ≤ a − b






.

Thus, a 1-simplex is completely determined by the diagram

0

0 �� x

OO

and a 2-simplex is determined by

0

0 �� z

OO

0 �� x

OO

��
u

y

OO

v

.
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If the reader is worried that the map w : z → Σx does not seem to appear, the point
is simple. It is the differential of the special square

0 �� z

x

OO

��
u

y

OO
v

.

What is being asserted is the following. The region Rn contains the region Dn.
An element x ∈ Sn(dT) is an augmented diagram for the pair (Rn, dT). It restricts
to an augmented diagram for the pair (Dn, dT). The assertion is that the smaller
diagram determines, up to canonical isomorphism, the larger one.

33 Case 33 Next we wish to study the elements of S3(T). By Remark 32, the simplex
is determined by its restriction toD3 ⊂ R3. We have a diagram

0

0 �� z

OO

0 �� x

OO

�� y

OO

0 �� u

OO

�� v

OO

�� w

OO

.

A simplex in S3(T) is obtained from this by periodicity, up to suspension. The
simplex will look like

0

0 �� Σw

OO

�� Σy �� Σz �� 0

0 �� z

OO

�� Σv

OO

�� Σx

OO

�� 0

OO

0 �� x

OO

�� y

OO

�� Σu

OO

�� 0

OO

0 �� u

OO

�� v

OO

�� w

OO

�� 0

OO

0

OO

.
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What does it all mean?
We have two composable morphisms

u → v → w .

The special squares

0 �� x 0 �� y 0 �� z

u ��

OO

v

OO

u ��

OO

w

OO

v ��

OO

w

OO

give three distinguished triangles

u �� v �� x �� Σu

u �� w �� y �� Σu

v �� w �� z �� Σv

and the special square

0 �� z

x ��

OO

y

OO

tells us that the mapping cones x, y and z of the maps u → v, u → w and v → w
fit in a distinguished triangle

x → y → z → Σx .

This should hopefully look familiar. What we have here is an octahedron, with its
four distinguished triangles and four commutative triangles.

34Remark 34 Our octahedron is somewhat special. We have special squares

x �� y z �� Σv

v ��

OO

w

OO

y ��

OO

Σu

OO

.

These come with differentials, and fold to give distinguished triangles. Thus a
3-simplex in the simplicial set S∗(dT) is more than just an octahedron. It is an
octahedron where the two commutative squares are special.

I observed the existence of such octahedra in [66, Remark 5.5]. This existence
may be viewed as a refinement of the old octahedral lemma.



1040 Amnon Neeman

35 Remark 35 It is perhaps worth explaining this point even further. In Remark 32
we observed that a simplex in Sn(dT) is determined by its restriction to the region
Dn ⊂ Rn. But it is only right to warn the reader that not every augmented diagram
for the pair (Dn, dT), vanishing on the top diagonal, extends to a simplex in Sn(dT).
If the extension exists then it is unique up to canonical isomorphism; but there is
no guarantee of existence. For clarity, let us illustrate this when n = 3.

An augmented diagram for the pair (D3, dT), vanishing on the top diagonal, is
a diagram

0

0 �� z

OO

0 �� x

OO

�� y

OO

0 �� u

OO

�� v

OO

�� w

OO

together with compatible differentials, and where we have five special squares. By
the periodicity of Remark 32, we can extend this to a diagram

0 �� Σw

0 �� z

OO

�� Σv

OO

0 �� x

OO

�� y

OO

�� Σu

OO

0 �� u

OO

�� v

OO

�� w

OO

�� 0

OO

.

The periodicity provides us all the maps and differentials we might care to have.
The problem is that nothing guarantees that

z �� Σv

y

OO

�� Σu

OO

should be a special square. In general it will not be.
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It turns out that, for the categories with squares vT and GrbA, this problem
disappears; every augmented diagram for the pair (Dn, vT) (resp. (Dn, GrbA)),
vanishing on the top diagonal, extends to a simplex in Sn(vT) (resp. Sn(GrbA)). The
point is that in the diagram above we have

z �� Σv

y

OO

�� Σu

OO

w

OO

�� 0

OO

.

The squares

z �� Σv y �� Σu

w

OO

�� 0

OO

w

OO

�� 0

OO

are both special, being the rotations of given virtual triangles (resp. long exact
sequences). The 2-out-of-3 property holds, implying that the square

z �� Σv

y

OO

�� Σu

OO

is also special. For vT the 2-out-of-3 property is proved in [93, sect. 2.4]. For GrbA

the proof may be found in [70, lemma 4.3].

36Remark 36 The elements of Sn(T) can be thought of as refinements of the higher
octahedra. Let x ∈ Sn(T) be a simplex. It is an augmented diagram for the pair
(Rn, dT). In Rn ⊂ Z × Z, consider the intersection with Z × {0}. It is the set
{(i, 0) | 0 ≤ i ≤ n + 1}. On the region Rn ∩ {

Z× {0}}, the restriction of x ∈ Sn(T)
is just

0 → x1 → x2 → · · · → xn−1 → xn → 0 .

This gives us (n−1) composable morphisms. The restriction of x to the fundamental
regionDn ⊂ Rn of Remark 32 is a diagram which contains all the mapping cones
on the maps xi → xj. And the simplex keeps track of the relations among these.
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Note that the simplex remembers more data than the higher octahedra of [8,
Remarque 1.1.14]. We already observed this in the case of 3-simplices. Somehow
the coherent differentials and all the special squares tell us of the existence of many
distinguished triangles.

Waldhausen Models
and the Existence of Large Simplices4.9

Let T be a category with squares. In Sect. 4.7 we defined a simplicial set S∗(T).
In Sect. 4.8 we analysed the low-dimensional simplices of S∗(dT), where dT is
the category with squares obtained from a triangulated category T as in Exam-
ple 13. The analysis of Sect. 4.8 tells us that the 1-simplices correspond to ob-
jects, the 2-simplices correspond to distinguished triangles, and the 3-simplices
correspond to special octahedra. The refined octahedral axiom guarantees the
existence of a great many 3-simplices. For n ≥ 4, the n-simplices are complicated
diagrams, and it is not clear if any non-degenerate examples exist. It is there-
fore of some interest to see how a Waldhausen model can be used to construct
simplices.

LetA be an abelian category, C(A) the category of chain complexes inA. As in
Sect. 4.3, our Waldhausen categories will all be assumed to be full subcategories of
C(A). We begin with a definition

37 Definition 37 A commutative square in C(A)

b′ ��
δ

c

a ��
α

OO

β

b

OO

γ

is called bicartesian if the sequence

0 �� a ��






α
−β






b ⊕ b′ ��

(

γ δ
)

c �� 0

is a short exact sequence of chain complexes.
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38Remark 38 Suppose we have a bicartesian square in C(A) as in Definition 37. The
fact that the composite

a ��






α
−β






b ⊕ b′ ��

(

γ δ
)

c

vanishes gives us a natural map from the mapping cone of

(
α

−β

)

to c. This map

must be a homology isomorphism. It therefore becomes invertible in hoC(A) =
D(A). Unless confusion is likely to arise (that is, if there are several possibilities for
α, β, γ and δ), we will omit them entirely in the notation. The map will be written

Cone(a → b ⊕ b′) �� c .

The key lemma is

39Lemma 39 Let C(A) be a Waldhausen category. Let

b′ �� c

a ��

OO

b

OO

be a bicartesian square in C(A). There exists a canonical choice for a differential
∂ : c → Σa rendering the diagram into a special square in dhoC(A) = dD(A).
Furthermore, this choice of differentials is coherent. That is, given a digram in
C(A) where all the squares are bicartesian

d′′′ �� e′′ �� f ′ �� g

c′′ ��

OO

d′′ ��

OO

e′ ��

OO

f

OO

b′ ��

OO

c′ ��

OO

d′ ��

OO

e

OO

a ��

OO

b ��

OO

c ��

OO

d

OO
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we deduce two bicartesian squares, one contained in the other

d′′ �� e′ d′′′ �� g

c′ ��

OO

d′

OO

a ��

OO

d

OO

The above tells us that there are canonical choices for two differentials

δ1 : e′ �� Σc′

δ2 : g �� Σa .

The compatibility requirement, which we assert is automatic for the canonical
choices of differentials, is that δ1 should be the composite

e′ �� g ��
δ2

Σa �� Σc′ .

Proof Let

b′ �� c

a ��
α

OO

β

b

OO

be a bicartesian square in C(A). Let X be the mapping cone on the map

a ��






α
−β






b ⊕ b′ .

We have maps

Σa Xoo
f

��
g

c .
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By Remark 38, the map g : X → c is invertible in D(A). The canonical choice
for the differential is fg−1. The compatibility of these differentials comes from the
commutative diagram

Σa

��

Cone(a → d ⊕ d′′′)oo ��

��

g

Σc′ Cone(c′ → e ⊕ e′′)oo �� g

Σc′ Cone(c′ → d′ ⊕ d′′)oo ��

OO

e′

OO

.

40Corollary 40 Let R ⊂ Z × Z be a region. Assume that R is convex. Suppose we
have a functor F : R → C(A). Any time we have four integers i ≤ i′ and j ≤ j′,
these four integers define a commutative square in Z× Z, namely

(i, j′) �� (i′, j′)

(i, j) ��

OO

(i′, j)

OO

.

Suppose that, whenever the square above happens to be contained in the regionR,
the functor F takes it to a bicartesian square in C(A)

F(i, j′) �� F(i′, j′)

F(i, j) ��

OO

F(i′, j)

OO

.

Then there is a canonical way to associate to the functor F an augmented diagram
for the pair

(
R, dD(A)

)
.

Proof We certainly have a functor

R
F→ C(A) → D(A) .

For any square lying in R, the bicartesian square in C(A)

F(i, j′) �� F(i′, j′)

F(i, j) ��

OO

F(i′, j)

OO

permits us, using Lemma 39, to make the canonical choice of differential F(i′, j′) →
ΣF(i, j). It only remains to check that the choices are coherent.



1046 Amnon Neeman

Suppose therefore that we have a diagram in Z× Z

(I, J ′) �� (i, J ′) �� (i′, J ′) �� (I′, J ′)

(I, j′) ��

OO

(i, j′) ��

OO

(i′, j′) ��

OO

(I′, j′)

OO

(I, j) ��

OO

(i, j) ��

OO

(i′, j) ��

OO

(I′, j)

OO

(I, J) ��

OO

(i, J) ��

OO

(i′, J) ��

OO

(I′, J)

OO

.

If the large square

(I, J ′) �� (I′, J ′)

(I, J) ��

OO

(I′, J)

OO

lies in the region R, then the convexity of R tells us that so does the entire
diagram. We can therefore apply F to it, obtaining a diagram of bicartesian squares
in C(A)

F(I, J ′) �� F(i, J ′) �� F(i′, J ′) �� F(I′, J ′)

F(I, j′) ��

OO

F(i, j′) ��

OO

F(i′, j′) ��

OO

F(I′, j′)

OO

F(I, j) ��

OO

F(i, j) ��

OO

F(i′, j) ��

OO

F(I′, j)

OO

F(I, J) ��

OO

F(i, J) ��

OO

F(i′, J) ��

OO

F(I′, J)

OO
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Lemma 39 therefore applies, and tells us that the two special squares

F(i, j′) �� F(i′, j′) F(I, J ′) �� F(I′, J ′)

F(i, j) ��

OO

F(i′, j)

OO

F(I, J) ��

OO

F(I′, J)

OO

have compatible differentials.

41Remark 41 It is clear that proof of Corollary 40 uses less than the full strength of
the convexity hypothesis. The corollary remains true for some non-convex regions.
In this article, the main region of interest in Rn = {(x, y) | 0 ≤ x − y ≤ n + 1}, and
Rn is clearly convex. Hence we do not take the trouble to give the strongest version
of the corollary.

42Remark 42 Now we want to use Corollary 40 to construct simplices in Sn(dT). As
in Remark 36, we begin with the restriction of a putative simplex toRn ∩{

Z×{0}}.
In other words, we have sequence of composable maps in T

0 → x1 → x2 → · · · → xn−1 → xn → 0 .

and we want to show that this sequence may be extended to a simplex.
Let C be any Waldhausen model for T. The first observation is that we may

choose a lifting of this sequence of composable maps to C. We will define, by
descending induction on i, a sequence of morphisms in C

yi �� yi+1 �� · · · �� yn−1 �� yn

isomorphic in T to the sequence

xi �� xi+1 �� · · · �� xn−1 �� xn .

Choose yn to be any object of C isomorphic to xn; this defines the sequence for
i = n. Suppose the sequence has been defined for i. The morphism xi−1 → xi � yi is
a map in T, and by the calculus of fractions in biWaldhausen complicial categories
(which we call Waldhausen model categories), it may be represented as αβ−1, with
α and β as below and β a weak equivalence

xi−1 yi−1oo
β

��
α

yi .
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The map α can be used to extend our sequence to

yi−1 �� yi �� yi+1 �� · · · �� yn−1 �� yn.

This completes the induction. Replacing the xi by yi, we now assume our sequence
lies in C.

Now we need to construct the simplex. Choose in C a cofibration x1 → y1
1, with

y1
1 contractible. (For example, y1

1 could be the mapping cone on 1 : x1 → x1).
Pushing out allows us to obtain a diagram of bicartesian squares

y1
1

�� y2
1

�� · · · �� yn−1
1

�� yn
1

�� yn+1
1

�� 0

0 �� x1 ��

OO

x2 ��

OO

· · · �� xn−1 ��

OO

xn ��

OO

0

OO

.

Choosing a cofibration y2
1

�� �� y2
2 , with y2

2 contractible, we can continue

to

y2
2

�� · · · �� yn
2

�� yn+1
2

�� yn+2
2

�� 0

y1
1

�� y2
1

��

OO

· · · �� yn
1

��

OO

yn+1
1

��

OO

0

OO

0 �� x1 ��

OO

x2 ��

OO

· · · �� xn ��

OO

0

OO

.

Clearly, we can iterate this process, obtaining a commutative diagram where each
square is bicartesian. We can also continue this diagram in the negative direction.
Suppose yn

−1 is contractible, and suppose we have a fibration yn
−1 � xn. We can pull

back to obtain

0 �� x1 �� x2 �� · · · �� xn−1 �� xn �� 0

0 �� y0
−1

��

OO

y1
−1

��

OO

y2
−1

��

OO

· · · �� yn−1
−1

��

OO

yn
−1

OO

.

By iterating this construction in both the negative and positive direction, we obtain
a functor from the region Rn ⊂ Z× Z to C. In the category hoC = T, the object yi

i
and yn+1−i

−i are isomorphic to zero. Consider the composite functor

Rn → C→ T .

It vanishes at the boundary of the regionRn. Corollary 40 then tells us that we have
a simplex in Sn(dT).
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43Remark 43 We have shown how to construct elements of Sn(dT) starting from
diagrams of bicartesian squares in a Waldhausen model. An element s ∈ Sn(dT)
is called Waldhausen liftable is there exists some Waldhausen model C for T,
a diagram y of bicartesian squares in C, and an ismorphism of augmented (Rn, dT)
diagrams y =̃ s.

44Definition 44 The simplicial subset wS∗(T) ⊂ S∗(dT) is defined to be the simplicial
set of all Waldhausen liftable simplices.

45Remark 45 Note that the simplicial subset wS∗(T) ⊂ S∗(dT) does not depend on
a choice of model. A simplex is liftable if there exists some model C for T, and
a lifting to C. The model C is not specified in advance.

46Remark 46 If we let β be the inclusion map wS∗(T) ⊂ S∗(dT), then what we have
so far are four simplicial maps

wS∗(T) ��
β

S∗(dT) ��
γ

S∗(vT) ��
δ

S∗(GrbA) .

Next we define the fifth and last map.

47Remark 47 For the remainder of this section, we will assume that the reader
is familiar with t-structures in triangulated categories. For an excellent account,
the reader is referred to Chapter 1 of Beilinson, Bernstein and Deligne’s [8]. In
this section, we will use the following facts. Given a triangulated category T with
a t-structure, there is a full subcategoryA ⊂ T, called the heart of T. It satisfies
(i) A is an abelian category.
(ii) Given a monomorphism f : a → b in A, there is a canonically unique way

to complete it to a distinguished triangle

a ��
f

b ��
g

c ��
h

Σa .

The object c lies inA ⊂ T, and

0 �� a ��
f

b ��
g

c �� 0

is a short exact sequence in A (this already makes the cokernel map g : b → c
unique up to canonical isomorphism). What is being asserted is that, given
g : b → c, the map h : c → Σa is unique. See [8, Corollaire 1.1.10(ii)].
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(iii) There is a canonical way to define a homological functor H : T→ A.
(iv) The t-structure is called bounded if H is a bounded homological functor (see

Example 16 for the definition of bounded homological functors), and if

{∀i ∈ Z, H(Σix) = 0} ⇒ x = 0 .

Example 48. Let T = D(A) be the derived category of an abelian category A.
There is a t-structure on T = D(A), called the standard t-structure.

The heart of T isA ⊂ D(A), whereA is embedded in D(A) as the complexes which
vanish in all degrees but zero. The homological functor H : T→ A of part (iii) is
just the functor taking a chain complex X ∈ D(A) to H0(X). This t-structure is not
bounded on T = D(A). Define a full subcategory Db(A) ⊂ D(A) by

Ob
(
Db(A)

)
=

{

X ∈ D(A)

∣∣∣∣∣
Hn(X) = 0 for all but

finitely many n ∈ Z

}

.

Then Db(A) is a triangulated subcategory of D(A). The standard t-structure on
T = D(A) restricts to a standard t-structure on Db(A) ⊂ D(A). The heart is still
A, and the t-structure on Db(A) is bounded, as in (iv) above.

49 Lemma 49 Suppose T is a triangulated category with a t-structure, and let A be
the heart. Suppose T has at least one Waldhausen model. Then there is a simplicial
map

α : S∗(A) → wS∗(T) .

Here, by S∗(A) we mean the Waldhausen S∗-construction on the abelian categoryA.

Proof An element in Waldhausen’s Sn(A) is a string of (n−1) composable monomor-
phisms inA, together with a (canonically unique) choice of the quotients. That is,
maps

0 �� x1 �� �� x2 �� �� · · · �� �� xn−1 �� �� xn

together with a choice of the quotients xj|xi for all i < j. Choose any Waldhausen
model C for T. In Remark 42 we saw that the sequence

0 → x1 → x2 → · · · → xn−1 → xn → 0

can be extended to a simplex in S∗(dT), with a Waldhausen lifting to C. That is, it
can be extended to a simplex in wS∗(T).
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But now the restriction of this simplex to the regionDn ⊂ Rn gives us nothing
other than the sequence of monomorphisms

0 �� x1 �� �� x2 �� �� · · · �� �� xn−1 �� �� xn

together with a choice of the quotients xj|xi. This choice of the quotients must
be canonically isomorphic to the choice that comes from the simplex in Sn(A).
Remark 47(ii) tells us that even the differentials are canonically unique. But by
Remark 32 the simplex is determined by its restriction to Dn ⊂ Rn. [The careful
reader, mindful of Remark 35, will recall that not all augmented diagrams on Dn

extend to Rn. But here we know that the extension exists, and the uniqueness
always holds].

The Main Theorems 4.10

Up until now, all we have produced is a string of definitions. Let T be a triangulated
category. Assume T has at least one Waldhausen model. Assume it has a bounded
t-structure, with heartA. We have constructed simplicial maps

S∗(A) ��
α

wS∗(T) ��
β

S∗(dT) ��
γ

S∗(vT) ��
δ

S∗(GrbA) .

Consider the loop spaces of the geometric realisations of these maps. Write them
as

K(A) ��
α

K(wT) ��
β

K(dT) ��
γ

K(vT) ��
δ

K(GrbA) .

The main theorem is

50Theorem 50 With the notation as above, we have
(i) The composite δγβα : K(A) → K(GrbA) is a homotopy equivalence.
(ii) The map α : K(A) → K(wT) is a homotopy equivalence.
(iii) The space K(vT) has a homotopy type which depends only on A. That is,

K(vT) =̃ K
(

vDb(A)
)
.

Proof The proofs of these statements are, at least at the moment, long and very
difficult. The proof of (i) may be found in [70] and [71], or in [66] and [67]. For
the proof of (ii), see [72], or [68] and [69]. The detailed proof of (iii) does not yet
exist in print. The idea is that it follows by a slight modification of the proof of (ii).
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In the sections which follow, I will try to highlight the problems which nat-
urally arise. The aim of this survey is to explain why the theorems we now
know, that is Theorem 50(i), (ii) and (iii), are deeply unsatisfying and cry for
improvement.

Before we launch into an exhaustive treatment of the defects in what we know, in
this section I will give a brief discussion of the positive. Here are some remarkable
consequences of the theorems.

51 Remark 51 From Theorem 50(i) we know that the spaces K(wT), K(dT) and K(vT)
all contain Quillen’s K-theory K(A) as a retract. Far from losing all information
about higher K-theory, the passage to the derived category has, if anything, added
more information.

52 Remark 52 From Theorem 50(ii) we conclude the following. Suppose T is a tri-
angulated category with at least one Waldhausen model. Suppose it admits two
bounded t-structures, with heartsA andB. Then the Quillen K-theories ofA and
B agree. In symbols, we have

K(A) =̃ K(B) .

After all both are isomorphic, by Theorem 50(ii), with K(wT).
This was unknown even for the “standard t-structures” of Example 48. In other

words, a special case of the above is where we have two abelian categories A
and B, with Db(A) =̃ Db(B). Put T = Db(A) = Db(B). Then T certainly has
at least one Waldhausen model, namely Cb(A). It has two bounded t-structures,
namely the standard one on Db(A) and the standard one on Db(B). The hearts
of these two t-structures are A and B respectively. We conclude that K(A) =̃
K(B).

53 Remark 53 In comparing the consequences of Theorem 50 with what was known
earlier, it is helpful to recall some of the work of Waldhausen.

To each Waldhausen category C, Waldhausen associates a K-theory. Let us call it
WK(C), for the Waldhausen K-theory of C. Suppose we are given an exact functor
of Waldhausen categories α : C→ D. Suppose that

ho(α) : hoC→ hoD

is an equivalence of triangulated categories. From Waldhausen’s Approximation
Theorem, it is possible to deduce fairly easily that

WK(α) : WK(C) → WK(D)
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is a homotopy equivalence. For details see Thomason [89, Theorem 1.9.8]. It follows
that, given any zigzag of exact functors of Waldhausen categories

C1

��
α1
��

�� ��
α2

��

�� ��
α3
��
�

��

· · ·

��
αn−2

��
�

��

Cn−1

��
αn−1

��

�� ��
αn

��

��

C0 C2 Cn−2 Cn

if each ho(αi) is an equivalence of triangulated categories, then WK(C0) =̃ WK(Cn).

Example 54 . For example, letA andB be abelian categories, and assume that the
categories Db(A) =̃ Db(B) are equivalent. Assume further that the

equivalence can be lifted to models. This means there is a zigzag of exact functors
of Waldhausen models from Cb(A) to Cb(B), as in Remark 53. Then it follows that
K(A) =̃ K(B). Already in this baby application there is an advantage to Theorem 50
over the older results. The advantage is that, in applying Theorem 50, there is no
need to assume the equivalence Db(A) =̃ Db(B) can be lifted to models.

While on the subject of comparing Theorem 50 with the earlier results, let us
mention a question raised by Thomason. Thomason asked the following: Does
there exist a pair of Waldhausen categories C andD, with

hoC =̃ hoD but WK(C) �̃= WK(D) ?

By Remark 53, a pair of the sort Thomason asked for could not possibly be
compared by a zigzag of maps of models as above. Not quite so obvious is the fact
that, if no such pair exists, then the “standard t-structure” case of my theorem
above becomes a consequence of Waldhausen’s work.

We now know that such a pair exists. The result may be found in Schlichting [85].
In this very precise sense, my result cannot be deduced from Waldhausen’s.

55Remark 55 Quillen defined a K-theory space K(A) for any abelian category A. If
we define K ′(A) = K

(
vDb(A)

)
, we have a functor such that

(i) By Theorem 50(i), there is a natural split inclusion K(A) → K ′(A).
(ii) By Theorem 50(iii), ifA is the heart of a bounded t-structure, on a triangu-

lated category T with at least one Waldhausen model, then

K ′(A) =̃ K(vT) .

No information is lost if we replace K(A) by K ′(A), and for all we know K ′(A)
might be better.
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Computational Problems4.11

It is time to turn to the problems in the subject, which are very many. Let us begin
with what ought to be the easiest. We should be able to compute the various maps,
at least for low dimensions.

Theorem 50(i) tells us that the spaces K(wT), K(dT) and K(vT) all contain Quil-
len’s K-theory K(A) as a retract. It is easy to see that in K0, this is an isomorphism

K0(A) = K0(wT) = K0(dT) = K0(vT) .

Very embarrasingly, this is all we know. The first question would be

56 Problem 56 Is it true that

K1(A) = K1(wT) = K1(dT) = K1(vT) ?

If not, can one say anything about the other direct summands?

It goes without saying that the same problem is entirely open for Ki, for any
i > 1. I stated Problem 56 as a problem about K1 for two reasons.
(i) In order to show how embarrassingly little we know.
(ii) Because very recently, as a result of Vaknin [91, 92], we actually have a half-

way usable description of K1 of a triangulated category T.

57 Remark 57 One way to compute K1 is from the definition we gave. The K-theory
spaces are the loop spaces of the simplicial sets wS∗(T), S∗(dT) and S∗(vT) respec-
tively. This means the groups K1 are the second homotopy groups

π2|wS∗(T)| , π2|S∗(dT)| , π2|S∗(vT)|
I do not consider this a computationally-friendly description. The comment (ii)
above reminds the reader that, from the recent work by Vaknin [91, 92], we have
a much more useful description. It is for this reason that the problem might be
more manageable in K1.

So far we have looked only at hearts of t-structures, which are always abelian
categories. One special case is T = Db(A), with the standard t-structure as in
Example 48. We know that there are maps in K-theory

K(A) ��
α

K
(

wDb(A)
)

��
β

K
(

dDb(A)
)

��
γ

K
(

vDb(A)
)

,

and that the map γβα : K(A) → K
(

vDb(A)
)

is a monomorphism (it is even split
injective). It is natural to wonder what happens if we replace the abelian categoryA
by an exact categoryE. There is a sensible way to define the derived category Db(E)
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for any exact category E. The category Db(E) is definitely a triangulated category.
This construction may be found in [64].

The general formalism, valid for any triangulated category, specialises in the
case of Db(E) to give maps

K
(

wDb(E)
)

��
β

K
(

dDb(E)
)

��
γ

K
(

vDb(E)
)

.

Not quite so immediate, but nevertheless true, is that there is also a continuous
map α : K(E) → K

(
wDb(E)

)
. From Vaknin’s direct computations [91], we have

58Proposition 58 For certain choices of the exact category E, the induced map
K1(α) : K1(E) → K1

(
wDb(E)

)
has a non-trivial kernel.

Note that this is quite unlike what happens whenE is abelian; in the abelian case
we know that K(E) is a retract of each of K

(
wDb(E)

)
, K

(
dDb(E)

)
and K

(
vDb(E)

)
.

This leads to:

59Problem 59 For an exact category E, compute the maps

K(E) ��
α

K
(

wDb(E)
)

��
β

K
(

dDb(E)
)

��
γ

K
(

vDb(E)
)

.

Even an explicit computational understanding of what happens in K1 would be
a vast improvement over what we now know.

Functoriality Problems 4.12

Starting with any triangulated category T, we have defined three possible candi-
dates for its K-theory. They are the spaces K(wT), K(dT) and K(vT). Of the three,
K(dT) and K(vT) are functors in T. Given a triangulated functor of triangulated
categories f : S→ T, there are natural induced maps

K(df ) : K(dS) → K(dT) and K(vf ) : K(vS) → K(vT) .

60Remark 60 The simplicial sets S∗(dT) and S∗(vT) have a very nice addition defined
on them, allowing us to construct an infinite loop structure on K(dT) and K(vT).
From now on, we will view these as spectra.

Theorem 50 tells us little about K(dT) and K(vT). All we know is that, if T had
a bounded t-structure with heart A, then K(A) is a retract of both K(dT) and
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K(vT). The good theorem is about K(wT). Suppose T has at least one Waldhausen
model. Theorem 50(ii) tells us that K(A) = K(wT). This suggests that we define the
K-theory of the triangulated category T to be K(wT), and forget about the other
options. Let me now point to all the faults of K(wT). First we should remind the
reader of the definition of K(wT).

Given a triangulated category T, there is a simplicial set S∗(dT). The set Sn(dT)
has for its elements the augmented diagrams for the pair (Rn, dT), which vanish
on the boundary of the region Rn. In Sect. 4.9, we defined what it means for an
element of Sn(dT) to have a Waldhausen lifting (see Remark 43). The simplicial
subset wS∗(T) ⊂ S∗(dT) is defined to be the simplicial subset of all Waldhausen
liftable simplices. The K-theory K(wT) is the loop space of the geometric realisation
of wS∗(T).

61 Remark 61 There is no obvious H-space structure on wS∗(T). Suppose we are
given two n-simplices. Both are augmented diagrams for the pair (Rn, dT). Each
diagram has a lifting to some Waldhausen model. Suppose the first diagram lifts
to a model C1 and the second lifts to a model C2. For all we know, the direct sum
may not have a lifting to any model.

Since wS∗(T) is not obviously an H-space, it most certainly is not obviously an
infinite loop space. Let us now be careful about what Theorem 50(ii) tells us. IfA is
the heart of a bounded t-structure on T, the theorem asserts that K(A) =̃ K(wT).
This is only a homotopy equivalence of spaces. It is not an H-map of H-spaces, and
most certainly not an infinite loop map of infinite loop spaces. In Remark 52 we
observed that, if A and B are two hearts of two bounded t-structures on a single
triangulated category T, then K(A) =̃ K(B). Both K(A) and K(B) are naturally
infinite loop spaces, but the above isomorphism is only as spaces. It is not an
infinite loop map.

62 Remark 62 Unlike the many open problems I am in the process of outlining, this
problem is settled. Suppose we are in the situation above. That is,T is a triangulated
category with at least one Waldhausen model, and A and B are two hearts of two
bounded t-structures on T. Then K(A) =̃ K(B), even as infinite loop spaces. The
proof is to introduce yet another simplicial set, which we can denote +S∗(T). We
define +S∗(T) to be a subset of S∗(dT). A simplex in S∗(dT) belongs to +S∗(T) ⊂
S∗(dT) if it can be written as a direct sum of simplices, each with a Waldhausen
lifting. In other words, we obtain +S∗(T) as the closure of wS∗(T) ⊂ S∗(dT) under
direct sums. Define K(+T) to be the loop space of the geometric realisation of
+S∗(T).

It is now easy to see that K(+T) is an infinite loop space. It turns out that the proof
of Theorem 50(ii) works well for K(+T). We conclude that the map K(A) → K(+T)
is a homotopy equivalence. Since it is an infinite loop map of infinite loop spaces,
the problem posed by Remark 61 is solved.
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There is something quite unappetising about the nature of the proof outlined
in Remark 62. Surely we do not want to have to introduce a new simplicial set, and
a new definition for the K-theory of the triangulated categoryT, every time we wish
to prove a new theorem. This method of proof by modification of the simplicial
set is the best we know; presumably there is a good choice of the simplicial set,
rendering such trickery unnecessary.

63Remark 63 The most serious problem with K(wT) is that it is not a functor ofT. Let
f : S→ T be a triangulated functor of triangulated categories. I do not know how
to construct an induced map K(wS) → K(wT). The same problem also holds for
the simplicial sets of Remark 62. Starting with a triangulated functor f : S→ T, I
do not know how to construct an induced map K(+S) → K(+T).

64Problem 64 Find a simplicial set K(?T), which is a functor of T and for which the
strong statement of Theorem 50(ii) holds.

It is quite possible that K(?T) is already on the list of possibilities we have
considered, and that the problem is that we do not yet know how to prove enough
about it.

Localisation 4.13

In order to turn the K-theory of triangulated categories into a powerful tool, one
would need to have some theorems about the way K(?T) changes as T varies. Note
that I have left it vague which particular K-theory one should consider. At this
point our ignorance is so profound that we should do the unprejudiced thing and
consider all the possibilities. When we know more, we will presumably know which
of the simplicial sets can safely be forgotten.

There is one obvious conjecture. Suppose S is a triangulated category, and
suppose thatR ⊂ S is a thick subcategory. This means thatR is a full, triangulated
subcategory of S, and that if y ∈ R decomposes as y = x ⊕ x′ in the category S,
then both x and x′ lie in R. That is, R is closed under the formation in S of direct
summands of its objects. Verdier thesis [94] taught us how to form the quotient
category T = S|R. We have triangulated functors of triangulated categories

R→ S→ T ,

and the composite R→ T is naturally isomorphic to the zero map.

65Problem 65 Find a suitable K-theory of triangulated categories K(?−) so that
(i) K(?T) is a functor of the triangulated category T.
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(ii) By (i) we know that the functor K(?−) yields continuous maps

K(?R) → K(?S) → K(?T) .

The composite K(?R) → K(?T) must be the null map, and there is a natural
map from K(?R) to the homotopy fiber of K(?S) → K(?T). We want this map
to be a homotopy equivalence.

66 Remark 66 The natural candidates for the functor K(?−) are K(d−) and K(v−); what
makes them natural is that we know they are functors. Unless we have a functor,
the question makes no sense. Without a functor, the maps R→ S→ T will not,
in general, induce maps in K-theory, and it would be meaningless to ask whether
the induced sequence is a homotopy fibration. For K(d−) and K(v−), the problem
is concrete enough. We are asking whether one or both of the sequences

K(dR) �� K(dS) �� K(dT)

K(vR) �� K(vS) �� K(vT)

is a homotopy fibration.

I spent a long time working on this problem. It goes without saying that I do
not know the answer; if I did, I would not keep it secret.

67 Remark 67 Suppose we succeed in finding a K-theory K(?−) of triangulated
categories, so that
(i) As in Problem 65, when T = S|R we have a homotopy fibration

K(?R) → K(?S) → K(?T) .

(ii) If A is the heart of a bounded t-structure on T, then there is a natural
isomorphism

K(A) → K(?T) .

Then Quillen’s localisation theorem [77, Theorem 5 of §5] follows easily. Given
abelian categories A, B and C with C = B|A, we have triangulated categories

Db(C) = Db(B)
Db
A(B)

where Db
A(B) is the category of bounded chain complexes in

B, whose cohomology lies in A ⊂ B. Applying (i) and (ii) above to these trian-
gulated categories with the obvious t-structures, Quillen’s localisation theorem is
immediate.



The K-Theory of Triangulated Categories 1059

Bounded δ-Functors 4.14

Many people have tried to study K-theory using techniques from derived cat-
egories. The usual approach has been to rigidify. One passes from the derived
category to an algebraic gadget with more structure (Waldhausen categories or
Grothendieck derivators), one defines K-theory using the added structure, and
then one proves theorems suggesting that the outcome is largely independent of
the rigidification.

Theorem 50(i) at least hints that this might be the wrong direction to go. In this
section we will study this theorem. We will see that it tells us how, using just a δ-
functor between abelian categoriesA andB, it is possible to construct an induced
map in higher K-theory. A δ-functor is much less than a derived functor between
the derived categories. It is just possible that the way to make real progress is not
by rigidifying (passing from the derived category to a model), but by passing to
something less rigid. I do not have a candidate to propose; finding one is an open
problem we discuss in this Section and the next.

Theorem 50(i) is very intriguing. We remind the reader. In this article we
constructed maps

K(A) ��
α

K(wT) ��
β

K(dT) ��
γ

K(vT) ��
δ

K(GrbA) .

Theorem 50(i) asserts that the composite δγβα : K(A) → K(GrbA) is a homotopy
equivalence. What is quite surprising is that this composite is independent of the
triangulated category T.

For any abelian categoryA, Example 15 constructs for us a category with squares
GrbA, and we formally have a simplicial set S∗(GrbA). The space K(GrbA) is the loop
space of the geometric realisation of S∗(GrbA). Quillen’s K-theory K(A) is the loop
space of the geometric realisation of Waldhausen’s simplicial set S∗(A). The maps
α, β, γ and δ are all the loops on the geometric realisations of explicit simplicial
maps. It is not difficult to compute the composite; it amounts to remembering the
definitions of the maps α, β, γ and δ. We leave the details to the reader; let us only
state the conclusion. In the next paragraphs, we tell the reader what the map δγβα
does to a simplex in Waldhausen’s S∗(A).

Suppose s ∈ Sn(A) is an n-simplex in Waldhausen’s simplicial set S∗(A). The
simplex s is a sequence of monomorphisms inA

0 �� x1 �� �� x2 �� �� · · · �� �� xn−1 �� �� xn

together with choices for the cokernels y
j
i of each monomorphism xi → xj. Recall

the regionDn ⊂ Rn of Remark 32. The simplex s ∈ Sn(A) is a functor

Dn → A ⊂ GrbA .
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To make it into an augmented diagram for the pair (Dn, GrbA) we only need
to choose the coherent differentials; we choose them all to be zero. The region
Dn ⊂ Rn is a fundamental domain for augmented diagrams onRn. Any augmented
diagram on Rn is uniquely determined by its restriction to Dn. Furthermore, by
the last paragraph of Remark 35, for the category with squares GrbA) there is
no extension problem; our augmented diagram on Dn extends (uniquely) to an
augmented diagram on Rn. The simplicial map δγβα : S∗(A) → S∗(GrbA) takes
s ∈ Sn(A) to this augmented diagram for the pair (Rn, GrbA).

The next step is to generalise this to arbitrary δ-functors. We should begin by
reminding the reader what a δ-functor is. I will only give a sketch here; much more
detail may be found in Grothendieck [35]. Let A and B be abelian categories. A
δ-functor f ∗ : A→ B is a functor taking short exact sequences inA to long exact
sequences inB. More precisely

68 Definition 68 A δ-functor f ∗ : A→ B is
(i) For each integer i ∈ Z, an additive functor f i : A→ B.
(ii) For each integer i ∈ Z and each short exact sequence inA

0 → a′ → a → a′′ → 0 ,

a map ∂ : f i(a′′) → f i+1(a′).
(iii) The maps ∂ are natural in the short exact sequences. Given an integer i ∈ Z

and a map of short exact sequences inA

0 �� a′ ��

��
α′

a ��

��
α

a′′ ��

��
α′′

0

0 �� b′ �� b �� b′′ �� 0

there is a commutative square

f i(a′′) ��
∂

��
f i(α′′)

f i+1(a′)

��
f i+1(α′)

f i(b′′) ��

∂

f i+1(b′) .

(iv) Every short exact sequence inA

0 → a′ → a → a′′ → 0

goes to a long exact sequence inB

· · · → f i−1(a′′) ∂→ f i(a′) → f i(a) → f i(a′′) ∂→ f i+1(a′) → · · · .



The K-Theory of Triangulated Categories 1061

A δ-functor f ∗ : A→ B is called bounded if, for every object a ∈ A, f i(a) vanishes
for all but finitely many i ∈ Z.

Now that we have recalled the definition, we make the observation

69Lemma 69 Let f ∗ : A → B be a bounded δ-functor. Define a functor, which by
abuse of notation we will write as

f ∗ : A→ Grb(B) .

It is the functor taking a ∈ A to the sequence {f i(a) | i ∈ Z}. Given a bicartesian
square inA

b′ ��
δ

c

a ��
α

OO
β

b

OO
γ

we assert that the functor f ∗ : A→ Grb(B) takes it to a special square in Grb(B).
Furthermore, if we are given a diagram of bicartesian squares inA

d′′′ �� e′′ �� f ′ �� g

c′′ ��

OO

d′′ ��

OO

e′ ��

OO

f

OO

b′ ��

OO

c′ ��

OO

d′ ��

OO

e

OO

a ��

OO

b ��

OO

c ��

OO

d

OO

we deduce two bicartesian squares, one contained in the other

d′′ �� e′ d′′′ �� g

c′ ��

OO

d′

OO

a ��

OO

d

OO

.
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The functor f ∗ takes these to two special squares, with differentials

∂1 : f ∗(e′) �� Σf ∗(c′)

∂2 : f ∗(g) �� Σf ∗(a) .

These differentials are compatible; that is, ∂1 is the composite

f ∗(e′) → f ∗(g)
∂2→ Σf ∗(a) → Σf ∗(c′).

Proof The commutative square

b′ ��
δ

c

a ��
α

OO
β

b

OO
γ

is bicartesian, and by Definition 37 this means that

0 �� a ��






α
−β






b ⊕ b′ ��

(

γ δ
)

c �� 0

is a short exact sequence inA. But then the δ functor f ∗ gives us a map ∂ : f ∗(c) →
Σf ∗(a), so that

f ∗(a) ��






f ∗(α)

−f ∗(β)






f ∗(b) ⊕ f ∗(b′) ��

(

f ∗(γ) f ∗(δ)

)

f ∗(c) ��
∂

Σf ∗(a)

is a long exact sequence. In other words, the differential ∂ : f ∗(c) → Σf ∗(a)
together with the commutative square

f ∗(b′) ��
f ∗(δ)

f ∗(c)

f ∗(a) ��

f ∗(α)

OO
f ∗(β)

f ∗(b)

OO
f ∗(γ)
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give us a special square in Grb(B). It remains to establish the coherence of the
differentials.

Assume therefore that we are given a diagram of bicartesian squares inA

d′′′ �� e′′ �� f ′ �� g

c′′ ��

OO

d′′ ��

OO

e′ ��

OO

f

OO

b′ ��

OO

c′ ��

OO

d′ ��

OO

e

OO

a ��

OO

b ��

OO

c ��

OO

d

OO

.

We deduce maps of short exact sequences

0 �� a ��

��

d ⊕ d′′′ ��

��

g �� 0

0 �� c′ �� e ⊕ e′′ �� g �� 0

0 �� c′ �� d′ ⊕ d′′ ��

OO

e′ ��

OO

0 .

The fact that f ∗ is a δ-functor gives us commutative squares

f ∗(g) ��
∂2

Σf ∗(a)

��

f ∗(g) ��
∂3

Σf ∗(c′)

f ∗(e′) ��
∂1

OO

Σf ∗(c′)

from which the coherence for the differentials immediately follows.
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70 Proposition 70 LetA andB be abelian categories. Then any δ-functor f ∗ : A→ B

induces a simplicial map of simplicial sets

S∗(A) → S∗(GrbB) .

Proof As at the beginning of this section, a simplex s ∈ Sn(A) is a sequence of
monomorphisms inA

0 �� x1 �� �� x2 �� �� · · · �� �� xn−1 �� �� xn

together with choices for the cokernels y
j
i of each monomorphism xi → xj. Applying

f ∗ to the diagram as in Lemma 69, we deduce an augmented diagram for the pair
(Dn, GrbB). The region Dn ⊂ Rn is a fundamental domain for Rn by Remark 32,
and there is no extension problem by the last paragraph of Remark 35. Hence
the diagram extends uniquely to an augmented diagram for the pair (Rn, GrbB),
vanishing on the boundary. That is, we have a simplex in Sn(GrbB). This defines
the simplicial map.

71 Remark 71 The identity functor 1 : A→ A can always be viewed as a δ-functor.
That is, we define a δ-functor i∗ : A→ A by putting i0 = 1, and ij = 0 if j ≠ 0. The
differential ∂ is zero for every short exact sequence inA.

In terms of Proposition 70, the computation at the beginning of the section says
that the map δγβα : S∗(A) → S∗(GrbA) is nothing other than the map induced by
the the trivial δ-functor i∗. That is,

δγβα = i∗ : S∗(A) → S∗(GrbA).

Theorem 50(i) asserts that i∗ induces a homotopy equivalence.

Given any δ-functor f ∗ : A → B, we can now define an induced map K(f ∗) :
K(A) → K(B). Consider the diagram

S∗(A)

��

f ∗

LL
LL

LL
LL

LL
S∗(B)

xx

i∗

rr
rr
rr
rr
rr

S∗(GrbB)
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If we pass to loop spaces of geometric realisations, we have a diagram

K(A)

		

K(f ∗)

LL
LL

LL
LL

LL
K(B)

yy

K(i∗)

rr
rr
rr
rr
rr

K(GrbB)

and the map K(i∗) is a homotopy equivalence. The map induced by f ∗ is simply

K(i∗)−1K(f ∗) : K(A) → K(B) .

What I find so puzzling about this theorem is

72Problem 72 What happens to the composite of two δ-functors? Suppose we have
three abelian categoriesA,B and C, and two δ-functors

A ��
f ∗

B ��
g∗

C .

The above tells us how to construct maps in K-theory

K(A) ��
K(f ∗)

K(B) ��
K(g∗)

K(C) .

There is a composite map K(g∗)K(f ∗) : K(A) → K(C). What is the homological
algebra data inducing it?

Presumably the composite map K(g∗)K(f ∗) must be induced by the composite
g∗f ∗. But what is the composite of two δ-functors? A δ-functor is a strange beast,
taking short exact sequences in A to long exact sequences in B. What does the
composite of two such things do? Does it take short exact sequences inA to spectral
sequences inB? If so, how?

It would already be interesting if someone could formulate a plausible conjecture
for Problem 72.

Devissage 4.15

There are two theorems about the K-theory of abelian categories which are formally
very similar. They are Quillen’s resolution theorem [77, Theorem 3 and Corollary 1
of §4] and Quillen’s devissage theorem [77, Theorem 4 of §5]. Let me remind the
reader.



1066 Amnon Neeman

73 Theorem 73 Let f : A→ Bbe a fully faithful, exact embedding of exact categories.
If either (i) or (ii) below holds, then the induced map

K(f ) : K(A) → K(B)

is a homotopy equivalence. It remains to tell the reader what are the hypotheses (i)
and (ii).
(i) Resolution: Whenever we have an exact sequence

0 → b′ → b → b′′ → 0

inB, then

{b, b′′ ∈ A} ⇒ b′ ∈ A and {b′, b′′ ∈ A} ⇒ b ∈ A
Furthermore, every object y ∈ B admits a resolution

0 → xn → xn−1 → · · · → x1 → x0 → y → 0 ,

with all the xi’s inA.
(ii) Devissage: The categories A and B are both abelian. Furthermore, every

object y ∈ B admits a filtration

0 = xn ⊂ xn−1 ⊂ · · · ⊂ x1 ⊂ x0 = y ,

with all the intermediate quotients xi|xi+1 inA.

We can wonder what these theorems mean in the K-theory of triangulated cate-
gories. For resolution, the following well-known lemma is suggestive.

74 Lemma 74 Let f : A→ B be a fully faithful, exact embedding of exact categories.
Suppose the resolution hypothesis holds. Then the natural map

Db(f ) : Db(A) → Db(B)

is an equivalence of categories.

75 Remark 75 In most of this article I have avoided all mention of exact categories,
focusing instead on the special case of abelian categories. This is mostly because we
know much more about the K-theory of derived categories of abelian categories.
For the resolution theorem, it would be a mistake to try to state it only for abelian
categories. The reason is simple. If f : A→ B is a fully faithful, exact embedding of
abelian categories, and if Db(f ) : Db(A) → Db(B) is an equivalence of categories,
then one can easily show that f must be an equivalence of categories. For an
embedding of abelian categories f : A → B, Quillen’s resolution theorem is
content-free.
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As we mentioned in Remark 75 our main result, Theorem 50, is about abelian
categories. Therefore Quillen’s resolution theorem does not formally follow. But
morally we have been learning that K-theory depends only on the derived cat-
egory. In the light of Lemma 74, Quillen’s resolution theorem is hardly surpris-
ing.

The devissage theorem, by contrast, has always been very puzzling. Since the
statement is so similar to the resolution theorem, one has to wonder whether the
two have a common generalisation. Let me try to propose one. In both cases,
the theorem asserts that an inclusion A ⊂ B induces a homotopy equivalence
in K-theory. Let us, for simplicity, look at resolutions and filtrations of length 1.
Conditions (i) and (ii), of the resolution and devissage theorems in the special case
of length 1 resolutions and filtrations, are
(i) Resolution: Every object y ∈ B admits an exact sequence

0 → x → x′ → y → 0

with x, x′ inA.
(ii) Devissage: Every object y ∈ B admits an exact sequence

0 → x → y → x′ → 0

with x, x′ inA.

The point I want to make is that, in the derived category, these become indis-
tinguishable. In other words, if the inclusion A ⊂ B satisfies the hypothesis of
devissage, then the natural map

Db(A) → Db(B)

should satisfy a something analogous to the hypothesis of resolution. And morally
resolution is the statement that K-theory ofA is really a functor of Db(A).

This leads one to expect that there should be some construction, which we
will call the derived category of a triangulated category. In fact, categories ought
to be infinitely differentiable. Given a category T, it should be possible to define
its derived category Db(T), and this category should have a K-theory isomor-
phic to the K-theory of T. Devissage is presumably the statement that the K-
theory of an abelian category depends only on the derived category of its derived
category.

Since this problem is so ill-posed, let me not try to say much more. The major
thrust of the results in Theorem 50 is that K-theory is an invariant that captures
relatively little of the homological structure we have been using. Perhaps the
clearest evidence for this is the fact that even a δ-functor is enough to induce a map
in higher K-theory; see Sect. 4.14. So perhaps the problem I am trying to pose in
this section is: Find the right homological algebra gadget, which comes closer to
being completely detected by K-theory.
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About the Proofs4.16

There are several ideas that come into the proofs which, as I have already said, are
long and very difficult. One way to explain the strategy is the following. To define
the K-theory of a triangulated category, we looked at the cosimplicial regionRn of
Sect. 4.6. It turns out that there are many other cosimplicial regions. For example,
we can look at regions in Z× Z which look like
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It turns out to be very easy to make this into a cosimplicial region. That is, there is
a straight-forward way of finding a functor

Θ : ∆ → {Regions in Z× Z} ,

which takes an object n ∈ ∆ to a region with the indicated shape. LetT be a category
with squares. As in Sect. 4.7, we can take the functor sending n ∈ ∆ to augmented
diagrams for the pair (Θ(n),T). This is a functor ∆op → {Sets}, that is a simplicial
set. The idea is to study many such simplicial sets, for many choices of cosimplicial
regions.

In fact, we can produce many variants. Our region is the disjoint union of four
subregions, which I have drawn well separated from each other. One way to produce
variants is by imposing different restrictions on each subregion. If we have four
subcategories A,B, C andD of T, we can look at the simplicial subset

C

B D

A

.

This just means that the augmented diagram takes the indicated subregions to
the prescribed subcategories. We can also place restrictions on the horizontal and
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vertical morphisms in each subregion, and on the morphisms connecting the
subregions:

C

��

���� ��

*

����

*

����

B

����

����

��

��*

*
D

��

����
����

* ����

* ����

A

��

����
��

.

The reader will notice that the papers containing the proofs have many such sim-
plicial sets and simplicial maps among them. At some level, the proofs amount
to a combinatorial manipulation of the many possible simplicial sets that arise
this way. Each of the main steps in the proofs shows that two regions, with
all the adornment indicated above, give rise to homotopy equivalent simplicial
sets.

This raises the obvious problem:

76Problem 76 Are there more conceptual, less combinatorial proofs? Is it possible
to give easier proofs of the main theorems?

For what it is worth, let me quote what Thomason had to say about this. When
he came to believe that I really had a proof of the theorems I was claiming, his
comment was: “There has to be a better proof.” What I have tried to explain in this
manuscript is that, before looking for the optimal proof, perhaps we should search
for improved theorems. Thomason was undoubtedly right about the existence of
a better proof. All I wish to add to Thomason’s remark is: “There has to be a better
theorem”.

Appendix: Examples of D(A) = D(B) 4.17

In this appendix we outline the many examples now known, of pairs of abelian
categories A and B with D(A) = D(B). Let me thank Bernhard Keller and Idun
Reiten for much help with this appendix. However, all responsibility for mistakes
rests with me.

The overwhelming majority of known examples fall into three types.
(i) BothA andB are categories of modules, for different rings R and S.
(ii) A is a category of modules over some ring R, andB is the category of (quasi)-

coherent sheaves on some projective variety (or a non-commutative analog of
a projective variety).
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(iii) BothA andB are categories of (quasi)-coherent sheaves, on some projective
varieties X and Y .

The first example was probably Beilinson’s 1978 article [11]. Beilinson produces
three abelian categories with D(A) = D(B) = D(C). In the example, A is the
category of coherent sheaves on Pn (the n-dimensional projective space). For B
andCBeilinson produced two rings R and S, andB andC are the categories of finite
modules over R and S, respectively. Since the module categories for the rings R and
S are not equivalent, Beilinson’s example is simultaneously of types (i) and (ii).

The first example of type (iii) seems to be in Mukai’s 1981 article [62]. In Mukai’s
example, A and B are the categories of coherent sheaves on an abelian variety X
and on its dual X̂, respectively.

Both Beilinson’s and Mukai’s example have been infinitely generalised and ex-
tended since. Let us first discuss type (iii). LetA andB be the abelian categories of
coherent sheaves on smooth, projective varieties X and Y . Orlov’s paper [74] gives
a characterisation of all the equivalences D(A) = D(B). Bondal and Orlov [16]
show that if the canonical bundle on X is ample or its negative is ample, then
D(A) = D(B) implies X = Y . Kawamata shows [49] that if X is of general type
or if the Kodaira dimension of −KX is the dimension of X, then D(A) = D(B)
implies that X and Y are birational. Non-birational examples (where the Kodaira
dimension is restricted by the above) may be found first of all in Mukai’s origi-
nal papers [62, 63], but more recently also in Bridgeland [20, 21], Bridgeland and
Maciocia [24, 25], Orlov [74, 75] and Polishchuk [76]. But in some sense the case
where X and Y are birational is most interesting, since it seems to be closely re-
lated to the minimal models program. It is conjectured that whenever X and Y
are related by a sequence of flops then the derived categories should be the same.
The first paper to prove such a theorem, for certain smooth flops, was Bondal and
Orlov [15]. A particularly nice treatment for general smooth 3-fold flops, in terms
of a certain moduli problem, may be found in Bridgeland [22]. For 3-fold flops with
only terminal Gorenstein singularities this was done by Chen [30], and for flops
with only quotient singularities by Kawamata [50]. One of the problems with more
general singularities is that it is not quite clear what the precise statement should
be. That is, just exactly which derived category of sheaves is right. The reader can
find a brief discussion of the conjectured relationship between derived categories
and birational geometry in Reid [78, §3.6]. Another algebro-geometric example
of D(A) = D(B) comes from the McKay correspondence in Bridgeland, King and
Reid [23]. It is slightly different from the above in that A is not just the abelian
category of sheaves on some variety, but rather the category of sheaves with some
compatible group action. The reader can find a much more thorough survey of all
the algebro-geometric examples in Bondal and Orlov [17].

Next we mention more examples of type (ii). That is, A is a module category
and B is a category of sheaves on some projective variety, and D(A) = D(B).
The general case, of how such equivalences come about, was studied by Dagmar
Baer [7] and by Alexei Bondal [14]. Baer applied it to coherent sheaves on weighted
projective lines. Then the algebras R are Ringel’s canonical algebras. Bondal studied
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braid group actions on the collection of exceptional sequences in D(B). Kapranov
generalised Beilinson’s example to other homogenous spaces; see [45–48]. In the
realm of non–commutative algebraic geometry, see LeBruyn’s [56] work on Weyl
algebras, which was extended by Berest–Wilson [9] (note the appendix by Michel
Van den Bergh). Kapranov–Vasserot’s McKay equivalence [44] is also almost of
type (ii).

The richest collection of known examples are the ones of type (i). It is probably
fair to say that the subject began with Happel’s Habilitationsschrift [36,37]. Happel
observes that, if (R, T, S) is a tilting triple (that is, R and S are rings and T is an
R − S-bimodule satisfying certain conditions), then there is an equivalence of
categories D(A) = D(B). Here A and B are, respectively, the categories of R- and
of S-modules.

77Remark 77 We should make a historical note here. Tilting triples predate Happel’s
work. One of Happel’s key contributions was to observe that they naturally give
rise to equivalences of the form D(A) = D(B). For historical completeness we note

Important precursors of tilting triples may be found in Gelfand–Ponomarev
[33, 34], Bernstein–Gelfand–Ponomarev [10], Auslander–Platzeck–Reiten [6]
and Marmaridis [60]. One should note that Street independently developed
similar ideas in his (unpublished) 1968 PhD thesis. See also his article [88].
The people (before Happel) who gave tilting theory its modern form: Brenner–
Butler [19], who first proved the ‘tilting theorem’, Happel–Ringel [40], who
improved the theorem and defined tilted algebras, Bongartz [18], who stream-
lined the theory, and Miyashita [61], who generalized it to tilting modules of
projective dimension > 1.

78Remark 78 Happel found that the existence of a tilting module was sufficient to
give an equivalence D(A) = D(B). A necessary and sufficient condition appeared
soon after in Rickard’s work [80].

79Remark 79 For a concise introduction to tilting theory and its link with derived
equivalences the reader is referred to Keller [53]. There is also Chapter XII in
Gabriel–Roiter’s book [31], the lecture notes edited by König–Zimmermann [54]
and Assem’s introduction [3].

There is a long list of applications of tilting theory (that is, of examples of rings
R and S with D(R) = D(S)). If R is a hereditary algebra, the reader is referred
to Happel–Rickard–Schofield [39] for a general theorem about the possible S’s.
For certain specific R’s (precisely, for R the algebra of a quiver of Dynkin type)
there is a complete classifications of all possible S’s. For type A, this is in Keller–
Vossieck [51] and Assem–Happel [4]. For type D see Keller [52]. Type Ã may be
found in Assem–Skowronski [5], while types B and C are in Assem [2].
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More examples of algebras R, for which all S’s with D(R) = D(S) have been
classified, are the Brauer tree algebras treated by Rickard [79], the representation-
finite selfinjective algebras of Asashiba [1], the discrete algebras introduced by
Dieter Vossieck [95], Brüstle’s derived tame tree algebras in [29] (the main theorem
was independently obtained by Geiss [32]), or Bocian–Holm–Skowronski’s weakly
symmetric algebras of Euclidean type [12] (the preprint is available at Thorsten
Holm’s homepage).

Another large source of examples comes from Broué’s abelian defect group
conjecture. Let me state the conjecture:

80 Conjecture 80 Let p be a prime, let O be a complete discrete valuation ring of
characteristic zero with residue field k of characteristic p. Suppose that O and k are
large enough.

Let G be a finite group, let R be a block algebra of the group algebra OG that has
an abelian defect group D, and let S be the Brauer correspondent of R. We remind
the reader that S is a block algebra of ONG(D), the group algebra of the normalizer
of D in G. In any case R and S are rings. Their module categories will beA andB.

Then Broué conjectured, in his 1990 paper [27], that there is an equivalence
D(A) = D(B).

81 Remark 81 It might be helpful to give the reader a special case, which is already
very interesting. Suppose k is an algebraically closed field of characteristic p > 0.
Let G be a finite group, P a p-Sylow subgroup of G. Assume P is abelian. Let NG(P)
be the normaliser of P in G. Let R and S be the principal blocks of kG and kNG(P),
respectively. It follows from Conjecture 80 that the derived categories of R and S
are equivalent.

For more on the conjecture see Broué [26–28], König–Zimmermann [54] and
Rickard [81, 82]. For us the relevance is that the cases where the conjecture has
been verified give equivalences D(A) = D(B). In the cases whereA andB are not
equivalent (and there are many of these), this gives examples of type (i).

A list of three of the large classes of known examples so far is:
1. All blocks with cyclic defect groups. See Rickard [79], Linckelmann [59] and

Rouquier [83, 84].
2. All blocks of symmetric groups with abelian defect groups of order at most p5.

(Preprint by Chuang and Kessar).
3. The non-principal block with full defect of SL2(p2) in characteristic p. The

defect group is Cp × Cp. (Preprint by Holloway).

A much more complete and up-to-date list may be found on Jeremy Rickard’s home
page, at

http://www.maths.bris.ac.uk/˜majcr/adgc/which.html
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82Remark 82 It is perhaps worth noting that the original evidence, which led Broué
to formulate his conjecture, was obtained by counting characters. In other words,
the evidence was mostly K0 computations.

We should say a little bit about examples not of the three types (i), (ii) and (iii).
The first to find a technique to produce such examples were Happel, Reiten and
Smalø [38]. For a different approach see Schneiders [86]. A discussion of both
approaches, the relation between them and improvements to the theorem may be
found in Bondal and van den Bergh [13, Section 5.4 and Appendix B].

In all of the above I have said nothing about the uniqueness of an equivalence
D(A) � D(B). Any such equivalence is unique up to an automorphism of D(A). If
X is a Calabi–Yau manifold andA the category of coherent sheaves on it, then D(A)
is expected to have a large automorphism group, and this is expected to be related
to the mirror partner of X. The reader can find more about this in Kontsevich [55]
or Seidel and Thomas [87]. There has been some beautiful work on this, but our
survey must end at some point.

References
1. Hideto Asashiba, The derived equivalence classification of representation-finite

selfinjective algebras, J. Algebra 214 (1999), no. 1, 182–221. MR 2000g:16019
2. Ibrahim Assem, Iterated tilted algebras of types Bn and Cn, J. Algebra 84 (1983),

no. 2, 361–390. MR 85f:16031
3. , Tilting theory – an introduction, Topics in algebra, Part 1 (Warsaw,

1988), Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 127–180. MR
93g:16011

4. Ibrahim Assem and Dieter Happel, Generalized tilted algebras of type An,
Comm. Algebra 9 (1981), no. 20, 2101–2125. MR 83a:16023a
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Summary. In this report we sketch some of the insights and consequences of recent work
by Andrei Suslin and Vladimir Voevodsky concerning algebraic K-theory and motivic
cohomology. We can trace these developments to a lecture at Luminy by Suslin in 1987 and
to Voevodsky’s Harvard thesis in 1992. What results is a powerful general theory of sheaves
with transfers on schemes over a field, a theory developed primarily by Voevodsky with
impressive applications by Suslin and Voevodsky.

This paper was originally delivered in the Séminaire Bourbaki and published in Astéris-
que [10] by the Société Mathématique de France and is reprinted here with permission.

Introduction: Connections with K-TheoryA.1

Criteria for a good motivic cohomology theory originate in topology. This should
be a theory which plays some of the same role in algebraic geometry as singular
cohomology plays in algebraic topology. One important aspect of singular coho-
mology is its relationship to (complex, topological) K-theory as formalized by the
Atiyah–Hirzebruch spectral sequence for a topological space T [1]

E
p,q
2 = Hp(X, K

q
top) ⇒ K

p+q
top (T)

where K
q
top is the qth coefficient of the generalized cohomology theory given by

topological K-theory (equal to Z if q ≤ 0 is even and 0 otherwise). Indeed,
when tensored with the rational numbers, this spectral sequences collapses to give
Kn

top(T) ⊗ Q =
⊕

p+q=n,p≥0,q≤0 Hp(T, K
q
top) ⊗ Q. This direct sum decomposition

can be defined intrinsically in terms of the weight spaces of Adams operations
acting upon K

top
n (T). This becomes particularly suggestive when compared to the

well known results of Alexander Grothendieck [18] concerning algebraic K0 of
a smooth scheme X:

K0(X) ⊗Q =
⊕

CHd(X) ⊗Q ,

where CHd(X) is the Chow group of codimension d cycles on X modulo rational
equivalence; moreover, this decomposition is once again given in terms of weight
spaces for Adams operations.

Working now in the context of schemes (typically of finite type over a field k),
William Dwyer and Friedlander [8] developed a topological K-theory for schemes
(called etale K-theory) which also has such an Atiyah–Hirzebruch spectral se-
quence with E2-term the etale cohomology of the scheme. In [5], Spencer Bloch
introduced complexes Zd∗(X) for X quasi-projective over a field which consist of
certain algebraic cycles of codimension d on the product of X and affine spaces
of varying dimensions. The homology of Zd∗(X) is closely related to the (higher
Quillen) algebraic K-theory of X. If CHd(X, n) denotes the n-th homology group
of the Bloch complex Zd∗(X) and if X is a smooth scheme, then

Kn(X) ⊗Q =
⊕

d

CHd(X, n) ⊗Q

(see also [21]); this decomposition is presumably given in terms of weight spaces
for Adams operations on K-theory. Together with Stephen Lichtenbaum, Bloch has
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moreover established a spectral sequence [6] converging to algebraic K-theory in
the special case that X is the spectrum of a field F

E
p,q
2 = CH−q(Spec F, −p − q) ⇒ K−p−q(Spec F) .

As anticipated many years ago by Alexander Beilinson [2], there should be such
a spectral sequence for a quite general smooth scheme

E
p,q
2 = Hp−q(X,Z(−q)) ⇒ K−p−q(X)

converging to algebraic K-theory whose E2-term is motivic cohomology. Moreover,
Beilinson [4] and Lichtenbaum [23] anticipated that this motivic cohomology
should be the cohomology of motivic chain complexes. Although such a spectral
sequence still eludes us (except in the case of the spectrum of a field), the complexes
Z(n) of Voevodsky and Suslin (see §4) satisfy so many of the properties required
of motivic complexes that we feel comfortable in calling their cohomology motivic
cohomology. The first sections of this exposition are dedicated to presenting some
of the formalism which leads to such a conclusion. As we see in §5, a theorem
of Suslin [28] and duality established by Friedlander and Voevodsky [15] imply
that Bloch’s higher Chow groups CHd(X, n) equal motivic cohomology groups of
Suslin–Voevodsky for smooth schemes X over a field k “which admits resolution
of singularities.”

The Beilinson–Lichtenbaum Conjecture (cf. [2, 3, 19]) predicts that the conjec-
tural map of spectral sequences from the conjectured spectral sequence converging
to algebraic K-theory mod-� to the Atiyah–Hirzebruch spectral sequence converg-
ing to etale K-theory mod-� should be an isomorphism on E2-terms (except for
a fringe effect whose extent depends upon the mod-� etale cohomological dimen-
sion of X) for smooth schemes over a field k in which � is invertible. This would
reduce the computation of mod-� K-theory of many smooth schemes to a question
of computing “topological invariants” which in many cases has a known solution.
In §6, we sketch the proof by Suslin and Voevodsky that the “Bloch–Kato Conjec-
ture” for a field k and a prime � invertible in k implies this Beilinson–Lichtenbaum
Conjecture for k and �. As discussed in the seminar by Bruno Kahn, Voevodsky has
proved the Bloch–Kato Conjecture for � = 2 (in which case it was previously con-
jectured by John Milnor and thus is called the Milnor Conjecture.) Recent work
by B. Kahn and separately by Charles Weibel and John Rognes establishes that
computations of the 2-primary part of algebraic K-theory for rings of integers in
number fields can be derived using special arguments directly from the Beilinson–
Lichtenbaum Conjecture and the Bloch–Lichtenbaum spectral sequence.

Algebraic Singular Complexes A.2

The elementarily defined Suslin complexes Sus∗(X) provide a good introduction to
many of the fundamental structures underlying the general theory developed by
Voevodsky. Moreover, the relationship between the mod-n cohomology of Sus∗(X)
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and the etale cohomology mod-n of X stated in Theorem 1 suggests the close rela-
tionship between etale motivic cohomology mod-� and etale cohomology mod-�.

As motivation, we recall from algebraic topology the following well known the-
orem of A. Dold and R. Thom [7]. If T is a reasonable topological space (e.g.,
a C.W. complex) and if SPd(T) denotes the d-fold symmetric product of T, then the
homotopy groups of the group completion (

∐
d Sing.(SPd(T)))+ of the simplicial

abelian monoid
∐

d Sing.(SPd(T)) are naturally isomorphic to the (singular) ho-
mology of T. Here, Sing.(SPd(T)) is the (topological) singular complex of the space
SPd(T), whose set of n-simplices is the set of continuous maps from the topological
n-simplex ∆[n] to SPd(T).

Suppose now that X is a scheme of finite type over a field k; each SPd(X) is
similarly a scheme of finite type over k. Let ∆n denote Spec k[t0, … , tn]|

∑
i ti − 1

and let ∆∗ denote the evident cosimplicial scheme over k which in codimension n is
∆n. We define the Suslin complex Sus∗(X) of X to be the chain complex associated
to the simplicial abelian group (

∐
d Hom Sch|k(∆∗, SPd(X)))+.

Various aspects of Sus∗(X) play an important role in our context. First, Sus∗(X)
equals cequi(X, 0)(∆∗), where cequi(X, 0) is a sheaf in the Nisnevich topology on the
category Sm|k of smooth schemes over the field k. Second, the sheaf cequi(X, 0) is
a presheaf with transfers. Third, if we denote by C∗(cequi(X, 0)) the complex of Nis-
nevich sheaves with transfers (sending a smooth scheme U to cequi(X, 0)(U × ∆∗)),
then this complex of sheaves has homology presheaves which are homotopy in-
variant: the natural pull-back

cequi(X, 0)(U × ∆∗) → cequi(X, 0)(U × A1 × ∆∗)

induces an isomorphism on homology groups.

1 Theorem 1 ([29]). Let X be a quasi-projective scheme over an algebraically closed
field k and let n be a positive integer relatively prime to the exponential charac-
teristic of k. Then the mod-n cohomology of Sus∗(X) (i.e., the cohomology of the
complex RHom (Sus∗(X),Z|n)) is given by

H∗(Sus∗(X),Z|n) � H∗
et(X,Z|n) ,

where the right hand side is the etale cohomology of the scheme X with coefficients
in the constant sheaf Z|n.

Quick sketch of proof
This theorem is proved using the rigidity theorem of Suslin and Voevodsky

stated below as Theorem 8 We apply this to the (graded) homotopy invariant (cf.
Lemma 7) presheaves with transfers

Φi(−) = Hi

(
cequi(X, 0)(− × ∆∗)

) ⊗ Z[1|p])
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where p is the exponential characteristic of k. An auxiliary topology, the “qfh
topology” is introduced which has the property that the free Z[1|p] sheaf in this
topology represented by X equals cequi(X, 0) ⊗ Z[1|p]. Since Sus∗(X) = Φ∗(Spec k),
Theorem 8 and the comparison of cohomology in the qfh and etale topologies
provides the following string of natural isomorphisms.

Ext∗Ab(Sus∗(X),Z|n) = Ext∗EtShv|X((Φ∗)et ,Z|n) = Ext∗qfhShv|X((Φ∗)qfh,Z|n)

= Ext∗qfhShv(k)(Z[1|p](X),Z|n) = H∗
qfh(X,Z|n)

= H∗
et(X,Z|n) .

These concepts of presheaves with transfers, Nisnevich sheaves, and homotopy
invariant presheaves will be explained in the next section. Even before we investi-
gate their definitions, we can appreciate their role from the following theorem of
Voevodsky.

2Theorem 2 [32, 5.12] Assume that k is a perfect field. Let

0 → F1 → F2 → F3 → 0

be a short exact sequence of Nisnevich sheaves on Sm|k with transfers. Then the
resulting triple of chain complexes of abelian groups

F1(∆∗) → F2(∆∗) → F3(∆∗) → F1(∆∗)[1]

is a distinguished triangle (i.e., determines a long exact sequence in homology
groups).

Quick sketch of proof
Let P denote the presheaf cokernel of F1 → F2. Then the kernel and cokernel

of the natural map P → F3 have vanishing associated Nisnevich sheaves. The
theorem follows from an acyclicity criterion for Q(∆∗) in terms of the vanishing of
Ext∗(QNis, −) for any presheaf with transfers Q on Sm|k (with associated Nisnevich
sheaf QNis). A closely related acyclicity theorem is stated as Theorem 15 below.

One consequence of Theorem 2 (and Proposition 5 below) is the following useful
property. The resulting long exact sequence in Suslin homology is far from evident
if one works directly with the definition of the Suslin complex.

3Corollary 3 [32, 5.17] Let k be a perfect field and X a scheme of finite type over k.
Then for any open covering X = U ∪ V of X

Sus∗(U ∩ V) → Sus∗(U) ⊕ Sus∗(V) → Sus∗(X) → Sus∗(U ∩ V)[1]

is a distinguished triangle.



1086 Eric M. Friedlander

Nisnevich Sheaves with TransfersA.3

Let Sm|k denote the category of smooth schemes over a field k. (In particular, such
a scheme is of finite type over k.) Then the Nisnevich topology on Sm|k (cf. [24]) is
the Grothendieck topology (finer than the Zariski topology and less fine than the
etale topology) whose coverings {Ui → U}i∈I are etale coverings with the property
that for each point u ∈ U there exists some i ∈ I and some point ũ ∈ Ui mapping
to u such that the induced map of residue fields k(u) → k(̃u) is an isomorphism.
A key property of this topology is that its points are Hensel local rings.

In order to consider singular schemes which admit resolutions by smooth
schemes, we shall also consider the stronger cdh topology on the category Sch|k
of schemes of finite type over k. This is defined to be the minimal Grothendieck
topology for which Nisnevich coverings are coverings as are proper, surjective
morphisms of the following type:

W
∐

U1
p
∐

i→ U ,

where i : U1 → U is a closed embedding and p−1(U − U1) → U − U1 is an
isomorphism.

We shall often have need to assume that the field “admits resolution of singu-
larities” as formulated in the following definition. At this time, this hypothesis is
only known to hold for fields of characteristic 0. As one can see, the cdh topology
is designed to permit the study of singular schemes over a field which admits
resolution of singularities by employing coverings by smooth schemes.

4 Definition 4 A field k is said to admit resolution of singularities provided that
1. For any scheme of finite type X over k there is a proper, birational, surjective

morphism Y → X such that Y is a smooth scheme over k.
2. For any smooth scheme X over k and any proper, birational, surjective map

q : X′ → X, there exists a sequence of blow-ups p : Xn → · · · → X1 = X with
smooth centers such that p factors through q.

We define the presheaf of abelian groups

cequi(X, 0) : (Sm|k)op → Ab

to be the evident functor whose values on a smooth connected scheme U is the
free abelian group on the set of integral closed subschemes on X × U finite and
surjective over U . This is a sheaf for the etale topology and hence also for the
Nisnevich topology; indeed, as mentioned following the statement of Theorem 1,
cequi(X, 0) can be constructed as the sheaf in the qfh-topology (stronger than the
etale topology) associated to the presheaf sending U to the free abelian group on
Hom Sch|k(U, X).

We shall have occasion to consider other Nisnevich sheaves defined as follows:

zequi(X, r) : (Sm|k)op → Ab
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sends a connected smooth scheme U to the group of cycles on U × X equidimen-
sional of relative dimension r over U . In particular, if X is proper over k, then
cequi(X, 0) = zequi(X, 0).

One major advantage of our Nisnevich and cdh topologies when compared to
the Zariski topology is the existence of Mayer–Vietoris, localization, and blow-up
exact sequences as stated below.

5Proposition 5 (cf. [30, 4.3.7;4.3.1;4.3.2]) For any smooth scheme X over k and
any Zariski open covering X = U ∪ V , the sequence of sheaves in the Nisnevich
topology

0 → cequi(U ∩ V , 0) → cequi(U, 0) ⊕ cequi(V , 0) → cequi(X, 0) → 0

of Mayer–Vietoris type is exact.
For any scheme X of finite type over k, any open covering X = U ∪ V , and any

closed scheme Y ⊂ X, the sequences of sheaves in the cdh topology

0 → cequi(U ∩ V , 0)cdh → cequi(U, 0)cdh ⊕ cequi(V , 0)cdh → cequi(X, 0)cdh → 0

0 → zequi(Y , r)cdh → zequi(X, r)cdh → zequi(X − Y , r)cdh → 0

of Mayer–Vietoris and localization type are exact.
For any scheme X of finite type over k, any closed subscheme Z ⊂ X, and

any proper morphism f : X′ → X whose restriction f −1(X − Z) → X − Z is an
isomorphism, the sequences of sheaves in the cdh topology

0 → cequi(f −1(Z), 0)cdh → cequi(X′, 0)cdh ⊕ cequi(Z, 0)cdh

→ cequi(X, 0)cdh → 0

0 → zequi(f −1(Z), r)cdh → zequi(X′, r)cdh ⊕ zequi(Z, r)cdh

→ zequi(X, r)cdh → 0

of blow-up type are exact.

Remarks on the proof
The only issue is exactness on the right. We motivate the proof of the exactness

of the localization short exact sequences using Chow varieties, assuming that X
is quasi-projective. Let W be a smooth connected scheme and Z ⊂ (X − Y) × W
a closed integral subscheme of relative dimension r over W . Such a Z is associated
to a rationally defined map from W to the Chow variety of some projective closure
of X. The projection to W of the graph of this rational map determines a cdh-
covering W ′ → W restricted to which the pull-back of Z on (X − Y) × W ′ extends
to a cycle on X × W ′ equidimensional of relative dimension r over W ′.
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We next introduce the important notion of transfers (i.e., functoriality with respect
to finite correspondences).

6 Definition 6 The category of smooth correspondences over k, SmCor(k), is the
category whose objects are smooth schemes over k and for which

Hom SmCor(k)(U, X) = cequi(X, 0)(U) ,

the free abelian group of finite correspondences from U to X. A presheaf with
transfers is a contravariant functor

F : (SmCor(k))op → Ab .

The structure of presheaves with transfers on cequi(X, 0) and zequi(X, r) is exhibited
using the observation that if Z is an equidimensional cycle over a smooth scheme X
and if W → X is a morphism of schemes of finite type, then the pull-back of Z
to W is well defined since the embedding of the graph of W → X in W × X is
a locally complete intersection morphism [16]. Consequently, if U ← W → X is
a finite correspondence in SmCor(k), then we obtain transfer maps by first pulling
back cycles of X to W and then pushing them forward to U . The reader should
be forewarned that earlier papers of Voevodsky, Suslin, and Friedlander use the
condition on a presheaf that it be a “pretheory of homological type” which is shown
in [33, 3.1.10] to be implied by the existence of transfers.

One can easily prove the following lemma which reveals the key property of
homotopy invariance possessed by the algebraic singular complex used to define
Suslin homology. For any presheaf F on Sm|k, we employ the notation C∗(F) for
the complex of presheaves on Sm|k sending U to the complex F(U × ∆∗).

7 Lemma 7 Let F : (Sm|k)op → Ab be a presheaf on Sm|k and consider
h−i(F) : (Sm|k)op → Ab sending U to the i-th homology of C∗(F) (for some non-
negative integer i). Then h−i(F) is homotopy invariant:

h−i(F)(U) = h−i(F)(U × A1) .

As we saw in our sketch of proof of Theorem 1, the following rigidity theorem of
Suslin and Voevodsky, extending the original rigidity theorem of Suslin [27] is of
considerable importance.

8 Theorem 8 [29, 4.4] Let Φ be a homotopy invariant presheaf with transfers
satisfying nΦ = 0 for some integer n prime to the residue characteristic of k. Let
Sd be the henselization of Ad (i.e., affine d-space) at the origin. Then

Φ(Sd) = Φ(Spec k) .
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Idea of Proof
In a now familiar manner, the theorem is reduced to an assertion that any

two sections of a smooth relative curve X → S with good compactification which
coincide at the closed point of S induce the same map Φ(X) → Φ(S). The difference
Z of these sections is a finite correspondence from S to X. Since Φ is a homotopy
invariant presheaf with transfers, to show that the map induced by Z is 0 it suffices to
show that the difference is 0 in the relative Picard group Pic(X, Y)|n ⊂ H2

et(X, j!(µn)),
where X → S is a good compactification, Y = X − X, and j : X ⊂ X. The proper
base change theorem implies that it suffices to show that the image of Z is 0 upon
base change to the closed point of S. This is indeed the case since the two sections
were assumed to coincide on the closed point.

The following theorem summarizes many of the results proved by Voevodsky
in [32] and reformulated in [33]. In particular, this theorem enables us to replace
consideration of cohomology in the Nisnevich topology by cohomology in the
Zariski topology for smooth schemes.

9Theorem 9 [33, 3.1.11] If F : (SmCor(k))op → Ab is a homotopy invariant presheaf
with transfers, then its associated Nisnevich sheaf FNis is also a homotopy invariant
presheaf with transfers and equals (as a presheaf on Sm|k) the associated Zariski
sheaf FZar.

Moreover, if k is perfect, then

Hi
Zar(−, FZar) = Hi

Nis(−, FNis)

for any i ≥ 0, and these are homotopy invariant presheaves with transfer.

To complete the picture relating sheaf cohomology for different topologies we
mention the following result which tells us that if we consider the cdh topology
on schemes of finite type over k then the resulting cohomology equals Nisnevich
cohomology whenever the scheme is smooth.

10Proposition 10 [15, 5.5] Assume that k is a perfect field admitting resolution of
singularities. Let F be a homotopy invariant presheaf on Sm|k with transfers. Then
for any smooth scheme of finite type over k

H∗
cdh(X, Fcdh) = H∗

Nis(X, FNis) = H∗
Zar(X, FZar) .

Remark on Proof
The proof uses the techniques employed in the proof of Theorem 15 below

applied to the cone ofZ(U) → Z(U), where U is an arbitrarily fine hypercovering
of U for the cdh topology consisting of smooth schemes.
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Formalism of the Triangulated
Category DMkA.4

Voevodsky’s approach [33] to motives for smooth schemes and for schemes of
finite type over a field admitting resolution of singularities entails a triangulated
category DM

eff
gm(k) of effective geometric motives. Roughly speaking, DM

eff
gm(k) is

obtained by adjoining kernels and cokernels of projectors to the localization (to
impose homotopy invariance) of the homotopy category of bounded complexes
on the category of smooth schemes and finite correspondences. Voevodsky then
inverts the “Tate object” Z(1) in this category to obtain his triangulated category
DMgm(k) of geometric motives. (See [22] for another approach to the triangulated
category of mixed motives by Marc Levine.

In this section, we focus our attention upon another triangulated category
introduced by Voevodsky which we denote by DMk for notational convenience.
(Voevodsky’s notation is DMeff

− (k).) Voevodsky proves [33, 3.2.6] that his category
DM

eff
gm(k) of effective geometric motives embeds as a full triangulated subcategory

of DMk. Furthermore, as we see in Theorem 34 below, under this embedding the
Tate motive is quasi-invertible so that DMgm is also a full triangulated subcategory
of DMk.

11 Definition 11 Let X be a scheme over over a field k. Assume either that X is smooth
or that X is of finite type and k admits resolution of singularities. We define the
motive of X to be

M(X) ≡ C∗(cequi(X, 0)) : (Sm|k)op → C∗(Ab) .

Similarly, we define the motive of X with compact supports to be

Mc(X) ≡ C∗(zequi(X, 0)) : (Sm|k)op → C∗(Ab) .

We shall use the usual (but confusing) conventions when working with complexes.
Our complexes will have cohomological indexing, meaning that the differential
increases degree by 1. We view this differential of degree +1 as shifting 1 position
to the right. If K is a complex, then K[1] is the complex obtained from K by
shifting 1 position to the left. This has the convenience when working with (hyper-)
cohomology that Hi(X, K[1]) = Hi+1(X, K).

We now introduce the triangulated category DMk designed to capture the Nis-
nevich cohomology of smooth schemes over k and the cdh cohomology of schemes
of finite type over k.

12 Definition 12 Denote by ShvNis(SmCor(k)) the category of Nisnevich sheaves with
transfers and let D−(ShvNis(SmCor(k))) denote the derived category of complexes
of ShvNis(SmCor(k)) which are bounded above. We define

DMk ⊂ D−

(
ShvNis(SmCor(k))

)
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to be the full subcategory of those complexes with homotopy invariant cohomology
sheaves.

By Lemma 7 and Theorem 9, M(X) and Mc(X) are objects of the triangulated
category DMk.

We obtain the following relatively formal consequence of our definitions.

13Proposition 13 [33, 3.1.8,3.2.6] If X is smooth over k, then for any K ∈ DMk,

Hn
Zar(X, K) = Hom DMk (M(X), K[n]) ;

in particular, if X is smooth, then

Hom DMk (M(X), M(Y)[i]) = Hi
Zar(X, C∗(Y)) .

If X is of finite type over k and k admits resolution of singularities, then

Hn
cdh(X, Kcdh) = Hom DMk (M(X), K[n]cdh) .

Taking X = Spec k, we obtain an interpretation of Sus∗(Y) in terms of DMk.

14Corollary 14 If Y is a scheme of finite type over k, then the homology of Sus∗(Y)
is given by Hom DMk (Z[∗], M(Y)).

The machinery of presheaves with transfers and the formulation of the cdh topol-
ogy permits the following useful vanishing theorem. This is an extension of an
earlier theorem of Voevodsky asserting the equivalence of the conditions on a ho-
motopy invariant presheaf with transfers that the homology sheaves of C∗(F)Zar

vanish and that Ext∗NisShv(FNis, −) = 0 [32, 5.9].

15Theorem 15 [15, 5.5.2] Assume F is a presheaf with transfers on Sm|k where k is
a perfect field which admits resolution of singularities. If Fcdh = 0, then C∗(F)Zar is
quasi-isomorphic to 0.

Idea of Proof
If C∗(F)Zar is not quasi-isomorphic to 0, let hn(F)Zar be the first non-vanishing

cohomology sheaf. Using Theorem 9 and techniques of [32], we conclude that
a non-zero element of this group determines a non-zero element of

Hom D(Sm|k)Nis

(
C∗(F)Nis, hn(F)Nis[n]

)
= Extn

NisShv(FNis, hn(F)Nis) .
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On the other hand, using a resolution of F by Nisnevich sheaves which are the free
abelian sheaves associated to smooth schemes, we verify that the vanishing of Fcdh

together with [32, 5.9] implies that

Ext∗NisShv(FNis, GNis) = 0

for any homotopy invariant presheaf G with transfers.

In conjunction with Proposition 5, Theorem 15 leads to the following distinguished
triangles for motives and motives with compact support.

16 Corollary 16 Assume that the field k admits resolution of singularities and that X
is a scheme of finite type over k. If X = U ∪ V is a Zariski open covering, then we
have the following distinguished triangles of Mayer–Vietoris type

M(U ∩ V) → M(U) ⊕ M(V) → M(X) → M(U ∩ V)[1]

Mc(X) → Mc(U) ⊕ Mc(V) → Mc(U ∩ V) → Mc(X)[1] .

If Y ⊂ X is a closed subscheme with Zariski open complement U , then we have
the following distinguished triangle of localization type

Mc(Y) → Mc(X) → Mc(U) → Mc(Y)[1] .

Finally, if f : X′ → X is a proper morphism and Z ⊂ X is a closed subscheme such
that the restriction of f above X − Z, f| : X′ − f −1(Z) → X − Z is an isomorphism,
then we have the following distinguished triangles for abstract blow-ups:

M(f −1(Z)) → M(X′) ⊕ M(Z) → M(X) → M(f −1(Z))[1]

Mc(f −1(Z)) → Mc(X′) ⊕ Mc(Z) → Mc(X) → Mc(f −1(Z))[1] .

Armed with these distinguished triangles, one can obtain results similar to those
of Henri Gillet and Christophe Soulé in [17].

We next introduce the Tate motive Z(1)[2] in DMk and define the Tate twist of
motives.

17 Definition 17 We define the Tate motive Z(1)[2] to be the cone of M(Spec k) →
M(P1).

We define the Tate twist by

M(X)(1) = cone
{

M(X) → M(X × P1)[−2]
}

,

Mc(X)(1) = cone
{

Mc(X) → Mc(X × P1)[−2]
}

.

Thus, if X is projective and k admits resolution of singularities,

M(X)(1) = Mc(X × A1)[−2] .
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We briefly introduce the analogous triangulated category for the etale site.

18Definition 18 Denote by Shvet(SmCor(k)) the category of presheaves with transfers
which are sheaves on the etale site of (Sm|k) and let

D−

(
Shvet(SmCor(k))

)

denote the derived category of complexes of Shvet(SmCor(k)) which are bounded
above. We define DMk,et ⊂ D−(Shvet(SmCor(k))) to be the full subcategory of those
complexes with homotopy invariant cohomology sheaves.

Observe that the exact functor

π∗ : ShvNis(SmCor(k)) → Shvet(SmCor(k))

induces a natural map

Hom DMk (K, L) → Hom DMk,et (π∗K, π∗L) .

Voevodsky observes that

Hom DMk,et (M(X), K[n]) = Hn
et(X, K)

for any K ∈ DMk,et .

Motivic Cohomology and Homology A.5

Having introduced the triangulated category DMk, we now proceed to consider
the motivic complexes Z(n) ∈ DMk whose cohomology and homology is motivic
cohomology and homology. Other authors (e.g., Lichtenbaum and Friedlander–
Gabber) have considered similar complexes; the importance of the approach of
Suslin and Voevodsky is the context in which these complexes are considered. The
many properties established for DMk enable many good formal properties to be
proved.

19Definition 19 For a given positive integer n, let Fn be the sum of the images of the
n embeddings

cequi

(
(A1 − {0})n−1, 0

) → cequi

(
(A1 − {0})n, 0

)

determined by the embeddings (t1, … , tn−1) �→ (t1, … , ti−1, 1, ti, … , tn−1). We de-
fine

Z(n) = C∗
(
cequi((A1 − {0})n, 0)|Fn

)
[−n] .

For any positive integer m, we define

Z|m(n) = C∗
(
cequi((A1 − {0})n, 0)|Fn

) ⊗ Z|m[−n] .
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Observe that Mayer–Vietoris implies that Z(1) defined as in Definition 19 agrees
with (i.e., is quasi-isomorphic to) Z(1) as given in Definition 17; similarly, for
any n > 0,

Z(n) = C∗
(
cequi(P

n, 0)|cequi(P
n−1)

)
[−2n] .

Moreover, if k admits resolution of singularities, then localization implies that

Z(n) = C∗(zequi(A
n, 0))[−2n] .

We obtain the following determination ofZ(0) andZ(1) which we would require
of any proposed definition of motivic complexes.

20 Proposition 20 [33, 3.4.3]
(a.) Z(0) is the constant sheaf Z.
(b.) Gm � Z(1)[1], where Gm is viewed as a sheaf of abelian groups.

We now introduce motivic cohomology.

21 Definition 21 For any scheme of finite type over a field k, we define the motivic
cohomology of X by

Hi(X,Z(j)) = Hi
cdh(X,Z(j)cdh) .

For any positive integer m, we define the mod-m motivic cohomology of X by

Hi(X,Z|m(j)) = Hi
cdh(X,Z|m(j)cdh) .

Thus, if X is smooth and k is perfect, then Theorem 9 and Proposition 13 imply
that motivic cohomology is Zariski hypercohomology (where the complex Z(j) of
Nisnevich sheaves is viewed as a complex of Zariski sheaves by restriction):

Hi(X,Z(j)) = Hi
Zar(X,Z(j)) = Hom DMk (M(X),Z(j)[i]) .

Similarly, if k admits resolution of singularities, then for any X of finite type over k

Hi(X,Z(j)) = Hom DMk (M(X),Z(j)[i]) .

If d denotes the dimension of X, then

Hi(X,Z(j)) = 0 whenever i > d + j .

The following theorem relating Milnor K-theory to motivic cohomology appears
in various guises in [5] and [25]. The reader is referred to [31] for a direct proof
given in our present context.
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22Theorem 22 For any field k and any non-negative integer n, there is a natural
isomorphism

KM
n (k) � Hn(Spec k,Z(n))

where KM∗ (k) is the Milnor K-theory of k.

So defined, motivic cohomology is cohomology with respect to the Zariski site
for smooth schemes (and with respect to the cdh site for more general schemes
of finite type) as anticipated by Beilinson. One can also consider the analogous
cohomology with respect to the etale site following the lead of Lichtenbaum.

As usual, we let µ� denote the sheaf of �-th roots of unity on (Sm|k)et .

23Theorem 23 [33, 3.3] Define the etale motivic cohomology Hi
et(X,Z(j)) of a scheme

X of finite type over k by

Hi
et(X,Z(j)et) = Hom DMk,et

(
M(X)et ,Z(j)et[i]

)
;

similarly for any positive integer relatively prime to the residue characteristic of k,
define

Hi
et(X,Z|m(j)) ≡ Hi

et(X,Z|m(j)et) = Hom DMk,et

(
M(X)et ,Z|m(j)et[i]

)
.

Then there is a natural quasi-isomorphism

µ⊗j
m → Z|m(j)et

In particular, this gives an isomorphism

H∗
et(X, µ⊗j

m )
�→ H∗

et(X,Z|m(j)) .

Sketch of proof
By Proposition 20b, µm is quasi-isomorphic to Z|m(1). More generally, we

construct an explicit map µ⊗j
m (F(ζm)) → Z|m(j)(F(ζm)) where F is a field extension

of k and ζm is a primitive m-th root of unity and show that this map is Gal(F(ζm)|F)-
invariant. This determines a map of etale sheaves with transfers µ⊗j

m → Z|m(j)et .
By Theorems 1 and 8, this map is a quasi-isomorphism.

Because the etale cohomology of a Hensel local ring is torsion, we readily conclude
the following proposition using Proposition 2.7.

24Proposition 24 For any smooth scheme,

H∗(X,Z(j)) ⊗Q = H∗
et(X,Z(j)) ⊗Q .
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As we shall see in the next section, motivic cohomology is dual to motivic locally
compact homology for smooth schemes over a field admitting resolution of singu-
larities. This locally compact homology was initially formulated in [15] (essentially
following the definition in [11]) using C∗(zequi(X, r)). To rephrase this in terms of
our triangulated category DMk, we need the following proposition.

25 Proposition 25 [33, 4.2.8] Let X be a scheme of finite type over a field k and let r
be a non-negative integer. Then there is a natural isomorphism in DMk

C∗(zequi(X, r)) � Hom DMk

(
Z(r)[2r], Mc(X)

)
,

where Hom denotes internal Hom in the derived category of unbounded complexes
of Nisnevich sheaves with transfers.

We now define three other theories: motivic cohomology with compact supports,
motivic homology, and motivic homology with locally compact supports. We leave
implicit the formulation of these theories with mod-m coefficients.

26 Definition 26 Let X be a scheme of finite type over a field k which admits resolution
of singularities. Then we define

Hi
c(X,Z(j)) = Hom DMk (Mc(X),Z(j)[i])

Hlc
i (X,Z(j)) = Hom DMk (Z(j)[i], Mc(X))

Hi(X,Z(j)) = Hom DMk (Z(j)[i], M(X)) .

Since cequi(−, 0) is covariantly functorial (using push-forward of cycles), we con-
clude that H∗(X,Z(j)) is contravariantly functorial and H∗(X,Z(j)) is covariantly
functorial for morphisms of schemes of finite type over k. Similarly, the functorial-
ity of zequi(−, 0) implies that H∗

c (X,Z(j) (respectively, Hlc∗ (X,Z(j))) is contravariant
(resp. covariant) for proper maps and covariant (resp. contravariant) for flat maps.

We recall the bivariant theory introduced in [15], which is closely related to
a construction in [11] and which is an algebraic version of the bivariant morphic
cohomology introduced by Friedlander and Lawson in [12]:

Ar,i(Y , X) ≡ H−i
cdh

(
Y , C∗(zequi(X, r))cdh

)
.

This bivariant theory is used in §5 when considering the duality relationship
between motivic cohomologies and homologies.

We conclude this section with a proposition, proved by Voevodsky, which inter-
prets this bivariant theory in the context of the triangulated category DMk and the
Tate twist of Definition 17.

27 Proposition 27 [33, 4.2.3] Let k be a field admitting resolution of singularities and
X, Y schemes of finite type over k. There is a natural isomorphism

Ar,i(Y , X) = Hom DMk

(
M(Y)(r)[2r + i], Mc(X)

)
.
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As special cases of Ar,i(Y , X), we see that

A0,i(Y ,Aj) = H2j−i(Y ,Z(j))

(since localization implies that Z(j)[2j] is quasi-isomorphic to Mc(Aj)) and

Ar,i(Spec k, X) = Hlc
2r+i(X,Z(r))

(since M(Spec k)(r) = Z(r)).

Duality with Applications A.6

In [14], Friedlander and H.B. Lawson prove a moving lemma for families of cy-
cles on a smooth scheme which enables one to make all effective cycles of degree
bounded by some constant to intersect properly all effective cycles of similarly
bounded degree. This was used to establish duality isomorphisms [13], [9] be-
tween Lawson homology (cf. [19]) and morphic cohomology (cf. [12]), topolog-
ical analogues of motivic homology with locally compact supports and motivic
cohomology.

Theorem 30 presents the result of adapting the moving lemma of [14] to our
present context of DMk. As consequences of this moving lemma, we show that
a theorem of Suslin implies that Bloch’s higher Chow groups of a smooth scheme
over a field which admits resolution of singularites equals motivic cohomology as
defined in §4. We also prove that applying Tate twists is fully faithful in DMk.

We first translate the moving lemma of [14] into a statement concerning the
presheaves zequi(X, ∗). The moving lemma enables us to move cycles on U × W × X
equidimensional over a smooth W to become equidimensional over U × W pro-
vided that U is also smooth. (In other words, cycles are moved to intersect properly
each of the fibres of the projection U × W × X → U × W .)

28Theorem 28 [15, 7.4] Assume that k admits resolution of singularities, that U is
a smooth, quasi-projective, equidimensional scheme of dimension n over k, and
that X is a scheme of finite type over k. For any r ≥ 0, the natural embedding of
presheaves on Sm|k

D : zequi(X, r)(U × −) → zequi(X × U, r + n)

induces a quasi-isomorphism of chain complexes

D : zequi(X, r)(U × ∆∗) → zequi(X × U, r + n)(∆∗) .

As shown in [15, 7.1], the hypothesis that k admits resolution of singularities may
be dropped provided that we assume instead that X and Y are both projective and
smooth.
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Applying Theorem 28 to the map of presheaves

zequi(X, r)(∆∗ × A1 × −) → zequi(X × A1, r + 1)(∆∗ × −)

and using Lemma 7, we obtain the following homotopy invariance property.

29 Corollary 29 Assume that k admits resolution of singularites. Then the natural
map of presheaves induced by product with A1

zequi(X, r) → zequi(X × A1, r + 1)

induces a quasi-isomorphism

C∗(zequi(X, r))
�→ C∗

(
zequi(X × A1, r + 1)

)
.

Massaging Theorem 28 into the machinery of the previous sections provides the
following duality theorem.

30 Theorem 30 [15, 8.2] Assume that k admits resolution of singularities. Let X, Y be
schemes of finite type over k and let U be a smooth scheme of pure dimension n
over k. Then there are natural isomorphisms

Ar,i(Y × U, X) ≡ H−i
cdh

(
Y × U, C∗(zequi(X, r))cdh

)

�→ H−i
cdh

(
Y , C∗(zequi(X × U, r + n))cdh

) ≡ Ar+n,i(Y , X × U) .

Setting Y = Spec k, X = Aj, and r = 0, we obtain the following duality relating
motivic cohomology to motivic homology with locally compact supports.

31 Corollary 31 Assume that k admits resolution of singularities and that U is a smooth
scheme of pure dimension n over k. Then there are natural isomorphisms

Hm(U,Z(j))
�→ Hlc

2n−m(U,Z(n − j))

provided n ≥ j.

Proof We obtain the following string of equalities provided n ≥ j:

Hm(U,Z(j)) = Hm
(
U, C∗(zequi(A

j, 0))[−2j]
)

�→ Hm
(
Spec k, C∗(zequi(U × Aj, n))[−2j]

)

= Hm
(
Spec k, C∗(zequi(U, n − j))[−2j]

)

= Hom DMk

(
Z(n − j)[2n − 2j], Mc(U)[m − 2j]

)
= Hlc

2n−m(X,Z(j)) .
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The following theorem was proved by Suslin in [28] using a different type of
moving argument which applies to cycles over affine spaces. The content of this
theorem is that Bloch’s complex (consisting of cycles over algebraic simplices which
meet the pre-images of faces properly) is quasi-isomorphic to complex of cycles
equidimensional over simplices.

32Theorem 32 Let X be a scheme of finite type of pure dimension n over a field k and
assume that either X is affine or that k admits resolution of singularities. Let Z

j
∗(X)

denote the Bloch complex of codimension j cycles (whose cohomology equals
Bloch’s higher Chow groups CHj(X, ∗). Then whenever 0 ≤ j ≤ n, the natural
embedding

C∗(zequi(X, n − j))(Spec k) → Z
j
∗(X)

is a quasi-isomorphism.

Combining Corollary 31 and Theorem 32, we obtain the following comparison of
motivic cohomology and Bloch’s higher Chow groups.

33Corollary 33 Let X be a smooth scheme of finite type of pure dimension n over
a field k and assume that k admits resolution of singularities. Then there is a natural
isomorphism

H2j−i(X,Z(j)) � CHj(X, i) .

Another important consequence of Theorem 30 is the following theorem.

34Theorem 34 [33, 4.3.1] Let X, Y be schemes of finite type over a field k which
admits resolution of singularities. Then the natural map

Hom DMk (M(X), M(Y)) → Hom DMk (M(X)(1), M(Y)(1))

is an isomorphism.

Sketch of proof
We use the following identification (cf. [33, 4.23.])

Ar,i(X, Y)) = Hom DMk

(
C∗(cequi(X, 0))(r)cdh[2r + i], C∗(zequi(Y , 0))cdh

)
.

Using localization, we reduce to the case that X, Y are projective. Then,

Hom DMk (M(X)(1), M(Y)(1)) = Hom DMk

(
M(X)(1), Mc(Y × A1)[−2]

)

equals A1,0(X, Y × A1) by Proposition 27 which is isomorphic to A0,0(X, Y) =
Hom DMk (X, Y) by Theorem 30.
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Conjecture of Beilinson–LichtenbaumA.7

In this section, we sketch a theorem of Suslin and Voevodsky which permits K-
theoretic conclusions provided that one can prove the Bloch–Kato Conjecture.
Since this conjecture for the prime 2 is precisely the Milnor Conjecture recently
proved by Voevodsky [34], the connection established by Suslin and Voevodsky
has important applications to the 2-primary part of algebraic K-theory.

Throughout this section � is a prime invertible in k and k is assumed to admit
resolution of singularities. We recall the Bloch–Kato Conjecture.

35 Conjecture 35 (Bloch–Kato conjecture in weight n over k) For any field F over k,
the natural homomorphism

KM
n (F)|� → Hn

et(F, µ⊗n
� )

is an isomorphism. In other words,

Hn(Spec F,Z|�(n))
�→ Hn

et(Spec F,Z|�(n)) .

If K is a complex of sheaves on some site, we define τ≤n(K) to be the natural
subcomplex of sheaves such that

Hi(τ≤n(K))) =





Hi(K) i ≤ n

0 i > n .

36 Definition 36 Let π : (Sm|k)et → (Sm|k)Zar be the evident morphism of topologies
on smooth schemes over k. Let Rπ∗(µ⊗n

� ) denote the total right derived image of
the sheaf µ⊗n

� . We denote by B|�(n) the complex of sheaves on (Sm|k)Zar given by

B|�(n) = τ≤nRπ∗(µ⊗n
� ) .

As shown in [31, 5.1], B|�(n) is a complex of presheaves with transfers with homo-
topy invariant cohomology sheaves. By Propositions 2.7 and 3.3, this implies the
natural isomorphism for any smooth scheme X over k

Hi
Zar(X, B|�(n))

�→ Hom DMk (M(X), B|�(n)[i]) ,

where the cohomology is Zariski hypercohomology.
The following conjecture of Beilinson [2], related to conjectures of Lichten-

baum [23], is an intriguing generalization of the Bloch–Kato conjecture. We use
the natural quasi-isomorphism µ⊗n

� � Z|�(n)et of Theorem 23 plus the acyclicity
of Z|�(n) in degrees greater than n to conclude that the natural maps

Z|�(n) → Rπ∗Z|�(n)et � Rπ∗µ⊗n
� ← B|�(n)
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determine a natural map (in the derived category of complexes of sheaves in the
Zariski topology)

Z|�(n) → B|�(n) .

37Conjecture 37 (Beilinson–Lichtenbaum Conjecture in weight n over k) The natural
morphism

Z|�(n) → B|�(n)

is a quasi-isomorphism of complexes of sheaves on (Sm|k)Zar.

38Remark 38 A well known conjecture of Beilinson [2], [3] and Christophe Soulé [26]
asserts that Hi(X,Z(n)) vanishes for i < 0. Since Hi

et(X, µ⊗n
� ) = 0 for i < 0,

Conjecture 37 incorporates the mod-� analogue of the Beilinson–Soulé Conjecture.

We now state the theorem of Suslin and Voevodsky. M. Levine provided a forerun-
ner of this theorem in [20].

39Theorem 39 [31, 5.9] Let k be a field which admits resolution of singularities
and assume that the Bloch–Kato conjecture holds over k in weight n. Then the
Beilinson–Lichtenbaum conjecture holds over k in weight n.

Sketch of Proof
One readily verifies that the validity of the Bloch–Kato Conjecture in weight n

implies the validity of this conjecture in weights less than n. Consequently, pro-
ceeding by induction, we may assume the validity of the Beilinson–Lichtenbaum
Conjecture in weights less than n. Moreover, since both Z|�(n) and B|�(n) have
cohomology presheaves which are homotopy invariant presheaves with transfers
annihilated by multiplication by n, we may apply the rigidity theorem (Theorem 8)
to conclude that to prove the asserted quasi-isomorphism Z|�(n) → B|�(n) it
suffices to prove for all extension fields F over k that the induced map

H∗(Spec F,Z|�(n)) → H∗(Spec F, B|�(n))

is an isomorphism. By construction, Hi(Spec F,Z|�(n)) = 0 for i > n, so that it
suffices to prove

Hi(Spec F,Z|�(n))
�→ Hi

et(Spec F, µ⊗n
� ) i ≤ n .

Suslin and Voevodsky easily conclude that it suffices to prove that

Hi(Spec F,Z|�(n)) → Hi
et(Spec F, µ⊗n

� ) i < n
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is injective (assuming the validity of the Bloch–Kato Conjecture in weight n). This
in turn is implied by the assertion that

Hn(∂∆j
F ,Z|�(n)cdh) → Hn(∂∆j

F , B|�(n)cdh)

is injective for all j, where ∂∆j
F is the (singular) boundary of the j-simplex over F

whose cohomology fits in Mayer–Vietoris exact sequence for a covering by two
contractible closed subschemes whose intersection is ∂∆j−1

F .
We denote by S1 the scheme obtained from A1 by gluing together {0}, {1}. We

have natural embeddings

Hn(∂∆j
F ,Z|�(n)cdh) → Hn+1(∂∆j

F × S1,Z|�(n)cdh)

Hn(∂∆j
F , B|�(n)cdh) → Hn+1(∂∆j

F × S1, B|�(n)cdh) .

Any cohomology class in Hn(∂∆j
F ,Z|�(n)) which does not arise from

Hn(Spec F,Z|�(n))

vanishes on some open subset U ⊂ ∂∆j
F × S1 containing all the points of the

form pi × ∞ where ∞ ∈ S1 is the distinguished point. In other words, all such
cohomology lies in the image of Hn+1

Z (∂∆j
F × S1,Z|�(n)cdh), the direct limit of

cohomology with supports in closed subschemes missing each of the points pi×∞.
The localization distinguished triangle of Corollary 16 gives us long exact se-

quences in cohomology with coefficientsZ|�(n)cdh and B|�(n)cdh and a map between
these sequences; the terms involve the cohomology of S (the semi-local scheme
of the set {pi × {∞}}), of ∆j

F × S1 with supports in Z, and of ∆j
F × S1 itself. Al-

though S is not smooth, one can conclude that our Bloch–Kato hypothesis implies
that Hn(S,Z|�(n)cdh) → Hn(S, B|�(n)cdh) is surjective. Another application of the
localization distinguished triangle plus induction (on n) implies that the map on
cohomology with supports in Z is an isomorphism. The required injectivity now
follows by an easy diagram chase.

An important consequence of Theorem 39 is the following result of Suslin and
Voevodsky.

40 Proposition 40 [31, 7.1] The Bloch–Kato conjecture holds over k in weight n if and
only if for any field F of finite type over k the Bockstein homomorphisms

Hn
et(F, µ⊗n

�m ) → Hn+1
et (F, µ⊗n

� )

are zero for all m > 0.

Comment about the Proof
If the Bloch–Kato conjecture holds, then

Hn
et(F, µ⊗n

�m )



Motivic Complexes of Suslin and Voevodsky 1103

consists of sums of products of elements of H1
et(F, µ�m ). The vanishing of the

Bockstein homomorphism on classes of cohomology degree 1 follows immediately
from Hilbert’s Theorem 90.

The proof of the converse is somewhat less direct.
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Résumé. This paper was originally delivered in the Séminaire Bourbaki and published
in Astérisque [14] by the Société Mathématique de France and is reprinted here with
permission. It gives an outline of the first version of Voevodsky’s proof of the Milnor
conjecture, which was later modified and simplified by the author [49]. There is no difference
with the original text, except that a few misprints have been corrected, some references have
been updated, and the layout has been adapted.

Introduction B.1

Soit F un corps commutatif. La K-théorie de Milnor de F est l’anneau gradué KM∗ (F)
défini par générateurs et relations de la manière suivante:

Générateurs: {a}, a ∈ F∗.
Relations: {ab} = {a} + {b} (a, b ∈ F∗), {a} · {1 − a} = 0 (a ∈ F∗ − {1}).

En d’autres termes, KM∗ (F) est le quotient de l’algèbre tensorielle du Z-module
F∗ par l’idéal bilatère engendré par les a ⊗ (1 − a) pour a ≠ 1. On a K0(F) = Z,
K1(F) = F∗. Pour a1, …, an ∈ F∗, le produit {a1} · · · · · {an} ∈ KM

n (F) est noté
{a1, …, an}. Pour a ≠ 1, les relations

{a, 1 − a} = 0

{a−1, 1 − a−1} = 0

et la bilinéarité entraînent

{a, −a} = 0

d’où, encore par bilinéarité

{a, b} = −{b, a} pour a, b ∈ F∗ .

L’anneau gradué KM∗ (F) est donc commutatif.
Les groupes KM

n (F) ont été introduits dans [23] par Milnor, qui était motivé par
le fait que KM

2 (F) = K2(F) (théorème de Matsumoto).
Soit m un entier premier à l’exposant caractéristique de F, et soit Fs une clôture

séparable de F. La suite exacte de Kummer

1 → µm → F∗
s

m→ F∗
s → 1

fournit un homomorphisme

F∗ → H1(F, µm) (B.1)

a �→ (a)

vers la cohomologie galoisienne de F.
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1 Lemme 1: (Tate) L’homomorphisme (B.1) se prolonge par le cup-produit en une
famille d’homomorphismes

KM
n (F)|m

un,m(F)
Hn(F, µ⊗n

m ) .

Cela revient à voir que (a) ∪ (1 − a) = 0 dans H2(F, µ⊗2
m ), pour tout a ∈ F∗. Pour

cela, considérons l’algèbre étale E = F[t]|tm − a. Si α est l’image de t dans E, on a

αm = a

NE|F(1 − α) = 1 − a .

En utilisant la formule de projection en cohomologie étale, il en résulte:

(a) ∪ (1 − a) = CorE|F
(
(a) ∪ (1 − α)

)
= CorE|F

(
m(α) ∪ (1 − α)

)
= 0 . �

Les homomorphismes un,m(F) sont parfois appelés, pour des raisons historiques,
homomorphismes de résidu normique. Notons K(n, m, F) l’énoncé suivant:

L’homomorphisme un,m(F) du lemme 1 est bijectif. (K(n, m, F))

Kato a proposé la conjecture suivante:

2 Conjecture 2: ([15, conj. 1]) K(n, m, F) est vrai pour tout (n, m, F).

Pour n = 2, cette conjecture avait été indiquée par Milnor lui-même [23, p. 540], et
Bloch [6, lecture 5] avait posé la question de la surjectivité des un,m lorsque F est
un corps de fonctions sur C (notons que, dans ce cas, la surjectivité équivaut au
fait que l’algèbre de cohomologie H∗(F, Z|m) est engendrée en degré 1).

La conjecture de Kato a été démontrée dans un grand nombre de cas particuliers
(voir B.2.1). Elle vient d’être démontrée dans le cas 2-primaire par Voevodsky:

3 Théorème 3: ([49]) K(n, m, F) est vrai pour tout (n, F) lorsque m est une puissance
de 2.

La démonstration de Voevodsky est par récurrence sur n: elle est exposée dans les
prochaines sections1. Contrairement aux démonstrations précédentes, qui utili-
saient la K-théorie algébrique, elle n’utilise “que” la cohomologie motivique, qu’il
a contribué a développer (voir à ce sujet l’exposé de E. Friedlander dans ce sémi-

1 Le rédacteur ne prétend pas avoir vérifié les moindres ramifications de cette démonstration,
qui s’appuie sur un travail antérieur considérable (notamment [12,43,45,46]). Il a par contre
vérifié les arguments de [49] dans un détail suffisant pour juger que son contenu mérite
d’être exposé dans ce séminaire. Néanmoins, il doit souligner que la démonstration de [49]
ne sera complète que lorsque les articles [27] et [48], sur lesquels elle repose, seront achevés
et rendus publics.
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naire). Malgré cela, la topologie algébrique y joue un rôle essentiel, sous la forme
de la catégorie homotopique (et de la catégorie homotopique stable) des variétés,
introduite par Morel et Voevodsky [26, 27, 47]. Les arguments de Voevodsky n’u-
tilisent pas non plus de réduction aux corps de nombres, comme c’était le cas pour
certaines des démonstrations antérieures.

Pour le lecteur qui ne souhaiterait pas se plonger dans les détails, nous en
donnons ici un résumé. Il est facile de voir qu’on peut se limiter au cas où F est
de caractéristique 0, voire un sous-corps de C (corollaire 7 et proposition 8). On
suppose la conjecture connue en degré n−1. La première étape, largement inspirée
de (mais non identique à) la stratégie antérieure de Merkurjev-Suslin, réduit le
problème à démontrer un “théorème 90 de Hilbert en degré n” (corollaire 14): celui-
ci est exprimé en termes de cohomologie motivique. La deuxième étape, toujours
inspirée par Merkurjev-Suslin, consiste à réduire ce théorème 90 à l’existence d’une
variété de déploiement convenable pour un symbole a ∈ KM

n (F)|2, c’est-à-dire une
variété intègre Xa telle que a s’annule par extension des scalaires de F à F(Xa): on
prend pour Xa la quadrique projective définie par une voisine de dimension 2n−1 +1
de la forme de Pfister associée à a. Ici la stratégie diverge de celle de Merkurjev-
Suslin: Voevodsky montre qu’il suffit d’établir la nullité d’un certain groupe de
cohomologie motivique d’un schéma simplicial Č(Xa) associé à Xa (proposition 25
et théorème 30). Cette approche simplifie grandement celle de Merkurjev et Suslin,
qui étaient obligés de démontrer une multitude d’énoncés parasites.

Toutes les démonstrations antérieures de cas particuliers de la conjecture de
Kato utilisent le fait que, pour une variété de déploiement convenable X associée
comme ci-dessus à un symbole, le groupe des “zéros-cycles à coefficients dans les
unités modulo l’équivalence rationnelle”

A0(X, K1)

s’injecte dans F∗ par l’intermédiaire de la norme (voir section B.9). Pour l = 2,
ce résultat est démontré par M. Rost en tout degré (théorème 65). Grâce à une
décomposition du motif de Chow de Xa, également due à Rost (théorème 61),
Voevodsky montre que cette injectivité est équivalente à la nullité d’un autre groupe
de cohomologie motivique de Č(Xa) (théorème 37). Sa contribution essentielle est
alors de relier le premier groupe au deuxième par une opération cohomologique α,
qu’il va montrer être injective.

Pour définir α, Voevodsky utilise la catégorie homotopique des F-variétés, qu’il
construit conjointement avec F. Morel. Elle lui permet de définir des opérations
de Steenrod en cohomologie motivique, analogues à celles existant en topologie
algébrique, et α est une version entière de l’une de ces opérations. Supposant
F plongé dans C, l’injectivité de α sur la cohomologie motivique de la varié-
té Xa résulte d’une part de l’existence d’une classe fondamentale dans le bordisme
algébrique de Xa, et d’autre part du fait que la classe de Xa(C) en (n − 1)-ième K-
théorie de Morava est un générateur périodique, ce qui établit un lien mystérieux
entre la démonstration de Voevodsky et des objets intervenant dans des propriétés
profondes de la catégorie homotopique stable classique ([10, 32, 33])…
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Une partie considérable de l’argument de Voevodsky s’applique au cas d’un
nombre premier quelconque. Nous nous sommes efforcé de mettre en évidence
cette généralité; on en trouvera les fruits dans la section B.10.1. Pour avoir tous
les détails de la démonstration, le lecteur devra naturellement consulter [49], ainsi
que les articles dont il dépend. Nous l’encourageons également à lire [47], ancêtre
direct de [49], qui contient des commentaires éclairants ayant disparu de ce dernier
article.

Supposons F de caractéristique différente de 2. Soient W(F) l’anneau de Witt de
F, classifiant les formes quadratiques non dégénérées sur F, IF son idéal d’augmen-
tation et, pour tout n > 0, InF = (IF)n. Le groupe abélien IF est engendré par les
classes des formes binaires <1, −a> pour a ∈ F∗; le groupe InF est donc engendré
par les classes des n-formes de Pfister <<a1, …, an>> := <1, −a1> ⊗ · · · ⊗ <1, −an>.
L’application (a1, …, an) �→ <<a1, …, an>> induit un homomorphisme surjectif

KM
n (F)|2 → InF|In+1F . (B.2)

En collaboration avec D. Orlov et A. Vishik, Voevodsky a annoncé une dé-
monstration du fait que (B.2) est bijectif pour tout (n, F); cela avait été également
conjecturé par Milnor. Nous n’aborderons pas ici cet aspect de son travail, qui
utilise essentiellement les mêmes méthodes (cf. [29]).

Je remercie Fabien Morel pour son aide dans la préparation de ce texte.

Notation Si A est un foncteur sur la catégorie des extensions de F, si a ∈ A(F) et si
E est une extension de F, on note aE l’image de a dans A(E).

Résultats antérieurs
et premières réductionsB.2

Résultats connus antérieurementB.2.1

Notons K(n, m) l’énoncé {K(n, m, F) pour tout corps F de caractéristique ne divisant
pas m}.

L’énoncé K(0, m, F) dit que le groupe de cohomologie galoisienne H0(F, Z|m)
est isomorphe à Z|m: c’est trivial.

L’énoncé K(1, m, F) dit que le groupe H1(F, µm) est isomorphe à F∗|F∗m. Ce
résultat, classique, est connu sous le nom de théorie de Kummer. Lorsque µm ⊂ F,
il équivaut au fait que les caractères d’ordre divisant m du groupe de Galois
GF = Gal(Fs|F) correspondent bijectivement aux éléments de F∗|F∗m, après le
choix d’une racine primitive m-ième de l’unité. L’injectivité de u1,m(F) résulte
immédiatement de sa définition; sa surjectivité résulte du théorème 90 de Hilbert
(ou plutôt de la version d’Emmy Noether de ce théorème):

H1(F, F∗
s ) = 0 .
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La démonstration de K(2, m, F) est due à Tate pour les corps globaux [44];
Tate utilise la théorie du corps de classes. La démonstration de K(2, m) est due à
Merkurjev pour m = 2 [19] et à Merkurjev-Suslin pour m quelconque [21]. Elle
utilise la K-théorie algébrique de Quillen; voir l’exposé Bourbaki de Soulé à ce
sujet [40].

La démonstration de K(3, 2) est due indépendamment à Rost [34] et à Merkurjev-
Suslin [22]. La démonstration de Merkurjev-Suslin utilise la K-théorie algébrique,
alors que celle de Rost ne l’utilise pas. Une démonstration de K(4, 2) a été annoncée
par Rost vers 1988, mais celui-ci ne l’a jamais rédigée.

Rost et Voevodsky ont récemment annoncé une démonstration de K(3, 3) et de
K(4, 3) (voir section B.10.1).

Enfin, en dehors des cas cités ci-dessus, K(n, m, F) est connu pour des corps F
particuliers:

Corps globaux: K(n, m, F) est connu pour tout (n, m) avec n ≥ 3 (Bass-Tate [5]).
Bass et Tate démontrent plus: pour n ≥ 3, le groupe KM

n (F) est isomorphe à
(Z|2)r1 , où r1 est le nombre de places réelles de F.
Corps henséliens: soit F un corps de caractéristique 0, hensélien pour une
valuation discrète, à corps résiduel de caractéristique p > 0. Alors K(n, p, F) est
connu pour tout n (Bloch-Gabber-Kato [7]).

Nettoyages B.2.2

4Proposition 4 a) Soient m1, m2 deux entiers premiers entre eux. Alors, pour tout
corps F de caractéristique première à m1m2 et pour tout n ≥ 0, K(n, m1m2, F)
⇐⇒ {K(n, m1, F) et K(n, m2, F)}.
b) (Tate) Soient m ≥ 1, F un corps de caractéristique première à m et E|F une
extension de degré premier à m. Soit n ≥ 0. Alors K(n, m, E) ⇒ K(n, m, F).
c) (Tate) Soit l un nombre premier. Alors, pour tout corps F de caractéristique
différente de l, {K(n − 1, l, F) et K(n, l, F)} ⇒ {K(n, lν, F) pour tout ν ≥ 1}.

Démonstration a) est clair. Pour démontrer b), on remarque que les deux foncteurs
F �→ KM

n (F) et F �→ Hn(F, µ⊗n
m ) sont munis de transferts

NE|F :





KM

n (E) → KM
n (F)

Hi(E, µ⊗n
m ) → Hn(F, µ⊗n

m )

pour toute extension finie E|F, vérifiant la formule de projection et tels que
NE|F ◦ iE|F soit la multiplication par le degré [E : F], où iE|F correspond à la
fonctorialité (c’est classique pour la cohomologie galoisienne, cf. [39]; voir [5,
§5] et [15, §1.7] pour la K-théorie de Milnor), et que ces transferts commutent
à l’homomorphisme un,m.
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Pour démontrer c), on se réduit via b) au cas où F contient une racine primitive
l-ième de l’unité ζ: en effet, le degré [F(µl) : F] divise l − 1, donc est premier à l.
On raisonne par récurrence sur ν, en considérant le diagramme

KM
n−1(F)|l ��

{ζ}·

��
un−1,l

KM
n (F)|lν ��

��
un,lν

KM
n (F)|lν+1 ��

��
un,lν+1

KM
n (F)|l ��

��
un,l

0

Hn−1(F, µ⊗(n−1)
l ) ��

ρ

Hn(F, µ⊗n
lν ) �� Hn(F, µ⊗n

lν+1 ) �� Hn(F, µ⊗n
l )

où ρ est le cup-produit par la classe [ζ] de ζ dans H0(F, µl) = µl suivi du Bockstein
∂ associé à la suite exacte de coefficients

0 → µ⊗n
lν → µ⊗n

lν+1 → µ⊗n
l → 0 . (An)

Dans ce diagramme, la ligne inférieure est exacte, et la ligne supérieure est
exacte sauf peut-être en KM

n (F)|lν. La commutativité du diagramme est évidente,
sauf celle du carré de gauche. Pour vérifier cette dernière, on remarque que, si
x ∈ KM

n−1(F), son image y par un−1,l provient de ỹ = un−1,lν+1 (x) ∈ Hn−1(F, µ⊗(n−1)
lν+1 ),

et donc que

ρ(y) = ∂([ζ] ∪ y) = ∂([ζ]) ∪ ỹ = (ζ) ∪ ỹ = un,lν ({ζ} · x) .

L’énoncé résulte alors d’une chasse aux diagrammes. �

5 Proposition 5 Soit E un corps complet pour une valuation discrète, de corps
résiduel F. Alors, pour tout m premier à la caractéristique de F et tout n ≥ 1, on a
K(n, m, E) ⇐⇒ {K(n, m, F) et K(n − 1, m, F)}.

En effet, on a un diagramme

0 �� KM
n (F)|m ��

��
un,m(F)

KM
n (E)|m ��

��
un,m(E)

KM
n−1(F)|m ��

��
un−1,n(F)

0

0 �� Hn(F, µ⊗n
m ) �� Hn(E, µ⊗n

m ) �� Hn−1(F, µ⊗(n−1)
m ) �� 0 .

La ligne supérieure est exacte scindée par le choix d’une uniformisante de E [23,
lemma 2.6], ainsi que la ligne inférieure, cf. [39, p. 121, (2.2)]. On vérifie facilement
que ce diagramme est commutatif [23, p. 341] et que les deux scindages sont
compatibles. La proposition résulte alors du lemme des 5. �

6 Corollaire 6 K(n, m) ⇒ K(n − 1, m).

Démonstration On applique la proposition 5 avec E = F((t)). �



La conjecture de Milnor (d’après V. Voevodsky) 1113

7Corollaire 7 K(n, m) en caractéristique 0 implique K(n, m) en toute caractéristique
première à n.

Démonstration Soit F un corps de caractéristique p > 0 première à m. D’après
la proposition 4 b), pour démontrer K(n, m, F), on peut supposer F parfait. On
applique alors la proposition 5 en prenant pour E le corps des fractions de l’anneau
des vecteurs de Witt de F. �

Pour démontrer le théorème 3, on peut donc supposer que m = 2 et que F est
un corps de caractéristique 0. Cela servira à disposer non seulement de la réso-
lution des singularités, mais aussi d’un “foncteur de réalisation” de la catégorie
homotopique des F-schémas vers la catégorie homotopique classique, associé à un
plongement de F dans C, si par exemple F est de type fini sur Q (voir section B.8.1).
Cette hypothèse supplémentaire est innocente en vertu de la

8Proposition 8 Soit F un corps. Si K(n, m, k) est vrai pour tout sous-corps k ⊂ F de
type fini sur son sous-corps premier, alors K(n, m, F) est vrai.

C’est clair, puisque la K-théorie de Milnor et la cohomologie galoisienne commu-
tent aux limites inductives filtrantes. �

Cohomologie motivique B.3

Soit F un corps. A tout F-schéma lisse de type fini X, Suslin et Voevodsky [43, §2]
associent une famille de complexes de groupes abéliens Z(n, X)n≥0, contravariants
en X et commutant aux limites projectives à morphismes de transition affines.
Pour chaque n ≥ 0, les Z(n, X) définissent donc un complexe de faisceaux Z(n) sur
le grand site zariskien de Spec F restreint à la sous-catégorie pleine des F-schémas
lisses. Ces complexes de faisceaux ont les propriétés suivantes:
(A) Z(0) = Z, concentré en degré 0.
(B) Z(1) est quasi-isomorphe à Gm[−1] (le faisceau des unités placé en degré

cohomologique 1).
(C) Pour tout n ≥ 0, Z(n) est acyclique en degré > n.

(D) Pour m, n ≥ 0, il existe un produit Z(m)
L⊗ Z(n) → Z(m + n). Ce produit

est commutatif et associatif à homotopie près.
(E) Pour tout m premier à l’exposant caractéristique de F, α∗Z(n)

L⊗ Z|m est quasi-
isomorphe à µ⊗n

m , où α est la projection du grand site étale de Spec F sur son
grand site zariskien.

(F) Z(n) est un complexe de faisceaux avec transferts, à faisceaux de cohomologie
invariants par homotopie, au sens de [45].

(G) Hn(Spec F, Z(n)) = KM
n (F) [43, §3].
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Pour plus de détails, voir l’exposé de Friedlander.
Pour tout groupe abélien A, on note A(n) le complexe Z(n)

L⊗ A. On note
H∗

B(X, A(n)) (resp. H∗
L (X, A(n))) les groupes d’ hypercohomologie H∗

Zar(X, A(n))
(resp. H∗

ét(X, α∗A(n))). Pour X = Spec F, on convient de noter simplement ces
groupes H∗

B(F, A(n)) et H∗
L (F, A(n)).

Comme on ne sait pas pour n ≥ 2 si Z(n) est cohomologiquement borné à gauche
(c’est une conjecture), il est bon de rappeler la définition de l’hypercohomologie
d’un complexe non borné et de vérifier quelques propriétés des groupes ci-dessus
(ces points sont quelque peu passés sous silence dans [43] et [49]). Si X est un site
et C un complexe de faisceaux sur X, à valeurs dans les groupes abéliens,H∗(X, C)
est la cohomologie d’un complexe F K-injectif au sens de [41], quasi-isomorphe
à C. Si X est de dimension cohomologique finie, on a des suites exactes:

0 → lim←
1
H

q−1(X, τ≥nC) → H
q(X, C) → lim← H

q(X, τ≥nC) → 0 . (B.3)

Si C est cohomologiquement borné à gauche ou si X est de dimension co-
homologique finie d, on a des suites spectrales d’hypercohomologie fortement
convergentes:

I
p,q
1 = Hq(X, Cp) ⇒ Hp+q(X, C) ⇐ Hp(X, Hq(C)) = II

p,q
2 . (B.4)

On aura aussi besoin de la cohomologie motivique de certains schémas sim-
pliciaux. Si x• est un objet simplicial de X, on définit H∗(x•, C) comme étant la
cohomologie du complexe total associé au complexe cosimplicial F (x•), où F
est comme ci-dessus. Si C est cohomologiquement borné à gauche ou si x• est de
dimension finie, on a une suite spectrale fortement convergente:

E
p,q
1 = Hq(xp, C) ⇒ Hp+q(x•, C) . (B.5)

Si x(r)• est un système inductif d’objets simpliciaux, de limite inductive x•, on a
des suites exactes analogues à (B.3):

0 → lim←
1
H

q−1(x(r)
• , C) → H

q(x•, C) → lim← H
q(x(r)

• , C) → 0 . (B.6)

Pour tout nombre premier l, notons Z(l) le localisé de Z en l.

9 Proposition 9 Pour tout corps F et tout nombre premier l ≠ car F,
a) L’application naturelle H

q
B(F, Q(n)) → H

q
L(F, Q(n)) est un isomorphisme pour

tout q ∈ Z.
b) Le foncteur F �→ H

q
L(F, Z(l)(n)), où l ≠ car F, commute aux limites inductives

filtrantes pour tout q ∈ Z.
c) H

q
L(F, Z(l)(n)) est de torsion pour q > n.

Démonstration a) Plus généralement, pour tout corps F et tout complexe de fais-
ceaux de Q-espaces vectoriels K sur le grand site zariskien de Spec F, munis de
transferts au sens de [45], l’application Hq(K(F)) → H

q
ét(F, α∗K) est un isomor-
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phisme. Si K est réduit à un faisceau, c’est dû à l’existence de transferts et au fait
que la cohomologie galoisienne d’un GF-module est de torsion en degré > 0. En
général, on note qu’un corps est de Q-dimension cohomologique étale 0, et qu’on
peut donc appliquer la suite spectrale II de (B.4).

b) Il suffit de démontrer l’énoncé analogue pour les groupes de cohomologie
à coefficients Q(n) et Ql|Zl(n). Dans le premier cas, cela résulte de a); dans le
deuxième, cela résulte de la propriété (E) de Z(n) et de la commutation bien
connue de la cohomologie étale d’un faisceau aux limites inductives filtrantes.

c) Cela résulte de a) et des propriétés (C) et (E) de Z(n). �

Soit l un nombre premier différent de car F. Considérons l’énoncé suivant:

Pour tout i ≤ n , Hi+1
L (F, Z(l)(i)) = 0 . (H90(n, l, F))

Exemples 10.
1. n = 0: l’énoncé se traduit en H1

ét(F, Z(l)) = 0. C’est clair, puisque le groupe de
Galois GF , profini, n’a pas de caractères continus d’ordre infini.

2. n = 1: l’énoncé se traduit en le précédent et H1
ét(F,Gm) ⊗ Z(l) = 0. C’est la

version d’Emmy Noether du théorème 90 de Hilbert.

Notons H90(n, l) l’énoncé {H90(n, l, F) pour tout corps F de caractéristique 0}.
Par ailleurs, notons B(n) le complexe de faisceaux zariskiens τ≤n+1Rα∗α∗Z(n): on
a un morphisme naturel

Z(n) → B(n) (Bn)

sur le grand site zariskien de Spec Q.

11Théorème 11: ([49, th. 2.11]) Les conditions suivantes sont équivalentes:
(i) H90(n, l) est vrai.
(ii) Pour tout i ≤ n, le morphisme (Bi) ⊗ Z(l) est un quasi-isomorphisme.

Démonstration (ii) ⇒ (i) est clair, d’après la propriété (C) de Z(n). Pour voir la
réciproque, introduisons le cône K(i) du morphisme (Bi) ⊗ Z(l): c’est un com-
plexe de faisceaux sur le grand site zariskien de Spec F, et il faut montrer qu’il est
acyclique. Pour tout anneau local A d’une F-variété lisse X, il résulte de la pro-
priété (F) de Z(i) queH∗(Spec A, K(i)) → H

∗(Spec E, K(i)) est injectif (“conjecture
de Gersten”, [45, cor. 4.17]). Cela ramène à démontrer, sans perte de généralité,
queH∗(F, K(i)) = 0. D’après la proposition 9 c),H∗(F, K(i) ⊗ Q) = 0. Il reste à voir

que H∗(F, K(i)
L⊗ Ql|Zl) = 0, c’est-à-dire que H

q
B(F, Ql|Zl(i)) → H

q
L(F, Ql|Zl(i)) est

bijectif pour q ≤ i. Or:
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12 Lemme 12 Si H90(n, l, F) est vrai, alors, pour tout i ≤ n, le Bockstein

Hi(F, µ⊗i
lν ) → Hi+1(F, µ⊗i

l )

associé à la suite exacte (Ai) est nul.

En effet, la propriété (E) du complexe Z(i) implique que ce Bockstein se factorise
par le Bockstein

Hi(F, µ⊗i
lν ) → Hi+1

B (F, Z(l)(i)) = 0

associé au triangle distingué

α∗Z(l)(i)
lν→ α∗Z(l)(i) → α∗Z|lν(i) → α∗Z(l)(i)[1] .

La conclusion résulte maintenant de [43, prop. 7.1 et th. 5.9] (voir l’exposé de
Friedlander, prop. 40). �

13 Remarque 13 L’hypothèse de caractéristique 0 intervient dans la démonstration
de [43, th. 5.9], qui utilise la résolution des singularités.

14 Corollaire 14 H90(n, l) ⇒ K(n, l).

Vu les propriétés (E) et (G) de Z(n), il suffit d’appliquer le foncteur C �→
H

n
Zar(F, C

L⊗ Z|l) au morphisme (Bn) et de tenir compte du corollaire 7. �

Dans la section suivante, on aura également besoin du

15 Corollaire 15: (théorème 90 de Hilbert pour KM
n , [49, Cor. 2.14]) Supposons que

H90(n, l) soit vrai. Soient F un corps de caractéristique 0, E|F une extension cy-
clique de degré lν (ν ≥ 1) et σ un générateur de son groupe de Galois. Alors la
suite

KM
n (E)

1−σ→ KM
n (E)

NE|F→ KM
n (F) (B.7)

est exacte.

Démonstration Soit G = Gal(E|F). On a une suite exacte de GF-modules

0 → Z → Z[G]
1−σ→ Z[G] → Z → 0
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que l’on considère comme un complexe K de faisceaux sur le petit site étale de
Spec F. On a donc

Ext
q
F,ét(K, α∗Z(l)(n − 1)) = 0 pour tout q ∈ Z .

Notons que Ext
q
F,ét(Z, α∗Z(l)(n)) = H

q
L(F, Z(l)(n)) et que Ext

q
F,ét(Z[G], α∗Z(l)(n)) =

H
q
L(E, Z(l)(n)). D’après le théorème 11, ces groupes coïncident respectivement avec

H
q
B(F, Z(l)(n)) et H

q
B(E, Z(l)(n)) pour q ≤ n + 1. En utilisant une suite spectrale

d’hypercohomologie convergeant vers Ext∗F,ét(K, α∗Z(l)(n)) et la propriété (G) de
Z(n), on en déduit que la suite (B.7) est exacte après tensorisation par Z(l). Mais
l’homologie de (B.7) est de lν-torsion, en vertu de la formule NE|F(x)E =

∑lν−1
k=0 σkx;

le corollaire 15 en résulte. �

16Remarque 16 Dans le cas l = 2, Merkurjev a démontré indépendamment que la
propriété du lemme 12 pour ν = 1 entraîne la conjecture de Milnor, sans utiliser
la résolution des singularités [20].

Vu le corollaire 14, le théorème 3 résulte maintenant du théorème suivant:

17Théorème 17: ([49, th. 4.1]) H90(n, 2) est vrai pour tout n ≥ 0.

Corps dont la K-théorie de Milnor
est divisible B.4

Le but de cette section est de démontrer:

18Théorème 18 Soit l un nombre premier, et soit F un corps de caractéristique 0, sans
extensions finies de degré premier à l, tel que KM

n (F) = lKM
n (F). Alors H90(n − 1, l)

⇒ H90(n, l, F).

Démonstration On a besoin de quelques lemmes:

19Lemme 19: (cf. [49, lemma 2.20]) Supposons H90(n − 1, l) vrai. Soit F un corps
de caractéristique 0, sans extensions de degré premier à l. Soit E|F une extension

cyclique de degré l telle que la norme KM
n−1(E)

NE|F→ KM
n−1(F) soit surjective. Alors la

suite

KM
n (E)

1−σ→ KM
n (E)

NE|F→ KM
n (F) → 0

est exacte.
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Démonstration L’exactitude en KM
n (F) résulte facilement de l’hypothèse. Pour

démontrer l’exactitude en KM
n (E), on définit un homomorphisme

KM
n (F)

ϕ→ KM
n (E)|(1 − σ)KM

n (E)

par la formule ϕ({a1, …, an}) = b · {an} où b ∈ KM
n−1(E) est tel que NE|F(b) =

{a1, …, an−1}. Le corollaire 15 implique que

b · {an} ∈ KM
n (E)|(1 − σ)KM

n (E)

ne dépend pas du choix de b. Pour voir que ϕ est bien défini, il faut vérifier que
b · {an} dépend multilinéairement de (a1, …, an), ce qui est immédiat, et que cet
élément est nul si a1 + an = 1. Pour simplifier, supposons a1 |∈ F∗l (l’autre cas est
plus facile), et soit K = F( l√a1). Soit c ∈ K∗ tel que c l = a1. Notons que

NKE|K(bKE) = NE|F(b)K = {a1, …, an−1}K = l{c, a2…, an−1}
donc que NKE|K (bKE −{c, a2…, an−1}) = 0; en appliquant de nouveau le corollaire 15,
on obtient un élément d ∈ KM

n−1(KE) tel que (1 − σ)d = bKE − {c, a2…, an−1}. Notons
aussi que 1 − a1 = NK|F(1 − c). On a alors:

b · {an} = b · {1 − a1} = NKE|E(bKE · {1 − c})
= NKE|E((bKE − {c, a2, …, an−1}) · {1 − c})
= NKE|E((1 − σ)d · {1 − c})
= (1 − σ)NKE|E(d · {1 − c})
∈ (1 − σ)KM

n (E) .

Il est clair que ϕ est une section de l’homomorphisme KM
n (E)|(1 − σ)KM

n (E)
ν→

KM
n (F) induit par la norme. Reste à voir qu’il est surjectif. Or, d’après Bass-Tate [5,

cor. 5.3], KM
n (E) est engendré par les symboles de la forme {b, a2, …, an} avec b ∈ E∗

et a2, …, an ∈ F∗. On vérifie facilement sur ces symboles que ϕ ◦ ν est l’identité.�

20 Lemme 20: (cf. [49, lemma 2.17]) Soit F un corps de caractéristique 0, sans ex-
tensions de degré premier à l. Supposons H90(n − 1, l) vrai. Alors, pour toute
extension cyclique E|F de degré l, la suite

Hn−1(E, Z|l)
NE|F→ Hn−1(F, Z|l)

∪χ→ Hn(F, Z|l) → Hn(E, Z|l) ,

où χ ∈ H1(F, Z|l) est un caractère définissant E, est exacte.

Nous renvoyons à [49] pour la démonstration: en effet, pour l = 2, ce résultat est
vrai sans l’hypothèse H90(n − 1, l) (ni d’ailleurs celle que F n’ait pas d’extensions
premières à l), cf. par exemple [1, Cor. 4.6].
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21Lemme 21: ([49, lemma 2.22]) Sous l’hypothèse du théorème 18, on a KM
n (E) =

lKM
n (E) pour tout extension finie E|F.

Démonstration Il suffit de traiter le cas où E|F est cyclique de degré l. Montrons

d’abord que la norme KM
n−1(E)

NE|F→ KM
n−1(F) est surjective: comme son conoyau est

de l-torsion, cela résulte de la surjectivité de KM
n−1(E)|l

NE|F→ KM
n−1(F)|l. Comme F n’a

pas d’extensions de degré premier à l, il contient une racine primitive l-ième de
l’unité dont le choix identifie le module galoisien µl à Z|l; de plus, on a E = F( l√a)
pour un a ∈ F∗ convenable. On a alors un diagramme commutatif

KM
n−1(E)|l ��

NE|F

��
un−1,l

KM
n−1(F)|l ��

·{a}

��
un−1,l

KM
n (F)|l = 0 ��

��
un,l

KM
n (E)|l

��
un,l

Hn−1(E, Z|l) ��
NE|F

Hn−1(F, Z|l) ��
∪(a)

Hn(F, Z|l) �� Hn(E, Z|l)

(B.8)

où les deux flèches verticales de gauche sont des isomorphismes par le corollaire 14
et dont la ligne inférieure est exacte par le lemme 20. La surjectivité en résulte.

Soit σ un générateur de Gal(E|F). L’égalité KM
n (F) = lKM

n (F) et le lemme 19 entraî
nent facilement que l’endomorphisme 1 − σ de KM

n (E)|l est surjectif. La conclusion
en résulte, puisque (1 − σ)l = 0. �

Démonstration du théorème 18.
Montrons que Hn(F, Z|l) = 0: c’est suffisant vu la proposition 9 c) et la propriété (E)
de Z(n). Soit α ∈ Hn(F, Z|l). Il existe une extension finie galoisienne E|F telle que
αE = 0. Grâce au lemme 21, on peut supposer par récurrence sur [E : F] que E|F est
cyclique de degré l. Soit E = F( l√a) pour a ∈ F∗. En réutilisant le diagramme (B.8),
on voit facilement que α = 0. �

Variétés de déploiement B.5

Corps de déploiement B.5.1

22Définition 22 Soient F un corps, n > 0 et x ∈ KM
n (F)|l. On dit qu’une extension

K|F est un corps de déploiement (resp. un corps de déploiement générique) pour x
si xK = 0 (resp. si, pour toute extension E|F, xE = 0 ⇐⇒ il existe une F-place de



1120 Bruno Kahn

K vers E). On dit qu’une F-variété intègre X est une variété de déploiement (resp.
une variété de déploiement générique) pour x si F(X) est un corps de déploiement
(resp. un corps de déploiement générique) pour x.

23 Remarque 23 Si la variété X est de plus propre, la condition de généricité se traduit
sous la forme suivante: pour toute extension E|F, xE = 0 si et seulement si X ⊗F E
a un point rationnel. Cela résulte du critère valuatif de propreté. Si Y est une autre
variété de déploiement pour x, il existe donc un F-morphisme d’un ouvert de Y
vers X. La pertinence de cette notion apparaîtra dans la section B.10.2.

Exemples 24 .
1. Fs est un corps de déploiement pour tout x: en effet, la K-théorie de Milnor de

Fs est l-divisible. Cela prouve l’existence de corps de déploiement (et même de
corps de déploiement de degré fini sur F).

2. Pour la démonstration du théorème 17, on utilisera des corps de déploiement
génériques dans le cas où x est un symbole. En voici des exemples:
a) n = 2. Supposons µl ⊂ F et choisissons une racine primitive l-ième de l’u-

nité ζ. Pour a, b ∈ F∗, l’algèbre centrale simple A =
(a b

F

)
ζ admet une variété

de Severi-Brauer X: c’est une F-variété projective, lisse, géométriquement
intègre, isomorphe à Pl−1 si et seulement si A n’est pas à division ([8],
[2]). On montre que X est une variété de déploiement générique pour
{a, b} ∈ KM

2 (F)|l (Bass-Tate, [24, th. 15.7 et 15.12]).
b) n = 3. Avec les mêmes hypothèses et notations que ci-dessus, soit c un

troisième élément de F∗. Notons U la variété affine d’équation NrdA(x) = c,
où NrdA est la norme réduite associée à A: c’est une “forme tordue” de SLl.
Il résulte de [21, th. 12.1] que U est une variété de déploiement générique
pour {a, b, c} ∈ KM

3 (F)|l. Une complétion projective de U est donnée par
X = {[x, y, t] ∈ P(A ⊕ A ⊕ F) | xy = t2, x∗ = yt l−2c, y∗ = xt l−2c−1}, où
x �→ x∗ ∈ A est une fonction polynomiale (bien définie!) telle que xx∗ =
NrdA(x), l’immersion ouverte U → X étant donnée par x �→ [x, x−1, 1]
(Rost). La variété X n’est toutefois lisse que pour l = 3.

c) l = 2. Pour a = (a1, …, an) ∈ (F∗)n la quadrique projective Xa définie par
la n-forme de Pfister ϕ = <<a1, …, an>> est une variété de déploiement
générique pour {a1, …, an} ∈ KM

n (F)|2 [11, cor. 3.3]. Variante: on remplace
ϕ par une de ses voisines (sous-forme de dimension > 2n−1) [18, ex. 4.1].

Pour x ∈ KM
n (F)|l, notons D(x) la propriété suivante:

D(x) Il existe un corps de déploiement K pour x, de type fini sur F et tel que
Hn+1

L (F, Z(l)(n)) → Hn+1
L (K, Z(l)(n)) soit injectif.
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25Proposition 25 Supposons H90(n − 1, l) vrai. Supposons de plus que, pour tout
corps E de caractéristique 0 et tout (a1, …, an) ∈ (E∗)n, D({a1, …, an}) soit vrai.
Alors H90(n, l) est vrai.

Démonstration Par l’absurde.2 Soit α ∈ Hn+1
L (F, Z(l)(n)) − {0}. Choisissons un

domaine universel pour F, c’est-à-dire une extension F̃|F, algébriquement close
et de degré de transcendance infini. D’après la proposition 9 b), l’ensemble des
sous-extensions K|F telles que αK ≠ 0 est inductif; il a donc un élément maximal E.
Ce corps E n’a pas d’extensions finies de degré premier à l (argument de transfert).
D’après le théorème 18, on a donc KM

n (E)|l ≠ 0. Soit x = {a1, …, an} ∈ KM
n (E)|l−{0}.

En appliquant D(x), on trouve une extension K|E de type fini, telle que xK = 0
(donc K ≠ E) et αK ≠ 0. Comme K|E est de type fini, K se plonge dans F̃, ce qui
contredit la maximalité de E. �

Variétés de déploiement B.5.2

Pour toute F-variété intègre X, notons Č(X) le schéma simplicial tel que Č(X)n =
Xn+1, les faces et dégénérescences étant données par les projections et diagonales
partielles. On a une chaî ne de morphismes de schémas simpliciaux

Spec F(X) → X → Č(X) → Spec F

où les objets autres que Č(X) sont considérés comme des schémas simpliciaux
constants.

26Lemme 26 a) Si X a un point rationnel, les homomorphismes

H∗
B(F, Z(n)) → H∗

B(Č(X), Z(n))

sont des isomorphismes.
b) Les homomorphismes

H∗
L (F, Z(n)) → H∗

L (Č(X), Z(n))

sont des isomorphismes.

Démonstration a) C’est classique: le choix d’un point rationnel de X définit une
rétraction r de l’application naturelle

H∗
B(F, Z(n))

α→ H∗
B(Č(X), Z(n)) .

2 As Deligne kindly pointed out, this argument should be replaced by the original transfinite
argument due to Merkurjev.
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Pour prouver que α ◦ r est l’identité, on construit comme d’habitude une homo-
topie de l’identité à l’application correspondant à α ◦ r sur un complexe calculant
H∗

B(Č(X), Z(n)).
b) C’est clair par le même raisonnement qu’en a) si X a un point rationnel, par

exemple si F est algébriquement clos. En général, cela résulte de la comparaison
des suites spectrales convergentes

Hp(F,H
q
ét(Fs, K)) ⇒ Hp+q

ét (F, K)

Hp(F,H
q
ét(Č(Xs), K)) ⇒ Hp+q

ét (Č(X), K)

où Xs = X ⊗F Fs et K = Q(n) ou Q|Z(n), cf. la démonstration de la propo-
sition 9 b). �

27 Remarque 27 Une démonstration du lemme 26 a) plus naturelle d’un point de
vue homotopique pourra être obtenue à partir de l’exemple 38 et du théorème 46
ci-dessous.

28 Définition 28 Soit x ∈ KM
n (F)|l. Une variété de déploiement X pour x est bonne si

les conditions suivantes sont vérifiées:
(i) X est lisse.
(ii) XF(X) est rétracte rationnelle.
(iii) Hn+1

B (Č(X), Z(l)(n)) = 0.

Rappelons qu’une F-variété intègre X est rétracte rationnelle s’il existe un ouvert
non vide U ⊂ X tel que IdU se factorise par un ouvert d’un espace affine. Cette
notion est due à D. Saltman [38].

Exemples 29.
1. Soit X une variété projective homogène sur F: il existe donc un groupe semi-

simple G, défini sur F, tel que X ⊗F Fs soit Fs-isomorphe à G ⊗F Fs|P pour
un Fs-sous-groupe parabolique P convenable de G ⊗F Fs [9, prop. 4]. Alors X
vérifie les hypothèses (i) et (ii) de la définition 28. Pour (i), c’est classique; pour
(ii) on utilise la décomposition de Bruhat généralisée qui montre que XF(X)

est même F(X)-rationnelle [3, th. 21.20] (je remercie Philippe Gille de m’avoir
indiqué cette référence). Ceci s’applique aux exemples 24 (2) (a) et (c).

2. La variété U de l’exemple 24 (2) (b) vérifie également les hypothèses (i) et (ii)
de la définition 28: pour (ii), on remarque que si U a un point rationnel, on
peut se ramener à c = 1 par multiplicativité de la norme réduite. Il faut donc
montrer que SL1,A est rétracte rationnelle. Comme l’indice de A est premier,
le théorème de Wang [51] implique que tout élément de norme réduite 1 est
produit de commutateurs. En appliquant ceci au point générique η de SL1,A,
on obtient une factorisation
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η �
� ��

��C
CC

CC
C

SL1,A

(GL1,A)2m

��wwwww

pour m ≥ 1 convenable. Cette factorisation s’étend en un triangle commutatif

V
�

� ��

��C
CC

CC
C

SL1,A

(GL1,A)2m

��wwwww

où V est un ouvert convenable de SL1,A, ce qui entraîne facilement la propriété
cherchée. (Je remercie Jean-Louis Colliot-Thélène de m’avoir expliqué cette
démonstration.)

30Théorème 30: (cf. [49, th. 2.25]) Supposons que H90(n − 1, l) soit vrai. Soit x ∈
KM

n (F)|l; supposons que x admette une bonne variété de déploiement. Alors D(x)
est vrai.

Démonstration On a encore besoin de quelques lemmes:

31Lemme 31: ([49, th. 2.15]) Supposons que H90(n − 1, l) soit vrai; soit K(n) le
cône du morphisme (Bn) ci-dessus, localisé en l. Alors X �→ H

∗(X, K(n)) est un
invariant birationnel lorsque X décrit les F-variétés lisses et intègres.

Démonstration Il faut montrer que, pour tout ouvert non vide U ⊂ X,
H

∗(X, K(n)) → H
∗(U, K(n)) est bijectif. Soit Z = X − U . Par récurrence sur

dim Z, on se ramène au cas où Z est lisse (considérer son lieu singulier). De la
pureté de la cohomologie motivique [43, prop. 2.4] et de la cohomologie étale
à coefficients racines de l’unité tordues, on déduit alors que

H
q
Z(X, K(n)) � Hq−2c(Z, K(n − c))

où c = codimX(Z). La conclusion résulte maintenant du théorème 11. �

32Lemme 32 Avec les hypothèses et notations du lemme 31, soit Y
f→ X un mor-

phisme dominant de F-variétés lisses et intègres, dont la fibre générique est une

variété rétracte rationnelle. Alors H∗(X, K(n))
f ∗
→ H

∗(Y , K(n)) est un isomor-
phisme.
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Démonstration Grâce au lemme 31, on se ramène au cas où X est un corps. En
réutilisant si besoin est le lemme 31, le lemme 32 résulte alors de l’invariance
par homotopie de la cohomologie motivique (propriété (F) de Z(n)) et de la
cohomologie étale à coefficients racines de l’unité tordues. �

33 Lemme 33 Supposons H90(n − 1, l) vrai. Soit X une F-variété intègre vérifiant les
propriétés (i) et (ii) de la définition 28. Alors,
a) Les homomorphismes

H
∗(Č(X), K(n)) → H

∗(X, K(n)) → H∗(F(X), K(n))

sont des isomorphismes.

b) On a une suite exacte

Hn+1
B (Č(X), Z(l)(n)) → Hn+1

L (F, Z(l)(n)) → Hn+1
L (F(X), Z(l)(n)) .

Démonstration a) C’est clair pour l’homomorphisme de droite, en vertu du
lemme 31. Si ∂ est une face de Č(X)r+1 vers Č(X)r, il résulte du lemme 32 que
l’application induite par ∂ en K(n)-hypercohomologie est un isomorphisme. Pour
tout r ≥ 0, soit Č(X)(r) le r-ième squelette de Č(X). D’après la remarque ci-dessus,
les différentielles d1 sont alternativement nulles et bijectives dans la suite spec-
trale (B.5) associée à Č(X)(2r). Il en résulte que cette suite spectrale dégénère et
induit des isomorphismes

H
∗(Č(X)(2r), K(n))

∼→ H
∗(X, K(n)) , r ≥ 0 .

En particulier, les systèmes projectifs (H∗(Č(X)(2r), K(n)))r≥0 sont constants, et
il résulte des suites exactes (B.6) que les homomorphismes

H
∗(Č(X), K(n)) → H

∗(Č(X)(2r), K(n))

sont des isomorphismes pour tout r ≥ 0.

b) Cela résulte de a) et du diagramme commutatif aux lignes exactes

0 = Hn+1
B (F(X), Z(l)(n))) �� Hn+1

L (F(X), Z(l)(n))) �� Hn+1(F(X), K(n)))

Hn+1
B (Č(X), Z(l)(n))) ��

OO

Hn+1
L (Č(X), Z(l)(n))) ��

OO

H
n+1(Č(X), K(n)))

OO
�

Hn+1
L (F, Z(l)(n)))

OO
�

où l’isomorphisme du haut résulte de a), et celui du bas du lemme 26 b). �
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Le théorème 30 résulte immédiatement de la définition 28 et du lemme 33 b). �

Vu la proposition 25 et le théorème 30, le théorème 17 résulte maintenant du

34Théorème 34: (cf. [49, prop. 4.10]) Supposons H90(n − 1, 2) vrai. Soient a =
(a1, …, an) ∈ (F∗)n et Qa la quadrique projective de dimension 2n−1 − 1 définie par
la forme quadratique

<<a1, …, an−1>> ⊥ < − an> .

Alors Qa est une bonne variété de déploiement pour {a1, …, an} ∈ KM
n (F)|2.

35Remarque 35 Soient X, Y deux F-variétés lisses et intègres qui sont stablement
équivalentes, par exemple XF(Y) est F(Y)-rationnelle et YF(X) est F(X)-rationnelle.
Alors, pour x ∈ KM

n (F)|l, X est une bonne variété de déploiement pour x si et
seulement si Y l’est. Cela résulte facilement du lemme 33 b) (voir aussi exemple 38).

Dans l’énoncé du théorème 34, on pourrait donc remplacer la quadrique Qa par
la quadrique Xa associée à la n-forme de Pfister <<a1, …, an>>. Toutefois, l’existence
du modèle Qa est cruciale pour la démonstration de Voevodsky, comme le montre
l’énoncé du théorème 36 ci-dessous.

Le théorème 34 résulte formellement de la conjonction des deux énoncés suivants,
le premier de nature “topologique”, le deuxième de nature “arithmétique”:

36Théorème 36 Supposons H90(n − 1, l) vrai. Soient F un sous-corps de C et X
une F-variété projective lisse de dimension d = ln−1 − 1 telle que sd(X(C)) �≡ 0
(mod l2), où sd(X(C)) est le nombre de Chern de X(C) associé au d-ième polynôme
de Newton (cf. [25, §16]). Alors il existe une injection

Hn+1
B (Č(X), Z(l)(n))

α→ H
2 ln−1−1

l−1 +1
B

(
Č(X), Z(l)

(
ln−1 − 1

l − 1
+ 1

))
.

Le théorème 36 sera démontré dans les sections B.7 et B.8.3.

37Théorème 37 Supposons H90(n − 1, 2) vrai. Soient F et a, Qa comme dans le
théorème 34. Alors sd(Qa(C)) �≡ 0 (mod 4) et H2n−1

B (Č(Qa), Z(2n−1)) = 0.

Le théorème 37 sera démontré dans la section B.9. Notons tout de suite que
sa première conclusion résulte d’un calcul élémentaire (on trouve sd(Qa(C)) =
2(22n−1−1 − 2n−1 − 1), cf. [25, problem 16-D]).

Pour la démonstration du théorème 36, Voevodsky utilise des opérations de
Steenrod en cohomologie motivique. Pour les définir, il faut introduire la catégorie
homotopique stable des schémas: c’est fait dans la prochaine section.
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Homotopie des variétés algébriquesB.6

Topologie de NisnevichB.6.1

Soit X un schéma. Un recouvrement de Nisnevich de X est une famille (Ui
fi→ X)i∈I

de morphismes étales telle que, pour tout x ∈ X, il existe i ∈ I et u ∈ f −1
i (x)

tel que κ(x) → κ(u) soit un isomorphisme. Les recouvrements de Nisnevich
définissent une topologie de Grothendieck sur la catégorie Sm|F des F-schémas
lisses: la topologie de Nisnevich [28]. Les anneaux locaux de cette topologie sont
les anneaux locaux henséliens.

Catégorie homotopiqueB.6.2

Soient ShvNis(Sm|F) le topos associé (faisceaux d’ensembles) et ∆opShvNis(Sm|F) la
catégorie des objets simpliciaux de ce topos. On identifiera, sans plus de commen-
taires, les objets suivants à des objets de ∆opShvNis(Sm|F): ensembles simpliciaux
(faisceaux constants), F-schémas simpliciaux (faisceaux représentables), faisceaux
d’ensembles, F-schémas.

Pour U ∈ Sm|F et u ∈ U , notons Oh
U,u le hensélisé de l’anneau local de U

en u. Alors Spec Oh
U,u est limite projective de F-schémas lisses Uα; pour tout

X ∈ ∆opShvNis(Sm|F), on définit sa fibre Xu en u comme la limite inductive
des ensembles simpliciaux X(Uα). On dit qu’un morphisme ϕ : X → Y de
∆opShvNis(Sm|F) est une équivalence faible simpliciale si, pour tout U ∈ Sm|F et
tout u ∈ U , ϕu = Xu → Yu est une équivalence faible d’ensembles simpliciaux.

Exemple 38 . (cf. [49, lemma 3.8]) Soit f : X → S un morphisme de Sm|F. Consid-
érons le schéma simplicial ČS(X) tel que ČS(X)n = X ×S × · · · ×S X︸ ︷︷ ︸

n+1

,

les faces et dégénérescences étant données par les projections et diagonales par-
tielles (pour S = Spec F, on retrouve l’objet Č(X) considéré ci-dessus). Si fs a une
section pour tout s ∈ S, la projection ČS(X) → S est une équivalence faible simpli-
ciale: c’est évident. En particulier, supposons X = Y ×F S pour un F-schéma lisse
Y ; alors, si HomF(S, Y) ≠ ∅, la projection Č(Y)×F S → S est une équivalence faible
simpliciale.

Prenons par exemple S = Spec F, et pour Y une variété de déploiement générique
pour un élément x ∈ KM

n (F)|l (cf. définition 22). Supposons Y propre. Alors le
faisceau simplicial Č(Y) est faiblement simplicialement équivalent au faisceau
d’ensembles Φx défini par

Φx(U) =





∅ si xF(U) ≠ 0

pt si xF(U) = 0
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où U décrit les F-schémas lisses intègres et pt désigne un ensemble à 1 élément:
cela résulte de la remarque 23. Ceci montre que l’objet Č(Y), vu à homotopie près,
ne dépend que de x.

Notons Hs(∆opShvNis(Sm|F)) la localisation de ∆opShvNis(Sm|F) par rapport aux
équivalences faibles simpliciales. On dit qu’un objet X ∈ ∆opShvNis(Sm|F) est A1-
local si, pour tout Y ∈ ∆opShvNis(Sm|F), HomHs (Y, X) → HomHs (Y × A1, X)
est bijective, et qu’un morphisme f : Y → Y′ de ∆opShvNis(Sm|F) est une A1-
équivalence faible si pour tout objet A1-local X, l’application correspondante

HomHs (Y
′, X)

f ∗
→ HomHs (Y, X)

est bijective. Disons qu’un morphisme ϕ de ∆opShvNis(Sm|F) est une cofibra-
tion (resp. une équivalence faible) si ϕ est un monomorphisme (resp. une A1-
équivalence faible). D’après [27], ceci munit ∆opShvNis(Sm|F) d’une structure de
catégorie de modèles fermée au sens de Quillen [30]. La catégorie homotopique
correspondante H(F) est appelée catégorie homotopique des F-schémas.

On a une version pointéeH•(F) deH(F), en partant de la catégorie ∆op
• ShvNis(Sm|F)

des faisceaux d’ensembles simpliciaux pointés, et un foncteur

H(F) → H•(F)

induit par le foncteur X �→ X+ = X
∐

pt. Notons que le faisceau simplicial pointé
constant réduit à un point est représenté par Spec F. Si X, Y sont deux faisceaux
simpliciaux pointés, on définit leur smash produit X ∧ Y comme étant le faisceau
associé au préfaisceau U �→ X(U) ∧ Y(U). Ceci munit ∆op

• ShvNis(Sm|F) et H•
d’une structure monoïdale symétrique, l’objet unité étant S0 (faisceau constant,
que l’on peut décrire comme (Spec F)+).

Deux cercles B.6.3

On définit deux “cercles” S1
s , S1

t ∈ ∆op
• ShvNis(Sm|F):

S1
s est le cercle simplicial, vu comme faisceau constant.

S1
t est le F-schéma A1

F − {0} pointé par 1, vu comme faisceau représentable
(constant comme objet simplicial).

On note également T le faisceau simplicial pointé donné par le carré cocartésien

A1
F − {0} ��

��

A1
F

��

Spec F �� T .

Dans H•(F), on a des isomorphismes S1
s ∧ S1

t ≈ T ≈ (P1
F , 0).
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Soit f : X → Y un morphisme de ∆op
• ShvNis(Sm|F). Le cône de f , cône(f ), est le

faisceau associé au préfaisceau U �→ cône(f (U)). On a un morphisme canonique
Y → cône(f ) qui s’étend comme d’habitude en une suite

X
f→ Y → cône(f ) → S1

s ∧ X

appelée suite cofibrante associée à f .

T-spectresB.6.4

39 Définition 39 Un T-spectre sur F est une suite E = (Ei, ei : T ∧ Ei → Ei+1)i∈Z, où
Ei ∈ ∆op

• ShvNis(Sm|F) pour tout i. Soient E = (Ei, ei), F = (Fi, fi) deux T-spectres.
Un morphisme ϕ : E → F est la donnée, pour tout i, d’un morphisme ϕi : Ei → Fi,
avec ϕi+1 ◦ ei = fi ◦ ϕi.

On note SpectT(F) la catégorie des T-spectres sur F. En utilisant la structure de
modèles fermée sur ∆op

• ShvNis(Sm|F), on définit comme dans [4] des structures
de modèles fermées stable et stricte. On note SH(F) la catégorie homotopique
associée à la structure stable: c’est la catégorie homotopique stable des F-schémas.

Soit X ∈ ∆op
• ShvNis(Sm|F). On a le spectre des suspensions de X:

Σ∞
T X = (T∧i ∧ X, Id) .

Par abus de notation, on notera parfois X au lieu de Σ∞
T X. Cette construction

induit un foncteur H•(F) → SH(F).

40 Théorème 40: ([49, th. 3.10]) Il existe une structure de catégorie triangulée ten-
sorielle sur HS(F) ayant les propriétés suivantes:
(i) Le foncteur de décalage E �→ E[1] est donné par E[1] = S1

s ∧ E.
(ii) Le foncteur Σ∞

T transforme suites cofibrantes en triangles distingués.
(iii) Le foncteur Σ∞

T est un foncteur monoïdal symétrique de (H•(F), ∧) vers
(SH(F), ∧).

(iv) L’objet T de SH(F) est inversible.

Théories cohomologiques et homologiquesB.6.5

Fixons des objets S−1
s , S−1

t de SpectT(F) et des isomorphismes

S1
s ∧ S−1

s =̃ S0

S1
t ∧ S−1

t =̃ S0
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dans SH(F). Notons, pour n ∈ Z,

Sn
s =





(S1

s )∧n pour n ≥ 0

(S−1
s )∧(−n) pour n ≤ 0

Sn
t =





(S1

t )∧n pour n ≥ 0

(S−1
t )∧(−n) pour n ≤ 0

et, pour p, q ∈ Z

Sq,p = S
p
t ∧ Sq−p

s .

Pour E ∈ SH(F), on note E(p)[q] = Sq,p ∧ E.

41Définition 41 Soit E ∈ SH(F). La théorie cohomologique associée à E est le fonc-
teur

Ẽp,q : SH(F) → (Ab)Z×Z

X �→ HomSH(F)(X, E(q)[p]) .

La théorie homologique associée à E est le foncteur

Ẽp,q(X) : SH(F) → (Ab)Z×Z

X �→ HomSH(F)(Sq,p, E ∧ X) .

Si X ∈ H(F), on note

Ep,q(X) = Ẽp,q(Σ∞
T (X+))

Ep,q(X) = Ẽp,q(Σ∞
T (X+)) .

Spectres d’Eilenberg-Mac Lane
et cohomologie motivique B.6.6

Pour toute F-variété lisse X, notons L(X) le faisceau pour la topologie de Nisnevich
qui associe à un schéma lisse connexe U le groupe abélien libre engendré par les
fermés irréductibles de U ×F X qui sont finis et surjectifs sur U (c’est le faisceau
cequi(X, 0) de l’exposé de Friedlander, §2). Soit A un groupe abélien. Pour n ≥ 0, on
note

K(A(n), 2n)

le faisceau de groupes abéliens quotient L(An)|L(An − {0}) ⊗ A, considéré comme
faisceau d’ensembles pointés. On a des morphismes de faisceaux d’ensembles
pointés

T ∧ K(A(n), 2n)
en→ K(A(n + 1), 2n + 2) .
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Pour n < 0, on pose K(A(n), 2n) = {∗}.

42 Définition 42 Le spectre d’Eilenberg-Mac Lane HA est le T-spectre (K(A(n), 2n), en).

Pour X ∈ SH(F) (resp. X ∈ H(F)), on note H̃p,q(X, A) = H̃p,q
A (X) (resp.

Hp,q(X, A) = Hp,q
A (X)) (cf. définition 41): c’est la cohomologie motivique de X

(resp. de X). Cette terminologie est justifiée par le

43 Théorème 43: ([27]) Soit F un corps de caractéristique 0, et soit X un F-schéma
simplicial lisse. Alors, pour tout groupe abélien A, on a

Hp,q(X, A) = H
p
B(X, A(q)) .

Indications sur la démonstration
(d’après F. Morel). Il résulte de la quasi-invertibilité de Z(1) dans la catégorie

triangulée DMeff (F) des F-motifs effectifs ([46, th. 4.3.1], voir aussi l’exposé de
Friedlander, th. 5.7) que le spectre HA est un ΩT-spectre. Il suffit donc de montrer
que, pour tous m, n, i ≥ 0, l’ensemble des morphismes dans H•(F)

[Σm
s Σn

t (X+), K(A(i), 2i)]

s’identifie naturellement au groupe H2i−m−n,i−n
B (X, A). Cela résulte d’une adjonction

essentiellement formelle. �

44 Remarque 44 On peut montrer que le foncteur A �→ HA se “prolonge” en un
foncteur

H : DM(F) → SH(F)

où DM(F) est la catégorie triangulée des F-motifs, convenablement complétée,
où l’on a inversé le motif de Tate. Ce foncteur a pour adjoint à gauche un
foncteur

M : SH(F) → DM(F)

qui “prolonge” le foncteur “motif” Sm|F M→ DM(F) (cf. l’exposé de Friedlander,
définition 3.1). Ce résultat généralise le théorème 43.
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Opérations de Steenrod
en cohomologie motivique B.7

45Définition 45 L’algèbre de Steenrod motivique modulo l sur F est l’algèbre
A∗,∗(F, Z|l) des endomorphismes du T-spectre HZ|l dans SH(F).

Par définition, on a

Ap,q(F, Z|l) = HomSH(F)(HZ|l, HZ|l(q)[p]) = H̃p,q(HZ|l, Z|l) .

46Théorème 46: ([49, th. 3.14], [48]) On a
(i) Ap,q(F, Z|l) = 0 pour q < 0
(ii) A0,0(F, Z|l) = Z|l, engendré par l’identité.

47Théorème 47: ([49, th. 3.15], [48]) L’homomorphisme de Künneth

H̃∗,∗(HZ|l, Z|l) ⊗H̃∗,∗(S0,Z|l) H̃∗,∗(HZ|l, Z|l) → H̃∗,∗(HZ|l ∧ HZ|l, Z|l)

est un isomorphisme.

On va avoir besoin d’opérations Qi ∈ A2li−1,li−1(F, Z|l), analogues aux opérations
de Milnor. Pour les définir, on procède comme en topologie algébrique: on définit
des opérations Pi ∈ A2i(l−1),i(l−1)(F, Z|l) analogues aux puissances de Steenrod, et
on définit inductivement

Q0 = β

Qi+1 = [Qi, Pli ]

où β est le Bockstein modulo p. Pour cet exposé, les propriétés principales des Qi

sont:

48Théorème 48: ([49, th. 3.17], [48])
(i) Q2

i = 0.
(ii) Pour tout i > 0, il existe des opérations qi telles que Qi = [β, qi].

49Corollaire 49 Soient X ∈ SH(F) et p, q ∈ Z. Pour tout x ∈ H̃p,q(X, Z(l)) et tout
i > 0, posons

Q̃i(x) = β̃qi(x)
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où qi est comme dans le théorème 48 (ii), β̃ est le Bockstein entier et −−− désigne la
réduction modulo l. Alors le diagramme

H̃p,q(X, Z(l)) ��
Q̃i

��

H̃p+2li−1,q+li−1(X, Z(l))

��

H̃p,q(X, Z|l) ��
Qi

H̃p+2li−1,q+li−1(X, Z|l)

est commutatif. �

Vu la propriété (i) des Qi, on a pour tout objet X ∈ SH(F) des complexes

· · · Qi→ H̃p−2(li−1),q−li+1(X, Z|l)
Qi→ H̃p,q(X, Z|l)

Qi→

H̃p+2(li−1),q+li−1(X, Z|l)
Qi→ · · · (B.9)

50 Théorème 50 Soient F et X comme dans l’énoncé du théorème 36. Alors les
complexes (B.9) sont acycliques pour i ≤ n − 1 et X = fibre(Σ∞

T (Č(X)+) → S0).

Le théorème 50 sera démontré dans la section B.8.3. Déduisons-en tout de suite
le théorème 36 avec α = Q̃n−2...Q̃1, où les Q̃i sont les opérations cohomologiques
du corollaire 49. D’après le théorème 43, l’algèbre de Steenrod motivique opère
sur la cohomologie motivique de Č(X), de telle façon que l’on ait un diagramme
commutatif:

Hn+1
B (Č(X), Z(l)(n)) ��

Q̃n−2…Q̃1

��

H
2 ln−1−1

l−1 +1
B

(
Č(X), Z(l)

(
ln−1−1

l−1 + 1
))

��

H̃n+1,n(X, Z(l)) ��
Q̃n−2…Q̃1

��

H2 ln−1−1
l−1 +1, ln−1−1

l−1 +1(X, Z(l))

��

H̃n+1,n(X, Z|l) ��
Qn−2…Q1

H2 ln−1−1
l−1 +1, ln−1−1

l−1 +1(X, Z|l)

La propriété (B.3) des Z(i) implique que les flèches verticales supérieures sont
des isomorphismes. Par ailleurs, le lemme 26 a) et un argument de transfert
impliquent que H̃∗,∗(X, Z(l)) est d’exposant l; les flèches verticales inférieures sont
donc injectives. Par conséquent, pour démontrer le théorème 36, il suffit de prouver
que la flèche horizontale inférieure est injective.
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Le théorème 50 implique que, pour 1 ≤ i ≤ n − 2, la suite

H̃n+1−2l li−2li−1+1
l−1 −i+2,n− li−2li−1+1

l−1 −i+2(X, Z|l)
Qi→

H̃n+1+2l li−1−1
l−1 −i+1,n+l li−1−1

l−1 −i+1(X, Z|l)
Qi→

H̃n+1+2l li−1
l−1 −i,n+l li−1

l−1 −i(X, Z|l)

est exacte. Mais H̃n+1−2l li−2li−1+1
l−1 −i+2,n− li−2li−1+1

l−1 −i+2(X, Z|l) = 0: si n− li−2li−1+1
l−1 −i+2 < 0,

c’est trivial, et sinon cela résulte du théorème 11 (ii) et du lemme 26 b). �

Démonstration du théorème 50 B.8

Réalisation topologique B.8.1

Soit F un sous-corps de C. Soit ∆opEns la catégorie des ensembles simpliciaux. On
a un foncteur

Sm|F → ∆opEns

X �→ Sing(X(C)) ,

où Sing(M) désigne l’ensemble simplicial singulier associé à une variété com-
plexe. D’après [27], on peut “prolonger” ce foncteur en un foncteur réalisation
topologique

tC : ∆opShvNis(Sm|F) → ∆opEns

tel que, pour tout X ∈ Sm|F, tC(X) soit naturellement isomorphe à Sing(X(C)).
Ce foncteur transforme les A1

F-équivalences faibles en équivalences faibles, donc
induit un foncteur sur les catégories homotopiques:

H(F)
tC→ H

SH(F)
tC→ SH .

On a

tC(S1
s ) =̃ tC(S1

t ) =̃ S1

donc

tC(T) =̃ S2 .

De plus, le théorème de Dold-Thom implique:

tC(HZ) =̃ HZ .
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Finalement:

tC(Pi) = Pi

tC(Qi) = Qi .

Espaces de Thom et cobordismes algébriquesB.8.2

Soient X ∈ Sm|F, E un fibré vectoriel sur X et s la section nulle de E . On définit
l’espace de Thom de E comme étant le faisceau pointé Th(E) donné par le carré
cocartésien

E − s(X) ��

��

E

��

Spec F �� Th(E)

généralisant le carré qui définit T [27]. Si E = 0, on a évidemment:

Th(E) = X+ .

Si F est un fibré sur une autre variété Y et E � F est leur somme externe sur
X ×F Y , on a un isomorphisme canonique de faisceaux pointés [27]

Th(E � F ) = Th(E) ∧ Th(F )

en particulier, pour Y = Spec F et F = On:

Th(E ⊕ On) = T∧n ∧ Th(E) .

les Th(E ⊕On) forment donc un spectre isomorphe au spectre des suspensions de
Th(E). Dans H•(F), on a un isomorphisme [27]

Th(E) � P(E ⊕ O)|P(E)

d’où l’on déduit des isomorphismes, avec d = dim E :

H̃p,q(Th(E), A) � H
p−2d
B (X, A(q − d)) , p, q ∈ Z , (B.10)

pour tout A, à l’aide du théorème 43 et du calcul de la cohomologie motivique
d’une fibré projectif [43, prop. 2.5].

51 Théorème 51: (théorème de pureté homotopique, [27]) Soit i : Z → X une im-
mersion fermée de F-variétés lisses. Notons U l’ouvert complémentaire et νi → Z
le fibré normal de i. Alors on a un isomorphisme canonique dans H•(F):

X|U ≈ Th(νi) .
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Nous noterons M(E) la désuspension T−dΣ∞
T Th(E), où d = dim E : c’est le spectre

de Thom de E . En remplaçant au besoin X par une F-variété affine par le procédé
de Jouanolou [13, lemme 1.5], on peut étendre cette construction en une fonction

M : K0(X) → SH(F) .

Le foncteur tC envoie Th(E) (resp. M(E)) sur l’espace (resp. le spectre) de Thom
classique Th(E(C)) (resp. M(E(C))).

Soit G(m, n) la grassmannienne standard, munie de son fibré canonique Em,n.
En lui appliquant la construction précédente, on obtient un spectre M(Em,n). La
limite inductive de ces spectres est notée MGL: c’est le spectre des (F-)cobordismes
algébriques. La formule (B.10) et la propriété (C) des Z(n) entraînent:

52Théorème 52: ([49, th. 3.21]) Pour tout groupe abélien A, on a H̃p,q(MGL, A) = 0
pour p > 2q et H̃0,0(MGL, A) = A.

On note τ le générateur canonique de H̃0,0(MGL, Z).
Le foncteur tC envoie MGL sur le spectre du cobordisme complexe MU. En

particulier, pour tout F-schéma simplicial lisse X, on a des homomorphismes

MGLp,q(X) → MUp(X(C))

naturels en X.

53Définition 53 Soit X ∈ Sm|F. On note IX l’image de l’homomorphisme composé

⊕

i≥0

MGL2i,i(X) →
⊕

i≥0

MGL2i,i(Spec F) → MU∗(pt) .

On vérifie facilement que IX est un idéal de MU∗(pt).

Le théorème principal B.8.3

Nous commençons par énoncer le théorème principal de Voevodsky. Pour cela,
nous avons besoin d’une définition:

54Définition 54 a) Un (vn, l)-élément de MU∗(pt) est une classe de bordisme complexe
vn représentée par une variété compacte Y telle que
1. d := dim Y = ln − 1
2. sd(Y) �≡ 0 (mod l2).

b) Soit F un sous-corps de C. Une F-variété X, propre et lisse, est une (vn, l)-variété
si X(C) définit un (vn, l)-élément de MU∗(pt).
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Dans a), il revient au même de dire que vn définit un générateur multiplicatif de
π∗(BP) (resp. de π∗(K(n)), où BP (resp. K(n)) est le spectre de Brown-Peterson en l
(resp. la n-ième K-théorie de Morava en l) [31, ch. 4].

Exemples 55 .

1. L’espace projectif Pd
F est une (vn, l)-variété si et seulement si n = 1 et d = l−1 [25,

exemple 16-6].
2. Une hypersurface projective lisse X ⊂ Pd+1

F de degré l est une (vn, l)-variété si
et seulement si d = ln − 1 [25, problem 16-D].

3. On peut montrer que, pour l = 3, la variété X de l’exemple 24 (2) (b) est une
(v2, 3)-variété (Rost).

56 Théorème 56: ([49, th. 3.25]) Soit F un sous-corps de C, et soit X ∈ Sm|F telle
que IX (cf. définition 53) contienne un (vn, l)-élément. Alors les complexes (B.9)
sont acycliques pour i = n et X = fibre(Σ∞

T (Č(X)+) → S0).

Démonstration Notons Φn la fibre homotopique de Qn : HZ|l → S1
s ∧ Tln−1 ∧ HZ|l.

On a donc un triangle distingué

Tln−1 ∧ HZ|l
u→ Φn

v→ HZ|l
Qn→ S1

s ∧ Tln−1 ∧ HZ|l .

D’autre part, notons τ̃ le composé

MGL ∧ HZ|l
τ∧Id→ HZ|l ∧ HZ|l

m→ HZ|l

où τ est défini après l’énoncé du théorème 52 et m est le produit en cohomologie
motivique. Du théorème 52 et d’une formule donnant ∆(Qn), où ∆ est le coproduit
de l’algèbre de Steenrod associé à m via le théorème 47, on déduit l’existence d’un
morphisme ϕn tel que le diagramme

MGL ∧ Tln−1 ∧ HZ|l ��
τ̃

��

Tln−1 ∧ HZ|l

��
u

MGL ∧ Φn
��

ϕn

��

Φn

��
v

MGL ∧ HZ|l ��
τ̃

HZ|l

soit commutatif dans SH(F).
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Fixons Y ∈ SH(F), un morphisme Y
p→ S0, un entier d et ρ ∈ MGL2d,d(Y).

Pour tout X ∈ SH , on a un homomorphisme

π(ρ) : Φ̃∗,∗(Y ∧ X) → Φ̃∗−2d,∗−d(X)

qui envoie l’élément de Φ̃∗,∗(Y ∧ X) donné par le morphisme

α : Y ∧ X → Φn(∗)[∗]

sur l’élément de Φ̃∗−2d,∗−d(X) donné par la composition

Td ∧ X
ρ∧Id→ MGL ∧ Y ∧ X

Id∧α→ MGL ∧ Φn(∗)[∗]
ϕn(∗)[∗]→ Φn(∗)[∗]

où ϕn est comme dans le diagramme ci-dessus. On a:

57Proposition 57: ([49, prop. 3.24]) Avec les notations ci-dessus, supposons que
d = ln − 1 et que tC(p∗ρ) ∈ MU2(ln−1)(pt) soit un (vn, l)-élément. Alors il existe
c ∈ (Z|l)∗ tel que, pour tout X ∈ SH(F), le diagramme

Φ̃∗,∗
n (X) ��

p∗

��
v

Φ̃∗,∗
n (Y ∧ X)

��
π(ρ)

H̃∗,∗(X, Z|l) ��
cu

Φ̃∗−2(ln−1),∗−(ln−1)(X)

soit commutatif.

Démonstration En introduisant les “spectres fonctionnels” RHom(Y, Φn) et
RHom(Tln−1, Φn), l’énoncé peut être réinterprété de la manière suivante: le dia-
gramme

Φn
��

p∗

��
v

RHom(Y , Φn)

��
π(ρ)

HZ|l ��
cu

RHom(Tln−1, Φn)

(B.11)

est commutatif à homotopie près. Les deux composés de ce diagramme définissent
des éléments de

HomSH(F)

(
Φn, RHom(Tln−1, Φn)

)
= HomSH(F)(Tln−1 ∧ Φn, Φn) .

D’après le théorème 46 et la définition de Φn, ce groupe est cyclique d’ordre l et
s’injecte dans le groupe correspondant HomSH (S2(ln−1) ∧ tC(Φn), tC(Φn)). Il suffit
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donc de démontrer la commutativité du diagramme (B.11) après lui avoir appliqué
le foncteur tC, et ceci résulte d’un calcul facile (cf. [49, lemme 3.6]). �

Fin de la démonstration du théorème 56.
On applique la proposition 57 à X, avec Y = Σ∞

T (X+), p la projection naturelle
et ρ l’antécédent d’un (vn, l)-élément de IX . On a Σ∞

T (X+) ∧ X = 0: cela résulte de
l’exemple 38. La commutativité du diagramme implique donc que le composé

Φ̃p,q(X)
v→ H̃p,q(X, Z|l) cu→ Φ̃∗−2(ln−1),∗−(ln−1)(X)

est identiquement nul pour tout (p, q), ce qui est équivalent à l’énoncé du
théorème 56. �

Démonstration du théorème 50.
Il faut voir que IX contient un (vi, l) élément pour tout i ≤ n−2 dès que X satisfait

les hypothèses du théorème 36. En utilisant les opérations de Landweber-Novikov
sur MU∗, on peut montrer que si IX contient un (vi, l)-élément, il contient un (vj, l)-
élément pour tout j ≤ i. Comme X est par hypothèse une (vn−1, l)-variété, il suffit
de voir que la classe de bordisme de X(C) est dans IX . Cela résulte du théorème
plus précis suivant:

58 Théorème 58: ([49, th. 3.22]) Soit X une variété projective et lisse de dimen-
sion d sur un sous-corps F de C. Il existe un élément ϕX ∈ MGL2d,d(X) tel que
l’image tC(ϕX) de ϕX dans MU2d(X(C)) soit la classe fondamentale de X(C) en
MU-homologie.

59 Remarque 59 Dans le cas où l = 2, on peut éviter le recours aux opérations de
Landweber-Novikov mentionnées juste avant l’énoncé: en effet, le théorème 58
implique que l’idéal IQa contient les classes de toutes les variétés Y telles que
HomF(Y , Qa) ≠ ∅. Or l’exemple 55 montre qu’une section plane de dimension
2i − 1 de Qa est une (vi, l)-variété.

Indications sur la démonstration
(F. Morel): il faut construire un morphisme

Td → MGL ∧ X+
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associé à X. On procède comme en topologie algébrique, avec quelques compli-
cations dues à la géométrie algébrique. Soit νX le fibré normal de X, vu comme
l’opposé de son fibré tangent dans K0(X). Rappelons qu’il lui est associé canonique-
ment une classe de spectre M(νX) ∈ SH(F). Il suffit de construire des morphismes
dans SH(F)

Td → M(νX)

M(νX) → M(νX) ∧ X+

et

M(νX) ∧ X+ → MGL ∧ X+ .

Le dernier morphisme provient d’un morphisme M(νX) → MGL, lui-même
obtenu à partir d’un morphisme X → Gr classifiant le fibré (virtuel) νX , où Gr
est la grassmannienne infinie [27]. Le deuxième est simplement le morphisme
de spectres de Thom associé au pull-back par la diagonale du fibré νX � 0 sur
X ×F X.

Enfin, pour définir le premier morphisme, on se ramène d’abord au cas où
X = Pn

F . On a le lemme suivant, qui généralise le théorème 51 (et s’en déduit):

60Lemme 60 Soient i : Z → X une immersion fermée de F-variétés lisses, U l’ouvert
complémentaire, νi le fibré normal de i et E un fibré vectoriel sur X. Alors la cofibre
homotopique du morphisme évident

Th(E|U) → Th(E)

s’identifie canoniquement dans H•(F) à Th(i∗E ⊕ νi).

En appliquant ce lemme à l’immersion fermée Pn
F

∆→ Pn
F ×F Pn

F et à E = p∗
1νPn

F
,

où p1 est la première projection, on obtient un morphisme Th(p∗
1νPn

F
) →

Th(νPn
F
⊕ ν∆), qui se traduit après projection de Pn

F sur le point en un morphisme
dans SH(F)

D : M(νPn
F
) ∧ (Pn

F)+ → Tn .

On montre alors par dévissage que l’adjoint de D

M(νPn
F
) → RHom((Pn

F)+, Tn)

est un isomorphisme, en filtrant Pn
F par les Pi

F , i ≤ n. Le morphisme cherché
correspond maintenant au morphisme Tn → RHom((Pn

F)+, Tn) induit par la
projection de (Pn

F)+ sur S0. Le lecteur au courant aura reconnu au passage la
S-dualité… �
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Démonstration du théorème 37B.9

Dans cette section, on suppose l = 2.

Le motif de RostB.9.1

Soient a = (a1, …, an) ∈ (F∗)n, ϕ = <<a1, …, an>> la n-forme de Pfister associée,
et soient Xa (resp. Qa) la quadrique projective d’équation ϕ = 0 (resp. d’équation
<<a1, …, an−1>> ⊥ < − an> = 0). On a dim Xa = 2d (resp. dim Qa = d), avec

d = 2n−1 − 1 .

L’énoncé qui suit est une réinterprétation par Voevodsky d’un théorème de Rost,
dans le langage de la catégorie DMeff (F):

61 Théorème 61: ([49, th. 4.5]) Il existe un facteur direct Ma de M(Qa), muni de
deux morphismes

ψ∗ : Z(d)[2d] → Ma

ψ∗ : Ma → Z

tel que:
(i) Les composés

Z(d)[2d]
ψ∗
→ Ma → M(Qa)

M(Qa) → Ma
ψ∗→ Z

sont respectivement la classe fondamentale et le morphisme canonique
M(Qa) → M(Spec F) = Z.

(ii) Pour toute extension K|F telle que Qa(K) ≠ ∅, la suite

Z(d)[2d]
ψ∗
→ Ma ⊗F K

ψ∗→ Z
0→ Z(d)[2d + 1]

est un triangle distingué scindé dans DMeff (F).

Dans l’énoncé originel de Rost [36, th. 3], ces propriétés sont énoncées de la façon
suivante: a) le morphisme canonique Z → CH0(Ma) est un isomorphisme; b) le
degré induit une injection CHd(Ma) → Z, d’image 2Z (resp. Z) si Qa n’a pas de
point rationnel (resp. a un point rationnel); c) si Qa a un point rationnel, Ma se
décompose canoniquement en L0 ⊕ Ld (en tant que motif de Chow), où L est le
motif de Lefschetz.
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Rost construit Ma par récurrence sur n. Sa démonstration repose sur les tech-
niques de [37]: il est impossible de l’exposer ici en détail. Nous nous bornerons
à en donner le principe.3

Définir Ma revient à construire un projecteur dans End(M(Qa)). Supposons
construit le motif M′ correspondant au symbole {a1, …, an−1} et notons

M̃ =
d′⊕

i=1

M′ ⊗ Li ,

où d′ = 2n−2 − 1. Rost construit des morphismes

M̃
f

�
g

M(Qa)

tels que g ◦ f soit inversible dans End(M̃). Le point clé de cette construction est:

62Lemme 62: (Rost) Il existe θ ∈ CH2d′(M(Qa) ⊗ M′) tel que

θ ⊗F Fs ≡ h × P + u × (M ⊗F Fs)

où P est un point fermé de Qa×F Fs, h est une section hyperplane de Qa et u = 1
2 hd′+1.

Rost pose alors

gi = hi−1θ ∈ CH2d′+1−i(M(Qa) ⊗ M′) = Hom(M′ ⊗ Li, M(Qa))

fi = tgd′+1−i ∈ CH2d′+1−i(M′ ⊗ M(Qa)) = Hom(M(Qa), M′ ⊗ Li) ,

et enfin f = (fi), g = (gi). �

Du théorème 61, Voevodsky déduit, de manière essentiellement formelle:

63Théorème 63: ([49, th. 4.4]) Avec les notations ci-dessus, on a un triangle distin-
gué dans DMeff (F)

M(Č(Qa))(d)[2d] → Ma → M(Č(Qa))
γ→ M(Č(Qa))(d)[2d + 1] .

64Remarque 64 On trouvera dans la section B.10.1 une description du morphisme γ.

3 See N. Karpenko, Characterization of minimal Pfister neighbors via Rost projectors, J. Pure
Appl. Algebra 160 (2001), 195–227, §5 for a published construction of the Rost motive.
This construction relies on Rost’s nilpotence theorem: a published proof may be found
in P. Brosnan, A short proof of Rost nilpotence via refined correspondences, Doc. Math. 8
(2003), 69–78.
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En prenant la cohomologie motivique de ce triangle, on obtient une suite exacte

H0
B(Č(Qa), Z(1)) → H2d+1

B (Č(Qa), Z(d + 1))

→ H2d+1
B (Ma, Z(d + 1))

N→ H1
B(Č(Qa), Z(1)) .

Le premier groupe à partir de la gauche est nul, le quatrième s’identifie canon-
iquement à F∗ et le troisième est facteur direct de H2d+1

B (Qa, Z(d + 1)). Ce dernier
groupe s’identifie, par la conjecture de Gersten pour la cohomologie motivique et
les propriétés (C) et (G) de Z(d + 1), au conoyau A0(Qa, K1) de l’homomorphisme

∐

x∈(Qa)(1)

KM
2 (F(x))

∂→
∐

x∈(Qa)(0)

K1(F(x))

où (Qa)(p) désigne l’ensemble des points de Qa de dimension p et ∂ est une collection
d’homomorphismes résidus [16]. Pour x ∈ (Qa)(0), l’extension F(x)|F est finie; la
norme induit un homomorphisme

A0(X, K1)
N→ F∗ (B.12)

(cela résulte de la “réciprocité de Weil”), compatible avec celui de la suite exacte
ci-dessus. Pour démontrer le théorème 37, on est donc ramené à démontrer:

65 Théorème 65: (Rost [35]) L’homomorphisme (B.12) est injectif.

Pour n = 2, ce résultat est dû à Suslin [42]; pour n = 3, il avait été obtenu,
antérieurement à [35], indépendamment par Rost [34] et Merkurjev-Suslin [22,
prop. 2.2]. Sa démonstration est esquissée dans la section suivante.

Zéro-cycles à coefficients dans les unitésB.9.2

Le cas n = 2: Qa est une conique. Comme indiqué ci-dessus, le théorème 65 est
alors dû à Suslin: il utilise la K-théorie de Quillen. Une démonstration élémentaire,
due à Merkurjev, n’utilise que le théorème de Riemann-Roch sur Qa (une courbe
de genre 0!) [50, th. 2.5].
Le cas n > 2. La stratégie est de se ramener au cas n = 2. Pour toute F-variété
projective et lisse X, notons A0(X, K1) le conoyau de l’application analogue à (B.12).
On montre que A0(X, K1) est un invariant birationnel stable de X (stable signifie
que A0(X × P1

F , K1) → A0(X, K1) est un isomorphisme). On peut donc remplacer
Qa par Xa dans la démonstration du théorème 61. De plus, par un argument de
transfert, on peut supposer que F n’a pas d’extensions de degré impair.

On commence par montrer que Im(N) ⊂ D(ϕ), où D(ϕ) est l’ensemble des
valeurs non nulles de ϕ: cela résulte de la multiplicativité des formes de Pfister [17,
ex. 10.2.4] et du principe de norme de Knebusch (ibid., th. 7.5.1). On construit
alors une application

σ : D(ϕ) → A0(Xa, K1)
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qui est une section surjective de N, ce qui termine la démonstration (et décrit du
même coup l’image de N).

Pour construire σ, on note V l’espace sous-jacent à ϕ, on choisit v0 ∈ V tel que
ϕ(v0) = 1 et on écrit

V = Fv0 ⊕ V ′

où V ′ est le supplémentaire orthogonal de v0. Soit b ∈ D(ϕ). Ecrivons b = ϕ(xv0 +
yv′) avec x, y ∈ F et v′ ∈ V ′ − {0}. On a donc

b = x2 − ay2

avec

a = −ϕ(v′) .

Ainsi

b ∈ NE|F(E∗)

où E = F(
√

a).
Comme <1, −a> est une sous-forme de ϕ, on a Spec E ∈ (Xa)(0). On peut

maintenant poser

66Définition 66 σ(b) = i∗(x +
√

ay) ∈ A0(Xa, K1), où i∗ est induit par le plongement
E∗ ↪→ ∐

x∈(Qa)(0)
K1(F(x)).

Pour que cette définition ait un sens, il faut voir que σ(b) ne dépend pas du choix
de v′, x, y. On note que, de toute façon,

N(σ(b)) = b . (B.13)

Si on a une autre écriture

b = ϕ(̃xv0 + ỹ ṽ′) ,

on note W le sous-espace de V engendré par v0, ṽ et ṽ′ et σ̃(b) l’élément correspon-
dant de A0(Xa, K1). Pour simplifier, supposons W de dimension 3 (l’autre cas est
plus facile). Si Y est la conique correspondant à la restriction de ϕ à W , on a

σ(b), σ̃(b) ∈ Im(A0(Y , K1) → A0(Xa, K1)) .

D’après (B.13) et le cas n = 2, il en résulte bien que σ(b) = σ̃(b).
Pour voir que σ est surjective, soient x ∈ Xa un point fermé, E = F(x) et λ ∈ E∗;

notons λx l’image de λ dans A0(Xa, K1). Alors λx est (tautologiquement!) la norme

de λx vu dans A0(Xa ×F E, K1). Comme ϕE est isotrope, A0(Xa ×F E, K1)
NE→ D(ϕE)

est bijective, ainsi que σE. La conclusion résulte donc du fait que les normes
commutent à σ. Pour le voir, on remarque que par hypothèse toute extension finie
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de F est filtrée par des extensions quadratiques successives; on se ramène donc au
cas d’une extension quadratique E|F. On remarque alors que D(ϕE) =

⋃
D(αE) où

α décrit les sous-formes ternaires de ϕ contenant le vecteur v0, ce qui ramène de
nouveau au cas connu n = 2. �

ComplémentsB.10

Dans cette section, nous indiquons certains résultats annoncés par Voevodsky, qui
réduisent la démonstration de la conjecture de Kato en général à un problème très
spécifique.

Le motif de Rost-VoevodskyB.10.1

Voevodsky a annoncé une construction indépendante du motif du théorème 61,
qui offre l’intérêt de se généraliser au cas d’un nombre premier l quelconque.
Ce qui suit est extrait de messages à Rost et au rédacteur, et reproduit avec son
autorisation.

Commençons par décrire le morphisme γ du théorème 63. En raisonnant comme
dans la démonstration du lemme 33, on établit facilement une suite exacte (sous
les hypothèses de ce lemme):

0 → Hn(Č(X), Z|l(n − 1)) → Hn
ét(F, µ⊗(n−1)

l ) → Hn
ét(F(X), µ⊗(n−1)

l ) .

En identifiant µ⊗(n−1)
l à µ⊗n

l par le choix d’une racine primitive l-ième de l’unité
de F (supposé en contenir), on en déduit un élément

ξ ∈ Hn(Č(Xa), Z|l(n − 1))

correspondant à (a1) · · · · · (an) ∈ Hn
ét(F, µ⊗n

l ). Pour l = 2, on montre que γ est
donné par le cup-produit par Q̃n−2...Q̃1̃β(ξ), où β̃ et les Q̃i sont comme dans le
corollaire 49.

Dans le cas général, le même opérateur donne un triangle distingué dans
DMeff (F)

M′
a → M(Č(Xa))

γ→ M(Č(Xa)(ln−1 − 1)[2ln−1 − 1] → M′
a[1]

où Xa est une variété de déploiement pour {a1, …, an} vérifiant les hypothèses (i) et
(ii) de la définition 28 et M′

a est simplement défini comme la fibre de γ. Voevodsky
a annoncé:

67 Théorème 67 Avec les hypothèses et notations ci-dessus, supposons que F soit un
sous-corps de C, sans extensions de degré premier à l. Supposons de plus que X
soit une (vn−1, l)-variété. Posons

Ma = S l−1(M′
a) ,
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où S l−1 dénote la puissance symétrique (l − 1)-ième dans DMeff (F). Alors Ma est
facteur direct autodual de M(Xa).

En particulier, Ma est un motif pur, canoniquement associé à a d’après l’exemple 38.
En utilisant ce fait et le théorème 36, Voevodsky obtient alors:

68Théorème 68 Supposons H90(n − 1, l) vrai. Supposons que, pour tout sous-corps
F de C et tout a = (a1, …, an) ∈ (F∗)n, il existe une variété de déploiement Xa pour
{a1, …, an} ∈ KM

n (F)|l telle que
(i) Xa soit une (vn−1, l)-variété;

(ii) la norme A0(Xa, K1)
N→ F∗ soit injective.

Alors H90(n, l) est vrai.

Cet énoncé donne une nouvelle démonstration du théorème de Merkurjev-Suslin
(le cas n = 2, l quelconque) modulo (ii), qui est démontré dans [21, cor. 8.7.2] pour
la variété de Severi-Brauer d’une algèbre centrale simple de degré l. Dans le cas
l = 3, Rost a annoncé une démonstration de (ii) pour la variété de l’exemple 24
(2) (b) (sa démonstration utilise une F-forme du plan projectif de Cayley), ce qui
donne K(3, 3), ainsi que pour une variété convenable de dimension 26, ce qui
donne K(4, 3) ...

Dans les autres cas, on ne dispose pas pour Xa de candidats aussi géométriques
que précédemment. Voevodsky en a proposé une construction récursive, mais il
n’a pour l’instant que des résultats partiels sur les variétés obtenues.

(vn, l)-variétés et variétés de déploiement génériques B.10.2

Voevodsky a également annoncé des résultats qualitatifs sur les variétés de déploie-
ment, qui clarifient grandement la situation et que nous ne résistons pas à l’envie
d’exposer.

Si X, Y sont deux F-variétés, notons X ≤l Y s’il existe un morphisme ρ : M(X) →
M(Y) dans DMeff (F, Z(l)) (motifs à coefficients dans Z(l)) tel que le diagramme

M(X) ��
ρ

��

M(Y)

��

Z(l) ��
c

Z(l)

soit commutatif pour un c ∈ Z∗
(l) convenable. C’est une relation de préordre; si X

et Y sont propres et lisses, X ≤l Y si et seulement si il existe un revêtement Z → X
de degré premier à l et un morphisme Z → Y . Notons =̃l la relation d’équivalence
associée: c’est la l-équivalence. Voevodsky a alors annoncé:
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69 Théorème 69 Soient X une (vn, l)-variété et Y une variété non l-triviale (c’est-à-dire
non l-équivalente à Spec F). Alors tout morphisme M(X) → M(Y) est non trivial
sur la classe fondamentale de X à coefficients Z|l. En particulier, on a:
(i) X ≤l Y ⇒ dim X ≤ dim Y ;
(ii) Si X ≤l Y et dim X = dim Y , alors X =̃l Y .

70 Théorème 70 Supposons H90(n − 1, l) vrai. Soit a = (a1, …, an) ∈ (F∗)n, et soit X
une variété de déploiement pour {a1, …, an} ∈ KM

n (F)|l qui est une (vn−1, l)-variété.
Alors, toute autre variété de déploiement Y vérifie Y ≤l X.

71 Corollaire 71 Sous les hypothèses du théorème 70, toute (vn−1, l)-variété de dé-
ploiement pour un symbole {a1, …, an} ∈ KM

n (F)|l est générique (cf. définition 22).
Deux (vn−1, l)-variétés de déploiement pour {a1, …, an} sont l-équivalentes.

72 Corollaire 72 Supposons que {a1, …, an} ∈ KM
n (F)|l admette une (vn−1, l)-variété

de déploiement. Alors toute variété de déploiement générique pour {a1, …, an} est
de dimension ≥ ln−1 − 1; si elle est propre et lisse de dimension ln−1 − 1, c’est une
(vn−1, l)-variété.
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rational injectivity of the Farrell–Jones

Assembly Map for Connective K-Theory
783

real algebraic equivalence 892
real space 892
real vector bundle 893
realization functor 456
realizations 510
− Bloch–Kriz 514
− Huber’s method 513
− via cycle classes 510, 512
Recognition Principle 890
refined cycle map 912
regions in Z × Z 1023–1025
− cosimplicial 1024–1025, 1068
regular prime 144, 181, 182
regular section 243
regulators 506
Reidemeister torsion 589
− higher 602
relative assembly map 741
relative K-theory 72
representation ring 813
residue homomorphism 327
resolution of singularities 867, 1086
Riemann–Roch theorem 40
rigid tensor category 455
rigidity theorem 1088
ring
− integral domain 728
− Noetherian 708
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− regular 708
ring with involution 797
Rips complex 30
Rost motive 1140
Rothenberg sequence 614, 620, 632, 720

S1 49
s-cobordism 583, 588
s-cobordism theorem 588, 624, 711
− controlled 592
− equivariant 595
− proper 593
− stratified 596
S.-construction of Waldhausen 209, 270
s operation 905
saturation axiom 20
Schatten ideals 860
Segre class
− total 901
semi-discrete
− module 962
− prime 962, 975, 988
semi-s-cobordism 583
semi-topological K-theory
− groups 884
− real 891, 892
− singular 888
− space 884
semi-topological spectral sequence

908–909
seminormal 865
Serre/Swan theorem 115
sesquilinear forms 617
Shaneson product formula 614, 620,

633, 637
Shaneson-splitting 722
sheaves with transfer 485
shift
− one-sided 602
− two-sided 602
shift equivalence 603
− strong 603
shift equivalence problem 603
sign map 174
signature 732

− higher 732
signature defect 174
singular semi-topological functor 890
singular set 592
slice filtration 64
slope spectral sequence 205
small object 967
smash product 794
− of a space with a spectrum 794
Soulé conjecture 391
Soulé’s theorem 990, 996
space
− C-space 795
− compactly generated 578
− finitely dominated 579
− − epsilon 592
− Smith acyclic 594
− stratified 592, 595
− − Browder–Quinn 595–597
specialization homomorphism 252
spectra 1055–1057
spectral sequence
− associated to filtered spectrum 268
− Atiyah–Hirzebruch 270, 355
− Bloch–Lichtenbaum et al. 360
− Brown and Coniveau compared

275, 277
− Brown, multiplicativity of 275
− equivariant Atiyah–Hirzebruch spectral

sequence 823
− motivic 142, 143
− p-chain spectral sequence 823
− Quillen 272
− Quillen and Coniveau compared 274
spectrum 794
− algebraic cobordism 1135
− homotopy groups of a spectrum 794
− map of spectra 794
− motivic 63
− motivic Eilenberg–Mac Lane 1129
− motivic Thom 1135
− structure maps of a spectrum 794
spherical space form problem 580
Spivak fibration 621
split metabolic 545
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Splitting variety 1119
stable homotopy groups 112
stacks
− intersection theory on 287
standard conjecture 368
sublagrangian 544
− sublagrangian construction 559
− sublagrangian reduction 548
subshift of finite type 602
surgery exact sequence 638
Surgery Theorem 622
surgery theory 620
Suslin complex 446, 447, 486, 1083, 1091
Suslin homology 446
Suslin’s Conjecture 916
Suslin–Wodzicki Theorem 862
suspension 660
suspension extension 682
suspension of a ring 120
Swan homomorphism 594
symbolic dynamics 602
symmetric complexes 634
symmetric form or space 541
symmetric monoidal category 9
symmetric ring spectrum 74
symmetric signature 635
Syntomic complex 207

T-spectra 1128
t-structures 1049–1050
tame kernel 144
tame symbol 144
Tannakian category 455
Tate conjecture 396
Tate module 164
Tate motive 1092
Tate primes 963
− extended 963
Tate spectrum 626
Tate twist 963
Tate–Beilinson conjecture 400
tensor algebra 680
tensor product
− of pointed C-space with a C-spectrum

795

thick subcategory 972, 975
Thom isomorphism in K-theory 122
Toeplitz algebra 845, 847
Toeplitz extension 682
Toeplitz matrix 844
Toeplitz operator 844
− symbol of 844, 845
topological cyclic homology 72, 90, 94,

216, 599
topological filtration
− K-theory 920
− singular cohomology 919
topological Hochschild homology 74,

76, 88
topological Hochschild spectrum 77, 78
topological K-theory 114, 659
topological realisation functor 1133
toric T-variety 938
total quotient rings, sheaf of 244
totally real field 993
trace
− standard trace of C∗

r (G) 727
− universal C -trace 753
Trace Conjecture
− for Torsion Free Groups 728
− Modified Trace Conjecture 760
Transitivity Principle 742
transport groupoid 796
triangles
− distinguished 1018, 1035–1036
− virtual 1019–1020
triangulated categories 669, 1017–1018
truncated polynomial algebra 72, 92, 94,

98, 103, 106
twists and dimension shifting 631

uniform embedding into Hilbert space 777
unit groups 977
− local 978
Unit-Conjecture 730
universal coefficient theorem 667
unramified away from �-extensions 978

Vandiver’s Conjecture 183
vanishing conjecture 1101
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variety
− complex algebraic 592, 595
− projective homogeneous 1122
− Severi-Brauer 1120
virtual triangles 1019–1020
virtually cyclic 738
Voevodsky conjecture 369
Voevodsky’s localization theorem 486

W(−) 546, 560
Wn(−) 560
wi(F) 140, 148, 169
w(�)

i (F) 147
Waldhausen K-theory 597, 598,

1013–1015, 1050, 1052–1053
Wall finiteness obstruction 578–581
− epsilon-controlled 592
− equivariant 593–595
Wall Realization Theorem 625
weak equivalence 578, 597
− of spectra 794
weakly dualizable 973
weight n Deligne cohomology 307
weight filtration 457
− on Borel–Moore homology 910

− on K-cohomology 285
weight-two complexes 434
Whitehead group 588, 709
− generalized 709
− higher 820
− of finite group 589
− of torsion-free group 589
Whitehead torsion 586–589
− equivariant 595
− proper 593
− stratified 596
Witt 540
− shifted Witt groups of a triangulated

category 560
− Witt equivalence 546
− Witt group of an exact category 546
Witt complex 91
Witt groups 132
Witt ring 1110

z-equi(X,r) 1087
Zero-Divisor-Conjecture 729
Zero-in-the-spectrum Conjecture 733
zeta function 151, 152, 157, 161, 170, 390
Zink site 1008
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