Symmetry of Linking Coefficients. I' CIU )
Haefliger, A.; Steer, B.

pp. 259 - 270 :

NIEDERSACHSISCHE STAATS- UND
UNIVERSITATSBIBLIOTHEK GOTTINGEN

lerme and Conditiong

The Gottingen State and University Library provides access to digitized documents strictly for noncommercial
educational, research and private purposes and makes no warranty with regard to their use for other purposes.
Some of our collections are protected by copyright. Publication and/or broadcast in any form (including
electronic) requires prior written permission from the Goettingen State- and University Library.

Each copy of any part of this document must contain there Terms and Conditions. With the usage of the library's
online system to access or download a digitized document you accept there Terms and Conditions.
Reproductions of material on the web site may not be made for or donated to other repositories, nor may be
further reproduced without written permission from the Goettingen State- and University Library

For reproduction requests and permissions, please contact us. If citing materias, please give
proper attribution of the source.

Contact:

Niedersichsische Staats- und Universitétshibliothek
Digitalisierungszentrum

37070 Goettingen

Germany

Email: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF
for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation
in the document. For availability and pricing, please contact:

Niedersaechisische Staats- und Universitaetsbibliothek Goettingen - Digitalisierungszentrum

37070 Goettingen, Germany, Email: gdz@www.sub.uni-goettingen.de



Symmetry of Linking Coefficients

A. HAEFLIGER and B. STEER

Introduction. Consider a 3-link in the unit sphere S”+!: namely three
spheres 8P, 873, 87+ differentiably and disjointly embedded in S+l Suppose
n — 1 > max (p,, ps, p;). Let ¢,j, k be any permutation of p,, p,, p;. We
know by ALEXANDER duality that S»+! — §* has the same homotopy type as
S»—* and that S»+! — (§¢v §7) has the same (n — 1)-type as the wedge
8»—iy S—i, Hence S* represents an element A% ez, (S \ S*7).

Hivron, in [3], gave a direct sum decomposition for this group, namely

7y (871 V 877) = 7, (S™F) + 7, (8777) + 7, (S2—F171) - L

The first two components A and 2% of A* in this decomposition are the linking
elements of S* with S¢ and S/ respectively. It is known that A} and 4! are equal,
up to sign, after stable suspension (see § 5 of [4]).

We shall be concerned by the component Af; of A* in the third factor
7, (8*—=9-1); this component is by definition the HrroN-HoPF invariant of
Ak, We shall prove the following symmetry relations. (They where suggested by
the particular case p, = p, = p; = 2d — 1, n + 1 = 3d studied by one of
the authors [2] and were proved in that case by roundabout means.) E? denotes
the i-th fold suspension homomorphism, defined as in § 1.4.

Theorem. For any 3-link SPr, SP2, 8Ps in Sn+l, the linking elements
At ey (8—i=1-1),  which are the Hirron-Hopr invariants of the elements
A% € g, (Sn—%\) 8n=7) represented by S* embedded in the complement of S* v Si,
satisfy the symmetry relations

(__ l)i+i7+nkEn+2_iZ§-k — (____ 1)7‘+7‘k+niEn+2—-j )‘;“

On the way (in § 2), we give a geometric definition of the HiLroN-Horr
invariant, which is very close to the original definition of Hopr.

1. Terminology. By a manifold M, we shall mean a differentiable compact
manifold of class C®, possibly with boundary 0 M. A submanifold V of M will
be a compact submanifold of class O® of M ; unless there is explicit statement
of the contrary, the boundary @ V of V will be contained in the boundary .M
of M, and V will cut 9 M transversally along 8 V.
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1.1. A framed submanifold (V, &) of M will be a submanifold V of M together
with a framing § (trivialization) of class C® of its normal bundle. It is awkward
to write (V, ) for the framed manifold, and we shall just write ¥V with the
particular framing understood. In particular, when V is just a point = of an
oriented manifold M, x will often be considered as a framed submanifold with a
frame giving the orientation of M.

It is clear that the boundary of a framed submanifold V of M is a framed
submanifold oV of d.M .

If V, and V, are two framed submanifolds of M and if they cut each other
transversally (i. e. if x e V; ~ V,, the tangent space of M at x is the sum of
the tangent spaces of V, and V, at z), the intersection ¥V, ~ V, is again a
framed submanifold; its framing is given by the direct sum in this order of the
restrictions to V; ~ V, of the framings of V; and V,.

Let V be a framed submanifold of M and let f be a differentiable map of a
manifold M’ into M which is transverse regular on V (see § 4 of [6]). Then
f1(V) is a framed submanifold of M’; its framing is the inverse image by f
of the framing of V.

Two framed submanifolds V, and V; of M are cobordant if there exists a
framed submanifold V of I X M such that oV = (0 X V) v (1 X V).
This is an equivalence relation.

The PoNTRIAGIN-THOM construction (see [5], [6] or page 346 of [4]) asso-
ciates to each framed submanifold (V, F) of M of codimension ¢ a map of M
into the ¢-sphere 82. It induces a bijective correspondence between cobordism
classes of framed submanifolds of codimension ¢ in M and homotopy classes of
maps of M in 8.

1.2. Similarly we can consider pairs (V, W) of disjoint framed submani-
folds in M. Two such pairs (V,, M,) and (V,, M,) are (framed) cobordant if
there exists a pair (V, W) of disjoint framed submanifolds in 7 X M such that

V=0 xXVy)v (1 xV,)and oW = (0 X W) v (1 X Wy).

The analogue of the PoNTRIAGIN-THOM construction will give a bijective
correspondence between cobordism classes of pairs (V, W) of disjoint framed
submanifolds of M of codimension (p, ¢) and the homotopy classes of maps of
M in the wedge 87 \/ S¢. The construction is as follows. The framings of V and
W identify disjoint tubular neighbourhoods 7' of V and 7" of W with V x D?
and W X D9 respectively; by projection on the second factor, one gets a
differentiable map of 7' v 7" on the disjoint union D? v Dg; after identification
of the boundary of D? v D7 to one point b, one obtains a map of 7' v 1" on
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S \/ 8¢ mapping the boundary of 7' v 7" on b; it is extended to the whole of
M by mapping the complement of 7' v 7" to b. Conversely, given a map of M
in S? \/ 89, it is homotopic to a map f which is differentiable on f-1(SP\ S2—b);
one gets a pair (V, W) of framed submanifolds of M by taking the inverse

image by f of points x ¢ SP —b and z'¢8? —b on which f is transverse-
regular.

1.3. In § 3, we shall have to consider a framed submanifold V of M whose
boundary is not contained in the boundary of M. In such a case, the boundary
9V of V will be the framed submanifold obtained in restricting to 8V the
framing of ¥ and in adding as last vector the normal to @V in V pointing
outside V. Notice that if M = S», then the framed submanifold 2V repre-
sents the trivial element of =, (S?), where ¢ — 1 = codimension of V.

1.4. Let V be a framed submanifold (without boundary) of an oriented disc
Dr itself embedded in SP+7; then V represents an element « of z,(S,), where
q = codimension of ¥ in DP. If one completes the framing of V with the
framing of DP (which gives the normal orientation of D7), one gets a framed
submanifold in 87+ which represents the r-fold suspension of «. Indeed, D
is isotopic to a disc linearly embedded in 87+ and we can apply 1.4 of [4].

1.5. Let (M, O) be a framed submanifold of SP representing an element
x e, (89, We can identify a tubular neighbourhood 7' of M with M x D4
in such a way that M, as a framed submanifold, is identified with f-1(0),
where f is the projection M X D?— D¢ and 0 is the origin of the unit disk De.
On the other hand, let N be a submanifold contained in the interior of D4
with a framing § representing an element f € #,(S"). Then the framed sub-
manifold M X Nc M X D*=T c S? with the framing O X § represents
the composition fox.

1.6. Let M be a submanifold with a framing § in the interior of D? repre-
senting an element « € 7, (S?). Similarly, let N c D? be a submanifold with a
framing ® representing an element g of x,(S7). Then the framed submanifold
M x N with the framing § X ® represents the element

(—1)9E‘BoBix = Bixo(— 1)P2EPf,

where E* denotes the s-fold suspension hormomorphism. This follows from 1.4
and 1.5,

18 CMH vol. 89
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1.7. Weembed I x 8" in S+ by the formula
nit, Xy,o ooy ) > (3, 62q,...,52,)

where 9 = 1/4(t — 1/2) and « = (1 —§2)1/2,
By this embedding of degree + 1, I X 8* will often be implicitely consi-
dered as a subspace of S*+!,

1.8. We shall adopt the original definition of J. H. C. WHITEHEAD for his
product (see for example [3]).

1.9. Suppose that SP, S? are two oriented spheres differentiably and dis-
jointly embedded in S"*! with » — 1 > max (p, ¢). Then 8**!— S? has the
same homotopy type as S*P. We fix a homotopy equivalence using a
map j:8"P— S+ — 8P guch that the linking number of j(8*~?) with
SPois + 1.

2. Construection of the HiLToN-HoPF invariant

2.1. Let « be an element of =, (S"»\ §*-9); let f: S*— S*»P\ 8¢ be a
representative which is differentiable on f-1(S"»—?\ S»~¢ —b). Taking the
inverse image of two regular values, xeS" P —b, yeS"?2—0b (as above)
we get a pair (MP, M?) of disjoint framed submanifolds of S". Let V?+! be a
framed submanifold in I X S™ with boundary M? = 0 X M? in 0 x §" and
N? in 1 x 8*; similarly let V2+' be a framed submanifold in I x 8" with
boundary M?=0 x M? in 0 xS* and N? in 1 X S*. We suppose in
addition that N? and N? are separated in 1 X S* by an equator and that
Vr+1 meets Ve+! transversally. Such V7+! and Ve+! alwaysexist; for instance,
one can get them by moving M? and M9, as ¢ varies from 0 to 1, by an isotopy
to push them finally into opposite hemispheres of S». Then W = V»+1 ~ V!
is a framed closed submanifold of I x §* — 8" and we may apply the
PoNTRIAGIN-ToM construction to get an element

T(MP, M%) € 7, (S2P-9),

In some sense, this element measures how much M® and M2 are linked in S".
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Lemma 2.2. The element v(MP, M?) depends only on the cobordism class of
the pair (MP, M%) and yields a homomorphism k' of m,(S* P\ S*=9) into
Tnyp (SP7P79).

Proof. To prove the first assertion amounts to showing that if M? and M4
are separated by an equator to begin with, then ©(M?, M%) = 0. Indeed, sup-
pose Mp, Me is a pair of submanifolds of S* cobordant (by the pair @+,
@a+! say) to M?, M? and that ﬁl’“, Jatt = I x 8" are two candidates for
use in the construction of r(llzl’, Jlf‘l). Similarly let Vr+, Pet < I x S»
be candidates for = (MP, M?). We thus have three pairs of submanifolds of
I x 8". Paste these together (with the first pair in the middle) across the
faces where they agree. We arrive at the situation mentioned in the first line.

By a rotation, arrange that some separating equator of NP and N? lies
vertically above a separating equator for M?, M¢?; and that M? and NP lie
on the same side of these equators. Let VP+l ~ Vel = W. Place I x S
in I xIx8 as 0xI x8*, and pull V»+, Vel apartin I xI x 8"
so that, if one regards the last parameter as time, M?, M2, NP and N? remain
fixed throughout and at the end V?+, Va+! are separated by an equator in
S»+2, This presents W as the boundary of a framed manifold. Hence v (M7, M?) =
= 0. The last assertion follows from the additive property of the PONTRJAGIN-
THOM construction.

We now compare this homomorphism A’ : &, (8? V 87) > x,,,, (S**+7) with the
homomorphism & : x,(S*\V §) — x,(S+7-1) given by the Hirtron-HoPF
invariant.

Proposition 2.3. If xex, (S?V 87) then A'(x) = (— 1y++ Eh(x).

Proof. Let ¢y, ¢, denote the classes of the inclusion of 8¢ in StV 87, and of
87 in 8\ S%, respectively. Suppose that o ez, (SV 87), and that ¢, is a
basic WHITEHEAD product in ¢, ¢, with m entries of ¢, and n entries of .
By Hiuton’s decomposition (see 6.1 of [3]) there exist elements

06y, € T, (Sm -1 +n (i-1)+1)
such that
& = L300y + tgo0y + i 00, (2.4)
where o runs over the basic WaITEHEAD products of weight > 2. Weshall prove
the proposition by evaluating A’ on each component of this decomposition.
(We regard HiLron’s invariant as being defined with respect to the product
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[t1, ¢3).) Consider the WHITEHEAD product [x, f] where « em,(S*V ),
Ben, (8 V8. Let f: (Dr, SP1)— (S* Vv 87, a) and g¢: (D9, 821)— (S*V §,a)
be representatives for o and f§ which are differentiable, except at the inverse
image of the base-point a. Then the following map, %, of 9(DP X D7) =
= DP x 8e-1u §P-1 x D¢ into S*V 8§’ defined by

fu); weDP,veS11

h(u,v) =
gv); weSP1 veDa,
is a representative for [x, f] which is differentiable except at A~'(a). (Here
Dr x D4 has the product orientation and S?-1 x D2 v DP x 82! is oriented
as the boundary.) Suppose zeS'—a, yeS’'—a and that f'(z)= M,
f(y) = M,, g1 (x) = Ny, g7 (y) = N,; so that « is represented by the pair
(M,, M,) of disjoint framed submanifolds of D? and g is represented by the
pair (¥Ny, N;) c D4 Then [«, ] is represented by the pair

(M, x 891 §2-1 X N,, M, x 8¢ v 871 x N,) (2.5)

of framed submanifolds of 9(D? x D).

(i) First we calculate the value of A’ on the WHITEHEAD product
[eq, t2] € ips (SPV 87). Let y,: (D?, 8*1)— (S*V 87, a) denote the compo-
sition of a relative diffeomorphism of degree -+ 1, y,: (D¢, 8i1)— (S8, a),
and the natural inclusion of 8¢ in 8V 8. (Define y,: (D7, §7-1) — (S*V 8, a)
similarly.) Then y, represents ¢,, and y;'(x) = a point, 2’ say, and 7' ()
is void. Similarly y;!(y) = a point, y' say, and y;'(z) = @ . Hence, by 2.5,
[t1, t2] is represented by the pair (2’ x 8/-1, §-1 x ¢') in 9(D* x Df). To
compute A'([¢;, t,]) we may use the framed submanifolds U, = ' x D’ and
U,=D'xy. U ~Uy,=2" Xy, a point, and so &'([¢;, ¢3]) = £ 1,
depending on the orientation of the field at z' X y’'. Now as z’ has a frame §
which gives the positive orientation of D, o' x 8! and U, =z’ x D’
have framings which, at the point 2’ X y’ determine the positive orientation
of D' xy'. Similarly for 81 xy and U, = D’ xy'; where ® is the
frame of y'. Hence the framing of 2’ X y' is, by convention, § x & which
determines the positive orientation of D! x Di. Hence h'([ty,tp]) = —1-

(ii) We now show that A'(c,) = 0 if ¢, is any basic WHITEHEAD product
other then [i,, ¢,]. Clearly A'(:;) = 0 = h'(1,), so we may concern ourselves
with WaHITEREAD products of weight greater than 2. If [«, £] is such a product,
then either &; = 0 =&, or f; = 0 = f,. We may suppose the former, and
we shall show more generally that if o ezn,(S'V 87), fen, (8'V §) and
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;=0 =0, then A'([x,p]) = 0. Let (M,, M,) be a pair of framed sub-
manifolds of D? representing « : similarly, let (N,, N,) ¢ D? represent f.
Since oy =0=o,, M;=0V,=V,~DP X0 where V, is a framed sub-
manifold of D? X [0,¢] and V,~D? xe= g, 1=1,2. And we may
arrange that V, and V, intersect transversally in W.Let U, = &(V; x 8¢1)
c DP x Da(i = 1,2) where & is the embedding of D? X [0, ¢] X S¢! in
Dr x D¢ defined by &(zx, ¢, y)= (x,(1 —t)y). Now N,, N, are closed mani-
folds and lie in the interior of D¢. Hence we may suppose that ¢ is so small that

ED? x[0,e] XS )ADP XN, =g (1=1,2).

We may then use the submanifolds @, = U, v D? X N,(t = 1, 2) of D? x D¢
to construct A'([«x,pB]). Clearly X =@, ~Q, = U, ~ U, = &§(W x 81,
But in D? x D2 x I, X bounds a framed submanifold diffeomorphic to
W x De. Hence &' (x, f]) = 0.

(iii) Finally we show that if ¢ e x,(S*V 8/) and y ex,(S"), then
W (poy) = (— 1Pk (p)o By + (— 1y "N Eig o Erpyo b (y),

where ¢, is the component of ¢ in x,.(8?) and ¢, is the component of ¢ in
7, (87). (Here A’ (y) denotes A’'(4oy), where A4:8"— 8\ 8 is the canonical
pinching map which shrinks the equator to one point.)

This formula, together with (i), (ii), and 2.4 will prove 2.3.

Let M,, M, c S* be two disjoint framed submanifolds of S" which repre-
sent p and let P, P, < I X 8" be two framed submanifolds, constructed as in
2.1, of which the intersection P represents A'(¢). The framed submanifolds
M,=P,~(1x8), k=1,2, of 1x8 are contained in two disjoint
discs D] and D; c 1 x S* which we may take as small as we please. Moreover,
ifi,j > 1, as we suppose, we may further arrange that P, ~ I X a = @ (k=1, 2)
and that 1 X a ¢ D] v D}, where a « 8" is the base-point.

Let ¢g': 87— 8" be a map representing y and obtained by applying the
PoNTRIAGIN-THOM construction to a framed submanifold N < S?. Define
9:1 x8—>1x8 by g(t, )= (¢, ¢ (x)). Then g is transverse-regular to
Di, Dy, M,, M,. Approximate g by g, where g agrees with g in a neighbour-
hood of the boundary and is transversal to P;, P,. The framed submanifold
97! (P) represents (— 1)?+"h/(p)o Ey.

Now g, =glkx8 =kxg, k=0,1, and gi*(M;) and gz'(M,)
represent @oy. To construct A'(poy), we proceed in two steps. First we
consider the framed submanifolds g-1(P;) and g~'(P,) in I X 87 of which
the intersection is ¢g-(P): if g;*(M,) and g;!(M,) were separated by an




266 A. HAEFLIGER and B. STEER

equator in S?, then g~ (P) would represent %'(poy). But this will not be the
case in general if p > 2r — 1. Indeed if «, and z, are points of M; and M},
the framed submanifolds N, = g;!(x,) and N, = g;!(z,) may be linked in S».

Let @, and @, be two framed submanifolds in (1, 2] X S? such that 9Q, =
= N,v N; where N, c 1 x8?, N; c 2x87@3=1,2) and N; and N,
are separated by an equator in 2 X S?. Then Q = @, ~ @, represents A'(y).
Now using the framings of @, and @,, we can construct tubular neighbourhoods
T,~@Q, xD] and T, ~Q, x D} of @ and @, in [1, 2] X S such that:

(@) T;~ (1 x8%) =N, x D; and the natural projection N, x D]— D
is just the restriction of g; to N; X D}, 1 =1, 2.

(b) Ty ~(2 x8?) and T, ~ (2 X 8P) are separated by an equator in
2 x 8P,

()T =T, ~T, is diffeomorphic to @ x D] x D;, where under this
diffeomorphism 7', ~ @, mapsinto @ X Di X 0 and 7', ~@, onto @ x 0 x Dj.

That (a) can be satisfied follows from our choice of representive, ¢, for y:
to see that (c) is possible is a little more difficult. It may be proved using the
tubular neighbourhood theorem of J. MiLNoR. From (a) it follows that g;! (M) =
=N, XxM;c N;xD: c1x8? i=1,2. The element A'(poy) will be
represented by the union of g—1(P) and the framed submanifold

(@ X My) ~ (@ X My) =Q X My X M, by (c).

Let §, be the framing of M;in 1 x 8, let Q; be the framing of @, in [1,2] x S7;
and write Q, =8, X &;:2=1,2. Then @ with the framing Q; X Q,
represents &' (y). And the representative map goes from SP+, with orientation
determined by that of the subspace [1, 2] X S?, into 8% with orientation that
determined by the field Q, X Q.. By 1.4, the submanifold M, c 8*, where
M, has framing §, X Q,; and S¥ has orientation given by Q, x Q,, will
represent E7p,. Hence when S has orientation given by 9, X Q,, M,
with the framing Q, X &, will represent (— 1)"+) Erg,. Again by 1.4, if
8r+i has orientation given by Q, X &, then M, with framing &, x F, will
represent Eigp,. Thus the framed submanifold @ X M; x M, in [1, 2] x S?
represents (by 1.5,1.6)

(= 1y D EigoErgyo b/ (v).

The result now follows by the additivity of the PONTRIAGIN-THOM construction.
2.6. We can arrange that proposition 2.3 is much neater by using through-

out either the homotopy convention or the homology convention, instead of
using them both, each one in its own context. If one chooses the homology
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orientation convention, that is, if M = 9V, the orientation of V = the out-
ward normal -+ the orientation of M, then to be consistent, one must redefine
suspension by placing the suspension parameter first, that is, as the first

coordinate. Then if £ denotes this suspensmn homomorphism and if x ez, (S7),

Ex = (— 1P+ Ex. Clearly, then, A’ = —Eh.

If, alternatively, one adopts the homotopy orientation convention through-
out, that is, the orientation of V = the orientation of M -+ the outward normal,
then one must, in order to be consistent, write S”x I instead of I xS”, and one
must change the convention for WHITEHEAD products in the way that W. D.
Barcus and M. G. BARRATT do in their paper ‘On the homotopy classification of
extensions of a fixed map’ (Trans. A. M. S. 88, 1958, pp. 57-74). In this case, if
x en,(X) and Ben,(X) andif [x, f] is the product defined with respect to
the homotopy convention, [«x,f] = (— 1)P*%![x, f]. And with A and A’
redefined according to this convention, proposition 2.3 again reads »' = —Eh.

3. Proof of the theorem. A sphere S? differentiably embedded in S*+! is A-
cobordant to zero (see [1]) if 8P bounds in the (n + 2)-disk D"+2 a contractible
submanifold D?+! (homotopy (p + 1)-disk). A 2-link formed by two disjointly
embedded spheres SP and S? in S*+! is h-cobordant to zero (cf. [2]) if S? and S¢
bound in D™+ two disjoint contractible submanifolds D?+! and D7+,

In that case, let 7', T, be tubular neighbourhoods of D?+!, De+1 in Dn+2

which touch at one point a e @ D**+? = S*+l. Let T,,, Tq denote the sphere
bundles over Dr+1, D+ which are the boundaries of 7', and 7',. As bundles they
are trivialized by the framings. To have a definite homotopy-equivalence
between Dn+2 — (Dp+1o Da+1) and S*P\ 8*~¢ we must choose definite
framings. We choose one which, for each disc, agrees with the convention of 1.9.

Let 8»—», 872 be the fibres of T T which contain a. Map T, — D?+! onto

T » by collapsing ra.dlally, now use the framing to map the whole of T onto the
ﬁbre S»-», Call this map ¢, and let ¢, : T, — D21 — S"~¢ be s1m11arly defined.

By Poincarf duality, the inclusion of the wedge formed by the fibres
Sn=p\/ S*~¢ in Dn+2 — (DP+l v Do) js an homotopy equivalence. Hence
there is no obstruction to extending ¢, v @, to a map @ : D*+2 — (DP+1 v Da+l) —
— §»-» \/ §n—a, Moreover, as @, and g, are differentiable, we may suppose @
to be differentiable (except on a). Let ¢ be the restriction of ¢ to S+ —
— (87 v 89). It is a (n — 1)-homotopy equivalence. If zeS8"? —a, and
Y824 —qa are regular values for ¢, ¢~'(x) and ¢'(y) are disjoint open
framed submanifolds and

Vit = g7 (x) v 87 and Vit = g7 (y) v S
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are disjoint compact framed submanifolds in 8"+ with boundaries S? and S¢
(see 1.3). We have thus proved the following lemma.

Lemma 3.1. Let 8P, 82 be two disjoint differentiable spheres in S™+! such that
SP, 82 18 h-cobordant to zero. There exist disjoint bounded framed submanifolds
VE+l, Vit in §n+t such that @ Vo' = 8P, 9 Vit! = Sa.

The PONTRIAGIN-THOM construction applied to the pair V3+! — S, PI+! — Se
yields a map of 87+ — (SP v §9) into S»—?V 8¢ which is an (n — 1)-
homotopy equivalence.

3.2. Let S? c 8"+ be a sphere h-cobordant to zero in S*+! and let D3 *!
and D?* be two (p + 1)-disks in D"+ whose boundary is 8?. Using D?*! (resp.
D?*')we can construct as above a framed submanifold V%+* (resp. V?+') whose
boundary is S?. Suppose now that D2+! and D?+! are h-cobordant, i. e. there
exists in I X D"*? an homotopy disk DP+? whose boundary is the union B of
0 x D2+11 x D?*! and I x 8®. Then there exists a framed submanifold V7+2
in I X S*+ whose boundary is the unionof 0 x V2*! 1 x V?+! and I x S».

If D3+ and D?+! are not h-cobordant, a modification of D?+'in an arbitrary
small neighbourhood of one of its points will make D?*! h-cobordant to D5+
Indeed it is sufficient to replace (D"+2, D?*!) by its connected sum with the
pair — (@ (I x D*?), B).

3.83. Now let L = (871, Sre, SP3) be a 3-link in S**! with n» —1>max
(py> P2> p;) a8 always. Let ¢, §, k be a permutation of p,, p,, p;. Denote by L,
the 3-link obtained in dropping the component S¢in L and replacing it by the
boundary of an (¢ + 1)-disk which does not intersect the two other components
S’ and S%. The inverse — L, of L, is the symmetrical of L, with respect to
reflection in an equator of S+ (see [2]).

Let A be the 3-link which is the sum of L, —-Lpl, _Lﬂ’z’ and ——L,,a. The
linking elements Af; of L and A are the same because they vanish for each L,;
moreover each 2-sublink of A is k-cobordant to zero. Hence it is sufficient to
prove the theorem when each 2-sublink of L is A-cobordant to zero. From now
on we assume this.

According to lemma 3.1, for any permutation (¢, §, k) of (p,, p., p;), one can
construct framed submanifolds V{*' and V4+! in §*+ such that

dVitt =8 and Vi*' ~ Vil = g.

Let Wi, be a framed submanifold of I x 8"+ such that oW} =1 X RN
v 0 X Vit v 1 x Vit'. The existence of such W?, is assured by 3.2. (Having




Symmetry of Linking Coef ficients 269

defined W, for a positive permutation (i, j, k) of (p;, Pz, ps), We could define
W4; to be the inverse image of W, in I x S+ under the orientation-reversing
homeomorphism (¢, #)—> (1 —t, ), ze 8"+, tel.) Denote Vit'~S* by M.

Lemma 3.4. ©(M}, M}) = (— 1)i++*E 2},
Proof. Consider the following pair of manifolds in I x S*+.,
Q=W ~ (8 x1I), IxM.

It is clear that @ and I X M} are two manifolds which qualify for use in the
definition of (M}, M}), since 9Q = M:. SoQ ~ (I x M}) is a closed framed
submanifold of I x 8¢ c I x 8™ which represents 7(M%, M}). Now if

@: 8 — (8t v S") — Sn—i \y Sn—k

is the map of 3.1, ¢|8%: 8> 87V S"* is a representative for 1‘. By
definition V{*'= ¢~1(z) and V¥*+'= ¢~1(y) for some regular values ¢S —b,
yeS»k —p. So

(@ 1897 (x) = M5, (9|8 (y) = Mi.

Hence by lemma 2.3, ©(M}, Mi) = (— 1)*++kE i,

We wish to prove symmetry. First notice that by 2.1 we could have used the
pairs [I X M}, W% ~ (I X 8%)] or the pair [W]; ~ (I x 8%), W% ~ (I x 8]
instead of [@, I x M}] to define (M}, ML).

Let T= W%~ (I x VitY)~ (I x Vit'). It is a framed submanifold of
I x Sn+1 under the conventions of 1.1 and 8 7' = 4 v B where

A=W§ih1 X 8 AT XV,’;+1=W%AI X.M';
B=W}i~nl XVi*~nl X8 =Win~Ilx Mj]
and this time we break 1.1 and suppose that A, B are framed according to
convention 1.3. If we write 4,, B, for the manifolds 4, B reframed according

to the convention of 1.1, and if »(MP?) e 7, (S?-?) denotes the element obtained

by applying the PoNTRIAGIN-THOM construction to the framed submanifold
M» < 82, then

v(4y) = (— 1) (4), v(By) = (— 1)¥*+»(B).
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Moreover, because A v B = 97T, v(4) = v(B); and by lemma 3.4,
v(4;) = (— 1)+ (n+is)) Pr—iig (ML M';-) = (— 1)(n+i)(n+i+1)+i+i+lcEn—i+zA;‘ci,
v(By) = En-itiv (M}, M]) = (— 1)++kEn-is2 ],
But B2}, = (— 1)(»+) k) B 3%, - hence

Er—iv2 i = (— 1)+ Uith)vitd Pr—iv2 31
The theorem is proved.

The University of Geneva; Christ Church, Oxford, and The Institute for Ad-
vanced Study, Princeton.
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