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Abstract. It is shown that there are restrictions on the possible changes of
topology of space sections of the universe if this topology change takes place in a
compact region which has a Lorentzian metric and spinor structure. In particular,
it is impossible to create a single wormhole or attach a single handle to a spacetime
but it is kinematically possible to create such wormholes in pairs. Another way of
saying this is that there is a ΊL2 invariant for a closed oriented 3-manifold Σ which
determines whether Σ can be the spacelike boundary of a compact manifold M
which admits a Lorentzian metric and a spinor structure. We evaluate this
invariant in terms of the homology groups of Σ and find that it is the mod 2
Kervaire semi-characteristic.

Introduction

There has been great interest recently in the possibility that the topology of space
may change in a semi-classical theory of quantum gravity in which one assumes
the existence of an everywhere non-singular Lorentzian metric g^β of signature
— h + +. In particular, Thorne, Frolov, Novikov and others have speculated that
an advanced civilization might at some time in our future be able to change the
topology of space sections of the universe so that they developed a wormhole or
handle [1-3]. If one were to be able to control such a topology change, it would
have to occur in a compact region of spacetime without singularities at which the
equations broke down and without extra unpredictable information entering the
spacetime from infinity. Thus if we assume, for convenience, that space is compact
now, then the suggestion amounts to saying that the 4-dimensional spacetime
manifold M, which we assume to be smooth and connected, is compact with
boundary dM = Σ consisting of 2 connected components, one of which has
topology S3 and the other of which has topology S1 xS2, and both are spacelike
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with respect to the Lorentzian metric g^β. If (M,g^β) is assumed time-oriented,
which we will justify later, then the S3 component should be the past boundary of
M and the S1 x S2 component should be the future boundary of M. Spacetimes of
this type have previously been thought to be of no physical interest because a
theorem of Geroch [4] states that they must contain closed timelike curves. In the
last few years, however, people have begun to consider seriously whether such
causality violating spacetimes might be permitted by the laws of physics. One of
the main results of this paper is that even if causality violations are allowed, there is
an even greater obstacle to considering such a spacetime as physically reasonable -
it does not admit an SL(2, <C) spinor structure and therefore it is simply not possible
on purely kinematical grounds to contemplate a civilization, no matter how
advanced constructing a wormhole of this type, provided one assumes that the
existence of two-component Weyl fermions is an essential ingredient of any
successful theory of nature. We will discuss later the extent to which one might
circumvent this result by appealing to more exotic possibilities such as Spin0

structures.
It appears, however, that there is no difficulty in imagining an advanced

civilization constructing a pair of wormholes, i.e. that the final boundary is the
connected sum of 2 copies of S1 x S2, S1 x S2 # S1 x S2. Thus one may interpret our
results as providing a new topological conservation law for wormholes, they must
be conserved modulo 2. More generally we are able to associate with any closed
orientable 3-manifold Σ a topological invariant, call it u (for universe) such that
u = 0iϊΣ

(1) bounds a smooth connected compact Lorentz 4-manifold M which admits an
SL(2,C) spinor structure;
(2) is spacelike with respect to the Lorentz metric g^,

and u = 1 otherwise.
We shall show that this invariant is additive modulo 2 under disjoint union of

3-manifolds,

Under the connected sum it satisfies

The connected sum, X # Y of two manifolds X, Y of the same dimension n is
obtained by removing an n-ball Bn and from X and Y and gluing the two manifolds
together across the common Sn~x boundary component so created. We shall also
show that u(S3) = 1, and uiS1 x S2) = 0. The result that one cannot create a single
wormhole then follows immediately from the formula for disjoint unions while the
fact that one can create pairs of wormholes follows from the formula for connected
sums. Another consequence of these formulae is that for the disjoint union of k
S3's, u = k modulo 2. In particular, this prohibits the "creation from nothing" of a
single S3 universe with a Lorentz metric and spinor structure.

Our invariant u may be expressed in terms of rather more familiar topological
invariants of 3-manifolds. In fact,

u = dimZ2(H0(Σ; ZJφH^Σ; Z2)) mod2,

where H0(Σ; Z2) is the zeroth and H^Σ; Z2) the first homology group of Σ with Z2

coefficients. Thus dimZ2H0(Σ; ΊL2) mod2 counts the number of connected compo-
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nents modulo 2. The right-hand side of this expression for u is sometimes referred
to as the mod 2 Kervaire semi-characteristic.

So far we have considered the case where the space sections of the universe are
closed. We can extend these results to cases where the space sections of the
universe may be non-compact but the topology change takes place in a compact
region bounded by a timelike tube. Such spacetimes may be obtained from the
ones we have considered by removing a tubular neighbourhood of a timelike
curve.

It seems that a selection rule of this type derived in this paper occurs only if one
insists on an everywhere non-singular Lorentzian metric. If one gives up the
Lorentzian metric and passes to a Riemannian metric or if one adopts a "first order
formalism" in which one treats the vierbein field as the primary variable and allows
the legs of the vierbein to become linearly dependent at some points in spacetime
then our selection rule would not necessarily apply. However, in the context of
asking what an advanced civilization is capable of neither of these possibilities
seems reasonable. At the quantum level, however, both are rather natural and in
view of the existence of a number of examples there seems to be little reason to
doubt that the topology of space can fluctuate at the quantum level. For the
purposes of the present paper we will adhere to the assumption of an everywhere
non-singular Lorentz metric.

Spin-Cobordism and Lorentz-Cobordism

Every closed oriented 3-manifold admits a Spin(3) = SU(2) spin structure. If the
3-manifold is not simply connected the spin structure is not unique. The set of spin
structures is in 1 — 1-correspondence with elements of H1(Σ;Z2% the first
cohomology group of the 3-manifold Σ with Έ2 coefficients. Given a closed
oriented 3-manifold Σ one can always find a spin-cobordism, that is there always
exists a compact orientable 4-manifold M with boundary dM = Σ and such that M
admits a Spin(4) = SU(2)xSU(2) spin structure which when restricted to the
boundary Σ coincides with any given spin structure on Σ [5],

A closed 3-manifold Σ is said to admit a Lorentz-cobordism if one can find a
compact 4-manifold M whose boundary dM = Σ together with an everywhere
non-singular Lorentzian metric with respect to which the boundary Σ is spacelike.
A necessary and sufficient condition for a Lorentz-cobordism is that the manifold
M should admit a line field V, i.e. a pair (V, —V) at each point, where V is a non-
zero vector which is transverse to the boundary dM. To show this one uses the fact
that any compact manifold admits a Riemannian metric g*β. If one has a line field
V, one can define a Lorentzian metric g%β by

Alternatively, given a Lorentzian metric g%β one can diagonalize it with respect to
the Riemannian metric gξβ. One can choose V to be the eigenvector with negative
eigenvalue. The Lorentzian metric g%β will be time-orientable if and only if one can
choose a consistent sign for V. For physical reasons we shall generally assume
time-orientability. If M, g\β is not time-orientable, it will have a double cover that
is, with twice as many boundary components.

If one has a time-orientable Lorentz-cobordism, the various connected
components of the boundary lie either in the past or in the future. Thus one might
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think that one should specify in the boundary data for a Lorentz-cobordism a
specification of which connected components lie in the future and which lie in the
past. However, it is not difficult to show that given a time-oriented Lorentz-
cobordism for which a particular component lies in, say the future, one can
construct another time-oriented Lorentz-cobordism for which that component
lies in the past and the remaining components are as they were in the first Lorentz-
cobordism. The construction is as follows. Let Σ be the component in question.
Consider the Riemannian product metric on Σ x /, where / is the closed interval
— 1 ̂ ί ^ l . Now by virtue of being a closed orientable 3-manifold Σ admits an
everywhere non-vanishing vector field U which may be normalized to have unit
length with respect to the metric on Σ. To give I x / a time-orientable Lorentz
metric we choose as our everywhere non-vanishing unit timelike vector field V:

where a2 + b2 = l and a(t) passes smoothly and monotonically from — 1 at t = +1
to +1 at t = 1. Thus V is outward directed on both boundary components. One can
now attach a copy of Σ x / with this metric, or its time reversed version, to the given
Lorentz-cobordism so reversing the direction of time at the boundary desired
component. Of course, one will have to arrange that the metrics match smoothly
but this is always possible. Considered in its own right the spacetime we have just
used could serve as a model for the "creation from nothing" of a pair of twin
universes. In general, it will not be geodesically complete and it contains closed
timelike curves inside the Cauchy Horizons which occur at the two values of t for
which a2 = b2. However, it is a perfectly valid Lorentz-cobordism.

If a Lorentzian spacetime admits an SL(2, (C) spinor structure it must be both
orientable and time-orientable and in addition admit a Spin(4) structure [9, 10].
For example, since any closed orientable 3-manifold is a spin manifold, the time
reversing product metric we constructed above admits an SL(2, C) structure. By
contrast the next example, which could be said to represent the creation of a single,
i.e. connected, universe from nothing, does not admit an SL(2, <C) spinor structure
because it is not time-orientable. Let I" be a closed connected orientable
Riemannian 3-manifold admitting a free involution Γ which is an isometry of the
3-metric on Σ. A Lorentz-cobordism for Σ is obtained by taking Σ x / as before but
now with the product Lorentzian metric, i.e. with a = ί and b = 0. One now
identifies points under the free Z 2 action which is the composition of the
involution Γ acting on Σ and reversal of the time coordinate t on the interval /,
— 1 ̂  t ̂  1. Because its double cover has no closed time like curves, the identified
space has none either. Of course, it may be that two points xa and x'a lying on
a timelike curve γ in Σ x / are images of one another under the involution Γ. On
the identified space (Σ x 1)1 Γ the timelike curve γ will thus intersect itself. How-
ever, the two tangent vectors at the identified point lie in different halves of the
light cone at that point. Thus a particle moving along such a curve may set
out into the future and subsequently return from the future or vice versa. This
is not what is meant by a closed timelike curve because if such a curve has a
discontinuity in its tangent vector at some point the two tangent vectors must
lie in the same half of the light cone at that point.

The special case when Σ is the standard round 3-sphere and the involution Γ
is the antipodal map gives a Lorentz-cobordism for a single S3 universe. If one
modifies the product metric by multiplying the metric on Σ by a square of scale
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factor which is a non-vanishing even function of time one obtains a Friedman-
Lemaitre-Robertson-Walker metric. Identifying points in the way described
above is referred to as the "elliptic interpretation". A particular case arises when
one considers de-Sitter spacetime. If one regards this as a quadric in 5-dimen-
sional Minkowski spacetime the identification is of antipodal points on the
quadric. In this case there are no timelike or lightlike curves joining antipodal
points, however, there remains a number of difficulties with this interpretation
from the point of view of physics [11], not the least of which is the absence of
a spinor structure. In fact, as we shall see below, this problem is quite general:
there is no spin-Lorentz-cobordism for a single S3 universe.

A necessary and sufficient condition for the existence of a line field transverse to
the boundary dM of a compact manifold M is, by a theorem of Hopf, the vanishing
of the Euler characteristic χ(M). Given an oriented cobordism M of Σ, one can
obtain another cobordism by taking the connected sum of M and a compact four
manifold without boundary. Under connected sums of 4-manifolds the Euler
characteristic obeys the equation

Thus we can increase the Euler characteristic by two by taking the connected
sum with S2 x S2 and decrease it by two by taking the connected sum with S1 x S3.
Therefore, if we start with a spin-cobordism for which the Euler characteristic is
even we may, by taking connected sums, obtain an orientable spin-cobordism with
zero Euler characteristic and hence a spin-Lorentz-cobordism. On the other hand,
if the initial spin-cobordism had odd Euler characteristic we would be obliged to
take connected sums with closed 4-manifolds with odd Euler characteristic in
order to obtain a Lorentz-cobordism. Examples of such manifolds are R P 4 which
has Euler characteristic 1 and (DP2 which has Euler characteristic 3. However, the
former is not orientable while the latter, though orientable, is not a spin-manifold.
In fact, quite generally, it is easy to see that any four-dimensional closed spin
manifold must have even Euler characteristic and thus it is not possible, by taking
connected sums, to find a spin-Lorentz-cobordism if the initial spin-cobordism
had odd Euler characteristic. To see that a closed spin 4-manifold has even Euler
characteristic recall from Hodge theory that on a closed orientable 4-manifold one
has, using Poincare duality:

where b1 is the first Betti number and b% and b^ are the dimensions of the spaces of
harmonic 2-forms which are self-dual or anti-self-dual, respectively. On the other
hand, from the Atiyah-Singer theorem the index of the Dirac operator with respect
to some, and hence all, Riemannian metrics on a closed 4-manifold is given by

index(Dirac) = (bϊ - &2~)/8.

The index of the Dirac operator is always an integer, in fact on a closed 4-manifold
it is always an even integer. It follows therefore that for a spin 4-manifold χ must be
even. The arguments we have just given suggest, but do not prove, that the Euler
characteristic of any spin-cobordism for a closed 3-manifold £ is a property only
of Σ. This is in fact true, as we shall show in the next section. It then follows from
our discussion above that we may identify our invariant u(Σ) with the Euler
characteristic mod 2 of any spin cobordism for Σ.
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Even without the results of the next section it is easy to evaluate our invariant
u(Σ) for a number of 3-manifolds of interest using comparatively elementary
arguments. Suppose there were a spin-Lorentz-cobordism M for S3. Then one
could glue M across the S3 to a four-ball, B4. The Euler characteristic of the
resulting closed manifold would be the Euler characteristic of M, which is zero,
plus the Euler characteristic of the four-ball, which is one. It is clear that the unique
spin structure induced on the boundary would extend to the interior of the 4-ball
and so one obtains a contradiction. The same contradiction would result if we
took the disjoint union of an odd number of S3's. If we take the disjoint union of an
even number of S3's it is easy to construct spin-Lorentz-cobordisms. Thus
although there exists a spin-Lorentz-cobordism with two S3's in the past and two
in the future, our results show that one cannot slice this spin-Lorentz-cobordism
by a spacelike hypersurface diffeomorphic to S3 which disconnects the spacetime.
If this were possible we would have obtained a spin-Lorentz-cobordism for three
S3's which is impossible. In the language of particle physics: there is a 4-fold vertex
but no 3-fold vertex.

If we regard Sι x S2 as the boundary of S1 x B3, where B3 is the 3-ball we may
fill it in with S1 x B3. There are two possible spin structures to consider but in both
cases they extend to the interior and one obtains a spin-cobordism with vanishing
Euler characteristic. Starting with the flat product Riemannian metric on S1 x B3 it
is easy to find an everywhere non-vanishing unit vector field V which is outward
pointing on the boundary: one simply takes a linear combination of the radial
vector field on the 3-ball and the standard rotational vector field on the circle S1

with radius-dependent coefficients such that the coefficient of the radial vector
field vanishes at the origin of the 3-ball and the coefficient of the circular vector
field vanishes on the boundary of the 3-ball. As with our product example above
the resulting spacetime will, in general, be incomplete and have closed timelike
curves but it is a valid spin-Lorentz-cobordism.

These results are sufficient to justify the claim in the introduction that
wormholes must be created in pairs according to the Lorentzian point of view. One
can also establish easily enough, using suitable connected sums of spin-Lorentz-
cobordisms, that our invariant u(Σ) is well defined and has the stated behaviour
under disjoint union and connected sum of 3-manifolds as long as one fixes a spin
structure on the boundary. However, our invariant is independent of the choice of
spin structure on the boundary, as we have seen in the examples given above.
In order not to have to keep track of the spin structure on the boundary
it is advantageous to proceed in a slightly different fashion by using some
Z2-cohomology theory. This we shall do in the next section.

The Euler Characteristic and the Kervaire Semi-Characteristic

The calculations which follow owe a great deal to conversations with Michael
Atiyah, Nigel Hitchin, and Graeme Segal for which we are grateful. We begin
by recalling the following exact sequence of homomorphisms of cohomology
groups for an orientable cobordism M of a closed orientable 3-manifold Σ, the
coefficient group being Z2:

Now if we define W to be the image of H2(M, Σ) in H2(M) under the last
homomorphism, and we use Lefshetz-Poincare duality between relative coho-
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mology and absolute homology groups together with the fact that the com-
pact manifold M is connected we obtain the following exact sequence:

By virtue of exactness, the alternating sum of the ranks, or equivalently the
dimensions of these vector spaces over Z2, must vanish. Now the Euler
characteristic χ(M) is given by:

X(M)=1Σ (-l)idimHi(M;Z2)
i = 0

while the Z2 Kervaire semi-characteristic s(Σ) is given by:

) = dimH°(Σ; Z2) + άimH1(Σ; Z2).

If dimensions are taken modulo 2 we may reverse any of the signs in these
expressions to obtain the relation:

χ(M) - s(Σ) = dim W mod2.

So far we have not used the condition that the compact 4-manifold M is
a spin manifold. To do so we consider the cup product, u which gives a map:

H2(M, Σ) x H2(M)-»H\M).

For a compact connected 4-manifold H4(M; Z2)=Z2 so the cup product pro-
vides a well defined Έ2 valued bilinear form Q on the image of H2(M, Σ) in
H2(M) under the same homomorphism as above. In other words Q is non-
degenerate on the vector space W. [A symmetric bilinear form Q on a vector-
space W is non-degenerate if and only if Q(x,y) = 0 \/xe W => j = 0.]

The obstruction to the existence of a spin structure, the second Stiefel-
Whitney class w2eH2(M;Z2), is characterized by [12]:

M\ Z2).

Thus if M is a spin manifold w2 must vanish and hence

Q(x, x) = XKJX = 0 Vx e H\M\ Έ2).

Now over Z 2 , a symmetric bilinear form which vanishes on the diagonal is
the same thing as skew-symmetric bilinear form. But a skew-symmetric bi-
linear form over any field must have even rank and since Q is non-degenerate
this implies that the dimension of W must be even. Indeed, one may identify
the dimension of W modulo two as the second Stiefel-Whitney class in this
situation. We have thus established that for an orientable spin-cobordism

and hence:

Thus, for example, w(RP3) = 0 since it is connected and H^QRF3;Z)=Z2.
It is straightforward to check this example directly by regarding R P 3 as the
boundary of the cotangent bundle of the 2-sphere, T*(S2). Similar remarks
apply to the lens spaces L(k, 1) which may be regarded as the boundary of
the 2-plane bundle over S2 with first Chern class cγ=k and which have
H1(L(k,l);Z)=Zk. If the integer k is even they spin-Lorentz bound and if it
is odd they do not.
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The properties of our invariant u(Σ) under disjoint union and connected
sum now follow straightforwardly from the behaviour of homology groups
under these operations.

Generalized Spinor Structures

One way of introducing spinors on a manifold which does not admit a
conventional spinor structure is to introduce a U{\) gauge field with respect to
which all spinorial fields are charged, the charges being chosen so that the
unremovable +1 ambiguity in the definition of conventional spinors is precisely
cancelled by the holonomy of the [/(I) connection [13]. In other words we pass to
a Spinc(4) = Spin{4) xZl U(l) structure. For general n it is not always possible to lift
the tangent bundle of an orientable manifold, with structural group SO(ή) to a
Spinc(4) bundle because the obstruction to lifting to a Spin{n\ i.e. the second Stiefel-
Whitney class vv2, may not be the reduction of an integral class in H2(M; Έ).
However, according to Killingback and Rees [14] (see also Whiston [15]) this
cannot happen for a compact orientable 4-manifold. From a topological point of
view we may clearly replace Spirf(4) by its Lorentzian analogue: SL(2, <C) xZ21/(1).
Thus from a purely mathematical point of view we could always get around the
difficulty of not having a spinor structure by using the simplest generalization of a
spinor structure at the cost of introducing an extra and as yet unobserved U(ί)
gauge field. Another possibility would be to use a non-abelian gauge field as
suggested by Back, Freund, and Forger [16] and discussed by Isham and Avis
[17]. There is no evidence for a gauge field that is coupled in this way to all
fermions. It is also not clear that one could arrange that all the anomalies that
would arise from such a coupling would cancel.
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