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Computation of characteristic classes

of a manifold from a triangulation of it

A. A. Gaifullin

Abstract. This paper is devoted to the well-known problem of computing the
Stiefel–Whitney classes and the Pontryagin classes of a manifold from a given trian-
gulation of the manifold. In 1940 Whitney found local combinatorial formulae for
the Stiefel–Whitney classes. The first combinatorial formula for the first rational
Pontryagin class was found by Gabrielov, Gel’fand, and Losik in 1975. Since then,
different authors have constructed several different formulae for the rational char-
acteristic classes of a triangulated manifold, but none of these formulae provides
an algorithm that computes the characteristic cycle solely from a triangulation of
the manifold. In this paper a new local combinatorial formula recently found by the
author for the first Pontryagin class is described; it provides the desired algorithm.
This result uses a solution of the following problem: construct a function f on the
set of isomorphism classes of three-dimensional PL-spheres such that for any com-
binatorial manifold the chain obtained by taking each simplex of codimension four
with coefficient equal to the value of the function on the link of the simplex is a
cycle.
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§ 1. Introduction
This paper focuses mainly on the Stiefel–Whitney and Pontryagin classes of

manifolds. As is well known, the definitions of these characteristic classes makes
essential use of the smooth structure. Nevertheless, the combinatorial invariance
of the Stiefel–Whitney classes was proved soon after they were defined. In the
1950s Rokhlin and Schwartz [1] and Thom [2] proved independently that the ratio-
nal Pontryagin classes are combinatorial invariants. However, their proof is not
constructive, that is, it does not provide a way to compute the Pontryagin classes
directly from a given triangulation of a manifold. Hence, the important prob-
lem of finding combinatorial formulae for characteristic classes, that is, the
description of ways to construct simplicial cycles whose homology classes are
Poincaré dual to given characteristic classes of the manifold from a triangulation
of the manifold only, remained unsolved.
The problem of computing the Stiefel–Whitney numbers and the Pontryagin

numbers of a manifold from a given triangulation of it is closely related to the
previous problem. Here we should immediately single out the famous Hirzebruch
L-genus: for an oriented 4k-dimensional manifold this is a linear combination of
Pontryagin numbers that gives the signature of the manifold. Thus, the L-genus
admits a combinatorial description, because the cohomology ring of a triangulated
manifold can be computed by a combinatorial procedure. A more effective way
to compute the signature of a triangulated manifold was proposed by Ranicki and
Sullivan [3]. For a given 4k-dimensional triangulated manifold they constructed a
symmetric bilinear form on the direct sum of the groups of simplicial 2k-chains and
(2k+1)-chains such that the signature of this form is equal to the signature of the
manifold.
A problem of finding local formulae for characteristic classes is of special interest.

A formula is said to be local if the coefficient of each simplex in the cycle constructed
by the formula depends only on the structure of the manifold in a neighbourhood
of this simplex. One can often obtain the following stronger locality condition for
the rational Pontryagin classes: the coefficient of each simplex depends only on the
combinatorial structure of its link.
In 1940 Whitney [4] obtained an explicit combinatorial formula for the Stiefel–

Whitney classes. This formula was very simple. To obtain a cycle whose Poincaré
dual represents the nth Stiefel–Whitney class of an m-dimensional combinatorial
manifold K, one must take the sum modulo 2 of all (m− n)-dimensional simplices
of the first barycentric subdivision K′ of K (see § 3).
All known combinatorial formulae for the rational Pontryagin classes are much

more complicated. Until recently, two main approaches to finding combinatorial for-
mulae for the Pontryagin classes were known. The first was proposed by Gabrielov,
Gel’fand, and Losik ([5], [6]) and developed by MacPherson [7], Gabrielov [8],
and Gel’fand and MacPherson [9]. Diverse formulae obtained in these papers use
the definitions of Pontryagin classes in terms of the curvature of the connection,
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the singularities of several generic sections of the tangent bundle, and the Gauss
map. We describe this approach in §§ 4 and 6. The second approach was pro-
posed by Cheeger [10] (see § 5). It is based on the Atiyah–Patodi–Singer construc-
tion (see [11]) of the η-invariant of a (4k − 1)-dimensional Riemannian manifold.
Recently, the author [12] proposed a new approach to finding combinatorial formu-
lae for the Pontryagin classes. This approach is based on the use of the apparatus
of bistellar moves. The local combinatorial formula thereby obtained for the first
Pontryagin class is described in §§ 7–13.
Let us now discuss in more detail what the words combinatorial formula mean.

This term often has in fact two different meanings. First, a combinatorial formula
must construct from each combinatorial manifold a simplicial cycle determined
solely by the combinatorial structure of the given manifold. Sometimes a combi-
natorial formula can be applied only if the combinatorial manifold satisfies some
additional conditions. The cycle thus obtained can be a simplicial cycle defined
either on the initial triangulation or on some subdivision of it. Second, it is often
assumed that a combinatorial formula should provide an algorithm computing the
required simplicial cycle from the given combinatorial manifold. We say that for-
mulae of this kind are algorithmically computable.
At present, the following combinatorial formulae for the Pontryagin classes are

known.
1) The MacPherson modification [7] of the Gabrielov–Gel’fand–Losik formula [5]

for the first rational Pontryagin class (see § 4). This formula can be applied to a
combinatorial manifold satisfying some additional conditions which distinguish the
class of the so-called Brouwer manifolds (for the definition, see § 4). The cycle
obtained is a simplicial cycle on the initial triangulation, and the coefficient of
each simplex is determined solely by the combinatorial structure of the link
of this simplex. The formula is not algorithmically computable, since the calcu-
lation requires operations with some complicated configuration spaces. At present,
no algorithmic description for these spaces in combinatorial terms is known.
2) The Cheeger formula [10] for all Hirzebruch polynomials in the real Pontryagin

classes (see § 5). This formula can be applied to any pseudomanifold with negligible
boundary (for the definition, see § 5) and, in particular, to any combinatorial mani-
fold. The cycle obtained is a simplicial cycle on the initial triangulation, and the
coefficient of each simplex is determined solely by the combinatorial structure of
the link of this simplex. The calculation by this formula can be reduced to the cal-
culation of the spectrum of the Laplace operator on a pseudomanifold with locally
flat metric. This spectrum can be computed only approximately, and therefore
the Cheeger formula is not algorithmically computable. Moreover, it is not known
whether or not the cycle constructed by the formula is rational.
3) The Gel’fand–MacPherson formula [9] for all rational normal Pontryagin

classes (see § 6). This formula is not purely combinatorial in the first sense, namely,
the cycle obtained depends not only on the combinatorial structure of a given tri-
angulated manifold. This formula can be applied to a triangulated manifold only
if this manifold is endowed either with a smooth structure or with its discrete
analogue, a so-called fixing cycle. The formula gives a simplicial cycle on the
first barycentric subdivision of the initial triangulation. The coefficient of each
simplex depends both on the combinatorial structure of a neighbourhood of this
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simplex and on the restriction of the smooth structure or the fixing cycle to this
neighbourhood. For a given smooth structure or fixing cycle, the desired cycle can
be computed by a purely combinatorial procedure.
4) The author’s formula [12] for the first rational Pontryagin class. This for-

mula can be applied to an arbitrary combinatorial manifold without any additional
structures. This is the only known formula which is simultaneously local, combina-
torial in the first sense, and algorithmically computable. It gives a cycle which is
simplicial on the initial triangulation. The coefficient of each simplex depends only
on the combinatorial structure of its link and can be found from the combinatorial
type of the link by a finite combinatorial procedure.
Comparisons of the above formulae can be based on the following consideration.

When constructing a combinatorial formula, one customarily uses some definition of
characteristic classes of a smooth manifold. Two approaches were developed here.
The first approach, which we refer to as algebro-topological, uses tools in algebraic
topology, including the smooth structure. For instance, in the original paper by
Pontryagin [13] a characteristic cycle is the cycle of singularities of k vector fields
on the manifold. The second approach, which we call differential-geometric, uses
the differential-geometric connection on the manifold and its curvature. (In the
literature this approach is often called the Chern–Weil approach.) The differential-
geometric definition of characteristic classes of real Riemannianmanifolds was given
by Pontryagin ([14], [15]), and that of the characteristic classes of complex Hermit-
ian manifolds was given by Chern [16].
As noted by Buchstaber, the author’s results [12] realize a new approach to

the construction of characteristic classes of manifolds. Under this approach, an
n-dimensional characteristic class of an m-dimensional triangulated manifold K is
given by a universal formula of the form

f�(K) =
∑

σm−n∈K
f(linkσm−n)σm−n,

where f is a chosen function on the isomorphism classes of oriented (n − 1)-
dimensional PL spheres. The universality property means that the function f
is independent of the combinatorial manifold K, and the chain f�(K) is a cycle
for any K. The precise definitions are given in § 7. The basic result is that for
any rational characteristic class there is a formula of the desired form. This result
improves that of Levitt and Rourke [17] (see § 8). The function f is referred to
as a local formula if the chain f�(K) is a cycle for any combinatorial manifold K.
For n = 4 each rational local formula gives the first Pontryagin class up to multi-
plication by a rational constant. On the other hand, for n = 4 all local formulae
can be described explicitly by using bistellar moves (see §§ 9–11). Thus, we obtain
an explicit description for all local formulae for the first rational Pontryagin class
(Theorem 11.1). In § 12 we distinguish a single canonical local formula f0 for
the first Pontryagin class and describe a combinatorial procedure for computing
the coefficient f0(L) from a given oriented three-dimensional PL sphere L.
As is well known, there are combinatorial manifolds whose rational

Pontryagin classes cannot be represented by integral cocycles. However, for the
kth Pontryagin class there is a universal constant Nk such that the cohomology
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class Nkpk(K) can be represented by an integral cocycle for any combinatorial
manifold K. Let us now consider another problem. Suppose that for any combi-
natorial manifold K we have realized the homology class dual to a given rational
Pontryagin class by a cycle of the form f�(K), where f is function independent of
the manifold K. What are the denominators of the coefficients of the cycles f�(K),
that is, of the values f(L)? It turns out that the denominators of the values f(L)
increase unboundedly as the number of vertices of the PL-sphere increases, even for
the first Pontryagin class. Moreover, arbitrarily large powers of every prime appear
in the denominators of values of the form f(L). More exact bounds for the growth
of the denominators of the values f(L) are given in § 14.

In § 15 we prove that for any rational characteristic class there is a local formula f
such that the problem of computing the number f(L) from a given PL sphere L
is algorithmically soluble. The complete proofs of the results in §§ 14 and 15 were
given by the author in [12].

Of course, the problem of finding combinatorial formulae makes sense only for
combinatorially invariant characteristic classes. In particular, the problem of find-
ing combinatorial formulae for integral Pontryagin classes is not well posed. How-
ever, each integral Pontryagin class becomes combinatorially invariant after multi-
plying by some fixed positive integer, and therefore the corresponding problem
of finding a combinatorial formula can be posed, although no such combinatorial
formulae have yet been found.

Unless otherwise stated, all manifolds and triangulations in this paper are
assumed to be piecewise-linear. By a cobordism we always mean an oriented
piecewise-linear cobordism. A simplicial complex is called a PL sphere if some
subdivision of it is isomorphic to some subdivision of the boundary of a simplex.
A simplicial complex is called an m-dimensional combinatorial manifold if the link
of each vertex of the complex is an (m− 1)-dimensional PL sphere. We note that
any PL triangulation of a PL manifold is a combinatorial manifold. All manifolds
are assumed to be closed. By an isomorphism of oriented simplicial complexes we
mean an orientation-preserving simplicial isomorphism. We denote the cone over a
simplicial complex K by CK, the join of simplicial complexes K and L by K ∗ L,
and the link and the star of a simplex σ by linkσ and star σ, respectively.

Let K be an m-dimensional combinatorial manifold. By a co-orientation of a
simplex σn ∈ K we mean an orientation of the link of σn. Any m-dimensional
simplex is assumed to be positively co-oriented. Let G be an Abelian group and

let Ĝ be the orientation sheaf of the manifold |K| with fibre isomorphic to G. Let
Ĉ∗(K;G) be the chain complex of co-oriented simplicial chains ofK with coefficients

in G and let ∂̂ be the boundary operator of this complex. (The incidence coefficient
of two co-oriented simplices τk−1 ⊂ σk is equal to +1 if the orientation of linkσk
is induced by that of link τk−1, and is equal to −1 otherwise.) The homology
of the complex Ĉ∗(K;G) is equal to H∗(|K|; Ĝ). The homology classes Poincaré
dual to the rational Pontryagin classes of |K| belong to the group H∗(|K|; Q̂).
Therefore, the simplicial cycles representing these homology classes must belong to
the group Ĉ∗(K;Q).
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§ 2. Formula for the Euler characteristic
In this section we consider a local formula for the Euler characteristic of a finite

simplicial complex. This example can be regarded as an illustration of the definition
of a local formula which will be given in § 7.
Let L be a finite simplicial complex. We denote the number of k-dimensional

simplices of L by fk(L) and write

F (L) = 1− f0(L)
2
+
f1(L)

3
− · · ·+ (−1)

kfk−1(L)

k + 1
+ · · · .

Proposition 2.1. For any finite simplicial complex K,

χ(K) =
∑
v∈K
F (linkv),

where the summation ranges over all vertices v of K.

Proof. Each k-dimensional simplex σk of K has exactly k + 1 vertices. Hence, the
number fk(K) is exactly k+1 times less than the number of pairs (v, σ

k) with v a
vertex of K, σk a simplex of K, and v ∈ σk. On the other hand, each vertex v ∈ K
belongs to exactly fk−1(linkv) simplices σ

k ∈ K. Therefore,

fk(K) =
1

k + 1

∑
v∈K
fk−1(linkv).

Thus,

χ(K) =
∞∑
k=0

(−1)kfk(K) =
∞∑
k=0

∑
v∈K

(−1)kfk−1(linkv)
k + 1

.

If K is a combinatorial manifold, then a characteristic cycle representing the
Euler class of the manifold can be computed by the local formula

E(K) =
∑
v∈K
F (linkv)v.

We note that the coefficients F (linkv) in the representation of the integral Euler
cycle by means of the local formula have arbitrarily large denominators which dis-
appear when passing to the non-local formula.

§3. Formula for the Stiefel–Whitney classes
Let K be an m-dimensional combinatorial manifold. The Stiefel–Whitney

class wn of K is an element of the cohomology with coefficients in Z2 if n is even

and with coefficients in Ẑ if n is odd, where Ẑ stands for the orientation sheaf on
the manifold |K| with fibre Z. We denote by Wn the homology class Poincaré dual
to wn. Then Wn ∈ Hm−n(|K|;Z2) if n is even and Wn ∈ Hm−n(|K|;Z) if n is odd.
We denote byK′ the first barycentric subdivision ofK. If n is even, we denote by Cn
the sum modulo 2 of all (m − n)-dimensional simplices of K′. Now let n be odd.
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Let σ0 ⊂ σ1 ⊂ · · · ⊂ σm−n be distinct non-empty simplices of K, and denote
by τ(σ0, σ1, . . . , σm−n) the simplex of K

′ whose vertices are the barycentres b(σi)
of the simplices σi. The orientation of the simplex τ(σ0, σ1, . . . , σm−n) is given
by the sequence of vertices b(σ0), b(σ1), . . . , b(σm−n). We introduce an integral
(m− n)-dimensional chain Cn by the formula

Cn =
∑

σ0⊂σ1⊂···⊂σm−n
(−1)dim σ0+dim σ1+···+dim σm−n τ(σ0, σ1, . . . , σm−n).

Theorem 3.1. The chain Cn is a cycle (modulo 2 if n is even and integral if n is
odd) and represents the homology classWn Poincaré dual to the nth Stiefel–Whitney
class of K.

This theorem was conjectured by Stiefel [18] and first proved by Whitney [4],
but the complete proof was not published. For smooth manifolds the complete
proof was first published by Halperin and Toledo [19]. To prove the theorem,
they explicitly construct continuous tangent vector fields F1, F2, . . . , Fm on |K|
which are smooth on each simplex and such that on each p-dimensional simplex
σ ∈ K the fields F1, F2, . . . , Fp are linearly independent and the index of Fp+1
(mod F1, F2, . . . , Fp) at the barycentre of σ is equal to ±1. In fact, their proof
works for an arbitrary combinatorial manifold. A sketch of a proof of Theorem 3.1
using another technique was published by Cheeger [20].

§4. Gabrielov–Gel’fand–Losik formula
The first explicit formula for the first rational Pontryagin class of a triangulated

manifold was obtained by Gabrielov, Gel’fand, and Losik [5]. We describe here
some ideas at the basis of this formula. Let M be a smooth manifold of dimension
m and let K be a smooth triangulation ofM . Let ∇ be a smooth connection in the
tangent bundle of M . If a local trivialization of the tangent bundle is given, then
the connection ∇ is given by a 1-form ω with values in gl(m,R). Let Ω = dω−ω∧ω
be the curvature form. Then

P 0(∇) = tr(Ω ∧ Ω) = tr
(
dω ∧ dω − 2ω ∧ ω ∧ dω

)
is a well-defined 4-form on M . As is well known, the value of the first Pontryagin
class of M on a piecewise-smooth 4-dimensional cycle Z is given by the formula

〈
p1(M), Z

〉
= − 1
8π2

∫
Z

P 0(∇).

Let τ ∈ K be an (m− 1)-dimensional co-oriented simplex. We denote by σ0(τ)
and σ1(τ) the two m-dimensional simplices containing τ . Let ρ ∈ K be an (m−2)-
dimensional co-oriented simplex. We denote by σ1(ρ), σ2(ρ), . . . , σk(ρ)(ρ) the
m-dimensional simplices containing ρ and indexed in the direction of a positive
circuit of the link of the simplex ρ.
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Proposition 4.1. Let a smooth connection ∇σ on the tangent bundle of a mani-
fold K be given on each m-dimensional simplex σ ∈ K. Let Z be a piecewise-smooth
4-dimensional cycle transversal to the triangulation K. Then

〈p1(M), Z〉 = −
1

8π2

( ∑
dim σ=m

∫
Z∩|σ|

P 0(∇σ)

+
∑

dim τ=m−1

∫
Z∩|τ|

P 1(∇σ0(τ),∇σ1(τ))

+
∑

dim ρ=m−2

k(ρ)−1∑
j=2

∫
Z∩|ρ|

P 2(∇σ1(ρ),∇σj(ρ),∇σj+1(ρ))
)
,
(∗)

where

P 1(∇0,∇1) = tr
(
(ω1 − ω0) ∧ d(ω1 + ω0) +

2

3
ω0 ∧ ω0 ∧ ω0 −

2

3
ω1 ∧ ω1 ∧ ω1

)
,

P 2(∇0,∇1,∇2) = − tr
(
ω0 ∧ ω1 + ω1 ∧ ω2 + ω2 ∧ ω0

)
.

Here the ωi stand for gl(m,R)-valued 1-forms corresponding to the connections ∇i
under some choice of a local trivialization.

The collection of the forms P 0(∇), P 1(∇0,∇1), P 2(∇0,∇1,∇2) is called a
difference cocycle, since

dP 1(∇0,∇1) = P 0(∇1)− P 0(∇0),
−dP 2(∇0,∇1,∇2) = P 1(∇0,∇1) + P 1(∇1,∇2) + P 1(∇2,∇0).

Let us choose the connections ∇σ in such a way that:
(1) the connections ∇σ are flat;
(2) the tangent bundle T |τ | is invariant under ∇σ for any simplex τ ⊂ σ;
(3) the restrictions of ∇σ1 and ∇σ2 to T |σ1 ∩ σ2| coincide for any two
m-dimensional simplices σ1 and σ2.

In this case the first two summands in the formula (*) vanish. Thus, computa-
tion of the integral over the 4-dimensional cycle Z reduces to computation of the
integrals of certain 2-forms over the 2-dimensional chains Z ∩ |ρ|. The next steps
reduce the computation of these integrals first to the integration of certain 1-forms
over the intersections of Z with simplices of codimension 3 and then to the determi-
nation of the index of intersection of Z with some (m− 4)-dimensional cycle which
turns out to be the desired cycle whose homology class is dual to the class p1(M).
However, these steps are much more complicated and require an investigation of
the topology of the configuration spaces Σ(σ). We do not present here a full con-
struction of the formula in [5]; however, we define the spaces Σ(σ) and indicate the
properties of them used in the construction of the formula.
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Definition 4.1. By a flattening of a combinatorial manifold K at a simplex σ we
mean a homeomorphism of |C linkσ| onto a neighbourhood of the origin in Rcodimσ
which takes the vertex of the cone to the origin and is linear on each simplex. A
combinatorial manifold K is called a Brouwer manifold if a flattening of K at σ
exists for any non-empty simplex σ ∈ K.

A combinatorial manifold need not be a Brouwer manifold [21]; however, any
compact combinatorial manifold admits a barycentric subdivision which is a
Brouwer manifold [22]. A Brouwer manifold need not be smoothable: for a combi-
natorial manifold to be smoothable it is necessary that there be a concordant choice
of flattenings at the simplices.

Let K be a Brouwer manifold and let σ ∈ K be a simplex of codimension k. The
space of flattenings ofK at the simplex σ is a topological space with an action of the
group GL(k,R). The orbit space of this action is denoted by Σ(σ) and is called a
configuration space. One can readily prove that Σ(σ) is contractible if codim σ = 2.
As is also known, Σ(σ) is connected [23] and simply connected [24] if codim σ = 3.
The formula in [5] can be applied only to triangulations K satisfying the so-called
condition (A): the space Σ(σ) is connected for every σ ∈ K such that codim σ = 4.
It is not known which triangulations satisfy this condition.

Let q be the number of vertices of the complex given by linkσ. Then correspond-
ing to each flattening ψ : |C linkσ| → Rk is a q-tuple of non-zero vectors in Rk. The
space Σ(σ) has a natural stratification: it can be represented as the union of the
disjoint strata Σc(σ), c = 0, 1, 2, . . ., where the stratum Σ0(σ) consists of the equiv-
alence classes of flattenings for which the corresponding configuration of q vectors
in Rk is in general position, that is, does not contain k linearly dependent vectors,
and the stratum Σc(σ), c > 0, consists of all equivalence classes of flattenings for
which the corresponding configuration of vectors has a c-fold degeneracy.

The formula obtained in [5] can be applied to any Brouwer manifold satisfying
condition (A). To calculate with the help of this formula, one must choose the
following additional structures on the manifoldK: a point yτ ∈ Σ0(τ) for each sim-
plex τ of codimension 4, a point yσ ∈ Σ0(σ) for each simplex σ of codimension 3,
and a curve zσ,τ (t) in Σ0(σ) ∪ Σ1(σ) such that zσ,τ (0) = yσ and zσ,τ (1) is the
image of yτ under the natural map Σ(τ) → Σ(σ) for each pair τ ⊂ σ of simplices
such that codim τ = 4 and codimσ = 3. Moreover, one must choose an addi-
tional combinatorial structure, the so-called hypersimplicial system. After choos-
ing all these structures, one can by a straightforward combinatorial computation
obtain a rational simplicial cycle whose homology class is Poincaré dual to the first
Pontryagin class of the manifold K. We note that the stratifications of the
spaces Σ(ρ) are rather complicated, and there is no combinatorial way to choose
the points yσ and yτ and the curves zσ,τ . Hence, the Gabrielov–Gel’fand–Losik
formula is not algorithmically computable. The only case in which the additional
structures can be chosen in some combinatorial way is the case in which a global
smoothing of the manifold K is given.

A generalization of the Gabrielov–Gel’fand–Losik formula [5] for the higher
Pontryagin classes was obtained by Gabrielov [8]. To compute the kth Pontryagin
class of K, it is assumed that the manifoldK satisfies the following condition (A4k)
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generalizing the condition (A):

H̃q(Σσ ;Q) = 0 for every 0 � q � 4k − codimσ

for any simplex σ ∈ K. This condition is very restrictive, and there is no way to
find out whether or not a given Brouwer manifold satisfies it. All the more so,
there is no combinatorial way to make calculations in accordance with the formula.
The specific feature of the Gabrielov approach is that, instead of the definition
of the Pontryagin classes in terms of the curvature of the connection, he uses the
definition of the Pontryagin classes in terms of degeneracies in systems of sections
of the tangent bundle (see [13], [25]).
The formula obtained in [5] is not local. In [6] an averaging procedure over

the choice of additional structures is described, and it enables one to construct
a rational simplicial cycle for which the coefficient of each simplex is determined
solely by the combinatorial structure of the link of the simplex and the homology
class of the cycle is dual to the class p1(|K|) for any Brouwer manifoldK satisfying
condition (A). However, to make calculations with the help of the formula, one must
know much more about the spaces Σ(ρ): one must not only choose some points yσ
and yτ and the curves zσ,τ but also describe all such triples of points and curves
satisfying some special conditions.
In [7] MacPherson modified the formula in [6], enabling him to get rid of the

condition (A). Thus, the resulting formula can be applied to an arbitrary Brouwer
manifold, and the coefficient of a simplex in the cycle obtained depends only on
the combinatorial structure of the link of the simplex. However, this formula still
contains a step related to the description of the stratification of the spaces Σ(ρ), and
this step cannot be carried out combinatorially. In [7] MacPherson gave a new proof
that the resulting formula defines a cycle whose homology class is Poincaré dual to
the first Pontryagin class. The idea of the proof is to construct a homology analogue
of the Gauss map. If Mm is a smooth manifold, then for any embedding Mm ↪→
Rn−1 one has the Gauss map g : Mm → Gn−1,m, whereGn−1,m is the Grassmannian
manifold of all m-dimensional subspaces of Rn−1. Taking the composition of the
map g and the natural embedding Gn−1,m ↪→ Gn,m+1, we obtain a map g1 : Mm →
Gn,m+1. We have g

∗γmn−1
∼= TMm and g∗1γm+1n

∼= TMm ⊕ ε1, where TMm is the
tangent bundle of Mm, γmn is the tautological vector bundle over Gn,m, and ε

1

is a trivial line bundle. Now let K be an m-dimensional Brouwer manifold with
n vertices. Then the standard embedding |K| ↪→ ∆n−1 ⊂ Rn−1 is well defined.
MacPherson explicitly constructs a homology Gauss 4-map, that is, a chain map
f : Ci(K

∗;Q) → Ci(Gn,m+1;Q), i � 4, such that f∗p1(γm+1n ) = p1(|K|), where
K∗ stands for the cellular decomposition of |K| dual to the triangulation K.

§ 5. Cheeger formula
Cheeger’s approach [10] is based on the construction of the Hodge theory for

pseudomanifolds with a locally flat metric that satisfy certain local topological
conditions. A simplicial complex of dimension m is called a pseudomanifold if
each simplex of it is contained in some m-dimensional simplex and each
(m − 1)-dimensional simplex is contained in exactly two m-dimensional simplices.
Let K be a compact m-dimensional pseudomanifold and let Σm−2 be the
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(m − 2)-skeleton of K. We introduce a metric on |K| such that its restriction
to each simplex coincides with the Euclidean metric on the regular simplex with
edge 1. Then |K| \ |Σm−2| is a non-compact smooth Riemannian manifold. We
denote by H∗(2)(|K| \ |Σm−2|;R) the L2-cohomology spaces of this manifold. By
definition, we set H∗(2)(K;R) = H

∗
(2)(|K| \ |Σm−2|;R). One can readily see that

the L2-cohomology spaces thus defined for a pseudomanifold K are invariant under
passage to subdivisions, and hence are piecewise-linear invariant.

Definition 5.1. A pseudomanifold K is called a pseudomanifold with negligible
boundary if Hk(2)(linkσ;R) = 0 for any non-empty simplex σ ∈ K such that
dim linkσ = 2k.

This condition holds if the closures of the operators d and d∗ in the spaces of L2-
forms on the manifold |K| \ |Σm−2| are conjugate. In particular, any combinatorial
manifold is a pseudomanifold with negligible boundary. The L2-cohomology spaces
of compact pseudomanifolds with negligible boundary are always finite-dimensional.
Cheeger defines an analogue of the Atiyah–Patodi–Singer functional η(L) for

any pseudomanifold L of dimension (4k − 1) with negligible boundary. Let φj be
co-closed (2k − 1)-dimensional eigenforms of the Laplace operator on |L| \ |Σ4k−3|
and let µj be the corresponding eigenvalues. The forms φj can be normalized by

the condition dφj = ±
√
µj

2k−1 ∗ φj. Let us consider the function

η(s) =

∫
|L|

2√
π

∑
j

µ
−(s+ 12 )
j φj ∧ dφj, Re s < −1

2
.

The function η can be meromorphically continued to the entire complex plane,
and the point 0 is not a pole of this continuation. In this case η(L) = η(0). We
note that the value η(L) is real and depends only on the combinatorial type of the
pseudomanifold L.

Theorem 5.1 (Cheeger [10]). Let K be an oriented m-dimensional pseudomanifold
with negligible boundary. Then the chain

cm−4k(K) =
∑

σm−4k∈K

η(linkσm−4k)σm−4k

is a cycle. The homology class of the cycle cm−4k(K) is invariant under passage
to subdivisions of K, and hence this class is a piecewise-linear invariant. If K is a
combinatorial manifold, then the homology class of the cycle cm−4k(K) is Poincaré
dual to the 4k-dimensional Hirzebruch L-class of the manifold |K|.
The Pontryagin classes can be represented as polynomials in the Hirzebruch

L-classes, that is, the Hirzebruch L-classes are a generating system in the Pontryagin
ring Q[p1, p2, . . . ]. Theorem 5.1 can be regarded as a definition of the homol-
ogy L-classes for pseudomanifolds with negligible boundary. The cycle cm−4k(K)
is determined solely by the combinatorial structure of the pseudomanifold K, and
the Cheeger formula is combinatorial in this sense. However, no combinatorial way
to compute the value η(L) from a given pseudomanifold L is known. Moreover, it
is not known whether or not the values η(L) are rational. Thus, Theorem 5.1 gives
real cycles only.
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§ 6. Gel’fand–MacPherson formula
In [9] Gel’fand and MacPherson obtained combinatorial formulae for all ratio-

nal normal Pontryagin classes. The normal Pontryagin classes of a manifoldM are
the classes p̃k(M) ∈ H4k(M ;Q) such that (1 + p1(M) + p2(M) + · · · ) �
(1 + p̃1(M) + p̃2(M) + · · · ) = 1. The approach used in [9] is a discretization of
the following approach to the definition of the Pontryagin classes. Let M be an
m-dimensional smooth manifold with m odd, and let E be the total space of the
bundle η = TM ⊕ ε1, where ε1 stands for a trivial line bundle over M . We denote
by π : Y → M the Grassmannian bundle of (m − 1)-dimensional planes in η
and by ξ the tautological 2-dimensional vector bundle over Y.
Proposition 6.1. The normal Pontryagin classes of M satisfy the equality

p̃k(M)� [M ] = (−1)kπ∗(e(ξ)m−1+2k � [Y]),

where e(ξ) is the Euler class of the vector bundle ξ with coefficients in the orienta-
tion sheaf of ξ.

A general approach to the construction of the characteristic classes using the
direct image of the Euler class of the Grassmannization of the initial vector bundle
was given by Buchstaber in [26] (for a detailed exposition, see [27]).
A discrete analogue of the above construction uses oriented matroids. (For an

introduction to the theory of oriented matroids, see [28] and [29].) Let K be
an oriented m-dimensional simplicial manifold with m odd. The use of oriented
matroids enables one to construct a simplicial complex Y which is a combinatorial
analogue of the space Y. An analogue of the map π is a simplicial map π̂ : Y → K′,
where K′ is the first barycentric subdivision of K. There is a canonical topological
circle bundle over Y , and the rational simplicial cocycle Ω representing the Euler
class of this circle bundle can be computed combinatorially. Moreover, the simplicial
complex Y and the cocycle Ω can be computed from the triangulationK locally, that
is, the structure of the pre-image π̂−1(|L|) and the restriction Ω |π̂−1(|L|) depend
only on the combinatorial structure of the manifold K in a neighbourhood of the
subcomplex L.

Theorem 6.1 (Gel’fand–MacPherson [9]). Let φ ∈ C3m−2(Y ;Z) be a simplicial
cycle such that π̂∗(Ω

m−1 � φ) = [K′], and let ζk ∈ Cm−4k(K′;Q) be the simpli-
cial cycle given by the formula

ζk = (−1)kπ̂∗
((
1

2
Ω

)m−1+2k
� φ

)
.

Then ζk represents the homology class Poincaré dual to the class p̃k(|K|).
This formula can readily be generalized to the case of an even-dimensional

manifold and also to the case of a non-orientable manifold.
Any cycle φ satisfying the condition of Theorem 6.1 is said to be fixing and is

an analogue of the fundamental cycle of the manifold Y. A fixing cycle cannot be
chosen canonically, because in contrast to Y the space Y is not a manifold. Gel’fand
and MacPherson regard a fixing cycle as a structure on K that is a combinatorial
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analogue of a smooth structure. A cycle φ can be (locally) recovered from a given
global smoothing of the manifold |K|, but no way is known to construct a fixing
cycle for an arbitrary combinatorial manifold K. Thus, the Gel’fand–MacPherson
formula can be applied only to a simplicial manifold with a given fixing cycle or
global smoothing, which is a disadvantage of this formula as compared with the
formulae in [7] and [10]. On the other hand, the merit of the Gel’fand–MacPherson
formula is that the cycle ζk can be computed by a finite combinatorial procedure
if a fixing cycle (or a smoothing) is given. The cycle ζk is locally determined by a
triangulation K and a fixing cycle (or a smoothing), that is, the coefficient of each
simplex of K′ in the cycle ζk depends only on the combinatorial structure of the
manifold K′ in a neighbourhood of this simplex and on the restriction of the fixing
cycle (or the smoothing) to the pre-image of this neighbourhood.

§7. Local formulae
In the rest of the paper we describe a local combinatorial formula obtained by

the author in [12] for the first Pontryagin class. This is the first formula which,
for an arbitrary combinatorial manifold without any additional structures, enables
one to give a purely combinatorial computation of a cycle whose homology class is
dual to the first Pontryagin class of the manifold. The resulting cycle is simplicial
on the initial triangulation of the manifold rather than on some subdivision of it.
Moreover, the coefficient of each simplex is determined solely by the combinatorial
structure of the link of this simplex. Thus, the resulting cycle is of the form

f�(K) =
∑

σm−4∈K
f(linkσm−4)σm−4,

where m = dimK and f is a function on the isomorphism classes of oriented
3-dimensional PL spheres. If m > 4, then the simplices σm−4 ∈ K have no distin-
guished orientation, and therefore the above sum makes sense only if the value f(L)
changes sign when the orientation of the PL-sphere L is changed. In § 2 we con-
structed a function F that gives a local formula for the Euler class of an oriented
manifold. Here the value F (L) does not depend on the orientation of the PL-
sphere L. This difference corresponds to the fact that the Euler class of an oriented
manifold changes sign when the orientation of the manifold is changed, whereas the
Pontryagin classes do not depend on the orientation of the manifold. The deriva-
tion of a formula for the first Pontryagin class is broken up into two steps. First,
using the apparatus of bistellar moves, we can describe all functions f such that the
chain f�(K) is a cycle for any combinatorial manifold K (see §§ 9–11, 13). Second,
it turns out that any such function f gives a cycle whose homology class is dual to
the first Pontryagin class multiplied by some constant (§ 8, Theorem 8.3).
We now give the precise definitions. Let Tn be the set of all isomorphism classes

of the oriented (n − 1)-dimensional PL spheres. (We assume that T0 = {∅} and
T−n = ∅ for n > 0.) As a rule, we do not distinguish between a PL sphere
and its isomorphism class. For any PL sphere L ∈ Tn we denote by −L the PL
sphere obtained from L by changing the orientation. A PL sphere L ∈ Tn is said
to be symmetric if it is isomorphic to the PL sphere −L. Let G be an Abelian
group. We denote by T n(G) the Abelian group of all functions f : Tn → G
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changing sign when the orientation of the PL sphere is changed (assuming that
T 0(G) = G and T −n(G) = 0 for n > 0).
LetK be anm-dimensional combinatorial manifold. To each function f ∈ T n(G)

we assign a co-oriented chain f�(K) ∈ Ĉm−n(K;G) by the formula

f�(K) =
∑

σm−n∈K
f(linkσm−n)σm−n

(the summand f(linkσm−n)σm−n does not depend on the choice of the
co-orientation of the simplex σm−n.)

Definition 7.1. A function f ∈ T n(G) is called a local formula if the co-oriented
chain f�(K) is a cycle for any combinatorial manifold K.

We define the differential δ : T n(G)→ T n+1(G) by the formula

(δf)(L) =
∑
f(link v),

where the summation ranges over all vertices v of the PL sphere L and the orienta-
tion of linkv is induced by the orientation of L (as the orientation of the boundary
of the star of the vertex v). It is easy to see that δ2 = 0. Thus, T ∗(G) is equipped
with the structure of a cochain complex.
The following two propositions can be proved immediately.

Proposition 7.1. A function f is a local formula if and only if f is a cocycle in
the cochain complex T ∗(G). If f is a coboundary in the cochain complex T ∗(G),
then the co-oriented chain f�(K) is a boundary for any combinatorial manifold K.

Proposition 7.2. Let f ∈ T n(G) be a local formula and let K be a combina-
torial manifold with boundary. Then ∂̂f�(K) = i(f�(∂K)), where i : Ĉ∗(∂K;G) →
Ĉ∗(K;G) is the natural embedding and f�(K) is the chain in which every
(dimK−n)-dimensional simplex σ∈K appears with coefficient f(linkσ) if σ is not
contained in ∂K and coefficient f(linkσ∪∂ link σC∂ linkσ) if σ is contained in ∂K.
Corollary 7.1. If K1 and K2 are two triangulations of a PL manifold M

m and
f ∈ T n(G) is a local formula, then the cycles f�(K1) and f�(K2) are homologous.
Thus, each cohomology class ψ ∈ Hn(T ∗(G)) determines the homology class of

the form ψ�(M
m) ∈ Hm−n(Mm; Ĝ) for any manifoldMm, and hence, by Poincaré

duality, it determines a cohomology class ψ�(Mm) ∈ Hn(Mm;G). If m = n and
the manifold Mn is oriented, then the class ψ determines an element ψ�(Mn)
of the group G by the formula ψ�(Mn) = 〈ψ�(Mn), [Mn]〉. The following corollary
to Proposition 7.2 is needed in § 8.
Corollary 7.2. Suppose that ψ ∈ Hn(T ∗(G)). Then ψ�(Mn1 ) = ψ�(Mn2 ) for any
cobordant oriented manifolds Mn1 and M

n
2 .

§ 8. Cohomology of the complex T ∗(Q)T ∗(Q)T ∗(Q)
By characteristic classes we mean elements of the cohomology groupH∗(BPL;G),

where BPL is the classifying space of stable piecewise-linear bundles. If p ∈
H∗(BPL;G), then we denote the corresponding characteristic class of a mani-
foldMm by p(Mm). In the case of G = Q we have H∗(BPL;Q) = H∗(BO;Q), and
the characteristic classes are exactly the polynomials in the Pontryagin classes.
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Definition 8.1. A local formula f ∈ T ∗(G) is called a local formula for a
characteristic class p ∈ H∗(BPL;G) if for any combinatorial manifold K the
cycle f�(K) represents the homology class Poincaré dual to the cohomology
class p(|K|) for any combinatorial manifold K.
Theorem 8.1. Each rational local formula is a local formula for some rational
characteristic class.

Proof. It follows from Corollary 7.2 that there is a well-defined homomorphism
� : Hn(T ∗(G)) → Hom(Ωn, G) taking each cohomology class ψ to the homomor-
phism ψ�, where Ω∗ stands for the oriented piecewise-linear cobordism ring. There
is a canonical isomorphism Hom(Ωn,Q) ∼= Hn(BPL;Q). Hence, the homomorphism
� determines a homomorphism � : Hn(T ∗(Q)) → Hn(BPL;Q). Thus, correspond-
ing to any local formula f ∈ T n(Q) is the rational characteristic class p = �(ψ),
where ψ is the cohomology class represented by the cocycle f . However, we have
not proved yet that f is a local formula for the characteristic class p. Indeed, from
the definition of the homomorphism � it follows only that ψ�(Mn) = p(Mn) for any
n-dimensional manifoldMn. Therefore, to prove that f is a local formula for p, it
remains to prove the following proposition.

Proposition 8.1. ψ�(Mm) = p(Mm) = �(ψ)(Mm) for any manifold Mm, where
m � n.
Sketch of the proof. It can be shown that ψ�(Mm)

∣∣
Nn
= ψ�(Nn) for any submani-

fold Nn ⊂ Mm with trivial normal bundle. If m > 2n + 1 and Mm is orientable,
then the proposition follows from Thom’s result [30] claiming that for any homology
class z ∈ Hn(Mm;Z) there is a non-zero integer q such that the homology class qz
can be realized by a submanifold with trivial normal bundle. If n < m � 2n + 1,
then one must replace Mm by Mm × Sn. If Mm is non-orientable, then one must
pass to the two-sheeted orienting cover of Mm.

The first result on the existence of local formulae for characteristic classes was
obtained by Levitt and Rourke [17].

Theorem 8.2 (Levitt–Rourke [17]). Let p ∈ Hn(BPL;Q) be a rational charac-
teristic class and let m � n be an integer. Then there is a function f ∈ T n(Q)
such that the homology class represented by the cycle f�(K) is Poincaré dual to the
cohomology class p(|K|) for any oriented m-dimensional combinatorial manifold K.
Remark 8.1. A similar result was obtained by King [31] in the case of a smooth
manifold with a smooth triangulation (for m = n and real coefficients).
In [12] the author proved the following theorem.

Theorem 8.3. Let p be an arbitrary rational characteristic class. Then a local
formula for p exists and is unique up to adding an arbitrary coboundary in the
complex T ∗(Q). Thus, the homomorphism

� : H∗(T∗(Q))→ H∗(BPL;Q) ∼= Q[p1, p2, . . . ], deg pi = 4i,

is an isomorphism.

The part of Theorem 8.3 claiming the existence of a local formula for an arbi-
trary rational characteristic class is an improvement of Theorem 8.2 and follows
immediately from Theorems 8.2 and 8.1.
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Levitt and Rourke also obtained results on the possibility of local computation
of characteristic classes with arbitrary coefficients for combinatorial manifolds with
a given local ordering of vertices, that is, a partial ordering on the vertices whose
restriction to the set of vertices of the star of each vertex in each simplex is a total
ordering. Let Dm be the set of all oriented PL triangulations of an m-dimensional
disc with a total ordering of the vertices up to an isomorphism preserving the
ordering of the vertices.

Theorem 8.4 (Levitt–Rourke [17]). Let p ∈ Hn(BPL;G) be a characteristic class
and let m � n be an integer. Then there is a function g : Dm → G such that the
homology class represented by the cycle∑

σm−n∈K
g(star σm−n)σm−n

is Poincaré dual to the cohomology class p(|K|) for any oriented m-dimensional
combinatorial manifold K with local ordering of vertices.

Remark 8.2. In Theorem 8.4 we mean piecewise linear characteristic classes. If
G = Z, then the integral Pontryagin classes are not PL characteristic classes but
some multiples of them are.

§9. Bistellar moves
Let K be a combinatorial manifold. Suppose that the simplicial complex K

contains a simplex σ1 ∈ K such that linkσ1 = ∂σ2 is the boundary of a simplex
and the simplex σ2 does not belong to K. Then σ1 ∗∂σ2 is a full subcomplex of K.
By the bistellar move associated with the simplex σ1 we mean the transformation
taking K into the simplicial complex

β(K) = (K \ (σ1 ∗ ∂σ2)) ∪ (∂σ1 ∗ σ2).

If dimσ = 0, then we assume that ∂σ = ∅, and for any simplex σ we assume that
σ ∗∅ = σ. Thus, stellar subdivisions of simplices of maximal dimension and their
inverse transformations are special cases of bistellar moves. Any bistellar move
results in a combinatorial manifold PL homeomorphic to the original manifold. All
the types of bistellar moves for dimK = 2 and dimK = 3 are shown in Figs. 1
and 2, respectively.
By Pachner’s theorem (see [32] and also [33]), if K1 and K2 are two PL trian-

gulations of the same manifold, then K1 can be transformed into K2 by a finite
sequence of bistellar moves (here triangulations are treated as purely combinatorial
objects, that is, we do not distinguish between isomorphic triangulations). In par-
ticular, any two m-dimensional PL spheres can be transformed one into the other
by a finite sequence of bistellar moves.

§ 10. The graphs ΓnΓnΓn
We introduce a graph Γn for any positive integer n. The set of vertices of Γn is the

set Tn+1 of oriented n-dimensional PL spheres. Let L1, L2 ∈ Tn+1. We say that two
bistellar moves β1 and β2 transforming L1 into L2 and associated with simplices σ1
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Figure 1. Bistellar moves for dimK = 2

and σ2, respectively, are equivalent if there is an automorphism of the PL sphere L1
that takes the simplex σ1 to σ2. The edges joining two distinct vertices L1 and L2
of the graph Γn are in a one-to-one correspondence with the equivalence classes of
bistellar moves taking L1 to L2. We now describe the edges of Γn with both ends
coinciding with some vertex L. A bistellar move β taking the PL sphere L into itself
is said to be inessential if it is equivalent to the inverse bistellar move β−1. No edge
of the graph Γn is assigned to equivalence classes of inessential bistellar moves. The
other equivalence classes of bistellar moves taking L into itself can be partitioned
into pairs of mutually inverse classes. The edges of Γn joining the vertex L to
itself are in one-to-one correspondence with these pairs of equivalence classes. By
Pachner’s theorem, the graph Γn is connected. For any essential bistellar move β
we denote the corresponding edge of Γn by eβ. Corresponding to the symbols eβ
and eβ−1 are the same edges but with opposite orientations.
Let C∗(Γn;Z) be the cellular chain complex of the graph Γn. The group Z2

acts on Γn by changing the orientations of the PL spheres and on the group Q by
changing the sign. Hence, one can define the equivariant cochains C∗Z2(Γn;Q) =
HomZ2(C∗(Γn;Z),Q) and the equivariant cohomology H

∗
Z2
(Γn;Q) (we assume that

the group Z2 acts trivially on the group Z). We denote by d the differential of the
complex C∗Z2(Γn;Q) and by B

1
Z2
(Γn;Q) ⊂ C1Z2(Γn;Q) the subgroup of equivariant

coboundaries. Since the graph Γn is connected, we haveH
0
Z2
(Γn;Q) = 0. Therefore,

the homomorphism
d : C0Z2(Γn;Q)→ C

1
Z2
(Γn;Q)

is a monomorphism.
Obviously, C0Z2(Γn−1;Q) = T

n(Q). Therefore, the differential

δ : C0Z2(Γn−1;Q)→ C
0
Z2
(Γn;Q)

is well defined.
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Figure 2. Bistellar moves for dimK = 3

Let L1, L2 ∈ Tn+1 and let β be a bistellar move taking L1 to L2. We can
assume that L1 and L2 are simplicial complexes with the same set V of vertices
(if dimσ1 > 0 and dimσ2 > 0, then this is really the case, because otherwise we
can introduce a fictitious vertex v0 for one of the complexes L1 or L2, where v0 is
not a simplex of the corresponding complex). For any vertex v ∈ V the bistellar
move β either preserves the complex given by linkv or induces a bistellar move βv
transforming the complex linkL1 v to the complex linkL2 v. Let W ⊂ V be the
subset of all vertices v such that the bistellar move βv is not inessential. (We
assume that v0 /∈W .) Let us define the differential δ : C1Z2(Γn−1;Q)→ C

1
Z2
(Γn;Q)

by the formula

(δh)(eβ ) =
∑
v∈W
h(eβv ).

It is easy to show that δ2 = 0 and δd = dδ.

§ 11. Local formulae for the first Pontryagin class
This section is devoted to the explicit description of all local formulae for the first

Pontryagin class. By Theorem 8.1, each local formula f ∈ T 4(Q) is a local formula
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for the first Pontryagin class multiplied by some rational constant. Thus, one
must first find all functions f : T4 → Q that are local formulae. Any function f ∈
T 4(Q) can be regarded as a Z2-equivariant zero-dimensional cellular cochain on the
graph Γ3.

Proposition 11.1. A function f ∈ T 4(Q) = C0Z2(Γ3;Q) is a local formula if and
only if there is a cochain h ∈ C1Z2(Γ2;Q) such that df = δh.

Proof. Suppose that there is a cochain h ∈ C1Z2(Γ2;Q) such that df = δh. Then
dδf = δdf = δ2h = 0. Since d : C0Z2(Γ4;Q) → C

1
Z2
(Γ4;Q) is a monomorphism, it

follows that δf = 0. Thus, f is a local formula.
We now assume that f is a local formula.
Let L1, L2 ∈ Tn and let β be a bistellar move transforming the PL sphere L1

to the PL sphere L2. We define the sets V and W as in § 10. Let the bistellar
move β replace the full subcomplex σ1 ∗ ∂σ2 of the simplicial complex L1 by the
full subcomplex ∂σ1 ∗ σ2 of the simplicial complex L2. We consider the cone CL1
with vertex u1 and the cone CL2 with vertex u2. Then Lβ = CL1∪CL2∪ (σ1 ∗σ2)
is a simplicial complex on the set V ∪ {u1, u2} of vertices. Obviously, Lβ is
an n-dimensional PL sphere. We choose an orientation of Lβ such that the
induced orientation of the complex determined by linku2 = L2 coincides with
the given orientation of L2. Then Lβ ∈ Tn+1.
Let us consider a cochain h ∈ C1Z2(Γ2;Q) such that h(eβ) = f(Lβ) for any

edge eβ of Γ2. We prove that δh = df . Let eβ be an arbitrary edge of Γ3, where
β is a bistellar move taking a three-dimensional PL sphere L1 to a PL sphere L2.
Obviously, the links of all vertices v ∈ V \W in the complex Lβ are symmetric. The
link of any vertex v ∈ W in the complex Lβ is isomorphic to the complex −Lβv .
The links of the vertices u1 and u2 are isomorphic to the complexes −L1 and L2,
respectively. Since f is a local formula, it follows that

0 = (δf)(Lβ ) = −
∑
v∈W
f(Lβv ) + f(L2)− f(L1)

= −
∑
v∈W
h(eβv ) + f(∂eβ ) = −(δh)(eβ) + (df)(eβ).

This proves Proposition 11.1.

We now describe the subgroup A ⊂ C1Z2(Γ2;Q) formed by the cochains h such
that δh ∈ B1Z2(Γ3;Q), that is, δh = df for some cochain f ∈ C

0
Z2
(Γ3;Q). Since

the differentials d and δ commute, it follows that δ : C∗Z2(Γ2;Q) → C
∗
Z2
(Γ3;Q) is a

chain map. Therefore, the induced homomorphism δ∗ : H1Z2(Γ2;Q) → H
1
Z2
(Γ3;Q)

is well defined. We denote the kernel of δ∗ by Ã. Suppose that h ∈ C1Z2(Γ2;Q); it is
clear that h ∈ A if and only if [h] ∈ Ã.
Obviously, H1Z2(Γ2;Q)

∼= HomZ2(H1(Γ2;Z),Q). Therefore, to describe the sub-
group Ã, we must choose a generating system in the group H1(Γ2;Z). Let us
consider the cycles in Γ2 shown in Figs. 3–8. These figures must be understood as
follows: one considers an arbitrary two-dimensional PL sphere containing a sub-
complex shown in a figure. To this PL sphere we then apply bistellar moves shown
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in the figure. It is assumed that the orientation of the PL sphere is given by clock-
wise circuits of the vertices of the triangles shown in the picture. If an angle is
marked by an arc, then it is assumed that the indicated number gives the number
of triangles inside the angle that abut on the vertex. Thus, we obtain six infinite
series of cycles in Γ2. We note that the cycles shown in Figs. 3–5 correspond to the
commutation of a pair of bistellar moves.

Proposition 11.2. The homology classes represented by the cycles in Figs. 3–8
generate the group H1(Γ2;Z).

In this paper we omit the proof of Proposition 11.2. It is based on the following
two assertions, proved in [34] (see also [29]).
1) Any triangulation of the two-dimensional sphere can be realized as the bound-

ary of a convex simplicial polytope.
2) Two combinatorially equivalent three-dimensional convex simplicial polytopes

can be deformed into each other in the class of convex simplicial polytopes of the
same combinatorial type.
We denote the set of all cycles shown in Figs. 3–8 by S. Let us define a function

c : S → Q by assigning a number shown in the corresponding figure to each cycle,
where

ρ(p, q) =
q − p

(p + q + 2)(p+ q + 3)(p+ q + 4)
,

η(p) =
1

(p+ 2)(p+ 3)
.

We thus obtain a function c : S → Q.
Remark 11.1. Similar numerical expressions arose in [35] in the solution of quite
another problem, namely, in finding a formula for the Chern–Euler class of an S1-
bundle in terms of singularities of the restrictions of a Morse function on the total
space to the fibres of the bundle.

Proposition 11.3. The function c can be extended to a well-defined cohomology

class c ∈ H1Z2(Γ2;Q) = HomZ2(H1(Γ2;Z),Q). Then Ã is the one-dimensional
vector space generated by the cohomology class c.

A sketch of the proof of this proposition is given in § 13.
It follows from Proposition 11.1 that the homomorphismd−1δ :A→C0Z2(Γ3;Q) =

T 4(Q) is well defined and the image of d−1δ is the subgroup formed by all local
formulae.

Theorem 11.1. The map d−1δ provides a bijection between the set of all Z2-
equivariant cocycles representing the cohomology class c and the set of all local
formulae for the first Pontryagin class.

Proof. Let us consider the epimorphism j : Ã→ H4(T ∗(Q)) induced by the homo-
morphism d−1δ. We have dim Ã = 1 by Proposition 11.3 and dimH4(T ∗(Q)) = 1
by Theorem 8.3. Thus, the epimorphism j is an isomorphism, and there is a ratio-
nal number λ �= 0 such that j(λc) = φ, where φ ∈ H4(T ∗(Q)) is the cohomology
class represented by local formulae for the first Pontryagin class.
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Figure 3
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Figure 4
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Figure 5
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Figure 6

Figure 7

We prove that d−1δ is a monomorphism. Since j is a monomorphism, we
have ker(d−1δ) ⊂ B1Z2(Γ2;Q). Moreover, (d

−1δ)
∣∣
B1
Z2
(Γ2;Q)

= δd−1. Obviously,

T 2(Q) = 0, and H3(T ∗(Q)) = 0 by Theorem 8.3. Hence, δ : T 3(Q) → T 4(Q) is a
monomorphism. Thus, δd−1 : B1Z2 (Γ2;Q)→ T

4(Q) is a monomorphism.

Hence, d−1δ is a monomorphism. Therefore, the homomorphism d−1δ is a bijec-
tion between the set of all Z2-equivariant cocycles representing the cohomology
class λc and the set of all local formulae for the first Pontryagin class. It remains
to prove that λ = 1. To this end, it suffices to consider an oriented 4-dimensional
combinatorial manifold K with a known first Pontryagin number and compute the
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Figure 8

value ψ�(|K|), where ψ = j(c). As K we take a triangulation of CP 2 with 9 vertices
(constructed in [36]; see also [37]). One can see by a direct calculation that λ = 1.

Remark 11.2. Actually, in the proof of this theorem we need only the part of The-
orem 8.3 claiming that the map � : H∗(T ∗(Q)) → H∗(BPL;Q) is an epimorphism
(the equality H3(T ∗(Q)) = 0 can readily be verified directly.)

§12. Canonical choice of a formula
Theorem 11.1 describes all rational local formulae for the first Pontryagin class.

It is now useful to describe at least one canonical local formula f0 for the first
Pontryagin class, that is, find a canonical cocycle ĉ0 ∈ C1Z2(Γ2;Q) representing
the cohomology class c. The problem of finding a canonical 1-dimensional cocycle
representing a given cohomology class arose in [9] in a quite different situation.
Here we use an approach similar to that used in [9].

By T (l)3 we denote the set of all isomorphism classes of oriented 2-dimensional
PL spheres that can be obtained from the boundary of a tetrahedron by using at

most l bistellar moves. We denote by Γ
(l)
2 the full subgraph of Γ2 spanned by the

set T (l)3 of vertices. Then Γ
(l)
2 is a finite connected graph admitting an explicit com-

binatorial construction. We shall use induction to define cocycles ĉ
(l)
0 ∈ C1Z2(Γ

(l)
2 ;Q)

representing the cohomology classes c|
Γ
(l)
2
such that the restriction of ĉ

(l)
0 to Γ

(l−1)
2

coincides with ĉ
(l−1)
0 . Suppose that the cocycle ĉ

(l−1)
0 has been constructed. Among

all cocycles b ∈ C1Z2(Γ
(l)
2 ;Q) such that [b] = c|Γ(l)2 and b|Γ(l−1)2

= ĉ
(l−1)
0 we choose a

cocycle ĉ
(l)
0 such that the sum of its squared values on the edges of Γ

(l)
2 is min-

imal. The problem of choosing such a cocycle is a minimization problem for
a quadratic functional on a plane in a finite-dimensional vector space. There-
fore, the desired cocycle exists, it is unique, it is rational, and its computation
reduces to the solution of a system of linear equations with rational coefficients.
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We denote by ĉ0 the cocycle on Γ2 whose restrictions to the graphs Γ
(l)
2 coincide with

the cocycles ĉ
(l)
0 , respectively. Then f0 = d

−1δĉ0 is a canonical local formula
for the first Pontryagin class.
We now describe how to make specific calculations by using this formula, that

is, how to find the value f0(L) for a given PL sphere L ∈ T4. To this end, the
following steps must be carried out.
1) Choose a sequence of bistellar moves β1, β2, . . . , βl taking the boundary of a

4-dimensional simplex to the PL sphere L. Denote by Lj the PL sphere obtained
from ∂∆4 by the bistellar moves β1, β2, . . . , βj−1 and denote by Wj the set of all
vertices v ∈ Lj such that the bistellar move βj induces on the link of v a bistellar
move βjv that is not inessential. We note that all edges eβjv belong to Γ

(l)
2 .

2) Compute the graphs Γ
(j)
2 and the cocycles ĉ

(j)
0 , j = 1, 2, . . . , l, in succession.

3) Compute the value f0(L) by the formula

f0(L) =
l∑
j=1

∑
v∈Wj

ĉ
(l)
0 (eβjv ).

§ 13. Sketch of the proof of Proposition 11.3
Let c′ be an arbitrary element of the group Ã. We prove first that there is a

λ ∈ Q such that c′([α]) = λc(α) for any α ∈ S.
Let α be the cycle shown in Fig. 3a, let L be the original two-dimensional PL

sphere (that is, the PL sphere shown at the upper left corner of Fig. 3a), and
let σ1 and σ2 be the triangles of the PL sphere that are shown in the figure.
We consider a three-dimensional PL sphere K ∈ T4 containing a vertex u whose
link is isomorphic to the PL sphere L and whose star is a full subcomplex of K.
By σ̃1 and σ̃2 we denote the tetrahedra of K spanned by the vertex u and the
triangles σ1 and σ2, respectively. The cycle α was obtained upon commuting
the bistellar moves associated with the triangles σ1 and σ2. Let us now com-
mute the bistellar moves associated with the tetrahedra σ̃1 and σ̃2. We obtain a
cycle γ ∈ C1(Γ3;Z). The cycle γ induces for each vertex v of K a cycle γv in Γ2
consisting of edges corresponding to the induced bistellar moves of the link of v. In
this case ∑

v

c′([γv]) = δ
∗(c′)([γ]) = 0,

because c′ ∈ Ã = ker δ∗. The cycle γv is homologous to zero for any vertex v ∈ K
except for u, and the cycle γu coincides with α. Therefore, c

′([α]) = 0.
Now let α1 and α2 be two cycles as shown in Fig. 3b with the same pairs of

numbers (p, q). As in the previous case, there is a cycle γ ∈ C1(Γ3;Z) starting
from some three-dimensional PL sphere K such that γu = α1 and γv = −α2 for
some vertices u and v of the complex K and γw = 0 for the other vertices w of K.
Hence, c′([α1]) = c

′([α2]). Thus, the value of c
′ on a cycle shown in Fig. 3b depends

only on the pair (p, q). We denote this value by ρ′(p, q). In the same way we can
prove that the function ρ′ can be extended to a function Z�0 × Z�0 such that
ρ′(p, q) = −ρ′(q, p) and c′([α]) = ρ′(0, q)− ρ′(0, p) for any cycle α shown in Fig. 3c,
but the extension is not unique. To fix one of these extensions, we assume that
ρ′(0, 1) = 7

2
ρ′(1, 2) (this choice is motivated by the relation ρ(0, 1) = 7

2
ρ(1, 2).)
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Let us consider an oriented triangulation L of the two-dimensional sphere and
let L contain a vertex x on which p + q + r + 3 triangles abut. Among the trian-
gles abutting on the vertex x we choose three triangles σ0, σ1, and σ2 such that
upon going around the vertex x clockwise, we pass in succession through the trian-
gle σ0, through r other triangles, through σ1, through p other triangles, through σ2,
and through the q remaining triangles. We denote by Lj the complex obtained
from L by applying the bistellar move associated with the triangle σj, by αj
the cycle obtained upon commuting the bistellar moves associated with the tri-
angles σj+1 and σj+2 of L, and by α

′
j the cycle obtained upon commuting the

bistellar moves associated with the triangles σj+1 and σj+2 of the complex Lj ,
where the sums of indices are taken modulo 3. One can readily see that

α′0 + α
′
1 + α

′
2 = α0 + α1 + α2.

Hence,

ρ′(p, q+ r + 2) + ρ′(q, r + p+ 2) + ρ′(r, p+ q + 2)

= ρ′(p, q + r + 1) + ρ′(q, r+ p+ 1) + ρ′(r, p+ q + 1).

One can readily derive from this equality that there is a constant λ ∈ Q such that
ρ′(p, q) = λρ(p, q) for every p and q. Hence, c′([α]) = λc(α) for any cycle α shown
in Fig. 3. It can be proved in a similar way that c′([α]) = λc(α) for every α ∈ S.
The assertion proved above immediately implies that dim Ã � 1. Since an epi-

morphism � : H∗(T ∗(Q))→ H∗(BPL;Q) exists, it follows that dimH4(T ∗(Q)) � 1.
On the other hand, the homomorphism d−1δ : A→ T 4(Q) induces an epimorphism
j : Ã → H4(T ∗(Q)). Thus, dim Ã = dimH4(T ∗(Q)) = 1. Hence, the cohomology
class c is well defined and generates the one-dimensional vector space Ã.

§ 14. Denominators of the values of local formulae
Let f : Tn → Q be a local formula. We shall now clarify the growth of the

denominators of the values f(L) as the number of vertices of L increases. We
denote by Tn,l the set of all oriented (n−1)-dimensional PL spheres having at most
l vertices, and by denl(f) the least common multiple of the denominators of all
the values f(L), L ∈ Tn,l. The following two theorems give bounds for the growth
of denl(f) as a function of l.

Theorem 14.1. Let ψ ∈ Hn(T ∗(Q)) be an arbitrary cohomology class. Then there
is a local formula f representing the class ψ and an integer constant b �= 0 such
that the number denl(f) divides the product b(l+ 1)! for any l.

Theorem 14.2. Let f ∈ T 4(Q) be an arbitrary local formula for the first Pontrya-
gin class. Then the number denl(f) is divisible by the least common multiple of the
numbers 1, 2, . . . , l− 3 for any even integer l � 10.
Theorem 14.1 can be derived from results in [17] and Theorem 8.1. Theorem 14.2

can readily be proved by using the explicit description in § 11 of all local formulae
for the first Pontryagin class. Theorem 14.2 readily implies the following assertion.

Corollary 14.1. H4(T ∗(G)) = 0 for any proper subgroup G ⊂ Q.
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§ 15. Existence of algorithms to compute local formulae

Theorem 15.1. Let ψ ∈ Hn(T ∗(Q)) be an arbitrary cohomology class. Then there
is a local formula f representing the cohomology class ψ and such that the value
f(L) is algorithmically computable from a given triangulation L ∈ Tn.

Remark 15.1. Novikov (see [38], pp. 166–167) proved that the problem of deter-
mining whether or not a given simplicial complex L is a triangulation of an
(n− 1)-dimensional PL sphere is algorithmically undecidable for n � 6. The exact
formulation of Theorem 15.1 is as follows: there is an algorithm whose input is
an oriented simplicial complex L and whose output is the value f(L) if L ∈ Tn,
whereas no output is produced in finite time if L /∈ Tn.

Remark 15.2. Obviously, if n � 4, then there is an uncomputable coboundary
f ∈ T n(Q). Therefore, there are uncomputable rational local formulae.

The author is grateful to V. M. Buchstaber [Bukhshtaber] for suggesting the
problems and for his undivided attention to the present work, and also to
L. A. Alaniya, I. A. Dynnikov, M. È. Kazarian [Kazaryan], and A. S. Mishchenko
for useful discussions.

Bibliography

[1] V. A. Rohlin and A. S. Shvarts, “The combinatorial invariance of Pontryagin classes”, Dokl.
Akad Nauk SSSR 114 (1957), 490–493. (Russian)
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