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FREE DIFFERENTIAL CALCULUS, V. 

THE ALEXANDER MATRICES RE-EXAMINED 


BY RALPHH. FOX 

(Received May 22, 1959) 

In FDC 11, I defined the Alexander polynomial of a group G (having a 
finite presentation in which there are more generators than relations) 
only in the case where the commutator quotient group H of G is torsion 
free. Furthermore, I remarked (p. 209) that  the situation when H i s  not 
torsion free is complicated, and that  its treatment would be left open for 
future consideration. Unfortunately it is just this case that  is involved 
in my method of classifying the lens spaces. Of course a polynomial can 
be defined by mapping the Alexander matrix into the Betti group, but 
the fact that  inclusion of a space X into a containing space Y does not 
induce a homomorphism of the Betti group of X into the homology group 
of Y, but only into the homology group of Y modulo the image of the 
torsion group of X generates complications that  threaten to become un- 
bearable. Although Brody succeeded [44] in surmounting these difficulties 
and giving a complete proof that  my classification of the lens spaces is, 
in fact, topological, the retreat to the Betti group seemed to me unaesthet- 
ic, and I was always searching for an alternative procedure. 

Some years ago Blanchfield remarked that  the Alexander polynomial is 
really a derivative, and i t  is this fact, which I recently rediscovered, that  
is the key to the resolution of the difficulty. 

1. Derivatives modulo the order ideal 

In  order to utilize fully the remark of Blanchfield it is necessary to 
generalize slightly, for an abelian group, the notion of a derivative to 
that  of a derivative modulo the order ideal. In  general let H be any 
group, 4 an ideal in JH and 5 the canonical homomorphism of JH upon 
JH/4. By a derivative modulo 4 in H will be meant any linear mapping 
Dof JHin to  JH/4that satisfies the product rule D(uv) = Du.vO+ uh. Dc. 
The case of interest here is: H abelian and B the order ideal @,(H). I 
shall denote by Q ( H )  the right JH,eO(H)  module of derivatives modulo 
@,(H) in H. [Cf., FDC I p. 5491. 

I t  can be shown that  Q ( H )  is the cyclic module generated by the basic 
inner derivative 

I :v - (v@- vO) 
unless either H i s  finite cyclic or the direct product of the infinite cyclic 
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group with a finite abelian group T. In the first case H = ( x  : xq = I),, 
@,(H)= ((1+ x + . + xpl)")and D,(H) is the cyclic module generated 
by the derivative 

In the second case H = ( x  : ) ,  x T ,  @,(H)= ( O ) ,  and B,(H) is generated 
by I and the derivative 

The derivatives I and K are not independent but satisfy the identity 

I . ~ , , , t  = K.(x9 - 1) . 
If D is any derivative mod @,(H)in H then the fact  that  any two ele-

ments u ,  v of JH commute implies the identity 

(1.1) (ub- u0)Dv= (vb- vo)Du. 
Comparison of this formula with formula (4.4) of [ I ] ,  or with 5 6 of 
FDC 11, was actually the clue that  led to the writing of this installment. 

Let 6'be a homomorphism of an abelian group H onto an abelian group 
K. I t  is easily seen that  8 :J H - JK maps @,(H)into @,(K),so that  a 
homomorphism of JH/@,(H)onto JK/@,(K)is induced; I shall denote i t  
by the same symbol 8. Now consider a derivative D e B,(H). For any 
element v e JH, Dv e JH/@,(H),hence (Dv)Oe JK/@,(K).Suppose w e JH 
such that  ws = 0 and let v be an arbitrary element of JH. Then, by (1.1), 

Since 8 is onto, this means that  ( D w ) ~is annihilated by every element of 
the fundamental ideal of JK. I t  is easily seen [cf., FDC I1 5 51 that  this 
implies that  (Dw)' = 0. 

Define Ds(ws)= ( D ( w ) ) ~ .I t  follows that  Do induces a map of 
JH/(kernel of 8 )  % JK into JK/@,(K).Denote this map also by Do. I t  is 
easily verified that  Dois a derivative mod @,(K)in K and that  (Dl+D,)' = 
D! + D: and (us .Ds)(ws)= us(Dsws). 

(1.2) In  this sense, B induces a homomorphism D -Ds of the module 
D,(H) into the module D,(K). 

2. The module of elementary derivatives 

Let G be any finitely generated group, denote its commutator quotient 
group by H a n d  its abelianizer by +. Let (x : r) be any finitely generated 
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presentation of G, denote by y~ the canonical homomorphism onto G of 
the free group F ( x )  whose free basis is x and by R the consequence in 
F ( x )  of r.  

Let x,, ...,x, and r,, r,, ... be the elements of x and r respectively, 
written down in some order. Let h be an arbitrary element of the group 
ring JH  and let f be any element of J F ( x )  such that  f *9 = h. Write f ,  
and r, ,  for (Of and (Or,,'Dx,)@+',and define 

I claim that  o h  does not depend on the choice of the element f .  For if 
f '*=h ,  then f '  -f belongs to the kernel of +p, and hence o h r- o h  =0. 
Thus we have defined a mapping o of JH  into JH/@,(H). I t  is easily 
verified that  w c D,(H). 

Clearly the derivative w depends on the choice of the finitely generated 
presentation ( x  : r )  of G and on the ordering x,, x,, ..., x, of x and 
r,, r,, . of r as  well a s  on G. Let us take a fixed finitely generated 
presentation !Q = ( x  :r) of G and look a t  the derivatives o that  we get 
by reordering x and r in all possible ways. Denote by El@) the sub-
module of D,(H) that  is generated by these derivatives o. 

I claim that  EL(!$) depends only on G, and not on the selected presen-
tation 9. To see this we need only examine the effect on EL(9)of apply-
ing Tietze transformations to 9. That adjunction to r of any set of its 
consequences does not alter E l ( 9 ) is entirely obvious. Suppose then that  
9 '  is obtained from !Q by adjoining a new generator x, and a new relator 
x,u-' where u c F(x, ,  ..., x,). We have the following diagram: 

where p is the retraction x; = u, xf = x,, ., xi = x,. Let f r  be any ele-
ment of F(x,, x,, ., x,) such that  f ' p  =f.  By FDC I (2.6) we have 

where f j, and u, denote (Of '/Dx,)R+vand (DulOx,)@*"respectively. The new 
submodule E1(pr)is generated by the derivatives of the following two 
types: 
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(ii) 

Thus application of Tietze transformations has no effect on El(?). As we 
have now shown that  EL('@) does not depend on 9but only on G we may 
simply write EL = EZ(G)instead of EZ(SJ3).I call the elements of this sub-
module EZ(G) of the module %,(H)the elementary derivatives induced by 
G in H. 

3. The Alexander derivatives 

By the deficiency of a finite presentation (x, ,  .., x ,  : r,, .., r,) I mean 
the number n - m. A group has deficiency d if it  has a presentation of 
deficiency d but none of deficiency d + 1. Since the Betti number of a 
group is an upper bound for the deficiencies of its finite presentations, as 
is easily shown, i t  follows that  any finitely presented group G has a finite 
deficiency d(G). 

The groups of positive deficiency are of special interest. If G is such a 
group its commutator quotient group H is necessarily infinite, so that  
@,(H)= (0) and the elements of %,(H) are derivatives in JH. Further-
more such a group has a t  least one presentation of deficiency 1,  and 
therefore the module EZ(G) is necessarily cyclic; a generating element 
v :JH-+ JH of EZ(G) is determined up to multiplication by certain 
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elements1 of JH ,  and I shall call such a generating element an Alexander 
derivative of G. Note however that  v = 0 if d(G) > 1. 

I t  is easy to verify that  

(3.1) If d(G) = 1and H i s  the infinite cyclic group generated by t then, 
for every v E JH ,  

where A(t) denotes the Alexander polynomial of G. 

(3.2) If d(G) = 1 and  H i s  free abelian of r ank  > 1 generated by 
t,, , t, then, for every v c J H ,  

vv = (v -vO).A(tl, -- . ,t,) , 

where A(tl, ..., t,) denotes the Alexander polynomial of G. 
Thus the Alexander derivative is determined by the Alexander poly-

nomial (and conversely) whenever the latter is defined; i.e., whenever H 
is torsion free [cf. FDC I1 !j61. To see what the derivative looks like when 
the polynomial is not defined, consider for example the fundamental 
group G = (x, y :yxy =x) of the Klein bottle. Here H = (x :) x (y :y2= 1). 
An Alexander matrix is I I 1- yx + y 1 I*+". Thus an Alexander derivative 
is 

I t  is determined, of course, by its values 

In terms of the generators I and K of B0(H),  v = I + K. Consider on 
the other hand the group G' = (x, y :y2= 1). I ts  commutator quotient 
group is isomorphic to Hand  it may be verified that  an Alexander deriva-
tive is v =K. 

4. Presentations of homomorphisms 

By a presentation of homomorphism 6: Go-+G, will be meant a symbol 
(x;y :r; s) such that  

If (w)  is a cyclic module over a commutative ring R then r w ,  r e R,  is  a generator 
of iw)  if and only if there exists an element r* E R such that r r *  - 1 annihilates w .  Such 
an element may be termed a un i t  of R modulo annihilators of w .  I shall write = for 
equations relating Alexander polynomials vl, v2, . .  . to indicate that equality holds if vl, 
VZ, .. . are  replaced by E I V ~ ,E 2 V ~ ,. . . where ea denotes some properly chosen unit of R modulo 
annihilators of v i .  





414 RALPH H. FOX 

Using Tietze transformations it is easy to prove 

(4.2) I f  a i s  a homomorphism of A i n t o  B and  P i s  a homomorphism 
of B i n t o  C t h e n  d ( p a )  2 d ( a )  + d(P) .  

PROOF.Let (x; y : r ;  s )  be a presentation of a of deficiency d ( P )  and 
let (u; v :p; q) be a presentation of p of deficiency d ( a ) .  Since ( x ,  y :r, s )  
and ( u  :p) are both presentations of B there exist homomorphisms y of 
F ( p )  onto F ( x ,  y )  and 6 of F ( x ,  y )  onto F ( u )  such that  pY is contained in 
the consequence of r u s and r s  u ss is contained in the consequence of p. 
Extend y to a homomorphism of F ( u ,  v )  onto F ( x ,  y ,  v) by defining vY= v 
for every v c v. Then ( x ,  y ;  v : r ,  s ;  q Y )  is a presentation of P ,  and 
( x ;  y ,  v :r ;  s ,  q Y )  is a presentation of pa. The deficiency of this last 
presentation is obviously d ( a )  + d ( P ) .  

(4.3) COROLLARY. I f  6' i s  a homomorphism of Goi n t o  G ,  t h e n  d(6') 5 
d(G1) - d(G0). 

PROOF.A = 1,B = Go,C = G,, P = 6'. 
In (4.2) and (4.3) equality need not hold, as is shown by the following 

examples: 
( 1 ) G ,  the group of a non-trivial knot, Goone of the maximal periph-

eral subgroups, 6' the injection. Here d(Go)= d(G,) = 1 but d(6')= -1. 
( 2  ) Gothe group of a non-trivial knot, G ,  the infinite cyclic group, 6' 

the abelianizer. Again d(Go)= d(G,) = 1 but d(6') = -1. 
By the Jacobian of the presentation ( x ;y : r ;  s )  of 6' : Go-- G ,  will be 

meant the matrix (Os/Oy)"l of elements of JG,. I t  is clearly unaltered by 
the Tietze transformations I and 11. The effect of Tietze I' is to adjoin 
new rows that  are linear combinations of the old ones (since ar,/Oy, = O), 

and the effect of Tietze 11' is to replace M = (6s/Oy)+'l by (M y) .  Hence 

(4.4) T h e  Jacobians of the f in i te ly  generated presentations of 6' a re  
equivalent over JG,. 

Thus we can associate to any finitely generated homomorphism a chain 
of elementary ideals @,(8)c @,(6') c . . of J H ,  exactly as in F D C  11, etc. 
Here I am especially interested in the order ideal E0(6'). 

(4.5) Le t  Go be a group  of positive deficiency and  6' :Go-G I  a homo-
m o r p h i s m  of de$ciency 2 0 .  T h e n  the order  ideal  @,(6') i s  a principal 
idea l ,  the A lexander  derivat ives  V ,  of Goafid 0,of G ,  exis t  a n d ,  f o r  a n y  
v e J H ,  

where 0 denotes a generator of G0(6'). 
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PROOF.Since d(Go)21the existence of V, is assured; by (4.3) d(Gl) 2 1 ,  
so that  V, also exists. Since d(B) 2 0 it is obvious that  Eo(B)is a principal 
ideal. Let (x; y : r ;  s) be a presentation of B of deficiency 0 such that  the 
presentation (x : r )  of Go has deficiency 1. We have the consistent 
diagram 

F(x)  c F(x7 Y) 

Let u be an element of J F ( x )  such that  u*o9o = v e JH, .  Then 

Note that  if d(B) > 0 we must have d(G,) > 1so that  both a and V,ve 
must vanish. 

5. The Alexander derivative of a certain direct limit 

Let a, :Go-Gl and a, : Go-G, be homomorphisms and denote by V 
the smallest normal subgroup of the free product Gl * G, that  contains all 
the elements gmlg-"2, g E Go. The group G =Gl*G,/ V is called the d i rec t  
l i m i t  of the system Go, GI, G,, a , ,  a, and the homomorphism Pi com-
pounded of the inclusion of G, into Gl * G, and the natural homomorphism 
G, * G, -- G is called the projection of G, into G ( i  = 1 ,  2). If Go, GI, G, 
have presentations (x : r ) ,  (x, y : r ,  s ) ,  (x,  z :r ,  t) respectively then 
(x, y, z : r ,  s ,  t) is a presentation of G. 
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Since x, y,  r ,  s can be so chosen that  the deficiency of the presentation 
( x ;  y : r ;  s )  of a, is equal to d(a l ) , and since ( x , z; y : r ,  t ;s)  is a presen- 
tation of p,, it  follows that  d(a,) 5 d(p,).  Similarly d(a,) 5 d(P,). 

Suppose that  Go, G, and G, are all of positive deficiency. In order that  
the direct limit G also be of positive deficiency it is sufficient, because of 
(4.3)and the above remark, that  d(a,)  2 0 or d(a,) 2 0. These conditions 
ensure the existence of Alexander derivatives v,,v,,v,,v in Go, G,, G, G 
respectively. Furthermore i t  is not hard to construct examples to show 
that  d(G)need not be positive if d(a,) < 0 and d(a,) < 0. 

(5.1) I f  d(Go) > 0 ,  d(G,) > 0,  d(G,) > 0,  d(a,) 2 0,  so that d(G) > 0,  
then, for any  u e JH,  and w e JH,, 

(5.2) I f ,  in addition, a,(G,) = G,, then, for any  u E JH,  and v E JH,, 

(Cou)@a(Vv@l)= (V1v)@1(V2ua,)@,. 
PROOF.We have the consistent diagram 

The order @,(a,)is generated by a = det (Os/Oy)+lV2,where ( x ;  y : r; s)  is 
a presentation of a, of deficiency 0. Then P, has a presentation 
( x ,z; y : r ,  t ;s) ,  so that  the order ideal @,(P,)is generated by ah.  Then, 
by (4.5), u e JH,  and w E JH,, 

Hence 
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Now suppose that  a2(G,)= G,. Let ( x  : r),, be a presentation of Go of 
deficiency 1 and let (x : r*) be a presentation of G, of deficiency 1. As 
shown in the proof of (4.2) there is a presentation ( x ;y : r ;s)  of a, of de-
ficiency 0;  clearly ( x ,y : r ,  s)  is a presentation of Gl of deficiency 1and 
( x ;y : r*, s)  is a presentation of G of deficiency 1. Now the consequence 
R of r in F ( x )  is contained in the  consequence R* of r* in F ( x ) .  Thus 
each r, E r is a consequence of r*. Let r=rl , .  ..,r,-, and r* =r:, ...,rLl. 
Then there exist elements a,, E JH, such that  

hence 

where 

...
u1 u2 U ,  

rll ria ' r ~ n  ... . 
- 1 1 - I 2 ' rn-I n 

Thus (V,u)"a = det (a,,).(C2uag). Similarly (V1v)B1= det (a,,)@~(Tv@l)SO 

that  
( C , U ) @ ~ ~ ~ ( V V @ ~ )= det (a,,)B2(V1vB1)(V2~a2)@2 

= (V1v)B1(V2ua2)@2. 

6. An application to topology 

"2 

= det (a,,). 

(6.1) I f  S i s  a closed surface then d ( n ( S ) )2 1- ~ ( 8 ) ;  

(6.2) I f  M i s  a compact 3-manif old w i th  boundary N then 

U;2 U> ... u : ~  
Y r ;  - - - e n  

. ... . 
* rz-l l  ~ C _ I Z'.. r n - I  n 

d ( n ( M ) )2 0 i f  N i s  vacuous, 

2 1 - $ x ( N )  i f  N i s  non-vacuous; 

' 

(6.3) If S i s  one of the components of the boundary N of M,  and i f  0 
i s  the inclusion homomorphism x ( S )  -+r ( M ) ,then 

PROOF.We prove (6.2)and (6.3);the proof of (6.1)is rather trivial and 
occurs only incidentally. Let M be given a fixed triangulation, denote by 
a n ( M )the number of n-cells in this triangulation (n= 0, 1 ,  2,  3 )  and by 
a,(&')the number of these that  belong to S .  Let T' be a maximal tree 
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in S and let T be a maximal tree in M such that  T n S = TI. The number 
of edges in T is ao(M) - 1,and the number of edges in T '  is a,(S) - 1. 

There is a presentation '$'of n(S) having a generator corresponding to 
each edge of S not in T '  and a relator corresponding to each 2-cell of S. 
Thus d(Vt) = (a,(S) - (a,(S) - 1))- a,(S) = 1- x(S). This proves (6.1). 

Construct in M a  maximal cave C, i.e., a maximal tree in the dual tri- 
angulation; i t  consists of all the (open) 3-cells of M and a,(M) - 1of the 
interior 2-cells of M together with any one of the 2-cells of N if N is non- 
vacuous. There is a presentation 'V of z(M) having a generator corre- 
sponding to each edge of M not on T and a relator corresponding to each 
2-cell of Mnot in C. Thus, if Nis  vacuous, d (v)  = (a,(M)- (ao(M)- 1))-
(a,(M) - (a,(M) - 1)) = 0, and, if N is non-vacuous, d (q)  = (al(M) -
(a,(M) - 1))- (a,(M) - a,(M))=1- x(M) = 1- &x(N). (cf. [45, p. 2231). 
This proves (6.2). 

If S f N, the maximal cave C can be chosen in M - S,  so that  q' is 
contained in p. Consequently there is a presentation '$* of 9 such that  
d(S@*)= d('$) - d(v1)= x(S) - &x(N). On the other hand if S = N, the 
maximal cave C must contain a 2-cell of S so that  'V' has a single relator 
that  is not in q. Consequently, in this case, d('$*) = (d('$) -1)-d(S@')= 
x(S) - Bx(N) - 1= $x(S) - 1. This proves (6.3). 

Note that  n(S) has positive deficiency for every closed surface Sexcept 
the 2-sphere and the projective plane; n(M) has positive deficiency when- 
ever N is non-vacuous and contains no 2-spheres or projective planes; 
d(0) is non-negative if S is a torus and N f S and contains no 2-spheres 
or projective planes. From this and $9 4, 5 several conclusions can be 
drawn: 

(6.4) Let M be a compact 3-manifold whose boundary N i s  not con- 
nected and does not contain any 2-spheres or projective planes. Let Sbe 
a torus that i s  a component of N. Then z (S)  and z(M) have Alexander 
derivatives V, and C,, and the order ideal of the inclusion homo- 
morphism 0 :n(S)  -n(M) i s  principal with generator denoted by o. 
For  any v e JH(S ) ,  

C,vB = o.(v6 - vO). 
PROOF. Apply (4.5), noting that  V,v = v - vO. 

Let M be a compact 3-manifold whose boundary N is non-vacuous and 
contains no 2-spheres or projective planes. Let M, be a torus semilinearly 
imbedded in the interior of M, that  separates M into two components, 
whose closures are compact 3-manifolds MI and M,. Denote the Alexander 
derivatives of z(M,), n(M,), n(M,), z(M) by V,, V,, V,, V respectively. 
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(6.5) I f  MI  n N i s  non-vacuous then,  for  a n y  u c J H ( M o )  and 
w e JH(M2), 

where a, and pidenote the respective inclusions 

n o )+ ( M )  and n(M,)+ z ( M )  ; 

(6.6) I f  M2i s  a solid torus then,  for  a n y  v e J H ( M , ) ,  

where m i s  a generating element of H ( M 2 ) .  
PROOF. Apply (5.1) and (5.2), noting that  Vou= u - uoand that ,  if 

M, is a solid torus, V2m= 1. 
The second part, (6.6),  can be restated in the following way: 

(6.7) THEOREM.Let M be a compact 3-manifold whose boundary i s  
non-vacuous and contains no  2-spheres or projective planes. Let k be a n  
element of H ( M )  and let K be a simple closed polygon in the in ter ior  of 
M representing k .  Then ,  for  a n y  v e J H ( M  - K ) ,  

where V ,  and C,-, denote the Alexander derivatives of M and M - K 
respectively and 0 denotes the inclusion homomorphism H ( M - K )  --, 
H ( M ) .  

PROOF. Replace K by its closed neighborhood M, in the second bary-
centric subdivision of M. Then M, is a solid torus and n ( K )-n(M,) is 
an isomorphism onto. 

(6.8) COROLLARY(Torres [12]) .  Let L = L, u U L, be a tame l i nk  
in spherical 3-space S. Let A( t l ,  . ., t,) be the Alexander polynomial of 
L and let 4 ( t , ,  ..., t,-,) be the Alexander polynomial of L, u .u L,-,. 
Then ,  denoting by li, the l ink ing  number of L, and L,, 

PROOF. Apply (6.7) to the polygon K = L, in the complement M of 
the union of the neighborhoods of L,, L,, ...,L,-, in the second bary-
centric subdivision of a triangulation of the 3-sphere in which L,, L,, ..., 
L, are polygons. By (3.1) and (3.2) 
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Q ,ve - voC,v - ~ ( t l )  i f p - 1 = 1 ,
tl - 1 

+ (ve - v0)4(t1,..., t,-J i f p - 1 > 1 ,  

V , - ~ V  A (V- vo)a(t1,..., t,) . 
Clearly k = tt1" t:?;'. Thus, if p > 2, 

(ve - vo)4(tl,. -,t,-,, 1) = (VM-Kv)eA (k - l)CMve 

5 (ti1" ... t>?;l - l)(v8- v0)4(t1,..., t,-,) , 
and, if p = 2, 

The result follows by choosing the element v c H(M - K) so that  ve f 1. 
On the boundary p of a solid torus V in spherical 3-space S there is a 

simple closed curve uniquely determined up to homotopy that  bounds in 
V but not on Ti. Such a curve is called a meridian of V. A simple closed 
curve (also uniquely determined up to homotopy) that  bounds in S - V 
but not on p is called a longitude of V. If V and V' are two solid tori 
in S a homeomorphism of V on V' is called faithful if i t  preserves the 
orientations induced by the orientation of S in V and V' and if i t  trans-
forms longitudes into longitudes. (Such a homeomorphism necessarily 
transforms meridians into meridians). 

(6.9) COROLLARY.Let V and V' be polyhedral solid tori  i n  spherical 
3-space S. Let L = Ll u ..U L, be a polygonal link of multiplicity p 
contained i n  V and  let f be a faithful simplical homeomorphism of V 
on V', so that the link L' = f (L) i s  also polyhedral. Let 4(t,, ..., t,) 
and 4'(t1, , t,) denote the Alexander polynomials of the links L and  
L' and  let 4( t )  and 4'(t) denote the Alexander polynomials of the knots 
V and  V'. The linking number of L i  and the meridian of V i s  equal to 
the linking number of Li and  the meridian of V' (suitable orientations 
having been assigned) and i s  denoted by 1L. Then2 

PROOF. Case I. Not all of I,, ..., 1, are equal to zero. Apply (6.5) with 
M = S - L ,  M I =  V - L  and M , = S - V, M a =  ?, u ~ H ( ? )  and 

Here, and in the following, an equation of the form ajb = cld is meant to be read as 
a proportion, i.e., ad = cb. 
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w e H(S- V) meridians of V. Let t i  denote the element of H(S - L) 
represented by a meridian of L, and let t denote the element of H ( S  -- L) 
represented by a meridian of V. Then t:' ... t> = t f 1, and woz = t ,  
US" = t. By (3.1) (V,w)oz A A(tfl ... t)'), and, by (3.2), Vwo~= 

(t-l)A(t,, -,t,). Hence by (5.1) 

Similarly 

(t - 1)2Ar(tl,..., t,) '- A'(~)(V,- ,~(U'"~))~~, 

where I have written t ,  t,, ..., t, for t f ,  t:, ..., t:, u' = uf E H(T/;'), 
a;:H(T~')+H(S - V'), b': :H ( S  - V') -H ( S  - L'). Since t - 1 and 
A(t) are not zero divisors it follows that  

A(t,, ..., t,) I v,-,(ual)ol ,A1(tl,..., t,)- -

A(t> (t - 1), A1(t) 

Case 11. I, = ... = I, = 0. Construct in the interior of V - L a poly-
gonal knot L,,, such that  

( 1) its linking (in S )  number I,,, with a meridian of V is different 
from zero, and 

( 2 ) its linking (in S )  number I,,,, with L, is different from zero. 
Let L;,, =f (L,,,), so that  the linking numbers of L;,, with a meridian 
of Vrand L, are I,,, and I,,+, respectively. Then, denoting by A(t,, .., t,,,) 
and Ar(t1,..., t,,,) the polynomials of S - L u L,,, and S - L' u L;,, 
respectively, we have, by Case I, 

But, by (6.8), A(t,,. ..,t,,l)'-(tll"". ..t>++'- l)A(t,, ...,t,), At(tl, ,t,, 1) 
(t:l++l... tg)l.+l - l)Ar(tl,..., t,). Since, furthermore, A(1) 1 '- Ar( l ) ,  
and since t:'"" ...t?" -1f 0, it follows that  A(t,, ...,t,) = Ar(t1, -,t,) 
as required. 

This result was proved for the case ,u = 1by Seifert [46]. The case 
treated by Seifert contains as special cases theorems by Alexander [I]on 
composite knots, by Burau [47] on cable knots (Schlauchknoten), and by 
Whitehead [48] on doubled knots. 
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