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PREFACE

Dimension theory is a branch of topology devoted to the definition
and study of the notion of dimension in certain classes of topological
spaces. It originated in the early twenties and rapidly developed during
the next fifteen years. The investigations of that period were concentrated
almost exclusively on separable metric spaces; they are brilliantly re-
capitulated in Hurewicz and Wallman’s book Dimension Theory, published
in 1941. After the initial impetus, dimension theory was at a standstill
for ten years or more. A fresh start was made at the beginning of the fifties,
when it was discovered that many results obtained for separable metric
spaces can be extended to larger classes of spaces, provided that the dimen-
sion is properly defined. The last reservation necessitates an explanation.
It is possible to define the dimension of a topological space X in three
different ways, the small inductive dimension indX, the large inductive
dimension IndX, and the covering dimension dimX. The three dimension
functions coincide in the class of separable metric spaces, i.e., indX = IndX
= dimX for every separable metric space X. In larger classes of spaces
the dimensions ind, Ind, and dim diverge. At first, the small inductive
dimension ind was chiefly used; this notion has a great intuitive appeal
and leads quickly and economically to an elegant theory. The dimension
functions Ind and dim played an auxiliary role and often were not even
explicitly defined. To attain the next stage of development of dimension
theory, namely its extension to larger classes of spaces, first and foremost
to the class of metrizable spaces, it was necessary to realize that in fact
there are three theories of dimension and to decide which is the proper
one. The adoption of such a point of view immediately led to the under-
standing that the dimension ind is practically of no importance outside
the class of separable metric spaces and that the dimension dim prevails
over the dimension Ind. The greatest achievement in dimension theory during
the fifties was the discovery that IndX = dimX for every metric space X
and the creation of a satisfactory dimension theory for metrizable spaces.
Since that time many important results on dimension of topological spaces
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have been obtained; they primarily bear upon the covering dimension
dim. Included among them are theorems of an entirely new type, such as
the factorization theorems, with no counterpart in the classical theory,
and a few quite complicated examples, which finally demarcated the range
of applicability of various dimension functions.

The above outline of the history of dimension theory helps to explain the
choice and arrangement of the material in the present book. In Chapter 1,
which in itself constitutes more than half of the book, the classical
dimension theory of separable metric spaces is developed. The purpose
of the chapter is twofold: to present a self-contained exposition of the
most important section of dimension theory and to provide the neces-
sary geometric background for the rather abstract considerations of sub-
sequent chapters. Chapters 2 and 3 are devoted to the large inductive
dimension and the covering dimension, respectively. They contain the most
significant results in dimension theory of general topological spaces and
exhaustive information on further results. Chapter 4, the last in the book,
develops the dimension theory of metrizable spaces. The interdependence
of Chapters 2—4 is rather loose. After having read Chapter 1, the reader
should be able to continue the reading according to his own interests or
needs; in particular, he can read small fragments of Sections 3.1 and 3.2
and pass to Chapter 4 (cf. the introduction to that chapter).

Chapter 1 is quite elementary; the reader is assumed to be familiar
only with the very fundamental notions of topology of separable metric
spaces. The subsequent chapters are more difficult and demand from the
reader some acquaintance with the notions and methods of general topology.

Each section ends with historical and bibliographic notes. Those are
followed by problems which aim both at testing the reader’s comprehension
of the material and at providing additional information; the problems
usually contain detailed hints, which, in fact, are outlines of proofs.

The mark ] indicates the end of a proof or of an example. If it appears
immediately after the statement of a theorem, a proposition or a corollary,
it means that the statement is obviously valid.

Numbers in square brackets refer to the bibliography at the end of
the book. The papers of each author are numbered separately, the number
being the year of publication. In referring to my General Topology (Engel-
king [1977]), which is quite often cited in the second half of the present
book, the symbol [GT] is used.

In 1971-1973 1 gave a two-year course of lectures on dimension theory
at the Warsaw University; this book is based on the notes from those
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lectures. When preparing the present text, I availed myself of the comments
of my students and colleagues. Thanks are due to K. Alster, J. Chaber,
J. Kaniewski, P. Minc, R. Pol, T. Przymusinski, J. Przytycki and K. Wojt-
kowska. I am particularly obliged to Mrs. E. Pol, the first reader of this
book, for her helpful cooperation, and to J. Krasinkiewicz for his careful
reading of Chapter 1.

' Ryszard Engelking

Warsaw, February 1977



CHAPTER 1

DIMENSION THEORY OF SEPARABLE METRIC
SPACES

In the present chapter the classical dimension theory of separable
metric spaces is developed. Practically all the results of this chapter were
obtained in the years 1920-1940. They constitute a canon on which, in
subsequent years, dimension theory for larger classes of spaces was modelled.
Similarly, in Chapters 2-4 we shall follow the pattern of Chapter 1 and
constantly refer to the classical theory. This arrangement influences our
exposition: the classical material is discussed here in relation to modern
currents in the theory; in particular, the dimension functions Ind and
dim are introduced at an early stage and are discussed simultaneously
with the dimension function ind.

To avoid repetitions in subsequent chapters, a few definitions and
theorems are stated in a more general setting, not for separable metric but
for topological, Hausdorff, regular or normal spaces; this is done only
where the generalization does not influence the proof. If the reader is not
acquainted with the notions of general topology, he should read “metric
space” instead of “topological space”, “Hausdorff space”, “regular space”,
and “normal space”. Reading the chapter for the first time, one can omit
Sections 1.4 and 1.12-1.14, which deal with rather special topics; similarly,
the final parts of Sections 1.6, 1.8 and 1.9 can be skipped.

Let us describe briefly the contents of this chapter.

Section 1.1 opens with the definition of the small inductive dimension
ind; in the sequel some simple consequences and reformulations of the
definition are discussed. Sections 1.2 and 1.3 are devoted to a study of zero-
dimensional spaces. We prove several important theorems, specified in
the titles of the sections, which are generalized to spaces of higher dimension
in Sections 1.5, 1.7 and 1.11.

In Section 1.4 we compare the properties of zero-dimensional spaces
with the properties of different highly disconnected spaces. From this
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comparison it follows that the class of zero-dimensional spaces in the
sense of the small inductive dimension is the best candidate for the zero
level in a classification of separable metric spaces according to their di-
mension. The results of this section are not used in the sequel of the book.

Section 1.5 contains the first group of basic theorems on n-dimensional
spaces. As will become clear further on, the theorems in this group depend
on the dimension ind, whereas the theorems that follow them depend
on the dimension dim. Besides the generalizations of five theorems proved
in Sections 1.2 and 1.3 for zero-dimensional spaces, Section 1.5 contains
the decomposition and addition theorems.

In Section 1.6 the large inductive dimension Ind and the covering
dimension dim are introduced; they both coincide with the small inductive
dimension ind in the class of separable metric spaces. In larger classes
of spaces the dimensions ind, Ind and dim diverge. This subject will be
discussed thoroughly in the following chapters. In particular, it will become
evident that the dimension ind, though excellent in the class of separable
metric spaces, loses its importance outside this class.

Section 1.7 opens with the compactification theorem. The location
of this theorem at such an early stage in the exposition of dimension theory
is a novelty which, it seems, permits a clearer arrangement of the material.
From the compactification theorem the coincidence of ind, Ind, and dim
for separable metric spaces is deduced.

In Section 1.8 we discuss the dimensional properties of Euclidean
spaces. We begin with the fundamental theorem of dimension theory,
which states that indR" = IndR" = dimR"” = n; then we characterize
n-dimensional subsets of R" as sets with a non-empty interior, and we
show that no closed subset of dimension < n—2 separates R". This last
result is strengthened in Mazurkiewicz’s theorem, which is established
in the final part of the section with the assistance of Lebesgue’s covering
theorem.

Section 1.9 opens with the characterization of dimension in terms
of extending mappings to spheres from a closed subspace over the whole
space. From this characterization the Cantor-manifold theorem is deduced.
In the final part of the section we give some information on the cohomo-
logical dimension.

In Section 1.10 we characterize n-dimensional spaces in terms of map-
pings with arbitrarily small fibers to polyhedra of geometric dimension
< n and develop the technics of nerves and x»-mappings which are crucial
for the considerations of this and the following section.
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In Section 1.11 we prove that every n-dimensional space can be embedded
in R?"*! and we describe two subspaces of R2**! which contain topologi-
cally all n-dimensional spaces; the second of those is a compact space.

The last three sections are of a more special character. Section 1.12
is devoted to a study of the relations between the dimensions of the domain
and the range of a continuous mapping. In Section 1.13 we characterize
compact spaces of dimension < rn as spaces homeomorphic to the limits
of inverse sequences of polyhedra of geometric dimension < », and in
Section 1.14 we briefly discuss the prospects for an axiomatization of
dimension theory.

1.1. Definition of the small inductive dimension

1.1.1. Definition. To every regular space X one assigns the small inductive
dimension of X, denoted by ind X, which is an integer larger than or equal
to —1 or the “infinite number” co; the definition of the dimension function
ind consists in the following conditions:

MU indX = —1 if and only if X = O;
(MU2) indX < n, where n = 0,1, ..., if for every point x e X and each neigh-
bourhood V = X of the point x there exists an open set U = X such that

xeUcV and indFrU<n-—1;

(MU3) indX = »n if indX < n and indX > n—1, ie., the inequality indX
< n—1 does not hold;
MU4) indX = o0 if indX > n for n= —1,0,1, ...

The small inductive dimension ind is also called the Menger—Urysohn
dimension.

Applying induction with respect to indX, one can easily verify that
whenever regular spaces X and Y are homeomorphic, then indX = indY,
Le., the small inductive dimension is a topological invariant,

In order to simplify the statements of certain results proved in the
sequel, we shall assume that the formulas n < o and n+o = 0+n
= o0+00 = o0 hold for every integer n.

Since every subspace M of a regular space X is itself regular, if the
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dimension ind is defined for a space X it is also defined for every subspace
M of the space X.

1.1.2. The subspace theorem. For every subspace M of a regular space X
we have ind M < indX.

Proof. The theorem is obvious if indX == o0, so that one can suppose
that indX < oo. We shall apply induction with respect to indX. Clearly,
the inequality holds if indX = —1,

Assume that the theorem is proved for all regular spaces whose dimen-
sion does not exceed n—1 = —1. Consider a regular space X with indX
= n, a subspace M of the space X, a point x € M and a neighbourhood
V of the point x in M. By the definition of the subspace topology, there
exists an open subset ¥, of the space X satisfying the equality ¥V = MnV,.
Since indX < n, there exists an open set U, < X such that

xeU, <V, and indFrU, €< n—1.

The intersection U = MnU, is open in M and satisfies x e U < V.
The boundary Fry U of the set U in the space M is equal to MAMnNU, N

AMN\U,, where the bar denotes the closure operation in the space X;
thus the boundary Fr,, U is a subspace of the space FrU,. Hence, by the
inductive assumption, indFry U < n—1, which—together with (MU2)—
yields the inequality ind M < n = indX.[]

Sometimes it is more convenient to apply condition (MU2) in a slightly
different form, involving the notion of a partition.

1.1.3. Definition. Let X be a topological space and 4, B a pair of disjoint
subsets of the space X; we say that a set L < X is a partition between A
and B if there exist open sets U, W < X satisfying the conditions

() 4cU, BecW, UnW=@ and X\L=UuW.
Clearly, the partition L is a closed subset of X.

The notion of a partition is related to the notion of a separator. Let us
recall that a set T < X is a separator beiween A and B, or T separates the
space X between A and B, if there exist two sets U, and W, open in the
subspace X\ T and such that 4 < Uy, B =« W,, UynW, = @ and X\C
= UsUV,. Obviously, a set L < X is a partition between 4 and B if and
only if L is a closed subset of X and L is a separator between 4 and B.
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Separators are not to be confused with cuts, a related notion we
will refer to in the notes below and in Section 1.8. Let us recall
that a set 7 < X is a cut between A and B, or T cuts the space X between
A and B, if the sets A, B and T are pairwise disjoint and every continuum,
i.e., a compact connected space C < X, intersecting both 4 and B intersects
the set 7. Clearly, every separator between 4 and B is a cut between A
and B, but the two notions are not equivalent (see Problems 1.1.D and
1.8.F).

1.1.4. Proposition. A regular space X satisfies the inequality indX < n> 0
if and only if for every point x € X and each closed set B < X such that
x ¢ B there exists a partition L between x and B such that indL € n—1.

Proof. Let X be a regular space satisfying ind X < » = 0; consider a point
x € X and a closed set B = X such that x ¢ B. There exist a neighbourhood
¥ < X of the point x such that ¥ < X\ B and an open set U < X such
that x e U < ¥V and indFrU < n— 1. One easily sees that the set L = FrU

is a partition between x and B; the sets U and W = X\ U satisfy condi-
tions (1).

Fig. 1

Now, assume that a regular space X satisfies the condition of the theorem;
consider a point x € X and a neighbourhood ¥ < X of the point x. Let L
be a partition between x and B = X\V such that indL < n—1 and let
U, W < X be open subsets of X satisfying conditions (1). We have

xeUcX\WcX\B=V

and
FrU c XN\U)n(X\W)=X\UuW) =1L,

so that indFrU < n—1 by virtue of 1.1.2. Hence indX < a.(]
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'Obviously, a regular space X satisfies the inequality indX <n >0
if and only if X has a base # such that ind FrU < n—1 for every U e 4.
In the realm of separable metric spaces this observation can be made more
precise.

1.1.5. Lemma. If a topological space X has a countable base, then every
base & for the space X contains a countable family %, which is a base for X.

Proof. Let 2 = {V;}, be a countable base for the space X. Fori = 1,2, ...
define
B ={UeB: UcV};

as # is a base for X, we have {_J #; = V;. The subspace V; of the space X
also has a countable base, so that the open cover %, of V; contains a count-

o<
able subcover %,,;. The family B, = ) #,, = # is countable and is
g

a base for X; indeed, every non-empty open subset of X can be represented
as the union of a subfamily of &, and thus can also be represented as the
union of a subfamily of %,.00

1.1.6. Theorem. A separable metric space X satisfies the inequality indX
< n = 0if and only if X has a countable base # such that indFrU < n—1
Sor every Ue%.[]

Historical and bibliographic notes

The dimension of simple geometric objects is one of the most intuitive
mathematical notions. There is no doubt that a segment, a square and
a cube have dimension 1, 2 and 3, respectively. The necessity of a precise
definition of dimension became obvious only when it was established
that a segment has exactly as many points as a square (Cantor 1878),
and that a square has a continuous parametric représentation on a segment,
i.e., that there exist continuous functions x(¢) and y(f) such that points
of the form (x(t), y(t)) fill out a square when ¢ runs through a segment
(Peano 1890). First and foremost the question arose whether there exists
a parametric representation of a square on a segment which is at the same
time one-to-one and continuous, i.e., whether a segment and a square
are homeomorphic, and-—more generally—whether the n-cube I" and the
m-cube I"™ are homeomorphic if » = m; clearly, a negative answer was
expected. Between 1890 and 1910 a few faulty proofs of the fact that I"
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and I™ are not homeomorphic if # # m were produced and it was established
that I, I? and I3 are all topologically different. ,

The theorem that I" and I™ are not homeomorphic if n % m was proved
by Brouwer in [1911]. The idea suggests itself that to prove this theorem
one should define a function d assigning to every space a natural number,
expressing the dimension of that space, such that to every pair of homeo-
morphic spaces the same natural number is assigned and that d(I") = ».
It was none too easy, however, to discover such functions; the search
for them gave rise to dimension theory. In Brouwer’s paper [1911] no
function d is explicitly defined, yet an analysis of the proof shows that to
differentiate /" and I™ for n # m the author applies the fact that for a suffi-
ciently small positive number ¢ it is impossible to transform the n-cube
I" = R" into a polyhedron K < R" of geometric dimension less than »
by a continuous mapping f: I" — K such that o(x, f(x)) < & for every
x € I". As we shall show in Section 1.10, this property characterizes compact
subspaces of R" which have dimension equal to n. Another topological
property of the n-cube I™ was discovered by Lebesgue in [1911], viz. the
fact that I" can be covered, for every ¢ > 0, by a finite family of closed
sets with diameters less than & such that ali intersections of #n+2 members
of the family are empty, and cannot be covered by a finite family of closed
sets with diameters less than | such that all intersections of #+ 1 members
of the family are empty. Obviously, Lebesgue’s observation implies that
I" and I™ are not homeomorphic if n # m. Though the proof outlined
by Lebesgue contains a gap (filled by Brouwer in [1913] and by Lebesgue
in {1921]), nevertheiess the discovery of the new mvariunt was an important
achievement which eventually led to the definitionof the covering dimension.
Lebesgue’s paper [1911] contains one more important discovery. The author
formulated the theorem (the proof was given in his paper [1921]) that for
every continuous parametric representation f() = (x,(¢), X2(1), ..., x,,(t))
of the n-cube I" on the closed unit interval 7, some fibres of f, i.e., inverse
images of one-point sets, have cardinality at least n+1, and that I" has
a continuous parametric representation on I with fibres of cardinality
at most n+1.

A decisive step towards the definition of dimension was made by Poin-
caré in [1912], where he observed that the dimension is related to the no-
tion of separation and could be defined inductively. Poincaré called atten-
tion to the simple fact that solids can be separated by surfaces, surfaces
by lines, and lines by points. It was due to the character of the journal
for which Poincaré was writing and also to his death in the same year
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1912 that Poincaré’s important ideas were not presented as a precise defi-
nition of dimension.

The first definition of a dimension function was given by Brouwer
in [1913], where he defined a topological invariant of compact metric
spaces, called Dimensionsgrad, and proved that the Dimensionsgrad of
the n-cube I” is equal to #n. In conformity with Poincaré’s suggestion, the
definition is inductive and refers to the notion of a cut: Brouwer defined
the spaces with Dimensionsgrad 0 as spaces which do not contain any
continuum of cardinality larger than one (i.e., as punctiform spaces; cf.
Section 1.4), and stated that a space X has Dimensionsgrad less than or
equal to n > 1 if for every pair 4, B of disjoint closed subsets of X there
exists a closed set L < X which cuts X between A and B and has Dimensions-
grad less than or equal to n—1. Brouwer’s notion of dimension is not
equivalent to what we now understand by the dimension of a compact
metric space; however, the two notions coincide in the realm of locally
connected compact metric spaces (the proof is based on the fact that in
this class of spaces the notions of a separator and a cut are equivalent
for closed subsets; cf. Kuratowski [1968], p. 258). Brouwer did not study
the new invariant closely: he only used it to give another proof that I
and I™ are not homeomorphic if n % m.

Referring to the second part of Lebesgue’s paper [1911], Mazurkiewicz
proved in [1915] that for every continuous parametric representation
of the square 2 on the interval I, some fibres of f have cardinality at least 3,
and showed that every continuum C < R? whose interior in R? is empty
can be represented as a continuous image of the Cantor set under a mapping
with fibres of cardinality at most 2. These results led him to define the
dimension of a compact metric space X as the smallest integer n with
the property that the space X can be represented as a continuous image
of a closed subspace of the Cantor set under a mapping f such that | f = (x)|
< n+1 for every x e X. As was proved later (cf. Problem 1.7.D), this
definition is equivalent to the definition of the small inductive dimension,
but Mazurkiewicz’s paper had no influence on the development of di-
mension theory.

The definition of the small inductive dimension ind was formulated
by Urysohn in [1922] and by Menger in [1923], both papers contain also
Theorem 1.1.2. Menger and Urysohn, working independently, built the
framework of the dimension theory of compact metric spaces, but Urysohn
was ahead of Menger by a few months and was able to establish a larger
number of basic properties of dimension. Urysohn’s results are presented
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in a two-part paper, [1925] and [1926], published after the author’s death
in 1924, whereas Menger’s results are contained in his papers [1923)] and
[1924] and in his book [1928]. A generalization of dimension theory to
separable metric spaces is due to Tumarkin ([1925] and [1926]) and Hu-
rewicz ([1927] and [1927b]). In [1927] Hurewicz, in a particularly successful
way, made use of the inductive character of dimension and greatly simpli-
fied the proofs of some important theorems, e.g., the sum theorem and the
decomposition theorem. Moreover, owing to his discovery of the compacti-
fication theorem, Hurewicz reduced, in a sense, the dimension theory
of separable metric spaces to the dimension theory of compact metric
spaces.

When the work of Menger and Urysohn drew the attention of mathe-
maticians to the notion of dimension, Brouwer (in [1923], [1924], [1924a]
and [1924b]) ascertained that the definition of his Dimensionsgrad was
marred by a clerical error and that it should read exactly as the definition
of the large inductive dimension (see Section 1.6) and thus should lead
to the same notion of dimension for compact metric spaces; he also com-
mented that even the original faulty definition of Dimensionsgrad could
serve as a basis for an equally good, although different, dimension theory.
Brouwer’s arguments do not seem quite convincing. After the publication
of Menger’s book [1928] a heated discussion arose between Brouwer
([1928]) and Menger ([1929a], [1930], [1933]) concerning priority in de-
fining the notion of dimension; a good account of this discussion is contained
in Freudenthal’s notes in the second volume of Brouwer’s Collected Papers
(Brouwer [1976]). The history of the fitst years of dimension theory and,
in particular, an evaluation of the contributions of Menger and Urysohn
can be found in Alexandroff [1951].

Problems

L.1.A. Observe that a metric space X satisfies the inequality indX
< n = 0 if and only if for every point x € X and each positive number &
there exists a neighbourhood U = X of the point x such that (U) < ¢
and indFrU < n—1.

1.1.B. To every regular space X and every point x €X one assigns
the dimension of X at the point x, denoted by ind, X, which is an integer
larger than or equal to O or the infinite number oo; the definition consists
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in the following conditions: (1) ind, X < n if for each neighboﬁrhood
V < X of the point x there exists an open set U « X such that x e U = V
and indFrU< n—1; (2) ind, X =n if ind, X <»n and ind X > n—1;
3 indX = 0 ifind X >nforn=0,1,..
(a) Note that indX < » if and only if ind, X < n for every x € X.
(b) Formulate and prove the counterparts of 1.1.2, 1.1.4 and 1.1.6
for the dimension at a point.

1.1.C. Show that whenever regular spaces X and Y are homeomorphic,
then indX = indY.

1.1.D. Give an example of a subspace X of the plane and of a closed
set C = X with the property that for a pair 4, B of disjoint closed subsets
of X the set C is a cut between 4 and B but is not a separator between A
and B.

1.2. The separation and enlargement theorems for dimension 0

A regular space X satisfying the equality ind X = 0 will be called a zero-
dimensional space.

To begin with, we shall specialize the contents of the previous section
to the case of zero-dimensional spaces.

1.2.1. Proposition. A regular space X is zero-dimensional if and only if X
is non-empty and for every point x € X and each neighbourhood V < X
of the point x there exists an open-and-closed set U = X such that xe€ U
< V.0

1.2.2. Proposition. Every non-empty subspace of a zero-dimensional space
is zero-dimensional.[]

1.2.3. Proposition. 4 regular space X is zero-dimensional if and only if X
is non-empty and for every point x € X and each closed set B < X such
that x ¢ B the empty set is a partition between x and B.[]

1.2.4. Proposition. 4 separable metric space X is zero-dimensional if and
only if X is non-empty and has a countable base consisting of open-and-closed
sets.[]

We shall now discuss a few examples.
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1.2.5. Examples. The space of irrational numbers P = R is zero-dimensional
because it has a countable base consisting of open-and-closed sets, viz.,
the sets of the form Pn(a, b), where a and b are rational numbers.

Similarly, the space of rational numbers Q = R is zero-dimensional.
More generally, if a metric space X satisfies the condition 0 < |X]| < ¢,
then indX = 0. Indeed, for every point x € X and each neighbourhood
V < X of the point x there exist a positive number » such that B(x, r)
< V and a positive number ¢ < r such that g(x, v) # ¢ for every y € X,
where ¢ is the metric on the space X; the set U = B(x, t) satisfies the
condition x e U = ¥V and is open-and-closed, because FrU < {y eX:
e(x,y) =t} = 0.

A non-empty subspace X of the real line R is zero-dimensional if and
only if it does not contain any interval. Since intervals are connected and
no connected space containing at least two points is zero-dimensional,
the condition is necessary by virtue of Proposition 1.2.2. The condition
is also sufficient; indeed, the sets of the form Xn(a, b), where a,b € R
and a < x < b, constitute a base for the space X at the point x and for each
V = Xn(a, b) one can find an open-and-closed set U < ¥ such that
xe U c V, it suffices to define U = Xn(c, d), where ¢ € (a, x)"X and
de(x, b)\X.

In particular, the subspace C of the real line consisting of all real numbers
in the closed unit interval I that have a tryadic expansion in which the digit 1

2xi h
3 where x;

[+e]
does not occur, i.e., the set of all numbers of the form x = Z
i=1

is equal to O or 1 for i = 1, 2, ..., is zero-dimensional. Indeed, the set C

0
does not contain any interval because C = (") F;, where F; is the subset
i=1

of I consisting of all numbers having a tryadic expansion in which 1
does not occur as the j-th digit for j < i, and F; contains no interval of length
larger than 1/3% One easily sees that the set F; is obtained from I by re-
moving the “middle” interval (1/3, 2/3), the set F, is obtained from F,; by
removing the “middle” intervals (1/9, 2/9) and (7/9, 8/9) of both parts of
F,, and so on. The set F; consists of 2! disjoint intervals of length 1/3%.

Om — O - OO OO OO OO
0 7 0 10 1

s
[N}
[
w@in
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wln
wlN
e

Fig. 2
The subspace C of the real line is called the Cantor set. Since C is a
closed subset of I, the Cantor set is compact.
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The Cartesian product Q" = R" is zero-dimensional, because it is
a countable space. The Cartesian product P" < R" is also zero-dimensional;
the proof is left to the reader (cf. Theorem 1.3.6).[]

As shown in the following theorem, zero-dimensional separable metric
spaces have a separation property which is much stronger than the property
described in Proposition 1.2.3.

1.2.6. The first separation theorem for dimension 0. If X is a zero-dimensional
separable metric space, then for every pair A, B of disjoint closed subsets
of X the empty set is a partition between A and B, i.e., there exists an open-
and-closed set U = X such that A < U and B < X\U.

Proof. For every x € X there exists an open-and-closed set W, < X such
that x € W, and

(1) either AnW,=@ or BnW.,=0.

The open cover {W,},cx of the space X has a countable subcover { Wy, }2 ;.
The sets

U, = Wx,\Ule c W, wherei=12,..,

j<i
are open and constitute a cover of the space X. Let us define
U= U{U;: AnU, # @} and W= {U;: AnU, = O};

obviously, 4 « U and it follows from (¥ that B = W. Since the sets
U, are pairwise disjoint, W = X'\ U, which implies that the set U is open-
and-closed and that B = X\ U.[]

1.2.7. Remark. It follows from the above proof that in Theorem 1.2.6
the assumption that X is a separable metric space can be replaced by the
weaker assumption that X is a Lindelof space, i.e., a regular space which
has the property that every open cover of X has a countable subcover.

Now we are going to prove the second separation theorem, which
is still stronger than Theorem 1.2.6. Let us recall that two subsets 4 and B

of a topological space X are separated if AnB = O = AnB. One easily
sees that the sets 4 and B are separated if and only if they are disjoint
and open (or—equivalently—closed) in their union 4AUB, i.e., if AnB = O
and the empty set is a partition between 4 and B in the subspace AUB

of X. In particular, two disjoint open sets, and also two disjoint closed
sets, are separated.
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The second separation theorem will be deduced from two lemmas;
with a view to further applications, the second lemma is formulated in
a more general way than needed in this section.

1.2.8. Lemma. For every pair A, B of separated sets in a metric space X
there exist open sets U, W < X such that

) AcU, BcW and UnW=0.

" Proof. Let ¢ be the metric on the space X and let f(x) = o(x, 4) and g(x)
= g(x, B) denote the distance of the point x € X from A4 and B, respectively.
Since the functions f and g are continuous, the sets

U= {xeX: f(x)—g(x) <0} and W= {xeX: f(x)—g(x) >0}

are open. The inclusions in (2) follow from the equalities f~1(0) = 4

and g~1(0) = B; the equality UnW = & follows directly from the defini-
tion of U and W.[

1.2.9. Lemma. Let M be a subspace of a metric space X and A, B a pair
of disjoint closed subsets of X. For every partition L' in the space M between
Mn 171 and MV, where Vi, V, are open subsets of X such that A = V;,
B <V, and 1710172 = @, there exists a partition L in the space X between
A and B which satisfies the inclusion MnL < L',

If M is a closed subspace of a metric space X and A, B a pair of disjoint
closed subsets of X, then for every partition L' in the space M between M A
and MnB there exists a partition Lyin the space X between A and B which
satisfies the inclusion MnL < L'.

Proof. 1et U’, W' be open subsets of M satisfying the conditions
MAV, c U, MaV,c W, UnW =0 and M \L =UuW,
Observe that

3 AnW' = @ = BnU".

Indeed, since V,nW’' = MaV,nW’ < UnW’ = O and since the set ¥,
is open, we have V,.nW' = Q,_which implies that AnW’ = &; by sym-
metry of assumptions, also BnU’' = @.

The sets U’ and W’ are disjoint and open in their union U'VW’, and
thus they are separated, i.e.,

@ UnW =0 =UnW.
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If follows from (3) and (4) that the sets 40U’ and BU W are also separated.
Hence, by Lemma 1.2.8, there exist open sets U, W < X such that
AU e U, BUW' cW and UnW=G@.
The set L = X\ (UuW) is a partition in the space X between 4 and B.
Since
MnL = MN\(UuW)c M\U' W) =L,
the first part of the lemma is established.

Fig. 3

. To prove the second part, consider open subsets U, , W, of the space M
satisfying the conditions
MnAd<cU, MnBc W, UnW, =@ and M\L = U,uW,.
Since AN(M\U)) = @, BA(M\W,) = @ and AnB = O, there exist
open sets V,, ¥, < X such that

AcV,cV, cX\(M\U,), BcV,cV,cX\M\W)

and V,nV,=0@.

Obviously, L' is a partition in the space M between MAV, and MnV,,
so that the partition L exists by the first part of the lemma. []

1.2.10. Remark. In the proof of Lemma 1.2.9 only the fact that Lemma
1.2.8 holds in metric spaces was applied; as the latter lemma holds in
hereditarily normal spaces (see Theorem 2.1.1), Lemma 1.2.9 also holds
in hereditarily normal spaces.

1.2.11. The second separation theorem for dimension 0. If X is an arbitrary
metric space and Z a zero-dimensional separable subspace of X, then for
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every pair A, B of disjoint closed subsets of X there exists a partition L between
A and B such that LnZ = @.

Proof. Consider open sets V;, ¥V, = X such that 4 = V;, B < ¥V, and
VNV, = . By virtue of Theorem 1.2.6, the empty set is a partition-
in the space Z between Zn¥; and ZnV,. Applying the first part of Lemma
1.2.9 we obtain the required partition L. [] -

The last theorem yields a characterization of zero-dimensional subspaces
in terms of neighbourhoods in the whole space (cf. the proof of Proposi-
tion 1.1.4):

1.2.12. Proposition. A separable subspace M of an arbitrary metric space X
is zero-dimensional if and only if M is non-empty and for every point x € M
(or—equivalently—for every point x € X) and each neighbourhood V of the
point x in the space X there exists an open set U < X such that xe U < V
and MnFrU = @.

Proposition 1.2.12 and Lemma 1.1.5 imply

1.2.13. Proposition. 4 subspace M of a separable metric space X is zero-
dimensional if and only if M is non-empty and X has a countable base %
such that MnFrU = @ for every U %. [

It is natural to ask at this point whether every zero-dimensional subspace
of a given space can be enlarged to a “better” zero-dimensional subspace.
The example of the subspace of the real line consisting of rational numbers
shows that, generally, zero-dimensional subspaces cannot be enlarged
to closed zero-dimensional subspaces; however, as shown in the next
theorem, they can always be enlarged to zero-dimensional Gj-sets. Let us
recall that Ggsets are defined as countable intersections of open sets,
and F,-sets as their complements, i.e., countable unions of closed sets.

1.2.14. The enlargement theorem for dimension 0. For every zero-dimensional
separable subspace Z of an arbitrary metric space X there exists a Ggset
Z* in X such that Z < Z* and the subspace Z* of the space X is zero-dimen-
sional.

Proof. Since every closed subset of a metric space is a Gs-set and a Gs-set
in a subspace which itself is a Gs-set is a G,-set in the space, one can assume
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that Z = X. Thus X is separable and, by virtue of Proposition 1.2.13,
has a countable base # such that ZnFrU = & for every Ue %. The
union F = {_J{FrU: U e 4%} is an F,-set, and its complement Z* = X\F
is a Gg-set which contains the set Z. From Proposition 1.2.13 it follows
that Z* is zero-dimensional. (]

As the reader has undoubtedly observed, Theorem 1.2.6 states that
in separable metric spaces two properties, viz., the property that the empty
set is a partition between any disjoint closed sets 4, B, and the property
that the empty set is a partition between every point x and each closed
set B such that x ¢ B, are equivalent. The question arises whether the
property that the empty set is a partition between any distinct points
x, y is still the same property. As shown in the following example, the
answer to this question is negative (cf. the notion of a totally disconnected
space discussed in Section 1.4).

1.2.15. Erdos’ example. Let us recall that Hilbert space H consists of all

(o]
infinite sequences {x,} of real numbers such that the series Z x? is con-

vergent. For every pointx = {x;} € H the norm ||x|| of the point x is the

‘number ]/Z x}, and the distance between x = {x;} and y = {y;} is
i=1
.defined by

o(x,7) = '|/i(xi—yi)2 ,
i=1

i.e., is equal to the norm of the difference x —y. The function g is a metric
on H, and H is a separable metric space.

We shall show that, in the subspace H, of the space H consisting of
the points {x;} € H such that x; is rational for every i, the empty set is
-a partition between any distinct points x, y, and yet H, is not zero-
-dimensional.

Let us consider a pair x = {x,}, y = {y,;} of distinct points of H,.
‘There exists a natural number i, such that Xy, # y;,; without loss of
generality one can assume that x; < y; . Take an irrational number ¢
such that x; <t < »i, and define

U= {{z}eH,: 7, < t}.
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One can easily verify that the set U is open-and-closed in H,. As x e U
< Hy\{y}, the empty set is a partition between x and y.

Now, let x, € H, be the sequence whose terms are all equal to zero
and let ¥V = B(x,, 1) = {x € Hy: |}x]| < 1}. We shall show that for every
neighbourhood U of the point x, which is contained in the neighbourhood
V of x, we have FrU # @. ’

We shall define inductively a sequence q,, a,, ... of rational numbers
such that

G xx=(@,a,..,4,0,0,..)eU and o(x, H,\U) < 1/k

for k = 1,2, ... Conditions (5) are satisfied for k = 1 if we let a, = 0.
Suppose that the rational numbers q,,a,, ..., a,-, are already defined
and conditions (5) are satisfied for £ < m—1. The sequence

X;n = (a1,a2, ey Q1 l/m’ 0’0’ )

is an element of H, for i =1,2,...,m. As xf = x,_, €U and x" ¢ U
because ||xi|| > 1, there exists an i, < m such that xI' € U and x7.., ¢ U.
One easily sees that conditions (5) are satisfied for & = m if we let a,,

= ip/m. Thus the sequence a,,a,, ... is defined. From the first part of
, : ©

(5) it follows that Y. a? < 1 for k= 1,2, ..., so that Y. a? < 1. Hence
i i=1

=1 i=
a = {a;} is a point of H, and a € U. On the other hand, from the second

part of (5) it follows that a € H,\U, so that a e FrU and FrU # @.

Thus we have shown that there is no open-and-closed set U < H,
such that x, € U < ¥V, and this implies that the space H, is not zero-
dimensional.

To conclude, let us observe that the only open-and-closed bounded
subset of the space H, is the empty set. Indeed, if there existed a non-
empty open-and-closed bounded set W < H,, then by a suitable trans-
lation and contraction of W we could obtain an open-and-closed set
Uc H, such that x, e U< V. O

Historical and bibliographic notes

Zero-dimensional spaces were defined by Sierpinski in [1921], before
dimension theory was originated. Sierpifiski’s objective was to compare
a few classes of metric spaces which are highly disconnected; a similar
comparison will be drawn in Section 1.4. The theorems in the present
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section are all special cases of theorems which will be proved in Section
1.5 for an arbitrary dimension z; they were at once established in this
more general form. Theorem 1.2.6 was proved for compact metric spaces
by Menger in [1924] and by Urysohn in [1926] and was extended to sepa-
rable metric spaces by Tumarkin in [1926] (announcement in [1925]) and
by Hurewicz in [1927]; the generalization stated in Remark 1.2.7 was
obtained by Vedenissoff in [1939]. Theorem 1.2.11 was proved for compact
metric spaces by Menger in [1924] and was extended to separable metric
spaces by Hurewicz in [1927]. Theorem 1.2.14 was obtained by Tumarkin
in [1926] (announcement [1925]). The space in Example 1.2.15 was
described by Erdos in [1940]; the first example of a space with similar
properties was given by Sierpinski in [1921].

Problems

1.2.A. Let M be a subspace of a metric space X and let x be a point
of M. Prove that ind,M = O if and only if there exists a base {U,}%,
for the space X at the point x such that MnFrU, =@ fori=1,2, ...

1.2.B. Show that a subspace M of a metric space X is zero-dimensional
if and only if M is non-empty and for every point x € M and each neigh-
bourhood ¥V of the point x in the space X there exists an open set U < X
such that xe U < V and MnFrU = & (cf. Proposition 1.2.12 and Prob-
lem 4.1.C).

1.2.C. Show by an example that in the second part of Lemma 1.2.9
the assumption that the subspace M is closed cannot be omitted.

1.2.D. Check that every countable compact space has isolated points.
Note that locally compact countable spaces have the same property.

Hint. Arrange all points of the space into a sequence x;, X,, ... and,
assuming that none of the points x, is isolated, define a decreasing sequence
F, o F, o ... of non-empty closed sets such that x, ¢ F; fori=1,2, ...

One can gqually well apply the Baire category theorem.

Remark. Every completely metrizable space with no isolated points
contains a subspace homeomorphic to the Cantor set and thus is of car-
dinality at least ¢ (see [GT], Problem 4.5.5(a)).
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1.2.E (Kuratowski [1932a]). Define a mapping f of the Cantor set C
to the interval [—1, 1] by letting

fO=0 and foo- P EDE,
- 2x

for each x =

i=1

e C\{0},

where i, < i, < ... is the sequence (finite or infinite) of all i’s such that
x; = 1; let C, denote the set of all points x € C\ {0} for which the sequence
i1, i,, ... is infinite and let C, = C\C,.

(a) Observe that the set C, consists of the number 0 and the right
end-points of the intervals (1/3, 2/3), (1/9, 2/9), (7/9, 8/9), ... removed
from I to obtain the Cantor set; note that C, is a countable set.

(b) Check that the function f is continuous at all points of C,.

. 2 2

(¢) Verify that for every x = %4—?4— +3— € C;, the upper

limit f(x) and the lower limit f(x) of the function f at the point x are equal

to f(x)+ o and f(x)—%k-, respectlvely, observe that the function f is

discontinuous at all points of C;.
(d) For each point x € C, define two sequences, {x;} and {x;’}, of points
in C; such that

limx, = x, limf(x) =f(x), Lmf(x) =f(x)
and

limx; = x, limf(x;) = f(x), 1im{(x_,',_') = f(x).

(e) Consider the graph K = {(x,f(x)): x € C} of the function f and
prove that indgy, sy K = 1 for every x € C,.
Hint. Prove that the space D = Ku |J({x}x[f(x), f™) < R is

xeCy

compact. Assuming that ind (x,s:,»)K = 0 for an x, € C;, show that
there exists a partition L in the space D between (xo, f(x0)) and (xo, f(xo))
such that LnK = @. Show that the set M consisting of all points x € C;
such that L is a partition between either (x, f(x)) and (x, f(x)) or (x, f(x))
and (x, f(x)) is contained in the projection of L onto C and contains an
isolated point (see Problem 1.2.D); deduce a contradiction of (d).

(f) Observe that ind (., rx)K = 1 for every x € C,.
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(g) Check that the empty set is a partition between any distinct points
of the space K.

(h) Note that the space X is completely metrizable.

Hint, Check that K is a Gg-set in D and apply Lemma 1.3.12.

1.3. The sum, Cartesian product, universal space, compactification and em-
bedding theorems for dimension 0

The theorems enumerated in the title of the section belong to the most
important results of dimension theory. For the time being we shall only
prove their special cases pertaining to zero-dimensional spaces. We begin
with the sum theorem.

1.3.1. The sum theorem for dimension 0. If a separable metric space X can
be represented as the union of a sequence Fy, F,, ... of closed zero-dimen-
sional subspaces, then X is zero-dimensional.
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Proof. Consider a pair 4, B of disjoint closed subsets of the space X. We
shall prove that there exist open sets U, W < X such that

D AcU, BcW, UnW=@ and X=UuW,

i.e., that the empty set is a partition between 4 and B.
Let U,, W, be open subsets of X such that

(2) A < UO, B e WO and ﬁon WO = g.
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We shall define inductively two sequences U,, U,;, U,,... and
Wy, Wi, W, ... of open subsets of X satisfying for i = 0,1, 2, ... the
conditions:

B U_icU, Wi_,cW, if izl and UnW,=0.
@) F, < UjUW,, where F,=@.

Clearly, the sets U,, W, defined above satisfy both conditions for i = 0.
Assume that the sets U;, W, satisfying (3) and (4) are defined for all i < k.

The sets U,_;nF, and W,_;nF, are closed and disjoint; since the
space F, is zero-dimensional, by virtue of Theorem 1.2.6 there exists an
open-and-closed subset V' of F, such that

5) U ynFecV and W, ,nF,c F\V.

The set F, being closed in X, the sets ¥V and F,\V are also closed in X;
from (5) it follows that

(ﬁkﬂUV)m[quU(Fk\V)] = (Vka—l)u[vk—]m(Fk\V)] =9,
so that there exist open sets U, W, = X satisfying
U WV e U, W ,UFEN) < W, and UpnW,=9.

The sets Uy, W, satisfy (3) and (4) for i = k; thus, the construction of the
sequences U, Uy, U,, ... and Wy, W,, W,, ... is completed. It follows

from (2), (3) and (4) that the unions U ={ ) U; and W = {_) W; satisfy (1). [
i=0 i=0

1.3.2. Remark. Undoubtedly, the reader has noted that in the proof of
Theorem 1.3.1 only the normality of the space X and the fact that the
empty set is a partition between each pair of disjoint closed subsets of the
space F, were applied. Hence we have proved that if a normal space X
can be represented as the union of a sequence Fy, F,, ... of closed subspaces
with the property that for / = 1, 2, ... the empty set is a partition between
each pair of disjoint closed subsets of the space F;, then the empty set is
a partition between any disjoint closed subsets of the space X.

From Theorem 1.3.1 several corollaries follow:

1.3.3. Corollary. If a separable metric space X can be represented as the
union of a sequence Fi,F,, ... of zero-dimensional subspaces, where F, is
an Fy-set for i = 1,2, ..., then X is zero-dimensional. []
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1.3.4. Corollary. If a separable metric space X can be represented as the
union of two zero-dimensional subspaces A and B, one of them closed,
then X is zero-dimensional.

Proof. Let us suppose that 4 = A; the open set X\A c B is zero-
dimensional by virtue of the subspace theorem. Since every open subset
of a metric space is an F,-set and since X = Au(X\4), to complete the
proof it suffices to apply Corollary 1.3.3. []

1.3.5. Corollary. If by adjoining a finite number of points to a zero-dimensional
separable metric space one obtains a metric space, then the space obtained
is zero-dimensional and separable. (]

In connection with the last corollary, let us note that by adjoining
countably many points to the spaée of irrational numbers one can obtain
the real line, i.e., a space of positive dimension.

We shall now prove the Cartesian product theorem.

1.3.6. The Cartesian product theorem for dimension 0. The Cartesian product
o0
X =[] X, of a countable family {X, ¥, of regular spaces is zero-dimensional
i=1
if and only if all spaces X, are zero-dimensional.

Proof. If X = @, then each space X; is homeomorphic to a subspace of X,
so that if X is zero-dimensional, then all spaces X, are zero-dimensional.
To prove the reverse implication, it is enough to consider for i = 1, 2, ...
a base &, for the space X, consisting of open-and-closed sets and observe
[+ 93
that the sets of the form U, xU,x ... xUyx [l X,, where U, € %;
i=k+1
for i<k and k= 1,2, ..., constitute a base for X and are open-and-
closed in X. O

Theorems 1.1.2 and 1.3.6 yield

1.3.7. Corollary. The limit of an inverse sequence {X,,n}} of zero-dimen-
sional spaces is either zero-dimensional or empty. [

The sum and Cartesian product theorems allow us to increase our
stock of zero-dimensional spaces.

1.3.8. Examples. For every pair k, n of integers satisfying 0 < k< n>1
denote by QF the subspace of Euclidean n-space R" consisting of all points
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which have exactly & rational coordinates. We shall prove that Qj is a zero-
dimensional space.

For each choice of k& distinct natural numbers i,, i,, ..., {; not larger
than n and each choice of k rational numbers r,, r,, ..., ry, the Cartesian

product ]_[R,, where R;, = {r;} for j=1,2,...,k and R, = R for

i # iy isa closed subspace of R". Hence, an]_[ R; is a closed subspace
i=1

of Qk Since the space an]_[ R; is homeomorphic to the subspace of

R"* consisting of all points w1th irrational coordinates, it follows from
Example 1.2.5 and Theorem 1.3.6 that it is a zero-dimensional space.
Theorem 1.3.1 implies that the space Qf is zero-dimensional, because

the family of all subspaces of the form Q][ R, is countable and its
i=1

union is equal to the whole of Qf.

It also follows from Theorem 1.3.6 that the space Q%., which is the
Cartesian product of N, copies of the space of rational numbers, and the
space P%, which is the Cartesian product of N, copies of the space of
irrational numbers, are zero-dimensional. [7]

1.3.9. Definition. We say that a topological space X is universal for a class
A" of topological spaces if X belongs to " and every space in the class
A" is homeomorphic to a subspace of the space X.

We are now going to prove that the Cantor set C and the space P of
irrational numbers are universal spaces for the class of all zero-dimensional
separable metric spaces; in the proof we shall apply the fact that both C
and P can be represented as countable Cartesian products. '

1.3.10. Proposition. The Cantor set C is homeomorphic to the Cartesian

0

product D% =[] D,, where D,, fori = 1,2, ..., is the two-point discrete
i=1

space D = {0, 1}.

Proof. As one readily verifies, for each point x € C the representaton

0

. 2 L
in the form x = Z —3xi—‘, where x;’s are equal to O or 1, is unique. Hence,
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letting
2x, %
SEx) = =0 for  {x,} € D,
i=1
we define a one-to-one mapping of D¥o onto C. Since the function f;:
2x; . .
D¥o — I defined by f,({x,}) = —;—: is continuous fori = 1,2, ... and the

0

series Z f: is uniformly convergent to f, the latter function is continuous.
i=1

It follows from the compactness of D¥. that f is a homeomorphism. [J

The proof of the counterpart of Proposition 1.3.10 for the space of
irrational numbers requires some calculation to remedy the lack of compact-
ness. Let us recall that if X is a metric space, then by a metric on the space X
we mean any metric on the set X which is equivalent to the original metric
on X, i.e., induces the same convergence as the original metric.

1.3.11. Lemma. Let ¢ be an arbitrary metric on the space P of irrational

numbers and € a positive number. For every non-empty open set U c P

there exists an infinite sequence F,, F,, ... of pairwise disjoint non-empty
[o]

open-and-closed subsets of P such that U = \_J F, and the diameters with
i=1
respect to o of all sets F; are less than .

Proof. Consider an interval (a, b)) = R with rational end-points such that
(a, b)nP < U and divide it into N, pairwise disjoint non-empty intervals
(a:, b)), (az, by), ... with rational end-points. Thus we have (a, bH)nP

0
=) 4;, where 4; = (a;, b)nP # O, a;, b;€Q and 4,;n4; = & when-
i=1

ever i # j; in addition let 4, = U\(a, b). The sets A4,, 4;, 4, ... are
open in P and by virtue of Proposition 1.2.4 for i = 0,1,2, ... there
exist in P open-and-closed sets A4,,,, 4;,,, ..., all of diameter less than

& such that 4, = () 4, ;; letting B, ; = 4, \\J 4;,  forj=1,2, ..,
=1 K<)

we obtain pairwise disjoint open-and-closed subsets of P whose union
is equal to 4,. To complete the proof it suffices to arrange all non-empty
sets B, ; into a simple sequence F,, F,, ... O

The next lemma is an important theorem on complete spaces. In con-
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sideration of further applications it is stated in full generality and not
merely for the subspace P of the real line R.

1.3.12. Lemma. Every Gs-set X in a completely metrizable space X, is com-
pletely metrizable. '

Proof. Let p be a complete metric on the space X, and let X = ((% G,
where G, is open in X, for i = 1,2, ... Define =

F, = X,\G; and fi(x)=1/o(x,F) forxeX and i=1,2,...;
the functions f;,f,, -.. from X to the real line R are continuous. One
readily sees that the formula f(x) = (x, f1(x), £2(x), ...) defines a homeo-
morphic embedding f: X —>fIOX,, where X; = R for i > 1. Since the

Cartesian product of countably many completely metrizable spaces and
a closed subspace of a completely metrizable space are completely metriz-
able, to complete the proof it suffices to show that f(X) is a closed subset

of [] X,. We shall show that every point x = {x,} €[] X\ f(X) has
i=0 : =0

a neighbourhood V contained in the complement of f(X).

We first consider the case where x, € X. As x ¢ f(X), there existsa k > 0
such that x; # fi(xo). Let U; and U, be disjoint neighbourhoods of x;
and fi(xo) in the real line. The functions f, being continuous, there exists
a neighbourhood U, = X, of the point x, such that f,(UynX) < U,.
One easily checks that

(6) x = {x} eV =ps'Udrpi'(U) < | [ x>\ 10,
i=0

o0
where p, denotes the projection of [1x, onto X,.
i=0

Now, consider the case where xo ¢ X; thus we have xo € F for a k > 0.
Take a positive number r such that x,+1 < 1/r and let U, = B(xo,r)
and U; = {x € R: x < x,+1}. One easily checks that formula (6) also
holds in this case. []

1.3.13. Proposition. The space of irrational numbers P is homeomorphic

0
to the Cartesian product N* = [| Ny, where Ny, for i = 1,2, ..., is the
i=1

discrete space of natural numbers N.
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Proof. By virtue of Lemma 1.3.12, there exists a complete metric ¢ on the
space P. Applying Lemma 1.3.11, for every sequence k,, k,, ..., k; of nat-

ural numbers define an open-and-closed subset Fy;, i of P such that

(7) P = HFk and Fklk,...k‘ = Hl Fk,k,...k,k-
® Figpig 79 and  0(Fiy,.x) < 1/i.

) Feky iy O Fpmy..m, =9 whenever (ky,k,,.... k) # (my,my,...,m).

It follows from (7) and (8) that for every {k;,} e N¥ the subsets

Fy, s Fy, ks Fr,kpty» --- Of the space P form a decreasing sequence of non-empty

closed sets whose diameters converge to zero; hence, by virtue of the
0

Cantor theorem, the set () Fy x, i, contains exactly one point, which
i=1

we shall denote by f({k,}). Conditions (7)—(9) imply that by assigning
S({k:}) to {k;} € N¥ one defines a one-to-one mapping of N* onto P.
Since, as one readily verifies,

Ay kayx o x 3 x [T M) = By

f=j+l
the mapping f is .a homeomorphism, because the sets on the left-hand
side of the last equality form a base for N*° and the sets on the right-hand
side form a base for P. [

1.3.14. Corollary. The Cantor set is homeomorphic to a subspace of the
space of irrational numbers. []

Now we are ready to prove the universality of C and P.

1.3.15. The universal space theorem for dimension 0. The Cantor set and the
space of irrational numbers are universal spaces for the class of all zero-
dimensional separable metric spaces.

Proof. By virtue of Corollary 1.3.14, it suffices to show that for every
zero-dimensional separable metric space X there exists a homeomorphic
embedding f: X — D¥o,

It follows from Proposition 1.2.4 that the space X has a countable
base # = {U,}2, consisting of open-and-closed sets. For i = 1,2, ...
define a mapping f;: X - D, = D by letting

1 for xeU,,
fix) = {0 for x e X\U;.
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Consider the mapping f: X — D*° defined by the formula f(x) = (f,(x),
f2(x), ...). Since for every natural number k we have

[ = fX)n]{x;} e D2 x = 1},
the mapping f is a homeomorphic embedding. (]

The universal space theorem implies the compactification theorem
and the embedding theorem.

1.3.16. The compactification theorem for dimension 0. For every zero-dimen-
sional separable metric space X there exists a zero-dimensional compactifica-

tion X, i.e., a zero-dimensional compact metric space X which contains a dense
subspace homeomorphic to X,

Proof. Let f: X - C be a homeomorphic embedding of X in the Cantor
set C. Since the Cantor set is compact, so is its closed subspace X = f(AT) ;
the space X is zero-dimensional by virtue of the subspace theorem. [J

1.3.17. The embedding theorem for dimension 0. Every zero-dimensional
separable metric space is embeddable in the real line R. ]

Let us conclude this section by observing that in the theory of zero-
dimensional spaces the key role is played by four theorems, viz., the separa-
tion theorems, the sum theorem and the universal space theorem. All
the remaining results either are elementary or easily follow from one of
the four cited theorems. As the reader shall see later, the situation changes
when we pass to higher dimensions.

1.3.18. Remark. In Theorems 1.3.6, 1.3.15 and 1.3.16 countability is not

essential. In the same way one proves that the Cartesian product X = I1x.
seS

of a family {X,}.s of regular spaces satisfies the equality indX = 0 if
and only if indX, = 0 for every s €S, and that every regular space X
satisfying indX = 0 is embeddable in the Cantor cube D™ (i.e., the Car-
tesian product of m copies of the two—pomt discrete space D), which implies
that X has a compactification X < D™ such that indX = 0; the cardinal
number m is the cardinality of a base for the space X consisting of open-
and-closed sets. '
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Historical and bibliographic notes

The theorems in the present section are all special cases of theorems
which will be proved in Sections 1.5, 1.7 and 1.11 for an arbitrary dimension
n. Theorem 1.3.1 was proved for compact spaces (and for an arbitrary
dimension n) by Menger in [1924] and by Urysohn in [1926] (announce-
ment in [1922]); it was extended to separable metric spaces by Tumarkin in
[1926] (announcement in [1925]) and by Hurewicz in [1927]. Theorem 1.3.6
was established by Kuratowski in [1933] and Theorem 1.3.15 by Sier-
pinski in [1921].

Problems

1.3.A. (a) Prove that if a separable metric space X can be represented
as the union of a sequence F,, F,, F,, ... of closed subspaces such that
indF; =0fori=1,2,..., then ind, X = 0 for every point x € F, such
that ind,F, = 0.

(b) Give an example of a separable metric space X which can be rep-
resented as the union of two closed subspaces F, and F, in such a way
that for a point x € F;nF, we have ind,F, = ind, F, = 0 and yet ind, X
> 0.

1.3.B. Note that Theorem 1.3.1 for a subspace X of the real line is
a consequence of the Baire category theorem. Deduce from Theorem
1.3.1 the Baire category theorem for the real line.

1.3.C. (a) (implicitly, Sierpinski [1928]) Prove that every non-empty
closed subset A4 of a zero dimensional separable metric space X is a retract
of X, i.e., that there exists a continuous mapping r: X — 4 such that r(x)
= x for every x € A.

Hint. Represent the complement X\ 4 as the union of a sequence
F,, F,, ... of pairwise disjoint open-and-closed sets such that lim 6(F;) = 0.
Fori=1,2,... choose a point x, € 4 such that o(x;, F;) < o(4, F))+1/i
and let r(x) = x, for x € F,.

(b) Note that if a non-empty regular space X has the property that

every non-empty closed set 4 = X is a retract of X, then X is zero-dimen-
sional.
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Remark. The characterization of zero-dimensional spaces contained
in (2) and (b) generalizes to higher dimensions; see Problem 4.1.F.

1.3.D (Alexandroff [1927a] (announcement [1925]), Hausdorff [1927]).
Check that letting

[+

Al = D 5 for () e D%,
i=1

one defines a continuous mapping of the Cantor set D¥ onto the closed

interval 1. Verify that if y is an end-point of one of the intervals removed

from I to obtain the Cantor set, then [f ~1(y)| = 2, and otherwise |f ()|

= 1.

Define a continuous mapping of the Cantor set D¥ onto the Hilbert
cube I®o and—applying Problem 1.3.C together with the fact that I
is a universal space for the class of all separable metric spaces—show
that every non-empty compact metric space is a continuous image of the
Cantor set. Deduce that every non-empty separable metric space is an image
of a zero-dimensional separable metric space under a one-to-one continuous

mapping.

1.3.E. (a) (Mazurkiewicz [1917]) Prove that every G;-set which is dense,
and whose complement is also dense, in a completely metrizable separable
zero-dimensional space is homeomorphic to the space of irrational numbers.

Hint. Modify the proof of Proposition 1.3.13.

(b) (Alexandroff and Urysohn {1928]) Show that every completely
metrizable separable zero-dimensional space which does not contain any
non-empty compact open subspace is homeomorphic to the space of
irrational numbers.

Hint. Apply (a).

(c) Note that the subspace of the Cantor set C consisting of all points
which are not end-points of intervals removed from I to obtain the Cantor
set is homeomorphic to the space of irrational numbers.

1.3.F (Brouwer [1910]). Prove that every zero-dimensional compact
metric space with no isolated points is homeomorphic to the Cantor set.
Hint. Modify the construction in the proof of Proposition 1.3.13 in
such a way that the sets Fy ,_,, will be defined for k; < my, ks < my, ...
..oy ky < my, where my, m,, ... is a sequence of powers of the number 2.
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1.3.G. (a) (Brouwer [1913a]; implicity, Fréchet [1910]) Prove that for
any two countable dense subsets A, B of the real line R there exists a homeo-
morphism f: R — R such that f(4) = B (see Problem 1.8.D).

Hint. Let A = {a,,a,,...} and B = {b,, b,, ...}; define inductively
a function f from A4 to R by letting f(a,) = b, and taking as f{a;) an element
of B, with the smallest possible index, such that the conditions a; < a,
and f(a;) < f(a,) are equivalent for j, k < i. Extend f over R and prove
that this extension is a homeomorphism.

(b) (Fréchet [1910]) Prove that the space of rational numbers Q is
a universal space for the class of all countable metric spaces.

Hint. Observe that countable metric spaces are embeddable in the real
line; for a countable X « R apply (a) to the sets XuQ and Q.

1.3.H. (a) Prove that if 4,, 4., B, and B, are countable dense subsets
of the real line R satisfying the condition 4,n4, = @ = B,nB,, then
there exists a homeomorphism f: R — R such that f(4,) = B, and f(4,)
= B,.

Hint. See Problem 1.3.G(a).

(b) Show that for any two countable dense subsets 4, B of the space
of irrational numbers P there exists a homeomorphism f: P — P such
that f(4) = B.

(c) Show that for any two countable dense subsets 4, B of the Cantor
set C there exists a homeomorphism f: C — C such that f(4) = B.

Hint. Observe that for every countable set 4 < C there exists a homeo-
morphism g: C — C such that the set g(4) is disjoint from the set consist-
ing of the end-points of all intervals removed from 7 to obtain the Cantor
set.

(d) (Sierpiriski [1920a] (announcement [1915])) Prove that every count-
able metric space dense in itself is homeomorphic to the space of rational
numbers.

Hint. By virtue of (b) it suffices to show that every countable metric
space X dense in itself is homeomorphic to a dense subspace of the space
of irrational numbers P. To that end, embed X in P, consider the closure
X < P, remove in an appropriate way N, points from X\X, and apply
Problem 1.3.E(a).

One can equally well use Problem 1.3.F and apply (c).

(e) Note that the subspace of the Cantor set C consisting of the end-
points of all intervals removed from I to obtain the Cantor set is homeo-
morphic to the space of rational numbers.
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1.4. Various kinds of disconnectedness

We shall now compare the class of zero-dimensional spaces with three
other classes of highly disconnected spaces. It will follow from this com-
parison that none of these three classes satisfies the counterparts of the
theorems proved for zero-dimensional spaces in Sections 1.2 and 1.3.
Hence, zero-dimensional spaces form the nicest class of highly disconnected
spaces. The dimension functions that one could define inductively, in the
way the function ind is defined, starting at the zero-level with another
class of highly disconnected spaces instead of the class of zero-dimensional
spaces, would not lead to a dimension theory as rich and harmonious
as the theory based on the dimension function ind developed in this chapter.

1.4.1. Definition. A topological space X is called totally disconnected if
for every pair x, y of distinct points of X there exists an open-and-closed
set U < X such that x € U and y e X\UJ, i.e., if the empty set is a parti-
tion between any distinct points x, y of the space X.

Clearly, every zero-dimensional space is totally disconnected.

Totally disconnected spaces are characterized by the property that
their quasi-components are one-point sets. Let us recall that quasi-com-
ponents of a topological space X are defined as the minimal non-empty
intersections of open-and-closed subsets of X, i.e., a non-empty set K < X
is a quasi-component of the space X if K can be represented as the inter-
section of open-and-closed sets and for every open-and-closed set U =« X
such that KnU # & we have K < U. The quasi-components of a space X
constitute a decomposition of X into pairwise disjoint closed subsets.

1.4.2. Definition. A topological space X is called hereditarily disconnected
if X does not contain any connected subspace of cardinality larger than
one.

Every totally disconnected space is hereditarily disconnected. Indeed,
if X is a totally disconnected space, then for each subspace M = X which
contains at least two distinct points x, y the sets MnU and M\ U, where
U is an open-and-closed subset of X such that x € U and y e X\ U, form
a decomposition of the space M into two non-empty disjoint open subsets,
so that the space M is not connected.

Hereditarily disconnected spaces are characterized by the property
that their components are one-point sets. Let us recall that components
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of a topological space X are defined as the maximal non-empty connected
subsets of X, i.e., a non-empty set S = X is a component of the space X
if S is connected and for every connected set 4 — X such that S < 4 we
have S = 4. The components of a space X constitute a decomposition
of X into pairwise disjoint closed subsets.

1.4.3. Definition. A topological space X is called punctiform, or discon-
tinuous, if X does not contain any continuum of cardinality larger than
one.

Clearly, every hereditarily disconnected space is punctiform and every
compact punctiform space is hereditarily disconnected. As shown in Ex-
ample 1.4.8 below, there exist connected punctiform spaces of cardinality
larger than one.

The reader can easily verify that the above three classes of spaces are
closed with respect to the subspace operation.

We shall now show that in the realm of non-empty locally compact
spaces the three classes under consideration coincide with the class of zero-
dimensional spaces.

1.4.4. Lemma. In every compact space quasi-components and components
coincide. -

Proof. To begin with, we shall prove that in an arbitrary topological space
X quasi-components contain the components. Consider a component S
of the space X. Let x be a point in S and K the quasi-component of the
space X which contains the point x; we shall show that § <« K. Take an
open-and-closed set U < X which contains x. Since the sets SNU and
SN\U are open in S and disjoint and since SnU # @, it follows from
the connectedness of S that S\U = @, i.e,, that § = U. The set K being
the intersection of all open-and-closed subsets of X which contain x, we
have S < X,

To complete the proof it suffices to show that the quasi-components
of a compact space are connected. Let us consider the decomposition
of a quasi-component X of a compact space X into two disjoint closed
sets 4, B and let us assume that 4 # @. By the normality of compact
spaces there exist open sets ¥, W < X such that

A<V, BcW and VnW=0.
Denote by % a family of open-and-closed subsets of X satisfying (% = K.
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Since N% < VUW, the family &F = {UN(VUW): Ue¥} of closed
subsets of X has an empty intersection. It follows from the compactness
of X that a finite subfamily of % also has an empty intersection, i.e., that
there exists a finite number of sets U,, U,, ..., Uy € % satisfying

U=U,nU,n...nU, c VUW.

The set U is open-and-closed. Since
VAU c VAU = Va(VuW)aU = VAU,

the set ¥nU is also open-and-closed. From the relation & # 4 = VAU
it follows that K =« ¥nU, and so B« KnW c VnUnW = @, which
proves that the quasi-component K is connected. []

1.4.5. Theorem. Zero-dimensionality, total disconnectedness, hereditary dis-
connectedness and punctiformness are equivalent in the realm of non-empty
locally compact spaces.

Proof. It suffices to prove that every non-empty locally compact puncti-
form space is zero-dimensional. Consider a point x € X and a neighbourhood
V < X of the point x. By the loeal compactness of the space X the point x
has a neighbourhod W< X such that the closure W is compact. The subspace
M = VAW of the space X is compact and punctiform, so that it is here-
ditarily disconnected. By virtue of Lemma 1.4.4, the component {x}
of the space M can be represented as the intersection of a family % of open-
and-closed subsets of M. It follows from the compactness of M that there
exists a finite number of sets U;, U,, ..., Uy € % such that the intersec-
tion U= U,nU,n ... U, is disjoint from the set M\ (VnW). The
set U is closed in M, and thus it is closed in X; on the other hand, the set U
is open in VnW, so that U is an open-and-closed subset of X. As x e U
< V, the space X is zero-dimensional. [

We shall now describe three subspaces of the plane which exhibit
the difference between the classes of zero-dimensional, totally disconnected,
hereditarily disconnected and punctiform spaces. They are all closely
related to the space H, described in Example 1.2.15, which is itself a to-
tally disconnected non zero-dimensional space.

1.4.6. Example. One readily checks that by assigning to every point {x,}
of the space H, described in Example 1.2.15 the same point {x;} in the
Cartesian product Q% of N, copies of the space of rational numbers one
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defines a one-to-one continuous mapping of H, to Q%.. Hence, by virtue
of Theorems 1.3.6 and 1.3.15, there exists a one-to-one continuous mapping
f: Hy = C of the space H, to the Cantor set C. Since the Cantor set is
homogeneous (i.e., for every pair x, ¥ of distinct points of C there exists
a homeomorphism of C onto itself which transforms x to y), one can sup-
pose that f(x,) = 0, where x, € H, is the sequence whose terms are all
equal to zero. Letting

Jx) ix]|
max (1, [Ix]D’ 1+]x]]

one defines a continuous mapping 4: H, — I*. One can prove that / is
a homeomorphic embedding (see Problem 1.4.B(a)). This implies that the
subspace X = h(H,) of the plane is totally disconnected but is not zero-
dimensional; however, a direct proof of these properties of the space X
is simpler. K

h(x) = ( ) for x € H,,

h(xo)

Fig. §

To begin with, let us observe that by letting

G(y,,y,) =y1-max(1, lyzy ) for0<y,<land0<y, <1
—J2

one defines a continuous mapping G: Ix [0, 1) = R which to the point

h(x) € X assigns the point f(x) € C, so that the restriction g = G|X: X - C

is a one-to-one continuous mapping of the space X to the Cantor set C.

From the existence of such a mapping it follows that X is a totally dis-

connected space. Indeed, for every pair x, y of distinct points of X there



Ch. 1, § 4] Various kinds of disconnectedness 35

exists an open-and-closed set ¥ < C such that g(x) e ¥ and g(y) e C\V;
the inverse image U = g~!(V) is an open-and-closed subset of X such
that x e U and y e X\ U.

Now, consider an open-and-closed set U = X such that U = (I'x [0,1/2)) n
NnX. The inverse image A '(U) ¢ H, is an open-and-closed bounded
subset of H, and thus, by virtue of the final observation in Example 1.2.15,
it is empty. Hence, there is no open-and-closed set U < X such that 4(x,)
= (0,0) e U = (In10, 1/2))nX, which shows that the space X is not
zero-dimensional. []

The following two examples are: a space ¥ < I? which is hereditarily
disconnected but is not totally disconnected and a space Z < I? which
is punctiform and connected; in both examples we shall use the notation
introduced in Example 1.4.6.

1.4.7. Example. We shall show that the subspace of the plane ¥ = Xu{p},
where p = (0, 1/2), is hereditarily disconnected but is not totally discon-
nected.

Consider a connected subspace A of the space Y. As G(p) = 0eC,
the image G(A4) is a connected sui)space of the Cantor set and thus contains
at most one point. It follows that A4 is contained in a fibre of the mapping
G|Y. Since all fibres of G|Y are at most of cardinality 2, the set A4 either is
empty or consists of exactly one point, and this implies that the space Y
1s totally disconnected.

Consider now an open-and-closed set U < Y such that p € U. There
exists a number a@ € I\C such that ([0, @)x {1/2})nY < U. One readily
sees that the set

V= ([0,a)x [0, 1/2)AY\U = ([0, @) x [0, 1/2D)AY\U

is open-and-closed in X. The inverse image A~'(V) = H, is an open-and-
closed bounded subset of H, and thus is empty. Hence the set V is also
empty, which implies that A(x,) = (0, 0) € U. Thus for the pair x = p,
y = h(x,) of distinct points of Y there exists no open-and-closed set U =« X
such that x € U and y € Y\U, i.e., the space Y is not totally disconnected. []

1.4.8. Example. We shall show that the subspace of the plane Z = Xu{q},
where g = (0, 1), is punctiform and connected.
Consider a continuum 4 < Z. The difference A\ {q} = X is an F,-set

in 4. and so 4\ {¢} = U 4,, where 4, is compact for i = 1, 2, ... For
=1 -
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every i the restriction g; = gld;: 4; —» g(4,) = C is a homeomorphism,
because it is a one-to-one continuous mapping defined on a compact
space. Since indg;(4,) <0, we have ind4; <0 for i=1,2,... and

—by virtue of Theorems 1.1.2 and 1.3.1—ind 4 < ind ({g}u{_J 4;) = 0.
i=1

Hence the set A either is empty or consists of exactly one point, and this
implies that the space Z is punctiform.

Consider now an open-and-closed set U < Z such that g € U. One
readily sees that there exists a number a € (0, 1) such that (Ix (a, 1))nZ
< U. The inverse image 2~ '(V) « H,, where V = Z\ U, is an open-and-
closed bounded subset of H, and thus is empty. Hence U = Z, i.e., the
space Z is connected. []

In the table on p. 37 the basic properties of countable, zero-dimensional,
totally disconnected, hereditarily disconnected, and punctiform spaces are
compared; a plus means that a theorem holds in the corresponding class,
a minus that it does not hold. Formal statements of the results in the ta-
ble together with hints how to obtain them can be found in the problems
below.

Historical and bibliographic notes

Totally disconnected spaces were introduced by Sierpinski in [1921],
hereditarily disconnected spaces—by Hausdorff in [1914], and puncti-
form spaces—by Janiszewski in [1912]. Theorem 1.4.5 was proved (for
compact metric spaces) by Menger in [1923] and by Urysohn in [1925].
The first example of a totally disconnected space which is not zero-dimen-
sional was given by Sierpiniski in [1921]; Sierpifiski’s space is a completely
metrizable subspace of the plane. The first example of a hereditarily dis-
connected space which is not totally disconnected was also given by Sier-
pinski in [1921]; this space is also a completely metrizable subspace of
the plane. Example 1.4.7 is a simplified version of an example described
by Roberts in [1956]. The first example of a punctiform space which is
not hereditarily disconnected was described by Sierpinski in [1920]; this
space is a connected subspace of the plane. An example of a completely
metrizable punctiform and connected subspace of the plane was given
by Mazurkiewicz in [1920]. A simple modification that leads from spaces
described in Examples 1.4.6-1.4.8 to similar spaces which are, moreover,
completely metrizable is sketched in Problem 1.4.B.
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Problems

1.4.A. (a) Observe that zero-dimensionality, total disconnectedness,
hereditary disconnectedness and punctiformness are equivalent in the
realm of regular spaces which can be represented as countable unions
of compact subspaces.

(b) Note that zero-dimensionality, total disconnectedness, hereditary
disconnectedness and punctiformness are equivalent in the realm of sub-
spaces of the real line. Deduce that there exist totally disconnected spaces
which are not embeddable in the real line.

1.4.B. (a) (Roberts [1956]) Prove that the mapping 4: H, — I* defined
in Example 1.4.6 is a homeomorphic embedding.

Hint. Prove that in Hilbert space H a sequence of points x!, x2, ...,
where x™ = {x['} for m = 1, 2, ..., converges to a point x = {x,} if and
only if the sequence ||x™|| converges to ||x|| and the sequence x}, x?, ...
converges to x; for i = 1,2, ... (cf. Example 1.5.17).

(b) Give examples of completely metrizable spaces X,,Y,, Z, < I?
such that X, is totally disconnected but is not zero-dimensional, Y, is
hereditarily disconnected but is not totally disconnected, and Z, is puncti-
form and connected.

Hint. Consider the subspace H,; of Hilbert space H consisting of the
points {x,} € H such that x, is irrational for every i and suitably modify
the constructions in Examples 1.4.6-1.4.8. When proving that X, is com-
pletely metrizable, apply Lemma 1.3.12. In the proof of complete metriz-
ability of ¥; and Z, use the fact that every completely metrizable subspace
of I? is a Gsset (see [GT], Theorem 4.3.24).

1.4.C. (a) (Knaster and Kuratowski {1921]) Let C be the Cantor set on
the interval [0, 1]1x {0} = R?; denote by Q the set of the end-points of
all intervals removed from [0, 1]x {0} to obtain the Cantor set and let
P = C\Q. Join every point c e C to the point g = (12, 1/2) e R* by
a segment L. and denote by F, the set of all points (x, y) € L., where y
is rational if ¢ € Q and y is irrational if ¢ € P. The subspace F ={_J F.
of the plane is called the Knaster-Kuratowski fan. ce¢

Prove that the Knaster-Kuratowski fan is connected and punctiform.

Hint. Let ry,r,,... be the sequence of all rational numbers in the
interval [0, 1/2] and let P, = R? be the horizontal line y = r,. Suppose
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that F = (FnA)u(FnB), where the sets 4 and B are closed in R?, FNANB
=@ and qge A. Consider the sets K, = {ce C: AnBAL.nP; # O},

«©
check that they are closed and that | J K, « P. Show that BnL, = &
i=1

0
for every point ¢ € P\\| J K; and apply the Baire category theorem to
=1

prove that FnB = O.

(b) (Knaster and Kuratowski [1921]) Prove that the space F\{q}
is hereditarily disconnected but is not totally disconnected.

(c) (E. Pol [1978a]) Prove that every completely metrizable space
X which contains a subspace homeomorphic to F\{q} also contains a
subspace homeomorphic to the closed unit interval.

Hint. Apply the Lavrentieff theorem (see [GT], Theorem 4.3.21) to
reduce the problem to the case where X is a Gs-set in the plane and

F\{q} < X. Consider the set Pn () p(XnP;), where p is the projec-

tion from g onto C and P; is deéﬁéd in the hint to part (a).

(d) Observe that modifying the construction of the space F by taking
all points (x,y) € L., where y is irrational if ¢ € Q and y is rational if
¢ € P, one obtains a zero-dimensional space.

1.4.D. Let K and D be the spaces discussed in Problem 1.2.E.

(a) Show that if ind, K = 1, then there exists a point p € D\K such
that the empty set is not a partition in the space K’ = Ku{p} between
z and p.

Hint. See the hint to Problem 1.2.E(e).

(b) Prove that the space K’ defined in (a) is hereditarily disconnected
but is not totally disconnected.

(c) Verify that the space K’ is completely metrizable.

1.4.E. (a) Note that by adjoining a point to a totally disconnected
space one can obtain a space which is not totally disconnected. Deduce
that the counterpart of the sum theorem does not hold either for totally
disconnected spaces or for hereditarily disconnected spaces, even in the
case where the space is represented as the union of two closed subspaces.
Show that the counterpart of the sum theorem holds for punctiform
spaces.

(b) Check that the Cartesian product of a family of totally disconnected,
hereditarily disconnected, or punctiform spaces is a space in the same
class.
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(c) Note that the counterpart of the compactification theorem does
not hold for any of the four classes of spaces in the table on p. 37 distinct
from the class of zero-dimensional spaces.

1.4.F (Hilgers [1937]). (a) Let Z be a topological space and T a sub-
space of Z whose cardinality is equal to ¢. Prove that for every family ¢
of subspaces of the Cartesian product Z x Z such that 9| < ¢ there exists
a set H c Z x Z satisfying the following conditions:

(1) The projection of Z x Z onto the first axis maps H in a one-to-one way

onto the subspace T.

Q) If Hc G for a Ge %, then G contains a set homeomorphic to Z.

Hint. Let ¢ be an arbitrary transformation of 7 onto ¥; define a map-
ping f of T to Z by letting f(r) be a point z e Z such that (¢, 2)
€ ({t}x Z)\g(t) if such roints exist, and an arbitrary roint z € Z other-
wise. Consider the set H = {(¢, f(t)): t € T}, i.e., the graph of the map-
ping f.

(b) Applying Theorem 1.5.11 and the equality ind R* = n (see Theorem
1.8.2), for every natural number » define a separable metric space X such
that ind X = n and X can be mapped by a continuous and one-to-one
mapping onto a zero-dimensional space, Observe that X is totally dis-
connected and deduce that there exists a totally disconnected separable
metric space which cannot be embedded in a Euclidean space.

Hint. Consider the space Z = R", a subspace 7 < Z homeomorphic
to the Cantor set, and the family % of all Gs-sets in the Cartesian product
R"x R"; then apply (a).

Remark. The first example of a totally disconnected separable metric
space of an arbitrary dimension n > 1 was given by Mazurkiewicz in
[1927]; Mazurkiewicz’s spaces are completely metrizable. Clearly, such
spaces do not contain any compact subspace of positive dimension.

L4.G (R. Pol [1973)). (a) Prove that every separable metric space X which
for each punctiform separable metric space Y contains a subspace homeo-

morphic to ¥ contains also a subspace homeomorphic to the Hilbert
cube.

Hint. One can assume that X < I®. Consider the space Z = I*,
a subspace T = Z homeomorphic to the Cantor set, and the family ¥
consisting of all sets of the form f~!(X), where f'is a continuous mapping
defined on a Gyset in the Cartesian product I®ox [ and taking values
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in I®; then apply Problem 1.4.F(a) and the Lavrentieff theorem (see
[GT], Theorem 4.3.21).

(b) Define a totally disconnected separable metric space X with the
property that every completely metrizable separable space which contains
a subspace homeomorphic to X also contains a subspace homeomorphic
to the Hilbert cube.

Hint. Consider the space Z = I™, a subspace T = Z homeomorphic
to the Cantor set and the family ¢ of all Gs-sets in the Cartesian product
IFox I¥; then apply Problem 1.4.¥(a) and the Lavrentieff theorem (see
[GT], Theorem 4.3.21).

1.5. The sum, decomposition, addition, enlargement, separation and Car-
tesian product theorems

We begin with some observations on the dimension of subspaces.
The subspace theorem established in Section 1.1 states that for every sub-
space M of a regular space X we have ind M < indX. In this context it
is natural to ask whether among the subspaces of a space X such that
indX = n one can find subspaces of all intermediate dimensions between 0
and n—1. As shown in the next theorem, the answer is positive and there
even exist closed subspaces of intermediate dimensions.

1.5.1. Theorem. If X is a regular space and indX = n = 1, then for k = 0,
1, ..., n—1 the space X contains a closed subspace M such that ind M = k.

Proof. It is enough to show that X contains a closed subspace M such
that ind M = n—1. As indX > n—1, there exist a point x € X and a neigh-
bourhood V' < X of the point x such that for every open set U = X satisfy-
ing the condition x € U c V we have indFrU > n—2. On the other hand,
as ind X < n, there exists an open set U — X satisfying the above condition
and such thatind FrU < n— 1. The closed subspace M = FrU of the space
X has the required property. [}

The situation is quite different in spaces of dimension co. In Example
1.8.21 we shall describe, applying the continuum hypothesis, a separable
metric space of dimension co whose finite-dimensional subspaces are all
countable (it turns out that the existence of such a space is equivalent
to the continuum hypothesis). Let us observe that spaces with the above
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property are rather peculiar; in particular, no such space is completely
metrizable, because every uncountable completely metrizable separable
space contains a subspace homeomorphic to the Cantor set (see [GT],
Problems 1.7.11 and 4.5.5). There also exist compact metric spaces of di-
mension oo whose finite-dimensional subspaces are all zero-dimensional,
but examples of such spaces are very complicated.

We now pass to the sum theorem.

1.5.2. Lemma. If a separable metric space X can be represented as the union
of two subspaces Y and Z such that indY < n—1 and indZ < 0, then
indX € n.

Proof. Consider a point x € X and a neighbourhood ¥ < X of the point x.
By virtue of Theorem 1.2.11, there exist disjoint open sets U, W< X
such that x e U, X\V <« W and [X\(UuW)InZ = @. Clearly, xe U
cV; as FrU c [XN\(UuW)]=cX\Z c ¥, we have indFrU < n—1.
Hence indX < n. O '

1.5.3. The sum theorem. If a separable metric space X can be represented
as the union of a sequence F, F,, ... of closed subspaces such that ind F;
Snfori=1,2,.., then indX < n.

Proof. We shall apply induction with respect to the number n. For n = 0

the theorem is already proved. Assume that the theorem holds for di-

mensions less than n and consider a space X = |_) F;, where F; is closed
i1

and indF;<n>1 for i=1,2,... Applying Theorem 1.1.6, choose
fori =1,2,..., a countable base A, for the space F; such that indFrU
< n—1 for every U € #,, where Fr denotes the boundary operator in the
space F;. By the inductive assumption the subspace Y = | J{FrU: U

o0
e|_J #,} of the space X satisfies the inequality indY < n— 1. Now, Prop-
iZ1

osition 1.2.13 implies that for i = 1,2, ... the subspace Z, = F,\Y of
the space F; satisfies the inequality ind Z; < 0; hence, by the sum theorem

for dimension O, the subspace Z = | J Z; = X\Y of the space X also
i=1

satisfies the inequality indZ < 0, because it follows from the relation
Z, = F)\Y = F;nZ that all the Z;s are closed in Z. Thus by virtue
of Lemma 1.5.2 we have indX < n. [



Ch. 1, § 51 The sum and decomposition theorems 43

As in the case of zero-dimensional spaces, the sum theorem implies
three corollaries:

1.5.4. Corollary. If a separable metric space X can be represented as the
union of a sequence F,, F,, ... of subspaces such that indF; < n and F,
is an Fyset for i = 1,2, ..., then indX < n. O

1.5.5. Corollary. If a separable metric space X can be represented as the union
of two subspaces A and B, one of them closed, such that indA4 < n and
indB < n, then indX < n. [J

1.5.6. Corollary. If by adjoining a finite numbers of points to a separable
metric space X such that indX < n one obtains a metric space Y, then the
space Y satisfies the inequality indY < n and is separable. []

Let us observe that the sum theorem plays a key role in the dimension
theory of separable metric spaces. Indeed, all the remaining results in this
section follow either from the sum theorem or from one of the decomposi-
tion theorems which are easy cdnsequences of the sum theorem.

Applying the sum theorem, one readily shows that the condition in
Lemma 1.5.2 characterizes separable metric spaces of dimension < n:

1.5.7. The first decomposition theorem. A separable metric space X satisfies
the inequality indX < n = 0 if and only if X can be represented as the union
of two subspaces Y and Z such that indY < n—1 and indZ < 0.

Proof. Consider a separable metric space X such that indX<n > 0.
By virtue of Theorem 1.1.6, the space X has a countable base # such that
indFrU € n—1 for every U< %. It follows from the sum theorem that
the subspace Y = | J{FrU: Uec %} has dimension < rn—1 and from
Proposition 1.2.13 that the subspace Z = X'\Y has dimension < 0. To
complete the proof it suffices to apply Lemma 1.5.2. [

From the first decomposition theorem we obtain by an easy induc-
tion

1.5.8. The second decomposition theorem. A separable metric space X
satisfies the inequality indX < n > 0 if and only if X can be represented
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as the union of n+1 subspaces Zy, Z,, ..., Zy,, such that indZ; < O for
i=1,2,...,n+1. 0O

Let us at once explain that, as will be shown in Section 1.8 (see Theorem
1.8.20), the Hilbert cube cannot be represented as a countable union of
zero-dimensional subspaces, or—equivalently—of finite-dimensional sub-
spaces. Hence, the second decomposition theorem does not extend to
separable metric spaces of dimension 0.

1.5.9. Examples. For every point x in the real line R or in the circle S?!
and each neighbourhood V of the point x there exists a neighbourhood U
of x such that U < V and the boundary FrU is a two-point set. Hence,
indR< 1 and indS! < 1. Since indI > 0 by virtue of Example 1.2.5,
the subspace theorem implies that ind R = indS?! = indJ = 1.

For every point x in Euclidean n-space R” or in the sn-sphere S" and
each neighbourhood V of the point x there exists a neighbourhood U of
x such that U < ¥V and the boundary FrU is homeomorphic to S"~1.
Hence, as shown by an inductive argument, indR" £ n, indS" < n and
indI" < n for every natural number n.

The small inductive dimension of R", 8" and I" is indeed equal to n,
but the proof of this fact is much more difficult than the above evaluations;
it will be given in Section 1.8. The equality ind R® = #n is of utmost impor-
tance for dimension theory. In a sense, it justifies the definition of the di-
mension function by showing that. this definition yields a notion conform-
ing to geometric intuition. The fact that ind R" = n is sometimes called
the fundamental theorem of dimension theory.

The decomposition of R" into n+ 1 zero-dimensional subspaces follow-
ing from the second decomposition theorem can be defined—according
to Example 1.3.8—by the equality

R" = QguQiu ... u@y.

The last formula yields another proof of the inequality ind R" < n.
For every pair k, n of integers satisfying 0 < k < n > 1 define

Ni = QovQiu ... vQk and Ly = QpuQie v ... VO

thus N7 is the subspace of Euclidean n-space R" consisting of all points
which have at most k rational coordinates and L} is the subspace of R"
consisting of all points which have at least k rational coordinates. From
the second decomposition theorem it follows that indN} < k and ind L}
< n—k; we shall show in Section 1.8, applying the equality ind R" = n,
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that indN? = k and ind L} = n—k. The space N2"+! < R**! will play
a particularly important role in the sequel: it turns out to be a universal
space for the class of all separable metric spaces of dimension < n (see
Theorem 1.11.5). O

We shall now state further consequences of the sum and decomposition
theorems. Let us begin with the addition theorem, which follows im-
mediately from the second decomposition theorem.

1.5.10. The addition theorem. For every pair X, Y of separable subspaces
of a metric space we have

ind(XUY) € indX+indY+1. O

1.5.11. The enlargement theorem. For every separable subspace M of an
arbitrary metric space X satisfying the inequality ind M < n there exists
a Gs-set M* in X such that M < M* and ind M* < n.

Proof. By the second decomposition theorem M = Z,0Z,u ... UZ,; 4,
where indZ, < Ofori = 1, 2, .., n+ 1. Applying Theorem 1.2.14, enlarge
each Z, to a Gy-set Z¥ in X such that ind Z}¥ < 0. The union M* = Zfu
UZ¥uU ... UZF | has the required properties. []

1.5.12. The first separation theorem. If X is a separable metric space such
that indX < n = 0, then for every pair A, B of disjoint closed subsets of X
there exists a partition L between A and B such that indL < n—1,

Proof. By the first decomposition theorem X = YUZ, where indY < n—1
and ind Z < 0. Applying Theorem 1.2.11, we obtain a partition L between
A and Bsuch that LnZ = @. As L €« X\Z < Y, we have indL € n—1
by the subspace theorem. []

In a similar way, applying the first decomposition theorem to the sub-
space M, we obtain

1.5.13. The second separation theorem. If X is an arbitrary metric space
and M is a separable subspace of X such that ind M < n = 0, then for every
pair A, B of disjoint closed subsets of X there exists a partition L between
A and B such that ind(LnM) < n—1. O
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Clearly, the first separation theorem is a special case of the second
separation theorem. On the other hand, the second separation theorem
easily follows (cf. the proof of Theorem 1.2.11) from the first separation
theorem and Lemma 1.2.9, which is an elementary topological fact; hence,
both separation theorems are in a sense equivalent.

The second separation theorem yields a characterization of the dimension
of subspaces in terms of neighbourhoods in the whole space, which general-
izes Proposition 1.2.12:

1.5.14. Proposition. 4 separable subspace M of an arbitrary metric space X
satisfies the inequality ind M < n = 0 if and only if for every point x € M
(or—equivalently—for every point x € X) and each neighbourhood V of the
point x in the space X there exists an open set U < X such that xe U c V
and ind(MnFrU)< n—1.

Proposition 1.5.14 and Lemma 1.1.5 imply the following generalization
of Proposition 1.2.13.

1.5.15. Proposition. A subspace M of a separable metric space X satisfies
the inequality ind M < n > 0 if and only if X has a countable base % such
that ind(MnFrU) < n—1 for every Ue %. [

The general Cartesian product theorem reads as follows:

1.5.16. The Cartesian product theorem. For every pair X, Y of separable
metric spaces of which at least one is non-empty we have

ind(XxY) < indX+ind Y.

Proof. The theorem is obvious if one of the spaces has dimension oo,
and so we can suppose that k(X,Y) = indX+indY is finite. We shall
apply induction with respect to that number. If £(X, ¥) = -1, then either
X =@ or Y=, and our inequality holds. Assume that the inequality
is proved for every pair of separable metric spaces the sum of the dimensions
of which is less than k > 0 and consider separable metric spaces X nad Y
suchthatindX = n > 0,indY = m > Oand n+m = k. Let (x, y) be a point
of XxY and W < XxY a neighbourhood of (x, y). There exist neigh-
bourhoods U’, U < X of the point x and V, V' < Y of the point y such
that U'xV' e W, Uc U, V< V', indFrU< n—1and indFrV < m—1.
Since
Fr(UxV) c (XxFrV)u(FrUxY),
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by virtue of the inductive assumption and the sum theorem we have
indFr(Ux V)< k—1. Hence ind(XxY)< k and the proof is comple-
ted. O

The inequality in the Cartesian product theorem cannot be replaced
by an equality. In the next example we shall describe a separable metric
space X such that indX = 1, and yet ind(X x X) = 1, because X is homeo-
morphic to the square X x X (cf. the remark to Problem 1.5.C). There exist
even compact metrizable spaces the dimension of the Cartesian product
of which is less than the sum of their dimensions, but they are more com-
plicated, and in checking their properties one has to apply the methods
of algebraic topology; let us note that such spaces are necessarily of di-
mension > 2, because for every pair X, Y of compact metrizable spaces
X, Y such that indY = 1 we have ind(Xx¥) = indX+1 = indX+indY
(see Problem 1.9.E(b)).

1.5.17. Example. We shall show that the space H, defined in Example
1.2.15 has the required properties.

To establish the equality ind H, = 1 it is enough to prove that ind H,
< 1. Since every point x € H, can be transformed by a suitable transla-
tion to the point x, € H,, it suffices to show that for every natural number
n the boundary F, = {x € Hy: ||x|| = 1/n} of the 1/n-ball U, = {x € Hy:
|lx|| < 1/n} about x, is zero-dimensional. This, however, is a consequence
of the final paragraph of Example 1.3.8 and the fact that the mapping A:
F, - h(F,) = Q% defined by letting A({x,}) = {x,} is a homeomorphism,
which, in its turn, is implied by the fact that both in Q% and in F, a sequence
x' = {x}},x* = {x}}, ... converges to x = {x,} if and only if the sequence
x}, x?, ... converges to x; for i = 1,2, ... The last equivalence is well
known to hold in the Cartesian product Q¥.; it does not generally hold
in Hilbert space H, but it does hold in the subspace F,, because all points
of F, have the same norm (cf. the hint to Problem 1.4.B(a)).

Now, to show that H, is homeomorphic to the square H, x H, it suffices
to note that by assigning to a point (x,») = ({x;}, {3}) € Hy x H, the
point (x,, y;, X2, V2, ...) € H, one defines a homeomorphism of H,x H,
onto H,.

To conclude, let us observe that the Cartesian products H3, H3, ...
are all homeomorphic to H,, and thus are one-dimensional spaces.
Since the countable Cartesian product X¥ is homeomorphic to the limit
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of an inverse sequence consisting of finite Cartesian products X? and
since the limit of an inverse sequence consisting of separable metric spaces
of dimension < » is itself of dimension < n (see Theorem 1.13.4), the
countable Cartesian product H¥o is also one-dimensional. Let us add that
every infinite Cartesian product of compact metric spaces of finite positive
dimension is infinite-dimensional. Indeed, every compact metric space of
finite dimension > 0 contains a compact subspace of dimension one,
and—as noted above—multiplying by such spaces raises the dimension
by one.

Historical and bibliographic notes

An example of a compact metric space of dimension co whose finite-
dimensional subspaces are all zero-dimensional was announced by Walsh
in [1978]. In [1965] Henderson constructed a compact metric space of
dimension oo whose finite-dimensional closed subspaces are all zero-
dimensional (simpler, but still very difficult examples of such spaces
were given by Henderson in ([1967] and by Zarelua in [1972]).
Theorem 1.5.3 was proved for compact metric spaces by Menger in [1924]
and by Urysohn in [1926] (announcement in [1922]) and was extended
to separable metric spaces by Tumarkin in [1926] (announcement in [1925])
and by Hurewicz [1927] (the latter gave the simple proof reproduced
here). Theorems 1.5.7, 1.5.8 and 1.5.10 were established for compact
metric spaces by Urysohn in [1926] (announcement in [1922]) and were
extended to separable metric spaces by Tumarkin and Hurewicz in the
above quoted papers. Theorem 1.5.11 was proved by Tumarkin in [1926]
(announcement in [1925]). As the reader will see in the next section, Theorem
1.5.12 states, in substance, that for every separable metric space X we
have the equality indX = IndX. For compact metric spaces this equality
was announced by Brouwer in [1924] while he was discussing relationships
between his Dimensionsgrad and the small inductive dimension ind (Brou-
wer commented that the equality was also known to Urysohn); the proof
was given by Menger in [1924] and by Urysohn in [1926]. For separable
metric spaces, the equality of ind and Ind was established by Tumarkin
in [1926] (announcement in [1925]) and by Hurewicz in [1927]. Theorem
1.5.13 was proved by Menger in [1924] for compact metric spaces, and
extended by Hurewicz in [1927] to separable metric spaces. Theorem 1.5.16
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was obtained by Menger in [1928]. Example 1.5.17 was described by Erdos
in [1940]; let us add that Anderson and Keisler described in [1967] a space
K(n) = R", where n = 2, 3, ..., such that indK(n) = ind[K(n)]%c = n—1.

The first example of two-dimensional compact metric spaces X and Y
such that the Cartesian product X x Y is three-dimensional was given by
Pontrjagin in [1930]; examples of such spaces can be found in Kodama
[1970]. No “geometric’ characterization of compact metric spaces satisfy-
ing the equality ind(Xx ¥) = indX+ind Y is known; in particular, it is an
open question if this equality holds for all absolute neighbourhood retracts
(as shown by Borsuk in [1936], it holds if X and Y are absolute neighbour-
hood retracts satisfying condition (4)). The question is connected with
the problem of delineating the class of spaces in which the small inductive
dimension ind coincides with the cohomological dimension dimz, with
respect to the group Z, of integers modulo p (cf. the final part of Section
1.9), because for every pair X, Y of locally compact spaces and every prime
number p we have dimz,(X'xY) = dimz, X +dim,, Y.

Problems

1.5.A (de Groot and Nagata [1969]; announcement Hurewicz [1928]).
Prove that if a completely metrizable separable space X of dimension oo
can be represented as the union of countably many finite-dimensional
subspaces, then for n = 0, 1, 2, ... the space X contains a closed subspace
M such that indM = n. )

o0
Hint. Let X = J Z,, where indZ,; = 0. Assuming that X does not
i=1

contain any closed subspace of dimension » and applying Theorem 1.5.1,
define a point whose all sufficiently small neighbourhoods have infinite-
dimensional boundaries; consider such a boundary F, satisfying 6(F,) < 1
and F,nZ, = . Tterating this procedure obtain a contradiction to the
Cantor theorem.

1.5.B. (a) Observe that if a separable metric space X can be represented
as the union of a family {F;}s of closed subspaces such that every point
x € X has a neighbourhood which meets at most countably many sets
F; and indF; < n for every s € .5, then indX < n.
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(b) Prove that if a separable metric space X can be represented as the
union of a sequence Fy, F;, F,, ... of closed subspaces such that ind F;
<nfori=1,2,..., then ind,X < n for every point x € F, such that
ind,Fy < n.

1.5.C. Let X be a separable metric space such that indX =n > 1;
the set {x € X: ind, X = n} is called the dimensional kernel of the space X.

(a) (Menger [1924], Urysohn [1926]) Check that the dimensional
kernel is an F,-set.

(b) (Menger [1926]) Show that the dimensional kernel of a separable
metric space X such that indX = n > | has dimension > n—1.

Hint. Represent the complement of the kernel as the union of two
subspaces Y and Z such that indY < n—2, indZ < 0 and Y is an F,-set
in X.

(c) (Menger [1926]) Prove that the dimensional kernel of a compact
metric space X such that indX = n > 1 has dimension n at each point
(cf. Theorem 1.9.8).

Hint. Suppose that for a point x of the dimensional kernel M the ine-
quality ind, M < n—1 holds, and for every positive number ¢ define a
neighbourhood U of the point x in the space X such that 6(U) < ¢ and
indFrU < n—2. To that end take a neighbourhood U, of the point x in
the space X such that 8(U,) < ¢/2 and ind(MnFrU,) < n—2. Then enlarge
MAnFrU, to an (n—2)-dimensional Gsyset M* in X. Let U = U,, if FrU,
< M*, and if FrU,\M* # O, define a countable family {U,}2, of open
subsets of X such that

0(U) < &2, indFrU,<n-2, UnFrU,\M*) # O
for i=1,2, ..., and

) © © _
FrU,\M* c U, c« JU; € FrU,uiJU,,
i=1 i1 i=1

LY [22] o0
and let U = |_JU;; note that FrUc (FrUp\|JU) i JFrU,.
i=1 =1 i1

Remark. A separable metric space X such that indX = n > 1 and the
dimensional kernel of X has dimension n—1 is called a weakly n-dimen-
sional space. Clearly, a weakly n-dimensional space contains no compact
subspace of dimension n. The space K described in Problem 1.2.E is weakly
one-dimensional ; the first example of such a space was given by Sierpinski
in [1921]. First examples of weakly n-dimensional spaces for n = 2, 3, ...
were given by Mazurkiewicz in [1929]; Mazurkiewicz’s spaces are com-
pletely metrizable. A simpler construction of weakly n-dimensional spaces
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forn = 1,2, ... was described by Tomaszewski in [1979], where it is also
shown that if X is a weakly n-dimensional space and Y is a weakly m-di-
mensional space, then inng xY)<n+m—1=indX+indY—1.

L.5.D. Prove that a subspace M of a metric space X satisfies the inequality
ind M < n = 0 if and only if for every point x € M and each neighbour-
hood ¥V of the point x in the space X there exists an open set U < X such
that xe U « ¥V and ind(MnFrU) < n—1 (cf. Proposition 1.5.14 and
Problem 4.1.C).

Hint. Apply Lemma 1.2.9.

1.5.E (Menger [1928]). (a) Show that if ind,X < 0 and ind, Y < O,
then ind,,,(XxY) < 0.

(b) Applying the equality indI? = 2, give an example of two subspaces
X and Y of the real line such that for some points x € X and y € Y we have
ind,X = 0 and ind, Y = 1, and yet ind,,,,(XxY) = 2.

L.5.F. Give an example of a completely metrizable separable space X'
such that indX = 1 and X is homeomorphic to the square X x X.

1.6. Definitions of the large inductive dimension and the covering dimension.
Metric dimension

The first separation theorem, established in the preceding section,
suggests a modification in the definition of the small inductive dimension
consisting in replacing the point x by a closed set A. In this way we are
led to the potion of the large inductive dimension Ind, defined for all
normal spaces. Both dimensions coincide in the realm of separable metric
spaces. They diverge, however, in the class of metric spaces and also in
the class of compact spaces; let us make clear at once that examples in
point are very difficult and will not be discussed in this book. The theory
of the dimension function Ind will be developed in Chapter 2, and in Chap-
ter 4 it will be shown that in the realm of all metric spaces this theory
is quite similar to the theory of the dimension function ind in separable
metric spaces. In the present chapter, the large inductive dimension Ind,
just as the covering dimension dim discussed later in this section, will
play an auxiliary role: introducing these dimension functions leads to a sim-
plification of the theory.
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We pass to the formal definition of the dimension Ind.

1.6.1. Definition. To every normal space X one assigns the large inductive
dimension of X, denoted by Ind X, which is an integer larger than or equal
to —1 or the “infinite number «”; the definition of the dimension func-
tion Ind consists in the following conditions:

BC1) IndX = —1 if and only if X = &;

(BC2) IndX < n, where n = 0, 1, ..., if for every closed set A < X and
each open set V < X which contains the set A there exists an
open set U < X such that

AcUcV and IndFrU<n-1;

(BC3) IndX = n if IndX < n and IndX > n—1;
(BC4) IndX = oo if IndX > n for n = —1,0,1, ...

The large inductive dimension Ind is also called the Brouwer-Cech
dimension.

Applying induction with respect to IndX, one can easily verify that
whenever normal spaces X and Y are homeomorphic, then IndX = IndY,
i.e., the large inductive dimension is a topological invariant.

Modifying slightly the proof of Proposition 1.1.4, one obtains

1.6.2. Proposition. 4 normal space X satisfies the inequality IndX < n >0
if and only if for every pair A, B of disjoint closed subsets of X there exists
a partition L between A and B such that IndL < n—1. [J

Applying induction with respect to IndX, one can easily prove the
following theorem, which justifies the names of the small and the large
inductive dimensions.

1.6.3. Theorem. For every normal space X we have indX < IndX. O
Both dimensions coincide in the realm of separable metric spaces.
1.6.4. Theorem. For every separable metric space X we have ind X = Ind X.

Proof. If suffices to show that IndX < indX; clearly, one can suppose
that indX < co. We shall apply induction with respect to indX. The in-
equality holds if indX = 1. Assume that the inequality is proved for all
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separable metric spaces of small inductive dimension less than » > 0 and
consider a separable metric space X such that indX = n. Let 4, B be a pair
of disjoint closed subsets of X. By virtue of the first separation theorem,
there exists a partition L between 4 and B such that indL €< n—1. It
follows from the inductive assumption that IndZL € n—1, so that IndX
< n by Proposition 1.6.2. Hence IndX < indX and the proof is com-
pleted. [J

Using the dimension function Ind one can reformulate Theorem 1.2.6
in the following form (cf. Remark 1.2.7):

1.6.5. Theorem. For every Lindelof space X the conditions indX = 0 and
IndX = 0 are equivalent. [

Besides the inductive dimensions ind and Ind, in dimension theory
one studies another dimension function, namely the covering dimension
dim defined for all normal spaces. In the following section we shall prove
that the dimensions ind and dim coincide in the realm of separable metric
spaces. Later on the reader will see that they diverge in the class of metric
spaces and also in the class of compact spaces (see Remark 4.1.6 and
Example 3.1.31). On the other hand, the dimensions Ind and dim coincide
in the realm of all metric spaces (see Theorem 4.1.3) and diverge in the
class of compact spaces (see Example 3.1.31). The reason why we intro-
duce the covering dimension now is that this notion comes out in a natural
way in proofs of the compactification, embedding and universal space
theorems.

Let us sum up. There are three ways of defining the dimension of sepa-
rable metric spaces. They are all equivalent and equally natural, but they
are based on different geometric properties of spaces. Outside the class
of separable metric spaces the dimensions ind, Ind, and dim diverge and
three different dimension theories arise, all poorer than the dimension
theory of separable metric spaces. The dimensions Ind and dim lead to
much more interesting results than the dimension ind; as a matter of fact,
the latter is practically of no importance outside the class of separable
metric spaces. Finally, in the dimension theory of separable metric spaces
some theorems depend—roughly speaking—on the dimension ind, and other
ones depend on the dimension dim; so far we have discussed theorems
of the first group, in the subsequent sections we shall discuss those of the
second group.
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In the definition of the covering dimension the notion of the order
of a family of sets will be applied.

1.6.6. Definition. Let X be a set and o/ a family of subsets of X. By the
order of the family & we mean the largest integer n such that the family .«
contains #+ 1 sets with a non-empty intersection; if no such integer exists,
we say that the family .« has order co. The order of a family & is denoted
by ord«.

Thus, if the order of a family & = {4,}.s equals n, then for each
n+2 distinct indexes §;,5,, ..., 8,2 €S we have 4, N4, N ... n4,,,, = O.
In particular, a family of order —1 consists of the empty set alone, and
a family of order O consists of pairwise disjoint sets which are not all
empty.

Let us recall that a cover & is a refinement of another cover & of the
same space, in other words & refines , if for every B € & there exists an
A € o/ such that B = A. Clearly, every subcover &/, of &/ is a refine-
ment of <. ‘

1.6.7. Definition. To every normal space X one assigns the covering di-
mension of X, denoted by dimX, which is an integer larger that or equal
to —1 or the “infinite number oo™ ; the definition of the dimension func-
tion dim consists in the following conditions:

(CL1) dimX < n, where n= —1,0,1, ..., if every finite open cover of
the space X has a finite open refinement of order < n;

(CL2) dimX = n if dimX < n and dimX > n—1,

(CL3) dimX = o if dimX > n for n = —1,0,1, ...

The covering dimension dim is also called the Cech—Lebesgue dimen-
sion.

One readily sees that whenever normal spaces X and Y are homeo-
morphic, then dimX = dimY, i.e., the covering dimension is a topological
invariant. Clearly, dimX = —1 if and only if X = @.

The next proposition contains two useful characterizations of the cover-
ing dimension; in the second one the notion of a shrinking is used.

1.6.8. Definition. By a shrinking of the cover {4 }.s of a topological
space X we mean any cover {B;}.s of the space X such that B, < 4 for
every s € S. A shrinking is open (closed) if all its members are open
(closed) subsets of the space X.
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Clearly, every shrinking # of a cover & is a refinement of .« and
satisfies the inequality ord Z < ord /.

1.6.9. Proposition. For every normal space X the following conditions are

equivalent:

(@) The space X satisfies the inequality dimX < n.

(b) Every finite open cover of the space X has an open refinement of order
<n

(c) Every finite open cover of the space X has an open shrinking of order
< n. ’

Proof. The implications (a) = (b) and (c) => (a) are obvious. Consider
a normal space X which satisfies (b). Let {U;}¥_, be a finite open cover
of the space X and ¥~ an open refinement of this cover such that ord ¥~
< n. For every ¥V € ¥ choose an i(V) < k such that ¥V < Uy, and define
V, = {V: i(¥) = i}. One readily verifies that {V,}¥_, is a shrinking
of {U,}¥_, and has order < n, so that (b) = (c). [

We shall now show that when checking the inequality dimX < n it
suffices to consider (n-+2)-element covers.

1.6.10. Theorem. 4 normal space X satisfies the inequality dimX < n if

and only if every (n+2)-element open cover {U,}1% of the space X has
. n+2

an open shrinking {W,}i2} of order < n, i.e., such that (\ W; = @.

iﬂl

Proof. It suffices to show that every normal space X such that dimX > n

has an (n+2)-element open cover {U,}]*{ with the property that each
n+2

open shrinking {W,}12? of {U,}1+? satisfies the condition (") W, # @.
i=1

Since dimX > n, by virtue of Proposition 1.6.9 there exists an open

cover ¥~ = {V,}¥_, of the space X which has no open shrinking of order

< n. Moreover, one can assume—replacing, if necessary, ¥~ by a suitable
shrinking—that if ¥~ = {V/}f_, is an open shrinking of {V,}{.,, then

0 VinVin..nVi #& whenever Vi nV,n .. 0V, #49,

where i, i,, ..., iy is a sequence of natural numbers less than or equal
to k. Indeed, if ¥~ has an open shrinking ¥~ which does not satisfy (1),
one replaces ¥~ by ¥ and one continues this procedure until an open
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cover with the required property is obtained; as the number of inter-
sections in (1) is finite, the process will come to an end after finitely many
steps. Since ord#” > n, rearranging if need be the members of ¥~, we have

n+2

2 (\ri#0.
We shall show that the (n+2)-element open cover {U,}i+? of the space
&
X, where U, =V, for i< n+1 and U, , = ‘U V, has the required

i=n+2

property. Consider an open shrinking {W;}i*? of {U,}i*. The cover
{Wj.s W29 sero Wn+13 Wn+ZmVn+2’ Wn+ZmVn+3s st Wn+szk}
of the space X is an open shrinking of ¥~, so that by (1) and (2) we have

n+2 n+1
Q W, :’(q Wi)m(W,,”mV,,“) #0.0

Let us note that the last theorem immediately yields

1.6.11. Theorem. For every normal space X the conditions IndX = 0 and
dimX = 0 are equivalent. []

In the realm of compact metric spaces, the covering dimension can be
characterized in terms of a metric, viz., by the condition that the space
has finite covers of order < n by open sets of arbitrarily small diameter.
Let us recall that the mesh of a family o of subsets of a metric space X,
denoted by mesh.Z, is defined as the least upper bound of the diameters
of all members of <7, i.e.,

mesho/ = sup{d(4): 4 € &};

the mesh is either a non-negative real number or the “infinite number” oo.

1.6.12. Theorem. For every compact metric space X the following condi-

tions are equivalent:

(a) The space X satisfies the inequality dimX < n.

(b) For every metric o on the space X and for every positive number & there
exists a finite open cover U of the space X such that mesh% < ¢ and
ord% < n.

(€) There exists a metric o on the space X with the property that for every
positive number ¢ there exists a finite open cover U of the space X such
that mesh¥% < ¢ and ord% < n.
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Proof. Let X be a compact metric space satisfying ind X < #; consider
a metric ¢ on the space X and a positive number ¢. By the compactness
of X, the open cover {B(x, £/3)},ex has a finite open subcover; by apply-
ing (CL1) to this subcover we obtain a finite open cover % such that mesh%
< ¢ and ord% < n. Hence (a) = (b).

The implication (b) = (c) being obvious, to conclude the proof it
suffices to show that (c) = (a). Let p be a metric on the space X which
has the property stated in (c). Consider a finite open cover {U,}¥.; of the
space X and denote by ¢ a Lebesgue number for the cover {U,}t_;, i.e.,
a positive number such that every subset of X which has diameter less
than ¢ is contained in one of the sets U;. The cover % in condition (c)
is a refinement of {U,}%.;, so that dimX < n. ]

The attempts to extend the last theorem to separable metric spaces
led to the notion of the metric dimension, with a discussion of which we
shall conclude this section. Before that, let us briefly comment upon condi-
tions (b) and (c) in separable metric spaces. To begin with, observe that if for
a metric o on a space X and for every positive number ¢ there exists a finite
cover of the space X with mesh less than ¢, then the metric g is totally
bounded. Hence, when passing to separable metric spaces, we have to
replace condition (b) by the following condition:

(b") For every totally bounded metric p on the space X and for every positive
number ¢ there exists a finite open cover U of the space X such that
mesh% < & and ord% < n.

Now, one proves that conditions (a) and (b’) are equivalent for every
separable metric space X (see Problem 1.6.B), whereas conditions (a)
and (c) are generally not equivalent for such spaces (see Example 1.10.23).

To every metric space (X, o) one assigns the metric dimension of (X, o),
denoted by pdim(X, ¢), which is an integer larger than or equal to —1
or the “infinite number” co; the definition follows the pattern of the de-
finition of the covering dimension dim except that condition (CL1) is re-
placed by the condition that for every positive number & there exists an
open cover % of the space X such that mesh#% < ¢ and ord% < #. Clearly,
if (X, p) is a compact space, then udim(X, o) = dimX.

From the discussion in the penultimate paragraph it follows that in
the realm of separable metric spaces the metric dimension is not a topological
invariant; in general, the number pdim(X, p) depends upon the metric ¢
on the space X. Nevertheless, a theory of the metric dimension wxdim
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can be developed, which shows a resemblance to the theory of the covering
dimension dim. Let us observe that—as the reader can readily verify—if
the metrics ¢ and ¢ on a space X are uniformly equivalent, i.e., the identity
mapping of (X, g) to (X, ¢) and also the identity mapping of (X, o) to
(X, o) are uniformly continuous, then udim(X, ¢) = pdim(X, 6); this
means that the metric dimension is a uniform invariant.

Let us also note that in the definition of the metric dimension one has
to consider an arbitrary open cover %, because the restriction to finite
open covers would imply the restriction of the definition to totally bounded
spaces. However, in the case where (X, ) is a totally bounded metric
space, the restriction to finite open covers yields an equivalent definition
(see Problem 1.6.C).

From Problem 1.7.E below it follows that for every separable metric
space (X, ) we have udim(X,p) < dimX; by virtue of an important
characterization of the covering dimension, to be established in Chapter 3
(see Theorem 3.2.1), this inequality extends to all metric spaces. On the
other hand, for every metric space (X, ¢) we have dimX < 2udim(X, o);
a proof is sketched out in the hint to Problem 1.6.D.

We shall return briefly to the metric dimension in Section 1.10, where
a characterization of this dimension function in terms of mappings to poly-
hedra will be given (see Problem 1.10.L).

Historical and bibliographic notes

As we have already observed in the notes to Section 1.1, the notion
of the large inductive dimension Ind is related to Brouwer’s notion of
Dimensionsgrad. A formal definition of the dimension function Ind in the
class of normal spaces was first given by Cech in [1931], which was a short
announcement of results in his paper [1932] devoted to a study of the
large inductive dimension. Theorem 1.6.4 is a restatement of Theorem
1.5.12, its history is described in the notes to Section 1.5. The covering
dimension dim was formally introduced and discussed in Cech’s paper
[1933]; it is related to a property of covers of the n-cube I" discovered
by Lebesgue in [1911] (see the notes to Section 1.1). Theorem 1.6.10 was
proved by Hemmingsen in [1946], and Theorem 1.6.11 by Vedenissoff
in [1939].

The notion of the metric dimension was introduced by Alexandroff
around 1930. As a definition he used the characterization given here in
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Problem 1.10.L, which is connected with his famous theorem on &-trans-
lations to polyhedra (see Theorem 1.10.19). Alexandroff’s question whether
the metric dimension coincides with the covering dimension in the realm
of separable metric spaces was solved in the negative by Sitnikov in [1953]
(see Example 1.10.23). This last paper called the topologists’ attention
back to the notion of the metric dimension. The basic properties of the
dimension pdim were established by Smirnov in [1956] and by Egorov
in [1959]. Besides the notion of the metric dimension discussed in this
section, which is a natural geometric notion with a sound intuitive back-
ground, a few other metric dimension functions have recently been studied;
they are all obtained by replacing topological conditions by the correspond-
ing metrical ones in various characterizations of the dimension dim. A dis-
cussion of this topic can be found in Nagami’s book [1970].

Problems
1.6.A. Give a direct proof of Theorem 1.6.11.

1.6.B (Hurewicz [1930]). Prove that a separable metric space X satisfies
the inequality dimX < 7 if and only if for every totally bounded metric g
on the space X and for every positive number ¢ there exists a finite open
cover % of the space X such that mesh% < ¢ and ord% < n.

Hint. For a finite open cover {U,}f., of the space X define a metric g
on the space X with the property that every subset of X which has diameter
less than 1 is contained in one of the sets U;. To that end define continuous
functions f,, f3, ..., fi from X to 7 such that £;(X\U;) < {0}fori = 1,2, ...

k
...,k and 2 fi~*(1) = X; observe that by adding to the original distance
i=1

k
of x and y the sum z 1fi(x)—f(»)| one obtains a metric on the space X.
i=1

1.6.C (Egorov [1959]). Prove that a totally bounded metric space (X, g)
satisfies the inequality udim(X, ¢) < n if and only if for every positive
number ¢ there exists a finite open cover % of the space X such that mesh%
< ¢ and ord% < n.

Hint. Consider a finite subset {x, x,, ..., x,} of the space X with the
property that for every point x € X there exists an { < k such that p(x, x;)
< &f4 and observe that every subset of X which has diameter less than ¢/4
is contained in a member of the cover {B(x,, ¢/2)}r.,.
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1.6.D (Katétov [1958]). Prove that for every metric space (X, g) we have
dimX < 2udim(X, ).

Hint, For i = 1,2, ... choose an open cover %, of the space X such
that mesh#; < 1/3' and ord%,; < n = udim(X, o). Consider a finite
open cover {U,}f_, of the space X and denote by ¥, the family of all
sets Ue %, such that o(U, X\U;) > 1/3! for a certain j < k. Check
that the sets V,, V5, ..., where V; = (_) ¥7;, form a cover of the space X
and that I_/i c Viyq for i=1,2,... Consider the sets F, = IZ_IUE,-,
where V, = & and C; consists of all points of X which belong to n+1
members of ¥7;, and the families #";, = {V'\F,-,: V€¥7 }, where I,

= @; define # =(J#, and W, =) #,. Show that C, c ¥, for
i=1

i=1,2,... and deduce that # is a cover of the space X; observe that
itis a refinement of {U,}%.,. Check that W;nW,, = & whenever m > i+2
and deduce that ord #” < 2n.

Remark. The evaluation of dimX in Problem 1.6.D cannot be improved
(see Example 1.10.23 and Problem 1.10.J).

1.7. The compactification and coincidence theorems. Characterization of
dimension in terms of partitions

The compactification theorem belongs to the group of theorems de-
pending on the dimension dim, and in its proof covers are used in an
essential way; accordingly, we formulate this theorem in terms of the
covering dimension dim. The compactification theorem is an important
step towards the proof of the coincidence theorem, which states that the
dimensions ind, Ind and dim coincide in the realm of separable metric
spaces.

We begin with introducing three simple operations on covers.

If o4, o,, ..., o, are covers of a topological space X, then the family
of all intersections A, NA,N ... "4y, where d,ef, for i =1,2,...,k,
is a cover of the space X. We denote this cover by &/, A&, A ... Ay
obviously, it is a refinement of </, for i = 1,2, ..., k.

If f: X - Y is a continuous mapping of a topological space X to a to-
pological space Y and & is a cover of the space Y, then the family of all

inverse images /' ~*(4), where 4 € ./, is a cover of the space X. We denote
this cover by f ().
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If M is a subspace of a topological space X and & is a cover of the
space X, then the family of all intersections M4, where 4 € o/, is a cover
of the subspace M. We denote this cover by «/|M.

One readily sees that the above operations applied to open (closed)
covers yield open (closed) covers, and applied to finite covers yield finite
covers.

1.7.1. Lemma. Let (X, o) be a totally bounded metric space such that dimX
< n. For every finite sequence f,f,, ..., fx of continuous functions from X
to I and for every positive number ¢ there exists a finite open cover U of the
space X such that mesh% < ¢, ord¥% < n, and | f;(x)—fi()| < e for i = 1,
2, ..., k whenever x and y belong to the same member of %.

Proof. Let 7 be a finite open cover of the space X such that mesh?” < ¢
and let #  be a finite open cover of the interval 7 such that mesh#” < e,
The reader can readily check that any finite open refinement % of the cover
VALTYIIANSZHIIA . A2 (W) such that ord% < n has the re-
quired properties. []

1.7.2. The compactification theorem. For every separable metric space X
there exists a dimension preserving compactification, i.e., a compact metric
space X which contains a dense subspace homeomorphic to X and satisfies
the inequality dimX < dimX.

More exactly, for every totally bounded metric ¢ on the space X there
exists an equivalent metric o on X such that o(x,y) < 0(x,y) for x,yeX
and the completion X of the space X with respect to the metric ¢ is a compacti-
fication of X which satisfies the inequality dimX < dimX.

Proof. We can suppose that dimX = n < o0, For m = 1, 2, ... we shall
define a finite open cover %,, = {Up, «Jx=, of the space X such that mesh%,,
< 1/2", ord%,, < n, and

0)) /i) —=fi s < 1j2m fori<mand j=1,2,..,k

whenever x and y belong to the same member of %,, where

) S i(x) = k,Q(X’X\Ui'j) for xeX.

2 0(x, X\Us.)
To obtain %, it suffices to apply the total boundedness of ¢ and the in-

equality dimX < n. When the covers %, %,, ..., %n,-, are defined, it
suffices to apply Lemma 1.7.1 to obtain %,,.
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Let us now arrange all pairs (i,j), wherei=1,2,...andj = 1,2, ...
., ky, into a simple infinite sequence and denote by n(i, /) the place of
(i,j) in this sequence. Define a new metric ¢ on the set X by letting

) o
3 o(x,¥) = 0o, N+ )=S0
nGi,j)=1
one readily verifies that the metric o and g are equivalent.

We shall show that the sequence ;Il\e;ﬁﬂllm, where mesh denotes the mesh
with respect to the metric 9, converges to zero. Consider an arbitrary
positive number ¢. Let N be a natural number satisfying the inequality
1/2¥ < ¢/3, and M a natural number such that M > N,

N
1 1
TMZ?““’

and M > i whenever n(z NES N From (1) and (3) it follows by a kimple

computation that meshﬂll <eifm= M, ie, hmmeshﬂll =0. In par-

ticular, the space (X, g) is totally bounded, so that the completion X of

the space X with respect to the metric g is a compactification of X,
Since the functions f,, ,: X — I are uniformly continuous with respect

to g, they can be extended to continuous functions f:,,_k: X —» I From

km ken
(2) it follows that V. f,,, «(x) =1 for every x € X. Hence Z Jmi(x) =1

for every xeX, Wthh implies that the family 02/ = { Um k}k 1, where
U ok = Jat((0, 1]), is an . open cover of the space X form = 1,2, ... Now,
by the dens1ty of X in X and since XnU,, , = Upi form=1, 2 .. and

k=1,2, ... k,, we have limmesh#, = 0 and ord#,, < n, so that dimX
< n = dimX by virtue of Theorem 1.6.12. []

A variant of the above proof of the compactification theorem is out-
lined in Problem 1.7.B.

Let us observe that from the equality indX = dimX, which is a con-
sequence of Lemmas 1.7.4 and 1.7.6, and from Theorem 1.1.2 and Lemma
1.7.4 it follows that dimX = dimX in the compactification theorem.

We now pass to the coincidence theorem.

1.7.3. Lemma. Let X be a metric space and M a subspace of X. For every
Samily {F}*_, of pairwise-disjoint closed subsets of M there exists a family
{WY, of pairwise-disjoint open subsets of X such that F, = W, for
i=1,2,...k.
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Proof. The sets
W, =1Q {x eX: o(x, F)) < o(x, F))}

have all the required properties. []

1.7.4. Lemma. For every separable metric space X we have dimX < indX.

Proof. We can suppose that indX < 0. If indX = —1, we clearly have
dimX < indX. Consider the case where indX = 0. Let # = {U,}\,
be a finite open cover of the space X. By virtue of Proposition 1.2.4, the
cover % has a refinement {V,}2, consisting of open-and-closed subsets
of X. The sets .

W, =V, W,=V\W,, ..

Wi = V,;\(WIUWZU e UW,;_I),

are open-and-closed and pairwise disjoint, and form a cover of the space X
which refines the cover %. From Proposition 1.6.9 it follows that dimX
< 0, so that again dimX < indX.

Now, consider the case where indX =n > 0. Let # = {U,}-.; be
a finite open cover of the space X. By virtue of the second decomposition
theorem

X=2Z,uZu..UZ,,, whereindZ;<0for j=1,2,..,n+1.

It follows from the already proved special case of our lemma that dimZ;
<0 for j=1,2,..,n+1. Hence the cover #|Z, of the space Z; has
a shrinking {F, }¥., consisting of pairwise disjoint open-and-closed
subsets of Z,. Applying Lemma 1.7.3, we obtain a family {W, }f., of
pairwise disjoint open subsets of X such that F; ;, « W, fori = 1,2, ..., k.
The sets V,;; = W, ,nU,;, where i=1,2,...,k and j=1,2,...,n+1,
form an open cover of the space X which refines the cover %; the order
of this cover is not larger than n, because any n+2 sets V,, include at
least two with the same index j, and each two of such sets have an empty
intersection. Thus dimX < n, i.e., dimX < indX. ]

Let us observe that in the case where indX = 0 the inequality dimX
< indX follows from Theorems 1.6.4 and 1.6.11, but the argument given
above is much simpler.

1.7.5. Remark. It follows from the second part of the last proof that for
every separable subspace M of a metric space X such that indM < n
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k
and for every family {U,}-_; of open subsets of X such that M < (J U,
=1

there exists a finite family ¥~ of open subsets of X satisfying the conditions
M < U ¥ and ord¥” < n and such that each of its members is contained
in a set U,.

1.7.6. Lemma. For every compact metric space X we have indX < dimX.

Proof. We can suppose that dimX < oo. We shall apply induction with
respect to dimX. If dimX = —1, we clearly have indX < dimX. Assume
that our inequality holds for all compact metric spaces with covering
dimension < n—1 and consider a compact metric space X such that dimX
=n2=0, a point x€X, and a closed set B such that x ¢ B. It suffices
to define open sets K, M < X which, together with the set L = X\ (KUM),
satisfy the conditions

“) xeK, BcM, KnM=@ and dimL<n-1;
indeed, the set L is then a partition between x and B, and indL < n—1
by virtue of the inductive assumption. To that end we shall define two

sequences Ky, K;, K,, ... and My, M;, M,, ... of closed subsets of X
satisfying for i = 1, 2, ... the following conditions:

(5) xeK,_; cIntK;,, Bc M;_; cIntM; and KM, =@.

(6) The set L; = X\ (K;UM,) has a finite open cover with mesh < 1/i
and order < n—1. ’

Let Ko = {x}, M, = B, and assume that the sets K;, M, are already
defined for i < j and satisfy (5) and (6) for 0 < i < j. Since in a compact
metric space the distance of two disjoint closed sets is positive, there exists
a finite open cover %; of the space X such that mesh#%; < min(l s
o(K;_y, M;_,); and ord#%;< n. Let K; = X\H; and M, = X\G;j,
where

Gy=U{Ue%,;: UnM;_, = O}
and
H,={Ueu;: UnM,_, #+ O}.

As the closure of no member of %; meets both K;_; and M;_,, it

follows from the definitions of G; and H, that

aijj_l = g = Hjij—ly

which implies that K,_, = X\H, = IntK; and M,., < X\G, = Int M ;
moreover, K;nM; =0, because G;uH;=X. Thus, condition (5) is
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satisfied for i = j. The family #'; = {UnL,: Ue %, and UnM,_, # O}
is an open cover of the set L; = X \(K;uM;) = G,nH; and mesh#";
< 1/j. Since every point x € L; = G, belongs to at least one set U e %,
such that UnM,_, = @, the order of #°, is not larger than n—1. Thus
condition (6) is also satisfied for i = j, so that the construction of the
sequences Ky, K;, K5, ... and My, M,, M,, ... is completed.

i i,
willis ’
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<
= el
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Fig. 6
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The open sets K = _j K; and M = (_J M; are disjoint and contain x
i20 i=0

s
and B respectively, and the set L = X'\ (KuM) = () L, satisfies, by virtue
i=1

of (6) and Theorem 1.6.12, the inequality dimL < n—1; hence conditions
(4) hold and the proof of the theorem is completed. [

1.7.7. The coincidence theorem. For every separable metric space X we have
indX = IndX = dimX.

Proof. By virtue of Theorem 1.6.4 and Lemma 1.7.4 it suffices to show
that indX < dimX. Apply the compactification theorem to obtain a com-
pactification X of the space X such that dimX < dimX. It follows from
Lemma 1.7.6 that indX < dimX, so that indX < dimX by virtue of the
subspace theorem. [J

Let us now make some comments on the last theorem. To prove that
for every separable metric space X we have indX = dimX one has to
establish two inequalities: dimX < indX and indX < dimX. The proof
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of the former is fairly easy, and the proof of the latter much more difficult.
Usually, we prove the inequality ind X' € dimX for compact metric spaces,
which greatly simplifies the arguments, and then apply the compactifica-
tion theorem to extend the inequality over all separable metric spaces.
In all the existing proofs of the inequality indX < dimX one can detect
an auxiliary integer-valued invariant d(X) for which the inequalities ind X’
< d(X) and d(X) < dimX are established. In our proof the invariant
d(X), defined for every compact metric space X, was the smallest integer
n = 0 such that the space X has finite open covers of order < n with
arbitrarily small meshes; the inequality d(X) < dimX was trivial and the
proof reduced to showing that indX < d(X). In Section 1.11 we shall,
incidentally, give another proof of the inequality ind X < dimX for compact
metric spaces. In that proof the invariant d(X) will be the smallest integer
n > 0 such that X is embeddable in the space N2"*! < R?**!; since ind X
< d(X) by virtue of Example 1.5.9, the proof will reduce to showing that
d(X) < dimX. One more proof of the inequality indX < dimX is sketched
out in Problem 1.7.D.

Let us also note that in Section 4.1 the proof of Lemma 1.7.6 will
reappear almost verbatim as part of the proof that the inequality IndX
< dimX holds for every metric space X.

We conclude this section with a characterization of dimension stated
in terms of partitions. At the basis of this characterization of dimension
lies an interesting geometric property of the n-cube I*; viz., the property
that if L, is a partition between the pair of opposite faces 4; = {{x;}
el x;=0}and B, = {{x;}elI": x;, =1} of I"fori=1,2,...,n, then

n
() L; # d; this property is closely related to the fixed-point property of
i=1

I" (see Theorem 1.8.1 and Problem 1.8.B). Let us note that the impor-
tance of the theorem on partitions consists in the fact that it provides an
internal characterization of n-dimensional spaces which, in effect, is but
a reformulation of an important external characterization of such spaces,
namely of the characterization in terms of mappings to the n-sphere
S" (see Theorem 1.9.3), which in turn is very close to the cohomological
characterization of dimension (see the final part of Section 1.9). The theorem
on partitions will also be used in the proof of the fundamental equality
indR" = n (see Theorem 1.8.2).

Let us begin with an auxiliary theorem which will often be used in our
study of the covering dimension.
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1.7.8. Theorem. Every finite open cover {U,}f., of a normal space X has
a closed shrinking {F,}f.,.

Proof. We shall apply induction with respect to k beginning with k = 2.
In this case, applying the definition of normality to disjoint closed subsets
A = X\U, and B = X\U, of the space X, we obtain disjoint open sets
V.,V, < X such that 4 < V; and B = V,. The sets F, = X\V, and
F, = X\V, form the required shrinking. Assume that the theorem is
proved for every natural number ¥ < m > 3 and consider an m-element
open cover {U,}i-, of the space X. Define

U/=U,fori<m—2 and Uy, =U,,0U,_;;

applying the theorem to the cover {U;}/;' we obtain a closed shrinking
{F{}=*. The closed subspace F,_, of the space X is normal; applying
the theorem again, this time to the two-element open cover {F,_;NU,-,,
F,_,nU,} of the space F,_,, we obtain a closed cover {F,_;, F,} of
F,_, such that F,,_, = U,_, and F,, = U,. One readily checks that the
family {F,}i»,, where F, = F; for i < m—2, is the required shrinking
of the cover {U,}fL; of the space X. O

1.7.9. Theorem on partitions. 4 separable metric space X satisfies the in-
equality indX < n > 0ifand only if for every sequence (4, B,), (43, B;),...
wies (Ans1, Bayy) Of n+1 pairs of disjoint closed subsets of X there exist

closed sets L, L,, ..., L,,, such that L, is a partition between A, and B,
n+1

and (L, =9

i=1 °

Proof. If indX < n = 0, then—applying the second separation theorem—

we can define, one by one, partitions L,, L,, ..., L,y such that ind(L;n
n+1

ALy~ ...NnL)<n—ifori=1,2,...,n+1; clearly (L, = Q.
i=1

We shall now show that if X satisfies the condition in the theorem,
then dimX < n which, by the coincidence theorem, will complete the proof.
We are going to apply Theorem 1.6.10; consider thus an (n+2)-element
open cover {U,}i+? of the space X. By Theorem 1.7.8, the cover {U,}11
has a closed shrinking {B,}{*Z; let 4, = X\U, for i=1,2,...,n+1.
The sequence (4,, B,), (A, B,), .-, (Ans1 > Bayy) consists of n+1 pairs
of disjoint closed subsets of X. Hence, there exist closed sets L, , Ly, ..., Lny,
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n+1
such that L, is a partition between 4; and B, and (M L, = 9. Let us con-

i=1

sider open sets V;, W, < X such that v
(7) Ai c Vl’ Bl (e Wl’ Vif\W, =0 and X\Ll = ViU Wi
for i=1,2,...,n+1. Observe that

n+1 n+1

n+1 n+1 n+1
(® gthU.ngWt = L_JI(ViUWi) = .-L=J1(X\L') = X\QLi = X.

From (8), (7) and the inclusion B,,, < U,,, it follows that

n+1 n+1 n+1 n+1 n+1 n+2

LJlWiU[UHz nLJI Vi = [LJI WtUUn+2]f\[U1WiU LJI Vil = HBI =X,
= i= i= i= i= =

n+l
so that the family {W,}i*%, where W,,., = U,,,n{ U V,, is an open

i=1

shrinking of the cover {U;}{*Z. It follows from (7) that

n+2 n+1 nt1 n+1 n+1

QW,‘ = QW,F\[U,,.”F\L—JIV,] (e QWIF\L_J]V‘ = g,

therefore dimX < n by virtue of Theorem 1.6.10. O

1.7.10. Remark. Let us note that in the second part of the above proof
only the normality of the space X was applied; hence, we have shown
that if for every sequence (4, B;), (42, B3), ---» (Apy1, Bpyy) of n+1
pairs of disjoint closed subsets of a normal space X there exist closed sets
n+1
L,L,,.,. L, such that L, is a partition between 4, and B; and ﬂ L,
= @, then dimX < n. 1
Let us call the reader’s attention to the structure of the last proof.
We started with the inequality indX < s, showed that this inequality
implies a property of the space X, then proved that this property implies
the inequality dimX < », and, finally, applied the coincidence theorem.
Thus, we incidentally gave another proof of Lemma 1.7.4; obviously,
the original proof of Lemma 1.7.4 is more perspicuous. The proof of
Theorem 1.9.3 below has a similar structure. The conditions in both theorems
characterize the covering dimension dim in the realm of normal spaces;
however, in the realm of separable metric spaces the proofs are consider-
ably shortened by applying the coincidence theorem (cf. Theorems 3.2.6
and 3.2.10).
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Historical and bibliographic notes

Theorem 1.7.2 was established by.- Hurewicz in [1927b] (another proof
in [1930]). This theorem permitted or facilitated the extension of many
theorems of dimension theory from compact metric spaces to separable
metric spaces; it was an important achievement in the development of the
theory. Lemma 1.7.4 was proved for metric compact spaces by Menger
in [1924] and by Urysohn in [1926] (announcement in [1922]) and was
extended to separable metric spaces by Hurewicz in [1927b]. Lemma 1.7.6
was obtained by Urysohn in [1926]. The equality indX = dimX in The-
orem 1.7.7 was established by Hurewicz in [1927b], the history of the
equality indX = IndX is described in the notes to Section 1.5. Theorem
1.7.9 was proved by FEilenberg and Otto in [1938].

Problems

1.7.A. Observe that the enlargement theorem readily follows from the
compactification theorem and the Lavrentieff theorem (see [GT], Theorem
4.3.21).

1.7.B. Let X be a separable metric space such that dimX = »n and
fiji X—>I wherei=1,2,...and j =1, 2, ..., k;, the functions defined
in the proof of Theorem 1.7.2. Show that by assigning to every point
x € X the point f(x) in the Hilbert cube I*o, the n(i,j)-th coordinate of
which is equal to f;, ;(x), one defines a homeomorphic embedding f: X — I
such that dimf(X) < n.

1.7.C. (a) (Engelking [1960], Forge [1961]) Show that for every separa-
ble metric space X and for every sequence of continuous functions f;, f5, ---»
where f;: X > I'for i = 1,2, ..., there exists a compactification X of the
space X such that dimX < dimX and each fi is extendable to a continuous
function f:: X1

(b) (Engelking [1960];, for » = 0, de Groot and McDowell [1960])
Prove that for every separable metric space X and for every sequence of con-
tinuous mappings g, g2, ..., where g;: X - X for i=1,2,..., there
exists a compactification X of the space X such that dimX < dimX and
each g, is extendable to a continuous mapping &;: X — X.

Hint. One can assume that g, = idy and that for every pair i, j there
exists a k such that g;g; = g,. As in the proof of Theorem 1.7.2, for m
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= 1, 2, ... define a finite open cover %, which moreover is a refinement

of g1 Um-1) A8z Wm- ) A ... NGty (Um—,), Where %, = {X}. Consider

the metric ¢ on the space X defined by letting

0 0

- 1 1
85,0 = ) 5 0@0, 80N+ D sl fsm®—fi O,
i=1 n(h,j,%)=1
where n(i, j, k) is the place of the triple (i, j, k) in an infinite sequence
consisting of all triples of natural numbers.

1.7.D. (a) (Kuratowski [1932]) Prove that for every compact metric
space X with no isolated point such that 0 < dimX < » there exists a con-
tinuous mapping f: C — X of the Cantor set C onto the space X with
fibres of cardinality at most n+ 1. Deduce the topological characterization
of the Cantor set stated in Problem 1.3.F. .

Hint. Observe that the subspace @ = {f € X°: f{C) = X} of the func-
tion space X° is non-empty and closed in X€, and hence is completely
metrizable (see Problem 1.3.D and the beginning of Section 1.11). For
k=1,2,... consider the subset ¥, of @ consisting of all functions f € X¢
which have the property that for some n+2 points x;, x5, ..., X4 of the
Cantor set C such that [x;—x,| > 1/k whenever.i # j we have the equality
S(xy) = f(x;) = ... = f(x,;2)- Prove that the sets ¥, are closed and no-
where dense in @; then apply the Baire category theorem. When proving
that ¥, is nowhere dense, observe that every finite open cover of the space
X consisting of non-empty sets has a closed shrinking of order < n con-
sisting of non-empty sets; then apply Problem 1.3.D.

(b) (Kuratowski {1932]) Prove that for every compact metric space X
such that dimX < n > 0 there exists a continuous mapping f: 4 - X
of a closed subspace 4 of the Cantor set C onto the space X with fibres
of cardinality at most n+1.

Hint. Applying the definition of dim, prove that dim(X'xC) < n.

(¢) (Hurewicz [1926]) Prove that if for a compact metric space X there
exists a continuous mapping f: 4 — X of a closed subspace 4 of the Cantor
set C onto the space X with fibres of cardinality at most n+41, then indX
< n (cf. Theorem 1.12.2).

Hint. Apply induction with respect to n. Assuming that (c) holds for
every n < m, consider a continuous mapping f: 4 — X of a closed subspace
A of the Cantor set C onto the space X with fibres of cardinality at most
m+1, a point x €X, and a heighbourhood V < X of the point x; then
take an open-and-closed set W < 4 such that f~1(y) ¢ W < f~Y(V) and
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show that the open set U = X\f(ANW) — X satisfies the conditions
yeUcV and FrU < f(W)nf(A\W).

(d) (Kuratowski [1932]) Observe that (b) and (c) imply that for every
compact metric space X we have indX < dimX.

Remark. Hurewicz proved in [1926] that a separable metric space X
satisfies the inequality indX < »n > 0 if and only if there exists a closed
mapping (see the beginning of Section 1.12) f: Z — X of a zero-dimen-
sional separable metric space Z onto the space X with fibres of cardinality
at most n+ 1. This fact can be deduced from the compactification theorem,
the coincidence theorem, part (b) of the present problem, and the hint
to part (c); obviously, Hurewicz’s original proof was a direct one.

Let us also note that, as proved by Nagata in [1960] (announcement
by Hurewicz in [1928]), a separable metric space X is a continuous image
of a zero-dimensional separable metric space under a closed mapping
with finite fibres if and only if X can be represented as the union of
countably many finite-dimensional subspaces.

1.7.E. Show that a separable metric space X satisfies the inequality
dimX < » if and only if every open cover of the space X has an open re-
finement of order < n or—equivalently —if every open cover of the space
X has an open shrinking of order < n (cf. Proposition 3.2.2).

Hint. When proving that every open cover of a separable metric space
X satisfying dimX < » has an open refinement of order < n, first reduce
the problem to countable covers, then consider the special case where
n = 0, and finally apply the second decomposition theorem and Lemma
1.2.8.

1.8. Dimensional properties of Euclidean spaces and the Hilbert cube. In-
finite-dimensional spaces

The main result in this section is the fundamental theorem of dimension
theory, which states that Euclidean n-space R" has dimension n, i.e., that
ind R"* = IndR" = dimR" = n for n = 1, 2, ... This theorem justifies the
definitions of our three dimension functions, because any dimension
function assigning to R® a number distinct from n would contradict
the intuitive notion of dimension and thus would not be acceptable.
It readily follows from the evaluation of dimensions of Euclidean n-space
R" that the dimensions ind, Ind and dim of the n-cube I* and the n-sphere
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S" are also equal to n. The spaces R", I" and S" are our first examples
of spaces of dimension larger then one; so far we have not shown that
such spaces exist.

The proof that Euclidean n-space R" has dimension » requires a deeper
insight into the structure of this space; by the nature of things, some
combinatorial or algebraic arguments must appear in it. In this book,
instead of producing a complete proof of the fundamental theorem of
dimension theory, we shall deduce this result from the Brouwer fixed-point
theorem, which states that for every continuous mappiﬁg g: I" > I" there
exists a point x € I" such that g(x) = x. The latter theorem is certainly
well known to the reader; let us note that it is closely related to the
“geometric versions” of the fundamental theorem of dimension theory,
i.e., to Theorems 1.8.1 and 1.8.15 (see Problem 1.8.B).

We begin with a theorem reflecting an interesting geometric property
of the n-cube I".

1.8.1. Theorem. Let A, and B;, where i = 1,2, ...,n, be the subsets of
the n-cube I" defined by the conditions

Ay = {{x;}eI" x,=0} and B;= {{x;}el": x;, =1},
i.e., the pairs of opposite faces of I". If L, is a partition between A, and
B, fori=1,2,...,n, then (\L; # Q.
i=1

Proof. Let us consider open sets U;, W, < I" such that 4, « U;, B; <« W,
UnW; =@ and I"'\L, = U,uW, for i =1,2,...,n. Since (I"\W)n
AI™U) = I'N(U;uW)) = L,, the formulas

' 1 o(x, L) 1

. 2 Q(X, Li)+g(x, Al) + 2 for xel \Wi9

W A=1 T e | .

- 2 +-- fo e I"\U,

2 o(x, L)+o(x, By 2 £

define for i = 1,2, ...,n a continuous function f;: I" — I. Clearly, we
have

@ [ = Li, fi4)={1} and fi(B)= {0}.

Assume that () L; = @; it follows from the first part of (2) that the
i=1

13

continuous mapping f: I" - I" defined by letting f(x) = (f;(x),
f2(x), ..., fu(x)) for x €I" does not assume the value a = (1/2,1/2, ...
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..., 1/2) e I". The composition g: I" — I" of the mapping f and the projec-
tion p of I"\{a} from the point ¢ onto the boundary of I", ie.,, onto

the set B = |_) (4,0B,), satisfies the inclusion g(I") < B; by the second
i=1

and the third part of (2), we have g(4;) = B, and g(B;) < A4,. The last
three inclusions show that g(x) # x for every x €I", which contradicts

the Brouwer ﬁxéd-point theorem. Hence () L; # &. J
i=1

1.8.2. The fundamental theorem of dimension theory. For every natural num-
ber n we have

indR" = IndR" = dimR” = n.

Proof. By virtue of the inequality ind R" < » established in Example 1.5.9
and by the coincidence theorem, it suffices to show that indR" > n; the
latter inequality follows immediately from Theorem 1.8.1 and the theorem
on partitions. [

1.8.3. Corollary. For every natural number n we have

ind/" = Ind/" = dim/”" = n = dimS” = IndS" = ind S". [

1.8.4. Corollary. For the Hilbert cube I we have
indIfo = Ind % = dim/% = oo, [

1.8.5. Theorem. For the subspace Ni of Euclidean n-space R" consisting
of all points which have at most k rational coordinates and the subspace L}

of R™ consisting of all points which have at least k rational coordinates we

have
indN; =k and indL} =n—k.

Proof. In Example 1.5.9 we have shown that indN} < &k and ind L} < n—k.
Since R" = NjuL},, = N}_, UL}, the reverse inclusions follow from the
equality ind R" = n and the addition theorem. [

Looking closer at the above proof of the fundamental theorem of
dimension theory we can see that first the inequalities ind R" < n and
IndR" = n were established, then—by applying Theorem 1.6.4—it was
deduced that indR" = IndR" = n, and finally Lemmas 1.7.4 and 1.7.6
were applied to obtain the equality dimR” = n. The equality dim/* = n
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can be also obtained in a direct way. Theorem 1.7.8 and Theorem 1.8.15
below imply that dimI™ > n, and the reverse inequality is obtained by
defining a finite open cover of I" which has order < n and arbitrarily
small mesh. This can be done by dividing I" into small “bricks” and then
enlarging the bricks to open sets in such a way that the order of the family
does not increase; Fig. 7 illustrates the procedure in the case of n = 2.
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Our next task is to characterize n-dimensional subspaces of Euclidean
n-space R"; we shall show that they are subsets of R* which have a non-
empty interior. We start with an auxiliary geometric result, interesting in
itself, which states that if a subset C of R" has an empty interior, then C
is homeomorphic to a subset D of R" contained together with its closure
in N;_,; in particular, each such subset is homeomorphic to a nowhere
dense subset of R".

1.8.6. Lemma. If a subset C of R™ has an empty interior and is dense in
R", then every subset D of R™ which is homeomorphic to C has an empty
interior.

Proof. Let f: D — C be a homeomorphism of D onto C. Suppose that
IndD # O and consider a non-empty open subset V' of R” such that the
closure ¥ of ¥ in R" is compact and contained in D. The image JS(V)is open
in C and its closure in C equals f(V); the last set being compact, the closure
fV) of f(¥) in R* also equals f(V'). Now, let U be an open subset of R”
such that f(¥) = CAU. As the set C is dense in R", we have @ # U = U
= CnU = f(V) = f(V) = C, which contradicts the assumption that
IntC=@.J
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1.8.7. Lemma. Let A be a subset of R" and a an arbitrary point of R™\A.
For every positive number r there exists a homeomorphism f: A — f(4) < R"
such that for all x,y € A we have

e(x, f))<sr, o, ) <e(f®), ) and B(a,r)nf(4) = 9.

Proof. It suffices to assign to every x € A the point f(x) situated on the
ray starting from a and passing through x, which satisfies the condition

e(a, f(x)) = ela, x)+r. O

1.8.8. Theorem. For every subset C of R which has an empty interior there
exists a subset D of R homeomorphic to C and such that D < Nj_,.

Proof. The set C can easily be enlarged to a dense subset of R" which has
an empty interior, and it suffices to prove the theorem for this larger set.
Hence. without loss of generality, one can assume that the set C is dense
in R". Let us arrange all points of the complement R"™\N3_,, i.e., all points
of R™ with rational coordinates, into a sequence a,, a,, ... We shall define
inductively a sequence C,, C,, C,, ... of subsets of R", where C, = C,
and a sequence of homeomorphisms fy, f;, /2, ..., where f;: C; = Ciyq,
satisfying the following conditions:

3 o(x,fi(¥)) < 1/3"*'  for every x € C,.
@ o(x,y) < e (i), £i(»)) for all x,yeC,.
(5) B(a,, 1/4-39C,,, =@ for i 1.

Conditions (3)-(5) are satisfied fori = 0 if we let C;, = C and f, = idc.
Assume that the sets C,, C,, C,,..., C, and the homeomorphisms
Jo,S15S25 ---» Ju—1 are defined and satisfy (3)-(5) for i < k > 1. The set
Cy = fi—1(Cy_,) is homeomorphic to C, = C, so that IntC, = @ by
virtue of Lemma 1.8.6; thus there exists a point a € B(a,, 1/4-3**)\C,.
One readily checks that Lemma 1.8.7 applied to the set A = C,, the point a,
and the number r = 1/3*+! yields a homeomorphism f;, = f: C, = f(Cy)
which together with the set C,,, = f(C;) satisfies conditions (3)-(5) for
i = k. Thus our construction is completed.

Fori =1, 2, ... consider the composition 4, = g,fi—; ... fifo: C = R",
where g; denotes the embedding of C, in R". By virtue of (3), we have
fork>1

©  o(h(x), b))
Q(hi(x),h1+1(x))+g(h,-+,(x),h1+2(X))+ e 0 (hrii-1(x), By 1(X))
1/3%141/31+2 4 | 41/31+k < 1/2.3!  for every x € C;

AN/
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hence, for every x € C the sequence A,(x), h,(x), ... is a Cauchy sequence
and thus converges to a point 4(x) € R". In this way a mapping /2 of C to
R" is defined. Passing in (6) to the limit with respect to k, we see that the
sequence of mappings A,, A4,, ... uniformly converges to the mapping 4,
so that # is a continuous mapping. Condition (4) implies that g(x, y)
< o(hy(x), hy(y)) for all x,ye Cand i = 1, 2, ... Hence, o(x, y) < o(h(x),
h()) for all x, y € C, which implies that / is a one-to-one mapping and that
the inverse mapping A~! is continuous, i.e., that /4 is a homeomorphism
of the set C onto the set D = A(C) = R".

Now, consider a point @; € R"\N,_, and an arbitrary point z € D;
let 4A~1(z) = x e C. It follows from (5) that

Q) 0(an, iy, (0)) = 1/4-3

By virtue of (6) we have o(h . (x), i i(x) < 1/2.3*  fork = 1,2, ...,
so that

® o(his1(x), 2) < 1/2-3%1,

Relations (7) and (8) yield the inequality o(ai, 2) > 1/4.3%*1; hence
B(a;, 1/4-3*")nD = @, which implies that g, ¢ D. Thus the inclusion
D < Nj7_, is established. O

Theorem 1.8.8 yields

1.8.9. Theorem. Every subset of R* which has an empty interior is homeo-
morphic to a nowhere dense subset of R". [

1.8.10. Theorem. A subspace M of Euclidean n-space R" satisfies the condi-
tion ind M = n if and only if the interior of M in R" is non-empty.

Proof. If Int M # @, then M contains a subspace homeomorphic to I*,

so that ind M = »n. On the other hand, if IntM = @, then—as follows

from Theorem 1.8.8—the space M is homeomorphic to a subspace of
®_1, S0 that ind M < n—1 by virtue of Theorem 1.8.5. O

1.8.11. Corollary. A subspace M of the n-cube I", or the n-sphere S", sai-
isfies the condition ind M = n if and only if the interior of M is non-empty. [

1.8.12. Theorem. Let X be Euclidean n-space R", the n-cube I", or the n-sphere
S If a set F < X is the boundary of a non-empty open subset of X which
is not dense in X, then indF = n—1.
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Proof. Consider first a subspace F of S" and let F = FrU, where U is
an open subset of S" such that U # @ # $™\U. From Corollary 1.8.11
it follows that ind F < n—1; suppose that indF < n—2. Let x be a point
of U. Since U # S", for every positive number & one can readily define
a homeomorphism f of the n-sphere S” onto itself such that f(x) = x and
f(U) = B(x, ¢). Hence, the point x has arbitrarily small neighbourhoods
with (n—2)-dimensional boundaries. This contradiction of Theorem
1.8.2 shows that indF = n—1.

Since R" is homeomorphic to the open subspace S™\{a} of S" and
for every open set U « R" the boundary of U in R" and the boundary
of its counterpart in S" differ topologically by at most one point, the validity
of our theorem for subspaces of R" follows from its validity for subspaces
of $" and Corollary 1.5.6.

The case of X = I" is left to the reader. []

Let us recall that a set T < X separates a topological space X if T
separates X between a pair of points x and y, i.e., if the complement X\ T
is disconnected.

1.8.13. Theorem. Let X be Euclidean n-space R", the n-cube I", or the n-sphere
S™. If a closed subset L of X satisfies the inequality ind L < n—2, then L
does not separate the space X, i.e., the complement X \L is connected.

Proof. Suppose that X\ L = UuV, where U, ¥V are non-empty disjoint
open sets. Clearly FrU « L, so that ind FrU < n—2, which contradicts
Theorem 1.8.12. []

The last theorem leads to the notion of a Cantor-manifold, which will
be discussed in the following section.

We shall now pass to a study of deeper dimensional properties of Euclid-
ean spaces. We aim at Mazurkiewicz’s theorem, which is much stronger
than Theorem 1.8.13 and states that if a subset M of a region G < R" (i.e.,
of a connected open subspace G of R satisfies the inequality ind M < n—2,
then M does not cut G (cf. Problems 1.8.E and 1.8.F). Let us recall
that a set T < X cuts a topological space X if T cuts X between a pair
of points x and y, i.e., if each continuum C < X which contains x and
»y meets the set T. We start with Lebesgue’s covering theorem, reflecting
an interesting geometric property of the n-cube I”, which is closely related
to the equality dim/™ = n. As stated in the notes to Section 1.1, this theorem
played an important role in the formation of dimension theory.
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1.8.14. Lemma. Let A,;, B;, where i = 1,2, ..., n, be the pairs of opposite
faces of I". If I" = Ly, > Ly > ... o L, is a descending sequence of closed
sets such that L; is a partition in Lj_, between L;_,nA; and L;_,nB; for
i=1,2,...,n, then L, # 9.

Proof. By virtue of the second part of Lemma 1.2.9, for i = 2,3, ...,n
there exists a partition L, in I* between A; and B; such that

9 Li_nL;< Ljfori=2,3,..,n; let, additionally, L, = L;.
From (9) we obtain, one by one, the inclusions L, = Ly, LynL, = L, ...

e, LinL,n ...nL, < L, so that L, # @ by Theorem 1.8.1. (]

1.8.15. Lebesgue’s covering theorem. If & is a finite closed cover of the
n-cube I" no member of which meets two opposite faces of I", then ord F
= n

Proof. Let A4;, B;, where i = 1,2, ...,n, be the pairs of opposite faces
of I". For i = 1,2, ..., n define
Fi.={FeF: Fnd, # T}
and consider the families
H,=F,, Hr=F Ky, .y Hy=F\H U ...0H, )
and ,
H ey = FN( A L0 ... AL ).

It follows from the assumptions of the theorem that the closed sets K,
= (o satisfy the inclusions

(10) A, I'\(K; .,V ... UK,.;) and B; c I"'\K;
} for i=1,2,...,n
The sets L;, L5, ..., L,, where
L; = KynKn oo nKin (K, UK,V . UK 4),

are closed and form a descending sequence. Observe that I"\L; = U,uW,,
where
Ui = I'N(Ki41VKi 1,V oo UKy )
and
W; = I'N(K;n K, ... nKy).
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Inclusions (10) yield
L;_,nd4,c L;_nU, and L;_nB,cLi_nW,

fori=1,2,...,n, where Ly = I". One readily checks that (Li_,n
N U)N(Li-;nW,)) = @; moreover,

Li_ \N[Li, nU)u(Li-;aW)] = Li_ \N(U,uW,) = Li_,nL; = L;,

so that L} is a partition in L}_, between L;_;nA4, and L}.,nB; for
i=1,2,...,n. By virtue of Lemma 1.8.14, we have L, = K;nK,n ...
NnK,,, # . Since every member of the cover & belongs to exactly one
family o¢;, the last inequality implies that ord# = n. (O

If L is a partition in I" between 4; and B, then letting L} = L and
defining, as in the above proof, the families %#,,2, and the sets X, L;
for i = 2,3, ...,n, we obtain the following generalization of Lebesgue’s
covering theorem:

1.8.16. Theorem. If L is a partition between a pair of opposite faces of the
n-cube I" and F is a finite closed cover of L no member of which meets two
opposite faces of I", then ordF =2 n—1. 1

We are ready now to prove Mazurkiewicz’s theorem. The theorem
will be preceded by two lemmas; the second lemma is a special case of the
theorem, to which the general situation will be reduced by a relatively
simple argument.
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1.8.17. Lemma. Let M be a subspace of a totally bounded metric space X.
If there exists a positive number € with the property that every finite family
¥~ of open subsets of X such that mesh¥” < ¢ and M =\ ¥ satisfies
the inequality ord¥” =2 n 2= 0, then ind M = n.

Proof. Suppose that indM < n—1 and consider a finite cover {U,}f_,
of the space X by ¢/3-balls. By virtue of Remark 1.7.5, there exists a finite
family ¥~ of open subsets of X such that mesh¥” < 2¢/3 <¢e, M = | ¥
and ord¥” < n—1, which is impossible. Hence ind M = n. [J

1.8.18. Lemma. Let A, B be a pair of opposite faces of the n-cube I If
M is a subspace of X = I"\(AUB) which meets every continuum C c I"
such that AUB < C, then indM = n—1.

Proof. Consider a finite family ¥~ of open subsets of X such that mesh?” < 1
and M <V = {7, obviously, AUB = I"™\V. Let S, and Sz be the
components of the compact space I"\V which contain 4 and B, respectively.
Since S, and Sy are both continua and AUB < S,USE = I"\M, it follows
from the assumption about M that S,nSz = O. By virtue of Lemma
1.4.4 there exist disjoint open-and-closed subsets U,, W, of I"\\V such
that

(1) A=S,cU, BcSgcW, and U,uW,=I"\V.

The sets U,, W, being closed in I" there exists open sets U, W < I" such
that

UycU, W, cW and UnW=g@.

By virtue of (11), the set L = I"™\(UuW) is contained in ¥ and is a parti-
tion in I" between A and B. From Theorem 1.7.8 it follows that the cover
¥’|L of the space L has a closed shrinking 4. As mesh¥” < 1, no member
of # meets two opposite faces of I", and Theorem 1.8.16 implies that
ord# = n—1. Since ord¥ > ord#, it follows from Lemma 1.8.17
that indM > n—1. O

1.8.19. Mazurkiewicz’s theorem. If a subset M of a region G = R" satisfies
the inequality indM < n—2, then M does not cut G, i.e., for every pair
of points x,y € G\M there exists a continuum C = G\M which contains
x and y.
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Proof. Let us start with the special case where G = R". Consider a pair
of points x, y € R"™\ M and denote by K the closed ball in R” whose centre
coincides with the centre of the segment with end-points x and y and whose
radius is equal to 3o(x, y). Let f: I" - K be a continuous mapping of I"
onto K which maps a pair 4, B of opposite faces of I" to x and y, respectively,
and has the property that the restriction g = f{[I"\(4UB)] is a homeo-
morphism of I"™\(4UB) onto K\ {x, y}; such a mapping can easily be
obtained by an application of Problem 1.8.A and Lemma 1.8.7. The set
M’ = f~Y(KnM) < I"\(AUB) satisfies the inequality indM’' < n—2.
Hence by Lemma 1.8.18 there exists a continuum C’ < I" such that AUB
< C’ and C'nM’' = . The set C = f(C') « R"™\M is a continuum
which contains x and p, so that Mazurkiewicz’s theorem is proved for
G = R".

Now, consider an arbitrary region G < R" and a pair of points x, y
€ G\M. Let B,, B,, ..., B, be a sequence of open balls in R" such that
xeB,,yeB,B,cGfori=1,2,...,kand BnB; ; # D fori < k—1.
The existence of such a sequence follows from the connectedness of G,
because the set of all points in G that can be joined to the point x in a
similar way is open-and-closed. Since the set M has an empty interior, for
i=1,2,..., k—1 there exists a point z; € B;nB;,; \ M, let, additionally,
zo, = x and z, = y. By the special case of Mazurkiewicz’s theorem establish-
ed above, for i = 1, 2, ..., k there exists a continuum C; < B,\ M which
contains z;,_, and z;. The union C = C,uUC,uU ... UC, < G\ M is a con-
tinuum which contains x and y. [

We conclude this section with a theorem and an example announced
in Section 1.5 (cf. Problem 1.8.G).

1.8.20. Theorem. The Hilbert cube I¥ cannot be represented as a countable
union of finite-dimensional subspaces.

Proof. By virtue of the second decomposition theorem it is enough to
show that for every sequence Z,, Z,, ... of zero-dimensional subspaces

o0
of I we have |_J Z, # I*. Let
i=1

A= {{x;} el x;, =0} and B, = {{x;}el%: x,=1}

for i =1,2,... Applying Theorem 1.2.11, we can find a partition L,
between 4; and B, such that

(12) L,ﬁZ, =0 for i = 1, 2,
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Define I, = {{x;} €I*: x; =0 for j > n}; the intersection L;nI, is
a partition in 1, between 4;nI, and B;~I,fori = 1,2, ..., n. From Theorem

1.8.1 it follows that () L, o () L;n1, # &. Hence, the family {L,}{>; of
i=1 i=1
closed subsets of I*¢ has the finite intersection property. The space I¥ be-

ing compact, (M) L; # &. It follows from (12) that () L,c I*\ |_J Z;, so
i=1 i=1 i=1

0
that |_J Z; # I*. ]
i=1

1.8.21. Example. We shall now describe, applying the continuum hypothe-
sis, i.e., the equality N; = ¢, a space X < I* of dimension oo whose
finite-dimensional subspaces are all countable.

One readily checks that the family of all Gs-sets in I® has cardinality c;
let us arrange—applying the continuum hypothesis—all zero-dimensional
members of this family into a transfinite sequence

Zi 2y, isZyy ...y <y,

where ®, denotes the first uncountable ordinal number, i.e., the initial
number of cardinality NX,. As all one-point subsets of /¥ are among the
sets Z,, we have

(13) ) Zy = I,

a<wy

From Theorem 1.8.20 it follows that | J Z, # I® for every y < oy,

a<y
so that by virtue of (13) there exists an uncountable set I' of countable
ordinal numbers such that Z,\ |_J Z, # @ for y € I. Let us choose a point

a<y

x, € Z,\|J Z, for every y €I" and consider the subspace X =VLJ~ {x,}

a<y
of I%, By Theorem 1.2.14, for each zero-dimensional subspace Z < X
< I*o there exists a zero-dimensional Gs-set Z* — If such that Z c Z*,
i.e., there exists an index o < w; such that Z < Z,. Thus we have Z
< | {x,}, which implies that the subspace Z is countable. It follows

y<a
from the second decomposition theorem that each finite-dimensional
subspace of X is also countable. As the space X itself is uncountable, ind X
= 0.

Conversely, the existence of a space X with the above properties implies
the continuum hypothesis. Indeed, since every non-empty metric space
of cardinality < ¢ is zero-dimensional (see Example 1.2.5), |X] > ¢ and
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every subset of X which has cardinality < ¢ is countable; considering
aset A < Xsuchthat|4] = N,, we conclude that ¥, = ¢. As the continuum
hypothesis is independent of the standard axioms of set theory, the ex-
istence of a metric space X such that indX = oo and all finite-dimensional
subspaces of X are countable is also independent of the standard axioms
of set theory. [J

In the light of Theorem 1.8.20 we see that among all infinite-dimensional
separable metric spaces there are “weakly” infinite-dimensional spaces,

o0
for example the union | ) X,, where X, is homeomorphic to the n-cube

n=1
I" and X,nX,, = @ whenever n # m, and “strongly” infinite-dimensional
spaces, for example the Hilbert cube I*. The classification of infinite-
dimensional spaces into spaces which can be represented as countable
unions of finite-dimensional spaces (such spaces are called countable-
dimensional) and spaces which cannot be represented in such a way, sug-
gested by Theorem 1.8.20, is not the only possible classification into
“weakly” and “strongly” infinite-dimensional spaces; several classifica-
tions of this kind are defined and studied in the literature. It is also possible
to extend the inductive definition of ind and Ind from natural numbers
to ordinal numbers; in this way one obtains the transfinite small inductive
dimension trind and the transfinite large inductive dimension trInd, which
satisfy the inequality trindX < trInd X. It turns out, however, that there
exist separable metric spaces, even countable-dimensional spaces, with
trind larger than any given ordinal number. E.g., the subspace X of the
Hilbert cube I* consisting of all points which have at most finitely many
coordinates distinct from zero does not satisfy the inequality trindX < «,
and, a fortiori, the inequality trIndX < «, for any ordinal number «; so
that for the space X neither trind nor trInd is defined. One can also prove

that for the union X = (_J X,, where X, is homeomorphic to the njcube

n=1
I" and X,nX,, = © whenever n # m, trInd is not defined, although, as
can easily be seen, trindX = «,. Finally, there exist compact metric spaces
for which both trind and trInd are defined but are distinct ordinal numbers.

The theory dealing with transfinite dimensions and different notions
of “weak” infinite-dimensionality now forms quite an extensive part of
dimension theory. It includes various characterizations of “weakly” in-
finite-dimensional spaces (see, e.g., the remark to Problem 1.7.D), varia-
tions on addition, sum, enlargement, compactification and universal space
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theorems, and also many interesting examples. Let us note that in this
domain several natural and interesting questions are still unanswered. In
consideration of the elementary character of the present book we confine
ourselves to calling the reader’s attention to these topics; in the notes
below we list the most important items of the bibliography of infinite-
dimensional spaces. ‘

Historical and bibliographic notes

A proof of the Brouwer fixed-point theorem can be found in the appendix
to Section 7.3 of [GT]. Theorem 1.8.1 is implicit in Eilenberg and Otto’s
paper [1938]. As already mentioned in the notes to Section 1.1, the equality
dimR" = n (more exactly, Theorem 1.8.15) was discovered by Lebesgue
in [1911] and proved by Brouwer in [1913]; the gap in Lebesgue’s original
outline of proof, given in [1911], was filled in his later paper [1921]. Brou-
wer’s paper [1913] contains also a proof of the equality Ind R* = n, which
is' reduced to the equality dimR"* = n. The equality ind R* = n was estab-
lished—also by a reduction to the equality dimR" = n and an applica-
tion of Lebesgue’s result—by Menger in [1924] and by Urysohn in [1925]
(announcement in [1922]). Theorem 1.8.9 was given by Sierpiriski in [1922];
Theorem 1.8.8 is obtained by a small modification of Sierpifiski’s proof.
Theorems 1.8.10, 1.8.12 and 1.8.13 were obtained by Menger in {1924]
and by Urysohn in [1925] (announcement in [1922]). Urysohn in his proof
of Theorem 1.8.10 applied an earlier result of Fréchet and Brouwer (see
Problem 1.8.D), and Menger showed that if a subspace M of R" has an
empty interior, then for every point x € R* and each positive number &
there exists a neighbourhood U < R" of the point x such that 6(U) < &,
the boundary Fr U is homeomorphic to S*~! and the intersection MnFrU
has an empty interior in the space FrU. Theorem 1.8.16 was proved in
Lebesgue’s paper [1921]. Mazurkiewicz established Theorem 1.8.19 in
{1929]. Theorem 1.8.20 and Example 1.8.21 were given by Hurewicz in
[1928] and [1932], respectively.

Hurewicz was the first to hint, in [1928], at the possibility of a classifica-
tion of infinite-dimensional spaces; he defined there countably-dimensional
spaces. A comprehensive exposition of the theory of infinite-dimensional
spaces can be found in Alexandroff and Pasynkov’s book [1973]; some
information is contained in Nagata’s book [1965]. Further results were
obtained by Arhangel’skii in [1963], Lelek in [1965], Nagami in [1965],
Nagami and Roberts in [1965], Schurle in [1969], Shmuely in [1972],
and Ljuksemburg in [1973] and [1973a).
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Problems

1.8.A. Let us recall that a subset 4 of Euclidean n-space R" is convex
if for each pair x, y of points of 4 the segment with end-points x and y
is contained in A. '

Show that every convex compact subspace A < R" which has a non-empty
interior is homeomorphic to the n-ball B" and its boundary FrA is homeo-
morphic to the (n—1)-sphere S"~1. Note that, in particular, I" and B"
and also FrI" and S"~!, are homeomorphic to each other forn = 1,2, ...

Hint. Consider a point x eInt4 and prove that every ray starting
from x meets FrA4 at exactly one point.

1.8.B. Show that the Brouwer fixed-point theorem follows easily both
from Theorem 1.8.1 and from Theorem 1.8.15.

Hint. The Brouwer fixed-point theorem is equivalent to the statement that
S™ ! is not a retract of B".

1.8.C (Nobeling [1932]). Prove that if the projection of a compact
subspace X of R™ onto the Cartesian product of each n coordinate axes
of R™, where 0 < n < m, has an empty interior, then the subspace X is
embeddable in N ; . Deduce that if an F,-set X < R™ satisfies the inequality
indX = n > 0, then there exists a set of n coordinate axes of R™ such
that the projection of X onto the Cartesian product of these axes has di-
mension n (the assumption that X is an F,-set cannot be omitted; see
Example 1.10.23). ‘

Hint. Let H, H,, ... be the sequence of all linear (m—n)-varieties
in R™ defined by conditions of the form x;, =r;, x;,
where 1 €7, <i, < .. <i,<mandr,,r,,..,r, are arbitrary rational
numbers. Observe that fori = 1, 2, ... the set 4, = R™ of all points a € R™
such that {x+a: x e X}nH, # @ is closed and has an empty interior.

= Fay eiiy Xy = Iy,

1.8.D (Brouwer [1913al]; implicitly, Fréchet [1910]). Prove that for
any two countable dense subsets 4, B of Euclidean n-space R" there exists
a homeomorphism f: R" — R" such that f(4) = B. Note that this result
yields Theorem 1.8.10.

Hint. A set A = R"is in general position with respect to the coordinate
axes if for every pair of distinct points x = {x;}, ¥y = {¥:} € 4 the differ-
ence x;—y; does not vanish for i = 1,2, ..., n. Prove first that for every
countable set 4 = R" there exists a homeomorphism of R" onto itself
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that maps 4 onto a set in general position with respect to the coordinate
axes. Then show that the elements of two countably infinite sets in general
position with respect to the coordinate axes can be arranged into two
sequences X;, Xz, ... and ¥y, y,, ..., where x; = {x/} and y, = {4} for
j=1,2,..,in such a way that the differences x{—x% and yj—»* have
thesamesignforj,k = 1,2, ...,j# k,andi = 1,2, ...,n (cf. the hint to
Problem 1.3.G(a)).

Remark. It was proved by Fort in [1962] that the Hilbert cube also has
the above strong homogeneity property; more general results were obtained
by Bessaga and Pelczyriski in [1970] and by Bennett in [1972].

1.8.E. (2) Deduce from Theorem 1.8.13 that if a subset M of a region
G < R" satisfies the inequality ind M < r—2, then M does not separate G,
i.e., the complement G\ M is connected.

Hint. Observe first that every set 7 which separates a topological space X
between a pair of points x and y contains a partition between x and y.
Then reduce the problem to the special case where G = R" (cf. the proof
of Theorem 1.8.19).

(b) Give an example of a one-dimensional subset of the plane R? which
does not separate any region G < R2

Remark. Sitnikov gave in [1954] an example of a two-dimensional
subset of R® which does not separate any region G = R3. On the other
hand, every (n— 1)-dimensional closed subset of R" does separate a region
G < R" (see Alexandroff [1930], Frankl and Pontrjagin [1930], and Frankl
[1930D).

1.8.F. Give an example of a subset of the plane R? which cuts R? but
does not separate it.

1.8.G (Smirnov [1958]). Show that every non-empty separable metric
space can be represented as the union of an increasing transfinite sequence
of type w, consisting of zero-dimensional subspaces.

Hint. Show that the interval 7 can be represented in this way, and
apply the universality of the Hilbert cube for the class of all separable
metric spaces.

Remark. Related results can be found in Arhangel’skii’s paper [1963]
and Nagami’s paper [1965].
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1.9. Characterization of dimension in terms of mappings to spheres. Cantor-
manifolds. Cohomological dimension

In the preceding sections we chiefly studied the internal properties
of n-dimensional spaces. In the present one, and the next two to follow,
we shall study the external properties; more exactly, we shall discuss the
relations of n-dimensional spaces to standard spaces such as spheres,
polyhedra and Euclidean spaces.

We begin with a characterization of dimension in terms of extending
mappings to spheres from a closed subspace over the whole space.

Let us recall that a continuous mapping f: 4 — Y defined on a subspace
A of a space X is continuously extendable over X if there exists a continuous
mapping F: X — Y such that F|4 = f, i.e. F(x) = f(x) for every x € X;
the mapping F is called a continuous extension of f. One of the most im-
portant results on extending mappings is the Tietze—-Urysohn theorem,
which states that every continuous function from a closed subspace A
of a normal space X to the closed interval I is continuously extendable
over X. Urysohn’s lemma is a special case of this theorem; it states that
for every pair 4, B of disjoint c¢losed subsets of a normal space X there
exists a continuous function f: X — I such that f(4) < {0} and f(B) = {1}.
When X is a metric space, the function fin Urysohn’s lemma can be obtained
in a particularly simple way, viz., by defining '

olx, 4)
T = oG dret, B

The Tietze-Urysohn theorem implies that for every continuous mapping
f: A —I" of a closed subspace A4 of a normal space X to the n-cube I"
there exists a continuous extension F: X — I" over X; indeed, it suffices
to choose for i =1,2,...,n a continuous extension F;: X — I of the
composition p,f, where p;: I" — I is the projection of I" onto the i-th co-
ordinate axis, and define F(x) = (Fi(x), F;(x), ..., F,(x)).

On the other hand, for every continuous mapping f: 4 — S of a closed
subspace 4 of a normal space X to the n-sphere S™ there exists an open
set U < X containing 4 and such that fis continuously extendable over U.
Indeed, the two spaces being homeomorphic (see Problem 1.8.A), one can
replace the sphere S™ by the boundary S} of the (n-+ 1)-cube I"*! in R**!
and, applying the above observation, obtain a continuous mapping Fy:
X - I"*1 guch that Fy(x) = f(x) for every x € A; now, the mapping f is
continuously extendable over the open set U = Fgl(I"*'\{a}) < X,

for x eX.
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where a = (1/2, 1/2, ..., 1/2); the composition F of the restriction Fo|U
and the projection p of I"**\ {a} from the point a to S} is a continuous
extension of f over U.

It is well known (cf. the hint to Problem 1.8.B) that in general con-
tinuous mappings to the n-sphere S" are not continuously extendable
from a closed subspace to the whole space. We shall now show that the
extendability of such mappings depends exclusively on the dimension
of the complement of the subspace under consideration.

1.9.1. Lemma. Let X be a separable metric space and A a closed subspace
of X such that ind(X\A4) < n = 0. For every pair A,, A, of closed subsets
of A such that A, VA, = A there exist closed subspaces X, , X, of the space
X which satisfy the conditions

(1) X=X1UX2, Al CX], AZCXZ, A10X2=A1(\A2=X1(\A2
and
(@) ind[(X,nX,)\(4,n45)] < n—1.

Proof. The sets A, \A, = A, \(4;nA4;) and A\A4, = A, \(4:n4,)
are disjoint and closed in the subspace X\ (4,n4,) of the space X. By
virtue of the second separation theorem, there exists a partition L in
X\(4;nA4;) between A,\A, and A,\A4, such that ind[Ln(X\A4)]
< n—1; since LnA = [Lo(ANA)V[(LN (A NADIV[LNA;0nA4,] = O,
the last inequality can be rewritten as indL < n—1.

% Vs
N =Y LSS
N '::?:::.s:“ // /// l.,,,/
\\». %

R

Fig. 9

Consider a pair of sets U, ¥V < X\ (4;n4,) which are open in
X'\(4;n4,) and satisfy the conditions

ANA, c U, A,NA, <V, UaV =0 and [X\(4;n4)\L = ULV.
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The sets U and V are open in X; we shall verify that their complements
X, = X\V and X, = X\ U satisfy (1) and (2).
First of all,

XX, = X\ VD) = X\UnV)=X.
Next,
Ay = (A;N\NA)u(4,n4,) < UL X\(UuV)] < X\V = X,
and—similarly—A4, < X,. Then,
AlﬁA2 [ AlﬁX2 = AI\U [ Al\(Al\A2) = A]ﬁA2,

so that 4,nA4, = A,nX,, and—similarly—A4,nA4, = X,nA4,. Finally,
since X;nX, = X\(UUV) = Lu(4,n4,), we have [(X;nX5)\(4,nA4,)]
= L, so that ind[(X;,nX)\(4;:n4)] < rn—1. O

1.9.2. Theorem. If X is a separable metric space and A a closed subspace
of X such that ind(X\A) < n > 0, then for every continuous mapping f:
A — S" there exists a continuous extension F: X — S" of f over X.

Proof. We shall apply induction with respect to #. When » = 0, the map-
ping f takes values in the two-point space S® = {—1, 1} and it follows
from Lemma 1.9.1, applied to the sets 4; = f~'(1) and 4, = f~(-1),
that there exist closed subspaces X, , X, of the space X such that X = X, u
uX,, A, c X,, A, =X, and X,nX, = @. The mapping F: X - S°
defined by letting

1 for xeX,,

F() = {—1 for x e X,
is then the required continuous extension of f.

Consider now an #n > 1 and assume that the theorem holds for con-
tinuous mappings to the (n— 1)-sphere S*~*. Let f: 4 — S" be a continuous
mapping defined on a closed subspace 4 of a separable metric space X
such that ind(X"\4) < n. Denote by S% and S” the upper and the lower
hemisphere of S", respectively. Let 4, = f~1(S%) and 4, = f~(S%);
since §%NS” = "1, the restriction g = f|4,nA4, maps 4;nA4, to S"71.
Applying Lemma 1.9.1, we obtain closed subspaces X,,X, = X which
satisfy conditions (1) and (2). From (2) and the inductive assumption it
follows that the mapping g: A;nA, — S"~! has a continuous extension
G: X nX, — S"! over the subspace X; X, of the space X. Since 4,NX,
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= A1nA, = X;nA,, the formulas

f(x) for xeA4,, fx) for xeAd,,
fl(x)={G(x) for xeX,nXy, PTG for xeXinX,

define continuous mappings
f1: AIU(Xlan)—’S'_:_ and fz: AzU(Xlan)—’S'L.

The hemispheres S and S” being homeomorphic to I it follows from
the Tietze-Urysohn theorem that f; and f, are continuously extendable
to mappings F,: X; - St and F;: X, — S”. Letting

{Fl(x) for xEXl,
Fx) = F,(x) for xeX,,

we define a continuous extension F: X — S" of the mapping f. [

1.9.3. Theorem on extending mappings to spheres. A separable metric space
X satisfies the inequality indX < n = 0 if and only if for every closed sub-
space A of the space X and each continuous mapping f: A — S" there exists
a continuous extension F: X — S" of f over X.

Proof. By virtue of Theorem 1.9.2, it suffices to show that extendability
of mappings implies the inequality ind X < n. We shall apply the theorem
on partitions.

Let (4,, B,), (4,, B,), ..., (Ans1, B,y1) be a sequence of n+1 pairs

n+l
of disjoint closed subsets of X. Define 4 = (_J(4,uB)) and, for i = 1,2, ...
i=1

...,n+1, consider a continuous function f;: 4 — I such that
fild) = {0} and f(B) = {1}.

Letting f(x) = (f1(x), 2(x), ..., fo+1(x)) for X € 4, we define a continuous
mapping f: 4 — S} of A to the boundary S} of the (n+1)-cube I"*! in
R"*1, As the space ST is homeomorphic to S” the mapping f has a con-
tinuous extension F: X — ST over X. The composition F;: X — I of F and
the projection of S§ onto the i-th coordinate axis is an extension of f; for

i=1,2,...,n+1, so that the set L, = Fy1(1/2) is a partition between A4,
n+1i

and B,. Since (N L, = &, we have indX < n by virtue of the theorem
i=1

on partitions. []
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1.9.4. Remark. Let us note that in the second part of the above proof
only the normality of the space X was applied; hence, we have shown
that if a normal space X has the property that for every closed subspace 4
of X and each continuous mapping f: 4 — S" there exists a continuous
extension F: X — S" of f over X, then for every sequence (A4,, B,),
(A, B2)s ...y (Api1s Byyy) of n+1 pairs of disjoint closed subsets of X

there exist closed sets L, L,, ..., L,,; such that L, is a partition between
n+1

A, and B, and L, = @
i=1

The characterization of dimension in terms of mappings to spheres
will now be applied to establish the Cantor-manifold theorem; another
important application of this characterization will be given in Section
1.12 (see Theorem 1.12.4).

1.9.5. Definition. A compact metric space X such that indX =n > 1 is
an n-dimensional Cantor-manifold if no closed subset L of X satisfying
the inequality ind L < n—2 separates the space X, i.e., if for every such
set the complement X\ L is connected.

Clearly, every one-dimensional metric continuum is a one-dimensional
Cantor-manifold, and from Theorem 1.8.13 it follows that for every n > 1
the n-cube I" and the n-sphere S” are n-dimensional Cantor-manifolds. On
the other hand, for every n > 2 the union of two copies of the n-cube
I" with exactly one point in common is an example of an n-dimensional
compact metric space which is not a Cantor-manifold. Let us observe
that if X is an n-dimensional Cantor-manifold, then the dimension of X
at each point x € X' (see Problem 1.1.B) is equal to n, but—as shown by
the last example—a compact metric space of dimension n at each point
need not be a Cantor-manifold.

As we have already observed (see remarks to Problems 1.4.F(b) and
1.5.C), for every n = 1 there exist separable metric spaces of dimension n
which contain no compact subspace of dimension », and, a fortiori, no
n-dimensional Cantor-manifold. However, every compact metric space of
dimension n > 1 does contain an n-dimensional Cantor-manifold. The
proof of this important theorem is preceded by two lemmas.

Let us recall that continuous mappings f,, f; of a topological space X
to a topological space Y are homotopic if there exists a continuous mapping
F: XxI— Y such that F(x, i) = f;(x) for i = 0, 1 and x € X’; the mapping
F is called a homotopy between f, and f;.
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1.9.6. Lemma. Let f, g: X ~ S" be continuous mappings of a separable
metric space X to the n-sphere S". If the set

D(f,8) = {xeX: flx) # g(x)}
satisfies the inequality ind D(f, g) < n—1, then the mappings f and g are
homotopic.

Proof. Consider the space ¥ = X x I, the closed set 4 = (Xx {0, 1Hu
U(X\D(f, g))xI = Y and the continuous mapping k: A —» S" defined
by letting
h(x,0) = f(x), h(x,1)=g(x) forxeX
and
h(x,t) = f(x) =g(x) for xeX\D(f,g) and tel.

As YA < D(f, g) xI, we have ind(¥\4) < n, and by virtue of Theorem
1.9.2 there exists a continuous extension H: ¥ — S" of the mapping A:
A — S"; clearly, H is a homotopy between f and g. O}

The next lemma describes an important property of mappings to
spheres; it is called the Borsuk homotopy extension theorem.

1.9.7. Lemma. Let X be a topological space such that the Cartesian product
X x I is normal (in particular, a metric or a compact space), A a closed sub-
space of X, and f, g: A — S™ a pair of homotopic continuous mappings of A
to the n-sphere S™ If f is continuously extendable over X, then g is also con-
tinuously extendable over X; moreover, for every extension F: X = S" of f
there exists an extension G: X — S" of g such that F and G are homotopic.

Proof. Let h: A xI — S™ be a homotopy between f and g. The continuous
mapping 4': (X x {0})u(4 xI) — S" defined by letting

H(x,0) = F(x) forxeX
and
H(x,t) =h(x,t) forxed and tel

can be extended to a continuous mapping H': U — S” defined on an open
set U < X' x I which contains (X' x {0})u(4 x ). It follows from the com-
pactness of I and the definition of the Cartesian product topology that
every point a € A has a neighbourhood V, = X such that V,xI < U;
the union ¥V = |_J V, is an open subset of X such that AxJ < V'xI'c U.

acAd

The space X, being homeomorphic to the closed subspace X x {0} of the
normal space X x 1, is itself normal, so that by Urysohn’s lemma there
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exists a continuous function u: X — I such that
u(X\V) < {0} and wu(4) < {1}.
One readily verifies that the formula
H(x,1) = H'(x,t-u(x)) for (x,t)eXxI

defines a continuous mapping H: X xI — S" such that H(x,0) = F(x)
for x e X and H(x, 1) = g(x) for x € A. Hence, the mapping G: X —» S"
defined by letting G(x) = H(x, 1) for x €X is a continuous extension
of g, and H is a homotopy between F and G. [J

1.9.8. The Cantor-manifold theorem. Every compact metric space X such
that indX = n > 1 contains an n-dimensional Cantor-manifold.

Proof. By virtue of Theorem 1.9.3, there exists a closed subspace 4 of the
space X and a continuous mapping f: 4 — S* ! which cannot be con-
tinuously extended over X. Denote by € the family consisting of all closed
sets C < X such that the mapping f cannot be continuously extended
over AUC, and define an order < in the family € by letting C, < C,
whenever C, = C;; since X € ¢, the family ¥ is non-empty.

Now, consider a subfamily'(go of € which is linearly ordered by <.
We shall show that the closed set Cy = [ %, is 2 member of €. Assume
the contrary, i.e., that the mapping f is continuously extendable over
AuC,. There exists then an open set U — X containing AuC, such that
f is continuously extendable over U. Since C, = [ %o = U, from the
compactness of X follows the existence of a finite number of sets C,, C,, ...
ooy Cp € 6, such that C,nCyn ... nC, = U. The family %, being linearly
ordered by <, there exists an 7, < k such that C;, = C, for every i < k.
Hence, C;, = U and the function f is continuously extendable over AU
uC;, = U; but this is impossible, because C;, is a member of €. The
contradiction shows that C, € €; clearly C < C, for every C € €,. Ap-
plying the Kuratowski-Zorn lemma, we obtain a maximal set Me¥,
i.e., a closed set M < X such that the mapping f cannot be continuously
extended over AUM, and yet for every proper closed subset M’ of M
it is continuously extendable over AUM’. We shall show that M is an
n-dimensional Cantor-manifold.

As ind M < indX = n, it suffices to show that if M = M, UM,, where
M, and M, are proper closed subsets of M, then ind(M,nM,) = n—1.
Assume that there exist proper closed subsets M, M, of the set M such
that M = M, UM, and ind(M,~M,) < n—2; consider the sets 4; = AUM,
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and A, = AUM,. For i =1,2 the mapping f can be extended to
a continuous mapping f;: 4; — S*1. The restrictions f;|B and f,|B of
fi1 and f; to the set B = Au(M;nM,) differ on a subset of M;nM,,
so that by virtue of Lemma 1.9.6 they are homotopic. Since f,|B is con-
tinuously extendable over AUM,, it follows from Lemma 1.9.7 that f; | B
is also extendable to a continuous mapping fi: AuM, - S"~!. From
the equality (AUuM,)Nn(AUM,) = B it follows that letting

]fl(x) for xe AUM,,
lfl'(x) for xe AUM,

we define a continuous mapping F: AuM — S"~! which extends the
mapping f. This contradiction concludes the proof. []

F(x) =

1.9.9. Corollary. Every n-dimensional compact metric space X has an n-di-
mensional component. []

The characterization of dimension in terms of mappings to spheres
leads, via Hopf’s extension theorem, to the cohomological characteriza-
tion of dimension. We shall describe briefly this process.

It is a well-known fact that the Cech cohomology groups with coeffi-
cients in the group of integers, based on all open covers, satisfy the FEilen-
berg-Steenrod axioms. In particular, for every topological space X and
every closed subset 4 of the space X the cohomology sequence

j* ) i* i* P i*
HOX, A) o ... > H'(X, 4) > H'(X) - H'(A) > H'(X, 4) > ..
of the pair (X, 4) is an exact sequence, and for every continuous mapping
f: X — 8" an element f*(s") of the cohomology group H"(X) is defined,
the image of a fixed generator of the group H"(S") under the induced
homomorphism f*: H*(S") - H"(X). Hopf’s extension theorem, which
was mentioned above, states that

(H) A4 continuous mapping f: A — S" defined on a closed subspace A of
a paracompact space X such that dimX < n+1 is continuously extend-
able over X if and only if f*(s") € i*(H"(X)).

It follows from the definition of cohomology groups that if X is a para-
compact space such that dimX < », then H"*1(X, 4) = 0 for every closed
set A < X (cf. Proposition 3.2.2). On the other hand, if a finite-dimensional
separable metric space X satisfies the inequality dimX > n, then by virtue
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of Theorem 1.5.1 there exists a closed subspace X’ of X such that dimX”’
= n+1, and by virtue of Theorem 1.9.3 there exists a closed subspace A
of X’ and a continuous mapping f: 4 — S" which cannot be continuously
extended over X’; from Hopf’s extension theorem and the elementary
properties of cohomology groups it follows that f*(s" éi*(H"(X)), SO
that H"*1(X, A) # 0 by the exactness of the cohomology sequence of the
pair (X, A). Thus we obtain the cohomological characterization of dimension,
which states that a finite-dimensional separable metric space X satisfies
the inequality dimX < # > O if and only if H**(X, 4) = 0 for every
closed set 4 — X and for i = 1, 2, ... This characterization remains valid
in the class of all paracompact spaces (cf. Theorem 3.2.10). Let us observe
that for a metric space X it would be enough to consider the group
H"1(X, A), but for arbitrary paracompact spaces it is necessary to take
into account all groups H™* (X, A), because no counterpart of Theorem
1.5.1 holds in paracompact spaces for the covering dimension dim. Let us
also note that it is an open question whether the assumption of finite-
dimensionality of X in the cohomological characterization of dimension
is essential.

The cohomological characterization of dimension was the point of
departure for cohomological dimension theory, a section of dimension
theory on the border-line of point-set and algebraic topology, which studies
the notion of the cohomological dimension with respect to an abelian
group. For a fixed abelian group G # 0, to every topological space X one
assigns the cohomological dimension of X with respect to G, denoted by
dimgX, which is an integer larger than or equal to —1 or the “infinite
number” oo; the definition of the dimension function dimg consists in
the following conditions:

(CD1) dimgX = —1 if and only if X = O;

(CD2) dimgX < n, where n=0,1,..., if H* (X, A;G) =0 for every
closed set A =« X and for i = 1,2, ...;

(CD3) dimgX = n if dimgX < n and dimgX > n—1;

(CD4) dimgX = oo if dimgX > n forn= —-1,0,1, ...

One proves that the functions dimg, although distinct for different
groups G, have many properties of dimension. In particular, for every
abelian group G # 0 and every natural number n we have dimg R* = dimg /"
= dimgS" = n. One also proves that, under suitable assumptions on the
space X and the group G, cohomological dimensions satisfy the counter-
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parts of the subspace, sum, Cartesian product and compactification theo-
rems. In the proofs of these theorems methods of algebraic topology
and homological algebra are largely applied.

To conclude, let us note that the dimension of compact spaces can
also be characterized in terms of Cech homology groups with coefficients
in the group R, of real numbers modulo 1. One p1roves that a finite-dimen-
sional compact space X satisfies the inequality dimX < » > 0 if and only
if Hye (X, A; Ry) = 0 for every closed set 4 — X and for i = 1,2, ...
In the proof, the exactness of the homology sequence and the homological
counterpart of Hopf’s extension theorem are used; since compactness
is crucial for the validity of both these results, when passing to larger
classes of spaces one has to replace homology with cohomology.

Historical and bibliographic notes

Theorem 1.9.2 was established by Hurewicz in [1935a]. The same
paper contains Theorem 1.9.3 for compact metric spaces. It is a restatement
of an earlier result of Alexandroff (see Problem 1.9.A); Hurewicz’s contri-
bution was to find a clever formulation and a simple proof (cf. Problem
1.9.C). The extension of Theorem 1.9.3 to separable metric spaces was
given by Hurewicz and Wallman in [1941]. The notion of a Cantor-manifold
was introduced by Urysohn in {1925]; Theorem 1.9.8 was proved independ-
ently by Hurewicz and Menger in [1928] and by Tumarkin in [1928].
The original proofs were much more involved than the one presented
here, discovered by Hurewicz in [1937] and by Kuratowski in [1937]
(a similar proof was given by Freudenthal in [1937]). Homological dimension
theory was originated by Alexandroff in [1932]. Complete proofs of ho-
mological and cohomological characterizations of dimension in the realm
of compact metric spaces can be found in Hurewicz and Wallman’s book
[1941]. A comprehensive exposition of cohomological dimension theory
was developed by Kuz’minov in [1968] and by Kodama in {1970].

Problems

1.9.A (Alexandroff [1932] for compact metric spaces). A continuous
mapping f: X — B"*! of a topological space X to the (n+1)-ball in R"*!
is essential if there is no continuous mapping g: X — B**! such that
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gif~1(S" =fIf~*(S" and B"*'*\g(X) # O; essential mappings with

values in sets homeomorphic to balls are defined in a similar way.
Show that a separable metric space X satisfies the inequality indX

< n > 0 if and only if no continuous mapping f: X — B"*! is essential.

1.9.B (Hurewicz and Wallman [1941]). A point y € f(X) is an unstable
value of a continuous mapping f: X — Y of a topological space X to a metric
space Y if for every positive number ¢ there exists a continuous mapping g:
X - Y such that ¢(f(x), g(x)) < & for every x € X and y ¢ g(X); other-
wise, y € f(X) is a stable value of f.

(2) Show that y € f(X) is an unstable value of a continuous mapping f:
X — I" if and only if for every neighbourhood U of the point y there exists
a continuous mapping g: X — I such that g(x) = f(x) whenever f(x)
¢ U, g(x) € U whenever f(x) € U, and y ¢ g(X).

(b) Show that a separable metric space X satisfies the inequality ind X
< n > 0if and only if for every continuous mapping f: X — I"*! all points
in f(X) are unstable values of f. Observe that instead of I"*! one can con-
sider S"*! or R"*L.

1.9.C {(Hurewicz [1935a]). (a): Let Y be a complete metric space and Z
a totally bounded metric space. Prove that for every open set U =« Yx Z
which is dense in ¥'x Z there exists a set A = Y which is dense in ¥ and
such that for every a € 4 the set {z € Z: (a, z) € U} is dense in Z.

(b) Prove that if X is a compact metric space and the set {f e (R"*1)*:
f(x) # (0,0, ..., 0) for every x € X} is dense in the function space (R***)X,
then indX < n (see the beginning of Section 1.11).

Hint. Apply induction with 1espect to n; use the equality (R"+*1)¥
= (RM* x R¥ and part (a).

(c) Apply part (b) to show that if for every closed subspace 4 of a com-
pact metric space X and each continuous mapping f: 4 — S" there exists
a continuous extension F: X — S" of f over X, then indX < n.

1.9.D (Borsuk [1937]; for a compact metric space X, Eilenberg [1936]).
Prove that for every continuous mapping f: 4 — S* defined on a closed
subspace A of a separable metric space X such that ind(X"\A4) < n, where
0 < k < n, there exists a closed subspace B of the space X such that AnB
= @, indB € n—k—1, and the mapping f has a continuous extension F:
X\ B — S* over X\B.

Hint. Apply induction with respect to k-+#n; modify the proof of The-
orem 1.9.2. :
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L9.E. (a) Let p: R —» S* be the continuous mapping of the real line
to the circle defined by letting p(¢) = e*>"*. Applying the fact that for
every continuous mapping g: X — S* of a metric space X to S! which
is homotopic to a constant mapping there exists a continuous mapping g:
X — R such that g = pg (see Spanier [1966], p. 67), show that for every
one-dimensional compact metric space Z there exists a closed set M < Z
such that the quotient space Z/M can be mapped onto S! by a mapping
which is not homotopic to the constant mapping.

Hint. Let M be a closed subspace of the space Z with the property
that there exists a continuous mapping f: M - S° which cannot be con-
tinuously extended over Z, and let F: Z — I be a continuous mapping
such that F(x) = f(x) for every x € M. Consider the quotient space Z/M
and the continuous mapping g: Z/M — I/S® = S? induced by F.

(b) (Hurewicz [1935]) Applying the fact that for every n-dimensional
compact metric space Z, where n = 1,2, ..., there exists a closed set
M < Zsuch that the quotient space Z/M can be mapped onto S” by a map-
ping which is not homotopic to the constant mapping (see Dowker [1947],
p. 235), show that for every compact metric space X and every one-dimen-
sional separable metric space ¥ we have ind(XxY) = indX+1 = ind X+
+indY.

Hint. Let indX = #; reduce the problem to the special case where
there exists a continuous mapping g: X — S" which is not homotopic
to the constant mapping. Then consider a pair 4, B of disjoint closed
subsets of Y such that the empty set is not a partition between A4 and B
and, assuming that ind(X x ¥) < #, extend the mapping f: X x (4UB) — S"
defined by letting

Six,»=(1,0,0,...,0) foryed and f(x,y) =g() foryeB

to a continuous mapping F: X XY — S"; examine the set of those yeY
for which the restriction F|(Xx {y}) is homotopic to the constant
mapping.

L9.F (Kuratowski and Otto [1939]). Let {X,},s be a family of »-di-
mensional Cantor-manifolds contained in an n-dimensional compact metric
space X. Prove that if there exists an s, € S such that the inequality

ind(X;nX;) = n—1 holds for all s €S, then the subspace ) X, of X is
seS

an n-dimensional Cantor-manifold.
Remark. As proved by Borsuk in [1951], the Cartesian product of two
Cantor-manifolds is not necessarily a Cantor-manifold.
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1.9.G. (a) (Anderson and Keisler [1967]) Let X be an open subspace
of an n-dimensional Cantor-manifold. Prove that if a subset M of X meets
every continuum C < X which has cardinality larger than one, then
indM = n—1 (cf. Theorem 1.8.19).

Hint. Assuming that ind M < n—2, define inductively a decreasing
sequence X; > X, o ... D X,_; of subsets of X such that X, is an (n—k)-
dimensional Cantor-manifold and ind(MnX,) < n—k—-2fork=1,2, ...
vy, n—1.

(b) Give an example of a two-dimensional Cantor-manifold of which
a one-point subset is a cut.

1.9.H. (a) (Alexandroff [1932]) Show that every n-dimensional Cantor-
manifold contained in an n-dimensional compact metric space X can be
enlarged to a maximal Cantor-manifold contained in X, i.e., to a Cantor
manifold which is not a proper subset of another Cantor manifold con-
tained in X; maximal n-dimensional Cantor-manifolds contained in an
n-dimensional compact metric space X are called dimensional components
of X. Check that dimensional components of a one-dimensional compact
metric space coincide with components of the space X which have car-
dinality larger than one. Note that the union of all dimensional components
of a compact metric space X is not necessarily equal to X. Observe that the
intersection of two dimensional components of an n-dimensional compact
metric space has dimension < n—2.

(b) (Mazurkiewicz [1933]) Prove that if 4 is a dimensional component
of an n-dimensional compact metric space, and B is the union of all the
remaining dimensional components of X, then ind(AnB) < n—2.

Hint. Define a decreasing transfinite sequence X = F, o F, o ... o F,
> ..., < w;, of closed sets containing 4 such that if F,\A4 # @, then
Fo, = Fpp yF\Fypyy), where ind[F.,  ,n(F\Fy )] <n-2, and F
= (" F, for every limit number 1 < w,. Applying the fact that there

a<i
exists an ¢ < w, such that F, = F,_ for every a > «, (see [GT], Problem
3.12.7(b)), show that F, = 4 and X = AU (F\Fpyy).

a<ap

1.10. Characterization of dimension in terms of mappings to polyhedra

The characterization of dimension which is the object of the present
section will be formulated in terms of mappings with “arbitrarilv small
fibres” to polyhedra of geometric dimension < n.
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We begin by recalling the notions of a simplex, a simplicial complex,
and a polyhedron.

Let p = {p;} and ¢ = {q,} be points of Euclidean m-space R™. The
sum p+q of the points p and ¢q and the product Ap of the point p by thereal
number A are defined by the formulas

ptqg=r={r}, wherer,=p+gq,
and
Ap =s={s;}, where s; = ip;.

The point of R™ which has all coordinates equal to zero, i.e., the origin
of R™, will be denoted by the symbol 0; the distance (0, x) will be denoted
by ||x||. One can readily verify that

lp—4ll = e(p, @), llApll = [Al-llpll and llp+qll < lIpll+Il4ll;

the last inequality is a reformulation of the triangle inequality in R™.
A finite system of points pg, p;, ..., px € R™ is linearly independent
if for each sequence 14, 4,, ..., 4 of k+1 real numbers the conditions

}'OPO+}'1P1+ +lkpk =0 and 10"*‘11"{" +}'k =0

imply that 4, =0 for i = 0,1, ..., k.
Let po,pys ..., P, be a linearly independent system of n+1 points
in R™; the subset of R™ consisting of all points

) P = Aopo+Aipr+ ... +2nDn,
where

2) Ao+ A+ ... +2,=1 and 24,20 fori=20,1,..,n,

is called an n-simplex spanned by the points pg, p;, ..., p, and is denoted
by poP; ... Pn. Clearly, the simplex pop, ... p, does not depend on the
ordering of points pg, py, ..., Pn, it depends on the set {po, P1s ..., Pu}
only. One proves that the simplex pgp; ... p, determines the points
DPo> D1, ---» Py and can be characterized as the smallest convex subset of
R™ which contains these points; one also proves that the diameter of the
simplex pop, ... p, is equal to the diameter of the set {po,p:, ..., Pn}
(see Problem 1.10.A).

Consider an n-simplex pop, ... p, = R™; for each choice of K+ 1 distinct
non-negative integers iy, i;, ..., i, not larger than n, where 0 < k < n, the
points p; ,p; , ..., p;, formalinearly independent system, so that the k-simplex
Di, Pi, --- Py, is well defined. Every simplex of this form is called a k-face
of the simplex pyp, ... p,; O-faces po, p, .--» Pm are also called vertices
of the simplex pop, ... p.. One easily sees that the k-face Pi Py, -+ Puy
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consists of all points of form (1) satisfying (2) and such that
Ay =0 whenever { £ i; for j=0,1,..., k.

To denote the fact that Sy = p; . py, ... Py, is @ face of § = pop, ... p, we
write symbolically S; < S. For each n-simplex S the union of all k-faces
of § with k < n is called the boundary of the simplex S; the complement
of the boundary is called the interior of the simplex S.

It follows from the linear independence of the set of vertices, that
every point p of the simplex spanned by the points py,p,, ..., p, € R™ can be
represented in the form (1), under conditions (2), in a unique way. The
coefficients Ag, Ay, ..., A,in (1) are called the barycentric coordinates of
the point p; they will also be denoted by Ao(p), 4,(P), ..., 4.(p).

One readily checks that every simplex S = pop; ... p, © R™ is a com-~
pact subspace of R™ and that the barycentric coordinates Ag, A;, ..., 4,
are continuous functions from S to I. This implies, in particular, that
any two n-simplexes are homeomorphic. Hence (see Problems 1.8.A
and 1.10.A(b)), every m-simplex is homeomorphic to the n-cube I". It
follows from Corollary 1.8.3, that for every n-simplex § we have indS
= IndS = dimS = n. ,

A simplicial complex, or, briefly, a complex, is an arbiirary finite
family A" of simplexes in a Euclidean space such that if S €4 and S, <S
then Sy €, and if S;, S, € then the intersection S, NS, either is empty
or is a face of both S, and S,; all O-simplexes that belong to. ¢ are called
vertices of the complex J¢°. Every subfamily 4, of a complex # which
itself is a complex, i.e. which together with a simplex S €2 contains
all faces of S, is called a subcomplex of A'.

Let £ be a simplicial complex consisting of simplexes in Euclidean
m-space R™. The union || = [ {S: S€X'} = R™ is the underlying
polyhedron of the complex ; it is a compact subspace of R™. By a poly-
hedron we mean a subspace of a Euclidean space which is the under-
lying polyhedron |2¢"| of a simplicial complex ¢ ; clearly, the representa-
tion of a polyhedron as the underlying polyhedron of a complex is not
unique. One can prove (see Problem 1.10.B) that for every non-empty
polyhedron K = |2¢'|, the largest integer » such that the complex 4" contains
n-simplexes does not depend on the complex " but on the polyhedron X
only. The number 7 is called the geometric dimension of the polyhedron K;
the geometric dimension of an empty polyhedron is equal to —1.
From the sum theorem and the fact that an n-simplex is an a-dimensional
space it follows that the geometric dimension of a polyhedron coincides
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with its topological dimensions ind, Ind and dim. Let us note that from
the same two premises it follows that the integer n discussed above de-
pends on the polyhedron K only. However, since one of the aspects
of the characterization of dimension in terms of mappings to polyhedra
is that it reduces the topological notion of dimension to the elementary
notion of geometric dimension, it is not devoid of importance that the
correctness of the definition of geometric dimension can be checked
in an elementary way. In the sequel we shall abbreviate “geometric di-
mension” to “dimension” and call a polyhedron whose geometric dimen-
sion equals » an n-dimensional polyhedron.

Every point p of the underlying polyhedron |#| = K of a simplicial
complex ¢ with vertices pg, py, ..., Px can be represented in the form

€)] P = AoPo+2Aipi+ oo + Aep,

where Ag+2;+ ... +4, =1 and 4,20 for i =0, 1, ..., k; moreover,
if pepyp; ...p;, €A, then A; = 0 whenever i # i forj =0,1,..,1
It follows from the definition of a simplicial complex that the above
representation is unique, so that the coefficients in (3) can be written as
Ao(D), 2, (D), ..., 4(p); by the continuity of barycentric coordinates,
Aoy Aty .-, Ay are continuous functions from K to 7. For every vertex
D, of the complex A" the star of p; is a subset of the underlying polyhedron
defined by
Stx(p) = A I\J{Sex": p; ¢5};

one readily checks that Sty (p) = {p €lA'|: 2,(p) > 0} so that the stars
of vertices of # are open subsets of |£].

We are now going to prepare tools that will be applied later in this
section to prove theorems on mappings to polyhedra and in the next
one to prove general embedding and universal space theorems.

1.10.1. Definition. A finite system of points p;,ps, ..., €R™ is in
general position if for each sequence iy < iy < ... < iy < k of I+1 natural
numbers, where / < m, the system p;, pi,, ..., p;, is linearly independent.

Since no system of m+2 points in R™ is linearly independent, general
position means the minimum of bonds between points in a system.

1.10.2. Theorem. For every finite system of points ¢y, ¢, ---, qx € R™ and
every positive number o there exists a system of pointsp,, Dy, ..., Py € R™ in
general position such that o(p;, q) < o for i = 1,2, ..., k. If, moreover,
a system of points ry, r,, ..., ¥, € R™ in general position is given, one can
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chose the points py, ps, ..., Py in such a way that the whole system ry,r,, ...
ees Piy D15 D2s -+v» Dy IS in general position.

Proof. The points p,, p,, ..., px will be defined by induction. Let p, = ¢,;
assume that for a j < k the points p, , p,, ..., p;~; in general position are de-
fined in such a way that o(p;,q) <a for i=1,2,...,j—1. For every
system of points p;,pi,, ..., P, Where iy <i, < .. <i,<j—1 and
n < m—1, the linear n-variety determined by these points is nowhere
dense in R™; hence the union of all such linear varieties is also nowhere
dense in R™ and there exists a point p; outside this union such that p(p,, ¢;)
< a. Clearly. the system of points p,, p,, ..., p; is in general position;
thus the first part of the theorem is proved. The proof of the second part
is much the same, only—when defining the point p ;—one has to consider
all systems of n < m—1 points in the set {ry,r,, ..., F1,P1,P2, ..-sPj-1}- O

1.10.3. Definition. Let X be a topological space and # = {U,}¥_, a finite
open cover of X. By a nerve of the cover % we understand an arbitrary
simplicial complex A" (%) which has the property that its vertices can
be arranged into a sequence p,, p,, -.., P in such a way that

PiDi, - Pin €A (@) if and only if U; nU;pn ..U, # @.

When discussing a nerve A" (%) of a finite open cover # = {U,}t_,,
we shall always assume that the vertices p,, p, ..., py of A (%) are ar-
ranged in such a way that the above equivalence holds. The underlying
polyhedron of the nerve A" (%) will be denoted by N(%). One readily
sees that if ord% < n, then the dimension of the polyhedron N(#%) is
not larger than n. Note that every finite open cover has a nerve, although
not uniquely determined (cf. Problem 1.10.C). Indeed, for a given open
cover {U,}¥_] one can, for example, consider an arbitrary linearly inde-
pendent system p;, p,, ..., p; of k points in R*~' and define A4 (%) as the
simplicial complex consisting of all faces p, p; ...p;, of the simplex
PiP> --- pi Such that U; nU,n...NU,, # @. It turns out, however,
that nerves can be defined in a more economical way.

1.10.4. Theorem. Let % = {U,}f_, be a finite open cover of a topological
space X. If ord¥ < n, then there exists a nerve N (U) of the cover % con-
sisting of simplexes contained in Euclidean (2n+ 1)-space R?**1. If, more-
over, a linear n-variety H < R***', a system q,, q,, ..., q; of points in
R2"* 1 and a positive number o > 0 are given, one can choose the nerve
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A (W) in such a way that HnN(%) = @ and the vertices py,D2, ---» Pk
of N (%) satisfy the inequality o(p;, q) < o for i =1,2, ..., k.

Proof. Let r,,r,, ...,r,,, be a linearly independent system of points
in R?>**! which spans the linear variety H. By virtue of Theorem 1.10.2,
there exists a system of points p,, p,, ..., px € R?*+! such that o(p;, q;) < o
for i=1,2,...,k and the system r,,rs, ..., 4 1,P1,DP2,--->Dx 18 in
general position. Since ord% < n, for each sequence iy < i, < ... < ;< k
of /+1 natural numbers such that U, nUjn .. NU, # & we have
I < n < 2n41, so that the points p, , p;,, ---, py, form a linearly independent
system and the simplex p; p;, ... p;, © R*"*! is well defined. Let us denote
by A (%) the family of all simplexes p,; p,, ... p;, = R***! obtained in
this way. To complete the proof it suffices to show that 4" (%) is a simplicial
complex and that HAN(%) = ©. Since each face of a simplex in A" (%)
is in A" (%), to show that A" (%) is a complex it remains to check that if
Sy =pypi, - Py and S, = p; pj, - pj, belong to A(%) and the
intersection S, NS, is non-empty, then S;N.S, is a face of both S; and S,.

Obviously, it is enough to prove that if p € S;nS, and in the representa-
1 1 .
tion p = Z Asp;., where Z As = 1, we have A, > 0, then p, isa vertex of
S 0 0

. Since peS,, p= V A,pj , where } A = 1; we have
i=0

] m
Z lspis Z ;ph =0 and le—z },; =
§=0 t=0

K

As observed before, I < n; similarly, m < n. Hence, the points p, ,p; , ...
.« Piys Piy» Pi,» ---» Pj,, form a linearly independent system, because its car-
dinality is not larger than /4+m+2 < 2n+2 and the whole system ry,r,, ...
cos Fat1> P15 P2, -, Py 18 in general position. It follows that p, —occurs
among the points p; , p;,, ---5 Pj,» 1.6., Py, 15 a vertex of S,. In a similar
way one shows that all simplexes in A"(%) are disjoint from the linear
n-variety H. ]
For each finite open cover % = {U;}i—; of a metric space X and
a sequence of points p,, p,, ..., P in Euclidean m-space R™ a continuous
mapping of X to R™ is defined in a natural way.

1.10.5. Definition. Let % = {U,}.; be a finite open cover of a metric
space X and p,, p,, ..., P« a sequence of points in Euclidean m-space R™.
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The continuous mapping »: X — R™ defined by letting

4@ x2(x) = %, 00p; +#,()pz+ ... +#(x)Py,
where
5) 2,(x) = ,f’(x’—X\U‘)v fori=1,2,..,k,
> o(x, X\U)
j=1

is called the »-mapping determined by the cover % and the points p,, p,, ...

..-» Dx. Let us observe that the denominator in (5) does not vanish, because
k

o(x, X\U,) > 0 whenever x € U,. Let us also note that » x,(x) =1
i=1
for every x e X.

As explained in the following theorem, all continuous mappings of
a metric space to a Euclidean space can be approximated by »-mappings.

1.10.6. Theorem. Let f: X — R™ be a continuous mapping of a metric space
X to Euclidean m-space R™ and let 6 be a positive number. If % = {U,}¥_,
is a finite open cover of the space X and p,,p,, ..., px € R™ is a sequence
of points such that !

(6) d({ptufU))<é fori=1,2,. ,k,

then the n-mapping »: X — R™ determined by the cover U and the points
Di1s Pz ---» Dx has the property that g(f(x), x(x)) < & for every xeX.

Proof. Consider a point x € X and let U, U; , ..., U;, be all members
of the cover # that contain the point x. By virtue of (5), »,(x) = 0 when-
ever i # i, for j=0,1,...,1. It follows from (6) that [[f(x)—p,ll
= o(f(x),p;;) < 8 for j = 0,1, ...,1; applying (4), we obtain

I I
o (f(), #()) = [1f()— (]| = HZO xi,(x>f(x)~;x.-j(x>pi,!l

J-

! I
< D I =pyll < Y w16 = 6 sy(x) = 6. [
j=0 : =% =0

The notion of a »-mapping determined by a finite open cover %
= {U,}¥-, of a metric space and points p,, p,, ..., px €R™ proves par-
ticularly useful in the case where the points p,, p,, ..., P, are the vertices
of a nerve A (%) of the cover %.
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1.10.7. Theorem. If % = {U,}¢_, is a finite open cover of a metric space X
and N (%) a nerve of U with vertices Py, D3, ..., Px € R™, then the x-mapping
%x: X = R™ determined by the cover % and the points p,, p,, ..., D satisfies
the conditions

) #(X) = N(%)
and
®) x1(Stway(p))=U; fori=1,2,.. k.

Proof. Consider a point x €X and let U, , U;, ..., U;, be all members
of the cover # that contain the point x. Since U, nU;n ... nU, # O,
the simplex p, p;, ... p;, belongs to the nerve A (%). It follows from (5)
and (4) that »(x) e p, p;, ... py,» so that (7) is satisfied.

Since the representation of points of N(#%) in form (3) is unique,
we have 4,(%(x)) = »,(x) for i = 1,2, ..., k. Thus

%" (Staa(py) = {x € X: x(x) € Stura(p)} ={x e X: 4(x(x)) > 0}
={xeX:x(x)>0}=U;, fori=1,2,..,k,
i.e., (8) is also satisfied. ]

1.10.8. Definition. Let & be an open cover of a topological space X and
f: X > Y a continuous mapping of X to a topological space Y; we say
that f'is an &-mapping if there exists an open cover % of the space Y such
that the cover f~*(%) is a refinement of &.

1.10.9. Definition. Let ¢ be a positive number and f: X — Y a continuous
mapping of a metric space X to a topological space Y; we say that f is
an e-mapping if 6(f “(y)) < ¢ for every y € Y. Obviously, if & is an open
cover of a metric space and mesh& < &, then each &-mapping is an
£-mapping.

1.10.10. Theorem. If X is a compact metric space, then for every open cover
& of the space X there exists a positive number ¢ such that each e-mapping
of X to a Hausdorff space is an &-mapping.

Proof. Let ¢ be a Lebesgue number for the cover £. Consider an e-mapping
f: X > Y of X to a Hausdorff space Y. For every y € Y there exists a V, € £
such that f~'(y) = V,. Since every continuous mapping of a compact
space to a Hausdorff space maps closed sets onto closed sets, the set U,
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= Y\f(X\V,) is open for every y € Y; one readily checks that y € U,
and f~1(U,) « V,. Hence % = {U,},er is an open cover of the space
Y such that the cover f ~1(%) is a refinement of &, i.e., fis an §-mapping. [

1.10.11. Theorem. If for every finite open cover & of a normal space X there
exists an &-mapping f+ X — Y of X to a compact space Y such that dimY < n,
then dimX < n.

Proof. Consider an arbitrary finite open cover & of the space X and an
&-mapping f: X - Y of X to a compact space ¥ such that dimY < ».
Let % be an open cover of the space Y such that the cover f ~1(%) is a re-
finement of &. As the space Y is compact, % has a finite open refinement ¥~
which, by virtue of the inequality dimY < #, has in its turn a finite open
refinement #” such that ord%” < n. Now, the cover f ~!(#") of the space X
is a finite open cover of order < n which refines &, so that dimX < n.[]

Let us observe that if the space Y in the last theorem is a polyhedron,
one can slightly modify the above proof so as to use only the geometric
dimension of Y. Indeed, in this case the existence of the refinement #~
of the cover ¥ such that ord#” < n follows from the elementary fact
that every polyhedron of geometric dimension < » has finite covers of
order < n by open sets of arbitraiily small diameter.

Theorems 1.10.10 and 1.10.11 imply

1.10.12. Theorem. If X is a compact metric space and Jor every positive
number & there exists an e-mapping f- X - Y of X to a compact space Y
such that dimY < n, then dimX < n. [

We are now ready to characterize dimension in terms of mappings
to polyhedra.

1.10.13. Theorem on &-mappings. A metric space X satisfies the inequality
dimX < n if and only if for every finite open cover & of the space X
there exists an &-mapping of X to a polyhedron of dimension < n.

Proof. The theorem is obvious if dimX = — 1. Consider a metric space
X such that 0 < dimX < » and a finite open cover & of the space X.
Let % = {U,}~, be an open refinement of & such that ord% < n and
let A"(%) be a nerve of % with vertices p;, p,, ..., px € R™. From Theorem
1.10.7 it follows that the x-mapping »: X — N(%) determined by the co-
ver % and the points p, , p,, ..., Py is an &-mapping, because {Sta(p:) 1
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is an open cover of the underlying polyhedron N(%). The inequality
ord% < n implies that N(%) has dimension < n. To complete the proof
it suffices to apply Theorem 1.10.11.

Let us note that, referring in the above proof to Theorem 1.10.11,
we used the coincidence of the geometric dimension and the topological
dimension of polyhedra. The observation following Theorem 1.10.11
shows how this can be eliminated.

1.10.14. Theorem on c-mappings. A compact metric space X satisfies the
inequality dimX < n if and only if for every positive number & there
exists an e-mapping of X to a polyhedron of dimension < n.

Proof. Consider 2 compact metric space X such that dimX < » and a
positive number ¢. Let & be a finite open refinement of the open cover
{B(x, €/2)}xex of the space X. By virtue of the theorem on &-mappings,
there exists an &-mapping of X to a polyhedron of dimension < 7; one
readily checks that this is an e-mapping. To complete the proof it suffices
to apply Theorem 1.10.12. OO

The comment following the theorem on &-mappings applies as well to
the above proof. Let us also observe that in the theorem on e-mappings
the assumption of compactness is essential; indeed, there exist separable
metric spaces of dimension larger than one that can be mapped to the
interval I by a one-to-one continuous mapping (see Problem 1.4.F(b)).

The reader has undoubtedly noted that in the proofs of Theorems
1.10.13 and 1.10.14 only the existence of a nerve was applied and not
the much stronger Theorem 1.10.4. The latter theorem will be applied
in the next section, where it will prove to be, together with Theorem 1.10.6,
the core of the proofs of the embedding and the universal space theorems.

We shall now show that the theorems on #-mappings and on e-mappings
can be somewhat strengthened, viz., that the existence of mappings onto
polyhedra can be established. In the proof we shall apply the following
auxiliary theorem, which states that every subset 4 of the underlying
polyhedron |.#'| of a complex " can be swept out of interiors of all simplexes
in A" which are not contained in A4.

1.10.15. The sweeping out theorem. For every simplicial complex A and
each subspace A of the underlying polyhedron |X'| there exist a subcomplex
Ao of X and a continuous mapping f: A — | o| such that f(A) = A ol and
fANnS) = S for every SeA.
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Proof. Let K be the collection of all subcomplexes 4~ of 4 for which
there exists a continuous mapping f: 4 — [ '] such that

&) f(AnS) = S for every Sex.

As the embedding f: 4 — || of the subspace A4 in || satisfies (9), the
complex " itself belongs to the collection K. Hence the collection K
is non-empty and, being finite, contains a subcomplex 2", of " such that
no proper subcomplex of #" belongs to K. Consider a continuous mapping
[+ A = A 4| which satisfies (9); we shall show that f(4) = [ ).

Suppose that there exists a point x, €| |\ f(4). Let Sy = pop; -.. Px
be the intersection of all simplexes in %", which contain the point x,.
Define

Fo={Sexy: So< S}
and
By ={TeAHy: T¢ S and T S for an S € Fo};

cleaily, A, =H\F, and B, are subcomplexes of #,. The set G

= () Stx,(p;) is open in | y]; one readily checks that
i=0

G = ¥ =GuUB,, where By = |%,|.

Fig. 10
Let p denote the projection of f(4)nG from the point x, onto B,. The
restriction
(10 pIfADNS: LDNS —» Bon S
is continuous for every S e #,; thus p: f(4)nG — B, is a continuous
mapping. Since p(x) = x for x € f(4)nB,, the formula
p(x) for x ef(A)NG,

8 = {x for x € f(A)\G
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defines a continuous mapping g: f(4) = | ,|; let f, = gf: A - A ,|.
It follows from (10) that f;(ANS) = S for every S ex"; hence ', € K,
which contradicts the definition of % ,. The contradiction shows that

) =1 O

1.10.16. Theorem. A metric (compact metric) space X satisfies the inequality
dimX < n if and only if for every finite open cover & of the space X
(for every positive number €) there exists an &-mapping (an &-mapping)
of X onto a polyhedron of dimension < n.

Proof. It suffices to show that if a metric space X satisfies the inequality
0 < dimX < n, then for every finite open cover & of the space X there
exists an &-mapping of X onto a polyhedron of dimension < n. Let %
= {U,}¥., be an open refinement of & such that ord% < » and let »x:
X - || be the »-mapping of X to the underlying polyhedron of a nerve
A = N (%) of the cover %. By virtue of the sweeping out theorem, there
exists a continuous mapping f of the subspace 4 = »(X) of |#"| onto the
underlying polyhedron [ | of a subcomplex ¢, of # which satisfies (9).
Let us note that, for every x € A and every vertex p, of ', if f(x) € Stx,(py),
then x € Sty (p), ie., ‘ '

(11) . £ 1(Stro(P) = Stx(p)).

Indeed, if x ¢ Stx(p,), then the intersection S of all simplexes in ¢ that
contain the point x does not contain p,; since f(x) € S by virtue of (9),
it follows that S e, and thus f(x) ¢ Stx,(p,). Inclusions (8) and (11)
show that the composition fx: X — |4 5| Is an &-mapping of X onto {A o|.[]

The final part of this section will be devoted to subspaces of Euclidean
spaces. We start by introducing the notion of an e-translation.

1.10.17. Definition. Let ¢ be a positive number, 4, B subspaces of a metric
space X, and f: A — B a continuous mapping of 4 to B; we say that f
is an e-translation if g(x, f(x)) < efor every x € A. Obviously, each e-transla-
tion is a 3e-mapping and an s-translation defined on a compact subspace
of X is a 2e-mapping.

For subspaces of Euclidean spaces it is much more interesting to discuss
e-translations to polyhedra rather than e-mappings. Clearly, every subspace
of R™ which can be mapped to a polyhedron by an s-translation is bounded.
It turns out that for bounded subspaces of Euclidean spaces we have
a theorem on g-translations which strictly parallels the theorem on e-map-
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pings. In the proof of that theorem we shall apply the elementary fact that,
for every finite family & of simplexes in R™, the union L ={J & is
a polyhedron whose dimension is equal to the largest integer n such that
& contains an n-simplex; more exactly, we shall assume that there exists
asimplicial complex % such that L = |.%| and every simplex of & is contained
in a member of &. A proof of this fact is outlined in Problem 1.10.1.

1.10.18. Theorem on c-translations. If X is a bounded subspace of Euclidean
m-space R™, and X satisfies the inequality dimX < n, then for every
positive number ¢ there exists an e-translation f- X — K of X onto a poly-
hedron K < R™ of dimension < n. -

Proof. Without loss of generality one can suppose that 0 < n < m. Let %
= {U,}X., be a finite open cover of the space X such that mesh% < ¢/4
and U, # @ for i=1,2,...,k; since dimX < n, one can assume—re-
placing %, if necessary, by a refinement—that ord% < n. Fori = 1,2, ..., k
choose a point ¢; € U; and apply Theorem 1.10.2 to obtain a system of
points p,, p,, ..., pr € R™ in general position such that

(12) o({pjulUy) <efd4 fori=1,2,..,k.

Since ord% < n, for each sequence i, < i; < ... < §; < k of 41 natural
numbers such that U; nU; n ... nU;, # @ we have I < n < m, so that—
the system p,, p,, ..., p, being in general position—the simplex p; p;, --- p;,
= R™is well defined; by virtue of (12), 8(p;,py, --- Pi) = 6({Piys P -
-y Py p) < €/2. Let & be the family of all simplexes obtained in this way;
clearly, mesh & < ¢/2. The union L = {_J & is a polyhedron of dimension
< n; moreover, one can assume that L = |%|, where & is a simplicial
complex every simplex of which is contained in a member of &, so that
we have mesh & < ¢/2. It follows from (12) and Theorem 1.10.6 applied
to the embedding of X in R™ that the »-mapping »: X — R™ determined
by the cover % and the points p;, p,, ..., px has the property that

(13) o(x, #(x)) < ¢/4 for every x €X.

Moreover, as one easily sees, 4 = »(X) = L. By virtue of the sweeping
out theorem, there exists a continuous mapping g: 4 — K of 4 onto a poly-
hedron K < L of dimension < » such that

(14 o(x(x), gx(x)) < g/2  for every x € X.

It follows from (13) and (14) that the composition f = gx: X — K is the
required e-translation. [
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Theorems 1.10.12 and 1.10.18 yield the following

1.10.19. Theorem. A compact subspace X of Euclidean m-space R™ satisfies
the inequality dimX < n if and only if for every positive number & there
exists an e-translation f: X — K of X onto a polyhedron K = R™ of dimension
<n [0

We shall now describe a two-dimensional subspace X of the cube I3
such that for every positive number ¢ there exists an e-translation f: X - K
of X to a polyhedron K < R? of dimension < 1. In this way it will be proved
that in the theorem on e-translations the assumption of compactness
is essential. Let us at once note that the space X has finite open covers
of order < 1 by sets with arbitrarily small diameters (cf. Theorem 1.6.12).

We start with a lemma on decompositions of continua, which will
be applied to evaluate the dimension of the space X. The lemma states
an important topological fact and is known as Sierpiriski’s theorem; it
is preceded by two technical lemmas.

1.10.20. Lemma. If A is a closed subspace of a continuum X such that
I # A # X, then for every component C of the space A we have CnFrA
# O, where Fr A is the boundary of A in X.

Proof. Assume that CnFr4 = @ and consider the family {Uj}ss of all
open-and-closed subsets of 4 which contain the component C; it follows

from Lemma 1.4.4 that {) U; = C. The subspace F = FrA of the space
se8

X is compact, and the family {F\U,}ses is an open cover of F; thus there
exists a ﬁnite number of indexes s1 , 82, -, Sg € Ssuch that F < U (F\U,
= F\ ﬂ U,,. The set U = ﬂ Uy, is disjoint from F, i.e., Uc IntA;

being open—and-closed in A4, the set U is open-and-closed in the continuum
X. Now, @ # C < U, so that U = X, and thus Fr4 = @, which contra-
dicts the connectedness of X. [

1.10.21. Lemma. If a continuum X is represented as the union of a sequence
X1, X,, ... of pairwise disjoint closed sets of which at least two are non-
empty, then for every natural number i there exists a continuum C c X
such that CnX; = O and at least two sets in the sequence CnX,, CnX,, ...
are non-empty.
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Proof. If X; = @, we let C = X; hence, we can assume that X; # ©&. Con-
sider a natural number j # i such that X; # & and a pair U, V < X of
disjoint open sets such that X; < U and X, < V. Let x be a point in X
and C the component of the space ¥ which contains the point x. Clearly,
C is a continuum, CnX,; = @ and CnX,; # @. Since, by virtue of Lemma
1.10.20, CAFr¥ s @, and since X = IntV, there exists a natural number
k # j such that CnX; # &. O

1.10.22. Lemma. If a continuum X is represented as the union of a sequence
X,,X,, ... of pairwise disjoint closed sets, then at most one of the sets X,
is non-empty.

0
Proof. Assume that X = (_J X, where the sets X; are closed, X;nX,;, = O
=1

whenever i # j, and at least two of the sets X; are non-empty. From Lemma
1.10.21 it follows that there exists a decreasing sequence C, = C, = ...
of non-empty continua contained in X such that C;nX;, = @fori= 1,2, ...

Thus M C, = (M C:)n(J X,) = @, which contradicts the compactness
i=1 i=1 i=1
of X. O

1.10.23. Sitnikov’s example. For every natural number 7 consider the family
of all planes in R® determined by equations of the form x; = z/i, where
j=1,2,3 and z is an arbitrary integer. The planes yield a decomposition
of R3 into congruent cubes whose edges have length 1/i and whose interiors
are pairwise disjoint; denote by ", the family of all the cubes thus obtained
and by A, the union of all the edges of cubes in ;.

Let B, = A; and for i = 2, 3, ... translate the set 4; as a rigid body
to obtain a set B, disjoint from the union B,uB,u ... UB,.; of all the
sets previously defined. Clearly, the sets B, are closed in R? and the union

0
B = (_J) B; is dense in R®. We shall show that the subspace X = I*\B
i=1

of the cube I3 is two-dimensional and yet for every positive number ¢
there exists an e-translation f: X — K of X to a polyhedron K < R? of
dimension < 1.

Since the set I3\ X = I3nB is dense in I3, it follows from Corollary
1.8.11 that ind X < 2. Assume that ind X < 1 and consider arbitrary points
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x and y in the interior G of I* in R3 such that x € B, and y € B;. By virtue
of Mazurkiewicz’s theorem there exists a continuum C < G\X = GNB
which contains x and y; the continuum C is the union of the sequence

CnB,, CnB,, ... of pairwise disjoint closed sets of which at least two are
non-empty. The contradiction of Sierpinski’s theorem shows that indX

Eaing
s
e

Fig. 11
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Now, let £ be an arbitrary positive number. Consider a natural number
i such that 4/i < ¢ and translate the set XUB; as a rigid body to make the
joints of B; coincide with the centres of the cubes in & ;. One can assume
that the translation g: XUB;, — R? does not shift points by more than
2/i,i.e., that o(x, g(x)) < 2/i for x € X;clearly g(X) = R*\g(B;). Consider
now a fixed cube T €X";. One readily checks that the projection from the
centre of 7 onto the boundary of T maps the set Tng(X) onto a subset
of the boundary which does not contain the centres of the faces of T.
On the boundary of T the projection coincides with the identity mapping,
so that by performing such projections simultaneously on all the cubes
in ", we obtain a continuous mapping p, that sends g(X) to the union
of all faces of cubes in J; in such a way that the centres of the faces do
not belong to p, g(X). Now, consider a fixed face S of 7. The projection
from the centre of S onto the boundary of § maps the set Snp, g(X) onto
a subset of 4; and coincides with the identity mapping on the boundary
of S. By performing such projections simultaneously on all faces of cubes
in '; we obtain a continuous mapping p, that sends p, g(X) to 4,. Since
the points g(x) and p,p, g(x) lie in the same cube of #";, we have g(g(x),
p2p18(x)) < 2/i. Hence o(x,p,p:g(x)) < 4/i < & for every x €X and
the set p,p, g(X) is contained in a one-dimensional polyhedron K < 4;;



Ch. 1, § 10] Problems 115

thus the required e-translation f: X — K .is defined by letting f(x)
= p,p,8(x) for every x e X.

Though dimX = indX = 2, the space X has, for every positive number
¢, a finite open cover % such that mesh#% < ¢ and ord#% < 1. Indeed,
if £+ X » Kis an ¢/3-translation of X to a polyhedron X = R? of dimension
< 1, then the family % = f~1(¥"), where ¥ is a finite open cover of K
such that mesh?” < ¢/3 and ord¥” < 1, has the required properties. []

Historical and bibliographic notes

Nerves of covers were introduced and studied by Alexandroff in [1927],
and »-mappings—by Kuratowski in [1933a]. The discovery of these two
notions was a turning point in the development of dimension theory,
and even of the whole of topology; it made possible the combining of the
point-set methods of general topology and the combinatorial methods
of traditional algebraic topology. Theorem 1.10.13 was proved by Kura-
towski in [1933a] and Theorem 1.10.14 by Alexandroff in [1928]. Theorem
1.10.15 for compact subspaces of polyhedra was obtained by Alexandroff
in [1928] (cf. Problem 1.10.H); the extension to arbitrary subspaces was
given by Kuratowski in [1933a]. Theorems 1.10.18 and 1.10.19 were proved
by Alexandroff in [1928] (announcement in [1926]). Example 1.10.23 was
described by Sitnikov in [1953].

Problems

1.10.A. (a) Check that the diameter of the simplex pyp, ... p, is equal
to the diameter of the set {p,,p;, ..., pn} Of its vertices.

(b) Prove that the simplex pyp, -.. p, is the smallest convex set which
contains the points pg, py, ..., p,.

(c) Show that every simplex determines its vertices, i.e., that if pop; ... Pa
= qoq1 --- In> then {Pml’; H “'spn} = {q05 dys -e» qn}'

Hint. For every point x of a simplex S which is not a vertex of .S the
set S\{x} is not convex.

1.10.B. Prove that if #" and % are simplicial complexes such that ||
= || and A" contains an n-simplex, then % also contains an n-simplex.

Hint. If m < n, then every m-simplex contained in an n-simplex S is
nowhere dense in S.
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1.10.C. Show that if the simplicial complexes A", and A", are nerves
of the same finite open cover, then the undeilying polyhedra |47 and
|A",] are homeomorphic.

1.10.D. Applying the fact that the one-dimensional polyhedron in Fig. 14
on p. 127 cannot be embedded in the plane (see Example 1.11.8), define
a finite open cover % of the interval I such that ord# = 1 and yet % has
no nerve in R%

1.10.E. (a) Observe that if for every finite open cover & of a normal
space X there exists an §-mapping f: X — K to a zero-dimensional poly-
hedron such that the cover {f~'()},er is a refinement of &, then dimX
<0 ’

(b) For every natural number n > 2 define a separable metric space X
such that dimX = » and for every finite open cover & of the space X there
exists an &-mapping f: X — I such that the cover {f~1(¢)}«s is a refine-
ment of &.

Hint. Apply Problem 1.4.F(b).

1.10.F (Alexandroff [1932]). (a) Let f: X — B"*! be an essential mapping
of a compact metric space X to the (n+ 1)-ball (cf. Problem 1.9.A) and ¢
a positive number less than 1. Show that if a continuous mapping g: X
— B"*! satisfies o(f(x), g(x)) < & for every x € f~1(S™, then the image
g(X) contains the ball of radius 1—¢ concentric with B**1,

(b) Apply (a) and Theorem 1.10.6 to show that if a compact metric
space X satisfies the inequality dimX < »n > 0, then no continuous mapping
f: X = B! js essential (see Problem 1.9.A).

(c) Deduce from the theorem on &-mappings that if a compact metric
space X satisfies the equality dimX = »n > 0, then there exists an essential
mappjng fi X - B

1.10.G (Alexandroff [1928a], Chogoshvili [1938]). (a) Prove that a com-
pact subspace X of Euclidean m-space R™ satisfies the inequality dimX < »
if and only if for every polyhedron X = R™ of dimension m—n—1 and
every positive number & there exists an e-translation f: X — R™ such that
f(X)nK = @, or—equivalently—if and only if for every linear (m—n—1)-
variety H = R™ and every positive number ¢ there exists an e-translation
/i X - R™ such that f(X)nH = O.
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Hint. Show that if X is a compact subspace of R™ and for every linear
(m—n—1)-variety H < R™ and every positive number ¢ there exists an
e-translation f: X — R™ such that f(X)nH = &, then X is embeddable
in N

(b) Show that in (a) the assumption of compactness of X is essential.

(c) Applying the fact that in R3 there exists an Anfoine set, i.e., a sub-
space A homeomorphic to the Cantor set such that for a circle § = R3\ 4
the embedding of § in R3\ 4 is not homotopic to the constant mapping
of S to a point of R¥\A4 (see Rushing [1973], p. 71), show that in (a)
the words “every polyhedron K — R™ cannot be replaced by “every
compact subspace K of R™”.

Hint. Consider the disk bounded by S.

1.10.H. Note that in the case where 4 is a compact subspace of |7,
the sweeping out theorem can be proved in a simpler way.

Hint. Sweep out 4 consecutively from the interiors of all simplexes
in 2" which are not contained in A starting with the simplexes of highest
dimension.

1.10.1. Prove that the union and the intersection of a finite family
of polyhedra contained in a Euclidean space also are polyhedra.

Hint. A bounded subset of R™ which can be represented as the inter-
section of a finite family of half-spaces in R™ is a geometric cell. Define
the interior and the boundary of a geometric cell and the geometric dimension
of a geometric cell. Prove that polyhedra can be defined as finite unions
of geometric cells. To this end, by analogy to the notion of a simplicial
complex, introduce the notion of a cellular complex, observe that every
polyhedron can be represented as the union of all cells in a cellular complex,
and—applying induction with respect to the maximal geometric dimension
of cells—prove that every cellular complex has a subdivision which is
a simplicial complex (all the details are worked out in Alexandroff and
Hopf’s book [1935], pp. 124ff).

1.10.J (Sitnikov [1953]). Modify the construction in Example 1.10.23
to obtain, for every natural number n > 4, an (n— 1)-dimensional subspace
X of the n-cube I" such that for every positive number & there exists an
e-translation f: X — K of X to a polyhedron X = R" of dimension < %,
where k = n/2 if n is even, and k = (n—1)/2 if n is odd.
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1.10.K. Prove that if X is 2 bounded subspace of Euclidean m-space
Rm and X satisfies the inequality dimX < n, then for every positive
number ¢ there exists a finite open cover % of the space X such that mesh%
< e, ord% < n, and % has a nerve in R™

1.10.L (Smirnov [1956]). Show that 2 bounded subspace X of Euclidean
m-space R™ satisfies the inequality udim(X, ) < n, where udim is
the metric dimension defined in Section 1.6 and p is the natural metric
on R™, if and only if for every positive number ¢ there exists an e-transla-
tion f: X = K of X onto a polyhedron K = R” of dimension < n.

Hint. Apply Problem 1.6.C.

1.11. The embedding and universal space theorems

The considerations in the present section largely apply the notion
of a function space. Let us recall that if (X, o) is a non-empty compact
metric space and (Y, g) an arbitrary metric space, then by letting

o(f ) = sup o(f(x),8(x)) for f,ge¥™

we define a metric 9 on the set Y* of all continuous mappings of X to Y;
the metiic space (Y%, p) obtained in this way is a function space. One readily
shows that if (X, o) is a-compact metric space and (Y, ¢) is a complete
metric space, then the function space (Y*,9) is complete. As the reader
will see, this simple observation leads, via the Baire category theorem,
to important applications of function spaces. We begin with three lemmas
on function spaces.

1.11.1. Lemma. For every positive number ¢ the set of all e-mappings is open
in the function space Y¥,

Proof. Consider an e-mapping f: X — Y. The closed subspace
A= {(x,x)eXxX: o(x,x) > ¢}

of the Cartesian product X xX is compact, so that, since for each pair
(x, x") € A the inequality Q(f(x), f(x")) > 0 holds, theré exists a positive
number J such that

@ o(f(x),f(x))> 8 for each (x,x)€A.
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To complete the proof it suffices to observe that every continuous
mapping g: X — Y such that o(f, g) < §/2 is an e-mapping. Indeed, if
g(x) = g(x"), then o(f(x),f(x')) < 6 which implies by virtue of (1) that
(x,x) ¢4, ie, o(x,x’) <e¢; thus 8(g7*(y)) < & for every ye Y. ]

1.11.2. Lemma. For every closed set F < Y the set {fe Y*: f(X)nF = O}
is open in the function space Y*.

Proof. Consider a continuous mapping f: X — Y such that f(X)nF = @.
As f(X) is a compact subspace of Y, the distance 8§ = o(f(X), F) is positive.
To complete the proof it suffices to note that for every continuous mapping
g: X > Y such that g(f, g) < d the relation g(X)nF = @ holds. []

1.11.3. Lemma. If X is a compact metric space such that 0 < dimX < n
and H is a linear n-variety in R*'*1, then for every positive number ¢ the
set of all e-mappings of X to R*"*! whose values miss H is dense in the func-
tion space (R***YY*; in particular, the set of all e-mappings of X to R***
is dense in the function space (R**1)*.

Proof. Consider an arbitrary continuous mapping f: X — Y and a positive
number &. It follows from the compactness of X that the mapping f is
uniformly continuous; thus there exists a positive number 7 such that
0(f(4)) < & whenever 6(4) < 7. By virtue of Theorem 1.6.12 there exists
a finite open cover % = {U,}f., of the space X such that mesh%
< min(e, 1), ord% < n and the sets U, are non-empty; obviously, 6( f(Ui))
<0 for i=1,2,...,k. Choose a point q,€f(U) for i=1,2,...,k,
and apply Theorem 1.10.4 to obtain a nerve A (%) of the cover %, con-
sisting of simplexes contained in R?**! and such that HAN(#%) = O
and the vertices p;, p,, ..., px of A (%) satisfy the inequality o(p;, ¢)) < o
for i=1,2,...,k, where o = min{é—d6(f(U)): i=1,2,...,k}. We
have
6({P:}Uf(Ux)) < o(pi, )+ 6(f(Ui)) < a+ 6(f(U,)) <94
fori=1,2,...,k.

From Theorem 1.10.6 it follows that the »-mapping »: X — R?"*1 deter-
mined by the cover % and the points p,, p,, ..., p; satisfies the inequality
o(f, ®) < 8. To conclude the proof it suffices to observe that by virtue
of Theorem 1.10.7 we have »(X) = N(%) and »~*(Sty)(p)) = U, for
i=1,2,..,k, so that »(X)nH = @ and x is an e-mapping. []
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The above lemmas will be applied in the proof of the embedding theorem
and in the proof of the first universal space theorem.

1.11.4, The embedding theorem. Every separable metric.space X such that
0 < dimX < n is embeddable in Euclidean (2n+ 1)-space R*"*1; if, more-
over, the space X is compact, then all homeomorphic embeddings of X in
R**1 form a Gs-set dense in the function space (R***+1)X.

Proof. First, consider a compact metric space X such that0 < dimX < n.

Let @, denote for i = 1,2, ... the subset of the function space (R***1)¥

consisting of all (1/i)-mappings; it follows from Lemmas 1.11.1 and 1.11.3

that the sets @, are open and dense in (R*"*!)X. By virtue of the Baire
o0

category theorem, the Gsset @ = ﬂl ®, is dense in the function space
i=

(R*™+W)X_ Since the space X is compact, a continuous mapping f:

X — R#*+! s a homeomorphic embedding if and only if it is a one-to-one

mapping, i.e., if f is an e-mapping for every positive number ¢. Thus @

is the set of all homeomorphic embeddings of X in R?"*1,

Now, consider a separable metric space X such that0 < dimX < n.
By virtue of the compactification theorem, there exists a compact metric
space X which contains a dense subspace homeomorphic to X and satisfies
the inequality dimX < n. As established above, X is embeddable in R?"+1,
and so X is also embeddable in R*"*!, ]

We shall show in Example 1.11.8 below that the exponent 2r+1 in
the embedding theorem cannot be lowered.

1.11.5. The first universal space theorem. The subspace N2"*' of Euclidean
(2n+ 1)-space R?*"*1 consisting of all points which have at most n rational
coordinates is a universal space for the class of all separable metric spaces
whose covering dimension is not larger than n.

Proof. 1t follows from Theorem 1.8.5 and the coincidence theorem that
dimN?"*! = n; hence—by virtue of the compactification theorem—it
suffices to prove that every compact metric space X such that0 < dimX
< nis embeddable in N?"+1,

The complement R*"+1\N7Z"+1 = L2%%! can be represented as the
union of a countable family of linear n-varieties in R*"*!, viz., of all sets
defined by conditions of the form x;, = ry, x;, = ra, ..., Xi,,, = I'nt1,
where 1 < iy <i, < ... <iyyq <2n+1 and ry,r,, ..., Iy are arbitrary
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rational numbers. Arrange all linear n-varieties in the family under con-

sideration into a sequence H,;, H,,... and for i = 1,2, ... denote by

@, the subset of the function space (R?"*1)* consisting of all (1/i)-mappings

whose values miss H;. It follows from Lemmas 1.11.1-1.11.3 that the
0

intersection @ = () @, is a Gy-set dense in the function space (R?**+1)¥,
i=1

and from the compactness of X it follows that @ consists of homeomorphic

embeddings. [

Let us observe that the last paragraph incidentally yields another
proof of the inequality indX < dimX for compact metric spaces; as an-
nounced in Section 1.7, the auxiliary invariant d(X) is the smallest integer
n = 0 such that X is embeddable in the space N27+1.

The space N2"*! is called Nobeling’s universal n-dimensional space.
Obviously, Nobeling’s universal 0-dimensional space is the space of irra-
tional numbers; thus the last theorem extends to higher dimensions our
earlier result that the space of irrational numbers is universal for the class
of all zero-dimensional separable metric spaces. As the reader remembers,
the Cantor set is another universal space for the same class of spaces.
We shall now describe the n-dimensional counterpart of the latter universal
space, i.e., Menger’s universal n-dimensional space M?"+'. The construc-
tion will be carried out under more general circumstances: for every pair
n, m of integers satisfying 0 < n < m = 1 we shall define a compact sub-
space My of Euclidean m-space R™.

Fori=0,1,2, ... letX’; be the family of 3™ congruent cubes obtained
by dividing the m-cube I™ by all linear (m— 1)-varieties in R™ determined
by equations of the form x; = /3!, where j = 1,2, ..., mand 0 < k£ < 3%
For every family " of cubes let

ol = U {K: KexX'} and L) =) {FAK): KeX},

where &,(K) is the family of all faces of K which have dimension < n;
moreover, for & < A" let

A = {KeH 4, Kc|A}.
For every pair n, m of integers satisfying 0 < n < m > 1 define inductively
‘a sequence F,, F,, ... of finite collections of cubes, where #; < X', for
i=0,1,2,..., and a decreasing sequence F, » F; > F, = ... of closed
subsets of I"™ by letting &, = {I™}, Fy = |F,| = I™ and

Fy = |#,|, where #, = {KeFi_,: Kn|L(F,_1)| # T},
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for i = 1,2, ... The intersection
0
i=0

is a compact subspace of I™. One readily sees that the construction of the
Cantor set described in Example 1.2.5 is a special case of the above con-
struction, viz., the case where m = 1 and n = 0; thus the space M is the
Cantor set. One proves that the spaces Mg are all homeomorphic to the
Cantor set (see Problem 1.11.D(a)); obviously, Mg =I"form =1, 2, ...
In Figs. 12 and 13 the first three steps in constructing M? and M} are
exhibited.
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Let us observe that dim My = n. Indeed, the inequality dimM™ > n
follows directly from the inclusion |&,(F,)| = M™ and the reverse inequality
is a consequence of Theorem 1.10.12, because the set F,, and, a fortiori,
the set My, can be translated by a (;/ m/2-3"Y)-mapping to the space
| & a(F ;)| which has dimension < n. The construction of such a mapping

is left to the reader; it should be defined separately on each set of the form
FnK, where Ke #,_,.
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To prove that the space M,"*! is a universal space for the class of all
separable metric spaces of dimension < n, rather laborious computations
are necessary; some of them will be left to the reader. Since the same
argumentation yields an interesting theorem exhibiting a relationship
between the spaces Ny and M}, we shall prove this theorem, and then
deduce from it the universality property of M2#+1,

1.11.6. Theorem. Every compact subspace X of the space N} is embeddable
in the space M},

Proof. We shall consider on /™ the metric ¢ defined by letting
o(x,y) = max{|x;—y,|: j=1,2,..,m},
where x = {x;} and y = {y,};

obviously, the metric ¢ is equivalent to the natural metric on I™. Let us
note that if two points x and y are contained in the same cube K €,
then o{x, y) < 1/3% For i = 1, 2, ... denote by S; the subset of I™ con-
sisting of all points which have, at least n+1 coordinates of the form
(k/39+1/2.3%, where 0 < k < 3!, and by T, the subset of I™ consisting
of all points which have at least m—n coordinates of the form k/3!, where
0 < k < 3; obviously, T; = |#,(o4)|. One readily checks that for i
=0,1,2,..

2 , o(S;, T) = 1/2.3
and
3 Fy, i = F)\B(S,, 1/2-31%1),

where B(4,r) denotes the r-ball about 4 with respect to the metric o.

The proof consists in defining by induction a sequence fy, fi, /2, ---
of homeomorphisms of I™ onto itself which transform the intersection
I"n N7 to Np and map X consecutively to Fy, Fy, F,, ..., and which
uniformly converge to a homeomorphism that maps X to the intersection

L]
() F; = My In the inductive step one observes that the set f;(X) is dis-
i=0

joint from S;, and one modifies f; to f;,, by sweeping out the set f;(X)
from the bail B(S;, 1/2-3'*!). The modification of f; to fi,, is performed
separately on each coordinate axis and is described by a piecewise linear
homeomorphism 4, of I onto itself.
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We shall now define inductively a sequence Ay, h,, k,, ... of homeo-
morphisms of 7 onto itself and a sequence f5, f1, /2, ... of homeomorphisms
of I™ onto itself such that for i = 0,1, 2, ... the following conditions
will be satisfied:

(4) The interval I can be divided into finitely many closed intervals with
pairwise disjoint interiors in such a way that on each of these intervals
h; is a linear function with slope > 2/3.

5) hi(k[2-3) = k[2.3  for 0 < k < 2.3

(6) fisr = Hify, where H((xy, x5, ...\ X)) = (Bi(x1), hi(x2), ..oy i(xm)).
Q)] fi"nNg) < N7

® filX) e F,.

Without loss of generality one can assume that X < I". Hence, if we
let f; = id;=, conditions (7) and (8) are satisfied for i = 0. Assume that
the homeomorphisms fy, f;, ..., f; and kg, Ay, ..., by, with all the re-
quired properties are already defined. We shall first define a homeomo1 phism
h; which satisfies (4) and (5) and then show that the homeomorphism
fi+1 defined in (6) satisfies (7) and (8) with i replaced by i+1.

The relations f;(X) c fiIANT) ¢ N¥ and S;nN; = & imply that
[:(X)nS;= ; since f;(X) is a compact space, there exists a positive rational
number ¢ such that

. 1 1
0<e< mm(a(ﬁ(X), S')’W— 3iT1‘)-

Consider the division of the interval I into closed intervals with pairwise
disjoint interiors determined by the points

O=by<ay<by<a, <..<au_,<byu<au=1,

where

k 1 k 1
?+-§'—3—1—8 and bk+1=—+7§7+8

a, = 3

for k=10,1,...,3*—1. The reader can easily check that the functions
gi)’ g’l’ caey gsl N where

, 1 (1 ! k
gk(t)=WTy—a) t——)+—=- for b <t<aq,
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and the functions g7, g7, ..., &5t—1, Where

. of 1 1\, [k
g (t) =« 1(**—2,3i _‘FT) l’_(?Jf 2

for a, < t < byyq,

k 1
Tt

satisfy the equalities:
' k 1
gk(ak) = gk (ak) + 3,.'.1 s
®.

" , k 1 1
8k (bis1) = Giy1(byyy) = ?"‘“3?—'3111—

for k=0,1,...,3—1. As g5(0) = 0 and g3(1) = 1, the functions g
and g determine a homeomorphism k; of I onto itself which, as one easily
checks, satisfies (4) and (5).

Consider now the homeomorphism f;,, defined in (6). Since ¢ is a ra-
tional number, the homeomorphism h; transforms each rational number
in I into a rational number, so that by virtue of (7) we have f;,.,(I"NNy)
< N}

Let x be a point in X; by-virtue of (8), fi(x) = (t;, t2, ..., tm) € F;.
Since o (fi(X), S;) > &, there exist m—n coordinates of the point
(ti, t2, ooy tw), SAY L b5, oo iy, and m—n non-negative integers
ki kyy ooy kmn < 3" such that

t;,— ; <-—s—¢ forl=1,2,..,m—n.

23'

The last inequality means that b, < t;, < 4,,, which together with (9)
yield

k1 k1

g S (t;) < 5+ 3 for | =1,2,..,m—n,
so that
10) fir1(x) = (2, hi(ta), -, hitm)) € B(T;, 1/341).
From (2) and (10) it follows that
an ' Fisn(0) ¢ B(S;, 1/2:3441).

Since, by virtue of (5), the homeomorphism H; maps each cube in X'
onto itself, f;,,(x) € F,; the last relation together with (11) and (3) show
that f,,(x) e F;,,. Hence we have f;,,(X) <« Fiy,.
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It remains to check that the sequence of homeomorphisms fy, f;, />, ...
uniformly converges to a homeomorphism f of I™ onto itself; the inclusion
f(X) = My will then follow from (8). This amounts to checking that the
sequence Aq, Ay hgo, Ak hg, ... of homeomorphisms of I onto itself uni-
formly converges to a homeomorphism of I onto itself. The last fact can
be deduced from (4) and (5) by a straightforward computation, which
we leave to the reader. (]

1.11.7. The second universal space theorem. The compact subspace MZ"+1
of Euclidean (2n+ 1)-space R*"*1 is a universal space for the class of all
separable metric spaces whose covering dimension is not larger than n.

Proof. As observed above, dim M2?"*! = n; hence—by virtue of the com-
pactification theorem—it suffices to prove that every compact metric
space X such that dimX < » is embeddable in MZ"+1, This is, however,
an immediate consequence of Theorems 1.11.5 and 1.11.6. ]

In connection with the above universal space theorems one can ask
whether there exists a universal space for the class of all subspaces of R™
which have dimension < . It is an old hypothesis that M is such a space.
Quite recently, it was proved that M7 is indeed a universal space for the
class of all compact subspaces of R™ which have dimension < n; it is
a very deep and difficult result. Hence, the hypothesis on the universality
of M7 is now reduced to the question whether every subspace X of Euclidean
m-space R™ has a dimension preserving compactification embeddable
in R™. Let us observe that in some special cases the universality of the
space M can be deduced from our earlier results. Indeed, the universality
of MT and MT is obvious, and the universality of MZ"+! is a consequence
of Theorem .1.11.7; finally, Theorems 1.8.10, 1.8.8, and 1.11.6, together
with the simple observation that each closed subset of Nj,_; has a compacti-
fication embeddable in N™_,, imply that the space Mp_, is universal
for the class of all subspaces of R™ which have dimension < m—1 (a direct
proof of this fact is outlined in the hint to Problem 1.11.D(c)).

The considerations of the preceding paragraph imply, in particular,
that the space N™ is embeddable in the space M, for n = 0, n=m, m
= 2n+1 and n = m~—1; the problem whether Ny is always embeddable
in M is still open. On the other hand, the space M, is embeddable in the
space N7 for every pair of integers n, m satisfying 0 < n<m>= 1 (see
Problem 1.11.E). Hence the question if N7 is a universal space for the
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class of all subspaces of R™ which have dimension < n is a weaker version
of the problem of the universality of the space M7.

To conclude, let us note that from the above discussion of special
cases it follows that for every pair of integers n, m satisfying0 < n<m< 3
and m > 1, the spaces M} and N, are universal for the class of all subspaces
of R™ which have dimension < n; in particular, for every such pair n, m,
the space N7 is embeddable in the space M, and each n-dimensional sub-
space of R™ has an n-dimensional compactification embeddable in R™.

We close this section by showing that the exponent 2n+ 1 in the embedding
theorem cannot be lowered.

1.11.8. Example. Let K, be the union of all 1-faces of the 4-simplex
DoD1P2P3pPs (see Fig. 14). Applying the Jordan curve theorem, which
states that every simple closed curve (i.e., a set homeomorphic to S*)
in the plane R? separates R? into two regions, we shall show that the one-
dimensional polyhedron K; cannot be embedded in R2.

aP3

2]

12

U p1
Fig. 14

Assume that there exists a homeomorphic embedding f: K; — R?
and define a; = f(p)) for 0 < i < 4. It follows from the Jordan curve
theorem that the simple closed curve S, = f(por,Up,p2UP2Po) Separates
R? into two regions. One can suppose that the point @; belongs to the
bounded component U of R?>\S,, otherwise one should replace the homeo-
morphic embedding f by the composition of f and a suitable inversion.
Since the points a; and a, can be joined in f(X,) by an arc (i.e., a set homeo-
morphic to I) disjoint to S;, we have a, € U. The Jordan curve theorem
implies that the set U\T, where T = f(pops\Up,PsUP,P3), can be repre-
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sented as the union of three pairwise disjoint regions U,, U,, U, such that
a¢U fori=0,1,2. As aq, ¢ T, we have a, € U\T and without loss
of generality we can suppose that a, € U,. Now, the set f(pop,) is an arc
joining the points a,,a, and disjoint to the simple closed curve S,
= f(p1pP2Yp1 P3P, P3). Since the points a, and a, are contained in dis-
tinct components of R2\S,, the assumption that K; is embeddable in
R? yields a contradiction. [

A

Fig. 15

One can prove that the union K, of all n-faces of a (2n+ 2)-simplex
cannot be embedded in R?" for any natural number n; a proof of this
fact, based on the Borsuk-Ulam antipodal theorem, is outlined in the hint
to Problem 1.11.F.

Historical and bibliographic notes

The first part of Theorem 1.11.4 was formulated, for compact metric
spaces, by Menger in [1926] and was proved there for n = 1. In [1928]
Menger again proved the theorem for n = 1 and hinted at the modifications
in the proof that should permit us to obtain the theorem in full generality.
For an arbitrary n the first part of the embedding theorem was proved
simultaneously by Nobeling in [1931], Pontrjagin and Tolstowa in [1931],
and Lefschetz in [1931]; the three proofs consisted in constructing a se-
quence of continuous mappings uniformly converging to a homeomorphic
embedding and were rather involved. The present proof was given by
Hurewicz in [1933] (announcement in [1931]); application of function
spaces yielded the stronger result about the set of all homeomorphic em-
beddings. The consideration of function spaces and resorting to the Baire
category theorem (proofs by category method) proved very useful in the
dimension theory of separable metric spaces. This idea, originated by
Hurewicz in [1931], was repeatedly exploited by Hurewicz, Kuratowski
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(cf. Problem 1.7.D) and their followers. Theorem 1.11.5 was established
by Nobeling in [1931]. The spaces M were introduced by Menger in [1926].
They are generalizations of the Cantor set and of Sierpiriski’s universal
curve, i.e., the space M? described by Sierpiniski in [1916], where it was
also proved that M? is a universal space for the class of all compact sub-
spaces of the plane which have an empty interior (in [1922] Sierpinski
observed that the assumption of compactness is not essential). In [1926]
Menger proved that the space M7 is universal for the class of all compact
metric spaces of dimension < 1, observed that Sierpinski’s argument
yields the universality of Mj;_, for the class of all compact subspaces
of R™ which have dimension € m—1, announced Theorem 1.11.7 for
compact spaces and put forward the hypothesis that the space My is
universal for the class of all compact subspaces of R™ which have dimension
< n. Theorem 1.11.6 was proved by Bothe in [1963]. In [1931] Lefschetz
defined for every pair n, m of integers satisfying 0 € » € m > 1 a compact
subspace ST of R™ which is very much like M) (the difference consists
in considering simplexes rather than cubes) and proved that $2#*! is a uni-
versal space for the class of all separable metric spaces whose covering
dimension is not larger than n; he also proved there that the space Sy
is embeddable in the space Ny". It is a general belief that the spaces M}
and S7' are homeomorphic, but no proof was ever produced. Hence, Lef-
schetz is considered to be the author of Theorem 1.11.7, although—for-
mally—the theorem was first proved by Bothe in [1963]. Let us mention,
by way of digression, that M and ST are obviously homeomorphic if
n = 0 orn = m, that M? is homeomorphic to S7 and M3 is homeomorphic
to S? by virtue of topological characterizations of M? and M3 given by
Whyburn in [1958] and by Anderson in [1958], respectively, and finally
that, as proved by Cannon in [1973], M};_, and Sy_; are homeomorphic
if m # 4. The theorem stating that M, is a universal space for the class
of all compact subspaces of R™ which have dimension < » was proved
by Stan’ko in [1971]. A proof of the Jordan curve theorem can be found
in Kuratowski’s book [1968], p. 510.

Problems

1.11.A (Kuratowski [1937a], Hurewicz and Wallman [1941]). (a) Check
that if (X, o) is a non-empty metric space and (Y, o) is a compact metric
space then the function ¢ defined at the beginning of this section is
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a metric on the set Y* of all continuous mappings of X to ¥ and the function
space (Y%, ) is complete. Verify that for every open cover & of the space
X the set of all &-mappings is open in the function space Y?*.

(b) Show that for every separable metric space X there exists a sequence
&1, 6,, ... of finite open covers of X such that every continuous mapping
f: X > Y of X onto a topological space Y which is an &-mapping for
i=1,2,... is a homeomorphism.

Hint. Consider a countable base # for the space X and arrange into
a sequence all covers of the form {W, X\ﬁ}, where U, We# and
Uc W

(c) Prove that for every finite open cover & of a separable metric space
X such that 0 < dimX < n the set of all &-mappings of X to 7?2"*1 is dense
in the function space (I2**1)*,

(d) Deduce from (a), (b) and (c) that every separable metric space X
such that 0 € dimX < n is embeddable in the (2n+ 1)-cube 72"**; observe
that the set of all homeomorphic embeddings of X in I2"*1 contains a Gsset
dense in the function space (I2**1)*,

Remark. As opposed to the case where X is a compact space, the set
of all homeomorphic embeddings of a separable metric space X such that
0 < dimX ¥ nin I?*+! is generally not a Gsset (see Roberts [1948]).

1.11.B (Kuratowski [1937a], Hurewicz and Wallman [1941]). (a) Check
that for every closed subset F of a compact metric space Y the set {f e Y*:
S(X)nF = @} is open in the function space Y¥*.

(b) Prove that for every finite open cover & of a separable metric space
X such that 0 < dimX < n and every linear n-variety H in R*"*! the set
of all &-mappings of X to I2"** whose values miss H is dense in the func-
tion space (I2+1)*,

(c) Prove that for every separable metric space X such that dimX < n
> 0 there exists a homeomorphic embedding f: X — I?**! of X in I?"*!
which satisfies the inclusion f(X) = N2"+1. Observe that this fact implies
the compactification theorem.

L11.C. (a) Show that for every continuous mapping f: X = Y of
a separable metric space X to a separable metric space Y and for every
compact metric space Y that contains Y there exists a compact metric
space X that contains X as a dense subset and a continuous mapping f:
X - Y such that f]X = f (cf. Lemma 1.13.3).
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Hint. Consider the completion X of the space X with respect to the
metric ¢ defined by letting ¢ (x, y) = o(x, »)+a(f(x), f(»)), where ¢ is
a totally bounded metric on the space X and ¢ is an arbitrary metric on
the space )7'._

(b) Let § = {X,, n}} be an inverse sequence of completely metrizable
separable spaces. Prove that if n{*'(X;,,) is a dense subset of X, for i
=1,2,..., then limS # @.

Hint. Apply (a) to define an inverse sequence § = {A;,, 7}} of compact
metric spaces such that X is a dense subset of X, and #*!|X,,, = nf“
fori = 1,2, ... Show that for every i the inverse image G; = #7'(X;)) < X
= llmS where 7 XX ; denotes the prO]CCthIl is a Gy-set dense in the
space X; use the fact that 7 7T; maps X onto X ; (see [GT], Corollary 3.2.15).

(c) Prove that for every continuous mapping f: X - R?"*1 of a sepa-
rable metric space X such that dimX < n to R2"*! and for every positive
number ¢ there exists a homeomorphic embedding g: X —» R2"*! such
such that o(f(x), g(x)) < & for every x € X.

Hint. Let Z = R**'U{w} be the one-point compactification of Euclid-
ean (2n+ 1)-space R*"*!, Define a compact metric space X that contains
X as a dense subset and satisfies the mequahty dimX < n, and a con-
tinuous mappmg f: X > Z such that fix = f. For i=1,2,..let X,
—f“(B,) c X, where B, = B(0,i) < R?"*1; assume that X; ;é @ and
consider the subspace @; of the function space (R?"*!)* consisting of
all homeomorphic embeddings g: X; — R?"*! such that ¢(g(x), f(x)) <e
for every xeX;. Apply (b) to the inverse sequence S = {®,, n}},
where 7}(g) = g]X, for every pair i, j of natural numbers satisfying j < i.

1.11.D. (a) Show that for every natural number m > 1 the space
Mg is homeomorphic to the Cantor set.

Hint. Apply Problem 1.3.F.

(b) (Sierpiniski [1916] and [1922]) Prove that M? is a universal space
for the class of all subspaces of the plane which have dimension < 1.

Hint. For a compact one-dimensional subspace X of the plane define
a subspace of R? which contains X and is homeomorphic to MZ. To this
end, consider a rectangle containing X and remove from it smaller rectangles
disjoint from X in the same way as one removes squares from /> to obtain
M} (see Fig. 16, where X has the shape of the letter a). Apply Theorem
1.8.9 to extend the result to all one-dimensional subspaces of the plane.

(c) (Menger [1926] for compact spaces) Prove that the space My_;
is a universal space for the class of all subspaces of R™ which have dimen-
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sion < m—1.
Hint. Modify the construction described in the hint to part (b).

! : 1
[ 7 ~
, \ ! yaZ
! r /!
X :
[ ] '
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| / 3 ] 4 /J—
| S 0 I 4 )
| ! h //r
Fig. 16

1.1LE. Prove that the space MT is embeddable in the space N for
every pair of integers m, n satisfying 0 < n < m > 1.
Hint. Apply Problem 1.8.C.

L1LF (Flores [1935]). (a) Let po,P1,-.» P2ny, De the vertices of
a regular (2n+2)-simplex 7%"*2 inscribed in the (2n+ 1)-sphere S2"*!
< R?+2 and let g, = —p,; for i = 0,1, ...,2n+2. Check that for each
sequence iy < iy < ... < izpyq < 2n+2 of 2n4+2 non-negative integers,
the system of points p;,p;, -, Piys Digess -+ Giy, € R2"T2 is linearly
independent and the linear (2n+ 1)-variety in R?"+2 spanned by these
points does not contain the origin. Denote by S2"+1 the union of all (2n+ 1)~
simplexes of the form p,p,, ... p,.q.,,, - 4i,.., and show that the pro-
jection p of $i"*! from the origin onto $?"*! is a homeomorphism. Ob-
serve that p(—x) = —p(x) for every x € S$2"+1,

(b) Let ", be the family of all faces of T2"*2 which have dimension
< n and let K, = |,]. Consider the cone C(K,) over K, with vertex at
the origin, i.e., the subset of R?"*2 consisting of all points of the form
tx, where x € K, and 0 < ¢t < 1, and the subspace S3"*! of the Cartesian
product C(K,) x C(K,) consisting of all pairs (x, #ty) and (zx, y), where
0<t<1,xeT,,yeT, and T,, T, are disjoint members of #,. Show
that by mapping, in a linear way, every segment with end-points (x, 0)
and (x,y) contained in S3"+! onto the segment with end-points x and
1(x—y) contained in S3"*!, and every segment with end-points (0, y)
and (x, y) contained in $%2**! onto the segment with end-points —y and
1(x—y) contained in S3"*1, one obtains a homeomorphism /4 of S3"+!
onto S$%2*+1, Observe that A(x, y) = —h(y, x).

(c) Applying the Borsuk~Ulam antipodal theorem, i.e., the fact that
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for every continuous mapping g: S" — R" there exists a point x € §" such
that g(x) = g(—x) (see Spanier [1966], p. 266), prove that the n-dimensional
polyhedron K, defined in (b) cannot be embedded in R?" for any n > 1.

Hint. Assume that there exists a homeomorphic embedding f: X, - R*".
Observe that f determines a homeomorphic embedding f; : C(X,) » R*"*1,
consider the mapping f,: S3"** — R?"*1 defined by letting f>(x, ) = f1()—
—f1(x) and the composition g = foA™lp~t; §2n+1 » RZH1,

1.12. Dimension and mappings

We shall now study the relations between the dimensions of the domain
and the range of a continuous mapping. Let us begin with the observation
that since one-to-one continuous mappings onto can arbitrarily raise
or lower the dimension (see Problems 1.3.C and 1.4.F(b)), to obtain
sound results we have to restrict ourselves to special classes of mappings.
We find that for closed mappings and open mappings many interesting
results can be obtained.

Let us recall that a continuous mapping f: X — Y is closed (open)
if for every closed (open) set 4 < X, the image f(4) is closed (open) in Y.
One readily checks that if f: X — Y is a closed {(an open) mapping, then
for every closed (open) subset 4 of X the restriction f|4: 4 — f(4d) = Y is
a closed (an open) mapping; similarly, if /2 X — Y is a closed (an open)
mapping, then for an arbitrary subset B of Y the restriction f3: f ~*(B) » B
is a closed (an open) mapping. Clearly, a mapping f: X — Y is closed
if and only if f(/f) = ]T(IT) for every A < X, so that each continuous mapping
of a compact space to a Hausdorfl space is closed.

We shall first discuss closed mappings and begin with the theorem
on dimension-raising mappings. In the lemma to this theorem the notion
of a network appears; a family 4" of subsets of a topological space X
is a network for X if for every point x € X and each neighbourhood U
of the point x there exists an M € A4 such that x e M < U. The defini-
tion of a network imitates the definition of a base, only one does not
require the members of a network to be open sets. Clearly, every base for
a topological space is a network for that space. The family of all one-point
subsets is another example of a network.

112.1. Lemma. A separable metric space X satisfies the inequality indX
< n 20 if and only if X has a countable network N such that ind FrM
< n—1 for every M e .
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Proof. By virtue of Theorem 1.1.6, it suffices to show that if a separable
metric space X has a network A" = {M,}2, such that indFrM, < n—1

(>
for i=1,2,..., then indX<n Let Y=|JFrM, and Z = X\Y.
i=1

It follows from the sum theorem that indY < n—1; we shall show that
indZ < 0. For an arbitrary point x € Z and a neighbourhood V <« X
of the point x there exists an M, € A4 such thatx € M, < V. Since x e X \Y
c X\FrM,;,, we have xe U= IntM, c V. The inclusion FrlntM,
< FrM, implies that ZNnFrU = & and thus we have indZ < 0. The
inequality indX < n now follows from Lemma 1.5.2. (J

1.12.2. Theorem on dimension-raising mappings. If f: X > Y is a closed
mapping of a separable metric space X onto a separable metric space Y
and there exists an integer k = 1 such that |f~*(0)| < k for every y€e Y,
then indY < indX—(k—1).

Proof. We can suppose that 0 < indX < oo. We shall apply induction
with respect to the number n+k, where n = indX. If n+k = 1, we have
k =1, so that f is a homeomorphism and the theorem holds. Assume
that the theorem holds whenever n+k < m = 2 and consider a closed
mapping f: X —» Y such that f(X) = Y and n+k = m.

Let # be a countable base for X such that indFrU < n—1 for every
U e #. Consider an arbitrary U € &, by the closedness of f we have

M Fif(U) = IDNTN(O) < SDNX\D)
= W)OFr DINAX\U) < f(FrU)uB,

where B = f(U)f(X\U). Since the restriction f|FrU: FrU — f(FrU)
is a closed mapping, it follows irom the inductive assumption that

indf(FrU) < m—1)+(k—-1) =n+k-2.
Assume that B # &. Consider the restriction fz: f ~*(B) — B and therestric-
tion f' = fz|(X\U): (X\U)nf~*(B) — B; both f; and f' are closed,
and the fibres of £’ all have cardinality < k—1, because f~1(y)nU # O
for every y € B. It follows from the inductive assumption that

indBg n+(k-1)—1=n+k-—2.

As Uis an F,-set in X, both f(U) and B are F,-sets in Y; applying Corollary
1.5.4, we obtain the inequality ind[f(FrU)uB]< n+k—2. From the
last inequality and from (1) .it follows that indFrf(U) < n+k—2 for
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every U € %; the same inequlity holds if B = &. One readily checks
that the family 4 = {f(U): Ue #} is a network for the space Y,
so that indY € n+k—1 = indX+k—1 by virtue of Lemma 1.12.1. O

We now pass to the theorem on dimension-lowering mappings. The
theorem will be preceded by a lemma which, roughly speaking, shows
that in condition (MU2), in the definition of the dimension function ind,
points can be replaced by closed sets of small dimension.

1.12.3. Lemma. If a separable metric space X has a closed cover {As}ses
such that indA;, < m > 0 for each s € S and if for every s €S and each
open set V < X that contains A, there exists an open set U = X such that

A, cUcUcV and indFrU< m-1,
then indX < m.

Proof. By virtue of Theorem 1.9.3 it suffices to show that for every closed
subspace A of the space X and each continuous mapping f: 4 — S™ there
exists a continuous extension F: X — S™ of fover X. It follows from Theorem
1.9.2 that for each s € S the mapping f is continuously extendable over
AUA,, so that there exists an open set V; < X containing AuAd, such
that f is continuously extendable over V. Consider an open set U; < X
satisfying

(@) A, c U cUcV, and indFrU,<m—1;

obviously, f'is continuously extendable over AUU,. The open cover {U,}ees
of the space X has a countable subcover {U}f%;. We shall inductively

i
define a sequence F, , F,, ... of continuous mappings, where F;: Au ) U, ;
i=1

— S§™ such that
-1 __

3 FlAv U Uy) =F_, fori>1l.
=1

Let F, be an arbitrary continuous extension of f over Aul_fsl. Assume

ko _
that the mappings F, satisfying (3) are defined for i < k. The set AU |_J U,
=1

can be represented as the union of two closed sets

k—1

-1 _ N
A'=40|JU, and 4" =A4u(U\ U U).
ji=1 : j=1
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The mapping f is extendable to a continuous mapping f”: 4” — 8™ and

k-1 _ k—1 k—1
D = {x EAImA”: Fk_l(.x) #f”(x)} CLJI US]“(X\LJIUSJ) < L_JlFr USJ’
7= J= 7=

so that indD € m—1 by virtue of (2) and the sum theorem. It follows

from Lemma 1.9.6 that the mappings Fy_;|4'nA"” and f"|A'nA" are

homotopic. Since the mapping f'/|[4'nA” is continuously extendable

over A", it follows from Lemma 1.9.7 that the mapping F,_,[4'nA4" is
extendable to a continuous mapping F'': 4" — S™.

Letting
Fu(x) = {F,jl_l(x) for x € A:;
F'"(x) for xe A",

k _
we define a continuous mapping F; of A'vA4” = Au ) U, to §™, which
i=1
satisfies (3) for i = k.

As X = (J U;,, the formula
i=1

F(x) = Fy(x) for x e Uj

defines a continuous mapping F: X — S™, which is the required extension
of fover X. [J

1.12.4. Theorem on dimension-lowering mappings. If f: X — Y is a closed
mapping of a separable metric space X to a separable metric space Y and
there exists an integer k > 0O such that indf~'(y) < k for every y €Y,
then indX < indY-+k.

. Proof. We can suppose that indY < oo. We shall apply induction with
respect to n = indY. If n= —1, we have Y= and X = &, and so
the theorem holds. Assume that the theorem holds for closed mappings
to spaces of dimension less than »n > 0 and consider a closed mapping
f: X > Y to a space Y such that ind¥ = n.

We shall show that the closed cover {f~!(»)},er of the space X satisfies
the conditions of Lemma 1.12.3 for m = n+k. Clearly, indf "1()) < k < m
for each y € Y. Consider now an y € ¥ and an open set V' < X which
contains f~1(y). The set W = Y\ f(X\V) is a neighbourhood of the
point y; since ind Y = n, there exists an open set U’ = Y such that

yeU cU cW and indFrU <n—1.
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Applying the inductive assumption to the restriction fe.p.: f~1(FrU’)
— FrU’, we obtain the inequality indf ~*(FrU’) < n+k—1. The open set
U = f~1(U’) satisfies the conditions

) eUcU=f1U)cfU)cf W)V
and
FrU = Frf “\(U') = -1 U\ f~1(U")
S fTHUNSFHUY) e fRAFEDY,
so that indFrU € n+k—1. Lemma 1.12.3 now implies that indX < n+k
= indY+k.

Let us note that in Theorem 1.12.4 the assumption that f is a closed
mapping cannot be replaced by the assumption that f is open (see Problem
1.12.C). On the other hand, Theorem 1.12.2 holds for open mappings
as well; we shall show below that even more is true: open mappings with
finite fibres do not change dimension. We shall also show that open mappings
with countable fibres defined on locally compact spaces do not change
dimension. In the proofs of both theorems the following lemma will be
applied; we recall that the symbol 4% denotes the set of all accumulation
points of the set A, i.e., the set of all points x such that x € A\ {x}.

1.12.5. Lemma. Let f: X — Y be an open mapping of a metric space X onto
a metric space Y. For every base B = {Us}ses for the space X there exists
a family {As}ses of subsets of X such that A, < U, for each s € S and
(1) A and f(A,) are Fy-sets in X and Y, respectively,
(i) flds: A — f(4y) is a homeomorphism,
Gil) X = (UA)o (UL 0.
se§ yeY

Proof. For each s S let
As = {x € Us: Usnf_lf(x) = {X}}

Observe first that the set f(U,) \f(4;) is open in Y. Indeed, for every point
¥ € flUINS(A4,) there exist two distinct points x,, x, € U, such that f{(x,)
= f(x,) = ¥, and—as one readily checks—the open set V = f(W)nf(W>),
where W, W, are disjoint open subsets of U, which contain x, and Xx,,
respectively, contains the point y and is contained in the set f{U)\Sf(4)-
As f(4,) = f(Uy),

COESUANVUAN/CNIR
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so that the set f(4,), being the intersection of an open set and a closed
set, is an Fyset in Y. From the obvious equality

4) A = Unf~f(4))

it follows that A, is an F,-set in X; thus (i) is proved.

The restriction f|U,: U, —» f(Uy) is an open mapping, and so is its
restriction (f|U)pany: Usnf ~f(A4s) = f(4). By virtue of (4) the last
mapping coincides with f]A4: A, — f(4,). Thus the mapping fi4,: 4,
— f(A,) is open and, by the definition of A, one-to-one, i.e., we have (ii).

To prove (iii), it suffices to observe that if x ¢ [f~1f(x)]%, then there
exists a member U, of the base # such that U.nf~!(x) = {x}, and thus
x€ed,. O

1.12.6. Theorem. If f: X — Y is an open mapping of a separable metric
space X onto a separable metric space Y such that for every y € Y the fibre
SY(») has an isolated point, then indY < indX.

Proof. Let {U,}{>, be a countable base for the space X; consider a family
{4321 of subsets of X which satisfy (i)-(iii) in Lemma 1.12.5. By the

[ ]
assumption on the fibres, ¥ = {_J f(4,), and since the subspaces 4, = X
i=1

and f(4,) < Y are homeomorphic, indf(4,) = ind4; < indX fori = 1,2,...
Hence we have indY < indX by virtue of Corollary 1.5.4. O

1.12.7. Theorem. If f: X — Y is an open mapping of a separable metric
space X onto a separable metric space Y such that for every y €Y the fibre
f~10) is a discrete subspace of X, then indX = indY.

Proof. Let {U;}{>, be a countable base for the space X; consider a family
{4}, of subsets of X which satisfy (i)-(iii) in Lemma 1.12.5. By the

o0
assumption on the fibres, X = {_J 4,, and since the subspaces 4; = X
i1

and f(4,) < Y are homeomorphic, ind 4; = indf(4,) < indYfori = 1,2,...
Hence we have indX < indY by virtue of Corollary 1.5.4; to complete
the proof it suffices to apply Theorem 1.12.6. [

1.12.8. Alexandroff’s theorem. If f: X — Y is an open mapping of a separable
locally compact’ metric space X onto a separable metric space Y such that
[ ~1()] < W for every y €Y, then indX = indY.



Ch. 1, § 12] Dimension and mappings 139

Proof. Since each closed subspace of a locally compact space is locally
compact, the fibres of f are locally compact. It follows from the Baire
category theorem and complete metrizability of locally compact spaces
(or from Problem 1.2.D) that for every y € Y the fibre f ~!(»), being count-
able, has an isolated point. Hence we have indY < indX by Theorem
1.12.6.

Let {F,}2; be a countable cover of X consisting of compact subspaces.
For every i the restriction f|F;: F, — f(F) is a closed mapping with zero-
dimensional fibres, so that ind F; < inff(F;) < ind Y by virtue of the theorem
on dimension-lowering mappings. Hence we have indX < indY by virtue
of the sum theorem. [

It is possible to define open mappings with countable fibres which
arbitrarily raise or lower dimension (see Problems 1.12.E and 1.12.F).
Open mappings with zero-dimensional fibres defined on compact spaces
can also arbitrarily raise dimension, but examples of such mappings are
very complicated and will not be discussed here. Let us note, however,
that the space M? defined in the last section can be mapped onto every
locally connected metric continuum by an open mapping whose fibres
are all homeomorphic to the Cantor set.

We conclude this section with a discussion of open-and-closed map-
pings, i.e., mappings which are both open and closed. It follows from the
last paragraph that open-and-closed mappings with zero-dimensional
fibres can arbitrarily raise dimension. We shall now show that open-and-
closed mappings with countable fibres preserve dimension.

1.12.9. Vain$tein’s lemma. If f: X — Y is a closed mapping of a metric space
X onto a metric space Y, then for every y €Y the boundary Frf~'(y) of
the fibre f~'(y) is a compact subspace of X.

Proof. It suffices to show that every countably infinite subset A

= {x;,x,, ...} of the boundary Frf~'(y) of an arbitrary fibre.f~(y)
has an accumulation point. Let {V,}{2; be a base for the space Y at the
point y. For i = 1,2, ... choose a point xje f~ (V) \f~1(y) satisfying
o(x;, x}) < 1/i; such a choice is possible, because the intersection B(x;, 1/i)n
nf (V) is a neighbourhood of x;. Consider the set B = {xy, x3, ...}
< X. We have y e fiB)\f(B) so that B # B, i.e., B! # . Now, since
o(x, x))<lfifori=1,2,..., A = B* # & and the proof is completed.[]
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1.12.10. Theorem. If f: X — Y is an open-and-closed mapping of a separable
metric space X onto a separable metric space Y such that |f~*(»)] € ¥,
for every y €Y, then indX = indY.

Proof. Let us note first that Theorem 1.12.4 yields the inequality indX
< indY.

Now, let Yo={yeY: Intf~'(y) # @}, Y, =Y\Y,, and X,
= f~Y(Y,). The mapping f being open, for every y € Y, the one-point set
{y} = f(Intf ~1(»)) is open, which implies that the set Y, is open in ¥
and ind Y, < 0. The restriction f; = fy,: X, = Y; is also an open mapping,
and since f{l(y) = Frf~4(y) = f~(p), the fibres of f; are countable
and compact, the latter by virtue of Vainitein’s lemma; in particular,
for every y € Y the fibre f71(y) has an isolated point. It then follows from
Theorem 1.12.6 that indY, < indX, < indX; as ¥ = Y,uY;, Corollary
1.5.5 yields the inequality indY < indX. [J

Historical and bibliographic netes -

Theorem 1.12.2 was proved by Hurewicz in [1927a]. The same paper
contains Theorem 1.12.4 for continuous mappings defined on compact
metric spaces; the -extension of this theorem to separable metric spaces
was given by Hurewicz and Wallman in [1941]. Theorem 1.12.6 was first
stated by Taimanov in [1955]; however, it is implicitly contained in Alexand-
roff’s paper [1936]. Theorem 1.12.7 was proved by Hodel in [1963] (for
the special case of a mapping with finite fibres it was proved earlier by
Nagami, namely in [1960]). Alexandroff established Theorem 1.12.8 in
[1936]. The first example of a dimension-raising open mapping with zero-
dimensional fibres defined on a compact metric space was described by
Kolmogoroff in {1937]. Keldy$ defined in [1954] an open mapping with
zero-dimensional fibres which maps a one-dimensional compact metric
space onto the square J?; a detailed description of Keldy§’ example can
be found in Alexandroff and Pasynkov’s book [1973]. The fact that M}
can be mapped onto every locally connected metric continuum by an
open mapping whose fibres are all homeomorphic to the Cantor set
was established by Wilson in [1972]. Theorem 1.12.10 was given by Vain-
Stein in [1949]. Lelek’s paper [1971] contains a comprehensive discussion
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of the topic of the present section and a good bibliography. We shall re-
turn to this subject in Section 4.3, where two theorems of a more special
character will be proved (see Theorems 4.3.9 and 4.3.12).

Problems

1.12.A (Hurewicz [1926]). Prove that if f: X — Y is a closed mapping
of a separable metric space X onto a separable metric space Y and | f~1()|
=k < oo for every y €Y, then indX = indY.

Hint. Consider a countable base # for the space X and the family

k —_ —
of all intersections [} f(U;), where U;e # fori =1,2,...,k and U;,nU;
i=1

= @& whenever i # j.

1.12.B (Hurewicz [1937]). Observe that, under the additional hypothesis
that X is a finite-dimensional compact space, the theorem on dimension-
lowering mappings is a direct consequence of the Cantor-manifold theorem.

Hint. Assume that X is a Cantor-manifold and apply induction with
respect to indY. :

1.12.C. Give an example of an open mapping with zero-dimensional
fibres which maps a one-dimensional separable metric space onto the
Cantor set.

Hint. Use the Knaster—~Kuratowski fan.

Remark. It follows from Problem 1.12.F that there even exist such
mappings with countable fibres (cf. Problem 1.12.G(b)).

1.12.D. (a) Observe that in Theorem 1.12.2 the inequality [f~*(M)| < k
can be replaced by the weaker inequality |Frf—'(p)| < k. ‘
Hint. Consider the restriction f|X,, where X, is obtained by adjoining
to the union L))’ Frf~1(») one point from each fibre f~*(y) which has an
ye

empty boundary.
(b) Observe that in Theorem 1.12.6 it suffices to assume that for every
y €Y the boundary Frf —1(y) either has an isolated point or is empty.

1.12.E (Hausdorff [1934]). Show that every separable metric space X
can be represented as the image of a subspace Z of the space P of irrational
numbers under an open mapping.
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Hint. Consider a countable base {U,)g., for the space X and the sub-

space Z of the Cartesian product N% = [[N,, where N, = N for i

i=1
=1,2, ..., consisting of all points {k;} such that the family {U,,}2,
is a base for X at a point x; assign the point x to the point {k,}.

1.12.F (Roberts [1947]). Show that for every open mapping f: X - Y
of a separable metric space X onto a separable metric space Y there exists
a set X; < X such that the restriction f|X, is an open mapping of X, onto
Y and has countable fibres.

Hint. Consider a countable base {U,}2, for the space X and choose
one point from each non-empty intersection of the form U,nf~1(y),
where ye Y.

1.12.G. (a) Observe that if f: X — Y is an open mapping of a complete
separable metric space X onto a separable metric space Y such that [ ~1()|
< N, for every y €7, then indY < ind X.

(b) Give an example of an open mapping with countable fibres which
maps a one-dimensional complete separable metric space onto the Cantor
set.

Hint. For every sequence i, i,, ..., i, consisting of zeros and ones,

let
O 2 =21
Cliy, iay oy i) = {x eC: 2_‘—': <x< Z§l£+?}’
k=1 k=1

and let C'(iy, i, ..., iy) be a subspace of I which is homeomorphic to
the Cantor set and is contained in the interval

2i 2i
{XEI 3: 3m+1 <x<z 3:+3m+1}

removed from 7 in the process of constructing the Cantor set. Consider
a countable set {a,, a,, ...} dense in the interval [—1, 1] and define

X= KUU U U[C(ll,lz,,.,l'm)X{ak}]CXX[—l,l],

m=1iy,..,imk=1

where K is the space in Problem 1.2.E; show that the mapping f: X — C,

where f|K is the projection of K onto C and f|[C'(i1, izs .- 5 im) X {@:}]

is an arbitrary homeomorphism of C’(iy, i,, ..., in) X {a;} onto C(iy, iz, - .-
.» im), has the required properties.
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1.13. Dimension and inverse sequences of polyhedra

Besides theorems on e-mappings and e-translations there is one more
characterization of dimension in the realm of compact metric spaces
through their relations to polyhedra. It has been discovered that the class
of compact metric spaces which have dimension < » coincides with the
class of spaces which are homeomorphic to the limits of inverse sequences
of polyhedra which have dimension < n. We shall deduce this characteriza-
tion from two theorems which we are going to prove: the theorem on
expansion in an inverse sequence and the theorem on the dimension of
the limit of an inverse sequence.

As the subject of this section is more specific than our previous con-
siderations, we shall assume here that the reader is familiar with the basic
definitions and theorems in the theory of inverse systems (see, e.g., [GT],
pp. 135-140, 188 and 189). We shall only recall that an inverse sequence
{X,, n}} is an inverse system {X;,n}, N} where N is the set of natural
numbers directed by its natural order.

In Lemma 1.13.1 and in the proof of Theorem 1.13.2 below the symbol
7™ will denote the m-simplex in R™** spanned by the points p, = (1,0, ...
s 0), = (0,1,...,0), ..., pes = (0,0, ..., 1). We shall consider on
T™ the metric o defined by letting '

m+1

o(x,3) =|x—y}, where Jz] = > |4l for z = (A, A, ccor Aner) ER™Y;
i=1
obviously, the metric ¢ is equivalent to the natural metric on T™.

1.13.1. Lemma. Let a set A; < {1,2,...,n+1} be given forj = 1,2, ..., 1
and let 7t be the mapping of T'~! to T" = p,p, ... Py defined by the for-
mula )

]

yi )

n((ll,lz,...,l,))=2#2p,, where n; = ]Aj|_
j=t1 7 ic4,

n

If AinAyn ... A # O, then o(n(x), 7(y)) < iy

e T4,

o(x,y) for all x,y

Proof. Consider arbitrary points x = (4;, 4, ..., 4) and y = (y;, t2, ...
v pi) in T'=Y Let ay = Ayj—p; for j=1,2,...,1, B= {j: a;> 0} and
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C = {j: a; <0}, From the equality Z a; =0 it follows that Y |a;,]

jeB
= Z loe;| = 2o(x,»). One easily checks that
jeC
! !
N
12ﬁ - Zﬂ—zmin(gb;, ), where b= > K o=y B,
n; c n; i n;’ — N
Jj=1 j=1 jeB jeC
Since n; < n+1 for j=1,2,...,1, we have
b= Sl PNFERE.CE
L4 n; > n+1 % n+l
jeB JjeB
1 a(x,y) 1 a(x,y) .
similarly |c] > 2 Tt so that min(|b], Ic]) > it . Choosing
a.rbitrarily anig€A;nA,n ... nA;and letting 4} = A,\ {ig}forj=1,2, ...

, | we have

o‘(ﬂ(x), n(y)) lz Zpil I ':—j‘ Di,+ Z%ZF;'
Jj= Jj=1 ieA;
IZ

l‘le(nj_ 1) Z I‘le +Z 'a.ll(nf 2m1n(lb|,|c|)
- Z o, ~2min(lbl, lel) = oCx, »)—~2min(Bl, |e)
=1

H n; =

o(x,¥) _

< o(x, y)— .

1 o(x,y). 0

1.13.2. Theorem on expansion in an inverse sequence. For every compact
metric space X such that dimX < n there exists an inverse sequence
{K,, n}} consisting of polyhedra of dimension < n whose limit is homeo-
morphic to X; moreover, one can assume that, for i = 1,2, ..., K, is the
underlying polyhedron of a nerve A"; of a finite open cover of the space X,
and that for every j< i the bonding mapping m} is linear on each simplex
inA,.

Proof. We can suppose that dimX > 0. Consider a sequence %, %5, ... of
finite open covers of the space X, where #; = {U, }im, and U, , # O for
k=1,2,..., k,, such that

Q) ord%; < n
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and
@) mesh%,,, < min(l/i+1, &/2),
where ¢, is a Lebesgue number for the cover #,. It follows from (2) that

Q) if Uipr,5,0Ui41,5,0 - OUpq,;, # 9, then there exists a k<k

such that Uyq,;, < Uy form=1,2, ..., L

Fori = 1,2, ... lets, = A (%)) be a nerve of the cover %, consisting
of faces of the simplex T%~1. By virtue of (1), the underlying polyhedra
K; = || all have dimension < n.

We shall now define continuous mappings ni*': K,,, - K, for i
=1,2,...Letp,,q,, be a vertex of the complex ", ; . Consider the member
U,,,.; of the cover %,,; which corresponds to p,,,,;. By virtue of (3)
the family

U, = {UeU;: Upyy,; = Ul
is non-empty. Since (%, ; # 3, the vertices of #"; which correspond
to the members of %,,; span a simplex S;,; X ';; we let

@ A (Dis1, ) = b(SL,)),
where b(S) denotes the barycentre of S.
We shall prove that

(5) for every simplex S €47;,,, the images of vertices of S under mitt
are contained in a simplex T €X47,.

Indeed, if S = piy1,,Pi41.4, - Pi+1.4,> then
B # Upyy,,0U1, 5,0 oo OUa g, < O %0, 50 (Y %y 5,0 - 0O N,

so that the vertices of #°;, which correspond to the members of the union
Uy, 10Uy, 5,0 ... VU, span a simplex T e, which contains the point
At (prya,y,) form=1,2,..., L

It follows from (5) that the mapping ni** defined on the set of all
vertices of 4", can be extended over each simplex S = p;;1,;,Pis1,4, -+
e Dis1,4, €A 141 by letting :

! {
i+1 — i+1 .
7 (Z )*j,,,pl+1.fm) = lemﬂz (Pi+1,1m)5
m=1 j=1

in this way a continuous mapping 7i**: K;,, — K, is defined fori = 1, 2, ...
One easily checks that by defining, for every pair i, j of natural numbers
satisfying j < i,

al=altat? Al if j<i and af=idg,
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one obtains continuous mappings z}: K; - K, linear on each simplex
in ;.
Thus the inverse sequence S = {K;, n}} is defined. It remains to show
that the space X is homeomorphic to the limit X of this inverse sequence.
By virtue of (3) and (5) we can apply Lemma 1.13.1 to restrictions
of 7i+! to simplexes in ;. (, so that

n

©  P)< 5

O(F) forevery FcSeX,,.

Let us observe that for every choice of a point y, in K, fori = 1,2, ...

Nif @#F,=F,c U {Sex,: y,eS} and #i*(F,,) cF, for
i=1,2,.., then the limit L of the inverse sequence {F;, n}|F;}
is a one-point set.

Indeed, the set L is non-empty as the limit of an inverse sequence of non-
ool

empty compact spaces; since for j = 1,2, ... n,(L) = () 7;(F;), where
i=j

n;: K — K, is the projection, and since—by virtue of (6) and the inequality

O0(FinS) < §(S) < 2—0(n}(F)) < 4(n/n+1)!~) whenever j < i, the sets

7t;(L) are all one-point sets, which implies that L is a one-point set.
Now, consider a point x € X; for every natural number i let

U(x)={UeU;: xeU}

and denote by K;(x) the simplex i...#"; spanned by the vertices of 2", which
correspond to the members of #,(x). Let us note that

®) (K1 (x)) € K(x) fori=1,2,..

Indeed, if U, ; €%, (x), then %, ; = %,(x), so that the images of
vertices of K, (x) under #i*! are contained in the simplex K;(x), and
this implies (8). It follows from (8) that K(x) = {K,(x), #}| Ki(x)} is an
inverse sequence. By virtue of (7) the limit of this inverse sequence contains
exactly one point; let it be denoted by f(x). Clearly, f(x) € K; a mapping f
of X to K is thus defined.

We shall prove that fis a continuous mapping. Obviously, it is enough
to show that for every natural number j the composition f; = n,f is con-
tinuous. Consider a point x, € X, a positive number ¢ and a natural number
i such that/ > jand (n/n+1)"~/ < g/2. The set U = () %.(x,) is a neigh-
bourhood of x, and for every x € U the inclusion %;(x,) = %(x) holds,
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so that K,(x,) < K;(x) and
Si(xo) € ) (Ki(xo)) = w(Ki(x)) for xe U,
Since by virtue of (6)
d(m(Ki(x)) < 2(/n+ D) < ¢
and since f;(x) € 7}(K,(x)),

O'(fj(XO),fj(x)) < é& for x € U,

i.e.,, the mapping f; is continuous.
As for each pair x, x’ of distinct points of X there exists —by virtue
of (2)—a natural number i such that #,(x)n%,(x") = @, ie., K,(x)n
NK,(x") = &, the mapping f: X — K is one-to-one. As X is a compact
space, to complete the proof it suffices to show that f(X) = K.
Consider a point y = {y,} €eK. Fori=1,2, ... let

Ai= U{SE%;: yieS}CKi and Bi=ﬁ—1(Ai)CX.

The sets B, are non-empty. Indeed, if S, = Pi,i,Pi.1, - Pi,j, 15 a maximal
simplex in &, which contains y,, and x; is a pointin U,, ; nU,, ;.0 ... NU, 4,
then K;(x,) = S, = A;, which implies that x, € B;.

Since the image of each simplex S e ,,, under ni*! is contained
in a simplex T €X";, and since #i*'(y,.,) = yi,

) (A )4, fori=1,2,..
The last inclusion implies that
B, =fi;i(At+1) Cft;i(“iﬁl)‘l(Ai)
= (@ 1)) = 71 (4) = B;
for i = 1,2, ..., so that, by the compactness of X, there exists a point
[
x€( ) B,. Let F;, = AinKy(x) for i = 1, 2, ...; as fi(x) € F,, the sets F,
i=1
are non-empty. By virtue of (9) and (8)
ﬂfiH(FHL) = nii+1(Ai+1nKi+1(x)) < nii+1(Ai+1)nns+1(Ki+ 1("))
(e A,('\K,(x) = Fi for i= 1, 2, cees

so that {F,, nj| F,} is an inverse sequence; by (7), the limit of it is a one-
point set {z} = K. From (9) and (7) it follows that {4,,n}|4,} is an
inverse sequence whose limit is the one-point set {y}. By the definition
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of f, the one-point set {f(x)} is the limit of the inverse sequence K(x).
Since {z} = {y}In{f(x)}, we have f(x) = y. O

Let us note that another proof of Theorem 1.13.2 (see the hint to Problem
1.13.G(a)) leads to an inverse sequence {K;, n}}, where, fori = 1, 2, ..., K|
is the underlying polyhedron of a nerve 2#°; of a finite open cover of the
space X, and for every j < i the bonding mapping =} is a quasi-simplicial
mapping of K; onto K, i.e., it is the linear extension of a simplicial mapping
of a barycentric subdivision of /", onto a barycentric subdivision of &";
(cf. Problem 1.13.C).

Let us also note that from Problem 1.10.K it follows that every compact
subspace X of Fuclidean m-space R™ such that dimX < #n > 0 can be
represented as the limit of an inverse sequence consisting of polyhedra
of dimension < »n which are all contained in R™ The converse does not
hold; simple examples show that the limit of an inverse sequence of poly-
hedra contained in R™ need not be embeddable in R™ (see Problem 1.13.B).

We now pass to the theotem on the dimension of the limit of an in-
verse sequence. In the proof we shall apply the following lemma, a slight
strengthening of the compactification theorem, which allows the reduction
of the problem to the special case where the inverse. sequence consists of
compact spaces.

1.13.3. Lemma. For every continuous mapping f: X - Z of a separable
metric Space X to a compact metric space Z there exists a compact metric
space X containing X as a dense subspace and such that dimX < dimX
and f is extendable to a continuous mapping f. X Z

Proof. Let g, be a totally bounded metric on the space X and ¢ an arbitrary
metric on the space Z. One easily checks that the formula

o(x,y) = Qo(X,y)'f‘O'(f(X),f(y)) for x,yeX

defines a metric equivalent to g, and such that the mapping f is uniformly
continuous with respect to ¢ and o. The metric g is totally bounded. Indeed,
for every positive number ¢ there exists a finite cover & of the space (X, o)
such that meshs/ < ¢/2 and a finite cover # of the space (Y, 6) such
that mesh# < &¢/2; one can readily check that the mesh of the cover
o Nf1(B) of the space (X, o) is less than &. It follows from the second
part of the compactification theorem that on X there exists a metric
equivalent to g such that ¢(x, y) < 8(x, y) for x, y € X, and that the comple-
tion X of the space X with respect to ¢ is a compact space such that dimX
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< dimX. Obviously, the mapping f is uniformly continuous with respect
to Q and o, which implies that f is extendable to a continuous mapping
fiX-2z0Q

1.13.4. Theorem on the dimension of the limit of an inverse sequence. If
the inverse sequence S = {X,,n}} consists of separable metric spaces X,
such that dimX,; < n for i = 1,2, ..., then the limit X = lim § satisfies the
inequality dimX < n. -

Proof. Let X, be a compact metric space which contains X; as a dense
subspace and such that dimX, < n. An inductive construction applying
Lemma 1.13.3 yields for i = 2,3, ... a compact metric space Xi which
contains X; as a dense subspace and such that dlle <n and #i_,: X,
- X , is extendable to a continuous mapping #_,: X; — X,_ .. Letting
A =atiait? LAl for j<i and @ =idy,,
one obtains an inverse sequence S = {i i» 7} consisting of compact
metric spaces X; such that dimX, <nfori=1,2,.. As limS < limS,
it suffices to prove the theorem under the additional assum}?tion that all
spaces X; are compact.
Let % be a finite open cover of the space X. Since the family of all sets
77 1(U,), where 7;: X — X, is the projection and U; is an open subset of
" X;, is a base for the space X, and since the space X is compact, as is the lim:t
of an inverse sequence of compact spaces, the cover % has a finite refine-
ment {n;,'(U,)}r-,, where i; < i, < ..<i, and U, is an open sub-
set of X; for k=1,2,...,m. The famxly {ni.}(V)}i=1, where Vi
= (#im~1(U,), is also a reﬁnement of %. Consider a finite open refinement

¥ of the cover {V,}j_, of the space M = | ) Vi < X, such that ord?”
k=1

< n; clearly, 77 '(¥7) is a finite open refinement of % and has order < n. [J

Theorems 1.13.2 and 1.13.4 .yield the characterization of dimension
which was announced at the beginning of the present section.

1.13.5. Theorem on inverse sequences. 4 compact metric space X satisfies
the inequality dimX < n if and only if X is homeomorphic to the limit
of an inverse sequence consisting of polyhedra of dimension < n. [

One readily sees that the theorem on e-mappings is an easy consequence
of the theorem on expansion in an inverse sequence (see Problem 1.13.A).
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The study of relations between these two theorems led -to the notion of a
II-like space. Let IT be a family of polyhedra; we say that a compact metric
space X is II-like if for every positive number & there exists an e-mapping
of X onto a polyhedron K € IT. The main theorem on II-like spaces states
that if either IT is a family of connected polyhedra (more generally, the
space X below is a continuum) or II is a hereditary family of polyhedra
(i.e., together with the underlying polyhedron of a simplicial complex ¢
contains the underlying polyhedra of all subcomplexes of "), then a compact
metric space X is II-like if and only if X is homeomorphic to the limit of
an inverse sequence {K;, n}}, where K; eIl for i = 1,2, ... and n} maps
X, onto X for every j < i. Obviously, this is a generalization of the theorem
on inverse sequences, because the family IT of all polyhedra of dimension
< n is a hereditary family of polyhedra and, for this family, the class
of II-like spaces coincides with the class of all compact metric spaces
whose covering dimension is not larger than n. Various families IT yield
interesting classes of compact metric spaces. Thus, for the family IT con-
sisting of the interval [ alone, one obtains the class of snake-like continua.
Clearly, each snake-like continuum is one-dimensional; one proves that
snake-like continua are embeddable in the plane (see the remark to Problem
1.13.B) and that there exists a universal space for the class of all snake-like
continua. In a more general setting, one can prove that if IT is a hereditary
family of polyhedra which, moreover, is additive (i.e., together with each
pair K, L of polyhedra contains the disjoint sum of K and L), then there
exists a universal space for the class of all II-like spaces. Obviously, this
implies the existence of a universal space for the class of all compact metric
spaces whose covering dimension is not larger than ». In a less direct way,
this also implies the existence of a universal snake-like continuum.

Historical and bibliographic notes

Theorem 1.13.2 was proved by Freudenthal in [1937]. Freudenthal’s
proof leads to an inverse sequence of polyhedra with quasi-simplicial
mappings onto which, moreover, are irreducible (see Problem 1.13.F);
the simpler proof given here was outlined by Isbell in [1959]. Theorem
1.13.4 was proved by Nagami in [1959]; for compact metric spaces it is
implicitly contained in Freudenthal’s paper [1937]. The notion of a II-like
space was introduced by MardeSi¢ and Segal in [1963]. In the same paper
Mardesi¢ and Segal proved that if IT is a family of connected polyhedra,
then a compact metric space is II-like if and only if it is homeomorphic
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to the limit of an inverse sequence of polyhedra in the family IT; Pasynkov
in [1966] showed that this is likewise true under the assumption that IT
is a hereditary family of polyhedra. It was also shown by Pasynkov in
[1966] that if IT is a hereditary and additive family of polyhedra, then
there exists a universal space for the family of all IT-like spaces; a somewhat
stronger result was obtained by McCord in {1966]. Snake-like continua
were introduced by Bing in [1951]; among other things, Bing proved
that each snake-like continuum is embeddable in the plane. The exist-
ence of a universal space for the class of all snake-like continua was es-
tablished by Shori in [1965].

Problems

1.13.A. Let X # @ be the limit of an inverse sequence {X;, i} of
compact metric spaces and let & = mesh({n*(x)}xex,), Where m;: X — X
is the projection. Show that the sequence ¢, &,, ... converges to zero.

1.13.B. Define an inverse sequence S = {X,, n}}, where X; =1 for
i=1,2,... and =} maps X; onto X; for every j < i, such that the limit
of § cannot be embedded in the real line.

Remark. As shown by Isbell in [1959], the limit of an inverse sequence
of compact subspaces of R™ is embeddable in R?™.

1.13.C (Isbell [1964]). Let S = {|#,|,n}} be apn inverse sequence
consisting of polyhedra of dimension > 1, where for j < i the bonding
mapping 7z} maps |#;| onto |#" ;| and is the linear extension of a simplicial
mapping of &', to & ;. Prove that if the limit of § contains more than
one point, then it contains a subspace homeomorphic to the interval 1.
Applying the fact that there exist one-dimensional continua with no sub-
space homeomorphic to the interval I (see, Kuratowski [1968], p. 206),
observe that there exist one-dimensional compact metric spaces which
are not homeomorphic to the limit of an inverse sequence {|¢;|, @} of
one-dimensional polyhedra, where for j < i the bonding mapping =} is
the linear extension of a simplicial mapping of #"; to X ;.

1.13.D. Define an inverse sequence S = {X;, #j} of one-dimensional
compact metric spaces, where for j < i the bonding mapping z} maps
X, onto X;, such that the limit of S is homeomorphic to the Cantor set.
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1.13.E (Mardesi¢ and Segal [1963]). Let II be the family consisting
of all polyhedra which are unions of a one-simplex and a finite number
of zero-simplexes. Observe that the Cantor set is a II-like space, and yet
is not homeomorphic to the limit of an inverse sequence {K, w}}, where
K, eIl fori=1,2,... and @} maps X, onto X; for every j < i.

1.13.F (Freudenthal [1937]). Let f: X — || be a continuous mapping
of a topological space X to the underlying polyhedron of a simplicial
complex . A continuous mapping g: X — || is a modification of f if,
for every S e, g(x) € S whenever f(x) € S; the mapping f is irreducible
if there is no modification g: X — [ of f such that f(X)\g(X) # @.

(a) Show that if F is a closed subset of X and g’: F — || is a modifica-
tion of the restriction f|F: F — || of a continuous mapping f: X — |4,
then there exists a modification g: X — |#7| of f such that g|F = g'.

(b) Check that if f/: X — 47| is an irreducible mapping, then for every
subcomplex ", of the complex % the restriction fix,: f~1(|H ol) = |l
also is irreducible.

(c) Let & be the simplicial complex consisting of all faces of a simplex
and Jet &, be the subcomplex of & consisting of all proper faces of the
simplex under consideration. Prove that if for a continuous mapping f:
X — || there exists a modification g’: X — || of f such that an interior
point p of |¥|, i.e., a point p € |¥|\ ||, does not belong to g'(X), then
there also exists a modification g: X — |&| of f such that g|f~1(|Zl)
=flf 7' (I1Zol) and p € [F\g(X).

Hint. There exists an open set U < X containing f ~*(|%,|) and such
that the segment with end-points f(x) and g(x) does not contain the point p
for any x e U.

(d) Show that a continuous mapping f: X — || is irreducible if and
only if, for every S € such that an interior point of S belongs to f(X),
the restriction f5: f ~'(S) — S is an essential mapping (see Problem 1.9.A).

(e) Prove that for every continuous mapping f: X — || there exist
an irreducible modification g: X — |#| of f and a subcomplex # ' of A
such that g(X) = [,].

Hint. To begin with, apply (c) to observe that if for a simplex S € the
restriction fs: f~1(S) — S is essential, then for every face T of S the re-
striction fr: f~'(T) — T also it essential; then modify the mfflppingf on
all simplexes for which the corresponding restriction is not essential,
beginning with the simplexes of the highest dimension.
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1.13.G. (a) (Pasynkov [1966]) Prove that if II is a hereditary family of
polyhedra, then a compact metric space X is II-like if and only if X is homeo-
morphic to the limit of an inverse sequence {K;,n}}, where K, € II for
i=1,2,... and a} is a quasi-simplicial mapping of X; onto K for every
J< i

Hint. Apply Problem 1.13.F(e) to define a simplicial complex ¢,
a barycentric subdivision 2, of &";, and an irreducible mapping f;: X
— |2,] of X onto [#,] in such a way that |[4";| € II and the inverse images
of stars of vertices of £, under f; all have diameters less than 1/2.

Assume that for each j < i a simplicial complex " ;, a barycentric
subdivision £2; of A" ; and an irreducible mapping f;: X — |2;| of X onto
|2,| are defined in such a way that [#",| eIl and the inverse images of
stars of vertices of 2, under f; all have diameters less than 1/2/; assume,
moreover, that for each pair k, j of integers satisfying k < j < i a quasi-
simplicial mapping #{ of |2, onto |#;| is defined in such a way that =}
= idi#y, fnl = nf whenever < k, and o(7f~Yf;-, (x), #lf;(x)) < 1/2
for xeX and k£ <j—1.

Let 2 be a barycentric subdivision of 2,_, such that mesh( {7} 1(S):
S e P}) < 1/2' for every k < i—1; consider the cover % of the space X
consisting of inverse images of stars of vertices of & under f;_, and let
8; = min(e;, 1/2%), where ¢; is a Lebesgue number for the cover %. Define
a simplicial complex J";, a barycentric subdivision #; of 2"; and an irre-
ducible mapping f;: X - [#;] of X onto [#;| in such a way that |4 ,| eI
and the inverse images of stars of vertices of &, all have diameters less
than J;. Observe that by assigning to each vertex p € #; a vertex g € &
such that fi!(Sts,(p)) = fizi(Sts(q)) one defines a simplicial mapping
mi_, of @, to @, and extend #!_, to a quasi-simplicial mapping 7} _,:
(2] = |2:_,]. Check that if f;_,(x) €S € 2, then ni_, fi(x) € S; deduce
that }_, (12:]) = |2;-,| and that o(mi Yf;_,(x), 7w fi(x)) < 1/2! for x €X
and k < i—1, where n} = ai-tal_,.

Note that for every natural number k the sequence of compositions
Y1, 7kt 2fis 2, ... uniformly converges to a continuous mapping gi:
X - |2, and that nf*lg,,, = g.. Check that X is homeomorphic to the
limit of the inverse sequence {4, =}}.

(b) (Freudenthal [1937]) Prove that a compact metric space X satisfies
the inequality dimX < n if and only if X is homeomorphic to the
limit of an inverse sequence {K;, 7} }, where X is a polyhedron of dimension
<nfori=1,2,.. and n} is a quasi-simplicial mapping of K; onto K;
for every j < i.
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1.14. Dimension and axioms

Since the origin of dimension theory attempts have been made to
characterize dimension functions by a few simple properties that could
serve as a basis for an axiomatization of the theory. However, no satisfactory
set of axioms has been proposed so far; the main drawbacks are that
the axioms include properties which are either somewhat artificial or
too close to the definition of dimension and that no part of dimension
theory, no matter how small, can be deduced from the axioms. As the
problem of axiomatization of dimension theory is of secondary importance,
we shall confine ourselves to a rather sketchy discussion of this topic.

We shall consider a class A of topological spaces, which together
with each space X contains all closed subspaces of X, and a function d
defined on ", having values which are integers larger than or equal to
—1 or the “infinite number” oo, and such that d(X) = d(Y) for each pair
of homeomorphic spaces X, Y €. By assuming that the function f satisfies
some simple conditions which are known to be satisfied by the function
dim we shall obtain three sets of axioms for dimension theory.

We bpegin with Alexandroff’s axioms; in this instance 2" is the class
of all compact subspaces of Euclidean spaces and the function d satisfies
the following conditions:

(AD) d(@) = —1,d{0}) =0and dI™ =n forn=1,2, ...

(A2) If a space X €A is represented as the union of two closed subspaces
X, and X,, then d(X) = max(d(Xy), d(X2)).

(A3) For every space X €A there exists a positive number ¢ such that
iff: X - Y is an e-mapping of X onto a space Y €4, then d(X) < d(Y).

(A4) For every space X €eX of cardinality larger than one there exists
a closed set L = X separating X and such that d(L) < d(X).

1.14.1. Theorem. The covering dimension dim is the only function d which

satisfies conditions (A1)-(A4) in the class A of all compact subspaces of
Euclidean spaces.

Proof. Clearly, the function d = dim satisfies conditions (A1)-(A4). Con-
sider now a function d which satisfies (A1)-(A4). It follows from (Al)
and (A2) that if K is a polyhedron, then d(K) = dimX, so that by virtue
of (A3) and the theorem on e-mappings, d(X) < dimX for every X €.

Assume that there exists a space X € such that d(X) < dimX. Let
d(X) = k and dimX = n; it follows from (A1) that n > 1. Without loss
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of generality one can suppose that each Y €4 such that d(Y) < k satisfies
the equality d(Y) = dim Y. By virtue of Theorems 1.9.8 and 1.7.7, the space
X contains an n-dimensional Cantor manifold M. From (A2) it follows
that d(M) < d(X) < n = dim M; since d(M) # dimY, we have d(M) = k.
Now apply (A4) to obtain a closed set L = M separating M and such
that d(L) < d(M). Thus we have dimL = d(L) < k < n, so that dimL
< n—2, which contradicts the definition of a Cantor manifold. Hence
d(X) = dimX for every X ex¢".

It turns out that by replacing condition (A2) with

(A2') If a space X € is represented as the union of a sequence X;,X,, ...
of closed subspaces, then d(X) = sup{d(X)): i=1,2, ...}

one obtains a set of conditions which characterizes the covering dimension
dim in the class & of all subspaces of Euclidean spaces (see Problem
1.14.C).

We now pass to Nishiura’s axioms; in this instance %" is the class of all
sepaiable metric spaces and the function d satisfies the following condi-
tions:

(N1) d({0}) = o.

(N2) If Y is a subspace of a space X €X', then d(¥) < d(X).

(N3) If a space X €A is represented as the union of a sequence X,,X,, ...
of closed subspaces, then d(X) = sup{d(X})): i=1,2,...}.

(N4) If a space X €A is represented as the union of two subspaces X, and
Xy, then d(X) < d(X,)+d(X,)+1.

(N5) For every space X €A there exists a compactification XeX such
that d(X) = d(X).

(N6) If a non-empty space X €A~ satisfies the inequality d(X) < o, then
Jor every point x € X and each neighbourhood V < X of the point x
there exists an open set U < X such that

xeUcV and dFrU)<dX)-1.

One can prove that the covering dimension dim is the only function d
which satisfies conditions (N1)-(N6) in the class ¥ of all separable metric
spaces (see Problem 1.14.B).

We conclude with Menger’s axioms, chronologically the earliest set
of axioms for dimension theory; in this instance " is the class of all sub-

spaces of Euclidean m-space R™ and the function d satisfies the following
conditions:



156 Dimension theory of separable metric spaces [Ch.1, § 14

MDD d@) = —1,d({0}) =0and dR") =n for n =1,2, ..., m.

(M2) If Y is a subspace of a space X €, then d(Y) < d(X).

(M3) If a space X e’ is represented as the union of a sequence X, X, ...
of closed subspaces, then d(X) < sup{d(X)):i=1,2,...}.

(M4) For every space X €X" there exists a compactification Xex such
that d(X) = d(X).

Menger put forward the hypothesis that for every natural number m
the covering dimension dim is the only function d which satisfies conditions
(M1)-(M4) in the class of all subspaces of Euclidean m-space R™ and
showed that the hypothesis is valid for m < 2 (see Problem 1.14.D). The
problem whether the hypothesis is valid for m > 2 is still open. Let us recall
(cf. the discussion in the final part of Section 1.11) that for m > 3 it is
not even known whether the function d = dim satisfies condition (M4).
Clearly, the covering dimension dim satisfies conditions (M1)-(M4) in
the class # of all subspaces of Euclidean spaces. We find, however, that
dim is not the only function with this property; each cohomological di-
mension dimg with respect to a finitely generated abelian group G also
satisfies conditions (M1)-(M4) in the class %" of all subspaces of Euclidean
spaces.

Historical and bibliographic notes

Theorem 1.14.1 was proved by Alexandroff in [1932]. S€epin announced
in {1972] that by replacing condition (A2) by the stronger condition (A2’)
one obtains a set of axioms that characterizes the covering dimension
dim in the class of all subspaces of Euclidean spaces; the proof was published
in Alexandroff and Pasynkov’s book [1973], where a stronger result,
also due to S¢epin, is announced, viz., that the same set of axioms charac-
terizes dim in the class of all metric spaces whose covering dimension is
finite. Nishiura proved in [1966] that the axioms (N1)-(N6) characterize
the covering dimension dim in the class of all separable metric spaces.
Sakai in [1968] and Aarts in [1971] modified Nishiura’s axioms to obtain
a set of axioms that characterizes dim in the class of all metric spaces.
The fact that conditions (M1)-(M4) characterize the covering dimension
dim in the class of all subspaces of the plane, and also in the class of all
subspaces of the real line, was established by Menger in [1929]. The theorem
that each cohomological dimension with respect to a finitely generated
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abelian group satisfies conditions (M1)-(M4) in the class of all subspaces
of Euclidean spaces was proved by I. Svedov; the proof was first published
in Kuz’minov’s paper [1968]. A set of axioms characterizing the covering
dimension dim in the class of all (not necessarily metric) compact spaces
whose dimension dim is finite was given by Lokucievskil in [1973].

Problems

1.14.A (Scepin, cited in Alexandroff and Pasynkov [1973]; announce-
ment S¢epin [1972]). Verify that the axioms (A1)-(A4) are independent.

1.14.B (Nishiura [1966]). (a) Prove that the covering dimension dim
is the only function & which satisfies conditions (N1)-(N6) in the class
A" of all separable metric spaces.

(b) Verify that the axioms (N1)-(N6) are independent.

Hint. To verify that (N2) is independent of the remaining axioms,
observe that every separable métric space which is not compact has an
infinite-dimensional compactification.

1.14.C (S&epin, cited in Alexandroff and Pasynkov [1973]; announce-
ment Séepin [1972]). (a) Show that for every separable metric space X
such that dimX = n > 0 there exists a separable metric space X,

= {x,y}u U X, where for i =1,2,... X; is a closed subspace of X,
i=1

homeomorphic to X, with the property that no closed set L <= X, satisfy-
ing the inequality dimL < n—2 separates the space X, between x and y.
(b) Show that for every separable metric space X such that

dim X = n > 0 there exists a separable metric space X* = Ux Xy,
where, for i = 1,2,..., X; is a closed subspace of X* homeomorphic
to X, with the property that no closed set L = X* satisfying the inequality
dimL < n—2 separates the space X*.

(c) Prove that the covering dimension dim is the only function d
which satisfies conditions (A1), (A2), (A3) and (A4) in the class A~ of
all subspaces of Euclidean spaces.

(d) Verify that (A2’) is independent of the axioms (Al)-(A4).
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1.14.D. (a) (Menger [1929]) Check that the covering -dimension dim
is the only function 4 which satisfies conditions (M1)~(M4) in the class. %
of all subspaces of the real line.

(b) (Kuratowski and Menger [1930]) Applying the Denjoy—Riesz
theorem, i.e., the fact that every zero-dimensional compact subspace
of the plane is contained in an arc L = R? (see Kuratowski [1968],
p- 539), and the Moore theorem, i.e., the fact that if there exists a con-
tinuous mapping f: §? — X of the two-sphere onto a space X such that
the fibres of f are connected and do not separate $2, then the spaceX
is homeomorphic to S? (see Kuratowski [1968], p. 533), prove that every
zero-dimensional F,-setin the plane is contained in the union of a sequence
of arcs which are pairwise disjoint and have diameters converging to
Zero.

Hint. Show that if a zero-dimensional compact set A is contained
in an open set U = S?, then for every ¢ > 0O there exists a sequence
Ly,L,, ... of arcs such that L,nL; = & whenever i # j, limdé(L;) = 0,

co oo
0L)<efori=1,2,...,and 4 = JL; =|JL;, = U. Consider first
i=1 i=1

the case where the set U is connected, observe that no component of $2\U
separates S? and apply the Moore theorem.

(c) (Menger [1929], Kuratowski and Menger [1930]) Applying (b)
and the Moore theorem, prove that the covering dimension dim is the
only function d which satisfies conditions (M1)-(M4) in the class %~
of all subspaces of the plane.

Hint. Let @, = {X =« R?: d(X) < k} for k = —1,0,1,2; it suffices
to show that if the family 9, contains an n-dimensional space, then
2, contains all n-dimensional subspaces of the plane. Only the case of
n=1 and k = 0,1 is non-trivial. Let X € Z; be a one-dimensional
space; by virtue of Corollary 1.9.9 and condition (M4) one can assume
that X is a continuum. Place a copy of the continuum X in a square K
in such a way that the four corners of K are the only points of the boundary
of K which belong to X. Then divide K into 9 congruent squares and
place in the same way a copy of X in each of these smaller squares. Con-
tinue the procedure, dividing K consecutively into smaller and smaller
squares, and consider the union X* of countably many smaller and smaller
copies of X placed in these squares. Prove that d(X*) = k and ind (K \X*)
= 0. Apply the Lavrentieff theorem (see [GT], Theorem 4.3.21) and
condition (M4) to obtain a Gs-set Y such that X* <« ¥ < Kand d(Y) = k.
Then apply (b) to the zero-dimensional F,-set IntK\Y and denote by
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L,,L,,... the arcs in (b). Deduce from the Moore theorem that the
space obtained from R? by identifying to points the set R*\IntK and
each of the arcs L; is homeomorphic to §2. Show that the space Y contains
a subspace homeomorphic to the complement of a countable dense subset
of R? and deduce from Problem 1.8.D that Y is a universal space for
the class of all one-dimensional subspaces of the plane.

(d) (Menger [1929]) Verify that the axioms (M1)-(M4) are independent
in the class " of all subspaces of the plane.



CHAPTER 2

THE LARGE INDUCTIVE DIMENSION

Outside the class of separable metric spaces the dimensions ind, Ind
and dim generally do not coincide. Nevertheless, a number of theorems
established in Chapter 1 extend beyond this class of spaces. In larger
classes they hold either for the dimension Ind, or for the dimension dim,
or else for both Ind and dim. The dimension ind is practically of no impor-
tance outside the class of separable metric spaces and from now on will
reappear here only occasionally. Slightly exaggerating, one could say
that ind is a satisfactory dimension function only when it is equal to Ind.
Thus, for general spaces we have two separate dimension theories: the
theory of the large inductive dimension Ind and the theory of the covering
dimension dim. They are both poorer and less harmonius than the di-
mension theory of separable metric spaces, yet they contain many interest-
ing theorems and shed light on classical dimension theory. It should be
noted that, while the dimension dim behaves properly in the class of all
normal spaces, the dimension Ind does so only in the more restricted
class of strongly hereditarily normal spaces. The present chapter and the
next are devoted to a closer study of Ind and of dim, respectively, In the
final chapter it will be proved that the dimensions Ind and dim coincide
in the class of all metrizable spaces and that a dimension theory can be
developed in that class which is by no means inferior to the dimension
theory of separable metric spaces.

Section 2.1 contains supplementary information about hereditarily
normal spaces and an investigation of the class of strongly hereditarily
normal spaces.

In Section 2.2 those rare theorems on the dimension Ind are proved
which hold either in all normal spaces or in all hereditarily normal spaces.
In the final part of the section two important examples are described,
showing that neither the subspace theorem nor the sum theorem holds
for the dimension Ind in the class of all normal spaces.
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Section 2.3 is crucial for the present chapter; we develop in it a di-
mensjon theory for Ind in the class of strongly hereditarily normal spaces.
The main results of this theory are the subspace theorem and a group
of sum theorems.

The Jast section is devoted to a study of the relations between ind
and Ind and to the Cartesian product theorems for the dimension Ind.

2.1. Hereditarily normal and strongly hereditarily normal spaces

The large inductive dimension Ind is defined for all normal spaces
(see Definition 1.6.1). It turns out however, that in such an extensive class
of spaces the dimension Ind develops some pathological properties. As
the reader will see in Section 2.2, there exist a compact space Z and
a normal subspace X of Z such that IndX > IndZ. There also exists
a compact space X with IndX = 2 which can be represented as the union
of two closed subspaces F; and F, such that IndF, = IndF, = 1. Finally,
there exist compact spaces X and Y such that Ind(X'xY) > IndX+IndY.
Besides, since a subspace of a normal space is not necessarily normal
(see [GT], Example 2.3.36 or 3.2.7), it may happen that the dimension
Ind is defined for a space X, and yet is not defined for a subspace M of X.
From all the adduced phenomena one gathers that to develop a satisfac-
tory theory of the large inductive dimension Ind one has to restrict the
class of spaces under conrideration. As the spaces in all the examples
cited above are not hereditarily normal, we might expect that no such
pathological phenomena can occur in the class of hereditarily normal
spaces. Still, as has recently been shown, the dimension Ind is not mono-
tonic in the latter class, so that a fuither restriction of the class of spaces
is necessary.

A natural class of spaces where a satisfactory theory of the large in-
ductive dimension can be developed is the class of strongly hereditarily
normal spaces; it is contained in the class of all hereditarily normal spaces
and constitutes a common extension of the class of perfectly normal spaces
and the class of hereditarily paracompact spaces. The present section
is devoted to a study of the topological properties of hereditarily normal
spaces and strongly hereditarily normal spaces.

Let us recall that a space X is hereditarily normal if every subspace
of X is normal. We begin with two simple characterizations of hereditarily
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normal spaces; in the second one appears the notion of separated subsets
of a topological space introduced in Section 1.2.

2.1.1. Theorem. For every T,-space X the following conditions are equiva-

lent:

(@) The space X is hereditarily normal.

(b) Every open subspace of X is normal.

(c) For every pair A, B of separated sets in X there exist open sets U,V < X
stuch that Ac U, BV and UnV = .

Proof. The implication (a) = (b) is obvious. We shall show that (b) = (¢).
Consider a pair 4, B of separated sets in a space X which satisfies (b)
and let M = X \(Znﬁ). Obviously, M is an open subspace of the space X
and 4, B €« M. The closures of 4 and B in M are disjoint, so that by the
normality of M there exist sets U, ¥ = M open in M and such that 4 = U,
B < V and UnV = @. The subspace M being open in X, the sets U, V
are open in X, so that the space X satisfies (c).

To complete the proof it remains to show that (c) = (a). Consider
an arbitrary subspace M of a space X which satisfies (¢) and a pair 4, B
of disjoint closed subsets of M. .Clearly A and B are separated in X, so
that there exist open sets U, V < X such that A <« U, B < V and UnV
= . The intersections MNU and MnV are open in M and disjoint,
and contain 4 and B, respectively, which means that the space X satis-

fies (a). O

Let us recall that a family {4;}.s of subsets of a topological space X
is point-finite (point-countable) if for every point x € X the set {s €S:
x € A} is finite (countable).

2.1.2. Definition. A topological space X is called strongly hereditarily normal
if X is a T,-space and for every pair 4, B of separated sets in X there exist
open sets U,V <« X such that A cU,B<c V,UnV =@ and U and V
can be represented as the union of a point-finite family of open F,-sets
in X,

Obviously, every strongly hereditarily normal space is hereditarily
normal; moreover, every subspace M of a strongly hereditarily normal
space is strongly hereditarily normal, because any sets A, B separated
in M are also separated in X.

Besides hereditary normality one considers another strengthening
of normality, namely perfect normality. Let us recall that a space X is
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perfectly normal if X is a normal space and every open subset of X is an
F,-set in X. Perfect normality is a hereditary property; in particular, every
perfectly normal space is hereditarily normal (cf. Lemma 3.1.22 below).
The latter fact and definition 2.1.2 imply

2.1.3. Theorem. Every perfectly normal space is strongly hereditarily normal.[]

2.1.4. Theorem. Every hereditarily paracompact space is strongly heredi-
tarily normal.

Proof. Since every paracompact space is normal (see [GT], Theorem
5.1.5), every hereditarily paracompact space is hereditarily normal. Thus
to complete the proof it suffices to show that every open subset U of a he-
reditarily paracompact space X can be represented as the union of a point-
finite family of open F,-sets in X.

For every x € U consider a neighbourhood U, of the point x such that
U, < U. The family # = {U,}sv is an open cover of the subspace U
of X. Since the space U is paracompact, there exists a locally finite partition
of unity {f;}ses on U subordinated to % (see [GT], Theorem 5.1.9). For every
se S the set U; = f71((0, 1]) is an open F,-set in U. As U is an open sub-
space of X, the set U, is also open in X. Furthermore, U, c U, c U, c U
for a certain x € U, so that U, is an F,-set in the closed subspace U, of X
which implies that U, is an F,-set in X. Finally, the family {U}s is

point-finite and U = | U,. O
seS

We shall now slightly generalize the last theorem. Let us recall that
a topological space X is weakly paracompact® if X is a Hausdorff space
and every open cover of the space X has a point-finite open refinement.
Weakly paracompact spaces are not necessarily normal (see [GT], Example
5.3.4 or Exercise 5.§.B(b)).

2.1.5. Theorem. Every hereditarily weakly paracompact hereditarily normal
space is strongly hereditarily normal.

Proof. ]t suffices to show that every open subset U of a hereditarily weakly
paracompact hereditarily normal space X can be represented as the union

of a point-finite family of open F,-sets in X.

O The terms metacompact and point-paracompact are also used.
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For every x € U consider a neighbourhood U, of the point x such that
U, c U. The family # = {U,}xv is an open cover of the subspace U
of X. Since the space U is weakly paracompact, the cover % has a point-
finite open refinement ¥~ = {V;}.s. The cover ¥, as any point-finite
open cover of a normal space (see [GT], Theorem 1.5.18), has a closed
shrinking {F;}ses- By virtue of Urysohn’s lemma for every s € S there
exists a continuous function f;: U — I such that f(U\V,) < {0} and
fi(F) = {1}. For every s e S the set U, = f5*((0, 1]) is an open F,-set
in U. Obviously, the set U, is open in X. Furthermore, U; c ¥V, = U,
c U, = U for a certain x € U, so that U, is an F-set in X. Finally, the
family {U,}sws is point-fimte and U = {J U,. O

seS
We conclude this section with two examples: an example of a compact
strongly hereditarily normal space which is neither perfectly normal nor
hereditarily weakly paracompact and an example of a compact heredita-
rily normal space which is not strongly hereditarily normal.

2.1.6. Example. Let W be the set of all ordinal numbers less than or equal
to the first uncountable ordinal number w,. The set W is well-ordered
by the natural order <. Consider on W the topology obtained by taking
as a base all sets of the form

1)) (e, 0] = {x: a <x}, [0,0) = {x:x<p}
and (o, f) = {x: a < x < B},

where o < f# < w;. One easily sees that W is a Hausdorff space. We shall
show that W is compact.

Let {U,},s be an open cover of the space W and let A consist of all
o € W such that the set [0, ] = {x: x < «} is contained in the union
of finitely many members of the cover under consideration. It suffices
to show that W\A4 = @.

Assume that W\ A4 # & and denote by x, the smallest element of
this set. Choose an s, € S such that x, € U, ; since xo > 0, there exists
an x < xo such that (x, xo] = U; . By the definition of x,, the point x

k K
belongs to 4, so that [0, x] = {J U,,. It follows that [0, xo] = |_) U,
i=1 i=0

and we have a contradiction.

We shall now prove that every open subspace U of W is normal, i.e.,
that the space W 'is hereditarily normal. We shall say that a set C = W
is convex if (¢, f) = C whenever «, 8 € C. One readily sees that the union
of a family of convex sets ic convex provided that the intersection of the



166 The large inductive dimension i [Ch.2, §1

family is non-empty. Hence, considering for each point x € U the union
of all convex subsets of U which contain that point, we obtain a decomposi-
tion of the set U into pairwise disjoint convex sets {Us}ses, which will
be called the convex components of the set U. The set U being open, all
Uys are open subsets of W, so that U= @ U,, where the symbol &

seS
denotes the sum of topological spaces (see [GT], Section 2.2). Since the

set W is well-ordered by <, every open and convex proper subset of W
is of form (1). Thus, to prove that U is normal it suffices to show that all
subspaces of form (1) are normal. The subspaces of the form («, w,]
= [a¢+1, w;], where & < w,, are normal as closed subspaces of the normal
space W. The subspaces of the form [0, f) and («, f), where § < o,
are regular second-countable spaces and thus are metrizable (see [GT],
Theorem 4.2.9) and, a fortiori, normal. It remains to prove that the subspace
Wo = W\ {w,} of the space W is normal.

We shall show more, viz., that for every pair 4, B of disjoint closed
subsets of W, the closures 4 and B of 4 and B in the space W are dis-
joint. This follows from the fact that w, belongs to at most one of the sets
A4 and B. Indeed, if we had w, € AnB, we could define inductively two
sequences, o, o3, ... and By, f,, ..., of countable ordinal numbers satis-
fying )

o <P <y, o;€A4, BieB fori=1,2,..;
then the smallest ordinal number ¥ larger than all «’s and £,’s would
belong to ANB, which is impossible, because ¥ < w,; since the set W,
contains no countable cofinal subset. Let us recall that a subset K of an
ordered set X is cofinal in X if for every o € X there exists a § € K such that
o < B; aset K« X is bounded in X, if it is not cofinal in X.

Since the space W is hereditarily normal, in proving that W is a strongly
hereditarily normal space it suffices to consider a pair of open separated
sets, i.e., disjoint open sets U,V c X. Let U= @ U, and V= P V;

seS teT’

be the decompositions of U and ¥ into convex components. If all the convex
components U, and ¥V, are bounded in W, they are countable and, a fortiori,
they are F,-sets in W. So, in this case U and ¥ can themselves be represented
as the union of a point-finite family of open F,-sets in W. On the other
hand, if one of the convex components, say the convex component Uy ,
of the set U is cofinal in W, then the set V is bounded in W. In this case
the sets U and ¥ are contained, respectively, in disjoint open sets Uu {w, }
and ¥V which can be represented as the union of a point-finite family of
open F,-sets in W.



Ch. 2. § 1] Hereditarily normal and strongly hereditarily normal spbaces 167

Every closed subset of W which is contained in W, is bounded in W.
so that every F,-set in W which is contained in W, also is bounded in W.
It follows that the open subset W, of the space W is not an F,-set in W.
Thus the space W is not perfectly normal.

To prove that the space W is not hereditarily weakly paracompact
it is enough to show that if % = {U,}ss is an open cover of the subspace
W, of W and all U/’s are bounded in Wy, then % is not point-finite. Sup-
pose that % is point-finite. Hence for every x € W, the set St(x, %)
= U {U;: x € Uy}, i.e., the star of the point x with respect to the cover U,
is bounded; thus one can define inductively an increasing sequence o,
< 0, < ... of countable ordinal numbers satisfying
2 tyyr ESt(o,, %) fori=1,2,..

The smallest ordinal number ¢ Jarger than all «,’s belongs to a member
U,, of the cover %. The set U, is open and thus contains almost all a;’s.
This contradiction of (2) shows that the cover # is not point-finite. []

We now turn to the example of a compact hereditarily normal space
which is not strongly hereditarily normal.

2.1.7. Example. Let W' be a topofogical space homeomorphic to the space
W described in Example 2.1.6 and such that W'nW = @, and let W5
and o} denote the counterparts of W, and w, in W'. The sum W@ W' is
hereditarily normal and so is the space X obtained from W@® W' by identify-
ing the points w, and o}, i.e., the quotient space determined by the de-
composition of W@®W' into the set {w,, )} and all one-point sets {x}
with x € Wyu Wg. However, the space X is not strongly hereditarily normal,
because for its separated subsets g(W,) and q(W;), where g: WOW' — X
is the natural quotient mapping, there exist no disjoint open sets U, V,
which can be represented as the union of a point-finite family of open F,-sets
in X, such that g(W,) = U and g(W,) = V. Indeed, the only disjoint
open sets U,V = X that contain g(W,) and q(Wj), respectively, are
U= q(W,) and V = q(W;). Now, if g(W,) could be represented as the
union of a point-finite family of open F,-sets in X, the subspace W, of W
would have a point-finite open cover by sets bounded in W,, whereas,
by the last part of Example 2.1.6, no such cover exists. []

Historical and bibliographic notes

Various restrictions of the class of normal spaces to a class where
a satisfactory theory of the large inductive dimension Ind can be developed
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have been proposed more than once. The first step was made by Cech
in [1932], who developed the theory of the large inductive dimension
in the class of perfectly normal spaces. Then, Dowker in [1953] introduced
the class of totally normal spaces and extended the theory to that class.
Let us recall here that a topological space X is totally normal, if X is a normal
space and every open subset U of X can be represented as the union of
a locally finite in U family of open F,-sets in X. Clearly, every perfectly
normal space js totally normal and so is every hereditarily paracompact
space; the fact that every totally normal space is hereditarily normal is
by no means obvious (see Problem 2.1.C). Subsequently, Pasynkov in
[1967] defined Dowker spaces as hereditarily normal spaces in which every
open set can be represented as the union of a point-finite family of open
F,-sets, and announced extensions of some theotems on Ind to this class
of spaces. Proofs of the announced theorems, together with further results,
were published by Lifanov and Pasynkov in {[1970]. Finally, Nishiura
in [1977] introduced the class of super normal spaces and correspondingly
extended the theory of the large inductive dimension; according to Nishiura,
a topological space X is called super normal if X is a T,-space and for
every pair A, B of separated sets in X there exist open sets U, V' < X such
that A c U, BV, UnV = & and U and V can be represented as the
union of a locally finite, in U and V respectively, family of open F,-sets
in X. Our class of strongly hereditarily normal spaces is obtained by
amalgamating the ideas of Pasynkov and Nishiura. Let us add that in the
process of extending the theory of the large inductive dimension from the
class of totally normal spaces to the larger classes mentioned above, only
slight modifications in Dowker’s original arguments were necessary.

Problems

2.1.A. Deduce from Urysohn’s lemma that a subset 4 of a normal
space X is an open F,-set (a closed Gs-set) if and only if there exists a con-
tinuous function f: X — Isuch that 4 = 7 ~1((0, 1]) (such that 4 = 1 ~*(0)).

2.1.B. (a) Show that a topological space X is strongly hereditarily
normal if and only if X jis hereditarily normal and every open domain
in X can be represented as the union of a point-finite family of open F,-sets
.in X. Let us recall that a subset U of a topological space X is an open domain
in X if U=IntU.

(b) Applying the fact that for every pair U, V of disjoint open sets
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in the Cantor cube D¢ = [[ D, where D, = D for tel, there exists

tel

a countable set 7, = I such that the projections of U and ¥ onto 11 b,

tely
are disjoint (see [GT], Problem 2.7.12 (b)), show that every open domain
in D¢ is an F,-set. Observe, using Remark 1.3.18, that the Cantor cube
D¢ is not hereditarily normal.

2.1.C (Dowker [1953]). (a) Show that if a space X can be represented
as the union of a locally finite family {F;}.s of closed subspaces each
of which is normal, then X is a normal space.

Hint. Map the sum P F; onto X and apply the fact that normality

seS
is an invariant of closed mappings.

(b) Show that if a space X can be represented as the unjon of a sequence
F,,F,,... of closed normal subspaces such that F; < IntF,,, for
i=1,2,..., then X is a normal space.

Hint. Note that the family {4,}2,, where 4, = F, and 4,
= F\IntF,_, for i > 1, is locally finite. :

(c) Show that every totally normal space is hereditarily normal and
deduce that every subspace of a totally normal space is totally normal.

Hint. Apply (a), (b) and Problem 2.1.A.

2.1.D. (a) Prove that every paracompact totally normal space is he-
reditarily paracompact.

(b) Prove that every weakly paracompact DowKker space is hereditarily
weakly paracompact.

2.1.E. (a) Prove that a T,-space X is normal if and only if for every
closed set F < X and each open set W < X that contains F there exists

a sequence W,, W,, ... of open subsets of X such that F < | J W; and

i=1

WiceWfori=1,2, ..

Hint. Let A and B be disjoint closed subsets of a T;-space X which
has the property under consideration. Define sequences W,, W,, ... and
V,,V,, ... of open subsets of X such that

oo} — —
A< JW,, BC_UIVi and BnW; =@ = AnV, fori=1,2,. .
1=

i=1

«© 0 _
Verify that the sets U= | _J G, and V = () H;, where G; = W\ V;
i=1 Coi=1

j<i
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and H, =V \UJ W,, satisfy the conditions 4 <« U, B < V and UnV
J<i
= .

(b) Prove that a T;-space X is perfectly normal if and only if for every
open set W < X there exists a sequence W,, W,, ... of open subsets of X

such that W= | J W, and W, = Wiori=1,2, ...
i=1

2.2. Basic properties of the dimension Ind in normal and hereditarily normal
spaces

Among the theorems of dimension theory established in Chapter 1
only a few are valid for the dimension Ind in normal or hereditarily normal
spaces. As noted above, the dimension Ind is not monotonic in hereditarily
normal spaces and the sum theorem for the dimension Ind does not hold
in normal spaces, so that one cannot think of developing a dimension
theory for Ind in those classes of spaces. In the following section such
a theory will be developed in the more restricted class of strongly heredi-
tarily normal spaces. In the present section we merely clear the ground
for the considerations of the next one.

The definition of the large inductive dimension Ind was stated in
Section 1.6; let us recall that IndX = —1 if and only if X = &, and that
a normal space X .satisfies the inequality IndX < »n > 0 if and only if
for every closed set 4 = X and each open set ¥ = X which contains
the set A there exists an open set U = X such that 4 « U< V and
IndFr U < n—1. In other words, IndX < n > O if and only if for every
pair A, B of disjoint closed subsets of X there exists a partition L between
A and B such that IndL < n—1.

Since normality is not a hereditary property, it may happen that the
dimension Ind is defined for a space X and yet is not defined for a sub-
space M < X. Still, normality being hereditary with respect to closed
subsets, Ind M is defined for every closed subspace M < X. Moreover
in much the same way as Theorem 1.1.2 one obtains

2.2.1. Theorem. For every closed subspace M of a normal space X we have
IndM < IndX. O

The counterpart of Theorem 1.5.1 reads as follows
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2.2.2. Theorem. If X is a normal space andIndX =n>= 1, then for k=0, 1, ...
...,n—1 the space X contains a closed subspace M such that Ind M = k.[]

In Example 2.2.11 we shall define a compact space Z which contains
a normal subspace X such that IndX > IndZ. Hence, in Theorem 2.2.1
the assumption that M is a closed subspace of X cannot be replaced by
the weaker assumption that Ind M is defined. Recently, a much stronger
result was obtained: one defined a hereditarily normal space X such that
IndX = dimX = 0, and yet X contains, for every natural number n, a sub-
space A, with Ind4, = dim4, = n. The latter example, however, is too
difficult to be described in this book.

We shall now show that for subspaces of a fixed hereditarily normal
space X monotonicity of the dimension Ind is equivalent to its being mono-
tonic with respect to open subspaces.

2.2.3. Proposition. For every hereditarily normal space X the following con-

ditions are equivalent:

(a) For each subspace Y = X and every subspace M of Y we have Ind M
< Ind?. :

(b) For each subspace Y < X and every open subspace U of Y we have
IndU < IndY.

Proof. The implication (a) = (b) is obvious. Suppose that X satisfies (b).
Condition (a) is satisfied if IndY = o, so that it suffices to consider
subspaces ¥ < X with IndY < co. We shall apply induction with respect
to IndY to show that Ind M < IndY whenever M < Y. Clearly, the in-
equality holds if Ind ¥ == — 1. Assume that the inequality is proved for all
subspaces of X the large inductive dimension of which does not exceed
n—1 > —1 and consider a subspace ¥ < X with IndY = » and an arbitrary
subspace M of Y. Let 4 and B be disjoint closed subsets of M. As
U = Y\(4nB) is an open subspace of ¥, we have IndU < IndY = n
by virtue of (b). The intersections UnA and UnB are disjoint closed
subsets of U; therefore there exists a partition L in U between UnA and
UnB such that IndL < n—1. Since M < U, UnAnM = 4, and UnBn
NM = B, the set LnM is a partition in M between 4 and B. By the in-
ductive assumption Ind(LNnM) < IndL € n—1,sothatInd M < n = IndY.
Thus X satisfies condition (a). []

The separation and addition theorems for the dimension Ind hold
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in hereditarily normal spaces. From Lemma 1.2.9, Remark 1.2.10 and
Theorem 2.2.1 one easily obtains the following theorem (cf. the proof
of Theorem 1.2.11):

2.2.4. The separation theorem for Ind. If X is a hereditarily normal space
and M is a subspace of X such that IndM < n = 0, then for every pair
A, B of disjoint closed subsets of X there exists a partition L between A and
B such that nd(LnM) < n—1.

2.2.5. The addition theorem for Ind. For every pair X, Y of subspaces of
a hereditarily normal space we have
Ind(XUY) € IndX+IndY+1.

Proof. The theorem is obvious if one of the subspaces has dimension oo,
so that we can suppose that m(X,Y) = IndX+IndY is finite. We shall
apply induction with respect to that number. If m(X,Y) = —2, then
X = @ = Y and our inequality holds. Assume that the inequality is proved
for every pair of subspaces the sum of the large inductive dimensions
of which is less than » = —1 and consider subspaces X and Y such that
m(X, Y) = n; clearly, we can suppose that IndX = 0. Let 4 and B be dis-
joint closed subsets of XUY. By virtue of the separation theorem there
exists a partition L in XUY between A and B such that Ind(LnX) < IndX—
—1. Since m(LnX, LNY) < IndX+IndY—1 = p—1, we have IndL < n
by the inductive assumption. This implies that Ind(XUY) € n+1 = IndX+
+IndY+1.0 '

The addition theorem yields.

2.2.6. Corollary. If a hereditarily normal space X can be represented as
the union of n+1 subspaces Z,,Z,, ..., Z,,., such that IndZ; < 0 for
i=1,2,...,n+1, then IndX < n. [J

Let us note that it is an open problem whether every normal (or even
hereditarily normal) space X with IndX < n can be represented as the
union of n+1 subspaces the large inductive dimension of which does not
exceed zero.

Remark 1.3.2 implies that Theorem 1.3.1 can be restated as follows:

2.2.7. Theorem. If a normal space X can be represented as the union of a se-
quence Fy, F,, ... of closed subspaces such that IndF, < Ofori=1,2, ...,
then IndX < 0. [J



Ch. 2, § 2] Dimension Ind in normal and hereditarily normal spaces 173

Example 2.2.13 below shows that in normal spaces the dimension
Ind satisfies only the sum theorem for dimension O, i.e., Theorem 2.2.7.
It is an open problem whether the situation improves in hereditarily normal
spaces. v

A very weak version of the sum theorem for the dimension Ind in
normal spaces reads as follows:

2.2.8. Proposition. Let {X;}ses be afamily of normal spaces and let X = @ Xj.

REAY

The inequality IndX < n holds if and only if IndX, < n for every s€ S. [

Let us note that a few, rather specialized, results related to Theorems
2.2.5 and 2.2.7 are stated in Problem 2.2.C.

The status of the Cartesian product theorem for Ind in normal spaces
is similar to that of the sum theorem. There exist compact spaces X and Y
such that indX =IndX =1, indY =IndY =2, and yet Ind(XxY)
= ind(XxY) > 4 as well as a normal space Z, whose square Zx Z is also
normal, such that IndZ = 0 and yet Ind(ZxZ) > 0. The descriptions
of these examples are very difficult and cannot be reproduced in this book.

We now turn to a discussion of dimension preserving compactifica-
tions. As the reader certainly knows, among the compactifications of a com-
pletely regular space X a particular role is played by the Cech-Stone com-
pactification BX (see [GT], Section 3.6), which can be characterized by
the property that every continuous function f: X — I is continuously
extendable over X (we assume here that X is actually a subspace of fX).
In the realm of normal spaces the Cech-Stone compactification can also be
characterized by the property that every pair of disjoint closed subsets
of X has disjoint closures in SX. Hence, for every closed subspace M of
a normal space X the closure M of M in BX is the Cech-Stone compacti-
fication of the space M. We shall show that the Cech-Stone compactifi-
cation preserves the dimension Ind.

2.2.9. Theorem. For every normal space X we have Ind X = IndX.

Proof. To begin with, we shall prove that IndX < IndBX. The inequality
is obvious if IndBX = oo, so that we can suppose that Ind X < co. We
shall apply induction with respect to IndAX. If IndfX = —1, then X
= @ = X and our inequality holds. Assume that the inequality holds
for all normal spaces the dimension Ind of the Cech-Stone compactifi-
cation of which is less than »n > 0 and consider a normal space X such
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that Ind X = n. Let 4 and B be disjoint closed subsets of X. The sets 4
and B, where the bar denotes the closure operator in BX, are disjoint,
so that there exists a partition L in 8X between 4 and B such that IndL
g n-1. Clearly, L, = LnX is a partition in X between 4 and B. Since
BL, = L, = L, it follows from Theorem 2.2.1 and the inductive assumption
that IndL, < n—1, so that IndX < n = Ind$X.

Now, we shall prove that IndX < IndX. As in the first part of the
proof, we shall suppose that IndX < co and apply induction with respect
to IndX. Our equality holds if IndX = —1. Assume that it is proved for
all normal spaces the dimension Ind of which is less than » > 0 and con-
sider a normal space X such that IndX = n. Let 4 and B be disjoint closed
subsets of SX. There exist open sets V3, V, < SX such that

A<V, BcV, and T/—]nl/_'zzﬁ.

The sets A, = Xn¥V; and B, = XNV, are closed in X and disjoint, so
that there exists a partition L, in X between A, and B, such that Ind L,
< n—1. Let U,, W, be open subsets of X satisfying

AOC Uo, .Bo s Wo, UonW():Q and X\\L0= UoUWo.

We shall show that '
) UonW, c L,.
Consider a point x € UynW, and an arbitrary neighbourhood G = X
of the point x. Let H = X be an open set such that xe H ¢ H < G.
One easily sees that

b= WonH c WonH and xe€ ﬁonH c UynH,

therefore, by the above-mentioned characterization of the Cech—Stone
compactification in the realm of normal spaces, the closures of WynH
and UynH in X intersect. Hence

B # (WoULo)n(UyUL)nH = [(UsnWo)ULo]nH = LynH = LynG,
which shows that every neighbourhood of x meets Ly, i.e., that x eL,.

Thus inclusion (1) is established.
By virtue of (1) the sets

U=pX\(WouL,) and W =X\ (U,uL,)
satisfy
Q)  UUW = BX\[(WouLo)n(UyuLy)] = BXN\[(WonUg)UL,]

= ﬁX\zoi
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on the other hand,
(3  UnW = BX\[(WoULo)u(UsULo)] = BX\(UpLW,ouLy)
=BX\X = &.

Since the sets 4, = XnV; and WyuUL, are closed in X and disjoint, we
have I—/lm(ﬂX\U) = XmV,m(WouLo) =4, ie., 17, < U; similarly,
V, € W.Thus A = U and B = W, which together with (2) and (3) shows
that L, is a partition in 8X between 4 and B. As Ly = BL,, by the in-
ductive assumption IndL, < Ind L, < n—1, so that IndX < n = IndX. O

2.2.10. Corollary. For every normal space X and a dense normal subspace
M < X which has the property that every continuous function f- M — I
is continuously extendable over X we have Ind M = Ind X.

In other words, IndY = Ind X for every normal space X and every normal
subspace Y of BX which contains X.

Proof. From the extendability of every continuous function f: M — I
over X it follows that gM = BX.

Let us observe that the counterpart of Theorem 2.2.9 for the dimension
ind does not hold (see Problem 2.2.E).

As the Cech-Stone compactification generally raises the weight of spaces,
it is natural to ask if there exist compactifications preserving both the
dimension Ind and weight. One proves that for every normal space X there
exists a compactification X such that IndX < IndX and w(i) = w(X),
where w denotes the weight of a space, i.e., the infimum of the cardinalities
of the bases for that space. The construction of such a compactification
is rather difficult and will not be given here. Let us note that even more
is true, viz., that for every integer n > 0 and every cardinal number m
= W, there exists a compact space Bj, such that Ind By, = n, w(By) =m,
and every normal space X which satisfies the conditions IndX < »n and
w(X) < m is homeomorphic to a subspace of the space By, . In other words,
there exists a compact universal space for the class of all normal spaces
whose large inductive dimension is not Jarger than n and whose weight
is not larger than m.

We conclude this section with the counter-examples announced above.
The first is a compact space Z with IndZ = 0 which contains a normal
subspace X such that IndX > 0.
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2.2.11. Dowker’s example. Let O denote the subspace of the interval 7
consisting of all rational numbers in 7 (clearly, Q is homeomorphic to the
space of rational numbers). By letting

xEy if and only if |x—yleQ

we define an equivalence relation E on the set /. Since each equivalence
class of E is countable, the family of all equivalence classes has cardinality ¢.
Let us choose from it a subfamily of cardinality $; which does not contain
the equivalence class Q and let us arrange the members of this subfamily
into a transfinite sequence Qg, @1, --., Qu, ..., & < .

Foreveryy < w, theset P, = I'\ |J Q, satisfies the equality ind P, = 0;

o=y

indeed Q < P,, and since the sets Q. are dense in /, the set P, contains
no interval. Let W be the space of all ordinal numbers < w, and let W,
= WN\{w,} (see Example 2.1.6). For every o < w, the subspace M,
= [0, «] = [0, x+1) is open-and-closed in W. Consider the Cartesian
product Wx I and its subspaces

X,=U{y}xP), X=UX. and X*=Xu({w}xD).

ysa o<Wt
As noted in Example 2.1.6, the subspaces M, are metrizable. Being count-
able, they are zero-dimensional, so that ind(M,x P,) = 0 by virtue of
Theorem 1.3.6. Since for every « < w, the set X, is open-and-closed in X
and indX, = O in view of the inclusion X, = M, X P,, we have indX = 0.
From Remark 1.3.18 and Theorem 1.6.5 it follows that there exists a com-
pact space Z with IndZ = 0 which contains X as a subspace.

We shall show now that the space X* is normal which is the first step
towards establishing normality of the space X. As X* is a subspace of
WxI, it is a T,-space. Consider a pair 4, B of disjoint closed subsets
of X*. The sets

F,={xel. (w,,x)eA} and F,= {xel: (w;,x)€B}
are disjoint and closed in I so that there exist open sets H;, H, < I such
that F, < H,, F, €« H, and H,nH, = &. For every x € I\H; there
exists a neighbourhood U, = I of the point x and an ordinal number
a(x) < w; such that [(W\Mym) x UlJnd = @. The set I\H; being
closed in I, we can choose a finite number of points x;, X5, ..., X, € [ NH,

k
such that IN\H; < (J Uy,. For a; = max(a(xy), 2(x2), ..., ¢(xp)) < @,
i=1

we have [(W\M,)x(I\H)In4 = @, ie.,
)] AN(XN\X,,) = (WN\M,)x H;.
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In a similar way we determine an o, < w, such that
(5 BA(X*\X,,) « (W\M,)xH,;
without loss of generality we can assume that «; < a,. The sets AnX,,

and BnJX,, are disjoint and closed in X,,, so that there exist open sets
U,,V;, < X,, such that

(6) AnX,, < U, BnX,,cV, and U,nV,=@;
since X,, is an open subset of X*, the sets U, and V; are open in X*. The
sets U= U U{[(W\M,)xHInX*} and V = V,U{[(W\M,,) x H,]n
nX*} are open in X*. By virtue of (4)-(6)

AcU, BcV and UnV =0,
so that the space X* is normal.

To prove that the space X is normal, it suffices to show that, for every
pair 4, B of disjoint closed subsets of X, the closures 4 and Bof A and B
in the space X* are disjoint. Suppose that there exists a point (w, , X) € AnB.
It follows from the definition of P, that there exists an «, < w, such that
x € P, for every « > a,. We can readily define by induction two sequences
%y, Gz, ... and By, B4, ... of countable ordinal numbers and two sequences
X1, Xz, ... and y;, ¥,, ... of real numbers in 7 satisfying

to < o < By < thyy, Ix—xi| <1i, Ix—yi}<1}i,
(0, x)ed, (Bi,y)eB
for i = 1,2, ... Now, for the smallest ordinal number y larger than all
o’s we have (y,x)e AnB, which is impossible. Thus AnB =@ and
X is a normal space.

It remains to show that IndX > 0. Assume that IndX = 0 and con-
sider the pair W, x {0}, W, x {1} of disjoint closed subsets of the space X.
Then there exists an open-and-closed set U < X such that W, x {0} =« U
and W,x {1} € X\U. As established in the preceding paragraph, the
closures 4 and B of the sets 4 = U and B = X\U in the space X* are
disjoint. Since X = AUB and X = X*, we have AUB = X*. The sets
A = {xel: (w;,x)€A} and B, = {xel: (w,,x) e B} are disjoint
and closed in I; moreover, A, B, = I and 4, # @ # B,, because 0 € 4,
and 1€ B,. Thus our assumption contradicts the connectedness of the
interval 7. Hence IndX > 0. []

We now turn to the counterexample to the sum theorem for Ind in
normal spaces. To begin with, we shall describe two auxiliary spaces L and
L,, which are known as the long segment and the long line.
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2.2.12. Example. Let W, be the set of all countable ordinal numbers and
let Ly = W,x[0,1). Define a linear order < in the set L, by letting
(a;, 1) < (as, t;) whenever oy, < o5 or a; = o, and #; < t,. Further-
more, let L = Lyu{w,} and extend the linear order < over L by letting
x < w, for every x € L,. By assigning to each « € W, the point (a, 0) € L,
we define a one-to-one mapping of W, onto the set W,x {0} = L,; in
the sequel we shall identify « with (o, 0) and we shall consider W, as
a subset of Ly. The set W of all ordinal numbers < w, is a subset of L.

Consider on L the topology obtained by taking as a base all sets of
the form

(x0, 0] = {x: xo <x}, [0,x;)= {x: x < x;}
and  (xo, x;) = {x: xo <X < x;},
where x,, x; € L and x, < x; . One easily sees that L is a connected compact
space and that the subspace topology on W < L coincides with the topology
on W defined in Example 2.1.6. For every x, € L, the closed subspace
[0, xo] = {x: x < x,} of L has a countable base, viz., the family of all
sets ((oco, o), (oty tl)), where g, ®; < X, and #,, t; are rational numbers
in I, and thus is a compact metric space. The space L is called the long
segment; the subspace L, of L is called the long line. [

We shall now describe a compact space X with IndX = 2 which contain
closed subspaces F,, F, such that F,UF, = X and IndF, = IndF, = 1.

2.2.13. Lokucievskii’s example. Let L be the long segment and C the Cantor
set. The subspace of the Cantor set consisting of the end-points of all
intervals removed from I to obtain the Cantor set will be denoted by Q
(cf. Problem 1.3.H(e)). Since L and C are compact, the Cartesian product
Lx C is a compact space. We shall now establish a property of open sub-
sets of L x C which will prove crucial for the evaluation of IndX. Namely

(7) for every open set U < LxC such that Un({w:}xC) # @ and
tv = sup{t: (wy, t) € U} belongs to (C\Q)\{1} either
(i) there exists an x’ € L, such that (x’, w,]1x {tv} = FrU
or
(ii) there exist a ¢’ € (tu, 1] and a set L' = L, cofinal in L, such that
L' x([tuv, t'InC) =« U.

Consider a sequence ?,, f,, ... converging to #y and such that (w,, #,)
eUfori=1,2,... The set U being open, there exists a sequence o , 3, ...
of countable ordinal numbers such that (o, w;]xt; c Ufori=1,2, ...
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For the smallest ordinal number o, € W, < L, larger than all «,’s we have
(0, @] % {ts} = U. If (i) does not hold, then there exists a set L, < L,
cofinal in L, and such that L, x {t;,} = U. For every x € L, we can find
at, € (ty, 1]satisfying {x} x ({tv, £,JnC) = U. Clearly, there exists a natural
number k& such that the set L(k) = {xeL;: t,—tyv > 1/k} is cofinal
in Ly, and thus (ii) holds with ¢’ = ¢ty +1/k and L' = L(k).

Let f: C — I be the continuous mapping of C onto I consisting in match-
ing the end-points of each interval removed from I to obtain the Cantor
set (see Problem 1.3.D) and let E be the equivalence relation on the space
L x C corresponding to the decomposition of L x C into one-point subsets
of Lo x C and the sets {w;}xf~1(f), where ¢ € I. Since the equivalence
relation E is closed, the quotient space ¥ = (L x C)/E is compact (see
[GT], Theorem 3.2.11). The image of the set {w,}xC = Lx C under
the natural quotient mapping will be denoted by I and will be identified
with the interval [0, 1]; the image of {w, }xQ will be denoted by K.

We shall prove that indY = IndY = 1. To begin with, let us observe
that indY < 1. Indeed, every neighbourhood of a point x € Y"\I contains
a neighbourhood of this point with a boundary homeomorphic to CHC
and every neighbourhood of a point x € I contains a neighbourhood of
this point with a boundary homeomorphic to C®B, where B is a discrete
space of cardinality < 2; the last fact is a consequence of the density
of K in I. Now we shall show that IndY < . Consider a closed set 4 < ¥
and an open set ¥ < Y which contains the set 4. For every x € 4 there
exists a neighbourhood U, such that U, = V and Fr U, is a zero-dimensional
compact metric space. The subspace 4 of Y being compact, we can choose

k
a finite number of points x,, x,, ..., x; such that A =« U= |J Uy, V.
i1

k
The subspace F = {_) FrU;, of Y is normal, so that by virtue of Theorems
=1

1.6.4 and 2.2.7 we have Ind F = 0. Since Fr U < F, it follows from Theorem
2.2.1 that IndFrU < 0. Hence IndY < 1; as the space Y contains the
interval I, we have indY = IndY = 1.

Let us note that (7) yields

(8) for every open set U < Y such that Unl # @ and sup{s: t € Unl}
belongs to (I\K)\{1} we have indFrU > 1.

Consider two disjoint copies Y; and Y, of the space Y, and denote
by 7, and K; the counterparts of Jand Kin Y, fori = 1,2. Let K; = IL\K,
be a countable set dense in 7, which does not contain the end-points of I, .
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It follows from Problem 1.3.G(a) that there exists a homeomorphism 4:
I, - I, such that 4(K,) = K; <« IL\K,. Let S be the equivalence rela-
tion on the space Y, @Y, corresponding to the decomposition of Y, ®Y,
into one-point subsets of (Yy\I;)u(Y,\I;) and the sets {x, i(x)}, where
x e1I,. Since the equivalence relation S is closed, the quotient space X
= (Y, ®Y,)/S is compact. Roughly speaking, the space X is obtained
by matching ¥; with Y, along I; and I, in such a way that no points of
K, and K, are matched to each other. For i = 1, 2 the image F; of the set
Y; under the natural quotient mapping ¢q: ¥, ®Y, — X is closed in X and
homeomorphic to Y, so that IndF; = IndF, = 1; moreover F,UF,
= X.

It remains to show that IndX > 2. Consider the mid-point x of the
interval obtained by matching I, with I, and a neighbourhood V < X
of the point x which does not contain the end-points of this interval. From
(8) it follows that for every open set U < X such that x € U < V we have
indFrU > 1, because sup{t: teq *(U)nI;} belongs to I\K; either
for i = 1 or for i = 2. Thus IndX > indX > 2; one can show that IndX
= indX = 2 (see Problem 2.2.C(c)). [J

Historical and bibliographic notes

Theorem 2.2.1 was noted by Cech in [1932]. An example of a heredi-
tarily normal space X with IndX = dimX = 0 which for every natural
number 1 contains a subspace 4, with IndA4, = dim4, = n was described
by E. Pol and R. Pol in [1979] (in [1977] the same authors gave an example
to show that Ind and dim are not monotonic in hereditarily normal spaces);
under additional set theoretic assumptions such an example was defined
by Filippov in [1973]. Theorem 2.2.3 was proved by Dowker in [1953].
Theorem 2.2.5 was given by Smirnov in [1951]. Theorem 2.2.7 is implicit
in Cech’s paper [1933] (cf. Theorems 1.6.11 and 3.1.8); it was first for-
mulated by Vedenissoff in [1939]. An example of compact spaces X
and Y such that indX = IndX =1, indY = IndY = 2 and Ind(XxY)

-2 ind(XxY) > 4 was described by Filippov in [1972] and an example
of a normal space Z, whose square Zx Z is also normal, such that IndZ
= 0 and yet Ind(Z x Z) > 0 was given by Wage in [1977]. In his original
construction Wage applied the continuum hypothesis; Przymusifiski in
[1977) noted that the continuum hypothesis can be avoided by a
modification of Wage’s construction. Theorem 2.2.9 was established by
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Vedenissoff in [1939]. The existence of compactifications preserving both
the dimension Ind and the weight of normal spaces and the corresponding
universal space theorem were announced by Pasynkov in [1971]; proofs
were given in Alexandroff and Pasynkov’s book [1973]. Example 2.2.11
was described by Dowker in [1955], and Example 2.2.13—by Lokucievskif
in [1949].

Problems

2.2.A (Urysohn [1925]). (a) Prove that a subspace M of a hereditarily
normal space X satisfies the inequality ind M < n = 0 if and only if for
every point x € M and each neighbourhood ¥V of the point x in the space X
there exists an open set U < X such that x e U ¢ ¥ and ind(MnFrU)
<n-—-1.

(b) Show that for every pair X, Y of subspaces of a hereditarily normal
space we have

ind(XuY) < indX+indY+1.

2.2.B (Aarts and Nishiura [1971]). Prove that for every continuous
mapping f: 4 — S* defined on a closed subspace A4 of a hereditarily normal
space X such that Ind(X\ 4) < n, where 0 < k < n, there exists a closed
subspace B of the space X such that AnB = &, IndB < n—k—1, and
the mapping f has a continuous extension F: X\B — S§* over X \B.

Hint. See Problem 1.9.D.

2.2.C. (a) Show that if a normal space X can be represented as the
union of two subspaces M and F such that M is normal and non-empty
and F is closed in X, then for every pair 4, B of disjoint closed subsets
of X there exist a partition L in X between 4 and B and a partition L’ in
M between MnA4 and MnBsuch that L\F = L'\Fand IndL' < Ind M —1.

(b) Deduce from (a) that if a normal space X can be represented as
the union of two subspaces X; and F such that X, is normal and non-empty,
F is closed, and IndF = 0, then IndX < IndX,.

(c) Show that if a normal space can be represented as the union of two
closed subspaces F, and F,, then IndX < IndF; +IndF,.

(d) Show that if a normal space can be represented as the union of two
normal subspaces X and Y of which one is either closed or open, then
Ind(XuY) < IndX+IndY+1.
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(e) Show that if a hereditarily normal space X contains a closed subspace
F such that IndF < n and Ind(X\F) < n, then IndX < n (cf. Theorem
2.3.1).

2.2.D. Check that if X is a metric space and a dense subspace M < X
has the property that every continuous function f: M — I is continuously
extendable over X, then M = X.

2.2.E. Note that for the space X described in Example 2.2.11 we have
nd X # indX.

2.2.F (Dowker [1955]). (a) Prove that the space X described in Example
2.2.11 satisfies the equality IndX = 1.

(b) Show that to the space X described in Example 2.2.11 one point
can be adjoined either in such a way that one obtains a normal space X,
with indX; > 0 or in such a way that one obtains a normal space X,
with IndX, = 0.

2.2.G (Smirnov [1958]). Modify the construction of the space X in Ex-
ample 2.2.11 to obtain a compact space Z with IndZ = 0 which contains
a normal subspace Y such that IndY = co.

Hint. Replace the interval by the Hilbert cube and the sets P, by the
Cartesian products Pio,

2.2.H. (a) Show that the long segment L is a strongly hereditarily
normal space.

(b) Prove that for every point x, in the long line L, the subspace [0, x,]
of L is homeomorphic to the interval I.

Hint. Define a countable dense subset of [0, x,] which is ordered
similarly to the set of all rational numbers in 1.

(c) Check that for the subspace W of the long segment L there exists
no Gs-set W* in L such that W < W* and Ind W* = Ind W.

2.3. Basic properties of the dimension Ind in strongly hereditarily normal
spaces

Strongly hereditarily normal spaces constitute a relatively wide class
of spaces where two of the most important theorems of dimension theory,
viz., the subspace theorem and the countable sum theorem, hold for the



Ch. 2, § 3] Dimension Ind in strongly hereditarily normal spaces . 183

dimension Ind. Both theorems are tightly connected; we shall prove them
simultaneously. For more clarity the proof is divided into several lemmas.

Let us consider the following properties of a hereditarily normal
space X: .

() For each subspace Y < X and every open subspace Uof Y, if IndY < n,
then IndU < n. ,
(c,) For each subspace Y — X and every sequence F,,F,, ... of closed

0

subspaces of Y such that Y = \J F;, if IndF, < n for i=1,2, ...,
i=1

then IndY < n.

Clearly, every hereditarily normal space X has property (u_,), and
thus to prove that all strongly hereditarily normal spaces have properties
() and (o,) for n = —~1,0,1, ..., it suffices to show that the implica-
tions (,-1) = (@, and (,) = (c5,) hold for every strongly hereditarily
normal space X. The second implication holds for all hereditarily normal
spaces; it will be deduced from the following version of the sum theorem.

2.3.1. Theorem. If a hereditarily ‘normal space X can be represented as

the union of a sequence K, , K,, ... of pairwise disjoint subspaces such that
IndX, < n and the union \J K, is closed for i = 1,2, ..., then IndX < n.

i<i

Proof. We shall apply induction with respect to the number n. Forn = —1
the theorem is obvious. Assume that the corresponding statements hold
for dimensions less than n and consider a hereditarily normal space X

which satisfies the assumptions of our theorem. Let F;, = _U_K ; for

i=1,2,.. =
Consider a pair 4, B of disjoint closed subsets of X. Let Uy, ¥, be open

subsets of X such that

0 AcU,, BcV, and 500170 =0,

and let K, = F; = Ly, = ©@. We shall define inductively two sequences
Us, Uy, ... and V,, Vy, ... of open subsets of X and a sequence Ly, L,, ...
of subsets of X satisfying for i = 0, 1, ... the following conditions:

) LicKy and IndL,g<n-1.
3) The set £, = U L; is closed.

j<i
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4 F, =« UuV,VE,.
(5 UuV, = X\E; and UnV, cE,.
(6) Ui—l < Ui and Vi—l < Vi for i > 0.

The sets Uy, V, and L, satisfying (2)~(6) for i = 0 are already defined.
Let us assume that the sets U;, V; and L, satisfying (2)-(6) are defined
for i < m > 0. The sets U,_,nK, and V,_,nK, are closed in K,, and
disjoint, because by virtue of (5) and (2) with { = m—1
ﬁm—lmfm—l < Em~l < U Kj

j<m
and the last set is disjoint from K,,. Since Ind K, < n, there exists a parti-
tion L, in K, between U,_,nK, and V,_,nK, which satisfies (2) with
i = m; there also exist open subsets G, H of K,, such that

Q) UpinKn< G, Vo,nKncH, GnH=@

and K,\L, = GuUH.
From (7) it follows that L,N(Un-1VVm-1) = &; the union Uy, WV,
being open in X, we have L,n(U,.,UV,_1) = 9. Since L, is closed
in K,, and F,, is closed in X, the last equality and (4) with i = m—1 yield
the inclusion

zm < Lmu [Fm—l\(Um—lUV -1)] < Emv

which shows that (3) holds for i = m. ~ B 3
Since GnV,_, = O = HNU,_,, we have GnV,_, = 9= HNU,_,,
which implies that

®) GNH c Ly [Fpe i \(Up-y OV )] © E,,

beca_use GnH c K, < F,, = F,,. The same equalities GNV,_, = @
= HnU,_, together with (7), the equality U,_,nV,_, = @&, which is
a consequence of (5) with i = m—1, and (4) with i = m—1 yield
(9) émfm—l = [G—m(fm—l\Vm—l)]\Km < Fm—lm(fm—l\Vm—l) < Em—l
and

ﬁmﬁm—l = [ﬁﬁ((j —l\Um—1)]\Km < Fm—lm(ﬁm-—l\Um—l) < EM—l'
(10)

Relations (8)-(10) and the second part of (5) with i = m—1 show

that the sets (Uy_; UG)\E, and (V,._; WH)\E,, are disjoint. As these sets
are closed in X'\E,,, from the hereditary normality of X it follows that
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there exist disjoint sets U,,, V,, open in X \E,, and consequently open
in X, such that

(U —IUG)\Em < Ums (Vm—IUﬁ)\Em < Vms

and (5) is satisfied for i = m. The last two inclusions imply that (4) and
(6) also are satisfied for i = m, because L, (U,-,UV,,_;) = & by virtue
of (7). Hence the construction of the sets U;, V; and L; satisfying (2)-(6)
fori=1,2, ... is completed.

o0 o0
let U=UJ U, v=UV, and L=
im1 ic1

1

o0
L;; it follows from (4)
=1

that X = UUVUL. The sets U and V are open and, by virtue of (6) and the
equality U,nV, = O, which is a consequence of (5), disjoint. From (5),
(6) and the inclusion E;_; < E; it follows that UnL = VnL = @, so that
X\L = UuV, which together with (1) shows that L is a partition between
A and B. By virtue of (2) and (3) the inductive assumption can be applied
to the space L and the sequence L,,L,, ...; thus IndL < n—1, which
shows that IndX < n. [

2.3.2. Corollary. If a hereditarily normal space X has property (u,), then
it also has property (o,). )

Proof. Consider a subspace Y = X and a sequence F,, F,, ... of closed

0

subspaces of ¥ such that ¥ = (J F, and IndF; < n for i =1,2,... By
i=1

virtue of (w,) the set K; = F,\U F, satisfies the inequality IndK; < n
i<i

fori=1,2,... Applying Theorem 2.3.1 to the space ¥ and the sequence

K., K,, ..., we obtain the inequality IndY < n. [

We now turn to the implication (w,_;) = (&,). To begin with, we
shall establish a simple property of point-finite open covers, which will
be applied here and in the following chapter.

2.3.3. Lemma. Let {U,}.s be a point-finite open cover of a topological
space X. For i = 1,2, ... denote by K; the set of all points of the space X
which belong to exactly i members of the cover {Us}ss and by T ; the family
of all subsets of S that have exactly i elements. Then

0
(1) x=UK,, K,nK; = @ whenever i # j, and
i1

the union F; = U K, is closed for i = 1,2, ...;

j<i
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moreover,
(120  K; = U K+, where the sets Kr, defined by letting K+ = K;n () U,
TeT i seT
for Te T, are open in K, and pairwise disjoint.

Proof. The first two equalities in (11) follow directly from the definition
of the sets K;. If x ¢ F;, then x e U, nU, N ... nU,,,, « X \F;, where
S1s 83, ---, 8341 are distinct elements of S, so that the sets F; are closed.
To establish (12) it suffices to note that Kr < K; for Te ", and that
whenever 7, T’ are distinct members of J;, then KrnKr = @, because

the union TUT’ contains at least i+1 elements of S. [

We shall now prove a lemma -which, together with Corollary 2.3.2,
yields the implication (w,-,) = (&,) for every perfectly normal space X;
afterwards, we shall deduce from this lemma that the implication (g,-,)
= (i) holds for every strongly hereditarily normal space X.

2.3.4. Lemma. If a hereditarily normal space X has property (6,-,) and
if IndX < n, then IndU < n for every open subspace U of X which can be
represented as the union of a point-finite family of open Fy-sets in X.

Proof. Let us first consider the special case where U is an open F,-set in X.
Then there exists a continuous function f: X — I'such that U = f~1((0, 1]}

(see Problem 2.1.A). The sets B, = f~([1/i, 1]) are closed in X and
satisfy

o0
(13) B <« IntB,,,, IndB,<n fori=1,2,... and U= B,.
i=1
Consider an arbitrary set 4 = U which is closed in U and an open
set ¥V < U which contains the set 4. Fori = 1,2, ... let
(14) Ai = Aﬁ(B,\IDtB,_I) and Vi = Vm(lntBi+1\Bi_.2),

where B_; = B, = @; clearly, 4, = ¥V, < B;;,, 4, is closed in B,,,,
and V; is open in B;,;. Since IndB,,, < n, there exists an open subset
U; of B,.; such that

&) AjcU cU<cV, and IndFrU <n-—1,

where the closure and boundary operators refer to the space U. Indeed,
as B;,, is a closed subset of U and U, < IntB,,,, the closure and the

boundary of U, in B, , and in U coincide. From the inclusion U, = U\B,_,
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it follows that the famlly {U, %4 18 locally finite in the space U so that

for the set U, = U U, we have U, = U U, and FrU, c U FrU,.

i=1

Applying (13)-(15) and (6,—:), we obtain
o0 o0 . o0 _
A=AnUB cUA4,cUcU=UU,cV
= i=1 i=1

and IndFrU,<n-1,

which shows that IndU < n
Let us now pass to the general situation and consider a point-finite

family {U,}es of open F,-sets in X such that U = U U,. Applying Lemma

ses
2.3.3 to the cover {U,}«s of the space U, we obtain the sets K; which
satisfy (11) and (12) with X = U. Since for each T € J; we have Kr = K;n

n() Uy = Fin() U, the sets Ky are F,-sets in X.
seT’ seT

The subspace X; = (X\U)UF, is closed in X, so that IndX; < n
Since the set K; = F,\F;_; = X;n(U\F;_,) is open in X;, the sets Kr
are open F,-sets in X;. Applying the already established special case of our
theorem to the space X; and the set Kr, we conclude that IndXr < n
for every TeJ ;. Thus IndK, < n fori = 1,2, ... by virtue of (12) and
Proposition 2.2.8. Theorem 2.3.1 and (11) imply that IndU < n. [

2.3.5. Lemma. If a strongly hereditarily normal space X has property (y,_1),
then it also has property ().

Proof. Since strong hereditary normality and property (w,_,) are both
hereditary properties, it suffices to show that if IndX < n, then IndU < n
for every open subspace U of X. Consider a pair 4, B of disjoint closed
subsets of the space U. Let U’ = X\(AnB), A’ = U'nA and B’ = U'nB.
Obviously, U =« U’, 4 = 4’, B = B’ and the sets A’, B’ are disjoint and
closed in U’. It is enough to show that there exists a partition L' in U’

between A’ and B’ such that IndL’' < n—1, because then L = UnL’
will be a partition in U between 4 and B satlsfymg, by virtue of (u,-1),
the inequality IndZL < n—1. Since 4’ = A4 and B = B, we have U’

= X\(4'nB’). Thus without loss of generality we can suppose that U
= X\.(4nB) and define the required partition in U.

As the sets 4 and B are separated in X, there exist disjoint open sets
V,W < X such that A < ¥V, B< W and V and W can be represented
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as the union of a point-finite family of open F-sets in X. From the equality
VAW = @ = VAW it follows that ANW = & = VB, so that (4nB)
NnYVuW) =46, ie, VOW < U. The space U being normal there exists
an open set O = Usuch that A « O « UnO = V. The sets A and F = V' \O
are disjoint and closed in V; since Ind ¥ < n by virtue of Corollary 2.3.2
and Lemma 2.3.4, there exists a partition L in V between 4 and F such
that IndL < n—1. Thus there exist open sets G, H — X such that

Ac G, FcH, GnH=@0 and V\L = GuUH.

The set Hu(UN\O) is open in X, disjoint from'G, and contains B, because
B« W < UN\V <« UN\O; moreover,

GU[HU(UNO)] = (V\L)yu(U\O) = U\L.
Thus L is a partition in U between 4 and B. [J

From Corolary 2.3.2 and Lemma 2.3.5 it follows that all strongly
hereditarily normal spaces have properties (i,) and (¢,) forn = —1,0,1, ...,
which, together with Theorems 2.2.3 and 2.3.1, yields the following two
results.

2.3.6. The subspace theorem for Ind. For every subspace M of a strongly
hereditarily normal space X we have Ind M < IndX. O

2.3.7. Proposition. If a strongly hereditarily normal space X can be rep-
resented as the unmion of a sequence K., K,, ... of subspaces such that

Ind K; < n and the union \J K; is closed for i = 1,2, ..., then IndX < n. (0

isi

The last proposition yields

2.3.8. The countable sum theorem for Ind. If a strongly hereditarily normal
space X can be represented as the union of a sequence F,, F,, ... of closed
subspaces such that IndF, < n fori=1,2, ..., then IndX < n. [J

In the dimension theory of general spaces there occur also sum theorems
of a different kind, where instead of countable covers one considers locally
finite ones. Such theorems are not discussed in the classical dimension
theory of separable metric spaces, because—as is easy to verify—every
locally finite cover of a separable metric space is countable, and thus in
such spaces the locally finite sum theorem is only a particular case of
the countable sum theorem. Exactly as in the case of the countable sum
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theorem, the locally finite sum theorem for Ind in strongly hereditarily
normal spaces shall be deduced from a version of this theorem which
holds in all hereditarily normal spaces. Let us note that in countably para-
compact strongly hereditarily normal spaces (in particular, in perfectly
normal spaces and in hereditarily weakly paracompact hereditarily normal
spaces; cf. [GT], Sections 5.2 and 5.3), the locally finite sum theorem
is an easy consequence of Theorems 2.3.1, 2.3.6 and 2.3.8 (see Problem
2.3.B).

2.3.9. Theorem. If a hereditarily normal space X can be represented as the
union of a transfinite sequence K,,K,, ..., K,, ..., 0 < & of pairwise dis-
Joint subspaces such that Ind K, < n and the union U K3 is closed for o < &,

f<a

and the family {K,}uce is locally finite, then IndX < n.

Proof. We shall apply induction with respect to the number n. Forn = —1
the theorem is obvious. Assume that the corresponding statements hold
for dimensions less than »# and consider a hereditarily normal space X

which satisfies the assumptions of our theorem. Let F, = U K; for « < £&.

: f<a
Consider a pair 4, B of disjoint closed subsets of X. We shall define
inductively three transfinite sequences U, , U, ..., Uy, ..., a < & V{, V,, ...
vosVay oo < & and Ly, L,, ..., L, ..., a < & of subsets of X satisfy-
ing for o < & the following conditions:

(16) L, K, and IndL,< n-1.

(17) The sets U, and ¥V, are open in F, and U,uV, = F,\E,,
where E, = U L;.

f<a
(18) AnF, c U,, BnF,cV, and U,nV,= 0.
(19) Uﬁ = FﬂﬁUz, Vﬁ = FﬂﬁVa for ﬂ < a.

Since F, = K; and IndK; < n, there exist sets U;, V; and L, satisfy-
ing (16)-(19) for « = 1. Let us assume that the sets U,, ¥, and L, satisfy-
ing (16)—(19) are defined for a <y > 1. Let

FE=Uk, U,=UU, V,=UV, ad E =UL;

ax<y ax<y <y ax<y

note that if y = y,+1, then the sets defined above are equal to F,, U,,
V,, and E, , respectively. From conditions (17), (18) and (19) with « < y
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it follows that
(20) AnF, c U;, BnF,cVy,, UnV,=0
and F)\E, = U,uV,.
We shall show that the sets Uy’, V, c F, are open in F,; clearly, 1t suffices
to consider the case where ¥ is a limit number.

Consider an arbitrary point x € U,. Since the family {K,}.., is locally
finite, there exist a neighbourhood W < X of the point x and an ordinal
number o, < ¥ such that WnK, = & whenever o, < a < ¥, i.e., such
that WnF; = WnF,, . The set U, being open in F, , there exists an open

set W' < X such that U, = F,,nW'. From (19) it follows that F, nUj
= U,,, so that

x e WnU, = WnF,nU, = WnF, nU, = WnlU, c WnW’,
i.e., the set WnW’ is a neighbourhood of x in X. As
FoaWaW' = WnF, W' = WnlU, < U, < Uy,

the set U, is open in F;. From symmetry of our assumptions it follows
that the set ¥, is also open in F,. By virtue of (20) the set E, is closed in
F,, which implies that E, is closed in X, and (AUB)NE, = @. The sets
AuU, and BUV, are disjoint and closed in X \E,. From the hereditary
normality of X it follows that there exist disjoint sets G, H « X"\E, open
in X'\ E,, and consequently open in X, such that

1) AVU, =G, BUV;cH and GnHcE,.
By virtue of the last inclusion in (21) and by equality E,nK, = @, the sets
GnK, and HnK, have disjoint closures in K,. Hence there exists a parti-

tion L, in K, between Gn K, and HnK, which satisfies (16) with a = y;
there also exist open sets G', H' < K, such that

(22) GnK,c G, HnK,cH, GnH =0
and K\L,= GUH"

Since the set K, = F,\F, is open in F,, the sets G’ and H' are open in F,.
From (20), (21) and (22) it follows that the sets

U, = (GhF)uG and V, = (HnF)uH'

satisfy conditions (17)-(19) with a = y. Hence the construction of the
sets U,, V, and L, satisfying (16)-(19) for « < & is completed.

It follows from (20) that the set L = E; is a partition in F; = X between
A4 and B. Applying the inductive assumption to the space L and the se-
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quence Ly, Ly, ..., Ly, ..., a0 < &, we obtain the inequality IndL < n—1,
which shows that IndX < . [J

Theorems 2.3.9 and 2.3.6 yield

2.3.10. The locally finite sum theorem for Ind. If a strongly hereditarily
normal space X can be represented as the union of a locally finite family
{F;}ses of closed subspaces such that IndF; < n for s € S, then IndX < n.[]

The following two theorems are common generalizations of the count-
able and the locally finite sum theorems. Let us recall that a family {4;}ses
of subsets of a topological space X is locally countable if for every point
x € X there exists a neighbourhood U such that the set {s € S: Un4, ¥ O}
is countable.

2.3.11. Theorem. If a strongly hereditarily normal space X can be represented
as the union of a o-locally finite family {F,}ses of closed subspaces such
that IndF; < n for s€ S, then IndX < n.

Proof. The family {F,},s decomposes into countably many locally finite
families the union of each of which is closed in X and—by virtue of the
locally finite sum theorem—has dimension not larger than n. To complete
the proof it suffices to apply the countable sum theorem. []

2.3.12. Theorem. If a strongly hereditarily normal space X can be represented
as the union of a transfinite sequence F,,F,, ..., Fy, ..., o < & of closed
subspaces such that IndF, < n and the family {Fg}s<. is locally finite for
o < &, and the family {F,},.¢ is locally countable, then IndX < n.

Proof. If the set of all ordinal numbers less than £ contains a countable
cofinal subset, then the family {F,},.; is o-locally-finite and the theorem
follows from Theorem 2.3.11.

Assume now that the set of all ordinal numbers less than & contains
no countable cofinal subset. To complete the proof it suffices to show
that under this assumption the family {F;}..; is locally finite. Consider
an arbitrary point x € X and a neighbourhood U of this point such that
the set {a < &: UnF, # O} is countable. By our assumption there exists
an «, < & such that UnF, = @ for o > . The family {F,}.<., being
locally finite, there exists a neighbourhood V of the- point x such that
the set {a < ag: VNF, # @} is finite. The intersection W = UnV is
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a neighbourhood of the point x which meets only finitely many sets F,.[]

The next result is still another sum theorem. It will yield two further
sum theorems which hold in the class of weakly paracompact strongly
hereditarily normal spaces. Let us observe that in this class Theorem
2.3.13 generalizes the Jocally finite sum theorem (see Problem 2.3.F) and
Theorem 2.3.15 generalizes both the countable and the locally finite sum
theorems.

2.3.13. The point-finite sum theorem for Ind. If a strongly hereditarily
normal space X can be represented as the union of a family {F}ses of closed
subspaces such that IndF; < n for s € S, and if there exists a point-finite
open cover {Us}ses of the space X such that F, < Us for s € S, then IndX
< n

Proof. Consider the decomposition of the space X described in Lemma

2.3.3. From the definition of the sets Ky it follows that Kr = U F, for
seT

T € 7, so that Ind Kr < n by virtue of Theorems 2.3.8 and 2.3.6. Theorem
2.2.8 and (12) imply that IndK, < n for i = 1,2,... To complete the
proof it suffices to apply Theorem 2.3.1. [J

2.3.14. Theorem. If a weakly paracompact strongly hereditarily normal
space X can be represented as the union of a family {Us}ss of open sub-
spaces such that IndU; < n for se€ S, then IndX < n.

Proof. The space X being weakly paracompact, one can assume that the
cover {U,}es is point-finite, and thus has a closed shrinking {F,}.s (see
[GT], Theorem 1.5.18). To complete the proof it suffices to apply Theorems
2.2.1 and 2.3.13. J

2.3.15. Theorem. If a weakly paracompact strongly hereditarily normal
space X can be represented as the union of a locally countable family {Fi}ses
of closed subspaces such that IndF, < n for s€ S, then IndX < n.

Proof. For every point x € X there exist a neighbourhood U, and a count-
able set S(x) = S such that U,nF, = @ for s € S\S(x). From the last
relation it follows that U, = | {F,:s € S(x)}, so that by virtue of Theorems
2.3.8 and 2.3.6 we have IndU, < n for x € X. To complete the proof it
suffices to apply Theorem 2.3.14. []
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We close this section with a characterization of the dimension Ind
in' strongly hereditarily normal spaces which will be applied in Section
2.4.

2.3.16. Lemma. If for a pair A, B of disjoint closed subsets of a topological
space X there exists a o-locally finite open cover ¥~ of the space X which
has the property that for every V €V either VAAd =@ or VAB = O,
then there exists a partition L between A and B such that

(23) LclU {Ftv: Vevy}.

Proof. Let ¥ = U ¥, where the families ¥, are locally finite. For

i=1
i=1,2,... define #, = {Vev,: VnA = @} and %, = ¥ \¥;; con-
sider the sets

Ui = U %i and Wi = U W/i‘

The family ¥°; being locally finite,

(24 UnB=@ =Wnd fori=1,2,.;
moreover .

(25) Ac COJI U, and Bc :_ol w;.

Let

(26) G, = U,-\jU(i W, and H, =W\ H U;.

From (24)-(26) it follows that the open sets U = |J G; and W = U H;
=1

i=1
satisfy the conditions 4 <« U, B < W and UnW = &. From the local
finiteness of ¥7; it follows that Fr U;uFr W; < | ) {Fr¥V: ¥V € ¥}, so that
to complete the proof it suffices to show that the partition L = X \(UuW)
between 4 and B satisfies the inclusion

i=1

(27) L e UFrv,oU Frw,.
i=1

i Co_nsid_er a Boint x € L and denote by F the first element of the sequence
U, » Wi, Ua, Wy, ... that contains th;_point x. If F= U, then x € FrU;
= U\U,, because x ¢ G; and x ¢ W, for j < i. On the other hand, if
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F = W,, then x e FT W, = W \W,, because x ¢ H; and x ¢ f]i forj< i

o0 o0
Hence in both cases x € U FrU,ulUJ Frw,. O
i=1 iz1

2.3.17. Theorem. For every strongly hereditarily normal space X and each

integer n = 0 the following conditions are equivalent:

(a) The space X satisfies the inequality IndX < n.

(b) Every locally finite open cover of the space X has a locally finite open
refinement ¥~ such that IndFrV < n—1 for Vev .

(c) Every two-element open cover of the space X has a o-locally finite open
refinement ¥~ such that IndFrV < n—1 for every VeV .

Proof. Let {U,}«s be a locally finite open cover of a normal space X such
that IndX < n > 0. Consider a closed shrinking {F,},.s of the cover
{Us}ses (see [GT], Theorem 1.5.18) and for every s € S choose an open set
V, € X such that

F,cV,cU; and IndFr¥,<n-1.

Clearly, the family ¥" = {V };s is a locally finite open refinement of the
cover {U,}.s. Hence (a) = (b) for every normal space X.

The implication (b) = (c) being obvious, to complete the proof it
suffices to show that (c) = (a). Let X be a strongly hereditarily normal
space which satisfies (c). Consider a pair 4, B of disjoint closed subsets
of X. There exist open sets U, W < X such that A < U, B < W and
UnW = @. The two-element open cover {X\U, X\ W} of the space X
has a o-locally finite open refinement ¥~ such that Ind Fr ¥ < n—1 for every
Ve ¥ Since for every V € ¥ either Vnd = & or ¥nB = O, by virtue
of Lemma 2.3.16 there exists a partition L between A and B such that
L = J {FrV: Ve ¥}. From Theorem 2.3.11 it follows that IndL < n—1,
so that IndX < n. O

Historical and bibliographic notes

The study of relations between properties (i) and (c,) was originated
by Dowker in [1953]. Dowker’s paper contains Theorem 2.3.1, Corollary
2.3.2, Lemma 2.3.4 with “point-finite” replaced by “locally finite”, as
well as theorems 2.3.6, 2.3.7 and 2.3.8 for totally normal spaces (Theorems
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2.3.6 and 2.3.8 for perfectly normal spaces were established by Cech in
[1932]). Lemma 2.3.3 and the present version of Lemma 2.3.4 were given
by Lifanov and Pasynkov in [1970]; the same paper contains Theorems
2.3.6, 2.3.7 and 2.3.8 for Dowker spaces (announced in Pasynkov [1967]).
The last three theorems were extended to super normal spaces by Nishiura
in [1977]. Theorem 2.3.9 was established by Lifanov and Pasynkov in
[1970]. Theorem 2.3.10 was proved by Kimura in [1967] for totally normal
spaces (under the additional assumption of countable paracompactness
in [1963]) and was extended to super normal spaces by Nishiura in [1977].
Theorems 2.3.12, 2.3.14 and 2.3.15 were proved by Lifanov and Pasynkov
in [1970] for Dowker spaces; for totally normal spaces, Theorem 2.3.14
was given by Dowker in [1955], and Theorem 2.3.16—by Kimura in
[1967] (implicitly). Theorem 2.3.17 was proved by Nagami in [1969] and
[1960a], respectively for totally normal spaces and hereditarily paracom-
pact spaces.

Problems

2.3.A (Smirnov [1951]). Let X be a normal space with the property

that for each closed subspace ¥ < X and every finite sequence F;, Fs, ..., F}
k

of closed subspaces of Y such thatY = |J F,,ifIndF, < n for i= 1,2, ...
i=1

..., k, then IndY < »n. Prove that ind X = IndX.
Deduce that for every strongly hereditarily normal space X we have
indX = IndX.

2.3.B. Show that under the additional hypothesis that X is a countably
paracompact space Theorem 2.3.10 is an easy consequence of Theorems
2.3.1, 2.3.6 and 2.3.8.

Hint. For i = 1, 2, ... denote by K, the set of all points of the space X

which belong to exactly i members of the cover {F,},s and by Z, the
family of all subsets of S that have exactly i elements. Note that K, = | Ko,
TeT |

where Kr = K;n( \F,. Show that the sets U; = K;UK,uU ... UK, are

seT
openin X and that IndU; < nfori = 1, 2, ... Apply the fact that the open
cover {U;}2, of the space X has a closed shrinking (see [GT], Theorem
5.2.3).
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2.3.C. (a) Observe that Theorem 2.3.7 is a consequence of Theorem
2.3.8 and Problem 2.2.C(e).

(b) Deduce from Theorem 2.3.9 that if a strongly hereditarily normal
space X can be represented as the union of a transfinite sequence X, K, ...

.., Ky, ..., 0 < & of subspaces such that Ind K, < » and the union U K,

B<a
is closed for o < &, and the family {K,}..¢ is locally finite, then IndX < n.
Observe that the latter fact is also a consequence of Theorem 2.3.10 and
Problem 2.2.C(e).

2.3.D (Lifanov and Pasynkov [1970]). Prove that if a hereditarily
normal space X can be represented as the union of a transfinite sequence
K, K,, ..., K,, ..., 0 < & of pairwise disjoint subspaces such that Ind X,

< n, the union {UJ K; is closed and the family {Kj}s<. is locally finite for

B<a

o < & and the family {K,},.: is locally countable, then IndX < n.

2.3.E. (a) (Nagata [1965]) Prove that if a strongly hereditarily normal
space X can be represented as the union of a transfinite sequence F,, F,, ...
vees Fyy ooy < & of closed subspaces such that IndF, < n for a < &,
and if there exists a transfinite sequence U,, U,, ..., U,, ..., a < § of
open subsets of X such that F, < U, and the family {Us}s.. is locally
finite for o < &, then IndX < n.

Hint. Observe that if the set of all ordinal numbers less than & contains
no countable cofinal subset, then the family {U,}.<¢ is point-finite.

(b) (Nagata [1967]) Prove wiat if a strongly hereditarily normal space X
can be represented as the union of a transfinite sequence K, K, ...

.y Ky, ..., o0 < & of subspaces such that Ind K, < » and the union U K

f<a
is closed for a < &, and if there exists a transfinite sequence U, U,, ...
s Ugy ..., 0 < & of open subsets of X such that K, = U, and the family
{Us}p<e is locally finite for « < &, then IndX < n.

2.3.F (Smith and Krajewski [1971]). Prove that for every locally finite
family {F,}.s of closed subsets of a weakly paracompact space X there
exists a point-finite family {U,},s of open sets such that F, = U, for
seS.

Hint. For every point x € X choose a neighbourhood U, which meets
only finitely many sets F,. Consider a point-finite open refinement 2

of the cover {U,},x and let U, = \J {Ve¥": VnF, # @}.
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2.4. Relations between the dimensions ind and Ind. Cartesian product the-
orems for the dimension Ind

As shown in Section 1.6, for every separable metric space X we have
indX = IndX. In the present section this equality will be extended to
a somewhat larger class of spaces. However, we should make it clear at
once that the class of all spaces whose small inductive and large inductive
dimensions coincide is rather restricted. Indeed, there exists a first-count-
able compact space X such that indX = 2 and IndX = 3, as well as a com-
pletely metrizable space X, known as Roy’s space, such that indX = 0
and IndX = dimX = 1. The description of the above two spaces is quite
complicated and the computation of their dimensions is rather difficult,
so that they will not be reproduced in this book. The only space with
non-coinciding inductive dimensions discussed here in detail is the space X
described in Example 2.2.11, which satisfies the equalities indX = 0 and
IndXx = 1.

Let us recall that a topological space X is strongly paracompact® if X
is a Hausdorff space and every open cover of the space X has a star-finite
open refinement (a family of sets, is star-finite if every set 4 € & meets
only finitely many members of /). It immediately follows from the defini-
tions that every strongly paracompact space is paracompact. One proves
that every Lindelof space is strongly paracompact (see [GT], Corollary
5.3.11).

In the considerations of this section we shall apply the fact that star-
finite covers decompose in a natural way into countable families of sets.
Let us recall that the component of a member A, of a family of sets &/
is the subfamily &/, — «# consisting of all sets 4 € of for which there
exists a finite sequence 4, , 4,, ..., A, of members of &/ such that 4, = 4
and 4;,nA4,-; # & for i =1, 2, ..., k. The components of two distinct
members of & either coincide or are disjoint, so that

o=, where A ,"A, =0 fors#s

seS
and for every s € S the family ./, is the component of a member of .
The representation of ./ as the union of the families &/, will be called
the decomposition of & into components; clearly (U .gls)f\(U o s’) =0
for s # s". Let us observe that all components of a star-finite family </
are countable. Indeed, the component &/, of the set A, € & can be rep-

" The term hypocompact is also used.
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resented as the union of families o/, of,, ..., where &, consists of all
sets 4 € &/ for which there exist a sequence 4,, 4,, ..., 4, of kK members
of o such that 4, = 4 and A;nAd,_, # QB fori=1,2,...,k, and—as
can easily be verified—each of the families &/, is countable.

2.4.1. Lemma. If X is a strongly paracompact space such that indX < n = 0,
then for every pair A, B of disjoint closed subsets of X there exists a parti-
tion L between A and B which can be represented as the union of a sequence
L,,L,, ... of closed subspaces of X such that indL, < n—1fori=1,2,...

Proof. For every point x €X _there exists a Iieighbourhood U, such that
indFrU, < n—1 and either U,nd = & or U,nB = &. Consider a star-

finite open refinement % of the cover {U, },cx of the space X. Let % = | %,

SeS
be the decomposition of the cover % into components; as the cover %

is star-finite, the components are countable, i.e., %, = {U, }2, for s€ S.

o
Let X, = U U, ; for every s € §; the sets X, are open and pairwise dis-

i=

joint, so that X = @ X,. For each set U,; choose a point x(s,i)eX

seS
[o0]
such that U, ; < Uy,.p and let V, ; = Uy, nnX,; clearly, X, = V,,
i=1

and we have either V, ;n4 =@ or Vs,mB = . Since for i =1, 2, ...
the family {V; ;}s is discrete, the family ¥~ consisting of all the sets V ,
is a o-locally finite open cover of the space X. By virtue of Lemma 2.3.16

o0
there exists a partition L between 4 and B such that L < U F;, where
i=1

F,=\UFrV,,. Let L, = LNF, for i = 1,2, ... To complete the proof
seS

it suffices to show that L, is closed in X and indL; < n—1fori =1, 2, ...

Since FrV,;, « X, forse€ S, F, = @ FrV,, and F, is a closed subset of X;
seS

thus L,is closed in X fori = 1, 2, ... On the other hand, FrV, ; « Fr U, pu
UFrX, = FrUy,p, so that indFrV;; < n—1 for s € S; thus indF; < n—1
and indL; < n—1fori=1,2, .. [

From Lemma 2.4.1 we immediately obtain the following generaliza-
tion of Theorem 1.6.5.

2.4.2. Theorem. For every strongly paracompact space X the conditions
indX = 0 and IndX = O are equivalent. [
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The next theorem shows that one step forward is possible.

2.4.3. Theorem. For every strongly paracompact space X the conditions
indX =1 and IndX = 1 are equivalent.

Proof. In view of Theorem 2.4.2 it suffices to show that for every strongly
paracompact space X such that indX = 1 we have IndX = 1. Consider
a pair A, B of disjoint closed subsets of the space X. By virtue of Lemma

2.4.1 there exists a partition L between A and B such that L = {J L,,
i=1

where L, is closed in X and indL; € 0 for i = 1,2, ... As every closed
subspace of a strongly paracompact space is strongly paracompact, it
follows from Theorem 2.4.2 that IndL,< 0 for i =1,2, ..., so that
IndL € 0 by virtue of Theorem 2.2.7. Thus IndX < 1, and from the
inequality indX < IndX it follows that IndX = 1. [J

2.4.4. Theorem. For every strongly paracompact strongly hereditarily normal
space X we have indX = IndX.

Proof. It suffices to show that IndX < indX; clearly, one can suppose
that indX < co. We shall apply induction with respect to indX. The in-
equality holds if indX = —1. Assume that the inequality is proved for
all strongly paracompact strongly hereditarily normal spaces of small
inductive dimension less than » > 0 and consider a strongly paracompact
strongly hereditarily normal space X such that indX = n. Let 4, B be
a pair of disjoint closed subsets of X. By virtue of Lemma 2.4.1 and by
the inductive assumption there exists a partition L between 4 and B such

oQ
that L = U L,, where L;is closed in X and IndL; < n—1for i = 1,2, ...
i=1

By virtue of Theorem 2.3.8 we have IndL < », so that IndX < »n =indX. O

Let us note that in the realm of Lindeldf spaces Lemma 2.4.1 is an
immediate consequence of Lemma 2.3.16, so that the fact that Theorems
2.4.2,2.4.3 and 2.4.4 hold for Lindelof spaces can be obtained independently
of the above-mentioned result that every strongly paracompact space is
a Lindeldf space.

Let us also note that an obvious modification of the proof of Theorem
2.4.4 shows that indX = IndX for every strongly paracompact space X
in each closed subspace of which the countable sum theorem holds either
for ind or for Ind. :
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In the problems listed at the end of this section Theorems 2.4.2, 2.4.3
and 2.4.4 are extended to some classes of spaces larger than the class of
strongly paracompact spaces. However, the definitions of these classes
of spaces are a little less natural than the definition of strongly paracompact
spaces and, to some degree, are inspired by the methods of proofs.

We now turn to a study of the behaviour of the dimension Ind under
Cartesian multiplication. Let us begin with recalling that, as stated in Sec-
tion 2.2, there exist compact spaces X and Y such that Ind(Xx Y) > Ind X+
+IndY. Thus, one can see that the Cartesian product theorem for.Ind,
i.e.,, the inequality Ind(XxY)< IndX+IndY, requires rather strong
assumptions on X and Y. Several theorems of this type were proved under
various assumptions. Usually, one assumes that X and Y have some prop-
erties related to paracompactness and that the Cartesian product X xY
is totally normal; generally, this last assumption can be weakened to the
assumption that X x Y is strongly hereditarily normal or to the assump-
tion that the finite sum theorem for Ind holds in closed subspaces of X
and Y, i.e., that, for every closed subspace Z of either X or Y, IndZ < n
whenever Z can be represented as the union of a finite number of closed
subspaces F,, F,, ..., F, such that IndF, < nfori=1,2,...,k. Among
the Cartesian product theorems for Ind so far discovered there is no strong-
est result, We shall quote two such theorems, which are relatively strong.
Thus, the inequality Ind(X xY) < IndX xIndY holds for every pair X, Y
of normal spaces of which at least one is non-empty provided that either

(i) the finite su m theorem for Ind holds in closed subspaces of X and Y
the Cartesian product X x Y is normal and one of the factors is compact
(more generally: the projection onto one of the factors is a closed
mapping),

or

(i) the finite sum theorem for Ind holds in closed subspaces of X and Y,
the Cartesian product X x Y is normal, one of the factors is metrizable
and the other is countably paracompact (more generally: one of the
factors can be mapped to a metrizable space by a perfect mapping
and the other is countably paracompact).

Let us observe that the proofs of Cartesian product theorems for Ind
are fairly difficult; yet the difficulties are chiefly connected with the compli-
cated structure of subsets of Cartesian products, so that—roughly speak-
ing—they are of “topological” rather than “dimensional” nature. As
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a sample we shall prove here two Cartesian product theorems for Ind
which are among the simplest.
Arguing as in the proof of Theorem 1.5.16, we obtain

2.4.5. Lemma. For every pair X, Y of regular spaces of which at least one
is non-empty such that the finite sum theorem for ind holds in closed sub-
spaces of the Cartesian product X xY we have

ind(X x ¥) < indX+ind Y. [J

Theorem 2.4.4 and Lemma 2.4.5 yield

2.4.6. Theorem. For every pair X, Y of normal spaces of which at least one
is non-empty such that the Cartesian product X x Y is strongly paracompact
and strongly hereditarily normal we have

Ind(X x ¥) < IndX+Ind Y. O

2.4.7. Lemma. The Cartesian product Xx Y of a perfectly normal space X
and a metrizable space Y is perfectly normal.

Proof. As Xx Y is a T,-space it suffices to show (see Problem 2.1.E (b))

that for every open set W < X' xY there exists a sequence W;, W, ...
o0

of open subsets of X x Ysuch that W = J W;and W, c Wfori = 1,2, ...

i=1

Let ¥~ be a base for the space ¥ which can be represented as the union
of locally finite families #°,, ¥ ,, ... (see [GT], Corollary 4.4.4). Consider
the family %~ of all sets Ux V, where U is an open subset of X and V' € ¥,
such that UxV < W; clearly W = | #". For every ¥V € ¥ the union

UV)=U {U: UxVew} is an open Fy-set in X, therefore U(V)
(28]
=jL=)1 U;(V), where U;(V) is open and U;(V) = U(V) for j=1,2, ..

The family %, = {U,(V)xV: Ve¥} is locally finite in XxY for
Jok=1,2 ..., so that the set W;, = {J #7;, satisfies the inclusion

oS

W,.cW. Since U W, ,=U# =W, to complete the proof it

Jk=1
suffices to arrange all the sets W, into a sequence Wy, W,, ... []
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2.4.8. Theorem. For every perfectly normal space X and every metrizable
space Y of which at least one is non-empty we have

Ind(XxY) < IndX+IndY.

Proof. The theorem is obvious if the dimension Ind of one of the spaces
X, Y equals oo, so that we can suppose that k(X,Y) = IndX+IndY is
finite. We shall apply induction with respect to that number. If k(X, Y)
= —1, then our inequality holds. Assume that the inequality is proved
for every perfectly normal space and every metrizable space such that
at least one of them is non-empty and the sum of large inductive dimensions
of which is less than k > 0, and consider a perfectly normal space X and
a metrizable space Y such that IndX =rn> 0, IndY =m > 0 and n+m
= k. Let ¢ be a metric on the space Y. Since every metrizable space is
paracompact, the space Y has for i = 1, 2, ... a locally finite open cover
%, such that mesh%,; < 1/i. By virtue of Theorem 2.3.17 the cover %, has
a locally finite open refinement ¥7; such that IndFrV < m—1 for every

V € ¥;. Obviously, the family ¥" = (J ¥, is a base for the space Y.
i=1

Consider now an arbitrary two-element open cover {G, H} of the
Cartesian product X x Y let #" be a refinement of the cover {G, H} con-
sisting of sets of the form U x ¥, where U is an open subset of X and V € ¥".
For every V € ¥ the unions

GV)=U {U: UxVe# and UxV < G} and
HWV)= {U: UxVe# and UxV cH}

are open F,-sets in X therefore

GWV) = G G;V) and H®W)= QHj(V)’
=1 j=

where G;(V), H;(V) are open and
IndFrG;(¥) <n—1 and IndFrH;V)<n-1 forj=1,2,..
The family

W= {G,(NxV: VevJu{H,V)xV: Ve¥,}

o0
is locally finite in Xx ¥ for j,i = 1,2, ..., so that the union U # ;. is
Ji=1
a o-locally finite open refinement of the cover {G, H}.
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From Theorem 2.1.3 and Lemma 2.4.7 it follows that the Cartesian
product X x Y is strongly hereditarily normal. Thus, by virtue of Theorem
2.3.17, to complete the proof it suffices to show that IndFr W < k—1
for every We % ;, and j, i = 1,2, ... The last inequality is a consequence
of the inclusions

Fr(G,(V)x V)< (Xx FrV)u(FrG,(V) xY)
and

Fr(H,(V)xV) c XxFrV)U(FrH,(V)xY),

the inductive assumption, and Theorem 2.3.8. [J

Historical and bibliographic notes

The first example of a compact space X such that indX # IndX was
defined by Filippov in [1969]; the example is discussed in detail in Filip-
pov’s paper [1970b] and in Pears’ book [1975]. Simpler, but still quite
complicated examples of such spaces were described by Filippov in [1970],
Pasynkov and Lifanov in [1970], and Pasynkov in [1970]; these last spaces,
moreover, are first-countable. The example of a completely metrizable
space X such that indX = 0 and IndX = dimX = 1 was outlined by
Roy in [1962]; a detailed discussion of this example is contained in Roy’s
paper [1968] and Pears’ book [1975]. The first example of a normal space
with non-coinciding inductive dimensions was given by Smirnov in [1951].
Theorems 2.4.2 and 2.4.3 were proved by Vedenissoff in [1939] under
the stronger assumption that X is a Lindelof space. Theorems 2.4.4 and
2.4.6 were given by Katuta in [1966] with strong hereditary normality
replaced by total normality; an important special case of Theorem 2.4.4,
viz., the equality indX = IndX for every strongly paracompact metrizable
space X, was proved by Morita in [1950a] (see also notes to Theorem
1.5.13). The fact that the inequality Ind(XxY) < IndX+IndX holds
for every pair X, Y of spaces satisfying either (i) or (i1) was proved by
Filippov in [1979] (announcement [1973]); part (ii) was announced inde-
pendently by Pasynkov in [1973]. In the original formulation of (ii) Filippov
and Pasynkov assume that the Cartesian product X x Y is normal and
countably paracompact; since Rudin and Starbird established in [1975]
that if the Cartesian product of a metrizable space and a countably para-
compact space is normal, then it is also countably paracompact, the as-
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sumption of the countable paracompactness of X'xY can be dropped.
Theorem 2.4.8 was obtained by Kimura in [1963]; under the additional
assumption that X is a paracompact space it was proved by Nagami in
{1960a). Further information on Cartesian product theorems for Ind can be
found in Kimura [1963], Nagata [1967], Lifanov [1968], Nagami [1969],
Pasynkov [1969], van Dalen [1972] and Pears [1975].

Problems

2.4.A. (a) (Nagata [1957]) Prove that the Cartesian product of the open
unit interval (0, 1) and the Baire space B(¥X;) (see Example 4.1.23) is
not strongly paracompact. Deduce that the class of all strongly paracompact
metrizable spaces is not hereditary with respect to F,-sets and is not finitely
multiplicative. Show that a metrizable space which can be represented
as the union of a locally finite countable family of strongly paracompact
closed subspaces is not necessarily strongly paracompact.

(b) Show that every paracompact space X such that IndX = 0is strongly
paracompact. -

{c) Show that the Cartesian product X xY of a strongly paracompact
space X and a compact space Y is strongly paracompact.

(d) (Morita [1954]) Prove that the Cartesian product I¥ex B(m) is
a universal space for the class of all strongly paracompact metrizable
spaces whose weight is not larger than m = N,.

2.4.B (Zarelua [1963] (announcement [1961])). A topological space X
is called completely paracompact if X is a regular space and for every open
cover % of the space X there exists a sequence ¥, ¥ ,, ... of star-finite

(o)
open covers of X such that the union {_ ¥, contains a refinement of %.
i=1

(a) Observe that every completely paracompact space is paracompact
and that every strongly paracompact space is completely paracompact.
Show that in the realm of connected spaces complete paracompactness
is equivalent to the Lindeldf property. Prove that complete paracompact-
ness is hereditary with respect to Fj-sets.

(b) Prove that a metrizable space is completely paracompact if and
only if it has a base which can be represented as the union of countably
many star-finite covers. Deduce that the class of completely paracompact
metrizable spaces is hereditary and countably multiplicative. Show that
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a metrizable space which can be represented as the union of a countable
family of completely paracompact closed subspaces is not necessarily
completely paracompact.

(c) Prove that the Cartesian product 7% x B(m) is a universal space
for the class of all completely paracompact metrizable spaces the weight
of which is not larger than m > N,.

(d) Give an example of a completely paracompact metrizable space
which cannot be represented as the union of a e-locally finite family of
strongly paracompact closed subspaces.

Hint. Consider the Cartesian product R¥e x B(N,).

(e) Check that Theorems 2.4.2, 2.4.3 and 2.4.4 remain valid for com-
pletely paracompact spaces.

2.4.C. (a) (Nagami {1969]) A topological space X is called o-totally
paracompact if X is a regular space and for every base & for the space X
there exists a o-locally finite open cover ¥ of X such that for each Ve ¥ )
one can find a Ue & satisfying V < U and FrV < FrU.

Show that the class of o-totally paracompact spaces is hereditary with
respect to F,-sets. Check that-Theorems 2.4.2, 2.4.3 and 2.4.4 remain
valid for o-totally paracompact spaces.

(b) (Zarelua [1963] (announcement [1961])) Observe that every o-totally
paracompact space is paracompact and that every completely paracompact
space is o-totally paracompact.

2.4.D. (a) (Fitzpatrick and Ford [1967]) A topological space X is order
totally paracompact if X is a regular space and for every base & for the
space X there exists an open cover {V}.s, where the set S is linearly
ordered by a relation <, such that for every s, € S the family {V, "V},
is locally finite in the space ¥, and for each s € S one can find a Ue %
satisfying ¥V, = U and FrV, < FrU.

Show that the class of order totally paracompact spaces is hereditary
with respect to closed subspaces.

(b) Prove that Theorem 2.4.2 remains valid for order totally para-
compact spaces.

Hint. Check that if for a pair 4, B of disjoint closed subsets of a topo-
logical space X there exists an open cover {¥,}.s of X, where the set S
is linearly ordered by a relation <, such that for every s, € S either I7s°mA
=@ or V,,nB =@ and the family {Vi,"V}s<s, is locally finite in the
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space V,, then there exists a partition L between 4 and B such that L

c U Frv..
se§

Remark. 1t is not known if Theorems 2.4.3 and 2.4.4 remain valid
for order totally paracompact spaces.

(c¢) (Fitzpatrick and Ford [1967]) Prove that for every order totally
paracompact metrizable space X we have indX = IndX.

Hint. Apply the hint to (b); use the fact that X has a o-locally finite
base.

(d) (Katuta [1967]) Prove that a regular space X is paracompact if and
only if every open cover # of X has an open refinement {V}.s, where
the set S is linearly ordered by a relation <, such that for every s € S,
the family {V; nV},,, is locally finite in the space V.

Hint. To prove that the space X is paracompact it suffices to show
that every open cover of X has a locally finite refinement consisting of
arbitrary sets (see [GT], Theorem 5.1.11). '

(¢) Deduce from (d) that every order totally paracompact space is para-
compact and note that every o-totally paracompact space is order totally
paracompact.

2.4.E. Show that if a metrizable space X can be represented as the union
of a locally countable family {F,},.s of closed subspaces such that-ind F;
= Ind F; for s € S, then indX = IndX.



CHAPTER 3

THE COVERING DIMENSION

Chapter 2 was devoted to an examination of the question which
results of the classical dimension theory of separable metric spaces hold
in more general classes of spaces for the large inductive dimension Ind.
In the present chapter, the covering dimension dim becomes the subject
of similar considerations. It will be seen that outside the class of separable
metric spaces the dimension dim behaves somewhat better than the dimen-
sion Ind, i.e., that for the dimension dim a larger number of theorems
of the classical theory can be extended to topological spaces and that
the extensions hold under weaker assumptions.

Section 3.1 is primarily devoted to the question of monotonicity of
dim in general spaces and to a study of sum theorems for dim. We also
discuss the relations between the covering dimension dim and the inductive
dimensions ind and Ind; in particular, we prove that dimX < IndX for
every normal space X.

Section 3.2 begins with several characterizations of the dimension
dim in normal spaces. They include generalizations of three important
theorems of the classical theory of dimension, namely the theorems on
partitions, on extending mappings to spheres and on &-mappings. The
final part of the section is devoted to a discussion of Cartesian product
theorems for the covering dimension.

In Section 3.3 we establish the compactification and the universal
space theorems for dim and characterize compact spaces whose covering
dimension does not exceed # as limits of inverse systems of compact metric
spaces of dimension < #.

We shall return briefly to the topic of this chapter in Section 4.3, where
some information on relations between the covering dimension of the
domain and the range of a closed mapping will be given.
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3.1. Basic properties of the dimension dim in normal spaces. Relations between
the dimensions ind, Ind and dim

The definition of the covering dimension dim was stated in Section
1.6; let us recall that a normal space X satisfies the inequality dimX < n
if and only if every finite open cover of the space X has a finite open refine-
ment of order < n. We shall begin this section with a characterization
of the dimension dim which demonstrates that instead of finite open re-
finements of order < n one can equally well consider finite closed refine-
ments of order < n. The characterization is preceded by an auxiliary
theorem on swellings of finite families of closed subsets of normal spaces
which will be applied in its proof.

3.1.1. Definition. By a swelling of the family {4;}s of subsets of a topolo-
gical space X we mean any family {B;}.s of subsets of the space X such
that A, = B, for every s € S and for every finite set of indices s,, 55, --
€S

As,ndsn ... 0d,, #G  if and only if B, nBs,N ... "B, # I;

~,Sm

a swelling is open if all its members are open subsets of the space X.

Clearly, every swelling # of a family &/ satisfies the equality ord#%
= ord .

The following theorem is, in a sense, dual to Theorem 1.7.8, which
deals with shrinkings of finite open covers of normal spaces.

3.1.2. Theorem. Every finite family {F,}f_, of closed subsets of a normal
space X has an open swelling {UY_,. If, moreover, a family {V}f_, of
open subsets of X satisfying Fy <=V, for i = 1,2, ..., k is given, then the
swelling can be defined in such a way that UV fori=1,2,.. k.

Proof. The union E; of all intersections F; nFy,n ... NF; satisfying
the equality FinF; nF, N ... "F; = @ is a closed set disjoint from F,,
so that there exist an open set U, such that F;, = U, and U,nE, = @.
‘One readily sees that the family { U,, F,, ..., F} is a swelling of the family
{Fi‘ !‘:1 .

Assume that for i = 1,2, ...,n—1 an open set U, is defined in such
away that F, = U, and the family {U,, U,, ..., U,_y, Fy, ..., F;} is a swell-
ing of the family {F;}f_,. The union E, of all intersections of members
of the family {U,,U,, ..., U,_,, F,, ..., F;} which are disjoint from F,
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is a closed set disjoint from F,, so that there exists an open set U, such that
F, < U, and U,nE, = @. The family {U,, U,, ..., Uy, Fyyys ..., Fi} is
a swelling of the family {F,}£. ;. In this way we obtam open sets Ul , Uz,

, U, such that F, = U, forii = 1,2, ...,k and the family {U,}%, is
a swelling of the family {F,}¥.,. Clearly, the family {U,}}., is the required
open swelling. The second part of the theorem is obvious. [

Theorems 1.7.8 and 3.1.2 yield

3.1.3. Proposition. For every normal space X the jfollowing conditions are

equivalent:

(8) The space X satisfies the inequality dimX < n

(b) Every finite open cover of the space X has a closed shrinking of order
< n

(c) Every finite open cover of the space X has a finite closed refinement
of order < n.

Since normality is not a hereditary property, it may happen that the
dimension dim is defined for a space X and yet is not defined for a subspace
M < X. Still, normality being héreditary with respect to closed subsets,
Ind M is defined for every closed subspace M < X. Moreover, the following
counterpart of Theorem 2.2.1 holds.

3.1.4. Theorem. For every closed subspace M of a normal space X we have
dimM < dimX.

Proof. The theorem is obvious if dimX = oo, so that we can assume that
dimX = n < 0. Consider a finite open cover % = {U:}¥_, of the space
M.Fori=1,2, ..., klet W, be an open subset of X such that U; = MnW,.
The family {X\M}u{W,}{_, is an open cover of the space X and, since
dimX < n, it has a finite open refinement ¥~ of order < n. One easily
sees that the family ¥7|M is a finite open cover of the space M, refines
% and has order < n, so that dimM < n = dimX. [

From Theorem 1.6.11 it follows that the compact space Z and its
normal subspace X defined in Example 2.2.11 satisfy the relation 0 < dimX
> dimZ = 0. Hence, in Theorem 3.1.4 the assumption that M is a closed
subspace of X cannot be replaced by the weaker assumption that dim M
is defined. In Section 2.2 an even stronger example is cited which shows
that the dimension dim is not monotonic in hereditarily normal spaces.
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Let us observe that the theorem on subspaces of intermediate dimensions,
i.e., the counterpart of Theorems 1.5.1 and 2.2.2, does not hold for the
dimension dim in normal spaces. More exactly, for every natural number
n = 0 there exists a compact space X, such that dimX, = n and for every
closed subspace M < X, we have either dimM < 0 or dimM = n. The
description of spaces X, and verification of their properties are too difficult
to be reproduced in this book.

We shall now show that for a fixed hereditarily normal space X the
monotonicity of the dimension dim is equivalent to its being monotonic
with respect to open subspaces.

3.1.5. Proposition. For every hereditarily normal space X the following con-
ditions are equivalent:

(a) For every subspace M of X we have dim M < dimX.

(b) For every open subspace U of X we have dimU < dimX.

Proof. The implication (a) = (b) is obvious. Suppose that X satisfies (b).
Condition {a) is satisfied if dimX = co, so that we can assume that dimX
= n < 0. Consider a subspace M of X and a finite open cover # = {U,},

of the space M. For i = 1,2, ...,k let W, be an open subset of X such
2

that U, = MnW,. Since for the open subspace W = J W, of X we
i=1

have dim W < n, the cover {W,}E., of the space W has a finite open
refinement ¥~ of order < n. One easily sees that the family ¥"|M is a finite
open cover of the space M, refines % and has order < n, so that dimM
< n = dimX. Thus X satisfies condition (a). []

We shall return to the question of the monotonicity of dim later in
this section and we shall show that the dimension dim is monotonic in the
class of strongly hereditarily normal spaces; the proof of this important
fact depends on the countable sum theorem for dim.

We now turn to a study of sum theorems for the covering dimension.

3.1.6. Lemma. If a normal space X can be represented as the union of a se-
quence K, , K,, ... of subspaces such that dim Z < n for every closed subspace

Z of the space X contained in a set K, and the union \J K, is closed for

jsi
i=1,2, .., then dimX < n.
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Proof. Consider a finite open cover % = {U;}f_; of the space X. We
shall define inductively a sequence %, %, , ... of open covers of the space
X, where #%; = {U; ;}f.,, satisfying the conditions:

(1) U.;cU_,; ifizl and Uy,;c U, for j=1,2,.. k.
@) ord({Fin(_fi,j}}‘zl) < n, where F; = K;UK,u ... UK,
ifiz1and F, = @.

Both conditions are satisfied for i = 0 if we define U, ; = U, for
j=1,2,..., k. Assume that the coverings %, satisfying (1) and (2) are

defined for all i < m > 1. Consider the set 4 = \J (1 U,,_,.;, where I
Tes jeT

1s the family of all subsets of the set 1,2, ..., k which have exactly n+2
elements. From (2) with i = m—1 it follows that AnF,_; = @. The
intersection Z = AnF,, is a closed subspace of the space X and is contained
in F,\F,_; < K,, so that dimZ < n. By virtue of Proposition 1.6.9
the cover {ZNU,._,,;}%  of the space Z has an open shrinking {V;}j,
of order < n. One readily observes that the family {W,}¥_,, where W;
= (Up_1,,\Z2)VV; < U,_,,;, is an open cover of the space X and that
ord({F.nW;}_,) < n. By Theorem 1.7.8 and the normality of X there
exists an open shrinking %,, = {U,,;}%., of the cover {W}%_; such that
U, ;c W,;forj=1,2,.., k. Clearly, the cover %,, satisfies conditions
(1) and (2) with i = m. Hence the construction of the covers %; satisfying
(1) and 2) for i =0, 1, ... is completed.

For every point x € X there exists an j(x) < k such that x belongs

to infinitely many sets U, ;; it follows from (1) that x € () Uy, j0-
i=1

oo
Applying (1) and (2) we readily see that the family {ﬂ U, j}}‘=1 is a closed
i=1
shrinking of the cover {U,}}., and has order < n. Therefore we have
dimX < n by virtue of Proposition 3.1.3.

From Theorem 3.1.4 and Lemma 3.1.6 we obtain

3.1.7. Proposition. If a normal space X can be represented as the union of
a sequence K;, K,, ... of normal subspaces such that dimK, < n and the

union \J K; is closed for i = 1,2, ..., then dimX < n. [J

jsi

The last proposition yields
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3.1.8. The countable sum theorem for dim. If a normal space X can be
represented as the union of a sequence Fy, F,, ... of closed subspaces such
that dimF, < n for i= 1,2, ..., then dimX < n. [J

We now pass to the locally finite sum theorem for dim. The theorem
will be deduced from a lemma which is formulated here in 2 more general
form in view of an application in the following section.

3.1.9. Lemma. Let % = {Us}ses be an open cover of a normal space X.
If the space X has a locally finite closed cover & each member of which
has covering dimension not larger than n and meets only finitely many sets
U,, then the cover % has an open shrinking of order < n.

Proof. Let us adjoin the set F, = @ to the cover & and let us arrange
the members of this cover into a transfinite sequence Fy, Fy, ..., F, ...,
o < & of type £+1. We shall define inductively a transfinite sequence
Uy WUy uryUgy ..., < & of open covers of the space X, where
Uy = {Us,s}ses, satisfying the conditions:

B U,sclU,, fa>fz20 and U,,<U; forses.

“ ord({FoNUq s}ses) < 1.
%) UpNU,,c U F, for g <aandseS.
Bsy<a

All conditions are satisfied for o = 0 if we define Uy, = U, for s € S.
Assume that the coverings %, satisfying (3)-(5) are defined for all o < o,
> 1. To begin with, we shall show that the family %, = {U;,,s}ses, Where

Ui .= () U, forses,

a<ag

is an open cover of the space X. This is clear if 4y = a; +1, because then
U,, = U,,; thus, we can assume that o, is a limit number.

Consider an arbitrary point x € X. Since the family & is locally finite,
there exist a neighbourhood U < X of the point x and an ordinal number
B < a, such that UnF, = & whenever § < y < do. The family %, being
a cover of X, there exists an s € § such that x € Uz ;. It follows from (5)
that x € U, ; whenever 8 < « < o, so that x € Uy,,;. Hence %, is a cover
of the space X.

To show that the sets U, are open it suffices to consider, for an
arbitrary point x € Uy, a neighbourhood U < X of the point x and an
ordinal number f < &, such that UnF, = & whenever <y < to,
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to choose a set U, which contains x, and to observe that x e UnUs, s
c U,,,s by virtue of (5).

The open cover {F, nU;, s}ss of the subspace F, < X has an open
shrinking {V,}ss of order < n, because—by (3) and the assumption on
the family & —only finitely many members of that cover are non-empty.
One readily observes that the family %, = {U,  s}es, where U,
= (Us,.s \Fe,)UV5, is an open cover of the space X satisfying conditions
(3)-(5) with « = y. Hence the construction of the covers %, satisfying
(3)-(5) for a < £ is completed.

Now, it follows from (4) that ord%;: < n; as %, is, by virtue of (3),
a shrinking of %, the lemma is established. []

Lemma 3.1.9 yields

3.1.10. The locally finite sum theorem for dim. If a normal space X can be
represented as the union of a locally finite family {F}ss of closed subspaces
such that dimF; < n for s € S, then dimX < n.

The following two theorems are common generalizations of the countable
and the locally finite sum theoreins. The proofs, parallel to the proofs of
Theorems 2.3.11 and 2.3.12, are left to the reader.

3.1.11. Theorem. If a normal space X can be represented as the union of
a o-locally finite family {Fs}sws of closed subspaces sugh that dimFs < n
SJor s €8, then dimX < n.

3.1.12. Theorem. If a normal space X can be represented as the union of a trans-
finite sequence Fi, Fy, .., Fy, ..., <& of closed subspaces such that
dimF, < n and the family {F;}p<a is locally finite for o < &, and the family
{F,}acs is locally countable, then dimX < n. [

The next result is the point-finite sum theorem for dim. It will yield
two further sum theorems which hold in the class of weakly paracompact
normal spaces. Let us note that in this last class Theorem 3.1.13. generalizes
the locally finite sum theorem (see Problem 2.3.F) and Theorem 3.1.15
generalizes both the countable and the locally finite sum theorems.

3.1.13. The point-finite sum theorem for dim. If a normal space X can be
represented as the union of a family {F}es of closed subspaces such that
dimF, < n for s €S, and if there exists a point-finite open cover {U}es
of the space X such that F, = U, for s €S, then dimX < n.
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Proof. Consider the decomposition of the space X described in Lemma
2.3.3, ie., let
i
©® XxX= U K;, where the union U K; is closed for i =1, 2,
Jjsi
and

M K= U Kr, where the sets K- = K;n[ ) U, are open in K,
Ted seT

and pairwise disjoint.

Let Z be a closed subspace of the space X contained in a set K;. It
follows from (7) that for every T € 7, the set Zn Ky is closed in X. Since

ZnK, = U F, by virtue of Theorems 3.1.8 and 3.1.4 we have dim(ZnKr)
seT

< n for every T e J;; and this implies that dimZ < ». In view of (6),
to conclude the proof it suffices to apply Lemma 3.1.6. (O

3.1.14. Theorem. If a weakly paracompact normal space X can be represented

as the union of a family {U, }ses of open subspaces such that dimU, < n
for s€ S, then dimX < n.

Proof. The space X being weakly paracompact, one can assume that the
cover {Us}ses is point-finite and thus has a closed shrinking {F;}.s (see
[GT], Theorem 1.5.18). To complete the proof it suffices to apply The-
orems 3.1.4 and 3.1.13.

A variant of the last theorem which closely parallels Theorem 2.3.14
is given in Problem 3.1.D(a).

3.1.15. Theorem. If a weakly paracompact normal space X can be represented
as the union of a locally countable family {F;}s of closed subspaces such
that dimF; < n for s €S, then dimX < n. O

Proof. For every point x X there exist a neighbourhood U, and a countable
set S(x) = S such that U,nF, = @ for s € S\S(x). From this relation

it follows that U, = U {F,: s €S(x)}, so that by virtue of Theorems
3.1.4 and 3.1.8 we have dimU, € n for x € X. To complete the proof
it suffices to apply Theorem 3.1.14. OO

We now pass to the addition theorems for dim.
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3.1.16. Proposition. If a normal space X can be represented as the union
of two subspaces A and B such that A is normal, dim4 < n, and dimZ < m
for every closed subspace Z of the space X contained in B, then dimX < n+
+m+1.

Proof. By virtue of Lemma 3.1.6 it suffices to show that_dimZ <nt+m+1l.
Consider a finite open cover % = {U,}{‘=1 of the space A._Since dim4 < n,
there exists a family ¥~ = {V; k_, of open subsets of A such that

k

AnV, € AnU, fori=1,2,...,k, AUV,
i=1

and  ord({AnV,}£.,) < n;

without loss of generality one can assume that V; < U;fori= 1,2, ..., k.
k

The set Z = ANUJ V, is closed in X and contained in B, so that dimZ < m,
i=1

which implies that there exists a closed cover {F;}{., of Z such that
F, € ZnU, for i = 1,2, ...,k and ord({F;}{,) < m. By virtue of Theo-
rem 3.1.2 the family {F}}_ 1 of closed subsets of 4 has an open swelling
W = {W;}£_, in the space 4 such that W; c U, for i = 1,2, ..., k. Thus
k k
Z=AN\UV,cUW, and ord({W,}r.)<m.
i=1 i=1

The union ¥ u¥#” covers the space A and refines the cover #. As ord(¥" U¥#)
< n+m+1l, dmAd < rn+m+1. O

Theorem 3.1.16 implies

3.1.17. The addition theorem for dim. For every pair X, Y of subspaces of
a hereditarily normal space we have

dim(XuY) < dimX+dimY+1. [

The addition theorem yields

3.1.18. Corollary. If a hereditarily narmal space X can be represented as
the union of n+1 subspaces Z,,Z,, ..., Z,r1 such that dimZ, < 0 for
i=1,2,...,n+1, then dimX < n. [

Let us note that the implication in the last corollary cannot be re-
versed even in the class of compact perfectly normal spaces. Indeed, apply-
ing the continuum hypothesis one can define a compact perfectly normal
space X such that dimX = [ and indX = IndX = 2; now, if the space X
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could be represented as the union Z;uZ,, where dimZ;, = dimZ, = 0,
then by virtue of Theorems 1.6.11 and 2.2.5 we would have IndX = 1.
The description of the space X is too complicated to be discussed in this
book. ,

Let us return to the question of the monotonicity of dim. We are now
able to prove

3.1.19. The subspace theorem for dim. For every subspace M of a strongly
hereditarily normal space X we have dimM < dimX.

Proof. We can assume that dimX = n < c0. To begin with, let us observe
that from Theorems 3.1.13, 3.1.8 and 3.1.4 it follows that dimU < n for
every open subspace U of X which can be represented as the union of a point-
finite family of open F,-sets in X.

Now, consider an arbitrary subspace M of X and a finite open cover
{U;}., of the space M; let {F;}¥., be a closed shrinking of this last
cover. For i = 1,2, ..., k the sets F; and M\U, are separated in X, so
that there exists an open set V; = X such that F, = V;,, MnV, < Uy,
and V; can be represented as the union of a point-ﬁni}ce family of open

F,-sets in X. By the above observation the set V = [J V; satisfies the
i=1

inequality dim¥ < n; therefore there exists an open shrinking {Wi}{‘= L

of the cover {V;}k; of the space ¥ such that ord({W,}i2,) < n. Since
k k

M=UF«c U.Vi =V and MV, c U, the family {MnW}f, is
i=1 i=1
an open shrinking of the cover {U;}f_,. As ord({MnW,}i.,) < n, dimM
<n [
The last theorem together with Theorems 2.1.3 and 2.1.5 yield the

following two corollaries, which can also be deduced directly from Prop-
osition 3.1.5 and Theorem 3.1.8 and 3.1.14.

3.1.20. Corollary. For every subspace M of a perfectly normal space X we
have dimM < dimX. OJ

3.1.21. Corollary. For every subspace M of a hereditarily weakly para-
compact hereditarily normal space X we have dimM < dimX. O

We shall now establish a theorem on the monotonicity of dim which
slightly differs in nature from our previous theorems of this type: here,
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the assumptions are about the internal topological propevrties of the sub-
space M rather than the position of the subspace M in the space X.

3.1.22. Lemma. Every subspace M of a normal space X which is an F,-set
in X is normal.

Proof. It suffices to show (see Problem 2.1.E(a) or [GT], Lemma
1.5.14) that for every closed set F ¢ M and each open set W c M there

o0
exists a sequence W,, W,, ... of open subsets of M such that F < U W,
i=1

and MmWi c W for i =1,2,..., where the bar denotes the closure

oo
operator in X. Let F,, F,, ... be closed subsets of X such that M = [ F,
i=1

and U an open subset of X such that W = MnU. The space X being
normal, for i = 1, 2, ... there exists an open set U; = X such that FnF;
c U, c U, c U. The sets W, = MnU, satisfy all the required condi-
tions.

3.1.23. Theorem. For every strongly paracompact subspace M of a normal
space X we have dimM < dimX.

Proof. We can assume that dimX = n < co. Consider a finite open cover

{U;}r_, of the space M. For i=1,2, ...,k let W, be an open subset
k

of X such that U, = MAW, and let W = | W,. For every point x e M
=1

choose a neighbourhood ¥, of the point x in X such thatx e ¥, c ¥, ¢ W.
The open cover {MNV,},em of the space M has a star-finite open refine-
ment 7. Consider the decomposition {¥ }ss of the cover ¥ into compo-
nents; as was established in Section 2.4, the components ¥, are countable

and the sefs ¥, = | ¥, are pairwise disjoint. Let F, be the union of the
closures in X of all sets which belong to the family ¥7,. Clearly V, c F,
< W, and by virtue of Lemma 3.1.22 the subspace F, of X is normal;
from the countable sum theorem it follows that dimF; < n. Thus, for
every s € S there exists an open cover {W, }f., of the space F; such that
W,,c Wy fori=1,2,...,k and ord({W,,}*.,) < n. One readily sees

that the family {V;}f_,, where V; = MnU (V.nW,, ), is an open shrinking
seS

of the cover {U;}f., of the space M. As ord({V;}f.,) <n, dimM<n
=dimX.
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Applying Theorem 3.1.14 we can strengthen the last theorem as follows
(we recall that a space X is locally strongly paracompact if every point
of X has a neighbourhood whose closure is strongly paracompact).

3.1.24. Theorem. For every weakly paracompact locally strongly paracompact
normal subspace M of a normal space X we have dimM < dimX. []

Let us observe that in Theorem 3.1.23 the assumption that X is strongly
paracompact cannot be replaced by the weaker assumption that X is para-
compact (cf. Problem 3.2.G(b)). Indeed, by virtue of Remark 1.3.18,
Roy’s space X, cited in Section 2.4, which satisfies indX = 0 and dimX = 1,
is embeddable in a Cantor cube Dm; since dimD" = 0 (see Theorems
1.6.5 and 1.6.11), we have dimX > dim D™,

We shall now show that the Cech-Stone compactification preserve
the dimension dim. In Section 3.3 it will be proved that for every normal
space there exist compactifications preserving both the dimension dim and
the weight.

3.1.25. Theorem. For every normal space X ~we have dimfgX = dimX.

Proof. To begin with, we shall prove that dimX < dimfX. The inequality
is obvious if dimpX = oo, so that we can suppose that dimfX =n < .
Consider a finite open cover {U,}¥_, of the space X. By virtue of Theorem
1.7.8 there exists a closed shrinking {F;}f_, of the cover {U;}f.;, and
by Urysohn’s lemma for i = 1,2, ..., k there exists a continuous func-
tion f;: X — I such that

@® [HANU) = {0} and  fi(F) = {1};

let f;: BX — I be the continuous extension of f; over 8X. By virtue of (8)
the family {W,}f.,, where W, = fi71((0, 1]), is an open cover of the
space fX and

(9) XﬂWiCUi for i = 1,2,...,k.

Since dimpX < n, the cover {W,}k., has an open shrinking {V}f.,
of order < n. From (9) it follows that the family {XnV;}f.; is an open
shrinking of the cover {U,}£., of the space X. As ord({XnV,}f.,) < n,
dimX < n.

Now, we shall prove that dimfX < dimX. As in the first part of the
proof, we shall suppose that dimX = n < . Consider a finite open cover
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{U,}k1 of the space fX. By virtue of Theorem 1.7.8 there exists an open
shrinking {W,}¥, of the cover {U,}£., suchthat W, c U, for i = 1,2, ...
..., k. Since dimX = n, the cover {XnW,}k_, of the space X has an open
shrinking {V,}f., of order < n which, in turn, has a closed shrinking
{E}f;. Fori=1,2,...,kletF, = E,, where the bar denotes the closure
operator in BX. The family (F,}f., is a cover of the space fX; since F;
=E, c 7 c XaW,=W,c U,fori=1,2, ..., itis a closed shrinking
of the cover {U;}f.,. To complete the proof it suffices to show that
Ord({Fi};;],) <

For i =1,2, ...,k define a continuous function f;: X — I such that
fi(E) = {0} and f{(X\V)) = {1}; let f;: BX — I be the continuous ex-
tension of f; over X. Consider an arbitrary subfamily {F, , F; , ..., F;,}
of the cover {F,}¥_, such that FinF;n...0F, # 3. Let f= max(fil,
fiys s fin)- The set U = f=1(([0, 1)) is open in BX, and since F, nF;,n
N ...nF, < U,wehave U # @, whichimplies that UnX # @. One readily
cheyks that UnX < V, nV;,n ... NV, ; thus the relation ord({V;}i..)
< n yields the inequality m < n+ 1, which shows that ord({F;}.,) < n.0O0

3.1.26. Corollary. For every normal space X and a dense normal subspace
M < X which has the property that every contimious function f: M — I
is continiously extendable over X we have dim M = dimX.

In other words, dimY = dimX for every normal space X and every
normal subspace Y of BX which contains X.

Proof. From the extendability of every continuous function f: M — I
over X it follows that SM = fX. ]

The final part of this section is devoted to a study of relations between
ind, Ind and dim. :

Let us begin with reminding the reader that in Section 1.7, when prov-
ing that the equality ind X = dimX holds for every separable metric space
X, we ascertained that the proof of the inequality dimX < ind X was much
easier than the proof of the reverse inequality. We shall now show that
the inequality dimX < ind X holds for every strongly paracompact space X
and that the related inequality dimX < IndX holds for every normal
space X. Both results will be deduced from a common lemma.

3.1.27. Lemma. If for every pair A, B of disjoint closed subsets of a normal
space X there exists a partition L between A and B such that dimL < n—1,
then dimX < n.
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Proof. Consider a finite open cover {U;}f., of the space X; let {F,}t,

be a closed shrinking of {U;}¥.,. Fori = 1,2, ..., k there exists a parti-

tion L; between F; and X\ U, such that dimL, < n—1; let W, be an open
k

set satisfying F;, ¢ W, c U, and FrW, c L,. Since L = | L, is a normal
i=1

space, dimL < n—1 by virtue of Theorem 3.1.8. By shrinking the open

cover {LNU, k_, of the space L to a closed cover of order < » and then

swelling the latter cover in conformity with Theorem 3.1.2, we obtain

a family {V/;}}_, of open subsets of X such that V,c Ufori=1,2,..,k,

k
(10) Lecv=UV, and ord({V}f,) <n-1.
i=1

The sets V,, Vs, ..., V; together with the sets Z,, Z,, ..., Zx, where
z, = WN(roUw)), -

J<i
constitute a closed refinement of {U,}f.;. To complete the proof it suffices
to observe that this refinement has order < n, which, however, follows
immediately from the second part of (10) and the fact that for j < i < k
we have '

Z,nZ, © W,n[W\(VuW)] ¢ X\V)nFrw, =0. O

From the last lemma, by applying induction with respect to IndX,
we obtain :

3.1.28. Theorem. For every normal space X we have dimX < IndX. [

In the next chapter we shall show that for every metrizable space X
we have the equality IndX = dimX. From example 3.1.31 below it follows
that the equality does not hold in compact spaces. The commentary to
Corollary 3.1.18 above shows that it does not hold in perfectly normal
compact spaces either.

From Lemmas 3.1.27, 2.4.1 and Theorem 3.1.8, by applying induction
with respect to indX, we obtain the following

3.1.29. Theorem. For every strongly paracompact space X we have dimX
< indX. O

As shown by Roy’s space cited above, in the last theorem the assump-
tion that X is strongly paracompact cannot be replaced by the weaker
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assumption that X is paracompact (cf. Problem 3.1.F). The same example
shows that the equality indX = dimX does not hold in metric spaces.
That is does not hold in compact spaces either is shown in Example 3.1.31.
To conclude, let us observe that Theorems 2.4.2 and 1.6.11 yield the
following '

3.1.30. Theorem. For every strongly paracompact space X the conditions
indX = 0, IndX = 0 and dimX = 0 are equivalent. ]

3.1.31. Example. In Example 2.2.13 we described a compact space X with
IndX > indX > 2 which contains closed subspaces F;,F, such that
F,UF, = X and IndF; = IndF, = 1. From Theorems 3.1.28, 3.1.8 and
1.6,11 it follows that dimX = 1. Thus X is a compact space such that
dimX # IndX and dimX # indX. O

Historical and bibliographic notes

Proposition 3.1.3 and Theorem 3.1.4 were given by Cech in [1933].
It was proved by Fedoréuk in [1973] that for every natural number n > 2
there exists a compact space X, such that dimX, = » and for every closed
subspace M c X, we have either dimM < 0 or dimM = n. Theorem
3.1.5 and Lemma 3.1.6 in the case where X = K; UK, (cf. Problem 3.1.B (a))
were obtained by Dowker in [1955]. Theorem 3.1.8 was established by Cech
in [1933], and Theorem 3.1.10 independently by Morita in [1950a] and
Katétov in [1952]; Lemma 3.1.9 appeared in Katétov’s paper [1952].
Theorem 3.1.14 was proved by Dowker in [1955] and by Nagami in [1955]
for paracompact spaces; Theorem 3.1.15, also for paracompact spaces,
was given by Nagami in [1955]. Proposition 3.1.16 was established by
Zarelua in [1963a]; its particular case formulated as Theorem 3.1.17 was
obtained by Smirnov in [1951]. An example of a compact perfectly normal
space X such that dimX = 1 and indX = IndX = 2 was described under
the assumption of the continuum hypothesis by Filippov in [1970a]; the
first example of such a space was constructed under the joint assumption
of the continuum hypothesis and the existence of a Souslin space (see
[GT], Remark to Problem 2.7.9(f)) by Lifanov and Filippov in [1970].
Theorem 3.1.19 for totally normal spaces was proved by Dowker in [1955];
it was extended to Dowker spaces by Lifanov and Pasynkov in [1970]
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(announcement in Pasynkov [1967]) and to super normal spaces by Nis-
hiura in [1977]. Corollary 3.1.20 was established by Cech in [1933]. Theorem
3.1.23 was proved by Morita in [1953]; its strengthening stated as Theorem
3.1.24 was given by Lifanov and Pasynkov in [1970] (an intermediate
result was obtained by Pupko in [1961]). Theorem 3.1.25 was established
by Wallman in [1938]. Theorem 3.1.28 was proved by Vedenissoff in
[1941] and Theorem 3.1.29 by Morita in [1950a] (the latter theorem for
Lindelof spaces was obtained independently by Morita in [1950] and by
Smirnov in [1951]; for compact spaces it was proved by Alexandroff in
[1941])). Example 3.1.31 was given by Lokucievskii in [1949]; the first
example of a compact space X such that dimX # indX was described
by Lunc in [1949].

As observed by Katétov in [1950], the definition of the covering di-
mension dim can be slightly modified so as to lead to a notion of dimension
which behaves relatively well in completely regular spaces. The modifica-
tion consists in replacing condition (CL1) by

(CLY")dimX < n, where n = —1,0, 1, ..., if every finite functionally open cover
of the space X has a finite functionally open refinement of order < n.

Let us recall that a subset 4 of a topological space X is functionally open
(functionally closed)" if there exists a continuous function f: X — I such
that 4 = £ ~1((0, 1]) (such that 4 = f~*(0)); a family of subsets of a to-
pological space is functionally open (closed) if all its members are function-
ally open (closed) sets. As noted in Problem 2.1.A, in normal spaces func-
tionally open (closed) sets coincide with open F,-sets (closed Gj-sets).
From Theorem 3.1.2 and Proposition 3.1.3 it easily follows that the mo-
dified definition of dim is equivalent to the original one in the realm of
normal spaces. When applied to completely regular spaces, the modified
definition yields the covering dimension for completely regular spaces,
which is also denoted by dim. Some theorems proved in this section hold
in the larger class of completely regular spaces for the covering dimension
thus extended (see Problems 3.1.H, 3.1.1, and 3.2.H-3.2.X).
Occasionally, the covering dimension for completely regular spaces,
or even for larger classes of spaces, was defined just by conditions (CL1)-
(CL3) with no modifications. The dimension function obtained in this
way satisfies the counterparts of a few theorems proved in this section

Y} The term cozero-set (zero-set) is also used.
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(see Ostrand [1971]). It seems, however, that such a definition is not quite
consistent with the geometrical conception of dimension. The notion ob-
tained displays some undesirable features of a separation axiom; for exam-
ple, one can easily check that every T;-space whose dimension in the sense
discussed equals zero is normal.

Problems

3.1.A (Morita [1950a]). Prove that if for a family {F,}.s of closed
subsets of a normal space X there exists a locally finite family {V}s
of open subsets of X such that F; = V, for every s € S, then the family
{F.}«s has an open swelling {U,}.s such that U, c V, for s€ S (cf.
Problem 4.2.B(a)).

Hint. Apply transfinite induction; modify the proof of Theorem 3.1.2.

Remark. For every locally finite family {F,}.s of closed subsets of
a countably paracompact collectionwise normal space X there exists a locally
finite family of open subsets of X such that F, = V, for every s € S (see
[GT], Problem 5.5.18(a)).

3.1.B. (a) Observe that Lemma 3.1.6 is a consequence of its special
case, viz., the case where X = K, UK,, and Theorem 3.1.8.

(b) Prove that if a normal space X can be represented as the union
of a transfinite sequence X, , K, ..., K,, ..., o < & of subspaces such that
dimZ < n for every closed subspace Z of the space X contained in a set

K, , the union |UJ Kj is closed for « < &, and the family {K,}, . is locally

B<a
finite, then dimX < n.
Hint. Apply transfinite induction; use Lemma 3.1.6 and Theorem
3.1.10.
(c) Prove that if a normal space X can be represented as the union
of a transfinite sequence K, K,, ..., K,, ..., o < & of normal subspaces

such that dimK, < » and the union | K; is closed for o < &, and the

B<a

family {K,},.¢ is locally finite, then dimX < n.

3.1.C. (a) (Nagata [1965]) Prove that if a normal space X can be rep-
resented as the union of a transfinite sequence Fy, Fy, ..., Fy, ..., a < &
of closed subspaces-such that dimF, < n for o < &, and if there exists
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a transfinite sequence U;, U,, ..., U,, ..., a < & of open subsets of X
such that F, c U, and the family {Uj;};., is locally finite for « < &, then
dimX < n.

Hint. See the hint to Problem 2.3.E(a).

(b) Prove that if a normal space X can be represented as the union
of a transfinite sequence K;, K,, ..., K,, ..., & < & of subspaces such
that dimZ < n for every closed subspace Z of the space X contained

in a set K, and the union U K; is closed for o < &, and if there exists
B<a

a transfinite sequence Uy, U,, ..., Uy, ..., a < & of open subsets of X
such that K, c U, and the family {Ups};. is locally finite for « < &, then
dimX < n. ‘

3.1.D. (a) Show that if a weakly paracompact normal space X can be
represented as the union of a family {U,},s of normal open subspaces
such that dim U, < » for s €S, then dimX < n.

(b) Show, applying Problem 3.1.I(a) below, that the assumption of
normality in (a), as well as in Proposition 3.1.7, can be omitted if by dim
one understands the covering dimension for completely regular spaces
as defined in the notes to this seéction.

3.1.E (Dowker [1955]). Note that the space X described in Example
2.2.11 satisfies the equality dimX = 1.

3.1.F (Zarelua [1963] (announcement [1961])). Show that for every

completely paracompact space X we have dimX < indX (see Problem
2.4.B).

3.1.G. (a) Check that the union and the intersection of finitely many
functionally open (closed) sets are functionally open (closed). Show that
the union (intersection) of countably many functionally open (closed)
sets is functionally open (closed). Prove that for every pair 4, B of dis-
joint functionally closed subsets of a topological space X there exists a con-
tinuous function f: X — I such that 4 < f~*(0) and B < f~1 (1).

(b) Prove that every finite functionally open cover {U,}_, of a topo-
logical space X has shrinkings {F,}¥_; and {W,}f_,, which are, respectively,
functionally closed and functionally open, and such that F, «¢ W, c W,
cU, fori=1,2,..,k.

(c) Prove that every finite family {F,}f_; of functionally closed subsets
of a topological space X has a functionally open swelling {U,}¥_,. Observe
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that if, moreover, a family {V,}*., of functionally open subsets of X
satisfying F, = V; for i = 1, _2, ..., k is given, then the swelling can be
defined in such a way that U, « V; fori=1,2, ... k.

3.1.H. Show that for every completely regular space X the following

conditions are equivalent (see the notes to this section):

(1) The space X satisfies the inequality dimX < n.

(ii) Every finite functionally open cover of the space X has a functionally
open shrinking of order < n.

(iii) Every finite functionally open cover of the space X has a functionally
closed shrinking of order < n.

(iv) Every finite functionally open cover of the space X has a finite function-
ally closed refinement of order < n.

3.1.1 (Katétov [1950]). (a) Show that if a subspace M of a completely
regular space X has the property that every continuous function f: M — I
is continuously extendable over X, then dimM < dimX.

(b) Prove that for every completely regular space X we have dimgX
= dimX. .

(c) Deduce from (b) that if a completely regular space X can be rep-
resented as the union of a.sequence A4,, 4,, ... of subspaces such that
dim 4; < n and every continuous function f: A4; — I is continuously ex-
tendable over X for i = 1, 2, ..., then dimX < n.

Remark. Terasawa defined in [1977] a completely regular space X with
dimX > O which can be represented as the union of a functionally closed
subspace F with dimF = 0 and an open discrete subspace of cardinality
No. As shown by E. Pol in [1978] (announcement in [1976]), there exists
a completely regular space X with dimX > 0 which can be represented
as the union of two functionally closed subspaces F; and F, such that
dimF, = dimF, = 0. It is an open problem whether every completely
regular space X which can be represented as the union of a locally finite
family {4 }.s of subspaces such that dimA4, < n and every continuous
function f: Ay — I is continuously extendable over X for s € S satisfies
the inequality dimX < a.
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3.2. Characterizations of the dimension dim in normal spaces. Cartesian
product theorems for the dimension dim

In this section several characterizations of the covering dimension
in normal spaces are established. They split into two groups. The first
consists of characterizations which are outwardly close to the definition
of dim. The second is made up of generalizations of three important
theorems proved in Chapter 1 for separable metric spaces, viz., of the
theorems on partitions, on extending mappings to spheres, and on &-map-
pings. In the final part of the section we apply one of the characteriza-
tions of the first group to obtain two theorems on the dimension dim of
Cartesian products.

3.2.1. Dowker’s theorem. For every normal space X the following condi-

tions are equivalent:

(a) The space X satisfies the inequality dimX < n.

(b) Every locally finite open cover of the space X has an open shrinking
of order < n.

(c) Every locally finite open cover of the space X has an open refinement
of order < n.

Proof. We shall show first that (a) = (b). Consider a normal space X
such that dimX < n. Let % = {U,},s be an arbitrary locally finite open
cover of the space X. Denote by J the family of all non-empty finite sub-
sets of S and for every T € define
Fr=) (_fst X\Uy);
s¢T

seT

by virtue of Theorem 3.1.4 dim Fr < n. The family & = {Fr}rcs is a closed
cover of X each member of which meets only finitely many sets U;. The
cover % being locally finite, for every point x € X there exists a neigh-
bourhood U and a finite set S, = S such that UnU = O, and consequently
UnU, = @, for s € S\.S,. From the definition of the sets Fr it follows
that if UnFr # O, then T < §;; thus the cover & is locally finite. By
virtue of Lemma 3.1.9 the cover % has an open shrinking of order < n,
so that the space X satisfies condition (b).

To complete the proof it suffices to observe that the implication (b) = (c)
is obvious and the implication (c) = (a) follows from Proposition 1.6.9.]

The last theorem yields
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3.2.2. Proposition. For every paracompact space X the following conditions
are equivalent:

(@) The space X satisfies the inequality dimX < n.

(b) Every open cover of the space X has an open shrinking of order < n
(c) Every open cover of the space X has an open refinement of order < n.[]

Conditions (a) and (c) in the last proposition are not equivalent in the
realm of all normal spaces. Indeed, each cover of finite order is point-
finite, so that every space X which satisfies (c) is weakly paracompact,
whereas there exist normal spaces which are not weakly paracompact
(see Example 2.1.6). One can show that conditions (a) and (c) are not
equivalent even in the realm of all weakly paracompact spaces but the
example is more difficult (see [GT], Problem 5.5.3(c)). On the other hand,
conditions (b) and (c) are clearly equivalent for every normal space X.

Obviously, every family of sets which can be represented as the union
of n+1 families of order < 0, i.e., consisting of pairwise disjoint sets
has order < n. We are now going to strengthen Theorem 3.2.1 by proving
that every locally finite open cover of a normal space X such that dimX < n
has an open shrinking of this last form. This result is in a sense a substitute
for the decomposition theorem for dim.

3.2.3. Lemma. For every locally finite open cover % = {U,}sws of a normal
space X such that ord% < n = 0 there exists an open cover ¥ of the
space X which can be represented as the union of n+ 1 families V",V ,, ...
cos Vugr, where ¥y = {V, ;}ses, such that ord¥"; < 0 and V,; , < U, for
seSandi=1,2,...,n+1.

Proof. We shall apply induction with respect to n. The lemma is obvious
if n = 0. Assume that the lemma is proved for all normal spaces and all
locally finite open covers of order < n > 1 and consider a normal space X
and a locally finite open cover # = {U,},s of X such that ord # < n.
Let {W },cs and {F,},s be, respectively, an open and a closed shrinking
of % such that W, c F, for every s € S (cf. [GT], Theorem 1.5.18). Denote
by 7 the family of all subsets of S that have exactly n+ 1 elements and for
every T € 7 define

Ur=(\U,, Wr=(\W, and Fr=()\F,.
s €T '

seT seT
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From the local finiteness of % it follows that the family {Fr}rs is locally
finite. The inequality ord% < n implies that UrnUr. = @ whenever
T#T.

For every T € 7 choose arbitrarily an s(7T) € T and let

Var1,s = U {Ur: s(T) =5} for ses.
The family ¥, = {V,11,s}ses has order < 0 and ¥,,, , < U, for s €S}
moreover

(1) U Vn+1.s = IJ UT-
seS Ted

Consider now two subspaces of the space X

Y=xX\UW; and Z=x\U Fr;
Teg Ted

the subspace Y is closed in X, the subspace Z is open in X, and Z < Y.
From the definition of the sets W it follows that the locally finite open
cover {YNnW}ss of the space ¥ has order < n—1. Since Y is a normal
space, by virtue of the inductive assumption there exists an open cover
¥ of the space Y which can be represented as the union of n families
ViV 5y ooy ¥y, where ¥ = {V]{ }es, such that ord¥"; < 0 and Vi,
cYnW,c U, forseSand i=1,2,...,n

For i=1,2,...,n let ¥ ;= {Vi;s}ss, Where V; ;= ZnV; . One
readily sees that the sets V;  are openin X, thatord ¥, < Ofori = 1,2, ...,n

n
and thatV, ; c U,forse Sandi = 1,2, ...,n;moreover, Z < U U V, ;.

i=1 se§

Since Fr < Uy for T € 9, we have

X\Z=UFTCU UT,
Ted Ted

n+1
so that by virtue of (1), the union ¥" = [ ¥7, is an open cover of the

i=1

space X. [

Theorem 3.2.1 and Lemma 3.2.3 yield

3.2.4. Ostrand’s theorem. A normal space X satisfies the inequality dim X
< n 2 0 if and only if for every locally finite open cover U = {U,}ses of the
space X there exists an open cover ¥~ of the space X which can be represented
as the union of n+1 families V"1,V 5, ..., ¥ ns1, where ¥y = {V, s}ses»
such that ord¥ ;<0 and V,, c U, for seS and i =1,2,...,n+1.0
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The next theorem is a strong version of the theorem on partitions.

3.2.5. Morita’s theorem. A normal space X satisfies the inequality dimX

< n > 0if and only if for every locally finite family {Us}es of open subsets

of X and every family {F}ss of closed subsets of X such that F; c U; for

s €S there exist families {W }ses and {V}ses of open subsets of X such

that FycVicV,c Wy W,c U, for seS and ord({W,\V,}sxs)
n—1.

Proof. First we shall prove that every normal space X with dimX < n
satisfies the condition in the theorem. Consider a locally finite family
{Us}ses of open subsets of X and a family {F}.s of closed subsets of X
such that F;, c U, for s € S. Denote by  the family of all finite subsets
of S, define for every non-empty T € J
) Gr = (YUNMNX\FY,

SeT s¢T

and let G, = X\J F.. The family {Gr}res is a locally finite open cover

seS
of the space X. By virtue of Dowker’s theorem (cf. Remark 3.2.7) the cover
{Gr}res has an open shrinking {Hr}res of order < n, and, in turn, the
cover {Hr}res has a closed shrinking {A:}rs. From (2) it follows that

3 if ArnF # D, then seT.

For every T€J and each s € T we can define open sets W(s) and
V(s) such that

) ATCVT(S)CmC Wr(s) < MCHT for seT

and

(5) if 5,5’ €T and s’ # s, then either Wx(s) © Vx(s") or
Wi(s) < V(s).

Moreover, define Wr(s) = Vi(s) = @ for s € S\T.

Let
W= JW(s) and V,=J)Vs(s) for ses.
TeT TeT

The sets W, and V; are open; from the local finiteness of the cover {Hr}res
it follows that ¥, = W, and W, c U,, because (2) implies that W(s)
< U;. Now, for every point x € F, there exists a T € J such that x € 4,;
as s € T by virtue of (3), it follows from (4) that x € V+(s) = V,, so that
F, c V,. To complete the first part of the proof it suffices to show that
ord({W,\V}es) < n—1.
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Consider a sequence sy, 5,, ..., s, of distinct elements of the set S
ko __
such that () (W, \V,) # . Let x be a point in the last intersection.
i=1
There exist sets 7,, 15, ..., Ty €7 such that s;,eT, for i=1,2,...,k

k
and x () (Wr,(s)\Vr,(5)); by virtue of (5) T, # T; for i # j. From
i=1

k
(4 it follows that x ¢|_J Ar,, and since {Ar}res is a cover of X, there
i=1
existsa To € 7 suchthat x e 4,4 <« Hy ;clearly Ty # T, for i=1, 2, ...
k
... k. Thus x € Hr,, and as ord({Hr}res) < n we have k < n, which
i=0

shows that ord({W,\V,}ses) < n—1.

Consider now a normal space X which satisfies the condition in the
theorem. By virtue of Remark 1.7.10, to prove that dimX < » it suffices
to show that for every sequence (4, B,), (4, Ba), ---» (Ansr1s Bayy)

of n+ 1 pairs of disjoint closed subsets of X there exist closed sets L,, L,, ...
n+1

«v+s Lyyy such that L, is a partition between 4; and B; and (L, = O.
i=1 .

Define -

Ui=X\B, and F, =4, fori=1,2,...,n+1.

Applying the condition in the theorem to S = {1,2,...,n+1} and the

sets U; and F; defined above, we obtain a family {V;}iz of open subsets

of X such that

(6) A;cV,cV,cX\B, fori=1,2,..,n+1 and
ord({V\V, Jith < n—1.

By virtue of the first part of (6) the set L, = V,\V, is a partition between

n+1

A;and By fori = 1,2, ...,n+1; the second part of (6) means that () L,
i=1
=0.0
Theorem 3.2.5 and Remark 1.7.10 y‘ield

3.2.6. Theorem on partitions. A normal space X satisfies the inequality
dimX € n = 0 if and only if for every sequence (Ay, By), (4,, Bs), ...
s (Ayyyr» Basy) of n¥1 pairs of disjoint closed subsets of X there exist

closed sets L, L,, ..., L,,, such that L, is a partition between A, and B,
n+1

and (L, = 0. ]
i=1
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3.2.7. Remark. Let us note that if the family {U,}.s in Morita’s theorem
is finite then in the proof of this theorem the cover { Hr}res can be obtained
by applying Theorem 1.7.8 rather than Dowker’s theorem. In particular,
the theorem on partitions can be proved without resorting to Dowker’s
theorem.

We now turn to the theorem on extending mappings to spheres.

3.2.8. Lemma. Ler f,g: X — S} be continuous mappings of a topological
space X to the boundary S} of the (n+1)-cube I"*' in R"*1. If for every
point x € X the points f(x) and g(x) belong to the same face of I"**, then the
mappings [ and g are homotopic.

Proof. By assigning to every point x € X and each number ¢ € / the point
h(x, t) which divides the interval with end-points f(x) and g(x) in the
ratio of ¢ to 1 —¢ one defines a homotopy h: X x I — S} between fand g.(0

3.2.9. Theorem. If X is a normal space and A is a closed subspace of X such
that dimZ < n = 0 for every closed subspace Z of the space X contained
in X\A, then for every continuous mapping f: A — 8" there exists a con-
tinuous extension F: X — S" of f over X.

Proof. There exists an open set W < X containing 4 and such that f has

a continuous extension f: W — S" over W. Consider an open set ¥ such
that A =« V<« ¥V < Wand let Z=X\V and B = ZnV. To show that f
is continuously extendable over X it suffices to prove that for the mapping
h = f|B: B — S" there exists a continuous extension H: Z — S" over Z.
Indeed, the mapping F: X — S" defined by letting

F(x) = f(x) for xeV and F(x) = H(x) for x€Z

will then be a continuous extension of f over X. Since dimZ < n, the
above observation shows that with no loss of generality one can assume
that the space X satisfies the inequality dimX < »n. Moreover, one can
assume that the space X is compact, because dimfX < n by Theorem
3.1.25 and the mapping f is continuously extendable over the closure
of the set 4 in BX, this last closure being the Cech-Stone compactifica-
tion B4 of the space 4 (see [GT], Corollary 3.6.8). Finally, instead of
mappings to the n-sphere S™ one can consider mappings to the boundary
S? of the (n+1)-cube I"*! in R"+1, which is homeomorphic to S"
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Consider therefore a continuous mapping f: 4 — S7 defined on a closed
subspace 4 of a compact space X such thatdimX < n.Fori=1,2,...,n+1
denote by p;: I"*! — I the projection of the (n-+ 1)-cube I"*! onto the
i~th coordinate axis and let

fi=pfi A>1, A4;=f70) and B, =f'(l);
obviously

(7) A= UA,U UBi.

By virtue of Theorem 3.2.6 there exist closed sets L,, L,, ..., L,,, such
n+l1

that L; is a partition between A4; and B, and () L, = @. Consequently,
i=1

there exist open sets U;, W; < X, where i = 1,2, ..., n+1, such that

A, c U, B, cW, UnW =@ and X\L, = UuW,.

From Theorem 3.1.2 it follows that there exist open sets V,, V5, ..., Vuiy
satisfying
n+1

L cV,cX\(4UB) fori=1,2,...,n+1 and [}V, =0.
- i=1

By virtue of Urysohn’s lemma for i = 1, 2, ..., n+1 there exist continuous
functions

g UL, - [0,1/21 and gi': W,UL; - [1/2,1]

such that
gi(UN\V) < {0}, gi(L) = {1/2}
and
gr(WNV) < {1}, gLy = {1/2}.
Letting

gi(x) for xe UL,

gi(x) = {gi'(x) for x e W,UL,,

we define continuous functions g,: X — I such that
® g(d) = {0}, g(B) <= {1} and g'(1/)<V;
fori=1,2,...,n+1.

n+1

Since (M) V; = O, the continuous mapping g: X — I"*! defined by letting
=1

g(x) = (g,(x), £2(%), ..., gns1(x)) does not assume the value a = (1/2,
1/2, ..., 1/2) e I"*!. The composition of the mapping g and the projection
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p of I"**\{a} from the point a onto the boundary S} of I"*! is a con-
tinuous mapping G: X — S}. From (7) and (8) it follows that g(4) < S7,
so that G|4 = g|4, i.e., the mapping G is a continuous extension of the
restriction g|4 over X. Now, for every point x € 4 there exists an i < n+1
such that either f;(x) = g,(x) = 0 or f,(x) = g,(x) = 1, so that for every
point x € A the points f(x) and g(x) belong to the same face of I"*. From
Lemma 3.2.8 it follows that the mappings f and g|4 are homotopic, and
Lemma 1.9.7 implies that there exists a continuous extension F: X — S}
of the mapping f over X. [J

Theorem 3.2.9, Remark 1.9.4 and Theorem 3.2.6 yield the following

3.2.10. Theorem on extending mappings to spheres. 4 normal space X sat-
isfies the inequality dimX < n 2 0 if and only if for every closed subspace
A of the space X and each continuous mapping . A — S” there exists a con-
tinuous extension F: X — S* of f over X. (J

The last characterization of the covering dimension to be established
in this section uses the notion of an #-mapping (see Definition 1.10.8).

3.2.11. Theorem on &-mappings. 4 normal space X satisfies the inequality
dimX < n if and only if for every finite open cover & of the space X
there exists an &-mapping of X to a polyhedron of dimension < n.

Proof. By virtue of Theorem 1.10.11, it suffices to show that for every
finite open cover & = {U,}f.; of a normal space X with 0 < dimX < n
there exists an &-mapping of X to a polyhedron of dimension < n.

Consider an open shrinking ¥ = {V;}¥_, of the cover & such that
ord¥” < n and a closed shrinking {F,}¥_, of ¥". Let A (¥") be a nerve
of ¥" with vertices p, , p,, -.., px € R™ By Urysohn’s lemma for i =1, 2, ...
..., k there exists a continuous function f;: X — I such that fi(X\V))
< {0} and f;(F)) = {1}. One readily checks (cf. the proof of Theorem
1.10.7) that the formula

#(x) = 2%, (X)py +#2()p2+ ... +3(X) Py,
where

fi(x)
i) +200+ ... +f(x)

#i(x) = fori=1,2,..,k,
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defines a continuous mapping »: X — N(¥") of X to the underlying poly-
hedron of the nerve A4°(¥") which satisfies the conditions

%—1(Stﬂ(1’)(pl)) = Vi < Ul' fOI' i= l, 2, ey k.

As {St(#)(p;)} 1 isan open cover of N(¥"), the mapping » is an &-map-
ping. The inequality ord¥” < n implies that N(¥") has dimension < n. []

Applying Theorem 1.10.15 and arguing as in the proof of Theorem
1.10.16, one obtains the following strengthening of the theorem on
£-mappings.

3.2.12. Theorem. A normal space X satisfies the inequality dimX < n
if and only if for every finite open cover & of the space X there exists an
&-mapping of X onto a polyhedron of dimension < n. [

We now turn to a study of the behaviour of the dimension dim under
Cartesian multiplication. First of all, let us recall that in Section 2.2 we
cited an example of a normal space Z, whose square Z x Z is also normal,
such that IndZ = 0 and yet Ind(Z x Z) > 0; in view of Theorem 1.6.11,
this example shows that the inequality dim(X x Y) € dimX+dimY does
not hold under the sole assumption of the normality of the Cartesian
product X x Y. Just as in the case of the dimension Ind, several theorems
determining conditions for that inequality have been discovered, but
there is no strongest result among them. We shall quote two such theorems
which are relatively strong. Thus, the inequality dim(Xx7Y) < dimX+
+dimY holds for every pair X, Y of normal spaces of which at least one
is non-empty provided that either

(i) the Cartesian product X x Y is normal and one of the factors is compact
(more generally: the projection onto one of the factors is a closed
mapping),

or

(i)) the Cartesian product X x Y is normal, one of the factors is metrizable
and the other is countably paracompact (more generally: one of the
factors can be mapped to a metrizable space by a perfect mapping
and the other is countably paracompact).
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Let us add that the proofs of Cartesian product theorems for dim
are fairly difficult. As a sample we shall prove here two Cartesian product
theorems for dim which are among the simplest.

3.2.13. Theorem. For every pair X, Y of compact spaces of which at least
one is non-empty we have

dim(X'xY) € dimX+dimY.

Proof. We can assume that dimX = n and dimY = m, where n and m
are non-negative integers. Consider an arbitrary sequence (4,, B,),
(42, B,), ooy (Apsme1s Baymyr) of n+m+1 pairs of disjoint closed sub-
sets of the Cartesian product X x Y. The sets 4; being compact, for
d=1,2,...,n+m+1 there exist closed sets E,; cX and F, ;=Y
and open sets U;; « X and V,; = Y, where j = 1,2, ..., k;, such that

ki
® A; = ,yl (Er, s % Fy,))

and Ei,jXFi,jC Ui,iji,jC(XxY)\Bi.

By virtue of Theorem 3.2.5 there exist open sets G;, ;= X and H, ;= Y
such that

(10) E,;c Gy 6,,1 cU,; and F,;cH, ;c I—J_,,j =
and
(1D ord({FrGy,;}q, pes) < n—1 and  ord({FrH,, ;}q, pes) < m—1,

where S denotes the set of all pairs (i,j) with i = 1,2, ...,n+m+1 and
j=1,2,...,k,. For i=1,2,...,n+m+1 let W, = Lkl) (G, ;% Hy, ).
From (9) and (10) it follows that 4, € W, c W, = (X x]}_’;\B,, so that
the set L, = FrW, is a partition between 4; and B;. Consider the family
@ = {FrG,,;x H }}1,0{G, ;x FrH, j}f,
of subsets of X'x Y, denote by C, the union | ) %;, and let € = €,U¥,uU
U o. UG ems1- Since L, < Q Fr(G,,;x H,,;) = C;, by virtue of Theorem
i=

n+m+l1
3.2.6 to complete the proof it suffices to show that (1) C; = &. Now,

i=1
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the last equality follows from the inequality ord ¥ < n+m+1, which in
turn is a consequence of (11), because among each n+m+1 members
of the family % there are either n+1 sets of the form FrG,, ;x H,,; or

m+1 sets of the form 5uxFrHu. d

3.2.14. Theorem. For every pair X, Y of normal spaces of which at least
one is non-empty stich that the Cartesian product X xY is strongly para-
compact we have '

dim(XxY) € dimX+dimY.

Proof. From Theorems 3.2.13 and 3.1.25 it follows that
dim(fX x 8Y) € dimBX+dimBY = dimX+dimY.
To complete the proof it suffices to apply Theorem 3.1.23. ]

Historical and bibliographic notes

Theorem 3.2.1 and Proposition 3.2.2 were established by Dowker in
[1947]. Lemma 3.2.3 and Theorem 3.2.4 were proved by Ostrand in [1971];
special cases of Theorem 3.2.4 were obtained earlier by Ostrand in [1965]
(for metrizable spaces) and by French in [1970] (for collectionwise normal
spaces). Theorem 3.2.5 was proved by Morita in [1950a], and Theorem
3.2.6—by Hemmingsen in [1946). Theorem 3.2.10 was obtained inde-
pendently by Hemmingsen in [1946), Alexandroff in [1947], and Dowker
in [1947]; for compact spaces it was proved by Alexandroff in [1940]
and by Morita in [1940]. Theorem 3.2.9, which is a simple consequence
of Theorem 3.2.10, was noted by Alexandroff in [1947]. As stated in the
notes to Section 1.10, Theorems 3.2.11 and 3.2.12 for metric spaces were
established by Kuratowski in [1933a] (who generalized a characterization
of dimension of compact metric spaces discovered by Alexandroff in
[1928]); Kuratowski’s proof extends without substantial changes to normal
spaces. The fact that the inequality dim(XxY) < dimX+dimY holds
for every pair X, Y of spaces satisfying either (i) or (ii) was proved by
Filippov in [1979] (announcement [1973]); (ii) part was announced in-
dependently by Pasynkov in [1973]). In the original formulation of (ii)
one assumes that the Cartesian product X xY is normal and countably
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paracompact (cf. the commentary to (ii) in the notes to Section 2.4). Theorem
3.2.13 was proved by Hemmingsen in [1946], and Theorem 3.2.14—by
Morita in [1953). Further information on Cartesian product theorems
for dim can be found in Morita [1953)], Kodama [1969] (a simplified proof
in Engelking [1973]), Nagami [1970], and Pears [1975].

Problems

3.2.A. Show that a normal space X satisfies the inequality dimX < n
if and only if every locally finite open cover of the space X has a locally
finite closed refinement of order < n or—equivalently—if every locally
finite open cover of the space X has a closed shrinking of order < n.

3.2.B (Ostrand [1971]; for collectionwise normal spaces French [1970];
for metrizable spaces Ostrand [1965]). Prove that a normal space X satisfies
the inequality dimX < »n if and only if for every locally finite open cover
U = {U,},s of the space X there exists such a sequence ¥, ¥ ,, ...
of discrete families of open subsets of X, where ¥"; = {V; ;}«s, that V; g
c UsforseSand i = 1,2, ... and the union of each n+1 families ¥
constitiutes a cover of the space X. Show that for every locally finite open
cover % = {U,}.s of a normal space X such that dimX < n besides the
sequence ¥ ,, ¥ ,, ... with the above properties there also exists such
a sequence #°,, # ,, ... of discrete families of open subsets of X, where
Wi = {Wiiles, that V,; c W, c U for seSand i = 1,2, ...

Hint. Define the families ¥, and #, for i < n+ 1 by applying Theorem
3.2.4, then define inductively the families ¥7, and #7, for i > n+1. Assume
that the families ¥, and #"; are defined for i < m—1 = n+1, denote
by 7 the family of all subsets of the set {1,2,...,m—1} which have

exactly n elements and, for every T €9, define Fr = X\ V;, where
ieT
Vi =)V, Consider families {Vr}res and {Wr}res of open subsets

seS

of X such that
FreVicVeic Wrfor Ted and WinWr =@ for T# T,

for every T €9 choose arbitrarily an i(7) < m—1 such that i(T) ¢ T,
note that Fr < Vi and let

Vs = U VeaVin,, and W= U WenWin,.

TeT . Ted
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3.2.C (Arhangel’skii [1963]). A family &/ of subsets of a set X is in-
dependent if ANB # @ # B\ A foreach pair 4, B of distinct members of &/
By the rank of a family of sets &/ we mean the largest integer n such that the
family </ contains n+ 1 sets with a non-empty intersection which form an
independent family; if no such integer exists we say that the family ./
has rank oo. Clearly, the rank of a family of sets does not exceed the order
of that family.

Prove that a normal space X satisfies the inequality dimX < » if and
only if every finite open cover of the space X has a finite open refinement
of rank < n.

Hint. For an open cover % = {U,}_, of the space X and its finite
open refinement ¥~ of rank < ndefine ¥"; = {V € ¥ : ¥ < U} and consider
the families

W, = {V e ¥ ,:Visnot contained in any member of ¥ ,U¥ ;U ... U¥ .},
W2

{V € ¥",: Vis not contained in any member of # 1 U¥ 5L ... U¥ '},

W= {Ve¥,: Vis not contained in any member of
: WioW 0 ... W 1}

Check that the family {W,}t,, where W, = [ #7, is a cover of X and
has order < n.

3.2.D. (a) (Wallace [1945], Pupko [1961]) Deduce Theorems 3.1.8
and 3.1.10 from Theorem 3.2.10.

(b) (Hemmingsen {1946]) Deduce Theorem 3.2.13 from Theorem
3.2.11.

Hint. Show that every finite open cover of the Cartesian product of
compact spaces X and Y has a refinement of the form {U xV: Ue,
V € ¥}, where % and ¥ are finite open covers of X and Y, respectively.

3.2.E (Aleksandroff [1947]). Show that a normal space X satisfies the
inequality dimX < »n > 0 if and only if no continuous mapping f: X — B"+!
is essential (see Problem 1.9.A).

3.2.F (Aleksandroff [1947]). A compact space X such that dimX = n > 1
is an n-dimensional Cantor manifold if no closed subset L of X satisfying
the inequality dimL < n—2 separates the space X (cf. Definition 1.9.5).
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(a) Let f,g: X —» S™ be continuous mappings of a compact space X
to the n-sphere S$". Show that if dimZ < n—1 for every closed subspace
Z of the space X contained in the set D(f, g) = {x € X: f(x) # g(x)},
then the mappings f and g are homotopic. »

(b) Prove that every compact space X such that dimX = n > 1 contains
an n-dimensional Cantor-manifold.

Hint. See the proof of Theorem 1.9.8.

3.2.G (Zolotarev [1975]). (a) Show that a normal subspace M of a normal
space X satisfies the inequality dim M < » if and only if for every open set
U < X which contains the set M there exist a normal space Z, a normal
subspace 4 < Z satisfying dimA4 < n and continuous mappings f: M —» Z
and g: Z - X such that f(M) =« 4 = g~1(U) and gf(x) = x for x e M.

(b) Prove that for every completely paracompact subspace M of a normal
space X we have dimM < dimX (see Problem 2.4.B).

Hint. One can assume that dimX = n < o and X is a compact space
(see Theorem 3.1.25). Consider an open set U = X which contains the
set M and for every point x € M choose a neighbourhood V, such that

xeVy,cV,c U Let ¥',, ¥ ,, ... be a sequence of star-finite open covers
[24]

of the space M such that the union U 7 ; contains a refinement ¥~ of the

i=1

cover {MnV,}ien. For i = 1,2, ... consider the decomposition {¥s}ses
of the cover ¥7; into the components where S;nS; = & whenever i # j;
for every x € M denote by f,(x) the unique s € S; such that x e {_ 77,
and for each s € S; let ¥";n¥" = {V;, ;}/2,. Note that the space Z = X' X

. o)
x [, where S, has the discrete topology, is normal, and apply Problem

i=l
2.4.A and Theorem 3.2.14 to show that dimZ < n. Apply (a) to the con-
tinuous mapping f: M — Z defined by letting f(x) = (x, £, (0, fz(x), ---)

for x € M, the projection g: Z — X and the set 4 = U U AV, ) =Z.

i,j=1s68;

3.2.H. (a) Prove that every locally finite functionally open cover {U,}es
of a topological space X has such shrinkings {F}es and {W,}«s, respect-
ively functionally closed and functionally open, that F, = W, c W, = U,
for seS.

Hint. For every s €S choose a continuous function f;: X — I such
that U, = £;1((0, 1]) and consider the function f: X — I defined by letting
Jix) = E:lspfs(x) for x € X.



240 The covering dimension [Ch.3, §2

(b) (Pasynkov [1965]) Prove that a Tychonoff space X satisfies the
inequality dimX < » if and only if every locally finite functionally open
cover of the space X has a functionally open refinement of order < n (see
notes to Section 3.1).

Hint. Let {U,}.s be a locally finite functionally open cover of the
space X. Consider a functionally closed shrinking {F,}es of {U,}es and
continuous functions f;: X — I such that (X \U,) = {0} and f(F) < {1}.

Verify that the formula o(x, ) = Y. |fi(x)—f.(»)| defines a pseudometric
seS

on the set X and consider the metric space (Y, o) obtained by identifying
each pair x, y of points in X such that g(x, y) = 0. Check that by letting
J(x) = [x] one defines a continuous mapping of X to Y and consider the
mapping F: X — BY such that F(x) = f(x) for x € X. Apply the fact
that every Hausdorff space which can be mapped onto a paracompact
space by a perfect mapping is itself paracompact (see [GT], Theorem
5.1.35) and use Problem 3.1.I(b) and Theorem 3.2.1.

3.2.1. (a) Observe that if M is a functionally open subspace of a space
X, then a set A « M is functionally open in X if and only if it is functionally
open in M. Give an example of a functionally closed subspace M of a com-
pletely regular space X and of a set 4 < M which is functionally closed
in M and yet is not functionally closed in X.

(b) Prove that a completely regular space X satisfies the inequality dimX
< n > 0if and only if for every finite functionally open cover # = {U,}.,
of the space X there exists a functionally open cover ¥~ of the space X which
can be represented as the union of n+1 families ¥y, ¥ 5, ... ¥ ns1>
where ¥°; = {V,,;}k.,, such that ord¥ ;<0 and V,,c U, for
i=1,2,...,kand j=1,2,..,n+1.

3.2.J. (a) Prove that a completely regular space X satisfies the inequality
dimX < n if and only if every (n+2)-element functionally open cover

{U,}77 of the space X has a functionally open shrinking {W,}7*7 of order
n42 R

< nm, ie., such that (\ W, = @.

i=1

Hint. See the proof of Theorem 1.6.10,

(b) Prove that a completely regular space X satisfies the inequality
dimX < n > 0if and only if for every finite family {U,}f.; of functionally
open subsets of X and every family {F,}f_; of functionally closed subsets
of X such that F, < U, fori = 1,2, ..., k there exist such families {E;}¥_,



Ch. 3, § 3] The compactification and the universal space theorems 241

and {V,}f_; of functionally closed and functionally open subsets of X,
respectively, that F, <« ¥V, @ E, <« U, for i =1,2, ...,k and ord({E,\
Vi) <n—-1

(c) Prove that a completely regular space X satisfies the inequality
dimX < n > 0 if and only if for every sequence (A4,, B,), (4., B,), ...
oy (Aysq, Bayy) of n+1 pairs of disjoint functionally closed subsets of X

there exist functionally closed sets L,, L,, ..., L,,, such that L, is a parti-
n+1

tion between 4; and B, and () L, = .
i=1

Hint. Observe that if L is a functionally closed subset of a space X and
U, W < X are disjoint open sets satisfying the equality X\L = UUW,
then U and W are functionally open.

3.2.K. (a) (Smirnov [1956a]) Prove that a completely regular space X
satisfies the inequality dimX < n > 0 if and only if for every closed sub-
space A of the space X and each continuous mapping f: 4 — S" which
is the restriction of a continuous mapping f: X — B"*! there exists a con-
tinuous extension F: X — S" of f over X. ’

(b) Prove that a completely:regular space X satisfies the inequality
dimX < n if and only if for ¢very finite functionally open cover & of
the space X there exists an &-mapping of X to a polyhedron of dimension
< n

3.3. The compactification and the universal space theorems for the dimension
dim. The dimension dim and inverse systems of compact spaces

In the proofs of the compactification and the universal space theorems
we shall apply Mardesic¢’s factorization theorem, which asserts that every
continuous mapping f: X — Y of a compact space X to a compact space ¥
can be let through an intermediate space Z such that dimZ < dimX and
w(Z) < w(Y). We start with a simple lemma on normal spaces. Let us
recall that a cover & is a star refinement of another cover & of the same
space if for every B € # there exists an 4 €.« such that St(B, &) < 4,
where St(B, %) denotes the star of the set B with respect to the cover %,
ie., the set (_J{B' € #: BnB' #* O}.

3.3.1. Lemma. Every finite open cover of a normal space has a finite open
star refinement.
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Proof. Let % = {U,}f_, be a finite open cover of a normal space X. Con-
sider a closed shrinking {F,}¥_; of {U,}%.;. By Urysohn’s lemma, for
i=1,2,..,k there exists a continuous function f;: X — I such that
[i(X\U) < {0} and fi(F)) < {1}. Define I, = [0,1/2), I, = (1/4,3/4)
and 7, = (1/2, 1]. The family ¥ of all sets

1) Vet ooie = ST )0 it (1),

where j, € {0, 1,2} fori = 1, 2, ..., k, is a finite open cover of the space X.
For every non-empty V =V,  m,.  .m €7 there exists an i < k such
that VnF, # @, and we clearly have m; = 2. If a set of form (1) intersects V,
then j; is equal to 1 or 2, so that St(V, ¥) = U,. Thus ¥ is a star refine-
ment of %. O

3.3.2. Marde$ic¢’s factorization theorem. For every continuous mapping f:
X — Y of a compact space X to a compact space Y there exist a compact
space Z and continuous mappings g: X — Z and h: Z — Y such that dimZ
< dimX, w(Z) < w(Y), g(X) = Z and f = hg.

Proof. If dimX = o0 or w(Y¥) < Xy, then Z = f(X), g =f and h = id,
satisfy the theorem. Thus one can suppose that dimX = n < o0 and
w(@) =m > N,. We shall define inductively a sequence Wy, W, ...
of classes of finite open covers of the space X. Consider a base & for the
space Y such that |#| = m and denote by W, the class of all finite covers
of the space X by members of the family f ~1(%). Clearly, for each x,y € X

(2) if f(x) # f(»), then there exists a # € W, such that y ¢ St(x, #).

Assume now that the classes W, are defined for all i < k. By virtue of
Lemma 3.3.1 and the inequality dimX < n, for each pair of covers #7,
W' e W,_, we can choose a finite open star refinement of # A #” which
has order n; let W, be the class of all covers of the space X thus obtained.
In this way the sequence W,, W, ... is defined. Since |W;| < m, we have

IW <m for i=1,2,... Let W= W,; clearly, |W|< m.
i=1
For x, y € X define

(3) xEy if and only if for every cover # € W there exists a set Ue #”
such that x, y € U.
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We shall show that E is an equivalence relation on the space X. It follows
directly from the definition that the relation F is reflexive and symmetric,
so that it remains to show that if xEy and yEz, then xEz. To this end, it
suffices to note that

(4) if #” is a star refinement of #, y € St(x, #”) and z e St(y, #"),
then z € St(x, #),

because for every #° € W there exists a #” € W which is a star refinement
of # . The relation E determines a decomposition of the space X into
equivalence classes; from (3) it follows that

(5) [x} = () St(x, #) for xeX,
WeW

where {x] denotes the equivalence class that contains x.

We shall show now that the equivalence relation E is closed. Thus,
we have to show that for every open set U < X the union of all equivalence
classes that are contained in U is an open subset of X. In view of a sub-
sequent application, we shall show a little more, viz., that

(6) for every open set U = X and each equivalence class [x] = U there
exist an open set ¥ = X and a cover #” € W such that [x] c ¥ = () [y]

yeV
c SV, #) < U. /

To begin with, let us note that if #” is a star refinement of ¥, then
St(x, #') = St(x, #°), so that from (5) it follows that [x] = () St(x, #).
WweW

Now, the space X" being compact, there exists a finite number of covers
k

Wis Wy, .o, W€ W such that () St(x, #7) < U. Consider a cover
i=1

W, € W which refines all the covers #7; and a star refinement # ¢ W

of the cover # ;. Clearly, the open set V' = St(x, #") satisfies the rela'-

tion [x] € ¥V <= (J [y]; the penultimate inclusion in (6) follows from
yeV

(5), and the last inclusion is a consequence of the relation St(x, #7,) c U
and (4) with #” = #" and W = W,.

Let Z be the quotient space X/E and g: X — Z the natural quotient
mapping. As E is a closed equivalence relation, the space Z is compact
(see [GT], Theorem 3.2.11). By virtue of (2), f(x) = f(y) whenever xEy,
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so that by letting 2([x]) = f(x) we define a mapping % of Z to Y; from the
relation hg = f it follows that A: Z — Y is a continuous mapping.

For every open set U c X let U* = Z\g(X\U) and for every # ¢ W
let w* = {W*: We#7}. Clearly, g~!(U*) « U and U* is open in Z.
If #”' is a star refinement of #", then for each x € X there exists a W e #~
such that [x] = St(x, #) = W, thus for every # € W the family #*
is a finite open cover of the space Z and ord #™* < n.

Now we shall show that every finite open cover {U,}% | of the space Z
has a refinement of the form #°*, where ¥ € W. For each x € X there
exists an i < k such that [x] c g='(U,), and by virtue of (6) there exist
a neighbourhood ¥V, < X of the point x and a cover # (x) € W such that
St(V,, #'(x)) < g *(U;). The open cover {V,},cx of the space X has
a finite refinement {Vx, ™ 1. Consider a cover # € W which refines all
the covers #'(x;). For every W e #  there exists an i < k such that W
< g~ 1(U). Since the last inclusion implies that W* < U,, it follows that
the cover #'* is a refinement of {U,}f.,.

Thus we have shown that dimZ < » and that the family 2 = U #*
WeW

is a base for the space Z. To complete the proof it suffices to observe that
wZ)< (2] <m- Ny =m=w(Y). O

3.3.3. The compactification theorem for dim. For every normal space X
there exists a compactification preserving both the dimension dim and weight,

i.e., a compact space X which contains a dense subspace homeomorphic
10 X and satisfies the inequalities dimX < dimX and w(X) < w(X).

Proof. We can suppose that dimX = n < c0 and w(X) = m > N,. Con-
sider a homeomorphic embedding i: X — I"™ of the space X in the Ty-
chonoff cube I™ of weight m; let f: X — I™ be the extension of [ over §X.

By virtue of Theorem 3.3.2 there exist a compact space X and continuous
mappings g: fX — X and h: X - I such that dimX < dimgX = dimX,
w(X) < w(I™) = m and f = hg. The composition Aog, of the restrictions
go = glX: X > g(X) X and ho = hlg(X): g(X) = i(X) c I'" is a homeo-
morphism, so that go is also a homeomorphism. Thus X is the required
compactification of the space X. []

3.3.4. The universal space theorem for dim. For every integer n = 0 and
every cardinal number m = N, there exists a compact universal space Py
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for the class of all normal spaces whose covering dimension is not larger
than n and whose weight is not larger than m.

Proof. Let {X;}.s be the family of all normal subspaces of the Tychonoff
cube I'" whose covering dimension is not larger than », and let i;: X, - I™
be the embedding of X in I"™. Consider the sum X = @ X, and the mapping

SeS

i:X - I"™ defined by letting i(x) = iy(x) for x € X;; let f: BX — I be the
extension of i over fX. By virtue of Theorem 3.3.2 there exist a compact
space Py and continuous mappings g: fX — Py and h: P — I™ such
that dim Py, € dimfX = dimX = »n, w(Py) < w(I™ =m and f = Ag.

Consider now an arbitrary normal space Y such that dimY < » and
w(Y) < m. Since Y is embeddable in I'™, there exists an s € S such that
X, is homeomorphic to Y. The composition kg, of the restrictions g,
= g|X;: X; = g(Xy) = P} and hy = hlg(Xy): g(X;) » X, = I™ is a homeo-
morphism, so that g, is also a homeomorphism. Thus PJ is the required
universal space. []

We now turn to a study of inverse systems of compact spaces from the
dimensional standpoint. To begin with, let us recall that Theorem 1.13.2 es-
tablished in Chapter 1 states that for every compact metric space X such
that dimX < n there exists an inverse sequence {K,, m} consisting of
polyhedra of dimension < » whose limit is homeomorphic to X. In Example
3.3.8 below we show that the compact space X described in Example 2.2.13
cannot be represented as the limit of an inverse system of polyhedra of
dimension 1, although dimX = 1. Hence, Theorem 1.13.2 in its original
form does not extend to arbitrary compact spaces; yet we have the follow-
ing

3.3.5. Theorem on expansion in an inverse system. For every compact space
X such that dimX < n there exists an inverse system S = {X,, ng, 2},
where |2| < w(X), consisting of metrizable compact spaces of dimension
< n whose limit is homeomorphic to X.

Proof. We can suppose that w(X) =m > No. Let h: X » I =[] I,

se§
where I, = I for s €S and |S] = m, be a homeomorphic embedding of
the space X in the Tychonoff cube I'™ of weight m. For i = 1, 2, ... denote
by 2, the family of all subsets of S that have exactly { elements; the union
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[ee)
2 = U Z is directed by inclusion, i.e., the relation < defined by letting

i=1
¢ < o if and only if p < 0, and has cardinality m = w(X).
Applying induction with respect to i, we shall now define for each
o €2 a metrizable compact space X, such that dimX, < n if i > 1 and
continuous mappings ng: X, - X,, where o < o, such that

@) mMny = 77 whenever T< o< o and af = idy,;

at the same time we shall define continuous mappings g,: X - X, sat-
isfying

®) g(X) =X, and =njg, =g, whenever o <o.

For i = 1 all conditions are satisfied if for each o = {s} € 2| we let X,

= p;h(X) c I,, where p,;: [[I, » I, is the projection, =% = idy, and
ses
Zs = psh. Assume that the spaces X and the mappings #¢ and g, satisfying
k-1
(7) and (8) are defined for all 0 € U X, where k > 1, and consider a set
i=1

ocel,. Let 0,,0,, ..., 0, be all (k—1)-clement subsets of o and let f,:
X > X, xX, x ... xX; be the .continuous mapping defined by the
formula f,(x) = (go,(%), g6,(%); ---» 8o (x)). By virtue of Theorem 3.3.2
there exist a compact space X, and continuous mappings g,: X —» X, and
he: Xo = Xo, x X5, X ... XX, such that dimX, < n, w(X,) < Ny, g.(X)
= X, and f; = h,gs. The last equality means that

©9) nlg. =g, fori=1,2,..,k,

where n5,: X; — X, is the composition of 4, and the projection of X, x

XXy, X ... XX, onto X;,. As the space X, is compact and has a countable
k-1

weight, it is a metrizable space. For each p € | Z| satisfying ¢ < o there
i=1

exists at least one i < k such that p < 0; < 0. Let us observe that the
composition 7g'ng, does not depend on the choice of a particular o; satisfy-
ing ¢ < o0;. Indeed, if for a j < k we also have ¢ < oy, then

G G, _ — 0 -
nefng,ga = 7,80, = 8o = ne}ga‘; = ngjnu‘,gu:
which implies that
O C
(10 'S = M Ng,s

because g (X) = X,. In accordance with the above observation, for each
k-1

e U Z, satisfying 0 < o we define #° = n%a° where p < 0; < 0. More-
e et i ying @ e e “ha; e
i=
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over, we let a5 = idy,. From (9), (10) and the inductive assumption it
follows that the space X, and the mappings =7 and g, satisfy (7) and (8)
for o € 2,. Thus, we have defined metrizable compact spaces X, such
that dimX, < n if / > 1 and continuous mappings 7, and g, satisfying
(7) and (8) for c €2 and ¢ < o.

It follows from (7) that S = {X,,ng, 2"} is an inverse system; we
shall show that X is homeomorphic to the limit lim S. In view of the second

equality in (8), for every x € X the point {g,(x)} € IT x, is a thread of S;
oeX

by assigning this thread to x we define a mapping g: X — limS. Since
n,g = g, for every o €2, where n,: limS — X, is the projection, the
mapping g is continuous. For each o = {s} € 2| we have n,g = g, = p.h,
so that, the mapping % being one-to-one, the mapping g is also one-to-one.
Finally, as g,(X) = X, for every ¢ € 2, the mapping g maps X onto lim §
(see [GT], Corollary 3.2.16). Thus g is a homeomorphism of X onto limS.

If n > 1, the system S satisfies all the required conditions; if » = 0,
it has to be replaced by the system {X,, n5, 22}, because, in general,
the inequality dimX, < O does not hold for 0 € 2y (cf. Problem 3.3.A). (]

Let us observe that from (8) and (9) it follows that the bonding mappings
in the inverse system S in Theorem 3.3.5 are mappings onto.
We shall now prove the following

3.3.6. Theorem on the dimension of the limit of an inverse system. If the in-
verse system S = {X,,n5, 2} consists of compact spaces X, such that
dimX, < n for o € 2, then the limit X = im .S satisfies the inequality dimX
< n.

Proof. Consider a finite open cover % of the space X. The space X being
compact (see [GT], Theorem 3.2.13), the cover % has a finite refinement
of the form {#;'(U)}L,, where m,, : X - X, is the projection and U;
is an open subset of X,, for i = 1,2, ..., k. Let o be an arbitrary element
of X such that o, < o for i = 1,2, ...,k and let W, = (z5)"*(U;). One
readily sees that the family {n;'(W;)}f., is an open refinement of the
cover %. Since 7 (X) is a closed subspace of X,, dimn,(X) < n and the
open cover {m(X)NnW;}t., of the space m,(X) has an open shrinking
{V.}E_ of order < n. The family {z; (V) }}~, is an open cover of the space
X which refines % and has order < n. Thus dimX < n. [

Theorems 3.3.5 and 3.3.6 yield the following
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3.3.7. Theorem on inverse systems. A compact space X satisfies the inequality
dimX < n if and only if X is homeomorphic to the limit of an inverse
system consisting of metrizable compact spaces of dimension < n. []

We conclude this section with the above-mentioned example of a compact
space X which satisfies the equality dimX = 1 and yet is not homeomorphic
to the limit of an inverse system of polyhedra of dimension < 1.

3.3.8. Example. The space X described in Example 2.2.13 is compact and
satisfies the relation dimX = 1 < indX (see Example 3.1.31). Thus, to
show that X has the required property it suffices to prove that for every
inverse system § = {Ks, n3, 2} consisting of polyhedra of dimension < 1
the limit K = lim.S satisfies the inequality indK < 1.

Consider a?oint x € K and a neighbourhood ¥V < K of the point
x. There exists a 0 € 2 and such a neighbourhood U, of the point 7, (x)
in the space K, , where n, : K — K, is the projection, that the set U
= n; '(U,,) satisfies the relation x € U < V. Define X = {0 € X: 0, < 0}
and let U, = (n3)"'(U,,) and F, = FrU, for o €X,. Since for each
g, ¢ € X, satisfying o < ¢ we have

72(Fy) = al(U,nK,\U,) < n3(Up)na3(K,\Uy)

7 (73) Uy, ) N7ig(725,) ™ 1 (Ko, \Us,)
(78)" (U ) (78) " (Ko \Uy,) = U,nK,\U, = F,
the family S, = {F,, 7%, Xo}, where #5: F, —» F, is defined by letting
7g(x) = m3(x), is an inverse system of compact spaces. Now, from Theorems
1.8.12 and 1.3.1 it follows that dim F, < O for o € 2, so that dimlimS, < 0
by virtue of Theorem 3.3.6. One readily checks that =, (FrU) < F, for every

o€ Zo; thus FrU < limS, and by virtue of Theorem 3.1.30 we have
indFrU < 0. Hence we have proved that indK < 1. [J

n

Let us note in connection with the last example that there exists a compact
space X with a similar property which satisfies the equality indX = IndX
= dimX = L.

Let us also note that every compact space is homeomorphic to the
limit of an inverse system consisting of polyhedra (see Problem 3.3.D)
and that one can define a compact space X such that indX = IndX = dimX
= | which is not homeomorphic to the limit of an inverse system consisting
of polyhedra (or, more generally, of locally connected metrizable compact
spaces) whose bonding mappings are mappings onto.
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Historical and bibliographic notes

Theorem 3.3.2 was established by Mardesi¢ in [1960]; the present proof
was given by Arhangel’skii in [1967]. Theorem 3.3.3 was proved by Sklja-
renko in [1958]. Theorem 3.3.4 was established independently by Pasynkov
in [1964] and by Zarelua in [1964]. Theorem 3.3.5 was given by Mardesic¢
in {1960]; Theorem 3.3.6 is implicit in Freudenthal’s paper [1937]. Example
3.3.8 was given independently by Pasynkov in [1958] and by Mardesi¢
in [1960]. Both examples cited at the end of this section can be found
in Pasynkov’s paper [1962].

Problems

3.3.A. Observe that Theorem 3.3.5 for n = 0 easily follows from the
fact that every normal space X such that dimX = O is embeddable in
a Cantor cube (see Remark 1.3.18 and Theorem 1.6.11).

3.3.B (Pasynkov [1962]). Let S = {X,, nj, 2} be an inverse system of
compact spaces and let X = limS. Prove that dimX < » if and only if
for each ¢ € X' and every finite open cover {U;}t_, of the space X, there
exists a o € X' satisfying ¢ < ¢ and such that the cover {(=3)~*(U)}.,
of the space X, has a finite open refinement ¥ satisfying the inequality
ord(¥|n/(X)) < n, where m,: X > X, is the projection.

3.3.C (Pasynkov [1958]). Prove that for every inverse system § = {Kj,
mg, 2’} consisting of polyhedra of dimension < 1 the limit K = limS$
satisfies the inequality IndK < 1.

Remark. Tt is not known if the number 1 in Problem 3.3.C can be re-
placed by an arbitrary natural number.

3.3.D (Eilenberg and Steenrod [1952]). Prove that for every compact
space X there exists an inverse system S = {X,, a3, 2’} consisting of poly-
hedra whose limit is homeomorphic to X.

Hint. Embed the space X in a Tychonoff cube.



CHAPTER 4

DIMENSION THEORY OF METRIZABLE SPACES

In the realm of metrizable spaces the dimensions Ind and dim coincide.
Thus in metrizable spaces both the theorems which depend on the dimen-
sion Ind and the theorems which depend on the dimension dim are valid.
It will appear in the course of this chapter that the dimension theory of
metrizable spaces is by no means inferior to the classical dimension theory
of separable metric spaces developed in the first chapter of this book.

The present chapter can be read almost directly after Chapter 1. The
results of Chapter 2 are not used here, except for Lemma 2.3.16 which
belongs to general topology rather than to dimension theory. From Chapter
3 we use only the beginning of Section 3.1 up to Theorem 3.1.10 and also
Theorems 3.1.28, 3.1.29, 3.2.2 and 3.2.5; the last theorem is not used
until Section 4.2.

In Section 4.1 the most important properties of dimension in metri-
zable spaces are established. We start with the Katétov—Morita theorem
on the coincidence of Ind and dim and then prove the counterparts of the
theorems obtained for separable metric spaces in Section 1.5.

Section 4.2 begins with two characterizations of the dimension dim
In metrizable spaces, one stated in terms of special bases and the other
in terms of sequences of covers. Then we discuss briefly some characteriza-
tions of dim formulated in terms of special metrics. In the second part
of the section, we prove by applying an appropriate factorization theorem
the existence of a universal space for the class of all metrizable spaces
whose dimension is not larger than » and whose weight is not larger than m.

Section 4.3 resumes the considerations of Section 1.12. We generalize
in it the theorems on dimension-raising and dimension-lowering mappings
established in Chapter 1 and prove two theorems of more special character
on the relations between the dimensions of the domain and the range
of a closed mapping.

Let us add that tbe theorems on partitions and on extending mappings
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to spheres established in Sections 1.7 and 1.9 extend to all normal, and,
a fortiori, to all metrizable spaces; the proofs were given in Section 3.2
(cf. Problems 4.1.E and 4.3.B).

4.1. Basic properties of dimension in metrizable spaces

We start with one of the most important results in dimension theory,
viz., with the theorem on the coincidence of the dimensions Ind and dim
in metrizable spaces. In the proof we shall apply two characterizations
of the dimension dim in the class of metrizable spaces which are established
in Proposition 4.1.2 below (cf. Problem 4.1.A(b)).

4.1.1. Lemma. Let X be a normal space. If there exists a sequence Wy, W 4, ...
of open covers of the space X such that ord W'; < n and W'y, is a refinement
of W fori= 1,2, ..., and the family {S{ W, W) WeW,,i=1,2,...}
is a base for X, then dimX < n.

Proof. For i = 1,2, ... let f{*! be a mapping of # ., to #"; such that
W c fi*Y(W) for each We W ; let fF=fItyE L fk, for i<k
and let f{ = idy, for i = 1,2, ... Obviously

(1 W < fX(W) for each We ¥ and i < k.

Consider a finite open cover {H,}}_, of the space X. The sets X, , X;, ...
where

) X, =U{We#\: S W, %) < H, for a j< I},
form an open cover of the space X. For k = 1, 2, ... define the subfamilies

U= {UeW: UnXy # 0} and ¥, ={Fe¥: Vn(U X)) = 0}
Jj<k

>

of the cover #°, and for every U € %, denote by i(U) the largest integer
< k satisfying

3 fi’fv)(U) € ¥iwy;

such an integer does exist because fX(U)n(\J X)) =@ and fE(U)nX;
= UnX, # 0. <1
For every V € ¥7; consider the open set

@ vr= ,Q [U (UnX,: Ue,, fHU) = ¥ and iU) = i}];
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as VnX, = @, by virtue of (2) there exist a W e %7, such that VnW # O
and a j(V) < [ satisfying V = St(W, #°)) < H;y). From (1) it follows
that V* = V, so that V* ¢ H;g). Since ¥";n¥"; = & whenever i # J,

00
for every Ve ¥ = U 77, the set V'* and the integer j(V') are well defined.
i=1

To complete the proof it suffices to show that the family {V;}}_,,
where V; = U {V*: Ve ¥ and j(VV) = j} = Hj, is a cover of the space
X and has order < n, or—equivalently—that the family ¥™* = {V*: Ve ¥’}
is a cover of X and ord¥™* < n.

Let x be an arbitrary point of X. Consider an integer k such that
(5) xeX\U X,

i<k
and a set U € #7, which contains the point x; since UnX, # @, U € %,.
It follows from (3) and (4) that x € UnX, = (ffy,(U))* € ¥™*, so that
¥* is a cover of X. :

It remains to show that ord¥™* < n. Consider a non-empty inter-
section V¥nVEn ... V¥, where V,e ¥, and V, # V, whenever i # j;
let x e VEnV¥n ... AV, From the definition of ¥, it follows that for
the integer k satisfying (5) we have m; < k for i=1,2,...,h. By 4
there exist sets U; € %,, such that f3}(U;) = V;, i(U) = m; and x € U;nX,,.
Since x € X,, it follows from (5) that k¥ < k;. The sets W,, W,, ..., W,
where W, = fl#(U,)) € #°, all contain the point x, so that—as ord#7, < n
—it suffices to show that W, £ W, whenever i # j. Let us note that the
sets W, belong to %, and that i(W;) = i(U;) = m;; hence W, # W, when-
ever m; # m;. When m; = m;, we also have W; # W, because then

JulW) = fad(Uy = Vi # V; = fud(Up = fu,(W). O

4.1.2. Proposition. For every metrizable space X the following conditions

are equivalent:

(@) The space X satisfies the inequality dimX < n.

(b) For every metric p on the space X there exists a sequence U,, U, ...
of locally finite open covers of the space X such that for i = 1,2, ...
ord%; < n, 8(U) < 1/i for Ue ¥,, and for each U € U, , the set U
is contained in a Ve,.

(c) There exist a metric p on the space X and a sequence Wy, W ,, ...
of open covers of the space X such that for i = 1,2, ... ord#"; < n,
oW) < 1]i for We W, and W ;.. is a refinement of W;.
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Proof. The implication (b) = (c) is obvious and the implication (¢) = (a)
follows from Lemma 4.1.1, so that it suffices to prove that (a) = (b).
Consider 2 metrizable space X such that dimX < » and an arbitrary metric
¢ on the space X. We shall define inductively a sequence %,, %,, ... of
open covers of X. Assume that k = 1 or that k > 1 and the covers %;
are defined for all i < k. For every point x € X there exists a neighbour-
hood U, such that 8(U,) < 1/k and the set U, is contained in a member
of %,_, if k > 1. Since every metrizable space is paracompact (see [GT],
Theorem 5.1.3), it follows from Proposition 3.2.2 that the open cover
{U,}xex of the space X has a locally finite open refinement %, . The sequence
YU,,U,, ... thus obtained satisfies all the conditions in (b), so that (a)

=(b). O

4.1.3. The Katétov-Morita theorem. For every metrizable space X we have
IndX = dimX,

Proof. In view of Theorem 3.1.28 it suffices to show that IndX < dimX.
We can suppose that dimX < co. We shall apply induction with respect
to dimX. If dimX = —1, we clearly have IndX < dimX. Assume that
our inequality holds for all metrizable spaces with covering dimension
< n—1 and consider a metrizable space X such that dimX =z > 0 and
a pair 4, B of disjoint closed subsets of the space X. It suffices to define
open sets K, M — X which, together with the set L = X \(KuM), satisfy
the conditions
AcK, BcM, KnM=@ and dimL<n-1;

indeed, the set L is then a partition between 4 and B and IndL < n—1
by virtue of the inductive assumption.

Let ¢ be an arbitrary metric on the space X and let /: X — I be a con-
tinuous function satisfying f(4) < {0} and f(B) = {1}. One readily checks
that the formula g(x, y) = o(x, y)+|f(x) —f(»)| defines a metric ¢ on the
space X. From now on we shall consider on X only the metric g. By virtue
of Proposition 4.1.2 there exists a sequence %, %, ... of locally finite
open covers of the space X such that for i = 1,2, ... ord%, < n, §(U)
< 1Ji for U € %, and for each U € %, , the set U is contained ina V € %,.

let Ko = A, My = B,and fori> 1let K, = X\H, and M, = X\G,,
where
G=U{Ueu,;: UnM,_, = B}

H =U{Uc%;: UnM,_ , + D};
in this way two sequences, K,, K, K,, ... and My, M,, M,, ..., of sub-

and
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sets of the space X are defined.
Let us observe that

(6) if Ue; and UnM;_, # @, then UnK, ; = &.
The validity of (6) for i = 1 follows from the definition of g, because no

set of diameter less than 1 meets both A and B. If Ue %, where i > 1

and UnM;_, # 9, then for any Ve %,_, that contains the set U we
have VnM; |, # G, so that V is not contained in G;_,; this implies that

V < H,_,, which gives the equality UnK,_; = &.

From the local finiteness of #7;, the definitions of G; and H;, and (6)
it follows that G,nM,_, = @ = HinK,_, fori = 1,2, ..., which implies
that K, ; < X\H,; = IntK, and M,., € X\G, = IntM,; moreover,
as G,uUH, = X, we have K;nM; = @. Hence, the sets K = |J K; and

i=0

M = |\ M, are open, disjoint and contain respectively 4 and B.
i=0

8

Let Ly = X \(K;uM)) = G;UH, for i=1,2,...; clearly L = IL,-.
s i

The family %', = {UnL: Ue %, and UnM;_, # @} is, fori = 1,2, ...,
an open cover of the space L = H; and ord #"; < n— 1, because each point
xeL < L; c G, belongs to at least one U € %; satisfying UnM,_; = .
If Ue%,,, and ﬁr\Mi # O, then for any ¥V € %; that contains U we
have VM, # &, so that ¥V is not contained in G,;, which implies that
VaM,_; # @, ie., that VAL e #;. Thus #,,, is a refinement of #,.
Since, clearly, (W) < 1/i for We #";, we have dimnL < n—1 by virtue
of Proposition 4.1.2. ]

I

From the coincidence of the dimensions Ind and dim in metrizable
spaces it follows that some results in the dimension theory of metrizable
spaces, such as the subspace and sum theorems, are particular cases of
both a theorem on Ind and a theorem on dim. However, the proofs of those
particular cases are usually much simpler than the proofs of the correspond-
ing general theorems. Moreover, what is more important, the number
of theorems in the classical dimension theory which can be extended to
metrizable spaces is larger than that of the theorems hitherto generalized
in Chapters 2 and 3.

We are now going to list the counterparts of the theorems established
in Section 1.5 for separable metric spaces; we shall always point out the
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theorems in Chapters 2 and 3 of which those counterparts are particular
cases and, when possible, supply a simpler proof. The theorems will be
formulated in terms of Ind; obviously, they could as well be formulated
in terms of dim.

Let us begin, however, with a brief discussion of the status of the di-
mension ind in arbitrary metrizable spaces.

Theorems 2.4.4 and 4.1.3 (or 1.6.3, 3.1.29 and 4.1.3) yield the following

4.1.4. Theorem. For every strongly paracompact metrizable space X we have
indX = IndX = dimX. [

As a special case of the above theorem we obtain the following important
fact, stated above as Theorem 1.7.7.

4.1.5. Theorem. For every separable metrizable space X we have indX = IndX
= dimX.

Let us note that Theorem 4.1.5 can also be deduced directly from
Theorem 4.1.3 and Lemma 1.7.4.

4.1.6. Remark. Let us state once more that there exists a completely metriz-
able space X, known as Roy’s space, such that indX = 0 and yet IndX
= dimX = 1. The definition of that space and the computation of its
dimensions ind and Ind is too difficult to be included in this book.

As we ascertained in Chapter 2, the dimension ind develops pathological
properties and is practically of no importance outside the class of separable
metric spaces; suffice it to say that in metrizable spaces even the finite
sum theorem for ind does not hold (see Problem 4.1.B). Therefore the
dimension ind will not be discussed further in this book. It should be
stressed, however, that the historical role of the small inductive dimen-~
sion can hardly be overestimated. The dimension function ind was the first
formal setting of the concept of dimension and a good base for the dimen-
sion theory of separable metric spaces. Besides, the dimension ind has
a great intuitive appeal and yields quickly and economically the classical
part of dimension theory.

We now turn to a list of the basic properties of dimension in metrizable
spaces. First of all, let us observe that, since every subspace of a space X
which satisfies condition (¢) in Proposition 4.1.2 also satisfies this condi-
tion, from Proposition 4.1.2 and Theorem 4.1.3 we obtain the following
theorem (which is a particular case of Theorems 2.3.6 and 3.1.19).
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4.1.7. The subspace theorem. For every subspace M of a metriube space X
we have Ind M < IndX. [J

The following simple theorem is a particular case of Thoem 2.2.2.

4.1.8. Theorem. If X is a metrizable space and IndX =n= 1, thafor k = 0,
1, ..., n—1 the space X contains a closed subspace M such thathi{ = k.[]

From Theorems 2.3.8 and 2.3.10 (or 3.1.8, 3.1.10 and 413w obtain
the countable and the locally finite sum theorems.

4.1.9. The countable sum theorem. If a metrizable space X wunbe repre-
sented as the union of the sequence F,, F,, ... of closed subspues sich that
IndFy,<nfori=1,2,.., then IndX<n O

4.1.10. The locally finite sum theorem. If a metrizable space X un be rep-
resented as the union of a locally finite family {F}ses of cloel ubspaces
such that IndFy < n for s€ S, then IndX < n. [J

The next theorem is a comm'bn generalization of the ks two theo-
rems; it follows from Theorem 2.3.15 (or 3.1.15) and the fut that every
metrizable space is paracompact.

4.1.11. Theorem. If a metrizable space X can be represented s the union
of a locally countable family {F }ss of closed subspaces suk that Ind F
< nfor seS8, then IndX < n. [

Another common generalization of the countable andthe locally
finite sum theorems is the following theorem, which is strongrthan similar
results in Chapters 2 and 3.

4.1.12. Theorem. If a metrizable space X can be representel s the union
of a transfinite sequence K,, Ky, ..., Ky, ..., & < & of subspues such that

IndK, < n and the union \J Kp is closed for o < &, then I < n.

B<a

Proof. Let ¢ be a metric on the space X. For each o < £ definf,= | Kj
B<a
and consider the sets
Fl,a = Ka\\B(Fa, 1/1) = Fa+1\\B(Fa, 1/1) for i = 1,2,...,
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where B(4, r) denotes the open r-ball about 4 with respect to the metric o.
The sets F,; , are closed and IndF; , < nfora < £and i =1, 2, ... Since
F; «NB(F; 3, 1]i) = & whenever f < «, the family {F;,},.. is discrete,
so that the set F; = Ue F, , is closed and satisfies the inequality IndF, < n
fori=1,2, ...

o0
It remains to show that X = | F,. Consider an arbitrary point x € X;

i=1
let @ be the smallest ordinal number less than & such that x € K,. Since
x ¢ F,, there exists an integer / such that F,nB(x, 1/i) = @, which implies
that x ¢ B(F,, 1/i). Thus x e F, , < F;,. []

From Lemma 1.2.9 and Remark 1.2.10 one easily obtains {cf. the proof
of Theorem 1.2.11) the following result, which is a particular case of The-
orem 2.2.4.

4.1.13. The separation theorem. [f X is a metrizable space and M is a sub-
space of X such that Ind M < n = O, then for every pair A, B of disjoint
closed subsets of X there exists a partition L between A and B such that
Ind(LnM)< n—1. O

We shall now characterize the dimension of subspaces of metrizable
spaces in terms of o-locally finite bases for the space (cf. Proposition
1.5.15); the characterization will be applied in the proofs of the decomposi-
tion, enlargement and Cartesian products theorems.

4.1.14. Proposition. A4 subspace M of a metrizable space X satisfies the
inequality IndM < n = 0 if and only if X has a o-locally finite base B
such that Ind(MnFrU) < n—1 for every U€ A.

Proof. Consider a subspace M of a metrizable space X which satisfies
the inequality Ind M < n = 0, let ¢ be an arbitrary metric on the space X.
The space X being paracompact, for i = 1, 2, ... there exists a locally
finite open cover ¥"; = {V}ss, of the space X such that mesh¥”; < 1/i;
let {F;}ss, be a closed shrinking of the cover ¥°; (see [GT], Theorem
1.5.18). By virtue of Theorem 4.1.13 for every s € S; there exists a parti-
tion L; between F; and X \V; such that Ind(L,nM) < n— 1. Consequently
there exist open sets U,, W, c X such that
F,cU, X\V,cW, UnW,=0 and X\L,= UuW,.

As FrU, c L;, Ind(MnFrU) < n—1, and as U, «c X\W, < V,, (U
< 1fi for s €S;. The family #;, = {U,}ws, is for i = 1,2, ... a locally
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finite open cover of the space X such that mesh4, < 1/i, so that the union

[ee]
B = \ 4, is a o-locally finite base for the space X such that Ind(MnFrU)
i=1

< n—1 for every Ue 4. »

Conversely, if M is a subspace of a metrizable space X and X has a
o-locally finite base # such that Ind(MnFrU) < n—1 for every Ue %,
then the family {MnU: U e #} is a o-locally finite base for the subspace
M whose members have boundaries of large inductive dimension < n—1;
by virtue of Lemma 2.3.16 and Theorems 4.1.9, 4.1.10 and 4.1.7, this
implies that IndM < »n. O

The next theorem (cf. Theorem 1.1.6) is a particular case of Proposition
4.1.14.

4.1.15. Theorem. A metrizable space X satisfies the inequality IndX < n =0
if and only if X has a o-locally finite base B such that IndFrU < n—1
Jor every Ue 3. (O

Let us note that in Proposition 4.1.14 and Theorem 4.1.15 the o-local
finiteness can be replaced by o-discreteness (cf. [GT], Theorem 4.4.1).

4.1.16. The first decomposition theorem. A metrizable space X satisfies the
inequality IndX < n = 0 if and only if X can be represented as the union
of two subspaces Y and Z such that IndY < n—1 and IndZ < 0.

Proof. Consider a metrizable space X such that IndX < n = 0. By virtue
of Theorem 4.1.15, the space X has a o-locally finite base # such that
IndFrU < n—1forevery U € 4. From Theorems 4.1.9 and 4.1.10 it follows
that the subspace ¥ = | {FrU: Ue %} satisfies the inequality IndY
< n—1, and from Proposition 4.1.14 it follows that the subspace Z = X\Y
satisfies the inequality IndZ < 0.

If X is a metrizable space and X = YuZ, where IndY < n—1 and
IndZ < 0, then IndX < n by virtue of Theorems 4.1.13 and 4.1.7. OJ

From the first decomposition theorem we obtain by easy induction

4.1.17. The second decomposition theorem. 4 metrizable space X satisfies
the inequality IndX < n > 0 if and only if X can be represented as the union
of n+1 subspaces Z,,Z,, ..., Z,,y such that IndZ, <0 fori=1,2, ...
...n+1.0

From Theorem 4.1.17 immediately follows the addition theorem, which
is a particular case of Theorems 2.2.5 and 3.1.17.
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4.1.18. The addition theorem. For every pair X, Y of subspaces of a metrizable
space we have

Ind(XuY) < IndX+IndY+1. O

We now turn to the enlargement theorem.

4.1.19. The enlargement theorem. For every subspace M of a metrizable
space X satisfying the inequality Ind M < n there exists a Gy-set M* in X
such that M < M* and Ind M* < n.

Proof. Consider first the particular case of a subspace Z of X such that
IndZ < 0. By virtue of Proposition 4.1.14 the space X has a o-locally
finite base # such that ZnFrU =G for every Ue#. The union
F=\J {FrU: Ue®} is an F,set, and its complement Z* = X\F
is a G;-set which contains the set Z. From Proposition 4.1.14 it follows
that IndZ* < 0.

To complete the proof it suffices to usg Theorem 4.1.17 and apply
the particular case established above (cf. the proof of Theorem 1.5.11).(]

Since every compact metrizable space is separable, no non-separable
metrizable space has a metrizable compactification. The next theorem
is a substitute for the compactification theorem in the realm of metrizable
spaces; it follows from Theorem 4.1.19, Lemma 1.3.12, and the fact that
each metrizable space is homeomorphic to a subspace of a completely
metrizable space (see [GT], Corollary 4.3.15).

4.1.20. The completion theorem. For every metrizable space X there exists
a completely metrizable space X which contains a dense subspace homeo-
morphic to X and satisfies the equalities IndX = IndX and w(j’ ) = w(X).0O

We now pass to the Cartesian product theorem. It is a particular case
of Theorem 2.4.6; the proof of this particular case is much simpler than
the proof given in Section 2.4.

4.1.21. The Cartesian product theorem. For every pair X, Y of metrizable
spaces of which at least one is non-empty we have

Ind(XxY) < IndX+Ind?.

Proof. The theorem is obvious if IndX = o0 or IndY = o, so that we can
suppose that k(X, Y) = IndX+IndY is finite. We shall apply induction
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with respect to that number. If k(X,Y) = —1, then either X = & or
Y = &, and our inequality holds. Assume that the inequality is proved
for every pair of metrizable spaces the sum of large inductive dimensions
of which is less than k > 0 and consider metrizable spaces X and Y such
that IndX =n > 0, IndY = m > 0 and n+m = k. By virtue of Theorem

fvel
4.1.15 the space X has a base ¥ = {_ %,, where the families %, are locally

i=1

finite and IndFrU < n—1 for every U € ¥. Similarly, the space Y has
o0

a base 2 = | 9,, where the families 92, are locally finite and IndFrV
i=1

<m—1 for every Ve 9. Fori,j=1,2, ... the family

By, ={UxV: Ue¥, and Veg,}
consists of open subsets of the Cartesian product X xY and is locally
finite. Since

Fr(UxV) « (XxFrV)u(FrUxY),
by virtue of the inductive assumption and Theorem 4.1.9 we have Ind Fr(U x
x V) < k—1. The family {#,, ;}{°;-, is a base for the Cartesian product

X xY. From Theorem 4.1.15 it follows that Ind(X x Y) < k and the proof
is completed.

We shall now prove the theorem on dimension of the limit of an inverse
sequence of metrizable spaces. In consideration of the context of inverse
systems and the character of the proof given below, the theorem is formu-
lated in terms of the dimension dim.

4.1.22. Theorem on dimension of the limit of an inverse sequence. If the
inverse sequence S = {X;, n}} consists of metrizable spaces X, such that
dimX, < nfori= 1,2, ..., then the limit X = im S satisfies the inequality
dimX < n.

Proof. For i = 1,2, ... consider a metric p; on the space X; bounded

by 1. On the Cartesian product [[ X; and on its subspace X we shall
i=1

consider the metric ¢ defined by letting

oo}

M e D= D Hredur)  for {xn}, e[
i=1

i=1
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For i,k =1,2,... let %,, be an open cover of the space X; such that

mesh %;, < 1/2k. We shall define inductively a sequence %,,%,, ..-

of families of sets satisfying the conditions:

(8) The family %, is an open cover of the space X; and ord%; < n.

(9) For each U e %;, where i > 1, there exists a V € %;-, such that U
< (@) (). _

(10) For every j < i mesh({m;(U): Ue%,}) < 1/2i.

Conditions (8)-(10) are satisfied for i = 1 by an arbitrary open refine-
ment %; of the cover %, , of the space X; such that ord%; < n; such
a refinement exists by virtue of Proposition 3.2.2. Assume that the families
U, satistying (8)—(10) are defined for all i < & > 1. Let %, be an arbitraty
open refinement of the cover

[(n":—l)—l(%k—l)] ALED YU, DA [(ng)—l(%z.k)])\ e A [(n’;)—l(%k.k)]

of the space X, such that ord%, < n. From the definition it easily follows
that %, satisfies (8)-(10) with i = k; thus the construction of the families
%, is completed.

For i =1,2, ... the family #", = = '(#%;), where n;: X — X, denotes
the projection, is an open cover of the space X. For every W e #,,, there
exists a U e %4, such that W = a7} (U); by virtue of (9) one can find
a Ved such that Uc (@) '(¥). Thus W < ai@t)-1(¥)
= (@i*t'm;, )" (V) = 77 (V) € #';, which shows that #7;,, is a refine-
ment of #7,. From (10) it follows that 6(W) < 1/2i+1/2' < 1/i for every
W e #,, so that dimX < n by virtue of Proposition 4.1.2. [J

We conclude this section by proving that for every cardinal number
m > N, the Baire space B(m) defined below is a universal space for the
class of all metrizable spaces whose large inductive dimension is not larger
than 0 and whose weight is not larger than m. In the following section
this result will be extended to higher dimensions; as the reader will see,
the proof of the general theorem is much more difficult than that of the
particular case discussed here.

We start with the definition of the Baire space.

4.1.23. Example. For /i = 1,2, ... let X; = D(m) be the discrete space of
cardinality m > N, with the metric g; defined by

0.(x, ) =1 ifx#y and o(x,x)=0.
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[ee]
The Cartesian product H X, = [D(m)]F° is a metrizable space; it is well

known that formula (7) deﬁnes a metric g on that space. One can readlly
verify that by letting

if x, # y, and x; = y, for i < k,

1/k,
an G({X} ) = { 0, if x;, =y, fori=1,2, ...

«©

one defines another metric on the set || X,. The metrics g and o are equiv-

i=1
alent. Indeed, a sequence {x}}, {x?}, ... in the Cartesian product [] X,
i=1

converges to a point {x;} if and only if for every 7 there exists a k(i) such
that x{ = x, whenever j > k(i), and the same condition is necessary and
sufficient for the convergence of the sequence {x}}, {x?}, ... to the point
{x,} with respect to the metric o defined by (11).

The Cartesian product [D(m)®e with the metric ¢ defined in (11)
is called the Baire space of weight m and is denoted by B(m). The reader
can easily check that the weight of the space B(m) is really equal to m.
Let us note that by virtue of Proposition 1.3.13 the Baire space B(No)
1S homeomorphic to the space of irrational numbers.

We shall show that Ind B(m) = 0. Consider a pair x = {x;}, y = {3}
of points of B(m) and a real number r satisfying 0 < r < 1. If the inter-
section B(x,r)nB(y,r) is non-empty, then there exists a point z = {z;}
€ B(m) such that x; = z, = y,, X, = Z; = V3, .-, Xx = Zx = Vi, Where k
is the integer satisfying 1/k+1 < r < 1/k; thus we have B(x,r) = B(y,r).
Hence in B(m) two r-balls either are disjoint or coincide. In particular,
for i = 1,2, ... the family #; = {B(x, 1/i): x € B(m)} is an open cover

0
of B(m) which consists of pairwise disjoint sets. The union # = U 4,
i=1
is a o-locally finite base for B(m) which consists of open-and-closed sets,
so that Ind B(m) < O by virtue of Theorem 4.1.15. [J

4.1.24. Theorem. For every cardinal number m = No the Baire space B(m)
is a universal space for the class of all metrizable spaces whose large in-
ductive dimension is not larger than 0 and whose weight is not larger than m.

Proof. By virtue of the last example it suffices to show that every metri-
zable space X such that IndX = 0 and w(X) = m is embeddable in X.
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Let ¢ be an arbitrary metric on the space X and # an arbitrary base
for X such that [#]| = m. From Theorem 1.6.11 (or 4.1.3) and Proposition
3.2.2 it follows that the cover {Ue #: 6(U) < 1/i} of the space X has
an open shrinking £, consisting of pairwise disjoint sets. Adjoining to
%,, if necessary, an appropriate number of copies of the empty set, we
can assume that #; = {U;  }sex,, Where X; = D(m) is the discrete space
of cardinality m used in Example 4.1.23 to define the space B(m).

By assigning to each point x € X the element s € X, such that xe U,
we define a continuous mapping f;: X — X;. For every x € X and every
closed set F — X such that x ¢ F there exists a natural number / such
that o(x, F) > 1/i. The set U, that contains the point x is disjoint from

F, so that f(x) = s ¢ fi(F) = f;(F). Thus the family {f}©., separates
points and closed sets, which implies that the mapping F: X — [] X,
i=1

= B(m) defined by letting F(x) = (f;(x), f>2(x), ...) is a homeomorphic
embedding (see [GT], Theorem 2.3.20). O]

Since the Cartesian product of N, copies of B(m) is homeomorphic
to B(m), Theorem 4.1.24 yields the following

o0
4.1.25. Theorem. The Cartesian product X = [| X, of a countable Samily

i=t
{X,}1 of metrizable spaces satisfies the equality IndX = 0 if and only
fIndX;=0fori=1,2,... 0

Historical and bibliographic notes

Lemma 4.1.1 was established by Nagami and Roberts in [1967]. The
equivalence of conditions (a) and (b) in Proposition 4.1.2 was proved
by Dowker and Hurewicz in [1956]; the equivalence of conditions (a)
and (c) was proved by Vopénka in [1959]. Theorem 4.1.3 was established
independently by Katétov in [1952] (announcement in [1951]) and by
Morita in [1954]. Theorem 4.1.4 was given by Morita in [1950a]. References
concerning Roy’s space cited in Remark 4.1.6 are given in the notes to
Section 2.4. Theorems 4.1.7-4.1.11, 4.1.13 and 4.1.18 are special cases
of the theorems established in Chapters 2 and 3. Theorem 4.1.12 was given
by Nagami in [1957]. Theorems 4.1.14 and 4.1.15 were proved by Morita
in [1954]. All the remaining theorems in this section, except for Theorem
4.1.22, which was proved by Nagami in [1959], were established independ-
ently by Katétov in [1952] and by Morita in [1954].
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Problems

4.1.A (Engelking [1973], Przymusifiski [1974]). Let X be a metrizable
space and ¢ a metric on the space X; let ds(X, ¢) < n denote that the space
X has a sequence of open covers %, %,, ... with the properties stated
in condition (b) in Proposition 4.1.2.

(a) Show by modifying the proof of Theorem 4.1.3, that if ds(X, ¢)
< n > 0 then for every pair 4, B of closed subsets of X satisfying o(4, B)
> 0 there exists an open set U = X such that 4 « U < X\B and
ds(FrU, o) < n—1.

(b) Apply (a) to prove the Katétov—Morita theorem without using
Lemma 4.1.1.

Hint. Observe first that if dimX < a, then ds(X,¢) < n for every
metric o on the space X; then apply (a) to prove by induction that the
inequality ds(X, p) < n > O implies that X has a o-locally finite base %
such that dimFrU < n—1 for every U e # and show that the existence
of such a base implies the inequality IndX < n.

One can also apply (a) to prove by induction that if ds(X,p) <n=> 0
then, for every closed set 4 = X and each open set ¥ < X that contains
the set A4, there exists an op;en set Uc X such that A< UcV
and IndFrU < n—1. To this end, for i = 1, 2, ... define 4, = B(4, 1/i)
and A; = B(X\V, 1/i), consider open sets W;, Wi < X such that 4,
< W, c 4, ds(FrW,0)<n—1 and diy; « Wi < 4;, ds(FrWi,¢)

<n—1, and let U= U (W \W)).
i=1

4.1.B (van Douwen [1973], Przymusinski {1974]). Applying the exist-
ence of a metrizable space X with the properties described in Remark
4.1.6, define a metrizable space Y with indY = 1 which can be represented
as the union of two closed subspaces ¥, and ¥, such that indY; = indY,
= 0 and which contains a point p such that ind(Y\{p}) = 0.

Hint. Consider a pair A, B of disjoint closed subsets of X which cannot
be enlarged to disjoint open-and-closed sets, and replace the set B by a point
p in such a way as to obtain a metrizable space.

4.1.C. Let Y be the space considered in Problem 4.1.B and
let M =Y\ {p}. Show that, though indM = 0, there exists a neigh-
bourhood ¥ of the point p in the space Y such that for every open set
UcY satisfying peUc V we have MnFrU # & (cf. Propositions
1.2.12 and 1.5.14).
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4.1.D (R. Pol [1979)). Prove that if a metrizable space X can be
represented as the union of a family {F},.s of closed subspaces such
that IndF; < n for seS and if there eXists a point-countable open
cover {U; }ses of the space X such that F, < U, for se§, then IndX < n.

Hint (Hansell [1974]). Let B = U #; be a base for the space X,

where the families %; are locally ﬁmte For every non-empty Ue%
consider a one-to-one transformation jy of the set {s€S: Uc Uy} to
the integers and let U,; ; = \U {Ue%;: U c U, and jy(s) = j}. Show
that the family {Ug; j}es is locally finite for i,j = 1,2, .. and

U, = U U, for seS.
ij=1
4.1.E. Deduce from Theorems 4.1.3 and 4.1.13 and Remark 1.7.10
that a metrizable space X satisfies the inequality IndX < »n = 0 if and only
if for every sequence (4, B,), (4, By), .., (Aps+1, Bay1) of n+1 pairs

of disjoint closed subsets of X there exist closed sets L;, L,, ..., Lyyq
n+1

such that L, is a partition between A, and B, and Q L =9.

4.LF (LevSenko [1969]; for n = 0 Levienko and Smirnov [1966];
for separable spaces implicitly Popruzenko [1931]). (a) Prove that for
every non-empty closed subset A of a metrizable space X satisfying the
inequality IndX < n > 0 there exists a closed subset B of the subspace
X\ A4 of X such that IndB < n—1 and A4 is a retract of X\ B.

Hint. Consider a metric o on the space X and define a sequence U, , Us, ...
of open subsets of X such that 4 € U, c B(4, l/i), U, = U,_,, where
U, =X, and IndFrU, < n—1 fori = 1,2, ...; consider for i = 1, 2, ...
a locally finite open cover %; of the subspace U,_,\U, of the space X
such that mesh#,; < 1/i and IndFrU < n—1 for every Ue %,. Define

oo

B = U FrU,u U ({FrU: Ue U %,} and see the hint to Problem 1.3.C(a).
i=1 i=1

(b) Show that if a metrizable space X has the property that for every
non-empty closed set A < X there exists a closed subset B of the subspace
X\A of X such that indB < n—1 and 4 is a retract of X\ B, then IndX
< n.

4.1.G (Hausdorff [1934], de Groot [1956]). A metric ¢ on a set X is
called non-Archimedean if o(x, z) € max[o(x, ), o(y, )] forall x, y, z € X.
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Let X be a metrizable space; show that on the space X there exists
a non-Archimedean metric if and only if IndX < 0.
Hint. There exists a non-Archimedean metric on the Baire space B(m).

4.2. Characterizations of dimension in metrizable spaces. The universal
space theorem

In the first part of this section we shall establish four characteriza-
tions of the dimension dim in metrizable spaces formulated in terms of
the existence of special bases and sequences of covers, and we shall review
characterizations of dim in terms of special metrics.

We start with characterizations in terms of ¢-locally finite bases with
special properties. First we shall prove a lemma related to Theorem 3.2.5.

4.2.1. Lemma. If a normal space X satisfies the inequality dimX < n = 0,
then for every o-locally finite family {Us}«s of open subsets of X and every
Samily {F}s of closed subsets of X such that F; = U; for s € S there exists
a family {V}es of open subsets of X such that F, c V< V, < U, for
s €S and ord({FrV¥V },s) < n—1.

Proof. Let S =JS,, where S;nS; = whenever i #j and the
i1

family {U,}es, is locally finite for i = 1,2, ... Applying Theorem 3.2.5,
one can easily define by induction open sets V,,, W,,; < X, where s € Ty
= S,uUS,uU ... uS; and i = 1, 2, ..., satisfying the following conditions:

6} FocV,,cV,,c W,, c W,,c U, forses,.
2 i}s.i—l c Vi< I7s,i c W c -Ws,i c W,y for seT,—, and i> 1.
3 Ord({VVs,t\Vs,t}seri) <n-—1.

For every s € S consider the open set
o0
Vi=UV,;, wheresesS,.
j=i

Conditions (1) and (2) imply that F, = ¥, = ¥, c U, for s € S and that
Frv, = V\V, c¢ W, \V,, for j> i, where s€S;. The last inclusion
together with (3) yield the inequality ord({FrV }ss) < n—1. (O

4.2.2. Theorem. For every metrizable space X and each integer n = 0 the
Sfollowing conditions are equivalent:
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(a) The space X satsifies the inequality dimX < n.

(b) The space X has a o-locally finite base & such that ord({FrU: U € %))
< n—1.

(¢) The space X has a o-locally finite base # such that dimFrU < n—1
Sfor every Ue .

Proof. We shall show first that (a) = (b). Consider a metrizable space X

such that dimX < n; let ¢ be a metric on the space X. The space X being

paracompact, for i = 1, 2, ... there exists a locally finite open cover %,

= {U,}ws, of the space X such that mesh%; < 1/i; obviously, one can

assume that §;nS; = & whenever i # j. Let {F;}s, be a closed shrinking
oo}

of the cover %, and let S = | §;. Applying Lemma 4.2.1 to the families
i=1

{Us}wes and {F;}.s we obtain a family # = {V,}s which has the prop-
erties stated in (b).

The implication (c) = (a) follows from Lemmas 2.3.16 and 3.1.27
and the sum theorems for dim. .

To prove that (b) = (c) we shall apply induction with respect to n.
Condition (b) and (c) are equivalent if n = 0, because then they both
mean that all members of 4 are open-and-closed. Assume that the implica-
tion (b) = (c) is ‘proved for all metrizable spaces and every » < m and
consider a metrizable space X which has a o-locally finite base # such
that ord({FrU: U € #}) < m. For every U, € # the family &, = {X,nU:
Ue A}, where X, = FrU,, is a o-locally finite base for the space X,.
Since the family of boundaries of members of %, in the space X, has order
< m—1, it follows from the inductive assumption and implication (c) = (a)
that dimX, < m. Thus the space X satisfies (c) with » = m+1 and the
proof that (b) == (¢) is completed. ]

Let us note that the equivalence of conditions (a) and (c) in Theorem
4.2.2 follows immediately from Theorems 4.1.3 and 4.1.15. In our proof,
however, we applied Lemma 3.1.27, rather than those two theorems,
in order to prepare the ground for another proof of the Katétov-Morita
theorem (cf. Problem 4.2.A(a)).

We shall now introduce two topological notions which are applied
in the next theorem. A sequence #",, # ., ... of covers of a topological
space X is called a development for the space X if all covers #"; are open
and for every point x € X and each neighbourhood U of the point x there
exists a natural number i such that St(x, #°,) = U. One easily observes
that a sequence #",, #°,, ... of open covers of a topological space X is
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a development for X if and only if for every point x € X each family {W,},
of open subsets of X such that x e W, e #; fori = 1, 2, ... is a base for X
at the point x. A sequence #",, # ", ... of covers of a topological space X
is called a strong development for the space X if all covers %", are open
and for every point x € X and each neighbourhood U of the point x there
exist a neighbourhood V of the point x and a natural number i such that
St(V, #°) = U. - Clearly, every strong development is a develdpment.

4.2.3. Theorem. For every metrizable space X the following conditions are

equivalent:

(a) The space X satisfies the inequality dimX < n.

(b) The space X has a development W'y, W ,, ... such that ord W, < n
and W'y, is a star refinement of W for i = 1,2, ...

(©) The space X has a strong development W'y, ¥ 5, ... such that ord ¥,
< nand Wi is a refinement of W, for i =1,2, ...

Proof. We begin with the implication (a) => (b). Consider a metrizable
space X such that dimX < n. We shall define inductively a sequence
Wi, W,, ... of open covers of X which has the properties stated in (b).
Assume that k = 1 or that k > 1 and the covers #"; are defined for all
i < k. The space X being paracompact, the open cover ¥ _;A
A{B(x, 1]/k)}xex of the space X, where #°, = {X}, has an open star
refinement (see [GT], Theorem 5.1.12) which by virtue of Proposition
3.2.2 has in turn an open shrinking #", such that ord¥%", < n. The sequence
Wi, W ,, ... thus obtained has the required properties, so that (a) = (b).

The implication (b) = (c) follows from the fact that if St(x, #°) c U
and #7,,, is a star refinement of #"; then St(V, #°;,,) < U for any V
€ # 41 such that x e V.

Finally, the implication (c) = (a) follows from Lemma 4.1.1, because—
as one readily sees by applying the definition twice—if # ', #7,, ... is
a strong development for a space X and #7,, is a refinement of ¥", for
i=1,2, ..., then the family {St(W, #"): We# ,,i=1,2,...}is a base
for X. O

Let us note that by virtue of the Nagata~Smirn0\; theorem (see [GT],
Theorem 4.4.7), Theorem 4.2.2 holds for every regular space X if condi-

tion (a) is replaced by the following condition:

(a") The space X is metrizable and satisfies the inequality dimX < n.
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Similarly, by virtue of appropriate metrization theorems (see [GT],
Corollary 5.4.10 and Theorem 5.4.2), Theorem 4.2.3 holds for every
T,-space X if condition (a) is replaced by condition (a’).

As follows from Problem 4.1.G, the class of all metrizable spaces X
such that dimX < O can be characterized in terms of the existence of
special metrics. In this connection it is natural to ask whether the class
of all metrizable spaces X such that dimX < n can be characterized in
a similar manner. Investigations in this direction led to a group of in-
teresting theorems, which are reviewed below; the proofs of those theorems
are too difficult to be reproduced in this book. Thus, a metrizable space
X satisfies the inequality dimX < n > 0 if and only if on the space X there
exists a metric ¢ which satisfies any of the following conditions:

(i) For every point xe€X and each positive number r we have
dimFrB(x, r) < n—1; moreover, | B(x, r) = U B(x, r) for every
xeXy x€X,
X, cX.

(ii) For every closed set 4 = X and each positive number r we have
dimFrB(4,r) < n—1. .

(iii) For every point x € X, each positive number r and every sequence
YisV2s s Vara Of n+2 points of X satisfying the inequality
g(yi, B(x,r[2)) <rfori=1,2,...,n+2, there exist natural numbers
i,j < n+2 such that i # j and o(y;,y)) < r.

(iv) For every point x €X and every sequence V;,Va, ---» Vuy2 Of B+2
points of X there exist natural numbers i, j < n+2 such that i # j
and o(¥i, ¥;) < o(x, y).

One easily verifies that every metric ¢ which satisfies (i) satisfies also
(ii), and that if on a space X there exists a metric ¢ which satisfies (ii),
then dimX < n (see Problem 4.2.D). Let us note that a separable metrizable
space X satisfies the inequality dimX < »n > 0 if and only if on the space X
there exists a metric ¢ which satisfies the first part of (i); it is not known
whether the second part of (i) can be omitted also in the case of an ar-
bitrary metrizable space.

An interesting problem is connected with conditions (iii) and (iv),
namely it is not known whether the inequality dimX < a follows from
the existence, on the space X, of a metric o which satisfies the following
condition
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(v) For every point x € X, each positive number r and every sequence
V1> V2 --s Yni2 Of n+2 points of X satisfying the inequality o(x, y,)
<r for i=1,2,...,n+2, there exist natural numbers i,j < n+2
such that i # j and o(y;, y;) < r.

One easily verifies that every metric ¢ which satisfies (iii) satisfies also
(v), so that the problem stated above is equivalent to the question whether
the existence on a space X of a metric ¢ which satisfies (v) means that
dimX < n. Similarly, one can readily check that condition (v) is equivalent
to the following condition:

(v") For every point x € X and evefy sequence Vi, Vi, ..., Yuyo Of n+2
points of X there exist natural numbers #,j, k €< n+2 such that

i ¢J and @(yi,yj) < @(-x,yk),

and that every metric ¢ which satisfies (iv) satisfies also (v') and (v). Let
us note that if on a separable metrizable space X there exists a totally
bounded metric ¢ which satisfies (v), then dimX < n (see Problem 4.2.F);
it is not known if the assumption of“total boundedness can be omitted.

We now turn to the universal space theorem. As in the case of normal
spaces discussed in Section 3.3, we shall deduce this theorem from a fac-
torization theorem. We start with a simple lemma on paracompact spaces.

4.2.4. Lemma. Every locally finite open cover % of a paracompact space X
has a locally finite open star refinement ¥ such that |V < max(|%|, No).

Proof. Let # be an open star refinement of % (see [GT], Theorem 5.1.12).
For every pair %,, %, of finite subfamilies of the cover % denote by
W (U, U,) the family of all We % such that %, = {Ue%: W c U}
and %, = {Ue¥: St(W,#) < U}. From the local finiteness of %
it follows that all the sets of the form (J # (%,, %,) constitute an open
cover ¥~ of the space X such that [¥”] < max (|%|, No). We shall show
that 47 is a star refinement of %.

Consider aset V = | # (%o, %,) € ¥"'. Let U be an arbitrary member
of %,; clearly

C))] St((W, )< U for every We W (U, U,).

For every set V' = \J W (%,,%;) € ¥ which intersects ¥ there exist
WeW (U, U,) and W' e W (U, ;) such that WnW’' # @&. From
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(4) it follows that W’ < U, so that U € %, which implies that V' = U,
Hence, St(V,¥v") < U.

To complete the proof it suffices to consider a locally finite open shrink-
ing ¥~ of the cover ¥"'. [

4.2.5. Pasynkov’s factorization theorem. For every continuous mapping f:
X — Y of a metrizable space X to a metrizable space Y there exist a metri-
zable space Z and continuous mappings g: X —» Z and h: Z — Y such that
dimZ < dimX, w(Z) < w(Y), g(X) = Z and [ = hg.

Proof. If dimX = o or w(¥Y) < Ny, then Z = f(X), g = f and h = id,
satisfy the theorem. Thus one can suppose that dimX = n < o0 and
w(¥)=m = No. For i =1,2,... consider a locally finite open cover
U, of the space Y such that mesh%, < 1/i and {%,] < m. Applying Lemma
4.2.4 and Proposition 3.2.2 one can easily define by induction a sequence
¥y, ¥,, ... of locally finite open covers of the space X such that for
i=1,2,..

&) ord?,<n, |[¥l<m
and
©) ¥ i1 Is a star refinement of ¥, Af "1 (%;44).

We shall now consider another topology on the set X, coarser than the
original one, which is defined by declaring that a set U = X is open if for
every x € U there exists a natural number i/ such that St(x, 7)) = U.
The set X with this new topology-will be denoted by X’; let us note that
generally X’ is not a Ty-space. We shall show that for every 4 = X’ the
interior of the set 4 in the space X’ coincides with the set

A* = {x € X: there exists an i such that St(x, ¥")) < 4}.

Obviously, it suffices to verify that A* is an open subset of X’. Consider
an arbitrary point x € 4* and an i such that St(x,¥",) = 4. For every
point y € St(x, ¥,,) we have St(y, ¥"..) < St(x,¥") = 4, so that
y e A* Thus St(x, ¥;,.,) = A* which shows that 4* is an open subset
of X',

Let v = (¥V*: Vev¥,}fori=1,2,.. As for every We ¥, there
exists a ¥V € ¥, such that St(W, ¥",,,) = ¥ and consequently W < V'*
€7°¥, the family 7} is an open cover of the space X'. Since 4* is the interior
of 4 in X', from (6) it follows that for i =1, 2, ...
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) ¥ ¥.: Is a star refinement of ¥°F.

Note that by letting f'(x) = f(x) for x € X’ we define a continuous mapping
f’: X' - Y; indeed, it follows from (6) that 8(f"(V*)) < 1/i+1 for every
V¥e¥?.,.

For x,y € X’ define

xEy if and only if for every i there exists a V € ¥7; such that x,y e V.

One easily checks that E is an equivalence relation on the space X’. Clearly
o0
[x] = M St(x, ) for xeX’,
i=1

where [x] denotes the equivalence class that contains x. Let Z be the
quotient space X'/E and g: X — Z the composition of the identity mapping
it X - X’ and the natural quotient mapping g’: X'~ X'/E. By virtue
of (6), f'(x) =f'(y) whenever xEy, so that by letting A([x]) = f'(x) we
define a mapping % of Z to Y; from the relation hg’ = f’ it follows that A:
Z — Y is a continuous mapping. Obviously, g(X) = Z and f = hg. Let
us note that

8) g g (4*) = 4* for every 4 = X,

so that
® the set g'(4*) is open in Z for every 4 < X'.

We shall show that Z is a metrizable space. To begin with, observe
that Z is a T;-space. Indeed, if [x] # [y] then there exists an i such that
»y ¢ St(x, ¥7)), and then the set g’(¥°*), where V' = St(x, ¥7,), is a neigh-
bourhood of the point [x] which does not contain the point [y]. Let #7,
={g(V*: Vey } fori=1,2,..; from (9) it follows that %7, is an
open cover of the space Z. Now, from the definition of topology on X" it
follows that the sequence ¥°f, ¥°%, ... is a development for the space X,
so that by virtue of (8) the sequence #";, #°,, ... is a development for
the space Z; moreover, (7) implies that #7,,, is a star refinement of #7;
for i =1,2,... Hence, the space Z is metrizable (see [GT], Corollary
5.4.10).

From the first part of (5) it follows that ord# ;< nfori=1,2, ...,
so that dimZ < n by virtue of Theorem 4.2.3. To complete the proof
it suffices to show that w(Z) < m. The family & consisting of all sets
St(z, #7;), where ze Z and i = 1, 2, ..., is a base for the space Z. Since
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the covers ¥7; of the space X are all locally finite, it follows that the covers
¥'¥ and W, are point-finite, so that [#] < m. O

Let us note that in the proof of Pasynkov’s factorization theorem
only the paracompactness of the space X, and not its metrizability, was
used; it turns out that the theorem holds under the even weaker assumption
of normality of X (see Problem 4.2.G).

4.2.6. The universal space theorem. For every integer n> 0 and every
cardinal number m 2 N, there exists a universal space Ji for the class
of all metrizable spaces whose covering dimension is not larger than n and
whose weight is not larger than m.

Proof. Let {X,},s be the family of all subspaces of the Cartesian product
[J(m)I¥e of N, copies of the hedgehog J(m) (see [GT], Example 4.1.5)
whose covering dimension is not larger than n, and let i, X, — {J(m)]®e
be the embedding of X in [J(m)]¥e. Consider the sum X = (P X, and the

seS
mapping i: X — [J(m)[Fe defined by letting i(x) = i(x) for x € X,. Since
dimX < n, by virtue of Theorem 4.2.5 there exist a metrizable space J
and continuous mappings g: X — Ji, and h: J — [J(m)]¥ such that
dimJ}; < dimX = n, w(J%) < w([J(m)]*) = m and f = hg.

Consider now an arbitrary metrizable space Y such that dimY < n
and w(Y) < m. Since Y .is embeddable in [J(m)]¥ (see [GT], Theorem
4.4.9), there exists an s € S such that X is homeomorphic to Y. The com-
position hogo of the restrictions g, = glX,: X; —» g(Xy) = Ji and Ao
= hlg(Xy: g(Xy) — X, c [J(m)]¥ is a homeomorphism, so that g, is
also a homeomorphism. Thus J; is the required universal space. []

Historical and bibliographic notes

Theorem 4.2.2 was established by Morita in [1954]. The equivalence
of conditions (a) and (b) in Theorem 4.2.3 was proved by Nagata in
[1956a]; the equivalence of conditions (a) and (c) was proved by Nagami
and Roberts in [1967]. Characterizations of dimension in terms of metrics
satisfying (i) or (ii) were established by Nagata in [1963], the characteriza-
tion in terms of metrics satisfying (iii) was obtained by Nagata in [1956],
and the characterization in terms of metrics satisfying (iv) was obtained
independently by Nagata in [1964] and by Ostrand in {1965a]. Let us add
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that in [1936] Marczewski proved that a separable metric space X sat-
isfies the inequality dimX < n > 0 if and only if on the space X there
exists a metric ¢ such that for every point x € X we have dimFrB(x, r)
< n—1 for almost all (in the sense of Lebesgue measure) positive numbers 7.
The question whether the inequality dimX < n follows from the existence
on the space X of a metric p which satisfies (v) was raised by de Groot
in [1957]. Theorem 4.2.5, under the weaker assumption of normality of X
(see Problem 4.2.G), was proved by Pasynkov in [1967a] (announcement
in [1964]); the present proof is obtained by amalgamating the proofs
given by Arhangel’skil in [1967] and by Morita in [1975]. Theorem 4.2.5
for a separable Y and an analogous theorem with no evaluation of w(Z)
were given by Pasynkov in [1963]. Theorem 4.2.6 was established by Na-
gata in [1960a]; the present proof was given by Pasynkov in [1964]. In
Nagata’s original proof of Theorem 4.2.6 a universal space is explicitly
defined (cf. Pears [1975]). Let us mention, in connection with Theorem
4.2.6, that in {1975] Lipscomb defined for every cardinal number m = N,
a metrizable space L(m) with dimZL(m) = 1 and w(L(m)) = m suoh that
each metrizable space X satisfying the inequalities dimX < n and w(X)
< m is embeddable in the Cartesian product [L{(m)]"*?, and proved that
the Cartesian product [L(m)]"*! contains an easily definable subspace
which is a universal space for the class of all metrizable spaces whose
covering dimension is not larger than #n and whose weight is not larger
than m. The fact that each metrizable space X with dimX = #n is embeddable
in the Cartesian product of n+ 1 metrizable spaces whose covering dimen-
sion is equal to 1 was discovered by Nagata in [1958]; Borsuk proved in
[1975] that the two-sphere S? cannot be embedded in the Cartesian product
of two one-dimensional spaces.

Problems

4.2.A (Morita [1954]). (a) Prove the Katétov—Morita theorem by ap-
plying only Lemmas 4.2.1 and 2.3.16 and Theorems 4.1.9, 4.1.10 and
3.1.28.

Hint. Adjoin to conditions (a)-(c) in Theorem 4.2.2 condition (d)
stating that IndX < n.

(b) Note that in Theorem 4.2.2 one can replace the o-local finiteness
of # by o-discreteness.
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4.2.B. (a) Show that every locally finite family {F,}.s of closed subsets
of a metrizable space X has a locally finite open swelling {U,}es.
Hint. For i = 1,2, ... consider the set 4, consisting of all points x € X’

such that the set {s e S: B(x, 1/i)nF, # O} is finite, let ¥, = U [B(F,,
i=1

1/3i)nInt 4;] and apply Problem 3.1.A.

(b) (Morita [1955], Nagami [1960]) Prove that a metrizable space X
satisfies the inequality dimX < » if and only if there exists a sequence
Fy,F,, ... of locally finite closed covers of the space X such that ord #,
< nand F,,, is a refinement of &, fori = 1, 2, ... and for every point
x € X and each neighbourhood U of the point x there exists a natural
number 7 such that St(x, #,) < U.

Hint. Let F; = {F,}«s, for i = 1,2, ... Apply part (a) to define a se-
quence #,, W ,, ... of open covers of X, where #"; = {W}s, is a swell-
ing of the cover &, and W, < B(F,, 1/i) for s € S;, such that #7,,, is a re-
finement of #7, for i = 1, 2, ...; check that #°;, # ,, ... is a strong de-
velopment for the space X.

4.2.C (Nagata [1963] (announcement [1961])). Prove that a metrizable
space X satisfies the inequality dimX < » if and only if X has a base of
rank < n (see Problem 3.2.C).

Hint (Arhangel’skii [1963]). When proving that X has a base of rank < n
use the inequality IndX < n; apply Theorem 4.1.17.

4.2.D (Nagata [1963]). (a) Note that every metric p which satisfies
condition (i) satisfies also condition (ii).

(b) Show that if on a space X there exists a metric ¢ which satisfies
condition (ii), then dimX < n.

Hint. See the second part of the hint to Problem 4.1.A(b).

4.2.E. Note that for n = 0 conditions (iii), (iv) and (v) reduce to the
condition that the metric g is non-Archimedean; check that each non-
Archimedean metric g satisfies conditions (i) and (ii) for n = 0.

4.2.F (de Groot [1957]). Applying the fact that on every compact
metrizable space of dimension < n there exists a metric ¢ satisfying con-
dition (iii), show that a separable metrizable space X satisfies the in-
equality dimX < # if and only if on the space X there exists a totally
bounded metric p which satisfies condition (v).
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Hint. Note that if o satisfies (v), then the metric ¢ on the completion
X of the space X also satisfies (v). For an arbitrary finite open cover %
of the completion X consider a set 4 < X maximal with respect to the
property that o(y, y') = 6/2 for distinct y, )y’ € 4, where § is a Lebesgue
number for the cover #%.

4.2.G (Pasynkov [1967a] (announcement [1964])). Prove that for every
continuous mapping f* X — Y of a normal space X to a metrizable space X
there exist a metrizable space Z and continuous mappings g: X —» Z and
h: Z — Y such that dimZ < dimX, w(Z) € w(Y), g(X) = Z and f = Ag.

Hint. Generalize Lemma 4.2.4 to normal spaces; make use of the map-
ping of X to the metrizable space assigned to the cover % as described in
the hint to Problem 3.2.H(b).

4.3. Dimension and mappings in metrizable spaces

In this section we shall study the behaviour of dimension of metrizable
spaces under continuous mappings. We start with extending to arbitrary
metrizable spaces the theorems on’dimension-raising and dimension-lower-
ing mappings established for separable metric spaces in Section 1.12.
The proofs of these extensions closely follow the pattern of the proofs
in Chapter 1 and differ from them only in technical details.

4.3.1. Lemma. 4 metrizable space X satisfies the inequality IndX < n> 0
if and only if X has a o-locally finite network N such that IndFrM < n—1
Jor every M e A,

Proof. By virtue of Theorem 4.1.15, it suffices to show that if a metrizable
space X has a o-locally finite network A" such that IndFrM < n—1 for
Me /', then IndX < n Let Y=U {FrM: Me A} and Z=X\Y.
Since the family {FrM: M € 4"} is o-locally finite, it follows from The-
orems 4.1.9 and 4.1.10 that IndY < n—1. The family {ZnM: M e A}
is a o¢-locally finite network for the subspace Z; as the members of this
family are open-and-closed in Z, it is a base for Z, so that IndZ < 0 by
virtue of Theorem 4.1.15. The inequality IndX < n now follows from
Theorem 4.1.16. ]

Let us recall that a continuous mapping f: X — Y defined on a Haus-
dorff space X is perfect if f is a closed mapping and for every y €Y the
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fibre £ ~1(y) is a compact subspace of X. Obviously, every closed mapping
with finite fibres defined on a Hausdorff space is perfect.

4.3.2. Lemma. If f: X — Y is a perfect mapping, then for every locally finite
Samily o of subsets of X the family {f(A): A € o} is locally finite in Y.

Proof. Since the fibres of f are compact, for every y € Y there exists an
open set U — X which contains f ~1(y) and meets only finitely many members
of /. The mapping f being closed, the set V' = Y \f(X\U) is a neigh-
bourhood of the point y. From the inclusion f ~*(V) < U it follows that V'
meets only finitely many members of the family {f(4): A e/} O

4.3.3. Theorem on dimension-raising mappings. If f: X > Y is a closed
mapping of a metrizable space X onto a metrizable space Y and there exists
an integer'k = 1 such that | f ()| € k for every y € Y, then IndY <€ IndX
+k—=1.

Proof. We can suppose that 0 < IndX < co. We shall apply induction
with respect to the number n+k, where n = IndX. If n+k = 1, we have
k =1, so that fis a homeomorphism and the theorem holds. Assume
that the theorem holds whenever n+k < m > 2 and consider a closed
mapping f: X - Y such that f(X) =Y and n+k = m.

Let # be a o-locally finite base for X such that IndFrU < n—1 for
every U € 4. Consider an arbitrary U € #; by the closedness of f we have
1) Frf(U) = f(U) nY \f(U) = f(DAfX\U)

= [A)S(Fr D)Inf(X\U) = f(FrU)uB,
where B = f(U)nf(X\U). Since the restriction f|FrU: FrU - f(FrU)
is a closed mapping, it folows from the inductive assumption that
Indf(FrU) < (n—D+(k—1) = n+k—2.

Assume that B # &. Consider the restriction fz: f ~'(B) —» B and the re-
striction f’ = f3|(X\U): (X\U)nf ~*(B) - B; both f; and f’ are closed,
and the fibres of f’ all have cardinality < k—1, because f~!(»)nU # O
for every y € B. It follows from the inductive assumption that

IndB<n+k—-1)—-1=n+k-2.

As U is an F,-set in X, both f(U) and B are F,-sets in Y; applying Theorems
4.1.7 and 4.19, we obtain the inequality Ind[f(FrU)uBl< n+k—2.



Ch. 4, § 3] Dimension and mappings in metrizable spaces 279

From the last inequality and from (1) it follows that Ind Frf(U) < n+k-2
for every U € &, the same inequality holds if B = @. One readily checks
that the family & = {f(U): Ue #} is a network for the space Y. In
view of Lemma 4.3.2 the network A4 is o-locally finite, so that IndY
< n+k—1=IndX+k—-1 by virtue of Lemma 4.3.1. []

We now pass to the theorem on dimension-lowering mappings. To
begin with, let us note that reproducing the proof of Lemma 1.9.6 with
the application of Theorems 3.2.9, 4.1.3, 4.1.7 and 4.1.21 one obtains

4.3.4. Lemma. Letr f,g: X = S" be continuous mappings of a metrizable
space X to the n-sphere S™. If the set

D(f,8) = {x eX: f(x) # g(x)}

satisfies the inequality Ind D(f, g) < n—1, then the mappings [ and g are
homotopic. []

Now we shall establish a counterpart of Lemma 1.12.3.

4.3.5. Lemma. If a metrizable space X has a closed cover A such that IndK
< m = 0 for each K €24 and a o-locally finite open cover U such that for
every K e and each open set V < X that contains K there exists a Ue U
satisfying

KcUcUcV and IndFrU< m—1,

then IndX < m.

Proof. By virtue of Theorem 4.1.3 and Remarks 1.7.10 and 1.9.4 it suffices
to show that for every closed subspace 4 of the space X and each con-
tinuous mapping f: 4 — S™ there exists a continuous extension F: X —S™
of f over X. To begin with, let us observe that

(2) for every K e there exists a Ugx € % such that X = Uk, IndFrUx
< 'm—1 and f is continuously extendable over 4UUx.

Indeed, it follows from Theorem 3.2.9 (cf. Problem 4.3.B(a)) that the
mapping f is continuously extendable over AUK, so that there exists an
open set ¥ <= X containing 4UK such that f is continuously extendable
over V; the existence of a set Uy satisfying (2) now follows from the
properties of the family %.
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The subfamily %, of the family % which consists of all sets of the form
Uk can be represented as the union of a sequence %,, %,, ... of locally
finite families. Let us arrange the members of %, into a transfinite sequence
U,,U,,..,U, ..., a < & placing first all members of %,, then all mem-
bers of %, etc. Clearly, for every oy < & the family {U,}s<q, is locally
finite.

We shall inductively define a transfinite sequence F,, F,, ..., Fy, ..

o < & of continuous mappings, where F,: Au J U » S™, such that

B<a

b

3 Fl(4u\J Up) = F, for every y < a.
B<y

Let F, be an arbitrary continuous extension of f over AUU, . Assume
that the mappings F, satisfying (3) are defined for a < ay. The set

Au U U, can be represented as the union of two closed sets

asdg

A =40 U U and A" =A0UN\U U)
which, by virtue of the local finiteness of the family {U,}s.,, satisfy
the relation -
€)) A'nA" = AUFr(U U) € 40 U FrU,.
Since the family {A}U{U,}zcs, is locally finite and {f}U {F]| Udbuca, i
a family of compatible mappings, one can define a continuous mapping
F': A’ > S™ which is a common extension of all mappings F, with a < 4.
By virtue of (2) the mapping f is extendable to a continuous mapping f':
A" — 8™, and in view of (4)
D= {xednAd": FF(x) # f"'(0} = U Fr{,,
a<ap
so that IndD < m—1 by virtue of (2) and Theorem 4.1.10. It follows
from Lemma 4.3.4 that the mappings F'|4'nA’ and f"”'|A'nA" are homo-
topic. Since the mapping f'|A’nA" is continuously extendable over 4",
it follows from Lemma 1.9.7 that the mapping F'|4'nA" is extendable
to a continuous mapping F'': 4" — S™. Letting

P {F’(x) for x e A,
a,,(x) - F//(x) fOI' x EA”,
we define a continuous mapping F, of A'ud” = Au U U, to S™, which

a<ay

satisfies (3) for o = «,.
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As X = U U,, the formula

a<é

F(x) = F,(x) for xelU,

defines a continuous mapping F: X — S™, which is the required extension
of fover X.

4.3.6. Theorem on dimension-lowering mappings. If f: X - Y is a closed
mapping of a metrizable space X to a metrizable space Y and there exists
an integer k > 0 such that Indf~*(y) < k for every y €Y, then IndX
< IndY+k.

Proof. We can suppose that IndY < oo. We shall apply induction with
respect to n =IndY. f n= —1, we have Y =@ and X = &, and so
the theorem holds. Assume that the theorem holds for closed mappings
to spaces of large inductive dimension less than » > 0 and consider a closed
mapping f: X —» Y to a space Y such that IndY = n.

Let # be a o-locally finite base for 'Y such that IndFrU < n—1 for
every U e . Applying the inductive assumption to the restriction fg.y:
S~ (FtU)—> FrU, we obtain the inequality Indf~'(FrU)< n+k-1.
Since :

Fif ~1(U) = f~HON V) = f-HUNfYU) = fH(Fr ),
we have IndFrf~'(U) € n+k—1 for every Ue %. One readily checks

that the covers " = {f~1())}yey and % = f (%) satisfy the conditions
of Lemma 4.3.5 with m = n+k, so that IndX < n+k =IndY+k. O

We now turn to two more specialized theorems on the relations between
the dimensions of the domain and the range of a closed mapping. In our
considerations an important role will be played by the sets C,(f) and
Dy(f) which for each closed mapping f: X — Y of a normal space X to
a normal space Y and for k = 1,2, ... are defined by the formulas

G ={per: If 'Ol =k}
D(f) = {y e Y: dimf~'(y) > k}.
4.3.7. Lemma. For every closed mapping f: X — Y of a metrizable space X

to a metrizable space Y and for k = 1,2, ... C(f) and D (f) are Fysets
in Y,

and

Proof. Consider first the sets C,(f). For i = 1,2, ... let %, be an open
cover of the space X such that mesh#; < 1/i and let
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Uy = {y € Y:thereexists a % < %;such that |%| < kandf~(y) = U #}.
From the closedness of the mapping f it follows that the sets U, are open.

(ve)
One easily checks that YNC,(f) = () U,, so that C,(f) is an F,-set in Y.
i=1

Now consider the sets D,(f). We start with a particular case where
fis a perfect mapping. For i = 1, 2, ... let ¥, be the set of all points y € ¥
for which there exists a finite family % of open subsets of X such that
mesh% < 1/i, ord% < k and f~(y) = U %. From the closedness of
the mapping fit follows that the sets ¥, are open. Applying the compactness
of fibres of the mapping f and Theorems 1.6.12, 3.1.3 and 3.1.2, one easily

[re]
checks that Y\D,(f) = [\ V;, so that D,(f) is an F,-set in Y.
i=1

For an arbitrary closed mapping f: X — Y consider the subspaces
Xo=UIntf~1(y) and X; = X\X, = U Frf/~1(y) of the space X
yeY

yeY
and the restrictions f; = f|X,: Xo = Y and f, = f]X;: X, » Y. From
the countable sum theorem it follows that D,(f) = D,(f,)uD,(f,), because
Intf~1(y) is for every y € Y an F,-set in X. Being the image of an F,-set
in X under a closed mapping, the set

Di(fo) = AU {Intf ~*(y): dimIntf ~(») > k})

is an F-set in Y. From Lemma 1.12.9 it follows that f; is a perfect mapping,
so that the set Di(f;) is an F,-set in Y by virtue of the particular case of
our theorem established in the preceding paragraph. Thus D,(f) is an
Fyset in Y. [

4.3.8. Lemma. If X is a metrizable space and M;, M,, ..., M, is a sequence
of subspaces of X such that M, is an Fy-set in X and IndM; < n, > 0 for
i=1,2,..,k, then for every pair A, B of disjoint closed subsets of X
there exists a partition L between A and B such that Ind(M;nL) < ;-1
fori=1,2,.. k.

Proof. By the first decomposition theorem M; = ¥;UZ;, where IndY,
< m—1 and IndZ, < 0. From the enlargement theorem it follows that
there exists a Gy-set Y¥ in M, such that ¥, < Y¥ and IndY* < n,—1.
The set ZF¥ = M\Y¥ < Z, is an F,-set in M, and consequently an F;-set
mn X. By virtue of the countable sum theorem the set Z = Z*UZ¥U ... UZF
satisfies the inequality Ind Z < 0, so that from the separation theorem it
follows that there exists a partition L between A and B such that LnZ
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= . Hence for i=1,2,...,k we have M;nL < Y¥, which implies
that Ind(MnL) < my—1fori=1,2,...,k. O

If for a continuous mapping f: X - Y of a metrizable space X to
a metrizable space Y there exists an integer n > 0 such that Indf ~*(y) < n
for every y €Y, then we say that f is finite-dimensional; the smallest n
with this property will be denoted by Indf. In order to simplify the state-
ments of the two theorems we are now going to prove, for every finite-
dimensional mapping f we define

D(f) = max{IndDy(f)+i: i = 1,2, ...,Indf} if Indf>1

D(f) = —1 if Indf=0.
4.3.9. Vainstein’s first theorem. Let f: X — Y be a finite-dimensional closed
mapping of a metrizable space X to a metrizable space Y. If IndY < n > 0
and IndD(f) < n—i for i=1,2,...,n+1, then IndX < n; in other
words, IndX < max{IndY, D(f)}.

and

Proof. We shall apply induction with respect to n. If n =0, we have
IndD,(f) = —1, so that Indf = 0 and consequently IndX < n by virtue
of Theorem 4.3.6. Assume that the theorem holds for all natural numbers
less than 7n > 1 and consider a closed mapping f: X — ¥ which satisfies
the assumptions of the theorem.

From Lemma 4.3.7 it follows that D,(f), D,(f), ..., D,(f) are Fy-sets
in Y. Applying Lemma 4.3.8 one can easily define (cf. the proof of Prop-
osition 4.1.14) a ¢-locally finite base £ for the space Y such that for each
i<n

Ind(Dy(f)nFrU) < IndDy(f)—1 for every Ue A,

provided that D;(f) # &, and that IndFrU < n—1 for every Ue %,
Consider the restriction fgy: f~(FrU) —» FrU, where U € #; clearly,
Di(ferv) € D(f)NFrU. Since IndFrU<n—1>0 and IndD,(fev)
< (n—1)—i for i=1,2,..,n, applying the inductive assumption to
feew We obtain the inequality Indf~*(FrU) < n—1. Hence, by virtue
of the inclusion Frf~-!(U) c f~1(FrU) we have IndFrf-(U) < n—1
for every U e %. Applying the equality D,..(f) = 0 and the Katétov—
Morita theorem, one readily checks that the covers o = {f~*(»)}yer
and % = f~1(#) satisfy the conditions of Lemma 4.3.5 with m = n, so
that IndX < n. O

The reader can easily verify that Theorem 4.3.9 is a generalization
of Theorem 4.3.6. :
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We now pass to VainStein’s second theorem. It will be preceded by two
lemmas of which the second is an important particular case of the theorem.

4.3.10. Lemma. If a metrizable space X satisfies the inequality IndX < n = 0,
then for every Fyset C = X such that IndC < n—1 there exists an Fy-set
M < X satisfying the conditions

IndM <0, IndX\M)<n—1 and MnC=0.

Proof. By the first decomposition theorem X = YuZ, where IndY < n—1
and IndZ < 0. Obviously, one can assume that ¥ = X\ Z, and by virtue
of the enlargement theorem one can assume that Z is a Gs-set in X. Thus
Y is an F-set and the countable sum theorem yields the inequality Ind(YUuC)
< n—1. By virtue of the enlargement theorem there exists a Gs-set K <« X
such that YuC < K and IndK < n—1. One easily checks that the set
M = X\XK satisfies the required conditions. [

4.3.11. Lemma (Freudenthal’s theorem). Let f: X — Y be a closed mapping
of a metrizable space X onto a metrizable space Y such that Indf ~1(») < 0
for every yeY. If IndX < n and ‘'IndC,(f) < n—1, then IndY < n; in
other words, IndY < max{IndX, IndC,(f)+1}.

Proof. We shall apply induction with respect to n. If n = 0, we have C,(f)
=, so that f is a homeomorphism and IndY = IndX < 0. Assume
that the theorem holds for all natural numbers less than » > 1 and con-
sider a closed mapping f/: X — Y which satisfies the assumptions of the
theorem.

By virtue of Theorem 4.3.6 the set C = f ~1(C,(/)) satisfies the inequal-
ity IndC < n—1. Lemma 4.3.7 implies that C is an F,-set in X, so that
Lemma 4.3.10 implies that there exists an F,-set M < X such that Ind M

<0, IndX\M)<n—1 and MnC = Q. Let M ={J F,, where the
im1

sets F; are closed in X. Fori = 1, 2, ... the restriction of f to F; is a homeo-
morphism of F; onto f(F;), so that Indf(F;) < 0. Thus, by the countable
sum theorem, Indf(M)< 0.

Consider an arbitrary pair 4, B of disjoint closed subsets of Y. From
Lemma 4.3.8 with k = 2, M, = f(M) and M, = C,(f) it follows that
there exists a partition L between 4 and B such that Lnf(M) = @ and
Ind(LNC,(f)) < n—2. The equality Lnf(M) = & implies that f~*(L)
< X\ M, so that Indf~*(L) < n— 1. Consider the restriction f.: f;*(L) - L;
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since C,(fy) = LnC,(f), we have IndC,(fy) € n—2, so that by thé
inductive assumption IndL < n—1. Thus IndY < n. [

4.3.12. Vainstein’s second theorem. Let f: X — Y be a finite-dimensional
closed mapping of a metrizable space X onto a metrizable space Y. If IndX
<nz2l, IndC,(f)<n-1and IndD,(f) < n—(+1) fori=1,2,...,n,
thenIndY < n;in other words, IndY < max{IndX, Ind C,(f)+1, D(f)+1}.

Proof. We shall apply induction with respect to n. If n = 1, we have Ind D, (f)
= —1, so that Indf = 0 and the theorem reduces to Lemma 4.3.11. Assume
that the theorem holds for all natural numbers less than # > 2 and con-
sider a closed mapping f: X — Y which satisfies the assumption of the
theorem. :

By virtue of Theorem 4.3.9 theset C= f '1(C2 f )) satisfies the inequality
IndC < n—1. Hence from Lemmas 4.3.7 and 4.3.10 it follows that there
exists an Fyset M < X such that IndM < 0, IndG\M) < n—1 and
MnC = @; by the countable sum theorem Indf(M) < 0.

Consider an arbitrary pair 4, B of disjoint closed subsets of Y. From
Lemma 4.3.8 with k =n+1, M,=D,(f) for i=1,2,...,n—1, M,
= f(M) and M,,, = C,(f) it follows that there exists a partition L between
A and B such that Lnf(M) = @, Ind(C,(f)NL) < n—2 and for each
i<n—-1

Ind(D;(f)nL) < Ind D;(f)—1,

provided that D;(f) # @. The equality Lnf(M) = & implies that Indf ~*(L)
< n—1. Consider the restriction f: f~*(L) = L; since C,(fr) = C,(f)nL
and D,(fy) < Dy(f)nL for i = 1,2, ...,n—1, we have IndC,(fz) < n—2
and IndD;(fp) < m—1)—(+1) for i=1,2,...,n—1, so that by the
inductive assumption IndL € n—1. Thus IndY < n. O

To conclude, we shall state an important theorem which permits us
to generalize part of the results obtained in this section to the case of a closed
mapping f of a normal space X onto a normal space Y. The proof of this
theorem is too complicated to be reproduced in this book; it involves
a construction similar to but much more elaborate than the construction
used in the proof of Theorem 3.3.2. The symbol rdy4 which appears
below denotes the relative dimension of a subspace 4 of a normal space Y
with respect to Y, i.e., the smallest integer n such that dimZ < n for every
closed subspace Z of the space Y contained in A.

Thus, one proves that
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(F) For every closed mapping f: X —» Y of a normal space X onto a normal
space Y with dimY < oo there exist compact metrizable spaces X,, Y,
and a closed mapping f, of X, onto Y, such that dimX, = dimX, dimY,
= dimY and dim C,(f,) < 1dy C(f) for k = 1, 2, ... If, moreover, the
space Y is weakly paracompact, then dimD(f,) < rdy D,(f) for k
=1,2,..

Let us note that the assumption of weak paracompactness in the second
part of (F) cannot be omitted. Indeed, one can define a closed mapping f
of a normal space X onto a normal space Y such that dimX = 1, dimY = 0
and dimf~1(y) = 0 for every y € Y.

Historical and bibliographic notes

Theorem 4.3.3 was given by Morita in [1955}; Theorem 4.3.6 was proved
independently by Morita in [1956] and by Nagami in [1957]. Theorems
4.3.9 and 4.3.12 were established by Vaintein in [1952] for separable X
and Y. Extensions to arbitrary metrizable spaces were given by Skljarenko
in [1962] and [1963]. Lemma 4.3.11 was proved by Freudenthal in [1932].
As shown by Lelek in [1971], from VainStein’s theorems many further
results about the behaviour of dimension under mappings can be deduced.
Lelek’s paper gives a comprehensive survey of the topic considered in
this section and provides a good bibliography. Theorem (F) stated at the
end of the section as well as the example cited after this theorem were
given by Filippov in [1972a]. As we have already noted, Filippov’s theorem
leads to extensions of the results obtained in this section to larger classes
of spaces. Some of these extensions were obtained earlier in the above-
mentioned papers by Morita, Nagami and Skljarenko.

Problems

4.3.A (Suzuki [1959]). Prove that if f: X > Y is a closed mapping
of a metrizable space X onto a metrizable space Y and |f~1())] = k < o
for every y € Y, then IndX = IndY.

Hint. See the hint to Problem 1.12.A.

4.3.B. (a) Following the pattern in Section 1.9, prove that for every
continuous mapping f: 4 -» S" defined on a closed subspace 4 of metri-
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zable space X such that Ind(X\A) < n > O there exists a continuous
extension F: X — S" of f over X (cf. Problem 2.2.B).

(b) Deduce from (a), Theorem 4.1.3 and Remarks 1.7.10 and 1.9.4
that a metrizable space X satisfies the inequality IndX < n > 0 if and
only if for every closed subspace A of the space X and each continuous
mapping f: A — S" there exists a continuous extension F: X — S" of f
over X.

4.3.C (Morita [1955]). Prove that a metrizable space X satisfies the
inequality dimX < » if and only if there exists a closed mapping f: Z - X
of a subspace Z of the Baire space B(nt), where m = w(X), onto the space
X with fibres of cardinality at most n+1.

Hint. For a metrizable space X with dimX < n consider a sequence
Fi, F,,.. of locally finite closed covers satisfying the conditions in
Problem 4.2.B(b) and such that |#,;| < mfori = 1, 2, ... Define a mapping
ai*t! of F,,, to F, such that F c #i*'(F) for every Fe #,,,, let n}
= mitlnit?  ai_, for j < iand n} = idg,. Consider the inverse sequence
S ={#,, n}}, where &, has the discrete topology. Note that S = [imS
is a subspace of B(m) and consider the subspace Z of S consisting of all

0
sequences {F;} € S such that () F, # O; show that the last intersection
i=1

contains exactly one point of the space X and assign this point to the se-
quence {F;}. Prove that the mapping f: Z — X obtained in this way has
all the required properties. When proving that f(Z) = X apply the fact
that the limit of an inverse sequence consisting of finite discrete spaces
is non-empty. When proving that f is closed apply the equality f~1(x)

= Zn [] {Fe #,: x € F} and show that for every open set U = Z which
i=1

contains f ~1(x) there exists a neighbourhood ¥ <= X of the point x such
that f~1(V) = U.

4.3.D (Nagami [1960]). Prove the Katétov—Morita theorem by applying
only Theorems 1.6.11, 4.1.13 and 3.1.28 and the facts established in Prob-
lems 4.3.A and 4.3.C.

Hint. Applying 4.3.A, deduce from 4.3.C that every metrizable space X
which satisfies the inequality dimX < n can be represented as the union

of n+1 subspaces Z,, Z,, ..., Z,,; such that dimZ, < Ofori= 1,2, ...
cean+1.
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4.3.E. (a) (Hodel [1963]) Show that if f: X — Y is an open mapping
of a metrizable space X onto a metrizable space Y such that forevery y € Y
the fibre f~1(y) is a discrete subspace of X, then IndX < IndY.

Hint. Apply Lemma 1.12.5.

(b) (Nagami [1960]) Show that if /: X — Y is an open mapping of a metri-
zable space X onto a metrizable space Y such that |f~1(y)] < N, for every
y €Y, then IndX = IndY.

(c) (Hodel [1963]) Show that if /: X — Y is an open-and-closed mapping
of a metrizable space X onto a metrizable space Y such that for every ye Y
the fibre f~!(p) has an isolated point, then IndY < IndX.

Remark. As shown by R. Pol in [1979], in the realm of metrizable
spaces there exist open mappings with discrete fibres which raise di-
mensions (cf. Theorem 1.12.7).

(d) (Hodel [1963]) Show that if /2 X —» Y is an open mapping of a lo-
cally compact metrizable space X onto a metrizable space Y such that
If~1)] € N, for every y € Y, then IndX = IndY.

(e) (Arhangel’skii [1966]) Show that if f/: X —» Y is an open-and-closed
mapping of a metrizable space X onto a metrizable space Y such that
IfF~10) < N, for every y €Y, then IndX == IndY.
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