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PREFACE 

Dimension theory is a branch of topology devoted to the definition 
and study of the notion of dimension in certain classes of topological 
spaces. It originated in the early twenties and rapidly developed during 
the next fifteen years. The investigations of that period were concentrated 
almost exclusively on separable metric spaces ; they are brilliantly re- 
capitulated in Hurewicz and Wallman’s book Dimension Theory, published 
in 1941. After the initial impetus, dimension theory was at  a standstill 
for ten years or more. A fresh start was made at the beginning of the fifties, 
when it was discovered that many results obtained for separable metric 
spaces can be extended to larger classes of spaces, provided that the dimen- 
sion is properly defined. The la@ reservation necessitates an explanation. 
I t  is possible to define the dimension of a topological space X in three 
different ways, the small inductive dimension indX, the large inductive 
dimension IndX, and the covering dimension dimX. The three dimension 
functions coincide in the class of separable metric spaces, i.e., indX = IndX 
= dimX for every separable metric space X. In larger classes of spaces 
the dimensions ind, Ind, and dim diverge. At first, the small inductive 
dimension ind was chiefly used; this notion has a great intuitive appeal 
and leads quickly and economically to an elegant theory. The dimension 
functions Ind and dim played an auxiliary role and often were not even 
explicitly defined. To attain the next stage of development of dimension 
theory, namely its extension to larger classes of spaces, first and foremost 
to the class of metrizable spaces, i t  was necessary to realize that in fact 
there are three theories of dimension and to decide which is the proper 
one. The @option of such a point of view immediately led to the under- 
standing that the dimension ind is practically of no importance outside 
the class of separable metric spaces and that the dimension dim prevails 
over the dimension Ind. The greatest achievement in dimension theory during 
the fifties was the discovery that IndX = dimX for every metric space X 
and the creation of a satisfactory dimension theory for metrizable spaces. 
Since that time many important results on dimension of topological spaces 
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have been obtained; they primarily bear upon the covering dimension 
dim. Included among them are theorems of an entirely new type, such as 
the factorization theorems, with no counterpart in the classical theory, 
and a few quite complicated examples, which finally demarcated the range 
of applicability of various dimension functions. 

The above outline of the history of dimension theory helps to explain the 
choice and arrangement of the material in the present book. In Chapter 1, 
which in itself constitutes more than half of the book, the classical 
dimension theoiy of separable metric spaces is developed. The purpose 
of the chapter is twofold: to present a self-contained exposition of the 
most important section of dimension theory and to provide the neces- 
sary geometric background for the rather abstract considerations of sub- 
sequent chapters. Chapters 2 and 3 are devoted to the large inductive 
dimension and the covering dimension, respectively. They contain the most 
significant results in dimension theory of general topological spaces and 
exhaustive information on further results. Chapter 4, the last in the book, 
develops the dimension theory of metrizable spaces. The interdependence 
of Chapters 2-4 is rather loose. After having read Chapter 1, the reader 
should be able to continue the reading according to his own interests or 
needs; in particular, he can read small fragments of Sections 3.1 and 3.2 
and pass to Chapter 4 (cf. the introduction to that chapter). 

Chapter 1 is quite elementary; the reader is assumed to be familiar 
only with the very fundamental notions of topology of separable metric 
spaces. The subsequent chapters are more difficult and demand from the 
reader some acquaintance with the notions and methods of general topology. 

Each section ends with historical and bibliographic notes. Those are 
followed by problems which aim both at  testing the reader’s comprehension 
of the material and at  providing additional information ; the problems 
usually contain detailed hints, which, in fact, are outlines of proofs. 

The mark 0 indicates the end of a proof or of an example. If it appears 
immediately after the statement of a theorem, a proposition or a corollary, 
it means that the statement is obviously valid. 

Numbers in square brackets refer to the bibliography at the end of 
the book. The papers of each author are numbered separately, the number 
being the year of publication. In referring to my General Topology (Engel- 
king [19771), which is quite often cited in the second half of the present 
book, the symbol [GT] is used. 

In 1971-1973 I gave a two-year course of lectures on dimension theory 
at the Warsaw University; this book is based on the notes from those 
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lectures. When preparing the present text, I availed myself of the comments 
of my students and colleagues. Thanks are due to K. Alster, J. Chaber, 
J. Kaniewski, P. Minc, R. Pol, T. Przymusiliski, J. Przytycki and K. Wojt- 
kowska. I am particularly obliged to Mrs. E. Pol, the first reader of this 
book, for her helpful cooperation, and to J. Krasinkiewicz for his careful 
reading of Chapter 1 .  

Ryszard Engelking 

Warsaw, February 1977 



CHAPTER 1 

DIMENSION THEORY OF SEPARABLE METRIC 
SPACES 

In the present chapter the classical dimension theory of separable 
metric spaces is developed. Practically all the results of this chapter were 
obtained in the years 1920-1940. They constitute a canon on which, in 
subsequent years, dimension theory for larger classes of spaces was modelled. 
Similarly, in Chapters 2-4 we shall follow the pattern of Chapter 1 and 
constantly refer to the classical theory. This arrangement influences our 
exposition : the classical material is discussed here in relation to modern 
currents in the theory; in particular, the dimension functions Ind and 
dim are introduced at an early stage and are discussed simultaneously 
with the dimension function ind. 

To avoid repetitions in subsequent chapters, a few definitions and 
theorems are stated in a more general setting, not for separable metric but 
for topological, Hausdorff, regular or normal spaces; this is done only 
where the generalization does not influence the proof. If the reader is not 
acquainted with the notions of general topology, he should read “metric 
space” instead of “topological space”, “Hausdorff space”, “regular space”, 
and “normal space”. Reading the chapter for the first time, one can omit 
Sections 1.4 and 1.12-1.14, which deal with rather special topics; similarly, 
the final parts of Sections 1.6, 1.8 and 1.9 can be skipped. 

Let us describe briefly the contents of this chapter. 
Section 1.1 opens with the definition of the small inductive dimension 

ind; in the sequel some simple consequences and reformulations of the 
definition are discussed. Sections 1.2 and 1.3 are devoted to a study of zero- 
dimensional spaces. We prove several important theorems, specified in 
the titles of the sections, which are generalized to spaces of higher dimension 
in Sections 1.5, 1.7 and 1.11. 

In Section 1.4 we compare the properties of zero-dimensional spaces 
with the properties of different highly disconnected spaces. From this 
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comparison it follows that the class of zero-dimensional spaces in the 
sense of the small inductive dimension is the best candidate for the zero 
level in a classification of separable metric spaces according to their di- 
mension. The results of this section are not used in the sequel of the book. 

Section 1.5 contains the first group of basic theorems on n-dimensional 
spaces. As will become clear further on, the theorems in this group depend 
on the dimension ind, whereas the theorems that follow them depend 
on the dimension dim. Besides the generalizations of five theorems proved 
in Sections 1.2 and 1.3 for zero-dimensional spaces, Section 1.5 contains 
the decomposition and addition theorems. 

In Section 1.6 the large inductive dimension Ind and the covering 
dimension dim are introduced ; they both coincide with the small inductive 
dimension ind in the class of separable metric spaces. In larger classes 
of spaces the dimensions ind, Ind and dim diverge. This subject will be 
discussed thoroughly in the following chapters. In particular, it will become 
evident that the dimension ind, though excellent in the class of separable 
metric spaces, loses its importance outside this class. 

Section 1.7 opens with the compactification theorem. The location 
of this theorem at such an early stage in the exposition of dimension theory 
is a novelty which, it seems, permits a clearer arrangement of the material. 
From the compactification theorem the coincidence of ind, Ind, and dim 
for separable metric spaces is deduced. 

In Section 1.8 we discuss the dimensional properties of Euclidean 
spaces. We begin with the fundamental theorem of dimension theory, 
which states that indR" = IndR" = dimR" = n ;  then we characterize 
n-dimensional subsets of R" as sets with a non-empty interior, and we 
show that no closed subset of dimension < n-2 separates R". This last 
result is strengthened in Mazurkiewicz's theorem, which is established 
in the final part of the section with the assistance of Lebesgue's covering 
theorem. 

Section 1.9 opens with the characterization of dimension in terms 
of extending mappings to spheres from a closed subspace over the whole 
space. From this characterization the Cantor-manifold theorem is deduced. 
In the final part of the section we give some information on the cohomo- 
logical dimension. 

In Section 1.10 we characterize n-dimensional spaces in terms of map- 
pings with arbitrarily small fibers to polyhedra of geometric dimension 
< n and develop the technics of nerves and x-mappings which are crucial 
for the considerations of this and the following section. 
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In Section 1.1 1 we prove that every n-dimensional space can be embedded 
in RZn+’ and we describe two subspaces of RZn+I which contain topologi- 
cally all n-dimensional spaces; the second of those is a compact space. 

The last three sections are of a more special character. Section 1.12 
is devoted to a study of the relations between the dimensions of the domain 
and the range of a continuous mapping. In Section 1.13 we characterize 
compact spaces of dimension < n as spaces homeomorphic to the limits 
of inverse sequences of polyhedra of geometric dimension < n, and in 
Section 1.14 we briefly discuss the prospects for an axiomatization of 
dimension theory. 

1.1. Definition of the small inductive dimension 

1.1.1. Definition. To every regular space X one assigns the small inductive 
dimension of X, denoted by indX, which is an integer larger than or equal 
to - 1 or the “infinite number” co ; the definition of the dimension function 
ind consists in the following conditions: 

(MU1) indX= -1 if and only i f X  = 0; 
(MU2) indX < n, where n = 0, 1, . . . , if for every point x E Xand each neigh- 

bourhood V c X of thepoint x there exists an open set U c X such that 

x E U c V and indFrU < n-1; 

(MU3) indX = n if indX < n and indX > n -  1, i.e., the inequality indX 

(MU4) indX = 00 if indX > n for n = - 1 , 0, 1, . . . 
< n- 1 does not hold; 

The small inductive dimension ind is also called the Menger-Urysohn 
dimension. 

Applying induction with respect to indX, one can easily verify that 
whenever regular spaces X and Y are homeomorphic, then indX = indY, 
i.e., the small inductive dimension is a topological invariant. 

In order to simplify the statements of certain results proved in the 
sequel, we shall assume that the formulas n < co and n + 03 = 00 +n 
= co+co = 00 hold for every integer n. 

Since every subspace k of a regular space X is itself regular, if the 
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dimension ind is defined for a space X it is also defined for every subspace 
M of the space X .  

1.1.2. The subspace theorem. For every Subgpace M of a regular space X 
we have indM < indX. 

Proof. The theorem is obvious if indX = coy so that one can suppose 
that indX < co. We shall apply induction with respect to indX. Clearly, 
the inequality holds if indX = - 1. 

Assume that the theorem is proved for a11 regular spaces whose dimen- 
sion does not exceed n -  1 2 - 1.  Consider a regular space X with indX 
= n, a subspace M of the space X ,  a point x E M and a neighbourhood 
V of the point x in M. By the definition of the subspace topology, there 
exists an open subset V, of the space X satisfying the equality V = M n V ,  . 
Since indX < n, there exists an open set U, c X such that 

X E  U, c V, and indFrU, < n - I .  

The intersection U = M n U ,  is open in M and satisfies x E U c V. 

The boundary FrM U of the set U in the space M is equal to M n M n  U, n 

nM\U,, where the bar denotes the closure operation in the space X ;  
thus the boundary FrM U is a subspace of the space Fr U, . Hence, by the 
inductive assumption, indFr, U < n -  1, which-together with (MU2)- 
yields the inequality indM < n = indX.0 

-- 

Sometimes it is more convenient to appIy condition (MU2) in a slightly 
different form, involving the notion of a partition. 

1.1.3. Definition. Let X be a topological space and A ,  B a pair of disjoint 
subsets of the space X ;  we say that a set L c X is a partition between A 
and B if there exist open sets U ,  W c X satisfying the conditions 

(1) A c  U ,  B c  W ,  U n W = 0  and X\L= U u W .  

Clearly, the partition L is a closed subset of X.  

The notion of a partition is related to the notion of a separator. Let us 
recall that a set T c X is a separator between A and B, or T Separates the 
space X between A and B, if there exist two sets Uo and Wo open in the 
subspace X\T and such that A c U,, B c W,, Uon Wo = 0 and X\C 
= UouV0. Obviously, a set L c X is a partition between A and B if and 
only if L is a closed subset of X and L is a separator between A and B. 
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Separators are not to be confused with cuts, a related notion we 
will refer to in the notes below and in Section 1.8. Let us recall 
that a set T c X is a cut between A and B, or T cuts the space X between 
A and B, if the sets A ,  B and Tare pairwise disjoint and every continuum, 
i.e., a compact connected space C c X, intersecting both A and B intersects 
the set T. Clearly, every separator between A and B is a cut between A 
and B, but the two notions are not equivalent (see Problems l . l . D  and 
1.8.F). 

1.1.4. Proposition. A regular space X satis3es the inequality indX < n 2 0 
if and only i f  for  every point x E X  and each closed set B c X such that 
x # B there exists a partition L between x and B such that indL < n-  1 .  

Proof. Let X be a regular space satisfying indX < n 3 0; consider a point 
x E X  and a closed set B c X such that x # B. There exist a neighbourhood 
V c X of the point x such that vc X\B and an open set U c X such 
that x E U c V and ind Fr U < n - 1.  One easily sees that the set L = Fr U 

is a partition between x and B ;  the sets U and W = X\,Gsatisfy condi- 
tions (1). 

Fig. 1 

Now, assume that a regular space Xsatisfies the condition of the theorem; 
consider a point x E X  and a neighbourhood V c X of the point x. Let L 
be a partition between x and B = X\Y such that indL < n-  1 and let 
U ,  W c X be open subsets of X satisfying conditions (1). We have 

and 

so that indFr U < n - 1 by virtue of 1.1.2. Hence indX < n . 0  

XEUCX\WCX\B= V 

Fr U c (X\U)n(X\ W )  = X\(Uu W )  = L ,  
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Obviously, a regular space X satisfies the inequality indX< n 2 0 
if and only if X has a base W such that ind Fr U < n-  1 for every U E g. 
In the realm of separable metric spaces this observation can be made more 
precise. 

1.1.5. Lemma. I f  a topological space X has a countable base, then every 
base W for  the space X contains a countable family go which is a base for X .  

Proof. Let 9 = { V i } z  be a countable base for the space X. For i = 1 , 2 ,  . . . 
define 

as W is a base for X, we have U Bi = Vi. The subspace V, of the space X 
also has a countable base, so that the open cover W, of V, contains a count- 

able subcover go, i. The family Bo = U a,,, c W is countable and is 

a base for X ;  indeed, every non-empty open subset of X can be represented 
as the union of a subfamily of 9, and thus can also be represented as the 
union of a subfamily of Wo.O 

1.1.6. Theorem. A separable metric space X satisjes the inequality indX 
< n 2 0 if and only i f X  has a countable base W such that indFr U < n- 1 

f o r  every U E a.17 

Wi = {UE%& u c  V , ] ;  

co 

i= 1 

Historical and bibliographic notes 

The dimension of simple geometric objects is one of the most intuitive 
mathematical notions. There is no doubt that a segment, a square and 
a cube have dimension 1, 2 and 3, respectively. The necessity of a precise 
definition of dimension became obvious only when it was established 
that a segment has exactly as many points as a square (Cantor 1878), 
and that a square has a continuous parametric representation on a segment, 
i.e., that there exist continuous functions x(t) and y ( t )  such that points 
of the form ( x ( t ) ,  y ( t ) )  fill out a square when t runs through a segment 
(Peano 1890). First and foremost the question arose whether there exists 
a parametric representation of a square on a segment which is at the same 
time one-to-one and continuous, i.e., whether a segment and a square 
are homeomorphic, and-more generally-whether the n-cube I" and the 
m-cube I" are homeomorphic if n # m; clearly, a negative answer was 
expected. Between 1890 and 1910 a few faulty proofs of the fact that I" 
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and I" are not homeomorphic if n # m were produced and it was established 
that I, Z2 and I 3  are all topologically different. 

The theorem that I" and I" are not homeomorphic if n # m was proved 
by Brouwer in [1911]. The idea suggests itself that to prove this theorem 
one should define a function d assigning to every space a natural number, 
expressing the dimension of that space, such that to every pair of homeo- 
morphic spaces the same natural number is assigned and that d(1") = n. 
It was none too easy, however, to discover such functions; the search 
for them gave rise to dimension theory. In Brouwer's paper [1911] no 
function d is explicitly defined, yet an analysis of the proof shows that to 
differentiate I" and I" for n # m the author applies the fact that for a suffi- 
ciently small positive number E it is impossible to transform the n-cube 
P c R" into a polyhedron K c R" of geometric dimension less than n 
by a continuous mapping f :  I" + K such that e ( x , f ( x ) )  < E for every 
x E I". As we shall show in Section 1.10, this property characterizes compact 
subspaces of R" which have dimension equal to n. Another topological 
property of the n-cube I" was discovered by Lebesgue in [1911], viz. the 
fact that I" can be covered, for every F > 0, by a finite family of closed 
sets with diameters less than E such that all intersections of n + 2  members 
of the family are empty, and cannot be covered by a finite family of closed 
sets with diameters less than 1 such that all intersections of n+ 1 members 
of the family are empty. Obviously, Lebesgue's observation implies that 
I" and I" are not homeomorphic if n # m. Though the proof outlined 
by Lebesgue contains a gap (filled by Brouwer in [I9131 and by Lebesgue 
in [1921]), nevertheless the discovery of the new invaricint was an important 
achievement which eventually led to the definition of the covering dimension. 
Lebesgue's paper [1911] contains one more important discovery. The author 
formulated the theorem (the proof was given in his paper [1921]) that for 
every continuous parametric representation f ( t )  = (xl ( t ) ,  x 2 ( t )  , . . . , x,(t))  
of the n-cube I" on the closed unit interval I,  some fibres off ,  i.e., inverse 
images of one-point sets, have cardinality at  least n+ 1, and that Z" has 
a continuous parametric representation on I with fibres of cardinality 
at most n + l .  

A decisive step towards the definition of dimension was made by Poin- 
car6 in [1912], where he observed that the dimension is related to the no- 
tion of separation and could be defined inductively. Poincar6 called atten- 
tion to the simple fact that solids can be separated by surfaces, surfaces 
by lines, and lines by points. It was due to the character of the journal 
for which PoincarC was writing and also to his death in the same year 
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1912 that Poincart’s important ideas were not presented as a precise defi- 
nition of dimension. 

The first definition of a dimension function was given by Brouwer 
in [1913], where he defined a topological invariant of compact metric 
spaces, called Dimensionsgrad, and proved that the Dimensionsgrad of 
the n-cube I” is equal to n. In conformity with Poincari’s suggestion, the 
definition is inductive and refers to the notion of a cut: Brouwer defined 
the spaces with Dimensionsgrad 0 as spaces which do not contain any 
continuum of cardinality larger than one (i.e., as punctiform spaces; cf. 
Section 1.4), and stated that a space X has Dimensionsgrad less than or 
equal to n 2 1 if for every pair A ,  B of disjoint closed subsets of X there 
exists a closed set L c X which cuts X between A and B and has Dimensions- 
grad less than or equal to n- 1. Brouwer’s notion of dimension is not 
equivalent to what we now understand by the dimension of a compact 
metric space; however, the two notions coincide in the realm of locally 
connected compact metric spaces (the proof is based on the fact that in 
this class of spaces the notions of a separator and a cut are equivalent 
for closed subsets; cf. Kuratowski [1968], p. 258). Brouwer did not study 
the new invariant closely: he only used it to give another proof that I” 
and I” are not homeomorphic if n # m. 

Referring to the second part of Lebesgue’s paper [I91 11, Mazurkiewicz 
proved in [1915] that for every continuous parametric representation 
of the square I 2  on the interval I, some fibres offhave cardinality at least 3, 
and showed that every continuum C c R2 whose interior in R2 is empty 
can be represented as a continuous image of the Cantor set under a mapping 
with fibres of cardinality at most 2. These results led him to define the 
dimension of a compact metric space X as the smallest integer n with 
the property that the space X can be represented as a continuous image 
of a closed subspace of the Cantor set under a mappingfsuch that If-’(x)l 
f n+ 1 for every x E X .  As was proved later (cf. Problem 1.7.D), this 
definition is equivalent to the definition of the small inductive dimension, 
but Mazurkiewicz’s paper had no influence on the development of di- 
mension theory. 

The definition of the small inductive dimension ind was formulated 
by Urysohn in [1922] and by Menger in [1923], both papers contain also 
Theorem 1.1.2. Menger and Urysohn, working independently, built the 
framework of the dimension theory of compact metric spaces, but Urysohn 
was ahead of Menger by a few months and was able to establish a larger 
number of basic properties of dimension. Urysohn’s results are presented 
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in a two-part paper, [1925] and [1926], published after the author’s death 
in 1924, whereas Menger’s results are contained in his papers [l923] and 
[I9241 and in his book [1928]. A generalization of dimension theory to 
separable metric spaces is due to Tumarkin ([1925] and [1926]) and Hu- 
rewicz ([1927] and [1927b]). In [1927] Hurewicz, in a particularly successful 
way, made use of the inductive character of dimension and greatly simpli- 
fied the proofs of some important theorems, e.g., the sum theorem and the 
decomposition theorem. Moreover, owing to his discovery of the compacti- 
fication theorem, Hurewicz reduced, in a sense, the dimension theory 
of separable metric spaces to the dimension theory of compact metric 
spaces. 

When the work of Menger and Urysohn drew the attention of mathe- 
maticians to the notion of dimension, Brouwer (in [1923], [1924], [1924a] 
and [1924b]) ascertained that the definition of his Dimensionsgrad was 
marred by a clerical error and that it should read exactly as the definition 
of the large inductive dimension (see Section 1.6) and thus should lead 
to the same notion of dimension for compact metric spaces; he also com- 
mented that even the original faulty definition of Dimensionsgrad could 
serve as a basis for an equally good, although different, dimension theory. 
Brouwer’s arguments do not seem quite convincing. After the publication 
of Menger’s book [1928] a heated discussion arose between Brouwer 
([1928]) and Menger ([1929a], [1930], [1933]) concerning priority in de- 
fining the notion of dimension; a good account of this discussion is contained 
in Freudenthal’s notes in the second volume of Brouwer’s Collected Papers 
(Brouwer 119761). The history of the first years of dimension theory and, 
in particular, an evaluation of the contributions of Menger and Urysohn 
can be found in Alexandroff [1951]. 

Problems 

l.l.A. Observe that a metric space X satisfies the inequality indX 
< n > 0 if and only if for every point x E X  and each positive number E 

there exists a neighbourhood U c X of the point x such that d(U) < E 

and indFr U < n- 1. 

1.1.B. To every regular space X and every point x E X  one assigns 
the dimension o f X  at the point x, denoted by ind,X, which is an integer 
larger than or equal to 0 or the infinite number 00 ; the definition consists 
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in the following conditions: (1) ind,X< n if for each neighbourhood 
V c X of the point x there exists an open set U c X such that x E U c V 
and indFrUGn-1 ;  (2) ind,X=n if ind,X<n and ind ,X>n-I ;  
(3) ind,X = 00 if ind,X > n for n = 0, 1, ... 

(a) Note that indX < n if and only if ind,X G n for every x EX. 
(b) Formulate and prove the counterparts of 1.1.2, 1.1.4 and 1.1.6 

for the dimension at  a point. 

l.l.C. Show that whenever regular spaces X and Y are homeomorphic, 
then indX = indY. 

l . l .D. Give an example of a subspace X of the plane and of a closed 
set C c X with the property that for a pair A ,  B of disjoint closed subsets 
of X the set C is a cut between A and B but is not a separator between A 
and B. 

1.2. The separation and enlargement theorems for dimension 0 

A regular space X satisfying the equality indX = 0 will be called a zero- 

To begin with, we shall specialize the contents of the previous section 
dimensional space. 

to the case of zero-dimensional spaces. 

1.2.1. Proposition. A regular space X is zero-dimensional if and only if X 
is non-empty and for  every point x E X  and each neighbourhood V c X 
of the point x there exists an open-and-closed set U c X Juch that x E U 
c v.n 
1.2.2. Proposition. Every non-empty subspace of a zero-dimensional fpace 
is zero-dimensional. 

1.2.3. Proposition. A regular space X is zero-dimensional if and only if X 
is non-empty and for  every point x E X  and each closed set B c X such 
that x $ B the empty set is a partition between x and B . 0  

1.2.4. Proposition. A separable metric space X is zero-dimenJional if and 
only i f X  is non-empt-v and has a countable base consisting of open-and-closed 
sets. c] 

We shall now discuss a few examples 
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1.2.5. Examples. The space of irrational numbers P t R is zero-dimensional 
because it has a countable base consisting of open-and-closed sets, viz., 
the sets of the form P n ( a ,  b), where a and b are rational numbers. 

Similarly, the space of rational numbers Q c R is zero-dimensional. 
More generally, if a metric space X satisfies the condition 0 < 1x1 < c, 
then indX = 0. Indeed, for every point x E X  and each neighbourhood 
V c X of the point x there exist a positive number r such that B(x,  r )  
c V and a positive number t < r such that e ( x ,  y )  # t for every y EX, 
where e is the metric on the space X ;  the set U = B ( x ,  t )  satisfies the 
condition x E U c V and is operi-and-closed, because Fr U c { y  E X :  

A non-empty subspace X of the real line R is zero-dimensional if and 
only if it does not contain any interval. Since intervals are connected and 
no connected space containing at least two points is zero-dimensional, 
the condition is necessary by virtue of Proposition 1.2.2. The condition 
is also sufficient; indeed, the sets of the form Xn(a, b), where a ,  b E R 
and a < x < b, constitute a base for the space X at the point x and for each 
V = Xn(a, b) one can find an open-and-closed set U c V such that 
x E U t V, it suffices to define U = Xn(c, d), where c E (a ,  x)‘\X and 
d E (x, b)\X. 

In particular, the subspace C of the real line consisting of all real numbers 
in the closed unit interval Ithat have a tryadic expansion in which the digit 1 

e(x,y) = t> = 0. 

00 

2xi -, where xt 
3’ 

does not occur, i.e., the set of all numbers of the form x = 
i= 1 

is equal to 0 or 1 for i = 1 , 2, . . . , is zero-dimensional. Indeed, the set C 

does not contain any interval because C = F,, where Fi is the subset 

of I consisting of all numbers having a tryadic expansion in which 1 
does not occur as thej-th digit f o r j  < i, and F, contains no interval of length 
larger than 1/3,. One easily sees that the set Fl is obtained from I by re- 
moving the “middle” interval (1/3, 2/3), the set F2 is obtained from Fl by 
removing the “middle” intervals (1/9, 2/9) and (7/9, 8/9) of both parts of 
Fl , and so on. The set Ft consists of 2‘ disjoint intervals of length 1/3[. 

m 

i= 1 

Fig. 2 

The subspaze C of the real line is called the Cantor set. Since C is a 
closed subset of I, the Cantor set is compact. 
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The Cartesian product Q" c R" is zero-dimensional, because it is 
a countable space. The Cartesian product P" c R" is also zero-dimensional; 
the proof is left to the reader (cf. Theorem 1.3.6).0 

As shown in the following theorem, zero-dimensional separable metric 
spaces have a separation property which is much stronger than the property 
described in Proposition 1.2.3. 

1.2.6. The first separation theorem for dimension 0. If X is a zero-dimensional 
separable metric space, then for every pair A ,  B of disjoint closed subsets 
of X the empty set is a partition between A and B, i.e., there exists an open- 
and-closed set U c X such that A c U and B c X\U. 

Proof. For every x E X  there exists an open-and-closed set W, c X such 
that x E W, and 

(1) either A n  W, = 0 or B n  W, = 0.  

The open cover { W x } x e ~  of the space X has a countable subcover { Wx,}C . 
The sets 

U, = WXl\UWx, c W,,, where i = 1 , 2 ,  ..., 
jc I 

are open and constitute a cover of the space X.  Let us define 

U = U { U i :  A n U ,  # 0} and W = (J {Ui:  A n U ,  = 0}; 

obviously, A c U and it follows from (P) that B c W. Since the sets 
U, are pairwise disjoint, W = X\U, which implies that the set U is open- 
and-closed and that B c X\U.O 

1.2.7. Remark. It follows from the above proof that in Theorem 1.2.6 
the assumption that X is a separable metric space can be replaced by the 
weaker assumption that X is a Lindelof space, i.e., a regular space which 
has the property that every open cover of X has a countable subcover. 

Now we are going to prove the second separation theorem, which 
is still stronger than Theorem 1.2.6. Let us recall that two subsets A and B 

of a topological space X are separated if A n B  = 0 = &B. One easily 
sees that the sets A and B are separated if and only if they are disjoint 
and open (or-equivalently-closed) in their union A u B ,  i.e., if A n B  = 0 
and the empty set is a partition between A and B in the subspace AUB 
of X. In particular, two disjoint open sets, and also two disjoint closed 
sets, are separated. 
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The second separation theorem will be deduced from two lemmas; 
with a view to further applications, the second lemma is formulated in 
a more general way than needed in this section. 

1.2.8. Lemma. For every pair A, B of separated sets in a metric space X 
there exist open sets U, W c X such that 

(2) A c  U ,  B c  W and U n W = 0 .  

. Proof. Let e be the metric on the space X and let f ( x )  = e ( x ,  A )  and g(x)  
= e ( x ,  B )  denote the distance of the point x E X  from A and B, respectively. 
Since the functions f and g are continuous, the sets 

and 

are open. The inclusions in (2) follow from the equalities f -'(O) = 2 
and g-I(O) = B; the equality U n  W = 0 follows directly from the defini- 
tion of U and W . 0  

U = { x  E X :  f ( x ) -g (x )  < 0 }  W = { x  E X :  f ( x ) -g (x )  > 0}  

1.2.9. Lemma. Let M be a subspace of a metric space X and A ,  B a pair 
of disjoint closed subsets of X .  For every partition L' in the space M between 
M n V ,  and MnV,, where V,  , V2 are open subsets of X such that A c V,  , 
B c V2 and FlnF2 = 0, there exists a partition L in the space X between 
A and B which satisfies the inclusion M n L  c L'. 

If  M i$ a closed subspace of a metric space X and A, B a pair of disjoint 
closed fubsets of X ,  then for every partition L' in the space M between M n A  
and M n B  there exists a partition &in the space X between A and B which 
satisfies the inclusion M n L  c L'. 

Proof. Let U', W' be open subsets of M satisfying the conditions 

MnFl c U', Mnv2 c W ,  U'nW' = 0 and M\L' = U'u W .  

Observe that 

(3) A n W  = 0 = BnU'. 

Indeed, since V,nW = M n V , n  W' c U ' n W  = 0 and since the set V, 
is open, we have Vl n W = 0, which implies that A n  = 0; by sym- 
metry of assumptions, also BnU'  = 0. 

The sets U' and W are disjoint and open in their union UUW' ,  and 
thus they are separated, i.e., 

(4) uJnW = 0 = PnW. 
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If follows from (3) and (4) that the sets A u  U' and B u  W' are also separated. 
Hence, by Lemma 1.2.8, there exist open sets U ,  W c X such that 

A u U ' c U ,  B u W ' c  W and U n W = 0 .  

The set L = X\(Uu W )  is a partition in the space X between A and B. 
Since 

M n L  = M\(Uu W )  c M\(U'uW) = L', 

the first part of the lemma is established. 

Fig. 3 

, To prove the second part, consider open subsets U, , W, of the space M 
satisfying the conditions 
M n A  e U,, M n B  c W,,  U,nW,  = 0 and M\L' = U , u W l .  

Since An(M\U,) = 0, Bn(M\Wl) = 0 and A n B  = 0, there exist 
open sets V , ,  V, c X such that 

A c V, c vl c X\(M\U,), B c V2 c 7, c X\(M\ W,) 

and Vlnvz = 0. 
Obviously, L' is a partition in the space M between M n  V, and Mnv, ,  
so that the partition L exists by the first part of the lemma. 

1.2.10. Remark. In the proof of Lemma 1.2.9 only the fact that Lemma 
1.2.8 holds in metric spaces was applied; as the latter lemma holds in 
hereditarily normal spaces (see Theorem 2.1. l), Lemma 1.2.9 also holds 
in hereditarily normal spaces. 

1.2.11. The second separation theorem for dimension 0. r f  X is an arbitrary 
inetric space and Z a zero-dimensional separable subspace of X ,  then for 
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every pair A, B of disjoint closedsubsets o f X  there exists apartition L between 
A and B such that L n Z  = 0. 

Proof. Consider open sets V,,  V,  c X such that A c V,, B c V, and 
V,nv2 = 0. By virtue of Theorem 1.2.6, the empty set is a partition. 
in the space Z between Znvl and Znv,. Applying the first part of Lemma 
1.2.9 we obtain the required partition L. n 

The last theorem yields a characterization of zero-dimensional subspaces 
in terms of neighbourhoods in the whole space (cf. the proof of Proposi- 
tion 1.1.4): 

- 

1.2.12. Proposition. A separable subspace M of an arbitrary metric space X 
is zero-dimensional if and on@ if M is non-empty and for every point x E M 
(or-equivalently-for every point x E x> and each neighbourhood V of the 
point x in the space X there exists an open set U c X such that x E U c V 
and MnFr  U = 0. [7 

Proposition 1.2.12 and Lemma 1.1.5 imply 

1.2.13. Proposition. A fubspace M of a separable metric space X is zero- 
dimensional if and only if M is non-empty and X has a countable base 97 
such that MnFr  U = 0 for every U E 97. 

It is natural to ask at this point whether every zero-dimensional subspace 
of a given space can be enlarged to a “better” zero-dimensional subspace. 
The example of the subspace of the real line consisting of rational numbers 
shows that, generally, zero-dimensional subspaces cannot be enlarged 
to closed zero-dimensional subspaces; however, as shown in the next 
theorem, they can always be enlarged to zero-dimensional Gd-sets. Let us 
recall that G6-sets are defined as countable intersections of open sets, 
and Fa-sets as their complements, i.e., countable unions of closed sets. 

1.2.14. The enlargement theorem for dimension 0. For every zero-dimensional 
separable subspace Z of an arbitrary metric space X there exist& a Grset 
Z* in X such that Z c Z* and the subspace Z* of the space X is zero-dimen- 
sional. 

Proof. Since every closed subset of a metric space is a G6-set and a Gd-set 
in a subspace which itself is a Gd-set is a Gd-set in the space, one can assume 



16 Dimension theory of separable metric spaces [Ch. 1, 0 2 

that 2 = X .  Thus X is separable and, by virtue of Proposition 1.2.13, 
has a countable base 99 such that ZnFr U = 0 for every U E  99. The 
union F = U {Fr U: U E 99} is an Fa-set, and its complement Z* = X\F 
is a G6-set which contains the set Z. From Proposition 1.2.13 it follows 
that Z* is zero-dimensional. 0 

As the reader has undoubtedly observed, Theorem 1.2.6 states that 
in separable metric spaces two properties, viz., the property that the empty 
set is a partition between any disjoint closed sets A,  B, and the property 
that the empty set is a partition between every point x and each closed 
set B such that x 4 B, are equivalent. The question arises whether the 
property that the empty set is a partition between any distinct points 
x, y is still the same property. As shown in the following example, the 
answer to this question is negative (cf. the notion of a totally disconnected 
space discussed in Section 1.4). 

1.2.15. Erdos' example. Let us recall that Hilbert space H consists of all 

infinite sequences {xi} of real numbers such that the series xi" is con- 

vergent. For every point x = {xi} E H the norm llxll of the point x is the 

00 

i =  1 

number l/sl x:, and the distance between x = {xi} and y = {yi} is 

defined by 

i.e., is equal to the norm of the difference x-y. The function @ is a metric 
on H, and H is a separable metric space. 

We shall show that, in the subspace Ho of the space H consisting of 
the points {xi} E H such that xi is rational for every i, the empty set is 
a partition between any distinct points x, y, and yet Ho is not zero- 
dimensional. 

Let us consider a pair x = {xi}, y = {yi} of distinct points of H o .  
There exists a natural number io such that x i ,  # ' y i o ;  without loss of 
generality one can assume that xi .  < yi,. Take an irrational number t 
such that xi ,  < t < y io  and define 

U = { {zi} E Ho: zi0 < t ) .  
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One can easily verify that the set U is open-and-closed in Ho. As x E U 
c Ho\{y), the empty set is a partition between x and y. 

Now, let xo E Ho be the sequence whose terms are all equal to zero 
and let V = B(xo, 1) = {x E Ho: llxll < l}. We shall show that for every 
neighbourhood U of the point xo which is contained in the neighbourhood 
V of xo we have F rU # 0. 

We shall define inductively a sequence a, , a,, . . . of rational numbers 
such that 

4 

(5)  xk = (a1, a27 ak, 0 ,  0, ...) E u and @(xk, Ho\v < l / k  

for k = 1 ,2 ,  ... Conditions (5) are satisfied for k = 1 if we let a, = 0. 
Suppose that the rational numbers a,, a, ,  . . . , a,- are already defined 
and conditions (5) are satisfied for k 6 rn- 1. The sequence 

x$ = (a,, a,, ... , a,,,-, , i /m, 0 ,  0 ,  ...) 

is an element of Ho for i = I ,  2, ..., m. As xr = x,-, E U and x," 4 U 
because Ilx,"ll 2 1, there exists an io < in such that xy E U and xt+l $ U. 
One easily sees that conditions (5) are satisfied for k = m if we let a, 
= io/m. Thus the sequence a, , a2, ... is defined. From the first part of 

(5) it follows that at < 1. Hence 

a = { a i )  is a point of Ho and a E On the other hand, from the second 
part of (5 )  it follows that a E Ho\U, so that a E Fr U and Fr U # 0. 

Thus we have shown that there is no open-and-closed set U c Ho 
such that xo E U c V, and this implies that the space Ho is not zero- 
dimensional. 

To conclude, let us observe that the only open-and-closed bounded 
subset of the space Ho is the empty set. Indeed, if there existed a non- 
empty open-and-closed bounded set W c H o ,  then by a suitable trans- 
lation and contraction of W we could obtain an open-and-closed set 
U c Ho such that xo E U c V. 0 

k m 

a: < 1 for k = 1, 2, ... , so that 
i = l  i = l  

Historical and bibliographic notes 

Zero-dimensional spaces were defined by Sierpitiski in [1921], before 
dimension theory was originated. Sierpitiski's objective was to compare 
a few classes of metric spaces which are highly disconnected; a similar 
comparison will be drawn in Section 1.4. The theorems in the present 
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section are all special cases of theorems which will be proved in Section 
1.5 for an arbitrary dimension n; they were at once established in this 
more general form. Theorem 1.2.6 was proved for compact metric spaces 
by Menger in [1924] and by Urysohn in [1926] and was extended to sepa- 
rable metric spaces by Tumarkin in [1926] (announcement in [1925]) and 
by Hurewicz in [1927]; the generalization stated in Remark 1.2.7 was 
obtained by Vedenissoff in [1939]. Theorem 1.2.1 1 was proved for compact 
metric spaces by Menger in [1924] and was extended to separable metric 
spaces by Hurewicz in [1927]. Theorem 1.2.14 was obtained by Tumarkin 
in [ 19261 (announcement [ 19251). The space in Example 1.2.15 was 
described by Erdos in [1940]; the first example of a space with similar 
properties was given by Sierpiliski in [1921]. 

Problems 

1.2.A. Let M be a subspace of a metric space X and let x be a point 
of M. Prove that ind,M = 0 if and only if there exists a base { U J g ,  
for the space X at the point x such that MnFr  U, = 0 for i = 1 , 2, . . . 

1.2.B. Show that a subspace M of a metric space X is zero-dimensional 
if and only if M is non-empty and for every point x E M and each neigh- 
bourhood V of the point x in the space X there exists an open set U c X 
such that x E U c V and MnFr  U = 0 (cf. Proposition 1.2.12 and Prob- 
lem 4.1.C). 

1.2.C. Show by an example that in the second part of Lemma 1.2.9 
the assumption that the subspace M is closed cannot be omitted. 

1.2.D. Check that every countable compact space has isolated points. 
Note that locally compact countable spaces have the same property. 

Hint. Arrange all points of the space into a sequence x, , x2, ... and, 
assuming that none of the points xI is isolated, define a decreasing sequence 
F, 2 F, 3 ... of non-empty closed sets such that xi 4 F, for i = 1,2,  ... 

One can ,equally well apply the Baire category theorem. 
Remark. Every completely metrizable space with no isolated points 

contains a subspace homeomorphic to the Cantor set and thus is of car- 
dinaIity at least c (see [GT], Problem 4.5.5(a)). 
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1.2.E (Kuratowski [1932a]). Define a mapping .f of the Cantor set C 
to the interval [- I ,  11 by letting 

(-1)*1 (-1)iZ 
f(0) = 0 and f(x) = -+- + ... 

2 22 

m 

for each x = c$ E C\{O}, 
i= 1 

where il < i2 < ... is the sequence (finite or infinite) of all i's such that 
xi = 1 ; let Co denote the set of all points x E C\ (0 )  for which the sequence 
i l ,  i,, ... is infinite and let C, = C\Co. 

(a) Observe that the set C, consists of the number 0 and the right 
end-points of the intervals (1/3, 2/3), (1/9, 2/9), (7/9, 8/9), ... removed 
from I to obtain the Cantor set; note that C ,  is a countable set. 

(b) Check that the function f is continuous at all points of Co. 

(c) Verify that for every s = ~ + -+ . . . +-- E C, , the upper 

limit f(x) and the lower limit f(x) of the function f at the point x are equal 

to f(x)+- and f(.x)-- respectively; observe that the function f is 

discontinuous at all points of C,. 

in C, such that 

2 2  2 
3'1 3'2 3 i k  

_ _ .  
1 1 

2 k  2 k  ' 

(d) For each point x E C, define two sequences, (x:} and {xy }, of points 

limx; = x, 1imfR) = fj, limf(x;) __ = f(x) 
and - 

limx;' = x, limf(xy) = f(x), limf(xi) = f(x) . 
_ _ -  

(e) Consider the graph K = {(x,f(x)): x E C} of the function f and 
prove that indc,,fc,,)K = 1 for every x E C1. 

Hirzt. Prove that the space D = K u  U ((x} x [f(x),fm) c R2 is 

compact. Assuming that ind (,", ,-(,,,)K = 0 for an xo E C, , show that 
there exists a partition L in the space D between (x,,f(xo)) and (xo,f(xo)) __ 

such that L n K  = 0. Show that the set M consisting of all points x E C, 
such that L is a partition between either ( x , f ( x ) )  and (x,f(x)) or (x,f(x)) 
and (x,f(x)) is contained in the projection of L onto C z d  contains an 
isolated point (see Problem 1.2.D); deduce a contradiction of (d). 

X€Cl 
__ 

(f) Observe that ind (,, f ( x ) ) K  = 1 for every .x E C,. 
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(g) Check that the empty set is a partition between any distinct points 

(h) Note that the space K is completely metrizable. 
Hint. Check that K is a G8-set in D and apply Lemma 1.3.12. 

of the space K. 

1.3. The sum, Cartesian product, universal space, compactification and em- 
bedding theorems for dimension 0 

The theorems enumerated in the title of the section belong to the most 
important results of dimension theory. For the time being we shall only 
prove their special cases pertaining to zero-dimensional spaces. We begin 
with the sum theorem. 

1.3.1. The sum theorem for dimension 0. If a separable metric space X can 
be represented as the union of a sequence Fl , F, , . . . of closed zero-dimen- 
sional subspaces, then X is zero-dimensional. 

Fig. 4 

Proof. Consider a pair A ,  B of disjoint closed subsets of the space X.  We 
shall prove that there exist open sets U ,  W c X such that 
(1) A c U ,  B c W ,  U n W = 0  and X = U u W ,  

i.e., that the empty set is a partition between A and B. 

(2) A c U,,  B c  W, and 6,,nqo = 0. 
Let U,, W, be open subsets of X such that 
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We shall define inductively two sequences U, , U, , U, , . . . and 
W,, W,  , W,, . . . of open subsets of X satisfying for i = 0, 1 , 2, .. . the 
conditions: 

(3) UiPl  c U,, W,-, c W, if i >  1 and uinwi = 0. 
(4) Ft c UiuWi, where F, = 0. 

Clearly, the sets V,, W ,  defined above satisfy both conditions for i = 0. 
Assume that the sets U,, Wi satisfying (3) and (4) are defined for all i < k.  

The sets Uk-lnFk and Wk-lnFk are closed and disjoint; since the 
space Fk is zero-dimensional, by virtue of Theorem 1.2.6 there exists an 
open-and-closed subset V of Fk such that 

( 5 )  Uk-lnFk C v and Fk-jnFk c Fk\v. 

The set Fk being closed in X ,  the sets V and Fk'\V are also closed in X ;  
from (5 )  it follows that 

so that there exist open sets u k ,  W, c X satisfying 

Uk-iuV c uk, W;-1u(Fi\V) C wk and UknK = 0. 

The sets Uk, wk satisfy (3) and (4) for i = k; thus, the construction of the 
sequences U,, U,, U,, ... and W,,  W , ,  W,, ... is completed. It follows 

from (2), (3) and (4) that the unions U =I J Ui and W = IJ Wi satisfy (1). !J 
00 m 

i = O  i = O  

1.3.2. Remark. Undoubtedly, the reader has noted that in the proof of 
Theorem 1.3.1 only the normality of the space X and the fact that the 
empty set is a partition between each pair of disjoint closed subsets of the 
space Fk were applied. Hence we have proved that if a normal space X 
can be represented as the union of a sequence Fl , F2 , . . . of closed subspaces 
with the property that for i = 1 ,  2, ... the empty set is a partition between 
each pair of disjoint closed subsets of the space F,, then the empty set is 
a partition between any disjoint closed subsets of the space X.  

From Theorem 1.3.1 several corollaries follow: 

1.3.3. Corollary. If a separable metric space X can be represented as the 
union of a sequence F l ,  F,, ... of zero-dimensional subfpaces, where Fi is 
an F,-set for i = 1, 2, ... , then X is zero-dimensional. 
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1.3.4. Corollary. If a separable metric space X can be represented as the 
union of two zero-dimensional subspaces A and B, one of them closed, 
then X is zero-dimensional. 

Proof. Let us suppose that A = A; the open set X\A c B is zero- 
dimensional by virtue of the subspace theorem. Since every open subset 
of a metric space is an F,-set and since X = Au(X\A), to complete the 
proof it suffices to apply Corollary 1.3.3. 0 

1.3.5. Corollary. I f b y  adjoining ajinite number of points to a zero-dimenyional 
separable metric space one obtains a metric space, then the space obtained 
is zero-dimensional and separable. 

In connection with the last corollary, let us note that by adjoining 
countably many points to the space of irrational numbers one can obtain 
the real line, i.e., a space of positive dimension. 

We shall now prove the Cartesian product theorem. 

1.3.6. The Cartesian product theorem for dimension 0. The Cartesian product 

X = I1 Xi of a countable family {X,)& of regular spaces is zero-dimensional 

i f  and only i f  all spaces X ,  are zero-dimensional. 

a, 

i= 1 

Proof. If X # 0, then each space Xi is homeomorphic to a subspace of X ,  
so that if X is zero-dimensional, then all spaces X ,  are zero-dimensional. 
To prove the reverse implication, it is enough to consider for i = 1 , 2 ,  . . . 
a base 9i?i for the space X ,  consisting of open-and-closed sets and observe 

co 

that the sets of the form U, x U, x .. . x U, x Xi, where Ui E Bi 
i = k + l  

for i < k and k = 1 , 2 ,  ..., constitute a base for X and are open-and- 
closed in X. 0 

Theorems 1.1.2 and 1.3.6 yield 

1.3.7. Corollary. The limit of an inverse sequence {X,, nj} of zero-dimen- 
sional spaces is either zero-dimensional or empty. 0 

The sum and Cartesian product theorems allow us to increase our 
stock of zero-dimensional spaces. 

1.3.8. Examples. For every pair k, n of integers satisfying 0 < k < n 3 1 
denote by PI the subspace of Euclidean n-space R" consisting of all points 
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which have exactly k rational coordinates. We shall prove that Q; is a zero- 
dimensional space. 

For each choice of k distinct natural numbers il , i2 ,  ..., ik not larger 
than n and each choice of k rational numbers rl , r 2 ,  . . . , r,, the Cartesian 

n 

product n Ri, where R,, = ( r j }  for j = 1,2,  ..., k and Ri = R for 

i # i,, is a closed subspace of R". Hence, Qinn R, is a closed subspace 
i= 1 n 

i= 1 n 

of Q;. Since the space Q;n n Ri is homeomorphic to the subspace of 
i= 1 

RR-k consisting of all points with irrational coordinates, it follows from 
Example 1.2.5 and Theorem 1.3.6 that it is a zero-dimensional space. 
Theorem 1.3.1 implies that the space Q; is zero-dimensional, because 

the family of all subspaces of the form Q; nn R, is countable and its 

union is equal to the whole of Q;. 
It also follows from Theorem 1.3.6 that the space QKo, which is the 

Cartesian product of KO copies of the space of rational numbers, and the 
space Pxo, which is the Cartesian product of KO copies of the space of 
irrational numbers, are zero-dimensional. 17 

00 

i= 1 

1.3.9. Definition. We say that a topological space X is universal for a class 
X of topological spaces if X belongs to 3' and every space in the class 
X is homeomorphic to a subspace of the space X. 

We are now going to prove that the Cantor set C and the space P of 
irrational numbers are universal spaces for the class of all zero-dimensional 
separable metric spaces; in the proof we shall apply the fact that both C 
and P can be represented as countable Cartesian products. 

1.3.10. Proposition. The Cantor set C is homeomorphic to the Cartesian 

product DKo = n D , ,  where D, , for i = 1, 2, ... , is the two-point discrete 

space D = (0 ,  I}. 

00 

i =  1 

Proof. As one readily verifies, for each point x E C the representaton 
00 

in the form x = 3', 2 X t  where xI)s are equal to 0 or 1, is unique. Hence, 
i= 1 
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letting 
03 

we define a one-to-one mapping of DKo onto C. Since the function fi: 
D K O  --f I defined by f i ( ( x l ) )  = 3' 2xt is continuous for i = 1 ,2 ,  ... and the 

m 

series fi is uniformly convergent to f, the latter function is continuous. 

It follows from the compactness of DKo that f is a homeomorphism. 0 
i= 1 

The proof of the counterpart of Proposition 1.3.10 for the space of 
irrational numbers requires some calculation to remedy the lack of compact- 
ness. Let us recall that if X is a metric space, then by a metric on the space X 
we mean any metric on the set X which is equivalent to the original metric 
on X ,  i.e., induces the same convergence as the original metric. 

1.3.11. Lemma. Let Q be an arbitrary metric on the space P of irrational 
numbers and E a positive number. For every non-empty open set U c P 
there exists an in$nite sequence Fl , F2, ... of pairwise disjoint non-empty 

open-and-closed subsets of P wch that U = u F, and the diameters with 

respect to Q of all sets F, are less than E .  

m 

i= I 

Proof. Consider an interval (a ,  b) c R with rational end-points such that 
(a ,  b )nP  c U and divide it into KO pairwise disjoint non-empty intervals 
(a l ,  b l ) ,  (a2, b2), ... with rational end-points. Thus we have (a ,  b ) n P  

= U Af, where A,  = (a,, b,)nP # 0, a,, b, EQ and A , n A ,  = 0 when- 

ever i # j ;  in addition let A .  = U\(a, b). The sets A o ,  A , ,  A 2 ,  ... are 
open in P and by virtue of Proposition 1.2.4 for i = 0, 1 ,2 ,  ... there 
exist in P open-and-closed sets Af, , , Af, 2, . . . , all of diameter less than 

W 

i = l  

m 
E, such that A ,  = U A, , , ;  letting B i , j  = A,,,\ U A i P k  for j = 1,2, ..., 

j =  1 k <  j 

we obtain pairwise disjoint open-and-closed subsets of P whose union 
is equal to A , .  To complete the proof it suffices to arrange all non-empty 
sets B,,,  into a simple sequence F l ,  Fz ,  ... 0 

The next lemma is an important theorem on complete spaces. In con- 
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sideration of further applications it is stated in full generality and not 
merely for the subspace P of the real line R.  

3.3.12. Lemma. Every Gd-set X in a completely metrizable space Xo is com- 
pletely metrizable. 

Proof. Let e be a complete 
where G ,  is open in Xo for 

W 

metric on the space X o  and let X = n G , ,  

i = 1 ,2 ,  ... Define 
i =  1 

F, = X,\G, and fi(x) = l/e(x,F,) for X E X  and i = 1,2,  ...; 

the functions fi, f2, ... from X to the real line R are continuous. One 
readily sees that the formula f ( x )  = (x, f l ( x ) ,  f , ( x ) ,  ...) defines a homeo- 

W 

morphic embedding f: X +. X ,  , where X ,  = R for i > 1. Since the 
i = O  

Cartesian product of countably many completely metrizable spaces and 
a closed subspace of a completely metrizable space are completely metriz- 
able, to complete the proof it suffices to show that f ( X )  is a closed subset 

m m 

of n X,.  We shall show that every point x = {x,) E n X,\f(X) has 
i-0 l = O  

a neighbourhood V contained in the complement of f (X ) .  
We first consider the case where xo EX. As x + f ( X ) ,  there exists a k > 0 

such that xk #&(xo). Let U, and U, be disjoint neighbourhoods of xb 
and fk(xo) in the real line. The functions fk being continuous, there exists 
a neighbourhood Uo c Xo of the point xo such that fk(U0nX) c U2. 
One easily checks that 

where p ,  denotes the projection of n X ,  onto Xi. 
i = O  

Now, consider the case where xo 4 X ;  thus we have xo EFk for a k > 0. 
Take a positive number r such that xk+ 1 < l /r and let Uo = B(xo,  r )  
and Ul = { x  E R :  x < xk+ 1). One easily checks that formula (6) also 
holds in this case. 0 

1.3.13. Proposition. The space of irrational numbers P is homeomorphic 

to the Cartesian product NK" = 17 N I ,  where N ,  , for i = 1,2,  .. ., is the 

discrete space of natural numbers N.  

W 

i = 1  
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Proof. By virtue of Lemma 1.3.12, there exists a complete metric e on the 
space P. Applying Lemma 1.3.1 1, for every sequence k, , k2,  ... , kl of nat- 
ural numbers define an open-and-closed subset Fk,k,..,ki of P such that 

(7) 
m m 

= u Fk and Fklkl...k: = u Fklkl...k:k* 
k= 1 k = l  

(8) Fklk,...kf # and B(Fklkl...ki) < l / i *  
(9) Fklkl...k: n Fmlni ,  ... mf = 0 whenever (k1 , k2, ... , kd # (ml , m2, ... ,mi ) .  

It follows from (7) and (8) that for every {k,) E N ~ O  the subsets 
Fkl , Fkl k,, Fk,k,k, , . . . of the space P form a decreasing sequence of non-empty 
closed sets whose diameters converge to zero; hence, by virtue of the 

m 

Cantor theorem, the set f7 Fk,k,...kf contains exactly one point, which 
i= 1 

we shall denote by f({k,}). Conditions (7)-(9) imply that by assigning 
f({k,}) to {k,} one defines a one-to-one mapping of NKo onto P. 
Since, as one readily verifies, 

m 

f ( { k 1 I x  {k2 lx  ... { k j } x  n Nl) = Fk,k2...kj* 
i = j + l  

the mapping f is a homeomorphism, because the sets on the left-hand 
side of the last equality form a base for P o  and the sets on the right-hand 
side form a base for P. 0 

1.3.14. Corollary. The Cantor set is homeomorphic to a subspace of the 
space of irrational numbers. I7 

Now we are ready to prove the universality of C and P .  

1.3.15. The universal space theorem for dimension 0. The Cantor set and the 
space of irrational numbers are universal spaces for the class of all zero- 
dimensional separable metric spaces. 

Proof. By virtue of Corollary 1.3.14, it suffices to show that for every 
zero-dimensional separable metric space X there exists a homeomorphic 
embedding f: X +  DKo. 

It follows from Proposition 1.2.4 that the space X has a countable 
base &3 = { U , } z  consisting of open-and-closed sets. For i = 1,2,  . .. 
define a mapping fi: X + D, = D by letting 

1 for x E U,, 
0 for x EX\U,. 
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Consider the mapping f: X + DKo defined by the formula f ( x )  = ( f l ( x ) ,  
f i ( x ) ,  ...). Since for every natural number k we have 

f ( ~ , >  = f(x>n( ( x i >  E ~ ~ 0 :  x, = I } ,  

the mapping f is a homeomorphic embedding. 0 

The universal space theorem implies the compactification theorem 
and the embedding theorem. 

1.3.16. The compactification theorem for dimension 0. For every zero-dimen- 
sional separable metric space X there exists a zero-dimensional compact$ca- 

tion 2, i.e., a zero-dimensional compact metric space 2 which contains a dense 
subspace homeomorphic to X .  

Proof. Let f: X -+ C be a homeomorphic embedding of X in the Cantor 
set C. Since the Cantor set is compact, so is its closed subspace 2 = f(3; 
the space i!? is zero-dimensional by virtue of the subspace theorem. 0 

1.3.17. The embedding theorem for dimension 0. Every zero-dimensional 
separable metric space is embeddable in the real line R.  Q 

Let us conclude this section by observing that in the theory of zero- 
dimensional spaces the key role is played by four theorems, viz., the separa- 
tion theorems, the sum theorem and the universal space theorem. All 
the remaining results either are elementary or easily follow from one of 
the four cited theorems. As the reader shall see later, the situation changes 
when we pass to higher dimensions. 

1.3.18. Remark. In Theorems 1.3.6, 1.3.15 and 1.3.16 countability is not 
essential. In the same way one proves that the Cartesian product X = 17 X ,  

of a family {Xs}sps of regular spaces satisfies the equality indX = 0 if 
and only if indX, = 0 for every s E S, and that every regular space X 
satisfying indX = 0 is embeddable in the Cantor cube Dm (i.e., the Car- 
tesian product of m copies of the two-point discrete space D), which implies 
that X has a compactification 2 c DM such that indi!? = 0; the cardinal 
number m is the cardinality of a base for the space X consisting of open- 
and-closed sets. 

S € S  
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Historid and bibliographic notes 

The theorems in the present section are all special cases of theorems 
which will be proved in Sections 1.5, 1.7 and 1.1 1 for an arbitrary dimension 
n. Theorem 1.3.1 was proved for compact spaces (and for an arbitrary 
dimension n) by Menger in [1924] and by Urysohn in [1926] (announce- 
ment in [1922]); it was extended to separable metric spaces by Tumarkin in 
[I9261 (announcement in [1925]) and by Hurewicz in [1927]. Theorem 1.3.6 
was established by Kuratowski in [1933] and Theorem 1.3.15 by Sier- 
pinski in [1921]. 

Problems 

1.3.A. (a) Prove that if a separable metric space X can be represented 
as the union of a sequence F,, Fl , F,, ... of closed subspaces such that 
indF, = 0 for i = 1 , 2  , . . . then ind,X = 0 for every point x E F,, such 
that indxFo = 0. 

(b) Give an example of a separable metric space X which can be rep- 
resented as the union of two closed subspaces Fl and F, in such a way 
that for a point x E FlnF, we have ind,F, = ind,F, = 0 and yet ind,X 
> 0. 

1.3.B. Note that Theorem 1.3.1 for a subspace X of the real line is 
a consequence of the Baire category theorem. Deduce from Theorem 
1.3.1 the Baire category theorem for the real line. 

1.3.C. (a) (implicitly, Sierpiriski [ 19281) Prove that every non-empty 
closed subset A of a zero dimensional separable metric space X is a retract 
of X, i.e., that there exists a continuous mapping r :  X --f A such that r (x)  
= x for every x E A .  

Hint. Represent the complement X\A as the union of a sequence 
Fl , F,, . . . of pairwise disjoint open-and-closed sets such that lim d(Fi) = 0. 
For i = 1 , 2, .. . choose a point x i  E A such that @ ( x i ,  Fi) < @ ( A ,  Fi)+ l / i  
and let r (x)  = x i  for x E Fi. 

(b) Note that if a non-empty regular space X has the property that 
every non-empty closed set A c X is a retract of X ,  then X is zero-dimen- 
sional. 
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Remark. The characterization of zero-dimensional spaces contained 
in (a) and (b) generalizes to higher dimensions; see Problem 4.1.F. 

1.3.D (Alexandroff [ 1927al (announcement [1925]), Hausdorff [1927]). 
Check that letting 

m 

one defines a continuous mapping of the Cantor set Dxo onto the closed 
interval I.  Verify that if y is an end-point of one of the intervals removed 
from I to obtain the Cantor set, then If- l(y)l  = 2, and otherwise l f - l (y) l  
= 1. 

Define a continuous mapping of the Cantor set DKo onto the Hilbert 
cube I K o  and-applying Problem 1.3.C together with the fact that Ixo 
is a universal space for the class of all separable metric spaces-show 
that every non-empty compact metric space is a continuous image of the 
Cantor set. Deduce that every non-empty separable metric space is an image 
of a zero-dimensional separable metric space under a one-to-one continuous 
mapping. 

1.3.E. (a) (Mazurkiewicz [1917]) Prove that every G6-set which is dense, 
and whose complement is also dense, in a completely metrizable separable 
zero-dimensional space is homeomorphic to the space of irrational numbers. 

Hint. Modify the proof of Proposition 1.3.13. 
(b) (Alexandroff and Urysohn [1928]) Show that every completely 

metrizable separable zero-dimensional space which does not contain any 
non-empty compact open subspace is homeomorphic to the space of 
irrational numbers. 

Hint. Apply (a). 
(c) Note that the subspace of the Cantor set C consisting of all points 

which are not end-points of intervals removed from I to obtain the Cantor 
set is homeomorphic to the space of irrational numbers. 

1.3.F (Brouwer [1910]). Prove that every zero-dimensional compact 
metric space with no isolated points is homeomorphic to the Cantor set. 

Hint. Modify the construction in the proof of Proposition 1.3.13 in 
such a way that the sets Fk, k2. . .k ,  will be defined for k ,  < m, , k2 < m2 , . . . 
... , kf < m i ,  where m, , m2, ... is a sequence of powers of the number 2. 
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1.3.6. (a) (Brouwer [1913a]; implicity, FrCchet [1910]) Prove that for 
any two countable dense subsets A ,  B of the real line R there exists a homeo- 
morphism f: R -+ R such that f ( A )  = B (see Problem 1.8.D). 

Hint. Let A = { u , , ~ , ,  ...} and B = {bl, b,, ...}; define inductively 
a functionffrom A to R by lettingf(u,) = b, and taking asf(ui) an element 
of B, with the smallest possible index, such that the conditions u j  < uk 
and f(u j )  < f(uJ are equivalent for j, k < i. Extend f over R and prove 
that this extension is a homeomorphism. 

(b) (FrCchet [1910]) Prove that the space of rational numbers Q is 
a universal space for the class of all countable metric spaces. 

Hint. Observe that countable metric spaces are embeddable in the real 
line; for a countable X c R apply (a) to the sets XuQ and Q. 

1.3.H. (a) Prove that if A l  , A ,  , B, and B2 are countable dense subsets 
of the real line R satisfying the condition A1nA, = 0 = B 1 n B 2 ,  then 
there exists a homeomorphism f: R -+ R such that f ( A , )  = B1 and f ( A , )  
= B,. 

Hint. See Problem 1.3.G(a). 
(b) Show that for any two countable dense subsets A ,  B of the space 

of irrational numbers P there exists a homeomorphism f: P --f P such 
that f(A) = B. 

(c) Show that for any two countable dense subsets A,  B of the Cantor 
set C there exists a homeomorphism f: C -+ C such that f(A) = B. 

Hint. Observe that for every countable set A c C there exists a homeo- 
morphism g: C -+ C such that the set g(A)  is disjoint from the set consist- 
ing of the end-points of all intervals removed from I to obtain the Cantor 
set. 

(d) (Sierpihki [ 1920al (announcement [ 191 51)) Prove that every count- 
able metric space dense in itself is homeomorphic to the space of rational 
numbers. 

Hint. By virtue of (b) it suffices to show that every countable metric 
space X dense in itself is homeomorphic to a dense subspace of the space 
of irrational numbers P. To that end, embed X in P, consider the closure 
X c P, remove in an appropriate way KO points from X\X, and apply 
Problem 1.3.E(a). 

- 

One can equally well use Problem 1.3.F and apply (c). 
(e) Note that the subspace of the Cantor set C consisting of the end- 

points of all intervals removed from I to obtain the Cantor set is homeo- 
morphic to the space of rational numbers. 
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1.4. Various kinds of disconnectedness 

We shall now compare the class of zero-dimensional spaces with three 
other classes of highly disconnected spaces. It will follow from this com- 
parison that none of these three classes satisfies the counterparts of the 
theorems proved for zero-dimensional spaces in Sections 1.2 and 1.3. 
Hence, zero-dimensional spaces form the nicest class of highly disconnected 
spaces. The dimension functions that one could define inductively, in the 
way the function ind is defined, starting at the zero-level with another 
class of highly disconnected spaces instead of the class of zero-dimensional 
spaces, would not lead to a dimension theory as rich and harmonious 
as the theory based on the dimension function ind developed in this chapter. 

1.4.1. Definition. A topological space X is called totally disconnected if 
for every pair x, y of distinct points of X there exists an open-and-closed 
set U c X such that x E U and y E X\U, i.e., if the empty set is a parti- 
tion between any distinct points x, y of the space X. 

Clearly, every zero-dimensional space is totally disconnected. 
Totally disconnected spaces are characterized by the property that 

their quasi-components are one-point sets. Let us recall that quasi-com- 
ponents of a topological space X are defined as the minimal non-empty 
intersections of open-and-closed subsets of X ,  i.e., a non-empty set K c X 
is a quasi-component of the space X if K can be represented as the inter- 
section of open-and-closed sets and for every open-and-closed set U c X 
such that Kn U # 0 we have K c U. The quasi-components of a space X 
constitute a decomposition of X into pairwise disjoint closed subsets. 

1.4.2. Definition. A topological space X is called hereditarily disconnected 
if X does not contain any connected subspace of cardinality larger than 
one. 

Every totally disconnected space is hereditarily disconnected. Indeed, 
if X is a totally disconnected space, then for each subspace M c X which 
contains at least two distinct points x, y the sets M n U  and M\U, where 
U is an open-and-closed subset of X such that x E U and y EX\ U, form 
a decomposition of the space M into two non-empty disjoint open subsets, 
so that the space M is not connected. 

Hereditarily disconnected spaces are characterized by the property 
that their components are one-point sets. Let us recall that components 
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of a topological space X are defined as the maximal non-empty connected 
subsets of X ,  i.e., a non-empty set S c X is a component of the space X 
if S is connected and for every connected set A c X such that S c A we 
have S = A .  The components of a space X constitute a decomposition 
of X into pairwise disjoint closed subsets. 

1.4.3. Definition. A topological space X is called punctiform, or discon- 
tinuous, if X does not contain any continuum of cardinality larger than 
one. 

Clearly, every hereditarily disconnected space is punctiform and every 
compact punctiform space is hereditarily disconnected. As shown in Ex- 
ample 1.4.8 below, there exist connected punctiform spaces of cardinality 
larger than one. 

The reader can easily verify that the above three classes of spaces are 
closed with respect to the subspace operation. 

We shall now show that in the realm of non-empty locally compact 
spaces the three classes under consideration coincide with the class of zero- 
dimensional spaces. 

1.4.4. Lemma. In every compact space quasi-components and components 
coincide. - 

Proof. To begin with, we shall prove that in an arbitrary topological space 
X quasi-components contain the components. Consider a component S 
of the space X .  Let x be a point in S and K the quasi-component of the 
space X which contains the point x; we shall show that S c K. Take an 
open-and-closed set U c X which contains x. Since the sets S n U  and 
S\U are open in S and disjoint and since S n U  # 0, it follows from 
the connectedness of S that S\U = 0, i.e., that S c U. The set K being 
the intersection of all open-and-closed subsets of X which contain x,  we 
have S c K. 

To complete the proof it suffices to show that the quasi-components 
of a compact space are connected. Let us consider the decomposition 
of a quasi-component K of a compact space X into two disjoint closed 
sets A, B and let us assume that A # 0. By the normality of compact 
spaces there exist open sets V ,  W c X such that 

A c V ,  B e  W and V n W = 0 .  

Denote by % a family of open-and-closed subsets of X satisfying n '42 = K. 
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Since 0% c VuW, the family 9 = {U\(VuW): U E  %) of closed 
subsets of X has an empty intersection. It follows from the compactness 
of X that a finite subfamily of 9 also has an empty intersection, i.e., that 
there exists a finite number of sets U, , U,, . .. , uk E Q satisfying 

U = U,nU,n ... nu, c V u  W .  

The set U is open-and-closed. Since 

V ~ U  c V ~ U  = V n ( V v W ) n U  = vnu, 
the set V n U  is also open-and-closed. From the relation 0 # A c VnU 
it follows that K c V n U ,  and so B c K n  W c VnUnW = 0, which 
proves that the quasi-component K is connected. 0 

1.4.5. Theorem. Zero-dimensionality, total disconnectedness, hereditary dis- 
connectedness and punctiformness are equivalent in the realm of non-empty 
locally compact spaces. 

Proof. It suffices to prove that every non-empty locally compact puncti- 
form space is zero-dimensional. Consider a point x E X and a neighbourhood 
V c X of the point x. By the loeal compactness of the space X the point x 
has a neighbourhod Wc Xsuch that the closure w i s  compact. The subspace 
M = V n  W of the space X is compact and punctiform, so that it is here- 
ditarily disconnected. By virtue of Lemma 1.4.4, the component {XI 
of the space M can be represented as the intersection of a family % of open- 
and-closed subsets of M .  It follows from the compactness of M that there 
exists a finite number of sets U,, U,, ..., uk E % such that the intersec- 
tion U = U,nU,n ... n U k  i s  disjoint from the set M\(Vn W ) .  The 
set U is closed in M ,  and thus it is closed in X; on the other hand, the set U 
is open in V n  W, so that U is an open-and-closed subset of X .  As x E U 
t V, the space X is zero-dimensional. 

We shall now describe three subspaces of the plane which exhibit 
the difference between the classes of zero-dimensional, totally disconnected, 
hereditarily disconnected and punctiform spaces. They are all closely 
related to the space Ho described in Example 1.2.15, which is itself a to- 
tally disconnected non zero-dimensional space. 

1.4.6. Example. One readily checks that by assigning to every point {xi} 
of the space Ifo described in Example 1.2.15 the same point {xi} in the 
Cartesian product Q% of KO copies of the space of rational numbers one 
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defines a one-to-one continuous mapping of Ho to Q K o .  Hence, by virtue 
of Theorems 1.3.6 and 1.3.15, there exists a one-to-one continuous mapping 
f: Ho --f C of the space Ho to the Cantor set C.  Since the Cantor set is 
homogeneous (i.e., for every pair x, y of distinct points of C there exists 
a homeomorphism of C onto itself which transforms x to y), one can sup- 
pose that f (xo)  = 0, where xo E Ho is the sequence whose terms are all 
equal to zero. Letting 

one defines a continuous mapping h :  Ho -, Z2. One can prove that h is 
a homeomorphic embedding (see Problem 1.4.B(a)). This implies that the 
subspace X = h(Ho) of the plane is totally disconnected but is not zero- 
dimensional; however, a direct proof of these properties of the space X 
is simpler. 

Fig. 5 

To begin with, let us observe that by letting 

G(Y,,YZ) = Y 1 .  max 1,- for 0 < y1  < 1 and 0 < y2 < I ( 1:Y2) 

one defines a continuous mapping G: Zx [0, 1) --f R which to the point 
h(x)  E X  assigns the pointf(x) E C, so that the restriction g = GIX: X 4 C 
is a one-to-one continuous mapping of the space X to the Cantor set C. 
From the existence of such a mapping it follows that X is a totally dis- 
connected space. Indeed, for every pair x,  y of distinct points of X there 
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exists an open-and-closed set Y c C such that g(x) E Y and g(y)  E C\V; 
the inverse image U = g-'(V) is an open-and-closed subset of X such 
that x E U and y E X\U. 

Now, consider an open-and-closed set U c X such that U c (I x [0, 1 /2)) n 
nX. The inverse image h-I(U) c Ho is an open-and-closed bounded 
subset of Ho and thus, by virtue of the final observation in Example 1.2.15, 
it is empty. Hence, there is no open-and-closed set U c X such that h(xo) 
= (0,O) E U c (Into, 1 /2 ) )nX,  which shows that the space X is not 
zero-dimensional. 0 

The following two examples are: a space Y c I2  which is hereditarily 
disconnected but is not totally disconnected and a space 2 c I z  which 
is punctiform and connected; in both examples we shall use the notation 
introduced in Example 1.4.6. 

1.4.7. Example. We shall show that the subspace of the plane Y = Xu { p } ,  
where p = (0, 1/2), is hereditarily disconnected but is not totally discon- 
nected. 

Consider a connected subspace A of the space Y. As GCp) = 0 E C, 
the image G(A)  is a connected subspace of the Cantor set and thus contains 
at most one point. It follows that A is contained in a fibre of the mapping 
GIY. Since all fibres of GIY are at most of cardinality 2, the set A either is 
empty or consists of exactly one point, and this implies that the space Y 
is totally disconnected. 

Consider now an open-and-closed set U c Y such that p E U. There 
exists a number a E I\C such that ([0, a) x {1 /2) )nY c U. One readily 
sees that the set 

V = ( [0 ,  a) x [0, 1/2))nY\U = ([0, a ) x  [0, 1/2])nY\U 
is open-and-closed in X. The inverse image h-'(V) c H, is an open-and- 
closed bounded subset of Ho and thus is empty. Hence the set V is also 
empty, which implies that h(xo) = (0,O) E U. Thus for the pair x = p ,  
y = h(x,) of distinct points of Y there exists no open-and-closed set U c X 
such that x E U and y E Y\U, i.e., the space Y is not totally disconnected. 0 

1.4.8. Example. We shall show that the subspace of the plane 2 = X u  (q},  
where q = (0, I), is punctiform and connected. 

Consider a continuum A c 2. The difference A\{q} c X is an Fa-set 
in A .  and so A\{q} = U A * ,  where A i  is compact for i = 1 ,2 ,  ... For 

m 

i= 1 
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every i the restriction gi = glA,: Ai -, gi (A, )  c C is a homeomorphism, 
because it is a one-to-one continuous mapping defined on a compact 
space. Since indgi(At) < 0, we have ind A, < 0 for i = 1 ,2 ,  .. . and 
-by virtue of Theorems 1.1.2 and 1.3.1-ind A < ind({q)uUA,) = 0. 
Hence the set A either is empty or consists of exactly one point, and this 
implies that the space 2 is punctiform. 

Consider now an open-and-closed set U c Z such that q E U. One 
readily sees that there exists a number a E (0, 1) such that ( I x  (a, l])nZ 
c U. The inverse image h-'(V) c H o ,  where V = Z\U, is an open-and- 
closed bounded subset of Ho and thus is empty. Hence U = Z, i.e., the 
space Z is connected. 0 

m 

i = l  

In the table on p. 37 the basic properties of countable, zero-dimensional, 
totally disconnected, hereditarily disconnected, and punctiform spaces are 
compared; a plus means that a theorem holds in the corresponding class, 
a minus that it does not hold. Formal statements of the results in the ta- 
ble together with hints how to obtain them can be found in the problems 
below. 

Historical and bibliographic notes 

Totally disconnected spaces were introduced by Sierpidski in [ 19211, 
hereditarily disconnected spaces-by Hausdorff in [1914], and puncti- 
form spaces-by Janiszewski in [1912]. Theorem 1.4.5 was proved (for 
compact metric spaces) by Menger in [1923] and by Urysohn in [1925]. 
The first example of a totally disconnected space which is not zero-dimen- 
sional was given by Sierpiriski in [1921]; Sierpiriski's space is a completely 
metrizable subspace of the plane. The first example of a hereditarily dis- 
connected space which is not totally disconnected was also given by Sier- 
pihki in [1921]; this space is also a completely metrizable subspace of 
the plane. Example 1.4.7 is a simplified version of an example described 
by Roberts in [1956]. The first example of a punctiform space which is 
not hereditarily disconnected was described by Sierpihki in [1920]; this 
space is a connected subspace of the plane. An example of a completely 
metrizable punctiform and connected subspace of the plane was given 
by Mazurkiewicz in [1920]. A simple modification that leads from spaces 
described in Examples 1.4.6-1.4.8 to similar spaces which are, moreover, 
completely metrizable is sketched in Problem 1.4.B. 
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Problems 

1.4.A. (a) Observe that zero-dimensionality, total disconnectedness, 
hereditary disconnectedness and punctiformness are equivalent in the 
realm of regular spaces which can be represented as countable unions 
of compact subspaces. 

(b) Note that zero-dimensionality, total disconnectedness, hereditary 
disconnectedness and punctiformness are equivalent in the realm of sub- 
spaces of the real line. Deduce that there exist totally disconnected spaces 
which are not embeddable in the real line. 

1.4.B. (a) (Roberts [1956]) Prove that the mapping h: Ho -+ I' defined 
in Example 1.4.6 is a homeomorphic embedding. 

Hint. Prove that in Hilbert space H a sequence of points xl, x2, ... , 
where xm = {xy} for m = 1,2, ... , converges to a point x = {xi} if and 
only if the sequence Ixm]I converges to llxll and the sequence xf , x:, ... 
converges to xi for i = 1,2, . . . (cf. Example 1.5.17). 

(b) Give examples of completely metrizable spaces X , ,  Y ,  , Z, c I2 
such that X ,  is totally disconnected but is not zero-dimensional, Y 1  is 
hereditarily disconnected but is not totally disconnected, and Z, is puncti- 
form and connected. 

Hint. Consider the subspace H, of Hilbert space H consisting of the 
points {xi} E H such that xi is irrational for every i and suitably modify 
the constructions in Examples 1.4.6-1.4.8. When proving that X I  is com- 
pletely metrizable, apply Lemma 1.3.12. In the proof of complete metriz- 
ability of Y, and Z, use the fact that every completely metrizable subspace 
of I' is a GA-set (see [GT], Theorem 4.3.24). 

1.4.C. (a) (Knaster and Kuratowski [1921]) Let C be the Cantor set on 
the interval [0, 1]x {0} c R2; denote by Q the set of the end-points of 
all intervals removed from [0, 1]x (0) to obtain the Cantor set and let 
P = C\Q. Join every point c E C to the point 4 = (1/2, 1/2) E R2 by 
a segment L, and denote by F, the set of all points (x, y )  E L,, where y 
is rational if c E Q and y is irrational if c E P. The subspace F = U F, 
of the plane is called the Knaster-Kuratowski fan. 

Prove that the Knaster-Kuratowski fan is connected and punctiform. 
Hint. Let rI , r 2 ,  ... be the sequence of all rational numbers in the 

interval [O, 1/21 and let Pi c R2 be the horizontal line y = r i .  Suppose 

csc  
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that F = (FnA)u(FnB) ,  where the sets A and B are closed in R2, F n A n B  
= 0 and q E A .  Consider the sets Ki = {c EC: A n B n L , n P i  # 0}, 

check that they are closed and that U Ki c P.  Show that B n L ,  = 0 

for every point c E P\U Ki and apply the Baire category theorem to 
prove that F n B = 0. 

(b) (Knaster and Kuratowski [1921]) Prove that the space F\(q) 
is hereditarily disconnected but is not totally disconnected. 

(c) (El. Pol [1978a]) Prove that every completely metrizable space 
X which contains a subspace homeomorphic to F\{q} also contains a 
subspace homeomorphic to the closed unit interval. 

Hint. Apply the Lavrentieff theorem (see [GT], Theorem 4.3.21) to 
reduce the problem to the case where X is a Gd-set in the plane and 

F\{q} c X. Consider the set P n  0 p ( X n P i ) ,  where p is the projec- 

tion from q onto C and Pi is defined in the hint to part (a). 
(d) Observe that modifying the construction of the space F by taking 

all points (x, y )  E L,, where y is irrational if c E Q and y is rational if 
c E P ,  one obtains a zero-dimensional space. 

W 

i =  1 
W 

i= 1 

OD 

i = l  

1.4.D. Let K and D be the spaces discussed in Problem 1.2.E. 
(a) Show that if ind,K = 1, then there exists a point p E D\K such 

that the empty set is not a partition in the space K = K u { p }  between 
z and p .  

Hint. See the hint to Problem 1.2.E(e). 
(b) Prove that the space K' defined in (a) is hereditarily disconnected 

(c) Verify that the space K' is completely metrizable. 
but is not totally disconnected. 

1.4.E. (a) Note that by adjoining a point to a totally disconnected 
space one can obtain a space which is not totally disconnected. Deduce 
that the counterpart of the sum theorem does not hold either for totally 
disconnected spaces or for hereditarily disconnected spaces, even in the 
case where the space is represented as the union of two closed subspaces. 
Show that the counterpart of the sum theorem holds for punctiform 
spaces. 

(b) Check that the Cartesian product of a family of totally disconnected, 
hereditarily disconnected, or punctiform spaces is a space in the same 
class. 
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(c) Note that the counterpart of the compactification theorem does 
not hold for any of the four classes of spaces in the table on p. 37 distinct 
from the class of zero-dimensional spaces. 

1.4.F (Hilgers [1937]). (a) Let Z be a topological space and T a sub- 
space of Z whose cardinality is equal to c. Prove that for every family 9 
of subspaces of the Cartesian product Z x Z such that IS1 < c there exists 
a set H c Z x Z satisfying the following conditions: 
(1) The projection of Z x Z onto the jirst axis maps H in a one-to-one way 

onto the subspace T. 
(2) If H c G for a G E 3, then G contains a set homeomorphic to Z .  

Hint. Let be an arbitrary transformation of T onto 9; define a map- 
ping f of T to Z by letting f ( t )  be a point z E Z  such that ( t ,  z) 
E ( { t }  x Z)\p(t) if such Faints exist, and an arbitrary Foint z E Z other- 
wise. Consider the set H = { ( t , f ( t ) ) :  t E T } ,  i.e., the graph of the map- 

(b) Applying Theorem 1.5.11 and the equality indR" = n (see Theorem 
1.8.2), for every natural number n define a separable metric space X such 
that ind X = n and X can be mapped by a continuous and one-to-one 
mapping onto a zero-dimensional space, Observe that X is totally dis- 
connected and deduce that there exists a totally disconnected separable 
metric space which cannot be embedded in a Euclidean space. 

Hint. Consider the space Z = R", a subspace T c Z homeomorphic 
to the Cantor set, and the family 3 of all GG-sets in the Cartesian product 
R" x R"; then apply (a). 

Remark. The first example of a totally disconnected separable metric 
space of an arbitrary dimension n 2 1 was given by Mazurkiewicz in 
[ 19271 ; Mazurkiewicz's spaces are completely metrizable. Clearly, such 
spaces do not contain any compact subspace of positive dimension. 

ping f. 

1.4.G (R. Pol [1973]). (a) Prove that every separable metric space X which 
for each punctiform separable metric space 'Y contains a subspace homeo- 
morphic to Y contains also a subspace homeomorphic to the Hilbert 
cube. 

Hint. One can assume that X c ZKo.  Consider the space Z = Po, 
a subspace T c Z homeomorphic to the Cantor set, and the family 9 
consisting of all sets of the form f -I(X), where f is a continuous mapping 
defined on a Gd-set in the Cartesian product I K o  x IKo and taking values 
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in Po; then apply Problem 1.4.F(a) and the Lavrentieff theorem (see 
[GT], Theorem 4.3.21). 

(b) D 6 n e  a totally disconnected separable metric space X with the 
property that every completely metsizable separable space which contains 
a subspace homeomorphic to X also contains a subspace homeomorphic 
to the Hilbert cube. 

Hint. Consider the space Z = P o ,  a subspace T c Z homeomorphic 
to the Cantor set and the family 9 of all G6-sets in the Cartesian product 
INoxINo;  then apply Problem 1.4.F(a) and the Lavrentieff theorem (see 
[GT], Theorem 4.3.21). 

1.5. The sum, decomposition, addition, enlargement, separation and Car- 
tesian product theorems 

We begin with some observations on the dimension of subspaces. 
The subspace theorem established in Section 1.1 states that for every sub- 
space M of a regular space X we have indM < indX. In this context it 
is natural to ask whether among the subspaces of a space X such that 
indX = n one can find subspaces of all intermediate dimensions between 0 
and n -  1 .  As shown in the next theorem, the answer is positive and there 
even exist closed subspaces of intermediate dimensions. 

1.5.1. Theorem. l f X  is a regular space and indX = n 2 1,  then for k = 0, 
1, . . . , n - 1 the space X contains a closed subspace M such that ind M = k.  

Proof. It is enough to show that X contains a closed subspace M such 
that indM = n- 1. As indX > n -  1,  there exist a point x E X and a neigh- 
bourhood V c X of the point x such that for every open set U c X satisfy- 
ing the condition x E U c V we have indFr U > n-2. On the other hand, 
as indX < n, there exists an open set U c X satisfying the above condition 
and such that ind Fr U < n - 1. The closed subspace M = Fr U of the space 
X has the required property. 0 

The situation is quite different in spaces of dimension 00. In Example 
1 A.21 we shall describe, applying the continuum hypothesis, a separable 
metric space of dimension 00 whose finite-dimensional subspaces are all 
countable (it turns out that the existence of such a space is equivalent 
to the continuum hypothesis). Let us observe that spaces with the above 
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property are rather peculiar; in particular, no such space is completely 
metrizable, because every uncountable completely metrizable separable 
space contains a subspace homeomorphic to the Cantor set (see [GT], 
Problems 1.7.11 and 4.5.5). There also exist compact metric spaces of di- 
mension co whose finite-dimensional subspaces are all zero-dimensional, 
but examples of such spaces are very complicated. 

We now pass to the sum theorem. 

1.5.2. Lemma. If a separable metric space X can be represented as the union 
of two subspaces Y and Z such that ind Y < n -  1 and indZ < 0, then 
indX < n. 

Proof. Consider a point x E X  and a neighbourhood V c X of the point x. 
By virtue of Theorem 1.2.11, there exist disjoint open sets U ,  W c X 
such that x E U, X\V c W and [X\(UuW)]nZ = 0. Clearly, x E U 
c V ;  as F rU c [X\(UuW)] c X\Z c Y, we have indFrU< n - 1 .  
Hence indX < n. 0 

1.5.3. The sum theorem. r f  a separable metric space X can be represented 
as the union of a sequence F l ,  F,, ... of closed subspaces such that indF, 
< n for i = 1,2,  ..., then indX < n. 

Proof. We shall apply induction with respect to the number n. For n = 0 
the theorem is already proved. Assume that the theorem holds for di- 

mensions less than n and consider a space X = U F,, where Fi is closed 

and indF, < n > 1 for i = 1,2,  ... Applying Theorem 1.1.6, choose 
for i = 1 , 2 ,  ... , a countable base &?, for the space F, such that indFr U 
< n - 1 for every U E gt, where Fr denotes the boundary operator in the 
space F,. By the inductive assumption the subspace Y = U (Fr U :  U 

E (J &?,} of the space X satisfies the inequality indY < n- 1. Now, Prop- 

osition 1.2.13 implies that for i = 1 ,2 ,  ... the subspace 2, = F,\Y of 
the space F, satisfies the inequality indZ, < 0; hence, by the sum theorem 

for dimension 0, the subspace Z = U Zi = X\Y of the space X also 

satisfies the inequality indZ < 0, because it follows from the relation 
Zi = Fi\Y = F i n Z  that all the 2,’s are closed in 2. Thus by virtue 
of Lemma 1.5.2 we have indX < n. 0 

m 

i= 1 

OD 

i= 1 

m 

i =  1 
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As in the case of zero-dimensional spaces, the sum theorem implies 
three corollaries: 

1.5.4. Corollary. If a separable metric space X can be represented as the 
union of a sequence F, ,  F,, ... of subspace9 such that indF, < n and FL 
is an F,-set for i = 1,2,  ..., then indX< n. 0 

1.5.5. Corollary. If a separable metric space X can be represented as the union 
of two subspaces A and B, one of them closed, such that indA < n and 
indB < n, then indX < n. 

1.5.6. Corollary. If by adjoining a finite numbers of points to a separable 
metric space X such that indX < n one obtains a metric space Y, then the 
space Y satisfies the inequality indY < n and is separable. 

Let us observe that the sum theorem plays a key role in the dimension 
theory of separable metric spaces. Indeed, all the remaining results in this 
section follow either from the sum theorem or from one of the decomposi- 
tion theorems which are easy cbnsequences of the sum theorem. 

Applying the sum theorem, one readily shows that the condition in 
Lemma 1.5.2 characterizes separable metric spaces of dimension < n: 

1.5.7. The first decomposition theorem. A separable metric space X satisfies 
the inequality indX < n 2 0 if and only i f X  can be represented as the union 
of two subspaces Y and Z such that ind Y < n - 1 and indZ < 0. 

Proof. Consider a separable metric space X such that indX < n 2 0. 
By virtue of Theorem 1.1.6, the space X has a countable base B such that 
ind Fr U < n - 1 for every U E B. It follows from the sum theorem that 
the subspace Y = U{Fr U: U E B ]  has dimension < n - 1 and from 
Proposition 1.2.13 that the subspace 2 = X\Y has dimension < 0. To 
complete the proof it suffices to apply Lemma 1.5.2. Cl 

From the first decomposition theorem we obtain by an easy induo 
tion 

1.5.8. The second decomposition theorem. A separable metric space X 
satisfies the inequality indX < n > 0 if and only if X can be represented 
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as the union of n + 1 subspaces Z, , Z,, . . . , Z,,, such that indZ, < 0 for 
i =  1 , 2  ,..., n+l.  0 

Let us at once explain that, as will be shown in Section 1.8 (see Theorem 
1.8.20), the Hilbert cube cannot be represented as a countable union of 
zero-dimensional subspaces, or-equivalently-of finite-dimensional sub- 
spaces. Hence, the second decomposition theorem does not extend to 
separable metric spaces of dimension co. 

1.5.9. Examples. For every point x in the real line R or in the circle S' 
and each neighbourhood V of the point x there exists a neighbourhood U 
of x such that U c V and the boundary F r U  is a two-point set. Hence, 
indR < 1 and indS' < 1. Since indI > 0 by virtue of Example 1.2.5, 
the subspace theorem implies that indR = indS' = indI = 1.  

For every point x in Euclidean n-space R" or in the n-sphere S" and 
each neighbourhood V of the point x there exists a neighbourhood U of 
x such that U c V and the boundary FrU is homeomorphic to S"-'. 
Hence, as shown by an inductive argument, indR" < n, indS" < n and 
indP < n for every natural number n. 

The small inductive dimension of R", S" and I" is indeed equal to n, 
but the proof of this fact is much more difficult than the above evaluations; 
it will be given in Section 1.8. The equality indR" = n is of utmost impor- 
tance for dimension theory. In a sense, it justifies the definition of the di- 
mension function by showing that this definition yields a notion conform- 
ing to geometric intuition. The fact that indR" = n is sometimes called 
the fundamental theorem of dimension theory. 

The decomposition of Rn into n + 1 zero-dimensional subspaces follow- 
ing from the second decomposition theorem can be defined-according 
to Example 1.3.8-by the equality 

R" = Q~uQ:u ... u Q ~ .  

The last formula yields another proof of the inequality indR" < n. 
For every pair k, n of integers satisfying 0 < k < n 2 1 define 

and I'G = QEuQTu ... uQ; Lz = Q;UQ{+~U ... uQ2; 
thus K is the subspace of Euclidean n-space R" consisting of all points 
which have at most k rational coordinates and Li is the subspace of R" 
consisting of all points which have at least k rational coordinates. From 
the second decomposition theorem it follows that indN; < k and indLi 
< n-k; we shall show in Section 1.8, applying the equality indR" = n, 
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that indNi = k and indLt = n-k.  The space N;"+l c R2"+I will play 
a particularly important role in the sequel: it turns out to be a universal 
space for the class of all separable metric spaces of dimension < n (see 
Theorem 1.11.5). 0 

We shall now state further consequences of the sum and decomposition 
theorems. Let us begin with the addition theorem, which follows im- 
mediately from the second decomposition theorem. 

1.5.10. The addition theorem. For every pair X ,  Y of separable subspaces 
of a metric space we have 

ind(XuY) < indX+ind Y+ 1. 0 

1.5.11. The enlargement theorem. For every separable subspace M of an 
arbitrary metric space X satiffyins the inequality indM < n there exists 
a Gd-set M* in X such that M c M* and indM* < n. 

Proof. By the second decomposition theorem M = ZluZ,u ... uZ,,,, , 
where indZ, < 0 for i = 1 ,2 ,  ..;. , n+ 1. Applying Theorem 1.2.14, enlarge 
each Z, to a Gd-set Zy in X such that indZT < 0. The union M* = Z: u 
u Z f u  ... uZ,*,, has the required properties. 0 

1.5.12. The first separation theorem. If X iJ a separable metric space such 
that indX < n 3 0, then for  every pair A, B of disjoint closed subsets of X 
there exists a partition L between A and B such that indL 4 n- 1. 

Proof. By the first decomposition theorem X = YuZ, where ind Y < n - 1 
and indZ < 0. Applying Theorem 1.2.1 1, we obtain a partition L between 
A and B such that LnZ = 0. As L c X\Z c Y, we have indL < n-  1 
by the subspace theorem. 

In a similar way, applying the first decomposition theorem to the sub- 
space M, we obtain 

1.5.13. The second separation theorem. If X is an arbitrary metric space 
and M is a separable subspace of X such that indM < n 3 0, then for  every 
pair A, B of disjoint closed subsets of X there exists a partition L between 
A and B such that ind(LnM) < n-  1. 17 
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Clearly, the first separation theorem is a special case of the second 
separation theorem. On the other hand, the second separation theorem 
easily follows (cf. the proof of Theorem 1.2.1 1) from the first separation 
theorem and Lemma 1.2.9, which is an elementary topological fact; hence, 
both separation theorems are in a sense equivalent. 

The second separation theorem yields a characterization of the dimension 
of subspaces in terms of neighbourhoods in the whole space, which general- 
izes Proposition 1.2.12: 

1.5.14. Proposition. A separable subspace M of an arbitrary metric space X 
Satisjies the inequality indM < n 2 0 if and only if for every point x E M 
(or-equivalently-for every point x E X) and each neighbourhood V of the 
point x in the space X there exists an open set U c X such that x E U c V 
and ind(MnFr U )  < n - 1. 

Proposition 1.5.14 and Lemma 1.1.5 imply the following generalization 
of Proposition 1.2.13. 

1.5.15. Proposition. A subspace M of a separable metric space X satisfies 
the inequality indM < It > 0 if and only i f  X has a countable base 99 such 
that ind(MnFr U) < n-  1 for every U E 99. 0 

The general Cartesian product theorem reads as follows: 

1.5.16. The Cartesian product theorem. For every pair X ,  Y of separable 
metric spaces of which at least one is non-empty we have 

ind(Xx Y )  < indX+indY. 
Proof. The theorem is obvious if one of the spaces has dimemion co, 
and so we can suppose that k(X, Y )  = indX+indY is finite. We shall 
apply induction with respect to that number. If k(X, Y )  = - 1, then either 
X = 0 or Y = 0, and our inequality holds. Assume that the inequality 
is proved for every pair of separable metric spaces the sum of the dimensions 
of which is less than k 2 0 and consider separable metric spaccs X nad Y 
such that indX = n 2 0, indY = m 2 0 andn+m = k. Let (x, y )  be a point 
of Xx  Y and W c Xx Y a neighbourhood of (x, y). There exist neigh- 
bourhoods U', U c X of the point x and V ,  V' c Y of the point y such 
that U' x V' c W, U c U', V c V', ind Fr U < n - 1 and ind Fr V < m - I .  
Since 

Fr(UxV) c (XxFrV)u(FrUxY), 
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by virtue of the inductive assumption and the sum theorem we have 
indFr(Ux V )  < k -  1 .  Hence ind(Xx Y )  < k and the proof is comple- 
ted. 0 

The inequality in the Cartesian product theorem cannot be replaced 
by an equality. In the next example we shall describe a separable metric 
space X such that indX = 1, and yet ind(XxX) = 1, because X is homeo- 
morphic to the square X x X  (cf. the remark to Problem 1.5.C). There exist 
even compact metrizable spaces the dimension of the Cartesian product 
of which is less than the sum of their dimensions, but they are more com- 
plicated, and in checking their properties one has to apply the methods 
of algebraic topology; let us note that such spaces are necessarily of di- 
mension 2 2, because for every pair X ,  Y of compact metrizable spaces 
X, Y such that ind Y = 1 we have ind(Xx Y )  = indX+ 1 = indX+ind Y 
(see Problem 1.9.E(b)). 

1.5.17. Example. We shall show that the space Ho defined in Example 
1.2.15 has the required properties. 

To establish the equality indH, = 1 it is enough to prove that indH, 
< 1. Since every point x E Ho can be transformed by a suitable transla- 
tion to the point xo E H,, it suffices to show that for every natural number 
n the boundary F,, = {x E H,: llxll = l/n} of the l/n-ball U, = {x E H,: 
11x1 1 < 1 In} about xo is zero-dimensional. This, however, is a consequence 
of the final paragraph of Example 1.3.8 and the fact that the mapping h :  
F,, -+ h(F,,) c QK0 defined by letting h({x,}) = {xi} is a homeomorphism, 
which, in its turn, is implied by the fact that both in QK0 and in F,, a sequence 
x1 = {xi’}, x2 = {xf}, ... converges to x = {xi} if and only if the sequence 
xi  , xf, ... converges to xi foi i = 1 , 2, ... The last equivalence is well 
known to hold in the Cartesian product Q K o ;  it does not generally hold 
in Hilbert space H, but it does hold in the subspace F,,, because all points 
of F,, have the same norm (cf. the hint to Problem 1.4.B(a)). 

Now, to show that Ho is homeomorphic to the square Ho x Ho it suffices 
to note that by assigning to a point (x, y )  = ({xi}, {y,})  E Ho x Ho the 
point (xl, y ,  , x2 , y ,  , . . .) E H, one defines a homeomorphism of H, x Ho 
onto H,. 

To conclude, let us observe that the Cartesian products H i ,  H:, ... 
are all homeomorphic to H,, and thus are one-dimensional spaces. 
Since the countable Cartesian product P o  is homeomorphic to the limit 
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of an inverse sequence consisting of finite Cartesian products X i ,  and 
since the limit of an inverse sequence consisting of separable metric spaces 
of dimension < n is itself of dimension < n (see Theorem 1.13.4), the 
countable Cartesian product Hp is also one-dimensional. Let us add that 
every infinite Cartesian product of compact metric spaces of finite positive 
dimension is infinite-dimensional. Indeed, every compact metric space of 
finite dimension > 0 contains a compact subspace of dimension one, 
and-as noted above-multiplying by such spaces raises the dimension 
by one. 0 

Historical and bibliographic notes 

An example of a compact metric space of dimension co whose finite- 
dimensional subspaces are all zero-dimensional was announced by Walsh 
in 119781. In 119651 Henderson constructed a compact metric space of 
dimension co whose finite-dimensional closed subspaces are all zero- 
dimensional (simpler, but still very difficult examples of such spaces 
were given by Henderson in [1967] and by Zarelua in [1972]). 
Theorem 1.5.3 was proved for compact metric spaces by Menger in [1924] 
and by Urysohn in [1926] (announcement in [1922]) and was extended 
to separable metric spaces by Tumarkin in [I9261 (announcement in [1925]) 
and by Hurewicz [1927] (the latter gave the simple proof reproduced 
here). Theorems 1.5.7, 1.5.8 and 1.5.10 were established for compact 
metric spaces by Urysohn in [1926] (announcement in [1922]) and were 
extended to separable metric spaces by Tumarkin and Hurewicz in the 
above quoted papers. Theorem 1.5.11 was proved by Tumarkin in [1926] 
(announcement in [ 19251). As the reader will see in the next section, Theorem 
1.5.12 states, in substance, that for every separable metric space X we 
have the equality indX = IndX. For compact metric spaces this equality 
was announced by Brouwer in [1924] while he was discussing relationships 
between his Dimensionsgrad and the small inductive dimension ind (Brou- 
wer commented that the equality was also known to Urysohn); the proof 
was given by Menger in [1924] and by Urysohn in [1926]. For separable 
metric spaces, the equality of ind and Ind was established by Tumarkin 
in [1926] (announcement in [1925]) and by Hurewicz in [1927].Theorem 
1.5.13 was proved by Menger in [I9241 for compact metric spaces, and 
extended by Hurewicz in [1927] to separable metric spaces. Theorem 1.5.16 
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was obtained by Menger in [1928]. Example 1.5.17 was described by Erdos 
in [1940]; let us add that Anderson and Keisler described in [1967] a space 
K(n) c R“, where n = 2, 3, ..., such that indK(n) = ind[K(n)]xo = n-I. 

The first example of two-dimensional compact metric spaces X and Y 
such that the Cartesian product X x Y is three-dimensional was given by 
Pontrjagin in [1930]; examples of such spaces can be found in Kodama 
[ 19701. No “geometric” characterization of compact metric spaces satisfy- 
ing the equality ind(Xx Y) = indX+indY is known; in particular, it is an 
open question if this equality holds for all absolute neighbourhood retracts 
(as shown by Borsuk in [1936], it holds if X and Yare absolute neighbour- 
hood retracts satisfying condition (A)) .  The question is connected with 
the problem of delineating the class of spaces in which the small inductive 
dimension ind coincides with the cohomological dimension dimz, with 
respect to the group Z, of integers modulo p (cf. the final part of Section 
1.9), because for every pair X ,  Y of locally compact spaces and every prime 
number p we have dim,,(Xx Y )  = dim,$+ dimz, Y. 

Problems 

1.5.A (de Groot and Nagata [1969]; announcement Hurewicz [ 19281). 
Prove that if a completely metrizable separable space X of dimension 00 

can be represented as the union of countably many finite-dimensional 
subspaces, then for n = 0, 1 , 2 ,  ... the space X contains a closed subspace 
M such that indM = n. 

a, 

Hint. Let X = U Z, ,  where indZl = 0. Assuming that X does not 

contain any closed subspace of dimension n and applying Theorem 1.5.1, 
define a point whose all sufficiently small neighbourhoods have infinite- 
dimensional boundaries; consider such a boundary Fl satisfying 6(FJ < 1 
and F,nZ1 = 0. Iterating this procedure obtain a contradiction to the 
Cantor theorem. 

i= 1 

1.5.B. (a) Observe that if a separable metric space X can be represented 
as the union of a family (FJSES of closed subspaces such that every point 
x E X  has a neighbourhood which meets at most countably many sets 
Fs and indF, < n for every s E S, then indX < n. 
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(b) Prove that if a separable metric space X can be represented as the 
union of a sequence F,, Fl ,  F,, ... of closed subspaces such that indFi 
< n for i = 1 , 2 ,  ... , then ind,X < n for every point x E Fo such that 
ind,F, < n. 

1.5.C. Let X be a separable metric space such that indX = n > 1 ; 
the set {x EX: ind,X = n >  is called the dimensional kernel of the space X. 

(a) (Menger [1924], Urysohn [1926]) Check that the dimensional 
kernel is an F,-set. 

(b) (Menger [1926]) Show that the dimensional kernel of a separable 
metric space X such that indX = n > 1 has dimension 2 n- 1. 

Hint. Represent the complement of the kernel as the union of two 
subspaces Y and Z such that indY < n-2, indZ < 0 and Y is an F,-set 
in X. 

(c) (Menger [1926]) Prove that the dimensional kernel of a compact 
metric space X such that indX = n 3 I has dimension n at each point 
(cf. Theorem 1.9.8). 

Hint. Suppose that for a point x of the dimensional kernel M the ine- 
quality ind,M < n- 1 holds, and for every positive number E define a 
neighbourhood U of the point x in the space X such that 6 ( U )  < E and 
indFrU < n-2. To that end take a neighbourhood U, of the point x in 
the space X such that 6(U,) < ~ / 2  and ind(MnFr U,) < n-2. Then enlarge 
MnFr  U, to an (n-2)-dimensional Gb-set M* in X.  Let U = U,, if Fr Uo 
c M*, and if FrUo\M* # 0, define a countable family { Ui>zl  of o.pen 
subsets of X such that 

6(U,) < ~ / 2 ,  indFrU, 6 n-2, U,n(FrU,\M*) # 0 
for i = 1,2 ,  ..., and 

~ 

m m m 
FrU,\M* c U U ,  c UUi c F r U , u U ~ , ,  

i s 1  i= l  i= 1 

m 00 00 

and let U = U U i ;  note that FrUc(FrUo\UUi)uUFrU, .  
i= 1 i= 1 i-: 1 

Remark. A separable metric space X such that indX = n > 1 and the 
dimensional kernel of X has dimension n- 1 is called a weakly n-dimen- 
sional space. Clearly, a weakly n-dimensional space contains no compact 
subspace of dimension n. The space K described in Problem 1.2.E is weakly 
one-dimensional; the first example of such a space was given by Sierpihski 
in [1921]. First examples of weakly n-dimensional spaces for n = 2, 3,  ... 
were given by Mazurkiewicz in [1929]; Mazurkiewicz’s spaces are com- 
pletely metrizable. A simpler construction of weakly n-dimensional spaces 
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for n = 1 , 2, . . . was described by Tomaszewski in [1979], where it is also 
shown that if X is a weakly n-dimensional space and Y is a weakly m-di- 
mensional space, then ind(X x Y )  < n + m - 1 = indX+ ind Y - 1. 

1.5.D. Prove that a subspace M of a metric spaceXsatisfies the inequality 
indM < n 2 0 if and only if for every point x E M and each neighbour- 
hood V of the point x in the space X there exists an open set U c X such 
that x E U c V and ind(MnFrU) < n-1 (cf. Proposition 1.5.14 and 
Problem 4.1.C). 
Hint. Apply Lemma 1.2.9. 

1.5.E (Menger [1928]). (a) Show that if ind,X < 0 and ind,Y < 0, 
then ind,,Y,(Xx Y )  < 0. 

(b) Applying the equality i n d P  = 2, give an example of two subspaces 
X and Y of the real line such that for some points x E X  and y E Y we have 
ind,X = 0 and ind,Y = 1, and yet ind(,,,,(Xx Y) = 2. 

1.5.F. Give an example of a completely metrizable separable space X 
such that indX = 1 and X is homeomorphic to the square XxX. 

1.6. Definitions of the large inductive dimension and the covering dimension. 
Metric dimension 

The first separation theorem, established in the preceding section, 
suggests a modification in the definition of the small inductive dimension 
consisting in replacing the point x by a closed set A .  In this way we are 
led to the potion of the large inductive dimension Ind, defined for all 
normal spaces. Both dimensions coincide in the realm of separable metric 
spaces. They diverge, however, in the class of metric spaces and also in 
the class of compact spaces; let us make clear at once that examples in 
point are very difficult and will not be discussed in this book. The theory 
of the dimension function Ind will be developed in Chapter 2, and in Chap- 
ter 4 it will be shown that in the realm of all metric spaces this theory 
is quite similar to the theory of the dimension function ind in separable 
metric spaces. In the present chapter, the large inductive dimension Ind, 
just as the covering dimension dim discussed later in this section, will 
play an auxiliary role: introducing these dimension functions leads to a sim- 
plification of the theory. 
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We pass to the formal definition of the dimension Ind. 

1.6.1. Definition. To every normal space X one assigns the large inductive 
dimension of X ,  denoted by IndX, which is an integer larger than or equal 
to -1 or the “infinite number a”; the definition of the dimension func- 
tion Ind consists in the following conditions : 

(Bcl) IndX = - 1 if and only if X = 0; 
(Bc2) IndX < n, where n = 0, 1, ..., if for every closed set A c X and 

each open set V c X which contains the set A there exists an 
open set U t X such that 

A c U c  V and IndFrU< n-1;  

(BC3) IndX = n if IndX < n and IndX > n- 1 ; 
(Bc4) IndX = co if IndX > n for n = -1,O, 1, ... 

The large inductive dimension Ind is also called the Brouwer-C‘ech 
dimension. 

Applying induction with respect to IndX, one can easily verify that 
whenever normal spaces X and Y are homeomorphic, then IndX = IndY, 
i.e., the large inductive dimension is a topological invariant. 

Modifying slightly the proof of Proposition 2.1.4, one obtains 

1.6.2. Proposition. A normal space X satisfies the inequality IndX < n > 0 
if and only if for every pair A ,  B of disjoint closed subsets of X there exists 
a partition L between A and B such that IndL < n- 1. 0 

Applying induction with respect to IndX, one can easily prove the 
following theorem, which justifies the names of the small a;d the large 
inductive dimensions. 

1.6.3. Theorem. For every normal space X we have indX 4 IndX. 0 

Both dimensions coincide in the realm of separable metric spaces. 

1.6.4. Theorem. For every separable metric space X we have ind X = Ind X .  

Proof. If suffices to show that IndXG indX; clearly, one can suppose 
that indX < co. We shall apply induction with respect to indX. The in- 
equality holds if indX = 1. Assume that the inequality is proved for all 
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separable metric spaces of small inductive dimension less than n 2 0 and 
consider a separable metric space X such that indX = n. Let A ,  3 be a pair 
of disjoint closed subsets of X. By virtue of the first'separation theorem, 
there exists a partition L between A and B such that indL < n- 1. It 
follows from the inductive assumption that IndL < n - 1, so that IndX 
< n by Proposition 1.6.2. Hence IndX < indX and the proof is com- 
pleted. 0 

Using the dimension function Ind one can reformulate Theorem 1.2.6 
in the following form (cf. Remark 1.2.7): 

1.6.5. Theorem. For every Lindelof space X the conditions indX = 0 and 
IndX = 0 are equivalent. 0 

Besides the inductive dimensions ind and Ind, in dimension theory 
one studies another dimension function, namely the covering dimension 
dim defined for all normal spaces. In the following section we shall prove 
that the dimensions ind and dim coincide in the realm of separable metric 
spaces. Later on the reader will see that they diverge in the class of metric 
spaces and also in the class of 'compact spaces (see Remark 4.1.6 and 
Example 3.1.31). On the other hand, the dimensions Ind and dim coincide 
in the realm of all metric spaces (see Theorem 4.1.3) and diverge in the 
class of compact spaces (see Example 3.1.31). The reason why we intro- 
duce the covering dimension now is that this notion comes out in a natural 
way in proofs of the compactification, embedding and universal space 
theorems. 

Let us sum up. There are three ways of defining the dimension of sepa- 
rable metric spaces. They are all equivalent and equally natural, but they 
are based on different geometric properties of spaces. Outside the class 
of separable metric spaces the dimensions ind, Ind, and dim diverge and 
three different dimension theories arise, all poorer than the dimension 
theory of separable metric spaces. The dimensions Ind and dim lead to 
much more interesting results than the dimension ind; as a matter of fact, 
the latter is practically of no importance outside the class of separable 
metric spaces. Finally, in the dimension theory of separable metric spaces 
some theorems depend-roughly speaking-on the dimension ind, and other 
ones depend on the dimension dim; so far we have discussed theorems 
of the first group, in the subsequent sections we shall discuss those of the 
second group. 
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In the definition of the covering dimension the notion of the order 
of a family of sets will be applied. 

1.6.6. Definition. Let X be a set and d a family of subsets of X.  By the 
order of the family d we mean the largest integer n such that the family d 
contains n+ 1 sets with a non-empty intersection; if no such integer exists, 
we say that the family d has order co. The order of a family d is denoted 
by o r d d .  

Thus, if the order of a family d = {As)sos equals n, then for each 
n+2 distinct indexes sl, s 2 ,  ..., s , + ~  E S we have A,,nAS2n ... nASn+2 = 0. 
In particular, a family of order - 1 consists of the empty set alone, and 
a family of order 0 consists of pairwise disjoint sets which are not all 
empty. 

Let us recall that a cover 9 is a refinement of another cover d of the 
same space, in other words .98 refines d, if for every B E 98 there exists an 
A ~d such that B c A .  Clearly, every subcover do of d is a refine- 
ment of d. 

1.6.7. Definition. To every normal space X one assigns the covering di- 
mension of X ,  denoted by dimX, which is an integer larger that or equal 
to - 1  or the “infinite number m”; the definition of the dimension func- 
tion dim consists in the following conditions: 

- 

(cL1) dimX < n, where n = - 1, 0, 1, ... , if every finite open cover of 

(cL2) dimX = n if dimX < n and dimX > n-  1; 
( c L 3 ) d i m X = c o i f d i m X > n f o r n =  - l , O , l , . . .  

the space X has a finite open rejinement of order < n ;  

The covering dimension dim is also called the cech-lebesgue dimen- 
sion. 

One readily sees that whenever normal spaces X and Y are homeo- 
morphic, then dimX = dimY, i.e., the covering dimension is a topological 
invariant. Clearly, dimX = - 1 if and only if X = 0. 

The next proposition contains two useful characterizations of the cover- 
ing dimension; in the second one the notion of a shrinking is used. 

1.6.8. Definition. By a shrinking of the cover (As)ses  of a topological 
space X we mean any cover {BS)SES of the space X such that B, c A ,  for 
every s E S.  A shrinking is open (closed) if all its members are open 
(closed) subsets of the space X.  
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Clearly, every shrinking 29 of a cover d is a refinement of d and 
satisfies the inequality ord 93 < ord d. 

1.6.9. Proposition. For every normal space X the following conditions are 
equivalent : 
(a) The space X satisfies the inequality dimX < n. 
(b) Every finite open cover of the space X has an open refinement of order 

(c) Every Jinite open cover of the space X has an open shrinking of order 
< n. 

< n. 

Proof. The implications (a) * (b) and (c) * (a) are obvious. Consider 
a normal space X which satisfies (b). Let { U , } f = ,  be a finite open cover 
of the space X and V an open refinement of this cover such that o rdV 
< n. For every V E V choose an i(v> < k such that V c U,,,, and define 
V, = U {V: i(v> = i}. One readily verifies that {V,}:=, is a shrinking 
of { U , } f = ,  and has order < n, so that (b) * (c). 0 

We shall now show that when checking the inequality dimX < n it 
suffices to consider (n + 2)-element covers. 

1.6.10. Theorem. A normal space X satisjes the inequality dimX < n if 
and only if every (n+2)-element open cover {U,};=+: of the space X has 

n+2 

f a 1  
an open shrinking { W,>;L=+,' of order < n, i.e., such that Wf = 0. 

Proof. It suffices to show that every normal space X such that dimX > n 
has an (n+2)-element open cover {U,}:2: with the property that each 

n+2 
open shrinking {W,}y=+: of {Ui};2; satisfies the condition n Wf # 0. 

i= 1 

Since dimX > n, by virtue of Proposition 1.6.9 there exists an open 
cover Y = {V,}:=, of the space X which has no open shrinking of order 
< n. Moreover, one can assume-replacing, if necessary, V by a suitable 
shrinking-that if Y' = {V,l}:=, is an open shrinking of { V i } : = l ,  then 

(1) 

where il , i2, ... , i, is a sequence of natural numbers less than or equal 
to k. Indeed, if Y has an open shrinking V' which does not satisfy (I), 
one replaces Y by V' and one continues this procedure until an open 

V;%nVi2n ... nVi,,, # 0 whenever Vi,nVi2n ... nV,, # 0, 
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cover with the required property is obtained; as the number of inter- 
sections in (1) is finite, the process will come to an end after finitely many 
steps. Since o r d Y  > n, rearranging if need be the members of “Y-, we have 

n + 2  

We shall show that the (n+2)-element open cover {U,>S=+: of the space 

X ,  where U, = V, for i < n+ 1 and Un+, = U V,, has the required 

property. Consider an open shrinking {Wi};2: of {U,}YL;. The cover 

k 

i = n + 2  

{Wi ,  W2, ..-> Wnil, Wn+ZnVniZ> Wn+znVni3, ...> Wni2nVkI 

of the space X is an open shrinking of Y y  so that by (1) and (2) we have 

Let us note that the last theorem immediately yields 

1.6.11. Theorem. For every normal space X the conditions IndX = 0 and 
dimX = 0 are equivalent. 0 

In the realm of compact metric spaces, the covering dimension can be 
characterized in terms of a metric, viz., by the condition that the space 
has finite covers of order 6 n by open sets of arbitrarily small diameter. 
Let us recall that the mesh of a family d of subsets of a metric space X ,  
denoted by meshd,  is defined as the least upper bound of the diameters 
of all members of d, i.e., 

meshd  = sup(G(A): A ~ d } ;  

the mesh is either a non-negative real number or the “infinite number” 00. 

1.6.12. Theorem. For every compact metric space X the following condi- 
tions are equivalent : 
(a) The space X satisfies the inequality dimX < n. 
(b) For every metric Q on the space X and for  every positive number E there 

exists a j n i t e  open cover % of the space X such that meshe < E and 
ordQ < n. 

(c) There exists a metric Q on the space X with the property that for every 
positive number E there exists a finite open cover 42 of the space X such 
that mesh% < E and o r d a  < n. 
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Proof. Let X be a compact metric space satisfying indX < n;  consider 
a metric e on the space X and a positive number E.  By the compactness 
of X,  the open cover { B ( x ,  ~ / 3 ) } ~ ~ ~  has a finite open subcover; by apply- 
ing (cL1) to this subcover we obtain a finite open cover % such that mesh% 
< E and ord% < n. Hence (a) (b). 

(c) being obvious, to conclude the proof it 
suffices to show that (c) * (a). Let p be a metric on the space X which 
has the property stated in (c). Consider a finite open cover { U,}f= of the 
space X and denote by E a Lebesgue number for the cover { U,}f==, , i.e., 
a positive number such that every subset of X which has diameter less 
than E is contained in one of the sets U,. The cover % in condition (c) 
is a refinement of (U,>:= 

The implication (b) 

so that dimX < n. 

The attempts to extend the last theorem to separable metric spaces 
led to the notion of the metric dimension, with a discussion of which we 
shall conclude this section. Before that, let us briefly comment upon condi- 
tions (b) and (c) in separable metric spaces. To begin with, observe that if for 
a metric e on a space X and for every positive number E there exists a finite 
cover of the space X with mesh-less than E, then the metric e is totally 
bounded. Hence, when passing ‘to separable metric spaces, we have to 
replace condition (b) by the following condition: 
(b‘) For every totally bounded metric e on the space X and for every positive 

number E there exists a finite open cover 42 of the space X such that 
mesh% < E and ord42 < n. 

Now, one proves that conditions (a) and (b’) are equivalent for every 
separable metric space X (see Problem 1.6.B), whereas conditions (a) 
and (c) are generally not equivalent for such spaces (see Example 1.10.23). 

To every metric space ( X ,  e) one assigns the metric dimension of (A’, p), 
denoted by pdim(X, e), which is an integer larger than or equal to -1 
or the “infinite number” co; the definition follows the pattern of the de- 
finition of the covering dimension dim except that condition (cL1) is re- 
placed by the condition that for every positive number E there exists an 
open cover 42 of the space X such that mesh42 < E and ord% < n. Clearly, 
if ( X ,  e) is a compact space, then ,udim(X, e) = dimX. 

From the discussion in the penultimate paragraph it follows that in 
the realm of separable metric spaces the metric dimension is not a topological 
invariant; in general, the number ,udim(X, e) depends upon the metric @ 

on the space X. Nevertheless, a theory of the metric dimension pdim 
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can be developed, which shows a resemblance to the theory of the covering 
dimension dim. Let us observe that-as the reader can readily verify-if 
the metrics e and o on a space X are uniformly equivalent, i.e., the identity 
mapping of ( X ,  e) to ( X ,  o) and also the identity mapping of ( X ,  a) to 
( X ,  e) are uniformly continuous, then pdim(X, p) = pdim(X, 0); this 
means that the metric dimension is a uniform invariant. 

Let us also note that in the definition of the metric dimension one has 
to consider an arbitrary open cover a, because the restriction to finite 
open covers would imply the restriction of the definition to totally bounded 
spaces. However, in the case where ( X ,  e) is a totally bounded metric 
space, the restriction to finite open covers yields an equivalent definition 
(see Pioblem 1.6.C). 

From Problem 1.7.E below it follows that for every separable metric 
space ( X ,  e) we have pdim(X, e) < dimX; by virtue of an important 
characterization of the covering dimension, to be established in Chapter 3 
(see Theorem 3.2.1), this inequality extends to all metric spaces. On the 
other hand, for every metric space ( X ,  e) we have dimX < 2pdim(X, e); 
a proof is sketched out in the hint to Problem 1.6.D. 

We shall return briefly to the metric dimension in Section 1.10, where 
a characterization of this dimension function in terms of mappings to poly- 
hedra will be given (see Problem 1.lO.L). 

Historical and bibliographic notes 

As we have already observed in the notes to Section 1.1, the notion 
of the large inductive dimension Ind is related to Brouwer's notion of 
Dimensionsgrad. A formal definition of the dimension function Ind in the 
class of normal spaces was first given by cech in [1931], which was a short 
announcement of results in his paper [1932] devoted to a study of the 
large inductive dimension. Theorem 1.6.4 is a restatement of Theorem 
1.5.12, its history is described in the notes to Section 1.5. The covering 
dimension dim was formally introduced and discussed in cech's paper 
[1933]; it is re.lated to a property of covers of the n-cube I" discovered 
by Lebesgue in [1911] (see the notes to Section 1.1). Theorem 1.6.10 was 
proved by Hemmingsen in [1946], and Theorem 1.6.11 by Vedenissoff 
in [1939]. 

The notion of the metric dimension was introduced by Alexandroff 
around 1930. As a definition he used the characterization given here in 
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Problem l.lO.L, which is connected with his famous theorem on &-trans- 
lations to polyhedra (see Theorem 1.10.19). Alexandroff's question whether 
the metric dimension coincides with the covering dimension in the realm 
of separable metric spaces was solved in the negative by Sitnikov in [1953] 
(see Example 1.10.23). This last paper called the topologists' attention 
back to the notion of the metric dimension. The basic properties of the 
dimension pdim were established by Smirnov in [1956] and by Egorov 
in [1959]. Besides the notion of the metric dimension discussed in this 
section, which is a natural geometric notion with a sound intuitive back- 
ground, a few other metric dimension functions have recently been studied; 
they are all obtained by replacing topological conditions by the correspond- 
ing metrical ones in various characterizations of the dimension dim. A dis- 
cussion of this topic can be found in Nagami's book [1970]. 

Problems 

1.6.A. Give a direct proof of Theorem 1.6.11. 

1.6.B (Hurewicz [1930]). Prove that a separable metric space X satisfies 
the inequality dimX < n if and only if for every totally bounded metric e 
on the space X and for every positive number E there exists a finite open 
cover % of the space X such that mesh% 2 E and ord% < n. 

Hint. For a finite open cover { U,}t of the space X define a metric e 
on the space X with the property that every subset of X which has diameter 
less than 1 is contained in one of the sets Ui. To that end define continuous 
functionsf, , f i  . . . , f k  from X to I such that f,(X\ U,) c (0) for i = 1 , 2 ,  . . . 

... k and fi-'(l) = X; observe that by adding to the original distance 

of x and y the sum if i(x)-f ,(y)l  one obtains a metric on the space X .  

1.6.C (Egorov [1959]). Prove that a totally bounded metric space ( X ,  4) 
satisfies the inequality pdim(X, e) < n if and only if for every positive 
number E there exists a finite open cover % of the space X such that mesh@ 
< E and ord% < n. 

Hint. Consider a finite subset {x', x 2 ,  ... , x k }  of the space X with the 
property that for every point x E X  there exists an i < k such that e ( x ,  x i )  
< el4 and observe that every subset of X which has diameter less than ~ / 4  
is contained in a member of the cover ( B ( x , ,  &/2)}:= . 

k 

i=  1 
k 

i= 1 
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1.6.D (Katttov [1958]). Prove that for every metric space (X, e) we have 
dimX < 2pdim(X, e). 

Hint. For i = 1 , 2, ... choose an open cover $2, of the space X such 
that mesh%!, < 1/3' and orda, < n = pdim(X, e). Consider a finite 
open cover (Uj}f=l of the space X and denote by Ti  the family of all 
sets U E  $2, such that e(U,  X\Uj) 2 1/3* for a certain j < k. Check 
that the sets Vl , V,,  ... , where Vi = lJ Ti, form a cover of the space X 

and that vi c V,,, for i = 1 , 2 ,  ... Consider the sets F, = ~ - , u C i ,  
where V,, = 0 and C, consists of all points of X which belong to n+ I 
members of Ti ,  and the families W!, = {V\F,-, : V E Y i  }, where i.b 

= 0; define W = U W l  and W, = U Wz.  Show that c Vi for 

i = 1 ,2 ,  ... and deduce that W is a cover of the space X ;  observe that 
it is a refinement of (Uj} j=  1 .  Check that Win W,,, = 0 whenever m >, i+2 
and deduce that ordW < 2n. 

Remark. The evaluation of dimX in Problem 1.6.D cannot be improved 
(see Example 1.10.23 and Problem 1.10.5). 

m 

i= 1 

1.7. The compactification and coincidence theorems. Characterization of 
dimension in terms of partitions 

The compactification theorem belongs to the group of theorems de- 
pending on the dimension dim, and in its proof covers are used in an 
essential way; accordingly, we formulate this theorem in terms of the 
covering dimension dim. The compactification theorem is an important 
step towards the proof of the coincidence theorem, which states that the 
dimensions ind, Ind and dim coincide in the realm of separable metric 
spaces. 

We begin with introducing three simple operations on covers. 
If dl , d, , . . . , d k  are covers of a topological space X, then the family 

of all intersections A,nA,n ... nA,, where A i  E d, for i = 1, 2, ..., k, 
iS a cover of the space X.  .We denote this cover by d, A&, A ... A d k ;  

obviously, it is a refinement of di for i = 1,2, ... , k .  
Iff: X .+ Y is a continuous mapping of a topological space X to a to- 

pological space Y and d is a cover of the space Y, then the family of all 
inverse images f -I(A),  where A E d, is a cover of the space X. We denote 
this cover by f -l(d). 
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If M is a subspace of a topological space X and d is a cover of the 
space X, then the family of all intersections MnA,  where A E d, is a cover 
of the subspace M. We denote this cover by d l M .  

One readily sees that the above operations applied to open (closed) 
covers yield open (closed) covers, and applied to finite covers yield finite 
covers. 

1.7.1. Lemma. Let ( X ,  e) be a totally bounded metric space such that dimX 
< n. For every finite sequence f t  , f i  , . .. , fk of continuous functions from X 
to I and for every positive number E there exists aJinite open cover % of the 
space X such that mesh% < E, orda < n, and IJ;:(x)-fi(y)J < E for  i = 1 ,  
2 ,  ..., k whenever x and y belong to the same member of 4%. 

Proof. Let Y be a finite open cover of the space X such that meshY c E 

and let W be a finite open cover of the interval I such that meshW < E .  

The reader can readily check that any finite open refinement 0 of the cover 
V r \ f r ' ( W ) r \ f ; ' ( W ) ~  ... r \ f ; ' (W)  such that ord% < n has the re- 
quired properties. 0 

1.7.2. The compactification theorem. For every separable metric space X 
there exists a dimension preserving compacti$cation, i.e., a compact metric 
space 2 which contains a dense subspace homeomorphic to X and satisJies 
the inequality d i m k g  dimX. 

More exactly, for  every totally bounded metric Q on the space X there 
exists an equivalent metric 6 on X such that ~ ( x ,  y )  < G(x, y )  for  x ,  y E X  
and the completion 2 of the space X with respect to the metric 6 is a compacti- 
fication of X which satisfies the inequality dim2 < dimX. 

Proof. We can suppose that dimX = n < 00. For in = 1 , 2, ... we shall 
define a finite open cover %!, = {Urn, k } i g l  o f  the space X such that mesh%!, 
< 1/2", ord%2!, < n, and 
(1) 
whenever x and y belong to the same member of 

l-h,j(x)-J.j(y)l < 1/2" for i < m and j = 1,2,  ..., kl 
where 

To obtain el it suffices to apply the total boundedness of e and the in- 
equality dimX < n. When the covers at , a2, ... , are defined, it 
suffices to apply Lemma 1.7.1 to obtain am. 
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Let us now arrange all pairs ( i , j ) ,  where i = 1 , 2 ,  . . . and j = 1 , 2,  . . . 
... , ki, into a simple infinite sequence and denote by n(i,  j )  the place of 
( i , j )  in this sequence. Define a new metric 6 on the set X by letting 

m 

one readily verifies that the metric e and 6 are equivalent. 
We shall show that the sequence mesh%,,,, where mesh denotes the mesh 

with respect to the metric 6, converges to zero. Consider an arbitrary 
positive number E. Let N be a natural number satisfying the inequality 
1/2N < s/3,  and M a natural number such that M 2 N, 

- - 

N 
1 

2 M  
--yf < 4 3 ,  

J=l 

and M > i whenever n( i , j )  < N. From (1) and (3) it follows by a Simple 
computation that mesh%,,, < E if m > M,  i.e., limmesh%,,, = 0. In par- 
ticular, the space ( X ,  ;) is totally bounded, so that the completion 2 of 
the space X with respect to the metric ij is a compactification of X .  

Since the functions fm,k: X -, I are uniformly continuous with respect 
to G, they can be extended to continuous functions L , k :  2 -, I. From 

(2) it follows that Ymfm,k(X)  = 1 for every x EX. Hence C L , k ( X )  = I 

for every x E 2, which implies that the family &,,, = { f i , , , ,k ) i z l ,  where 
f i m , k  = ~G;((O, I]), is an open cover of the space 2 for m = 1 , 2 ,  ... NOW, 
by the density of X in 2 and since Xnv,,,,, = u,,,.k for m = 1 , 2,  ... and 
k = 1 , 2 ,  . .. , k,, we have limmesh%,,, = 0 and ord&,,, < n, so that dim2 
< n = dimX by virtue of Theorem 1.6.12. 0 

p_ -v 

km km 

k=l k =  1 

C V -  

A variant of the above proof of the compactification theorem is out- 
lined in Problem 1.7.B. 

Let us observe that from the equality i n d i  = dimg, which is a con- 
sequence of Lemmas 1.7.4 and 1.7.6, and from Theorem 1.1.2 and Lemma 
1.7.4 it follows that dim2 = d i m 1  in the compactiiication theorem. 

We now pass to the coincidence theorem. 

1.7.3. Lemma. Let X be a metric space and M a subspace of X. For every 
family (Fi)f=,  of pairwise-disjoint closed subsets of M there exists a family 
(W,}!=, of pairwise-disjoint open subsets of X such that Fi c Wi for 
i =  1 , 2  ,.... k .  
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Proof. The sets 
w, = n {x €1: e(x, F,) < e(x, Fj)} 

J# i 

have all the required properties. 17 

1.7.4. Lemma. For every separable metric space X we have dimX < indX. 

Proof. We can suppose that indX < 00. If indX = - 1, we clearly have 
dimX < indX. Consider the case where indX = 0. Let % = (U,)f=, 
be a finite open cover of the space X.  By virtue of Proposition 1.2.4, the 
cover 92 has a refinement {Vi}& consisting of open-and-closed subsets 
of X. The sets b w, = v,, w, = v,\w,, ...) 

w, = V,\(W,UW2U ... UW,-,), ... 
are open-and-closed and pairwise disjoint, and form a cover of the space X 
which refines the cover 92. From Proposition 1.6.9 it follows that dimX 
< 0, so that again dimX< indX. 

Now, consider the case where indX = n > 0. Let 92 = { U,}f= ,  be 
a finite open cover of the space X .  By virtue of the second decomposition 
theorem 

X=ZluZ2u ... uZ,,,, whereindZ,<Ofor j =  l y 2 , . . . , n + l .  

It follows from the already proved special case of our lemma that dimZ, 
< 0 for j = 1,2,  ..., n+ 1. Hence the cover @IZ, of the space 2, has 
a shrinking {F,, ,}f=,  consisting of pairwise disjoint open-and-closed 
subsets of 2,. Applying Lemma 1.7.3, we obtain a family { W,,,}!=, of 
pairwise disjoint open subsets of X such that F j S i  c W,,, for i = 1 , 2, ... , k. 
The sets Vj,i= W,,,nU,, where i =  1 , 2 , . . . , k  and j =  1,2 , . . . ,n+1,  
form an open cover of the space X which refines the cover 92; the order 
of this cover is not larger than n, because any n+2 sets V,, ,  include at 
least two with the same index j ,  and each two of such sets have an empty 
intersection. Thus dimX < n, i.e., dimX < indX. 0 

Let us observe that in the case where indX = 0 the inequality dimX 
< indX follows from Theorems 1.6.4 and 1.6.11, but the argument given 
above is much simpler. 

1.7.5. Remark. It follows from the second part of the last proof that for 
every separable subspace M of a metriq space X such that indM < n 
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k 

I =  1 
and for every family (U,}~==, of open subsets of X such that M c U r/, 

there exists a finite family Y of open subsets of X satisfying the conditions 
M c IJ V and 0rd-Y < n and such that each of its members is contained 
in a set U,. 

1.7.6. Lemma. For every compact metric space X we have indX Q dimX. 

Proof. We can suppose that dimX < co. We shall apply induction with 
respect to dimX. If d i m 1  = - 1 ,  we clearly have indX < dimX. Assume 
that our inequality holds for all compact metric spaces with covering 
dimension < n-  1 and consider a compact metric space X such that dimX 
= n 2 0, a point x EX, and a closed set B such that x 4 B. It suffices 
to define open sets K ,  M c X which, together with the set L = X\(KuM), 
satisfy the conditions 
(4) X E K ,  B c M y  K n M =  0 and dimL< n - 1 ;  

indeed, the set L is then a partition between x and By and indL < n-  1 
by virtue of the inductive assumption. To that end we shalI define two 
sequences KO,  K , ,  K , ,  ... and Ma,  M 1 ,  M,, ... of closed subsets of X 
satisfying for i = 1 , 2, ... the following conditions: 

( 5 )  x E K i - l  c IntK,, B c Mi-1  c IntM, and K,nMi = 0. 
(6) The set Li = x \ ( K i u M i )  has a finite open cover with mesh < l / i  

and order < n - 1 .  

Let KO = {x}, Mo = B, and assume that the sets K i ,  Mi are already 
defined for i < j and satisfy (5) and (6) for 0 < i < j .  Since in a compact 
metric space the distance of two disjoint closed sets is positive, there exists 
a finite open cover %, of the space X such that mesh%, < min(l/j, 
p(Kj - l y  M j - , ) )  and ord%, < n. Let K ,  = X\H, and M ,  = X\G,, 
where 

G j  = lJ {U €42, :  U n M j - ,  = 0) 
and 

H, = U{UE%,: U n M j - ,  f O } .  
- 

As the closure of no member of %, meets both Kj-l and M j - l ,  it 
follows from the definitions of G j  and H j  that 

- - 
G,nM,-, = 0 = H j n K j - , ,  

which implies that K,-l c X\2, = IntKj and c X\G, = IntM,; 
moreover, K,nMj = 0, because G j u H ,  = X. Thus, condition (5) is 
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satisfied for i = j .  The family W ,  = { UnL,: U E a, and UnM,- # 0} 
is an open cover of the set L, = X\(K,wM,) = G,nH, and meshq, 
< l/j. Since every point x E L, c G, belongs to at least one set U E a, 
such that unM,-, = 0, the order of W ,  is not larger than n- 1. Thus 
condition (6) is also satisfied for i = j ,  so that the construction of the 
sequences KO,  K , ,  K 2 ,  ... and M,, M I ,  M 2 ,  ... is completed. 

'J 

Fig. 6 
00 m 

The open sets K = U Ki and M = U Mi are disjoint and contain x 

and B respectively, and the set L = X\(KuM) = n Li satisfies, by virtue 

of (6) and Theorem 1.6.12, the inequality dimL < n - 1 ; hence conditions 
(4) hold and the proof of the theorem is completed. 0 

i = o  i = O  
m 

i = 1  

1.7.7. The coincidence theorem. For every separable metric space X we have 
indX = IndX = dimX. 
Proof. By virtue of Theorem 1.6.4 and Lemma 1.7.4 it suffices to show 
that indX < dimX. Apply the compactification theorem to obtain a com- 
pactification 2 of the space X such that dimX< dimX. It follows from 
Lemma 1.7.6 that indX< dim2, so that indX< dimX by virtue of the 
subspace theorem. El 

Let us now make some comments on the last theorem. To prove that 
for every separable metric space X we have indX = dimX one has to 
establish two inequalities: dimX < indX and indX < dimX. The proof 
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of the former is fairly easy, and the proof of the latter much more difficult. 
Usually, we prove the inequality indX < dimX for compact metric spaces, 
which greatly simplifies the arguments, and then apply the compactifica- 
tion theorem to extend the inequality over all separable metric spaces. 
In all the existing proofs of the inequality indX < dimX one can detect 
an auxiliary integer-valued invariant d(X) for which the inequalities indX 
< d ( X )  and d(X)  < dimX are established. In our proof the invariant 
d(X), defined for every compact metric space X ,  was the smallest integer 
n 2 0 such that the space X has finite open covers of order < n with 
arbitrarily small meshes; the inequality d(X)  < dimX was trivial and the 
proof reduced to showing that indX < d(X).  In Section 1.11 we shall, 
incidentally, give another proof of the inequality indX < dimX for compact 
metric spaces. In that proof the invariant dQ will be the smallest integer 
n 2 0 such that X is embeddable in the space N,Z"+l c R2"+'; since indX 
< d(X) by virtue of Example 1.5.9, the proof will reduce to showing that 
d(X)  < dimX. One more proof of the inequality indX < dimX is sketched 
out in Problem 1.7.D. 

Let us also note that in Section 4.1 the proof of Lemma 1.7.6 will 
reappear almost verbatim as part of the proof that the inequality IndX 
< dimX holds for every metric space X .  

We conclude this section with a characterization of dimension stated 
in terms of partitions. At the basis of this characterization of dimension 
lies an interesting geometric property of the n-cube I"; viz., the property 
that if Li is a partition between the pair of opposite faces A ,  = ((x,} 
e P : x f  = O } a n d B , =  ( ( x J } ~ Z " : x f =  l } o f Z " f o r i =  1 ,2 ,  ..., n ,  then 

n Li # 0; this property is closely related to the fixed-point property of 

Zn (see Theorem 1.8.1 and Problem 1.8.B). Let us note that the impor- 
tance of the theorem on partitions consists in the fact that it provides an 
internal characterization of n-dimensional spaces which, in effect, is but 
a reformulation of an important external characterization of such spaces, 
namely of the characterization in terms of mappings to the n-sphere 
S" (see Theorem 1.9.3), which in turn is very close to the cohomological 
characterization of dimension (see the final part of Section 1.9). The theorem 
on partitions will also be used in the proof of the fundamental equality 
indR" = n (see Theorem 1.8.2). 

Let us begin with an auxiliary theorem which will often be used in our 
study of the covering dimension. 

n 

i = l  
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1.7.8. Theorem. Every finite open cover { U,};==, of a normal space X has 
a closed shrinking {F,}f' ,  . 

Proof. We shall apply induction with respect to k beginning with k = 2. 
In this case, applying the definition of normality to disjoint closed subsets 
A = X\U, and B = X\U, of the space X ,  we obtain disjoint open sets 
V,, V, c X such that A c V1 and B c V,. The sets F, = X\Vl and 
F2 = x \ V ,  form the required shrinking. Assume that the theorem is 
proved for every natural number k < m 2 3 and consider an m-element 
open cover {U,}~!, of the space X. Define 

U; = U, for i <  m-2 and UA-1 = U m - 1 v U m - 2 ;  

applying the theorem to the cover {Ui}y!i' we obtain a closed shrinking 
{F/}F;t. The closed subspace FA-, of the space X is normal; applying 
the theorem again, this time to the two-element open cover {FA-l n Urn- 
F&-,n Urn} of the space FA-, , we obtain a closed cover IFrn-, , F,} of 
FA-l such that F,-l c Urn-., and F, c Urn. One readily checks that the 
family {F,>F!, , where Ft = Ff  for i < m-2, is the required shrinking 
of the cover { U t } ~ = l  of the space X. 0 

1.7.9. Theorem on partitions. A separable metric space X satisfies the in- 
equality indX < n > 0 ifand only iffor every sequence ( A , ,  B,) , (A,,  B,) ,. . . 
. . . , (An+ , , Bn+ ,) of n + 1 pairs of disjoint closed subsets of X there exist 
closed sets L1, L,, ..., Ln+, such that Lt is a partition between At  and Bi 

n + l  

i =  1 
and f7 L, = 0. 

Proof. If indX< n > 0, then-applying the second separation theorem- 
we can define, one by one, partitions L1 , L, , . . . , L,+ ] such that ind(L1 n 

n L 2 n  ... nL,) < n- i  for i = 1 ,2 ,  ..., n+ 1; clearly n Lt = 0. 

We shall now show that if X satisfies the condition in the theorem, 
then dimX < n which, by the coincidence theorem, will complete the proof. 
We are going to apply Theorem 1.6.10; consider thus an (n+2)-element 
open cover { Ut};zf of the space X .  By Theorem 1.7.8, the cover { Ut}7z? 
has a closed shrinking {B,}?Z'=f:; let A ,  = X\U, for i = 1, 2, ..., n+l .  
The sequence ( A ,  , B,)  , (A ,  , B,) , . . . , (A,+ , B,+ ,) consists of n + 1 pairs 
of disjoint closed subsets of X. Hence, there exist closed sets L, , L2 , . . . , L,+ 

n + l  

i= 1 
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n + l  

i =  1 
such that L, is a partition between A ,  and B, and 0 L1 = 0. Let us con- 
sider open sets V,, W, c X such that 

(7) Ai c V,, Bi c W,, V,nW, = 0 and X\L, = Y,uW, 

for i = 1 ,2 ,  ... , n +  1. Observe that 

From (S), (7) and the inclusion B,+, c U,+, it follows that 
n t l  n + l  n + l  n t l  n f l  n + 2  

U W i u [ u , + z n U  vi] = [ U  WiuUn+zln[U W i u U  vil 2 UB, = X ,  
i= 1 i=  1 i = l  i=  1 i= 1 i =  1 

so that the family (Wi>;2='l', where Wn+, = Un+,n Lj V,, is an open 
i = l  

shrinking of the cover {U,}::;. It follows from (7) that 
n t 2  n+ 1 n + l  n + l  n + l  

i =  1 i =  1 i = l  i = l  i = l  
0 W i  = f' Win[un+2 U Vil c n W i n  U Vi = 43, 

therefore dimX < n by virtue of Theorem 1.6.10. 0 

1.7.10. Remark. Let us note that in the second part of the above proof 
only the normality of the space X was applied; hence, we have shown 
that if for every sequence ( A , ,  Bl), (A2, B,),  ... , ( A , + 1 ,  B,,,) of n +  1 
pairs of disjoint closed subsets of a normal space X there exist closed sets 

L1 , L,, .#. , L,,, such that L, is a partition between A ,  and Bi and 0 Li 

= 0, then dimX< n. 
Let us call the reader's attention to the structure of the last proof. 

We started with the inequality indX < n, showed that this inequality 
implies a property of the space X ,  then proved that this property implies 
the inequality dimX < n, and, finally, applied the coincidence theorem. 
Thus, we incidentally gave another proof of Lemma 1.7.4; obviously, 
the original proof of Lemma 1.7.4 is more perspicuous. The proof of 
Theorem 1.9.3 below has a similar structure. The conditions in both theorems 
characterize the covering dimension dim in the realm of normal spaces; 
however, in the realm of separable metric spaces the proofs are consider- 
ably shortened by applying the coincidence theorem (cf, Theorems 3.2.6 
and 3.2.10). 

n t  I 

i=  1 
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Historical and bibliographic notes 

Theorem 1.7.2 was established by Hurewicz in [1927b] (another proof 
in [1930]). This theorem permitted or facilitated the extension of many 
theorems of dimension theory from compact metric spaces to separable 
metric spaces; it was an important achievement in the development of the 
theory. Lemma 1.7.4 was proved for metric compact spaces by Menger 
in [1924] and by Urysohn in [1926] (announcement in [1922]) and was 
extended to separable metric spaces by Hurewicz in [1927b]. Lemma 1.7.6 
was obtained by Urysohn in [1926]. The equality indX = dimX in The- 
orem 1.7.7 was established by Hurewicz in [1927b], the history of the 
equality indX = IndX is described in the notes to Section 1.5. Theorem 
1.7.9 was proved by Eilenberg and Otto in 119381. 

Problems 

1.7.A. Observe that the enlargement theorem readily follows from the 
compactification theorem and the; Lavrentieff theorem (see [GT], Theorem 
4.3.21). 

1.7.B. Let X be a separable metric space such that dimX = n and 
X-, I, where i = 1, 2, ... and j = 1, 2, ..., ki, the functions defined 

in the proof of Theorem 1.7.2. Show that by assigning to every point 
x E X  the point f ( x )  in the Hilbert cube P o ,  the n(i,j)-th coordinate of 
which is equal tofi, j(x), one defines a homeomorphic embedding f: X -+ I l l 0  
such that dimfm < n. 

1.7.C. (a) (Engelking [1960], Forge [1961]) Show that for every separa- 
ble metric space Xand for every sequence of continuous functions fi f, , . . . , 
where fi: X -, I for i = 1 , 2, ... , there exists a compactification X of the 
space X such that dim2 < dimX and eachf, is extendable to a continuous 
function A: X -+ I. 

(b) (Engelking [1960]; for n = 0, de Groot and McDowell [1960]) 
Prove that for every separable metric spaceXand for every sequence of con- 
tinuous mappings g ,  , g ,  , .. . , where g,: X -+ X for i = 1 , 2, .. . , there 
exists a compactification 2 of the space X such that dim2 < dimX and 
each g ,  is extendable to a continuous mapping gi: 

Hint. One can assume that g ,  = id, and'that for every pair i, j there 
exists a k such that gigi = g,. As in the proof of Theorem 1.7.2, for m 

--f 2. 
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= 1 , 2 ,  . . . define a finite open cover 52, which moreover is a refinement 
of gil  (52,- 1) A g;' (%,,,- 1) A . . . A g;: (52,- J, where = {X}. Consider 
the metric 

.I 

on the space X defined by letting 
m m 

where n( i , j ,  k )  is the place of the triple ( i , j ,  k )  in an infinite sequence 
consisting of all triples of natural numbers. 

1.7.D. (a) (Kuratowski [1932]) Prove that for every compact metric 
space X with no isolated point such that 0 < dimX < n there exists a con- 
tinuous mapping f: C +. X of the Cantor set C onto the space X with 
fibres of cardinality at most n+ 1. Deduce the topological characterization 
of the Cantor set stated in Problem 1.3.F. 

Hint. Observe that the subspace @ = { f ~  p: f(C) = X }  of the func- 
tion space XC is non-empty and closed in Xc,  and hence is completely 
metrizable (see Problem 1.3.D and the beginning of Section 1.11). For 
k = 1 ,2 ,  ... consider the subset p k  of @ consisting of all functions f €J? 
which have the property that for some n+2  points xl ,  x2, ... , x . + ~  of the 
Cantor set C such that Ixi-xjl > l/k whenever i # j we have the equality 

f(xl) = f(x2) = . . . = f(x,+J. Prove that the sets p k  are closed and no- 
where dense in @; then apply the Baire category theorem. When proving 
that !Pk is nowhere dense, observe that every finite open cover of the space 
X consisting of non-empty sets has a closed shrinking of order < n con- 
sisting of non-empty sets; then apply Problem 1.3.D. 

(b) (Kuratowski [1932]) Prove that for every compact metric space X 
such that dimX < n 2 0 there exists a continuous mapping f: A -+ X 
of a closed subspace A of the Cantor set C onto the space X with fibres 
of cardinality at most n+ 1. 

Hint. Applying the definition of dim, prove that dim(Xx C) < n. 
(c) (Hurewicz [1926]) Prove that if for a compact metric space X there 

exists a continuous mappingf: A -+ X of a closed subspace A of the Cantor 
set C onto the space X with fibres of cardinality at most n+ 1,  then indX 
< n (cf. Theorem 1.12.2). 

Hint. Apply induction with respect to n. Assuming that (c) holds for 
every n < m, consider a continuous mappingf: A + X of a closed subspace 
A of the Cantor set C onto the space X with fibres of cardinality at most 
m+ 1, a point x EX,  and a neighbourhood V c X of the point x; then 
take an open-and-closed set W c A such thatf-'(y) c W c f - ' ( V )  and 

. 
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show that the open set U = X\f(A\W) c X satisfies the conditions 
y E U c V and F r U  cf(W)nf(A\W). 

(d) (Kuratowski [1932]) Observe that (b) and (c) imply that for every 
compact metric space X we have indX < dimX. 

Remark. Hurewicz proved in [1926] that a separable metric space X 
satisfies the inequality indX < n > 0 if and only if there exists a closed 
mapping (see the beginning of Section 1.12) f: Z + X of a zero-dimen- 
sional separable metric space Z onto the space X with fibres of cardinality 
at most n + 1. This fact can be deduced from the compactification theorem, 
the coincidence theorem, part (b) of the present problem, and the hint 
to part (c); obviously, Hurewicz's original proof was a direct one. 

Let us also note that, as proved by Nagata in [1960] (announcement 
by Hurewicz in [1928]), a separable metric space X is a continuous image 
of a zero-dimensional separable metric space under a closed mapping 
with finite fibres if and only if X can be represented as the union of 
countably many finite-dimensional subspaces. 

1.7.E. Show that a separable metric space X satisfies the inequality 
dimX < n if and only if every open cover of the space X has an open re- 
finement of order < n or-equivalently -if every open cover of the space 
X has an open shrinking of order < n (cf. Proposition 3.2.2). 

Hint. When proving that every open cover of a separable metric space 
X satisfying dimX< n has an open refinement of order < n, first reduce 
the problem to countable covers, then consider the special case where 
n = 0, and finally apply the second decomposition theorem and Lemma 
1.2.8. 

1.8. Dimensional properties of Euclidean spaces and the Hilbert cube. In- 
finite-dimensional spaces 

The main result in this section is the fundamental theorem of dimension 
theory, which states that Euclidean n-space R" has dimension n, i.e., that 
indR" = IndR" = dimR" = n for n = 1 , 2, . . . This theorem justifies the 
definitions of our three dimension functions, because any dimension 
function assigning to R" a number distinct from n would contradict 
the intuitive notion of dimension and thus would not be acceptable. 
It readily follows from the evaluation of dimensions of Euclidean n-space 
R" that the dimensions ind, Ind and dim of the n-cube I" and the n-sphere 
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S" are also equal to n. The spaces R", I" and S" are our first examples 
of spaces of dimension larger then one; so far we have not shown that 
such spaces exist. 

The proof that Euclidean n-space R" has dimension n requires a deeper 
insight into the structure of this space; by the nature of things, some 
combinatorial or algebraic arguments must appear in it. In this book, 
instead of producing a complete proof of the fundamental theorem of 
dimension theory, we shall deduce this result from the Brouwer fixed-point 
theorem, which states that for every continuous mappiig g :  Z" 4 I" there 
exists a point x E I" such that g(x) = x. The latter theorem is certainly 
well known to the reader; let us note that it is closely related to the 
"geometric versions" of the fundamental theorem of dimension theory, 
i.e., to Theorems 1.8.1 and 1.8.15 (see Problem 1.8.B). 

We begin with a theorem reflecting an interesting geometric property 
of the n-cube I". 

1.8.1. Theorem. Let A ,  and Bi,  where i = 1 ,  2, ... , n ,  be the subsets of 
the n-cube Z" defined by the conditions 

A ,  = { { x j }  EZ": x i  = 0 }  and 

i.e., the pairs of opposite faces of I". If Li is a partition between A, and 

Bi for i = 1 , 2 ,  ...) n ,  then nLi # 0. 

Bi = ({xj} EZ": x i  = l}, 

n 

i= 1 

Proof. Let us consider open sets U i ,  Wi c I" such that Ai c U i ,  Bi c W,, 
UinWi = 0 and Z"\Li = UivWi  for i = 1 , 2 ,  ..., n. Since (I"\W,)n 
n(Z"\Ui) = Z"\(U,u Wi) = L,,  the formulas 

define for i = 1 ) 2, . . . , n a continuous function f i :  I" + I. Clearly, we 
have 

(2) fy1(1/2) = Li,  f i(Ai) = (1) and fi(Bi) = ( 0 ) .  
n 

i= 1 
Assume that Li = 0; it follows from the first part of (2) that the 

continuous mapping f: I" + I" defined by letting f ( x )  = ( fi (x), 
f i ( x ) ,  ..., fn(x)) for XEZ" does not assume the value a = (1/2, 1/2, ... 
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... , 1/2) E I". The composition g :  I" -+ I" of the mapping f and the projec- 
tion p of I"\(a) from the point a onto the boundary of I", i.e., onto 

the set B = U (AiuB,), satisfies the inclusion g(J") c B ;  by the second 

and the third part of (2), we have g(A,) c B, and g(Bi) c A i .  The last 
three inclusions show that g ( x )  # x for every x E I", which contradicts 

the Brouwer fixed-point theorem. Hence 0 Li # 0. 0 

n 

i =  1 

n 

i=  1 

1.8.2. The fundamental theorem of dimension theory. For every natural num- 
ber n we have 

indR" = IndR" = dimR" = n .  

Proof. By virtue of the inequality indR" < n established in Example 1.5.9 
and by the coincidence theorem, it suffices to show that indR" 2 n ;  the 
latter inequality follows immediately from Theorem 1.8. I and the theorem 
on partitions. 

1.8.3. Corollary. For every natucal number n we have 

indz" = IndI" = dimJ" = n = dims" = IndS" = indS". c] 

1.8.4. Corollary. For the Hilbert cube Po we have 

indJNo = IndIHo = dimJxo = co . 0 

1.8.5. Theorem. For the subspace Nl of Euclidean n-space R" consisting 
of all points which have at most k rational coordinates and the subspace Li 
of R" consisting of all points which have at least k rational coordinates we 
have 

indN; = k and indLf = n - k .  

Proof. In Example 1.5.9 we have shown that indN1 < k and indL; d n - k .  
Since R" = NI:uL$+, = Ni- ,uLi ,  the reverse inclusions follow from the 
equality indR" = n and the addition theorem. 0 

Looking closer at the above proof of the fundamental theorem of 
dimension theory we can see that first the inequalities indR" d n and 
IndR" 2 n were established, then-by applying Theorem 1.6.4-it was 
deduced that indR" = IndR" = n, and finally Lemmas 1.7.4 and 1.7.6 
were applied to obtain the equality dimR" = n. The equality diml" = n 
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can be also obtained in a direct way. Theorem 1.7.8 and Theorem 1.8.15 
below imply that dimZ" > n, and the reverse inequality is obtained by 
defining a finite open cover of P which has order < n and arbitrarily 
small mesh. This can be done by dividing Z" into small "bricks" and then 
enlarging the bricks to open sets in such a way that the order of the family 
does not increase; Fig. 7 illustrates the procedure in the case of n = 2. 

Fig. 7 

Our next task is to characterize -n-dimensional subspaces of Euclidean 
n-space R"; we shall show that they are subsets of R" which have a non- 
empty interior. We start with an auxiliary geometric result, interesting in 
itself, which states that if a subset C of R" has an empty interior, then C 
is homeomorphic to a subset D of R" contained together with its closure 
in N:- l ;  in particular, each such subset is homeomorphic to a nowhere 
dense subset of R". 

1.8.6. Lemma. If a subset C of R" has an empty interior and is dense in 
R", then every subset D of R" which is homeomorphic to C has an empty 
interior. 

Proof. Let f: D + C be a homeomorphism of D onto C. Suppose that 
IndD # 0 and consider a non-empty open subset V of R" such that the 
closure of V in R" is compact and contained in D. The imagef(V) is open 
in C and its closure in C equalsf(V); the last set being compact, the closure 
f(v> off(V) in R" also equalsf(@. Now, let U be an open subset of R" 
such that f ( V )  = CnU. As the set C is dense in R", we have 0 # U c 5 
= Cn U = f ( V )  = f(v> c C, which contradicts the assumption that 
IntC = 0. 

___ 
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1.8.7. Lemma. Let A be a subset of R" and a an. arbitrary point of R"\A. 
For every positive number r there exists a homeomorphism f: A + f ( A )  c R" 
such that for all x ,  y E A we have 

e ( x , f ( x ) )  < r ,  & , Y )  < e ( f ( x ) , f ( y ) )  and B(a, r)nf(A) = 0. 

e (a , f (x ) )  = @(a, x ) + r .  0 

Proof. It suffices to assign to every x E A the point f(x) situated on the 
ray starting from a and passing through x ,  which satisfies the condition 

1.8.8. Theorem. For every subset C of R" which has an empty interior there 
exists a subset D of R" homeomorphic to C and such that D c N : - l .  

Proof. The set C can easily be enlarged to a dense subset of R" which has 
an empty interior, and it suffices to prove the theorem for this larger set. 
Hence, without loss of generality, one can assume that the set C is dense 
in R". Let us arrange all points of the complement R"\N:-, , i.e., all points 
of R" with rational coordinates, into a sequence al , a 2 ,  . . . We shall define 
inductively a sequence C, ,  C , ,  C 2 ,  ... of subsets of R", where Co = C,  
and a sequence of homeomorphisms f o , f , ,  f 2 ,  ... , where f i :  Ci -+ C, , ,  , 
satisfying the following conditions: 
( 3 )  e ( x , f i ( x ) )  < 1/3'+' for every x E C i .  

(5) B(ui, 1/4.3*)nCi+,  = 0 for i >  1. 

Conditions (3)-(5) are satisfied for i = 0 if we let C ,  = C and f o  = idc. 
Assume that the sets C, ,  C ,  , C,  , . . . , c k  and the homeomorphisms 

f o , f i  ,f2, ..., f k - ]  are defined and satisfy (3)-(5) for i < k > 1 .  The set 
c k  =fk--1(Ck--])  is homeomorphic to C ,  = C, so that Intc, = 0 by 
virtue of Lemma 1.8.6; thus there exists a point a E B(a,, 1/4.3k+1)\Ck. 
One readily checks that Lemma 1.8.7 applied to the set A = c k ,  the point a, 
and the number r = 1/3"+' yields a homeomorphism f k  = f: ck + f(ck) 

which together with the set C k + ,  = f ( C k )  satisfies conditions (3)-(5) for 
i = k. Thus our construction is completed. 

For i = 1,2, ... consider the composition hi = g i f l - ,  ... f i  f o :  C -+ R", 
where g i  denotes the embedding of Ci in R". By virtue of (3) ,  we have 
for k 2 1 

(4) e (x ,Y)  G e ( f i ( x ) , h ( y ) )  for all X,Y E ci. 

(6) @ ( h i ( x ) ,  hl+k(X)) 

< Q (hi(x) hi+ I ( X I ) +  Q (hi+ I ( X I  3 hi+ z ( X > ) +  ... 
G 1 / 3 * + 1 + 1 / 3 i + 2 +  ... + 1 / 3 i + k  < 1/2.3' 

@ (hi+ k-  I 

for every x E C ;  

h l + k ( X ) )  
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hence, for every x E C the sequence h,(x),  h,(x), ... is a Cauchy sequence 
and thus converges to a point h(x)  E R". In this way a mapping h of C to 
R" is defined. Passing in (6) to the limit with respect to k, we see that the 
sequence of mappings h,, h Z ,  ... uniformly converges to the mapping h, 
so that h is a continuous mapping. Condition (4) implies that e ( x , y )  
< e(hi(x),  hi(y)) for all x, y E C and i = 1 ,2 ,  ... Hence, e(x, y )  < e(h(x) ,  
h(y)) for all x, y E C, which implies that h is a one-to-one mapping and that 
the inverse mapping h-l is continuous, i.e., that h is a homeomorphism 
of the set C onto the set D = h(C) c R". 

Now, consider a point a, E R"\N:-, and an arbitrary point z E D ;  
let h-l(z)  = x E C. It follows from (5) that 

(7) e(ai, hi+i(x>) > 1/4.3'- 

By virtue of (6) we have e(hi+,(x), hi+k(x)) c 1/2.3'+' for k = 1, 2, ..., 
so that 
(8) e(hi+,(x), Z )  < 1/2*3'+'. 

Relations (7) and (8) yield the inequality @(al,  z )  > 1/4-3'+'; hence 
B(ai,  1/4*3'+l)nD = 0, which implies that a, # 0. Thus the inclusion 
D c N:-, is established. 0 
- 

Theorem 1.8.8 yields 

1.8.9. Theorem. Every subset of R" which has an empty interior is homeo- 
morphic to a nowhere dense subset of R". 17 

1.8.10. Theorem. A subspace M of Euclidean n-space R" satisfies the condi- 
tion indM = n if and only if the interior of M in R" is non-empty. 

Proof. If IntM # 0, then M contains a subspace homeomorphic to I", 
so that indM = n. On the other hand, if IntM = 0, then-as follows 
from Theorem 1.8.8-the space M is homeomorphic to a subspace of 
Ni-l, so that indM < n- 1 by virtue of Theorem 1.8.5. 

1.8.11. Corollary. A subspace M of the n-cube I", or the n-sphere S", sat- 
isfies the condition indM = n ifand only if the interior of M i s  non-empty. 17 

1.8.12. Theorem. Let X be Euclidean n-space R", the n-cube I", or the n-sphere 
S". I f a  set F c X is the boundary of a non-empty open subset of X which 
is not dense in X ,  then indF = n-  1 .  
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Proof. Consider first a subspace F of S", and let F = Fr U, where U is 
an open subset of S" such that U # 0 # S"\E From Corollary 1.8.11 
it follows that indF < n-  1 ; suppose that indF < n-2. Let x be a point 
of U. Since # S", for every positive number E one can readily define 
a homeomorphism f of the n-sphere S" onto itself such that f ( x )  = x and 
f(u) c B(x,  E) .  Hence, the point x has arbitrarily small neighbourhoods 
with (n - 2)-dimensional boundaries. This contradiction of Theorem 
1.8.2 shows that indF = n-  1. 

Since R" is homeomorphic to the open subspace S"\(a} of S" and 
for every open set U c R" the boundary of U in R" and the boundary 
of its counterpart in S" differ topologically by at most one point, the validity 
of our theorem for subspaces of R" follows from its validity for subspaces 
of S" and Corollary 1.5.6. 

The case of X = I" is left to the reader. 0 
Let us recall that a set T c X separates a topological space X if T 

separates X between a pair of points x and y ,  i.e., if the complement X\T 
is disconnected. 

1.8.13. Theorem. Let X be Euclidean n-space R", the n-cube I", or the n-sphere 
S". If a closed subset L of X satisfies the inequality indL < n-2, then L 
does not separate the space X ,  i.e., the complement X\L is connected. 

Proof. Suppose that X\L = UvV,  where U ,  V are non-empty disjoint 
open sets. Clearly Fr U c L, so that indFr U < n-2, which contradicts 
Theorem 1.8.12. 0 

The last theorem leads to the notion of a Cantor-manifold, which will 
be discussed in the following section. 

We shall now pass to a study of deeper dimensional properties of Euclid- 
ean spaces. We aim at Mazurkiewicz's theorem, which is much stronger 
than Theorem 1.8.13 and states that if a subset M of a region G c R" (i.e., 
of a connected open subspace G of R") satisfies the inequality indM < n - 2 ,  
then M does not cut G (cf. Problems 1.8.E and 1.8.F). Let us recall 
that a set T c X cuts a topological space X if T cuts X between a pair 
of points x and y ,  i.e., if each continuum C c X which contains x and 
y meets the set T. We start with Lebesgue's covering theorem, reflecting 
an interesting geometric property of the n-cube I", which is closely related 
to the equality dimZ" = n. As stated in the notes to Section 1.1, this theorem 
played an important role in the formation of dimension theory. 
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1.8.14. Lemma. Let A i ,  B i ,  where i = 1, 2, ..., n ,  be the pairs of opposite 
faces of Z". I f  I" = Lb =I L; 3 . . , =I Lk is a descending sequence of closed 
sets such that Lf is a partition in Li-l between L j - l n A i  and Lf-,nB, for  
i = 1 ,2 ,  ..., n ,  then LA # 0. 

Proof. By virtue of the second part of Lemma 1.2.9, for i = 2, 3 ,  ... , n 
there exists a partition Li in I" between A ,  and B, such that 

(9) Li-, nLi c Lf for i = 2, 3,  ..., n ;  let, additionally, L, = L;. 

From (9) we obtain, one by one, the inclusions L1 c L; , L1 nL, c LL , . . . 
... , L, nL2n ... nL, c LA, so that Lk # 0 by Theorem 1.8.1. 0 

1.8.15. Lebesgue's covering theorem. I f  9 is a finite closed cover of the 
n-cube Z" no member of which meets two opposite faces of I", then o r d 9  
2 n. 

Proof. Let A , ,  B , ,  where i = 1, 2, ..., n ,  be the pairs of opposite faces 
of I". For i = 1 ,2 ,  ..., n define 

Fi = { F E ~ :  FAAl # 0) 

and consider the families 

x1 = 9,, x 2  = FGZ\X1, ..., x, = 9"\(X,U ... vXn-,)  

and 
x,+, = 9\(X,UX,U ... UX"). 

It follows from the assumptions of the theorem that the closed sets Ki 
= UX, satisfy the inclusions 

(10) A i  c I"\(Ki+,u ... UK,,,) and Bi c Z"\Ki 

for i = 1 , 2  ,..., n. 

The sets L; ,  L;, ..., LA, where 

L: = K l n K 2 n  ... nK,n(K,+,  uKi+,u  ... uK,+,), 

are closed and form a descending sequence. Observe that I"\L: = U i u  Wi, 
where 

and 
ui = I"\(K~+,uK~+~u ... uKn+1) 

Wi = Zn\(K,nK2n ... nK,). 
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Fig. 8 

Inclusions (10) yield 

L:- ,nA,  c L:- ,nU,  and L:- ,nBi  c L:-,nW, 

for i = 1 , 2 ,  ... , n ,  where Lb = I". One readily checks that (Li- ,n 
n U,)n(LI_,nW,) = 0;  moreover, 

Lf_,\[(L:-,nvi)u(Lf-,nWi)] = L:-,\(UiuWi) = L:- ,nL:  = L f ,  

so that L: is a partition in Li-, between L;- ,nA,  and L:-lnBi for 
i = 1 ,2 ,  ... , n. By virtue of Lemma 1.8.14, we have LA = KlnK,n  ... n 
nK,,, # 0. Since every member of the cover F belongs to exactly one 
family X i ,  the last inequality implies that o r d F  2 n. 0 

If L is a partition in I" between A, and B,, then letting L; = L and 
defining, as in the above proof, the families Fi,Xi and the sets K, ,  L f  
for i = 2, 3 ,  ... , n,  we obtain the following generalization of Lebesgue's 
covering theorem: 

1.8.16. Theorem. If L is a partition between a pair of opposite faces of the 
n-cube I" and 9 is ajinite closed cover of L no member of which meets two 
opposite faces of I", then o r d F  2 n - 1. [7 

We are ready now to prove Mazurkiewicz's theorem. The theorem 
will be preceded by two lemmas; the second lemma is a special case of the 
theorem, to which the general situation will be reduced by a relatively 
simple argument. 
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1.8.17. Lemma. Let M be a subspace of a totally bounded metric space X .  
If there exists a positive number E with the property that every finite family 
Y of open subsets of X such that meshY < E and M c U V satisfies 
the inequality ordY 2 n 2 0, then indM 2 n. 

Proof. Suppose that indM < n-  1 and consider a finite cover { U,}f=,  
of the space X by ~/3-balls. By virtue of Remark 1.7.5, there exists a finite 
family Y of open subsets of X such that meshY < 2 ~ / 3  < E ,  M c lJ Y 
and ordY < n-  1, which is impossible. Hence indM 2 n. [7 

1.8.18. Lemma. Let A ,  B be a pair of opposite faces of the n-cube I". If 
M is a subspace of X = Z"\(AuB) which meets every continuum C c In 
such that AuB c C, then i n d M 2  n- I .  

Proof. Consider a finite family Y of open subsets of X such that meshy < 1 
and M c V = U T; obviously, A u B  c I"\V. Let SA and S, be the 
components of the compact space I"\V which contain A and B, respectively. 
Since SA and SB are both continua and AvB c SAuSB c I"\M, it follows 
from the assumption about M that SAnSB = 0. By virtue of Lemma 
1.4.4 there exist disjoint open-and-closed subsets U,, W, of In\V such 
that 

( 1 1 )  A c S, c U , ,  B c SB c W, and U,uW,  = In\V. 

The sets Ul , W, being closed in I", there exists open sets U ,  W c I" such 
that 

U, c U ,  W, c W and U n W = 0 .  

By virtue of (1 l),  the set L = In\(Uu W )  is contained in V and is a parti- 
tion in I" between A and B. From Theorem 1.7.8 it follows that the cover 
Y I L  of the space L has a closed shrinking 9. As meshy < 1, no member 
of F meets two opposite faces of I", and Theorem 1.8.16 implies that 
o r d F  2 n-I .  Since ordY 2 ordF ,  it follows from Lemma 1.8.17 
that indM 2 n-1. 0 

1.8.19. Mazurkiewicz's theorem. Ifa subset M of a region G c R" satisfies 
the inequality indM < n-2, then M does not cut G, i.e., for every pair 
of points x, y E G\M there exists a continuum C c G\M which contains 
x and y .  
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Proof. Let us start with the special case where G = R". Consider a pair 
of points x ,  y E R"\M and denote by K the closed ball in R" whose centre 
coincides with the centre of the segment with end-points x and y and whose 
radius is equal to &(x,  y ) .  Let f: Z" + K be a continuous mapping of I" 
onto K which maps a pair A ,  B of opposite faces of I" to x and y ,  respectively, 
and has the property that the restriction g = f I [Z"\(AuB)] is a homeo- 
morphism of Z"\(AuB) onto K\{x, y } ;  such a mapping can easily be 
obtained by an application of Problem 1.8.A and Lemma 1.8.7. The set 
M' = f - ' ( K n M )  c I"\(AuB) satisfies the inequality indM' < n-2 .  
Hence by Lemma 1.8.18 there exists a continuum C' c I" such that A u B  
c C' and C'nM' = 0. The set C = f(C') c R"\M is a continuum 
which contains x and y ,  so that Mazurkiewicz's theorem is proved for 
G = R". 

Now, consider an arbitrary region G c R" and a pair of points x ,  y 
E G\M. Let B, , Bz , . .. , Bk be a sequence of open balls in R" such that 
x E B , ,  y E Bk,  Bi c G for i = 1 ,  2, ..., k and B i n B i + l  # 0 for i < k-1. 
The existence of such a sequence follows from the connectedness of G, 
because the set of all points in G that can be joined to the point x in a 
similar way is open-and-closed. Since the set M has an empty interior, for 
i = 1 , 2 ,  ... , k -  1 there exists a point zi E BinBi+l\M; let, additionally, 
zo = x and z k  = y .  By the special case of Mazurkiewicz's theorem establish- 
ed above, for i = 1 , 2 ,  .. . , k there exists a continuum Ci c B,\M which 
contains zi-, and zi. The union C = C , u C z u  ... uck c G\M is a con- 
tinuum which contains x and y .  0 

We conclude this section with a theorem and an example announced 
in Section 1.5 (cf. Problem 1.8.G). 

1.8.20. Theorem. The Hilbert cube Z H o  cannot be represented as a countable 
union of finite-dimensional subspaces. 

Proof. By virtu of the second decomposition theorem it is enough to 
show that for every sequence Z1, Zz, ... of zero-dimensional subspaces 

of Po we have IJ Z, f P o .  Let 
m 

i =  1 

A i  = { { x j }  E P o :  xi  = 0 }  and 
for i = 1 ,2 ,  ... Applying Theorem 1.2.11, we can find a partition L, 
between Ai and Bi such that 

(12) L i n Z l  = 0 for i = 1 , 2 ,  ... 

Bi = { { x j }  EP: xi = I }  
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Define In = { { x i }  E Zxa: x I  = 0 for j > n}; the intersection &nI, is 
apartitioninInbetweenAinInand BinInfori  = 1 ,2 ,  ..., n .  FromTheorem 

1.8.1 it follows that n Li 2 0 LinIn # 0. Hence, the family {L,}?=*=, of 

closed subsets of Ixo has the finite intersection property. The space IN0 be- 

ing compact, Li # 0. It follows from (12) that n Li c ZHo\ U Zi, so 

that IJ Zi # Ixo. 0 

n n 

i = l  i =  1 

m m m 

i= 1 i=  1 i =  I 
co 

i = l  

1.8.21. Example. We shall now describe, applying the continuum hypothe- 
sis, i.e., the equality N, = c, a space X c Ixo of dimension co whose 
finite-dimensional subspaces are all countable. 

One readily checks that the family of all G6-sets in Z x o  has cardinality c;  
let us arrange-applying the continuum hypothesis-all zero-dimensional 
members of this family into a transfinite sequence 

z,, z,, ..., z,, ..., a < 0 1 ,  

where w1 denotes the first uncountable ordinal number, i.e., the initial 
number of cardinality N,. As all one-point subsets of Ixo are among the 
sets Z,, we have 

From Theorem 1.8.20 it follows that U 2, # Ixo for every y < wl, 

so that by virtue of (13) there exists an uncountable set T of countable 
ordinal numbers such that ZY\ U Z, # 0 for y E T. Let us choose a point 

xY E ZY\ U Z, for every y E r and consider the subspace X = u {xy} 

of 1'0. By Theorem 1.2.14, for each zero-dimensional subspace Z c X 
c Z x o  there exists a zero-dimensional Gd-set Z* c I X o  such that Z c Z*, 
i.e., there exists an index a < w1 such that Z c 2,. Thus we have Z 
c u {xY}, which implies that the subspace Z is countable. It follows 

from the second decomposition theorem that each finite-dimensional 
subspace of X is also countable. As the space X itself is uncountable, indX 

Conversely, the existence of a space X with the above properties implies 
the continuum hypothesis. Indeed, since every non-empty metric space 
of cardinality < c is zero-dimensional (see Example 1.2.5), 1x1 2 C and 

Y 

Y 

a< Y vr 

y < a  

= co. 
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every subset of X which has cardinality < c is countable; considering 
a set A c X such that IAl = K 1  , we conclude that K, = c. As the continuum 
hypothesis is independent of the standard axioms of set theory, the ex- 
istence of a metric space X such that indX = m and all finite-dimensional 
subspaces of X are countable is also independent of the standard axioms 
of set ’theory. 0 

In the light of Theorem 1.8.20 we see that among all infinite-dimensional 
separable metric spaces there are “weakly” infinite-dimensional spaces, 

for example the union U X,,, where X ,  is homeomorphic to the n-cube 

1“ and X,,nXm = 0 whenever n # m, and “strongly” infinite-dimensional 
spaces, for example the Hilbeit cube Z”0. The classification of infinite- 
dimensional spaces into spaces which can be represented as countable 
unions of finite-dimensional spaces (such spaces are called countable- 
dimensional) and spaces which cannot be represented in such a way, sug- 
gested by Theorem 1.8.20, is not the only possible classification into 
“weakly” and “strongIy” infinite-dimensional spaces; several classifica- 
tions of this kind are defined and studied in the literature. It is also possible 
to extend the inductive definition of ind and Ind from natural numbers 
to ordinal numbers; in this way one obtains the transfinite small inductive 
dimension trind and the transfinite large inductive dimension tr Ind, which 
satisfy the inequality trindX < trInd X .  It turns out, however, that there 
exist separable metric spaces, even countable-dimensional spaces, with 
trind larger than any given ordinal number. E.g., the subspace X of the 
Hilbert cube I K o  consisting of all points which have at most finitely many 
coordinates distinct from zero does not satisfy the inequality trindX < u, 
and, a fortiori, the inequality trIndX < a, for any ordinal numbe! a;  so 
that for the space X neither trind nor trInd is defined. One can also prove 

that for the union X = U X,,, where X,, is homeomorphic to the n-cube 

I” and X,,nXm = 0 whenever n # m, trInd is not defined, although, as 
can easily be seen, trindX = w,, . Finally, there exist compact metric spaces 
for which both trind and trInd are defined but are distinct ordinal numbers. 

The theory dealing with transfinite dimensions and different notions 
of “weak” infinite-dimensionality now forms quite an extensive part of 
dimension theory. It includes various characterizations of “weakly” in- 
finite-dimensional spaces (see, e.g., the remark to Problem 1.7.D), varia- 
tions on addition, sum, enlargement, compactification and universal space 

W 

n= 1 

m 

n= 1 
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theorems, and also many interesting examples. Let us note that in this 
domain several natural and interesting questions are still unanswered. In 
consideration of the elementary character of the present book we confine 
ourselves to calling the reader's attention to these topics; in the notes 
below we list the most important items of the bibliography of infinite- 
dimensional spaces. 

Historical and bibliographic notes 

A proof of the Brouwer fixed-point theorem can be found in the appendix 
to Section 7.3 of [GT]. Theorem 1.8.1 is implicit in Eilenberg and Otto's 
paper [1938]. As already mentioned in the notes to Section 1.1, the equality 
dimR" = n (more exactly, Theorem 1.8.15) was discovered by Lebesgue 
in 119111 and proved by Brouwer in [1913]; the gap in Lebesgue's original 
outline of proof, given in [1911], was filled in his later paper [1921]. Brou- 
wer's paper [ 191 31 contains also a proof of the equality Ind R" = n, which 
is reduced to the equality dimR" = n. The equality indR" = n was estab- 
lished-also by a reduction to the equality dimR" = n and an applica- 
tion of Lebesgue's result-by Menger in [I9241 and by Urysohn in [1925] 
(announcement in [1922]). Theorem 1.8.9 was given by Sierpinski in [1922]; 
Theorem 1.8.8 is obtained by a small modification of Sierpinski's proof. 
Theorems 1.8.10, 1.8.12 and 1.8.13 were obtained by Menger in [19241 
and by Urysohn in [1925] (announcement in [1922]). Urysohn in his proof 
of Theorem 1.8.10 applied an earlier result of Frkchet and Brouwer (see 
Problem 1.8.D), and Menger showed that if a subspace M of R" has an 
empty interior, then for every point x E R" and each positive number E 

there exists a neighbourhood U c R" of the point x such that 6(U)  < E ,  

the boundary Fr  U is homeomorphic to S"-l and the intersection M n F r  U 
has an empty interior in the space FrU. TheoIem 1.8.16 was proved in 
Lebesgue's paper [1921]. Mazurkiewicz established Theorem 1.8.19 in 
[1929]. Theorem 1.8.20 and Example 1.8.21 were given by Hurewicz in 
[ 19281 and [ 19321, respectively. 

Hurewicz was the first to hint, in [1928], at the possibility of a classifica- 
tion of infinite-dimeneional spaces ; he defined there countably-dimensional 
spaces. A comprehensive exposition of the theory of infinite-dimensional 
spaces can be found in Alexandroff and Pasynkov's book [19731; some 
information is contained in Nagata's book [1965]. Further results were 
obtained by Arhangel'skii in [1963], Lelek in [1965], Nagami in 119651, 
Nagami and Roberts in [1965], Schurle in [1969], Shmuely in [19721, 
and Ljuksemburg in [1973] and [1973a]. 
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Problems 

1.8.A. Let us recall that a subset A of Euclidean n-space R" is convex 
if for each pair x, y of points of A the segment with end-points x and y 

is contained in A .  
Show that every convex compact subspace A c R" which has a non-empty 

interior is homeomorphic to the n-ball B" and its boundary FrA is homeo- 
morphic to the (n- 1)-sphere S"-'. Note that, in particular, Z" and B", 
and also FrZ" and Sn-l, are homeomorphic to each other for n = 1 ,2 ,  ... 

Hint. Consider a point x E IntA and prove that every ray starting 
from x meets FrA at exactly one point. 

1.8.B. Show that the Brouwer fixed-point theorem follows easily both 

Hint. The Brouwer fixed-point theorem is equivalent to the statement that 
from Theorem 1.8.1 and from Theorem 1.8.15. 

is not a retract of B". sn-' 

1.8.C (Nobeling [1932]). Prove that if the projection of a compact 
subspace X of R" onto the Cartesian product of each n coordinate axes 
of R", where 0 < n < m, has an empty interior, then the subspace X is 
embeddable in NF-, . Deduce that if an Fa-set X c R" satisfies the inequality 
indX 2 n > 0, then there exists a set of n coordinate axes of Rm such 
that the projection of X onto the Cartesian product of these axes has di- 
mension n (the assumption that X is an Fa-set cannot be omitted; see 
Example 1.10.23). 

Hint. Let H I ,  H,, ... be the sequence of all linear (m--)-varieties 
in R" defined by conditions of the form x i ,  = rl , xi, = r 2 ,  ... , xi" = r,, 
where 1 < i, < i, < ... < in < m and r l ,  r z ,  ... , r,  are arbitrary rational 
numbers. Observe that for i = 1, 2, ... the set A* t R" of all points a E R" 
such that { x + a :  x EX}nH, # 0 is closed and has an empty interior. 

1.8.D (Brouwer [1913a]; implicitly, Frtchet [1910]). Prove that for 
any two countable dense subsets A ,  B of Euclidean n-space R" there exists 
a homeomorphism f: R" --f R" such that f ( A )  = B. Note that this result 
yields Theorem 1.8.10. 

Hint. A set A c R" is in general position with respect to the coordinate 
axes if for every pair of distinct points x = {xi}, y = fyi} E A the differ- 
ence xi -y ,  does not vanish for i = 1, 2,  ..., n. Prove first that for every 
countable set A c R" there exists a homeomorphism of R" onto itself 
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that maps A onto a set in general position with respect to the coordinate 
axes. Then show that the elements of two countably infinite sets in general 
position with respect to the coordinate axes can be arranged into two 
sequences x,, x2, ... and y ,  , y 2 ,  ..., where x, = (xi} and y ,  = {A}  for 
j = 1 , 2 ,  . . . , in such a way that the differences x i  -x: and y i -y f  have 
thesamesignforj,k = 1 , 2 ,  ..., j # k, and i  = 1 , 2 ,  ..., n (cf. the hint to 
Problem 1.3. G (a)). 

Remark. It was proved by Fort in [1962] that the Hilbert cube also has 
the above strong homogeneity property; more general results were obtained 
by Bessaga and Pekzyliski in [1970] and by Bennett in [1972]. 

1.8.E. (a) Deduce from Theorem 1.8.13 that if a subset M of a region 
G c R" satisfies the inequality indM < n-2, then M does not separate G, 
i.e., the complement G\M is connected. 

Hint. Observe first that every set T which separates a topological space X 
between a pair of points x and y contains a partition between x and y. 
Then reduce the problem to the special case where G = R" (cf. the proof 
of Theorem 1.8.19). 

(b) Give an example of a one-dimensional subset of the plane R2 which 
does not separate any region G c R2.  

Remark. Sitnikov gave in [1954] an example of a two-dimensional 
subset of R3 which does not separate any region G c R3.  On the other 
hand, every (n-  1)-dimensional closed subset of R" does separate a region 
G c R" (see Alexandroff [1930], Frankl and Pontrjagin [1930], and Frankl 
[1930]). 

1.8.F. Give an example of a subset of the plane R2 which cuts R2 but 
does not separate it. 

1.8.G (Smirnov [ 19581). Show that every non-empty separable metric 
space can be represented as the union of an increasing transfinite sequence 
of type CD, consisting of zero-dimensional subspaces. 
Hint. Show that the interval I can be represented in this way, and 

apply the universality of the Hilbert cube for the class of all separable 
metric spaces. 

Remark. Related results can be found in Arhangel'skii's paper [I9631 
and Nagami's paper [1965]. 
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1.9. Characterization of dimension in terms of mappings to spheres. Cantor- 
manifolds. Cohomological dimension 

In the preceding sections we chiefly studied the internal properties 
of n-dimensional spaces. In the present one, and the next two to follow, 
we shall study the external properties; more exactly, we shall discuss the 
relations of n-dimensional spaces to standard spaces such as spheres, 
polyhedra and Euclidean spaces. 

We begin with a characterization of dimension in terms of extending 
mappings to spheres from a closed subspace over the whole space. 

Let us recall that a continuous mapping f: A + Y defined on a subspace 
A of a space X is continuously extendable over X if there exists a continuous 
mapping F :  X + Y such that FIA = S, i.e. F(x) = f ( x )  for every x E X ;  
the mapping F is called a continuous extension of J: One of the most im- 
portant results on extending mappings is the Tietze-Urysohn theorem, 
which states that every continuous function from a closed subspace A 
of a normal space X to the closed interval I is continuously extendable 
over X. Urysohn's lemma is a special case of this theorem; it states that 
for every pair A ,  B of disjoint Flosed subsets of a normal space X there 
exists a continuous functionf: X --t I such thatf(A) c (0) and f(B) c {I}. 
When X is a metric space, the function f in Urysohn's lemma can be obtained 
in a particularly simple way, viz., by defining 

The Tietze-Urysohn theorem implies that for every continuous mapping 
f: A + Z" of a closed subspace A of a normal space X to the n-cube Z" 
there exists a continuous extension F: X + I" over X ;  indeed, it suffices 
to choose for i = 1 , 2, ... n a continuous extension Fi: X + Z of the 
composition p i f ,  where pi: P + I is the projection of Z" onto the i-th co- 
ordinate axis, and define F(x) = (Fl (x )  , F2 (x)  , . . . y Fn(x)). 

On the other hand, for every continuous mappingf: A -+ S" of a closed 
subspace A of a normal space X to the n-sphere S" there exists an open 
set U c X containing A and such thatf is continuously extendable over U. 
Indeed, the two spaces being homeomorphic (see Problem 1.8.A), one can 
replace the sphere S" by the boundary S; of the (n+ 1)-cube In+' in R"+l 
and, applying the above observation, obtain a continuous mapping Fo: 
X + I"+l such that Fo(x) = f ( x )  for every x E A ;  now, the mapping f is 
continuously extendable over the open set U = F;l(I"+l\{a}) c X ,  
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where a = (112, 1/2, ... , 1/2); the composition F of the restriction F,IU 
and the projection p of l''+l\(a} from the point a to Si is a continuous 
extension off  over U. 

It is well known (cf. the hint to Problem 1.8.B) that in general con- 
tinuous mappings to the n-sphere s'' are not continuously extendable 
from a closed subspace to the whole space. We shall now show that the 
extendability of such mappings depends exclusively on the dimension 
of the complement of the subspace under consideration. 

1.9.1. Lemma. Let X be a separable metric space and A a closed subspace 
of X such that ind(X\A) < n 2 0. For every pair A,, Az of closed subsets 
of A such that A, u A 2  = A there exist closed subspaces XI , X ,  of the space 
X which satisfy the conditions 

(1) X = XluX,, A, c XI,  A, c X,, A,nX, = A l n A z  = X,nAz 
and 

(2) ind[(X,nX,)\(A,nA,)] < n - I .  

Proof. The eets A,\Az = A1\(A,nAz) and A,\A, = A2\(AlnA2) 
are disjoint and closed in the subspace X\(A,nA2) of the space X. By 
virtue of the second separation theorem, there exists a partition L in 
X\(AlnA2) between A,\A2 ' and A,\A, such that ind[Ln(X\A)] 
< n -  1; since LnA = [Ln(A,\A,)]u[(Ln(Az\A,)]u[LnA,nA,l = 0, 
the last inequality can be rewritten as indL < n-  1. 

Fig. 9 

Consider a pair of sets U ,  V c X\(A, nA2) which are open in 
X\(A, nA,) and satisfy the conditions 
A,\A, c U ,  A,\A, c V ,  UnV = 0 and [X\(A,nA,)]\L = UuV. 
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The sets U and V are open in X; we shall verify that their complements 
Xl = X\V and X, = X\U satisfy ( 1 )  and (2). 

First of all, 

X,uX, = (X\v>u(X\U) = X\(UnV) = X. 
Next, 

A l  = (A1\A2)u(A,nA2) c Uu[X\(UuV)] c X\V = X l ,  

and-similarly-A, c X ,  . Then, 

A l n A z  c A,nX, = A1\U c A1\(A1\A2) = A , n A , ,  

so that A l n A z  = AlnXz, and-similarly-A,nA, = XlnAz. Finally, 
since X 1 n X 2  = X\(UuV) = Lu(A,nA,), we have [(XlnXJ\(A,nAz)] 
= L, so that ind[(X,nX,)\(A,nA,)] < n-1.  

1.9.2. Theorem. r f  X is a separable metric space and A a closed subspace 
of X such that ind(X\A) < n 2 0, then for every continuous mapping f: 
A + S" there exists a continuous extension P: X + S" o f f  over X.  

Proof. We shall apply induction with respect to n. When n = 0, the map- 
ping f takes values in the two-point space So = { - 1 , 1 ] and it follows 
from Lemma 1.9.1, applied to the sets A ,  = f -'(l) and A ,  = f-'(- I), 
that there exist closed subspaces Xl , X ,  of the space X such that X = X, u 
uXz, Al  c Xl , A, c X z  and X , n X ,  = 0. The mapping F: X + So 
ddned by letting 

1 for X E X , ,  

-1 for X E X ,  
F(x) = 

is then the required continuous extension off. 
Consider now an n > 1 and assume that the theorem holds for con- 

tinuous mappings to the (n- 1)-sphere s"-'. Letf: A + s'' be a continuous 
mapping defined on a closed subspace A of a separable metric space X 
such that ind(X\A) < n. Denote by S; and ST the upper and the lower 
hemisphere of S", respectively. Let A ,  =f- ' (S: )  and A ,  = f -I@!!); 

since S:nS!! = S"-' , the restriction g = f J A , n A z  maps A 1 n A 2  to S"-'. 
Applying Lemma 1.9.1, we obtain closed subspaces X,, X ,  c X which 
satisfy conditions ( 1 )  and (2). From (2) and the inductive assumption it 
follows that the mapping g :  A l n A 2  + S"-' has a continuous extension 
G :  X , n X ,  3 Sn-l over the subspace XlnXz of the space X.  Since AlnXz 
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= A , n A z  = X l n A , ,  the formulas 

for x E A ] ,  for x € A z ,  

G(x) for x EXlnXz 

define continuous mappings 

fr: A , u ( X l n X , )  + S; and f , :  A 2 u ( X l n X z )  + S!!. 

The hemispheres S: and S I  being homeomorphic to I", it follow from 
the Tietze-Urysohn theorem that fi and f, are continuously extendable 
to mappings Fl : X ,  -+ S: and F, : X ,  + S!! . Letting 

Fl(x) for x EX, , 

we define a continuous extension F: X -+ S" of the mapping f. 0 

1.9.3. Theorem on extending mappings to spheres. A separable metric space 
X satisjies the inequality indX < n 2 0 if and only i f  for every closed sub- 
space A of the space X and each coniinuous mapping f: A .+. S" there exists 
a continuous extension F: X + S" o f f  over X.  

Proof. By virtue of Theorem 1.9.2, it suffices to show that extendability 
of mappings implies the inequality ind X < n. We shall apply the theorem 
on partitions. 

Let ( A 1 ,  B J ,  ( A z ,  B,), ... , (A ,+1 ,  B,,,,) be a sequence of n+ 1 pairs 

of disjoint closed subsets ofX. Define A = U ( A i u B i )  and, for i = 1 , 2, ... 

. . . , n + 1, consider a continuous function fi : A -+ I such that 

n i l  

i = l  

h ( A J  fI (01 and . m i )  = w. 
Letting f ( x )  = (fl(x), f , (x) ,  . . . ,h+]( x)) for X E A ,  we define a continuous 
mapping f :  A -+ S; of A to the boundary S; of the (n+ 1)-cube I"+' in 
R"+l. As the space S; is homeomorphic to Sn, the mapping f has a con- 
tinuous extension F:  X -+ Sy over X.  The composition Fi:  X + I of F and 
the projection of S; onto the i-th coordinate axis is an extension of f i  for 
i = 1,2, . . . , n + 1 , so that the set L, = F;l (  1 /2) is a partition between Ai 

and B1.  Since Li = 0, we have indX < n by virtue of the theorem 

on partitions. 0 

n + l  

i= 1 
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1.9.4. Remark. Let us note that in the second part of the above proof 
only the normality of the space X was applied; hence, we have shown 
that if a normal space X has the property that for every closed subspace A 
of X and each continuous mapping f: A -, S" there exists a continuous 
extension F: X - ,  S" of f over X ,  then for every sequence (Al ,  B , ) ,  
(A2,  B2) ,  ... , (An+r, B,+J of n+ 1 pairs of disjoint closed subsets of X 
there exist closed sets L, , L2,  . . . , Ln+ such that Li is a partition between 

"+l  

i = l  
A i  and Bi and 0 Li = 0. 

The characterization of dimension in terms of mappings to spheres 
will now be applied to establish the Cantor-manifold theorem; another 
important application of this characterization will be given in Section 
1.12 (see Theorem 1.12.4). 

1.9.5. Deihition. A compact metric space X such that indX = n 2 1 is 
an n-dimensional Cantor-manifold if no closed subset L of X satisfying 
the inequality indL < n-2 separates the space X ,  i.e., if for every such 
set the complement X\.L is connected. 

Clearly, every one-dimensional metric continuum is a one-dimensional 
Cantor-manifold, and from Theorem 1.8.13 it follows that for every n > 1 
the n-cube I" and the n-sphere S" are n-dimensional Cantor-manifolds. On 
the other hand, for every n > 2 the union of two copies of the n-cube 
I" with exactly one point in common is an example of an n-dimensional 
compact metric space which is not a Cantor-manifold. Let us observe 
that if X is an n-dimensional Cantor-manifold, then the dimension of X 
at each point x E X  (see Problem l . l .B) is equal to n, but-as shown by 
the Iast example-a compact metric space of dimension n at each point 
need not be a Cantor-manifold. 

As we have already observed (see remarks to Problems 1.4.F(b) and 
1.5.C), for every n 2 1 there exist separable metric spaces of dimension n 
which contain no compact subspace of dimension n, and, a fortiori, no 
n-dimensional Cantor-manifold. However, every compact metric space of 
dimension iz > 1 does contain an n-dimensional Cantor-manifold. The 
proof of this important theorem is preceded by two lemmas. 

Let us recall that continuous mappings fo, f, of a topological space X 
to a topological space Yare homotopic if there exists a continuous mapping 
F : X x I - +  YsuchthatF(x,i) =f; .(x)fori= 0, 1 andxEX;themapping 
F is called a homotopy between fo and fi. 
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1.9.6. Lemma. Let f ,  g :  X + S" be continuous mappings of a separable 
metric space X to the n-sphere S". r f  the set 

satisfies the inequality indD(f, g) < n- 1, then the mappings f and g are 
homotopic. 

w, 8)  = ( x  E X :  f (4 z g ( 4 )  

Proof. Consider the space Y = X x  I, the closed set A = ( X x  (0, l})u 
u(X\Bcf, g)) x I c Y and the continuous mapping h: A + S" defined 
by letting 

and 

As Y\A c D(f, g)  x I ,  we have ind(Y\,A) < n, and by virtue of Theorem 
1.9.2 there exists a continuous extension H :  Y + S" of the mapping h:  
A + S"; dearly, H is a homotopy between f and g. 0 

h(x ,  0) = f ( x ) ,  h (x ,  1) = g(x)  for x E X  

h(x ,  t )  = f ( x )  = g(x)  for x €X\D(f,g) and t €1. 

The next lemma describes an important property of mappings to 
spheres; it is called the Borsuk homotopy extension theorem. 

1.9.7. Lemma. Let X be a topological space such that the Cartesian product 
X x I is normal (in particular, a metric or a compact space), A a closed sub- 
space of X, and f ,  g :  A + s" a pair of homotopic continuous mappings of A 
to the n-sphere S". iff is continuously extendable over X ,  then g is also con- 
tinuously extendable over X ;  moreover, for every extension F: X + S" o f f  
there exists an extension G: X 4 S" of g such that F and G are homotopic. 

Proof. Let h: A x I -+ S" be a homotopy between f and g. The continuous 
mapping h': ( X x  (O})u(A x I )  -+ S" defined by letting 

and 
h'(x, 0) = F(x) for x E X  

h'(x, t )  = h(x ,  t )  for x E A and t EI 

can be extended to a continuous mapping H' : U + S" defined on an open 
set U c X x I which contains ( X x  (O})u(A x I). It follows from the com- 
pactness of I and the definition of the Cartesian product topology that 
every point a E A has a neighbourhood V, t X such that Va x I c U; 
the union V = IJ V, is an open subset of X such that A x I c V x  I' c U. 

The space X ,  being homeomorphic to the closed subspace X x  {0} of the 
normal space X x I, is itself normal, so that by Urysohn's lemma there 

aeA 
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exists a continuous function u :  X -, I such that 

u(X\V) c (0) and u(A) c ( 1 ) .  

One readily verifies that the formula 
H ( x ,  t )  = H'(x ,  t . u ( x ) )  for ( x ,  t )  EXXZ 

defines a continuous mapping H :  X x I + S" such that H ( x ,  0) = F(x) 
for x E X  and H ( x ,  1) = g(x)  for x E A. Hence, the mapping G :  X + Sn 
defined by letting G(x) = H ( x ,  1) for x E X  is a continuous extension 
of g ,  and H is a homotopy between F and G.  

1.9.8. The Cantor-manifold theorem. Every compact metric space X such 
that indX = n 2 1 contains an n - d i m e ~ i ~ n a ~  Cantor-manifold. 

Proof. By virtue of Theorem 1.9.3, there exists a closed subspace A of the 
space X and a continuous mapping f: A +. S"-l which cannot be con- 
tinuously extended over X .  Denote by % the family consisting of all closed 
sets C c X such that the mapping f cannot be continuously extended 
over AuC, and define an order < in the family % by letting C, < C,  
whenever C2 c C, ; since X E v, the family %? is non-empty. 

Now, consider a subfamily'%', of V which is linearly ordered by <. 
We shall show that the closed set Co = 0, is a member of %. Assume 
the contrary, i.e., that the mapping f is continuously extendable over 
AuC,. There exists then an open set U c X containing A u C ,  such that 
f is continuously extendable over U. Since Co = n %, c U, from the 
compactness of X follows the existence of a finite number of sets C,  , C2 , . . . 
... , C, E Vo such that C,nC2n ... nC, c U. The family Yo being linearly 
ordered by <, there exists an i, < k such that Cio c Ci for every i < k.  
Hence, Ci, c U and the function f is continuously extendable over A u  
uCio c U ;  but this is impossible, because Ci0 is a member of %?. The 
contradiction shows that C,  E %; clearly C < C,  for every C E %?,. Ap- 
plying the Kuratowski-Zorn lemma, we obtain a maximal set M E % ? ,  
i.e., a closed set M c X such that the mapping f cannot be continuously 
extended over A u M ,  and yet for every proper closed subset M' of M 
it is continuously extendable over AuM' .  We shall show that M is an 
n-dimensional Cantor-manifold. 

As indM < indX = n, it suffices to show that if M = M 1 u M 2 ,  where 
MI and M ,  are proper closed subsets of My then ind(M,nM,) 2 n-1. 
Assume that there exist proper closed subsets M I  , M2 of the set M such 
that M = M ,  u M ,  and ind(M,nM2) < n - 2 ;  consider the sets A ,  = AuM,  
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and A2 = AuM, .  For i = 1 , 2  the mapping f can be extended to 
a continuous mapping fr: Ai -+ S"-l. The restrictions f l  I B and f 2  I B of 
fl and f 2  to the set B = A u ( M , n M 2 )  differ on a subset of MlnM2, 
so that by virtue of Lemma 1.9.6 they are homotopic. Since f 2  1 B i s  con- 
tinuously extendable over AuM, , it follows from Lemma 1.9.7 that f i  I B 
is also extendable to a continuous mapping f ; :  A u M ,  4 S"-'. From 
the equality (AuM,)n(AuM,)  = B it follows that letting 

J f l ( x )  for x E A u M l ,  

I f i ( x )  for x EAUM, 

we define a continuous mapping F: A u M +  S"-' which extends the 
mapping f .  This contradiction concludes the proof. [II 

F(x) = 

1.9.9. Corollary. Every n-dimensional compact metric space X has an n-di- 
mensional component. 

The characterization of dimension in terms of mappings to spheres 
leads, via Hopf's extension theorem, to the cohomological characteriza- 
tion of dimension. We shall describe briefly this piocess. 

It is a well-known fact that the eech cohomology groups with coeffi- 
cients in the group of integers, based on all open covers, satisfy the Eilen- 
berg-Steenrod axioms. In particular, for every topological space X and 
every closed subset A of the space X the cohomology sequence 

j *  d i* i* a i8 
Ho(X,  A )  4 ... -+ H"(X,  A )  + F ( X )  + F ( A )  + F ( X ,  A )  + ... 

of the pair ( X ,  A )  is an exact sequence, and for every continuous mapping 
f: X 4 S" an element f *(s") of the cohomology group H"(X) is defined, 
the image of a fixed generator of the group H"(S") under the induced 
homomorphism f * : H"(S") -+ H"(X).  Hopf's extension theorem, which 
was mentioned above, states that 

(H) A continuous mapping f :  A -+ S" defined on a closed subspace A of 
a paracompact space X such that dimX < n + I is continuously extend- 
able over X i f  and only i f f * ( $ " )  E i*(H"(X)). 

It follows from the definition of cohomology groups that if X is a para- 
compact space such that dimX < n, then H"+I(X, A)  = 0 for every closed 
set A c X (cf. Proposition 3.2.2). On the other hand, if a finite-dimensional 
separable metric space X satisfies the inequality dimX > n, then by virtue 
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of Theorem 1.5.1 there exists a closed subspace X' of X such that dimX' 
= n + l ,  and by virtue of Theorem 1.9.3 there exists a closed subspace A 
of X and a continuous mappingf: A -, S" which cannot be continuously 
extended over X' ; from Hopf's extension theorem and the elementary 
properties of cohomology groups it follows that f *(s") $ i * ( W ( X ) ) ,  so 
that H"+l (X ,  A )  # 0 by the exactness of the cohomology sequence of the 
pair ( X ,  A).  Thus we obtain the cohomological characterization of dimension, 
which states that a finite-dimensional separable metric space X satisfies 
the inequality dimX < n 2 0 if and only if H"+f(X, A )  = 0 for every 
closed set A c X and for i = 1 , 2, . . . This characterization remains valid 
in the class of all paracompact spaces (cf. Theorem 3.2.10). Let us observe 
that for a metric space X it would be enough to consider the group 
H"+l(X, A), but for arbitrary paracompact spaces it is necessary to take 
into account all groups H"+ * ( X ,  A),  because no counterpart of Theorem 
1.5.1 holds in paracompact spaces for the covering dimension dim. Let us 
also note that it is an open question whether the assumption of finite- 
dimensionality of X in the cohomological characterization of dimension 
is essential. 

The cohomological characterization of dimension was the point of 
departure for cohomological dimension theory, a section of dimension 
theory on the border-line of point-set and algebraic topology, which studies 
the notion of the cohomological dimension with respect to an abelian 
group. For a fixed abelian group G # 0, to every topological space X one 
assigns the cohomological dimension of X with respect to G ,  denoted by 
dimG& which is an integer larger than or equal to -1 or the "infinite 
number" 00 ;  the definition of the dimension function dim, consists in 
the following conditions : 

(CDI) dimGX = - 1  if and only i f X  = 0; 
(CD2) dim,X < n, where n = 0,1,  ... , if H"+'(X,  A ;  G )  = 0 for every 

closed set A c X and for i = 1,2, ...; 
(CD3) dimcX = n i f  dimcX < n and dim,X > n-  1 ; 
(CD4) dimcX=co ( f d i m , X > n f o r n =  - l , O , l , . . .  

One proves that the functions dimc, although distinct for different 
groups G; have many properties of dimension. In particular, for every 
abelian group G # 0 and every natural number n we have dimG R" = dimGI" 
= dimGS" = n. One also proves that, under suitable assumptions on the 
space X and the group G, cohomological dimensions satisfy the counter- 
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parts of the subspace, sum, Cartesian product and compactification theo- 
rems. In the proofs of these theorems methods of algebraic topology 
and homological algebra are largely applied. 

To conclude, let us note that the dimension of compact spaces can 
also be characterized in terms of Cech homology groups with coefficients 
in the group R1 of real numbers modulo 1. One p~oves that a finite-dimen- 
sional compact space X satisfies the inequality dimX < n 2 0 if and only 
if H,+&Y, A ;  R,) = 0 for every closed set A c X and for i = 1,2 ,  . . . 
In the proof, the exactness of the homology sequence and the homological 
counterpart of Hopf's extension theorem are used; since compactness 
is crucial for the validity of both these results, when passing to larger 
classes of spaces one has to replace homology with cohomology. 

Historical and bibliographic notes 

Theorem 1.9.2 was established by Hurewicz in [1935a]. The same 
paper contains Theorem 1.9.3 for compact metric spaces. It is a restatement 
of an earlier result of AlexandroE (see Problem 1.9.A); Hurewicz's contri- 
bution was to find a clever formulation and a simple proof (cf. Problem 
1.9.C). The extension of Theorem 1.9.3 to separable metric spaces was 
given by Hurewicz and Wallman in [1941]. The notion of a Cantor-manifold 
was introduced by Urysohn in [1925]; Theorem 1.9.8 was proved independ- 
ently by Hurewicz and Menger in [1928] and by Tumarkin in [1928]. 
The original proofs were much more involved than the one presented 
here, discovered by Hurewicz in [1937] and by Kuratowski in [1937] 
(a similar proof was given by Freudenthal in [1937]). Homological dimension 
theory was originated by Alexandroff in [1932]. Complete proofs of ho- 
mological and cohomological characterizations of dimension in the realm 
of compact metric spaces can be found in Hurewicz and Wallman's book 
[ 19411. A comprehensive exposition of cohomological dimension theory 
was developed by Kuz'minov in [1968] and by Kodama in [1970]. 

Problems 

1.9.A (Alexandroff [ 19321 for compact metric spaces). A continuous 
mapping f: X -+ Bn+l of a topological space X to the (n+ 1)-ball in R"+l 
is essential if there is no continuous mapping g :  X + B"+l such that 
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g /  f -l(Sn) = f l  f -'(S") and B"+'\g(X) # 0; essential mappings with 
values in sets homeomorphic to balls are defined in a similar way. 

Show that a separable metric space X satisfies the inequality indX 
< n > 0 if and only if no continuous mapping f :  X --+ Bn+l is essential. 

1.9.B (Hurewicz and Wallman [1941]). A point y E f ( X )  is an unstable 
value of a continuous mapping f :  X -, Y of a topological space X to a metric 
space Y if for every positive number E there exists a continuous mapping g :  
X + Y such that e (f(x), g(x))  < E for every x E X  and y # g(X) ;  other- 
wise, y E f ( X )  is a stable value off. 

(a) Show that y E f ( X )  is an unstable value of a continuous mapping f :  
X + I" if and only if for every neighbourhood U of the point y there exists 
a continuous mapping g :  X + I" such that g(x )  = f ( x )  whenever f ( x )  
4 U, g(x)  E U whenever f ( x )  E U, and y # g ( X ) .  

(b) Show that a separable metric space X satisfies the inequality indX 
< n > 0 if and only if for every continuous mappingf: X + I"+l all points 
inf(X) are unstable values off. Observe that instead of I"+l one can con- 
sider s"+' or R"+l. 

1.9.C (Hurewicz [1935a]). (a).-Let Y be a complete metric space and Z 
a totally bounded metric space. Prove that for every open set U c Y x 2 
which is dense in Y x  Z there exists a set A c Y which is dense in Y and 
such that for every a E A the set { z  E Z :  (a ,  z) 4 U }  is dense in 2. 

(b) Prove that if X is a compact metric space and the set { f E (R"+ ')": 
f (x )  # (0, 0 ,  . . . , 0) for every x E X )  is dense in the function space (R"+ l)x, 
then indX < it (see the beginning of Section 1.11). 

Hint. Apply induction with Iespect to n ;  use the equality (R"+')X 
= (R")x x RX and part (a). 

(c) Apply part (b) to show that if for every closed subspace A of a com- 
pact metric space X and each continuous mappingf: A --f S" there exists 
a continuous extension F: X -, S" off over X, then indX < n. 

1.9.D (Borsuk [1937]; for a compact metric space X, Eilenberg [1936]). 
Prove that for every continuous mappingf: A -+ Sk defined on a closed 
subspace A of a separable metric space X such that ind(X\A) < n, where 
0 < k < n, there exists a closed subspace B of the space X such that AnB 
= 0, indB < n - k -  1, and the mapping f has a continuous extension F: 
X\B --+ Sk over X\B. 

Hint. Apply induction with respect to k + n ;  modify the proof of The- 
orem 1.9.2. 
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1.9.E. (a) Let p :  R -+ S' be the continuous mapping of the real line 
to the circle defined by letting p ( t )  = e'"". Applying the fact that for 
every continuous mapping g :  X -+ S1 of a metric space X to S' which 
is homotopic to a constant mapping there exists a continuous mapping g: 
X -+ R such that g = p g  (see Spanier [1966], p. 67), show that for every 
one-dimensional compact metric space 2 there exists a closed set M c Z 
such that the quotient space Z / M  can be mapped onto S1 by a mapping 
which is not homotopic to the constant mapping. 

.Hint. Let M be a closed subspace of the space Z with the property 
that there exists a continuous mapping f: M -+ So which cannot be con- 
tinuously extended over Z, and let F: Z -+ I be a continuous mapping 
such that F(x) = f ( x )  for every x E M. Consider the quotient space Z / M  
and the continuous mapping g :  ZIM -+ I /So  = S1 induced by F. 

(b) (Hurewicz [1935]) Applying the fact that for every n-dimensional 
compact metric space Z, where n = 1, 2, .. . , there exists a closed set 
M c Z such that the quotient space Z / M  can be mapped onto S" by a map- 
ping which is not homotopic to the constant mapping (see Dowker [1947], 
p. 235), show that for every compact metric space X and every one-dimen- 
sional separable metric space Y we have ind(X x Y )  = indX+ 1 = indX+ 
+ ind Y. 

Hint. Let indX = n ;  reduce the problem to the special case where 
there exists a continuous mapping g :  X -+ S" which is not homotopic 
to the constant mapping. Then consider a pair A ,  B of disjoint closed 
subsets of Y such that the empty set is not a partition between A and B 
and, assuming that ind(Xx Y )  < n, extend the mappingf: X x  (AuB) ---f S" 
defined by letting 

f ( x , y ) =  (l,O,O,...,O) f o r y E A  and f ( x , y ) = g ( x )  f o r y E B  
to a continuous mapping F: X x  Y ---f S"; examine the set of those y E Y 
for which the restriction FI(Xx { y } )  is homotopic to the constant 
mapping. 

1.9.F (Kuratowski and Otto [1939]). Let {X,},,, be a family of n-di- 
mensional Cantor-manifolds contained in an n-dimensional compact metric 
space X. Prove that if there exists an so E S such that the inequality 
ind(XsnXso) > n- 1 holds for all s E S, then the subspace us of X is 
an n-dimensional Cantor-manifold. 

Remark. As proved by Borsuk in [1951], the Cartesian product of two 
Cantor-manifolds is not necessarily a Cantor-manifold. 

seS 
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1.9.G. (a) (Anderson and Keisler [1967]) Let X be an open subspace 
of an n-dimensional Cantor-manifold. Prove that if a subset M of X meets 
every continuum C c X which has cardinality larger than one, then 
indM 2 n- 1 (cf. Theorem 1.8.19). 

Hint. Assuming that indM < n-2, define inductively a decreasing 
sequence X I  3 X ,  3 ... 2 Xn-l of subsets of X such that X ,  is an (n-k)- 
dimensional Cantor-manifold and indWnX,) < n - k - 2 for k = 1 , 2 ,  . . . 
..., n-1. 

(b) Give an example of a two-dimensional Cantor-manifold of which 
a one-point subset is a cut. 

1.9.H. (a) (Alexandroff [1932]) Show that every n-dimensional Cantor- 
manifold contained in an n-dimensional compact metric space X can be 
enlarged to a maximal Cantor-manifold contained in X ,  i.e., to a Cantor 
manifold which is not a proper subset of another Cantor manifold con- 
tained in X ;  maximal n-dimensional Cantor-manifolds contained in an 
n-dimensional compact metric space X are called dimensional components 
of X. Check that dimensional components of a one-dimensional compact 
metric space coincide with components of the space X which have car- 
dinality larger than one. Note that the union of all dimensional components 
of a compact metric space X is not necessarily equal to X.  Observe that the 
intersection of two dimensional components of an n-dimensional compact 
metric space has dimension < n-2. 

(b) (Mazurkiewicz [1933]) Prove that if A is a dimensional component 
of an n-dimensional compact metric space, and B is the union of all the 
remaining dimensional components of X ,  then ind(AnB) < n-2. 

Hint. Define a decreasing transfinite sequence X = Fl 3 F2 3 . . . I> Fa 
3 ... , a < o1 of closed sets containing A such that if Fa\A # 0, then 
Fa = Fa+lu(Fa\Fa+l), where ind[Fa+,n(Fa\Fa+,)] < n-2, and FA 
= Fa for every limit number 13. < wl. Applying the fact that there 

exists an a0 < o1 such that Fa = Fao for every a 2 a. (see [GT], Problem 
a<a 

3.12.7(b)), show that Fa, = A and X = A U  U (Fa\F,a+1)- 
a<ao 

1.10. Characterization of dimension in terms of mappings to polyhedra 

The characterization of dimension which is the object of the present 
section will be formulated in terms of mappings with “arbitrarilv small 
fibres” to polyhedra of geometric dimension < n. 
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We begin by recalling the notions of a simplex, a simplicia1 complex, 
and a polyhedron. 

Let p = { p i }  and q = {q i }  be points of Euclidean m-space R". The 
sum p + q of the points p and q and the product Ap of the point p by the real 
number A are defined by the formulas 

and 
p + q  = r = { r i } ,  

Ap = s = {si} ,  

where ri = p r + q i ,  

where si = Api. 

The point of R" which has all coordinates equal to zero, i.e., the origin 
of R", will be denoted by the symbol 0; the distance e(0, x )  will be denoted 
by IIxII. One can readily verify that 

IIP-~II = & , d ,  IVPII = I~l . l lpl l  and Ilp+qIl < l l ~ l l + l l ~ l l ;  
the last inequality is a reformulation of the triangle inequality in R". 

A finite system of points p o , p l ,  . . . , p k  E R" is linearly independent 
if for each sequence A,, A,, . . . , j lk  of k +  1 real numbers the conditions 

& P o + A ~ P ~ +  ... + & P k  = 0 and 20+11+ ... = 0 

imply that Ai = 0 for i = 0 ,  1 ,  .-., k. 

in R"; the subset of R" consisting of all points 

where 

(2) lo+&+ ... +A, = 1 and Ai > 0 for i = 0, 1 ,  ..., n,  

is called an n-simplex spanned by the points p o ,  p i ,  . . . , p ,  and is denoted 
by p o  p ,  .. . p , .  Clearly, the simplex popl  . .. p n  does not depend on the 
ordering of points p o , p l ,  ... , p n ,  it depends on the set {PO, PI ,  ... , p , }  
only. One proves that the simplex popl  . . . p .  determines the points 
p o ,  p ,  , . . . , p ,  and can be characterized as the smallest convex subset of 
Rm which contains these points; one also proves that the diameter of the 
simplex pop l  ... p ,  is equal to the diameter of the set ( p o , p l ,  . . . , p . ]  
(see Problem 1.lO.A). 

Consider an n-simplex pop l  . . . p ,  c R"; for each choice of k +  1 distinct 
non-negative integers i , ,  i, , ... , ik not larger than n, where 0 < k < n,  the 
pointspio ,pi,, . . . , pi t  form a linearly independent system, so that the k-simplex 
pi,,pi, . . . p i t  is well defined. Every simplex of this form is called a k-face 
of the simplex pop l  ... p.; 0-faces p o , p I ,  ... , p m  are also called vertices 
of the simplex popl  ... p.. One easily sees that the k-face p r o p i ,  ... pik 

Let p o , p I ,  . . . , p n  be a linearly independent system of n+ 1 points 

(1) P = ~ o P o + A ~ P ~ +  * - .  + A n P n ,  
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consists of all points of form (1) satisfying (2) and such that 

1, = 0 whenever i # i ,  for j = 0, 1, ..., k 
To denote the fact that So = piopt,  ... prr is a face of S = popl  .. . p ,  we 
write symbolically So < S. For each n-simplex S the union of all k-faces 
of S with k < n is called the boundary of the simplex S ;  the complement 
of the boundary is called the interior of the simplex S. 

It follows from the linear independence of the set of vertices, that 
every point p of the simplex spanned by the points po,pl,  . . .,p, E R" can be 
represented in the form (l), under conditions (2), in a unique way. The 
coefficients lo,  I I  , ... , 1, in (1) are called the barycentric coordinates of 
the point p ;  they will also be denoted by Ao(p), Al(p) ,  ... , 1,(p). 

One readily checks that every simplex S = popl  . . . p ,  c R" is a com- 
pact subspace of R" and that the barycentric coordinates ;Io, A1 , .. . , A, 
are continuous functions from S to I. This implies, in particular, that 
any two n-simplexes are homeomorphic. Hence (see Problems 1.8.A 
and l.lO.A(b)), every n-simplex is homeomorphic to the n-cube I". It 
follows from Corollary 1.8.3, that for every n-simplex S we have indS 
= IndS = dims = n. 

A simplicial complex, or, briefly, a complex, is an arbiirary finite 
famjlyX of simplexes in a Euclidean space such that if S EX and So <S 
then So EX, and if S,  , S, EX then the intersection SlnS2 either is empty 
or is a face of both SL and S 2 ;  all 0-simplexes that belong t o X  are called 
vertices of the complex X .  Every subfamily X o  of a complex X which 
itself is a complex, i.e. which together with a simplex S E X  contains 
all faces of S, is called a subcomplex of&-. 

Let X be a simplicial complex consisting of simplexes in Euclidean 
nz-space R". The union 1x1 = U { S :  S E X }  c R" is the underlying 
polyhedron of the complex X ;  it is a compact subspace of R". By a poly- 
hedron we mean a subspace of a Euclidean space which is the under- 
lying polyhedron IXl of a simplicial complex %; clearly, the representa- 
tion of a polyhedron as the underlying polyhedron of a complex is not 
unique. One can prove (see Problem 1.lO.B) that for every non-empty 
polyhedron K = I&-], the largest integer n such that the complex X contains 
n-simplexes does not depend on the complex X but on the polyhedron K 
only. The number n is called the geometric dimension of the polyhedron E, 
the geometric dimension of an empty polyhedron is equal to - 1. 
From the sum theorem and the fact that an n-simplex is an n-dimensional 
space it follows that the geometric dimension of a polyhedron coincides 
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with its topological dimensions ind, Ind and dim. Let us note that from 
the same two premises it follows that the integer n discussed above de- 
pends on the polyhedron K only. However, since one of the aspects 
of the characterization of dimension in terms of mappings to polyhedra 
is that it reduces the topological notion of dimension to the elementary 
notion of geometric dimension, it is not devoid of importance that the 
correctness of the definition of geometric dimension can be checked 
in an elementary way. In the sequel we shall abbreviate “geometric di- 
mension” to “dimension” and call a polyhedron whose geometric dimen- 
sion equals n an n-dimensional polyhedron. 

Every point p of the underlying polyhedron IXl = K of a simplicial 
complex X with vertices p o ,  p ,  , . . . , pk can be represented in the form 

(3) P = ~ O P O + ~ I P l +  *.* +AkPk, 

where d o + & +  ... +A, = 1 and I i  2 0 for i = 0, 1, ..., k ;  moreover, 
if p € p r o p i ,  ... p i l  EX,  then 1, = 0 whenever i # i ,  for j = 0, 1, ..., 1. 
It follows from the definition of a simplicia1 complex that the above 
representation is unique, so that the coefficients in (3) can be written as 
no(p),  2, ( p ) ,  . . . , A&); by the continuity of barycentric coordinates, 
lo, 3 ~ ~ )  ..., & are continuous functions from K to I. For every vertex 
p i  of the complexX the star of p i  is a subset of the underlying polyhedron 
defined by 

S t X ( P i 1  = IXI \U{S E X :  Pi 4 S > ;  

one readily checks that Stz(pi)  = { p  ~1x1: &(p) > O>, so that the stars 
of vertices o f X  are open subsets of 1x1. 

We are now going to prepare tools that will be applied later in this 
section to prove theorems on mappings to polyhedra and in the next 
one to prove general embedding and universal space theorems. 

1.10.1. Definition. A finite system of points p 1  , p 2  , . . . , P k  E R” is in 
generalposition if for each sequence io < il < ... < il < k of I +  1 natural 
numbers, where I < m, the system p i , ,  p i , ,  ... , p i l  is linearly independent. 

Since no system of m + 2  points in R“ is linearly independent, general 
position means the minimum of bonds between points in a system. 

1.10.2. Theorem. For every $nite system of points q1 , q2 , . . . , q k  E R” and 
every positive number ct there exists a system of points p ,  , p 2 ,  . . . , P k  E Rm in 
general position such that @ ( p i ,  qi) < a for i = 1 , 2 ,  ..., k .  If, moreover, 
a system of points rl , r2 , . . . , rl E R” in general position is given, one can 
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chose the points p1 , p2, . . . , Pk in such a way that the whole system rl , rz , . . . 
. . , , r l ,  p, , p2, . . . , Pk is in general position. 

Proof. The points pl ,  p2, . . . , pk will be defined by induction. Let p1 = ql; 
assume that for a j < k the pointsp, , p2 , . . . , p j -  , in general position are de- 
fined in such a way that p(pi ,qi)<a for i = l 7 2 , . . . , j - 1 .  Forevery 
system of points pio,pil,  ...,pi,, where io < il < ... < in < j - 1  and 
n < m- 1, the linear n-variety determined by these points is nowhere 
dense in R"; hence the union of all such linear varieties is also nowhere 
dense in Rm and there exists a pointpj outside this union such that e(pJ, q j )  
< a. Clearly the system of points p1,p2, . . . , p j  is in general position; 
thus the first part of the theorem is proved. The proof of the second part 
is much the same, only-when defining the point p,-one has to consider 
all systems of n < m- 1 points in the set {rl , r2, ... , rI ,pl  ,p2,  ... ,PJ- ]  ). 0 

1.10.3. Definition. Let X be a topological space and % = (V,)f='=, a finite 
open cover of X.  By a nerve of the cover 42 we understand an arbitrary 
simplicia1 complex N(%) which has the property that its vertices can 
be arranged into a sequence pl ,  p 2 ,  ... , p k  in such a way that 

pi,pi, ... pi, E A'-(%) 

When discussing a nerve N(%) of a finite open cover $2 = {Ui)fZl, 
we shall always assume that the vertices p l ,  p2 , . .. , Pk of N(%) are ar- 
ranged in such a way that the above equivalence holds. The underlying 
polyhedron of the nerve N(%) will be denoted by N(%). One readily 
sees that if ord% < n, then the dimension of the polyhedron N(%) is 
not larger than n. Note that every finite open cover has a nerve, although 
not uniquely determined (cf. Problem 1.lO.C). Indeed, for a given open 
cover {U,>f=; one can, for example, consider an arbitrary linearly inde- 
pendent system p1 , p2 , . . . , p k  of k points in Rk-' and define A'-(%) as the 
simplicia1 complex consisting of all faces plopil ... pi, of the simplex 
plp2 ...pk such that UionUIIn ... nuim # 0. It turns out, however, 
that nerves can be defined in a more economical way. 

if and only if UionUiln _.. nu,,,, # 0. 

1.10.4. Theorem. Let 42 = { Ut}f= be a finite open cover of a topological 
space X. Ij"ord% < n, then there exists a nerve A"(%) of the cover % con- 
sisting of simplexes contained in Euclidean (2n + 1)-space R2"+ '. If, more- 
over, a linear n-variety H c RZn+I, a system q l ,  q 2 ,  ... , qk of points in 
R Z n i l ,  and a positive number CY > 0 are given, one can choose the nerve 
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N(@) in such a way that H n N ( @ )  = 0 and the vertices p1 , p2, . . . , Pk 
of N(@) satisfy the inequality @(pi, qi) < c i  for i = 1,2,  ... , k. 

Proof. Let rl , r 2 ,  ... , r,,+l be a linearly independent system of points 
in R h f l  which spans the linear variety H. By virtue of Theorem 1.10.2, 
there exists a system of points p1 , p2, . . . , Pk E R2"+I such that @(pi, qi) < a 
for i = 1, 2, ... , k and the system rl , r 2 ,  ... , rn+l , p l ,  p2, ... ,pk is in 
general position. Since ord@ < n, for each sequence iO < il < ... < il < k 
of I+ 1 natural numbers such that Uion Uiln ... n U,, # 0 we have 
I < n < 2n + 1, so that the pointspio , pi,, . . . , pit form a linearly independent 
system and the simplex pIopil . . . plf c R2"+ is well defined. Let us denote 
by N(@) the family of all simplexes plopa1 ... pi, c Rzn+l obtained in 
this way. To complete the proof it suffices to show that N(@) is a simplicia1 
complex and that H n N ( @ )  = 0. Since each face of a simplex in N(@) 
is in N(@), to show that N(@) is a complex it remains to check that if 
S1 = pi,pi, ... pit and S2 = pjopj, ... pjm belong to N(%) and the 
intersection S,nS, is non-empty, then SlnS2 is a face of both S1 and S 2 .  
Obviously, it is enough to prove that if p E SlnS2 and in the representa- 

tion p = lspi3, where C As = 1, we have lso > 0, thenpldo is a vertex of 
I I 

s=O S E O  

m m 
7 

S 2 .  Since p € S 2 ,  p = lipj,, where A; = 1; we have 
f = O  t = O  

As observed before, I < n; similarly, m < n. Hence, the points pi, , pi,, . . . 
. . . pi, , pi,, pi,, . . . , pi, form a linearly independent system, because its car- 
dinality is not larger than I+ m + 2 < 2n + 2 and the whole system rl , r2 , . . . 
.. . , rn+, , p, , p2 ,  .. . , pk is in general position. It follows that pi,, occurs 
among the points pj, , pi,, . . . , pjm, i.e. , piso is a vertex of S 2 .  In a similar 
way one shows that all simplexes in N(@) are disjoint from the linear 
n-variety H. n 

For each finite open cover @ = {Ui}f=l of a metric space X and 
a sequence of points p1 , p2 , . . . , pk in Euclidean m-space R" a continuous 
mapping of X to R" is defined in a natural way. 

1.10.5. Definition. Let % = { U , } ~ = ,  be a finite open cover of a metric 
Space X and p l ,  p2, ... , pk  a sequence of points in Euclidean m-space R". 
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The continuous mapping x :  X -+ R" defined by letting 

(4) = x1 (XIPI + x2(x)P2 + * * *  + xk(x)Pk7 

where 

(5 )  for i = 1,2, ..., k, 

is called the x-mapping determined by the cover % and the points p1  , p2 , . . . 
. . . , pr . Let us observe that the denominator in (5) does not vanish, because 

e ( x ,  X\U,) > 0 whenever x E U,. Let us also note that x i (x )  = 1 

for every x EX. 
As explained in the following theorem, all continuous mappings of 

a metric space to a Euclidean space can be approximated by x-mappings. 

k 

i= 1 

1.10.6. Theorem. Let f: X +. R" be a continuous mapping of a metric space 
X to Euclidean m-space Rm and let 6 be a positive number. If % = { U,}f=,  
is a finite open cover of the space X and p1 , p2 , ... , pk  E R" is a sequence 
of points such that 

(6) S({pi)uf(U,))  < 6 for  i = 1,2, ..., k, 

then the x-mapping x :  X + R" determined by the cover % and the points 
p1  , p 2 ,  ... ,pk  has the property that @ ( f ( x ) ,  x(x))  < 6 for  every x E X .  

Proof. Consider a point x E X  and let Ui0, U,,, ... , U,, be all members 
of the cover % that contain the point x. By virtue of (5),  x , (x )  = 0 when- 
ever i # ij for j = 0, 1 ,  ..., 1. It follows from (6) that Ilf(x)-pljll 
= p(f(x) ,pi , )  < 6 for j = 0, I ,  ... , I ;  applying (4), we obtain 

I I 

The notion of a x-mapping determined by a finite open cover 0% 

= { U,}f=l of a metric space and points p1 , p z  , . . , , P k  E R" proves par- 
ticularly useful in the case where the points p l  , p2  , . . . , pk are the vertices 
of a nerve N(%) of the cover %. 
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1.10.7. Theorem. If 9Y = { U,}f= is a finite open cover of a metric space X 
and N(%) a nerve of 9 with vertices p 1  , p 2  , . . . , Pk E R", then the x-mapping 
x :  X R" determined by the cover 9Y and the points p1  , p 2 ,  . .. , Pk satisfies 
the conditions 

(7) x ( m  = N ( W  

and 

(8) x-'(StAc(%)(pJ) = Ui for  i = 1,2, ..., k. 

Proof. Consider a point x E X  and let Via , Uil, ... , U,, be all members 
of the cover % that contain the point x. Since UionUIln ... nur, # 0, 
the simplex propi, ...pit belongs to the nerve N(%). It follows from (5) 
and (4) that x(x) Eptopi ,  ... p i l ,  so that (7) is satisfied. 

Since the representation of points of N(%) in form (3) is unique, 
we have l i ( x ( x ) )  = x i ( x )  for i = 1,2, ..., k. Thus 

.-'(StN&i)) = {x EX: .(X) E StN(%)(Pf)} = {x E X :  l,(x(x)) > O} 

= {x E X :  xi (x)  > 0} = U, for i = 1,2, ... , k, 
i.e., (8) is also satisfied. [7 

1.10.8. Definition. Let d be an open cover of a topological space X and 
f: X -+ Y a continuous mapping of X to a topological space Y ;  we say 
that f is an &-mapping if there exists an open cover 9Y of the space Y such 
that the coverf-l(@) is a refinement of 8. 

1.10.9. Definition. Let E be a positive number and f: X -+ Y a continuous 
mapping of a metric space X to a topological space Y; we say that f is 
an &-mapping if S(f-'(y)) < E for every y E Y. Obviously, if & is an open 
cover of a metric space and mesh& < E ,  then each &-mapping is an 
&-mapping. 

1.10.10. Theorem. I f X  is a compact metric space, then for  every open cover 
d of the space X there exists a positive number E such that each E-mappiplg 
of X to a Hausdorf space is an &-mapping. 

Proof. Let E be a Lebesgue number for the cover 8. Consider an &-mapping 
fi X + Y of X to a Hausdorff space Y. For every y E Y there exists a V, E 8 
such that f - l ( y )  c V,,. Since every continuous mapping of a compact 
space to a Hausdorff space maps closed sets onto closed sets, the set U, 
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= Y',f(x\Vy) is open for every y E Y ;  one readily checks that y E U, 
and f - l (Uy)  c V,. Hence % = { U y } y e ~  is an open cover of the space 
Y such that the cover f -I(%) is a refinement of 6, Le., f is an &-mapping. c] 

1.10.11. Theorem. If for everyfinite open cover & of a normal space X there 
exists an &-mapping f :  X + Y of X to a compact space Y such that dim Y < n, 
then dimX < n. 

Proof. Consider an arbitrary finite open cover & of the space X and an 
I-mapping f: X -+ Y of X to a compact space Y such that dim Y < n. 
Let % be an open cover of the space Y such that the cover f -l(@) is a re- 
finement of &. As the space Y is compact, % has a finite open refinement $'- 
which, by virtue of the inequality dimY < n, has in its turn a finite open 
refinement W such that ordW < n. Now, the cover f -'(W) of the space X 
is a finite open cover of order < n which refines 8, so that dimX < n . 0  

Let us observe that if the space Y in the last theorem is a polyhedron, 
one can slightly modify the above proof so as to use only the geometric 
dimension of Y. Indeed, in this case the existence of the refinement W 
of the cover Y such that ordW < n follows from the elementary fact 
that every polyhedron of geometric dimension < n has finite covers of 
order < n by open sets of arbitraiily small diameter. 

Theorems 1.10.10 and 1.10.11 imply 

1.10.12. Theorem. If X is a compact metric space and for  every positive 
number E there exists an E-mapping f: X -+ Y of X to a compact space Y 
such that dimY < n, then dimX < n. 0 

We are now ready to characterize dimension in terms of mappings 
to polyhedra. 

1.10.13. Theorem on Fmappings. A metric space X satisjies the inequality 
dimX < n if and only if for every finite open cover I of the space X 
there exists an &-mapping of X to a polyhedron of dimension < n. 

Proof. The theorem is obvious if dimX = - 1. Consider a metric space 
X such that 0 < dimX< n and a finite open cover & of the space X. 
Let % = (U,}:=, be an open refinement of I such that ord% < n and 
let N(%) be a nerve of % with vertices p l ,  p z  , . . . , P k  E R". From Theorem 
1.10.7 it follows that the x-mapping x: X + N(%) determined by the CO- 

ver % and the points p 1  , p z  , . . . , P k  is an &-mapping, because { Stx,&J}L'=, 
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is an open cover of the underlying polyhedron N(92). The inequality 
orda < n implies that N(92) has dimension 4 n. To complete the proof 
it suffices to apply Theorem 1.10.11. 0 

Let us note that, referring in the above proof to Theorem 1.10.11, 
we used the coincidence of the geometric dimension and the topological 
dimension of polyhedra. The observation following Theorem 1.10.1 1 
shows how this can be eliminated. 

1.10.14. Theorem on &-mappings. A compact metric space X satisfies the 
inequality dimX < n if and only if for every positive number E there 
exists an &-mapping of X to a polyhedron of dimension < n. 

Proof. Consider a compact metric space X such that dimX 4 n and a 
positive number E. Let 6 be a finite open refinement of the open cover 
(B(x ,  ~ / 2 ) } ~ ~ ~  of the space X.  By virtue of the theorem on &-mappings, 
there exists an &-mapping of X to a polyhedron of dimension < n ;  one 
readily checks that this is an &-mapping. To complete the proof it suffices 
to apply Theorem 1.10.12. 0 

The comment following the theorem on &-mappings applies as well to 
the above proof. Let us also observe that in the theorem on &-mappings 
the assumption of compactness is essential; indeed, there exist separable 
metric spaces of dimension larger than one that can be mapped to the 
interval I by a one-to-one continuous mapping (see Problem 1.4.F(b)). 

The reader has undoubtedly noted that in the proofs of Theorems 
1.10.13 and 1.10.14 only the existence of a nerve was applied and not 
the much stronger Theorem 1.10.4. The latter theorem will be applied 
in the next section, where it will prove to be, together with Theorem 1.10.6, 
the core of the proofs of the embedding and the universal space theorems. 

We shall now show that the theorems on &-mappings and on &-mappings 
can be somewhat strengthened, viz., that the existence of mappings onto 
polyhedra can be established. In the proof we shall apply the following 
auxiliary theorem, which states that every subset A of the underlying 
polyhedron [XI of a complex X can be swept out of interiors of all simplexes 
i n X  which are not contained in A.  

1.10.15. The sweeping out theorem. For every simplicia1 complex X and 
each subspace A of the underlying polyhedron 1x1 there exist a subcomplex 
X o  o f X  and a continuous mapping f :  A --f IXol such that f ( A )  = IXol and 
f ( A n S )  c S for every S E X .  
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Proof. Let K be the collection of all subcomplexes X’ of X for which 
there exists a continuous mapping f: A 4 IX’I such that 

(9) f (AnS)  c S for every S E X .  

As the embedding f: A + 1x1 of the subspace A in JXl satisfies (9), the 
complex X itself belongs to the collection K.  Hence the collection K 
is non-empty and, being finite, contains a subcomplex X ,  of X such that 
no proper subcomplex ofX, belongs to K. Consider a continuous mapping 
f: A -+ I Xol which satisfies (9); we shall show that f(A) = IXol. 

Suppose that there exists a point xo ~lX, l \ f (A) .  Let So = popl ... p r  
be the intersection of all simplexes in Yo which contain the point x,. 
Define 

and 
99, = ( T E X , :  T # Y ,  and T <  S for an SEY’,}; 

clearly, XI = X,\Yo and a,, are subcomplexes of X,. The set G 

= nStx-,(pi) is open in IXol; one readily checks that 

Y o  = {SEX, :  so < S }  

k 

i = O  

G =  U Yo = GuB,, where Bo = Igol. 

Fig. 10 

Let p denote the projection of f(A)nG from the point xo onto Bo. The 
restriction 
(10) p Jf(A)nS: f (A)nS + B,n S 

is continuous for every S E Yo;  thus p :  f(A)nG -+ Bo is a continuous 
mapping. Since p(x )  = x for x: Ef(A)nB,, the formula 
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defines a continuous mapping g :  f(A) + IX1l; let f, = gf: A -+ l%?ll .  
It follows from (10) that fi(AnS) c S for every S E X ;  hence S1 E K, 
which contradicts the definition of X,. The contradiction shows that 
f(A) = I X O l .  

1.10.16. Theorem. A metric (compact metric) space X satisfies the inequality 
dimX< n i f  and only i f  for every finite open cover 8 of the space X 
Cfor every positive number E )  there exists an &-mapping (an &-mapping) 
of X onto a polyhedron of dimension < n. 

Proof. It suffices to show that if a metric space X satisfies the inequality 
0 < dimX < n, then for every finite open cover & of the space X there 
exists an &-mapping of X onto a polyhedron of dimension < n. Let % 
= {UL}f='=, be an open refinement of 6 such that ord% < n and let ~t :  

X -+ 1x1 be the x-mapping of X to the underlying polyhedron of a nerve 
X = N(%) of the cover 9. By virtue of the sweeping out theorem, there 
exists a continuous mapping f of the subspace A = x ( X )  of 1x1 onto the 
underlying polyhedron IXol of a subcomplex X o  of X which satisfies (9). 
Let us note that, for every x E A  and every vertexp, of X,, if f(x) E Stxo(p,), 
then x E StZ(pi), i.e., 
(1 1) f-'(StYo(pi)) c S~X(P~>*  
Indeed, if x 4 St%@,), then the intersection S of all simplexes in X that 
contain the point x does not contain pi; since f(x) E S by virtue of (9), 
it follows that S  EX^, and thus f(x) $ Stx,(p,). Inclusions (8) and (1 1) 
show that the compositionfx: X -, IXol is an &-mapping of X onto lXol.U 

The final part of this section will be devoted to subspaces of Euclidean 
spaces. We start by introducing the notion of an &-translation. 

1.10.17. Definition. Let E be a positive number, A,  B subspaces of a metric 
space X ,  and f: A --f B a continuous mapping of A to B ;  we say that f 
is an &-translation if e ( x , f ( x ) )  < E for every x E A .  Obviously, each E-transla- 
tion is a 3t-mapping and an &-translation defined on a compact subspace 
of X is a 2~-mapping. 

For subspaces of Euclidean spaces it is much more interesting to discuss 
&-translations to polyhedra rather than &-mappings. Clearly, every subspace 
of R" which can be mapped to a polyhedron by an &-translation is bounded. 
It turns out that for bounded subspaces of Euclidean spaces we have 
a theorem on &-translations which strictly parallels the theorem on &-map- 
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pings. In the proof of that theorem we shall apply the elementary fact that, 
for every finite family Y of simplexes in Rm, the union L = U Y is 
a polyhedron whose dimension is equal to the largest integer n such that 
Y contains an n-simplex; more exactly, we shall assume that there exists 
a simplicial complex 9 such that L = 181 and every simplex of 8 is contained 
in a member of 9. A proof of this fact is outlined in Problem 1.10.1. 

1.10.18. Theorem on &-translations. If X is a bounded subspace of Euclidean 
m-space R", and X satisfies the inequality dimX < n,  then for every 
positive number E there exists an &-translation f: X -+ K of X onto a poly- 
hedron K c Rm of dimension < n. . 

Proof. Without loss of generality one can suppose that 0 < n < m. Let 4V 
= { Ui}f= ,  be a finite open cover of the space X such that mesh% < &/4 
and Ui # 0 for i = 1, 2 ,  . . . , k ;  since dimX < n, one can assume-re- 
placing 42, if necessary, by a refinement-that ord% < n. For i = 1 , 2 , . . . , k 
choose a point qi E Ui and apply Theorem 1.10.2 to obtain a system of 
points p 1  , p z  , . . . , p R  E R" in general position such that 

(12) G({p i }uUi )  < E/LC for i = 1,2, ..., k .  

Since ord% < n, for each sequence i,, < i ,  < . .. < il < k of I+ 1 natural 
numbers such that UionUiln ... nui, # 0 we have I < n < my so that- 
the system p 1  , p 2 ,  . . . , pk  being in general position-the simplex piopi ,  . . . p i ,  
c R" is well defined; by virtue of (12), G(piopil ... p i , )  = G({p io ,p i , ,  ... 
, . . , p iL} )  < ~ / 2 .  Let Y be the family of all simplexes obtained in this way; 
clearly, mesh9 < ~ / 2 .  The union L = U Y is a polyhedron of dimension 
< n ;  moreover, one can assume that L = 191, where 9 is a simplicia1 
complex every simplex of which is contained in a member of 9, so that 
we have mesh 8 < ~ / 2 .  It follows from (12) and Theorem 1.10.6 applied 
to the embedding of X in R" that the x-mapping x: X -+ Rm determined 
by the cover 4V and the points p I  , p z ,  ... , p k  has the property that 

(1 3) e ( x ,  ~(x)) < .5/4 for every x EX. 
Moreover, as one easiIy sees, A = x ( X )  c L. By virtue of the sweeping 
out theorem, there exists a continuous mapping g :  A -+ K of A onto a poly- 
hedron K c L of dimension < n such that 

(14) e ( x ( x ) ,  gx (x ) )  < s/2 for every x EX. 
It follows from (13) and (14) that the composition f = gx: X -+ K is the 
required &-translation. 0 
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Theorems 1.10.12 and 1.10.18 yield the following 

1.10.19. Theorem. A compact subspace X of Euclidean m-space Rm satisjies 
the inequality dimX 6 n if and only if for every positive number E there 
exists an .+translation f: X + K of X onto a polyhedron K c R" of dimension 
6 n .  0 

We shall now describe a two-dimensional subspace X of the cube I 3  
such that for every positive number E there exists an &-translation8 X + K 
of X to a polyhedron K c R3 of dimension < 1. In this way it will be proved 
that in the theorem on &-translations the assumption of compactness 
is essential. Let us at once note that the space X has finite open covers 
of order < 1 by sets with arbitrarily small diameters (cf. Theorem 1.6.12). 

We start with a lemma on decompositions of continua, which will 
be applied to evaluate the dimension of the space X.  The lemma states 
an important topological fact and is known as Sierpiriski's theorem; it 
is preceded by two technical lemmas. 

1.10.20. Lemma. If  A is a closed .subspace of a continuum X such that 
0 # A # X ,  then for every component C of the space A we have CnFrA 
# 0, where FrA is the boundary of A in X .  

Proof. Assume that CnFrA = 0 and consider the family { U s } s , ~  of all 
open-and-closed subsets of A which contain the component C ;  it follows 
from Lemma 1.4.4 that 0 Us = C. The subspace F = FrA of the space 

X is compact, and the family {F\US},,s is an open cover of F ;  thus there 

exists a finite number of indexes s1 , s2, . . . , s, E S such that F c U (F  \ Us') 

= F\ (7 Ust.  The set U = 0 Us, is disjoint from P, i.e., U c IntA; 

being open-and-closed in A,  the set U is open-and-closed in the continuum 
X .  Now, 0 # C c U, so that U = X ,  and thus FrA = 0, which contra- 
dicts the connectedness of X.  0 

SES 

k 

k i= 1 k 

i= 1 i= 1 

1.10.21. Lemma. I f a  continuum X is represented as the union of a sequence 
XI , X 2 ,  ... of pairwise disjoint closed sets of which at least two are non- 
empty, then for every natural number i there exists a continuum C c X 
such that CnX, = 0 and at least two sets in the sequence CnX, , CnX, , , . . 
are non-empty. 
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Proof. If X ,  = 0, we let C = X ;  hence, we can assume that X ,  # 0. Con- 
sider a natural number j # i such that X ,  # 0 and a pair U, V c X of 
disjoint open sets such that X ,  c U and X ,  c V. Let x be a point in X ,  
and C the component of the space Vwhich contains the point x. Clearly, 
C is a continuum, CnX, = 0 and CnX, # 0. Since, by virtue of Lemma 
1.10.20, CnFr J # 0, and since X ,  c Int there exists a natural number 
k # j such that CnXk # 0. 0 

1.10.22. Lemma. I f a  continuum X is represented as the union of a sequence 
X I ,  X ,  , . . . of pairwise disjoint closed sets, then at most one of the sets X ,  
is non-empty. 

m 
Proof. Assume that X = U Xi, where the sets X, are closed, X,nX, = 0 

whenever i # j ,  and at least two of the sets X ,  are non-empty. From Lemma 
1.10.21 it follows that there exists a decreasing sequence C, I> C, 3 ... 
of non-empty continua contained in Xsuch that ClnX, = 0 for i = 1 ,2 ,  .. . 

Thus C, = (0 C,)n (U Xi) = 0, which contradicts the compactness 

i= 1 

m 00 m 

i = l  i = l  i = l  

of X.  0 

1.10.23. Sitnikov’s example. For every natural number i consider the family 
of all planes in R3 determined by equations of the form x ,  = zli, where 
j = 1 ,2 ,  3 and z is an arbitrary integer. The planes yield a decomposition 
of R3 into congruent cubes whose edges have length 1 /i and whose interiors 
are pairwise disjoint; denote bysf, the family of all the cubes thus obtained 
and by At the union of all the edges of cubes in sf,. 

Let B1 = A ,  and for i = 2, 3,  ... translate the set A ,  as a rigid body 
to obtain a set B, disjoint from the union B,uB2u ... U B , - ~  of all the 
sets previously defined. Clearly, the sets B, are closed in R3 and the union 

B = U Bi is dense in R3. We shall show that the subspace X = 13\B 

of the cube I 3  is two-dimensional and yet for every positive number E 

there exists an &-translation f: X -P K of X to a polyhedron K c R3 of 
dimension < 1. 

Since the set 13\X = 13nB is dense in 13, it follows from Corollary 
1.8.1 1 that indX < 2. Assume that indX < 1 and consider arbitrary points 

m 

i= 1 
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x and y in the interior G of I' in R3 such that x E B, and y E B, . By virtue 
of Mazurkiewicz's theorem there exists a continuum C c G\X = G n B  
which contains x and y ;  the continuum C is the union of the sequence 
C n B , ,  C n B z ,  ... of pairwise disjoint closed sets of which at least two are 
non-empty. The contradiction of Sierpihki's theorem shows that ind X 
= 2.  

Fig. 11 

Now, let E be an arbitrary positive number. Consider a natural number 
i such that 4/ i  < E and translate the set X u B i  as a rigid body to make the 
joints of Bi coincide with the centres of the cubes in X i .  One can assume 
that the translation g :  X u &  -, R3 does not shift points by more than 
2/i ,  i.e., that e(x, g(x))  < 2/i  for x E X ;  clearly g ( X )  c R3\g(Bi). Consider 
now a fixed cube T E X i .  One readily checks that the projection from the 
centre of T onto the boundary of T maps the set T n g ( X )  onto a subset 
of the boundary which does not contain the centres of the faces of T. 
On the boundary of T the projection coincides with the identity mapping, 
so that by performing such projections simultaneously on all the cubes 
in Xi we obtain a continuous mapping p 1  that sends g ( X )  to the union 
of all faces of cubes i n X ,  in such a way that the centres of the faces do 
not belong to p l g ( X ) .  Now, consider a fixed face S of T. The projection 
from the centre of S onto the boundary of S maps the set S n p ,  g ( X )  onto 
a subset of A t  and coincides with the identity mapping on the boundary 
of S. By performing such projections simultaneously on all faces of cubes 
inX,  we obtain a continuous mapping p z  that sends p , g ( X )  to A i .  Since 
the points g(x )  and p z p l g ( x )  lie in the same cube o f x i ,  we have g(g(x),  
p zp lg (x ) )  < 2/i .  Hence e (x ,p ,p ,g (x ) )  < 4/ i  < E for every x E X  and 
the set p 2 p l g ( X )  is contained in a one-dimensional polyhedron K c A , ;  
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thus the required &-translation f: X - +  K is defined by letting f(x) 
= p z p ,  g(x) for every x EX. 

Though dimX = indX = 2, the space X has, for every positive number 
8, a finite open cover % such that mesh% < E and ord% < 1. Indeed, 
iff: X 3 K is an ~/3-translation of X to a polyhedron K c R3 of dimension 
< 1, then the family % = f -1(V)7 where V is a finite open cover of K 
such that meshy < el3 and o rdY < 1, has the required properties. 0 

Historical and bibliographic notes 

Nerves of covers were introduced and studied by Alexandroff in [1927], 
and x-mappings-by Kuratowski in [1933a]. The discovery of these two 
notions was a turning point in the development of dimension theory, 
and even of the whole of topology; it made possible the combining of the 
point-set methods of general topology and the combinatorial methods 
of traditional algebraic topology. Theorem 1.10.13 was proved by Kura- 
towski in [1933a] and Theorem 1.10.14 by Alexandroff in [1928]. Theorem 
1.10.15 for compact subspaces of polyhedra was obtained by Alexandroff 
in [1928] (cf. Problem 1.lO.H); the extension to arbitrary subspaces was 
given by Kuratowski in [1933a]. Theorems 1.10.18 and 1.10.19 were proved 
by Alexandroff in [1928] (announcement in [1926]). Example 1.10.23 was 
described by Sitnikov in [1953]. 

Problems 

1.lO.A. (a) Check that the diameter of the simplex p o p l  .. . p n  is equal 

(b) Prove that the simplex pop l  _.. p n  is the smallest convex set which 

(c) Show that every simplex determines its vertices, i.e., that if pop l  . . . p n  

Hint. For every point x of a simplex S which is not a vertex of S the 

to the diameter of the set ( p o 7 p 1 ,  . . . , p a >  of its vertices. 

contains the points p o  p 1  , . . . p n .  

= %q1 ". % 7  then (pO7Pl 7 -" ,p"> = (409 41 7 " ' 7  q,>- 

set S\{x) is not convex. 

1.lO.B. Prove that i f X  and 8 are simplicia1 complexes such that 1x1 
= 181 a n d 2  contains an n-simplex, then 8 also contains an n-simplex. 

Hint. If m < n, then every m-simplex contained in an n-simplex S is 
nowhere dense in S.  
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1.lO.C. Show that if the simplicia1 complexes X 1  and M 2  are nerves 
of the same finite open cover, then the undeilying polyh'edra [M1l and 
IN2! are homeomorphic. 

1.lO.D. Applying the fact that the one-dimensional polyhedron in Fig. 14 
on p. 127 cannot be embedded in the plane (see Example 1.11.8), define 
a finite open cover 42 of the interval I such that ord42 = 1 and yet 42 has 
no nerve in R2. 

1.lO.E. (a) Observe that if for every finite open cover &' of a normal 
space X there exists an &-mapping f: X -+ K to a zero-dimensional poly- 
hedron such that the cover { f - l ( y ) } Y E Y  is a refinement of 8, then dimX 
< 0. 

(b) For every natural number n 2 2 define a separable metiic space X 
such that dimX = n and for every finite open cover d of the space X there 
exists an &-mapping f: X --f I such that the cover {f-l ( t ) ) ter  is a refine- 
ment of &. 

Hint. Apply Problem 1.4.F(b). 

l.lO.F (Alexandroff [1932]). (a) L e t 8  X 4 B"+' be an essential mapping 
of a compact metric space X to the (n + 1)-ball (cf. Problem 1.9.A) and E 

a positive number less than 1. Show that if a continuous mapping g: X 
-+ B"+l satisfies e ( f ( x ) ,  g(x)) < E for every x ~f-l(S"), then the image 
g ( X )  contains the ball of radius I-& concentric with B"+l. 

(b) Apply (a) and Theorem 1.10.6 to show that if a compact metric 
space X satisfies the inequality dimX < n 2 0, then no continuous mapping 
f: X -+ B"+l is essential (see Problem 1.9.A). 

(c) Deduce from the theorem on &-mappings that if a compact metric 
space X satisfies the equality dimX = n 2 0, then there exists an essential 
mapping f: X -+ B". 

1.lO.G (Alexandroff [1928a], Chogoshvili [1938]). (a) Prove that a com- 
pact subspace X of Euclidean m-space R" satisfies the inequality dimX < 71 
if and only if for every polyhedron K c R" of dimension m --n - 1 and 
every positive number E there exists an &-translation8 X -+ R" such that 
f ( X ) n K  = 0, or-equivalently-if and only if for every linear (m-n- 1)- 
variety H c R" and every positive number E there exists an &-translation 
f: X --+ R" such that f ( X ) n H  = 0. 
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Hint. Show that if X is a compact subspace of Rm and for every linear 
(m-n-  1)-variety H c R" and every positive number E there exists an 
&-translation f: X + R" such that f ( X ) n H  = 0, then X is embeddable 
in N;. 

(b) Show that in (a) the assumption of compactness of X is essential. 
(c) Applying the fact that in R3 there exists an Antoine set, i.e., a sub- 

space A homeomorphic to the Cantor set such that for a circle S c R3\A 
the embedding of S in R3\A is not homotopic to the constant mapping 
of S to a point of R3\A (see Rushing [1973], p. 71), show that in (a) 
the words "every polyhedron K c R"" cannot be replaced by "every 
compact subspace K of R"". 

Hint. Consider the disk bounded by S .  

1.lO.H. Note that in the case where A is a compact subspace of 1x1, 
the sweeping out theorem can be proved in a simpler way. 

Hint. Sweep out A consecutively from the interiors of all simplexes 
i n X  which are not contained in A starting with the simplexes of highest 
dimension. 

1.10.1. Prove that the union and the intersection of a finite family 
of polyhedra contained in a Euclidean space also are polyhedra. 

Hint. A bounded subset of R" which can be represented as the inter- 
section of a finite family of half-spaces in R" is a geometric cell. Define 
the interior and the boundary of a geometric cell and the geometric dimension 
of a geometric cell. Prove that polyhedra can be defined as finite unions 
of geometric cells. To this end, by analogy to the notion of a simplicia1 
complex, introduce the notion of a cellular complex, observe that every 
polyhedron can be represented as the union of all cells in a cellular complex, 
and-applying induction with respect to the maximal geometric dimension 
of cells-prove that every cellular complex has a subdivision which is 
a simplicial complex (all the details are worked out in Alexandroff and 
Hopf's book [1935], pp. 124ff.). 

1.10.5 (Sitnikov [1953]). Modify the construction in Example 1 10.23 
to obtain, for every natural number n > 4, an (n- 1)-dimensional subspace 
X of the n-cube I" such that for every positive number E there exists an 
&-translation f: X -+ K of X to a polyhedron K c R" of dimension < k ,  
where k = n/2 if n is even, and k = (n- 1)/2 if n is odd. 
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l.lO.K. Prove that if X is a bounded subspace of Euclidean m-space 
R" and X satisfies the inequality dimX< n, then for every positive 
number E there exists a finite open cover % of the space X such that mesh% 
< E ,  ord% < n, and % has a nerve in R". 

1.lO.L (Smirnov [1956]). Show that a bounded subspace X of Euclidean 
m-space R" satisfies the inequality pdim(X, e) < n, where pdim is 
the metric dimension defined in Section 1.6 and e is the natural metric 
on R", if and only if for every positive number E there exists an E-transla- 
tion 8 X + K of X onto a polyhedron K c R" of dimension < n. 

Hint. Apply Problem 1.6.C. 

1.11. The embedding and universal space theorems 

The considerations in the present section largely apply the notion 
of a function space. Let us recall that if ( X ,  0) is a non-empty compact 
metric space and (Y,  Q )  an arbitrary metric space, then by letting 

G ( f Y  g)  = SUP e ( f ( 4 ,  g ( 4 )  for f, g E y" 
x e x  

we define a metric on the set Y" of all continuous mappings of X to Y ;  
the metiic space (Y", 6) obtained in this way is a function space. One readily 
shows that if ( X ,  a) is a compact metric space and (Y ,  e) is a complete 
metric space, then the function space (Yx, 6)  is complete. As the reader 
will see, this simple observation leads, via the Baire category theorem, 
to important applications of function spaces. We begin with three lemmas 
on function spaces. 

1.11.1. Lemma. For every positive number E the set of all &-mappings is open 
in the function space Yx. 

Proof. Consider an &-mapping f: X + Y. The closed subspace 

A = {(x, x') EXXX: U(X, x')  2 &}  

of the Cartesian product X x X  is compact, so that, since for each pair 
(x, x') E A the inequality e(f(x), f (x ' ) )  > 0 holds, therl exists a positive 
number 6 such that 

(1) e ( f ( x ) ,  f ( x ' ) )  2 6 for each ( x ,  x') E A .  
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To complete the proof it suffices to observe that every continuous 
mapping g: X + Y such that Gu, g )  < 612 is an &-mapping. Indeed, if 
g(x) = g(x'), then e(f(x), f(x')) < 6 which implies by virtue of (1) that 
( x ,  x') $ A ,  i.e., ~ ( x ,  x') < E ;  thus d(g-l(y)) < E for every y E Y. 

1.11.2. Lemma. For every closed set F c Y the set { f E Y x :  f ( X ) n F  = 0)  
is open in the function space Yx. 

Proof. Consider a continuous mapping f: X + Y such that f (x>nF = 0. 
A s f ( X )  is a compact subspace of Y, the distance 6 = e( f(X), F )  is positive. 
To complete the proof it suffices to note that for every continuous mapping 
g: X + Y such that tu, g)  < 6 the relation g(X)nF  = 0 holds. 

1.11.3. Lemma. I f  X is a compact metric space such that 0 < dimX < n 
and H is a linear n-variety in R2"+I, then for every positive number E the 
set of all &-mappings of X to R2"+' whose values miss H is dense in the func- 
tion space (R2R+1)X; in particular, the set of all &-mappings of X to R2"+' 
is dense in the function space (RZn+l)'. 

Proof. Consider an arbitrary continuous mappingf: X + Y and a positive 
number 6.  It follows from the compactness of X that the mapping f is 
uniformly continuous; thus there exists a positive number 7 such that 
6(f(A)) < 6 whenever 6(A)  < 7. By virtue of Theorem 1.6.12 there exists 
a finite open cover % = (Ui}f==, of the space X such that mesh% 
< min(e, q), ord% < n and the sets U, are non-empty; obviously, 6( f (UJ)  
< 6 for i = 1 , 2 ,  ..., k .  Choose a point qi E f ( U J  for i = 1 , 2 ,  ..., k ,  
and apply Theorem 1.10.4 to obtain a nerve N(%) of the cover %, con- 
sisting of simplexes coctained in R2"+I and such that H n N ( % )  = 0 
and the vertices p1 , p 2 ,  . . . , pr of N(%) satisfy the inequality @(pi, qJ < ct 

for i = 1 ,2 ,  ..., k, where ct = rnin{d-d(f(U,)): i = 1 , 2 ,  ..., k } .  We 
have 

~ ( { P i ) U f ( W )  < @(PI, 4r)+6(f(U,)) < . + q f ( u J )  G 6 

for i =  1 , 2  ,..., k .  

From Theorem 1.10.6 it follows that the x-mapping x :  X + RZ"+' deter- 
mined by the cover % and the points p I  , p 2 ,  . . . , pk satisfies the inequality 
G(f, x )  < 6. To conclude the proof it suffices to observe that by virtue 
of Theorem 1.10.7 we have x ( X )  c N(%) and x-l(StN(Q)(pi)) = U, for 
i = 1 ,2 ,  ..., k ,  so that x ( X ) n H  = 0 and x is an &-mapping. 0 
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The above lemmas will be applied in the proof of the embedding theorem 
and in the proof of the first universal space theorem. 

1.11.4. The embedding theorem. Every separable metric. space X such that 
0 < dimX < n is embeddable in Euclidean (2n+ 1)-space RZR+'; if, more- 
over, the space X is compact, then all homeomorphic embeddings of X in 
RZn+I form a Gs-set dense in the function space (R2n+1)X. 

Proof. First, consider a compact metric space X such that 0 < dimX < n. 
Let dii denote for i = 1 , 2 ,  ... the subset of the function space (Rzn+l)x 
consisting of all (l/i)-mappings; it follows from Lemmas 1.11.1 and 1.11.3 
that the sets Di are open and dense in (R2n+1)x. By virtue of the Baire 

category theorem, the Gd-set di = n dii is dense in the function space 

(Rzn+l)x.  Since the space X is compact, a continuous mapping f: 
X + RZn+l is a homeomorphic embedding if and only if it is a one-to-one 
mapping, i.e., i f f  is an &-mapping for every positive number E .  Thus di 
is the set of all homeomorphic embeddings of X in R2n+1.  

Now, consider a separable metric space X such that0 < dimX < n. 
By virtue of the compactification theorem, there exists a compact metric 
space 2 which contains a dense subspace homeomorphic to X and satisfies 
the inequality d im2  < n. As established above, 2 is embeddable in RZn+l,  
and so X is also embeddable in R2"+'. 0 

00 

i= 1 

We shall show in Example 1.11.8 below that the exponent 2n+l in 
the embedding theorem cannot be lowered. 

1.11.5. The first universal space theorem. The subspace N;"+l of Euclidean 
(2n+ 1)-space RZn+l consisting of all points which have at most n rational 
coordinates is a universal space for  the class of all separable metric spaces 
whose covering dimension is not 'larger than n. 

Proof. It follows from Theorem 1.8.5 and the coincidence theorem that 
dimN,2"+' = n; hence-by virtue of the compactifkation theorem-it 
suffices to prove that every compact metric space X such that 0 < dimX 
< n is embeddable in N,Z"+l. 

= L,2::' can be represented as the 
union of a countable family of linear n-varieties in RZn+l ,  viz., of all sets 
defined by conditions of the form xi, = rl , xi, = r 2 ,  ... , Xi,+l - rR+l , 
where 1 < il < i2 -= ... < in+' < 2n+ 1 and rl , r2 ,  ... , rn+l are arbitrary 

The complement 

- 
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rational numbers. Arrange all linear n-varieties in the family under con- 
sideration into a sequence HI , H 2 ,  ... and for i = 1 , 2, ... denote by 
Qi the subset of the function space (R2"+1)x consisting of all (l/i)-mappings 
whose values miss H i .  It follows from Lemmas 1.11.1-1.11.3 that the 

intersection @ = Qi is a GB-set dense in the function space (R2n+1)X, 

and from the compactness of X it follows that @ consists of homeomorphic 
embeddings. 0 

00 

i = l  

Let us observe that the last paragraph incidentally yields another 
proof of the inequality indX< dimX for compact metric spaces; as an- 
nounced in Section 1.7, the auxiliary invariant d(X) is the smallest integer 
n > 0 such that X is embeddable in the space N;"+l. 

The space N;"+l is called Nobeling's universal n-dimensional space. 
Obviously, Nobeling's universal 0-dimensional space is the space of irra- 
tional numbers; thus the last theorem extends to higher dimensions our 
earlier result that the space of irrational numbers is universal for the class 
of all zero-dimensional separable metric spaces. As the reader remembers, 
the Cantor set is another universal space for the same class of spaces. 
We shall now describe the n-dimensional counterpart of the latter universal 
space, i.e., Menger's universal n-dimensional space M;"+ l. The construc- 
tion will be carried out under more general circumstances: for every pair 
n, m of integers satisfying 0 < n < m > 1 we shall define a compact sub- 
space M," of Euclidean m-space R". 

For i = 0, 1 ,  2, ... letXi be the family of 3"' congruent cubes obtained 
by dividing the m-cube Im by all linear (m- 1)-varieties in R" determined 
by equations of the form xj = k/3i, where j = 1 ,2 ,  ... , m and 0 < k < 3'. 
For every familyX of cubes let 

I$Yl = U {K:  K E X }  and 9'",(X) = U {9',,(K): K E X } ,  

where Y.(K) is the family of all faces of K which have dimension < n; 
moreover, for X c X i  let 

For every pair n, m of integers satisfying 0 < n < m 2 1 define inductively 
a sequence Fo, F1 , ... of finite collections of cubes, where F i  = .Xi for 
i = 0, 1, 2, ... , and a decreasing sequence Po 3 F, 3 F2 3 ... of closed 
subsets of P by letting Fo = {Z"}, Fo = IFoI = Z" and 

X' = {KEXi+I :  K c 1x1). 

Fi = IFJ, where Fi  = { K E F ; ~ - ~ :  Kn19',(Fi-l)1 # 0}, 
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for i = 1 ,2 ,  ... The intersection 
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00 

M? = F, c I"' 
i = O  

is a compact subspace of I". One readily sees that the construction of the 
Cantor set described in Example 1.2.5 is a special case of the above con- 
struction, viz., the case where m = 1 and n = 0; thus the space M t  is the 
Cantor set. One proves that the spaces Mom are all homeomorphic to the 
Cantor set (see Problem l.ll.D(a)); obviously, = I" for m = 1 , 2 ,  ... 
In Figs. 12 and 13 the first three steps in constructing M,2 and M: are 
exhibited. 

- 6  
Fig. 12 

fo 4 
Fig. 13 

f z  

Let us observe that dimM," = n. Indeed, the inequality dimM," 2 n 
follows directly from the inclusion I9'",(PO)I c M." and the reverse inequality 
is a consequence of Theorem 1.10.12, because the set F,, and, a fortiori, 

the set M:, can be translated by a (l/m/2 - 3[-')-mapping to the space 
19'n(%i-l)l which has dimension < n. The construction of such a mapping 
is left to the reader; it should be defined separately on each set of the form 
F,nK, where K E %,- 
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To prove that the space Mn"" is a universal space for the class of all 
separable metric spaces of dimension < n, rather laborious computations 
are necessary; some of them will be left to the reader. Since the same 
argumentation yields an interesting theorem exhibiting a relationship 
between the spaces and M,", we shall prove this theorem, and then 
deduce from it the universality property of Min+'.  

1.11.6. Theorem. Every compact subspace X of the space 
in the space ME. 

is embeddable 

Proof. We shall consider on Z" the metric u defined by letting 

u(x, y )  = max{lx,-yjl: j = 1 ,2 ,  ..., m } ,  

where x = {xj> and y = {y,}; 

obviously, the metric u is equivalent to the natural metric on I". Let us 
note that if two points x and y are contained in the same cube K EX' ,  
then u(x, y )  < 1/3i. For i = 1 , 2, ... denote by Si the subset of F con- 
sisting of all points which have.. at least n+ 1 coordinates of the form 
(k/39+ 1/2.3', where 0 < k < 3i-1, and by Tf the subset of I" consisting 
of all points which have at least m-n coordinates of the form k/3', where 
0 < k < 3'; obviously, Ti = lYn(Xf)1. One readily checks that for i 
= 0, 1,2,  ... 

(2) U(S1, 5"') = 1/2.3' 
and 

(3) Ft+Z = Fi\B(Si, 1/2.3'+'), 

where B(A, r )  denotes the r-ball about A with respect to the metric u. 
The proof consists in defining by induction a sequence fO, fi, f2, ... 

of homeomorphisms of Z" onto itself which transform the intersection 
PnK to X and map X consecutively to Po, Fl , F2, ... , and which 
uniformly converge to a homeomorphism that maps X to the intersection 

n Ff = M,". In the inductive step one observes that the set fi(X) is dis- 

joint from S,, and one modifies fi to by sweeping out the set f l (x> 
from the ball B(&, 1/2.3'+'). The modification of fi to is performed 
separately on each coordinate axis and is described by a piecewise linear 
homeomorphism hf of I onto itself. 

00 

i = O  
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We shall now define inductively a sequence ho, h,, h2, ... of homeo- 
morphisms of I onto itself and a sequence f,, fi , f2, . . . of homeomorphisms 
of I"' onto itself such that for i = 0, 1,2, ... the following conditions 
will be satis&ed: 

(4) The interval I can be divided into finitely many closed intervals with 
pairwise disjoint interiors in such a way that on each of these intervals 
hi is a linear function with slope 2 2/3. 

( 5 )  hi(k/2.3') = k12.3' for 0 < k < 2.3'. 
(6) fi+l = Hifi,whereHi({x1,~2, .*.,xm>) =(hi(xl),hi(xJ, ...) hi(xm))- 
(3 f i ( ~ ' " n ~ ~ )  c AT. 

(8) fi c Fi * 

Without loss of generality one can assume that X c P. Hence, if we 
let fo = idIm, conditions (7) and (8) are satisfied for i = 0. Assume that 
the homeomorphisms f,, f,, ..., fi and h,,  hi', ..., hi-, with all the re- 
quired properties are already defined. We shall first define a homeomoiphism 
h, which satisfies (4) and (5) and then show that the homeomorphism 
f i + l  defined in (6) satisfies (7) and (8) with i replaced by i+ 1. 

and SinN," = 0 imply that 
fi(X)nS,= 0; sincefi(X) is a compact space, there exists a positive rational 
number E such that 

The relations f i ( X )  c f i (1nN;)  c 

Consider the division of the interval I into closed intervals with pairwise 
disjoint interiors determined by the points 

0 = b, < a, < b, < a, < ... < a3t-l < b3t < a3t = 1, 

where 

k 1  
E and bk+L = -+---+E 

k 1  
a, = T+-- 

3 2.3' 3' 2-3' 

for k = 0, 1 ,  .. . , 3'- 1. The reader can easily check that the functions 
/ !  

go, g 1 ,  . . . , , where 
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and the functions gg , g;' , . . . , gyt- , where 

for ak < t < b,+, , 

satisfy the equalities : 

k 1  1 
gr(bk+l )  = g;+l (bk+l )  = T + F -  3~+1 

for k = 0, 1, ..., 3i-1. As gA(0) = 0 and g j , ( l )  = 1, the functions g; 
and g: determine a homeomorphism hi of I onto itself which, as one easily 
checks, satisfies (4) and (5). 

Consider now the homeomorphismfi+, defined in (6).  Since E is a ra- 
tional number, the homeomorphism hi transforms each rational number 
in I into a rational number, so that by virtue of (7) we have fi+l (ImnNr) 
c N r .  

Let x be a point in X ;  byzvirtue of (8), f i ( x )  = (t,  , t z ,  ... , tm) E Fi. 
Since o(fi(X), Si) > E ,  there exist m-n coordinates of the point 
( t l  , t2 , . . . , t,,,), say t j,, t j,, . . , , t ,"_", and m - n non-negative integers 
k , ,  k z ,  ..., k,,,-" < 3i such that 

The last inequality means that bk, < t,, < ak , ,  which together with (9) 
yield 

kl 1 kl 1 
3i 3i+l < hi(tjf) < i+3'+1 for 1 = 1 , 2 ,  ..., m-n,  

3 

so that 

(10) fi+l(x> = ( h i t f 1 ) 7  hi( tz) ,  . . ' 7  hi(tm))EB(Ti, 

From (2) and (10) it follows that 

(1 1) f i + l ( ~ )  + B ( S i ,  1/2*3'+'). 

Since, by virtue of (5),  the homeomorphism IfL maps each cube in Xi 

onto itself, f i + l ( x )  E Fi; the last relation together with (1 1) and (3) show 
that fi+l(x) E F,+,  . Hence we have fi+l(X) c Fi+l. 
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It remains to check that the sequence of homeomorphisms fo, fi , f 2 ,  ... 
uniformly converges to a homeomorphism f of I" onto itself; the inclusion 
f(x> c M," will then follow from (8). This amounts to checking that the 
sequence ho , h,ho, h2hlho,  ... of homeomorphisms of I onto itself uni- 
formly converges to a homeomorphism of I onto itself. The last fact can 
be deduced from (4) and (5) by a straightforward computation, which 
we leave to the reader. 0 

1.11.7. The second universal space theorem. The compact subspace MDZnfl 
of Euclidean (2n+I)-space RZnfl is a universal space for the class of all 
separable metric spaces whose covering dimension is not larger than n. 

Proof. As observed above, dimM,2"+l = n ;  hence-by virtue of the com- 
pactification theorem-it suffices to prove that every compact metric 
space X such that dimX< n is embeddable in M,Z"+l. This is, however, 
an immediate consequence of Theoiems 1.11.5 and 1.11.6. 0 

In connection with the above universal space theorems one can ask 
whether there exists a universal space for the class of all subspaces of R" 
which have dimension < n. It is an old hypothesis that M," is such a space. 
Quite recently, it was proved that M," is indeed a universal space for the 
class of all compact subspaces of R" which have dimension < n ;  it is 
a very deep and difficult result. Hence, the hypothesis on the universality 
of M." is now reduced to the question whether every subspace X of Euclidean 
m-space R" has a dimension preserving compactification embeddable 
in R". Let us observe that in some special cases the universality of the 
space M," can be deduced from our earlier results. Indeed, the universality 
of M r  and M," is obvious, and the universality of Mi"+' is a consequence 
of Theorem 1.11.7; finally, Theorems 1.8.10, 1.8.8, and 1.11.6, together 
with the simple observation that each closed subset of NEW has a compacti- 
fication embeddable in imply that the space M:-l is universal 
for the class of all subspaces of R" which have dimension < m- 1 (a direct 
proof of this fact is outlined in the hint to Problem l.ll.D(c)). 

The considerations of the preceding paragraph imply, in particular, 
that the space is embeddable in the space M," for n = 0, n = my m 
= 2n+ 1 and n = m- 1 ; the problem whether is always embeddable 
in M," is still open. On the other hand, the space M," is embeddable in the 
space N," for every pair of integers n, m satisfying 0 < n < m 2 1 (see 
Problem l.ll.E). Hence the question if is a universal space for the 
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class of all subspaces of Rm which have dimension < n is a weaker version 
of the problem of the universality of the space M.". 

To conclude, let us note that from the above discussion of special 
cases it follows that for every pair of integers n, m satisfying 0 < n < m < 3 
and m 2 1 , the spaces M," and f l  are universal for the class of all subspaces 
of R" which have dimension < n ;  in particular, for every such pair n, my 
the space is ernbeddable in the space M," and each n-dimensional sub- 
space of R" has an n-dimensional compactification embeddable in R". 

We close this section by showing that the exponent 2n + 1 in the embedding 
theorem cannot be lowered. 

1.11.8. Example. Let K,  be the union of all 1-faces of the Csimplex 
pop1p2p3p4 (see Fig. 14). Applying the Jordan curve theorem, which 
states that every simple closed curve (ie., a set homeomorphic to S') 
in the plane R2 separates R2 into two regions, we shall show that the one- 
dimensional polyhedron Kl cannot be embedded in R2. 

Fig. 14- 

Assume that there exists a homeomorphic embedding f: Kl -+ R2 
and define a, = f(pl) for 0 < i < 4. It follows from the Jordan curve 
theorem that the simple closed curve S1 = f(poplup,p,up,po) separates 
R2 into two regions. One can suppose that the point a3 belongs to the 
bounded component Uof R2\S1 , otherwise one should replace the homeo- 
morphic embedding f by the composition off and a suitable inversion. 
Since the points a3 and a4 can be joined in f(Kl) by an arc (i.e., a set homeo- 
morphic to I )  disjoint to S,  , we have a, E U. The Jordan curve theorem 
implies that the set U\T, where T = f(pop3vp,p3vp2p3), can be repre- 
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sented as the union of three pairwise disjoint regions U,,  U1, U2 such that 
a, 4 U, for i = 0, 1 ,2 .  As a, # T, we have a, E U\T and without loss 
of generality we can suppose that a, E U,.  Now, the set f (p ,p4)  is an arc 
joining the points a,, a, and disjoint to the simple closed curve S, 
= f(plp2vp,p,vp2p,). Since the points a, and a, are contained in dis- 
tinct components of R2\S2, the assumption that Kl is embeddable in 
R2 yields a contradiction. 0 

Fig. 15 

One can prove that the union K, of all n-faces of a (2n+2)-simplex 
cannot be embedded in R2" for any natural number n ;  a proof of this 
fact, based on the Borsuk-Ulam antipodal theorem, is outlined in the hint 
to Problem l.ll.F. 

Historical and bibliographic notes 

The first part of Theorem 1.11.4 was formulated, for compact metric 
spaces, by Menger in [I9261 and was proved there for n = 1. In [1928] 
Menger again proved the theorem for n = 1 and hinted at the modifications 
in the proof that should permit us to obtain the theorem in full generality. 
For an arbitrary n the first part of the embedding theorem was proved 
simultaneously by Nobeling in [ 193 I], Pontrjagin and Tolstowa in [ 193 11, 
and Lefschetz in [1931]; the three proofs consisted in constructing a se- 
quence of continuous mappings uniformly converging to a homeomorphic 
embedding and were rather involved. The present proof was given by 
Hut ewicz in [ 19331 (announcement in [ 193 11) ; application of function 
spaces yielded the stronger result about the set of all homeomorphic em- 
beddings. The consideration of function spaces and resorting to the Bake 
category theorem (proofs by category method) proved very useful in the 
dimension theory of separable metric spaces. This idea, originated by 
Hurewicz in [1931], was repeatedly exploited by Hurewjcz, Kuratowski 
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(cf. Problem 1.7.D) and their followers. Theorem 1.11.5 was established 
by Nobeling in [1931]. The spaces M," were introduced by Menger in [1926]. 
They are generalizations of the Cantor set and of Sierpihski's universal 
curve, ie., the space M: described by Sierpikki in [1916], where it was 
also proved that MI is a universal space for the class of all compact sub- 
spaces of the plane which have an empty interior (in [1922] Sierpi6ski 
observed that the assumption of compactness is not essential). In [1926] 
Menger proved that the space M: is universal for the class of all compact 
metric spaces of dimension < 1, observed that Sierpidski's argument 
yields the universality of for the class of all compact subspaces 
of Rm which have dimension < m-1, announced Theorem 1.11.7 for 
compact spaces and put forward the hypothesis that the space M." is 
universal for the class of all compact subspaces of Rm which have dimension 
< n. Theorem 1.11.6 was proved by Bothe in [1963]. In [1931] Lefschetz 
defined for every pair n, m of integers satisfying 0 < n < m 2 1 a compact 
subspace S," of R" which is very much like M," (the difference consists 
in considering simplexes rather than cubes) and proved that Sin+1 is a uni- 
versal space for the class of all separable metric spaces whose covering 
dimension is not larger than n ;  he also proved there that the space S," 
is embeddable in the space N,". It is a general belief that the spaces M," 
and ST are homeomorphic, but no proof was ever produced. Hence, Lef- 
schetz is considered to be the author of Theoiem 1.11.7, although-for- 
mally-the theorem was first proved by Bothe in [1963]. Let us mention, 
by way of digression, that M," and S," are obviously homeomorphic if 
n = 0 or n = m, that M: is homeomorphic to S: and M: is homeomorphic 
to S: by virtue of topological characterizations of M: and M: given by 
Whyburn in [1958] and by Anderson in [1958], respectively, and finally 
that, as proved by Cannon in [1973], fld1 and S,m_l are homeomorphic 
if m # 4. The theorem stating that M," is a universal space for the class 
of all compact subspaces of R" which have dimension < n was proved 
by Stan'ko in [1971]. A proof of the Jordan curve theorem can be found 
in Kuratowski's book [1968], p. 510. 

Problems 

l . l l .A  (Kuratowski [1937a], Hurewicz and Wallman [1941]). (a) Check 
that if ( X ,  o) is a non-empty metric space and (Y ,  e) is a compact metric 
space then the function 6 defined at the beginning of this section is 
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a metric on the set Y x  of all continuous mappings of X to Y and the function 
space (Yx,  G) is complete. Verify that for every open cover & of the space 
X the set of all &-mappings is open in the function space Yx.  

(b) Show that for every separable metric space X there exists a sequence 
B1, g2, ... of finite open covers of X such that every continuous mapping 
f: X - ,  Y of X onto a topological space Y which is an &,-mapping for 
i = 1 , 2, ... is a homeomorphism. 

Hint. Consider a countable base &Y for the space X and arrange into 
a sequence all covers of the form { W ,  X\c}, where U ,  W E ~59 and 
u c w. 

(c) Prove that for every finite open cover 6' of a separable metric space 
X such that 0 < dimX < n the set of all &-mappings of X to IZn+l  is dense 
in the function space ( IZn+l )X .  

(d) Deduce from (a), (b) and (c) that every separable metric space X 
such that 0 < dimX < n is embeddable in the (2n+ 1)-cube 12n+1 ; observe 
that the set of all homeomorphic embeddings of X in IZn+l  contains a G,+et 
dense in the function space (ZZn+l)X. 

Remark. As opposed to the case where X is a compact space, the set 
of all homeomorphic embeddings of a separable metric space X such that 
0 < dimX% n in IZn+l  is generally not a Gd-set (see Roberts [1948]). 

- 

l . l l .B  (Kuratowski [1937a], Hurewicz and Wallman [1941]). (a) Check 
that for every closed subset F of a compact metric space Y the set { f ~  Y x :  
f ( x ) n F  = 0} is open in the function space Yx.  

(b) Prove that for every finite open cover 6' of a separable metric space 
X such that 0 < dimX < n and every linear n-variety H in RZ"+= the set 
of all &-mappings of X to IZn+l  whose values m i s s  H is dense in the func- 
tion space (IZn+ l ) x .  

(c) Prove that for every separable metric space X such that dimX < n 
2 0 there exists a homeomorphic embedding f: X + IZn+l  of X in IZ"' 
which satisfies the inclusion f(x> c iV:"+l. Observe that this fact implies 
the compactification theorem. 

1.11.C. (a) Show that for every continuous mapping f: X +  Y of 
a separable metric space X to a separable metric space Y and for every 
compact metric space ? that contains Y there exists a compact metric 
space .? that contains X as a dense subset and a continuous mapping f: 
2 + f such that flX = f (cf. Lemma 1.13.3). 
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Hint. Consider the completion 2 of the space X with respect to the 
metric 6 defined by letting G(x ,  y)  = e ( x ,  y ) + a ( f ( x ) , f @ ) ) ,  where e is 
a totally bounded metric on the space X and u is an arbitrary metric on 
the space f. 

(b) Let S = {Xi, nj} be an inverse sequence of completely metrizable 
separable spaces. Prove that if nf+'(X,+l)  is a dense subset of X ,  for i 
= 1 ,2 ,  ..., then @S # 0. 

Hint. Apply (a) to define an inverse sequence 3 = {2,, ;;f} of compact 
metric spaces such that X ,  is a dense subset of A?, and %f+'IXi,, = nf+l 
for i = 1,2,  . . . Show that for every i the inverse image G, = 5;' (X,) c 2 
= l&s, where 5,: 2 -+ 2, denotes the projection, is a Gd-set dense in the 
space 2; use the fact that 5, maps 2 onto 2, (see [GT], Corollary 3.2.15). 

(c) Prove that for every continuous mapping f: X -+ R2"+l of a sepa- 
rable metric space X such that dimX < n to RZnf' and for every positive 
number E there exists a homeomorphic embedding g :  X -+ R2"+' such 
such that e ( f ( x ) ,  g (x ) )  < E for every x E X. 

Hint. Let Z = RZ"+lu (0 )  be the one-point compactification of Euclid- 
ean (2n+ 1)-space RZn+l.  Define a compact metric space 2 that contains 
X as a dense subset and satisfigs the inequality dim2 < n, and a con- 
tinuous mapping f 2 -+ Z such that A X  = f. For i =' 1 ,2 ,  .. . let X ,  
=f"-'(B,) c 2, where B, = B(0, i )  c RZ"+l; assume that X i  # 0 and 
consider the subspace @, of the function space (Rzn+l)X1 consisting of 
all homeomorphic embeddings g: X ,  -+ R2"+l such that ,o(g(x),f(x)) < E 

for every x E X , .  Apply (b) to the inverse sequence S = {@,, nf}, 
where nj(g) = glX, for every pair i, j of natural numbers satisfying j < i. 

1.11.D. (a) Show that for every natural number m 2 1 the space 

Hint. Apply Problem 1.3.F. 
(b) (Sierpidski [I9161 and [1922]) Prove that M: is a universal space 

for the class of all subspaces of the plane which have dimension < 1. 
Hint. For a compact one-dimensional subspace X of the plane define 

a subspace of RZ which contains X and is homeomorphic to M:.  To this 
end, consider a rectangle containing X and remove from it smaller rectangles 
disjoint from X in the same way as one removes squares from I 2  to obtain 
M: (see Fig. 16, where X has the shape of the letter a). Apply Theorem 
1.8.9 to extend the result to all one-dimensional subspaces of the plane. 

(c) (Menger [1926] for compact spaces) Prove that the space X-1 

is a universal space for the class of all subspaces of Rm which have dimen- 

Mom is homeomorphic to the Cantor set. 
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sion < rn-1. 
Hint. Modify the construction described in the hint to part (b). 

Fig. 16 

l.ll.E. Prove that the space M," is embeddable in the space N r  for 

Hint. Apply Problem 1.8.C. 

l . l l .F (Flores [1935]). (a) Let p o ,  p 1  , ... , P ~ , , + ~  be the vertices of 
a regular (2n + 2)-simplex T Z n f 2  inscribed in the (2n + I)-sphere SZn+l 
c R2"+2 and let qr = -pi for i = 0, 1, ... ,2n+2. Check that for each 
sequence io < i, < ... < iZn+,  < 2n+2 of 2n+2 non-negative integers, 
the system of points P i o ~ P i l >  * . . , p i , ,  qt,+,, *.., qi,n+l E R Z n t 2  is linearly 
independent and the linear (2n+l)-variety in R2n+2 spanned by these 
points does not contain the origin. Denote by S:"+l the union of all (2n+ 1)- 
simplexes of the form propl ,  ... pi,qf,+l ... qi,n+l and show that the pro- 
jection p of s:"" from the origin onto SZn+l is a homeomorphism. Ob- 
serve that p ( - x )  = -p(x)  for every x ES:"+~. 

(b) Let X, be the family of all faces of T Z n f 2  which have dimension 
< n and let K,, = IX,J. Consider the cone C(K,,) over K,, with vertex at 
the origin, i.e., the subset of R2n+Z consisting of all points of the form 
tx, where x E K,, and 0 < t < 1,  and the subspace S;"" of the Cartesian 
product C(K,,) x C(K,,) consisting of all pairs ( x ,  ty) and ( t x ,  y) ,  where 
0 < t < 1, x E TI , y E T2 and T, , T2 are disjoint members of X,,. Show 
that by mapping, in a linear way, every segment with end points ( x ,  0) 
and ( x , y )  contained in Sgn+l onto the segment with end-points x and 
f ( x - y )  contained in S:"+l, and every segment with end-points (0,y) 
and ( x , y )  contained in SzZn+l onto the segment with end-points --y and 
i ( x - y )  contained in S:,,+l, one obtains a homeomorphism h of S?"" 
onto Sf"+'. Observe that h ( x , y )  = - h D , x ) .  

(c) Applying the Borsuk-Ulam antipodal theorem, i.e., the fact that 

every pair of integers rn, n satisfying 0 d n d m 2 1. 
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for every continuous mapping g: S" + R" there exists a point x E S" such 
thatg(x) = g(-x) (see Spanier [1966], p. 266), prove that the n-dimensional 
polyhedron K,, defined in (b) cannot be embedded in R2" for any n > 1 .  

Hint. Assume that there exists a homeomorphic embeddingf: K,, + Rz". 
Observe that f determines a homeomorphic embedding fi : C(K,,) --f R2"+l, 
consider the mapping fz: S2,"+' --f RZ"+I defined by lettingf,(x, y )  = fl(y)- 
-fl(x) and the composition g = f2h-'p- l :  SZn+l 4 R2"+l. 

1.12. Dimension and mappings 

We shall now study the relations between the dimensions of the domain 
and the range of a continuous mapping. Let us begin with the observation 
that since one-to-one continuous mappings onto can arbitrarily raise 
or lower the dimension (see Problems 1.3.C and 1.4.F(b)), to obtain 
sound results we have to restrict ourselves to special classes of mappings. 
We find that for closed mappings and open mappings many interesting 
results can be obtained. 

Let us recall that a continuous mapping f: X 3 Y is dosed (open) 
if for every closed (open) set A c X ,  the image f ( A )  is closed (open) in Y. 
One readily checks that iff:  X + Y is a closed (an open) mapping, then 
for every closed (open) subset A of X the restriction f [ A  : A -+ f ( A )  c Y is 
a closed (an open) mapping; similarly, iff: X 4 Y is a closed (an open) 
mapping, then for an arbitrary subset B of Y the restriction fB : f - l ( B )  + B 
is a closed (an open) mapping. Clearly, a mapping f: X -, Y is closed 
if and only iff@) = f(A) for every A c X, so that each continuous mapping 
of a compact space to a Hausdorff space is closed. 

We shall first discuss closed mappings and begin with the theorem 
on dimension-raising mappings. In the lemma to this theorem the notion 
of a network appears; a family Jf of subsets of a topological space X 
is a network for X if for every point x E X  and each neighbourhood U 
of the point x there exists an M E N such that x E M c U. The defini- 
tion of a network imitates the definition of a base, only one does not 
require the members of a network to be open sets. Clearly, every base for 
a topological space is a network for that space. The family of all one-point 
subsets is another example of a network. 

1.12.1. Lemma. A separable metric space X satisfies the inequality indX 
< n 2 0 i f  and only if X has a countable network Jf such that indFrM 
< n - 1  for every M E N .  
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Proof. By virtue of Theorem 1.1.6, it suffices to show that if a separable 
metric space X has a network N = { M i } g l  such that indFrM, < n-1 

for i = 1,2, ..., then indX< n. Let Y = U F r M ,  and Z =  X\Y. 

It follows from the sum theorem that ind Y < n - 1 ; we shall show that 
indZ < 0. For an arbitrary point x E 2 and a neighbourhood V c X 
of the point x there exists an Mi E JV such that x E Mi c V. Since x E X\Y 
c X\FrM,, we have x E U = IntM, c V. The inclusion FrIntM, 
c FrM, implies that Z n F r U  = 0 and thus we have indZ < 0. The 
inequality indX< n now follows from Lemma 1.5.2. 0 

00 

i= 1 

1.12.2. Theorem on dimension-raising mappings. If f: X -+ Y is a closed 
mapping of a separable metric space X onto a separable metric space Y 
and there exists an integer k 3 1 such that If -'(y)I < k for every y E Y,  
then ind Y < indX- ( k -  1). 

Proof. We can suppose that 0 < indX < 00. We shall apply induction 
with respect to the number n+ k ,  where n = indX. If n+ k = 1, we have 
k = 1 ,  so that f is a homeomorphism and the theorem holds. Assume 
that the theorem holds whenever n + k  < m 2 2 and consider a closed 
mapping f: X -+ Y such that f(x> = Y and n+ k = m. 

Let 23 be a countable base for X such that indFr U < n- 1 for every 
U E a. Consider an arbitrary U E a; by the closedness off  we have 

(1) Frf(U) = f i q n Y r U )  c f(c)nf(X\U) 
= If(U)uf(Fr U)lnf(X\U) c f(Fr W J B ,  

where B = f(U)nf(X\v). Since the restriction f I Fr U: Fr U +f(Fr v) 
is a closed mapping, it follows from the inductive assumption that 

indf(FrU) < ( n - I ) + ( k - l )  = n + k - 2 .  

Assume that B # 0. Consider therestriction fs: f -'(B) + B and therestric- 
tion f '  = fBl(X\U): (X\U)nf-'(B) -+ B; both JB and f '  are closed, 
and the fibres off ' all have cardinality < k- 1, because f -'(y)n U # 0 
for every y E B. It follows from the inductive assumption that 

indB< n + ( k - 1 ) - 1  = n + k - 2 .  

As U is an &set in X ,  both f(U) and B are F,-sets in Y; applying Corollary 
1.5.4, we obtain the inequality ind[f(Fi U)uB] < n + k - 2 .  From the 
last inequality and from (I) it follows that indFrf(U) < n + k - 2  foi 
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every U E 93; the same inequlity holds if B = 0. One readily checks 
that the family JV = { f(U): U E LB} is a network for the space Y, 
so that indY < n+k-1 = indX+k-1 by virtue of Lemma 1.12.1. 0 

We now pass to the theorem on dimension-lowering mappings. The 
theorem will be preceded by a lemma which, roughly speaking, shows 
that in condition (MU2), in the definition of the dimension function ind, 
points can be replaced by closed sets of small dimension. 

1.12.3. Lemma. If a separable metric space X has a closed cover {A,},s  
such that indA, < m > 0 for each s E S and i f  for every s E S and each 
open set V c X that contains A ,  there exists an open set U c X such that 

A , c  U c  f lc V and i ndFrU<m-I ,  
then indX < m. 

Proof. By virtue of Theorem 1.9.3 it suffices to show that for every closed 
subspace A of the space X and each continuous mapping f: A -+ S" there 
exists a continuous extension F: X..+ S" off over X. It follows from Theorem 
1.9.2 that for each s E S the mapping f is continuously extendable over 
A u A , ,  so that there exists an open set V, c X containing A u A ,  such 
that f is continuously extendable over V,. Consider an open set U, c X 
satisfying 

(2) A, c Us c c V, and indFrU,< m-1; 

obviously, f is continuously extendable over A u  Us. The open cover { U,},S 
of the space X has a countable subcover { U s j } z  We shall inductively 

define a sequence F l ,  F2 ,  ... of continuous mappings, where Fi: A u  u 3, 
-+ S", such that 

t 

j =  1 

(3) 
i-1 - 

j =  1 
F i ( ( A u  U Usj) = Fi- l  for i > 1. 

Let Fl be an arbitrary continuous extension off over A u  Us,.  Assume 

that the mappings Fi satisfying (3) are defined for i < k. The set A u  U Us, 
can be represented as the union of two closed sets 

k -  

j =  1 

k-1 - k - I  

A' = A u  IJ Usj and A" = A u(&,\ U Us,>. 
j =  1 j =  1 
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The mapping f is extendable to a continuous mapping f ”: A” -+ S” and 

D = {x EA’nA’’: Fk-l(x) # f ” ( x ) }  c UUs,n(X\UUs,) c U F r U , ,  

so that indD < m -  1 by virtue of (2) and the sum theorem. It follows 
from Lemma 1.9.6 that the mappings Fkel IA‘nA’’ and f”1A‘nA” are 
homotopic. Since the mapping f ” IA‘nA” is continuously extendable 
over A”, it follows from Lemma 1.9.7 that the mapping Fk-l IA‘nA’’ is 
extendable to a continuous mapping F‘ : A” 4 S”. 

k-I - k-1 k-1 

j =  1 j =  1 j =  1 

Letting 

Fk(x) = p-l(x) 
for x E A‘, 

F”(x) for x E A”, 
k 

j =  1 
we define a continuous mapping Fk of A’uA” = A u U c, to S”, which 
satisfies (3 )  for i = k.  

00 

As X = U Us,, the formula 
i =  1 

F(x) = F,(x) for x E Us, 

defines a continuous mapping F: X -+ S“, which is the required extension 
off  over X. c] 

1.12.4. Theorem on dimension-lowering mappings. Iff: X -+ Y is a closed 
mapping of a separable metric space X to a separable metric space Y and 
there exists an integer k 2 0 such that indf -‘(y) < k for every y E Y, 
then indX < indY+k. 

Proof. We can suppose that indY c oc). We shall apply induction with 
respect to n = ind Y. If n = - 1, we have Y = 0 and X = 0, and so 
the theorem holds. Assume that the theorem holds for closed mappings 
to spaces of dimension less than n 2 0 and consider a closed mapping 
f: X +. Y to a space Y such that indY = n. 

We shall show that the closed cover {f-l(y)}yer of the space X satisfies 
the conditions of Lemma 1.12.3 for m = n + k.  Clearly, ind f -l (y )  < k < m 
for each y E Y. Consider now an y E Y and an open set V c X which 
contains f - ’ (y) .  The set W = Y\f(X\V) is a neighbourhood of the 
point y ;  since indY = n, there exists an open set U’ c Y such that 

Y E  U’ c U c W and indFrU’< n - 1 .  
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Applying the inductive assumption to the restriction fFrU, :  f -'(Fr U') 
-+ Fr U', we obtain the inequality ind f -'(Fr U') < n + k - 1. The open set 
U = f -'(U') satisfies the conditions 

f -'(y) c u t v = f -'(U') c f -I(?) c f - ' (W) c v 
and 

Fr U = Frf-'(U') = f -'(U')\ f -'(U') 

c f -'(@)\f-'(U') cf-'(FrU'), 

so that ind Fr U < n + k - 1. Lemma 1.12.3 now implies that ind X < n + k 
= indY+k. c] 

Let us note that in Theorem 1.12.4 the assumption that f is a closed 
mapping cannot be replaced by the assumption thatfis open (see Problem 
1.12.C). On the other hand, Theorem 1.12.2 holds for open mappings 
as well; we shall show below that even more is true: open mappings with 
finite fibres do not change dimension. We shall also show that open mappings 
with countable fibres defined on locally compact spaces do not change 
dimension. In the proofs of both theorems the following lemma will be 
applied; we recall that the symbol Ad denotes the set of all accumulation 
points of the set A,  i.e., the set of all points x such that x E A\{x). 

1.12.5. Lemma. Let f: X + Y be an open mapping of a metric space X onto 
a metric space Y. For every base B? = { Us}sE~ for the space X there exists 
a family { A s } s e ~  of subsets of X such that A, c Us for each s E S and 

(i) A, andf(A,)  are Fa-sets in X and Y, respectively, 
(3) f IA,: A, + f ( A s )  is a hpmeomorphism, 

(iii) X = (UA,)~(UIf-l(y)ld). 
S€S YSY 

Proof. For each s E S let 

A, = ( x  E us: U,nf- ' f (x)  = { x } ) .  

Observe first that the set f(U,)\f(A,) is open in Y. Indeed, for every point 
y ~f(v,)\f(A,) there exist two distinct points x l ,  x 2  E Us such that f (x1)  
= f ( x J  = y ,  and-as one readily checks-the open set V = f (Wl )n f (Wz) ,  
where W, , W, are disjoint open subsets of Us which contain x1 and x 2 ,  
respectively, contains the point y and is contained in the set f(U,)\f(A,)- 
As f ( A J  = f(Us1, 

f(A3 = f(~,)\[f(~,)\f(~31¶ 
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so that the set f(A,),  being the intersection of an open set and a closed 
set, is an Fu-set in Y. From the obvious equality 

(4) A ,  = u,nf -'f(AJ 

it follows that A, is an Fu-set in X ;  thus (i) is proved. 
The restriction f I Us: Us + f(Us) is an open mapping, and so is its 

restriction cfl Us)f (~ , ) :  U,nf -'f(A,) --f f(A,). By virtue of (4) the last 
mapping coincides with f l A s :  A ,  + f ( A J  Thus the mapping f lA,:  A ,  
-+ f(A,) is open and, by the definition of A , ,  one-to-one, i.e., we have (ii). 

To prove (iii), it suffices to observe that if x 4 [ f  -'f(x)]*, then there 
exists a member Us of the base 33 such that U,nf -'(x) = {x}, and thus 
X E A , .  0 

1.12.6. Theorem. Iff: X --r Y is an open mapping of a separable metric 
space X onto a separable metric space Y such that for every y E Y thefibre 
f-'(y) has an isolated point, then indY < indX. 

Proof. Let { U l } z  be a countable base for the space X ;  consider a family 
{ A i } Z ,  of subsets of X which satisfy (i)-(iii) in Lemma 1.12.5. By the 

assumption on the fibres, Y = Uf(Al), and since the subspaces A ,  c X 

andf(AJ c Yare homeomorphic, ind f (A , )  = ind A,  < indX for i = 1 , 2,. . . 
Hence we have indY < indX by virtue of Corollary 1.5.4. 0 

co 

i= 1 

1.12.7. Theorem. I f f :  X -+ Y is an open mapping of a separable metric 
space X onto a separable metric space Y such that for every y E Y the fibre 
f -'Q is a discrete subspace of X ,  then indX = indY. 

Proof. Let {U,>im=l be a countable base for the space X ;  consider a family 
of subsets of X which satisfy (i)-(iii) in Lemma 1.12.5. By the 

assumption on the fibres, X = U A , ,  and since the subspaces A t  c X 

andf(A,) c Yarehomeomorphic,indA, = indf(A,) < indYfori = I ,  2,.. . 
Hence we have indX < indY by virtue of Corollary 1.5.4; to complete 
the proof it suffices to apply Theorem 1.12.6. 0 

m 

i =  1 

1.12.8. Alexandroff's theorem. rff: X + Y is an open mapping of a separable 
Iocally compact metric space X onto a separable metric space Y such that 
If-'(y)I < KO for every y E Y, then indX = indY. 
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proof. Since each closed subspace of a locally compact space is locally 
compact, the fibres o f f  are locally compact. It follows from the Baire 
category theorem and complete metrizability of locally compact spaces 
(or from Problem 1.2.D) that for every y E Y the fibref-'(y), being count- 
able, has an isolated point. Hence we have indY < indX by Theorem 
1.12.6. 

Let {F,)& be a countable cover of X consisting of compact subspaces. 
For every i the restrictionflF,: Fi + f ( F J  is a closed mapping with zero- 
dimensional fibres, so that indF, < inff(Fi) < ind Y by virtue of the theorem 
on dimension-lowering mappings. Hence we have indX < indY by virtue 
of the sum theorem. 0 

It is possible to define open mappings with countable fibres which 
arbitrarily raise or lower dimension (see Problems 1.12.E and 1.12.F). 
Open mappings with zero-dimensional fibres defined on compact spaces 
can also arbitrarily raise dimension, but examples of such mappings are 
very complicated and will not be discussed here. Let us note, however, 
that the space M: defined in the last section can be mapped onto every 
locally connected metric continuum by an open mapping whose fibres 
are all homeomorphic to the Cantor set 

We conclude this section with a discussion of open-and-closed map- 
pings, i.e., mappings which are both open and closed. It follows from the 
last paragraph that open-and-closed mappings with zero-dimensional 
fibres can arbitrarily raise dimension. We shall now show that open-and- 
closed mappings with countable fibres preserve dimension. 

1.12.9. Vaingtein's Iemma. If8 X -+ Y is a closed mapping of a metric space 
X onto a metpic space Y, then for every y E Y the boundary Frf -'Q of 
the jibre f -'(y) is a compact subspace of X. 

Proof. It suffices to show that every countably infinite subset A 
= { x , ,  x 2 ,  ...} of the boundary Frf-'(y) of an arbitrary fibre. f-'Cy) 
has an accumulation point. Let {Vi>z, be a base for the space Y at the 
point y. For i = 1,2, ... choose a point xi E f-'(V,)\f-'(y) satisfying 
e(xi,  x:) < l / i ;  such a choice is possible, because the intersection B(x i ,  l/i)n 
nf-'(V,) is a neighbourhood of x i .  Consider the set B = {xI,x;, ...} 
c X. We have y E f(B)\f(B) so that # B, i.e., Bd # 0. Now, since 
e(x , ,  x i )  < I / i  for i = 1,2,  .. . , Ad = Bd f 0 and the proof is completed. 0 
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1.12.10. Theorem. Iff: X + Y is an open-and-closed mapping of a separable 
metric space X onto a separable metric space Y such that If -'QI < No 
for every y E Y, then indX = indY. 

Proof. Let us note first that Theorem 1.12.4 yields the inequality indX 
< indY. 

o w ,  let Yo = {y  E Y Intf-'(y) # 0}, Yl = Y\Yo, and XI 
= f -'(Y1). The mapping f being open, for every y E Yo the one-point set 
{ y }  = f(1ntf -'(y)) is open, which implies that the set Yo is open in Y 
and indYo < 0. The restriction fi = fy,: X ,  + Y, is also an open mapping, 
and since fi'(Y) = Frf -'(y) c f -l(y), the fibres of fl are countable 
and compact, the latter by virtue of VainStein's lemma; in particular, 
for every y E Y the fibre f;'(y) has an isolated point. It then follows from 
Theorem 1.12.6 that indYl < indXl < indX; as Y = YouYl, Corollary 
1.5.5 yields the inequality indY < indX. 0 

Historical and bibliographic notes 

Theorem 1.12.2 was proved by Hurewicz in [1927a]. The same paper 
contains Theorem 1.12.4 for continuous mappings defined on compact 
metric spaces; the extension of this theorem to separable metric spaces 
was given by Hurewicz and Wallman in [1941]. Theorem 1.12.6 was first 
stated by Taimanov in ti9551 ; however, it is implicitly contained in Alexand- 
roff's paper [1936]. Theorem 1.12.7 was proved by Hodel in [1963] (for 
the special case of a mapping with finite fibres it was proved earlier by 
Nagami, namely in [1960]). Alexandroff established Theorem 1.12.8 in 
[1936]. The first example of a dimension-raising open mapping with zero- 
dimensional fibres defined on a compact metric space was described by 
Kolmogoroff in [1937]. KeldyS defined in [1954] an open mapping with 
zero-dimensional fibres which maps a one-dimensional compact metric 
space onto the square 12; a detailed description of Keldyi' example can 
be found in Alexandroff and Pasynkov's book [1973]. The fact that M: 
can be mapped onto every locally connected metric continuum by an 
open mapping whose fibres are all homeomorphic to the Cantor set 
was established by Wilson in [1972]. Theorem 1.12.10 was given by V a b  
gtein in [1949]. Lelek's paper [1971] contains a comprehensive discussion 
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of the topic of the present section and a good bibliography. We shall re- 
turn to this subject in Section 4.3, where two theorems of a more special 
character will be proved (see Theorems 4.3.9 and 4.3.12). 

Problems 

1.12.A (Hurewicz [1926]). Prove that iff: X -+ Y is a closed mapping 
of a separable metric space X onto a separable metric space Y and If-’(y)I 
= k < co for every y E Y, then indX = indY. 

Hint. Consider a countable base g’for the space X and the family 

of all intersections 0 f( U,), where U, E iB for i = 1 , 2  , . . . , k and D, n vj 
= 0 whenever i # j .  

k 

i= 1 

1.12.B (Hurewicz [1937l). Observe that, under the additional hypothesis 
that X is a finite-dimensional compact space, the theorem on dimension- 
lowering mappings is a direct consequence of the Cantor-manifold theorem. 

Hint. Assume that X is a Cantor-manifold and apply induction with 
respect to indY. 

1.12.C. Give an example of an open mapping with zero-dimensional 
fibres which maps a one-dimensional separable metric space onto the 
Cantor set. 

Hint. Use the Knaster-Kuratowski fan. 
Remark. It follows from Problem 1.12.F that there even exist such 

mappings with countable fibres (cf. Problem 1.12.G(b)). 

1.12.D. (a) Observe that in Theorem 1.12.2 the inequality lf-’(y)I G k 
can be replaced by the weaker inequality IFrf-’(y)l G k. 

Hint. Consider the restriction f l X ,  , where X ,  is obtained by adjoining 
to the union U Frf-’(y) one point from each fibref-’(y) which has an 

empty boundary. 
(b) Observe that in Theorem 1.12.6 it suffices to assume that for every 

y E Y the boundary Frf-’(y) either has an isolated point or is empty. 

YGY 

1.12.E (Hausdorff [1934]). Show that every separable metric space X 
can be represented as the image of a subspace 2 of the space P of irrational 
numbers under an open mapping. 
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Hint. Consider a countable base (Uk)z=l for the space X and the sub- 

space 2 of the Cartesian product IFy, = n N,,  where Ni = N for i 

= 1,2, ... , consisting of all points { k , }  such that the family {U,,>& 
is a base for X at a point x ;  assign the point x to the point {ki}. 

00 

i= I 

1.12.F (Roberts f.19471). Show that for every open mapping f: X +  Y 
of a separable metric space X onto a separable metric space Y there exists 
a set X, c X such that the restrictionflX, is an open mapping of X ,  onto 
Y and has countable fibres. 

Hint. Consider a countable base { Ui}gl for the space X and choose 
one point from each non-empty intersection of the form Uinf-’Q, 
where y E Y. 

1.12.6. (a) Observe that iff: X + Y is an open mapping of a complete 
separable metric space X onto a separable metric space Y such that If-’(y)l 
< KO for every y E Y, then indY < indX. 

(b) Give an example of an open mapping with countable fibres which 
maps a one-dimensional complete separable metric space onto the Cantor 
set. 

Hint. For every sequence il , i2, .. . , im consisting of zeros and ones, 
let 

and let C’(il, i,, ... , i,) be a subspace of I which is homeomorphic to 
the Cantor set and is contained in the interval 

removed from I in the process of constructing the Cantor set. Consider 
a countable set {al, a,, ...} dense in the interval [- 1, 13 and define 

00 m 

m-1 il, ..., i m k = l  
X = K u  (J U U [C’(il , i , ,  ... , im) x { f f k } ]  c X X  [- 1 ,  1 1 ,  

where K is the space in Problem 1.2.E; show that the mapping8 X 3 C, 
where f l  K is the projection of K onto C and f l  [C’(il, iz, .. , im) X { a k } l  

is an arbitrary homeomorphism of C’(i,, i,, ... , i,,J x {ak} onto C(il, i z ,  .. . 
. . . , im), has the required properties. 
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1.13. Dimension and inverse sequences of polyhedra 

Besides theorems on &-mappings and &-translations there is one more 
characterization of dimension in the realm of compact metric spaces 
through their relations to polyhedra. It has been discovered that the class 
of compact metric spaces which have dimension < n coincides with the 
class of spaces which are homeomorphic to the limits of inverse sequences 
of polyhedra which have dimension < n. We shall deduce this characteriza- 
tion from two theorems which we are going to prove: the theorem on 
expansion in an inverse sequence and the theorem on the dimension of 
the limit of an inverse sequence. 

As the subject of this section is more specific than our previous con- 
siderations, we shall assume here that the reader is familiar with the basic 
definitions and theorems in the theory of inverse systems (see, e.g., [GT], 
pp. 135-140, 188 and 189). We shall only recall that an inverse sequence 
{Xi, nj} is an inverse system {Xi, nj, N} where N is the set of natural 
numbers directed by its natural order. 

In Lemma 1.13.1 and in the proof of Theorem 1.13.2 below the symboI 
F wiIl denote the m-simplex in Rm+ spanned by the points p i  = ( 1  , 0 ,  .. . 
... , 0), p 2  = (0, 1 , ... , 0) ,  ... , pm+l = (0, 0 ,  ... , 1 ) .  We shall consider on 
F the metric IJ defined by letting 

obviously, the metric CT is equivalent to the natural metric on Tm. 

1.13.1.Lemma.LetasetAj c { l Y 2 , . . . , n + 1 }  begiven f o r j =  1 , 2 ,  ..., I 
and let n be the mapping of to T" = p l p 2  ... P , , + ~  defined by the for- 
mula 

I 

n((A1, A 2 ,  . . . , A , ) )  = y- 1, y p i .  where nj = lA,l. 
j=r nJ k2 

Proof. Consider arbitrary points x = (Al ,  A 2 ,  ... , A,) and y = (p1 , p2,  ... 
..., p l )  in TI-'. Let a j  = A j - , u j  f o r j  = 1 , 2,  ..., I ,  B = { j :  a j  > 0) and 
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I 

C = { j :  a, < O}. From the equality c aI = 0 it follows that xla, l  
j =  1 j d  

= c la,l = +a(x, y). One easily checks that 
jeC 

1 I 

Since n, < n+ 1 for j = 1 , 2, ... , I ,  we have 

, SO that min(lb1, Icl) 2 1 s .  Choosing 1 O(X¶Y) similarly Icl 2 - 2 n + l  2 n + l  
arbitrarily an i, € A 1  nA,n . . . nA,  and letting A; = A,\ { i ,} for j = 1,2, .. . 
.. . , I we have 

I I I 

I I 1 I 

1.13.2. Theorem on expansion in an inverse sequence. For every compact 
metric space X such that dimX< n there exists an inverse sequence 
{K i ,  nj} consisting of polyhedra of dimension < n whose limit is homeo- 
morphic to X ;  moreover, one can assume that, for  i = 1 , 2, . . . , Ki is the 
underlying polyhedron of a nerve .Xi of a Jinite open cover of the space X ,  
and that for  every j <  i the bonding mapping ni is linear on each simplex 
in .Xi. 

proof. We can suppose that dimX 2 0. Consider a sequence , , . .. of 
finite open covers of the space X ,  where af = { U,,,}!s and Ui,k # 0 for 
k = 1,2 ,  ..., k,, such that 
(1) ord4Yi < n 
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and 
(2) mesh%,+, < min(l/i+ 1 ,  .si/2), 

where E l  is a Lebesgue number for the cover 9Zi. It follows from (2) that 

(3) if Ui+l,j,nUf+l,j,n ... # 0, then there exists a k < k, 

For i = 1 , 2, ... le tXi  = N(%J be a nerve of the cover %i consisting 
of faces of the simplex T k i - I .  By virtue of (l), the underlying polyhedra 
Ki = IXJ all have dimension < n. 

We shall now define continuous mappings ni+': Ki+, + Ki for i 

= 1 , 2,  . . . Let pi+ 1, be a vertex of the complex X f  + . Consider the member 
U,,,,, of the cover which corresponds to pi+l,j. By virtue of (3) 
the family 

is non-empty. Since n ai, # 0, the vertices of Xi which correspond 
to the members of 

such that ui+l,j, C u i , k  for FZ = 1, 2, ..., 1 .  

% i , j  = ( U E e i :  ui+l.j c ul 

span a simplex Si,j E X X I ;  we let 

(4) ni+ (Pi + 1, j) = b(St, j) 

where b(S) denotes the barycentre of S. 

(5) for every simplex S €Xi+ ,  , the images of vertices of S under 

We shall prove that 

are contained in a simplex T E X i .  

Indeed, if S =pf+i,jlpi+i.j2 **.Pi+I,jiY then 

0 # Ui+ , ,  jpui+l, j2n ... nui+,, jl = 17 %, j p  f7 at, -.. n f7 %.jIy 

so that the vertices o f X i  which correspond to the members of the union 
%i,jlu%i,jzu ... u%i,jI span a simplex T E X ~  which contains the point 
nf+l(pf+l,jm) for m = 1, 2 ,  ... , I .  

It follows from (5) that the mapping n ; + I  defined on the set of all 
vertices o f x i + ,  can be extended over each simplex S = pi+1,j1p1+1.j2 ... 
... Pi+l.j, E X , + ,  by letting 

1 I 

in this way a continuous mapping ni+ : Ki+ + Ki is defined for i = 1 , 2 ,  . . . 
One easily checks that by defining, for every pair i, j of natural numbers 
satisfying j < i, 

ni J = d+1d+2 J j + l  ... 7ti-l if j < i and ni = idg,, 
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one obtains continuous mappings nf: K, -P K,  linear on each simplex 
in St. 

Thus the inverse sequence S = {Ki, nf} is defined. It remains to show 
that the space X is homeomorphic to the limit K of this inverse sequence. 

By virtue of (3) and (5) we can apply Lemma 1.13.1 to restrictions 
of n!+l to simplexes in Xi+1,  so that 

n 
n+ 1 

(6) 6(n;+l(F))  < - 6(F) for every F c S E Sf+ 

Let us observe that for every choice of a point y ,  in Kt for i = 1 , 2 ,  . . . 

(7) if 0 # F, = c u  SEX^: y ,  ES} and n:+l(F,+,) c Fi for 
i = 1 , 2 ,  ... , then the limit L of the inverse sequence {F,, njI F,} 
is a one-point set. 

Indeed, the set L is non-empty as the limit of an inverse sequence of non- 

empty compact spaces; since for j = 1 , 2 ,  ... n,(L) c n nj(F,), where 

n,: K + K[ is the projecnon, a d  since-by virtue of (6) and the inequality 
G(F,nS) < S(S) < 2-6(nj(Ff)) < 4(n/n+ l)'-j whenever j < i, the sets 
nj(L) are all one-point sets, which implies that L is a one-point set. 

Now, consider a point x E X ;  for every natural number i let 

00 

i= j 

%*(x) = {UE%*: X E  U} 

and denote by &(x) the simplex lLX1 spanned by the vertices of 3Erl which 
correspond to the members of %*(x). Let us note that 

(8)  ni+'(~t+l(x)) c Ki(x) for i = I ,  2 ,  ... 
Indeed, if U,,,,, E @t+l(x), then a,,, c @*(x), so that the images of 
vertices of Ki+,(x) under TC~" are contained in the simplex K,(x), and 
this implies (8). It follows from (8) that K(x)  = {K,(x), nflK,(x)} is an 
inverse sequence. By virtue of (7) the limit of this inverse sequence contains 
exactly one point; let it be denoted byf(x). Clearly, f(xj E K ;  a mapping f 
of X to K is thus defined. 

We shall prove thatfis a continuous mapping. Obviously, it is enough 
to show that for every natural number j the composition f ,  = n,f is con- 
tinuous. Consider a point xo E X ,  a positive number E and a natural number 
i such that i 2 j and (n/n+ l)r-j < ~ / 2 .  The set U = n %,(xo) is a neigh- 
bourhood of xo and for every x E U the inclusion %*(x0)  c a t ( x )  holds, 
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so that Ki(xo) c Ki(x) and 9 

f,(xo> E 4(Ki(XO)) c n,!(Kicx)) for x E u. 
Since by virtue of (6) 

G(nj(K,(x))) < 2(n/n+ I) , - j  < & 

a(f,(xo>,f,(x)) < 

and since fj(x) E nj(K,(x)), 
for x E u, 

i.e., the mapping fj is continuous. 
As for each pair x, x' of distinct points of X there exists -by virtue 

of (2)-a natural number i such that 42i(x)n42i(x') = 0, i.e., K,(x)n 
nK,(x') = 0, the mapping f: X -P K is one-to-one. As X is a compact 
space, to complete the proof it suffices to show that f ( X )  = K. 

Consider a point y = {yi} E K. For i = 1,2, ... let 

Ai = (J ( S  E X , :  yi E S }  c K, and Bi = fi-'CA,> c X .  

The sets Bi are non-empty. Indeed, if Si = pI.J1pi.j2 . . . p i , j l  is a maximal 
simplex in X i  which contains y,, and xi is a point in Ui, j,n Ui, j,n . . . n Ui.,l, 
then K,(x,) = S, c Ai, which implies that xi E B, .  

Since the image of each simplex S E X , , ,  under nf+' is contained 
in a simplex T EZ~,  and since n;+'(y,+J = yi, 

(9) ni+l@i+l) c A ,  for i = 1,2, ... 
The last inclusion implies that 

Bi + 1 = fi; (A,+ 1) c fi; (nf+ ')- '(A i) 

= ( T C ~ + X + ~ ) - ' ( A , )  =fi-'(Ai) = Bi 

for i = 1,2, . . . , so that, by the compactness of X ,  there exists a point 

X E ~ B , .  Let F, = AinKi(x)  for i = 1 ,  2,  ...; as f i (x)  €Fi, the sets Fi 

are non-empty By virtue of (9) and (8) 

m 

i= 1 

c A,nKi(x) = Fi for i = 1, 2, ... , 

so that {Fi, nj'lF,} is an inverse sequence; by (7), the limit of it is a one- 
point set { z }  c K. From (9) and (7) it follows that {Ai, nj'lAi} is an 
inverse sequence whose limit is the one-point set { y } .  By the definition 
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o f f ,  the one-point set ( f ( x ) }  is the limit of the inverse sequence K(x) .  
Since (2) c ( y > n  ( f ( x ) ) ,  we have f ( x )  = y .  

Let us note that another proof of Theorem 1.13.2 (see the hint to Problem 
1.13.G(a)) leads to an inverse sequence {Ki, nj}, where, for i = 1,2,  ... , Ki 
is the underlying polyhedron of a nervexi  of a finite open cover of the 
space X ,  and for every j < i the bonding mapping nj is a quasi-simplicia1 
mapping of Ki onto K j ,  i.e., it is the linear extension of a simplicia1 mapping 
of a barycentric subdivision of .Xi onto a barycentric subdivision of X 
(cf. Problem 1.13.C). 

Let us also note that from Problem 1.lO.K it follows that every compact 
subspace X of Euclidean m-space R" such that dimX < n > 0 can be 
represented as the limit of an inverse sequence consisting of polyhedra 
of dimension < n which are all contained in R". The converse does not 
hold; simple examples show that the limit of an inverse sequence of poly- 
hedra contained in R" need not be embeddable in R" (see Problem 1.13.B). 

We now pass to the theoiem on the dimension of the limit of an in- 
verse sequence. In the proof we shall apply the following lemma, a slight 
strengthening of the compactfication theorem, which allows the reduction 
of the problem to the special case where the inverse sequence consists of 
compact spaces. 

1.13.3. Lemma. For every continuous mapping f: X +. Z of a separable 
metric space X to a compact metric space Z there exists a compact metric 
space 2 containing X as a dense subspace and such that dim2 < dimX 
and f is extendable to a continuous mapping 3 2 -+ Z. 

Proof. Let eo be a totally bounded metric on the space X and o an arbitrary 
metric on the space Z. One easily checks that the formula 

defines a metric equivalent to eo and such that the mapping f is uniformly 
continuous with respect to e and o. The metric e is totally bounded. Indeed, 
for every positive number E there exists a finite cover d of the space ( X ,  eo) 
such that meshd < ~ / 2  and a finite cover 93 of the space (Y, 0) such 
that mesh93 < &/2; one can readily check that the mesh of the cover 
d~f-'(93) of the space (A', e)  is less than E .  It follows from the second 
part of the compactification theorem that on X there exists a metric 
equivalent to e such that e ( x ,  y )  < Zi(x , y)  for x , y E X ,  and that the comple- 
tion 2 of the space X with respect to is a compact space such that dim? 
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< dimX. Obviously, the mapping f is uniformly continuous with respect 
to @ and u, which implies that f is extendable to a continuous mapping 
f i x + z . n  
1.13.4. Theorem on the dimension of the limit of an inverse sequence.I-f 
the inverse sequence S = ( X l , n i }  consists of separable metric spaces X i  
such that dimX, < n for  i = 1 , 2, . . . , then the limit X = limS satisfies the 
inequality dimX < n. 

Proof. Let y1 be a compact metric space which contains A', as a dense 
'subspace and such that dimZ?, < n. An inductive construction applying 
Lemma 1.13.3 yields for i = 2 ,  3, ... a compact metric space 2, which 
contains Xi  as a dense subspace and such that dimY[ 5 n and ni-l : Xi 
--f -fi-L is extendable to a continuous mapping %:-, : X i  4 J?l-l. Letting 

7cj = 5j+l%$:; ... ?ii-l for j < i and ?ii = id?, , 
one obtains an inverse sequence = {Yi, $} consisting of compact 
metric spaces gi such that dimgi < n for i = 1 , 2, ... As limS c limg, 
it suffices to prove the theorem under the additional assumZion t h z a l l  
spaces Xi are compact. 

Let 42 be a finite open cover of the space X .  Since the family of all sets 
n;'(Ui), where ni: X + Xi  is the projection and Ui is an open subset of 
Xi  , is a base for the space X ,  and since the space X is compact, as is the limit 
of an inverse sequence of compact spaces, the cover 42 has a finite refine- 
ment (7c&1(Uik)>km=l, where i, ,< iz < ... < i,,, and U,, is an open sub- 
set of X,, for k = 1 , 2, ... , m .  The family (n:/(l(Vk)}r=l, where Vk 
= (ni,m)-'(U,,), is also a refinement of 42. Consider a finite open refinement 

Y of the cover (Vk}rZl of the space M = U V ,  c Xi,,, such that o rdY 

< n; clearly, n ~ l (  V )  is a finite open refinement of 42 and has order < n. D 

c 

.-. 

m 

k =  1 

Theorems 1.13.2 and 1.13.4 yield the characterization of dimension 
which was announced at the beginning of'the present section. 

1.13.5. Theorem on inverse sequences. A compact metric space X satisfies 
the inequality dimX < n if and only if X is homeomorphic to the limit 
of an inverse sequence consisting of polyhedra of dimension < n. [7 

One readily sees that the theoiem on &-mappings is an easy consequence 
of the theorem on expansion in an inverse sequence (see Problem 1.13.A). 
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The study of relations between these two theorems led to the notion of a 
ll-like space. Let ll be a family of polyhedra; we say that a compact metric 
space X is ll-like if for every positive number E there exists an &-mapping 
of X onto a polyhedron K E ll. The main theorem on ll-like spaces states 
that if either ll is a family of connected polyhedra (more generally, the 
space X below is a continuum) or ll is a hereditary family of polyhedra 
(i.e., together with the underlying polyhedron of a simplicia1 complex X 
contains the underlying polyhedra of all subcomplexes ofX), then a compact 
metric space X is n-like if and only if X is homeomorphic to the limit of 
an inverse sequence { K L ,  nj>, where K, ell for i = 1, 2, ... and nj maps 
Xi onto X j  for everyj < i. Obviously, this is a generalization of the theorem 
on inverse sequences, because the family n of all polyhedra of dimension 
< n is a hereditary family of polyhedra and, for this family, the class 
of ll-like spaces coincides with the class of all compact metric spaces 
whose covering dimension is not larger than n. Various families ll yield 
interesting classes of compact metric spaces. Thus, for the family ll con- 
sisting of the interval I alone, one obtains the class of snake-like continua. 
Clearly, each snake-like continuum is one-dimensional ; one proves that 
snake-like continua are embeddable in the plane (see the remark to Problem 
1.13.B) and that there exists a universal space for the class of all snake-like 
continua. In a more general setting, one can prove that if ll is a hereditary 
family of polyhedra which, moreover, is additive (i.e., together with each 
pair K, L of polyhedra contains the disjoint sum of K and L), then there 
exists a universal space for the class of all ll-like spaces. Obviously, this 
implies the existence of a universal space for the class of all compact metric 
spaces whose covering dimension is not larger than n. In a less direct way, 
this also implies the existence of a universal snake-like continuum. 

Historical and bibliographic notes 

Theorem 1.13.2 was proved by Freudenthal in [1937]. Freudenthal’s 
proof leads to an inverse sequence of polyhedra with quasi-simplicia1 
mappings onto which, moreover, are irreducible (see Problem 1.13.F) ; 
the simpler proof given here was outlined by Isbell in [1959]. Theorem 
1.13.4 was proved by Nagami in 119591; for compact metric spaces it is 
implicitly contained in Freudenthal’s paper [1937]. The notion of a n-like 
space was introduced by MardeX and Segal in [1963]. In the same paper 
MardegiC and Segal proved that if n is a family of connected polyhedra, 
then a compact metric space is ll-like if  and only if it is homeomorphic 
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to the limit of an inverse sequence of polyhedra in the family n; Pasynkov 
in [1966] showed that this is likewise true under the assumption that 
is a hereditary family of polyhedra. It was also shown by Pasynkov in 
[1966] that if n is a hereditary and additive family of polyhedra, then 
there exists a universal space for the family of all n-like spaces; a somewhat 
stronger result was obtained by McCord in [1966]. Snake-like continua 
were introduced by Bing in [1951]; among other things, Bing proved 
that each snake-like continuum is embeddable in the plane. The exist- 
ence of a universal space for the class of all snake-like continua was es- 
tablished by Shori in [1965]. 

Problems 

1.13.A. Let X # 0 be the limit of an inverse sequence {Xi, nj} of 
compact metric spaces and let Ei = mesh( { n ~ ; ~ ( x ) } , ~ ~ ~ ) ,  where ni: X -+ Xi 
is the projection. Show that the sequence F ~ ,  F ~ ,  ... converges to zero, 

1.13.B. Define an inverse sequence S = {Xi, j } ,  where Xi = I for 
i = 1 ,2 ,  . . . and nj maps Xi onto X j  for every j < i, such that the limit 
of S cannot be embedded in the real line. 

Remark. As shown by Isbell in [1959], the limit of an inverse sequence 
of compact subspaces of R" is embeddable in R2". 

1.13.C (Isbell [1964]). Let S = {IX,l, nj} be an inverse sequence 
consisting of polyhedra of dimension 2 1, where for j < i the bonding 
mapping nj maps ]Xi] onto IXjl and is the linear extension of a simplicial 
mapping of .Xi to X j .  Prove that if the limit of S contains more than 
one point, then it contains a subspace homeomorphic to the interval I. 
Applying the fact that there exist one-dimensional continua with no sub- 
space homeomorphic to the interval I (see, Kuratowski 119681, p. 206), 
observe that there exist one-dimensional compact metric spaces which 
are not homeomorphic to the limit of an inverse sequence {IXil, n;} of 
one-dimensional polyhedra, where for j < i the bonding mapping nj is 
the linear extension of a simplicial mapping of .Xi to X j .  

1.13.D. Define an inverse sequence S = {Xi, nj} of one-dimensional 
compact metric spaces, where for j < i the bonding mapping nj maps 
Xi onto X j ,  such that the limit of S is homeomorphic to the Cantor set. 
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1.13.E (MardeSid and Segal [1963]). Let ZZ be the family consisting 
of all polyhedra which are unions of a one-simplex and a finite number 
of zero-simplexes. Observe that the Cantor set is a ZZ-like space, and yet 
is not homeomorphic to the limit of an inverse sequence { K i ,  ni}, where 
Ki E Z Z  for i = 1 , 2 ,  ... and nj maps Xi onto X j  for everyj < i. 

1.13.F (Freudenthal [1937]). Let f: X + 1x1 be a continuous mapping 
of a topological space X to the underlying polyhedron of a simplicia1 
complex X .  A continuous mapping g :  X + 1x1 is a modijication off  if, 
for every S EX, g(x) E S whenever f ( x )  E S ;  the mapping f is irreducible 
if there is no modification g :  X-+ 1x1 o f f  such that f(X)\g(X) # 0. 

(a) Show that if F is a closed subset of X and g’: F + 1x1 is a modifica- 
tion of the restriction f IF: F + 1x1 of a continuous mapping f :  X + 1x1, 
then there exists a modification g :  X .+ 1x1 off  such that g l F  = g’. 

(b) Check that iff: X + 1x1 is an irreducible mapping, then for every 
subcomplex X o  of the complex X the restriction Jyo ,  : f -‘(IXol) -+ IX0l 
also is irreducible. 

(c) Let Y be the simplicial complex consisting of all faces of a simplex 
and let Y o  be the subcomplex o f - Y  consisting of all proper faces of the 
simplex under consideration. Prove that if for a continuous mapping f: 
X + 19’1 there exists a modification g’: X .+ 19’1 off such that an interior 
point p of 191, i.e., a point p E JY(\IYol , does not belong to g’(X), then 
there also exists a modification g :  X -+ 19’1 of f  such that gl f -‘(IYol) 

Hint. There exists an open set U c X containing f -l(lYol) and such 
that the segment with end-points f ( x )  and g(x) does not contain the point p 
for any x E U. 

(d) Show that a continuous mapping f: X + 1st is irreducible if and 
only if, for every S EX such that an interior point of S belongs to f ( X ) ,  
the restriction f s : f - l ( S >  -+ S is an essential mapping (see Problem 1.9.A). 

(e) Prove that for every continuous mapping f: X + 1x1 there exist 
an irreducible modification g :  X + 1x1 off and a subcomplex X o  of X 
such that g ( X )  = IX,1. 

Hint. To begin with, apply (c) to observe that if for a simplex S E X  the 
restriction f s :  f -l(S) + S is essential, then for every face T of S the re- 
striction f = :  f -l(T) + T also it essential; then modify the mapping f on 
all simplexes for which the corresponding restriction is not essential, 
beginning with the simplexes of the highest dimension. 

= f  If -‘(1.4”01) and P E 1YlW-Q. 
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1.13.6. (a) (Pasynkov [1966]) Prove that if II is a hereditary family of 
polyhedra, then a compact metric space X is IZ-like if and only if X is homeo- 
morphic to the limit of an inverse sequence (K ,  , n;}, where K, E II for 
i = 1 , 2 ,  ... and 7Ef is a quasi-simplicia1 mapping of Ki onto KSi for every 
j <  i. 

Hint. Apply Problem 1.13.F(e) to define a simplicial complex X1, 
a barycentric subdivision Bl of X ,  , and an irreducible mapping fl: X 
-+ lBll of X onto lBl I in such a way that lXl 1 E II and the inverse images 
of stars of vertices of P1 under fl all have diameters less than 1/2. 

Assume that for each j < i a simplicial complex .X j ,  a barycentric 
subdivision Bj o f X j  and an irreducible mappingfj: X -+ lBjI of X onto 
lBjl are defined in such a way that IXjl E Z I  and the inverse images of 
stars of vertices of B under fj all have diameters less than 1 /2j; assume, 
moreover, that for each pair k, j of integers satisfying k < j < i a quasi- 
simplicia1 mapping ni of (Bj(  onto I p k l  is defined in such a way that ni 
= idlsrl, nfnh = ni whenever I < k, and ~ ( n h - l f ~ - ~ ( x ) ,  n{ f j (x) )  < 1/2j 
for x E X  and k < j-1. 

such that mesh((ni-l(S): 
S E P}) < 1/2' for every k < i-1; consider the cover % of the space X 
consisting of inverse images of stars of vertices of B under fi-l and let 
6, = min(s,, 1/2,), where E, is a Lebesgue number for the cover @. Define 
a simplicia1 complex X i ,  a barycentric subdivision Pi of Xi and an irre- 
ducible mapping f i :  X + J9,l of X onto lYil in such a way that IXil E I Z  
and the inverse images of stars of vertices of BI all have diameters less 
than 6,.  Observe that by assigning to each vertex p E Bi a vertex q E B 
such that frl(Stqi(p)) c A:,r:(St,(q)) one defines a simplicial mapping 

of Bi to By and extend ni-l to a quasi-simplicia1 mapping nf-l : 
lBil -+ IBi-ll. Check that if fi-l(x) E S E By then nf - , f i (x )  E S ;  deduce 
that n:-l(lBil) = JYi-lJ and that e(n;-'fi-l(x), n:fi(x)) -= 1/2' for x E X  
and k < i- 1, where n: = n i - l ~ ~ i - ~ .  

Note that for every natural number k the sequence of compositions 
ni+ 'h+ , n : + z f k +  2 ,  . . . uniformly converges to a continuous mapping g k :  

X -, l g k l  and that ? c i + ' g k + l  = g k .  Check that X is homeomorphic to the 
limit of the inverse sequence ( IXJ,  nj}. 

(b) (Freudenthal [1937]) Prove that a compact metric space X satisfies 
the inequality dimX< n if and only if X is homeomorphic to the 
limit of an inverse sequence {&, n;}, where Ki is a polyhedron of dimension 
< n for i = 1,2,  ... and nj is a quasi-simplicia1 mapping of Ki onto Kj 
for every j < i. 

Let B be a barycentric subdivision of 
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1.14. Dimension and axioms 

Since the origin of dimension theory attempts have been made to 
characterize dimension functions by a few simple properties that could 
serve as a basis for an axiomatization of the theory. However, no satisfactory 
set of axioms has been proposed so far; the main drawbacks are that 
the axioms include properties which are either somewhat artificial or 
too close to the definition of dimension and that no part of dimension 
theory, no matter how small, can be deduced from the axioms. As the 
problem of axiomatization of dimension theory is of secondary importance, 
we shall confine ourselves to a rather sketchy discussion of this topic. 

We shall consider a class X of topological spaces, which together 
with each space X contains all closed subspaces of X ,  and a function d 
defined on X,  having values which are integers larger than or equal to 
- 1  or the “infinite number’’ 00, and such that d(X) = d(Y)  for each pair 
of homeomorphic spaces X ,  Y E X .  By assuming that the function f satisfie; 
some simple conditions which are known to be satisfied by the function 
dim we shall obtain three sets of axioms for dimension theory. 

We begin with Alexandroffs axioms; in this instance X is the class 
of all compact subspaces of Euclidean spaces and the function d satisfies 
the following conditions: 

(Al) d ( 0 )  = - 1 ,  d((0) )  = 0 and d(1“) = n for n = 1 , 2 ,  ... 
(A2) If a space X E X  is represented as the union of two closed subspaces 

XI and X,, then d(X) = max(d(X,), d(X2)).  
(A3) For every space X E X  there exists a positive number E such that 

i j f :  X +. Y is an &-mapping o f X  onto a space Y EX,  then d(X) < d(Y). 
(A4) For every space X EX of cardinality larger than one there exists 

a closed set L c X separating X and such that d(L) < d(X). 

1.14.1. Theorem. The covering dimension dim is the only function d which 
satisfies conditions (Al)-(A4) in the class X of all compact subspaces of 
Euclidean spaces. 

Proof. Clearly, the function d = dim satisfies conditions (Al)-(A4). Con- 
sider now a function d which satisfies (Al)-(A4). It follows from (Al) 
and (A2) that if K is a polyhedron, then d(K) = dimK, so that by virtue 
of (A3) and the theorem on &-mappings, d(X) < dimX for every X E X .  

Assume that there exists a space X E X  such that d ( X )  < dimX. Let 
d(X)  = k and dimX = n ;  it follows from (Al) that n 2 1.  Without loss 
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of generality one can suppose that each Y EX such that d(Y)  < k satisfies 
the equality d(Y)  = dimY. B y  virtue of Theorems 1.9.8 and 1.7.7, the space 
X contains an n-dimensional Cantor manifold M. From (A2) it follows 
that d(M)  < d(X) < n = dimM; since d(M)  # dim Y, we have d(M) = k.  
Now apply (A4) to obtain a closed set L c M separating M and such 
that d(L) < d(M). Thus we have dimL = d(L) < k < n, so that dimL 
< n-2, which contradicts the definition of a Cantor manifold. Hence 
d(X) = dimX for every X E X .  0 

It turns out that by replacing condition (A2) with 
(A27 If a space X EX is represented as the union of a sequence X ,  , X2 , . . . 

of closed subspaces, then d(X)  = sup{d(Xi): i = 1 , 2,  ...} 

one obtains a set of conditions which characterizes the covering dimension 
dim in the class X of all subspaces of Euclidean spaces (see Problem 
1.1 4.C). 

We now pass to Nishiura’s axioms; in this instancex is the class of all 
sepal able metric spaces and the function d satisfies the following condi- 
tions: 

(N1) d({O)) = 0. 
(N2) If Y is a subspace of a space X E X ,  then d(Y)  < d(X). 
(N3)  I f a  space X E.%? is represented as the union of a sequence XI, X,, ... 

of closed subspaces, then d(X) = sup{d(X,): i = 1 , 2 ,  ...}. 
(N4) I f a  space X E X  is represented as the union of two subspaces XI and 

X 2 ,  then d(X)  < d(Xl)  + d(XJ + 1. 
(N5)  For every space X E X  there exists a compactijkation T E X  such 

that d ( i )  = d(X). 
(N6)  If a non-empty space X EX satisfies the inequality d(X)  < co, then 

for every point x E X  and each neighbourhood V c X of the point x 
there exists an open set U c X such that 

X E U C  V and d (FrU)<d(X) - l .  

One can prove that the covering dimension dim is the only function d 
which satisfies conditions (Nl)-(N6) in the c lassx  of all separable metric 
spaces (see Problem 1.14.B). 

We conclude with Menger’s axioms, chronologically the earliest set 
of axioms for dimension theory; in this instance% is the class of all sub- 
spaces of Euclidean m-space Rm and the function d satisfies the following 
conditions : 
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(Ml) d ( 0 )  = - 1, d( (0 ) )  = 0 and d(R") = n for n = 1 , 2, ... , m .  
(M2) If Y is a subspace of a space X EX,  then d(y) < d(X). 
(M3) I f a  space X EZ is represented as the union of a sequence X,,  X,,  ... 

(M4) For every space X E X  there exists a compactijication %EX such 
of closed subspaces, then d(X)  < sup(d(Xi): i = 1 , 2, ... >. 

that d ( 2 )  = d(X) .  

Menger put forward the hypothesis that for every natural number m 
the covering dimension dim is the only function d which satisfies conditions 
(MI)-(M4) in the class of all subspaces of Euclidean m-space R" and 
showed that the hypothesis is valid for rn < 2 (see Problem 1.14.D). The 
problem whether the hypothesis is valid form > 2 is still open. Let us recall 
(cf. the discussion in the final part of Section 1.1 1) that for m > 3 it is 
not even known whether the function d = dim satisfies condition (M4). 
Clearly, the covering dimension dim satisfies conditions (Ml)-(M4) in 
the c l a s sx  of all subspaces of Euclidean spaces. We find, however, that 
dim is not the only function with this property; each cohomological di- 
mension dim, with respect to a finitely generated abelian group G also 
satisfies conditions (Ml)-(M4) in the classX of all subspaces of Euclidean 
spaces. 

Historical and bibliographic notes 

Theorem I.  14.1 was proved by Alexandroff in [1932]. SEepin announced 
in [1972] that by replacing condition (A2) by the stronger condition (A2') 
one obtains a set of axioms that characterizes the covering dimension 
dim in the class of all subspaces of Euclidean spaces; the proof was published 
in Alexandroff and Pasynkov's book [1973], where a stronger result, 
also due to SEepin, is announced, viz., that the same set of axioms charac- 
terizes dim in the class of all metric spaces whose covering dimension is 
finite. Nishiura proved in [1966] that the axioms (NI)-(N6) characterize 
the covering dimension dim in the class of all separable metric spaces. 
Sakai in [I9681 and Aarts in [1971] modified Nishiura's axioms to obtain 
a set of axioms that characterizes dim in the class of all metric spaces. 
The fact that conditions (Ml)-(M4) characterize the covering dimension 
dim in the class of all subspaces of the plane, and also in the class of all 
subspaces of the real line, was established by Menger in [1929]. The theorem 
that each cohomological dimension with respect to a finitely generated 
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abelian group satisfies conditions (Ml)-(M4) in the class of all subspaces 
of Euclidean spaces was proved by I. Svedov; the proof was first published 
in Kuz’minov’s paper [1968]. A set of axioms characterizing the covering 
dimension dim in the class of all (not necessarily metric) compact spaces 
whose dimension dim is finite was given by Lokucievskii in [1973]. 

Problems 

1.14.A (SEepin, cited in Alexandroff and Pasynkov [1973]; announce- 
ment SEepin [1972]). Verify that the axioms (A1)-(A4) are independent. 

1.14.B (Nishiura [1966]). (a) Prove that the covering dimension dim 
is the only function d which satisfies conditions (Nl)-(N6) in the class 
X of all separable metric spaces. 

(b) Verify that the axioms (NI)-(N6) are independent. 
Hint. To verify that (N2) is independent of the remaining axioms, 

observe that every separable metric space which is not compact has an 
infinite-dimensional compactification. 

1.14.C (Seepin, cited in Alexandroff and Pasynkov [1973]; announce- 
ment SEepin [1972]). (a) Show that for every separable metric space X 
such that dimX = n 3 0 there exists a separable metric space X ,  

= (x,y)u U X , ,  where for i = I ,  2,  ... X ,  is a closed subspace of X ,  

homeomorphic to X ,  with the property that no closed set L c X ,  satisfy- 
ing the inequality dimL < n - 2  separates the space X ,  between x and y .  

(b) Show that for every separable metric space X such that 

dim X = n 3 0 there exists a separable metric space X* = U X , ,  

where, for i = 1, 2 ,  ... , Xi is a closed subspace of X* homeomorphic 
to X ,  with the property that no closed set L c X* satisfying the inequality 
dimL < n - 2  separates the space X * .  

(c) Prove that the covering dimension dim is the only function d 
which satisfies conditions (Al), (A2’), (A3) and (A4) in the class X of 
all subspaces of Euclidean spaces. 

m 

i = l  

W 

i = l  

(d) Verify that (A2’) is independent of the axioms (AI)-(A4). 
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1.14.D. (a) (Menger [1929]) Check that the covering dimension dim 
is the only function d which satisfies conditions (Ml)-(M4) in the classX 
of all subspaces of the real line. 

(b) (Kuratowski and Menger [ 19301) Applying the Denjoy-Riesz 
theorem, i.e., the fact that every zero-dimensional compact subspace 
of the plane is contained in an arc L c R2 (see Kuratowski [1968], 
p. 539), and the Moore theorem, i.e., the fact that if there exists a con- 
tinuous mappingf: S2 -, X of the two-sphere onto a space X such that 
the fibres o f f  are connected and do not separate S2, then the spaceX 
is homeomorphic to S2 (see Kuratowski [1968], p. 533), prove that every 
zero-dimensional Fa-set in the plane is contained in the union of a sequence 
of arcs which are pairwise disjoint and have diameters converging to 
zero. 

Hint. Show that if a zero-dimensional compact set A is contained 
in an open set U c S2,  then for every E > 0 there exists a sequence 
L1, L2, ... of arcs such that L,nL, = 0 whenever i # j ,  lim6(Li) = 0, - 

00 m 

6(L,) < 8 for i = 1 , 2 ,  ..., and A c U Li c U Li c U. Consider first 
i= 1 i =  1 

the case where the set Uis connected, observe that no component of S2 \ U 
separates S2 and apply the Moore theorem. 

(c) (Menger [1929], Kuratowski and Menger [1930]) Applying (b) 
and the Moore theorem, prove that the covering dimension dim is the 
only function d which satisfies conditions (Ml)-(M4) in the class X 
of all subspaces of the plane. 

Hint. Let gk = { X  c R2: d(X) < k }  for k = - 1 , O ,  1 ,2 ;  it suffices 
to show that if the family gk contains an n-dimensional space, then 
gk contains all n-dimensional subspaces of the plane. Only the case of 
n = 1 and k = 0, 1 is non-trivial. Let X E ~ ~  be a :one-dimensional 
space; by virtue of Corollary 1.9.9 and condition (M4) one can assume 
that X is a continuum. Place a copy of the continuum X in a square K 
in such a way that the four corners of K are the only points of the boundary 
of K which belong to X. Then divide K into 9 congruent squares and 
place in the same way a copy of X in each of these smaller squares. Con- 
tinue the procedure, dividing K consecutively into smaller and smaller 
squares, and consider the union X* of countably many smaller and smaller 
copies of X placed in these squares. Prove that d(X*) = k and ind(K\X*) 
= 0. Apply the Lavrentieff theorem (see [GT], Theorem 4.3.21) and 
condition (M4) to obtain a Gd-set Y such that X* c Y c K and d(Y) = k.  
Then apply (b) to the zero-dimensional F,-set IntK\Y and denote by 
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L,, L2,  ... the arcs in (b). Deduce from the Moore theorem that the 
space obtained from R2 by identifying to points the set R2\IntK and 
each of the arcs Li is homeomorphic to S2.  Show that the space Y contains 
a subspace homeomorphic to the complement of a countable dense subset 
of R2 and deduce from Problem l.S.D that Y is a universal space for 
the class of all one-dimensional subspaces of the plane. 

(d) (Menger [1929]) Verify that the axioms (Ml)-(M4) are independent 
in the classX of all subspaces of the plane. 



CHAPTER 2 

THE LARGE INDUCTIVE DIRI,ENSION 

Outside the class of separable metric spaces the dimensions ind, Ind 
and dim generally do not coincide. Nevertheless, a number of theorems 
established in Chapter 1 extend beyond this class of spaces. In larger 
classes they hold either for the dimension Ind, or for the dimension dim, 
or else for both Ind and dim. The dimension ind is practically of no impor- 
tance outside the class of separable metric spaces and from now on will 
reappear here only occasionally. Slightly exaggerating, one could say 
that ind is a satisfactory dimension function only when it is equal to Ind. 
Thus, for general spaces we have two separate dimension theories: the 
theory of the large inductive dimension Ind and the theory of the covering 
dimension dim. They are both poorer and less harmonius than the di- 
mension theory of separable metric spaces, yet they contain many interest- 
ing theorems and shed light on classical dimension theory. It should be 
noted that, while the dimension dim behaves properly in the class of all 
normal spaces, the dimension Ind does so only in the more restricted 
class of strongly hereditarily normal spaces. The present chapter and the 
next are devoted to a closer study of Ind and of dim, respectively. In the 
final chapter it will be proved that the dimensions Ind and dim coincide 
in the class of all metrizable spaces and that a dimension theory can be 
developed in that class which is by no means inferior to the dimension 
theory of separable metric spaces. 

Section 2.1 contains supplementary information about he1 editarily 
normal spaces and an investigation of the class of strongly hereditarily 
normal spaces. 

In Section 2.2 those rare theorems on the dimension Ind are proved 
which hold either in all normal spaces or in all hereditarily normal spaces. 
In the final part of the section two important examples are described, 
showing that neither the subspace theorem nor the sum theorem holds 
for the dimension Ind in the class of all normal spaces. 
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Section 2.3 is crucial for the present chapter; we develop in it a di- 
mension theory for Ind in the class of strongly hereditarily normal spaces. 
The main results of this theory are the subspace theorem and a group 
of sum theorems. 

The last section is devoted to a study of the relations between ind 
and Ind and to the Cartesian product theorems for the dimension Ind. 

2.1. Hereditarily normal and strongly hereditarily normal spaces 

The large inductive dimension Ind is defined for all normal spaces 
(see Definition 1.6.1). It turns out however, that in such an extensive class 
of spaces the dimension Ind develops some pathological properties. As 
the reader will see in Section 2.2, there exist a compact space Z and 
a normal subspace X of Z such that IndX > IndZ. There also exists 
a compact space X with IndX = 2 which can be represented as the union 
of two closed subspaces Fl and F, such that IndFL = IndF, = 1. Finally, 
there exist compact spaces X and Y such that Ind(X x Y )  > IndX+ Ind Y. 
Besides, since a subspace of a normal space is not necessarily normal 
(see [GT], Example 2.3.36 or 3.2.7), it may happen that the dimension 
Ind is defined for a space X ,  and yet is not defined for a subspace M of X. 
From all the adduced phenomena one gathers that to develop a satisfac- 
tory theory of the large inductive dimension Ind one has to restrict the 
clavs of spaces under comideration. As the spaces in all the examples 
cited above are not hereditarily normal, vie might expect that no such 
pathological phenomena can occur in the class of hereditarily normal 
spaces. Still, as has recently been shown, the dimension Ind is not mono- 
tonic in the latter class, so that a fuI ther restriction of the class of spaces 
is necessary. 

A natural class of spaces where a satisfactory theory of the large in- 
ductive dimension can be developed is the class of strongly hereditarily 
normal spaces; it is contained in the class of all hereditarily normal spaces 
and constitutes a common extension of the class of perfectly normal spaces 
and the class of hereditarily paracompact spaces. The present section 
is devoted to a study of the topological properties of hereditarily normal 
spaces and strongly hereditarily normal spaces. 

Let us recall that a space X is hereditarily normal if every subspace 
of X is normal. We begin with two simple characterizations of hereditarily 
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normal spaces; in the second one appears the notion of separated subsets 
of a topological space introduced in Section 1.2. 

2.1.1. Theorem. For every TI-space X the following conditions are equiva- 
lent: 
(a) The space X is hereditarily normal. 
(b) Every open subspace of X is normal. 
(c) For every pair A,  B of separated sets in X there exist open sets U ,  V c X 

such that A c U ,  B c V and UnV = 0. 

Proof. The implication (a) =. (b) is obvious. We shall show that (b) (c). 
Consider a pair A,  B of separated sets in a space X which satisfies (b) 
and let M = X\ (AB) .  Obviously, M is an open subspace of the space X 
and A ,  B c M. The closures of A and B in M are disjoint, so that by the 
normality of M there exist sets U ,  V c M open in M and such that A c U, 
B c V and U n V  = 0. The subspace M being open in X ,  the sets U, V 
are open in X ,  so that the space X satisfies (c). 

To complete the proof it remains to show that (c) = (a). Consider 
an arbitrary subspace M of a space X which satisfies (c) and a pair A ,  B 
of disjoint closed subsets of M. 'Clearly A and B are separated in X ,  so 
that there exist open sets U ,  V c X such that A c U, B c V and UnV 
= 0. The intersections M n U  and M n V  are open in M and disjoint, 
and contain A and B, respectively, which means that the space X satis- 
fies (a). 

Let us recall that a family (AS}SES of subsets of a topological space X 
is point-Jnite (point-countable) if for every point x E X  the set (s E S :  
x E A , )  is finite (countable). 

2.1.2. Definition. A topological space X is called strongly hereditarily normal 
i f  X is a TI-space and for every pair A ,  B of separated sets in X there exist 
open sets U, V c X such that A c U, B c V,  U n V  = 0 and U and V 
can be represented as the union of a point-finite family of open F,-sets 
in X.  

Obviously, every strongly hereditarily normal space is hereditarily 
normal; moreover, every subspace M of a strongly hereditarily normal 
space is strongly hereditarily normal, because any sets A ,  B separated 
in M are also separated in X .  

Besides hereditary normality one considers another strengthening 
of normality, namely perfect normality. Let us recall that a space X is 



164 The large inductive dimension [Ch. 2, 0 I 

perfectly normal if X is a normal space and every open subset of X is an 
F,-set in X. Perfect normality is a hereditary property; in particular, every 
perfectly normal space is hereditarily normal (cf. Lemma 3.1.22 below). 
The latter fact and definition 2.1.2 imply 

2.1.3. Theorem. Every perfectly normal space is strongly hereditarily normal. 0 

2.1.4. Theorem. Every hereditarily paracompact space is strongly heredi- 
tarily normal. 

Proof. Since every paracompact space is normal (see [GT], Theorem 
5.1.5), every hereditarily paracompact space is hereditarily normal. Thus 
to complete the proof it suffices to show that every open subset U of a he- 
reditarily paracompact space X can be represented as the union of a point- 
finite family of open Fa-sets in X. 

For every x E U consider a neighbourhood U, of the point x such that 
U, c U. The family % = {Ux}, ,u is an open cover of the subspace U 
of X. Since the space U is paracompact, there exists a locally finite partition 
of unity { f s } s , ~  on Usubordinated to@ (see [GT], Theorem 5.1.9). For every 
s E S the set Us = f;'((O, 11) is an open Fa-set in U. As U is an open sub- 
space of X, the set Us is also open in X. Furthermore, Us c U, c U, c U 
for a certain x E U, so that Us is an F,-set in the closed subspace U, of X 
which implies that Us is an Fa-set in X .  Finally, the family (Us},,s is 
point-finite and U = U Us.  0 

- 

seS 

We shall now slightly generalize the last theorem. Let us recall that 
a topological space X is weakly paracompact') if X is a Hausdorff space 
and every open cover of the space X has a point-finite open refinement. 
Weakly paracompact spaces are not necessarily normal (see [GT], Example 
5.3.4 or Exercise 5.3.B(b)). 

2.1.5. Theorem. Every hereditarily weakly paracompact hereditarily normal 
space is strongly hereditarily normal. 

Proof. It suffices to show that every open subset U of a hereditarily weakly 
paracompact hereditarily normal space X can be represented as the union 
of a point-finite family of open F,-sets in X. 

') The terms rnetacompact and point-paracompact are also used. 
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For every x E U consider a neighbourhood U, of the point x such that 
U, c U. The family %2 = ( U x } x , ~  is an open cover of the subspace U 
of X .  Since the space U is weakly paracompact, the cover 4 has a point- 
finite open refinement 9'- = ( V s > s o ~ .  The cover Y,  as any point-finite 
open cover of a normal space (see [GT], Theorem 1.5.18); has a closed 
shrinking {Fs}sE~. By virtue of Urysohn's lemma for every s E S there 
exists a continuous function fs :  U + I such that fs(U\Vs) c ( 0 )  and 
fs(Fs) c (1) .  For every s E S the set Us =f;'((O, I]) is an open F,-set 
in U. Obviously, the set Us is open in X.  Furthermore, Us c Vs c U, 
c Ex c U for a certain x E U, so that Us is an F,-set in X. Finally, the 
family (Us}s,~ is point-finite and U = U Us. [7 

- 

sos 

We conclude this section with two examples: an example of a compact 
strongly hereditarily normal space which is neither perfectly normal nor 
hereditarily weakly paracompact and an example of a compact heredita- 
rily normal space which is not strongly hereditarily normal. 

2.1.6. Example. Let W be the set of all ordinal numbers less than or equal 
to the first uncountable ordinal number w,.  The set W is well-ordered 
by the natural order <. Consider on W the topology obtained by taking 
as a base all sets of the form 

(1) (a,w11 = (x: a < x}, [O, p) = (x: x < p )  
and (c(,p) = (x: a < x < j3}, 

where a < < wl. One easily sees that W is a Hausdorff space. We shall 
show that W is compact. 

Let (Us}seS be an open cover of the space W and let A consist of all 
a E W such that the set [0, a] = (x: x < a) is contained in the union 
of finitely many members of the cover under consideration. It suffices 
to show that W\A = 0. 

Assume that W\A # 0 and denote by xo the smallest element of 
this set. Choose an so E S such that xo E Use; since xo > 0, there exists 
an x < xo such that (x, x,] c Us0 . By the definition of xo, the point x 

belongs to A ,  so that [0, x] c (J Us,. It follows that [0, xO] c U Usi, 

and we have a contradiction. 
We shall now prove that every open subspace U of W is normal, i.e., 

that the space W is hereditarily normal. We shall say that a set C c W 
is convex if (a, /3) c C whenever a, ,4 E C. One readily sees that the union 
of a family of convex sets i. convex provided that the intersection of the 

k k 

i = l  i = O  
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family is non-empty. Hence, considering for each point x E U the union 
of all convex subsets of U which contain that point, we obtain a decomposi- 
tion of the set U into pairwise disjoint convex sets (US}SE~, which will 
be called the convex components of the set U. The set U being open, all 
Us’s are open subsets of W, so that U = @ Us, where the symbol @ 

denotes the sum of topological spaces (see [GT], Section 2.2). Since the 
set W is well-ordered by <, every open and convex proper subset of W 
is of form (1). Thus, to prove that U is normal it suffices to show that all 
subspaces of form (1) are normal. The subspaces of the form (a,o,] 
= [ctf 1, ol], where a < ol, are normal as closed subspaces of the normal 
space W. The subspaces of the form [0, p) and (a, p), where p < wl, 
are regular second-countable spaces and thus are metrizable (see [GT], 
Theorem 4.2.9) and, a fortiori, normal. It remains to prove that the subspace 
W, = W\(wl} of the space W is normal. 

We shall show more, viz., that for every pair A, B of disjoint closed 
subsets of W, the closures Aand Bof A and B in the space W are dis- 
joint. This foIIows from the fact that o1 belongs to at most one of the sets 
2 and Indeed, if we had w1 E AnB ,  we could define inductively two 
sequences, al, a2, ... and P I ,  p 2 ,  ..., of countable ordinal numbers satis- 
fying 

d i < p r < ~ i + l ,  a i € A ,  D I e B  f o r i = 1 , 2  ,...; 
then the smallest ordinal number y larger than all ai’s and pi ’s  would 
belong to AnB,  which is impossible, because y < w1 since the set W,, 
contains no countable cofinal subset. Let us recall that a subset K of an 
ordered set Xis cojinal in X if for every a E X  there exists a /3 E K such that 

Since the space W is hereditarily normal, in proving that W is a strongly 
hereditarily normal space it suffices to consider a pair of open separated 
sets, i.e., disjoint open sets U ,  V c X.  Let U = @ Us and V = @ V, 

be the decompositions of Uand Vinto convex components. If all the convex 
components Us and Vt are bounded in W, they are countable and, a fortiori, 
they are Fa-sets in W. So, in this case U and V can themselves be represented 
as the union of a point-finite family of open F,-sets in W. On the other 
hand, if one of the convex components, say the convex component Us,, 
of the set U is cofinal in W, then the set V is bounded in W. In this case 
the sets U and V are contained, respectively, in disjoint open sets Uu (ol } 
and V which can be represented as the union of a point-finite family of 
open F,-sets in W. 

sss 

- -  

- _  

< p ;  a set K c X is bounded in X, if it is not cofinal in X .  

seS tET 
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Every closed subset of W which is contained in W, is bounded in W. 
so that every Fa-set in W which is contained in W, also is bounded in W. 
It follows that the open subset W, of the space W is not an Fa-set in W. 
Thus the space W is not perfectly normal. 

To prove that the space W is not hereditarily weakly paracompact 
it is enough to show that if @ = { Us}s.~ is an open cover of the subspace 
W, of Wand all Us‘s are bounded in W,, then % is not point-finite. Sup- 
pose that @ is point-finite. Hence for every x E W ,  the set St(x, @) 
= U {Us: x E Us}, i.e., the star of the point x with respect to the cover @, 
is bounded; thus one can define inductively an increasing sequence a1 

< a2 < ... of countable ordinal numbers satisfying 
(2) $%(a,, @) for i = 1 ,  2, ... 
The smallest ordinal number y larger than all al’s belongs to a member 
Us0 of the cover @. The set Us0 is open and thus contains almost all el’s. 
This contradiction of (2) shows that the cover @ is not point-finite. 0 

We now turn to the example of a compact hereditarily normal space 
which is not strongly hereditarily normal. 

2.1.7. Example. Let W’ be a topological space homeomorphic to the space 
W described in Example 2.1.6 and such that W’nW = 0, and let Wb 
andw; denote the counterparts of W, and co1 in W‘. The sum W e  W’ is 
hereditarily normal and so is the space X obtained from W e  W‘ by identify- 
ing the points cool and cu;, i.e., the quotient space determined by the de- 
composition of W e  w‘ into the set {wl, w;] and all one-point sets {x} 
with x E Wou WL . However, the space Xis not strongly hereditarily normal, 
because for its separated subsets q( W,) and q( W;), where q: W@ W’ -+ X 
is the natural quotient mapping, there exist no disjoint open sets U, V, 
which can be represented as the union of a point-finite family of open &sets 
in X ,  such that q(W,) c U and q(Wb) c V.  Indeed, the only disjoint 
open sets U , V c  X that contain q(W,) and q(Wb), respectively, are 
U = q(W,) and V = q(W6). Now, if q(Wo) could be represented as the 
union of a point-finite family of open Fa-sets in X ,  the subspace W, of W 
would have a point-finite open cover by sets bounded in W,, whereas, 
by the last part of Example 2.1.6, no such cover exists. 0 

Historical and bibliographic notes 

Various restrictions of the class of normal spaces to a class where 
a satisfactory theory of the large inductive dimension Ind can be developed 
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have been proposed more than once. The first step was made by Cech 
in [1932], who developed the theory of the large inductive dimension 
in the class of perfectly normal spaces. Then, Dowker in [1953] introduced 
the class of totally normal spaces and extended the theory to that class. 
Let us recall here that a topological space Xis totally normal, if X is a normal 
space and every open subset U of X can be represented as the union of 
a locally finite in U family of open Fa-sets in X. Clearly, every perfectly 
normal space is totally normal and so is every hereditarily paracompact 
space; the fact that every totally normal space is hereditarily normal is 
by no means obvious (see Problem 2.1.C). Subsequently, Pasynkov in 
[1967] defined Cowker spaces as hereditarily normal spaces in which every 
open set can be represented as the union of a point-finite family of open 
Fa-sets, and announced extensions of some theoiems on Ind to this class 
of spaces. Proofs of the announced theorems, together with further results, 
were published by Lifanov and Pasynkov in [1970]. Finally, Nishiura 
in [1977] introduced the class of super normal spaces and correspondingly 
extended the theory of the large inductive dimension; according to Nishiura, 
a topological space X is called super normal if X is a TI-space and for 
every pair A ,  B of separated sets in X there exist open sets ,U, V c X such 
that A c U, B c V, UnV = 0 and U and V can be represented as the 
union of a locally finite, in U and V respectively, family of open I;b-sets 
in X. Our clsss of strongly hereditarily normal spaces is obtained by 
amalgamating the ideas of Pasynkov and Nishiura. Let us add that in the 
process of extending the theory of the large inductive dimension from the 
class of totally normal spaces to the larger classes mentioned above, only 
slight modifications in Dowker’s 01 igjnal arguments were necessary. 

Problems 

2.1.A. Deduce from Urysohn’s lemma that a subset A of a normal 
space X is an open F,-set (a closed Gd-set) if and only if there exists a con- 
tinuous functionf: X + Isuch that A = f ((0, 11) (such that A = f - ’ ( O ) ) .  

2.1.B. (a) Show that a topological space X is strongly hereditarily 
normal if and only if X is hereditarily normal and every open domain 
in X can be represented as the union of a point-finite family of open F,-sets 
.in X.  Let us recall that a subset U of a topological space X is an open domain 
in x if u = I n t S  

(b) Applying the fact that for every pair U, V of disjoint open sets 
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in the Cantor cube Dc = n D t ,  where D, = D for t E I, there exists 

a countable set I. c I such that the projections of U and V onto n D, 
are disjoint (see [GT], Problem 2.7.12 (b)), show that every open domain 
in DC is an Fo-set. Observe, using Remark 1.3.18, that the Cantor cube 
DC is not hereditarily normal. 

161 

I d 0  

2.1.C (Dowker [1953]). (a) Show that if a space X can be represented 
as the union of a locally finite family ( F s } S E ~  of closed subspaces each 
of which is normal, then X is a normal space. 

Hint. Map the sum @ Fs onto X and apply the fact that normality 
S E S  

is an invariant of closed mappings. 
(b) Show that if a space X can be represented as the union of a sequence 

F l ,  F2, ... of closed normal subspaces such that Fi c IntFi+, for 
i = 1 , 2 ,  ..., then X is a normal space. 

Hint. Note that the family { A i } E l ,  where A ,  = Fl and A i  
= Fi\IntFi-.l for i > 1, is locally finite. 

(c) Show that every totaIJy normal space is hereditarily normal and 
deduce that every subspace of a totally normal space is totally normal. 

Hint. Apply (a), (b) and Problem 2.1.A. 

2.1.D. (a) Prove that every paracompact totally normal space is he- 

(b) Prove that every weakly paracompact Dowker space is hereditarily 
reditarily paracompact. 

weakly paracompact. 

2.1.E. (a) Prove that a TI-space X is normal if and only if for every 
closed set F c X and each open set W c X that contains F there exists 

a sequence W,, W,, ... of open subsets of X such that F c U Wi and 
Wi c W for i = 1,2, ... 

Hint. Let A and B be disjoint closed subsets of a TI-space X which 
has the property under consideration. Define sequences W,,  W,, ... and 
V, , V 2 ,  . .. of open subsets of X such that 

A c U Wi, B c UVi 

00 

i= 1 - 

30 00 

and BnTi = 0 = AnTi for i = 1 ,  2, . . .  
i = l  1 = l  

m m 

Verify that the sets U = U Gi and V = U Hi, where Gi = W,\U pi 
i= 1 i=  1 j<i 
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and HL = Vi\U wj, satisfy the conditions A c U, 3 c V and UnV 

= 0. 
(b) Prove that a TI-space X is perfectly normal if and only if for every 

j s  i 

open 

such 

set W c X there exists a sequence W, , W, , . . . of open subsets of X 
00 

that W = U W, and wi c W for i = 1 , 2 ,  ... 
i= 1 

2.2. Basic properties of the dimension Ind in normal and hereditarily normal 
spaces 

Among the theorems of dimension theory established in Chapter 1 
only a few are valid for the dimension Ind in normal or hereditarily normal 
spaces. As noted above, the dimension Ind is not monotonic in hereditarily 
normal spaces and the sum theorem for the dimension Ind does not hold 
jn normal spaces, so that one cannot think of developing a dimension 
theory for Ind in those classes of spaces. In the following section such 
a theory will be developed in the more restricted class of strongly heredi- 
tarily normal spaces. In the present section we merely clear the ground 
for the considerations of the next one. 

The definition of the large inductive dimension Ind was stated in 
Section 1.6; let us recall that IndX = - 1 if and only if X = 0, and that 
a normal space X satisfies the inequality IndXG n > 0 if and only if 
for every closed set A c X and each open set V c X which contains 
the set A there exists an open set U c X such that A c U c V and 
IndFr U < n- 1. In other words, IndX < n > 0 if and only if for every 
pair A ,  3 of disjoint closed subsets of X there exists a partition L between 
A and B such that IndL < n- 1. 

Since normality is not a hereditary property, it may happen that the 
dimension Ind is defined for a space X and yet is not defined for a sub- 
space M c X.  Still, normality being hereditary with respect to closed 
subsets, IndM is defined for every closed subspace M c X.  Moreover 
in much the same way as Theorem 1.1.2 one obtains 

2.2.1. Theorem. For every closed subspace M of a normal space X we have 
IndM < IndX. 0 

The counterpart of Theorem 1.5.1 reads as follows 
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2.2.2. Theorem. IfXisanormalspaceandIndX=n>l, then fur k=O, 1, ... 
. . . , n - 1 the space X contains a closed subspace M such that Ind M = k. 0 

In Example 2.2.11 we shall define a compact space Z which contains 
a normal subspace X such that IndX > IndZ. Hence, in Theorem 2.2.1 
the assumption that M is a closed subspace of X cannot be replaced by 
the weaker assumption that IndM is defined. Recently, a much stronger 
result was obtained: one defined a hereditarily normal space X such that 
IndX = dimX = 0, and yet X contains, foi every natural number n, a sub- 
space A, with IndA, = dimA, = n. The latter example, however, is too 
difficult to be described in this book. 

We shall now show that for subspaces of a fixed hereditarily normal 
space X monotonicity of the dimension Ind is equivalent to its being mono- 
tonic with respect to open subspaces. 

2.2.3. Proposition. For every hereditarily normal space X the following cun- 
ditions are equivalent: 
(a) For' each subspace Y c X and every subspace M of Y we have IndM 

(b) For each subspace Y c X and every open subspace U of Y we have 
< IndY. 

Ind U < Ind Y. 

Proof. The implication (a) =+ (b) is obvious. Suppose that X satisfies (b). 
Condition (a) is satisfied if IndY = a, so that it suffices to consider 
subspaces Y c X with IndY < CQ. We shall apply induction with respect 
to Ind Y to show that IndM < Ind Y whenever M c Y. Clearly, the in- 
equality holds if Ind Y = - 1. Assume that the inequality is proved for all 
subspaces of X the large inductive dimension of which does not exceed 
n - 1 > - 1 and consider a subspace Y c X with Ind Y = n and an arbitrary 
subspace M of Y. Let A and B be disjoint closed subsets of M. As 
U = Y\(AnB) is an open subspace of Y, we have Ind U < IndY = n 
by virtue of (b). The intersections UnA and UnB are disjoint closed 
subsets of U; therefore there exists a partition L in U between UnAand 
U n B  such that IndL < n-  1. Since M c U, U n T n M  = A, and Unzn 
nM = By the set L n M  is a partition in M between A and B. By the in- 
ductive assumption Ind(LnM) < IndL < n - 1 , so that IndM < n = Ind Y. 
Thus X satisfies condition (a). 0 

_ _  

The separation and addition theorems for the dimension Ind hold 
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in hereditarily normal spaces. From Lemma 1.2.9, Remark 1.2.10 and 
Theorem 2.2.1 one easily obtains the following theorem (cf. the proof 
of Theorem 1.2.11): 

2.2.4. The separation theorem for Ind. I f  X is a hereditarily normal space 
and M is a subfpace of X such that IndM < n > 0, then for  every pair 
A ,  B of disjoint closed subsets of X there exists a partition L between A and 
B such that Ind(LnM) < n-1. 0 
2.2.5. The addition theorem for Ind. For every pair X ,  Y of subspaces of 
a hereditarily normal space we have 

Ind(XuY) < IndX+IndY+l. 

Proof. The theorem is obvious if one of the subspaces has dimension 00, 

so that we can suppose that m ( X ,  Y) = IndXfIndY is finite. W,- shall 
apply induction with respect to that number. If m ( X ,  Y )  = -2, then 
X = 0 = Y and our inequality holds. Assume that the inequality is proved 
for every pair of subspaces the sum of the large inductive dimensions 
of which is less than n 2 - 1 and consider subspaces X and Y such that 
m ( X ,  Y) = n ;  clearly, we can suppose that IndX 2 0. Let A and B be dis- 
joint closed subsets of XuY. By virtue of the separation theorem there 
exists a partition L in XuY between A and B such that Ind(LnX) < IndX- 
-1. Since m ( L n X ,  LnY) < IndX+IndY-1 = n-1, we have IndL < n 
by the inductive assumption. This implies that Ind(XuY) < n+ 1 = IndX+ 
+IndY+l. 17 

The addition theorem yields. 

2.2.6. Corollary. If a hereditarily normal space X can be represented as 
the union of n+ 1 subspaces Z, , 2, ... , Z,,, such that IndZi < 0 for  
i =  1 ,2 ,  . . . , n + l ,  then IndX<n.  

Let us note that it is an open problem whether every normal (or even 
hereditarily normal) space X with IndX < n can be represented as the 
union of n+ 1 subspaces the large inductive dimension of which does not 
exceed zero. 

Remark 1.3.2 implies that Theorem 1.3.1 can be restated as follows: 

2.2.7. Theorem. I f a  normal space X can be represented as the union of a se- 
quence Fl , F2, ... of closed subspaces such that IndF, < 0 for  i = 1, 2, . .. 
then IndX < 0. 
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Example 2.2.13 below shows that in normal spaces the dimension 
Ind satisfies only the sum theorem for dimension 0, i.e., Theorem 2.2.7. 
It is an open problem whether the situation improves in hereditarily normal 
spaces. 

A very weak version of the sum theorem for the dimension Ind in 
normal spaces reads as follows: 

2.2.8. Proposition. Let ( X s } s e S  be a family of normal spaces and let X = @ X,. 

The inequality IndX < n holds if and o d y  i f  IndX, < n for  every s E S.  
seS 

Let us note that a few, rather specialized, results related to Theorems 
2.2.5 and 2.2.7 are stated in Problem 2.2.C. 

The status of the Cartesian product theorem for Ind in normal spaces 
is similar to that of the sum theorem. There exist compact spaces X and Y 
such that indX = IndX = 1, indY = IndY = 2, and yet Ind(Xx Y) 
2 ind(Xx Y) 2 4 as we11 as a normal space Z, whose square Z x Z is also 
normal, such that IndZ = 0 and yet Ind(Zx2) > 0. The descriptions 
of these examples are very difficult and cannot be reproduced in this book. 

We now turn to a discussion of dimension preserving compactifica- 
tions. As the reader certainly knows, among the compactifications of a com- 
pletely regular space X a particular role is played by the cech-Stone com- 
pactification ,8X (see [GT], Section 3.6), which can be characterized by 
the property that every continuous function f: X -+ I is continuously 
extendable over fsX (we assume here that X is actually a subspace of DX). 
In the realm of normal spaces the cech-Stone compactification can also be 
characterized by the property that every pair of disjoint closed subsets 
of X has disjoint closures in DX. Hence, for every closed subspace M of 
a normal space X the closure M of M in PX is the cech-Stone compacti- 
fication of the space M. We shall show that the cech-Stone compactifi- 
cation preserves the dimension Ind. 

2.2.9. Theorem. For every normal space X we have IndBX = IndX. 

Proof. To begin with, we shall prove that IndXd  IndDX. The inequality 
is obvious if IndBX = 00, so that we can suppose that IndPX < 00. We 
shall apply induction with respect to IndBX. If IndPX = - 1, then PX 
= 0 = X and our inequality holds. Assume that the inequality holds 
for all normal spaces the dimension Ind of the cech-Stone compactifi- 
cation of which is less than n 3 0 and consider a normal space X such 
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that IndBX = n. Let A and B be disjoint closed subsets of X.  The sets 2 
and 3, where the bar denotes the closure operator in @I, are disjoint, 
so that there exists a partition L in PX between 2 and such that IndL 
< n - 1. Clearly, Lo = L n X  is a partition in X between A and B. Since 
@Lo = Lo c L, it follows from Theorem 2.2.1 and the inductive assumption 
that IndL, < n- 1, so that IndX < n = Ind@X. 

Now, we shall prove that Ind@X< IndX. As in the first part of the 
proof, we shall suppose that IndX < 03 and apply induction with respect 
to IndX. Our equality holds if IndX = - 1. Assume that it is proved for 
all normal spaces the dimension Ind of which is less than n 3 0 and con- 
sider a normal space X such that IndX = n. Let A and B be disjoint closed 
subsets of PX. There exist open sets V,,  V, t @X such that 

A c V,, B c V, and V , n K  = 0. 

The sets A ,  = X n c  and Bo 5 Xnv, are closed in X and disjoint, so 
that there exists a partition Lo in X between A ,  and B, such that IndL, 
6 n - 1. Let U,, W, be open subsets of X satisfying 

A ,  c U,, Bo c W,, U,nWo = 0 and X\Lo = U,uW,. 
We shall show that 

- 

_ _  
(1) U,n W, c Z,. 
Consider a point x E ~ , n ~ ,  and an arbitrary neighbourhood G c PX 
of the point x.  Let H c @X be an open set such that x E H c H c G.  
One easily sees that 

and 
therefore, by the above-mentioned characterization of the cech-Stone 
compactification in the realm of normal spaces, the closures of WonH 
and U,nH in X intersect. Hence 

0 # ( W,uL,)n(U,uL,)n~ = [(U,n W,)uL , ]n~  = Lon& c L,nG, 

which shows that every neighbourhood of x meets Lo, i.e., that x E zo. 
Thus inclusion (1) is established. 

By virtue of ( I )  the sets 

x E @,nH c WonH x E @,nH c U,nH; 

U = /?X\(@,uZ,) and W = @X\(~ ,uL0)  

uu w = ~ x \ [ ( W , ~ L , ) ~ ~ U , ~ L , ) ~  = @x\[ (W,~U, )~L , I  
satisfy 

(2) 

= /?x\L,; 
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on the other hand, 

(3) un w = ~ x \ [ ( W ~ ~ E ~ ) ~ ( U , ~ Z ~ ) ~  = PX\(&,UW~VL~> 
= /9x\x= 0. 

Since the sets A .  = Xnv, and WouLo are closed in X and disjoint, we 
have - v,n@X\U) = Xnv,n(w,vL,) = 0, i.e., V, c U; similarly, 
V, c W. Thus A c U and B c W, which together with (2) and (3) shows 
that Lo is a partition in /3X between A and B. As = PLOY by the in- 
ductive assumption Indz, < IndL, < n - 1, so that IndPX < n = IndX. [7 

- - 

2.2.10. Corollary. For every normal space X and a dense normal subspace 
M c X which has the property that every continuous function f: M --+ I 
is continuously extendable over X we have IndM = IndX. 

In other words, Ind Y = IndX for every normal space X and every normal 
subspace Y of ,!?X which contains X .  

Proof. From the extendability of every continuous function f: M + I 
over X it follows that ,!?M = PX.. 0 

Let us observe that the counterpart of Theorem 2.2.9 for the dimension 
ind does not hold (see Problem 2.2.E). 

As the cech-Stone compactification generally raises the weight of spaces, 
it is natural to ask if there exist compactifications preserving both the 
dimension Ind and weight. One proves that for every normal space X there 
exists a compactification 2 such that IndX< IndX and w(2) = w(X), 
where w denotes the weight of a space, i.e., the infimum of the cardinalities 
of the bases for that space. The construction of such a compactification 
is rather difficult and will not be given here. Let us note that even more 
is true, viz., that for every integer n 2 0 and every cardinal number m 
2 KO there exists a compact space Bk such that IndBk = n, w(Bk) = my 
and every normal space X which satisfies the conditions IndX< n and 
w(X) < m is homeomorphic to a subspace of the space Bk . In other words, 
there exists a compact universal space for the class of all normal spaces 
whose large inductive dimension is not larger than n and whose weight 
is not larger than m. 

We conclude this section with the counter-examples announced above. 
The first is a compact space 2 with IndZ = 0 which contains a normal 
subspace X such that IndX > 0. 
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2.2.11. Dowker's example. Let Q denote the subspace of the interval Z 
consisting of all rational numbers in I (clearly, Q i s  homeomorphic to the 
space of rational numbers). By letting 

xEy if and only if Ix-yl E Q  

we define an equivalence relation E on the set I. Since each equivalence 
class of E is countable, the family of all equivalence classes has cardinality c. 
Let us choose from it a subfamily of cardinality Kl which does not contain 
the equivalence class Q and let us arrange the members of this subfamily 
into a transfinite sequence Qo, Q , ,  ... , Qa,  ..., a < wl. 

For every y < o1 the set Py = Z\ U Qa satisfies the equality indP, = 0; 

indeed Q c P,, and since the sets Qor are dense in Z, the set P, contains 
no interval. Let W be the space of all ordinal numbers < o1 and let W, 
= W\{ol} (see Example 2.1.6). For every cl < ml the subspace Ma 
= [0, a] = [0, a+ 1) is open-and-closed in W. Consider the Cartesian 
product Wx I and its subspaces 

aay 

X,  = U ({y)xP,), X =  U Xa and X* =Xu((w,)xI) .  

As noted in Example 2.1.6, the subspaces Ma are metrizable. Being count- 
able, they are zero-dimensional, so that ind(MaxPa) = 0 by virtue of 
Theorem 1.3.6. Since for every cl < o1 the set X, is open-and-closed in X 
and indX, = 0 in view of the inclusion Xa c Ma x Pa, we have indX = 0. 
From Remark 1.3.18 and Theorem 1.6.5 it follows that there exists a com- 
pact space Z with IndZ = 0 which contains X as a subspace. 

We shall show now that the space X* is normal which is the first step 
towards establishing normality of the space X .  As X* is a subspace of 
Wxi,  it is a T,-space. Consider a pair A ,  B of disjoint closed subsets 
of X'%. The sets 

y < u  ac w~ 

Fl = (x E I :  (w,  , x )  E A }  and F, = { x  E I :  (wl , x) E B }  

are disjoint and closed in I so that there exist open sets ITl , H, c I such 
that F, c H I  , F2 c H ,  and H,nH, = 0. For every x E Z\Hl there 
exists a neighbourhood U, c I of the point x and an ordinal number 
~ ( x )  < co, such that [(FV\MorcxJ x U J n A  = 0. The set Z\Hl being 
closed in I ,  we can choose a finite number of points xl  , x 2 ,  . . . , x k  E 

such that I\H1 c U U,.,. For d l  = max(a(x,), a(x2) ,  ..., a&)) < ol 

we have [(W\M,I) x (I\H,)]nA = 0, i.e., 
14) 

k 

r = l  

An(X*\XaI) c (W\M,J x Hi. 
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In a similar way we determine an d ,  < w1 such that 

( 5 )  Bn(X*\X,J c ( W\M,,) x H,;  
without loss of generality we can assume that tll < t12 .  The sets A n X a 2  
and BnX,, are disjoint and closed in Xu,, so that there exist open sets 
U, , V, c Xu, such that 

(6) AnXa2  c U,, BnX,, c V, and U,nV, = 0;  
since Xu, is an open subset of X",  the sets U, and V,  are open in X*. The 
sets U = U,u { [(W\M,,) x H,]nX*}  and V = Vl u { [(W\Maz) x Hzln 
nX*} are open in X*. By virtue of (4)-(6) 

A c U, B e  V and U n V = 0 ,  

so that the space X* is normal. 
To prove that the space X is normal, it suffices to show that, for every 

pair A ,  B of disjoint closed subsets of X ,  the closures Aand Bof A and B 
in the space X* are disjoint. Suppose that there exists a point (GO, , x )  E A n B .  
It follows from the definition of Py that there exists an do  < w1 such that 
x E P, for every CI 2 CI,. We can readily define by induction two sequences 
CI, , d, , . . . and p1 , ,!?, , . . . of countable ordinal numbers and two sequences 
xI , x2 , . . . and y1 , y ,  , . . . of real numbers in I satisfying 

- -  

do < C11 < pi < at+,, I x - x , ]  < I/i, Ix-yiJ < l/i, 
(ai, xi) € A ,  (Pi, yi) E B  

for i = 1 ,2 ,  ... Now, for the smallest ordinal number y larger than all 
ai's we have ( y ,  x) E A n B ,  which is impossible. Thus A n B  = 0 and 
X is a normal space. 

It remains to show that IndX > 0. Assume that IndX = 0 and con- 
sider the pair W, x (O}, W, x { l}  of disjoint closed subsets of the space X. 
Then there exists an open-and-closed set U c X such that W, x (0) c U 
and W, x { 1) c X\ U. As established in the preceding paragraph, the 
closures 2 and 2 of the sets A = U and B = X\U in the space X "  are 
disjoint. Since X = AuB and x = X*, we have AuB = X*. The sets 
A l  = {x E I: (ol, x) E A} and B1 = {x E I: (wl, x) E j }  are disjoint 
and closed in I ;  moreover, A , u B 1  = I and Al # 0 # B1,  because 0 E Al  
and 1 E B ~ .  Thus our assumption contradicts the connectedness of the 
interval I. Hence IndX > 0. 0 

- -  

_ -  

We now turn to the counterexample to the sum theorem for Ind in 
normal spaces. To begin with, we shall describe two auxiliary spaces L and 
Lo,  which are known as the long segment and the long line. 
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2.2.12. Example. Let Wo be the set of all countable ordinal numbers and 
let Lo = Wox [O, 1). Define a linear order < in the set Lo by letting 
(a, , t l )  < (ctZy t2)  whenever a, < c12 or al = a2 and tl < t , .  Further- 
more, let L = Lou(ol> and extend the linear order < over L by letting 
x < o1 for every x E Lo. By assigning to each a E Wo the point (a, 0) E Lo 
we define a one-to-one mapping of Wo onto the set Wo x (0) c Lo; in 
the sequel we shall identify a with (a, 0) and we shall consider Wo as 
a subset of Lo. The set W of all ordinal numbers < o, is a subset of L. 

Consider on L the topology obtained by taking as a base all sets of 
the form 

(xo,o11 = {x: xo < x), [O,X,) = (x: x < X I >  

and (xo, xi) = {x: xo < x < xl}, 
where xo , x1 E L and xo < x, . One easily sees that L is a connected compact 
space and that the subspace topology on W c L coincides with the topology 
on W defined in Example 2.1.6. For every xo E Lo the closed subspace 
[0, xo] = {x: x < xo} of L has a countable base, viz., the family of all 
sets ((ao, to), (al, t,)), where ao, a1 < xo and to,  t l  are rational numbers 
in I, and thus is a compact metric space. The space L is called the long 
segment; the subspace Lo of L is called the long line. 0 

We shall now describe a compact space X with IndX 2 2 which contain 
closed subspaces F,, F2 such that FluF2 = X and IndFl = IndF, = 1. 

2.2.13. Lokucievskii’s example. Let L be the long segment and C the Cantor 
set. The subspace of the Cantor set consisting of the end-points of all 
intenals removed from I to obtain the Cantor set will be denoted by Q 
(cf. Problem 1.3.H(e)). Since L and C are compact, the Cartesian product 
L x C is a compact space. We shall now establish a property of open sub- 
sets of L x C which will prove crucial for the evaluation of Ind X. Namely 

(7) for every open set U c L x C such that Un({wl> x C )  # 0 and 
t u  = supit: (wl, t )  E U }  belongs to (C\Q)\{l} either 
(i) there exists an x’ E Lo such that (x’, w,] x ( t . }  c Fr U 
or 
(ii) there exist a t’ E (tU, I] and a set L’ c Lo cofinal in Lo such that 

L’x ([tU, t‘]nC) c U. 

Consider a sequence I ,  , t , ,  ... converging to t u  and such that (wl, t i) 
E U for i = 1 , 2, . . . The set U being open, there exists a sequence a1 , a, , . . . 
of countable ordinal numbers such that (ai,  w l ]  x t i  c U for i = 1 , 2, . . . 
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For the smallest ordinal number do E Wo c Lo larger than all di's we have 
(ao, w,] x {t.} c 0. If (i) does not hold, then there exists a set L, c Lo 
cofinal in Lo and such that L1 x {t.} c U. For every x E L, we can find 
a t, E ( f " ,  I] satisfying {x} x ( [ t u ,  t,]nC) c U. Clearly, there exists a natural 
number k such that the set L(k) = {x EL,: t,-tu > l/k} is cofinal 
in Lo,  and thus (ii) holds with t' = t.+ Ilk and L' = L(k). 

Letf: C +. I be the continuous mapping of C onto I consisting in match- 
ing the end-points of each interval removed from I to obtain the Cantor 
set (see Problem 1.3.D) and let E be the equivalence relation on the space 
L x C corresponding to the decomposition of L x C into one-point subsets 
of Lo x C and the sets (a1} x f - ' ( t ) ,  where t E I. Since the equivalence 
relation E is dosed, the quotient space Y = (L x C)/E is compact (see 
[GT], Theorem 3.2.11). The image of the set {wl} x C c L x  C under 
the natural quotient mapping will be denoted by I and will be identified 
with the interval [0, 11; the image of {w,} x Q will be denoted by K. 

We shall prove that ind Y = Ind Y = 1. To begin with, let us observe 
that indY < 1. Indeed, every neighbourhood of a point x E Y \ I  contains 
a neighbourhood of this point with a boundary homeomorphic to COC 
and every neighbourhood of a point x E I contains a neighbourhood of 
this point with a boundary homeomorphic to COB, where B is a discrete 
space of cardinality < 2; the last fact is a consequence of the density 
of K in I. Now we shall show that IndY < 1. Consider a closed set A c Y 
and an open set V c Y which contains the set A .  For every x E A there 
exists a neighbourhood U, such that U, c V and Fr U, is a zero-dimensional 
compact metric space. The subspace A of Y being compact, we can choose 
a finite number of points xl, x,, ... , xk such that A c U = U U,, c V. 

The subspace F = U Fr Uxt of Y is normal, so that by virtue of Theorems 

1.6.4 and 2.2.7 we have IndF = 0. Since Fr U c F, it follows from Theorem 
2.2.1 that IndFr U < 0. Hence Ind Y < 1 ; as the space Y contains the 
interval I, we have indY = IndY = 1.  

k 

i =  1 
k 

= l  

Let us note that (7) yields 

(8) for every open set U c Y such that U n I  # 0 and sup{t: t E U n I }  
belongs to (I\K)\{l} we have indFrU 2 1. 

Consider two disjoint copies Yl and Yz of the space Y, and denote 
by Ii and Ki the counterparts of I and Kin Yi for i = 1 , 2 .  Let K3 c Iz\Kz 
be a countable set dense in I, which does not contain the end-points of I , .  
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It follows from Problem 1.3.G(a) that there exists a homeomorphism h: 
I, -+ Z2 such that h(Kl) = K3 c Z,\K,. Let S be the equivalence rela- 
tion on the space Y, BY, corresponding to the decomposition of Y, @Y, 
into one-point subsets of (Yl\Z~)u(Y,\I,) and the sets (x, Iz(x)), where 
x E I,. Since the equivalence relation S is closed, the quotient space X 
= (YIOY,)/S is compact. Roughly speaking, the space X is obtained 
by matching Y, with Y, along Z, and I, in such a way that no points of 
Kl and K, are matched to each other. For i = 1 , 2  the image Fi of the set 
Yi under the natural quotient mapping q: Yl OY2 -+ X is closed in X and 
homeomorphic to Y, so that h d F ,  = IndF, = 1;  moreover F l u F z  
= x. 

It remains to show that IndX 2 2. Consider the mid-point x of the 
interval obtained by matching Il with I, and a neighbourhood V c X 
of the point x which does not contain the end-points of this interval. From 
(8) it follows that for every open set U c X such that‘x E U c V we have 
ind Fr U 2 1, because sup { t : t E q-l( U ) n I i }  belongs to Ii\Ki either 
for i = 1 or for i = 2. Thus IndX > indX 2 2; one can show that IndX 
= indX = 2 (see Problem 2.2.C(c)). 0 

Historical and bibliographic notes 

Theorem 2.2.1 was noted by Cech in [1932]. An example of a heredi- 
tarily normal space X with IndX = dimX = 0 which for every natural 
number n contains a subspace A ,  with IndA, = dimA, = n was described 
by E. Pol and R. Pol in [1979] (in [1977] the same authors gave an example 
to show that Ind and dim are not monotonic in hereditarily normal spaces); 
under additional set theoretic assumptions such an example was defined 
by Filippov in [1973]. Theorem 2.2.3 was proved by Dowker in [1953]. 
Theorem 2.2.5 was given by Smirnov in [1951]. Theorem 2.2.7 is implicit 
in cech’s paper [1933] (cf. Theorems 1.6.11 and 3.1.8); it was first for- 
mulated by Vedenissoff in [1939]. An example of compact spaces X 
and Y such that indX = IndX = 1, indY = IndY = 2 and Ind(Xx Y )  
2 ind(Xx Y) 2 4 was described by Filippov in [1972] and an example 
of a normal space 2, whose square 2 x Z is also normal, such that IndZ 
= 0 and yet Ind(Z x 2) =- 0 was given by Wage in [1977]. In his original 
construction Wage applied the continuum hypothesis ; Przymusinski in 
[1977] noted that the continuum hypothesis can be avoided by a 
modification of Wage’s construction. Theorem 2.2.9 was established by 
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Vedenissoff in [1939]. The existence of compactifications preserving both 
the dimension Ind and the weight of normal spaces and the corresponding 
universal space theorem were announced by Pasynkov in [1971]; proofs 
were given in Alexandroff and Pasynkov's book [1973]. Example 2.2.11 
was described by Dowker in [1955], and Example 2.2.13-by Lokucievskii 
in [1949]. 

Problems 

2.2.A (Urysohn [1925]). (a) Prove that a subspace M of a hereditarily 
normal space X satisfies the inequality indM < n 2 0 if and only if for 
every point x E M and each neighbourhood V of the point x in the space X 
therz exists an open set U c X such that x E U c V and ind(MnFr U )  
< n-1. 

(b) Show that for every pair X ,  Y of subspaces of a hereditarily normal 
space we have 

ind(Xu Y) < indX+ ind Y+ 1. 

2.2.B (Aarts and Nishiura [1971]). Prove that for every continuous 
mappingf: A -+ Sk defined on a closed subspace A of a hereditarily normal 
space X such that Ind(X\A) < n, where 0 < k < n, there exists a closed 
subspace B of the space X such that AnB = 0, IndB < n - k - I ,  and 
the mapping f has a continuous extension F: X\B -+ Sk over X\B. 

Hint. See Problem 1.9.D. 

2.2.C. (a) Show that if a normal space X can be represented as the 
union of two subspaces M and F such that M is normal and non-empty 
and F is closed in X ,  then for every pair A, B of disjoint closed subsets 
of X there exist a partition L in X between A and B and a partition L in 
M between MnA andMnBsuch that L\F = L'\Fand IndL' < IndM- 1. 

(b) Deduce from (a) that if a normal space X can be represented as 
the union of two subspaces X I  and F such that X ,  is normal and non-empty, 
F is closed, and Ind F = 0, then IndX < IndXl. 

(c) Show that if a normal space can be represented as the union of two 
closed subspaces F ,  and F2 , then IndX < IndF, +IndF2. 

(d) Show that if a normal space can be represented as the union of two 
normal subspaces X and Y of which one is either closed or open, then 
Tnd(XuY) < IndX+IndY+ 1. 



182 The large inductive dimension [Ch. 2, 0 3 

(e) Show that if a hereditarily normal space X contains a closed subspace 
F such that IndF < n and Ind(X\F) < n, then IndX < n (cf. Theorem 
2.3.1). 

2.2.D. Check that if X is a metric space and a dense subspace M c X 
has the property that every continuous function8 M +. I is continuously 
extendable over X ,  then M = X. 

2.2.E. Note that for the space X described in Example 2.2.11 we have 
nd@X # indX. 

2.2.F (Dowker [1955]). (a) Prove that the space X described in Example 
2.2.1 1 satisfies the equality IndX = 1. 

(b) Show that to the space X described in Example 2.2.11 one point 
can be adjoined either in such a way that one obtains a normal space XI 
with indX, > 0 or in such a way that one obtains a normal space X ,  
with IndX, = 0. 

2.2.G (Smirnov [1958]). Modify the construction of the space X in Ex- 
ample 2.2.11 to obtain a compact space Z with IndZ = 0 which contains 
a normal subspace Y such that IndY = m. 

Hint. Replace the interval by the Hilbert cube and the sets Py by the 
Cartesian products Py"". 

2.2.H. (a) Show that the long segment L is a strongly hereditarily 

(b) Prove that for every point xo in the long line Lo the subspace [0, xo] 

Hint. Define a countable dense subset of [O,xo] which is ordered 

(c) Check that for the subspace W of the long segment L there exists 

normal space. 

of L is homeomorphic to the interval I. 

similarly to the set of all rational numbers in I. 

no Gd-set W" in L such that W c W* and Ind W* = Ind W. 

2.3. Basic properties of the dimension Ind in strongly hereditarily normal 
spaces 

Strongly hereditarily normal spaces constitute a relatively wide class 
of spaces where two of the most important theorems of dimension theory, 
viz., the subspace theorem and the countable sum theorem, hold for the 
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dimension Ind. Both theorems are tightly connected; we shall prove them 
simultaneously. For more clarity the proof is divided into several lemmas. 

Let us consider the following properties of a hereditarily normal 
space X: 

(pJ For each subspace Y c X and every open subspace U of Y, if Ind Y < n, 

(ISJ For each subspace Y c X and every sequence Fl , F2,  ... of closed 
then IndUG n. 

m 

subspaces of Y such that Y = u Fi, if IndF, < n for i = 1 ,2 ,  ..., 
i =  1 

then IndY < n. 

Clearly, every hereditarily normal space X has property and 
thus to prove that all strongly hereditarily normal spaces have properties 
(pn) and (q,) for n = - 1,0, 1, . . . , it suffices to show that the implica- 
tions => (pn) and (pn) * (0,) hold for every strongly hereditarily 
normal space X. The second implication holds for all hereditarily normal 
spaces; it will be deduced from the following version of the sum theorem. 

2.3.1. Theorem. If a hereditarily normal space X can be represented as 
the union of a sequence Kl , K2 , . . . of pairwise disjoint subspaces such that 

IndK, < n and the union u K, is closed for i = 1,2,  ... , then IndX 6 n. 
jai 

Pioof. We shall apply induction with respect to the number n. For n = - 1 
the theorem is obvious. Assume that the corresponding statements hold 
for dimensions less than n and consider a hereditarily normal space X 

which satisfies the assumptions of our theorem. Let Fi = u K, for 
i = 1 , 2 ,  ... 

Consider a pair A ,  B of disjoint closed subsets of X .  Let U,, V, be open 
subsets of X such that 

(1) A c U,, B c V ,  and v,nv, = 0, 
and let KO = Fo = Lo = 0. We shall define inductively two sequences 
U,, U, , ... and Yo, V,  , ... of open subsets ofX and a sequence Lo, LI , ... 
of subsets of X satisfying for i = 0, 1 ,  .. . the following conditions: 

(2) Li c KL and IndL, < n - 1 .  

j<i 

The set El = u L,  is closed. 
j<i 

(3) 
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(4) Fi c UiuViuE,. 

(5 )  U,uV, c X\Ei and U,nc c E,. 

(6) U,-, c U, and Vt-l  c Vi for i > 0. 

The sets U,, Vo and Lo satisfying (2)-(6) for i = 0 are already defined. 
Let us assume that the sets U,, Vi and Li satisfying (2)-(6) are defined 
for i < m > 0. The sets U,-,nK, and V,-,nK, are closed in K, and 
disjoint, because by virtue of (5) and (2)  with i = m- 1 

- 

- - 

Urn-,nV,-, c Em-l c u K j  

and the last set is disjoint from K,. Since IndK, < n, there exists a parti- 
tion L, in K, between o,-,nK, and Vm-,nKm which satisfies (2) with 
i = m; there also exist open subsets G, H of K, such that 

(7) 3m-1nK, c G ,  V,-,nK,,, c H ,  G n H  = 0 

j < m  

- 

and K,\L, = GuH. 

From (7) it follows that L,n(U,,,-,uVm-,) = 0; the union U,-,UV,-~ 
being open in X ,  we have L,n{U,-, uV,- ,) = 0. Since L, is closed 
in K, and F, is closed in X ,  the last equality and (4) with i = rn - 1 yield 
the inclusion 

- 
L m  c L,u[Fm-,\(~m-,uVm-,)] c E m ,  

- - which shows that (3) holds for i = m. ' 

which implies that 
Since GnV,-, = 0 = HnUm-,  , we have GnV,,,-, = 0 = HnU,-, , 

GnH c L,u[F,-,\(U,-, uV,-,)] c Em, 

because &I? c Ern c F, = F,. The same equalities cnV,-, = 0 
= HnU,-,  together with (7), the equality Um-,nV,-, = 0, which is 
a consequence of (5) with i = m - 1, and (4) with i = m- 1 yield 

(9) GnV,-, = ~Gn(Fm- l \~ , , - l )~ \~m c ~ m ~ l n ~ ~ m ~ l \ ~ m . - l ~  c E,,#-] 

and 

- 

- 

- - -  

HnU,-, = [Hn(U,-,\U,-,)]\K, c Fm-ln(Um-l\Um-l) t 

(10) 

Relations (8)-(10) and the second part of (5) with i = m- 1 show 
that the sets (0,- uG)"\E, and (vm-, uH)\E, are disjoint. As these sets 
are closed in X\E,, from the hereditary normality of X it follows that 
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there exist disjoint sets Urn, V,,, open in X\Ern, and consequently open 
in X ,  such that 

(U,-,uG)\Ern c Urn, (~,,,-,uH)\E,,, c V,, 

and (5) is satisfied for i = m. The last two inclusions imply that (4) and 
(6) also are satisfied for i = m, because L r n n ( U , ~ , u V r n ~ , )  = 0 by virtue 
of (7). Hence the construction of the sets U , ,  Vi and Li satisfying (2)-(6) 
for i = 1 , 2, . . . is completed. 

Let U = u U,, V = u V,, and L = ,u Li ;  it follows from (4) 

that X = UuVuL.  The sets U and V are open and, by virtue of (6) and the 
equality U,nV, = 0, which is a consequence of (5),  disjoint. From (5 ) ,  
(6) and the inclusion Ei-l c Ei it follows that U n L  = V n L  = 0, so that 
X\L = UuV, which together with (1) shows that L is a partition between 
A and B. By virtue of (2) and (3) the inductive assumption can be applied 
to the space L and the sequence L1,  L2,  ... ; thus IndL < n-  1,  which 
shows that IndX < n. 0 

m m m 

i =  1 i =  1 I =  1 

2.3.2. Corollary. If a hereditarily normal space X has property (p,,), then 
it also has property (on). 

Proof. Consider a subspace Y c X and a sequence Fly F,, ... of closed 

subspaces of Y such that Y = u Fi and IndF, < n for i = 1 , 2, ... By 

virtue of (p,,) the set Ki = FL\u F j  satisfies the inequality IndK, ,< n 

for i = 1,2, . . . Applying Theorem 2.3.1 to the space Y and the sequence 
Kl , K, , .. . , we obtain the inequality IndY < n. - (pn). To begin with, we 
shall establish a simple property of point-finite open covers, which will 
be applied here and in the following chapter. 

m 

i= 1 

j c i  

0 
We now turn to the implication 

2.3.3. Lemma. Let {US}SES be a point-$nite open cover of a topological 
space X .  For i = 1 ,2 ,  . . . denote by Ki the set of all points of the space X 
which belong to exactly i members of the cover { US)SES and by 5, the family 
of all subsets of S that have exactly i elements. Then 

(11) 
m 

X = u K,, K,nK, = 0 whenever i # j ,  and 
i= 1 

the union Fi = u K j  is closed for i = 1,2, ...; 
jci 
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moreover, 

(12) K, = u K T ,  where the sets KT ,  defined by letting KT = K i n  n Us 
T€TI SET 

for T E Ti , are open in Ki and pairwise disjoint. 

Proof. The first two equalities in (1 1) follow directly from the definition 
of the sets K , .  If x 4 F,, then x E UslnUs2n ... c X\F,, where 
s1 , s2,  ... , si+l are distinct elements of S, so that the sets Fi are closed. 
To establish (12) it suffices to note that KT c K ,  for T E Y ,  and that 
whenever T ,  T' are distinct members of Ti, then K T n K T I  = 0, because 
the union TuT' contains at least i + l  elements of S. 17 

We shall now prove a lemma which, together with Corollary 2.3.2, 
yields the implication (p,,) for every perfectly normal space X ;  
afterwards. we shall deduce from this lemma that the implication (pn-,) 
=> (pJ holds for every strongly hereditarily normal space X.  

2.3.4. Lemma. r f  a hereditarily normal space X has property ( G " - ~ )  and 
if IndX < n, then Ind U < n for every open subspace U of X which can be 
represented as the union of a point-finite family of open F,-sets in X.  

Proof. Let us first consider the special case where U is an open Fm-set in X .  
Then there exists a continuous functionf: X + I such that U = f -I((O, 11) 
(see Problem 2.1.A). The sets B, = f - l ( [ l / i ,  11) are closed in X and 
satisfy 

(13) B, c IntB,,, , IndB, < n for i = 1 ,  2,  ... and U = u B,. 

Consider an arbitrary set A c U which is closed in U and an open 

m 

i =  1 

set V c U which contains the set A .  For i = 1 , 2, ... let 

(14) A ,  = An(B,\IntB,-,) and V, = Vn(IntB,,,\B,-,), 

where B-l = B, = 0; clearly, A ,  c V, c Bi+l,  A ,  is closed in B.+l, 
and V, is open in B,, Since IndB,, < n, there exists an open subset 
U, of Bf,l such that 

(15) A ,  c U, c 0, c V, and IndFrU, < n-1 ,  

where the closure and boundary operators refer to the space U. Indeed, 
as B,,, is a closed subset of U and U, c IntB,,, , the closure and the 
boundary of U, in B,+, and in U coincide. From the inclusion U, c U\Bi-2 
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it follows that the family { ui}El is locally finite in the space U, so that 

for the set U, = u Ui we have Do = u Ui and FrU, c U Fr U,. 

Applying (13)-(15) and (o,,-,), we obtain 

m a3 m 

I= 1 i= 1 i= 1 

00 00 CQ 

A = A n U B ,  c U A i  c U, c 0, = u oi c V 
i =  1 i= 1 i= 1 

and IndFr U, < n- 1, 

which shows that Ind U < n. 
Let us now pass to the general situation and consider a point-finite 

family { Us)sss of open Fa-sets in Xsuch that U = u Us. AppIying Lemma 

2.3.3 to the cover {US)SES of the space U, we obtain the sets Ki which 
satisfy (1 1) and (12) with X = U. Since for each T E Ti we have KT = Kin 
nn Us = Finn Us, the sets KT are Fo-sets in X. 

seS 

SET seT 

The subspace Xi  = (X\U)uFi is closed in X ,  so that IndX, < n. 
Since the set Ki = Fi\Fi-l = Xin(U\Fi-l) is open in X i ,  the sets KT 
are open Fa-sets in X i .  Applying the already established special case of our 
theorem to the space Xi  and the set KT, we conclude that IndKT < n 
for every T E Ti. Thus IndK, < n for i = 1 ,2 ,  ... by virtue of (12) and 
Proposition 2.2.8. Theorem 2.3.1 and (11) imply that IndU< n. c] 

2.3.5. Lemma. If a strongly hereditarily normal space X has property (pn- 
then it also has property (p,,). 

Proof. Since strong hereditary normality and property (pn- are both 
hereditary properties, it suffices to show that if IndX < n, then Ind U < n 
for every open subspace U of X.  Consider a pair A ,  B of disjoint closed 
subsets of the space U. Let U' = X\(AnB), A' = U ' d  and B' = U ' n B .  
Obviously, U c U', A c A', B c B' and the sets A', B' are disjoint and 
closed in U'. It is enough to show that there exists a partition L' in U' 
between A' and B' such that IndL' < n-1, because then L = UnL' 
will be a partition in U between A and B satisfying, by virtue of (pn-,), 
the inequality IndL < n-  1. Since A'; = 2 and 3 = we have U' 
= X\(A'nB'). Thus without loss of generality we can suppose that U 
= X\(AnB) and define the required partition in U. 

As the sets A and B are separated in X ,  there exist disjoint open sets 
V ,  W c X such that A c V, B c W and V and W can be represented 

- -  

- _  
- -  
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as the union of a point-finite family of open F,-sets in X.  From the equality 
?n W = 0 = Vn W it follows that An W = 0 = VnB, so that ( A d )  
n(VuW) = 0, i.e., V u  W c U. The space U being normal there exists 
an open set 0 c U such that A c 0 c Un6 c V. The sets A and F = V\O 
are disjoint and closed in V; since IndV < n by virtue of Corollary 2.3.2 
and Lemma 2.3.4, there exists a partition L in V between A and F such 
that IndL < n -  1. Thus there exist open sets G ,  H c X such that 

A c G ,  F c H ,  G n H = 0  and V\L=GuH. 

The set Hu(U\6) is open in X, disjoint from’G, and contains B, because 
B c W c U\V c U\O; moreover, 

Gu[Hu(U\~) ]  = (V\L)u(U\O) = U\L. 

Thus L is a partition in U between A and B. 0 

From Corollary 2.3.2 and Lemma 2.3.5 it follows that all strongly 
hereditarily normal spaces have properties (p,J and (c,,) for n = - 1,O , 1, . . . , 
which, together with Theorems 2.2.3 and 2.3.1, yields the following two 
results. 

2.3.6. The subspace theorem for Ind. For every subspace M of a strongly 
hereditarily normal space X we have IndM < IndX. 0 

2.3.7. Proposition. If a strongly hereditarily normal space X can be rep- 
resented as the union of a sequence Kl , K 2 ,  ... of subspaces such that 

Ind Ki < n and the union u K j  is closed for  i = 1 , 2 , . . , , then IndX < n. El 
j < i  

The last proposition yields 

2.3.8. The countable sum theorem for Ind. If a strongly hereditarily normal 
space X can be represented as the union of a sequence Fly F2, ... of closed 
subspaces such that IndF, < n for  i = 1,2,  ... , then IndX < n. 0 

In the dimension theory of general spaces there occur also sum theorems 
of a different kind, where instead of countable covers one considers locally 
finite ones. Such theorems are not discussed in the classical dimension 
theory of separable metric spaces, because-as is easy to verify-every 
locally finite cover of a separable metric space is countable, and thus in 
such spaces the locally finite sum theorem is only a particular case of 
the countable sum theorem. Exactly as in the case of the countable sum 
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theorem, the locally finite sum theorem for Ind in strongly hereditarily 
normal spaces shall be deduced from a version of this theorem which 
holds in all hereditarily normal spaces. Let us note that in countably para- 
compact strongly hereditarily normal spaces (in particular, in perfectly 
normal spaces and in hereditarily weakly paracompact hereditarily normal 
spaces; cf. [GT], Sections 5.2 and 5.3), the locally finite sum theorem 
is an easy consequence of Theorems 2.3.1, 2.3.6 and 2.3.8 (see Problem 
2.3.B). 

2.3.9. Theorem. If a hereditarily normal space X can be represented as the 
union of a transfinite sequence K,, K,, ..., K,, ..., a < E of pairwise dis- 

joint subspaces such that IndK, < n and the union u KB is closed for  a < 6, 

and the family {Ka),<e is locally finite, then IndX < n. 
B<a 

Proof. We shall apply induction with respect to the number n. For n = - 1 
the theorem is obvious. Assume that the corresponding statements hold 
for dimensions less than n and consider a hereditarily normal space X 
which satisfies the assumptions of our theorem. Let F, = u KB for CI < E .  

Consider a pair A ,  B of disjoint closed subsets of X .  We shall define 
inductively three transfinite sequences U, , U,, ... , U,, .. . , a < 5, V, , V,, . .. 
... , V,, ..., o! < 5, and L,, L 2 ,  ..., La,  ..., a < 6 of subsets of X satisfy- 
ing for a < 5 the following conditions: 

(16) L, c Ka and IndL, < n-1. 

(17) 

Bca 

The sets Ua and V, are open in Fa and UaUVa = Fa\&, 

where E, = u LB.  
BGa 

(1 8) AnFa c U,, BnF, c V, and U,nV, = 0. 
(19) UB = FBnUa,  V, = FBnVm for /I < a. 

Since Fl = K, and IndK, < n, there exist sets U, , Vs and L1 satisfy- 
ing (16)-(19) for a = 1 .  Let us assume that the sets Ua, V, and La satisfy- 
ing (16)-(19) are defined for tl < y > 1. Let 

F; = u K,, Ui = u U,, V; = u V, and E: = u La; 

note that if y = yo + 1, then the sets defined above are equal to F,,,, U,,, 
E,, and Ey,, respectively. From conditions (17), (18) and (19) with a < y 

a < y  a < y  a < g  
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it follows that 
(20) AnF; c U;, BnF; c V,l, U,!nV; = 0 

and F;\E; = U;uV,!. 

We shall show that the sets U;, V; c F; are open in F;; clearly, it suffices 
to consider the case where y is a limit number. 

Consider an arbitrary point x E U,!. Since the family (Ka}.<,, is locally 
finite, there exist a neighbourhood W c X of the point x and an ordinal 
number do < y such that WnK, = 0 whenever uo < u < y, i.e., such 
that WnF; = WnF,, . The set U,, being open in Fa,, there exists an open 
set W' c X such that U,, = Faon W'. From (19) it follows that Fu0n U; 
= U,,, so that 

x E WnU; = WnF;nU; = WnF,,nUj = WnUao c W n  W',  

i.e., the set W n W  is a neighbourhood of x in X.  As 

F ; n W n W =  WnF,,nW'= WnU,, c U,, c U,!, 

the set Uj is open in F,!. From symmetry of our assumptions it follows 
that the set V; is also open in F;. By virtue of (20) the set Ei  is closed in 
FI ,  which implies that E; is closed in X ,  and (AuB)nE: = 0. The sets 
AuUG and BuV,' are disjoint and closed in X\Ej. From the hereditary 
normality of X it follows that there exist disjoint sets G, H c X\E; open 
in X\E,!, and consequently open in X ,  such that 

(21) A u U j  c G ,  B v V , ' c  H and G n H c  E;. 

By virtue of the last inclusion in (21) and by equality EinK,, = 0, the sets 
GnK, and H n K y  have disjoint closures in K,,. Hence there exists a parti- 
tion L,, in K,, between GnK,  and H n X j  which satides (16) with CY = y ;  
there also exist open sets G', H c K,, such that 
(22) GnK, c G ,  HnK,, c H ,  G'nH'  = 0 

I 

and K,\L, = G'uH' .  

Since the set K, = F,,\F; is open in F,, , the sets G' and H' are open in F, . 
From (20), (21) and (22) it follows that the sets 

U, = (GnF,)uG' and V,, = (HnF, )uH 

satisfy conditions (17)-(19) with u = y. Hence the construction of the 
sets U,, V, and L, satisfying (16)-(19) for CY < E is completed. 

It follows from (20) that the set L = E; is a partition in F; = X between 
A and B. Applying the inductive assumption to the space L and the se- 
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quence L1, Lz, ... , La, ... , a < t, we obtain the inequality IndL < n - 1, 
which shows that IndX < n. 0 

Theorems 2.3.9 and 2.3.6 yield 

2.3.10. The locally finite sum theorem for Ind. If a strongly hereditarily 
normal space X can be represented as the union of a locally Jinite family 
{F,},,, of closed subspaces such that IndF, < n for  s E S, then IndX < n. 

The following two theorems are common generalizations of the count- 
able and the locally finite sum theorems. Let us recall that a family {As}sss 
of subsets of a topological space X is locally countable if for every point 
x E X  there exists a neighbourhood U such that the set {s E S :  U n A ,  # 0} 
is countable. 

2.3.11. Theorem. If a strongly hereditarily normal space X can be represented 
as the union of a o-locally Jinite family {FS}SES of closed subspaces such 
that IndFs < n for  s E S, then IndX < n. 

Proof. The family (FS}SES decomposes into countably many locally finite 
families the union of each of which is closed in X and-by virtue of the 
locally finite sum theorem-has dimension not larger than n. To complete 
the proof it suffices to apply the countable sum theorem. 

2.3.12. Theorem. If a strongly hereditarily normal space X can be represented 
as the union of a transfinite sequence F,, F,, ..., Fa, ..., a < E of closed 
subspaces such that IndF, < n and the family {Fp}p<a is locally Jinite for 
a < 6, and the family is locally countable, then IndX < n. 

Proof. If the set of all ordinal numbers less than 5 contains a countable 
cofinal subset, then the family (Fa}a<t is a-locally-finite and the theorem 
follows from Theorem 2.3.1 1. 

Assume now that the set of all ordinal numbers less than E contains 
no countable cofinal subset. To complete the proof it suffices to show 
that under this assumption the family {F,}.ct is locally finite. Consider 
an arbitrary point x E X  and a neighbourhood U of this point such that 
the set ( a  < t :  UnF,  # 02 is countable. By our assumption there exists 
an a. < f such that UnF, = 0 for a 2 a,. The family {F,},,,,, being 
locally finite, there exists a neighbourhood V of the point x such that 
the set { a  < ao:  VnF,  # 0} is finite. The intersection W = UnV is 
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a neighbourhood of the point x which meets only finitely many sets Fa. 

The next result is still another sum theorem. It will yield two further 
sum theorems which hold in the class of weakly paracompact strongly 
hereditarily normal spaces. Let us observe that in this class Theorem 
2.3.13 generalizes the locally finite sum theorem (see Problem 2.3.F) and 
Theorem 2.3.1 5 generalizes both the countable and the locally finite sum 
theorems. 

2.3.13. The point-finite sum theorem for Ind. If a strongIy hereditarily 
normal space X can be represented as the union of a family {F,},Es of closed 
subspaces such that IndF, < n for s E S, and if there exists a point-$nite 
open cover { of the space X such that F, c Us for s E S, then IndX 
< n. 

Proof. Consider the decomposition of the space X described in Lemma 
2.3.3. From the definition of the sets KT it follows that KT c u Fs for 

T E Ti, so that IndKT < n by virtue of Theorems 2.3.8 and 2.3.6. Theorem 
2.2.8 and (12) imply that IndK, < n for i = 1, 2, ... To complefe the 
proof it suffices to apply Theorem 2.3.1. 0 

ET 

2.3.14. Theorem. Ij' a weakly paracompact strongly hereditarily normal 
space X can be represented as the union of a family { Us}seS of open sub- 
spaces such that Ind Us < n for s E s, then IndX < n. 

Proof. The space X being weakly paracompact, one can assume that the 
cover { US}SES is point-finite, and thus has a closed shrinking {Fs}sES (see 
[GT], Theorem 1.5.18). To complete the proof it suffices to apply Theorems 
2.2.1 and 2.3.13. 

2.3.15. Theorem. If a weakly paracompact strongly hereditarily normal 
space X can be represented as the union of a locally countable family {Fs})SES 
of closed subspaces such that IndF, < n for s E S, then IndX < n. 

Proof. For every point x E X  there exist a neighbourhood U, and a count- 
able set S(x)  c S such that UxnFs = 0 for s E S\S(x). From the last 
relationitfollows that U, c u {Fs: s E S(x) } ,  so that by virtue of Theorems 
2.3.8 and 2.3.6 we have IndU, < n for x EX. To complete the proof it 
suffices to apply Theorem 2.3.14. 0 
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We close this section with a characterization of the dimension Ind 
in‘ strongly hereditarily normal spaces which will be applied in Section 
2.4. 

2.3.16. Lemma. If for a pair A ,  B of disjoint closed subsets of a topological 
space X there exists a a-locally Jinite open cover V of the space X which 
has the property that for every V E V either VnA = 0 or VnB = 0, 
then there exists a partition L between A and B such that 

(23) L c u {FrV: V E V ) .  

m 

Proof. Let Y = u Ti, where the families V i  are locally finite. For 

i = 1,2, ... define Ti = { V E  V, :  V n A  = 0} and %i = Vi\Vi; con- 
sider the sets 

Ui = u ai and Wi = u Wi. 

i =  1 

The family Y i  being locally finite, 

(24) 

moreover 

(25) 

Let 

GnB = 0 = WinA for i = 1 ,2 ,  ...; 

m m 

A c u Ui and B c u Wi. 
i= 1 i = l  

Gi = Ui\u Wi and Hi = Wi\ u oj. 

From (24)-(26) it follows that the open sets U = u Gi and W = u Hi 
satisfy the conditions A c U, B c W and Un W = 0. From the local 
finiteness of V i  it follows that Fr U,uFr W, c U (Fr V :  V E Ti}, so that 
to complete the proof it suffices to show that the partition L = X\(Uu W )  
between A and B satisfies the inclusion 

j < i  j < i  
(26) 

00 m 

i= 1 i =  1 

m 00 

L c u F r U i u U  Fr Wi 
i =  1 i =  1 

Consider a point x E L and denote by F the first element of the sequence 
GI, W, , 6,, W, , ... that contains the point x. If F = U,,  then x E Fr U, 
= Ui\Ui, because .y 4 Gi and x 4 Wj for j -= i. On the other hand, if 
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F = w,, then x E Fr wi = w,\W,, because x # H i  and x # cj for j < i. 
Hence in both cases x E u Fr U,u u Fr W, . 0 

m 00 

i= 1 i =  1 

2.3.17. Theorem. For every strongly hereditarily normal space X and each 
integer n 3 0 the following conditions are equivalent: 
(a) The space X satisjies the inequality IndX < n. 
(b) Every locally jinite open cover of the space X has a locally finite open 

(c) Every two-element open cover of the space X has a a-locally finite open 
rejinement V such that Ind Fr V < n - 1 for  V E Y .  

rejinement 9‘- such that IndFrV < n-  1 for every V E Y .  

Proof. Let { Us}sss be a locally finite open cover of a normal space X such, 
that IndX < n 2 0. Consider a closed shrinking {FS}SES of the cover 
{ Us}SES (see [GT], Theorem 1.5.18) and for every s E S choose an open set 
V, c X such that 

F, c V, c Us and IndFrV, 6 n-1 .  

Clearly, the family V = (VS}SES is a locally finite open refinement of the 
cover { Us}seS. Hence (a) (b) for every normal space X .  

The implication (b) 3 (c) being obvious, to complete the proof it 
suffices to show that (c) (a). Let X be a strongly hereditarily normal 
space which satisfies (c). Consider a pair A ,  B of disjoint closed subsets 
of X.  There exist open sets U ,  W c X such that A c U, B c W and 
on W = 0. The two-element open cover (X\U, X\ w} of the space X 
has a a-locally finite open refinement Y such that Ind Fr V < n - 1 for every 
V E Y .  Since for every V E Y either V n A  = 0 or V n B  = 0, by virtue 
of Lemma 2.3.16 there exists a partition L between A and B such that 
L c u {Fr V :  V E Y } .  From Theorem 2.3.1 1 it follows that IndL < n- 1, 
so that h d X <  n. 0 

Historical and bibliographic notes 

The study of relations between properties (pn) and (cn) was originated 
by Dowker in [1953]. Dowker’s paper contains Theorem 2.3.1, Corollary 
2.3.2, Lemma 2.3.4 with “point-finite” replaced by “locally finite”, as 
well as theorems 2.3.6, 2.3.7 and 2.3.8 for totally normal spaces (Theorems 
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2.3.6 and 2.3.8 for perfectly normal spaces were established by cech in 
[1932]). Lemma 2.3.3 and the present version of Lemma 2.3.4 were given 
by Lifanov and Pasynkov in [1970]; the same paper contains Theorems 
2.3.6, 2.3.7 and 2.3.8 for Dowker spaces (announced in Pasynkov [1967]). 
The last three theorems were extended to super normal spaces by Nishiura 
in [1977]. Theorem 2.3.9 was established by Lifanov and Pasynkov in 
[1970]. Theorem 2.3.10 was proved by Kimura in [1967] for totally normal 
spaces (under the additional assumption of countable paracompactness 
in [1963]) and was extended to super normal spaces by Nishiura in [1977]. 
Theorems 2.3.12, 2.3.14 and 2.3.15 were proved by Lifanov and Pasynkov 
in [1970] for Dowker spaces; for totally normal spaces, Theorem 2.3.14 
was given by Dowker in [1955], and Theorem 2.3.16-by Kimura in 
[1967] (implicitly). Theorem 2.3.17 was proved by Nagami in [1969] and 
[ 1960a1, respectively for totally normal spaces and hereditarily paracom- 
pact spaces. 

Problems 

2.3.A (Smirnov [1951]). Let X be a normal space with the property 
that for each closed subspace Y c X and every finite sequence Fl , F2 . . . Fk 

ofclosedsubspacesofYsuchthatY= UF, , i f IndF,  < n for i =  1,2, . . .  

... , k, then Ind Y < n. Prove that indpX = IndX. 

ind@ = IndX. 

k 

i=1  

Deduce that for every strongly hereditarily normal space X we have 

2.3.B. Show that under the additional hypothesis that X is a countably 
paracompact space Theorem 2.3.10 is an easy consequence of Theorems 
2.3.1, 2.3.6 and 2.3.8. 

Hint. For i = 1 , 2, ... denote by Kl the set of all points of the space X 
which belong to exactly i members of the cover {F's}ses and by =Ti the 
family of all subsets of S that have exactly i elements. Note that Kl = u KT, 

where KT = K , n r ) F , .  Show that the sets U, = K , u K , u  ... u K l  are 

open in X and that Ind Ui < n for i = 1 , 2 , . . . Apply the fact that the open 
cover {Vi}C, of the space X has a closed shrinking (see [GT], Theorem 
5.2.3). 

TeYi 

seT 
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2.3.C. (a) Observe that Theorem 2.3.7 is a consequence of Theorem 
2.3.8 and Problem 2.2.C(e). 

(b) Deduce from Theorem 2.3.9 that if a strongly hereditarily normal 
space X can be represented as the union of a transfinite sequence Kl , K2, . . . 
..., K,, ... , a < 5 of subspaces such that IndK, < n and the union u Kp 

is closed for a < 5, and the family {Ka)a.=S. is locally finite, then IndX < n. 
Observe that the latter fact is also a consequence of Theorem 2.3.10 and 
Problem 2.2.C(e). 

@ < a  

2.3.D (Lifanov and Pasynkov [1970]). Prove that if a hereditarily 
normal space X can be represented as the union of a transfinite sequence 
K,, K2, ..., K,, ..., a < 5 of pairwise disjoint subspaces such that IndK, 
< n, the union u Ks is closed and the family {Kp},,, is locally finite for 

a < 5, and the family {Ka)a<6 is locally countable, then IndX < n. 
B<cr 

2.3.E. (a) (Nagata [1965]) Prove that if a strongly hereditarily normal 
space X can be represented as the union of a transfinite sequence Fl , F2, . . . 
... ,Fa ,  ..., a < 6 of closed subspaces such that IndF, < n for a < 5, 
and if there exists a transfinite sequence U,, U2,  ..., U,, ..., a < 5 of 
open subsets of X such that Fa c U, and the family is locally 
finite for a < 5, then IndXG n. 

Hint. Observe that if the set of all ordinal numbers less than 5 contains 
no countable cofinal subset, t"," the family { U,},<< is point-finite. 

(b) (Nagata [1967]) Prove !:;at if a strongly hereditarily normal space X 
can be represented as the union of a transfinite sequence Kl,  K 2 ,  ... 
..., K,, ..., a < E of subspaces such that IndK, < n and the union u Kp 

B < U  

is closed for a < 5, and if there exists a transfinite sequence U, , U, , .. . 
... , U,, ... , a < 5 of open subsets of X such that K, c U, and the family 
(UB}p,, is locally finite for a < 5, then IndX < n. 

2.3.F (Smith and Krajewski [1971]). Prove that for every locally finite 
family (FS}SES of closed subsets of a weakly paracompact space X there 
exists a point-finite family {Us}ses of open sets such that F, c Us for 
s E s. 

Hint. For every point x E X  choose a neighbourhood U, which meets 
only finitely many sets F,. Consider a point-finite open refinement Y 
of the cover {Ux}xeX and let Us = u {V E Y :  VnF,  # a}. 
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2.4, Relations between the dimensions ind and Ind. Cartesian product the- 
orems for the dimension Tnd 

As shown in Section 1.6, for every separable metric space X we have 
indX = IndX. In the present section this equality will be extended to 
a somewhat larger class of spaces. However, we should make it clear at 
once that the class of all spaces whose small inductive and large inductive 
dimensions coincide is rather restricted. Indeed, there exists a first-count- 
able compact space X such that indX = 2 and IndX = 3, as well as a com- 
pletely metrizable space X ,  known as Roy’s space, such that indX = 0 
and IndX = dimX = 1. The description of the above two spaces is quite 
complicated and the computation of their dimensions is rather difficult, 
so that they wilI not be reproduced in this book. The only space with 
non-coinciding inductive dimensions discussed here in detail is the space X 
described in Example 2.2.11, which satisfies the equalities indX = 0 and 
IndX = 1. 

Let us recall that a topological space X is strongly paracompact l) if X 
is a Hausdorff space and every open cover of the space X has a star-finite 
open refinement (a family of sets,& is star-jnite if every set A ~d meets 
only finitely many members of a). It immediately follows from the defini- 
tions that every strongly paracompact space is paracompact. One proves 
that every Lindelof space is strongly paracompact (see [GT], Corollary 
5.3.11). 

In the considerations of this section we shall apply the fact that star- 
finite covers decompose in a natural way into countable families of sets. 
Let us recall that the component of a member A ,  of a family of sets d 
is the subfamily do c d consisting of all sets A E &  for which there 
exists a finite sequence A l  , A Z ,  ... , Ak of members of d such that A ,  = A 
and A @ * - ,  # 0 for i = 1,2,  ..., k. The components of two distinct 
members of d either coincide or are disjoint, so that 

d = u ds, where d,nd,, = 0 for s # s’ 
seS 

and for every s E S the family d, is the component of a member of d. 
The representation of d as the union of the families d, will be called 
the decomposition of d into components; clearly (u ds) n( u ds,) = 0 
for s # s‘. Let us observe that all components of a star-finite family d 
are countable. Indeed, the component do of the set A ,  E d can be rep- 

’) The term hypocompact is also used. 
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resented as the union of families d, , d2,  ... , where d k  consists of all 
sets A E d for which there exist a sequence A ,  A 2 ,  ... , Ak of k members 
of d such that Ak = A and A i n A i - ,  # 0 for i = 1 , 2 ,  ..., k ,  and-as 
can easily be verified-each of the families dk is countable. 

2.4.1. Lemma. Zf X is a strongly paracompact space such that indX < n 2 0, 
then for every pair A ,  B of disjoint closed subsets of X there exists a parti- 
tion L between A and B which can be represented as the union of a sequence 
L I , L 2 ,  ... of closedsubspacesofXsuch thatindL,<n-1 f o r i =  l Y 2 ,  ... 

Proof. For every point x EX there exists a neighbourhood U, such that 
indFr U, < n- 1 and either c,nA = 0 or U,nB = 0. Consider a star- 
finite open refinement % of the cover { U,},, of the space X.  Let % = u %, 

be the decomposition of the cover % into components; as the cover % 
is star-finite, the components are countable, i.e., ?&, = { Us. , }E1 for s E S. 

Let X ,  = u Us,i for every s E S ;  the sets X ,  are open and pairwise dis- 

joint, so that X = @ X,. For each set Us,, choose a point x ( s ,  i )  E X  

seS 

m 

i = l  

S E S  
m 

such that Us,i c Ux(s, i )  and let Vs,i = Ux(s,i)nXs; clearly, X ,  = u Vs,i  
i =  1 . -  

and we have either K , , n A  = 0 or V , , p B  = 0. Since for i = 1 , 2 ,  ... 
the family { Vs,,}SeS is discrete, the family V consisting of all the sets Vs,i 
is a o-locally finite open cover of the space X.  By virtue of Lemma 2.3.16 

there exists a partition L between A and B such that L c u Fi ,  where 
co 

i =  1 

Fi = u FrV,.,. Let Li = LnF,  for i = 1 , 2 ,  ... To complete the proof 
seS 

it suffices to show that Li is closed in X and indLi < n - 1 for i = 1 , 2 ,  . . . 
Since FrVs,i c X ,  for s E S, Fi = @ FrV,,, and Fi is a closed subset of X ;  

thusL,isclosedinXfori = 1 , 2 ,  ... Ontheotherhand,FrV,,, c FrU,(,,,)u 
uFrX, = FrUx(s,i), so that indFrV,,, < n-1 for s ES; thus indFi < n-1 
and indLi < n-1 for i = 1 , 2 ,  ... n 

sss 

From Lemma 2.4.1 we immediately obtain the following generaliza- 
tion of Theorem 1.6.5. 

2.4.2. Theorem. For every strongly paracompact space X the conditions 
indX = 0 and IndX = 0 are equivalent. 
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The next theorem shows that one step forward is possible. 

2.4.3. Theorem. For every strongly paracompact space X the conditions 
indX = 1 and IndX = 1 are equivalent. 

Roof. In view of Theorem 2.4.2 it suffices to show that for every strongly 
paracompact space X such that indX = 1 we have IndX = 1. Consider 
a pair A ,  B of disjoint closed subsets of the space X.  By virtue of Lemma 

2.4.1 there exists a partition L between A and B such that L = u L1, 

where L1 is closed in X and indL, < 0 for i = 1,2 ,  . . . As every closed 
subspace of a strongly paracompact space is strongly paracompact, it 
follows from Theorem 2.4.2 that IndL, < 0 for i = 1 ,  2 ,  ... , so that 
IndL < 0 by virtue of Theorem 2.2.7. Thus IndX < 1, and from the 
inequality indX < IndX it follows that IndX = 1 .  0 

2.4.4. Theorem. For every strongly paracompact strongly hereditarily normal 
space X we have indX = IndX. 

Proof. It suffices to show that IpdX < indX; clearly, one can suppose 
that indX < 00. We shall apply induction with respect to indX. The in- 
equality holds if indX = -1. Assume that the inequality is proved for 
all strongly paracompact strongly hereditarily normal spaces of small 
inductive dimension less than n 2 0 and consider a strongly paracompact 
strongly hereditarily normal space X such that indX = n. Let A ,  B be 
a pair of disjoint closed subsets of X.  By virtue of Lemma 2.4.1 and by 
the inductive assumption there exists a partition L between A and B such 

that L = u L i ,  where Li is closed in X and IndL, 6 n - 1 for i = 1 , 2 ,  .. . 

By virtue of Theorem 2.3.8 we have IndL < n,  so that IndX < n = indX. 0 

60 

i =  1 

CQ 

i= 1 

Let us note that in the realm of Lindelof spaces Lemma 2.4.1 is an 
immediate consequence of Lemma 2.3.16, so that the fact that Theorems 
2.4.2,2.4.3 and 2.4.4 hold for Lindelof spaces can be obtained independently 
of the above-mentioned result that every strongly paracompact space is 
a Lindelof space. 

Let us also note that an obvious modification of the proof of Theorem 
2.4.4 shows that indX = IndX for every strongly paracompact space X 
in each closed subspace of which the countable sum theorem holds either 
for ind or for Ind. 
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In the problems listed at the end of this section Theorems 2.4.2, 2.4.3 
and 2.4.4 are extended to some classes of spaces larger than the class of 
strongly paracompact spaces. However, the definitions of these classes 
of spaces are a little less natural than the definition of strongly paracompact 
spaces and, to some degree, are inspired by the methods of proofs. 

We now turn to a study of the behaviour of the dimension Ind under 
Cartesian multiplication. Let us begin with recalling that, as stated in Sec- 
tion 2.2, there exist compact spaces X and Y such that Ind(Xx Y) > IndX+ 
+IndY. Thus, one can see that the Cartesian product theorem for Ind, 
i.e., the inequality Ind(Xx Y )  < IndX+ Ind Y, requires rather strong 
assumptions on X and Y. Several theorems of this type were proved under 
various assumptions. Usually, one assumes that X and Y have some prop- 
erties related to paracompactness and that the Cartesian product X x  Y 
is totally normal; generally, this last assumption can be weakened to the 
assumption that X x  Y is strongly hereditarily normal or to the assump- 
tion that the finite sum theorem for Ind holds in closed subspaces of X 
and Y,  i.e., that, for every closed subspace Z of either X or Y,  IndZ < tz 
whenever Z can be represented as- the union of a finite number of closed 
subspaces Fl , F 2 ,  . . . , Fk such that Ind Fi < n for i = 1 , 2, . . . , k. Among 
the Cartesian product theorems for Ind so far discovered there is no strong- 
est result. We shall quote two such theorems, which are relatively strong. 
‘Thus, the inequality Ind(Xx Y )  < IndXx Ind Y holds for every pair X, Y 
of normal spaces of which at least one is non-empty provided that either 

(i) the finite sum theorem for Ind holds in closed subspaces of X and Y 
the Cartesian product X x  Y is normal and one of the factors is compact 
(more generally: the projection onto one of the factors is a closed 
mappjng), 

or 
(ii) the finite sum theorem for Ind holds in closed subspaces of X and Y, 

the Cartesian product X x  Y is normal, one of the factors is metrizabfe 
and the other is countably paracompact (more generally: one of the 
factors can be mapped to a metrizable space by a perfect mapping 
and the other is countably paracompact). 

Let us observe that the proofs of Cartesian product theorems for Ind 
are fairly difficult; yet the difficulties are chiefly connected with the compli- 
cated structure of subsets of Cartesian products, so that-roughly speak- 
ing-they are of “topological” rather than “dimensional” nature. As 
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a sample we shall prove here two Cartesian product theorems for Ind 
which are among the simplest. 

Arguing as in the proof of Theorem 1.5.16, we obtain 

2.4.5. Lemma. For every pair X ,  Y of regular spaces of which at least one 
is non-empty such that the finite sum theorem for  ind holds in closed sub- 
spaces of the Cartesian product X x  Y we have 

ind(Xx Y) < indX+indY. 0 

Theorem 2.4.4 and Lemma 2.4.5 yield 

2.4.6. Theorem. For every pair X ,  Y of normal spaces of which at least one 
is non-empty such that the Cartesian product X x Y is strongly paracompact 
and strongly hereditarily normal we have 

Ind(Xx Y) < IndX+IndY. 0 

2.4.7. Lemma. The Cartesian product X x  Y of a perfectly normal space X 
and a metrizable space Y is perfectly normal. 

Proof. As X x  Y is a TI-space it suffices to show (see Problem 2.1.E (b)) 
that for every open set W c Xx Y there exists a sequence W , ,  W,, ... 

of open subsets ofXx Y such that W = u Wi and Wi c Wfor i = 1 , 2, .. . 

Let Y be a base for the space Y which can be represented as the union 
of locally finite families Y ,  , Y2 , . . . (see [GT], Corollary 4.4.4). Consider 
the family %- of all sets U x V, where U is an open subset of X and V E Y,  

such that 8 x  v c W; clearly W = u W. For every V E Y the union 
U(V)  = u ( U :  Ux V E  W }  is an open F,-set in X ,  therefore U(V)  

m 

i =  1 

00 

= u Uj(V),  where Uj(V)  is open and U j ( V )  c U(V) for j = 1,2, ... 
j = 1  

The family Y f j , k  = { U j ( V ) x  V :  V E  Y”,> is locally finite in Xx Y for 
j ,  k = 1,  2, ..., so that the set W j , k  = u W j , k  satisfies the inClUSiOn 

Wj,k  c W. Since u W j s  = u W = W, to complete the proof it 

suffices to arrange all the sets WjVn into a sequence W,, W,, ... 0 

M - 

j , k=  1 



202 The large inductive dimension [Ch. 2, 6 4 

2.4.8. Theorem. For every perfectly normal space X and every metrizable 
space Y of which at least one is non-empty we have 

Ind(Xx Y) < IndX+IndY. 

Proof. The theorem is obvious if the dimension Ind of one of the spaces 
X, Y equals co, so that we can suppose that k(X, Y) = IndX+IndY is 
finite. We shall apply induction with respect to that number. If k(X,  Y) 
= -1, then our inequality holds. Assume that the inequality is proved 
for every perfectly normal space and every metrizable space such that 
at least one of them is non-empty and the sum of large inductive dimensions 
of which is less than k 2 0, and consider a perfectly normal space X and 
a metrizable space Y such that IndX = n 2 0, IndY = m 2 0 and n+m 
= k .  Let e be a metric on the space Y. Since every metrizable space is 
paracompact, the space Y has for i = I ,  2, . . . a locally finite open cover 
42, such that meah%, < I/i.  By virtue of Theorem 2.3.17 the cover %, has 
a locally finite open refinement Y i  such that Ind Fr V < m- 1 for every 

V E  Y t .  Obviously, the family Y = u Ti  is a base for the space Y.  

Consider now an arbitrary two-element open cover {G, H }  of the 
Cartesian product X x Y ;  let W be a refinement of the cover {G, H )  con- 
sisting of sets of the form U x Jr, where U is an open subset of X and V E y. 
For every Y E T the unions 

00 

i= 1 

G(V) = u { U  U X V E W  and U x V c  G) and 

H(V)  = u (U: U X V E ~ Y  and U x V c H }  

are open F,-sets in X therefore 
CQ 00 

G(V) = U GAV) and H(V = U H,(v>, 
j= 1 j= 1 

where Gj(V) ,  H j ( V )  are open and 

IndFrG,(V) < n-1 and IndFrH,(V) < n-1 for j = 1 , 2 ,  ... 
The family 

W j , i  = {G,(V) x V :  Y E  Y i ) u { H , ( V )  x V: Y E  Y,) 
05 

is locally finite in X x  Y for j ,  i = 1, 2, . . ., so that the union u W j , ,  is 
j , i = l  

a o-locally finite open refinement of the cover {G, H}.  
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From Theorem 2.1.3 and Lemma 2.4.7 it follows that the Cartesian 
product X x Y is strongly hereditarily normal. Thus, by virtue of Theorem 
2.3.17, to complete the proof it suffices to show that IndFr W <  k-1 
for every W E V,,t and j ,  i = 1 ,2 ,  . . . The last inequality is a consequence 
of the inclusions 

Fr(G,(V)xV) c (XxFrV)u(FrG,(V)xY) 

Fr(H,(V) x V )  c (Xx Fr V)u (FrH,(V) x Y ) ,  

and 

the inductive assumption, and Theorem 2.3.8. IJ 

Historical and bibliographic notes 

The first example of a compact space X such that indX # IndX was 
defined by Filippov in [1969]; the example is discussed in detail in Filip- 
pov’s paper [1970b] and in Pears’ book [1975]. Simpler, but still quite 
complicated examples of such spaces were described by Filippov in [1970], 
Pasynkov and Lifanov in [1970], and Pasynkov in [1970]; these last spaces, 
moreover, are first-countable. The example of a completely metrizable 
space X such that indX = 0 and IndX = dimX = 1 was outlined by 
Roy in [1962]; a detailed discussion of this example is contained in Roy’s 
paper [1968] and Pears’ book [1975]. The first example of a normal space 
with non-coinciding inductive dimensions was given by Smirnov in [I951]. 
Theorems 2.4.2 and 2.4.3 were proved by Vedenissoff in [1939] under 
the stronger assumption that X is a Lindelof space. Theorems 2.4.4 and 
2.4.6 were given by Katuta in [I9661 with strong hereditary normality 
replaced by total normality; an important special case of Theorem 2.4.4, 
viz., the equality indX = IndX for every strongly paracompact metrizable 
space X ,  was proved by Morita in [195Oa] (see also notes to Theorem 
1.5.13). The fact that the inequality Ind(Xx Y )  < IndX+IndX holds 
for every pair X ,  Y of spaces satisfying either (i) or (ii) was proved by 
Filippov in [1979] (announcement [1973]) ; part (ii) was announced inde- 
pendently by Pasynkov in [1973]. In the original formulation of (ii) Filippov 
and Pasynkov assume that the Cartesian product Xx  Y is normal and 
countably paracompact; since Rudin and Starbird established in [1975] 
that if the Cartesian product of a metrizable space and a countably para- 
compact space is normal, then it is also countably paracompact, the as- 
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sumption of the countable paracompactness of X x Y can be dropped. 
Theorem 2.4.8 was obtained by Kimura in [1963]; under the additional 
assumption that X is a paracompact space it was proved by Nagami in 
[196Oa]. Further information on Cartesian product theorems for Ind can be 
found in Kimura [1963], Nagata [1967], Lifanov [1968], Nagami [1969], 
Pasynkov [1969], van Dalen [I9721 and Pears [1975]. 

Problems 

2.4.A. (a) (Nagata [1957]) Prove that the Cartesian product of the open 
unit interval (0, 1) and the Bake space B(K,) (see Example 4.1.23) is 
not strongly paracompact. Deduce that the class of all strongly paracompact 
metrizable spaces is not hereditary with respect to Fa-sets and is not finitely 
multiplicative. Show that a metrizable space which can be represented 
as the union of a locally finite countable family of strongly paracompact 
closed subspaces is not necessarily strongly paracompact. 

(b) Show that every paracompact space X such that IndX = 0 is strongly 
paracompact. 

(c) Show that the Cartesian product X x  Y of a strongly paracompact 
space X and a compact space Y is strongly paracompact. 

(d) (Morita [1954]) Prove that the Cartesian product P o x B ( m )  is 
a universal space for the class of all strongly paracompact metrizable 
spaces whose weight is not larger than m 2 KO. 

2.4.B (Zarelua [ 19631 (announcement [1961])). A topological space X 
is called completely paracompact if X is a regular space and for every open 
cover G?l of the space X there exists a sequence Vl , Tz ,  ... of star-finite 

open covers of X such that the union u ?Iri contains a refinement of G?l. 

(a) Observe that every completeIy paracompact space is paracompact 
and that every strongly paracompact space is completely paracompact. 
Show that in the realm of connected spaces complete paracompactness 
is equivalent to the Lindelof property. Prove that complete paracompact- 
ness is hereditary with respect to Fa-sets. 

(b) Prove that a metrizable space is completely paracompact if and 
only if it has a base which can be represented as the union of countably 
many star-finite covers. Deduce that the class of completely paracompact 
metrizable spaces is hereditary and countably multiplicative. Show that 

00 

i= 1 
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a metrizable space which can be represented as the union of a countable 
family of completely paracompact closed subspaces is not necessarily 
completely paracompact. 

(c) Prove that the Cartesian product ZKoxB(m) is a universal space 
for the class of all completely paracompact metrizable spaces the weight 
of which is not larger than m > Ho. 

(d) Give an example of a completely paracompact metrizable space 
which cannot be represented as the union of a o-locally finite family of 
strongly paracompact closed subspaces. 

Hint. Consider the Cartesian product RNo x B(N,). 
(e) Check that Theorems 2.4.2, 2.4.3 and 2.4.4 remain valid for com- 

pletely paracompact spaces. 

2.4.C. (a) (Nagami [1969]) A topological space X is called o-totally 
paracompact if X is a regular space and for every base for the space X 
there exists a o-locally finite open cover V of X such that for each V E 9'- 
one can find a U E  2l satisfying V c U and FrV c FrU. 

Show that the class of o-totally paracompact spaces is hereditary with 
respect to Fc-sets. Check that :Theorems 2.4.2, 2.4.3 and 2.4.4 remain 
valid for o-totally paracompact spaces. 

(b) (Zarelua [1963] (announcement [1961])) Observe that every o-totally 
paracompact space is paracompact and that every completely paracompact 
space is o-totally paracompact. 

2.4.D. (a) (Fitzpatrick and Ford [1967]) A topological space X is order 
totally paracompact if X is a regular space and for every base 2l for the 
space X there exists an open cover (Vs}sss, where the set S is linearly 
ordered by a relation <, such that for every so E S the family {VsonVs}s<s, 
is locally finite in the space Vso and for each s E S one can find a U E 2l 
satisfying V, c U and FrV, c FrU. 

Show that the class of order totally paracompact spaces is hereditary 
with respect to closed subspaces. 

(b) Prove that Theorem 2.4.2 remains valid for order totally para- 
compact spaces. 

Hint. Check that if for a pair A ,  B of disjoint closed subsets of a topo- 
logical space X there exists an open cover {VS}SES of X, where the set S 
is linearly ordered by a relation <, such that for every so E S either conA 
= 0 or vsllnB = 0 and the family (Vs,nVs}s<s, is locally finite in the 
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space V,,,, then there exists a partition L between A 

c u FrV,. 
seS 

Remark. It is not known if Theorems 2.4.3 and 

(c) (Fitzpatrick and Ford [1967]) Prove that for 
for order totally paracompact spaces. 

[Ch. 2, 0 4 

and B such that L 

2.4.4 remain valid 

every order totally 
paracompact metrizable space X we have indX = IndX. 

Hint. Apply the hint to (b); use the fact that X has a o-locally finite 
base. 

(d) (Katuta [1967]) Prove that a regular space X is paracompact if and 
only if every open cover @ of X has an open refinement {V,),,, where 
the set S is linearly ordered by a relation <, such that for every s E So 
the family (Vs,nVs)s<s, is locally finite in the space V,,. 

Hint. To prove that the space X is paracompact it suffices to show 
that every open cover of X has a locally finite refinement consisting of 
arbitrary sets (see [GT], Theorem 5.1.1 1). 

(e) Deduce from (d) that every order totally paracompact space is para- 
compact and note that every 0-totally paracompact space is order totally 
paracompact. 

2.4.E. Show that if a metrizable space X can be represented as the union 
of a locally countable family {Fs)sss of closed subspaces such that indF, 
= IndF, for s E S, then indX = IndX. 



CHAPTER 3 

THE COVERING DIMENSION 

Chapter 2 was devoted to an examination of the question which 
results of the cIassical dimension theory of separable metric spaces hold 
in more general classes of spaces for the large inductive dimension Ind. 
In the present chapter, the covering dimension dim becomes the subject 
of similar considerations. It will be seen that outside the class of separable 
metric spaces the dimension dim behaves somewhat better than the dimen- 
sion Ind, i.e., that for the dimension dim a larger number of theorems 
of the classical theory can be extended to topological spaces and that 
the extensions hold under weaker assumptions. 

Section 3.1 is primarily devoted to the question of monotonicity of 
dim in general spaces and to a study of sum theorems for dim. We also 
discuss the relations between the covering dimension dim and the inductive 
dimensions ind and Ind; in particular, we prove that dimX < IndX for 
every normal space X.  

Section 3.2 begins with several characterizations of the dimension 
dim in normal spaces. They include generalizations of three important 
theorems of the classical theory of dimension, namely the theorems on 
partitions, on extending mappings to spheres and on &-mappings. The 
final part of the section is devoted to a discussion of Cartesian product 
theorems for the covering dimension. 

In Section 3.3 we establish the compactification and the universal 
space theorems for dim and characterize compact spaces whose covering 
dimension does not exceed n as limits of inverse systems of compact metric 
spaces of dimension < n. 

We shall return briefly to the topic of this chapter in Section 4.3, where 
some information on relations between the covering dimension of the 
domain and the range of a closed mapping will be given. 
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3.1. Basic properties of the dimension dim in normal spaces. Relations between 
the dimensions ind, Ind and dim 

The definition of the covering dimension dim was stated in Section 
1.6; let us recall that a normal space X satisfies the inequality dimX < n 
if and only if every finite open cover of the space X has a finite open refine- 
ment of order < n.  We shall begin this section with a characterization 
of the dimension dim which demonstrates that instead of finite open re- 
finements of order < n one can equally well consider finite closed refine- 
ments of order < n. The characterization is preceded by an auxiliary 
theorem on swellings of finite families of closed subsets of normal spaces 
which will be applied in its proof. 

3.1.1. Definition. By a swelling of the family {A,}SES of subsets of a topolo- 
gical space X we mean any family {B,}sss of subsets of the space X such 
that A,  c B, for every s E S and for every finite set of indices sI , s2 , . . . , s, 
E S  

if and only if ASlnAs2n  ... nA,, # 0 B S I n B s I n  ... nB,, # 0; 

a swelling is open if all its members are open subsets of the space X .  

Clearly, every swelling 99 of a family d satisfies the equality ordB 

The following theorem is, in a sense, dual to Theorem 1.7.8, which 
= o r d d .  

deals with shrinkings of finite open covers of normal spaces. 

3.1.2. Theorem. Every finite family {Fi) f=l  of closed subsets of a normal 
space X has an open swelling {Ui}f=l. If, moreover, a family {Vi}f=, of 
open subsets of X satisfying Fi c V, for  i = 1, 2, .. . , k is given, then the 
swelling can be dejined in such a way that zi c Vi for i = 1 , 2 ,  . . . , k. 

Proof. The union El of all intersections Fi lnF i2n  ... nFi ,  satisfying 
the equality FlnFi lnF i2n  ... nFi ,  = 0 is a closed set disjoint from F1,  
so that there exist an open set U, such that Fl c U, and U,nEl  = 0. 
One readily sees that the family { v, , Fl , . . . , F,} is a swelling of the family 

Assume that for i = 1 , 2 ,  . .. , n -  1 an open set U, is defined in such 
a way that Fi c U, and the family { U, , U2 , . . . , Un- , F,, . . . , Fk}  is a swell- 
ing of the family {F,}~ , ,  . The union En of all intersections of members 
of the family {U, , U 2 ,  ... , U n - l ,  Fn, ..., Fk)  which are disjoint from F, 

{ F J L  1 .  

~ 

_ _  
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is a closed set disjoint from F,,, so that there exists an open set U,, such that 
F,, c U,, and C,,nE,, = 0. The family {gl, 0,, ...? a,,, F,,+*, ..., F,} is 
a swelling of the family (F,}ik_ . In this way we obtain open sets U, , U, , . . . 
...? U, such that F, c U, for3 i = 1 ,2 ,  ... , k and the family { U,}f=, is 
a swelling of the family {F,}i", I . Clearly, the family { Ul}f=, is the required 
open swelling. The second part of the theorem is obvious. 

Theorems 1.7.8 and 3.1.2 yield 

3.1.3. Proposition. For every normal space X the following conditions are 
equivalent : 
(a) The space X satisfies the inequality dimX < n. 
(b) Every finite open cover of the space X has a closed shrinking of order 

(c) Every finite open cover of the space X has a finite closed refinement 
< n. 

of order < n. 17 

Since normality is not a hereditary property, it may happen that the 
dimension dim is defined for a space X and yet is not defined for a subspace 
M c X. Still, normality being hereditary with respect to closed subsets, 
Ind M is defined for every closed subspace M c X. Moreover, the following 
counterpart of Theorem 2.2.1 holds. 

3.1.4. Theorem. For every closed subspace M of a normal space X we have 
dimM < dimX. 

Proof. The theorem is obvious if dimX = 00, so that we can assume that 
dimX = n < co. Consider a finite open cover % f {U,}f=:=, of the space 
M. For i = 1 ,2 ,  .. . , k let Wi be an open subset of Xsuch that Ui = M n  W,. 
The family {X\M}u { W,}f=, is an open cover of the space X and, since 
dimX < n, it has a finite open refinement V of order < n. One easily 
sees that the family Y I M  is a finite open cover of the space M ,  refines 
% and has order < n, so that dimM< n = dimX. 0 

From Theorem 1.6.11 it follows that the compact space 2 and its 
normal subspace X defined in Example 2.2.11 satisfy the relation 0 < dimX 
> dimZ = 0. Hence, in Theorem 3.1.4 the assumption that M is a closed 
subspace of X cannot be replaced by the weaker assumption that dimM 
is defined. In Section 2.2 an even stronger example is cited which shows 
that the dimension dim is not monotonic in hereditarily normal spaces. 
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Let us observe that the theorem on subspaces of intermediate dimensions, 
i.e., the counterpart of Theorems 1.5.1 and 2.2.2, does not hold for the 
dimension dim in normal spaces. More exactly, for every natural number 
n > 0 there exists a compact space X, such that dimX, = n and for every 
closed subspace M c X ,  we have either dimM < 0 or dimM = n. The 
description of spaces X,  and verification of their properties are too difficult 
to be reproduced in this book. 

We shall now show that for a fixed hereditarily normal space X the 
monotonicity of the dimension dim is equivalent to its being monotonic 
with respect to open subspaces. 

3.1.5. Proposition. For every hereditarily normal space X the following con- 
ditions are equivalent: 
(a) For every subspace M of X we have dimM < dimX. 
(b) For every open subspace U of X we have dim U < dimX. 

Proof. The implication (a) * (b) is obvious. Suppose that X satisfies (b). 
Condition (a) is satisfied if dimX = co, so that we can assume that dimX 
= n < 00. Consider a subspace M of X and a finite open cover 42 = { Ui >:= 

of the space M. For i = 1 , 2, . . . , k let Wi be an open subset of X such 

that U, = M n  Wi. Since for the open subspace W = u Wi of X we 

have dim W < n, the cover { Wi}f='=, of the space W has a finite open 
refinement Y of order < n. One easily sees that the family V I M  is a finite 
open cover of the space M,  refines 42 and has order < n, so that dimM 
< n = dimX. Thus X satisfies condition (a). 

k 

i= 1 

We shall return to the question of the monotonicity of dim later in 
this section and we shall show that the dimension dim is monotonic in the 
class of strongly hereditarily normal spaces ; the proof of this important 
fact depends on the countable sum theorem for dim. 

We now turn to a study of sum theorems for the covering dimension. 

3.1.6. Lemma. If a normal space X can be represented as the union of a se- 
quence Kl , K2 , . . . of subspaces such that dim2 < n for every closed subspace 

Z of the space X contained in a set KI and the union u K,  is closed for 

i = 1,2, ... , then dimX < n. 
j s i  
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proof. Consider a finite open cover 9 = { U j } j = ,  of the space X. We 
shall define inductively a sequence 9,, 4Yl . . . of open covers of the space 
X, where ai = {Uj,j}F=l, satisfying the conditions: 

(1) G , j  c U i - l . j  if i >  1 and Uo, j  c U j  for j = 1 ,2 ,  ..., k. 

(2) ord({FinUi,,}f=,) < n ,  where Fi = KluK,u ... uKi 
if i > ,  1 and F,, = 0. 

Both conditions are satisfied for i = 0 if we define Uo,j  = U j  for 
j = 1 2, ... k .  Assume that the coverings ai satisfying (1) and (2) are 
defined for all i < m >, 1. Consider the set A = u n um-l. j ,  where F 

is the family of all subsets of the set 1, 2, . . . , k which have exactly n + 2 
elements. From (2) with i = m- 1 it follows that AnF,-, = 0. The 
intersection Z = A n F ,  is a closed subspace of the space X and is contained 
in Fm\Fm-, c K,, so that dimZ < n. By virtue of Proposition 1.6.9 
the cover {ZnUm-l,j}j=l of the space Z has an open shrinking {Vj}j"=, 
of order < n. One readily observes that the family { Wj}f= 1, where W j  
= (U,-,,j\Z)uVj c is an open cover of the space X and that 
ord((F,n Wj}:=*) < n. By Theorem 1.7.8 and the normality of X there 
exists an open shrinking 42, = {Urn, j } ) =  I of the cover { Wj}j",, such that 
urn, c W j  for j = 1 ,2 ,  ..., k .  Clearly, the cover 4Ym satisfies conditions 
(1) and (2) with i = m. Hence the construction of the covers 4Yi satisfying 
(1) and (2) for i = 0, 1, ... is completed. 

For every point x E X  there exists an j(x) < k such that x belongs 

to infinitely many sets Ui,  j ( x ) ;  it follows from (1) that x E n U l , j ( x ) .  

Applying (1) and (2) we readily see that the family { n 0,. j } j k =  , is a closed 

shrinking of the cover {Uj } j= l  and has order < n. Therefore we have 
dimX < n by virtue of Proposition 3.1.3. 0 

T E T  jcT 

m 

i =  1 
00 

i =  1 

From Theorem 3.1.4 and Lemma 3.1.6 we obtain 

3.1.7. Proposition. If a normal space X can be represented as the union of 
a sequence K,, K,, ... of normal subspaces such that dimKi < n and the 

union U Kj is closed for i = 1, 2, . . . , then dimX < n. 0 
j < i  

The last proposition yields 
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3.1.8. The countable sum theorem for dim. r f  a normal space X can be 
represented as the union of a sequence F l ,  F2,  ... of closed subspaces such 
that dimF, < n for  i = 1, 2 ,  ..., then dimX < n. 0 

We now pass to the locally finite sum theorem for dim. The theorem 
will be deduced from a lemma which is formulated here in a more general 
form in view of an application in the following section. 

3.1.9. Lemma. Let % = {Us}SE~ be an open cover of a normal space X .  
If the space X has a local& finite closed cover 5 each member of which 
has covering dimension not larger than n and meets only finitely many sets 
Us, thert the cover @ has an open shrinking of order < n. 

Proof. Let us adjoin the set Fo = 0 to the cover 9 and let us arrange 
the members of this cover into a transfinite sequence F,, F j ,  ... , F,, ... , 
c1 < 5 of type 5+ 1. We shall define inductively a transfinite sequence 
%,, ..., %,, ..., d < 5 of open covers of the space X, where 
@a = {U',s}seS, satisfying the conditions: 

(3) U,,, c Uo,s if a > B 2 0 and Uo,s c Us for s E S .  

(4) ord({Fanua,sLd < n.  

(5 )  Up,s\Ua,s c u Fy for B < a and s E S .  
@<y<a 

All conditions are satisfied for a = 0 if we define Uo,s = Us for s E S. 
Assume that the coverings satisfying (3)-(5) are defined for all ct < cto 

2 1. To begin with, we shall show that the family %io = (U~o,s}sos, where 

ui0,, = u ~ . ~  for s ES, 
a<ao 

is an open cover of the space X .  This is clear if a, = a1 + 1, because then 
ULo = Ual; thus, we can assume that Q, is a limit number. 

Consider an arbitrary point x E X .  Since the family 9 is locally finite, 
there exist a neighbourhood U c X of the point x and an ordinal number 
t!? < a, such that UnF, = 0 whenever B < y < a0.  The family %b being 
a cover of X, there exists an s E S such that x E Ufl ,s .  It follows from ( 5 )  
that x E whenever p < a < ao, so that x E Efi0.,. Hence @Lo is a cover 
of the space X. 

To show that the sets U,'o,s are open it suffices to consider, for an 
arbitrary point x E Ui0,,, a neighbourhood U c X of the point x and an 
ordinal number ,9 < a, such that UnF,  = 0 whenever ,8 < y < c(,, 
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to choose a set which contains x,  and to observe that x E UnU,,,, 
c ULo,, by virtue of (5). 

The open cover {F~onU~,, ,}sE~ of the subspace Fao c X has an open 
shrinking ( V , } S E ~  of order < n, because-by (3) and the assumption on 
the family 9-only finitely many members of that cover are non-empty. 
One readily observes that the family aao = {Ua,,s}se~, where U,,,, 
= (U~o,s\Fao)uVs, is an open cover of the space X satisfying conditions 
(3)-(5) with a = ao. Hence the construction of the covers 42= satisfying 
(3)-(5) for a < 6 is completed. 

Now, it follows from (4) that ordQt < n ;  as 42< is, by virtue of (3), 
a shrinking of 42, the lemma is established. 0 

Lemma 3.1.9 yields 

3.1.10. The locally finite sum theorem for dim. I f a  normal space X can be 
represented as the union of a locally finite family (Fs}se~ of closed subspaces 
such that dimF, < n for s E S, then dimX < n. 17 

The following two theorems are common generalizations of the countable 
and the locally finite sum theoreins. The proofs, parallel to the proofs of 
Theorems 2.3.11 and 2.3.12, are left to the reader. 

3.1.11. Theorem. I f  a normal space X can be represented as the union of 
a docal ly  finite family (Fs}SES of closed subspaces such that diml;, < n 
for  s E S, then dimX < n. 0, 

3.1.12. Theorem. I f a  normal space X can be represented as the union of a trans- 
finite sequence F,, F,, ..., Fa, ..., a < of closed subspaces such that 
dimF, < n and the family (Fs}p<a is locally finite for a < 6, and the family 
{Fa}a<t is locally countable, then dimX < n. 17 

The next result is the point-finite sum theorem for dim. It will yield 
two further sum theorems which hold in the class of weakly paracompact 
normal spaces. Let us note that in this last class Theorem 3.1.13. generalizes 
the locally finite sum theorem (see Problem 2.3.F) and Theorem 3.1.15 
generalizes both the countable and the locally finite sum theorems. . 

3.1.13. The point-finite sum theorem for dim. If a normal space X can be 
represented as the union of a family {Fs}sps of closed subspaces such that 
dimF, < n for s E S,  and if there exists a point-finite open cover (Us}fis 
of the space X such that F, c Us for s E S, then dimX < n. 
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Proof. Consider the decomposition of the space X described in Lemma 
2.3.3, i.e., let 

I 

00 

(6) X = u K,, where the union u K j  is closed for i = 1, 2 ,  ... 
i= 1 j < i  

and 

(7) K, = u KT, where the sets KT = Kinn Us are open in Ki 

and pairwise disjoint. 
TECI  SET 

Let 2 be a closed subspace of the space X contained in a set Ki. It 
follows from (7) that for every T E Yi the set ZnKT is closed in X. Since 
ZnK, c u Fs, by virtue of Theorems 3.1.8 and 3.1.4 we have dim(ZnKT) 

< n for every T E Ti; and this implies that dim2 < n. In view of (6), 
to conclude the proof it suffices to apply Lemma 3.1.6. 0 

SET 

3.1.14. Theorem. I f a  weakly paracompact normal space X can be represented 
as the union of a family { l J S ) S E S  of open subspaces such that dimus < n 
for s E S,  then dimX < n. 

Proof. The space X being weakly paracompact, one can assume that the 
cover is point-finite and thus has a closed shrinking {F,)se~ (see 
[GT], Theorem 1.5.18). To complete the proof it suffices to apply The- 
orems 3.1.4 and 3.1.13. c) 

A variant of the last theorem which closely parallels Theorem 2.3.14 
is given in Problem 3.1.D(a). 

3.1.15. Theorem. r f a  weakly paracompact normal space X can be represented 
as the union of a locally countable family {Fs)SES of closed subspaces such 
that dimF, < n for s E S, then dimX < n. 0 

Proof. For every point x E X there exist a neighbourhood U, and a countable 
set S(x)  c S such that UxnFs = 0 for s E S\S(x). From this relation 
it follows that 3, c u {F,: s E S(x) ) ,  so that by virtue of Theorems 
3.1.4 and 3.1.8 we have dim 0, < n for x EX. To complete the proof 
it suffices to apply Theorem 3.1.14. 0 

We now pass to the addition theorems for dim. 
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3.1.16. Proposition. If a normal space X can be represented as the union 
of two subspaces A and B such that A is normal, dimA < n, and dim2 < m 
for every closed subspace Z of the space X contained in By then dimX < n+ 
+m+l. 

proof. By virtue of Lemma 3.1.6 it suffices to show that dim2 < n+m+ 1. 
Consider a finite open cover 42 = { U,}f=l of the space A: Since dimA < n, 
there exists a family ..1T = {V,}f=, of open subsets of Asuch that 

k 

i =  1 
AnV,  c AnU, for i = 1 , 2 ,  ..., k, A c u Vi 

and ord({AnVi}!='=,) < n ;  

without loss of generality one can assume that V, c U, for i = 1 ,  2 ,  ... , k. 
The set Z = A\ u Vi is closed in X and contained in B, so that dim Z < m, 

which implies that there exists a closed cover of Z such that 
Fi c Zn Ui for i = 1 ,  2 ,  ... , k and ord({F,}ik_l) < m. By virtue of Theo- 
rem 3.1.2 the family {Fi}f=, of closed subsets of 2 has an open swelling 
W = { W,}f==, in the space A such that W, c Ui for i = 1 , 2 ,  ... , k. Thus 

k 

i =  1 

k k 

Z = A\U Vi c u W, and ord((W,}f='=,) < m. 
i= 1 i= 1 

The union Y u W  covers the space Land refines the cover 42. As ord(YuW) 
< n + m + l ,  dimA< n+m+l .  

Theorem 3.1.16 implies 

3.1.17. The addition theorem for dim. For every pair X ,  Y of subspaces of 
a hereditarily normal space we have 

dim(Xu Y )  < dimX+ dim Y+ 1 .  17 

The addition theorem yields 

3.1.18. Corollary. r f  a hereditarily normal space X can be represented as 
the union of n+ 1 subspaces Z, , 2, , ... , Z,, such that dimZ, < 0 for  
i = 1 , 2 ,  ..., n + l ,  then dimX< n. 0 

Let us note that the implication in the last corollary cannot be re- 
versed even in the class of compact perfectly normal spaces. Indeed, apply- 
ing the continuum hypothesis one can define a compact perfectly normal 
space X such that dimX = 1 and indX = IndX = 2; now, if the space X 
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could be represented as the union Z,vZ,, where dim& = dim& = 0, 
then by virtue of Theorems 1.6.11 and 2.2.5 we would have IndX = 1. 
The description of the space X is too complicated to be discussed in this 
book. 

Let us return to the question of the monotonicity of dim. We are now 
able to prove 

3.1.19. The subspace theorem for dim. For every subspace M of a strongly 
hereditarily normal space X we have dimM < dimX. 

Proof. We can assume that dimX = n < co. To begin with, let us observe 
that from Theorems 3.1.13, 3.1.8 and 3.1.4 it follows that dim U < n for 
every open subspace U of X which can be represented as the union of a point- 
finite family of open F,-sets in X .  

Now, consider an arbitrary subspace M of X and a finite open cover 
{Ui}f=, of the space M ;  let {Fi}f=, be a closed shrinking of this last 
cover. For i = 1 ,  2 ,  ..., k the sets Fi and M\U, are separated in X ,  so 
that there exists an open set Vi c X such that Fi c V,, MnVi c Ui ,  
and Vi can be represented as the. union of a point-finite family of open 

F,-sets in X .  By the above observation the set V = u Vi satisfies the 

inequality dim V < n;  therefore there exists an open shrinking { Wi}!= 1 
of the cover {V,}f==, of the space V such that ord({ Wi}fE1) < n. Since 

M = u Fi c u Vi = V and MnVi c U,, the family {Mn Wi}!==, is 

an open shrinking of the cover {U,>f=, . As ord({MnW,}:=l) < n, dimM 
< n .  0 

The last theorem together with Theorems 2.1.3 and 2.1.5 yield the 
following two corollaries, which can also be deduced directly from Prop- 
osition 3.1.5 and Theorem 3.1.8 and 3.1.14. 

k 

i =  1 

k k 

i = l  i =  1 

3.1.20. Corollary. For every subspace M of a perfectly normal space X we 
have dimM < dimX. 0 

3.1.21. Corollary. For every subspace M of a hereditarily weakly para- 
compact hereditarily normal space X we have dimM < dimX. 0 

We shall now establish a theorem on the monotonicity of dim which 
slightly differs in nature from our previous theorems of this type: here, 
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the assumptions are about the internal topological properties of the sub- 
space M rather than the position of the subspace M in the space X. 

3.1.22. Lemma. Every subspace M of a normal space X which is an Fo-set 
in X is normal. 

Proof. It suffices to' show (see Problem 2.1.E(a) or [GT], Lemma 
1.5.14) that for every closed set F c M and each open set W c M there 

exists a sequence Wl , W, , . . . of open subsets of M such that F c u W, 

and M n  3, c W for i = 1 , 2 ,  .. . , where the bar denotes the closure 

operator in X.  Let Fl , F2, . . . be closed subsets of X such that M = u Fi 

and U an open subset of X such that W = MnU.  The space X being 
normal, for i = 1, 2, ... there exists an open set U, c X such that FnFi 
c U, c 3, c U. The sets Wi = M n U ,  satisfy all the required condi- 
tions. 0 

W 

i = l  

W 

i= 1 

3.1.23. Theorem. For every strofigly paracompact subspace M of a normal 
space X we have dimM < dimX. 

Proof. We can assume that dimX = n < GO. Consider a finite open cover 
{U,}f=, of the space M. For i = 1,2,  ..., k let W, be an open subset 

of X such that U, = Mn W, and let W = u W,. For every point x E M 

choose a neighbourhood V, of the point x in X such that x E V, c v, c W. 
The open cover {MnV,},,, of the space M has a star-finite open refine- 
ment Y.  Consider the decomposition {rs}seS of the cover r into compo- 
nents; as was established in Section 2.4, the components Y, are countable 
and the sets V, = u Y,  are pairwise disjoint. Let F, be the union of the 
closures in X of all sets which belong to the family Y,. Clearly V, c F, 
c W, and by virtue of Lemma 3.1.22 the subspace F, of X is normal; 
from the countable sum theorem it follows that dimF, < n. Thus, for 
every S E S there exists an open cover { W,,,}f= of the space F, such that 
WSvi c W, for i = 1, 2, ... , k and ord({ W,,,}f==,) < n. One readily sees 

k 

i =  1 

that the family { V,}f= where V, = M n  u (Vsn W,.,), is an open shrinking 
S E S  

of the cover { V,}f=, of the space M. As ord({Vi}fxl) < n, dimM < n 
= dimX. 
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Applying Theorem 3.1.14 we can strengthen the last theorem as follows 
(we recall that a space X is locally strongly paracompact if every point 
of X has a neighbourhood whose closure is strongly paracompact). 

3.1.24. Theorem. For every weakly paracompact locally strongly paracompact 
normal subspace M of a normal space X we have dimM < dimX. 0 

Let us observe that in Theorem 3.1.23 the assumption that X is strongly 
paracompact cannot be replaced by the weaker assumption that X is para- 
compact (cf. Problem 3.2.G(b)). Indeed, by virtue of Remark 1.3.18, 
Roy’s space X, cited in Section 2.4, which satisfies indX = 0 and dimX = 1, 
is embeddable in a Cantor cube Dm; since dimDm = 0 (see Theorems 
1.6.5 and 1.6.11), we have dimX > dimDm. 

We shall now show that the Cech-Stone compactification preserve 
the dimension dim, In Section 3.3 it will be proved that for every normal 
space there exist compactifications preserving both the dimension dim and 
the weight. 

3.1.25. Theorem. For every normal space X we have dimPX = dimX. 

Proof. To begin with, we shall prove that dimX < dimPX. The inequality 
is obvious if dimj3X = 00, so that we can suppose that dimj3X = n < 00. 

Consider a finite open cover (U,}f=, of the space X. By virtue of Theorem 
1.7.8 there exists a closed shrinking {F,)!=l of the cover { U i > f = , ,  and 
by Urysohn’s lemma for i = 1 , 2, ..., k there exists a continuous func- 
tion fi: X -+ I such that 

( 8 )  fi(X\Ui) = (0) and c (1); 

let fi: PX + I be the continuous extension of fi over PX. By virtue of (8) 
the family {W,}f==,, where W, =x-l((O, l]), is an open cover of the 
space j3X and 

(9) XnW, c U, for i = 1,2 ,  ..., k .  

Since dimPX < n, the cover { W,)f==l has an open shrinking (V,)!=l 
of order < n. From (9) it folIows that the family {XnV,}f=:=, is an open 
shrinking of the cover {U,}f=, of the space X. As ord({XnV,}!=J < n,  
dimX < n. 

Now, we shall prove that dimj3X < dimX. As in the first part of the 
proof, we shall suppose that dimX = n c co. Consider a finite open cover 
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{U,}f=l of the space PX. By virtue of Theorem 1.7.8 there exists an open 
shrinking { Wi}f=l of the cover { U,}f==, such that Wi c Ui for i = 1 , 2, ... 
... , k .  Since dimX = n, the cover { X n W i } f = = ,  of the space X has an open 
shrinking (V,}f==,  of order < ~t which, in turn, has a closed shrinking 
{Ei ) f==L.  For i = 1,2, ... , k let Fi = &, where the bar denotes the closure 
operator in PX. The family (Fi}f=, is a cover of the space PX; since Fi 
= c vi ,c XnW, = wi c Ui for i = 1, 2, ..., it is a closed shrinking 
of the cover { Ui}:=, . To complete the proof it suffices to show that 
ord({Fi}f=,) < n. 

For i = 1 , 2, .. . , k define a continuous function f i :  X -+ I such that 
A(&) c (0) and fi(X\Vi) c (1); let f,: PX -+ I be the continuous ex- 
tension of fi over PX. Consider an arbitrary subfamily { F i l ,  Fiz , . . . , Fim} 
of the cover {F i ) f= l  such that F i l n F f , n  ... nFi ,  # 0. Let J'= max(f,,, 
A,, . . . ,Em). The set U =7-'(([0, 1)) is open in PX, and since FiInFi2n 
n . . . nFi ,  c U, we have U # 0, which implies that U n X  # 0. One readily 
cheks that UnX c V i l n V i z n  ... nVim;  thus the relation ord((Vi)!=l) 
< n yields the inequality m < n + I, which shows that ord( (Fi)f= ,< n. 0 

3.1.26. Corollary. For every normal space X and a dense normal subspace 
M c X which has the property ;hat every continuous function f: M -+ I 
is continuously extendable over X we have dimM = dimX. 

In other words, dimY = dimX for every normal space X and every 
normal subspace Y of PX which contains X. 

Proof. From the extendability of every continuous function f: M -+ I 
over X it follows that PM = PX. 0 

The final part of this section is devoted to a study of relations between 
ind, Ind and dim. 

Let us begin with reminding the reader that in Section 1.7, when prov- 
ing that the equality indX = dimX holds for every separable metric space 
X, we ascertained that the proof of the inequality dimX < indX was much 
easier than the proof of the reverse inequality. We shall now show that 
the inequality dimX < indX holds for every strongly paracompact space X 
and that the related inequality dimX < IndX holds for every normal 
space X.  Both results will be deduced from a common lemma. 

3.1.27. Lemma. If for every pair A ,  B of disjoint closed subsets of a normal 
space X there exists a partition L between A and B such that dimL < n - 1, 
then dimX < n. 
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Proof. Consider a finite open cover (U,}f==, of the space X; let {Fi}f=, 
be a closed shrinking of { Ui}f=’=l .  For i = 1, 2, .. . , k there exists a parti- 
tion L, between F, and X\ U, such that dim L, < n - 1 ; let W, be an open 

k 

set satisfying Fi c W, c U, and Fr W, c L,. Since L = u Li is a normal 
i =  1 

space, dimL < n- 1 by virtue of Theorem 3.1.8. By shrinking the open 
cover {LnU,}lk_l of the space L to a closed cover of order < n and then 
swelling the latter cover in conformity with Theorem 3.1.2, we obtain 
a family {V,}f= of open subsets of X such that v, c Ui for i = 1 , 2 , . . . , k ,  

k 

L c V = u Vi and ord((V,}f=,) < n-1. , 
i =  1 

(10) 

The sets vl, v,, ..., v, together with the sets Z1, Z, ,  ..., Z,,  where 

zi = W,\(VUU W j ) ,  
j c i  

constitute a closed refinement of { U,)f=, . To complete the proof it suffices 
to observe that this refinement has order < n, which, however, follows 
immediately from the second part of (10) and the fact that for j c i < k 
we have 

ZjnZ, c %jn[wi\(VuWj)] c (X\V)nFrWj = 0. 

From the last lemma, by aiplying induction with respect to IndX, 
we obtain 

3.1.28. Theorem. For every normal space X we have dimX < IndX. 0 

In the next chapter we shall show that for every metrizable space X 
we have the equality IndX = dimX. From example 3.1.31 below it follows 
that the equality does not hold in compact spaces. The commentary to 
Corollary 3.1.18 above shows that it does not hold in perfectly normal 
compact spaces either. 

From Lemmas 3.1.27, 2.4.1 and Theorem 3.1.8, by applying induction 
with respect to indX, we obtain the following 

3.1.29. Theorem. For every strongfy paracompact space X we have dimX 
< indX. 0 

As shown by Roy’s space cited above, in the last theorem the assump- 
tion that X is strongly paracompact cannot be replaced by the weaker 
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assumption that X is paracompact (cf. Problem 3.1.F). The same example 
shows that the equality indX = dimX does not hold in metric spaces. 
That is does not hold in compact spaces either is shown in Example 3.1.31. 

To conclude, let us observe that Theorems 2.4.2 and 1.6.11 yield the 
following 

3.1.30. Theorem. For every strongly paracompact space X the conditions 
indX = 0, IndX = 0 and dimX = 0 are equivalent. 0 

3.1.31. Example. In Example 2.2.13 we described a compact space X with 
IndX > indX 2 2 which contains closed subspaces F l ,  F2 such that 
FluF, = X and IndF, = IndF2 = 1. From Theorems 3.1.28, 3.1.8 and 
1.6,11 it follows that dimX = 1. Thus X is a compact space such that 
dimX # IndX and dimX # indX. 0 

Historical and bibliographic notes 

Proposition 3.1.3 and Theorem 3.1.4 were given by cech in [1933]. 
It was proved by FedorCuk in [I9731 that for every natural number n 2 2 
there exists a compact space X, such that dimX, = n and for every closed 
subspace M c X ,  we have either dimM < 0 or dimM = n. Theorem 
3.1.5 and Lemma 3.1.6 in the case where X = K,uK, (cf. Problem 3.1.B (a)) 
were obtained by Dowker in [1955]. Theorem 3.1.8 was established by cech 
in [1933], and Theorem 3.1.10 independently by Morita in [1950a] and 
KatEtov in [1952]; Lemma 3.1.9 appeared in KatEtov’s paper [1952]. 
Theorem 3.1.14 was proved by Dowker in [1955] and by Nagami in [1955] 
for paracompact spaces ; Theorem 3.1.15, also for paracompact spaces, 
was given by Nagami in [1955]. Proposition 3.1.16 was established by 
Zarelua in [1963a]; its particular case formulated as Theorem 3.1.17 was 
obtained by Smirnov in [1951]. An example of a compact perfectly normal 
space X such that dimX = 1 and indX = IndX = 2 was described under 
the assumption of the continuum hypothesis by Filippov in [197Oa]; the 
first example of such a space was constructed under the joint assumption 
of the continuum hypothesis and the existence of a Souslin space (see 
[GT], Remark to Problem 2.7.9(f)) by Lifanov and Filippov in [1970]. 
Theorem 3.1.19 for totally normal spaces was proved by Dowker in [1955]; 
it was extended to Dowker spaces by Lifanov and Pasynkov in [1970] 
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(announcement in Pwynkov [1967]) and to super normal spaces by Nis- 
hiura in [1977]. Corollary 3.1.20 was established by cech in [1933]. Theorem 
3.1.23 was proved by Morita in [1953]; its strengthening stated as Theorem 
3.1.24 was given by Lifanov and Pasynkov in [1970] (an intermediate 
result was obtained by Pupko in [1961]). Theorem 3.1.25 was established 
by Wallman in [1938]. Theorem 3.1.28 was proved by Vedenissoff in 
[1941] and Theorem 3.1.29 by Morita in [1950a] (the latter theorem for 
Lindelof spaces was obtained independently by Morita in [1950] and by 
Smirnov in [1951]; for compact spaces it was proved by Alexandroff in 
[1941]). Example 3.1.31 was given by Lokucievskii in [1949]; the first 
example of a compact space X such that dimX # indX was described 
by Lunc in [1949]. 

As observed by KatEtov in [1950], the definition of the covering di- 
mension dim can be slightly modified so as to lead to a notion of dimension 
which behaves relatively well in completely regular spaces. The modifica- 
tion consists in replacing condition (cL1) by 

(cL1') dimX< n, where n = - 1,0,1, . . . , ifeveryfinite functionally open cover 
of the space X has afinite functionally open refinement of order < n. 

Let us recall that a subset A of a topological space X is functionally open 
(functionally closed)') if there exists a continuous function f: X + I such 
that A = f -l((O, 11) (such that A = f -I(O)); a family of subsets of a to- 
pological space is functionally open (closed) if all its members are function- 
ally open (closed) sets. As noted in Problem 2.1.A, in normal spaces func- 
tionally open (closed) sets coincide with open F,-sets (closed Gd-sets). 
From Theorem 3.1.2 and Proposition 3.1.3 it easily follows that the mo- 
dified definition of dim is equivalent to the original one in the realm of 
normal spaces. When applied to completely regular spaces, the modified 
definition yields the covering dimension for  completely regular spaces, 
which is also denoted by dim. Some theorems proved in this section hold 
in the larger class of completely regular spaces for the covering dimension 
thus extended (see Problems 3.1.H, 3.1.1, and 3.2.H-3.2.K). 

Occasionally, the covering dimension for completely regular spaces, 
or even for larger classes of spaces, was defined just by conditions (cL1)- 
(cL3) with no modifications. The dimension function obtained in this 
way satisfies the counterparts of a few theorems proved in this section 

*)  The term cozero-set (zero-set) is also used. 
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(see Ostrand [1971]). It seems, however, that such a definition is not quite 
consistent with the geometrical conception of dimension. The notion ob- 
tained displays some undesirable features of a separation axiom; for exam- 
ple, one can easily check that every TI-space whose dimension in the sense 
discussed equals zero is normal. 

Problems 

3.1.A (Morita [195Oa]). Prove that if for a family {Fs}ses of closed 
subsets of a normal space X there exists a locally finite family {VS}SES 
of open subsets of X such that F, c V, for every s E S, then the family 
{FS}SES has an open swelling { Us}seS such that c V, for s E S (cf. 
Problem 4.2.B(a)). 

Hint. Apply transfinite induction; modify the proof of Theorem 3.1.2. 
Remark. For every locally finite family {FS}SES of closed subsets of 

a countably paracompact collectionwise normal space X there exists a locally 
finite family of open subsets of X such that F, c V, for every s E S (see 
[GT], Problem 5.5.18(a)). 

3.1.B. (a) Observe that Lemma 3.1.6 is a consequence of its special 
case, viz., the case where X = K,vK,, and Theorem 3.1.8. 

(b) Prove that if a normal space X can be represented as the union 
of a transfinite sequence K, , K,, ... , K,, ... , a < 5 of subspaces such that 
dimZ < n for every closed subspace 2 of the space X contained in a set 
K,, the union u Kp is closed for a < 5, and the family {K,}a<c is locally 

B < Z  

finite, then dimX < n.  
Hint. Apply transfinite induction; use Lemma 3.1.6 and Theorem 

3.1.10. 
(c) Prove that if a normal space X can be represented as the union 

of a transfinite sequence K,, K,, ..., K,, ..., a c 5 of normal subspaces 
such that dimKa < n and the union u KB is closed for a < 5, and the 

family {Ka}a<t is locally finite, then dimX< n.  
B < U  

3.1.C. (a) (Nagata [1965]) Prove that if a normal space X can be rep- 
resented as the union of a transfinite sequence F,, F,, ..., Fa, ..., a < 5 
of closed subspaces-such that dimF, < n for a < 5, and if there exists 
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a transfinite sequence U,, U,, ... , U,, ..., a < 5 of open subsets of X 
such that Fa c U, and the family is locally finite for a < 5, then 
dimX< n. 

Hint. See the hint to Problem 2.3.E(a). 
(b) Prove that if a normal space X can be represented as the union 

of a transfinite sequence K,, K 2 ,  ... , K,, ..., a < 5 of subspaces such 
that dim2 < n for every closed subspace Z of the space X contained 
in a set K, and the union u KB is closed for a < 5, and if there exists 

a transfinite sequence U,, U,, ... , U, ,  ... , a < 5 of open subsets of X 
such that K, c U, and the family (UB}s<a is locally finite for a < 5, then 
dimX< n. 

B < U  

3.1.D. (a) Show that if a weakly paracompact normal space X can be 
represented as the union of a family (US}SES of normal open subspaces 
such that dim Us < n for s E S, then dimX < n. 

(b) Show, applying Problem 3.1.1(a) below, that the assumption of 
normality in (a), as well as in Proposition 3.1.7, can be omitted if by dim 
one understands the covering dimension for completely regular spaces 
as defined in the notes to this section. 

3.1.E (Dowker [1955]). Note that the space X described in Example 
2.2.11 satisfies the equality dimX = 1. 

3.1.F (Zarelua [1963] (announcement [1961])). Show that for every 
completely paracompact space X we have dimX < indX (see Problem 
2.4.B). 

3.1.6. (a) Check that the union and the intersection of finitely many 
functionally open (closed) sets are functionally open (closed). Show that 
the union (intersection) of countably many functionally open (closed) 
sets is functionally open (closed). Prove that for every pair A ,  B of dis- 
joint functionally closed subsets of a topological space X there exists a con- 
tinuous function f: X + I such that A c f-'(O) and B c f-' (1). 

(b) Prove that every finite functionally open cover { Ui}f=, of a topo- 
logical space X has shrinkings {F,},", and { Wi}f= , , which are, respectively, 
functionally closed and functionally open, and such that Fi c Wi c % 
c U, for i = 1, 2, ..., k .  

(c) Prove that every finite family (Fi):=l of functionally closed subsets 
of a topological space X has a functionally open swelling ( U,}f= Observe 
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that if, moreover, a family (Vi}l"=l of functionally open subsets of X 
satisfying F, c Vi for i = 1 ,  2 ,  ... , k is given, then the swelling can be 
defined in such a way that Ui c V, for i = 1,2 ,  ..., k .  

3.1.H. Show that for every completely regular space X the following 
conditions are equivalent (see the notes to this section) : 

(i) The space X satis3.s the inequality dimX < n. 
(ii) Every finite functionally open cover of the space X has a functionally 

(iii) Every finite functionally open cover of the space X has a functionally 

(iv) Everyfinite functionally open cover of the space X has aJinite function- 

open shrinking of order < n. 

closed shrinking of order < n. 

ally closed rcifinement of order < n. 

3.1.1 (KatEtov [1950]). (a) Show that if a subspace M of a completely 
regular space X has the property that every continuous functionf: M -+ I 
is continuously extendable over X ,  then dimM < dimX. 

(b) Prove that for every completely regular space X we have dimBX 
= dimX. 

(c) Deduce from (b) that if a completely regular space X can be rep- 
resented as the union of a .  sequence A l  , A 2 ,  . . . of subspaces such that 
dimA, < n and every continuous function f :  Ai -+ I is continuously ex- 
tendable over X foT i = 1, 2 ,  ..., then dimX < n. 

Remark. Terasawa defined in [1977] a completely regular space X with 
dimX > 0 which can be represented as the union of a functionally closed 
subspace F with dimF = 0 and an open discrete subspace of cardinality 
No. As shown by E. Pol in [1978] (announcement in [1976]), there exists 
a completely regular space X with dimX > 0 which can be represented 
as the union of two functionally closed subspaces Fl and F2 such that 
dimF, = dimF2 = 0. It is an open problem whether every completely 
regular space X which can be represented as the union of a locally finite 
family {A,} ,ES of subspaces such that dimA, < n and every continuous 
function f: A, -+ I is continuously extendable over X for s E S satisfies 
the inequality dimX< n. 
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3.2. Characterizations of the dimension dim in normal spaces. Cartesian 
product theorems for the dimension dim 

In this section several characterizations of the covering dimension 
in normal spaces are established. They split into two groups. The first 
consists of characterizations which are outwardly close to the definition 
of dim. The second is made up of generalizations of three important 
theorems proved in Chapter 1 for separable metric spaces, viz., of the 
theorems on partitions, on extending mappings to spheres, and on E-map- 
pings. In the final part of the section we apply one of the characteriza- 
tions of the first group to obtain two theorems on the dimension dim of 
Cartesian products. 

3.2.1. Dowker’s theorem. For every normal space X the following condi- 
tions are equivalent: 
(a) The space X satisJies the inequality dimX < n. 
(b) Every locally Jinite open cover of the space X has an open shrinking 

(c) Every locally Jinite open cover .of the space X has an open re3nement 
of order < n. 

of order < n. 

Proof. We shall show first that (a) (b). Consider a normal space X 
such that dimX < n. Let @ = {Us},,, be an arbitrary locally finite open 
cover of the space X.  Denote by 5 the family of all non-empty finite sub- 
sets of S and for every T €5 define 

F T  = f7 U,n n (x\u,); 
seT s$T 

by virtue of Theorem 3.1.4 dimFT < n. The family 9 = {FT}TEr is a closed 
cover of X each member of which meets only finitely many sets Us. The 
cover @ being locally finite, for every point x E X  there exists a neigh- 
bourhood U and a finite set So c S such that Un Us = 0, and consequently 
Un 0, = 0, for s E S\So. From the definition of the sets F T  it follows 
that if UnFT # 0, then T c So; thus the cover % is locally finite. By 
virtue of Lemma 3.1.9 the cover %? has an open shrinking of order < n, 
so that the space X satisfies condition (b). 

To complete the proof it suffices to observe that the implication (b) - (c) 
is obvious and the implication (c) => (a) follows from Proposition 1.6.9.0 

The last theorem yields 
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3.2.2. Proposition. For every paracompact space X the following conditions 
are equivalent: 

(a) The space X satisjies the inequality dimX < n. 
(b) Every open cover of the space X has an open shrinking of order < n 
(c) Every open cover of the space X has an open rejhement of order < n. 0 

Conditions (a) and (c) in the last proposition are not equivalent in the 
realm of all normal spaces. Indeed, each cover of finite order is point- 
finite, so that every space X which satisfies (c) is weakly paracompact, 
whereas there exist normal spaces which are not weakly paracompact 
(see Example 2.1.6). One can show that conditions (a) and (c) are not 
equivalent even in the realm of all weakly paracompact spaces but the 
example is more difficult (see [GT], Problem 5.5.3(c)). On the other hand, 
conditions (b) and (c) are clearly equivalent for every normal space X.  

Obviously, every family of sets which can be represented as the union 
of n + l  families of order < 0, i.e., consisting of pairwise disjoint sets 
has order < n.  We are now going to strengthen Theorem 3.2.1 by proving 
that every locally finite open cover of a normal space X such that dimX < n 
has an open shrinking of this last form. This result is in a sense a substitute 
for the decomposition theorem for dim. 

3.2.3. Lemma. For every locallyjinite open cover %! = (US}SES of a normal 
space X such that ord% < n 3 0 there exists an open cover V of the 
space X which can be represented as the union of n+ 1 families Y ,  , V2,  ... 
..., Vn+l ,  where V i  = {Vi,s}sEs, such that ordVi < 0 and ViVs c Us for  
S E S  a n d i =  1 ,2  ,..., n + l .  

Proof. We shall apply induction with respect to n. The lemma is obvious 
if n = 0. Assume that the lemma is proved for all normal spaces and all 
locally finite open covers of order c n 2 1 and consider a normal space X 
and a locally finite open cover 42 = { US}SES of X such that ord 42 < n. 
Let { WS}SES and {Fs}sES be, respectively, an open and a closed shrinking 
of 42 such that Ws c F3 for every s E S (cf. [GT], Theorem 1.5.18). Denote 
by Y the family of all subsets of S that have exactly n+ 1 elements and for 
every T E Y  define 
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From the local finiteness of 4Y it follows that the family { F T } T e r  is locally 
finite. The inequality ord4Y < n implies that UTnUT.  = 0 whenever 
T # T'. 

For every T E 9 choose arbitrarily an s(T) E T and let 

V,+, , ,  = U {UT: S(T)  = s} for S E S .  

The family Vn+l  = (Yn+l,s)sES has order < 0 and i /n+l ,s  c Us for s E S; 
moreover 

u V"i1.S = 1; UT. 
S E S  TE S 

Consider now two subspaces of the space X 

the subspace Y is closed in X ,  the subspace Z is open in X ,  and Z c Y. 
From the definition of the sets WT it follows that the locally finite open 
cover ( Y n  WS}SES of the space Y has order < n-  1. Since Y is a normal 
space, by virtue of the inductive assumption there exists an open cover 
9" of the space Y which can be represented as the union of n families 
V i ,  V;,  ..., Vi ,  where V :  = (V~,s}sos, such that ordVf < 0 and Vf,, 
c Y n W , c  U , f o r s ~ S a n d i =  1 , 2  ,..., n. 

For i = 1,2,  ... , n let V ,  = {Vi:,s}seS, where V, , ,  = ZnV;,,. One 
readily sees that the sets V,, ,  are open in X ,  that ord Vi < 0 for i = 1 ,2 ,  . . . ,n 

and that V,,, c Us for s E S and i = 1 , 2, . . , , n ; moreover, Z c u u V,,,  . 
Since FT c UT for T E ~ ,  we have 

n 

i = l  seS 

so that by virtue of (I), the union V = u V ,  is an open cover of the 
i = I  

space X.  [7 

Theorem 3.2.1 and Lemma 3.2.3 yield 

3.2.4. Ostrand's theorem. A normal space X satisjies the inequality dim X 
< n = { US}SES of the 
space X there exists an open cover V of the space X which can be represented 
as the union of n+ 1 families V l  , V 2 ,  ... , V n + l ,  where Vi = (Vi,s}sES, 
such that ordV, < 0 and V,, ,  c Us for  S E S  and i = 1 ,2 ,  ..., n + 1 . 0  

0 if and only if for every locally Jinite open cover 
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The next theorem is a strong version of the theorem on partitions. 

3.2.5. Morita’s theorem. A normal space X satisjies the inequality dimX 
< n 0 if and only if for every locally finite family { US}SES of open subsets 
of X and every family {FS}SES of closed subsets of X such that F, c Us for 
s E S there exist families { WJsES and {V,},,s of open subsets of X such 
that F, c V, c c W, c w ,  c Us for s E S and ord({ ~,\V,},,s) 
< n-1 .  

Proof. First we shall prove that every normal space X with dimX < n 
satisfies the condition in the theorem. Consider a locally finite family 
(US)SES of open subsets of X and a famiIy {Fs)sEs of closed subsets of X 
such that F, c V, for s E S. Denote by F the family of all finite subsets 
of S, define for every non-empty T E F 

GT = n u,n n (X\FJ, 
S E T  s$T 

(2) 

and let G ,  = X \ U  F,. The family {Gr}Tey  is a locally finite open cover 

of the space X .  By virtue of Dowker’s theorem (cf. Remark 3.2.7) the cover 
{ G T } T E r  has an open shrinking f f ? T } T E . T  of order < n, and, in turn, the 
cover ( H T } T E r  has a closed shrinking   AT},^. From (2) it follows that 

(3) if ATnF, # 0, then s E T .  

sss 

For every T E F and each s E T we can define open sets W,(S) and 
V,(s) such that 

(4) AT c V T ( S )  c c WT(S) c W,O c H r  for s E T 

and 
(5 )  

~ 

if s, s’ E T and s’ # s, then either Wr(3) c Vr(S’) or 
w,(sl) c Vr(s). 

Moreover, define WT(s) = V,(S) = 0 for s E S\T. 
Let 

Ws = U W&) and V, = U VT(s) for s E S .  

The sets W, and V, are open; from the local finiteness of the cover (Hf} T G ~  

it follows that c W, and W, c Us, because (2) implies that W,(s) 
c Us. Now, for every point x E F, there exists a T E F such that x E A r ;  
as s E T by virtue of (3), it follows from (4) that x E VT(S) c V,, SO that 
F, c V,. To complete the first part of the proof it suffices to show that 
ord( { Ti\ VS}SES) < n - 1 .  

T E J  T E J  
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Consider a sequence sl, sz, ... , sk of distinct elements of the set S 

such that n (ws,\Vs,) # 0. Let x be a point in the last intersection. 

There exist sets T,, T z ,  ..., Tk E Y such that s, E Ti for i = 1, 2, ..., k 

and x €0 (WTc(si)\VT,(si)); by virtue of (5) Ti # T j  for i # j .  From 

(4) it follows that x $ U A and since ( A  T } r E ~  is a cover of X ,  there 

exists a To E Y such that x E A,; c Hro; clearly To # Ti for i = 1 ,  2 ,  ... 

..., k .  Thus x €0 HTi, and as ord((Hr)TEy) < n we have k < n, which 

shows that ord( { pS\VS}SES) < n - 1. 
Consider now a normal space X which satisfies the condition in the 

theorem. By virtue of Remark 1.7.10, to prove that dimX < n it suffices 
to show that for every sequence ( A , ,  B L ) ,  ( A z ,  B J ,  ... , ( A n + 1 ,  Bn+ 1) 

of n + 1 pairs of disjoint closed subsets of X there exist closed sets L 1 ,  Lz , . . . 

... , Ln+, such that L, is a partition between A i  and B, and L, = 0. 
Define 

k 

i =  1 

k -  

i =  1 
k 

i =  1 

k 

i = O  

n + l  

i = l  , 

Ui = X\B, and Fi = A ,  for i = 1 , 2 ,  ..., n + l .  

Applying the condition in the theorem to S = { 1 , 2 ,  ... , n + l }  and the 
sets U, and F, defined above, we obtain a family (V,}l=ft  of open subsets 
of X such that 
(6) A ,  c V, c v, c X\B, for i = 1 , 2 ,  ..., n + l  and 

ord((c\V,}lf:) < n - 1 .  
By virtue of the first part of (6) the set L, = v,\Vi is a partition between 

A ,  and B, for i = 1 , 2 ,  ..., n + l ;  the second part of (6) means that Li 

= 0. 0 

n + l  

i =  1 

Theorem 3.2.5 and Remark 1.7.10 Geld 

3.2.6. Theorem on partitions. A normal space X satisJies the inequality 
dimX < n B 0 if and only if for every sequence ( A , ,  B l ) ,  ( A z ,  B z ) ,  ... 
.. . , (An+1,  Bn+,) of n+ 1 pairs of disjoint closed subsets of X there exist 
closed sets L , ,  L, ,  ... , L,,, such that L, is a partition between A ,  and B, 

n + l  

i = l  
and n LI = 0. 0 
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3.2.7. Remark. Let us note that if the family (Us}sBs in Morita's theorem 
is finite then in the proof of this theorem the cover { H T } T E y  can be obtained 
by applying Theorem 1.7.8 rather than Dowker's theorem. In particular, 
the theorem on partitions can be proved without resorting to Dowker's 
theorem. 

We now turn to the theorem on extending mappings to spheres. 

3.2.8. Lemma. Let f ,  g :  X -+ S," be continuous mappings of a topological 
space X to the boundary S," of the (n+ 1)-cube P+l in R"+I. If for  every 
point x E X  the points f ( x )  andg(x) belong to the same face of Inti, then the 
mappings f and g are homotopic. 

Proof. By assigning to every point x E X  and each number t E I the point 
h(x ,  t )  which divides the interval with end-points f ( x )  and g(x)  in the 
ratio of t to 1 - t one defines a. homotopy h :  X x I -+ S; between f and g. 0 

3.2.9. Theorem. I f X  is a normal space and A is a closed subspace of X such 
that dimZ< n 2 0 for every closed subspace Z of the space X contained 
in X\A, then for  every continuous mapping f: A --f S" there exists a con- 
tinuous extension F: X -+ s" o f f  over X.  

Proof. There exists an open set W c X containing A and such that f has 
a continuous extension f: W -+ S" over W. Consider an open set V such 
that A c V c v c  W and let Z = X\V and B = ZnV. To show that f 
is continuously extendable over X it suffices to prove that for the mapping 
h = fr B: B --f S" there exists a continuous extension H :  Z -+ S" over Z. 
Indeed, the mapping F: X -+ S" defined by letting 

F(x) = f i x )  for x E v and 

will then be a continuous extension o f f  over X.  Since dimZ < n, the 
above observation shows that with no loss of generality one can assume 
that the space X satisfies the inequality dimX < n. Moreover, one can 
assume that the space X is compact, because dimPX< n by Theorem 
3.1.25 and the mapping f is continuously extendable over the closure 
of the set A in PX, this last closure being the Cech-Stone compactifica- 
tion PA of the space A (see [GT], Corollary 3.6.8). Finally, instead of 
mappings to the n-sphere Sn one can consider mappings to the boundary 
S," of the (n+l)-cube In+1 in R"+I, which is homeomorphic to S". 

F(x) = H(x)  for x E Z 
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Consider therefore a continuous mapping f: A -+ S," defined on a closed 
subspace A of a compact space X such that dimX Q n. For i = 1 , 2 , . . . , n + 1 
denote by p r :  P+l + I the projection of the (n+ 1)-cube I"'+' onto the 
i-th coordinate axis and let 

fi =pi$ A - + I ,  A ,  = f i - ' ( O )  and B, =&-l(l); 
obviously 

n + l  n + l  

i = l  i= 1 
A = u AiU u B, .  (7) 

By virtue of Theorem 3.2.6 there exist closed sets L 1 ,  L 2 ,  ... , Ln+l such 

that Li is a partition between A ,  and Bi and L, = 0. Consequently, 

there exist open sets Ui , Wi c X ,  where i = 1 , 2, . . . , n + 1 , such that 

n + l  

i -  1 

A ,  c U,, B, c W,,  UinW,  = 0 and X\L, = U,uW,.  

From Theorem 3.1.2 it follows that there exist open sets V,, V 2 ,  ..., Vn+l 
satisfying 

n + l  

I= 1 
L, c V, cX\(A,uBi) for i = l , 2 ,  ..., n + l  . and n V, = 0. 

By virtue of Urysohn's lemma for i = 1 , 2 , . . . , n + 1 there exist continuous 
functions 

and g ; :  UluLi -+ [0, 1/21 gl': WiuLi -+ [1/2, 11 
such that 

and 
SWi\Vi) = (017 m i )  = (1/21 

Letting 

we define continuous functions gi: X -+ I such that 

(8) g*(Ai) = (01, g m  c (1) and gr1(1/2) = Vi 
for i =  l Y 2 , . . . , n + 1 .  

n + l  

i = l  
Since n Vi = 0, the continuous mapping g: X -+ P+l defined by letting 

g(x )  = (gl ( x )  , g2(x) , . . . , g,+ (x)) does not assume the value a = (1 12, 
1/2, ... , 1/2) E I"+'. The composition of the mapping g and the projection 
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p of I"+l\{a} from the point a onto the boundary S," of I*+l is a con- 
tinuous mapping G :  X -+ s;. From (7) and (8) it follows that g(A) c s;, 
so that GIA = glA, i.e., the mapping G is a continuous extension of the 
restriction glA over X. Now, for every point x E A there exists an i < n+ 1 
such that either f i ( x )  = gi(x)  = 0 or f i (x )  = g,(x) = 1, so that for every 
point x E A the points f ( x )  and g(x) belong to the same face of I"+'. From 
Lemma 3.2.8 it follows that the mappings f and g J A  are homotopic, and 
Lemma 1.9.7 implies that there exists a continuous extension F :  X -+ S; 
of the mapping f over X.  0 

Theorem 3.2.9, Remark 1.9.4 and Theorem 3.2.6 yield the following 

3.2.10. Theorem on extending mappings to spheres. A normal space X sat- 
isjies the inequality dimX < n > 0 if and only if for every closed subspace 
A of the space X and each continuous mappingf: A -+ S" there exists a con- 
tinuous extension F: X + s" o f f  over X .  0 

The last characterization of the covering dimension to be established 
in this section uses the notion af an &-mapping (see Definition 1.10.8). 

3.2.11. Theorem on &-mappings. A normal space X satisfies the inequality 
dimX < n if and only if for every $kite open cover & of the space X 
there exists an &-mapping of X to a polyhedron of dimension < n. 

Proof. By virtue of Theorem 1.10.11, it sutiices to show that for every 
finite open cover & = (U, ) f=l  of a normal space X with 0 < dimX < n 
there exists an &-mapping of X to a polyhedron of dimension < n. 

Consider an open shrinking V = { V i } f = l  of the cover & such that 
o rdV < n and a closed shrinking {Fi}f=l of V. Let N(V) be a nerve 
of V with verticesp, , pz , . . . , P k  E R". By Urysohn's lemma for i = 1 ,  2, . . . 
. .. , k there exists a continuous function fi: X .+ I such that fi(X\Vi) 
c (0) and fi(Fi) c {I). One readily checks (cf. the proof of Theorem 
1.10.7) that the formula 
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defines a continuous mapping x :  X -+ N ( V )  of X to the underlying poly- 
hedron of the nerve N(V) which satisfies the conditions 

x-'(StJ(v)(pi)) = Vi c Ui for i = 1 ,  2 ,  ..., k. 

As {Stlp)(pi)}ik_l is an open cover of N ( V ) ,  the mapping ~t is an d-map- 
ping. The inequality o rdV < n implies that N ( V )  has dimension < n. 0 

Applying Theorem 1.10.15 and arguing as in the proof of Theorem 
1.10.16, one obtains the following strengthening of the theorem on 
&-mappings. 

3.2.12. Theorem. A normal space X satisfies the inequality dimX < n 
if and only i f  for  every finite open cover d of the space X there exists an 
&-mapping of X onto a polyhedron of dimension < n. 

We now turn to a study of the behaviour of the dimension dim under 
Cartesian multiplication. First of all, let us recall that in Section 2.2 we 
cited an example of a normal space Z,  whose square Z x 2 is also normal, 
such that IndZ = 0 and yet Ind(2 x 2) > 0; in view of Theorem 1.6.1 1, 
this example shows that the inequality dim(X x Y) < dimX+ dim Y does 
not hold under the sole assumption of the normality of the Cartesian 
product X x  Y. Just as in the case of the dimension Ind, several theorems 
determining conditions for that inequality have been discovered, but 
there is no strongest result among them. We shall quote two such theorems 
which are relatively strong. Thus, the inequality dim(Xx Y )  < dimX+ 
+dimY holds for every pair A', Y of normal spaces of which at least one 
is non-empty provided that either 

(i) the Cartesian product X x Y is normal and one of the factors is compact 
(more generally: the projection onto one of the factors is a closed 
mapping), 

or 

(ii) the Cartesian product X x Y is normal, one of the factors is metrizable 
and the other is countably paracompact (more generally: one of the 
factors can be mapped to a metrizable space by a perfect mapping 
and the other is countably paracompact). 
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Let us add that the proofs of Cartesian product theorems for dim 
are fairly difficult. As a sample we shall prove here two Cartesian product 
theorems for dim which are among the simplest. 

3.2.13. Theorem. For every pair X ,  Y of compact spaces of which at least 
one is non-empty we have 

dim(Xx Y )  < dimX+ dim Y. 

Proof. We can assume that dimX = n and dimY = m, where n and m 
are non-negative integers. Consider an arbitrary sequence (A ,, B,) , 
( A 2 ,  B2), ..., Bn+,+l) of n + m + l  pairs of disjoint closed sub- 
sets of the Cartesian product X x  Y. The sets A, being compact, for 
,i = 1 , 2 ,  ... , n+m+ 1 there exist closed sets Ef , j  c X and Fr,j  c Y 
and open sets Ui8j  c X and Vi , j  c Y, where j = 1 , 2 ,  ... , k i ,  such that 

(9) 

where S denotes the set of all pairs ( i , j )  with i = I ,  2 ,  ..., n + m + l  and 

j = 1 , 2 ,  ..., k,. For i = 1 , 2 ,  ..., n + m + l  let W, = U (Gi,jxH,,j). 

From (9) and (10) it follows that A ,  c W, c w, c ( X x  Y)\B,, so that 
the set Li = Fr W, is a partition between A and B, . Consider the family 

ki 

j =  1 

V, = { Fr GI, x I%, j>!L 1 LJ (cf , j x Fr H,,  j}jL I 

of subsets of X x  Y, denote by Ci the union U W,, and let %? = %?luV2u 
kr 

j =  1 
u ... u%?,,+,+~. Since Li c U Fr(G,,jxHi,j) c C , ,  by virtue of Theorem 

n + m + l  

i = l  
3.2.6 to complete the proof it suffices to show that C, = 0. Now, 
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the last equality follows from the inequality ordV < n+m+ 1, which in 
turn is a consequence of (ll), because among each n + m + l  members 
of the family V there are either n + l  sets of the form FrG,,,x& or 
m + l  sets of the form G,,,xFrH,,,. IJ 

3.2.14. Theorem. For every pair X, Y of normal spaces of which at least 
one is non-empty such that the Cartesian product X x  Y is strongly para- 
compact we have 

dim(Xx Y) < dimX+dimY. 

Proof. From Theorems 3.2.13 and 3.1.25 it follows that 

dim@X x BY) < dimPX+ dimPY = dimX+ dim Y. 

To complete the prpof it suffices to apply Theorem 3.1.23. IJ 

Historical and bibliographic notes 

Theorem 3.2.1 and Proposition 3.2.2 were established by Dowker in 
[1947]. Lemma 3.2.3 and Theorem 3.2.4 were proved by Ostrand in [1971]; 
special cases of Theorem 3.2.4 were obtained earlier by Ostrand in [1965] 
(for metrizable spaces) and by French in [1970] (for collectionwise normal 
spaces). Theorem 3.2.5 was proved by Morita in [195Oa], and Theorem 
3.2.6-by Hemmingsen in [1946]. Theorem 3.2.10 was obtained inde- 
pendently by Hemmingsen in 119461, Alexandroff in [1947], and Dowker 
in [1947]; for compact spaces it was proved by Alexandroff in [1940] 
and by Morita in [1940]. Theorem 3.2.9, which is a simple consequence 
of Theorem 3.2.10, was noted by Alexandroff in [1947]. As stated in the 
notes to Section 1.10, Theorems 3.2.11 and 3.2.12 for metric spaces were 
established by Kuratowski in [1933a] (who generalized a characterization 
of dimension of compact metric spaces discovered by Alexandroff in 
[1928]) ; Kuratowski’s proof extends without substantial changes to normal 
spaces. The fact that the inequality dim(Xx Y) < dimX+dimY holds 
for every pair X ,  Y of spaces satisfying either (i) or (ii) was proved by 
Filippov in [1979] (announcement [1973]); (ii) part was announced in- 
dependently by Pasynkov in [1973]). In the original formulation of (u) 
one assumes that the Cartesian product X x  Y is normal and countably 
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paracompact (cf. the commentary to (ii) in the notes to Section 2.4). Theorem 
3.2.13 was proved by Hemmingsen in [1946], and Theorem 3.2.14-by 
Morita in [1953]. Further information on Cartesian product theorems 
for dim can be found in Morita [1953], Kodama [1969] (a simplified proof 
in Engelking [1973]), Nagami [1970], and Pears [1975]. 

Problems 

3.2.A. Show that a normal space X satisfies the inequality dimX < n 
if and only if every locally finite open cover of the space X has a locally 
finite closed refinement of order < n or-equivalently-if every locally 
finite open cover of the space X has a closed shrinking of order < n. 

3.2.B (Ostrand [1971]; for collectionwise normal spaces French [1970]; 
for metrizable spaces Ostrand [1965]). Prove that a normal space X satisfies 
the inequality dimX < n if and only if for every locally finite open cover 
42 = (US}SES of the space X there exists such a sequence V1,  V 2  , ... 
of discrete families of open subsets of X ,  where Vr = {Vi.s}seS, that Vi,s 
c Us for s E S and i = 1 , 2,  ... and the union of each n+ 1 families V i  
constitiutes a cover of the space X. Show that for every locally finite open 
cover 42 = {US)SES of a normal space X such that dimX < n besides the 
sequence V, , Vz  , . .. with the above properties there also exists such 
a sequence W l ,  W 2 ,  ... of discrete families of open subsets of X ,  where 
W i  = { W i , S } S E ~ ,  that c,, c W,, ,  c Us for s ES and i = 1 , 2 ,  ... 

Hint. Define the families V i  and W i  for i < n+ 1 by applying Theorem 
3.2.4, then define inductively the families V i  and W i  for i > n+ 1. Assume 
that the families Vr and Wi are defined for i < m - 1 YE + 1, denote 
by Y the family of all subsets of the set { 1 , 2 ,  . . . , m - l }  which have 
exactly n elements and, for every T E F, define Fr = X\U Vi, where 

Vi = U Vi,s .  Consider families { V T } T E r  and { W T } r E r  of open subsets 

of X such that 

ieT 

S € S  

- 
Fr c V ,  c V ,  c Wr for T E Y and wTnWTI = 0 for T # T', 

for every T E Y choose arbitrarily an i(T) < m- 1 such that i(T) 
note that FT c VilT) and let 

T, 

Vm.s = u YrnVi(T).s and W,,,.s = U WrnWi(n,s. 
T E S  TET 
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3.2.C (Arhangel'skii [1963]). A family d of subsets of a set X is in- 
dependent if A\B # 0 # B\A for each pair A ,  3 of distinct members of d 
By the rank of a family of sets d we mean the largest integer n such that the 
family d contains n+ 1 sets with a non-empty intersection which form an 
independent family; if no such integer exists we say that the family d 
has rank co. Clearly, the rank of a family of sets does not exceed the order 
of that family. 

Prove that a normal space X satisfies the inequality dimX < n if and 
only if every finite open cover of the space X has a finite open refinement 
of rank < n. 

Hint. For an open cover % = {Ui}f=l of the space X and its finite 
open refinement Y of rank < n define Y i  = { V E Y :  V c V,} and consider 
the families 

W1 = ( V  E : Vis  not contained in any member of Y2uY3u ... uYk)Y 
W2 = { V E  Y,: Vis not containedin any member of W1uY3u ... UYk}y 

f l k  = (V E Yk: V is not contained in any member of 
. . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . * . . . . . . .  

wlu$fzv U?&-k-l}* 

Check that the family { W,}F= 1, where Wi = iJ Wi, is a cover of X and 
has order < n. 

3.2.D. (a) (Wallace [1945], Pupko [1961]) Deduce Theorems 3.1.8 
and 3.1.10 from Theorem 3.2.10. 

(b) (Hernmingsen [1946]) Deduce Theorem 3.2.13 from Theorem 
3.2.1 1. 

Hint. Show that every finite open cover of the Cartesian product of 
compact spaces X and Y has a refinement of the form ( U x  V :  U E %, 
V E  V } ,  where 4!! and V are finite open covers of X and Y, respectively. 

3.2.E (Aleksandroff [1947]). Show that a normal space X satisfies the 
inequality dimX < n 2 0 if and only if no continuous mappingf: X 4 B"+' 
is essential (see Problem 1.9.A). 

3.2.F (Aleksandroff [ 19471). A compact space X such that dimX = n 2 1 
is an n-dimensional Cantor manifold if no closed subset L of X satisfying 
the inequality dimL < n-2 separates the space X (cf. Definition 1.9.5). 
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(a) Let f, g: X 4 S" be continuous mappings of a compact space X 
to the n-sphere S". Show that if dimZ < n -  1 for every closed subspace 
2 of the space X contained in the set DV; g) = {x EX: f ( x )  # g(x)), 
then the mappings f and g are homotopic. 

(b) Prove that every compact space X such that dimX = n 2 1 contains 
an n-dimensional Cantor-manifold. 

Hint. See the proof of Theorem 1.9.8. 
3.2.G (Zolotarev [1975]). (a) Show that a normal subspace M of a normal 

space X satides the inequality dimM < n if and only if for every open set 
U c X which contains the set M there exist a normal space Z, a normal 
subspace A c Z satisfying dimA < n and continuous mappingsf: M + Z 
and g :  Z + X such that f ( M )  c A c g-'(v> and gf(x) = x for x E M. 

(b) Prove that for every completely paracompact subspace M of a normal 
space X we have dimM < dimX (see Problem 2.4.B). 

Hint. One can assume that dimX = n < co and X is a compact space 
(see Theorem 3.1.25). Consider an open set U c X which contains the 
set M and for every point x E M  choose a neighbourhood V, such that 
x E V, c vx c U. Let Vl , V 2 ,  . . . be a sequence of star-finite open covers 

of the space M such that the union U V i  contains a refinement V of the 

cover {Mn V,},, . For i = 1 , 2  , . . . consider the decomposition (.Y;},,, 
of the cover Ti  into the components where Sinsj = 0 whenever i # j ;  

for every x E M denote by fr(x) the unique s E S, such that x E u VS, 
and for each s E Si let VSnV = { V s , j } E l .  Note that the space Z = X x  

m 

i = l  

m 

x I7 S, ,  where Si has the discrete topology, is normal, and apply Problem 
i s 1  

2.4.A and Theorem 3.2.14 to show that dimZ < n. Apply (a) to the con- 
tinuous mapping f: M + Z defined by letting f(x) = (x, fi (x), fi (x) , . . .) 

m 

for x E My the projection g: 2 4 X and the set A = u uf(V,.,) c Z. 
i ,  j =  1 seSi 

3.2.H. (a) Prove that every locally finite functionally open cover { U s } 5 e ~  
of a topological space X has such shrinkings {FS)SES and { W s } s e ~ ,  respect- 
ively functionally closed and functionally open, that F, c W, c w, c Us 
for s E S. 

Hint. For every s E S choose a continuous function fs: X -+ I such 
that Us =L-l((O, I]) and consider the functionf: X 4 Z defined by letting 
f ( x )  = supL(x) for x EX. 

seS 
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(b) (Pasynkov [1965]) Prove that a Tychonoff space X satisfies the 
inequality dimX< n if and only if every locally finite functionally open 
cover of the space X has a functionally open refinement of order ,< n (see 
notes to Section 3.1). 
Hint. Let {US}SES be a locally finite functionally open cover of the 

space X.  Consider a functionally closed shrinking {Fs},s of {US}sES and 
continuous functionsf,: X -, I such thatf,(X\V,) c {0} and fs(Fs) c {I}. 
Verify that the formula e(x, y )  = Ifs(x) -fs(y)I defines a pseudometric 

on the set X and consider the metric space (Y ,  e) obtained by identifying 
each pair x, y of points in X such that e(x, y )  = 0. Check that by letting 
f ( x )  = [XI one defines a continuous mapping of X to Y and consider the 
mapping F :  PX -+ BY such that F(x) =f(x) for x EX. Apply the fact 
that every Hausdorff space which can be mapped onto a paracompact 
space by a perfect mapping is itself paracompact (see [GT], Theorem 
5.1.35) and use Problem 3.1.1(b) and Theorem 3.2.1. 

S E S  

3.2.1. (a) Observe that if M is a functionally open subspace of a space 
X ,  then a set A c M is functionally open in X if and only if it is functionally 
open in M. Give an example of a functionally closed subspace M of a com- 
pletely regular space X and of a set A c M which is functionally closed 
in M and yet is not functionally closed in X. 

(b) Prove that a completely regular space X satisfies the inequality dimX 
< n 2 0 if and only if for every finite functionally open cover % = { U,}f=, 
of the space X there exists a functionally open cover Y of the space X which 
can be represented as the union of n+ 1 families Y1,  Yz ,  ..., Yn+l , 
where Vy., = (V,,,}f=, , such that o r d y ,  < 0 and V j , ,  c Ui for 
i =  1 ,2 ,  ..., k a n d j =  1,2,  ..., n + l .  

3.2.5. (a) Prove that a completely regular space X satisfies the inequality 
dimX < n if and only if every (n +2)-element functionally open cover 
{ U,}?rl of the space X has a functionally open shrinking { W,};Z? of order 

< n, i.e., such that n W, = 0. 
n t 2  

i = l  

Hint. See the proof of Theorem 1.6.10. 
(b) Prove that a completely regular space X satisfies the inequality 

dimX < n 2 0 if and only if for every finite family { Uf}f=l of functionally 
open subsets of X and every family { F i } f E L  of functionally closed subsets 
of X such that Fi c Ui for i = 1 , 2, . . . , k there exist such families {ITf};=, 
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and (Vi}F=, of functionally closed and functionally open subsets of X, 
respectively, that FI c V, c Ei c U, for i = 1, 2,  ... , k and ord((Ei\ 
\Vi}f=,) G n-1. 

(c) Prove that a completely regular space X satisfies the inequality 
dimX < n 2 0 if and only if for every sequence ( A , ,  B,), ( A , ,  B2), ... 
... , (A, ,+1 ,  B,,,,) of n+ 1 pairs of disjoint functionally closed subsets of X 
there exist functionally closed sets L, , L, , . . . , L,+ such that L, is a parti- 

tion between A i  and B, and n Li = 0. 

Hint. Observe that if L is a functionally closed subset of a space X and 
U, W c X are disjoint open sets satisfying the equality X\L = U v  W ,  
then U and W are functionally open. 

n t l  

i = i  

3.2.K. (a) (Smirnov [1956a]) Prove that a completely regular space X 
satisfies the inequality dimX < n 2 0 if and only if for every closed sub- 
space A of the space X and each continuous mapping f: A + s" which 
is the restriction of a continuous mappingf: X 4 B"+I there exists a con- 
tinuous extension F: X + s" off over X .  

(b) Prove that a completely= regular space X satisfies the inequality 
dimXG n if and only if for every finite functionally open cover I of 
the space X there exists an &-mapping of X to a polyhedron of dimension 
< n. 

3.3. The compactification and the universal space theorems for the dimension 
dim. The dimension dim and inverse systems of compact spaces 

In the proofs of the compactification and the universal space theorems 
we shall apply MardeSiL's factorization theorem, which asserts that every 
continuous mappingf: X + Y of a compact space X to a compact space Y 
can be let through an intermediate space 2 such that dim2 < dimX and 
w ( 2 )  < w(Y). We start with a simple lemma on normal spaces. Let us 
recall that a cover B? is a star re3nement of another cover d of the same 
space if for every B E a there exists an A E a? such that St(B, a) c A ,  
where St(B, 39) denotes the star of the set B with respect to the cover 9, 
i.e., the set U (B' E B?: BnB' # 0). 

3.3.1. Lemma. Every finite open cover of a normal space has a jinite open 
star refinement. 
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Proof. Let % = { U,};=, be a finite open cover of a normal space X. Con- 
sider a closed shrinking (Fi)f=l of (Vi)f=, . By Urysohn's lemma, for 
i = 1 ,2 ,  ... k there exists a continuous function fi: X + I such that 
fi(X\Ui) c {0} and f i(F,)  c {I}. Define I. = [0, 1/2), Il = (1/4, 3/4) 
and I, = (1/2, 11. The family Y of all sets 

(1) Vjl , j  2 , . . .  . j ,  =fC'(Ij,)nfi-'(~j,>n - 1 .  nh-'(ZjJ, 

wherej, E ( 0 ,  1,2} for i = 1 ,2 ,  ..., k, is afinite open cover of the spaceX. 
For every non-empty V = Vm,,m2,..,,mk E V there exists an i < k such 
that VnF,  # 0, and we clearly have mi = 2. If a set of form (1) intersects V, 
then j ,  is equal to 1 or 2, so that St(V, V )  c U,. Thus V is a star refine- 
ment of @. 0 

3.3.2. MardeZliC's factorization theorem. For every continuous mapping f: 
X + Y of a compact space X to a compact space Y there exist a compact 
space Z and continuous mappings g :  X + 2 and h:  Z + Y such that dim2 
6 dimX, w ( 2 )  < w(Y), g ( X )  = 2 and f = hg. 

Proof. If dimX = co or w(Y) < KO, then 2 = f(X), g = f and h = idz 
satisfy the theorem. Thus one can suppose that dimX = n c co and 
w(Y) = m 2 KO. We shall define inductively a sequence Wo, Wl, ... 
of classes of finite open covers of the space X. Consider a base 93 for the 
space Y such that IBI = m and denote by Wo the class of all finite covers 
of the space X by members of the familyf-'(93). Clearly, for each X ,  y E X  

(2) if f(x) # f ( y ) ,  then there exists a W E Wo such that y 4 St(x, 'W. 

Assume now that the classes W, are defined for all i < k. By virtue of 
Lemma 3.3.1 and the inequality dimX < n, for each pair of covers W ,  
W"E w k - 1  we can choose a finite open star refinement of W A W' which 
has order n ;  let w k  be the class of all covers of the space X thus obtained. 
In this way the sequence W,, W, , . .. is defined. Since I W,l < m, we have 

IWil < m for i = 1,2,  ... Let W =  U W,; clearly, IW( < m. 
a3 

i = l  

For x ,  y E X define 

(3) xEy if and only if for every covet W E W there exists a set U E W 
such that x ,  y E U. 
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We shall show that E is an equivalence relation on the space X.  It follows 
directly from the definition that the relation E is reflexive and symmetric, 
so that it remains to show that if xEy and yEz, then XEZ. To this end, it 
suffices to note that 

(4) if V' is a star refinement of W, y E St(x, W')  and z E St(y, W'), 
then z E St(x, W), 

because for every W E W there exists a W' E W which is a star refinement 
of W. The relation E determines a decomposition of the space X into 
equivalence classes; from (3) it follows that 

1x1 = (7 St(x, W )  for x EX, 
WEW 

where [XI denotes the equivalence class that contains x. 
We shall show now that the equivalence relation E is closed. Thus, 

we have to show that for every open set U c X the union of all equivalence 
classes that are contained in U is an open subset of X. In view of a sub- 
sequent application, we shall show a little more, viz., that 

(6) for every open set U c X and each equivalence class [XI c U there 
exist an open set V c X and a cover W E W such that [XI c V c U b] 

YEV 

c St(V, W )  c u. 1 

To begin with, let us note that if W is a star refinement of W ,  then 
____ 

St(x, W')  c St(x, W), so that from ( 5 )  it follows that [XI = n St(x, W). 
WEW 

Now, the space x' being compact, there exists a finite number of covers 

'W, , W2 , .. . ? Y f k  E W such that n St(x, $Ti) c U. Consider a cover 

W, E W which refines all the covers Wi and a star refinement W E W 
of the cover W,. Clearly, the open set V = St(x, W )  satisfies the rela- 
tion [XI c V c U [y]; the penultimate inclusion in (6) follows from 

(9, and the last inclusion is a consequence of the relation St(x, Wo) c U 
and (4) with W" = W and W = Wo. 

Let 2 be the quotient space X/E and g :  X --f Z the natural quotient 
mapping. As E is a closed equivalence relation, the space Z is compact 
(see [GT], Theorem 3.2.1 1). By virtue of (2), f(x) = f(y) whenever xEy, 

k 

i = l  

Y E  v 
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so that by letting h( [x ] )  = f ( x )  we define a mapping h of Z to Y ;  from the 
relation hg = f it follows that h :  2 -+ Y is a continuous mapping. 

For every open set U c X let U* = Z\g(X\U) and for every W E W 
let W* = (W*: W E W } .  Clearly, g-'(U*) c U and U* is open in 2. 
If W is a star refinement of W ,  then for each x E X  there exists a W E W 
such that [XI c St(x, W')  c W ;  thus for every W E W the family W* 
is a finite open cover of the space Z and ordW* < n. 

Now we shall show that every finite open cover (U,}t==, of the space 2 
has a refinement of the form W*, wheie W E W. For each x E X  there 
exists an i < k such that [XI c g-I(Ui), and by virtue of (6) there exist 
a neighbourhood V, c X of the point x and a cover W(x) E W such that 
St(V,, W(x)) c g-'(U,). The open cover ( V x } X E ~  of the space X has 
a finite refinement (Vxi>~!"=l Consider a cover W E W which refines all 
the covers W ( x i ) .  For every W E  W there exists an i 4 k such that W 
c g-'(Ui). Since the last inclusion implies that W* c U i ,  it follows that 
the cover W* is a refinement of ( U , } t , .  

Thus we have shown that dim2 < n and that the family 9 = u W* 

is a base for the space 2. To complete the proof it suffices to observe that 
WEW 

w(Z) < 1591 < m .  K O  = m = w(Y). 0 

3.3.3. The compactification theorem for dim. For every normal space X 
there exists a compactijication preserving both the dimension dim and weight, 

i.e., a compact space 2 which contains a dense subspace homeomorphic 

to X and sati&es the inequalities dim.? < dimX and w(2) < w(X). 

Proof. We can suppose that dimX = n < co and w(X) = m > KO. Con- 
sider a homeomorphic embedding i: X -+ I" of the space X in the Ty- 
chonoff cube I" of weight m; let f: /?X 3 I" be the extension of i over /?X. 

By virtue of Theorem 3.3.2 there exist a compact space 2 and continuous 
mappings g: /?X -+ 2 and h :  24 I" such that dim2 < dim/?X = dimX, 
w ( k )  < w(P) = m and f = hg. The composition hog, of the restrictions 
go = glX: X -+ g ( X )  c Xand h,  = hlg(X): g ( X )  i (X)  c I"' is a homeo- 
morphism, so that go is also a homeomorphism. Thus 2 is the required 
compactification of the space X. 0 

3.3.4. The universal space theorem for dim. For every integer n > 0 and 
every cardinal number m > KO there exists a compact universal space P$ 
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for the class of all normal spaces whose covering dimension is not larger 
than n and whoJe weight is not larger than m. 

Proof. Let { X s } E ~  be the family of all normal subspaces of the Tychonoff 
cube I"' whose covering dimension is not larger than n, and let is :  X, -+ I"' 
be the embedding of X ,  in P. Consider the sumX = @ X ,  and the mapping 

i: X Zm defined by letting i(x) = i,(x) for x E 1,; let f: /?X -+ I" be the 
extension of i over /?A'. By virtue of Theorem 3.3.2 there exist a compact 
space Pz and continuous mappings g :  PX -+ Pk and h: P; + Z" such 
that dimPL < dimPX = dimX = n, w(Pk) < w ( P )  = m and f = hg. 

Consider now an arbitrary normal space Y such that dimY < n and 
w(Y) < m. Since Y is embeddable in Zm, there exists an s E S such that 
X ,  is homeomorphic to Y. The composition hogo of the restrictions go 
= glX,: X ,  + g(XJ c Pg and ho = hlg(X,): g(X,) + X, c I"' is a homeo- 
morphism, so that go is also a homeomorphism. Thus P$ is the required 
universal space. 0 

St s 

We now turn to a study of inverse systems of compact spaces from the 
dimensional standpoint. To begin-with, let us recall that Theorem 1.13.2 es- 
tablished in Chapter 1 states that for every compact metric space X such 
that dimX < n there exists an inverse sequence {Ki, nj} consisting of 
polyhedra of dimension < n whose limit is homeomorphic to X.  In Example 
3.3.8 below we show that the compact space X described in ExampIe 2.2.13 
cannot be represented as the limit of an inverse system of polyhedra of 
dimension 1, although dimX = 1. Hence, Theorem 1.13.2 in its original 
form does not extend to arbitrary compact spaces; yet we have the follow- 
ing 

3.3.5. Theorem on expansion in an inverse system. For every compact space 
X such that dimX < n there kxists an inverse system S = {Xu, ng, Z}, 
where 121 < w(X), consisting of metrizable compact spaces of dimension 
< n whose limit is homeomorphic to X. 

Proof. We can suppose that w(X) = m 2 No. Let h: X +. Z"' = IT I,, 
where Z, = I for s E S and IS1 = m, be a homeomorphic embedding of 
the space X in the Tychonoff cube Zm of weight m. For i = 1 , 2 , . . . denote 
by Zi the family of all subsets of S that have exactly i elements; the union 

sss 
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a, 

,E = u Z; is directed by inclusion, i.e., the relation < defined by letting 

e < u if and only if @ c u, and has cardinality m = wQ. 
Applying induction with respect to i, we shall now define for each 

u E & a metrizable compact space X, such that dim& < n if i > 1 and 
continuous mappings ng: Xu + X,, where @ < a, such that 

(7) en: = nt whenever z < e < u and n: = idxu; 
at the same time we shall define continuous mappings g,: X + Xu sat- 
isfying 
(8) g,(X) = Xu and ngg, = ge whenever e < u. 

For i = 1 all conditions are satisfied if for each u = (s} €2; we let X,  

= p,h(X) c I,, where p,: n I, + I, is the projection, nz = id, and 
g: = psh. Assume that the spaces X and the mappings ng and g,  satisfying 

(7) and (8) are defined for all u E u Zi, where k > 1, and consider a set 

o E Zk. Let u1 , u2, ... , ak be all ( k -  1)-element subsets of u and let f,: 
X + Xu, xXU2 x ... xX, be the continuous mapping defined by the 
formula h ( x )  = (gul(x),  g,,(x), ... , g,,(x)). By virtue of Theorem 3.3.2 
there exist a compact space Xu and continuous mappings g,: X + Xu and 
h,: Xu +. Xu, xXu2 x ... xXuk such that dimX, < n, w(X,) < KO, g,(X) 
= Xu and f, = hug,. The last equality means that 
(9) n:,g,, = g,, for i = 1 , 2 ,  ..., k ,  

where nzf: Xu 3 Xu, is the composition of h, and the projection of Xu, x 
x Xu, x . . . x Xu, onto XUi . As the space X, is compact and has a countable 

i = l  

SES 

k -  1 

i= 1 

k -  1 

weight, it is a metrizable space. For each e E u Zi satisfying e < u there 
i= 1 

exists at least one i < k such that e < ui < u. Let us observe that the 
composition npn:, does not depend on the choice of a particular ui satisfy- 
ing e < oi .  Indeed, if for a j < k we also have @ < u j ,  then 

n:n:(g, = n'g,, = g, = n;Jg,, = n:Jn:,g,, 

n? n:, = n2n:, y 

which implies that 

because g,(X) = Xu. In accordance with the above observation, for each 

e E u 2, satisfying e < u we define n; = n?n:, where e < ui < u. More- 

(10) 

k-  1 

i- l 
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over, we let x," = id,. From (9), (10) and the inductive assumption it 
follows that the space Xu and the mappings n: and g, satisfy (7) and (8) 
for cr E Zk. Thus, we have defined metrizable compact spaces Xu such 
that dimX, < n if i > 1 and continuous mappings ni and g, satisfying 
(7) and (8) for cr E L' and e < cr. 

It follows from (7) that S = {Xu,  nr, Z} is an inverse system; we 
shall show that X is homeomorphic to the limit &S. In view of the second 
equality in (8), for every x E X  the point {g,(x)} E n Xu is a thread of S; 

by assigning this thread to x we define a mapping g :  X +. !i_mS. Since 
nag = g, for every cr E Z, where nu: !igS + Xu is the prokction, the 
mapping g is continuous. For each cr = {s} E Z; we have n,g = g, = psh, 
so that, the mapping h being one-to-one, the mapping g is also one-to-one. 
Finally, as g,,(X) = Xu for every cr E Z, the mapping g maps X onto IhS 
(see [GT], Corollary 3.2.16). Thus g is a homeomorphism of X onto l@S. 

If n > 1, the system S satisfies all the required conditions; if n = 0, 
it has to be replaced by the system {Xu, n:, Z\Zl}, because, in general, 
the inequality dimX, < 0 does not hold for cr E Z; (cf. Problem 3.3.A). 0 

U € Z  

Let us observe that from (8) and (9) it follows that the bonding mappings 

We shall now prove the following 
in the inverse system S in Theorem 3.3.5 are mappings onto. 

3.3.6. Theorem on the dimension of the limit of an inverse system. I f  the in- 
verse system S = {Xu, =:, consists of compact spaces Xu such that 
dim& < n for cr E Z; then the limit X = limS satisfies the inequality dimX 
< n. 

Proof. Consider a finite open cover 'JiY of the space X. The space X being 
compact (see [GT], Theorem 3.2.13), the cover 42 has a finite refinement 
of the form {n,;l(Ui)}f=l , where nut : X +. X,, is the projection and Uf 
is an open subset of Xu, for i = 1 , 2,  .. . , k .  Let cr be an arbitrary element 
of 2 such that cri < cr for i = 1 , 2, ... , k and let Wi = (n&)-'(Ui). One 
readily sees that the family { z ; ~ ( W ~ ) } ~ = ,  is an open refinement of the 
cover 42. Since n,(X) is a closed subspace of X,, dimn,(X) < n and the 
open cover {nu(X)nWi}f==, of the space n,(X) has an open shrinking 
{ Vf}f='=,  of order < n. The family {n;l(Vi)}f==, is an open cover of the space 
X which refines 'JiY and has order < n. Thus dimX < n. 0 

c 

Theorems 3.3.5 and 3.3.6 yield the following 
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3.3.7. Theorem on inverse systems. A compact space X satisfies the inequality 
dimX < n if and only if X is homeomorphic to the limit of an inverse 
system consisting of metrizable compact spaces of dimension < n. 

We conclude this section with the above-mentioned example of a compact 
space X which satisfies the equality dimX = 1 and yet is not homeomorphic 
to the limit of an inverse system of polyhedra of dimension < 1. 

3.3.8. Example. The space X described in Example 2.2.13 is compact and 
satisfies the relation dimX = 1 < indX (see Example 3.1.31). Thus, to 
show that X has the required property it suffices to prove that for every 
inverse system S = {K,, ng, Z} consisting of polyhedra of dimension < 1 
the limit K = limS satisfies the inequality indK < 1. 

Consider aToint  x E K and a neighbourhood V c K of the point 
x. There exists a oo E Z and such a neighbourhood U,, of the point n,,(x) 
in the space K,,, where xgn : K + Kco is the projection, that the set U 
= n;o'(Uun) satisfies the relation x E U c V. Define Zo = (u E Z: o0 6 o} 
and let U, = (n:J-'( U,,) and F, = Fr U, for o E Zo. Since for each 
u, Q E Zo satisfying Q < u we have 

nZ(F,) = nz( EnK,\ U,) c ng( U,)nnZ(K,\ U,) 

= xg(n~n)-l(v,>nn~(x~a)-l(K,o\ U,,) 
_ _ _  

I c (n~,)-'(Uu,)n(n~O)-'(K,a\U,~) = U,nK,\Ue = Fey 

the family So = {F,,, ii;, Z0}, where 5;: F, -+ Fe is defined by letting 
i?g(x) = ng(x), is an inverse system of compact spaces. Now, from Theorems 
1.8.12 and 1.3.1 it follows that dimF, < 0 for cs E Zo so that diml&So < 0 
by virtue of Theorem 3.3.6. One readily checks that n,(Fr rr) c F, for every 
o E Zo; thus Fr U c @So and by virtue of Theorem 3.1.30 we have 
indFr U < 0. Hence we have proved that indK < 1. 0 

Let us note inconnection with the last example that there exists a compact 
space X with a similar property which satisfies the equality indX = IndX 
= dimX = 1. 

Let us also note that every compact space is homeomorphic to the 
limit of an inverse system consisting of polyhedra (see Problem 3.3.D) 
and that one can define a compact space X such that indX = IndX = dimX 
= 1 which is not homeomorphic to the limit of an inverse system consisting 
of polyhedra (or, more generally, of locally connected metrizable compact 
spaces) whose bonding mappings are mappings onto. 
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Historical and bibliographic notes 

Theorem 3.3.2 was established by MardeiiC in [1960]; the present proof 
was given by Arhangel'skii in [1967]. Theorem 3.3.3 was proved by Sklja- 
renko in [1958]. Theorem 3.3.4 was established independently by Pasynkov 
in [1964] and by Zarelua in [1964]. Theorem 3.3.5 was given by MardeiiC 
in 119601; Theorem 3.3.6 is implicit in Freudenthal's paper [1937]. Example 
3.3.8 was given independently by Pasynkov in [I9581 and by Mardeiid 
in [1960]. Both examples cited at the end of this section can be found 
in Pasynkov's paper [1962]. 

Problems 

3.3.A. Observe that Theorem 3.3.5 for n = 0 easily follows from the 
fact that every normal space X such that dimX = 0 is embeddable in 
a Cantor cube (see Remark 1.3.18 and Theorem 1.6.11). 

3.3.B (Pasynkov [1962]). Let 3 = {Xu,  n:, Z} be an inverse system of 
compact spaces and let X = lhS. Prove that dimX < n if and only if 
for each e E 2 and every finite open cover [U,>:,, of the space X, there 
exists a (r E 2 satisfying e < 0 and such that the cover {(n3-1(Ui)}f=l 
of the space Xu has a finite open refinement 9'- satisfying the inequality 
ord(V]n,(X)) < n, where nu: X -, Xu is the projection. 

3.3.C (Pasynkov [1958]). Prove that for every inverse system S = {&, 
n:, Z} consisting of polyhedra of dimension < 1 the limit K = h S  
satisfies the inequality IndK< 1. 

Remark. It is not known if the number 1 in Problem 3.3.C can be re- 
placed by an arbitrary natural number. 

3.3.D (Eilenberg and Steenrod [1952]). Prove that for every compact 
space X there exists an inverse system S = {Xu, zz, Z} consisting of poly- 
hedra whose limit is homeomorphic to X .  

Hint. Embed the space X in a Tychonoff cube. 



CHAPTER 4 

DIMENSION THEORY OF METRIZABLE SPACES 

In the realm of metrizable spaces the dimensions Ind and dim coincide. 
Thus in metrizable spaces both the theorems which depend on the dimen- 
sion Ind and the theorems which depend on the dimension dim are valid. 
It will appear in the course of this chapter that the dimension theory of 
metrizable spaces is by no means inferior to the classical dimension theory 
of separable metric spaces developed in the first chapter of this book. 

The present chapter can be read almost directly after Chapter 1 .  The 
results of Chapter 2 are not used here, except for Lemma 2.3.16 which 
belongs to general topology rather than to dimension theory. From Chapter 
3 we use only the beginning of Section 3.1 up to Theorem 3.1.10 and also 
Theorems 3.1.28, 3.1.29, 3.2.2 and 3.2.5; the last theorem is not used 
until Section 4.2. 

In Section 4.1 the most important properties of dimension in metri- 
zable spaces are established. We start with the Katztov-Morita theorem 
on the coincidence of Ind and dim and then prove the counterparts of the 
theorems obtained for separable metric spaces in Section 1.5. 

Section 4.2 begins with two characterizations of the dimension dim 
in metrizable spaces, one stated in terms of special bases and the other 
in terms of sequences of covers. Then we discuss briefly some characteriza- 
tions of dim formulated in terms of special metrics. In the second part 
of the section, we prove by applying an appropriate factorization theorem 
the existence of a universal space for the class of all metrizable spaces 
whose dimension is not larger than n and whose weight is not larger than m. 

Section 4.3 resumes the considerations of Section 1.12. We generalize 
in it the theorems on dimension-raising and dimension-lowering mappings 
established in Chapter 1 and prove two theorems of more special character 
on the relations between the dimensions of the domain and the range 
of a closed mapping. 

Let us add that tbe theorems on partitions and on extending mappings 
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to spheres established in Sections 1.7 and 1.9 extend to all normal, and, 
a fortiori, to all metrizable spaces; the proofs were given in Section 3.2 
(cf. Problems 4.1.E and 4.3.B). 

4.1. Basic properties of dimension in metrizable spaces 

We start with one of the most important results in dimension theory, 
viz., with the theorem on the coincidence of the dimensions Ind and dim 
in metrizable spaces. In the proof we shall apply two characterizations 
of the dimension dim in the class of metrizable spaces which are established 
in Proposition 4.1.2 below (cf. Problem 4.1.A(b)). 

4.1.1. Lemma. Let X be a normal space. Ifthere exists a sequence Wl , W 2 ,  . . . 
of open covers of the space X such that ordWi < n and WL+l is a refinement 
of W i  for  i = 1 , 2, ... , and the fami& {St( W, Wi) :  WE W i ,  i = 1 , 2 ,  ... } 
is a base for  X, then dimX < n. 

Proof. For i = 1 , 2 ,  . . . let fi+l be. a mapping of WI+ to W i  such that 
W cAi+l(W) for each W E  Wi+l;  let fi" =fi+lfi'++f . . . f k k l  for i < k 
and let fi' = idw, for i = 1,2, . . . Obviously 

(1) 

where 

W c ft( W) for each W E  Wk and i < k 
Consider a finite open cover (If,);= of the space X.  The sets Xl , X ,  , . . . , 

(2) x k =  U { w E W k :  S t ( w , - W ' , ) C H j f O r a j < I } ,  
form an open cover of the space X.  For k = 1 ,2 ,  ... define the subfamilies 

of the cover W k )  and for every U E ak denote by i(U) the largest integer 
< k satisfying 

(3) h:"m E y i c u , ;  

such an integer does exist because f f ( U ) n ( U  X,) = 0 and fkk(U)nXk 
jcl = unxk # 0. 

For every V E "Yi consider the open set 
OD 

(4) V* = u [u {UnX,: U ~ a ~ , f i ~ ( U )  = V and i (U) = i}]; 
k=i 
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as V n X ,  = 0, by virtue of (2) there exist a W E  W i  such that V n  W # 0 
and a j(v> < 1 satisfying V c St(W, Wi)  c H j ( y ) .  From (1) it follows 
that V* c V ,  so that V* c HjCy). Since YinYj = 0 whenever i # j ,  

m 

for every V E Y = u Yi  the set V* and the integer j (V)  are well defined. 
i =  1 

To complete the proof it suffices to show that the family {V j }! J = l l  

where V,  = u {V*: Y E  V and j (V)  = j }  c H j ,  is a cover of the space 
X and has order < n, or-equivalently-that the family Y* = { V *  : V E V }  
is a cover of X and ordV* < n. 

Let x be an arbitrary point of X.  Consider an integer k such that 

( 5 )  

and a set U E “ly-k which contains the point x ;  since unxk # 0, U E a k .  

It follows from (3) and (4) that x E unxk c (j&,(U))* E Y*, so that 
Y* is a cover of X. 

It remains to show that ordY* < n. Consider a non-empty inter- 
section V,*nV,*n ... nV,*, where Vi e Y m r  and Vi # V, whenever i # j ;  
let x E V,*nV,*n ... nV,*. From $he definition of Vmr it follows that for 
the integer k satisfying ( 5 )  we have mi < k for i = 1, 2, . . . , h.  By (4) 
there exist sets Ui E a k ,  such that fmk:(Ui) = V i ,  i(Ui) = mi and x E UinXk,. 
Since x exkr it follows from (5) that k < k i .  The sets W, , W2,  ... , Wh, 

where Wi = f / ‘ (U,)  E “ l y - k ,  all contain the point x,  so that-as ordWk < n 
-it suffices to show that Wi # W j  whenever i # j .  Let us note that the 
sets W, belong to a k  and that i(Wi) = i(Ui) = mi; hence Wi # W j  when- 
ever mi # m j .  When mi = mi, we also have Wi # W j ,  because then 

f,k,(Wi> =f?(ui) = Vi # Vj =fmk!(uj) =f,k,(Wj)* 

4.1.2. Proposition. For every metrizable space X the following conditions 
are equivalent: 

(a) The space X satisfies the inequality dimX < n. 

(b) For every metric Q on the space X there exists a sequence 4Y2, ... 
of locally finite open covers of the space X such that for  i = 1, 2, ... 
ordai < n, S(u) < l / i  for  U E ai, and for  each U E ai+ the set u 
is contained in a V E qi.  

(c) There exist a metric Q on the space X and a sequence Wl, W 2 ,  ... 
of open covers of the space X such that for  i = 1, 2, ... ordWi < n, 
S(W) < l/i f o r  W E  W i  , and Wi+l is a refinement of W i .  
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Proof. The implication (b) * (c) is obvious and the implication (c) (a) 
follows from Lemma 4.1.1, so that it suffices to prove that (a) (b). 
Consider a metrizable space X such that dimX < n and an arbitrary metric 
e on the space X. We shall define inductively a sequence el , a2 , ... of 
open covers of X .  Assume that k = 1 or that k > 1 and the covers ei 
are defined for all i < k. For every point x E X  there exists a neighbour- 
hood U, such that 6(UJ < l / k  and the set G, is contained in a member 
of %k-l if k > 1. Since every metrizable space is paracompact (see [GT], 
Theorem 5.1.3), it follows from Proposition 3.2.2 that the open cover 
{ U,},,, of the space X has a locally finite open refinement ak. The sequence 
a1 , e2 , ... thus obtained satisfies all the conditions in (b), so that (a) - (b). 

4.1.3. The Katgtov-Morita theorem. For every metrizable space X we have 
IndX = dimX. 

Proof. In view of Theorem 3.1.28 it suffices to show that IndXG dimX. 
We can suppose that dimX < co. We shall apply induction with respect 
to dimX. If dimX = - 1, we clearly have IndX < dimX. Assume that 
our inequality holds for all metrizable spaces with covering dimension 
< n- 1 and consider a metrizable space X such that dimX = n 2 0 and 
a pair A ,  B of disjoint closed subsets of the space X .  It suffices to define 
open sets K ,  M c X which, together with the set L = X\(KwM), satisfy 
the conditions 

A c K ,  B c M ,  K n M  = 0 and dimL < n-1;  
indeed, the set L is then a partition between A and B and IndL < n- 1 
by virtue of the inductive assumption. 

Let rs be an arbitrary metric on the space X and let f: X -+ Z be a con- 
tinuous function satisfyingf(A) c (0) andf(B) c (1). One readily checks 
that the formula p ( x ,  y )  = o(x, y)+ If(x)-f(y)l defines a metric e on the 
space X. From now on we shall consider on X only the metric p. By virtue 
of Proposition 4.1.2 there exists a sequence el , a2, ... of locally finite 
open covers of the space X such that for i = 1 , 2, ... ordqi  < n, 6 (U)  
< I / i  for U E Qi and for each U E 4Yi+l the set 6 is contained in a V E %, . 

Let KO = A ,  Mo = B, and for i 2 1 let Ki = X\Hi and M ,  = X\Gi, 
where 

GI = and 
H~ = U { u E ~ ~ :  UnMi-l z a}; 

in this way two sequences, K O ,  Kl , K 2 ,  . . . and Mo , M I  , M2 , . . . , of sub- 

- 
(UE-&~: UnMi-l = 0)  
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sets of the space X are defined. 
Let us observe that 

(6) if U 6 a i  and UnMi-l # 0, then u n K i - ,  = 0. 
The validity of (6) for i = 1 follows from the definition of e,  because no 
set of diameter less than 1 meets both A and B. If U E  ai where i > 1 
and 3nMi-, # 0, then for any V E aiPL that contains the set 8 we 
have VnMi- ,  # 0, so that V is not contained in C i _  ; this implies that 
V c Hi- ,  , which gives the equality UnKi-, = 0. 

From the local finiteness of V i ,  the definitions of Gi and H i ,  and (6) 
it follows that GinMi- ,  = 0 = HinKi-, for i = 1 ,  2, ..., which implies 
that Ki-l c X\& = IntK, and M i - ,  c X\G = IntM,; moreover, 

as G i u H i  = X ,  we have KinMi  = 0. Hence, the sets K = u Ki and 

- 

W 

i = O  
W 

M = u Mi are open, disjoint and contain respectively A and B. 
i = O  

W 

Let Li = X\(KiuMi) = GiuHi  for i = 1 , 2 ,  ...; clearly L = n L i .  

The family W i  = (UnL:  U E a i  and U n M i - ,  # 0} is, for i = 1 , 2 ,  ..., 
an open cover of the space L c Hi and ord W i  < n - 1, because each point 
x E L c Li c Gi belongs to at least one U E ai satisfying U n M i - ,  = 0. 
If U E ai+l and UnM, p 0, then for any Y E  ai that contains 0 we 
have V n M ,  # 0, so that V is not contained in G,, which implies that 
VnMiP1 # 0, i.e., that V n L  E W i .  Thus %'-i+, is a refinement of Wi .  
Since, clearly, 6(W) < I/i for W E W i ,  we have dimL < n- 1 by virtue 
of Proposition 4.1.2. 0 

i= 1 

- 

From the coincidence of the dimensions Ind and dim in metrizable 
spaces it follows that some results in the dimension theory of metrizable 
spaces, such as the subspace and sum theorems, are particular cases of 
both a theorem on Ind and a theorem on dim. However, the proofs of those 
particular cases are usually much simpler than the proofs of the correspond- 
ing general theorems. Moreover, what is more important, the number 
of theorems in the classical dimension theory which can be extended to 
metrizable spaces is larger than that of the theorems hitherto generalized 
in Chapters 2 and 3. 

We are now going to list the counterparts of the theorems established 
in Section 1.5 for separable metric spaces; we shall always point out the 
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theorems in Chapters 2 and 3 of which those counterparts are particular 
cases and, when possible, supply a simpler proof. The theorems will be 
formulated in terms of Ind; obviously, they could as well be formulated 
in terms of dim. 

Let us begin, however, with a brief discussion of the status of the di- 
mension ind in arbitrary metrizable spaces. 

Theorems2.4.4 and 4.1.3 (or 1.6.3, 3.1.29 and 4.1.3)yield the following 

4.1.4. Theorem. For every strongly paracompact metrizable space X we have 
indX = IndX = dimX. 0 

As a special case of the above theorem we obtain - the following important 
fact, stated above as Theorem 1.7.7. 

4.1.5. Theorem. For every separable metrizable space X we have indX = IndX 
= dimX. 

Let us note that Theorem 4.1.5 can also be deduced directly from 
Theorem 4.1.3 and Lemma 1.7.4. 

4.1.6. Remark. Let us state once more that there exists a completely metriz- 
able space X ,  known as Roy’s space, such that indX = 0 and yet IndX 
= dimX = 1. The definition of that space and the computation of its 
dimensions ind and Ind is too difficult to be included in this book. 

As we ascertained in Chapter 2, the dimension ind develops pathological 
properties and is practically of no importance outside the class of separable 
metric spaces; suffice it to say that in metrizable spaces even the finite 
sum theorem for ind does not hold (see Problem 4.1.B). Therefore the 
dimension ind will not be discussed further in this book. It should be 
stressed, however, that the historical role of the small inductive dimen- 
sion can hardly be overestimated. The dimension function ind was the first 
formal setting of the concept of dimension and a good base for the dimen- 
sion theory of separable metric spaces. Besides, the dimension ind has 
a great intuitive appeal and yields quickly and economically the classical 
part of dimension theory. 

We now turn to a list of the basic properties of dimension in metrizable 
spaces. First of all, let us observe that, since every subspace of a space X 
which satisfies condition (c) in Proposition 4.1.2 also satisfies this condi- 
tion, from Proposition 4.1.2 and Theorem 4.1.3 we obtain the following 
theorem (which is a particular case of Theorems 2.3.6 and 3.1.19). 
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4.1.7. The subspace theorem. For every subspace M of a metrizable space X 
we have IndM < IndX. 0 

The following simple theorem is a particular case of Theorem 2.2.2. 

4.1.8. Theorem. I f  X is a metrizable space and IndX = n 2 1,  thenfor k = 0 ,  
1 , . . . , n - 1 the space X contains a closed subspace M such that IndM = k. 17 

From Theorems 2.3.8 and 2.3.10 (or 3.1.8, 3.1.10 and 4.1.3)we obtain 
the countable and the locally finite sum theorems. 

4.1.9. The countable sum theorem. I f  a metrizable space X can be repre- 
sented as the union of the sequence Fl , F2', . . . of closed subspaces such that 
IndF, < n for  i = 1 , 2 ,  ..., then IndX< n. 0 

4.1.10. The locally finite sum theorem. If a metrizable space X can be rep- 
resented as the union of a locally finite family (F,},,s of closed subspaces 
such that IndF, < n for  s E S, then IndX < n. 17 

The next theorem is a common generalization of the lasttwo theo- 
rems; it follows from Theorem 2.3.15 (or 3.1.15) and the fact that every 
metrizable space is paracompact. 

4.1.11. Theorem. I f  a metrizable space X can be representedas the union 
of a locally countable family (Fs},,s of closed subspaces sucli that IndF, 
< n for  s E S, then IndX < n. 0 

Another common generalization of the countable and the locally 
finite sum theorems is the following theorem, which is stronger than similar 
results in Chapters 2 and 3. 

4.1.12. Theorem. If a metrizable space X can be represented 4s the union 
of a transjinite sequence Kl, K2 , ... , K,, .. . , a < 5 of subspaces such that 

IndK, < n and the union u Kp is closed for  a < [, then IndXg n. 
B c a  

Proof. Let e be a metric on the space X .  For each a < 5 define!, = u Kp 
Bca 

and consider the sets 

F i , a  = K,\B(F,, l/i) = Fa+,\B(F,, l / i )  for i = I ) ? ,  ..., 



258 Dimension theory of metrizable spaces [a. 4 , §  1 

where B ( A ,  r )  denotes the open r-ball about A with respect to the metric e. 
The sets F,,, are closed and IndFi,, < n for a < f and i = 1 ,  2 ,  ... Since 
Fi,anB(Fi,B,  l / i )  = 0 whenever /I < a, the family {Fi,i,rr)ace is discrete, 
so that the set Fi = u F,,a is closed and satisfies the inequality IndF, ,< n 

for i = 1 ,  2 ,  ... 
It remains to show that X = u F,. Consider an arbitrary point x EX; 

let u be the smallest ordinal number less than t such that x E K,. Since 
x 4 Fa, there exists an integer i such that FanB(x, I/i) = 0, which implies 
that x 4 B(F,, l /+ Thus x E F,,, c F,. 0 

a < E  

m 

i= 1 

From Lemma 1.2.9 and Remark 1.2.10 one easily obtains (cf. the proof 
of Theorem 1.2.11) the following result, which is a particular case of The- 
orem 2.2.4. 

4.1.13. The separation theorem. I f X  is a metrizable space and M is a sub- 
space of X such that IndM < n >, 0, then for  every pair A ,  B of disjoint 
closed subsets of X there exists a partition L between A and B such that 
Ind(LnM) < n - I .  0 

We shall now characterize the dimension of subspaces of metrizable 
spaces in terms of o-locally finite bases for the space (cf. Proposition 
1.5.15) ; the characterization will be applied in the proofs of the decomposi- 
tion, enlargement and Cartesian products theorems. 

4.1.14. Proposition. A subspace M of a metrizable space X satisfies the 
inequality IndM < n > 0 if and only if X has a docal ly  finite base 28 
such that Ind(MnFr U )  < n-  1 for  every U E a. 
Proof. Consider a subspace M of a metrizable space X which satisfies 
the inequality IndM < n > 0 ;  let e be an arbitrary metric on the space X .  
The space X being paracompact, for i = 1 , 2 ,  ... there exists a locally 
finite open cover Y ,  = {V,},,,, of the space X such that meshy,  < l / i ;  
let {FS},,,, be a closed shrinking of the cover Yi (see [GT], Theorem 
1.5.18). By virtue of Theorem 4.1.13 for every s E Si there exists a parti- 
tion L, between F, and X\V, such that Ind(L,nM) < n-  1 .  Consequently 
there exist open sets Us, W, c X such that 

F, c Us, X\V, c W,, U,nW, = 0 and X\L, = U,uW,. 

As FrU, c L,, Ind(MnFrU,) < n-1,  and as U, c X'\W, c V,, d(U,) 
< l / i  for s E S , .  The family ai = (Us>,s, is for i = 1 ,  2 ,  ... a locally 
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finite open cover of the space X such that mesh8, < l/i, so that the union 

a = (J at is a o-locally finite base for the space X such that Ind(MnFr U )  

< n-1 for every U E a. 
Conversely, if M is a subspace of a metrizable space X and X has a 

o-locally finite base such that Ind(MnFr v) < n -  1 for every U E a, 
then the family {Mn U: U E B} is a o-locally finite base for the subspace 
M whose members have boundaries of large inductive dimension < n - 1 ; 
by virtue of Lemma 2.3.16 and Theorems 4.1.9, 4.1.10 and 4.1.7, this 
implies that IndM < n. 0 

co 

i= 1 

The next theorem (cf. Theorem 1.1.6) is a particular case of Proposition 
4.1.14. 

4.1.15. Theorem. A metrizable space X satisfies the inequality IndX < n 2 0 
if and on& i f  X has a 0-locally finite base such that Ind Fr U < n - 1 
for  every U E a. I7 

Let us note that in Proposition 4.1.14 and Theorem 4.1.15 the o-local 
finiteness can be replaced by o-discreteness (cf. [GT], Theorem 4.4. I). 

4.1.16. The first decomposition theorem. A metrizable space X satisfies the 
inequality IndX < n 2 0 i f  and only if X can be represented as the union 
of two subspaces Y and Z such that Ind Y < n - 1 and Ind Z < 0. 

Proof. Consider a metrizable space X such that IndX < n 2 0. By virtue 
of Theorem 4.1.15, the space X has a a-locally finite base such that 
Ind Fr U < n - 1 for every U E 99. From Theorems 4.1.9 and 4.1.10 it follows 
that the subspace Y = U {Fr U U E 9?} satisfies the inequality Ind Y 
< n - 1, and from Proposition 4.1.14 it follows that the subspace Z = X\Y 
satisfies the inequality IndZ < 0. 

If X is a metrizable space and X = YuZ ,  where Ind Y < n - 1 and 
IndZ < 0, then IndX < n by virtue of Theorems 4.1.13 and 4.1.7. 0 

From the first decomposition theorem we obtain by easy induction 

4.1.17. The second decomposition theorem. A metrizable space X satisfies 
the inequality IndX < n 2 0 if and only i f X  can be represented as the union 
of n+ 1 subspaces 2, , Z,, .. . , Z,,, such that IndZ, < 0 for i = 1, 2 ,  .. . 
..., n + l .  0 

From Theorem 4.1.17 immediately follows the addition theorem, which 
is a particular case of Theorems 2.2.5 and 3.1.17. 
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4.1.18. The addition theorem. For every pair X ,  Y of subspaces of a metrizable 
space we have 

Ind(XuY) < IndX+ IndY+ 1. 0 

We now turn to the enlargement theorem. 

4.1.19. The enlargement theorem. For every subspace M of a metrizable 
space X satisfying the inequality IndM < n there exists a Ga-set M* in X 
such that M c M* and IndM* < n. 

Proof. Consider first the particular case of a subspace Z of X such that 
IndZ < 0. By virtue of Proposition 4.1.14 the space X has a o-locally 
finite base &? such that Z n F r U  = 0 for every U E &?. The union 
F = u {Fr U: U E  &?} is an &-set, and its complement Z* = X\F 
is a Ga-set which contains the set Z. From Proposition 4.1.14 it follows 
that IndZ* < 0. 

To complete the proof it sufEces to u y  Theorem 4.1.17 and apply 
the particular case established above (cf. the proof of Theorem 1.5.1 1).0 

Since every compact metrizable space is separable, no non-separable 
metrizable space has a metrizable compactification. The next theorem 
is a substitute for the compactilication theorem in the realm of metrizable 
spaces; it follows from Theorem 4.1.19, Lemma 1.3.12, and the fact that 
each metrizable space is homeomorphic to a subspace of a completely 
metrizable space (see [GT], Corollary 4.3.15). 

4.1.20. The completion theorem. For every metrizable space X there exists 

a completely metrizable space 2 which contains a dense subspace homeo- 

morphic to X and satisjies the equalities Indk = IndX and w ( 2 )  = w 8 . n  

We now pass to the Cartesian product theorem. It is a particular case 
of Theorem 2.4.6; the proof of this particular case is much simpler than 
the proof given in Section 2.4. 

4.1.21. The Cartesian product theorem. For every pair X, Y of metrizable 
spaces of which at least one is non-empty we have 

Ind(X x Y )  < IndX+ Ind Y. 

Proof. The theorem is obvious if IndX = co or IndY = co, so that we can 
suppose that k(X, Y )  = IndX+IndY is finite. We shall apply induction 
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with respect to that number. If k(X, Y )  = - 1, then either X = 0 or 
Y = 0, and our inequality holds. Assume that the inequality is proved 
for every pair of metrizable spaces the sum of large inductive dimensions 
of which is less than k 2 0 and consider metrizable spaces X and Y such 
that IndX = n 2 0, IndY = rn >, 0 and n+m = k. By virtue of Theorem 

4.1.15 the space X has a base % = u gi, where the families Vi are locally 

finite and IndFr U < n - 1 for every U E %. Similarly, the space Y has 

a base 9 = u g j ,  where the families g j  are locally finite and IndFrV 

< m- 1 for every V E 9. For i , j  = 1, 2, ... the family 

‘x 

i =  1 

00 

j= 1 

9#i.j = (UxV: U E g i  and V E g j }  

consists of open subsets of the Cartesian product X x  Y and is locally 
finite. Since 

Fr(Ux V )  c (XxFrV)u(FrUx Y ) ,  

by virtue of the inductive assumption and Theorem 4.1.9 we have Ind Fr( U x 
x V )  < k- 1. The family {ai, j } r j= ,  is a base for the Cartesian product 

X x Y. From Theorem 4.1.15 it follows that Ind(X x Y )  < k and the proof 
is completed. 

We shall now prove the theorem on dimension of the limit of an inverse 
sequence of metrizable spaces. In consideration of the context of inverse 
systems and the character of the proof given below, the theorem is formu- 
lated in terms of the dimension dim. 

4.1.22. Theorem on dimension of the limit of an inverse sequence. If the 
inverse sequence S = { X i ,  nj} consists of metrizable spaces Xi such that 
dimX, < n for i = 1,2, ... , then the limit X = IbS satisfies the inequality 
dimX < n. 

Proof. For i = 1,2,  ... consider a metric pi on the space Xi bounded 
m 

by 1. On the Cartesian product n X ,  and on its subspace X we shall 
i = l  

consider the metric Q defined by letting 
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For i, k = 1 ,  2, ... let @i ,k  be an open cover of the space Xi such that 
mesh @ i , k  < 1/2k. We shall define inductively a sequence a,, a2, ... 
of families of sets satisfying the conditions: 
(8) The family @i is an open cover of the space X ,  and orda,  < n. 
(9) For each U E  ei, where i > 1, there exists a V E 

(10) For every j < i mesh((nj(U): U E  ai}) < 1/2i. 
Conditions @)-(lo) are satisfied for i = 1 by an arbitrary open refine- 

ment @] of the cover of the space X ,  such that orda!, < n; such 
a refinement exists by virtue of Proposition 3.2.2. Assume that the families 
42, satisfying (8)-(10) are defined for all i < k > 1.  Let be an arbitraty 
open refinement of the cover 

such that U 
c (n;-,)-yv). 

[(nE-l)-l(@k-l)l A [(d)-'(al,k)lA [(d)-'(@Z.k)l A ... A [(ni>-l(@k,k)l 

of the space Xk such that ord@k < n. From the definition it easily follows 
that satisfies @)-(lo) with i = k; thus the construction of the families 
Qi is completed. 

For i = 1 , 2 ,  ... the family W ,  = nrl(ai), where ni: X +. Xi  denotes 
the projection, is an open cover of the space X .  For every W E  Wi+,  there 
exists a U E  @ i + l  such that W = n ~ 2 ~ ( U ) ;  by virtue of (9) one can find 
a V E such that U c (ni+')-i(V). Thus W c n~. , (n;+' ) -~(V)  
= (ni+lni+l)-l(V) = n;'(V) E W,,  which shows that Vi+] is a refine- 
ment of W , .  From (10) it follows that d( W )  < 1/2i+ 1/2i < l / i  for every 
W E  W i  , so that dimX < n by virtue of Proposition 4.1.2. 0 

We conclude this section by proving that for every cardinal number 
m > No the Baire space B(m) defined below is a universal space for the 
class of all metrizable spaces whose large inductive dimension is not larger 
than 0 and whose weight is not larger than m. In the following section 
this result will be extended to higher dimensions; as the reader will see, 
the proof of the general theorem is much more difficult than that of the 
particular case discussed here. 

We start with the definition of the Baire space. 

4.1.23. Example, For i = 1 , 2, _.. let X i  = D(m) be the discrete space of 
cardinality m No with the metric ei defined by 

e i ( x , y )  = 1 if x # y and ei(x, x) = 0.  
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00 

The Cartesian product X i  = [D(m)lN0 is a metrizable space; it is well 
i =  1 

known that formula (7) defines a metric Q on that space. One can readily 
verify that by letting 

00 

one defines another metric on the set X i .  The metrics e and o are equiv- 

alent. Indeed, a sequence {xi'}, {xi"}, ... in the Cartesian product n X i  

converges to a point {xi} if and only if for every i there exists a k( i )  such 
that xi = xi whenever j 2 k(i), and the same condition is necessary and 
sufficient for the convergence of the sequence {xt >, {x: > , . . . to the point 
{ x i }  with respect to the metric o defined by (11). 

The Cartesian product [D(m)]"o with the metric o defined in (11) 
is called the Baire space of weight m and is denoted by B(m). The reader 
can easily check that the weight of the space B(m) is really equal to m. 
Let us note that by virtue of Pioposition 1.3.13 the Baire space B(K,) 
is homeomorphic to the space of irrational numbers. 

We shall show that IndB(m) = 0. Consider a pair x = {xi>, y = {yi} 
of points of B(m) and a real number r satisfying 0 < r < 1. If the inter- 
section B ( x ,  r ) n B ( y ,  r )  is non-empty, then there exists a point z = { z i }  

is the integer satisfying l / k +  1 < r < l / k ;  thus we have B(x, r )  = B(y ,  r). 
Hence in B(m)  two r-balls either are disjoint or coincide. In particular, 
for i = 1, 2, . . . the family Bi = { B ( x ,  l/i): x E B ( m ) }  is an open cover 

of B(m) which consists of pairwise disjoint sets. The union B = u gi 

is a o-locally finite base for B(m) which consists of open-and-closed sets, 
so that IndB(m) < 0 by virtue of Theorem 4.1.15. 0 

i = l  
m 

i =  1 

E B(m) such that x1 = Z1 = Y 1 ,  X 2  = Z2 = y 2 ,  ... , Xk = Zk = Yk, where k 

00 

i =  1 

4.1.24. Theorem. For every cardinal number m 2 'So the Baire space B(m)  
is a universal space for  the class of all metrizable spaces whose large in- 
ductive dimension is not larger than 0 and whose weight is not larger than m. 

Proof. By virtue of the last example it suffices to show that every metri- 
zable space X such that IndX = 0 and w ( X )  = m is embeddable in X.  
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Let e be an arbitrary metric on the space X and &? an arbitrary base 
for X such that 1&?1 = m. From Theorem 1.6.1 1 (or 4.1.3) and Proposition 
3.2.2 it follows that the cover ( U  E 23: d(U) < l/i} of the space X has 
an open shrinking gi consisting of pairwise disjoint sets. Adjoining to 
9Yi, if necessary, an appropriate number of copies of the empty set, we 
can assume that gl = {Ul ,s}ssxt ,  where X ,  = D(m) is the discrete space 
of cardinality m used in Example 4.1.23 to define the space B(m). 

By assigning to each point x E X  the element s E Xi such that x E Ui,s 
we define a continuous mapping fi: X -+ X,.  For every x E X  and every 
closed set F c X such that x # F there exists a natural number i such 
that e ( x , F )  > l/i. The set Ui,s that contains the point x is disjoint from 
F, so that J ( x )  = s $ f i (F)  = J (F) .  Thus the family (fi}& separates 

points and closed sets, which implies that the mapping F: X + n Xi 
= B(m) defined by letting F(x) = ( f i ( x ) ,  fi(x), ...) is a homeomorphic 
embedding (see [GT], Theorem 2.3.20). 0 

__ 

m 

i =  1 

Since the Cartesian product of KO copies of B(m) is homeomorphic 
to B(m), Theorem 4.1.24 yields the following 

4.1.25. Theorem. The Cartesian product X = Xi of a countable family 

{Xl>El of metrizable spaces satisfies the equality IndX = 0 $ and only 
i f I n d X , = O f o r i =  1 , 2 ,  ... 0 

00 

i= 1 
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ently by Katttov in [1952] and by Morita in [1954]. 
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Problems 

4.1.A (Engelking [1973], Przymusiriski [1974]). Let X be a metrizable 
space and e a metric on the space X ;  let ds(X, e) < n denote that the space 
X has a sequence of open covers , q2, .. . with the properties stated 
in condition (b) in Proposition 4.1.2. 

(a) Show by modifying the proof of Theorem 4.1.3, that if ddX, e) 
< n 2 0 then for every pair A,  B of closed subsets of X satisfying @ ( A ,  B)  
7 0 there exists an open set U c X such that A c U c X\B and 
ds(FrU, e) < n-1. 

(b) Apply (a) to prove the KatEtov-Morita theorem without using 
Lemma 4.1.1. 

Hint. Observe first that if d im1 < n, then ds(X, e) < n for every 
metric Q on the space X ;  then apply (a) to prove by induction that the 
inequality ds(X, e) < n > 0 implies that X has a o-locally finite base B 
such that dimFr U ,< n- 1 for every U E B and show that the existence 
of such a base implies the inequality IndX < n. 

One can also apply (a) to prove by induction that if ds(X, e) ,< n 2 0 
then, for every closed set A c X and each open set V c X that contains 
the set A,  there exists an open set U c X such that A c U c V 
and IndFrUG n-I. To this end, for i = 1,2,  ... define A i  = B(A,  l/i) 
and A: = B(X\Y, l/i), consider open sets W,, W: c X such that A,+1 
c W , c A f ,  ds(FrWf,e)<n-l  and A;+ ,  c W i l c A : ,  ds(FrW{,@) 

< n- 1, and let U =  u (W,\%;). 
m 

I= 1 

4.1.B (van Douwen [1973], Przymusi6ski [1974]). Applying the exist- 
ence of a metrizable space X with the properties described in Remark 
4,1.6, define a metrizable space Y with ind Y = 1 which can be represented 
as the union of two closed subspaces Yl and Yz such that indY, = indY2 
= 0 and which contains a point p such that ind(Y\(p)) = 0. 

Hint. Consider a pair A,  B of disjoint closed subsets of X which cannot 
be enlarged to disjoint open-and-closed sets, and replace the set B by a point 
p in such a way as to obtain a metrizdble space. 

4.1.C. Let Y be the space considered in Problem 4.1.B and 
let M = Y\{p}. Show that, though indM = 0, there exists a neigh- 
bourhood V of the point p in the space Y such that for every open set 
U c Y satisfying p E U c V we have MnFr U # 0 (cf. Propositions 
1.2.12 and 1.5.14). 
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4.1.D (R. Pol [1979]). Prove that if a metrizable space X can be 
represented as the union of a family {Fs}se~ of closed subspaces such 
that IndFs < n for S E S  and if there exists a point-countable open 
cover {Us}scS of the space X such that Fs c Us for s E S,  then IndX < n. 

Hint (Hansel1 [1974]). Let B = u .Bi be a base for the space X ,  

where the families Bi are locally finite. For every non-empty U E B  
consider a one-to-one transformation j ,  of the set { S  E S :  U c Us} to 
the integers and let = u { U E B ~ :  U c U, and j ,(s) = j } .  Show 
that the family {Us,i,l}seS is locally finite for i,j = 1,2, ... and 

m 

i = l  

m 

us = U U s , i , j  for SES. 
i , j=  1 

4.1.E. Deduce from Theorems 4.1.3 and 4.1.13 and Remark 1.7.10 
that a metrizable space X satisfies the inequality IndX < n 2 0 if and only 
if for every sequence ( A , ,  BJ, (A2, B2), ... , (A ,+1 ,  B,,+,) of n f l  pairs 
of disjoint closed subsets of X there exist closed sets L1 , L2, ..., L,+, 

such that Li is a partition between A i  and Bi and (7 Li = 0. 
n f l  

i =  1 

4.1.F (LevSenko [1969]; for n = 0 Levgenko and Smirnov [1966]; 
for separable spaces implicitly Popruienko [1931]). (a) Prove that for 
every non-empty closed subset A of a metrizable space X satisfying the 
inequality IndX < p1 2 0 there exists a closed subset B of the subspace 
X\A of X such that IndB < n- 1 and A is a retract of X\B. 

Hint. Consider a metric @ on the space X and define a sequence U, , U2,  . . . 
of open subsets of X such that A c Ui c B(A, l/i), & c Ui-!, where 
U, = X, and IndFrUi < n-1 for i = 1 , 2 ,  ...; consider for i = 1 , 2 ,  ... 
a locally finite open cover Qi of the subspace ~i-l\Ut of the space X 
such that mesh%i < l / i  and IndFr U < n- 1 for every U E ei. Define 

B = u FrUiu  u (Fr U :  U E  u % t }  andsee the hint to Problem 1.3.C(a). 

(b) Show that if a metrizable space X has the property that for every 
non-empty closed set A c X there exists a closed subset B of the subspace 
X\A of X such that ind B < n- 1 and A is a retract of X\B, then IndX 
< n.  

w 00 

i = l  i = l  

4.1.G (Hausdorff [1934], de Groot [1956]). A metric p on a set X is 
called non-Archimedean if &, z) < max[e(x, y ) ,  e ( j ,  z)] for all x, y ,  z EX. 
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Let X be a metrizable space; show that on the space X there exists 

Hint. There exists a non-Archimedean metric on the Baire space B(m). 
a non-Archimedean metric if and only if IndX < 0. 

4.2. Characterizations of dimension in metrizable spaces. The universal 
space theorem 

In the first part of this section we shall establish four characteriza- 
tions of the dimension dim in metrizable spaces formulated in terms of 
the existence of special bases and sequences of covers, and we shalI review 
characterizations of dim in terms of special metrics. 

We start with characterizations in terms of o-locally finite bases with 
special properties. First we shall prove a lemma related to Theorem 3.2.5. 

4.2.1. Lemma. If a normal space X satisfies the inequality dimX < n 2 0, 
then for every o-locally finite family { Us}sss of open subsets of X and every 
family {F,},s of closed subsets of X such that F, c Us for s E S there exists 
a family {VS}SES of open subsets of X such that F, c V, c 7, c U, for 
s E S and ord( {Fr V,},& < n - 1. 

Proof. Let S = U Si,  where Sins, = 0 whenever i # j and the 

family { US}SESi is locally finite for i = 1, 2, ... Applying Theorem 3.2.5, 
one can easily define by induction open sets V,,,, W,,i c X ,  where s E Ti 
= S, vSzu . . . US, and i = 1 , 2, . . . , satisfying the following conditions: 

(1) 

(2) F,,i-l c V,,i c V,,, c Ws,i c w,,i c Ws,i-l for  SET^-^ and i > 1. 

(3) ord({ ~.i\V,, i} ,TJ < n- 1 .  

00 

i = l  

F, c v , ,~  c Vs,i c w,,~ c W,,, c U, for s E S i .  

For every s E S consider the open set 
00 

V, = u V,, , where s E Si . 
j = i  

Conditions (1) and (2) imply that F, c V, c v, c Us for s E S and that 
Fr V, = E\V, c @s,j\Vs,, for j 2 i, where s E Si .  The last inclusion 
together with (3) yield the inequality ord({Fr Vs}s,s) < n- 1. 0 

4.2.2. Theorem. For every metrizable space X and each integer n > 0 the 
following conditions are equivalent: 
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(a) The space X satsiJies the inequality dimX < n. 
(b) The space X has a a-locallyjnite base W such that ord( 

(c) The space X has a docally finite base W such that d 
< n-1. 

for every U E ~ .  

FrU: U E W } )  

mFrU< n-1 

Proof. We shall show first that (a) (b). Consider a metrizable space X 
such that dimX < n ;  let e be a metric on the space X.  The space X being 
paracompact, for i = 1 , 2, ... there exists a locally finite open cover %!, 
= {Us},,, of the space X such that mesh%!, < l/i; obviously, one can 
assume that Sinsj = 0 whenever i # j .  Let {Fs}SESI be a closed shrinking 

of the cover a!, and let S = u S, .  Applying Lemma 4.2.1 to the families 

{Us},, and {Fs},s we obtain a family W = {V,},, which has the prop- 
erties stated in (b). 

The implication (c) => (a) follows from Lemmas 2.3.16 and 3.1.27 
and the sum theorems for dim. 

To prove that (b) * (c) we shall apply induction with respect to n. 
Condition (b) and (c) are equivalent if n = 0, because then they both 
mean that all members of 23 are open-and-closed. Assume that the implica- 
tion (b) => (c) is’proved for all metrizable spaces and every n < m and 
consider a metrizable space X which has a a-locally finite base such 
that ord( {Fr U: U E W}) < m. For every Vo E W the family W o  = {Xon U: 
U E 23}, where Xo = Fr Uo , is a a-locally finite base for the space X o .  
Since the family of boundaries of members of Wo in the space X o  has order 
< m - 1 , it follows from the inductive assumption and implication (c) * (a) 
that dimXo < m. Thus the space X satisfies (c) with n = m+ 1 and the 
proof that (b) => (c) is completed. 0 

03 

i= 1 

Let us note that the equivalence of conditions (a) and (c) in Theorem 
4.2.2 follows immediately from Theorems 4.1.3 and 4.1.15. In our proof, 
however, we applied Lemma 3.1.27, rather than those two theorems, 
in order to prepare the ground for another proof of the KatEtov-Morita 
theorem (cf. Problem 4.2.A(a)). 

We shall now introduce two topological notions which are applied 
in the next theorem. A sequence W l  , W 2 ,  ... of covers of a topological 
space X is called a development for the space X if all covers W ,  are open 
and for every point x E X  and each neighbourhood U of the point x there 
exists a natural number i such that St(x, W,) c U. One easily observes 
that a sequence W l ,  V2 ,  ... of open covers of a topological space X is 
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a development for X if and only if for every point x E X each family { W,}e 
of open subsets of X such that x E W, E W ,  for i = 1 , 2, ... is a base for X 
at the point x. A sequence W ,  , W2 , . . . of covers of a topological space X 
is called a strong development for the space X if all covers W ,  are open 
and for every point x E X  and each neighbourhood U of the point x there 
exist a neighbourhood V of the point x and a natural number i such that 
St(V, W J  c U. Clearly, every strong development is a development. 

4.2.3. Theorem. For every metrizable space X the following conditions are 
equivalent : 
(a) The space X satisjes the inequaIity dimX < n. 
(b) The space X has a development W l  , W 2 ,  ... such that ord W ,  < n 

(c) The space X has a strong development W ,  , W2 , ... such that ord Wi, 
and Wi+,  is a star re3nement of W i  for i = 1,2, ... 

< n and Wi+,  is a rejnement of W ,  for i = 1,2, ... 

Proof. We begin with the implication (a) * (b). Consider a metrizable 
space X such that dimX < n. We shall define inductively a sequence 
W ,  , W 2 ,  ... of open covers of X which has the properties stated in (b). 
Assume that k = 1 or that k < 1 and the covers W i  are defined for all 
i < k. The space X being paracompact, the open cover Wk-1 A 

A { B ( x ,  l/k)}xEx of the space X ,  where Wo = { X } ,  has an open star 
refinement (see [GT], Theorem 5.1.12) which by virtue of Proposition 
3.2.2 has in turn an open shrinking Wk such that ordWk < n. The sequence 
W l  , W2 , . . . thus obtained has the required properties, so that (a) => (b). 

The implication (b) * (c) follows from the fact that if St(x, W,) c U 
and Wi+,  is a star refinement of W i  then St(V, Wi+J c U for any V 
E Wi+,  such that x E V. 

Finally, the implication (c) (a) follows from Lemma 4.1.1 , because- 
as one readily sees by applying the definition twice-if Wl , W2 , ... is 
a strong development for a space X and W,+, is a refinement of W ,  for 
i = 1,2, ..., then the family {St(W, Wi):  W E  W,,  i = 1,2, ...} is a base 
for X. 

Let us note that by virtue of the Nagata-Smirnov theorem (see [GT], 
Theorem 4.4.7): Theorem 4.2.2 holds for every regular space X if condi- 
tion (a) is replaced by the following condition: 

(a') The space X is metrizabIe and satisfies the inequality dimX < n. 
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Similarly, by virtue of appropriate metrization theorems (see [GT], 
Corollary 5.4.10 and Theorem 5.4.2), Theorem 4.2.3 holds for every 
To-space X if condition (a) is replaced by condition (a'). 

As follows from Problem 4.1.G, the class of all metrizable spaces X 
such that dimX < 0 can be characterized in terms of the existence of 
special metrics. In this connection it is natural to ask whether the class 
of all metrizable spaces X such that dimX < n can be characterized in 
a similar manner. Investigations in this direction led to a group of in- 
teresting theorems, which are reviewed below; the proofs of those theorems 
are too difficult to be reproduced in this book. Thus, a metrizable space 
X satisfies the inequality dimX < n 2 0 if and only if on the space X there 
exists a metric e which satisfies any of the following conditions: 

(i) For every point x E X  and each positive number r we have 

dimFrB(x, r )  < n - I ;  moreover, u B ( x ,  r )  = U B(x ,  r )  for every 
X € X ,  X€X, 

x, c x. 
(ii) For every closed set A c X and each positive number r we have 

dimFrB(A, r )  < n- 1. 
(iii) For every point x E X ,  each positive number r and every sequence 

y l , y 2 ,  ..., yn+2 of n+2 points of X satisfying the inequality 
e(yi, B(x ,  r /2))  < r for i = 1 , 2 ,  .. , n+2, there exist natural numbers 
i, j < n + 2  such that i # j and &vi,yj) < r. 

(iv) For every point x E X  and every sequence y l ,  y 2 ,  ... , y n + 2  of n+2 
points of X there exist natural numbers i, j < n+2 such that i # j 
and e(yi, Uj) < e (x ,  Yi) .  

One easily verifies that every metric e which satisfies (i) satisfies also 
(ii), and that if on a space X there exists a metric e which satisfies (ii), 
then dimX < n (see Problem 4.2.D). Let us note that a separable metrizable 
space X satisfies the inequality dimX < n 2 0 if and only if on the space X 
there exists a metric e which satisfies the first part of (i); it is not known 
whether the second part of (i) can be omitted also in the case of an ar- 
bitrary metrizable space. 

An interesting problem is connected with conditions (iii) and (iv), 
namely it is not known whether the inequality dimX < n follows from 
the existence, on the space X ,  of a metric e which satisfies the following 
condition 
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(v) For every point x EX, each positive number r and every sequence 
y , ,  y, ,  ... , yn+2 of n+2  points of X satisfying the inequality e ( x ,  y i )  
< r for i = 1 , 2 ,  ... , n+2, there exist natural numbers i, j < n+2 
such that i # j and p(yi, y j )  < r. 

One easily verifies that every metric e which satisfies (iii) satisfies also 
(v), so that the problem stated above is equivalent to the question whether 
the existence on a space X of a metric e which satisfies (v) means that 
dimX < n. Similarly, one can readily check that condition (v) is equivalent 
to the following condition: 

(v’) For every point x E X  and every sequence y , ,  y z ,  ... , y n f 2  of n+2 
points of X there exist natural numbers i , j ,  k < n + 2  such that 
i # j and ebi, Yj )  < e(x, yk), 

and that every metric e which satisfies (iv) satisfies also (v‘) and (v). Let 
us note that if on a separable metrizable space X there exists a totally 
bounded metric p which satisfies (v), then dimX < n (see Problem 4.2.F); 
it is not known if the assumption of’total boundedness can be omitted. 

We now turn to the universal space theorem. As in the case of normal 
spaces discussed in Section 3.3, we shall deduce this theorem from a fac- 
torization theorem. We start with a simple lemma on paracompact spaces. 

4.2.4. Lemma. Every locally finite open cover % of a paracompact space X 
has a locally finite open star reJinement Y such that lVl < max(l@l, No). 

Proof. Let W be an open star refinement of 9 (see [GT], Theorem 5.1.12). 
For every pair a0, a1 of finite subfamilies of the cover 42 denote by 
W(%o,%l)  the family of all W E W  such that ‘?Lo = { U E % :  W c  U }  
and ‘?21 = { U  E%: St(W, W )  c U}. From the local finiteness of ‘?L 
it follows that all the sets of the form U %‘-(‘?Lo, constitute an open 
cover Yr  of the space X such that lY’l < max (1921, So). We shall show 
that Y‘ is a star refinement of a. 

!Ill) E V’. Let U be an arbitrary member 
of al; clearly 

(4) s t (w ,  W )  c u for every W E  %‘-(ao, all. 
For every set V’ = (J W(@A, a;) E Y‘ which intersects V there exist 
W E  W(’?Lo, a,) and W E %‘-(%A, a;) such that Wn W’ # 0. From 

Consider a set V = U 
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(4) it follows that W' c U, so that U E 4Yhy which implies that V' c U. 
Hence, St(V, 9"') c U. 

To complete the proof it suffices to consider a locally finite open shrink- 
ing -Y- of the cover Y'. = 
4.2.5. Pasynkov's factorization theorem. For every continuous mapping fl 
X 3 Y of a metrizable space X to a metrizable space Y there exist a metri- 
zable space Z and continuous mappings g : X + Z and h : Z -+ Y such that 
dimZ < dimX, w ( Z )  < w(Y), g ( X )  = Z and f = hg. 

Proof. If dimX = 00 or w ( Y )  < KO, then 2 = f(9, g = f and h = id, 
satisfy the theorem. Thus one can suppose that dimX = n < oc) and 
w(Y) = m > No. For i = 1 , 2, ... consider a locally finite open cover 
%, of the space Y such that mesh@, < I/i and I%,l < m. Applying Lemma 
4.2.4 and Proposition 3.2.2 one can easily define by induction a sequence 
Y l ,  Y 2 ,  ... of locally finite open covers of the space X such that for 
i = 1,2, ... 

15) ordV, < n ,  IV,I < m 
and 

(6) Vl+l is a star refinement of Y,/tf-'(4Yi+J. 

We shall now consider another topology on the set X ,  coarser than the 
original one, which is defined by declaring that n set U c X is open if for 
every x E U there exists a natural number i such that St(x, V,) c U. 
The set X with this new topology-will be denoted by X ' ;  let us note that 
generally X'  is not a To-space. We shall show that for every A c X' the 
interior of the set A in the space X' coincides with the set 

A* = {x E X :  there exists an i such that St(x, V,) c A } .  

Obviously, it suffices to verify that A* is an open subset of X'. Consider 
an arbitrary point x € A *  and an i such that St(x, V,) c A. For every 
point y E St(x, Vi+,) we have St(y, V,,,) c St(x, V,) c A ,  so that 
y €4". Thus St(x, Yr+J c A*, which shows that A* is an open subset 
of X'.  

Let V: = (V*: V E V ~ }  for i = 1 , 2 ,  ... As for every W E V , + ~  there 
exists a V E Y ,  such that St(W, V,,,) c V and consequently W c V* 
.E Yf  , the family VF is an open cover of the space X' .  Since A* is the interior 
.of A in X',  from (6)  it follows that for i = 1, 2, ... 
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(7) 7“&’,J is a star refinement of Y f .  

Note that by lettingf ’(x) = f(x) for x E X’ we define a continuous mapping 
f ’: X’ + Y;  indeed, it follows from (6) that S(f’(V*)) < l/i+ 1 for every 
v* E “v:,, . 

For x , y E X’ define 

xEy if and only if for every i there exists a V E  “tri such that x, y E V. 

One easily checks that E is an equivalence relation on the space X’. Clearly 
m 

[XI = n st(x, r,) for x E x‘, 
i =  1 

where [x] denotes the equivalence class that contains x.  Let Z be the 
quotient space X’JE and g :  X + Z the composition of the identity mapping 
i: X + X‘ and the natural quotient mapping g’: X’ + X‘JE. By virtue 
of (6), f’(x) = f ’ b )  whenever xEy, so that by letting h( [XI) = f’(x) we 
define a mapping h of Z to Y ;  from the relation hg’ = f’ it follows that h: 
Z + Y is a continuous mapping. Obviously, g ( X )  = Z and f = hg. Let 
us note that 

(8) g’-lg’(A*) = A* for every A c X’, 

so that 

(9) the set g’(A*) is open in 2 for every A c X‘. 

We shall show that 2 is a metrizable space. To begin with, observe 
that Z is a TI-space. Indeed, if Ex] # b] then there exists an i such that 
y 4 St(x, VJ,  and then the set g’(“Y-*), where V = St(x, V J ,  is a neigh- 
bourhood of the point [x] which does not contain the point b]. Let W ,  
= (g’(V*): V E V,> for i = 1 , 2, ...; from (9) it follows that W I  is an 
open cover of the space Z .  Now, from the definition of topology on X’ it 
follows that the sequence V f ,  V,*, ... is a development for the space X’, 
so that by virtue of (8) the sequence Wl , W z  , ... is a development for 
the space Z ;  moreover, (7) implies that Wi+l  is a star refinement of W i  
for i = 1, 2, ... Hence, the space 2 is metrizable (see [GT], Corollary 
5.4.10). 

From the first part of (5) it follows that ordW, < n for i = 1 , 2, ... , 
so that dim2 < n by virtue of Theorem 4.2.3. To complete the proof 
it suffices to show that w(Z) < m. The family 33 consisting of all sets 
St(z, W1), where z E Z and i = 1 , 2 ,  . . . , is a base for the space Z. Since 
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the covers V i  of the space X are all locally finite, it follows that the covers 
U: and W i  are point-finite, so that 19i?1 < m. 0 

Let us note that in the proof of Pasynkov's factorization theorem 
only the paracompactness of the space X ,  and not its metrizability, was 
used; it turns out that the theorem holds under the even weaker assumption 
of normality of X (see Problem 4.2.G). 

4.2.6. The universal space theorem. For every integer n 2 0 and every 
cardinal number m 2 KO there exists a universal space Ji for  the class 
of all metrizable spaces whose covering dimension is not larger than n and 
whose weight is not larger than m. 

Proof. Let {XS}SES be the family of all subspaces of the Cartesian product 
[J(m)]"o of KO copies of the hedgehog J(m) (see [GT], Example 4.1.5) 
whose covering dimension is not larger than n, and let is: X ,  -, [J(m)]"o 
be the embedding of X,  in [J(m)]"o. Consider the sum X = @ X ,  and the 

mapping i: X -+ [J(m)]"o defined by letting i (x)  = i,(x) for x EX,. Since 
dimX< n, by virtue of Theorem 4.2.5 there exist a metrizable space J i  
and continuous mappings g :  X +  J: and h:  Jl -+ [J(m)]"o such that 
dim.7: < dimX = n, w ( J i )  < w([J(m)]"o) = m and f = hg. 

Consider now an arbitrary metrizable space Y such that dimY < n 
and w(Y) < m. Since Y is embeddable in [J(m)]"o (see [GT], Theorem 
4.4.9), there exists an s E S such that X ,  is homeomorphic to Y. The com- 
position hogo of the restrictions go = glX,: X ,  -+ g(X,) c J i  and ha 
= hlg(X,): g(XJ -+ X ,  c [J(m)]"o is a homeomorphism, so that go is 
also a homeomorphism. Thus J; is the required universal space. 

seS 

Historical and bibliographic notes 

Theorem 4.2.2 was established by Morita in [1954]. The equivalence 
of conditions (a) and (b) in Theorem 4.2.3 was proved by Nagata in 
[1956a]; the equivalence of conditions (a) and (c) was proved by Nagami 
and Roberts in [1967]. Characterizations of dimension in terms of metrics 
satisfying (i) or (ii) were established by Nagata in [1963], the characteriza- 
tion in terms of metrics satisfying (iii) was obtained by Nagata in [1956], 
and the characterization in terms of metrics satisfying (iv) was obtained 
independently by Nagata in [1964] and by Ostrand in [1965a]. Let us add 
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that in [1936] Marczewski proved that a separable metric space X sat- 
isfies the inequality dimX < n >, 0 if and only if on the space X there 
exists a metric e such that for every point x E X  we have dimFrB(x, Y) 

d n- 1 for almost all (in the sense of Lebesgue measure) positive numbers r. 
The question whether the inequality dimX < n follows from the existence 
on the space X of a metric e which satisfies (v) was raised by de Groot 
in [1957]. Theorem 4.2.5, under the weaker assumption of normality of X 
(see Problem 4.2.G), was proved by Pasynkov in [1967a] (announcement 
in [1964]); the present proof is obtained by amalgamating the proofs 
given by Arhangel’skii in [I9671 and by Morita in [1975]. Theorem 4.2.5 
for a separable Y and an analogous theorem with no evaluation of w(2) 
were given by Pasynkov in [1963]. Theorem 4.2.6 was established by Na- 
gata in [1960a]; the present proof was given by Pasynkov in [1964]. In 
Nagata’s original proof of Theorem 4.2.6 a universal space is explicitly 
defined (cf. Pears [1975]). Let us mention, in connection with Theorem 
4.2.6, that in [1975] Lipscomb defined for every cardinal number m 2 No 
a metrizable space L(m) with diml(m) = 1 and w(L(m)) = m suoh that 
each metrizable space X satisfying the inequalities dimX < n and w(X) 
< m is embeddable in the Cartesian product [L(n~) j”+~,  and proved that 
the Cartesian product [L(m)y+ contains an easily definable subspace 
which is a universal space for the class of all metrizable spaces whose 
covering dimension is not larger than n and whose weight is not larger 
than m. The fact that each metrizable space X with dimX = n is embeddable 
in the Cartesian product of n+ 1 metrizable spaces whose covering dimen- 
sion is equal to 1 was discovered by Nagata in [1958]; Borsuk proved in 
[1975] that the two-sphere S2  cannot be embedded in the Cartesian product 
of two one-dimensional spaces. 

Problems 

4.2.A (Morita [1954]). (a) Prove the KatEtov-Morita theorem by ap- 
plying only Lemmas 4.2.1 and 2.3.16 and Theorems 4.1.9, 4.1.10 and 
3.1.28. 

Hint. Adjoin to conditions (a)-(c) in Theorem 4.2.2 condition (d) 
stating that IndX < n. 

(b) Note that in Theorem 4.2.2 one can replace the o-local finiteness 
of 9iJ by a-discreteness. 
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4.2.B. (a) Show that every locally finite family {Fs}sBs of closed subsets 

Hint. For i = 1 , 2, ... consider the set A i  consisting of all points x EX 

such that the set (s E S :  B ( x ,  l/i)nFs # 0} is finite, let V, = U [B(F,, 

l/3i)nIntAi] and apply Problem 3.1.A. 
(b) (Morita [1955], Nagami [1960]) Prove that a metrizable space X 

satisfies the inequality dimX < n if and only if there exists a sequence 
F, , F2 , . . . of locally finite closed covers of the space X such that o r d F [  
< n and Fi+l is a refinement of Fi  for i = 1 ,2 ,  ... and for every point 
x E X  and each neighbourhood U of the point x there exists a natural 
number i such that St(x, Yi)  c U. 

Hint. Let 9, = (Fs},Est for i = 1 , 2, . .. Apply part (a) to define a se- 
quence W l  , W 2 ,  . . . of open covers of X ,  where W i  = { WS}SES, is a swell- 
ing of the cover Fi  and W, c B(Fs, I/i) for s E Si , such that is a re- 
finement of %'-[ for i = l y  2, ...; check that %'-, , W 2 ,  ... is a strong de- 
velopment for the space X .  

of a metrizable space X has a locally finite open swelling { 

m 

i= 1 

4.2.C (Nagata [1963] (announcement [1961])). Prove that a metrizable 
space X satisfies the inequality dimX < n if and only if X has a base of 
rank < n (see Problem 3.2.C). 

Hint (Arhangel'skii [1963]). When proving that X has a base of rank < n 
use the inequality IndX < n ;  apply Theorem 4.1.17. 

4.2.D (Nagata [1963]). (a) Note that every metric e which satisfies 

(b) Show that if on a space X there exists a metric e which satisfies 

Hint. See the second part of the hint to Problem 4.1.A(b). 

condition (i) satisfies also condition (ii). 

condition (ii), then dimX < n. 

4.2.E. Note that for n = 0 conditions (iii), (iv) and (v) reduce to the 
condition that the metric e is non-Archimedean; check that each non- 
Archimedean metric e satisfies conditions (i) and (ii) for n = 0. 

4.2.F (de Groot [1957]). Applying the fact that on every compact 
metrizable space of dimension < n there exists a metric e satisfying con- 
dition (iii), show that a separable metrizable space X satisfies the in- 
equality dimX < n if and only if on the space X there exists a totally 
bounded metric e which satisfies condition (v). 
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Hint. Note that if e satisfies (v), then the metric on the completion 
2 of the space X also satisfies (v). For an arbitrary finite open cover ‘??J 
of the completion 2 consider a set A c 5 maximal with respect to the 
property that e ( y ,  y’) 2 6/2 for distinct y ,  y’ E A ,  where 6 is a Lebesgue 
number for the cover %. 

4.2.6 (Pasynkov [1967a] (announcement [1964])). Prove that for every 
continuous mapping f: X -, Y of a normal space X to a metrizable space X 
there exist a metrizable space Z and continuous mappings g :  X -, 2 and 
h: Z -+ Y such that dimZ < dimX, w ( 2 )  < w(Y), g(X) = Z and f = hg. 

Hint. Generalize Lemma 4.2.4 to normal spaces; make use of the map- 
ping of X to the metrizable space assigned to the cover 42 as described in 
the hint to Problem 3.2.H(b). 

4.3. Dimension and mappings in metrizable spaces 

In this section we shall study the behaviour of dimension of metrizable 
spaces under continuous mappings. We start with extending to arbitrary 
metrizable spaces the theorems on’dimension-raising and dimension-lower- 
ing mappings established for separable metric spaces in Section 1.12. 
The proofs of these extensions closely follow the pattern of the proofs 
in Chapter 1 and differ from them only in technical details. 

4.3.1. Lemma. A metrizable space X satisfies the inequality IndX < n 2 0 
ifand only i f X  has a o-locallyfnite network N such that IndFrM < n- 1 
for every M E N .  

Proof. By virtue of Theorem 4.1.15, it suffices to show that if a metrizable 
space X has a o-locally finite network N such that IndFrM < n- 1 for 
M E N ,  then IndX < n. Let Y = u (FrM: M E  .N> and 2 = X\Y. 
Since the family {FrM: M E  N} is cr-locally finite, it follows from The- 
orems 4.1.9 and 4.1.10 that IndY < n- 1. The family {ZnM: M E N> 
is a o-locally finite network for the subspace Z ;  as the members of this 
family are open-and-closed in Z, it is a base for 2, so that IndZ 6 0 by 
virtue of Theorem 4.1.15. The inequality IndX < n now follows from 
Theorem 4.1.16. 0 

Let us recall that a continuous mappingf: X 4 Y defined on a Haus- 
dorff space X is perfect iff is a closed mapping and for every y E Y the 



278 Dimension theory of metrizable spaces [Ch. 4, Q 3 

fibre f -'(y) is a compact subspace of X.  Obviously, every closed mapping 
with finite fibres defined on a Hausdorff space is perfect. 

4.3.2. Lemma. Iff: X -+ Y is a perfect mapping, then for every locally jn i te  
family d of subsets of X the family (f(A): A E d) is locally _finite in Y. 

Proof. Since the fibres off are compact, for every y E Y there exists an 
open set U c X which contains f - I (y)  and meets only finitely many members 
of d. The mapping f being closed, the set V = Y\f(X\U) is a neigh- 
bourhood of the point y.  From the inclusion f -'(V) c U it follows that V 
meets only finitely many members of the family {f(A): A E d>. 0 

4.3.3. Theorem on dimension-raising mappings. If f :  X -+ Y is a closed 
mapping of a metrizable space X onto a metrizable space Y and there exists 
an integer k 2 I. such that If-'(y)l < k for every y E Y, then Ind Y < IndX 
+ (k - 1). 

Proof. We can suppose that 0 ,< IndX < co. We shall apply induction 
with respect to the number n+k,. where n = IndX. If n+ k = 1 ,  we have 
k = 1, so that f is a homeomorphism and the theorem holds. Assume 
that the theorem holds whenever n+k < m 2 2 and consider a closed 
mapping f: X -+ Y such that f(X) = Y and n+k = m. 

Let .9l be a o-locally finite base for X such that IndFr U < n - 1 for 
every U E 98. Consider an arbitrary U E 98; by the closedness off we have 

_ _ _ _ _  
(1) Frf(U) = f ( V  nY\f(W = f(V>nf(X\U) 

= [f(U)uf(Fr U)lnf(X\U> = f(Fr u)uB,  
where B = f(V)nf(X\U). Since the restriction f l  Fr U :  Fr U 3 f(Fr v> 
is a closed mapping, it follows from the inductive assumption that 

Indf(FrU) ,< (n-l)+(k-1) = n+k-2.  

Assume that B # 0. Consider the restriction fB: f - ' ( B )  -+ B and the re- 
striction f '  = fBI(X\U): (X\U)nf -I(B) 3 B; both fs and f '  are closed, 
and the fibres o f f '  all have cardinality < k -  1, because f - ' ( y )n  U # 0 
for every y E B. It follows from the inductive assumption that 

IndB,< n+(k-1)-1 = n+k-2 .  

As Uis an Fa-set in X ,  both f(U) and B are F,-sets in Y ;  applying Theorems 
4.1.7 and 4.1.9, we obtain the inequality Ind[f(Fr V)uB] < n+k-2. 
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From the last inequality and from (1) it follows that Ind Frf( V) < n + k - 2 
for every U E S; the same inequality holds if B = 0. One readily checks 
that the family .N = { f ( U ) :  U E S> is a network for the space Y. In 
view of Lemma 4.3.2 the network .N is o-locally finite, so that IndY 
< n+k-1 = IndX+k-1 by virtue of Lemma 4.3.1. 0 

We now pass to the theorem on dimension-lowering mappings. To 
begin with, let us note that reproducing the proof of Lemma 1.9.6 with 
the application of Theorems 3.2.9, 4.1.3, 4.1.7 and 4.1.21 one obtains 

4.3.4. Lemma. Let f, g :  X + S" be continuous mappings of a metrizable 
space X to the n-sphere S". If the set 

D ( f , g )  = (=X: fc-4 z g ( 4 >  

satisfies the inequafity IndDCf, g)  < n - 1, then the mappings f and g are 
homotopic. 

Now we shall establish a counterpart of Lemma 1.12.3. 

4.3.5. Lemma. r f a  metrizable spacek  has a closed cover X such that IndK 
< m > 0 for each K EX and a a-locally finite open cover Q such that for 
every K EX and each open set V c X that contains K there exists a U E Q 
satisfying 

K c  U c  cc V and IndFrUG m - 1 ,  

then IndX < m. 

Proof. By virtue of Theorem 4.1.3 and Remarks 1.7.10 and 1.9.4 it suffices 
to show that for every closed subspace A of the space X and each con- 
tinuous mapping f :  A -+ S" there exists a continuous extension F: X +S" 
off over X. To begin with, let us observe that 

(2) for every K EX there exists a UK E % such that K c U,, IndFr UK 
< m- 1 and f is continuously extendable over A u  ox. 

Indeed, it follows from Theorem 3.2.9 (cf. Problem 4.3.B(a)) that the 
mapping f is continuously extendable over AUK, so that there exists an 
open set V c X containing A U K  such that f is continuously extendable 
over V ;  the existence of a set Ug satisfying (2) now follows from the 
properties of the family %. 
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The subfamily a, of the family 42 which consists of all sets of the form 
U, can be represented as the union of a sequence aI7 ... of locally 
finite families. Let us arrange the members of ‘22, into a transfinite sequence 
U, , U, ... , U,, ... a < E placing first all members of , then all mem- 
bers of a, etc. Clearly, for every a, < 5 the family {Ua)a<ao is locally 
finite. 

We shall inductively define a transfinite sequence Fl , F2 , . . . , Fa, . . . , 
a < 5 of continuous mappings, where Fa: A u  u 0, + S”, such that 

B<a 

FaI(Au U 0,) = F,, for every y < u .  
BGY 

(3) 

Let Fl be an arbitrary continuous extension off over A u ~ ,  . Assume 
that the mappings Fa satisfying (3)  are defined for CI < 01,. The set 
A u  u ca can be represented 

a<ao 

A‘ = AU U V,  
a<ao 

which, by virtue of the local 
the relation 

as the union of two closed sets 

and 

finiteness of the family { Ua}a<ao, satisfy 

A” = Au(Vao\ u U,) 
a < a o  

A’nA’‘ c AuFr( u Ua) c AU u FrUa. 

Since the family { A } u { ~ ~ } ~ < ~ , ,  is locally finite and ( f } u  {FaI a } a < a o  is 
a family of compatible mappings, one can define a continuous mapping 
F‘: A‘ 4 S” which is a common extension of all mappings Fa with a < a,. 
By virtue of (2) the mapping f is extendable to a continuous mapping f ”: 
A” -+ S”, and in .view of (4) 

D = {X E A’nA”: F’(x) # f ”(x)} c U Fr Ua7 

so that IndD < m - 1 by virtue of (2) and Theorem 4.1.10. It follows 
from Lemma 4.3.4 that the mappings F’IA’nA’’ andf”1A’nA’’ are homo- 
topic. Since the mapping f’’1A’nA” is continuously extendable over A“, 
it follows from Lemma 1.9.7 that the mapping F’IA’nA” is extendable 
to a continuous mapping P“: A” + S”. Letting 

a<ao a<ao 
(4) 

a < a o  

for x E A’, 

F”(x) for x E A”, 
Fao(x) = { F‘(x) 

we define a continuous mapping Fa, of A’uA‘‘ = A u  u c. to S”’, which 
satisfies (3) for CI = a,. 

a<ae 
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= 0. Hence for i = 1,2,  ..., k we have M,nL c Y,*, which implies 
that Ind(M,nL) < n,-  1 for i = 1 ,2 ,  ... , k. 0 

If for a continuous mapping f: X + Y of a metrizable space X to 
a metrizable space Y there exists an integer n 0 such that Indf -I@) < n 
for every y E Y, then we say that f is jinite-dimensional; the smallest n 
with this property will be denoted by IndJ In order to simplify the state- 
ments of the two theorems we are now going to prove, for every finite- 
dimensional mapping f we define 

and 

4.3.9. Vainstein's first theorem. Let f: X -+ Y be a Jinite-dimensional closed 
mapping of a metrizable space X to a metrizable space Y. r f  Ind Y < n 2 0 
and IndD,(f) < n -i for i = 1,2, ... , n+ 1, then IndX < n;  in other 
wofds, IndX < max(1nd Y ,  D(f)}. 

Proof. We shall apply induction with respect to n. If n = 0, we have 
IndD,(f) = - 1, so that Indf = 0 and consequently IndX < n by virtue 
of Theorem 4.3.6. Assume that the theorem holds for all natural numbers 
less than n 2 1 and consider a closed mapping f: X -+ Y which satisfies 
the assumptions of the theorem. 

From Lemma 4.3.7 it follows that Dl(f), D 2 ( f ) ,  ... , D , ( f )  are Fa-sets 
in Y. Applying Lemma 4.3.8 one can easily define (cf. the proof of Prop- 
osition 4.1.14) a 0-locally finite base 33 for the space Y such that for each 
i < n  

D ( f )  = max(IndD,Cf)+i: i = 1,2,  ..., Indf} if Indf2 1 
D ( f )  = -1 if Indf = 0. 

Ind(D,Cf)nFr U) < IndDi(f)- 1 

provided that Di(f) # 0, and that IndFr U < n- 1 for every U E a. 
Consider the restriction fFr : f -l(Fr 17) --f Fr U, where U E a;  clearly, 
D,(~F,u) c D,(f)nFr U. Since IndFr U < n -  1 > 0 and IndDi(fFru) 
< (n - 1)-i for i = 1 ,2 ,  ... , n ,  applying the inductive assumption to 

f F t U  we obtain the inequality Indf -'(Fr U) < n- 1. Hence, by virtue 
of the inclusion Frf-I(U) cf- ' (FrU) we have IndFrf-'(U) < n - 1  
for every U E a. Applying the equality D,+lCf) = 0 and the KatEtov- 
Morita theorem, one readily checks that the covers X = {f -l(y)}yEy 
and = f -I(@ satisfy the conditions of Lemma 4.3.5 with m = n, so 
that IndX < n. [7 

for every U E 33, 

The reader can easily verify that Theorem 4.3.9 is a generalization 
of Theorem 4.3.6. 
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We now pass to Vainstein's second theorem. It will be preceded by two 
lemmas of which the second is an important particular case of the theorem. 

4.3.10. Lemma. I f a  metrizable space X satisfies the inequality IndX < n 2 0, 
then for every Fu-set C c X such that IndC Q n- 1 there exists an Fu-set 
M c X satkfying the conditions 

IndM< 0, Ind(X\M) < n-1 and M n C  = 0 .  

Proof. By the first decomposition theorem X = YuZ, where Ind Y Q n- 1 
and IndZ < 0. Obviously, one can assume that Y = X\Z, and by virtue 
of the enlargement theorem one can assume that Z is a Gd-set in X. Thus 
Y is an &-set and the countable sum theorem yields the inequality Ind(YuC) 
< n- 1. By virtue of the enlargement theorem there exists a Gd-set K c X 
such that YuC c K and IndK < n- 1. One easily checks that the set 
M = X\K satisfies the required conditions. 0 

4.3.11. Lemma (Frendenthal's theorem). Let f: X -+ Y be a closed mapping 
of a metrizable space X onto a metrizable space Y such that Indf -'(y) < 0 
for  every y E Y. I f  IndX< n and -IndC2Cf) < n-1,  then IndY < n ;  in 
other words, IndY < max(IndX, IndC,(f)+ 1). 

Proof. We shall apply induction with respect to n. If n = 0, we have C,(f) 
= 0, so that f is a homeomorphism and IndY = IndX < 0. Assume 
that the theorem holds for all natural numbers less than n >, 1 and con- 
sider a closed mappingf: X +  Y which satisfies the assumptions of the 
theorem. 

By virtue of Theorem 4.3.6 the set C =f-'(C,(f)) satisfies the inequal- 
ity IndC < n- 1. Lemma 4.3.7 implies that C is an Fu-set in X ,  so that 
Lemma 4.3.10 implies that there exists an F,-set M c X such that IndM 

< 0, Ind(X\M) Q n- 1 and M n C  = 0. Let M = u F,, where the 

sets Fi are closed in X.  For i = 1 , 2 , . . . the restriction off to Fi is a homeo- 
morphism of Fi ontof(F,), so that Indf(Fi) < 0. Thus, by the countable 
sum theorem, Indf(M) Q 0. 

Consider an arbitrary pair A ,  B of disjoint closed subsets of Y. From 
Lemma 4.3.8 with k = 2, MI =f(M) and M2 = C,Cf) it follows that 
there exists a partition L between A and B such that Lnf(M) = 0 and 
Ind(LnC2Cf)) < n-2 .  The equality Lnf(M) = 0 implies that f-'(L) 
c X\M, so that Indf -I(L) < n- 1. Consider the restriction f L :  fi'(L) -+ L ;  

m 

i= 1 
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since C,(fL) c LnC2(f), we have IndC2(fL) < n-2, so that by the 
inductive assumption IndL < n - 1. Thus Ind Y < n. I7 

4.3.12. Vaidte'n's second theorem. Let f: X + Y be a finite-dimensional 
closed mapping of a metrizable space X onto a metrizable space Y. If IndX 
< n >  1, IndC2cf)<n-1 andIndD,(f)<n-(i+1) for i =  1 ,2 , . . . , n ,  
then Ind Y < n ; in other words, Ind Y < max (IndX, Ind C,cf> + 1 , Dcf)  + 1 >. 

Proof. We shall apply induction with respect to n. I f n  = 1, we have IndD,Cf) 
= - 1, so that Indf = 0 and the theorem reduces to Lemma 4.3.1 1. Assume 
that the theorem holds for all natural numbers less than n > 2 and con- 
sider a closed mapping f: X +  Y which satisfies the assumption of the 
theorem. 

By virtue of Theorem 4.3.9 the set C = f -l(C2(f)) satisfies the inequality 
IndC < n- 1. Hence from Lemmas 4.3.7 and 4.3.10 it follows that there 
exists an F,-set M c X such that IndM < 0, Ind(X\M) < n- 1 and 
MnC = 0; by the countable sum theorem Indf(M) < 0. 

Consider an arbitrary pair A ,  B of disjoint closed subsets of Y. From 
Lemma 4.3.8 with k = n + l ,  Mi = D i ( f )  for i = 1,2, ..., n-1, M, 
= f ( M )  and M,,, = C, ( f )  it folfows that there exists a partition L between 
A and B such that Lnf(M) = 0, Ind(C,(f)hL) < n-2 and for each 
i < n - 1  

Ind(Di(f)nL) < IndDiCf)- 1 , 

provided that D l ( f )  # 0. The equality L n f ( M )  = 0 implies that Indf-l(L) 
< n- 1. Consider the restriction f L :  f -l(L) + L; since C,(fL) c C,(f)nL 
andD,(fL) c D , ( f ) n L f o r i =  l , 2 , . . . , n - I y  wehaveIndC,(fL)<n-2 
and IndDtCfL) < (n - l ) - ( i+ l )  for i = 1 ,2 ,  ..., n-1, so that by the 
inductive assumption IndL < n - 1. Thus Ind Y < n. [7 

To conclude, we shall state an important theorem which permits us 
to generalize part of the results obtained in this section to the case of a closed 
mapping f of a normal space X onto a normal space Y. The proof of this 
theorem is too complicated to be reproduced in this book; it involves 
a construction similar to but much more elaborate than the construction 
used in the proof of Theorem 3.3.2. The symbol rdyA which appears 
below denotes the relative dimension of a subspace A of a normal space Y 
with respect to Y, i.e., the smallest integer n such that dim2 < n for every 
closed subspace Z of the space Y contained in A .  

Thus, one proves that 
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(F) For every closed mappingf: X + Y of a normal space X onto a normal 
space Y with dim Y < 00 there exist compact metrizable spaces Xo , Yo 
and a closed mapping fo of X o  onto Yo such that dimXo = dimX, dim Yo 
= dimY and dimCk(fO) < rdyCkCf) for k = 1 , 2, ... If, moreover, the 
space Y is weakly paracompact, then dimDkCfo) < rdyDku)  for k 
= 1,2,.... 

Let us note that the assumption of weak paracompactness in the second 
part of (F) cannot be omitted. Indeed, one can define a closed mapping f 
of a normal space X onto a normal space Y such that dimX = 1, dimY = 0 
and dimf -'@) = 0 for every y E Y. 

Historical and bibliographic notes 

Theorem 4.3.3 was given by Morita in [1955]; Theorem 4.3.6 was proved 
independently by Morita in [1956] and by Nagami in [1957]. Theorems 
4.3.9 and 4.3.12 were established by Vaingtein in [1952] for separable X 
and Y. Extensions to arbitrary metrizable spaces were given by Skljarenko 
in [1962] and [1963]. Lemma 4.3.11 was proved by Freudenthal in [1932]. 
As shown by Lelek in [1971], from Vain3tein's theorems many further 
results about the behaviour of dimension under mappings can be deduced. 
Lelek's paper gives a comprehensive survey of the topic considered in 
this section and provides a good bibliography. Theorem (F) stated at the 
end of the section as well as the example cited after this theorem were 
given by Filippov in [1972a]. As we have already noted, Filippov's theorem 
leads to extensions of the results obtained in this section to larger classes 
of spaces. Some of these extensions were obtained earIier in the above- 
mentioned papers by Morita, Nagami and Skljarenko. 

Problems 

4.3.A (Suzuki [1959]). Prove that if f: X + Y is a closed mapping 
of a metrizable space X onto a metrizable space Y and If-'QI = k < 00 

for every y E Y, then IndX = IndY. 
Hint. See the hint to Problem 1.12.A. 

4.3.B. (a) Following the pattern in Section 1.9, prove that for every 
continuous mappingf: A --f S" defined on a closed subspace A of metri- 
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zable space X such that Ind(X\A) < n 2 0 there exists a continuous 
extension F: X -+ S" off over X (cf. Problem 2.2.B). 

(b) Deduce from (a), Theorem 4.1.3 and Remarks 1.7.10 and 1.9.4 
that a metrizable space X satisfies the inequality IndX < n >, 0 if and 
only if for every closed subspace A of the space X and each continuous 
mapping f: A -+ S" there exists a continuous extension F:  X -+ S" off  
over X.  

4.3.C (Morita [1955]). Prove that a metrizable space X satisfies the 
inequality dimX < n if and only if there exists a closed mapping f: Z + X 
of a subspace Z of the Baire space B(rn), where m = w(X), onto the space 
X with fibres of cardinality at most n +  1. 

Hint. For a metrizable space X with dimX< n consider a sequence 
Fl, F2, ... of locally finite closed covers satisfying the conditions in 
Problem 4.2.B(b) and such that IFil < rn for i = 1 , 2, . .. Define a mapping 

of Fi+l to Pi such that F c ni+'(F) for every F E F ~ + ~ ,  let nj 
= n$+1n$:4 ... ni-l for j < i and ni = ids,. Consider the inverse sequence 
S = {Fi, n;}, where has the discrete topology. Note that S = l@S 
is a subspace of B(m) and consider the subspace Z of S consisting of all 

00 

sequences { F i }  E S such that n Fi # 0; show that the last intersection 
i = l  

contains exactly one point of the space X and assign this point to the se- 
quence {F i } .  Prove that the mapping f: 2 -+ X obtained in this way has 
all the required properties. When proving that f ( 2 )  = X apply the fact 
that the limit of an inverse sequence consisting of finite discrete spaces 
is nonempty. When proving that f is closed apply the equality f - ' ( x )  

00 

= Zn I7 {F E Fi: x E F }  and show that for every open set U c Z which 
i= 1 

contains f -l(x) there exists a neighbourhood V c X of the point x such 
that f -'(v> c U. 

4.3.D (Nagami [ 19601). Prove the KatEtov-Morita theorem by applying 
only Theorems 1.6. I 1, 4.1.13 and 3,1.28 and the facts established in Prob- 
lems 4.3.A and 4.3.C. 

Hint. Applying 4.3.A, deduce from 4.3.C that every metrizable space X 
which satisfies the inequality dimX< n can be represented as the union 
of n + l  subspaces Z, , Z,, ..., Z,+, such that dim2, < 0 for i = 1 ,2 ,  ... 
... . n t  1 .  
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4.3.E. (a) (Hodel [19631) Show that iff: X +. Y is an open mapping 
of a metrizable space X onto a metrizable space Y such that for every y E Y 
the fibre f - ' Q  is a discrete subspace of X ,  then IndX < IndY. 

Hint. Apply Lemma 1.12.5. 
(b) (Nagami [1960]) Show that iff: X --+ Y is an open mapping of a metri- 

zable space Xonto a metrizable space Y such that If-lQI < No for every 
y E Y, then IndX = IndY. 

(c) (Hodel [1963]) Show that iff: X +. Y is an open-and-closed mapping 
of a metrizable space X onto a metrizable space Y such that for every y E Y 
the fibre f - ' b )  has an isolated point, then IndY < IndX. 

Remark. As shown by R. Pol in [1979], in the realm of metrizable 
spaces there exist open mappings with discrete fibres which raise di- 
mensions (cf. Theorem 1.12.7). 

(d) (Hodel [1963]) Show that iff: X +. Y is an open mapping of a lo- 
cally compact metrizable space X onto a metrizable space Y such that 
lf-'(y)I < KO for every y E Y, then IndX = IndY. 

(e) (Arhangel'ski' [1966]) Show that iff: X +. Y is an open-and-closed 
mapping of a metrizable space X onto a metrizable space Y such that 
If-'(y)l < KO for every y E Y, then IndX = IndY. 
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Symbols from set theory and general topology 

x E A ,  x $ A - x belongs to  A ,  x does not belong to A 
0 -empty set 
A c B,  B 3 A - A is contained in B 
{ x  E X :  p(x)} ,  { x :  p (x ) }  - the set of x's which satisfy p 

A u B ,  u A,, u Ai ,  u d - union of sets 

AnB, 

A\B - difference of sets 

Xx Y, n X , ,  n Xi -Cartesian product of sets and spaces 

{ x I , x z ,  ..., xk) - set consisiting of points xi ,  xl,  ..., xk 
x l , x Z ,  ..., { x , } -  infinite sequence 
{ x , ,  x2,  . ..} -set consisting of points x l ,  x2, . .. 

f (A) ,  f-'(B) - image and inverse image of a set under a mapping 
gf - composition of mappings 
IAI -cardinality of a set 
so - cardinality of the set of natural numbers (aleph zero) 

m 

S E S  I=1  
00 

A,, n A t .  n & - intersection of sets 
seS i = 1  

m 

S O S  i = 1  

100 
100 
101 
102 
103 
I18 
118 
122 
167 
175 
241 
263 
281 
283 



308 List of special symbols 

c -cardinality of the set of real numbers (continuum) 
A,, At ,  ..., A,, ..., a < 
R, I -  the real line and the closed unit interval 
R" - Euclidean n-space 
I"-unit n-cube in RE 
P - I ,  Bn - unit (n- 1)-sphere and unit n-ball in Bn 
1 x 0  - Hilbert cube 
e(x, y)  - distance between points 
e(x,  A) - distance from a point to a set 
e (A ,  B )  - distance between sets 
B(x, r), B(A, r) - balls in a metric space 
6(A) -diameter of a set 
f: X -+ Y -  continuous mapping 

fB -restrictions of a mapping 
A, IntA, FrA - closure, interior and boundary of a set 
Ad-set of accumulation points of a set 
Xm-Cartesian power of a space 
XJE - quotient space 
{X! ,  nj}, {&, n:, Z} - inverse sequence and inverse system of spaces 
1 s  -limit of an inverse sequence or an inverse system 

- transfinite sequence of sets 

X @  Y, €i3 X, - sum of spaces 

J?X - Cech-Stone compactiiication 
SES 
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