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Preface

Algebraic topology is the interplay between “continuous” and “discrete” mathe-
matics. Continuous mathematics is formulated in its general form in the language
of topological spaces and continuous maps. Discrete mathematics is used to express
the concepts of algebra and combinatorics. In mathematical language: we use the
real numbers to conceptualize continuous forms and we model these forms with the
use of the integers. For example, our intuitive idea of time supposes a continuous
process without gaps, an unceasing succession of moments. But in practice we
use discrete models, machines or natural processes which we define to be periodic.
Likewise we conceive of a space as a continuum but we model that space as a set
of discrete forms. Thus the essence of time and space is of a topological nature but
algebraic topology allows their realizations to be of an algebraic nature.

Classical algebraic topology consists in the construction and use of functors
from some category of topological spaces into an algebraic category, say of groups.
But one can also postulate that global qualitative geometry is itself of an algebraic
nature. Consequently there are two important view points from which one can study
algebraic topology: homology and homotopy.

Homology, invented by Henri Poincaré, is without doubt one of the most inge-
nious and influential inventions in mathematics. The basic idea of homology is that
we start with a geometric object (a space) which is given by combinatorial data (a
simplicial complex). Then the linear algebra and boundary relations determined by
these data are used to produce homology groups.

In this book, the chapters on singular homology, homology, homological algebra
and cellular homology constitute an introduction to homology theory (construction,
axiomatic analysis, classical applications). The chapters require a parallel reading –
this indicates the complexity of the material which does not have a simple intuitive
explanation. If one knows or accepts some results about manifolds, one should read
the construction of bordism homology. It appears in the final chapter but offers a
simple explanation of the idea of homology.

The second aspect of algebraic topology, homotopy theory, begins again with the
construction of functors from topology to algebra. But this approach is important
from another view point. Homotopy theory shows that the category of topological
spaces has itself a kind of (hidden) algebraic structure. This becomes immediately
clear in the introductory chapters on the fundamental group and covering space
theory. The study of algebraic topology is often begun with these topics. The
notions of fibration and cofibration, which are at first sight of a technical nature,
are used to indicate that an arbitrary continuous map has something like a kernel
and a cokernel – the beginning of the internal algebraic structure of topology. (The
chapter on homotopy groups, which is essential to this book, should also be studied
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for its applications beyond our present study.) In the ensuing chapter on duality
the analogy to algebra becomes clearer: For a suitable class of spaces there exists
a duality theory which resembles formally the duality between a vector space and
its dual space.

The first main theorem of algebraic topology is the Brouwer–Hopf degree the-
orem. We prove this theorem by elementary methods from homotopy theory. It is
a fairly direct consequence of the Blakers–Massey excision theorem for which we
present the elementary proof of Dieter Puppe. Later we indicate proofs of the de-
gree theorem based on homology and then on differential topology. It is absolutely
essential to understand this theorem from these three view points. The theorem
says that the set of self-maps of a positive dimensional sphere under the homotopy
relation has the structure of a (homotopically defined) ring – and this ring is the
ring of integers.

The second part of the book develops further theoretical concepts (like coho-
mology) and presents more advanced applications to manifolds, bundles, homotopy
theory, characteristic classes and bordism theory. The reader is strongly urged to
read the introduction to each of the chapters in order to obtain more coherent infor-
mation about the contents of the book.

Words in boldface italic are defined at the place where they appear even if there
is no indication of a formal definition. In addition, there is a list of standard or global
symbols. The problem sections contain exercises, examples, counter-examples and
further results, and also sometimes ask the reader to extend concepts in further
detail. It is not assumed that all of the problems will be completely worked out, but
it is strongly recommended that they all be read. Also, the reader will find some
familiarity with the full bibliography, not just the references cited in the text, to be
crucial for further studies. More background material about spaces and manifolds
may, at least for a while, be obtained from the author’s home page.

I would like to thank Irene Zimmermann and Manfred Karbe for their help and
effort in preparing the manuscript for publication.

Göttingen, September 2008 Tammo tom Dieck
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Chapter 1

Topological Spaces

In this chapter we collect the basic terminology about topological spaces and some
elementary results (without proofs). I assume that the reader has some experience
with point-set topology including the notion of compactness. We introduce a num-
ber of examples and standard spaces that will be used throughout the book. Perhaps
the reader has not met quotient spaces. Quotient spaces give precision to the in-
tuitive concept of gluing and pasting. They comprise adjunction spaces, pushouts,
attaching of spaces (in particular cells), orbit spaces of group actions. In the main
text we deal with other topics: Mapping spaces and compact open topology, bun-
dles, cell complexes, manifolds, partitions of unity, compactly generated spaces.

Transformation groups are another topic of this chapter. Whenever you study a
mathematical object you should consider its symmetries. In topology one uses, of
course, continuous symmetries. They are called actions of a topological group on
a space or transformation groups. In this chapter we assemble notions and results
about the general topology of transformation groups. We use the material later for
several purposes:

• Important spaces like spheres, projective spaces and Grassmann manifolds
have a high degree of symmetry which comes from linear algebra (matrix
multiplication).

• The fundamental group of a space has a somewhat formal definition. In the
theory of covering spaces the fundamental group is exhibited as a symmetry
group. This “hidden” symmetry, which is associated to a space, will influence
several other of its geometric investigations.

• The theory of fibre bundles and vector bundles makes essential use of the
concept of a transformation group. Important information about a manifold
is codified in its tangent bundle. We will apply the tools of algebraic topology
to bundles (characteristic classes; classifying spaces).

We should point out that large parts of algebraic topology can be generalized
to the setting of transformation groups (equivariant topology). At a few occasions
later we point out such generalizations.

1.1 Basic Notions

A topology on a setX is a set O of subsets ofX , called open sets, with the properties:
(1) The union of an arbitrary family of open sets is open. (2) The intersection of a
finite family of open sets is open. (3) The empty set; andX are open. A topological
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space .X;O/ consists of a setX and a topology O onX . The sets in O are the open
sets of the topological space .X;O/. We usually denote a topological space just by
the underlying setX . A set A � X is closed in .X;O/ if the complementX XA is
open in .X;O/. Closed sets have properties dual to (1)–(3): The intersection of an
arbitrary family of closed sets is closed; the union of a finite family of closed sets
is closed; the empty set ; and X are closed. A subset B of a topology O is a basis
of O if each U 2 O is a union of elements of B. (The empty set is the union of the
empty family.) A subset S of O is a subbasis of O if the set of finite intersections
of elements in S is a basis of O. (The space X is the intersection of the empty
family.)

A map f W X ! Y between topological spaces is continuous if the pre-image
f �1.V / of each open set V of Y is open in X . Dually: A map is continuous
if the pre-image of each closed set is closed. The identity id.X/ W X ! X is
always continuous, and the composition of continuous maps is continuous. Hence
topological spaces and continuous maps form a category. We denote it by TOP.
A homeomorphism f W X ! Y is a continuous map with a continuous inverse
g W Y ! X . Spaces X and Y are homeomorphic if there exists a homeomorphism
between them. A map f W X ! Y between topological spaces is open (closed) if
the image of each open (closed) set is again open (closed).

In the sequel we assume that a map between topological spaces is continuous
if nothing else is specified or obvious. A set map is a map which is not assumed to
be continuous at the outset.

We fix a topological space X and a subset A. The intersection of the closed
sets which contain A is denoted xA and called closure of A in X . A set A is dense
in X if xA D X . The interior of A is the union of the open sets contained in A.
We denote the interior by Aı. A point in Aı is an interior point of A. A subset is
nowhere dense if the interior of its closure is empty. The boundary of A in X is
Bd.A/ D xA \ .X X A/.

An open subsetU ofX which containsA is an open neighbourhood ofA inX .
A setB is a neighbourhood ofA if it contains an open neighbourhood. A system of
neighbourhoods of the point x is a neighbourhood basis of x if each neighbourhood
of x contains one of the system.

Given two topological spacesX and Y , a map f W X ! Y is said to be continu-
ousat x 2 X if for each neighbourhoodV off .x/ there exists a neighbourhoodU of
x such that f .U / � V ; it suffices to consider a neighbourhood basis of x and f .x/.

Suppose O1 and O2 are topologies on X . If O1 � O2, then O2 is finer than
O1 and O1 coarser than O2. The topology O2 is finer than O1 if and only if the
identity .X;O2/! .X;O1/ is continuous. The set of all subsets of X is the finest
topology; it is the discrete topology and the resulting space a discrete space. All
maps f W X ! Y from a discrete space X are continuous. The coarsest topology
on X consists of ; and X alone. If .Oj j j 2 J / is a family of topologies on X ,
then their intersection is a topology.
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We list some properties which a space X may have.
(T1) One-point subspaces are closed.
(T2) Any two points have disjoint neighbourhoods.
(T3) Given a point x 2 X and a closed subsetA � X not containing x, there exist

disjoint neighbourhoods U of x and V of A.
(T4) Any two disjoint closed subsets have disjoint neighbourhoods.

We say X satisfies the separation axiom Tj (orX is a Tj -space), ifX has property
Tj . The separation axioms are of a technical nature, but they serve the purpose of
clarifying the concepts.

A T2-space is called a Hausdorff space or separated. A space satisfying T1
and T3 is said to be regular. A space satisfying T1 and T4 is called normal. In
a regular space, each neighbourhood of a point contains a closed neighbourhood.
A space X is called completely regular if it is separated and for each x 2 X and
; 6D A � X closed, x … A, there exists a continuous function f W X ! Œ0; 1� such
that f .x/ D 1 and f .A/ D f0g.

A remarkable consequence of the separation property T4 is the existence of
many real-valued continuous functions. The Urysohn existence theorem (1.1.1)
shows that normal spaces are completely regular.

(1.1.1) Theorem (Urysohn). Let X be a T4-space and suppose that A and B are
disjoint closed subsets ofX . Then there exists a continuous function f W X ! Œ0; 1�

with f .A/ � f0g and f .B/ � f1g. �

(1.1.2) Theorem (Tietze). Let X be a T4-space and A � X closed. Then each
continuous map f W A! Œ0; 1� has a continuous extension f W X ! Œ0; 1�.

A continuous map f W A ! Rn from a closed subset A of a T4-space X has a
continuous extension to X . �

Many examples of topological spaces arise from metric spaces. Metric spaces
are important in their own right. A metric d on a setX is a map d W X�X ! Œ0;1Œ
with the properties:

(1) d.x; y/ D 0 if and only if x D y.
(2) d.x; y/ D d.y; x/ for all x; y 2 X .
(3) d.x; z/ � d.x; y/C d.y; z/ for all x; y; z 2 X (triangle inequality).

We call d.x; y/ the distance between x and y with respect to the metric d . A metric
space .X; d/ consists of a set X and a metric d on X .

Let .X; d/ be a metric space. The set U".x/ D fy 2 X j d.x; y/ < "g is
the "-neighbourhood of x. We call U � X open with respect to d if for each
x 2 X there exists " > 0 such thatU".x/ � U . The system Od of subsetsU which
are open with respect to d is a topology on X , the underlying topology of the
metric space, and the "-neighbourhoods of all points are a basis for this topology.
Subsets of the form U".x/ are open with respect to d . For the proof, let y 2 U".x/
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and 0 < � < " � d.x; y/. Then, by the triangle inequality, U�.y/ � U".x/. A
space .X;O/ is metrizable if there exists a metric d on X such that O D Od .
Metrizable spaces have countable neighbourhood bases of points: Take the U".x/
with rational ". A set U is a neighbourhood of x if and only if there exists an
" > 0 such that U".x/ � U . For metric spaces our definition of continuity is
equivalent to the familiar definition of calculus: A map f W X ! Y between
metric spaces is continuous at a 2 X if for each " > 0 there exists ı > 0 such that
d.a; x/ < ı impliesd.f .a/; f .x// < ". Continuity only depends on the underlying
topology. But a metric is a finer and more rigid structure; one can compare the size
of neighbourhoods of different points and one can define uniform continuity. A
map f W .X; d1/ ! .Y; d2/ between metric spaces is uniformly continuous if for
each " > 0 there exists ı > 0 such that d1.x; y/ < ı implies d2.f .x/; f .y// < ".
A sequence fn W X ! Y of maps into a metric space .Y; d/ converges uniformly
to f W X ! Y if for each " > 0 there exists N such that for n > N and x 2 X
the inequality d.f .x/; fn.x// < " holds. If the fn are continuous functions from a
topological spaceX which converge uniformly to f , then one shows as in calculus
that f is continuous.

A set A in a metric space .X; d/ is bounded if fd.x; y/ j x; y 2 Ag is bounded
in R. The supremum of the latter set is then the diameter ofA. We define d.x;A/ D
inffd.x; a/ j a 2 Ag as the distance of x from A 6D ;. The relation jd.x;A/ �
d.y;A/j � d.x;A/ shows that the map X ! R, x 7! d.x;A/ is uniformly
continuous. The relation d.x;A/ D 0 is equivalent to x 2 xA.

If A and B are disjoint, non-empty, closed sets in X , then

f W X ! Œ0; 1�; x 7! d.x;A/.d.x; A/C d.x; B//�1

is a continuous function with f .A/ D f0g and f .B/ D f1g. Let 0 < a < b < 1.
Then Œ0; aŒ and �b; 1� are open in Œ0; 1�, and their pre-images under f are disjoint
open neighbourhoods of A and B . Hence a metric space is normal.

A directed set .I;�/ consists of a set I and a relation� on I such that: (1) i � i
for all i 2 I . (2) i � j , j � k implies i � k. (3) For each pair i; j 2 I there
exists k 2 I such that i � k, j � k. We also write j � i for i � j . The set N
with the usual order is directed. The set U.x/ of neighbourhoods of x is directed
by U � V , V � U .

A net with directed index set I inX is a map I ! X , i 7! xi . We write .xi /i2I
or just .xi / for such a net. A net .xi / in a topological space X converges to x,
notation x D lim xi , provided for each neighbourhood U of x there exists i 2 I
such that xj 2 U for j � i . If one chooses from each U 2 U.x/ a point xU , then
the net .xU / with index set U.x/ converges to x. A point x is an accumulation
value of the net .xi /i2I if for each neighbourhood U of x and each i 2 I there
exists j � i such that xj 2 U . Let I and J be directed sets. A map h W I ! J

is final if for each j 2 J there exists i 2 I such that h.i/ � j . A subnet of a net
.xj /j2J is a net of the form i 7! xh.i/ with a final map h W I ! J . If a subnet of
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.xj /j2J converges to z, then z is an accumulation value. Each accumulation value
is a convergence point of a subnet.

Let .xj /j2J be a net in X . For j 2 J let F.j / be the closure of fxk j k � j g.
Then F DTj2J F.j / is the set of accumulation values of the net.

1.2 Subspaces. Quotient Spaces

It is a classical idea and method to define geometric objects (spaces) as subsets of
Euclidean spaces, e.g., as solution sets of a system of equations. But it is important
to observe that such objects have “absolute” properties which are independent of
their position in the ambient space. In the topological context this absolute property
is the subspace topology.

Let .X;O/ be a topological space and A � X a subset. Then

OjA D fU � A j there exists V 2 O with U D A \ V g

is a topology on A. It is called the induced topology, the subspace topology, or the
relative topology. The space .A;OjA/ is called a subspace of .X;O/; we usually
say: A is a subspace ofX . A continuous map f W .Y;S/! .X;O/ is an embedding
if it is injective and .Y;S/ ! .f .Y /;Ojf .Y //, y 7! f .y/ a homeomorphism.
From the definition one verifies:

LetA be a subspace ofX . Then the inclusion i W A! X , a 7! a is continuous.
Let Y be a space and f W Y ! X a set map with f .Y / � A. Then f is continuous
if and only if ' W Y ! A, y 7! f .y/ is continuous.

(1.2.1) Proposition. Let i W Y ! X be an injective set map between spaces. The
following are equivalent:

(1) i is an embedding.

(2) A set map g W Z ! Y from any topological spaceZ is continuous if and only
if ig W Z ! X is continuous. �

Property (2) characterizes embeddings i in categorical terms. We call this
property the universal property of an embedding.

SupposeA � B � X are subspaces. IfA is closed inB andB closed inX , then
A is closed in X . Similarly for open subspaces. But in general, an open (closed)
subset of B must not be open (closed) in X . The next proposition will be used
many times without further reference.

(1.2.2) Proposition. Let f W X ! Y be a set map between topological spaces and
let X be the union of the subsets .Xj j j 2 J /. If the Xj are open and the maps
fj D f jXj continuous, then f is continuous. A similar assertion holds if the Xj
are closed and J is finite. �
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A subsetA of a spaceX is a retract ofX if there exists a retraction r W X ! A,
i.e., a continuous map r W X ! A such that r jA D id.A/. A continuous map
s W B ! E is a section of the continuous map p W E ! B if ps D id.B/. In that
case s is an embedding onto its image.

In geometric and algebraic topology many of the important spaces are con-
structed as quotient spaces. They are obtained from a given space by an equivalence
relation. Although the quotient topology is easily defined, formally, it takes some
time to work with it. In several branches of mathematics quotient objects are more
difficult to handle than subobjects. Even if one starts with a nice and well-known
space, its quotient spaces may have strange properties; usually one has to add a
number of hypotheses in order to exclude unwanted phenomena. Quotient spaces
do not, in general, inherit desirable properties from the original space.

Let X be a topological space and f W X ! Y a surjective map onto a set Y .
Then S D fU � Y j f �1.U / open in Xg is a topology on Y . This is the finest
topology on Y such that f is continuous. We call S the quotient topology on Y
with respect to f . A surjective map f W X ! Y between topological spaces is
called an identification or quotient map if it has the following property: U � Y
open, f �1.U / � X open. If f W X ! Y is a quotient map, then Y is called a
quotient space of X .

We recall that a surjective map f W X ! Y is essentially the same thing as an
equivalence relation onX . IfR is an equivalence relation onX , thenX=R denotes
the set of equivalence classes. The canonical map p W X ! X=R assigns to x 2 X
its equivalence class. If f W X ! Y is surjective, then x � y , f .x/ D f .y/ is
an equivalence relation Rf on X . There is a canonical bijection ' W X=Rf ! Y

such that 'p D f . The quotient spaceX=R is defined to be the set X=R together
with the quotient topology of the canonical map p W X ! X=R.

If A � X , we denote1 by X=A the space obtained from X by identifying A to
a point. In the case that A D ;, we understand by this symbol A together with a
disjoint point (topological sum (1.3.4)).

(1.2.3) Proposition. Let f W X ! Y be a surjective map between spaces. The
following are equivalent:

(1) f is a quotient map.

(2) A set map g W Y ! Z into any topological space Z is continuous if and only
if gf W X ! Z is continuous. �

Property (2) characterizes quotient maps f in categorical terms. We call this
property the universal property of a quotient map.

A subset ofX is saturated with respect to an equivalence relation if it is a union
of equivalence classes.

Let j W A � X be an inclusion and f W A! Y a continuous map. We identify in
the topological sumXCY for each a 2 A the point a 2 X with the point f .a/ 2 Y ,

1A similar notation is used for factor groups and orbit spaces.
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i.e., we consider the equivalence relation on the topological sum (1.3.4)XCY with
equivalence classes fzg for z 62 AC f .A/ and f �1.z/C fzg for z 2 f .A/. The
quotient spaceZ is sometimes denoted by Y [f X and called the adjunction space
obtained by attaching X via f to Y . The canonical inclusions X ! X C Y and
Y ! X C Y induce maps F W X ! Y [f X and J W Y ! Y [f X . The diagram

A
f

��

j
��

Y

J
��

X
F �� Z D Y [f X

is a pushout in TOP. If j is an embedding, then J is an embedding.

(1.2.4) Proposition. Let j be a closed embedding. Then the data of the pushout
have the following properties:

(1) J is a closed embedding.

(2) F restricted to X X A is an open embedding.

(3) If X , Y are T1-spaces (T4-spaces), then Y [f X is a T1-space (T4-space).
(4) If f is a quotient map, then F is a quotient map. �

Because of (1) and (2) we identify X X A with the open subspace F.X X A/
and Y with the closed subspace J.Y /. In this sense, Y [f X is the union of the
disjoint subsets X X A and Y .

(1.2.5) Proposition. The space Y [f X is a Hausdorff space, provided the fol-
lowing holds: Y is a Hausdorff space, X is regular, and A is a retract of an open
neighbourhood in X . �

Problems

1. Let f W X ! Y and g W Y ! Z be continuous maps. If f and g are embeddings, then
gf is an embedding. If gf and g are embeddings, then g is an embedding. If gf D id, then
f is an embedding. An embedding is open (closed) if and only if its image is open (closed).
If f W X ! Y is a homeomorphism and A � X , then the map A! f .A/, induced by f , is
a homeomorphism.
2. Let f W X ! Y be a quotient map. Let B be open or closed in Y and set A D f �1.B/.
Then the restriction g W A! B of f is a quotient map.
3. Let f W X ! Y be surjective, continuous and open (or closed). Then f is a quotient map.
The restriction fB W f �1.B/ ! B is open (or closed) for each B � Y , hence a quotient
map.
4. The exponential map exp W C ! C� D C X f0g is open. Similarly p W R ! S1,
t 7! exp.2�it/ is open. The kernel of p is Z. Let q W R ! R=Z be the quotient map
onto the factor group. There is a bijective map ˛ W R=Z ! S1 which satisfies ˛ ı q D p.
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Since p and q are quotient maps, ˛ is a homeomorphism. The continuous periodic functions
f W R! R; f .x C 1/ D f .x/ therefore correspond to continuous maps R=Z! R and to
continuous maps S1 ! R via composition with q or p. In a similar manner one obtains a
homeomorphism C=Z Š C�.
5. Let f W A! B and g W B ! C be continuous. If f and g are quotient maps, then gf is
a quotient map. If gf is a quotient map, then g is a quotient map. If gf D id, then g is a
quotient map.

1.3 Products and Sums

Let ..Xj ;Oj / j j 2 J / be a family of topological spaces. The product set X DQ
j2J Xj is the set of all families .xj j j 2 J / with xj 2 Xj . We have the

projection pri W X ! Xi , .xj / 7! xi into the i -th factor. Let Xj ; Yj be topological
spaces and fj W Xj ! Yj maps. The product map

Q
fj W QXj !Q

Yj is defined
as .xj j j 2 J / 7! .fj .xj / j j 2 J /. Given maps fj W Y ! Xj we denote by
.fj / D .fj j j 2 J / W Y !Q

j Xj the map with components pri ı.fj / D fi .
The family of all pre-images pr�1

j .Uj /, Uj � Xj open in Xj (for varying j ),
is the subbasis for the product topology O on X . We call .X;O/ the topological
product of the spaces .Xj ;Oj /. The next proposition shows that X D Q

Xj
together with the projections prj is a categorical product of the family .Xj / in the
category TOP. Note that for infinite J , open sets in the product are quite large; a
product

Q
Uj , Uj � Xj open, is then in general not an open subset of

Q
Xj .

(1.3.1) Proposition. The product topology is the coarsest topology for which all
projections prj are continuous. A set map f W Y ! X from a space Y into X is
continuous if and only if all maps prj ıf are continuous. The product f DQj fj
of continuous maps fj W Xj ! Yj is continuous. �

The product ofX1; X2 is denotedX1�X2, and we use f1�f2 for the product of
maps. The “identity” id W X1� .X2�X3/! .X1�X2/�X3 is a homeomorphism.
In general, the topological product is associative, i.e., compatible with arbitrary
bracketing. The canonical identification Rk � Rl D RkCl is a homeomorphism.

1.3.2 Pullback. Let f W X ! B and g W Y ! B be continuous maps. Let
Z D f.x; y/ 2 X � Y j f .x/ D g.y/g with the subspace topology of X � Y . We
have the projections onto the factorsF W Z ! Y andG W Z ! X . The commutative
diagram

Z
F ��

G
��

Y
g
��

X
f

�� B

is a pullback in TOP. The spaceZ is sometimes writtenZ D X�B Y and called the
product of X and Y over B (the product in the category TOPB of spaces over B).
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Pullbacks allow one to convert liftings into sections. Let i W A � X and a W A!
Y such that ga D f jA is given. The assignment .� W X ! Z/ 7! .F ı� W X ! Y /

sets up a bijection between sections of G with F� jA D a and maps ' W X ! Y

such that 'jA D a and g' D f . Þ

(1.3.3) Proposition. Let f W X ! Y be surjective, continuous, and open. Then Y
is separated if and only ifR D f.x1; x2/ j f .x1/ D f .x2/g is closed inX �X . �

Let .Xj j j 2 J / be a family of non-empty pairwise disjoint spaces. The set
O D fU � qXj j U \ Xj � Xj open for all j g is a topology on the disjoint
union qXj . We call .qXj ;O/ the topological sum of the Xj . A sum of two
spaces is denoted X1 C X2. The following assertions are easily verified from
the definitions. They show that the topological sum together with the canonical
inclusions Xj ! qXj is a categorical sum in TOP. Given maps fj W Xj ! Z we
denote by hfj i W qXj ! Z the map with restriction fj to Xj .

(1.3.4) Proposition. A topological sum has the following properties: The subspace
topology ofXj inqXj is the original topology. Let the spaceX be the union of the
family .Xj j j 2 J / of pairwise disjoint subsets. Then X is the topological sum of
the subspaces Xj if and only if the Xj are open. f W q Xj ! Y is continuous if
each f jXj W Xj ! Y is continuous. �

1.3.5 Pushout. Let j W A ! X and f W A ! B be continuous maps and form a
pushout diagram

A
f

��

j
��

B

J
��

X
F �� Y

in the category SET of sets. Then Y is obtainable as a quotient of X CB . We give
Y the quotient topology via hF; J i W X C B ! Y . Then the resulting diagram is
a pushout in TOP. The space Y is sometimes written X CA B and called the sum
of X and B under A (the sum in the category TOPA of spaces under A). Þ

1.3.6 Clutching. An important method for the construction of spaces is to “paste”
open subsets; see the example (1.3.8) for the simplest case. Let .Uj j j 2 J / be a
family of sets. Assume that for each pair .i; j / 2 J � J a subset U ji � Ui is given

as well as a bijection gji W U ji ! U ij . We call the families .Uj ; U kj ; g
k
j / a clutching

datum if:
(1) Uj D U jj and gjj D id.

(2) For each triple .i; j; k/ 2 J � J � J the map gji induces a bijection

g
j
i W U ji \ U ki ! U ij \ U kj



10 Chapter 1. Topological Spaces

and gkj ı gji D gki holds, considered as maps from U
j
i \ U ki to U j

k
\ U i

k
.

Given a clutching datum, we have an equivalence relation on the disjoint sum
qj2JUj :

x 2 Ui � y 2 Uj , x 2 U ji and gji .x/ D y:
Let X denote the set of equivalence classes and let hi W Ui ! X be the map which
sends x 2 Ui to its class. Then hi is injective. Set U.i/ D image hi , then
U.i/ \ U.j / D hi .U ji /.

Conversely, assume thatX is a quotient ofqj2JUj such that each hi W Ui ! X

is injective with image U.i/. Let U ji D h�1
i .U.i/ \ U.j // and gji D h�1

j ı
hi W U ji ! U ij . Then the .Ui ; U

j
i ; g

j
i / are a clutching datum. If we apply the

construction above to this datum, we get back X and the hi . Þ

(1.3.7) Proposition. Let .Ui ; U
j
i ; g

j
i / be a clutching datum. Assume that the Ui

are topological spaces, the U ji � Ui open subsets, and the gji W U ji ! U ij homeo-
morphisms. Let X carry the quotient topology with respect to the quotient map
p W qj2J Uj ! X . Then the following holds:

(1) The map hi is a homeomorphism onto an open subset of X and p is open.

(2) Suppose the Ui are Hausdorff spaces. Then X is a Hausdorff space if and
only if for each pair .i; j / the map �ji W U ji ! Ui � Uj , x 7! .x; g

j
i .x// is

a closed embedding. �

1.3.8 Euclidean space with two origins. The simplest case is obtained from
open subsets Vj � Uj , j D 1; 2, and a homeomorphism ' W V1 ! V2. Then
X D U1 [' U2 is obtained from the topological sum U1 C U2 by identifying
v 2 V1 with '.v/ 2 V2. Let U1 D U2 D Rn and V1 D V2 D Rn X 0. Let ' D id.
Then the graph of ' in Rn�Rn is not closed. The resulting locally Euclidean space
is not Hausdorff. If we use '.x/ D x � kxk�2, then the result is homeomorphic to
Sn (see (2.3.2)). Þ

Suppose a space X is the union of subspaces .Xj j j 2 J /. We say X carries
the colimit topology with respect to this family if one of the equivalent statements
hold:

(1) The canonical map j̀2J Xj ! X (the inclusion on each summand) is a
quotient map.

(2) C is closed in X if and only if Xj \ C is closed in Xj for each j .
(3) A set map f W X ! Z into a space Z is continuous if and only if the restric-

tions f jXj W Xj ! Z are continuous.

(1.3.9) Example. Let X be a set which is covered by a family .Xj j j 2 J / of
subsets. Suppose each Xj carries a topology such that the subspace topologies of
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Xi \ Xj in Xi and Xj coincide and these subspaces are closed. Then there is a
unique topology on X which induces on Xj the given topology. The space X has
the colimit topology with respect to the Xj . Þ

Problems

1. Let .Xj j j 2 J / be spaces and Aj � Xj non-empty subspaces. Then
Q

j 2J
xAj DQ

j 2J Aj . The product
Q

j 2J Aj is closed if and only if the Aj are closed.
2. The projections prk W

Q
j Xj ! Xk are open maps, and in particular quotient maps.

(The Xj are non-empty.)
3. A space X is separated if and only if the diagonal D D f.x; x/ j x 2 Xg is closed in
X �X . Let f; g W X ! Y be continuous maps into a Hausdorff space. Then the coincidence
set A D fx j f .x/ D g.x/g is closed in X . Hint: Use (1.3.3).
4. A discrete space is the topological sum of its points. There is always a canonical homeo-
morphism X �qjYj Š qj .X � Yj /. For each y 2 Y the map X ! X � Y , x 7! .x; y/

is an embedding. If f W X ! Y is continuous, then � W X ! X � Y , x 7! .x; f .x// is an
embedding. If Y is a Hausdorff space, then � is closed.

1.4 Compact Spaces

A family A D .Aj j j 2 J / of subsets of X is a covering of X if X is the union of
theAj . A covering B D .Bk j k 2 K/ ofX is a refinement ofA if for each k 2 K
there exists j 2 J such that Bk � Aj . If X is a topological space, a covering
A D .Aj j j 2 J / is called open (closed) if each Aj is open (closed). A covering
B D .Bk j k 2 K/ is a subcovering of A if K � J and Bk D Ak for k 2 K.
We say B is finite or countable if K is finite or countable. A covering A is locally
finite if each x 2 U has a neighbourhood U such that U \Aj ¤ ; only for a finite
number of j 2 J . It is called point-finite if each x 2 X is contained only in a finite
number of Aj .

A space X is compact if each open covering has a finite subcovering. (In some
texts this property is called quasi-compact.) By passage to complements we see:
If X is compact, then any family of closed sets with empty intersection contains a
finite family with empty intersection. A set A in a space X is relatively compact
if its closure is compact. We recall from calculus the fundamental Heine–Borel
Theorem: The unit interval I D Œ0; 1� is compact.

A space X is compact if and only if each net in X has a convergent subnet
(an accumulation value). A discrete closed set in a compact space is finite. Let
X be compact, A � X closed and f W X ! Y continuous; then A and f .X/ are
compact.

(1.4.1) Proposition. Let B , C be compact subsets of spaces X , Y , respectively.
Let U be a family of open subsets of X � Y which cover B � C . Then there exist
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open neighbourhoods U of B and V of C such that U � V is covered by a finite
subfamily of U. In particular the product of two compact spaces is compact. �

One can show that an arbitrary product of compact spaces is compact (Theorem
of Tychonoff ).

(1.4.2) Proposition. Let B and C be disjoint compact subsets of a Hausdorff
spaceX . ThenB and C have disjoint open neighbourhoods. A compact Hausdorff
space is normal. A compact subset C of a Hausdorff space X is closed. �

(1.4.3) Proposition. A continuous map f W X ! Y from a compact space into
a Hausdorff space is closed. If, moreover, f is injective (bijective), then f is an
embedding (homeomorphism). If f is surjective, then it is a quotient map. �

(1.4.4) Proposition. Let X be a compact Hausdorff space and f W X ! Y a
quotient map. The following assertions are equivalent:

(1) Y is a Hausdorff space.

(2) f is closed.

(3) R D f.x1; x2/ j f .x1/ D f .x2/g is closed in X �X . �

Let X be a union of subspaces X1 � X2 � � � � . Recall that X carries the
colimit-topology with respect to the filtration .Xi / if A � X is open (closed) if
and only if each intersection A \ Xn is open (closed) in Xn. We then call X the
colimit of the ascending sequence .Xi /. (This is a colimit in the categorical sense.)

(1.4.5) Proposition. Suppose X is the colimit of the sequence X1 � X2 � � � � .
Suppose points in Xi are closed. Then each compact subset K of X is contained
in some Xk . �

A space is locally compact if each neighbourhood of a pointx contains a compact
neighbourhood. An open subset of a locally compact space is again locally compact.

Let X be a Hausdorff space and assume that each point has a compact neigh-
bourhood. Let U be a neighbourhood of x andK a compact neighbourhood. Since
K is normal,K\U contains a closed neighbourhoodL of x inK. ThenL is com-
pact and a neighbourhood of x inX . ThereforeX is locally compact. In particular,
a compact Hausdorff space is locally compact. If X and Y are locally compact,
then X � Y is locally compact.

LetX be a topological space. An embedding f W X ! Y is a compactification
of X if Y is compact and f .X/ dense in Y .

The following theorem yields a compactification by a single point. It is called the
Alexandroff compactification or the one-point compactification. The additional
point is the point at infinity. In a general compactification f W X ! Y , one calls
the points in Y X f .X/ the points at infinity.
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(1.4.6) Theorem. Let X be a locally compact Hausdorff space. Up to homeomor-
phism, there exists a unique compactification f W X ! Y by a compact Hausdorff
space such that Y X f .X/ consists of a single point. �

(1.4.7) Proposition. Let the locally compact space be a union of compact subsets
.Ki j i 2 N/. Then there exists a sequence .Ui j i 2 N/ of open subsets with union
X such that each SUi is compact and contained in UiC1. �

(1.4.8) Theorem. Let the locally compact Hausdorff space M ¤ ; be a union of
closed subsetsMn, n 2 N. Then at least one of theMn contains an interior point.

�

A subset H of a space G is called locally closed, if each x 2 H has a neigh-
bourhood Vx in G such that H \ Vx is closed in G.

(1.4.9) Proposition. .1/ Let A be locally closed in X . Then A D U \ C with U
open and C closed. Conversely, if X is regular, then an intersection U \ C , U
open, C closed, is locally closed.

.2/ A locally compact set A in a Hausdorff space X is locally closed.

.3/ A locally closed set A in a locally compact space is locally compact. �

Problems

1. Dn=Sn�1 is homeomorphic to Sn. For the proof verify that

Dn ! Sn; x 7!
�
2

q
1 � kxk2x; 2kxk2 � 1

�
induces a bijection Dn=Sn�1 ! Sn.
2. Let f W X � C ! R be continuous. Assume that C is compact and set g.x/ D
supff .x; c/ j c 2 C g. Then g W X ! R is continuous.
3. Let X be the colimit of an ascending sequence of spaces X1 � X2 � � � � . Then the Xi

are subspaces of X . If Xi � XiC1 is always closed, then the Xj are closed in X .
4. Let R1 be the vector space of all sequences .x1; x2; : : : / of real numbers which are
eventually zero. Let Rn be the subspace of sequences with xj D 0 for j > n. Give R1 the
colimit topology with respect to the subspaces Rn. Then addition of vectors is a continuous
map R1 �R1 ! R1. Scalar multiplication is a continuous map R�R1 ! R1. (Thus
R1 is a topological vector space.) A neighbourhood basis of zero consists of the intersec-
tion of R1 with products of the form

Q
i�1� � "i ; "i Œ. The space R1 with this topology

is not metrizable. The space has also the colimit topology with respect to the set of finite-
dimensional linear subspaces. One can also consider the metric topology with respect to the
metric d..xi /; .yi // D

�P
i .xi � yi /

2
�1=2

; denote it by R1
d

. The identity R1 ! R1
d

is
continuous. The space R1 is separated.
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1.5 Proper Maps

A continuous map f W X ! Y is called proper if it is closed and the pre-images
f �1.y/; y 2 Y are compact.

(1.5.1) Proposition. Let K be compact. Then pr W X � K ! X is proper. If
f W X ! Y is proper and K � Y compact, then f �1.K/ is compact. Let f and
g be proper; then f � g is proper. �

As a generalization of the theorem of Tychonoff one can show that an arbitrary
product of proper maps is proper.

(1.5.2) Proposition. Let f W X ! X 0 and g W X 0 ! X 00 be continuous.

(1) If f and g are proper, then g ı f is proper.

(2) If g ı f is proper and f surjective, then g is proper.

(3) If g ı f is proper and g injective, then f is proper. �

(1.5.3) Proposition. Let f W X ! Y be injective. Then the following are equiva-
lent:

(1) f is proper.

(2) f is closed.

(3) f is a homeomorphism onto a closed subspace. �

(1.5.4) Proposition. Let f W X ! Y be continuous.

(1) If f is proper, then for each B � Y the restriction fB W f �1.B/! B of f
is proper.

(2) Let .Uj j j 2 J / be a covering of Y such that the canonical map
p W j̀2J Uj ! Y is a quotient map. If each restriction fj W f �1.Uj /! Uj
is proper, then f is proper. �

(1.5.5) Proposition. Let f be a continuous map of a Hausdorff space X into a
locally compact Hausdorff space Y . Then f is proper if and only if each compact
setK � Y has a compact pre-image. If f is proper, thenX is locally compact. �

(1.5.6) Proposition. Let f W X ! X 0 and g W X 0 ! X 00 be continuous and assume
that gf is proper. If X 0 is a Hausdorff space, then f is proper. �

(1.5.7) Theorem. A continuous map f W X ! Y is proper if and only if for each
space T the product f � id W X � T ! Y � T is closed. �

Problems

1. A map f W X ! Y is proper if and only if the following holds: For each net .xj / in X
and each accumulation value y of .f .xj // there exists an accumulation value x of .xj / such



1.6. Paracompact Spaces 15

that f .x/ D y.
2. Let X and Y be locally compact Hausdorff spaces, let f W X ! Y be continuous and
f C W XC ! YC the extension to the one-point compactification. Then f C is continuous,
if f is proper.
3. The restriction of a proper map to a closed subset is proper.
4. Let f W X ! Y be proper and X a Hausdorff space. Then the subspace f .X/ of Y is a
Hausdorff space.
5. Let f W X ! Y be continuous. LetR be the equivalence relation onX induced by f , and
denote by p W X ! X=R the quotient map, by h W X=R ! f .X/ the canonical bijection,
and let i W f .X/ � Y . Then f D i ı h ı p is the canonical decomposition of f . The map
f is proper if and only if p is proper, h a homeomorphism, and f .X/ � Y closed.

1.6 Paracompact Spaces

Let A D .Uj j j 2 J / be an open covering of the space X . An open covering
B D .Bj j j 2 J / is called a shrinking of A if for each j 2 J we have the
inclusion xBj � Uj .

A point-finite open covering of a normal space has a shrinking.
A space X is called paracompact if it is a Hausdorff space and if each open

covering has an open, locally finite refinement. A closed subset of a paracompact
space is paracompact. A compact space is paracompact.

A paracompact space is normal. Suppose the locally compact Hausdorff spaceX
is a countable union of compact sets. ThenX is paracompact. LetX be paracompact
and K be compact Hausdorff. Then X � K is paracompact. A metric space is
paracompact.

1.7 Topological Groups

A topological group .G;m;O/ consists of a group .G;m/ with multiplication
m W G � G ! G, .g; h/ 7! m.g; h/ D gh and a topology O on G such that
the multiplication m and the inverse � W G ! G, g 7! g�1 are continuous. We de-
note a topological group .G;m;O/ usually just by the letterG. The neutral element
will be denoted by e (also 1 is in use and 0 for abelian groups). The left translation
lg W G ! G, x 7! gx by g 2 G in a topological group is continuous, and the rules
lg lh D lgh and le D id show it to be a homeomorphism. For subsets A and B of a
group G we use notations like aB D fab j b 2 Bg, AB D fab j a 2 A; b 2 Bg,
A2 D AA, A�1 D fa�1 j a 2 Ag, and similar ones.

A group G together with the discrete topology on the set G is a topological
group, called a discrete (topological) group.

The additive groups of the real numbers R, complex numbers C, and quaternions
H with their ordinary topology are topological groups, similarly the multiplicative
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groups R�, C� and H� of the non-zero elements. The multiplicative group R�C
of the positive real numbers is an open subgroup of R� and a topological group.
The complex numbers of norm 1 are a compact topological group S1 with respect
to multiplication. The exponential function exp W R ! R�C is a continuous ho-
momorphism with the logarithm function as a continuous inverse. The complex
exponential function exp W C ! C� is a surjective homomorphism with kernel
f2�in j n 2 Zg, a discrete subgroup of C.

The main examples of topological groups are matrix groups. In the vector
space Mn.R/ of real .n; n/-matrices let GLn.R/ be the subspace of the invertible
matrices. Since the determinant is a continuous map, this is an open subspace.
Matrix multiplication and passage to the inverse are continuous, since they are
given by rational functions in the matrix entries. This makes the general linear
group GLn.R/ into a topological group. Similarly for GLn.C/. The determinant
is a continuous homomorphism det W GLn.R/! R� with kernel the special linear
group SLn.R/; similarly in the complex case.

Let O.n/ D fA 2 Mn.R/ j At � A D Eg be the group of orthogonal .n; n/-
matrices (At transpose of A; E unit matrix). The set O.n/ is a compact subset in
Mn.R/. Hence O.n/ is a compact topological group (the orthogonal group). The
open and closed subspace SO.n/ D fA 2 O.n/ j det.A/ D 1g of O.n/ is the special
orthogonal group. Similarly the subgroup U.n/ D fA 2 Mn.C/ j At � xA D Eg
of unitary .n; n/-matrices is a compact topological group (unitary group). The
topological groups SO.2/, U.1/, and S1 are isomorphic. The special unitary group
SU.n/ is the compact subgroup of U.n/ of matrices with determinant 1. The
multiplicative group of quaternions of norm 1 provides S3 with the structure of
a topological group. This group is isomorphic to SU.2/. From linear algebra
one knows about a surjective homomorphism SU.2/ ! SO.3/ with kernel ˙E
(a twofold covering); for this and other related facts see the nice discussion in
[27, Kapitel IX]. For more information about matrix groups, also from the view-
point of manifolds and Lie groups, see [29]; there you can find, among others,
the symplectic groups Sp.n/ and the Spinor groups Spin.n/. The isomorphisms
SU.2/ Š Spin.3/ Š Sp.1/ hold, and these spaces are homeomorphic to S3.

If G and H are topological groups, then the direct product G � H with the
product topology is a topological group. The n-fold product S1� � � � �S1 is called
an n-dimensional torus.

The trivial subgroup is often denoted by 1 (in a multiplicative notation) or by 0
(in an additive notation). The neutral element will also be denoted 1 or 0. The
symbol H C G is used for a normal subgroup H of G. The notation H � K or
H �G K means that H and K are conjugate subgroups of G.

A homomorphism f W G ! H between topological groups is continuous if it
is continuous at the neutral element e.

If G is a topological group and H � G a subgroup, then H , with the subspace
topology, is a topological group (called a topological subgroup). If H � G is a
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subgroup, then the closure ofH is also. IfH is a normal subgroup, then xH is also.

1.8 Transformation Groups

A left action of a topological group G on a topological space X is a continuous
map � W G � X ! X , .g; x/ 7! gx such that g.hx/ D .gh/x and ex D x for
g; h 2 G, e 2 G the unit, and x 2 X . A (left) G -space .X; �/ consists of a space
X and a left action � of G on X . The homeomorphism lg W X ! X , x 7! gx is
called left translation by g. We also use right actions X �G ! X , .x; g/ 7! xg;
they satisfy .xh/g D x.hg/ and xe D x. For A � X and K � G we let
KA D fka j k 2 K; a 2 Ag. An action is effective if gx D x for all x 2 X implies
g D e. The trivial action has gx D x for g 2 G and x 2 X .

The set R D f.x; gx/ j x 2 X; g 2 Gg is an equivalence relation on X .
The set of equivalence classes X mod R is denoted by X=G. The quotient map
q W X ! X=G is used to provide X=G with the quotient topology. The resulting
spaceX=G is called the orbit space of theG-spaceX . A more systematic notation
for the orbit space of a left action would be GnX . The equivalence class of x 2 X
is the orbit Gx through x. An action is transitive if it consists of a single orbit.
The set Gx D fg 2 G j gx D xg is a subgroup of G, the isotropy group or
the stabilizer of the G-space X at x. An action is free if all isotropy groups are
trivial. We haveGgx D gGxg�1. Therefore the set Iso.X/ of isotropy groups ofX
consists of complete conjugacy classes of subgroups. If it contains a finite number
of conjugacy classes, we say X has finite orbit type.

A subset A of aG-space is called G -stable or G -invariant if g 2 G and a 2 A
implies ga 2 A. A G-stable subset A is also called a G -subspace. For each
subgroup H of G there is an H -fixed point set of X ,

XH D fx 2 X j hx D x for all h 2 H g:

Suppose X and Y are G-spaces. A map f W X ! Y is called a G-map or
a G -equivariant map if for g 2 G and x 2 X the relation f .gx/ D gf .x/

holds. In general, the term “equivariant” refers to something related to a group
action. Left G-spaces and G-equivariant maps form the category G- TOP. This
category has products: If .Xj j j 2 J / is a family ofG-spaces, then the topological
product

Q
j Xj together with the diagonal action .g; .xj // 7! .gxj / is a product

in this category. A G-map f W X ! Y induces by passage to the orbit spaces a
map f=G W X=G ! Y=G. We have the notion of an equivariant homotopy or
G -homotopyHt : this is a homotopy such that each Ht is a G-map.

(1.8.1) Proposition. Let X be a G-space, A � G and B � X . If B is open then
AB is open. The orbit map p W X ! X=G is open.
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Proof. la.B/ is open, since la is a homeomorphism. Hence
S
a2A la.B/ D AB

is a union of open sets. Let U be open. Then p�1p.U / D S
g2G lg.U / is open,

hence p.U / is open, by definition of the quotient topology. �

(1.8.2) Proposition. .1/ LetH be a subgroup of the topological group G. Let the
set G=H of cosets gH carry the quotient topology with respect to p W G ! G=H ,
g 7! gH . Then l W G �G=H ! G=H , .x; gH/ 7! xgH is a continuous action.

.2/ G=H is separated if and only if H is closed in G. In particular, G is
separated if feg is closed.

.3/ LetH be normal in G. Then the factor group G=H with quotient topology
is a topological group. �

A spaceG=H with theG-action by left multiplication is called a homogeneous
space. The space of left cosets Hg is HnG; it carries a right action.

(1.8.3) Example. Homogeneous spaces are important spaces in geometry.
The orthogonal group O.n C 1/ acts on the sphere Sn by matrix multiplication
.A; v/ 7! Av. The action is transitive. The isotropy group of e1 D .1; 0; : : : ; 0/

is O.n/, here considered as the block matrices
�
1 0
0 B

�
with B 2 O.n/. We obtain

a homeomorphism of O.n C 1/-spaces O.n C 1/=O.n/ Š Sn. In the complex
case we obtain a homeomorphism U.n C 1/=U.n/ Š S2nC1, in the quaternionic
case a homeomorphism Sp.n C 1/=Sp.n/ Š S4nC3. Other important homoge-
neous spaces are the projective spaces, the Grassmann manifolds, and the Stiefel
manifolds to be discussed later. Þ

(1.8.4) Proposition. .1/ If x 2 X is closed, then Gx is closed in G.
.2/ If X is a Hausdorff space, then XH is closed.
.3/ Let A be a G-stable subset of the G-space X . Then A=G carries the

subspace topology of X=G. In particular XG ! X ! X=G is an embedding.
.4/ Let B � X be closed and A � X . Then fg 2 G j gA � Bg is closed in G.
.5/ Let B � X be closed. Then fg 2 G j gB D Bg is closed.

Proof. (1) The isotropy group Gx is the pre-image of x under the continuous map
G ! X , g 7! gx. (2) The set Xg D fx 2 X j gx D xg is the pre-image of
the diagonal under X ! X � X , x 7! .x; gx/, and XH D T

g2H Xg . (3) Let
C � A=G be open with respect to the quotient mapA! A=G. Thenp�1.C / � A
is open, and we can write p�1.C / D A \ U with an open subset U � X . We
have A \ U D A \ GU , since A is G-stable. We conclude C D p.p�1C/ D
A=G\p.GU /. SinceGU is open,p.GU / is open, henceC is open in the subspace
topology. By continuity ofA=G ! X=G, an open subset in the subspace topology
is open in A=G. (4) ra W G ! X , g 7! ga is continuous, hence r�1

a .B/ D fg 2
G j ga 2 Bg closed and therefore

T
a2A r�1

a .B/ D fg 2 G j gA � Bg closed. (5)
The set fg j gB D Bg D fg j gB � Bg \ fg j g�1B � Bg is closed, by (4). �

(1.8.5) Proposition. Let r W G �X ! X be a G-action, A � G and B � X .
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(1) If A and B are compact, then AB is compact.

(2) If A is compact, then the restriction A�X ! X of r is proper. If, moreover,
B is closed, then AB is closed.

(3) If G is compact, then the orbit map p is proper. Thus X is compact if and
only if X=G is compact.

(4) If G is compact and X separated, then X=G is separated.

(5) Let G be compact, A a G-stable closed subset and U a neighbourhood of A
in X . Then U contains a G-stable neighbourhood of A.

Proof. (1) A � B � G � X is compact as a product of compact spaces. Hence
the continuous image AB of A � B under r W G � X ! X is compact. (2) The
homeomorphismA�X ! A�X , .s; x/ 7! .s; sx/ transforms r into the projection
pr W A�X ! X . The projection is proper, sinceA is compact (see (1.5.1)). Hence
the image AB of the closed set A � B is closed. (3) Let A � X be closed.
Then p�1p.A/ D GA is closed, by (2). Hence p.A/ is closed, by definition of
the quotient topology. The pre-images of points are orbits; they are compact as
continuous images of G. (4) Since p is proper, so is p � p. Hence the image of
the diagonal under p � p is closed. (5) Let U be open. Then p.X XU/ is disjoint
to p.A/. By (4), X X p�1p.X X U/ is open and a G-stable neighbourhood of A
contained in U . �

The orbit category Or.G/ is the category of homogeneous G-spaces G=H , H
closed in G, and G-maps. There exists a G-map G=H ! G=K if and only if
H is conjugate to a subgroup of K. If a�1Ha � K, then Ra W G=H ! G=K,
gH 7! gaK is a G-map and each G-map G=H ! G=K has this form; moreover
Ra D Rb if and only if a�1b 2 K.

An actionG �V ! V on a real (or complex) vector space V is called a real (or
complex) representation ofG if the left translations are linear maps. After choice of
a basis, a representation amounts to a continuous homomorphism fromG to GLn.R/
or GLn.C/. A homomorphism G ! O.n/ or G ! U.n/ is called an orthogonal
or unitary representation. Geometrically, an orthogonal representation is given by
an action G � V ! V with an invariant scalar product h�;�i. The latter means
hgv; gwi D hv;wi for g 2 G and v;w 2 V . In an orthogonal representation, the
unit sphere S.V / D fv 2 V j hv; vi D 1g is G-stable.

Let E be a right G-space and F a left G-space. We denote by E �G F the
orbit space of the G-action G � .E � F /! E � F , .g; .x; y// 7! .xg�1; gy/. A
G-map f W F1 ! F2 induces a continuous map

id�Gf W E �G F1 ! E �G F2; .x; y/ 7! .x; f .x//:

IfE carries a leftK-action which commutes with the rightG-action (i.e., k.xg/ D
.kx/g), then E �G F carries an induced K-action .k; .x; y// 7! .kx; y/. This
construction can in particular be applied in the case that E D K, G a subgroup
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of K and the G- and K-actions on K are given by right and left multiplication.
The assignments F 7! K �G F and f 7! id�Gf yield the induction functor
indKG W G- TOP ! K- TOP. This functor is left adjoint to the restriction functor
resKG W K- TOP! G- TOP which is obtained by regarding aK-space as aG-space.
The natural adjunction

TOPK.indKG X; Y / Š TOPG.X; resKG Y /

sends a G-map f W X ! Y to the K-map .k; x/ 7! kf .x/; in the other direction
one restricts a map to X Š G �G X � K �G X . (Here TOPK denotes the set of
K-equivariant maps.)

(1.8.6)Theorem. Suppose theHausdorff groupG is locally compactwith countable
basis. Let X be a locally compact Hausdorff space and G � X ! X a transitive
action. Then for each x 2 X the map b W G ! X , g 7! gx is open and the induced
map xb W G=Gx ! X a homeomorphism.

Proof. If b is open, then xb is a homeomorphism. Let W be a neighbourhood of e,
.Bi j i 2 N/ a countable basis, and g�1

i 2 Bi . For each g 2 G there exists a j
such that Bj � Wg�1, g 2 gjW . Therefore the gjW cover the group.

Let V � G be open and g 2 V . There exists a compact neighbourhood W
of e such that W D W �1 and gW 2 � V . Since G is the union of the gjW and
the action is transitive, X D S

gjWx. Since W is compact and b continuous,
gjWx is compact and hence closed inX . By (1.4.8), there exist j such that gjWx
contains an interior point, and thereforeWx contains an interior point wx. Then x
is an interior point of w�1Wx � W 2x and hence gx D p.g/ an interior point of
gW 2x � Vx D p.V /. This shows that p is open. �

(1.8.7) Corollary. Let the locally compact Hausdorff groupG with countable basis
act on a locally compact Hausdorff spaceX . An orbit is locally compact if and only
if it is locally closed. An orbit is a homogeneous space with respect to the isotropy
group of each of its points if and only if it is locally closed. �

Problems

1. Let H be a normal subgroup of G and X a G-space. Restricting the group action to H ,
we obtain an H -space X . The orbit space HnX carries then an induced G=H -action.
2. Let a pushout in TOP be given with G-spaces A, B , X and G-maps j , f :

A
f

��

j
��

B

J
��

X
F �� Y .

Let G be locally compact. Then there exists a unique G action on Y such that F; J become
G-maps. The diagram is then a pushout in G-TOP. Hint: (2.4.6)



1.9. Projective Spaces. Grassmann Manifolds 21

3. Let Y be a K-space and G a subgroupp of K. Then K �G Y ! K=G � Y , .k; y/ 7!
.kG; ky/ is a K-homeomorphism. If X is a G-space, then

K �G .X � Y /! .K �G X/ � Y; .g; .x; y// 7! ..g; x/; gy/

is a K-homeomorphism.
4. Let H be a closed subgroup of G. Then G=H is a Hausdorff space and therefore F D
G=HH is closed. The relation gH 2 G=HH is equivalent to g�1Hg � H . Hence
fg 2 G j g�1Hg � H g is closed inG. The normalizerNH D fg 2 G j g�1Hg D H g of
H in G is closed in G. The groupH is a normal subgroup ofNH and NH=H D WGH D
WH is the Weyl group of H in G. The group NH always acts on the fixed set XH , by
restricting the given G-action to NH . The action

G=H �WH ! G=H; .gH; nH/ 7! gnH

is a free right action by G-automorphisms of G=H .

1.9 Projective Spaces. Grassmann Manifolds

Let P.RnC1/ D RP n be the set of one-dimensional subspaces of the vector space
RnC1. A one-dimensional subspace of V is spanned by x 2 V X 0. The vectors x
and y span the same subspace if and only if x D 	y for some 	 2 R� D R X 0.
We therefore consider P.RnC1/ as the orbit space of the action

R� � .RnC1 X 0/! RnC1 X 0; .	; x/ 7! 	x:

The quotient map p W RnC1 X 0 ! P.RnC1/ provides P.RnC1/ with the quotient
topology. The space RP n is the n-dimensional real projective space. We set
p.x0; : : : ; xn/ D Œx0; : : : ; xn� and call x0; : : : ; xn the homogeneous coordinates
of the point Œx0; : : : ; xn�.

In a similar manner we consider the set P.CnC1/ D CP n of one-dimensional
subspaces of CnC1 as the orbit space of the action

C� � .CnC1 X 0/! CnC1 X 0; .	; z/ 7! 	z:

We have again a quotient map p W CnC1X0! P.CnC1/. The space CP n is called
the n-dimensional complex projective space. (It is 2n-dimensional as a manifold.)

We describe the projective spaces in a different manner as orbit spaces. The
subgroup G D f˙1g � R� acts on Sn � RnC1 by .	; x/ 7! 	x, called the
antipodal involution. The inclusion i W Sn ! RnC1 induces a continuous bijective
map � W Sn=G ! .RnC1 X 0/=R�. The map j W RnC1 X 0 ! Sn, x 7! kxk�1x
induces an inverse. The quotientSn=G is compact, sinceSn is compact. By (1.4.4),
the quotient is a Hausdorff space. In a similar manner one treats CP n, but now
with respect to the action S1 � S2nC1 ! S2nC1, .	; z/ 7! 	z of S1 on the unit
sphere S2nC1 � CnC1 X 0.
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Projective spaces are homogeneous spaces. Consider the action of O.nC 1/ on
RnC1 by matrix multiplication. If V 2 P.RnC1/ is a one-dimensional space and
A 2 O.nC 1/, then AV 2 P.RnC1/. We obtain an induced action

O.nC 1/ � P.RnC1/! P.RnC1/:

This action is transitive. The isotropy group of Œ1; 0; : : : ; 0� consists of the matrices�
	 0

0 B

�
; 	 2 O.1/; B 2 O.n/:

We consider these matrices as the subgroup O.1/�O.n/of O.nC1/. The assignment
A 7! Ae1 induces an O.nC 1/-equivariant homeomorphism

b W O.nC 1/=.O.1/ � O.n// Š P.RnC1/:

The action of O.n C 1/ on P.RnC1/ is continuous; this follows easily from the
continuity of the action O.n C 1/ � .RnC1 X 0/ ! RnC1 X 0 and the definition
of the quotient topology. Therefore b is a bijective continuous map of a compact
space into a Hausdorff space. In a similar manner we obtain a U.nC1/-equivariant
homeomorphism U.nC 1/=.U.1/ � U.n// Š P.CnC1/.

Finally, one can define the quaternionic projective space HP n in a similar
manner as a quotient of HnC1 X 0 or as a quotient of S4nC3.

We generalize projective spaces. LetW be an n-dimensional real vector space.
We denote by Gk.W / the set of k-dimensional subspaces of W . We define a
topology on Gk.W /. Suppose W carries an inner product. Let Vk.W / denote
the set of orthonormal sequences .w1; : : : ; wk/ in W considered as a subspace
of W k . We call Vk.W / the Stiefel manifold of orthonormal k-frames in W . We
have a projection p W Vk.W /! Gk.W /which sends .w1; : : : ; wk/ to the subspace
Œw1; : : : ; wk� spanned by this sequence. We give Gk.W / the quotient topology
determined by p. The spaceGk.W / can be obtained as a homogeneous space. Let
W D Rn with standard inner product and standard basis e1; : : : ; en. We have a
continuous action of O.n/ on Vk.Rn/ and Gk.Rn/ defined by .A; .v1; : : : ; vk// 7!
.Av1; : : : ; Avk/ and such that p becomes O.n/-equivariant. The isotropy groups
of .e1; : : : ; ek/ and Œe1; : : : ; ek� consist of the matrices�

Ek 0

0 B

�
;

�
A 0

0 B

�
; A 2 O.k/; B 2 O.n � k/

respectively. The mapA 7! .Ae1; : : : ; Aek/ induces equivariant homeomorphisms
in the diagram

O.n/=O.n � k/ Š ��

��

Vk.R
n/

��

O.n/=.O.k/ � O.n � k// Š �� Gk.R
n/.
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This shows that Gk.Rn/ is a compact Hausdorff space. It is called the Grassmann
manifold of k-dimensional subspaces of Rn.

In a similar manner we can work with the k-dimensional complex subspaces of
Cn and obtain an analogous diagram of U.n/-spaces (complex Stiefel and Grass-
mann manifolds):

U.n/=U.n � k/ Š ��

��

Vk.C
n/

��

U.n/=.U.k/ � U.n � k// Š �� Gk.C
n/.



Chapter 2

The Fundamental Group

In this chapter we introduce the homotopy notion and the first of a series of algebraic
invariants associated to a topological space: the fundamental group.

Almost every topic of algebraic topology uses the homotopy notion. Therefore it
is necessary to begin with this notion. A homotopy is a continuous family ht W X !
Y of continuous maps which depends on a real parameter t 2 Œ0; 1�. (One may
interpret this as a “time-dependent” process.) The maps f0 and f1 are then called
homotopic, and being homotopic is an equivalence relation on the set of continuous
mapsX ! Y . This equivalence relation leads to a quotient category of the category
TOP of topological spaces and continuous maps, the homotopy category h-TOP.
The importance of this notion is seen from several facts.

(1) The classical tools of algebraic topology are functors from a category of
spaces to an algebraic category, say of abelian groups. These functors turn
out to be homotopy invariant, i.e., homotopic maps have the same value under
the functor.

(2) One can change maps by homotopies and spaces by homotopy equivalences.
This fact allows for a great flexibility. But still global geometric information
is retained. Basic principles of topology are deformation and approximation.
One idea of deformation is made precise by the notion of homotopy. Conti-
nuity is an ungeometric notion. So often one has to deform a continuous map
into a map with better properties.

(3) The homotopy notion leads in an almost tautological way to algebraic struc-
tures and categorical structures. In this chapter we learn about the simplest
example, the fundamental group and the fundamental groupoid.

The passage to the homotopy category is not always a suitable view-point. In gen-
eral it is better to stay in the category TOP of topological spaces and continuous
maps (“space level” as opposed to “homotopy level”). We thus consider homotopy
as an additional structure. Then classical concepts can be generalized by using the
homotopy notion. For instance one considers diagrams which are only commu-
tative up to homotopy and the homotopies involved will be treated as additional
information. One can also define generalized group objects where multiplication
is only associative up to homotopy. And so on.

The passage from TOP to h-TOP may be interpreted as a passage from “contin-
uous mathematics” to “discrete mathematics”.

The homotopy notion allows us to apply algebraic concepts to continuous maps.
It is not very sensible to talk about the kernel or cokernel of a continuous map.
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But we will see later that there exist notions of “homotopy-kernels” (then called
homotopy fibres) and “homotopy-cokernels” (then called homotopy cofibres). This
is the more modern view-point of a large variety of homotopy constructions. In
general terms: The idea is to replace the categorical notions limit and colimit by
appropriate homotopy notions.

The prototype of a functor from spaces to groups is the fundamental group
functor. Historically it is the first of such functors. It was introduced by Poincaré,
in different context and terminology. In general it is difficult to determine the
fundamental group of a space. Usually one builds up a space from simpler pieces
and then one studies the interrelation between the groups of the pieces. This uses the
functorial aspect and asks for formal properties of the functor. We prove the basic
theorem of Seifert and van Kampen which roughly says that the functor transforms
suitable pushouts of spaces into pushouts of groups. This may not be the type of
algebra the reader is used to, and it can in fact be quite complicated. We describe
some related algebra (presentation of groups by generators and relations) and discuss
a number of geometric results which seem plausible from our intuition but which
cannot be proved (in a systematic way) without algebraic topology. The results are
of the type that two given spaces are not homeomorphic – and this follows, if their
fundamental groups are different. Finally we show that each group can be realized
as a fundamental group (this is the origin of the idea to apply topology to group
theory).

The study of the fundamental group can be continued with the covering space
theory where the fundamental group is exhibited as a symmetry group. This sym-
metry influences almost every other tool of algebraic topology (although we do not
always carry out this influence in this text).

The chapter contains two sections on point-set topology. We discuss standard
spaces like spheres, disks, cells, simplices; they will be used in many different
contexts. We present the compact-open topology on spaces of continuous maps;
they will be used for the dual definition of homotopy as a continuous family of
paths, and this duality will henceforth be applied to many homotopy constructions
and notions.

2.1 The Notion of Homotopy

A path in a topological space X from x to y is a continuous map u W Œa; b� ! X

such that u.a/ D x and u.b/ D y. We say that the path connects the points u.a/
and u.b/. We can reparametrize and use the unit interval as a source Œ0; 1� ! X ,
t 7! u..1 � t /a C tb/. In the general theory we mostly use the unit interval. If
u W Œ0; 1�! X is a path from x to y, then the inverse path u� W t 7! w.1 � t / is a
path from y to x. If v W Œ0; 1� ! X is another path from y to z, then the product
path u 	 v, defined by t 7! u.2t/ for t � 1=2 and v.2t � 1/ for t � 1=2, is a path
from x to z. We also have the constant path kx with value x.
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From these remarks we see that being connectible by paths is an equivalence
relation on X . An equivalence class is called a path component of X . We denote
by �0.X/ the set of path components and by Œx� the path component of the point x.
A spaceX is said to be path connected or 0-connected if it has one of the following
equivalent properties:

(1) �0.X/ consists of a single element.
(2) Any two points can be joined by a path.
(3) Any continuous map f W @I D f0; 1g ! X has a continuous extension

F W I ! X .

(Later we study the higher dimensional analogous problem of extending maps from
the boundary @I n of the n-dimensional cube to I n.)

A map f W X ! Y induces �0.f / W �0.X/ ! �0.Y /, Œx� 7! Œf .x/�. In this
way �0 becomes a functor from the category TOP of topological spaces to the
category SET of sets1. We will see that this functor is the beginning of algebraic
topology, although there is no algebra yet.

Thinking in terms of categories and functors is a basic method in (algebraic)
topology. The size of �0.X/ is a topological property of the space X . A functor
transports isomorphisms to isomorphisms. Thus a homeomorphism f induces
a bijection �0.f /. Suppose f W X ! Y is a homeomorphism; then f induces a
homeomorphismXXA! Y Xf .A/ for each subsetA � X . Suppose f W R! Rn

is a homeomorphism; the space RXx has two path components (intermediate value
theorem of calculus), and RnXy is path connected for n > 1; we apply the functor
�0 and conclude that R is not homeomorphic to Rn for n > 1. This example seems
almost trivial, but the reasoning is typical. Here is another simple example of this
type: The subspace X D R � 0 [ 0 � R of R2 is not homeomorphic to R since
X contains a point x D .0; 0/ such that �0.X X x/ has four elements whereas
�0.R X y/ has always two elements.

2.1.1 Path categories. Forming the product path is not an associative composition.
We can remedy this defect by using parameter intervals of different length. So let
us consider paths of the form u W Œ0; a� ! X , v W Œ0; b� ! X with u.a/ D v.0/

and a; b � 0. Their composition v ı u D w is the path Œ0; a C b� ! X with
w.t/ D u.t/ for 0 � t � a and w.t/ D v.a � t / for a � t � a C b. In this
manner we obtain a categoryW.X/: Objects are the points ofX ; a morphism from
x to y is a path u W Œ0; a� ! X with u.0/ D x; u.a/ D y for some a � 0; and
composition of morphisms is as defined before; the path Œ0; 0� ! X with value x
is the identity of the object x. A continuous map f W X ! Y induces a functor
W.f / W W.X/! W.Y /, x 7! f .x/, u 7! f u. Þ

1Our general conventions: space = topological space, map = continuous map. A set map between
spaces is a map which is not assumed to be continuous at the outset.
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A space is connected if it is not the topological sum of two non-empty subspaces.
ThusX is disconnected if and only ifX contains a subsetX which is open, closed,
and different from ; and X . A decomposition of X is a pair U; V of open, non-
empty, disjoint subsets with union X . A space X is disconnected if and only if
there exists a continuous surjective map f W X ! f0; 1g; a decomposition is given
by U D f �1.0/, V D f �1.1/. The continuous image of a connected space
is connected. Recall from calculus: A � R is connected if and only if A is an
interval. (An interval is a subset which contains with x; y also Œx; y�.)

(2.1.2) Proposition. Let .Aj j j 2 J / be a family of connected subsets of X such
that Ai \ Aj 6D ; for all i; j . Then

S
j Aj D Y is connected. Let A be connected

and A � B � xA. Then B is connected. �

The union of the connected sets inX which contain x is thus a closed connected
subset. We call it the component X.x/ of x inX . If y 2 X.x/, thenX.y/ D X.x/.
A component of X is a maximal connected subset. Any space is the disjoint union
of its components. A space is totally disconnected if its components consist of
single points. Since intervals are connected a path connected space is connected.

A product …jXj is connected if each Xj is connected. The component of
.xj / 2 …jXj is the product of the components of the xj .

(2.1.3) Example. The space

X D Œ�1; 0� � 0 [ 0 � Œ�1; 1� [ f.x; sin.�x�1/ j 0 < x � 1g
is connected but not path connected. The union S of X with f˙1g � Œ�2; 0� [
Œ�2; 2� � f�2g is called the pseudo-circle. The complement R2 X S has two path
components.

A pseudo-circle S has a sequenceK1 
 K2 
 � � � of compact neighbourhoods
with

T
i Ki D S and Ki homeomorphic to S1 � Œ0; 1�. Þ

Let X and Y be topological spaces and f; g W X ! Y continuous maps. A
homotopy from f to g is a continuous map

H W X � Œ0; 1�! Y; .x; t/ 7! H.x; t/ D Ht .x/

such that f .x/ D H.x; 0/ and g.x/ D H.x; 1/ for x 2 X , i.e., f D H0 and
g D H1. We denote this situation byH W f ' g. One can consider a homotopy as
a dynamical process, the parameter t is the time andHt is a time-dependent family
of maps. One also says that f is deformed continuously into g. Another (dual)
view-point of a homotopy is: a parametrized family of paths. We use the letter I for
the unit interval Œ0; 1�. If we write a homotopy in the form Ht , we understand that
H W X � I ! Y , .x; t/ 7! Ht .x/ is continuous in both variables simultaneously.
We call f and g homotopic if there exists a homotopy from f to g. (One can, of



28 Chapter 2. The Fundamental Group

course, define homotopies with Œ0; 1� �X . While this does not affect the theory, it
does make a difference when orientations play a role.)

The homotopy relation ' is an equivalence relation on the set of continuous
mapsX ! Y . GivenH W f ' g, the inverse homotopyH� W .x; t/ 7! H.x; 1�t /
shows g ' f . Let K W f ' g and L W g ' h be given. The product homotopy
K 	 L is defined by

.K 	 L/.x; t/ D
(
K.x; 2t/; 0 � t � 1

2
;

L.x; 2t � 1/; 1
2
� t � 1;

and shows f ' h. The constant homotopyH.x; t/ D f .x/ shows f ' f .
The equivalence class of f is denoted Œf � and called the homotopy class of f .

We denote by ŒX; Y � the set of homotopy classes Œf � of maps f W X ! Y . A
homotopyHt W X ! Y is said to be relative to A � X if the restrictionHt jA does
not depend on t (is constant on A). We use the notation H W f ' g (rel A) in this
case.

The homotopy relation is compatible with the composition of maps: LetH W f '
g W X ! Y and G W k ' l W Y ! Z be given; then

.x; t/ 7! G.H.x; t/; t/ D GtHt .x/

is a homotopy from kf to lg. We see that topological spaces and homotopy classes
of maps form a quotient category of TOP, the homotopy category h-TOP, when
composition of homotopy classes is induced by composition of representing maps.
If f W X ! Y represents an isomorphism in h-TOP, then f is called a homotopy
equivalence or h-equivalence. In explicit terms this means: f W X ! Y is a
homotopy equivalence if there exists g W Y ! X , a homotopy inverse of f , such
that gf and fg are both homotopic to the identity. Spaces X and Y are homotopy
equivalent or of the same homotopy type if there exists a homotopy equivalence
X ! Y . A space is contractible if it is homotopy equivalent to a point. A map
f W X ! Y is null homotopic if it is homotopic to a constant map; a null homotopy
of f is a homotopy between f and a constant map. A null homotopy of the identity
id.X/ is a contraction of the space X .

2.1.4 Categories of homotopies. We generalize (2.1.1) and define a category
W.X; Y /. The objects are the continuous maps f W X ! Y . A morphism from f

to g is a homotopy H W X � Œ0; a�! Y with H0 D f and Ha D g. Composition
is defined as in (2.1.1). Þ

As in any category we also have the Hom-functors in h-TOP. Given f W X ! Y ,
we use the notation

f� W ŒZ;X�! ŒZ; Y �; g 7! fg; f � W ŒY;Z�! ŒX;Z�; h 7! hf
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for the induced maps2. The reader should recall a little reasoning with Hom-
functors, as follows. The map f is an h-equivalence, i.e., an isomorphism in
h-TOP if and only if f� is always bijective; similarly for f �. If f W X ! Y

has a right homotopy inverse h W Y ! X , i.e., f h ' id, and a left homotopy
inverse g W Y ! X , i.e., gf ' id, then f is an h-equivalence. If two of the maps
f W X ! Y , g W Y ! Z, and gf are h-equivalences, then so is the third.

Homotopy is compatible with sums and products. Let pi W Qj2J Xj ! Xi be
the projection onto the i -th factor. Then

ŒY;
Q
j2J Xj �!

Q
j2J ŒY; Xj �; Œf � 7! .Œpi ı f �/

is a well-defined bijection. Let ik W Xk ! j̀2J Xj be the canonical inclusion of
the k-th summand. Then

Œ j̀2J Xj ; Y �!
Q
j2J ŒXj ; Y �; Œf � 7! .Œf ı ik�/

is a well-defined bijection. In other words: sum and product in TOP also repre-
sent sum and product in h-TOP. (Problems arise when it comes to pullbacks and
pushouts.)

LetP be a point. A mapP ! Y can be identified with its image and a homotopy
P � I ! Y can be identified with a path. The Hom-functor ŒP;�� is therefore
essentially the same thing as the functor �0.

2.1.5 Linear homotopy. Given maps f; g W X ! A, A � Rn. Suppose that
the line-segment from f .x/ to g.x/ is always contained in A. Then H.x; t/ D
.1� t /f .x/C tg.x/ is a homotopy from f to g (linear homotopy). It will turn out
that many homotopies are constructed from linear homotopies.

A set A � Rn is star-shaped with respect to a0 2 A if for each a 2 A the
line-segment from a0 to a is contained in A. If A is star-shaped, then H.a; t/ D
.1 � t /a C ta0 is a null homotopy of the identity. Hence star-shaped sets are
contractible. A set C � Rn is convex if and only if it is star-shaped with respect to
each of its points.

Note: If A D Rn and a0 D 0, then each Ht , t < 1, is a homeomorphism, and
only in the very last moment is H1 constant! This is less mysterious, if we look at
the paths t 7! H.x; t/. Þ

The reader should now recall the notion of a quotient map (identification), its
universal property, and the fact that the product of a quotient map by the identity of
a locally compact space is again a quotient map (see (2.4.6)).

(2.1.6) Proposition. Let p W X ! Y be a quotient map. Suppose Ht W Y ! Z is
a family of set maps such thatHt ı p is a homotopy. ThenHt is a homotopy.

2As a general principle we use a lower index for covariant functors and an upper index for contravariant
functors. If we apply a (covariant) functor to a morphismf we often call the result the inducedmorphism
and denote it simply by f� if the functor is clear from the context.
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Proof. The product p� id W X �I ! Y �I is an identification, since I is compact.
The composition H ı .p � id/ is continuous and therefore H is continuous. �

(2.1.7) Proposition. Let Ht W X ! X be a homotopy of the identity H0 D id.X/
such that the subspace ; 6D A � X is always mapped into itself, Ht .A/ � A.
Suppose H1 is constant on A. Then the projection p W X ! X=A (A identified to
a point) is an h-equivalence.

Proof. Since H1.A/ is a point, there exists a map q W X=A ! X such that
qp D H1. By assumption, this composition is homotopic to the identity. The
map p ıHt W X ! X=A factorizes over p and yields Kt W X=A! X=A such that
Ktp D pHt . By (2.1.6), Kt is a homotopy, K0 D id and K1 D pq. �

Problems

1. Suppose there exists a homeomorphism R! X � Y . Then X or Y is a point.
2. Let f W X ! Y be surjective. If X is (path) connected, then Y is (path) connected.
3. Let C be a countable subset of Rn, n � 2. Show that Rn X C is path connected.
4. The unitary group U.n/ and the general linear group GLn.C/ are path connected. The
orthogonal group O.n/ and the general linear group GLn.R/ have two path components; one
of them consists of matrices with positive determinant.
5. Let U � Rn be open. The path components of U are open and coincide with the
components. The set of path components is finite or countably infinite. An open subset of R

is a disjoint union of open intervals.
6. List theorems of point-set topology which show that the product homotopy and the inverse
homotopy are continuous. Do the same for the linear homotopy in 2.1.5.
7. A space X is contractible if and only if the identity id.X/ is null homotopic.
8. gf is null homotopic, if f or g is null homotopic.
9. Let A be contractible. Then any two maps X ! A are homotopic.
10. The inclusions O.n/ � GLn.R/ and U.n/ � GLn.C/ are homotopy equivalences.
Let P.n/ denote the space of positive definite real .n; n/-matrices. Then O.n/ � P.n/ !
GLn.R/, .X; P / 7! XP is a homeomorphism; P.n/ is star-like with respect to the unit
matrix.
11. There exist contractible and non-contractible spaces consisting of two points.

2.2 Further Homotopy Notions

The homotopy notion can be adapted to a variety of other contexts and categories:
Consider homotopies which preserve some additional structure of a category. We
describe some examples from which the general idea emerges. This section only
contains terminology.

The construction of group structures on homotopy sets uses the category of
pointed spaces, as we will see shortly. We call a pair .X; x0/ consisting of a space
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X and a base point x0 2 X a pointed space. A pointed map f W .X; x0/! .Y; y0/

is a continuous map f W X ! Y which sends the base point to the base point. A
homotopy H W X � I ! Y is pointed if Ht is pointed for each t 2 I . We de-
note by ŒX; Y �0 the set of pointed homotopy classes (fixed base points assumed) or
by Œ.X; x0/; .Y; y0/�. We obtain related notions: pointed homotopy equivalence,
pointed contractible, pointed null homotopy. We denote the category of pointed
spaces and pointed maps by TOP0, and by h-TOP0 the associated homotopy cat-
egory. Often a base point will just be denoted by 	. Also a set with a single
element will be denoted by its element. The choice of a base point is an addi-
tional structure. There is a functor ˛ from TOP to TOP0 which sends a space X to
XC D X C f	g, i.e., to X with an additional base point added (topological sum),
with the obvious extension to pointed maps. This functor is compatible with homo-
topies. We also have the forgetful functor ˇ from TOP0 to TOP. They are adjoint
TOP0.˛.X/; Y / Š TOP.X; ˇY /, and similarly for the homotopy categories.

The category TOP0 has sums and products. Suppose .Xj ; xj / is a family of
pointed spaces. The family .xj / of base points is taken as base point in the productQ
j Xj ; this yields the pointed product. Let

W
j2J Xj be the quotient of j̀2J Xj

where all base points are identified to a single new base point. We have canonical
pointed maps ik W Xk !

W
j Xj which arise from the canonical inclusions Xk !

j̀ Xj . The wedge, also called the bouquet,
W
j Xj of the pointed spaces Xj

together with the ik is the pointed sum in TOP0.
The sum and the product in TOP0 also represent the sum and the product in

h-TOP0 (use (2.1.6)).
Let .A; a/ and .B; b/ be pointed spaces. Their smash product is

A ^ B D A � B=A � b [ a � B D A � B=A _ B:
(This is not a categorical product. It is rather analogous to the tensor product.) The
smash product is a functor in two variables and also compatible with homotopies:
Given f W A! C; g W B ! D we have the induced map

f ^ g W A ^ B ! C ^D; .a; b/ 7! .f .a/; g.b//;

and homotopiesft ; gt induce a homotopyft^gt . Unfortunately, there are point-set
topological problems with the associativity of the smash product (see Problem 14).

A pair .X; A/ of topological spaces consists of a space X and a subspace A.
A morphism f W .X;A/ ! .Y; B/ between pairs is a map f W X ! Y such that
f .A/ � B . In this way we obtain the category of pairs TOP.2/. A homotopy
H in this category is assumed to have each Ht a morphism of pairs. We write
Œ.X;A/; .Y; B/� for the associated homotopy sets and h-TOP.2/ for the homotopy
category.

If .X;A/ is a pair, we usually consider the quotient space X=A as a pointed
space (A identified to a point) with base point fAg. If A D ;, then X=A D XC is
X with a separate base point.
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(2.2.1) Note. A continuous map f W .X;A/! .Y;	/ into a pointed space induces
a pointed map xf W X=A ! Y . The assignment f 7! xf induces a bijection
Œ.X;A/; .Y;	/� Š ŒX=A; Y �0. A verification uses (2.1.6). �

We use the notation

.X;A/ � .Y; B/ D .X � Y;X � B [ A � Y /;
although this is not a categorical product. With this notation .Im; @Im/�.I n; @I n/D
.ImCn; @ImCn/. In a similar manner we treat other configurations, e.g., triples
.X;A;B/ of spaces A � B � X and the category TOP.3/ of triples.

Let K and B be fixed spaces. The category TOPK of spaces under K has as
objects the maps i W K ! X . A morphism from i W K ! X to j W K ! Y is a
map f W X ! Y such that f i D j . The category TOPB of spaces over B has as
objects the maps p W X ! B . A morphism from p W X ! B to q W Y ! B is a
map f W X ! Y such that qf D p. If B is a point, then TOPB can be identified
with TOP, since each space has a unique map to a point. IfK D f	g is a point, then
TOPK is the same as TOP0. If p W X ! B is given, then p�1.b/ is called the fibre
of p over b; in this context, B is the base space and X the total space of p. A map
in TOPB will also be called fibrewise or fibre preserving.

Categories like TOPK or TOPB have an associated notion of homotopy. A
homotopy Ht is in TOPK if each Ht is a morphism in this category. A similar
definition is used for TOPB . A homotopy in TOPB will also be called fibrewise
or fibre preserving. Again, being homotopic is an equivalence relation in these
categories. We denote by ŒX; Y �K the set of homotopy classes in TOPK , and
by ŒX; Y �B the set of homotopy classes in TOPB . The homotopy categories are
h-TOPK and h-TOPB . Note that a homotopy equivalence in TOPB , i.e., a fibrewise
homotopy equivalence, from p W X ! B to q W Y ! B induces for each b 2 B
a homotopy equivalence p�1.b/ ! q�1.b/ between the fibres over b, so this is a
continuous family of ordinary homotopy equivalences, parametrized by B ([96],
[97], [38], [128]).

A morphism r from i W K ! X to id W K ! K in TOPK is a map r W X ! K

such that ri D id.X/. It is called a retraction of i . If it exists, then i is an
embedding. If i W K � X we then call K a retract of X . The retraction r of
i W K � X is a homotopy equivalence in TOPK if and only if there exists a homotopy
ht W X ! X relative to K such that h0 D id and h1 D ir . In this case we call K a
deformation retract of X . The inclusion Sn � RnC1 X 0 is a deformation retract.

A morphism s from id W B ! B to p W E ! B in TOPB is a map s W B ! E

such that ps D id.B/. It is called a section of p. If p W E ! B is homotopy
equivalent in TOPB to id.B/ we call p shrinkable. All fibres of a shrinkable map
are contractible.
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Problems

1. Let ..Xj ; xj / j j 2 J / be a family of pointed spaces. Let
W0

j Xj be the subset of
those points .aj / 2

Q
j Xj where all but one aj are equal to the base point. There is a

canonical bijective continuous map
W

j Xj !
W0

j Xj . If J is finite, then this map is a
homeomorphism. If J is infinite and .Xj ; xj / D .I; 0/, then it is not a homeomorphism.
2. The canonical maps ik W Xk !

W
j Xj are embeddings.

3. The comb space X is defined as B � Œ0; 1�[ Œ0; 1�� f1g with B D fn�1 j n 2 Ng [ f0g.
Then X is contractible but not pointed contractible with respect to .0; 0/. Let Y D �X
be another comb space. Then X [ Y Š X _ Y is not contractible. Since .X [ Y /=Y is
homeomorphic toX , we see that it does not suffice in (2.1.7) to assume thatA is contractible.

These counterexamples indicate the need for base points with additional (local) proper-
ties.
4. There exists a contractible subspace X � R2 which is not pointed contractible to any of
its points.
5. Let the homotopyHt in (2.1.7) be pointed with respect to some base point a 2 A. Show
that p W X ! X=A is a pointed h-equivalence. Is .X;A/ h-equivalent to .X; fag/?
6. Show that (2.1.7) yields a homotopy equivalence of pairs .X;A/! .X=A;	/.
7. The inclusion .I; @I /! .I; I X f1=2g/ is not an h-equivalence in TOP.2/ although the
component maps I ! I and @I ! I X f1=2g are h-equivalences.
8. Let E � R2 consist of k points. Show, heuristically, that the complement R2 X E is
h-equivalent to the k-fold sum

Wk
1 S

1.
9. Remove a point from the torusS1�S1 and show that the result is h-equivalent toS1_S1.
Is there an analogous result when you remove a point from Sm � Sn?
10. Construct an inclusion A � X which is a retract and a homotopy equivalence but not a
deformation retract.
11. Construct a map p W E ! B such that all fibres p�1.b/ are contractible but which does
not have a section. Construct an h-equivalence p W E ! B which has a section but which is
not shrinkable.
12. What is the sum of two objects in TOPK? What is the product of two objects in TOPB?
13. A pullback of a shrinkable map is shrinkable. A pushout of a deformation retract is a
deformation retract.
14. Let Y;Z be compact or X;Z be locally compact. Then the canonical bijection (the
identity) .X ^ Y / ^ Z ! X ^ .Y ^ Z/ is a homeomorphism. (In the category of com-
pactly generated spaces (with its associated product and smash product!) the map is always
a homeomorphism. See also [155, Satz 18].)
15. Let

W
j .Aj ^ B/ !

�W
j Aj

� ^ B be the canonical map which is on each sum-
mand Ak ^ B induced by the inclusion Ak !

W
j Aj . Show that this map is a home-

omorphism if the index set is finite. Show that in this case both spaces are quotients of
.qjAj / � B Š qj .Aj � B/.
16. Let A be a compact subset of X and p W X ! X=A be the quotient map. Then for each
space Y the product p� id.Y / is a quotient map. IfX is a Hausdorff space, then p is proper
and p � id closed.
17. The canonical map X � I ! X � I=@I ! X ^ I=@I is a quotient map which induces
a homeomorphism †X D X � I=.X � @I [ f	g � I / Š X ^ I=@I .
18. There is a canonical bijective continuous map .X�Y /=.X�B[A�Y /! X=A^Y=B
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(the identity on representatives). It is a homeomorphism if X � Y ! X=A^ Y=B is a quo-
tient map, e.g., ifX and Y=B are locally compact (or in the category of compactly generated
spaces).

2.3 Standard Spaces

Standard spaces are Euclidean spaces, disks, cells, spheres, cubes and simplices.
We collect notation and elementary results about such spaces. The material will be
used almost everywhere in this book. We begin with a list of spaces. The Euclidean
norm is kxk.

Rn Euclidean space
Dn D fx 2 Rn j kxk � 1g n-dimensional disk
Sn�1 D fx 2 Dn j kxk D 1g D @Dn .n � 1/-dimensional sphere
En D Dn X Sn�1 n-dimensional cell
I n D fx 2 Rn j 0 � xi � 1g n-dimensional cube
@I n D fx 2 I n j xi D 0; 1 for some ig boundary of I n


n D 
Œn� D fx 2 RnC1 j xi � 0;Pi xi D 1g n-dimensional simplex
@
n D f.xi / 2 
n j some xi D 0g boundary of 
n

The spaces Dn, I n, En and 
n are convex and hence contractible. We think of
R0 D f0g. The spaces D0, I 0, and 
0 are singletons, and S�1 D @D0, @
0 are
empty. In the case of 
n we use the indexing t D .t0; : : : ; tn/ 2 
n; the subset
@i


n D ft 2 
n j ti D 0g is the i -th face of 
n; hence @
n DSn
iD0 @i
n.

It is useful to observe that certain standard spaces are homeomorphic. A general
result of this type is:

(2.3.1) Proposition. Let K � Rn be a compact convex subset with non-empty
interior Kı. Then there exists a homeomorphism of pairs .Dn; Sn�1/! .K; @K/

which sends 0 2 Dn to a pre-assigned x 2 Kı.

Proof. LetK � Rn be closed and compact and 0 2 Kı. Verify that a ray from 0 in-
tersects the boundary @K ofK in Rn in exactly one point. The mapf W @K ! Sn�1,
x 7! x=kxk is a homeomorphism. The continuous map ' W Sn�1 � Œ0; 1�! K,
.x; t/ 7! tf �1.x/ factors over q W Sn�1 � Œ0; 1� ! Dn, .x; t/ 7! tx and yields a
bijective map k W Dn ! K, hence a homeomorphism (use (1.4.3)). �

This proposition can be used to deduce a homeomorphism .Dn; Sn�1/ Š
.I n; @I n/. The simplex 
n is a compact convex subset with interior points in the
hyperplane fx 2 RnC1 jPi xi D 1g. From this fact we deduce a homeomorphism
.Dn; @Dn/ Š .
n; @
n/.

The sphere Sn, as a homeomorphism type, will appear in many different shapes.
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(2.3.2) Example. Let N D enC1 D .0; : : : ; 0; 1/ 2 RnC1. We define the stere-
ographic projection 'N W Sn X fenC1g ! Rn; the point 'N .x/ is the intersec-
tion of the line through enC1 and x with the hyperplane Rn � 0 D Rn. One
computes 'N .x1; : : : ; xnC1/ D .1 � xnC1/�1.x1; : : : ; xn/. The inverse map is
�N W x 7! ..1C kxk/2/�1.2x; kxk2 � 1/. We also have the stereographic projec-
tion 'S W Sn X f�enC1g ! Rn and the transition map is 'S ı '�1

N .y/ D kyk�2y.
From the stereographic projection we obtain Sn as a specific model of the one-
point compactification Rn [ f1g by extending �N .1/ D enC1. We also write
SV D V [ f1g for the one-point compactification of a finite-dimensional real
vector space V . Þ

2.3.3 Spheres. Let y 2 Sn. From (2.3.2) we see that Sn X y is homeomorphic to
Rn and hence contractible. Thus, if X ! Sn is not surjective, it is null homotopic.

The inclusion i W Sn ! RnC1 X f0g is an h-equivalence with homotopy inverse
N W RnC1 X f0g ! Sn, x 7! kxk�1x. A homotopy (rel Sn) from i ı N to the
identity is the linear homotopy .x; t/ 7! txC .1� t /iN.x/. MoreoverN ı i D id.
We see that i is a deformation retract.

Under suitable circumstances each map in a small neighbourhood of f is al-
ready homotopic to f . For a general theorem to this effect see (15.8.3). Here we
only give a simple, but typical, example. Let f; g W X ! Sn be maps such that
kf .x/� g.x/k < 2. Then they are homotopic by a linear homotopy when viewed
as maps into RnC1 X f0g. We compose with N and see that f ' g.

If f W Sm ! Sn is a continuous map, then there exists (by the theorem of
Stone–Weierstrass, say) a C1-map g W Sm ! Sn such that kf .x/ � g.x/k < 2.
This indicates another use of homotopies: Improve maps up to homotopy. If one
uses some analysis, namely (the easy part of) the theorem of Sard about the density
of regular values, one sees that for m < n a C1-map Sm ! Sn is not surjective
and hence null homotopic. (Later we prove this fact by other methods.) There exist
surjective continuous maps S1 ! S2 (Peano curves); this ungeometric behaviour
of continuous maps is the source for many of the technical difficulties in topology.Þ

(2.3.4) Proposition. The map p W Sn�1� I ! Dn, .x; t/ 7! .1� t /x is a quotient
map. GivenF W Dn ! X , the compositionFp W Sn�1�I ! X is a null homotopy
of f D F jSn�1. Each null homotopy of a map f W Sn�1 ! X arises from a
unique F .

Proof. Since a null homotopy H of f W Sn�1 ! X sends Sn�1 � 1 to a point, it
factors through the quotient map q W Sn�1 � I ! Sn�1 � I=Sn�1 � 1. Thus null
homotopies H correspond via xH 7! xHq to maps xH W Sn�1 � I=Sn�1 � 1! X .
The map p induces a homeomorphism xp W Sn�1�I=Sn�1�1! Dn (use (1.4.3)).
Hence there exists a unique F such that F xp D xH . �
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Let us use the notation

S.n/ D I n=@I n; S .n/ D Rn [ f1g;

since these spaces are homeomorphic to Sn. The canonical map I nCm=@I nCm !
Im@Im ^ I n=@I n which is the identity on representatives is a pointed homeomor-
phism. If V and W are finite-dimensional real vector spaces, we have a canonical
pointed homeomorphism SV ^ SW Š SV˚W which is the identity away from the
base point. The homeomorphism �0; 1Œ! R, s 7! 2s�1

s.1�s/ induces a homeomor-

phism � W S.1/! S .1/ which transports t 7! 1� t into the antipodal map x 7! �x
on R. We obtain an induced homeomorphism

�n W S.n/ D S.1/ ^ � � � ^ S.1/! S .1/ ^ � � � ^ S .1/ D S .n/

of the n-fold smash products.

(2.3.5) Example. A retraction r W Dn� ! Sn�1 � I [ Dn � 0 is r.x; t/ D
.2˛.x; t/�1 �x; ˛.x; t/�2C t /with ˛.x; t/ D max.2kxk; 2� t /. (See Figure 2.1, a
central projection from the point .0; 2/.) Given a map f W I n ! X and a homotopy
h W @I n � I ! X with h0 D f j@I n combine to a map g W I n � 0[ @I n � I ! X .
We compose with a retraction and obtain a homotopy H W I n ! X which extends
h and begins at H0 D f . This homotopy extension property is later studied more
generally under the name of cofibration. Þ

........................................

�
�
�
�
�
�
�
�
�
�
��

I

Dn

�
�
x

r.x/

.0; 2/

Figure 2.1. A retraction.

(2.3.6) Example. The assignmentH W .x; t/ 7! .˛.x; t/�1.1C t / � x; 2� ˛.x; t//
with the function ˛.x; t/ D max.2kxk; 2 � t / yields a homeomorphism of pairs
.Dn; Sn�1/ � .I; 0/ Š Dn � .I; 0/, see Figure 2.2.

Similarly for .I n; @I n/ in place of .Dn; Sn�1/, since these two pairs are homeo-
morphic. Þ
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Figure 2.2. A relative homeomorphism.

Problems

1. Construct a homeomorphism .Dm; Sm�1/ � .Dn; Sn�1/ Š .DmCn; SmCn�1/.
2. RnC1 X fxg ! Sn, z 7! .z � x/=kz � xk is an h-equivalence.
3. Let Dn

C D f.x0; : : : ; xn/ 2 Sn j xn � 0g. Show that the quotient map Sn ! Sn=Dn
C

is an h-equivalence.
4. Let f1; : : : ; fk W Cn ! C be linearly independent linear forms (k � n). Then the com-
plement Cn XSj f

�1
j

.0/ is homotopy equivalent to the product of k factors S1.
5. Sn ! f.x; y/ 2 Sn � Sn j x 6D yg, x 7! .x;�x/ is an h-equivalence.
6. Let f; g W X ! Sn be maps such that always f .x/ 6D �g.x/. Then f ' g.
7. LetA � En be star-shaped with respect to 0. Show that Sn�1 � RnXA is a deformation
retract.
8. The projection p W TSn D f.x; v/ 2 Sn � RnC1 j x ? vg ! Sn, .x; v/ 7! x is
called the tangent bundle of Sn. Show that p admits a fibrewise homeomorphism with
pr W Sn � Sn XD ! Sn, .x; y/ 7! x (with D the diagonal).

2.4 Mapping Spaces and Homotopy

It is customary to endow sets of continuous maps with a topology. In this section we
review from point-set topology the compact-open topology. It enables us to consider
a homotopy H W X � I ! Y as a family of paths in Y , parametrized by X . This
dual aspect of the homotopy notion will be used quite often. It can be formalized;
but we use it more like a heuristic principle to dualize various constructions and
notions in homotopy theory (Eckmann–Hilton duality).

We denote by Y X or F.X; Y / the set of continuous mapsX ! Y . ForK � X
and U � Y we set W.K;U / D ff 2 Y X j f .K/ � U g. The compact-open
topology (CO-topology) on Y X is the topology which has as a subbasis the sets
of the form W.K;U / for compact K � X and open U � Y . In the sequel the
set Y X always carries the CO-topology. A continuous map f W X ! Y induces
continuous maps f Z W XZ ! Y Z , g 7! fg and Zf W ZY ! ZX , g 7! gf .

(2.4.1) Proposition. Let X be locally compact. Then the evaluation eX;Y D
e W Y X �X ! Y , .f; x/ 7! f .x/ is continuous.
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Proof. Let U be an open neighbourhood of f .x/. Since f is continuous and X
locally compact, there exists a compact neighbourhoodK ofx such thatf .K/ � U .
The neighbourhood W.K;U / � K of .f; x/ is therefore mapped under e into U .
This shows the continuity of e at .f; x/. �

(2.4.2) Proposition. Let f W X � Y ! Z be continuous. Then the adjoint map
f ^ W X ! ZY , f ^.x/.y/ D f .x; y/ is continuous.

Proof. LetK�Y be compact andU �Z open. It suffices to show thatW.K;U /has
an open pre-image under f ^. Let f ^.x/ 2 W.K;U / and hence f .fxg�K/ � U .
SinceK is compact, there exists by (1.4.1) a neighbourhood V of x in X such that
V �K � f �1.U / and hence f ^.V / � W.K;U /. �

From (2.4.2) we obtain a set map ˛ W ZX�Y ! .ZY /X , f 7! f ^. Let eY;Z
be continuous. A continuous map ' W X ! ZY induces a continuous map '_ D
eY;Zı.'�idY / W X�Y ! ZY �Y ! Z. Hence we obtain a set mapˇ W .ZY /X !
ZX�Y , ' 7! '_.

(2.4.3) Proposition. Let eY;Z be continuous. Then ˛ and ˇ are inverse bijections.
Thus ' W X � Y ! Z is continuous if '_ W X � Y ! Z is continuous, and
f W X � Y ! Z is continuous if f ^ W X ! ZY is continuous. �

(2.4.4) Corollary. If h W X�Y �I ! Z is a homotopy, then h^ W X�I ! ZY is a
homotopy (see (2.4.2)). Hence ŒX�Y;Z�! ŒX;ZY �, Œf � 7! Œf ^� is well-defined.
If, moreover, eY;Z is continuous, e.g., Y locally compact, then this map is bijective
(see (2.4.3)). �

2.4.5 Dual notion of homotopy. We have the continuous evaluation et W Y I ! Y ,
w 7! w.t/. A homotopy from f0 W X ! Y to f1 W X ! Y is a continuous
map h W X ! Y I such that e" ı h D f" for " D 0; 1. The equivalence with our
original definition follows from (2.4.3): Since I is locally compact, continuous
maps X � I ! Y correspond bijectively to continuous maps X ! Y I . Þ

(2.4.6) Theorem. Let Z be locally compact. Suppose p W X ! Y is a quotient
map. Then p � id.Z/ W X �Z ! Y �Z is a quotient map.

Proof. We verify forp�id the universal property of a quotient map: If h W Y �Z !
C is a set map and h ı .p � id/ is continuous, then h is continuous. The adjoint of
h ı .p � id/ is h^ ı p. By (2.4.2), it is continuous. Since p is a quotient map, h^
is continuous. Since Z is locally compact, h is continuous, by (2.4.3). �

(2.4.7) Theorem (Exponential law). Let X and Y be locally compact. Then the
adjunction map ˛ W ZX�Y ! .ZY /X is a homeomorphism.
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Proof. By (2.4.3), ˛ is continuous if ˛1 D eX;ZY ı .˛ � id/ is continuous. And
this map is continuous if ˛2 D eY;X ı .˛1 � id/ is continuous. One verifies that
˛2 D eX�Y;Z . The evaluations which appear are continuous by (2.4.1).

The inverse ˛�1 is continuous if eX�Y;Z ı .˛�1 � id/ is continuous, and this
map equals eY;Z ı .eX;ZY � id/. �

Let .X; x/ and .Y; y/ be pointed spaces. We denote by F 0.X; Y / the space of
pointed maps with CO-topology as a subspace ofF.X; Y /. InF 0.X; Y /we use the
constant map as a base point. The adjoint f ^ W X ! F.Y;Z/ of f W X � Y ! Z

is a pointed map into F 0.X; Y / if and only if f sends X � y [ x � Y to the base
point of Z. Let p W X � Y ! X ^ Y D X � Y=.X � y [ x � Y / be the quotient
map.

Ifg W X^Y ! Z is given, we denote the adjoint ofgıp W X�Y ! X^Y ! Z

by ˛0.g/ and consider it as an element of F 0.X; F 0.Y;Z//. In this manner we
obtain a set map ˛0 W F 0.X ^ Y;Z/! F 0.X; F 0.Y;Z//.

The evaluation F 0.X; Y / � X ! Y , .f; x/ 7! f .x/ factors over the quotient
space F 0.X; Y / ^X and induces e0 D e0X;Y W F 0.X; Y / ^X ! Y . From (2.4.1)
we conclude:

(2.4.8) Proposition. Let X be locally compact. Then e0X;Y is continuous. �

Let e0X;Y be continuous. From a pointed map ' W X ! F 0.Y;Z/ we ob-
tain '_ D ˇ0.'/ D e0X;Y ı .' ^ id/ W X ^ Y ! Z, and hence a set map
ˇ0 W F 0.X; F 0.Y;Z//! F 0.X ^ Y;Z/.
(2.4.9) Proposition. Let e0X;Y be continuous. Then˛0 andˇ0 are inverse bijections.

�

(2.4.10) Corollary. Let h W .X ^ Y / � I ! Z be a pointed homotopy. Then
˛0.ht / W X ! F 0.Y;Z/ is a pointed homotopy and therefore

ŒX ^ Y;Z�0 ! ŒX; F 0.Y;Z/�0; Œf � 7! Œ˛0.f /�

is well defined. If, moreover, e0X;Y is continuous, then this map is bijective. �

By a proof formally similar to the proof of (2.4.7), we obtain the pointed version
of the exponential law.

(2.4.11) Theorem (Exponential law). Let X and Y be locally compact. Then the
pointed adjunction map ˛0 W F 0.X ^ Y;Z/! F 0.X; F 0.Y;Z// is a homeomor-
phism. �

(2.4.12) Lemma. Let ka W Z ! A denote the constant map with value a. Then
 W XZ � A! .X � A/Z , .'; a/ 7! .'; ka/ is continuous.
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Proof. Let  .f; a/ 2 W.K;U /. This means: For x 2 K we have .f .x/; a/ 2 U .
There exist open neighbourhoods V1 of f .K/ in X and V2 of a in A such that
V1 � V2 � U . The inclusion  .W.K; V1/� V2/ � W.K;U / shows the continuity
of  at .f; a/. �

(2.4.13) Proposition. A homotopyHt W X ! Y induces homotopiesHZ
t andZHt .

Proof. In the first case we obtain, with a map  from (2.4.12), a continuous map

HZ ı  W XZ � I ! .X � I /Z ! Y Z :

In the second case we use the composition

e ı .˛ � id/ ı .ZH � id/ W ZY � I ! ZX�I � I ! .ZX /I � I ! ZX

which is continuous. �

(2.4.14) Corollary. Let f be a homotopy equivalence. Then the induced maps
F.Z;X/ ! F.Z; Y / and F.Y;Z/ ! F.X;Z/ are h-equivalences. If f is a
pointedh-equivalence, the inducedmapsF 0.Z;X/! F 0.Z; Y /andF 0.Y;Z/!
F 0.X;Z/ are pointed h-equivalences. �

Problems

1. Verify that f Z and Zf are continuous.
2. An inclusion i W Z � Y induces an embedding iX W ZX ! YX .
3. The canonical map F

�
j̀ Xj ; Y

�!Q
j F.Xj ; Y / is always a homeomorphism.

4. The canonical mapF.X;
Q

j Yj /!
Q

j F.X; Yj /, f 7! .prj f / is always bijective and
continuous. If X is locally compact, it is a homeomorphism.
5. Let p W X ! Y be a surjective continuous map. Suppose the pre-image of a compact set
is compact. Then Zp W ZY ! ZX is an embedding.
6. We have a canonical bijective map F 0

�W
j 2J Xj ; Y

� ! Q
j 2J F

0.Xj ; Y /, sinceW
j Xj is the sum in TOP0. If J is finite, it is a homeomorphism.

7. Let X; Y; U , and V be spaces. The Cartesian product of maps gives a map

� W UX � V Y ! .U � V /X�Y ; .f; g/ 7! f � g:
Let X and Y be Hausdorff spaces. Then the map � is continuous.
8. By definition of a product, a map X ! Y � Z is essentially the same thing as a pair of
maps X ! Y , X ! Z. In this sense, we obtain a tautological bijection � W .Y � Z/X !
YX �ZX . Let X be a Hausdorff space. Then the tautological map � is a homeomorphism.
9. LetX andY be locally compact. Then composition of mapsZY �YX ! ZX , .g; f / 7!
g ı f is continuous.
10. Let .Y;	/ be a pointed space, .X;A/ a pair of spaces and p W X ! X=A the quotient
map. The spaceX=A is pointed with base point fAg. LetF..X;A/; .Y;	// be the subspace of
F.X; Y / of the maps which sendA to the base point. Composition with p induces a bijective
continuous map � W F 0.X=A; Y / ! F..X;A/; .Y;	//; and a bijection of homotopy sets
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ŒX=A; Y �0 ! Œ.X;A/; .Y;	/�. If p has compact pre-images of compact sets, then � is a
homeomorphism.
11. Consider diagrams where the right-hand one is obtained by multiplying the left-hand
one with X :

A ��

��

B

��

A �X ��

��

B �X
��

C �� D, C �X �� D �X .

If the left-hand diagram is a pushout in TOP and X locally compact, then the right-hand
diagram is a pushout in TOP. In TOP0 the smash product with a locally compact space yields
again a pushout.
12. The CO-topology on the set of linear maps Rn ! R is the standard topology.
13. Let X be a compact space and Y a metric space. Then the CO-topology on YX is
induced by the supremum-metric.

2.5 The Fundamental Groupoid

A path in the plane can be quite ungeometric: nowhere differentiable, infinite length,
surjective onto I�I (a so-called Peano curve). We introduce an equivalence relation
on paths, and the equivalence classes still capture qualitative geometric properties
of the path. In particular a reparametrization of a path (different “velocity”) does
not change basic topological properties.

We consider homotopy classes relative to @I of paths. A homotopy of paths
is always assumed to be relative to @I . A homotopy of paths between paths u
and v with the same end points x0 D u.0/ D v.0/, x1 D u.1/ D v.1/ is a map
H W I � I ! X such that

H.s; 0/ D u.s/;
H.s; 1/ D v.s/;
H.0; t/ D u.0/ D v.0/;
H.1; t/ D u.1/ D v.1/:

Thus for each t 2 I we have a path Ht W s 7! H.s; t/ and all these paths have the
same end points. We write H W u ' v for this homotopy.

...

...

...

...

...

...

...

...

...

...

.

...

...

...

...

...

...

...

...

...

...

.

x0

x0

"t

x1

x1

H0 D u

H1 D v

Ht

H constant along dotted lines
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Being homotopic in this sense is an equivalence relation on the set of all paths
from x to y. The product operation is compatible with this relation as the next
proposition shows.

(2.5.1) Proposition. The product of paths has the following properties:

(1) Let ˛ W I ! I be continuous and ˛.0/ D 0; ˛.1/ D 1. Then u ' u˛.

(2) u1 	 .u2 	 u2/ ' .u1 	 u2/ 	 u3 (if the products are defined ).
(3) u1 ' u0

1 and u2 ' u0
2 implies u1 	 u2 ' u0

1 	 u0
2.

(4) u 	 u� is always defined and homotopic to the constant path.

(5) ku.0/ 	 u ' u ' u 	 ku.1/.
Proof. (1) H W .s; t/ 7! u.s.1 � t /C t˛.s// is a homotopy from u to u˛.

(2) The relation .u1 	 .u2 	 u3//˛ D .u1 	 u2/ 	 u3 holds for ˛ defined as
˛.t/ D 2t for t � 1

4
, ˛.t/ D t C 1

4
for 1

4
� t � 1

2
, ˛.t/ D t

2
C 1

2
for 1

2
� t � 1.

(3) Given Fi W ui ' u0
i then G W u1 	 u2 ' u0

1 	 u0
2 for G defined as G.s; t/ D

F1.2s; t/ for 0 � t � 1
2

and G.s; t/ D F2.2s � 1; t/ for 1
2
� t � 1.

(4) The map F W I � I ! X defined as F.s; t/ D u.2s.1 � t // for 0 � s � 1
2

and F.s; t/ D u.2.1 � s/.1 � t / for 1
2
� t � 1 is a homotopy from u 	 u� to the

constant path. (At time t we only use the path from 0 to .1 � t / and compose it
with its inverse.)

(5) is proved again with the parameter invariance (1). �

From homotopy classes of paths in X we obtain again a category, denoted
….X/. The objects are the points of X . A morphism from x to y is a homotopy
class relative to @I of paths from x to y. A constant path represents an identity. If u
is a path from a to b and w a path from b to c, then we have the product path u 	 v
from a to c, and the composition of morphisms is defined by Œv� ı Œu� D Œu 	 v�. In
this category each morphism has an inverse, i.e. is an isomorphism, represented by
the inverse path. A category with this property is called groupoid. Note that in a
groupoid the endomorphism set of each object becomes a group under composition
of morphisms. The category….X/ is called the fundamental groupoid of X . The
automorphism group of the object x in this category is the fundamental group of
X with respect to the base point x. The usual rules of categorical notation force
us to define the multiplication in this group by Œu� ı Œv� D Œv 	 u�. As long as
we are just interested in this group (and not in the categorical aspect), we use the
opposite multiplication Œu� � Œv� D Œu	v� and denote this group by �1.X; x/. This is
the traditional fundamental group of the pointed space .X; x/ (Poincaré 1895 [151,
§12]). An element in �1.X; x/ is represented by a closed path w based at x (i.e.,
w.0/ D w.1/ D x), also called a loop based at x.

(2.5.2) Remark. We can obtain the fundamental groupoid ….X/ as a quotient
category of the path category W.X/. In that case we call paths u W Œ0; a� W I ! X

and v W Œ0; b�! X from x to y homotopic, if there exist constant paths with imagey



2.5. The Fundamental Groupoid 43

such that the compositions with u and v, respectively, have the same domain of
definition Œ0; c� and the resulting composed paths are homotopic rel f0; cg. Þ

(2.5.3) Remark. The set �1.X; x/ has different interpretations. A loop based at
x is a map w W .I; @I / ! .X; x/. It induces a pointed map xw W I=@I ! X . The
exponential function p0 W I ! S1, t 7! exp.2�it/ induces a pointed homeomor-
phism q W I=@I ! S1 which sends the base point f@I g to the base point 1. There
exists a unique u W S1 ! X such that uq D xw. Altogether we obtain bijections

�1.X; x/ D Œ.I; @I /; .X; x/� Š ŒI=@I;X�0 Š ŒS1; X�0;
induced by Œw�$ Œ xw� D Œuq�$ Œu�. Þ

It is a general fact for groupoids … that the automorphism groups Aut.x/ D
….x; x/ and Aut.y/ D ….y; y/ of objects x; y in… are isomorphic, provided there
exists a morphism from x to y. If ˛ 2 ….x; y/, then

….x; x/! ….y; y/; ˇ 7! ˛ˇ˛�1

is an isomorphism. It depends on the choice of ˛; there is, in general, no canonical
isomorphism between these groups. Thus fundamental groups associated to base
points in the same path component are isomorphic, but not canonically.

A space is simply connected or 1-connected if it is path connected and its
fundamental group is trivial (consists of the neutral element alone).

A continuous map f W X ! Y induces a homomorphism

�1.f / W �1.X; x/! �1.Y; f .x//; Œu� 7! Œf u�

and, more generally, a functor

….f / W ….X/! ….Y /; x 7! f .x/; Œu� 7! Œf u�:

In this way, �1 becomes a functor from TOP0 to the category of groups, and … a
functor from TOP to the category of small categories (small category: its objects
form a set). Homotopies correspond to natural transformations:

(2.5.4) Proposition. LetH W X � I ! Y be a homotopy from f to g. Each x 2 X
yields the path Hx W t 7! H.x; t/ and the morphism ŒHx� in ….Y / from f .x/ to
g.x/. The ŒH x� constitute a natural transformation….H/ from….f / to….g/.

Proof. The claim says that for each path u W I ! X the relation f u 	 Hu.1/ '
Hu.0/ 	gu holds. We use I �I ! Y , .s; t/ 7! H.u.s/; t/. We obtain f u	Hu.1/

as composition with a 	 b and Hu.0/ 	 gu as composition with c 	 d , where a, b,
c, and d are the sides of the square: a.t/ D .t; 0/, b.t/ D .1; t/, c.t/ D .0; t/,
d.t/ D .t; 1/. But a 	 b and c 	 d are homotopic by a linear homotopy. �



44 Chapter 2. The Fundamental Group

We express the commutativity of (2.5.4) in a different way. It says that

tH ı g� D f� W …X.x; y/! …Y.f x; fy/;

where tH W ….Y /.gx; gy/! ….Y /.f x; fy/ is the bijection a 7! ŒHy ��1aŒHx�.
The rule ….K 	 L/ D ….L/….K/ is obvious. Hence if f is an h-equivalence

with h-inverse g W Y ! X , then ….f /….g/ and ….g/….f / are naturally isomor-
phic to the identity functor, i.e., ….f / is an equivalence of categories. The natural
transformation….H/ only depends on the homotopy class relative toX �@I ofH .

It is a general categorical fact that a natural equivalence of categories induces
a bijection of morphism sets. We prove this in the notation of our special case at
hand.

(2.5.5) Proposition. Let f W X ! Y be a homotopy equivalence. Then the functor
….f / W ….X/! ….Y / is an equivalence of categories. The inducedmaps between
morphism sets f� W …X.x; y/! …Y.f x; fy/ are bijections. In particular,

�1.f / W �1.X; x/! �1.Y; f .x//; Œw� 7! Œf w�

is an isomorphism for each x 2 X . A contractible space is simply connected.

Proof. Let g W Y ! X be h-inverse to f . Consider

…X.x; y/
f��! …Y.f x; fy/

g��! …X.gf x; gfy/
f��! …Y.fgf x; fgfy/:

Choose H W gf ' id.X/. Then g�f� D .gf /� D tH ı .id/� D tH is a bijection,
hence g� is surjective. In a similar manner one proves that f�g� is a bijection, hence
g� is also injective. Since g�f� and g� are bijective we see that f� is bijective.

�

The fundamental group forces us to work with pointed spaces. Usually the base
points serve some technical purpose and one has to study what happens when the
base point is changed. For pointed h-equivalences f it would be immediately clear
that �1.f / is an isomorphism. For the more general case (2.5.5) one needs some
argument like the one above.

(2.5.6) Proposition. Let .X; x0/ and .Y; y0/ be pointed spaces and iX W X !
X � Y , x 7! .x; y0/ and iY W Y ! X � Y , y 7! .x0; y/. Then

�1.X; x0/ � �1.Y; y0/! �1.X � Y; .x0; y0//; .u; v/ 7! iX� u � iY� v
is a well-defined isomorphism with inverse z 7! .prX� z; prY� z/.

Proof. Since homotopy is compatible with products we know already that the sec-
ond map is an isomorphism. In order to show that the first map is a homomorphism
we have to verify that iX� u commutes with iY� v. Let now u and v be actual paths
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and writew D .u�v/ı with the diagonal ı. With a notation introduced in the proof
of (2.5.4) we have .u � v/.a 	 b/ D iXu 	 iY v and .u � v/.c 	 d/ D iY v 	 iXu.
We now use that ı, a 	 b, and c 	 d are homotopic (linear homotopy). It should be
clear that the two maps of the proposition are inverse to each other. �

2.6 The Theorem of Seifert and van Kampen

Let a spaceX be the union of subsetsX0; X1. A general problem is to derive prop-
erties of X from those of X0, X1, and X01 D X0 \X1. (Similar problem for more
general unions.) Usually the covering has to satisfy certain reasonable conditions.
In this section we consider the fundamental groupoid and the fundamental group
under this aspect. The basic result is the theorem (2.6.2) of Seifert [166] and van
Kampen [100].

We first prove an analogous and slightly more general result for groupoids [34].
The result is more formal but the proof is (notationally) simpler because we need
not take care of base points. Note that the hypothesis of the next theorem implies
that X is the pushout in TOP of the inclusions X0 
 X01 � X1. Thus (2.6.1) says
that the functor … preserves pushouts.

(2.6.1) Theorem (R. Brown). Let X0 and X1 be subspaces of X such that the
interiors cover X . Let i� W X01 ! X� and j� W X� ! X be the inclusions. Then

….X01/
….i0/ ��

….i1/

��

….X0/

….j0/

��

….X1/
….j1/ �� ….X/

is a pushout in the category of groupoids.

Proof. Let h� W ….X�/ ! ƒ be functors into a groupoid such that h1….i1/ D
h0….i0/. We have to show: There exists a unique functor 	 W ….X/! ƒ such that
h1 D 	….j1/ and h0 D 	….j0/. We begin with a couple of remarks.

A path w W Œa; b�! U represents a morphism Œw� in ….U / from w.a/ to w.b/
if we compose it with an increasing homeomorphism ˛ W Œ0; 1�! Œa; b�.

If a D t0 < t1 < � � � < tm D b, then w represents the composition of the
morphisms ŒwjŒti ; tiC1��.

Suppose that w W I ! X is a path. Then there exists a decomposition 0 D
t0 < t1 < � � � < tmC1 D 1 such that w.Œti ; tiC1�/ is contained in a set Xı

� . Choose
� W f0; : : : ; mg ! f0; 1g such that w.Œti ; tiC1�/ � Xı

�.i/
. Consider wjŒti ; tiC1� as

path wi in X�.i/. Then

Œw� D ….j�.m//Œwm� ı � � � ı….j�.0//Œw0�:
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If 	 exists, then

.i/ 	Œw� D h�.m/Œwm� ı � � � ı h�.0/Œw0�;
i.e., 	 is uniquely determined.

In order to show the existence of 	, we have to define 	Œw� by .i/. We have
to verify that this is well-defined. The commutativity h0….i0/ D h1….h1/ shows
that a different choice of � yields the same result.

Since h0 and h1 are functors, we obtain the same result if we refine the decom-
position of the interval.

It remains to be shown that .i/ only depends on the homotopy class of the path.
Let H W I � I ! X be a homotopy of paths from x to y. There exists n 2 N such
that H sends each sub-square Œi=n; .i C 1/=n� � Œj=n; .j C 1/=n� into one of the
setsXı

� (see (2.6.4)). We consider edge-paths in the subdivided square I �I which
differ by a sub-square, as indicated in the following figure (n D 5).

.0; 0/

.1; 1/

�

�

We apply H and obtain two paths in X . They yield the same result .i/, since they
differ by a homotopy on some subinterval which stays inside one of the sets Xı

� .
Changes of this type allow us to pass inductively from theH on the lower toH on
the upper boundary path from .0; 0/ to .1; 1/. These paths differ from H0 and H1
by composition with a constant path.

Finally, from the construction we conclude that 	 is a functor. �

(2.6.2) Theorem (Seifert–van Kampen). Let X0 and X1 be subspaces of X such
that the interiors coverX . Let i� W X01 D X0\X1 ! X� and j� W X� ! X be the
inclusions. Suppose thatX0; X1; X01 are path connected with base point 	 2 X01.
Then

�1.X01;	/ i1� ��

i0�

��

�1.X1;	/
j1�

��

�1.X0;	/ j0� �� �1.X;	/
is a pushout in the category of groups.

Proof. The theorem is a formal consequence of (2.6.1). In general, if Z is path
connected and z 2 Z we have a retraction functor r W ….Z/! �1.Z; z/ onto the
full subcategory with object z. For each z 2 Z we choose a morphism ux 2 ….Z/
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fromx to z such thatuz D id. Then r assignsuy˛u�1
x to a morphism˛ W x ! y. We

apply this to Z D X01; X0; X1; X and z D 	 and choose a morphism ux 2 ….Z/
if x is contained in Z. We obtain a commutative diagram of functors

….X0/

r1

��

….X01/��

r01

��

�� ….X1/

r0

��

�1.X0;	/ �1.X01;	/�� �� �1.X1;	/.

Given homomorphisms '� W �1.X� ;	/! G into a group G (D a groupoid with a
single object) which agree on �1.X01;	/, we compose with r� and apply (2.6.1) to
obtain a functor ….X/ ! G. Its restriction to �1.X;	/ is the unique solution of
the pushout problem in (2.6.2). �

(2.6.3) Remark. From the proof of (2.6.1) we see that each morphism in ….X/ is
a composition of morphisms in ….X0/ and ….X1/. Similarly, in (2.6.2) the group
�1.X;	/ is generated by the images of j0� and j1�. This algebraic fact is not
immediately clear from the definition of a pushout. Þ

We have used above the next fundamental result. It is impossible to prove a
geometric results about continuous maps without subdivision and approximation
procedures. In most of these procedures (2.6.4) will be used.

(2.6.4) Proposition (Lebesgue). Let X be a compact metric space. Let A be an
open covering of X . Then there exists " > 0 such that for each x 2 X the "-neigh-
bourhood U".x/ is contained in some member of A. (An " with this property is
called a Lebesgue number of the covering.) �

2.7 The Fundamental Group of the Circle

The space R is simply connected; ….R/ has a single morphism between any two
objects. We consider ….R/ as a topological groupoid: The object space is R, the
morphism space is R � R, the source is .a; b/ 7! a, the range .a; b/ 7! b, the
identity a 7! .a; a/, and .b; c/ ı .a; b/ D .a; c/ the composition.

The continuous map p W R ! S1 induces a functor ….p/ W ….R/ ! ….S1/.
It turns out that this functor is surjective on morphisms and provides us with an
algebraic description of ….S1/. So let us define a topological groupoid G. The
object space is S1, the morphism space is S1 �R, the source .a; t/ 7! a, the range
.a; t/ 7! a exp.2�it/, the identity a 7! .a; 0/, and the composition .b; t/ı.a; s/ D
.a; s C t /.

The assignments a 7! exp.2�ia/ and .a; b/ 7! .exp.2�ia/; b � a/ yield a
continuous functor ….R/ ! G. We will show that G (forgetting the topology) is
….S1/.
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We have the open covering of S1 � C byX0 D S1Xf1g andX1 D S1Xf�1g
with inclusions ik W X01 ! Xk and jk W Xk ! S1. The sets Xk are contractible,
hence simply connected. Therefore there exists a single morphism .a; b/k W a! b

between two objects a; b of ….Xk/.
We have bijective maps f0 W �0; 1Œ! X0 and f1 W � � 1=2; 1=2Œ! X1 given

by t 7! exp.2�it/. We define functors �k W ….Xk/ ! G by the identity on
objects and by �k.a; b/k D .a; f �1

k
.b/ � f �1

k
.a//. Moreover we have a functor

� W G ! ….S1/which is the identity on objects and which sends the morphism .a; t/
of G to the class of the path I ! S1, s 7! a exp.2�its/ from a to a exp.2�it/.
(The idea behind the definition of G is the fact that each path in S1 is homotopic
to one of this normal form, see (2.7.9).) The following diagram is commutative.

….X0/

�0

���
��

��
��

��
…j0

��

….X01/

…i0

�����������

…i1 ���
��

��
��

��
G

�
�� ….S1/

….X1/

�1

		���������
…j1





(2.7.1) Proposition. The functor � is an isomorphism.

Proof. We apply (2.6.1) to the pair .�0; �1/ and obtain a functor � W ….S1/! G.
The uniqueness property of a pushout solution shows �� D id. In order to show
�� D id we note that the morphisms of G are generated by the images of �0
and �1. Given .a; t/ 2 G.a; b/, choose a decomposition t D t1 C � � � C tm such
that jtr j < 1=2 for each r . Set a0 D a and ar D a exp.2�i.t1 C � � � C tr//. Then
.a; t/ D .am�1; tm/ ı � � � ı .a1; t2/ ı .a0; t1/ in the groupoid G. Since jtr j < 1=2

there exists for each r a k.r/ 2 f0; 1g such that ar�1 exp.2�itrs/ 2 Xk.r/ for s 2 I .
Then .ar�1; tr/ D �k.r/.ar�1; ar/k.r/. ThusG.a; b/ is generated by morphisms in
the images of the �k . �

The unit circle S1 in the complex plane is the prototype of a loop. Typical
elements in the fundamental group are obtained by runningn times around the circle.
Up to homotopy, there are no other possibilities. With (2.7.1) we have determined
the fundamental group �1.S1; 1/, namely as the automorphism group in….S1/ of
the object 1. The automorphisms of the object 1 in G are the .1; n/; n 2 Z and
�.1; n/ is the loop t 7! exp.2�int/.

(2.7.2) Theorem. Let sn W I ! S1 be the loop t 7! exp.2�int/. The assignment
ı W Z! �1.S

1; 1/, n 7! Œsn� is an isomorphism. �
The circle S1 is a group with respect to multiplication of complex numbers.

We show that the composition law in �1.S1; 1/ can also be defined using this
multiplication.
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More generally, assume that X is a space with a continuous multiplication

m W X �X ! X; .x; y/ 7! m.x; y/ D xy
and neutral element up to homotopy e 2 X (the base point), i.e., the maps x 7!
m.e; x/ and x 7! m.x; e/ are both pointed homotopic to the identity. We call such
an object a monoid in h-TOP. (We do not assume thatm is associative or commuta-
tive.) We define a composition law on the pointed homotopy set ŒY; X�0, called the
m-product, by Œf �; Œg� 7! Œf � �m Œg� D Œf � g�; here f � g W y 7! m.f .y/; g.y//

is the ordinary pointwise multiplication. The constant map represents a two-sided
unit for the m-product. In a similar manner we define by pointwise multiplication
of loops them-product on �1.X; e/. The set �1.X; e/ Š ŒS1; X�0 now carries two
composition laws: the m-product and the 	-product of the fundamental group.

(2.7.3) Proposition. Let .X;m/ be a monoid in h-TOP. Then the 	-product and the
m-product on �1.X; e/ coincide and the product is commutative.

Proof. Let k be the constant loop. Then for any two loops u and v the relations

u 	 v ' .u � k/ 	 .k � v/ D .u 	 k/ � .k 	 v// ' u � v;
u 	 v ' u � v ' .k 	 u/ � .v 	 k/ D .k � v/ 	 .u � k/ ' v 	 u

hold. In order to see the equalities, write down the definition of the maps. �

(2.7.4) Lemma. The map v W ŒS1; S1�0 ! ŒS1; S1� which forgets the base point is
a bijection.

Proof. Given f W S1 ! S1 we choose a path w W I ! S1 from 1 to f .1/�1.
Then .x; t/ 7! f .x/w.t/ is a homotopy from f to a pointed map, hence v is
surjective. Let H W S1 � I ! S1 be a homotopy between pointed maps; then
.x; t/ 7! H.x; t/ �H.1; t/�1 is a pointed homotopy between the same maps, i.e.,
v is injective. �

If f; g W X ! S1 are continuous maps, then f � g W x 7! f .x/g.x/ is again
continuous. This product of functions is compatible with homotopies and induces
the structure of an abelian group on ŒX; S1�.

(2.7.5) Theorem. From (2.7.2), (2.7.4) and (2.5.3) we obtain an isomorphism d ,

d W ŒS1; S1� Š ŒS1; S1�0 Š �1.S1; 1/ Š Z:

We call the integer d.f / D d.Œf �/ the degree of f W S1 ! S1. A standard map of
degree n is �n W z 7! zn. A null homotopic map has degree zero. �
(2.7.6) Example. A polynomial function

g W C! C; g.z/ D zn C a1zn�1 C � � � C an
has a root (n � 1).
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Proof. Suppose g.z/ 6D 0 for jzj D 1. Then f W S1 ! S1, z 7! g.z/=jg.z/j
is defined. Suppose g is non-zero for jzj � 1. Then h.z; t/ D f .tz/ is a null
homotopy of f . For t > 0 we have

k.z; t/ D zn C t .a1zn�1 C a2tzn�2 C � � � C antn�1/ D tng.z=t/:
If g is non-zero for jzj � 1, then H.z; t/ D k.z; t/=jk.z; t/j is a homotopy from
f to �n. Thus if g has no root, then �n is null homotopic; this contradicts (2.7.5).

�

The classical approach to �1.S1/ uses topological properties of the exponential
function p W R ! S1, t 7! exp.2�it/. A lifting of w W Œa; b� ! S1 along p is a
map W W Œa; b�! R with pW D w; the value W.a/ is the initial condition of the
lifting. Liftings always exist and depend continuously on the path and the initial
condition (see (2.7.8)).

(2.7.7) Proposition. Let f W S1 ! S1 be given. Let F W I ! R be a lifting of fp0
along p. Then F.1/ � F.0/ is the degree of f .

Proof. Let g D f .1/�1f . Then ı.d.f // D Œgp0�, by the definition of d in (2.7.5).
There exists a 2 R such that f .1/ D exp.2�ia/ and F.0/ D a. Then ˆ D F � a
is a lifting of gp0 with initial condition 0. Hence F.1/ � F.0/ D ˆ.1/ �ˆ.0/ D
ˆ.1/ D n 2 Z. The homotopy .x; t/ 7! .1 � t /ˆ.x/C txˆ.1/ is a homotopy of
paths. Hence the loop gp0 is homotopic to sn. This shows ı.n/ D Œgp0�. �

The next proposition will be proved in the chapter on covering spaces. It ex-
presses the fact that p W R! S1 is fibration.

(2.7.8) Proposition. Given a homotopy h W X � I ! S1 and an initial condition
a W X ! R such that pa.x/ D h.x; 0/. Then there exists a unique homotopy
H W X � I ! R such thatH.x; 0/ D a.x/ and pH D h. �

(2.7.9) Example. Let w W Œ0; 1�! S1 be a path with w.0/ D z D exp.2�ia/. Let
W W Œ0; 1�! R be a lifting of w with W.0/ D a. Suppose W.1/ D b. Then W is,
by a linear homotopy, homotopic to t 7! a C t .b � a/ and hence w homotopic to
the path in normal form t 7! z exp.2�i.b � a/t/. Þ

2.7.10 The winding number. Let x 2 C D R2. The map

rx W C n fxg ! S1; z 7! .z � x/=jz � xj
is an h-equivalence and therefore ŒS1;C n fxg�! ŒS1; S1�, Œf � 7! Œrxf � a bijec-
tion. The degree of rxf is the winding number of f with respect to x. We denote
it byW.f; x/. Maps f0; f1 W S1 ! C n fxg are homotopic if and only if they have
the same winding number. If f W S1 ! C is given and w W I ! C a path with



2.7. The Fundamental Group of the Circle 51

f .S1/ \ w.I / D ;, then .x; t/ 7! rw.t/f is a homotopy. Therefore the winding
numbers of f with respect tow.0/ andw.1/ are equal. The complement Cnf .S1/
decomposes into open path components, and the winding number with respect to x
is constant as long as x stays within a component.

Let u W I ! C X fxg be a loop. Then there exists a unique continuous map
f W S1 ! C X fxg such that f ı p0 D u. The winding number of f is then also
called the winding number of u, and we denote it by W.u; x/. Þ

The notion of the degree can be extended to other situations. Let h W S ! S1 be
a homeomorphism and f W S ! S any map; the degree of hf h�1 is independent
of the choice of a homeomorphism h and also called the degree d.f / of f .

Problems

1. Let p be a polynomial function on C which has no root on S1. Then the number of roots
z with jzj < 1 (counted with multiplicities) is equal to the winding number W.pjS1; 0/.
What is the winding number of the function 1=p with respect to 0?
2. (Properties of the degree.) d.f ı g/ D d.f /d.g/. A homeomorphism S1 ! S1 has
degree ˙1. If f W S1 ! S1 has degree d.f / ¤ 1, then there exists x 2 S1 such that
f .x/ D x. The map z 7! xz has degree �1.

Let u D exp.2�i=n/ be an n-th root of unity. Suppose h W S1 ! S1 satisfies h.uz/ D
h.z/. Then d.h/ � 0 mod n.

Let k; j 2 Z and assume that k is coprime to n. Let f W S1 ! S1 satisfy the functional
equation f .ukz/ D ujf .z/. Then k d.f / � j mod n. If, conversely, this congruence is
satisfied with some integer d.f /, then there exists a map f of degree d.f / which satisfies
the functional equation. In particular an odd map f , i.e., f .�z/ D �f .z/, has odd degree.

Suppose f .�z/ ¤ f .z/ for all z; then the degree of f is odd. Suppose f .z/ ¤ g.z/

for all z; then d.f / D d.g/. Suppose d.g/ � 0 mod n for some n > 0; then there exists
h W S1 ! S1 such that g D hn.
3. Let U W I ! C be a lifting of u W I ! C� D C X 0 along the covering P W C ! C�,
z 7! exp.2�iz/. Then W.u; 0/ D U.1/ � U.0/.
4. Let � W Œ0; 1� ! C� be a continuously differentiable path with initial point 1. Then
 W Œ0; 1� ! C, t 7! 1

2�i

R
�jŒ0;t�

d z
z

is a continuously differentiable lifting of � along P
with initial point 0.
5. If u W I ! C X fxg is a continuously differentiable loop, then W.u; x/ D 1

2�i

R
u

dz
z�x

.
6. Let A 2 GL2.R/. Then the winding number of lA W S1 7! R2 X 0, x 7! Ax with respect
to the origin is the sign of the determinant det.A/.
7. Let v W ŒS1; X�0 ! ŒS1; X� be the map which forgets about the base point (pointed
homotopies versus free homotopies). Conjugate elements in the group ŒS1; X�0 have the
same image under v. Hence v induces a well-defined map xv W ŒS1; X�0=.�/! ŒS1; X� from
the set of conjugacy classes. This map is injective, and surjective if X is path connected.
Thus v is bijective if X is path connected and the fundamental group abelian.
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2.8 Examples

The formal nature of the theorem of Seifert and van Kampen is simple, but the corre-
sponding algebra can be complicated. The setup usually leads to groups presented
by generators and relations. It may be difficult to understand a group presented in
this manner. For an introduction to this type of group theory see [122]; also [171]
and [39] are informative in this context. We report about some relevant algebra and
describe a number of examples and different applications of the fundamental group.

2.8.1 Spheres. If a spaceX is covered by two open simply connected subsets with
path connected intersection, then X is simply connected, since the pushout of two
trivial groups is trivial. Coverings of this type exist for the spheres Sn for n � 2.
Hence these spheres are simply connected. Þ

2.8.2 Removing a point. The inclusion Dn X 0 � Dn induces for n � 3 an
isomorphism of fundamental groups; actually both groups are zero, since Dn is
contractible and Dn X 0 ' Sn�1.

Let M be a manifold of dimension n � 3 and U � M homeomorphic to Dn

under a homeomorphism that sends x to 0. Then M is the pushout of M X fxg
and U . Theorem (2.6.2) implies that M X fxg � M induces an isomorphism of
fundamental groups.

Often we view the space Sn as the one-point compactification Rn [ f1g of the
Euclidean space, see (2.3.2). LetK be a compact subset of Rn for n � 3. Then the
inclusion Rn XK � Sn XK induces an isomorphism of fundamental groups. Þ

2.8.3 Complements of spheres. Let Sm0 D SmCnC1 \ .RmC1 � 0/ and Sn1 D
SmCnC1 \ .0 � RnC1/. Then X D SmCnC1 X Sn1 is homeomorphic to Sm � En.
A homeomorphism Sm � En ! X is .x; y/ 7! �p

1 � kyk2x; y�. The space
Y D SmCnC1 X .Sm0 [ Sn1 / is homeomorphic to Sm � Sn� �0; 1Œ via .x; y; t/ 7!
.
p
1 � tx;pty/. Therefore the complementX is h-equivalent to Sm and the com-

plement Y is h-equivalent to Sm � Sn.
The fundamental group of S3 X .f0g � S1/ is isomorphic to Z. If we view

S3 D R3[f1g, then we are considering the complement of the axisZ D f.0; 0; z/ j
z 2 Rg [ f1g. The generator of the fundamental group is a loop that runs once
about the axis Z, represented by the standard sphere W D S1 � f0g.

It is impossible to span a 2-disk with boundary W in the complement of Z,
becauseW represents a non-zero element in the fundamental group of the comple-
ment, see Figure 2.3. This is expressed by saying that W and Z are linked in S3.
Apply the stereographic projection (2.3.2) to S1 � 0 [ 0 � S1 � S3. The image
yields W [ Z. The complement of W [ Z in R3 is therefore isomorphic to the
fundamental group Z�Z of the torus S1�S1. The reader should draw generators
of �1.R3 XW [Z/. Þ
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Z

W

1

Figure 2.3. A standard circle in S3.

2.8.4 Presentation of groups by generators and relations. Let S be a set. A free
group with basis S consists of a groupF.S/ and a set map i W S ! F.S/which has
the following universal property: For each set map ˛ W S ! G into a groupG there
exists a unique homomorphism A W F.S/ ! G such that A ı i D ˛. It turns out
that i is injective. Let us consider i as an inclusion and set S�1 D fs�1 j s 2 Sg. A
word in the alphabetX D SqS�1 is a sequence .x1; : : : ; xm/ of elements xi 2 X .
The elements in F.S/ are the products x1 : : : xm corresponding to the words; the
neutral element belongs to the empty word; a word .x; x�1/ also represents the
neutral element.

LetR be a set of words and xR the image in F.S/. LetN.R/ be the normal sub-
group generated by xR. The factor group G D F.S/=N.R/ is the group presented
by the generators S and the relationsR. We denote this group by hS jR i. It has the
following universal property: Let ˛ W S ! H be a set map into a groupH . Assume
that for each .x1; : : : ; xm/ 2 R the relation ˛.x1/ : : : ˛.xm/ D 1 holds inH . Then
there exists a unique homomorphism A W G ! H such that A.x/ D ˛.x/ for each
x 2 S .

Each group can be presented in the form hS j R i – in many different ways. In
practice one uses a less formal notation. Here are a few examples.

(i) The cyclic group of order n has the presentation ha j an i.
(ii) Let S D fx; yg. Consider the word .x; x; y�1; y�1; y�1/ and R consisting

of this word. Then we can write G D hS jR i also in the form hx; y j x2y�3 i
or hx; y j x2 D y3 i. The universal property says in this case that homomor-
phisms G ! H correspond bijectively to set maps ˛ W fx; yg ! H such that
˛.x/2 D ˛.y/3.

(iii) ha; b j ab D ba i is a presentation for the free abelian group with basis a, b.
Þ

2.8.5 Free product and pushout of groups. The sum (D coproduct) in the cate-
gory of groups is also called a free product. Let .Gj j j 2 J / be a family of groups.
The free product of this family consists of a group∗k2J Gk together with a family
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of homomorphisms �j W Gj ! ∗k2J Gk which have the universal property of a
sum in the category of groups. (The notation G1 	 G2 is used for the free product
of two groups.) Each family has a sum. Let Gj D hSj jRj i and assume that the Sj
are disjoint. Let S D qjSj . The Rj are then words in the alphabet S q S�1. Let
R DSj Rj . We have homomorphisms �j W hSj jRj i ! hS jR i which are induced
by Sj � S . These homomorphisms are a sum in the category of groups.

LetG andH be groups and i1 W G ! G	H , j1 W H ! G	H be the canonical
maps which belong to the sum. Let J W P ! G, I W P ! H be homomorphisms
from a further group P . Let N be the normal subgroup of G 	 H generated by
the elements fi1J.x/ � j1I.x�1/ j x 2 P g. Let Q D .G 	H/=N and denote by
i W G ! Q, j W H ! Q the composition of i1; j1 with the quotient map. Then
.i; j / is a pushout of .J; I / in the category of groups. In the case that I and J are
inclusions (but sometimes also in the general case) one writes Q D G 	P H .

Let S be a set and Z D Zs a copy of the additive group Z for each s 2 S . Then
the groups F.S/ with basis S is also the free product ∗s2S Z. Þ

2.8.6 Free products of fundamental groups. The free product �1.X0/ 	 �1.X1/
arises geometrically if X01 is simply connected.

LetX D S1_S1 withX0 D Y _S1,X1 D S1_Y , whereY D S1Xf�1g;	 D
1. Then .Y; 1/ is pointed contractible; hence the inclusion of the summands S1 !
X0; X1 are pointed h-equivalences. One can apply (2.6.2) to the covering of X
by X0; X1. Since X0 \ X1 is pointed contractible, we see that �1.X/ is the free
product �1.X0/ 	 �1.X1/. Hence the inclusions of the summands S1 ! S1 _ S1
yield a presentation of �1.S1 _ S1/ as a free product �1.S1/ 	 �1.S1/ Š Z 	Z.
By induction one shows that �1

�Wk
1 S

1
�

is the free group of rank k. Þ

2.8.7 Plane without two points. The space R2Xf˙1g has as a deformation retract
the union X of the circles about ˙1 with radius 1=2 and the segment from �1=2
to 1=2, see Figure 2.4. (The reader should try to get an intuitive understanding of a

��
��

��
��� � �

�1 C10

  

!
 

!
 

vu

Figure 2.4. Generators u; v of �1.R2 X˙1/.

retraction. In order to give a formal proof, without writing down explicit formulas,
it is advisable to wait for the method of cofibrations.) The fundamental group
�1.R2 X f˙1g; 0/ is the free group Z 	 Z and generators are represented by two
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small circles about ˙1 (of radius 1=2, say) connected linearly to the base point.
One can apply (2.6.2) to the covering of R2 X f˙1g by the punctured half-spaces
f.x; y/ j x < 1=3; x 6D �1g and f.x; y/ j �1=3 < x; x 6D 1g . Þ

In the example in 2.8.6 one cannot apply (2.6.2) directly to the covering of
S1_S1 by the two summands, since the interiors do not cover the space. The general
method in cases like this is to first “thicken” the subspaces up to h-equivalence. In
the next theorem we add a hypothesis which allows for a thickening.

(2.8.8) Theorem. Let ..Xj ; xj / j j 2 J / be a family of pointed spaces with
the property: The base point xj has an open neighbourhood Uj � Xj which is
pointed contractible to the base point. The inclusions of the summands induce
homomorphisms ij W �1.Xj ; xj /! �1

�W
k2J Xk; x

�
. This family is a free product

of the groups �1.Xj ; xj /.

Proof. Let J D f1; 2g. We apply (2.6.2) to the covering X1 _ U2; U1 _ X2 of
X1 _X2. The argument is as for 2.8.4. For finite J we use induction on jJ j. Note
that

W
Uj � W

Xj is an open, pointed contractible neighbourhood of the base
point.

Let now J be arbitrary. A pathw W I !W
Xj has, by compactness of I , an im-

age in
�W

e2E Xe
�_�Wj2JXE Uj

�
for a finite subsetE � J . This fact and the result

for E show that the canonical map ˛J W ∗j2J �1.Xj /! �1
�W

j2J Xj
�

is surjec-
tive. Each element x 2 ∗j2J �1.Xj / is contained in some ∗e2E �1.Xe/ for a
finiteE. Supposex is contained in the kernel of˛J . Then a loopw W I !W

e2E Xe
representing ˛Ex is null homotopic in

W
j2J Xj and, again by compactness, null

homotopic in some larger finite wedge. The result for a finite index set now yields
x D 0. �

2.8.9 Quotient groups. Let i W K ! G be a homomorphism of groups and denote
by N C G the normal subgroup generated by the image of i . Then

K ��

i
��

1

��

G
p

�� G=N

is a pushout in the category of groups, with p the quotient map.
This situation arises geometrically in (2.6.2) if one of the spaces X� is simply

connected. Þ

2.8.10 Attaching of a 2-cell. We start with a pushout diagram of spaces

S1
'

��

j
��

B

J
��

D2
ˆ �� X .
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ThenX is said to be obtained fromB by attaching a 2-cell via the attaching map '.
(This construction will be studied in detail in the chapter on cell complexes.) Then
a suitable thickening shows that we can apply (2.6.2). SinceD2 is contractible, we
are in the situation of 2.8.9. Thus J� induces an isomorphism�1.B/=h' i Š �1.X/
where h' i denotes the normal subgroup generated by Œ'� 2 ŒS1; B�0 D �1.B/. Þ

2.8.11 Attaching of a cone. Given a map ' W A ! B from a path connected
space A. The cone on A is the space A � I=A � 0. Let j W A ! CA, a 7! .a; 1/

denote the inclusion of A into the cone. The cone is contractible, a contracting
homotopy is induced by ht .x; s/ D .x; s.1 � t //. Form a pushout

A
'

��

j
��

B

J
��

CA
ˆ �� X .

Since CA is contractible, J� induces an isomorphism �1.B/=N Š �1.X/, where
N is the normal subgroup generated by the image of '�. Þ

2.8.12 Realization of groups. We demonstrate that arbitrary groups can be realized
as fundamental groups. Let

f W A DWk2K S1 !
W
l2L S1 D B

be a pointed map. The inclusions of the summands yield a basis ak 2 �1.A/ and
bl 2 �1.B/ for the free groups and f�.ak/ D rk is a word in the bt

l
, t 2 Z. Let

N �∗l2L Z D G be the normal subgroup generated by the rk . Then G=N is the
group presented by generators and relations hbl ; l 2 L j rk; k 2 K i. Let CA be
the cone on A and define X by a pushout diagram

A
f

��

\
��

B

��

CA �� X .

Then 2.8.11 shows �1.X/ Š G=N . Each group can be presented in the formG=N .
Note that X is a 2-dimensional cell complex. Þ

2.8.13 Surfaces. The classification theory of compact connected surfaces presents
a surface as a quotient space of a regular 2n-gon, see e.g., [44, p. 75], [167], [123].
The edges are identified in pairs by a homeomorphism. The surface F is obtained
as a pushout of the type

S1
'

��

��

Wn
1 S

1

��

D2
ˆ �� F .
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The attaching map ' is given in terms of the standard generators of �1
�Wn

1 S
1
�

by
the so-called surface-word.

In order to save space we refer to [44, p. 83–87] for the discussion of the
fundamental group of surfaces in general. We mention at least some results. They
will not be used in this text.

(2.8.14) Theorem. .1/ The fundamental group of a closed connected orientable
surface Fg of genus g � 1 has the presentation

�1.Fg/ D ha1; b1; : : : ; ag ; bg j a1b1a�1
1 b�1

1 : : : agbga
�1
g b�1

g i:

.2/ The fundamental group of a closed connected non-orientable surfaceNg of
genus g has the presentation

�1.Ng/ D ha1; : : : ; ag j a21a22 : : : a2g i:

.3/ The fundamental group of a compact connected surface with non-empty
boundary is a free group. The number of generators is the finite number 1��.Fg/
where �.Fg/ is the so-called Euler characteristic.

.4/ A simply connected surface is homeomorphic to R2 or S2. �

There are many different definitions of the genus. We mention a geometric
property: The genus of a closed connected orientable surface is the maximal number
g of disjointly embedded circles such that their complement is connected. The genus
of a closed connected non-orientable surface is the maximal number g of disjointly
embedded Möbius bands such that their complement is connected. The sphere has
genus zero by the Jordan separation theorem. Þ

Problems

1. Let S1 � R2 � 0 � R3 be the standard circle. Let D D f.0; 0; t/ j �2 � t � 2g and
S2.2/ D fx 2 R3 j kxk D 2g. Then S2.2/ [D is a deformation retract of X D R3 X S1.
The space X is h-equivalent to S2 _ S1.
2. Consider the loop based at .0; 0/ in the plane as shown in Figure 2.5. Determine which

� 	
 �
� 
� �� �

� �
�� �
 

�1 C1

Figure 2.5.
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element in �1.R2 X˙1/ this loop represents in terms of the generators u; v in 2.8.7. Deter-
mine the winding number about points in each of the six complementary regions.
3. Let .Xj j j 2 J / be a family of subspaces of X such that the interiors Xı

j
cover X .

Then each morphism in….X/ is a composition of morphisms in theXj . If the intersections
Xi \ Xj are path connected and 	 2 Xi \ Xj , then �1.X;	/ is generated by loops in the
Xj .
4. Let i0� in (2.6.2) be an isomorphism. Then j1� is an isomorphism. This statement is a
general formal property of pushouts. If i0� is surjective, then j1� is surjective.
5. Projective plane. The real projective plane P 2 is defined as the quotient of S2 by the
relation x � �x. Let Œx0; x1; x2� denote the equivalence class of x D .x0; x1; x2/. We can
also obtain P 2 from S1 by attaching a 2-cell

S1
'

��

j
��

P 1

J
��

D2
ˆ �� P 2.

HereP 1 D fŒx0; x1; 0�g � P 2 and'.x0; x1/ D Œx0; x1; 0�. The spaceP 1 is homeomorphic
to S1 via Œx0; x1; 0� 7! z2; z D x0C ix1; and ' corresponds to the standard map of degree
2. The map ˆ is x D .x0; x1/ 7! Œx0; x1;

p
1 � kxk2�. As an application of 2.8.10 we

obtain �1.P
2/ Š Z=2.

Another interpretation of the pushout: P 2 is obtained from D2 by identifying opposite
points of the boundary S1. The subspace f.x0; x1/ j kxk � 1=2g becomes in P 2 a Möbius
bandM . Thus P 2 is obtainable from a Möbius band M and a 2-diskD by identification of
the boundary circles by a homeomorphism. The projective plane cannot be embedded into
R3, as we will prove in (18.3.7). There exist models in R3 with self-intersections (technically,
the image of a smooth immersion.) The projective plane is a non-orientable surface.
6. Klein bottle. The Klein bottle K can be obtained from two Möbius bands M by an
identification of their boundary curves with a homeomorphism, K DM [@M M .

Apply the theorem of Seifert and van Kampen and obtain the presentation �1.K/ D
ha; b j a2 D b2 i. The elements a2; ab generate a free abelian subgroup of rank 2 and of
index 2 in the fundamental group. The element a2 generates the center of this group, it is
represented by the central loop @M . The quotient by the center is isomorphic to Z=2	Z=2.

The spaceM=@M is homeomorphic to the projective planeP 2. If we identify the central
@M to a point, we obtain a map q W K DM [@M M ! P 2 _P 2. The induced map on the
fundamental group is the homomorphism onto Z=2 	Z=2.

2.9 Homotopy Groupoids

The homotopy category does not have good categorical properties. Therefore we
consider “homotopy” as an additional structure on the category TOP of topological
spaces. The categoryTOP will be enriched: The set of morphisms….X; Y /between
two objects carries the additional structure of a groupoid. The fundamental groupoid
is the special case in which X is a point.
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Recall that a category has the data: objects, morphisms, identities, and compo-
sition of morphisms. The data satisfy the axioms: composition of morphisms is
associative; identities are right and left neutral with respect to composition.

Let X and Y be topological spaces. We define a category ….X; Y / and begin
with the data. The objects are the continuous maps X ! Y . A morphism from
f W X ! Y to g W X ! Y is represented by a homotopy K W f ' g. Two such
homotopies K and L define the same morphism if they are homotopic relative to
X �@I with @I D f0; 1g the boundary of I . Let us use a second symbol J D Œ0; 1�
for the unit interval. This means: A map ˆ W .X � I / � J ! Y is a homotopy
relative toX�@I , ifˆ.x; 0; t/ is independent of t andˆ.x; 1; t/ is also independent
of t . Thereforeˆt W X � I ! Y; .x; s/ 7! ˆ.x; s; t/ is for each t 2 J a homotopy
from f to g. For this sort of relative homotopy one has, as before, the notion of
a product and an inverse, now with respect to the J -variable. Hence we obtain
an equivalence relation on the set of homotopies from f to g. We now define: A
morphism � W f ! g in ….X; Y / is an equivalence class of homotopies relative
to X � @I from f to g. Composition of morphisms, denoted ~, is defined by the
product of homotopies

K W f ' g;L W g ' h; ŒL�~ ŒK� D ŒK 	 L� W f ! h:

This is easily seen to be well-defined (useˆt 	I ‰t ). The identity of f in….X; Y /
is represented by the constant homotopy kf W f ' f .

The verification of the category axioms is based on the fact that a reparametriza-
tion of a homotopy does not change its class.

(2.9.1) Lemma. Let ˛ W I ! I be a continuous map with ˛.0/ D 0 and ˛.1/ D 1.
Then K and K ı .id�˛/ are homotopic relative to X � @I .

Proof. ˆ.x; s; t/ D K.x; .1 � t /s C t˛.s// is a suitable homotopy. �

(2.9.2) Proposition. The data for ….X; Y / satisfy the axioms of a category. The
category is a groupoid.

Proof. The associativity of the composition follows, because

.K 	 L/ 	M D K 	 .L 	M/ ı .id � ˛/;
with ˛ defined by ˛.t/ D 2t for t � 1

4
, ˛.t/ D tC 1

4
for 1

4
� t � 1

2
, ˛.t/ D t

2
C 1
2

for 1
2
� t � 1.

Similarly, for eachK W f ' g the homotopies kf 	K,K, andK 	 kg differ by
a parameter change. Therefore the constant homotopies represent the identities in
the category.

The inverse homotopyK� represents an inverse of the morphism defined byK.
Hence each morphism is an isomorphism. Proof: The assignments .x; s; t/ 7!
K.x; 2s.1� t // for 0 � s � 1

2
and .x; s; t/ 7! K.x; 2.1� s/.1� t // for 1

2
� s � 1

yield a homotopy relative to X � @I fromK 	K� to the constant homotopy. �
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The endomorphism set of an object in a groupoid is a group with respect to
composition as group law. We thus see, from this view point, that the notion of
homotopy directly leads to algebraic objects. This fact is a general and systematic
approach to algebraic topology.

The homotopy categories of Section 2.2 have a similar enriched structure. If
we work, e.g., with pointed spaces and pointed homotopies, then we obtain for
pointed spaces X and Y a category …0.X; Y /. The objects are pointed maps.
Morphisms are represented by pointed homotopies, and the equivalence is defined
by homotopies ˆ rel X � @I such that each ˆt is a pointed homotopy.

The remainder of this section can be skipped on a first reading. We study the
dependence of the groupoids ….X; Y / on X and Y . The formal structure of this
dependence can be codified in the notion of a2-category. Suppose given˛ W U ! X

and ˇ W Y ! V . Composition with ˛ and ˇ yield a functor

ˇ# D …#.ˇ/ W ….X; Y /! ….X; V /;

which sends f to f̌ and ŒK� to ŒˇK� and a functor

˛# D …#.˛/ W ….X; Y /! ….U; Y /;

which sends f to f ˛ and ŒK� to ŒK.˛ � id/�. They satisfy .ˇ1ˇ2/# D ˇ1#ˇ
2
# and

.˛1˛2/
# D ˛#

2˛
#
1. These functors are compatible in the following sense:

(2.9.3) Proposition. Suppose K W f ' g W X ! Y and L W u ' v W Y ! Z are
given. Then ŒL ˘ K� D v#ŒK� ~ f #ŒL� D g#ŒL� ~ u#ŒK�. Here L ˘ K W uf '
vg W X � I ! Z; .x; t/ 7! L.K.x; t/; t/.

Proof. We use the bi-homotopy L ı .K � id/ W X � I � I ! Z. Restriction to the
diagonal of I � I defines L ˘ K. Along the boundary of the square we have the
following situation.

uf uguK

vf

L.f � id/ L.g � id/

vgvK

� s

�

t
.s; t/ 2 I � I

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � �

L˘K

g#ŒL�~ u#ŒK� is represented by uK 	L.g � id/. If we compose the bi-homotopy
with id.X/ � � , where �.t/ D .2t; 0/ for t � 1

2
and �.t/ D .1; 2t � 1/ for t � 1

2
,
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we obtain uK 	 L.g � id/. In the same manner we obtain L.f � id/ 	 vK if we
compose the bi-homotopy with id.x/ � ı, where ı.t/ D .0; 2t/ for t � 1

2
and

ı.t/ D .2t � 1; 1/ for t � 1
2

. The maps � and ı are homotopic relative to @I by a
linear homotopy in the square. They are also homotopic to the diagonal t 7! .t; t/

of the square. �

(2.9.4) Corollary. The homotopy L induces a natural transformation

L# W u# ! v# W ….X; Y /! ….X;Z/:

The value of L# at f is f #ŒL�. The homotopy K induces a natural transformation

K# W f # ! g# W ….Y;Z/! ….X;Z/:

The value of K# at u is u#ŒK�. �
(2.9.5) Corollary. If u W Y ! Z is an h-equivalence, then u# is an equivalence of
categories. Similarly in the contravariant case. �

The data and assertions that we have obtained so far define on TOP the structure
of a 2-category. In this context, the ordinary morphisms f W X ! Y are called
1-morphisms and the morphisms ŒK� W f ' g are called 2-morphisms. The
composition ~ of 2-morphisms is called vertical composition. We also have a
horizontal composition of 2-morphisms defined as ŒL� ˘ ŒK� D ŒL ˘K�. Because
of (2.9.3) we need not define ˘ via the diagonal homotopy; we can use instead
(2.9.3) as a definition ŒL� ˘ ŒK� D v#ŒK�~ f #ŒL� D g#ŒL�~ u#ŒK�.

(2.9.6) Note. From this definition one verifies the commutation rule of a 2-category
.ı ~ �/ ˘ .ˇ ~ ˛/ D .ı ˘ ˇ/~ .� ˘ ˛/. �

The following figure organizes the data (horizontal – vertical).

A

f

��
g ��

+ ˛

h

��
+ ˇ

B

u

��
v ��

+ �

w

��
+ ı

C

Conversely, one can derive (2.9.3) from the commutation rule (2.9.6). With the
constant homotopy ku of u we have

ku ˘ ˛ D u#˛; � ˘ kf D f #�; kv ˘ ˛ D v#˛; � ˘ kg D g#�

and this yields

� ˘ ˛ D .� ~ ku/ ˘ .kg ~ ˛/ D .� ˘ kg/~ .ku ˘ ˛/ D g# ~ u#˛:

In a similar manner one obtains � ˘ ˛ D v#˛ ~ f #� .



Chapter 3

Covering Spaces

A covering space is a locally trivial map with discrete fibres. Objects of this type
can be classified by algebraic data related to the fundamental group. The reduction
of geometric properties to algebraic data is one of the aims of algebraic topology.
The main result of this chapter has some formal similarity with Galois theory.

A concise formulation of the classification states the equivalence of two cate-
gories. We denote by COVB the category of covering spaces of B; it is the full
subcategory of TOPB of spaces over B with objects the coverings of B . Under
some restrictions on the topology of B this category is equivalent to the category
TRAB D Œ….B/; SET� of functors ….B/ ! SET and natural transformations
between them. We call it the transport category. It is a natural idea that, when
you move from one place to another, you carry something along with you. This
transport of “information” is codified in moving along the fibres of a map (here: of
a covering). We will show that the transport category is equivalent to something
more familiar: group actions on sets.

The second important aspect of covering space theory is the existence of a
universal covering of a space. The automorphism group of the universal covering
is the fundamental group of the space – and in this manner the fundamental group
appears as a symmetry group. Moreover, the whole category of covering spaces
is obtainable by a simple construction (associated covering of bundle theory) from
the universal covering.

In this chapter we study coverings from the view-point of the fundamental group.
Another aspect belongs to bundle theory. In the chapter devoted to bundles we show
for instance that isomorphism classes of n-fold coverings over a paracompact space
B correspond to homotopy classes B ! BS.n/ into a so-called classifying space
BS.n/.

3.1 Locally Trivial Maps. Covering Spaces

Let p W E ! B be continuous and U � B open. We assume that p is surjec-
tive to avoid empty fibres. A trivialization of p over U is a homeomorphism
' W p�1.U /! U �F over U , i.e., a homeomorphism which satisfies pr1 ı' D p.
This condition determines the space F up to homeomorphism, since ' induces a
homeomorphism of p�1.u/ with fug � F . The map p is locally trivial if there
exists an open covering U ofB such that p has a trivialization over eachU 2 U. A
locally trivial map is also called a bundle or fibre bundle, and a local trivialization
a bundle chart. We say, p is trivial over U , if there exists a bundle chart over U . If
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p is locally trivial, then the set of those b 2 B for which p�1.b/ is homeomorphic
to a fixed space F is open and closed in B . Therefore it suffices for most purposes
to fix the homeomorphism type of the fibres. If the fibres are homeomorphic to F ,
we call F the typical fibre. A locally trivial map is open, hence a quotient map.

A covering space or a covering1 of B is a locally trivial map p W E ! B with
discrete fibres. If F is discrete (D all subsets are open and closed), then U � F is
homeomorphic to the topological sumqx2FU � fxg. The summands U � fxg are
canonically homeomorphic to U . If ' W p�1.U /! U � F is a trivialization, then
p yields via restriction a homeomorphism of '�1.U � fxg/ with U . A covering
is therefore a local homeomorphism. The summands '�1.U � fxg/ D Ux are the
sheets of the covering over U ; the pre-image p�1.U / is therefore the topological
sum of the sheetsUx; the sheets are open inE and mapped homeomorphically onto
U under p. If jF j D n 2 N, we talk about an n-fold covering. The trivial covering
with typical fibre F is the projection pr W B � F ! B . We say, U is admissible or
evenly covered if there exists a trivialization over U .

(3.1.1) Example. The exponential function p W R! S1, t 7! exp.2�it/ is a cov-
ering with typical fibre Z. For each t 2 R andp.t/ D z we have a homeomorphism

p�1.S1 X z/ D`n2Z �t C n; t C nC 1Œ Š �t; t C 1Œ � Z;

and p maps each summand homeomorphically. Þ

(3.1.2) Proposition. Let p W E ! B be a covering. Then the diagonalD ofE �E
is open and closed in Z D f.x; y/ 2 E �E j p.x/ D p.y/g.
Proof. LetUx be an open neighbourhood of x which is mapped homeomorphically
under p. Then Z \ .Ux � Ux/ D Wx is contained in D, and Wx is an open
neighbourhood of .x; x/ in Z. This shows that D is open.

Let x 6D y and p.x/ D p.y/. Let x 2 Ux and y 2 Uy be the sheets of p over
the open set U � B . Since x 6D y, the intersection Ux \ Uy is empty. Hence
Z \ .Ux � Uy/ is an open neighbourhood of .x; y/ in Z and disjoint to D. This
shows that also the complement Z XD is open. �

Let p W E ! B and f W X ! B be maps; then F W X ! E is a lifting of f
along p, if pF D f .

(3.1.3) Proposition (Uniqueness of liftings). Let p W E ! B be a covering. Let
F0; F1 W X ! E be liftings of f W X ! B . Suppose F0 and F1 agree somewhere.
If X is connected, then F0 D F1.
Proof. .F0; F1/ yield a map F W X ! Z. By assumption, F �1.D/ is not empty,
and hence, by (3.1.2), open and closed. IfX is connected, then F �1.D/ D X , i.e.,
F0 D F1. �

1Observe that the term “covering” has two quite different meanings in topology.
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(3.1.4) Proposition. Let q W E ! B � Œ0; 1� be locally trivial with typical fibre F .
Then B has an open cover U such that q is trivial over each set U � Œ0; 1�, U 2 U.

Proof. If q is trivial over U � Œa; b� and over U � Œb; c�, then q is trivial over
U � Œa; c�. Two trivializations over U � fbg differ by an automorphism, and this
automorphism can be extended over U � Œb; c�. Use this extended automorphism
to change the trivialization over U � Œb; c�, and then glue the trivializations. By
compactness of I there exist 0 D t0 < t1 < � � � < tn D 1 and an open set U such
that q is trivial over U � Œti ; tiC1�. �

For the classification of covering spaces we need spaces with suitable local
properties. A space X is called locally connected (locally path connected) if
for each x 2 X and each neighbourhood U of x there exists a connected (path
connected) neighbourhood V of x which is contained in U . Both properties are
inherited by open subspaces.

(3.1.5) Proposition. The components of a locally connected space are open. The
path components of a locally path connected space Y are open and coincide with
the components.

Proof. Let K be the component of x. Let V be a connected neighbourhood of x.
ThenK[V is connected and therefore contained inK. This shows thatK is open.

Let U be a component of Y and K a path component of U . Then U XK is a
union of path components, hence open. In the case that U 6D K we would obtain a
decomposition of U . �

We see that each point in a locally path connected space has a neighbourhood
basis of open path connected sets.

(3.1.6) Remark. Let B be path connected and locally path connected. Since a
covering is a local homeomorphism, the total space E of a covering of B is locally
path connected. Let E 0 be a component of E and p0 W E 0 ! B the restriction of
p. Then p0 is also a covering: The sets U , over which p is trivial, can be taken as
path connected, and then a sheet over U is either contained in E 0 or disjoint to E 0.
Since B is path connected, we see by path lifting (3.2.9) that p0 is surjective. By
(3.1.5), E is the topological sum of its components. Þ

A left action G � E ! E, .g; x/ 7! gx of a discrete group G on E is called
properly discontinuous if each x 2 E has an open neighbourhood U such that
U \ gU D ; for g 6D e. A properly discontinuous action is free. For more details
about this notion see the chapter on bundle theory, in particular (14.1.12).

A left G -principal covering consists of a covering p W E ! B and a properly
discontinuous action of G on E such that p.gx/ D p.x/ for .g; x/ 2 G � E and
such that the induced action on each fibre is transitive.
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(3.1.7) Example. A left G-principal covering p W E ! B induces a homeomor-
phism of the orbit space E=G with B . The orbit map E ! E=G of a properly
discontinuous action is a G-principal covering. Þ

A covering p W E ! B has an automorphism group Aut.p/. An automorphism
is a homeomorphism ˛ W E ! E such that p ı ˛ D p. Maps of this type are also
called deck transformations of p. If p is a left G-principal covering, then each
left translation lg W E ! E, x 7! gx is an automorphism of p. We thus obtain a
homomorphism l W G ! Aut.p/. Let E be connected. Then an automorphism ˛

is determined by its value at a single point x 2 E, and ˛.x/ is a point in the fibre
p�1.p.x//. Since G acts transitively on each fibre, the map l is an isomorphism.
Thus the connected principal coverings are the connected coverings with the largest
possible automorphism group. Conversely, we can try to find principal coverings
by studying the action of the automorphism group.

(3.1.8) Proposition. Let p W E ! B be a covering.

(1) IfE is connected, then the action of Aut.p/ (and of each subgroup of Aut.p/)
on E is properly discontinuous.

(2) Let B be locally path connected and let H be a subgroup of Aut.p/. Then
the map q W E=H ! B induced by p is a covering.

Proof. (1) Let x 2 E and g 2 Aut.p/. LetU be a neighbourhood of p.x/which is
evenly covered, and let Ux be a sheet over U containing x. For y 2 Ux \ gUx we
have p.y/ D p.g�1y/, since g�1 is an automorphism. Hence y D g�1y, since
both elements are contained in Ux . This shows g�1 D id, hence Ux \ gUx D ;
for g 6D e, and we see that the action is properly discontinuous.

(2) Let U � B be open, path connected, and evenly covered. Let p�1.U / DS
j2J Uj be the decomposition into the sheets overU . An element h 2 H permutes

the sheets, since they are the path components of p�1.U /. The equivalence classes
with respect to H are therefore open in the quotient topology of E=H and are
mapped bijectively and continuously under q. Since p is open, so is q. Hence q is
trivial over U . Since B is locally path connected, it has an open covering by such
sets U . �

A right G-principal covering p W E ! B gives rise to associated coverings.
Let F be a set with left G-action. Denote by E �G F the quotient space of E �F
under the equivalence relation .x; f / � .xg�1; gf / for x 2 E; f 2 F; g 2 G.
The continuous map pF W E �G F ! B , .x; f / 7! p.x/ is a covering with typical
fibre F .

A G-map  W F1 ! F2 induces a morphism of coverings

id�G W E �G F1 ! E �G F2; .x; f / 7! .x;  .f //:
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We thus have obtained a functor “associated coverings”

A.p/ W G-SET! COVB

from the categoryG-SET of leftG-sets andG-equivariant maps. We call aG-prin-
cipal covering p W E ! B over the path connected spaceB universal if the functor
A.p/ is an equivalence of categories.

3.2 Fibre Transport. Exact Sequence

The relation of a covering space to the fundamental groupoid is obtained via path
lifting. For this purpose we now introduce the notion of a fibration which will be
studied later in detail. A map p W E ! B has the homotopy lifting property (HLP)
for the spaceX if the following holds: For each homotopy h W X �I ! B and each
map a W X ! E such that pa.x/ D hi.x/, i.x/ D .x; 0/ there exists a homotopy
H W X � I ! E with pH D h and Hi D a. We call H a lifting of h with initial
condition a. The map p is called a fibration if it has the HLP for all spaces.

(3.2.1) Example. A projection p W B � F ! B is a fibration. Let a.x/ D
.a1.x/; a2.x//. The condition pa D hi says a1.x/ D h.x; 0/. If we setH.x; t/ D
.h.x; t/; a2.x//, then H is a lifting of h with initial condition a. Þ
(3.2.2) Theorem. A covering p W E ! B is a fibration.

Proof. Let the homotopy h W X � I ! B and the initial condition a be given.
Since I is connected, a lifting with given initial condition is uniquely determined
(see (3.1.3)). Therefore it suffices to find for each x 2 X an open neighbourhood
Vx such that hjVx � I admits a lifting with initial condition ajVx . By uniqueness
(3.1.3), these partial liftings combine to a well-defined continuous map.

By (3.2.3) there exists for each x 2 B an open neighbourhood Vx and an
n 2 N such that h maps Vx � Œi=n; .i C 1/=n� into a set U over which p is trivial.
Since p W p�1.U / ! U is, by (3.2.1), a fibration, hjVx � Œi=n; .i C 1/=n� has a
lifting for each initial condition. Therefore we find by induction over i a lifting of
hjVx � Œ0; i=n� with initial condition ajVx . �

(3.2.3) Lemma. Let U be an open covering of B � Œ0; 1�. For each b 2 B there
exists an open neighbourhood V.b/ of b in B and n D n.b/ 2 N such that for
0 � i < n the set V.b/ � Œi=n; i=.nC 1/� is contained in some member of U. �

The fact that the lifted homotopy is uniquely determined implies that for a
covering p W E ! B the diagram

EI
pI

��

e0
E

��

BI

e0
B

��

E
p

�� B
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is a pullback of topological spaces. Here EI is the space of paths in E with
compact-open topology and e0E .w/ D w.0/.

The homeomorphism (2.3.6) k W .I n; @I n/ � .I; 0/ ! I n � .I; 0/ of pairs is
used to solve the next homotopy lifting problem with a modified initial condition.
It reduces the problem to the HLP for I n.

(3.2.4) Proposition. Let p W E ! B have the HLP for the cube I n. For each
commutative diagram

I n � 0 [ @I n � I a ��

i\
��

E

p

��

I n � I h ��

������
B

there existsH W I n � I ! E withHi D a and pH D h. �

Let p W E ! B be a map which has the HLP for a point and for I . Write Fb D
p�1.b/. We associate to each path v W I ! B from b to c a map v# W �0.Fb/ !
�0.Fc/ which only depends on Œv� 2 ….B/. Let x 2 Fb . Choose a lifting
V W I ! E of v with V.0/ D x. We set v#Œx� D ŒV .1/�. We have to show that this
assignment is well-defined. For this purpose assume given:

(1) u W I ! Fb;
(2) h W I � I ! B a homotopy of paths from b to c;
(3) V0; V1 W I ! E liftings of h0, h1 with initial points u.0/; u.1/.

These data yield a map a W I � @I [ 0 � I ! E, defined by a.s; "/ D V".s/ and
a.0; t/ D u.t/. The lifting H of h with initial condition a, according to (3.2.4),
yields a path t 7! H.1; t/ in Fc from V0.1/ to V1.1/. This shows that the map v# is
well-defined and depends only on the morphism Œv� in the fundamental groupoid.
The rule w#v# D .v 	 w/# is easily verified from the definitions. Thus we have
shown:

(3.2.5) Proposition. The assignments b 7! �0.Fb/ and Œv� 7! v# yield a functor
Tp W ….B/! SET. �

We call Tp D T .p/ the transport functor associated to p.
The functor Tp provides us with

�0.Fb/ � �1.B; b/! �0.Fb/; .x; Œv�/ 7! v#.x/ D x � Œv�;
a right action of the fundamental group on the set �0.Fb/. We write �0.F; x/ if Œx�
is chosen as base point of the set �0.F /. We use the action to define

@x W �1.B; b/! �0.Fb; x/; Œv� 7! x � Œv�:
The map @x is �1.B; b/-equivariant, i.e., @xŒv 	 w� D .@xŒv�/ � Œw�.
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Recall that a sequence A
˛! B

ˇ! C of pointed maps is exact at B if the image
of ˛ equals the kernel ˇ�1.	/ of ˇ. Similarly for longer sequences. In this context
a group is pointed by its neutral element.

(3.2.6) Theorem. Let p.x/ D b and i W Fb � E. The sequence

�1.Fb; x/
i� �� �1.E; x/

p� �� �1.B; b/
@x �� �0.Fb; x/

i� �� �0.E; x/
p� �� �0.B; b/

is exact.

Proof. It is easily verified from the definitions that the composition of two maps is
the constant map. We consider the remaining four cases: kernel � image.

Let Œu� 2 �1.E; x/ and h W I � I ! B a null homotopy of pu. Consider
the lifting problem for h with initial condition a W I � 0 [ @I � I ! E with
a.s; 0/ D u.s/ and a."; t/ D x. The lifting H of h is then a homotopy of loops
from u to a loop in the image of i .

Let @xŒv� D Œx�. This means: There exists a lifting V of v from x to V.1/ 2 Œx�.
Choose a path U W I ! Fb from V.1/ to x. Then V 	 U is a loop in E, and its
class maps under �1.p/ to Œv�, since pU is constant.

Let �0.i/Œy� D Œx�. There exists a pathw W I ! E from x to y. The projection
v D pw is a loop and @xŒv� D Œy�, by definition of @x .

Let �0.p/Œy� D Œb�. Thus there exists a path v W I ! B from p.y/ to x. Let
V W I ! E be a lifting of v with initial point y. Then V.1/ 2 Fb , and V shows
�0.i/.ŒV .1/� D Œy�. �

There is more algebraic structure in the sequence.

(3.2.7) Proposition. The pre-images of elements under @x are the left cosets of
�1.B; b/ with respect to p��1.E; x/. The pre-images of �0.i/ are the orbits of the
�1.B; b/-action on �0.Fb; x/.

Proof. Let @xŒu� D @xŒv�. Choose liftings U , V of u, v which start in x, and let
W W I ! Fb be a path from U.1/ to V.1/. Then U 	W 	 V � is a loop in E, and
p.U 	W 	 V �/ 	 v ' u, i.e., the elements Œu� and Œv� are contained in the same
left coset. Conversely, elements in the same coset have the same image under @x .
(A similar assertion holds for right cosets.)

Suppose �0.i/Œa� D �0.i/Œb�. Then there exists a path w W I ! E from a to b.
Set v D pw. Then Œa� � Œv� D Œb�. Conversely, elements in the same orbit have
equal image under �0.i/. �

We can apply (3.2.6) to a covering p W E ! B . The fibres are discrete. There-
fore �1.Fb; x/ is the trivial group 1. Hence p� W �1.E; x/! �1.B; b/ is injective.
We state (3.2.6) for a covering:
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(3.2.8) Proposition. Let p W E ! B be a covering over a path connected spaceB .
Then the sequence

1! �1.E; x/
p��! �1.B; b/

@x�! �0.Fb; x/
i��! �0.E; x/

is exact and i� is surjective. (The setsFb D �0.Fb/ and�0.E/ havex as base point,
and i W Fb � E.) Thus E is path connected if and only if �1.B; b/ acts transitively
onFb . The isotropy group ofx 2 Fb is the image ofp� W �1.E; x/! �1.B; b/. �

(3.2.9) Proposition (Path lifting). Let p W E ! B be a covering. Let w W I ! B

be a path which begins at p.e/ D w.0/. Then there exists a unique lifting of w
which begins in e. Two paths in E which start in the same point are homotopic if
and only if their images in B are homotopic.

Proof. The existence of the lifting follows from (3.2.2), applied to a point X , and
the uniqueness holds by (3.1.3).

Let h W I � I ! B be a homotopy of paths and H W I � I ! E a lifting
of h. Since t 7! H."; t/ are continuous maps into a discrete fibre, they are constant
(" D 0; 1). Hence H is a homotopy of paths.

Let u0; u1 W I ! E be paths which start in x, and suppose that pu0 and pu1
are homotopic. If we lift a homotopy between them with constant initial condition,
then the result is a homotopy between u0 and u1. �

Let p W E ! B be a right G-principal covering. Each fibre Fb carries a free
right transitive G-action. From the construction of the transport functor it is im-
mediate that the fibre transport TpŒw� W Fb ! Fc is G-equivariant. The left action
.a; x/ 7! a � x D a#.x/ of �b D ….B/.b; b/ on Fb commutes with the right
G-action; we say in this case that Fb is a .�b; G/-set. Fix x 2 Fb . For each
a 2 �b there exists a unique �x.a/ 2 G such that a � x D x � �x.a/, since
the action of G is free and transitive. The assignment a 7! �x.a/ is a homo-
morphism �x W �b ! G. Since �1.B; b/ is the opposite group to �b , we set
ıx.a/ D �x.a/

�1. Then ıx W �1.B; b/ ! G is a homomorphism. Recall the
map @x W �1.B; p.x// ! Fb . If we compose it with the bijection �x W G ! Fb ,
g 7! xg, we obtain �xıx D @x . Then (3.2.8) yields:

(3.2.10) Proposition. Let p W E ! B be a right G-principal covering with path
connected total space. Then the sequence of groups and homomorphisms

1! �1.E; x/
p��! �1.B; p.x//

ıx�! G ! 1

is exact ( for each x 2 E). The image of p� is a normal subgroup. The space
E is simply connected if and only if ıx is an isomorphism. Thus, if E is simply
connected, then G is isomorphic to the fundamental group of B . �
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If we apply this to the exponential covering R ! S1, a Z-principal covering,
we again obtain �1.S1/ Š Z.

The transport functor Tp has an additional property, it is locally trivial in the
following sense. Let p be trivial over U , and let b; c 2 U . Then TpŒw� W Fb ! Fc
is independent of the path w W I ! U from b to c. This is due to the fact that lifts
of paths inside U stay within a sheet over U .

3.3 Classification of Coverings

Let TRAB D Œ….B/; SET� denote the category of functors….B/! SET (objects)
and natural transformations between them (morphisms). We call this category the
transport category.

Let p W E ! B be a covering. We have constructed the associated transport
functor Tp D T .p/ W ….B/! SET. For a morphism ˛ W p ! q between coverings
the restrictions ˛b W p�1.b/ ! q�1.b/ of ˛ to the fibres yield a natural transfor-
mation T .˛/ W T .p/! T .q/ between the corresponding transport functors. So we
have obtained a functor

T W COVB ! TRAB :

A path connected space B is called a transport space if T is an equivalence of
categories.

The main theorem of this section gives conditions under which the transport
functor T is an equivalence.

(3.3.1) Note. Let p W E ! B be a covering with simply connected E. Then B is
path connected. If p is trivial over U , then two paths in U between the same points
are homotopic in B .

Proof. The space B is path connected, since p is assumed to be surjective andE is
path connected. Let u0; u1 be paths in U between the same points. By (3.2.9) they
have liftings v0; v1 which connect the same points. Since E is simply connected,
v0; v1 are homotopic in E and hence u0; u1 are homotopic in B . �

A set U � B is transport-simple if two paths in U between the same points are
homotopic within B . A space B is semi-locally simply connected if it has an open
covering by transport-simple sets. We have just seen that this condition is implied
by the existence of a simply connected covering. We call B transport-local, if B
is path connected, locally path connected and semi-locally simply connected.

(3.3.2)Theorem (Classification I). LetB be path connected, locally path connected
and semi-locally simply connected. Then B is a transport space, i.e., T is an
equivalence of categories.
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Proof. We begin by constructing a functor

X W TRAB ! COVB

in the opposite direction. Let ˆ W ….B/ ! SET be a functor. We construct an
associated covering p D p.ˆ/ W X.ˆ/ ! B . As a set, X.ˆ/ D `

b2B ˆ.b/, and
p.ˆ/ sends ˆ.b/ to b. Let U be the set of open, path connected and transport-
simple subsets of B . We define bundle charts over sets U 2 U. For b 2 U we
define

'U;b W U �ˆ.b/! p�1.U /; .u; z/ 7! ˆ.w/z

with some pathw inU from b to u. By our assumption onU , the map 'U;b is well-
defined, i.e., the choice of w does not matter. By construction, 'U;b is bijective.
We claim: There exists a unique topology on X.ˆ/ such that the 'U;b of this type
are homeomorphisms onto open subsets. By general principles of gluing, we have
to verify that the transition maps

'�1
V;c ı 'U;b W .U \ V / �ˆ.b/! .U \ V / �ˆ.c/

are homeomorphisms. Let x 2 U \ V and let W � U \ V be an open, path
connected neighbourhood of x. Let ux be a path from b to x inside U , and vx a
path from c to x inside V . Then for all y 2 W

'�1
V;c ı 'U;b.y; z/ D '�1

V;c ı 'U;b.x; z/;
because in order to define 'U;b.y; z/ we can take the product of ux with a path wy
in W from x to y, and similarly for 'V;c , so that the contribution of the piece wy
cancels. This shows that the second component of '�1

V;c ı 'U;b is on W � ˆ.b/
independent of x 2 W . The continuity of the transition map is a consequence.

If ˛ W ˆ1 ! ˆ2 is a natural transformation, then the morphism

X.˛/ W X.ˆ1/! X.ˆ2/; x 2 ˆ1.b/ 7! ˛.x/ 2 ˆ2.b/;
induced by ˛, is continuous with respect to the topologies just constructed and
hence a morphism of coverings. The continuity of X.˛/ follows from the fact, that
bundle charts ˆU;b for X.ˆ1/ and X.ˆ2/ transform X.˛/ into

id�˛.b/ W U �ˆ1.b/! U �ˆ2.b/:
This finishes the construction of the functor X W TRAB ! COVB .

We now show that the functorsT andX are mutually inverse equivalences of cat-
egories, i.e., thatXT and TX are naturally isomorphic to the identity functor. From
our constructions we see immediately a canonical homeomorphism � W X.T .p// Š
E.p/ over B for each covering p W E.p/! B , namely set-theoretically the iden-
tity. We have to show that � is continuous. Let v 2 Fb � X.T .p//. Let W be a
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neighbourhood of v in E.p/. Then there exists an open neighbourhood V � W of
v inE.p/ such that V is path connected andU D p.V / 2 U. Let b D p.v/. Then
we have the bundle charts 'U;b , and W D 'U;b.U � v/ is a neighbourhood of v in
X.T .p//. From the construction of 'U;v we see that �.W / � V . This shows the
continuity at v. It is easily verified that the homeomorphisms � constitute a natural
transformation. Conversely, we have to verify that the transport functor of p.ˆ/
is ˆ. Using the bundle charts 'U;b this is first verified for paths in U . But each
morphism in ….B/ is a composition of morphisms represented by paths in such
sets U . �

Fix b 2 B . A canonical functor is the Hom-functor ….b;�/ of the category
….B/. Let pb W Eb ! B denote the associated covering. We still assume that B is
transport-local. The automorphism group �b D ….b; b/ of b in….B/, the opposite
fundamental group �1.B; b/, acts onEb fibrewise from the right by composition of
morphisms. The action is free and transitive on each fibre. Via our bundle charts it
is easily verified that the action onEb is continuous. Thuspb is a right�b-principal
covering. From (3.2.8) we see that Eb is simply connected. Thus we have shown:

(3.3.3) Theorem. The canonical covering pb W Eb ! B associated to the Hom-
functor….b;�/ has a simply connected total space. The right action of….b; b/ on
the fibres by composition of morphisms is the structure of a right principal covering
on pb . �

Problems

1. Let S be the pseudo-circle. The space S is simply connected. But S has non-trivial
connected principal coverings. They can be obtained by a pullback along suitable maps
S ! S1 from Z=n-principal or Z-principal coverings of S1. In this sense S behaves like
S1. We see that certain local properties of B are necessary in order that T is an equivalence.
2. Let f W B ! C be a continuous map. The pullback p W X ! B of a covering q W Y ! C

along f is a covering. Pulling back morphisms yields a functor f � D COV.f / W COVC !
COVB . The map f induces a functor ….f / W ….B/ ! ….C/, and composition with
functors ….C/ ! SET yields a functor TRA.f / W TRAC ! TRAB . These functors are
compatible TB ı COV.f / D TRA.f / ı TC W COVC ! TRAB .

3.4 Connected Groupoids

In this section the space B is assumed to be path connected.
A functor ….B/! SET is an algebraic object. The category of these functors

has an equivalent description in terms of more familiar algebraic objects, namely
group actions. We explain this equivalence.

Let… be a connected groupoid (i.e. there exists at least one morphism between
any two objects) with object set B , e.g., … D ….B/ for a path connected space B .
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Let ….x; y/ denote the set of morphisms x ! y and � D �b D ….b; b/, the
automorphism group of b with respect to composition of morphisms. A functor
F W …! SET has an associated set F.b/ with left �b-action

�b � F.b/! F.b/; .˛; x/ 7! F.˛/.x/:

A natural transformation ˛ W F ! G yields a map ˛.b/ W F.b/ ! G.b/ which is
�b-equivariant. In this manner we obtain a functor

"b W Œ…; SET�! �b-SET

from the functor category of functors … ! SET into the category of left �b-sets
and equivariant maps.

We construct a functor �b in the opposite direction. So let A be a �b-set. The
Hom-functor….b; ‹/ is a functor into the right �b-sets, namely �b acts on….b; x/
by composition of morphisms. These data yield the functorˆ.A/ D ….b; ‹/�� A.
(Here again A �� B denotes the quotient of A � B by the equivalence relation
.ag; b/ � .a; gb/; .a; g; b/ 2 A � � � B for left �-sets A and right �-sets B .) A
�b-map f W A! B induces a natural transformationˆ.f / W ˆ.A/! ˆ.B/. This
finishes the definition of �b .

(3.4.1) Proposition. The functors "b and �b are mutually inverse equivalences of
categories.

Proof. The composition "b�b associates to a �b-set A the �b-set ….b; b/ �� A,
with �b-action g � .f; z/. The isomorphisms

�A W ….b; b/ �� A! A; .f; z/ 7! f � z
form a natural equivalence � W "b�b ' Id.

The composition �b"b associates to a functor F W … ! SET the functor
….b;�/ �� F.b/. The maps

ˇF .x/ W ….b; x/ � F.b/! F.x/; .f; z/ 7! F.f /z

form a natural transformation, i.e., a morphism ˇF W �b"b.F / ! F in Œ…; SET�.
Since … is a connected groupoid, the ˇF .x/ are bijective, and therefore constitute
an isomorphism in the functor category. The ˇF are a natural equivalence
ˇ W �b"b ' Id. �

In our previous notation TRAB D Œ….B/; SET�. From (3.3.2) and (3.4.1)
we obtain for each transport-local space an equivalence of categories COVB !
�b-SET, the composition of the transport functor T with "b . It associates to a
covering p W E ! B the �b-set Fb . The inverse equivalence associates to a �b-set
A the covering

X.�bA/ D
`
x2B ….B/.b; x/ �� A! B:
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It is the covering Eb �� A! B associated to the �b-principal covering (3.3.3).
Let p W E ! B be a right G-principal covering with path connected B . Then

we have the functors

G- SET
A.p/

�� COVB
T �� TRAB

"b

' �� �b- SET:

The composition associates to a G-set F the �b-set Fb �G F , where the �b-action
is induced from the left �b-action on Fb .

Now suppose in addition that E is simply connected. Then we have a bijection
'Fx W F ! Fb �G F , z 7! Œx; z� for a fixed x 2 Fb as well as the isomorphism
�x W �b ! G, see (3.2.10). The relation �x.a/ � z D a � Œx; z� holds. So if we view
G-sets via �x as �b-sets, then the above composition of functors is the identity.
Thus we have shown:

(3.4.2) Proposition. Let p W E ! B be a simply connected G-principal covering.
Then A.p/ is an equivalence of categories if and only if T is an equivalence of
categories. �

(3.4.3) Theorem. The following properties of B are equivalent:

(1) B is a transport space, i.e., T is an equivalence of categories.

(2) B has a universal right G-principal covering p W E ! B with simply con-
nected total space E.

Proof. .1/ ) .2/. Since "b ı T is an equivalence of categories, each object of
�b- SET is isomorphic to an object in the image of "b ı T . Thus there exists a
covering p W E ! B such that its �b-set Fb is isomorphic to the �b-set �b . By
another property of an equivalence of categories, the morphismsp ! p correspond
under "b ı T bijectively to the �b-maps Fb ! Fb . The �b-morphisms �b ! �b
are the right translations by elements of �b . Thus �b acts simply and transitively
on E. From (3.2.8) we see that E is simply connected.

The left action of the automorphism group Aut.p/ on E is properly discon-
tinuous and the induced action on each fibre is transitive. If we rewrite this as
a right action of the opposite group G, we obtain a right G-principal covering.
Proposition (3.4.2) now says that p is universal.

.2/) .1/ is a consequence of (3.4.2). �

From a geometric view point the interesting coverings are those with connected
total space.

Let p W E ! B be a universal right G-principal covering. A left G-set A is
the disjoint sum of its orbits. We have a corresponding sum decomposition of the
total space E �G A into the sum of E �G C , where C runs through the orbits
of A. An orbit is a transitive G-set and isomorphic to a homogeneous set G=H
for some subgroup H of G. The homeomorphism E �G G=H Š E=H shows
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that the summands E �G C are path connected. The action of H on E is properly
discontinuous and thereforeE ! E=H anH -principal covering. Also the induced
map pH W E=H ! B is a covering.

The category of homogeneous G-sets and G-maps is the orbit category Or.G/
ofG. The setsG=K andG=L are isomorphic if and only if the subgroupsK andL
are conjugate inG. The isotropy groups ofG=H are conjugate toH . The inclusion
of the subcategory Or.G/ into the category of transitive G-sets is an equivalence.

Let p W E ! B be a universal right G-principal covering with simply con-
nected E. Then the functor A.p/ induces an equivalence of Or.G/ with the cate-
gory of connected coverings of B . Each covering is thus isomorphic to a covering
of the form pH W E=H ! B for a subgroup H of G.

We fix z 2 p�1.b/ � E and obtain an isomorphism ız W G ! �1.B; b/. It
sends g 2 G to the loop Œp ı wg � where wg W I ! E is a path from z to zg�1.

Let q W X ! B be a connected covering. We know that the induced homomor-
phism p� W �1.X; x/! �1.B; b/ is injective. The image is called the characteris-
tic subgroup C.p; x/ of p with respect to x. Let u W I ! X be a path from x to
y 2 p�1.b/. Then w D pu is a loop and C.p; y/ D Œw�C.p; x/Œw��1, thus dif-
ferent base points in p�1.b/ yield conjugate characteristic subgroups. Conversely,
each subgroup conjugate to C.p; x/ arises this way.

We apply this to the covering pH with Nz D zH 2 E=H . Then

.pH /�.�1.E=H; Nz/ D ız.H/ D C.pH ; Nz/:

We collect the results in the next theorem.

(3.4.4) Theorem (Classification II). Let B be a transport space. The category of
connected coverings of B is equivalent to the orbit category Or.�1.B; b//. The
isomorphism class of a connected covering q W X ! B corresponds under this
equivalence to the isomorphism class of �1.B; b/=C.q; x/ for any x 2 p�1.b/.
The isomorphism class of a connected covering is determined by the conjugacy
class of its characteristic subgroup. �

Problems

1. The automorphism group of pH W E=H ! B isNH=H , whereNH denotes the normal-
izer of H in �1.B; b/. The covering is a principal covering (also called regular covering),
if and only if H is a normal subgroup of �1.B; b/.
2. The connected coverings of S1 are, up to isomorphism, the maps pn W z 7! zn for n 2 N

and p W R! S1, t 7! exp.2�it/. These coverings are principal coverings.
3. LetB be a contractible space. Is the identity id W B ! B a universalG-principal covering
for the trivial group G?
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3.5 Existence of Liftings

The following theorem (3.5.2) is interesting and important, because it asserts the ex-
istence of liftings under only the necessary algebraic conditions on the fundamental
groups.

(3.5.1) Lemma. Let w0 and w1 be paths in E beginning in x. Let ui D pwi .
Then w0.1/ D w1.1/ if and only if u0.1/ D u1.1/ and Œu0 	 u�

1 � is contained in
p��1.E; x/.

Proof. If w0.1/ D w1.1/, then p�Œw0 	 w�
1 � D Œu0 	 u�

1 �. Conversely: We lift
u0	u�

1 with initial point x. Since Œu0	u�
1 � 2 p��1.E; x/ there exists a loop which

is homotopic to u0 	 u�
1 , and which has a lifting with initial point x. By (3.2.9),

u0 	 u�
1 itself has a lifting as a loop. Therefore u0 and u1 have liftings with initial

point x and the same end point. These liftings are then necessarily w0 andw1. �

(3.5.2) Theorem. Let p W E ! B be a covering. Suppose Z is path connected
and locally path connected. Let f W Z ! B be a map with f .z/ D p.x/. Then
there exists a lifting ˆ W Z ! E of f with ˆ.z/ D x if and only if f��1.Z; z/ is
contained in p��1.E; x/.

Proof. If a lifting exists, then the inclusion of groups holds by functoriality of �1.
Suppose f��1.Z; z/ � p��1.E; x/. We begin by constructingˆ as a set map.

Then we show its continuity.
Let z0 2 Z. There exists a path w from z to z0. Let v W I ! E be a lifting of

f w starting in x. We want to define ˆ by ˆ.z/ D v.1/. Let w1 be another path
from z to z0 and v1 a lifting of f w1 starting in x. Then

pv.1/ D f w.1/ D f .z0/ D f w1.1/ D pv1.1/I
moreover

Œpv 	 pv�
1 � D f�Œw 	 w�

1 � 2 p��1.E; x/:
By (3.5.1) we have v.1/ D v1.1/; this shows that ˆ is well-defined if we set
ˆ.z/ D v.1/.

Continuity ofˆ. LetU be an open neighbourhood ofˆ.z0/, such thatp is trivial
over p.U / D V , and let p W U ! V have the inverse homeomorphism q W V ! U .
Let W be a path connected neighbourhood of z0 such that f .W / � V . We claim
ˆ.W / � U . Let z1 2 W and let w1 be a path in W from z0 to z1. Then w 	 w1
is a path from z to z1, and v1 D v 	 qf w1 a path with pv1 D f ı .w 	 w1/ and
v1.0/ D x. Thus v1.1/ 2 U . �

(3.5.3) Theorem. Let X be a topological group with neutral element x and let
p W E ! X be a covering with path connected and locally path connected E. For
each e 2 p�1.x/ there exists a unique group structure on E which makes E into a
topological group with neutral element e and such that p is a homomorphism.
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Proof. Construction of a group structure on E. Let m W X �X ! X be the group
multiplication. We try to find M W E � E ! E as a lift m.p � p/ along p with
M.e; e/ D e. This can be done, by (3.5.2), ifm�.p �p/��1.E �E/ � p��1.E/.
This inclusion holds, since (using (2.7.3))

m�.p�p/�Œ.w1; w2/�D Œpw1�pw2�D Œpw1	pw2�D Œp.w1	w2/�D p�Œw1	w2�:
From the uniqueness of liftings one shows thatM is associative. In a similar manner
we see that (passage to) the inverse inX has a lifting toE, and uniqueness of liftings
shows that the result is an inverse for the structure M . �

A well-known result of HermannWeyl is that a compact, connected, semi-simple
Lie group has a finite simply connected covering. See [29, V.7] about fundamental
groups of compact Lie groups. The group O.n/ has two different two-fold coverings
which are non-trivial over SO.n/. They are distinguished by the property that the
elements over the reflections at hyperplanes have order 2 or 4 (n � 1). We will see
that �1.SO.n// Š Z=2 for n � 3. The corresponding simply connected covering
groups are the spinor groups Spin.n/; see e.g., [29, I.6].

We repeat an earlier result in a different context. We do not assume that B has
a universal covering.

(3.5.4) Proposition. Let B be path connected and locally path connected. Cover-
ings pi W .Xi ; xi /! .B; b/ with path connected total space are isomorphic if and
only if their characteristic subgroups are conjugate in �1.B; b/.

Proof. Since C.p1; x1/ and C.p2; x2/ are conjugate we can change the base point
x2 such that the groups are equal. By (3.5.2), there exist morphismsf1 W .X1; x1/!
.X2; x2/ and f2 W .X2; x2/! .X1; x1/, and since f2f1.x1/ D x1; f1f2.x2/ D x2
both compositions are the identity.

By functoriality of �1 we see that isomorphic coverings have conjugate charac-
teristic subgroups. �

Problems

1. We have given a direct proof of (3.5.2), although it can also be derived from our previous
classification results. The existence of a lift ˆ is equivalent to the existence of a section in
the covering which is obtained by pullback along f . The �1.Z; z/-action on the fibre Eb

of the pullback is obtained from the �1.B; b/-action via f� W �1.Z; z/ ! �1.B; b/. The
existence of a section is equivalent to Eb having a fixed point under the �1.Z; z/-action.
If the inclusion of groups holds as in the statement of the theorem, then a fixed point exists
because the image of p� is the isotropy group of the �1.B; b/-action.
2. Let p W E ! B be a covering with path connected and locally path connected total space.
The following are equivalent: (1) Aut.p/ acts transitively on each fibre of p. (2) Aut.p/
acts transitively on some fibre of p. (3) The characteristic subgroup is normal in �1.B; b/.
(4) p is an Aut.p/-principal covering.
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3.6 The Universal Covering

We collect some of our results for the standard situation that B is path connected,
locally path connected and semi-locally simply connected space. Let us now call a
covering p W E ! B a universal covering if E is simply connected.

(3.6.1) Theorem (Universal covering). Let B be as above.

(1) There exists up to isomorphism a unique universal covering p W E ! B .

(2) The action of the automorphism group Aut.p/ on E furnishes p with the
structure of a left Aut.p/-principal covering.

(3) The group Aut.p/ is isomorphic to �1.B; b/. Given x 2 p�1.b/, an isomor-
phism �x W Aut.p/ ! �1.B; b/ is obtained, if we assign to ˛ 2 Aut.p/ the
class of the loop pw for a path w from x to ˛.x/.

(4) The space Eb is simply connected.

Proof. (1) Existence is shown in (3.3.3). Since B is locally path connected, the
total space of each covering has the same property. Let pi W Ei ! B be simply
connected coverings with base points xi 2 p�1

i .b/. By (3.5.2), there exist mor-
phisms ˛ W p1 ! p2 and ˇ W p2 ! p1 such that ˛.x1/ D x2 and ˇ.x2/ D x1. By
uniqueness of liftings, ˛ˇ and ˇ˛ are the identity, i.e., ˛ and ˇ are isomorphisms.
This shows uniqueness.

(2) By (3.1.8), the action of Aut.p/ onE is properly discontinuous. As in (1) one
shows that Aut.p/ acts transitively on each fibre of p. The map Aut.p/nE ! B ,
induced by p, is therefore a homeomorphism. SinceE ! Aut.p/nE is a principal
covering, so is p.

(3) Since E is simply connected, there exists a unique homotopy class of paths
w from x to ˛.x/. Since x and ˛.x/ are contained in the same fibre, pw is a loop.
Therefore �x is well-defined. If we lift a loop u based at b to a path w beginning
in x, then there exists ˛ 2 Aut.p/ such that ˛.x/ D w.1/. Hence �x is surjective.
Two paths starting in x have the same end point if and only if their images in B are
homotopic. Hence �x is injective. If v is a path from x to ˛.x/ and w a path from
x to ˇ.x/, then v 	 ˇw is a path from x to ˛ˇ.x/. Hence �x is a homomorphism.

(4) is shown in (3.3.3). �

(3.6.2) Theorem (Classification III). Suppose that B has a universal covering
p W E ! B . Then p is a �1.B; b/-principal covering. Each connected cover-
ing of B is isomorphic to a covering of the form E=H ! B , H � �1.B; b/ a
subgroup. This covering has H as a characteristic subgroup. Two such cover-
ings are isomorphic if and only if the corresponding subgroups of �1.B; b/ are
conjugate. �
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Problems

1. The product
Q1

1 S1 is not semi-locally simply connected.
2. Is the product of a countably infinite number of the universal covering of S1 a covering?
3. Identify in S1 the open upper and the open lower hemi-sphere to a point. The resulting
space X has four points. Show �1.X/ Š Z. Does X have a universal covering?
4. The quotient map p W Rn ! Rn=Zn is a universal covering. The map q W Rn ! T n,
.xj / 7! .exp 2�ixj / is a universal covering of the n-dimensional torus T n D S1�� � ��S1.
Let f W T n ! T n be a continuous automorphism, and let F W Rn ! Rn be a lifting of f q
along q with F.0/ D 0. The assignments x 7! F.x/CF.y/ and x 7! F.xCy/ are liftings
of the same map with the same value for x D 0. Hence F.x C y/ D F.x/C F.y/. From
this relation one deduces that F is a linear map. Since F.Zn/ � Zn, the map F is given
by a matrix A 2 GLn.Z/. Conversely, each matrix in GLn.Z/ gives us an automorphism
of T n. The group of continuous automorphisms of T n is therefore isomorphic to GLn.Z/.
5. Classify the 2-fold coverings of S1 _S1 and of S1 _S1 _S1. (Note that a subgroup of
index 2 is normal.)
6. The k-fold (k 2 N) coverings of S1 _ S1 correspond to isomorphism classes of � D
�1.S

1 _S1/ D hui 	 hv i-sets of cardinality k. An action of � on f1; : : : ; kg is determined
by the action of u and v, and these actions can be arbitrary permutations of f1; : : : ; kg.

Figure 3.1. The 3-fold regular coverings of S1 _ S1.

Hence these actions correspond bijectively to the elements of Sk � Sk (Sk the symmetric
group). A bijection ˛ of f1; : : : ; kg is an isomorphism of the actions corresponding to .u; v/
and .u0; v0/ if and only if ˛�1u0˛ D u; ˛�1v0˛ D v. The isomorphism classes of k-fold
coverings correspond therefore to the orbit set of the action

Sk � .Sk � Sk/! Sk � Sk ; .˛; u; v/ 7! .˛u˛�1; ˛v˛�1/:

Consider the case k D 3 and S3 D hA;B j A3 D 1; B2 D 1; BAB�1 D A�1g. The
three conjugacy classes are represented by 1; A;B . We can normalize the first component
of each orbit correspondingly. If we fix u, then the centralizer Z.u/ of u acts on the second
component. We have Z.1/ D S3, Z.B/ D f1; Bg, and Z.A/ D f1; A;A2g. This yields the
following representing pairs for the orbits:

.1; 1/; .1; A/cn; .1; B/;

.A; 1/cn; .A;A/cn; .A;A2/cn; .A;B/c;

.B; 1/; .B;A/c; .B;B/; .B;AB/c:
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The transitive actions (which yield connected coverings) have the addition c, the normal
subgroups (which yield regular coverings) have the addition n.

Draw figures for the connected coverings. For this purpose study the restrictions of the
coverings to the two summands S1; note that under restriction a connected covering may
become disconnected. Over each summand one has a 3-fold covering of S1; there are three
of them.
7. Classify the regular 4-fold coverings of S1 _ S1.
8. The Klein bottle has three 2-fold connected coverings. One of them is a torus, the other
two are Klein bottles.
9. Let X be path connected and set Y D X � I=X � @I . Show �1.Y / Š Z. Show that Y
has a simply connected universal Z-principal covering. Is Y always locally path connected?
10. Construct a transport space which is not locally path connected.
11. The space Rn with two origins is obtained from Rn C Rn by identifying x 6D 0 in the
first summand with the same element in the second summand. Let M be the line with two
origins. Construct a universal covering of M and determine �1.M/. What can you say
about �1 of Rn with two origins for n > 1?
12. Make the fundamental groupoid….B/ into a topological groupoid with object space B .
(Hypothesis (3.6.1). Use (14.1.17).)
13. Let X be a compact Hausdorff space and H.X/ the group of homeomorphism. Then
H.X/ together with the CO-topology is a topological group andH.X/�X ! X , .f; x/ 7!
f .x/ a continuous group action.
14. The space C.S1; S1/ with CO-topology becomes a topological group under pointwise
multiplication of maps.
15. There are two continuous homomorphisms e W C.S1; S1/ ! S1, f 7! f .1/ and
d W C.S1; S1/ ! Z, f 7! degree.f /. Let M 0.S1/ be the kernel of .e; d/. Let fur-
ther fn W S1 ! S1, z 7! zn. The homomorphism s W S1 �Z! C.S1; S1/, .˛; n/ 7! f̨n

is continuous. The map

M 0.S1/ � .S1 �Z/! C.S1; S1/; .f; .˛; n// 7! f � s.˛; n/
is an isomorphism of topological groups. The space M 0.S1/ is isomorphic to the space V
of continuous functions � W R! R with '.0/ D 0 and '.x C 2�/ D '.x/ or, equivalently,
to the space of continuous functions ˛ W S1 ! R with ˛.1/ D 0. The space V carries the
sup-norm and the induced CO-topology.
16. LetM.S1/ be the group of homeomorphisms S1 ! S1 of degree 1 with CO-topology.
Each 	 2 S1 yields a homeomorphism f� W z 7! 	x. In this way S1 becomes a subgroup
of M.S1/. Let M1.S

1/ be the subgroup of homeomorphisms f with f .1/ D 1. Then

S1 �M1.S
1/!M.S1/; .	; h/ 7! f� ı h

is a homomorphism. The spaceM1.S
1/ is homeomorphic to the spaceH of homeomorphism

f W Œ0; 1� ! Œ0; 1� with f .0/ D 0. The space H is contractible; a contraction is ft .x/ D
.1 � t /f .x/ C tx. Therefore the inclusion S1 ! M.S1/ is an h-equivalence. The space
H.S1/ of homeomorphisms of S1 is h-equivalent to O.2/.



Chapter 4

Elementary Homotopy Theory

Further analysis and applications of the homotopy notion require a certain amount
of formal consideration. We deal with several related topics.

(1) The construction of auxiliary spaces from the basic “homotopy cylinder”
X � I : mapping cylinders, mapping cones, suspensions; and dual construc-
tions based on the “path space” XI . These elementary constructions are
related to the general problem of defining homotopy limits and homotopy
colimits.

(2) Natural group structures on Hom-functors in TOP0. By category theory they
arise from group and cogroup objects in this category. But we mainly work
with the explicit constructions: suspension and loop space.

(3) Exact sequences involving homotopy functors based on “exact sequences”
among pointed spaces (“space level”). These so-called cofibre and fibre se-
quences are a fundamental contribution of D. Puppe to homotopy theory
[155]. The exact sequences have a three-periodic structure, and it has by now
become clear that data of this type are an important structure in categories
with (formal) homotopy (triangulated categories).

As an application, we use a theorem about homotopy equivalences of mapping
cylinders to prove a gluing theorem for homotopy equivalences. The reader may
have seen partitions of unity. In homotopy theory they are used to reduce homotopy
colimits to ordinary colimits. Here we treat the simplest case: pushouts.

4.1 The Mapping Cylinder

Let f W X ! Y be a map. We construct the mapping cylinder Z D Z.f / of f
via the pushout

X CX id Cf
��

h i0;i1 i
��

X C Y
hj;J i
��

Z.f / D X � I C Y=f .x/ � .x; 1/;

X � I a
�� Z.f /

J.y/ D y; j.x/ D .x; 0/:

Here it .x/ D .x; t/. Since h i0; i1 i is a closed embedding, the maps hj; J i, j and J
are closed embeddings. We also have the projection q W Z.f /! Y , .x; t/ 7! f .x/,
y 7! y. The relations qj D f and qJ D id hold. We denote elements inZ.f / by
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their representatives in X � I C Y .

X

0 1

Y
x �� � � � � � � � � � �f .x/

I

The map Jq is homotopic to the identity relative to Y . The homotopy is the
identity on Y and contracts I relative 1 to 1.

We thus have a decomposition of f into a closed embedding J and a homotopy
equivalence q. From the pushout property we see:

Continuous mapsˇ W Z.f /! B correspond bijectively to pairs h W X�I ! B

and ˛ W Y ! B such that h.x; 1/ D f̨ .x/.
In the following we consider Z.f / as a space under X C Y via the embedding

(inclusion) hj; J i. We now study homotopy commutative diagrams

X
f

��

˛
��

Y

ˇ
��

X 0 f 0
�� Y 0

together with homotopies ˆ W f 0˛ ' f̌ . In the case that the diagram is commu-
tative, the pair .˛; ˇ/ is a morphism from f to f 0 in the category of arrows in TOP.
We consider the data .˛; ˇ;ˆ/ as a generalized morphism. These data induce a
map � D Z.˛; ˇ;ˆ/ W Z.f /! Z.f 0/ defined by

�.y/ D ˇ.y/; y 2 Y; �.x; s/ D
(
.˛.x/; 2s/; x 2 X; s � 1=2;
ˆ2s�1.x/; x 2 X; s � 1=2:

The diagram
X C Y ��

˛Cˇ
��

Z.f /

Z.˛;ˇ;ˆ/
��

X 0 C Y 0 �� Z.f 0/
is commutative. The composition of two such morphisms between mapping
cylinders is homotopic to a morphism of the same type. Suppose we are given
f 00 W X 00 ! Y 00, ˛0 W X 0 ! X 00, ˇ0 W Y 0 ! Y 00, and a homotopy ˆ0 W f 00˛0 ' ˇ0f 0.
These data yield a composed homotopy ˆ0 ˘ˆ W f 00˛0˛ ' ˇ0 f̌ defined by

.ˆ0 ˘ˆ/t D
(
ˆ0
2t ı ˛; t � 1=2;

ˇ0 ıˆ2t�1; t � 1=2:
(This is the product of the homotopies ˆ0

t˛ and ˇ0ˆt .)
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(4.1.1) Lemma. There exists a homotopy

Z.˛0; ˇ0; ˆ0/ ıZ.˛; ˇ;ˆ/ ' Z.˛0˛; ˇ0ˇ;ˆ0 ˘ˆ/
which is constant on X C Y .

Proof. Both maps coincide on Y and differ onX �I by a parameter transformation
of I . �

We also change ˛ and ˇ by a homotopy. Suppose given homotopies At W X !
X 0 andB t W Y ! Y 0 and a homotopy t W f 0At ' B tf . We assume, of course, that
 t D . ts / is continuous onX�I�I . We get a homotopyZ.At ; B t ;  t / W Z.f /!
Z.f 0/ which equals At C B t W X C Y ! X 0 C Y 0 on these subspaces.

We use the fact that At ; B t ; ˆ induce a homotopy  t .

(4.1.2) Lemma. Suppose At ; B t with A0 D ˛;B0 D ˇ andˆ W f 0A0 ' B0f are
given.Then there exists  t with 0 D ˆ.

Proof. One applies a retraction X � I � I ! X � .@I � I [ I � 0/ to the map
� W X�.@I�I[I�0/! Y 0 defined by�.x; s; 0/ D ˆ.x; s/, �.x; 0; t/ D f 0At .x/
and �.x; 1; t/ D B tf .x/. �

Suppose now that X 00 D X , Y 00 D Y , f 00 D f and ˛0˛ ' id, ˇ0ˇ ' id,
f ˛0 ' ˇ0f 0. We choose homotopies

At W ˛0˛ ' id; B t W ˇ0ˇ ' id; ˆ0 W f ˛0 ' ˇ0f 0:

As before, we have the composition‰ D ˆ0˘ˆ. We use (4.1.2) to find a homotopy
 t with 0 D ‰ and  t W fAt ' B tf . Let 1� be the inverse homotopy of 1.
Let � D Z.1X ; 1Y ; 1�/ ıZ.˛0; ˇ0; ˆ0/ W Z.f 0/! Z.f /; this morphism restricts
to ˛0 C ˇ0 W X 0 C Y 0 ! X C Y .

(4.1.3) Proposition. There exists a homotopy from � ı Z.˛; ˇ;ˆ/ to the identity
which equals ..k 	 At / 	 k C .k 	 B t / 	 k/ on X C Y ; here k denotes a constant
homotopy.

Proof. By (4.1.1) there exists a homotopy relative to X C Y of the composition in
question to Z.1X ; 1Y ; 1�/ ı Z.˛0˛; ˇ0ˇ;‰/. By (4.1.2) we have a further homo-
topy toZ.1X ; 1Y ; 1�/ıZ.1X ; 1Y ; 1/, which equalsAt CB t onXCY , and then
by (4.1.1) a homotopy to Z.1X ; 1Y ; 1� ˘ 1/, which is constant on X C Y . The
homotopy 1� ˘1 W f ' f is homotopic relative toX � @I to the constant homo-
topy kf of f . We thus have an induced homotopy relativeXCY toZ.1X ; 1Y ; kf /
and finally a homotopy to the identity (Problems 1 and 2). �

(4.1.4) Theorem. Suppose ˛ and ˇ are homotopy equivalences. Then the map
Z.˛; ˇ;ˆ/ is a homotopy equivalence.
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Proof. The morphism � in (4.1.3) has a right homotopy inverse. We can apply
(4.1.1) and (4.1.3) to � and see that � also has a left homotopy inverse. Hence
� is a homotopy equivalence. From � ı Z.˛; ˇ;ˆ/ ' id we now conclude that
Z.˛; ˇ;ˆ/ is a homotopy equivalence. �

Problems

1. Supposeˆ and‰ are homotopic relative toX �@I . ThenZ.˛; ˇ;ˆ/ andZ.˛; ˇ;‰/ are
homotopic relative to X C Y .
2. In the case that f 0˛ D f̌ we have the map Z.˛; ˇ/ W Z.f / ! Z.f 0/ induced by
˛ � idCˇ. Let k be the constant homotopy. Then Z.˛; ˇ; k/ ' Z.˛; ˇ/ relative to X C Y .
3. Let Œˆ� denote the morphism in ….X; Y 0/ represented by ˆ. We think of .˛; ˇ; Œˆ�/
as a morphism from ˛ to ˇ. The composition is defined by .˛0; ˇ0; Œˆ0�/ ı .˛; ˇ; Œˆ�/ D
.˛0˛; ˇ0ˇ; Œˆ0 ˘ ˆ�/. Show that we obtain in this manner a well-defined category. (This
definition works in any 2-category.)

4.2 The Double Mapping Cylinder

Given a pair of maps f W A ! B and g W A ! C . The double mapping cylinder

Z.f; g/ D Z.B f � A g�! C/ is the quotient of B C A � I C C with respect to
the relations f .a/ � .a; 0/ and .a; 1/ � g.a/ for each a 2 A. We can also define
it via a pushout

AC A
h i0;i1 i
��

fCg
�� B C C

hj0;j1 i
��

A � I �� Z.f; g/.

The map hj0; j1 i is a closed embedding. In the case that f D id.A/, we can
identifyZ.id.A/; g/ D Z.g/. We can also glueZ.f / andZ.g/ along the common
subspace A and obtain essentially Z.f; g/ (up to I [f0g I Š I ). A commutative
diagram

B

ˇ
��

A
f

��
g

��

˛
��

C

�
��

B 0 A0f 0
��

g0
�� C 0

induces Z.ˇ; ˛; �/ W Z.f; g/! Z.f 0; g0/, the quotient of ˇC ˛ � idC� . We can
also generalize to an h-commutative diagram as in the previous section.

(4.2.1) Theorem. Suppose ˇ, ˛, � are h-equivalences. Then Z.ˇ; ˛; �/ is an
h-equivalence.
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In order to use the results about the mapping cylinder, we present Z.f; g/,
up to canonical homeomorphism, also as the pushout of jA W A ! Z.f / and
jB W A ! Z.g/. Here the subspace Z.f / corresponds to the image of B C A �
Œ0; 1=2� in Z.f; g/ and Z.g/ to the image of A � Œ1=2; 1�C C . We view Z.f; g/

as a space under B C A C C . If we are given homotopies ˆB W f 0˛ ' f̌ ,
ˆC W g0˛ ' �g, we obtain an induced map

‰ D Z.˛; ˇ;ˆB/ [A Z.˛; �;ˆC / W Z.f; g/! Z.f 0; g0/

which extends ˇ C ˛ C � .

(4.2.2) Theorem. Let ˛ be an h-equivalence with h-inverse ˛0 and suppose ˇ and �
have left h-inverses ˇ0; � 0. Choose homotopies At W ˛0˛ ' id, B t W ˇ0ˇ ' id,
C t W � 0� ' id. Then there exists � W Z.f 0; g0/ ! Z.f; g/ and a homotopy from
� ı‰ to the identity which extends ..k 	B t / 	 k C .k 	At / 	 k C .k 	C t / 	 k/.
Proof. The hypotheses imply ˇ0f 0 ' f ˛ and � 0g0 ' g˛. We can apply (4.1.3)
and find left homotopy inverses�B ofZ.˛; ˇ;ˆB/ and�C ofZ.˛; �;ˆC /. Then
� D �B [A �C has the desired properties. �

Theorem (4.2.1) is now a consequence of (4.2.2). The reasoning is as for (4.1.4).
In general, the ordinary pushout of a pair of maps f; g does not have good homo-

topy properties. One cannot expect to have a pushout in the homotopy category. A
pushout is a colimit, in the terminology of category theory. In homotopy theory one
replaces colimits by so-called homotopy colimits. We discuss this in the simplest
case of pushouts.

Given a diagram

X0
fC

��

f�
��

XC
jC
��

X�
j� �� X

(1)

and a homotopyh W j�f� ' jCfC. We obtain an induced map' W Z.f�; fC/! X

which is the quotient of hj�; h; jC i W X� C X0 � I C XC ! X . We define:
The diagram (1) together with the homotopy h is called a homotopy pushout or
homotopy cocartesian if the map ' is a homotopy equivalence. This definition is
in particular important if the diagram is commutative and h the constant homotopy.

Suppose we have inclusions f˙ W X0 � X˙ and j˙ W X˙ � X such that X D
X�[XC. In the case that the interiorsX ı̇ coverX , the spaceX is a pushout in the
category TOP. In many cases it is also the homotopy pushout; the next proposition
is implied by (4.2.4) and (4.2.5).

(4.2.3) Proposition. Suppose the covering X˙ of X is numerable (defined below).
Then X is the homotopy pushout of f˙ W X0 � X˙.
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For the proof we first compare Z.f�; fC/ with the subspace N.X�; XC/ D
X� � 0 [ X0 � I [ XC � 1 of X � I . We have a canonical bijective map
˛ W Z.f�; fC/ ! N.X�; XC/. Both spaces have a canonical projection to X
(denoted pZ ; pN ), and ˛ is a map over X with respect to these projections.

(4.2.4) Lemma. The map ˛ is an h-equivalence over X and under X˙.

Proof. Let � W I ! I be defined by �.t/ D 0 for t � 1=3, �.t/ D 1 for t � 2=3
and �.t/ D 3t � 1 for 1=3 � t � 2=3. We define ˇ W N.X�XC/ ! Z.f�; fC/
as id.X0/ � � on X0 � I and the identity otherwise. Homotopies ˛ˇ ' id and
ˇ˛ ' id are induced by a linear homotopy in the I -coordinate. The reader should
verify that ˇ and the homotopies are continuous. �

The covering X˙ of X is numerable if the projection pN has a section. A
section � is determined by its second component s W X ! Œ0; 1�, and a function of
this type defines a section if and only if X XX� � s�1.0/; X XXC � s�1.1/.

(4.2.5) Lemma. Suppose pN has a section � . Then pN is shrinkable.

Proof. A homotopy � ı pN ' id over X is given by a linear homotopy in the
I -coordinate. �

(4.2.6) Corollary. Suppose the coveringX˙ is numerable. Then pZ is shrinkable.
�

(4.2.7) Theorem. Let .X;X˙/ and .Y; Y˙/ be numerable coverings. Suppose that
F W X ! Y is a map with F.X˙/ � Y˙. Assume that the induced partial maps
F˙ W X˙ ! Y˙ andF0 W X0 ! Y0 areh-equivalences. ThenF is anh-equivalence.

Proof. This is a consequence of (4.2.1) and (4.2.6). �

The double mapping cylinder of the projectionsX  X �Y ! Y is called the
join X ? Y of X and Y . It is the quotient space of X � I � Y under the relations
.x; 0; y/ � .x; 0; y0/ and .x; 1; y/ � .x0; 1; y/. Intuitively it says that each point
of X is connected with each point of Y by a unit interval. The reader should verify
Sm ? Sn Š SmCnC1. One can also think of the join as CX � Y [X�Y X � CY
where CX denotes the cone on X .

4.3 Suspension. Homotopy Groups

We work with pointed spaces. Each object in the homotopy groupoid …0.X; Y /

for TOP0 has an automorphism group. We describe the automorphism group of the
constant map in a different manner.
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A map K W X � I ! Y is a pointed homotopy from the constant map to itself
if and only if it sends the subspace X � @I [ fxg � I to the base point y of Y . The
quotient space

†X D X � I=.X � @I [ fxg � I /
is called the suspension of the pointed space .X; x/. The base point of the suspen-
sion is the set which we identified to a point.

�
��

�
��

�
��

�
��...

...

...

...

...

...

..

I

X
0

1

...
...
...
.

..........

�

� 0

1
2

1

†X

q�!

	 	

A homotopy K W X � I ! Y from the constant map to itself thus corresponds
to a pointed map xK W †X ! Y , and homotopies relative to X � @I correspond to
pointed homotopies †X ! Y . This leads us to the homotopy set Œ†X; Y �0. This
set carries a group structure (written additively) which is defined for representing
maps by

f C g W .x; t/ 7!
(
f .x; 2t/; t � 1

2

g.x; 2t � 1/; 1
2
� t:

(Again we consider the group opposite to the categorically defined group.) The
inverse of Œf � is represented by .x; t/ 7! f .x; 1� t /. For this definition we do not
need the categorical considerations, but we have verified the group axioms.

If f W X ! Y is a pointed map, then f � id.I / is compatible with passing to
the suspensions and induces †f W †X ! †Y , .x; t/ 7! .f .x/; t/. In this manner
the suspension becomes a functor † W TOP0 ! TOP0. This functor is compatible
with homotopies: a pointed homotopy Ht induces a pointed homotopy †.Ht /.

There exists a canonical homeomorphism I kCl=@I kCl D I k=@I k ^ I l=@I l
which is the identity on representing elements in I kCl D I k � I l . We have for
each pointed space X canonical homeomorphisms

.X ^ I k=@I k/ ^ I l=@I l Š X ^ I kCl=@I kCl ; †l.†kX/ Š †kClX:

We define the k-fold suspension by †kX D X ^ .I k=@I k/. Note that †nX is
canonically homeomorphic to X � I n=X � @I n [ fxg � @I n. In the homotopy set
Œ†kX; Y �0 we have k composition laws, depending on which of the I -coordinates
we use:

.f Ci g/.x; t/ D
(
f .x; t1; : : : ; ti�1; 2ti ; tiC1; : : : /; ti � 1

2
;

g.x; t1; : : : ; ti�1; 2ti � 1; tiC1; : : : /; 1
2
� ti :
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We show in a moment that all these group structures coincide and that they are
abelian (n � 2). For the purpose of the proof one verifies directly the commutation
rule (unravel the definitions)

.aC1 b/C2 .c C1 d/ D .aC2 c/C1 .b C2 d/:

a b

c d

t2

"

! t1

(4.3.1) Proposition. Suppose the set M carries two composition laws C1 and
C2 with neutral elements ei . Suppose further that the commutation rule holds.
Then C1 D C2 D C, e1 D e2 D e, and the composition C is associative and
commutative.

Proof. The chain of equalities

a D aC2 e2 D .aC1 e1/C2 .e1 C1 e2/ D .aC2 e1/C1 .e1 C2 e2/
D .aC2 e1/C1 e1 D aC2 e1

shows that e1 is a right unit for C2. In a similar manner one shows that e1 is a left
unit and that e2 is a left and right unit forC1. Therefore e1 D e1C2 e2 D e2. The
equalities aC2 b D .aC1 e/C2 .eC1 b/ D .aC2 e/C1 .eC2 b/ D aC1 b show
C1 D C2 D C. From b C c D .e C b/C .c C e/ D .e C c/C .b C e/ D c C b
we obtain the commutativity. Finally a C .b C c/ D .a C e/ C .b C c/ D
.aC b/C .e C c/ D .aC b/C c shows associativity. �

The suspension induces a map †� W ŒA; Y �0 ! Œ†A;†Y �0, Œf � 7! Œ†f �, also
called suspension. If A D †X , then †� is a homomorphism, because the addition
in Œ†X; Y �0 is transformed by †� intoC1.

Suppose X D S0 D f˙e1g with base point e1. We have a canonical homeo-
morphism

I n=@I n Š †nS0 Š S0 � I n=S0 � @I n [ e1 � I n
which sends x 2 I n to .�e1; x/.

The classical homotopy groups of a pointed space are important algebraic in-
variants. The n-th homotopy group is

�n.X/ D �n.X; x/ D ŒI n=@I n; X�0 D Œ.I n; @I n/; .X; x/�; n � 1:
These groups are abelian for n � 2. We can use each of the n coordinates to define
the group structure.
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4.4 Loop Space

We now dualize the concepts of the previous section. Let .Y; y/ be a pointed space.
The loop space�Y of Y is the subspace of the path space Y I (with compact-open
topology) consisting of the loops in Y with base point y, i.e.,

�Y D fw 2 Y I j w.0/ D w.1/ D yg:
The constant loop k is the base point. A pointed map f W Y ! Z induces a pointed
map�f W �Y ! �Z,w 7! f ıw. This yields the functor� W TOP0 ! TOP0. It
is compatible with homotopies: A pointed homotopyHt yields a pointed homotopy
�Ht . We can also define the loop space as the space of pointed mapsF 0.I=@I; Y /.
The quotient mapp W I ! I=@I induces Y p W Y I=@I ! Y I and a homeomorphism
F 0.I=@I; Y /! �Y of the corresponding subspaces.

(4.4.1) Proposition. The product of loops defines a multiplication

m W �Y ��Y ! �Y; .u; v/ 7! u 	 v:
It has the following properties:

(1) m is continuous.

(2) The maps u 7! k 	 u and u 7! u 	 k are pointed homotopic to the identity.

(3) m.m � id/ and m.id�m/ are pointed homotopic.

(4) The maps u 7! u	u� and u 7! u�	u are pointed homotopic to the constant
map.

Proof. (1) By (2.4.3) it suffices to prove continuity of the adjoint map

�Y ��Y � I ! Y; .u; v; t/ 7! .u 	 v/.t/:
This map equals on the closed subspace�Y ��Y �Œ0; 1

2
� the evaluation .u; v; t/ 7!

u.2t/ and is therefore continuous.
(2) Let ht W I ! I , s 7! .1 � t /min.2s; 1/ C t . Then �Y � I ! �Y ,

.u; t/ 7! uht is a homotopy from u 7! u 	 k to the identity. Continuity is again
proved by passing to the adjoint.

(3) and (4) are proved in a similar manner; universal formulae for associativity
and the inverse do the job. �

The loop product induces the m-sum on ŒX;�Y �0

Œf �Cm Œg� D Œm ı .f � g/ ı d�
with the diagonal d D .id; id/ W X ! X � X . The functors † and � are adjoint,
see (2.4.10). We compose a map †X ! Y with the quotient map X � I ! †X .
The adjoint X ! Y I has an image contained in �Y . In this manner we obtain a
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bijection between morphisms †X ! Y and X ! �Y in TOP0. Moreover, this
adjunction induces a bijection Œ†X; Y �0 Š ŒX;�Y �0, see (2.4.11). It transforms
the �-sum (see the next section) into the m-sum, and it is natural in the variables
X and Y .

In Œ†X;�Y �0 we have two composition laws C� and Cm. They coincide and
are commutative. We prove this in a formal context in the next section.

4.5 Groups and Cogroups

We work in the category TOP0. A monoid in h-TOP0 is a pointed spaceM together
with a pointed map (multiplication) m W M �M ! M such that x 7! .	; x/ and
x 7! .x;	/ are pointed homotopic to the identity. Spaces with this structure
are called Hopf spaces or H -spaces, in honour of H. Hopf [91]. In ŒX;M�0

we have the composition law Cm, defined as above for M D �Y ; the constant
map represents the neutral element; and Œ�;M �0 is a contravariant functor into the
category of monoids. A monoid is a set together with a composition law with neutral
element. An H -space is associative if m.m � id/ ' m.id�m/ and commutative
if m ' m� with the interchange �.x; y/ D .y; x/. An inverse for an H -space
is a map � W M ! M such that m.� � id/d and m.id��/d are homotopic to the
constant map (d the diagonal). An associative H -space with inverse is a group
object in h- TOP0. By a general principle we have spelled out the definition in
TOP0. The axioms of a group are satisfied up to homotopy. A homomorphism (up
to homotopy) betweenH -spaces .M;m/ and .N; n/ is a map 	 W M ! N such that
n.	� 	/ ' 	m. A subtle point in this context is the problem of “coherence”, e.g.,
can a homotopy-associative H -space be h-equivalent to a strictly associative one
(by a homomorphism up to homotopy)?

The loop space .�.X/;m/ is a group object in h- TOP0.
One can try other algebraic notions “up to homotopy”. Let .M;m/ be an as-

sociative H -space and X a space. A left action of M on X in h- TOP0 is a map
r W M �X ! X such that r.m� id/ ' r.id�r/ and x 7! r.	; x/ is homotopic to
the identity.

A comonoid in h-TOP0 is a pointed space C together with a pointed map
(comultiplication)� W C ! C _C such that pr1 � and pr2 � are pointed homotopic
to the identity. In ŒC; Y �0 we have the composition lawC� defined as

Œf �C� Œg� D Œı ı .f _ g/ ı ��
with the codiagonal (also called the folding map) ı D h id; id i W Y _ Y ! Y . The
functor ŒC;��0 is a covariant functor into the category of monoids. The comultipli-
cation is coassociative up to homotopy if .id.C /_�/ ı� and .�_ id.C // ı� are
pointed homotopic; it is cocommutative up to homotopy if � and �� are pointed
homotopic, with � W C _C ! C _C the interchange map. Let .C; �/ and .D; �/ be
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monoids in h-TOP0; a cohomomorphism up to homotopy ' W C ! D is a pointed
map such that .' _ '/� and �' are pointed homotopic. A coinverse � W C ! C for
the comonoid C is a map such that ı.id_�/� and ı.� _ id/� are both pointed ho-
motopic to the constant map. A coassociative comonoid with coinverse in h-TOP0

is called a cogroup in h-TOP0. Let .C; �/ be a coassociative comonoid and Y a
space. A left coaction of C on Y (up to homotopy) is a map � W Y ! C _ Y such
that .id_�/� ' .� _ id/� and prY � ' id.

The suspension †X is such a cogroup. We define the comultiplication

� W †X ! †X _†X; � D i1 C i2
as the sum of the two injections i1; i2 W †X ! †X _ †X . Explicitly, �.x; t/ D
.x; 2t/ in the first summand for t � 1

2
, and �.x; t/ D .x; 2t � 1/ in the second

summand for 1
2
� t .

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

��!....................

1

2

0

1
2

1

1

2

The previously defined group structure on Œ†X; Y �0 is the �-sum.

(4.5.1) Proposition. Let .C; �/ be a comonoid and .M;m/ a monoid in h-TOP0.
The composition laws C� and Cm in ŒC;M�0 coincide and are associative and
commutative.

Proof. We work in h-TOP0, as we should; thus morphisms are pointed homotopy
classes. We have the projections pk W M �M ! M and the injections il W C !
C_C . Givenf W C_C !M�M we setfkl D pkf il . Thenmf D p1fCmp2f
and f� D f i1 C� f i2. From these relations we derive the commutation rule

.mf /� D .f11 C� f12/Cm .f21 C� f22/;
m.f�/ D .f11 Cm f21/C� .f12 Cm f22/:

Now apply (4.3.1). �

Problems

1. Let X be a pointed space and suppose that the Hom-functor Œ�; X�0 takes values in the
category of monoids. ThenX carries, up to homotopy, a uniqueH -space structurem which
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induces the monoid structures on ŒA;X�0 asCm. There is a similar result for Hom-functors
ŒC;��0 and comonoid structures on C .
2. Let S.k/ D Ik=@Ik . We have canonical homeomorphisms

�k.Y / D F 0.S.k/; Y / Š F..Ik ; @Ik/; .Y;	// and �k�l .Y / Š �kCl .Y /:

3. The space F..I; 0/; .Y;	// � Y I is pointed contractible.
4. Let F2.I; X/ D f.u; v/ 2 XI � XI j u.1/ D v.0/g. The map �2 W F2.I; X/ !
F.I;X/, .u; v/ 7! u 	 v is continuous.
5. Let F3.I; X/ D f.u; v; w/ j u.1/ D v.0/, v.1/ D w.0/g. The two maps

�3; �
0
3 W F3.I; X/! F.I;X/; .u; v; w/ 7! .u 	 v/ 	 w; u 	 .v 	 w/

are homotopic over X � X where the projection onto X � X is given by .u; v; w/ 7!
.u.0/; w.1//.
6. Verify the homeomorphism F 0.I=@I; Y / Š �Y .

4.6 The Cofibre Sequence

A pointed map f W .X;	/! .Y;	/ induces a pointed set map

f � W ŒY; B�0 ! ŒX; B�0; Œ˛� 7! Œ f̨ �:

The kernel of f � consists of the classes Œ˛� such that f̨ is pointed null homotopic.
We work in the category TOP0 and often omit “pointed” in the sequel. A homotopy
set ŒY; B�0 is pointed by the constant map. A base point is often denoted by 	.

A sequence A
˛�! B

ˇ�! C of pointed set maps is exact if ˛.A/ D ˇ�1.	/. A

sequence U
f�! V

g�! W in TOP0 is called h-coexact if for each B the sequence

ŒU; B�0 ŒV; B�0
f �

�� ŒW;B�0
g�

��

is exact. If we apply this to id.W /, we see that gf is null homotopic.
A pointed homotopy X � I ! B sends 	 � I to the base point. Therefore

we use the cylinder XI D X � I= 	 �I in TOP0 together with the embeddings
it W X ! XI , x 7! .x; t/ and the projection p W XI ! X , .x; t/ 7! x, and we
consider morphisms XI ! Y in TOP0 as homotopies in TOP0.

The (pointed) cone CX overX is now defined as CX D X � I=X � 0[	� I
with base point the identified set. The inclusion iX1 D i1 W X ! CX , x 7! .x; 1/

is an embedding. The maps h W CX ! B correspond to the homotopies of the
constant map to hi1 (by composition with the projection XI ! CX ).
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The mapping cone of f is defined as C.f / D CX _ Y=.x; 1/ � f .x/, or,
more formally, via a pushout

X
f

��

i1

��

Y

f1

��

CX
j

�� C.f /:

						









YCX

� �..........

x

f .x/

0 1

We denote the points of C.f / by their representing elements in X � I C Y . The
inclusionY � CXCY induces an embeddingf1 W Y ! C.f /, andCX � CXCY
induces j W CX ! C.f /. The pushout property says: The pairs ˛ W Y ! B ,
h W CX ! B with f̨ D hi1, i.e., the pairs of ˛ and null homotopies of f̨ ,
correspond to maps ˇ W C.f /! B with ǰ D h. If Œ˛� is contained in the kernel
of f �, then there exists ˇ W C.f /! B with f̌1 D ˛, i.e., Œ˛� is contained in the
image off �

1 . Moreover, f1f W X ! C.f / is null homotopic with null homotopy j .

This shows that the sequence X
f�! Y

f1�! C.f / is h-coexact.

We iterate the passage from f to f1 and obtain the h-coexact sequence

X
f

�� Y
f1 �� C.f /

f2 �� C.f1/
f3 �� C.f2/

f4 �� : : : :

The further investigations replace the iterated mapping cones with homotopy equiv-
alent spaces which are more appealing. This uses the suspension. It will be impor-
tant that the suspension of a space arises in several ways as a quotient space; certain
canonical bijections have to be proved to be homeomorphisms.

In the next diagram the left squares are pushout squares and p; p.f /; q.f / are
quotient maps. The right vertical maps are homeomorphisms, see Problem 1. Now
†X Š CX=i1X , by the identity on representatives. Therefore we view p, p.f /,
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and q.f / as morphisms to †X .

X
i1 ��

f

��

CX
p

��

j

��

CX=i1X

��

D †X

Y
f1 ��

i1

��

C.f /
p.f /

��

f2

��

C.f /=f1Y

��

D †X

CY
j1 �� C.f1/

q.f /
�� C.f1/=j1CY D †X

(4.6.1) Note. The quotient map q.f / is a homotopy equivalence.

Proof. We define a homotopy ht of the identity ofC.f1/which contractsCY along
the cone lines to the cone point and drags CX correspondingly

ht .x; s/ D
(
.x; .1C t /s/; .1C t /s � 1;
.f .x/; 2 � .1C t /s/; .1C t /s � 1; ht .y; s/ D .y; .1 � t /s/:

In order to verify continuity, one checks that the definition is compatible with the
equivalence relation needed to define C.f1/. The end h1 of the homotopy has the
form s.f / ı q.f / with s.f / W †X ! C.f1/, .x; s/ 7! h1.x; s/. The composition
q.f / ı s.f / W .x; s/ 7! .x;min.2s; 1// is also homotopic to the identity, as we
know from the discussion of the suspension. This shows that s.f / is h-inverse to
q.f /. �

We treat the next step in the same manner:

C.f /
f2 ��

p.f /

���
��

��
��

��
� C.f1/

f3 ��

q.f /

��

p.f1/

���
��

��
��

��
�

C.f2/

q.f1/

��

†X
†.f /ı�

������ †Y

with an h-equivalence q.f1/. Let � W †X ! †X , .x; t/ 7! .x; 1� t / be the inverse
of the cogroup †X . The last diagram is not commutative if we add the morphism
†f to it. Rather the following holds:

(4.6.2) Note. †.f / ı � ı q.f / ' p.f1/.
Proof. By (4.6.1) it suffices to study the composition with s.f /. We know already
thatp.f1/s.f / W .x; s/ 7! .f .x/;min.1; 2.1�s// is homotopic to†f ı� W .x; s/ 7!
.f .x/; 1 � s/. �
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An h-coexact sequence remains h-coexact if we replace some of its spaces by
h-equivalent ones. Since the homeomorphism � does not destroy exactness of a
sequence, we obtain from the preceding discussion that the sequence

X
f

�� Y
f1 �� C.f /

p.f /
�� †X

†f
�� †Y

is h-coexact.
We can continue this coexact sequence if we apply the procedure above to †f

instead of f . The next step is then .†f /1 W †Y ! C.†f /. But it turns out that we
can also use the suspension of the original map†.f1/ W †Y ! †C.f / in order to
continue with an h-coexact sequence. This is due to the next lemma.

(4.6.3) Lemma. There exists a homeomorphism �1 W C.†f / ! †C.f / which
satisfies �1 ı .†f /1 D †.f1/.

Proof. C†X and †CX are both quotients of X � I � I . Interchange of I -
coordinates induces a homeomorphism � W C†X ! †CX which satisfies � ı
i†X1 D †.iX1 /. We insert this into the pushout diagrams for C.†f / and †C.f /
and obtain an induced �1. We use that a pushout in TOP0 becomes a pushout again
if we apply † (use �-†-adjunction). �

We now continue in this manner and obtain altogether an infinite h-coexact
sequence.

(4.6.4) Theorem. The sequence

X
f

�� Y
f1 �� C.f /

p.f /
�� †X

†f
�� †Y

†f1 �� †C.f /
†p.f /

�� †2X
†2f

�� : : :

is h-coexact. We call it the Puppe-sequence or the cofibre sequence of f ([155]).
The functor Œ�; B�0 applied to the Puppe-sequence yields an exact sequence of
pointed sets; it consists from the fourth place onwards of groups and homomor-
phisms and from the seventh place onwards of abelian groups. See [49] for an
introduction to some other aspects of the cofibre sequence. �

The derivation of the cofibre sequence uses only formal properties of the ho-
motopy notion. There exist several generalizations in an axiomatic context; for an
introduction see [69], [101], [18].

Let f W X ! Y be a pointed map. Define � W C.f / ! †X _ C.f / by
�.x; t/ D ..x; 2t/;	/ for 2t � 1, �.x; t/ D .	; .x; 2t � 1// for 2t � 1, and
�.y/ D y. This map is called the h-coaction of the h-cogroup†X on C.f /. This
terminology is justified by the next proposition.
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†X _
(4.6.5) Proposition. The map � induces a left action

Œ†X;B�0 � ŒC.f /; B�0 Š Œ†X _C.f /; B�0 ��

�! ŒC.f /; B�0; .˛; ˇ/ 7! ˛ˇˇ:

This action satisfies˛1ˇp.f /�˛2 D p.f /�.˛1˛2/. Moreover, f �
1 .ˇ1/ D f �

1 .ˇ2/

if and only if there exists ˛ such that ˛ ˇ ˇ1 D ˇ2. Thus f �
1 induces an injective

map of the orbits of the action.

Proof. That �� satisfies the axioms of a group action is proved as for the group
axioms involving †X . Also the property involving p.f / is proved in the same
manner. It remains to verify the last statement.

Assume that f; g W C.f / ! B are maps which become homotopic when re-
stricted to Y . Consider the subspaces C0 D f.x; t/ j 2t � 1g � C.f / and
C1 D f.x; t/ j 2t � 1g [ Y � C.f /. These inclusions are cofibrations (see the
next chapter). Therefore we can change f and g within their homotopy classes
such that f jC0 is constant and gjC1 D f jC1. Then g is constant on C0 \ C1.
Therefore there exists h W †X _ C.f /! Y such that h� D g and hjC.f / D f .
Let k D hj†X . Then Œk�ˇ Œf � D Œg�. Conversely, � ı ha; b i and b have the same
restriction to Y . �

Problems

1. Let the left square in the next diagram be a pushout with an embedding j and hence an
embedding J . Then F induces a homeomorphism xF of the quotient spaces.

A
j

��

f

��

X
p

��

F
��

X=A

xF
��

B
J �� Y

q
�� Y=B

2. The map p.f /� W Œ†X;B�0 ! ŒC.f /; B�0 induces an injective map of the left (or right)
cosets of Œ†X;B�0 modulo the subgroup Im†.f /�.
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4.7 The Fibre Sequence

The investigations in this section are dual to those of the preceding section. For
the purpose of this section we describe homotopies B � I ! Y in a dual (adjoint)
form B ! Y I as maps into function spaces. A pointed map f W .X;	/ ! .Y;	/
induces a pointed set map

f� W ŒB;X�0 ! ŒB; Y �0; Œ˛� 7! Œf ˛�:

A sequenceU
f�! V

g�! W in TOP0 is called h-exact, if for eachB the sequence

ŒB; U �0
f� �� ŒB; V �0

g� �� ŒB;W �0

is exact. If we apply this to id.U /, we see that gf is null homotopic.
We need the dual form of the cone. Let F.Y / D fw 2 Y I j w.0/ D 	g be the

space of paths which start in the base point of Y , with the constant path k�.t/ D 	
as base point, and evaluation e1 W FY ! Y , w 7! w.1/. Via adjunction we have
F 0.B; F Y / Š F 0.CB; Y /. The pointed maps h W B ! FY correspond to pointed
homotopies from the constant map to e1h, if we pass from h to the adjoint map
B � I ! Y . We define F.f / via a pullback

F.f /
q

��

f 1

��

FY

e1

��

F.f / D f.x; w/ 2 X � FY j f .x/ D w.1/g

X
f

�� Y
f 1.x; w/ D x; q.x;w/ D w:

The maps ˇ W B ! F.f / correspond to pairs ˛ D f 1ˇ W B ! X together with

the null homotopies qˇ W B ! FY of f ˛. This shows that F.f /
f 1

�! X
f�! Y is

h-exact.
We now iterate the passage from f to f 1

: : :
f 4

�� F.f 2/
f 3

�� F.f 1/
f 2

�� F.f /
f 1

�� X
f

�� Y

and show that F.f 1/ and F.f 2/ can be replaced, up to h-equivalence, by�Y and
�X . We begin with the remark that

.f 1/�1.	/ D f.x; w/ j w.0/ D 	; w.1/ D f .x/; x D 	g
can be identified with �Y , via w 7! .	; w/. Let i.f / W �Y ! F.f / be the
associated inclusion of this fibre of f 1. The space (by its pullback definition)

F.f 1/ D f.x; w; v/ j w.0/ D 	; w.1/ D f .x/; x D v.1/; v.0/ D 	g
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can be replaced by the homeomorphic space

F.f 1/ D f.w; v/ 2 FY � FX j w.1/ D f v.1/g:
Then f 2 becomes f 2 W F.f 1/! F.f /, .w; v/ 7! .v.1/; w/. The map

j.f / W �Y ! F.f 1/; w 7! .w; k�/

satisfies f 2 ı j.f / D i.f /.
(4.7.1) Note. The injection j.f / is a homotopy equivalence.

Proof. We construct a homotopy ht of the identity ofF.f 1/which shrinks the path
v to its beginning point and drags behind the path w correspondingly. We write
ht .w; v/ D .h1t .w; v/; h2t .w; v// 2 FY � FX and define

h1t .s/ D
(
w.s.1C t //; s.1C t / � 1;
f v.2 � .1C t /s/; s.1C t / � 1; h2t .s/ D v.s.1 � t //:

The end h1 of the homotopy has the form j.f / ı r.f / with

r.f / W F.f 1/! �Y; .w; v/ 7! w 	 .f v/�:
The relation .r.f /ıj.f //.w/ D w	k�� shows that also r.f /ıj.f / is homotopic
to the identity. The continuity of ht is proved by passing to the adjoint maps. �

We treat the next step in a similar manner.

F.f 2/
f 3

�� F.f 1/

�X

j.f 1/

��

i.f 1/



���������

	f
�� �Y

j.f /

��

i.f 1/.v/ D .k�; v/:

The upper triangle is commutative, and (4.7.2) applies to the lower one. The map
i.f 1/ is the embedding of the fibre over the base point. Let � W �Y ! �Y ,
w 7! w� be the inverse.

(4.7.2) Note. j.f / ı � ı�f ' i.f 1/.
Proof. We compose both sides with the h-equivalence r.f / from the proof of
(4.7.1). Then r.f /ıi.f 1/ equals v 7! k�	.f v/�, and this is obviously homotopic
to � ı�f W v 7! .f v/�. �

As a consequence of the preceding discussion we see that the sequence

�X
	f

�� �Y
i.f /

�� F.f /
f 1

�� X
f

�� Y

is h-exact.
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(4.7.3) Lemma. There exists a homeomorphism �1 W F.�f /! �F.f / such that
.�f /1 D �.f 1/ ı �1.
Proof. From the definitions and standard properties of mapping spaces we have
�F.f / � �X ��FY and F�.f / � �X � F�Y . We use the exponential law
for mapping spaces and consider �FY and F�Y as subspaces of Y I�I . In the
first case we have to use all maps which send @I �I [I �0 to the base point, in the
second case all maps which send I � @I [ 0 � I to the base point. Interchanging
the I -coordinates yields a homeomorphism and it induces �1. �

We now continue as in the previous section.

(4.7.4) Theorem. The sequence

: : :
	2f

�� �2Y
	i.f /

�� �F.f /
	f 1

�� �X
	f

�� �Y
i.f /

�� F.f /
f 1

�� X
f

�� Y

is h-exact. We call it the fibre sequence of f . When we apply the functor ŒB;��0
to the fibre sequence we obtain an exact sequence of pointed sets which consists
from the fourth place onwards of groups and homomorphisms and from the seventh
place onwards of abelian groups ([147]). �

Problems

1. Work out the dual of (4.6.5).
2. Describe what happens to the fibre sequence under adjunction. A map

a W T ! F.f / D f.x; w/ 2 X � FY j f .x/ D w.1/g
has two components b W T ! X and ˇ W T ! FY . Under adjunction, ˇ corresponds to
a map B W CT ! Y from the cone over T . The condition f .x/ D w.1/ is equivalent to
the commutativity f b D Bi1. This transition is also compatible with pointed homotopies,
and therefore we obtain a bijection Œa� 2 ŒT; F.f /�0 Š Œi1; f �

0 3 ŒB; b�. This bijection
transforms f 1

� into the restriction ŒB; b� 2 Œi1; f �0 ! ŒT; X�0 3 Œb�. In the next step we
have

ŒT;�Y �0

i.f /�

��

Š �� Œ†T; Y �0

��

Œ���

��

ŒT; F.f /�0
Š �� Œi1; f �

0, Œ� ı p; c�.

The image of � is obtained in the following manner: With the quotient map p W CT ! †T

we have B D � ı p, and b is the constant map c.
3. There exist several relations between fibre and cofibre sequences.

The adjunction .†;�/ yields in TOP0 the maps � W X ! �†X (unit of the adjunction)
and " W †�X ! X (counit of the adjunction). These are natural in the variableX . For each
f W X ! Y we also have natural maps

� W F.f /! �C.f /; " W †F.f /! C.f /
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defined by

�.x;w/.t/ D
�
Œx; 2t �; t � 1=2;
w.2 � 2t/; t � 1=2;

and " adjoint to �. Verify the following assertions from the definitions.
(1) The next diagram is homotopy commutative

�Y
i.f /

��

�
��

F.f /
f 1

��

�
��

X

�

��

�Y
�f1 �� �C.f /

�p.f /
�� �†X .

(2) Let i W X ! Z.f / be the inclusion and r W Z.f / ! Y the retraction. A path in
Z.f / that starts in 	 and ends in X � 0 yields under the projection to C.f / a loop. This
gives a map � W F.i/! �C.f /. The commutativity � ı F.r/ ' � ı � holds.

(3) The next diagram is homotopy commutative

F.f1/
i.f1/

��

�q.f1/ı�
��

Y

�ı�
��

�†X
�†f

�� �†Y .



Chapter 5

Cofibrations and Fibrations

This chapter is also devoted to mostly formal homotopy theory. In it we study the
homotopy extension and lifting property.

An extension of f W A ! Y along i W A ! X is a map F W X ! Y such that
F i D f . If i W A � X is an inclusion, then this is an extension in the ordinary sense.
Many topological problems can be given the form of an extension problem. It is
important to find conditions on i under which the extendibility of f only depends
on the homotopy class of f . If this is the case, then f is called a cofibration.

The dual of the extension problem is the lifting problem. Suppose given maps
p W E ! B and f W X ! B . A lifting of f along p is a map F W X ! E such
that pF D f . We ask for conditions on p such that the existence of a lifting only
depends on the homotopy class of f . If this is the case, then f is called a fibration.

X
F

��	 	
	 	

Y A
f

��

i

�� E

p
��

X

F
��				

f
�� B

Each map is the composition of a cofibration and a homotopy equivalence and
(dually) the composition of a homotopy equivalence and a fibration. The notions are
then used to define homotopy fibres (“homotopy kernels”) and homotopy cofibres
(“homotopy cokernels”). Axiomatizations of certain parts of homotopy theory
(“model categories”) are based on these notions. The notions also have many
practical applications, e.g., to showing that maps are homotopy equivalences with
additional properties like fibrewise homotopy equivalences.

Another simple typical example: A base point x 2 X is only good for homo-
topy theory if the inclusion fxg � X is a cofibration (or the homotopy invariant
weakening, a so-called h-cofibration). This is then used to study the interrelation
between pointed and unpointed homotopy constructions, like pointed and unpointed
suspensions.

5.1 The Homotopy Extension Property

A map i W A! X has the homotopy extension property (HEP) for the space Y if
for each homotopy h W A�I ! Y and each map f W X ! Y with f i.a/ D h.a; 0/
there exists a homotopy H W X � I ! Y with H.x; 0/ D f .x/ and H.i.a/; t/ D
h.a; t/. We callH an extension of hwith initial condition f . The map i W A! X
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is a cofibration if it has the HEP for all spaces. The data of the HEP are displayed
in the next diagram. We set iXt W X ! X � I , x 7! .x; t/ and e0.w/ D w.0/.

A
h ��

i

��

Y I

e0

��

X

H
��








 f
�� Y

X

iX
0 ���

���
���

���
f

��

A

i

											

iA
0

���
��

��
��

�� X � I H �� Y

A � I

i�id


���������
h

		

For a cofibration i W A! X , the extendibility of f only depends on its homotopy
class.

From this definition one cannot prove directly that a map is a cofibration, but
it suffices to test the HEP for a universal space Y , the mapping cylinder Z.i/ of i .
Recall that Z.i/ is defined by a pushout

A
i ��

iA
0

��

X

b
��

A � I k �� Z.i/:

Pairs of maps f W X ! Y and h W A� I ! Y with hiA0 D f i then correspond
to maps � W Z.i/ ! Y with �b D f and �k D h. We apply this to the pair
iX0 W X ! X � I and i � id W A � I ! X � I and obtain s W Z.i/! X � I such
that sb D iX0 and sk D i � id.

Now suppose that i is a cofibration. We use the HEP for the space Z.i/, the
initial condition b and the homotopy k. The HEP then provides us with a map
r W X � I ! Z.i/ such that riX0 D b and r.i � id/ D k. We conclude from
rsb D riX0 D b, rsk D r.i�id/ D k and the pushout property that rs D id.Z.i//,
i.e., s is an embedding and r a retraction. Let r be a retraction of s. Given f and
h, find � as above and set H D �r . Then H extends h with initial condition f .
Altogether we have shown:

(5.1.1) Proposition. The following statements about i W A! X are equivalent:

(1) i is a cofibration.

(2) i has the HEP for the mapping cylinder Z.i/.

(3) s W Z.i/! X � I has a retraction. �

A cofibration i W A ! X is an embedding; and i.A/ is closed in X , if X is a
Hausdorff space (Problem 1). Therefore we restrict attention to closed cofibrations
whenever this simplifies the exposition. A pointed space .X; x/ is called well-
pointed and the base point nondegenerate if fxg � X is a closed cofibration.
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(5.1.2) Proposition. If i W A � X is a cofibration, then there exists a retraction
r W X � I ! X � 0 [ A � I . If A is closed in X and if there exists a retraction r ,
then i is a cofibration.

Proof. Let Y D X � 0 [ A � I , f .x/ D .x; 0/, and h.a; t/ D .a; t/. Apply the
HEP to obtain a retraction r D H .

IfA is closed inX , theng W X�0[A�I ! Y , g.x; 0/ D f .x/, .a; t/ D h.a; t/
is continuous. A suitable extension H is given by gr . �

(5.1.3) Example. Let r W X � I ! X � 0 [ A � I be a retraction. Set r.x; t/ D
.r1.x; t/; r2.x; t//. Then

H W X � I � I ! X � I; .x; t; s/ 7! .r1.x; t.1 � s//; st C .1 � s/r2.x; t//
is a homotopy relative to X � 0 [ A � I of r to the identity, i.e., a deformation
retraction. �

(5.1.4) Example. The inclusions Sn�1 � Dn and @I n � I n are cofibrations. A
retraction r W Dn ! Sn�1 � I [Dn � 0 was constructed in (2.3.5). Þ

It is an interesting fact that one need not assume A to be closed. Strøm [180,
Theorem 2] proved that an inclusion A � X is a cofibration if and only if the
subspace X � 0 [ A � I is a retract of X � I .

If we multiply a retraction by id.Y /we obtain again a retraction. HenceA�Y !
X � Y is a (closed) cofibration for each Y , if i W A! X is a (closed) cofibration.
Since we have proved (5.1.2) only for closed cofibrations, we mention another
special case, to be used in a moment. Let Y be locally compact and i W A ! X a
cofibration. Then i � id W A� Y ! X � Y is a cofibration. For a proof use the fact
that via adjunction and the exponential law for mapping spaces the HEP of i � id
for Z corresponds to the HEP of i for ZY .

(5.1.5) Proposition. Let A � X and assume that A � I � X � I has the HEP
for Y . Given maps ' W A � I � I ! Y; H W X � I ! Y; f " W X � I ! Y such
that

'.a; s; 0/ D H.a; s/; f ".x; 0/ D H.x; "/; f ".a; t/ D '.a; "; t/
" 2 f0; 1g, a 2 A, x 2 X , s; t 2 I . Then there existsˆ W X � I � I ! Y such that

ˆ.a; s; t/ D '.a; s; t/; ˆ.x; s; 0/ D H.x; s/; ˆ.x; "; t/ D f ".x; t/:
Proof. H and f " together yield a map ˛ W X � .I � 0 [ @I � I / ! Y defined
by ˛.x; s; 0/ D H.x; s/ and ˛.x; "; t/ D f ".x; t/. By our assumptions, ˛ and '
coincide on A� .I � 0[ @I � I /. Let k W .I � I; I � 0[ @I � I /! .I � I; I � 0/
be a homeomorphism of pairs. Since A � I ! X � I has the HEP for Y , there
exists ‰ W X � I � I ! Y which extends ' ı .1 � k�1/ and ˛ ı .1 � k�1/. The
map ˆ D ‰ ı .1 � k/ solves the extension problem. �
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(5.1.6) Proposition. Let i W A � X be a cofibration. ThenX�@I [A�I � X�I
is a cofibration.

Proof. Givenh W .A�I[X�@I /�I ! Y and an initial conditionH W X�I ! Y ,
we set ' D hjA � I � I and f ".x; t/ D h.x; "; t/. Then we apply (5.1.5). �

For A D ; we obtain from (5.1.5) that X � @I � X � I is a cofibration, in
particular @I � I and f0g � I are cofibrations. Induction over n shows again that
@I n � I n is a cofibration.

We list some special cases of (5.1.5) for a cofibration A � X .

(5.1.7) Corollary. .1/ Let ˆ W X � I ! Y be a homotopy. Suppose ' D ˆjA� I
is homotopic rel A� @I to  . Then ˆ is homotopic rel X � @I to ‰ W X � I ! Y

such that ‰jA � I D  .
.2/ Let ˆ solve the extension problem for .'; f / and ‰ the extension problem

for . ; g/. Suppose f ' g rel A and ' '  rel A � @I . Then ˆ1 ' ‰1 rel A.
.3/ Let ˆ;‰ W X � I ! Y solve the extension problem for .h; f /. Then there

exists a homotopy  W ˆ ' ‰ rel X � 0 [ A � I . �

(5.1.8) Proposition. Let a pushout diagram in TOP be given.

A
f

��

j
��

B

J
��

X
F �� Y

If j has the HEP for Z, then J has the HEP for Z. If j is a cofibration, then J is
a cofibration.

Proof. Suppose h W B � I ! Z and ' W Y ! Z are given such that h.b; 0/ D
fJ.b/ for b 2 B . We use the fact that the product with I of a pushout is again a
pushout. Since j is a cofibration, there exists Kt W X ! Z such that K0 D 'f

and Ktj D htf . By the pushout property, there exists Ht W Y ! Z such that
HtF D Kt and HtJ D ht . The uniqueness property shows H0 D ', since both
maps have the same composition with Fj and Jf . �

We call J the cofibration induced from j via cobase change along f .

Example. IfA � X is a cofibration, then fAg � X=A is a cofibration. Sn�1 � Dn

is a cofibration, hence fSn�1g � Dn=Sn�1 is a cofibration. The space Dn=Sn�1
is homeomorphic to Sn; therefore .Sn;	/ is well-pointed. Þ

Example. If .Xj / is a family of well-pointed spaces, then the wedge
W
j Xj is

well-pointed. Þ
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Our next result, the homotopy theorem for cofibration says, among other things,
that homotopic maps induce h-equivalent cofibrations from a given cofibration under
a cobase change.

Let j W A ! X be a cofibration and 't W f ' g W A ! B a homotopy. We
consider two pushout diagrams.

A
f

��

j
��

B

jf
��

A
g

��

j
��

B

jg
��

X
F �� Yf X

G �� Yg

Since j is a cofibration, there exists a homotopyˆt W X ! Yf with initial condition
ˆ0 D F and ˆtj D jf 't . The pushout property of the Yg -diagram provides us
with a unique map � D �' such that �jg D jf and �G D ˆ1. (We use the notation
�' although the map depends on ˆ1.) Thus �' is a morphism of cofibrations
� W jg ! jf between objects in TOPB . Moreover �G ' F . We now verify that
the homotopy class of � is independent of some of the choices involved. Let  t
be another homotopy from f to g which is homotopic to 't relative to A � @I .
Let ‰t W X ! Yf be an extension of jf  t with initial condition ‰0 D F . Let
� W A � I � I ! B be a homotopy rel A � @I from ' to  . These data give us on
X � 0 � I [X � I � @I a map  into Yf such that

.x; 0; t/ D F.x/; .x; s; 0/ D ˆ.x; s/; .x; s; 1/ D ‰.x; s/:
By (5.1.5) there exists an extension, still denoted  , to X � I � I such that jf � D
.j � id� id/. We multiply the Yg diagram by I and obtain again a pushout. It
provides us with a unique homotopyK W Yg �I ! Yf such thatK ı .G� id/ D 1
and K ı .jg � id/ D jf ı pr where 1 W X � I ! Yf , .x; t/ 7! .x; 1; t/. By
construction,K is a homotopy underB from �' to a corresponding map � obtained
from  t and ‰t . We thus have shown that the homotopy class Œ��B under B of �
only depends on the morphism Œ'� from f to g in the groupoid ….A;B/. Let us
write Œ�� D ˇŒ'�.

We verify that ˇ is a functor ˇ.Œ �~ Œ'�/ D ˇŒ'� ıˇŒ �. Let  W g ' h W A!
B . Choose a homotopy ‰t W X ! Yg with ‰0 D G and ‰tj D jg t . Then
� W Yh ! Yg is determined by � jh D jg and � H D ‰1. (Here .H; jh/ are
the pushout data for .j; h/.) Since �'‰0 D �'G D ˆ1, we can form the product
homotopyˆ	�'‰. It has the initial conditionF and satisfies .ˆ	�'‰/.j � id/ D
jf ' 	 �'jg D jf .' 	  /. Hence �'� , constructed with this homotopy, is
determined by �'� H D �'‰1 D �'� H and �'� jh D jf D �'jg D �'� jh.
Therefore �'� represents ˇ.Œ �~ Œ'�/.

Let h-COFB denote the full subcategory of h-TOPB with objects the cofibrations
under B . Then we have shown above:
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(5.1.9) Theorem. Let j W A ! X be a cofibration. We assign to the object
f W A ! B in ….A;B/ the induced cofibration jf W B ! Yf and to the mor-
phism Œ'� W f ! g in ….A;B/ the morphism Œ�' � W jg ! jf . These assignments
yield a contravariant functor ǰ W ….A;B/! h-COFB . �

Since ….A;B/ is a groupoid, Œ�' � is always an isomorphism in h-TOPB . We
refer to this fact as the homotopy theorem for cofibrations.

(5.1.10) Proposition. In the pushout (5.1.8) let j be a cofibration andf a homotopy
equivalence. Then F is a homotopy equivalence.

Proof. With an h-inverse g W B ! A of f we form a pushout

B
g

��

J
��

A

i
��

Y
G �� Z.

Since gf ' id, there exists, by (5.1.9), an h-equivalence � W Z ! X under A
such that �GF ' id. Hence F has a left h-inverse and G a right h-inverse. Now
interchange the roles of F and G. �

Problems

1. A cofibration is an embedding. For the proof use that i1 W A ! Z.i/, a 7! .a; 1/ is an
embedding. From i1 D rsi1 D riX1 i then conclude that i is an embedding.

Consider a cofibration as an inclusion i W A � X . The image of s W Z.i/! X � I is the
subset X � 0 [ A � I . Since s is an embedding, this subset equals the mapping cylinder,
i.e., one can define a continuous map X � 0 [ A � I by specifying its restrictions to X � 0
and A� I . (This is always so if A is closed in X , and is a special property of i W A � X if i
is a cofibration.)

Let X be a Hausdorff space. Then a cofibration i W A! X is a closed embedding. Let
r W X � I ! X � 0 [ A � I be a retraction. Then x 2 A is equivalent to r.x; 1/ D .x; 1/.
Hence A is the coincidence set of the maps X ! X � I , x 7! .x; 1/, x 7! r.x; 1/ into a
Hausdorff space and therefore closed.
2. If i W K ! L, j W L ! M have the HEP for Y , then j i has the HEP for Y . A home-
omorphism is a cofibration. ; � X is a cofibration. The sum qij W q Aj ! qXj of
cofibrations ij W Aj ! Xj is a cofibration.
3. Let p W P ! Q be an h-equivalence and i W A � B a cofibration. Then f W A! P has
an extension to B if and only if pf has an extension to B . Suppose f0; f1 W B ! P agree
on A. If pf0 and pf1 are homotopic rel A so are f0; f1.
4. Compression. Let A � X be a cofibration and f W .X;A/ ! .Y; B/ a map which is
homotopic as a map of pairs to k W .X;A/! .B;B/. Then f is homotopic relative to A to
a map g such that g.X/ � B .
5. Let A � X be a cofibration and A contractible. Then the quotient map X ! X=A is a
homotopy equivalence.
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6. The space C 0X D X � I=X � 1 is called the unpointed cone on X . We have the closed
inclusions j W X ! C 0X , x 7! .x; 0/ and b W f	g ! C 0X , 	 7! fX � 1g. Both maps are
cofibrations.
7. Let f W A � X be an inclusion. We have a pushout diagram

A
j

��

f
��

C 0A

F
��

X
J �� X [ C 0A.

Since j is a cofibration, so is J . If f is a cofibration, then F is a cofibration. There exists
a canonical homeomorphism X [ C 0A=C 0A Š X=A; it is induced by J . Since C 0A is
contractible, we obtain a homotopy equivalence X [ C 0A! X [ C 0A=C 0A Š X=A.
8. The unpointed suspension †0X of a space X is obtained from X � I if we identify each
of the sets X � 0 and X � 1 to a point. If 	 is a basepoint of X , we have the embedding
j W I ! †0X , t 7! .	; t /. If f	g � X is a closed cofibration, then j is a closed (induced)
cofibration. The quotient map †0X ! †X is a homotopy equivalence.

5.2 Transport

Let i W K ! A be a cofibration and ' W K � I ! X a homotopy. We define a map

'# W Œ.A; i/; .X; '0/�K ! Œ.A; i/; .X; '1/�
K ;

called transport along ', as follows: Let f W A ! X with f i D '0 be given.
Choose a homotopy ˆt W A ! X with ˆ0 D f and ˆt i D 't . We define
'#Œf � D Œˆ1�. Then (5.1.5) shows that '# is well defined and only depends on the
homotopy class of ' rel K � @I , i.e., on the morphism Œ'� 2 ….K;X/. From the
construction we see .' 	  /# D  #'#. Altogether we obtain:

(5.2.1) Proposition. Let i W K ! A be a cofibration. The assignments '0 7!
Œi; '0�

K and Œ'� 7! '# yield a transport functor from ….K;X/ to sets. Since
….K;X/ is a groupoid, '# is always bijective. �

The transport functor measures the difference between “homotopic” in TOPK

and in TOP. The following is a direct consequence of the definitions.

(5.2.2) Proposition. Let i W K ! A be a cofibration. Let f W .A; i/! .X; g/ and
f 0 W .A; i/! .X; g0/ be morphisms in TOPK . Then Œf � D Œf 0�, if and only if there
exists Œ'� 2 ….K;X/ from .X; g/ to .X; g0/ with Œf 0�K D '#Œf �K . �

(5.2.3) Proposition. Let i W K ! A be a cofibration, g W K ! X a map, and
 W X � I ! Y a homotopy. Then . ı .g � id//# ı  0� D  1�, if we set
 i�Œf � D Œ if �.
Proof. Use that  tf is an extension of  tg and apply the definition. �
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(5.2.4) Proposition. Let f W X ! Y be an ordinary homotopy equivalence and
i W K ! A a cofibration. Then f� W Œ.A; i/; .X; g/�K ! Œ.A; i/; .Y; fg/�K is
bijective.

Proof. Let g be h-inverse to f and choose ' W id ' gf . Consider

Œi; v�K
f� �� Œi; f v�K

g� �� Œi; gf v�K
f� �� Œi; fgf v�K :

Since g�f� D .gf /� D Œ'.v� id/�# id�, we conclude from (5.2.1) and (5.2.3) that
g�f� is bijective, hence g� is surjective. The bijectivity of f�g� shows that g� is
also injective. Therefore g� is bijective and hence f� is bijective too. �

(5.2.5) Proposition. Let i W K ! X and j W K ! Y be cofibrations and f W X !
Y an h-equivalence such that f i D j . Then f is an h-equivalence under K.

Proof. By (5.2.4), we have a bijective map

f� W Œ.Y; j /; .X; i/�K ! Œ.Y; j /; .Y; j /�K :

Hence there exists Œg�with f�Œg�K D Œfg�K D Œid�K . Since f is an h-equivalence,
so is g. Since also g� is bijective, g has a homotopy right inverse under K. Hence
g and f are h-equivalences under K. �

(5.2.6) Proposition. Let i W A! X be a cofibration and an h-equivalence. Then i
is a deformation retract.

Proof. The map i is a morphism from id.A/ to i . By (5.2.5), i is an h-equivalence
underA. This means: There exists a homotopyX � I ! X relA from the identity
to a map r W X ! A such that ri D id.A/, and this is what was claimed. �

(5.2.7) Proposition. Given a commutative diagram

A
u ��

i
��

Y

g
��

X



��

f
��

A0 u0
�� Y 0 X 0
0

��

with a cofibration i and h-equivalences � and � 0. Given v W A! X and ' W �v ' u.
Then there exists v0 W A0 ! X 0 and '0 W � 0v0 ' u0 such that v0i D f v and
'0
t i D g't .

Proof. We have bijective maps (note � 0f v D g�v ' gu D u0i )

.g'/# ı � 0� W Œ.A0; i/; .X 0; f v/�A ! Œ.A0; i/; .Y 0; � 0f v/�A ! Œ.A0; i/; .Y 0; u0i/�A:

Let v0 W A0 ! X 0 be chosen such that .g'/#� 0�Œv0�A D Œu0�A. This means: v0i D
f v; and � 0v0 has a transport along g' to a map which is homotopic under A to u0.
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This yields a homotopy '00 W � 0v0 ' u0 such that '00.i.a/; t/ D g'.a;min.2t; 1//.
The homotopy ' 	 k W .a; t/ 7! '.a;min.2t; 1// is homotopic rel A� @I to '. We
now use (5.1.6) in order to change this '00 into another homotopy '0 with the desired
properties. �

If we apply (5.2.7) in the case that u and u0 are the identity we obtain the next
result (in different notation). It generalizes (5.2.5).

(5.2.8) Proposition. Given a commutative diagram

A
f

��

i
��

B

j
��

X
F �� Y

with cofibrations i , j and h-equivalencesf andF . Giveng W B ! A and' W gf '
id, there exists G W Y ! X and ˆ W GF ' id such that Gj D ig and ˆt i D i't .
In particular: .F; f / is an h-equivalence of pairs, and there exists a homotopy
inverse of the form .G; g/ W j ! i . �

(5.2.9) Proposition. Suppose a commutative diagram

X0
a1 ��

f0
��

X1
a2 ��

f1
��

X2 ��

f2
��

� � �

Y0
b1 �� Y2

b2 �� Y2 �� � � �
is given with cofibration aj , bj and h-equivalences fj . Let X be the colimit of the
aj and Y the colimit of the bj . Then the map f W X ! Y induced by the fj is a
homotopy equivalence.

Proof. We choose inductively h-equivalences Fn W Yn ! Xn such that anFn�1 D
Fnbn and homotopies 'n W Xn�I ! Xn from Fnfn to id.Xn/ such that an'n�1 D
'n.an � id/. This is possible by (5.2.7). The Fn and 'n induce F W Y ! X and
' W X � I ! X;Ff ' id. Hence F is a left homotopy inverse of f . �

Problems

1. Let i W K ! A and j W K ! B be cofibrations. Let ˛ W .B; j /! .A; i/ be a morphism
under K, � W X ! Y a continuous map, and ' W K � I ! X a homotopy. Then

Œ.A; i/; .X; '0/�
K

'#
��

Œ˛;	�K

��

Œ.A; i/; .X; '1/�
K

Œ˛;	�K

��

Œ.B; j /; .Y; �'0/�
K

.	'/#
�� Œ.B; j /; .Y; �'1/�

K
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commutes; here Œ˛; ��K Œf � D Œ�f ˛�.
2. Apply the transport functor to pointed homotopy sets. Assume that the inclusion f	g � A
is a cofibration. For each path w W I ! X we have the transport

w# W ŒA; .X;w.0//�0 ! ŒA; .X;w.1//�0:

As a special case we obtain a right action of the fundamental group (transport along loops)

ŒA;X�0 � �1.X;	/! ŒA;X�0; .x; ˛/ 7! x � ˛ D ˛#.x/:

Let v W ŒA;X�0 ! ŒA;X� denote the forgetful map which disregards the base point. The
map v induces an injective map from the orbits of the �1-action into ŒA;X�. This map is
bijective, if X is path connected.

A space is said to be A-simple if for each path w the transport w# only depends on the
endpoints ofw; equivalently, if for each x 2 X the fundamental group�1.X; x/ acts trivially
on ŒA; .X; x/�0. If A D Sn, then we say n-simple instead of A-simple. We call X simple if
it is A-simple for each well-pointed A.
3. The action on ŒI=@I;X�0 D �1.X/ is given by conjugation. Hence this action is trivial
if and only if the fundamental group is abelian.
4. Let ŒA;X�0 carry a composition law induced by a comultiplication on A. Then w# is a
homomorphism. In particular �1.X/ acts by homomorphisms. (Thus, if the composition
law on ŒA;X�0 is an abelian group, then this action makes this group into a right module
over the integral group ring Z�1.X/.)
5. WriteS.1/ D I=@I and�1.X/ D ŒS.1/; X�0. Then we can identify ŒA;X�0��1.X;	/ Š
ŒA_ S.1/; X�0. The action of the previous problem is induced by a map � W A! A_ S.1/
which can be obtained as follows. Extend the homotopy I ! A _ S.1/, t 7! t 2 S.1/ to a
homotopy ' W A � I ! A _ S.1/ with the initial condition A � A _ S.1/ and set � D '1.
Express in terms of � and the comultiplication of S.1/ the fact that the induced map is a
group action (� is a coaction up to homotopy).
6. Let .X; e/ be a path connected monoid in h-TOP0. Then the �1.X; e/-action on ŒA;X�0

is trivial.

5.3 Replacing a Map by a Cofibration

We recall from Section 4.1 the construction of the mapping cylinder. Letf W X ! Y

be a map. We construct the mapping cylinder Z D Z.f / of f via the pushout

X CX fCid
��

h i0;i1 i
��

Y CX
hs;j i
��

Z.f / D X � I C Y=f .x/ � .x; 0/;

X � I a
�� Z.f /

s.y/ D y; j.x/ D .x; 1/:

Since h i0; i1 i is a closed cofibration, the maps hs; j i, s and j are closed cofibrations.
We also have the projection q W Z.f / ! Y , .x; t/ 7! f .x/, y 7! y. In the case
that f W X � Y , let p W Y ! Y=X be the quotient map. We also have the quotient
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map P W Z.f / ! C.f / D Z.f /=j.X/ onto the mapping cone C.f /. (Now we
consider the unpointed situation. The “direction” of the unit interval is different
from the one in the previous chapter.) We display the data in the next diagram. The
map r is induced by q.

X
f

��

D

��

Y
p

��

c.f /

��
��

��
��

��
��

��
�

s

��

Y=X
qj D f; qs D id

X
j

�� Z.f /
P ��

q

��

C.f /

r

��

Ps D c.f /; pq D rP

(5.3.1) Proposition. The following assertions hold:

(1) j and s are cofibrations.

(2) sq is homotopic to the identity relative to Y . Hence s is a deformation
retraction with h-inverse q.

(3) If f is a cofibration, then q is a homotopy equivalence under X and r the
induced homotopy equivalence.

(4) c.f / W Y ! C.f / is a cofibration.

Proof. (1) was already shown.
(2) The homotopy contracts the cylinder X � I to X � 0 and leaves Y fixed,

ht .x; c/ D .x; tc C 1 � t /, ht .y/ D y.
(3) is a consequence of (5.2.5).
(4) c.f / is induced from the cofibration i0 W X ! X � I=X � 1 via cobase

change along f . �

We have constructed a factorization f D qj into a (closed) cofibration and a
homotopy equivalence q. Factorizations of this type are unique in the following
sense. Suppose f D q0j 0 W X ! Z0 ! Y is another such factorization. Then
iq0 W Z0 ! Z satisfies iq0j 0 ' i . Since j 0 is a cofibration, we can change iq0 ' k
such that kj 0 D j . Since iq0 is an h-equivalence, the map k is an h-equivalence un-
der X , by (5.2.5). Also qk ' q0. This expresses a uniqueness of the factorization.
If f D qj W X ! Z ! Y is a factorization into a cofibration j and a homo-
topy equivalence q, then Z=j.X/ is called the (homotopical) cofibre of f . The
uniqueness of the factorization implies uniqueness up to homotopy equivalence of
the cofibre. If f W X � Y is already a cofibration, then Y ! Y=X is the projection
onto the cofibre; in this case q W Z ! Y is an h-equivalence under X .

The factorization of a map into a cofibration and a homotopy equivalence is a
useful technical tool. The proof of the next proposition is a good example.
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(5.3.2) Proposition. Let a pushout diagram

A
f

��

j
��

B

J
��

X
F �� Y

with a cofibration j be given. Then the diagram is a homotopy pushout.

Proof. Let qi W A! Z.j /! X be the factorization of j . Since q is a homotopy
equivalence under A, it induces a homotopy equivalence

q [A id W Z.f / [A B D Z.f; j /! X [A B D Y
of the adjunction spaces. �

(5.3.3) Proposition. Let a commutative diagram

A0 k0
��

l 0

��

C 0

L0

��

A

˛

����������
k ��

l

��

C

L

��

�

��

B
K ��

ˇ��











D

ı ��
��

��
��

��

B 0 K0
�� D0

be given. Suppose the inner and the outer square are homotopy cocartesian. If ˛,
ˇ, � are homotopy equivalences, then ı is a homotopy equivalence.

Proof. From the data of the diagram we obtain a commutative diagram

Z.k; l/
Z.ˇ;˛;�/

��

'

��

Z.k0; l 0/
'0

��

D
ı �� D0

where ' and '0 are the canonical maps. By hypothesis, ' and '0 are homotopy
equivalences. By (4.2.1) the map Z.ˇ; ˛; �/ is a homotopy equivalence. �

(5.3.4) Proposition. Given a commutative diagram as in the previous proposition.
Assume that the squares are pushout diagrams. Then ı is induced by ˛, ˇ, � .
Suppose that ˛, ˇ, � are homotopy equivalences and that one of the maps k, l and
one of the maps k0, l 0 is a cofibration. Then ı is a homotopy equivalence.

Proof. From (5.3.2) we see that the squares are homotopy cocartesian. Thus we
can apply (5.3.3). �
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Problems

1. A map f W X ! Y has a left homotopy inverse if and only if j W X ! Z.f / has a
retraction r W Z.f / ! X . The map f is a homotopy equivalence if and only if j is a
deformation retract.
2. In the case of a pointed map f W .X;	/! .Y;	/ one has analogous factorizations into a
cofibration and a homotopy equivalence. One replaces the mapping cylinder Z.f / with the
pointed mapping cylinder Z0.f / defined by the pushout

X _X f _id
��

h i0;i1 i
��

Y _X
h s;j i
��

XI �� Z0.f /

with the pointed cylinder XI D X � I=f	g � I . The maps h i0; i1 i, hs; j i, s and j are
pointed cofibrations. We have a diagram as for (5.3.1) with pointed homotopy equivalences
s; q and C 0.f / D Z0.f /=j.X/ the pointed mapping cone, the pointed cofibre of f .
3. h i0; i1 i W X _X ! XI is an embedding.
4. Let f W X ! Y and g W Y ! Z be pointed maps. We have canonical maps ˛ W C.f /!
C.gf / and ˇ W C.gf /! C.g/; ˛ is the identity on the cone and maps Y by g, and ˇ is the
identity on Z and maps the cone by f � id. Show that ˇ is the pointed homotopy cofibre
of ˛.

5.4 Characterization of Cofibrations

We look for conditions on A � X which imply that this inclusion is a cofibration.
We begin by reformulating the existence of a retraction (5.1.2).

(5.4.1) Proposition. There exists a retraction r W X � I ! A � I [ X � 0 if and
only if the following holds: There exists a map u W X ! Œ0;1Œ and a homotopy
' W X � I ! X such that:

(1) A � u�1.0/
(2) '.x; 0/ D x for x 2 X
(3) '.a; t/ D a for .a; t/ 2 A � I
(4) '.x; t/ 2 A for t > u.x/.

Proof. Suppose we are given a retraction r . We set '.x; t/ D pr1 ı r.x; t/ and
u.x/ D maxft � pr2 ı r.x; t/ j t 2 I g. For (4) note the following implications:
t > u.x/, pr2 r.x; t/ > 0, r.x; t/ 2 A � I , '.x; t/ 2 A. The other properties
are immediate from the definition. Conversely, given u and ', then r.x; t/ D
.'.x; t/;max.t � u.x/; 0// is a retraction. �

(5.4.2) Note. Let tn > u.x/ be a sequence which converges to u.x/. Then (4)
implies '.x; u.x// 2 xA. If u.x/ D 0, then x D '.x; 0/ D '.x; u.x// 2 xA. Thus
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xA D u�1.0/. Therefore in a closed cofibration A � X the subspace A has the
remarkable property of being the zero-set of a continuous real-valued function. Þ

(5.4.3) Lemma. Let u W X ! I and A D u�1.0/. Let ˆ W f ' g W X ! Z rel A.
Then there exists Q̂ W f ' g rel A such that Q̂ .x; t/ D Q̂ .x; u.x// D Q̂ .x; 1/ for
t � u.x/.
Proof. We define Q̂ by Q̂ .x; t/ D ˆ.x; 1/ for t � u.x/ and by ˆ.x; tu.x/�1/ for
t < u.x/. For the continuity of Q̂ on C D f.x; t/ j t � u.x/g see Problem 1. �

We call .X;A/ a neighbourhood deformation retract (NDR ), if there exist a
homotopy  W X � I ! X and a function v W X ! I such that:

(1) A D v�1.0/
(2)  .x; 0/ D x for x 2 X
(3)  .a; t/ D a for .a; t/ 2 A � I
(4)  .x; 1/ 2 A for 1 > v.x/.

The pair . ; v/ is said to be an NDR-presentation of .X;A/.

(5.4.4) Proposition. .X;A/ is a closed cofibration if and only if it is an NDR.

Proof. If A � X is a closed cofibration, then an NDR-presentation is obtained
from (5.4.1) and (5.4.2). For the converse, we modify an NDR-presentation . ; u/
by (5.4.3) and apply (5.4.1) to the result . Q ; u/. �

(5.4.5) Theorem (Union Theorem). Let A � X , B � X , and A \ B � X be
closed cofibrations. Then A [ B � X is a cofibration.

Proof ([112]). Let ' W .A[B/� I ! Z be a homotopy and f W X ! Z an initial
condition. There exist extensionsˆA W X�I ! Z of 'jA�I andˆB W B�I ! Z

of 'jB � I with initial condition f . The homotopies ˆA and ˆB coincide on
.A \ B/ � I . Therefore there exists ‰ W ˆA ' ˆB rel .A \ B/ � I [X � 0.

Let p W X � I ! X � I= � be the quotient map which identifies each interval
fcg � I , c 2 A \ B to a point. Let T W I � I ! I � I switch the factors. Then
‰ ı .id�T factors over p � id and yields � W .X � I= �/ � I ! Z.

Let u W X ! I and v W X ! I be functions such that A D u�1.0/ and B D
v�1.0/. Define j W X ! X � I= � by j.x/ D .x; u.x/=.u.x/ C v.x/// for
x … A \ B and by j.x/ D .x; 0/ D .x; t/ for x 2 A \ B . Using the compactness
of I one shows the continuity of j .

An extension of ' and f is now given by � ı .j � id/. �

(5.4.6) Theorem (Product Theorem). Let A � X and B � Y be closed cofibra-
tions. Then the inclusion X � B [ A � Y � X � Y is a cofibration.

Proof. A � X � X � Y , X � B � X � Y , and A � B D .A � Y / \ .X � B/ �
X � B � X � Y are cofibrations. Now apply (5.4.5). �
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Problems

1. Let C D f.x; t/ j t � u.x/g and q W X � I ! C , .x; t/ 7! .x; tu.x//. Then Q̂ q D ˆ.
It suffices to show that q is a quotient map. The map  W X � I ! X � I � I , .x; t/ 7!
.x; t; u.x// is an embedding onto a closed subspaceD. The mapm W I�I ! I , .a; b/ 7! ab

is proper, henceM D id�m is closed. The restriction ofM toD is closed, henceM D q
is closed and therefore a quotient map.
2. The inclusion 0 [ fn�1 j n 2 Ng � Œ0; 1� is not a cofibration. The inclusions Aj D
f0; j�1g � I are cofibrations. Hence (5.4.5) does not hold for an infinite number of cofibra-
tions.
3. Set X D fa; bg with open sets ;; fag; X for its topology. Then A D fag � X is a
non-closed cofibration. The product X � A [ A �X � X �X is not a cofibration.
4. Let Aj � X be closed cofibrations (1 � j � n). For all � � f1; : : : ; ng let A
 DT

j 2
 Aj � X be a cofibration. Then
Sn

1 Aj � X is a cofibration.
5. Let A and B be well-pointed spaces. Then A ^ B is well-pointed.

5.5 The Homotopy Lifting Property

A map p W E ! B has the homotopy lifting property (HLP) for the space X if the
following holds: For each homotopy h W X � I ! B and each map a W X ! E

such that pa.x/ D h.x; 0/ there exists a homotopyH W X � I ! E with pH D h
and H.x; 0/ D a.x/. We call H a lifting of h with initial condition a. The map
p is called a fibration (sometimes Hurewicz fibration) if it has the HLP for all
spaces. It is called a Serre fibration if it has the HLP for all cubes In, n 2 N0.
Serre fibrations suffice for the investigation of homotopy groups. In order to see
the duality we can use the dual definition of homotopy and specify the data in the
right diagram. It uses the evaluation e0E W EI ! E, w 7! w.0/:

X
a ��

iX
0

��

E

p

��

X � I
h

��

H

��	
	

	
	

	
B

E

p
��












B EI
e0

E

����������

pI

��




X
H

��

a

��

h

��BI

e0
B

����������

We begin by introducing the dual W.p/ of the mapping cylinder. It is defined
by the pullback

E

p

��

W.p/
b��

k

��

W.p/ D f.x; w/ 2 E � BI j p.x/ D w.0/g;

B BI
e0

B��
k.x;w/ D w; b.x;w/ D x:
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If we apply the pullback property to e0E , pI , we obtain a unique map r W EI !
W.p/, v 7! .v.0/; pv/ such that br D e0E and kr D pI . If we apply the HLP to
.W.p/; b; k/, we obtain a map s W W.p/ ! EI such that e0E s D b and pI s D k.
The relations brs D e0E s D b and krs D pI s D k imply rs D id, by uniqueness.
Therefore s is a section of r . Conversely, given data .a; h/ for a homotopy lifting
problem. They combine to a map � W X ! W.p/. The composition H D s� with
a section s is a solution of the lifting problem. Therefore we have shown:

(5.5.1) Proposition. The following statements about p W E ! B are equivalent:

(1) p is a fibration.

(2) p has the HLP for W.p/.

(3) r W EI ! W.p/ has a section. �

(5.5.2) Proposition. Let p W E ! B have the HLP for X . Let i W A � X be a
closed cofibration and an h-equivalence. Let f W X ! B be given and a W A! E

a lifting of f over A, i.e., pa D f i . Then there exists a lifting F of f which
extends a.

Proof. By (5.2.6) and (5.4.2) we know: There existsu W X ! I and' W X�I ! X

relA such thatA D u�1.0/, '1 D id.X/, '0.X/ � A. Set r W X ! A, x 7! '0.x/.
Define a new homotopyˆ W X � I ! X byˆ.x; t/ D '.x; tu.x/�1/ for t < u.x/
and ˆ.x; t/ D '.x; 1/ D x for t � u.x/. We have seen in (5.4.3) that ˆ is
continuous. Apply the HLP to h D f ˆ with initial condition b D ar W X ! E.
The verification

h.x; 0/ D f ˆ.x; 0/ D f '.x; 0/ D f r.x/ D par.x/ D pb.x/
shows that b is indeed an initial condition. Let H W X � I ! E solve the lifting
problem for h; b. Then one verifies that F W X ! E, x 7! H.x; u.x// has the
desired properties. �

(5.5.3) Corollary. Let p W E ! B have the HLP for X � I and let i W A � X be
a closed cofibration. Then each homotopy h W X � I ! B with initial condition
given on A � I [X � 0 has a liftingH W X � I ! E with this initial condition.

Proof. This is a consequence of (5.1.3) and (5.5.2). �

(5.5.4) Proposition. Let i W A � B be a (closed) cofibration of locally compact
spaces. The restriction from B to A yields a fibration p W ZB ! ZA.

Let p W X ! B be a fibration. Then pZ W XZ ! BZ is a fibration for locally
compact Z.

Proof. Use adjunction and the fact thatX�A! X�B is a cofibration for eachX .
�
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(5.5.5) Proposition. Let p W E ! B be a fibration. Then r W EI ! W.p/, v 7!
.v.0/; pv/ is a fibration.

Proof. A homotopy lifting problem for X and r is transformed via adjunction into
a lifting problem for p and X � I with initial condition given on the subspace
X � .I � 0 [ 0 � I /. �

(5.5.6) Proposition. Let p W E ! B be a fibration, B0 � B and E0 D p�1.B0/.
If B0 � B is a closed cofibration, then E0 � E is a closed cofibration.

Proof. Let u W B ! I and h W B � I ! B be an NDR-presentation of B0 � B .
Let H W X � I ! X solve the homotopy lifting problem for h.p � id/ with initial
condition id.X/. Define K W X ! X by K.x; t/ D H.x;min.t; up.x///. Then
.K; up/ is an NDR-presentation for X0 � X . �

The proof of the next formal proposition is again left to the reader.

(5.5.7) Proposition. Let a pullback in TOP be given.

Y
F ��

q
��

X

p
��

C
f

�� B

Ifq has the HLP forZ, then so also hasp. Ifp is afibration, thenq is afibration. �

We call q the fibration induced from the fibration p via base change along f .
In the case that f W C � B the restriction p W p�1.C / ! C can be taken as the
induced fibration.

(5.5.8) Example. XI ! X@I Š X �X W w 7! .w.0/; w.1// is a fibration (5.5.4).
The evaluation e1 W FY ! Y , w 7! w.1/ is a fibration (restriction to 	 � Y ).
Hence we have the induced fibration f 1 W F.f /! Y . Þ

The homotopy theorem for fibrations says, among other things, that homotopic
maps induce h-equivalent fibrations.

Letp W X ! B be a fibration and' W f ' g W C ! B a homotopy. We consider
two pullback diagrams.

Yf
F ��

pf

��

X

p
��

Yg
G ��

pg

��

X

p
��

C
f

�� B C
g

�� B

There exists a homotopy ˆt W Yf ! X such that ˆ0 D F and pˆt D 'tpf . The
pullback property of the right square yields a map � D �' W Yf ! Yg such that
G� D ˆ1 and pg� D pf . Let  t W f ' g be homotopic to 't by a homotopy
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� W C �I �I ! B relative toC �@I . We obtain in a similar manner a map � from
a lifting‰t of tpf . Claim: The maps �' and � are homotopic overC . In order to
verify this, we lift the homotopy �ı.pf �id� id/ W Yf �I�I ! B to a homotopy
with initial data .y; s; 0/ D ˆ.y; s/, .y; s; 1/ D ‰.y; s/, and .y; 0; t/ D F.t/
by an application of (5.1.5). The homotopy H W .y; t/ 7! .y; 1; t/ yields, by the
pullback property of the right square, a homotopy K W Yf � I ! Yg such that
GK D H and pgK D pr ıpf . By construction, K is a homotopy over C from �f
to �g . The reader should now verify the functoriality Œ�'� � D Œ� �Œ�' �.

Let h-FIBC be the full subcategory of h-TOPC with objects the fibrations overC .

(5.5.9) Proposition. Let p W X ! B be a fibration. We assign to f W C ! B the
induced fibration pf W Yf ! C and to the morphism Œ'� W f ! g in ….C;B/ the
morphism Œ�' �. This yields a functor….C;B/! h-FIBC . �

Since ….C;B/ is a groupoid, Œ�' � is always an isomorphism in h-TOPB . This
fact we call the homotopy theorem for fibrations.

As a special case of (5.5.9) we obtain the fibre transport. It generalizes the
fibre transport in coverings. Let p W E ! B be a fibration and w W I ! B a path
from b to c. We obtain a homotopy equivalence TpŒw� W Fb ! Fc which only
depends on the homotopy class Œw� of w, and TpŒu 	 v� D TpŒv�TpŒu�. This yields
a functor Tp W ….B/! h-TOP. In particular the fibres over points in the same path
component of B are h-equivalent.

(5.5.10) Proposition. In the pullback (5.5.7) let p be a fibration and f a homotopy
equivalence. Then F is a homotopy equivalence.

Proof. The proof is based on (5.5.9) and follows the pattern of (5.1.10). �

(5.5.11) Remark. The notion of fibration and cofibration are not homotopy invari-
ant. The projection I � 0 [ 0 � I ! I , .x; t/ 7! x is not a fibration, but the
map is over I h-equivalent to id. One definition of an h-fibration p W E ! B is
that homotopies X � I ! B which are constant on X � Œ0; "�; " > 0 can be lifted
with a given initial condition; a similar definition for homotopy extensions gives
the notion on an h-cofibration. In [46] you can find details about these notions.

Problems

1. A composition of fibrations is a fibration. A product of fibrations is a fibration. ; ! B

is a fibration.
2. Suppose p W E ! B has the HLP for Y � In. Then each homotopy h W Y � In � I ! B

has a lifting to E with initial condition given on Y � .In � 0 [ @In � I /.
3. Let p W E ! B � I be a fibration and p0 W E0 ! B its restriction to B � 0 D B . Then
there exists a fibrewise h-equivalence from p0� id.I / to p which is overB �0 the inclusion
E0 ! E.



5.6. Transport 119

4. Go through the proof of (5.5.9) and verify a relative version. Let .C;D/ be a closed
cofibration. Consider only mapsC ! B with a fixed restriction d W D ! B and homotopies
relative to D. Let pD W YD ! B be the pullback of p along d . Then the maps pf have the
form .pf ; pD/ W .Yf ; YD/! .C;D/. By (5.5.6), .Yf ; YD/ is a closed cofibration, and by
(5.5.3) the homotopiesˆt can be chosen constant on YD . The maps �' W Yf ! Yg are then
the identity on YD . The homotopy class of �' is unique as a map over C and under YD .
5. Let .B; C / be a closed deformation retract with retraction r W B ! C . Let p W X ! B be
a fibration andpC W XC ! C its restriction toC . Then there exists a retractionR W X ! XC

such that pCR D rp.

5.6 Transport

We construct a dual transport functor. Letp W E ! B be a fibration, ' W Y �I ! B

a homotopy and ˆ W Y � I ! E a lifting along p with initial condition f . We
define

'# W Œ.Y; '0/; .E; p/�B ! Œ.Y; '1/; .E; p/�B ; Œf � 7! Œˆ1�:

One shows that this map is well defined and depends only on the homotopy class
of ' relative to Y � @I (see the analogous situation for cofibrations). Moreover,
.' 	  /# D  #'#.

(5.6.1) Proposition. The assignments f 7! Œf; p�B and Œ'� 7! '# are a functor,
called transport functor, from….Y;B/ into the category of sets. Since….Y;B/ is
a groupoid, '# is always bijective. �

(5.6.2) Note. Let p W E ! B be a fibration and  W X � I ! Y be a homotopy.
Then �

1 D Œg t �# �
0 ; here �

0 W Œg; p�! Œg 0; p� is the compositionwith 0. �

(5.6.3) Theorem. Let f W X ! Y be an h-equivalence and p W E ! B be a
fibration. Then f � W Œv; p�B ! Œvf; p�B is bijective for each v W Y ! B .

Proof. The proof is based on (5.6.1) and (5.6.2) and formally similar to the proof
of (5.2.4). �

(5.6.4) Theorem. Let p W X ! B and q W Y ! B be fibrations. Let h W X ! Y

be an h-equivalence and a map over B . Then f is an h-equivalence over B .

Proof. The proof is based on (5.6.3) and formally similar to the proof of (5.2.5).
�

(5.6.5) Corollary. Let q W Y ! C be a fibration and a homotopy equivalence.
Then q is shrinkable.

Let p W E ! B be a fibration. Then the canonical map r W EI ! W.p/ is
shrinkable (see (5.5.5)). Þ
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5.7 Replacing a Map by a Fibration

Let f W X ! Y be a map. Consider the pullback

W.f / ��

.q;p/

��

Y I

.e0;e1/

��

W.f / D f.x; w/ 2 X � Y I j f .x/ D w.0/g;

X � Y
f �id

�� Y � Y
q.x;w/ D x; p.x;w/ D w.1/:

Since .e0; e1/ is a fibration (see (5.5.8)), the maps .q; p/, q and p are fibrations.
Let s W X ! W.f /, x 7! .x; kf .x//, with ky the constant path with value y. Then
qs D id and ps D f . (The “direction” of the unit interval is again different from
the one in the previous chapter.) We display the data and some other to be explained
below in a diagram.

F
j

�� X
f

��

s

��

Y

D
��

F.f /
J

��

r

��
f 1



���������
W.f /

p
��

q

��

Y

The map s is a shrinking of q; a homotopy ht W sq ' id is given by ht .x; w/ D
.x; wt /, wt .s/ D w..1 � t /s/. We therefore have a factorization f D ps into a
homotopy equivalence s and a fibration p. If f D p0s0 is another factorization of
this type, then there exists a fibrewise homotopy equivalence k W W.f /! W 0 such
that p0k D p and ks ' s0. This expresses the uniqueness of the factorization.

Now suppose f is a pointed map with base points 	. Then W.f / is given the
base point .	; k�/. The maps p; q; s become pointed maps, and the homotopy ht is
pointed too. One verifies that q and p are pointed fibrations. Let F.f / D p�1.	/
and F D f �1.	/ be the fibres over the base point, with j and J the inclusions.
The map q induces r . We call F.f / the homotopy fibre of f . We use the same
notion for the fibre of any replacement of f by a fibration as above. If f is already
a fibration, then q is a fibrewise homotopy equivalence (5.6.4) and r the induced
homotopy equivalence; hence the actual fibre is also the homotopy fibre.

A map f W X ! Y has a right homotopy inverse if and only if p W W.f /! X

has a section. It is a homotopy equivalence if and only if p is shrinkable.



Chapter 6

Homotopy Groups

The first fundamental theorem of algebraic topology is the Brouwer–Hopf degree
theorem. It says that the homotopy set ŒSn; Sn� has for n � 1 a homotopically
defined ring structure. The ring is isomorphic to Z, the identity map corresponds to
1 2 Z and the constant map to 0 2 Z. The integer associated to a mapf W Sn ! Sn

is called the degree of f . We have proved this already for n D 1. Also in the general
case “degree n” roughly means that f winds Sn n-times around itself. In order
to give precision to this statement, one has to count the number of pre-images of
a “regular” value with signs. This is related to a geometric interpretation of the
degree in terms of differential topology.

Our homotopical proof of the degree theorem is embedded into a more general
investigation of homotopy groups. It will be a simple formal consequence of the
so-called excision theorem of Blakers and Massey. The elegant elementary proof of
this theorem is due to Dieter Puppe. It uses only elementary concepts of homotopy
theory, it does not even use the group structure. (The excision isomorphism is the
basic property of the homology groups introduced later where it holds without any
restrictions on the dimensions.)

Another consequence of the excision theorem is the famous suspension theorem
of Freudenthal. There is a simple geometric construction (the suspension) which
leads from ŒSm; Sn� to ŒSmC1; SnC1�. Freudenthal’s theorem says that this process
after a while is “stable”, i.e., induces a bijection of homotopy sets. This is the
origin of the so-called stable homotopy theory – a theory which has developed into
a highly technical mathematical field of independent interest and where homotopy
theory has better formal and algebraic properties. (Homology theory belongs to
stable homotopy.)

The degree theorem contains the weaker statement that the identity of Sn is not
null homotopic. It has the following interpretation: If you extend the inclusion
Sn�1 � Rn to a continuous map f W Dn ! Rn, then there exists a point x with
f .x/ D 0. For n D 1 this is the intermediate value theorem of calculus; the higher
dimensional analogue has other interesting consequences which we discuss under
the heading of the Brouwer fixed point theorem.

This chapter contains the fundamental non-formal results of homotopy theory.
Based on these results, one can develop algebraic topology from the view-point
of homotopy theory. The chapter is essentially independent of the three previous
chapters. But in the last section we refer to the definition of a cofibration and a
suspension.
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6.1 The Exact Sequence of Homotopy Groups

Let I n be the Cartesian product of n copies of the unit interval I D Œ0; 1�, and
@I n D f.t1; : : : ; tn/ 2 I n j ti 2 f0; 1g for at least one ig its combinatorial
boundary (n � 1). We set I 0 D fzg, a singleton, and @I 0 D ;. In I n=@I n we
use @I n as base point. (For n D 0 this yields I 0=@I 0 D fzg C f	g, an additional
disjoint base point 	.) The n-th homotopy group of a pointed space .X;	/ is

�n.X;	/ D Œ.I n; @I n/; .X; f	g/� Š ŒI n=@I n; X�0

with the group structure defined below. For n D 1 it is the fundamental group.
The definition of the set �n.X;	/ also makes sense for n D 0, and it can be
identified with the set �0.X/ of path components ofX with Œ	� as a base point. The
composition law on �n.X;	/ for n � 1 is defined as follows. Suppose Œf � and Œg�
in �n.X;	/ are given. Then Œf �C Œg� is represented by f Ci g:

.1/ .f Ci g/.t1; : : : ; tn/ D
(
f .t1; : : : ; ti�1; 2ti ; : : : ; tn/ for ti � 1

2
;

g.t1; : : : ; ti�1; 2ti � 1; : : : ; tn/ for 1
2
� ti :

As in the case of the fundamental group one shows that this composition law is a
group structure. The next result is a consequence of (4.3.1); a direct verification
along the same lines is easy. See also (2.7.3) and the isomorphism (2) below.

(6.1.1) Proposition. For n � 2 the group �n.X;	/ is abelian, and the equality
C1 D Ci holds for i � 2. �

We now define relative homotopy groups (sets) �k.X;A;	/ for a pointed pair
.X;A/. For n � 1, let J n D @I n � I [ I n � f0g � @I nC1 � I n � I and
set J 0 D f0g � I . We denote by �nC1.X;A;	/ the set of homotopy classes
of maps of triples f W .I nC1; @I nC1; J n/ ! .X;A;	/. (Recall that this means
f .@I nC1/ � A; f .J n/ � f	g, and for homotopies H we require Ht for each
t 2 I to be a map of triples.) Thus, with notation introduced earlier,

�nC1.X;A;	/ D Œ.I nC1; @I nC1; J n/; .X;A;	/�:
A group structure Ci , 1 � i � n is defined again by the formula (1) above. There
is no group structure in the case n D 0.

We now consider �n as a functor. Composition with f W .X;A;	/! .Y; B;	/
induces f� W �n.X;A;	/! �n.Y; B;	/; this is a homomorphism for n � 2. Sim-
ilarly, f W .X;	/ ! .Y;	/ induces for n � 1 a homomorphism f� W �n.X;	/ !
�n.Y;	/. The functor properties .gf /� D g�f� and id� D id are clear. The
morphism j� W �n.X;	/! �n.X;A;	/ is obtained by interpreting the first group
as �n.X; f	g;	/ and then using the map induced by the inclusion .X; f	g;	/ �
.X;A;	/. Maps which are pointed homotopic induce the same homomorphisms.
The group �n.X;A;	/ is commutative for n � 3.
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Let h W .I nC1; @I nC1; J n/! .X;A;	/ be given. We restrict to I n D I n � f1g
and obtain a map @h W .I n; @I n/! .A;	/. Passage to homotopy classes then yields
the boundary operator @ W �nC1.X;A;	/ ! �n.A;	/. The boundary operator is
a homomorphism for n � 1. For n D 0 we have @Œh� D Œh.1/�.

We rewrite the homotopy groups in terms of mapping spaces. This is not strictly
necessary for the following investigations but sometimes technically convenient.

Let�k.X;	/ be the space of maps I k ! X which send @I k to the base point;
the constant map is the base point. The space�1.X/ D �.X/ is the loop space ofX .
Given a map .I n; @I n/! .X;	/ we have the induced map xf W I n�k ! �k.X;	/
which sends u 2 I n�k to I k ! X , .t1; : : : ; tk/ 7! f .t1; : : : ; tk; u1; : : : ; un�k/.
This adjunction is compatible with homotopies and induces a bijection

.2/ �n.X;	/ Š �n�k.�k.X;	/;	/:
Adjunction as above also yields a bijection

.3/ �nC1.X;A;	/ Š �nC1�k.�k.X/;�.A/k;	/:
These isomorphisms are natural in .X;A;	/, compatible with the boundary opera-
tors, and the group structures.

(6.1.2) Theorem (Exact homotopy sequence). The sequence

� � � ��! �n.A;	/ i���! �n.X;	/ j����! �n.X;A;	/
@��! � � � ��! �1.X;A;	/ @��! �0.A;	/ i���! �0.X;	/

is exact. The maps i� and j� are induced by the inclusions.

Proof. We prove the exactness for the portion involving �0 and �1 in an elementary
manner. Exactness at �0.A;	/ and the relations @j� D 0 and j�i� D 0 are left to
the reader.

Letw W I ! X represent an element in�1.X;A;	/with @Œw� D 0. This means:
There exists a path u W I ! A with u.0/ D w.1/ and u.1/ D 	. The productw 	u
is then a loop in X . The homotopy H which is defined by

...

...

...

...

...

...

..

�
�
�
�
�
�

w

w 	 u

u�	 Ht

Ht .s/ D
(
w.2s=.1C t //; 2s � 1C t;
u.t C 2.1 � s//; 2s � 1C t;

shows j�Œw 	 u� D Œw�. Thus we have shown exactness at �1.X;A;	/.
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Given a loop w W I ! X . Let H W .I; @I; 0/ � I ! .X;A;	/ be a homotopy
from w to a constant path. Then u W s 7! H.1; s/ is a loop in A. We restrict
H to the boundary of the square and compose it with a linear homotopy to prove
k� 	 w ' k� 	 u.

...

...

...

...

...

...

..

....................

w

uH	

	

k� 	 w ' k� 	 u;
u.t/ D H.1; t/:

Hence i�Œu� D i�Œk� 	 u� D Œk� 	 w� D Œw�.
We now apply this part of the exact sequence to the pairs .�n.X/;�n.A// and

obtain the other pieces of the sequence via adjunction. �

(6.1.3) Remark. We previously introduced the mapping space

F.�/ D f.a; w/ 2 A �XI j w.0/ D 	; w.1/ D ag;
with base point .	; k/, k W I ! f	g the constant path. This space is homeomorphic
to

F.X;A/ D fw 2 XI j w.0/ D 	; w.1/ 2 Ag;
i.�/ becomes the inclusion�.X/ � F.X;A/, and �1 the evaluation F.X;A/! A,
w 7! w.1/. For n � 1 we assign to f W .I nC1; @I nC1; J n/ ! .X;A;	/ the
adjoint map f ^ W I n ! F.X;A/, defined by f ^.t1; : : : ; tn/.t/ D f .t1; : : : ; tn; t /.
It sends @I n to the base point and induces a pointed map xf W I n=@I n ! F.X;A/.
By standard properties of adjunction we see that the assignment Œf � 7! Œ xf � is a
well-defined bijection

.4/ �nC1.X;A;	/ Š �n.F.X;A/;	/;
and in fact a homomorphism with respect to the composition lawsCi for 1 � i � n.
These considerations also make sense for n D 0. In the case that A D f	g, the
space F.X;A/ is the loop space �.X/.

The exact sequence is also obtained from the fibre sequence of �. Under the
identifications (4) the boundary operator is transformed into

�1� W ŒI n=@I n; F .X;A/�0 ! ŒI n=@I n; A�0;

and �nC1.X;	/! �nC1.X;A;	/ is transformed into

i.�/� W ŒI n=@I n; �.X/�0 ! ŒI n=@I n; F .X;A;	/�0:
Now apply B D I n=@I n to the fibre sequence (4.7.4) of � W A � X to see the
exactness of a typical portion of the homotopy sequence. Þ
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The sequence (6.1.2) is compatible with maps f W .X;A;	/ ! .Y; B;	/. In
particular f�@ D @f�.

(6.1.4) Remark. In the sequel it will be useful to have different interpretations for
elements in homotopy groups. (See also the discussion in Section 2.3.) We set
S.n/ D I n=@I n and D.n C 1/ D CS.n/, the pointed cone on S.n/. We have
homeomorphisms

S.n/! @I nC1=J n; D.nC 1/! I nC1=J n;

the first one x 7! .x; 1/, the second one the identity on representatives in I n � I ;
moreover we have the embeddingS.n/! D.nC1/, x 7! .x; 1/which we consider
as an inclusion. These homeomorphisms allow us to write

�n.X;	/ Š ŒI n=@I n; X�0 D ŒS.n/; X�0;
�nC1.X;A;	/Š Œ.I nC1=J n; @I nC1=J n/; .X;A/�0Š Œ.D.nC1/; S.n//; .X;A/�0;
and @ W �nC1.X;A;	/ ! �n.A;	/ is induced by the restriction from D.n C 1/
to S.n/.

The pointed cone on Sn is DnC1: We have a homeomorphism

Sn � I=.Sn � 0 [ enC1 � I /! DnC1; .x; t/ 7! .1 � t /enC1 C tx:
Therefore we can also represent elements in �nC1.X;A;	/ by pointed maps
.DnC1; Sn/ ! .X;A/ and elements in �n.X;	/ by pointed maps Sn ! X .
In comparing these different models for the homotopy groups it is important to
remember the homeomorphism between the standard objects (disks and spheres),
since there are two homotopy classes of homeomorphisms. Þ

Problems

1. �n.A;A; a/ D 0. Given f W .In; @In; J n�1/ ! .A;A; a/. Then a null homotopy is
ft .x1; : : : ; xn/ D f .x1; x2; : : : ; .1 � t /xn/.
2. Let 	 2 X0 � X1 � X2 � � � � be a sequence of T1-spaces (i.e., points are closed).
Give X D S

n�1Xn the colimit topology. Then a compact subset K � X is contained
in some Xn. Use this to show that the canonical maps �n.Xi ;	/ ! �n.X;	/ induce an
isomorphism colimi �n.Xi ;	/ Š �n.X;	/.
3. Let .X;A;B; b/ be a pointed triple. Define the boundary operator @ W �n.X;A; b/ !
�n�1.A; b/ ! �n�1.A;B; b/ as the composition of the previously defined operator with
the map induced by the inclusion. Show that the sequence

� � � ! �n.A;B; b/! �n.X;B; b/! �n.X;A; b/
@�! �n�1.A;B; b/! � � �

is exact. The sequence ends with �1.X;A; b/.
4. The group structure in �nC1.X;A;	/ is induced by an h-cogroup structure on
.D.nC 1/; S.n// in the category of pointed pairs.
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5. Let f W .X; x/ ! .Y; y/ be a pointed map. One can embed the induced morphism
f� W �n.X; x/ ! �n.Y; y/ into an exact sequence which generalizes the case of an inclu-
sion f . LetZ.f / be the pointed mapping cylinder of f and f D pi W X ! Z.f /! Y the
standard factorization into an inclusion and a homotopy equivalence, as explained in (5.3.1).
We can now insert the isomorphism p� W �n.Z.f /;	/! �n.Y;	/ into the exact sequence
of the pair and obtain an exact sequence

� � � ! �n.X;	/ f��! �n.Y;	/! �n.Z.f /;X/;	/! � � � :
One can define the groups �n.Z.f /;X;	/ without using the mapping cylinder. Consider
commutative diagrams with pointed maps ' and ˆ.

@In=J n�1
'

��

\j
��

X

f

��

In=J n�1 ˆ �� Y

We consider .';ˆ/ W j ! f as a morphism in the category of pointed arrows. Let
�n.f / denote the set of homotopy classes of such morphisms. For f W X � Y we ob-
tain the previously defined �n.Y;X;	/. The projection p W i ! f induces an isomorphism
�n.Z.f /;X;	/ D �n.i/! �n.f /. One can also use the fibre sequence of f .

6.2 The Role of the Base Point

We have to discuss the role of the base point. This uses the transport along paths.
Let a path v W I ! X and f W .I n; @I n/ ! .X; v.0// be given. We consider v
as a homotopy Ov of the constant map @I n ! fv.0/g. We extend the homotopy vt
to a homotopy Vt W I n ! X with initial condition f D V0. An extension exists
because @I n � I n is a cofibration. The next proposition is a special case of (5.2.1)
and problems in that section. In order to be independent of that section, we also
repeat a proof in the present context.

(6.2.1) Proposition. The assignment ŒV0� 7! ŒV1� is a well-defined map

v# W �n.X; v.0//! �n.X; v.1//

which only depends on the morphism Œv� in the fundamental groupoid ….X/. The
relation .v	w/# D w#ıv# holds, and thus we obtain a transport functor from….X/
which assigns to x0 2 X the group �n.X; x0/ and to a path v the morphism v#.
The map v# is a homomorphism. �

Proof. Let ' W f ' g be a homotopy of maps .I n; @I n/! .X; x0/ and  W v ' w
a homotopy of paths from x0 to x1. Let Vt W I n ! X be a homotopy which extends
.f; Ov/ and Wt a homotopy which extends .g; Ow/. These data combine to a map on
T D I n � 0 � I [ @In � I � I [ In � I@I � I nC2 as follows: On I n � 0 � I
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we use ', on @I n � I � I we use O , on I n � I � 0 we use V , and on I n � I � 1
we use W . If we interchange the last two coordinates then T is transformed into
J nC1. Therefore our map has an extension to I nC2, and its restriction to I n�1�I
is a homotopy from V1 to W1. This shows the independence of the representatives
f and v. The other properties are clear from the construction. �

There is a similar transport functor in the relative case. We start with a function
f W .I n; @I n; J n�1/! .X;A; a0/ and a pathv W I ! A froma0 toa1. We consider
the path as a homotopy of the constant map J n�1 ! fa0g. Then we extend this
homotopy to a homotopy Vt W .I n; @I n/ ! .X;A/. An extension exists because
J n�1 � @I n and @I n � I n are cofibrations.

(6.2.2) Proposition. The assignment ŒV0� 7! ŒV1� is a well-defined map

v# W �n.X;A; a0/! �n.X;A; a1/

which only depends on the morphism Œv� in the fundamental groupoid ….A/. For
n � 2 the map v# is a homomorphism. As above we have a transport functor
from….A/. �

Since v# is always bijective, homotopy groups associated to base points in the
same path component are isomorphic.

We list some naturality properties of the transport functors. As a special case of
the functor property we obtain right actions of the fundamental groups:

�n.X; x/ � �1.X; x/! �n.X; x/; .˛; ˇ/ 7! ˛ � ˇ D ˇ#.˛/;

�n.X;A; a/ � �1.A; a/! �n.X;A; a/; .˛; ˇ/ 7! ˛ � ˇ D ˇ#.˛/:

We also have an action of �1.A; a/ on �n.X; a/ via the natural homomorphism;
more generally, we can make the �n.X; a/ into a functor on ….A/ by viewing a
path in A as a path in X . From the constructions we see:

(6.2.3) Proposition. The morphisms in the exact homotopy sequence of the pair
.X;A/ are natural transformations of transport functors on ….A/. In particular,
they are �1.A;	/-equivariant with respect to the actions above. �

Continuous maps f W .X;A/! .Y; B/ are compatible with the transport func-
tors

f�.w#.˛// D .f w/#.f�.˛//:
Let ft W .X;A/! .Y; B/ be a homotopy and setw W t 7! f .a; t/. Then the diagram

�n.Y; B; f0a/

w#

��

�n.X;A; a/

f0� ��������

f1�
������

��

�n.Y; B; f1a/

is commutative. As in the proof of (2.5.5) one uses this fact to show:



128 Chapter 6. Homotopy Groups

(6.2.4) Proposition. Let f W .X;A/ ! .Y; B/ be an h-equivalence. Then the
induced map f� W �n.X;A; a/! �n.Y; B; fa/ is bijective. �

Suppose that f that induces isomorphisms �j .A/ ! �j .B/ and �j .X/ !
�j .Y / for j 2 fn; n C 1g, n � 1. Then the Five Lemma (11.1.4) implies that
f� W �nC1.X;A;	/! �nC1.Y; B;	/ is an isomorphism. With some care, this also
holds for n D 0, see Problem 3.

Let f W .X;A/ ! .Y; B/ be a map of pairs such that the individual maps
X ! Y and A! B induce for each base point in A isomorphism for all �n, then
f� W �n.X;A; a/ ! �n.Y; B; f .a// is bijective for each n � 1 and each a 2 A.
For the case n D 1 see Problem 3.

The transport functors have special properties in low dimensions.

(6.2.5)Proposition. Letv W I ! X begiven. Thenv# W �1.X; v.0//!�1.X; v.1//

is the map Œw� 7! Œv��Œw�Œv�. In particular, the right action of �1.X; x/ on itself is
given by conjugation ˛ � ˇ D ˇ�1˛ˇ. �
(6.2.6) Proposition. Let x1; x2 2 �2.X;A;	/ be given. Let z D @x2 2 �1.A;	/.
Then x1 � z D .x2/�1x1x2 (multiplicative notation for �2).

Proof. We first prove the claim in a universal situation and then transport it by
naturality to the general case. Set D D D.2/; S D S.1/.

Let �1; �2 2 �2.D _D;S _ S/ be the elements represented by the inclusions
of the summands .D; S/! .D _D;S _ S/. Set � D @.�2/ 2 �1.S _ S/. From
(6.2.3) and (6.2.5) we compute

@.�1 � �/ D .@�1/ � � D ��1.@�1/� D .@�2/�1.@�1/.@�2/ D @.��12 �1�2/:
Since D _D is contractible, @ is an isomorphism, hence �1 � �2 D ��12 �1�2.

Let now h W .D _D;S _ S/ ! .X;A/ be a map such that hik represents xk ,
i.e., h�.�k/ D xk . The computation

x1 � z D .h��1/ � .@h��2/ D h�.�1 � �/ D h�.��12 �1�2/ D x�1
2 x1x2

proves the assertion in the general case. �

(6.2.7) Corollary. The image of the natural map �2.X;	/! �2.X;A;	/ is con-
tained in the center. �

The actions of the fundamental group also explain the difference between
pointed and free (D unpointed) homotopy classes.

(6.2.8) Proposition. Let ŒS.n/; X�0=.�/ denote the orbit set of the�1.X;	/-action
on ŒS.n/; X�0. The map ŒS.n/; X�0 ! ŒS.n/; X� which forgets the base point
induces an injective map v W ŒS.n/; X�0=.�/! ŒS.n/; X�. For path connected X
the map v is bijective. The forgetful map

�n.X;A;	/ D Œ.D.n/; S.n � 1//; .X;A/�0 ! Œ.D.n/; S.n � 1//; .X;A/�



6.3. Serre Fibrations 129

induces an injective map of the orbits of the �1.A;	/-action; this map is bijective
if A is path connected .n � 2/. �

Problems

1. LetA be path connected. Each element of �1.X;A; a/ is represented by a loop in .X; a/.
The map j� W �1.X; a/! �1.X;A; a/ induces a bijection of �1.X;A; a/ with the right (or
left) cosets of �1.X; a/ modulo the image of i� W �1.A; a/! �1.X; a/.
2. Let x 2 �1.X;A; a/ be represented by v W I ! X with v.1/ 2 A and v.0/ D a. Let
w W I ! X be a loop in .X; a/. The assignment .Œw�; Œv�/ 7! Œw 	 v� D Œw� � Œv� defines
a left action of the group �1.X; a/ on the set �1.X;A; a/. The orbits of this action are the
pre-images of elements under @ W �1.X;A; a/ ! �0.A; a/. Let .F; f / W .X;A/ ! .Y; B/

be a map of pairs. Then F� W �1.X;A; a/ ! �1.Y; B; f .a// is equivariant with respect
to the homomorphism F� W �1.X; a/ ! �1.Y; f .a//. Let Œv� 2 �1.X;A; a/ with v.1/ D
u 2 A. The isotropy group of Œv� is the image of �1.A; u/ in �1.X; a/ with respect to
Œw� 7! Œv 	 w 	 v��. Find an example ˛0; ˛1 2 �1.X;A; a/ such that ˛0 has trivial and
˛1 non-trivial isotropy group. It is in general impossible to define a group structure on
�1.X;A; a/ such that �1.X; a/! �1.X;A; a/ becomes a homomorphism.
3. Although there is only a restricted algebraic structure at the beginning of the exact sequence
we still have a Five Lemma type result. Let f W .X;A/ ! .Y; B/ be a map of pairs. If
f� W �0.A/ ! �0.B/ and f� W �1.X; a/ ! �1.Y; f .a// are surjective and f� W �0.X/ !
�0.Y / is injective, then f� W �1.X;A; a/! �1.Y; B; f .a// is surjective. Suppose that for
each c 2 A the maps f� W �1.X; c/! �1.Y; f .c// and f� W �0.A/! �0.B/ are injective
and f� W �1.A; c/! �1.B; f .c// is surjective, then f� W �1.X;A; a/! �1.Y; B; f .a// is
injective for each a 2 A.
4. Let .X;A/ be a pair such that X is contractible. Then @ W �qC1.X;A; a/! �q.A; a/ is
for each q � 0 and each a 2 A a bijection.
5. Let A � X be an h-equivalence. Then �n.X;A; a/ D 0 for n � 1 and a 2 A.
6. Let X carry the structure of an h-monoid. Then �1.X/ is abelian and the action of the
fundamental group on �n.X;	/ is trivial.
7. Give a proof of (6.2.8).
8. The �1.X;	/-action on �n.X;	/ is induced by a map �n W S.n/! S.n/ _ S.1/ by an
application of the functor Œ�; X�0. If we use the model Dn=Sn�1 for the n-sphere, then an
explicit map �n is x 7! .2x;	/ for 2kxk � 1 and x 7! .	; 2kxk � 1/ for 2kxk � 1.

6.3 Serre Fibrations

The notion of a Serre fibration is adapted to the investigation of homotopy groups,
only the homotopy lifting property for cubes is used.

(6.3.1) Theorem. Let p W E ! B be a Serre fibration. For B0 � B set E0 D
p�1B0. Choose base points 	 2 B0 and 	 2 E0 with p.	/ D 	. Then p induces
for n � 1 a bijection p� W �n.E;E0;	/! �n.B;B0;	/.
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Proof. p� surjective. Let x 2 �n.B;B0;	/ be represented by

h W .I n; @I n; J n�1/! .B;B0;	/:
By (3.2.4), there exists a lifting H W I n ! E with H.J n�1/ D f	g and pH D h.
We then haveH.@I n/ � E0, and thereforeH represents a pre-image of x underp�.

p� injective. Let x0; x1 2 �n.E;E0;	/ be represented by f0; f1 and have
the same image under p�. Then there exists a homotopy �t W .I n; @I n; J n�1/ !
.B;B0;	/ such that �0.u/ D pf0.u/, �1.u/ D pf1.u/ for u 2 I n. Consider the
subspace T D I n � @I [ J n�1 � I and define G W T ! E by

G.u; t/ D
(
ft .u/; u 2 I n; t 2 f0; 1g;
	; u 2 J n�1; t 2 I:

The set T � @.I n � I / is transformed into J n, if one interchanges the last two
coordinates. By (3.2.4) again, there exists a map H W I n � I ! E such that
H jT D G and pH D �. We can view H as a homotopy from f0 to f1. �

We use the isomorphism �n.E; F;	/ Š �n.B;	/, F D p�1.	/ in the exact
sequence of the pair .E; F;	/ and obtain as a corollary to (6.3.1) the exact sequence
of a Serre fibration:

(6.3.2)Theorem. ForaSerrefibrationp W E ! B with inclusion i W F D p�1.b/�
E and x 2 F the sequence

� � � ! �n.F; x/
i� �� �n.E; x/

p� �� �n.B; b/
@ �� �n�1.F; x/! � � �

is exact. The sequence ends with �0.E; x/! �0.B; b/. �

The new map @ has the following description: Let f W .I n; @I n/ ! .B; b/ be
given. View f as I n�1 � I ! B . Lift to � W I n ! E, constant on J n�1. Then
@Œf � is represented by �jI n�1 � 1. The very end of the sequence requires a little
extra argument. For additional algebraic structure at the beginning of the sequence
see the discussion of the special case in (3.2.7).

(6.3.3) Theorem. Let p W E ! B be a continuous map and U a set of subsets such
that the interiors cover B . Assume that for U 2 U the map pU W p�1.U / ! U

induced by p is a Serre fibration. Then p is a Serre fibration.

Proof. A subdivision of width ı D 1=N , N 2 N of In consists of the cubes
I.a1; : : : ; an/ D Qn

jD1 I.aj / where I.k/ D Œk=N; .k C 1/=N � for 0 � k < N ,
k 2 Z. A k-dimensional face of I.a1; : : : ; an/ is obtained by replacing n�k of the
intervals I.aj / by one of its boundary points. (The aj are integers, 0 � aj < n.)

It suffices to work with an open covering U. Choose N such that each cube
I.a1; : : : ; an/ � I.b/ is mapped under h into some U 2 U. This is possible by
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the Lebesgue lemma (2.6.4). Let V k � I n denote the union of the k-dimensional
faces of the subdivision of I n.

We have to solve a lifting problem for the space I n with initial condition a. We
begin by extending a over I n� Œ0; ı� to a lifting of h. We solve the lifting problems

I n � 0 [ V k�1 � Œ0; ı� H.k�1/
��

\
��

E

p

��

I n � 0 [ V k � Œ0; ı�
h

��

H.k/

�����������
B

for k D 0; : : : ; n with V �1 D ; and H.�1/ D a by induction over k. Let W be
a k-dimensional cube and @W the union of its .k � 1/-dimensional faces. We can
solve the lifting problems

W � 0 [ @W � Œ0; ı� H.k�1/
��

\
��

p�1U
pU

��

W � Œ0; ı�
h

��

HW

����������
U

by a map HW , since pU is a Serre fibration; here U 2 U was chosen such that
h.W � Œ0; ı�/ � U .

The HW combine to a continuous map H.k/ W V k � Œ0; ı� ! E which lifts h
and extends H.k � 1/. We define H on the first layer I n � Œ0; ı� as H.n/. We
now treat I n � Œı; 2ı� similarly with initial condition given by H.n/jI n � fıg and
continue in this manner inductively. �

(6.3.4) Example. Since a product projection is a fibration we obtain from (6.3.3):
A locally trivial map is a Serre fibration. Þ

(6.3.5) Example. Let p W E ! B be a covering with typical fibre F . Since each
map I n ! F is constant, �n.F;	/ is for n � 1 the trivial group. The exact
sequence of p then shows p� W �n.E/ Š �n.B/ for n � 2. The covering R! S1

then yields �n.S1/ Š 0 for n � 2. Moreover we have the exact sequence

1! �1.E;	/ p��! �1.B;	/ @�! �0.F;	/ i��! �0.E;	/ p��! �0.B;	/! 1

with the inclusion i W F D p�1.	/ � E and �0.F;	/ D F . It yields for
p W R ! S1 the bijection @ W �1.S1/ Š Z. A lifting of the loop sn W I ! S1,
t 7! exp.2�int/ with initial condition 0 is t 7! nt . Hence @Œsn� D n. Thus we
have another method for the computation of �1.S1/. Þ
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(6.3.6) Example. Recall the Hopf fibration p W S2nC1 ! CP n (14.1.9). The exact
sequence (6.3.2) and �i .S1/ D 0 for i > 1 yield the isomorphisms

p� W �i .S2nC1/ Š �i .CP n/; for i � 3I
and in particular �i .S3/ Š �i .S

2/ for i � 3, since CP 1 is homeomorphic to S2

(the Riemann sphere). Þ
(6.3.7) Example. From linear algebra one knows a surjective homomorphism
SU.2/! SO.3/ with kernel f˙Eg Š Z=2. The space SU.2/ is homeomorphic to
S3. Hence SO.3/ is homeomorphic to RP 3 and �1.SO.3// Š Z=2.

(6.3.8) Proposition. Let p W .E1; E0/ ! B be a relative Serre fibration, i.e.,
p W E1 ! B is a Serre fibration and the restriction of p to E0 is also a Serre
fibration. Let .F b1 ; F

b
0 / be the pair of fibres over p.e/ D b 2 B . Then:

(1) The inclusion induces bijections �n.F b1 ; F
b
0 ; e/ Š �n.E1; E0; e/.

(2) �0.E0/! �0.E1/ is surjective if and only if�0.F b0 /! �0.F
b
1 / is surjective

for each b 2 B .

Proof. (1) We first prove the claim for n D 1 and begin with the surjectivity.
Let f W .I; @I; 0/ ! .E1; E0; e/ be given. The path .pf /� W I ! B is lifted to
g W I ! E0 with initial point f .1/. Then g.1/ 2 F0, and f and f 	g represent the
same element in �1.E1; E0; e/. The projection p.f 	 g/ is a null homotopic loop
with base point b. We lift a null homotopy toE1 with initial condition f 	g on I �0
and constant on @I � I . The lifting is a homotopy .I; @I; 0/ � I ! .E1; E0; e/

from f 	 g to a map into .F1; F0; e/. This proves the surjectivity.
Suppose f0; f1 W .I; @I; 0/! .F1; F0; e/ are given, and letK W .I; @I; 0/�I !

.E1; E0; e/be a homotopy fromf0 tof1. We liftpK� toL W I�I ! E0with initial
conditionL.s; 0/ D K.s; 1/ andL.0; t/ D L.1; t/ D e. The homotopy p.K 	2L/
is a homotopy of loops which is relative to @I 2 homotopic to the constant map.
We lift a homotopy to E1 with initial condition K 	2 L on I 2 � 0 and constant on
@I 2�I . The end is a homotopy from f0 	ke to f1 	ke . This proves the injectivity.

The higher dimensional case is obtained by an application to the relative Serre
fibration .�nF1; �nF0/! .�nE1; �

nE0/! B .
(2) Suppose �0.E0/ ! �0.E1/ is surjective. The argument above for the

surjectivity is used to show the surjectivity of �0.F b0 / ! �0.F
b
1 /. The other

implication is easy. �

Problems

1. The 2-fold covering Sn ! RP n yields for n � 2 the isomorphism �1.RP n/ Š Z=2.
2. Prove directly the exactness of the sequence (6.3.2) without using (6.1.2).
3. The map C! C, z 7! z2 has the HLP for I0 but not for I1.
4. Let p W .E; e/! .B; b/ be a Serre fibration with fibre F D p�1.b/. Then

�n.p/ W �n.E; e/! �n.B; b/
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is a Serre fibration with fibre �n.F; e/.

6.4 The Excision Theorem

A basic result about homotopy groups is the excision theorem of Blakers and
Massey [22].

(6.4.1) Theorem (Blakers–Massey). Let Y be the union of open subspaces Y1 and
Y2 with non-empty intersection Y0 D Y1 \ Y2. Suppose that

�i .Y1; Y0;	/ D 0 for 0 < i < p; p � 1
�i .Y2; Y0;	/ D 0 for 0 < i < q; q � 1

for each base point 	 2 Y0. Then the excision map, induced by the inclusion,

� W �n.Y2; Y0;	/! �n.Y; Y1;	/
is surjective for 1 � n � pC q � 2 and bijective for 1 � n < pC q � 2 ( for each
choice of the base point 	 2 Y0/. In the case that p D 1, there is no condition on
�i .Y1; Y0;	).

We defer the proof of this theorem for a while and begin with some applications
and examples. We state a special case which has a somewhat simpler proof and
already interesting applications. It is also a special case of (6.7.9).

(6.4.2) Proposition. Let Y be the union of open subspaces Y1 and Y2 with non-
empty intersection Y0. Suppose .Y2; Y0/ D 0 is q-connected. Then .Y; Y1/ is
q-connected. �

We apply the excision theorem (6.4.1) to the homotopy group of spheres. We
use the following subspaces of Sn, n � 0,

Dn˙ D f.x1; : : : ; xnC1/ 2 Sn j ˙xnC1 � 0g � Hn˙ D fx 2 Sn j x 6D �enC1g:
We use Rn � RnC1, .z1; : : : ; zn/ 7! .z1; : : : ; zn; 0/ and similar inclusions for
subsets of Rn. We choose 	 D �e1 as a base point; ei is the standard unit vector.

(6.4.3) Lemma. We have isomorphisms @ W �iC1.DnC1� ; Sn;	/ ! �i .S
n;	/ for

i � 0; n � 0 and �i .Sn;	/! �i .S
n;Dn˙;	/ for i � 0; n � 1.

Proof. In the first case we use the exact sequence of the pair .DnC1� ; Sn/. The
space DnC1� is contractible and hence �i .DnC1� ;	/ D 0 for i � 0 and n � 0.

In the second case we consider similarly the exact sequence of .Sn;Dn˙/. Note
that 	 D �e1 2 Dn˙ for n � 1. �
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For n � 0 we have a diagram with the isomorphisms (6.4.3)

�i .S
n;	/ E �� �iC1.SnC1;	/

Š
��

�iC1.DnC1� ; Sn;	/
Š @

��

� �� �iC1.SnC1;DnC1
C ;	/:

The morphism � is induced by the inclusion and E is defined so as to make the
diagram commutative. Note that the inductive proof of (1) in the next theorem only
uses (6.4.2).

(6.4.4) Theorem. .1/ �i .Sn/ D 0 for i < n.
.2/ The homomorphism � is an isomorphism for i � 2n�2 and an epimorphism

for i D 2n � 1. A similar statement holds for E.

Proof. Let N.n/ be the statement (1) and E.n/ the statement (2). Obviously N.1/
holds. Assume N.n/ holds. We then deduce E.n/. We apply the excision theorem
to .Y; Y1; Y2; Y0/ D .SnC1;DnC1

C ;DnC1� ; Sn/. By N.n/ and (6.4.3) we have
�i .S

n/ Š �iC1.DnC1
˙ ; Sn/ D 0 for 0 � i < n. We use the excision theorem

for p D q D n C 1 and see that � is surjective for i C 1 � 2n and bijective for
i C 1 � 2n � 1. Finally, E.n/ and N.n/ imply N.nC 1/.

In order to have the correct hypotheses for the excision theorem, we thicken
the spaces, replace Dn˙ by Hn˙ and note that the inclusions Dn˙ � Hn˙ and
Sn�1 � HnC \Hn� are h-equivalences. �

(6.4.5) Proposition. The homomorphism �i .D
nC1� ; Sn;	/ ! �i .D

nC1� =Sn;	/
induced by the quotient map is an isomorphism for i � 2n�1 and an epimorphism
for i D 2n.
Proof. Consider the commutative diagram

�i .D
nC1� ; Sn;	/ ��

�

��

�i .D
nC1� =Sn;	/

.1/

��

�i .S
nC1;DnC1

C ;	/ .2/
�� �i .S

nC1=DnC1
C ;	/:

The map (1) is induced by a homeomorphism and the map (2) by a homotopy
equivalence, hence both are isomorphisms. Now apply (6.4.4). �

The homomorphism E is essentially the suspension homomorphism. In order
to see this, let us work with (6.1.4). The suspension homomorphism †� is the
composition

†� W �n.X;	/ �nC1.CX;X;	/@

Š
��

q� �� �nC1.CX=X;	/ D �nC1.†X;	/
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with the quotient map q W D.nC 1/! D.nC 1/=S.n/ D S.nC 1/.
The next result is the famous suspension theorem of Freudenthal ([66]).

(6.4.6) Theorem. The suspension†� W �i .S.n//! �iC1.S.nC 1// is an isomor-
phism for i � 2n � 2 and an epimorphism for i D 2n � 1.
Proof. We have to show that q� W �iC1.CX;X/! �iC1.CX=X/ is forX D S.n/
an isomorphism (epimorphism) in the appropriate range. This follows from (6.4.5);
one has to use that Sn is homeomorphic to S.n/ and that DnC1� is the (pointed)
cone on Sn. �

(6.4.7) Theorem. �n.S.n// Š Z and †� W �n.S.n// ! �nC1.S.n C 1// is an
isomorphism (n � 1). The group �n.S.n// is generated by the identity of S.n/.

Proof. From the exact sequence �2.S3/ ! �2.S
2/ ! �1.S

1/ ! �.S3/ of the
Hopf fibration S1 ! S3 ! S2 and �j .S3/ D 0 for j D 1; 2 we obtain an
isomorphism @ W �2.S2/ Š �1.S

1/ Š Z. From (6.4.6) we obtain a surjection
†� W �1.S.1//! �2.S.2//; this is an isomorphism, since both groups are isomor-
phic to Z. For n � 2, (6.4.6) gives directly an isomorphism †�. We know that
�1.S.1// Š Z is generated by the identity, and †� respects the identity. �

(6.4.8) Example. We continue the discussion of the Hopf fibrations (6.3.6). The
Hopf fibration S1 ! S2nC1 ! CP n and �i .S2nC1/ D 0 for i � 2n yield
�2.CP n/ Š �1.S

1/ Š Z and �i .CP n/ D 0 for 0 � i � 2n, i 6D 2. The inclu-
sion S2nC1 ! S2nC3, z 7! .z; 0/ induces an embedding CP n � CP nC1. We
compare the corresponding Hopf fibrations and their exact sequences and conclude
�2.CP n/ Š �2.CP nC1/. Let CP1 DSn�1 CP n be the colimit. The canonical
inclusion CP n � CP1 induces �i .CP n/ Š �i .CP1/ for i � 2n. A proof uses
the fact that a compact subset of CP1 is contained in some finite CPN . Therefore
CP1 is a space with a single non-trivial homotopy group �2.CP1/ Š Z.

Note also the special case �3.S2/ Š �3.S3/ Š Z.
We have similar results for real projective spaces. The twofold coverings

Z=2 ! Sn ! RP n are use to show that �1.RP 2/ Š �1.RP 3/ Š � � � Š
�1.RP1/ Š Z=2, induced by the inclusions, �i .RP n/ Š �i .RP nC1/ for i < n

and �i .RP n/ D 0 for 0 � i < n, i 6D 1. The space RP1 has a single non-trivial
homotopy group �1.RP1/ Š Z=2. Þ

6.5 The Degree

Let d W �n.S.n// ! Z be the isomorphism which sends Œid� to 1. If f W S.n/ !
S.n/ is a pointed map, then f� W �n.S.n//! �n.S.n// is the multiplication by the
integer d.f / D d.f�Œid�/ D d.Œf �/. Since the map ŒS.n/; S.n/�0 ! ŒS.n/; S.n/�

which forgets about the base point is bijective (see (6.2.8)), we can transport d
to a bijection d W ŒS.n/; S.n/� ! Z. The functoriality f�g� D .fg/� shows
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d.fg/ D d.f /d.g/; therefore d.h/ D ˙1 if h is a homeomorphism. The suspen-
sion sends Œf � to Œf ^ id�; hence d.f / D d.f ^ id/.

(6.5.1) Proposition. Given pointedmapsf W S.m/! S.m/ andg W S.n/! S.n/.
Then d.f ^ g/ D d.f /d.g/.
Proof. We use the factorization f ^ g D .f ^ id/.id^g/. The map f ^ id is a
suspension off , and suspension does not change the degree. Let � W S.m/^S.n/!
S.n/ ^ S.m/ interchange the factors. From �.g ^ id/� D id^g we conclude
d.id^g/ D d.g ^ id/ D d.g/. �

Let kn W S.n/! Sn be a homeomorphism. The bijection

ŒSn; Sn�! ŒS.n/; S.n/�; Œf � 7! Œknf k
�1
n �

is independent of the choice of kn. We use this bijection to transport d to a bijection
d W ŒSn; Sn� ! Z. If d.Œf �/ D k we call k the degree d.f / of f . We still have
the properties d.f /d.g/ D d.fg/, d.id/ D 1, d.h/ D ˙1 for a homeomorphism
h. By a similar procedure we define the degree d.f / for any self-map f of a space
S which is homeomorphic to S.n/.

Matrix multiplication lA W Rn ! Rn, x 7! Ax induces for each A 2 GLn.R/ a
pointed map LA W S .n/ ! S .n/. For the notation see (6.1.4).

(6.5.2) Proposition. The degree of LA is the sign of the determinant det.A/.

Proof. Let w W I ! GLn.R/, t 7! A.t/ be a path. Then .x; t/ 7! LA.t/x is a
homotopy. Hence d.LA/ only depends on the path component of A in GLn.R/.
The group GLn.R/ has two path components, distinguished by the sign of the
determinant. Thus it suffices to show that for some A with det.A/ D �1 we have
d.LA/ D �1. By the preceding discussion and (6.1.4) we see that .x1; : : : ; xn/ 7!
.�x1; x2; : : : ; xn/ has degree �1. �

The stereographic projection (6.1.4) now shows that the map Sn ! Sn which
changes the sign of the first coordinate has degree �1.

(6.5.3) Proposition. Let A 2 O.nC 1/. Then 	A W Sn ! Sn, x 7! Ax has degree
det.A/.

Proof. Again it suffices to verify this for appropriate elements in the two path
components of O.nC 1/, and this we have already achieved. �

(6.5.4) Corollary. The map Sn ! Sn, x 7! �x has degree .�1/nC1. �

A vector field on Sn is a continuous map F W Sn ! RnC1 such that for each
x 2 Sn the vector F.x/ is orthogonal to x. For the maximal number of linearly
independent vector fields see [3].
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(6.5.5) Theorem. There exists a vector field F on Sn such that F.x/ 6D 0 for each
x 2 Sn if and only if n is odd.

Proof. Let n D 2k � 1. Then

.x1; x2; : : : ; x2k�1; x2k/ 7! .x2;�x1; : : : ; x2k;�x2k�1/

is a vector field with the desired property.
Let F be a vector field such that F.x/ 6D 0. Set V.x/ D F.x/=kF.x/k. Then

.x; t/ 7! cos�t �xC sin�t �V.x/ is a homotopy from the identity to the antipodal
map. Hence the antipodal map has degree 1. By (6.5.4), n is odd. �

(6.5.6) Proposition. Let � W S.m/^S.n/! S.n/^S.m/ interchange the factors.
Then d.�/ D .�1/mn.
Proof. By (6.5.2) we know the analogous assertion for the models S .m/. �

6.6 The Brouwer Fixed Point Theorem

We prove the fixed point theorem of Brouwer and a number of equivalent results.
As an application we discuss the problem of topological dimension.

Let us first introduce some notation. Consider the cube

W D W n D f.xi / 2 Rn j �1 � xi � 1g
with the faces Ci .˙/ D fx 2 W n j xi D ˙1g. We say, Bi � W n separates Ci .C/
and Ci .�/, if Bi is closed in W , and if

W X Bi D Bi .C/ [ Bi .�/; ; D Bi .C/ \ Bi .�/; Ci .˙/ � Bi .˙/;
with open subsets Bi .C/ and Bi .�/ of W X Bi . The n-dimensional standard
simplex is 
n. Its boundary @
n is the union of the faces @i
n D f.t0; : : : ; tn/ 2

n j ti D 0g.
(6.6.1) Theorem. The following statements are equivalent:

(1) A continuous map b W Dn ! Dn has a fixed point (Brouwer Fixed Point
Theorem).

(2) There does not exist a continuous map r W Dn ! Sn�1 which is the identity
on Sn�1 (Retraction Theorem).

(3) The identity of Sn�1 is not null homotopic (Homotopy Theorem).
(4) Let f W Dn ! Rn be a continuous map such that f .z/ D z for z 2 Sn�1.

ThenDn is contained in the image of f .

(5) Let g W Dn ! Rn be continuous. Then there exists a fixed point or there exists
z 2 Sn�1 such that g.z/ D 	z with 	 > 1.
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(6) Let vi W W n ! R, 1 � i � n be functions such that vi .x/ < 0 for x 2 Ci .�/
and vi .x/ > 0 for x 2 Ci .C/. Then there exists x 2 W n such that vi .x/ D 0
for each i (Intermediate Value Theorem).

(7) SupposeBi separatesCi .�/ andCi .C/ for 1 � i � n. Then the intersection
B1 \ B2 \ � � � \ Bn is non-empty.

(8) LetB0; : : : ; Bn be a closed covering of
n such that ei … Bi and @i
n � Bi .
Then

Tn
iD0 Bi 6D ;. The same conclusion holds if we assume that the Bi are

open.

(9) LetB0; : : : ; Bn be a closed covering of
n such that ei 2 Bi and @i
n\Bi D
;. Then

Tn
iD0 Bi 6D ;.

The fixed point theorem expresses a topological property ofDn. If h W X ! Dn

is a homeomorphism and f W X ! X a self-map, then hf h�1 has a fixed point z
and therefore f has the fixed point h.z/. We can apply (2) to the pairs .W n; @W n/

and .
n; @
n/, since they are homeomorphic to .Dn; Sn�1/. Statement (3) is also
equivalent to the inclusion Sn�1 � Rn X f0g not being null homotopic (similarly
for @W n in place of Sn�1).

Proof. .1/ ) .2/. Suppose r is a retraction. Then x 7! �r.x/ is a map without
fixed point.

.2/ ) .3/. The map r W Dn ! Sn�1 which corresponds by (2.3.4) to a null
homotopy of the identity is a retraction.

.3/) .1/. Suppose b has no fixed point. Then

Sn�1 � I ! Sn�1; .x; t/ 7! x � tb.x/
kx � tb.x/k D N.x � tb.x//

is a homotopy from the identity to the map f W x 7! N.x � b.x//. Since b
has no fixed point, the formula for f defines a map on the whole of Dn, and
then .x; t/ 7! f .tx/ is a homotopy from the constant map to f . Thus f is null
homotopic, and therefore also id.Sn�1/.

.2/) .4/. If x is contained in the interior of Dn, then there exists a retraction
r W Rn X x ! Sn�1 of Sn�1 � Rn X x. If x is not contained in the image of f ,
then r ı f W Dn ! Sn�1 contradicts the retraction theorem.

.4/) .5/. Define a map f W Dn ! Rn by

(i) f .x/ D 2x � g.2x/; kxk � 1=2;
(ii) f .x/ D kxk�1x � 2�1 � kxk�g�kxk�1x�; kxk � 1=2:

For kxk D 1
2

we obtain in both cases 2x � g.2x/. Thus f is a well-defined
continuous map.

For kxk D 1 we have f .x/ D x. By (4), there exists y with f .y/ D 0. If
kyk � 1

2
, then (i) shows that 2y is a fixed point. If kyk > 1

2
, then kyk 6D 1, and

(ii) shows the second case with 	 D .2 � 2kyk/�1 > 1.



6.6. The Brouwer Fixed Point Theorem 139

.5/) .1/. A special case.

.3/) .6/. Set v W W n ! Rn, x 7! .v1.x/; : : : ; vn.x//. Suppose v.x/ 6D 0 for
each x 2 W n. Then v W W n ! Rn X 0. Consider h W .t; x/ 7! .1 � t /x C tv.x/.
If x 2 Ci .�/, i.e., xi < 0, then .1 � t /xi C tvi .x/ < 0 for each t 2 I . Hence
ht W @W n ! RnX0 is a homotopy from the inclusion to v. Since v has an extension
toW n, it is null homotopic, but the inclusion is not null homotopic. A contradiction.

.6/) .7/. Let d denote the Euclidean distance. Define vi W W ! R by

vi .x/ D
(
�d.x; Bi /; x 2 Bi .�/;
d.x; Bi /; x 2 Bi .C/ [ Bi ;

and apply (6).
.7/ ) .2/. Let r W W n ! @W n be a retraction. We define Bi .˙/ D

r�1.˙xi > 0/ and Bi D r�1.xi D 0/. We apply (7) and obtain a contradic-
tion.

.3/ ) .8/. We use the functions vi .x/ D d.x; Bi /. Our assumptions imply
vi .ei / > 0, and vi .x/ D 0 provided x 2 @i
n. If the Bi have empty intersection,
then v.x/ D .v0.x/; : : : ; vn.x// 6D 0 for every x 2 
n. This gives us a map

˛ W 
n ! @
n; x 7! .
P
vi .x//

�1v.x/;

because, since the Bi cover 
n, for each x at least one coordinate vi .x/ is zero. If
x 2 @i
n, then ˛.x/ 2 @i
n, hence .1 � t /x C tv.x/ 2 @i
n for each t 2 Œ0; 1�.
The identity of @
n is therefore homotopic to ˇ D ˛j@
n. Since ˇ has the
extension ˛ it is null homotopic, and therefore also id.@
n/ is null homotopic.
This contradicts (3).

Now suppose the Bi are open. By a general result of point-set topology there
exist closed sets Ci � Bi and the Ci still form a covering. In order to make sure
that the Ci satisfy the hypotheses of (8) we can replace the Ci by Ci [ @i
n. The
first part of the proof now shows that the Ci have non-empty intersection.

.8/) .9/. Set Ui D 
n XBi . Suppose the Bi have empty intersection. Then
the Ui cover 
n. Since the Bi are a covering, the Ui have empty intersection. By
construction, ei … Ui and @i
n � Ui . We therefore can apply (8) in the case
of the open covering by the Ui and see that the Ui have non-empty intersection.
Contradiction.

.9/) .2/. Let Aj D f.t0; : : : ; tn/ 2 @
n j tj � 1=ng. Let r W 
n ! @
n be
a retraction and set Bj D r�1.Aj /. Then (9) tells us that the Bj have non-empty
intersection, and this is impossible. �

Theorem (6.6.1) has many different proofs. For a proof which uses only basic
results in differential topology see [79]. Another interesting proof is based on a
combinatorial result, called Sperner’s Lemma [173].
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The retraction theorem does not hold for infinite-dimensional spaces. In [70,
Chapter 19] you can find a proof that the unit disk of an infinite-dimensional Banach
space admits a retraction onto its unit sphere.

Does there exist a sensible topological notion of dimension for suitable classes
of spaces? Greatest generality is not necessary at this point. As an example we
introduce the covering dimension of compact metric spaces X . (For dimension
theory in general see [94].) Let C be a finite covering of X and " > 0 a real
number. We call C an "-covering, if each member of C has diameter less than ".
We say C has orderm, if at least one point is contained inmmembers but no point
inmC1. The compact metric spaceX has covering dimension dimX D k, if there
exists for each " > 0 a finite closed "-covering of X of order k C 1 and k 2 N0

is minimal with this property. Thus X is zero-dimensional in this sense, if there
exists for each " > 0 a finite partition of X into closed sets of diameter at most ".
We verify that this notion of dimension is a topological property.

(6.6.2) Proposition. Let X and Y be homeomorphic compact metric spaces. If X
is k-dimensional then also is Y .

Proof. Leth W X ! Y be a homeomorphism. Fix " > 0 and let U be the covering of
Y by the open "-balls U".y/ D fx j d.x; y/ < "g. (We use d for the metrics.) Let
ı be a Lebesgue number of the covering .h�1.U / j U 2 U/. Since dimX D k,
there exists a finite closed ı-covering C of X of order k C 1. The finite closed
covering D D .h.C / j C 2 C/ of Y has then the order k C 1, and since each
member of C is contained in a set h�1.U /, the covering D is an "-covering. Thus
we have shown dim Y � k.

We now show that dim Y � k, i.e., there exists ı > 0 such that each finite closed
ı-covering has order at least k C 1. Let " > 0 be a corresponding number for X .
A homeomorphism g W Y ! X is uniformly continuous: There exists a ı > 0 such
that d.y1; y2/ < ı implies d.g.y1/; g.y2// < ". So if C is a ı-covering of Y , then
D D .g.C / j C 2 C/ is an "-covering of X . Since D has order at least k C 1, so
has C . �

(6.6.3) Proposition. There exists " > 0 such that each finite closed "-covering
.Bj j j 2 J / of 
n has order at least nC 1.
Proof. Let " be a Lebesgue number of the coveringUi D 
nX@i
n, i D 0; : : : ; n.
Hence for each j 2 J there exist i such that Bj � Ui , and the latter is equivalent
to Bj \ @i
n D ;. Suppose ek 2 Bj . Since ek 2 @i
n for i 6D k, we cannot
have Bj � Ui ; thus ek 2 Bj implies Bj � Uk . Since each ek is contained in at
least one of the sets Bj we conclude jJ j � nC 1. For each j 2 J we now choose
g.j / 2 f0; : : : ; ng such that Bj \ @g.j /
n D ; and set Ak D [fBj j g.j / D kg;
this is a closed set because J is finite. Each Bj is contained in some Ak , hence
the Ak cover 
n. Moreover, by construction, Ak \ @k
n D ;. We can therefore
apply part (9) of (6.6.1) and find an x in the intersection of the Ak . Hence for each
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k there exists ik such that x 2 Bik . Since each Bj is contained in exactly one of
the sets Ak , the element x is contained in the nC 1 members Bik , k D 0; : : : ; n of
the covering. �

We can now compare the covering dimension and the algebraic dimension.

(6.6.4) Theorem. 
n has covering dimension n. A compact subset of Rn has
covering dimension at most n.

Proof. By (6.6.3), 
n has covering dimension at least n. It remains to construct
finite closed "-coverings of order nC 1 for each ". See Problem 4. �

Problems

1. Let U; V be an open covering of I2. Then there exists either a path u W I ! U such that
u.0/ 2 I � 0; u.1/ 2 I � 1 or a path v W I ! V such that v.0/ 2 0 � I; v.1/ 2 1 � I .
2. Let U; V be an open covering of 
2. Then there exists a path component QU of U such
that QU \ @i


2 6D ; for each i or a path component of V with a similar property.
3. Generalize the preceding two exercises to n dimensions.
4. The following figure indicates the construction of closed "-coverings of order 3 for the
square.

Generalize this construction to the cube In by a suitable induction.
5. Suppose In is the union of a finite number of closed sets, none of which contains points
of two opposite faces. Then at least nC 1 of these closed sets have a common point.

6.7 Higher Connectivity

For many applications it is important to know that the homotopy groups of a space
vanish in a certain range. We discuss several reformulations of this fact. In the
following �0.X; x/ D �0.X/ with base point Œx�. The spaceD0 is a singleton and
S�1 D ;.
(6.7.1) Proposition. Let n � 0. The following are equivalent:

(1) �n.X; x/ D 0 for each x 2 X .

(2) Each map Sn ! X has an extension toDnC1.
(3) Each map @I nC1 ! X has an extension to I nC1.
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Proof. The case n D 0 is trivial. The equivalence of (2) and (3) is a consequence
of the homeomorphism .DnC1; Sn/ Š .I nC1; @I nC1/. Suppose f W Sn ! X is
given. Use e1 D .1; 0; : : : / 2 Sn as a base point and think of f representing
an element in �n.X; x/. If (1) holds, then f is pointed null homotopic. A null
homotopy Sn � I ! X factors over the quotient map Sn � I ! DnC1, .x; t/ 7!
.1 � t /e1 C tx and yields an extension of f . Conversely, let an element ˛ of
�n.X; x/ be represented by a pointed map f W .Sn; e1/! .X; x/. If this map has
an extension F to DnC1, then .F; f / represents ˇ 2 �nC1.X;X; x/ D 0 with
@ˇ D ˛. �

(6.7.2) Proposition. Let n � 0. Let f W .Dn; Sn�1/ ! .X;A/ be homotopic as
a map of pairs to a map k W .Dn; Sn�1/ ! .A;A/. Then f is relative to Sn�1
homotopic to a map g such that g.Dn/ � A.

Proof. The case n D 0 is trivial. Let Gt W .Dn; Sn�1/ ! .X;A/ be a homotopy
from f to k according to the assumption. Define 	 W Dn � I ! Dn � I by
	.x; t/ D .2˛.x; t/�1 �x; 2�˛.x; t//with the function˛.x; t/ D max.2kxk; 2�t /.
ThenH D G ı	 is a homotopy with the desired property from f to g D H1. �

�
�
�
�
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�
�

�
�

��
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b c

Dn0
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(6.7.3) Proposition. Let n � 1. The following assertions about .X;A/ are equiv-
alent:

(1) �n.X;A;	/ D 0 for each choice of 	 2 A.

(2) Each map f W .I n; @I n/ ! .X;A/ is as a map of pairs homotopic to a
constant map.

(3) Each map f W .I n; @I n/! .X;A/ is homotopic rel @I n to a map into A.

Proof. (1)) (2). Letf W .I n; @I n/! .X;A/be given. SinceJ n�1 is contractible,
there exists a homotopy of the restriction f W J n�1 ! A to a constant map. Since
J n�1 � @I n and @I n � I n are cofibrations, f is as a map of pairs homotopic to
g W .I n; @I n/ ! .X;A/ such that g.J n�1/ D fa0g. Since �n.X;A; a0/ D 0, the
map g W .I n; @I n; J n�1/! .X;A; a0/ is null homotopic as a map of triples.

(2)) (3). (6.7.2).
(3) ) (1). Let f W .I n; @I n; J n�1/ ! .X;A;	/ be given. By assump-

tion (3) Œf � is contained in the image of �n.A;A;	/ ! �.X;A;	/. Now use
�n.A;A;	/ D 0. �
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We call .X;A/ n-compressible if one of the assertions in (6.7.3) holds. More
generally, we call a map f W X ! Y n-compressible if the following holds: For
each commutative diagram

@I n
'

��

\
��

X

f
��

I n
ˆ �� Y

there exists‰ W I n ! X such that‰j@I n D ' and f ‰ ' ˆ relative to @I n. (This
amounts to part (3) in (6.7.3).) This notion is homotopy invariant in the following
sense:

(6.7.4) Proposition. Given f W X ! Y and a homotopy equivalence p W Y ! Z.
Then f is n-compressible if and only pf is n-compressible. �

(6.7.5) Proposition. Let n � 0. The following assertions about .X;A/ are equiv-
alent:

(1) Each map f W .I q; @I q/ ! .X;A/, q 2 f0; : : : ; ng is relative to @I q homo-
topic to a map into A.

(2) The inclusion j W A ! X induces for each base point a 2 A a bijection
j� W �q.A; a/! �q.X; a/ for q < n and a surjection for q D n.

(3) �0.A/ ! �0.X/ is surjective, and �q.X;A; a/ D 0 for q 2 f1; : : : ; ng and
each a 2 A.

Proof. (1) , (3). The surjectivity of �0.A/ ! �0.X/ is equivalent to (1) for
q D 0. The other cases follow from (6.7.3).

(2), (3). This follows from the exact sequence (6.1.2). �

A pair .X;A/ is called n-connected if (1)–(3) in (6.7.5) hold. We call .X;A/
1-connected if the pair is n-connected for each n. A pair is1-connected if and
only if j� W �n.A; a/! �n.X; a/ is always bijective. If X 6D ; but A D ; we say
that .X;A/ is .�1/-connected, and .;;;/ is1-connected.

(6.7.6) Proposition. Let n � 0. The following assertions about X are equivalent:

(1) �q.X; x/ D 0 for 0 � q � n and x 2 X .

(2) The pair .CX;X/ is .nC 1/-connected.

(3) Each map f W @I q ! X , 0 � q � nC 1 has an extension to I q .

Proof. The cone CX is contractible. Therefore @ W �qC1.CX;X;	/ Š �q.X;	/.
This and (6.7.5) shows the equivalence of (1) and (2). The equivalence of (1) and
(3) uses (6.7.1). �

A space X is n-connected if (1)–(3) in (6.7.6) hold for X . Note that this is
compatible with our previous definitions for n D 0; 1.
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Let f W X ! Y be a map and X � Z.f / the inclusion into the mapping
cylinder. Then f is said to be n-connected if .Z.f /;X/ is n-connected. We
then also say that f is an n-equivalence. Thus f is n-connected if and only if
f� W �q.X; x/ ! �q.Y; f .x// is for each x 2 X bijective (surjective) for q < n

(q D n). If f is an 1-equivalence we also say that f is a weak (homotopy)
equivalence. Thus f is a weak equivalence if and only if f� W �n.X; x/ !
�n.Y; f .x// is bijective for each n � 0 and each x 2 X .

(6.7.7) Proposition. Let .p1; p0/ W .E1; E0/! B be a relative Serre fibration. Let
F bj denote the fibre of pj over b. Then the following are equivalent:

(1) .E1; E0/ is n-connected.

(2) .F b1 ; F
b
0 / is n-connected for each b 2 B .

Proof. This is a direct consequence of (6.3.8). �

The compression properties of an n-connected map can be generalized to pairs
of spaces which are regular unions of cubes of dimension at most n. We use this
generalization in the proof of theorem (6.7.9). Consider a subdivision of a cube I n.
Let us call B a cube-complex if B is the union of cubes of this subdivision. A
subcomplex A of B is then the union of a subset of the cubes in B . We understand
that B and A contain with each cube all of its faces. The k-skeleton B.k/ of B
consists of the cubes in B of dimension � k; thus A.k/ D B.k/ \ B .

(6.7.8) Proposition. Let f W X ! Y be n-connected. Suppose .C;A/ is a pair of
cube-complexes of dimension at most n. Then to each commutative diagram

A
'

��

\
��

X

f
��

C
ˆ �� Y

there exists ‰ W C ! X such that ‰jA D ' and f ‰ ' ˆ relative to A.

Proof. Induction over the number of cubes. Let A � B � C such that C is
obtained from B by adding a cube W of highest dimension. Then @W � B .
By induction there exists ‰0 W B ! X such that ‰0jA D ' and a homotopy
H W f ‰0 ' ˆjB relative to A. Extend H to a homotopy of ˆ. The end ˆ1 of this
homotopy satisfies ˆ1jB D f ‰0. We now use that f is n-connected and extend
‰0 over W to ‰ W C ! X such that f ‰ ' ˆ1 relative to B . Altogether we have
f ‰ 'B ˆ1 'A ˆ and ˆjA D ‰0jA D '. �

(6.7.9) Theorem. Let ' W .X;X0; X1/ ! .Y; Y0; Y1/ be a map such that the re-
strictions 'i W Xi ! Yi are n-connected and '01 W X0 \X1 ! Y0 \ Y1 is .n� 1/-
connected. SupposeX D Xı

0 [Xı
1 and Y D Y ı

0 [Y ı
1 . Then ' is an n-equivalence.
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Proof. We use mapping cylinders to reduce to the case of inclusions ' W X �
Y; 'i W Xi � Yi . Let .F; f / W .I n; @I n/! .Y;X/ be given. We have to show that
this map is homotopic relative to @I n to a map into X . Let

Ai D F �1.Y X Y ı
i / [ f �1.X XXı

i /:

These sets are closed and disjoint. By the Lebesgue lemma we choose a cubical
subdivision of I n such that no cube W of the subdivision intersects both A0 and
A1. Let Kj be the union of the cubes W which satisfy

F.W / � Y ı
i ; f .W \ @I n/ � Xı

i :

Then Ki is a cubical subcomplex and

I n D K0 [K1; F .Ki / � Y ı
i ; f .Ki \ @I n/ � Xı

i :

We denote by K� the .n � 1/-skeleton of a cubical complex; then K \ @I n D
K� \ @I n and K0 \K�

1 D K�
0 \K�

1 . We have a commutative square

X01 �� Y01

@I n \K01
f01

��

�� K�
01.

F01

��
g01

���
�
�
�
�

Since .Y01; X01/ is .n�1/-connected there exists a homotopy relative to @I n\K01
from F01 to a map g01 W K�

01 ! X01. Define g0 W K0 \ .@I n [K�/! X0 by

g0jK0 \ @I n D f0; g0jK0 \K�
1 D g01:

(Both maps agree on the intersection.) The homotopy F01 ' g01 and the constant
homotopy of f0 combine to a homotopy of F0jK0 \ .@I n [ K�

1/ to g0 which is
constant on K0 \ @I n. Since the inclusion of a cube complex into another one is a
cofibration, this homotopy can be extended to a homotopy  W K0 � I ! Y0 from
F0 to H0. We obtain a diagram

X0 �� Y0

K0 \ .@I n [K�
1/

g0

��

�� K0

H0

��
h0

��� � � � � � �

where H0 is homotopic to h0 W K0 ! X1 relative to K0 \ .@I n [ K�
1/, since

.Y0; X0/ is n-connected.
We prove the second part similarly. We obtain a mapg1 W K1\.@I n[K�

0/! Y1
with g1jK1 \ @I n D f1 and g1jK1 \K�

0 D g01 and then

X1 �� Y1

K1 \ .@I n [K�
0/

g1

��

�� K1.

H1

��
h1

��� � � � � � �
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The maps h0 and h1 coincide on K�
01 and yield a map h W K�

0 [K�
1 ! X which is

homotopic relative @I n to F jK�
0 [ K�

1 ; moreover hj@I n D f . Let now W be an
n-dimensional cube, say withW � K0. Then @W � K�

0 and h.@W / D h0.@W / �
X0. Since .Y0; X0/ is n-connected, we can deform the map relative to @W to a map
into X0. �

(6.7.10) Corollary. Let f W X ! Y be an n-connected map between well-pointed
spaces. Then †f W †X ! †Y is .n C 1/-connected. If X is n-connected, then
†X is .nC 1/-connected. The sphere SkC1 is k-connected.

Proof. Let†0X denote the unpointed suspension ofX . This is a quotient ofX � I
and covered by the open cones C0 D X � Œ0; 1Œ=X � 0 and C1 D X� �0; 1�=X � 1
with intersectionX� �0; 1Œ. We can apply (6.7.7) directly; the cones are contractible
and therefore the induced maps Cj .X/ ! Cj .Y /1-connected. In the case of a
well-pointed space X the quotient map †0X ! †X is an h-equivalence. �

(6.7.11) Theorem. Let f W X ! Y be a continuous map. Let .Uj j j 2 J / and
.Vj j j 2 J / open coverings of X and Y such that f .Uj / � Vj . Suppose that
for each finite E � J the induced map fE W Tj2E Uj !

T
j2E Vj is a weak

equivalence. Then f is a weak equivalence

Proof. By passage to the mapping cylinder we can assume that f is an inclusion.
Let h W .I n; @I n/! .Y;X/ be given. We have to deform h relative to @I n into X .
By compactness of I n it suffices to work with finite J . A simple induction reduces
the problem to J D f0; 1g. Then we apply (6.7.9). �

Problems

1. Let Y D f0g [ fn�1 j n 2 Ng and X the same set with the discrete topology. Then the
identity X ! Y is a weak equivalence but there does not exist a weak equivalence Y ! X .
2. Identify in S1 the open sets f.x; y/ j y > 0g and f.x; y/ j y < 0g to a point. The quotient
map S1 ! S onto the quotient space S , consisting of four points, is a weak equivalence
(but not a homotopy equivalence). In particular �1.S/ Š Z. Show that S has a universal
covering.

6.8 Classical Groups

We use exact sequences of Serre fibrations and deduce from our knowledge of
�i .S

n/ other results about homotopy groups of classical groups and Stiefel man-
ifolds. We use a uniform notation for the (skew) fields F D R;C;H and the
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corresponding groups (orthogonal, unitary, symplectic)

O.n/ D O.n;R/; SO.n/ D SO.n;R/;

U.n/ D O.n;C/; SU.n/ D SO.n;C/;

Sp.n/ D O.n;H/:

Let d D dimR F . The starting point are the (Serre) fibrations which arise from the
action of the orthogonal groups on the unit spheres by matrix multiplication

O.n; F /
j! O.nC 1; F /! Sd.nC1/�1;

SO.n; F /
j! SO.nC 1; F /! Sd.nC1/�1:

The inclusions j of the groups arise from A 7! �
A 0
0 1

�
. We also pass to the colimit

and obtain O.1; F / D colimn O.n; F / and SO.1; F / D colimn SO.n; F /. From
�i .S

n/ D 0, i < n and the exact homotopy sequences of the fibrations we deduce
that the inclusions j W O.n; F /! O.nC 1; F / and j W SO.n; F /! SO.nC 1; F /
are d.nC 1/ � 2 connected. By induction and passage to the colimit we obtain

(6.8.1) Proposition. For n < m � 1, the inclusions O.n; F / ! O.m; F / and
SO.n; F / ! SO.m; F / are d.nC 1/ � 2 connected; in particular, the homomor-
phisms �i .O.n; F //! �i .O.m; F // are isomorphisms in the range i � n� 2 .R/,
i � 2n � 1 .C/, and i � 4nC 1 .H/. �

We turn our attention to Stiefel manifolds of orthonormal k-frames in F n:

Vk.R
n/ Š O.n/=O.n � k/ Š SO.n/=SO.n � k/;

Vk.C
n/ Š U.n/=U.n � k/ Š SU.n/=SU.n � k/;

Vk.H
n/ Š Sp.n/=Sp.n � k/:

We have the corresponding (Serre) fibrations of the type H ! G ! G=H for
these homogeneous spaces. We use (6.8.1) in the exact homotopy sequences of
these fibrations and obtain:

(6.8.2) Proposition. �i .Vk.F n// D 0 for i � d.n � k C 1/ � 2. �

We have the fibration

p W VkC1.F nC1/! V1.F
nC1/; .v1; : : : ; vkC1/ 7! vkC1:

The fibre over ekC1 is homeomorphic to Vk.F n/; with � W v 7! .v; 0/ we obtain a
homeomorphism j W .v1; : : : ; vk/ 7! .�v1; : : : ; �vk; ekC1/ onto this fibre. From the
homotopy sequence of this fibration we obtain

(6.8.3) Proposition. j� W �i .Vk.F n// ! �i .VkC1.F nC1// is an isomorphism for
i � d.nC 1/ � 3. �
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We use V1.F n/ D Sdm�1 and�t .S t / Š Z and obtain from (6.8.3) by induction

(6.8.4) Proposition. �2.n�k/C1.Vk.Cn// Š Z, �4.n�k/C3.Vk.Hn// Š Z. �

The real case is more complicated. The result is

(6.8.5) Proposition.

�n�k.Vk.Rn// Š
(

Z; k D 1; or n � k even ;

Z=2; k � 2; n � k odd.

Proof. By (6.8.3) and induction it suffices to consider the case k D 2. Later we
compute the homology groups of V2.Rn/, and the theorem of Hurewicz will then
give us the desired result. �

Problems

1. The group O.n/ has two path components. The groups SO.n/, U.n/, SU.n/, and Sp.n/
are path connected.
2. In low dimensions we have some special situations, namely

U.1/ Š SO.2/ Š S1;

Spin.3/ Š SU.2/ Š Sp.1/ Š S3;

Z=2! SU.2/! SO.3/; a 2-fold covering,

SU.n/! U.n/! S1; a fibration.

Use these data in order to verify

�1.SO.2// Š �1.O.2// Š Z;

�1.SO.3// Š �1.SO.n// Š Z=2; m � 3;
�1.U.1// Š �1.U.n// Š Z; n � 1;
�1.SU.n// Š �1.Sp.n// Š 0; n � 1;
�2.SU.n// Š �2.U.n// Š �2.Sp.n// Š 0; n � 1;
�2.SO.n// Š 0; n � 3;
�3.U.2// Š �3.U.k// Š Z; k � 2;
�3.SU.2// Š �3.SU.k// Š Z; k � 2;
�3.Sp.1// Š �3.Sp.k// Š Z; k � 1;
�3.SO.3// Š Z:

6.9 Proof of the Excision Theorem

In this section we present an elementary proof of the excision theorem (6.4.1).
The proof is due to D. Puppe [46]. We derive the excision theorem from a more
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conceptual reformulation (6.9.3). The reformulation is more satisfactory, because
it is “symmetric” in Y1; Y2. In (6.4.1) we have a second conclusion with the roles
of Y1 and Y2 interchanged.

We begin with a technical lemma used in the proof.
A cube in Rn, n � 1 will be a subset of the form

W D W.a; ı; L/ D fx 2 Rn j ai � xi � ai C ı for i 2 L; ai D xi for i … Lg
for a D .a1; : : : ; an/ 2 Rn, ı > 0, L � f1; : : : ; ng. (L can be empty.) We set
dimW D jLj. A face of W is a subset of the form

W 0 D fx 2 W j xi D ai for i 2 L0; xj D aj C ı for j 2 L1g
for some L0 � L; L1 � L. (W 0 can be empty.) Let @W denote the union
of all faces of W which are different from W . We use the following subsets of
W D W.a; ı; L/:

Kp.W / D
˚
x 2 W j xi < ai C ı

2
for at least p values i 2 L	;

Gp.W / D
˚
x 2 W j xi > ai C ı

2
for at least p values i 2 L	:

Here 1 � p � n. For p > dimW we let Kp.W / and Gp.W / be the empty set.

(6.9.1) Lemma. Let f W W ! Y and A � Y be given. Suppose that for p �
dimW the inclusions

f �1.A/ \W 0 � Kp.W 0/ for all W 0 � @W
hold. Then there exists a map g which is homotopic to f relative to @W such that
g�1.A/ � Kp.W /. (Similarly for Gp in place of Kp .)

Proof. We can assume that W D I n, n � 1. We define h W I n ! I n in the
following manner: Let x D .1

4
; : : : ; 1

4
/. For a ray y which begins in x we consider

its intersection P.y/ with @


0; 1
2

�n
and its intersection Q.y/ with @I n. Let h map

the segment from P.y/ to Q.y/ onto the single point Q.y/ and the segment from
x to P.y/ affinely to the segment from x toQ.y/. Then h is homotopic relative to
@I n to the identity. We set g D f h. Let z 2 I n and g.z/ 2 A. If zi < 1

2
for all i ,

then z 2 Kn.I n/ � Kp.I n/. Suppose now that for at least one i we have zi � 1
2

,
then h.z/ 2 @I n and hence h.z/ 2 W 0 for some face W 0 with dimW 0 D n � 1.
Since also h.z/ 2 f �1.A/, by assumption h.z/ 2 Kp.W 0/. Hence we have for at
least p coordinates 1

2
> h.z/i . By definition of h, we have h.z/i D 1

4
C t .zi � 1

4
/

with t � 1. We conclude that for at least p coordinates 1
2
> zi . �

The next theorem is the basic technical result. In it we deform a map I n ! Y

into a kind of normal form. We call it the preparation theorem. Let Y be the union
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of open subspaces Y1; Y2 with non-empty intersection Y0. Let f W I n ! Y be
given. By the Lebesgue lemma (2.6.4) there exists a subdivision of I n into cubes
W such that either f .W / � Y1 or f .W / � Y2 for each cube. In this situation we
claim:

(6.9.2) Theorem. Suppose .Y1; Y0/ is p-connected and .Y2; Y0/ is q-connected
(p; q � 0). Then there exists a homotopy ft of f with the following properties:

(1) If f .W / � Yj , then ft .W / � Yj .
(2) If f .W / � Y0, then ft is constant on W .

(3) If f .W / � Y1, then f �1
1 .Y1 X Y0/ \W � KpC1.W /.

(4) If f .W / � Y2, then f �1
1 .Y2 X Y0/ \W � GqC1.W /.

Here W is any cube of the subdivision.

Proof. Let C k be the union of the cubes W with dimW � k. We construct the
homotopy inductively over C k � I .

Let dimW D 0. If f .W / � Y0 we use condition (2). If f .W / � Y1; f .W / 6�
Y2, there exists a path in Y1 from f .W / to a point in Y0, since .Y1; Y0/ is 0-
connected. We use this path as our homotopy on W . Then (1) and (3) hold.
Similarly if f .W / � Y2; f .W / 6� Y1. Thus we have found a suitable homotopy
on C 0. We extend this homotopy to the higher dimensional cubes by induction
over the dimension; we use that @W � W is a cofibration, and we take care of (1)
and (2).

Suppose we have changed f by a homotopy such that (1) and (2) hold and (3),
(4) for cubes of dimension less than k. Call this map again f . Let dimW D k. If
f .W / � Y0, we can use (2) for our homotopy. Let f .W / � Y1; f .W / 6� Y2. If
dimW � p, there exists a homotopy f Wt W W ! Y1 relative to @W of f jW with
f W1 .W / � Y0, since .Y1; Y0/ isp-connected. If dimW > pwe use (6.9.1) in order
to find a suitable homotopy of f jW . We treat the case f .W / � Y2; f .W / 6� Y1 in
a similar manner. Again we extend the homotopy to the higher dimensional cubes.
This finishes the induction step. �

Let us denote byF.Y1; Y; Y2/ the path space fw 2 Y I j w.0/ 2 Y1; w.1/ 2 Y2g.
We have the subspace F.Y1; Y1; Y0/.

(6.9.3) Theorem. Under the hypothesis of the previous theorem the inclusion
F.Y1; Y1; Y0/ � F.Y1; Y; Y2/ is .p C q � 1/-connected.

Proof. Let a map ' W .In; @In/ ! .F.Y1; Y; Y2/; F .Y1; Y1; Y0// be given where
n � p C q � 1. We have to deform this map of pairs into the subspace. By
adjunction, a map of this type corresponds to a map ˆ W I n � I ! Y with the
following properties:

(1) ˆ.x; 0/ 2 Y1 for x 2 I n,
(2) ˆ.X; 1/ 2 Y2 for x 2 I n,
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(3) ˆ.y; t/ 2 Y1 for y 2 @I n and t 2 I .

Let us call maps of this type admissible. The claim of the theorem is equivalent
to the statement, that ˆ can be deformed as an admissible map into a map with
image in Y1. We apply the preparation theorem to ˆ and obtain a certain map ‰.
The deformation in (6.9.2) stays inside admissible maps. Consider the projection
� W I n � I ! I n. We claim that the images of ‰�1.Y X Y1/ and ˆ�1.Y X Y2/
under � are disjoint. Let y 2 �‰�1.Y XY2/, y D �.z/ and z 2 ‰�1.Y XY2/\W
for a cubeW . Then z 2 KpC1.W / and hence y has at least p small coordinates. In
a similar manner we conclude from y 2 �‰�1.Y X Y1/ that y has at least q large
coordinates. In the case that n < pCq the point y cannot have p small and q large
coordinates.

The set �‰�1.Y XY1/ is disjoint to @I n, since‰.@I n/� I / � A. There exists
a continuous function � W I n ! I which assumes the value 0 on �‰�1.Y X Y1/
and the value 1 on @I n [ �‰.Y X Y2/. The homotopy

..x; t/; s/ 7! ‰.x; .1 � s/t C st�.x//
is a homotopy of admissible maps from ‰ to a map with image in Y1. �

(6.9.4) Theorem. Under the hypothesis of (6.9.2) the inclusion induces an isomor-
phism �j .Y1; Y0/! �j .Y; Y2/ for j < pCq and an epimorphism for j D pCq.
Proof. We have the path fibration F.Y; Y; Y2/ ! Y , w 7! w.0/. The pullback
along Y1 � Y yields the fibration F.Y1; Y; Y2/! Y1, w 7! w.0/. The fibre over
	 is F.	; Y; Y2/. We obtain a commutative diagram of fibrations:

F.	; Y1; Y0/
��

ˇ
�� F.	; Y; Y2/

��

F.Y1; Y1; Y0/
˛ ��

��

F.Y1; Y; Y2/

��

A
D �� A.

The inclusion ˛ is .p C q � 1/-connected (see (6.9.3)). Hence ˇ has the same
connectivity (see (6.7.8)), i.e., the inclusion .Y1; Y0/ � .Y; Y2/,

�n.F.	; Y1; Y0// ��

Š
��

�n.F.	; Y; Y2//
Š
��

�nC1.Y1; Y0;	/ �� �nC1.Y; Y2;	/

induces an isomorphism for n < pCq�1 and an epimorphism for n D pCq�1.
�
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Problems

1. The hypothesis of (6.4.1) is a little different from the hypothesis of (6.9.4), since we did
not assume in (6.4.1) that .Y1; Y0/ and .Y2; Y0/ are 0-connected. Let Y 0 be the subset of
points that can be connected by a path to Y0. Show that Y 0 has the open cover Y 0

1
; Y 0

2
and the

inclusion induces isomorphisms ��.Y
0

1
; Y0/ Š ��.Y1; Y0/ and ��.Y; Y2/ Š ��.Y

0; Y 0
2
/.

This reduces (6.4.1) to (6.9.4).
2. The map Y0 ! F.Y1; Y1; Y0/ which sends y 2 Y0 to the constant path with value y is
an h-equivalence.
3. The map a1 W F.Y; Y; Y1/! Y ,w 7! w.0/ replaces the inclusion Y1 ! Y by a fibration.
There is a pullback diagram

F.Y1; Y; Y2/ ��

��

F.Y; Y; Y1/

a1

��

F.Y; Y; Y2/
a2 �� Y .

Thus (6.9.3) compares the pushout Y of Y1  Y0 ! Y2 and the pullback of a1; a2 with
Y0. For generalizations see [73].
4. Show that the proof of (6.4.2) along the lines of this section does not need (6.9.1).

6.10 Further Applications of Excision

The excision theorem is a fundamental result in homotopy theory. For its appli-
cations it is useful to verify that it holds under different hypotheses. In the next
proposition we show and use that Y is the homotopy pushout.

(6.10.1) Proposition. Let a pushout diagram be given with a cofibration j ,

A
f

��

j
��

B

J
��

X
F �� Y .

Suppose �i .X;A; a/ D 0 for 0 < i < p and each a 2 A, and �i .f; a/ D 0 for
0 < i < q and eacha 2 A. Then themap .F; f /� W �n.X;A; a/! �n.Y; B; f .a//

is surjective for 1 � n � p C q � 2 and bijective for 1 � n < p C q � 2.
Proof. We modify the spaces up to h-equivalence such that (6.4.1) can be applied.
LetZ.f / D B[f A�Œ0; 1� D BCA�Œ0; 1�=f .a/ � .a; 0/be the mapping cylinder
of f with inclusion k W A ! Z.f /, a 7! .a; 1/ and projection p W Z.f / ! B a
homotopy equivalence. We form the pushout diagrams

A
k ��

j
��

Z.f /
p

��

L
��

B

J
��

X
K �� Z

P �� Y
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with pk D f and PK D F . Then P is a homotopy equivalence by (5.1.10)
and .P; p/ induces an isomorphism of homotopy groups. Therefore it suffices to
analyze .K; k/�. The space Z can be constructed as

Z D B [f A � Œ0; 1� [X D Z.f /CX=.a; 1/ � a:
The map .K; k/ is the composition of

.X;A; a/! .A��0; 1� [X;A��0; 1�; .a; 1//; x 7! .x; 1/

with the inclusion � into .Z;Z.f /; .a; 1//. The first map induces an isomorphism
of homotopy groups, by homotopy equivalence. In order to exhibit �n.�/ as an
isomorphism, we can pass to the base point .a; 1=2/, by naturality of transport.
With this base point we have a commutative diagram

�n.A��0; 1� [X;A��0; 1�/ �� �n.Z;Z.f //

�n.A��0; 1� [X;A��0; 1Œ/ ��

��

�n.Z;B [ A � Œ0; 1Œ/.

��

The vertical maps are isomorphism, by homotopy invariance. We apply (6.4.1) to
the bottom map. Note that �i .A��0; 1� [X;A��0; 1�/ Š �i .X;A/ and

�i .B [ A � Œ0; 1Œ; A��0; 1Œ/ Š �i .Z.f /; A/;
again by homotopy invariance. �

(6.10.2) Theorem (Quotient Theorem). Let A � X be a cofibration. Let further
p W .X;A/! .X=A;	/ be the map which collapses A to a point. Suppose that for
each base point a 2 A,

�i .CA;A; a/ D 0 for 0 < i < m; �i .X;A; a/ D 0 for 0 < i < n:

Then p� W �i .X;A; a/ ! �i .X=A;	/ is bijective for 0 < i < m C n � 2 and
surjective for i D nCm � 2.
Proof. By pushout excision, �i .X;A/! �i .X [CA;CA/ is bijective (surjective)
in the indicated range. Note that @ W �i .CA;A; a/ Š �i�1.A; a/, so that the first
hypothesis is a property ofA. The inclusionCA � X[CA is an induced cofibration.
Since CA is contractible, the projection p W X [ CA! X [ CA=CA Š X=A is a
homotopy equivalence. �

(6.10.3) Corollary. Let A � X be a cofibration. Assume that �i .A/ D 0 for
0 � i � m � 1 and �i .X/ D 0 for 0 � i � m � 2. Then �i .X;A/ ! �i .X=A/
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is an isomorphism for 0 < i � 2m � 1. We use this isomorphism in the exact
sequence of the pair .X;A/ and obtain an exact sequence

�2m�1.A/! �2m�1.X/! �2m�1.X=A/! �2m�2.A/
! � � � ! �mC1.X/! �mC1.X=A/! �m.A/! 0:

A similar exact sequence exists for an arbitrary pointed map f W AX where a typical

portion comes from the cofibre sequence �i .A/
f��! �i .X/

f1���! �i .C.f //. �

We now generalize the suspension theorem. Let .X;	/ be a pointed space.
Recall the suspension †X and the homomorphism †� W �n.X/! �nC1.†X/.

(6.10.4) Theorem. Let X be a well-pointed space. Suppose �i .X/ D 0 for 0 �
i � n. Then †� W �j .X/! �jC1.†X/ is bijective for 0 � j � 2n and surjective
for j D 2nC 1.
Proof. LetCX D X�I=.X�1[f	g�I / be the cone onX . We have an embedding
i W X ! CX , x 7! Œx; 0� which we consider as an inclusion. The quotient CX=X
can be identified with†X . From the assumption that f	g � X is a cofibration one
concludes that i is a cofibration (Problem 1). Since CX is contractible, the exact
sequence of the pair .CX;X/ yields an isomorphism @ W �jC1.CX;X/ ' �j .X/.
The inverse isomorphism sends an element represented by f W I n ! X to the
element represented by f � id.I /. From this fact we see

†� D p� ı @�1 W �j .X/ �jC1.CX;X/@��
p� �� �jC1.†X/;

with the quotient map p W CX ! CX=X D †X . We can therefore prove the
theorem by showing that p� is bijective or surjective in the same range. This
follows from the quotient theorem (6.10.2). �

(6.10.5) Theorem. Let X and Y be well-pointed spaces. Assume �i .X/ D 0 for
i < p .� 2/ and �i .Y / D 0 for i < q .� 2/. Then the inclusion X _ Y !
X � Y induces an isomorphism of the �i -groups for i � p C q � 2. The groups
�i .X � Y;X _ Y / and �i .X ^ Y / are zero for i � p C q � 1.
Proof. We first observe that j W �i .X _ Y / ! �i .X � Y /, induced by the inclu-
sion, is always surjective. The projections onto the factors induce isomorphisms
k W �i .X � Y / Š �i .X/ � �i .Y /. Let jX W X ! X _ Y and j Y W Y ! X _ Y
denote the inclusions. Let

s W �i .X/ � �i .Y /! �i .X _ Y /; .x; y/ 7! jX� .x/C j Y� .y/:
Then sk is right inverse to j . Hence the exact sequence of the pair .X �Y;X _Y /
yields an exact sequence

.	/ 0! �iC1.X � Y;X _ Y /! �i .X _ Y /! �i .X � Y /! 0:
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In the case that i � 2, the sequence splits, since we are then working with abelian
groups; hence

�i .X _ Y / Š �i .X/˚ �i .Y /˚ �iC1.X � Y;X _ Y /; i � 2:
Since the spaces are well-pointed, we can apply the theorem of Seifert–van Kampen
to .X _ Y;X; Y / and see that �1.X _ Y / D 0. We now consider the diagram

�i .X _ Y; Y /

�i .X/

.1/
�������������

�� �i .X _ Y / ��

��

�i .X _ Y;X/

�i .Y /

��
.2/

��������������

with exact row and column. The diagonal arrows are always injective and split; this
is seen by composing with the projections.

Since the spaces are well-pointed, we can apply the pushout excision to the triad
.X _Y;X; Y;	/. It says that (1) and (2) are surjective for i � pCq�2, and hence
bijective (since we already know the injectivity).

We now apply the Sum Lemma (11.1.2) to the diagram and conclude that
hjX� ; j Y� i is an isomorphism, and therefore also the map of the theorem is an iso-
morphism. The exact sequence now yields�i .X�Y;X_Y / D 0 for i � pCq�1.

We apply (6.10.2) to �i .X � Y;X _ Y / ! �i .X ^ Y /. By what we have
already proved, we can apply this theorem with the data n D p C q � 1 and
m D min.p � 1; q � 1/. We also need that X _ Y ! X � Y is a cofibration. This
is a consequence of the product theorem for cofibrations. �

(6.10.6) Proposition. Let .Yj j j 2 J / be the family of path components of Y and
cj W Yj ! Y the inclusion. Then

hcj� i W
L
j2J �k.Y

C
j ^ Sn/! �k.Y

C ^ Sn/
is an isomorphism for k � n.
Proof. Suppose Y is the topological sum of its path components. Then we have
a homeomorphism Y C ^ Sn Š W

j2J Y
C
j ^ Sn, and the assertion follows for

finite J by induction on the cardinality of J from (6.10.5) and for general J then
by a compactness argument. For general Y it suffices to find a 1-connected map
X ! Y such that X is the topological sum of its path components, because then
XC ^ Sn ! Y C ^ Sn is .nC 1/-connected by (6.7.10) (and similarly for the path
components). �
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(6.10.7) Proposition. Let Y be k-connected .k � 0/ and Z be l-connected
.l � �1/ and well-pointed. Then the natural maps

�j .Z/! �j .Y �Z; Y � 	/! �j .Y �Z=Y � 	/! �j .Z/

are isomorphisms for 0 < j � k C l C 1.
Proof. The first map is always bijective for j � 1; this is a consequence of the
exact sequence of the pair .Y �Z; Y �	/ and the isomorphism �j .Y /��j .Z/ Š
�j .Y �Z/. Since the composition of the maps is the identity, we see that the second
map is always injective and the third one surjective. Thus ifp� W �j .Y �Z; Y �	/!
�j .Y � Z=Y � 	 is surjective, then all maps are bijective. From our assumption
about Z we conclude that �j .Y � Z; Y � 	/ D 0 for 0 < j � l (thus there is no
condition for l D 0;�1). The quotient theorem now tells us that p� is surjective
for 0 < j � k C l C 1. �

(6.10.8) Corollary. Let Y be path connected. The natural maps

�k.S
n/! �k.Y � Sn;	 � Sn/! �k.Y � Sn= 	 �Sn/! �k.S

n/

are isomorphisms for 1 � k � n. �

(6.10.9) Proposition. Suppose �i .X/ D 0 for i < p .� 0/ and �i .Y / D 0 for
i < q .� 0/. Then �i .X ? Y / D 0 for i < p C q C 1.
Proof. In the case that p D 0 there is no condition on X . From the definition of
the join we see that X ? Y is always path connected. For p D 0 we claim that
�i .X ? Y / D 0 for i < q C 1. Consider the diagram

X

��

X � Ypr
��

pr
��

pr
��

Y

��

X X�� �� f	g

and apply (6.7.9). In the general case the excision theorem says that the map
�i .CX �Y;X �Y /! �i .X ?Y;X �CY / is an epimorphism for i < pC qC 1.
Now use diagram chasing in the diagram

�i .X � CY / �� �i .X ? Y / �� �i .X ? Y;X � CY / �� �i�1.X � CY /

�i .X � Y /

��

�� �i .CX � Y / ��

��

�i .CX � Y;X � Y / ��

��

�i�1.X � Y /

��

(a morphism between exact homotopy sequences). �
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The excision theorem in the formulation of (6.9.4) has a dual. Suppose given a
pullback diagram

E
F ��

G
��

X

f
��

Y g
�� B

with fibrations f and g. The double mapping cylinder Z.F;G/ can be considered
as the fibrewise join of f and g. It has a canonical map � W Z.F;G/! B .

(6.10.10) Proposition. Suppose f is p-connected and g is q-connected. Then � is
p C q C 1-connected.

Proof. Use fibre sequences and (6.10.9). �

Problems

1. Let �0.X/ D 0 and �i .Y / D 0 for i < q.� 2/. Then �i .X/ ! �i .X _ Y / is an
isomorphism for i < q. Show also �2.X � Y;X _ Y / D 0.
2. Let X and Y be 0-connected and well-pointed. Show �1.X ^ Y / D 0.
3. Show that �3.D

2; S1/! �3.D
2=S1/ is not surjective.

4. Show�1.S
2_S1; S1/ D 0. Show that�2.S

2_S1; S1/! �2.S
2_S1=S1/ Š �2.S

2/

is surjective but not injective.
5. For X D Y D S1 and i D 1 the sequence .	/ does not split. The fundamental group
�1.S

1 _ S1/ D Z 	Z has no subgroup isomorphic to Z˚Z.
6. Show that the diagram

X � @I [ f	g � I p
��

\
��

X

i
��

X � I �� CX

with p.x; 0/ D x; p.x; 1/ D 	; p.	; t / D 	 is a pushout.
7. If X is well-pointed, then †X is well-pointed.
8. Some hypothesis like e.g. well-pointed is necessary in both (6.10.1) and (6.10.4). Let
A D f0g [ fn�1 j n 2 Zg and A D A � 0 � X D A � I=A � 1 with base point .0; 0/.
Then �1.†X/ and �1.A/ are uncountable;†� W �0.X/! �1.†X/ is not surjective. Note:
A � X is a cofibration and X=A is well-pointed.
9. Let e1; : : : ; enC1 be the standard basis of unit vectors in RnC1, and let e1 be the base
point of Sn. A pointed homeomorphism hn W †Sn Š SnC1 is

hn W †Sn ! SnC1; .x; t/ 7! 1
2
.e1Cx/C 1

2
cos 2�t � .e1�x/C 1

2
je1 � xj sin 2�t �enC2

where RnC1 D RnC1 � 0 � RnC2.
10. Let K � RnC1 be compact. Show that each map f W K ! Sn has an extension to the
complement RnC1 X E of a finite set E. One can choose E such that each component of
RnC1 XK contains at most one point of E.



158 Chapter 6. Homotopy Groups

11. Determine �2n�1.S
n _ Sn/ for n � 2.

12. Let fj be a self-map of Sn.j /. Show d.f1 ? f2/ D d.f1/d.f2/.
13. Let H W �3.S

2/ ! Z be the isomorphism which sends (the class of the) Hopf map
� W S3 ! S2 to 1 (the Hopf invariant). Show that for f W S3 ! S3 and g W S2 ! S2 the
relations H.˛ ı f / D d.f /H.˛/ and H.g ı ˛/ D d.g/2H.˛/ hold.



Chapter 7

Stable Homotopy. Duality

The suspension theorem of Freudenthal indicates that homotopy theory simplifies
by use of iterated suspensions. We use this idea to construct the simplest stable ho-
motopy category. Its construction does not need extensive technical considerations,
yet it has interesting applications. The term “stable” refers to the fact that iteration
of suspension induces after a while a bijection of homotopy classes.

We use the stable category to give an introduction to homotopical duality theory.
In this theory the stable homotopy type of a closed subspace X � Rn and its
complement Rn XX are compared. This elementary treatment of duality theory is
based on ideas ofAlbrecht Dold and Dieter Puppe; see in particular [54]. It is related
to the classical Alexander duality of homology theory and to Spanier–Whitehead
duality.

We introduced a naive form of spectra and us them to define spectral homology
and cohomology theories. The homotopical Euclidean complement duality is then
used to give a simple proof for theAlexander duality isomorphism. In a later chapter
we reconsider duality theory in the context of product structures.

7.1 A Stable Category

Pointed spacesX andY are called stablyhomotopy equivalent, in symbolsX 's Y ,
if there exists an integer k � 0 such that the suspensions †kX and †kY are
homotopy equivalent. Pointed maps f; g W X ! Y are called stably homotopic,
in symbols f 's g, if for some integer k the suspensions †kf and †kg are
homotopic. We state some of the results to be proved in this chapter which use
these notions.

(7.1.1) Theorem (Stable Complement Theorem). Let X and Y be homeomorphic
closed subsets of the Euclidean space Rn. Then the complements RnXX and RnXY
are either both empty or they have the same stable homotopy type with respect to
arbitrary base points.

In general the complements themselves can have quite different homotopy type.
A typical example occurs in knot theory, the case that X Š Y Š S1 are subsets
of R3. On the other hand the stable homotopy type still carries some interesting
geometric information: see (7.1.10).

(7.1.2) Theorem (Component Theorem). Let X and Y be closed homeomorphic
subsets of Rn. Then �0.Rn XX/ and �0.Rn X Y / have the same cardinality.
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Later we give another proof of Theorem (7.1.2) based on homology theory, see
(10.3.3). From the component theorem one can deduce classical results: The Jordan
separation theorem (10.3.4) and the invariance of domain (10.3.7).

Theorem (7.1.1) is a direct consequence of (7.1.3). One can also compare
complements in different Euclidean spaces. The next result gives some information
about how many suspensions suffice.

(7.1.3) Theorem. Let X � Rn and Y � Rm be closed subsets and h W X ! Y a
homeomorphism. Suppose n � m. Then the following holds:

(1) If Rn 6D X , then Rm 6D Y , and h induces a canonical homotopy equivalence
†mC1.Rn XX/ ' †nC1.Rm X Y / with respect to arbitrary base points.

(2) If Rn D X and Rm 6D Y , then n < m and†nC1.RmXY / ' Sm, i.e., RmXY
has the stable homotopy type of Sm�n�1.

(3) If Rn D X and Rm D Y , then n D m.

In many cases the number of suspensions is not important. Since it also depends
on the situation, it is convenient to pass from homotopy classes to stable homotopy
classes. This idea leads to the simplest stable category.

The objects of our new category ST are pairs .X; n/ of pointed spaces X and
integers n 2 Z. The consideration of pairs is a technical device which allows for a
better formulation of some results. Thus we should comment on it right now.

The pair .X; 0/ will be identified with X . The subcategory of the objects
.X; 0/ D X with morphisms the so-called stable homotopy classes is the geo-
metric input. For positive n the pair .X; n/ replaces the n-fold suspension †nX .
But it will be convenient to have the object .X; n/ also for negative n (“desuspen-
sion”). Here is an interesting example. In the situation of (7.1.3) the homotopy
equivalence†mC1.RnXX/! †nC1.RmXY / induced by h represents in the cat-
egory ST an isomorphism h� W .RnXX;�n/! .RmXY;�m/. In this formulation
it then makes sense to say that the assignment h 7! h� is functor. (Otherwise we
would have to use a mess of different suspensions.) Thus if X is a space which
admits an embedding i W X ! Rn as a proper closed subset for some n, then the
isomorphism type of .Rn X i.X/;�n/ in ST is independent of the choice of the
embedding. Hence we have associated to X a “dual object” in ST (up to canonical
isomorphism).

Let †tX D X ^ S t be the t -fold suspension of X . As a model for the sphere
S t we use either the one-point compactification Rt [ f1g or the quotient space
S.t/ D I t=@I t . In these cases we have a canonical associative homeomorphism
Sa ^ Sb Š SaCb which we usually treat as identity. Suppose n;m; k 2 Z are
integers such that nC k � 0;mC k � 0. Then we have the suspension morphism

† W ŒX^SnCk; Y ^SmCk�0 ! ŒX^SnCkC1; Y ^SmCkC1�0; f 7! f ^id.S1/:

We form the colimit over these morphisms, colimkŒX ^ SnCk; Y ^ SmCk�0. For
nCk � 2 the set ŒX ^SnCk; Y ^SmCk�0 carries the structure of an abelian group
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and † is a homomorphism. The colimit inherits the structure of an abelian group.
We define as morphism group in our category ST

ST..X; n/; .Y;m// D colimkŒX ^ SnCk; Y ^ SmCk�0:

Formation of the colimit means the following: An element of ST..X; n/; .Y;m//
is represented by pointed maps fk W X ^ SnCk ! Y ^ SmCk , and fk , fl ; l �
k represent the same element of the colimit if †l�kfk ' fl . Composition of
morphisms is defined by composition of representatives. Let fk W X ^ SnCk !
Y ^ SmCk and gl W Y ^ SmCl ! Z ^ SpCl be representatives of morphisms and
let r � k; l . Then the following composition of maps represents the composition
of the morphisms (dotted arrow):

X ^ SnCr D X ^ SnCk ^ S r�k

��

†r�kfk �� Y ^ SmCk ^ S r�k
D
��

Z ^ SpCr D Z ^ SpCl ^ S r�l Y ^ SmCl ^ S r�l :
†r�lgl��

One verifies that this definition does not depend on the choice of representatives.
The group structure is compatible with the composition

ˇ ı .˛1 C ˛2/ D ˇ ı ˛1 C ˇ ı ˛2; .ˇ1 C ˇ2/ ı ˛ D ˇ1 ı ˛ C ˇ2 ı ˛:
The category ST has formal suspension automorphisms†p W ST! ST, p 2 Z

.X; n/ 7! .X; nC p/; f 7! †pf:

If f W .X; n/! .Y;m/ is represented by fk W †nCkX ! †mCkY (with nCk � 0,
mC k � 0, k � jpj), then †pf is represented by

.†pf /k D †p.fk/ W †nCkCpX ! †mCkCpY; p � 0;
.†pf /kCjpj D fk W †nCkCpCjpjX ! †mCkCpCjpjY; p � 0:

The rules †0 D id.ST/ and †p ı†q D †pCq show that †p is an automorphism.
Forp > 0we call†p thep-fold suspension and forp < 0 thep-fold desuspension.
We have a canonical isomorphism �p W .X; n/ ! .†pX; n � p/; it is represented
by the identity X ^ SnCk ! .X ^ Sp/ ^ SnCk�p for nC k � p � 0. We write
X for the object .X; 0/. Thus for positive n the object .X; n/ can be replaced by
†nX .

(7.1.4) Example. Pointed spaces X; Y are stably homotopy equivalent if and only
if they are isomorphic in ST. The image ST.f / of f W X ! Y in ST.X; Y / is called
the stable homotopy class of f . Maps f; g W X ! Y are stably homotopic if and
only if they represent the same element in ST.X; Y /. The groups ST.Sk; S0/ D
colimn �nCk.Sn/ are the stable homotopy groups of the spheres. Þ
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(7.1.5) Example. It is in general difficult to determine morphism groups in ST. But
we know that the category in non-trivial. The suspension theorem and the degree
theorem yield

ST.Sn; Sn/ D colimkŒS
nCk; SnCk�0 Š Z:

The composition of morphisms corresponds to multiplication of integers. Þ

(7.1.6)Proposition. LetY bepathwise connected. Wehave the embedding i W Sn !
Y C ^ Sn, x 7! .	; x/ and the projection p W Y C ^ Sn ! Sn, .y; x/ 7! x with
pi D id. They induce isomorphisms of the �k-groups for k � n � 1.
Proof. Let n D 1. Then Y C ^S1 Š Y �S1=Y � f	g is path connected. The base
point of Y C is non-degenerate. Hence the quotient †0.Y C/ ! †.Y C/ from the
unreduced suspension to the reduced suspension is an h-equivalence. The projection
Y ! P onto a point induces a 2-connected map between double mapping cylinders

†0.Y C/ D Z.	  Y C f	g ! 	/! Z0.	  P C f	g ! 	/ D †0.PC/ Š S1:
From this fact one deduces the assertion for n D 1.

We now consider suspensions

�k.S
n/

i� ��

†
��

�k.Y
C ^ Sn/
†Y
��

p� �� �k.S
n/

†
��

�kC1.SnC1/
i� �� �kC1.Y C ^ SnC1/

p� �� �kC1.SnC1/:

The vertical morphisms are bijective (surjective) for k � 2n� 2 (k D 2n� 1). For
n D 1 �1.Y

C ^ S1/ Š Z. Since �2.Y C ^ S2/ contains �2.S2/ Š Z as a direct
summand, we conclude that †Y is an isomorphism. For n � 2 we can use directly
the suspension theorem (6.10.4). �

(7.1.7) Proposition. Let .Yj j j 2 J / be the family of path components of Y and
cj W Yj ! Y the inclusion. Let n � 2. Then

hcj� i W
L
j2J

�k.Y
C
j ^ Sn/! �k.Y

C ^ Sn/

is an isomorphism for 0 � k � n. In particular �n.Y C ^ Sn/ is a free abelian
group of rank j�0.Y /j.
Proof. (7.1.6) and (6.10.6). �

(7.1.8) Proposition. Let Y be well-pointed and n � 2. Then �n.Y ^ Sn/ is
a free abelian group of rank j�0.Y /j � 1 and the suspension �n.Y ^ Sn/ !
�nC1.Y ^ SnC1/ is an isomorphism.
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From the exact homotopy sequence of the pair .Y C^Sn; Sn/we conclude that
�k.Y

C ^ Sn; Sn/ D 0 for 0 < k < n. The quotient theorem (6.10.2) shows that
�k.Y

C ^ Sn; Sn/ ! �k.Y
C ^ Sn=Sn/ Š �k.Y ^ Sn/ is bijective (surjective)

for 0 < k � 2n � 2 (k D 2n � 1). From the exact sequence 0 ! �n.S
n/ !

�n.Y
C^Sn/! �n.Y

C^Sn; Sn/! 0we deduce a similar exact sequence where
the relative group is replaced by �n.Y ^Sn/. The inclusion of �n.Sn/ splits. Now
we can use (7.1.7).

(7.1.9) Corollary. LetX be a well-pointed space. Then ST.S0; X/ is a free abelian
group of rank j�0.X/j � 1. Þ

The group ST.S0; X/only depends on the stable homotopy type ofX . Therefore
we can state:

(7.1.10) Corollary. Let X and Y be well-pointed spaces of the same stable homo-
topy type. Then j�0.X/j D j�0.Y /j. Therefore (7.1.2) is a consequence of (7.1.3).

Þ

The category ST has a “product structure” induced by the smash product. The
category ST together with this additional structure is called in category theory
a symmetric tensor category (also called a symmetric monoidal category). The
tensor product of objects is defined by

.X;m/˝ .Y; n/ D .X ^ Y;mC n/:

Let

fk W X ^ SmCk ! X 0 ^ Sm0Ck; gl W Y ^ SnCl ! Y 0 ^ Sn0Cl

be representing maps for morphisms f W .X;m/ ! .X 0; m0/ and g W .Y; n/ !
.Y 0; n0/. A representing morphism .f ˝ g/kCl is defined to be .�1/k.nCn0/ times
the composition � 0 ı .fk ^ gl/ ı � (dotted arrow)

X ^ Y ^ SmCkCnCl � ��

��

X ^ SmCk ^ Y ^ SnCl

fk^gl

��

X 0 ^ Y 0 ^ Sm0CkCn0Cl X 0 ^ Sm0Ck ^ Y 0 ^ Sn0Cl� 0
��

where � and � 0 interchange two factors in the middle. Now one has to verify:
(1) The definition does not depend on the representatives; (2) the functor property
.f 0˝g0/.f ˝g/ D f 0f ˝g0g holds; (3) the tensor product is associative. These
requirements make it necessary to introduce signs in the definition. The neutral
object is .S0; 0/. The symmetry c W .X;m/˝ .Y; n/! .Y; n/˝ .X;m/ is .�1/mn
times the morphism represented by the interchange map X ^ Y ! Y ^X .
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Problems

1. The spaces S1�S1 and S1_S1_S2 are not homotopy equivalent. They have different
fundamental group. Their suspensions are homotopy equivalent.
2. The inclusion X � Y ! XC � Y induces for each pointed space Y a homeomorphism
.X � Y /=.X � f	g/.
3. Let X and Y be well-pointed spaces. Then Y ! .X � Y /=.X � f	g/, y 7! .	; y/ is a
cofibration.
4. Let P be a point. We have an embedding PC ^ Y ! XC ^ Y and a canonical homeo-
morphism X ^ Y ! XC ^ Y=PC ^ Y .

7.2 Mapping Cones

We need a few technical results about mapping cones. Let f W X ! Y be a pointed
map. We use as a model for the (unpointed) mapping coneC.f / the double mapping
cylinderZ.Y  X ! 	/; it is the quotient of Y CX �I Cf	g under the relations
f .x/ � .x; 0/; .x; 1/ � 	. The image of 	 is the basepoint. For an inclusion
� W A � X we write C.X;A/ D C.�/. For empty A we have C.X;;/ D XC.
Since we will meet situations where products of quotient maps occur, we work in
the category of compactly generated spaces where such products are again quotient
maps. The mapping cone is a functor C W TOP.2/ ! TOP0; a map of pairs
.F; f / W .X;A/! .Y; B/ induces a pointed map C.F; f / W C.X;A/! C.Y;B/,
and a homotopy .Ft ; ft / induces a pointed homotopyC.Ft ; ft /. We note for further
use a consequence of (4.2.1):

(7.2.1) Proposition. If F and f are h-equivalences, then C.F; f / is a pointed
h-equivalence. �

(7.2.2) Example. We write C n D C.Rn;RnX0/. This space will be our model for
the homotopy type ofSn. In order to get a homotopy equivalenceC n ! Sn, we ob-
serve thatSn is homeomorphic to the double mapping cylinderZ.	  Sn�1 ! 	/.
We have the canonical projection from C n D Z.Rn  Rn X 0! 	/. An explicit
homotopy equivalence is .x; t/ 7! .sin�t x

kxk ; cos�t/, x 7! .0; : : : ; 0; 1/. Þ

(7.2.3) Example. Let X � Rn be a closed subspace. Then

C.Rn;RnXX/ D Z.Rn  RnXX ! 	/ ' Z.	  RnXX ! 	/ D †0.RnXX/;
the unpointed suspension. If X D Rn, then this space is h-equivalent to S0. If
X 6D Rn, then Rn XX is well-pointed with respect to any point and †0.Rn XX/ is
h-equivalent to the pointed suspension †.Rn XX/. Þ

We are mainly interested in the homotopy type of C.X;A/ (under f	g C X ).
It is sometimes convenient to provide the set C.X;A/ with a possibly different
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topology which does not change the homotopy type. Set theoretically we can view
C.X;A/ as the quotients C1.X;A/ D .X � 0 [ A � I /=A � 1 or C2.X;A/ D
.X � 0 [ A � I [ X � 1/=X � 1. We can provide C1 and C2 with the quotient
topology. Then we have canonical continuous maps p W C.X;A/! C1.X;A/ and
q W C1.X;A/! C2.X;A/ which are the identity on representative elements.

(7.2.4) Lemma. The maps p and q are homotopy equivalences under f	g CX .

Proof. Define Np W C1.X;A/! C.X;A/ by

Np.x; t/ D x; t � 1=2; Np.a; t/ D .a;max.2t � 1; 0//; Np.a; 1/ D 	:
One verifies that this assignment is well-defined and continuous. A homotopy
p Np ' id is given by ..x; t/; s/ 7! .x; st C .1 � s/max.2t � 1; 0//. A similar
formula works for Npp ' id. Define Nq W C2.X;A/! C1.X;A/ by

Nq.x; t/ D .x;min.2t; 1//; t < 1; Nq.x; t/ D 	 D fA � 1g; t � 1=2:
Again linear homotopies in the t -coordinate yield homotopies from q Nq and Nqq to
the identity. �

(7.2.5) Proposition (Excision). LetU � A � X and suppose there exists a function
� W X ! I such that U � ��1.0/ and ��1Œ0; 1Œ � A. Then the inclusion of pairs
induces a pointed h-equivalence g W C.X X U;A X U/! C.X;A/.

Proof. Set �.x/ D max.2�.x/ � 1; 0/. A homotopy inverse of g is the map
f W .x; t/ 7! .x; �.x/t/. The definition of f uses the notation C2 for the map-
ping cone. The homotopies from fg and gf to the identity are obtained by a linear
homotopy in the t -coordinate. �

(7.2.6) Remark. Mapping cones of inclusions are used at various occasions to
relate the category TOP.2/ of pairs with the category TOP0 of pointed spaces. We
make some general remarks which concern the relations. They will be relevant for
the investigation of homology and cohomology theories.

Let Qh W TOP0 ! C be a homotopy invariant functor. We define an associated
functor h D P Qh W TOP.2/ ! C by composition with the mapping cone functor
.X;A/ 7! C.X;A/. The functor P Qh is homotopy invariant in a stronger sense: If
f W .X;A/ ! .Y; B/ is a map of pairs such that the components f W X ! Y and
f W A ! B are h-equivalences, then the induced map h.X;A/ ! h.Y;B/ is an
isomorphism (see (7.2.1)). Moreover h satisfies excision: Under the hypothesis of
(7.2.5) the inclusion induces an isomorphism h.X X U;A X U/ Š h.X;A/.

Conversely, let h W TOP.2/! C be a functor. We define an associated functor
Rh D Qh on objects byRh.X/ D h.X;	/ and with the obvious induced morphisms.
If h is homotopy invariant, then also Rh.
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The compositionPR is given byPRh.X;A/ D h.C.X;A/;	/. We have natural
morphisms

h.C.X;A/;	/! h.C.X;A/; CA/ h.C.X;A/ X U;CA X U/ h.X;A/:

HereCA is the cone onA andU � CA is the subspace with t -coordinates in Œ1=2; 1�.
If h is strongly homotopy invariant and satisfies excision, then these morphisms are
isomorphisms, i.e., PR is naturally isomorphic to the identity.

The compositionRP is given byRP Qh.X/ D Qh.C.X;	//. There is a canonical
projection C.X;	/! X . It is a pointed h-equivalence, if the inclusion f	g ! X

is a cofibration. Thus if Qh is homotopy invariant, the composition RP is naturally
isomorphic to the identity on the subcategory of well-pointed spaces. Þ

Let .X;A/ and .Y; B/ be two pairs. We call A � Y;X � B excisive in X � Y
if the canonical map p W Z.A � Y  A � B ! X � B/! A � Y [ X � B is a
homotopy equivalence.

(7.2.7) Proposition (Products). Let .A � Y;X � B/ be excisive. Then there exists
a natural pointed homotopy equivalence

˛ W C.X;A/ ^ C.Y;B/! C..X;A/ � .Y; B//:
It is defined by the assignments

.x; y/ 7! .x; y/;

.a; s; y/ 7! .a; y; s/;

.x; b; s/ 7! .x; b; s/;

.a; s; b; t/ 7! .a; b;max.s; t//:

(See the proof for an explanation of notation).

Proof. In the category of compactly generated spaces C.X;A/ ^ C.Y;B/ is a
quotient of

X � Y C A � I � Y CX � B � I C A � I � B � I
under the following relations: .a; 0; y/ � .a; y/, .x; b; 0/ � .x; b/, .a; 0; b; t/ �
.a; b; t/, .a; s; b; 0/ � .a; s; b/, and A � 1 � B � I [ A � I � B � 1 is identified
to a base point 	.

In a first step we show that the smash product is homeomorphic to the double

mapping cylinder Z.X � Y �p �� Z ! f	g/ where

Z D Z.A � Y  A � B ! X � B/:
This space is the quotient of

X � Y C .A � Y C A � B � I CX � B/ � I C A � B � .I � I=I � 0/
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under the following relations: .x; b; 0/ � .x; b/, .a; y; 0/ � .a; y/, .a; b; t; 0/ �
.a; b/, .a; b; 1; s/ � .a; b; s/, and .A� Y CA�B � I CX �B/� 1 is identified
to a base point 	.

The assignment

I � I ! I � I; .u; v/ 7!
(
.2uv; v/; u � 1=2;
.v; 2v.1 � u//; u � 1=2:

induces a homeomorphism �0 W I �I=.I �0/! I �I . Its inverse ˇ0 has the form

I � I X f.0; 0/g ! I � .I X f0g/; .s; t/ 7!
(
.1 � t=2s; s/; s � t;
.s=2t; t/; s � t:

A homeomorphism ˇ W C.X;A/^C.Y;B/! C.�p/ is now defined by ˇ.x; y/ D
.x; y/, ˇ.a; s; y/ D .a; y; s/, ˇ.x; b; t/ D .x; b; t/, ˇ.a; s; b; t/ D .a; b; ˇ0.s; t//.
The diagram

X � Y
D
��

Z
�p

�� ��

p

��

f	g
D
��

X � Y A � Y [X � B��� �� f	g
induces � W C.�p/ ! C.�/. It is a pointed h-equivalence if p is an h-equivalence.
One verifies that ˛ D �ˇ. �

(7.2.8)Remark. The maps˛ are associative: For three pairs .X;A/; .Y; B/; .Z; C /
the relation ˛.˛ ^ id/ D ˛.id^˛/ holds. They are also compatible with the
interchange map. Finally, they yield a natural transformation. Þ

Problems

1. Verify that the map f in the proof of 7.2.5 is continuous. Similar problem for the
homotopies.
2. Let .F; f / W .X;A/ ! .Y; B/ be a map of pairs. If F is n-connected and f .n � 1/-
connected, then C.F; f / is n-connected.
3. Let X D A [ B and suppose that the interiors Aı; Bı still cover X . Then the inclusion
induces a weak homotopy equivalence C.B;A \ B/! C.X;A/.
4. Construct explicit h-equivalences Cn ! Rn [ f1g D S .n/ such that

Cm ^ Cn
˛ ��

��

CmCn

��

S .m/ ^ S .n/
Š �� S .mCn/

is homotopy commutative.
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7.3 Euclidean Complements

This section is devoted to the proof of (7.1.3). We need an interesting result from
general topology.

(7.3.1) Proposition. LetA � Rm andB � Rn be closed subsets and letf W A! B

be a homeomorphism. Then there exists a homeomorphism of pairs

F W .Rm � Rn; A � 0/! .Rn � Rm; B � 0/
such that F.a; 0/ D .f .a/; 0/ for a 2 A.

Proof. By the extension theorem of Tietze (1.1.2) there exists a continuous exten-
sion ' W Rm ! Rn of f W A! B � Rn. The maps

ˆ˙ W Rm � Rn ! Rm � Rn; .x; y/ 7! .x; y ˙ '.x//
are inverse homeomorphisms. Let G.f / D f.a; f .a// j a 2 Ag denote the graph
of f . Then ˆC sends A � 0 homeomorphically to G.f / by .a; 0/ 7! .a; f .a//.

Let  W Rn ! Rm be a Tietze extension of the inverse g of f . Then we have
similar homeomorphisms

‰˙ W Rn � Rm ! Rn � Rm; .y; x/ 7! .y; x ˙  .y//:
The desired homeomorphismF is the composition‰�ı�ıˆC where � interchanges
Rm and Rn (and sends G.f / to G.g/). �

LetX � Rn and Y � Rm be closed subsets and f W X ! Y a homeomorphism.
The induced homeomorphism F from (7.3.1) can be written as a homeomorphism

F W .Rn;Rn XX/ � .Rm;Rm X 0/! .Rm;Rm X Y / � .Rn;Rn X 0/:
We apply the mapping cone functor to F and use (7.2.2) and (7.2.7). The result is
a homotopy equivalence

C.Rn;Rn XX/ ^ Sm ' C.Rm;Rm X Y / ^ Sn:
If X 6D Rm and Y 6D Rm we obtain together with (7.2.3)

†mC1.Rn XX/ ' †nC1.Rm X Y /:
If X 6D Rn then we have C.Rn;Rn X X/ ' †.Rn X X/, and if X D Rn then

we have C.Rn;Rn XX/ ' S0.
Suppose X 6D Rn but Y D Rm. Then †mC1.Rn XX/ ' Sn. Since n � m the

homotopy group �n.†mC1.Rn X X// D 0 and �n.Sn/ Š Z. This contradiction
shows that Y 6D Rm.
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SupposeX D Rn and Y 6D Rm. Then n D m is excluded by the previous proof.
Thus

Sm ' C.Rn;Rn XX/ ^ Sm ' C.Rm;Rm X Y / ^ Sn ' †mC1.Rm X Y /:
If X D Rn and Y D Rm, then

Sn ' †nC.Rn;Rn XX/ ' †mC.Rm;Rm X Y / ' Sm

and therefore m D n.
This finishes the proof of (7.1.3).

7.4 The Complement Duality Functor

The complement duality functor is concerned with the stable homotopy type of
Euclidean complements Rn X X for closed subsets X � Rn. We consider an
associated category E . The objects are pairs .Rn; X/ where X is closed in Rn.
A morphism .Rn; X/ ! .Rm; Y / is a proper map f W X ! Y . The duality
functor is a contravariant functor D W E ! ST which assigns to .Rn; X/ the
object †�nC.Rn;Rn X X/ D .C.Rn;Rn X X/;�n/. The associated morphism
D.f / W †�mC.Rm;Rm X Y / ! †�nC.Rn;Rn X X/ will be constructed via a
representing morphism D.f /mCn. Its construction needs some preparation.

Given the data X � Rn; Y � Rm and a proper map f W X ! Y . Henceforth
we use the notation AjB D .A;AXB/ for pairs B � A. Note that in this notation
AjB �C jD D A�BjC �D. The basic step in the construction of the functor will
be an associated homotopy class

D#f W RnjDn � RmjY ! RnjX � Rmj0:
Here Dn again denotes the n-dimensional standard disk. A scaling function for a
proper map f W X ! Y is a continuous function ' W Y ! �0;1Œ with the property

'.f .x// � kxk; x 2 X:
The next lemma shows the existence of scaling functions with an additional property.

(7.4.1) Lemma. There exists a positive continuous function  W Œ0;1Œ! �0;1Œ
such that the inequality  .kf xk/ � kxk holds for x 2 X . A scaling function in
the sense of the definition is then y 7!  .kyk/.
Proof. The set f �1D.t/ D maxfx 2 X j kf xk � tg is compact, since f is proper.
Let Q .t/ be its norm maximum maxfkxk j x 2 X; kf xk � tg. Then Q .kf xk/ D
maxfkak j a 2 X; kfak � kf xkg � kxk. The function Q W Œ0;1Œ! Œ0;1Œ is
increasing. There exists a continuous increasing function W Œ0;1Œ! �0;1Œ such
that  .t/ � Q .t/ for each t � 0. �
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The set of scaling functions is a positive convex cone. Let '1; '2 be scaling
functions and 0 � 	 � 1; then 	'1 C .1 � 	/'2 is a scaling function. Let Q' � ';
if ' is a scaling function then also Q'.

Let ' be a scaling function and set M.'/ D f.x; y/ j '.y/ � kxkg. Then we
have a homeomorphism

RnCmjDn � Y ! RnCmjM.'/; .x; y/ 7! .'.y/ � x; y/:
The graph G.f / D f.x; f x/ j x 2 Xg of f is contained in M.'/. We thus can
continue with the inclusion and obtain a map D1.f; '/ of pairs

RnCmjDn � Y ! RnCmjG.f /; .x; y/ 7! .'.y/ � x; y/:
The homotopy class of D1.f; '/ does not depend on the choice of the scaling
function: If '1; '2 are scaling functions, then

.x; y; t/ 7! ..t'1.y/C .1 � t /'2.y// � x; y/
is a homotopy from D1.f; '2/ to D1.f; '1/. A continuous map f W X ! Y has a
Tietze extension Qf W Rn ! Rm. The homeomorphism .x; y/ 7! .x; y � Qf .x// of
RnCm sends .x; f .x// to .x; 0/. We obtain a homeomorphism of pairs

D2.f; Qf / W RnCmjG.f /! RnCmjX � 0:
The homotopy class is independent of the choice of the Tietze extension: The
homotopy .x; y; t/ 7! .x; y � .1 � t / Qf1.x/ � t Qf2.x// proves this assertion. The
duality functor will be based on the composition

D#.f / D D2.f; Qf / ıD1.f; '/ W RnjDn � RmjY ! RnjX � Rmj0:
We have writtenD#.f /, since the homotopy class is independent of the choice of the
scaling function and the Tietze extension. The morphism Df W †�mC.RmjY / !
†�nC.RnjX/ is defined by a representative of the colimit:

.Df /nCm W †nC.RmjY /! †mC.RnjX/:
Consider the composition

C.RmjY / ^ C n � ��

.�1/nm.Df /nCm

��

C n ^ C.RmjY / C.RnjDn/ ^ C.RmjY /'��

˛

��

C.RnjX/ ^ Cm C.RnjX � Rmj0/˛�1
�� C.RnjDn � RmjY /:CD#f��

Explanation. � interchanges the factors; the inclusion RjDn ! Rnj0 induces a
homotopy equivalence C.RnjDn/ ! C n; the morphisms ˛ comes from (7.2.7);
and CD#f is obtained by applying the mapping cone toD#f ; finally, we multiply
the homotopy class of the composition by .�1/nm. We take the freedom to use
.Df /nCm W C.RmjY / ^ C n ! C.RnjX/ ^ Cm as our model for Df , i.e., we do
not compose with the h-equivalences of the type C n ! Sn obtained in (7.2.2).
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(7.4.2) Lemma. Let f be an inclusion, f W X � Y � Rn. Then Df has as
a representative the map C.RnjY / ! C.RnjX/ induced by the inclusion. In
particular the identity of X is send to the identity.

Proof. We take the scaling function y 7! kyk C 1 and extend f by the identity.
ThenD#.f / is the map .x; y/ 7! ..kykC 1/ � x; y � .kykC 1/ � x/. The mapD1
is .x; y/ 7! ..kyk C 1/ � x; y/ and the homotopy

.x; y; t/ 7! ..1 � t /.kyk C 1/ � x C t .x C y/; y/

is a homotopy of pairs fromD1 to .x; y/ 7! .xCy; y/. HenceD2ıD1 is homotopic
to .x; y/ 7! .xC y;�x/ and the homotopy .x; y; t/ 7! ..1� t /xC y;�x/ shows
it to be homotopic to .x; y/ 7! .y;�x/. Now interchange the factors and observe
that x 7! �x has the degree .�1/n D .�1/n�n. �

Next we consider the case of a homeomorphism f W X ! Y with inverse g.
Let Qg W Rm ! Rn be a Tietze extension of g. Then:

(7.4.3) Lemma. The maps .x; y/ 7! .'.kyk�x; y/ and .x; y/ 7! .xC Qg.y/; y/ are
as maps of pairs RnjDn � RmjY ! RnCmjG.f / homotopic. Here  W Œ0;1Œ!
�0;1Œ is a function such that  .kf xk/ � kxk and '.r/ D 1C  .r/.
Proof. We use the linear homotopy ..1� t /.xC Qg.y//C t'.kyk/ �x; y/. Suppose
this element is contained in G.f /. Then y 2 Y and hence g.y/ D Qg.y/, and the
first component equals g.y/. We solve for x and obtain

x D t

1C t .kyk/g.y/:

Then we take the norm

kxk D t

1C t .kyk/kgyk �
t .kyk/

1C t .kyk/ < 1:

Hence .x; y/ 2 Dn � Y . �

In the situation of the previous lemma the map D#.f / is homotopic to the
restriction of the homeomorphism Rnj0�RmjY ! RnjX �Rmj0 obtainable from
(7.3.1). Another special case is obtained from a homeomorphism h of Rm and
X � Rm; Y D h.X/ � Rm. In this case h and h�1 are Tietze extensions.

For the verification of the functor property we start with the following data:
.Rn; X/, .Rm; Y /, .Rp; Z/ and proper maps f W X ! Y , g W Y ! Z. We have the
inclusion G.g/ � Rm � Rp and the proper map h W X ! G.g/, x 7! .f x; gf x/.
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(7.4.4) Proposition. The diagram

RnjDn � RmjDm � RpjZ �nm�1
��

1�D#g
��

RmjDm � RnjDn � RpjZ
1�D#.gf /
��

RnjDn � RmjY � Rpj0
D#f �1
��

RmjDm � RnjX � Rpj0
\
��

RnjX � Rmj0 � Rpj0 �nm�1
�� Rmj0 � RnjX � Rpj0

is homotopy commutative. Here �nm are the appropriate interchange maps.

Proof. For the proof we use the intermediate morphism D#.h/. In the sequel we
skip the notation for the scaling function and the Tietze extension. If 'f is a scaling
function for f and 'gf a scaling function for gf , then

 1 W Y �Z ! �0;1Œ ; .y; z/ 7! 'f .y/;  2 W Y �Z ! �0;1Œ ; .y; z/ 7! 'gf .z/

are scaling functions for h. We have a factorization D2.h/ D D2
2.h/D

1
2.h/ where

D1
2.h/.x; y; z/ D .x; y � Qf .x/; z/ and D2

2.h/.x; y; z/ D .x; y; z � �gf .x// and

we use Qh D . Qf ; �gf / with �gf D Qg Qf . The diagram

RnCmCpjfx; 0; gf xg �nm�1
��

D2
2
.h/

��

RmCnCpjf0; x; gf xg
1�D2.gf /
��

RnCmCpjfx; 0; 0g �nm�1
�� RmCnCpjf0; x; 0g

commutes. The notation f.x; 0; gf x/g means that we take the set of all element of
the given form where x 2 X . We verify that the diagram

RnjDn � RmjDm � RpjZ �nm�1
��

�
��

RmjDm � RnjDn � RpjZ
��D1.gf /
��

RnCmCpjfx; 0; gf xg �nm�1
�� RmCnCpjf0; x; gf xg

with � D D1
2h ıD1h ı .1 �D1g/ and � W RmjDm � Rmj0 commutes up to homo-

topy. The map � is, with the choice 'h D 'gf , the assignment

.x; y; z/ 7! .'gf .z/ � x; 'g.z/ � y � Qf .'gf .z/ � x/; z/:
We use the linear homotopy .'gf .z/ �x; s.'g.z/ �y� Qf .'gf .z/ �x/C .1� s/y; z/.
We verify that this is a homotopy of pairs, i.e., an element f Qx; 0; gf . Qx/g only occurs
as the image of an element .x; y; z/ 2 Dn �Dm �Z. Thus assume

(i) Qx D 'gf .z/ � x 2 X ;
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(ii) s'g.z/ � y � s Qf .'gf .z/ � x/C .1 � s/y D 0;
(iii) z D gf . Qx/.

Since 'gf .z/ � x 2 X , we can replace in (ii) Qf by f . We apply 'gf to (iii) and
obtain

'gf .z/ D 'gf .gf .'gf .z/ � x// � 'gf .z/ � kxk;
hence kxk � 1. The equation (ii) for s D 0 says y D 0, hence y 2 Dm. Thus
assume s 6D 0. Then f .'gf .z/ � x/ D .'g.z/C s�1 � 1/ � y. We apply g to this
equation and use (ii):

z D gf .'gf .z/ � x/ D g..'g.z/C s�1 � 1/ � y/:
Finally we apply 'g to this equation and obtain

'g.z/ D 'gg..'g.z/C s�1 � 1/ � y/ � .'g.z/C s�1 � 1/kyk � 'g.z/kyk;
and therefore kyk � 1.

Finally we show that the diagram

RnjDn � RmCpjG.g/ D#.h/ ��

1�D2g

��

RnCmCpjfx; 0; 0g

RnjDn � RmjY � Rpj0
D#.f /�1

�����������������

commutes up to homotopy. In this case we use for h the scaling function  1. Then
D1h W .x; y; z/ 7! .'f .y/ � x; y; z/ and

.D#f � 1/ ı .1 ıD2g/.x; y; z/ D .'f .y/ � x; y � Qf .'f .y/ � x/; z � Qg.y//;

D#.h/.x; y; z/ D .'f .y/ � x; y � Qf .'f .y/ � x/; z � Qg Qf .'f .y/ � x//:
Again we use a linear homotopy with z � Qg..1� t /yC t Qf .'f .y/ � x// as the third
component and have to verify that it is a homotopy of pairs. Suppose the image is
contained in fx; 0; 0g. Then

(i) 'f .y/ � x 2 X ;

(ii) y D Qf .'f .y/ � x/ .i/D f .'f .y/ � x/ 2 Y ;

(iii) z D Qg..1 � t /y C tf .'f .y/ � x// .ii/D g.y/.
(iii) shows that .y; z/ 2 G.g/. We apply 'f to (ii) and see that kxk � 1. The three
diagrams in this proof combine to the h-commutativity of the diagram in (7.4.4).

�

(7.4.5) Proposition. Suppose that h W X � I ! Y is a proper homotopy. Then
D.h0/ D D.h1/.
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Proof. Let j0 W X ! X � I , x 7! .x; 0/. The map is the composition of the
homeomorphism a W X ! X�0 and the inclusion b W X�0 � X�I . ThusDa is an
isomorphism andDb is induced by the inclusion RnC1jX�I � RnC1jX�0; hence
Db is an isomorphism, since induced by a homotopy equivalence (use (7.4.2)).
Thus Dj0 is an isomorphism. The composition pr ıj0 is the identity; hence D.pr/
is inverse toD.j0/. A similar argument for j1 shows thatDj0 D Dj1. We conclude
that the maps ht D h ı jt have the same image under D. �

(7.4.6) Remark. The construction of the dual morphism is a little simpler for a map
between compact subsets of Euclidean spaces. Let X � Rn be compact. Choose a
disk D such that X � D. Then the dual morphism is obtained from

Rnj0 �RmjY 
 RnjD � RmjY � RnCmjG.f /! RnjX � Rmj0
where the last morphism is as before .x; y/ 7! .x; y � Qf .x//. Also the proof of
the functoriality (7.4.4) is simpler in this case.

The composition .D#f � 1/.1�D#g/ is .x; y; z/ 7! .x; y � Qf .x/; z � Qg.y//.
The other composition is .x; y; z/ 7! .x; y; z � Qg Qf .x//. Then we use the homo-
topies of pairs .x; y� Qf .x/; z� Qg..1�t /yCt Qf .x/// and .x; y�t Qf .x/; z� Qg Qf .x//.

Þ

Problems

1. Verify in detail that the commutativity of the diagram in (7.4.4) implies that D is a
functor.
2. Use the homotopy invariance of the duality functor and generalize (7.1.3) as follows.
Suppose X � Rn and Y � Rm are closed subsets which are properly homotopy equivalent.
Let n � m.

(1) If Rn XX 6D ;, then Rm X Y 6D ;:
(2) Let Rn 6D X . For each choice of a base point Rm X Y has the same stable homotopy

type as †n�m.Rn XX/.
(3) If Rn XX is empty and Rm X Y is non-empty, then Rm X Y has the stable homotopy

type of Sm�n�1.

(4) Ifn D m then the complements ofX andY have the same number of path components.

3. LetX � Rn and Y � Rm be closed subsets and f W X ! Y a proper map. Consider the
closed subspace W � Rm � R � Rn of points

.y; t; x/ D
(
y 2 Y; t D 0; x D 0
..1 � t /f .x/; t; tx/; x 2 X; t 2 I:

Then W is homeomorphic to the mapping cylinder Z.f / of f .
4. Let X � Rn and f W X ! Rn � Rm the standard embedding x 7! .x; 0/. Then Df is
represented by the homotopy equivalence

C.RnjX � Rmj0/ ˛ � C.RnjX/ ^ Cm ' C.RnjX/ ^ Sm:
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(Direct proof or an application of (7.4.3).)
5. Let X � Rn be compact. Suppose kxk � r > 0 for x 2 X . Then the constant function
'.t/ D r is a scaling function for each f W X ! Y . Show that the map

C.RmjY / ^ Cn ��! Cn ^ C.RmjY /! C.RnjX/ ^ Cm

which is obtained from the definition in (7.4.6) is homotopic to the map C.D#f / of the
general definition.

7.5 Duality

We have associated to a proper map between closed subsets of Euclidean spaces
a dual morphism in the stable category ST. If X � Rn then the stable homotopy
type of Rn X X or C.RnjX/ is to be considered as a dual object of X . There is a
categorical notion of duality in tensor categories.

Let A and B be pointed spaces. An n-duality between .A;B/ consists of an
evaluation

" W B ^ A! Sn

and a coevaluation
� W Sn ! A ^ B

such that the following holds:

(1) The composition

.1 ^ "/.� ^ 1/ W Sn ^ A! A ^ B ^ A! A ^ Sn

is homotopic to the interchange map � .
(2) The composition

." ^ 1/.1 ^ �/ W B ^ Sn ! B ^ A ^ B ! Sn ^ B
is homotopic to .�1/n� .

We now construct an n-duality for .B;A/ D .C.RnjK/;KC/ where K � Rn

is a suitable space. In the general definition of an n-duality above we now replace
Sn by C n. The evaluation is defined to be

" W C.RnjK/ ^ C.K;;/! C.RnjK �KjK/ C.d/���! C.Rnj0/
where d is the difference map

d W .Rn �K; .Rn XK/ �K/! .Rn;Rn X 0/; .x; k/ 7! x � k
as a map of pairs. This definition works for arbitrary K � Rn.
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Let K � Rn be compact and D � Rn a large disk which containsK. Let V be
an open neighbourhood of K. Consider the following diagram

Rnj0
�V

��

RnjD�
i

�� 	 �� RnjK

V jV � RnjK V jV � RnjKr�1�� V jK
j [
��

��

with the diagonal
 W x 7! .x; x/. We apply the mapping cone functor and (7.2.1),
(7.2.7). The maps i and j induce h-equivalences. We obtain

�V W C n ! V C ^ C.RnjK/:
We want to replace V by K in order to obtain the desired map. This can be done
if we assume that there exists a retraction r W V ! K of K � V . Then we can
compose with rC W V C ! KC and obtain a coevaluation

� W C n ! C.K;;/ ^ C.RnjK/:
We call a closed subspaceK � Rn a Euclidean neighbourhood retract (D ENR)

if there exists a retraction r W V ! K from a suitable neighbourhood V ofK in Rn.
We mention here that this is a property of K that does not depend on the particular
embedding into a Euclidean space; see (18.4.1).

The basic duality properties of " and � are:

(7.5.1)Proposition. Themaps "and�are ann-duality for the pair .KC; C.RnjK//.
Proof. For the proof of the first assertion we consider the diagram

RnjD �KjK ��

˛
����

���
���

���
�

RnjK �KjK
ˇ

��

V jK �KjK
�1
��

j�1
��

V jV � Rnj0 V jV � RnjK �KjK1�d��

with ˛.x; y/ D .y; x/, ˇ.x; y/ D .y; x � y/, and � D .1 � d/.
 � 1/ W .x; y/ 7!
.x; x � y/. The homotopy .x; y; t/ 7! .tx C .1� t /y; x � y/ shows that the right
square is h-commutative and the homotopy .x; y; t/ 7! .y; x � ty/ shows that the
triangle is h-commutative. The axiom (1) of an n-duality now follows if we write
out the morphisms according to their definition and use the result just proved.

For the proof of the axiom (2) we start with the diagram

RnjK � RnjD 1�j 0
��

˛
����

���
���

���
� RnjK � RnjK

ˇ

��

RnjK � V jK1�j
��

�

  ����
����

����
��

.1�r�1/.1�/
��

RnjD � RnjK RnjK �KjK � RnjKd�1��



7.5. Duality 177

with ˛.x; y/ D .�y; x/, ˇ.x; y/ D .x � y; x/, and �.x; y/ D .x � y; y/. The
homotopy .x; y; t/ 7! .x� ty� .1� t /r.y/; y/ shows that the bottom triangle is h-
commutative; the homotopy .x; y; t/ 7! .x�y; .1�t /xCty/ shows � ' ˇ.1�j /;
the homotopy .x; y; t/ 7! .tx � y; x/ shows ˛ ' ˇ.1 � j 0/. Again we write out
the morphisms according to their definition and use this result. �

Given a natural duality for objects via evaluations and coevaluations one can
define the dual of an induced map. We verify that we recover in the case of compact
ENR the morphisms constructed in the previous section. The following three propo-
sition verify that the duality maps have the properties predicted by the categorical
duality theory.

(7.5.2) Proposition. LetX � Rn be compact and a retract of a neighbourhood V .
The following diagram is homotopy commutative

C.RmjY / ^ C n 1^�X ��

�.DfmCn/�

��

C.RmjY / ^ C.X;;/ ^ C.RnjX/
1^C.f /^1
��

Cm ^ C.RnjX/ C.RmjY / ^ C.Y;;/ ^ C.RnjX/:"Y ^1
��

Proof. We reduce the problem to maps of pairs. We use the simplified definition
(7.4.6) of the duality map. First we have the basic reduction

RmjY � Rnj0 RmjY � RnjD ! RmjY � RnjX  RmjY � V jX:
Then the remaining composition RmjY � V jX ! Rmj0�RnjX which involves �,
C.f /, " is the assignment .y; x/ 7! .y � f r.x/; x/. The other map is .y; x/ 7!
.y � Qf .x/; x/. Now we observe that we can arrange that Qf jV D f r (by possibly
passing to a smaller neighbourhood, see Problem 1). �

Dual maps are adjoint with respect to evaluation and coevaluation. This is the
content of (7.5.3) and (7.5.4).

(7.5.3) Proposition. The following diagram is homotopy commutative

C.RnjD/ ^ C.RmjY / ^ C.X;;/ D#f ^1
��

1^1^C.f /
��

C.RnjX/ ^ C.Rmj0/ ^ C.X;;/
."^1/�
��

C.RnjD/ ^ C.RmjY / ^ C.Y;;/ i^" �� C n ^ Cm:
Proof. Consider the diagram

RnjDn � RmjY �X jX D#f �1
��

1�1�f
��

RnjX � Rmj0 �X jX
.d�1/�
��

RnjDn � RmjY � Y jY i�d �� Rnj0 � Rmj0:
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The composition down-right sends the element .a; b; x/ to .a; b � f .x// and the
composition right-down to .'.b/ � a� x; b � Qf .'.b/ � a//. We use the homotopies
.'.b/�a�x; b� Qf .t'.b/�aC.1�t /x// and then ..1�t /aCt .'.b/�a�x/; b�f .x//.

�

(7.5.4) Proposition. LetX andY be compact and retracts of open neighbourhoods.
Then the following diagram is homotopy commutative

C n ^ Cm �^1
��

�.1^�/
��

C.X;;/ ^ C.RnjX/ ^ Cm
C.f /^1^1
��

C.Y;;/ ^ C.RnjD/ ^ C.RmjY / 1^D#f �� C.Y;;/ ^ C.RnjX/ ^ Cm:

Proof. We unravel the definitions and deform suitable maps between pairs. The
composition .1 ^D#f /.� ^ 1/.1 ^ �/ is induced by maps

Rnj0 � Rmj0 RnjD � RmjD�� �� RnjD � RmjY

Y jY � RnjX � Rmj0 RnjD �W jY˛��

��

with ˛.x; y/ D .rY .y/; x; y � Qf .x//. Further investigations concern ˛. We use
the next diagram

RnjD �W jY ��

˛

!!��
����

����
����

RnjX �W jY
˛

��

V jX �W jY��

��

˛

  ����
����

����
��

Y jY � RnjX � Rnj0 .V �W /jG.f /˛�� U jG.f /:��

Let
	 W V �W � I ! Rm; .x; y; t/ 7! ty C .1 � t /f rX .x/:

This homotopy is constant onG.f /. Hence there exists an open neighbourhood U
of G.f / such that 	.U � I / � W . On U we consider the homotopy of ˛ given
by .rY .ty C .1 � t /f rX .x//; x; y � Qf .x//. For t D 0 we obtain the morphism
.f rX .x/; x; y� Qf .x//which is defined on V jX�RmjY . Consider the composition
.C.f / ^ 1 ^ 1/.� ^ 1/. It is induced by

V jX � Rmj0! Y jY � RnjX � Rmj0; .x; y/ 7! .f rX .x/; x; y/:

Now we use the homotopy .f rX .x/; x; y � t Qf .x//. For t D 1 this homotopy is
defined on V jX � RmjY . �
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(7.5.5) Remark. Let X � Rn be a compact ENR and f W X ! X a continuous
map. From the associated n-duality we obtain a homotopy class

	f W Sn ��! XC ^ C.RnjX/ ��! C.RnjX/ ^XC 1^fC

����! C.RnjX/ ^XC "�! Sn:

The degree d.	f / D L.f / 2 Z is an interesting invariant of the map f , the
Lefschetzfixed point index. Iff is the identity, thenL.id/ is the Euler characteristic
of X . [51] [54] Þ

Problems

1. Let A be a closed subset of a normal space X . Let r W W ! A be a retraction of an open
neighbourhood. Choose open sets U; V such that

A � U � xU � V � xV � W:
Choose a continuous function ' W X ! Œ0; 1� such that '.U / D f1g and '.X X V / D f0g.
Let f W A ! Œ0; 1� be continuous. Define F W X ! Œ0; 1� by F.x/ D '.x/ � f r.x/ for
x 2 xV and F.x/ D 0 for x 2 X XV . Then F is a Tietze extension of f and F jU D f r jU .
2. Verify directly that the homotopy class of the coevaluation � does not depend on the choice
of the retraction r W V ! X .
3. The n-dualities which we have constructed can be interpreted as representative elements
for morphisms in the category ST. We obtain

" W .C.RnjX/;�n/˝ .XC; 0/! .S0; 0/

� W .S0; 0/! .XC; 0/˝ .C.RnjX/;�n/:
They satisfy the relations

.1 ^ "/.� ^ 1/ D id; ." ^ 1/.1 ^ �/ D id

which define dualities in tensor categories.

7.6 Homology and Cohomology for Pointed Spaces

A homology theory for pointed spaces with values in the category R-MOD of
left modules over the commutative ring R consists of a family . Qhn j n 2 Z/ of
functors Qhn W TOP0 ! R- MOD and a family .�.n/ j n 2 Z/ of natural suspension
isomorphisms � D �.n/ W Qhn ! QhnC1 ı †. These data are required to satisfy the
following axioms.

(1) Homotopy invariance. For each pointed homotopyft the equality Qhn.f0/ DQhn.f1/ holds.
(2) Exactness. For each pointed map f W X ! Y the induced sequence

Qhn.X/
f� �� Qhn.Y /

f1�
�� Qhn.C.f // is exact.
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Let .Xj j j 2 J / be a family of well-pointed spaces with inclusions i� W X� !W
j2J Xj of the summands. The theory is called additive, ifL

j2J Qhn.Xj /! Qhn
�W

j2J Xj
�
; .xj / 7!P

j2J .ij /�.xj /

is always an isomorphism.
As a variant of the axioms we require the suspension isomorphisms and the

exact sequences only for well-pointed spaces.
If we apply the exactness axiom to the identity of a point P we see that

Qhn.P / D 0. If X and Y are well-pointed, then the inclusion and projection give
a cofibre sequence X ! X _ Y ! Y . This is used to verify that the additivity
isomorphism holds for a finite number of well-pointed spaces. The groups Qhn.S0/
are the coefficient groups of the theory.

A natural transformation of homology theories for pointed spaces consists of
a family of natural transformations Qhn.�/ ! Qkn.�/ which commute with the
suspension isomorphisms.

A cohomology theory for pointed spaces consists of a family of contravari-
ant functors Qhn W TOP0 ! R- MOD and natural suspension isomorphisms � D
� .n/ W Qhn ! QhnC1 ı† such that the analogous axioms (1) and (2) hold. The theory
is called additive, if

Qhn�Wj2J Xj
�!Q

j2J Qhn.Xj /; x 7! ..ij /
�.x//

is always an isomorphism for well-pointed spaces Xj .
In Chapter 10 we define homology theories by the axioms of Eilenberg and

Steenrod. They involve functors on TOP.2/. We show in Section 10.4 that they
induce a homology theory for pointed spaces as defined above.

Given a homology theory Qh� for pointed spaces we construct from it a homology
theory for pairs of spaces as follows. We set hn.X;A/ D Qhn.C.X;A//. It should
be clear that the hn are part of a homotopy invariant functor TOP.2/! R- MOD.
We define the boundary operator as the composition

@ W hn.X;A/ D Qhn.C.iC//
p.i/� �� Qhn.†.AC// Š Qhn�1.AC/ D hn�1.A/:

The isomorphism is the given suspension isomorphism of the theory Qh�. The
Eilenberg–Steenrod exactness axioms holds; it is a consequence of the assumption
that Qh� transforms a cofibre sequence into an exact sequence and of the naturality
of the suspension isomorphism. The excision isomorphism follows from (7.2.5).
We need the additional hypothesis that the covering is numerable. Remark (7.2.6)
is relevant for the passage from one set of axioms to the other.
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7.7 Spectral Homology and Cohomology

In this section we report about the homotopical construction of homology and
cohomology theories. We work in the category of compactly generated spaces. A
pre-spectrum consists of a family .Z.n/ j n 2 Z/ of pointed spaces and a family
.en W †Z.n/ ! Z.n C 1/ j n 2 Z/ of pointed maps. Since we only work with
pre-spectra in this text, we henceforth just call them spectra. A spectrum is called
an �-spectrum, if the maps "n W Z.n/ ! �Z.nC 1/ which are adjoint to en are
pointed homotopy equivalences.

Let Z D .Z.n/; "n/ be an �-spectrum. We define Zn.X/ D ŒX;Z.n/�0 for a
pointed space X . Since Z.n/ is up to h-equivalence a double loop space, namely
Z.n/ ' �2Z.nC 2/, we see thatZn.X/ is an abelian group, and we can viewZn

as a contravariant and homotopy invariant functor TOP0 ! Z- MOD. We define
� W Zn.X/ Š ZnC1.†X/ via the structure maps and adjointness as

ŒX;Z.n/�0
."n/� �� ŒX;�Z.nC 1/�0 Š Œ†X;Z.nC 1/�0:

We thus have the data for a cohomology theory on TOP0. The axioms are satisfied
(Puppe sequence). The theory is additive.

We now associate a cohomology theory to an arbitrary spectrumZ D .Z.n/; en/.
For k � 0 we have morphisms

bkn W Œ†kX;Z.n/�0 † �� Œ†.†kX/;†Z.n/�0
.en/� �� Œ†kC1X;Z.nC 1/�0 :

LetZn�k.X/ be the colimit over this system of morphisms. The bkn are compatible
with pointed maps f W X ! Y and induce homomorphisms of the colimit groups.
In this manner we consider Zn as a homotopy invariant, contravariant functor
TOP0 ! Z- MOD. (The bkn are for k � 2 homomorphisms between abelian
groups.) The exactness axiom again follows directly from the cofibre sequence.
The suspension isomorphism is obtained via the identity

Œ†kC1X;Z.nC k C 1/�0 Š Œ†k.†X/;Z.nC k C 1/�0

which gives in the colimitZn.X/ Š ZnC1.†X/. If the spectrum is an�-spectrum,
we get the same theory as before, since the canonical morphisms ŒX;Z.n/�0 !
Zn.X/ are natural isomorphisms of cohomology theories. Because of the colimit
process we need the spaces Z.k/ only for k � k0. We use this remark in the
following examples.

7.7.1 Sphere spectrum. We define Z.n/ D S.n/ and en W †S.n/ Š S.nC 1/ the
identity. We set !k.X/ D colimnŒ†

nX;SnCk�0 and call this group the k-th stable
cohomotopy group of X . Þ
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7.7.2 Suspension spectrum. Let Y be a pointed space. We define a spectrum with
spaces †nY and en W †.†nY / Š †nC1Y . Þ

7.7.3 Smash product. Let Z D .Z.n/; en/ be a spectrum and Y a pointed space.
The spectrum Y ^Z consists of the spaces Y ^Z.n/ and the maps

id^en W †.Y ^Z.n// Š Y ^†Z.n/! Y ^Z.nC 1/:
(Note that†A D A^I=@I . Here and in other places we have to use the associativity
of the ^-product. For this purpose it is convenient to work in the category of
k-spaces.) We write in this case

Zk.X IY / D colimnŒ†
nX; Y ^Z.nC k/�0:

The functors Zk.�IY / depend covariantly on Y : A pointed map f W Y1 ! Y2
induces a natural transformation of cohomology theoriesZk.�IY1/! Zk.�IY2/.

Þ

In general, the definition of the cohomology theory Z�.�/ has to be improved,
since this theory may not be additive.

We now construct homology theories. Let

E D .E.n/; en W E.n/ ^ S1 ! E.nC 1/ j n 2 Z/

be a spectrum. We use spheres as pointed spaces and take as standard model the
one-point compactification Sn D Rn[f1g. If V is a vector space one often writes
SV D V [ f1g with base point1. Then we have a canonical homeomorphism
SV ^ SW Š SV˚W , the identity away from the base point. A linear isomorphism
f W V ! W induces a pointed map Sf W SV ! SW .

The homology groupEk.X/ of a pointed spaceX is defined as colimit over the
maps

b W ŒSnCk; X^E.n/�0 ! ŒSnCk^S1; X^E.n/^S1�0! ŒSnCkC1; X^E.nC1/�0:
The first map is � ^ S1 and the second map is induced by id^en. For nC k � 2
the morphism b is a homomorphism between abelian groups.

It should be clear from the definition thatEk.�/ is a functor on TOP0. We need
the suspension morphisms. We first define suspension morphisms

�l W Ek.Z/! EkC1.S1 ^Z/:
They arise from the suspensions S1 ^ �

ŒSnCk; Z ^E.n/�0 ! ŒSnCkC1; S1 ^Z ^E.n/�0;
which are compatible with the maps b above. Then we set � D .�1/k���l where
the map � W S1 ^Z ! Z ^ S1 interchanges the factors.
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(7.7.4) Lemma. �l is an isomorphism.

Proof. Let x 2 Ek.Z/ be contained in the kernel of �l . Then there exists Œf � 2
ŒSnCk; Z ^E.n/�0 representing x such that 1^f is null homotopic. Consider the
diagram

S1 ^ SnCk 1^f
��

�1
��

S1 ^Z ^E.n/
�2
��

SnCk ^ S1 f ^1
�� Z ^E.n/ ^ S1 1^e �� Z ^E.nC 1/

with permutation of factors �1 and �2. Since 1 ^ f is null homotopic, the rep-
resentative .1 ^ e/ ı .f ^ 1/ of x is also null homotopic. This shows that �l is
injective.

In order to prove surjectivity we consider the two-fold suspension. Let x 2
EkC2.S2 ^Z/ have the representative g W SnCkC2 ! S2 ^Z ^E.n/. Then

f W SnCkC2 g�! S2 ^Z ^E.n/ ��! Z ^E.n/ ^ S2 e2

�! Z ^E.nC 2/
represents an element y 2 Ek.Z/. Here e2 is the composition of the spectral
structure maps

E.n/ ^ S2 D .E.n/ ^ S1/ ^ S1 ! E.nC 1/ ^ S1 ! E.nC 2/:
We show �2

l
.y/ D x. Once we have proved this we see that the second �l is

surjective and injective and hence the same holds for the first �l .
The proof of the claim is based on the next diagram with interchange maps

�; � 0; � 00.

S2 ^ SnCkC2

1^g
��

� 00
�� SnCkC2 ^ S2

g^1
��

S2 ^ .S2 ^Z ^E.n// � 00
1 ��

1^�
��

S2 ^Z ^E.n/ ^ S2

1^e2

��

� 0
""����

����
����

����

S2 ^ .Z ^E.n/ ^ S2/
1^e2

��

S2 ^Z ^E.nC 2/ D �� S2 ^Z ^E.nC 2/
The maps � 0 and � 00 are homotopic to the identity, since we are interchanging a
sphere with an even-dimensional sphere. The composition of the left verticals
represents �2

l
.y/, and the composition of the right verticals represents x. �
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(7.7.5) Proposition. For each pointed map f W Y ! Z the sequence

Ek.Y /
f� �� Ek.Z/

f1� �� Ek.C.f //

is exact.

Proof. The exactness is again a simple consequence of the cofibre sequence. But
since the cofibre sequence is inserted into the “wrong” covariant part, passage
to the colimit is now essential. Suppose z 2 Ek.Z/ is contained in the kernel
of f1�. Then there exists a representing map h W SnCk ! Z ^ E.n/ such that
.f1 ^ 1/ ı h is null homotopic. The next diagram compares the cofibre sequences
of id W SnCk ! SnCk and f ^ 1 W Y ^E.n/! Z ^E.n/.

SnCk id1 ��

h

��

C.id/
p.id/

��

H

��

SnCk ^ S1
ˇ

��

id �� SnCk ^ S1
h^1
��

Z ^E.n/ .f ^1/1 ��

f1^1
##��

���
���

���
C.f ^ 1/

'

��

p.f ^1/
�� Y ^E.n/ ^ S1

1^e
��

f ^1^1
�� Z ^E.n/ ^ S1

1^e
��

C.f / ^E.n/ Y ^E.nC 1/ f ^1
�� Z ^E.nC 1/

The map ' is the canonical homeomorphism (in the category of k-spaces) which
makes the triangle commutative. Since .f ^ 1/1 ı h is null homotopic, there exists
H such that the first square commutes. The map ˇ is induced from .h;H/ by
passing to the quotients, therefore the second square commutes. It is a simple
consequence of the earlier discussion of the cofibre sequence that the third square is
h-commutative (Problem 1). The composition .1^e/.h^1/ is another representative
of z, and the diagram shows that .1 ^ e/ˇ represents an element y 2 Ek.Y / such
that f�y D z. �

A similar proof shows that the Zk.X IY / form a homology theory in the vari-
able Y .

Problems

1. Consider the cofibre sequences of two maps f W A ! B and f 0 W A0 ! B 0. In the
diagram

A
f

�� B
f1 ��

h

��

C.f /
p.f /

��

H

��

†A
†f

��

ˇ

��

†B

†h

��

�� � � �

A0
f 0

�� B 0
f 0

1 �� C.f 0/
p.f 0/

�� †A0
†f 0

�� †B 0 �� � � �
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assume given h and H such that the first square commutes. The map ˇ is induced from
.h;H/ by passing to the quotients. Show that the third square commutes up to homotopy
(use (4.6.2)).
2. Show that the homology theory defined by a spectrum is additive (for families of well-
pointed spaces).
3. Show that a weak pointed h-equivalence between well-pointed spaces induces an isomor-
phism in spectral homology. The use of k-spaces is therefore not essential.
4. Let Z be the sphere spectrum (7.7.1). Then, in the notation of (7.7.3),

ST..X; n/; .Y;m// D Zm�n.X IY /;
the morphism set of the category ST of Section 7.1.

7.8 Alexander Duality

Let E D .En; e.n/ W En ^ S1 ! EnC1/ be a spectrum. Let � W Sn ! B ^ A,
" W A ^ B ! Sn be an n-duality. The compositions

ŒA ^ S t ; EkCt �0
B^� �� ŒB ^ A ^ S t ; B ^EkCt �0

��
�� ŒSn ^ S t ; B ^EkCt �0

are compatible with the passage to the colimit and induce a homomorphism

D� W Ek.A/! En�k.B/:

The compositions

ŒS tCn�k; B^Et �0 ^A �� ŒA^S tCn�k; A^B^Et �0 "� �� ŒA^SnCk�t ; Sn^Et �0

�� �� ŒA^SnCk�t ; Et ^Sn�0 e� �� ŒA^S tCn�k; EtCn�0

with the interchange map � are compatible with the passage to the colimit if we
multiply them by .�1/nt . They induce a homomorphism

D� W En�k.B/! Ek.A/:

(7.8.1) Theorem (Alexander duality). The morphisms D� and D� are isomor-
phisms. They satisfyD�D� D .�1/nk id andD�D� D .�1/nk id.

Proof. The relations of the theorem are a direct consequence of the defining prop-
erties of an n-duality. The composition "� ı .A ^ �/ ı �� ı .B ^ �/ equals

��ı†n W ŒA^S t ; EkCt �0 ! ŒSn^A^S t ; Sn^EkCt �0 ! ŒA^Sn^S t ; Sn^EkCt �0:

The definition ofD� then involves the sign .�1/n.kCt/. This morphism differs from
a map in the direct system forEk.A/ by the interchange Sn^S t ! S t ^Sn, hence
by a sign .�1/nt . Hence the sign .�1/nk remains. The second relation is verified
similarly. �
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LetPE�.�/ andPh�.�/ be the homology and cohomology theories on TOP.2/
constructed from the theories E�.�/ and E�.�/. If we use the n-duality between
XC and C.RnjX/ for a compact ENR in Rn we obtain isomorphisms

PEn�k.Rn;Rn XX/ Š PEk.X/; PEn�k.X/ Š PE�.Rn;Rn XX/:
This is the usual appearance of Alexander duality.

In this setting one can also work with the bi-variant theory Zk.X IY / D
Z�k.X IY /. Then one obtains from an n-duality an adjointness isomorphism
Zk.A ^X IY / Š Zn�k.X IB ^ Y /.

A homology theory h�.�/ is defined on the category ST. Here one defines
hl..X; n// D hl�n.X/. Let a morphism f 2 ST..X; n/; .Y;m// be represented by
fk W X ^SnCk ! Y ^SmCk . The induced morphism is defined by commutativity
of the next diagram

hl..X; n//
D ��

hl .f /

��

hl�n.X/
†nCk

�� hlCk.X ^ SnCk/

.fk/�

��

hl..Y;m//
D �� hl�m.Y /

†mCk
�� hlCk.Y ^ SmCk/:

Given a homology theory h�.�/ one can define via the complement duality
functor a sort of cohomology for spaces which admit an embedding as a closed
subset of a Euclidean space. LetX be such a space. Choose an embedding i W X !
Rn and define hk.iX/ D hn�k.C.RnjiX// D h�k.C.RnjiX/;�n/. If j W X !
Rm is another embedding, we have the homeomorphism j i�1 W iX ! jY and we
have the duality mapD.j i�1/. The set of embeddings together with the morphisms
D.j i�1/ from i to j form a contractible groupoid; it is a complicated replacement
for the space X . We obtain the induced contractible groupoid of the hk.iX/. It
is equivalent to a group which we denote hk.X/. From the complement duality
functor we obtain a well-defined homomorphism hk.f / W hk.Y / ! hk.X/ for a
proper map f W X ! Y ; in this way hk.�/ becomes a contravariant functor. We
do not discuss in what sense the hk.X/ can be made into a cohomology theory.
This cohomology theory is the “correct” one for duality theory in the sense that the
Alexander duality isomorphism hk.X/ Š h�k.C.RnjX/;�n/ holds for all spaces
in question (and not only for compact ENR). A similar devise can be applied to
a given cohomology theory. One obtains a homology theory which is again the
“correct” one for duality theory.

7.9 Compactly Generated Spaces

Several constructions in homotopy theory lead to problems in general topology. A
typical problem arises from the fact that a product of quotient maps is in general
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no longer a quotient map. We met this problem already in the discussion of CW-
complexes. In this auxiliary section we report about some devices to deal with such
problems. The idea is to construct a category with better formal properties. One has
to pay a price and change some of the standard notions, e.g., redefine topological
products.

A compact Hausdorff space will be called a ch-space. For the purpose of the
following investigations we also call a ch-space a test space and a continuous map
f W C ! X of a test space C a test map. A space X is called weakly hausdorff or
wh-space, if the image of each test map is closed.

(7.9.1) Proposition. A Hausdorff space is a wh-space. A wh-space is a T1-space.
A space X is a wh-space if and only if each test map f W K ! X is proper. If X is
a wh-space, then the image of each test map is a Hausdorff space. A subspace of a
wh-space is a wh-space. Products of wh-spaces are wh-spaces. �

A subset A of a topological space .X; T / is said to be k-closed (k-open), if
for each test map f W K ! X the pre-image f �1.A/ is closed (open) in K. The
k-open sets in .X; T / form a topology kT on X . A closed (open) subset is also
k-closed (k-open). Therefore kT is finer than T and the identity � D �X W kX ! X

is continuous. We set kX D k.X/ D .X; kT /. Let f W K ! X be a test map.
The same set map f W K ! kX is then also continuous. For if U � kX is open,
then U � X is k-open, hence f �1.U / � K is open. Therefore �X induces for each
ch-space K a bijection.

TOP.K; kX/
Š�! TOP.K;X/; f 7! �X ı f:

HenceX and kX have the same k-open sets, i.e., k.kX/ D kX . A topological space
X is called k-space, if the k-closed sets are closed, i.e., if X D kX . Because of
k.kX/ D kX the space kX is always a k-space. A k-space is also called compactly
generated. We let k-TOP be the full subcategory of TOP with objects the k-spaces.
A whk-space is a space which is a wh-space and a k-space.

The next proposition explains the definition of a k-space. We call a topology S

on X ch-definable, if there exists a family .fj W Kj ! X j j 2 J / of test maps
such that: A � X is S-closed, for each j 2 J the pre-image f �1

j .A/ is closed in
Kj . We can rephrase this condition: The canonical map hfj i W j̀ Kj ! .X;S/

is a quotient map. A ch-definable topology is finer than T . We define a partial
ordering on the set of ch-definable topologies by S1 � S2, S1 
 S2.

(7.9.2) Proposition. The topology kT is the maximal ch-definable topology with
respect to the partial ordering.

Proof. By Zorn’s Lemma there exists a maximal ch-definable topology S . If this
topology is different from kT , then there exists an S-open set U , which is not
k-open. Hence there exists a test map t W K ! X such that t�1.U / is not open. If



188 Chapter 7. Stable Homotopy. Duality

we adjoin this test map to the defining family of S , we see that S is not maximal.
�

(7.9.3) Corollary. The k-spaces are the spaces which are quotients of a topological
sum of ch-spaces. �
(7.9.4) Proposition. The following are equivalent:

(1) X is a k-space.

(2) A set mapf W X ! Y is continuous if and only if for each test map t W K ! X

the composition f t is continuous.

Proof. (1) ) (2). Let U � Y be open. In order to see that f �1.U / is open it
suffices to show that this set is k-open, since X is a k-space. Let t W K ! X be a
test map and f t continuous. Then k�1.f �1.U // is open, and this shows what we
want.

(2)) (1). We show that the identityX ! kX is continuous. This holds by (2)
and because X and kX have the same test maps. �

(7.9.5) Proposition. Let f W X ! Y be continuous. Then the same set map
kf W kX ! kY is continuous. �

The assignments X 7! kX , f 7! kf yield a functor k; moreover, we have the
inclusion functor i ,

k W TOP! k- TOP; i W k- TOP! TOP :

(7.9.6) Proposition. The functor k is right adjoint to the functor i .

Proof. A natural bijection is k- TOP.Y; kX/ Š TOP.iY;X/, f 7! � ı f . This
map is certainly injective. If Y is a k-space and f W Y ! X continuous, then
kf W Y D kY ! kX is continuous; this is used to show surjectivity. �

(7.9.7) Proposition. Let X be a wh-space. Then A � X is k-closed if and only if
for each ch-space K � X the set A \K is closed in K. In particular a wh-space
X is a k-space if and only if: A � X is closed, for each ch-space K � X the
intersection A \K is closed in K.

Proof. LetA be k-closed. The inclusionK � X of a ch-space is a test map. Hence
A \K is closed in K.

Conversely, suppose that A satisfies the stated condition and let f W L! X be
a test map. Since X is a wh-space, f .L/ is a ch-space and therefore f .L/ \ A is
closed in f .L/. Then f �1.A/ D f �1.f .L/ \ A/ is closed in L D f �1f .L/.
This shows: A is k-closed. �

Thus we see that wh-spaces have an internal characterization of their k-closed
sets. For wh-spaces therefore k.X/ can be defined from internal properties of X .
If X is a wh-space, so is kX .
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(7.9.8) Theorem. X is a k-space under one of the following conditions:

(1) X is metrizable.

(2) Each point of X has a countable neighbourhood basis.

(3) Each point of X has a neighbourhood which is a ch-space.

(4) ForQ � X and x 2 xQ there exists a ch-subspaceK � X such x is contained
in the closure ofQ \K in K.

(5) For each Q � X the following holds: Q \ K open (closed) in K for each
test space K � X impliesQ open (closed) in X .

Proof. (1) is a special case of (2).
(2) Let Q � X and suppose that f �1.Q/ is closed for each test map f W C !

X . We have to show that Q is closed. Thus let a 2 xQ and let .Un j n 2 N/ be
a neighbourhood basis of a. For each n choose an 2 Q \ U1 \ � � � \ Un. Then
the sequence .an/ converges to a. The subspace K D f0; 1; 2�1; 3�1; : : : g of R
is compact. The map f W K ! X , f .0/ D a, f .n�1/ D an is continuous, and
n�1 2 f �1.Q/. By assumption, f �1.Q/ is closed in K, hence 0 2 f �1.Q/, and
therefore a D f .0/ 2 Q.

.3/ ) .4/. Let Q � X and suppose a 2 xQ. We choose a ch-neighbourhood
K of a and show that a is contained in the closure of Q \K in K. Thus let U be
a neighbourhood of a in K. Then there exists a neighbourhood U 0 of a in X such
that U 0 \ K � U . Since U 0 \ K is a neighbourhood of a in X and a 2 xQ, we
conclude

U \ .Q \K/ 
 .U 0 \K/ \ .Q \K/ D .U 0 \K/ \Q ¤ ;:
Hence a is contained in the closure of Q \K in K.

.4/) .5/. SupposeQ\K is closed inK for every test subspaceK � X . Let
a 2 xQ. By (4), there exists a test subspace K0 of X , such that a is contained in
the closure ofQ \K0 in K0. By the assumption (5), Q \K0 is closed inK0; and
hence a 2 Q \K0 � Q.

(5) Let f �1.Q/ be closed in K for each test map f W K ! X . Then, in
particular, for each test subspace L � X the set Q \ L is closed in L. The
assumption (5) then says that Q is closed in X . This shows that X is a k-space.

�

(7.9.9) Theorem. Let p W Y ! X be a quotient map and Y a k-space. Then X is
a k-space.

Proof. Let B � X be k-closed. We have to show that B is closed, hence, since p
is a quotient map, that p�1.B/ is closed in Y . Let g W D ! Y be a test map. Then
g�1.p�1.B// D .pg/�1.B/ is closed in D, because B is k-closed. Since Y is a
k-space, p�1.B/ is closed in Y . �
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(7.9.10) Proposition. A closed (open) subspace of a k-space is a k-space. The same
holds for whk-spaces.

Proof. Let A be closed and B � A a subset such that f �1.B/ is closed in C for
test maps f W C ! A. We have to show: B is closed in A or, equivalently, in X .

If g W D ! X is a test map, then g�1.A/ is closed in D and hence compact,
sinceD is compact. The restriction of g yields a continuous map h W g�1.A/! A.
The set h�1.B/ D g�1.B/ is closed in g�1.A/ and therefore in D, and this shows
that B is closed in X .

Let U be open in the k-space X . We write X as quotient q W Z ! X of a sum
Z of ch-spaces (see 7.9.3). Then q W q�1.U /! U is a quotient map and q�1.U /
as the topological sum of locally compact Hausdorff spaces is a k-space. Therefore
the quotient U is a k-space.

The second assertion follows, if we take (7.9.1) into account. �

In general, a subspace of a k-space is not a k-space (see (7.9.23)). Let X be a
k-space and i W A � X the inclusion. Then the map k.i/ W k.A/ ! X D k.X/ is
continuous. The next proposition shows that k.i/ has in the category k- TOP the
formal property of a subspace.

(7.9.11) Proposition. A map h W Z ! k.A/ from a k-space Z into k.A/ is contin-
uous if and only if k.i/ ı h is continuous.

Proof. If h is continuous then also is k.i/ıh. Conversely, let k.i/ıh be continuous.
We have k.i/ D i ı �A. Since i is the inclusion of a subspace, �A ı h is continuous;
(7.9.6) now shows that h is continuous. �

(7.9.12) Theorem. The product in TOP of a k-space X with a locally compact
Hausdorff space Y is a k-space.

Proof. By (7.9.8), a locally compact Hausdorff space is a k-space. We write X as
quotient of Z, where Z is a sum of ch-spaces, see (7.9.3). Since the product of
a quotient map with a locally compact space is again a quotient map, we see that
X �Y is a quotient of the locally compact Hausdorff space, hence k-space, Z �Y ,
and therefore a k-space by (7.9.9). �

A product of k-spaces is not always a k-space (see (7.9.23)). Therefore one is
looking for a categorical product in the category k- TOP. Let .Xj j j 2 J / be a
family of k-spaces and

Q
j Xj its product in the category TOP, i.e., the ordinary

topological product. We have a continuous map

pj D k.prj / W k
�Q

j Xj
�! k.Xj / D Xj :

The following theorem is a special case of the fact that a right adjoint functor respects
limits.
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(7.9.13) Theorem.
�
pj W k�Qj Xj �! Xj j j 2 J � is a product of .Xj j j 2 J /

in the category k- TOP.

Proof. We use (7.9.6) and the universal property of the topological product and
obtain, in short-hand notation, for a k-space B the canonical bijection

k- TOP
�
B; k

�Q
Xj
�� D TOP

�
B;
Q
Xj
� ŠQTOP.B;Xj / DQ k- TOP.B;Xj /;

and this is the claim. �

In the case of two factors, we use the notationX �k Y for the product in k- TOP
just defined. The next result shows that the wh-spaces are the formally hausdorff
spaces in the category k- TOP.

(7.9.14) Proposition. A k-space X is a wh-space if and only if the diagonalDX of
the product X �k X is closed.

Proof. Let X be a wh-space. In order to verify that DX is closed, we have to
show that for each test map f W K ! X �k X the pre-image f �1.DX / is closed.
Let fj W K ! X be the j -th component of f . Then Lj D fj .K/ is a ch-space,
since X is a wh-space. Hence L D L1 [ L2 � X is a ch-space. The relation
f �1DX D f �1..L � L/ \DX / shows that this set is closed.

LetDX be closed inX �k X and f W K ! X a test map. We have to show that
f .K/ � X is closed. Let g W L ! X be another test map. Since X is a k-space,
we have to show that g�1f .K/ � L is closed. We use the relation

g�1f .K/ D pr2..f � g/�1DX /:
SinceDX is closed, the pre-image under f �g is closed and therefore also its image
under pr2 as a compact set in a Hausdorff space. �

Recall the mapping space F.X; Y / with compact-open topology.

(7.9.15) Theorem. Let X and Y be k-spaces, and let f W X �k Y ! Z be con-
tinuous. The adjoint map f ^ W X ! kF.Y;Z/, which exists as a set map, is
continuous.

Proof. The map f ^ W X ! kF.Y;Z/ is continuous, if for each test map t W C ! X

the compositionf ^ıt is continuous. We usef ^ıt D .f ı.t�idY //^. Therefore it
suffices to assume thatX is a ch-space. But then, by (7.9.12),X�k Y D X�Y and
therefore f ^ W X ! F.Y;Z/ is continuous and hence also f ^ W X ! kF.Y;Z/,
by (7.9.4). �

(7.9.16) Theorem. Let Y be a k-space. Then the evaluation

eY;Z W kF.Y;Z/ �k Y ! Z; .f; y/ 7! f .y/

is continuous.
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Proof. Let t W C ! kF.Y;Z/�k Y be a test map. We have to show the continuity
of eY;Z ı t . Let t1̂ W C ! F.Y;Z/ and t2 W C ! Y be the continuous components
of t . We show first: The adjoint t1 W C � Y ! Z of t1̂ is continuous. By (2.4.3),
this continuity is equivalent to the continuity of the second adjoint map t_1 W Y !
F.C;Z/. In order to show its continuity, we compose with a test map s W D ! Y .
But t_1 ı s D F.s;Z/ı t1̂ is continuous. Moreover we have eY;Z ı t D t1 ı .id; t2/,
and the right-hand side is continuous. �

A combination of (7.9.15) and (7.9.16) now yields the universal property of the
evaluation eY;Z for k-spaces:

(7.9.17) Proposition. Let X and Y be k-spaces. The assignments f 7! f ^ and
g 7! eY;Z ı .g �k idY / D g
 are inverse bijections

TOP.X �k Y;Z/ Š TOP.X; kF.Y;Z//

between these sets. �

(7.9.18) Theorem. LetX , Y andZ be k-spaces. Since eY;Z is continuous, we have
an induced set map

	 W kF.X; kF.Y;Z//! kF.X �k Y;Z/; f 7! eY;Z ı .f �k idY / D f 
:

The map 	 is a homeomorphism.

Proof. We use the commutative diagram

kF.X; kF.Y;Z// �k X �k Y e1�id
��

��id � id
��

kF.Y;Z/ �k Y
e2

��

kF.X �k Y;Z/ �k X �k Y e3 �� Z

with e1 D eX;kF .Y;Z/, e2 D eY;Z , and e3 D eX�kY;Z . Since e1 � id and e2 are
continuous, the universal property of e3 shows that 	 is continuous; namely, using
the notation from (7.9.17), we have e2 ı .e1 � id/ D 	
. The universal property of
e1 provides us with a unique continuous map

� W kF.X �k Y;Z/! kF.X; kF.Y;Z//; f 7! f ^;

such that e1 ı .�� id.X// D e3̂ , where e3̂ W kF.X �k Y;Z/�k X ! kF.Y;Z/ is
the adjoint of e3 with respect to the variable Y . One checks that 	 and� are inverse
to each other, hence homeomorphisms. �

(7.9.19) Theorem. Let X and Y be k-spaces, and f W X ! X 0 and g W Y ! Y 0
be quotient maps. Then f � g W X �k Y ! X 0 �k Y 0 is a quotient map.
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Proof. It suffices to treat the case g D id, since a composition of quotient maps is
a quotient map. Using (7.9.18), the proof is now analogous to (2.4.6). �

(7.9.20) Proposition. Let f W X ! Y be a quotient map andX a whk-space. Then
Y is a whk-space if and only ifR D f.x1; x/ j f .x1/ D f .x2/g is closed inX�kX .

Proof. The set R is the pre-image ofDY under f � f . Since f �k f is a quotient
map (7.9.19), DY is closed if and only if R is closed. Now apply (7.9.9) and
(7.9.14). �

(7.9.21) Proposition. Let Y and Z be k-spaces and assume that Z is a wh-space.
Then the mapping space kF.Y;Z/ is a wh-space. In particular, if Y and Z are
whk-spaces, then kF.Y;Z/ is a whk-space.

Proof. Let f ^ W K ! kF.Y;Z/ be a test map. We have to show that it has
a closed image hence is k-closed. For this purpose let g^ W L ! kF.Y;Z/ be
another test map. It remains to show that the pre-image M of f ^.K/ under g^
is closed. We use the adjoint maps f W K � Y ! Z and g W L � Y ! Z. For
y 2 Y let iy W K � L ! .K � Y / �k .L � Y /, .k; l/ 7! .k; y; l; y/. Then
M D pr2

�T
y2Y ..f � g/iy/�1DZ

�
. Since Z is a wh-space and therefore the

diagonal DZ is closed by (7.9.14), we see that M is closed. �

We now consider pointed spaces. Let .Xj j j 2 J / be a family of pointed

k-spaces. Let
Qk
j Xj be its product in k- TOP. Let WJXj be the subset of the

product of those points for which at least one component equals the base point.
The smash product

Vk
j Xj is the quotient space

�Qk
j Xj

�
=WJXj . In the case that

J D f1; : : : ; ngwe denote this space byX1^k � � �^kXn. A family of pointed maps
fj W Xj ! Yj induces a pointed map

Vk
fj W Vk

j Xj !
Vk
j Yj .

LetX and Y be pointed k-spaces. Let F 0.X; Y / � F.X; Y / be the subspace of
pointed maps. We compose a pointed map f W X ^k Y ! Z with the projections
p W X �k Y ! X ^k Y . The adjoint .fp/^ W X ! kF.Y;Z/ is continuous and has
an image contained in kF 0.Y;Z/. We obtain a continuous map X ! kF 0.Y;Z/

which will be denoted by f ^.
The evaluation eY;Z induces e0Y;Z which makes the following diagram commu-

tative:

kF 0.Y;Z/ �k X k.i/�id
��

p

��

kF.Y;Z/ �k X
eY;Z

��

kF 0.Y;Z/ ^k X
e0

Y;Z
�� Y .

i is the inclusion and p the quotient map. The continuity of k.i/ and eY;Z implies
the continuity of the pointed evaluation e0Y;Z . In analogy to (7.9.18) one proves:
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(7.9.22) Theorem. Let X , Y and Z be pointed k-spaces. The assignment

�0 W kF 0.X ^k Y;Z/! kF 0.X; kF 0.Y;Z/; f 7! f ^

is a homeomorphism. �

(7.9.23) Example. Let R=Z be obtained from R by identifying the subset Z to a
point (so this is not the factor group!). We denote by p W R ! R=Z the quotient
map.

(1) The product p � id W R �Q! R=Z �Q of quotient maps is not a quotient
map.

(2) The product R=Z � Q is not a k-space, but the factors are k-spaces (see
(7.9.4)).

(3) The product R=Z�R is a k-space (see (7.9.9) and (7.9.12)), but the subspace
R=Z �Q is not a k-space by (2).

If K � R=Z is compact, then there exists l 2 N such that K � pŒ�l; l �.
Let .rn j n 2 N/ be a strictly decreasing sequence of rational numbers with

limit
p
2. The set F D ˚�

m C 1
2n
; rn
m

� j n;m 2 N
	 � R � Q is saturated with

respect to p � id and closed in R �Q.
The setG D .p�id/.F / is not closed in R=Z�Q. Note that z D .p.0/; 0/ 62 G;

but we show that z 2 xG. Let U be a neighbourhood of z. Then there exists a
neighbourhood V of p.0/ in R=Z and " > 0 such that V � . � � "; "Œ\Q/ � U .
Choosem 2 N such thatm�1p2 < 2�1". The setp�1.V / is then a neighbourhood
of m in R, since m 2 p�1p.0/ � p�1.V /. Hence there exists ı > 0 such
that �m � ı;m C ıŒ� p�1.V /. Now choose n 2 N such that 1

2n
< ı and

rn �
p
2 < m "

2
. Then .p � id/.m C 1

2n
; rn
m
/ 2 V � . � � "; "Œ\Q/ � U holds,

becausemC 1
2n
2 �m�ı;mCıŒ� p�1.V / and0 < rn

m
D

p
2
m
C rn�p

2
m

< "
2
C "
2
D ".

We see that U \G 6D ;. This finishes the proof that z 2 xG.
We now see thatp� id is not a quotient map, since there exists a saturated closed

set F with non-closed image G.
The space R=Z �Q is not a k-space. Let s W K ! R=Z �Q be an arbitrary

test map. We show that s�1.G/ is closed inK although G is not closed (this could
not occur in a k-space). The two projections pri s.K/ are compact and Hausdorff.
Hence there exists l 2 N such that pr1 s.K/ � pŒ�l; l �. The inclusion

s.K/ � pr1 s.K/ � pr2 s.K/ � pŒ�l � l � � pr2 s.K/

then shows that we have s�1.G/ D s�1.G \ pŒ�l; l � � pr2 s.K//. But the set
G \ pŒ�l; l �� pr2 s.K/ is finite: By construction, F is a closed discrete subspace
of R �Q; moreover, F \ Œ�l; l � � pr2 s.K/ is finite as a closed discrete subspace
of the compact space Œ�l; l � � pr2 s.K/; therefore also

.p � id/.F \ Œ�l; l � � pr2 s.K// D G \ pŒ�l; l � � pr2 s.K/
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is finite. A finite set in a Hausdorff space is closed, and therefore s�1.G/ as pre-
image of a closed set is closed itself. Þ

(7.9.24) Example. It is stated already in [155, p. 336] that .Q ^ Q/ ^ N0 and
Q^.Q^N0/ are not homeomorphic. In [128, p. 26 ] it is proved that the canonical
continuous bijection from the first to the second is not a homeomorphism. Þ

Problems

1. A space is a k-space if and only if it is a quotient of a locally compact Hausdorff space.
2. Let X1 � X2 � � � � , let Xj be a whk-space and let Xj � Xj C1 be closed. Then
X D S

j Xj , with colimit topology, is a whk-space. If the Xi are k-spaces, then X is a
k-space, being a quotient of the k-space

`
i Xi . If the Xi are wh-spaces, hence T1-spaces,

then each test map f W K ! X has an image which is contained in some Xi and therefore
closed. If each inclusion is Xi � XiC1 closed, the image is also closed in X and therefore
X is a wh-space.
3. Let X and Y be k-spaces. Passage to adjoint maps induces bijections of homotopy sets
ŒX �k Y;Z� Š ŒX; kF.Y;Z/� and ŒX ^ Y;Z�0 Š ŒX; kF 0.Y;Z/�0.
4. Let .Xj j j 2 J / be a family of k-spaces. Then the topological sum j̀ 2J Xj is a
k-space. The product in k-TOP is compatible with sums.
5. Let a pushout of topological spaces with closed j W A � X be given.

A
f

��

j
��

B

J
��

X
F �� Y

Let X and B be whk-spaces. Then Y is a whk-space.
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Cell Complexes

The success of algebraic topology is largely due to the fact that one can describe
spaces of interest by discrete (or even finite) combinatorial data. Purely combina-
torial objects are simplicial complexes. Given such a complex, one defines from
its data by simple linear algebra the homology groups. It is then a remarkable
fact that these groups are independent of the combinatorial description and even
homotopy invariant. Simplicial complexes are a very rigid structure. A weaken-
ing of this structure is given by the cell complexes (CW-complexes in the sense of
J. H. C. Whitehead). They are more flexible and better adapted to homotopy theory.

An n-cell in a space is a subset which is homeomorphic to the standard n-cell
En D fx 2 Rn j kxk < 1g. A cell complex is a decomposition of a space into
cells. In order that one obtains something interesting, one has to add conditions
about the closure of the cells, and one has to relate the topology of the space to the
topology of the closed cells.

A finite cell complex is easily defined: a Hausdorff space X which is the union
of a finite number of cells. It e is an n-cell of this decomposition, then it is required
that there exists a continuous map ' W Dn ! X which induces a homeomorphism
En ! e and sends Sn�1 into the union of the cells up to dimension n � 1.

From these data one obtains already an interesting invariant of X , the so-called
Euler characteristic. Letn.i/denote the number of i -cells. Define the combinatorial
Euler characteristic to be the alternating sum �.X/ DPi�0.�1/in.i/. It is a non-
trivial fact that h-equivalent finite complexes have the same Euler characteristic.
The origin of the notion is the famous result of Leonhard Euler (� 1752) that for a
sphere S2 each polyhedral decomposition yields the value n.0/�n.1/Cn.2/ D 2.

In this chapter we present some point-set topology and elementary homotopy
theory of cell complexes. Then we demonstrate the use of cell complexes in the
construction of spaces with specific properties. In particular we construct so-called
Eilenberg–Mac Lane spacesK.�; n/. They have a single non-vanishing homotopy
group�n.K.�; n// Š � (here� can be an arbitrary abelian group). Eilenberg–Mac
Lane spaces can be used as building blocks for general homotopy types (Postnikov
systems). They also yield a homotopical definition of cohomology (and homology)
groups: The homotopy set ŒX;K.�; n/� carries a natural structure of an abelian
group and is known to be a version of a cohomology group denoted Hn.X I�/.
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8.1 Simplicial Complexes

Simplicial complexes are the objects of combinatorial topology.
A simplicial complex K D .E; S/ consists of a set E of vertices and a set S

of finite non-empty subsets of E. A set s 2 S with q C 1 elements is called a
q-simplex of K. We require the following axioms:

(1) feg 2 S for each e 2 E.
(2) If t 2 S and s � t is non-empty, then s 2 S .

If s 2 S is a q-simplex, then q is called the dimension of s. If t � s, then t is
a face of s. A 1-simplex of K is also called an edge of K. The 0-simplices of
K correspond to the elements of E; a 0-simplex is called a vertex. A simplex is
determined by its 0-faces.

A simplicial complex is n-dimensional, if it contains at least one n-simplex but
no .n C 1/-simplices. A subcomplex L of K consists of a set of simplices of K
which contains with s also the faces of s. A 1-dimensional complex is a graph.
A complex K D .E; S/ is finite if E is finite and locally finite if each vertex
is contained in a finite number of simplices. The n-skeleton Kn D .E; Sn/ of
K D .E; S/ is the subcomplex with Sn D fs 2 S j dim s � ng.
(8.1.1) Example. Let U D .Uj j j 2 J / be a covering of a set X by non-
empty sets Uj . For a finite non-empty set E � J let UE D T

j2E Uj and let
E.J / D fE � J j UE 6D ;g. Then .J;E.J // is a simplicial complex, called the
nerve N.U/ of the covering U. Þ

(8.1.2) Example. Let P be a set with a partial ordering�. The simplicial complex
.P; SP / associated to a partially ordered set has as simplices the totally ordered
finite subsets of P . Þ

(8.1.3) Example. Let K D .E; S/ be a simplicial complex. Define a partial order
on S by s � t , s � t . The simplicial complex K 0 associated to this ordered set
is called the barycentric subdivision of K. Þ

LetK D .E; S/ be a simplicial complex. We denote by jKj the set of functions
˛ W E ! I such that

(1) fe 2 E j ˛.e/ > 0g is a simplex of K.
(2)

P
e2E ˛.e/ D 1.

We regard jKj as a subset of the product IE . Let jKjp denote this set with the
subspace topology of the product topology. We have a metric d on jKj defined by

d.˛; ˇ/ D �Pe2E .˛.e/ � ˇ.e//2
� 1

2 :

We denote jKjwith this metric topology by jKjm. Each vertex e 2 E gives us a con-
tinuous map e W jKjm ! I , ˛ 7! ˛.e/. Therefore the identity jKjm ! jKjp is
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continuous. We leave it as an exercise to show that this map is actually a homeo-
morphism. The numbers .˛.e/ j e 2 E/ are the barycentric coordinates of ˛.

We define a further topology on jKj. For s 2 S let 
.s/ be the standard
simplex f.te/ 2 jKj j te D 0 for e … sg. Then jKj is the union of the 
.s/, and
we write jKjc for jKj with the quotient topology defined by the canonical map`
s2S 
.s/! jKj. The identity jKjc ! jKjp is continuous but not, in general, a

homeomorphism. The next proposition will be proved in the more general context
of simplicial diagrams.

(8.1.4) Proposition. jKjc ! jKjp is a homotopy equivalence. �
In the sequel we write jKj D jKjc and call this space the geometric realization

of K. We define jsj � jKj as jsj D f˛ 2 jKj j ˛.e/ 6D 0 ) e 2 sg and
call this set a closed simplex of jKj. For each simplex s of K the open simplex
hsi � jKj is the subspace hsi D f˛ 2 jKj j ˛.e/ 6D 0, e 2 sg. The complement
jsj n hsi D @jsj is the combinatorial boundary of jsj; it is the geometric realization
of the subcomplex which consists of the proper faces of s. The set jKj is the disjoint
union of the hsi; s 2 S .

Let jKjn be the union of the 
.s/ with dim s � n.

(8.1.5) Proposition. The space jKj is the colimit of the jKjn. The equality jKnj D
jKjn holds. The canonical diagram`

s;dim sDn @
.s/ ��

��

jKjn�1

��`
s;dim sDn
.s/ �� jKjn

is a pushout. �
A homeomorphism t W jKj ! X is called a triangulation of X . The triangu-

lation of surfaces was proved by Radó [161], the triangulation of 3-dimensional
manifolds by Moise (see [141] for references and proofs; [197, 7.5.1]). Differen-
tiable manifolds can be triangulated, and the triangulation can be chosen in such a
way that it is on each simplex a smooth embedding ([193]; [143]).

Since jKjm is separated and id W jKj ! jKjm continuous, jKj is separated. For
finite K the identity jKj ! jKjm is a homeomorphism.

For each vertex e 2 E the set St.e/ D f˛ 2 jKj j ˛.e/ 6D 0g is called the star
of e. Since ˛ 7! ˛.e/ is continuous, the set St.e/ is open in jKjd and therefore
also in jKj. If we identify e with the function ˛.e/ D 1; ˛.e0/ D 0 for e 6D e0, then
St.e/ is an open neighbourhood of e.

Points e0; : : : ; ek of Rn are affinely independent, if the relations †	iei D 0

and †	i D 0 imply that each 	i D 0. If e0; : : : ; ek are affinely independent, then
the simplex

˚Pk
iD0 	iei j 	i � 0; †	i D 1

	
spanned by e0; : : : ; ek is the convex

hull of this set and homeomorphic to the k-dimensional standard simplex.
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Let K D .E; S/ be a simplicial complex and .xe j e 2 E/ a family of points
in Rn. Consider the continuous map

f W jKj ! Rn; ˛ 7!P
e2E ˛.e/xe:

If f is an embedding, we call the image of f a simplicial polyhedron in Rn of type
K, and f .jKj/ is a realization of K as a polyhedron in Rn.

Standard tools for the application of simplicial complexes in algebraic topology
are subdivision and simplicial approximation [67, p. 124].

Problems

1. id W jKjm ! jKjp is a homeomorphism.
2. Let K D .N0; S/ be the simplicial complex where S consists of all finite subsets of N0.
The canonical map jKjc ! jKjp is not a homeomorphism.
3. LetL be a subcomplex ofK. We can identify jLjwith a subset of jKj, and jLj carries then
the subspace topology of jKj. If .Lj j j 2 J / is a family of subcomplex of K, then

S
Lj

and
T
Lj are subcomplexes and the relations

S jLj j D j
S
Lj j and

T jLj j D j
T
Lj j

hold.
4. Let K be a simplicial complex. Then the following assertions are equivalent: (1) K is
locally finite. (2) jKj is locally compact. (3) The identity jKj ! jKjd is a homeomorphism.
(4) jKj is metrizable. (5) Each point of jKj has a countable neighbourhood basis. (See [44,
p. 65].)
5. Let K be a countable, locally finite simplicial complex of dimension at most n. Then K
has a realization as a polyhedron in R2nC1. (See [44, p. 66].)

8.2 Whitehead Complexes

We use the standard subsets of Euclidean spaces Sn�1;Dn; En D Dn n Sn�1,
.n � 1/. We set S�1 D ; and let D0 be a point, hence E0 D D0. A k-dimen-
sional cell (a k-cell) in a space X is a subset e which is, in its subspace topology,
homeomorphic to Ek . A point is always a 0-cell.

A Whitehead complex is a space X together with a decomposition into cells
.e� j 	 2 ƒ/ such that:
(W1) X is a Hausdorff space.
(W2) For each n-cell e� there exists a characteristic map ˆ� W Dn D Dn

�
! X

which induces a homeomorphism En ! e� and sends Sn�1 into the union
Xn�1 of the cells up to dimension n � 1.

(W3) The closure xe� of each cell e� intersects only a finite number of cells.
(W4) X carries the colimit topology with respect to the family .xe� j 	 2 ƒ/.

A subset A of a Whitehead complex is a subcomplex if it is a union of cells and
the closure of each cell inA is contained inA. We will see that a subcomplex together
with its cells is itself a Whitehead complex. From the definition of a subcomplex
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we see that intersections and unions of subcomplexes are again subcomplexes.
Therefore there exists a smallest subcomplex X.L/ which contains a given set L.

The decomposition of a Hausdorff space into its points always satisfies (W1)–
(W3). We see that (W4) is an important condition. Condition (W3) is also called
(C), for closure finite. Condition (W4) is called (W), for weak topology. This is the
origin for the name CW-complex. In the next section we consider these complexes
from a different view-point and introduce the notion of a CW-complex.

(8.2.1) Lemma. Let ˆ W Dn ! X be a continuous map into a Hausdorff space.
Let e D ˆ.En/. Then ˆ.Dn/ D xe. In particular xe is compact.

Proof. ˆ.Dn/ is a compact subset of a Hausdorff space and therefore closed. This
yields xe D ˆ.En/ � ˆ.Dn/ D ˆ.Dn/ D ˆ. SEn/ � ˆ.En/ D xe: �

(8.2.2) Example. SupposeX has a cell decomposition into a finite number of cells
such that properties (W1) and (W2) hold. Then X is a finite union of closures xe of
cells and therefore compact by (8.2.1). Properties (W3) and (W4) are satisfied and
X is a Whitehead complex. Þ

(8.2.3) Examples. The sphere Sn has the structure of a Whitehead complex with
a single 0-cell and a single n-cell. The map

ˆ W Dn ! Sn; x 7! .2
p
1 � kxk2 � x; 2kxk2 � 1/

sends Sn�1 to the 0-cell enC1 D .0; : : : ; 0; 1/ and induces a homeomorphism of
En with Sn X fenC1g, hence is a characteristic map for the n-cell.

From this cell decomposition we obtain a cell decomposition ofDnC1 by adding
another .nC 1/-cell EnC1 with characteristic map the identity.

Another cell-composition of Sn has two j -cells for each j 2 f0; : : : ; ng and
is obtained inductively from Dn˙ D f.xi / 2 Sn j ˙xnC1 � 0g with intersection
Sn�1 D Sn�1 � 0. A characteristic map is Dn ! Dn˙, x 7! .x;˙p1 � kxk2/.Þ
(8.2.4) Proposition. Let X be a Whitehead complex.

(1) A compact set K in X meets only a finite number of cells.

(2) A subcomplex which consists of a finite number of cells is compact and closed
in X .

(3) X.e/ D X.xe/ is for each cell e a finite subcomplex.

(4) A compact subset of aWhitehead complex is contained in a finite subcomplex.

(5) X carries the colimit topology with respect to the finite subcomplexes.

(6) A subcomplex A is closed in X .

Proof. (1) Let E be the set of cells which meet K. For each e 2 E we choose a
point xe 2 K \ e and set Z D fxe j e 2 Eg. Let Y � Z be any subset. For each
cell f ofX the closure xf is contained in the union of a finite number of cells. Thus
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Y \ xf is a finite set, hence closed in xf since xf is a Hausdorff space. The condition
(W4) now says that Y is closed in X and hence in Z. This tells us that Z carries
the discrete topology and is closed in X . A discrete closed set in a compact space
is finite.

(2) LetA D e1[� � �[er be a finite union of cells ej . Then xA D xe1[� � �[xer � A,
by definition of a subcomplex. By (8.2.1), A D xA is compact and closed.

(3) Induction over dim.e/. If e is a 0-cell, then e is a point and closed, hence a
subcomplex and X.e/ D X.xe/ D e. Suppose X.f / is finite for each cell f with
dim.f / < n. Let e be an n-cell with characteristic map ˆ.

The set ˆ.Sn�1/ is contained in the union of cells of dimension at most n� 1,
hence is contained in xe X e.

Then xe X e D ˆ.Sn�1/ is compact, hence contained in a finite number of
cells e1; : : : ; ek , by (1), which are contained in Xn�1, by (W2). By induction
hypothesis, the set C D e [ X.e1/ [ � � � [ X.ek/ is a finite subcomplex which
contains e and hence X.e/. Therefore X.e/ is finite. Since X.e/ is closed, by (2),
we have xe � X.e/ and X.xe/ � X.e/.

(4) This is a consequence of (1) and (3).
(5) We show: A � X is closed if and only if for each finite subcomplex Y the

intersection A \ Y is closed in Y .
Suppose the condition is satisfied, and let f be an arbitrary cell. ThenA\X.f /

is closed in X.f /, hence, by (2) and (3), closed in X ; therefore A \ xf D A \
X.f / \ xf is closed in X and in xf , hence closed in X by condition (W4).

(6) If Y is a finite subcomplex, thenA\Y is a finite subcomplex, hence closed.
By (5), A is closed. �

(8.2.5) Proposition. A subcomplex Y of a Whitehead complex X is a Whitehead
complex.

Proof. Let e be a cell in Y andˆ W Dn ! X a characteristic map. Thenˆ.Dn/ D
xe � Y , since Y is closed. Hence ˆ can be taken as a characteristic map for Y .

It remains to verify condition (W4). Let L � Y and suppose L \ xe is closed
in xe for each cell e in Y . We have to show that L is closed in Y . We show that L
is closed in X . Let f be a cell of X . By (W3), xf is contained in a finite union
e1 [ � � � [ ek of cells. Let e1; : : : ; ej be those which are contained in Y . Then

xf \ Y � e1 [ � � � [ ej � xe1 [ � � � [ xej � Y
since Y is a subcomplex. Hence

xf \Y D . xf \xe1/[� � �[ . xf \xej /; xf \L D xf \L\Y DSj

kD1. xf \xek\L/:

By assumption, xek \L is closed in xek; hence xf \ xek \L is closed in xf ; therefore
xf \ L is a finite union of sets which are closed in X . �
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(8.2.6) Proposition. Let X be a Whitehead complex. Then:

(1) X carries the colimit topology with respect to the family .Xn j n 2 N0/.

(2) Let .e� j 	 2 ƒ.n// be the family of n-cells of X with characteristic maps
ˆ� W Dn

�
! Xn and restrictions '� W Sn�1

�
! Xn�1. Then

`
� S

n�1
�

i

��

'Dh'� i
�� Xn�1

\
��`

�D
n
�

ˆDhˆ� i
�� Xn

is a pushout in TOP. (X�1 D ;.)
Proof. (1) Suppose A \ Xn is closed in Xn for each n. Then for each n-cell e of
X the set A \ xe D A \ xe \Xn is closed in xe. By (W4), A is closed in X .

(2) The diagram is a pushout of sets. GiveXn the pushout topology and denote
this space byZ. By construction, the identity � W Z ! Xn is continuous. We show
that � is also closed. Let V � Z be closed. By definition of the pushout topology
this means:

(i) V \Xn�1 is closed in Xn�1.
(ii) ˆ�1.V / \Dn

�
is closed in Dn

�
, hence also compact.

We conclude thatˆ.ˆ�1.V /\Dn
�
/ D V \ˆ.Dn

�
/ D V \xe� is closed in xe�, being

a continuous image of a compact space in a Hausdorff space. From (i) and (ii) we
therefore conclude that for each cell e of Xn the set V \ xe is closed in xe. Since Xn

is a Whitehead complex, V is closed in Xn. �

(8.2.7) Proposition. Let X be a Whitehead complex, pointed by a 0-cell. The
inclusions of the finite pointed subcomplexes F � X induce a canonical map
colimF �k.F;	/! �k.X;	/. This map is an isomorphism. �

Recall from Section 7.9 the notion of a k-space and the k-space k.X/ obtained
from a space X .

(8.2.8) Proposition. Let X have a cell decomposition such that (W1)–(W3) hold
and such that each compact set is contained in a finite number of cells. Then k.X/
is a Whitehead complex with respect to the given cell decomposition and the same
characteristic maps. Moreover,X is aWhitehead complex if and only if k.X/ D X .

Proof. Let ˆ W Dn ! X be a characteristic map for the cell e. Since xe is compact
it has the same topology in k.X/. Hence ˆ W Dn ! k.X/ is continuous. Since ˆ
is a quotient map and ˆ�1.e/ D En, we see that e has the same topology in k.X/
and X . Thus e is a cell in k.X/ with characteristic map ˆ.

Let A \ xe be closed in xe for each cell e. Let K � k.X/ be compact. By
hypothesis,K is contained in a finite number of cells, sayK � e1[ � � � [ ek . Then
A\K D ..A\xe1/[� � �[ .A\xek//\K is closed inK. HenceA is k-closed. �
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Let X and Y be Whitehead complexes and e � X , f � Y cells. Then
e � f � X � Y is a cell. From characteristic maps ˆ W Dm ! X , ‰ W Dn ! Y

for e; f we obtain ˆ � ‰ W Dm �Dn ! X � Y , and this can be considered as a
characteristic map for e � f . For this purpose use a homeomorphism

.DmCn; SmCn�1/! .Dm �Dn;Dm � Sn�1 [ Sm�1 �Dn/:

With this cell structure, X � Y satisfies conditions (W1)–(W3) in the definition
of a Whitehead complex. In general, property (W4) may not hold. In this case
one re-topologizes X � Y such that the compact subsets do not change. The space
X �k Y D k.X � Y / is then a Whitehead complex (see (8.2.8)).

Problems

1. R carries the structure of a Whitehead complex with 0-cells fng, n 2 Z and 1-cells
�n; n C 1Œ, n 2 Z. There is an analogous Whitehead complex structure W.ı/ on Rn with
0-cells the set of points ı.k1; : : : ; kn/, kj 2 Z, ı > 0 fixed and the associated ı-cubes.
Thus, given a compact set K � Rn and a neighbourhood U of K, there exists another
neighbourhood L of K contained in U such that L is a subcomplex of the complex W.ı/.
In this sense, compact subsets can be approximated by finite complexes.
2. The geometric realization of a simplicial complex is a Whitehead complex.

8.3 CW-Complexes

We now use (8.2.6) as a starting point for another definition of a cell complex. Let
.X;A/ be a pair of spaces. We say, X is obtained from A by attaching an n-cell,
if there exists a pushout

Sn�1 '
��

\
��

A

\
��

Dn ˆ �� X .

Then A is closed in X and X nA is homeomorphic to En via ˆ. We call X nA an
n-cell in X , ' its attaching map and ˆ its characteristic map.

(8.3.1) Proposition. Let a commutative diagram with closed embeddings j; J be
given:

A
f

��

j
��

Y

J
��

X
F �� Z.

Suppose F induces a bijection X X A! Z X Y . Then the diagram is a pushout,
provided that (1) F.X/ � Z is closed; (2) F W X ! F.X/ is a quotient map.
Condition .2/ holds if X is compact and Z Hausdorff.
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Proof. Let g W X ! U and h W Y ! U be given such that gj D hf . The diagram
is a set-theoretical pushout. Therefore there exists a unique set map ' W Z ! U

with 'F D g, 'J D h. Since J is a closed embedding, 'jJ.Y / is continuous.
Since F is a quotient map, 'jF.X/ is continuous. Thus ' is continuous, since
F.X/ and J.Y / are closed sets which cover Z. �

(8.3.2) Note. Let X be a Hausdorff space and A a closed subset. Suppose there
exists a continuous mapˆ W Dn ! X which induces a homeomorphismˆ W En !
X n A. Then X is obtained from A by attaching an n-cell.

Proof. We showˆ.Sn�1/ � A. Suppose there exists s 2 Sn�1 withˆ.s/ 2 X nA.
Then there exists a unique t 2 En with ˆ.s/ D ˆ.t/. Let V � En, W � Dn

be disjoint open neighbourhoods of t; s. Then ˆ.V / � X n A is open in X , since
ˆ W En ! X nA is a homeomorphism andA is closed inX . Sinceˆ is continuous,
there exists an open neighbourhood W1 � W of s with ˆ.W1/ � ˆ.V /. This
contradicts the injectivity of ˆjEn.

Thus ˆ provides us with a map ' W Sn�1 ! A. We now use (8.3.1). �

(8.3.3) Example. The projective space RP n is obtained from RP n�1 by attaching
an n-cell. The projective space CP n is obtained from CP n�1 by attaching a 2n-
cell.

We recall that CP n�1 is obtained from S2n�1 by the equivalence relation
.z1; : : : ; zn/ � .	z1; : : : ; 	zn/, 	 2 S1, or from Cn n 0 by z � 	z, 	 2 C�.
The class of z is denoted Œz1; : : : ; zn�. A characteristic map ˆ W D2n ! CP n is
x 7! Œx;

p
1 � kxk2�.

The space RP n�1 is obtained from Sn�1 by the relation z � �z, or from Rn n0
by z � 	z, 	 2 R�. A characteristic map ˆ W Dn ! RP n is given by the same
formula as in the complex case. Þ

We can also attach several n-cells simultaneously. We sayX is obtained fromA

by attaching n-cells if there exists a pushout

j̀2J Sn�1
j

'
��

\
��

A

\
��

j̀2J Dn
j

ˆ �� X .

The index j just enumerates different copies of the same space. Again, A is then
closed in X and ˆ induces a homeomorphism of j̀ E

n
j with X n A. Therefore

X n A is a union of components and each component is an n-cell. (By invariance
of dimension, the integer n is determined by X nA.) We allow J D ;; in that case
A D X . We write ĵ D ˆjDn

j and 'j D 'jSn�1 and call ĵ the characteristic
map of the n-cell ˆ.Enj / and 'j its attaching map.
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Let us give another interpretation: X D X.'/ is the double mapping cylinder

of J
pr � Sn � J '�! A where J is a discrete set. From this setting we see: If '

is replaced by a homotopic map  , then X.'/ and X. / are h-equivalent under A.
Let f W A! Y be a given map. Assume thatX is obtained fromA by attaching

n-cells via attaching maps h'j i W j̀ S
n�1
j ! A. From the pushout definition of

the attaching process we obtain:

(8.3.4) Note. There exists an extension F W X ! Y of f if and only if the maps
f 'j are null homotopic. We view a null homotopy of f 'j as an extension to Dn

j .
Then the extensions F correspond to the set of null homotopies of the f 'j . �

In view of this note we call the homotopy classes Œf 'j � the obstructions to
extending f .

LetA be a subspace ofX . A CW-decomposition of .X;A/ consists of a sequence
of subspaces A D X�1 � X0 � X1 � � � � � X such that:

(1) X D [n�0Xn.
(2) For each n � 0, the space Xn is obtained from Xn�1 by attaching n-cells.
(3) X carries the colimit topology with respect to the family .Xn/.

Xk is a subspace of the colimit X of a sequence Xj � XjC1 � � � � . If the
inclusions are closed, then Xk is closed in X . This is an immediate consequence
of the definition of the colimit topology.

A pair .X;A/ together with a CW-decomposition .Xn j n � �1/ is called a
relative CW-complex. In the case A D ; we call X a CW-complex. The space Xn

is the n-skeleton of .X;A/ and .Xn j n � �1/ is the skeleton filtration. The cells
of Xn nXn�1 are the n-cells of .X;A/. We say, .X;A/ is finite (countable etc.) if
X nA consists of a finite (countable etc.) number of cells. IfX D Xn,X ¤ Xn�1
we denote by n D dim.X;A/ the cellular dimension of .X;A/. If A D ;, then A
is suppressed in the notation. We call X a CW-space if there exists some cellular
decomposition X0 � X1 � � � � of X .

Let X be a Whitehead complex. From (8.2.6) we obtain a CW-decomposition
of X . The converse also holds: From a CW-decomposition we obtain a decompo-
sition into cells and characteristic maps; it remains to verify that X is a Hausdorff
space and carries the colimit topology with respect to the closures of cells (see
(8.3.8)).

In the context of CW-complexes .X;A/, the symbol Xn usually denotes the
n-skeleton and not the n-fold Cartesian product.

(8.3.5) Note. If .X;A/ is a relative CW-complex, then also .X;Xn/ and .Xn; A/
are relative CW-complexes, with the obvious skeleton-filtration inherited from
.Xn j n � �1/. �

(8.3.6) Example. From (8.3.3) we obtain cellular decompositions of CP n and
RP n. The union of the sequence RP n � RnC1 � � � � defines the infinite projective
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space RP1 as a CW-complex. It has a single n-cell for each n � 0. Similarly, we
obtain CP1 with a single cell in each even dimension. Þ

(8.3.7) Example. The sphere Sn has a CW-decomposition with a single 0-cell
and a single n-cell, and another CW-composition with two j -cells for each j 2
f0; : : : ; ng, see (8.2.3). The quotient map Sn ! RP n sends each cell of the latter
homeomorphically onto a cell of RP n in the decomposition (8.3.6). We can also
form the colimit S1 of Sn � SnC1 � � � � , a CW-complex with two cells in each
dimension. Þ

The general topology of adjunction spaces and colimit topologies gives us the
next results.

(8.3.8) Proposition. Let .X;A/ be a relative CW-complex. IfA is a T1-space, then
X is a T1-space and a compact subset of X meets only a finite number of cells. If
A is a Hausdorff space, then X is a Hausdorff space. If A is normal, then X is
normal. IfA is a Hausdorff space, thenX carries the colimit topology with respect
to the family which consists of A and the closures of cells.

Proof. We only verify the last statement. LetC be a subset ofX and supposeA\C
in closed in A and A \ xe closed in xe for each cell e. We show inductively, that
C \ Xn is closed in Xn. This holds for n D �1 by assumption. The space Xn

is a quotient of Zn D Xn�1 C`Dn
j . Each characteristic map ĵ W Dn

j ! xej is
a quotient map, since X is Hausdorff. From the assumptions we see that Xn \ C
has a closed pre-image in Zn. �

The considerations so far show that a CW-complex is a Whitehead complex.

(8.3.9) Proposition. Let .X;A/ be a relative CW-complex. Then A � X is a
cofibration.

Proof. We know that
`
Sn�1
j ! `

Dn
j is a cofibration. Hence Xn�1 � Xn is

an induced cofibration. Therefore the compositions Xn � XnCk are cofibrations.
Given f W X ! Z and a homotopy h�1 W X�1 � I ! Z of f jX�1, we can extend
this inductively to homotopieshn W Xn�I ! Z such thathnC1jXn�I D hn. Since
X � I is the colimit of theXn � I , the hn combine to a homotopy h W X � I ! Z.

�

Problems

1. The attaching map for the n-cells yields a homeomorphism
W

j .D
n=Sn�1/j Š X=A.

2. Let .X;A/ and .Y; B/ be relative CW-complexes. Consider X � Y with the closed
subspaces

.X � Y /n DSnC1

iD�1
X i � Y n�i ; n � �1:
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In favorable cases, the filtration ..X � Y /n j n � �1/ is a CW-decomposition of the pair
.X � Y; A � B/.

Let Y be locally compact. Then .X � Y /n is obtained from .X � Y /n�1 by attaching
n-cells.
3. Let .X;A/ be a relative CW-complex and let C � A. Then .X=C;A=C/ is a relative
CW-complex with CW-decomposition .Xn=C /. Moreover, X=A is a CW-complex.
4. Let A � X be a subcomplex. Then X=A is a CW-complex.
5. Let A and B be subcomplexes of X . Then A=.A \ B/ is a subcomplex of X=B .
6. Let A be a subcomplex of B and Y another CW-complex. Then A^k Y is a subcomplex
of B ^k Y .
7. LetA be a CW-complex. SupposeX is obtained fromA by attaching n-cells via attaching
maps ' W `Sn�1

j
! An�1. ThenX is a CW-complex with CW-decompositionXj D Aj

for j < n and Xj D Aj [ .X X A/ for j � n, and A is a subcomplex of X .
8. Let '0; '1 W `; S

n�1
j

! A be homotopic attaching maps. The spacesX.0/;X.1/which
are obtained by attaching n-cells with '0; '1 are h-equivalent under A. (Homotopy theorem
for cofibrations.)
9. Let X be a pointed CW-complex with base point 	 a 0-cell. Then the cone CX and the
suspension †X are CW-complexes. (In statements of this type the reader is asked to find a
canonical cell decomposition induced from the initial data.)
10. Let .Xj j j 2 J / be a family of pointed CW-complexes with base point a 0-cell. ThenW

j 2J Xj has the structure of a CW-complex such that the summands are subcomplexes.
11. Let p W E ! B be a Serre fibration and .X;A/ a CW-pair. Then each homotopy
h W X � I ! B has a lifting along p with given initial condition on X � 0 [ A � I .
12. Suppose X is obtained from A by attaching n-cells. Let p W E ! X be a covering and
E0 D p�1.A/. Then E is obtained from E0 by attaching n-cells.
13. Let X be a CW-complex with n-skeleton Xn and p W E ! X a covering. Then E is a
CW-complex with n-skeleton En D p�1.Bn/ such that p maps the cells of E homeomor-
phically to cells of X . An automorphism of p maps cells of E homeomorphically to cells.
14. Each neighbourhood U of a point x of a CW-complex contains a neighbourhood V
which is pointed contractible to x. A connected CW-complex has a universal covering. The
universal covering has a cell decomposition such that its automorphism group permutes the
cells freely.
15. LetX and Y be countable CW-complexes. ThenX �Y is a CW-complex in the product
topology.

8.4 Weak Homotopy Equivalences

We now study the notion of an n-connected map and of a weak homotopy equiva-
lence in the context of CW-complexes.

(8.4.1) Proposition. Let .Y; B/ be n-connected. Then a map f W .X;A/! .Y; B/

from a relative CW-complex .X;A/ of dimension dim.X;A/ � n is homotopic
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relative to A to a map into B . In the case that dim.X;A/ < n the homotopy class
of X ! B is unique relative to A.

Proof. Induction over the skeleton filtration. Suppose X is obtained from A by
attaching q-cells via ' W `k S

q�1
k
! A, q � n. Consider a commutative diagram

`
S
q�1
k

'
��

��

A
f

��

i\
��

B

j\
��`

D
q

k

ˆ �� X
F �� Y .

Since .Y; B/ is n-connected, Fˆ is homotopic relative to
`
S
q�1
k

to a map into
B . Since the left square is a pushout, we obtain a homotopy of F from a pair of
homotopies of Fˆ and F i which coincide on

`
S
q�1
k

. Since we have homotopies

of Fˆ relative to
`
S
q�1
k

, we can use on A the constant homotopy. Altogether we
obtain a homotopy of F relative to A to a map into B .

For an arbitrary .X;A/with dim.X;A/ � nwe apply this argument inductively.
Suppose we have a homotopy of f relative to A to a map g which sends Xk into
B . By the argument just given we obtain a homotopy of gjXkC1 relative to Xk

which sends XkC1 into B . Since XkC1 � X is a cofibration, we extend this
homotopy toX . In the case that n D1, we have to concatenate an infinite number
of homotopies. We use the first homotopy on Œ0; 1=2� the second on Œ1=2; 3=4� and
so on. (Compare the proof of (8.5.4).) Suppose dim.X;A/ < n. Let F0; F1 W X !
B be homotopic relative to A to f . We obtain from such homotopies a map
.X � I;X � @I [ A � I / ! .Y; B/ which is the constant homotopy on A. We
apply the previous argument to the pair .X � I;X � @I [A� I / of dimension� n
and see that the homotopy class of the deformation X ! B of f is unique relative
to A. �

(8.4.2) Theorem. Let h W B ! Y be n-connected, n � 0. Then h� W ŒX; B� !
ŒX; Y � is bijective (surjective) ifX is a CW-complex with dimX < n (dimX � n).
If h W B ! Y is pointed, then h� W ŒX; B�0 ! ŒX; Y �0 is injective (surjective) in the
same range.

Proof. By use of mapping cylinders we can assume that h is an inclusion. The
surjectivity follows if we apply (8.4.1) to the pair .X;;/. The injectivity follows,
if we apply it to the pair .X � I;X � @I /. In the pointed case we deform .X;	/!
.Y; B/ rel f	g to obtain surjectivity, and for the proof of injectivity we apply (8.4.1)
to the pair .X � I;X � @I [ 	 � I /. �

(8.4.3) Theorem. Let f W Y ! Z be a map between CW-complexes.

(1) f is a homotopy equivalence, if and only if for each b 2 Y and each q � 0
the induced map f� W �q.Y; b/! �q.Z; f .b// is bijective.



8.4. Weak Homotopy Equivalences 209

(2) Suppose dim Y � k, dimZ � k. Then f is a homotopy equivalence if f� is
bijective for q � k.

Proof. (1) Iff� is always bijective, thenf� is a weak equivalence, hence the induced
map f� W ŒX; Y � ! ŒX;Z� is bijective for all CW-complexes X (see (8.4.2)). By
category theory, f represents an isomorphism in h-TOP: Take X D Z; then there
exists g W Z ! Y such that fg ' id.Z/. Then g� is always bijective. Hence g
also has a right homotopy inverse.

(2) f� W ŒZ; Y � ! ŒZ;Z� is surjective, since f is k-connected (see (8.4.2)).
Hence there exists g W Z ! Y such that fg ' id.Z/. Then g� W �q.Z/! �q.Y /

is bijective for q � k, since f�g� D id and f� is bijective. Hence there exists
h W Y ! Z with gh ' id.Y /. Thus g has a left and a right h-inverse and is therefore
an h-equivalence. From fg ' id we then conclude that f is an h-equivalence. �

The importance of the last theorem lies in the fact that “homotopy equivalence”
can be tested algebraically. Note that the theorem does not say: If �q.Y / Š �q.Z/
for each q, then Y and Z are homotopy equivalent; it is important to have a map
which induces an isomorphism of homotopy groups. Mapping a space to a point
gives:

(8.4.4) Corollary. A CW-complex X is contractible if and only if �q.X/ D 0 for
q � 0. �
(8.4.5) Example. From �j .S

n/ D 0 for j < n and �j .S1/ D colimn �j .S
n/ we

conclude that the homotopy groups of S1 are trivial. Hence S1 is contractible.Þ
(8.4.6) Example. A simply connected 1-dimensional complex is contractible. A
contractible 1-dimensional CW-complex is called a tree. Þ
(8.4.7) Theorem. A connected CW-complex X contains a maximal (with respect
to inclusion) tree as subcomplex. A tree in X is maximal if and only if it contains
each 0-cell.

Proof. Let B denote the set of all trees in X , partially ordered by inclusion. Let
T � B be a totally ordered subset. ThenC DST2T T is contractible: �1.C / D 0,
since a compact subset of C is contained in a finite subcomplex and therefore in
some T 2 T . Thus, by Zorn’s lemma, there exist maximal trees.

LetB be a maximal tree. Consider the 1-cells which have at least one end point
inB . If the second end point is not contained inB , thenB is obviously not maximal.
Therefore the union V of these 1-cells together with B form a subcomplex of X1,
and the remaining 1-cells together with their end points form a subcomplexX1XV .
Since X is connected so is X1, hence V D X1, and B0 D V 0 D X0.

Let B be a tree which contains X0. Let B 0 
 B be a strictly larger tree. Since
B is contractible, B 0 and B 0=B are h-equivalent. Hence B 0=B is contractible.
Since X0 � B , the space B 0=B has the form

W
S1 and is not simply connected.

Contradiction. �
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We now generalize the suspension theorem (6.10.4). Let X and Y be pointed
spaces. We have the suspension map †� W ŒX; Y �0 ! Œ†X;†Y �0. We use the
adjunction Œ†X;†Y �0 Š ŒX;�†Y �0. The resulting map ŒX; Y �0 ! ŒX;�†Y �0

is then induced by the pointed map � W Y ! �†Y which assigns to y 2 Y the
loop t 7! Œy; t � in †Y .

(8.4.8) Theorem. Suppose �i .Y / D 0 for 0 � i � n. Then the suspension
†� W ŒX; Y �0 ! Œ†X;†Y �0 is bijective (surjective) if X is a CW-complex of di-
mension dimX � 2n (dimX � 2nC 1).

Proof. By the suspension theorem (6.10.4), the map � is .2nC1/-connected. Now
use the pointed version of (8.4.2). �

(8.4.9) Theorem. Let X be a finite pointed CW-complex. Then

†� W Œ†kX;†kY �0 ! Œ†kC1X;†kC1Y �0

is bijective for dim.X/ � k � 1.
Proof. We have dim†kX D k C dimX . The space †Y is path connected. By
the theorem of Seifert and van Kampen, †2Y is simply connected. From the
suspension theorem we conclude that �j .†kY / D 0 for 0 � j � k � 1. By the
previous theorem, †� is a bijection for k C dimX � 2.k � 1/. �

8.5 Cellular Approximation

(8.5.1) Proposition. Suppose X is obtained from A by attaching .n C 1/-cells.
Then .X;A/ is n-connected.

Proof. We know that .DnC1; Sn/ is n-connected. Now apply (6.4.2). �

(8.5.2) Proposition. Let X be obtained from A by attaching n-cells (n � 1).
Suppose A is simply connected. Then the quotient map induces an isomorphism
�n.X;A/! �n.X=A/.

Proof. (8.5.1) and (6.10.2). �

(8.5.3) Proposition. For each relative CW-complex .X;A/ the pair .X;Xn/ is
n-connected.

Proof. From (8.5.1) we obtain by induction on k that .XnCk; Xn/ is n-connected.
The compactness argument (8.3.8) finally shows .X;Xn/ to be n-connected. �

LetX and Y be CW-complexes. A map f W X ! Y is cellular, if f .Xn/ � Y n
for each n 2 N0. The cellular approximation theorem (8.5.4) is an application of
(8.4.1).
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(8.5.4) Theorem. A map f W X ! Y is homotopic to a cellular map g W X ! Y .
If B � X is a subcomplex and f jB cellular, then the homotopy f ' g can be
chosen relative to B .

Proof. We show inductively that there exist homotopiesHn W X �I ! Y such that
(1) H 0

0 D f , Hn�1
1 D Hn

0 for n � 1;
(2) Hn

1 .X
i / � Y i for i � n;

(3) Hn is constant on Xn�1 [ B .
For the induction step we assume f .X i / � Y i for i < n. Let ˆ W .Dn; Sn�1/!
.Xn; Xn�1/ be a characteristic map of an n-cell not contained inB . The map f ıˆ
is homotopic relative to Sn�1 to a map into Y n, since .Y; Y n/ is n-connected. A
corresponding homotopy is used to define a homotopy of f on the associated closed
n-cells. This process defines the homotopy on B [ Xn; and we extend it to X ,
using the fact that B [Xn � X is a subcomplex and hence a cofibration. We now
concatenate the homotopies Hn:

H.x; t/ D
(
H i .x; 2iC1.t � 1C 2�i //; 1 � 2�i � t � 1 � 2�i�1;
H i .x; 1/; x 2 X i ; t D 1:

This map is continuous onX i �I and hence onX�I , since this space is the colimit
of the X i � I . �

(8.5.5) Corollary. Let f0; f1 W X ! Y be cellular maps which are homotopic.
Then there exists a homotopy f between them such that f .Xn � I / � Y nC1. If
f0; f1 are homotopic rel B , then f can be chosen rel B .

Proof. Choose a homotopy f W f0 ' f1 rel B . Then f mapsX � @I [B � I into
Y n. Now apply (8.5.4) to X � @I [ B � I � X � I . �

Problems

1. Let A � X be a subcomplex and f W A ! Y a cellular map. Then Y D X [f Y is a
CW-complex.
2. A CW-complex is path connected if and only if the 1-skeleton is path connected. The
components are equal to the path components, and the path components are open.

8.6 CW-Approximation

We show in this section, among other things, that each space is weakly homotopy
equivalent to a CW-complex. Our first aim is to raise the connectivity of a map.

(8.6.1) Theorem. Let f W A ! Y be a k-connected map, k � �1. Then there
exists for each n > k a relative CW-complex .X;A/ with cells only in dimensions
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j 2 fk C 1; : : : ; ng, n � 1, and an n-connected extension F W X ! Y of f . If A
is CW-complex, then A can be chosen as a subcomplex of X .

Proof. (Induction over n.) Recall that the map f is k-connected if the induced
map f� W �j .A;	/! �j .Y; f .	// is bijective for j < k and surjective for j D k
(no condition for k D �1). If we attach cells of dimension greater than k and
extend, then the extension remains k-connected. This fact allows for an inductive
construction.

Let n D 0, k D �1. Suppose f� W �0.A/ ! �0.Y / is not surjective. Let
C D fcj j j 2 J g be a family of points in Y which contains one element from each
path component �0.Y / n f��0.A/. Set X D AC`D0

j and define F W X ! Y

by F jA D f and F.D0
j / D fcj g. Then X is obtained from A by attaching 0-cells

and F is a 0-connected extension of f .
n D 1. Suppose f W A ! Y is 0-connected. Then f� W �0.A/ ! �0.Y / is

surjective. Let c�1; c1 be points in different path components of A which have the
same image under f�. Then ' W S0 ! A, '.˙1/ D c˙1, is an attaching map for a
1-cell. We can extend f over A [' D1 by a path from f .c�/ to f .cC/. Treating
other pairs of path components similarly, we obtain an extension F 0 W X 0 ! Y of f
over a relative 1-complex .X 0; A/ such that F 0� W �0.X 0/! �0.Y / is bijective. The
bijectivity of F 0� follows from these facts: We have F 0�j� D f� with the inclusion
j W A ! X 0; the map j is 0-connected; path components with the same image
under f� have, by construction, the same image under j�.

We still have to extend F 0 W X 0 ! Y to a relative 1-complex X 
 X 0 such that
F� W �1.X; x/ ! �1.Y; f .x// is surjective for each x 2 X . Let Fj W .D1; S0/ !
.Y; y/be a family of maps such that the ŒFj � 2 �1.Y; y/ together withF 0�.�1.X 0; x//
generate �1.Y; y/, y D F 0.x/. Let X 
 X 0 be obtained from X 0 by attaching 1-
cells with characteristic maps . ĵ ; 'j / W .D1; S0/! .X 0; x/. We extend F 0 to F
such that F ı ĵ D Fj . Then F� W �1.X; x/! �1.Y; y/ is surjective.

n � 2. Suppose f W A ! Y is .n � 1/-connected. By the use of mapping
cylinders, we can assume that f is an inclusion. Let . ĵ ; 'j / W .Dn; Sn�1; e0/!
.Y; A; a/ be a set of maps such that the yj D Œ ĵ ; 'j � 2 �n.Y; A; a/ generated the
�1.A; a/-module�n.Y; A; a/. We attachn-cells toA by attaching maps'j to obtain
X and extend f to F by the null homotopies ĵ of f 'j . The characteristic map
of the n-cell with attaching map 'j represents xj 2 �n.X;A; a/ and F�xj D yj .
The map F induces a morphism of the exact homotopy sequence of .X;A; a/ into
the sequence of .Y; A; a/, and F� W �n.X;A; a/ ! �n.Y; A; a/ is surjective by
construction. Consider the diagram

�n.A/

D
��

�� �n.X/ ��

F�.1/

��

�n.X;A/ ��

F�.2/

��

�n�1.A/ ��

D
��

�n�1.X/

F�.3/

��

�� 0

�n.A/ �� �n.Y / �� �n.Y; A/ �� �n�1.A/ �� �n�1.Y / �� 0.
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The sequences end with 0, since �n�1.X;A/ D 0 and �n�1.A/ ! �n�1.Y / is
surjective by assumption. (2) is surjective. The Five Lemma shows us that (1)
is surjective and (3) injective. By induction hypothesis, (3) is already surjective.
Hence F is n-connected.

In order to obtain A as a subcomplex of X , one works with cellular attaching
maps. �

(8.6.2) Theorem. Let Y be a CW-complex such that �i .Y / D 0 for 0 � i � k.
Then Y is homotopy equivalent to a CW-complex X with Xk D f	g.
Proof. Start with the k-connected map f W A D f	g ! Y and extend it to a weak
equivalence F W X ! Y by attaching cells of dimension greater than k. �

(8.6.3) Proposition. Let A and B be pointed CW-complexes. Assume that A is
.m � 1/-connected and B is .n � 1/-connected. Then A ^k B is .m C n � 1/-
connected.

Proof. We can assume that A has no cells in dimensions less thanm and n no cells
in dimensions less than n (except the base point). Then A ^k B has no cells in
dimensions less than mC n. �

(8.6.4)Theorem. Let .Xj j j 2 J / be a family of .n�1/-connectedCW-complexes.
Let �k W Xk !

W
j2J Xj be the inclusion of the k-th summand. Then

˛J D h �j� W iLj2J �n.Xj /! �n
�W

j2J Xj
�

is an isomorphism (n � 2).

Proof. Let J be finite. Up to h-equivalence we can assume that Xj has no cells
in dimensions less than n, except the base point. Then

Q
j Xj is obtained fromW

j Xj by attaching cells of dimension � 2n. Hence �m
�W

Xj
�! �m

�Q
Xj

�
is

an isomorphism for m � 2n � 2. From the diagram

�n
�W

Xj
� Š �� �n

�Q
Xj

�
.pj �/Š
��L

�n.Xj /

˛J

��

.1/

Š
��
Q
�n.Xj /

we conclude that ˛J is an isomorphism.
Let now J be arbitrary. For each x 2 �n�Wj2J Xj

�
there exists a finiteE � J

such that x is contained in the image of �n
�W

E Xj
� ! �n

�W
J Xj

�
, since a

compact subset is contained in a finite wedge. The result for E now shows that
˛J is surjective. If x1 and x2 have the same image under ˛J , then these elements
are contained in some finite sum

L
E and, again by a compactness argument, they

have the same image under some ˛E , if E is chosen large enough. This shows the
injectivity of ˛J . �
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(8.6.5) Proposition. Suppose �j .Y / D 0 for j > n. Let X be obtained from
A by attaching cells of dimension � n C 2. Then A � X induces a bijection
ŒX; Y �! ŒA; Y �.

Proof. Surjective. Let f W A ! Y be given. Attach .n C 2/-cells via maps
' W SnC1 ! A. Since f ' W SnC1 ! Y is null homotopic, we can extend f
over the .nC 2/-cells. Continue in this manner.

Injective. Use the same argument for .X � I;X � @I [ A � I /. The cells of
this relative complex have a dimension > nC 2. �

(8.6.6) Theorem. Let A be an arbitrary space and k 2 N0. There exists a relative
CW-complex .X;A/with cells only in dimensionsj � kC2, such that�n.X; x/ D 0
forn > k andx 2 X , and the inducedmap�n.A; a/! �n.X; a/ is an isomorphism
for n � k and a 2 A.

Proof. We construct inductively for t � 2 a sequence A D XkC1 � XkC2 �
� � � � XkCt such that �n.A; a/ Š �n.X

kCt ; a/ for n � k, �n.XkCt ; a/ D 0 for
k < n � k C t � 1, and XmC1 is obtained from Xm by attaching .mC 1/-cells.

The induction step: If we attach .m C 1/-cells to Xm by the attaching maps
'j W .Smj ; e0/ ! .Xm; a/ to obtain XmC1, then �n.Xm; a/ Š �n.X

mC1; a/ for
n � m � 1. The exact sequence

�mC1.XmC1; Xm; a/ @�! �m.X
m; a/! �m.X

mC1; a/! 0

shows that the Œ'j � are in the image of @. Thus, if the Œ'j � generate �m.Xm; a/,
then �m.XmC1; a/ D 0. �

(8.6.7) Example. We can attach cells of dimension� nC2 to Sn to obtain a space
K.Z; n/ which has a single non-trivial homotopy group �n.K.Z; n// Š Z. See
the section on Eilenberg–Mac Lane spaces for a generalization. Þ

Let iXn W X ! XŒn� be an inclusion of the type constructed in (8.6.6), namely
XŒn� is obtained by attaching cells of dimension greater than n C 1 such that
�k.XŒn�/ D 0 for k > n and iXn induces an isomorphism �k.i

X
n / for k � n. Given

a map f W X ! Y and iYm W Y ! Y Œm� for m � n, there exists a unique homotopy
class fn;m W XŒn� ! Y Œm� such that iYm ı f D fn;m ı iXn ; this is a consequence
of (8.6.5). We let jXn W Xhni ! X be the homotopy fibre of iXn . We call jXn the
n-connective covering ofX . The induced map �i .jXn / W �i .Xhni/! �i .X/ is an
isomorphism for i > n and �i .Xhni/ D 0 for i � n. The universal covering has
such properties in the case that n D 1. So we have a generalization, in the realm of
fibrations. Objects of this type occur in the theory of Postnikov decompositions of
a space, see e.g., [192].

As a consequence of (8.6.1) for A D ; we see that for each space Y there
exists a CW -complexX and a weak equivalence f W X ! Y . We call such a weak
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equivalence a CW-approximation ofY . Note that a weak equivalence between CW-
complexes is a homotopy equivalence (8.4.3). We show that CW-approximations
are unique up to homotopy and functorial in the homotopy category.

(8.6.8) Theorem. Let f W Y1 ! Y2 be a continuous map and let j̨ W Xj ! Yj be
CW-approximations. Then there exists a map ' W X1 ! X2 such that f ˛1 ' ˛2',
and the homotopy class of ' is uniquely determined by this property.

Proof. Since˛2 is a weak equivalence,˛2 W ŒX1; X2�! ŒX1; Y2� is bijective. Hence
there exists a unique homotopy class ' such that f ˛1 ' ˛2'. �

A domination of X by K consists of maps i W X ! K;p W K ! X and a
homotopy pi ' id.X/.

(8.6.9) Proposition. Suppose M is dominated by a CW-complex X . Then M has
the homotopy type of a CW-complex.

Proof. Suppose i W M ! X and r W X !M are given such that ri is homotopic to
the identity. There exists a CW-complex � W X � Y and an extension R W Y ! M

of r such that R induces an isomorphism of homotopy groups. Let j D �i W M !
X ! Y . Since Rj D ri ' id, the composition Rj induces isomorphisms of
homotopy groups, hence so does j . From jRj ' j we conclude that jR induces
the identity on homotopy groups and is therefore a homotopy equivalence. Let k
be h-inverse to jR, then j.Rk/ ' id. Hence j has the left inverse R and the right
inverse Rk and is therefore a homotopy equivalence. �

A (half-exact) homotopy functor on the category C 0 of pointed connected CW-
spaces is a contravariant functor h W C 0 ! SET0 into the category of pointed sets
with the properties:

(1) (Homotopy invariance) Pointed homotopic maps induce the same morphism.
(2) (Mayer–Vietoris property) SupposeX is the union of subcomplexesA andB .

If a 2 h.A/ and b 2 h.B/ are elements with the same restriction in h.A\B/,
then there exists an element x 2 h.X/ with restrictions a and b.

(3) (Additivity) Let X DWj Xj with inclusions ij W Xj ! X . Then

h.X/!Q
j h.Xj /; x 7! .h.ij /x/

is bijective.

(8.6.10)Theorem (E. H. Brown). For each homotopy functorh W C 0 ! SET0 there
exist K 2 C 0 and u 2 h.K/ such that

ŒX;K�0 ! h.X/; Œf � 7! f �.u/

is bijective for each X 2 C 0. �
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In category theory one says that K is a representing object for the functor h.
The theorem is called the representability theorem of E. H. Brown. For a proof see
[31], [4].

(8.6.11) Example. Let h.X/ D ŒX;Z�0 for a connected pointed space Z. Then h
is a homotopy functor. From (8.6.10) we obtainK 2 C 0 and f W K ! Z such that
f� W ŒX;K�0 ! ŒX;Z�0 is always bijective, i.e., f is a weak h-equivalence. Thus
we have obtained a CW-approximation X of Z. Þ

Problems

1. As a consequence of (8.6.8) one can extend homotopy functors from CW-complexes
to arbitrary spaces. Let F be a functor from the category of CW-complexes such that
homotopic maps f ' g induce the same morphism F.f / D F.g/. Then there is, up to
natural isomorphism, a unique extension ofF to a homotopy invariant functor on TOP which
maps weak equivalences to isomorphisms.
2. A point is a CW -approximation of the pseudo-circle.
3. Determine the CW -approximation of f0g [ fn�1 j n 2 Ng.
4. Let X and Y be CW-complexes. Show that the identity X �k Y ! X � Y is a CW-
approximation.
5. Let .Yj j j 2 J / be a family of well-pointed spaces and j̨ W Xj ! Yj a family of
pointed CW-approximations. Then

W
j j̨ is a CW-approximation. Give a counterexample

(with two spaces) in the case that the spaces are not well-pointed.
6. Let f W A! B and g W C ! D be pointed weak homotopy equivalences between well-
pointed spaces. Then f ^ g is a weak homotopy equivalence.
7. Verify from the axioms of a homotopy functor that h.P / for a point P contains a single
element.
8. Verify from the axioms of a homotopy functor that for each inclusion A � X in C 0 the
canonical sequence h.X=A/! h.X/! h.A/ is an exact sequence of pointed sets.

8.7 Homotopy Classification

In favorable cases the homotopy class of a map is determined by its effect on
homotopy groups.

(8.7.1) Theorem. Let X be an .n � 1/-connected pointed CW-complex. Let Y be
a pointed space such that �i .Y / D 0 for i > n � 2. Then

hX W ŒX; Y �0 ! Hom.�n.X/; �n.Y //; Œf � 7! f�

is bijective.

Proof. The assertion only depends on the pointed homotopy type of X . We use
(8.6.2) and assume Xn�1 D f	g. The hX constitute a natural transformation in the
variableX . Since .X;XnC1/ is .nC1/-connected, the inclusionXnC1 � X induces
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an isomorphism on �n. By (8.6.5), the restriction r W ŒX; Y �0 ! ŒXnC1; Y �0 is a
bijection. Therefore it suffices to consider the case, that X has, apart from the base
point, only cells of dimension n and nC1. Moreover, by the homotopy theorem for
cofibrations, we can assume that the attaching maps for the .nC1/-cells are pointed.
In this caseX is the mapping cone of a pointed map f W A DWSn

k
!W

Snj D B .
We therefore have the exact cofibre sequence

ŒA; Y �0
f �

 � ŒB; Y �0  ŒX; Y �0  Œ†A; Y �0:

Our assumption about Y yields Œ†A; Y �0 D 
W
†Sn

k
; Y

�0 Š Q
k �nC1.Y / D 0.

We apply the natural transformation h and obtain a commutative diagram

ŒA; Y �0

hA

��

ŒB; Y �0

hB

��

f �
�� ŒX; Y �0

hX

��

f �
1�� 0��

Hom.�nA;�nY / Hom.�nB;�nY /�� Hom.�nX;�nY /�� 0.��

As one of the consequences of the excision theorem we showed that the sequence
�n.A/ ! �n.B/ ! �n.X/ ! 0 is exact, and therefore the bottom sequence of
the diagram is exact. We show that hA and hB are isomorphisms. If A D Sn, then

hA W �n.Y / D ŒSn; Y �0 ! Hom.�n.S
n/; �n.Y //

is an isomorphism, since �n.Sn/ is generated by the identity. In the case that
A DWSn

k
, we have a commutative diagram


W
Sn
k
; Y

�0 Š ��

hWSn
k

��

Q
ŒSn
k
; Y �

Š
Q
hSn

k

��

Hom
�
�n

�W
Sn
k

�
; �n.Y /

� .1/
��
Q

Hom.�n.Snk /; �n.Y //.

The map .1/ is induced by the isomorphism
L
�n.S

n
k
/ Š �n.

W
Sn
k
/ and there-

fore an isomorphism. We now want to conclude from the diagram by a Five
Lemma type argument that hX is bijective. The proof of surjectivity does not
use the group structure. Injectivity follows, if f �

1 is injective. In order to see
this, one can use the general fact that Œ†A; Y �0 acts on ŒX; Y �0 and the orbits are
mapped injectively, or one uses that f is, up to homotopy, a suspension, because
†� W 
WSn�1

k
;
W
Sn�1
j

�0 ! 
W
Sn
k
;
W
Snj

�0 is surjective. �

8.8 Eilenberg–Mac Lane Spaces

Let � be an abelian group. An Eilenberg–Mac Lane space of type K.�; n/ is a
CW-complexK.�; n/ such that�n.K.�; n// Š � and�j .K.�; n// Š 0 for j 6D n.



218 Chapter 8. Cell Complexes

In the cases n D 0; 1, the group � can be non-abelian. In the case n D 0, we think
of K.�; 0/ D � with the discrete topology.

(8.8.1) Theorem. Eilenberg–Mac Lane spaces K.�; n/ exist.

Proof. Let n � 2. There exists an exact sequence

0 �� F1
˛ �� F0

ˇ
�� � �� 0

with free abelian groups F0 and F1. We fix a basis .ak j k 2 K/ of F1 and
.bj j j 2 J / of F0. Then ˛ is determined by the matrix ˛.ak/ D

P
j n.j; k/bj .

We now construct a geometric realization of this algebraic situation. The group
�n

�W
k S

n
k

� ŠLk �n.S
n
k
/ is free abelian (8.6.4). A basis is given by the canonical

inclusions Sn
l
!W

Sn
k

. There exists a unique homotopy class f W A DWk S
n
k
!W

Snj D B which realizes the matrix .n.j; k// with respect to these bases. Let
X D C.f / be the mapping cone of f . Then the sequence

�n.A/
f� �� �n.B/

f1� �� �n.X/ �� 0

is exact. Hence �n.X/ Š � . Also �i .X/ D 0 for i < n. We can now attach cells
of dimensions � nC 2 to X in order to obtain a K.�; n/, see (8.6.6). �

(8.8.2) Examples. The space S1 is a K.Z; 1/. We know �1.S
1/ Š Z, and from

the exact sequence of the universal covering R! S1 we know that �n.S1/ D 0 for
n � 2. The space CP1 is a model for K.Z; 2/. The space RP1 is a K.Z=2; 1/.

Þ

The adjunction Œ†X; Y �0 Š ŒX;�Y �0 shows that �K.�; n C 1/ has the ho-
motopy groups of a K.�; n/. By a theorem of Milnor [132], [67], �Y has the
homotopy type of a CW-complex if Y is a CW-complex. If one does not want to
use this result one has the weaker result that there exists a weak homotopy equiva-
lence K.�; n/! �K.�; nC 1/.

We now establish further properties of Eilenberg–Mac Lane spaces. We begin
by showing that Eilenberg–Mac Lane spaces are H -spaces. Then we construct
product pairings K.�;m/ ^K.�; n/ ! K.� ˝ �;mC n/. In this context � ˝ �
denotes the tensor product of the abelian groups � and � (alias Z-modules) over Z.

We call the space K.�; n/ polarized, if we have chosen a fixed isomorphism
˛ W �n.K.�; n// ! � . If .K.�; n/; ˛/ and .K.�; n/; ˇ/ are polarized complexes,
the product K.�; n/ �K.�; n/ will be polarized by

�n.K.�; n/ �K.�; n// Š �n.K.�; n// � �n.K.�; n// ˛�ˇ
�� �1 � �2:

(8.8.3) Proposition. Having chosen polarizations, we obtain from (8.7.1) an iso-
morphism ŒK.�; n/;K.�; n/�0 Š Hom.�; �/. �
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(8.8.4) Theorem. Let � be an abelian group. Then an Eilenberg–Mac Lane com-
plex K.�; n/ is a commutative group object in h-TOP.

Proof. Let K D .K.�; n/; ˛/ be a polarized complex with base point a 0-cell
e. For an abelian group � , the multiplication � W � � � ! � , .g; h/ 7! gh is
a homomorphism. Therefore there exists a map m W K � K ! K, unique up to
homotopy, which corresponds under (8.8.3) to�. Similarly, � W � ! � , g 7! g�1 is
a homomorphism and yields a map i W K ! K. Claim: .K;m; i/ is an associative
and commutative H -space. The maps m ı .m � id/ and m ı .id�m/ induce the
same homomorphism when �n is applied; hence these maps are homotopic. In a
similar manner one shows that x 7! m.x; e/ is homotopic to the identity. Since
K _ K � K � K is a cofibration, we can change m by a homotopy such that
m.x; e/ D m.e; x/ D x. We write x 7! m.x; i.x// as composition

K
d�! K �K id �i�! K �K m�! K

and apply �n; the result is the constant homomorphism. Hence this map is null
homotopic. Commutativity is verified in a similar manner by applying �n. See also
Problem 1. �

For the construction of the product pairing we need a general result about
products for homotopy groups. We take the smash product of representatives
f W Im=@Im ! X , g W I n=@I n ! Y and obtain a well-defined map

�m.X/ � �n.Y /! �mCn.X ^k Y /; .Œf �; Œg�/ 7! Œf ^ g� D Œf � ^ Œg�:

We call this map the ^-product for homotopy groups. It is natural in the variables
X and Y .

(8.8.5) Proposition. The ^-product is bi-additive.

Proof. The additivity in the first variable follows directly from the definition of the
addition, if we use C1. We see the additivity in the second variable, if we use the
composition lawsC1 andCmC1 in the homotopy groups. �

(8.8.6) Proposition. Let A be an .m � 1/-connected and B an .n � 1/-connected
CW-complex. Then A ^ B is .mC n � 1/-connected and the ^-product

�m.A/˝ �n.B/! �mCn.A ^k B/

is an isomorphism (m; n � 2). Ifm orn equals 1, then one has to use the abelianized
groups.
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Proof. The assertion about the connectivity was shown in (8.6.3). For A D Sm the
assertion holds by the suspension theorem. For A DWj Smj we use the commuta-
tive diagram

�m
�W

Smj
�˝ �n.B/ ^ �� �mCn

��W
Smj

� ^k B�

�L
�m.S

m
j /

�˝ �n.B/
.1/

��

�mCn
�W

.Smj ^ B/
�.2/

��

L
.�m.S

m
j /˝ �n.B//

.3/

��

.5/
��
L
�mCn.Smj ^ B/.

.4/

��

(1) is an isomorphism by (8.6.4). (2) is induced by a homeomorphism. (3) is an
isomorphism by algebra. (4) is an isomorphism by (8.6.4). (5) is an isomorphism
by the suspension theorem. This settles the case of a wedge of m-spheres. Next
we let A be the mapping cone of a map f W C ! D where C andD are wedges of
m-spheres. Then we have a commutative diagram with exact rows:

�m.C /˝ �m.Y / ��

Š
��

�m.D/˝ �n.B/ ��

Š
��

�m.A/˝ �n.B/ ��

��

0

�mCn.C ^k B/ �� �mCn.D ^k B/ �� �mCn.A ^k B/ �� 0.

The general case now follows from the observation that the inclusion AmC1 ! A

induces an isomorphism on�m andAmC1^kB ! A^kB induces an isomorphism
on �mCn. �

Let .K.G;m/; ˛/, .K.H; n/; ˇ/ and .K.G˝H;mCn/; �/ be polarized Eilen-
berg–Mac Lane complexes for abelian groups G and H . A product is a map

�m;n W K.G;m/ ^k K.H; n/! K.G ˝H;mC n/
such that the diagram

�m.K.G;m//˝ �n.K.H; n// ^ �� �mCn.K.G;m/ ^k K.H; n//
.�m;n/�

��

G ˝H �
��

˛˝ˇ
��

�mCn.K.G ˝H;mC n//
is commutative. Here we have use the ^-product (8.8.5).

(8.8.7) Theorem. There exists a product. It is unique up to homotopy.
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Proof. Let G and H be abelian groups. The first non-trivial homotopy group of
K.G;m/ ^k K.H; n/ is �mCn and it is isomorphic to G ˝ H , see (8.8.6). By
(8.6.6) there exists an inclusion

�m;n W K.G;m/ ^k K.H; n/! K.G ˝H;mC n/:
We can choose the polarization � so that the diagram above becomes commutative.
Uniqueness follows from (8.7.1). �

The products (8.8.7) are associative, i.e.,

�mCn;p ı .�m;n � id/ ' �m;nCp ı .id��n;p/:
The products are graded commutative in the following sense:

K.�;mC n/ ı �m;n ' .�1/mn� 0 ı �n;m
with the interchange maps � 0 W K.m;G/ ^ K.n;H/ ! K.n;H/ ^ K.m;G/ and
� W G ˝H ! H ˝G.

Let R be a commutative ring with 1. We think of the multiplication as being a
homomorphism� W R˝R! R between abelian groups. From this homomorphism
we obtain a unique homotopy class K.�/ W K.R˝R;m/! K.R;m/.

We compose K.�/ with �k;l and obtain a product map

mk;l W K.R; k/ ^k K.R; l/! K.R; k C l/:
Also these products are associative and graded commutative.

In the associated homotopy groups H k.X IR/ D ŒXC; K.R; k/�0 we obtain
via .f; g/ 7! mk;l.f ^ g/ products

H k.X IR/˝H l.Y IR/! H kCl.X � Y IR/;
which are also associative and graded commutative. (See also Problem 3.) In a
similar manner we can start from an R-module structure R ˝M ! M on M .
Later, when we study singular cohomology, we show that for a CW-complexX the
group ŒXC; K.R; k/�0 is naturally isomorphic to the singular cohomology group
H k.X IR/ with coefficients in the ring R. This opens the way to a homotopical
study of cohomology. The product (8.8.7) can then be used to construct the so-called
cup product in cohomology.

Once singular cohomology theory is constructed one obtains from the repre-
sentability theorem of Brown Eilenberg–Mac Lane spaces as representing objects.

8.8.8 Eilenberg–Mac Lane spectra. Let A be an abelian group. The Eilenberg–
Mac Lane spectrum HA consists of the family .K.A; n/ j n 2 N0/ of Eilenberg–
Mac Lane CW-spaces and maps en W †K.A; n/ ! K.A; n C 1/ (an inclusion of
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subcomplexes; attach cells to†K.A; n/ to obtain aK.A; nC1/). This spectrum is
an�-spectrum. We have proved in any case that "n W K.A; n/! �K.A; nC 1/ is
a weak homotopy equivalence. This suffices if one wants to define the cohomology
theory only for pointed CW-spaces. Þ

Problems

1. From the natural isomorphism ŒX;K.�; n/�0 Š ŒX;�2K.�; nC 2/�0 we see that X 7!
ŒX;K.�; n/�0 is a contravariant functor into the category of abelian groups. Therefore, by
category theory, there exists a unique (up to homotopy) structure of a commutative h-group
on K.�; n/ inducing the group structures of this functor.
2. Let ˛ 2 �m.X/, ˇ 2 �n.Y /, and � W X ^k Y ! Y ^k X the interchange map. Then
˛ ^ ˇ D .�1/mnˇ ^ ˛.
3. Let M be an R-module. A left translation lr W M ! M , x 7! rx is a homomorphism
of the abelian group M and induces therefore a map Lr W K.M; k/! K.M; k/. Use these
maps to define a natural structure of an R-module on ŒX;K.M; k/�0.
4. The simply connected surfaces are S2 and R2 [44, p. 87]. If a surface is different from
S2 and RP 2, then it is a K.�; 1/.
5. Let E.�/ ! B.�/ be a �-principal covering with contractible E.�/. Then B.�/ is a
K.�; 1/. Spaces of the type B.�/ will occur later as classifying spaces. There is a bijection
ŒK.�; 1/;K.�; 1/� Š Hom.�; �/= � between homotopy classes and group homomorphisms
up to inner automorphisms.
6. Let S1 be the colimit of the unit spheres S.Cn/ � S.CnC1/ � � � � . This space carries
a free action of the cyclic group Z=m � S1 by scalar multiplication. Show that S1 with
this action is a Z=m-principal covering. The quotient space is a CW-space B.Z=m/ and
hence a K.Z=m; 1/.
7. A connected 1-dimensional CW-complexX is aK.�; 1/. Determine � from the topology
of X .
8. A connected non-closed surface (with or without boundary) is a K.�; 1/.



Chapter 9

Singular Homology

Homology is the most ingenious invention in algebraic topology. Classically, the
definition of homology groups was based on the combinatorial data of simplicial
complexes. This definition did not yield directly a topological invariant. The
definition of homology groups and (dually) cohomology groups has gone through
various stages and generalizations.

The construction of the so-called singular homology groups by Eilenberg [56]
was one of the definitive settings. This theory is very elegant and almost entirely
algebraic. Very little topology is used as an input. And yet the homology groups are
defined for arbitrary spaces in an invariant manner. But one has to pay a price: The
definition is in no way intuitively plausible. If one does not mind jumping into cold
water, then one may well start algebraic topology with singular homology. Also
interesting geometric applications are easily obtainable.

In learning about homology, one has to follow three lines of thinking at the same
time: (1) The construction. (2) Homological algebra. (3) Axiomatic treatment.

(1) The construction of singular homology groups and the verification of its main
properties, now called the axioms of Eilenberg and Steenrod.

(2) A certain amount of algebra, designed for use in homology theory (but also of
independent algebraic interest). It deals with diagrams, exact sequences, and
chain complexes. Later more advanced topics are needed: Tensor products,
linear algebra of chain complexes, derived functors and all that.

(3) The object that one constructs with singular homology is now called a ho-
mology theory, defined by the axioms of Eilenberg and Steenrod. Almost all
applications of homology are derived from these axioms. The axiomatic treat-
ment has other advantages. Various other homology and cohomology theories
are known, either constructed by special input (bordism theories, K-theories,
de Rham cohomology) or in a systematic manner via stable homotopy and
spectra.

The axioms of a homology or cohomology theory are easily motivated from
the view-point of homotopy theory. But we should point out that many results of
algebraic topology need the idea of homology: The reduction to combinatorial data
via cell complexes, chain complexes, spectral sequences, homological algebra, etc.

Reading this chapter requires a parallel reading of the chapter on homological
algebra. Already in the first section we use the terminology of chain complexes and
their homology groups and results about exact sequences of homology groups.
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9.1 Singular Homology Groups

The n-dimensional standard simplex is


n D 
Œn� D ˚.t0; : : : ; tn/ 2 RnC1 ˇ̌ Pn
iD0 ti D 1; ti � 0

	 � RnC1:

We set Œn� D f0; : : : ; ng. A weakly increasing map ˛ W Œm�! Œn� induces an affine
map


.˛/ W 
Œm�! 
Œn�;
Pm
iD0 tiei 7!

Pm
iD0 tie˛.i/:

Here ei is the standard unit vector, thus
Pm
iD0 tiei D .t0; : : : ; tm/. These maps

satisfy the rules of a functor 
.˛ ı ˇ/ D 
.˛/ ı 
.ˇ/ and 
.id/ D id. Let
ıni W Œn � 1�! Œn� be the injective map which misses the value i .

(9.1.1) Note. ınC1
j ıni D ınC1

i ınj�1, i < j . (The composition misses i and j .) We
write dni D 
.ıni /. By functoriality, the dni satisfy the analogous commutation
rules. �

A continuous map � W 
n ! X is called a singular n-simplex in X . The i -th
face of � is � ı dni . We denote by Sn.X/ the free abelian group with basis the
set of singular n-simplices in X . (We also set, for formal reasons, Sn.X/ D 0

in the case that n < 0 but disregard mostly this trivial case. If X D ;, we let
Sn.X/ D 0.) An element x 2 Sn.X/ is called a singular n-chain. We think of x
as a formal finite linear combination x D P

� n�� , n� 2 Z. In practice, we skip
a summand with n� D 0; also we write 1 � � D � . We use without further notice
the algebraic fact that a homomorphism from Sn.X/ is determined by its values on
the basis elements � W 
n ! X , and these values can be prescribed arbitrarily. The
boundary operator @q is defined for q � 1 by

@q W Sq.X/! Sq�1.X/; � 7!Pq
iD0.�1/i�dqi ;

and for q � 0 as the zero map. Basic for everything that follows is the

9.1.2 Boundary relation. @q�1@q D 0.

Proof. We decompose the sum @@� D Pq
jD0

Pq�1
iD0.�1/iCj�dqj dq�1

i into the
parts

P
i<j and

P
i�j . When we rewrite the first sum using (9.1.1), the result is

the negative of the second sum. �

The singular chain groups Sq.X/ and the boundary operators @q form a chain
complex, called the singular chain complex S�.X/ ofX . Its n-th homology group
is denoted Hn.X/ D Hn.X IZ/ and called singular homology group of X (with
coefficients in Z). A continuous map f W X ! Y induces a homomorphism

f# D Sq.f / W Sq.X/! Sq.Y /; � 7! f�:
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The family of the Sq.f / is a chain map S�.f / W S�.X/ ! S�.Y /. Thus we have
induced homomorphisms f� D Hq.f / W Hq.X/ ! Hq.Y /. In this manner, the
Hq become functors from TOP into the category ABEL of abelian groups.

Let now i W A � X be an inclusion. We define Sn.X;A/ as the cokernel of
Sn.i/ W Sn.A/ ! Sn.X/. Less formally: The group Sn.X;A/ is free abelian and
has as a basis the singular simplices � W 
n ! X with image not contained in
A. Since Sn.;/ D 0, we identify canonically Sn.X/ D Sn.X;;/. The boundary
operator of S�.X/ induces a boundary operator @n W Sn.X;A/! Sn�1.X;A/ such
that the family of quotient homomorphisms Sn.X/ ! Sn.X;A/ is a chain map.
The homology groups Hn.X;A/ D Hn.X;AIZ/ of S�.X;A/ are the relative
singular homology groups of the pair .X;A/ (with coefficients in Z). A continuous
map f W .X;A/ ! .Y; B/ induces a chain map f� W S�.X;A/ ! S�.Y; B/ and
homomorphisms f� D Hq.f / W Hq.X;A/! Hq.Y; B/. In this way,Hq becomes
a functor from TOP.2/ to ABEL.

We apply (11.3.2) to the exact sequence of singular chain complexes

0! S�.A/! S�.X/! S�.X;A/! 0

and obtain the associated exact homology sequence:

(9.1.3) Theorem. For each pair .X;A/ the sequence

� � � @�! Hn.A/! Hn.X/! Hn.X;A/
@�! Hn�1.A/! � � �

is exact. The sequence terminates with H0.X/ ! H0.X;A/ ! 0. The undeco-
rated arrows are induced by the inclusions .A;;/ � .X;;/ and .X;;/ � .X;A/.

�

Let .X;A;B/ be a triple, i.e., B � A � X . The inclusion S�.A/ ! S�.X/
induces by passage to factor groups an inclusion S�.A;B/ ! S�.X;B/, and its
cokernel can be identified with S�.X;A/. We apply (11.3.2) to the exact sequence
of chain complexes

0! S�.A;B/! S�.X;B/! S�.X;A/! 0

and obtain the exact sequence of a triple

� � � @�! Hn.A;B/! Hn.X;B/! Hn.X;A/
@�! Hn�1.A;B/! � � � :

The boundary operator @ W Hn.X;B/ ! Hn�1.A;B/ in the exact sequence of a
triple is the composition of the boundary operator for .X;A/ followed by the map
Hn�1.A/! Hn�1.A;B/ induced by the inclusion.

It remains to verify that the connecting morphisms @ constitute a natural trans-
formation, i.e., that for each map between triples f W .X;A;B/! .X 0; A0; B 0/ the
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diagram

Hk.X;A/
@ ��

f�
��

Hk�1.A;B/
f�
��

Hk.X
0; A0/ @ �� Hk�1.A0; B 0/

is commutative. This is a special case of an analogous fact for morphisms be-
tween short exact sequences of chain complexes and their associated connecting
morphisms. We leave this as an exercise.

One cannot determine the groupsHq.X;A/ just from its definition (except in a
few trivial cases). Note that for open sets in Euclidean spaces the chain groups have
an uncountable basis. So it is clear that the setup only serves theoretical purposes.
Before we prove the basic properties of the homology functors (the axioms of
Eilenberg and Steenrod) we collect a few results which follow directly from the
definitions.

9.1.4 Point. Let X D P be a point. There is a unique singular n-simplex, hence
Sn.P / Š Z, n � 0. The boundary operators @0 and @2iC1 are zero and @2; @4; : : :
are isomorphisms. Hence Hi .P / D 0 for i 6D 0; and H0.P / Š Z, via the
homomorphism which sends the unique 0-simplex to 1 2 Z. Þ

9.1.5 Additivity. Let .Xj j j 2 J / be the path components of X , and let
�j W .Xj ; Xj \ A/! .X;A/ be the inclusion. ThenL

j2J Sn.Xj ; Xj \ A/! Sn.X;A/; .xj / 7!P
j �
j
# .xj /

is an isomorphism. Similarly for Hn instead of Sn. The reason is that 
n is path
connected, and therefore � W 
n ! X has an image in one of the Xj , so we can
sort the basis elements of Sn.X/ according to the components Xj . Þ

9.1.6 The groups H0. The group H0.X/ is canonically isomorphic to the free
abelian group Z�0.X/ over the set �0.X/ of path components. We identify a
singular 0-simplex � W 
0 ! X with the point �.
0/. Then S0.X/ is the free
abelian group on the points of X . A singular 1-simplex � W 
1 ! X is essentially
the same thing as a path, only the domain of definition has been changed from I

to
1. We associate to � the pathw� W I ! X , t 7! �.1�t; t /. Then @0� D w� .1/
and @1� D w� .0/, hence @� D @0��@1� corresponds to the orientation convention
@w D w.1/ � w.0/. If two points a; b 2 X are in the same path component, then
the zero-simplices a and b are homologous. Hence we obtain a homomorphism
from Z�0.X/ into H0.X/, if we assign to the path component of a its homology
class. We also have a homomorphism S0.X/! Z�0.X/ which sends the singular
simplex of a 2 X to the path component of a. This homomorphism sends the
image of @ W S1.X/! S0.X/ to zero. Hence we obtain an inverse homomorphism
H0.X/! Z�0.X/. Þ
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9.2 The Fundamental Group

The signs which appear in the definition of the boundary operator have an inter-
pretation in low dimensions. They are a consequence of orientation conventions.
A singular 1-simplex � W 
1 ! X is essentially the same thing as a path, only the
domain of definition has changed from Œ0; 1� to 
1. We associate to � the path
I ! X , t 7! �.1 � t; t /. The inverse path is then ��.t0; t1/ D �.t1; t0/. The
product of paths has now the form

.� 	 �/.t0; t1/ D
(
�.2t0 � 1; 2t1/; t1 � 1=2;
�.2t0; 2t1 � 1/; t1 � 1=2:

If we define ! W 
2 ! X , .t0; t1; t2/ 7! .� 	 �/.t0 C t1=2; t1=2 C t2/, then one
verifies @! D � � � 	 � C � . A loop � W 
1 ! X is a 1-cycle; let Œ�� be its
homology class. Thus for loops �; � we have

.1/ Œ� 	 �� D Œ��C Œ� �:
(Here Œz� denotes the homology class of the cycle z.) Let k W 
1 � I ! X

be a homotopy of paths 
1 ! X . The map k factors over the quotient map
q W 
1 � I ! 
2, .t0; t1; t / 7! .t0; t1.1 � t /; t1t / and yields � W 
2 ! X . We
compute @� D c� k1C k0, with a constant c. A constant 1-simplex is a boundary.
Hence k0 � k1 is a boundary

Œk0� D Œk1� 2 C1.X/=B1.X/:
In particular, homotopic loops yield the same element in H1.X/. Thus we obtain
a well-defined map h0 W �1.X; x0/ ! H1.X/; by (1), it is a homomorphism. The
fundamental group is in general non-abelian. Therefore we modify h0 algebraically
to take this fact into account. Each group G has the associated abelianized factor
group Gab D G=ŒG;G�; the commutator group ŒG;G� is the normal subgroup
generated by all commutators xyx�1y�1. A homomorphismG ! A to an abelian
group A factorizes uniquely over Gab . We apply this definition to h0 and obtain a
homomorphism

h W �1.X; x0/ab ! H1.X/:

(9.2.1) Theorem. Let X be path connected. Then h is an isomorphism.

Proof. We construct a homomorphism in the other direction. Forx 2 X we choose a
path u.x/ from x0 to x. We assign to a 1-simplex � W 
1 ! X from �0 D �.1; 0/ to
�1 D �.0; 1/ the class of the loop .u.�0/	�/	u.�1/�. We extend this assignment
linearly to a homomorphism l 0 W C1.X/ ! �1.X; x0/

ab . Let � W 
2 ! X be a
2-simplex with faces �j D �dj . Since 
2 is contractible, �2 	 �0 ' �1. This
implies

l 0.Œ�2�/C l 0.Œ�0�/ D l 0.Œ�2�C Œ�0�/ D l 0.Œ�2 	 �0�/ D l 0.Œ�1�/:
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Hence l 0 factors over C1.X/=B1.X/ and induces l W H1.X/ ! �1.X; x0/
ab . By

construction, lh D id. We show that h is surjective. Let
P
a�� 2 C1.X/ be a

cycle. ThenX
a� Œ�� D

X
a� .Œu.�0/�C Œ�� � Œu.�1/�/ D

X
a� Œ.u.�0/ 	 �/ 	 u.�1/��;

and the last element is contained in the image of h. �

One of the first applications of the homology axioms is the computation
H1.S

1/ Š Z. Granted the formal result that �1.S1/ is abelian, we obtain yet
another proof for �1.S1/ Š Z.

9.3 Homotopy

We prove in this section the homotopy invariance of the singular homology groups.
We begin with a special case.

9.3.1 Cone construction. Let X be a contractible space. Define a chain map
" D ."n/ W S�.X/! S�.X/ by "n D 0 for n 6D 0 and by "0

�P
n��

� D �P
n�
�
�0

where �0 W 
0 ! fx0g. We associate to each homotopy h W X � I ! X from the
identity to the constant map with value x0 a chain homotopy s D .sn/ from " to
the identity. The homomorphisms s W Sn�1.X/! Sn.X/ are obtained from a cone
construction. Let

q W 
n�1 � I ! 
n; ..�0; : : : ; �n�1/; t/ 7! .t; .1 � t /�0; : : : ; .1 � t /�n�1/:

Given � W 
n�1 ! X , there exists a unique simplex s.�/ D s� W 
n !X such that
h ı .� � id/ D s.�/ ı q, since q is a quotient map. For the faces of s� we verify
.s�/di D s.�di�1/, for i > 0, and .s�/d0 D � . From these data we compute for
n > 1,

@.s�/ D .s�/d0 �Pn
1.�1/i�1.s�/di D � �

Pn�1
0 .�1/j s.�dj�1/

D � � s.@�/
and @.s�/ D � � �0 for a 0-simplex � . These relations imply @s C s@ D id�".
Note that " induces the zero map in dimensions n 6D 0. Þ

(9.3.2) Proposition. Let X be contractible. ThenHn.X/ D 0 for n 6D 0. �

The inclusions �t .X/ D �t W X ! X � I , x 7! .x; t/ induce chain maps
.�tn/ D �t� W S�.X/ ! S�.X � I /. We consider these chain maps as natural
transformations between functors; the naturality says that for each continuous map
f W X ! Y the commutation relation .f � id/��t .X/� D �t .Y /�f� holds.

(9.3.3) Theorem. There exists a natural chain homotopy s� from �0� to �1�.
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Proof. We apply (11.5.1) to C D TOP, F�.X/ D S�.X/, G�.X/ D S�.X � I /
and the natural transformation �t�. The model set for Fn consists of 
n, and the
corresponding b-element is the identity of 
n considered as a singular simplex.
From (9.3.2) we see that G� is acyclic. It should be clear that �0� and �1� induce the
same transformations in H0. �

For the convenience of the reader we also rewrite the foregoing abstract proof in
explicit terms. See also Problem 2 for an explicit chain homotopy and its geometric
meaning.

Proof. We have to show: There exist morphisms sXn W Sn.X/! SnC1.X �I / such
that

.Kn/ @sXn C sXn�1@ D �1n.X/ � �0n.X/

(chain homotopy), and such that for continuous X ! Y the relations

.Nn/ .f � id/# ı sXn D sYn ı f#

hold (naturality). We construct the sn inductively.
n D 0. In this case, s0 sends the 0-simplex � W 
0 ! fxg � X to the 1-simplex

s0� W 
1 ! X � I , .t0; t1/ 7! .x; t1/. Then the computation

@.s0�/ D .s0�/d0 � .s0�/d1 D �10� � �00�

shows that .K0/ holds, and also .N0/ is a direct consequence of the definitions.
Now suppose that the sk fork < n are given, and that they satisfy .Kk/ and .Nk/.

The identity of 
n is a singular n-simplex; let �n 2 Sn.
n/ be the corresponding
element. The chain to be constructed sn�n should satisfy

@.sn�n/ D �1n.�n/ � �0n.�n/ � sn�1@.�n/:

The right-hand side is a cycle in Sn.
n � I /, as the next computation shows.

@.�1n.�n/ � �0n.�n/ � sn�1@.�n//
D �1n�1.@�n/ � �0n�1.@�n/ � @sn�1.@�n/
D �1n�1.@�n/ � �0n�1.@�n/ � .�1n�1.@�n/ � �0n�1.@�n/ � sn�2@@�n/ D 0:

We have used the relation .Kn�1/ for @sn�1@.�n/ and that the �t� are chain maps.
Since
n�I is contractible, there exists, by (9.3.2), an a 2 SnC1.
n�I /with the
property @a D �1n.�n/��0n.�n/� sn�1@.�n/. We choose an a with this property and
define sn.�n/ D a and in general sn.�/ D .� � id/#a for � W 
n ! X ; the required
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naturality .Nn/ forces us to do so. We now verify .Kn/ and .Nn/. We compute

@sn.�/ D @.� � id/#a D .� � id/#@a

D .� � id/#.�
1
n�n � �0n�n � sn�1@�n/

D �1n�#�n � �0n�#�n � sn�1�#@�n

D �1n� � �0n� � sn�1@�:
We have used: .� � id/# is a chain map; choice of a; naturality of �1�, �0�, and
.Nn�1/; �#�n D � ; �# is a chain map. Thus we have shown .Kn/. The equalities

.f � id/#sn.�/ D .f � id/#.� � id/#a D .f � � id/#a D sn.f �/ D snf#�

finally show the naturality .Nn/. �

With (9.3.3) we control the universal situation. Let f W .X;A/ � I ! .Y; B/

be a homotopy in TOP.2/ from f 0 to f 1. The sn in (9.3.3) induce by naturality
also a chain homotopy sn W Sn.X;A/! SnC1.X � I; A � I /. The computation

@.f# ı sn/C .f# ı sn�1/@ D f#@sn C f#sn�1@ D f#.�
1 � �0/ D f 1# � f 0#

proves the f#sn to be a chain homotopy from f 0# to f 1# . Altogether we see:

(9.3.4) Theorem. Homotopic maps induce homotopic chain maps and hence the
same homomorphisms between the homology groups. �
(9.3.5) Example. Let a0.X/; a1.X/ W S�.X/ ! S�.X/ be chain maps, natural in
X , which coincide on S0.X/. Then there exists a natural chain homotopy from a0

to a1. This is a consequence of (11.5.1) for F� D G� and the models 
n as in the
proof of (9.3.3). Þ

Problems

1. Let �n W 
n ! 
n, .	0; : : : ; 	n/ 7! .	n; : : : ; 	0/. Verify that Sn.X/ ! Sn.X/,
� 7! .�1/.nC1/n=2��n is a natural chain map. By (9.3.5), it is naturally homotopic to the
identity.
2. One can prove the homotopy invariance by constructing an explicit chain homotopy.
A natural construction would associate to a singular n-simplex � W 
n ! X the singular
prism � � id W 
n � I ! X � I . The combinatorial (set-theoretic) boundary of 
n � I
is 
n � 1 [
n � 0 [ .@
n/ � I , and this corresponds exactly to the definition of a chain
homotopy, if one takes orientations into account. This idea works; one has to decompose

n � I into simplices, and it suffices to do this algebraically.

In the prism
n�I let 0; 1; : : : ; n denote the vertices of the base and 00; 10; : : : ; n0 those
of the top. In the notation for affine singular simplices introduced later, show that an explicit
formula for a D sn�n is

sn�n DPn
iD0.�1/i Œ0; 1; : : : ; i; i 0; .i C 1/0; : : : ; n0�:

(This is a special case of the Eilenberg–Mac Lane shuffle morphism to be discussed in the
section on homology products.)
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9.4 Barycentric Subdivision. Excision

The basic property of homology is the excision theorem (9.4.7). It is this theo-
rem which allows for effective computations. Its proof is based on subdivision of
standard simplices. We have to work out the algebraic form of this subdivision first.

LetD � Rn be convex, and let v0; : : : ; vp be elements inD. The affine singular
simplex � W 
p ! D,

P
i 	iei 7!

P
i 	ivi will be denoted � D Œv0; : : : ; vp�. With

this notation

@Œv0; : : : ; vp� DPp
iD0.�1/i Œv0; : : : ; bvi ; : : : ; vp�;

where bvi means that vi has to be omitted from the string of vertices. For each
v 2 D we have the contracting homotopyD � I ! D, .x; t/ 7! .1� t /xC tv. If
we apply the cone construction 9.3.1 to Œv0; : : : ; vp� we obtain Œv; v0; : : : ; vp�. We
denote the chain homotopy associated to the contraction by Sp.D/ ! SpC1.D/,
c 7! v � c. We have for c 2 Sp.D/:

.1/ @.v � c/ D
(
c � v � @c; p > 0;

c � ".c/v; p D 0;
with " W S0.D/! Z,

P
n�� 7!P

n� .
The barycenter of � D Œv0; : : : ; vp� is �ˇ D 1

pC1
Pp
iD0 vi . We define induc-

tively
Bp.X/ D Bp W Sp.X/! Sp.X/

to be the homomorphism which sends � W 
p ! X to Bp.�/ D �#Bp.�p/, where
Bp.�p/ is defined inductively as

.2/ Bp.�p/ D
(
�0; p D 0;
�
ˇ
p �Bp�1.@�p/; p > 0:

(9.4.1) Proposition. The Bp constitute a natural chain map which is naturally
homotopic to the identity.

Proof. The equalities

f#B� D f#�#B.�p/ D .f �/#B.�p/ D B.f �/ D Bf#�

prove the naturality. We verify by induction over p that we have a chain map. Let
p D 1. Then @B.�1/ D @.�ˇ1 �B.@�1// D @�1 D B@.�1/. For p > 1 we compute

@B�p D @.�ˇp �B.@�p// D B@�p � �ˇp � @B@�p D B@�p � �ˇp �B@@�p D B@�p:

We have used: Definition; (1); inductive assumption; @@ D 0. We now use this
special case and the naturality

B@� D B@�#�p D B�#@�p D �#B@�p D �#@B�p D @�#B�p D @B�;
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and this computation covers the general case.
The chain map B is naturally homotopic to the identity (see (9.3.5)). �

Let U be a family of subsets of X such that their interiors cover X . We call
a singular simplex U-small, if its image is contained in some member of U. The
subgroup spanned by the U-small simplices is a subcomplex SU� .X/ of S�.X/with
homology groups denoted by HU

n .X/.

(9.4.2) Lemma. The diameter d.v0; : : : ; vp/ of the affine simplex Œv0; : : : ; vp� with
respect to the Euclidean norm is the maximum of the kvi � vj k.
Proof. Let x; y 2 Œv0; : : : ; vp� and x DP	j vj . Then, because of

P
	j D 1,

kx � yk D kP	j .vj � y/k �P	j kvj � yk � maxj kvj � yk:
This shows in particular ky � vik � maxj kvj � vik; we insert this in the above
and obtain kx � yk � maxi;j kvi � vj k; hence the diameter is at most as stated.
On the other hand, this value is clearly attained as the distance between two points.

�

(9.4.3) Lemma. Let v0; : : : ; vp 2 Rn. Then BpŒv0; : : : ; vp� is a linear combination
of affine simplices with diameter at most p

pC1d.v0; : : : ; vp/.

Proof. From the inductive definition (2) and the naturality of B we conclude

.3/ BŒv0; : : : ; vp� DPp
jD0.�1/j�ˇ �BŒv0; : : : ; bvj ; : : : ; vp�

where � D Œv0; : : : ; vp�.
We prove the claim by induction over p. The assertion is obvious for p D 0,

a point has diameter zero. By induction hypothesis, the simplices in the chain
BŒv0; : : : ; vj ; : : : ; vp� are affine of diameter at most p�1

p
d.v0; : : : ; vj ; : : : ; vp/ �

p�1
p
d.v0; : : : ; vp/. The simplices in BŒv0; : : : ; vp� have vertices �ˇ and vertices

from simplices in BŒv0; : : : ; vj ; : : : ; vp�. It suffices to evaluate the distance of �ˇ

from such vertices. It is less than or equal to sup.k�ˇ � xk j x 2 Œv0; : : : ; vp�/.
Let x D P

	j vj . Then k�ˇ � xk � max k�ˇ � vj k, as in the proof of (9.4.2).
Moreover we have

k�ˇ � vj k D
�� 1
pC1

�P
i vi
� � vj�� � 1

pC1
P
i kvi � vj k

� p
pC1 maxi;j kvi � vj k D p

pC1d.v0; : : : ; vp/:

Since .p � 1/=p < p=.p C 1/ we have verified, altogether, the claim. �

(9.4.4) Lemma. Let � W 
p ! X be a singular simplex. Then there exists a k 2 N
such that each simplex in the chain Bk� has an image contained in a member of U.
(Here Bk is the k-fold iteration of B.)



9.4. Barycentric Subdivision. Excision 233

Proof. We consider the open covering .��1.U ı//; U 2 U of 
p . Let " > 0 be a
Lebesgue number of this covering. The simplices of Bk� arise by an application of
� to the simplices in Bk�p . From (9.4.3) we see that the diameter of these simplices
is at most . p

pC1 /
kd.e0; : : : ; ep/. If k is large enough, this number is smaller than ".

�

(9.4.5) Theorem. The inclusion of chain complexes SU� .X/ � S�.X/ induces an
isomorphismHU� .X/! H�.X/.

Proof. Let a 2 SU
n .X/ be a cycle which represents a homology class in the kernel.

Thus a D @b with some b 2 SnC1.X/. By (9.4.4), there exists k such that
Bk.b/ 2 SU

nC1.X/ (apply (9.4.4) to the finite number of simplices in the linear
combination of b). By (9.4.1), there exists a natural chain homotopy Tk between
Bk and the identity. Therefore

Bk.b/ � b D Tk.@b/C @Tk.b/ D Tk.a/C @Tk.b/;
and we conclude

@Bk.b/ � @b D @Tk.a/; a D @b D @.Bk.b/ � Tk.a//:
From the naturality of Tk and the inclusion a 2 SU

n .X/ we see Tk.a/ 2 SU
nC1.X/.

Therefore a is a boundary in SU� .X/. This shows the injectivity of the map in
question.

Let a 2 Sn.X/ be a cycle. By (9.4.4), there exists k such that Bka 2 SU
n .X/.

We know that
Bka � a D Tk.@a/C @Tk.a/ D @Tk.a/:

Since Bk is a chain map, Bka is a cycle. From the last equality we see that a
is homologous to a cycle in SU

n .X/. This shows the surjectivity of the map in
question. �

Let now .X;A/ be a pair of spaces. We write U\A D .U \A j U 2 U/ and
define the chain complex SU� .X;A/ D SU� .X/=SU\A� .A/ with homology groups
HU� .X;A/. We obtain a commutative diagram of chain complexes with exact rows:

0 �� SU\A� .A/

��

�� SU� ��

��

SU� .X;A/ ��

��

0

0 �� S�.A/ �� S�.X/ �� S�.X;A/ �� 0.

Each row has its long exact homology sequence. We apply (9.4.5) to .X;U/ and
.A;U \ A/, use the Five Lemma (11.2.7), and obtain:

(9.4.6) Theorem. The inclusion of chain complexes � W SU� .X;A/ ! S.X;A/ in-
duces an isomorphism HU� .X;A/ Š H�.X;A/. By an application of (11.6.3) we
see that the inclusion � is actually a chain equivalence. �



234 Chapter 9. Singular Homology

(9.4.7) Theorem (Excision Theorem). Let Y D Y ı
1 [ Y ı

2 . Then the inclusion
induces an isomorphism H�.Y2; Y1 \ Y2/ Š H�.Y; Y1/. Let B � A � X and
suppose that xB � Aı. Then the inclusion .X X B;A X B/ ! .X;A/ induces an
isomorphismH�.X X B;A X B/ Š H�.X;A/. Again we can invoke (11.6.3) and
conclude that the inclusion actually induces chain equivalences between the chain
complexes under consideration.

Proof. The covering U D .Y1; Y2/ satisfies the hypothesis of (9.4.5). By definition,
we have SU

n .X/ D Sn.Y1/C Sn.Y2/ and also Sn.Y1 \ Y2/ D Sn.Y1/ \ Sn.Y2/.
The inclusion S�.Y2/! S�.Y / induces therefore, by an isomorphism theorem of
elementary algebra,

Sn.Y2/

Sn.Y1 \ Y2/ D
Sn.Y2/

Sn.Y1/ \ Sn.Y2/ Š
Sn.Y1/C Sn.Y2/

Sn.Y1/
D SU

n .Y /

Sn.Y1/
:

By (9.4.5) and (11.2.7) we see, firstly, that SU� .Y /=S�.Y1/! S�.Y /=S�.Y1/ and,
altogether, that S�.Y2/=S�.Y1 \ Y2/! S�.Y /=S�.Y1/ induces an isomorphism in
homology. The second statement is equivalent to the first; we useX D Y , A D Y1,
X X B D Y2. �

Problems

1. Let D � Rm and E � Rn be convex and let f W D ! E be the restriction of a linear
map. Then f#.v � c/ D f .v/ � f#.c/.
2. Although not necessary for further investigations, it might be interesting to describe the
chain BŒv0; : : : ; vp� in detail. We use (3) in the proof of (9.4.3). By (2), formula (3) also
holds for Œv0; : : : ; vp�. This yields BŒv0; v1� D Œv01; v1� � Œv01; v0� with barycenter v01,
and for BŒv0; v1; v2� we obtain in short-hand notation what is illustrated by the next figure.

Œ012; 12; 2� � Œ012; 12; 1� � Œ012; 02; 2�C Œ012; 02; 0�C Œ012; 01; 1� � Œ012; 01; 0�:

�
�

�
�

�
�

�
�

� C
�

�
�

�
�

�
�

�

C �
� C

������������

������������

v0 v1

v2

1
2
v1 C 1

2
v2

1
3
v0 C 1

3
v1 C 1

3
v2

� � � � � � � � � � �
� � � � � � � � � �

Œ012; 12; 2�

� � � � � � � � � � �
� � � � �

One continues inductively in this manner. Let S.p C 1/ denote the permutation group
of f0; : : : ; pg. We associate to � D Œv0; : : : ; vp� and � 2 S.p C 1/ the simplex �� D
Œv�

0
; : : : ; v�

p �, where v�
r D Œv�.r/; : : : ; v�.p/�

ˇ . With this notation the following holds:
B� DP�2S.pC1/ sign.�/�� .
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9.5 Weak Equivalences and Homology

Although singular homology groups are defined for arbitrary topological spaces,
they only capture combinatorial information. The theory is determined by its values
on cell complexes. Technically this uses two facts: (1) a weak homotopy equiv-
alence induces isomorphisms of homology groups; (2) every topological space is
weakly equivalent to a CW-complex. One can use cell complexes to give proofs
by induction over the skeleta. Usually the situation for a single cell is quite trans-
parent, and this fact makes the inductive proofs easy to follow and to remember.
Once a theorem is known for cell complexes, it can formally be extended to general
topological spaces. We now prove this invariance property of singular homology
[56], [21].

Let .X;A;	/ be a pointed pair. Let 
Œk�n be the n-skeleton of the standard
simplicial complex
Œk� (this is the reason for switching the notation for the standard
k-simplex). Let S .n;A/

k
.X/ for n � 0 denote the subgroup of Sk.X/ spanned by

the singular simplices � W 
Œk�! X with the property

.#/ �.
Œk�n/ � A:
The groups .S .n;A/

k
.X/ j k � 0/ form the Eilenberg subcomplex S .n;A/� .X/ of

S�.X/.

(9.5.1) Theorem. Let .X;A/ be n-connected. Then the inclusion of the Eilenberg
subcomplex ˛ W S .n;A/� .X/! S�.X/ is a chain equivalence.

Proof. We assign to a simplex � W 
Œk� ! X a homotopy P.�/ W 
Œk� � I ! X

such that
(1) P.�/0 D � ,
(2) P.�/1 satisfies (#),
(3) P.�/t D � , provided � satisfies already (#),
(4) P.�/ ı .dki � id/ D P.� ı dki /.

According to (3), the assignment P is defined for simplices which satisfy (#). For
the remaining simplices we use an inductive construction.

Suppose k D 0. Then �.
Œ0�/ 2 X is a point. Since .X;A/ is 0-connected,
there exists a path from this point to a point in A. We choose a path of this type
as P.�/.

Suppose P is given for j -simplices, j < k. Then for each k-simplex � the
homotopy P.� ıdki / is already defined, and the P.� ıdki / combine to a homotopy
@
Œk� � I ! X . Moreover P.�/0 is given. Altogether we obtain

QP .�/ W .
Œk� � 0 [ @
Œk� � I; @
Œk� � 1/! .X;A/:

Let k � n. Then 
Œk�n D 
Œk�, and similarly for the faces. By the inductive
assumption, QP .�/ sends @
Œk� � 1 into A.
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There exists a homeomorphism � W 
Œk�� I ! 
Œk�� I which induces home-
omorphisms (see (2.3.6))


Œk� � 0 Š 
Œk� � 0 [ @
Œk� � I;
@
Œk� � 0 Š @
Œk� � 1;

@
Œk� � I [
Œk� � 1 Š 
Œk� � 1:
Since .X;A/ is k-connected, the map

QP .�/ ı � W .
Œk� � 0; @
Œk� � 0/! .X;A/

can be extended to a homotopyQ W 
Œk�� I ! X which is constant on @
Œk�� I
and sends 
Œk� � 1 into A. We now set P.�/ D Q ı ��1. Then P.�/ extends
QP .�/, hence (1) and (4) are satisfied, and (2) also holds by construction.

Let k > n. We use the cofibration .
Œk�; @
Œk�/ in order to extend QP .�/ to
P.�/. Since 
Œk�n � @
Œk�, we see that P.�/1 satisfies (#).

We now define � W Sk.X/ ! S
.n;A/

k
.X/ by � 7! P.�/1. Property (4) shows

that � is a chain map, and �ı˛ D id holds by construction. We define s W Sk.X/!
SkC1.X/ by s.�/ D P.�/#h.�k/

�k 2 Sk.
Œk�/ h �� SkC1.
Œk� � I / P.�/# �� SkC1.X/ 3 s.�/

where h is the natural chain homotopy between i0# and i1# , see (9.3.3). The compu-
tations

@s.�/ D @.P.�/#h.�k// D P.�/#@h.�k/
D P.�/1#.�k/ � P.�/0#.�k/ � P.�/#h.@�k/
D �.�/ � � � P.�/#h.@�k/;

s@.�/ D s �P.�1/i� ı dki � DP.�1/iP.� ı dki /#h.�k�1/
D P.�/#

�P
.�1/idki#h.�k�1/

� D P.�/#h.@�k/
show that s is a chain homotopy between ˛ ı � and id. �

For k � n we have 
Œk�n D 
Œk� and therefore S .n;A/
k

.X/ D Sk.A/. The
chain equivalence (9.5.1) and the exact homology sequence of .X;A/ now yield:

(9.5.2) Theorem. Let .X;A/ be n-connected. Then Hk.A/
Š�! Hk.X/ and

Hk.X;A/ D 0 for k � n. �

Let f W X ! Y be a weak homotopy equivalence. We can assume that f is an
inclusion (mapping cylinder and homotopy invariance).
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(9.5.3) Theorem. A weak homotopy equivalence induces isomorphisms of the sin-
gular homology groups. �

(9.5.4) Remark. Suppose that .X;A;	/ is a pointed pair and A is pathwise con-
nected. Then we can define a subcomplex S .X;A;�/� .X/ of S�.X/ where we require
in addition to (#) that �.
Œk�0/ D f	g. Again the inclusion is a chain equivalence.

Þ

9.6 Homology with Coefficients

Let C� D .Cn; cn/ be a chain complex of abelian groups and let G be a further
abelian group. Then the groups Cn ˝G and the boundary operators cn ˝ id form
again a chain complex (the tensor product is taken over Z). We denote it byC�˝G.
We apply this process to the singular complex S�.X;A/ and obtain the complex
S�.X;A/ ˝ G of singular chains with coefficients in G . Its homology group
in dimension n is denoted Hn.X;AIG/. The cases G D Z;Q;Z=p are often
referred to as integral, rational, mod.p/ homology. Chains in Sn.X;A/˝G can
be written as finite formal linear combinations

P
� a�� , a� 2 G of singular n-

simplices � ; this accounts for the name “chain with coefficients”. The sequence
0 ! S�.A/ ! S�.X/ ! S�.X;A/ ! 0 remains exact when tensored with G,
i.e., Sn.X;A/˝ G Š Sn.X/˝ G=Sn.A/˝ G. Therefore we still have the exact
homology sequence (11.3.2)

� � � ! Hn.AIG/! Hn.X IG/! Hn.X;AIG/ @! Hn�1.AIG/! � � �
and the analogous sequence for triples. The boundary operators @ are again natural
transformations. If 0 ! G0 ! G ! G00 ! G is an exact sequence of abelian
groups, then the tensor product with S�.X;A/ yields again an exact sequence of
chain complexes and we obtain from (11.3.2) an exact sequence of the form

� � �!Hn.X;AIG0/!Hn.X;AIG/!Hn.X;AIG00/!Hn�1.X;AIG0/! � � � :
The passage fromC� toC�˝G is compatible with chain maps and chain homotopies.
A chain equivalence induces a chain equivalence. This fact yields the homotopy
invariance of the homology groupsHn.X;AIG/. The excision theorem still holds.
This is a consequence of (9.4.7): Under the hypothesis of the excision theorem, the
chain equivalence S�.Y1; Y1\Y2/! S�.Y; Y2/ induces a chain equivalence when
tensored with G. Hence the functors Hn.X;AIG/ satisfy the axioms of Eilenberg
and Steenrod for a homology theory. The dimension axiom holds: We have a
canonical isomorphism "P W H0.P / Š G for a point P , which maps the homology
class of the chain a� to a, where � is the unique 0-simplex.

The application of (11.9.1) to topology uses the fact that the singular chain
complex consists of free abelian groups. Therefore we obtain:
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(9.6.1) Theorem (Universal Coefficients). Let R be a principal ideal domain and
G an R-module. There exists an exact sequence

0! Hn.X;AIR/˝R G ˛�! Hn.X;AIG/! Tor.Hn�1.X;AIR/;G/! 0:

The sequence is natural in .X;A/ andG. The sequence splits, the splitting is natural
in G, but not in .X;A/. �

The splitting statement means thatHn.X;AIG/ can be determined as an abelian
group from homology with coefficients in Z, but the functor Hn.�IG/ is not
the direct sum of the functors Hn.�IZ/ ˝ G and Tor.Hn�1.�IZ/; G/. Here
is a consequence of (9.6.1): If f W .X;A/ ! .Y; B/ induces an isomorphism
f� W H�.X;A/ Š H�.Y; B/ for 	 D n � 1; n, then it induces also an isomorphism
Hn.X;AIG/ Š Hn.Y; BIG/.

9.7 The Theorem of Eilenberg and Zilber

We study the homology of products. For this purpose we compare the chain com-
plexes S�.X/ ˝ S�.Y / and S�.X � Y /. Both are values at .X; Y / of a functor
TOP�TOP! CHC into the category of chain complexes which are zero in nega-
tive degrees. In dimension zero they essentially coincide. For x 2 X let x 2 S0.X/
also denote the basis element given by the singular simplex 
0 ! fxg � X .
Then S�.X � Y / has the basis .x; y/ and S�.X/ ˝ S�.Y / the basis x ˝ y for
.x; y/ 2 X � Y . Natural transformations P W S�.�/˝ S�.�/ ! S�.� � �/ and
Q W S�.���/! S�.�/˝ S�.�/ are called an Eilenberg–Zilber morphisms if in
dimension zero always P.x ˝ y/ D .x; y/ and Q.x; y/ D x ˝ y. Both functors
are free and acyclic in the sense of (11.5.1). For .S�.�/ ˝ S�.�//n we use the
models .
k; 
n�k/ and the elements id˝ id; for Sn.� � �/ we use the models
.
n; 
n/ and the diagonal maps 
n ! 
n �
n. They account for the freeness.
The homology of the chain complexes S�.
p �
q/ is zero in positive dimensions,
since
p�
q is contractible; the homology ofS�.
p/˝S�.
q/ is zero in positive
dimensions, since the tensor product of chain complexes is compatible with chain
homotopies, and the chain complexes S�.
p/ are homotopy equivalent to the triv-
ial complex. Similar statements hold for the analogous functors in three (or more)
variables like S�.X � Y �Z/ or the corresponding three-fold tensor products. As
an application of (11.5.1) we obtain:

(9.7.1) Theorem. (1) Eilenberg–Zilber morphisms P and Q exist. For each pair
.P;Q/ of Eilenberg–Zilber morphisms the compositions P ıQ andQ ıP are nat-
urally homotopic to the identity. Hence the PX;Y andQX;Y are chain equivalences
and any two Eilenberg–Zilber morphisms P;P 0 are naturally homotopic (similarly
forQ;Q0).

(2) An Eilenberg–Zilber morphism P is associative and commutative up to
natural homotopy, i.e., the natural transformations PX�Y;Z ı .PX;Y ˝ 1/ and
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PX;Y�Z ı .1 ˝ PY;Z/ from S�.X/ ˝ S�.Y / ˝ S�.Z/ to S�.X � Y � X/ are
naturally homotopic and the transformations .tX;Y /# ı PX;Y and PY;X ı �X;Y are
naturally homotopic. Here tX;Y W X � Y ! Y � X interchanges the factors and
�X;Y .x ˝ y/ D .�1/jxjjyjy ˝ x.

(3) An Eilenberg–Zilber morphism Q is coassociative and cocommutative up
to natural homotopy, i.e., the natural transformations .QX;Y ˝ 1/ ıQX�Y;Z and
.1˝QY;Z/ıQX;Y�Z are naturally homotopic, and the transformations �X;Y ıQX;Y
andQY;X ı .tX;Y /# are naturally homotopic. �

As a consequence one can determine the homology of X � Y from the chain
complex S�.X/˝ S�.Y /. We now turn to relative chain complexes and abbreviate
S D S�.

(9.7.2) Proposition. For Eilenberg–Zilber transformations P;Q and pairs of
spaces .X;A/; .Y; B/ we have a commutative diagram with short exact rows

S.A/˝ S.Y /C S.X/˝ S.B/ ��

P 0

��

S.X/˝ S.Y /
P

��

�� S.X;A/˝ S.Y;B/

P 00

��

S.A � Y /C S.X � B/ ��

Q0

��

S.X � Y / ��

Q

��

S.X � Y /
S.A � Y /C S.X � B/:

Q00

��

The vertical maps are induced byP andQ. The compositionsP 0Q0,Q0P 0,P 00Q00,
Q00P 00 are naturally homotopic to the identity.

Proof. The naturality of P shows P.S.A/ ˝ S.Y // � S.A � Y / and similarly
for Q. This shows that P;Q induce by restriction P 0;Q0, and P 00;Q00 are the
homomorphisms induced on the quotients. Since the homotopyPQ ' id is natural,
it maps S.A � Y /C S.X � B/ into itself and shows P 0Q0 ' id. �

9.7.3 We can compose

P W S.X;A/˝ S.Y;B/! S.X � Y /=.S.A � Y /C S.X � B//

with the map induced by the inclusion S.A�Y /CS.X �B/ � S.A�Y [X �B/
and obtain altogether natural chain maps

P W S.X;A/˝ S.Y;B/! S..X;A/ � .Y; B//:

We call the pair .A � Y;X � B/ excisive, if this chain map is a chain equivalence.
Þ
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9.7.4 The natural chain map P induces natural chain maps for singular chain
complexes with coefficients. Let R be a commutative ring and M;N R-modules.

S.X;AIM/˝ S.Y;BIN/ D .S.X;A/˝M/˝R .S.Y; B/˝N/
! .S.X;A/˝ S.Y;B//˝ .M ˝R N/
! .S..X;A/ � .Y; B///˝ .M ˝R N/:

In many cases this chain map is followed by a homomorphism induced by a linear
map M ˝R N ! L. Examples are R ˝R R ! R, x ˝ y 7! xy in the case of a
ring R and R˝R N ! N , x ˝ n 7! xn in the case of an R-module N . Þ

Problems

1. There exist explicit Eilenberg–Zilber morphisms which have further properties. Letp; q 2
N. We use the notation Œn� D f0; 1; : : : ; ng. A .p; q/-shuffle is a map 	 W ŒpCq�! Œp�� Œq�
with 	.0/ D .0; 0/ and 	.p C q/ D .p; q/ such that both components of 	 D .	1; 	2/ are
(weakly) increasing. Given 	, there exists a permutation .�; �/ D .�1; : : : ; �p; �1; : : : ; �q/

of 1; 2; : : : ; p C q such that

1 � �1 < � � � < �p � p C q; 1 � �1; : : : ; �q � p C q
and 	1.�j / > 	1.�j � 1/ and 	2.�k/ > 	2.�k � 1/. We denote the signum of the
permutation .�; �/ by ".	/. If we interpret the points 	.0/; : : : ; 	.p C q/ in the integral
lattice Œp� � Œq� as the vertices of an edge-path from .0; 0/ to .p; q/, then the step 	.j / !
	.j C 1/ is horizontal or vertical of length 1. In the convex set
p �
q we have the affine
.p C q/-simplex Œ	.0/; : : : ; 	.p C q/�, also denoted 	, and the set of these simplices form
a triangulation of the product when 	 runs through the .p; q/-shuffles †.p; q/. (We do not
need this geometric fact, but it explains the idea of the construction.) Define

P s
p;q W Sp.X/˝ Sq.Y /! SpCq.X; Y /; � ˝ � 7!P

�2†.p;q/ ".	/..� � �/ ı 	/
on a pair �; � of singular simplices.

The P s
p;q are a strictly associative Eilenberg–Zilber morphism. We call it the shuffle

morphism or the Eilenberg–Mac Lane morphism.
2. An approximation of the diagonal is a natural chain mapD W S�.X/! S�.X/˝S�.X/

which coincides in dimension zero with x 7! x ˝ x. (The name refers to the fact that the
diagonal of a cellular complex is not a cellular map, and so one looks for a homotopic cellular
approximation.) By an application of (11.5.1) one shows that any two approximations of the
diagonal are naturally chain homotopic.
3. The classical approximation of the diagonal is the Alexander–Whitney map.

Let � W 
n ! X be an n-simplex, n D p C q, 0 � p; q � n. We have the affine maps
ap W 
p ! 
n, ei 7! ei and bq W 
q ! 
n, ei 7! en�qCi . They are used to define
�1

p D � ı ap and �2
q D � ı bq .

The Alexander–Whitney approximation of the diagonal is defined by

D�n DPpCqDn �
1
p ˝ �2

q ; �n W 
n ! X
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and linear extension.
4. Given an approximation D of the diagonal one constructs from it an Eilenberg–Zilber
morphism Q as the composition

S�.X � Y / DX�Y �� S�.X � Y /˝ S�.X � Y /
prX

# ˝ prY
# �� S�.X/˝ S�.Y /:

Let QAW be the Eilenberg–Zilber morphism obtained from the Alexander–Whitney ap-
proximation of the diagonal and call it the Alexander–Whitney morphism. The Alexander–
Whitney morphism is strictly coassociative.
5. The Eilenberg–Mac Lane morphismEM and the Alexander–Whitney morphismAW are
also compatible in a certain sense:

S�.W �X/˝ S�.Y �Z/ EM ��

AW ˝AW

��

S�.W �X � Y �Z/
.1�tX;Y �1/#

��

S�.W /˝ S�.X/˝ S�.Y /˝ S�.Z/

1˝�X;Y ˝1

��

S�.W � Y �X �Z/
AW

��

S�.W /˝ S�.Y /˝ S�.X/˝ S�.Z/
EM˝EM

�� S�.W � Y /˝ S�.X �Z/
commutes.

9.8 The Homology Product

We pass to homology from the chain map P in (9.7.4)

H�.X;AIM/˝H�.Y; BIN/ D H�.S.X;AIM//˝H�.S.Y; BIN//
! H�.S.X;AIM/˝ S.Y;BIN//
! H�.S..X;A/ � .Y; B//IM ˝N/

These maps are natural transformations, and we call them the homology product.
We use the notation x ˝ y 7! x � y for the homology product. In the case of
M D N D R we combine with the map induced by the canonical isomorphism
R˝R R! R and obtain a homology product

Hi .X;AIR/˝Hj .Y; BIR/! HiCj ..X;A/ � .Y; B/IR/:
In general we can compose with a bilinear mapM˝N ! P ; for instance we can use
an R-module structure R˝M !M onM . We list some formal properties of the
homology product, for simplicity of notation only for homology with coefficients
in R. We use the following notation: f W .X;A/ ! .X 0; A0/ and g W .Y; B/ !
.Y 0; B 0/ are continuous maps. Let .X �B;A� Y / be excisive in X � Y . Then we
have two boundary operators

@0 W Hm..X;A/�.Y; B//! Hm�1.X �B[A�Y;X �B/ Hm�1.A�.Y; B//;
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@00 W Hm..X;A/�.Y; B//! Hm�1.X�B[A�Y;A�Y / Hm�1..X;A/�B/:
t is the interchange map t .u; v/ D .v; u/. LetC D fcgbe a point and1 2 H0.C IR/
be represented by c ˝ 1.

9.8.1 Properties of the homology product.

.f � g/�.x � y/ D f�x � g�.y/;
@x � y D @0.x � y/;
x � @y D .�1/jxj@00.x � y/;

.x � y/ � z D x � .y � z/;
x � y D .�1/jxjjyjt�.y � x/;
1 � y D y:

The algebraic Künneth formula (11.10.1) yields

(9.8.2) Theorem (Künneth Formula). Let R be an integral domain. Further, let
.A�Y;X�B/ be excisive inX�Y for singular homology. Then we have a natural
exact sequence

0! L
iCjDn

Hi .X;AIR/˝Hj .Y; BIR/! Hn..X;A/ � .Y; B/IR/

! L
iCjDn�1

Hi .X;AIR/ 	Hj .Y; BIR/! 0:

The sequence splits, but the splitting is not natural in the variable .X;A/. For
homology with coefficients in a field k we obtain an isomorphism

H�.X;AI k/˝k H�.Y; BI k/ Š H�..X;A/ � .Y; B/I k/
as a special case. This isomorphism holds for an arbitrary commutative ring R if
the homology groupsH�.X;AIR/ are free R-modules. �

(9.8.3) Example. The homology class e 2 H1.R;R X 0IR/ Š R represented by
� ˝ 1 with the singular simplex � W 
1 ! R, .t0; t1/ 7! 1� 2t0 is a generator. The
product y 7! e � y with e is an isomorphism

Hn.Y; BIN/ Š HnC1..R;R X 0/ � .Y; B/IN/
for each R-module N . This isomorphism can also be deduced from the axiomatic
properties 9.8.1 (see a similar deduction (17.3.1) in the case of cohomology the-
ories). The n-fold product en D e � � � � � e 2 Hn.Rn;Rn X 0IR/ serves as a
canonical generator (a homological R-orientation of Rn). Þ
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Problems

1. Let v0; : : : vn be affinely independent points in Rn and suppose that the origin 0 2 Rn is
contained in the interior of the affine simplex v D Œv0; : : : ; vn�. We then have the singular
simplex � W 
n ! Rn determined by �.ei / D vi . Show that � represents a generator xv of
Hn.Rn;RnX0IZ/. We therefore have a relation xv D ˙en. Determine the sign, depending
on v. You might first consider the case n D 2 and make an intuitive guess. (This problem
indicates that keeping track of signs can be a nuisance.)
2. Verify the properties 9.8.1 of the homology product.
3. Study the axioms for a multiplicative cohomology theory and use 9.8.1 to define multi-
plicative homology theories axiomatically.



Chapter 10

Homology

In this chapter we define homology theories via the axioms of Eilenberg and Steen-
rod. From these axioms we derive some classical results: the Jordan separation
theorem; invariance of domain and dimension; degree and its determination by lo-
cal data; the theorem of Borsuk–Ulam. The theorem of Borsuk–Ulam is used for
a problem in combinatorics: the determination of the chromatic number of Kneser
graphs.

A second topic of the chapter is the derivation of some results of a general
nature: reduced homology; additivity; suspension isomorphisms; Mayer–Vietoris
sequences; compatibility of homology with colimits.

10.1 The Axioms of Eilenberg and Steenrod

Recall the category TOP.2/ of pairs of topological spaces. We use the functor
� W TOP.2/! TOP.2/ which sends .X;A/ to .A;;/ and f W .X;A/! .Y; B/ to
the restriction f W .A;;/! .B;;/.

A homology theory for pairs of spaces consists of a family .hn j n 2 Z/ of
covariant functors hn W TOP.2/ ! R- MOD and a family .@n j n 2 Z/ of natural
transformations @n W hn ! hn�1ı�. These data are required to satisfy the following
axioms of Eilenberg and Steenrod [58], [59]:

(1) Homotopy invariance. For each homotopy ft in TOP.2/ the equality
hn.f0/ D hn.f1/ holds.

(2) Exact sequence. For each pair .X;A/ the sequence

� � � ! hnC1.X;A/
@�! hn.A;;/! hn.X;;/! hn.X;A/

@�! � � �
is exact. The undecorated homomorphisms are induced by the inclusions.

(3) Excision. Let .X;A/ be a pair and U � A such that xU � Aı. Then
the inclusion .X X U;A X U/ ! .X;A/ induces an excision isomorphism
hn.X X U;A X U/ Š hn.X;A/.

The excision axiom can be expressed in a different form. Suppose Y1; Y2 are
subspaces ofY such thatY D Y ı

1 [Y ı
2 . Then the inclusion induces an isomorphism

hn.Y1; Y1 \ Y2/ Š hn.Y; Y2/.
The module hn.X;A/ is the n-th homology group (module) of .X;A/ in the

homology theory (we also say in degree or in dimension n). We set hn.X;;/ D
hn.X/. The groups hn.X/ are the absolute groups and the groups hn.X;A/ are
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the relative groups. The homomorphisms @ D @n are the boundary operators. We
often write hn.f / D f� and call (as already above) f� the induced morphism. The
homology groups hn.P / for a point P are the coefficient groups of the theory.
(More precisely, a group hn together with a compatible family of isomorphisms
"P W hn ! hn.P / for each point P is given.) In the case that hn D 0 for n 6D 0, we
say that the homology theory satisfies the dimension axiom and call the homology
theory an ordinary or classical one.

The exact sequence of a pair of spaces can be extended slightly to an exact
sequence for triples B � A � X (see [59, p. 24], [189]). The boundary operator
for a triple is defined by

@ W hn.X;A/! hn�1.A/! hn�1.A;B/I
the first map is the previous boundary operator and the second map is induced by
the inclusion.

(10.1.1) Proposition. For each triple .X;A;B/ the sequence

� � � ! hnC1.X;A/
@�! hn.A;B/! hn.X;B/! hn.X;A/

@�! � � �
is exact. The undecorated homomorphisms are induced by the inclusions. �

We do not derive this proposition from the axioms right now (see 10.4.2 for a
proof which uses the homotopy invariance). In most constructions of homology
theories one verifies this more general exact sequence directly from the definitions;
so we can treat it as an extended axiom.

A homology theory is called additive, if the homology groups are compatible
with topological sums. We formulate this as another axiom.

(4) Additivity. Let .Xj ; Aj /; j 2 J be a family of pairs of spaces. Denote by
ij W .Xj ; Aj /! .qjXj ;qjAj / the canonical inclusions into the topological
sum. Then the additivity axiom says thatL

j2J hn.Xj ; Aj /! hn.qjXj ;qjAj /; .xj / 7!P
j2J hn.ij /.xj /

is always an isomorphism. For finite families the additivity follows from the
axioms (see (10.2.1)).

Singular homology theory has further properties which may also be required in
an axiomatic treatment.

(5) Weak equivalence. A weak equivalence f W X ! Y induces isomorphisms
f� W h�.X/ Š h�.Y / of the homology groups.

(6) Compact support. For each x 2 hn.X;A/ there exists a map f W .K;L/!
.X;A/ from a pair .K;L/ of compact Hausdorff spaces and z 2 hn.K;L/
with f�z D x.
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IfAxiom (5) holds, then the theory is determined by its restriction to CW-complexes
(actually to simplicial complexes).

Sometimes we have to compare different homology theories. Let h� D .hn; @n/
and k� D .kn; @

0
n/ be homology theories. A natural transformation '� W h� ! k�

of homology theories consists of a family 'n W hn ! kn of natural transformations
which are compatible with the boundary operators @0

n ı ' D 'n�1 ı @n.

Problems

1. Let .hn; @n/ be a homology theory with values in R- MOD. Let ."n 2 R/ be a family of
units of the ring R. Then .hn; "n@n/ is again a homology theory. It is naturally isomorphic
to the original theory.
2. Given a homology theory .hn; @n/ we can define a new theory by shifting the indices
kn D hnCt .
3. Let h� be a homology theory. For a fixed space Y we define a new homology theory
whose ingredients are the groups kn.X;A/ D hn.X � Y;A � Y /. The boundary operators
for the new theory are the boundary operators of the pair .X � Y;A � Y /. The projections
pr W X � Y ! X induce a natural transformation k� ! h� of homology theories. If h� is
additive then k� is additive.
4. Let h� be a homology theory with values inR- MOD. LetM be a flatR-module, i.e., the
tensor product ˝RM preserves exact sequences. Then the hn.�/˝R M and @˝R M are
the data of a new homology theory. Since the tensor product preserves direct sums, the new
theory is additive if h� was additive. In the case that R D Z one can take for M a subring
T of the rational numbers Q, in particular Q itself. It turns out that the rationalized theories
h�.�/˝Q are in many respects simpler than the original ones but still contain interesting
information.
5. If jh� is a family of homology theories .j 2 J /, then their direct sum

L
j jh� is again

a homology theory. One can combine this device with the shift of indices.

10.2 Elementary Consequences of the Axioms

We assume given a homology theory h� and derive some consequences of the
axioms of Eilenberg and Steenrod.

Suppose the inclusion A � X induces for j D n; n C 1 an isomorphism
hj .A/ Š hj .X/. Then hn.X;A/ D 0. In particular hn.X;X/ D 0 always, and
hn.;/ D hn.;;;/ D 0. This is an immediate consequence of the exact sequence.

Let f W X ! Y be an h-equivalence. Then f� W hn.X/! hn.Y / is an isomor-
phism, by functoriality and homotopy invariance. If f is, in addition, an inclusion,
then hn.X; Y / D 0.

Let f W .X;A/ ! .Y; B/ be a map such that the components f W X ! Y and
f W A ! B induce isomorphisms of homology groups, e.g., the components are
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h-equivalences. Then the induced maps f� W hn.X;A/ ! hn.Y; B/ are isomor-
phisms. The map f induces a morphism from the homology sequence of .X;A/
into the homology sequence of .Y; B/, by functoriality and naturality of @. The
claim is then a consequence of the Five Lemma (11.1.4).

If X and A are contractible, then hn.X;A/ D 0. If .X;A;B/ is a triple and
X;B are contractible, then the exact sequence of a triple shows that @ W hn.X;A/!
hn�1.A;B/ is an isomorphism.

Let the homology theory satisfy the dimension axiom. IfX is contractible, then
hk.X/ D 0 for k 6D 0. A null homotopic map Y ! Y therefore induces the zero
morphism on hk.Y / for k 6D 0.

Let i W A � X and suppose there exists r W X ! A such that ri ' id. From
id D id� D .ri/� D r�i� we see that r� is a retraction of i�, hence i� is always
injective. Therefore the exact homology sequence decomposes into split short exact
sequences 0! hn.A/! hn.X/! hn.X;A/! 0.

(10.2.1) Proposition (Finite Additivity). Let .Xj ; Aj /; j 2 J be a finite family of
pairs of spaces. Denote by ij W .Xj ; Aj /! .qjXj ;qjAj / the canonical inclusions
into the topological sum. ThenL

j2J hn.Xj ; Aj /! hn.qjXj ;qjAj /; .xj / 7!P
j2J hn.ij /.xj /

is an isomorphism.

Proof. As a consequence of the excision axiom we see that the inclusion always
induces an isomorphism hn.A;B/ Š hn.A C C;B C C/. It suffices to consider
the case J D f1; 2g and, by the Five Lemma, to deal with the absolute groups.
One applies the Sum Lemma (11.1.2) with Ak D hn.Xk/; Bk D hn.X;Xk/; C D
hn.X1 CX2/. �

(10.2.2) Proposition. The identity �n of 
n is a cycle modulo @
n in singular ho-
mology theory. The groupHn.
n; @
n/ is isomorphic to Z and Œ�n� is a generator.

Proof. The proof is by induction on n. Denote by s.i/ D dni 
n�1 the i -th face of

n. Consider

hk�1.
n�1; @
n�1/
.dn

i
/�

Š
�� hk�1.@
n; @
n X s.i/ı/ hk.


n; @
n/:
@

Š
��

The space @
n X s.i/ı is contractible, a linear homotopy contracts it to the
point ei . Since 
n is also contractible, @ is an isomorphism. The inclusion dni
maps .
n�1; @
n�1/ into the complement of ei , and as such it is a deformation
retraction of pairs. The excision of ei induces an isomorphism. Therefore .dni /�
is the composition of two isomorphisms. If we always work with the first face
map dn0 , we obtain by iteration an isomorphism hk�n.
0/ Š hk.


n; @
n/. (So
far we can work with any homology theory.)
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Now consider the special case hn D Hn of singular homology with coefficients
in Z. By definition of the boundary operator, @Œ�n� D .�1/i Œdni �, since the dnj for
j 6D i are zero in the relative group. If we again work with dn0 , we see that the
isomorphism above sends the generator Œ�n�1� to Œ�n�.

If we work withHk for k 6D n, then the isomorphism above and the dimension
axiom tell us that Hk.
n; @
n/ D 0. The pair .
n; @
n/ is homeomorphic to
.Dn; Sn�1/. So we also see that Hk.Dn; Sn�1/ is zero for k 6D n and isomorphic
to Z for k D n. �

In an additive homology theory we also have an additivity isomorphism for
pointed spaces if the base points are well-behaved. For a finite number of summands
we do not need the additivity axiom in (10.2.3).

(10.2.3) Proposition. Let .Xj ; Pj / be a family of pointed spaces and
W
j Xj D

.X; P / the pointed sum with embedding ij W Xj ! X of a summand. Assume that
the closure of P in X has a neighbourhood U such that h�.U; P /! h�.X; P / is
the zero map. Then h ij� i W

L
j h�.Xj ; Pj /! h�.X; P / is an isomorphism.

Proof. Set Uj D U \Xj . Consider the diagram

0 �� h�.X; P /
.1/

�� h�.X;U / @ �� h�.U; P /

h�.qXj ;qPj /
.2/

��

�� h�.qXj ;qUj /
.3/

��

@ �� h�.qUj ;qPj /:
.4/

��

The vertical morphisms are induced by the quotient maps. The horizontal mor-
phisms are part of the exact sequence of triples. The hypothesis implies that (1) is
injective. We use the additivity in order to conclude that (2) and (4) are injective.
This is due to the fact that we have the projections pj W X ! Xj , and pk� i

j� D ıkj .
We show that (3) is an isomorphism. Consider the diagram

h�.X X P;U X P /
Š
��

h�.q.Xj X Pj /;q.Uj X Pj //D��

Š
��

h�.X;U / h�.qXj ;qUj /:.3/
��

The isomorphisms hold by excision; here we use the assumption xP � U ı. Diagram
chasing (Five Lemma) now shows that (2) is also surjective. �

(10.2.4) Remark. The hypothesis of (10.2.3) is satisfied if Pj is closed in Xj and
has a neighbourhood Uj such that Uj � Xj is pointed homotopic to the constant
map. These conditions hold if the spaces .Xj ; Pj / are well-pointed; see (5.4.4). Þ



10.3. Jordan Curves. Invariance of Domain 249

10.2.5 Suspension. We define the homological suspension isomorphism � D
� .X;A/ by the commutative diagram

hn.X;A/

�

��

hn.1 �X; 1 � B/
.1/Š
��

Š
��

hnC1..I; @I / � .X;A// @

Š
�� hn.@I �X [ I � A; 0 �X [ I � A/:

(1) is an isomorphism: excise 0�X and then use an h-equivalence. The boundary
operator @ for the triple sequence of .I �X; @I �X [ I �A; 0�X [ I �A/ is an
isomorphism, since 0�X[I �A � I �X is an h-equivalence. We can interchange
the roles of 0 and 1; let �� denote this suspension isomorphism. By applying the
Hexagon Lemma (11.1.3) with center group hn.I �X; I �A[ @I �X/ we obtain
� D ��� (draw the appropriate diagram). For some purposes of homotopy theory
one has to use a similar suspension isomorphism defined with X � I .

The n-fold iteration of � provides us in particular with an isomorphism
�n W hk Š hk.I 0/ Š hkC1.I; @I / Š � � � Š hkCn.I n; @I n/. Þ

10.3 Jordan Curves. Invariance of Domain

As a first application of homology theory we prove a general duality theorem.
We then apply this general result to prove classical results: A generalized Jordan
separation theorem and the invariance of domain and dimension. For this section
see [53].

The propositions (10.3.1) and (10.3.2) can be proved in a similar manner for an
arbitrary homology (or, mutatis mutandis, cohomology) theory. For the applications
one needs homology groups which determine the cardinality of �0.X/ for open
subsets X of Euclidean spaces, and this holds, e.g., for singular homology H�.�/.
(If one knows a little analysis, one can use de Rham cohomology for open subsets
of Euclidean spaces.)

(10.3.1) Proposition. Let A � Rn be a closed subset. Then Hk.Rn;Rn X A/ and
HkC1.Rn � R;Rn � R X A � 0/ are isomorphic.

Proof. We use the open subsets of RnC1

HC D .Rn X A/� � � 1;1Œ [A� �0;1Œ
H� D .Rn X A/� � �1; 1Œ [A� � �1; 0Œ

HC [H� D RnC1 X A � 0
HC \H� D .Rn X A/� � � 1; 1Œ:
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These data occur in the diagram

Hk.R
n;Rn X A/
.3/

��

���������������� HkC1.RnC1;RnC1 X A � 0/
@

��

Hk.R
nC1;HC \H�/ Hk.HC;HC \H�/

.2/
��

.1/
�� Hk.HC [H�;H�/:

The map @ is the boundary operator of the triple .RnC1;HC[H�;H�/. The maps
(1), (2), and (3) are induced by the inclusions. We show that the morphisms in the
diagram are isomorphisms. The proof uses the fact thatHC andH� are contractible;
the homotopy ht W HC ! HC, .x; s/ 7! .x; s C t / starts at the identity and has an
image in the contractible space Rn� �0;1Œ. The map @ is an isomorphism, because
Hk.R

nC1;H�/ D 0, by contractibility of H�. The map (1) is an excision. The
maps (2) and (3) are isomorphisms by homotopy invariance (Rn D Rn � 0). �

(10.3.2) Theorem (Duality Theorem). Let A and B be closed homeomorphic sub-
sets of Rn. Then the groupsHk.Rn;Rn XA/ andHk.Rn;Rn XB/ are isomorphic
(k 2 Z).

Proof. A homeomorphism f W A ! B yields a homeomorphism ˛ W Rn � Rn !
Rn �Rn, which sends A� 0 via f � 0 to B � 0 (see (7.3.1)). We obtain an induced
isomorphism

HkCn.Rn � Rn;Rn � Rn X A � 0/ Š HkCn.Rn � Rn;Rn � Rn X B � 0/:
Now apply (10.3.1) n times. �

(10.3.3) Theorem (Component Theorem). Let A and B be closed homeomorphic
subsets of Rn. Then �0.Rn X A/ and �0.Rn X B/ have the same cardinality.

Proof. We use the fact that H0.Rn X A/ is the free abelian group on �0.Rn X A/
and the algebraic fact a free abelian group determines the cardinality of a basis (D
the rank). Suppose that A 6D Rn. Then we have an exact sequence

0! H1.R
n;Rn X A/! H0.R

n X A/! H0.R
n/! 0:

This shows the rank of H1.Rn;Rn X A/ is one less than the rank of H0.Rn X A/.
Hence if A and B are different from Rn, then the result follows from (10.3.2). We
see in the next section that A D Rn implies that B is open in Rn and therefore,
since Rn is connected, also equal to Rn. �

An injective continuous map f W S1 ! R2 is an embedding, and its image is
called a Jordan curve.



10.3. Jordan Curves. Invariance of Domain 251

(10.3.4) Theorem (Jordan Separation Theorem). Let S � Rn be homeomorphic to
Sn�1 (n � 2). Then Rn X S has two path components, the bounded interior J and
the unbounded exteriorA. Moreover, S is the set of boundary points of J and ofA.

Proof. The assertion holds in the elementary case S D Sn�1. Hence, by (10.3.3),
the complement of S has two components. It remains to study the boundary points.

Letx 2 S and letV be an open neighbourhood ofx in Rn. ThenC D SX.S\V /
is closed in S and homeomorphic to a proper closed subset D of Sn�1. Therefore
Rn X D is path connected and hence, by (10.3.3), also Rn X C . Let p 2 J and
q 2 A and w W Œ0; 1�! Rn X C a path from p to q. Then w�1.S/ 6D ;. Let t1 be
the minimum and t2 the maximum ofw�1.S/. Thenw.t1/ andw.t2/ are contained
in S \ V . Therefore w.t1/ is limit point of w.Œ0; t1Œ / � J and w.t2/ limit point of
w. �t2; 1�/ � A. Hence there exist t3 2 Œ0; t1Œ with w.t3/ 2 J \ V and t4 2 �t2; 1�
withw.t4/ 2 A\V . This shows that x is contained in the boundary of J and ofA.

�

(10.3.5) Remarks. For n D 2 one can improve the separation theorem. There
holds the theorem of Schoenflies (for a topological proof see [141]):

Let J � R2 be a Jordan curve. Then there exists a homeomorphism f W R2 !
R2 which maps J onto the standard circle.

There exists a stronger result. By the Riemann mapping theorem there exists
a holomorphic isomorphism from the interior of J onto the interior of S1; and
one can show that this isomorphism can be extended to a homeomorphism of the
closures. See e.g., [149].

For n � 3 it is in general not true that the interior of an embedding Sn�1 ! Rn

is homeomorphic to an n-cell. One can construct an embedding D3 ! R3 such
that the complement is not simply connected. Under some regularity conditions on
the embedding the situation still resembles the standard embedding. There holds
the theorem of M. Brown [32] (see also [25, p. 236]):

Let f W Sn�1 � Œ�1; 1� ! Sn be an embedding (n � 1). Then the closure of
each component of Sn X f .Sn�1 � 0/ is homeomorphic toDn.

From the duality theorem (18.3.3) one can conclude that both components of
Sn X S have for an arbitrary embedding the integral singular homology groups of
a point. Þ
(10.3.6) Theorem. Let A � Rn be homeomorphic to Dk , k � n. Then Rn X A is
path connected .n > 1/.

Proof. Dk is compact, hence A is compact too. Therefore A is closed in Rn

and the assertion follows from (10.3.3), since Dk obviously has a path connected
complement. �

(10.3.7) Theorem (Invariance of Domain). Let U � Rn be open and f W U ! Rn

an injective continuous map. Then f .U / is open in Rn, and f maps U homeomor-
phically onto f .U /.
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Let V � Rn be homeomorphic to an open subset of U � Rn. Then V is open
in Rn.

Proof. It suffices to show that f .U / is open. It then follows that f is open.
Let D D fx 2 Rn j kx � ak � ıg � U , and let S be the boundary of D.

It suffices to show that f .Dı/ is open. We consider the case n � 2 and leave
the case n D 1 as exercise. The set S as well as T D f .S/ are homeomorphic
to Sn�1. Suppose U1, U2 are the (open) components of Rn X T . Let U1 be
unbounded. By (10.3.6), Rn X f .D/ is path connected, and therefore contained in
U1 or U2. Since f .D/ is compact, the complement is unbounded. This implies
T [ U1 D Rn X U2 � f .D/ and then U1 � f .Dı/. Since Dı is connected, so
is f .Dı/. The inclusion f .Dı/ � U1 [ U2 shows that f .Dı/ � U1. Therefore
f .Dı/ D U1, and this set is open.

The second statement follows from the first, since by hypothesis there exists an
injective continuous map f W U ! Rn with image V . �

(10.3.8) Theorem (Invariance of Dimension). Let U � Rm and V � Rn be non-
empty homeomorphic open subsets. Then m D n.
Proof. Let m < n. Then, by (10.3.7), U � Rm � Rn is open in Rn, which is
impossible. �

10.4 Reduced Homology Groups

The coefficient groups of a homology theory are important data of the theory but
they contain no information about spaces. We therefore split off these groups from
the homology groups hn.X/.

Let X be a non-empty space and r W X ! P the unique map to a point. We set

Qhn.X/ D kernel .r� W hn.X/! hn.P //

and call this group a reduced homology group. The homomorphism hn.f / for a
continuous map f W X ! Y restricts to Qhn.f / W Qhn.X/! Qhn.Y /. In this way Qhn
becomes a homotopy invariant functor TOP ! R- MOD. Let .X;	/ be a pointed
space and i W P D f	g � X be the inclusion of the base point. Then we have a
short exact sequence

0! hn.P /
i��! hn.X/

j��! hn.X; P /! 0

with a splitting r� of i�. Thus j� induces isomorphisms Qhn.X/ Š hn.X; P / Š
Coker.i�/. By(11.1.1) we also have an isomorphism

hn.X/ D Qhn.X/˚ i�.hn.P // Š Qhn.X/˚ hn
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which is natural for pointed maps (but not, in general, for arbitrary maps), and the
canonical diagram

Qhn.X/ ��

Š
���

��
��

��
��

hn.X/ ��

j�

��

Coker i�

Š
$$��
���

���
��

hn.X; P /

is commutative.

(10.4.1) Proposition. Let A be non-empty. The image of the boundary operator
@ W hn.X;A/! hn�1.A/ is contained in Qhn�1.A/. The images ofhn.X/ and Qhn.X/
in hn.X;A/ coincide. The homology sequence for the reduced groups

� � � ! Qhn.A/! Qhn.X/! hn.X;A/! Qhn�1.A/! � � �
is exact.

Proof. Map the exact sequence of .X;A/ into the exact sequence of .P; P / and
perform diagram chasing. The exactness is also a special case of (11.3.2). �

From (10.4.1) we see: If A is contractible, then Qhn.A/ D 0 and Qhn.X/ !
hn.X;A/ is an isomorphism. If X is contractible, then @ W hn.X;A/! Qhn�1.A/ is
an isomorphism.

10.4.2 Triple sequence. Let .X;A;	/ be a pointed pair. The reduced homology
sequence of .X;A/ is canonically isomorphic to the homology sequence of the
triple .X;A;	/. Hence the latter is exact.

Let CB denote the cone over B . The homology sequence of a triple .X;A;B/
is, via excision, isomorphic to the sequence of .X [ CB;A [ CB;CB/, and the
latter, via h-equivalence isomorphic to the sequence of .X [CB;A[CB;	/. This
proves the exactness of the triple sequence. Þ

Under the hypothesis of (10.2.3) or (10.2.4) we have for an additive homology
theory an isomorphism

L
j
Qh�.Xj / Š Qh�

�W
j Xj

�
. For a finite number of sum-

mands we do not need the additivity axiom. We call
W
j Xj decomposable with

respect to Qhn if the canonical map
L
j
Qhn.Xj /! Qhn�Wj Xj � is an isomorphism.

(10.4.3) Proposition. Suppose X _ Y is decomposable with respect to hn; hnC1.
Then the homology sequence of .X � Y;X _ Y / yields a split short exact sequence

0! Qhn.X _ Y /! Qhn.X � Y /! hn.X � Y;X _ Y /! 0:

Proof. The projections onto the factors induce Qhn.X �Y /! Qhn.X/˚ Qhn.Y /, and
together with the assumed decomposition isomorphism we obtain a left inverse to
the morphism Qhn.X _ Y /! Qhn.X � Y /. �
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Let .C; �/ be a monoid in h-TOP, i.e., � W C ! C _ C is a pointed map such
that the composition with the inclusions of the summands is pointed homotopic to
the identity. Then we have the �-sum in each homotopy set ŒC; Y �0, defined by
Œf �C Œg� D Œı.f _ g/�� with the folding map ı D h id; id i W Y _ Y ! Y . Let us
write h D Qhn.

(10.4.4) Proposition. Assume thatC _C is decomposable with respect to hn. Then
the morphism

! W ŒC; Y �0 ! Hom.h.C /; h.Y //; Œf � 7! f�

is a homomorphism.

Proof. Consider the commutative diagram

h.C /
�� ��

d

##��
���

���
���

� h.C _ C/ .f _g/� ��

Š.1/

��

h.Y _ Y / ı� �� h.Y /

h.C /˚ h.C / f�˚g� �� h.Y /˚ h.Y /
.2/

��

a

������������

with the diagonal d and the addition a.y; z/ D yC z. By our assumption about C ,
the isomorphism (1) is induced by the projections onto the summands, and by our
assumption about �, the left triangle commutes. The morphism (2) and the inverse
of .1/ are induced by the injection of the summands; this shows that the rectangle
and the right triangle commute. Now observe that a.f� ˚ g�/d D f� C g�. �

The hypothesis of (10.4.4) holds for the suspension C D †X of a well-pointed
space X . We thus obtain in particular a homomorphism

! W �n.X/! Hom. Qhn.Sn/; Qhn.X//

for each pointed space X .

(10.4.5)Proposition. Let i W A � X bea cofibrationand letp W .X;A/! .X=A;	/
be the map which identifiesA to a base point 	. Thenp� W hn.X;A/! hn.X=A;	/
is an isomorphism. We can write this isomorphism also in the form q W hn.X;A/ ŠQhn.X=A/.
Proof. Let X [ CA D .CA C X/=.a; 1/ � i.a/ be the mapping cone of i . The
inclusion j W .X;A/ ! .X [ CA;CA/ induces an isomorphism in homology:
Excise the cone point A � 0 and apply a homotopy equivalence. For a cofibration
we have an h-equivalence p W X[CA! X[CA=CA Š X=A. Hence q� D p�j�
is the composition of two isomorphisms. �
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The isomorphism q also holds for A D ;. In this case X=A D X C f	g and p
is the inclusion .X;;/! .X; f	g/. We use q to modify the exact sequence (10.4.1)
in the case of a cofibration A � X

� � � ! Qhn.A/! Qhn.X/! Qhn.X=A/! Qhn�1.A/! � � � :
(10.4.6) Proposition. Let j W A � X be a cofibration and attach X to B via
f W A! B . Then the map hn.X;A/ ! hn.X [A B;B/ induced by the inclusion
is an isomorphism.

Proof. We apply (10.4.5) to the homeomorphism X=A! X [A B=B . �

(10.4.7) Proposition. Let f W X ! Y be a pointed map between well-pointed

spaces and X
f�! Y

f1�! C.f / the beginning of the cofibre sequence. Then the

sequence Qhn.X/
f� �� Qhn.Y /

f1� �� Qhn.C.f // is exact.

Proof. Let Z.f / D .X � I C Y /=.x; 1/ � f .x/ be the (unpointed) mapping
cylinder of f and X � Z.f /, x 7! .x; 0/ the canonical inclusion, a cofibration.
Consider the commuting diagram

Qhn.X/ ��

D
��

Qhn.Z.f // ��

Š
��

hn.Z.f /;X/

Š
��

Qhn.X/
f� �� Qhn.Y /

c.f /� �� Qhn.Z.f /=X/
with the canonical inclusion c.f / W Y � Z.f /=X . The top row is the exact se-
quence of the pair. The isomorphisms hold by homotopy invariance and (10.4.5).
Now we use that for a well-pointed pair the quotient map Z.f /=X ! C.f / is a
homotopy equivalence, since a unit interval which is embedded as a cofibration is
identified to a point. �

For a well-pointed space X the inclusion X � @I [ f	g � I � X � I is
a cofibration. The quotient is the suspension †X . From (10.4.5) we obtain an
isomorphism

q W hn..X;	/ � .I; @I //! hn.†X;	/ Š Qhn.†X/
and a suspension isomorphism Q� W Qhn.X/ Š QhnC1.†X/ which makes the diagram

hn.X;	/ � ��

q

��

hnC1..X;	/ � .I; @I //
q

��

Qhn.X/ Q� �� QhnC1.†X/

commutative. In particular, we obtain hm Š Qhm.I 0=@I 0/ Š hmCn.I n=@I n/.
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Problems

1. Let fq W Sn ! Sn be a map of degree q, and denote by M.q; n/ its mapping cone.
Determine the groups and homomorphisms in the sequence (9.6.1) for the space M.q; n/.
2. Let M.q; 1/ D M.q/. Use the cofibre sequence of idX ^fq in order to derive an exact
sequence

0! Qhn.X/˝Z=q ! QhnC1.X ^M.q//! Tor. Qhn�1.X/;Z=q/! 0:

This suggests defining for any homology theory Qh� a theory with coefficients Z=q by
Qh�.� ^M.q//. Unfortunately the homotopy situation is more complicated than one would
expect (or wish), see [8]. Spaces of the type M.q; n/ are sometimes called Moore spaces.

10.5 The Degree

In 10.2.5 we determined the homology groups of spheres from the axioms of a
homology theory h�. We describe yet another variant.

We use the standard subspaces Dn; Sn�1; En D Dn X Sn�1 of Rn and Dn˙ Df.x1; : : : ; xnC1/ 2 Sn j ˙xnC1 � 0g. The space D0 D fDg is a singleton and
S�1 D ;.

We define a suspension isomorphism �C as the composition

�C W Qhk�1.Sn�1/ hk.D
n�; Sn�1/@

Š
��

sC

Š
�� hk.S

n;DnC/ Qhk.Sn/:Š
j

��

The maps j and @ are isomorphisms, since Dn˙ is contractible, and sC is an iso-
morphism (compare (6.4.4)). Iteration of �C yields (suspension) isomorphisms

� .n/ W hk�n Š Qhk�n.S0/ Š Qhk.Sn/; hk.S
n/ Š hk�n ˚ hn:

The first isomorphism is determined by

hm ! Qhm.S0/ � hm.S0/ Š hm.C1/˚ hm.�1/ Š hm ˚ hm; x 7! .x;�x/:
We also have an isomorphism @ W hk.Dn; Sn�1/ Š hk�1.Sn�1; e/ Š Qhk�1.Sn�1/.
In the case of ordinary homology H�.�IG/ with coefficients in G we obtain:

Hk.S
nIG/ Š

�
G; k D n > 0; n > k D 0;
G ˚G; k D n D 0;
0; otherwise:

Moreover Hn.Dn; Sn�1IG/ Š Hn.Rn;Rn X 0IG/ Š G.
A generator of Hn.Dn; Sn�1IZ/ Š Z is called a homological orientation of

Dn; and a generator of Hn.Sn/, n � 1 a homological orientation of Sn. Given
an orientation z 2 Hn.Sn/ and a continuous map f W Sn ! Sn, we define the
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(homological ) degree d.f / 2 Z of f by f�.z/ D d.f /z. A different choice
of a generator does not effect the degree. We also define the degree for n D 0:
The identity has degree C1, the antipodal map the degree �1 and a constant map
the degree 0. From the definition we see directly some properties of the degree:
d.f ı g/ D d.f /d.g/, d.id/ D 1; a homotopy equivalence has degree ˙1; a null
homotopic map has degree zero.

(10.5.1) Proposition. Let h� be a homology theory such that h0.Point/ D Z. Then
! W ŒSn; Sn�! Hom. Qhn.Sn/; Qhn.Sn//, f 7! f� is an isomorphism (n � 1).

Proof. The suspension isomorphism and the hypothesis yield Qhn.Sn/ Š Z. Thus
the Hom-group is canonically isomorphic to Z. We now use that �n.Sn/ Š
ŒSn; Sn� Š Z. The identity of Sn is mapped to 1. By (10.4.4), ! is a homo-
morphism, hence necessarily an isomorphism. �

We have already defined a (homotopical) degree. From (10.5.1) we see that
the homotopical and the homological degree coincide. If one starts algebraic
topology with (singular) homology, then one has in any case the important homo-
topy invariant “degree”. Proposition (10.5.4) is not immediate from the homological
definition.

(10.5.2) Proposition. Define an isomorphism �� W Qhk�1.Sn�1/ ! Qhk.Sn/ as in
the case of �C, but with the roles ofDn˙ interchanged. Then �C D ���.

Proof. Consider the commutative diagram

Qhk.Sn/lC

""����
����

�� l�

%%   
    

   

�

��

hk.S
n;DnC/ hk.S

n;Dn�/

hk.S
n; Sn�1/

jC

&&        
j�

''!!!!!!!!!

@

��

hk.D
n�; Sn�1/

ŠsC

��

i�

''��������

@C
%%"""

""""
"

hk.D
nC; Sn�1/

iC

&&        

@�
""����

����

Š s�

��

Qhk�1.Sn�1/

and apply the Hexagon Lemma (11.1.3). �

(10.5.3) Proposition. Let A 2 O.n C 1/ and lA W Sn ! Sn, x 7! Ax. Then lA�
is on Qhk.Sn/ the multiplication by det.A/. The antipodal map x 7! �x on Sn has
the degree .�1/nC1.
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Proof. Let t W Sn ! Sn change the sign of the first coordinate. Then t��C D ��.
Hence t� D � id, by (10.5.2). The group O.n C 1/ has two path components.
If A and B are contained in the same component, then lA and lB are homotopic.
Representatives of the components are the unit matrix E and the diagonal matrix
T D Diag.�1; 1; : : : ; 1/. The relations lT D t and lE D id now finish the proof.

�

(10.5.4) Proposition. Let f W Sn ! Sn be a map of degree d . Then f induces on
Qhk.Sn/ the multiplication by d .

Proof. The cases d D 1; 0 are clear and d D �1 follows from (10.5.3). The
general case is then a consequence of (10.4.4) and our knowledge of �n.Sn/. �

(10.5.5) Proposition. Let A 2 GLn.R/ and lA W Rn ! Rn, x 7! Ax. Then lA� is
on hk.Rn;Rn X 0/ the multiplication by the sign ".A/ D det.A/=j det.A/j of the
determinant.

Proof. We have isomorphisms hk.Rn;Rn X 0/ @�! Qhk�1.Rn X 0/ Š Qhk�1.Sn�1/
which are compatible with the action of lA� if A 2 O.n/. In this case the claim
follows from (10.5.3). In the general case we use that GLn.R/ has two path com-
ponents which are characterized by the sign of the determinant. �

LetSnr .a/ D fx 2 RnC1 j kx�ak D rg. We have a canonical homeomorphism
hr;a W Sn ! Snr .a/, x 7! rx C a and rb W RnC1 X b ! Sn, x 7! N.x � b/. The
winding number of f W Snr .a/ ! RnC1 X b about b is defined as the degree of
rb ı f ı hr;a.

10.5.6 Local degree. Let K � Sn be compact and different from Sn and let
U be an open neighbourhood of K. Then we have an excision isomorphism
Hn.U; U X K/ Š Hn.S

n; Sn X K/. For a continuous map f W Sn ! Sn we
let K D f �1.p/. Consider the diagram

Hn.S
n/

f� ��

��

Hn.S
n/

.1/
��

Hn.S
n; Sn XK/ f� �� Hn.S

n; Sn X p/

Hn.U; U XK/ f U
� ��

Š
��

Hn.S
n; Sn X p/

D
��

with the restriction f U of f . The exact sequence of the pair .Sn; Sn X p/ shows
that (1) is an isomorphism (n � 1). Let z 2 Hn.Sn/ be a generator and z.U;K/
its image in Hn.U; U X K/. Commutativity of the diagram shows f U� zU;K D
d.f /zSn;p . Hence the degree only depends on the restriction f U . For any compact
set L with f .L/ D fpg and open neighbourhood W of L we define the (partial)
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degree d.f;L/ by f W� z.W;L/ D d.f;L/z.Sn; p/; it is independent of the choice
of W .

(10.5.7) Lemma. Suppose U D U1 [U2 is the disjoint union of open sets Uj . Set
Kj D Uj \K. The inclusions induce the additivity isomorphism

h i1; i2 i W Hn.U1; U1 XK1/˚Hn.U2; U2 XK2/! Hn.U; U XK/:
Then the relation z.U;K/ D i1z.U1; K1/C i2z.U2; K2/ holds.

Proof. Consider the diagram with M D Sn:

Hn.M/

((###
###

###
###

����
���

���
���

�

Hn.M;M XK/ �� Hn.M;M XK2/

Hn.U; U XK/
Š
��

j1 ����
���

���
���

�
Hn.U2; U2 XK2/i2��

a1
((���

���
���

���

Š
��

Hn.U; U XK2/.
There exist x1; x2 such that z.U;K/ D i1x1 C i2x2. We compute

j1z.U;K/ D z.U;K2/ D a1z.U2; K2/ D j1i2x2 D a1x2:
This proves x2 D z.U2; K2/. �

As a consequence of this lemma we obtain the additivity of the degree d.f / D
d.f;K1/ C d.f;K2/. Suppose K is a finite set, then we can choose U as a
disjoint union of open sets Ux; x 2 K such that Ux \ K D fxg. In that caseL
x2K Hn.Ux; Ux X x/ Š Hn.U; U X K/; and Hn.Ux; Ux X x/ Š Z, by exci-

sion and Hn.Dn; Sn�1/ Š Z. We call the integer d.f; x/ defined by f�zUx ;x D
d.f; x/zSn;p the local degree of f at p. With this notation we therefore have
d.f / DPx2K d.f; x/. Þ

LetU � Rn be an open neighbourhood of the origin. Then we have an excision
isomorphism hk.U; U X 0/ Š hk.Rn;RnX 0/. Suppose g W U ! Rn is a map with
the properties: (1) Continuously differentiable (a C 1-map); (2) g�1.0/ D f0g; (3)
the differential Dg.0/ is invertible. Under these conditions we show:

(10.5.8) Proposition. The induced map

hk.R
n;Rn X 0/ Š hk.U; U X 0/ g��! hk.R

n;Rn X 0/
is multiplication by the sign of the determinant of the differentialDg.0/.
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Proof. There exist continuous maps hi W U ! Rn with g.x/ DPn
iD1 xihi .x/ and

Dg.0/.x1; : : : ; xn/ D Pn
iD1 xihi .0/. We define a homotopy ht W .U; U X 0/ !

.Rn;Rn X 0/ from g to Dg.0/

ht .x/ DPn
iD1 xihi .tx/ D

(
t�1g.tx/; t > 0;

Dg.0/; t D 0:
Now we use (10.5.5). �

(10.5.9) Example. Let f W Sn ! Sn be continuously differentiable andp a regular
value of f , i.e., the differential of f in each point x 2 f �1.p/ is bijective. Then
d.f; x/ D ˙1, and the plus-sign holds, if the differential respects the orientation
at x. For the proof express f in terms of orientation preserving local charts and
apply (10.5.8). Þ

IfS is homeomorphic toSn and f a self map ofS we choose a homeomorphism
h W Sn ! S and define the degree of f as the degree of h�1f h. Let g W Rn ! Rn

be a proper map. We define its degree as the degree of the extension of g to the
one-point compactification.

A map f W Sn � Sn ! Sn, n � 1, has a bi-degree .a; b/ 2 Z � Z where a is
the degree of x 7! f .x; y/ for a fixed y and b the degree of y 7! f .x; y/ for a
fixed x.

Problems

1. If f W Sn ! Sn is not surjective, then f is null homotopic and hence d.f / D 0.
2. Suppose f .x/ 6D �x for each x 2 Sn, then h.x; t/ D tf .x/C.1� t /x 6D 0 for t 2 Œ0; 1�.
We compose with N W x 7! x=kxk and obtain in F.x; t/ D Nh.x; t/ a homotopy from the
identity to f . If always f .x/ 6D x, then G.x; t/ D N.�tx C .1 � t /f .x// is a homotopy
from f to the antipodal map. Thus if d.f / 6D ˙1, there exists x such that f .x/ D x or
f .x/ D �x.
3. A permutation 	 of .t0; : : : ; tn/ induces an affine homeomorphism of .
n; @
n/. The
induced homomorphism in hk.


n; @
n/ is the multiplication with the sign of the permuta-
tion 	. The same holds for the linear permutation map l� induced by 	 on the vector space
N D f.t0; : : : ; tn/ jPi ti D 0g and hk.N;N X 0/. One can compute the determinant of l�
by using the decomposition RnC1 D N ˚D with the diagonal D D f.t; : : : ; t / j t 2 Rg.
4. The map S i ! S i , .y; t/ 7! .2ty; 2t2 � 1/, y 2 Ri , t 2 R has degree 1 C .�1/iC1.
The point .0; : : : ; 0; 1/ is a regular value.
5. Consider a complex polynomial as self-map of the Riemann sphere CP 1 Š S2. Then
the homological degree is the algebraic degree of the polynomial. A quotient f D p=q of
two complex polynomials (without common divisor) p of degreem and q of degree n can be
considered as a self-map of CP 1. Show that the homological degree is a D max.m; n/. In
homogeneous coordinates f can be written as Œz; w� 7! Œwap.z=w/;waq.z=w/�. Suppose
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c 2 C is such that z 7! p.z/� cq.z/ has a pairwise different zeros. Then Œc; 1� is a regular
value of f .
6. Consider S3 as the topological group of quaternions of norm 1. Determine the degree of
z 7! zk , k 2 Z.
7. The map Sn � Sn ! Sn, .x; �/ 7! � � 2hx; � ix has bi-degree .1C .�1/n�1;�1/. If
� D .1; 0; : : : ; 0/ D e0, then �e0 is a regular value of x 7! e0 � 2he0; x ix. (Here h�;�i
is the standard inner product.)
8. Let a; b; p; q 2 N with ap � bq D 1. Then f W C2 ! C2, .x; y/ 7! .xp xyq ; xb C ya/

is proper and has degree 1. The point .1; 0/ is a regular value.

10.6 The Theorem of Borsuk and Ulam

We describe another classical result which uses the homotopy notion in the presence
of a symmetry. As a rather striking application to a problem in combinatorics we
present the proof of Greene [74] for the determination of the chromatic number of
the Kneser graphs.

We have the antipodal symmetry x 7! �x on the Euclidean spaces. A map
f W A! B which is equivariant with respect to this symmetry, i.e., which satisfies
f .�x/ D �f .x/, is called antipodal or odd; hereA andB are subsets of Euclidean
spaces that are invariant with respect to the antipodal symmetry. The additional
presence of the symmetry has remarkable consequences: Classical theorems known
under the name of Borsuk–Ulam theorems and Lusternik–Schnirelmann theorems.
The basic result has a number of equivalent formulations.

(10.6.1) Theorem. The following assertions are equivalent:

(1) Let f W Sn ! Rn be continuous. Then there exists x 2 Sn such that f .x/ D
f .�x/.

(2) Let f W Sn ! Rn be antipodal. Then there exists x 2 Sn such that f .x/ D 0.
(3) There does not exist an antipodal map f W Sn ! Sn�1.
(4) There does not exist a continuous map f W Dn ! Sn�1 which restricts to an

antipodal map on the boundary.

(5) An antipodal map Sn�1 ! Sn�1 is not null homotopic.

(6) Suppose Sn D F1 [ F2 [ � � � [ FnC1 with non-empty closed sets Fj . Then
at least one of the sets Fj contains an antipodal pair of points.

(7) Let Sn D A1 [ A2 [ � � � [ AnC1 and assume that each Aj is either open or
closed. Then at least one of the Aj contains an antipodal pair.

Proof. .1/) .2/. By (1) there exists x with f .x/ D f .�x/. Since f is antipodal,
f .x/ D �f .x/ and hence f .x/ D 0.

.2/) .3/. The existence of an antipodal map contradicts (2).

.3/ ) .4/. Let Dn˙ D f.x0; : : : ; xn/ 2 Sn j ˙xn � 0g. The projection
h W DnC ! Dn�1 onto the first n� 1 coordinates is a homeomorphism which is the
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identity on the boundary. Suppose f W Dn ! Sn�1 is antipodal on the boundary.
Define g W Sn ! Sn�1 by

g.x/ D
(
f h.x/; x 2 DnC;
�f h.�x/; x 2 Dn�:

If x 2 Sn�1 D DnC \Dn�, then h.x/ D x, h.�x/ D �x and f h.x/ D f .x/ D
�f .�x/ D �f h.�x/. Hence g is well-defined and continuous. One verifies that
g is antipodal.

.4/, .5/. If an antipodal map Sn�1 ! Sn�1 were null homotopic, then we
could extend this map to Dn, contradicting (4). Conversely, if a map of type (4)
would exist, then the restriction to Sn�1 would contradict (5).

.1/) .6/. We consider the function

f W Sn ! Rn; x 7! .d.x; F1/; : : : ; d.x; Fn//

defined with the Euclidean distance d . By (1), there exists x such that f .x/ D
f .�x/ D y. If the i -th component of y is zero, then d.x; Fi / D d.�x; Fi / D 0

and therefore x;�x 2 Fi since Fi is closed. If all coordinates of y are non-zero,
then x and �x are not contained in

Sn
iD1 Fi , so they are contained in FnC1.

.6/ ) .3/. There exists a closed covering F1; : : : ; FnC1 of Sn�1 such that
no Fi contains an antipodal pair, e.g., project the standard simplex onto the sphere
and take the images of the faces. Suppose f W Sn ! Sn�1 is antipodal. Then the
covering by the f �1.Fi / contradicts (6).

.3/ ) .2/. If f .x/ 6D 0 for all x, then x 7! kf .x/k�1f .x/ is an antipodal
map Sn ! Sn�1.

.2/ ) .1/. Given f W Sn ! Rn. Then g.x/ D f .x/ � f .�x/ is antipodal;
g.x/ D 0 implies f .x/ D f .�x/.

.6/ ) .7/. Suppose for the moment that the Aj are open. Then we can find
a closed shrinking and apply (6). In the general case let A1; : : : ; Aj be closed and
UjC1; : : : ; UnC1 open. Suppose there are no antipodal pairs in the Uj . Thicken
the Ai to open "-neighbourhoods U".Ai /. Let " D n�1. By the case of an open
covering we find an antipodal pair .xn;�xn/ in some U".Ai /. By passing to a
subsequence we find an i � j and

lim
n!1 d.xn; Ai / D lim

n!1 d.�xn; Ai / D 0:

A convergent subsequence yields an antipodal pair in Ai .
.7/) .3/. As in the case .6/) .3/. �

Since the identity is antipodal, we see that (10.6.1) implies the retraction theo-
rem, see (6.6.1). Part (1) shows that Rn does not contain a subset homeomorphic
to Sn.
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(10.6.2) Lemma. Let F W Sn ! Sn be an odd map. Then F is homotopic as odd
map to a map g such that g.S i / � S i for 0 � i � n.
Proof. Let p W Sn ! RP n be the quotient map and f W RP n ! RP n be induced
by F on the orbit space. Choose a homotopy ft from f D f0 to a cellular map,
i.e., f1.RP i / � RP i for 0 � i � n. Lift the homotopy ftp D ht to a homotopy
Ht W Sn ! Sn with initial condition f . Then Ht is an odd map and H1 D g has
the desired property. �

We obtain a proof of (10.6.1) from

(10.6.3) Theorem. An odd map has odd degree.

Proof. The proof is by induction on the dimension of the sphere. Let f W Sn ! Sn

be an odd map. By (10.6.2) we can deform f as odd map into a map g such that
g.Sn�1/ � Sn�1. The induction is now a consequence of (10.6.4). �

(10.6.4) Proposition. Letf W Sn ! Sn be an oddmap such thatf .Sn�1/ � Sn�1.
Then we have the degreeD.f / of f and the degree d.f / of its restriction to Sn�1.
These degrees have the same parity.

Proof. We study the diagram in the proof of (10.5.2) more closely for singular
homology with coefficients in Z. We fix a generator z 2 QHn�1.Sn�1/ and define
other generators by

@˙z˙ D z; s˙z˙ D w˙; l˙v˙ D w˙:

We set i�z˙ D u˙. The Sum Lemma tells us that u˙ is a Z-basis of the group
Hn.S

n; Sn�1/. Let T W Sn ! Sn be the antipodal map. Suppose given f W Sn !
Sn such that f .Sn�1/ � Sn�1 and Tf D f T . Then we have two degrees D.f /
and d.f / defined by

f�.vC/ D D.f /vC; f�.z/ D d.f /z:
Since u˙ is a Z-basis we can write f�.uC/ D auC C bu�. Using this notation,
we show

d.f / D aC b; D.f / D a � b:
Hence d.f / andD.f / are congruent modulo 2. From f�z D f�@uC D @f�uC D
@.auCCbu�/ D .aCb/z we obtain the first assertion d.f / D aCb. Naturality of
the boundary operator @�T� D T�@C and T�z D .�1/nz imply T�zC D .�1/nz�
and T�uC D .�1/nu�. We conclude

f�u� D .�1/nf�T�uC D .�1/nT�f�uC
D .�1/nT�.auC C bu�/ D au� C buC:
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The exactness of .�; @/ shows that the image of � is generated by uC � u�, hence
�.vC/ D ".uC � u�/ with " D ˙1. The computation

jCuC D sCi�zC D lC D jC�vC D "jC.uC � u�/ D "jCuC

shows " D 1. The computation

D.f /.uC � uC/ D D.f /�vC D �f�vC D f��vC
D f�.uC � u�/ D .a � b/.uC � u�/

finally yields the second assertion D.f / D a � b. �

(10.6.5) Example. The map f W S1 ! S1, z 7! z2kC1 satisfies the hypothesis of
(10.6.4). We know already that D.f / D 2k C 1 and d.f / D 1, hence a D k C 1
and b D �k. Let dC denote the singular 1-simplex represented by the path from 1

to �1 and d� the 1-simplex running from �1 to 1 (both counter-clockwise). Then
dC C d� is a cycle and vC D ŒdC C d�� is a natural choice of a generator. Then
d� represents uC; wC, and zC; and z D Œ1� � Œ�1�. By considering the simplex
fd�, the relation f�uC D Œfd�� D .k C 1/Œd��C kŒdC� becomes apparent. For
k D 1 say, fd� runs counter-clockwise from �1 to 1 to �1 to 1.

Let f W S1 ! S1 be any self-map which commutes with the antipodal map.
We can multiply f by a constant such that the new map g satisfies g.1/ D 1. From
(10.6.4) we see that g and hence f has odd degree, since g has degree 1 on S0. Þ

We now apply the Borsuk–Ulam theorem to a problem in combinatorics: The
determination of the chromatic number of the so-called Kneser graphs.

We begin by explaining the problem. Let Œn� D f1; : : : ; ng and denote by Nk
the set of subsets of Œn� with k elements.

A graph consists of a set E of vertices and a set K of edges. Each edge has
two boundary points, and they are identified with one or two points in E. (In other
terms: A graph is a 1-dimensional CW-complex.) The Kneser graph KGn;k has
E D Nk . VerticesF1; F2 are connected by an edge if they represent disjoint subsets
of Œn�.

Let C D Œk�, and call the elements of C colours. A k-colouring of a graph
.E;K/ is a map f W E ! C such that f .e1/ 6D f .e2/ whenever e1 and e2 are
connected by an edge. The chromatic number of a graph .E;K/ is the smallest
k such that there exists a k-colouring. The following result was conjectured by
Martin Kneser (1955) [105]. This conjecture was proved by Lovász [114] with
topological methods. The following ingenious proof was given by Greene [74].

(10.6.6) Theorem. Let k > 0 and n � 2k � 1. Then KGn;k has the chromatic
number n � 2k C 2.
Proof. An explicit construction shows that the chromatic number is at most
n�2kC2. We associate to a setF withk elements the colour'.F / D min.min.F /;
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n � 2k C 2/. Suppose '.F / D '.F 0/ D i < n � 2k C 2. Then these sets are not
disjoint, since they contain the element i . If their colour is n � 2k C 2, then they
are contained in fn � 2k C 2; : : : ; ng, and then they cannot be disjoint.

Now we come to the topological part. Let d D 2n � 2k C 1. Choose a set
X � Sd with n elements and such that no hyperplane (through the origin) contains
more than d points of X . We consider the subsets of X with cardinality k as
the vertices of the Kneser graph KGn;k . Suppose there exists a colouring with
d D n � 2k C 1 elements and we choose one. Let

Ai D fx 2 Sd j H.x/ D fyjhx; y i > 0g contains a k-tuple in X with colour ig
and AdC1 D Sd X .A1 [ � � � [ Ad /. The sets A1; : : : ; Ad are open and AdC1 is
closed. By (10.6.1), one of the sets Ai contains an antipodal pair x;�x.

If i � d , then we have two disjoint k-tuples with colour i , one in H.x/ the
other one in H.�x/. This contradicts the definition of a colouring.

Let i D dC1. Then, by definition ofA1; : : : ; Ad , the half-spaceH.x/ contains
at most k�1 points ofX , and similarly forH.�x/. The set Sd X .H.x/[H.�x//
is contained in a hyperplane and contains at least n� 2.k� 1/ D d C 1 points, and
this contradicts the choice of X . �

Problems

1. Let n be odd. Then˙ id W Sn ! Sn are homotopic as odd maps.
2. Let f; g W Sn ! Sn be odd maps with the same degree. Then they are homotopic as odd
maps.
3. Let d0; d1; : : : ; dn be a family of odd integers with d0 D ˙1. There exists an odd map
f W Sn ! Sn such that f .S i / � S i and the map S i ! S i induced by f has degree di .

10.7 Mayer–Vietoris Sequences

We derive further exact sequences for homology from the axioms, the so-called
Mayer–Vietoris sequences.

Let h� be a homology theory. Let .X IA;B/ be a triad, i.e.,A;B � X D A[B .
The triad .X IA;B/ is said to be excisive for the homology theory if the inclusion
induces an (excision) isomorphism h�.A;A \ B/ Š h�.X;B/. The condition is
actually symmetric in A and B . We write AB D A \ B .

(10.7.1) Proposition. The following are equivalent:

(1) .A [ BIA;B/ is excisive.

(2) .A [ BIB;A/ is excisive.

(3) � W h�.A;AB/˚ h�.B;AB/! h�.A [ B;AB/ is an isomorphism.

(4) � W h�.A [ B;AB/! h�.A [ B;A/˚ h�.A [ B;B/ is an isomorphism.



266 Chapter 10. Homology

Proof. Apply the Sum Lemma (11.1.2) to the diagram

h�.A;A \ B/
%%   

    
 

�� h�.A [ B;B/

h�.A [ B;A \ B/
''!!!!!!!!

%%   
    

 

h�.B;A \ B/
''!!!!!!!!

�� h�.A [ B;A/.
The morphisms are induced by the inclusions. �

The boundary operator 
 of an excisive triad is defined by


 W hn.X/! hn.X;B/
Š � hn.A;AB/ @�! hn�1.AB/:

This operator is part of the Mayer–Vietoris sequence (DMVS) of the triad.

(10.7.2) Theorem. Let .A[BIA;B/ be an excisive triad and C � AB . Then the
sequence

: : :
�! hn.AB;C /

.1/�! hn.A; C /˚ hn.B; C / .2/�! hn.A [ B;C /
�! hn�1.AB/

.1/�! � � �
is exact. The inclusions iA W AB � A and iB W AB � B yield the first map
x 7! .�iA� x; iB� x/; and the inclusions jA W A � A[B and jB W B � A[B yield
the second map .a; b/ 7! jA� a C jB� b. If C D f	g is a point, we obtain the MVS
for reduced homology groups.

There exists another relative MVS. Let .A[BIA;B/be excisive andA[B � X .
We define a boundary operator 
 by


 W hn.X;A [ B/ @�! hn�1.A [ B;A/ Š hn�1.B;AB/! hn�1.X;AB/:

(10.7.3) Theorem. The sequence

: : :  �� hn.X;AB/
.1/

�� hn.X;A/˚ hn.X;B/ .2/
�� hn.X;A [ B/

 �� hn�1.X;AB/
.1/

�� � � �
is exact. The maps .1/ and .2/ are defined as in (10.7.2).

Proof. The homology sequences of the triples of .B;A\B;C / and .X;A; C / yield
a commutative diagram (a “ladder”)

� � � �� hn.AB;C / ��

��

hn.A; C / ��

��

hn.A;AB/ ��

��

hn�1.AB;C /
��

�� � � �

� � � �� hn.B; C / �� hn.X; C / �� hn.X;B/ �� hn�1.B; C / �� � � � .
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We apply (10.7.4) to this diagram and obtain (10.7.2). There exists a similar diagram
which compares the sequences of the triples .X;A;AB/ and .X;A [ B;B/, and
(10.7.4) yields now (10.7.3). �

(10.7.4) Lemma. Suppose the following diagram of abelian groups and homomor-
phisms is commutative and has exact rows.

� � � ! Ai
fi ��

ai
��

Bi
gi ��

bi
��

Ci
hi ��

ci
��

Ai�1
ai�1
��

! � � �

� � � ! A0
i

f 0
i �� B 0

i

g0
i �� C 0

i

h0
i �� A0

i�1 ! � � � .
Assume moreover that the ci are isomorphisms. Then the sequence

� � � ! Ai
.�fi ;ai / �� Bi ˚ A0

i

hbi ;f
0

i
i
�� B 0
i

hic
�1
i
g0

i �� Ai�1 ! � � � .
is exact ([17, p. 433]). �

We use abbreviations of the type I �X D IX , @I �X D @IX , 0 �X D 0X .
We associate to a triad .X IA;B/ the subspace N D N.A;B/ D 0A[ IAB [ 1B
of I �X . Let p W N.A;B/! X be the projection onto the second factor.

(10.7.5) Proposition. The following are equivalent:

(1) The triad .X IA;B/ is excisive.

(2) p� W h�.N.A;B//! h�.X/ is an isomorphism.

Proof. We have isomorphisms

h�.A;AB/˚ h�.B;AB/ Š h�.0AC 1B; 0AB C 1AB/ Š h�.N; IAB/;

by additivity, excision and h-equivalence. It transforms p� into the map � of item
(3) in (10.7.1). Hence (1) and (2) are equivalent. �

The excision axiom says that the triad is excisive ifX D Aı[Bı. The auxiliary
space N.A;B/ allows us to transfer the problem into homotopy theory: A triad is
excisive for each homology theory, if p W N ! X is an h-equivalence. Recall from
Section 3.3:

(10.7.6) Proposition. Suppose the covering A, B of X is numerable. Then p is an
h-equivalence. Þ

We now give a second proof of the MVS; it uses the homotopy axiom but not
lemma (10.7.4). Let .X IA;B/ be a triad. Via excision and h-invariance we see that
the inclusion induces an isomorphism

hn..I; @I / � AB/ Š hn.N; 0 � A [ 1 � B/:
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We rewrite the exact sequence of the pair .N; 0�A[1�B/. Using the suspension
isomorphism and the additivity, we obtain an exact sequence

� � � ! hn.A/˚ hn.B/! hn.N /! hn�1.AB/! � � � :
If the triad is excisive, we can use (10.7.5) and replace h�.N / by h�.X/. It is an
exercise to compare the boundary operators of the two constructions of the MVS.

There exists a more general MVS for pairs of spaces. It comprises the previously
discussed cases.

(10.7.7) Theorem. Let .AIA0; A1/ � .X IX0; X1/ be two excisive triads. Set
X01 D X0 \ X1, A01 D A0 \ A1. Then there exists an exact Mayer–Vietoris
sequence of the form

� � � ! hn.X01; A01/! hn.X0; A0/˚ hn.X1; A1/! hn.X;A/! � � � :
Proof. LetN.X;A/ D 0X0[IA01[1X1. The sequence in question arises from a
rewriting of the exact sequence of the triple .N.X/;N.X;A/;N.A//. We consider
three typical terms.

(1) p� W h�.N.X/;N.A// Š h�.X;A/, by (10.7.5) and the hypotheses.
(2) The inclusions .Xj ; Aj / Š fj g � .Xj ; Aj /! .N.X;A/;N.A// induce an

isomorphism

h�.X0; A0/˚ h�.X1; A1/! h�.N.X;A/;N.A//:

For the proof one excises Œ1=3; 2=3� � A01 and then uses an h-equivalence and
additivity.

(3) The group h�.N.X/;N.X;A// is isomorphic to h�.IX01; @IX01 [ A01/
via inclusion, and the latter via suspension isomorphic to h��1.X01; A01/. For the
proof one replaces N.X;A/ by the thickened space

0X0 [ Œ0; 1=4�X01 [ IA01 [ Œ3=4�X01 [ 1X1:
Then one can excise 0X0 and 1X1 and use suitable h-equivalences.

It remains to identify the morphisms in the resulting sequence. The map
hn.N.X;A/;N.A//! hn.N.X/;N.A// becomes

hj 0� ; j 1� i W hn.X0; A0/˚ hn.X1; A1/! hn.X;A/:

The map @ W hnC1.N.X/;N.X;A//! hn.N.X;A/;N.A/ becomes, with our def-
inition of the suspension isomorphism,

.�i0� ; i1� / W hn.X01; A01/! hn.X0; A0/˚ hn.X1; A1/:
The boundary operator 
 of the generalized MV-sequence becomes, in the special
cases X D X0 D X1 D X01 and A D A0 D A1 D A01 � X01, the same as in the
previously discussed algebraic derivation of the MV-sequences. �
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(10.7.8) Example. Let i1; i2 W Sn ! Sn � Sn, x 7! .x; y0/, resp. x 7! .x0; y/.
Then h i1� ; i2� i W Hn.Sn/ ˚ Hn.Sn/ ! Hn.S

n � Sn/ is an isomorphism (n � 1/
with inverse .pr1�; pr2�/. We fix a generator z 2 Hn.Sn/ and write zj D ij� z. Then
.z1; z2/ is a Z-basis of Hn.Sn � Sn/. Let ˛ D .˛1; ˛2/ W Sn � Sn ! Sn � Sn
be a map with bi-degree .a; b/ of ˛1 and bi-degree .c; d/ of ˛2. Then ˛�.z1/ D
az1 C cz2 and ˛�.z2/ D bz1 C dz2.

Construct a space, a .2n C 1/-manifold, X by identifying in DnC1 � Sn C
DnC1 � Sn the point .x; y/ 2 Sn � Sn in the first summand with ˛.x; y/ in the
second summand via a homeomorphism ˛ D .˛1; ˛2/ of Sn � Sn as above. The
two summands are embedded as X1 and X2 into X . We use the MV-sequence of
.X IX1; X2/ to determine the integral homology of X . Let us consider a portion of
this sequence

Hn.S
n � Sn/ j�! Hn.D

nC1 � Sn/˚Hn.DnC1 � Sn/! Hn.X/:

We use the Z-basis .z1; z2/ as above. The inclusion Sn ! DnC1�Sn, x 7! .0; x/

give us as image of z the generators u1; u2 in the summandsHn.DnC1�Sn/. The
image of the basis elements under j is seen to be j.z1/ D cu2, j.z2/ D u1C du2
(we do not use the minus sign for the second summand). We conclude for c 6D 0

thatHn.X/ is the cyclic group of order jcj; the other homology groups of X are in
this case H0.X/ Š Z Š H2nC1.X/ and Hj .X/ D 0 for j 6D 0; n; 2n C 1. We
leave the case c D 0 to the reader. Þ

Problems

1. Let Rn be the union of two open sets U and V .
(i) If U and V are path connected, then U \ V is path connected.
(ii) Suppose two of the sets �0.U /; �0.V /; �0.U \ V / are finite, then the third set is

also finite and the relation

j�0.U \ V /j � .j�0.U /j C j�0.V /j/C j�0.U [ V /j D 0
holds.

(iii) Suppose x; y 2 U \ V can be connected by a path in U and in V . Then they can
be connected by a path in U \ V .

Can you prove these assertions without the use of homology directly from the definition
of path components?
2. Let the real projective planeP be presented as the union of a Möbius bandM and a diskD,
glued together along the common boundary S1. Determine the groups and homomorphisms
in the MV-sequence of .P IM;D/. Do the same for the Klein bottle .KIM;M/. (Singular
homology with arbitrary coefficients.)
3. Let .X1; : : : ; Xn/ be an open covering of X and .Y1; : : : ; Yn/ be an open covering of Y .
Let f W X ! Y be a map such that f .Xi / � Yi . Suppose that the restriction

T
a2AXa !T

a2A Ya of f induces a homology isomorphism for each ; 6D A � f1; : : : ; ng. Then f
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induces a homology isomorphism.
4. Suppose AB � A and AB � B are closed cofibrations. Then p W N.A;B/! A [ B is
an h-equivalence.
5. The boundary operators in (10.7.2) and (10.7.3) which result when we interchange the
roles of A and B differ from the original ones by �1. (Apply the Hexagon Lemma to the
two boundary operators.)
6. The triad .X � @I [A� I IX � 0[A� I;X � 1[A� I / is always excisive. (Excision
of X � 0 [ A � Œ0; 1=2Œ and h-equivalence.)
7. Verify the assertions about the morphisms in the sequence (10.7.7).

10.8 Colimits

The additivity axiom for a homology theory expresses a certain compatibility of
homology and colimits (namely sums). We show that this axiom has consequences
for other colimits.

Let .X�; f�/ be a sequence X1
f 1

�� X2
f 2

�� X3
f 3

�� : : : of continuous

maps f j . Recall that a colimit (a direct limit) of this sequence consists of a space
X and continuous maps j k W Xk ! X with the following universal property:

(1) j kC1f k D j k .
(2) If ak W Xk ! Y is a family of maps such that akC1f k D ak , then there exists

a unique map a W X ! Y such that aj k D ak .

(This definition can be used in any category.) Let us write

colim.X�; f�/ D colim.Xk/

for the colimit. In the case that the f k W Xk � XkC1 are inclusions, we can take as
colimit the union X D S

i Xi together with the colimit topology: U � X open if
and only if U \Xn open in Xn for each n.

Colimits are in general not suitable for the purpose of homotopy theory, one has
to weaken the universal property “up to homotopy”. We will construct a so-called
homotopy colimit. Colimits of sequences allow a special and simpler treatment than
general colimits. A model of a homotopy colimit in the case of sequences is the
telescope. We identify in

`
i Xi � Œi; iC1� the point .xi ; iC1/with .f i .xi /; iC1/

for xi 2 Xi . Denote the result by

T D T .X�; f�/ D hocolim.X�; f�/:

We have injections j k W Xk ! T , x 7! .x; k/ and a homotopy �k W j kC1f k ' j k ,
a linear homotopy inXk � Œk; kC1�. Thus the telescope T consists of the mapping
cylinders of the maps f i glued together. The data define the homotopy colimit of
the sequence.
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Given maps ak W Xk ! Y and homotopies hk W Xk � Œk; k C 1� ! Y from
akC1f k to ak . Then there exists a map a W T ! Y such that j ka D ak , and the
composition of the canonical map Xk � Œk; k C 1�! T with a is hk .

We have subspaces Tk � T , the image of
`k�1
iD1 Xi � Œi; i C 1� C Xk � fkg.

The canonical inclusion �k W Xk ! Tk is a homotopy equivalence (compare the
analogous situation for a mapping cylinder).

In homology we have the equality j k� D j kC1� f k� W hn.Xk/ ! hn.XkC1/ !
hn.T /. By the universal property of the colimit of groups we therefore obtain a
homomorphism

� W colim hn.Xk/! hn.T .X�; f�//:

(10.8.1) Theorem. In an additive homology theory � is an isomorphism.

Proof. We recall an algebraic construction of the colimit A1
a1 �� A2

a2 �� : : : of
abelian groups. ConsiderL

k�1Ak !
L
k�1Ak; .xk/ 7! .xkC1 � ak.xk//:

The cokernel is the colimit, together with the canonical maps (inclusion of the j -th
summand composed with the projection)Aj !L

k Ak ! colimAk . We therefore
need a computation of hn.T / which has this form. We cover T by the subspaces

A D T XSi�1X2i � f2i C 1
2
g; B D T XSi�1X2i�1 � f2i � 1

2
g:

(10.8.2) Lemma. The inclusions

ì�1
X2i � f2ig ! A;

ì�1
X2i�1 � f2i � 1g ! B;

ì�1
Xi � fig ! A \ B

are h-equivalences, and .A;B/ is a numerable covering of T . �

Because of this lemma we have a Mayer–Vietoris sequence

hn.A \ B/ �� hn.A/˚ hn.B/ �� hn.T /

L
hn.Xj /

˛ ��

Š
��

L
j�0.2/ hn.Xj /˚

L
j�1.2/ hn.Xj /:

Š
��

The map ˛ has the form

˛.x2i / D .x2i ; f 2i� .x2i // and ˛.x2iC1/ D .f 2iC1� .x2iC1/; x2iC1/

for xj 2 hn.Xj /. We see that ˛ is injective; therefore we can obtain hn.T / as
cokernel of ˛. The automorphism .xi / 7! ..�1/ixi / transforms ˛ into the map
which was used in the algebraic definition of the colimit. �
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For applications we have to find conditions under which the homotopy colimit
is h-equivalent to the colimit. We consider the case that the f k W Xk ! XkC1 are
inclusions, and denote the colimit byX DSk Xk . We change the definition of the
telescope slightly and consider it now as the subspace

T DSk Xk � Œk; k C 1� � X � Œ0;1Œ :
The topology of T may be different, but the proof of (10.8.1) works equally well
in this case. The projection onto the first factor yields p W T ! X .

(10.8.3) Example. Let 	 W X ! Œ1;1Œ be a function such that

s D .id; 	/ W X ! X � Œ1;1Œ
has an image in T . Then s W X ! T is a section of p. The composition sp is
homotopic to the identity by the homotopy ..x; u/; t/ 7! .x; .1 � t /u C t	.x//.
This is a homotopy over X , hence p is shrinkable. The property required by 	
amounts to 	.x/ < i ) x 2 Xi�1 for each i .

Let .Ui j i 2 N/ be a numerable covering of X with locally finite numeration
.�i / (see the chapter on partitions of unity). SetXk D

Sk
iD1 Ui and 	 DP1

iD1 i�i .
Then 	.x/ < i implies x 2 Xi�1. Þ

(10.8.4) Proposition. Suppose the inclusions Xk � XkC1 are cofibrations. Then
T � X � Œ1;1Œ is a deformation retract.

Proof. Since Xk � X is a cofibration, there exists by (5.1.3) a homotopy

hkt W X � Œ1;1Œ! X � Œ1;1Œ rel Yk D Xk � Œ1;1Œ[X � Œk C 1;1Œ
from the identity to a retraction X � Œ0;1Œ! Yk . The retraction Rl acts as
the identity on Xk � Œ1;1Œ for l > k, and therefore the infinite composition
Rj D � � �ıRjC2 ıRjC1 ıRj is a well-defined continuous map. From hj we obtain
a homotopy Rj ' RjC1 relative to Yj . We can concatenate these homotopies and
obtain a homotopy from the retraction R1 to the identity relative to T . �

Problems

1. Let T be a subring. Find a system of homomorphisms Z ! Z ! � � � such that the
colimit is T .
2. Let Sn ! Sn ! Sn ! � � � be a sequence of maps where each map has degree two. Let
X be the homotopy colimit. Show that �n.X/ Š ZŒ1=2�, the ring of rational numbers with
denominators a power of two. What system of maps between Sn would yield a homotopy
colimit Y such that �n.Y / Š Q?
3. LetX be a CW-complex and T the telescope of the skeleton filtration. Then the inclusion
T � X � Œ1;1Œ induces isomorphisms of homotopy groups and is therefore a homotopy
equivalence. One can also apply (10.8.4) in this case.
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10.9 Suspension

Recall the homological suspension isomorphism 10.2.5. We use abbreviations of
the type I � A D IA, @I � A D @IA, 0 � X D 0A. We set kn.A;B/ D
hn..I; @I / � .A;B//. The k�.�/ are the data for a new homology theory. The
boundary operator of this homology theory is defined for a triple .A;B; C / by

Q@ W hnC1.IA; @IA [ IB/ @�! hn.@IA [ B; @IA [ IC / Š � hn.IB; @IB [ IC /:

In order to work with this definition we use

(10.9.1) Lemma. For each triple .A;B; C / the triad .@IA [ IBI IB; @IA [ IC /
is excisive.

Proof. The inclusion induces an isomorphism

hn.@IA; @IB/! hn.@IA [ IC; @IB [ IC /;

excise 1
2
� C and use a homotopy equivalence. If we use this also for B D C we

conclude that hn.@IA[ IC; @IB [ IC /! hn.@IA[ IB; IB/ is an isomorphism.
�

The exact sequence of the triple .IA; @IA [ IB; @IA/ is transformed with
the isomorphism kn.B/ D hn.IB; @IB/ Š hn.IB [ @IA; @IA/ into the exact
sequence of .A;B/ for the k�-groups. LetU � B � A and xU � Bı. The excision
isomorphism for the k�-theory claims that

hn.IA X U/; I.B X U/ [ @I.A X U//! hn.IA; IB [ @IA/

is an isomorphism. This is a consequence of IU D I xU � .IB [ @IA/ı and the
usual excision isomorphism. The isomorphisms � .A;B/ W hn.A;B/! knC1.A;B/
defined in (10.2.5) form a natural transformation. The next proposition says that
they are natural transformations of homology theories of degree 1.

(10.9.2) Proposition. For each triple .A;B; C / the diagram

hnC1.A;B/ @ ��

�.A;B/

��

hn.B; C /

��.B;C /

��

knC2.A;B/
Q@ �� knC1.B; C /

is commutative.
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Proof. By naturality it suffices to consider the case C D ;. The Hexagon Lemma
shows ˛ D �ˇ for the maps

˛ W hnC1.IA; IB [ @IA/! hn.IB [ @IA; @IA/
Š hn.IB [ 0A; 0A [ 1B/! hn�1.0A [ 1B; 0A/;

ˇ W hnC1.IA; IB [ @IA/! hn.IB [ @IA; IB [ 0A/
Š hn.@IA; 0A [ 1B/! hn�1.0A [ 1B; 0A/;

and the center group hn.IB [ @IA; 1B [ 0A/. Let j be the isomorphism

j W hn�1.1B [ 0A; 0A/ Š � hn�1.1B/ Š hn�1.B/:

By diagram chasing one verifies � .B/j˛ D Q@ and jˇ� .A;B/ D @. �

(10.9.3) Lemma. Let .A;B; C / be a triple. Then we have an isomorphism

h �1; �0; �i W hn.A;B/˚hn.A;B/˚hn.IB; @IB[IC /! hn.@IA[IB; @IB[IC /:
Here � is induced by the inclusion, and �� by a 7! .�; a/.

Proof. This is a consequence of (10.9.1) and (10.7.1). �

(10.9.4) Proposition. For each triple .A;B; C / the diagram

hn.A;B/
�.A;B/

��

˛

��

hnC1.IA; @IA [ IB/
@

��

hn.A;B/˚ hn..A;B/˚ hn.IB; @IB [ IC / ˇ

Š
�� hn.@IA [ IB; @IB [ IC /

is commutative; here ˛.x/ D .x;�x;�� .B;C/@x/, and the isomorphism ˇ is taken
from (10.9.3).

Proof. The assertion about the third component of ˛ follows from (10.9.2). The
other components require a little diagram chasing. For the verification it is helpful
to use the inverse isomorphism of ˇ given by the procedure of (10.7.1). The minus
sign in the second component is due to the fact that the suspension isomorphism
changes the sign if we interchange the roles of 0; 1, see 10.2.5. �



Chapter 11

Homological Algebra

In this chapter we collect a number of algebraic definitions and results which are
used in homology theory. Reading of this chapter is absolutely essential, but it
only serves practical purposes and is not really designed for independent study.
“Homological Algebra” is also the name of a mathematical field – and the reader
may wish to look into the appropriate textbooks.

The main topics are diagrams and exact sequences, chain complexes, derived
functors, universal coefficients and Künneth theorems. We point out that one can
imitate a lot of homotopy theory in the realm of chain complexes. It may be helpful
to compare this somewhat simpler theory with the geometric homotopy theory.

11.1 Diagrams

Let R be a commutative ring and denote by R- MOD the category of left R-
modules and R-linear maps. (The category ABEL of abelian groups can be iden-
tified with Z- MOD.) Recall that a sequence of R-modules and R-linear maps

� � � ! AiC1
aiC1�! Ai

ai�! Ai�1 ! � � � is exact at Ai if Im.aiC1/ D Ker.ai / and
exact if it is exact at each Ai . The language of exact sequences is a convenient way
to talk about a variety of algebraic situations.

(1) 0 ! A
a�! B exact, a injective. (We also use A� B for an injective

homomorphism.)

(2) B
b�! C ! 0 exact, b surjective. (We also use B � C for a surjective

homomorphism.)

(3) 0! A
a�! B

b�! C ! 0 exact, a is injective, b is surjective, b induces
an isomorphism of the cokernel of a with C .

(4) Let A
.1/! B

.2/! C
.3/! D be exact. Then the following are equivalent:

.1/ surjective , .2/ zero , .3/ injective:

An exact sequence of the form (3) is called a short exact sequence. It sometimes
happens that in a longer exact sequence every third morphism has the property (1)
(or (2), (3)). Then the sequence can be decomposed into short exact sequences.
Note that the exact homotopy sequences and the exact homology sequences have
“period” 3.

A family .Mj j j 2 J / of modules has a direct sum
L
j2J Mj , the sum

in the category R- MOD, and a product
Q
j2J Mj , the product in the category
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R- MOD. The underlying set of the product is the Cartesian product of the under-
lying sets, consisting of all families .xj 2 Mj j j 2 J /; the R-module structure
is given by pointwise addition and scalar multiplication. The canonical projection
pk W

Q
j Mj ! Mk onto the k-th factor is part of the categorical product struc-

ture. The sum
L
j Mj is a submodule of the product and consists of all families

.xj / where all but a finite number of xj are zero. We have the canonical injection
ik W Mk !

L
j Mj , defined bypkik D id andpkil D 0 for k 6D l . Iffj W Mj ! N

is a family of R-linear maps, then

hfj i W LMj ! N

denotes the morphism determined by hfj i ı ik D fk . If gj W L! Mj is a family
of R-linear maps, then

.gj / W L!Q
j Mj

denotes the morphism determined by pk ı .gj / D gk .
Let .Aj j j 2 J / be a family of submodules of M . Then

P
j Aj denotes the

submodule generated by
S
j Aj . We say thatM is the internal direct sum of theAj

if the map L
j Aj !M; .aj / 7!P

j aj

is an isomorphism. In that case we also write M DLj Aj . A submodule A �M
is called a direct summand ofM if there exists a complement ofA, i.e., a submodule
B such that M is the internal direct sum of A and B .

We assume known the structure theory of finitely generated abelian groups. An
element of finite order in an abelian groupA is called a torsion element. The torsion
elements form a subgroup, the torsion subgroup T .A/. The torsion subgroup of
A=T .A/ is trivial. If the group is finitely generated, then the torsion subgroup has
a complement F , and F is a free abelian group. The cardinality of a basis of F is
called the rank of A. A finitely generated torsion group is the direct sum of cyclic
groups of prime power order Z=.pk/, and the number of factors isomorphic to
Z=.pk/ is uniquely determined by the group. A similar structure theory exists for
finitely generated modules over principal ideal domains.

A linear map p W M ! M with the property p ı p D p is called a projection
operator on M .

(11.1.1) Splitting Lemma. Let 0 ! E
f�! F

g�! G ! 0 be a short exact
sequence of modules. Then the following assertions are equivalent:

(1) The image of f is a direct summand of F .

(2) There exists a homomorphism r W F ! E such that rf D id.

(3) There exists a homomorphism s W G ! F such that gs D id.

If .1/–.3/ holds, we say the sequence splits. We then call r and s splittings, r a
retraction of f , s a section of g. In case .2/ f r is a projection operator, hence we
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have F D Im.f r/˚ Ker.f r/ D Im.f /˚ Ker.r/. In case .3/ sg is a projection
operator, hence we have F D Im.sg/˚ Ker.sg/ D Im.s/˚ Ker.g/. �

(11.1.2) Sum Lemma. Suppose given a commutative diagram in R- MODW
B1 B2

C
j2

�������� j1

��$$$$$$

A1
i1

��$$$$$$

a1

��

A2.
i2

��������

a2

��

Assume jkik D 0 for k D 1; 2.
.1/ If the ak are isomorphisms and .i2; j2/ is exact, then

h i1; i2 i W A1 ˚ A2 ! C and .j2; j1/ W C ! B2 ˚ B1
are isomorphisms and .i1; j1/ is exact.

.2/ If h i1; i2 i is an isomorphism and .i2; j2/ is short exact, then a1 is an isomor-
phism (j1; a2 are not needed). If .j2; j1/ is an isomorphism and .i1; j1/ is short
exact, then a1 is an isomorphism (i2; a2 are not needed).

Proof. (1) The hypothesis implies .j2; j1/ ı h i1; i2 i D a1 ˚ a2. We show that
h i1; i2 i is surjective. Given c 2 C we have j2.c � i1a�1

1 j2.c// D 0, by commuta-
tivity. Hence there exists by exactness x2 2 A2 such that c� i1a�1

1 j2.c/ D i2.x2/,
i.e., c is contained in the image of h i1; i2 i.

Let j1.c/ D 0 and write c D i1x1Ci2x2. Then0 D j1.c/ D j1i1x1Cj1i2x2 D
j1i2x2 D a2.x2/, hence x2 D 0 and c 2 Im.i1/.

(2) Exercise. �

(11.1.3) Hexagon Lemma. Given a commutative diagram of abelian groups.

G0
l1

))���
��� l2

**%%
%%%

%

i0

��

G0
1 G0

2

G

j1
��&&&&&&

j2
��������

j0

��

G1

i1
��������

k1

��

h1
**%%

%%%
% G2

i2
��&&&&&&

k2

��

h2
))���

���

G0
0

Suppose that k1; k2 are isomorphisms, .i1; j2/ exact, .i2; j1/ exact, and j0i0 D 0.
Then h1k�1

1 l1 D �h2k�1
2 l2.
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Proof. The part i; j; k satisfies the hypothesis of the Sum Lemma (11.1.2). Given
x 2 G0 there exist xj 2 Gj such that i0x D i1x1 C i2x2. We compute

0 D j0i0x D j0i1x1 C j0i2x2 D h1x1 C h2x2;
l1x D j1i0x D j1i1x C j1i2x D j1i1x D k1x1;

hence x1 D k�1
1 l1x and similarly x2 D k�1

2 l2x. �

(11.1.4) Five Lemma. Given a commutative diagram of groups and homomor-
phisms with exact rows:

A
˛ ��

a

��

B
ˇ

��

b

��

C
�

��

c

��

D
ı ��

d

��

E

e

��

A0 ˛0
�� B 0 ˇ 0

�� C 0 � 0
�� D0 ı0

�� E 0.

(1) a surjective, b; d injective) c injective. (Here the E-part of the diagram is
not needed.)

(2) b; d surjective, e injective) c surjective. (Here the A-part of the diagram
is not needed.)

(3) a surjective, b; d bijective, e injective) c bijective.

Proof. For another proof see (11.2.7). We give here a direct proof by the “method”
called diagram chasing. One refers to diagram chasing whenever the proof (chasing
elements through the diagram) does not really require a mathematical idea, only
careful patience.

(1) Let c.w/ D 0. Then � 0c.w/ D d�.w/ D 0, and injectivity of d shows
�.w/ D 0. By exactness, ˇ.v/ D w for some v. Since ˇ0b.v/ D cˇ.v/ D 0, we
have ˛0.u0/ D b.v/ for some u0, by exactness, and a.u/ D u0 by surjectivity of
a. By injectivity of b and commutativity we see ˛.u/ D v and hence by exactness
w D ˇ.v/ D 0.

(2) Given w0 2 C 0. Choose x such that d.x/ D � 0.c0/. By exactness,
commutativity, and injectivity of e, we see ı.x/ D 0 and hence �.w/ D x for
some w. By commutativity, c.w/ and w0 have the same image under � 0. Hence
w0 D c.w/ �ˇ0.v0/ for some v0. Then c.w �ˇ.v// D c.w/ �cˇ.v/ D c.w/ �ˇ0b.v/ D
c.w/ � ˇ0.v0/ D w0, i.e., w0 is contained in the image of c.

(3) A consequence of (1) and (2). �
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Problems

1. Let p be a projection operator onM . Then 1� p is a projection operator. The equalities
Im.1� p/ D Ker.p/ and Ker.1� p/ D Im.p/ hold. Moreover M D Im.p/˚ Im.1� p/.
The submodule A of M is a direct summand if and only if there exists a projection operator
with image A.
2. Let .Aj j j 2 J / be a finite family of modules. Suppose given linear maps ik W Ak ! A

andpl W A! Al such thatpkik D id andpki l D 0 for k 6D l (we writepki l D ıkl in this
case). Then .pk/ ı h ik i D id and h ik i ı .pk/ D

P
j i

jpj is a projection operator. Hence
the following are equivalent: (1) h ik i is an isomorphism. (2) .pk/ is an isomorphism. (3)P

j i
jpj D id.

3. Let p be a prime number. Determine the number of subgroups of Z=.pk/˚Z=.pl /.
4. Consider the group Z=.6/˚Z. Determine the subgroups of index 2; 3; 4; 5; 6. Determine
the number of complements of the torsion subgroup.
5. Let A be a finitely generated abelian group. Then A˝Z Q is a Q-vector space. Show
that its dimension is the rank of A.
6. Let Mj , j 2 J be submodules of M . The following assertions are equivalent:

(1)
P

j Mj is the direct sum of the Mj .

(2) For each i 2 J , Mi \
P

j;j ¤i Mj D f0g:
(3) Suppose

P
j xj D 0, xj 2Mj , almost all xj D 0, then xj D 0 for each j 2 J .

11.2 Exact Sequences

We start with a commutative diagram of modules.

A
a ��

˛

��

B
b ��

ˇ

��

C

�

��

A0 a
0

�� B 0 b
0

�� C 0

It yields two derived diagrams (Ke D kernel, Ko D cokernel, Im D Image).

Ke.˛/ a ��

.1/

��

Ke.ˇ/ b ��

D
��

Ke.�/

Ke.a0˛/ a �� Ke.ˇ/ b �� Ke.�/ \ Im.b/

.2/

��

Ko.˛/ a0
��

.3/
��

Ko.ˇ/ b0
�� Ko.�/

A0

Im.˛/C Ke.a0/
a0

��
B 0

Im.ˇ/
b0

��

D
��

C 0

Im.�b/

.4/

��
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The morphisms named a; b; a0; b0 are induced by the original morphisms with the
same name by applying them to representatives. (1) and (2) are inclusions, (3) and
(4) are quotients.

(11.2.1) Proposition. Let .a; b/ and .a0; b0/ be exact. Then a connectingmorphism

ı W Ke.�/ \ Im.b/! A0

Im.˛/C Ke.a0/

is defined by the correspondence .a0/�1ˇb�1.

Proof. For z 2 Ke.�/ \ Im.b/ there exists y 2 B such that b.y/ D z; since z 2
Ke.�/ and �b D b0ˇ we have ˇ.y/ 2 Ke.b0/; since Ke.b0/ � Im.a0/, there exists
x0 2 A0 such that a0.x0/ D ˇ.y/. We set ı.z/ D x0 and show that this assignment
is well-defined. If Qy 2 B , b. Qy/ D z, then b.y � Qy/ D 0; since Ke.b/ � Im.a/,
there exists x 2 A such that a.x/ D y � Qy. We have ˇ.y/ � ˇ. Qy/ D a0˛.x/,
because of a0˛ D ˇa, and with a0. Qx0/ D ˇ. Qy/ we obtain a0.x0 � Qx0 � ˛.x// D 0,
i.e., x0 � Qx0 mod Im.˛/C Ke.a0/ . �

We add further hypotheses to the original diagram and list the consequences
for the derived diagrams. We leave the verification of (11.2.2), (11.2.3), (11.2.4),
(11.2.5) to the reader.

11.2.2 If a0 is injective, then (1) and (3) are bijective. If b is surjective, then (2)
and (4) are bijective. Þ

11.2.3 Let .a0; b0/ be exact. Then

A0

Im.˛/CKe.a0/
a0

�! B 0

Im.ˇ/
b0

�! C 0

Im.�b/

is exact. If, moreover, b is surjective, then (4) is bijective and therefore

Ko.˛/
a0

�! Ko.ˇ/
b0

�! Ko.�/

is exact. If b0 is surjective, then the derived b0 is surjective too. Þ

11.2.4 Let .a; b/ be exact. Then

Ke.a0˛/ a�! Ke.ˇ/
b�! Ke.�/ \ Im.b/

is exact. If, moreover, a0 is injective, then (1) is bijective and therefore

Ke.˛/
a�! Ke.ˇ/

b�! Ke.�/
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is exact. If a is injective, then the derived a is injective too. Þ

11.2.5 Let .a; b/ and .a0; b0/ be exact. Then, as we have seen, ı is defined. Under
these assumptions the bottom lines of the derived diagrams together with ı yield
an exact sequence. (See the special case (11.2.6).) Þ

(11.2.6) Kernel–Cokernel Lemma. If in the original diagram a0 is injective and b
surjective, then .1/; .2/; .3/, and .4/ are bijective and the kernel-cokernel-sequence

Ke.˛/
a�! Ke.ˇ/

b�! Ke.�/
ı�! Ko.˛/

a0

�! Ko.ˇ/
b0

�! Ko.�/

is exact.

Proof. We show the exactness at places involving ı; the other cases have already
been dealt with. The relations ıb D 0 and a0ı D 0 hold by construction.

If the class of x0 is contained in the kernel of a0, then there exists y such that
a0.x0/ D ˇ.y/. Hence z D b.y/ 2 Ke.�/ by commutativity, and ı.z/ D x0.

Suppose z 2 Ke.�/ is contained in the kernel of ı. Then there exists y such
that z D b.y/; ˇ.y/ D a0.x0/ and ˇ.z/ D ˛.x/ 2 Im.˛/. Then b.y � a.x// D z

and ˇ.y � a.x// D ˇ.y/� ˇa.x/ D ˇ.y/� a0˛.x/ D ˇ.y/� a0.x0/ D 0. Hence
y � a.x/ is a pre-image of z. �

We now relate the Kernel–Cokernel Lemma to the Five Lemma (11.2.7); see also
(11.1.4). Given a commutative five-term diagram of modules and homomorphisms
with exact rows.

A
˛ ��

a

��

B
ˇ

��

b

��

C
�

��

c

��

D
ı ��

d

��

E

e

��

A0 ˛0
�� B 0 ˇ 0

�� C 0 � 0
�� D0 ı0

�� E 0

We have three derived diagrams.

0 �� Ke.ı/

Qd
��

�� D

d
��

ı �� E

e
��

A
˛ ��

a
��

B ��

b
��

Ko.˛/ ��

Qb
��

0

0 �� Ke.ı0/ �� D0 ı0
�� E 0, A0 ˛0

�� B 0 �� Ko.˛0/ �� 0,

0 �� Ko.˛/
ˇ

��

Qb
��

C
�

��

c
��

Ke.ı/ ��

Qd
��

0

0 �� Ko.˛0/ ˇ 0
�� C 0 � 0

�� Ke.ı0/ �� 0.
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The rows of the first two diagrams are exact for trivial reasons. The exactness of the
rows of the original diagram implies that the third diagram has exact rows. From
the considerations so far we obtain the exact sequences

Ke.e/ \ Im.ı/! Ko. Qd/! Ko.d/;

Ke.b/! Ke. Qb/! A0=.Im.a/C Ke.˛0//;

0! Ke. Qb/! Ke.c/! Ke. Qd/! Ko. Qb/! Ko.c/! Ko. Qd/! 0:

This yields:

(11.2.7) Five Lemma. Given a five-term diagram as above. Then the following
holds:

(1) Ke. Qb/ D 0;Ke. Qd/ D 0 ) Ke.c/ D 0:
(2) Ko. Qb/ D 0;Ko. Qd/ D 0 ) Ko.c/ D 0:
(3) Ke.b/ D 0; A0=.Im.a/C Ke.˛0// D 0 ) Ke. Qb/ D 0:
(4) Ke.e/ \ Im.ı/ D 0;Ko.d/ D 0 ) Ko. Qd/ D 0:
(5) a surjective, b; d injective ) c injective. (Here the E-part of the diagram

is not needed.)
(6) b; d surjective, e injective ) c surjective. (Here the A-part of the diagram

is not needed.)
(7) a surjective, b; d bijective, e injective ) c bijective. �

Problems

1. Given homomorphisms f W A! B and g W B ! C between R-modules. Then there is
a natural exact sequence

0! Ke.f /! Ke.gf /! Ke.g/! Ko.f /! Ko.gf /! Ko.g/! 0:

The connection to the previous considerations: The commutative diagram with exact rows

0 �� A
.1;f /

��

f

��

A˚ B h �f;1 i
��

gf ˚1

��

B ��

g

��

0

0 �� B
.g;1/

�� C ˚ B h �1;g i
�� C �� 0

can be viewed as an exact sequence of chain complexes. Its homology sequence (11.3.2) is
the desired sequence, if we identify the kernel and cokernel of gf ˚1with the corresponding
modules for gf .

Describe the morphisms of the sequence and give also a direct proof.
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11.3 Chain Complexes

The algebraic terminology of chain complexes arose from the definition of ho-
mology groups. Since then it also has become of independent interest in algebra
(homological algebra). The construction of (singular) homology proceeds in two
stages: First one associates to a space a so-called chain complex. Then the chain
complex yields, by algebra, the homology groups. The category of chain complexes
and chain maps has an associated homotopy structure.

We work in this section with the category R- MOD of left modules over some
fixed ring R. A family A� D .An j n 2 Z/ of modules An is called a Z-graded
module. We call An the component of degree or dimension n. One sometimes
considers the direct sum

L
n2ZAn; then the elements in An are said to be ho-

mogeneous of degree n. Typical examples are polynomial rings; if kŒx; y� is the
polynomial ring in two indeterminates x; y of degree 1 say, then the homogeneous
polynomials of degree n are spanned by xiyn�i for 0 � i � n, and in this manner
we consider kŒx; y� as a graded k-module (actually a graded algebra, as defined
later). One can also consider formal power series; this would correspond to taking
the product

Q
n2ZAn instead of the sum.

Let A� and B� be Z-graded modules. A family fn W An ! BnCk of homomor-
phisms is called a morphism of degree k between the graded modules.

A sequence C� D .Cn; @n j n 2 Z/ of modules Cn and homomorphisms
@n W Cn ! Cn�1, called boundary operators or differentials, is said to be a chain
complex, if for each n 2 Z the boundary relation @n�1ı@n D 0 holds. We associate
to a chain complex C� the modules

Zn D Zn.C�/ D Ker.@n W Cn ! Cn�1/;
Bn D Bn.C�/ D Im.@nC1 W CnC1 ! Cn/;

Hn D Hn.C�/ D Zn=Bn:
We call Cn (Zn, Bn) the module of n-chains (n-cycles, n-boundaries) and Hn
the n-th homology module of the chain complex. (The boundary relation @@ D 0

implies Bn � Zn, and therefore Hn is defined.) Two n-chains whose difference is
a boundary are said to be homologous. Often, in particular in the case R D Z, we
talk about homology groups.

Let C� D .Cn; cn/ and D� D .Dn; dn/ be chain complexes. A chain map
f� W C� ! D� is a sequence of homomorphisms fn W Cn ! Dn which satisfy the
commutation rules dn ı fn D fn�1 ı cn. A chain map induces (by restriction
and passage to the factor groups) homomorphisms of the cycles, boundaries, and
homology groups

Zn.f�/ W Zn.C�/! Zn.D�/;
Bn.f�/ W Bn.C�/! Bn.D�/;

f� D Hn.f�/ W Hn.C�/! Hn.D�/:
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A (short) exact sequence of chain complexes

0! C 0 f�! C
g�! C 00 ! 0

consists of chain maps f and g such that 0 ! C 0
n

fn�! Cn
gn�! C 00

n ! 0 is exact
for each n.

We certainly have the induced morphisms Hn.f / and Hn.g/. Moreover, there
exists a connecting morphism @n W Hn.C 00/ ! Hn�1.C 0/, also called boundary
operator, which is induced by the correspondence f �1

n�1 ı dn ı g�1
n .

Cn
gn ��

dn

��

C 00
n 3 z00

z0 2 C 0
n�1

fn�1 �� Cn�1

(11.3.1) Lemma. For a cycle z00 2 C 00
n with pre-image z under gn the relation

gn�1dnz D d 00
ngnz D d 00

n z
00 D 0 and exactness shows that there exists z0 with

dn.z/ D fn�1.z0/. The assignment z00 7! z0 induces a well-defined homomorphism
@n W Hn.C 00/! Hn�1.C 0/.
Proof. The relationfn�2d 0

n�1z0 D dn�1fn�1z0 D dn�1dnz D 0 and the injectivity
of fn�2 show that z0 is a cycle. If we choose another pre-image z C fnw0 of z00,
then we have to replace z0 by z0 C d 0

nw
0, so that the homology class of z0 is well-

defined. Finally, if we change z00 by a boundary, we can replace z by the addition
of a boundary and hence dnz does not change. �

(11.3.2) Proposition. The sequence

� � � ! Hn.C
0/

f���! Hn.C /
g���! Hn.C

00/ @n�! Hn�1.C 0/! � � �
is exact.

Proof. The boundary operator dn W Cn ! Cn�1 induces a homomorphism

dn W Kn D Cn=Bn ! Zn�1;

and its kernel and cokernel areHn andHn�1. By (11.2.3) and (11.2.4) the rows of
the next diagram are exact.

K 0
n

fn ��

d 0
n

��

Kn
gn ��

dn

��

K 00
n

��

d 00
n

��

0

0 �� Z0
n�1

fn�1 �� Zn�1
gn�1 �� Z00

n�1

The associated sequence (11.2.6)H 0
n ! Hn ! H 00

n

@�! H 0
n�1 ! Hn�1 ! H 00

n�1
is the exact homology sequence. �
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Let f; g W C D .Cn; cn/! D D .Dn; dn/ be chain maps. A chain homotopy
s from f to g is a sequence sn W Cn ! DnC1 of homomorphisms which satisfy

dnC1 ı sn C sn�1 ı cn D gn � fn:
(This definition has two explanations; firstly, one can define “chain homotopy” in
analogy to the topological definition by using the chain complex analogue of the
unit interval; secondly, it codifies the boundary relation of a geometric homotopy.)
We call f and g homotopic or chain homotopic, if there exists a chain homotopy
s from f to g, in symbols s W f ' g. “Chain homotopic” is an equivalence
relation on the set of chain maps C ! D; the data s W f ' g and t W g ' h

imply .sn C tn/ W f ' h. This relation is also compatible with composition; if
s W f ' f 0 W C ! D and t W g ' g0 W D ! E, then .gnC1sn/ W gf ' gf 0 and
.tnfn/ W gf ' g0f . We call f W C ! D a chain equivalence, if there exists a
chain map g W D ! C and chain homotopies fg ' id and gf ' id.

(11.3.3) Proposition. Chain homotopic maps induce the same morphisms between
the homology groups.

Proof. Let x 2 Cn be a cycle. The homotopy relation gn.x/�fn.x/ D dnC1sn.x/
shows that fn.x/ and gn.x/ are homologous. �

11.4 Cochain complexes

Let C� D .Cn; @n/ be a chain complex ofR-modules. LetG be anotherR-module.
We apply the functor HomR.�; R/ toC� and obtain a chain complexC � D .C n; ın/
of R-modules with C n D HomR.Cn; R/ and the R-linear map

ın W C n D HomR.Cn; R/! HomR.CnC1; R/ D C nC1

defined by ın.'/ D .�1/nC1' ı @nC1 for ' 2 Hom.Cn; R/.
For the choice of this sign see 11.7.4. The reader will find different choices of

signs in the literature. Other choices will not effect the cohomology functors. But
there seems to be an agreement that our choice is the best one when it comes to
products.

Now some “co” terminology. A cochain complex C � D .C n; ın/ is a Z-
graded module .C n j n 2 Z/ together with homomorphisms ın W C n ! C nC1,
called coboundary operators or differentials1, such that ınC1ın D 0. We set

Zn D Ker ın; Bn D Im ın�1; Hn D Zn=Bn

and call C n; Zn; Bn the module of n-cochains, n-cocycles, n-coboundaries, and
Hn the n-th cohomology module of the cochain complex.

1An important cochain complex arises from the exterior differentiation of differential forms. So one
should not use a “co” word here.
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11.5 Natural Chain Maps and Homotopies

Let C be an arbitrary category and CHC the category of chain complexes .Cn; cn/ of
abelian groups with Cn D 0 for n < 0 and chain maps. A functor F� W C ! CHC
consists of a family of functors Fn W C ! Z- MOD and natural transformations
dFn W Fn ! Fn�1 such thatdFn�1ıdFn D 0. A natural transformation'� W F� ! G�
between such functors is a family of natural transformations 'n W Fn ! Gn such
that dGn 'n D 'n�1dFn . A natural chain homotopy s� W '� '  � from '� to  � is
a family sn W Fn ! GnC1 of natural transformations such that

dGnC1 ı sn C sn�1 ı dFn D  n � 'n:

A functor Fn W C ! Z- MOD is called free if there exists a family ..Bn;j ; bn;j / j
j 2 J.n// of objectsBn;j of C (called models) and elements bn;j 2 Fn.Bn;j / such
that

Fn.f /.bn;j /; j 2 J.n/; f 2 HomC .Bn;j ; X/

is for each object X of C a Z-basis of Fn.X/. A natural transformation 'n W Fn !
Gn from a free functor Fn into another functorGn is then determined by the values
'n.bn;j / and the family of these values can be fixed arbitrarily in order to obtain a
natural transformation. We call F� free if each Fn is free. We callG� acyclic (with
respect to the families of models forF�) if the homology groupsHn.G�.Bn;j // D 0
for n > 0 and each model Bn;j .

(11.5.1) Theorem. Let F� be a free andG� be an acyclic functor. For each natural
transformation x' W H0 ı F0 ! H0 ı G0 there exists a natural transformation
'� W F� ! G� which induces x'. Any two natural transformations ' and  with
this property are naturally chain homotopic ([57]).

Proof. We specify a natural transformation '0 by the condition that '.b0;j / rep-
resents the homology class x'Œb0;j �. Let now 'i W Fi ! Gi be natural transfor-
mations .0 � i < n/ such that dGi 'i D 'i�1dFi for 0 < i < n. Consider the
elements 'n�1dFn bn;j 2 Gn�1.Bn;j /. For n D 1 this element represents 0 in
H0, by the construction of '0. For n > 1 we see from the induction hypothesis
that dGn�1'n�1dFn bn;j D 'n�2dFn�1dFn bn;j D 0. Since G� is acyclic we find
gn;j 2 Gn.Bn;j / such that dGn gn;j D 'n�1dFn bn;j . We specify a natural trans-
formation ' by the conditions '.bn;j / D gn;j . This transformation then satisfies
dGn 'n D 'n�1dFn . This finishes the induction step.

Let now '� and  � be given. Then  0.b0;j / � '0.b0;j / D dG1 c0;j for some
c0;j , since  0.b0;j / and '0.b0;j / represent the same homology class. We define
the transformation s0 W F0 ! G1 by the condition s0.b0;j / D c0;j . Suppose now
that sn W Fn ! GnC1 are given such that dGiC1siCsi�1dFi D  i �'i for 0 � i < n
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(and s�1 D 0). We compute with the induction hypothesis

dGn . n � 'n � sn�1dFn /
D  n�1dFn � 'n�1dFn � . n�1dFn � 'n�1dFn � sn�2dFn�1/dFn D 0:

Thus, by acyclicity, we can choose cn;j 2 GnC1.Bn;j / such that

dGnC1cn;j D . n � 'n � sn�1dFn /.bn;j /:

We now specify a natural transformation sn W Fn ! GnC1 by sn.bn;j / D cn;j . It
then has the required property dGnC1sn D  n � 'n � sn�1dFn . �

Problems

1. Let F0  F1  � � � be a chain complex of free R-modules Fi andD0  D1  � � � an
exact sequence of R-modules. A chain map .' W Fi ! Di j i 2 N0/ induces a homomor-
phism H0.'�/ W H0.F�/ ! H0.D�/. Given a homomorphism ˛ W H0.F�/ ! H0.D0/

there exists up to chain homotopy a unique chain map .'i / such thatH0.'�/ D ˛. This can
be obtained as a special case of (11.5.1).

The reader should now study the notion of a projective module (one definition is: direct
summand of a free module) and then show that a similar result holds if the Fi are only
assumed to be projective.

An exact sequence of the form 0  A  P0  P1  � � � with projective modules
Pi is called a projective resolution of the module A. The result stated at the beginning says
that projective resolutions are unique up to chain equivalence. (Fundamental Lemma of
homological algebra). Each module has a free resolution.

11.6 Chain Equivalences

A chain map which induces an isomorphism of homology groups is under certain
circumstances a chain equivalence. This is one of the results of this section.

The notion of a chain homotopy can be used to develop a homotopy theory of
chain complexes in analogy to the topological homotopy theory.

We have the null complex; the chain groups are zero in each dimension. A
chain complex is called contractible if it is chain equivalent to the null complex, or
equivalently, if the identity is chain homotopic to the null map. A chain complex is
said to be acyclic if its homology groups are zero.

Let f W .K; dK/! .L; dL/ be a chain map. We construct a new chain complex
Cf , the mapping cone of f , by

.Cf /n D Ln ˚Kn�1; dCf .y; x/ D .dLy C f x;�dKx/:
This can also be written in matrix form�

y

x

�
7!
�
dL f

0 �dK
��

y

x

�
:
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The suspension †K of K is defined by .†K/n D Kn�1 and d†K D �dK .
The canonical injection and projection yield an exact sequence of chain complexes
0 ! L ! Cf ! †K ! 0. Associated is an exact sequence (11.3.2), and
the boundary morphism @ W HnC1.†K/ ! Hn.L/ equals Hn.f /, if we use the
canonical identifications HnC1.†K/ Š Hn.K/. The next result shows a typical
difference between the topological and the algebraic homotopy theory.

(11.6.1) Theorem. Let Cf be contractible. Then f is a chain equivalence.

Proof. The inclusion � W L ! Cf , y 7! .y; 0/ is null homotopic, since Cf is
contractible. Let s W � ' 0 be a null homotopy. We write s.y/ D .�.y/; g.y// 2
L˚K (without notation for the dimensions). The condition @sC s@ D � then reads

.@�y C fgy C �@y;�@gy C g@y/ D .y; 0/;
i.e., @g D g@ and @� C �@ D id�fg. Hence g is a chain map, and because of the
� -relation, a right homotopy inverse of f .

The projection � W Cf ! †K is likewise null homotopic. Let t W � ' 0 be a
null homotopy. We write t .y; x/ D h.y/C �.x/. The equality @t C t@ D � then
means

�@hy C h@y � @�x C �@x C hf x D x;
hence @h D h@ and @� C �@ D hf � id. Therefore h is a chain map and a left
homotopy inverse of f . �

(11.6.2) Proposition. Let K be acyclic and suppose that Zn � Kn is always a
direct summand. Then K is contractible.

Proof. We have the exact sequence 0 ! Zn ! Kn
@�! Bn�1 ! 0, and since

K is acyclic we conclude Zn D Bn. Moreover there exists tn�1 W Bn�1 ! Kn
with @tn�1 D id, since Zn is a direct summand of Kn. We therefore have a direct
decomposition Kn D Bn ˚ tn�1Bn�1. We define s W Kn ! KnC1 by sjBn D tn
and snjtn�1Bn�1 D 0. With these definitions one verifies separately on Bn as well
as on tn�1Bn�1 that @sC s@ is the identity, i.e., s is a null homotopy of the identity.

�

(11.6.3)Theorem. Let f W K ! L be a chain map between chain complexes which
consist of free modules over a principal ideal domainR. If f induces isomorphisms
f� W H�.K/ Š H�.L/, then f is a chain equivalence.

Proof. The exact homology sequence and the hypothesis imply that Cf is acyclic.
A submodule of a freeR-module is free. Hence the boundary groups of the complex
Cf are free, and therefore the exact sequence 0! Zn ! Cfn ! Bn�1 ! 0 splits.
Now we apply (11.6.1) and (11.6.2), in order to see that f is a chain equivalence.

�
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In the topological applications we often have to work with large chain complexes.
In some situations it is useful to replace them by smaller chain equivalent complexes.
A graded R-module A D .An/ is said to be of finite type if the modules An are
finitely generated R-modules.

(11.6.4) Proposition. LetR be a principal ideal domain. LetC D .Cn/ be a chain
complex of free R-modules such that its homology groups are finitely generated.
Then there exists a free chain complex D of finite type which is chain equivalent
to C .

Proof. Let Fn be a finitely generated submodule of Zn.C / which is mapped onto
Hn.C / under the quotient map Zn.C / ! Hn.C /, and denote by Gn the kernel
of the epimorphism Fn ! Hn.C /. Define a chain complex D D .Dn; dn/ by
Dn D Fn˚Gn�1 and dn.x; y/ D .y; 0/. ThenD is a free chain complex of finite
type andHn.D/ D Fn=Gn Š Hn.C /. SinceGn is a free submodule ofBn.C /we
can choose for each n a homomorphism 'n W Gn ! CnC1 such that cnC1'n.y/ D y
for each y 2 Gn. Define  n W Dn D Fn ˚ Gn�1 ! Cn, .x; y/ 7! x C 'n�1.y/.
One verifies that  D . n/ is a chain map which induces an isomorphism of
homology groups. By (11.6.3),  is a chain equivalence. �

11.7 Linear Algebra of Chain Complexes

We work in the category R- MOD for a commutative ring R.

11.7.1 Graded modules. Let A� D .An/ and B� D .Bn/ be Z-graded left R-
modules over a commutative ring R. The tensor product A� ˝ B� is the module
with

L
pCqDnAp ˝R Bq as entry in degree n. If f W A� ! A0� and g W B� ! B 0�

are morphisms of some degree, then their tensor product f ˝ g is defined by

.f ˝ g/.a˝ b/ D .�1/jgjjajf .a/˝ g.b/:
Here jaj denotes the degree of a. The formula for the tensor product obeys the
(heuristic) “graded sign rule”: Whenever entities of degreex andy are interchanged,
then the sign .�1/xy appears. The tensor product of objects and of morphisms is
associative and compatible with composition (in the graded sense)

.f ˝ g/ ı .f 0 ˝ g0/ D .�1/jgjjf 0jff 0 ˝ gg0

(sign rule). This composition is associative, as it should be. When we use the degree
as upper index (e.g., in cohomology), then the agreement Ak D A�k is sometimes
suitable. Þ

11.7.2 Graded algebras. A Z-graded R-algebra A� is a Z-graded R-module
.An j n 2 Z/ together with a family of R-linear maps

Ai ˝R Aj ! AiCj ; x ˝ y 7! x � y:
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The algebra is associative, if always x � .y � z/ D .x �y/ � z holds, and commutative,
if always x � y D .�1/jxjjyjy � x holds (sign rule). A unit element 1 2 A0 of the
algebra satisfies 1 � x D x D x � 1. Let M � D .M n/ be a Z-graded R-module. A
family

Ai ˝M j !M iCj ; a˝ x 7! a � x
ofR-linear maps is the structure of anA�-module onM �, provided the associativity
a � .b � x/ D .a � b/ � x holds for a; b 2 A and x 2 M . If A has a unit element,
then the module is unital, provided 1 � x D x always holds. Let A� and B� be Z-
graded algebras. Their tensor productA˝B is the tensor product of the underlying
graded modules .A˝ B/n D L

iCjDnAi ˝ Bj together with the multiplication

.a ˝ b/ � .a0 ˝ b0/ D .�1/jbjja0jaa0 ˝ bb0 (sign rule). If A and B are associative,
thenA˝B is associative. If both have a unit element 1, then 1˝1 is a unit element
for the tensor product. If both algebras are commutative, then their tensor product
is commutative. The tensor product of graded algebras is an associative functor.Þ

11.7.3 Tensor product of chain complexes. Let .A�; dA/ and .B�; dB/ be chain
complexes. Then the graded module A� ˝ B� is a chain complex with boundary
operator d D dA ˝ 1C 1˝ dB . Here we have to take the sign rule into account,
i.e.,

d.a˝ b/ D dAa˝ b C .�1/jaja˝ dBb:
One verifies dd D 0, using this sign rule. Passage to homology induces

Hp.A�/˝Hq.B�/! HpCq.A� ˝ B�/; Œa�˝ Œb� 7! Œa˝ b�:
The tensor product of chain complexes is associative. Þ

11.7.4 Dual chain complex. We regard the ground ringR as a trivial chain complex
with R in degree 0 and zero modules otherwise. Let .An; @/ be a chain complex.
We define the dual graded R-module by A��n D HomR.An; R/. We require a
boundary operator ı W A��n ! A��n�1 on the dual module such that the evaluation
" W A�� ˝ A� ! R

" W A��n ˝ An ! R; ' ˝ a 7! '.a/;

" D 0 otherwise, becomes a chain map. This condition, ".' ˝ a/ D 0 and 11.7.3
yield for ' ˝ a 2 A��n�1 ˝ An

0 D d".' ˝ a/ D ".d.' ˝ a/
D ".ı' ˝ aC .�1/j'j' ˝ @a
D .ı'/.a/C .�1/j'j'.@a/;

i.e., we have to define ı' D .�1/j'jC1' ı @. Þ
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11.7.5 Hom-Complex. For graded modules A� and B� we let Hom.A�; B�/ be
the module with

Q
a2Z Hom.Aa; BaCn/ as component in degree n. On this Hom-

module we use the boundary operator

d.fi / D .@ ı fi / � ..�1/nfi ı @/
for .fi W Ai ! BiCn/ , i.e., the a-component pra.df / 2 Hom.Aa; BaCn�1/ for
f D .fa/ 2 Hom.A�; B�/n is defined to be

pra.df / D @ ı fa � .�1/nga�1 ı @:
One verifies dd D 0. This definition generalizes our convention about the dual
module. Þ

11.7.6 Canonical maps. The following canonical maps from linear algebra are
chain maps.
(1) The composition

Hom.B; C /˝ Hom.A;B/! Hom.A;B/; .fi /˝ .gj / 7! .flCjgj ı gl/:
(2) The adjunction

ˆ W Hom.A˝B;C /! Hom.A;Hom.B; C //; ˆ.fi /.x/.y/ D fjxjCjyj.x˝y/:
(3) The tautological map

� W Hom.C; C 0/˝ Hom.D;D0/! Hom.C ˝D;C 0 ˝D0/

with �.f ˝ g/.x ˝ y/ D .�1/jgjjxjf .x/˝ g.y/ (sign rule).
(4) The trace map 	 W A� ˝ B ! Hom.A;B/, 	.' ˝ b/.a/ D .�1/jajjbj'.a/b. Þ

Problems

1. Tensor product is compatible with chain homotopy. Let s W f ' g W C ! C 0 be a chain
homotopy. Then s ˝ id W f ˝ id ' g ˝ id W C ˝D ! C 0 ˝D is a chain homotopy.
2. A chain complex model of the unit interval is the chain complex I� with two non-zero
groups I1 Š R with basis e, I0 Š R˚ R with basis e0; e1 and boundary operator d.e/ D
e1 � e0 (in the topological context: the cellular chain complex of the unit interval). We use
this model to define chain homotopies with the cylinder I� ˝ C . Note

Cn ˚ Cn ˚ Cn�1 Š .I� ˝ C/n; .x1; x0; y/ 7! e1 ˝ x1 C e0 ˝ x0 C e ˝ y:
A chain map h W I� ˝ C ! D consists, via these isomorphisms, of homomorphisms
ht

n W Cn ! Dn and sn W Cn ! DnC1. The ht
� are chain maps (t D 0; 1) and dsn.y/ D

h1
n.y/� h0

n.y/� sn�1cy, i.e., s� W h1
� ' h0

� is a chain homotopy in our previous definition.
3. Imitate the topological definition of the mapping cone and define the mapping cone of a
chain map f W C ! D as a quotient of I�˝C˚D. The n-th chain group is then canonically
isomorphic to Cn�1 ˚Dn and the resulting boundary operator is the one we defined in the
section on chain equivalences. Consider also the mapping cylinder from this view-point.
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11.8 The Functors Tor and Ext

Let R be a principal ideal ring. We work in the category R- MOD; this comprises
the category of abelian groups (Z-modules). An exact sequence 0! F1 ! F0 !
A ! 0 with free modules F1; F0 is a free resolution of A. Since submodules of
free modules are free, it suffices to require that F0 is free. Let F.A/ denote the
free R-module generated by the set A. Denote the basis element of F.A/ which
belongs to a 2 A by Œa�. We have a surjective homomorphism p W F.A/ ! A,P
naŒa� 7!P

naa. Let K.A/ denote its kernel. The exact sequence

0! K.A/
i! F.A/

p! A! 0

will be called the standard resolution of A. We take the tensor product (over R)
of this sequence with a module G, denote the kernel of i ˝ 1 by TorR.A;G/ D
Tor.A;G/ and call it the torsion product of A;G.

We now derive some elementary properties of torsion products. We show that
Tor.A;G/ can be determined from any free resolution, and we make Tor.�;�/ into
a functor in two variables. In the next lemma we compare free resolutions.

(11.8.1) Lemma. Given a homomorphism f W A! A0 and free resolution F and
F 0 of A and A0, there exists a commutative diagram

0 �� F1
i ��

f1

��

F0
p

��

f0

��
s

��

A ��

f

��

0 F

0 �� F 0
1 i 0

�� F 0
0 p0

�� A0 �� 0 F 0

(without s). If . xf1; xf0/ is another choice of homomorphisms making the diagram
commutative, then there exists a homomorphism s W F0 ! F 0

1 with f0 � f 0
0 D i 0s

and f1 � f 0
1 D si .

Proof. Let .xk/ be a basis of F0. Choose x0
k
2 F 0

0 such that p0.x0
k
/ D fp.xk/.

Define f0 by f0.xk/ D x0
k

. Then fp D p0f0. Since p0f0i D 0, there exists by
exactness of F 0 a unique f1 such that f0i D i 0f1. Sincep0.f0�f 0

0/ D fp�fp D
0, the elements .f0 � f 0

0/.xk/ are contained in the kernel of p0. Hence we have
.f0 � f 0

o/.xk/ D i 0.yk/ for suitable yk . We define s by s.xk/ D yk . From
i 0.f1�f 0

1/ D f0i �f 0
0i D i 0si and the injectivity of i 0 we conclude f1�f 0

1 D si .
�

We take the tensor product˝G of the diagram in (11.8.1). The homomorphism
f1 ˝ 1 induces a homomorphism Ker.i ˝ 1/ ! Ker.i 0 ˝ 1/ and f1 � f 0

1 D si

shows that this homomorphism does not depend on the choice of .f1; f0/. Let us
denote this homomorphism by T .f IF ;F 0/. If g W A0 ! A00 is given and F 00 a
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free resolution of A00, then T .gIF 0;F 00/ ı T .f IF ;F 0/ D T .gf IF ;F 00/. This
implies that an isomorphism f induces an isomorphism T .f IF ;F 0/. In particular
each free resolution yields a unique isomorphism Ker.i ˝ 1/ Š Tor.AIG/, if we
compare F with the standard resolution. The standard resolution is functorial inA.
This fact is used to make Tor.�; G/ into a functor. It is clear that a homomorphism
G ! G0 induces a homomorphisms Tor.A;G/ ! Tor.A;G0/. Hence Tor is also
a functor in the variable G (and the two functor structures commute).

If we view 0! F1 ! F0 ! 0 in (11.8.1) as a chain complex, then .f1; f0/ is
a chain map and s yields a chain homotopy between .f1; f0/ and .f 0

1 ; f
0
0/.

(11.8.2) Proposition. Elementary properties of torsion groups in the category of
abelian groups are:

(1) Let A be a free abelian group. Then Tor.A;G/ D 0.
(2) Tor.Z=n;G/ Š fg 2 G j ng D 0g � G.

(3) If G is torsion free, then Tor.Z=n;G/ D 0.
(4) Tor.Z=m;Z=n/ Š Z=d with d the greatest common divisor of m; n.

(5) Adirect sumdecompositionA Š A1˚A2 induces a direct sumdecomposition
Tor.A;G/ Š Tor.A1; G/˚ Tor.A2; G/.

Proof. (1) 0! 0! A! A! 0 is a free resolution. (2) Use the free resolution

0! Z
n! Z! Z=n! 0. (3) and (4) are consequences of (2). In order to verify

(5), use the direct sum of free resolutions. �

We can also work with a resolution of the other variable. LetQ1� Q0� B

be a free resolution and define Tor0.A;B/ D Ker.A˝Q1 ! A˝Q0/.
(11.8.3) Proposition. There exists a canonical isomorphism

Tor.A;B/ Š Tor0.A;B/:

Proof. Let P1 ! P0 ! A be a free resolution. From the resolutions of A and B
we obtain a commutative diagram:

Tor.A;B/
��

��

P1 ˝Q1 ��

˛

��

P1 ˝Q0 ��

ˇ

��

P1 ˝ B
�

��

P0 ˝Q1 ��

��

P0 ˝Q0 ��

��

P0 ˝ B

��

Tor0.A;B/ �� �� A˝Q1
�� A˝Q0

�� A˝ B .
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The Kernel–Cokernel Lemma (11.2.6) yields an isomorphism ı of Tor.A;B/ D
Ker.�/ with the submodule Tor0.A;B/ of Coker ˛. �

Interchanging the tensor factors yields an isomorphism Tor.B;A/ Š Tor0.A;B/.
We combine this with (11.8.3) and see that the isomorphisms (11.8.2) also hold if
we interchange the variables. It is now no longer necessary to use the notation Tor0.

The functor Ext is defined in analogy to the functor Tor, the tensor product is
replaced by the Hom-functor.

Let R be a principal ideal domain and 0 ! K.A/
i! F.A/

p! A ! 0 the
standard free resolution of A as above. We apply the functor HomR.�; B/ to this
sequence. The cokernel of i� W Hom.F.A/; B/! Hom.K.A/; B/ is defined to be
ExtR.A;B/ D Ext.A;B/. We show that Ext.A;B/ can be determined from any
free resolution. We start with a diagram as in (11.8.1) and obtain a well-defined
homomorphism Coker.Hom.i; B//! Coker.Hom.i 0; B//; in particular we obtain
an isomorphism Ext.A;B/ Š Coker.Hom.i; B//.

(11.8.4) Proposition. Elementary properties of Ext in the category of abelian
groups are:

(1) Ext.A;B/ D 0 for a free abelian group A.

(2) Ext.Z=n;B/ Š B=nB .

(3) Ext.Z=n;B/ D 0 for B D Q;Q=Z;R.

(4) Ext.Z=m;Z=n/ Š Z=.m; n/.

(5) Ext.A1 ˚ A2; B/ Š Ext.A1; B/˚ Ext.A2; B/. �
The foregoing develops what we need in this text. We should at least mention

the general case. Let 0 C  P0  P1  � � � be a projective resolution of the
R-module C and let A be another R-module. We apply Hom.�; A/ to the chain
complexP� and obtain a cochain complex Hom.P�; A/; its i -th cohomology group
(i � 1) is denoted ExtiR.C;A/. Since projective resolutions are unique up to chain
equivalence, the ExtiR-groups are unique up to isomorphism. For principal ideal
domains only Ext1 occurs, since we have resolution of length 1. The notation Ext
has its origin in the notion of extensions of modules. An exact sequence

0! A! Bn�1 ! � � � ! B1 ! B0 ! C ! 0

is called an n-fold extension of A by C . One can obtain ExtnR.C;A/ as certain
congruence classes of n-fold extension of A by C , see [120, Chapter III]. Write
E  E 0 if there exists a commutative diagram

E W 0 �� C ��

D
��

Bn�1 ��

��

� � � ���� B0 ��

��

A

D
��

�� 0

E 0 W 0 �� C 0 �� B 0
n�1 �� � � � ���� B 0

0
�� A �� 0.

The congruence relation is generated by .
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Problems

1. Suppose Tor.A;Z=p/ D 0 for each prime p. Then the abelian group A is torsion free.
2. The kernel of A! A˝Z Q, a 7! a˝ 1 is the torsion subgroup of A.
3. Does there exist a non-trivial abelian group A such that A˝ F D 0 for each field F ?

11.9 Universal Coefficients

We still work in R- MOD for a principal ideal domain R. Let C D .Cn; cn/ be
a chain complex of modules. Then C ˝ G D .Cn ˝ G; cn ˝ 1/ is again a chain
complex.

(11.9.1) Proposition (Universal Coefficients). Let C be a chain complex of free
modules. Then there exists an exact sequence

0! Hq.C /˝G ˛�! Hq.C ˝G/ ˇ�! Tor.Hq�1.C /;G/! 0:

The sequence is natural inC andG and splits. The homomorphism ˛ sends Œz�˝g
for a cycle z to the homology class Œz ˝ g�.

Proof. The sequence 0! Zn ! Cn
cn�! Bn�1 ! 0 is exact;Bn�1 is a submodule

of Cn�1 and hence free. Therefore the sequence splits and the induced sequence

0! Zn ˝G ! Cn ˝G ! Bn�1 ˝G ! 0

is again a split exact sequence. We consider the totality of these sequences as an
exact sequence of chain complexes, theZ- and theB-complex have trivial boundary
operator. Associated to this short exact sequence of chain complexes is a long exact
homology sequence of the form

Bn ˝G i˝1
�� Zn ˝G �� Hn.C ˝G/ �� Bn�1 ˝G i˝1

�� Zn�1 ˝G:
One verifies that the boundary operator (11.3.1) of the homology sequence is i˝1,
where i W Bn � Zn. The sequence Bn ˝G ! Zn ˝G ! Hn ˝G ! 0 is exact,
hence the cokernel of i ˝ 1 is Hn.C /˝G, and the resulting map Hn.C /˝G !
Hn.C ˝ G/ is ˛. The kernel of Bn�1 ˝ G ! Zn�1 ˝ G is Tor.Hn�1.C /;G/,
because 0! Bn�1 ! Zn�1 ! Hn�1.C /! 0 is a free resolution. Let r W Cn !
Zn be a splitting of Zn � Cn. Then

Zn.C ˝G/ � Cn ˝G r˝1�! Zn ˝G ! Hn.C /˝G
mapsBn.C˝G/ to zero and induces � W Hn.C˝G/! Hn.C /˝G with �˛ D id,
i.e., a splitting of the universal coefficient sequence. �
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Let again C D .Cn; cn/ be a chain complex with free R-modules Cn. We
obtain the cochain complex with cochain groups Hom.Cn; G/ and cohomology
groups Hn.C IG/.
(11.9.2) Proposition (Universal Coefficients). There exists an exact sequence

0! Ext.Hn�1.C /;G/! Hn.C IG/ ˛! Hom.Hn.C /;G/! 0:

The map ˛ sends the cohomology class of the cocycle ' W Cn ! G to the homo-
morphismHn.C /! G, Œc� 7! '.c/. The sequence is natural with respect to chain
maps (variable C ) and module homomorphisms (variable G). The sequence splits,
and the splitting is natural in G but not in C .

Proof. Again we start with the split exact sequence 0! Zn ! Cn ! Bn�1 ! 0

and the induced exact sequence

0 Hom.Zn; G/ Hom.Cn; G/ Hom.Bn�1; G/ 0:

We consider the totality of these sequences as an exact sequence of cochain com-
plexes, the Z- and the B-complex have trivial coboundary operator. Associated
to this short exact sequence of cochain complexes is a long exact cohomology
sequence of the form

� � �  Hom.Bn; G/
dn

 � Hom.Zn; G/ Hn.C IG/ Hom.Bn�1; G/ � � �
which induces a short exact sequence

.4/ 0 Ker dn
˛ � Hn.C IG/ Coker dn�1  0:

We need:

(11.9.3) Lemma. The formal coboundary operator dn (without the additional sign
introduced earlier!) is the homomorphism induced by i W Bn ! Zn.

Proof. Let ' W Zn ! G be given. Then dn.'/ is obtained as follows: Extend ' to
Q' W Cn ! G. Apply ı and find a pre-image of ı. Q'/ D Q'cnC1 in Hom.Bn; G/. One
verifies that 'i is a pre-image. �

From the exact sequence 0 ! Bn ! Zn ! Hn.C / ! 0 we obtain the exact
sequence

Hom.Bn; G/
i� � Hom.Zn; G/ Hom.Hn.C /;G/ 0:

We use it to identify the Ker i� with Hom.Hn.C /;G/. One verifies that ˛ is as
claimed in the statement (11.9.2). From the free presentation and the definition
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of Ext we thus obtain the exact sequence of the theorem. The naturality of this
sequence is a consequence of the construction. It remains to verify the splitting.
We choose a splitting r W Cn ! Zn of the inclusion Zn � Cn. Now consider the
diagram

0 �� Zn.Hom.C;G//
	 �� Hom.Cn; G/

ı ��

r�

��

Hom.CnC1; G/

��

0 �� Hom.Hn.C /;G/ �� Hom.Zn; G/
i� �� Hom.Bn; G/.

If ' 2 Ker i�, then r�.'/ D ' ı r 2 Ker ı. The splitting is induced by Ker i� !
Zn.Hom.C;G//, ' 7! 't . �

Without going into the definition of Ext we see from the discussion:

(11.9.4) Proposition. Suppose Hn�1.C / is a free R-module. Then the homomor-
phism ˛ W Hn.C IG/! Hom.Hn.C /;G/ in (11.9.2) is an isomorphism.

Proof. The sequence 0 ! Bn�1 ! Zn�1 ! Hn�1 ! 0 splits and therefore the
cokernel of dn�1 is zero. �

Given a cochain complex C � D .C q; ıq/ we can view it as a chain complex
C� D .Cq; @q/ by a shift of indices: We set Cq D C�q and we define @q W Cq !
Cq�1 as ı�q W C�q ! C�qC1. We can now rewrite (11.9.1):

(11.9.5) Proposition. Let C � be a cochain complex of free R-modules. Then we
have a split exact sequence

0! H q.C �/˝G ! H q.C � ˝G/! Tor.H qC1.C �/; G/! 0: �

Let now C� be a chain complex of free modules. We apply (11.9.5) to the dual
cochain complex with C q D Hom.Cq; R/ and cohomology groups H q.C IR/.
(11.9.6) Proposition. Let C be a free chain complex and G be a module such that
eitherH�.C / is of finite type orG is finitely generated. Then there exists a natural
exact sequence

0! Hp.C /˝G ! H q.C IG/! Tor.H qC1.C /;G/! 0

and this sequence splits.

Proof. If G is finitely generated we have a canonical isomorphism of the form
Hom.C;R/˝ G Š Hom.C;G/; we use this isomorphism in (11.9.5). If H�.C /
is of finite type we replace C by a chain equivalent complex C 0 of finite type (see
(11.6.4)). In that case we have again a canonical isomorphism Hom.C 0; R/˝G Š
Hom.C 0; G/. We apply now (11.9.5) to C 0. �
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(11.9.7) Proposition. Let f W C ! D be a chain map between complexes of free
abelian groups. Suppose that for each field F the map f ˝F induces isomorphisms
of homology groups. Then f is a chain equivalence.

Proof. Let C.f / denote the mapping cone of f . The hypothesis implies that
H�.C.f / ˝ F / D 0. We use the universal coefficient sequence. It implies that
Tor.H�.C.f //;Z=p/ D 0 for each prime p. Hence H�.C.f // is torsion-free.
From H�.C.f // ˝ Q we conclude that H�.C.f // is a torsion group. Hence
H�.C.f // D 0. Now we use (11.6.3). �

11.10 The Künneth Formula

LetC andD be chain complexes ofR-modules over a principal ideal domainR. We
have the tensor product chain complex C ˝RD and the associated homomorphism

˛ W Hi .C /˝R Hj .D/! HiCj .C ˝R D/; Œx�˝ Œy� 7! Œx ˝ y�:

We use the notation 	 for TorR. The next theorem and its proof generalizes the
universal coefficient formula (11.9.1).

(11.10.1) Theorem (Künneth Formula). Suppose C consists of free R-modules.
Then there exists an exact sequence

0! L
iCjDn

Hi .C /˝RHj .D/! Hn.C˝RD/! L
iCjDn�1

Hi .C /	Hj .D/! 0:

If alsoD is a free complex, then the sequence splits.

Proof. We consider the graded modules Z.C/ and B.C/ of cycles and boundaries
as chain complexes with trivial boundary. SinceZ.C/ is free, we have the equalities
(canonical isomorphisms)

.Z.C /˝Z.D//n D Ker.1˝ @ W .Z.C /˝D/n ! .Z.C /˝D/n�1/
and

.Z.C /˝ B.D//n D Im.1˝ @ W .Z.C /˝D/nC1 ! .Z.C /˝D/n/;

and they imply H.Z.C/˝D/ Š Z.C/˝H.D/ (homology commutes with the
tensor product by a free module). In a similar manner we obtain an isomorphism
H.B.C/˝D/ Š B.C/˝H.D/. We form the tensor product of the free resolution
of chain complexes

0! B.C/
i! Z.C/! H.C/! 0
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with H.D/. We obtain the following exact sequence, referred to as .�/, with
injective morphism (1) and surjective morphism (2)

H.C/ 	H.D/ .1/
�� B.C/˝H.D/ i˝1

��

Š
��

Z.C/˝H.D/ .2/
��

Š
��

H.C/˝H.D/

H.B.C /˝D/ .i˝1/��� H.Z.C/˝D/.

Let us use the notation .AŒ�1�/n D An�1 for a graded object A. We tensor the
exact sequence of chain complexes 0 ! Z.C/ ! C ! B.C/Œ�1� ! 0 with D
and obtain an exact sequence

0! Z.C/˝D ! C ˝D ! .B.C /˝D/Œ�1�! 0:

Its exact homology sequence has the form

: : :! H.B.C/˝D/ .1/�! H.Z.C/˝D/! H.C ˝D/
! H.B.C/˝D/Œ�1� .1/�! H.Z.C/˝D/Œ�1�! � � � :

One verifies that (1) is the map .i ˝ 1/�. Hence we obtain the exact sequence

0! Coker.i�/! H.C ˝D/! Ker.i�/Œ�1�! 0

which yields, together with the sequence .�/, the exact sequence of the theorem.
Choose retractions r W Cn ! Zn.C / and s W Dn ! Zn.D/. Then .C ˝D/n !

H.C/ ˝H.D/, c ˝ d 7! Œr.c/� ˝ Œs.d/� sends the boundaries of .C ˝D/n to
zero and induces a retraction � W Hn.C ˝D/! .H.C /˝H.D//n of ˛. �

As in the case of the universal coefficient theorem we can rewrite (11.10.1) in
terms of cochain complexes. Under suitable finiteness conditions we can then apply
the result to the dual complex of a chain complex and obtain:

(11.10.2)Theorem (Künneth Formula). LetC andD be free chain complexes such
thatH�.C / orH�.D/ is of finite type. Then there exists a functorial exact sequence

0! L
iCjDn

H i .C /˝H j .D/! Hn.C ˝D/! L
iCjDnC1

H i .C /	H j .D/! 0

and this sequence splits. �
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Cellular Homology

In this chapter we finally show that ordinary homology theory is determined on
the category of cell complexes by the axioms of Eilenberg and Steenrod. From the
axioms one constructs the cellular chain complex of a CW-complex. This chain
complex depends on the skeletal filtration, and the boundary operators of the chain
complex are determined by the so-called incidence numbers; these are mapping
degrees derived from the attaching maps. The main theorem then says that the
algebraic homology groups of the cellular chain complex are isomorphic to the ho-
mology groups of the homology theory (if it satisfies the dimension axiom). From
this fact one obtains immediately qualitative results and explicit computations of
homology groups. Thus if X has k.n/ n-cells, then Hn.X IZ/ is a subquotient
of the free abelian group of rank k.n/. A finite cell complex has finitely gener-
ated homology groups. We deduce that the combinatorial Euler characteristic is a
homotopy invariant that can be computed from the homology groups.

In the case of a simplicial complex we show that singular homology is isomor-
phic to the classical combinatorial simplicial homology. In this context, simplicial
homology is a special case of cellular homology.

12.1 Cellular Chain Complexes

Let h� be an additive homology theory. Let X be obtained from A by attaching
n-cells via .ˆ; '/ W `e2E .Dn

e ; S
n�1
e / ! .X;A/. The characteristic map of the

cell e is denoted by .ˆe; 'e/. The index e distinguishes different copies.

(12.1.1) Proposition. The induced map

ˆn D hˆe� i W
L
e h�.Dn

e ; S
n�1
e /! h�.X;A/

is an isomorphism.

Proof. By (10.4.6), ˆ� W h�
�`

e.D
n
e ; S

n�1
e /

� ! h�.X;A/ is an isomorphism.
Now apply the additivity isomorphism

L
e h�.Dn

e ; S
n�1
e / Š h�

�`
e.D

n
e ; S

n�1
e

�
and compose it with ˆ�. �

The isomorphism inverse to ˆn is obtained as follows. Given z 2 hk.X;A/.
We use the inclusion pe W .X;A/ � .X;X X e/ and the relative homeomorphism
ˆe W .Dn; Sn�1/ ! .X;X X e/. Let ze 2 hk.Dn

e ; S
n�1
e / denote the image of z

under

z 2 hk.X;A/
pe

��! hk.X;X X e/
ˆe

� � hk.Dn
e ; S

n�1
e / 3 ze:



12.1. Cellular Chain Complexes 301

Then z 7! .ze j e 2 E/ is inverse to ˆn.
Let X be a CW-complex. The boundary operator @ W hkC1.XnC1; Xn/ !

hk.X
n; Xn�1/ of the triple .XnC1; Xn; Xn�1/ is transformed via the isomorphisms

(12.1.1) into a matrix of linear maps

m.e; f / W hkC1.DnC1
f

; Snf /! hk.D
n
e ; S

n�1
e /

for each pair .f; e/ of an .nC1/-cell f and an n-cell e (as always in linear algebra).
Let �e;f be the composition

Snf
'f

�! Xn
qe

�! Xn=.Xn X e/ ˆe

 � Dn=Sn�1:

If we compose �e;f with an h-equivalence �n W Dn=Sn�1 ! Sn, then �n�e;f has
as a self-map of Sn a degree d.e; f /. We call d.e; f / the incidence number of the
pair .f; e/ of cells. The case n D 0 is special, so let us consider it separately. Note
that D0=S�1 is the point D0 D f0g together with a disjoint base point f	g. Let �0

be given by �0.0/ D C1 and �0.	/ D �1. We have two 0-cells 'f .˙1/ D e˙
(they could coincide). With these conventions d.f; e˙/ D ˙1.

In the following considerations we use different notation @, @0, @00 for the bound-
ary operators.

(12.1.2) Proposition. The diagram

hkC1.DnC1
f

; Sn
f
/

m.e;f /
��

@00

��

hk.D
n
e ; S

n�1
e /

p�

��Qhk.Snf /
�
e;f
� �� Qhk.Dn

e =S
n�1
e /

is commutative.

Proof. Consider the diagram

hkC1.XnC1; Xn/ @0
�� Qhk.Xn/

j
�� hk.X

n; Xn�1/
pe

�
��

p� �� Qhk.Xn=Xn�1/

��

hkC1.DnC1; Sn/
ˆ

f
�

��

@00
�� Qhk.Sn/

'
f
�

��

hk.X
n; Xn X e/ p� �� Qhk.Xn=Xn X e/

hk.D
n; Sn�1/

ˆe
�

��

p� �� Qhk.Dn=Sn�1/:

ˆe
�

��

Given x 2 hkC1.DnC1; Sn/. Then p�m.e; f /x is, by definition of m.e; f /, the
image of x in Qhk.Dn=Sn�1/. Now use the commutativity of the diagram. �
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(12.1.3) Corollary. Let � W hk.Dn; Sn�1/ ! hkC1.DnC1; Sn/ be a suspension
isomorphism. Then m.e; f / ı � is the multiplication by d.e; f /, provided the
relation @00 ı � D �n� ı p� holds. �

We now write the isomorphism (12.1.1) in a different form. We use an it-
erated suspension isomorphism �n W hk�n ! hk.D

n; Sn�1/ in each summand.
Let Cn.X/ denote the free abelian group on the n-cells of .X;A/. Elements in
Cn.X/˝Z hk�n will be written as finite formal sums

P
e e˝ue where ue 2 hk�n;

the elements in Cn.X/ ˝ hk�n are called cellular n-chains with coefficients in
hk�n. We thus have constructed an isomorphism

�n W Cn.X/˝Z hk�n ! hk.X;A/;
P
e e ˝ ue 7!

P
e ˆ

e��n.ue/:

The matrix of incidence numbers provides us with the Z-linear map

M.n/ W CnC1.X/! Cn.X/; f 7!P
e d.e; f /e:

The sum is finite: d.e; f / can only be non-zero if the image of 'f intersects e
(property (W3) of a Whitehead complex). From the preceding discussion we obtain:

(12.1.4) Proposition. Suppose � and � are chosen such that the relation (12.1.3)
holds. Then the diagram

hkC1.XnC1; Xn/ @ �� hk.X
n; Xn�1/

CnC1.X/˝ hk�n

�nC1

��

M.n/˝id
�� Cn.X/˝ hk�n

�n

��

is commutative. �

The composition of the boundary operators (belonging to the appropriate triples)

hmC1.XnC1; Xn/ @�! hm.X
n; Xn�1/ @�! hm�1.Xn�1; Xn�2/

is zero, because the part hm.Xn/ ! hm.X
n; Xn�1/ ! hm�1.Xn�1/ of the ex-

act sequence of the pair .Xn; Xn�1/ is “contained” in this composition. We set
hn;k.X/ D hnCk.Xn; Xn�1/. Thus the groups .hn;k.X/ j n 2 Z/ together with
the boundary operators just considered form a chain complex h�;k.X/.

(12.1.5) Proposition. The product M.n � 1/M.n/ of two adjacent incidence ma-
trices is zero. The cellular chain groups Cn.X/ together with the homomorphisms
M.n/ W C.n/ ! C.n � 1/ form a chain complex C�.X/. This chain complex is
called the cellular chain complex of X .

Proof. The relationM.n� 1/M.n/ D 0 follows from (12.1.4) applied to the chain
complex H�;0.X/ obtained from singular homology with coefficients in Z. �
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The cellular chain complex has its algebraically defined homology groups. In the
next section we prove that in the case of an ordinary homology theory the algebraic
homology groups of the cellular chain complex are naturally isomorphic to the
homology groups of the theory. We should point out that the algebraic homology
groups of the chain complexesh�;k.X/ only depend on the space and the coefficients
of the homology theory, so are essentially independent of the theory. Nevertheless,
they can be used to obtain further information about general homology theories –
this is the topic of the so-called spectral sequences [130].

The definition of incidence numbers uses characteristic maps and a homotopy
equivalence �. These data are not part of the structure of a CW-complex so that
the incidence numbers are not completely determined by the CW-complex. The
choice of a characteristic map determines, as one says, an orientation of the cell. If
ˆ;‰ W .Dn; Sn�1/! .Xn; Xn�1/ are two characteristic maps of a cell e, then

‰�1ˆ W Dn=Sn�1 ! Xn=Xn X e  Dn=Sn�1

is a homeomorphism and hence has degree ˙1. One concludes that the incidence
numbers are defined up to sign by the CW-complex.

(12.1.6) Proposition. A cellular map f W X ! Y induces a chain map with com-
ponents f� W hm.Xn; Xn�1/ ! hm.Y

n; Y n�1/. Homotopic cellular maps induce
chain homotopic maps.

Proof. The first assertion is clear. Let f; g W X ! Y be cellular maps and let
' W X�I ! Y; f ' g be a homotopy between them. By the cellular approximation
theorem we can assume that ' is cellular, i.e., '..X � I /n/ � Y n. Note that
.X � I /n D Xn�@I [Xn�1� I . We define a chain homotopy as the composition

sn W hm.Xn; Xn�1/ ��! hmC1..Xn; Xn�1/ � .I; @I // '��! hmC1.Y nC1; Y n/:

In order to verify the relation @sn D g� � f� � sn�1@ we apply (10.9.4) to
.A;B; C / D .Xn; Xn�1; Xn�2/ and compose with '�. �

(12.1.7) Proposition. Let � W k�.�/ ! l�.�/ be a natural transformation be-
tween additive homology theories such that � induces isomorphisms of the coeffi-
cient groups � W kn.P / Š ln.P /, n 2 Z, P a point. Then � is an isomorphism
k�.X/! l�.X/ for each CW-complex X .

Proof. Since � is compatible with the suspension isomorphism we see from (12.1.1)
that � W k�.Xn; Xn�1/ Š l�.Xn; Xn�1/. Now one uses the exact homology se-
quences and the Five Lemma to prove by induction on n that � is an isomorphism
for n-dimensional complexes. For the general case one uses (10.8.1). �
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Problems

1. The map x 7! .2
p
1 � kxk2x; 2kxk2 � 1/ induces a homeomorphism �n. Let � be the

suspension isomorphism (10.2.5). Then commutativity holds in (12.1.3). For the proof show

that Sn ! Sn=Dn
C Š Dn

�=S
n�1

r�! Dn=Sn�1
�n

�! Sn, with the projection r which
deletes the last coordinate, has degree 1.
2. Prove M.n � 1/M.n/ D 0 without using homology by homotopy theoretic methods.

12.2 Cellular Homology equals Homology

LetH�.�/ D H�.�IG/ be an ordinary additive homology theory with coefficients
in G (not necessarily singular homology). The cellular chain complex C�.X/ D
C�.X IG/ of a CW-complex X with respect to this theory has its algebraically
defined homology groups. It is a remarkable and important fact that these algebraic
homology groups are naturally isomorphic to the homology groups of the spaceX .
This result says that the homology groups are computable from the combinatorial
data (the incidence matrices) of the cellular complex.

(12.2.1) Theorem. The n-th homology group of the cellular chain complex C�.X/
is naturally isomorphic toHn.X/.

Proof. We show that the isomorphism is induced by the correspondence

Hn.X
n; Xn�1/ Hn.X

n/! Hn.X/:

We divide the proof into several steps.
(1) A basic input is Hk.Xn; Xn�1/ D 0 for k 6D 0; this follows from our

determination of the cellular chain groups in (12.1.1) and the dimension axiom.
(2) Hk.Xn/ D 0 for k > n. Proof by induction on n. The result is clear

for X0 by the dimension axiom. Let k > n C 1. We have the exact sequence
Hk.X

n/ ! Hk.X
nC1/ ! Hk.X

nC1; Xn/. The first group is zero by induction,
the third by (1).

(3) Since Hn�1.Xn�2/ D 0, the map Hn�1.Xn�1/ ! Hn�1.Xn�1; Xn�2/ is
injective. Hence the cycle group Zn of the cellular chain complex is the kernel of
@ W Hn.Xn; Xn�1/! Hn�1.Xn�1/.

(4) The exact sequence 0 ! Hn.X
n/ ! Hn.X

n; Xn�1/ ! Hn�1.Xn�1/
induces an isomorphism .b/ W Hn.Xn/ Š Zn.

(5) Hk.X;Xn/ D 0 for k � n. One shows by induction on t that the groups
Hk.X

nCt ; Xn/ are zero for t � 0 and k � n. We know that for an additive theory
the canonical map colimt Hk.X

nCt ; Xn/! Hk.X;X
n/ is an isomorphism (see

(10.8.1) and (10.8.4)). For singular homology one can also use that a singular
chain has compact support and that a compact subset of X is contained in some
skeleton Xm.
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(6) The map Hn.XnC1/ ! Hn.X/ is an isomorphism. This follows from the
exact sequence of the pair .X;XnC1/ and (5).

(7) The diagram

HnC1.XnC1; Xn/ @ �� Zn �� Zn=Bn �� 0

HnC1.XnC1; Xn/ @ ��

D

��

Hn.X
n/

��

��

Š.b/

��

Hn.X
nC1/ ��

Š
++''
''
''
''
''
''

.a/ Š

��(
(
(
(

0

Hn.X/

shows us that we have an induced isomorphism .a/ (Five Lemma). �

(12.2.2) Corollary. Suppose X has a finite number of n-cells; thenHn.X IZ/ is a
finitely generated abelian group. LetX be n-dimensional; thenHk.X IG/ D 0 for
k > n. �

(12.2.3) Example (Real projective space). The diagram

S i�1 ��

��

RP i�1

��

Di
ˆ �� RP i

with attaching mapˆ W x 7! Œx;
p
1 � kxk2� is a pushout. The incidence map with

the homomorphism �i�1 of Problem 1 in the previous section is computed to be
S i�1 ! S i�1, .y; t/ 7! .2ty; 2t2�1/ of degree 1C.�1/i . This yields the cellular
chain complex

C0
0 C1

2 C2
0 � � �

withCi D Z for 0 � i � n and boundary operator, alternatively, the zero morphism
and the multiplication by 2. The cellular chain complex with coefficients in the
abelian groupG is of the same type (using the canonical identification Z˝G Š G).
Let 2G D fg 2 G j 2g D 0g. We obtain the cellular homology

Hj .RP
nIG/ Š

„
G; j D 0;
G=2G; 0 < j D 2k � 1 < n;
2G; 0 < j D 2k � n;
G n D 2k � 1:

Similarly for RP1. Þ
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(12.2.4) Example. The sphere Sn has a CW-decomposition with two i -cells in
each dimension i , 0 � i � n. The attaching diagram is

Sn�1 C Sn�1 ��

��

Sn�1

��

Dn CDn
hˆ�;ˆC i

�� Sn

with ˆC.x/ D .x;
p
1 � kxk2/ and ˆ�.x/ D �ˆC.x/. This attaching map

is G-equivariant, if the cyclic group G D f1; t j t2 D 1g acts on the spheres
by the antipodal map and on the left column by permutation of the summands.
The equivariant chain groups are therefore isomorphic to the group ring ZG D
Z � 1 ˚ Z � t . In order to determine the equivariant boundary operator we use
the fact that we know already the homology of this chain complex. If we add the
homology groups in dimension 0 and n we obtain an exact sequence

0! Z."n/
�! ZG ! ZG ! � � � ! ZG

"! Z! 0:

The map " sends 1; t to 1. The kernel is generated by 1 � t . From the geometry
we see that the first boundary operator sends the generator 1 2 C1 represented by
a suitably oriented 1-cell to ˙.1 � t /. We orient the cell such that the plus-sign
holds. Then d1 is the multiplication by 1� t . The kernel of d1 is thus generated by
1C t . We can again orient the 2-cells such that d2 is multiplication by 1C t . If we
continue in this manner, we see that dk D 1�t for k odd, and dk D 1Ct for k even.
The homology module Hn.Sn/ D Z."n/ carries the t -action "n D .�1/nC1, the
degree of the antipodal map. One can, of course, determine the boundary operator
by a computation of degrees. We leave this as an exercise. Similar results hold
for S1. Þ

Let X and Y be CW-complexes. The product inherits a cell decomposition.
The cross product induces an isomorphismL

kClDnHk.Xk; Xk�1/˝Hl.Y l ; Y l�1/! Hn..X � Y /n; .X � Y /n�1/:

With a careful choice of cell orientations these isomorphisms combine to an iso-
morphism C�.X/˝ C�.Y / Š C�.X � Y / of cellular chain complexes.

12.3 Simplicial Complexes

We describe the classical combinatorial definition of homology groups of polyhe-
dra. These groups are isomorphic to the singular groups for this class of spaces.
The combinatorial homology groups of a finite polyhedron are finitely generated
abelian groups and they are zero above the dimension of the polyhedron. This finite
generation is not at all clear from the definition of the singular groups.
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Recall that a simplicial complexK D .E; S/ consists of a setE of vertices and
a set S of finite subsets ofE. A set s 2 S with qC1 elements is called a q-simplex
of K. We require the following axioms:

(1) A one-point subset of E is a simplex in S .
(2) s 2 S and ; 6D t � s imply t 2 S .

An ordering of a p-simplex is a bijection f0; 1; : : : ; pg ! s. An ordering of K
is a partial order on E which induces a total ordering on each simplex. We write
s D hv0; : : : ; vp i, if the vertices of s satisfy v0 < v1 < � � � < vp in the given partial
ordering. LetCp.K/ denote the free abelian group with basis the set ofp-simplices.
Its elements are called the simplicial p-chains ofK. Now fix an ordering ofK and
define a boundary operator

@ W Cp.K/! Cp�1.K/; hv0; : : : ; vp i 7!Pp
iD0.�1/i hv0; : : : ; bvi ; : : : ; vp i:

The symbol bvi means that this vi is to be omitted from the string of vertices.
The boundary relation @@ holds (we set Cp.K/ D 0 for p � �1). We denote
the p-th homology group of this chain complex by Hp.K/. This is the classical
combinatorial homology group.

A simplicial complex K has a geometric realization jKj. An ordered simplex
s D hv0; : : : ; vp i has an associated singular simplex

ˆs W 
p ! jKj; .t0; : : : ; tp/ 7!P
tj vj :

We extend s 7! ˆs by linearity to a homomorphism �p W Cp.K/! Sp.jKj/. The
boundary operators are arranged so that � D .�p/ is a chain map.

(12.3.1) Theorem. � induces isomorphisms Rp W Hp.K/ Š Hp.jKj/.
Proof. We write X D jKj. Let S.p/ be the set of p-simplices. The characteristic
maps ˆs W .
p; @
p/! .Xp; Xp�1/ yield an isomorphism (12.1.1),

ˆp W Ls2S.p/Hp.

p
s ; @


p
s /! Hp.X

p; Xp�1/:

The identity of 
p represents a generator �p of Hp.
p; @
p/. Let xs be its image
under ˆs�. Then .xs j s 2 S.p// is a Z-basis of Hs.Xp; Xp�1/. If we express
x 2 Hp.Xp; Xp�1/ in terms of this basis, x DPs nsxs , then ns is determined by
the image ns�p of x under

x 2 Hp.Xp; Xp�1/! Hp.X
p; Xp X es/

ˆs
� � Hp.
p; @
p/ 3 ns�p:

Here es is the open simplex which belongs to s. Let s.i/ denote the i -th face of

p and xs.i/ 2 Hp�1.Xp�1; Xp�2/ the corresponding basis element. We claim
@xs DPp

iD0.�1/ixs.i/. It is clear for geometric reasons that the expression of @xs
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in terms of the basis .xt j t 2 S.p � 1// can have a non-zero coefficient only for
the xs.i/. The coefficient of xs.i/ is seen from the commutative diagram

Hp.

p; @
p/

ˆs
� ��

@

��

Hp.X
p; Xp�1/

@

��

Hp�1.@
p; @
p X s.i/ı/ ˆs
� �� Hp�1.Xp�1; Xp�2/

��

Hp�1.
p�1; @
p�1/

.d
p

i
/�

��

ˆs.i/
�� Hp�1.Xp�1; Xp�1 X es.i//:

Note ˆsdpi D ˆs.i/. The left column sends �p to .�1/i �p�1. We have con-
structed so far an isomorphism of C�.K/ with the cellular chain complex C�.jKj/
of jKj. Let Pp W Hp.C�.K// ! Hp.C�.jKj// be the induced isomorphism. Let
Qp W Hp.C�.jKj//! Hp.jKj/ be the isomorphism in the proof of (12.2.1). Trac-
ing through the definitions one verifiesRp D QpPp . HenceRp is the composition
of two isomorphisms. �

An interesting consequence of (12.3.1) is that � W C�.K/! S�.jKj/ is a chain
equivalence. Thus, for a finite complex K, the singular complex of jKj is chain
equivalent to a chain complex of finitely generated free abelian groups, zero above
the dimension of K.

(12.3.2) Example. A circle S1 can be triangulated by a regular n-gon with ver-
tices fe0; : : : ; en�1g and ordered simplices si D hei ; eiC1 i, 0 � i � n � 1 and
mod n notation en D e0. The cellular chain complex is given by @hei ; eiC1 i D
hei i � heiC1 i. The sum z D Pn�1

iD0 si is a 1-cycle. Let � W Z ! C1.K/, 1 7! z

and " W C0.K/! Z, ej 7! 1. Then the sequence

0! Z
��! C1.K/

@�! C0.K/
"�! Z! 0

is exact. Hence � induces an isomorphism H1.C / Š Z. Þ

Problems

1. LetK be the tetrahedral simplicial complex; it consists ofE D f0; 1; 2; 3g, and all subsets
are simplices. Verify Hi .K/ D 0 for n > 0. Generalize to an n-simplex.

12.4 The Euler Characteristic

Let X be a finite CW -complex and fi .X/ the number of its i -cells. The combina-
torial Euler characteristic of X is the alternating sum

�.X/ DPi�0.�1/ifi .X/:
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The fundamental and surprising property of this number is its topological invariance,
in fact its homotopy invariance – it does not depend on the cellular decomposition
of the space. The origin is the famous result of Euler which says that in the case
X D S2 the value �.X/ always equals 2 ([61], [62], [64]).

We prepare the investigation of the Euler characteristic by an algebraic result
about chain complexes. Let M be a category of R-modules. An additive invariant
for M with values in the abelian groupA assigns to each moduleM in M an element
	.M/ 2 A such that for each exact sequence 0 ! M0 ! M1 ! M2 ! 0 in M

the additivity

.1/ 	.M0/ � 	.M1/C 	.M2/ D 0
holds. For the zero-module M we have 	.M/ D 0 since there exists an exact
sequence 0 ! M ! M ! M ! 0. We consider only categories which contain
with a module also its submodules and its quotient modules as well as all exact
sequences between its objects. Let

C� W 0 �! Ck
@k�! Ck�1 ! � � � ! C1

@1�! C0
@0�! 0

be a chain complex in this category. Then its homology groups Hi .C�/ are also
contained in this category.

(12.4.1) Proposition. Let 	 be an additive invariant for M. Then for each chain
complex C� in M as above the following equality holds:Pk

iD0.�1/i	.Ci / D
Pk
iD0.�1/i	.Hi .C�//:

Proof. Induction on the length k of C�. We set Hi D Hi .C�/, Bi D Im @iC1,
Zi D Ker @i . For k D 1 there exist, by definition of homology groups, exact
sequences

0! B0 ! C0 ! H0 ! 0; 0! H1 ! C1 ! B0 ! 0:

We apply the additivity (1) to both sequences and thereby obtain 	.H0/�	.H1/ D
	.C0/ � 	.C1/. For the induction step we consider the sequences

C 0� W 0! Ck�1 ! � � � ! C0 ! 0;

0! Hk ! Ck ! Bk�1 ! 0; 0! Bk�1 ! Zk�1 ! Hk�1 ! 0I
the last two are exact and the first one is a chain complex. The homology groups
of the chain complex are, for k � 2,

Hi .C
0�/ D Hi .C�/; 0 � i � k � 2; Hk�1.C 0�/ D Zk�1:

We apply the induction hypothesis to C 0� and (1) to the other sequences. We obtain
the desired result by eliminating 	.Bk�1/ and 	.Zk�1/. �



310 Chapter 12. Cellular Homology

The relation of the combinatorial Euler characteristic to homology groups
goes back to Henri Poincaré [150], [152]. The i -th Betti number, named after
Enrico Betti [20], bi .X/ of X is the rank of Hi .X IZ/, i.e., the cardinality of a
basis of its free abelian part, or equivalently, the dimension of the Q-vector space
Hi .X IZ/˝Q Š Hi .X IQ/. The result of Poincaré says:

(12.4.2) Theorem. For each finite CW-complex X the combinatorial Euler char-
acteristic equals the homological Euler characteristic

P
i�0.�1/ibi .X/.

Proof. For finitely generated abelian groups A 7! rankA is an additive invari-
ant. We apply (12.4.1) to the cellular chain complex C.X/ of X and observe that
rankCi .X/ D fi .X/. �

If 	 is an additive invariant for M and C� a chain complex of finite length in
M, then we call �.C�/ D P

i�0.�1/i	.Ci / D
P
i�0.�1/i	.Hi .C�// the Euler

characteristic of C� with respect to 	.

(12.4.3) Proposition. Let

0 H 0
0  H0  H 00

0  H 0
1  H1  H 00

1  H 0
2  H2  � � �

be an exact sequence of modules in M which consists eventually of zero-modules.
Let �.H�/ DPi�0.�1/i	.Hi / and similarly forH 0 andH 00. Then

�.H 0�/ � �.H�/C �.H 00� / D 0:
Proof. Apply (12.4.1) to the given exact sequence, considered as chain complex,
and order the terms according to H , H 0, and H 00. �

One can define the Euler characteristic by homological methods for spaces which
are not necessarily finite CW-complexes. There are several possibilities depending
on the homology theory being used.

LetR be a principal ideal domain. We call .X;A/ of finiteR-type if the groups
Hi .X;AIR/ are finitely generated R-modules and only finitely many of them are
non-zero. In that case we have the associated homological Euler characteristic

�.X;AIR/ DPi�0.�1/i rankRHi .X;AIR/:
(12.4.4) Proposition. If .X;A/ is of finite Z-type, then it is of finiteR-type and the
equality �.X;AIZ/ D �.X;AIR/ holds.

Proof. If .X;A/ is of finite Z-type, then the singular complex S�.X;A/ is chain
equivalent to a chain complex D� of finitely generated free abelian groups with
only finitely many of the Dn non-zero (see (11.6.4)). Therefore

�.X;AIR/ DPi .�1/i rankRHi .D� ˝R/ DPi .�1/i rankR.Di ˝R/
DPi .�1/i rankZ.Di / D �.X;AIZ/;

by (12.4.1), and some elementary algebra. �
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Proposition (12.4.3) has the following consequence. Suppose two of the spaces
A,X , .X;A/ are of finiteR-type. Then the third is of finiteR-type and the additivity
relation

�.AIR/C �.X;AIR/ D �.X IR/
holds. Let A0; A1 be subspaces of X with MV-sequence, then

�.A0IR/C �.A1IR/ D �.A0 [ A1IR/C �.A0 \ A1IR/
provided the spaces involved are of finiteR-type. Similarly in the relative case. Let
.X;A/ and .Y; B/ be of finite R-type. Then the Künneth formula is used to show
that the product is of finite R-type and the product formula

�.X;AIR/ � �.Y;BIR/ D �..X;A/ � .Y; B/IR/
holds. These relations should be clear for finite CW-complex and the combinatorial
Euler characteristic by counting cells.

For the more general case of Lefschetz invariants and fixed point indices see
[51], [52], [109], [116].

12.5 Euler Characteristic of Surfaces

We report about the classical classification of surfaces and relate this to the Euler
characteristic. For details of the combinatorial or differentiable classification see
e.g., [167], [80], [123]. See also the chapter about manifolds.

Let F1 and F2 be connected surfaces. The connected sum F1#F2 of these
surfaces is obtained as follows. Let Dj � Fj be homeomorphic to the disk D2

with boundary Sj . In the topological sum F1 XDı
1 CF2 XDı

2 we identify x 2 S1
with '.x/ 2 S2 via a homeomorphism ' W S1 ! S2. The additivity of the Euler
characteristic is used to show

�.F1/ � 1C �.F2/ � 1 D �.F1#F2/;

i.e., the assignment F 7! �.F / � 2 is additive with respect to the connected sum.
Let mF denote the m-fold connected sum of F with itself. We have the standard
surfaces sphere S2, torus T , and projective plane P . The Euler characteristics are

�.S2/ D 2; �.mT / D 2 � 2m; �.nP / D 2 � n:
If F is a compact surface with k boundary components, then we can attach k disks
D2 along the components in order to obtain a closed surface F �. By additivity
�.F �/ D �.F / C k. Connected surfaces Fj with the same number of bound-
ary components are homeomorphic if and only if the associated surfaces F �

j are
homeomorphic.
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(12.5.1) Theorem. A closed connected surface is homeomorphic to exactly one of
the surfaces S2, mT with m � 1, nP with n � 1. The nP are the non-orientable
surfaces.

The homeomorphism type of a closed orientable surface is determined by the
orientation behaviour and the Euler characteristic. The homeomorphism type of
a compact connected surface with boundary is determined by the orientation be-
haviour, the Euler characteristic and the number of boundary components.

The sphere has genus 0, mT has genus m and nP has genus n. �

12.5.2 Platonic solids. A convex polyhedron is called regular if each vertex is the
end point of the same number of edges, say m, and each 2-dimensional face has
the same number of boundary edges, say n. If E is the number of vertices, K the
number of edges and F the number of 2-faces, thenmE D 2K and nF D 2K. We
insert this into the Euler relation E C F D K C 2, divide by 2K, and obtain

1

m
C 1

n
D 1

K
C 1

2
:

We have m � 3, n � 3. The equation has only the solutions which are displayed
in the next table.

m n K solid E F

3 3 6 tetrahedron 4 4

4 3 12 octahedron 6 8

3 4 12 cube 8 6

3 5 30 dodecahedron 20 12

5 3 30 icosahedron 12 20

12.5.3 Lines in the projective plane. Let G1; : : : ; Gn be lines in the projective
plane P . We consider the resulting cells decomposition of P . Let tr be the number
of points which are incident with r lines. We have the Euler characteristic relation
f0 � f1 C f2 D 1 where fi is the number of i -cells. Thus f0 D t2 C t3 C � � � .
From an r-fold intersection point there start 2r edges. The sum over the vertices
yields f1 D 2t2 C 3t3 C 4t4 C � � � . Let pn denote the numbers of n-gons, then
f2 DPps; 2f1 DP sps . We insert these relations into the Euler characteristic
relation and obtainP

r�2.3 � r/tr C
P
s�2.3 � s/ps D 3f0 � f1 C 3f2 � 2f1 D 3:

We now assume that not all lines are incident with a single point; then we do not
have 2-gons. From 2f1 � 3f2 and then f1 � 3.f0 � 1/ we conclude

t2 � 3CPr�4.r � 3/tr :
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Thus there always exist at least three double points. Þ

(12.5.4) Proposition. Let X be a Hausdorff space and p W X ! Y a local homeo-
morphism onto a connected space. Then p is a covering with finitely many leaves
if and only if p is proper.

Proof. (1) Suppose p is proper. For n 2 N let Yn D fy 2 Y j n � jp�1.y/jg. We
show that Yn is open and closed. Since Y is connected, either Yn D ; or Yn D Y .
The inclusion Yn 
 YnC1 shows that there is a largest n such that Yn D Y and
YnC1 D ;. Hence the fibres have the cardinality n.

Let p�1.y/ D fx1; : : : ; xmg. Since X is a Hausdorff space and p a local
homeomorphism, there exist open pairwise disjoint sets Ui 3 xi which are mapped
homeomorphically under p onto the same open set V 3 y. Hence each fibre
p�1.z/, z 2 V has at least cardinality n. If y 2 Yn, thenm � n and hence z 2 Yn,
i.e., V � Yn. This shows that Yn is open.

Let p�1.y/ D fx1; : : : xtg, t < n, i.e., y 62 Yn. Let again the Ui 3 xi be open
with homeomorphic image V 2 Y . Since p is closed, being a proper map, the set
C D .X X .U1 [ � � � [ Ut // is closed in Y . This set does not contain y. Hence
Y X C D W is an open neighbourhood of y and

p�1.W / D p�1.Y / X p�1p.X X .U1 [ � � � [ Ut // � U1 [ � � � [ Ut :

This shows jp�1.z/j � t for each z 2 W , and the complement of Yn is seen to be
open.

We now know that all fibres of p have the same cardinality, and since p is a
local homeomorphism it must be a covering.

(2) Suppose conversely that p is an n-fold covering. We have to show that p is
closed. A projection pr W B �F ! B with a finite discrete set F as fibre is closed.
Now we use (1.5.4). �

A continuous map p W X ! Y between surfaces is called a ramified covering if
for each x 2 X there exist centered charts .U; '; U 0/ about x and .V;  ; V 0/ about
y D p.x/ with p.U / � V such that

 '�1 W '.U / D U 0 ! C; z 7! zn

with n 2 N. We call n� 1 the ramification index of p at x. In the case that n D 1
we say that p is unramified at x and for n > 1 we call x a ramification point.

(12.5.5) Proposition. Let p W X ! Y be a ramified covering between compact
connected surfaces. Let V be the image under p of the ramification points. Then
p W X X p�1.p/! Y X V is a covering with finitely many leaves.
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Proof. For each y 2 Y the set p�1.y/ � X is closed and hence compact. The
pre-images p�1.y/ in a ramified covering are always discrete, hence finite. The
set V is also discrete and hence finite. The map p is, as a continuous map between
compact Hausdorff spaces, closed. Thus we have shown that the map in question
is proper. Now we use (12.5.4). �

(12.5.6) Proposition (Riemann–Hurwitz). Let p W X ! Y be a ramified covering
between compact connected surfaces. Let P1; : : : ; Pr 2 X be the ramification
points with ramification index v.Pj /. Let n be the cardinality of the general fibre.
Then for the Euler characteristics the relation

�.X/ D n�.Y / �Pr
jD1 v.Pj /

holds.

Proof. Let Q1; : : : ;Qs be the images of the ramification points. Choose pairwise
disjoint neighbourhoods D1; : : : ;Ds � Y where Dj is homeomorphic to a disk.
Then

p W X0 D X XSs
jD1 p�1.Dı

j /! Y XSjD1Dı
j D Y0

is an n-fold covering (see (12.5.4)). We use the relation �.X0/ D n�.Y0/ for n-fold
coverings. If C is a finite set in a surface X , then �.X X C/ D �.X/ � jC j. Thus
we see

�.X/ �Ps
jD1 jp�1.Qj /j D n.�.Y / � s/:

Moreover
ns �Ps

jD1 jp�1.Qj /j DPr
iD1 v.Pi /;

since for p�1.Qj / D fP j1 ; : : : ; P jn.j /g the relation
Pn.j /
tD1 .v.P

j
t /C 1/ D n holds.

�

An interesting application of the Riemann–Hurwitz formula concerns actions
of finite groups on surfaces. Let F be a compact connected orientable surface and
G �F ! F an effective orientation preserving action. We assume that this action
has the following properties:

(1) The isotropy group Gx of each point x 2 F is cyclic.
(2) There exist about each point x a centered chart ' W U ! R2 such that U

is Gx-invariant and ' transforms the Gx-action on U into a representation
on R2, i.e., a suitable generator of Gx acts on R2 as rotation about an angle
2�=jGxj.

In this case the orbit map p W F ! F=G is a ramified covering, F=G is orientable,
and the ramification points are the points with non-trivial isotropy group. One can
show that each orientation preserving action has the properties (1) and (2). Examples
are actions of a finite group G � SO.3/ on S2 by matrix multiplication and of a
finite group G � GL2.Z/ on the torus T D R2=Z2 by matrix multiplication.
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The ramified coverings which arise as orbit maps from an action are of a more
special type. If x 2 F is a ramification point, then so is each point in p�1px, and
these points have the same ramification index, since points in the same orbit have
conjugate isotropy groups. Let C1; : : : ; Cr be the orbits with non-trivial isotropy
group and let nj denote the order of the isotropy group of x 2 Ci ; hence jCi jni D
jGj. The Riemann–Hurwitz formula yields in this case:

12.5.7 Riemann–Hurwitz formula for group actions.

�.F / D jGj��.F=G/ �Pr
jD1.1 � 1=nj /

�
:

In the case of a free action r D 0 and there is no sum. Þ

12.5.8 Actions on spheres. Let F D S2 and jGj � 2. Since �.S2/ D 2 we see
that �.F=G/ � 0 is not compatible with 12.5.7, hence �.F=G/ D 2 and the orbit
space is again a sphere. We also see that r � 3 and r D 0; 1 are not possible. For
r D 2 we have 2=jGj D 1=n1 C 1=n2, 2 D jC1 C jC2. Hence there are two fixed
points (example: rotation about an axis). For r D 3 one verifies that

1C 2

jGj D
1

n1
C 1

n2
C 1

n3

has the solutions (for n1 � n2 � n3) displayed in the next table.

n1 n2 n3 jGj
jGj=2 2 2 jGj
3 3 2 12

4 3 2 24

5 3 2 60

Examples are the standard actions of subgroups of SO.3/, namely D2n (dihedral),
A4 (tetrahedral), S4 (octahedral), A5 (icosahedral). Up to homeomorphism there
are no other actions. Þ

12.5.9 Action on the torus. Let F D T D S1 � S1 be the torus, �.F / D 0. The
Riemann–Hurwitz formula shows that for r � 1 we must have �.F=G/ D 2. The
cases r � 5 and r D 1; 2 are impossible. For r D 4 we must have n1 D n2 D
n3 D n4 D 2 and G D Z=2. For r D 3 the solutions of 12.5.7 are displayed in a
table.

n1 n2 n3

3 3 3

2 3 6

2 4 4
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Consider the matrices in SL2.Z/

A D
�
0 1

�1 1

�
;

��1 1

�1 0

�
:

The cyclic groups generated by A;A2; A3 realize cases 2 and 1 of the table and the
case r D 4 above. The matrix B realizes case 3 of the table. Þ

Problems

1. LetG act effectively on a closed orientable surfaceF of genus 2 preserving the orientation.
Then jGj divides 48 or 10. There exist groups of orders 48 and 10 which act on a surface
of genus 2. The group of order 48 has a central subgroup C of order 2 and G=C is the
octahedral group S4 acting on the sphere F=C . Study the solutions of 12.5.7 and determine
the groups which can act on F . Use covering space theory and work towards a topological
classification of the actions.
2. The nicest models of surfaces are of course Riemann surfaces. Here we assume known
the construction of a compact Riemann surface from a polynomial equation in two variables.
The equation y2 D f .x/with 2gC2 branch points defines a surface of genus g. Such curves
are called hyper-elliptic (g � 2). It is known that all surfaces of genus 2 are hyper-elliptic.
A hyper-elliptic surface always has the hyper-elliptic involution I.x; y/ D .x;�y/. Here
are some examples. Let us write e.a/ D exp.2�ia/.

(1) y2 D x.x2 � 1/.x2 � 4/ has a Z=4-action generated by A.x; y/ D .�x; e.1=4/y/.
Note A2 D I .

(2) y2 D .x3 � 1/=.x3 � 8/ has a Z=3-action generated by B.x; y/ D .e.1=3/x; y/.
Since B commutes with I , we obtain an action of Z=6.

(3) y2 D .x3 � 1/=.x3C 1/ has a Z=6-action generated by C.x; y/ D .e.1=6/x; 1=y/.
Since C commutes with I , we obtain an action of Z=6 ˚ Z=2. It has an action of Z=4
generated by D.x; y/ D .1=x; e.1=4/y/. Note D2 D I . The actions C and D do not
commute, in factCD D DC 5. Thus we obtain an action of a group F which is an extension

1! Z=2! F ! D12 ! 1

where Z=2 is generated by I and D12 denotes the dihedral group of order 12.
(4) y2 D x.x4 � 1/ has the following automorphisms (see also [121, p. 94])

G.x; y/ D .e.1=4/x; e.1=8/y/; G8 D id; G4 D I;
H.x; y/ D .1=x; e.1=4/y=x3/; H4 D id; H2 D I;
K.x; y/ D .�.x � i/=.x C i/; 2p2e.1=8/y=.x C i//; K3 D I:

The elements G;H;K generate a group of order 48. If we quotient out the central hyper-
elliptic involution we obtain the octahedral group of order 24 acting on the sphere. Thus
there also exists an action of a group of order 24 such that the quotient by the hyper-elliptic
involution is the tetrahedral group (and not the dihedral group D12, as in (3)).

(5)y2 D x5�1 has an action of Z=5 generated byJ.x; y/ D .e.1=5/x; y/. It commutes
with I and gives an action of Z=10.
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3. By an analysis of 12.5.7 one can show that, for an effective action of G on a closed
orientable surface of genus g � 2, the inequality jGj � 84.g � 1/ holds. There exists a
group of order 168 which acts on a surface of genus 3 [63, p. 242].



Chapter 13

Partitions of Unity in Homotopy Theory

Partitions of unity and numerable coverings of a space are useful tools in order to
obtain global results from local data. (A related concept is that of a paracompact
space.) We present some notions about partitions of unity in the context of point-set
topology. Then we use them to show that, roughly, local homotopy equivalences
are global ones and a map is a fibration if it is locally a fibration (see the precise
statements in (13.3.1) and (13.4.1)). We apply the results to prove a theorem of Dold
about fibrewise homotopy equivalences (see (13.3.4)). Conceptually, partitions of
unity are used to relate the homotopy colimit of a covering to the colimit of the
covering; see (13.2.4) for a result of this type. There are many other results of this
type in the literature. This chapter only can serve as an introduction to this topic.

13.1 Partitions of Unity

Let t W X ! R be continuous. The closure of t�1.R X 0/ is the support supp.t/
of t . A family T D .tj W X ! R j j 2 J / of continuous functions is said to be
locally finite if the family of supports .supp.tj / j j 2 J / is locally finite. We call
T point finite if fj 2 J j tj .x/ ¤ 0g is a finite set for each x 2 X . We call a
locally finite T a partition of unity if the tj assume only non-negative values and
if for each x 2 X we have

P
j2J tj .x/ D 1. A covering U D .Uj j j 2 J / is

numerable if there exists a partition of unity T such that supp.tj / � Uj holds for
each j 2 J ; the family T is then called a numeration of U or a partition of unity
subordinate to U.

(13.1.1) Theorem. A locally finite open covering of a normal space is numerable.

Proof. Let U D .Uj j j 2 J / be a locally finite open covering of the normal space
X and V D .Vj j j 2 J / a shrinking of U and W D .Wj j j 2 J / a shrinking
of V . By the theorem of Urysohn, there exist continuous functions �j W X ! Œ0; 1�

which assume the value 1 on Wj and the value 0 on the complement of Vj . The
function � DPj2J �j W X ! Œ0; 1� is well-defined and continuous, since by local
finiteness of V , in a suitable neighbourhood of a point only a finite number of �j
are non-zero. We set fj .x/ D �j .x/ � �.x/�1. The functions .fj j j 2 J / are a
numeration of U . �

(13.1.2) Lemma. Let the covering V D .Vk j k 2 K/ be a refinement of the
covering U D .Uj j j 2 J /. If V is numerable, then also U is numerable.
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Proof. Let .fk j k 2 K/ be a numeration of V . For each k 2 K choose
a.k/ 2 J with Vk � Ua.k/. This defines a map a W K ! J . We set gj .x/ DP
k;a.k/Dj fk.x/; this is the zero function if the sum is empty. Then gj is con-

tinuous; the support of gj is contained in the union of the supports of the fk with
a.k/ D j and is therefore contained in Uj . Moreover, the sum of the gj is 1. The
family .gj j j 2 J / is locally finite: If W is an open neighbourhood of x which
meets only a finite number of supports supp.fk/, k 2 E � K, E finite, then W
meets only the supports of the gj with j 2 a.E/. �

(13.1.3) Theorem. Each open covering of a paracompact space is numerable.

Proof. Let U D .Uj j j 2 J / be an open covering of the paracompact space X
and let V D .Vk j k 2 K/ be a locally finite refinement. Since X is normal, there
exists a numeration .fk j k 2 K/ of V . Now apply the previous lemma. �

(13.1.4) Lemma. Let .fj W X ! Œ0;1Œ j j 2 J / be a family of continuous func-
tions such that U D .f �1�0;1Œ j j 2 J / is a locally finite covering ofX . Then U
is numerable and has, in particular, a shrinking.

Proof. Since U is locally finite, f W x 7! max.fj .x/ j j 2 J / is continuous and
nowhere zero. We set gj .x/ D fj .x/f .x/�1. Then

tj W X ! Œ0; 1�; x 7! max.2gj .x/ � 1; 0/
is continuous. Since tj .x/ > 0 if and only if gj .x/ > 1=2, we have the inclusions
supp.tj / � g�1

j Œ1=4;1Œ� f �1�0;1Œ. For x 2 X and i 2 J with fi .x/ D
max.fj .x// we have ti .x/ D 1. Hence the supports of the tj form a locally finite
covering of X , and the functions x 7! ti .x/=t.x/, t .x/ D P

j2J tj .x/ are a
numeration of U . �

(13.1.5) Theorem. Let U D .Uj j j 2 J / be a covering of the space X . The
following assertions are equivalent:

(1) U is numerable.

(2) There exists a family .sa;n W X ! Œ0;1Œ j a 2 A; n 2 N/ D S of continuous
functions sa;n with the properties:

(a) S , i.e., .s�1
a;n� 0;1 Œ/, refines U.

(b) For each n the family .s�1
a;n�0;1Œ j a 2 A/ is locally finite.

(c) For each x 2 X there exists .a; n/ such that sa;n.x/ > 0.

Proof. (1)) (2) is clear.
(2)) (1). .sa;n/ is, by assumption, a countable union of locally finite fami-

lies. From these data we construct a locally finite family. By replacing sa;n with
sa;n=.1C sa;n/ we can assume that sa;n has an image contained in Œ0; 1�. Let

qr.x/ D
X

a2A; i<r
sa;i .x/; r � 1
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and qr.x/ D 0 for r D 0. (The sum is finite for each x 2 X .) Then qr and

pa;r.x/ D max.0; sa;r.x/ � rqr.x//
are continuous. Let x 2 X ; then there exists sa;k with sa;k.x/ ¤ 0; we choose such
a function with minimal k; then qk.x/ D 0, pa;k.x/ D sa;k.x/. Therefore the sets
p�1
a;k
�0; 1� also cover X . Choose N 2 N such that N > k and sa;k.x/ >

1
N

. Then

qN .x/ >
1
N

, and thereforeNqN .y/ > 1 for all y in a suitable neighbourhood of x.
In this neighbourhood, all pa;r with r � N vanish. Hence

.p�1
a;n �0; 1� j a 2 A; n 2 N/

is a locally finite covering of X which refines U. We finish the proof by an appli-
cation of the previous lemma. �

(13.1.6) Theorem. Let .Uj j j 2 J / be a numerable covering of B � Œ0; 1�. Then
there exists a numerable covering .Vk j k 2 K/ of B and a family .�.k/ j k 2 K/
of positive real numbers such that, for t1; t2 2 Œ0; 1�, t1 < t2 and jt1 � t2j < �.k/,
there exist a j 2 J with Vk � Œt1; t2� � Uj .

Proof. Let .tj j j 2 J /be a numeration of .Uj /. For each r-tuplekD.j1; : : : ; jr/ 2
J r , define a continuous map

vk W B ! I; x 7!
rY
iD1

min
�
tji
.x; s/ j s 2 
 i�1

rC1 ;
iC1
rC1

��
:

Let K D S1
rD1 J r . We show that the Vk D v�1

k
�0; 1� and �.k/ D 1

2r
for k D

.j1; : : : ; jr/ satisfy the requirements of the theorem. Namely if jt1 � t2j < 1
2r

,
there exists i with Œt1; t2� � Œ i�1rC1 ;

iC1
rC1 � and hence Vk � Œt1; t2� � Uji

.
We show that .Vk/ is a covering. Let x 2 B be given. Each point .x; t/

has an open neighbourhood of the form U.x; t/ � V.x; t/ which is contained in a
suitable setW.i/ D t�1i �0; 1� and meets only a finite number of theW.j /. Suppose
V.x; t1/; : : : ; V .x; tn/ cover the interval I D Œ0; 1�; let 2

rC1 be a Lebesgue number

of this covering. We set U D U.x; t1/\ � � � \U.x; tn/. Each set U � Œ i�1
rC1 ;

iC1
rC1 � is

then contained in a suitable W.ji /. Hence x is contained in Vk , k D .j1; : : : ; jr/.
There are only a finite number of j 2 J for whichW.j /\ .U � I / ¤ ;. Since

vk.x/ ¤ 0 implies the relation W.ji / \ fxg � I ¤ ;, the family .Vk j k 2 J r/ is
locally finite for r fixed. The existence of a numeration for .Vk j k 2 K/ follows
now from theorem (13.1.5). �

A family of continuous maps .tj W X ! Œ0; 1� j j 2 J / is called a generalized
partition of unity if for each x 2 X the family .tj .x/ j j 2 J / is summable with
sum 1.
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(13.1.7) Lemma. Let .tj j j 2 J / be a generalized partition of unity. Then
.t�1j �0; 1� j j 2 J / is a numerable covering.

Proof. Summability of .tj .a// means: For each " > 0 there exists a finite set
E � J such that for all finite sets F 
 E the inequality j1�Pj2F tj .a/j > 1� "
holds. In that case V D fx j Pj2E tj .x/ > 1 � "g is an open neighbourhood
of a. If k … E, x 2 V and tk.x/ > ", then tk.x/ C

P
j2E tj .x/ > 1. This is

impossible. Hence for each a 2 X there exists an open neighbourhood V.a/ such
that only a finite number of functions tj have a value greater than " on V.a/. Let
sj;n.x/ D max.tj .x/�n�1; 0/ for j 2 J and n 2 N. By what we have just shown,
the sj;n are locally finite for fixed n. The claim now follows from (13.1.5). �

It is a useful fact that arbitrary partitions of unity can be reduced to countable
ones. The method of proof is inspired by the barycentric subdivision of a simplicial
complex. Let U D .Uj j j 2 J / be a covering of the space Z with subordinate
partition of unity T D .tj j j 2 J /. For each finite set E � J we set qE .z/ D
max.0;mini2E ti .z/�maxj…EXS tj .z//. The function qe is continuous, since T is
locally finite. From this definition one verifies:

(13.1.8) Lemma. If qE .x/ 6D 0 6D qF .x/, then either E � F or F � E. The
family .jEjqE j E � J finite/ is a locally finite partition of unity. �
(13.1.9)Corollary. LetU.E/ D q�1

E �0; 1�. ThenU.E/\U.F / 6D ; and jEj D jF j
implies E D F . We set Un D `

jE jDn U.E/ and define �n W Un ! Œ0; 1� by
�njU.E/ D jEjqE . Then .�n j n 2 N/ is a numeration of .Un j n 2 N/. �

Suppose the functions tj are non-zero. Let N be the nerve of the covering
.t�1j �0; 1� j j 2 J /. Then the nerve of the covering .q�1

E �0; 1� j E � J finite/ is
the barycentric subdivision of N .

13.2 The Homotopy Colimit of a Covering

LetK D .V; S/ be a simplicial complex. We consider it as a category: The objects
are the simplices, the morphisms are the inclusions of simplices. A contravariant
functor X W K ! TOP is called a simplicial K -diagram (in TOP). It associates to
each simplex s a spaceXs and to each inclusion t � s a continuous map rst W Xs !
Xt . We also have a covariant functor 
 W K ! TOP which 
.s/ D ˚P

v2s tvv j
tv 2 I;P tv D 1

	
, and for an inclusion t � s we have the canonical inclusion

i st W 
.t/! 
.s/. The geometric realization jX j of aK-diagramX is the quotient
of
`
s Xs �
.s/ with respect to the relation

Xs �
.s/ 3 .x; i st .a/ � .rst .x/; a// 2 Xt �
.t/:
Restriction to the n-skeletonKn yields a functorXn W Kn ! TOP. In jX jwe have
the subspace jX jn which is the image of theXs �
.s/with dim s � n. Since jXnj
is a quotient of the sum of these products we obtain a continuous map jXnj ! jX jn.
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(13.2.1) Proposition. The space jX j is the colimit of the subspaces jX jn. The
canonical map jXnj ! jX jn is a homeomorphism. There exists a canonical
pushout diagram `

s;dim sDnXs � @
.s/ 'n

��

��

jXn�1j

��`
s;dim sDnXs �
.s/ ˆn

�� jXnj.
The attaching map 'n is defined as follows: @
.s/ is the union of the i st
.t/, where
the t � s have one element less than s. The map 'n is defined on Xs � i st
.s/ by
rst � .i st /�1 composed with the canonical map into jXn�1j. �

Let U D fUj j j 2 J g be a covering of a space X . For each finite non-empty
E � J we write UE D T

j2 Uj . We define a subspace C.U/ of X �Qj2J Ij ,
Ij D I , as the set of families y D .xI tj / such that:

(1) Only a finite number of the tj are non-zero.
(2)

P
j tj D 1.

(3) If J.y/ D fj 2 J j tj 6D 0g then x 2 UJ.y/.
We have coordinate maps pr D prC W C.U/! X , .xI tj / 7! x and ti W C.U/! I ,
.xI tj / 7! ti . They are restrictions of the product projections and therefore continu-
ous. The tj form a point-finite partition of unity on C.U/. We view C.U/ via prC

as a space over X .
We define a second space B.U/ with the same underlying set but with a new

topology. Recall the nerveN.U/ of the covering U. We have the simplicialN.U/-
diagram which associated to a simplex E of the nerve the space UE and to an
inclusion F � E of simplices the inclusion rEF W UE ! UF . The space B.U/ is
the geometric realization of this N.U/-diagram. Thus B.U/ is the quotient space
of
`
E UE �
.E/ by the relation

UE �
.E/ 3 .x; dEF .a// � .iEF .x/; a/ 2 UF �
.F /:
The sum is taken over the finite non-empty subsets E of J . Let 
.E/ı be the
interior of 
.E/ and @
.E/ its boundary. Then each element of B.U/ has a
unique representative of the form .xI t / 2 UE � 
.E/ı for a unique E. We can
interpret this element as an element of C.U/, and in this manner we obtain a
bijection of sets � W B.U/ ! C.U/. This map is continuous, since the canonical
maps UE � 
.E/ ! C.U/ are continuous. The space B.U/ has a projection
pr D prB onto X and � is a map over X .

(13.2.2) Proposition. The map � is a homotopy equivalence over X .

Proof. We construct a map � W C.U/ ! B.U/. For this purpose we choose a lo-
cally finite partition of unity .�j / subordinate to the open covering t�1j �0; 1�ofC.U/.
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Then we define
� W y D .xI tj / 7! .xI �j .y// D z:

The map is well-defined and continuous: Let j 2 J.z/, i.e., 0 6D tj .z/ D �j .y/

hence J.z/ � J.y/ and x 2 J.z/; this shows that z 2 B.U/. LetW � C.U/ be an
open set such that J.W / D fj j �j jW 6D 0g is finite. Let y D .xI tj / 2 W . Then
J.W / � J.y/, therefore � factors onW through a mapW ! UJ.W / �
.J.W //,
and this shows the continuity.

A homotopy �� ' idC.U/ is defined by

.y; t/ D ..xI tj /; t/ 7! .xI t tj C .1 � t /�j /:
This assignment is clearly well-defined and continuous. A homotopy �� ' id is
defined by the same formula .yI t / 7! .xI t tj .y/ C .1 � t /�j�.y//. In order to
verify the continuity, we let again W be as above, but now considered as a subset
of B.U/. We consider the composition with XE �
.E/ ! B.U/. The formula
for the homotopy on the pre-image of W has an image in XE �
.E/. �

LetB.U/n be the subspace ofB.U/which is the image of theUE �
.E/with
jEj � nC 1. We state (13.2.1) for the special case at hand.

(13.2.3) Proposition. B.U/ is the colimit of the sequence of subspacesB.U/n. The
canonical map

`
dimEn UE �
.E/! B.U/n is a quotient map. The inclusion

Bn�1 � Bn is obtained via a pushout diagram

`
dimEDn UE � @
.E/

kn ��

��

B.U/n�1

��`
dimEDn UE �
.E/

Kn �� B.U/n.

The map kn is defined on XE � @
.E/ as follows: Let F � E be a proper subset.
Then kn is defined on XE �
.F / by XE �
.F / � XF �
.F /! Bn�1. �

(13.2.4) Proposition. Let U be numerable. Then the projections C.U/! X and
B.U/! X are shrinkable.

Proof. Let .�j j j 2 J / a numeration of U. Then x 7! .xI �j .x// is a section
s of prC and ..xI tj /; t/ 7! .xI t tj C .1 � t /�j .x// is a homotopy from s prC to
the identity over X . Thus prC is shrinkable, and (13.2.2) shows that also prB is
shrinkable. �

For some applications we need a barycentric subdivision of B.U/. Recall that
we have the barycentric subdivision N 0.U/ of the nerve of U. An n-simplex of
N 0.U/ is an ordered set � D .E0 ¤ E1 ¤ � � � ¤ En/ such that UEn

6D ;. We
write q.�/ D En. We have the N 0.U/-diagram which associates to � the space
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Xq.�/ and to � � � the inclusion Xq.�/ � Xq.�/. Let B 0.U/ denote the geometric
realization of thisN 0.U/-diagram. Since the simplices are ordered, we can replace

.�/ by the standard simplex 
Œn� spanned by Œn� D f0; 1; : : : ; ng.
(13.2.5) Remark. In the case of the barycentric subdivision the pushout diagram
in (13.2.3) reads as follows:

`
�2An

Xq.�/ � @
n kn ��

jn

��

B 0.U/n�1

Jn

��`
�2An

Xq.�/ �
n Kn �� B 0.U/n:

The sum is over the set An D f.�0; : : : ; �n/ j �0 ¤ � � � ¤ �n; �n � J finiteg, and
q.�0; : : : ; �n/ D �n. Þ

13.3 Homotopy Equivalences

The main result (13.3.1) of this section asserts that being a homotopy equivalence
is in a certain sense a local property.

(13.3.1)Theorem. Letp W X!B andq W Y !B be spaces overB andf W X! Y

a map over B . Let X D .Xj j j 2 J / be a covering of X and Y D .Yj j j 2 J /
a covering of Y . Let f .Xj / � Yj and assume that for each finite E � J the
map E W XE ! YE induced by f is a homotopy equivalence over B . Then the
induced map B.f / W B.X/ ! B.Y/ is a homotopy equivalence over B . Thus if
the coverings X and Y are numerable, then f is a homotopy equivalence over B .

Proof. From (5.3.4) and (13.2.3) we prove inductively that the induced maps
B.X/n ! B.Y/n are h-equivalences. Now we use (5.2.9), in order to show that
Bf is an h-equivalence. In the case of numerable coverings we also use (13.2.4).

�

(13.3.2) Remark. In the situation of (13.3.1) we can conclude that f is a homotopy
equivalence, if the projectionspX W B.X/! X andpY are homotopy equivalences.

Þ

(13.3.3) Theorem. Let p W X ! B and q W Y ! B be spaces over B and
f W X ! Y a map over B . Let .Uj j j 2 J / be a numerable covering of B .
Let fj W p�1.Uj /! q�1.Uj / be the map induced by f over Uj . Suppose each fj
is a fibrewise homotopy equivalence. Then f is a fibrewise homotopy equivalence.

Proof. The hypothesis implies that f is a fibrewise homotopy equivalence over
each set V � Vj . We can therefore apply (13.3.1). �



13.4. Fibrations 325

We say that a covering .Uj j j 2 J / of B is null homotopic if every inclusion
Uj � B is null homotopic.

(13.3.4)Theorem. Let f W X! Y be a map overB fromp W X!B to q W Y !B .
Assume that p and q are fibrations. Suppose B has a numerable null homotopic
covering .Vj j j 2 J / and that each path component of B contains a point b
such that f is a homotopy equivalence over b. The f is a fibrewise homotopy
equivalence.

Proof. Let Vj � B be homotopic to the constant map Vj ! fb.j /g. We can
assume that fb.j / W Xb.j / ! Yb.j / is an h-equivalence. By the homotopy theorem
for fibrations we obtain a homotopy commutative diagram of maps over Vj

p�1.Vj /
fj

��

.1/

��

q�1.Vj /

.2/

��

Vj �Xb.j / id �fb.j /
�� Vj � Yb.j /

with fibrewise homotopy equivalences (1) and (2). Hence fj is a fibrewise equiva-
lence and we can apply (13.3.3) �

Problems

1. For each j 2 J we let C.U/j D pr�1.Uj / and similarly for B . Then the partial
projection maps prC

j
W C.U/j ! Uj and prB

j
W B.U/j ! Uj are shrinkable.

2. If the coverings in (13.3.1) are open, then f� W ŒZ;X�! ŒZ; Y � is for each paracompact
Z a bijection. The canonical projection p W B.X/! X induces for a paracompact space Z
a bijection p� W ŒZ;B.X/�! ŒZ;X�.

13.4 Fibrations

(13.4.1) Theorem. Let V D .Vj j j 2 J / be a covering of B and p W E ! B

a continuous map. Assume that the map pj W p�1.Bj / ! Bj induced by p is for
each j 2 J a fibration. If the covering V is numerable, then p is a fibration. If the
covering V is open, then p has the HLP for paracompact spaces.

Proof. We have to solve a homotopy lifting problem (left diagram)

X
a ��

i

��

E

p

��

Y ��

q

��

E

p

��

X � I h �� B X � I h �� B:
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We form the pullback of p along h (right diagram). The initial condition a yields
a section s0 of q over X � 0. A lifting of h with this initial condition amounts to
a section s of q which extends s0. We pull back the numerable covering of B to a
numerable covering ofX�I . There exists a numerable covering U D .Uk j k 2 K/
of X such that q is a fibration over the sets Uk � I (Problem 1). We begin by
constructing a lifting t W B.U/ � I ! E of prB which extends the lifting t0 over
B.U/ � 0 determined by s0. The lifting is constructed inductively from partial
liftings tn over B.U/n � I . The induction step is again based on the pushout
diagram (13.2.3), now multiplied by I . The extension of the lifting tn amounts to
solving a lifting problem of the type`

UE � .@
.E/ � I [
.E/ � 0/ ��

��

Y

q

��`
UE �
.E/ � I ��

������������
X � I

and this is possible (by (5.5.3)), because UE �
.E/ � I is mapped into a subset
over which q is a fibration. If the covering U is numerable we compose it with a
section of prB and obtain the desired extension of s0. �

(13.4.2) Theorem. Let p W Y ! X be a continuous map. Let Y D .Yj j j 2 J /
be a family of subsets of Y and X D .Xj j j 2 J / a numerable covering of X .
Assume that p.Yj / � Xj and that for finite E � J the map pE W YE ! XE
induced by p is shrinkable. Then p has a section. (Note that Y is not assumed to
be a covering of Y .)

Proof. We work with the barycentric subdivisionB 0.X/. We show the existence of a
map s W B 0.X/! Y such thatps D prB . The proof does not use the numerability of
the covering. We construct inductively maps sn W B 0.X/n ! Y with the appropriate
properties and an additional property which makes the induction work.

The map B0 D `
E XE ! Y is given as follows: We choose sections XE !

YE of pE and compose them with the inclusion YE � Y .
Suppose sn�1 is given. We want to extend

sn�1kn W `.Xq.�/ � @
Œn�/! E

over
`
.Xq.�/ �
Œn�/. If � D .E0; : : : ; En/ we impose the additional hypothesis

that the image ofXq.�/�@
Œn� under sn�1kn is contained in YE0
. The construction

of s0 agrees with this requirement. Under this additional hypothesis we have a
commutative diagram

Xq.�/ � @
Œn� sn�1kn ��

��

YE0

��

Xq.�/
	 �� XE0

.
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From (5.5.3) we see that sn�1kn can be extended over
`
Xq.�/ � 
Œn�. With an

extension we construct sn via the pushout (13.2.5). We show that sn satisfies the
additional hypothesis. Given � D .E0; : : : ; EnC1/ we describe

knC1 W Xq.�/ � @
ŒnC 1�! B.U/n:

Let di W 
Œn� ! 
Œn�i be the standard map onto the i -th face of 
Œn C 1� with
inverse homeomorphism ei . Let @i W Xq.�/ ! Xq."i �/ be the inclusion where
"i� D .E0; : : : ; Ei�1; EiC1; : : : ; EnC1/. The restriction of knC1 to the subset
Xq.�/�
ŒnC1�i isKn.@i �ei /. By construction of sn the image of snKn.@i �ei /
is contained in XE0

(for i > 0) or XE1
(for i D 0). But XE1

� XE0
, hence sn has

the desired property.
If X is numerable, then pr has a section t and st is a section of p. �

(13.4.3) Theorem. Let p W X ! B be a continuous map and X D .Xj j j 2 J /
a numerable covering of X . Assume that for each finite E � J the restriction
pE W XE ! B is a fibration (an h-fibration, shrinkable). Then p is a fibration (an
h-fibration, shrinkable).

Proof. Recall that for a fibration p W X ! B the canonical map r W XI ! W.p/

is shrinkable (see (5.6.5)), and that p is a fibration if this map has a section (see
(5.5.1)). If the pE are fibrations, then the rE W XIE ! W.pE / are shrinkable. The
W.pj / form a numerable covering of W.p/. Theorem (13.4.2) shows that r has a
section, hence p is a fibration.

Assume that the pE are shrinkable, i.e., homotopy equivalences over B . We
apply (13.3.1) and see that p is shrinkable.

Assume that the pE are h-fibrations. The map p is an h-fibration if and only if
the canonical map b W W.p/ ! X is a homotopy equivalence over B (this can be
taken as a definition of an h-fibration). The W.pj / form a numerable covering of
W.p/ and the bE W W.pE / ! XE are homotopy equivalences over B , since pE
are h-fibrations. Thus we are in a position where (13.3.1) can be applied. �

The hypothesis of (13.4.3) is satisfied if theXE are either empty or contractible.

Problems

1. If q W M ! N � Œa; b� is a fibration over N � Œa; c� and N � Œc; b�, then q is a fibration.
2. Let X D .Xj j j 2 J / be a numerable covering of X . If the spaces XE have the
homotopy type of a CW-complex, then X has the homotopy type of a CW-complex.
3. Let p W E ! B be an h-fibration. Suppose B and each fibre p�1.b/ have the homotopy
type of a CW-complex. Then E has the homotopy type of a CW-complex.
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Bundles

Bundles (also called fibre bundles) are one of the main objects and tools in topology
and geometry. They are locally trivial maps with some additional structure. A
basic example in geometry is the tangent bundle of a smooth manifold and its
associated principal bundle. They codify the global information that is contained
in the transitions functions (coordinate changes).

The classification of bundles is reduced to a homotopy problem. This is achieved
via universal bundles and classifying spaces. We construct for each topological
groupG the universalG-principal bundle EG! BG over the so-called classifying
space BG. The isomorphism classes of numerable bundles over X are then in
bijection with the homotopy set ŒX;BG �.

The classification of vector bundles is equivalent to the classification of their
associated principal bundles. A similar equivalence holds between n-fold covering
spaces and principal bundles for the symmetric group Sn. This leads to a different
setting for the classification of coverings.

From the set of (complex) vector bundles over a spaceX and their linear algebra
one constructs the Grothendieck ring K.X/. The famous Bott periodicity theorem
in one of its formulations is used to make the functor K.X/ part of a cohomology
theory, the so-called topologicalK-theory. Unfortunately lack of space prevents us
from developing this very important aspect.

Classifying spaces and universal bundles have other uses, and the reader may
search in the literature for information.

The cohomology ring H�.BG/ of the classifying space BG of a discrete group
G is also called the cohomology of the group. There is a purely algebraic theory
which deals with such objects.

If X is a G-space, one can form the associated bundle EG �G X ! BG. This
bundle over BG can be interpreted as an invariant of the transformation group X .
The cohomology of EG �G X is a module over the cohomology ring H�.BG/
(Borel-cohomology). The module structure contains some information about the
transformation group X , e.g., about its fixed point set (see [7], [43]).

14.1 Principal Bundles

Let G be a topological group. In the general theory we use multiplicative notation
and denote the unit element of G by e. Let r W E � G ! E, .x; g/ 7! xg be a
continuous right action of G on E, and p W E ! B a continuous map. The pair
.p; r/ is called a (right) G -principal bundle if the following axioms hold:
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(1) For x 2 E and g 2 G we have p.xg/ D p.x/.
(2) For each b 2 B there exists an open neighbourhood U of b in B and a G-

homeomorphism ' W p�1.U /! U �G which is a trivialization of p over U
with typical fibre G. Here G acts on U �G by ..u; h/; g/ 7! .u; hg/.

If we talk about aG-principal bundlep W E ! B , we understand a given action ofG
onE. From the axioms we see thatG acts freely onE. The map p factors through
the orbit map q W E ! E=G and induces a continuous bijection h W E=G ! B .
Since q and p are open maps, hence quotient maps, h is a homeomorphism. Thus
G-principal bundles can be identified with suitable free rightG-spaces. In contrast
to an arbitrary locally trivial map with typical fibre G, the local trivializations in a
principal bundle have to be compatible with the group action. In a similar manner
we define left principal bundles.

AG-principal bundle with a discrete groupG is called a G -principal covering.
The continuity of the action r is in this case equivalent to the continuity of all
right translations rg W E ! E, x 7! xg. This is due to the fact that E � G is
homeomorphic to the topological sumqg2GE � fgg, if G is discrete.

Let E � G ! E be a free action and set C.E/ D f.x; xg/ j x 2 E; g 2 Gg.
We call t D tE W C.E/! G, .x; xg/ 7! g the translation map of the action.

(14.1.1) Lemma. Let p W E ! E=G be locally trivial. Then the translation map
is continuous.

Proof. LetW D p�1.U / � E be aG-stable open set which admits a trivialization
 W U �G ! W . The pre-image of .W �W /\C.E/ under � is f.u; g; u; h/ j
u 2 U; g; h 2 Gg, and t ı . �  / is the continuous map .u; g; u; h/ 7! g�1h.

�

A free G-action on E is called weakly proper if the translation map is continu-
ous. It is called proper if, in addition, C.E/ is closed in E �E.

(14.1.2) Proposition. A free action of G on E is weakly proper if and only if
� 0 W E �G ! C.E/, .x; g/ 7! .x; xg/ is a homeomorphism.

Proof. The map  W C.E/ ! E � G, .x; y/ 7! .x; tE .x; y// is a set-theoretical
inverse of � 0. It is continuous if and only if tE is continuous. �

LetE carry a free rightG-action andF a leftG-action. We have a commutative
diagram

E � F pr1 ��

P
��

E

p
��

E �G F q
�� E=G

with orbit maps P and p and q D pr1 =G.
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(14.1.3) Proposition. A free rightG action onE is weakly proper if and only if for
each left G-space F the diagram is a topological pullback.

Proof. We compare the diagram with the canonical pullback

X
b ��

a
��

E

p
��

E �G F q
�� E=G

with X D f..x; f /; y/ 2 .E �G F / � E j p.x/ D p.y/g and a D pr1, b D
pr2. There exists a unique map 	 W E � F ! X such that b	 D pr1, a	 D P ,
i.e., 	.x; f / D ..x; f /; x/. The diagram in question is a pullback if and only
if 	 is a homeomorphism. Suppose this is the case for the left G-space G. The
homeomorphism E �G G ! E, .x; g/ 7! xg transforms q into p, X into C.E/
and 	 into .x; g/ 7! .xg; x/. The latter is, in different notation, � 0. Hence � 0 is a
homeomorphism if the diagram is a pullback for F D G.

Conversely, let the action be weakly proper. The map

Q� W QX D f..x; f /; y/ j p.x/ D p.y/g ! E�F; ..x; f /; y/ 7! .y; t.x; y/�1f /

is continuous. One verifies that Q� induces a map � W X ! E � F . The equalities

�	.x; f / D �..x; f /; x/ D .x; t�1.x; x/f / D .x; f /
show that � is an inverse of 	. �

(14.1.4) Proposition. Let G act freely and weakly properly on E. The sections
of q W E �G F ! E=G correspond bijectively to the maps f W E ! F with the
property f .xg/ D g�1f .x/; here we assign to f the section sf W x 7! .x; f .x//.

Proof. It should be clear that sf is a continuous section. Conversely, let s W B !
E �G F be a continuous section. We use the pullback diagram displayed before
(14.1.3). It yields an induced section � of pr1 which is determined by the conditions
pr1 ı� D id and P ı � D s ı p. Let f D pr2 ı� W E ! F . Then pr1 �.xg/ D
xg D pr1.�.x/g/, since � is a section and pr1 a G-map. (The right action on
E � F is .e; f; g/ 7! .eg; g�1f /.) The equalities P�.xg/ D sp.xg/ D sp.x/ D
P�.x/ D P.�.x/g/ hold, since � is an induced section andP the orbit map. Since
�.xg/ and �.x/g have the same image under P and pr1, these elements are equal;
we now apply the G-map pr2 and obtain finally f .xg/ D g�1f .x/. �

(14.1.5) Proposition. Let the freeG-action on E be weakly proper. Then the orbit
map p W E ! E=G D B is isomorphic to pr W B �G ! B , if and only if p has a
section.
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Proof. Let s be a section of p. Then B � G ! E, .b; g/ 7! s.b/g and E !
B � G, x 7! .p.x/; t.spx; x// are inverse G-homeomorphisms, compatible with
the projections to B . Conversely, pr has a section and hence also the isomorphic
map p. �

(14.1.6) Proposition. Let X and Y be free G-spaces andˆ W X ! Y a G-map. If
' D ˆ=G is a homeomorphism and Y weakly proper, thenˆ is a homeomorphism.

Proof. X is weakly proper, since the translation map of X is obtained from the
translation map of Y by composition with ˆ � ˆ. We have to find an inverse
‰ W Y ! X . By (14.1.4), it corresponds to a section of �Y W .Y �X/=G ! Y=G.
We have the section s W x 7! .x;ˆ.x// of �X W .X � Y /=G ! X=G. Let  be the
inverse of '. With the interchange map � W .X � Y /=G ! .Y � X/=G we form
� D � ı s ı  . One verifies that � is a section of �Y . �

Let a commutative diagram below with principal G-bundles p and q be given,
and let F be a G-map. Then F or .F; f / is called a bundle map.

Y
F ��

q
��

X

p
��

C
f

�� B

If f is a homeomorphism, then F is a homeomorphism (see (14.1.6)). If f is the
identity, then F is called a bundle isomorphism.

Given a principal bundlep W X ! B and a map f W C ! B , we have a pullback
diagram as above with Y D f.c; x/ j f .c/ D p.x/g � C � X . The maps q and
F are the restrictions of the projections onto the factors. The G-action on Y is
.c; x/g D .c; xg/. If p is trivial over V , then q is trivial over f �1.V /. Therefore
q is a principal bundle, called the bundle induced from p by f . Also F is a bundle
map. From the universal property of a pullback we see, that the bundle map diagram
above is a pullback.

(14.1.7) Proposition. Let U be a right G-space. The following are equivalent:

(1) There exists a G-map f W U ! G.

(2) There exists a subset A � U such that m W A � G ! U , .a; g/ 7! ag is a
homeomorphism.

(3) The orbitmapp W U ! U=G isG-homeomorphic overU=G to the projection
pr W U=G �G ! U=G.

(4) U is a free G-space, p W U ! U=G has a section, and tU is continuous.

Proof. .1/ ) .2/. Let A D f �1.e/ and v W U ! A,x 7! x � f .x/�1.x/. Then
.v; f / W U ! A �G is an inverse of m.
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.2/) .3/. The G-homeomorphismm induces a homeomorphismm=G of the
orbit spaces. We have the homeomorphism " W A! .A�G/=G, a 7! .a; e/. With
these data m ı ." � id/ ım=G D pr.

.3/ ) .4/. If ' W U=G � G ! U is a G-homeomorphism over U=G, then
the G-action is free and x 7! '.x; e/ is a section of p. The translation map of
U=G �G is continuous and hence, via ', also tU .

.4/) .1/. Let s W U=G ! G be a section. Then U ! G, u 7! tU .sp.u/; u/

is a G-map. �

A right G-space U is called trivial if there exists a continuous G-map
f W U ! G into the G-space G with right translation action. A right G-space
is called locally trivial if it has an open covering by trivial G-subspaces.

(14.1.8) Proposition. The total space E of a G-principal bundle is locally trivial.
If E is locally trivial, then E ! E=G is a G-principal bundle. �

14.1.9 Hopf fibrations. Consider S2n�1 � Cn as a free S1-space with action
induced from scalar multiplication. Let Uj be the subset of points z D .zk/ with
zj 6D 0. The map z 7! zj jzj j�1 shows that Uj is a trivial S1-space. The orbit
space of this action is CP n�1. The S1-principal bundle p W S2n�1 ! CP n�1,
i.e., the orbit map, is called a Hopf fibration. There is a similar Z=2-principal
bundle Sn�1 ! RP n�1 onto the real projective space and an S3-principal bundle
S4n�1 ! HP n�1 onto the quaternionic projective space. Þ

(14.1.10) Proposition. Let f W X ! Y be a G-map and pY W Y ! Y=G a G-
principal bundle. Then the diagram

X
f

��

pX
��

Y

pY
��

X=G
f=G

�� Y=G

is a pullback.

Proof. Let U � Y be aG-set with aG-map h W U ! G. Then h ı f W f �1.U /!
U ! G is a G-map. Hence pX is a G-principal bundle. The diagram is therefore
a bundle map and hence a pullback. �

We say, a map f W X ! Y has local sections if each y 2 Y has an open
neighbourhoodV and a section s W V ! X off overV ; the latter meansf s.v/ D v
for all v 2 V .

(14.1.11) Proposition. Let G be a topological group and H a subgroup. The
quotient map q W G ! G=H is anH -principal bundle if and only if q has a section
over some neighbourhood of the unit coset.
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Proof. A locally trivial map has local sections. Conversely, let s W U ! G be a
section of q over U . The map tG is continuous. For each k 2 G we have the H -
equivariant map kq�1.U / ! H , kg 7! s.q.g//�1g. We thus can apply (14.1.8)
and (14.1.7). �

Actions with the properties of the next proposition were called earlier properly
discontinuous.

(14.1.12) Proposition. Let E �G ! E, .x; g/ 7! xg be a free right action of the
discrete group G. The following assertions are equivalent:

(1) The orbit map p W E ! E=G is a G-principal covering.

(2) Each x 2 E has a neighbourhood U , such that U \Ug D ; for each g 6D e.
(3) The set t�1.e/ is open in C .

(4) The map t is continuous.

Proof. (1)) (4) holds by (14.1.1).
(4)) (3). The set feg � G is open, since G is discrete.
(3)) (2). We have t .x; x/ D e. Since t�1.e/ is open, there exists an open

neighbourhood U of x in E such that .U � U/ \ C � t�1.e/. Let U \ Ug ¤ ;,
say v D ug for u; v 2 U . Then .u; v/ D .u; ug/ 2 .U � U/ \ C , hence
t .u; ug/ D g D e.

(2)) (1). Let U be open. Then U � G ! UG, .u; g/ 7! ug is a G-homeo-
morphism, hence UG an open trivial G-subspace. �

(14.1.13) Example. Let G be a closed discrete subgroup of the topological group
E. Then the action G � E ! E, .g; x/ 7! gx is free and has property (4) of the
previous proposition. Examples are Z � R or Z � C. Þ

(14.1.14) Example. The map g W R ! S1, t 7! exp.2�it/ has kernel Z. There-
fore there exists a bijective map f W R=Z ! S1 such that fp D g. Since g is an
open map, g is a quotient map and therefore f a homeomorphism. By the previ-
ous example, g is therefore a covering. Similarly exp W C ! C� is seen to be a
covering. Þ

(14.1.15) Example. LetG be a Lie group andH a closed subgroup. Then the quo-
tient map p W G ! G=H is anH -principal bundle. In the chapter on differentiable
manifolds we show that G=H carries the structure of a smooth manifold such that
p is a submersion. A submersion has always smooth local sections. Þ

We construct locally trivial bundles from principal bundles. Let p W E ! B

be a right G-principal bundle and F a left G-space. The projection E � F ! E

induces, via passage to orbit spaces, q W E �G F ! B . The map q is locally trivial
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with typical fibre F . A bundle chart ' W p�1.U / ! U � G of p yields a bundle
chart

q�1.U / D p�1.U / �G F '�G id
�� .U �G/ �G F Š U � F

for q. We call q the associated fibre bundle with typical fibre F , and G is said to
be the structure group of this fibre bundle. The structure group contains additional
information: The local trivializations have the property that the transition functions
are given by homeomorphisms of the fibre which arise from an action of an element
of the group G.

Let p W Y ! B be a right G-principal bundle. It may happen that there exists
a right H -principal bundle q W X ! Y for a subgroup H � G and a G-homeo-
morphism � W X �H G ! Y over B . In that case .q; �/ is called a reduction
of the structure of p. One can consider more generally a similar problem for
homomorphisms ˛ W H ! G.

(14.1.16) Example. Let E ! B be a G-principal bundle andH � G a subgroup.
Then E �G G=H ! E=H , .x; gH/ 7! xgH is a homeomorphism. Therefore
E=H ! E=G, xH 7! xG is isomorphic to the associated bundle E �G G=H !
E=G. From a subgroup K � H � G we obtain in this manner G=K ! G=H as
a bundle with structure group H and fibre H=K, if G ! G=H has local sections.

IfX is aG-space andH C G, thenG=H acts onX=H by .xH; gH/ 7! xgH .
The quotient map X=H ! X=G induces a homeomorphism .X=H/=.G=H/ Š
X=G. In particular, E=H ! E=G becomes in this manner a G=H -principal
bundle. Þ

One can “topologise” various algebraic notions in analogy to the passage from
groups to topological groups. An important notion in this respect is that of a small
category.

A (small) topological category C consists of an object space Ob.C / and a
morphism space Mor.C / such that the structure data

s W Mor.C /! Ob.C / (source),

r W Mor.C /! Ob.C / (range),

i W Ob.C /! Mor.C / (identity),

c W Mor2.C /! Mor.C / (composition)

are continuous. Here

Mor2.C / D f.ˇ; ˛/ 2 Mor.C / �Mor.C / j s.ˇ/ D r.˛/g
carries the subspace topology of Mor.C /�Mor.C /. For these data the usual axioms
of a category hold. In a groupoid each morphism has an inverse. In a topological
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groupoid we require in addition that passage to the inverse is a continuous map
Mor.C /! Mor.C /.

A topological group can be considered as a topological groupoid with object
space a point. Principal bundles yield a parameterized version.

(14.1.17) Example. Let E be a free right G-space with a weakly proper action.
Let p W E ! B be a map which factors over the orbit map q W E ! E=G and
induces a homeomorphism E=G Š B . We construct a topological groupoid with
object space B . The product p � p W E � E ! B � B factors over the orbit map
Q W E �E ! .E �E/=G, .a; b/ 7! Œa; b� of the diagonal action and induces

.s; r/ W .E �E/=G ! B � B:
We define .E � E/=G as the morphism space of our category and s; r as source,
range. The diagonal ofE induces i W B Š E=G ! .E�E/=G, and this is defined
to be the identity. We define the composition by

Œa; b� ı Œx; y� D Œx; b � t .y; a/�1�
with the translation map t D tE of E. One verifies that composition is associative
and continuous. (The space Mor2 is a quotient space of E � C.E/ � E.) The
morphism Œb; a� is inverse to Œa; b�, hence the inverse is continuous and we have
obtained a topological groupoid. Þ

Problems

1. A free action of a finite group G on a Hausdorff space E is proper.
2. The action R2X0�R� ! R2X0, ..x; y/; t/ 7! .tx; t�1y/ is a non-trivial R�-principal
bundle. Determine the orbits and the orbit space.
3. Let E be a space with a free right G-action. Then the translation map tE is continuous if
and only if the pullback of p along p is a trivial G-space.
4. The continuous maps E �G F1 ! E �G F2 over E=G correspond via .x; u/ 7!
.x; ˛.x; u// to the continuous maps ˛ W E � F1 ! F2 with the equivariance condition
g˛.x; u/ D ˛.xg�1gu/.

If E is connected and F1; F2 discrete, then ˛ does not depend on x 2 E and has the
form ˇ ı pr with a uniquely determined equivariant map ˇ W F1 ! F2.
5. The groupoid (14.1.17) has further properties. There exists at least one morphism be-
tween any two objects. The map .s; r/ W .E �E/=G ! B � B is open.
6. Reconsider in the light of (14.1.17) the topological groupoid that was used in the deter-
mination of the fundamental groupoid of S1.

14.2 Vector Bundles

Vector bundles are, roughly speaking, continuous families of vector spaces. Sup-
pose given a continuous map p W X ! B and the structure of an n-dimensional
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R-vector space on each fibreXb D p�1.b/. A bundle chart or a trivialization over
the open basic setU � B for these data is a homeomorphism' W p�1.U /! U�Rn

over U which is fibrewise linear. A set of bundle charts is a bundle atlas, if their
basic domains cover B . The data p W X ! B together with the vector space struc-
tures on the fibres are an n-dimensional real vector bundle over the space B if a
bundle atlas exists. Thus a vector bundle is in particular a locally trivial map. In a
similar manner one defines complex vector bundles or quaternionic vector bundles.
A vector bundle � W E.�/ ! B is called numerable, if there exists a numerable
covering U of B such that � is trivial over the members U 2 U. (This notion is
also used for other types of locally trivial bundles.) A bundle has finite type, if it
has a finite bundle atlas.

Let .U; '/ and .V;  / be bundle charts for p. Then the transition map is

 '�1 W .U \ V / � Rn ! .U \ V / � Rn; .x; v/ 7! .x; gx.v//

with gx 2 GLn.R/. The assignment g W U \V ! GLn.R/, x 7! gx is continuous.
A bundle atlas is said to be orienting, if the gx have positive determinant. If

an orienting atlas exists, then the bundle is orientable. An orientation of a vector
bundle p W E ! B consists of a vector space orientation of each fibre p�1.b/ with
the property: For each x 2 B there exists a bundle chart .U; '/ about x such that
' transports for each b 2 U the given orientation on p�1.b/ into the standard
orientation of Rn. A chart with this property is called positive with respect to the
given orientation. The positive charts form an orienting atlas, and for each orienting
atlas there exists a unique orientation such that its charts are positive with respect
to the orientation. A complex vector space has a canonical orientation. If one uses
this orientation in each fibre, then the bundle, considered as a real bundle, is an
oriented bundle.

Let � W E.�/ ! B and � W E.�/ ! C be real vector bundles. A bundle mor-
phism � ! � over ' W B ! C is a commutative diagram

E.�/
ˆ ��




��

E.�/

�

��

B
'

�� C

with a map ˆ which is fibrewise linear. If ˆ is bijective on fibres, then we call the
bundle morphism a bundle map. Thus we have categories of vector bundles with
bundle morphisms or bundle maps as morphisms. The trivial n-dimensional bundle
is the product bundle pr W B � Rn ! B . More generally, we call a bundle trivial if
it is isomorphic to the product bundle.

(14.2.1) Proposition. A bundle map over the identity is a bundle isomorphism.
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Proof. We have to show that the inverse of ˆ is continuous. Via bundle charts this
can be reduced to a bundle map between trivial bundles

U � Rn ! U � Rn; .u; v/ 7! .u; gu.v//:

In that case .u; v/ 7! .u; g�1
u .v// is a continuous inverse, since u 7! g�1

u is
continuous. �

(14.2.2) Proposition. If the previous diagram is a pullback in TOP and � a vector
bundle, then there exists a unique structure of a vector bundle on � such that the
diagram is a bundle map.

Proof. Since ˆ is bijective on fibres, we define the vector space structures in such
a way that ˆ becomes fibrewise linear. It remains to show the existence of bundle
charts.

If � is the product bundle, then � can be taken as product bundle. If � has
a bundle chart over V , then � has a bundle chart over '�1.V /, by transitivity of
pullbacks. �

We call � in (14.2.2) the bundle induced from � along ' and write occasionally
� D '�� in this situation. The previous considerations show that a bundle map is
a pullback. (Compare the analogous situation for principal bundles.)

A bundle morphism over id.B/ has for each b 2 B a rank, the rank of the linear
map between the fibres over b. It is then clear what we mean by a bundle morphism
of constant rank.

A subsetE 0 � E of ann-dimensional real bundlep W E ! B is ak-dimensional
subbundle of p, if there exists an atlas of bundle charts (called adapted charts)
' W p�1.U /! U �Rn such that '.E 0\p�1.U // D U � .Rk �0/. The restriction
p W E 0 ! B is then a vector bundle.

A vector bundle is to be considered as a continuous family of vector spaces. We
can apply constructions and notions from linear algebra to these vector spaces. We
begin with kernels, cokernels, and images.

(14.2.3) Proposition. Let ˛ W �1 ! �2 be a bundle morphism over B of constant
rank and ˛b the induced linear map on the fibres over b. Then the following hold:

(1) Ker ˛ DSb2B Ker.˛b/ � E.�1/ is a subbundle of �1.

(2) Im.˛/ DSb2B Im.˛b/ � E.�2/ is a subbundle of �2.

(3) Suppose Coker.˛/ D S
b2B E.�2/b= Im.˛b/ carries the quotient topology

fromE.�2/. Then, with the canonical projection ontoB , Coker.˛/ is a vector
bundle.

Proof. The problem in all three cases is the existence of bundle charts. This is a
local problem. Therefore it suffices to consider morphisms

˛ W B � Rm ! B � Rn; .b; v/ 7! .b; ˛b.v//
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between trivial bundles.
We write Kx D Ker.˛x/ and Lx D Im.˛x/. We fix b 2 B and choose

complements Rm D K ˚ K 0 and Rn D L ˚ L0 for K D Kb and L D Lb .
Let q W Rm ! K and p W Rn ! L be the projections with Ker.q/ D K 0 and
Ker.p/ D L0. Then

�x W Rm ˚ L0 ! Rn ˚K; .v;w/ 7! .˛x.v/C w; q.v//
is an isomorphism forx D b, hence also an isomorphism forx in a neighbourhood of
b. Thus let us assume without essential restriction that �x is always an isomorphism.
Since ˛x has constant rank k, we conclude that Kx \ K 0 D 0 and Lx \ L0 D 0.
This fact is used to verify that

B � Rm ! B � .L �K/; .x; v/ 7! .x; p˛x.v/; q.v//

B � .K 0 � L0/! B � Rn; .x; v; w/ 7! .x; ˛x.v/C w/
are fibrewise linear homeomorphisms. The first one maps

S
x2Bfxg � Kx onto

B � .0 � K/ and the second one B � .K 0 � 0/ onto
S
x2Bfxg � Lx . Moreover,

the second induces a bijection of B � .0 �L0/ with
S
x2Bfxg � Rn=Lx . Thus we

have verified (1)–(3) in the local situation. �

14.2.4 Tangent bundle of the sphere. Let

TS n D f.x; v/ j hx; v i D 0g � Sn � RnC1

with the projection p W TS n ! Sn onto the first factor. The fibre p�1.x/ is the
orthogonal complement of x in RnC1. These data define the tangent bundle of the
sphere. One can apply (14.2.3) to the family ˛x W RnC1 ! RnC1, v 7! hx; v ix of
orthogonal projections.

Recall the stereographic projections '˙ W SnXf˙enC1g ! Rn. The differential
of '� ı '�1C W Rn X 0! Rn X 0 at x is the linear map

Rn ! Rn; � 7! kxk
2� � 2hx; � ix
kxk4 :

For kxk D 1 we obtain the reflection � 7! � � 2hx; � ix at the hyperplane
orthogonal to x. Let U˙ D p�1.Sn X fenC1g/. The differential of '˙ yields a
homeomorphism which is fibrewise linear and the diagram

U˙
D'˙ ��

p

��

Rn � Rn

pr1

��

Sn X f˙enC1g '˙ �� Rn:
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If we identify in Rn � Rn C Rn � Rn the point .x; v/ 2 .Rn X 0/ � Rn in the

first summand with
�
x

kxk2 ;
kxk2
�2hx;
 ix

kxk4

�
then we obtain a vector bundle over S D

.Rn X 0C Rn X 0/=x � xkxk�2 which is isomorphic to p W TS n ! Sn. We can
simplify the situation by identifying in Dn � Rn C Dn � Rn the point .x; v/ 2
Sn�1 � Rn in the first summand with .x; v � 2hx; v ix/ in the second summand.

In the tangent bundle we have the subspace of tangent vectors of length 1. In
our case this is the space f.u; v/ 2 Sn � Sn j hu; v i D 1g, the Stiefel manifold
V2.RnC1/. We can obtain it from Dn � Sn�1 C Dn � Sn�1 by the identifica-
tion .x; v/ � .x; v � 2hx; v iv/. For even n we obtain from (10.7.8) the integral
homology of this Stiefel manifold.

For “smallest” structure groups of the tangent bundle of Sn see [36]. The vector
field problem [3] is a special case of this problem. Þ

Important vector bundles in geometry are the tangent bundles of differentiable
manifolds and the normal bundles of immersed manifolds.

14.2.5 Tautological bundles. Let V be an n-dimensional real vector space and
Gk.V / the Grassmann manifold of the k-dimensional subspaces of V . We set

Ek.V / D f.x; v/ j x 2 Gk.V /; v 2 xg � Gk.V / � V:
We have the projections �k.V / D �k W Ek.V / ! Gk.V /, .x; v/ 7! x, and the
fibre over the element x 2 Gk.V / is the subspace x. For this reason we call this
bundle the tautological bundle. It remains to verify that �k is locally trivial. For
this purpose we recall the O.k/-principal bundle p W Sk.Rn/ ! Gk.R

n/ from the
Stiefel manifold to the Grassmann manifold. The map

Sk.R
n/ �O.k/ Rk ! Ek.R

n/;

..v1; : : : ; vk/; .	1; : : : ; 	k// 7! .hv1; : : : ; vki;
P
	j vj /

is a fibrewise linear homeomorphism; it describes the tautological bundle as an
associated fibre bundle.

Here is a different argument. Suppose x is spanned by .v1; : : : ; vk/ 2 Sk.Rn/;
then px W Rn ! Rn, v 7! Pk

jD1hv; vj ivj is the orthogonal projection onto x. It
depends continuously on .v1; : : : ; vk/ and induces a continuous map Gk.Rn/ !
Hom.Rn;Rn/, x 7! px , and

Gk.R
n/ � Rn ! Gk.R

n/ � Rn; .x; v/ 7! .x; px.v//

is a bundle morphism of constant rank with image Ek.Rn/. Now one can use
(14.2.3).

There exist analogous complex tautological bundles over the complex Grass-
mannians. Þ
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14.2.6 Line bundles over CPn. Let H W CnC1 X 0 ! CP n be the defining
C�-principal bundle. Let C.k/ be the one-dimensional complex C�-representation
C� �C! C, .	; z/ 7! 	kz. We obtain the associated complex line bundle

H.k/ D .CnC1 X 0/ �C� C.�k/! CP n:

ThusH.k/ is the quotient of .CnC1X0/�C under the equivalence relation .z; u/ �
.	z; 	ku/ for 	 2 C�. We also have the S1-principal bundle S2nC1 ! Cn

(the Hopf bundle). The inclusion S2nC1 � C ! .CnC1 X 0/ � C induces a
homeomorphism

S2nC1 �S1 C.�k/! .CnC1 X 0/ �C� C.�k/:
The inverse homeomorphism is induced by .z; u/ 7! .kzk�1z; kzk�ku/. The
unit sphere bundle is S2nC1 �S1 S1.�k/. The assignment z 7! .z; 1/ induces a
homeomorphism

S2nC1=Cjkj ! S2nC1 �S1 S1.�k/:
Here Cm � S1 is the subgroup of order m (roots of unity).

The bundles H.k/ over CP n exist for 1 � n � 1. We call the bundle H.1/
the canonical complex line bundle. For n D 1 it will serve as a universal one-
dimensional vector bundle.

The tautological bundle over CP n D G1.CnC1/ is H.�1/, since

.CnC1 X 0/ �C� C.1/! E1.C
nC1/; .x; u/ 7! .Œx�; ux/

is an isomorphism.
The sections of H.k/ correspond to the functions f W CnC1 X 0! C with the

property f .	z/ D 	kf .z/, they are homogenous functions of degree k. This is the
reason to define H.k/ with C.�k/. Þ

Let q W E ! B be a right G-principal bundle and V an n-dimensional repre-
sentation of G. Then the associated bundle p W E �G V ! B is an n-dimensional
vector bundle. A bundle chart ' W q�1.U /! U � G for q induces a bundle chart
q�1.U /�G V ! U � V for p, and the vector space structure on the fibres of p is
uniquely determined by the requirement that the bundle charts are fibrewise linear.

We now show that vector bundles are always associated to principal bundles. Let
p W X ! B be an n-dimensional real vector bundle. Let Eb D Iso.Rn; Xb/ be the
space of linear isomorphisms. The groupG D GLn.R/ D Iso.Rn;Rn/ D Aut.Rn/
acts freely and transitively onEb from the right by composition of linear maps. We
have the set map

q W E.�/ D E D`b2B Eb ! B; Eb ! fbg
with fibrewise GLn.R/-action just explained. If ' W p�1.U /! U �Rn, 'b W Xb !
Rn is a bundle chart of p, we define

Q' W q�1.U / D`b2U Eb ! U � Iso.Rn;Rn/; ˛ 2 Eb 7! .b; 'b ı ˛/
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to be a bundle chart for q. The transition function for two such charts has the form

.U \ V / � Aut.Rn/! .U \ V / � Aut.Rn/; .b; �/ 7! .b;  b'
�1
b �/:

This map is continuous, because b 7!  b'
�1
b

is continuous. Therefore there
exists a unique topology on E in which the sets q�1.U / are open and the charts
Q' homeomorphisms. The fibrewise GLn.R/-action on E now becomes continuous
and Q' is equivariant. This shows q W E ! B to be a GLn.R/-principal bundle.
The evaluation Iso.Rn; Xb/ � Rn ! Xb , .f; u/ 7! f .u/ induces an isomorphism
E.�/ �GLn.R/ Rn Š X.�/ of vector bundles.

(14.2.7)Theorem. The assignment which associated to a GLn.R/-principal bundle
E ! B the vector bundle E �GLn.R/ Rn ! B is an equivalence of the category of
GLn.R/-principal bundles with the category of n-dimensional real vector bundles;
the morphisms are in both cases the bundle maps.

Proof. The construction above shows that each vector bundle is, up to isomorphism,
in the image of this functor. The construction also associates to each bundle map
.F; f / W � ! � between vector bundles a bundle map between principal bundles
which is given on fibres by

E.�/b D Iso.Rn; X.�/b/! Iso.Rn; X.�/f .b// D E.�/f .b/;
and these isomorphisms are compatible with the original bundle maps, i.e., they
constitute a natural isomorphism. Therefore the functor is surjective on morphism
sets between two given objects. The injectivity is a consequence of the fact that aG-
mapE.�/b ! E.�/f .b/ is determined by the associated linear mapE.�/b�GRn !
E.�/f .b/ �G Rn (where G D GLn.R/). �

Problems

1. Determine an O.n/-principal bundle such that the associated vector bundle is the tangent
bundle of Sn.
2. Consider in CnC1 the set of points .z0; : : : ; zn/ which satisfy the equations

z2
0 C z2

1 C � � � C z2
n D 0; jz0j2 C jz1j2 C � � � C jznj2 D 2:

Show that this space is homeomorphic to the Stiefel manifold V2.RnC1/. Show that V2.R3/

is the projective space RP 3. Thus we have embedded this space into S5.
3. An n-dimensional real vector bundle is trivial if and only if it has n continuous sections
which are everywhere linearly independent.
4. The bundle H.k/ over CP 1 is obtained from two trivial bundles pr1 W C � C ! C by
gluing over C� �C with the transition maps .z; !/ 7! .z�1; z�k!/.
5. The complex tangent bundle of CP 1 is H.2/.
6. A bundle morphism J W � ! � of a real vector bundle which satisfies J 2.x/ D �x for
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each x 2 E.�/ is called a complex structure on � . If we define in each fibre the multiplica-
tion by i 2 C as the map J , then � becomes a complex vector bundle. One has to verify the
local triviality as a complex bundle.
7. An oriented real vector bundle is associated to a GLn.R/C-principal bundle. It is con-
structed as above using the orientation preserving isomorphisms IsoC.Rn; ��1.b//. There
exists an equivalence of categories analogous to (14.2.7).

A reduction of the structure group from GLn.R/ to GLn.R/C corresponds to the choice of
an orientation of the vector bundle. The reductions of a GLn.R/-bundleE ! B correspond
to the sections of E=GLn.R/C ! B; the latter is a twofold covering, the orientation
covering.
8. The simplest non-trivial vector bundle is a line bundle over S1. Its total space X can
be viewed as the (open) Möbius band [140, Werke II, p. 484]. A formal definition is
X D S1 �G R, where G D f˙1g acts on S1 and R by .	; z/ 7! 	z. It is also associated
to the G-principal bundle q W S1 ! S1, z 7! z2 (where S1 � C). Suppose the bundle
were trivial. Then there would exist a nowhere vanishing section s W S1 ! E, hence a map
� W S1 ! R n f0g satisfying �.�z/ D ��.z/. The latter contradicts the intermediate value
theorem of calculus.

In the same manner one constructs for each n � 1 a non-trivial line bundle Sn�G R1 !
RP n D Sn=G.
9. Let f W X ! G=H be a G-map and A D f �1.eH/. Then A is a left H -space and we
have a bijectiveG-mapF W G�H A! X , .g; x/ 7! gx. The mapF is a homeomorphism if
G ! G=H has local sections. If p is a vector bundle and G acts by bundle automorphisms,
then A is an H -representation.

14.3 The Homotopy Theorem

A locally trivial bundle is called numerable if it is trivial over the members of
a numerable covering of the base space. We show that homotopic maps induce
isomorphic bundles. We begin with the universal situation of a homotopy.

(14.3.1) Theorem. Let p W E ! B � I be a numerable, locally trivial bundle with
typical fibreF . Then there exists a bundle mapR W E ! E over r W B�I ! B�I ,
.b; t/ 7! .b; 1/ which is the identity on EjB � 1 and the morphism .R; r/ is a
pullback.

Proof. (1) By (13.1.6), (3.1.4), and (13.1.8) we choose a numerable countable
covering .Uj j j 2 N/ of B such that p is trivial over Uj � I . We then choose
a numeration .tj / of .Uj /. Let t .x/ D max.tj .x// and set uj .x/ D tj .x/=t.x/.
Then the support of uj is contained in Uj and maxfuj .x/ j j 2 Ng D 1 holds. Let

rj W B � I ! B � I; .x; t/ 7! .x;max.uj .x/; t//:

We define over rj a bundle map Rj W E ! E: It is the identity in the complement
ofp�1.Uj �I /, and overUj �I a trivializationUj �I �G ! EjUj �I transforms
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it into
.x; t; g/ 7! .x;max.uj .x/; t/; g/:

Then Rj is the identity on EjB � 1. From the construction we see that .Rj ; rj / is
a pullback. The desired bundle map R is the composition of the Rj according to
the ordering of N. This is sensible, since for each x 2 E only a finite number of
Rj .x/ are different from x. The condition maxfuj .x/ j j 2 J g D 1 shows that R
is a map over r . �

If we apply the previous proof to principal bundles (to vector bundles), then
.R; r/ is a bundle map in the corresponding category of bundles.

Let p W E ! B � I be as in (14.3.1) and denote by pt W Et ! B � t Š B

its restriction to B � t . We obtain from (14.3.1) a pullback .R; r/ W p ! p1. The
map r induces from p the product bundle p1 � id W E1 � I ! B � I . We conclude
that there exists an isomorphism E Š E1 � I of bundles which is the identity
E1 D E1 � 1 over B � 1.

(14.3.2) Theorem. Under the assumptions of (14.3.1) the bundles E0 and E1 are
isomorphic.

Proof. We have bundle maps E0 D EjB � 0 � E Š E1 � I pr�! E1. �

14.3.3 Homotopy Theorem. Let q W E ! C be a numerable G-principal bundle
and h W B � I ! C a homotopy. Then the bundles induced from p along h0 and
h1 are isomorphic. A similar statement holds for vector bundles.

Proof. This follows from the previous theorem, since h�
j q D .h�q/j . �

14.3.4 Homotopy lifting. Let

X
ˆ ��

p
��

Y

q
��

B
'

�� C

be a bundle map between numerable G-principal bundles. Let h W B � I ! C

be a homotopy with h0 D '. Then there exists a homotopy of bundle maps
H W X � I ! Y with H0 D ˆ and q ıH D h ı .p � id/.

Proof. There exists a diagram

X
� ��

p
��

Z
Qh ��

Q
��

Y

q
��

B
i0 �� B � I h �� C
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with two pullback squares and hi0 D ' and Qh� D ˆ. There exists an isomorphism
˛ W X � I ! Z of p � id with Q such that ˛i0 D �. The desired homotopy is
H D Qh ı ˛. �

(14.3.5) Theorem. Let q W X ! C be a numerable locally trivial map.Then q is a
fibration.

Proof. Given a homotopy h W B � I ! C and an initial condition a W B ! X . We
pull back the bundle along h. The initial condition gives a section of the pullback
bundle overB�0. We have seen that the bundle over a productB�I is isomorphic
to a product bundle, and in a product the section has an obvious extension toB � I .
We have remarked earlier that the extendibility of the section is equivalent to finding
a lifting of the homotopy with given initial condition. �

14.4 Universal Bundles. Classifying Spaces

We denote by B.B;G/ the set of isomorphism classes of numerable G-principal
bundles over B . (This is a set!) A continuous map f W B ! C induces via
pullback a well-defined map B.f / D f � W B.C;G/! B.B;G/. We thus obtain
a homotopy invariant functor B.�; G/.

Let pG W EG! BG be a numerable G-principal bundle and ŒB;BG � the set of
homotopy classes B ! BG. Since homotopic maps induce isomorphic bundles,
we obtain a well-defined map

�B W ŒB;BG �! B.B;G/; Œf � 7! Œf �pG �:

The �B constitute a natural transformation.
We call the total space EG universal if each numerable free G-space E has up

to G-homotopy a unique G-map E ! EG. (Thus EG is a terminal object in the
appropriate homotopy category.) The corresponding bundle pG W EG! BG is also
called universal.

Let � W E.�/ ! B be a numerable G-principal bundle. Then there exists a
G-map ˆ W E.�/ ! EG and an induced map x̂ W B ! BG; and G-homotopic
maps induce homotopic maps between the base spaces. We assign to � the class
Œ x̂ � 2 ŒB;BG �. Isomorphic bundles yield the same homotopy class. Thus we
obtain a well-defined map �B W B.B;G/! ŒB;BG �, and the �B constitute a natural
transformation. The compositions �B�B and �B �B are the identity.

If p0 W E0G ! B0G is another universal bundle, then there exist bundle maps
ˇ W EG ! E0G, � W E0G ! EG. The compositions ˇ� and �ˇ are homotopic to
the identity as bundle maps. In particular, the spaces BG and B0G are homotopy
equivalent. The space BG is called a classifying space of the group G. A map
k W B ! BG which induces from EG! BG a given bundle q W E ! B is called a
classifying map of the bundle q. Hence:
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(14.4.1) Theorem (Classification Theorem). We assign to each isomorphism class
of numerableG-principal bundles the homotopy class of a classifying map and ob-
tain a well-defined bijection B.G;B/ Š ŒB;BG �. The inverse assigns to k W B !
BG the bundle induced by k from the universal bundle. �

(14.4.2) Theorem. There exist universal G-principal bundles.

The proof of the theorem will be given in three steps.
(1) Construction of the space EG (14.4.3).
(2) Proof that any two G-maps E ! EG are G-homotopic (see (14.4.4)).
(3) Proof that each numerable G-space E admits a G-map (see (14.4.5)).

14.4.3 The Milnor space. We present a construction of the universal bundle which
is due to Milnor [131]. It uses the notion of a join of a family of spaces. Let
.Xj j j 2 J / be a family of spaces Xj . The join

X D�j2J Xj

is defined as follows. The elements of X are represented by families

.tjxj j j 2 J /; tj 2 Œ0; 1�; xj 2 Xj ; P
j2J tj D 1

in which only a finite number of tj are different from zero. The families .tjxj / and
.ujyj / represent the same element of X if and only if

(1) tj D uj for each j 2 J ,
(2) xj D yj whenever tj ¤ 0.

The notation tjxj is short-hand for the pair .tj ; xj /. This is suggestive, since we
can replace 0xj by 0yj for arbitrary xj and yj inXj . We therefore have coordinate
maps

tj W X ! Œ0; 1�; .tixi / 7! tj ; pj W t�1j �0; 1�! Xj ; .tixi / 7! xj :

The Milnor topology onX shall be the coarsest topology for which all tj and pj are
continuous. This topology is characterized by the following universal property: A
map f W Y ! X from any space Y is continuous if and only if the maps tjf W Y !
Œ0; 1� and pjf W f �1t�1j �0; 1�! Xj are continuous. For a finite number of spaces
we use the notation X1 ? � � � ? Xn for their join.

If the spaces Xj are right G-spaces, then ..tjxj /; g/ 7! .tjxjg/ defines a con-
tinuous action of G on X . Continuity is verified with the universal property of the
join topology. The Milnor space is

EG D G ? G ? G ? � � � ;
a join of a countably infinite number of copies of G. We write BG D EG=G for
the orbit space and p W EG! BG for the orbit map.
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It remains to show that EG ! BG is numerable. The coordinate functions tj
are G-invariant and induce therefore functions �j on BG. The �j are a point-finite
partition of unity subordinate to the open covering by theVj =G,Vj D t�1j �0; 1�. The
bundle is trivial over Vj =G, since we have, by construction, G-maps pj W Vj ! G.

Þ

(14.4.4) Proposition. Let E be a G-space. Any two G-maps f; g W E ! EG are
G-homotopic.

Proof. We consider the coordinate form of f .x/ and g.x/,

.t1.x/f1.x/; t2.x/f2.x/; : : : / and .u1.x/g1.x/; u2.x/g2.x/; : : : /;

and show that f and g are G-homotopic to maps with coordinate form

.t1.x/f1.x/; 0; t2.x/f2.x/; 0; : : : / and .0; u1.x/g1.x/; 0; u2.x/g2.x/; : : : /

where 0 denotes an element of the form 0 � y. In order to achieve this, for f say,
we construct a homotopy in an infinite number of steps. The first step has in the
homotopy parameter t the form

.t1f1; t t2f2; .1 � t /t2f2; t t3f3; .1 � t /t3f3; : : : /:
It removes the first zero in the final result just stated. We now iterate this process
appropriately. We obtain the desired homotopy by using the first step on the interval
Œ0; 1

2
�, the second step on the interval Œ1

2
; 3
4
�, and so on. The total homotopy is

continuous, since in each coordinate place only a finite number of homotopies are
relevant.

Having arrived at the two forms above, they are now connected by the homotopy
..1 � t /t1f1; tu1g1; .1 � t /t2f2; tu2g2; : : : / in the parameter t . �

(14.4.5) Proposition. Let E be a G-space. Let .Un j n 2 N/ be an open covering
by G-trivial sets. Suppose there exists a point-finite partition of unity .vn j n 2 N/
by G-invariant functions subordinate to the covering .Un/. Then there exists a
G-map ' W E ! EG.

A numerable free G-space E admits a G-map E ! EG.

Proof. By definition of a G-trivial space, there exist G-maps 'j W Uj ! G. The
desired map ' is now given by '.z/ D .v1.z/'1.z/; v2.z/'2.z/; : : : /. It is contin-
uous, by the universal property of the Milnor topology.

In order to apply the last result to the general case, we reduce arbitrary partitions
of unity to countable ones (see (13.1.8)). �

(14.4.6) Proposition. The space EG is contractible.
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Proof. We have already seen that there exists a homotopy of the identity to the
map .tjgj / 7! .t1g1; 0; t2g2; t3g3; : : : /. The latter map has the null homotopy
..1 � t /t1g1; te; .1 � t /t2g2; : : : /. �

(14.4.7) Example. The locally trivial map p W EG ! BG is a fibration with con-
tractible total space by (14.3.5). We also have the path fibration P ! BG with
contractible total space and fibre �BG. We can turn a homotopy equivalence
EG! P into a fibrewise map, and this map is then a fibrewise homotopy equiva-
lence. Hence we have a homotopy equivalence �BG ' G. The exact homotopy
sequence then yields an isomorphism @ W �n.BG/ Š �n�1.G/. Þ

(14.4.8) Example. For a discrete group, BG is an Eilenberg–Mac Lane space of
type K.G; 1/. The space BS1 is an Eilenberg–Mac Lane space K.Z; 2/. Models
for BZ=2 and BS1 are RP1 and CP1, respectively. Þ

A continuous homomorphism ˛ W K ! L induces the map

E.˛/ W EK ! EL; .tiki / 7! .ti˛.ki //

which is compatible with the projections to the classifying spaces. We obtain an
induced map B.˛/ W BK ! BL. In this manner B becomes a functor from the
category of topological groups into TOP.

(14.4.9) Proposition. An inner automorphism ˛ W K ! K, k 7! uku�1 induces a
map B.˛/ which is homotopic to the identity.

Proof. The map .tiki / 7! .tiuki / is a K-map and therefore K-homotopic to the
identity. The assignment .tiki / 7! .tiukiu

�1/ induces the same map between the
orbit spaces. �

(14.4.10) Proposition. Let X be a free numerable G-space. Then the join E D
X ? X ? � � � is a universal G-space.

Proof. As in the proof of 14.4.3 we see that any two G-maps into E are G-
homotopic. Since X is numerable, so is E. �

(14.4.11) Corollary. Let H be a subgroup of G. Assume that G is numerable as
H -space. Then EG is, considered asH -space, universal. �

The next theorem characterizes universal bundles so that we need not rely on a
special construction.

(14.4.12) Theorem. A numerable G-principal bundle q W E ! B is universal if
and only if E is contractible (as a space without group action).
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Proof. We know already that Milnor’s space EG is contractible. If p is universal,
the G-space E is G-homotopy equivalent to EG and hence contractible.

Conversely, assume that E is contractible. Then the associated fibre bundle
E�GEG! B has a contractible fibre EG and is therefore shrinkable (use (13.3.3)).
Hence it has a section and any two sections are homotopic as sections. A section
corresponds to a bundle map ˛ W E ! EG (see (14.1.4). For the same reason there
exists a bundle map ˇ W EG! E. By 14.4.3, ˛ˇ is homotopic to the identity as a
bundle map. In order to see that ˇ˛ is homotopic id.E/, we use that sections are
homotopic. �

We compare classifying spaces of different groups and discuss the functorial
properties of classifying spaces. Let ˛ W K ! L be a continuous homomorphism
between topological groups. We denote by ˛L the K-space

K � L! L; .k; l/ 7! ˛.k/ � l:

The associated bundle E.K/ �K ˛L ! B.K/ inherits a right L-action and is an
L-principal bundle. It has a classifying mapB.˛/ W B.K/! B.L/. For the Milnor
bundle the homotopy class is the same as the one already defined. If ˇ W L!M is
a further homomorphism, then the relation B.ˇ/B.˛/ ' B.ˇ˛/ is easily verified.

Let i W H � G be the inclusion of a subgroup. We restrict the G-action to H
and obtain a free and contractibleH -space resH EG. If G ! G=H is a numerable
H -principal bundle, then resH EG is numerable as H -space; hence we have in
this case in resHEG ! .resHEG/=H as model for EH ! BH . We then obtain,
because of EG �G H Š EG=H , a map

Bi W BH D .EG/=H ! .EG/=G D BG;

which is a fibre bundle with fibre G=H . If G=H is contractible, then Bi is a
numerable fibration with contractible fibre, hence a homotopy equivalence. This
situation occurs for the inclusions O.n/! GLn.R/ and U.n/! GLn.C/, and in
general for the inclusionK � G of a maximal compact subgroupK of a connected
Lie group G [84, p. 180].

(14.4.13) Proposition. The inclusions of subgroups induce homotopy equivalences
BO.n/! BGLn.R/ and BU.n/! BGLn.C/. �

Let H be a normal subgroup of G. Then E.G=H/ � E.G/ is a numerable
free G-space; hence .E.G=H/ � EG/=G is a model for BG. (In general, for each
G-space X which is contractible, the product X � EG is another model for EG.)
With this model and the orbit map of the projection E.G=H/ � EG ! E.G=H/

we obtain a map p W BG ! B.G=H/ which is a fibre bundle with structure group
G=H and fibre BH. In this case BH D EG=H with inducedG=H -action. The map
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p and the inclusion i W BH ! BG of a fibre are induced maps of the type B� for
the cases i W H � G and � W G ! G=H . Therefore we have a fibre bundle

BH
Bi�! BG

Bp�! B.G=H/:

Principal bundles for a discrete group G are covering spaces; this holds in
particular for the universal bundle EG! BG. Since EG is simply connected, it is
also the universal covering of BG. Thus two notions of “universal” meet. What is
the relation between these concepts?

Let B be a pathwise connected space with universal covering p W E ! B , a
right �-principal covering for � D �1.B/. Let ' W � ! G be a homomorphism.
We have as before the rightG-principal coveringE�� 'G. If ' and are conjugate
homomorphisms, i.e., if g'.a/g�1 D  .a/ for a g 2 G, then

E �� 'G ! E ��  G; .x; h/ 7! .x; gh/

is an isomorphism ofG-principal coverings. The assignment' 7! E��'G is a map
˛ W Hom.�;G/c ! B.G;B/ from the set of conjugacy classes of homomorphisms
(index c) to the set of isomorphism classes of G-principal bundles over B .

(14.4.14) Proposition. The map ˛ is a bijection. �
(14.4.15) Example. Let G be discrete and abelian. Then conjugate homomor-
phisms are equal. If all coverings of B are numerable (say B paracompact), then
B.B;G/ D ŒB;BG �. A bijection

˛ W Hom.�;G/ Š ŒB;BG � D H 1.BIG/
is obtained from (14.4.14). For the last equality note that BG is an Eilenberg–Mac
Lane space and represents the first cohomology. Þ
(14.4.16) Example. The fibration U.n/=U.n � 1/ ! BU.n � 1/ ! BU.n/ and
U.n/=U.n � 1/ Š S2n�1 show that the map i.n/ W BU.n � 1/! BU.n/ induced
by the inclusion U.n � 1/ � U.n/ is .2n � 1/-connected. The induced map
i.n/� W ŒX; B.n � 1/� ! ŒX; BU.n/� is therefore bijective (surjective) for a CW-
complexX of dimension dimX < 2n�1 (dimX � 2n�1). So if dimX � 2n � 2,
then a k-dimensional complex vector bundle � overX is isomorphic to �˚.k�n/"
for a unique isomorphism class � of an n-dimensional bundle �. Þ

Problems

1. Work out a proof of (14.4.14).
2. The canonical diagram

K
' ��

˛
��

�BK

�B.˛/
��

L
' �� �BL



350 Chapter 14. Bundles

is homotopy commutative. See (14.4.7).
3. The abelianized group �1.B/ is isomorphic to the homology groupH1.BIZ/. Therefore
we can write (14.4.15) in the form ˛ W Hom.H1.B/;G/ Š H1.BIG/. The classifying map
f W B ! BG of a G-principal bundle q W X ! B induces homomorphisms f� W �1.X/ !
�1.B/ and f� W H1.B/ ! H1.BG/. If G is abelian and discrete, then G Š �1.BG/ Š
H1.BG/. We thus obtain a map

ˇ W ŒB;BG �! Hom.H1.B/;G/:

Under the hypotheses of (14.4.15), ˇ is inverse to ˛.
4. We give an example of a non-numerable bundle. The equation xz C y2 D 1 yields a
hyperboloid Q in R3. The action of the additive group R on R3

c � .x; y; z/ D .x; y C cx; z � 2cy � c2x/;

is free onQ, andQ becomes an R-principal bundle. Numerable R-principal bundles are triv-
ial, since R is contractible. The bundleQ is non-trivial. The orbit space is the non-Hausdorff
line with two origins. If the bundle were trivial it would have a section, and this would imply
that the orbit space is separated.
5. The join Sm ? Sn is homeomorphic to SmCnC1, .t1z1; t2z2/ 7! .

p
t1z1;

p
t2z2/ is

a homeomorphism. The join of k copies S1 is homeomorphic to S2k�1. A suitable
homeomorphism respects the S1-action, if we let S1 act on S2k�1 by scalar multipli-
cation .	; v/ 7! 	v. The Milnor construction thus yields in this case the Hopf bundle
S2k�1 ! CP k�1.
6. A suitable isomorphism �n.BG/ Š �n�1.G/ has the following interpretation. Let
p W E ! Sn be aG-principal bundle. Write Sn D DC[D�, Sn�1 D DC\D� as usual.
Then pjDC and pjD� are trivial. Choose trivializations t˙ W p�1.D˙/! D˙�G. They
differ over Sn�1 by an automorphism

Sn�1 �G ! Sn�1 �G; .x; g/ 7! .x; ˛x.g//

of principal bundles. Hence ˛x.g/ D ˛x.e/g, and x 7! ˛x.e/ represents an element in
�n�1.G/ which corresponds under the isomorphism in question to the classifying map of
p.
7. The canonical map S1 ! CP1 is an S1-principal bundle with contractible total space.
Hence CP1 is a model for BS1. This space is also an Eilenberg–Mac Lane space of type
K.Z; 2/. In a similar manner one has B.Z=2/ D RP1 D K.Z=2; 1/.
8. Suppose the Xj are Hausdorff spaces. Then their join is a Hausdorff space.
9. The map .X1 ? X2/ ? X3 ! X1 ? X2 ? X3 which sends .u1.t1x1; t2x2/; u2x3/ to
.u1t1x1; u1t2x2; u2x3/ is a homeomorphism. Discuss in general the associativity of the
join.
10. The join of a family .Xj j j 2 J / is a subspace of the product

Q
j 2J CXj of cones,

when the cone CX D I �X=0�X is given the Milnor topology with coordinate functions
t W .x; t/ 7! t and t�1�0; 1� ! X , .x; t/ 7! x (and not the quotient topology as previously
used in homotopy theory).
11. As a set, X0 ? � � � ? Xn is a quotient of X0 � � � � � Xn �
Œn�. If the Xj are compact
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Hausdorff spaces, then the join carries the quotient topology. In general the two topologies
yield h-equivalent spaces.
12. A theorem of type (14.2.7) can be proved in certain other situations. Let p W E ! B

be a right S.n/-principal bundle for the symmetric group S.n/ and F.n/ D f1; : : : ; ng the
standard left S.n/-set. Then pn W E�S.n/F.n/! B is an n-fold covering. The assignment
p 7! pn is part of an equivalence between the category of S.n/-principal bundles and n-fold
coverings. Isomorphism classes of n-fold numerable coverings of B are therefore classified
by ŒB;BS.n/�.
13. Use the previous problem in order to classifyn-fold coverings ofS1_S1 via the bijection
to ŒS1 _ S1;BS.n/�.

14.5 Algebra of Vector Bundles

Let � W E.�/ ! B and � W E.�/ ! C be vector bundles over the same field. The
product � � � W E.�/ � E.�/ ! B � C is a vector bundle. Let B D C ; we pull
back the product bundle along the diagonal d W B ! B �B , b 7! .b; b/ and obtain
d�.� � �/ D � ˚ �, the Whitney sum of � and �. The fibre of � ˚ � over b is the
direct sum of the fibres �b ˚ �b . A bundle � is called an inverse of � , if � ˚ � is
isomorphic to a trivial bundle.

A Riemannian metric on a real vector bundle � is a continuous map
s W E.� ˚ �/ ! R which is on each fibre an inner product s.x/ on E.�/x . If �
has a Riemannian metric and if ˛ W �! � is a fibrewise injective bundle morphism
over B , then Coker.˛/ is isomorphic to the fibrewise orthogonal complement �
of Im.˛/ (this is a subbundle). We have therefore an isomorphism � Š � ˚ �.
Similarly for complex bundles and hermitian metrics.

(14.5.1) Proposition. A numerable vector bundle has a Riemannian metric.

Proof. Let U be a covering of B with numeration .�U j U 2 U/. A trivial bundle
certainly has a Riemannian metric; so let sU be a metric on �jU . Then

P
U �U sU

is a Riemannian metric on �. The sum is short-hand notation for the inner productP
U �U .x/sU .x/ on the fibre over x, and we agree that “zero times undefined =

zero”. �

(14.5.2) Proposition. A bundle � W E.�/ ! B has an inverse if and only if it is
numerable of finite type.

Proof. Let 'j W ��1.Uj / ! Uj � Rn be bundle charts and .�j / a numeration of
.Uj /, (j 2 J , J finite). Then

˛ W E.�/! B �Lj2J Rn; x 7! .�.x/I �j .�.x// pr2 'j .x/ j j 2 J /
is a fibrewise injective bundle morphism into a trivial bundle. The orthogonal
complement of the image of ˛ is an inverse of � .
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Let � be a k-dimensional bundle with inverse �. From an isomorphism of �˚�
to a trivial bundle we obtain a map f W E.�/ � E.� ˚ �/ Š B � Rn

pr! Rn which
is injective on each fibre. Given a map with this property we get a bundle map
� ! �k.R

n/ into the tautological bundle by mapping x 2 �b to .f .�b/; f .x// 2
Ek.R

n/ � Gk.Rn/�Rn. (Verify that b 7! f .�b/ is continuous.) This map is called
the Gauss map of �. The bundle �k is numerable of finite type, as a bundle over
a compact Hausdorff space, hence the induced bundle � has the same properties.

�

Standard constructions of linear algebra can be applied fibrewise to vector bun-
dles. Examples are:

V � dual space of V �� dual bundle of �
V ˚W direct sum � ˚ � Whitney sum
V ˝W tensor product � ˝ � tensor product
ƒiV i-th exterior power ƒi� i-th exterior power
Hom.V;W / homomorphisms Hom.�; �/ homomorphism bundle

Canonical isomorphisms between algebraic constructions yield canonical isomor-
phisms for the corresponding vector bundles. Examples are:

.� ˚ �/˝ � Š .� ˝ �/˚ .�˝ �/
Hom.�; �/ Š �� ˝ �
ƒk.� ˚ �/ ŠLiCjDk.ƒi� ˝ƒj�/:

In the last isomorphism ƒ0� is the trivial one-dimensional bundle and ƒ1� Š � .
In order to prove such statements, one has to use that the constructions of linear
algebra are in an appropriate sense continuous. It suffices to consider an example,
say the tensor product. Let � W E.�/! B and � W E.�/! B be real vector bundles.
The total space of � ˝ � has the underlying setS

b2B.�b ˝ �b/ D E.� ˝ �/;
the disjoint union of the tensor products of the fibres. Let ' W ��1.U /! U � Rm

be a bundle chart of � and  W ��1.U /! U �Rn a chart of �. Then a bundle chart
for � ˝ � over U should be

� W Sb2U .�b ˝ �b/! Uj � .Rm ˝ Rn/;

the fibre �b ˝ �b is mapped by the tensor product of the linear maps ' over b and
 over b. At this point it is now important to observe that the transition maps
of such charts are homeomorphisms. Therefore there exists a unique topology on
E.�˝�/ such that the sources of the � are open and the � are homeomorphisms. In
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this manner we have obtained the data of the bundle � ˝ �. In dealing with tensor
products one has to distinguish˝R for real bundles and˝C for complex bundles.

If we start with bundles � W E.�/! B and � W E.�/! C we obtain in a similar
manner a bundle � Ő � overB�C with fibres �b˝�c . It is called the exterior tensor
product. LetB D C and let d W B�B be the diagonal; then d�.� Ő �/ D �˝�. Let
p W B � C ! B and q W B � C ! C be the projections; then � Ő � D p�� ˝ q��.

(14.5.3) Example. Let p W E ! B be an S1-principal bundle and � W E.�/ D
E �S1 C ! B the associated complex line bundle. Then p is the unit-sphere
bundle of �. Let Cm � S1 be the cyclic subgroup of order m. The m-fold tensor
product �˝m D �˝ � � �˝ � isE �S1 C.m/, where S1 acts on C by .	; z/ 7! 	mz.
The unit-sphere bundle of �˝m is E=Cm ! B . If we use the model S1 ! BS1

for the universal S1-principal bundle, we obtain the canonical map BCm ! BS1

as the sphere bundle of the m-fold tensor product of the universal line bundle. Þ

(14.5.4) Example. Let p W E ! B be a right G-principal bundle. Let V;W be
complex G-representations. Let pV W E �G V ! B be the associated complex
vector bundle. Then there are canonical isomorphisms pV ˚ pW Š pV˚W and
pV˝pW Š pV˝W . For the bundlesH.k/over CP n the relationsH.k/˝CH.l/ Š
H.k C l/ hold. Þ

14.5.5 Complex vector bundles over S 2 D CP1. We have the line bundlesH.k/
over CP 1 for k 2 Z. The total space isH.k/ D .C2X 0/�C� C with equivalence
relation ..z0; z1/; u/ � ..	z0; 	z1/; 	

ku/. Set � D H.1/; then �n Š H.n/. Let
� be an arbitrary line bundle over CP 1. We have the charts '0 W C ! U0 D
fŒz0; z1� j z0 6D 0g and '1 W C ! U1fŒz0; z1� j z1 6D 0g. We pull back � along
'j and obtain a trivial bundle. Let ĵ W C � C ! �jUj be a trivialization. Then
ˆ�1
1 ˆ0 W C� � C ! C� � C has the form .z; u/ 7! .z�1; az � u/ for some map

a W C� ! C�. The map a is homotopic to a map z 7! z�k . We use a homotopy in
order to construct a bundle over CP 1 � Œ0; 1� which is over CP 1 � 0 given by the
gluing .z; u/ 7! .z�1; azu/ and over CP 1�1 by the gluing .z; u/ 7! .z�1; z�ku/.
The latter gives H.k/. By the homotopy theorem we see that � is isomorphic
to H.k/. Let B denote the set of isomorphism classes of complex line bundles
over CP 1 with tensor product as composition law (see Problem 4). We have just
seen that � W Z ! B, k 7! H.k/ is a surjective homomorphism. We know that
B Š ŒCP 1;CP1� Š �2.CP1/ Š Z. Therefore � has a trivial kernel, because
otherwise B would be a finite cyclic group. Altogether we have seen that theH.k/
represent the isomorphism classes of complex line bundles.

Now we use (14.4.16) and see that ak-dimensional bundle (k � 1) is isomorphic
to H.n/ ˚ .k � 1/" for a unique n 2 Z. Bundles over CP 1 have a cancellation
property: An isomorphism �˚� Š �˚� implies � Š �; this is again a consequence
of (14.4.16).
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For the bundles H.k/ over CP 1 the relations H.k/˚H.l/ Š H.k C l/˚ "
hold. In order to prove this relation, we construct an isomorphism of � ˚ ��1 to
the trivial bundle. We write the bundle in the form S3 �S1 .C.�1/ ˚ C.1//. A
fibrewise map to C2 is given by

..z0; z1/; .u0; u1// 7! .z0u0 � xz1u1; z1u0 C xz0u1/:
Observe that the matrix with rows .z0;�xz1/; .z1; xz0/ is unitary. For u0 the image is
the tautological bundleH.�1/, for u1 the orthogonal complementH.1/. We show
by induction �k C .k � 1/" D k�. This relation is clear for k D 1 and follows for
k D 2 from �˚ ��1 D 2". Multiply �k C .k � 1/" D k� by �, add k" and cancel
.k � 1/�; the desired relation for k C 1 drops out. Suppose k; l 2 N. Then

�k ˚ �l ˚ .k � 1C l � 1/" D .k C l/� D �kCl ˚ .k C l � 1/";
and cancellation of .k � 1C l � 1/" gives �k ˚ �l D �kCl ˚ ". We multiply this
relation by ��k; ��l , or ��.kCl/ in order to verify the remaining cases. Þ

Problems

1. Let � and � be vector bundles over B . An orientation of � and � induces an orientation
of � ˚ �, fibrewise the sum orientation of the vector spaces. If two of the bundles �, �, and
� ˚ � are orientable, then the third is orientable.
2. In a bundle with Riemannian metric the fibrewise orthogonal complement of a subbundle
is a subbundle.
3. Let p W E ! B be an n-dimensional bundle with Riemannian metric. Then there exists a
bundle atlas such that the transition maps have an image in the orthogonal group O.n/. The
structure group is therefore reducible to O.n/. If the bundle is orientable, then the structure
group is reducible to SO.n/.
4. Let � and � be complex line bundles over B . Then � ˝C � is again a line bundle. The
bundle �˝C �

� is trivial; the assignments �b˝��
b
! C, .x; 	/ 7! 	.x/ are an isomorphism

to the trivial bundle. The isomorphism classes of complex line bundles are an abelian group
with composition law the tensor product.
5. Let X be a normal space and Y � X a closed subset. A section s W Y ! EjY over Y of
a numerable vector bundle � W E ! X has an extension to a section over X .
6. Let p W E ! X and q W F ! X be vector bundles. The bundle morphisms E ! F

correspond to the sections of Hom.E; F /! X .
7. Let p W E ! X and q W F ! X be numerable bundles over the normal space X . If
f W EjY ! F jY is an isomorphism over the closed set Y , then there exists an open neigh-
bourhood U of Y and an isomorphism f W EjU ! F jU which extends f over Y .
8. The map CP a � CP b ! CP aCb , .Œxi �; Œyj �/ 7! Œzk � with xt D P

iCj Dt xiyj in-
duces from H.1/ the exterior tensor product H.1/ ŐH.1/. In the case a D b D1 the map
is associative and defines the structure of an H -space. It induces on ŒB;CP1� the group
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structure on the set of line bundles given by the tensor product.
9. Determine two-dimensional real bundles over RP 2 [44, p. 434].

14.6 Grothendieck Rings of Vector Bundles

Denote by V.X/ the set of isomorphism classes of complex vector bundles overX .
The Whitney sum and the tensor product induce on V.X/ two associative and
commutative composition laws (addition C, multiplication �), and the distributive
law holds. Addition has a zero element, the 0-dimensional bundle; multiplication
has a unit element, the 1-dimensional trivial bundle.

A commutative monoid M is a set together with an associative and commuta-
tive composition law C with zero element. A universal group for M is a homo-
morphism � W M ! K.M/ into an abelian group K.M/ such that each monoid-
homomorphism ' W M ! A into an abelian group A has a unique factorization
ˆ ı � D ' with a homomorphism ˆ W K.M/ ! A. A monoid-homomorphism
f W M ! N induces a homomorphism K.f / W K.M/! K.N/. Let N � M be
a submonoid. We define an equivalence relation on M by

x � y , there exist a; b 2 N such that x C a D y C b.

Let p W M ! M=N , x 7! Œx� denote the quotient map onto the set of equivalence
classes. We obtain by Œx�C Œy� D ŒxCy� a well-defined composition law onM=N
which is a monoid structure.

In the product monoid M � M we have the diagonal submonoid D.M/ D
f.m;m/g. We setK.M/ D .M �M/=D.M/ and �.x/ D Œx; 0�. ThenK.M/ is an
abelian group and � a universal homomorphism. Since Œx; 0�C Œ0; x� D Œx; x� D 0,
we see Œ0; x� D ��.x/. The elements ofK.M/ are formal differences x�y, x; y 2
M , �.x/��.y/ D Œx; y�, and x�y D x0�y0 if and only if xCy0Cz D x0CyCz
holds as equality in M for some z 2M .

We apply these concepts to M D V.X/ and write K.X/ D K.V.X//. The
tensor product induces a bi-additive map V.X/ � V.X/ ! V.X/. It induces a
bi-additive map in the K-groups:

(14.6.1) Proposition. Let A, B , C be abelian monoids and m W A � B ! C be
a bi-additive map. The there exists a unique bi-additive map K.m/ such that the
diagram

A � B m ��

�A��B
��

C

�C
��

K.A/ �K.B/ K.m/
�� K.C/

is commutative. �
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The bi-additive map induced by the tensor product is written as multiplication,
and K.X/ becomes in this way a commutative ring. This ring is often called the
Grothendieck ring of complex vector bundles. In general, the universal groups
K.M/ are called Grothendieck groups.

We can apply the same construction to real vector bundles and obtain the
Grothendieck ringKO.X/. Other notations for these objects areKO.X/ D KR.X/

and K.X/ D KU.X/ D KC.X/.
Pullback of bundles along f W X ! Y induces a ring homomorphismK.f / D

f � W K.Y / ! K.X/ and similarly for KO. Homotopic maps induce the same
homomorphism.

(14.6.2) Example. K.S2/ is free abelian as an additive group with basis 1 and �.
The multiplicative structure is determined by �2 D 2� � 1. This is a consequence
of 14.5.5. Þ

The inclusions U.n/ ! U.n C 1/, A 7! �
A 0
0 1

�
are used to define U D

colim U.n/, a topological group with the colimit topology. The inclusion of groups
U.n/! U inducesBU.n/! BU. If we compose a classifying mapX ! BU.n/
with this map, we call the result X ! BU the stable classifying map. Bundles �
and � ˚ a" are called stably equivalent, and they have the same stable classifying
map (up to homotopy).

(14.6.3) Proposition. Let X be a path connected compact Hausdorff space. Then
there exists a natural bijectionK.X/ Š ŒX;Z�BU�. Here Z carries the discrete
topology.

Proof. Let Œ�� � Œ�� 2 K.X/. A bundle � over a compact Hausdorff space has
an inverse bundle �� (see (14.5.2)). Hence Œ� ˚ ��� � Œ� ˚ ��� 2 K.X/ is the
same element. Therefore each element inK.X/ can be written in the form Œ��� n.
Suppose Œ�� � n D Œ�� � m. Then � ˚ m" ˚ � Š � ˚ n" ˚ � for some �. We
add an inverse of � and arrive at a relation of the form � ˚ a" Š � ˚ b", i.e.,
� and � are stably equivalent. The homotopy class of a stable classifying map
k
 W X ! BU is therefore uniquely determined by the element Œ�� � n. We define
� W K.X/! ŒX;Z � BU� by sending Œ�� � n to k
 W X ! .dim � � n/ � BU.

Conversely, let f W X ! Z � BU be given. Since X is path connected, the
image is contained in some k � BU. The compactness of X is used to verify that
f admits a factorization X ! BU.n/ ! BU. We obtain a well-defined inverse
map ŒX;Z � BU�! K.X/, if we assign to f W X ! BU.n/! BU the element
Œf �
n �n� � Œn � k�. �

For more general spaces the Grothendieck ring K.X/ can differ substantially
from the homotopy group ŒX;Z � BU�, e.g., for X D CP1. The latter is a kind
of completion of the Grothendieck ring.
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The (exterior) tensor product of bundles yields a ring homomorphism

K.X/˝Z K.Y /! K.X � Y /:
A fundamental result is the periodicity theorem of Bott. One of its formulations is:
For compact spaces X the tensor product yields isomorphisms

K.X/˝K.S2/ Š K.X � S2/; KO.X/˝KO.S8/ Š KO.X � S8/:
Starting from this isomorphism one constructs the cohomology theories which are
called K-theories. For an introduction see [15], [9], [10], [12], [11], [13], [14],
[102]. For the Bott periodicity see also [6], [106], [19].



Chapter 15

Manifolds

This chapter contains an introduction to some concepts and results of differential
topology. For more details see [30], [44], [107]. We restrict attention to those
parts which are used in the proof of the so-called Pontrjagin–Thom theorem in the
chapter on bordism theory. We do not summarize the results here, since the table
of contents should give enough information.

15.1 Differentiable Manifolds

A topological space X is n-dimensional locally Euclidean if each x 2 X has an
open neighbourhood U which is homeomorphic to an open subset V of Rn. A
homeomorphism h W U ! V is a chart or local coordinate system of X about x
with chart domain U . The inverse h�1 W V ! U is a local parametrization of X
about x. If h.x/ D 0, we say that h and h�1 are centered at x. A set of charts is an
atlas for X if their domains cover X . If X is n-dimensional locally Euclidean, we
call n the dimension of X and write dimX D n. The dimension is well-defined,
by invariance of dimension.

An n-dimensional manifold or just n-manifold is an n-dimensional locally
Euclidean Hausdorff space with countable basis for its topology. Hence manifolds
are locally compact. A surface is a 2-manifold. A 0-manifold is a discrete space
with at most a countably infinite number of points. The notation M n is used to
indicate that n D dimM .

Suppose .U1; h1; V1/ and .U2; h2; V2/ are charts of an n-manifold. Then we
have the associated coordinate change or transition function

h2h
�1
1 W h1.U1 \ U2/! h2.U1 \ U2/;

a homeomorphism between open subsets of Euclidean spaces.
Recall: A map f W U ! V between open subsets of Euclidean spaces (U �

Rn; V � Rm) is aC k-map if it is k-times continuously differentiable in the ordinary
sense of analysis (1 � k � 1). A continuous map is also called a C 0-map. A
C k-map f W U ! V has a differential Df.x/ W Rn ! Rm at x 2 U .

If the coordinate changes h2h�1
1 and h1h�1

2 are C k-maps, we call the charts
.U1; h1; V1/ and .U2; h2; V2/C k-related (1 � k � 1). An atlas is aC k-atlas if any
two of its charts are C k-related. We call C1-maps smooth or just differentiable;
similarly, we talk about a smooth or differentiable atlas.
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(15.1.1) Proposition. Let A be a smooth atlas forM . The totality of charts which
are smoothly related to all charts of A is a smooth atlas D.A/. If A and B are
smooth atlases, then A [B is a smooth atlas if and only if D.A/ D D.B/. The
atlasD.A/ is the uniquely determinedmaximal smooth atlaswhich contains A. �

A differential structure on the n-manifold M is a maximal smooth atlas D

for M . The pair .M;D/ is called a smooth manifold. A maximal atlas serves just
the purpose of this definition. Usually we work with a smaller atlas which then
generates a unique differential structure. Usually we omit the differential structure
from the notation; the charts of D are then called the charts of the differentiable
manifold M .

LetM andN be smooth manifolds. A map f W M ! N is smooth at x 2M if
f is continuous at x and if for charts .U; h; U 0/ about x and .V; k; V 0/ about f .x/
the composition kf h�1 is differentiable at h.x/. We call kf h�1 the expression
of f in local coordinates. The map f is smooth if it is differentiable at each
point. The composition of smooth maps is smooth. Thus we have the category of
smooth manifolds and smooth maps. A diffeomorphism is a smooth map which
has a smooth inverse. Manifolds M and N are diffeomorphic if there exists a
diffeomorphism f W M ! N .

Smooth manifoldsM andN have a product in the category of smooth manifolds.
The charts of the form .U � V; f � g;U 0 � V 0/ for charts .U; f; U 0/ of M and
.V; g; V 0/ ofN define a smooth structure onM�N . The projections onto the factors
are smooth. The canonical isomorphisms Rm �Rn D RmCn are diffeomorphisms.

A subset N of an n-manifold M is a k-dimensional submanifold of M if the
following holds: For each x 2 N there exists a chart h W U ! U 0 of M about x
such that h.U \N/ D U 0 \ .Rk � 0/. A chart with this property is called adapted
to N . The difference n � k is the codimension of N in M . (The subspace Rk � 0
of Rn may be replaced by any k-dimensional linear or affine subspace if this is
convenient.) If we identify Rk � 0 D Rk , then .U \N; h; U 0\Rk/ is a chart ofN .
If M is smooth, we call N a smooth submanifold of M if there exists about each
point an adapted chart from the differential structure of M . The totality of charts
.U \N; h; U 0\Rk/which arise from adapted smooth charts ofM is then a smooth
atlas for N . In this way, a differentiable submanifold becomes a smooth manifold,
and the inclusion N � M is a smooth map. A smooth map f W N ! M is a
smooth embedding if f .N / � M is a smooth submanifold and f W N ! f .N / a
diffeomorphism.

The spheres are manifolds which need an atlas with at least two charts. We have
the atlas with two charts .UN ; 'N / and .US ; 'S / coming from the stereographic
projection (see (2.3.2)). The coordinate transformation is 'S ı '�1

N .y/ D kyk�2y.
The differential of the coordinate transformation at x is � 7! .kxk2� � 2hx; � ix/ �
kxk�4. For kxk D 1 we obtain the reflection � 7! � � 2hx; � ix in a hyperplane.

We now want to construct charts for the projective space RP n. The subset
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Ui D fŒx0; : : : ; xn� j xi ¤ 0g is open. The assignment

'i W Ui ! Rn; Œx0; : : : ; xn� 7! x�1
i .x0; : : : ; xi�1; xiC1; : : : ; xn/

is a homeomorphism. These charts are smoothly related.
Charts for CP n can be defined by the same formulas. Note that CP n has

dimension 2n as a smooth manifold. (It is n-dimensional when viewed as a so-
called complex manifold.)

(15.1.2) Proposition. Let M be an n-manifold and U D .Uj j j 2 J / an open
covering of M . Then there exist charts .Vk; hk; Bk j k 2 N/ of M with the
following properties:

(1) Each Vk is contained in some member of U.

(2) Bk D U3.0/ D fx 2 Rn j kxk < 3g.
(3) The family .Vk j k 2 N/ is a locally finite covering ofM .

In particular, each open cover has a locally finite refinement, i.e., manifolds are
paracompact. IfM is smooth, there exists a smooth partition of unity .�k j k 2 N/
subordinate to .Vk/. There also exists a smooth partition of unity . j̨ j j 2 J /
such that the support of j̨ is contained in Uj and at most a countable number of
the j̨ are non-zero.

Proof. The space M is a locally compact Hausdorff space with a countable basis.
Therefore there exists an exhaustion

M0 �M1 �M2 � � � � �M DS1
iD1Mi

by open sets Mi such that SMi is compact and contained in MiC1. Hence Ki DSMiC1XMi is compact. For each i we can find a finite number of charts .V� ; h� ; B�/,
B� D U3.0/, such that V� � Uj for some j and such that the h�1

� U1.0/ cover Ki
and such that V� � MiC2 X SMi�1 (M�1 D ;). Then the V� form a locally finite,
countable covering of M , now denoted .Vk; hk; Bk j k 2 N/.

The function 	 W R ! R, 	.t/ D 0 for t � 0, 	.t/ D exp.�1=t/ for t > 0, is
a C1-function. For " > 0, the function '".t/ D 	.t/.	.t/C 	." � t //�1 is C1
and satisfies 0 � '" � 1, '".t/ D 0 , t � 0, '".t/ D 1 , t � ". Finally,
 W Rn ! R, x 7! '".kxk � r/ is a C1-map which satisfies 0 �  .x/ � 1,
 .x/ D 1, x 2 Ur.0/,  .x/ D 0, kxk � r C ".

We use these functions  for r D 1 and " D 1 and define  i by  ı hi on Vi
and as zero on the complement. Then the �k D s�1 k with s DP1

jD1  j yield a
smooth, locally finite partition of unity subordinate to .Vk j k 2 N/.

The last statement follows from (13.1.2). �

LetC0 andC1 be closed disjoint subsets of the smooth manifoldM . Then there
exists a smooth function ' W M ! Œ0; 1� such that '.Cj / � fj g; apply the previous
proposition to the covering by the Uj DM X Cj .
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Let A be a closed subset of the smooth manifold M and U an open neigh-
bourhood of A in M . Let f W U ! Œ0; 1� be smooth. Then there exists a smooth
function F W M ! Œ0; 1� such that F jA D f jA. For the proof choose a partition of
unity .'0; '1/ subordinate to .U;M XA/. Then set F.x/ D '0.x/f .x/ for x 2 U
and F.x/ D 0 otherwise.

(15.1.3)Proposition. LetM be a submanifold ofN . A smooth functionf W M ! R
has a smooth extension F W N ! R.

Proof. From the definition of a submanifold we obtain for each p 2 M an open
neighbourhood U of p in N and a smooth retraction r W U ! U \ M . Hence
we can find an open covering .Uj j j 2 J / of M in N and smooth extensions
fj W Uj ! R of f jUj \M . Let . j̨ j j 2 J / be a subordinate smooth partition of
unity and set F.x/ D P

j2J j̨ .x/fj .x/, where a summand is defined to be zero
if fj .x/ is not defined. �

(15.1.4) Proposition. LetM be a smooth manifold. There exists a smooth proper
function f W M ! R.

Proof. A function between Hausdorff spaces is proper if the pre-image of a compact
set is compact. We choose a countable partition of unity .�k j k 2 N/ such that the
functions �k have compact support. Then we set f D P1

kD1 k � �k W M ! R. If
x … Sn

jD1 supp.�j /, then 1 D P
j�1 �j .x/ D

P
j>n �j .x/ and therefore f .x/ DP

j>n j�j .x/ > n. Hence f �1Œ�n; n� is contained in
Sn
jD1 supp.�j / and therefore

compact. �

In working with submanifolds we often use, without further notice, the following
facts. LetM be a smooth manifold andA �M . ThenA is a submanifold if and only
if each a 2 A has an open neighbourhoodU such thatA\U is a submanifold ofU .
(Being a submanifold is a local property.) Let f W N1 ! N2 be a diffeomorphism.
ThenM1 � N1 is a submanifold if and only iff .M1/ DM2 � N2 is a submanifold.
(Being a submanifold is invariant under diffeomorphisms.)

Important objects in mathematics are the group objects in the smooth category.
A Lie group consists of a smooth manifold G and a group structure on G such
that the group multiplication and the passage to the inverse are smooth maps. The
fundamental examples are the classical matrix groups. A basic result in this context
says that a closed subgroup of a Lie group is a submanifold and with the induced
structure a Lie group [84], [29].

Problems

1. The gluing procedure (1.3.7) can be adapted to the smooth category. The maps gj

i
are

assumed to be diffeomorphisms, and the result will be a locally Euclidean space. Again one
has to take care that the result will become a Hausdorff space.



362 Chapter 15. Manifolds

2. Let E be an n-dimensional real vector space 0 < r < n. We define charts for the
Grassmann manifold Gr .E/ of r-dimensional subspaces of E. Let K be a subspace of
codimension r in E. Consider the set of complements in K

U.K/ D fF 2 Gr .E/ j F ˚K D Eg:
The sets are the chart domains. Let P.K/ D fp 2 Hom.E;E/ j p2 D p; p.E/ D Kg
be the set of projections with image K. Then P.K/ ! U.K/, p 7! Ker.p/ is a bijection.
The set P.K/ is an affine space for the vector space Hom.E=K;K/. Let j W K � E and let
q W E ! E=K/ be the quotient map. Then

Hom.E=K;K/ � P.K/! P.K/; .'; p/ 7! p C j'q
is a transitive free action. We choose a base point p0 2 P.K/ in this affine space and obtain
a bijection

U.K/ P.K/! Hom.E=K;K/; Ker.p/ Í p 7! p � p0:

The bijections are the charts for a smooth structure.
3. f.x; y; z/ 2 R3 j z2x3 C 3zx2 C 3x � zy2 � 2y D 1g is a smooth submanifold of R3

diffeomorphic to R2. If one considers the set of solutions .x; y; z/ 2 C2, then one obtains
a smooth complex submanifold of C3 which is contractible but not homeomorphic to C2

(see [47]).

15.2 Tangent Spaces and Differentials

We associate to each point p of a smooth m-manifold M an m-dimensional real
vector space Tp.M/, the tangent space of M at the point p, and to each smooth
map f W M ! N a linear map Tpf W Tp.M/! Tf .p/.N /, the differential of f at
p, such that the functor properties hold (chain rule)

Tp.gf / D Tf .p/g ı Tpf; Tp.id/ D id :

The elements of Tp.M/ are the tangent vectors of M at p.
Since there exist many different constructions of tangent spaces, we define them

by a universal property.
A tangent space of the m-dimensional smooth manifold M at p consists of an

m-dimensional vector space Tp.M/ together with an isomorphism ik W TpM !
Rm for each chart k D .U; '; U 0/ about p such that for any two such charts k
and l D .V;  ; V 0/ the isomorphism i�1

l
ik is the differential of the coordinate

change  '�1 at '.p/. If .T 0
pM; i

0
k
/ is another tangent space, then �p D i�1

k
ı

i 0
k
W T 0

pM ! TpM is independent of the choice of k. Thus a tangent space is
determined, up to unique isomorphism, by the universal property. If we fix a chart
k, an arbitrarym-dimensional vector spaceTpM , and an isomorphism ik W TpM !
Rm, then there exists a unique tangent space with underlying vector space TpM and
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isomorphism ik; this follows from the chain rule of calculus. Often we talk about
the tangent space TpM and understand a suitable isomorphism ik W TpM ! Rm as
structure datum.

Let f W Mm ! N n be a smooth map. Choose charts k D .U; '; U 0/ about
p 2 M and l D .V;  ; V 0/ about f .p/ 2 N . There exists a unique linear map
Tpf which makes the diagram

TpM
Tpf

�� Tf .p/N

Rm
D. f'�1/

��

ik

��

Rn

il

��

commutative; the morphism at the bottom is the differential of  f '�1 at '.p/.
Again by the chain rule, Tpf is independent of the choice of k and l . Differentials,
defined in this manner, satisfy the chain rule. This definition is also compatible with
the universal maps �p for different choices of tangent spaces Tpf ı�p D �f .p/ıT 0

pf .
In abstract terms: Make a choice of Tp.M/ for each pairp 2M . Then the TpM

and the Tpf constitute a functor from the category of pointed smooth manifolds
and pointed smooth maps to the category of real vector spaces. Different choices
of tangent spaces yield isomorphic functors.

The purpose of tangent spaces is to allow the definition of differentials. The ac-
tual vector spaces are adapted to the situation at hand and can serve other geometric
purposes (e.g., they can consist of geometric tangent vectors).

We call a smooth map f an immersion if each differential Txf is injective and
a submersion if each differential Txf is surjective. The point x 2 M is a regular
point of f if Txf is surjective. A point y 2 N is a regular value of f if each
x 2 f �1.y/ is a regular point, and otherwise a singular value. If f �1.y/ D ;,
then y is also called a regular value.

(15.2.1) Rank Theorem. Let f W M ! N be a smooth map from an m-manifold
into an n-manifold.

.1/ If Taf is bijective, then there exist open neighbourhoods U of a and V of
f .a/, such that f induces a diffeomorphism f W U ! V .

.2/ If Taf is injective, then there exist open neighbourhoodsU of a, V of f .a/,
W of 0 2 Rn�m and a diffeomorphism F W U �W ! V such that F.x; 0/ D f .x/
for x 2 U .

.3/ IfTaf is surjective, then there exist open neighbourhoodsU of a, V of f .a/,
W of 0 2 Rm�n andadiffeomorphismF W U ! V �W such that prV F.x/ D f .x/
for x 2 U with the projection prV W V �W ! V .

.4/ Suppose Txf has rank r for all x 2 M . Then for each a 2 M there
exist open neighbourhoods U of a, V of f .a/ and diffeomorphisms ' W U ! U 0,
 W V ! V 0 onto open sets U 0 � Rm, V 0 � Rn such that f .U / � V and
 f '�1.x1; : : : ; xm/ D .x1; : : : ; xr ; 0; : : : ; 0/ for all .x1; : : : ; xm/ 2 U 0.
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Proof. The assertions are of a local nature. Therefore we can, via local charts,
reduce to the case thatM and N are open subsets of Euclidean spaces. Then these
assertions are known from calculus. �

(15.2.2) Proposition. Let y be a regular value of the smooth map f W M ! N .
ThenP D f �1.y/ is a smooth submanifold ofM . For each x 2 P , we can identify
TxP with the kernel of Txf .

Proof. Let x 2 P . The rank theorem (15.2.1) says that f is in suitable local coor-
dinates about x and f .x/ a surjective linear map; henceP is locally a submanifold.

The differential of a constant map is zero. Hence TxP is contained in the kernel
of Txf . For reasons of dimension, the spaces coincide. �

(15.2.3) Example. The differentials of the projections onto the factors yield an
isomorphism T.x;y/.M �N/ Š Tx.M/�Ty.N /which we use as an identification.
With these identifications, T.x;y/.f � g/ D Txf � Tyg for smooth maps f and
g. Let h W M � N ! P be a smooth map. Then T.x;y/h, being a linear map, is
determined by the restrictions to TxM and to TyN , hence can be computed from
the differentials of the partial maps h1 W a 7! h.a; y/ and h2 W b 7! h.x; b/ via
T.x;y/h.u; v/ D Txh1.u/C Tyh2.v/. Þ

(15.2.4) Proposition. Suppose f W M ! N is an immersion which induces a
homeomorphismM ! f .M/. Then f is a smooth embedding.

Proof. We first show that f .M/ is a smooth submanifold ofN of the same dimen-
sion as M . It suffices to verify this locally.

ChooseU; V;W andF according to (15.2.1). SinceU is open andM ! f .M/

a homeomorphism, the set f .U / is open in f .M/. Therefore f .U / D f .M/\P ,
with some open set P � N . The set R D V \ P is an open neighbourhood of b
inN , andR\f .M/ D f .U / holds by construction. It suffices to show that f .U /
is a submanifold ofR. We setQ D F �1R, and have a diffeomorphismF W Q! R

which maps U � 0 bijectively onto f .U /. Since U � 0 is a submanifold of U �W ,
we see that f .U / is a submanifold.

By assumption, f W M ! f .M/ has a continuous inverse. This inverse is
smooth, since f W M ! f .M/ has an injective differential, hence bijective for
dimensional reasons, and is therefore a local diffeomorphism. �

(15.2.5) Proposition. Let f W M ! N be a surjective submersion and g W N ! P

a set map between smooth manifolds. If gf is smooth, then g is smooth.

Proof. Let f .x/ D y. By the rank theorem, there exist chart domains U about
x and V about y such that f .U / D V and f W U ! V has, in suitable local
coordinates, the form .x1; : : : ; xm/ 7! .x1; : : : ; xn/. Hence there exists a smooth
map s W V ! U such that f s.z/ D z for all z 2 V . Then g.z/ D gf s.z/, and gf s
is smooth. (The map s is called a local section of f about y.) �
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It is an important fact of analysis that most values are regular. A setA � N in the
n-manifold N is said to have (Lebesgue) measure zero if for each chart .U; h; V /
of N the subset h.U \ A/ has measure zero in Rn. A subset of Rn has measure
zero if it can be covered by a countable number of cubes with arbitrarily small total
volume. We use the fact that a diffeomorphism (in fact a C 1-map) sends sets of
measure zero to sets of measure zero. An open (non-empty) subset of Rn does not
have measure zero. The next theorem is a basic result for differential topology; in
order to save space we refer for its proof to the literature [136], [30], [177].

(15.2.6) Theorem (Sard). The set of singular values of a smooth map has measure
zero, and the set of regular values is dense. �

Problems

1. An injective immersion of a compact manifold is a smooth embedding.
2. Let f W M ! N be a smooth map which induces a homeomorphismM ! f .M/. If the
differential of f has constant rank, then f is a smooth embedding. By the rank theorem, f
has to be an immersion, since f is injective.
3. Let M be a smooth m-manifold and N � M . The following assertions are equivalent:
(1)N is a k-dimensional smooth submanifold ofM . (2) For each a 2 N there exist an open
neighbourhood U of a in M and a smooth map f W U ! Rm�k such that the differential
Df.u/ has rank m � k for all u 2 U and such that N \ U D f �1.0/. (Submanifolds are
locally solution sets of “regular” equations.)
4. f W RnC1 ! R, .x0; : : : ; xn/ 7! P

x2
i
D kxk2 has, away from the origin, a non-

zero differential. The sphere Sn.c/ D f �1.c2/ D fx 2 RnC1 j c D kxkg of radius
c > 0 is therefore a smooth submanifold of RnC1. From Proposition (15.2.2) we obtain
TxS

n.c/ D fv 2 RnC1 j x ? vg.
5. Let M.m; n/ be the vector space of real .m; n/-matrices and M.m; nI k/ for 0 � k �
min.m; n/ the subset of matrices of rank k. Then M.m; nI k/ is a smooth submanifold of
M.m; n/ of dimension k.mC n � k/.
6. The subset Sk.R

n/ D f.x1; : : : ; xk/ j xi 2 RnI x1; : : : ; xk linearly independent g of the
k-fold product of Rn is called the Stiefel manifold of k-frames in Rn. It can be identified
with M.k; nI k/ and carries this structure of a smooth manifold.
7. The group O.n/ of orthogonal .n; n/-matrices is a smooth submanifold of the vector space
Mn.R/ of real .n; n/-matrices. Let Sn.R/ be the subspace of symmetric matrices. The map
f W Mn.R/ ! Sn.R/, B 7! Bt � B is smooth, O.n/ D f �1.E/, and f has surjective
differential at each point A 2 O.n/. The derivative at s D 0 of s 7! .At C sX t /.AC sX/
is At � X C X t � A; the differential of f at A is the linear map Mn.R/ ! Sn.R/, X 7!
At � X C X t � A. It is surjective, since the symmetric matrix S is the image of X D 1

2
AS .

From (15.2.2) we obtain

TAO.n/ D fX 2Mn.R/ j At �X CX t � A D 0g;
and in particular for the unit matrix E, TEO.n/ D fX 2 Mn.R/ j At C A D 0g, the space
of skew-symmetric matrices. A local parametrization of O.n/ aboutE can be obtained from
the exponential map TEO.n/! O.n/, X 7! expX DP1

0 Xk=kŠ. Group multiplication
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and passage to the inverse are smooth maps.
8. Make a similar analysis of the unitary group U.n/.
9. The Stiefel manifolds have an orthogonal version which generalizes the orthogonal group,
the Stiefel manifold of orthonormal k-frames. Let Vk.R

n/ be the set of orthonormal k-
tuples .v1; : : : ; vk/, vj 2 Rn. If we write vj as row vector, then Vk.R

n/ is a subset of the
vector space M D M.k; nIR/ of real .k; n/-matrices. Let S D Sk.R/ again be the vector
space of symmetric .k; k/-matrices. Then f W M ! S , A 7! A � At has the pre-image
f �1.E/ D Vk.R

n/. The differential of f atA is the linear mapX 7! XAt CAX t and it is
surjective. Hence E is a regular value. The dimension of Vk.R

n/ is .n� k/kC 1
2
k.k � 1/.

10. The defining map RnC1X0! RP n is a submersion. Its restriction toSn is a submersion
and an immersion (a 2-fold regular covering).
11. The graph of a smooth function f W Rn ! R is a smooth submanifold of RnC1.
12. Let Y be a smooth submanifold of Z and X � Y . Then X is a smooth submanifold
of Y if and only if it is a smooth submanifold of Z. If X is a smooth submanifold, then
there exists about each point x 2 X a chart .U; '; V / of Z such that '.U \ X/ as well as
'.U \ Y / are intersections of V with linear subspaces. (Charts adapted to X � Y � Z.
Similarly for inclusions of submanifolds X1 � X2 � � � � � Xr .)
13. Let ƒk.Rn/ be the k-th exterior power of Rn. The action of O.n/ on Rn induces an
action on ƒk.Rn/, a smooth representation. If we assign to a basis x.1/; : : : ; x.k/ of a
k-dimensional subspace the element x.1/^ � � �^x.k/ 2 ƒk.Rn/, we obtain a well-defined,
injective, O.n/-equivariant map j W Gk.R

n/ ! P.ƒkRn/ (Plücker coordinates). The
image of j is a smooth submanifold of P.ƒkRn/, i.e., j is an embedding of the Grassmann
manifold Gk.R

n/.
14. The Segre embedding is the smooth embedding

RPm � RP n ! RP .mC1/.nC1/�1; .Œxi �; Œyj �/ 7! Œxiyj �:

For m D n D 1 the image is the quadric fŒs0; s1; s2; s3� j s0s3 � s1s2 D 0g.
15. Let h W RnC1�RnC1 ! RnCkC1 be a symmetric bilinear form such that x ¤ 0; y ¤ 0
implies h.x; y/ ¤ 0. Let g W Sn ! SnCk , x 7! h.x; x/=jh.x; x/j. If g.x/ D g.y/, hence
h.x; x/ D t2h.y; y/with some t 2 R, then h.xC ty; x� ty/ D 0 and therefore xC ty D 0
or x � ty D 0. Hence g induces a smooth embedding RP n ! SnCk . The bilinear form
h.x0; : : : ; xn; y0; : : : ; yn/ D .z0; : : : ; z2n/with zk D

P
iCj Dk xiyj yields an embedding

RP n ! S2n [89], [95].
16. Remove a point from S1 �S1 and show (heuristically) that the result has an immersion
into R2. (Removing a point is the same as removing a big 2-cell!).

15.3 Smooth Transformation Groups

Let G be a Lie group and M a smooth manifold. We consider smooth action
G � M ! M of G on M . The left translations lg W M ! M , x 7! gx are
then diffeomorphisms. The map ˇ W G ! M , g 7! gx is a smooth G-map with
image the orbit B D Gx through x. We have an induced bijective G-equivariant
set map � W G=Gx ! B . The map ˇ has constant rank; this follows from the
equivariance. If Lg W G ! G and lg W M ! M denote the left translations by g,
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then lgˇ D ˇLg , and since Lg and lg are diffeomorphisms, we see that Teˇ and
Tgˇ have the same rank.

(15.3.1) Proposition. Suppose the orbit B D Gx is a smooth submanifold of M .
Then:

(1) ˇ W G ! B is a submersion.

(2) Gx D ˇ�1.x/ is a closed Lie subgroup of G.

(3) There exists a unique smooth structure on G=Gx such that the quotient map
G ! G=Gx is a submersion. The induced map � W G=Gx ! B is a diffeo-
morphism.

Proof. If ˇ would have somewhere a rank less than the dimension of B , the rank
would always be less than the dimension, by equivariance. This contradicts the
theorem of Sard. We transport via � the smooth structure from B to G=Gx . The
smooth structure is unique, since G ! G=Gx is a submersion. The pre-image Gx
of a regular value is a closed submanifold. �

The previous proposition gives us Gx as a closed Lie subgroup. We need not
use the general theorem about closed subgroups being Lie subgroups.

(15.3.2)Example. The action of SO.n/onSn�1 by matrix multiplication is smooth.
We obtain a resulting equivariant diffeomorphism Sn�1 Š SO.n/=SO.n� 1/. In a
similar manner we obtain equivariant diffeomorphismsS2n�1 Š U.n/=U.n�1/ Š
SU.n/=SU.n � 1/. Þ

(15.3.3) Theorem. LetM be a smooth n-manifold. Let C �M �M be the graph
of an equivalence relationR onM , i.e., C D f.x; y/ j x � yg. Then the following
are equivalent:

(1) The set of equivalence classes N D M=R carries the structure of a smooth
manifold such that the quotient map p W M ! N is a submersion.

(2) C is a closed submanifold ofM �M and pr1 W C !M is a submersion. �

(15.3.4) Theorem. LetM be a smooth G-manifold with free, proper action of the
Lie group G. Then the orbit space M=G carries a smooth structure and the orbit
map p W M !M=G is a submersion.

Proof. We verify the hypothesis of the quotient theorem (15.3.3). We have to show
that C is a closed submanifold. The set C is homeomorphic to the image of the
map ‚ W G �M ! M �M , .g; x/ 7! .x; gx/, since the action is proper. We
show that ‚ is a smooth embedding. It suffices to show that ‚ is an immersion
(see (15.2.4)). The differential

T.g;x/‚ W TgG � TxM ! TxM � TgxM
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will be decomposed according to the two factors

T.g;x/‚.u; v/ D Tg‚.‹; x/uC Tx‚.g; ‹/v:
The first component of Tg‚.‹; x/u is zero, since the first component of the partial
map is constant. Thus if T.g;x/.u; v/ D 0, the component of Tx‚.g; ‹/v in TxM
is zero; but this component is v. It remains to show that Tgf W TgG ! TgxM

is injective for f W G ! M , g 7! gx. Since the action is free, the map f is
injective; and f has constant rank, by equivariance. An injective map of constant
rank has injective differential, by the rank theorem. Thus we have verified the first
hypothesis of (15.3.3). The second one holds, since pr1 ı‚ D pr2 shows that pr1
is a submersion. �

(15.3.5) Example. The cyclic group G D Z=m � S1 acts on Cn by

Z=m �Cn ! Cn; .�; .z1; : : : ; zn// 7! .�r1z1; : : : ; �
rnzn/

where rj 2 Z. This action is a smooth representation. Suppose the integers rj
are coprime to m. The induced action on the unit sphere is then a free G-manifold
S.r1; : : : ; rn/; the orbit manifoldL.r1; : : : ; rn/ is called a (generalized) lens space.

Þ

(15.3.6) Example. Let H be a closed Lie subgroup of the Lie group G. The
H -action on G by left translation is smooth and proper. The orbit space HnG
carries a smooth structure such that the quotient map G ! HnG is a submersion.
The G-action on HnG is smooth. One can consider the projective spaces, Stiefel
manifolds and Grassmann manifolds as homogeneous spaces from this view-point.

Þ

(15.3.7) Theorem. LetM be a smooth G-manifold. Then:

(1) An orbit C �M is a smooth submanifold if and only if it is a locally closed
subset.

(2) If the orbit C is locally closed and x 2 C , then there exists a unique smooth
structure onG=Gx such that the orbit mapG ! G=Gx is a submersion. The
map G=Gx ! C , gGx 7! gx is a diffeomorphism. The G-action on G=Gx
is smooth.

(3) If the action is proper, then .1/ and .2/ hold for each orbit.

Proof. (1) ˇ W G ! C , g 7! gx has constant rank by equivariance. Hence there
exists an open neighbourhood of e in G such that ˇ.U / is a submanifold of M .
Since C is locally closed in the locally compact space M , the set C is locally
compact and therefore ˇ W G ! C is an open map (see (1.8.6)). Hence there exists
an open setW inM such that C \W D ˇ.U /. Therefore C is a submanifold in a
neighbourhood of x and, by equivariance, also globally a submanifold.
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(2) Since C is locally closed, the submanifold C has a smooth structure. The
map ˇ has constant rank and is therefore a submersion. We now transport the
smooth structure from C to G=Gx .

(3) The orbits of a proper action are closed. �

15.4 Manifolds with Boundary

We now extend the notion of a manifold to that of a manifold with boundary. A
typical example is the n-dimensional disk Dn D fx 2 Rn j kxk � 1g. Other
examples are half-spaces. Let 	 W Rn ! R be a non-zero linear form. We use the
corresponding half-space H.	/ D fx 2 Rn j 	.x/ � 0g. Its boundary @H.	/ is
the kernel of 	. Typical half-spaces are Rn˙ D f.x1; : : : ; xn/ 2 Rn j ˙x1 � 0g. If
A � Rm is any subset, we call f W A! Rn differentiable if for each a 2 A there
exists an open neighbourhood U of a in Rm and a differentiable map F W U ! Rn

such that F jU \ A D f jU \ A. We only apply this definition to open subsets A
of half-spaces. In that case, the differential of F at a 2 A is independent of the
choice of the extension F and will be denoted Df.a/.

Let n � 1 be an integer. An n-dimensional manifold with boundary or
@-manifold is a Hausdorff space M with countable basis such that each point has
an open neighbourhood which is homeomorphic to an open subset in a half-space
of Rn. A homeomorphism h W U ! V , U open in M , V open in H.	/ is called a
chart about x 2 U with chart domain U . With this notion of chart we can define
the notions: C k-related, atlas, differentiable structure. An n-dimensional smooth
manifold with boundary is therefore an n-dimensional manifoldM with boundary
together with a (maximal) smooth C1-atlas on M .

Let M be a manifold with boundary. Its boundary @M is the following subset:
The point x is contained in @M if and only if there exists a chart .U; h; V / about
x such that V � H.	/ and h.x/ 2 @H.	/. The complement M X @M is called
the interior In.M/ of M . The following lemma shows that specifying a boundary
point does not depend on the choice of the chart (invariance of the boundary).

(15.4.1) Lemma. Let ' W V ! W be a diffeomorphism between open subsets V �
H.	/andW � H.�/of half-spaces inRn. Then'.V \@H.	// D W \@H.�/. �
(15.4.2) Proposition. LetM be an n-dimensional smooth manifold with boundary.
Then either @M D ; or @M is an .n � 1/-dimensional smooth manifold. The set
M X @M is a smooth n-dimensional manifold with empty boundary. �

The boundary of a manifold can be empty. Sometimes it is convenient to view
the empty set as an n-dimensional manifold. If @M D ;, we call M a manifold
without boundary. This coincides then with the notion introduced in the first section.
In order to stress the absence of a boundary, we call a compact manifold without
boundary a closed manifold.



370 Chapter 15. Manifolds

A map f W M ! N between smooth manifolds with boundary is called smooth
if it is continuous and C1-differentiable in local coordinates. Tangent spaces and
the differential are defined as for manifolds without boundary.

Let x 2 @M and k D .U; h; V / be a chart about x with V open in Rn�. Then the
pair .k; v/, v 2 Rn represents a vector w in the tangent space TxM . We say that
w is pointing outwards (pointing inwards, tangential) to @M if v1 > 0 (v1 < 0,
v1 D 0, respectively). One verifies that this disjunction is independent of the choice
of charts.

(15.4.3) Proposition. The inclusion j W @M � M is smooth and the differential
Txj W Tx.@M/! TxM is injective. Its image consists of the vectors tangential to
@M . We consider Txj as an inclusion. �

The notion of a submanifold can have different meanings for manifolds with
boundary. We define therefore submanifolds of type I and type II.

Let M be a smooth n-manifold with boundary. A subset N � M is called a
k-dimensional smooth submanifold (of type I) if the following holds: For each
x 2 N there exists a chart .U; h; V /, V � Rn� open, of M about x such that
h.U \ N/ D V \ .Rk � 0/. Such charts of M are adapted to N . The set
V \.Rk�0/ � Rk��0 D Rk� is open in Rk�. A diffeomorphism onto a submanifold
of type I is an embedding of type I. From this definition we draw the following
conclusions.

(15.4.4) Proposition. Let N �M be a smooth submanifold of type I. The restric-
tions h W U \N ! h.U \N/ of the charts .U; h; V / adapted to N form a smooth
atlas for N which makes N into a smooth manifold with boundary. The relation
N \ @M D @N holds, and @N is a submanifold of @M . �

Let M be a smooth n-manifold without boundary. A subset N � M is a k-di-
mensional smooth submanifold (of type II) if the following holds: For each x 2 N
there exists a chart .U; h; V / of M about x such that h.U \N/ D V \ .Rk� � 0/.
Such charts are adapted to N .

The intersection of Dn with Rk � 0 is a submanifold of type I (k < n). The
subset Dn is a submanifold of type II of Rn. The next two propositions provide a
general means for the construction of such submanifolds.

(15.4.5)Proposition. LetM bea smoothn-manifoldwith boundary. Letf WM !R
be smooth with regular value 0. Then f �1Œ0;1Œ is a smooth submanifold of type II
ofM with boundary f �1.0/.

Proof. We have to show that for each x 2 f �1Œ0;1Œ there exists a chart which
is adapted to this set. If f .x/ > 0, then x is contained in the open submanifold
f �1�0;1Œ; hence the required charts exist. Let therefore f .x/ D 0. By the rank
theorem (15.2.1), f has in suitable local coordinates the form .x1; : : : ; xn/ 7! x1.
From this fact one easily obtains the adapted charts. �
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(15.4.6) Proposition. Let f W M ! N be smooth and y 2 f .M/\ .N X @N/ be
a regular value of f and f j@M . Then P D f �1.y/ is a smooth submanifold of
type I ofM with @P D .f j@M/�1.y/ D @M \ P .

Proof. Being a submanifold of type I is a local property and invariant under diffeo-
morphisms. Therefore it suffices to consider a local situation. Let therefore U be
open in Rm� and f W U ! Rn a smooth map which has 0 2 Rn as regular value for
f and f j@U (n � 1;m > n).

We know already that f �1.0/ \ In.U / is a smooth submanifold of In.U /. It
remains to show that there exist adapted charts about points x 2 @U . Since x is
a regular point of f j@U , the Jacobi matrix .Difj .x/ j 2 � i � m; 1 � j � n/
has rank n. By interchange of the coordinates x2; : : : ; xm we can assume that the
matrix

.Difj .x/ j m � nC 1 � i � n; 1 � j � n/
has rank n. (This interchange is a diffeomorphism and therefore harmless.) Under
this assumption, ' W U ! Rm� , u 7! .u1; : : : ; um�n; f1.u/; : : : ; fn.u// has bijec-
tive differential at x and therefore yields, by part (1) of the rank theorem applied to
an extension of f to an open set in Rm, an adapted chart about x. �

If only one of the two manifolds M and N has a non-empty boundary, say
M , then we define M �N as the manifold with boundary which has as charts the
products of charts for M and N . In that case @.M � N/ D @M � N . If both M
andN have a boundary, then there appear “corners” along @M �@N ; later we shall
explain how to define a differentiable structure on the product in this case.

Problems

1. The map

Dn.C/ D f.x; t/ j t > 0; kxk2C t2 � 1g ! �� 1; 0��U1.0/; .x; t/ 7!
�

tp
1�kxk2

� 1; x�
is an adapted chart for Sn�1 D @Dn � Dn.
2. Let B be a @-manifold. A smooth function f W @B ! R has a smooth extension to B . A
smooth function g W A! R from a submanifold A of type I or of type II of B has a smooth
extension to B .
3. Verify the invariance of the boundary for topological manifolds (use local homology
groups).
4. A @-manifold M is connected if and only if M X @M is connected.
5. Let M be a @-manifold. There exists a smooth function f W M ! Œ0;1Œ such that
f .@M/ D f0g and Txf 6D 0 for each x 2 @M .
6. Let f W M ! Rk be an injective immersion of a compact @-manifold. Then the image is
a submanifold of type II.
7. Verify that “pointing inwards” is well-defined, i.e., independent of the choice of charts.
8. Unfortunately is not quite trivial to classify smooth 1-dimensional manifolds by just
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starting from the definitions. The reader may try to show that a connected 1-manifold
without boundary is diffeomorphic to R1 or S1; and a @-manifold is diffeomorphic to Œ0; 1�
or Œ0; 1Œ .

15.5 Orientation

Let V be an n-dimensional real vector space. We call ordered bases b1; : : : ; bn
and c1; : : : ; cn of V positively related if the determinant of the transition matrix
is positive. This relation is an equivalence relation on the set of bases with two
equivalence classes. An equivalence class is an orientation of V . We specify
orientations by their representatives. The standard orientation of Rn is given by
the standard basis e1; : : : ; en, the rows of the unit matrix. Let W be a complex
vector space with complex basis w1; : : : ; wn. Then w1; iw1; : : : ; wn; iwn defines
an orientation of the underlying real vector space which is independent of the
choice of the basis. This is the orientation induced by the complex structure.
Let u1; : : : ; um be a basis of U and w1; : : : ; wn a basis of W . In a direct sum
U ˚ W we define the sum orientation by u1; : : : ; um; w1; : : : ; wn. If o.V / is
an orientation of V , we denote the opposite orientation (the occidentation) by
�o.V /. A linear isomorphism f W U ! V between oriented vector spaces is
called orientation preserving or positive if for the orientation u1; : : : ; un of U the
images f .u1/; : : : ; f .un/ yield the given orientation of V .

Let M be a smooth n-manifold with or without boundary. We call two charts
positively related if the Jacobi matrix of the coordinate change has always positive
determinant. An atlas is calledorienting if any two of its charts are positively related.
We call M orientable, if M has an orienting atlas. An orientation of a manifold
is represented by an orienting atlas; and two such define the same orientation if
their union contains only positively related charts. IfM is oriented by an orienting
atlas, we call a chart positive with respect to the given orientation if it is positively
related to all charts of the orienting atlas. These definitions apply to manifolds of
positive dimension. An orientation of a zero-dimensional manifoldM is a function
� W M ! f˙1g.

LetM be an oriented n-manifold. There is an induced orientation on each of its
tangent spacesTxM . It is specified by the requirement that a positive chart .U; h; V /
induces a positive isomorphism Txh W TxM ! Th.x/V D Rn with respect to the
standard orientation of Rn. We can specify an orientation ofM by the corresponding
orientations of the tangent spaces.

If M and N are oriented manifolds, the product orientation on M � N is
specified by declaring the products .U � V; k � l; U 0 � V 0/ of positive charts
.U; k; U 0/ of M and .V; l; V 0/ of N as positive. The canonical isomorphism
T.x;y/.M � N/ Š TxM ˚ TyN is then compatible with the sum orientation of
vector spaces. If N is a point, then the canonical identification M � N Š M is
orientation preserving if and only if �.N / D 1. If M is oriented, then we denote
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the manifold with the opposite orientation by �M .
Let M be an oriented manifold with boundary. For x 2 @M we have a direct

decomposition Tx.M/ D Nx ˚ Tx.@M/. Let nx 2 Nx be pointing outwards.
The boundary orientation of Tx.@M/ is defined by that orientation v1; : : : ; vn�1
for which nx; v1; : : : ; vn�1 is the given orientation of Tx.M/. These orientations
correspond to the boundary orientation of @M ; one verifies that the restriction of
positive charts for M yields an orienting atlas for @M .

In Rn�, the boundary @Rn� D 0 � Rn�1 inherits the orientation defined by
e2; : : : ; en. Thus positive charts have to use Rn�.

LetD2 � R2 carry the standard orientation of R2. Consider S1 as boundary of
D2 and give it the boundary orientation. An orienting vector in TxS1 is then the
velocity vector of a counter-clockwise rotation. This orientation of S1 is commonly
known as the positive orientation. In general if M � R2 is a two-dimensional
submanifold with boundary with orientation induced from the standard orientation
of R2, then the boundary orientation of the curve @M is the velocity vector of a
movement such that M lies “to the left”.

Let M be an oriented manifold with boundary and N an oriented manifold
without boundary. Then product and boundary orientation are related as follows

o.@.M �N// D o.@M �N/; o.@.N �M// D .�1/dimNo.N � @M/:

The unit interval I D Œ0; 1� is furnished with the standard orientation of R.
Since the outward pointing vector in 0 yields the negative orientation, we specify
the orientation of @I by �.0/ D �1; �.1/ D 1. We have @.I�M/ D 0�M[1�M .
The boundary orientation of 0 �M Š M is opposite to the original one and the
boundary orientation of 1 � M Š M is the original one, if I � M carries the
product orientation. We express these facts by the suggestive formula @.I �M/ D
1 �M � 0 �M . (These conventions suggest that homotopies should be defined
with the cylinder I �X .)

A diffeomorphism f W M ! N between oriented manifolds respects the ori-
entation if Txf is for each x 2M orientation preserving. IfM is connected, then
f respects or reverses the orientation.

Problems

1. Show that a 1-manifold is orientable.
2. Let f W M ! N be a smooth map and let A be the pre-image of a regular value y 2 N .
Suppose M is orientable, then A is orientable.

We specify an orientation as follows. Let M and N be oriented. We have an exact

sequence 0 ! TaA
.1/�! TaM

.2/�! TyN ! 0, with inclusion (1) and differential Taf at
(2). This orients TaA as follows: Let v1; : : : ; vk be a basis of TaA, w1; : : : ; wl a basis of
TyN , and u1; : : : ; ul be pre-images in TaM ; then v1; : : : ; vk ; u1; : : : ; ul is required to be
the given orientation ofTaM . These orientations induce an orientation ofA. This orientation
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of A is called the pre-image orientation.
3. Let f W Rn ! R, .xi / 7!

P
x2

i
and Sn�1 D f �1.1/. Then the pre-image orientation

coincides with the boundary orientation with respect to Sn�1 � Dn.

15.6 Tangent Bundle. Normal Bundle

The notions and concepts of bundle theory can now be adapted to the smooth
category. A smooth bundle p W E ! B has a smooth bundle projection p and the
bundle charts are assumed to be smooth. A smooth subbundle of a smooth vector
bundle has to be defined by smooth bundle charts. Let ˛ W �1 ! �2 be a smooth
bundle morphism of constant rank; then Ker ˛ and Im ˛ are smooth subbundles.
The proof of (14.2.3) can also be used in this situation. A smooth vector bundle has
a smooth Riemannian metric; for the existence proof one uses a smooth partition
of unity and proceeds as in (14.5.1). Let � be a smooth subbundle of the smooth
vector bundle � with Riemannian metric; then the orthogonal complement of � in
� is a smooth subbundle.

LetM be a smooth n-manifold. Denote by TM the disjoint union of the tangent
spaces Tp.M/, p 2M . We write a point of Tp.M/ � TM in the form .p; v/ with
v 2 Tp.M/, for emphasis. We have the projection �M W TM ! M , .p; v/ 7! p.
Each chart k D .U; h; V / of M yields a bijection

'k W TU DSp2U Tp.M/! U � Rn; .p; v/ 7! .p; ik.v//:

Here ik is the morphism which is part of the definition of a tangent space. The map
'k is a map over U and linear on fibres. The next theorem is a consequence of the
general gluing procedure.

(15.6.1)Theorem. There exists a unique structure of a smoothmanifold on TM such
that the .TU; 'k; U � Rn/ are charts of the differential structure. The projection
�M W TM ! M is then a smooth map, in fact a submersion. The vector space
structure on the fibres of �M give �M the structure of an n-dimensional smooth
real vector bundle with the 'k as bundles charts. �

The vector bundle�M W TM !M is called the tangent bundle ofM . A smooth
map f W M ! N induces a smooth fibrewise map Tf W TM ! TN , .p; v/ 7!
.f .p/; Tpf .v//.

(15.6.2) Proposition. LetM � Rq be a smooth n-dimensional submanifold. Then

TM D f.x; v/ j x 2M; v 2 TxM g � Rq � Rq

is a 2n-dimensional smooth submanifold.
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Proof. Write M locally as h�1.0/ with a smooth map h W U ! Rq�n of constant
rank q � n. Then TM is locally the pre-image of zero under

U � Rq ! Rq�n � Rq�n; .u; v/ 7! .h.u/;Dh.u/.v//;

and this map has constant rank 2.q�n/; this can be seen by looking at the restrictions
to U � 0 and u � Rq . �

We can apply (15.6.2) to Sn � RnC1 and obtain the model of the tangent bundle
of Sn, already used at other occasions.

Let the Lie group G act smoothly on M . We have an induced action

G � TM ! TM; .b; v/ 7! .T lg/v:

This action is again smooth and the bundle projection is equivariant, i.e., TM !M

is a smooth G-vector bundle.

(15.6.3) Proposition. Let � W E ! M be a smooth G-vector bundle. Suppose the
action on M is free and proper. Then the orbit map E=G ! M=G is a smooth
vector bundle. We have an induced bundle map � ! �=G. �

The differential Tp W TM ! T .M=G/ of the orbit map p is a bundle morphism
which factors over the orbit map TM ! .TM/=G and induces a bundle morphism
q W .TM/=G ! T .M=G/ over M=G. The map is fibrewise surjective. If G is
discrete, then M and M=G have the same dimension, hence q is an isomorphism.

(15.6.4) Proposition. For a free, proper, smooth action of the discrete group G on
M we have a bundle isomorphism .TM/=G Š T .M=G/ induced by the orbit map
M !M=G. �

(15.6.5)Example. We have a bundle isomorphism TS n˚" Š .nC1/". IfG D Z=2
acts on TS n via the differential of the antipodal map and trivially on ", then the said
isomorphism transforms the action into Sn � RnC1 ! Sn � RnC1, .x; v/ 7!
.�x;�v/. We pass to the orbit spaces and obtain an isomorphism T .RP n/˚ " Š
.nC 1/� with the tautological line bundle � over RP n. Þ

In the general case the map q W .TM/=G ! T .M=G/ has a kernel, a bundle
K !M=G with fibre dimension dimG. See [44, IX.6] for details.

(15.6.6) Example. The defining map CnC1X0! .CnC1X0/=C� D CP n yields
a surjective bundle map q W T .CnC1 X 0/=C� ! T .CP n/. The source of q is the
.nC 1/-fold Whitney sum .nC 1/� where E.�/ is the quotient of .CnC1 X 0/�C
with respect to .z; x/ � .	z; 	x/ for 	 2 C� and .z; x/ 2 .CnC1 X 0/ � C. The
kernel bundle of q is trivial: We have a canonical section of .nC 1/�

CP n ! ..CnC1 X 0/ �CnC1/=C�; Œz� 7! .z; z/= �;
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and the subbundle generated by this section is contained in the kernel of q. Hence
the complex tangent bundle of CP n satisfies T .CP n/˚ " Š .nC 1/�. For � see
H.1/ in (14.2.6). Þ

Let p W E ! M be a smooth vector bundle. Then E is a smooth manifold and
we can ask for its tangent bundle.

(15.6.7) Proposition. There exists a canonical exact sequence

0! p�E ˛�! TE
ˇ�! p�TM ! 0

of vector bundles over E, written in terms of total spaces.

Proof. The differential of p is a bundle morphism Tp W TE ! TM, and it induces
a bundle morphism ˇ W TE ! p�TM which is fibrewise surjective, since p is a
submersion. We consider the total space of p�E ! E asE˚E and the projection
onto the first summand is the bundle projection. Let .v; w/ 2 Ex ˚Ex . We define
˛.v;w/ as the derivative of the curve t 7! vC tw at t D 0. The bundle morphism
˛ has an image contained in the kernel of ˇ and is fibrewise injective. Thus, for
reasons of dimension, the sequence is exact. �

(15.6.8)Remark. We restrict the exact sequence given in (15.6.7) to the zero section
i W M � E. Since pi D id we obtain an exact sequence

0! E
˛�! TEjM ˇ�! TM ! 0

of vector bundles over M . For w 2 Ex , x 2 M the vector ˛.w/ 2 TxE is
the derivative at t D 0 of the curve t 7! tw 2 Ex . The bundle map ˇ has the
right inverse t i W TM ! TEjM . We therefore obtain a canonical isomorphism
.˛; T i/ W E ˚ TM Š TEjM . We have written this in a formal manner. The
geometric meaning is that TxE splits into the tangent vectors in direction of the
fibre and the tangent vectors to the submanifold M . Since the tangent space of a
vector space is canonically identified with the vector space, we can consider ˛ as
an inclusion. Þ

Let f W M ! N be an immersion. Then Tf is fibrewise injective. We pull back
TN along f and obtain a fibrewise injective bundle morphism i W TM ! f �TN jM .
The quotient bundle is called the normal bundle of the immersion. In the case of a
submanifoldM � N the normal bundle �.M;N / ofM inN is the quotient bundle
of TN jM by TM. If we give TN a smooth Riemannian metric, then we can take
the orthogonal complement of TM as a model for the normal bundle. The normal
bundle of Sn � RnC1 is the trivial bundle.

We will show that the total space of the normal bundle of an embeddingM � N
describes a neighbourhood of M in N . We introduce some related terminology.
Let � W E.�/! M denote the smooth normal bundle. A tubular map is a smooth
map t W E.�/! N with the following properties:
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(1) It is the inclusion M ! N when restricted to the zero section.
(2) It embeds an open neighbourhood of the zero section onto an open neigh-

bourhood U of M in N .
(3) The differential of t , restricted to TE.�/jM , is a bundle morphism

� W TE.�/jM ! TN jM:
We compose with the inclusion (15.6.8)

˛ W E.�/! E.�/˚ TM Š TE.�/jM
and the projection

� W TN jM ! E.�/ D .TN jM/=TM:

We require that ��˛ is the identity. If we use another model of the normal
bundle given by an isomorphism � W E.�/! .TN jM/=TM , then we require
��˛ D �.

The purpose of (3) is to exclude bundle automorphisms.

(15.6.9) Remark (Shrinking). Let t W E.�/ ! N be a tubular map for a subman-
ifold M . Then one can find by the process of shrinking another tubular map that
embeds E.�/. There exists a smooth function " W M ! R such that

E".�/ D fy 2 E.�/x j kyk < ".x/g � U:
Let 	�.t/ D �t � .�2 C t2/�1=2. Then 	� W Œ0;1Œ! Œ0; �Œ is a diffeomorphism
with derivative 1 at t D 0. We obtain an embedding

h W E ! E; y 7! 	".x/.kyk/ � kyk�1 � y; y 2 E.�/x :
Then g D f h is a tubular map that embeds E.�/. Þ

The image U of a tubular map t W E.�/ ! N which embeds E.�/ is called a
tubular neighbourhood of M in N .

Let M be an m-dimensional smooth submanifold M � Rn of codimension k.
We takeN.M/ D f.x; v/ j x 2M;v ? TxM g �M �Rn as the normal bundle of
M � Rn.

(15.6.10) Proposition. N.M/ is a smooth submanifold of M � Rn, and the pro-
jection N.M/!M is a smooth vector bundle.

Proof. Let A W Rn ! Rk be a linear map. Its transpose At with respect to the
standard inner product is defined by hAv;wi D hv;Atwi. If A is surjective,
then At is injective, and the relation image .At / D .kernelA/? holds; moreover
A � At 2 GLk.R/.
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We defineM locally as the solution set: Suppose U � Rn is open, ' W U ! Rk

a submersion, and '�1.0/ D U \M D W . We set N.M/\ .W � Rn/ D N.W /.
The smooth maps

ˆ W W � Rn ! W � Rk; .x; v/ 7! .x; Tx'.v//;

‰ W W � Rk ! W � Rn; .x; v/ 7! .x; .Tx'/
t .v//

satisfy
N.W / D Im‰; T .W / D Kerˆ:

The composition ˆ‰ is a diffeomorphism: it has the form .w; v/ 7! .w; gw.v//

with a smooth map W ! GLk.R/, w 7! gw and therefore .w; v/ 7! .w; g�1
w .v//

is a smooth inverse. Hence ‰ is a smooth embedding with image N.W / and
‰�1jN.W / is a smooth bundle chart. �

(15.6.11) Proposition. The map a W N.M/ ! Rn, .x; v/ 7! x C v is a tubular
map forM � Rn.

Proof. We show that a has a bijective differential at each point .x; 0/ 2 N.M/.
LetNxM D TxM?. SinceM � Rn we consider TxM as a subspace of Rn. Then
T.x;0/N.M/ is the subspace TxM �NxM � T.x;0/.M � Rn/ D TxM � Rn. The
differential T.x;0/a is the identity on each of the subspaces TxM andNxM . There-
fore we can consider this differential as the map .u; v/ 7! uC v, i.e., essentially
as the identity.

It is now a general topological fact (15.6.13) that a embeds an open neighbour-
hood of the zero section. Finally it is not difficult to verify property (3) of a tubular
map. �

(15.6.12) Corollary. If we transport the bundle projection N.M/ ! M via the
embedding a we obtain a smooth retraction r W U !M of an open neighbourhood
U ofM � Rn. �

(15.6.13) Theorem. Let f W X ! Y be a local homeomorphism. Let A � X and
f W A ! f .A/ D B be a homeomorphism. Suppose that each neighbourhood
of B in Y contains a paracompact neighbourhood. Then there exists an open
neighbourhood U of A in X which is mapped homeomorphically under f onto an
open neighbourhood V of B in Y (see [30, p. 125]). �

For embeddings of compact manifolds and their tubular maps one can apply
another argument as in the following proposition.

(15.6.14) Proposition. Let ˆ W X ! Y be a continuous map of a locally compact
space into aHausdorff space. Letˆbe injective on the compact setA � X . Suppose
that each a 2 A has a neighbourhood Ua in X on which ˆ is injective. Then there
exists a compact neighbourhood V of A in X on which ˆ is an embedding.
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Proof. The coincidence set K D f.x; y/ 2 X � X j ˆ.x/ D ˆ.y/g is closed in
X � X , since Y is a Hausdorff space. Let D.B/ be the diagonal of B � X . If ˆ
is injective on Ua, then .Ua � Ua/ \ K D D.Ua/. Thus our assumptions imply
that D.X/ is open in K and hence W D X � X n .K n D.X// open in X � X .
By assumption, A � A is contained in W . Since A � A is compact and X locally
compact, there exists a compact neighbourhood V of A such that V � V � W .
Then ˆjV is injective and, being a map from a compact space into a Hausdorff
space, an embedding. �

(15.6.15) Proposition. A submanifoldM � N has a tubular map.

Proof. We fix an embedding of N � Rn. By (15.6.12) there exists an open neigh-
bourhood W of V in Rn and a smooth retraction r W W ! V . The standard inner
product on Rn induces a Riemannian metric on TN . We use as normal bundle for
M � N the model

E D f.x; v/ 2M � Rn j v 2 .TxM/? \ TxN g:
Again we use the map f W E ! Rn, .x; v/ 7! x C v and set U D f �1.W /. Then
U is an open neighbourhood of the zero section ofE. The map g D rf W U ! N is
the inclusion when restricted to the zero section. We claim that the differential of g
at points of the zero section is the identity, if we use the identification T.x;0/E D
TxM ˚ Ex D TxN . On the summand TxM the differential T.x;0/g is obviously
the inclusion TxM � TxV . For .x; v/ 2 Ex the curve t 7! .x; tv/ in E has
.x; v/ as derivative at t D 0. Therefore we have to determine the derivative of
t 7! r.x C tv/ at t D 0. The differential of r at .x; 0/ is the orthogonal projection
Rn ! TxN , if we use the retraction r in (15.6.12). The chain rule tells us that the
derivative of t 7! r.x C tv/ at t D 0 is v. We now apply again (15.6.13). One
verifies property (3) of a tubular map. �

15.7 Embeddings

This section is devoted to the embedding theorem of Whitney:

(15.7.1)Theorem. A smoothn-manifold has an embedding as a closed submanifold
of R2nC1.

We begin by showing that a compact n-manifold has an embedding into some
Euclidean space. Let f W M ! Rt be a smooth map from an n-manifold M . Let
.Uj ; �j ; U3.0//, j 2 f1; : : : ; kg be a finite number of charts of M (see (15.1.2)
for the definition of U3.0/). Choose a smooth function � W Rn ! Œ0; 1� such that
�.x/ D 0 for kxk � 2 and �.x/ D 1 for kxk � 1. Define �j W M ! R by
�j .x/ D 0 for x … Uj and by �j .x/ D ��j .x/ for x 2 Uj ; then �j is a smooth
function on M . With the help of these functions we define

ˆ W M ! Rt � .R � Rn/ � � � � � .R � Rn/ D Rt � RN
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ˆ.x/ D .f .x/I �1.x/; �1.x/�1.x/I : : : I �k.x/; �k.x/�k.x//;
(k factors R � Rn), where �j .x/�j .x/ should be zero if �j .x/ is not defined. The
differential of this map has the rank n on Wj D ��1

j .U1.0//, as ˆ.Wj / � Vj D
f.zI a1; x1I : : : I ak; xk/ j aj 6D 0g, and the composition of ˆjWj with Vj ! Rn,

.zI a1; x1I : : : / 7! a�1
j xj is �j . By construction,ˆ is injective onW DSk

jD1Wj ,
since ˆ.a/ D ˆ.b/ implies �j .a/ D �j .b/ for each j , and then �i .a/ D �i .b/

holds for some i . Moreover, ˆ is equal to f composed with Rt � Rt � RN on
the complement of the ��1

j U2.0/. Hence if f is an (injective) immersion on the
open set U , then ˆ is an (injective) immersion on U [ W . In particular, if M is
compact, we can apply this argument to an arbitrary map f andM D W . Thus we
have shown:

(15.7.2) Note. A compact smooth manifold has a smooth embedding into some
Euclidean space. �

We now try to lower the embedding dimension by applying a suitable parallel
projection.

Let Rq�1 D Rq�1 � 0 � Rq . For v 2 Rq n Rq�1 we consider the projection
pv W Rq ! Rq�1 with direction v, i.e., for x D x0 C 	v with x0 2 Rq�1 and
	 2 R we set pv.x/ D x0. In the sequel we only use vectors v 2 Sq�1. Let
M � Rq . We remove the diagonal D and consider � W M �M n D ! Sq�1,
.x; y/ 7! N.x � y/ D .x � y/=kx � yk.
(15.7.3) Note. 'v D pvjM is injective if and only if v is not contained in the image
of � .

Proof. The equality 'v.x/ D 'v.y/; x ¤ y and x D x0C	v; y D y0C�v imply
x � y D .	 � �/v ¤ 0, hence v D ˙N.x � y/. Note �.x; y/ D ��.y; x/. �

Let now M be a smooth n-manifold in Rq . We use the bundle of unit vectors

STM D f.x; v/ j v 2 TxM; kvk D 1g �M � Sq�1

and its projection to the second factor � D pr2 jSTM W STM ! Sq�1: The function
.x; v/ 7! kvk2 on TM � Rq � Rq has 1 as regular value with pre-image STM,
hence STM is a smooth submanifold of the tangent bundle TM.

(15.7.4) Note. 'v is an immersion if and only if v is not contained in the image
of � .

Proof. The map 'v is an immersion if for each x 2 M the kernel of Txpv has
trivial intersection with TxM . The differential of pv is again pv . Hence 0 6D z D
pv.z/C 	v 2 TxM is contained in the kernel of Txpv if and only if z D 	v and
hence v is a unit vector in TxM . �
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(15.7.5) Theorem. LetM be a smooth compact n-manifold. Let f W M ! R2nC1
be a smooth map which is an embedding on a neighbourhood of a compact subset
A � M . Then there exists for each " > 0 an embedding g W M ! R2nC1 which
coincides on A with f and satisfies kf .x/ � g.x/k < " for x 2M .

Proof. Suppose f embeds the open neighbourhood U of A and let V � U be a
compact neighbourhood of A. We apply the construction in the beginning of this
section with chart domains Uj which are contained inM nV and such that the sets
Wj coverM XU . Thenˆ is an embedding on some neighbourhood ofM nU and

ˆ W M ! R2nC1 ˚ RN D Rq; x 7! .f .x/;‰.x//

is an embedding which coincides onV with f (up to composition with the inclusion
R2nC1 � Rq). For 2n < q � 1 the image of � is nowhere dense and for 2n � 1 <
q � 1 the image of � is nowhere dense (theorem of Sard). Therefore in each
neighbourhood of w 2 Sq�1 there exist vectors v such that pv ı ˆ D ˆv is an
injective immersion, hence an embedding since M is compact. By construction,
ˆv coincides on V with f . If necessary, we replace ‰ with s‰ (with small s)
such that kf .x/ � ˆ.x/k � "=2 holds. We can write f as composition of ˆ
with projections Rq ! Rq�1 ! � � � ! R2nC1 along the unit vectors .0; : : : ; 1/.
Sufficiently small perturbations of these projections applied to ˆ yield a map g
such that kf .x/ � g.x/k < ", and, by the theorem of Sard, we find among these
projections those for which g is an embedding. �

The preceding considerations show that we need one dimension less for immer-
sions.

(15.7.6) Theorem. Let f W M ! R2n be a smooth map from a compact n-mani-
fold. Then there exists for each " > 0 an immersion h W M ! R2n such that
kh.x/ � f .x/k < " for x 2 M . If f W M ! R2nC1 is a smooth embedding, then
the vectors v 2 S2n for which the projection pv ı f W M ! R2n is an immersion
are dense in S2n. �

Let f W M ! R be a smooth proper function from an n-manifold without
boundary. Let t 2 R be a regular value and set A D f �1.t/. The manifold A is
compact. There exists an open neighbourhoodU ofA inM and a smooth retraction
r W U ! A.

(15.7.7) Proposition. There exists an " > 0 and open neighbourhood V � U of A
such that .r; f / W V ! A� �t � "; t C "Œ is a diffeomorphism.

Proof. The map .r; f / W U ! A�R has bijective differential at points ofA. Hence
there exists an open neighbourhood W � U of A such that .r; f / embeds W onto
an open neighbourhood ofA�ftg inA�R. Since f is proper, each neighbourhood
W of A contains a set of the form V D f �1 �t � "; t C "Œ . The restriction of .r; f /
to V has the required properties. �
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In a similar manner one shows that a proper submersion is locally trivial (theorem
of Ehresmann).

We now show that a non-compactn-manifoldM has an embedding into R2nC1 as
a closed subset. For this purpose we choose a proper smooth functionf W M ! RC.
We then choose a sequence .tk j k 2 N/ of regular values of f such that tk < tkC1
and limk tk D 1. Let Ak D f �1.tk/ and Mk D f �1Œtk; tkC1�. Choose "k > 0

small enough such that the intervals Jk D �tk � "k; tk C "kŒ are disjoint and such
that we have diffeomorphisms f �1.Jk/ Š Ak � Jk of the type (15.7.7). We
then use (15.7.7) in order to find embeddings ˆk W f �1.Jk/ ! R2n � Jk which
have f as their second component. We then use the method of (15.7.5) to find an
embedding Mk ! R2n � Œtk; tkC1� which extends the embeddings ˆk and ˆkC1
in a neighbourhood ofMkCMkC1. All these embeddings fit together and yield an
embedding of M as a closed subset of R2nC1.

A collar of a smooth @-manifold M is a diffeomorphism � W @M � Œ0; 1Œ !M

onto an open neighbourhoodU of @M inM such that �.x; 0/ D x. Instead of Œ0; 1Œ
one can also use R˙.

(15.7.8) Proposition. A smooth @-manifoldM has a collar.

Proof. There exists an open neighbourhoodU of @M inM and a smooth retraction
r W U ! @M . Choose a smooth function f W M ! RC such that f .@M/ D f0g
and the derivative of f at each point x 2 @M is non-zero. Then .r; f / W U !
@M �RC has bijective differential along @M . Therefore this map embeds an open
neighbourhood V of @M onto an open neighbourhoodW of @M � 0. Now choose
a smooth function " W @M ! RC such that fxg � Œ0; ".x/Œ� W for each x 2 @M .
Then compose @M � Œ0; 1Œ! @M � RC, .x; s/ 7! .x; ".x/s/ with the inverse of
the diffeomorphism V ! W . �

(15.7.9)Theorem. Acompact smoothn-manifoldB with boundaryM has a smooth
embedding of type I intoD2nC1.

Proof. Let j W M ! S2n be an embedding. Choose a collar k W M � Œ0; 1Œ! U

onto the open neighbourhood U of M in B , and let l D .l1; l2/ be its inverse. We
use the collar to extend j to f W B ! D2nC1

f .x/ D
(

max.0; 1 � 2l2.x//j.l1.x//; x 2 U;
0; x … U:

Then f is a smooth embedding on k.M � Œ0; 1
2
Œ /. As in the proof of (15.7.4) we

approximate f by a smooth embedding g W B ! D2nC1 which coincides with f
on k.M � Œ0; 1

4
Œ / and which maps B XM into the interior of D2nC1. The image

of g is then a submanifold of type I of D2nC1. �
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15.8 Approximation

Let M and N be smooth manifolds and A � M a closed subset. We assume that
N � Rp is a submanifold and we give N the metric induced by this embedding.

(15.8.1) Theorem. Let f W M ! N be continuous and f jA smooth. Let ı W M !
�0;1Œ be continuous. Then there exists a smooth map g W M ! N which coincides
on A with f and satisfies kg.x/ � f .x/k < ı.x/ for x 2M .

Proof. We start with the special case N D R. The fact that f is smooth at x 2 A
means, by definition, that there exists an open neighbourhoodUx of x and a smooth
function fx W Ux ! R which coincides on Ux \ A with f . Having chosen fx , we
shrink Ux , such that for y 2 Ux the inequality kfx.y/ � f .y/k < ı.y/ holds.

Fix now x 2 M X A. We choose an open neighbourhood Ux of x in M X A
such that for y 2 Ux the inequality kf .y/ � f .x/k < ı.y/ holds. We define
fx W Ux ! R in this case by fx.y/ D .x/.

Let .�x j x 2 M/ be a smooth partition of unity subordinate to .Ux j x 2 M/.
The function g.y/ DPx2M �x.y/fx.y/ now has the required property.

From the case N D R one immediately obtains a similar result for N D Rp .
The general case will now be reduced to the special caseN D Rp . For this purpose
we choose an open neighbourhood U ofN in Rp together with a smooth retraction
r W U ! N . We show in a moment:

(15.8.2) Lemma. There exists a continuous function " W M ! �0;1Œ with the
properties:

(1) Ux D U".x/.f .x// � U for each x 2M .

(2) For each x 2M the diameter of r.Ux/ is smaller than ı.x/.

Assuming this lemma, we apply (15.8.1) to N D Rp and " instead of ı. This
provides us with a map g1 W M ! Rp which has an image contained in U . Then
g D r ı g1 has the required properties. �

Proof. We first consider the situation locally. Letx 2M be fixed. Choose�.x/ > 0
and a neighbourhood Wx of x such that ı.x/ � 2�.x/ for y 2 Wx . Let

Vx D r�1.U�.x/=2.f .x// \N/:
The distance �.x/ D d.f .x/;Rp X Vx/ is greater than zero. We shrink Wx to a
neighbourhood Zx such that kf .x/ � f .y/k < 1

4
�.x/ for y 2 Zx .

The function f jZx satisfies the lemma with the constant function " D "x W y 7!
1
4
�.x/. In order to see this, let y 2 Zx and kz � f .y/k < 1

4
�.x/, i.e., z 2 Uy .

Then, by the triangle inequality, kz � f .x/k < 1
2
�.x/, and hence, by our choice of

�.x/,
z 2 Vx � U; r.z/ 2 U�.x/=2.f .x//:
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If z1; z2 2 Uy , then the triangle inequality yields kr.z1/�r.z2/k < �.x/ � 1
2
ı.x/.

Therefore the diameter of r.Uy/ is smaller than ı.y/.
After this local consideration we choose a partition of unity .�x j x 2 M/

subordinate to .Zx j x 2 M/. Then we define " W M ! �0;1Œ as ".x/ DP
a2M 1

4
�a.x/�.a/. This function has the required properties. �

(15.8.3) Proposition. Let f W M ! N be continuous. For each continuous map
ı W M ! �0;1Œ there exists a continuous map " W M ! �0;1Œ with the following
property: Each continuous map g W M ! N with kg.x/ � f .x/k < ".x/ and
f jA D gjA is homotopic to f by a homotopy F W M � Œ0; 1� ! N such that
F.a; t/ D f .a/ for .a; t/ 2 A � Œ0; 1� and kF.x; t/ � f .x/k < ı.x/ for .x; t/ 2
M � Œ0; 1�.
Proof. We choose r W U ! N and " W M ! �0;1Œ as in (15.8.1) and (15.8.2). For
.x; t/ 2M � Œ0; 1� we setH.x; t/ D t � g.x/C .1� t / � f .x/ 2 U".x/.f .x//. The
composition F.x; t/ D rH.x; t/ is then a homotopy with the required properties.

�

(15.8.4) Theorem. .1/ Let f W M ! N be continuous and f jA smooth. Then f
is homotopic relative to A to a smooth map. If f is proper and N closed in Rp ,
then f is properly homotopic relative to A to a smooth map.

.2/ Let f0; f1 W M ! N be smooth maps. Let ft W M ! N be a homotopy
which is smooth onB DM � Œ0; "Œ[M� �1�"; 1�[A� Œ0; 1�. Then there exists a
smooth homotopy gt from f0 to f1 which coincides on A� Œ0; 1� with f . If ft is a
proper homotopy andN closed in Rp , then gt can be chosen as a proper homotopy.

Proof. (1)We choose ı and " according to (15.8.3) and apply (15.8.1). Then (15.8.3)
yields a suitable homotopy. If f is proper, ı bounded, and if kg.x/�f .x/k < ı.x/
holds, then g is proper.

(2) We now considerM� �0; 1Œ instead ofM and its intersection withB instead
of A and proceed as in (1). �

15.9 Transversality

Let f W A!M and g W B ! N be smooth maps. We form the pullback diagram

C
F ��

G
��

B

g
��

A
f

�� M

with C D f.a; b/ j f .a/ D g.b/g � A � B . If g W B � M , then we identify C
with f �1.B/. If also f W A � M , then f �1.B/ D A \ B . The space C can also
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be obtained as the pre-image of the diagonal ofM �M under f � g. The maps f
and g are said to be transverse in .a; b/ 2 C if

Taf .TaA/C Tbg.TbB/ D TyM;
y D f .a/ D g.b/. They are called transverse if this condition is satisfied for all
points of C . If g W B � M is the inclusion of a submanifold and f .a/ D b, then
we say that f is transverse to B in a if

Taf .TaM/C TbB D TbM
holds. If this holds for each a 2 f �1.B/, then f is called transverse toB . We also
use this terminology if C is empty, i.e., we also call f and g transverse in this case.
In the case that dimAC dimB < dimM , the transversality condition cannot hold.
Therefore f and g are then transverse if and only if C is empty. A submersion f
is transverse to every g.

In the special case B D fbg the map f is transverse to B if and only if b is a
regular value of f . We reduce the general situation to this case.

We use a little linear algebra: Let a W U ! V be a linear map and W � V a
linear subspace; then a.U /CW D V if and only if the composition of a with the
canonical projection p W V ! V=W is surjective.

Let B � M be a smooth submanifold. Let b 2 B and suppose p W Y ! Rk is
a smooth map with regular value 0, defined on an open neighbourhood Y of b in
M such that B \ Y D p�1.0/. Then:

(15.9.1) Note. f W A!M is transverse to B in a 2 A if and only if a is a regular
value of p ı f W f �1.Y /! Y ! Rk .

Proof. The space TbB is the kernel of Tbp. The composition of Taf W TaA !
TbM=TbB with the isomorphism TbM=TbB Š T0Rk induced by Tb W TbM !
T0Rk is Ta.p ı f /. Now we apply the above remark from linear algebra. �

(15.9.2) Proposition. Let f W A! M and f j@A be smooth and transverse to the
submanifold B of M of codimension k. Suppose B and M have empty boundary.
Then C D f �1.B/ is empty or a submanifold of type I of A of codimension k. The
equality TaC D .Taf /�1.Tf .a/B/ holds. �

Let, in the situation of the last proposition, �.C;A/ and �.B;M/ be the normal
bundles. Then Tf induces a smooth bundle map �.C;A/ ! �.B;M/; for, by
definition of transversality, Taf W TaA=TaC ! Tf .a/=Tf .a/B is surjective and
then bijective for reasons of dimension.

From (15.9.1) we see that transversality is an “open condition”: If f W A!M

is transverse in a toB , then it is transverse in all points of a suitable neighbourhood
of a, since a similar statement holds for regular points.
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(15.9.3) Proposition. Let f W A ! M and g W B ! M be smooth and let y D
f .a/ D g.b/. Thenf andg are transverse in .a; b/ if and only iff �g is transverse
in .a; b/ to the diagonal ofM �M .

Proof. Let U D Taf .TaA/, V D Tbg.TbB/,W D TyM . The statement amounts
to: U CV D W and .U ˚V /CD.W / D W ˚W are equivalent relations (D.W /
diagonal). By a small argument from linear algebra one verifies this equivalence.

�

(15.9.4) Corollary. Suppose f and g are transverse. Then C is a smooth subman-
ifold of A � B . Let c D .a; b/ 2 C . We have a diagram

TcC
TF ��

TG

��

TbB

Tg

��

TaA
Tf

�� TyM .

It is bi-cartesian, i.e., hTf; Tg i is surjective and the kernel is TcC . Therefore the
diagram induces an isomorphism of the cokernels of TG and Tg (and similarly of
TF and Tf ).

(15.9.5) Corollary. Let a commutative diagram of smooth maps be given,

C
F ��

G

��

B

g

��

Z
h �� A

f
�� M .

Let f be transverse to g and C as above. Then h is transverse to G if and only if
f h is transverse to g.

Proof. The uses the isomorphisms of cokernels in (15.9.4). �

(15.9.6) Corollary. We apply (15.9.5) to the diagram

M ��

is

��

fsg

��

W
f

�� M � S pr
�� S

and obtain: f is transverse to is W x 7! .x; s/ if and only if s is a regular value of
pr ıf . �

Let F W M � S ! N be smooth and Z � N a smooth submanifold. Suppose
S , Z, and N have no boundary. For s 2 S we set Fs W M ! N , x 7! F.x; s/. We
consider F as a parametrized family of maps Fs . Then:
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(15.9.7)Theorem. SupposeF W M�S ! N and @F D F j.@M�S/are transverse
to Z. Then for almost all s 2 S the maps Fs and @Fs are both transverse to Z.

Proof. By (15.9.2), W D F �1.Z/ is a submanifold of M � S with boundary
@W D W \ @.M � S/. Let � W M � S ! S be the projection. The theorem of
Sard yields the claim if we can show: If s 2 S is a regular value of � W W ! S ,
then Fs is transverse to Z, and if s 2 S is a regular value of @� W @W ! S , then
@Fs is transverse to Z. But this follows from (15.9.6). �

(15.9.8) Theorem. Let f W M ! N be a smooth map and Z � N a submanifold.
Suppose Z and N have no boundary. Let C � M be closed. Suppose f is
transverse to Z in points of C and @f transverse to Z in points of @M \ C . Then
there exists a smooth map g W M ! N which is homotopic to f , coincides on C
with f and is onM and @M transverse to Z.

Proof. We begin with the case C D ;. We use the following facts: N is diffeo-
morphic to a submanifold of some Rk; there exists an open neighbourhood U of
N in Rk and a submersion r W U ! N with r jN D id. Let S D Ek � Rk be the
open unit disk and set

F W M � S ! N; .x; s/ 7! r.f .x/C ".x/s/:
Here " W M ! �0;1Œ is a smooth function for which this definition of F makes
sense. We have F.x; 0/ D f .x/. We claim: F and @F are submersions. For the
proof we consider for fixed x the map

S ! U".f .x//; s 7! f .x/C ".x/sI
it is the restriction of an affine automorphism of Rk and hence a submersion. The
composition with r is then a submersion too. Therefore F and @F are submersions,
since already the restrictions to the fxg � S are submersions.

By (15.9.7), for almost all s 2 S the maps Fs and @Fs are transverse to Z. A
homotopy from Fs to f is M � I ! N , .x; t/ 7! F.x; st/.

Let nowC be arbitrary. There exists an open neighbourhoodW ofC inM such
that f is transverse toZ onW and @f transverse toZ onW \@M . We choose a set
V which satisfies C � V ı � xV � W ı and a smooth function � W M ! Œ0; 1� such
that M nW � ��1.1/; V � ��1.0/. Moreover we set � D �2. Then Tx� D 0,
whenever �.x/ D 0. We now modify the map F from the first part of the proof

G W M � S ! N; .x; s/ 7! F.x; �.x/s/

and claim: G is transverse to Z. For the proof we choose .x; s/ 2 G�1.Z/.
Suppose, to begin with, that �.x/ ¤ 0. Then S ! N , t 7! G.x; t/ is, as a
composition of a diffeomorphism t 7! �.x/t with the submersion t 7! F.x; t/,
also a submersion and therefore G is regular at .x; s/ and hence transverse to Z.
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Suppose now that �.x/ D 0. We compute T.x;s/G at .v; w/ 2 TxM � TsS D
TxX � Rm. Let

m W M � S !M � S; .x; s/ 7! .x; �.x/s/:

Then

T.x;s/m.v;w/ D .v; �.x/w C Tx�.v/s/:
The chain rule, applied to G D F ım, yields

T.x;s/G.v;w/ D Tm.x;s/F ı T.x;s/m.v;w/ D T.x;0/F.v; 0/ D Txf .v/;

since �.x/ D 0; Tx� D 0 and F.x; 0/ D f .x/. Since �.x/ D 0, by choice of
W and � , f is transverse to Z in x, hence – since T.x;s/G and Txf have the same
image – also G is transverse to Z in .x; s/. A similar argument is applied to @G.
Then one finishes the proof as in the case C D ;. �

15.10 Gluing along Boundaries

We use collars in order to define a smooth structure if we glue manifolds with
boundaries along pieces of the boundary. Another use of collars is the definition of
a smooth structure on the product of two manifolds with boundary (smoothing of
corners).

15.10.1 Gluing alongboundaries. LetM1 andM2 be @-manifolds. LetNi � @Mi

be a union of components of @Mi and let ' W N1 ! N2 be a diffeomorphism. We
denote by M D M1 [' M2 the space which is obtained from M1 CM2 by the
identification of x 2 N1 with '.x/ 2 N2. The image of Mi in M is again denoted
by Mi . Then Mi � M is closed and Mi X Ni � M open. We define a smooth
structure onM . For this purpose we choose collars ki W R� �Ni !Mi with open
image Ui �Mi . The map

k W R �N1 !M; .t; x/ 7!
(
k1.t; x/; t � 0;
k2.�t; '.x//; t � 0;

is an embedding with imageU D U1['U2. We define a smooth structure (depend-
ing on k) by the requirement that Mi X Ni ! M and k are smooth embeddings.
This is possible since the structures agree on .Mi XNi / \ U . Þ

15.10.2 Products. LetM1 andM2 be smooth @-manifolds. We impose a canonical
smooth structure onM1�M2X .@M1�@M2/ by using products of charts forMi as
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charts. We now choose collarski W R��@Mi !Mi and consider the composition	,

R2� � @M1 � @M2
��id ��

�

��

R� � R� � @M1 � @M2

.1/

��

M1 �M2 .R� � @M1/ � .R� � @M2/:
k1�k2��

Here � W R2� ! R1� � R1�, .r; '/ 7! .r; 1
2
' C 3�

4
/, written in polar coordinates

.r; '/, and (1) interchanges the second and third factor. There exists a unique
smooth structure on M1 �M2 such that M1 �M2 X .@M1 � @M2/ � M1 �M2

and 	 are diffeomorphisms onto open parts of M1 �M2. Þ

15.10.3 Boundary pieces. Let B and C be smooth n-manifolds with boundary.
Let M be a smooth .n � 1/-manifold with boundary and suppose that

'B W M ! @B; 'C W M ! @C

are smooth embeddings. We identify in B C C the points 'B.m/ with 'C .m/ for
eachm 2M . The resultD carries a smooth structure with the following properties:

(1) B X 'B.M/ � D is a smooth submanifold.
(2) C X 'C .M/ � D is a smooth submanifold.
(3) � W M ! D,m 7! 'B.m/ � 'C .m/ is a smooth embedding as a submanifold

of type I.
(4) The boundary of D is diffeomorphic to the gluing of @B X 'B.M/ı with

@C X 'C .M/ı via 'B.m/ � 'C .m/; m 2 @M .
The assertions (1) and (2) are understood with respect to the canonical embeddings
B � D 
 C . We have to define charts about the points of �.M/, since the
conditions (1) and (2) specify what happens about the remaining points. For points
of �.M X @M/ we use collars of B and C and proceed as in 15.10.1. For �.@M/

we use the following device.
Choose collars �B W R� � @B ! B and � W R� � @M !M and an embedding

�B W R � @M ! @B such that the next diagram commutes,

R � @M �B �� @B

R� � @M
[
��

� �� M .

'B

��

Here �B can essentially be considered as a tubular map, the normal bundle of'.@M/

in @B is trivial. And � is “half” of this normal bundle.
Then we form ˆB D �B ı .id��B/ W R� � R � @M ! B . For C we choose

in a similar manner �C and �C , but we require 'C ı �� D �C where ��.m; t/ D



390 Chapter 15. Manifolds

�.m;�t /. Then we define ˆC from �C and �C . The smooth structure in a neigh-
bourhood of �.@M/ is now defined by the requirement that ˛ W R� �R� @M ! D

is a smooth embedding where

˛.r;  ;m/ D
(
ˆB.r; 2 � �=2;m/; �

2
�  � �;

ˆC .r; 2 � 3�=2;m/; � �  � 3�
2
;

with the usual polar coordinates .r;  / in R� � R. Þ

15.10.4 Connected sum. Let M1 and M2 be n-manifolds. We choose smooth
embeddings si W Dn ! Mi into the interiors of the manifolds. In M1 X s1.En/C
M2 X s2.En/ we identify s1.x/ with s2.x/ for x 2 Sn�1. The result is a smooth
manifold (15.10.1). We call it the connected sumM1#M2 ofM1 andM2. Suppose
M1;M2 are oriented connected manifolds, assume that s1 preserves the orientation
and s2 reverses it. Then M1#M2 carries an orientation such that the Mi X si .En/
are oriented submanifolds. One can show by isotopy theory that the oriented dif-
feomorphism type is in this case independent of the choice of the si . Þ

15.10.5 Attaching handles. LetM be ann-manifold with boundary. Furthermore,
let s W Sk�1 �Dn�k ! @M be an embedding and identify inM CDk �Dn�k the
points s.x/ and x. The result carries a smooth structure (15.10.3) and is said to be
obtained by attaching a k-handle to M .

Attaching a 0-handle is the disjoint sum withDn. Attaching an n-handle means
that a “hole” with boundary Sn�1 is closed by inserting a disk. A fundamental
result asserts that each (smooth) manifold can be obtained by successive attaching
of handles. A proof uses the so-called Morse theory (see e.g., [134], [137]). A handle
decomposition of a manifold replaces a cellular decomposition, the advantage is
that the handles are themselves n-dimensional manifolds. Þ

15.10.6 Elementary surgery. If M 0 arises from M by attaching a k-handle,
then @M 0 is obtained from @M by a process called elementary surgery. Let
h W Sk�1 � Dn�k ! X be an embedding into an .n � 1/-manifold with image
U . Then X X U ı has a piece of the boundary which is via h diffeomorphic to
Sk�1 � Sn�k�1. We glue the boundary of Dk � Sn�k�1 with h; in symbols

X 0 D .X X U ı/ [h Dk � Sn�k�1:

The transition from X to X 0 is called elementary surgery of index k at X via
h. The method of surgery is very useful for the construction of manifolds with
prescribed topological properties. See [191], [162], [108] to get an impression of
surgery theory. Þ
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Problems

1. The subsets of SmCnC1 � RmC1 � RnC1

D1 D f.x; y/ j kxk2 � 1
2
; kyk2 � 1

2
g; D2 D f.x; y/ j kxk2 � 1

2
; kyk2 � 1

2
g

are diffeomorphic to D1 Š Sm �DnC1, D2 Š DmC1 � Sn. They are smooth submani-
folds with boundary of SmCnC1. Hence SmCnC1 can be obtained from Sm �DnC1 and
DmC1�Sn by identifying the common boundary Sm�Sn with the identity. A diffeomor-
phism D1 ! Sm �DnC1 is .z; w/ 7! .kzk�1z;

p
2w/.

2. Let M be a manifold with non-empty boundary. Identify two copies along the boundary
with the identity. The result is the doubleD.M/ of M . Show that D.M/ for a compact M
is the boundary of some compact manifold. (Hint: RotateM about @M about 180 degrees.)
3. Show M#Sn ŠM for each n-manifold M .
4. Study the classification of closed connected surfaces. The orientable surfaces are S2

and connected sums of tori T D S1 � S1. The non-orientable ones are connected sums of
projective planes P D RP 2. The relation T #P D P #P #P holds. The connected sum with
T is classically also called attaching of a handle.



Chapter 16

Homology of Manifolds

The singular homology groups of a cell complex vanish above its dimension. It
is an obvious question whether the same holds for a manifold. It is certainly
technically complicated to produce a cell decomposition of a manifold and also
an artificial structure. Locally the manifold looks like a Euclidean space, so there
arises no problem locally. The Mayer–Vietoris sequences can be used to paste local
information, and we use this technique to prove the vanishing theorem.

The homology groups of an n-manifold M in dimension n also have special
properties. They can be used to define and construct homological orientations of a
manifold. A local orientation about x 2 M is a generator of the local homology
group Hn.M;M X xIZ/ Š Z. In the case of a surface, the two generators corre-
spond to “clockwise” and “counter-clockwise”. If you pick a local orientation, then
you can transport it along paths, and this defines a functor from the fundamental
groupoid and hence a twofold covering. If the covering is trivial, then the manifold
is called orientable, and otherwise (as in the case of a Möbius-band) non-orientable.

Our first aim in this chapter will be to construct the orientation covering and use
it to define orientations as compatible families of local orientations.

In the case of a closed compact connected manifold we can define a global
homological orientation to be a generator of Hn.M IZ/; we show that this group
is either zero or Z. In the setting of a triangulation of a manifold, the generator
is the sum of the n-dimensional simplices, oriented in a coherent manner. In a
non-orientable manifold it is impossible to orient the simplices coherently; but in
that case their sum still gives a generator in Hn.M IZ=2/, since Z=2-coefficients
mean that we can ignore orientations.

Once we have global orientations, we can define the degree of a map between
oriented manifolds. This is analogous to the case of spheres already studied.

16.1 Local Homology Groups

Let h�.�/ be a homology theory andM an n-dimensional manifold. Groups of the
type hk.M;M X x/ are called local homology groups. Let ' W U ! Rn be a chart
of M centered at x. We excise M X U and obtain an isomorphism

hk.M;M X x/ Š hk.U; U X x/ '��! hk.R
n;Rn X 0/:

For singular homology with coefficients in G we see thatHn.M;M X xIG/ Š G,
and the other local homology groups are zero. Let R be a commutative ring. Then
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Hn.M;M X xIR/ Š R is a free R-module of rank 1. A generator, corresponding
to a unit of R, is called a local R-orientation of M about x. We assemble the
totality of local homology groups into a covering.

LetK � L �M . The homomorphism rLK W hk.M;M XL/! hk.M;M XK/,
induced by the inclusion, is called restriction. We write rLx in the case thatK D fxg.
(16.1.1) Lemma. Each neighbourhood W of x contains an open neighbourhood
U of x such that the restriction rUy is for each y 2 U an isomorphism.

Proof. Choose a chart ' W V ! Rn with V � W centered at x. SetU D '�1.En/,
En D fx 2 Rn j kxk < 1g. We have a commutative diagram

hk.M;M X U/
rU
y

��

hk.V; V X U/.1/
��

.3/

��

hk.M;M X y/ hk.V; V X y/;.2/
��

with morphisms induced by inclusion. The maps (1) and (2) are excisions, and (3)
is an isomorphism, because V X U � V X y is for each y 2 U an h-equivalence
(see Problem 1). �

We construct a covering ! W hk.M;M X /!M . As a set

hk.M;M X / D
`
x2M hk.M;M X x/;

and hk.M;M X x/ is the fibre of ! over x (with discrete topology). Let U be an
open neighbourhood of x such that rUy is an isomorphism for each y 2 U . We
define bundle charts

'x;U W U � hk.M;M X x/! !�1.U /; .y; a/ 7! rUy .r
U
x /

�1.a/:

We give hk.M;M X/ the topology which makes 'x;U a homeomorphism onto an
open subset. We have to show that the transition maps

'�1
y;V 'x;U W .U \ V / � hk.M;M X x/! .U \ V / � hk.M;M X y/

are continuous. Given z 2 U \ V , choose z 2 W � U \ V such that rWw is an
isomorphism for each w 2 W . Consider now the diagram

hk.M;M X x/ hk.M;M X U/rU
x��

rU
W

��

rU
w �� hk.M;M X w/

hk.M;M XW /
rW

w

���������������
hk.M;M X V /

rV
W

��

rV
y

��

rV
w

��

hk.M;M X y/:
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It shows '�1
y;V 'x;U D rVy .r

V
W /

�1rUW .rUx /�1. Hence the second component of
'�1
y;V 'x;U is independent of w 2 W , and this shows the continuity of the tran-

sition map.
We take advantage of the fact that the fibres are groups. For A � M we

denote by .A/ the set of continuous (D locally constant) sections over A of
! W hk.M;M X / ! M . If s and t are sections, we can define .s C t /.a/ D
s.a/C t .a/. One uses the bundle charts to see that sC t is again continuous. Hence
.A/ is an abelian group. We denote by c.A/ � .A/ the subgroup of sections
with compact support, i.e., of sections which have values zero away from a compact
set.

(16.1.2) Proposition. Let z 2 hk.M;M X U/. Then y 7! rUy z is a continuous
section of !.

Proof. The bundle chart 'x;U transforms the constant section y 7! .y; rUx z/ into
the section y 7! rUy z. �

Problems

1. Sn�1 � Rn X En and Rn X e ! Sn�1, y 7! .y � e/=ky � ek are h-equivalences
(e 2 En). The map Sn�1 ! Sn�1, y 7! .y � e/=ky � ek is homotopic to the identity.
These facts imply that Rn XE � Rn X e is an h-equivalence.
2. LetM be an n-dimensional manifold with boundary @M . Show that x 2 @M if and only if
Hn.M;MXx/ D 0. From this homological characterization of boundary points one obtains:
Let f W M !M be a homeomorphism. Then f .@M/ D @M and f .M X@M/ DM X@M .
3. Let ' W .C; 0/! .D; 0/ be a homeomorphism between open neighbourhoods of 0 in Rn.
Then '� W Hn.C; C X 0IR/! Hn.D;D X 0IR/ is multiplication by˙1.

16.2 Homological Orientations

LetM be an n-manifold andA �M . An R-orientation of M along A is a section
s 2 .AIR/ of! W Hn.M;M XIR/!M such that s.a/ 2 Hn.M;M XaIR/ Š
R is for each a 2 A a generator of this group. Thus s combines the local orientations
in a continuous manner. In the case that A D M , we talk about an R-orientation
of M , and for R D Z we just talk about orientations. If an orientation exists, we
call M (homologically) orientable. If M is orientable along A and B � A, then
M is orientable along B .

(16.2.1) Note. Let Ori.M/ � Hn.M;M X IZ/ be the subset of all generators of
all fibres. Then the restriction Ori.M/!M of ! is a 2-fold covering ofM , called
the orientation covering ofM . �

(16.2.2) Proposition. The following are equivalent:
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(1) M is orientable.

(2) M is orientable along compact subsets.

(3) The orientation covering is trivial.

(4) The covering ! W Hn.M;M X IZ/!M is trivial.

Proof. (1)) (2). Special case.
(2)) (3). The orientation covering is trivial if and only if the covering over

each component is trivial. Therefore let M be connected. Then a 2-fold covering
QM ! M is trivial if and only if QM is not connected, hence the components of QM

are also coverings.
Suppose Ori.M/ ! M is non-trivial. Since Ori.M/ is then connected, there

exists a path in Ori.M/ between the two points of a given fibre. The imageS of such
a path is compact and connected, and the covering is non-trivial overS , since we can
connect two points of a fibre in it. By the assumption (2), the orientation covering
is trivial over the compact set S , hence it has a section over S . Contradiction.

(3) ) (4). Let s be a section of the orientation covering. Then M � Z !
Hn.M;M X IZ/, .x; k/ 7! ks.x/ is a trivialization of !: It is a map over M ,
bijective on fibres, continuous, and a morphism between coverings.

(4)) (1). If! is trivial, then it has a section with values in the set of generators.
�

(16.2.3) Note. Ori.M/ ! M is a twofold principal covering with automorphism
group C D f1; t j t2 D 1g. Let t act on G as multiplication by �1. Then the
associated covering Ori(M) �C G is isomorphic toHn.M;M X IG/.
Proof. The map

Ori.M/�G ! Hn.M;M X IZ/˝G Š Hn.M;M X IG/; .u; g/ 7! u˝ g
induces the isomorphism. (The isomorphism is the fibrewise isomorphism
Hn.M;M X xIZ/˝ G Š Hn.M;M X xIG/ from the universal coefficient for-
mula.) �

(16.2.4) Remark. The sections .AIG/ of ! over A correspond bijectively to the
continuous maps 	 W Ori.M/jA ! G with the property 	 ı t D �	. This is a
general fact about sections of associated bundles. Þ

Problems

1. Let M be a smooth n-manifold with an orienting atlas. Then there exists a unique
homological Z-orientation such that the local orientations inHn.M;M XxIZ/ are mapped
via positive charts to a standard generator of Hn.Rn;Rn X 0IZ/. Conversely, if M is Z-
oriented, then M has an orienting atlas which produces the given Z-orientation.
2. Every manifold has a unique Z=2-orientation.
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16.3 Homology in the Dimension of the Manifold

LetM be an n-manifold andA �M a closed subset. We use in this section singular
homology with coefficients in the abelian group G and sometimes suppress G in
the notation.

(16.3.1) Proposition. For each ˛ 2 Hn.M;M X AIG/ the section

JA.˛/ W A! Hn.M;M X IG/; x 7! rAx .˛/

of ! (over A) is continuous and has compact support.

Proof. Let the chain c 2 Sn.M IG/ represent the homology class ˛. There exists
a compact set K such that c is a chain in K. Let x 2 A XK. Then the image of c
under

Sn.KIG/! Sn.M IG/! Sn.M;KIG/! Sn.M;M X xIG/
is zero. Since this image represents rAx .˛/, the support of JA.˛/ is contained in
A \K.

The continuity is a general fact (16.1.2). �

From (16.3.1) we obtain a homomorphism

JA W Hn.M;M X AIG/! c.AIG/; ˛ 7! .x 7! rAx .˛//:

(16.3.2) Theorem. Let A �M be closed.

(1) ThenHi .M;M X A/ D 0 for i > n.

(2) The homomorphism JA W Hn.M;M X A/! c.A/ is an isomorphism.

Proof. LetD.A; 1/ andD.A; 2/ stand for the statement that (1) and (2) holds for the
subset A, respectively. We use the fact that JA is a natural transformation between
contravariant functors on the category of closed subsets of M and their inclusions.
The proof is a kind of induction over the complexity of A. It will be divided into
several steps.

(1) D.A; j /;D.B; j /;D.A\B; j / imply D.A[B; j /. For the proof we use
the relative Mayer–Vietoris sequence for .M X A \ BIM X A;M X B/ and an
analogous sequence for sections. This leads us to consider the diagram

HnC1.M;M X .A \ B// Š
��

��

0

��

Hn.M;M X .A [ B// JA[B
��

��

c.A [ B/
��

Hn.M;M X A/˚Hn.M;M X B/ JA˚JB

Š
��

��

c.A/˚ c.B/
��

Hn.M;M X .A \ B// JA\B

Š
�� c.A \ B/:
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The Five Lemma and the hypotheses now showD.A[B; 2/. The Mayer–Vietoris
sequence alone yields D.A [ B; 1/.

(2) D.A; j / holds for compact convex subsets A in a chart domain U , i.e.,
'.A/ D B is compact convex for a suitable chart ' W U ! Rn. For the proof we
show that for x 2 A the restriction rAx is an isomorphism. By an appropriate choice
of ' we can assume 0 2 B � En. Then we have a commutative diagram

Hi .D
n; Sn�1/

.1/
��

D
��

Hi .Rn;Rn X B/ '�

Š
��

��

Hi .U; U X A/ .3/
��

��

Hi .M;M X A/
rA

x
��

Hi .D
n; Sn�1/

.2/
�� Hi .Rn;Rn X 0/ '�

Š
�� Hi .U; U X x/ .4/

�� Hi .M;M X x/.

The maps (3) and (4) are excisions. The maps (1) and (2) are isomorphisms,
because Sn�1 � Rn X B is an h-equivalence. The isomorphism rAx shows, firstly,
that D.A; 1/ holds; and, secondly, D.A; 2/, since a section of a covering over a
connected set is determined by a single value.

(3) Suppose A � U , ' W U ! Rn a chart, A D K1 [ � � � [Kr , '.Ki / compact
convex. We show D.A; j / by induction on r . Let B D K1 [ � � � [ Kr�1 and
C D Kr . Then B and B \ C are unions of r � 1 sets of type (2), hence D.B; j /
and D.B \ C; j / holds by induction. Now use (1).

(4) Let K � U , ' W U ! Rn a chart, K compact. Let K � W � U , W open.
Then there exists a neighbourhood V ofK insideW of type (3). In this case J V is
an isomorphism. The restrictions rVK induce canonical maps from the colimits

colimV Hi .M;M X V / .�/
��

colimV JV

��

Hi .M;M XK/
JK

��

colimV c.V /
.��/

�� c.K/,

where the colimit is taken over the directed set of neighbourhoods V of K of type
(3). What does this isomorphism statement mean in explicit terms? Firstly, an
element xK in the image has the form rVK xV for a suitable V ; and secondly, if xV
and xW have the same image xK , then they become equal under a restriction to a
suitable smaller neighbourhood. From this description it is then easy to verify that
JK is indeed an isomorphism. Suppose .	/ and .		/ are isomorphisms. Then we
obtain D.K; 1/, and the isomorphisms J V yield D.K; 2/.

The isomorphism .	/ holds already for the singular chain groups. It uses the
fact that a chain has compact support; if the support is contained in M X K, then
already in M X V for a suitable neighbourhood V of K.

.		/ is an isomorphism: See Problem 1.
(5) D.K; j / holds for arbitrary compact subsets K, for K is a union of a finite

number of sets of type (4). Then we can use induction as in case (3).
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(6) LetK D K1[K2[K3[� � � with compactKi . Suppose there are pairwise
disjoint open neighbourhoods Ui of Ki . By additivity of homology groups and
section groups, JK is the direct sum of the JKi .

(7) Let A finally be an arbitrary closed subset. Since M is locally compact
with countable basis, there exists an exhaustion M D [Ki , K1 � K2 � � � � by
compact sets Ki such that Ki � Kı

iC1. Set Ai D A \ .Ki X Kı
i�1/, K0 D ;,

B D S
iD2nAi , C D

S
iD2nC1Ai . Then D.B; j /;D.C; j /, and D.B \ C; j /

hold by (6); the hypothesis of (6) follows from the fact that a manifold is a normal
space. Now D.A; j / holds by (1), since A D B [ C . �

(16.3.3) Theorem. Suppose A is a closed connected subset ofM . Then:

(1) Hn.M;M X AIG/ D 0, if A is not compact.

(2) Hn.M;M X AIG/ Š G, if M is R-orientable along A and A is compact.
Moreover Hn.M;M X AIG/ ! Hn.M;M X xIG/ is an isomorphism for
each x 2 A.

(3) Hn.M;M XAIZ/ Š 2G D fg 2 G j 2g D 0g, ifM is not orientable along
A and A is compact.

Proof. (1) Since A is connected, a section in .AIG/ is determined by its value at
a single point. If this value is non-zero, then the section is non-zero everywhere.
Therefore there do not exist non-zero sections with compact support over a non-
compact A, and (16.3.2) shows Hn.M;M X AIG/ D 0.

(2) Let A be compact. ThenHn.M;M XAIG/ Š .AIG/. Again a section is
determined by its value at a single point. We have a commutative diagram

Hn.M;M X AIG/ Š ��

rA
x

��

.AIG/
b
��

Hn.M;M X xIG/ Š �� .fxgIG/.
IfM is orientable along A, then there exists in .A/ an element such that its value
at x is a generator. Hence b is an isomorphism and therefore also rAx .

(3) A section in .AIG/ corresponds to a continuous map 	 W Ori.M/jA! G

with 	t D �	. If M is not orientable along A, then Ori.M/jA is connected and
therefore 	 constant. The relation 	t D �	 shows that the value of 	 is contained
in 2G. In this case rAx W Hn.M;M XAIG/! Hn.M;M X xIG/ Š G is injective
and has image 2G. �

Theorem (16.3.3) can be considered as a duality result, since it relates an asser-
tion about A with an assertion about M X A.

(16.3.4) Proposition. Let M be an n-manifold and A � M a closed connected
subset. Then the torsion subgroup of Hn�1.M;M X AIZ/ is of order 2 if A is
compact andM non-orientable along A, and is zero otherwise.
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Proof. Let q 2 N and suppose M is orientable along the compact set A. Then

Z=q Š Hn.M;M X AIZ=q/
Š Hn.M;M X AIZ/˝Z=q ˚Hn�1.M;M X AIZ/ 	Z=q

Š Z=q ˚Hn�1.M;M X AIZ/ 	Z=q:

We have used: (16.3.3); universal coefficient theorem; again (16.3.3). This implies
that Hn�1.M;M X AIZ/ 	Z=q D 0. Similarly for non-compact A or q odd

0 Š Hn.M;M X AIZ=q/ Š Hn�1.M;M X AIZ/ 	Z=q:

Since Tor.G;Z=q/ Š fg 2 G j qg D 0g, this shows thatHn�1.M;M XAIZ/ has
no q-torsion in these cases. If A is compact and M non-orientable along A, then

Z=2 Š Hn.M;M X AIZ=4/ Š Hn�1.M;M X AIZ/ 	Z=4

by (16.3.3) and the universal coefficient formula. Since we know already that the
group in question has no odd torsion, we conclude that there exists a single non-zero
element of finite order and the order is 2. �

Problems

1. Let s be a section over the compact set K. For each x 2 K there exists an open neigh-
bourhood U.x/ and an extension sx of sjU.x/ \ K. Cover K by U.x1/; : : : ; U.xr /. Let
W D fy j sxi

.y/ D sxj
.x/ if y 2 U.xi /\U.xj /g and define s.y/; y 2 W as the common

value. Show that W is open. Let s; s0 be sections over V which agree on K. Show that
they agree in a smaller neighbourhood V1 � V of K. (These assertions hold for sections of
coverings.)

16.4 Fundamental Class and Degree

The next theorem is a special case of (16.3.3).

(16.4.1) Theorem. Let M be a compact connected n-manifold. Then one of the
following assertions holds:

(1) M is orientable,Hn.M/ Š Z, and for eachx 2M the restrictionHn.M/!
Hn.M;M X x/ is an isomorphism.

(2) M is non-orientable andHn.M/ D 0. �

Under the hypothesis of (16.4.1), the orientations of M correspond to the gen-
erators of Hn.M/. A generator will be called fundamental class or homological
orientation of the orientable manifold.

We now use fundamental classes in order to define the degree; we proceed as
in the special case of Sn. Let M and N be compact oriented n-manifolds. Let
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N be connected and suppose M has components M1; : : : ;Mr . Then we have
fundamental classes z.Mj / for the Mj and z.M/ 2 Hn.M/ Š L

j Hn.Mj / is
the sum of the z.Mj /. For a continuous map f W M ! N we define its degree
d.f / 2 Z via the relation f�z.M/ D d.f /z.N /. From this definition we see
immediately the following properties of the degree:

(1) The degree is a homotopy invariant.
(2) d.f ı g/ D d.f /d.g/.
(3) A homotopy equivalence has degree˙1.
(4) If M DM1 CM2, then d.f / D d.f jM1/C d.f jM2/.
(5) If we pass inM orN to the opposite orientation, then the degree changes the

sign.
We now come to the computation of the degree in terms of local data of the map.

LetM andN be connected and setK D f �1.p/. LetU be an open neighbourhood
of K in M . In the commutative diagram

z.M/ 2
�

��

Hn.M/
f� ��

��

Hn.N /

Š
��

3 z.N /
�

��

Hn.M;M XK/ f� �� Hn.N;N X p/

z.U;K/ 2 Hn.U; U XK/
Š
��

f U
� �� Hn.N;N X p/

D
��

3 z.N; p/

we have f U� z.U;K/ D d.f /z.N; p/. Thus the degree only depends on the restric-
tion f U of f to U . One can now extend the earlier investigations of self maps of
Sn to this more general case. The additivity of the degree is proved in exactly the
same manner. LetK be finite. Choose U DSx2K Ux where the Ux are pair-wise
disjoint open neighbourhoods of x. We then haveL

x2K Hn.Ux; Ux X x/ Š Hn.U; U XK/; Hn.Ux; Ux X x/ Š Z:

The image z.Ux; x/ of z.M/ is a generator, the local orientation determined by
the fundamental class z.M/. The local degree d.f; x/ of f about x is defined by
f�z.Ux; x/ D d.f; x/z.N; p/. The additivity yields d.f / DPx2K d.f; x/.

(16.4.2) Remark. Let f be a C 1-map in a neighbourhood of x; this shall mean
the following. There exist charts ' W Ux ! Rn centered at x and  W V ! Rn

centered at p such that f .Ux/ � V and g D  f '�1 is a C 1-map. We can
suppose that the charts preserve the local orientations; this shall mean for ' that
'� W Hn.Ux; Ux X x/! Hn.Rn;Rn X 0/ sends z.Ux; x/ to the standard generator.
Such charts are called positive with respect to the given orientations. Suppose now
in addition that the differential of g at x is regular. Then d.f; x/ is the sign of the
determinant of the Differential Dg.0/. Þ
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(16.4.3) Proposition. Let M be a connected, oriented, closed n-manifold. Then
there exists for each k 2 Z a map f W M n ! Sn of degree k.

Proof. If f W M ! Sn has degree a and g W Sn ! Sn degree b, then gf has degree
ab. Thus it suffices to realize a degree ˙1. Let ' W Dn ! M be an embedding.
Then we have a map f W M ! Dn=Sn�1 which is the inverse of ' on U D '.En/
and sends M X U to the base point. This map has degree˙1. �

Let the manifolds M and N be oriented by the fundamental classes zM 2
Hm.M/ and zN 2 Hn.N /. Then the homology product zM � zN is a fundamental
class for M �N , called the product orientation.

Problems

1. Let p W M ! N be a covering of n-manifolds. Then the pullback of Ori.N /! N along
p is Ori.M/!M .
2. Letp W M ! N be aG-principal covering between connectednmanifolds with orientable
M . Then N is orientable if and only if G acts by orientation-preserving homeomorphisms.
3. The manifold Ori.M/ is always orientable.
4. RP n is orientable if and only if n is odd.
5. Let M be a closed oriented connected n-manifold. Suppose that M carries a CW-
decomposition with k-skeleton Mk . The inclusion induces an injective map Hn.M/ !
Hn.Mn;Mn�1/. The fundamental class is therefore represented by a cellular chain in
Hn.Mn;Mn�1/. If we orient the n-cells in accordance with the local orientations of the
manifold, then the fundamental class chain is the sum of the n-cells. This is the classical in-
terpretation of the fundamental class of a triangulated manifold. A similar assertion holds for
unoriented manifolds and coefficients in Z=2 and manifolds with boundary (to be considered
in the next section).

In a sense, a similar assertion should hold for non-compact manifolds; but the cellular
chain would have to be an infinite sum. Therefore a fundamental class has to be defined via
an inverse limit.
6. LetM be a closed connected n-manifold. ThenHn.M IZ=2/ Š Z=2 and the restrictions
rM

x W Hn.M IZ=2/! Hn.M;M X xIZ=2/ are isomorphisms.
7. Let f W M ! N be a map between closed connected n-manifold. Then one can define
the degree modulo 2 d2.f / 2 Z=2; it is zero (one) if f� W Hn.M IZ=2/ ! Hn.N IZ=2/
is the zero map (an isomorphism). If this degree is non-zero, then f is surjective. If the
manifolds are oriented, then d.f / mod 2 D d2.f /.
8. Let G be a compact connected Lie group and let T be a maximal torus of G. The map
q W G=T � T ! G, .g; t/ 7! gtg�1 has degree jW j. HereW D NT=T is the Weyl group.
Since q has non-zero degree, this map is surjective (see [29, IV.1]).
9. Let G be a compact connected Lie group and T a maximal torus of G. The degree of
f W G ! G, g 7! gk has degree kr , r D dim T . Let c 2 T be an element such that the
powers of c are dense in T , then jf �1.c/j D kr , f �1.c/ � T , and c is a regular value of
f . [90]
10. Let f W M ! N be a proper map between oriented connected n-manifolds. Define the
degree of f .



402 Chapter 16. Homology of Manifolds

16.5 Manifolds with Boundary

Let M be an n-dimensional manifold with boundary. We call z 2 Hn.M; @M/ a
fundamental class if for each x 2 M X @M the restriction of z is a generator in
Hn.M;M X x/.
(16.5.1) Theorem. Let M be a compact connected n-manifold with non-empty
boundary. Then one of the following assertions hold:

(1) Hn.M; @M/ Š Z, and a generator of this group is a fundamental class.
The image of a fundamental class under @ W Hn.M; @M/! Hn�1.@M/ is a
fundamental class. The interiorM X @M is orientable.

(2) Hn.M; @M/ D 0, andM X @M is not orientable.

Proof. Let � W Œ0;1Œ�@M ! U be a collar of M , i.e., a homeomorphism onto an
open neighbourhood U of @M such that �.0; x/ D x for x 2 @M . For simplicity
of notation we identify U with Œ0;1Œ�@M via �; similarly for subsets of U . In
this sense @M D 0 � @M . We have isomorphisms

Hn.M; @M/ Š Hn.M; Œ0; 1Œ�@M/ Š Hn.M X @M; �0; 1Œ�@M/ Š .A/:
The first one by h-equivalence; the second one by excision; the third one uses the
closed set

A DM X .Œ0; 1Œ�@M/ �M X @M
and (16.3.2). The setA is connected, hence.A/ Š Z or.A/ Š 0. If.A/ Š Z,
thenM X@M is orientable alongA. Instead ofAwe can argue with the complement
of Œ0; "Œ�@M . Since each compact subset of M X @M is contained in some such
complement, we see that M X @M is orientable along compact subsets, hence
orientable (see (16.2.2)). The isomorphism Hn.M X @M; �0; 1Œ�@M/ Š .A/

says that there exists an element z 2 Hn.M X @M; �0; 1Œ�@M/ which restricts to
a generator ofHn.M X @M;M X @M X x/ for each x 2 A. For the corresponding
element z 2 Hn.M; @M/ a similar assertion holds for each x 2M X @M , i.e., z is
a fundamental class (move around x within the collar).

It remains to show that @z is a fundamental class. The lower part of the diagram
(for x 2 �0; 1Œ � @M )

Hn�1.@M/
Š �� Hn�1.@M [ A;A/ Hn�1.@I � @M; 1 � @M/

Š��

Hn.M; @M/ ��

��))
)))

)))
)))

))

@

��

Hn.M; @M [ A/

��

@ Š
��

Hn.I � @M; @I � @M/

��

Š��

@ Š
��

��

Hn.M;M X x/ Hn.I � @M; I � @M X x/Š��
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shows that z yields a fundamental class in Hn.I � @M; @I � @M/. The upper part
shows that this fundamental class corresponds to a fundamental class inHn�1.@M/,
since fundamental classes are characterized by the fact that they are generators (for
each component of @M ). �

(16.5.2) Example. Suppose the n-manifoldM is the boundary of the compact ori-
entable .nC1/-manifoldB . We have the fundamental classes z.B/ 2 HnC1.B; @B/
and z.M/ D @zB 2 Hn.M/. Let f W M ! N be a map which has an extension
F W B ! N , then the degree of f (if defined) is zero, d.f / D 0, for we have
f�z.M/ D f�@z.B/ D F�i�@z.B/ D 0, since i�@ D 0 as consecutive morphisms
in the exact homology sequence of the pair .B;M/. We call mapsf� W M� ! N ori-
entable bordant if there exists a compact oriented manifoldB with oriented bound-
ary @B D M1 �M2 and an extension F W B ! N of hf1; f2 i W M1 CM2 ! N .
The minus sign in @B DM1 �M2 means @z.B/ D z.M1/� z.M2/. Under these
assumptions we have d.f1/ D d.f2/. This fact is called the bordism invariance
of the degree; it generalizes the homotopy invariance. Þ

Problems

1. Let M be a compact connected n-manifold with boundary. Then Hn.M; @M IZ=2/
is isomorphic to Z=2; the non-zero element is a Z=2-fundamental class z.M IZ=2/. The
restriction toHn.M;MXxIZ=2/ is for each x 2MX@M an isomorphism and @z.M IZ=2/
is a Z=2-fundamental class for @M .
2. Show that the degree d2.f / is a bordism invariant.

16.6 Winding and Linking Numbers

Let M be a closed connected oriented n-manifold. Let f W M ! RnC1 and a …
Im.f /. The winding number W.f; a/ of f with respect to a is the degree of the
map

pf;a D pa W M ! Sn; x 7! N.f .x/ � a/
where N W RnC1 X 0 ! Sn, x 7! kxk�1x. If ft is a homotopy with a … Im.ft /
for each t , then W.f0; a/ D W.ft ; a/.
(16.6.1)Theorem. LetM be the oriented boundary of the compact smooth oriented
manifold B . Let F W B ! RnC1 be smooth with regular value 0 and assume
0 … f .M/. Then

W.f; 0/ DPx2P ".F; x/; P D F �1.0/; f D F j@B
where ".F; x/ 2 f˙1g is the orientation behaviour of the differential TxF W TB !
T0.RnC1/.
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Proof. LetD.x/ � BX@B , x 2 P be small disjoint disks aboutx. ThenG D N ıF
is defined on C D BPS

x2P D.x/, and by the bordism invariance of the degree
d.Gj@B/ DPx2P d.Gj@D.x//. By (16.4.2), d.Gj@D.x// D ".F; x/. �

LetM andN be oriented closed submanifolds of RkC1 of dimensionsm and n
with k D mC n. LetM �N carry the product orientation. The degree of the map

fM;N D f W M �N ! Sk; .x; y/ 7! N.x � y/
is the linking number L.M;N/ of the pair .M;N /. More generally, if the maps
� W Mm ! RkC1 and � W N n ! RkC1 have disjoint images, then the degree of
.x; y/ 7! N.�.x/ � �.y// is the linking number of .�; �/.

Problems

1. Let the n-manifoldM be the oriented boundary of the smooth connected compact mani-
fold B . Suppose f W M ! Sn has degree zero. Then f can be extended to B .
2. Show L.M;N/ D .�1/mCnC1L.N;M/.
3. Let f; g W R! R3 be smooth embeddings with disjoint closed images. Define a linking
number for the pair .f; g/ and justify the definition.
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Cohomology

The axioms for a cohomology theory are analogous to the axioms of a homology
theory. Now we consider contravariant functors. The reader should compare the
two definitions, also with respect to notation. One advantage of cohomology is an
additional internal product structure (called cup product) which will be explained
in subsequent sections. The product structure suggests to view the family .hn.X/ j
n 2 Z/ as a single object; the product then furnishes it with the structure of a ring
(graded algebra). Apart from the additional information in the product structure, the
ring structure is also notationally convenient (for instance, a polynomial ring has a
better description than its additive group without using the multiplicative structure).

Singular cohomology is obtained from the singular chain complex by an ap-
plication of the Hom-functor. We present an explicit definition of the cup product
in singular cohomology (Alexander–Whitney). In more abstract terms the product
can also be obtained from the Eilenberg–Zilber chain equivalences as in the case of
the homology product.

We use the product structure to prove a powerful theorem (Leray–Hirsch) which
says roughly that the cohomology of the total space of a fibration is a free module
over the cohomology ring of the base, provided the fibre is a free module and a basis
of the fibre-cohomology can be lifted to the total space. In the case of a topological
product, the result is a special case of the Künneth theorem if the cohomology of the
fibre is free, since the Ext-groups vanish in that case. One interesting application
is to vector bundles; the resulting so-called Thom isomorphism can be considered
as a twisted suspension isomorphism in that the suspension is replaced by a sphere
bundle. As a specific example we determine the cohomology rings of the projective
spaces.

17.1 Axiomatic Cohomology

17.1.1 The axioms. A cohomology theory for pairs of spaces with values in the
category of R-modules consists of a family .hn j n 2 Z/ of contravariant functors
hn W TOP(2) ! R- MOD and a family .ın j n 2 Z/ of natural transformations
ın W hn�1 ı � ! hn. These data are required to satisfy the following axioms.

(1) Homotopy invariance. Homotopic maps f0 and f1 between pairs of spaces
induce the same homomorphism, hn.f0/ D hn.f1/.
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(2) Exact sequence. For each pair .X;A/ the sequence

� � � ! hn�1.A;;/ ı�! hn.X;A/! hn.X;;/! hn.A;;/ ı�! � � �
is exact. The undecorated arrows are induced by the inclusions.

(3) Excision. Let .X;A/ be a pair and U � A such that xU � Aı. Then
the inclusion .X X U;A X U/ ! .X;A/ induces an excision isomorphism
hn.X;A/ Š hn.X X U;A X U/.

We call hn.X;A/ the n-th cohomology group of .X;A/. The ın are called the
coboundary operators. We write hn.X;;/ D hn.X/ and hn.f / D f �. Occasion-
ally we refer to the homomorphisms i� W hn.X/! hn.A/ induced by an inclusion
i W A � X as restriction. The groups hn.P / Š hn for a point P are said to be
the coefficient groups of the theory (compatible family of isomorphisms to a given
module hn). In the case that hn.P / D 0 for n 6D 0, we talk about an ordinary or
classical cohomology theory and say that the theory satisfies the dimension axiom.
The notation hn.X;A/ D Hn.X;AIG/ stands for an ordinary cohomology theory
with a given isomorphism h0.P / Š G.

The cohomology theory is additive if

hn
�

j̀ Xj ; j̀ Aj
�!Q

j h
n.Xj ; Aj /; x 7! .hn.ij /.x//

is always an isomorphism (ij the inclusion of the j -th summand). For finite J the
additivity isomorphism follows from the other axioms. Þ

Several formal consequences of the homology axioms have analogues in coho-
mology and the proofs are similar. We mention some of them.

We begin with the exact sequence of a triple .X;A;B/. The coboundary op-
erator is in this case defined by ı W hn�1.A;B/ ! hn�1.A/ ! hn.X;A/. The
first map is induced by the inclusion and the second map is the given coboundary
operator. For each triple .X;A;B/ the sequence

� � � ! hn�1.A;B/ ı! hn.X;A/! hn.X;B/! hn.A;B/
ı! � � �

is exact. The undecorated arrows are restrictions.

17.1.2 Suspension. The suspension isomorphism � is defined by the commutative
diagram

hn.Y; B/

�

��

Š �� hn.0 � Y; 0 � B/

hnC1..I; @I / � .Y; B// hn.@I � Y [ I � B; 1 � Y [ I � B/:ı

Š
��

Š
��

For homology we used a definition with the roles of 0; 1 interchanged. Þ



17.1. Axiomatic Cohomology 407

17.1.3 Reduced cohomology. The reduced cohomology groups of a non-empty
space X are defined as Qhn.X/ D coker.p� W hn.P /! hn.X// where p W X ! P

denotes the unique map to a point. The functors Qhn.�/ are homotopy invariant. For
a pointed space .X;	/ we have the canonical split exact sequence

0! hn.X;	/ j! hn.X/
i! hn.	/! 0:

The restriction j induces an isomorphism hn.X;	/ Š Qhn.X/ and we have isomor-
phisms

hj; p� i W hn.X;	/˚ hn Š hn.X/; .q; i/ W hn.X/ Š Qhn.X/˚ hn

with the quotient map q. The coboundary operator ın W hn�1.A/! h.X;A/ factors
over the quotient map q W hn�1.A/ ! Qhn�1.A/. Passing to quotients yields the
exact sequence

� � � ! Qhn�1.A/ ı! h.X;A/! Qhn.X/! Qhn.A/ ı! � � �
for the reduced groups. Þ

17.1.4 Mayer–Vietoris sequence. A triad .X IA;B/ is excisive for the cohomol-
ogy theory if the inclusion induces an isomorphism h�.A[B;A/ Š h�.B;A\B/.
This property can be characterized in different ways as in the case of a homology
theory, see (10.7.1) and (10.7.5). In particular the property is symmetric in A;B .

We have exact Mayer–Vietoris sequences for excisive triads. As in the case of
a homology theory one can derive some MV-sequences by diagram chasing. For
the general case of two excisive triads we use a method which we developed in the
case of homology theory; the MV-sequence was obtained as the exact sequence of
a triad of auxiliary spaces by some rewriting (see (10.7.6)). This procedure also
works for cohomology.

Let .AIA0; A1/ � .X IX0; X1/ be excisive triads. Set X01 D X0 \ X1 and
A01 D A0 \ A1. Then there exists an exact Mayer–Vietoris sequence of the
following form

� � �  � hn.X01; A01/ .1/ � hn.X0; A0/˚ hn.X1; A1/ .2/ � hn.X;A/
 � hn�1.X01; A01/ � � � � :

The map .1/ is .x0; x1/ 7! i�0 x0 � i�1 x1 with the inclusions i� ; the components of
.2/ are the restrictions. The connecting morphism in the case A D A0 D A1 is the
composition


 W hn�1.X01; A/
ı�! hn.X0; X01/ Š hn.X;X1/! hn.X;A/
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and the connecting morphism in the case X D X0 D X1 is


 W hn.X;A01/! hn.A0; A01/ Š hn.A;A1/ ı�! hnC1.X;A/: Þ

17.1.5 Limits. We have seen that an additive homology theory is compatible with
colimits. The situation for cohomology and limits is more complicated.

Let G� W G1 G2
p1�� G3

p2�� : : :
p3�� be a sequence of groups and ho-

momorphisms. The group
Q
i2NGi acts on the set

Q
i2NGi

.g1; g2; : : : / � .h1; h2; : : : / D .g1h1p1.g2/�1; g2h2p2.g3/�1; : : : /:
The orbit set is denoted lim1.G�/ D lim1.Gi ; pi / D lim1.Gi /. A direct conse-
quence of this definition is:

Suppose the groups Gi are abelian. Then we have an exact sequence

0! lim.Gi ; pi /!Q
i2NGi

d�!Q
i2NGi ! lim1.Gi ; pi /! 0:

Here d.g1; g2; : : : / D .g1 � p1.g2/; g2 � p2.g3/; : : : / and lim is the limit of the
sequence. As a consequence of the ker-coker-sequence we obtain:

A short exact sequence

0! .G0
i ; p

0
i /! .Gi ; pi /! .G00

i ; p
00
i /! 0

of inverse systems induces an exact sequence

0! lim0.G0
i /! lim0.Gi /! lim0.G00

i /

! lim1.G0
i /! lim1.Gi /! lim1.G00

i /! 0:

Let now an additive cohomology theory by given. We apply the Mayer–Vietoris
sequence to the telescope T of a sequenceX1 � X2 � � � � of spaces with colimitX .
The result is [133]:

(17.1.6) Proposition. There exists an exact sequence

0! lim1.hn�1.Xi //! hn.T /! lim.hn.Xi //! 0:

Proof. We use the MV-sequence of the triad .T IA;B/ as in (10.8.2). It has the
form

� � � ! hn.T /! hn.A/˚ hn.B/ ˇn

�! hn.A \ B/! � � �
and yields the short exact sequence

0! Coker.ˇn�1/! hn.T /! Ker.ˇn/! 0:



17.2. Multiplicative Cohomology Theories 409

Thus we have to determine the kernel and the cokernel. By additivity of the coho-
mology theory we obtain

hn.A/ Š
Y
i�0.2/

hn.Xi /; hn.B/ Š
Y
i�1.2/

hn.Xi /; hn.A \ B/ Š
Y
i2N

hn.Xi /:

These isomorphisms transform ˇn into

.x1; x2; x3; : : : / 7! .�x1 C f �
1 .x2/; x2 � f �

2 .x3/; : : : /:

The isomorphism .ai / 7! ..�1/iai / transforms this map finally into the map d in
the definition of lim and lim1. �

(17.1.7) Proposition. Suppose the homomorphisms pi between the abelian groups
Gi are surjective. Then lim1.Gi ; pi / D 0.
Proof. Let g D .g1; g2; : : : / 2 Qi2NGi . We have to show that g is contained
in the image of d , i.e., we have to solve the equations gi D xi � pi .xiC1/ with
suitable xi 2 Gi . This is done inductively. �

Problems

1. The system .Gi ; pi / satisfies the Mittag-Leffler condition (D ML) if for each i there
exists j such that for k � j the equality Im.GiCk ! Gi / D Im.GiCj ! Gi / holds.
If .Gi ; pi / satisfies ML, then lim1.Gi ; pi / D 0. Thus if the groups Gi are finite, then
lim1.Gi ; pi / D 0. If theGi are countable and if lim1.Gi ; pi / D 0, then the system satisfies
ML ([44, p. 154]).
2. Imitate the earlier investigation of cellular homology and show that H�.X/ can be de-
termined from a cellular cochain complex which arises from a cellular decomposition of X .
3. Let � W k�.�/! l�.�/ we a natural transformation between additive cohomology theo-
ries which induces isomorphisms of the coefficient groups. Show that � is an isomorphism
for each CW-complex.

17.2 Multiplicative Cohomology Theories

Let h� be a cohomology theory with values inR- MOD. A multiplicative structure
on this theory consists of a family of R-linear maps (m; n 2 Z)

hm.X;A/˝R hn.X;B/! hmCn.X;A [ B/; x ˝ y 7! x Y y;
defined for suitable triads .X IA;B/, and in any case for excisive .A;B/ in X . We
call x Y y the cup product of x; y. The products are always defined if A or B is



410 Chapter 17. Cohomology

empty or if A D B . In this section, tensor products will be taken over R. The cup
product maps are required to satisfy the following axioms.
(1) Naturality. For maps of triads f W .X IA;B/! .X 0IA0; B 0/ the commutativity
f �.x Y y/ D f �x Y f �y holds.
(2) Stability. Let .A;B/ be excisive in X . We use the restriction morphism
�A W hj .X;B/! hj .A;A\B/ and the coboundary operator ıA W hr.A;A\B/ Š
hr.A [ B;B/ ı�! hrC1.X IA [ B/. The diagram

hi .A/˝ hj .X;B/
ı˝1
��

1˝�A �� hi .A/˝ hj .A;A \ B/ Y �� hiCj .A;A \ B/
ıA

��

hiC1.X;A/˝ hj .X;B/ Y �� hiCjC1.X;A [ B/

is commutative.
(3) Stability. Let .A;B/ be excisive in X . We use the restriction morphism
�B W hi .X;A/! hi .B;A\ B/ and the coboundary operator ıB W hr.B;A\ B/ Š
hr.A [ B;A/ ı�! hrC1.X;A [ B/. The diagram

hi .X;A/˝ hj .B/
1˝ı
��

�B ˝1
�� hi .B;A \ B/˝ hj .B/ Y �� hiCj .B;A \ B/

ıB

��

hi .X;A/˝ hjC1.X;B/ Y �� hiCjC1.X;A [ B/

is commutative up to the sign .�1/i .
(4) Unit element. There is given a unit 1 2 h0.P /, P a fixed point, as additional
structure datum. It induces 1 D 1X D p�.1/ 2 h0.X/, p W X ! P . Then
1Y x D x Y 1 D x for each x 2 hm.X;A/.
(5) Associativity. .x Y y/Y z D x Y .y Y z/.
(6) Commutativity. x Y y D .�1/jxjjyjy Y x.

One can also consider situations where (6) or (5) do not hold. This is the reason
for requiring (2) and (3) separately. For (5) it is required that the products are
defined. For the convenience of the reader we also display the properties in a table
and refer to the detailed description above.
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f �.x Y y/ D f �x Y f �y
ı.a/Y x D ıA.a Y �Ax/
x Y ı.b/ D .�1/jxjıB.�Bx Y b/
1Y x D x D x Y 1

.x Y y/Y z D x Y .y Y z/
x Y y D .�1/jxjjyjy Y x

The cup product defines on h�.X;A/ the structure of a Z-graded associative and
commutative algebra. If A D ; this algebra has a unit element 1X 2 h0.X/.
Moreover h�.X;A/ becomes a unital graded left h�.X/-module. These structures
have the obvious naturality properties which follow from the axioms, e.g., a map
f W X ! Y induces a unital algebra homomorphism f � W h�.Y /! h�.X/.

In particular the graded module h� D .hn/ of the coefficient groups becomes a
unital commutative graded algebra. We make h�.X;A/ into a unital left h�-module
via a � x D p�.a/ Y x with p W X ! P the unique map to a point. Morphisms
induced by continuous maps are then h�-linear. This is a particular case of the cross
product introduced later.

We list some consequences of naturality and stability. Let y 2 hn.X;B/ be
fixed. Right multiplication by y yields a morphism of degree n from the exact
sequence of the pair into the exact sequence of the triple .X;A [ B;B/. This
means: We have a commutative diagram

hm.X/ ��

ry
��

hm.A/
ı ��

ry
��

hmC1.X;A/
ry
��

hmCn.X;B/ �� hmCn.A [ B;B/ ı �� hmCnC1.X;A [ B/:
The ry in the middle is defined by multiplication ofx 2 hm.A/with the restriction of
y along hn.X;B/! hn.A;A\B/ and then using hn.A;A\B/ Š hn.A[B;B/.

Let y 2 hn.X/ be fixed. For each pair .A;B/ in X we obtain a product
ry W hk.A;B/! hkCn.A;B/ by right multiplication with the restriction of y along
hn.X/! hn.A/. The following diagram commutes:

hm.A/ ��

ry
��

hm.B/
ı ��

ry
��

hmC1.A;B/
ry
��

hmCn.A/ �� hmCn.B/ ı �� hmCnC1.A;B/.

If .A;B/ is excisive, then the coboundary operators of the MV-sequences


 W hm�1.A \ B;C /! hm.A;A \ B/ Š hm.A [ B;B/! hm.A [ B;C /;
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 W hm.X;A \ B/! hm.A;A \ B/ Š hm.A [ B;B/! hmC1.X;A \ B/
commute with ry . Also in the general case 17.1.4, the boundary operator commutes
with products:

(17.2.1) Proposition. Let .AIA0; A1/ � .X IX0; X1/ be excisive triads. LetX0 �
X and assume that also .A[X0IA0[X00 ; A1[A01/ is excisive forX0� D X�\X0.
Then the diagram

hr.X01; A01/
ry

��


��

hrCjyj.X01; A01 [X001/

��

hrC1.X;A/
ry

�� hrC1Cjyj.X;A [X0/

commutes. Here ry is right multiplication by y 2 h.X;X0/ (bottom) and multipli-
cation with the restriction of y to h.X01; X001/ (top).

Proof. The coboundary operators are defined via suspension and appropriate in-
duced morphisms. The commutativity of the diagram then amounts to the naturality
of the cup product and a compatibility (17.2.2) with the suspension. �

(17.2.2) Proposition. The diagram

h.IY; IB [ @IY /˝ h.IY; IY 0/ Y �� h.IY; I.B [ I 0/ [ @IY /

h.Y; B/˝ h.Y; Y 0/
�˝pr�

��

Y �� h.Y;B [ Y 0/
�

��

commutes. (Notation: IY D I � Y; @IY D @I � Y etc.)

Proof. We use the associated cross product and (17.3.1), (17.3.3) in the computation
.e1 � x/Y .1I � y/ D .e1 Y 1I / � .x Y y/. �

(17.2.3) Example. Let .X;	/ be a pointed space. The ring homomorphism
i W h�.X/ ! h� has as kernel the two-sided h�-ideal h�.X;	/. We have the
isomorphism h�.X;	/ ˚ h� Š h�.X/, .a; b/ 7! ja C p�b, see 17.1.3. This
isomorphism transforms the cup product on h�.X/ into the product

.a1; b1/ � .a2; b2/ D .a1 Y a2 C b1a2 C a1b2; b1b2/: Þ

(17.2.4) Example. The commutativity x Y x D .�1/jxjjxjx Y x has for jxj �
1 mod 2 the consequence 2.x Y x/ D 0. Hence x Y x D 0, if multiplication by 2
is injective. Þ
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(17.2.5) Example. Let X D A1 [ � � � [ Ak . Suppose ai 2 hn.i/.X/ are elements
in the kernel of the restriction hn.i/.X/ ! hn.i/.Ai /. Let bi 2 hn.i/.X;Ai / be
a pre-image of ai . Then a1 Y � � � Y ak D 0, because this element is the image
of b1 Y � � � Y bk 2 hn.X;

S
i Ai / D 0. This argument requires that the relative

products are defined.
This simple consequence of the existence of products has interesting geometric

consequences. The projective space CP n has a covering by n C 1 affine (hence
contractible) open sets Uj D fŒzi � j zj 6D 0g. Therefore a0 Y � � � Y an D 0

for elements aj 2 hn.j /.CP n;	/. Later we show the existence of an element
c 2 H 2.CP nIZ/ with cn 6D 0. Hence CP n cannot be covered by n contractible
open sets (more generally, by open sets U such that U ! CP n is null homotopic).
An analogous result holds for RP n. Þ

(17.2.6) Example. The argument of the preceding example shows that products in
h�.Sn;	/, n � 1 are trivial, a1 Y a2 D 0.

More generally, let X be a well-pointed space. Then products in h�.†X;	/
are trivial. It suffices to prove this fact for the unreduced suspension †0X ; but this
space has a covering by two contractible open sets (cones).

Additively, the cohomology groups only depend on the stable homotopy type.
The product structure contains more subtle information. Þ

(17.2.7) Example. Let p W E ! B be any map. Then we make h�.E/ into a
graded right h�.B/- module by the definition y � x D y Y p�x for x 2 h�.B/
and y 2 h�.E/. If f W X ! Y is a morphism from p W X ! B to q W Y ! B

in TOPB , then f � W h�.Y / ! h�.X/ is h�.B/-linear. The same device works
for pairs of spaces over B . The coboundary operator is then also h�.B/-linear,
ı.y � x/ D ıy � x. Þ

17.3 External Products

A multiplicative structure on a cohomology theory h� of external products consists
of a family of R-linear maps (m; n 2 Z)

hm.X;A/˝R hn.Y; B/! hmCn..X;A/ � .Y; B//; x ˝ y 7! x � y;
defined for a suitable class of pairs .X;A/ and .Y; B/ and in any case if the pair
.X �B;A� Y / is excisive in X � Y . The products are defined if A or B is empty.
These maps are required to satisfy the following axioms.

(1) Naturality. For continuous maps f W .X;A/ ! .X 0; A0/ and g W .Y; B/ !
.Y 0; B 0/ we have .f � g/�.x � y/ D f �x � g�y.
(2) Stability. Let .X � B;A � Y / be excisive. For x 2 hm.A/ and y 2 hn.Y; B/
the relation ıx � y D ı0.x � y/ holds. Here ı0 is the composition of the excision
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isomorphism with ı for k D mC n

ı0 W hk.A � .Y; B// Š hk.A � Y [X � B;X � B/ ı! hkC1..X;A/ � .Y; B//:
(3) Stability. Let .X � B;A � Y / be excisive. For x 2 hm.X;A/ and y 2 hn.B/
the relation x � ıy D .�1/jxjı00.x � y/ holds. Here ı00 is a similar composition of
excision with ı for k D mC n

ı00 W hk..X;A/ � B/ Š hk.X � B [ A � Y;A � Y / ı! H kC1..X;A/ � .Y; B//:
(4) Unit element. There is given 1 2 h0.P / as a further structure datum. It satisfies
1 � x D x � 1 D x (with respect to P �X D X � P D X ).
(5) Associativity. .x � y/ � z D x � .y � z/.
(6) Commutativity. Let � W X � Y ! Y � X , .x; y/ 7! .y; x/. Then for x 2
hm.X;A/ and y 2 hn.Y; B/ the relation ��.x � y/ D .�1/jxjjyjy � x holds.

Also in this case we display the properties in a table and refer to the detailed
explanation above.

.f � g/�.x � y/ D f �x � g�y
ıx � y D ı0.x � y/
x � ıy D .�1/jxjı00.x � y/
1 � x D x D x � 1

.x � y/ � z D x � .y � z/
��.x � y/ D .�1/jxjjyjy � x

The term “stability” usually refers to compatibility with suspension. We explain this
for the present setup. As a first application we show that the suspension isomorphism
is given by multiplication with a standard element. Let e1 2 h1.I; @I / be the image
of 1 2 h0 under

1 2 h0 Š h0.0/ h0.@I; 1/
Š�� ı �� h1.I; @I / 3 e1:

(17.3.1) Proposition. e1 � y D �.y/.
Proof. Consider the diagram

hm.Y; B/
Q1� ��

��

hm.@IY; @IB/ �� hm.0Y; 0B/

hmC1..I; @I / � .Y; B/ hm.@IY [ IB; IB/ı��

˛ Š
��

hm.@IY [ IB; 1Y [ IB/:��

ˇ Š
��
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Let Q1 2 h0.@I / be the image of 1 2 h0.0/ under h0.0/ Š h0.@I; 1/ ! h0.@I /.
Then e1 D ı.Q1/. Stability (2) of the cross product shows e1 � y D ı˛�1.Q1 � y/.
The maps ˛ and ˇ are isomorphisms by excision and h-equivalence. The outer
diagram path is y 7! �.y/. �

Suppose we have a cup product. We construct an associated external product.
Let p W .X;A/ � Y ! .X;A/ and q W X � .Y; B/ ! .Y; B/ be the projections
onto the factors. We define for x 2 hm.X;A/ and y 2 hn.Y; B/ the product
x � y D p�y [ q�y.

Conversely, suppose an external product is given. We define an associated
Y-product. Let d W .X;A [ B/ ! .X;A/ � .X;B/ be the diagonal. Then we set
x Y y D d�.x � y/.
(17.3.2) Proposition. The�-product associated to aY-product satisfies the axioms
of an external product. TheY-product associated to a�-product satisfies the axioms
of an internal product. The processes �  Y and Y  � are inverse to each
other. �

(17.3.3) Proposition. Let xi 2 h�.X;Ai / and yi 2 h�.Y; Bi /. Then

.x1 � y1/Y .x2 � y2/ D .�1/jx2jjy1j.x1 Y x2/ � .y1 Y y2/:
In particular h�.X/˝ h�.Y /! h�.X � Y /, x˝ y 7! x � y is a homomorphism
of unital graded algebras. �

(17.3.4) Proposition. Let s 2 hn.Sn;	/ � hn.Sn/ be the element which corre-
sponds to 1 2 h0 under a suspension isomorphism. Then for each space F the
map

hk.F /˚ hk�n.F /! hk.F � Sn/; .a; b/ 7! a � 1C b � s
is an isomorphism. These isomorphisms show that h�.F �Sn/ is a free graded left
h�.F /-module with homogeneous basis 1 � 1, 1 � s.
Proof. We start with the isomorphism

hk�n.F /! hk.I n � F; @I n � F /; x 7! en � x
where en D e1 � � � � � e1, see (17.3.1). Let s 2 hn.Sn;	/ correspond to en under
the isomorphism hn.Sn;	/ Š hn.I n=@I n;	/ Š hn.I n; @I n/. Then, by naturality,

hk�n.F /! hk.Sn � F;	 � F /; b 7! s � b
is an isomorphism. We now use the split exact sequence

0! hk.Sn � F;	 � F /! hk.Sn � F /! hk.F /! 0
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with splitting hk.F / ! hk.Sn � F /, a 7! 1 � a D pr�.a/ in order to see that
.a; b/ 7! 1 � aC s � b is an isomorphism.

Under this isomorphism we have the following expression of the product struc-
ture

.aC sb/.a0 C sb0/ D aa0 C s.ba0 C .�1/jajnab0/
since s2 D 0.

We use commutativity to show that .a; b/ 7! a � 1C b � s is an isomorphism
as claimed. If we use 1 D 1F � 1Sn and s D 1F � s as basis elements for the
left h�.F /-module h�.F � Sn/, then the h�.F / algebra is seen to be the graded
exterior algebra h�.F /Œs�=.s2/. �

Let B be a CW-complex. The skeleton filtration .F khi .B/ j k 2 N/ on hi .B/
is defined by F khi .B/ D Ker.hi .B/! hi .Bk�1//.

(17.3.5) Proposition. The skeleton filtration is multiplicative: If a 2 F khi .B/ and
b 2 F lhj .B/, then a Y b 2 F kClhiCj .B/.

Proof. Choose pre-images a0 2 hi .B;Bk�1/, b0 2 hl.B;B l�1/. Then a0 � b0 2
hiCj .B�B;Bk�1�B[B�B l�1/. The product aYb is the image of a�b under
the diagonal d�. A cellular approximation d 0 W B ! B�B of the diagonal d sends
BkCl�1 into .B � B/kCl�1 and the latter is contained in Bk�1 � B [ B � B l�1.
Naturality of the �-product now shows that a Y b is contained in the image of
hiCj .B;BkCl�1/! hiCj .B/. �

(17.3.6)Corollary. Let n2 h0.B/ be contained inF 1h0.B/. Then nk 2F kh0.B/.
Thus if B is finite-dimensional, n is nilpotent and 1C n a unit. �

Problems

1. Supply the proofs for (17.3.2) and (17.3.3).
2. Determine the algebras h�.Sn.1/ � � � � � Sn.k// as graded h�-algebras (graded exterior
algebra).

17.4 Singular Cohomology

The singular cohomology theory is constructed from the singular chain complexes
by a purely algebraic process. The algebraic dual of the singular chain complex is
again a chain complex, and its homology groups are called cohomology groups. It
is customary to use a “co” terminology in this context.

Let C� D .Cn; @n/ be a chain complex of R-modules. Let G be another R-
module. We apply the functor HomR.�; G/ to C� and obtain a chain complex
C � D .C n; ın/ of R-modules with C n D HomR.Cn; G/ and the R-linear map

ın W C n D HomR.Cn; G/! HomR.CnC1; G/ D C nC1
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defined by ın.'/ D .�1/nC1' ı @nC1 for ' 2 Hom.Cn; G/.
For the choice of this sign see 11.7.4. The reader will find different choices of

signs in the literature. Other choices will not effect the cohomology functors. But
there seems to be an agreement that our choice is the best one when it comes to
products.

For a pair of spaces .X;A/we have the singular chain complex S�.X;A/. With
an abelian group G we set

Sn.X;AIG/ D Hom.Sn.X;A/;G/

and use the coboundary operator above. Here we are using HomZ. Elements in
Sn.X;AIG/ are functions which associate to each singular simplex � W 
n ! X an
element ofG and the value 0 to simplices with image inA. IfG is anR-module, then
the set of these functions becomes an R-module by pointwise addition and scalar
multiplication. A continuous map f W .X;A/! .Y; B/ induces homomorphisms

f # D Sn.f / W Sn.Y; BIG/! Sn.X;AIG/; .f #'/.�/ D '.f �/
which are compatible with the coboundary operators. In this manner we obtain
a contravariant functor from TOP.2/ into the category of cochain complexes of
R-modules. The n-th cohomology group of S�.X;AIG/ is denoted Hn.X;AIG/
and called the n-th singular cohomology module of .X;A/ with coefficients in G.
We often write Hn.X;AIZ/ D Hn.X;A/ and talk about integral cohomology,
in this case (G D Z=.p/ mod-p cohomology). Dualization of the split exact
sequence 0! S�.A/! S�.X/! S�.X;A/! 0 yields again an exact sequence
0 ! S�.X;AIG/ ! S�.X IG/ ! S�.AIG/ ! 0. It induces a long exact
cohomology sequence

� � � ! Hn�1.AIG/ ı�! Hn.X;AIG/! Hn.X IG/! Hn.AIG/! � � � :
(17.4.1) Remark. We recall the definition of the coboundary operator ı for the
present situation. Let ' W Sn�1.A/ ! G be a cocycle, i.e., ' ı @ D 0. Extend
' in an arbitrary manner to a function Q' W Sn�1.X/ ! G. The element ı. Q'/ D
.�1/n Q' ı @ W Sn.X/! G vanishes on Sn.A/, since its restriction to Sn.A/ is ' ı @.
Therefore ı. Q'/ yields an element  2 Sn.X;AIG/. The coboundary operator is
then defined by the assignment Œ'� 7! Œ �. Þ

So far we have defined the data of a cohomology theory. If we apply Hom.�; G/
to a chain homotopy we obtain a cochain homotopy; this yields the homotopy
invariance. The excision axiom holds, as the chain equivalenceS�.XXU;AXU/ '
S�.X;A/ induces a chain equivalence S�.X;AIG/ ' S�.X X U;A X U IG/.

There exist several algebraic relations among homology and cohomology. The
first one comes from the evaluation of the Hom-complex. Let us use coefficients in
a commutative ring R. The evaluations

Hom.Sn.X;A/;R/˝ Sn.X;AIR/! R; ' ˝ .c ˝ r/ 7! '.c/r
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induces a pairing (sometimes called Kronecker pairing)

Hn.X;AIR/˝Hn.X;AIR/! R; x ˝ y 7! hx; y i:
This is due to the fact that the evaluations combine to a chain map, see 11.7.4.

(17.4.2) Proposition. For f W .X;A/ ! .Y; B/, y 2 Hn.Y; BIR/, and x 2
Hn.X;AIR/ we have

hf �.y/; x i D hy; f�.x/i:
For a 2 Hn�1.AIR/, b 2 Hn.X;AIR/ we have

hıa; b i C .�1/n�1ha; @b i D 0:
Proof. We verify the second relation. Let a D Œ'�, ' 2 Hom.Sn�1.A/;Z/. Let
Q' W Sn�1.X/ ! Z be an extension of '. Then ı.a/ is represented by the homo-
morphism .�1/n Q'@ W Sn.X/ ! Z (see (17.4.1)). Let y D Œc�, c 2 Sn.X/. Then
hıx; y i D .�1/n Q'@.c/. From @.c/ 2 Sn�1.A/ we conclude Q'.@.c// D '.@c/ D
hx; @y i. �

The canonical generator e1 2 H1.I; @I / is represented by the singular simplex
s W 
1 ! I , .t0; t1/ 7! t1. Let Œx� 2 H 0.X/ denote the element represented by the
cochain which assumes the value 1 on x 2 X and 0 otherwise.

(17.4.3) Proposition. Let e1 be the generator which is the image of Œ0� 2 H 0.0/

underH 0.0/ H 0.@I; 1/
ı! H 1.I; @I /. Then he1; e1 i D 1. �

The singular cohomology groups Hn.X;AIG/ can be computed from the ho-
mology groups of .X;A/. This is done via the universal coefficient formula. We
have developed the relevant algebra in (11.9.2). The application to topology starts
with the chain complex C D S.X;AIR/ D S.X;A/ ˝Z R of singular chains
with coefficients in a principal ideal domain R. It is a complex of free R-modules.
Note that HomR.Sn.X;A/˝ZR;G/ Š HomZ.Sn.X;A/;G/where in the second
group G is considered as abelian group (D Z-module). Then (11.9.2) yields the
universal coefficient formula for singular cohomology.

(17.4.4) Theorem. For each pair of spaces .X;A/ and each R-module G there
exists an exact sequence

0! Ext.Hn�1.X;AIR/;G/! Hn.X;AIG/! Hom.Hn.X;AIR/;G/! 0:

The sequence is natural in .X;A/ and in G and splits. In particular, we have
isomorphismsH 0.X IG/ Š Hom.H0.X/;G/ Š Map.�0.X/;G/. �

The statement that the splitting is not natural means that, although the term
in the middle is the direct sum of the adjacent terms, this is not a direct sum of
functors. There is some additional information that cannot be obtained directly
from the homology functors. The topological version of (11.9.6) is:
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(17.4.5) Theorem. Let R be a principal ideal domain. Assume that either
H�.X;AIR/ is of finite type or the R-module G is finitely generated. Then there
is a functorial exact sequence

0! Hn.X;AIR/˝G ! Hn.X;AIG/! Tor.HnC1.X;AIR/;G/! 0:

The sequence splits. �

(17.4.6) Proposition. Let M be a closed, connected, non-orientable n-manifold.
ThenHn.M IZ/ Š Z=2.

Proof. Since M is non-orientable, Hn.M IZ/ D 0. Theorem (17.4.4) for R D
G D Z then shows Hn.M IZ/ Š Ext.Hn�1.M IZ/;Z/. From (16.3.4) we know
thatHn�1.M IZ/ Š Z=2˚F with a finitely generated free abelian group. This is
also a consequence of Poincaré duality, see (18.3.4). �

Problems

1. Let 0 ! G1 ! G2 ! G3 ! 0 be an exact sequence of abelian groups. It induces a
short exact sequence of cochain complexes

0! Hom.S.X/;G1/! Hom.S.X/;G2/! Hom.S.X/;G3/! 0

and an associated long exact sequence of cohomology groups. The coboundary operator

ˇ W Hn.X IG3/! HnC1.X IG1/

is a natural transformation of functorsHn.�IG3/! HnC1.�IG1/ and called a Bockstein
operator. A typical and interesting case arises from the exact sequence 0 ! Z=p !
Z=p2 ! Z=p ! 0.
2. If the functor Hom.�; G/ preserves exact sequences, then no Ext-term appears in the
universal coefficient formula. Examples are

Hn.X;AIQ/ Š HomZ.Hn.X;A/;Q/ Š HomQ.Hn.X;AIQ/;Q/
and Hn.X IZ=p/ Š HomZ=p.Hn.X IZ=p/;Z=p/ for the prime field Z=p as coefficient
ring.

17.5 Eilenberg–Mac Lane Spaces and Cohomology

The representability theorem (8.6.10) of Brown can be used to find a natural isomor-
phism 	 W Œ�; K.A; n/�! Hn.�IA/ on the homotopy category of CW-complexes.
In this section we construct this isomorphism and give some applications. A nat-
ural transformation 	 is determined by its value on the identity of K.A; n/, and
this value can be prescribed arbitrarily. Thus we have to find a suitable element
�n 2 Hn.K.A; n/IA/.
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Let us begin with the special case n D 0. As a model for K.A; 0/ we take
the abelian group A with discrete topology. Since A is discrete, a map X ! A

is continuous if and only if it is locally constant. Moreover, all homotopies are
constant. Therefore ŒX;K.A; 0/� D ŒX;A� is the group of locally constant maps.
A locally constant map is constant on a path component. Therefore the surjection
q W X ! �0.X/ induces an injective homomorphism

	0.X/ W ŒX;A�! Map.�0.X/; A/ Š Hom.H0.X/; A/ Š H 0.X IA/:
The last isomorphism is the one that appears in the universal coefficient formula.
If X is locally path connected, then the homomorphism induced by q is an isomor-
phism. Hence we have obtained a natural isomorphism on the category of locally
path connected spaces, in particular on the category of CW-complexes. If X is
connected but not path connected, then 	0.X/ is not an isomorphism.

Let now n � 1 and write K D Kn D K.A; n/. Consider the composition

�n 2 Hn.KIA/ .1/Š Hom.Hn.KIZ/; A/
.2/Š Hom.�n.A/; A/

.3/Š Hom.A;A/ 3 id :

The isomorphism (1) is the universal coefficient isomorphism. The isomorphism (2)
is induced by the Hurewicz isomorphism h W �n.K;	/! Hn.KIZ/, see (20.1.1).
It sends Œf � 2 ŒS.n/;K�0 D �n.K/ tof�.zn/where zn 2 Hn.S.n/IZ/ is a suitable
generator. The isomorphism (3) is induced by a fixed polarization � W A Š �n.K/.
We define �n as the element which corresponds to the identity of A. Let 	n be the
natural transformation which is determined by the condition 	nŒid� D �n. Note
that category theory does not tell us yet that the 	n.X/ W ŒX;K�! Hn.X IA/ are
homomorphisms of abelian groups.

Let us compare 	n�1 and 	n. It suffices to consider connected CW-complexes
and pointed homotopy classes. The diagram with the structure map e.n/ W †Kn�1 !
Kn of the spectrum

ŒX;Kn�1�0
† ��

�n�1

��

Œ†X;†Kn�1�0
e.n/� �� Œ†X;Kn�

0

�n

��

QHn�1.X IA/ � �� QHn.†X IA/
is commutative up to sign, provided e.n/�.�n/ D 	n.e.n// D ˙�.�n�1/. The
morphism 	n.†X/ is a homomorphism, since the group structures are also induced
by the cogroup structure of †X . In order to check the commutativity one has to
arrange and prove several things: (1) The Hurewicz homomorphisms commute with
suspensions. (2) The structure map e.n/ and the polarizations satisfy e.n/� ı † ı
�n�1 D �n W A! �n.Kn/. (3) The homomorphisms from the universal coefficient
formula commute up to sign with suspension. Since the sign is not important for
the moment, we do not go into details.
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(17.5.1) Theorem. The transformation 	n is an isomorphism on the category of
pointed CW-complexes.

Proof. We work with connected pointed CW-complexes. Both functors have value
0 for Sm; m 6D n. The reader is asked to trace through the definitions and verify
that 	n.Sn/ is an isomorphism. By additivity, 	n.X/ is an isomorphism for X a
wedge of spheres. Now one uses the cofibre sequenceW

Sk�1 ! Xk�1 ! Xk ! Xk=Xk�1 ! †Xk�1

and applies the functors Œ�; Kn�0 and Hn.�IA/. We use induction on k. Then 	n

is an isomorphism for
W
Sk�1, Xk�1, and Xk=Xk�1. The Five Lemma implies

that 	n.Xk/ and hence also 	n.†Xk�1/ are surjective. By another application
of the Five Lemma we see that 	n.Xk/ is also injective. This settles the case of
finite-dimensional CW-complexex. The general case follows from the fact that both
functors yield an isomorphism when applied to XnC1 � X . �

A CW-complexK.Z; n/ can be obtained by attaching cells of dimension� nC 2
to Sn. The cellular approximation theorem (8.5.4) tells us that the inclusion
in W Sn � K.Z; n/ induces for each CW-complex X of dimension at most n a
bijection

in� W ŒX; Sn�
Š�! ŒX;K.Z; n/�:

We combine this with the isomorphism 	 and obtain a bijection

ŒX; Sn�
Š�! Hn.X IZ/:

It sends a class Œf � 2 ŒX; Sn� to the image of1 2 Hn.SnIZ/underf � W Hn.Sn/!
Hn.X/. Here we use the isomorphism A Š Hn.SnIA/ which is (for an arbitrary
abelian group A) defined as the composition

Hn.SnIA/ Š Hom.Hn.S
n/; A/ Š Hom.�n.S

n/; A/ Š Hom.Z; A/ Š A:
Again we have used universal coefficients and the Hurewicz isomorphism.

(17.5.2) Proposition (Hopf). LetM D X be a closed connected n-manifold which
has an n-dimensional CW-decomposition. SupposeM is oriented by a fundamental
class zM . Then we have an isomorphism

Hn.M IZ/ Š Hom.Hn.M/;Z/ Š Z

where the second isomorphism sends ˛ to ˛.zM /. The isomorphism ŒM; Sn� Š
Hn.M IZ/ Š Z maps the class Œf � to the degree d.f / of f . �

(17.5.3) Proposition (Hopf). Let M be a closed, connected and non-orientable
n-manifold with a CW-decomposition. ThenHn.M IZ/ Š Z=2; hence we have a
bijection ŒM; Sn� Š Z=2. It sends Œf � to the degree d2.f / modulo 2 of f .
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Proof. The universal coefficient theorem and Hn.M IZ/ D 0 show

Ext.Hn�1.M/;Z=2/ Š Hn.M IZ=2/:
We use again that Hn�1.M IZ/ Š F ˚Z=2 with a finitely generated free abelian
group F . This provesHn.M IZ=2/ Š Z=2. Naturality of the universal coefficient
sequences is used to show that the canonical map Hn.M IZ/ ! Hn.M IZ=2/ is
an isomorphism. The commutative diagram

Hn.SnIZ=2/ f �
��

��

Hn.M IZ=2/

��

Hom.Hn.SnIZ=2/;Z=2/ �� Hom.Hn.M IZ=2/;Z=2/

is used to show the assertion about the degree. �

Problems

1. 	 is not always an isomorphism: A D Z, n D 1 and the pseudo-circle.

17.6 The Cup Product in Singular Cohomology

Let R be a commutative ring. The cup product in singular cohomology with coef-
ficients in R arises from a cup product on the cochain level

Sk.X IR/˝ S l.X IR/! SkCl.X IR/; ' ˝  7! ' Y  :
It is defined by

.1/ .' Y  /.�/ D .�1/j'jj j'.� jŒe0; : : : ; ek�/ .� jŒek; : : : ; ekCl �/:

Here� W 
kCl D Œe0; : : : ; ekCl �! X is a singular .kCl/-simplex. Let Œv0; : : : ; vn�
be an affine n-simplex and � W Œv0; : : : ; vn�! X a continuous map. We denote by
� jŒv0; : : : ; vn� the singular simplex obtained from the composition of � with the
map 
n ! Œv0; : : : ; vn�, ej 7! vj . This explains the notation in (1).

(17.6.1) Proposition. The cup product is a chain map

S�.X IR/˝ S�.X IR/! S�.X IR/;
i.e., the following relation holds:

ı.' Y  / D ı' Y  C .�1/j'j' Y ı :
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Proof. From the definition we compute .ı' Y  /.�/ to be

.�1/.j'jC1/j j
kX
iD0
.�1/iCj'jC1'.� jŒe0; : : : ;bei; : : : ; ekC1�/ .� jŒekC1; : : : ; ekClC1�/

and .�1/j'j.' Y ı /.�/ to be

.�1/j'j.j jC1/
kClC1X
iDk

.�1/iCj jC1'.� jŒe0; : : : ; ek�/ .� jŒek; : : : ;bei ; : : : ; ekClC1�/:

If we add the two sums, the last term of the first sum and the first term of the second
sum cancel, the remaining terms yield .�1/j'jCj jC1.' Y  /.@�/, and this equals
.ı.' Y  //.�/. �

We extend the cup product to the relative case. Suppose ' 2 Sk.X;AIR/
and ' 2 S l.X;BIR/ are given. This means: ' vanishes on singular simplices

k ! A and  vanishes on simplices 
l ! B . The relation (17.6.1) then shows
that ' [  vanishes on the submodule SkCl.AC BIR/ � SkCl.X IR/ generated
by simplices in A and B . The pair .A;B/ is excisive for singular homology if
S�.ACB/ D S�.A/CS�.B/ � S�.A[B/ is a chain equivalence. The dual maps
S�.A [ BIR/ ! S�.AC BIR/ and S�.X;A [ BIR/ ! S�.X IAC BIR/ are
then chain equivalences. The last module consists of the cochains which vanish on
S�.A C B/; let H�.X IA C BIR/ denote the corresponding cohomology group.
Thus we obtain a cup product (again a chain map)

S�.X;AIR/˝ S�.X;BIR/! S�.X IAC BIR/:
We pass to cohomology, obtainH�.X;AIR/˝H�.X;BIR/! H�.X IACBIR/
and in the case of an excisive pair a cup product

H�.X;AIR/˝H�.X;BIR/! H�.X;A [ BIR/:

We now prove that the cup product satisfies the axioms of Section 2. From
the definition (1) we see that naturality and associativity hold on the cochain level.
The unit element 1X 2 H 0.X IR/ is represented by the cochain which assumes the
value 1 on each 0-simplex. Hence it acts as unit element on the cochain level. In
the relative case the associativity holds for the representing cocycles in the group
H�.X IAC B C C IR/. In order that the products are defined one needs that the
pairs .A;B/, .B; C /, .A [ B;C / and .A;B [ C/ are excisive.

Commutativity does not hold on the cochain level. We use: The homomor-
phisms

� W Sn.X/ 7! Sn.X/; � 7! "nx�n
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with "n D .�1/.nC1/n=2 and x� D � jŒen; en�1; : : : ; e0� form a natural chain map
which is naturally chain homotopic to the identity (see (9.3.5) and Problem 1 in that
section). The cochain map �# induced by � satisfies

�#' Y �# D .�1/j'jj j�#.' Y  /:
Since �# induces the identity on cohomology, the commutativity relation follows.

The stability relation (2) is a consequence of the commutativity of the next
diagram (which exists without excisiveness). Coefficients are in R.

H i .A/˝H j .X;B/ ��

ı˝1
��

H i .A/˝H j .A;A;A \ B/ Y �� H iCj .A;A \ B/
ı0

��

H iC1.X;A/˝H j .X;B/
Y �� H iCjC1.X IAC B/

where ı0 is the composition of H iCj .A;A \ B/ Š H iCj .A C BIB/, which is
induced by the algebraic isomorphism

S�.A/=S�.A \ B/ Š S�.AC B/=S�.B/;

and ı W H iCj .AC BIB/ ! H iCjC1.X IAC B/. In order to verify the commu-
tativity, one has to recall the construction of ı, see (17.4.1). Suppose Œ'� 2 H i .A/

and Œ � 2 H j .X;A/ are given. Let Q' 2 S i .X/ be an extension of '; then ı Q'
vanishes on Si .A/, and the cochain ı Q' 2 S iC1.X;A/ represents ıŒ'�. The image
of Œ'�˝ Œ � along the down-right path is represented by ı Q' [  , and one verifies
that the image along the right-down path is represented by ı. Q' [  /. Since  is a
cocycle, the representing elements coincide. A similar verification can be carried
out for stability (3).

One can deal with products from the view-point of Eilenberg–Zilber transfor-
mations. We have the tautological chain map

S�.X IR/˝ S�.Y IR/! Hom.S� ˝ S�; R˝R/:
We compose it with the ring multiplication R ˝ R ! R and an Eilenberg–Zilber
transformation S�.X � Y /! S�.X/˝ S�.Y / and obtain a chain map

S�.X IR/˝ S�.Y IR/! S�.X � Y IR/; f ˝ g 7! f � g;
a �-product on the cochain level. If the pair .A� Y;X �B/ is excisive, we obtain
a �-product

S�.X;AIR/˝ S�.Y; BIR/! S�..X;A/ � .Y; B/IR/:
Our previous explicit definition of the cup product arises in this manner from the
Alexander–Whitney equivalence and the related approximation of the diagonal.
We can now apply the algebraic Künneth theorem for cohomology to the singular
cochain complexes and obtain:
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(17.6.2) Theorem. Let R be a principal ideal domain and H�.Y; BIR/ of finite
type. Assume that the pair .A � Y;X � B/ is excisive. Then there exists a natural
short exact sequence

0!L
iCjDnH i .X;AIR/˝H j .Y; BIR/! Hn..X;A/ � .Y; B/IR/

!L
iCjDnC1H i .X;AIR/ 	H j .Y; BIR/

and this sequence splits. �

Problems

1. We have defined the cup product for simplicity by explicit formulas. One can use instead
Eilenberg–Zilber morphisms. Let us consider the absolute case. Consider the composition

Sq.X IR/˝ Sq.Y IR/ D Hom.SpX;R/˝ Hom.Sq.Y /; R/

! Hom.Sp.X/˝ Sq.Y /; R/! Hom.SpCq.X � Y /;R/

where the first morphism is the tautological map and the second induced by an Eilenberg–
Zilber morphism S�.X � Y / ! S�.X/ ˝ S�.Y /. Then this composition induces the
�-product in cohomology. The cup product in the case X D Y is obtained by composition
with S�.X/ ! S�.X � X/ induced by the diagonal. Instead we can go directly from
Hom.Sp.X/˝Sq.X/;R/ to Hom.SpCq.X/;R/ by an approximation of the diagonal. Our
previous definition used the Alexander–Whitney diagonal.

17.7 Fibration over Spheres

Let p W X ! Sn be a fibration (n � 2/. We write as usual Sn D DnC [Dn� and
Sn�1 D DnC \ Dn�. Let b0 2 Sn�1 be a base point. We set X˙ D p�1.Dn˙/,
X0 D p�1.Sn�1/, and F D p�1.b0/. From the homotopy theorem of fibrations
we obtain the following result.

(17.7.1) Proposition. There exist h-equivalences '˙ W Dn ˙ �X ! X˙ over
Dn˙ such that '˙.b0; y/ D y for y 2 F . The h-inverses  ˙ also satisfy  ˙.y/ D
.b0; y/and thefibrewise homotopies of ˙'˙ and'˙ ˙ to the identity are constant
on F . Since X0 � X˙ � X are closed cofibrations, we have a Mayer–Vietoris
sequence for .XC; X�/. �

We use the data of (17.7.1) in order to rewrite the MV-sequence. We work with a
multiplicative cohomology theory. The embedding j W F ! Dn˙�F , y 7! .b0; y/

is an h-equivalence. Therefore we have isomorphisms

i �̇ W hk.X˙/
'�

˙

Š
�� hk.Dn˙ � F /

j�

Š
�� hk.F /:
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The restriction of 'C gives us another isomorphism

'�C W hk.X0/
Š! hk.Sn�1 � F /:

We insert these isomorphisms into the MV-sequence of .XC; X�/

hk.X/ ��

D
��

hk.XC/˚ hk.X�/

i�C˚i��
��

�� hk.X0/

'�
C

��

hk.X/
.1/

�� hk.F /˚ hk.F / .2/
�� hk.Sn�1 � F /.

The two components of (1) equal i� where i W F � X . The first component of (2)
is induced by the projection pr W Sn�1 � F ! F . We write  � ı 'C in the form
.s; y/ 7! .s; ˛.s; y//. Then the second component of (2) is �˛�. Both maps yield
the identity when composed with j W F ! Sn�1 � F , y 7! .b0; y/. The product
structure provides us with an isomorphism

hk.F /˚ hk�nC1.F /! hk.Sn�1 � F /; .a; b/ 7! 1 � aC s � b:
We also use this isomorphism to change the MV-sequence. We set

˛�.x/ D 1 � x � s �‚.x/; ‚.x/ 2 hk�nC1.F /:
The relation j �.1 � a � s � b/ D a shows that ˛�.x/ has the displayed form.

(17.7.2) Theorem (Wang Sequence). There exists an exact sequence

� � � ! hk.X/
i��! hk.F /

‚�! hk�nC1.F /! hk�nC1.X/! � � � :
The map ‚ is a derivation, i.e., ‚.x [ y/ D ‚.x/ [ y C .�1/jxj.n�1/x [‚y.

Proof. We start with the modified MV-sequence

� � � ! hk.X/
.1/�! hk.F /˚ hk.F / .2/�! hk.F /˚ hk�nC1.F /! � � � :

The morphism (1) is as before, and (2) has the form .a; b/ 7! .a � b;‚.b//. Then
we form the quotients with respect to the left hk.F / summands in order to obtain
the stated exact sequence.

Since ˛� is a homomorphism and s2 D 0, we obtain

˛�.xy/ D 1 � xy C s �‚.xy/
˛�.x/˛�.y/ D .1 � x C s �‚.x//.1 � y C s �‚.y//

D 1 � xy C s �‚.x/ � y C .�1/jxjjsjs � x �‚.y/:
This proves the derivation property of ‚. �

We can, of course, also consider the MV-sequence in homology. It assumes
after an analogous rewriting the form

� � � ! Hq.F /
i��! Hq.X/! Hq�n.F /

‚��! Hq�1.F /! � � � :
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Problems

1. As an example for the use of the Wang sequence compute the integral cohomology ring

H�.�SnC1/ of the loop space of SnC1. Use the path fibration�SnC1
i�! P

p�! SnC1

with contractible P .
If n D 0, then �S1 is h-equivalent to the discrete space Z. So let n � 1. Since P

is contractible, the Wang sequence yields Hq.�S
nC1/ Š Hq�n.�S

nC1/ and therefore
Hk.�S

nC1/ Š Z for k � 0 mod .n/ and Š 0 otherwise. Similarly for cohomology
Hk.�SnC1/ Š Z for k � 0 mod .n/ and zero otherwise. Using the isomorphism ‚ we
define inductively elements z0 D 1 and ‚zk D zk�1 for k � 1.

Let n be even. Then kŠzk D zk
1

for k � 1. For the proof use induction over k and the
derivation property of ‚.

The relation above yields the multiplication rule

zkzl D
 
k C l
k

!
zkCl :

A multiplicative structure of this type is called a polynomial ring with divided powers. With
coefficient ring Q one obtains a polynomial ring H�.�SnC1IQ/ Š QŒz1�.

Let n be odd. Then z1z2k D z2kC1, z1z2kC1 D 0, and zk
2
D kŠz2k .

Again use induction and the derivation property. Since z2
1
D �z2

1
, one has z2

1
D 0.

Then ‚.z1z2k/ D ‚.z1/z2k � z1‚.z2k/ D z2k � z1z2k�1 D z2k D ‚.z2kC1/, hence
z1z2k D z2kC1, since ‚ is an isomorphism. Next compute z1z2kC1 D z1.z1z2k/ D
z2

1
z2k D 0. For the last formula use that ‚ ı‚ is a derivation of even degree which maps

z2k to z2k�2. The induction runs then as for evenn. The elements z2k generate a polynomial
algebra with divided powers and z1 generates an exterior algebra.

17.8 The Theorem of Leray and Hirsch

The theorem of Leray and Hirsch determines the additive structure of the coho-
mology of the total space of a fibration as the tensor product of the cohomology of
the base and the fibre. We work with singular cohomology with coefficients in the
ring R. A relative fibration

.F; F 0/! .E;E 0/! B

consists of a fibration p W E ! B such that the restriction p0 W E 0 ! B to the
subspaceE 0 ofE is also a fibration. The fibres of p and p0 over a base point 	 2 B
are F and F 0. The case E 0 D ; and hence F 0 D ; is allowed. We assume that B
is path connected.

(17.8.1) Theorem (Leray–Hirsch). Let .F; F 0/ i! .E;E 0/
p! B be a relative

fibration. Assume thatHn.F; F 0/ is for each n a finitely generated freeR-module.
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Let cj 2 H�.E;E 0/ be a family of elements such that the restrictions i�.cj / form
an R-basis ofH�.F; F 0/. Then

L W H�.B/˝H�.F; F 0/! H�.E;E 0/; b ˝ i�.cj / 7! p�.b/Y cj
is an isomorphism of R-modules. Thus H�.E/ is a free graded H�.B/-module
with basis fcj g.

We explain the statement of the theorem. The source ofL is a direct sum of mod-
ules H k.B/˝H l.F; F 0/. The elements i�c� which are contained in H l.F; F 0/
are a finite R-basis of the R-module H l.F; F 0/. A basic property of the tensor
product says that each element has a unique expression of the formP

� b� ˝ i�.c�/; b� 2 H k.B/:

By the conventions about tensor products of graded modules, L is a map of degree
zero between graded modules.

Proof. Let A � B be a subspace. We have the restricted fibrations .F; F 0/ !
.EjA;E 0jA/ ! A with EjA D p�1.A/ and E 0jA D E 0 \ EjA. The elements
cj yield by restriction elements cj jA 2 H�.EjA;E 0jA/ which again restrict to a
basis of H�.F; F 0/.

We first prove the theorem for CW-complexes B by induction over the skeleta
Bn. If B0 D f	g, then L has the form H 0.B0/˝H k.F; F 0/! H k.F; F 0/ and
it is an isomorphism by the unit element property of the cup product.

Suppose the theorem holds for the .n�1/-skeletonBn�1. We writeBn D U[V ,
where U is obtained from Bn by deleting a point in each open n-cell and V is the
union of the open n-cells. We use the MV-sequence of U; V and EjU;EjV and
obtain a commutative diagram

H�.U [ V /˝M � LU [V ��

��

H�.EjU [ V ;E 0jU [ V /

��

H�.U /˝M � ˚H�.V /˝M � LU ˚LV ��

��

H�.EjU;E 0jU/˚H�.EjV;E 0jV /

��

H�.U \ V /˝M � LU \V �� H�.EjU \ V ;E 0jU \ V /:

The left column is the tensor product of the MV-sequence for U; V with the graded
moduleM � D H�.F; F 0/. It is exact, since the tensor product with a free module
preserves exactness. We show thatLU ; LV andLU\V are isomorphisms. The Five
Lemma then shows thatLU[V is an isomorphism. This finishes the induction step.
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Case U . We have the commutative diagram

H�.U /˝H�.F; F 0/ LU ��

��

H�.EjU;E 0jU/

��

H�.Bn�1/˝H�.F; F 0/ �� H�.EjBn�1; E 0jBn�1/:

SinceBn�1 � U ,EjBn�1 � EjU , andE 0jBn�1 � E 0jU are deformation retracts,
the vertical maps are isomorphisms. We use the induction hypothesis and see that
LU is an isomorphism.

Case V . The set V is the disjoint union of the open n-cells V D j̀ e
n
j . We

obtain a commutative diagram

H�.V /˝H�.F; F 0/ LV ��

Š.1/

��

H�.EjV;E 0jV /
Š.2/

���Q
H�.enj /

�˝H�.F; F 0/

.3/

��

Q
H�.Ejenj ; E 0jenj /

D
��Q�

H�.enj /˝H�.F; F 0/
� Q

Len
j

��
Q
H�.Ejenj ; E 0jenj /:

(1) and (2) are isomorphisms by the additivity of cohomology. The map (3) is the
direct sum of homomorphisms of the type

�Q
Mj

� ˝ N ! Q
.Mj ˝ N/ with a

finitely generated free module N and other modules Mj . In a situation like this
the tensor product commutes with the product. Hence (3) is an isomorphism. The
homomorphisms L.enj / are isomorphisms, since enj is pointed contractible.

CaseU\V . We combine the arguments of the two previous cases. By additivity
and finite generation we reduce to the case ofU\enj , a cell with a point deleted. This
space has the .n � 1/-sphere as a deformation retract. By induction, the theorem
holds for an .n � 1/-sphere.

From the finite skeleta we now pass to arbitrary CW-complexes via the lim–
lim1-sequence (17.1.6). For general base spacesB we pull back the fibration along
a CW-approximation. �

(17.8.2) Example. Consider the product fibration p D prB W B � .F; F 0/ ! B .
Let H�.F; F 0/ be a free R-module with homogeneous basis .dj j j 2 J /, finite
in each dimension. Let cj D pr�

F dj . Then i�cj D dj . Therefore (17.8.1) says in
this case that

H�.B/˝H�.F; F 0/! H�.B � .F; F 0//; x ˝ y 7! x � y
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is an isomorphism (of graded algebras). This is a special case of the Künneth
formula. Þ

(17.8.3) Remark. The methods of proof for (17.8.1) (induction, Mayer–Vietoris
sequences) gives also the following result. Suppose H k.F; F 0/ D 0 for k < n.
Then H k.E;E 0/ D 0 for k < n. Þ

Let now h� be an arbitrary additive and multiplicative cohomology theory and
.F; F 0/ ! .E;E 0/ ! B a relative fibration over a CW-complex. We prove a
Leray- Hirsch theorem in this more general situation. We assume now that there
is given a finite number of elements tj 2 hn.j /.E;E 0/ such that the restrictions
tj jb 2 hn.j /.Eb; E 0

b
/ to each fibre over b are a basis of the graded h�-module

h�.Eb; E 0
b
/. Under these assumptions:

(17.8.4) Theorem (Leray–Hirsch). h�.E;E 0/ is a free left h�.B/-module with
basis .tj /.

Proof. Let us denote by h�.C /h t i the free graded h�.C /-module with (formal)
basis tj in degree n.j /. We have the h�.C /-linear map of degree zero

'.C / W h�.C /h t i ! h�.EjC;E 0jC/
which sends tj to tj jC . These maps are natural in the variable C � B . We view
h�.�/h t i as a cohomology theory, a direct sum of the theories h�.�/ with shifted
degrees. Thus we have Mayer–Vietoris sequences for this theory. If U and V are
open in B , we have a commutative diagram of MV-sequences.

h�.U [ V /h t i '.U[V /
��

��

h�.EjU [ V;E 0jU [ V /

��

h�.U /h t i ˚ h�.V /h t i '.U /˚'.V /
��

��

h�.EjU;E 0jU/˚ h�.EjV;E 0jV /

��

h�.U \ V /h t i '.U\V /
�� h�.EjU \ V;E 0jU \ V /

We use this diagram as in the proof of (17.8.1). We need for the inductive proof
that '.e/ is an isomorphism for an open cell e. This follows from two facts:

(1) '.P / is an isomorphism for a point P D fbg � B , by our assumption about
the tj .

(2) .EP ; E 0
P / ! .Eje; E 0je/ induces an isomorphism in cohomology, since

EP � Eje is a homotopy equivalence by the homotopy theorem for fibrations.
The finiteness of the set ftj g is used for the compatibility of products and finite

sums. The passage from the skeleta of B to B uses again (17.1.6). �

There is a similar application of (17.8.4) as we explained in (17.8.2).
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17.9 The Thom Isomorphism

We again work with a cohomology theory which is additive and multiplicative.
Under the obvious finiteness conditions (e.g., finite CW-complexes) additivity is
not needed.

Let .p; p0/ W .E;E 0/! B be a relative fibration over a CW-complex. A Thom
class forp is an element t D t .p/ 2 hn.E;E 0/ such that the restriction to each fibre
tb 2 hn.Fb; F 0

b
/ is a basis of the h�-module h�.Fb; F 0

b
/. We apply the theorem of

Leray–Hirsch (17.8.4) and obtain:

(17.9.1) Theorem (Thom Isomorphism). The Thom homomorphism

ˆ W hk.B/! hkCn.E;E 0/; b 7! p�.b/Y t
is an isomorphism. �

Let us further assume that p induces an isomorphism p� W H�.B/! H�.E/.
We use the Thom isomorphism and the isomorphismp� in order to rewrite the exact
sequence of the pair .E;E 0/; we set 
 D ˆ�1ı.

hk�1.E 0/ ı ��


**%%

%%%
%%%

%%
hk.E;E 0/

j
�� hk.E/ �� hk.E 0/

hk�n.B/

ˆŠ
��

J �� hk.B/

p�

��

.p0/�



'''''''''

Let e D e.p/ 2 Hn.B/ be the image of t under hn.E;E 0/
j! hn.E/

p�

 � hn.B/.
We call e the Euler class of p with respect to t . From the definitions we verify that
J is the cup product with e, i.e., J.x/ D x Y e.

(17.9.2) Theorem (Gysin Sequence). Let .E;E 0/ ! B be a relative fibration as
above such that p� W h�.B/ Š h�.E/ with Thom class t and associated Euler class
e 2 hn.B/. Then we have an exact Gysin sequence

� � � ! hk�1.E 0/! hk�n.B/
.1/�! hk.B/

.2/�! hk.E 0/! hk�nC1.B/! � � � :
.1/ is the cup product x 7! x Y e and .2/ is induced by p0. �

We discuss the existence of Thom classes for singular cohomology H�.�IR/.
In this case it is not necessary to assume thatB is a CW-complex (see (17.8.1)). We
have for each path w W I ! B from b to c a fibre transport w# defined as follows:
Let q W .X;X 0/ ! I be the pullback of p W .E;E 0/ ! B along w. Then we have
isomorphisms induced by the inclusions

w# W Hn.Fc ; F
0
c/

Š � Hn.X;X 0/ Š�! Hn.Fb; F
0
b/:
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The homomorphismw# only depends on the class ofw in the fundamental groupoid.
In this manner we obtain a transport functor “fibre cohomology”.

(17.9.3) Proposition. We assume that H�.Fb; F 0
b
IR/ is a free R-module with a

basis element in Hn.Fb; F
0
b
IR/. A Thom class exists if and only if the transport

functor is trivial.

Proof. Let t be a Thom class andw W I ! B a path from b to c. Thenw# ı i�c D i�b ,
where ib denotes the inclusion of the fibre over b. Thus w# sends the restricted
Thom class to the restricted Thom class and is therefore independent of the path.
(In general, the transport is trivial on the image of the i�c .)

Let now the transport functor be trivial. Then we fix a basis element in a particu-
lar fibreHn.Eb; E

0
b
/ and transport it to any other fibre uniquely (B path connected).

A Thom class tC 2 Hn.EjC;E 0jC/ for C � B is called distinguished, if the re-
striction to each fibre is the specified basis element. This requirement determines tC .
By a MV-argument and (17.8.3) we prove by induction thatH k.EjBn; E 0jBn/ D 0
for k < n and that a distinguished Thom class exists. Then we pass to the limit and
to general base spaces as in the proof of (17.8.1). �

The preceding considerations can be applied to vector bundles. Let � W E ! B

be a real n-dimensional vector bundle and E0 the complement of the zero section.
Then for each fibre Hn.Eb; E

0
b
/ Š R and � is a homotopy equivalence. A Thom

class t .�/ 2 Hn.E;E0IR/ is called an R-orientation of � . If it exists, we have
a Thom isomorphism and a Gysin sequence. We discuss the existence of Thom
classes and its relation to the geometric orientations.

(17.9.4) Theorem. There exists a Thom class of � with respect to singular coho-
mology H�.�IZ/ if and only if the bundle is orientable. The Thom classes with
respect toH�.�IZ/ correspond bijectively to orientations.

Proof. Let us consider bundles over CW-complexes. Let t be a Thom class. Con-
sider a bundle chart ' W U � Rn ! ��1.U / over a path connected open U . The
image of t jU inHn.U �.Rn;RnX0// Š H 0.U / under '� and a canonical suspen-
sion isomorphism is an element ".U / which restricts to ".u/ D ˙1 for each point
u 2 U , and u 7! ".u/ is constant, since U is path connected. We can therefore
change the bundle chart by an automorphism of Rn such that ".u/ D 1 for each u.
Bundle charts with this property yield an orienting bundle atlas.

Conversely, suppose � has an orienting atlas. Let ' W U � Rn ! ��1.U / be a
positive chart. From a canonical Thom class for U � Rn we obtain via ' a local
Thom class tU for ��1.U /. Two such local Thom classes restrict to the same Thom
class over the intersection of the basic domains, since the atlas is orienting. We can
now paste these local classes by the Mayer–Vietoris technique in order to obtain a
global Thom class. �
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As a canonical generator ofHn.Rn;RnX0IZ/we take the element e.n/ satisfy-
ing the Kronecker pairing relation he.n/; en i D 1where en 2 Hn.Rn;Rn X 0IZ/ is
the n-fold product e1� � � � � e1 of the canonical generator e1 2 H1.R1;R1X 0IZ/.
If a bundle � is oriented and 'b W Rn ! �b a positive isomorphism, then we require
'�
b
t .�/ D e.n/ for its associated Thom class t .�/.
Let t .�/ 2 hn.E;E0/ be a Thom class of � W E ! B and e.�/ 2 hn.B/ the

associated Euler class, defined as the restriction of t .�/ to the zero section

t .�/ 2 hn.E;E0/! hn.E/
s�

�! hn.B/ 3 e.�/:
Here is a geometric property of the Euler class:

(17.9.5) Proposition. Suppose � has a section which is nowhere zero. Then the
Euler class is zero.

Proof. Let s0 W B ! E0 be a map such that �ı s0 D id. The section s0 is homotopic
to the zero section by a linear homotopy in each fibre. Therefore e.�/ is the image
of t .�/ under a map

hn.E;E0/! hn.E/! hn.E0/
s0

! hn.B/

and therefore zero. �

The Thom classes and the Euler classes have certain naturality properties. Let
f � W � ! � be a bundle map. If t .�/ is a Thom class, then f �t .�/ is a Thom class
for � and f �e.�/ is the corresponding Euler class. If � W X ! B and � W Y ! C

are bundles with Thom classes, then the �-product t .�/ � t .�/ is a Thom class for
� � � and e.�/ � e.�/ is the corresponding Euler class.

In general, Thom classes are not unique. Let us consider the case of a trivial
bundle � D pr2 W Rn � B ! B . It has a canonical Thom class pr�

2 e
n. If t .�/

is an arbitrary Thom class, then it corresponds under the suspension isomorphism
h0.B/! hn.Rn�B;Rn0�B/ to an elementv.�/with the property that its restriction
to each point b 2 B is the element ˙1 2 h0.b/. Under reasonable conditions, an
element with this property (call it a point-wise unit) is a (global) unit in the ring
h0.B/. We call a Thom class for a numerable bundle strict if the restrictions to
the sets of a numberable covering correspond under bundle charts and suspension
isomorphism to a unit in h0.

(17.9.6) Proposition. Let U be a numerable covering of X . Let " 2 h0.X/ be an
element such that its restriction to each U 2 U is a unit. Then " is a unit.

Proof. Let X D U [ V and assume that .U; V / is excisive. Let "jU D "U and
"jV D "V be a unit. Let �U ; �V be inverse to "U ; "V . Then �U and �V have
the same restriction to U \ V . By the exactness of the MV-sequence there exists
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� 2 h0.X/ with �jU D �U ; �jV D �V . Then x D "� � 1 has restriction 0 in U
and V . Let xU 2 h0.X;U / be a pre-image of x and similarly xV 2 h0.X; V /.
Then xUxV D 0 and hence x2 D 0. The relation 1 D "�.2 � "�/ shows that " is
a unit. Restrictions of units are units. By additivity, if X is the disjoint union of U

and "jU is a unit for each U 2 U, then " is a unit. We finish the proof as in the
proof of (17.9.7). �

The Thom isomorphism is a generalized (twisted) suspension isomorphism. It
is given by the product with a Thom class. Let � W E ! B be an n-dimensional
real vector bundle and t .�/ 2 hn.E;E0/ a Thom class with respect to a given
multiplicative cohomology theory. The Thom homomorphism is the map

ˆ.�/ W hk.B;A/! hkCn.E.�/; E0.�/ [E.�A//; x 7! x � t .�/ D ��.x/Y t .�/
where �� W hk.B;A/ ! H k.E.�/; E0.�// is the homomorphism induced by � .
The Thom homomorphism defines on h�.E;E0/ the structure of a left graded
h�.B/-module. The Thom homomorphism is natural with respect to bundle maps.
Let

E.�/
F ��



��

E.�/

�
��

B
f

�� C

be a bundle map. Let t .�/ be a Thom class. We use t .�/ D F �t .�/ as the Thom
class for �. Then the diagram

hk.C;D/
ˆ.
/

��

f �

��

hkCn.E.�/; E0.�/ [E.�D//
F �

��

hk.B;A/
ˆ.�/

�� hkCn.E.�/; E0.�/ [E.�A//
is commutative. We assume that f W .B;A/! .C;D/ is a map of pairs.

The Thom homomorphism is also compatible with the boundary operators. Let
t .�A/ be the restriction of t .�/. Then the diagram

hk.A/
ı ��

ˆ.
A/
��

hkC1.B;A/

ˆ.
/

��

hkCn.E.�A/; E0.�A//

hkCn.E0.�/ [E.�A/; E0.�A//
Š
��

ı �� hkCnC1.E.�/; E0.�/ [E.�A//
is commutative.

The Thom homomorphisms are also compatible with the morphisms in the MV-
sequence. We now consider the Thom homomorphism under a different hypothesis.
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(17.9.7) Theorem. The Thom homomorphism of a numerable bundle with strict
Thom class is an isomorphism.

Proof. Let � be a numerable bundle of finite type. By hypothesis, B has a finite
numerable covering U1; : : : ; Ut such that the bundle is trivial over each Uj and the
Thom class is strict over Uj . We prove the assertion by induction over t . For t D 1
it holds by the definition of a strict Thom class. For the induction step consider
C D U1 [ � � � [Ut�1 and D D Ut . By induction, the Thom homomorphism is an
isomorphism for C ,D, and C \D. Now we use that the Thom homomorphism is
compatible with the MV-sequence associated to C ,D. By the Five Lemma we see
that ˆ.�/ is an isomorphism over C [D.

Suppose the bundle is numerable over a numerable covering U. Assume that for
each U 2 U the Thom class t .�U / is strict. In that case ˆ.�U / is an isomorphism.
For each V � U the Thom class t .�V / is also strict. There exists a numerable
covering .Un j n 2 N/ such that �jUn is numerable of finite type with strict Thom
class. Let .�n j n 2 N/ be a numeration of .un/. Set f W B ! Œ0;1Œ , f .x/ DP
n n�n.x/. If x … Sn

jD1 supp.�j /, then 1 D P
j�1 �j .x/ D

P
j>n �j .x/ and

therefore

f .x/ DPj>n j�j .x/ � .nC 1/
P
j>n �j .x/ D nC 1:

Hence f �1Œ0; n� is contained in
Sn
jD1 supp.�j /. Hence f �1�r; sŒ is always con-

tained in a finite number of Vj and therefore the bundle over such a set is numerable
of finite type. The sets Cn D f �1�2n� 1; 2nC 1Œ are open and disjoint. Over Cn
the bundle is of finite type. By additivity, we have for C DSCn the isomorphism
hk.EjC;E0jC/ ŠQ hk.EjCn; E0jCn/. The Thom classes overCn yield a unique
Thom class over C . Now we use the same argument for Dn D f �1�2n; 2nC 2Œ ,
D D S

Dn and C \ D D S
f �1�n; n C 1Œ and then apply the MV-argument

to C , D. �

(17.9.8) Example. Let �1.n/ W H.1/ ! CP n be the canonical line bundle in-
troduced in (14.2.6). A complex vector bundle has a canonical orientation and
an associated Thom class (17.9.4). Let c 2 H 2.CP n/ be the Euler class of
�1.n/. The associated sphere bundle is the Hopf fibration S2nC1 ! CP n. Since
H k.S2nC1/ D 0 for 0 < k < 2n C 1 the multiplications by the Euler class
c 2 H 2.CP n/ are isomorphisms

Z Š H 0.CP n/ Š H 2.CP n/ Š � � � Š H 2n.CP n/

and similarlyH k.CP n/ D 0 for odd k. We obtain the structure of the cohomology
ring

H�.CP n/ Š ZŒc�=.cnC1/:
In the infinite case we obtain H�.CP1IR/ Š RŒc� where R is an arbitrary com-
mutative ring.
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A similar argument for the real projective space yields for the cohomology ring
H�.RP nIZ=2/ Š Z=2Œw�=.wnC1/ with w 2 H 1.RP nIZ=2/ and for the infinite
projective space H�.RP1IZ=2/ Š Z=2Œw�. Þ

(17.9.9) Example. The structure of the cohomology ring of RP n can be used to
give another proof of the Borsuk–Ulam theorem: There does not exist an odd map
F W Sn ! Sn�1.

For the proof let n � 3. (We can assume this after suspension.) Suppose
there exists an odd map F . It induces a map f W RP n ! RP n�1 of the orbit
spaces. Let v W I ! Sn be a path from x to �x. Composed with the orbit map
pn W Sn ! RP n we obtain a loop pnv that generates �1.RP n/ Š Z=2. The path
u D Fv from F.x/ to F.�x/ D �F.x/ yields a loop that generates �1.RP n�1/.
Hence f� W �1.RP n/ ! �1.RP n�1/ is an isomorphism. This fact implies (uni-
versal coefficients) that f � is an isomorphism in H 1.�IZ=2/. Since wn D 0 in
H�.RP n�1IZ=2/ but wn 6D 0 in H�.RP nIZ=2/, we have arrived at a contradic-
tion. Þ

Problems

1. A point-wise unit is a unit under one of the following conditions: (1) For singular coho-
mologyH�.�IR/. (2)B has a numerable null homotopic covering. (3)B is a CW-complex.
2. Prove the Thom isomorphism for vector bundles over general spaces and for singular co-
homology.
3. Let � W E.�/! B and � W E.�/! B be vector bundles with Thom classes t .�/ and t .�/.
Define a relative Thom homomorphism as the composition of x 7! x � t .�/,

hk.E.�/; E0.�/[E.�A//! hkCn.E.�/�E.�/; .E0.�/[E.�A//�E.�/[E.�/�E0.�//

with the map induced by

.E.�˚ �/; E0.�˚ �/ [E.�A ˚ �A//
! .E.�/ �E.�/; .E0.�/ [E.�A/ �E.�/ [E.�/ �E0.�//;

a kind of diagonal, on each fibre given by .b; v; w/ 7! ..b; v/; .b; w//. This is the previously
defined map in the case that dim � D 0. The product t .�/ � t .�/ is a Thom class and also
its restriction t .�˚ �/ to the diagonal. Using this Thom class one has the transitivity of the
Thom homomorphism ˆ.�/ˆ.�/ D ˆ.�˚ �/.
4. Given i W X ! Y , r W Y ! X such that ri D id (a retract). Let � W E ! X be a bundle
over X and r�� D � the induced bundle. Let t .�/ be a Thom class and t .�/ its pullback. If
ˆ.�/ is an isomorphism, then ˆ.�/ is an isomorphism.
5. Let Cm � S1 be the cyclic subgroup of m-th roots of unity. A model for the canonical
map pm W BCm ! BS1 is the sphere bundle of them-fold tensor product �m D �˝ � � � ˝ �
of the canonical (universal) complex line bundle over BS1.
6. Let R be a commutative ring. Then H�.BS1IR/ Š RŒc� where c is the Euler class of �.
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7. We use coefficients in the ring R. The Gysin sequence of pm W BCm ! BS1 splits into
short exact sequences

0! H2k�1.BCm/! H2k�2.BS1/
Ymc�! H2k.BS1/

p�
m�! H2k.BCm/! 0:

This implies H2k.BCm/ Š R=mR, H2k�1.BCm/ Š mR for k > 0, where mR is the
m-torsion hx 2 R j mx D 0i of R. In even dimensions we have the multiplicative isomor-
phism H2�.BS1/=.mc/ Š H2�.BCm/ induced by pm.
8. The sphere bundle of the canonical bundle ECm �Cm

C ! BCm has a contractible
total space. Therefore the Gysin sequence of this bundle shows that the cup product
Yt W Hj .BCmIR/! Hj C2.BCmIR/ is an isomorphism for j > 0; here t D p�

mc.
9. The cup product

H1.BCmIR/ �H1.BCmIR/! H2.BCmIR/
is the R-bilinear form

mR � mR! R=mR; .u; v/ 7! m.m � 1/=2 � uv:
Here one has to take the product of u; v 2 mR � R and reduce it modulo m. Thus if m is
odd, this product is zero; and if m is even it is .u; v/ 7! m=2 � uv.
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Duality

We have already given an introduction to duality theory from the view point of
homotopy theory. In this chapter we present the more classical duality theory based
on product structures in homology and cohomology. Since we did not introduce
products for spectral homology and cohomology we will not directly relate the two
approaches of duality in this book.

Duality theory has several aspects. There is, firstly, the classical Poincaré duality
theorem. It states that for a closed orientable n-dimensional manifold the groups
H k.M/ and Hn�k.M/ are isomorphic. A consequence is that the cup product
pairing H�.M/ ˝ Hn��.M/ ! Hn.M/ is a regular bilinear form (say with
field coefficients). This quadratic structure of a manifold is a basic ingredient in the
classification theory (surgery theory). The cup product pairing for a manifold has in
the context of homology an interpretation as intersection. Therefore the bilinear cup
product form is called the intersection form. In the case of a triangulated manifold
there exists the so-called dual cell decomposition, and the simplicial chain complex
is isomorphic to the cellular cochain complex of dual cells; this is a very strong
form of a combinatorial duality theorem [167].

The second aspect relates the cohomology of a closed subset K � Rn with the
homology of the complement Rn XK (Alexander duality). This type of duality is
in fact a phenomenon of stable homotopy theory as we have explained earlier.

Both types of duality are related. In this chapter we prove in the axiomatic con-
text of generalized cohomology theories a theorem which compares the cohomology
of pairs .K;L/ of compact subsets of an oriented manifold M with the homology
of the dual pair .M XL;M XK/. The duality isomorphism is constructed with the
cap product by the fundamental class. We construct the cap product for singular
theory.

18.1 The Cap Product

The cap product relates singular homology and cohomology with coefficients in
the ring R. Let M and N be left R-modules. The cap product consists of a family
of R-linear maps

H k.X;AIM/˝Hn.X;A[BIN/! Hn�k.X;BIM ˝RN/; x˝y 7! xZy
and is defined for excisive pairs .A;B/ in X . (Compare the definition of the cup
product for singular cohomology.) If a linear map 	 W M ˝ N ! P is given,
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we compose with the induced map; then x Z y 2 Hn�k.X;BIP /. This device is
typically applied in the casesM D R and	 W R˝N ! N is anR-module structure,
or M D N D ƒ is an R-algebra and 	 W ƒ˝ƒ! ƒ is the multiplication.

We first define a cap product for chains and cochains

Sk.X IM/˝ Sn.X IN/! Sn�k.X IM ˝N/; ' ˝ c 7! ' Z c:
Given ' 2 Sp.X IM/ and � W 
pCq D Œe0; : : : ; epCq�! X , we set

' Z .� ˝ b/ D .�1/pq.'.� jŒeq; : : : ; epCq�˝ b/� jŒe0; : : : ; eq�
and extend linearly. (Compare in this context the definition of the cup product.)

From this definition one verifies the following properties.
(1) Let f W X ! Y be continuous. Then f#.f

#' Z c/ D ' Z f#c:

(2) @.' Z c/ D ı' Z c C .�1/j'j Z @c.
(3) .' Y  /Z c D ' Z . Z c/.
(4) 1Z c D c.

Case (3) needs conventions about the coefficients. It can be applied in the case that
' 2 Sp.X IR/; 2 Sq.X Iƒ/ and c 2 Sn.X Iƒ/ for an R-algebra ƒ. In case
(4) we assume that 1 2 S0.X IR/ is the cocycle which send a 0-simplex to 1 and
c 2 Sn.X IN/ for an R-module N .

We now extend the definition to relative groups. If ' 2 Sp.X;AIM/ �
Sp.X IM/ and c 2 SpCq.AIN/ C SpCq.BIN/, then ' Z c 2 Sq.BIM ˝ N/.
Thus we have an induced cap product

Sp.X;AIM/˝ SpCq.X IN/
SpCq.AIN/C SpCq.BIN/ !

Sq.X IM ˝N/
Sq.BIM ˝N/ :

LetA;B be excisive. We use the chain equivalence S�.A/CS�.B/! S�.A[B/.
After passing to cohomology we obtain the cap product as stated in the beginning.
We list the

18.1.1 Properties of the cap product.
(1) For f W .X IA;B/ ! .X 0IA0; B 0/, x0 2 Hp.X 0; A0IM/, and for u 2

HpCq.X;A [ BIN/ the relation f�.f �x0 Z u/ D x0 Z f�u holds.
(2) Let A;B be excisive, jB W .B;A \ B/! .X;A [ B/ the inclusion and

@B W HpCq.X;A [ B/ @�! HpCq�1.A [ B;A/ Š � HpCq�1.B;A \ B/:
Then for x 2 Hp.X;AIM/, y 2 HpCq.X;A [ BIN/,

j �
Bx Z @By D .�1/p@.x \ y/ 2 Hq�1.BIM ˝N/:
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(3) Let A;B be excisive, jA W .A;A \ B/! .X;B/ the inclusion and

@A W HpCq.X;A [ B/ @�! HpCq�1.A [ B;B/ Š � HpCq�1.A;A \ B/:
Then for x 2 Hp.AIM/, y 2 HpCq.X;A [ BIN/,

jA�.x Z @Ay/ D .�1/pC1ıx Z y 2 Hq�1.X;BIM ˝N/:
(4) 1Z x D x, 1 2 H 0.X/, x 2 Hn.X;B/.
(5) .x Y y/ Z z D x Z .y Z z/ 2 Hn�p�q.X; C Iƒ/ for x 2 H�.X;AIR/,

y 2 H�.X;BIƒ/; z 2 H�.X;A [ B [ C Iƒ/.
(6) Let " W H0.X IM ˝ N/ ! M ˝ N denote the augmentation. For x 2

Hp.X;AIM/, y 2 Hp.X;AIN/,
".x Z y/ D hx; y i

where h�;�i is the Kronecker pairing. �

We display again the properties in a table and refer to the detailed description
above.

f�.f �x0 Z u/ D x0 Z f�u
j �
Bx Z @By D .�1/jxj@.x Z y/

.jA/�.x Z @Ay/ D .�1/jxjC1ıx Z y
1Z x D x

.x Y y/Z z D x Z .y Z z/
".x Z y/ D hx; y i

We use the algebra of the cap product and deduce the homological Thom iso-
morphism from the cohomological one.

(18.1.2)Theorem. Let � W E ! B be an oriented n-dimensional real vector bundle
with Thom class t 2 Hn.E;E0IZ/. Then

tZW HnCk.E;E0IN/! Hk.EIN/
is an isomorphism.

Proof. Let z 2 Sn.E;E0/ be a cocycle which represents t . Then the family

SnCk.E;E0IN/! Sk.EIN/; x 7! z Z x
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is a chain map of degree �n. This chain map is obtained from the corresponding
one for N D Z by taking the tensor product with N . It suffices to show that
the integral chain map induces an isomorphism of homology groups, and for this
purpose it suffices to show that for coefficients in a fieldN D F an isomorphism is
induced (see (11.9.7)). The diagram

H k.EI F / Yt ��

˛Š
��

H kCn.E;E0I F /
˛Š
��

Hom.Hk.EI F /; F / .tZ/
�
�� Hom.HkCn.E;E0I F /; F /

is commutative (by property (6) in 18.1.1) where ˛ is the isomorphism of the
universal coefficient theorem. SinceYt is an isomorphism, we conclude that tZ is
an isomorphism. �

Problems

1. The cap product for an excisive pair .A;B/ in X is induced by the following chain map
(coefficient group Z):

S�.X;A/˝ S�.X;A [ B/ 1˝� ��� S�.X;A/˝ S�.X/=.S�.A/C S�.B//

1˝D����! S�.X;A/˝ S�.X;B/˝ S�.X;A/

1˝����! S�.X;A/˝ S�.X;A/˝ S�.X;B/

"�! Z˝ S�.X;B/ Š S�.X;B/:

D is an approximation of the diagonal, � the graded interchange map, and " the evaluation.
The explicit form above is obtained from the Alexander–Whitney map D.
2. .x � y/Z .a � b/ D .�1/jyjjaj.x Z a/ � .y Z b/.
3. From the cap product one obtains the slant product x ˝ u 7! xnu which makes the
following diagram commutative:

Hq.X;A/˝Hn..X;A/ � .Y; B// n
��

pr� ˝1
��

Hn�q.Y; B/

Hq..X;A/ � Y /˝Hn..X;A/ � .Y; B// Z �� Hn�q.X � .Y; B//:
pr�

��

The properties (1)–(5) of the cap product can be translated into properties of the slant product,
and the cap product can be deduced from the slant product. (This is analogous to theY- and
�-product.)

18.2 Duality Pairings

We use the properties of the cap product in an axiomatic context. Let h� be a
cohomology theory and k�; h� homology theories with values in R- MOD. A



442 Chapter 18. Duality

duality pairing (a cap product) between these theories consists of a family of linear
maps

hp.X;A/˝ kpCq.X;A [ B/! hq.X;B/; x ˝ y 7! x Z y

defined for pairs .A;B/which are excisive for the theories involved. They have the
following properties:

(1) Naturality. For f W .X IA;B/ ! .X 0IA0; B 0/ the relation f�.f �x0 Z u/ D
x0 Z f�u holds.
(2) Stability. Let A;B be excisive. Define the mappings jB and @B as in (18.1.1).
Then j �

Bx Z @By D .�1/jxj@.x Z y/.
(3) Stability. Let A;B be excisive. Define the mappings jA and @A as in (18.1.1).
Then .jA/�.x Z @Ay/ D .�1/jxjC1ıx Z y.
(4) Unit element. There is given a unit element 1 2 k0.P /. The homomorphism
hk.P /! h�k.P /, x 7! x Z 1 is assumed to be an isomorphism (P a point).

(In the following investigations we deal for simplicity of notation only with the
case h� D k�.) Note that we do not assume given a multiplicative structure for the
cohomology and homology theories.

As a first consequence of the axioms we state the compatibility of the cap product
with the suspension isomorphisms.

(18.2.1) Proposition. The following diagrams are commutative:

hp.X;A/˝ hpCq.X;A [ B/ Z ��

pr� ˝�
��

hq.X;B/

.�1/p�
��

hp.IX; IA/˝ hpCqC1.IX; @IX [ IA [ IB/ Z �� hqC1.IX; @IX [ IB/,

hp.X;A/˝ hpCq.X;A [ B/ Z ��

�˝�
��

hq.X;B/

hpC1.IX; @IX [ IA/˝ hpCqC1.IX; @IX [ IA [ IB/ Z �� hq.IX; IB/.

.�1/p pr�

��

(For the second diagram one should recall our conventions about the suspension
isomorphisms, they were different for homology and cohomology. Again we use
notations like IX D I �X .)

Proof. We consider the first diagram in the case that A D ;. The proof is based on
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the next diagram.

hp.1X/˝ hpCq.1X; 1B/ Z �� hq.1X; 1B/

hp.@IX [ IB/˝ hpCq.@IX [ IB; IB/ Z ��

j�˝j�1
�

��

hq.@IX [ IB; IB/
j�1

�

��

hp.@IX [ IB/˝ hpCq.@IX [ IB; IB/ Z ��

1˝i�
��

hq.@IX [ IB/
i�

��

hp.IX/˝ hpCqC1.IX; @IX [ IB/ Z ��

k�˝@
��

hqC1.IX; @IX [ IB/
@

��

The maps i , j , k are inclusions. The first and the second square commute by
naturality. The third square is .�1/p-commutative by stability (2). �

(18.2.2) Proposition. Let en 2 hn.Rn;Rn X 0/ be obtained from 1 2 h0.P / under
an iterated suspension isomorphism. Then

hk.Rn/! hn�k.Rn;Rn X 0/; x 7! x Z en
is for k 2 Z and n � 1 an isomorphism.

Proof. This follows by induction on n. One uses the first diagram in (18.2.1) and
an analogous suspension isomorphism with .R;R X 0/ in place of .I; @I /. �

(18.2.3) Proposition. Let .U; V / and .U 0; V 0/ be pairs of open subsets in the space
X D U [U 0. Let � 2 hn.U [U 0; V [V 0/ be a fixed element. From it we produce
elements ˛ and ˇ via

� 2 hn.X; V [ V 0/! hn.X; V [ U 0/ Š � hn.U; V [ UU 0/ 3 ˛;

� 2 hn.X; V [ V 0/! hn.X;U [ V 0/ Š � hn.U 0; V 0 [ UU 0/ 3 ˇ:
Then the diagram

hk�1.U; V / ��

Z˛
��

hk�1.UU 0; V U 0/ ı �� hk.U 0; UU 0/

Zˇ
��

hn�kC1.U; UU 0/ @ �� hn�kC1.UU 0; UV 0/ �� hn�k.U 0; V 0/

is commutative. (We again have used notations like UU 0 D U \ U 0.)
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Proof. We use naturality and stability (2) and show that the down-right path of the
diagram is .�1/k�1 times the map

hk�1.U; V /! hk�1.UU 0; V U 0/
Z˛1 �� hn�k.UU 0; UV 0/! hn�k.U 0; V 0/

and the right-down path .�1/k times the analogous map where ˛1 is replaced by
ˇ1; the element ˛1 is obtained from ˛ via the morphism

˛ 2 hn.U; V [ UU 0/ @�! hn�1.V [ UU 0; V / Š � hn�1.UU 0; V U 0/
! hn�1.UU 0; .UV 0/ [ .V U 0// 3 ˛1

and ˇ1 from ˇ via the analogous composition in which the primed and unprimed
spaces are interchanged. Thus it remains to show ˛1 D �ˇ1. This is essentially
a consequence of the Hexagon Lemma. One of the outer paths in the hexagon is
given by the composition

hn.U [ U 0; V [ V 0/ �! hn.U [ U 0; U [ V 0/
Š � hn.U 0 [ V; .V [ U 0/.U [ V 0//
@�! hn�1..U [ V 0/.V [ U 0/; V [ V 0/

and the other path is obtained by interchanging the primed and unprimed objects.
The center of the hexagon is hn.U [ U 0; .U [ V 0/.V [ U 0//. We then compose
the outer paths of the hexagon with the excision

hn�1.UU 0; UV 0 [ V U 0/! hn�1..U [ V 0/.V [ U 0/; V [ V 0/I
then � is mapped along the paths to ˛1 and ˇ1, respectively; this follows from the
original definition of the elements by a little rewriting. The displayed morphism
yields ˇ1. �

18.3 The Duality Theorem

For the statement of the duality theorem we need two ingredients: A homological
orientation of a manifold and a duality homomorphism. We begin with the former.

Let M be an n-dimensional manifold. For K � L �M we write

rLK W h�.M;M X L/! h�.M;M XK/
for the homomorphism induced by the inclusion, and rLx in the case that K D fxg.
An element oL 2 hn.M;M X L/ is said to be a homological orientation along L
if for each y 2 L and each chart ' W U ! Rn centered at y the image of oL under

hn.M;M X L/
rL
y

�� hn.M;M X y/ hn.U; U X y/Š��
'� �� hn.Rn;Rn X 0/



18.3. The Duality Theorem 445

is ˙en where en is the element which arises from 1 2 h0 under suspension. A
family .oK j K �M compact/ is called coherent if for each compact pairK � L
the restriction relation rLKoL D oK holds. A coherent family .oK/ of orientations is
a (homological ) orientation of M . If M is compact, then K DM is allowed and
an orientation is determined by the element oM 2 hn.M/, called the fundamental
class of M .

In order to state the duality theorem we need the definition of a duality ho-
momorphism. We fix a homological orientation .oK/ of M . Given closed sets
L � K � M and open sets V � U � M such that L � V;K � U . We fix an
element z 2 hn.M;M XK/. From oK D z we obtain zUVKL via

z 2 hn.M;M XK/ �� hn.M; .M XK/ [ V /

zUVKL 2 hn.U X L; .U XK/ [ .V X L//:
Š.#/

��

The morphism .#/ is an excision, since M X .U XL/ D .M XU/[L (closed) is
contained in .M XK/ [ V (open).

From zUVKL we obtain the homomorphism DUV
KL via the commutative diagram

hk.U; V / ��

DU V
KL

��

hk.U X L; V X L/
Z zU V

KL

��

hn�k.M X L;M XK/ hn�k.U X L;U XK/:Š��

We state some naturality properties of these data. They are easy consequences
of the naturality of the cap product.

(18.3.1) Lemma. Let .K;L/ � .U 0; V 0/ � .U; V / and

i W .U 0 X L;U 0 XK;V 0 X L/ � .U X L;U XK;V X L/:
Then i�zU

0V 0

KL D zUVKL andDUV
KL D DU 0V 0

KL ı i�. �

(18.3.2) Lemma. Let .K 0; L0/ � .K;L/ � .U; V / and

j W .U X L;U XK;V X L/ � .U X L0; U XK 0; V X L0/:

Then j�zUVKL D zUVK0L0 and j � ıDUV
K0L0 D DUV

KL . �

The naturality (18.3.1) allows us to pass to the colimit over the neighbourhoods
.U; V / of .K;L/ in M . We obtain a duality homomorphism

DKL W Lhk.K;L/ D colimUV h
k.U; V /! hn�k.M X L;M XK/:
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We explain this with some remarks about colimits. An element x 2 hk.U; V / rep-
resents an element of the colimit. Two elements x 2 hk.U; V / and x0 2 hk.U 0; V 0/
represent the same element if and only if there exists a neighbourhood .U 00; V 00/
with U 00 � U \ U 0, V 00 � V \ V 0 such that x and x0 have the same restric-
tion in hk.U 00; V 00/. Thus we have canonical homomorphisms lUV W hk.U; V / !Lhk.K;L/. Via these homomorphisms the colimit is characterized by a univer-
sal property: If 	UV W hk.U; V / ! h is a family of homomorphisms such that
	U 0V 0 ı i D 	UV for the restrictions i W hk.U; V / ! hk.U 0; V 0/, then there ex-
ists a unique homomorphism 	 W Lhk.K;L/ ! h such that 	lUV D 	UV . The
restrictions hk.U; V / ! hk.K;L/ are compatible in this sense, and we obtain a
canonical homomorphism Lhk.K;L/! hk.K;L/. In sufficiently regular situations
this homomorphism is an isomorphism; we explain this later.

(18.3.3) Duality Theorem. Let M be an oriented manifold. Then the duality
homomorphismDKL is, for each compact pair .K;L/ inM , an isomorphism.

We postpone the proof and discuss some of its applications. LetM be compact
and ŒM � 2 hn.M/ a fundamental class. In the case .K;L/ D .M;;/ we have
Lhk.M;;/ D hk.M/ and DKL is the cap product with ŒM �. Thus we obtain as a
special case:

(18.3.4) PoincaréDualityTheorem. Suppose the compact n-manifold is oriented
by the fundamental class ŒM � 2 hn.M/. Then

hk.M/! hn�k.M/; x 7! x Z ŒM �

is an isomorphism. �

A duality pairing exists for the singular theory

Hp.X;AIG/˝HpCq.X;A [ BIR/! Hq.X;BIG/
for commutative rings R and R-modules G. The Euclidean space Rn is orientable
for H�.�IZ/. Thus we have:

(18.3.5) Alexander Duality Theorem. For a compact pair .K;L/ in Rn

LH k.K;LIG/ Š Hn�k.Rn XK;Rn X LIG/:
A similar isomorphism exists for Sn in place of Rn. �

(18.3.6) Example. We generalize the Jordan separation theorem. Let M be a
connected and orientable (with respect to H�.�IZ/) n-manifold. Suppose that
H1.M IR/ D 0. Let A � M be compact, A 6D M . Then LHn�1.AIR/ is a free
R-module, and j�0.M X A/j D 1C rank LHn�1.AIR/.
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By duality LHn�1.AIR/ Š H1.M;M X AIR/. The hypothesis shows

@ W H1.M;M X AIR/ Š QH0.M X AIR/;

and the latter is a free R-module of rank j�0.M X A/j � 1. Þ

(18.3.7) Example. H 2.RP 2IZ/ Š Z=2. This is not a free Z-module. Hence the
projective plane cannot be embedded into S3. (A similar proof shows that RP 2n

has no embedding into S2nC1.) Þ

(18.3.8) Remark. From Alexander duality and the Thom isomorphism one can
deduce Poincaré duality. Let M � RnCt be a smooth closed submanifold of
dimension n. Suppose we have an Alexander duality isomorphism hk.M/ Š
hnCt�k.RnCt ;RnCt XM/. Let � W E.�/ ! U be a tubular map. We use � and
excision and obtain hnCt�k.RnCt ;RnCt X M/ Š hnCt�k.E.�/; E0.�//. Sup-
pose the normal bundle � is oriented by a Thom class. Then we have a Thom-
isomorphism hnCt�k.E.�/; E0.�// Š hn�k.M/. Altogether we obtain an iso-
morphism hk.M/ Š hn�k.M/ of Poincaré duality type. A similar device works
if we start from an isomorphism hk.M/ Š hnCk�t .RnCt ;RnCt XM/ and use a
homological Thom isomorphism. This approach would be used if one starts with
homotopical duality as a foundation stone. Þ

Problems

1. Let D � R2 be connected and open. The following are equivalent: (1) D is homeomor-
phic to R2. (2)D is simply connected. (3)H1.DIZ/ D 0. (4)H1.DIZ/ D 0. (5) R2 XD
is connected. (6) The boundary of D is connected. (7) If J � D is a Jordan curve, then D
contains the interior of J . [44, p. 394 ]
2. Let i W Sn ! K.Z; n/ be an inclusion of a subcomplex which induces an isomorphism
of �n. For each compact subset K � RnC1 the induced map i� W ŒK; Sn�! ŒK;K.Z; n/�

is bijective.
3. Use cohomology Hn.X IZ/ D ŒX;K.Z; n/� defined with an Eilenberg–Mac Lane com-
plexK.Z; n/. Then for a compact subset X in a Euclidean space LHn.X IZ/ Š Hn.X IZ/.
Similar isomorphisms hold for the stable cohomotopy groups.
4. Rn is orientable for each homology theory. LetK � D.r/ D fx j kxk � rg be compact.
DefineoK as the image of the canonical class underhn.Rn;RnX0/ hn.Rn;RnXD.r//!
hn.Rn;Rn XK/.

18.4 Euclidean Neighbourhood Retracts

For applications it is interesting to compare LH k with H k .
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A spaceX is called a Euclideanneighbourhood retract (ENR ) if there exists an
embedding j W X ! Rn, an open neighbourhood U of j.X/ in Rn and a retraction
r W U ! X , i.e., jr D id.X/.

Let X � Rn be a retract of an open set U , then X is closed in U and hence
locally compact: Let r W U ! X be a retraction; then X is the coincidence set of
r W U ! U and id W U ! U . Recall that a locally compact set Y in a Hausdorff
space Z is locally closed, i.e., has the form Y D xY \W for an open set W in Z.

(18.4.1) Proposition. Let X � Rn be a retract of an open neighbourhood. Let Z
be a metric space and Y � Z homeomorphic to X . Then Y is a retract of an open
neighbourhood V of Y in Z.

Proof. Let f W X ! Y be a homeomorphism and r W U ! X a retraction. Then Y
is locally compact and we can write Y D xY \W with an openW � Z. Then Y is

closed inW . SinceW is a normal space, the map Y
f �1

�! X ! Rn has a continuous
extension h W W ! Rn by the Tietze extension theorem. Let V D h�1.U /. Then
f rh W V ! Y is a retraction of Y � V . �

(18.4.2) Proposition. Let X � Rn be locally compact. Then there exists an em-
bedding of X into RnC1 as a closed subset.

Proof. Let U � Rn be open (U 6D Rn). Then

j W U ! Rn � R; x 7! .x; d.x;Rn X U/�1/
is an embedding. The image of j is closed , since

j.U / D f.x; t/ j t � d.x;Rn X U/ D 1g:
We can assume that X � U is closed; then j.X/ is closed in j.U /, hence closed
in RnC1. �

(18.4.3) Proposition. Let X be an ENR. Suppose f0; f1 W Y ! X are maps which
coincide on a subset B � Y . Then there exists a neighbourhoodW of B in Y and
a homotopy h W f0jW ' f1jW relative to B .

Proof. Let X
i�! U

r�! X be a presentation as a retract with U � Rn open. Let

W D fy j .1 � t /if0.y/C t if1.y/ 2 U for all t 2 I g:
Then certainly B � W . Since

	 W Y � I ! Rn; .y; t/ 7! .1 � t /if0.y/C t if1.y/
is continuous, 	�1.U / is open. If fyg � I � 	�1.U /, then there exists an open
neighbourhood Uy of y such that Uy � I � 	�1.U /. Hence W is open in Y . A
suitable homotopy h is now obtained as the restriction of 	 to W � I . �
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(18.4.4) Remark. Suppose B � X are Euclidean neighbourhood retracts. Then
there exists a retraction r W V ! B from an open neighbourhood V of B in X .
There further exists a neighbourhood W � V of B in X such that j W W � V and
i ı .r jW / W W ! B � V are homotopic relative to B .

An ENR is locally contractible: Each neighbourhood V of x contains a neigh-
bourhood W of x such that W � V is homotopic to W ! fxg � V relative
to fxg. Þ

(18.4.5) Lemma. Let the Hausdorff spaceX D X1[� � �[Xr be a union of locally
compact open subsetsXj which are homeomorphic to a subset of a Euclidean space.
Then X is homeomorphic to a closed subset of a Euclidean space.

Proof. There exist embeddings hi W Xi ! Rm.i/ as a closed subset. We extend hi
to a continuous map ki W X ! Sm.i/ D Rm.i/ [ f1g by ki .X X Xi / D f1g (if
X 6D Xi ). The product .ki / W X ! Qr

iD1 Sm.i/ is an embedding. The product of
the spheres can be embedded into

Q
i Rm.i/C1, and then we can apply (18.4.2) if

necessary. �

(18.4.6) Theorem. Let the Hausdorff spaceX D X1[ � � �[Xr be a union of open
subsets Xi which are ENR’s. Then X is an ENR.

Proof. Induction on r . It suffices to consider X D X0 [ X1. By (18.4.5) we can
assume that X is a closed subset of some Rn. Let ri W Ui ! Xi be retractions (see
(18.4.1)). Set

U01 D r�1
0 .X0 \X1/ \ r�1

1 .X0 \X1/:
Then r0; r1 W U01 ! X0 \X1 are retractions of a neighbourhood. The open subset
X0 \ X1 of the ENR X0 is an ENR. Hence there exists X0 \ X1 � V01 � U01
such that r0; r1 are homotopic on V01 relative to X0 \ X1 by a homotopy rt (see
(18.4.3)). Let V0 � U0; V1 � U1 be open neighbourhoods of X X X1; X X X0
such that xV0 \ xV1 D ;. Choose a continuous function � W Rn ! Œ0; 1� such that
�.V0/ D 0 and �.V1/ D 1. Let V D V0 [ V01 [ V1. Then � W V ! X , defined as
�jV0 D r0jV0, �jV1 D r1jV1, �.x/ D r�.x/.x/ for x 2 V01 is a suitable retraction.

�

(18.4.7) Corollary. A compact manifold is an ENR. �

(18.4.8) Remark. Since an ENR is dominated by a CW-complex it has the homo-
topy type of a CW-complex. A compact ENR is dominated by a finite CW-complex;
therefore its singular homology groups with coefficients in Z are finitely generated
abelian groups. This holds in particular for compact manifolds. Þ

(18.4.9) Proposition. Let K be a compact ENR in an n-manifold M . Then the
canonical map � W LH k.K/! H k.K/ is an isomorphism.
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Proof. We use thatM is a metrizable space or, at least, that open subsets are normal.
Then K is a retract r W U ! K of an open neighbourhood U of K in M . Suppose
x 2 H k.K/; then r�.x/ represents an element Lx 2 LH k.K/ with �. Lx/ D x. This
shows that � is surjective. Let xU 2 H k.U / represent an element in the kernel
of �.

Suppose there exists a neighbourhood V � U of K and a homotopy from
j W V � U to ir W V ! K ! U . Then we have the situation

xU�

��

H k.U /

i� ##��
���

�
j�

**

j�

��

H k.K/
r�

�� H k.V /:

xV H k.V /

######

Since i�.xU / D 0, by assumption, we see that xV D 0; but xV represents the same
element as xU .

The homotopy exists by (18.4.3) if also U is an ENR. If we choose U as the
union of a finite number of sets which are homeomorphic to open subsets of Rn,
then we can apply (18.4.6). �

Let X be an ENR and X � Rn. Since the canonical homomorphism Lh�.X/!
h�.X/ is an isomorphism, Lh�.X/ does not depend on the embedding X � Rn.

Let M be a compact n-manifold. Then Hk.M IZ/ and H k.M IZ/ are finitely
generated abelian groups. For each field F the groups Hk.M I F / are finite-dimen-
sional vector spaces. The Euler characteristic �.M I F / is independent of F and
equal to the Euler characteristic �.M/.

Let K �M be a compact ENR. Then

Hn�i .KI F2/ Š LHn�i .KI F2/ Š Hi .M;M XKI F2/
and these are finite-dimensional vector spaces over the prime field F2.

(18.4.10) Proposition. H�.KI F2/ is finite-dimensional if and only if the same holds
for H�.M X KI F2/. If finiteness holds, then for the Euler characteristic �2 the
relation

�2.M/ D �2.M XK/C .�1/n�2.K/
holds. (Note that �2.K/ D �.K/.)
Proof. The first statement follows from the exact homology sequence of the pair
.M;M X K/. It also yields �2.M/ D �2.M X K/ C �2.M;M X K/. The
equality �2.M;M XK/ D .�1/n�2.K/ is obtained, if we insert the consequence
dimHi .M;M X KI F2/ D dimHn�i .KI F2/ of the duality into the homological
definition of the Euler characteristic. �



18.5. Proof of the Duality Theorem 451

(18.4.11) Corollary. Let M be a closed manifold of odd dimension. Then
�.M/ D 0. If K �M is a compact ENR, then �.K/ D �.M XK/. �

Problems

1. LetF be a compact, connected, non-orientable surface. The universal coefficient formula
andH1.F IZ/ Š Zg�1˚Z=2 showH2.F IZ/ Š Z=2. Therefore F cannot be embedded
into S3.
2. Let S � R2 be the pseudo-circle. Show, heuristically, that the pseudo-circle has a system
of neighbourhoods U1 
 U2 
 � � � with Ui Š S1 � Œ0; 1� and \Un D S .

Then
LH1.S IZ/ Š H1.R

2;R2 X S IZ/ Š QH0.R X S IZ/ Š Z;

the last isomorphism because R2 XS has two path components. By the universal coefficient
formula H1.S IZ/ Š Hom.H1.S/;Z/. The singular homology group H1.S IZ/ is zero,
a singular 1-chain is always contained in a contractible subset. In fact, S has the weak
homotopy type of a point. This shows that singular theory is the wrong one for spaces like
S .
3. Let F � R3 be a connected orientable compact surface. Then R3 X F has two path
components (interior and exterior).
4. Let M D RnC1 and S � RnC1 be homeomorphic to Sn. Then S is an ENR and
LHn.S IZ/ Š Hn.S IZ/ Š Z. From the duality theorem one obtains that RnC1 X S has

two path components.

18.5 Proof of the Duality Theorem

We have to collect some formal properties of the groups Lh and of the duality ho-
momorphisms D. We want the Lhk.K;L/ to be part of functors from the category
K.M/ of compact pairs in M and inclusions.

Let .K 0; L0/ � .K;L/. The induced map Lhk.K;L/ ! Lhk.K 0; L0/ sends
an element represented by x 2 hk.U; V / to the element which is represented
by the same x. This makes the Lhk into functors on K.M/ and the canoni-
cal maps Lhk ! hk into natural transformations. We define a coboundary op-
erator Lı W Lhk.L/ ! LhkC1.K;L/ as follows. Let V 
 L be open. Choose
U 
 V as an open neighbourhood of K. Then we map representing elements
via ı W hk.V /! hkC1.U; V /. This process yields a well-defined Lı and the diagram

Lhk.L/ Lı ��

��

LhkC1.K;L/

��

hk.K/
ı �� hkC1.K;L/

is commutative. From (18.3.2) we obtain by passage to the colimit:
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(18.5.1) Lemma. TheDKL yield a natural transformation, i.e., the diagram

Lhk.K;L/ DKL ��

��

hn�k.M X L;M XK/

��Lhk.K 0; L0/
DK0L0

�� hn�k.M X L0;M XK 0/

is commutative for each inclusion .K 0; L0/ � .K;L/. �
(18.5.2) Lemma. The sequence

� � � ! Lhk.K/ �� Lhk.L/ Lı �� LhkC1.K;L/! � � �
is exact. Similarly for triples of compact subsets.

Proof. This is a special case of the general fact that a colimit over a directed set of
exact sequences is again exact. A direct verification from the definitions and the
exact sequences for the representing elements is not difficult. An example should
suffice. Suppose Lı.x/ D 0 and let x be represented by x1 2 hk.V /. We use
the representing element ı.x1/ 2 hkC1.U; V / for Lı.x/. Since Lı.x/ is zero, x1 is
contained in the kernel of some restriction hkC1.U; V /! hkC1.U 0; V 0/. Another
representative of x is the restriction x2 2 hk.V 0/ of x1. By exactness, x2 has a
pre-image in hk.U 0/, and it represents a pre-image of x in Lhk.K/. �

(18.5.3) Lemma. Each compact pair K;L is excisive for Lhk , i.e.,

Lhk.K [ L;K/! Lhk.L;K \ L/
is an isomorphism.

Proof. This is a consequence of the isomorphisms hk.U [V;U / Š hk.V; U \V /
for open neighbourhoods U 
 K, V 
 L. �

(18.5.4) Corollary. For each compact pair there exist an exact MV-sequence

� � � ! Lhk.K [ L/! Lhk.K/˚ Lhk.L/! Lhk.K \ L/ ı�! � � � :
Proof. The MV-sequence is constructed by algebra from suitable exact sequences
using (18.5.2) and (18.5.3). �

(18.5.5) Lemma. For each pair .K;L/ the diagram

Lhk.L/ DL ��

Lı
��

hn�k.M;M X L/
@
��LhkC1.K;L/

DKL �� hn�k�1.M X L;M XK/
is commutative.
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Proof. By passage to the colimit this is a consequence of the commutativity of the
diagrams

hk�1.V / ı ��

DV ;
L;

��

hk.U; V /

DU V
KL

��

hn�kC1.M;M X L/ @ �� hn�k.M X L;M XK/:
In order to verify this commutativity we apply (18.2.3) to the sets

.U; V; U 0; V 0/ D .V;;; U X L;U XK/:

The element � arises from oK via the excision hn.U; U X K/ Š hn.M;M X K/.
One now verifies from the definitions that the element ˛ is zV ;

L; and ˇ becomes
zUVKL . These data yield the commutative diagram

hk�1.V /

D
��

ı �� hk.U; V /

��

hk�1.V / ��

Z zV ;
L;

��

hk�1.V X L/ ı �� hk.U X L; V X L/
Z zU V

KL

��

hn�kC1.V; V X L/ @ ��

��

hn�k.V X L; V XK/ �� hn�k.U X L;U XK/

��

hn�kC1.M;M X L/ @ �� hn�k.M X L;M XK/:

The upper and lower rectangles commute by naturality of @ and ı. �

For the proof of the duality theorem we note that it suffices to consider the special
caseDK W Lhk.K/! hn�k.M;MXK/, by the Five Lemma and the previous results.
The proof is based on the following principle.

(18.5.6) Theorem. Let D.K/ be an assertion about compact subsets in M . Sup-
pose:

(1) D.K/ holds for sets K in a chart domain which are mapped onto a convex
subset of Rn under the coordinate map.

(2) IfD.K/;D.L/, andD.K \ L/ hold, then alsoD.K [ L/ holds.

(3) Let K1 
 K2 
 � � � , K D T
Ki . If D.Ki / holds for each i , then D.K/

holds.

Under these assumptions,D.K/ holds for all compact K.
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Proof. Since an intersection of convex sets is convex, (1) and (2) yield by induction
on t that D.K1 [ � � � [ Kt / holds for compact subsets Ki of type (1) which are
contained in the same chart domain.

IfK is a compact set in a chart domain, thenK is the intersection of a sequence
K1 
 K2 
 � � � where each Ki is a finite union of compact convex sets.

Each compact set K is a finite union of compact sets in chart domains. Again
D.K/ follows by induction from (2). �

We now verify (1)–(3) of (18.5.6) in the case thatD.K/ is the assertion: DK is
an isomorphism.

(2) The duality homomorphisms D yield a morphism of the MV-sequence for
K;L into the MV-sequence of the complements; this follows from the fact that the
(co-)boundary operators of the MV-sequences are defined from induced morphisms
and ordinary (co-)boundary operators. Now use the Five Lemma.

(1) Let ' W U ! Rn be a chart, K � U and '.K/ convex. We begin with the
special case of a point K and '.K/ D f0g. We have a commutative diagram

hk.Rn/
'�

��

Z'�.z
U
K
/

��

hk.U /
Š ��

ZzU
K

��

Lhk.K/
DK

��

hn�k.Rn;Rn X 0/ hn�k.U; U XK/'�

��
Š

�� hn�k.M;M XK/:

The right square commutes by definition of DK ; here zUK is the image of the
orientation under the restriction hn.M;M X K/ ! hn.U; U X K/. The left
square commutes by naturality of the cap product. By definition of the orien-
tation, '�.zUK / D ˙en. The fact that Zen is an isomorphism follows from the
compatibility with suspension and the unit element axiom of the pairing. Hence
D.K/ holds for a point K.

Let now K be arbitrary and P � K a point. From naturality we see that
D.K/ holds, if Lhk.K/! Lhk.P / and hn�k.M;M XK/! hn�k.M;M X P / are
isomorphisms.

The set X D '.K/, being compact convex, is the intersection of a sequence
of open neighbourhoods U1 
 U2 
 � � � which are contractible onto P , and each
neighbourhood of X contains eventually all Uj . Hence the restriction hk.Uj / !
hk.UjC1/ are isomorphisms, and we see hk.Uj / Š Lhk.X/ Š hk.X/. This shows
the first isomorphism. The second isomorphism is verified by standard methods
(excision, h-equivalence).

(3) We show that the canonical maps

colimi
Lhk.Ki /! Lhk.K/; colimi hn�k.M;M XKi /! hn�k.M;M XK/

are isomorphisms.
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The first isomorphism is an immediate consequence of the colim-definition.
Given x 2 Lhk.K/ represented by y 2 hk.U /. There exists i such that Ki � U .
Hence y represents an element in Lhk.Ki /. This shows surjectivity, and injectivity
is shown by a similar argument.

The second isomorphism is easily seen for singular homology, if one uses that
singular chains have compact carrier. In the general case one uses that additive
homology theories commute with colimits.

18.6 Manifolds with Boundary

We now treat duality for manifolds with boundary.

(18.6.1) Theorem. Let M be a compact n-manifold with boundary @M , oriented
by a fundamental class ŒM � 2 Hn.M; @M IZ/. Then

Hp.M IG/! Hn�p.M; @M IG/; x 7! x Z ŒM �;

Hp.M; @M IG/! Hn�p.M IG/; x 7! x Z ŒM �;

are isomorphisms for each coefficient group G.

Proof. By naturality and stability of the cap product the following diagram com-
mutes up to sign (coefficients are G); Œ@M� D @ŒM� is a fundamental class:

Hp.M; @M/
j�

��

Z ŒM�

��

Hp.M/
i� ��

Z ŒM�

��

Hp.@M/
ı ��

Z Œ@M�

��

HpC1.M; @M/

Z ŒM�

��

Hn�p.M/
j� �� Hn�p.M; @M/

@ �� Hn�p�1.@M/
i� �� Hn�p�1.M/.

We know already thatZ Œ@M� is an isomorphism. Therefore it suffices to show that
the left-most vertical map is an isomorphism. We reduce the problem to the duality
already proved. We use the non-compact auxiliary manifold

P DM [ .@M � Œ0; 1Œ/;
which is obtained by the identification x � .x; 0/ for x 2 @M . We also use the
subspaces

M.t/ DM [ .@M � Œ0; t �/; 0 � t < 1;
P.t/ DM [ .@M � Œ0; t Œ/; 0 < t � 1:

The P.t/ are a cofinal system of open neighbourhoods of M D M.0/ in P . The
M.t/ are a compact exhaustion of P . The inclusions M � P.t/ � M.t/ are



456 Chapter 18. Duality

h-equivalences. Let i.t/ W .M; @M/ � .P.t/; P.t/ XM ı/. The diagram

Hp.M/

ZŒM�

��

Hp.P.t//
i.t/�

��

Zi.t/�ŒM�

��

Hn�p.M; @M/
i.t/� �� Hn�p.P.t/; P.t/ XM ı/

is commutative (naturality of the cap product). The map i.t/� is an isomorphism,
since i.t/ is an h-equivalence; the map i.t/� is an excision. Thus it suffices to show
that Zi.t/�ŒM � is an isomorphism. We use the duality theorem for P . We have
isomorphisms

Hn.P; P XM.t// Š Hn.P; P XM/ Š Hn.P; P XM ı/ Š Hn.M; @M/:

Let z.t/ 2 Hn.P; P X M.t// correspond to the fundamental class ŒM �. One
verifies that z.t/ is an orientation along M.t/. Since the M.t/ form a com-
pact exhaustion, the coherent family of the z.t/ yields an orientation of P . Let
w.t/ 2 Hn.P.t/; P.t/ XM/ and v.t/ 2 Hn.P.t/; P.t/ XM ı/ correspond to the
fundamental class under

Hn.P.t/; P.t/ XM/ Š Hn.P.t/; P.t/ XM ı/ Š Hn.M; @M/:

By definition of the duality homomorphism, DM W LHp.M/! Hn�p.P; P XM/

is the colimit of the maps

Hp.P.t//
Zw.t/

�� Hn�p.P.t/; P.t/ XM/
Š �� Hn�p.P; P XM/:

SinceHp.P.t//! Hp.M/ is an isomorphism, the canonical mapsHp.P.t//!
LHp.M/! Hp.M/ are isomorphisms. SinceDM is an isomorphism, so isZw.t/.

The diagram

Hp.P.t//

Zw.t/
��

Hp.P.t//
i���

Zv.t/
��

Hn�p.P.t/; P.t/ XM/
i� �� Hn�p.P.t/; P.t/ XM ı/

is commutative by naturality of the cap product and v.t/ D i�w.t/. Since v.t/ D
i.t/�ŒM �, the map Zi.t/�ŒM � is an isomorphism.

�

(18.6.2) Proposition. Let B be a compact .nC 1/-manifold with boundary @B D
M . Then �.M/ D .1C .�1/n/�.B/. In particular �.M/ is always even.
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Proof. Let M D B [ .@B � Œ0; 1Œ/. Then B is a compact deformation retract
of M and M X B Š @B��0; 1Œ' @B . Hence �.B/ D �.M/ D �.M X B/ C
.�1/nC1�.B/ D �.@B/ � .�1/n�.B/. �

(18.6.3)Example. RP 2n is not the boundary of a compact manifold, since�.RP 2n/
is odd. The same holds for an arbitrary finite product of even-dimensional real pro-
jective spaces.

Problems

1. Suppose @M D AC B is a decomposition into two closed submanifolds. The diagram

� � � �� Hp.M;A/

ZŒM�

��

�� Hp.M/

ZŒM�

��

�� Hp.A/

ZŒ@M�

��

�� � � �

� � � �� Hn�p.M;B/ �� Hn�p.M; @M/ �� Hn�p�1.@M;A/ �� � � �
is commutative up to sign. HenceZŒM � W Hp.M;A/! Hn�p.M;B/ is an isomorphism.

18.7 The Intersection Form. Signature

Let M be a closed n-manifold oriented by a fundamental class ŒM � 2 Hn.M IK/,
coefficients in a field K. The evaluation on the fundamental class is Hn.M/ !
K; x 7! xŒM� D hx; ŒM �i. We can also write this as the compositionHn.M/ Š
Hom.Hn.M/;K/! K where we evaluate a homomorphism on ŒM �. The canonical
map " W H0.M/! K allows us to write hx; ŒM �i D ".x \ ŒM �/.

(18.7.1) Proposition. The bilinear form

H k.M/ �Hn�k.M/
Y �� Hn.M/

h�;ŒM� i
�� K

is regular. We write this form also as .x; y/ 7! x ˇ y.

Proof. We use the rule .xYy/Z ŒM � D xZ.yZ ŒM �/. It gives us the commutative
diagram

H k.M/ �Hn�k Y ��

id �ZŒM�Š
��

Hn.M/

ZŒM�

��

H k.M/ �Hk.M/
Z ��

˛�idŠ
��

H0.M/

"

��

Hom.Hk.M/;K/ �Hk.M/
eval �� K.

The bilinear form in question is isomorphic to the Hom-evaluation, and the latter is
for each finite-dimensional vector space a regular form. �
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We take now R D K as coefficients and assume n D 4t . In that case

H 2t .M/ �H 2t .M/! R; .x; y/ 7! x ˇ y
is a regular symmetric bilinear form. Recall from linear algebra: Let .V; ˇ/ be
a real vector space together with a symmetric bilinear form ˇ. Then V has a
decomposition V D VC ˚ V� C V0 such that the form is positive definite on VC,
negative definite on V� and zero on V0. By Sylvester’s theorem the dimensions
of VC and V� are determined by ˇ. The integer dim VC � dim V� is called the
signature of ˇ. We apply this to the intersection form and call

�.M/ D dimH 2t .M/C � dimH 2t .M/�

the signature of the closed oriented 4t -manifold M . We also set �.M/ D 0, if
the dimension of M is not divisible by 4. If �M denotes the manifold with the
opposite orientation, then one has �.�M/ D ��.M/. If M D M1 CM2 then
H 2t .M/ D H 2t .M1/CH 2t .M2/, the forms onM1 andM2 are orthogonal, hence
�.M1 CM2/ D �.M1/C �.M2/.

(18.7.2) Proposition. The signature of CP 2n with its natural orientation induced
by the complex structure is 1.

Proof. SinceH 2n.CP 2nIZ// is the free abelian group generated by cn, the claim
follows from hcn; ŒCP n�i D 1. For n D 1 this holds by the definition of the
first Chern class (see (19.1.2)). Consider the map p W .CP 1/n ! CP n that sends
.Œa1; b1�; : : : ; Œanbn�/ to Œc0; : : : ; cn�where

Qn
jD1.ajxCbjy/ D

Pn
iD0 cjxjyn�j .

Note that H 2..CP 1/nIZ/ is the free abelian group with basis t1; : : : ; tn where tj
is the first Chern class of pr�

j .�/. One verifies that p�.c/ D t1 C � � � C tn. This
implies p�cn D nŠ � t1t2 : : : tn. The map p has degree nŠ. These facts imply

nŠ D hp�cn; ŒCP 1�n i D hcn; p�ŒCP 1�n i D hcn; nŠ � ŒCP n�i D nŠ � hcn; ŒCP n�i;
hence hcn; ŒCP n�i D 1. �

(18.7.3) Proposition. Let M and N be closed oriented manifolds. Give M � N
the product orientation. Then �.M �N/ D �.M/�.N /.

Proof. Let m D dimM and n D dimM . If mC n 6� mod4 then �.M � N/ D
0 D �.M/�.N / by definition. In the case that mC n D 4p we use the Künneth
isomorphism and consider the decomposition

H 2p.M �N/ D Hm=2.M/˝Hn=2.N /L
2i<m

�
H i .M/˝H 2p�i .N /˚Hm�i .M/˝Hn�2pCi .N /

�
:

The first summand on the right-hand side is zero if m or n is odd. The form
on H 2p.M � N/ is transformed via the Künneth isomorphism by the formula
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.x ˝ y/ ˇ .x0 ˝ y0/ D .�1/jyjjx0j.x ˇ x0/.y ˇ y0/. Products of elements in
different summands never contribute to the top dimension m C n. Therefore the
signature to be computed is the sum of the signatures of the forms on the summands.

Consider the first summand. If m=2 and n=2 are odd, then the form is zero. In
the other case letA be a basis ofHm=2.M/ such that the form has a diagonal matrix
with respect to this basis and let B be a basis of Hn=2.N / with a similar property.
Then .a ˝ b j a 2 A; b 2 B/ is a basis of Hm=2.M/˝Hn=2.N / for which the
form has a diagonal matrix. Then

�.M/�.N / D �P
a2A aˇ a

��P
b2B b ˇ b

�
DP.a;b/2A�B.a˝ b/ˇ .a˝ b/ D �.M �N/:

Now consider the summand for 2i < m. Choose bases A of H i .M/ and B of
H 2p�i .N / and let A�, B� be the dual bases of Hm�i .M/, Hn�2pCi .N / respec-
tively. Then

.a˝ b C a� ˝ b�; a˝ b � a� ˝ b� j a 2 A; b 2 B/
is a basis of the summand under consideration. The product of different basis
elements is zero, and .a ˝ b C a� ˝ b�/2 D �.a ˝ b � a� ˝ b�/2 shows that
the number of positive squares equals the number of negative squares. Hence these
summands do not contribute to the signature. �

There exists a version of the intersection form for cohomology with integral
coefficients. We begin again with the bilinear form

s W H k.M/! Hn�k.M/! Z; .x; y/ 7! .x Y y/ŒM�:

We denote by A} the quotient of the abelian group A by the subgroup of elements
of finite order. We obtain an induced bilinear form

s} W H k.M/} �Hn�k.M/} ! Z:

(18.7.4) Proposition. The form s} is regular, i.e., the adjoint homomorphism
H k.M/} ! Hom.Hn�k.M/};Z/ is an isomorphism (and not just injective).

Proof. We use the fact that the evaluation H k.M IZ/} � Hk.M IZ/} ! Z is
a regular bilinear form over Z. By the universal coefficient formula, the kernel
of H k.M IZ/ ! Hom.Hk.M IZ/;Z/ is a finite abelian group; hence we have
isomorphisms

H k.M IZ/} Š Hom.Hk.M IZ/;Z/ Š Hom.Hk.M IZ/};Z/:
Now the proof is finished as before. �
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We return to field coefficients. Let M be the oriented boundary of the compact
oriented manifoldB . We setAk D Im.i� W H k.B/! H k.M//with the inclusion
i W M � B .

(18.7.5) Proposition. The kernel of

H k.M/
Š! Hom.Hn�k.M/;K/! Hom.An�k;K/

isAk . The isomorphism is x 7! .y 7! hyYx; ŒM �i/; the second map is the restric-
tion toAn�k . In particulardimH k.M/ D dimAkCdimAn�k , and in the casen D
2t we have dimH t .M/ D 2 dimAk and dimHt .M/ D 2 dim Ker.i� W Ht .M/!
Ht .B//.

Proof. Consider the diagram

H k.B/
i� �� H k.M/

ı ��

Z ŒM�Š
��

H kC1.B;M/

Z ŒB�Š
��

Hn�k.M/
i� �� Hn�k.M/.

By stability of the cap product, the square commutes up to the sign .�1/k . By
commutativity and duality

x 2 Ak , ı.x/ D 0 , ı.x/Z ŒB� D 0 , i�.x Z ŒM �/ D 0:
The regularity of the pairing H j .M/ �Hj .M/ ! K, .x; y/ 7! hx; y i says that
i�.x Z ŒM �/ D 0 is equivalent to hHn�k.B/; i�.x Z ŒM �/i D 0. Properties of
pairings yield

hHn�k.B/; i�.x Z ŒM �i D h i�Hn�k.B/; x Z ŒM �i
D hAn�k; x Z ŒM �i
D hAn�k Y x; ŒM �i

and we see that x 2 Ak is equivalent to hAn�k Y x; ŒM �i D 0, and the latter
describes the kernel of the map in the proposition. �

(18.7.6) Example. If n D 2t and dimH t .M/ is odd, thenM is not a boundary of
a K-orientable compact manifold. This can be applied to RP 2n (for K D Z=2) and
to CP 2n (for K D R). Þ

(18.7.7) Proposition. Let M be the boundary of a compact oriented .4k C 1/-
manifold B . Then the signature ofM is zero.
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Proof. It follows from Proposition (18.7.5) that the orthogonal complement ofA2k

with respect to the intersection form on H 2k.M IR/ is A2k , and 2 dimA2k D
dimH 2k.M IR/. Linear algebra tells us that a symmetric bilinear form with these
properties has signature 0. �

We generalize the preceding by taking advantage of the general duality isomor-
phism (coefficients in K). Let M be an n-manifold and K 
 L a compact pair in
M . Assume that M is K-oriented along K. We define a bilinear form

.	/ LH i .K;L/ �H j .M X L;M XK/ Y�! H iCj .M;M XK/
as follows: Let .V;W / be a neighbourhood of .K;L/. We fix an element y 2
H j .M X L;M XK/ and restrict it to H j .V X L; V XK/. Then we have

H i .V;W /! H i .V X L;W X L/ Yy�! H iCj .V X L;W XK [ V XK/ Š
H iCj .M;W [ .M XK//! H iCj .M;M XK/:

The colimit over the neighbourhoods .V;W / yields Yy in .	/.
(18.7.8) Proposition. Let M be an n-manifold and K 
 L compact ENR in M .
Then

H i .K;L/ �Hn�i .M X L;M XK/ Y �� Hn.M;M XK/ h�;oK i
�� K

is a regular bilinear form. �

(18.7.9) Example. Let M be a compact oriented n-manifold for n � 2 mod .4/.
Then the Euler characteristic �.M/ is even.

The intersection form Hn=2.M/ � Hn=2.M/ ! Q with coefficients in Q is
skew-symmetric and regular, since n=2 is odd. By linear algebra, a form of this
type only exists on even-dimensional vector spaces.

�.M/ DPn
iD0.�1/i dimHi .M/

D � dimHn=2.M/C 2P2i<n.�1/i dimH i .M/I

we have used dimH i .M/ D dimHn�i .M/, and this holds because of H i .M/ Š
Hom.Hi .M/;Q/ and hence dimH i .M/ D dimHi .M/ D dimHn�i .M/. Þ

18.8 The Euler Number

Let � W E.�/!M be ann-dimensional real vector bundle over the closed connected
orientable manifold M . The manifold is oriented by a fundamental class ŒM � 2
Hn.M IZ/ and the bundle by a Thom class t .�/ 2 Hn.E;E0IZ/. Let s W M !
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E.�/ be a section of � and assume that the zero setN.s/ is contained in the disjoint
sum D D D1 [ � � � [Dr of disks Dj . The aim of this section is to determine the
Euler number e.�/ D hs�t .�/; ŒM �i by local data. We assume given positive charts
'j W Rn ! Uj with disjoint images of M such that 'j .Dn/ D Dj . The bundle is
trivial over Uj . Let

Dn � Rn
ĵ

��

pr
��

E.�jDj /

��

Dn
'j

�� Dj

be a trivialization. We assume that ĵ is positive with respect to the given orientation
of �. These data yield a commutative diagram

Hn.E.�/; E0.�//
s�

��

��

Hn.M/

Hn.E.�jD/ [E0.�jM XDı; E0.�jD// s�
��

��

Hn.;M XDı/

˛�

��

ˇ�Š
��

Hn.E.�jD/;E0.�jD// s�
��

Š
��

Hn.D; S/

Š
��L

j H
n.E.�jDj /; E0.�jDj //

s�
j

��
L
j H

n.Dj ; Sj /.

Here Sj is the boundary ofDj and S DSj Sj . The restriction of s toDj is sj . The
image of t .�/ inHn.E.�jDj /; E0.�jDj // is the Thom class t .�jDj /. The vertical
maps have their counterpart in homology

Hn.M/
˛� �� Hn.M;M XDı/ Hn.D; S/

ˇ�

Š
��

L
j Hn.Dj ; Sj /;Š

��

and ŒM � is mapped to .ŒDj �/. By commutativity and naturality

hs�t .�/; ŒM �i DPj hs�
j t .�jDj /; ŒDj �i:

The bundle isomorphism . ĵ ; 'j / transports sj into a section

tj W Dn ! Dn � Rn; x 7! .x; uj .x//
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of pr. Note that uj .Sn�1/ � Rn X 0. We have another commutative diagram

Hn.E.�jDj /; E0.�jDj //
s�
j

��

ˆ�
j

��

Hn.Dj ; Sj /

'�
j

��

Hn.Dn � Rn;Dn � Rn0/
t�
j

�� Hn.Dn; Sn�1/

Hn.Rn;Rn0/.

pr�

��

u�
j

�����������������

The evaluation hs�
j t .�jDj /; ŒDj �i is the degree of uj W Sn�1 ! Rn0 if we choose

the correct orientations. We explain this now and use the following computation:

hs�
j t .�jDj /; ŒDj �i D hs�

j t .�jDj /; 'j� i D h'�
j s

�
j t .�jDj /; en i

D h t�j ˆ�
j t .�jDj /; en i D hu�

j e
n; en i

D d.uj /hen; en i:
The cohomological degree of uj is u�

j e
n D d.uj /e

n. With these definitions we
obtain:

(18.8.1) Proposition. e.�/ D �Pr
jD1 d.uj /

�hen; en i. �

If s has in Dj an isolated zero, then d.uj / is called the index of this zero.

Problems

1. There always exists a section with a single zero.
2. The index can be computed for transverse zeros of a smooth section s W M ! E of a
smooth bundle. Consider the differential

Txs W TxM ! TxE D TxM ˚Ex :

Transversality means that the composition with the projection pr ıTxs W TxM ! Ex is an
isomorphism between oriented vector spaces. This isomorphism has a sign ".x/ 2 f˙1g,
C1 if the orientation is preserved. Show that ".x/ is the local index.
3. The section

s W Sn ! TS n � Sn � RnC1; x D .x0; : : : ; xn/ 7! .x; .x2
0 � 1; x0x1; : : : ; x0xn//

has the transverse zeros .1; 0; : : : ; 0/ with index 1 and .�1; 0; : : : ; 0/ with index .�1/n.
4. Find a vector field on S2n with a single zero (of index 2).
5. There exists a section without zeros if and only if the Euler number is zero.

We know already that the Euler number is zero, if there exists a non-vanishing section.
For the converse one has to use two facts: (1) There always exist sections with isolated zeros.
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(2) There exists a cellD which contains every zero. Hence one has to consider a single local
index. This index is zero, and the corresponding map u W S ! Rn

0
is null homotopic. Thus

there exists an extension u W D ! Rn
0

. We use this extension to extend the section s over the
interior of D without zeros.
6. Consider the bundle �.k/ W H.k/ ! CP 1. Let P.z0; z1/ D Pk

j D0 ˛kz
j

0
z

k�j

1
be a

homogeneous polynomial of degree k. Then

� W CP 1 ! H.k/; Œz0; z1� 7! .z0; z1IP.z0; z1//

is a section of �.k/. If P.z0; z1/ DQj .aj z1�bj z0/ is the factorization into linear factors,
then the Œaj ; bj � 2 CP 1 are the zeros of � , with multiplicities.
7. Consider the bundle � W Sn �Z=2 Rn ! RP n, .x; z/ 7! Œx�. Then � W Œx0; : : : ; xn� 7!
..x0; : : : ; xn/; .x1; : : : ; xn// is a section with a single zero. The sections correspond to maps
f W Sn ! Rn such that f .�x/ D �f .x/. One form of the theorem of Borsuk–Ulam says
that maps of this type always have a zero. We would reprove this result, if we show that the
Euler class mod (2) is non-zero. The tautological bundle � over RP n has as Euler class the
non-zero element w of H1.RP nIZ=2/. The Euler classes are multiplicative and � D n�.
Hence e.�/ D wn 6D 0.

18.9 Euler Class and Euler Characteristic

Let M be a closed orientable n-manifold. We define in a new manner the Thom
class of the tangent bundle. It is an element t .M/ 2 Hn.M �M;M �M XD/
such that for each x 2M the restriction of t .M/ along

Hn.M �M;M �M XD/! Hn.x �M;x � .M X x//

is a generator (integral coefficients,D the diagonal). The image of t .M/ under the
composition

Hn.M �M;M �M XD/! Hn.M �M/
d�

�! Hn.M/

(where d is the diagonal map) is now called the associated Euler class e.M/ ofM .
Let us use coefficients in a field K. We still denote the image of the fundamental
class ŒM � 2 Hn.M IZ/ in Hn.M IK/ by ŒM �. We use the product orientation
ŒM �M� D ŒM � � ŒM �. Let � W E.�/!M be the normal bundle of the diagonal
d W M ! M �M with disk- and sphere bundle D.�/ and S.�/ and tubular map
j W D.�/!M �M . The fundamental class of ŒM �M� 2 H2n.M �M/ induces
a fundamental class ŒD.�/� 2 H2n.D.�/; S.�// via

H2n.M �M/! H2n.M �M;M �M XD/ Š H2n.D.�/; S.�//:
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Let z D j �.ŒD.�/�. The diagram

Hn.M �M/

Z ŒM�M�

��

Hn.M �M;M �M XD/
Z z
��

j�

Š
���� Hn.D.�/; S.�//

Z ŒD.�/�
��

Hn.M �M/
D �� Hn.M �M/ Hn.D.�//

j���

commutes (naturality of the cap product). Suppose M is connected. From the
isomorphisms

Hn.M/ Hn.D.�//
i�

Š
�� Hn.D.�/; S.�//Š

Z ŒD.�/�
��

we obtain an element t .�/ that satisfies i�ŒM � D t .�/ Z ŒD.�/�. It is a generator
and therefore a Thom class. We define t .M/ 2 Hn.M �M;M �M X D/ by
j �t .M/ D t .�/. The image �.M/ 2 Hn.M �M/ of t .M/ is characterized by
the relation � Z ŒM �M� D d�ŒM �. From the definitions we see that d�� is the

image of t .�/ under Hn.D.�/; S.�//! Hn.D.�//
i�! Hn.M/, hence the Euler

class e.�/ of �.
Let B D f˛g be a basis of H�.M/ and f˛0g the dual basis in H�.M/ with

respect to the intersection form h˛0 Y ˇ; ŒM�i D ı˛ˇ , j˛0j D n � j˛j.
(18.9.1) Proposition. The image �.M/ 2 Hn.M �M/ of t .M/ is given by

� DP˛2B.�1/j˛j˛0 � ˛ 2 Hn.M �M/:

A consequence is

e.M/ D d�� DP˛2B.�1/j˛j˛0 Y ˛;
he.M/; ŒM �i DP˛.�1/h˛0 Y ˛; ŒM �i DP˛.�1/j˛j D �.M/:

Proof. The Künneth isomorphism

H�.M/˝H�.M/ Š H�.M �M/; u˝ v 7! u � v;
tells us that there exists a relation of the form � D P

�;ı2B A.�; ı/�0 � ı. The
following computations determine the coefficient A.�; ı/. Let ˛ and ˇ be basis
elements of degree p. Then

h.˛ � ˇ0/Y �; ŒM �M�i
D h˛ � ˇ0; � Z ŒM �M�i D h˛ � ˇ0; d�ŒM �i
D hd�.˛ � ˇ0/; ŒM �i D h˛ Y ˇ0; ŒM �i
D .�1/p.n�p/hˇ0 Y ˛; ŒM �i D .�1/p.n�p/ı˛ˇ :
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A second computation gives

h.˛ � ˇ0/Y �; ŒM �M�i
D h.˛ � ˇ0/YPA.�; ı/�0 � ı; ŒM �M�i
DPA.�; ı/.�1/jˇ0jj�0jh.˛ Y �0/ � .ˇ0 Y ı/; ŒM � � ŒM �i
DPA.�; ı/.�1/jˇ0jj�0j.�1/n.jˇ0jCjıj/h˛ Y �0; ŒM �ihˇ0 Y ı; ŒM �i:

Only summands with � D ˛ and ı D ˇ are non-zero. Thus this evaluation has the
value A.˛; ˇ/ D .�1/pn (collect the signs and compute modulo 2). We compare
the two results and obtain A.˛; ˇ/ D .�1/pı˛ˇ . �



Chapter 19

Characteristic Classes

Characteristic classes are cohomological invariants of bundles which are compatible
with bundle maps. Let h�.�/ be a cohomology theory. An hk-valued characteristic
class for numerable n-dimensional complex vector bundles, say, assigns to each
such bundle � W E.�/ ! B an element c.�/ 2 hk.B/ such that for a bundle map
� ! � over f W B ! C the naturality property f �c.�/ D c.�/ holds.

An assignment which has these properties is determined by its value c.�n/ 2
hk.BU.n// on the universal bundle �n, and this value can be prescribed in an
arbitrary manner (Yoneda lemma). In other words, the elements of hk.BU.n//
correspond to this type of characteristic classes.

It turns out that in important cases characteristic classes are generated by a
few of them with distinguished properties, essentially a set of generators of the
cohomology of classifying spaces.

We work with a multiplicative and additive cohomology theory h� and bundles
are assumed to be numerable. A C-orientation of the theory assigns to eachn-dimen-
sional complex vector bundle (numerable, over a CW-complex,…) � W E.�/ ! B

a Thom class t .�/ 2 h2n.E.�/; E0.�// such that for a bundle map f W E.�/ !
E.�/ the naturality f �t .�/ D t .�/ holds and the Thom classes are multiplicative
t .�/ � t .�/ D t .� � �/. If an assignment of this type is given, then the theory is
called C-oriented. In a similar manner we call a theory R-oriented, if for each n-
dimensional real vector bundle � W E.�/! B a Thom class t .�/ 2 hn.E.�/; E0.�//
is given which is natural and multiplicative. It is a remarkable fact that structures
of this type are determined by 1-dimensional bundles.

(19.0.1) Theorem. A C-orientation is determined by its value

t .�1/ 2 h2.E.�1/; E0.�1//
on the universal 1-dimensional bundle �1 over CP1. Each Thom class t of �1
determines a C-orientation. A similar bijection exists between Thom classes of the
universal 1-dimensional real vector bundle over RP1 and R-orientations.

An example of a C-oriented theory is H�.�IZ/; a complex vector bundle has
a canonical Thom class and these Thom classes are natural and multiplicative. One
can use an arbitrary commutative ring as coefficient ring.

An example of an R-oriented theory is H�.�IZ=2/; a real vector bundle has a
unique Thom class in this theory. One can use any commutative ring of character-
istic 2 as coefficient ring.
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Suppose the theory is C-oriented. Then an n-dimensional complex vector bun-
dle � over B has an Euler class e.�/ 2 h2n.B/ associated to t .�/. Euler classes are
natural, f �e.�/ D e.f ��/, and multiplicative, e.� ˚ �/ D e.�/Y e.�/.

The Thom classes have associated Thom homomorphisms. They are defined as
before by cup product with the Thom class

ˆ.�/ W hk.B;A/! hkC2n.E.�/; E.�/0 [E.�jA//; x 7! ��.x/Y t .�/:
These Thom homomorphisms are natural and multiplicative as we have explained
earlier.

For an R-oriented theory we have natural and multiplicative Euler classes for
real vector bundles.

A proof of (19.0.1) is based on a determination of characteristic classes. We
present a construction of characteristic classes based on the cohomology of projec-
tive bundles. For this purpose, classifying spaces are not used. But they will of
course appear and they are necessary for a more global view-point.

19.1 Projective Spaces

Let �n W En ! CP n�1 be the canonical bundle with total space

En D Cn X 0 �C� C; .z; u/ � .	z; 	u/:
We have the embedding �n W En ! CP n, .z; u/ 7! Œz; u�. The image is the
complement of the point 	 D Œ0; : : : ; 0; 1�. Let t .�n/ 2 h2.En; E0n/ be a Thom
class. The Thom class yields the element tn 2 h2.CP n/ as the image under

h2.En; E
0
n/

Š h2.CP n;CP n XCP n�1/ Š h2.CP n;	/! h2.CP n/:

The first isomorphism is induced by �n. Note that �n sends the zero section
to CP n�1, the image under the embedding � W Œx1; : : : ; xn� 7! Œx1; : : : ; xn; 0�.
The total space En of �n was denoted H.1/ in (14.2.6). The bundle �n is the
(complex) normal bundle of the embedding � W CP n�1 ! CP n. The embedding
�n is a tubular map; it also shows that CP n is the one-point compactification ofEn
(see the definition of a Thom space in the final chapter). The complement
CP n X CP n�1 is the affine subset UnC1 D fŒx1; : : : ; xnC1� j xnC1 6D 0g. We
obtain a homomorphism h�Œtn�! h�.CP n/ of graded h�-algebras; it sends tnC1

n

to zero (see (17.2.5)) and induces a homomorphism of the quotient by the principal
ideal .tnC1

n /.

(19.1.1) Lemma. Let t .�n�1/ 2 h2.En�1; E0n�1/ be the Thom class obtained from
t .�n/ by restriction along �. Let tn�1 2 h2.CP n�1/ be obtained from t .�n�1/ as
explained above. Then:
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(1) ��tn D tn�1.
(2) tn�1 is the Euler class associated to t .�n/.

Proof. (1) The embedding � is homotopic to the embedding �1 W Œx1; : : : ; xn� 7!
Œ0; x1; : : : ; xn�. Thus it suffices to show ��1tn D tn�1. We have a bundle map
�2 W En�1 ! En which is compatible with the embeddings, i.e., �n�2 D �1�n�1.
We apply cohomology to this commutativity and obtain the desired result.

(2) With the zero section s the diagram

h2.CP n;CP n XCP n�1/ ��

Š ��
n

��

h2.CP n/

��

��

h2.En; E
0
n/

s�
�� h2.CP n�1/

commutes. The definition of the Euler class and (1) now yield the result. �

(19.1.2) Lemma. For singular homology and cohomology the Kronecker pairing
relation h t1; ŒCP 1�i D 1 holds. The element t1 is by (19.1.1) also the Euler class
of �2 and this is, by definition, the first Chern class.

Proof. �1 is a bundle over a point. We have the isomorphism ' W C ! E1, z 7!
.1; z/. By definition of the canonical Thom class of a complex vector bundle
the Thom class t .�1/ 2 H 2.E1; E

0
1 / is mapped to the generator e.2/ under '�,

where e.2/ is defined by the relation he.2/; e2 i D 1 (Kronecker pairing). The
element t1 is the image of e.2/ underH 2.C;CX0/! H 2.CP 1;CP 1XCP 0/!
H 2.CP 1/ and the fundamental class ŒCP 1� is mapped to e2 under H2.CP 1/ !
H2.CP 1;CP 1 X CP 0/ ! H2.C;C X 0/. Naturality of the Kronecker pairing
now gives the desired result. �

(19.1.3) Theorem. The homomorphism just constructed is an isomorphism
h�.CP n/ Š h�Œtn�=.tnC1

n / of graded h�-algebras. In particular h�.CP n/ is a
free h�-module with basis 1; tn; t2n ; : : : ; t

n
n .

Proof. Induction on n. We have the Thom isomorphism

hk.CP n�1/! hkC2.En; E0n/; x 7! ��
nx [ t .�n/ D x � t .�n/:

By induction, h�.CP n�1/ is a free h�-module with basis 1; tn�1; : : : ; tn�1
n�1 and

therefore h�.En; E0n/ is a free module with basis

1 � t .�n/; tn�1 � t .�n/; : : : ; tn�1
n�1 � t .�n/:

We apply the isomorphismh�.En; E0n/ Š h�.CP n;	/ constructed above and claim
that it sends tkn�1 � t .�n/ to tkC1

n . Unraveling the definitions one shows that this
claim is a consequence of the naturality of the cup product and the fact (19.1.1) that
tn�1 is the Euler class of t .�n/. �
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We denote by h�ŒŒT �� the ring of homogeneous formal power series in T over
the graded ring h�. If T has the degree 2, then the power series in h�ŒŒT �� of degree
k consist of the series

P
j ajT

j with aj 2 hk�2j . If h� is concentrated in degree
zero, then this coincides with the polynomial ring h0ŒT �.

Let t .�1/ 2 h2.E1; E01/ be a Thom class and t .�n/ its restriction. Let t1 2
h2.CP1/ and tn 2 h2.CP n/ be the corresponding elements. Since tn is the
restriction of t1 let us write just t for all these elements. We have a surjective
restriction homomorphism h�.CP nC1/! h�.CP n/. Thus the restrictions induce
an isomorphism (see (17.1.6)and (17.1.7))

h�.CP1/ Š limn h
�.CP n/ Š limn h

�Œt �=.tnC1/:

The algebraic limit is h�ŒŒt ��. This shows:

(19.1.4) Theorem. h�.CP1/ Š h�ŒŒt ��. �

We extend the previous results by a formal trick to products X � CP n. Let
p W X �CP n ! CP n be the projection. We set u D un D p�.tn/.

(19.1.5) Proposition. Consider h�.X �CP n/ as a graded h�.X/-algebra. Then
h�.X �CP n/ Š h�.X/Œu�=.unC1/ and h�.X �CP1/ Š h�.X/ŒŒu��.

Proof. The cohomology theory k�.�/ D h�.X ��/ is additive and multiplicative,
and the coefficient algebra is h�.X/. The multiplicative structure in k�.�/ is
induced by the �-product of h�.�/ and the diagonal of X . The element u1 now
plays the role of t1. �

Let pi W .CP1/n ! CP1 be the projection onto the i -th factor, and set Ti D
p�
i .t1/. Then (19.1.5) implies:

(19.1.6) Proposition. h�..CP1/1/ Š h�ŒŒT1; : : : ; Tn��. �

This statement uses algebraic identities of the type h�ŒŒx; y�� Š .h�ŒŒx��/ŒŒy��
for graded formal power series rings.

Problems

1. An element
Pn

iD0 aj t
j
n 2 h0.CP n/ is a unit if and only if a0 2 h0 is a unit.

2. An element u DPn
iD1 bi t

i
n 2 h2.CP n/ is a Thom class of �nC1 if and only if b1 is a

unit, and this holds if and only if u D "tn for a unit " 2 h0.CP n/.
3. Let tn�1 be a Thom class for �n�1 and un a Thom class for �n. Then there exists a Thom
class tn for �n such that its restriction is tn�1.
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19.2 Projective Bundles

Let � W E.�/ ! B be an n-dimensional complex vector bundle. (For the moment
we work with bundles over spaces of the homotopy type of a CW-complex.) The
group C� acts fibrewise on E0.�/ by scalar multiplication. Let P.�/ be the orbit
space. The projection � induces a projection p
 W P.�/ ! B . The fibre p�1



.b/

is the projective space P.�b/ of the vector space ��1.b/ D �b . We call p
 the
projective bundle associated to �.

There exists a canonical line bundleQ.�/! P.�/ over P.�/. Its total space is
defined as E0.�/ �C� C with respect to the relation .x; u/ � .x	; 	u/. Thus over
each fibre P.�b/ we have a bundle canonically isomorphic to �n.

The construction of the projective bundle is compatible with bundle maps. Let
� W E.�/ ! C be a further bundle and ' W � ! � a bundle map over f W B ! C .
These data yield an induced bundle map

Q.�/
Q.'/

��

��

Q.�/

��

P.�/
P.'/

�� P.�/.

We now assume that we are given a Thom class t1 2 h2.CP1/ of the universal
line bundle �1 over CP1. A classifying mapk
 W P.�/! CP1 of the line bundle
Q.�/! P.�/ provides us with the element

t
 D k�

 .t1/ 2 h2.P.�//:

We consider h�.P.�// in the standard manner as left h�.B/-module, x � y D
p�


.x/Y y.

(19.2.1) Example. Let � D �nC1 W EnC1 ! CP n. Then Q.�/! P.�/ is canon-
ically isomorphic to �nC1 and t
 D tn. Þ

(19.2.2) Theorem. The h�.B/-module h�.P.�// is free with basis

1; t
 ; t
2

 ; : : : ; t

n�1

 :

In particular p�


W h�.B/! h�.P.�// is injective.

Proof. This is a consequence of the Leray–Hirsch theorem (17.8.4) and the com-
putation (19.1.3). �

(19.2.3) Corollary. There exist uniquely determined elements cj .�/ 2 h2j .B/ such
that Pn

jD0.�1/j cj .�/tn�j


D 0;

since tn



is a linear combination of the basis (c0.�/ D 1). �
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(19.2.4) Remark. Here is a justification for the choice of the signs. Let � D �nC1.
Then t
 � tn D 0 and hence c1.�nC1/ D tn. Þ

(19.2.5) Proposition. Let ' W � ! � be a bundle map over f W B ! C . Then the
naturality relation f �.cj .�// D cj .�/ holds.

Proof. The homotopy relation k� ı P.'/ ' k
 implies P.'/�t� D t
 . This yields

0 D P.'/��Pj .�1/j cj .�/tn�j
�

� DPj .�1/jf �.cj .�//tn�j



:

Comparing coefficients gives the claim. We have used the rule P.'/�.a � x/ D
f �.a/ � P.'/�.x/, a 2 h�.C / , x 2 h�.P.�// for the module structure; it is a
consequence of the naturality of the cup product. �

(19.2.6) Proposition. Let � and � be bundles over B . Then the sum formula

cr.� ˚ �/ DPiCjDr ci .�/cj .�/:

holds. We set ci .�/ D 0, if i > dim �.

Proof. Consider the subspaces P.�/ � P.� ˚ �/ 
 P.�/ and their open comple-
mentsU D P.�˚�/XP.�/ and V D P.�˚�/XP.�/. The inclusionsP.�/ � U
and P.�/ � V are deformation retracts. Let s W P.�/ ! P.� ˚ �/ X P.�/,
Œx� 7! Œx; 0� and � W P.� ˚ �/ X P.�/! P.�/, Œx; y� 7! Œx�. Then �s D id and
s� ' id by the homotopy .Œx; y�; 	/ 7! Œx; 	y�.

Let t D t
˚� . Consider the elements (k D dim �; l D dim �)

x DPk
iD0.�1/ici .�/tk�i ; y DPl

jD0.�1/j cj .�/t l�j :
Under the restriction h�.P.�˚ �//! h�.U / Š h�.P.�// the element x is sent to
zero; this is a consequence of the definition of the ci .�/, the deformation retraction
and the naturality t jP.�/ D t
 . Hence x comes from an x0 2 h�.P.� ˚ �/; U /.
Similarly y comes from an element y0 2 h�.P.� ˚ �/; V /. Since U; V is an open
covering of P.� ˚ �/, we see that x0y0 D 0 and therefore xy D 0. We use the
definition of the cr.� ˚ �/ in the relation

xy DPkCl
rD0.�1/r

�P
iCjDr ci .�/cj .�/

�
t r

and arrive at the desired sum formula by comparing coefficients. �

19.3 Chern Classes

Let h�.�/ be a cohomology theory with universal element t D t1 2 h2.CP1/.
Our first aim is the computation of h�.BU.n//. Recall that BU.1/ D CP1. The
space BU.n/ is the basis of the universal n-dimensional complex vector bundle �n
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and �1 D �1. We use that h�.BU.1/n/ Š h�ŒŒT1; : : : ; Tn��, see (19.1.6). Let us
recall the ring of formal graded power series h�ŒŒc1; : : : ; cn��. The indeterminate
cj has degree 2j . The degree of a monomial in the cj is the sum of the degrees of
the factors

degree.ck.1/1 c
k.2/
2 : : : / D 2k.1/C 4k.2/C � � � :

A homogeneous power series of degree k is the formal sum of terms of the form
	jMj where Mj is a monomial of degree m and 	j 2 hk�m. Thus we assign the
degree k to the elements in the coefficient group hk .

(19.3.1) Lemma. A classifying map ˇ W BU.n � 1/ � BU.1/ ! BU.n/ of the
product �n�1 � �1 is the projective bundle of �n.

Proof. Let U.n � 1/ � U.1/ � U.n/ be the subgroup of block diagonal matrices.
We obtain a map

˛ W B.U.n � 1/ � U.1// D EU.n/=.U.n � 1/ � U.1//

D EU.n/ �U.n/ .U.n/=U.n � 1/ � U.1//

! BU.n/:

A model for the universal vector bundle is �n W EU.n/ �U.n/ Cn ! BU.n/. The
U.n/-matrix multiplication on Cn induces a U.n/-action on the corresponding
projective spaceP.Cn/. The projective bundle associated to the universal bundle �n
is EU.n/ �U.n/ P.C

n/! BU.n/. We now use the U.n/-isomorphism P.Cn/ Š
U.n/=U.n� 1/�U.1/. Hence ˛ is the projective bundle of �n. We compose with
a canonical h-equivalence j W BU.n � 1/ � BU.1/! B.U.n � 1/ � U.1//.

It remains to show that ˇ D ˛ ı j is a classifying map for �n�1 � �1.
Let EU.n � 1/ � EU.1/ ! EU.n/ be a U.n � 1/ � U.1/-map. From it we

obtain a bundle map

E.�n�1/ �E.�1/ D .EU.n � 1/ �EU.1// �U.n�1/�U.1/ .C
n�1 �C1/

! EU.n/ �U.n�1/�U.1/ Cn

! EU.n/ �U.n/ Cn D E.�n/:
It is a bundle map over ˛ ı j . �

(19.3.2) Theorem. Let � W BU.1/n ! BU.n/ be a classifying map of the n-fold
Cartesian product of the universal line bundle. Then the following holds: The
inducedmap �� W h�.BU.n//! h�.BU.1/n/ is injective. The image consists of the
power serieswhich are symmetric in the variablesT1; : : : ; Tn. Let ci 2 h2i .BU.n//
be the element such that ��.ci / is the i -th elementary symmetric polynomial in
T1; : : : ; Tn. Then

h�.BU.n// Š h�ŒŒc1; : : : ; cn��:
The elements c1; : : : ; cn are those which were obtained from the projective bundle
associated to �n by the methods of the previous section.
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Proof. Let � 2 Sn be a permutation and also the corresponding permutation of
the factors of BU.1/n. Then � is covered by a bundle automorphism of the n-fold
product�n1 D �1�� � ���1. Hence�ı� is another classifying map of�n1 and therefore
homotopic to �. The permutation � induces on h�.BU.1/n/ D h�ŒŒT1; : : : ; Tn��
the corresponding permutation of the Tj . Hence the image of �� is contained in the
symmetric subring, since � ı � ' �. Let prj W BU.1/n ! BU.1/ be the projection
onto the j -th factor. We write �.j / D pr�

j .�1/ so that �n1 D �.1/˚ � � � ˚ �.n/ and
Tj D c1.�.j //. We have the relation (naturality)

��ci .�n/ D ci .���n/ D ci .�n1 / D ci .�.1/˚ � � � ˚ �.n//:
By the sum formula (19.2.6) this equals

c1.�.1//ci�1.�.2/˚ � � � ˚ �.n//C ci .�.2/˚ � � � ˚ �.n//:
This is used to show by induction that this element is the i -th elementary symmetric
polynomial �i in the variables Tj . We now use the algebraic fact that the symmetric
part of h�ŒŒT1; : : : ; Tn�� equals the ring of graded power series h�ŒŒ�1; : : : ; �n�� in
the elementary symmetric polynomials �i . This shows that the image of �� is as
claimed.

It remains to show that �� is injective. From (19.3.1), (19.2.2) and (19.1.5) we
obtain an injective map

ˇ� W h�.BU.n//! h�.BU.n � 1/ � BU.1// Š h�.BU.n � 1//ŒŒ�.n/��:
This fact yields, by induction on n, the claimed injectivity. �

Elements ofh�.BU.n// are called universalh�.�/-valued characteristic classes
for n-dimensional complex vector bundles. Given c 2 h�.BU.n// and a classifying
map f W B ! BU.n/ of the bundle � over B we set c.�/ D f �.c/ and call c.�/
a characteristic class. With this definition, the naturality '�c.�/ D c.�/ holds for
each bundle map ' W � ! �. Theorem (19.3.2) shows that it suffices to work with
ci . The corresponding characteristic class ci .�/ is called the i -th Chern class of �
with respect to the chosen Thom class t1. It is sometimes useful to consider the
total Chern class c.�/ D 1C c1.�/C c2.�/C � � � 2 h�.B/ of a bundle over B; the
sum formula then reads c.� ˚ �/ D c.�/Y c.�/.

The preceding results can in particular be applied to integral singular coho-
mology. Complex vector bundles have a canonical orientation and a canonical
Thom class. There are two choices for the element t1, they differ by a sign.
We use the element that satisfies h t1; ŒCP 1�i D 1 (Kronecker pairing), where
ŒCP 1� 2 H2.CP 1IZ/ denotes the canonical fundamental class determined by the
complex structure.

Chern classes are stable characteristic classes, i.e., cj .�/ D cj .� ˚ "/ if "
denotes the trivial 1-dimensional bundle; this follows from the sum formula (19.2.6)
and ci ."/ D 0 for i > 0. This fact suggests that we pass to the limit n!1.
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(19.3.3) Example. The complex tangent bundle TCP n of the complex manifold
CP n satisfies TCP n ˚ " Š .nC 1/�nC1, see (15.6.6). Therefore the total Chern
class of this bundle is .1C c1.�nC1//nC1. Þ

Let ! W BU.n/! BU.nC1/ be a classifying map for �n˚ ". Then !�ci D ci
for i � n and !�cnC1 D 0. Let U D colimn U.n/, with respect to the inclusions

U.n/! U.nC 1/; A 7!
�
A 0

0 1

�
;

be the stable unitary group. The classifying space BU is called the classifying
space for stable complex vector bundles. We think of this space as a homotopy
colimit (telescope) over the maps BU.n/ ! BU.nC 1/. By passage to the limit
we obtain (since the lim1-term vanishes by (17.1.7)):

(19.3.4) Theorem. h�.BU/ Š lim h�BU.n/ Š h�ŒŒc1; c2; : : : ��. �

(19.3.5) Example. Let �m;n W BU.m/ � BU.n/ ! BU.m C n/ be a classifying
map for �m � �n D pr�

1 �m ˚ pr�
2 �n. We use the elements c0

j D cj .pr�
1 �m/ and

c00
j D cj .pr�

2 �n/ and obtain

.1/ h�.BU.m/ � BU.n// Š h�ŒŒc0
1; : : : ; c

0
m; c

00
1 ; : : : ; c

00
n��:

Moreover, by the sum formula,

.2/ ��
m;nck D

P
iCjDk c0

ic
00
j :

The map ��
m;n is continuous in the sense that the effect on a formal power series in

the variables c1; : : : ; cmCn is obtained by inserting for ck the value (2).
For the proof of (1) one can use the theory h�.BU.m/ � �/ and proceed as

for (19.3.2). In the case of integral singular cohomology one has the Künneth
isomorphism and ��

m;n becomes the homomorphism of algebras

.3/ ZŒc1; c2; : : : ; cmCn�! ZŒc1; : : : ; cm�˝ZŒc1; : : : ; cn�

determined by ck 7!
P
iCjDk ci˝cj . Since formal power series are not compatible

with tensor products, one has to use a suitably completed tensor product for general
theories if one wants a similar statement.

The maps �m;n combine in the colimit to a map � W BU � BU ! BU. It is
associative and commutative up to homotopy and there exists a unit element. A
classifying map for the “inverse bundle” yields a homotopy inverse for �. With
these structures BU becomes a group object in h-TOP. The precise definition and
the detailed verification of these topological results are not entirely trivial. We
are content with the analogous algebraic result that we have a homomorphism
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h�.BU/ ! h�.BU � BU/ determined by the sum formula and continuity. The
inverse �� W h�.BU/! h�.BU/ is determined by the formal relation

.1C c1 C c2 C � � � /.1C ��.c1/C ��.c2/C � � � / D 1:
It allows for an inductive computation ��c1 D �c1; ��c2 D c21�c2 etc. We also have
the homomorphism of algebras (3) for BU. It will be important for the discussion
of the Hopf algebra structure. Þ

(19.3.6) Example. We know already K.Z; 2/ D CP1 D BS1 D BU.1/ '
BGL1.C/. A numerable complex line bundle � over X is determined by its classi-
fying map in

H 2.X IZ/ D ŒX;CP1� D ŒX; BU.1/�:

The corresponding element in c1.�/ 2 H 2.X IZ/ is the first Chern class of � . Þ

(19.3.7) Proposition. The relation c1.�˝�/ D c1.�/Cc1.�/ holds for line bundles
� and �.

Proof. We begin with the universal situation. We know thatH 2.CP1IZ/ Š Z is
generated by the first Chern class c of the universal bundle � D �1. Let k W CP1�
CP1 ! CP1 be the classifying map of � Ő � . Let prj W CP1�CP1 ! CP1
be the projection onto the j -th factor. ThenH 2.CP1�CP1IZ/ has the Z-basis
T1; T2 with Tj D pr�

j .c/. There exists a relation k�c1.�/ D a1e1 C a2e2 with
certain ai 2 Z. Let i1 W CP1 ! CP1 �CP1; x 7! .x; x0/ for fixed x0. Then
i�1 e1 D c1.�/, since pr1 i1 D id, and i�1 e2 D 0 holds, since pr2 i1 is constant. We
compute

a1c1.�/ D i�1 k�c1.�/ D c1.i�1 k��/ D c1.i�1 .pr�
1 � ˝ pr�

2 �// D c1.�/;
since i�1 pr�

1 � D � and i�1 pr�
2 � is the trivial bundle. Hence a1 D 1, and similarly

we see a2 D 1.
We continue with the proof. Let k
 ; k� W B ! CP1 be classifying maps of

� and �. Then c1.�/ D k�


c1.�/ and similarly for �. With the diagonal d the

equalities � ˝ � D d�.� Ő �/ D d�.k
 � k�/�.� Ő �/ hold. This yields

c1.� ˝ �/ D c1.d�.k
 � k�/�.� Ő �//
D d�.k
 � k�/�.e1 C e2/
D d�.k
 � k�/� pr�

1 c1.�/C d�.k
 � k�/� pr�
2 c1.�/

D k�

 c1.�/C k�

�c1.�/

D c1.�/C c2.�/;
since k
 D pr1.k
 � k�/d holds. �
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(19.3.8) Proposition. Let � W E.�/ ! B be an n-dimensional vector bundle and
p
 W P.�/ ! B the associated projective bundle. The induced bundle splits
p�


.�/ D �1 ˚ � 0 into the canonical line bundle �1 over the projective bundle

and another .n � 1/-dimensional bundle � 0.

Proof. Think of � as associated bundle E �U.n/ Cn ! B . Let H be the subgroup
U.n � 1/ � U.1/ of U.n/. We obtain the pullback

E �H Cn�1 �C Š E �U.n/ .U.n/ �H Cn/

����

�� E �U.n/ Cn

��

E=H Š E �U.n/ .U.n/=H/ �� B

and this implies the assertion. �

We now iterate this process: We consider overP.�/ the projective bundleP.� 0/,
et cetera. Finally we arrive at a map f .�/ W F.�/! B with the properties:

(1) f .�/�� splits into a sum of line bundles.
(2) The induced map f .�/� W h�.B/! h�.F.�// is injective.

Assertion (2) is a consequence of (19.2.2).
A model for f .�/ is the flag bundle. The flag space F.V / of the n-dimensional

vector space V consists of the sequences (D flags)

f0g D V0 � V1 � � � � � Vn D V

of subspaces Vi of dimension i . Let V carry a Hermitian form. Each flag has
an orthonormal basis b1; : : : ; bn such that Vi is spanned by b1; : : : ; bi . The basis
vectors bi are determined by the flag up to scalars of norm 1. The group U.n/
acts transitively on the set of flags. The isotropy group of the standard flag is the
maximal torus T.n/ of diagonal matrices. Hence we can view F.V / as U.n/=T.n/.
The flag bundle associated to E �U.n/ Cn is then

f .�/ W F.�/ D E �U.n/ U.n/=T.n/ Š E=T.n/! B:

We can apply this construction to a finite number of bundles.

(19.3.9) Theorem (Splitting Principle). Let �1; : : : ; �k be complex vector bundles
over B . Then there exists a map f W X ! B such that f � W h�.B/ ! h�.X/ is
injective and f �.�j / is for each �j a sum of line bundles. �

We now prove (19.0.1). Consider the exact cohomology sequence of the pair
.E.�n/; E

0.�n//. We can use E0.�n/ as a model for BU.n � 1/. The projection
E.�n/! BU.n/ is an h-equivalence. Our computation of h�.BU.n// shows that
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we have a short exact sequence

0 �� h2n.E.�n/; E
0.�n// �� h2n.E.�n//

Š
��

i� �� h2n.E0.�n/ ��

Š
��

0

h2n.BU.n// �� h2n.BU.n � 1//:
The element cn lies in the kernel of i�. It therefore has a unique pre-image

t .�n/ 2 h2n.E.�n/; E0.�n//. For an n-dimensional numerable bundle � W E.�/!
B we define t .�/ 2 h2n.E.�/E0.�// to be the element ��t .�n/ with a classifying
map � W � ! �n. Then the elements t .�/ are natural with respect to bundle maps.
From the relation ��

m;n.cmCn/ D c0
mc

00
n we conclude (by naturality) t .�m/�t .�n/ D

t .�m � �n/ and then t .�/ � t .�/ D t .� � �/ for arbitrary numerable bundles.
The element t .�1/ 2 h2.E.�1/; E0.�1// corresponds to the chosen element t1 2
h2.CP1/. The restriction of t .�n/ to �1 � � � � � �1 yields t .�1/� � � � � t .�1/. This
is a Thom class, since products of Thom classes are Thom classes. This shows that
t .�n/ is a Thom class.

19.4 Stiefel–Whitney Classes

The theory of Chern classes has a parallel theory for real vector bundles. Suppose
given an element t1 2 h1.RP1;	/ � h1.RP1/ such that its restriction to t1 2
h1.RP 1;	/ is a generator of this h0-module. Then there exists an isomorphism

h�ŒT �=.T nC1/ Š h�.RP n/

which sends T to the restriction tn of t1. This is then used to derive isomorphisms

h�.X � RP n/ Š h�.X/Œu�=.unC1/;
h�.X � RP1/ Š h�.X/ŒŒu��;
h�..RP1/n/ Š h�ŒŒT1; : : : ; Tn��:

The projective bundle P.�/ of a real vector bundle � over B yields a free h�.B/-
module h�.P.�// with basis 1; t
 ; : : : ; tn�1



, and there exists a relationP1

jD0.�1/jwj .�/tn�j


D 0

with elements wj .�/ 2 hj .B/ which satisfy the sum formula

wr.� ˚ �/ DPiCjDr wi .�/wj .�/

where w0.�/ D 1 and wj .�/ D 0 for j > dim � . These elements are natural
with respect to bundle maps, hence characteristic classes. We obtain an injective
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map �� W h�.BO.n//! h�.BO.1/n/. The classesw1; : : : ; wn which belong to the
universal n-dimensional bundle over BO.n/ yield

h�.BO.n// Š h�ŒŒw1; : : : ; wn��:

The image of wj under �� is the j -th elementary symmetric polynomial in the
T1; : : : ; Tn. We pass to the limit n ! 1 and obtain h�BO as a ring of graded
power series in w1; w2; : : : with wj of degree j . The wj are the universal Stiefel–
Whitney classes. The Stiefel–Whitney classes are natural, stable, and satisfy the
sum formula. There holds a splitting principle for real bundles. We write w.�/ D
1 C w1.�/ C w2.�/ C � � � for the total Stiefel–Whitney class of �; then the sum
formula reads w.� ˚ �/ D w.�/Y w.�/.

The existence of the universal element has the consequence that the unit element
1 2 h0 is of order 2, so that the cohomology groups consist of Z=2-vector spaces
and signs can be ignored. This result is due to the fact that multiplication by �1 in
the fibres of vector bundles is a bundle map. If we apply this to the universal one-
dimensional bundle, then we see that this bundle map preserves the Thom class t1.
On the other hand, if we restrict to t1 2 h1.RP 1;	/, this bundle map is of degree�1
and changes the sign of t1. Since t1 corresponds under suspension to a unit of h0,
we conclude that 1 D �1 2 h0.

One shows as in the complex case that the theory is R-oriented. One can apply
these results to singular cohomology with coefficients in Z=2. There is a unique
choice for the universal element t1 2 H 1.RP1IZ=2/. The resulting characteristic
classes are the classical Stiefel–Whitney classes.

(19.4.1) Example. The tangent bundle � of RP n satisfies � ˚ " Š .n C 1/�

with the canonical line bundle �. The total Stiefel–Whitney class of � is therefore
.1 C w/nC1 2 H�.RP n/ Š Z=2Œw�=.w/nC1. Suppose RP n has an immersion
into RnCk . Then � has an inverse bundle of dimension k, the normal bundle of this
immersion. Suppose n D 2r . Properties of binomial numbers modulo 2 show that
w.�/ D 1C w C wn. If � is inverse to � , then w.�/w.�/ D 1, and this implies in
our case w.�/ D 1 C w C w2 C � � � C wn�1. This shows that an inverse bundle
must have dimension at least n � 1. Therefore RP n has for n of the form 2k no
immersion into R2n�2. Þ

19.5 Pontrjagin Classes

We now discuss characteristic classes for oriented bundles. Suppose � W E.�/! B

is an oriented n-dimensional real vector bundle. The orientation determines a Thom
class t .�/ 2 Hn.E.�/; E0.�// by the requirement that a positive isomorphism
ib W Rn ! E.�b/ sends t .�/ to the generator e.n/ 2 Hn.Rn;Rn X 0/ which is dual
to the generator en D e1 � � � � � e1 2 Hn.Rn;Rn X 0/, i.e., he.n/; en i D 1. This
definition implies e.m/�e.n/ D .�1/mne.mCn/ and has the following consequences:
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(19.5.1) Lemma. Let � and � be oriented bundles and give ��� the sumorientation.
Then t .� � �/ D .�1/j
jj�jt .�/ � t .�/ and e.� ˚ �/ D .�1/j
jj�je.�/e.�/. Here
j�j D dim �. �

Let � W E ! B be a real vector bundle. It has a complexification �C D �˝R C.
We take �˚ � with complex structure J.x; y/ D .�y; x/ on each fibres as a model
for �C.

Let � be a complex n-dimensional bundle and �R the underlying 2n-dimensional
real bundle. If v1; : : : ; vn is a basis of a fibre, then v1; iv1; : : : ; vn; ivn is a basis of
the fibre of �R, and it defines the canonical orientation.

(19.5.2) Lemma. Let � be an oriented n-dimensional real bundle. Then .�C/R
in our model for �C above is isomorphic to .�1/n.n�1/=2� ˚ � as an oriented
bundle. The factor indicates the change of orientation, and � ˚ � carries the sum
orientation. �

(19.5.3) Proposition. Let � W E ! B be a complex n-dimensional bundle. Con-
sider it as a real bundle with orientation and canonical Thom class induced by the
complex structure. Then cn.�/ D e.�/ 2 H 2n.BIZ/.
Proof. This holds for 1-dimensional bundles by definition of c1. The general case
follows by an application of the splitting principle and the sum formula. �

We set
pi .�/ D .�1/ic2i .�C/ 2 H 4i .BIZ/

and call this characteristic class the i -th Pontrjagin class of � . The bundle �C is
isomorphic to the conjugate bundle x�C. The relation ci .�/ D .�1/ici .x�/ holds in
general for conjugate bundles. Hence the odd Chern classes of �C are elements
of order 2. This is a reason why we ignore them for the moment. The Pontrjagin
classes are by definition compatible with bundle maps (naturality) and they do not
change by the addition of a trivial bundle (stability). The next proposition justifies
the choice of signs in the definition of the pj .

(19.5.4) Proposition. Let � be an oriented 2k-dimensional real bundle. Then
pk.�/ D e.�/2.
Proof. We compute

pk.�/ D .�1/kc2k.�C/ D .�1/ke2k..�C/R/ D .�1/kC2k.2k�1/=2e.� ˚ �/
D e.� ˚ �/ D .�1/2k�2ke.�/2 D e.�/2:

We have used (19.5.1), (19.5.2), and (19.5.3). �

One can remove elements of order 2 if one uses the coefficient ring R D ZŒ1
2
�

of rational numbers with 2-power denominator (or, more generally, assumes that
1
2
2 R). The next theorem shows the universal nature of the Pontrjagin classes.
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(19.5.5) Theorem. Let pj denote the Pontrjagin classes of the universal bundle
and e its Euler class. Then

H�.BSO.2nC1/IR/ŠRŒp1; : : : pn�; H�.BSO.2n/IR/ŠRŒp1; : : : ; pn�1; e�:

Proof. Induction over n. Let �n W ESO.n/ �SO.n/ Rn ! BSO.n/ be the universal
oriented n-bundle and p W BSO.n�1/! BSO.n/ the classifying map of �n�1˚".
As model for p we take the sphere bundle of �n. Then we have a Gysin sequence
at our disposal. Write Bn D BSO.n/ for short.

Supposen is even. Then, by induction,H�.Bn�1/ is generated by the Pontrjagin
classes, and p� is surjective since the classes are stable. Hence the Gysin sequence
decomposes into short exact sequences. LetH�

n denote the algebra which is claimed
to be isomorphic to H�.Bn/. And let �n W H�

n ! H�.Bn/ be the homomorphism
which sends the formal elements pj , e onto the cohomology classes with the same
name. We obtain a commutative diagram

0 �� H i .Bn/
e �� H iCn.Bn/

p�
�� H iCn.Bn�1/ �� 0

0 �� H i
n

e ��

�n

��

H iCn
n

��

�n

��

H iCn
n�1 ��

�n�1

��

0:

By induction, �n�1 is an isomorphism. By a second induction over i the left arrow
is an isomorphism. Now we apply the Five Lemma. In order to start the induction,
we note that by the Gysin sequence �n W H i

n ! H i .Bn/ is an isomorphism for
i < n.

Suppose n D 2m C 1. The Euler class is zero, since we use the coefficient
ring R. Hence the Gysin sequence yields a short exact sequence

0! H j .Bn/
p�

�! H j .Bn�1/! H j�2m.Bn/! 0:

ThereforeH�.Bn/ is a subring ofH�.Bn�1/ via p�. The image of p� contains the
subring P � generated by p1; : : : ; pm. We use pm D e2. The induction hypothesis
implies

rankH j .Bn�1/ D rankP j C rankP j�2m:

The Gysin sequence yields

rankH j .Bn�1/ D rankH j .Bn/C rankH j�2m.Bn/:

The equality rankP j D rankH j .Bn/ is a consequence. If p�H j .Bn/ 6D P j

then the image would contain elements of the form x C ey, x 2 P j , y 2 P j�2m.
Such an element would be linearly independent of the basis elements of P �. This
contradicts the equality of ranks. �
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(19.5.6) Example. Let � be a complex bundle. Then .�R/C is isomorphic to �˚x�.
An isomorphism from �R ˚ �R with the complex structure .x; y/ 7! .�y; x/ is
given by

.x; y/ 7!
�
x C iyp

2
;
ix C yp

2

�
:

Hence the pi .�R/ D .�1/ic2i .� ˚ x�/ D .�1/iPaCbD2i .�1/bca.�/cb.�/. Since
SO.2/ D U.1/, an oriented plane bundle � has a unique complex structure � such
that �R D �. The total Pontrjagin class of � is therefore 1C c1.�/2. Þ

(19.5.7) Example. Let � D TCP n denote the complex tangent bundle of CP n.
Then �R is the real tangent bundle. In order to determine the Pontrjagin classes we
use .�R/C D �˚x� . The total Chern class of this bundle is .1Cc/nC1.1�c/nC1 D
.1�c2/nC1 if we writeH�.CP n/ D ZŒc�=.cnC1/with c D c1.�nC1/, see (19.3.3).
Hence the total Pontrjagin class of CP n, i.e., of its tangent bundle with the canonical
orientation, is .1C c2/nC1. Þ

Problems

1. The Pontrjagin classes are stable. Under the hypothesis of (19.5.5) we obtain in the limit
H�.BSOIR/ Š RŒp1; p2; : : : �. The sum formula pk.� ˚ �/ D

P
iCj Dk pi .�/pj .�/

holds (p0 D 1).

19.6 Hopf Algebras

We fix a commutative ring R and work in the category R-MOD of left R-modules.
The tensor product of R-modules M and N is denoted by M ˝ N . The natural
isomorphism � W M ˝N ! N ˝M ,m˝n 7! n˝m expresses the commutativity
of the tensor product. We have canonical isomorphisms l W R˝M !M , 	˝m 7!
	m and r W M ˝ R ! M , m˝ 	 7! 	m. Co-homology will have coefficients in
R, if nothing else is specified.

An algebra .A;m; e/ in R-MOD consists of an R-module A and linear maps
m W A ˝ A ! A (multiplication), e W R ! A (unit) such that m.e ˝ 1/ D l ,
m.1 ˝ e/ D r . If m.m ˝ 1/ D m.1 ˝ m/ holds, then the algebra is associative,
and if m� D m holds, the algebra is commutative. Usually we write m.a ˝ b/ D
a �b D ab. We use similar definitions in the category of Z-gradedR-modules (with
its tensor product and interchange map).

(19.6.1) Example. Let X be a topological space. Then the graded R-module
H�.X/ becomes a (graded) associative and commutative algebra with multiplica-
tion

m W H�.X/˝H�.X/! H�.X �X/! H�.X/;
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where the first map is the �-product and the second map is induced by the diagonal
d W X ! X � X . The unit is the map induced by the projection X ! P onto a
point P . Þ

A coalgebra .C; �; "/ in R-MOD consists of an R-module C and linear maps
� W C ! C ˝C (comultiplication), " W C ! R (counit) such that ."˝1/� D l�1,
.1˝ "/� D r�1. If .�˝ 1/� D .1˝ �/� holds, the coalgebra is coassociative,
and if �� D � holds, the coalgebra is cocommutative.

(19.6.2) Example. Let X be a topological space. Suppose H�.X/ is a free
R-module. The graded R-module H�.X/ becomes a (graded) coassociative and
cocommutative coalgebra with comultiplication

� W H�.X/! H�.X �X/ Š H�.X/˝H�.X/

where the first map is induced by the diagonal d and the isomorphism is the Künneth
isomorphism. The counit is induced by X ! P . Þ

A homomorphism of algebras ' W .A;m; e/ ! .A0; m0; e0/ is a linear map
' W A ! A0 such that 'm D m.' ˝ '/ and e0 D 'e. A homomorphism of
coalgebras  W .C; �; "/ ! .C 0; �0; "0/ is a linear map  W C ! C 0 such that
. ˝  /� D �0 and "0 D ". A continuous map f W X ! Y induces a homo-
morphism f � W H�.Y / ! H�.X/ of the algebras (19.6.1) and a homomorphism
f� W H�.X/! H�.Y / of the coalgebras (19.6.2).

The tensor product of algebras .Ai ; mi ; ei / is the algebra .A;m; e/ with A D
A1˝A2 andm D .m1˝m2/.1˝�˝1/ and e D e1˝e2 W R Š R˝R! A1˝A2.
The multiplication m is determined by .a1 ˝ a2/.b1 ˝ b2/ D a1b1 ˝ a2b2 (with
the appropriate signs in the case of graded algebras). The tensor product of co-
algebras .Ci ; �i ; "i / is the coalgebra .C; �; "/withC D C1˝C2, comultiplication
� D .1˝ � ˝ 1/.�1 ˝ �2/ and counit " D "1"2 W C1 ˝ C2 ! R˝R Š R.

Let .C; �; "/ be a coalgebra. Let C � D Hom.C;R/ denote the dual module.
The data

m W C � ˝ C � ! .C ˝ C/� ��

�! C �

and e W R Š R� "�

�! C � define the dual algebra .C �; m; e/ of the coalgebra. (The
first map is the tautological homomorphism. It is an isomorphism if C is a finitely
generated, projective R-module.)

Let .A;m; e/ be an algebra with A a finitely generated, projective R-module.
The data

� W A� m�

�! .A˝ A/� Š A� ˝ A�

and " W A� e�

�! R� Š R define the dual coalgebra .A�; �; "/ of the algebra.
In the case of graded modules we take the graded dual; if A D .An j n 2 N0/,

then the dual is .An D Hom.An; R/ j n 2 N0/.
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(19.6.3) Example. Let � W H�.X/! Hom.H�.X/;R/ be the map in the universal
coefficient sequence. Then � is an isomorphism of the algebra (19.6.1) onto the
dual algebra of the coalgebra (19.6.2). Þ

(19.6.4) Proposition. Let C be a coalgebra and A an algebra. Then Hom.C;A/
carries the structure of an algebra with product ˛ 	 ˇ D m.˛ ˝ ˇ/�, for ˛; ˇ 2
Hom.C;A/, and unit e". The product 	 is called convolution.

Proof. The map .˛; ˇ/ 7! ˛˝ˇ is bilinear by construction. The (co-)associativity
ofm and � is used to verify that 	 is associative. The unit and counit axioms yield

˛ 	 .e"/ D m.˛ ˝ e"/� D m.1˝ e/.˛ ˝ 1/.1˝ "/� D ˛:
Hence e" is a right unit. �

A bialgebra .H;m; e; �; "/ is an algebra .H;m; e/ and a coalgebra .H;�; "/
such that � and " are homomorphisms of algebras. (HereH ˝H carries the tensor
product structure of algebras.) The equality �m D .m˝m/.1˝ � ˝ 1/.�˝ �/
expresses the fact that � is compatible with multiplication. The same equality says
thatm is compatible with comultiplication. This and a similar interpretation of the
identities id D "e, �e D .e˝e/�,m."˝"/ D "m is used to show that a bialgebra
can, equivalently, be defined by requiring that m and e are homomorphisms of
coalgebras. A homomorphism of bialgebras is an R-linear map which is at the
same time a homomorphism of the underlying algebras and coalgebras.

An antipode for a bialgebra H is an s 2 Hom.H;H/ such that s is a two-
sided inverse of id.H/ 2 Hom.H;H/ in the convolution algebra. A bialgebra with
antipode is called Hopf algebra.

(19.6.5) Example. Let X be an H -space with multiplication � W X �X ! X and
neutral element x. Then

m W H�.X/˝H�.X/! H�.X �X/ ���! H�.X/

is an algebra structure onH�.X/with unit induced by fxg � X . SupposeH�.X/ is
a freeR-module. Then the algebra structurem and the coalgebra structure (19.6.2)
define on H�.X/ the structure of a bialgebra. An inverse for the multiplication �
induces an antipode.

Suppose H�.X/ is finitely generated and free in each dimension. Then

� W H�.X/
��

�! H�.X �X/ Š H�.X/˝H�.X/

is a coalgebra structure and together with the algebra structure (19.6.1) we obtain
a bialgebra. Again an inverse for � induces an antipode. The duality isomorphism
H�.X/ ! Hom.H�.X/;R/ is an isomorphism of the bialgebra onto the dual
bialgebra of H�.X/.
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This situation was studied by Heinz Hopf [91]. The letter
 for the comultipli-
cation (and even the term “diagonal”) has its origin in this topological context. For
background on Hopf algebras see [1], [182], [142], [138]. Þ
(19.6.6) Example. The space CP1 is an H -space with multiplication the clas-
sifying map of the tensor product of the universal line bundle. The algebra struc-
ture is H�.CP1IZ/ D ZŒc� with c the universal Chern class c1. Let ŒCP i � 2
H2i .CP1IZ/ denote the image of the fundamental class of CP i under the ho-
momorphism induced by the embedding CP i ! CP1. The coalgebra structure
is determined by �.c/ D c ˝ 1 C 1 ˝ c, see (19.3.7). Since hcn; ŒCP n�i D 1

(see the proof of (18.7.2)), the dual Hopf algebra H�.CP1IZ/ has an additive
basis xi D ŒCP i �; i 2 N0; by dualization of the cohomological coalgebra struc-
ture we obtain the multiplicative structure xi � xj D .i; j /xiCj with .i; j / D
.i C j /Š=.i Šj Š/. Geometrically this means that the map CP i �CP j ! CP iCj ,
.Œx0; : : : ; xi �; Œy0; : : : ; yj �/ 7! Œz0; : : : ; ziCj � with zk D

P
aCbDk xayb has degree

.i; j /. The comultiplication in H�.CP1/ is �.xn/ DPiCjDn xi ˝ xj . Þ
We generalize the Hom-duality of Hopf algebras and define pairings. LetA and

B be Hopf algebras. A pairing of Hopf algebras is a bilinear map A � B ! R,
.a; b/ 7! ha; b i with the properties: For x; y 2 A and u; v 2 B

hxy; ui D hx ˝ y; �.u/i; hx; uv i D h�.x/; u˝ v i;
h1; ui D ".u/; hx; 1i D ".x/:

The bilinear form h�;�i on A � B induces a bilinear form on A ˝ A � B ˝ B
by hx ˝ y; u˝ v i D .�1/jyjjujhx; uihy; v i. This is used in the first two axioms.
A pairing is called a duality between A;B , if hx; ui D 0 for all u 2 B implies
x D 0, and hx; ui D 0 for all x 2 A implies u D 0. An example of a pairing is the
Kronecker pairing H�.X/ �H�.X/! R in the case of an H -space X .

An element x of a bialgebra H is called primitive, if �.x/ D x ˝ 1C 1˝ x.
Let P.H/ � H be the R-module of the primitive elements of H . The bracket
.x; y/ 7! Œx; y� D xy � yx defines the structure of a Lie algebra on P.H/. The
inclusion P.H/ � H yields, by the universal property of the universal enveloping
algebra, a homomorphism � W U.P.H//! H . For cocommutative Hopf algebras
over a field of characteristic zero with an additional technical condition, � is an
isomorphism [1, p. 110].

(19.6.7) Example. A coalgebra structure on the algebra of formal powers series
RŒŒx�� is, by definition, a (continuous) homomorphism � W RŒŒx�� ! RŒŒx1; x2��

with .� ˝ 1/� D .1 ˝ �/� and ".x/ D 0. Here RŒŒx1; x2�� is interpreted as a
completed tensor product RŒŒx1�� Ő RŒŒx2��. Then � is given by the power series
�.x/ D F.x1; x2/ with the properties

F.x; 0/ D 0 D F.0; x/; F.F.x; y/; z/ D F.x; F.y; z//:
Such power series F are called formal group laws. Þ
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Problems

1. The Group algebra. Let G be a group and RG the group algebra. The R-module RG
is the free R-module on the set G, and the multiplication RG ˝ RG Š R.G �G/! RG

is the linear extension of the group multiplication. This algebra becomes a Hopf algebra, if
we define the comultiplication by �.g/ D g˝ g for g 2 G, the counit by ".g/ D 1, and the
antipode by s.g/ D g�1.

Let G be a finite group and O.G/ the R-algebra of all maps G ! R with pointwise
addition and multiplication. Identify O.G � G/ with O.G/˝ O.G/. Show that the group
multiplication m induces a comultiplication � D m� W O.G/ ! O.G � G/. The data
".f / D f .1/ and s.f /.g/ D f .g�1/ complete O.G/ to a Hopf algebra. Evaluation
at g 2 G defines an algebra homomorphism O.G/ ! R. Show that G is canonically
isomorphic to the group AHom.O.G/;R/ of Problem 2.

An element g in a Hopf algebra H is called group-like if �.g/ D g ˝ g and ".g/ D 1.
The set of group-like elements inH is a group under multiplication. The inverse of g is s.g/.
2. LetD be a Hopf algebra and A a commutative algebra. The convolution product induces
on the set AHom.D;A/ of algebra homomorphisms D ! A the structure of a group.
3. LetH be a Hopf algebra with antipode s. Then s is an anti-homomorphism of algebras and
coalgebras, i.e., s.xy/ D s.y/s.x/, se D e, "s D s, �.s ˝ s/� D �s. If H is commutative
or cocommutative, then s2 D id.
4. Let H1 and H2 be Hopf algebras and ˛ W H1 ! H2 a homomorphism of bialgebras.
Then ˛ commutes with the antipodes.
5. Let R be a field of characteristic p > 0. Let A D RŒx�=.xp/. The following data define
a Hopf algebra structure on A W �.x/ D x ˝ 1C 1˝ x, ".x/ D 0, s.x/ D �x.

19.7 Hopf Algebras and Classifying Spaces

The homology and cohomology of classifying spacesBU,BO,BSO lead to a Hopf
algebra which we will study from the algebraic view-point in this section. The poly-
nomial algebra RŒa� D RŒa1; a2; : : : � becomes a Hopf algebra with coassociative
and cocommutative comultiplication determined by 
.an/ D P

pCqDn ap ˝ aq
and a0 D 1. We consider the algebra as a graded algebra with ai of degree i .
(In the following we disregard the signs which appear in graded situations. An-
other device would be to assume that the ai have even degree, say degree 2i , or
that R has characteristic 2.) Let � D .�1; : : : ; �r/ 2 Nr

0 be a multi-index with r
components. We use the notation a� D a

�1

1 : : : a
�r
r . The monomials of type a�

(for arbitrary r) form an R-basis of RŒa�. The homogeneous component RŒa�n of
degree n is spanned by the monomials a� with k�k D �1 C 2�2 C � � � C r�r D n.

We have an embedding RŒa1; : : : ; an�
	�! RŒ˛1; : : : ; ˛n� where aj is the j -th

elementary symmetric polynomial in the ˛1; : : : ; ˛n. The embedding respects the
grading if we give j̨ the degree 1. The image is the subalgebra of symmetric
functions. The a� with � 2 Nn

0 form an R-basis of the symmetric polynomials.
Another, more obvious, R-basis is obtained by starting with a monomial
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˛I D ˛
i1
1 : : : ˛

in
n and sum over the Sn-orbit of I D .i1; : : : ; in/. Let us write

I � J if .j1; : : : ; jn/ is a permutation of .i1; : : : ; in/. The polynomials

†I .˛1; : : : ; ˛n/ DPJ
I ˛J

form an R-basis of the symmetric polynomials in RŒ˛1; : : : ; ˛n�. The family I D
.i1; : : : ; in/ is called a partition of jI j D i1C i2C � � � C in; in the case that I � J ,
we say that I and J yield the same unordered partition. We can write †I as a
polynomial in the a1; : : : ; an and denote it by �I .a1; : : : ; an/. The monomials
a� which are summands of �I have degree k�k D jI j. Thus �I .a1; : : : ; an/ D
�I .a1; : : : ; an�1; 0/ D �I .a1; : : : ; an�1/ for n > jI j.
(19.7.1) Lemma. If I is a partition of k and n � k, then �I .a1; : : : ; ak/ is in-
dependent of n. We consider it as a polynomial in RŒa�. In this way we obtain
another R-basis of RŒa� which consists of the polynomials �I . The homogeneous
component of degree n is spanned by the �I with I an (unordered) partition of n.

�
Consider the formal power series

Un DQn
jD1.1C a1 ǰ C a2ˇ2j C � � � / 2 RŒa�ŒŒˇ1; : : : ; ˇn��:

The series has the form
P
� a

�B
.n/
� .ˇ1; : : : ; ˇn/ where the sum is taken over the

multi-indices � D .�1; : : : ; �r/ with j�j D P
j �j � n. The polynomial B.n/� is

symmetric in the ˇ1; : : : ; ˇn. Hence we can write it as polynomial b.n/� .b1; : : : ; bn/

where bk is the k-th elementary symmetric polynomial in the variables ˇ1; : : : ; ˇn.
For � D .�1; : : : ; �r/ let I.�/ denote the multi-index .i1; : : : ; im/ with i� D j

for �1 C � � � C �j�1 < � � �1 C � � � C �j , i.e., we begin with �1 entries 1, then �2
entries 2 and so on; hencem D �1C� � �C �r D j�j and

Pm
kD1 ik D jI.�/j D k�k,

i.e., I.�/ is a partition of k�kwith (weakly) increasing components. In the notation
introduced above

B
.n/
� .ˇ1; : : : ; ˇn/ D †I.�/.ˇ1; : : : ; ˇn/; b

.n/
� .b1; : : : ; bn/ D �I.�/.b1; : : : ; bn/:

The polynomial b.n/� only involves the variables b1; : : : ; bjI.�/j and is independent
of n for n � jI.�/j. We denote this stable version by b�. The b� form an R-basis
of the symmetric polynomials in RŒˇ�. In this sense we can write formallyQ1

iD1.1C a1 ǰ C a2ˇ2j C � � � / D
P
� a

�b� DPn�0 U Œn�

where U Œn� is the finite partial sum over the � with k�k D n (although the infinite
product itself is not defined). The reader may verify

U Œ1� D a1b1
U Œ2� D a21b2 C a2b21 � 2a2b2
U Œ3� D a31b3 C a3b31 C a1b1a2b2 C 3a3b3 � 3a1a2b3 � 3a3b1b2:
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The polynomials U Œn� are symmetric in the a’s and the b’s

U Œn�.a1; : : : ; anI b1; : : : ; bn/ D U Œn�.b1; : : : ; bnI a1; : : : ; an/:
In order to see this note that U D limm;n Um;n with

Um;n DQm
iD1

Qn
jD1.1C ˛i ǰ /

DQm
jD1.1C a1 ǰ C � � � C amˇmj / D

Qn
iD1.1C b1˛i C � � � C bn˛ni /:

(19.7.2) Lemma. Let us write
.a�/ DP�� a
�
��a

�˝a� and b� �b� DP� b
�
��b�.

Then a��� D b��� .
Proof. The definition of the b��� implies the relation b.n/� � b.n/� D

P
� b

�
��b

.n/
� . We

computeP
�

�P
�;� a

�
��a

� ˝ a� �b.n/� DP�
.a
�/b

.n/
�

DQ.1C
.a1/ˇi C
.a2/ˇ2i C � � � /
DQ.1C .a1 ˝ 1/ˇi C .a2 ˝ 1/ˇ2i C � � � /
�Q.1C .1˝ a1/ˇi C .1˝ a2/ˇ2i C � � � /

D �P
� .a

� ˝ 1/b.n/� ��P
� .1˝ a� /b.n/�

� DP�� .a
� ˝ a� /b.n/� b

.n/
�

DP�� .a
� ˝ b� /P� b

�
��b

.n/
� :

Now we compare coefficients and obtain
P
� a

�
��b

.n/
� D

P
� b

�
��b

.n/
� . The sum is

finite in each degree. We pass to the stable values b� and compare again coefficients.
�

Let Hom.RŒa�; R/ be the graded dual of RŒa�. We can view this as the module
of R-linear maps RŒa�! R which have non-zero value only at a finite number of
monomials. Let a�

� be the dual of a�, i.e., a�
�.a

� / D ı�� . The Hopf algebra structure
of RŒa� induces a Hopf algebra structure on Hom.RŒa�; R/. The basic algebraic
result of this section is that the dual Hopf algebra is isomorphic to the original Hopf
algebra.

(19.7.3) Theorem. The homomorphism

˛ W Hom.RŒa�; R/! RŒb�; f 7!P
� f .a

�/b�

is an isomorphism of Hopf algebras. The generator bj is dual to aj1 , that is,
˛..ai1/	/ D bi .
Proof. The dual basis element of a� is mapped to b�. Therefore ˛ is an R-linear
isomorphism. It remains to show that ˛ is compatible with the multiplication and
the comultiplication.
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We verify that ˛ is a homomorphism of algebras.

˛.f /˛.g/ D �P
� f .a

� /b�
��P

� g.a
� /b�

� DP�;� f .a
� /g.a� /

�P
� b

�
�;�b�

�
:

The coefficient of b� in ˛.f � g/ is .f � g/.a�/ and

.f �g/.a�/D.f ˝g/.
a�/D.f ˝g/�P�;� a
�
��a

�˝a� �DP�;� a
�
��f .a

� /g.a� /:

Now we use the equality (19.7.2).
The definition of the comultiplication in Hom.RŒa�; R/ gives for the element

a�
� which is dual to a� the relation


a�
�.a

� ˝ a� / D a�
�.a

�C� / D
(
1; � C � D �;
0; otherwise:

This means that 
.a�
�/ D

P
�C�D� a�

� ˝ a�
� . Since ˛..ai1/

�/ D bi , the gen-
erators of the algebras Hom.RŒa�; R/ and RŒb� have the same coproduct. Since
we know already that ˛ is a homomorphism of algebras, we conclude that ˛ pre-
serves the comultiplication. In particular we also have for the b� the formula

.b�/ DP�C�D� b� ˝ b� . �

The Hopf algebras which we have discussed have other interesting applications,
e.g., to the representation theory of symmetric groups, see [113].

(19.7.4) Remark. If we define ˛ in (19.7.3) on theR-module of allR-linear maps,
then the image is the algebra RŒŒb�� of formal power series. The homogeneous
components of degree n in RŒb� and RŒŒb�� coincide. Þ

(19.7.5) Remark. The duality isomorphism (19.7.3) can be converted into a sym-
metric pairing Q̨ W RŒb�˝RŒa�! R. The pairing is defined by Q̨ .˛�'˝y/ D '.y/
and satisfies Q̨ .b� ˝ a� / D ı�� . Þ

Let ' W RŒa� ! R be a homomorphism of R-algebras. We restrict ' to the
component of degree n and obtain 'n W RŒa�n ! R. We identify ' with the family
.'n/. The duality theorem sets up an isomorphism ˛ W Hom.RŒa�n; R/ Š RŒb�n
with the homogeneous part RŒb�n of RŒb�.

A graded group-like element K of RŒb� is defined to be a sequence of polyno-
mials .Kn.b1; : : : ; bn/ j n 2 N0/ with K0 D 1 and Kn 2 RŒb�n of degree n such
that

.1/ 
Kn DPiCjDnKi ˝Kj :
Since 
 is a homomorphism of algebras, the relation


Kn.b1; : : : ; bn/ D Kn.
b1; : : : ; 
bn/
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holds. The comultiplication has the form 
bn DP
iCjDn bi ˝ bj (with b0 D 1).

If we use two independent sets .b0
i / and .b00

i / of formal variables, we can write the
condition (1) in the form

Kn.b
0
1 C b00

1 ; b
0
2 C b0

1b
00
1 C b00

2 ; : : : ;
P
iCjDn b0

ib
00
j /

DPiCjDnKi .b0
1; : : : b

0
i /Kj .b

00
1 ; : : : ; b

00
j :/

The simplest example is Kn D bn.

(19.7.6) Proposition. The sequence .'n/ is an R-algebra homomorphism if and
only if the sequence .Kn/ with Kn D ˛.'n/ is a graded group-like element.

Proof. We use the duality pairing (19.7.5), now with the notation Q̨ .x ˝ y/ D
hx; y i. Let .Kn/ be group-like and define a linear map'n W RŒa�n ! R by'n.y/ D
hKn; y i. Then for x 2 RŒa�i and y 2 RŒa�j with i C j D n

'n.xy/ D hKn; xy i D h
Kn; x ˝ y i D hKi ; x ihKj ; y i D 'i .x/'j .y/:
Hence .'n/ is an algebra homomorphism.

Conversely, let ' W RŒa� ! R be an algebra homomorphism with restriction
'n W RŒa�n ! R in degree n. We setKn D ˛.'n/. A similar computation as above
shows that .Kn/ is a group-like element. �

(19.7.7) Remark. The algebra homomorphisms ' W RŒa�! R correspond to fam-
ilies of elements .	i 2 R j i 2 N/ via ' 7! .'.ai / D 	i /. Given a family .	i / the
corresponding group-like element is obtained as follows. FromQ

i .1C 	1ti C 	2t2i C � � � / D
P
� 	

�b� DP� '.a
�/b� D ˛�.'/

we see that Kn.b1; : : : ; bn/ is the component of degree n in
P
� 	

�b�. Þ

We now return to classifying spaces and apply the duality theorem (19.7.3). We
have the Kronecker pairing � W H�.BOI F2/˝H�.BOI F2/! F2; x˝y 7! hx; y i
and the duality pairing (19.7.5) Q̨ W F2Œw�˝ F2Œu� ! F2, now with variables w; u
in place of a; b. We also have the isomorphism �� W F2Œw� Š H�.BOI F2/ from
the determination of the Stiefel–Whitney classes. We obtain an isomorphism of
Hopf algebras �� W F2Œu� ! H�.BOI F2/ determined via algebraic duality by the
compatibility relation h��x; ��y i D Q̨ .x ˝ y/. The generators of a polynomial
algebra are not uniquely determined. Our algebraic considerations produce from the
universal Stiefel–Whitney classes as canonical generators ofH�.BOI F2/ canonical
generators of H�.BOI F2/ via ��.

In a similar manner we obtain isomorphismsH�.BUIZ/ Š ZŒd1; d2; : : :� (vari-
ables c; d ) and H�.BSOIR/ Š RŒq1; q2; : : :� (variables p; q).
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Problems

1. Verify the following polynomials b for k�k D 4 D jI.�/j:
b.0;0;0;1/ D b4

1 � 4b2
1b2 C 2b2

2 C 4b1b3 � 4b4; I.�/ D .4/I
b.1;0;1/ D b2

1b2 � 2b2
2 � b1b3 C 4b4; I.�/ D .1; 3/I

b.0;2/ D b2
2 � 2b1b3 C 2b4; I.�/ D .2; 2/I

b.2;1/ D b1b3 � 4b4; I.�/ D .1; 1; 2/I
b.4/ D b4; I.�/ D .1; 1; 1; 1/:

These b are the coefficients of a in U Œ4� D P
 a

b. Check that U Œ4� is symmetric in
the a’s and b’s.
2. The assignmentRŒa�˝RŒb�! R, a
 ˝b 7! .a
 /�.b/ D ı


 is a symmetric pairing.
(The formal element U DP a

b could be called a symmetric copairing.)

19.8 Characteristic Numbers

Let �
 W X ! BO.n/ be a classifying map of an n-dimensional bundle. It induces
a ring homomorphism H�.BO.n/I F2/ ! H�.X I F2/. We can also pass to the
stable classifying map X ! BO and obtain ��



W H�.BOI F2/ ! H�.X I F2/.

This homomorphism codifies the information which is obtainable from the Stiefel–
Whitney classes. We use the isomorphism F2Œw� Š H�.BOI F2/ and the duality
theorem (19.7.3). We use a slightly more general form. Let S� be a graded R-
algebra; the grading should correspond to the grading of RŒa�, there are no signs.
We obtain a graded algebra HomR.RŒa�; S

�/ where the component of degree k
consists of the homomorphisms of degree k. The product in this algebra is defined
by convolution. Then we have:

(19.8.1) Theorem. There exists a canonical isomorphism

˛ W HomR.RŒa�; S
�/ Š S�ŒŒb��

of graded R-algebras. Here S�ŒŒb�� D S�ŒŒb1; b2; : : : �� is the algebra of graded
formal power series in the bi of degree �i . The isomorphism ˛ sends the R-homo-
morphism ' W RŒa�! S� to the series

P
� '.a

�/b�. �

In our example we obtain from ��


W H�.BOI F2/! H�.X I F2/ a series v.�/ 2

H�.X I F2/ŒŒu�� of degree zero. The constant term is 1, the multiplicativity relation
v.� ˚ �/ D v.�/v.�/ and the naturality v.f ��/ D f �v.�/ hold. For a line bundle
� we have v.�/ D 1C w1.�/u1 C w1.�/2u2 C � � � . These properties characterize
the assignment � 7! v.�/.

We can apply a similar process to oriented or complex bundles. In the case of
a complex oriented theory h�.�/ we obtain series v.�/ 2 h�.X/ŒŒd �� which are
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natural, multiplicative and assign to a complex line bundle � the series v.�/ D
1C c1.�/d1 C c1.�/2d2 C � � � .

Interesting applications arise if we apply the process to the tangent bundle of
a manifold. Let us consider oriented closed n-manifolds M with classifying map
�M W M ! BSO of the stable oriented tangent bundle. We evaluate the homomor-
phism ��

M on the fundamental class ŒM �

Hn.BSOIR/! Hn.M IR/! R; x 7! ��
M .x/ŒM �:

By the Kronecker pairing duality Hn.BSOIR/ Š HomR.H
n.BSOIR/;R/ this

homomorphism corresponds to an element in Hn.BSOIR/, and this element is
�M�ŒM �, the image of the fundamental class ŒM � 2 Hn.M IR/ under .�M /�, by the
naturality h��

M .p/; ŒM �i D hp; .�M /�ŒM �i of the pairing. Under the isomorphism
�� W RŒq1; q2; : : :� Š H�.BSOIR/ the element �M�ŒM � corresponds to an element
that we denote �SO.M/ 2 RŒq1; q2; : : :�. From the definitions we obtain:

(19.8.2) Proposition. Let �M denote the oriented tangent bundle ofM . Then

�SO.M/ D hv.�M /; ŒM �i;
the evaluation of the series v.�M / on the fundamental class. �

If p 2 Hn.M/ is a polynomial of degree n in the Pontrjagin classes, then
the element (number) pŒM� is called the corresponding Pontrjagin number. In a
similar manner one defines a Stiefel–Whitney number by evaluating a polynomial
in the Stiefel–Whitney classes on the fundamental class. A closed n-manifold M
has an associated element �O.M/ 2 F2Œu1; u2; : : :� Š Hn.BOI F2/, again the
image of the fundamental class under the map induced by the stable classifying
map �M W M ! BO of the tangent bundle.

(19.8.3) Example. Let us consider M D CP 2k . The stable tangent bundle is
�2kC1 where is � is the canonical complex line bundle, now considered as oriented
bundle; see (15.6.6). By the multiplicativity of the v-classes, we have for the tangent
bundle �2k of CP 2k the relation

v.�2k/ D v.�/2kC1 D .1C p1.�/q1 C p1.�/2q2 C � � � /2kC1

D .1C c2q1 C c4q2 C � � � /2kC1

where as usualH�.CP 2kIR/ Š RŒc�=.c2kC1/. Note thatp1.�/ D c2, by (19.5.6).
The evaluation on the fundamental class yields the coefficient of c2k in this series,
since hc2k; ŒCP 2k�i D 1 (see (18.7.2)). Modulo decomposable elements in the
indeterminates qj , i.e., modulo polynomials in the qj with j < k, this value is
.2k C 1/qk . Þ

When we pass to rational coefficients R D Q we can divide by 2k C 1 and
obtain:
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(19.8.4) Proposition. The elements �SO.CP 2k/; k 2 N are polynomial generators
of QŒq�. �

In bordism theory it will be shown that the signature of an oriented 4k-manifold
only depends on its image in H�.BSOIQ/ Š QŒq�. And from the multiplica-
tivity of the signature it then follows that there exists an algebra homomorphism
s W H�.BSOIQ/ ! Q such that the signature �.M/ is obtained as the image of
this homomorphism �.M/ D s.�M/�ŒM �/. We know that the generators CP 2k

have signature 1; see 18.7.2. The ring homomorphism s is determined by the val-
ues 	i D s.qi / 2 Q. Via the duality QŒp� Š Hom.QŒq�;Q/ the homomorphism
s corresponds to a group-like element .Ln.p1; : : : ; pn/ j n 2 N/ where Ln is a
polynomial in the Pontrjagin classes of degree 4n such that the evaluation on the
fundamental class is the signature, hLn; ŒM 4k�i D �.M 4n/. If we expand the for-
mal product

Q
i .1C 	1ti C 	2t2i C � � � / and assume that pk is the k-th elementary

symmetric polynomial in the ti (of degree 4), thenLn is the component of degree 4n.
The ti are obtained if we split the total Pontrjagin class (formally) into linear factors,
1C p1xC p2x2C � � � DQi .1C tix/. Fortunately, nature has already split for us
the stable tangent bundle of CP 2n, the total Pontrjagin class is .1C c2/2nC1; i.e.,
we can take ti D c2 in order to evaluate Ln on CP 2n. This allows us to determine
the coefficients 	i : The power series H.c/ D 1 C 	1c2 C 	2c4 C � � � has the
property that the coefficient of c2n in H.c/2nC1 is 1. Hirzebruch [81, p. 14] has
found this power series

H.c/ D c

tanh c
D 2c

e2c � 1 C c D 1C
B1

2Š
.2c/2 � B2

4Š
.2c/4 C B3

6Š
.2c/6 � � � �

where the Bj are the so-called Bernoulli numbers. The first four values are

B1 D 1

6
; B2 D 1

30
; B3 D 1

42
; B4 D 1

30
:

The corresponding coefficients in the power series are

	1 D 1

3
; 	2 D � 1

32 � 5; 	3 D 2

33 � 5 � 7; 	4 D � 1

33 � 52 � 7:
From these data we obtain the polynomials Ln if we insert in the universal polyno-
mials U Œn�.p1; : : : ; pnI q1; : : : ; qn/ for qj the value 	j . We have already listed the
polynomials U Œ1�, U Œ2�, U Œ3�, U Œ4�. The result is

L1 D 1

3
p1;

L2 D 1

45
.7p2 � p21/;

L3 D 1

945
.62p3 � 13p2p1 C 2p31/;

L4 D 1

14175
.381p4 � 71p3p1 � 19p22 C 22p2p21 � 3p41/:
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The polynomials Ln are called the Hirzebruch L-polynomials.

Problems

1. Show that �SO.M �N/ D �SO.M/�SO.N /.
2. Let M be the oriented boundary of a compact manifold. Then �SO.M/ D 0. (See the
bordism invariance of the degree.)
3. Show that �O.RP 2n/ D u2n modulo decomposable elements. Therefore these elements
can serve as polynomial generators of H�.BOI F2/ Š F2Œu� in even dimensions.
4. The convolution product of the homomorphisms defined at the beginning of the section
satisfies ��

	
	 ��

� D ��
	˚�

.

5. Determine �SO.CP 2/ and �SO.CP 4/.



Chapter 20

Homology and Homotopy

We begin this chapter with the theorem of Hurewicz which says in its simplest form
that for a simply connected space the first non-zero homotopy group is isomorphic
to the first non-zero integral homology group. In the case of the sphere Sn this is
essentially the Hopf degree theorem. In our proof we use this theorem and other
consequences of the homotopy excision theorem. We indicate an independent proof
which only uses methods from homology theory and the Eilenberg subcomplexes
introduced earlier. The theorem of Hurewicz has the important consequence that
a map between simply connected CW-complexes is a homotopy equivalence if it
induces an isomorphism of the integral homology groups (theorem of Whitehead).
Another application is to the geometric realization of algebraic chain complexes as
cellular chain complexes. We will see that under suitable hypotheses we do not
need more cells in a homotopy type than the homology groups predict.

Since homotopy groups are difficult to compute it is desirable to have at least
some qualitative information about them. One of the striking results is the famous
theorem of Serre that the homotopy groups of spheres are finite groups, except in
the few cases already known to Hopf; in particular the stable homotopy groups of
spheres are finite (except �n.Sn/). Since for a finite abelian group A the tensor
product A˝Q D 0 and since homology theories are objects of stable homotopy,
this theorem has the remarkable consequence that rationalized homology theories
h�.�/˝Q can be reduced to ordinary rational homology.

Along the way we obtain qualitative results in general. They concern, for in-
stance, statements about finiteness or finite generation and are based on qualitative
generalizations of the theorem of Hurewicz. For the expert we point out that we do
not use the theory of spectral sequences for the proofs. Only elementary methods
like induction over skeleta enter. A basic technical theorem relates in a qualitative
manner the homology of the total space, fibre and base of a fibration. On the alge-
braic side we use so-called Serre classes of abelian groups: Properties like “finite
generation” are formalized. (In the long run this leads to localization of spaces and
categories.)

20.1 The Theorem of Hurewicz

The theorem of Hurewicz relates the homotopy and the homology groups of a space.
In this section H� denotes integral singular homology. Let .X;A;	/ be a pointed
pair of spaces.
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We define natural homomorphisms, called Hurewicz homomorphisms,

h.X;A;�/ D h W �n.X;A;	/! Hn.X;A/; n � 2;
h.X;�/ D h W �n.X;	/! Hn.X/; n � 1;

such that the diagrams

�n.X;	/ ��

h
��

�n.X;A;	/ @ ��

h
��

�n�1.A;	/
h
��

Hn.X/ �� Hn.X;A/
@ �� Hn�1.A/

commute (compatibility with exact sequences). For this purpose we use the def-
inition �n.X;	/ D ŒS.n/; X�0 and �n.X;A;	/ D Œ.D.n/; S.n � 1//; .X;A/�0
of the homotopy groups (see (6.1.4)). We choose generators zn 2 Hn.S.n//

and Qzn 2 Hn.D.n/; S.n � 1// such that @ Qzn D zn�1 and q�. Qzn/ D zn, where
q W D.n/ ! D.n/=S.n � 1/ D S.n/ is the quotient map. If we fix z1, then
the other generators are determined inductively by these conditions. We define
h W �n.X;A;	/ ! Hn.X;A/ by Œf � 7! f�. Qzn/ and h W �n.X;	/ ! Hn.X/ by
Œf � 7! f�.zn/. With our choice of generators the diagram above is then commuta-
tive. From (10.4.4) and the analogous result for the relative homotopy groups we see
that the maps h are homomorphisms. The singular simplex 
1 ! I=@I D S.1/,
.t0; t1/ 7! t1 represents a generator z1 2 H1.S.1//. If we use this generator, then
h W �1.X;	/ ! H1.X/ becomes the homomorphism which was shown in (9.2.1)
to induce an isomorphism �1.X;	/ab Š H1.X/ for 0-connected X .

Recall that we have a right action of the fundamental group

�n.X;A;	/ � �1.A;	/! �n.X;A;	/; .x; ˛/ 7! x � ˛
via transport. We denote by �#

n.X;A;	/ the quotient of �n.X;A;	/ by the normal
subgroup generated by all elements of the form x � x � ˛ (additive notation in �n).
Recall from (6.2.6) that �#

2 is abelian. Representative elements in �n which differ
by transport are freely homotopic, i.e., homotopic disregarding the base point.
Therefore the Hurewicz homomorphism induces a homomorphism

h# W �#
n.X;A;	/! Hn.X;A/:

The transport homomorphism �n.X;A; a1/ ! �n.X;A; a2/ along a path from
a1 to a2 induces an isomorphism of the �#

n-groups, and this isomorphism is in-
dependent of the choice of the path. We can use this remark: An unpointed map
.D.n/; S.n�1//! .X;A/ yields in each of the groups �#

n.X;A; a/ a well-defined
element (A path connected). Thus, if �1.A/ is trivial, we can regard �#

n.X;A/ as
the homotopy set Œ.D.n/; S.n � 1//; .X;A/�. The group �#

1.X;	/ is defined to
be the abelianized group �1.X;	/ab , i.e., the quotient by the commutator sub-
group. We set �#

n.X;	/ D �n.X;	/ for n � 2 and again we have the Hurewicz
homomorphism h# W �#

n.X;	/! Hn.X/.
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(20.1.1) Theorem (Hurewicz). Let the space X be .n � 1/-connected (n � 1).
Then h# W �#

n.X;	/! Hn.X/ is an isomorphism.

Proof. We have already proved the theorem in the case that n D 1. So let n � 2
and then �#

n D �n. Since weak homotopy equivalences induce isomorphisms in
homotopy and homology, we only need to prove the theorem for CW-complexesX .
We can assume that X has a single 0-cell and no i -cells for 1 � i � n � 1, see
(8.6.2). The inclusion XnC1 � X induces isomorphisms �#

n.X/ Š �#
n.X

nC1/
and Hn.X/ Š Hn.XnC1/. Since the Hurewicz homomorphisms h form a natural
transformation of functors, it suffices to prove the theorem for .nC1/-dimensional
complexes. In this caseX is h-equivalent to the mapping cone of a map of the form
' W A DWSnj ! B DWSn

k
.

For X D Sn the theorem holds by (10.5.1). By naturality and additivity it then
holds for pointed sums

W
Snj . We have a commutative diagram

�n.A/

��

�� �n.B/

��

�� �n.X/

��

�� 0

Hn.A/ �� Hn.B/ �� Hn.X/ �� 0

with exact rows. The exactness of the top row is a consequence of the homotopy
excision theorem. �

(20.1.2) Corollary. Let X be simply connected and suppose that QHi .X/ D 0 for
i < n. Then �i .X;	/ D 0 for i < n and h W �n.X;	/ Š Hn.X/.
Proof. (20.1.1) says, in different wording, that h W �j .X/ Š Hj .X/ for the smallest
j such that �k.X/ D 0 for 1 � k < j . �

(20.1.3) Theorem. Let .X;A/ be a pair of simply connected CW-complexes. Sup-
pose Hi .X;A/ D 0 for i < n, n � 2. Then �i .X;A/ D 0 for i < n and
h W �n.X;A/! Hn.X;A/ is an isomorphism.

Proof. Induction over n � 2. We use a consequence of the homotopy excision
theorem: Let A be simply connected and �i .X;A;	/ D 0 for 0 < i < n. Then
�n.X;A;	/ ! �n.X=A;	/ is an isomorphism. The theorem of Seifert and van
Kampen shows �1.X=A/ D feg. From Hi .X;A/ D QHi .X=A/ and (20.1.2) we
conclude �i .X=A/ D 0 for i < n.

Let n D 2. Since X and A are simply connected, �1.X;A;	/ D 0 and the
diagram

�2.X;A;	/ Š ��

h
��

�2.X=A;	/
Š
��

H2.X;A/
Š �� H2.X=A/

shows that h is an isomorphism.
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By induction we know that �j .X;A;	/ D 0 for 0 < j < n. Then a similar
diagram shows that h W �n.X;A;	/! Hn.X;A/ is an isomorphism. �

(20.1.4) Theorem. Let f W X ! Y be a map between simply connected spaces.
Suppose f� W Hi .X/ ! Hi .Y / is bijective for i < n and surjective for i D n

(n � 2). Then f� W �i .X/! �i .Y / is bijective for i < n and surjective for i D n.
Proof. We pass to the mapping cylinder and assume that f is an inclusion. The hy-
pothesis is then equivalent toHi .Y;X/ D 0 and the claim equivalent to�i .Y;X/ D
0 for i < n. Now we use (20.1.3). �

Recall: A map f W X ! Y between CW -complexes is an h-equivalence if
and only if f� W �i .X/ Š �i .Y / for each i . Together with (20.1.4) we obtain a
homological version of this result:

(20.1.5) Theorem (Whitehead). Let f W X ! Y be a map between simply con-
nected CW-complexes, which induces isomorphisms of homology groups. Then f
is a homotopy equivalence. �

In (20.1.5) one cannot dispense with the hypothesis that the spaces are simply
connected. There exist, e.g., so-called acyclic complexesX with reduced homology
groups vanishing but with non-trivial fundamental group. Moreover it is important
that the isomorphism is induced by a map.

(20.1.6) Proposition. Let X be a simply connected CW-complex with integral ho-
mology of a sphere,H�.X/ Š H�.Sn/, n � 2. Then X is h-equivalent to Sn.

Proof. By (20.1.2), �n.X/ Š Hn.X/, and this group is assumed to be isomorphic
to Z. Let f W Sn ! X represent a generator. Then f� W �n.Sn/ ! �n.X/ is an
isomorphism and also f� W Hn.Sn/! Hn.X/. Now we use (20.1.5). �

The preceding proposition has interesting applications. It is known that a closed
connected n-manifold of the homotopy type of the n-sphere is actually homeomor-
phic to the n-sphere. Therefore these spheres are characterized by invariants of
algebraic topology.

(20.1.7) Example. The spaces Sn _ Sn _ S2n and Sn � Sn are for n � 2 simply
connected and have isomorphic homology groups. But they are not h-equivalent,
since their cohomology rings are different. Þ

The homological theorem of Whitehead (20.1.5) no longer holds for spaces
which are not simply connected, even in the case when the map induces an isomor-
phism of the fundamental groups. But it suffices to consider the universal covering,
as the next theorem shows.
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(20.1.8) Theorem. Let f W X ! Y be a map between connected CW-complexes
which induces an isomorphism f� W �1.X/ ! �1.Y /. Let p W QX ! X and
q W QY ! Y be the universal coverings. There exists a lifting F W QX ! QY of f ,
i.e., qF D fp. Suppose F induces an isomorphism of the homology groups. Then
f is a homotopy equivalence.

Proof. We choose isomorphisms �1.X/ Š G Š �1.Y / which transform f� into
the identity ofG. We then consider p and q asG-principal bundles with left action
andF W QX ! QY as aG-map. We obtain a morphism of the associated fibre bundles.

QX ��

F
��

EG �G QX ��

EG�GF
��

BG

D
��QY �� EG �G QY �� BG

From the assumption and (20.1.5) we see that F is an h-equivalence. The exact
homotopy sequence and the Five Lemma show that EG�GF induces isomorphisms
of the homotopy groups.

We now consider the second associated fibre bundles P W EG �G QX ! X and
Q W EG �G QY ! Y . A section s of P arises from a map � W QX ! EG such
that �.gx/ D �.x/g�1 for x 2 X and g 2 G, see (14.1.4). A map of this type
is essentially the same thing as a classifying map of p. Since the fibre of P is
contractible, P induces isomorphisms of the homotopy groups, and the same holds
then for a section s ofP . We see that f D Qı.EG�GF /ıs induces isomorphisms
of homotopy groups; hence f is a homotopy equivalence. �

(20.1.9) Corollary. In the situation of (20.1.8) F is a G-homotopy equivalence.

Proof. Let h W Y ! X be h-inverse to f andH W QY ! QX a lifting ofH which is a
G-map. A homotopy of hf can be lifted to a G-homotopy ofHF . The end of this
homotopy is a bundle automorphism. �

Let G be a discrete group which acts on the pair .Y; B/. The induced maps
of the left translations by group elements yield a left action of G on Hn.Y; B/ via
homomorphisms, i.e., Hn.Y; B/ becomes a module over the integral group ring
ZG of G.

Suppose X is obtained from A by attaching n-cells .n � 3/. Let p W Y ! X

be a universal covering and B D p�1.A/. Then Y is obtained from B by attaching
n-cells. The group � D �1.X/ of deck transformations acts freely on the set
of n-cells in Y X B . Hence Hn.Y; B/ is a free Z�-module, the basis elements
correspond bijectively to the n-cells of X X A. Theorem (20.1.3) now yields:

(20.1.10) Theorem. Let X be a connected CW-complex and let n � 3. Then
�n.X

n; Xn�1/ is a free Z�1.Xn�1/-module. A basis of this module consists of the
characteristic maps of the n-cells. The map h# W �n.Xn; Xn�1/! Hn.X

n; Xn�1/
is an isomorphism. �
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The exact sequence

�nC1.XnC1; Xn/! �n.X
n; Xn�1/! �n.X

nC1; Xn�1/! 0

is for n � 3 a sequence of Z�1.Xn�1/ Š Z�1.Xn/-modules. Because of the
isomorphism �n.X;X

n�1/ Š �n.X
nC1; Xn�1/ the sequence is a presentation of

the Z�1.Xn�1/-module �n.X;Xn�1/. The induced sequence of the �#-groups is
also exact. This gives the following theorem for n � 3.

(20.1.11) Theorem (Hurewicz). Let .X;A/ be a CW-pair with connectedX andA.
Let .X;A/ be .n � 1/-connected (n � 2). Then h# W �#

n.X;A;	/ Š Hn.X;A/.
Proof. We now give a purely homological proof of the Hurewicz theorems which
also covers the relative case n D 2 for spaces which are not simply connected. The
proof is by induction. The induction starts with (9.2.1). We assume the absolute
theorem for 1 � i � n � 1 and prove the relative theorem for n. We consider the
standard simplex 
Œk� D Œe0; : : : ; ek� as the usual simplicial complex and denote
its l-skeleton by
Œk�l . Let Sn�1

k
.X;A;	/ be the chain group spanned by simplices

� W 
Œk� ! X such that �.
Œk�n�1/ � A and �.
Œk�0/ D f	g, modulo Sk.A/.
Let H .n�1/

n .X;A;	/ be the n-th homology group of the resulting chain complex.
The inclusion of chain complexes induces an isomorphism H

.n�1/
n .X;A;	/ Š

Hn.X;A/ for an .n� 1/-connected pair .X;A/ with path connected A, see (9.5.4).
We have to adapt the homotopy groups to the simplicial setup. We consider

elements of �n.X;A;	/ as homotopy classes of maps f W .
Œn�; @
Œn�; e0/ !
.X;A;	/. For this purpose we fix a homeomorphism ˛ W .D.n/; S.n � 1/;	/ !
.
Œn�; @
Œn�; e0/ which sends the generator Qzn defined at the beginning to the
standard generator Œid.
Œn�/� 2 Hn.
Œn�; @
Œn�/.

The Hurewicz homomorphism then sends the homotopy class of f to f�Œid�,
and this class is an element in H .n�1/

n .X;A;	/. We now construct an inverse
 W H .n�1/

n .X;A;	/! �#
n.X;A;	/ of h. We assign to a singular simplex

� W .
Œn�; @
Œn�;
Œn�0/! .X;A;	/
the element in �#

n.X;A;	/ represented by � . If �.
Œn�/ � A, then the cor-
responding homotopy class is zero. Since the �#

n-group is abelian, we obtain a
well-defined homomorphism  W Sn�1

n .X;A;	/! �#
n.X;A;	/. The simplices �

are cycles (since Sn�1
n�1 .X;A;	/ D 0), and thus it remains to show that the com-

posite  ı @ W Sn�1
nC1.X;A;	/ ! �#

n.X;A;	/ is trivial, in order to obtain  . We
reduce the problem to a universal situation. For this purpose we define elements
bn 2 �n.@
ŒnC 1�;
ŒnC 1�n�1; e0/,

b2 D .Œd30 � � Œe1e0�/Œd32 �Œd31 ��1Œd33 ��1;

bn D ŒdnC1
0 � � Œe1e0�C

nC1X
iD1

.�1/i ŒdnC1
i �; n � 3;
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where Œvw� denotes the affine path class in 
Œn C 1� from v to w, and we use
the transport along this path. (Multiplicative notation in �2, additive notation for
n � 3. This definition corresponds to the homological boundary operator, but we
have to transport the face maps to the base point e0. For b2 we have to pay attention
to the order of the factors, since the group is non-abelian.)

Let us write K D 
ŒnC 1� and let � W .K;Kn�1; K0/ ! .X;A;	/ be a basis
element of Sn�1

nC1.X;A;	/. Then

 @Œ�� DPi .�1/i Œ�dnC1
i � D �#�Œbn�# D �#�j #� Œbn�#

where j denotes the inclusion @
ŒnC 1� � 
ŒnC 1�. Thus it remains to show that
j�Œbn� D 0.

The skeleton Kn�1 is .n � 2/-connected (use e.g., the induction hypothe-
sis). Hence, by the inductive assumption, �#

n�1.Kn�1; e0/ ! Hn�1.Kn�1/ is
an isomorphism. The commutativity @h D h@ now shows that @Œbn� D 0, since
@hŒbn� D 0 by the fundamental boundary relation for singular homology. We have
the factorization

@ W �n.Kn; Kn�1; e0/
j��! �n.K;K

n�1; e0/
@0

�! �n�1.Kn�1; e0/;

and @0 is an isomorphism, since K is contractible. This finishes the inductive step
for the relative Hurewicz theorem. For n � 2 the absolute theorem is a special case
of the relative theorem. �

An interesting consequence of the homological proof of the Hurewicz theorem
is a new proof of the Brouwer–Hopf degree theorem �n.S

n/ Š Z.

20.2 Realization of Chain Complexes

The computation of homology groups from the cellular chain complex shows that
one needs enough cells to realize the homology groups algebraically as the homol-
ogy groups of a chain complex. It is interesting to know that in certain cases a
converse holds. We work with integral homology.

(20.2.1) Theorem (Cell Theorem). Let Y be a 1-connected CW-complex. Suppose
Hj .Y / is finitely generated for j � n. Then Y is homotopy-equivalent to a CW-
complex Z with finitely many j -cells for j � n.

The proof of this theorem is based on a theorem which says that under suitable
hypotheses an algebraic chain complex can be realized as a cellular chain complex.
We describe the inductive construction of a realization. We start with the following:

20.2.2 Data and notation.
(1) Y is a CW-complex with i -skeleton Yi .



502 Chapter 20. Homology and Homotopy

(2) Zr is an r-dimensional CW-complex.
(3) f W Zr ! Y is a cellular map.
(4) Ci .Z/ D Hi .Zi ; Zi�1IZ/ is the i -th cellular chain group.
(5) f induces a chain map '� W C�.Z/! C�.Y /.
(6) We attach .r C 1/-cells to Zr such that f can be extended to F :

qS rj ��

��

Zr
f

��

\
��

Yr

\
��

qDrC1
j

�� ZrC1 F �� YrC1.

(7) From this diagram we obtain a resulting diagram of chain groups

ArC1 ı ��

 
��

Cr.Z/
d ��

'r
��

Cr�1.Z/
'r�1
��

CrC1.Y /
d 0

rC1
�� Cr.Y /

d 0
r �� Cr�1.Y /

withArC1 D HrC1.ZrC1; Zr/ a free abelian group with a basis given by the
.r C 1/-cells, and  induced by .F; f /. Þ

We now start from a diagram in which ArC1 is a free abelian group with basis
.aj j j 2 J /. The horizontal parts should be chain complexes, i.e., dı D 0. Can
this diagram be realized geometrically?

(20.2.3) Proposition. A realization exists, if the following holds:

(1) f� W Hi .Zr/! Hi .Y / is bijective for i � r � 1 and surjective for i D r;
(2) r � 2;
(3) Zr and Y are 1-connected.

Proof. Suppose we are given for each j 2 J a diagram

S r
bj

��

��

Zr

f
��

DrC1 Bj
�� YrC1.

We attach .rC1/-cells toZr with attaching maps bj to obtainZrC1 and use theBj
to extend f to frC1 W ZrC1 ! YrC1. Then ArC1 Š HrC1.ZrC1; Zr/ canonically
and basis preserving.

We consider f as an inclusion. The assumption (1) is then equivalent to
Hi .Y;Zr/ D 0 for i � r . Since r � 2 and�1.Y / D 0we also have�1.YrC1/ D 0.
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Therefore we have the relative Hurewicz isomorphism h W �rC1.YrC1; Zr/ Š
HrC1.YrC1; Zr/, since Hi .YrC1; Zr/ Š Hi .Y;Zr/ D 0 for i � r . The diagram
represents an element in�rC1.YrC1; Zr/. Letxj D h.ŒBj ; bj �/ 2 HrC1.YrC1; Zr/
be its image under the relative Hurewicz homomorphism. This element can be de-
termined by homological conditions. The correct maps ı and  are obtained, if xj
has the following properties:

(1) The image of xj under @ W HrC1.YrC1; Zr/ ! Hr.Zr/ ! Hr.Zr ; Zr�1/
is ı.aj /.

(2) The image of xj under � W HrC1.YrC1; Zr/! HrC1.YrC1; Yr/ is  .aj /.
We show that there exists a unique element xj with these properties. We know
HrC1.Y; r; Zr/ D 0 and Hj .Yr�1Zr�1/ D 0, j � r for reasons of dimension.
The exact sequence of the triple .YrC1; Yr ; Zr/ shows that � is injective. Hence
there exists at most one xj with the desired properties. The existence follows if we
show that Im.@; �/ D Ker.'r �d 0

rC1/. This follows by diagram chasing in the next
diagram with exact rows

HrC1.YrC1; Zr�1/ ��

˛
��

HrC1.YrC1; Zr/ @ ��

�
��

Hr.Zr ; Zr�1/ ��

'r
��

Hr.YrC1; Zr�1/
ˇ
��

HrC1.YrC1; Yr�1/ �� HrC1.YrC1; Yr/
d 0

rC1
�� Hr.Yr ; Yr�1/ �� Hr.YrC1; Yr�1/:

One uses that ˛ is surjective and ˇ injective. �

Proof. Since Y is simply connected, we can assume that Y has a single 0-cell and
no 1-cells. We constructZ inductively withZ0 D f	g andZ1 D f	g. We choose a
finite number of generators for �2.Y / Š H2.Y / and representing maps S2 ! Y2.
They yield a cellular map f2 W Z2 DWS2 ! Y , and the induced map is surjective
in H2 and bijective in Hj , j < 2. This starts the inductive construction.

Suppose fr W Zr ! Y is given such that fr� W Hi .Zr/ ! Hi .Y / is bijective
for i � r � 1 and surjective for i D r . We construct a diagram of type (7) in
20.2.2 as follows. We have Hr.Zr/ D Ker.d/ and Hr.Y / D Ker.d 0

r/= Im.d 0
rC1/

and the map .fr/� W Hr.Zr/ D Ker.d/ ! Hr.Y / is surjective. Let ArC1 be the
kernel of .fr/� and ı W Hr.Zr/ � Cr.Zr/. As a subgroup of Cr.Zr/ it is free
abelian. Since Zr has, by induction, a finite number of r-cells, the group ArC1
is finitely generated. By definition of ArC1, the image of 'rı is contained in the
image of d 0

rC1. Hence there exists  making the diagram commutative. We now
apply (20.2.3) in order to attach an .r C 1/-cell for each basis element of ArC1 and
to extend fr to f 0

rC1 W Z0
rC1 ! Y . By construction, .f 0

rC1/� is now bijective on
Hr . If this map is not yet surjective onHrC1 we can achieve this by attaching more
.r C 1/-cells with trivial attaching maps; ifHrC1.Y / is finitely generated, we only
need a finite number of cells for this purpose. We continue in this manner as long as
H�.Y / is finitely generated. After that point we do not care about finite generation.
The final map f W Z ! Y is a homotopy equivalence by (20.1.5). �
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20.3 Serre Classes

Typical qualitative results in algebraic topology are statements of the type that the
homotopy or homology groups of a space are (in a certain range) finite or finitely
generated or that induced maps have finite or finitely generated kernel and cokernel.
A famous result of Serre [170] says that the homotopy groups of spheres are finite,
except in the cases already known to Hopf.

Here are three basic ideas of Serre’s approach:

(1) Properties like ‘finite’ or ‘finitely generated’ or ‘rational isomorphism’ have
a formal structure. Only this structure matters – and it is axiomatized in the
notion of a Serre class of abelian groups or modules.

(2) One has to relate homotopy groups and homology groups, since qualitative
results about homology groups are more accessible. The connection is based
on the Hurewicz homomorphism.

(3) For inductive proofs one has to relate the homology groups of the basis, fibre,
and total space of a (Serre-)fibration. This is the point where Serre uses the
method of spectral sequences.

A non-empty class C of modules over a commutative ringR is a Serre class if the
following holds: Let 0! A! B ! C ! 0 be an exact sequence of R-modules.
Then B 2 C if and only if A;C 2 C . We call C saturated if A 2 C implies that
arbitrary direct sums

L
j A of copies of A are contained in C . The class consisting

of the trivial module alone is saturated. A morphism f W M ! N between R-
modules is a C -epimorphism (C -monomorphism) if the cokernel (kernel) of f is in
C , and a C -isomorphism if it is a C -epi- and -monomorphism. We use certain facts
about these notions, especially the C -Five Lemma. The idea is to neglect modules
in C , or, as one says, to work modulo C ; so, instead of C -isomorphism, we say
isomorphism modulo C . Here are some examples of Serre classes.

(1) The class containing only the trivial group.
(2) The class F of finite abelian groups.
(3) The class G of finitely generated abelian groups.
(4) Let R be a principal ideal domain. The class C consists of the (finitely

generated) R-modules. If R is a field, then we are considering the class of
(finite-dimensional) vector spaces.

(5) Let R be a principal ideal domain. The class C consists of the (finitely
generated) R-torsion modules. A module M is a torsion module, if for each
x 2M there exists 0 ¤ 	 2 R such that 	x D 0.

(6) Let P � N be a set of prime numbers. Let ZP � Q denote the subring
of rational numbers with denominators not divisible by an element of P . If
P D ;, then Z D Q. If P D fpg, then ZP D Z.p/ is the localization
of Z at p. If P contains the primes except p, then ZP D ZŒp�1� is the
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ring of rational numbers with denominators only p-powers. The rings ZP
are principal ideal domains. Let P 0 be the complementary set of primes. An
abelian group A is a P 0-torsion group if and only if A˝Z ZP D 0.
Let CP be the class of P 0-torsion groups. Then a homomorphism ' W A! B

is a CP -isomorphism if and only if ' ˝Z ZP is an ordinary isomorphism.
Similarly for epi- and monomorphism. This remark reduces the CP Five
Lemma to the ordinary Five Lemma after tensoring with ZP . This simplifies
working with this class1.

(20.3.1) Proposition (Five Lemma mod C ). In the next proposition we use the
same notation as in (11.2.7). The considerations of that section then yield directly
a proof of the following assertions.

(1) b C -epimorphism) Qb C -epimorphism.

(2) d C -epimorphism, e C -monomorphism) Qd C -epimorphism.

(3) The hypotheses of .1/ and .2/ imply: c C -epimorphism.

(4) d C -monomorphism) Qd C -monomorphism.

(5) a C -epimorphism, b C -monomorphism) Qb C -monomorphism.

(6) The hypotheses of .4/ and .5/ imply: c C -monomorphism. �

The kernel-cokernel-sequence shows other properties of C -notions.

(20.3.2) Proposition. Given homomorphisms f W A! B and g W B ! C between
R-modules.

(1) If f and g are C -monomorphisms (-epimorphisms), then gf is a C -mono-
morphism (-epimorphism).

(2) If two of the morphisms f , g, and gf are C -isomorphisms so is the third. �

20.4 Qualitative Homology of Fibrations

In this section we work with singular homology with coefficients in the R-mo-
dule M .

(20.4.1)Theorem (Fibration Theorem). Letp W E ! B be a (Serre-) fibration with
0-connected fibres. Let .B;A/ be a relative CW-complex with t -skeleton B t . We
assume that A D B�1 D B0 D � � � D Bs�1 for an s � 0 and that there are only
a finite number of t -cells for t � e. Finally we assume that Hi .F IM/ 2 C for
0 < i < r and all fibres F of p. We write Et D p�1.B t /. Then the following
holds:

(1) Let C be saturated. Then p� W Hi .E;E�1IM/ ! Hi .B;B
�1IM/ is a C -

isomorphism for i � r C s � 1 D ˛ and a C -epimorphism for i D ˛ C 1.
1In a more abstract setting one can construct localizations of categories so that C -isomorphisms

become isomorphisms in the localized category, etc.
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(2) Let C be arbitrary. Then p� is a C -isomorphism for i � ˛ and a C -epi-
morphism for i D ˛ C 1 where now ˛ D min.e C 1; r C s � 1/.

We remark that r � 1. For r D 1 we make no further assumptions about F .
Since a weak homotopy equivalence induces isomorphisms in singular homo-

logy, we can assume without essential restriction that B is a CW-complex (pull
back the fibration along a CW-approximation). We reduce the proof of the theorem
by a Five Lemma argument to the attaching of t -cells. We consider the following
situation. Let

.ˆ; '/ W qa .Dt
a; S

t�1
a /! .B;B 0/

be an attaching of t -cells. Let p W E ! B be a fibration and set E 0 D p�1.B 0/.
We assume that the fibres are 0-connected and homotopy equivalent. We pull back
the fibration along ˆ and obtain two pullback diagrams.

qEa ‰ ��

qpa
��

E

p

��

qE 0
a

‰ ��

qp0
a

��

E 0

p0

��

qDt
a

ˆ �� B qS t�1a

ˆ �� B 0

We apply homology (always with coefficients in M ) and obtain the diagram

Hi .E;E
0/ p� �� Hi .B;B

0/

L
aHi .Ea; E

0
a/

˚apa� ��

‰�

��

L
aHi .D

t
a; S

t�1
a /:

ˆ�

��

We already know that ˆ� is an isomorphism. In order to show that ‰� is an
isomorphism, we attach a single t -cell, to simplify the notation. LetB0 be obtained
from B by deleting the center ˆ.0/ of the cell.

(20.4.2) Lemma. Let p W X ! B be a fibration with restrictions p0 W X 0 ! B 0 and
p0 W X0 ! B0. Let q W Y ! Dt be the pullback of p, and similarly q0 W Y 0 ! S t�1
and q0 W Y0 ! Dt X 0. Then

‰� W hi .Y; Y 0/! hi .X;X
0/

is an isomorphism for each homology theory.

Proof. We have a commutative diagram

hi .Y; Y
0/ ‰� ��

.1/
��

hi .X;X
0/

.2/
��

hi .Y; Y0/
‰� �� hi .X;X0/

hi .Y X Y 0; Y0 X Y 0/
.3/

��

‰�

.5/
�� hi .X XX 0; X0 XX 0/:

.4/

��
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Since B 0 is a deformation retract and p a fibration, also X 0 is a deformation retract
of X0. Therefore (2) is an isomorphism by homotopy invariance. The map (4) is
an isomorphism by excision. For similar reasons (1) and (3) are isomorphisms.
Finally (5) is induced by a homeomorphism. �

By the homotopy theorem for fibrations, a fibration over Dt is fibre-homotopy
equivalent to a product projectionDt �F ! Dt . We use such equivalences and a
suspension isomorphismHi .D

t �F; S t�1�F / Š Hi�t .F / and obtain altogether
a commutative diagram (Pa a point and Fa the fibre over Pa):

Hi .E;E
0/ p� �� Hi .B;B

0/

L
aHi�t .Fa/

Š
��

��
L
aHi�t .Pa/.

Š
��

(20.4.3)Note. The considerations so far show that the bottommap has the following
properties:

(1) Isomorphism for i � t (since fibres are 0-connected).
(2) Epimorphism always.

(3) SupposeHi .Fa/ 2 C for 0 < i < r . Then each particular mapHi�t .Fa/!
Hi�t .Pa/ is a C -isomorphism for 0 < i � t < r . Thus the total map is
a C -isomorphism if either C is saturated or if we attach a finite number of
cells. Þ

We apply these considerations to a fibration p W E ! B over a relative CW-
complex .B;A/ as in the statement of the theorem. In this situation the previous
considerations yield:

Let C be saturated. Then p� W Hi .Et ; Et�1/ ! Hi .B
t ; B t�1/ is a C -iso-

morphism for each t � 0, if i < r C s. We only have to consider t � s. By
(20.4.3), we have a C -isomorphism in the cases i � t and i > t > i � r . These
conditions hold for each t , if s > i � r . If, in addition, there are only finitely many
t -cells for t � e, then we have a C -isomorphism for arbitrary C and each t , if
i � min.e C 1; r C s � 1/, by the same argument.

We finish the proof of theorem (20.4.1) with:

(20.4.4) Lemma. Let .B;A/ be a relative CW-complex with t -skeleton B t . Let
p W E ! B be a fibration and Et D p�1.B t /. Suppose p� W Hi .Et ; Et�1IM/!
Hi .B

t ; B t�1IM/ is a C -isomorphism for each t � 0 and each 0 � i � ˛, then
p� W Hi .E;E�1IM/! Hi .B;B

�1IM/ is a C -isomorphism for 0 � i � ˛ and a
C -epimorphism for i D ˛ C 1.
Proof. We show by induction on k � 0 that p� W Hi .Ek; E�1/ ! Hi .B

k; B�1/
is a C -isomorphism (k � 0). For the induction step one uses the exact homology
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sequence for the triple .Ek; Ek�1; E�1/, and similarly for B , and applies the C -
Five Lemma to the resulting diagram induced by the various morphisms p�. For
the epimorphism statement we also use part (2) in (20.4.3). The colimit k ! 1
causes no problem for singular homology. �

The statement of (20.4.1) is adapted to the method of proof. The hypotheses
can be weakened as follows.

(20.4.5) Remark. Let .X;A/ be an .s � 1/-connected pair of spaces. Then there
exists a weak relative homotopy equivalence .B;A/! .X;A/ from a relative CW-
complex .B;A/ with A D Bs�1. We pull back a fibration over q W E ! X along
this equivalence and use the fact that weak equivalences induce isomorphisms in
singular homology. Then part (1) of (20.4.1) yields that q� W Hj .E; q�1.A/IM/!
Hj .X;AIM/ is a C - isomorphism for j � r C s � 1 and a C -epimorphism for
i D r C s. Þ

(20.4.6) Remark. Let X be a 1-connected space such that Hj .X IZ/ is finitely
generated for i � e. Then there exists a weak equivalence B ! X such that B has
only a finite number of t -cells for t � e. We use this result in the next section. Þ

Problems

1. Suppose that Hj .F IM/ D 0 for 0 < j < r . Let B be .s � 1/-connected. Then
p� W Hj .E; F IM/ ! Hj .B;	IM/ is an isomorphism for j � r C s � 1. We can now
insert this isomorphism into the exact homology sequence of the pair .E; F / and obtain an
exact sequence

HrCs�1.F IM/! HrC1�1.EIM/! HrCs�1.BIM/! � � �
! H1.F IM/! H1.EIM/! H1.BIM/! 0

which is analogous to the exact sequence of homotopy groups. Compare these sequences
via the Hurewicz homomorphism .M D Z/.

20.5 Consequences of the Fibration Theorem

We use exact sequences and the fibration theorem to derive a number of results.
We consider a fibration p W E ! B and assume that B and F D p�1.	/ are
0-connected; then E is 0-connected too. We use the notation

Z 2 C.r;M/ , Hj .ZIM/ 2 C for 0 < j < r � 1.

(M an R-module. In the case that M D Z we write C.r/. For r D 1 there is no
condition.) Let F , G denote the class of finite, finitely generated abelian groups,
respectively. We use homology with coefficients in the R-module M if nothing
else is specified.
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(20.5.1) Remark. The homomorphism p� W Hj .E; F IM/ ! Hj .B;	IM/ is al-
ways an isomorphism for j � 1 and an epimorphism for j D 2 (see (20.4.1)). The
homomorphism p� W Hj .EIM/ ! Hj .BIM/ is an isomorphism for j D 0 and
an epimorphism for j D 1. �
(20.5.2) Theorem. Suppose F 2 C.r;M/. Let C be saturated. Suppose B is
s-connected. Then p� W Hi .E; F /! Hi .B;	/ is a C -isomorphism for i � r C s
and a C -epimorphism for i D r C s C 1. Moreover p� W Hi .E/ ! Hi .B/ is a
C -isomorphism for i < r and a C -epimorphism for i D r .
Proof. The first statement is (20.4.1). For the second statement we use in addition
the exact homology sequence of the pair .E; F /. �

(20.5.3) Theorem. Let C be saturated.

(1) F;B 2 C.r;M/) E 2 C.r;M/.

(2) F 2 C.r;M/; E 2 C.r C 1;M/) B 2 C.r C 1;M/.

(3) B 2 C.r C 1;M/; E 2 C.r;M/, B 1-connected) F 2 C.r;M/.

Proof. (1) and (2) are consequences of the fibration theorem and the exact homology
sequence of the pair .E; F /. (3) is proved by induction on r . For r D 1 there is
nothing to prove. For the induction step consider

Hr.B;	IM/ Hr.E; F IM/ ��
.1/

�� Hr�1.F IM/ �� Hr�1.EIM/

(1) is a C isomorphism for r � 1C s � 1 D r , since s D 2 and F 2 C.r � 1;M/

by induction. From the hypotheses Hr.BI 	IM/;Hr�1.EIM/ 2 C we conclude
Hr�1.F IM/ 2 C . �

(20.5.4) Theorem. Let C be arbitrary and assume that B is 1-connected.

(1) F;B 2 C.r;M/; B 2 G .r � 1/) E 2 C.r;M/.

(2) F 2 C.r;M/; E 2 C.r C 1;M/; B 2 G .r/) B 2 C.r C 1;M/.

(3) B 2 C.r C 1;M/; E 2 C.r;M/; B 2 G .r/) F 2 C.r;M/.

Proof. As for (20.5.3). The 1-connectedness of B is needed in order to apply the
cell theorem (see (20.4.6)). �

(20.5.5) Corollary. Suppose E is contractible (path fibration over B). Then
F ' �B , the loop space of B . Let B be simply connected. Let C be saturated.
Then B 2 C.r C 1;M/ if and only if �B 2 C.r;M/. Moreover B 2 G .r C 1/ if
and only if �B 2 G .r/. Similarly for F instead of G . �
(20.5.6) Proposition. Let A be a finitely generated abelian group. Then the
Eilenberg–Mac Lane spaces K.A; n/ are contained in G .1/. If A is finite, then
K.A; n/ 2 F .1/. Moreover K.A; 1/ 2 G .1/; K.A; 1/ 2 C.1;M/ implies
K.A; n/ 2 C.1;M/. If C is saturated, then K.A; 1/ 2 C.1;M/ implies
K.A; n/ 2 C.1;M/.
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Proof. We use the path fibration K.A; n � 1/ ! P ! K.A; n/ with contractible
P and induction with (20.5.3) and (20.5.4). In the case that n D 1, standard
constructions yield models for K.A; 1/ with a finite number of cells in each di-
mension. One uses K.A1; 1/ � K.A2; 1/ D K.A1 � A2; 1/, K.Z; 1/ D S1, and
K.Z=m; 1/ D S1=.Z=m/. �

Let X be a .k � 1/-connected space (k � 2). We attach cells of dimension
j � k C 2 to X in order to kill the homotopy groups �j .X/ for j � k C 1. The
resulting space in an Eilenberg–Mac Lane space K.�; k/, � D �k.X/, and the
inclusion � W X ! K.�; k/ induces an isomorphism �k.�/. We pull back the path
fibration over K.�; k/ and obtain a fibration

K.�; k � 1/! Y ! X

with k-connected Y , and q W Y ! X induces isomorphisms �j .q/, j > k. This
follows from the exact homotopy sequence. If � 2 C and C is saturated, then
q� W Hj .Y IM/ ! Hj .X IM/ is a C -isomorphism for j > 0, by the fibration
theorem, since K.�; k � 1/ 2 C.1/. Similarly for arbitrary C when X is of finite
type.

20.6 HurewiczandWhiteheadTheoremsmoduloSerre classes

Let C be a Serre class of abelian groups with the additional property: The groups
Hk.K.A; 1// 2 C whenever A 2 C and k > 0. In this section we work with
integral singular homology.

(20.6.1) Theorem (Hurewicz Theorem mod C ). Suppose X is 1-connected and
n � 2. Assume that either C is saturated or Hi .X/ is finitely generated for i < n
and C is arbitrary. Then the following assertions are equivalent:

(1) ….n/ W �i .X;	/ 2 C for 1 < i < n.

(2) H.n/ W Hi .X/ 2 C for 1 < i < n.

If ….n/ or H.n/ holds, the Hurewicz homomorphism hn W �n.X;	/ ! Hn.X/ is
a C -isomorphism.

Proof. The proof is by induction on n.

(1) Let �X ! PX
f�! X be the path fibration with contractible PX . It

provides us with a commutative diagram

�n.X;	/
h
��

�n.PX;�X;	/�n.f /��

h
��

@ ��

h
��

�n�1.�X;	/
h
��

Hn.X;	/ Hn.PX;�X/
Hn.f /�� @ �� Hn�1.�X/.
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The boundary maps @ are isomorphisms, since PX is contractible. By a basic
property of fibrations �n.f / is an isomorphism.

By the ordinary Hurewicz theorem h2 W �2.X;	/! H2.X/ is an isomorphism.
(The method of the following proof can also be used to prove the classical Hurewicz
theorem.)

(2) Let n > 2. Assume that the theorem holds for n�1 and that….n/ holds. We
want to show thatH.n/ holds and that hn W �.X;	/! Hn.X/ is a C -isomorphism.
We first consider the special (3) case that �2.X/ D 0 and then reduce the general
case (4) to this special.

(3) Thus let �2.X/ D 0. Then �i .�X/ Š �iC1.X/ 2 C for 1 < i < n � 1,
and �X is 1-connected. If C is saturated, then hn�1 W �n�1.�X/ ! Hn�1.�X/
is a C -isomorphism by induction. If Hi .X/ is finitely generated for i < n, then
by (20.5.3) Hi .�X/ is finitely generated for i < n � 1 so that by induction hn�1
is also an isomorphism in this case. The fibration theorem shows that Hn.f /
in the diagram is a C -isomorphism. From the diagram we now see that hn is a
C -isomorphism. Also Hn�1.X/ 2 C by induction.

(4) Let now �2.X/ D �2 be arbitrary. By assumption, this group is contained
in C . There exists a map � W X ! K.�2; 2/ which induces an isomorphism �2.
We pull back the path fibration along �

X2 ��

'

��

PK.�2; 2/

f
��

X
�

�� K.�2; 2/.

Since �2 2 C , we have Hi .K.�2; 1// 2 C for i > 0, by the general assumption
in this section. Note that K D K.�2; 1/ is the fibre of ' and f . The exact
homotopy sequence of � is used to show that '� W �i .X2/ Š �2.X/ for i > 2 and
that �1.X2/ Š 0 Š �2.X2/. We can therefore apply the special case (3) to X2.
Consider the diagram

�n.X2/

hn.X2/
��

Š �� �n.X/

hn.X/
��

Hn.X2/
CŠ �� Hn.X/.

In order to show that hn.X/ is a C -isomorphism we show two things:
(i) hn.X2/ is a C -isomorphism.
(ii) '� W Hn.X2/! Hn.X/ is a C -isomorphism.

Part (i) follows from case (3) if we know that Hi .X2/ is finitely generated for
i < n. This follows from (20.5.3) applied to the fibration K ! X2 ! X , since X
is 1-connected and since �1.K/ Š �2 Š H2.X/ is finitely generated.

For the proof of (ii) we first observe that the canonical map ˇ W Hi .X2/ !
Hi .X2; K/ is a C -isomorphism for i > 0, since Hi .K/ 2 C for i > 0 by the
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general assumption of this section. The fibration theorem and (20.4.6) show that
'� W Hi .X2; K/! Hi .X;	/ is a C -isomorphism for 0 < i � n. We now compose
with ˇ and obtain (ii).

(5) Now assume that H.k/ holds for 2 � k < n. Since Hi .X/ 2 C for
2 � i < k C 1 the Hurewicz map �i .X/! Hi .X/ is a C -isomorphism for i � k
by H.k/, hence �i .X/ 2 C for i � k. By the first part of the proof, hkC1 is a
C -isomorphism, hence ….k C 1/ holds. �

We list some consequences of the Hurewicz theorem. Note that the general
assumption of this section holds for the classes G and F .

(20.6.2) Theorem. Let X be a 1-connected space.

(1) �i .X/ is finitely generated for i < n if and only if Hi .X IZ/ is finitely
generated for i < n.

(2) �i .X/ is finite for i < n if and only if QHi .X IZ/ is finite for i < n.

(3) If X is a finite CW-complex, then its homotopy groups are finitely generated.
�

(20.6.3) Theorem. Let C be a saturated Serre class. Let f W X ! Y be a map
between1-connected spaceswith1-connectedhomotopyfibreF . Then the following
are equivalent:

(1) �k.f / W �k.X/ ! �k.Y / is a C -isomorphism for k < n and a C -epimor-
phism for k D n.

(2) Hk.f / W Hk.X/! Hk.Y / is a C -isomorphism for k < n and a C -epimor-
phism for k D n.

Proof. The statement (1) is equivalent to �k.F / 2 C for k < n (exact homotopy
sequence). Suppose this holds. ThenHk.X; F /! Hk.Y / is a C isomorphism for
k � n, by the fibration theorem (20.4.1). From the exact homology sequence of
the pair .X; F /we now conclude that (2) holds, sinceHj .F / 2 C by the Hurewicz
theorem. Here we use that �1.F / D 0.

Suppose (2) holds. We show by induction thatHk.F / 2 C for k < n. Then we
apply again the Hurewicz theorem. The induction starts with n D 3. Since Y and
F are simply connected, the fibration theorem shows that Hj .X; F / ! Hj .Y;	/
is a C -isomorphism for j � 3. The assumption (2) and the homology sequence
of the pair then show H2.F / 2 C . The general induction step is of the same type.

�

Problems

1. Let T � Q be a subring. Let X be a simply connected space such that Hn.X IT / Š
Hn.S

nIT /. Then there exists a map Sn ! X which induces an isomorphism in T -homo-
logy.
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2. The finite CW-complexX D S1_S2 has �1.X/ Š Z. The group �2.X/ is free abelian
with a countably infinite number of generators. (Study the universal covering of X .)
3. Use the fibration theorem and deduce for each 0-connected space a natural exact sequence
�2.X/! H2.X/! H2.K.�1.X/; 1/IZ/! 0.

20.7 Cohomology of Eilenberg–Mac Lane Spaces

We compute the cohomology ring H�.K.Z; n/IQ/. Let f W Sn ! K.Z; n/ D
K.n/ induce an isomorphism �n.f / of the n-th homotopy groups. Then also
f � W Hn.K.Z; n/IQ/ ! Hn.SnIQ/ is an isomorphism and �n is defined such
that f �.�n/ 2 Hn.SnIQ/ is a generator.

(20.7.1) Theorem. If n � 2 is even, then H�.K.Z; n/IQ/ Š QŒ�n� (polynomial
ring). If n is odd, then f � W H�.K.Z; n/IQ/ Š H�.SnIQ/.
Proof. We work with rational cohomology. Since K.Z; 1/ ' S1 and K.Z; 2/ '
CP1 we know already the cohomology ring for these spaces with coefficients in
Z and this implies (20.7.1) in these cases. We prove the theorem by induction on n,
and for this purpose we analyze the path-fibration K.Z; n � 1/! P ! K.Z; n/
with contractible P . There are two cases for the induction step, depending on the
parity of n.

2k � 1 ) 2k. We have a relative fibration p W .E;E 0/ ! K.n/ with E D
K.n/I ; p.w/ D w.1/; P D E 0 D p�1.	/. The map p W E ! K.n/ is a homotopy
equivalence and E 0 is contractible. Therefore

.1/ Hn.E;E 0/ Š Hn.E/ Š Hn.K.n//;

the latter induced by p. The fibres .F; F 0/ of p have a contractible F and F 0 D
�K.n/ D K.n � 1/ is by induction a rational cohomology .n � 1/-sphere (i.e.,
has the rational cohomology of Sn�1). Hence H k.F; F 0/ Š H k�1.F 0/ Š Q for
k D n andŠ 0 for k 6D n. Since K.n/ is simply connected, we have a Thom class
tn 2 Hn.E;E 0/. We can assume that tn is mapped under (1) to �n, hence �n is the
Euler class e associated to tn. The Gysin sequence has the form (n D 2k)

� � � ! H j .K.n//
e�! H jCn.K.n//! H jCn.P /! � � � :

Since P is contractible and H j .K.n// D 0 for 0 < j < n, we see induc-
tively that the cup product with the Euler class e is an isomorphism H j .K.n//!
H jC2k.K.n//. Hence H�.K.n// Š QŒ�n�.

2k ) 2k C 1. We reduce the problem to a Wang sequence. Let n D 2k C 1.
We consider a pullback

Y ��

q
��

P

p
��

Sn
f

�� K.n/,
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where f induces an isomorphism �n.f /. The Wang sequence for q has the form

� � � ! H j .Y /
i��! H j .K.n � 1// ��! H jC1�n.K.n � 1//! � � � :

We use H�.K.n � 1// Š QŒ�n�1� and the fact that � is a derivation. From the
definition of Y and the exact sequence of homotopy groups we see

�j .Y / D 0; j � n; �j .Y / Š �j .Sn/; j > n:
From the Hurewicz theorem and the universal coefficient theorem we conclude
that H j .Y / D 0 for j � n. Hence � W H 2k.K.n � 1// ! H 0.K.n � 1//
is an isomorphism. Using the derivation property of � we see inductively that
� W H 2kr.K.n � 1// ! H 2k.r�1/.K.n � 1// is an isomorphism, and the Wang
sequence then shows us that QH�.Y / D 0; and this implies QH�.Y / D 0. Since Y
is the homotopy fibre of f , we conclude that f� W H�.Sn/ ! H�.K.n// is an
isomorphism (by (20.4.1) say), and similarly for cohomology. This finishes the
induction. �

20.8 Homotopy Groups of Spheres

Let n > 1 be an odd integer. Let f W Sn ! K.Z; n/ induce an isomorphism �n.f /

and denote by Y the homotopy fibre of f . In the previous section we have shown
that Hj .Y IQ/ D 0 for j > 0. The Hurewicz theorem modulo the class of torsion
groups (D the rational Hurewicz theorem) shows us that the groups �j .Y /˝Q are
zero for j 2 N. From�j .S

n/ Š �j .Y / for j > nwe see that also�j .Sn/˝Q D 0
for j > n and odd n. Since we already know that the homotopy groups of spheres
are finitely generated we see:

(20.8.1) Theorem. Let n be an odd integer. Then the groups �j .Sn/ are finite for
j > n. �

We now investigate the homotopy groups of S2n. Let V D V2.R2nC1/ denote
the Stiefel manifold of orthonormal pairs .x; y/ in R2nC1. We have a fibre bundle
S2n�1 ! V ! S2n, and V is the unit-sphere bundle of the tangent bundle of S2n.
Recall from 14.2.4 the integral homology of V

Hq.V / Š

�
Z; q D 0; 4n � 1;
Z=2; q D 2n � 1;
0; otherwise:

Let g W V ! S4n�1 be a map of degree 1. Then g induces an isomorphism in
rational homology. Let F be the homotopy fibre of g; it is simply connected.
From (20.6.3) we see that g� ˝Q W �j .V /˝Q ! �j .S

4n�1/˝Q is always an
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isomorphism. We use (20.8.1) and see that the homotopy groups of V are finite,
except �4n�1.V / Š Z˚ E, E finite. Now we go back to the fibration V ! S2n

and its homotopy sequence. It shows:

(20.8.2)Theorem. �j .S2n/ is finite for j ¤ 2n; 4n�1 and�4n�1.S2n/ Š Z˚E,
E finite. �

The results about the homotopy groups of spheres enable us to prove a refined
rational Hurewicz theorem.

(20.8.3) Theorem. Let X be 1-connected. Suppose Hi .X IZ/ is finite for i < k

and finitely generated for i � 2k � 2 (k � 2). Then the Hurewicz homomorphism
h W �r.X/! Hr.X IZ/ has finite kernel (cokernel) for r < 2k � 1 (r � 2k � 1).

Proof. The case k D 2 causes no particular problem, since the Hurewicz homo-
morphism h W �mC1.X/! HmC1.X IZ/ is surjective for each .m� 1/-connected
space (m � 2). So let k � 3. SinceX is 1-connected, the Hurewicz theorem shows
that �r.X/ is finite for r < k and finitely generated for r � 2k � 2. We write
�r.X/ D Fr ˚ Tr , Fr free, and Tr finite. We choose basis elements for Fr and
representing maps. These representing elements provide us with a map of the form

f W S D S r.1/ _ � � � _ S r.t/ ! X

with k � r.j / � 2k � 2. The canonical mapL
j �r.S

r.j //! �r
�W

j S
n.j /

�
is an isomorphism for r � 2k�2 and an epimorphism for r D 2k�1. We can now
conclude that f� W �r.S/ ! �r.X/ has finite kernel and cokernel for r � 2k � 2
and finite cokernel for r D 2k � 1, since the homotopy groups of spheres are finite
in the relevant range. The homotopy fibre F of f has finite homotopy groups
�j .F / for j � 2k � 2. If, moreover, F is 1-connected, then Hj .F IZ/ is finite in
the same range, by the Hurewicz theorem. The fibration theorem then yields that
f� W Hr.S/ ! Hr.X/ is an F -isomorphism (F -epimorphism) for r � 2k � 2
(r D 2k � 1). From our knowledge of the homotopy groups of spheres we see
directly that the theorem holds for S . The naturality of the Hurewicz theorem
applied to f is now used to see that the desired result also holds for X .

We have used that F is 1-connected. This holds if �2.X/ D 0. Since �2.X/ is
finite by assumption (k � 3), we can pass to the 2-connected cover q W Xh2i ! X

ofX . The map q induces F -isomorphisms in homology and homotopy. Therefore
it suffices to prove the theorem for Xh2i to which the reasoning above applies.

�

If one is not interested in finite generation one obtains by a similar reasoning
(see also [103]):
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(20.8.4) Theorem. Let X be a 1-connected space. Suppose Hr.X IQ/ D 0 for
r < k. Then the Hurewicz map �j .X/˝Q ! Hj .X IQ/ is an isomorphism for
j < 2k � 2 and an epimorphism for j D 2k � 1. �

This theorem indicates that homotopy theory becomes simpler “over the ratio-
nals”. In the so-called rational homotopy theory one constructs algebraic models
for the rationalized homotopy theory. For an exposition see [65].

We discuss an example. Consider the path fibration

K.Z; 2/ ' �K.Z; 3/! X ! K.Z; 3/ D K3
with contractible X . Let f W S3 ! K3 induce an isomorphism in �3 and let

K2
i�! Y

p�! S3 be the induced fibration. The homotopy groups �k.Y / are zero
for k � 3 and p� induces an isomorphism �k.Y / Š �k.S3/ for k � 4.

(20.8.5) Proposition. �3.S2/ Š Z and �nC1.Sn/ Š Z=2 for n � 3.
Proof. We know already that �3.S2/ Š Z, generated by the Hopf map S3 !
CP 1 Š S2. From the Freudenthal suspension theorem we know that the suspension
†� W �nC1.Sn/ ! �nC2.SnC1/ is surjective for n D 2 and bijective for n � 3.
Therefore it suffices to determine �4.S3/. By the Hurewicz theorem, �4.S3/ Š
�4.Y / Š H4.Y /. Thus it remains to compute H4.Y /. We first determine the
cohomology.

(20.8.6) Proposition. The cohomology groups H k.Y / of Y are: Z for k D 0,
0 for k � 0 mod 2, and Z=n for k D 2nC 1.
Proof. We use K2 D K.Z; 2/ D CP1 and H�.K2/ Š ZŒc� with c 2 H 2. The
Wang sequence of Y ! S3 shows that

H 2n.Y / Š Ker‚; H 2nC1.Y / Š Coker‚;

sinceH�.K2/ D 0 for odd 	. The groupH 2n.K2/ Š Z is generated by cn. By the
universal coefficient formula H j .Y / D 0 for j D 1; 2; 3. Hence ‚ W H 2.K2/ !
H 0.K2/ is an isomorphism. We can choose c such that ‚.c/ D 1. The derivation
property of ‚ yields then inductively ‚.cn/ D ncn�1. �

The Wang sequence in homology yields in a similar manner

H2n.Y / Š Coker‚�; H2nC1.Y / Š Ker‚�:

From the universal coefficient sequence

0! Ext .H2n.Y /;Z/! H 2nC1.Y /! Hom.H2nC1.Y /;Z/! 0

and the fact that H2n.Y / is a quotient of Z we obtain

H2n.Y / Š Z=n; H2nC1.Y / D 0:
The special case H4.Y / Š Z=2 now proves �4.S3/ Š Z=2. �
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We apply the Hurewicz theorem modulo the class of abelian p-torsion groups
(p prime) and see that the p-primary component of �i .S3/ is zero for 3 < i < 2p
and isomorphic to Z=p for i D 2p. In particular an infinite number of homotopy
groups �n.S3/ is non-zero.

The determination of the homotopy groups of spheres is a difficult problem. You
can get an impression by looking into [163]. Individual computations are no longer
so interesting; general structural insight is still missing. Since the groups�nCk.Sn/
do not change after suspension for k � n� 2, by the Freudenthal theorem, they are
called the stable homotopy groups �S

k
.

We copy a table from [185]; a denotes a cyclic group of order a, and a � b is
the product of cyclic groups of order a and b, and aj the j -fold product of cyclic
groups of order a.

k 0 1 2 3 4 5 6 7 8 9

�S
k
1 2 2 24 0 0 2 240 22 23

k 10 11 12 13 14 15 16 17 18 19

�S
k

6 504 0 3 22 480 � 2 22 24 8 � 2 264 � 2

20.8.7 The Hopf invariant. The exceptional case �4n�1.S2n/ is interesting in
many respects. Already Hopf constructed a homomorphism h W �4n�1.S2n/! Z,
now called the Hopf invariant, and gave a geometric interpretation in the simplicial
setting [88]. Let f W S4n�1 ! S2n be a smooth map; and let a, b be two regular
values. The pre-images Ma D f �1.a/ and Mb D f �1.b/ are closed orientable
.2n � 1/-manifolds, they have a linking number, and this number is the Hopf
invariant of f . It is easy to define h.f /, using cohomology. Let f W S2k�1 ! Sk

be given .k � 2/. Attach a 2k-cell to Sk by f and call the result X D X.f /.
The inclusion i W Sk ! X induces an isomorphism H k.X/ Š H k.Sk/, and we
also have an isomorphism H 2k.D2k; S2k�1/ Š H 2k.X; Sk/ ! H 2k.X/. The
integral cohomology groups H j .X/ for j 6D 0; k; 2k are zero. Choose generators
x 2 H k.X/ and y 2 H 2k.X/. Then there holds a relation x Y x D h.f /y in the
cohomology ring. The graded commutativity of the cup product is used to show
that h.f / D 0 for odd k. In the case k D 2n the integer h.f / is the Hopf invariant.
Since X.f / depends up to h-equivalence only on the homotopy class of f , the
integer h.f / is a homotopy invariant. One shows the elementary properties of this
invariant:

(1) h is a homomorphism.
(2) If g W S4n�1 ! S4n�1 has degree d , then h.fg/ D dh.f /.
(3) If k W S2n ! S2n has degree d , then h.kf / D d2h.f /.
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Note that a map of degree d does not induce the multiplication by d , as opposed to
the general situation for cohomology theories.

It is an important problem to determine the image of h. Already Hopf showed
by an explicit construction that 2Z is always contained in the image. Here is the
Hopf construction. Start with a map u W Sk � Sk ! Sk . From it we obtain a map
f W S2kC1 ! SkC1 via the diagram

Sk � Sk � I u�id ��

p
��

Sk � I
p
��

Sk ? Sk
f

�� †Sk ,

where q is the projection onto the suspension andp the projection onto the join. The
map u has a bi-degree .a; b/. Hopf shows that (with suitable orientations chosen)
h.f / D ab. The map S2n�1 � S2n�1 ! S2n�1, .x; �/ 7! � � hx; � ix has bi-
degree .2;�1/. If ˛ W Rn � Rn ! Rn is a bilinear map without zero divisors (i.e.,
˛.x; y/ D 0 implies that x or y is zero), then .Rn; ˛/ is called an n-dimensional
real division algebra. The induced map ˇ W Sn�1 � Sn�1 ! Sn�1, .x; y/ 7!
˛.x; y/=k˛.x; y/k satisfies ˇ."x; �y/ D "�ˇ.x; y/ for "; � 2 f˙1g. Hence ˇ has
a bi-degree .d1; d2/ with odd dj . If there exist maps with odd Hopf invariant, then
there also exist maps with invariant 1, since 2Z is contained in the image of h. It
is a famous result of Adams [2] that maps f W S4n�1 ! S2n of Hopf invariant 1
only exist for n D 1; 2; 4. Hence there exist n-dimensional real division algebras
only for n D 1; 2; 4; 8. See [55] for this topic and the classical algebra related to
it. Once complex K-theory is established as a cohomology theory, it is fairly easy
to solve the Hopf invariant 1 problem [5]. Þ

20.9 Rational Homology Theories

Recall the n-th stable homotopy group !n.X/ D colimk �nCk.X ^ S.k// of the
pointed space X . The Hurewicz homomorphisms are compatible with suspension,
i.e., the diagram

�n.Y /

†�
��

h �� QHn.Y /
†�
��

�nC1.†Y / n �� QHnC1.†Y /

is commutative for each well-pointed space Y . This follows from the inductive
definition of the Hurewicz homomorphisms; one has to use the same definition of
†� in homotopy and homology via the boundary operator of the pair .CY; Y / and
the quotient map CY ! CY=Y D †Y . We pass to the colimit and obtain the
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stable Hurewicz homomorphism

hn W !n.X/! QHn.X/:
The hn are natural transformations of homology theories (on well-pointed spaces).
In order to see this one has to verify that the diagram

!n.X/
hn ��

�
��

QHn.X/
†
��

!nC1.X ^ S.1// hnC1
�� QHnC1.X ^ S.1//

is commutative. The commutativity of this diagram is a reason for introducing the
sign in the definition � D .�1/n���l of the suspension isomorphism for spectral
homology.

The coefficients of the theory !�.�/ are the stable homotopy groups of spheres
!n.S

0/ D colimk �nCk.Sk/. These groups are finite for n > 0. Finite abelian
groups become zero when tensored with the rational numbers. We thus obtain a
natural transformation of homology theories

h� W !�.X/˝Z Q! QH�.X/˝Z Q Š QH�.X IQ/
which are isomorphisms on the coefficients and therefore in general for pointed
CW-complexes.

This basic rational isomorphism is now used to show that any homology theory
Qh� with values in Q- MOD can be reduced to ordinary homology. We define natural
maps

!p.X/˝Z
Qhq.S0/! QhpCq.X/:

Let x 2 !p.X/ be represented by f W S.p C k/ ! X ^ S.k/. The image of
y 2 Qhq.S0/ under

Qhq.S0/ Š QhqCpCk.S.p C k// f��! QhqCpCk.X ^ S.k// Š QhpCq.X/

is independent of the chosen representative f of x. We combine these homomor-
phisms L

pCqDn !p.X/˝Z
Qhq.S0/! Qhn.X/

and obtain a natural transformation of homology theories. Now assume that the
coefficients Qhq.S0/ are Q-vector spaces. Then for X D S0 only the groups
!0.S

0/ ˝Z
Qhn.S0/ are non-zero; and the induced map to Qhn.S0/ is an isomor-

phism, since !0.S0/ Š Z by the degree and a map of degree k induces on Qhn.S0/
the multiplication by k. We thus have shown:



520 Chapter 20. Homology and Homotopy

(20.9.1) Theorem. Let Qh� be an additive homology theory for pointed CW-com-
plexes with values in Q-vector spaces. Then we have an isomorphismL

pCqDn QHp.X I Qhq.S0//
Š
��

L
pCqDn QHp.X/˝ Qhq.S0/Š��

Qhn.X/
L
pCqDn !p.X/˝ Qhq.S0/Š��

Š
��

of homology theories. �

If Qk�.�/ is an arbitrary additive homology theory we can apply the foregoing
to Qh�.�/ D Qk�.�/˝Z Q.

Problems

1. The Eilenberg–Mac Lane spectrum .K.Z; n/ j n 2 N0/ yields a homology theory which
is isomorphic to singular homology with integral coefficients.
2. One can define the stable Hurewicz transformation from a morphism of the sphere spec-
trum into the Eilenberg–Mac Lane spectrum which is obtained from maps Sn ! K.Z; n/
that induce isomorphisms of �n.
3. Define a stable Hurewicz homomorphism hn W !n.X/ ! QHn.X IZ/ either from a map
of spectra or by an application of cohomology to representing maps of elements in !n.X/.
Construct a natural commutative diagram

!n.X/
hn

��

��

QHn.X/

��

Hom.!n.X/;Z/
.hn/� �� Hom. QHn.X/;Z/.

4. Give a proof of the (absolute) Hurewicz theorem by using the K.Z; n/-definition of
homology. The proof uses: Let �j .X/ D 0 for j < n � 2; then �j .X ^K.Z; k// D 0 for
j � nC k � 1 and �nCk.X ^K.Z; k// Š �n.X/.
5. Derive an isomorphism Qhn.X/ Š Q

pCqDn
QHp.X I hq.S0// for cohomology theories

with values in Q-vector spaces (X a finite pointed CW-complex).
6. Use a fibration K.Z; n/ ! K.Z; n/ ! K.Z=k; n/ and derive a universal coefficient
sequence for homology with Z=k-coefficients.
7. An interesting example of a rational cohomology isomorphism is given by the Chern
character. It is a natural isomorphism of Q-algebras

ch W K.X/˝Q!Q
nH

2n.X IQ/;
for finite complexes X , say, and which sends a complex line bundle � over X to the power
series

ec1.�/ DP1
iD0

1
iŠ
c1.�/

i 2 H2�.X IQ/:
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Bordism

We begin with the definition of bordism homology. The geometric idea of homol-
ogy is perhaps best understood from the view-point of bordism and manifolds. A
“singular” cycle is a map from a closed manifold to a space, and the boundary rela-
tion is induced by manifolds with boundary. Several of our earlier applications of
homology and homotopy can easily be obtained just from the existence of bordism
homology, e.g., the Brouwer fixed point theorem, the generalized Jordan separation
theorem and the component theorem, and the theorem of Borsuk–Ulam.

Bordism theory began with the fundamental work of Thom [184]. He deter-
mined the bordism ring of unoriented manifolds (the coefficient ring of the asso-
ciated bordism homology theory). This computation was based on a fundamental
relation between bordism and homotopy theory, the theorem of Pontrjagin–Thom.
In the chapter on smooth manifolds we developed the material which we need for
the present proof of this theorem. One application of this theorem is the isomor-
phism between the geometric bordism theory and a spectral homology theory via
the Thom spectrum. From this reduction to homotopy we compute the rational
oriented bordism. Hirzebruch used this computation in the proof of his signature
theorem. This proof uses almost everything that we developed in this text.

21.1 Bordism Homology

We define the bordism relation and construct the bordism homology theory. Mani-
folds are smooth.

LetX be a topological space. Ann-dimensional singularmanifold inX is a pair
.B; F / which consists of a compact n-dimensional manifold B and a continuous
map F W B ! X . The singular manifold @.B; F / D .@B; F j@B/ is the boundary
of .B; F /. If @B D ;, then .B; F / is closed.

A null bordism of the closed singular manifold .M; f / inX is a triple .B; F; '/
which consists of a singular manifold .B; F / inX and a diffeomorphism ' W M !
@B such that .F j@B/ı' D f . If a null bordism exists, then .M; f / is null bordant.

Let .M1; f1/ and .M2; f2/ be singular manifolds in X of the same dimension.
We denote by .M1; f1/C .M2; f2/ the singular manifold hf1; f2 i W M1 CM2 !
X . We say .M1; f1/ and .M2; f2/ are bordant, if .M1; f1/ C .M2; f2/ is null
bordant. A null bordism of .M1; f1/C.M2; f2/ is called bordism between .M1; f1/

and .M2; f2/. The boundary @B of a bordism .B; F; '/ between .M1; f1/ and
.M2; f2/ thus consists of a disjoint sum @1B C @2B , and ' decomposes into two
diffeomorphisms 'i W Mi ! @iB .
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(21.1.1) Proposition. “Bordant” is an equivalence relation.

Proof. Let .M; f / be given. SetB DM �I andF D f ıpr W M �I !M ! X .
Then @B DM � 0CM � 1 is canonically diffeomorphic to M CM and .B; F /
is a bordism between .M; f / and .M; f /. The symmetry of the relation is a direct
consequence of the definition. Let .B; F; 'i W Mi ! @iB/ be a bordism between
.M1; f1/ and .M2; f2/ and .C;G; i W Mi ! @iC/ a bordism between .M2; f2/

and .M3; f3/. We identify in B C C the subset @2B with @2C via x �  2'�1
2 .x/

for x 2 @2B . The resultD carries a smooth structure, and the canonical mapsB !
D  C are smooth embeddings (15.10.1). We can factor hF;G i W B C C ! X

over the quotient map B C C ! D and get H W D ! X , and .D;H; h'1;  3 i/ is
a bordism between .M1; f1/ and .M3; f3/. �

We denote by ŒM; f � the bordism class of .M; f / and by Nn.X/ the set
of bordism classes of n-dimensional closed singular manifolds in X . The set
Nn.X/ carries an associative and commutative composition law ŒM; f �C ŒN; g� D
ŒM CN; hf; g i�. The reader may check that this is well-defined.

(21.1.2) Proposition. .Nn.X/;C/ is an abelian group. Each element has order at
most 2.

Proof. The class of a null bordant manifold serves as neutral element, for ex-
ample the constant map Sn ! X . (For the purpose at hand it is convenient to
think of the empty set as an n-dimensional manifold.) For each .M; f / the sum
.M CM; hf; f i/ is null bordant, hence ŒM; f �C ŒM; f � D 0. �

A continuous map f W X ! Y induces a homomorphism

Nn.f / D f� W Nn.X/! Nn.Y /; ŒM; g� 7! ŒM; fg�:

In this wayNn.�/ becomes a functor from TOP to ABEL. Homotopic maps induce
the same homomorphism: If F W X � I ! Y , f ' g is a homotopy, then .M � I;
F ı.h�id// is a bordism between .M; f h/ and .M; gh/. IfX is empty, we consider
Nn.X/ as the trivial group.

(21.1.3) Example. A 0-dimensional compact manifold M is a finite discrete set.
Hence .M; f / can be viewed as a family .x1; : : : ; xr/ of points in X . Points
x; y 2 X are bordant if and only if they are contained in the same path component.
(Here you have to know 1-dimensional compact manifolds.) One concludes that
N0.X/ is isomorphic to the Z=2-vector space over �0.X/. Þ

(21.1.4) Proposition. Let h W K ! L be a diffeomorphism. Then ŒL; g� D ŒK; gh�.
Proof. Consider the bordism g ı pr W L � I ! X ; on the boundary piece L � 1
we use the canonical diffeomorphism to L, on the boundary piece we L � 0 we
compose the canonical diffeomorphism to L with h. �
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We now make the functorsNn.�/ part of a homology theory. But this time, for
variety, we do not begin with the definition of relative homology groups. The exact
homology sequence and the excision axiom are now replaced by a Mayer–Vietoris
sequence.

Suppose X is the union of open sets X0 and X1. We construct the boundary
operator

@ W Nn.X/! Nn�1.X0 \X1/
of the Mayer–Vietoris sequence. Let ŒM; f � 2 Nn.X/ be given. The sets Mi D
f �1.X XXi / are disjoint closed subsets of M .

(21.1.5) Lemma. There exists a smooth function ˛ W M ! Œ0; 1� such that:

(1) Mi � ˛�1.i/ for i 2 f0; 1g.
(2) 1

2
is a regular value of ˛. �

We call ˛ in (21.1.5) a separating function. If ˛ is a separating function, then
M˛ D ˛�1.1

2
/ is a closed submanifold of M of dimension n � 1 (or empty), and

f induces by restriction f˛ W M˛ ! X0 \X1.
If t ¤ 0; 1 is another regular value of ˛, then ˛�1.t/ and ˛�1.1

2
/ are bordant

via ˛�1Œ1
2
; t �. The choice of 1

2
is therefore immaterial. We think of ŒM˛; f˛� as

being given by any choice of a regular value t 2 �0; 1Œ of ˛ with M˛ D ˛�1.t/.

(21.1.6) Lemma. Let ŒK; f � D ŒL; g� 2 Nn.X/ and let ˛; ˇ be separating func-
tions for .K; f /; .L; g/. Then ŒK˛; f˛� D ŒLˇ ; gˇ �.
Proof. We take advantage of (21.1.4). Let .B; F / be a bordism between .K; f /
and .L; g/ with @B D K CL. There exists a smooth function � W B ! Œ0; 1� such
that

� jK D ˛; � jL D ˇ; F �1.X XXj / � ��1.j /:

We choose a regular value t for � and � j@B and obtain a bordism ��1.t/ between
some K˛ and some Lˇ . �

From (21.1.6) we obtain a well-defined boundary homomorphism

@ W Nn.X/! Nn�1.X0 \X1/; ŒM; f � 7! ŒM˛; f˛�:

(21.1.7) Proposition. Let X be the union of open subspaces X0 and X1. Then the
sequence

� � � @�! Nn.X0 \X1/ j�! Nn.X0/˚Nn.X1/ k�! Nn.X/
@�! � � �

is exact. Here j.x/ D .j 0� .x/; j 1� .x// and k.y; z/ D k0�y�k1�z with the inclusions

j � W X0 \X1 ! X� and k� W X� ! X . The sequence ends with
k! N0.X/! 0.
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Proof. (1) Exactness atNn�1.X0\X1/. Suppose ŒM; f � 2 Nn.X/ is given. Then
M is decomposed by M˛ into the parts B0 D ˛�1Œ0; 1

2
� and B1 D ˛�1Œ1

2
; 1� with

common boundary M˛ . Since f .B0/ � X1, we see via B0 that j 1� @ŒM; f � is in
Nn�1.X1/ the zero element. This shows j ı @ D 0.

Suppose, conversely, that j ŒK; f � D 0. Then there exist singular manifolds
.Bi ; Fi / inXi such that @B0 D K D @B1 andF0jK D f D F1jK. We identifyB0
andB1 alongK and obtainM ; the mapsF0 andF1 can be combined toF W M ! X .
There exists a separating function ˛ on M such that M˛ D K: With collars of K
in B0 and B1 one obtains an embedding K � Œ0; 1� � M which is the identity on
K � f1

2
g; then one chooses ˛ such that ˛.k; t/ D t for k 2 K, 1

4
� t � 3

4
. By

construction, @ŒM;F � D ŒK; f �.
(2) Exactness at Nn.X0/ ˚ Nn.X1/. By definition, k ı j D 0. Suppose

xi D ŒMi ; fi � 2 Nn.Xi / are given. If k.x0; x1/ D 0 there exists a bordism
.B; F / in X between .M0; k

0f0/ and .M1; k
1f1/. Choose a smooth function

 W B ! Œ0; 1� such that:

(1) F �1.X XX1�i / [Mi �  �1.i/ for i D 0; 1.
(2)  has regular value 1

2
.

Let .N; f / D . �1.1
2
/; F j �1.1

2
//. Then . �1Œ0; 1

2
�; F j �1Œ0; 1

2
�/ is a bordism

between .N; f / and .M0; f0/ inX0; similarly for .M1; f1/. This shows j ŒN; f � D
.x0; x1/.

(3) Exactness at Nn.X/. The relation @ ı k D 0 holds, since we can choose on
.M0; k

0f0/C .M1; k
1f1/ a separating function ˛ W M0 CM1 ! Œ0; 1� such that

˛�1.1
2
/ is empty.

Conversely, let ˛ be a separating function for .M; f / in X and .B; F / a null
bordism of .M˛; f˛/ in X0 \X1. We decompose M along M˛ into the manifolds
B1 D ˛�1Œ0; 1

2
� and B0 D ˛�1Œ1

2
; 1� with @B1 DM˛ D @B0. Then we identify B

and B0 along M˛ D K and obtain a singular manifold .M0; f0/ D .B0 [K B;
.f jB0/ [K F / in X0, and similarly .M1; f1/ in X1. Once we have shown that
in Nn.X/ the equality ŒM0; f0�C ŒM1; f1� D ŒM; f � holds, we have verified the
exactness. We identify inM0�ICM1�I the partsB�1 inM0�1 andM1�1. The
resulting manifoldL D .M0�I /[B�1.M1�I / has the boundary .M0CM1/CM .
A suitable map F W L ! X is induced by .f0; f1/ ı pr1 W .M0 CM1/ � I ! X .
For the smooth structure on L see 15.10.3. �

We now define relative bordism groups Nn.X;A/ for pairs .X;A/. Elements
of Nn.X;A/ are represented by maps f W .M; @M/ ! .X;A/ from a compact n-
manifold M . Again we call .M; f / D .M; @M I f / a singular manifold in .X;A/.
The bordism relation is a little more complicated. A bordism between .M0; f0/

and .M1; f1/ is a pair .B; F / with the following properties:

(1) B is a compact .nC 1/-manifold with boundary.
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(2) @B is the union of three submanifolds with boundaryM0,M1 andM 0, where
@M 0 D @M0 C @M1; Mi \M 0 D @Mi .

(3) F jMi D fi .
(4) F.M 0/ � A.

We call .M0; f0/ and .M1; f1/ bordant, if there exists a bordism between them.
Again “bordant” is an equivalence relation. For the proof one uses 15.10.3. The
sum in Nn.X;A/ is again induced by disjoint union. Each element in Nn.X;A/
has order at most 2. A continuous map f W .X;A/ ! .Y; B/ induces a homo-
morphism Nn.f / D f� W Nn.X;A/ ! Nn.Y; B/ by composition with f . If f0
and f1 are homotopic as maps between pairs, then Nn.f0/ D Nn.f1/. The as-
signment ŒM; f � 7! Œ@M; f j@M� induces a homomorphism (boundary operator)
@ W Nn.X;A/! Nn�1.A/. For A D ; the equality Nn.X;;/ D Nn.X/ holds.

(21.1.8) Lemma. Let M be a closed n-manifold and V � M an n-dimensional
submanifold with boundary. If f W M ! X is a map which sends M X V into A,
then ŒM; f � D ŒV; f jV � in Nn.X;A/.
Proof. Consider F W M � I ! X , .x; t/ 7! f .x/. Then @.M � I / DM � @I and
V � 1[M � 0 is a submanifold of @.M � I / whose complement is mapped under
F into A. The definition of the bordism relation now yields the claim. �

(21.1.9) Proposition. Let i W A � X and j W X D .X;;/ � .X;A/. Then the
sequence

� � � @�! Nn.A/
i��! Nn.X/

j��! Nn.X;A/
@�! � � �

is exact. The sequence ends with
j��! N0.X;A/! 0.

Proof. (1) Exactness at Nn.A/. The relation i� ı @ D 0 is a direct consequence
of the definitions. Let .B; F / be a null bordism of f W M ! A in X . Then
@ŒB; F � D ŒM; f �.

(2) Exactness at Nn.X/. Let ŒM; f � 2 Nn.A/ be given. Choose V D ; in
(21.1.8). Then ŒM; f � D 0 in Nn.X;A/, and this shows j�i� D 0.

Let j�ŒM; f � D 0. A null bordism of ŒM; f � in .X;A/ is a bordism of .M; f / in
X to .K; g/ such that g.K/ � A. A bordism of this type shows i�ŒK; g� D ŒM; f �.

(3) Exactness atNn.X;A/. The relation @ıi� D 0 is a direct consequence of the
definitions. Let @ŒM; f � D 0. Choose a null bordism ŒB; F � of .@M; f j@M/. We
identify .M; f / and .B; f / along @M and obtain .C; g/. Lemma (21.1.8) shows
j�ŒC; g� D ŒM; f �. �

A basic property of the relative groups is the excision property. It is possible to
give a proof with singular manifolds.

(21.1.10) Proposition. The inclusion i W .X X U;A X U/ ! .X;A/ induces an
isomorphism i� W Nn.X X U;A X U/ Š Nn.X;A/, provided xU � Aı. �
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The bordism notion can be adapted to manifolds with additional structure. Inter-
esting are oriented manifolds. LetM0 andM1 be closed oriented n-manifolds. An
oriented bordism betweenM0;M1 is a smooth compact oriented .nC1/-manifold
B with oriented boundary @B together with an orientation preserving diffeomor-
phism ' W M1�M0 ! @B . Here we have to use the convention about the boundary
orientation, and M1 �M0 denotes the disjoint sum of the manifolds M1 and M0

whereM1 carries the given and�M0 the opposite orientation. Again this notion of
bordism is an equivalence relation. Singular manifolds are defined as before, and
we have bordism groups�n.X/ of oriented bordism classes of singularn-manifolds
in X . But now elements in the bordism group no longer have order at most 2. For
a point P we have �0.P / D Z, �i .P / D 0 for 1 � i � 3. The assertion about
�1 follows from the fact that S1 is an oriented boundary; the known classification
of orientable surfaces as a sphere with handles shows that these surfaces are ori-
ented boundaries. It is a remarkable result that �3.P / D 0: Each oriented closed
3-manifold is an oriented boundary; for a proof of this theorem of Rohlin see [77].

The exact sequences (21.1.7) and (21.1.9) as well as (21.1.10) still hold for
the �-groups. The definition of the boundary operator @ W �n.X;A/ ! �n�1.A/
uses the boundary orientation. In order to define the boundary operator of the
MV-sequence we have to orient M˛ . There exists an open neighbourhood U of
M˛ in M and a diffeomorphism ' W V D �1=2 � "; 1=2C "Œ�M˛ ! U such that
.˛'/.t; x/ D t . If M is oriented, we have the induced orientation of U , and we
orient V such that ' preserves the orientation. We orient M˛ such that V carries
the product orientation.

The idea of bordism can be used to acquire an intuitive understanding of homol-
ogy. A compact n-manifoldM has a fundamental class zM 2 Hn.M; @M I F2/ and
@zM 2 Hn�1.@M I F2/ is again a fundamental class. Let f W .M; @M/ ! .X;A/

be a singular n-manifold. We set �.f / D f�zM 2 Hn.X;AI F2/. In this manner
we obtain a well-defined homomorphism

� W Nn.X;A/! Hn.X;AI F2/:
The morphisms � constitute a natural transformation of homology theories. One
of the basic results of bordism theory says that � is always surjective. This allows
us to view homology classes as being represented by singular manifolds. If, in
particular, f is an embedding of manifolds, then we view the image of f as a cycle
or a homology class. In bordism theory, the fundamental class of M is M itself,
i.e., the identity of M considered as a singular manifold.

The transformation � can be improved if we take tangent bundle information
into account. Let M be a compact n-manifold and denote by �M W M ! BO
the classifying map of the stable tangent bundle of M . For a singular manifold
f W .M; @M/! .X;A/ we then have .f; �M / W .M; @M/! .X;A/ � BO. Again
we take the image of the fundamental class

�Œf � D .f; �M /�zM 2 Hn..X;A/ � BOI F2/:
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We now obtain a natural transformation of homology theories

� D �.X;A/ W N�.X;A/! H�..X;A/ � BOI F2/;
and in particular for the coefficient ring, the Thom bordism ring N� of unoriented
manifolds,

� W N� ! H�.BOI F2/:
A fundamental result says that �.X;A/ is always injective [28, p. 185].

This transformation is also compatible with the multiplicative structures. The
algebra structure of H�.X � BOI F2/ is induced by the homology product and the
H -space structure m W BO � BO ! BO which comes from the Whitney sum of
bundles. We obtain a natural homomorphism of graded algebras,

H�.X � BOI F2/˝H�.Y � BOI F2/! H�.X � BO � Y � BOI F2/
! H�.X � Y � BOI F2/I

the first map is the homology product and the second is induced by the permutation
of factors and m.

Thom [184] determined the structure of the ring N�: It is a graded algebra
F2Œu2; u4; u5; : : : �with a generator uk in each dimension k which does not have the
form k D 2t � 1. One can take u2n D ŒRP 2n� as generators in even dimensions.
The ring H�.BOI F2/ is isomorphic to F2Œa1; a2; a3; : : : � with a generator ai in
dimension i .

Another basic result says that there exists a natural isomorphism N�.X/ Š
N� ˝F2

H�.X I F2/ of multiplicative homology theories [160], [28, p. 185]. Thus
the homology theory N�.�/ can be reduced to the determination of the coefficient
ring N� and singular homology with F2-coefficients.

For oriented manifolds the situation is more complicated. One can still define
a multiplicative natural transformation of homology theories

�	 W ��.X;A/! H�..X;A/ � BSOIZ/
from the fundamental classes of oriented manifolds as above. But this time the
transformation is no longer injective and��.X;A/! H�.X;AIZ/ in general not
surjective. Also the theory��.�/ cannot be reduced to ordinary homology. But the
transformation still carries a lot of information. It induces a natural isomorphism

��.X;A/˝Q Š H�..X;A/ � BSOIQ/;
and, in particular,

.1/ �� ˝Q Š H�.BSOIQ/
by the stable classifying map of the tangent bundle (see (21.4.2)). The ring��˝Q
is isomorphic to QŒx4; x8; : : : � with a generator xn for each n � 0.4/. One can
take the x4n D ŒCP 2n� as polynomial generators (see (21.4.4)).
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We have seen that the signature of oriented smooth manifolds defines a homo-
morphism � W ��˝Q! Q of Q-algebras with �ŒCP 2n� D 1. The isomorphism
(1) tells us that this homomorphism can be determined from the stable tangent bun-
dle. A famous formula of Hirzebruch [81], the so-called HirzebruchL-genus, gives
a polynomialLn.p1; p2; : : : ; pn/ in the Pontrjagin classes p1; : : : ; pn such that the
evaluation on the fundamental class of an oriented 4n-manifold is the signature

hLn.p1.M/; : : : ; pn/; ŒM �i D �.M/:

It is a remarkable fact that the polynomials Ln have rational coefficients with large
denominators, but nevertheless the evaluation on the fundamental class is an integer.
Such integrality theorems have found a conceptual interpretation in the index theory
of Atiyah and Singer [16].

The homomorphismsNn ! Hn.BOI F2/ and�n ! Hn.BSOIZ/ have an in-
terpretation in terms of characteristic numbers and can be determined by evaluating
polynomials in the Stiefel–Whitney classes or Pontrjagin classes on the fundamental
class.

In order to prove some of the results above one starts from the fundamen-
tal results of Thom [184], the reduction of bordism to homotopy theory via the
Pontrjagin–Thom construction.

Problems

1. �0.X/ is naturally isomorphic to the free abelian group over �0.X/.
2. Give a proof of (21.1.10) with singular manifolds.
3. We had defined formally a boundary operator for the MV-sequence from the axioms of a
homology theory. Show that the boundary operator defined with separating functions coin-
cides with this formal boundary operator. Pay attention to signs in the oriented case.
4. The homology theories �� and N� have a product structure. Products of singular mani-
folds induce a bilinear map

�m.X;A/ ��n.Y; B/! �mCn.X � Y;X � B [ A � Y /:
Verify the formal properties of a multiplicative structure, in particular the stability axiom.
5. Let M1 and M2 be oriented @-manifolds which are glued together along a component
Ni � @Mi with a diffeomorphism ' W N1 ! N2. Let M be the result. There exists an
orientation of M such that the canonical embeddings Mi ! M are orientation preserving,
provided ' reverses the boundary orientations of the Ni .

A collar � W R� � @M ! M of an oriented manifold M is orientation preserving, if
R� � R carries the standard orientation, @M the boundary orientation and R� � @M the
product orientation.

In order to verify the transitivity of the oriented bordism relation one has to define the
orientation of the bordism which is obtained by gluing the given bordisms in such a way that
the given bordisms are oriented submanifolds of the glued bordism.
6. The construction of the bordism MV-sequence suggests another set of axioms for a ho-
mology theory. A one-space homology theory consists of a family hn W TOP! R- MOD of
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covariant homotopy invariant functors and a family of boundary operators @ W hn.X0[X1/!
hn�1.X0 \ X1/ for each triad .X IX0; X1/ in which the Xj are open in X . The bound-
ary operators are assumed to be natural with respect to maps of triads and the usual exact
MV-sequence should hold for each such triad.

Given these data, one defines relative groups for a pair .X;A/ by

hn.X;A/ D Coker.hn.CA/! hn.X [ CA//
where as usual CA is the cone on A. The relative groups are homotopy-invariant functors
on TOP.2/. Define a boundary operator @ W hn.X;A/! hn�1.A/ and show that the usual
sequence of a pair is exact. In order to derive this sequence, consider the MV-sequence for the
triad .X [CAIX [CAXX;X [CAX	/. The excision isomorphism hn.X XU;AXU/ Š
hn.X;A/ holds, provided there exists a function � W X ! Œ0; 1� with U � ��1.0/ and
��1Œ0; 1Œ� A, since under this assumption the canonical map .XXU/[C.AXU/! X[CA
is a pointed h-equivalence.

21.2 The Theorem of Pontrjagin and Thom

The theorem of Pontrjagin and Thom relates homotopy theory and manifold theory.
It describes sets of bordism classes as homotopy sets. We begin by defining the
ingredients of the theorem.

LetQ be a smooth manifold without boundary. We denote byQc D Q[ f1g
its one-point compactification. Let � W E.�/ ! B be a smooth real vector bundle
over a closed manifold B . The one-point compactificationM.�/ D E.�/[ f1g is
called the Thom space of �. The points at infinity serve as base points. The pointed
homotopy set ŒQc ;M.�/�0 will be described as a bordism set.

A �-submanifold ofQ is a closed submanifoldM together with a smooth bundle
map F W E.�/! E.�/ from its normal bundle

� D �M D �.M;Q/ W E.�/!M

into the given bundle �. A bordism between two � submanifolds .M0; F0/ and
.M1; F1/ is a compact submanifold W of Q � I (of type I) such that

W \ .Q � Œ0; 1=3Œ/ DM0 � Œ0; 1=3Œ ; W \ .Q� �2=3; 1�/ DM1� �2=3; 1�
and @W D M0 � 0 [M1 � 1 together with a bundle map F W �.W;Q � I / ! �

which extends F0 and F1. Note that �.W;Q � I /jM � 0 can be identified with
�.M0;Q/. The relation of �-bordism is an equivalence relation. We denote by
L.Q; �/ the set of �-bordism classes.

We define a map P W L.Q; �/ ! ŒQc ;M.�/�0, and the main theorem then as-
serts thatP is a bijection. We choose an embedding ofQ into some Euclidean space.
ThenQ inherits a Riemannian metric. The normal bundle �.M;Q/ W E.�/!M is
the orthogonal complement of TM � TQjM . From these data we had constructed
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a tubular map � W E.�/ ! Q. The bundle � inherits a Riemannian metric, and
D".�/; E".�/; S".�/ are the subsets of vectors v of norm kvk � "; kvk < "; kvk D
", respectively. There exists an " > 0 such that t embedsE2".�/ onto an open neigh-
bourhoodU2" ofM inQ. We have a fibrewise diffeomorphism h" W E".�/! E.�/

defined on each fibre by

h".x/ D "xp
"2 � kxk2 :

From these data we construct from a �-submanifold .M;F / a map

g" W Qc ! Qc=.Qc X U"/! D".�/=S".�/!M.�/!M.�/:

The first map is the quotient map, the second a homeomorphism induced by the
inclusion D".�/ � Q (note that D"=S" is a one-point compactification of E"), the
third induced by h", and the fourth induced by the bundle map F (a proper map).
The pointed homotopy class of g" is independent of the chosen (sufficiently small)
", by a linear homotopy in the fibre. Let us set P.M;F / D Œg"� 2 ŒQc ;M.�/�0.
We say that a map g" is obtained by a Pontrjagin–Thom construction.

(21.2.1) Lemma. For �-bordant manifolds .Mj ; Fj / the classes P.Mj ; Fj / are
equal. Therefore we obtain a well-defined map P W L.Q; �/! ŒQc ;M.�/�0.

Proof. We apply a Pontrjagin–Thom construction to a �-bordism. For this purpose
we use for Q � I the product embedding. Let .W; F / be a �-bordism. We obtain
a tubular map � W E.�W /! Q � I which is over M0 � Œ0; 1=3Œ the product of the
tubular map for M0 with Œ0; 1=3Œ, and similarly for the other end. For sufficiently
small ", again � embeds E2".�W / onto a neighbourhood of W and we define as
above a Pontrjagin–Thom map

Qc � I ! Qc � I=.Qc � I X U"/! D".�W /=S".�W /!M.�W /!M.�/;

and this map is a homotopy between the Pontrjagin–Thom maps for .M0; F0/ and
.M1; F1/. �

(21.2.2) Theorem (Pontrjagin, Thom). The Pontrjagin–Thom map

P W L.Q; �/! ŒQc ;M.�/�0

is a bijection.

Proof. We construct a map in the other direction. Let us observe that the maps
f W Qc ! M.�/ obtained by the Pontrjagin–Thom construction are of a very
special type. They have the following properties:

(1) The map f W f �1.E.�// ! E.�/ is proper, smooth and transverse to the
zero section B � E.�/.
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(2) There exists a tubular neighbourhood U" of M D f �1.B/ in Q such that
f .x/ D1, x … U".

(3) The map f ı � ıh�1
" W E.�M /! E".�M /! U" ! E.�/ is a smooth bundle

map.
So we have to deform an arbitrary map into one having these three properties.

(i) Let g W Qc ! M.�/ be given and set A D g�1.E.�//. Then A is open
in Q and g W A ! E.�/ is a proper map. By the approximation theorem (15.8.4)
there exists a proper homotopy of g to a smooth map g1 W A ! E.�/. Restrict
g1 to a compact neighbourhood V of g�1

1 .B/ in A such that V is a manifold and
g1.@V / � E.�/ X B . By the transversality theorem (15.9.8) we find a smooth
homotopy of g1jV to a map which is transverse to B and such that the homotopy
is constant in a neighbourhood of @V . We can therefore extend this homotopy
to a smooth proper homotopy of g1 by a constant homotopy in the complement
of V . Since both homotopies are proper, they can be extended continuously to Qc

by mapping the complement of A to the base point. The result is a smooth map
g2 W Qc !M.�/ which has property (1) above.

(ii) Let M D g�1
2 .B/. Let now " be small enough such that the tubular neigh-

bourhoodU2" ofM is contained inA. Letˇ W Qc ! Œ0; 1� be a continuous function
which is smooth onQ and such thatˇ�1.0/ D D"=2 andˇ�1Œ0; 1ŒD U". We define
a homotopy of g2 by

Ht .x/ D
(
.1 � tˇ.x//�1 � g2.x/; x 2 A; t < 1I x 2 U"; t D 1;
1; otherwise:

The map g3 D H1 has properties (1) and (2) above with U D U".
(iii) Let f D g3 be a map obtained in step (ii). Consider the composition

f �h�1
" D h W E.�M /! E".�M /! U" ! E.�/:

This map is proper, smooth, and transverse to B � E.�/. The homotopyHt .x/ D
t�1h.tx/, defined for t > 0 can be extended to t D 0 by a bundle mapˆ W �M ! �

such that the resulting homotopy is smooth and proper. The mapˆ is the derivative
in the direction of the fibres. In order to see what happens in the limit t ! 0, we
express h in local coordinates. Then h has the form

X � Rn ! Y � Rn; .x; v/ 7! .a.x; v/; b.x; v//

with open sets X � M , Y � B and a.x; 0/ D f .x/; b.x; 0/ D 0. Then
Ht .x; v/ D .a.x; tv/; t�1b.x; tv//. The map v 7! limt!0 t

�1b.x; tv/ is the
differential of bx W v 7! B.x; v/ at v D 0. It is a bijective linear map, because f is
transverse to the zero section.

(iv) We now construct a mapQwhich is inverse toP . Suppose g W Qc !M.�/

is a map such that g W g�1E.�/ ! E.�/ is proper, smooth, and transverse to the
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zero section. LetM D g�1.B/. Then the differential of g induces a smooth bundle
map F W �M ! �. The map Q sends Œg� to the bordism class of the �-submanifold
.M;F /. By (i) we know that each homotopy class has a representative g with
the properties just used. If g0 and g1 are two such representatives, we choose a
homotopy between them which is constant on Œ0; 1=3Œ and on �2=3; 1� and apply the
method of (i) in order to obtain a homotopy h W Qc�I !M.�/; g0 ' g1 such that
h W h�1E.�/! E.�/ is proper, smooth, transverse to the zero section, and constant
on Œ0; �Œ and �1� �; 1�. The pre-image of the zero section and the differential of h
yield a �-bordism. This argument shows that Q is well-defined. By construction,
QP is the identity. The arguments of (i)–(iii) show that P is surjective. �

(21.2.3) Example. Let Q D M be a closed connected n-manifold and � the n-
dimensional bundle over a point. ThenE.�/ D Rn andM.�/ D Sn D Rn[f1g. A
�-submanifold ofQ is a finite subsetX together with an isomorphismFx W TxM !
Rn for each x 2 X . In the present situation ŒQc ;M.�/0� D ŒM; Sn�. We are
therefore in the situation of the Hopf degree theorem.

Let M be oriented. If Fx is orientation preserving, we set ".x/ D 1, and
".x/ D �1 otherwise. Let ".X; F / D P

x2X ".x/ 2 Z. The integer ".X; F /
characterizes the �-bordism class. If we represent a homotopy class in ŒM; Sn� by
a smooth map f W M ! Sn with regular value 0 2 Rn, then X D f �1.0/ and
Fx D Txf and ".X; F / is the degree of f , as we have explained earlier. If we show
that ".X; F / characterizes the bordism class, then the Pontrjagin–Thom theorem
gives a proof of the Hopf degree theorem for smooth manifolds.

If M is non-orientable, we have a similar situation, but this time we have to
consider ".X; F / modulo 2. Þ
(21.2.4) Example. Let Q D RnCk and E.�/ D Rn. Then ŒQc ;M.�/�0 D
�nCk.Sn/, but we disregard the group structure for the moment. A �-submani-
fold is in this case a closed k-manifold M � RkCn together with a trivialization
of the normal bundle. A trivialization of a vector bundle is also called a framing
of the bundle. Since the normal bundle � is inverse to the tangent bundle � we see
that the tangent bundle is stably trivial and a framing � ! n" of the normal bundle
induces TM ˚ n"! TM ˚ � ! .nC k/", a stable framing of M .

We denote by !n.k/ the bordism set of a closed n-manifold with framing
TM ˚ k" ! .n C k/". The bordism relation is defined as follows. Let W be
a bordism between M0 and M1 and let ˆ W T W ˚ .k � 1/" ! .n C k/" be a
framing. Let �0 W T W jMo Š TM0 ˚ " where the positive part of " corresponds
to an inwards pointing vector. Similarly �1 W T W jM1 Š TM1 ˚ " where now the
positive part corresponds to an outwards pointing vector. We obtain a framing

'i W TMi ˚ "˚ .k � 1/"! T W jMi ˚ .k � 1/" ˆ�! .nC k/"
of Mi . We say in this case: .W;ˆ/ is a framed bordism between .M0; '0/ and
.M1; '1/.
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The assignment ŒM; '� � ! ŒM; '� � is a well-defined map L.RnCk; k"/ !
!n.k/. It is bijective for k > nC 1. Þ

In the Pontrjagin–Thom theorem it is not necessary to assume that � is a smooth
bundle over a closed manifold. In fact, � can be an arbitrary bundle. In this case
we have to define the Thom space in a different manner. Let � have a Riemannian
metric; then we have the unit disk bundleD.�/ and the unit sphere bundle S.�/. We
define the Thom space now as the quotient spaceM.�/ D D.�/=S.�/. A definition
that does not use the Riemannian metric runs as follows. The multiplicative group
R�C of positive real numbers acts on the subset E0.�/ of non-zero vectors fibre-
wise by scalar multiplication. Let S.�/ be the orbit space with induced projection
s
 W S.�/! B . The mapping cylinder of s
 is a space d
 W D.�/! B over B and
M.�/ is defined to be the (unpointed) mapping cone of s
 . From this definition we
see that a bundle map f W � ! � induces a pointed mapM.f / W M.�/!M.�/. In
the category of compactly generated spaces we have a canonical homeomorphism
M.� � �/ ŠM.�/^M.�/. If � is the trivial one-dimensional bundle over a point,
this homeomorphism amounts toM.� ˚ "/ ŠM.�/^ S .1/ with S .1/ D R[ f1g.

We can now define as before �-submanifolds of Q and �-bordisms. Also the
Pontrjagin–Thom construction can be applied in this situation, and we obtain a
well-defined map

P D P
 W L.Q; �/! ŒQc ;M.�/�0:

These maps constitute a natural transformation between functors from the category
of n-dimensional bundles and bundle maps.

(21.2.5) Theorem (Pontrjagin, Thom). The Pontrjagin–Thom map P
 is for each
bundle � a bijection.

Proof. The proof is essentially a formal consequence of the special case (21.2.2),
based on the general techniques developed so far.

(i) In the proof of (21.2.2) we used smooth bundles � . A bundle over a closed
manifoldB is induced from a tautological bundle over some GrassmannianGn.RN /
by some mapf . The mapf is homotopic to a smooth mapg and the bundle induced
by g is therefore smooth and isomorphic to � . This fact allows us to work with
arbitrary bundles in (21.2.2). The Pontrjagin–Thom construction itself does not use
a smooth bundle map.

(ii) Suppose i W X ! Y and r W Y ! X are maps with ri D id (a retraction). If
P is bijective for bundles over Y and � is a bundle overX , we pull back this bundle
to � D r��. From the naturality of P and the fact that P� is bijective, we conclude
that P
 is bijective.

(iii) Let C be a compact smooth manifold with boundary. Let B denote the
double D.C/ of C . Then C is a retract of B . Hence P is bijective for bundles
over C .
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(iv) Let X be a finite CW-complex. A finite CW-complex is a retract of some
open set U � Rm. Choose a proper smooth function t W U ! RC such that
t .X/ D f0g. Let � > 0 be a regular value of t . Then X is a retract of the compact
smooth manifold t�1Œ0; ��with boundary. Therefore the theorem holds for bundles
over finite CW-complexes.

(v) Suppose � is a bundle over a CW-complex. By compactness of Qc we see
that a map Qc ! M.�/ has an image in the Thom space of the restriction of the
bundle to a finite subcomplex. This shows, using (iv), that P
 is surjective. An
analogous argument shows the injectivity.

(vi) If B is an arbitrary space we choose a CW-approximation f W C ! B

and let � D f ��. One shows that the bundle map � ! � induces a bijection
L.C; �/ ! L.B; �/. This is due to the fact that a bundle map � ! � is up to
homotopy the composition of a bundle map � ! � with the bundle map � ! �

(manifolds have the homotopy type of a CW-complex), and homotopic bundle maps
yield, via the Pontrjagin–Thom construction, homotopic maps. A similar argument
shows that a bijective map ŒQc ;M.�/�0 ! ŒQc ;M.�/�0 is induced. �

Problems

1. Work out the classification of the �-bordism classes in (21.2.3), thus completing the
sketched proof of the Hopf degree theorem.
2. Give a proof of (21.2.4). The source of the map in question uses embedded manifolds,
the range abstract manifolds. Thus one has to use the Whitney embedding theorem.
3. We use !1.k/ to interpret the isomorphism �kC1.S

k/ Š Z=2 for k � 3. Let .A; '/
represent an element of !1.k/. The manifold A is a disjoint sum of manifolds Aj diffeo-
morphic to S1. Let 'j be the framing of Aj induced by '. We assign to .Aj ; '/ an element
d.Aj ; 'j / 2 Z=2. Let h W A ! S1 be a diffeomorphism. We think of S1 as boundary of
D2 and giveD2 � R2 the standard framing. This induces a standard framing � of TS 1˚ "
in which 1 2 " points outwards. This provides us with a framing

� W TA˚ k" T h˚id
�� TS 1 ˚ " 
˚id

�� .k C 1/":
If A is framed by ', then ' W TA˚ k" ! .k C 1/" orients the bundle TA. We choose the
diffeomorphism h such that the composition with � is orientation preserving. The homotopy
class of � is independent of the chosen h. The framing ' differs from the standard framing
by a map

A! GLC
kC1

.R/ ' SO.k C 1/:
Composed with h�1 we obtain a well-defined element in

ŒS1; SO.k C 1/� Š �1SO.k C 1/ Š Z=2; k � 2;
denoted by d.A; '/ 2 Z=2. IfA consists of the components .Aj j j 2 J /we set d.A; '/ DP

j d.Aj ; 'j /.
Show that .A; '/ 7! d.A; '/ induces fork � 2 a well-defined isomorphismd W !1.k/!

Z=2.
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4. Give a similar interpretation of �3.S
2/ Š Z. The difference to the case of the previous

problem is due to �1SO.2/ Š Z.

21.3 Bordism and Thom Spectra

The theorem of Pontrjagin–Thom allows us to describe the bordism group Nn.X/
as a homotopy group.

Let �n W E.�n/! BO.n/ be a universal n-dimensional real vector bundle and
MO.n/ D M.�n/ its Thom space. A classifying map �n ˚ " ! �nC1 induces a
pointed map en W †M.�n/ Š M.�n ˚ "/! M.�nC1/. The Thom spectrum MO
consists of the family .MO.n/; en/. The associated homology and cohomology
groups of a pointed space Y are denoted MOn.Y / and MOn.Y /.

(21.3.1) Theorem. There exists a natural isomorphism

T .X/ W Nn.X/ ŠMOn.X
C/:

We will see that the isomorphism T .X/ is obtained by a stable version of the
Pontrjagin–Thom construction.

For each space X we denote by �m.X/ the product bundle idX ��m. We define
a map

…k.X/ W L.RnCk; �k.X//! Nn.X/:

Let ŒM; F � be an n-dimensional �k.X/-submanifold of RnCk . The first component
F1 of the �k.X/-structureF D .F1; F2/ W E.�M /! X�E.�/ gives us the element
…k.X/ŒM;F � D ŒM; F1� 2 Nn.X/. It is obvious that we obtain a well-defined
map …k . There is a kind of suspension map

� W L.RnCk; �k.X//! L.RnCkC1; �kC1.X//:

For ŒM; F � consider M 0 D M � f0g � RnCk � f0g � RnCkC1. The normal
bundle of M 0 is E.�M / ˚ ". We compose E.�M / ˚ " ! E.�k/ ˚ " with the
classifying map E.�k/ ˚ " ! E.�kC1/. From F we thus obtain a new struc-
ture F 0 D .F1; F

0
2/ W E.�M 0/ ! X � E.�kC1/. We set �ŒM;F � D ŒM 0; F 0�.

The commutativity …kC1� D …k holds. Let Ln.X/ denote the colimit over
the maps � W L.RnCk; �k.X// ! L.RnCkC1; �kC1.X//. Altogether we obtain
….X/ W Ln.X/! Nn.X/.

(21.3.2) Proposition. The map….X/ W Ln.X/! Nn.X/ is bijective.

Proof. Surjective. Let ŒM; f � 2 Nn.X/ be given. We can assume M � RnCk for
some k, by the Whitney embedding theorem. Let �M W �M ! �k be a classifying
map of the normal bundle. Then we have the �k.X/-structure F D .f ı �M ; �M /,
and …k.X/ŒM;F � D ŒM; f � holds by construction.
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Injective. Suppose ŒM0; F0� and ŒM1; F1� have the same image under ….X/.
We can assume that Mj � RnCk for a suitable k. There exists a bordism B with
@B D M0 CM1 and an extension f W B ! X of hf0; f1 i where fj is the first
component of Fj . There exists an embedding B � RnCkCt � Œ0; 1� such that

B \ .RnCk � Rt � Œ0; 1=3Œ / DM0 � 0 � Œ0; 1=3Œ ;
B \ .RnCk � Rt� �2=3; 1�/ DM1 � 0� �2=3; 1�:

By use of collars we can find a bordism B such that

' W C DM0 � Œ0; 1=2ŒC �1=2; 1� � B
and @B DM0�0CM1�1. We embedC ! RnCk�Rt�Œ0; 1�, .m; s/ 7! .m; 0; s/.
Then we choose a continuous function ˆ W B ! RnCkCt � Œ0; 1� such that ˆ
extends ' on D D M0 � Œ0; �� C M1 � Œ1 � �; 1� for some 1=3 < � < 1=2

and such that ˆ.B X D/ is contained in RnCkCt� �1=3; 2=3Œ (Tietze extension
theorem). Suppose k C t > n C 1. We now approximate ˆ by an embedding
J W B ! RnCkCt � Œ0; 1� such that J.B X D/ � RnCkCt� �1=3; 2=3Œ and such
that J equals ' on M0 � Œ0; 1=3ŒCM1� �2=3; 1�.

The bundle maps �Mj
! �k yield bundle maps �Mj

˚ t "! �kCt . Since these
classifying maps are unique up to homotopy and since @B � B is a cofibration,
we can extend these maps to a bundle map �B ! �kCt . We thus see that the
ŒMj ; Fj � 2 L.RnCkCt ; �k.X// have the same image inL.RnCkCt ; �kCt .X//. �

The Pontrjagin–Thom maps

P W L.RnCk; �k.X//! ŒSnCk;M.�k.X//�0 Š �nCk.XC ^MO.k//

are compatible with suspensionP ı� D � ıP . We obtain a bijection of the colimits
P W Ln.X/ ŠMOn.XC/ and hence a natural bijection

T D P ı…�1 W Nn.X/ ŠMOn.X
C/:

It remains to verify that T is a homomorphism. Let ŒMi ; fi � 2 Nn.X/ be given.
Choose embeddings

M1 � A1 D fx j xnCk > 0g � RnCk; M2 � A2 D fx j xnCk < 0g � RnCk

and choose tubular neighbourhoods Ui � Ai of Mi . The Pontrjagin–Thom con-
struction applied toM1CM2 yields a map which factors over the comultiplication
SnCk ! SnCk _ SnCk . The restrictions to the summands are representatives of
P ŒMi ; fi �.

For more details on bordism homology and cohomology theories see [37], [181],
[160], [28].
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Problems

1. Given f0; f1 W Qc ! M.�/. Let U � M.�/ be an open neighbourhood of B . Suppose
V D f �1

0
.U / D f �1

1
.U / and f0jV D f1jV . Then f0 and f1 are pointed homotopic.

21.4 Oriented Bordism

The oriented bordism homology theory is isomorphic to the spectral homology
theory of the Thom spectrumMSO D .MSO.n/; en/ whereMSO.n/ is the Thom
space of the universal n-dimensional orientable vector bundle over BSO.n/. The
isomorphism

�n.X/ ŠMSOn.X
C/

is established as in the case of unoriented bordism. The Pontrjagin–Thom con-
struction uses in this case an orientation of the normal bundle. An embedding
M n � RnCk induces a canonical isomorphism �.M/ ˚ �.M/ Š .n C k/" in
which the normal bundle �.M/ is the orthogonal complement of the tangent bun-
dle. An orientation of �.M/ induces an orientation of �.M/ such that fibrewise
�x.M/˚ �x.M/ Š RnCk is orientation preserving.

(21.4.1) Lemma. MSO.k/ is .k � 1/-connected.

Proof. The canonical map s W BSO.k � 1/! BSO.k/ can be taken as the sphere
bundle of the universal oriented k-dimensional bundle. From the homotopy se-
quence of this fibration we see that s is .k � 1/-connected. The homotopy se-
quence of s is isomorphic to the sequence of the pair .Dk; Sk/ of the universal
(disk,sphere)-bundle over BSO.k/. Hence .Dk; Sk/ is .k � 1/-connected. Since
BSO.k/ is simply connected, we can apply (6.10.2) and see that �j .Dk; Sk/ !
�j .Dk=Sk/ D �j .MSO.k// is an isomorphism for j � k � 1. �

The suspension isomorphism �nCk.MSO.k// ! �nCkC1.†MSO.k// is an
isomorphism for k � n C 2, since MSO.k/ is .k � 1/-connected (see (6.10.4)).
The spectral map �j .†MSO.k// ! �j .MSO.k C 1// is an isomorphism for
j � 2k � 1. In order to see this, we use the Whitehead theorem (20.1.4): The
spaces in question are simply connected. Thus it suffices to see that we have a
homology isomorphism in the same range.

Hj .†MSO.k// ��

Thom
��

Hj .MSO.k C 1//
Thom
��

Hj�k.BSO.k// �� Hj�k.BSO.k C 1//

The map BSO.k/ ! BSO.k C 1/ is .k � 1/-connected, hence the vertical maps
are isomorphisms for j � k � k � 1. These arguments show that we need
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not pass to the colimit, colimk �nCkMSO.k/; we already have an isomorphism
�n Š �nCkMSO.k/ for k � nC 2. (The geometric reason for this stability result
is the strong form of the Whitney embedding theorem which we had not used in
(21.3.1).)

The assignment ŒM � 7! .�M /�ŒM � 2 Hn.BSOIQ/ of Section 19.8 induces a
ring homomorphism �� ! H�.BSOIQ/ which we extend to a homomorphism
of Q-algebras �� W ��˝Q! H�.BSOIQ/. We can define in a similar manner a
homomorphism �� W ��˝Q! H�.BSOIQ/ if we use classifying maps of stable
normal bundles.

(21.4.2) Theorem. The homomorphisms

�� W �� ˝Q! H�.BSOIQ/ and �� W �� ˝Q! H�.BSOIQ/
are isomorphisms of graded algebras.

Proof. Lemma (21.4.1) and (20.8.3) imply that the Hurewicz homomorphism

�r.MSO.k//! Hk.MSO.k//

has for r < 2k � 1 both a finite kernel and a finite cokernel; hence it induces
an isomorphism �r.MSO.k// ˝ Q ! Hr.MSO.k/IQ/ in this range. We also
have the homologicalThom isomorphismHr.MSO.k/IQ/ Š Hr�k.BSO.k/IQ/.
The previous considerations now show that we have an isomorphism �n ˝Q Š
Hn.BSO.k/IQ/. The computation of Hn.BSO.k/IQ/ Š Hn.BSOIQ/ for k �
nC 2 shows that the Q-vector space�4n˝Q has dimension �.n/, the number of
partitions of n. From our computation of ��.CP 2a/ we see that �� W �4n ˝Q!
H4n.BSOIQ/ is a surjective map between vector spaces of the same dimension,
hence an isomorphism.

The homomorphism �� is obtained from �� by composition with the antipode �
of the Hopf algebra H�.BSOIQ/. It is determined by the formal relation

.1C q1 C q2 C � � � /.1C �.q1/C �.q2/C � � � / D 1
which expresses the relation between the Pontrjagin classes of a bundle and its
inverse. �

Together with our previous computations (19.8.4) we obtain:

(21.4.3) Theorem. The algebra �� ˝Q is a polynomial Q-algebra in the gener-
ators ŒCP 2n�, n 2 N. �

We now collect various results and prove the Hirzebruch signature theorem.

(21.4.4) Theorem. The signature �.M/ of an oriented closed 4n-manifold is ob-
tained by evaluating the Hirzebruch polynomial Ln in the Pontrjagin classes ofM
on the fundamental class.
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Proof. From (18.7.3) and (18.7.7) we see that M 7! �.M/ induces a ring homo-
morphism�� ! Z. We extend it to a homomorphism of Q-algebras � W �� ! Q.
Via the isomorphism �� of Theorem (21.4.2) it corresponds to a homomorphism
s W H�.BSOIQ/ ! Q such that � D s ı ��. The homomorphism s was used
at the end of Section 19.8 to determine polynomials Ln 2 H 4n.BSOIQ/ in the
Pontrjagin classes such that hLn.p/; ŒM �i D �.M/. �

Problems

1. It is not necessary to use the computation of ��.CP 2a/ in the proof of (21.4.2). The
reader is asked to check that the diagram

�n
P ��

��
��

�nCk.MSO.k// h �� HnCk.MSO.k//

tZ
��

Hn.BSO/ Hn.BSO.k//
Š��

commutes (at least up to sign if one does not care about specific orientations). P is the
Pontrjagin–Thom map, h is the Hurewicz homomorphism, tZ is the homological Thom
isomorphism, the bottom map is induced by the stabilization.
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Symbols

Numbers

N natural numbers f1; 2; 3; : : : g
N0 N [ f0g
Z integers f0;˙1;˙2; : : : g
Q rational numbers

R, RC, R� real numbers, non-negative, non-positive

C complex numbers

C� C X 0, non-zero numbers

H quaternions

Z=m D Z=mZ integers modulo m

Fq field with q elements

Categories

TOP category of topological spaces and continuous maps

TOP0 pointed spaces and pointed maps

TOPK spaces under the space K

TOPB spaces over the space B

TOP.2/ pairs .X;A/ of a space X and a subspace A

G- TOP spaces with an action of the topological group G

COVB covering spaces of the space B

h-TOP homotopy category of TOP

h-C homotopy category associated to a category C

with homotopy notion

R- MOD left modules over the ring R

ABEL abelian groups

SET sets

G- SET sets with left G-action

….X/ fundamental groupoid of X

Or.G/ orbit category of the group G



552 Symbols

ŒC ;D � category of functors C ! D and natural transformations

TRAB transport category Œ….B/; SET�

Ker, Ke kernel

Coker, Ko cokernel

Im image

id; 1 identity

pr projection onto a factor of a product

.fj / map into a product with components fj

hfj i map from a sum with components fj

Spaces

Rn Euclidean n-space

Sn unit sphere in RnC1

Dn unit disk in Rn

En Dn X Sn�1 unit cell

I D Œ0; 1� unit interval

I n n-fold Cartesian product I � I � � � � � I
@I n combinatorial boundary of I n

S.n/ I n=@I n

S .n/ Rn [ f1g

n D 
Œn� n-dimensional standard simplex

@
n combinatorial boundary of 
n

RP n n-dimensional real projective space

CP n n-dimensional complex projective space

Vk.F
n/ Stiefel manifold of orthonormal k-frames in F n

Gk.F
n/ Grassmann manifold of k-dimensional subspaces of F n

EG universal free G-space

BG classifying space of the topological group G

E=G;GnE orbit space of a G-action on E

E �G F balanced product

XH H -fixed point set

K.�; n/ Eilenberg–Mac Lane space of type .�; n/
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X=A X with A � X identified to a point

XC X with additional base point

Groups

GLn.F / group of .n; n/-matrices with entries in F D R;C;H

O.n/ group of orthogonal matrices in GLn.R/

SO.n/ matrices of determinant 1 in O.n/

U.n/ group of unitary matrices in GLn.C/

SU.n/ matrices of determinant 1 in U.n/

S1 complex numbers of modulus 1

Spin.n/ Spinor group, double covering of SO.n/

Sp.n/ symplectic group

Sn symmetric group

Relations

� end of proof

Þ end of numbered item

X difference set

Y cup product

Z cap product

� equivalent (equivalence relation)

' homotopy-equivalent, homotopic

Š isomorphic, homeomorphic, diffeomorphic

˚ direct sum

˝ tensor product

_ pointed sum (bouquet)

? join

^ smash product

	 induced morphism, general index, base point, free product

of groups

C, q topological sum

kxk Euclidean norm of x



554 Symbols

jzj absolute value of complex number z

jX j cardinality of X

Modules

lim limit (inverse limit)

colim colimit (direct limit)

lim1 derived functor of lim

Tor torsion product, left derived of Hom

Ext;Extnƒ.A;B/ module of extensions, right derived of Hom

Bundles

E.�/; E0.�/ total space of vector bundle, without zero section

TM tangent bundle of the manifold M

K.X/ D KC.X/ D KU.X/ Grothendieck ring of complex vector bundles

KO.X/ D KR.X/ Grothendieck ring of real vector bundles

"; n" trivial bundle, of dimension n

M.�/ Thom space of the bundle �

MO.n/;MSO.n/ Thom space of the universal n-dimensional

(oriented) bundle

ci .�/; wi .�/; pi .�/ i -th Chern, Stiefel–Whitney, Pontrjagin class

Homotopy

CX (pointed) cone on X

†X suspension of X

Z.f / (pointed) mapping cylinder of f

Z.f; g/ double mapping cylinder

C.f / mapping cone of f

C.X;A/ mapping cone of A � X
H� inverse of the homotopy H

K 	 L product (concatenation) of homotopies K;L

ŒX; Y � homotopy classes of maps X ! Y

ŒX; Y �0 pointed homotopy classes

ŒX; Y �K ; ŒX; Y �B homotopy classes under K, over B
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….X/ fundamental groupoid of X

….X; Y / homotopy groupoid

�n.X;A;	/ n-homotopy group of the pointed pair .X;A;	/
XY D F.X; Y / space of maps X ! Y with compact-open topology

�X loop space of X

hocolim homotopy colimit

N.U/ nerve of the covering U

B.U/ geometric realization of the nerve

Co-Homology

Sq.X/ singular q-chains

S�.X;A/ singular chain complex of .X;A/

Hq.X;AIG/ ordinary homology with coefficients in G

H q.X;AIG/ ordinary cohomology with coefficients in G

Œv0; : : : ; vq� affine simplex with vertices vj

h�; h� general homology, cohomology; or its

coefficient groups
Qh�; Qh� reduced homology, cohomology

@ boundary operator

ı coboundary operator

�.X/ Euler characteristic of X

N�.X/ unoriented bordism

��.X/ oriented bordism

MOk.X/;MSOk.X/ unoriented, oriented bordism via Thom spectra





Index

accumulation value, 4
action

diagonal, 17
effective, 17
free, 17
left, 17
proper, 329
properly discontinuous, 64
right, 17
transitive, 17
trivial, 17
weakly proper, 329

acyclic, 287, 498
additive invariant, 309
additivity axiom, 245
adjoint map, 38
adjunction space, 7
affinely independent, 198
Alexander duality, 446
Alexander–Whitney map, 240
Alexander–Whitney morphism, 241
algebra, 482

dual, 483
antipodal involution, 21
antipode, 484
approximation of the diagonal, 240

Alexander–Whitney, 240
atlas, 358

orienting, 336, 372
attaching a space, 7
attaching map, 203

barycenter, 231
barycentric coordinates, 198
barycentric subdivision, 197
base change, 117
base point, 31

nondegenerate, 102

base space, 32
basis of a topology, 2
Bernoulli numbers, 493
Betti number, 310
bi-degree, 260
bialgebra, 484
Bockstein operator, 419
bordant

orientable, 403
bordism, 521, 524

oriented, 526
Borsuk–Ulam theorem, 436
boundary, 2, 283
boundary operator, 123, 224, 245, 266,

283, 284
boundary relation, 224
bouquet, 31
Brouwer Fixed Point Theorem, 137
bundle, 62

associated, 334
framing, 532
induced, 331, 337
numerable, 342
principal, 328
projective, 471
universal, 344

bundle atlas, 336
bundle chart, 62, 336
bundle isomorphism, 331
bundle map, 331, 336
bundle morphism, 336

canonical complex line bundle, 340
cap product, 438
category

topological, 334
2-category, 60

1-morphism, 61
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2-morphism, 61
horizontal composition, 61
vertical composition, 61

cell, 203
attaching, 203, 204
k-dimensional, 199

cellular chains, 302
cellular approximation theorem, 210
cellular chain complex, 302
chain, 283

singular, 224
with coefficients, 237

chain complex, 283
acyclic, 287
cellular, 302
contractible, 287
exact sequence, 284
singular, 224

chain equivalence, 285
chain homotopic, 285
chain homotopy, 285
chain map, 283
characteristic class, 474

stable, 474
characteristic map, 199
characteristic subgroup, 75
chart, 358, 369

adapted, 337, 359, 366, 370
centered at a point, 358
C k-related, 358
domain, 358
positive, 336, 372, 400
positively related, 372

Chern class, 474
total, 474

chromatic number, 264
classification II, 75
classifying map, 344

stable, 356
classifying space, 344
closed simplex, 198
closure, 2

clutching datum, 9
coalgebra, 483

dual, 483
cobase change, 104
coboundary, 285
coboundary operator, 285, 406
cochain, 285
cochain complex, 285
cocycle, 285
codimension, 359
coefficient groups, 245, 406
cofibration, 102

homotopy theorem, 106
induced, 104

cofibre, 111
cofibre sequence, 95
cogroup, 91
coherent, 445
cohomology

additive, 180
C-oriented, 467
for pointed spaces, 180
limits, 408
R-oriented, 467
singular, 417

cohomology group, 406
cohomology module, 285
cohomology theory, 405

additive, 406
multiplicative, 409
suspension, 406

cohomotopy group, 181
coincidence set, 11
colimit, 12
colimit topology, 10
collar, 382
commutation rule, 61, 88
commutator group, 227
comonoid, 90
compact, 11

locally, 12
compact-open topology, 37
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compactification, 12
Alexandroff, 12
one-point, 12
point at infinity, 12

compactly generated, 187
complex

Whitehead, 199
complex structure, 342
component, 27
compressible, 143
comultiplication, 91
cone, 92, 107
cone construction, 228
connected sum, 390
connecting morphism, 280
connectivity
1-connected, 143
n-connected, 143

continuous, 2
contractible, 28, 287
contraction, 28
convergence

uniform, 4
convex, 29
convolution, 484
coordinate change, 358
copairing, 491
covering, 11

closed, 11
countable, 11
"-covering, 140
finite, 11
locally finite, 11
n-connective, 214
nerve, 197
null homotopic, 325
numerable, 318
numeration, 318
open, 11
order, 140
point-finite, 11
refinement, 11

shrinking, 15
universal, 66

covering dimension, 140
covering space, 63

associated, 65
characteristic subgroup, 75
classification I, 70
classification II, 75
classification III, 78
deck transformation, 65
path lifting, 69
principal, 64, 329
regular, 75
transport functor, 67
trivial, 63
universal, 78

cup product, 409
CW-approximation, 215
CW-complex, 205

cellular dimension, 205
finite, 205
relative, 205
skeleton, 205

CW-decomposition, 205
CW-space, 205
cycle, 283
cylinder, 92

deck transformation, 65
decomposable, 253
decomposition of a space, 27
deformation retract, 32
degree, 49, 136

bordism invariance, 403
homological, 257
local, 259
modulo 2, 401

diagonal action, 17
diameter, 4
diffeomorphism, 359
differential, 283, 362
differential structure, 359
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dimension axiom, 245, 406
directed set, 4
distance, 3, 4
divided powers, 427
division algebra, 518
domination, 215
double mapping cylinder, 84
duality, 175

coevaluation, 175
evaluation, 175

duality pairing, 442
duality theorem, 446

edge, 197
Eilenberg subcomplex, 235
Eilenberg–Mac Lane morphism, 240
Eilenberg–Mac Lane space, 217

polarized, 218
product, 220
rational cohomology, 513

Eilenberg–Mac Lane spectrum, 221
Eilenberg–Zilber morphism, 238
elementary surgery, 390
embedding, 5

smooth, 359
universal property, 5

ENR, 448
equivariant, 17
Euclidean neighbourhood retract, 176,

448
Euclidean space

with two origins, 80
Euler characteristic, 179, 310

combinatorial, 308
relative homological, 310

Euler class, 431, 464
evaluation, 37

on the fundamental class, 457
evenly covered, 63
exact homology sequence, 225
exact sequence, 68
exact sequence of a triple, 225

excision map, 133
excision property, 525
excisive, 166, 239, 265, 407
extension, 101

initial condition, 101
extension of modules, 294
external product, 413

face, 197
fibration, 66

homotopy theorem, 118
Hurewicz, 115
induced, 117
Serre, 115

fibration theorem, 505
fibre, 32

typical, 63
fibre bundle, 62
fibre sequence, 99
fibre transport, 118
fibrewise, 32
final, 4
five lemma, 278, 282

mod C , 505
fixed point set, 17
flag bundle, 477
flag space, 477
formal group law, 485
free group, 53
free product, 53
free resolution, 292
fundamental class, 399, 402, 445
fundamental group, 42
fundamental groupoid, 42
fundamental lemma, 287

Gauss map, 352
genus, 312
geometric realization, 198, 321
graded module, 283
graph, 197, 264

chromatic number, 264
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colouring, 264
Grassmann manifold, 23, 362
Grothendieck ring, 356
group

discrete, 15
free, 53
general linear, 16
normalizer, 21
orthogonal, 16
special linear, 16
special orthogonal, 16
special unitary, 16
topological, 15
topological subgroup, 16
torus, 16
unitary, 16
Weyl, 21

group algebra, 486
group object, 90
group-like, 486
groupoid, 42

topological, 335
Gysin sequence, 431

h-fibration, 118
half-space, 369
Hausdorff space, 3
h-coexact, 92
h-cofibration, 118
HEP, 101
h-equivalence, 28
h-exact, 97
hexagon lemma, 277
Hirzebruch L-polynomials, 494
HLP, 66, 115
homeomorphism, 2
homogeneous space, 18
homological orientation, 444, 445
homologous, 283
homology

additive, 180

additivity axiom, 245
coefficient groups, 245
dimension axiom, 245
for pointed spaces, 179
group, 283
integral, rational, mod.p/, 237
module, 283

homology product, 242
homology group, 283

local, 392
reduced, 252
relative, 225
singular, 224

homology module, 283
homology theory, 244

one-space, 528
homotopic, 27
homotopy, 27, 38

constant, 28
equivariant, 17
G-homotopy, 17
inverse, 28
linear, 29
product, 28
relative, 28

homotopy category, 28
homotopy class, 28
homotopy cocartesian, 85
homotopy colimit, 270
homotopy equivalence, 28

weak, 144
homotopy equivalent, 28
homotopy extension property, 101
homotopy fibre, 120
homotopy functor, 215
homotopy inverse, 28
homotopy lifting property = HLP, 66
homotopy pushout, 85
homotopy type, 28
Hopf algebra, 484

primitive element, 485
duality, 485
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group-like element, 486
pairing, 485

Hopf fibration, 332
Hopf invariant, 517
Hopf space, 90
H-space, 90
Hurewicz fibration, 115
Hurewicz homomorphism, 496

identification, 6
immersion, 363
incidence number, 301
index, 463
initial condition, 115
interior, 2
interior point, 2
Invariance of dimension, 252
Invariance of domain, 251
invariant scalar product, 19
involution

antipodal, 21
isotropy group, 17

join, 86, 345
Jordan curve, 250

Künneth formula, 298
homology, 242

Kernel–Cokernel Lemma, 281
Klein bottle, 58
Kneser graph, 264
Kronecker pairing, 418
k-space, 187

Lebesgue lemma, 47
Lebesgue number, 47
Lefschetz fixed point index, 179
left action, 17
left translation, 15, 17
lens space, 368
Lie group, 361
lifting, 50, 63, 101

initial condition, 50, 66

linking number, 404
local coordinate system, 358
local degree, 259
local parametrization, 358
local section, 332, 364
locally Euclidean, 358
locally finite, 318
locally trivial, 62, 332
loop, 42
loop space, 89

manifold, 358
boundary, 369
closed, 369
double, 391
interior, 369
orientable, 372
product, 359
smooth, 359
Stiefel, 365

manifold with boundary, 369
map

antipodal, 261
attaching, 203, 204
cellular, 210
characteristic, 199, 203, 204
closed, 2
continuous, 2
continuous at a point, 2
differentiable, 358, 369
n-equivalence, 144
odd, 261
open, 2
proper, 14
quotient, 6
regular point, 363
regular value, 363
singular value, 363
smooth, 358, 359, 370
transverse, 385
uniformly continuous, 4
weak equivalence, 144



Index 563

mapping cone, 93, 111, 287
mapping cylinder, 81, 110
Mayer–Vietoris sequence, 266, 407
measure zero, 365
metric, 3
metric space, 3
Mittag-Leffler condition (DML), 409
ML, 409
module

graded, 283
monoid, 90

in h-TOP, 49
Moore space, 256
morphism

connecting, 284
multiplicative structure, 409
MVS, 266

NDR, 114
NDR-presentation, 114
neighbourhood, 2

basis, 2
", 3
open, 2

neighbourhood deformation retract, 114
nerve, 197
net, 4

convergent, 4
normal bundle, 376
normalizer, 21
null bordant, 521
null bordism, 521
null homotopic, 28
null homotopy, 28
numerable, 86, 318
numeration, 318

obstruction, 205
omega-spectrum, 181
open simplex, 198
orbit, 17
orbit category, 19, 75

orbit space, 17
orbit type

finite, 17
orientation, 372, 394

along a subset, 394
boundary, 373
complex structure, 372
C-oriented, 467
local, 393
opposite, 372
pre-image, 374
product, 372
R-oriented, 467
standard, 372
sum, 372

orientation covering, 342, 394
orthogonal group, 16

paracompact, 15
partition of unity, 318

generalized, 320
subordinate, 318

path, 25
constant, 25
homotopy, 41
inverse, 25
product, 25

path component, 26
path connected, 26
Plücker coordinates, 366
Poincaré duality, 446
point finite, 318
pointed

homotopy, 31
homotopy equivalence, 31
map, 31
product, 31
space, 31
sum, 31

polyhedron, 199
Pontrjagin class, 480
Pontrjagin number, 492
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Pontrjagin–Thom construction, 530
pre-spectrum, 181
preparation theorem, 149
primitive, 485
principal bundle, 328
principal covering, 64
product orientation, 401
products

cap product, 438, 442
cup product, 409
cup product in singular

cohomology, 422
external, 413
Kronecker pairing, 418

projective bundle, 471
projective plane, 58
projective resolution, 287
projective space, 21, 22

homogeneous coordinates, 21
proper, 14
properly discontinuous, 64
pseudo-circle, 27
pullback, 8
Puppe-sequence, 95
pushout, 9

quasi-compact, 11
quotient map, 6

universal property, 6
quotient space, 6

ramification index, 313
ramification point, 313
ramified covering, 313
rank theorem, 363
reduced cohomology groups, 407
reduced homology, 252
regular point, 363
regular value, 363
representation, 19

orthogonal, 19
unitary, 19

retract, 6, 32
retraction, 6, 32
Riemann–Hurwitz formula, 314
Riemannian metric, 351
right action, 17

saturated, 6
scaling function, 169
section, 6, 32

local, 332, 364
Segre embedding, 366
semi-locally simply connected, 70
separating function, 523
separation axiom, 3
Serre class, 504

saturated, 504
Serre fibration, 115

exact sequence, 130
set

bounded, 4
closed, 2
dense, 2
nowhere dense, 2
open, 2

set map, 2
sheet, 63
short exact, 275
shrinkable, 32
shuffle, 240
shuffle morphism, 240
signature, 458
simplex, 197

combinatorial boundary, 198
dimension, 197
face, 197, 224
singular, 224
standard simplex, 224

simplicial complex
barycentric subdivision, 197
geometric realization, 198

simplicial complex, 197, 307
finite, 197
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locally finite, 197
q-simplex, 307
subcomplex, 197
vertex, 307

simplicial diagram, 321
simply connected, 43

1-connected, 43
singular value, 363
skeleton, 205
skeleton filtration, 205, 416
slant product, 441
smash product, 31, 193
smooth manifold, 359
space

weakly hausdorff, 187
adjunction, 7
A-simple, 110
comb space, 33
compact, 11
compactly generated, 187
completely regular, 3
component, 27
connected, 27
covering, 63
decomposition, 27
discrete, 2
Eilenberg–Mac Lane, 217
G-space, 17
Hausdorff, 3
homeomorphic, 2
homogeneous, 18
k-closed subset, 187
k-open subset, 187
locally compact, 12
locally connected, 64
locally path connected, 64
metric, 3
metrizable, 4
n-connected, 143
normal, 3
n-simple, 110

over, 32
paracompact, 15
pointed, 31
quasi-compact, 11
quotient, 6
regular, 3
separated, 3
simple, 110
topological, 2
totally disconnected, 27
transport-local, 70
under, 32
well-pointed, 102

spaces
triple of, 32
pair of, 31

spectrum, 181
Eilenberg–Mac Lane, 221
spheres, 181
suspension, 182

sphere
stable homotopy groups, 517

sphere spectrum, 181
splitting, 276
splitting lemma, 276
splitting principle, 477
stabilizer, 17
stable unitary group, 475
stably homotopic, 159
stably homotopy equivalent, 159
standard resolution, 292
star, 198
star-shaped, 29
stereographic projection, 35
Stiefel manifold, 22, 365
Stiefel–Whitney class, 479
Stiefel–Whitney number, 492
structure group, 334

reduction, 334
subbasis of a topology, 2
subcomplex, 197, 199
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submanifold, 359
of type I, 370
of type II, 370
smooth, 359

submersion, 363
subnet, 4
subspace, 5

G-, 17
G-invariant, 17
G-stable, 17
locally closed, 13
relatively compact, 11

sum-lemma, 277
support of a function, 318
surface, 358

genus, 312
hyper-elliptic, 316
hyper-elliptic involution, 316

suspension, 87, 107, 288
homological, 249

suspension spectrum, 182

tangent bundle, 374
tangent space, 362
tangent vector, 362

pointing inwards, 370
pointing outwards, 370

telescope, 270
test map, 187
test space, 187
theorem

Alexander duality, 446
Blakers–Massey, 133, 148
Borsuk–Ulam, 464
Bott periodicity, 357
cellular approximation, 210
E. H. Brown representability, 216
Ehresmann, 382
Freudenthal suspension, 154
Hurewicz, 497
Leray–Hirsch, 427, 430
M. Brown, 251

Poincaré duality, 446
Sard, 365
Schoenflies, 251
Thom isomorphism, 431
Tietze, 3
Tychonoff, 12
Urysohn, 3
Whitehead, 498

Thom class, 431
strict, 433
tangent bundle, 464

Thom homomorphism, 434
Thom isomorphism, 431
topological group, 15
topological product, 8
topological subgroup, 16
topological sum, 9
topology, 1

basis, 2
coarser, 2
colimit, 12
compact open, 37
discrete, 2
finer, 2
product, 8
quotient, 6
relative, 5
subbasis, 2
subspace topology, 5

torsion product, 292
torus, 16
total space, 32
transition function, 358
transition map, 336
translation map, 329
transport, 107
transport category, 70
transport functor, 67, 107, 119
transport space, 70
transport-local, 70
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transport-simple, 70
transverse, 385

to a submanifold, 385
tree, 209
triangulation, 198
trivial G-space, 332
trivial over, 62
trivialization, 62
tubular map, 376
tubular neighbourhood, 377
typical fibre, 63

unitary group, 16
universal coefficients, 295, 296

cohomology, 418
homology, 238

universal covering, 78
universal group, 355

vector bundle, 336
finite type, 336

inverse, 351
numerable, 336
orientable, 336
orientation, 336
subbundle, 337
tautological, 339

vector bundles
stably equivalent, 356

vector field, 136
vertex, 197

Wang sequence, 426
weak equivalence, 144
wedge, 31
well-pointed, 102
Weyl group, 21
Whitehead complex, 199

subcomplex, 199
Whitney sum, 351
winding number, 50, 258, 403


	Cover
	EMS Textbooks in Mathematics
	Algebraic Topology
	Copyright
	9783037190487

	Preface
	Contents
	1 Topological Spaces���������������������������
	1.1 Basic Notions������������������������
	1.2 Subspaces. Quotient Spaces�������������������������������������
	1.3 Products and Sums����������������������������
	1.4 Compact Spaces�������������������������
	1.5 Proper Maps����������������������
	1.6 Paracompact Spaces�����������������������������
	1.7 Topological Groups�����������������������������
	1.8 Transformation Groups��������������������������������
	1.9 Projective Spaces. Grassmann Manifolds�������������������������������������������������

	2 The Fundamental Group������������������������������
	2.1 The Notion of Homotopy���������������������������������
	2.2 Further Homotopy Notions�����������������������������������
	2.3 Standard Spaces��������������������������
	2.4 Mapping Spaces and Homotopy��������������������������������������
	2.5 The Fundamental Groupoid�����������������������������������
	2.6 The Theorem of Seifert and van Kampen������������������������������������������������
	2.7 The Fundamental Group of the Circle����������������������������������������������
	2.8 Examples�������������������
	2.9 Homotopy Groupoids�����������������������������

	3 Covering Spaces������������������������
	3.1 Locally Trivial Maps. Covering Spaces������������������������������������������������
	3.2 Fibre Transport. Exact Sequence������������������������������������������
	3.3 Classification of Coverings��������������������������������������
	3.4 Connected Groupoids������������������������������
	3.5 Existence of Liftings��������������������������������
	3.6 The Universal Covering���������������������������������

	4 Elementary Homotopy Theory�����������������������������������
	4.1 The Mapping Cylinder�������������������������������
	4.2 The Double Mapping Cylinder��������������������������������������
	4.3 Suspension. Homotopy Groups��������������������������������������
	4.4 Loop Space���������������������
	4.5 Groups and Cogroups������������������������������
	4.6 The Cofibre Sequence�������������������������������
	4.7 The Fibre Sequence�����������������������������

	5 Cofibrations and Fibrations������������������������������������
	5.1 The Homotopy Extension Property������������������������������������������
	5.2 Transport��������������������
	5.3 Replacing a Map by a Cofibration�������������������������������������������
	5.4 Characterization of Cofibrations�������������������������������������������
	5.5 The Homotopy Lifting Property����������������������������������������
	5.6 Transport��������������������
	5.7 Replacing a Map by a Fibration�����������������������������������������

	6 Homotopy Groups������������������������
	6.1 The Exact Sequence of Homotopy Groups������������������������������������������������
	6.2 The Role of the Base Point�������������������������������������
	6.3 Serre Fibrations���������������������������
	6.4 The Excision Theorem�������������������������������
	6.5 The Degree���������������������
	6.6 The Brouwer Fixed Point Theorem������������������������������������������
	6.7 Higher Connectivity������������������������������
	6.8 Classical Groups���������������������������
	6.9 Proof of the Excision Theorem����������������������������������������
	6.10 Further Applications of Excision��������������������������������������������

	7 Stable Homotopy. Duality���������������������������������
	7.1 A Stable Category����������������������������
	7.2 Mapping Cones������������������������
	7.3 Euclidean Complements��������������������������������
	7.4 The Complement Duality Functor�����������������������������������������
	7.5 Duality������������������
	7.6 Homology and Cohomology for Pointed Spaces�����������������������������������������������������
	7.7 Spectral Homology and Cohomology�������������������������������������������
	7.8 Alexander Duality����������������������������
	7.9 Compactly Generated Spaces�������������������������������������

	8 Cell Complexes�����������������������
	8.1 Simplicial Complexes�������������������������������
	8.2 Whitehead Complexes������������������������������
	8.3 CW-Complexes�����������������������
	8.4 Weak Homotopy Equivalences�������������������������������������
	8.5 Cellular Approximation���������������������������������
	8.6 CW-Approximation���������������������������
	8.7 Homotopy Classification����������������������������������
	8.8 Eilenberg–Mac Lane Spaces������������������������������������

	9 Singular Homology��������������������������
	9.1 Singular Homology Groups�����������������������������������
	9.2 The Fundamental Group��������������������������������
	9.3 Homotopy�������������������
	9.4 Barycentric Subdivision. Excision��������������������������������������������
	9.5 Weak Equivalences and Homology�����������������������������������������
	9.6 Homology with Coefficients�������������������������������������
	9.7 The Theorem of Eilenberg and Zilber����������������������������������������������
	9.8 The Homology Product�������������������������������

	10 Homology������������������
	10.1 The Axioms of Eilenberg and Steenrod������������������������������������������������
	10.2 Elementary Consequences of the Axioms�������������������������������������������������
	10.3 Jordan Curves. Invariance of Domain�����������������������������������������������
	10.4 Reduced Homology Groups�����������������������������������
	10.5 The Degree����������������������
	10.6 The Theorem of Borsuk and Ulam������������������������������������������
	10.7 Mayer–Vietoris Sequences������������������������������������
	10.8 Colimits��������������������
	10.9 Suspension����������������������

	11 Homological Algebra�����������������������������
	11.1 Diagrams��������������������
	11.2 Exact Sequences���������������������������
	11.3 Chain Complexes���������������������������
	11.4 Cochain complexes�����������������������������
	11.5 Natural Chain Maps and Homotopies���������������������������������������������
	11.6 Chain Equivalences������������������������������
	11.7 Linear Algebra of Chain Complexes���������������������������������������������
	11.8 The Functors Tor and Ext������������������������������������
	11.9 Universal Coefficients����������������������������������
	11.10 The Künneth Formula��������������������������������

	12 Cellular Homology���������������������������
	12.1 Cellular Chain Complexes������������������������������������
	12.2 Cellular Homology equals Homology���������������������������������������������
	12.3 Simplicial Complexes��������������������������������
	12.4 The Euler Characteristic������������������������������������
	12.5 Euler Characteristic of Surfaces��������������������������������������������

	13 Partitions of Unity in Homotopy Theory������������������������������������������������
	13.1 Partitions of Unity�������������������������������
	13.2 The Homotopy Colimit of a Covering����������������������������������������������
	13.3 Homotopy Equivalences���������������������������������
	13.4 Fibrations����������������������

	14 Bundles�����������������
	14.1 Principal Bundles�����������������������������
	14.2 Vector Bundles��������������������������
	14.3 The Homotopy Theorem��������������������������������
	14.4 Universal Bundles. Classifying Spaces�������������������������������������������������
	14.5 Algebra of Vector Bundles�������������������������������������
	14.6 Grothendieck Rings of Vector Bundles������������������������������������������������

	15 Manifolds�������������������
	15.1 Differentiable Manifolds������������������������������������
	15.2 Tangent Spaces and Differentials��������������������������������������������
	15.3 Smooth Transformation Groups����������������������������������������
	15.4 Manifolds with Boundary�����������������������������������
	15.5 Orientation�����������������������
	15.6 Tangent Bundle. Normal Bundle�����������������������������������������
	15.7 Embeddings����������������������
	15.8 Approximation�������������������������
	15.9 Transversality��������������������������
	15.10 Gluing along Boundaries������������������������������������

	16 Homology of Manifolds�������������������������������
	16.1 Local Homology Groups���������������������������������
	16.2 Homological Orientations������������������������������������
	16.3 Homology in the Dimension of the Manifold�����������������������������������������������������
	16.4 Fundamental Class and Degree����������������������������������������
	16.5 Manifolds with Boundary�����������������������������������
	16.6 Winding and Linking Numbers���������������������������������������

	17 Cohomology��������������������
	17.1 Axiomatic Cohomology��������������������������������
	17.2 Multiplicative Cohomology Theories����������������������������������������������
	17.3 External Products�����������������������������
	17.4 Singular Cohomology�������������������������������
	17.5 Eilenberg–Mac Lane Spaces and Cohomology����������������������������������������������������
	17.6 The Cup Product in Singular Cohomology��������������������������������������������������
	17.7 Fibration over Spheres����������������������������������
	17.8 The Theorem of Leray and Hirsch�������������������������������������������
	17.9 The Thom Isomorphism��������������������������������

	18 Duality�����������������
	18.1 The Cap Product���������������������������
	18.2 Duality Pairings����������������������������
	18.3 The Duality Theorem�������������������������������
	18.4 Euclidean Neighbourhood Retracts��������������������������������������������
	18.5 Proof of the Duality Theorem����������������������������������������
	18.6 Manifolds with Boundary�����������������������������������
	18.7 The Intersection Form. Signature��������������������������������������������
	18.8 The Euler Number����������������������������
	18.9 Euler Class and Euler Characteristic������������������������������������������������

	19 Characteristic Classes��������������������������������
	19.1 Projective Spaces�����������������������������
	19.2 Projective Bundles������������������������������
	19.3 Chern Classes�������������������������
	19.4 Stiefel–Whitney Classes�����������������������������������
	19.5 Pontrjagin Classes������������������������������
	19.6 Hopf Algebras�������������������������
	19.7 Hopf Algebras and Classifying Spaces������������������������������������������������
	19.8 Characteristic Numbers����������������������������������

	20 Homology and Homotopy�������������������������������
	20.1 The Theorem of Hurewicz�����������������������������������
	20.2 Realization of Chain Complexes������������������������������������������
	20.3 Serre Classes�������������������������
	20.4 Qualitative Homology of Fibrations����������������������������������������������
	20.5 Consequences of the Fibration Theorem�������������������������������������������������
	20.6 Hurewicz and Whitehead Theorems modulo Serre classes����������������������������������������������������������������
	20.7 Cohomology of Eilenberg–Mac Lane Spaces���������������������������������������������������
	20.8 Homotopy Groups of Spheres��������������������������������������
	20.9 Rational Homology Theories��������������������������������������

	21 Bordism�����������������
	21.1 Bordism Homology����������������������������
	21.2 The Theorem of Pontrjagin and Thom����������������������������������������������
	21.3 Bordism and Thom Spectra������������������������������������
	21.4 Oriented Bordism����������������������������

	Bibliography�������������������
	Symbols��������������
	Index������������

