
London Mathematical Society Lecture Note Series. 44 

?Z/2~ Homotopy Theory 

MC Crabb 

CAMBRIIXiE UNlVERS ITY PRESS 

CAMBRIIXiE 

~ NEW YORK IDClIELLE 

MEIIDUHNE SYWEY 



r 

Detailed acknowledgments are recorded in the text. 

!\:y special thanks are due to Dr. B. steer, Prof. 1. M. James, 

Prof. J. C. Becker, Dr. L. Woodward, Dr. W. A. Sutherland, Prof. 

S. Gitler and Dr. K. Knapp; 

to New College, Oxford, where I held a Guinness research 

fellowship from 1974 until 1977; 

and to the SFa "Theoretische Mathematik" at the University of 

Bonn, where I was 'Gastforscher' from 1977 to 1979. 

Much of the material described here first appeared in the thesis 

[25J , written under the supervision of Dr. Steer, and was the 

subject of a course of lectures at Oxford in 1976. I have also 

drawn from a seminar on Hermitian K-theory held At Bonn in the 

autumn of 1978. 

1. Introduction 

The cyclic group, ~/2, of order two plays a leading rBle 

in the theory of real vector bundles and manifolds. More precisely, 

it plays many parts, as abstract permutation group, as orthogonal 

group in dimension one, as Galois group of ~ over E, now clearly 

distinguished, now merging one into another. The plot is not, 

by any means, fully revealed. We recount here but a few SCenes 

in which ~/2 figures. 

The results largely occur in some form in the literature, 

many in the unpublished thesis [?5 ] Our purpose here is to 

present a concise account from the particular viewpoint of ~/2-

homotopy theory and without detailed proofs. 

We begin with an extremely simple, but fundamental, result; 

as we shall see in §3, it lies very close to the theorem of Kahn 

and Priddy. Here and throughout the essay L will denote the 

real represen ta tion E of ~/2 with the non-trivial action as 

multiplication by ±1 • 

Proposition (1.1) • Let t; and ~' be real vector bundles 

over a compact ENR X. Suppose that the sphere-bundles S(~) and 

S(~') are stably fibre-homotopy equivalent. Then S(L®~) and 

S(L®~') are ~/2-equivariantly stably fibre-homotopy equivalent. 

Notation. Any space may be considered as a ~/2-space 

with the trivial action. We use the same symbol for the original 



space and the corresponding ~/2-space. Thus, S(~) as ~/2-space 

is the sphere-bundle with the trivial involution; S(L®~) is the 

same space, but endowed with the antipodal action of ~/2. 

As usual, let J(X) be the quotient of KO(X), the real K-theory 

of X, by the subgroup generated by differences [1; ] - (1:;'] of vector 

bundles ~, ~' over X whose sphere-bundles are fibre-homotopy 

equi valent; so J (point) = ~ . J~/2(X) is defined similarly 

as the quotient of KO~/2 (X) by differences of ~/2-vector bundles 

whose sphere-bundles are equivariantly fibre-homotopy equivalent. 

Two ~/2-vector bundles ~ and ~' define the same class in J~/2(X) 

if and only if their sphere-bundles are stably ~/2-fibre-homotopy 

equivalent, that is, if S(t;eW) and S(l;' !BW) are equivariantly 

fibre-homotopy equivalent for some real representation W of ~/2 

(The same symbol W will often be used for a vector space and the 

corresponding trivial bundle X x W over X.) 

The proposition (1.1) states that the linear map KO(X) ~ KO~/2 (X) 

taking [~J to [L. i;] we shall often write L.I; for the tensor 

product L®\; induces a map of quotients J(X) ~ J~/2(X), The 

proof is simply the observation that's !BL.\; may be identified 

with the sum \;$~ equipped with the involution which interchanges 

the factors (by mapping (u,v) to (u+v,u-v) in each fibre) • 

More formally, let us define "doubling operations" 

KO(X) ~ KO~/2(X) and S2 J(X) ~ J~/2(X) 

to be the linear maps taking the class of a vector bundle I; (or 

sphere-bundle S(~» to the sum l;!B1; (or fibre-wise join S(l;)*S(U) 
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with the switching involution. Let 

KO(X) ~ KO~/2(X) and a 

be the inclusions of direct summands given by regarding any bundle 

8.S a ~/2-bundle wi th the trivial involution. Write 

Then the proposition is proved by the commutativity of the diagram: 

KO(X) 

I 
J(X) 

There is an immediate corollary. 

Corollary (1.2) • In addition to the hypotheses of (1.1), 

suppose that A is a real line bundle over X. Then the sphere-

bundles SP00 and S(;>.0\;') are stably fibre-homotopy equivalent. 

It is the explicit geometric construction of the operation 

S2 upon which the proof of (1.1) depends; in succeeding paragraphs, 

particularly §§ 3-5, it will be a central theme. The mere definition 

of the operation lies at a different level. S2 is simply 

induction 

KO(X) ~ KO~/2(X) 
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corresponding to the inclusion i : 0 -, ~/2 of the trivial sub-

group. (The definition is reviewed in (5.3). ) It is the 

restriction to the diagonal of an external operation 

KO(X) ---* KO~/2(XxX) 

x x X with, as always, the switching involution defined as 

the composition 

KO(X) P1* ) KO(XxX) -i;;---) KO~/2(XxX), 

where P1: X x X ---4 X is the projection onto the first factor. 

In this form the definition extends to other generalized 

cohomology theories, in particular to stable cohomotopy. 

As is implicit in the notation, a sum operation Sk may be 

defined for any natural number k. Write the permutation 

representation Ilk of the symmetric group cS k as the direct sum 

Il<;BV
k 

of a trivial summand and an irreducible representation of 

dimension k-1. The statement (1.1) clearly remains true if we 

substitute V
k 

for L = V
2 

and G
k 

for ?L/2 = G
2 

• 

In later paragraphs, too, there will sometimes be 

generalizations, perhaps from ?L/2 to ?L/p, p an odd prime, 

perhaps from ?L/2 = SO to S 1 and S3. We shall do no more than 

record the fact. ?L/2 is our proper subject. 

(1.2) was first proved in answer to a question of Prof. 

I. M. James, and initiated much of the work described here. His 

own equivalent solution may be found in [41J Lemma (2.1) • 
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2. The Euler class and obstruction theory 

?L/2, as the subgroup {±1} of the group of units of E, 

appears naturally in the study of r-fields, that is, r linearly 

independent cross-sections, of a real vector bundle, as soon as 

r is greater than 1. First, we must recall in an appropriate 

form the obstruction theory for a single cross-section. We 

need to fix a notation for stable cohomotopy, and, in view of 

the varying usage, do so with some care. 

Notation. Let ~ and ~ be real vector bundles over a compact 

ENR X. w* will denote unreduced stable cohomotopy, considered 

as a generalized cohomology theory. A tilde indicates the 

associated reduced theory for pointed spaces. Thus, w*(X) is 

a graded ring with identity. Define 

w*(X; \;-'1) 

to be the reduced stable cohomotopy of the Thorn space of the 

virtual bundle ~ - "'l • We think of the stable cohomotopy of X as 

a theory indexed by the category of virtual vector bundles and 

stable fibre-homotopy equivalences over X. If Y 6 X is a 

closed sub-ENR, the relative group w*(X,Y; ~-~) is defined to be 

Corresponding notation is used for 

stable homotopy. 

(In the literature w. is often written, reasonably enough 

as the limit of unstable homotopy groups, ~~ (without a tilde). 

The coefficients '~-l' are sometimes written with a change of 
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sign and with the dimension absorbed into the index '*'; the 

complexity of the indices required here precludes writing them, 

as is often done, as sub- or superscript.) 

A superscript ,~, will be used for one-point compactification, 

the adjunction of a base-point + if the space is already compact. 

~~ is to be understood as the fibre-~ one-point compactification 

of ~ • It is a fibre-bundle over X; its fibre is a sphere with 

base-point. (For example, in the case that ~ ° is the zero 

vector bundle, 0+ is the trivial bundle X x SO. 

may be interpreted as the group, written {~+ ; "l.+J x ' of stable 

fibre-homotopy classes of maps ~~ --7 "l.~ over X preserving the 

base-point in each fibre (ex-maps in the terminology of [40] ). 

(As is customary, [-; -J and{-; -I will denote respectively 

the set of homotopy and the group of stable homotopy classes of 

maps between pointed spaces.) 

The way is prepared for the basic definition of obstruction 

theory. 

Defini tion (2.1). The Euler ~ of the vector bundle ~ 

is the class 

represented by the inclusion 0" --7 1;+ of the zero section (induced 

by ° S ~ ) • 

Clearly y(~) vanishes if ~ admits a nowhere-zero cross-section. 

The converse is true in the 'metastable range'. Before describing 
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this result, we list some elementary formal properties of the 

Euler class. 

Proposition (2.2). Let ~, ~' be real vector bundles over X. 

(i) Naturality. If f: X' --7 X is a map, then '(f*~) = f*y(~). 
(ii) Multiplicativity. '(I;E&~') = Y(~).Y(~'). 

(iii) Suppose that a: ~,+ ~ '1;+ is a fibre map which is 'polar' 

in the sense that ° is mapped to 0, + to + in each fibre. It 

defines a stable class in t~,,,; 1/1x = wO(X;~' -1;). Then 

y(~) = [a).y(!;') • 

The stable cohomotopy Euler class is defined by exact 

analogy with the classical definition in cohomology. Indeed, the 

group wO(D~,SI;; -~) - the stable cohomotopy of the disc modulo 

the sphere with coefficients in (the pullback of) ~ - is 

naturally isomorphic to wO(X), the isomorphism given by a 

tautological 'Thorn class' u €WO(Dt;,S~; -\;). '(';) is just the 

restriction of u to the zero-section (X,0) S (DI;,SI;). More 

generally, if s is a cross-section of S(~) over a closed sub-ENR 

Y. the relative Euler class '(I;,s) E ""O(X,Y; -\;) is defined to 

be 6*(U) for any extension s: (X,Y) --7 (Di;.SI;) of the section s. 

If t is another section of S(~) over Y agreeing with s on 

a closed sub-ENR Z ~ Y, define their difference ~ 

6(s,t) E w- 1 (y,Z; -~) = ",O«y,Z) x (I,i); -1;) to be tlie 

relative Euler class of the pullback of I; to Y x I with respect 

to the section over Y xi u Z x I which agrees with s on Y x 0, 

t on Y x 1 and their common value on Z x I. It is an obstruction 

to deforming t into s (by a homotopy constant on Z) and determines 

the variation of the relative Euler class with the choice of 
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cross-section. 

Proposition (2.3). The difference class 6(s,t) ~ ",-1(y,Z; -l;) 

is mapped to y(I;,s) - y(~,t) E wo(X,y; -~) by the connecting 

homomorphism in the stable cohomotopy exact sequence of the 

triple (X,Y,Z). 

The fundamental result in the subject is a straightforward 

corollary of Freudenthal's suspension theorem (proved for a 

cell complex X and subcomplex Y step by step over the cells). 

Proposition (2.4) • Suppose that the dimensions dim X f m 

and dim ~ = n lie in the metastable range: m ~ 2(n-1). 

(i) A section s of S(~) over Y extends over the whole of X if 

° ' and only if y(~,s) EO w (X,Y; -\;) vanishes. 

(ii) If s is a section of S(~) over X, d an element of 

-1 w (X,Y; -~), then there is a section t over X coinciding with 

s on Y and such that ~(s,t) d. 

This leads at once to a classification theorem. 

Proposition (2.5) • Suppose that m+1 < 2(n-1) and that 

S(~) has a cross-section s. Then the set of fibre-homotopy 

classes of cross-sections t of S( 1;) extending slY over Y 

the homotopies understood to be constant on Y is in 

1-1 correspondence with w-
1(X,y; -\;) under the map t ~ 6(s,t). 

(The map is surjective if m+1 ~ 2(n-1).) 

This simple device of stabilization, formalized in (2.4) 

and (2.5), has both conceptual and practical advantages. 
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We turn to the question of r-fields, beginning with the 

local classification problem. Let U and V( # 0) be real (Euclidean) 

vector spaces and write O(V,U~V) for the Stiefel manifold of 

isometric linear maps V -+ U~ V with base-point, j say, the 

inclusion of the second factor. 

Now an element of O(V ,U~V) defines, by restriction, a map 

of spheres S(V) -+ S(U~V) commuting with the antipodal map, that 

is, a 7l/2-equivariant map S(L.V) -+ S(L.(UGlV» or an equivariant 

cross-section of the trivial sphere-bundle S( L. (UGl V» over the 

sphere S( L. V) • And so we are led to consider the relative 

Euler class and difference class in 7l/2-equivariant stable 

cohomotopy. The equivariant theory is indicated by a subscript; 

its definition, [71], is recalled in (4.1). 

Definition (2.6). The ~ obstruction 

e: ( X/Y; 
-1 

O(V,UGlV) ]-""7l/2«X,y) xS(L.V); -L.(Ue V» 

is defined as follows. A map of pairs v: (X,Y) -+ (O(V ,U~V) ,j) 

gives, as above, a 7l/2-equivariant cross-section, v' say, of 

the trivial bundle L.(UGlV) over XxS(L.V). Set S(v): 6(v' ,j'). 

(It Clearly depends only on the homotopy class of v.) 

Recall that if G is a compact Lie group and P -+ E a 

principal G-bundle, B a compact ENR, then, just as KOG(P) is 

identified with KO(E), [76], so the G-equivariant stable cohomotopy 

"'a(P) is identified with w*(B). More generally, if E is a (virtual) 

G-module, thenwa(P; E) is identified withW*(B; PxGE) 

in the associated vector bundle over B. 

coefficients 
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Since ~/2 acts freely on S(L.V), the target group of e 

may be rewritten asw- 1«X,Y)xP(V);-H.(UEl)V», where H, 

associated to the representation L, is the Hopf line bundle 

(S(L.V)xL)/~/2 o~er the projective space P(V). (Had we not 

wished to stress the equivariant theory, we might have proceeded 

directly to this step by noticing that an element of the Stiefel 

manifold determines a cross-section of H. (U,El)V) over P(V).) 

This group is canonically isomorphic by S-duality to 

{X/Y; p(UEl)V)/P(U)} 

On the other hand, the stunted projective space P(UEl)V)/P(U) 

is included in a standard way in the Stiefel manifold O(V,UEl)V) 

by the 'reflection map' R (which takes a line in U El) V to the 

reflection in the orthogonal hyperplane). 

Proposit ion (2.7) • The composition 9.R 

[X/Y; P(Uq)V)/P(U) ~ [X/Y; O(V,Uq)V) ] 

~ {X/Y; p(Uq)V)/p(U)} 

is the stabilization map. 

The proof is by inspection. 

(It is clearly enough to consider the case (X,Y) = (p(Uq)V),P(U» 

and look at the image of the map which collapses P(U) to a point. 

The argument is best described in geometric language (as in §5) 

and for clarity we assume U = O. 

For any closed manifold X there is a duality isomorphism 

{X·" +j "" O( ) X' t t t b dl X - '" XxX; -T2X , where '2 lS he angen un e on 
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the second factor. The identi ty 1 E {X+; X + 1 corresponds to 

the 'Atiyah duality class' 6*(1) E wO(XxX; -'2X ) represented, 

according to definition, by the diagonal f:J.: X ~ X x X (with 

the natural identification of the normal bundle with 6*'2X). 

(In the traditional terminology of homology theory, the duality 

class is the 'cycle' defined by the diagonal.) 

Specialize now to the case X = P(V), abbreviated to P. 

There is a standard isomorphism -CP(V) El)1l. ~ H.V. We are required 

to identify the duality class 6.(1) E ",-1(pxp; -H2 ·V) (where 

H2 is the Hopf bundle over the second factor) with the difference 

class e(1) = 6(sO,s1) of the two cross-sections of S(H2 ·V) over 

P( V) x P( V) induced on the orbit space by the ~/2-equi variant 

maps P(V) x S(L.V) ---7 L.V: 

( [ x J, y) !--------} y - 2 <y , x> x (x, y E Sly»~ 

and y 

respectively. «y,x) is the scalar product.) 

cl homotoPl'C outside the diagonaI6(P). Now So an s1 are 

'h precisely on the diagonal and outside Indeed, So + s1 vanlS es 

we may choose a linear homotopy tso + (1-t)S1 (t E I). The 

proof is completed by observing that So and s1 satisfy the 

transversality condition of (5.13) so that ~(sO,s1) is actually 

represented by the diagonal (with a certain isomorphism of the 

normal bundle with H
2

• V - :R which must be checked to be the 

standard one) 

Here is a reformulation without the geometry. To interpret 

the duality class we follow through the Pontrjagin-Thom 

construction. The Thorn class u E wO(D(-rP) ,S(-cP); -TP) of the 
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tangent bundle TP corresponds under the isomorphism cP$E 

~ H.V to a relative Euler class ~(H.V,s) in 

",O«D(JR),S(ll»X(D(TP),S(,P»:_H.V), where s is the section 

given on the orbit space by the ~/2-equivariant map 

D(ll)xD(-.:S(L.V)) ---+ L.V which takes the value tz+v at the 

point specified by t €. D(E), z E;. S(L.V), v € D(L.V) (in the 

usual representation of the tangent bundle to the sphere as the 

set of points (z,v) E SlY) x V with v perpendicular to z) • Embed 

D(, P) as a tubular neighbourhood of the diagonal in P x P, 

taking the point represented by (z,v) to ([z-Ev],[ZHV]) for 

some small positive E. Then 6*(1) E w- 1 (pxP; -H
2

.V) is the 

° image in w ((D(JR),S(ll» xPxP: -H
2

.V) of '(H.V,s) under the 

excision isomorphism (D(TP),S(-rP»----> (Pxp,PXP-D(TP» and 

restriction to P x P. 
o 

(D is the open disc.) 

6(1) on the other hand may be described as 1(H
2

.V,S) in 

o 
w «(D(JR),S(JR»xPxp: -H2 .V), with" given by the equivariant 

map D(JR) xP(V) xS(L.V) ---} L.V (t,[x),y) l---7y- (l-t).(y,x}x. 

Ths zeros of s occur on OX A(P). Its restriction to the 

tubular neighbourhood is given by (z,v) f----> tz + (2-t)EV + 0(£2), 

which agrees up to permitted homotopy with s. This establishes 

the equality of 6." (1) and 6( 1) and hence the proposition.) 

The reflection map R induces an isomorphism of homotopy 

groups in a certain range. R,,: "i (P(U~V)/P(U» ~ 

"i(O(V,U$V» is an isomorphism if i L 2dim U, an epimorphism 

if i ~ 2 dim U. (This is proved by induction on dim V, comparing 

the homotopy exact sequences of the cofibration sequence: 

P(UEflV)/P(U) ---7 P(UElH~ll)/p(U) ~ (UEflV)+ 
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and the fibration sequence: 

See [42] 3.4. ) (2.7) implies a similar result for 9. (It can 

also be proved directly by induction on dim V. ) 

Lemma (2.8). The local obstruction 9 of (2.6) is a 

bijection if dim X+ 1 L 2 dim U, a surjection if dim X L 2 dim U. 

With (2.5) this lemma establishes a bijection, in the range 

dim X .. 1 L 2 dim U, between [X/Y: O(V ,U$V) J and the set of 

homotopy classes of nowhere-zero cross-sections of H. (U~ V) 

over XxP(V) extenalng the standard section on YxP(V). From 

this it is an easy step to the obstruction theory for r-fields. 

Proposition (2.9) • (X,~) as in (2.4), r = dim V. 

m L 2(n-r). Then ~ admits V as a trivial summand if and only 

if the Euler class 

° 't(L.~) E w~/2(X; -L.I;) 

of ~ with the antipodal involution is divisible by 1(L.V) or, 

equivalently, if the Euler class '( (H.i;) E wO(X x p(V); - H.!;) 

of the tensor product of i; with the Hopf line bundle Hover P(V) 

vanishes. 

There is a corresponding classification theorem, of 

which (2.8) is a special case. The equivalence of the two 

conditions in (2.9) is given by the following lemma. 

Lemma (2.10). There is a long exact sequence: 
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•• -> W~/2(X;L.(Y - \i» ~ W~/2(X; -L.I;) -7 w\xxP(Y); -H.'F;)-7 

in which the first step is multiplication by the Euler class 

--({L.Y) E W~/2(point; -L.Y). 

Nothing more than the w * -exact sequence of the pair 
'0,/2 

Xx (D(L.Y),S(L.V», the contractible disc modulo the sphere, with 

coefficients - L.!;, this sequence, in various guises, will be 

a recurrent theme. 

As obstruction theory (2.9) is not profound. But it is 

convenient. Here is an illustration. 

Example (2.11). Consider a finite covering'" : X' -7 X 

of odd degree. Then, in the metastable range of the proposition 

(2.9) a stable bundle ~ (dim \:; > dim X) admits an r-field if 

and only if its pullback TI*~ to X' does. 

The stable cohomotopy Euler class of an odd-dimensional 

bundle is 2-primary torsion. (Apply (2.2)(iii) to the 

antipodal involution of the bundle. 1 - [a] has degree 2 in 

each fibre. This is the classical proof that the cohomology 

Euler class of an odd-dimensional bundle has order 2.) It 

follows that 1(H.~) in (2.9) will be 2-primary torsion if ~ 

admits a sub-bundle of odd dimension. This is certainly true 

in the example. Now y(,,*'i;) = ,,*~(l;) and 1C*"*,«~) = ",*(1).d\;), 

where 1C* is the transferwO(X' xP(V); -H.--rr*I;) ~wO(XxP(Y); -H.'F;) 

or wO(X') -->- .,O(X). ( ~ Since 1C* 1) is invertible at the prime (2), 

the proof is done. 

We resume the discussion of 9. Suppose that U 0. 
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Write E> s 
E { o( Y); P(V)+ J for the image under e of 

1 E [o(y); O(V) J This stable map e 
s 

O(Y) -} P(Y)+ 

is a splitting of the reflection map R : P(y)"" -} o(V). 9s •R 

The splitting is natural in the following sense. The 

projective orthogonal group PO(Y), the quotient of O(V) by its 

centre, acts on P(Y) and O(V). R is pO(V)-equivariant. The 

symmetry of 9
s 

is expressed by working in PO(Y)-stable homotopy: 

it is naturally defined as a PO(V)-equivariant stable map. The 

proof of (2.7) respects the sym~etry. 

1. 

Remark (2.12). (James Us1 ). P(Y)+ is a PO(V)-equivariant 

stable retract of O(Y). 

The construction of e is also compatible with stabilization. 

For any vector space V', O(Y) is included in O(V(JjY') (as the 

subgroup fixing V') and PlY) in P(V(JjY'). Let Z be a compact 

ENR with base-point * . Then there is a commutative diagram: 

[ Z; O(Y) ] ) t Z; P(Y)+ 1 

1 j 
[ Z; O(V(JjY')] ~ {z; P(Y(JjV')+} 

In the limit (that is, for dim V > dim Z + 1) we obtain 

(2.13) 9 

where 0(00) is the infinite orthogonal group and P(ro} is the 

infinite real projective space with a base-point adjoined. 

This map will be described below, (3.14), in terms of the 
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Zi/2-equivariant J-homomorphism. 

An important element in our story will be the interplay 

between the equivariant and the non-equivariant theories. The 

-1 
group "'Zi/2«Z,~) x S(L.V); - L.V) 

has been interpreted by S-duality as {Z; P(V)"} • Forgetting 

the action of Zi/2, or lifting from the projective space to the 

sphere, we obtain a homomorphism i* to w-
1«Z,*)xS(V);-V) 

(again by duality) The notation refers to the 

inclusion i 0-4 Zi/2, and i* will often be called restriction. 

In its dual aspect i*: .[ Z; P(V)+} --+ {Z; S(V)+1 is the 

transfer with respect to the double cover S(V)--4 P(V) 

(essentially by definition of the transfer or of S-duality, 

according to taste). (See pp 37-9.) 

The Zi/2-equivariant obstruction theory for cross-sections 

of real vector bundles translates easily into an S'-theory for 

complex cross-sections of complex vector bundles and an S3_ 

theory for quaternionic bundles. We shall return to the complex 

theory in §6. 

It is difficult to give appropriate acknowledgment for the 

obstruction theory outlined here. Most of it is already implicit 

in the work of A. Haefliger and M. W. Hirsch D31 and of 

I. Ill. James [38]. This account, taken from [25), was influenced 

particularly by Ni. F. Atiyah and J. L. Dupont [7), from whom I 

have taken the notation e for the local obstruction. (The theory 

has been developed in a differential topological framework by 

J. P. Dax, H. A. Salomensen and U. Koschorke; see [55]. There is 

a related current in homotopy theory due to J. C. Becker and 

L. L. Larmore. ) 

3. Spherical fibrations 

A closer inspection of the proof of (1.1) shows how to lift, 

in a natural way, a fibre-homotopy equivalence S(~) --7 S(~') to 

an equivariant stable fibre-homotopy equivalence S(L.~) --7 S(L.~'). 

The final goal of this paragraph will be the extension of this 

result from sphere-bundles to spherical fibrations. We begin 

with the definition and splitting of the equivariant spherical 

fibration theory. 

If V is a real vector space, we write H(V) for the space, 

with base-point the identity, of homotopy equivalences S(V)--7 S(V) 

(with the compact-open topology). If W is a real Zi/2-module, 

HZi/ 2 (W) denotes the subspace of H(W) consisting of the Zi/2-

homotopy equivalences. (It is open and closed in the subspace 

fixed by the invt.lution, but not equal to it. It is, perhaps, 

neater to replace H(V) by the homotopy fibre, H(V), of the 

composition H(V)xH(V) -----7H(V). H(V) is homotopy equivalent 

to H( V) and the fixed subspace of H( W) to HZi/2 (W). ) Elements 

of HZi/ 2 (L.V) may be interpreted as cross-sections of the 

trivial bundle L.V over the sphere S(L.V). The difference 

construction defines, aB in (2.6), a map 

'r,Zi/2 

for any compact pointed ENR Z. 

More generally, if, for any vector space E, H
Zi

/
2

(L.V;E) 

denotes the subspace of HZi/ 2 (L.VGjE) of maps S(L.VGjE) ~ 
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S(L.V~E) which extend the inclusion S(E) ----4 S(L.V~E) of the 

fixed subspace, the difference construction applied to sections 

of L.V~E over S(L.V~E) agreeing with the standard section on 

the subspace S(E) defines a map 

'r,Zl/2 [ Z; 
Zl/2 

H (L.V;E)] ~ {Z; 

There is a corresponding map 

(3.2 ) [Z; H(V;E)] ~ {Z; S(V)+ 1 

in the non-equivariant case, such that ~.i* 

Proposition (3.3). Suppose that Z is connected. Then 

the maps ~Zl/2 and ~ of (3.1) and (3.2) are bijective if 

dim Z " dim V - 2, surjective if dim Z " dim V - 1. 

This is immediate from (2.5); connectivity is required 

because H(V) is the space of homotopy equivalences, not 

arbitrary maps, S(V) -4 S( V). 

The next lemma introduces an important phenomenon in 

Zl/2-equivariant spherical fibration and stable cohomotopy 

theory: the splitting into free and fixed components. 

Lemma (3.4). For any compact ENR Z with base-point 

and vector space V, there is a split short exact sequence of 

groups: 
.I' ° ~ CZ; HZl/

2
(L.V;V)] ----)- [Z; HZl/2(V~L.V)J~ [Z; H(V)] ~ 0. 

<r 
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The first map is given by the inclusion, f by the 'fixed point 

map' HZl/2(V~L.V) _ H(V) taking an equivariant self-nap of 

S(V~L.V) to the induced self-map of the subspace S(V) fixed by 

the involution,and ~ by the join with the identity (taking f t H(V) 

to the self-map f*l of S(V)",S(L.V) =S(V~L.V» The group 

structure is given by composition. 

This is simply the exact sequence of the fibration: 

See [39]. 

Now write the spherical fibration theory in dimension -1 

of a compact ENR X as 

lim [X+; H(:Rn )] 
--t 
n~~ 

(the direct limit over the standard inclusions or, better, 

over the category of all Euclidean vector spaces and inclusions. 

H(V) is included in H(V~V') by the join with 1 ~ H(V').) It 

is an abelian group, the group of units in wO(X), and it will be 

written additively. More generally, if Y ~ X is a closed sub-ENR, 

set 

::: 

The equivariant theory is defined to be 

::: 
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and the free spherical fibration theory 

-1 
Sphfree 2Z/2 (X, Y) 

With the observation (from ().)) that the inclusion 

H2Z/ 2 (L.V) ~ H2Z/ 2 (L.V;V) is highly connected if the 

dimension of V is large, we may rewrite ().4) as a splitting of 

the 2Z/2-theory. 

Proposition ().5). For any compact ENR pair (X,Y) there 

is a split short exact sequence of abelian groups: 

-1 -1.P 1 o ~ Sphfree 2Z/2(X,Y) --) Sph2Z/ 2 (X,y) f ___ !: Sph- (X,Y) ~ O. 
IT 

A doubling operation S2 -1 -1 
Sph (X) ~ Sph2Z/ 2 (X) may be 

constructed as follows. Given f E H(V), 

f *f: S(V) * S(V) --? S(V) * S(V) 

is equivariant with respect to the switching map, and so, by the 

identification of S(VEIl V) with the involution which switches the 

factors with S(VEIlL.V), gives an element of H2Z/ 2 (VEIlL.V). 

This map H(V) ~ H2Z/ 2 (VEIlL.V) defines, in the limit, S2. 

Now clearly, since the fixed point set of S(V) *,S(V) is the 

diagonal, ,.S2 is the identity. Thus, 52 defined as in (1.1) 

by 52(x~: = S2(x) _ .,.(x) is a map from Sph- 1(X) to S h-1 (X) p free 2Z/2 • 

Moreover, the composition i*.S2 with the map 

i* : 
-1 -1 

Sph2Z / 2 (X) ----t Sph (X) 
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which forgets the invol~tion is multiplication by 2. 

Theorem ().6) . (Kahn-Priddy according to Becker-Schultz 

[48], [15]) 

i* : -1 -1 Sphfree 2Z/2(X) ----+Sph (X) is a split surjection. 

52 is the splitting. The original formulation of the 

theorem will appear in the next paragraph. 

This same doubling construction may be performed globally. 

If f: S(~) ---> S( 1;') is a stable fibre-homotopy equivalence, 

is an equivariant stable fibre-homotopy equivalence. ~ultiplying 

by a homotopy inverse S(~') --+ S(~), we obtain an equivariant 

stable fibre-homotopy eqUivalence 52(f): S(L.~) ---> S(L.~') 

The result may be stated rather formally as follows. 

Theorem (3.7). Let V(X) be the category of real vector 

bundles over X with morphisms the stable fibre-homotopy equivalences 

of the associated sphere-bundles. Let ~free(X) be the category 

of real vector bundles over X with the antipodal action of 2Z/2 

and morphisms the equivariant stable fibre-homotopy equivalences 

that is, a morphism L.~ -7 L.~' is to be an equivariant fibre-

homotopy equivalence S(L.;EIlL.V) --->S(L.~'EIlL.V) for some real 

vector space V. Then there is a natural splitting (natural in X) 

-2 
S : V(X) ----t V free (X) 

of the restriction functor 

As observed in §1, the corresponding KO-theory is very simple. 
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Recall that the i-homomorphism 

J: 

is defined as the limit of the maps [X/Y; O( V) J ~ [X/Y; H( V)] 

given by the inclusion of O(V) in H(V). There is a similarly 

defined equivariant J-homomorphism 

2 1 -1 
The operation § KO- (X,Y) ~ K0

7Z
/

2
(X,y), defined in §1, is 

just multiplication by the class [L] E Ko
7Z

/
2
(point). O(V) is 

a subspace of H7Z/ 2 (L.V) and the composition §2.J (= J
7Z

/
2

.§2): 

-1 -1 -1 (Y) t t· KO (X,Y) ----* Sph (X,Y) ----* Sphfree 7Z/2 X, the cons ruc ~on 

§2 extends to the relative group is the limit of the 

induced maps [X/Y; O(V)]----*[X/Y; H7Z/ 2 (L.V)] • 

Again, the doubling construction may be carried through 

unstably to define a homomorphism [Z; H(Vl] ~ [Z; H7Z/ 2 (L.V;V) ] 

Denote its composite with 'r,7Z/2, 0.1), by 

CZ; H(V)] ~ {Z; P(V)+J. 

The corresponding unstable version of the 'free J-homomorphism' 

KO-\Z, .. ) ~ Sph-
1 

/ (Z,>t) is the local obstruction e. 
free 7Z 2 

Proposition (3.8). The properties of 'I are summarized in 

the commutative diagram: 
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[Z; O(V)1 ) [Z; H7Z/ 2 (L.V) J 

1 ~ I ~7Z/2 
H(V)] 

"t 
P(V)+ J [z; {Z; 

~ 1 ,. 
{ Z; S(V)+ J 

More generally, writing H(V,U$V) for the homotopy fibre 

of the map of classifying spaces of spherical fibrations 

BH(U)--}BH(U$V), one may define a map 

[X/Y; H(V,UQjV)J ~ ~X/Y; p(UEBV)/p(U)} 

extending the local obstruction 9, (2.6). (For the application 

below it is enough to work withSlH(V,U$V), the homotopy fibre 

of H( U) ~ H( U $ V), without mentioning classifying spaces. 

Then, according to 1. M. James [37], 't is a bijection if 

dim X < 2 (dim U - 1). This leads to an obstruction theory for 

fibre-homotopy equivalences between sphere-bundles. 

Proposition (3.9). If f is a fibre-homotopy equivalence 

S(~) -+ S(~') between sphere-bundles over X, then 

.... (L.i;') = [§2(f)).'«L.~) E W~/2(X; - L.~') 

(1:;2 (f) defines an element OfW~/2(X;L.i; -L.\;').) Conversely, 

if dim l\ <:: 2(dim \; - 1), then a stable fibre-homotopy equivalence 
~ 

between"\; and 1;' satisfying this condition is representable by 

an actual fibre-homotopy equivalence S(I;) ---4 S(e;'). 

The first statement should be regarded as a generalization 
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of the fibre-homotopy invariance of the Stiefel-Whitney classes 

of a vector bundle, which is the corresponding statement in 

equivariant cohomology theory with F 2-coefficients. 

Having considered in some detail dimension -1, we come to 

spherical fibration theory in dimension 0, which, of course, 

generalizes the former. Call a spherical fibra tion E ~ X with 

an involution on E covering the identity on the base X a 

~/2-spherical fibration if every point of X has a neighbourhood 

U over which the restriction of E is ~/2-fibre-homotopy 

equivalent to a product U x seW) ~ U for some 2Z/2-module W. 

The set of ~/2-stable fibre-homotopy equivalence classes of 

s~ch 2Z/2-spherical fibrations is a monoid under the fibre-wise 

join and is embedded in the associated abelian group SPh~/2(X). 

SPh~ree 2Z/2(X) will be the group of 2Z/2-spherical fibrations 

with free involution, and SPhO(X) the usual group of (non-

equivariant) spherical fibrations. Note that SphO(point) 2Z, 

Sph~ree 2Z/2 (point) = 2Z, ° Sph~/2(point) = ~$~. 

° ~heorem (}.10) • Sph~/2(X) splits naturally as a direct 

° ° sum Sph (X)$Sphfree ~/2(X), i* ° ° Sphfree 2Z/2(X) ---+ Sph (X) 
"-

is a split surjection. 

A more precise statement can be made, as in ().7), in 

the language of categories. Roughly speaking, a stable 

spherical fibration has, up to fibre-homotopy equivalence, a 

natural free involution. 

For an odd prime p, there is a similar splitting of the 
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~tp-spherical fibration theory into free and fixed components. 

The operation sP gives, not a splitting, but a lifting of 

(multiplication by) p-1 : SPhO(X) - 'SPhO(X)" ~ this lifting is 

natural with respect to automorphisms of the group ~/p it 

maps into the subgroup of SphO (X) 
free 2Z/p fixed by the group of 

automorphisms (~/p)' • 0.8) and (J.9) are specific to ~/2, 

as indeed ie much of the impact of the theory; 2 is 

distinguished ae the smallest prime! 

The splitting ().5) translates readily into a splitting 

of ~/2-stable cohomotopy theory. Sph -1 (X) is the group of units 

wO(X)' in stable cohomotopy. 

Lemma (J. 11 ) Let b be the connecting homomorphism of 

the exact sequence of the pair (D(V),S(V», (2.10): 

{X1-; S(V)+} = w-
1(XxS(V); -V) ---t wO(X). 

An element x € [ X+; H( V) J defines an element i E w O(X)' 

6~(x) = i-1 E wO(X). 

This is an elementary application of (2.). 

is the group of units wO (X)' . ~/2 ~n equivariant cohomotopy. 

Affixing a label 1~/2' where appropriate, we obtain: 

Lemma (}.12) Let 6 be the connecting homomorphism 

-1 ( ° W~/2 XxS(L.V); -L.V) ----} W~/2(X) 

of the pair (D(L.V),S(L.V». An element xE [X+; H~/2(L.V)] 

determines an element x E S h- 1 ( ) 
p free 2Z/2 X S 

6 ~2Z/2 (x) - ° x-1 E w~/2(X), 
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Identify 

kernels of the 

Sph-1(Z,~) and wO(z,~) respectively with the 

restriction maps Sph- 1(Z) ~Sph-\'I') ::: 'll/2 and 

If Z is connected, then every element of 

WO(Z,*) is nilpotent and Sph- 1(Z,*) is precisely the set 1 +wO(Z,*). 

(If Z is a suspension, then Sph- 1(Z,*) and WO(Z,*) are isomorphic 

as groups.) The same is true in the equivariant theory and (3.5) 

° may be rewritten as a splitting of W'll/2(Z,*), 

Proposition (J.13). For any compact ENR pair (X,Y) there 

is a split short exact sequence of abelian groups: 

+ 6 ° f' ° ° ~ {X/Y; p(oo) I ~ w'll/2(X,y) ~ __ ! w (X,Y) ~ 0. 
IT 

6 is the limit of the connecting homomorphisms (3.12). 

The translation has been made using (3.3) and (3.12), on 

the assumption that X/Y is connected. To complete the proof it 

is sufficient to check the asserticn when X is a point. (This 

may be done, for example, by looking at the set of connected 

components of the subspace of H(Vq:)L. V) fixed by the involution.) 

We are ready for the promised description of e. Let 

1 -1 ( 
F: KO- (X) ~ K0'll/2 X) 

be multiplication by L; it is a splitting of the restriction i* 

The last proposition identifies {X+; p(~)+l with an ideal of 

(It is an ideal because b in (3.12) is an w~/2(X)-

homomorphism. ) 

-1 -1 ° Remark (3.14). J'll/2.F: KO (X) ~ Sph'll/2(X) = "''ll/2(X)' 

and El KO-1(X)~{X+; p(",)+} are related by the formula: 
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1 + e(x). 

9 is thus seen to be quadratic. If x, yE KO- 1(X), then 

° e(X+y) = e(x) + sty) + &(x).9(y) E W'll/2(X) • 

accordance with the sign conventions of §2 (adopted implicitly 

in (2.3) and (2.7» it is the negative of the obvious one. 

(b: {X+; S(V)+} ~ wO(X) is evaluation on -1 E wO(S(V» 

With this identification J(x) = 1 + i*9(x) E wO(X)' 

Apart from A. Haefliger and Ni. W. Hirsch D3] and 1. IV1. James 

[39], the presentation here draws from the paper [15) of J. C. 

Becker and R. E. Schultz. The splitting, (3.13), was first known 

from equivariant framed bordism theory, [77). I owe much insight 

and, in particular, (3.4) to discussion with Prof. Becker. The 

proof of the Kahn-Priddy theorem given here is essentially that 

of G. B. Segal [80]; the translation will be clearer in §4. 

Independent expositions along these lines were given by the 

author [25] and L. li1. Woodward [90]. It is a pleasure to 

acknowledge the influence of Dr. Woodward's (published and un

published) work on the final form of this account. 
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4. Stable cohomotopy 

This paragraph is concerned with the formal framework of 

ll/2-equi variant stable cohomotopy theory. It has been clear 

for some time that it should be a bi-graded theory. (See, for 

example, [59] • ) 

Definition (4.1) • Let X be a compact ll/2-ENR. Then the 

ll/2-stable cohomotopy of X in dimension (-i,-j) 

lim 
--4 

m,nEJN 

(The limit is taken over the inclusions. L
n 

means the sum of n 

copies of L; in some contexts it is more natural to write nL. ) 

The choice of indexing is determined by the existence of 

two maps: 

restriction i* 

involution) and the 

(A map 

f: (Ej+m$Li-j+n)+" X+ --4 (JRm$Ln )+ restricts to a map 

p(f): (E j +m)+" (Xll/ 2 )+ --4 (JRm)+ of the fixed point sets. 

A product Can be defined in w**(X) such that the maps i* 

and p are ring homomorphisms. The ring is 'graded commutative' 

in the sense that: 

where t € ",o,o(point) is defined as the class of (-1)+ : (E$L)+ 
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i*(t) 1, p(t) -1. 

The ~-coefficient groups will be written: 

",,-i,-j(point) • They are related to the non-equivariant groups 

~i in the following lemma. 

Let bEW_1 ,0 be the Euler class of L, that is, the element 

represented by the inclusion 0+ ~ L+ (of the zero subspace in 

L) • i*(b) '" 0, p(b) '" 1. 

Lemma (4.) • There is a long exact sequence: 

• b i* i* , 
~ W i +1 ,j ~ Wi,j ~ w i ~ ""i,j-l---,) 

in which the successive maps are multiplication by b E 
""-1,0' 

restriction and induction, in the group-theoretic sense, along 

the inclusion i : ° ~ ll/2 of the trivial subgroup in ll/2. 

The composite i*.i* 

1 + (_1)i-j • 

""i ~ Wi,j ~ "'i is multiplication by 

It is the ll/2-stable cohomotopy exact sequence of the pair 

(D(L),S(L», with coefficients. 

The rather specialized splitting lemma ().1) may be 

reformulated as follows. 

Proposition (4.4). Consider, for any compact ll/2-ENR X 

and integer j, the direct system 

•• ~ w -i,-j(X) ~ w- i + 1,-j(X) ~ •• 

of abelian groups. 

isomorphism 

lim 
----+ 

i 

Then the fixed point map f induces an 
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If the action is free on X, then the direct limit is 

easily seen to be zero. The essential case is that in which the 

action is trivial; assume this to be so. We need to consider 

relative groups; let Y s X be a closed sub-ENR. The direct 

limit of the stable cohomotopy exact sequences of the pairs 

(X,Y)X(D(Ln),S(Ln » (n ~ 1) is an exact sequence: 

r X/Y P("')+} -" w~/2(X,y) _, ~ ",,-n,o(X,Y)---'c " 
•• ---}'\.; - 7 u.. --,. _~ ----r 

n 

(W~/2(X,y) is the name that we have given in earlier paragraphs 

to ",o,o(X,Y). Comparison of (4.5) and (3.13) proves the 

proposition. (There is a direct proof in Appendix A, (A.1).) 

(4.4) and (4.5), with coefficients, relate the coefficient 

ring w** to the stable homotopy of stunted projective spaces. 

If n > 0, the infinite stunted real projective space P~ is 

usually defined as the quotient P(oo)/P(En ). For present purposes 

P~ for any n, positive or negative, is the Thorn space p~+n of 

the (virtual) bundle nH over P(EN+1 ) for 'sufficiently large N' 

(Formally, it is the functor lim {. _ ; pN+n} on compact pointed 
----) n 

ENRs. 
N 

Proposition (4.6). There is a long exact sequence: 

•• --} Z;j(P;'i) ~ Wi,j ~ Wj --+ Wj_1(Pj~i) ----) 

At the level (j,j) there is a splitting.,..: Wj --} "'j,j : 1" 6' = 1 • 

Remarks (4.7). 

(i) "'0,0 

(ii) W· • 1,J 
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(t
2 = 1) is the Burnside ring. 

° if i L. ° and j < 0, 

Wj (p ~ . ) if j L. -1, 
J-1 

(with splitting given by 

(iii) (G.:;/P j:.i)\,j is a graded "'**-module. 

(iv) The induction map i* factors as a composition 

6.'1* : ""1' ~;:',.(P~.)~w. 
J J-1 1,j 

ofw**-module homomorphisms (that is, i*(i*(x).y) 

Hx.z) = X.b(Z) if x E w**' yE w*' Z E z,*(~) ) 

(v) 
i* : "'0 = ZZ ~ "'0,0 = ZZE&ZZt takes 1 to 1+t • 

(vi) There is a further decomposition: 

"'j,j = Wj!:BWj t!:BWj(P';) 

(i* Wj~ c:,j(~) = Wj(P(oo» is split by the map which collapses 

P(oo) to a pOint. ) 

The process of translation from spherical fibration theory 

to stable cohomotopy gives the Kahn-Priddy theorem (3.6) its 

original form. 

Theorem (4.8). (Kahn-Priddy) Let Z be a connected 

compact ENR with base-point. Then the transfer 

is surjective. 

(For an odd prime p, the transfer maps the subgroup of 

t Z; (BZZ/p)+} fixed by the group (ZZ/p)' of automorphisms of 

ZZ/p onto -I.. Z; S(",)+ 1 . It fOllows that the transfer 

{Z; (ESp)+} [ 1/(p-1)!] ~ t Z; S(",,)+} [ 1/(p-1)!] is 

surjective.) 

Let V be a vector space. The transfer ""*: wO(S(V» ~ 

wO(P(V» for the double ( ) cover" : S V ~ P( V) coincides with 
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induction i~: "'O(S(V)) ° « V)) . t -t ,. ,.,O(P(V)) ~ w / S L. • Wrl e "'-
7l 2 

for the element defined by t E W~/2 (point); -t is represented 

by the antipodal involution (-1)+ H+ --->- H+ of the Hopf bundle. 

Then 11.(1) = 1 + t, (4.7)(v), and, by the formal properties of 

the transfer, the theorem may be restated as the surjectivity, 

when dim Z < dim V, of the map {Z; P(V)+} -4 ;:,o(Z) given by 

evaluation on -(1 + t) E ..,O(P(V)) (= c:.,°(P(V)+)). 

Corollary (4.9). (Kahn-Priddy) Z connected, dim Z < 

dim V. Then evaluation on the torsion element 1 - t E ",O(P(V)): 

t Z; P(V)+} (2) --l- WO(Z)(2) 

is surjective at the prime (2). 

This is immediate. It follows that the order of 1 - t, to 

be computed in ~7, bounds the exponent of the 2-torsion of ~O(Z) 

Being surjective and a natural transformation on the stable 

homotopy category, the transfer i* of (4.8) has a splitting. 

However, the translation of §2, which we must now discuss, will 

in general be non-linear. 

For a compact ENR X, the doubling operation S2 of §3 was 

a homomorphism ",O(X)' --+ w~/2(X)' from the group of units in 

It has an evident extension to a 

squaring operation 

or, without restriction to the diagonal in X x X, an external 

operation 
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taking the class of a map f: (En)+ 1\ X" ~ (En)+ to that of 

f 1\ f: (]'1nE& En)+ " (X x X) + --+ (]'1nE&]'1n) + (with the switching 

involution). The same construction defines an operation 

It is quite different in character from S2, a much more 

sophisticated concept. 

Lemma (4.10). The squaring operation p2: Wj -4W2j ,j 

on the coefficient ring has the following properties. 

(i) p2 (x.x' ) p2 (x).p2 (x' ) (x, x' e w*) • 

(ii) p2(x+y) p2(x) + i*(x.y) + p2(y) (x, y €: "'j) 

(Hi) i*.p2 (x) 2 
x 

(iv) 2 f.P (x) x . 

Corollary (4. 11 ) 

epimorphism if i ~ 2j. 

(Bredon [19J ) • f: <"\,j-4 (,Jj is an 

It is split if i ~ 2j. 

Although p2 is not in general linear, b.p2 is (by (4.7)(iv), 

that is, Frobenius reciprocity, since i*(b) = 0) 

Analogous to §2, define 

S w .. 
J ,J 

Then, if j ) 0, _p2 (notice the 

sign) is a splitting of the restriction map i* 



and we have reproduced the proof of the Kahn-Priddy theorem, 

this time exactly following G. B. Segal [80] . 

For the coefficient ring it is convenient to state the 

result in the following form; compare (7.11). a(i+2) is the 

Hurwitz-Radon number. 

Corollary (4.12) • s~ppose that i > 0 and i-j o (mod a(i+2» • 

Then i* : is surjective. 

With the machinery at hand it would be a pity to omit an 

account of Nishida' s theorem (at the prime (2» • 

Theorem (4.13) • (Nishida [ 71 J Every torsion element 

in the graded ring w* is nilpotent. 

We establish the basic lemma from which the theorem, at (2), 

easily follows. 

Lemma (4. 14) • S th t E with 2s x = 0 (s > 0) uppose a x wp 

and y € "'q with ~ and p - 0 (mod a(q+2)). Then 

2 s - 1 X
2

y E 2
s

W 2P +q 

Consider the square p2 By (4.10)(ii), 

o 

According to (4.12) there is a class y E wq,p+q which restricts 

to y. Then 
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2
S

-
1i*(X

2
.i*G) 

2 s - 1i.(x2 ).y (Frobenius reciprocity) 

s( 2 ( s-1. ( 2) -2 P x) + 2 1. X ).y EO w 2p+ q ,2p+q. 

But i. w. ~ w. . is the inclusion of a direct summand, (4.7) 
J J ,J 

(vi), and the proof is done. 

Corollary (4.15). Every torsion element in the 71,/2-

coefficient ring "".. is nilpotent. 

Indeed, consider a torsion element in w* •. By Nishida's 

theorem, some power x, say, in Wi,j' satisfies i·(x) = 0 and 

P(x) O. If i ( 0, there is nothing further to prove: x = o. 

If i ~ 0, then b i +1x = 0, (4.6), and x is divisible by b, (4.3); 

hence xi+2 is zero. 

The operation p2 is well known, either as the (generalized) 

Hopf invariant or as Segal's operation e2
, [80]. Its relation 

to 9
2 will be discussed in the next paragraph. As Hopf 

invariant p2 has the following properties. 

(4.16) j ~ 1 (mod 2). Then the composition with the 

Hurewicz homomorphism to W
2

-homology is the classical Hopf 

invariant: w. ---t w.(P
oO

o ) ~ 'H.(Po) W
2

• 
.1 J J 

(4.17) j = 3 (mod 4). Then the composition with the 

Hurewicz homomorphism to real KO*-theory is the 2-primary e-

invariant: "'. ____ ~ . (Po"") --> KO (pOO) 
J J j 0 

The connection of p2 with the Hopf invariant I! of the EHP-
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sequence fits less happily into the present framework; it is 

discussed in the Appendix A • 

The construction of squaring operations goes back to Steenrod's 

definition in ~2-cohomology. In stable homotopy it waS employed 

by G. E. Bredon in [19J. The notation p2 is taken from N,. F. 

A tiyah [ 4] • The proof of (4.13) is Nishida' s original proof 

(clarified for the author by an exposition given by G. B. Segal). 

(An account in the language of framed manifolds was given by 

J. Jones in [45]. (4.12) was isolated by J. l~!Ukai in [701. ) 

Framed manifolds 

It is not our business here to discuss the bordism theory 

of 72:/2 -framed manifolds, but simply to put the homotopy-

theoretic concepts of the last paragraph into a geometric setting. 

All manifolds will be smooth. 

For any closed manifold X (understood to be compact), with 

tangent bundle ,X, the Pontrjagin-Thom construction defines what 

is variously called the index, direct image or Umkehr homomorphism: 

",*(X; --,X) ~ w*(point) • 

(Recollect that w*(X; --eX) is, by definition, the stable cohomotopy 

~*+n(T(U)) of the Thom space of the normal bundle u of some 

embedding of X in :Rn • ) And, in general, for any map f: X ---> Y 

of closed manifolds one has f*: w*(X; -LX) ---\ w*(Y; --ry), or 

with coefficients in a virtual bundle « over Y : 

w*(X; f*o( -,X) ~ w*(Y; 0( -rY) • 

f* is induced by a stable map of Thorn spaces T(oc. - ,Y) ~ 

T(f*c< --rX) - the Atiyah S-dual of f: T(-f*o<) ----> T(-,,-). (The 

Atiyah duality is actually defined by an index construction. ) 

Example (5.2) Consider the unit sphere S(V) in a vector 

space V • .."S(V)@:R V (where, to be definite, 1 E:R is 

identified with the outward unit normal vector of the embedding 

S(V) ~ V) The index map 

coincides, up to a minus sign, with the connecting homomorphism 
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",-1(S(V); -v) ~ ",O(point) 

of the exact sequence of the pair (D(V),S(V)) 

There are two generalizations of the index construction: 

to an equivariant theory an1 to a fibre-bundle theory. (The 

account by M. F. Atiyah and I.lIi. Singer,[lO) I and IV, is 

recommended. ) 

Example (5.3). Induction. Let i H ---+ G be the 

inclusion of a closed subgroup H in a compact Lie group G. Write 

the Lie algebras, with the adjoint action of the group, as ~ 

and ~ respectively. The composition 

w~(G/H; GXH~) ---7 W~(G/H; G x H1r) ~ ",,~(point;-la-) 

of the forgetful map i* and restriction to the base-point H E 

is an isomorphism; compare (7.7) Now the tangent bundle 

'.:(G/H) is GXH('f/+r) and we have an index map w~(G/H;GXH~) 
--4 w~(point;~) defining group-theoretic induction: 

i* w~(point;"") ---7 w~(point;'1-) 

and more generally 

for any compact G-ENR X. (Introducing coefficients - ~ and 

mul tiplying by the Euler class ,«Of/-Iy) E W~( point; - ,1\-) one 

G/H 

( I ... ) WHO(X) 'w °G(X) The corresponding obtains a map i*,'( ~ 'C : ~ 

K-theory is discussed in [751 . ) 

In the fibre-bundle theory one considers manifolds ~ a 

fixed compact ENR ~, that is, locally trivial fibre-bundles over 

B with fibre a closed manifold and structure group the group of 

diffeomorphisms of the manifold. Such a manifold'" : E ----> B 

over B has a bundle ~(1l) of tangents along the fibres and there 
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is an index: 

"-.: ",*(E; -cl,,)) ~ ",*(B) • 

Everything works as before, only fibre-wise over B. The index 

with coefficients in a virtual bundle ~ over B is represented 

by a stable map over B : T
B

( ... ) ---> 'f
B

(,,*'" -cC")) between bundles 

of Thorn spaces and this is the S-dual over B of the map 

Collapsing the base-points 

of all the fibres to a single point, we obtain a stable map 

If B happens to be a closed manifold and 

" a smooth fibre-bundle, then this map is S-dual to the map 

T(- .... o<.-"*-cB) ~ T(-o<. --.:B) defined by 1l; -cE splits as 

In other words, the definition of "* : w*(E;Tf*o( -c(-rr)) 

~w*(B;"') is consistent with (5.1). It is also consistent 

with the equivariant theory; if P -4 B is a principal G-bundle 

and X a closed G-manifold, there is a commutative square: 

1 I 
",*(B) , 

When 1l is a finite cover it is customary to call "* : w*(E) --+ 

w*(B) the transfer, (The Becker-Gottlieb transfer in general is 

the composition ~*.y(c(ll)) w*(E) ---->w*(B) with multiplication 

by the Euler class. ) 

Our first subject is the representation of stable homotopy 

classes by framed manifolds. A framing of a closed manifold X 

is a stable isomorphism 't'X ~ :Ri, The index homomorphism may be 
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written: The class in the stable i-stem 

t d b X is the image of 1 E ",O(X) • "'i represen e y In the same way 

a manifold X with a (smooth) involution and a ~/2-equivariant 

framing, that is, an isomorphism 

,X~JRmErlLn ~ JRj ... ma;lLi-j+n 

for some m, n, represents an element of Wi,j • 

In equivariant bordism theory wi,i is realized as the 

bordism group of a restricted class of framed manifolds ( [77] , 

[34 J , [ 72 ] ) • The components of the splitting wi,i 

"-'i$ wi(P(oo» may be represented by manifolds with trivial and 

free involution respectively. The first is clear. For the 

second, interpret wi(P(~» as the framed bordism group of P(~). 

An element is given by a framed manifold X with a map g: X_ 

p(ao) • Let ... : X ---->- X be the pullback of the universal double-

cover S("') --> P(oc) • 

free ~/2-manifold; 

Then X with the covering involution is a 

it is equipped with a stable framing -cc 'it ~ JRi 

lifted from the framing of X • 

Proposition (5.4) • The ~/2-framed manifold X So constructed 

represents the class - [X,g] ""'i (P(oo» S; w . .• 
1,1 

In order to use duality we must replace P(oo) by a finite 

projective space p(V). g: X --+ P(V) lifts to a ~/2-map g : X 

------+ S(L.V) • The proof, using (equivariant) (5.2), is just the 

transitivity of the index: 

~I 
° ~ w~/2(X)-~g*-~ 
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I ~ 
-i-1 «) ) w~/2 S L.V ; -L.V ~ 

The restriction i* : w. . -----t w. (or, in other language, 
1,1 1. 

the transfer (vi(P(",,» --> "'i(S(oo») takes the element defined by 

X to the class eX] of the framed manifold with the involution 

forgotten. According to the Kahn-Priddy theorem, if i > Othen 

every element of ""i may be so represented. 

Now the group KO- 1(X) = [x+; O(oo)J acts, freely and 

transitively, on the set of framings of X. Let X' denote the 

manifold X with framing twisted by the element 

a = R.g X -* p(oo) --+ 0(00) 

of order 2 in KO- 1 (X) • 

Lemma (5.5) (Ray, Brown, Jones [74J,[22],[45]). 

[ X) [ X] [X I ] 

It will be sufficient to show that "*: , ... ,o(X) ----> wO(X) 

takes 1 to 1 - J(a), where J KO- 1(X) ---> wO(X)· is the J-

homomorphism to the group of units in the stable cohomotopy 

ring. For the index "p(X) --+ w. 
1 

defined by the framing of X 

takes J(a) to [X'] and T>*(1), by the transitivity of the index, 

to (X]. This follows, by taking the balanced product X x ~/2 ' 

from the universal statement (from (4.7)(v» : 

Lemma (5.6) • The equivariant transfer (or index for the 

'standard' framing - there are only two - of seLl ) 

° ° w~/2(S(L» = ~ ------+ w~/2(point) = ~~~t 

maps 1 to 1+t • 
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It may be instructive to state the generalization of (5.6) 

from the real/Sal ~/2) to the complex/S
1 

and quaternionic/S
3 

cases. Write lK :R, Q! or ]!l; G = S (lK) - the group of 

units of norm 1, wi th adjoint representation "l'. We can think 

of lK as a (left) G-module in two ways: with the action of G by 

left multiplication, denoted by E, or with the action by 

conjugation, when it splits as EG)'ll. The group itself may 

similarly be considered as a G-manifold either as S(E), written 

G
l

, or as S(EG)".t), written Gad. Gl will be given the framing 

arising from the natural trivialization 

(x,v) f-*V.X. 

(That is to say, the tangent space at x is identified with the 

tangent space ".l at 1 by right translation.) It represents an 

° element [G1J E: wG (point; 'l}). As the boundary of the disc 

D(E~"d)' S(EG)<>&) has an obvious framing :RG)1: ~ EG)~; the 

framing we choose differs from it by the equivariant twisting r : 

defining the representation E. 

Proposi tion (5.7). (Knapp, Stolz [54 J , [83] ) 

[G
l

] = (S(EG)~)] in wg(point;~). 

However, the two manifolds are certainly not equivariantly 

framed-cobordant. 

The key to the proof is the observation that [G J and [G J 1 ad 
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lift in the exact sequence of the pair (D(E),S(E» to 

-1 
wG (S(E); "A-E). 

describe [Gad]' 

For Gl = SCE) this is clear, by (5.2). To 

identify ",,+ with S(EG)O!) = G (with base-
~. ad 

point 1) by mapping x E 'If to (-1+x)/1-1+xl • Then 

where J is the equivariant J-homomorphism KO~1 (S(E G)'f» ----4 

wg(S(JRG).,»· and r E KO~1(S(EG)'1),'\') ~ KO~1(S(EG)"J» is the 

class defined by r. (r ~ KOG(EG)'l) - K-theory with compact 

supports - is represented by the endomorphism of the trivial 

bundle E '" lK over EG) ~ = ]{ given by left multipIication by the 

element of the base. It has additional structure as an element 

of real, complex or quaternionic K-theory. Now J(r) - 1 is 

lifted to w~1(S(E) x (S(:RG)"l)'*); -E) as the difference class of 

the two cross-sections of SCE) defined by rand 1, (3.11). 

Little remains to be proved: 
-1 

wG (S(E); "A-E) ~ ~. (But 

it is neater not to use this fact. The identification is 

natural with respect to automorphisms of lK and the equality 

(5.7) is valid in wO (point·O't) th . G><lAut(]{) '0 - e equl.variant theory 

of the semidirect product of G and the automorphism group of lK. 

To translate the result into cobordism theory, let P--}X 

be a smooth principal G-bundle over a framed closed manifold. 

The balanced product P x G then takes equivariantly framed G-

manifolds to framed manifolds. 

is cobordant to PXGS(lRG)~) 

According to (5.7), P = P x G Gl 

so if G = S 1 to the product 

with a certain framing (as could have been deduced 

from (2. 7) and (3. 1 4) ) • 
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The remainder of the paragraph treats of the squaring 

operation and the Hopf invariant. Cancelling the earlier 

notation, we let X be a framed manifold representing a class 

x E w • 
m 

Then X x X with the involution which interchanges the 

factors has an evident 'lL/2-framing: -c(X x X) is stably isomorphic 

to ]tm$]tm with the switching involution, that is, to ]tm$Lm • 

(And, of course, if E -----* B is a smooth principal 'lL/2-bundle, the 

tangent bundle of Ex 'lL/2 (X x X) is stably the pullback of the 

bundle TBEt!]tm$~m over B, where A is the line bundle Ex 'lL/2 L 

corresponding to the double cover. 

Lemma (5.8). XxX represents p2(x) in W 2m ,m' 

-2( ) = bmp2(x)_~(x) ~ "'. , The description of P x m,m 

pictorially just the square X x X minus the diagonal, has a new 

subtlety. Let t:> : X ---'> X X X be the inclusion of the diagonal. 

Since the normal bundle is stably L
m

, there is an index 

homomorphism : 

By the transitivity of the index, 

w m,m 

Consider the now familiar direct limit of the stable 

cohomotopy exact sequences of (Xx X) x (D(nL),S(nL». It may be 

rewritten in the following form. 

Lemma (5.10). ]o'or any framed manifold X of dimension m, 
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there is a split short exact sequence: 

o .I' 0 
o -----*"'m(S(oo) x 'lL/2 (XxX» ----) "''lL/2(XxX; -mL) <,--_.1 '" (X) --7 o. 

-1 ) The first term is the S-dual of w'lL/2(s(nL) x (XxX);-(m+n L) 

-1 
..., (S(nL)x 'lL/2(Xxx);-(m+n)H) for large n; the final term 

is given by (4.4). The splitting is the composition 

li •• (f 

Hence b m _ 6.. (1) actually defines an element of 

W
m

(S(OO)x'lL/2 (XxX» whose image inwm(P(oo» under the map 

S("") x 'lL/2 (X x X) ~ stool x 'lL/2" = P(oc) collapsing X x X to a 

point is p2 (x) • It is illuminating to describe this element 

directly. Choose an embedding i : X -----* ]tm+n with trivial 

normal bundle ]tn corresponding to the given stable trivialization 

of eX. It extends to a tubular neighbourhood i : X x]tn --7 

Now note that, if V is a real vector space, the 

complement V x V - V of the diagonal in V x V with the switching 

involution is (L. V - 0) x V, which is diffeomorphic to 

S(L.V)x:RxV and as far as homotopy is concerned just S(L.V). 

The restriction of i x i defines a map (X x X) x (:Rn x ]tn _ lRn) --7 

(:Rm+n x :Rm+n _ Em+n) , so up to homptopy a 'lL/2-map 

(XxX) x S(nL) --+ S«m+n)L) • 

Let So be the composition (X x X) x S(nL) -----* S(nL) ~ S( (m+n)L) of 

the projection and the standard inclusion. 

Lemma (5. 11) • 

-1 
W'lL/2«XxX)xS(nL);-(m+n)L) of So and s1 regarded as sections 
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of the trivial bundle (m+n)L maps to b
m 

- "* (,) in 

° '" u/2 (X x X; - mL) • 

Here is the reasoning. By (2.3) 6(sO's,) is mapped to the 

difference of relative Euler classes 

The first is, by definition, b
m 

times the 'Thom class' in 

"'~/2(D(nL) ,S(nL); - nL) • As for the second, notice that away 

from the diagonal X S X x X s, factors up to homotopy through 

the projection onto X x X - X and so extends to a nowhere-zero 

section on (X x X - X) x D(nL). Thus the obstruction is 

concentrated on the diagonal. Take an equivariant tubular 

neighbourhood D( L.-cX) ~ X x X of the diagonal. Then on this 

d D(L.-r)xS(nL) ---) S«m+n)L) is simply, up to neighbourhoo 5,: 

homotopy, the restriction of the map 

n e!I!' m+n 
given by the stable trivialization "'C$:R - R of -ex. . By 

inspection the relative Euler class is ~*(,). 

It is amusing to translate into the language of 

differential topology the proof of the Kahn-Priddy theorem in 

the form: 

(5.'2 ) Any framed manifold X of dimension m > ° is cobordant 

to a framed manifold Y lidmitting a free involution compatible 

with the framing (that is, -cy ~ ]{m stably equivariantly) • 
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Recall the classical representation of the Euler class of 

a smooth vector bundle ~ over a closed manifold B as the cycle 

given by the submanifold Z of zeros of a generic smooth cross-

section s (generic meaning transverse to the zero-section) • The 

normal bundle of Z in B is identified with the restriction of ~ 

and in a tubular neighbourhood D(~ IZ) of Z the section s is, up 

to homotopy, just the 'diagonal' cross-section of the pullback 

of 1;. We have an index map ""O(Z) --> ",O(B; -f;) and by definition 

(of the index map and of the Euler class) the image of , is 

The corresponding description of the difference class 

of two sections sO' s, of S(~) is as follows. 

Lemma (5.'3) • The section (so'-s,) of the fibre-product 

S(~) x B S(~) is homotopic to a section (to,-t,) transverse to 

-, 
the diagonal S(I;). ~(sO,s,) E. '" (B; -1;.) is represented by 

the inverse image C of this diagonal. 

Precisely, the normal bundle v of C in B is equipped with 

an isomorphism " $JR ~ I; I C and the index homomorphism wi'ich it 

Outside C 

to and t, are linearly homotopic. 

This, then, is the recipe for finding Y in (5.'2) • Choose 

the embedding i : X --+ JR
m

+
n 

as above and construct the smooth 

sections sO,s, of the trivial bundle (m+n)L ( = ~) over 

S(nL) x (X x X) ( = B). Deform sO,s, to to' t, and take Y to be 

the obstruction submanifold (representing, although this is 

irrelevant to the proof, 6(so'S')); this may be done 

equivliriantly by working on S(nL)x
U

/ 2 (XxX). On the other hand, 

forgetting the involution, we may deform So to the constant map 
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So' with value (0 •••• 0.1) • If i is a product of an embedding 

Xx:Rn- l ----7:Rm+n- l with the identity 11.----7:R. as we may assume it 

is by adding 1 to n. then (so' .-sl) is already transverse and 

the obstruction submanifold is just X x (0 •••• 0.-1). Now 

(sO·.-sl) and (to .-t l ) are homotopic by a smooth homotopy 

constant near the end-points and transverse to the diagonal; the 

inverse image of the diagonal is a cobordism between X and Y. 

The construction (5.11) is really very old. It extends 

the classical definition of the Hopf invariant as a linking 

noJmber. (Forgetting some of the information in ~(sO.sl) by 

restricting to the subspace (X x X) X SILl of (X x X) x S(nL). we 

-1 » m+n-l( ) obtain a class in W'lh/2«XxX)XS(L);-(m+n L =w XxX. 

It is represented by the map (x.y) ~ i(x) - i + (y) : X x X ~ 

:Rm+n _ 0. where i+ is given by pushing i out along the first 

positive normal field. ) 

There is a special Case in which p2(x) admits an even 

simpler description: namely when the framing of X is given by 

a genuine trivialization of ,X. (As is well known. any framed 

manifold is cobordant to such an X: but it would be inappropriate 

to quote this corollary of Kervaire's theorem (8.4) here. ) 

Remark (5.14). (Loffler [631). Let s be the 'diagonal' 

cross-section of the trivial bundle mL over a tubular 

neighbourhood X x D(mL) of the diagonal X in X x X defined by the 

isomorphism LX ~ :Rm • s extends to an equivariant cross-

section transverse to the zero-section. The zero-set of s is 

the union of X and a manifold with free involution representing 
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We next relate the squaring construction to the definition 

of the Kervaire-Arf invariant of a framed manifold. Recall the 

definition of a quadratic form. Let P be a module (projective. 

finitely generated) over a ring R. commutative for ease of 

notation. Then 'lh/2 = ll. T 1 acts on the group B = Hom
R 

(P@P.R) 

of bilinear forms P x P ---4 R by interchanging the factors. 

Classically, a symmetric bilinear form on P is an element of the 

B 'lh/2 f . . 
group 0 1nvar1ants, or, in terms of group cohomology 

which is the novelty. of HO('lh/2; B). A quadratic form on P is 

an element of the group B'lh/2 = B/(l-T)B. or H
O

('lh/2; B). (A 

coset [b] defines a quadratic function P ~ R : x ~ b(x.x) • 

Associated to any quadratic form is a symmetric form, according 

to the symmetrization map 

(b] ------7 b + Tb • 

Once the definition is formulated in the language of 'lh/2-

homology, it is fairly clear how to define symmetric 

(A. S. Miscenko [69J ) and quadratic (A. A. Ranicki [73J) forms 

on a complex of modules. We give the translation into algebraic 

topology for the singular (F2 ) Co chain complex of a manifold. 

Let H denote homology with F2-coefficients. Borel has defined 

the 'lh/2-.£2homology of a compact 'lh/2-ENR Y : Hiz/2 (y) ._ 

H*(S(oo) x 'lh/2 Y)' Then a symmetric form should be an element of 
m 

H71/ 2(XxX), a quadratic form an element of H
m

(S(oo)x'lh/2(XxX». 

The symmetrization map is the segment 

of the F 2-cohomologyversion of the sequence (5.10). 
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Definition (5.15). U x = 6.(1) _b
m 

E H;/2(XxX) will be 

t · f on the closed manifold called the canonical w2-syrnrne r~c ~ 

X. (A. is the direct image in cohomology; b denotes the 

Hurewicz image of the element of the same name in stable 

cohomotopy. ) 

The terminology is justified by the well known fact that 

the restriction 1* (u
X

) <;, Hm(X x X) satisfies: 

{i*(u
X

) U (x x y)1 [X x X] 

Definition (5.16). An W2-guadratic f£!:!!! ~ b is an 

element q € Hm(S(oo) x 7l/2 (X x X)) whose symmetrization is the 

canonical symmetric form U x • 

If m = 2k is even, it defines a quadratic form Q : Hk(X) 

---> W
2 

in the classical sense: Q(X1'Y) = Q(x) + Q(y) + {XU y}[X] 

The squaring operation 

was introduced by Steenrod in his definition of the Steenrod 

squares (as the square on the cochain level) • There is a cap-

product pairing 

< , > Hr (XxX) @ H (S(<lO)x~/2(XxX» ----4H r(P(co)}. 
7l/2 s u. s-

Q(x) 
2 

is equal to < P (x),q) E W2 • 

Set H H.(X) and write K and I respectively for the 
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kernel and image of 1 .. T : H®H --+ H®H. The equivariant groups 

decompose canonically as: 

2k 
H7l / 2 (X xX) [ 

.{ K/n 2(k-r) $ K2k , 
k~r>O 

tH®H/I12k $ \ (K/I1 2 (k+r) 
GO<r~k • 

p2(x) is then simply x®x in K2k. We shall write Q also for the 

component of q in {(H@H)/I} 2k; it determines the quadratic 

function on Hk • 

The Hopf invariant A.(1)_b
m 

'" Wm(S(oo)x
7l

/ 2 (XXX)) thus 

provides, by the Hurewicz map, a natural quadratic form for the 

framed manifold X. If m = 2 (mod 4), the Arf invariant of Q is 

called the Kervaire-Arf invariant of the framed manifold. It 

vanishes if X is a framed boundary. (Here is a sketch of the 

proof. If X = aW, one must show that Q is zero on elements 

lifting to Hk(W). In order to avoid discussing manifolds with 

boundary we consider the closed framed manifold X = W.u.X W 

obtained by gluing two copies of W along the boundary X; the 

'folding map' gives a retraction of X onto W. The inclusion 

j: X --+ X of X as codimension 1 submanifold represents ° in 

w
1(X). In other words, j. : WO(X) ----4 wO(X; -JR) takes 1 to 

zero. It follows formally that (jxj).: W~/2(XXX;-mL)~ 

° ( m w
7l

/ 2 y x X; -(m+1)L - JR) kills .1.( 1) - b Then in homology 

(j x j)*(q) = ° E Hm(S("") x 7l/2 (XxY», which implies that Q is 

zero on j·Hk(y). ) 

With this definition, the dependence of the quadratic 

form on the choice of framing is particularly easy to describe. 
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X 'o() 6(a), (2.13), is Consider a change of framing a : ~ ~. 

an element of f X .. ; , or, by S-duality, "'m(P(oo) xX) • 

Distinguish the new quadratic form by a prime. 

Lemma (5.17). q- q' = h,,*(e(a», where 

(.J (p(oo) x X) ----> "-' (S(oo) x "'/2 (X x X» A. : ID m UI 

is the diagonal map and h is the Hurewicz homomorphism. 

The variation of the quadratic form thus depends on the 

'spherical class' h9(a) EO Hm(P(OO) xX). A classical computation 

. the fact that the total in cohomology, recalled below, uSLng 

h . 1 class, that is, something Steenrod square Sq fixes a sp erLca 

in the image of stable cohomotopy, establishes: 

( 8) (Browder [20J, Jones-Rees [47J) Proposi tion 5.1 • 

Q' (x) - Q(x) < x,w> if m+2 is a power of 2, 

o otherwise, 

where w E Hk(X) is the pullback via 9(a) € {X+; P(co)+} of 

k 
the generator of H (p(oo» • 

It follows from (5.5) and the Kahn-Priddy theorem that 

the Arf invariant of X is zero unless m+2 is a power of 2. 

(This is the proof of J. Jones and E. Rees. ) 

Consider the homomorphism .f. X .. ; P(oo)+j ~ L i ~ 0 Hi(X) 

taking a stable map to the image under the induced map in 

cohomology of the several generators of Hi(p(~». The dual or 

inverse total Steenrod square -y.Sq is defined by Sq.)(Sq = 1. 

Lemma (5.19). (steenrod-Whitehead). If (ai ) lies in the 
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o if j+1 is not a power of 2, 

a j if it is. 

In the application (5.18) !:;* translates into "Sq, by the 

definition of the Steenrod squares and the triviality of the 

Wu classes of the framed manifold, and in fact Q' - Q WQ9W 

or 0 in -l(H@H)/I 12k • The success of the method leads us to 

ask what restrictions are imposed on Q by its origin in stable 

cohomotopy. The action of Sq = Sq@Sq on H@H passes to the 

quotient (H@H)/I. 

Proposition (5.20) 

Then Q + Sq(Q) = 0 

(Jones [46J). k+1 '" 2 t (mod 2 t+1) • 

if k+1 '" _2 t (mod 2h2 ), 
t 

for some z E Hk+2 (X) if k+1 = 2t z@z 

The proof is a matter of interpreting the statement: Sq(q) 

= q. It requires knowledge of the action of Sq in Hil/2 (X x X); 

[67J 3.7. As an immediate consequence of (5.20) one has: 

i Q(ySq x) 

i > 0, with a correction term < x,z) if i 

(mod 2 t+2) • 

The ZZ/2-homotopytheoretic description of the quadratic 

form on a framed manifold is also well adapted to another 
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problem. Let,,: X -+ X be a double cover. The framing of X 

~ How are the quadratic forms related? lifts to a framing of X. 

As usual X is considered as a ~/2-space with the trivial 

involution. We also require X with the covering involution T 

and refer to it then as Y; it is equivariantly framed. Now the 

X x X -7 X X X of the diagonal X inverse image under." x" : 

d · 1 component A(X) and a free, offsplits into a fixed, ~agona 

'"' Y---+XxX takes y to (y,Ty). diagonal one V(Y), where y: 

) 
m. 

Hence the lift of the • quadratic form' A.( 1 - b ~n 

o (X X L) to OJO (XxX·-mL) is the sum (A.(1)_b
m

) + 
w~/2 x ; - m ~/2 ' 

V'.( 1) of the quadratic form on X and an off-diagonal correction 

term. The second term is substantially simpler than the first, 

for Y is a free ~/2-manifold and there are isomorphisms: 

The vertical maps are induced by the projection ", the top row 

is the Gysin sequence (4.5) with S-duali ty. So 'V. ( 1) is 

the free component as the image under the described directly in 

( ( ) (X X» induced by V' of map "'m(S(oO) x ~/2 Y) ~ wm S'" x ~/2 x 

the 

The 

element corresponding to the fundamental class [X) in wm(X). 

associa ted quadratic form r E Hm (S (00) x 7J.,/2 (X x X» is 

clearly independent of the framing; its definition uses only 

Poincare duality. Let q be the quadratic form determined by the 

framing. The splitting in cohomotopy translates at once into: 
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Proposition (5.21) • (Brumfiel-Milgram [23]) • 

("" x")*q q +- r. 

If m = 2k is even, then the quadratic functions on the middle 

cohomology satisfy: Q("1I".x) = Q(x) + R(x) (x ~ Hk(X» 

(;r x ... ). and ". are the transfer maps in homology and 

cohomology respectively. Our interest here lies not so much in 

the result (5.21) as in the method of proof, to which we shall 

return shortly. 

Consider next an immersion i X ---+ ]l.m+n, with normal 

bundle v, of the framed manifold X in Euclidean space. The 

derivative of i embeds ~X as a sub-bundle of the trivial bundle 

E
m+n and so, as in §2, defines a ~/2-cross-section s of the 

trivial bundle Lm+n over S(L.-rX) • Let ~: XxX ---+ Lm+n be 

the section (x,y) ......... i(x) - iCy) of L
m

+n over XxX. Choose an 

equivariant tubular neighbourhood D( L.~X) <;; X x X of the 

diagonal. Then, up to homotopy, s coincides with the restriction 

of s to S(L.eX). We see that the relative Euler class 

,((m+-n)L,s) E "'~/2(XXX-B(L.·t:X),S(L.~X); - (m+n)L) is an 

obstruction to the existence of a regular homotopy of i to an 

embedding. (In a certain metastable range this is the precise 

obstruction, by the theory of Haefliger-Hirsch [33J .) On the 

other hand, i «m+n)L,s) f "'~/2(D(L.'t:),S(L.'t:); - (m+n)L) is 

just the Euler class ~(L.v) of the normal bundle multiplied by 

the 'Thorn class' of L. 't: • In this way we obtain a decomposition 

m+n 0 () ) . of '{«m+n)L) = b E (.J~/2(XxX; - m+n L ~nto a diagonal and 

an off-diagonal component. This may be given geometric content 

in the following manner. 
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The normal bundle u is equipped with a stable 

trivialization, say l.>E~JRN ';!! lR
n .. N for some N )'> m, classified by 

a map f: X ---+ Vn+N ,N to the Stiefel manifold of N-frames in 

Rn .. N. &(0, (2.6), is an element of w;,1/2 (XXS(HL); - (n .. N)L) 

It is equal to the difference of Euler classes 

'( (L.,,) _ ,,(nL) E: {X .. ; P~ 1 <; "'~/2(X; - nL). (The 

coefficients L.v and nL are identified via the stable 

isomorphism. 
The index of S(O in <::, (P

oO
) <; w is called m n m-n,m 

the (stable) ~ invariant of the immersion. 

We turn to the obstruction to embedding. The restriction 

of s to X x X _ D(L.LX) is 2Z/2_equivariantly homotopic through 

a homotopy constant on S(L.,X) to a section transverse to the 

zero-section. The zero-set of this cross-section is a manifold 

Y with free involution and a stable framing of Toy as lR
m 

- L
n 

• 

It represents the off-diagonal component of b
m 

... 
n 

in 

° ""2Z/2(X x Xl - (m ... n)L) : 

(5.22) ""* '«L.v) .. [Y] • 

The stable class in wm_n,m defined by Y is called the double-

point invariant of the immersion. 
If the only singularities 

of i are transverse double intersections, then Y may be taken 

as {. (x,y) E XxX I i(x) = i(y), x F y} ; whence the name. 

Proposition (5.23) • (Kervaire [531 ). Consider an 

immersion X ---+ Rm ... n of a framed manifold in Euclidean space. 

Then the sum of the Smale invariant and the double-point 

invariant is equal to (_) the Hopf invariant b
n

.p2(x) E ~ (P~) m n 

of the class x € wm defined by X. 
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The off-diagonal term [YJ lies in the free summand of 

o JUs as 1n the example (5.21), we may "'2Z/2(XxX;-(m+n)L), and" t " 

define it directly as an obstruct1"on 1 ( ) c ass, 0 i say, in 

an em edding. "'m(S(co)x 2Z/ 2 (XxX);nH) to deforming i 1"nto b 

(,,«m ... n)L,s) is an element of the group 

..,0 (X Q( 2Z/2 xX-D L.T),S(L.T); - (m+n)L), which is isomorphic to 

e 1ne by mapping " ""m(S(OO)x
2Z

/ 2 (XxX-D(L.T»;nH). o(i) is d f" d 

XxX-D(L.T) into XxX.) We shall regard o(i) as an element 

of the S-dual g -1 ( roup GJ
2Z

/
2 

XxXxS(NL); - (m ... n)L-NL) for N » m. 

It is defined here whether X is framed or not. 

Before compounding the elements of (5.21) and (5.23) in a 

1nd1cate the connection between p2 and final example, we must" " 

Segal's operation e2 • Let 11": E ---> B be a finite cover of a 

re 1S an index map, or transfer, compact ENR E. The " 11" • * . 
""O(E) ---'> <v0(E) "*( 1) is the element of ,..P(B) represented 

by the finite cover in the sense of [80] A finite cover with 

an involution similarly represents an element ° of "'2Z/2(B). 

Proposition (5.24) 

by the finite cover 

p2 (11"* ( 1 » E ° ( w 2Z/ 2 B) is represented 

{(x,y) E EXBE I x ty1 ~B 

with the free involution which interchanges the factors of the 

fibre-product. 

If B is a point, this is (5.9) in dimension zero. 

fibre-bundle version is no more difficult. 

Now let." : X ---+ X be a finite d-fold covering of a 

closed connected m-manifold X , m > 0, defining a class u 

The 
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An immersion i: X ----'>- ]Rm+n induces, by 

composition with~, an immersion ~*i of X. The obstructions 

o(i) and o(~*i) are related by the equation: 

in W;;/2(X x X x S(NL); - (m+n)L - NL), for N » m. p2(u) lies in 

CV~/2(XXX)' p2(u) in w;1/ 2 (XXS(HL); -NL), that is 

~ is the diagonal of X, u the normal bundle. 

The equality is proved by lifting o(i) to ( ... x-.:)*o(i) on 

X x X, 
where it splits into two terms corresponding to the 

diagonal X and off-diagonal XXXX-X parts of ("1fX,,)-1(X) 

The first is o(~*i); the second should be thought of 

as an obstruction to embedding X fibre-wise in the normal bundle 

lJ over X. 

We specialize to the case m = n. The Poincar~ dual of the 

Hurewicz image of o(i) in lF2-cohOmolOgy lies in 

HO(S("') x 'll/2 (X x X». 
Let l(i) in HO(P("'» = lF2 be its image 

on collapsing X x X to a point. For a generic immersion I is 

the number modulo 2 of self-intersections. 

Proposition (5.26). (Brown [21]) • Let " : X ----+ X be a 

finite d-fold cover of closed manifolds of dimension m > 0 and 

i an immersion of X in 1\2m lifting to an immersion ,,*i of X. 

Then 1(",,*i) = d.l(i) + o if m+1 is not a power of 2, 

where ~m is a certain characteristic class of finite coverings. 

For a double covering " classified by a E H 
1 

(X; Th'2) , <tm (-rr) = am. 
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Vie have only to describe the Hurewicz image of the final 

term in (5.25) • 

the map of 

r::O~i~m 
(5.19) • Then the 

) 0 be the image of p2(u) under 

term 6.*(p2(u).'1(L.1») reduces to 

where w is the normal Stiefel-

Whitney class, that is, to ~ (t:Sq)m-io(lo ( .... )[X1 (by 
L.,O~i~m 

And 5.19) completes the standard property of the Wu class) • ( 

the proof. 

My account of quadratic forms and the Kervaire-Arf 

owes much to J. Jones [45], [46] and is dependent 

invariant 

on the 

definition given by A. A. Ranicki. The definition of the double

point invariant of an immersion and the whole geometric approach 

comes rom the work of U. Koschorke and to the Hopf invariant f 

B. Sanderson r 57) and R. M. VI. Vlood [89] • The original version 

of (5.26) in [21] dealt with the double cover Sm----+ pm; this is 

now seen to be typical. (Th e more general problem was posed by 

L. Smith. There is a systematic study of constructions such 

as (5.1) in [55 J • 
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A. Appendix: On the Hopf invariant 

We shall need a generalization of (4.4). 

Lemma (A.1) • Let A be a pointed ~/2-space and (X,Y) a 

Then the fixed point map gives an 
compact ~/2-ENR pair. 

isomorphism f : 

lim { X/Y ; 
-) 

n 

(The direct limit is taken over successive inclusions. ) 

It is simplest to work from first principles. As in (4.4) 

that ~/2 acts trivially on X, and then there is 
we may assume 

a splitting" of f . 

f: (X/Y) " (Ln)+ -4 A such that f (r): X/Y -+A~/2 is null-

Consider the special case of a ~/2-map 

homotopic. 
Then f is annihilated by composition with the 

n ... for it l;fts to the first term of the 
inclusion A -'> (L ) " A, • 

... (n)+ A]~/2---+ 
homotopy exact sequence: [ (X/Y) " R "S L ; 

n + A]~/2 .~ (X/Y', AJ~/2 of the pair 
[ (X/Y) " (L ) ; ~ 

This is converted into a general proof by 

re-labelling. 

If V is a real vector space, write ~v(A) for the quotient: 

(S(L.V) x ~/2 A)/(S(L.V) x ~/2 ,,). 

Lemma (A.2). Suppose that the involution on X is trivial. 

Then there is a canonical isomorphism: 

+ J ~/2 ~ 
{X/Y; S(L.V) "Ar 
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Its definition is an exercise in S-duality (in its ~/2-

equivariant and fibre-bundle over PlY) manifestations). (A.1) 

and (A.2) together yield a splitting theorem extending (3.13). 

Corollary (A.3). X with trivial involution. Then there 

is a split short exact sequence: 

{X/Y; A~/2~ ---40. 

The relation of the operation p2 introduced in §4 to the 

Hopf invariant H of the EHP-sequence is best understood by 

generalization. Let nt(V"',V"') denote the space of all base-

point preserving maps V+ ~ V ... , with the standard topology and 

the zero map as base-point. Corresponding to the unstable 

version ~ of 82 in §3, there is an operation 

Now let B be a compact ENR with base-point. Then the 

construction, via the difference class and S-duality, extends 

to define 

-2 (-)PV is the Hopf invariant of the EHP-sequence, [67) 1.11 • The 

verification is facilitated by the observation: 

Remark (A.4). The projection B x B -+ B. B ( = (B x B)/ 

(B v B)) has a natural ~/2-equivariant stable splitting. 

There is an operation S2 { B; B v B 1 ---> { B x B; B v B 1 ~/2 
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.--.~---.------------

The image of the inclusion B -+ B v B of the first factor defines 

the splitting. 

The splitting (A.3) interprets the stable Hopf invariant 

(A. 5) 
(x € {Z; JjJ), 

where p2 
B 1\ B 1 'll/2 is the squaring 

operation and A and (:; the diagonal maps Z ~ Z " Z, Jj --+ B "B • 
Z 13 

The definition of the Hopf invariant H = _p2 in full 

generality allows us to refine the statement (5.9). 

) (X X)) is equal to H[X], the Hopf invariant 
"'m(S(oo x'll/2 x 

of the fundamental class (X] € Wm(X), (1'he geometric 

description (5.11) may also be made more precise. - b(sO,s1) € 

"'m(S(nL)X'll/2(XxX)) is the Hopf invariant of the unstable 

class in~ (Sn) defined by the embedded manifold with trivial 
m+n 

normal bundle. ) 

The nalve account given here of the Hopf invariant (or 

cyclic pth power operation for an odd prime p) is founded on the 

free action of 'll/2 (or 'll/p) on a sphere and the consequent 

interpretation of the classifying space B'll/2 (or B'll/P) as a 

projective (or lens) space. At the heart of the sophisticated 

theory is the theorem of Barratt_Priddy-Quillen relating finite 

sets (or symmetric groups) to stable homotopy theory. Then 

comes the sequence of operations or stable splittings, one for 

each symmetric group, beginning with the classical Hopf 

invariant: V. P. Snaith [82J, w. G. 13arratt-P. J. Eccles [11] , 

G. B. Segal [80J (in terms of covering spaces), U. Koschorke-

B. Sanderson [58J (self-intersections of immersed manifolds), 

H. Hauschild [35) (equivariant homotopy, generalizing (A.5)) • 

Of course, localizing at the prime (2) we may reduce (by passing 

from a symmetric group to its Sylow 2-subgroup) to an iterated 

Hopf invariant, and in practice it may be convenient to do so. 

The Arf invariant is an example. 

Remark (A.6) • k odd. There is a commutative diagram: 

8(00) x 'll/2 (P(oo) x p(oo)) is the classifying space of the wreath 

product 'll/2 \' 'll/2. More generally, ,f",( P~ 1\ P;) is the Thorn space 

of k~, where ~ is the 2-dimensional real vector bundle over 

B('ll/2 l'll/2) associated to the representation 8
2

(L) of 'll/2\,'ll/2. 

(The construction in §1 gives an operator 8
2 

: RO('ll/2) --+ 

RO( 'll/2 \ 'll/2) on the real representation rings. ) 

In the notation of (5.18), Arf(Q)-Arf(Q')= Q(w) if k+1 

is a power of 2. With (5.5) this provides a manageable 

description of the Arf invariant of a framed manifold with free 

involution and leads to a geometric proof of the remark. 

(A.3) is the simplest example of a general splitting in 

equivariant stable homotopy theory; see, for example, [35J 
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6. K-theory 

Notations and concepts will be carried over from equivariant 

stable cohomotopy to real KO-theory without comment. Thus. the 

KO ZZ/2 -theory of a space is a ZZ x ZZ-graded ring. commutative in 

the sense of (4.2) The Hurewicz homomorphism 

of the coefficient rings takes elements of stable cohomotopy 

to elements of KO-theory denoted by the same symbol. Parallel 

local coefficient notation will be used. 

Let ~ be a real vector bundle over a compact ENR X. C(~) 

will be the associated bundle of ZZl2-graded Clifford algebras. 

(The standard reference is [6 ] .) A Clifford module is a 

graded real vector bundle ~ over X with a structure homomorphism 

C(~) ~ End ~ (of graded algebras) • The Grothendieck group of 

such Clifford modules will be written KOcn;)(X), Now we can 

state the basic 'periodicity' theorems of ZZl2-equivariant 

K-theory. 

Theorem (6.1). (Karoubi-Segal [49] p. 193. [7] Theorem 3.3) 

There is a natural isomorphism 

If C(;)o denotes the opposite algebra (opposite in the 

graded sense). then similarly 

The duality between modules over C(~) and those over C(~)o gives 

a natural identification: 

(6.2 ) 

Proposition (6.3) • Let ~ be an oriented real vector bundle 

of dimension a multiple of 4. Then there is a Bott isomorphism 

KO
ZZI2

(X) --+ KO
zzI2

(X; L.~ - {;) 

defined by multiplication by a canonical periodicity class ~(~) 

such that i*ot(\;) € KO(X; \; -~) '" KO(X) is the identity. 

The proposition. reduced to algebra by (6.1). may be 

generalized by introducing coefficients in an arbitrary ZZl2-vector 

bundle. In particular. 

( 6.4) 

for an oriented bundle \; of dimension a multiple of 4. 

This periodicity reduces KO
ZZl2

-theory to a ZZ/S x ZZ/4-graded 

theory. III (:R4 ) defines an element u in KO O .-4' The identification 

(6.2) leads to an involution 

of the coefficient ring. The periodicity is defined by 

multiplication by the central units u- 1 
€ KOO•

4 
and u.,(u)-1 E KO S •O ' 

For reference we recall from [26) the tabulation of the 

coefficient ring KO.* and the restriction map i* : KO •• ~ KO. 



, 

I 

Table (6.5) • KO-theory coefficient rings. 

1 0 0 0 0 0 0 0 0 

j E- O 0 0 ;Zd Ab"l2 A'l$At,,/ Aa'Y/.2 ;Ze 
mod 

4 .1 0 0 0 Ab'Z A>1 $ At'1. Aa,,! 0 0 

Q ;Zb3 ;Zb2 ;Zb ;Z1$;Zt ;Za 'l2a2 
;Za3 ;Zc$'l2tc 

KO. -).,j -3 -2 =.l Q .1 E- l i 
i mod 8 

KO. 0 
-). 

0 0 ;Z1 A'l Al 0 ;Zc 

(For typographical reasons ;Z/2 has been abbreviated to A. ) 

i"(a) = '/., i*(d) = 2, i*(e) = c. d = ~(e), a = ,(b). ab 1-t. 

operation 

It is compatible with the square in stable cohomotopy and has the 

same formal properties (4.10)(i)-(iii) • If j = 0, then 

p2[S] = [)g 0\;] with, of course, the involution which switches the 

factors. The equivariant K-theory K0;Z/2(X) of a space with 

trivial involution splits as a direct sum KO(X)$KO(X)t of two 

copies of KO(X) corresponding to the splitting of ;Z/2-vector 

bundles into positive and negative eigenspaces. ~ ®~ is 

decomposed as the sum of the symmetric and the exterior square: 

":' -\ ....... '; \~ . 

Indeed, x2 = i*p2 (x). But i*: KO-Zj,-j(X) ----+ KO-2j (X) 

is zero if j = 3 (mod 4); (6.1) interprets it as a map K0
1

(X) 

---'> KOZ(X) extending to a KO*(X)-homomorphism KO*(X) ----+ KO*+1 (X), 

which vanishes since KO_
1 

= O. 

A similar argument shows that the square of an element 

x EO KO- 1(X) is described by the formula x2 = 'to ~2(x) E KO-2 (X). 

(KO-2 ,-1(X) is isomorphic to KO- 1(X). pZ(x) translates into 

i* becomes multiplication by '1.' ) 

So we have the basic machinery of ;Z/Z-equivariant KO-theory. 

One of the merits of the theory is its accessibjlity. The 

Euler class has played an important part in the investigation of 

cross-sections of vector bundles. We wish to describe here its 

relation to the perhaps more familiar rational cohomology 

characteristic classes. 

Define a ;Z/4-graded cohomology theory R by 

i mod 4 

The Chern (Pontrjagin) character defines a natural transformation 

ch : KO* ---'} R* of cohomology theories. 

Proposition (6.7) • Let ~ be an oriented real vector 

bundle of even dimension n over X. Identify RO(X; -~) with 

Rn(X) by the Thorn isomorphism. Then 

maps the KO-theory Eule,. class y(~) to the classicRl rntionsl 

cohomology Euler class et!;) E Hn(X; 11) S Rn(X) • 



If the dimension of ~ is a multiple of 4, then 

'(L.~) E KO~/2(X; -L.'!;) corresponds, by (6.4), to a class in 

KO~/2(X; -~). This latter group splits as KO(X; -1i)Ej1KO(X; -\;)t, 

because ~/2 acts trivially on X and ~. Write the image of 

Proposition (6.8). ~ oriented of dimension 4k. Then 

ch: KOO(X; -U ----'> RO(X; -~) 

v y to (22(k-i)L .(1-». E RO(X), where (L
41

.(I;» is maps '+ - _ 41 <; 1 ~ ° 
the Hirzebruch L-class ([J6J 1.5) • 

The rational L-class of an oriented vector bundle is thus 

described in terms of the KO~/2-Euler class of the vector 

bundle with the antipodal involution. 

In the discussion above KO-theory has been presented as an 

abstract cohomology theory and the analytic character intrinsic 

in its very definition ignored. Atiyah's work on 'K-theory and 

Reality' showed that, in order to prove theorems in real KO-

theory, one should, by analogy with algebraic geometry, extend 

it to the Real KR-theory defined on a category of spaces with 

involution. In this context E with the involution -1 is 

traditionally written iE. The basic periodicity theorem 

KR(X) ~ KR(X; lREj1iE) , and hence KR(X) ~ KR(X; ):;Ej1i~) for any 

real vector bundle 1;, then permits the definition of the 

cohomology theory KO* and gives sense to KO(X; -1;) as KR(X; i\;). 

This is the way to understand the statements (6.2) and (6.3): in 

terms of KR~/2-theory. Here the abstract ~/2-action in KO~/2 

and the Galois action of ~/2 in KRare conceptually quite 
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different. doe,S define in itself a ~/2-However, KR-theory 

equivariant cohomology theory. 

as complex Hermitian K-theory. 

This will be interpreted later 

In the example which follows 

the 'Real' character is the more apparent, although the 

distinction is by no meanS clear-cut. Notice that, in the 

indexing of (4.1), the KR-theory in dimension (-i,-j) of a 

as KR i - 2j (X) compact ~/2-ENR X is what is normally written 

We are aiming now at a Real version of the local 

obstruction, or 'free J-homomorphism', &, but must begin with a 

resume of the complex theory. As in §§2 and 3 (X,Y) will be a 

compact ENR-pair, Z 

used in §3 for the 

cumbersome. Let G 

a compact ENR with base-point. 

free 

be a 

spherical fibration 

finite cyclic 

lim 
~ 

[ X/Y: 

group 

theory 

or S 1. 

The notation 

is 

We set 

where the limit is taken over all real G-modules W for which 

the sphere se w) is free and HG(W) is the the action of G on 

space of G-homotopy equivalences Sew) _ S(W). The elementary 

proof of the splitting lemma (3.5) may be generalized, by an 

inductive argument, to show that the obvious map 

to the group of units in equivariant stable cohomotopy is a 

split injection. 

Let V be a real vector space. Write V~ for C ®E V, 

U(V~) for the unitary group, ~P(V~) for the complex projective 
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space and Q(Vu;) for the 'quasi-projective space' (Lffi)+" CP(V
c

)+' 

ilR is the Lie algebra of 51 the complex numbers of unit 

modulus. E, as in (5.7), will be the standard complex 

representation of 51 • 

The complex 6 is a map 

[ Z; 

defining in the limit 

( 6.9) e 'K- 1
(Z) = [Z; U(oo)J ~ tz; Q("') 1 . 

As in the real case, there is a map: 

which is always a bijection (even when Z is not connected). It 

identifies {X"; Q("") 1 with an ideal (and direct summand) in 

° w 1(X), How consider the commutative diagram: 
5 

K- 1 (X) ~ L(5 1 )-1(X) 

F l j 
K-i(X) 

J 1 
",01(X)' 

5 5 5 

in
1
which the top row is defined by the inclusion of U(Y

c
) in 

H
S 

(E ®.R Y) and F is the tensor product with E. We have 

J 1.F(x) 
S 
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1 + Sex) (x E K- 1 (X» • 

This description shows that e, (6.9), is quadratic. There 

is a linear map in the opposite direction 

e: .( Z; Q(OO) I ~ [Z; U(oo) ) 

defined using the infinite loop space-structure of the infinite 

unitary group. If f: Z ---> Q(V
C

) is a stable map, set E(f) : = 
~ 1 N_1 

f*(r) ~ K- (Z), where r E K (Q(YC» is represented by the 

reflection map R: Q(Y
C

) ~ U(Y
C
)' (Recall that R is defined 

by writing Q(Y
C

) as (S1xCP(Vc»/(1XCP(VC»' R(z,[xl) (z f S1, 

x E S(Y
c

» acts on x as multiplication by z and fixes vectors 

orthogonal to x.) The composition £. Q is linear, because 

'K- 1
(Q(V

C
) I\Q(Yc )) = K \CP(Yc) x CP(VC)) is zero. By construction 

and the complex version of (2.7), (£.S).R ~ R; more is true. 

Proposition (6.10). (Segal [79J) • The composition £06 

[Z; U( .. )] ~ {Z; Q("") t ----7 [Z; U(to)] 

is the identity. 

It suffices to consider Z = U(V
c

) and the inclusion U(V
C

) 

Write n = dim V. Since the multiplication map 

n 
U(V

C
) ---> U(Y

c
) induces a monomorphism in K-theory, 

we can reduce to the case Z = Q(Yc)n, which is easily checked. 

(The identity t. e = 1 is natural. The projective unitary 

group PU(Yc ) acts on U(V
c

) and on Q(Y
C

)' 9 is defined by a 

PU(Vc)-equivariant stable splitting Ss 

Now note that the U(Vc)-equivariant K-theory of a compact 

PU(Vc)-ENR splits as a direct Sum of components corresponding 

to the irreducible representations of the centre 51 of U(V
C
)' 
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-1 
r is given by an element in KU(VC)(Q(V~)) of weight 1. Gs*(r) 

is the canonical class (of weight 1) in K- 1 (U(V)) 
U(V~) ~. 

We turn to the Real theory. U(V
C

) and Q(V~) are given the 

involution induced by conjugation; the fixed point sets are 

O(V) and the real projective space P(V)+ (with disjoint base

point). There is little to change, save the notation. X, Y 

and Z will be Zl/2-ENRs. L( S 1) ;~2 (X) will be a subgroup of the 

f . t· 1 / group 0 unl s ln S Xl Zl 2 -stable cohomotopy. The fixed sub-
1 

space of Z must be connected if'l;S : L(S1);~2(Z,'f<) ~ 

{Z; Q(<»)} Zl/2 is to be a bijection. 

Proposition (6.11). Let Z be a compact Zl/2-ENR with 

base-point. Then there is a splitting t. Il = 1 : 

KR-
1

(Z) = [Z; U(<><»]Zl/2-7{Z; Q(o/l)}Zl/2~[Z; U("')] Zl/2. 

The construction of 8 uses KR as Zl/2-cohomology theory, 

or, equivalently, the Zl/2-equ.ivariant infinite loop space

structure of U(~). 

If Z is a suspension (Lit) + "B with the involution on B 

trivial, then (Z· U( )J'11,/2. . ~ ,"" lS ldentified with KO(B) by KR-

periodicity and tz; Q(oo)1 Zl/2 = {B; ~p(oo)+lZl/2 splits as a 

direct Sum {B; P( .. )+) E9 {B; BO(2)+1 of the fixed point and 

free components, (A.)) (Recall that the classifying space of 

0(2) = S 1 >:J Zl/2 may be written as S(oo) x
Zl

/
2 

IJ:p(oo). ) (6.11) is 

essentially a desuspension (in effect if not in spirit) of a 

result of J. C. Becker and D. H. Gottlieb [1)J and (6.10) a 

The Adams conjecture is another topic that is profitably 

studied by Real methods; again we start with the complex 

theory. Fix a prime 1 and let j: '11,/IN ~ S 1 be the inclusion 

of the subgroup of IN_th roots of unity. We consider the 

J-homomorphism, f say: 

j*.J 1.F: 
S 

The automorphism group (Zl/lN)· of 

(Precisely, any endomorphism is given by multiplication by an 

int.eger q and induces an endomorphism q* of W ~I N (X); an 
1 

automorphism defined by a q prime to 1 shall act by q*:= (q*)-1.) 

This 'Galois symmetry' lifts (at (1)) to the action of the 

Adams operations in K-theory. 

Proposition (6.12) Let q be an integer prime to 1. 

Then, at the prime (1), 

The reduction to be used in the proof is also applicable 

to (6.10). Let B be the space of maximal tori of a compact 

connected Lie group G. The torus-bundle E = t (T ,g) E B x G I 

g ~ T lover B projects onto G by a map, say" : E ~ G, of 

degree 1. Since both E and G are framed manifolds, ,,*: 

",O(G)~wO(E) is a split monomorphism. (The index "TT*: 

walE) -7 ,,-,O(G) defined by the framings supplies a splitting; 

"1f*.-'* is multiplication by the unit "*(1) € wO(G).) 

desuspension of Segal's original result. It is sufficient to verify the assertion (6.12) when X is 

U(Va:) and x is the universal class. To do this we may lift from 
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where T is a maximal torus and N 

its normalizer in G. Here the identity may be checked quite 

explicitly, by writing T as (S1)n and N as the wreath product 

(Compare the Hecker-Gottlieb solution of the Adams 

conjecture [14].) 

It is more satisfactory to state the proposition in terms 

of the free summand L(7l/
1
N)-1(X). This is mapped by the 7l/

1
N-

'r; to the ideal {X+; H(7l/
1

N)+ J 
the map: x ~ 1 + ~(x) with the 

which lie in the coset 1 + {X+; 

in w~/ N(X) and identified by 
1 

group of all units in W~I N(X) 
1 

B(7l/
1

N)+ J (B(7l/
1

N) is the 

classifying space, the direct limit of the lens spaces 

,. -1) S(E@V)/(7l/l N).) Now let L(1)(7l/1N) (X be the intersection 

of 1 + tX+; B(7l/lN)+}~l) with the group of units in the l-adic 

o 1\ A 
completion W 7l/ N(X)(l). It is a finitely generated 7l(1)-

1 
module (the Bum if X is connected, and not empty, of a finite 

group and L(l)(7l/1N)-1(point) = Ker [7l,;) -»(7l/
1
N)·1 ). f is 

continuous for the l-adic topology - its image is finite - and 

defines a 7l (I) - linear map 

which, according to (6.12), is equivariant with respect to the 

action of the group 7l
el

) of l-adic units on the left by the 

Adams operations and on the right through the projection onto 

We now recover the S1_theory as an inverse limit. An 

homology argument shows that the restriction maps give an 

isomorphism: 
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+ 1 + l" (ilR) ,,(BS) (1) ~ ~ 

N 

The inverse limit is taken over the transfer maps defined by the 

inclusions 7l/
I

N -'> 7l/
I
N+1. For the sake of consistency, CP(oo) 

is interpreted as the classifying space of S1 The action of 

7l(1) lifts to the inverse limit and e extends to a 7l(I)

equivariant map 

1 + + 1 +}" K- (X)(l) ----4 {X; (iE) ,,(13S) (1). 

(Again, ·this is better understood as a J-homomorphism by 

introducing a theory L(I)(S1)-1(X).) 

This completes the discussion of the complex theory; the 

parallel development of the Real theory is straightforward. Only 

the prime I = 2 is interesting, (9.6) (ii) • 

Remark (6.13). Let X be a compact 7l/2-ENR. An element x 

o 0 
E W (X) is invertible if and only if i*(x) E W (X)(2) 7l/2 (2) 

is invertible. 

Hence the reduction employed in the proof of (6.12) 

generalizes at once; an involution on the group G induces an 

involution on E and"1l*: w~/2(G)(2) ~ W~/2(E)(2) is a split 

monomorphism. However, it is not necessary to localize; the 

restriction of "11 : on each 

component of the fixed point sP-t. (Notice, too, that both the 

space B of maximal tori and the subspace B7l/ 2 fixed by the 

involution have Euler characteristic 1. ) 
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One further point deserves mention. ~P(~) with the action 

of ~/2 by conjugation is the classifying spa~e of the group S1 

with the involution: z~ z-1. See pp 105,6. The classifying 

space of the subgroup with involution ~/lN is, similarly, 

realized as an infinite lens space. 

The Real (6.12) establishes, by passage to fixed sub-

spaces, the real Adams conjecture for a suspension, although 

that was not our primary concern. Real methods are appropriate 

in the general case, too. If ~ is a Real vector bundle over a 

compact ~/2-ENR X, then, for odd q, there is s stable ~/2-map 

l;+ ----> (*q~) .. over X with the (non-equivariant) degree in each 

fibre odd. (See (B.2). ) 

Both the formulation of the periodicity theorem (6.) and the 

construction of the KO-Euler class i(L.~) stem from the work of 

M. F. Atiyah and J. L. Dupont [7]. (6.6) is well known; the 

argument has the merit of immediate extension to equivariant 

KOG-theory, G a compact Lie group. (See J. Berrick [17] for 

an spplication.) The method of proof, if not the statement, of 

(6.7) and (6.8) is now stsndard; see [10] Ill. The Real J

homomorphism has also been studied by H. Minsmi [68] 
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7. The image of J 

As a first step in understanding ~/2-equivariant stable 

cohomotopy, and hence as a means of defining universal elements 

in any ~/2-cohomologytheory, we shall describe the computation 

of the KO~/2-theory d and e invariants. The methods and many 

of the results are to be found in the fundamental work of 

J. F. Adams. 

<u**@~(~] is uninteresting: it follows from (4.3) snd 

(4.4) that 

(7.1) Wi,j ®~[~J is equal to (.)i I2I~O] if i-j is odd, 

(w.ew.)I2IZO[;] if i-j is even. 
l J 

We shall work throughout this paragraph modulo ~ torsion. 

According to the split exact sequence: 

0---+ w _~ w i* 1,0 o,o~- )"'0---40, 
~ 

"'1,OiS a free abelian group on one generator, a say, such that 

ab = 1-t. From KO-theory, (6.5), i*(a) is the Hopf element 

"l €, W 1. (In fact, the classical Hopf map S) ----+ S2, written 

as S(C2 ) ~ CP(C2 ), is equivariant with respect to complex 

conjugation and so may be regarded as a map (:R$L2 ) ... ----+ 

(:R$L)'" .) This element a is the first of an infinite family 

generating the torsion-free part of"'i,O' i ). O. 

77 



We write a(i) for the Hurwitz-Radon number, the order of 

KO(P(ll i )), and set a'(i):= 

i '" ° (mod 4) • 

a(i) if i ~ ° (mod 4), 2a(i) if 

Theorem (7.2) • There is a 'natural' graded subring lii* 

of w*O with the following properties. 

Ih 
-i 

lZb i 
if i > 0, 

111O 

00. 
1 

lZf-i' if i > 0, is free on a generator f"i such 

that i 
b I'-i = a'(i)(1-t). 

The kernel of the Hurewicz homomorphism d: w"o --} KO*O 

is precisely the torsion subgroup and ""'*0 '" 1~*$Ker(d). 

The restriction i" Fi ~ W i is: 

of order 2 and detected by the d-invariant if i = 1 or 2 (mod 8); 

equal to the element of order 2 in the image of the 

J-homomorphism, J: lZ = KOi+1 ---7 W i if i == 3 or 7 (mod 8); 

zero otherwise. 

The epithet 'natural' in the statement of the theorem is 

to be taken both in the technical sense that the f"i are defined, 

rather than their existence postulated, and in the colloquial 

sense. 1'he method of proof may be seen as an attempt to 

realize the KO-theory periodicity operators in stable cohomotopy. 

Proposi tion (7.3). In the coefficient ring "'** there are 

operators, defined if i-j is odd, 

A: Wi,j ~ W i +8 ,j and 

T: Wi,j ---> w i +2k ,j if j-i "" k (mod 4), k 1 or 3, 

with the properties listed. 

(i) 
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( .. \ 11, Regard the d-invariant w ** ---7 KO*" as a map from a lZ x lZ-

to a lZ/8 x lZ/4-graded ring. Then d. A = d and d. T = 1: • d . 

(iii) T(b) = a; A(b) generates the free component of w 7 ,0 • 

(iv) x E w ..• l,J 
If i-j is odd, then i*A(x) lies in the Toda 

bracket < i"x,2,8 .. > . (8 .. is the element of order 2 in (..)7' ) 

If i-j '" 3 (mod 4), then i"T(x) E < i*x,2,"2> • 

Remark (7.4). If x " Wi,j and i-j is odd, then (1+t)x is 

zero (by inspection, because x is fixed by the involution). 

Thus, 2i*(x) = 0. 

/Ii" will be the smallest subring of w*O containing b and 

closed under the action of the operator T. We illustrate the 

construction of T in the simpler case, k = 1. Let Y be a real 

vector space. a E "'1,0 = 

° element of W lZ/2 (S(L. V); L), 

W~/2(point; L) lifts to an 

that is, of wO(P(V); H). As 

observed in §2, elements of this latter group may be thought of 

as stable fibre-homotopy classes of maps H+ ------)- O· over Fey). 

By collapsing the base-points in each fibre to a single base-

point, we obtain a stable map 

of Thom spaces. The whole procedure is functorial and so 

produces an O(V)-equivariant stable map. In particular, if V 

is equal to E, the basic representation E of S3 with the 

action by left multiplication, (5.7), a leads to an sJ_ 

equivariant stable map 
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From b comes, similarly, the 'inclusion' b. 

Lemma (7.5). There is a unique S3-equivariant stable map 

such that b •• T = a •• 

In fact, T generates the group of stable S3_maps P(E)H 

Remark (7.6). Notice that, for any quaternionic vector 

space V, the balanced product construction 'S(V) x
S
3' applied to 

T will produce a stable Sp(V)-equivariant map p(V)H ~ p(V)-H. 

(Sp(V) is the symplectic group and P still the real projective 

space. 

The statement (7.5) on the lifting of a*, on the face of 

it an S3-equivariant result, is converted to ~/2-homotopy 

theory by a simple observation. 

Remark (7.7). Let H (not the Hopf bundle) be a closed 

subgroup of a compact Lie group G, X and Y respectively an H-

and a G-ENR. Then G-maps G x H X ----') Y (with G acting on the 

first space by left multiplication) correspond, by restriction, 

to H-maps X ~ Y. The same is true stably and, in particular, 

if X is compact and W a (virtual) coefficient H-module, then 

The reduction is effected by identifying P(E) with the 

homogeneous space S3 / (~/2); the Hopf bundle is S3 x ~/2 L. 

The same method is used for the construction of the operator T 
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in the stable cohomotopy ring. The map T induces 

T· tu -j(P(E); - H) --t w -~(P(E); H), 
S3 S 

that is, an operator W j _1 ,j 

for j-i "" 

The extension to an operator W i, j ----') 

(mod 4) depends on the fact that 4H over 

P(E) is equivariantly trivial (isomorphic to E), so that T 

defines a stable map P(E)(4N+1)H --t P(E)(4N-1)H for any 

integer N. 

T in the case k = 3 is defined by constructing a stable 

3 3H -3H S -map P(E) ~ P(E) The torsion subgroup of W 6,0 is 

of order 2, generated by x say, and there are two natural 

candidates for the map T differing by x •• x is killed by 

multiplication by a or b, and the choice of T does not affect 

The operator A is constructed from an s1-equivariant 

stable map P(E)7H ~ P(E)-H, where E is now ~ with the action 

of S1 by multiplication; it is an equivariant version of the 

original operator 'A' of Adams [1]. (There is also a stable 

H 2 2 S1_map P(E)3H ~ P(E)- defining the operator a .T or T.a .) 

(7.2) describes the image of the d-invariant Wi,j ~ 

The same method will give a description of KO .. for j = O. 
l,J 

the remaining, torsion cases. We turn our attention to the e-

invariant. The Adarns operation 'I> 3 extends to a stable operation 

on the bigraded KO~/2-theory KO(2) localized at the prime (2). 

The associated e-invariant will be a homomorphism: 
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When j '" 3 (mod 4) KO .. 
l,J ° and it takes the form (j f -1): 

(7.8) e: Wi,j -- 7l/2 v(j+1)+1 if i+1 of. ° (mod 4), 

(71(2)@71(2)t)/(2 v (i+1)(1+t) _2v (j+1)(1_t» if i+1 -= ° (mod 4). 

Here v is the 2-adic valuation: v(2 s .odd) = s. The second 

group is the quotient of the ring 7l(2) [tJ/(t2 _1) by a principal 

ideal. 

Theorem (7.9) • (Mahowald) • j+1 '= 0 (mod 4), j F -1 

or 3. Then the image of e, (7.8), is as follows. Set iO: 

max t i I j+1 '" 0 (mod a(i+1»} • e is surjective if i ~ i
O

' 

Ifi ~ i O' then the image is generated by: 

V(j+1)/ . . 
2 a(1+1) if 1+1 of. ° (mod 4), 

1+t and (2
v

(j+1)/2a(i+1».(1_t) if i+1 '= 0 (mod 4), 

with the exception of the case i = 7, j+1 -= 4 (mod 8), when it 

is generated by 1+t and 4(4-(1-t». 

There is an M*-submodule B of w h th t *j *j suc a w*j 

Ker(e) (fIB*j pB*j = 0; and the restriction i*B*j '" w* lies 

in the image of J, with the exception of the cases i = 6, 8 

and 9, j+1 == 4 (mod 8), when the image in "'i is, respectively, 

7l/2.v
2

, 7l/2.(;; + ,(.-) and 7l/2.h v +,,/2.,.) • 

(v is the generator of the kernel of e in w . 
8' 

genera tor of "'7' ) 

.,. is the 

This theorem is a generalization of the vector field 

theorem of Adams in the form: 
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(7.10) j+1 == ° (mod 4). Then b i : w.(P"".) ~ wJ.(P""J') 
J J-l 

7l/2 

is non-zero if and only if j+1 == ° (mod a(i+1» • 

N ( "" The point is that the e-invariant detects Wj P j) • 

We indicate the idea of the proof by defining a 'Clifford 

element' c. E. w. . which under the action of T and b 
J 10,J 

generates a substantial part of the summand B*j' If i O+1 '" 

o or 1 (mod 8) and j+1 == 0 (mod 8), this will include the whole 

of B. . in dimensions i t. 3 (mod 4). 
l,J 

(In the other two cases 

i
O

+1 = 2 or 4 (mod 8), it is necessary to introduce another 

generator in dimension io+5 or i o+3 ('= j+7 (mod 8» to achieve 

the same effect. This depends on a constructive reading of 

Lemma (4.8) of [27J • ) 

Write V: '" (E j ... 1 ,m j +1 ) admits the structure of 

a 7l/2-graded module over the Clifford algebra C(V). The 

multiplication defines a trivialization of the bundle (j+1)H 

over the real projective space P(V) and so an isomorphism 

(7.11) Wj(P(V); (j ... 1)H-H.V) ~ w_
1
(P(V); -H.V) 

(in the local coefficient notation of §2). The second group 

contains a canonical element corresponding under S-duality to 

1 E. wO(P(V». c
j 

will be its image under the map (7.11), the 

(surjective) stabilization map (P(V) ---+ P(oo» and 6 of (4.6) : 

i*c is non-zero; it generates the image of J in w .. (This is 
j 10 
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proved, for example, in [27] (4.8). ) c j is well defined, up 

to sign, if i O+1 + ° (mod 4). If i
O

+1 = ° (mod 4), then c
j 

depends on the choice of the Clifford module-structure, but 

only within the limits of B"j • In fact, the variation lies 

° within the subgroup of w (P(Y» generated by the image of the 

J -1 ° -homomorphism KO (P(Y» ( = .lZ/2~lZ/2~lZ) -+w (P(Y»' and 

this subgroup is mapped onto B, j' 
l.O' 

For any positive k = ° (mod 4), let I be the subgroup of 

wO(p(m
k

» generated by the image of the J-homomorphism. There 

is a restriction map w k_1 "" ",,o(P(Itk ),p(mk- 1» ~ wO(p(mk )); 

let x be the image of a generator of the (2-primary component of 

the) image of J. The description of I is surprisingly 

delicate; it is, however, an easy consequence of (7.2). 

Remark (7.12). I ~ "'O(P(It k» is a direct summand. 

is generated by 1, t (as in (4.9» and x, with relations: 

2a(k).(1-t) = 0, 

B .. " is the 'image of J' of the title. There is an 

obvious candidate for inclusion in any such image of J. If 

j ~ ) (mod 4), we have 

(2.1), and the image, J, say, of a generator restricts to a 
J 

It 

generator .fj of the image of J in wj' (From 0.8) P2(fj) is 

equal to j5 j ~ i .. (.f j) and so adds nothing new to the discussion.) 

It is tempting to guess that;. lies in B. , (properly 
J J, J 

defined) • This would imply at onCe the Barratt-Mahowald 

theorem [12J , which asserts the vanishing of b 1+t (j+1)'fj if 

j > 15. More generally, one could try to relate B •• to the 

image of the equivariant J-map KOi +1,j+1---? Wi,j defined if 
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i ~ j ~ 0. (The image in Wj,j lies in the subgroup generated 

And then one might seek a representation of elements of 

B, , when ° ~ i ~ j, perhaps by a non-singular bilinear map 
l.,J 

for some integer N. (Such a bilinear map defines an element of 

so represented, by Clifford multiplication. In the metastable 

range Lam's theorem [60J may be applied to give an abstract 

existence result. 

Remark (7.13). ° ~ 2i < j. x E. ;;:" (p:'" , ) • Then 
J J-l. 

(1- (-1)j)x and (1 + (-1)jt)x are both representable by bilinear 

maps. (Compare ;he statement i".i" = 1 + (-1 )i- j of (4.3). The 

argument can be found in K. Y. Lam [61] or L. Smith [81] .) If 

further i > 0, j+1 = ° (mod a(i.2» and bix = 0, then the 

Kahn-Priddy theorem allows the representation of x itself. 

In the non-equivariant theory the d and e invariants are 

most neatly described in terms of the fibre of '\' 3 - 1. There is 

a generalized cohomology theory J" fitting into an exact 

sequence: 

•• ~ J" --} KO" 
(2 ) 

KO· --)0 •• 

(2) 

On the coefficient groups the Hurewicz map w i -4 J i is a split 

surjection if i > 1. The splitting is defined by a solution of 
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the Adams conjecture, which, for any compact ENH X, extends the 

J-homomorphism on KO-
1

(X) to a map (not, in general, a 

homomorphi srn) : 

(This form of the Adams conjecture is needed for the 

verification in (7.2) that i*Fi is in the image of J for i - 3 

(mod 4). ) 

The ~/2-equivariant J-theory is defined in the same way, 

as the fibre of '\' 3 - 1. We have been concerned in this 

paragraph with the Hurewicz map "'** --,) J** on the coefficient 

groups and have seen, at least in certain dimensions, that its 

kernel has a natural complementary summand (containing M.
O 

and 

B*.), the analogue of the 'image of J'. CA> , ,~J, , is not 
1., J 1, J 

always surjective and only in the range i ~ j ~ 0 is a J-map 

available to construct a splitting. It is conceivable that 

both these defects could be remedied by replacing J** by a 

connective theory, connective in a sense to be made precise. 

The element a which began our story may be described 

geometrically as follows. Consider 8
1 

as a Lie group with the 

trivialization of its tangent bundle by right translation (as 

in (5.7». This framing is natural and so compatible with the 

action of ~/2 on 8
1 

as the group of automorphisms and -C8 1 is 

trivialized as L~ 8
1 

so framed represents a ~ w
1

,O The 

same procedure may be applied to any compact connected Lie 

group. For example, 53 is framed as an SOU) (= Aut(5 3 » 

-manifold. Restricting from SO(3) to a subgroup of order two, 
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3 as lHd>L2. we obtain a ~/2-framing of '( 8 w This defines an 

element of ""3,1 restricting to the generator J.) of ""3 and 

mapping under the fixed point map to ~ E w1 represented by the 

fixed subgroup 8 1 ~ 8 3 (or 80(2) ~ 8U(2». Thus enters the 

rich theory of symmetric spaces into ~/2-homotopy theory. 

In the discussion which follows there is no need to 

neglect odd torsion. 

1-t is divisible by b in w**; indeed a was introduced by 

the factorization ab = 1-t. It is a recent and beautiful 

theorem of W. H. Lin that any element of divisible by a w, , 
l,J 

sufficiently high power of b (depending on (i,j» is divisible 

by 1-t. 

Theorem (7. 14) • (Lin). For each (i,j) the two 

N ( 2N ) f w, , filtrations «1-t) .wi,j)N ~ 0 and b .wi .. 2N ,j N ~ 0 0 l,J 

define the same topology. 

(J. F. Adarns has given an account in [2] There are references 

there to the work of W. H. Lin and of D. Iii. Davis and M. E. Mahowald. 

The theorem answers a long-standing question posed, in different 

forms, by G. B. Segal and M. E. liiahowald. ) 

The principal (graded) ideal (b) S w** is the kernel of 

the restriction map i*: w** -7 w*' Using (7.1) and (7.2) 

(to deal with the odd torsion and free summand respectively), 

it is easy to reduce (7.14) to the statement: 

(7.15) ;, 0 o at the prime (2). 
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The theorem has an important corollary, deduced by a 

routine manipulation of the ~/2-stable cohomotopy exact 

sequences of the pairs (D(NL),S(HL», N > O. 

Corollary (7.16). (Lin). Let X be a compact ~/2-ENR. 

Fix (i,j). Then there are isomorphisms of pro-abelian groups: 

(w- i ,-j(X)/(1_t)N .w-i,-j(X»N ~ 0 -----j 

(w-i,-j(X)/bN.W-i-N,-j(X»N ~ 0 ~ (W-i,-j(XXS(NL»)N ~ O· 

The structure maps of the inverse systems are respectively the 

algebraic projections and the topological restriction maps. 

In particular, ~ w-i,-j(XXS(NL» is isomorphic to the 

(1-t)-adic completion of w-i,-j(X) and R1lim = O. The 
<--

result is also true with KO-theory substituted for stable 

cohomotopy; the formulation of (7.16) has been carried over 

directly from the K-theory (9) of M. F. Atiyah and G. B. Segal. 

It is worth noting how the K-theory version of (7.14) is proved: 

in KO**, b
B 

is divisible by (1_t)4. (They differ by 

multiplication by a Bott periodicity class in KO_
8

,O' ) 

A ~/p-equivariant version, for an odd prime p, of the 

theory described in this paragraph is lacking. A class in 

"'~/p (point; V p) corresponding to a is defined by a torus of 

rank p-1, the kernel of multiplication (S 1) P -----,> S 1 wi th ~/p 

permuting the factors of the p-fold product. However, the 

construction of a ~/p-Adams-Toda operator is an open problem. 

The primary references are the papers of H. Toda [85J (and also 

(44) and J. F. Adams [1] • The application of the Adams-Toda 

operators A and T to the proof of Mahowald's theorem [66J 

(Theorem D) is due to S. Feder, S. Gitler and K. Y. Lam [30] 
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I am especially grateful to Prof. Gitler for conversations on 

this subject. (7.2) is a lifting to ~/2-stable cohomotopy from 

stable cohomotQPY with coefficients in ~/2 of the first 

definition by Adams of generators in wi (i ~ 1,2,3 and 7 

(mod 8». The existence of the lifting follows from [85J and 

the work of G. E. Bredon [19] ; see also (5.1) of [7] The 

representation of the generator a by the framed Lie group S1 

appears in the 'figure-of-eight construction' of U. Koschorke 

[56J. Such a significant result as Lin's theorem could not 

be omitted from an account of ~/2-homotopy theory; but the 

exposition here is regrettably brief. I have placed the emphasis 

on the apparently more elementary statement (7.14). 
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B. The Euler characteristic 

Let X be a closed orientable manifold of dimension m. 

° The stable cohomotopy Euler class ~(L .. "(X) € w
2Z

/
2

(X; - L.TX) of 

the tangent bundle with the antipodal- involution was introduced 

in §2, for an arbitrary vector bundle, as an obstruction to the 

existence of cross-sections. For the tangent bundle it has a 

wider significance. 

Suppose that f: X ~ X' is a homeomorphism between 

closed manifolds. By looking at the restriction of' f x f to the 

complement of the diagonal X x X - X -> X' x X' - X', A. Haefliger 

and M. W. Hirsch [))] defined a natural 2Z/2-fibre-homotopy 

equivalence S(L.~X) ~ S(L.f*TX'), up to homotopy. If f is 

merely a homotopy equivalence, Ll. F. Atiyah [J J defined a 

natural stable fibre-homotopy equivalence, the 'homotopy 

derivative', df: S(-,:X) -7 S(f*-,;X'). 

~wo(X';-.:X' --,;X') = ",O(X') is an isomorphism; the inverse 

image of 1 is (df)-1. ) More properly, by ().7), we should 

now regard the homotopy derivative as an equivariant stable 

fibre-homotopy equivalence 

(B.1) df: S(L.TX) ~ S(L.TX'), 

agreeing with the Haefliger-Hirsch definition if f is a 

homeomorphism. The index homomorphism, (5.1), defined by the 

pair (f ,df) 
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maps 1 to 1; it is, almost by definition, the inverse of f*. 

Theorem (B.2) • (Sutherland [B4), Benlian-Wagoner [16], 

Dupon t [29] ) • Let f: X ---> A' be a homotopy equivalence 

between orientable closed manifolds. Then 

° ( L X) ° (X' L X') w 2Z/ 2 X; - ."< --> "'2Z/2 ; -.T , 

inverse to (f,df)*, maps '1(L.rX) to l(L.TX'). 

This statement of the homotopy invariance of the ~uler 

class is equivalent, by ().9), to the original formulation of 

the theorem, namely, that O(.X) and 8(f*,X') are fibre-homotopy 

equivalent. We make one or two remarks on the proof below. 

The Buler characteristic E(X) of the manifold X is the 

image of y(,X) under the index homomorphism 

"'O(X; -'CX) ~ wO(point) = Wo = 2Z. 

A framing of X defines an index 

W~/2(X; - L;-r:X) ---'> W~/2(point; mm _ Lm) 

for -L."<X may be written as _TX+JRm_Lm. 

Definition (B.3) • The 2Z/2-Euler characteristic of the 

framed manifold X is the index in wO,m of y (L.TX) • 

It restricts to the classical Euler characteristic in Wo 

and is described by the following 'curvatura integra' theorem 

of W. Kervaire [52] • 

Theorem (8.4) • (Kervaire) • Let x E w be the class 
m 

represented by the framed manifold X. Then the Euler 

characteristic of X in 
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, 
!' , 

WO,m 
(.j e7 l'l if m is even m 

l'l/2 if m is odd (by (4.7)(ii» 

may be written aB x .. !E{X) m even 

H{X) .. Hopf invariant of x m odd • 

~ i H{X) is the mod 2 semicharacteristic ~ i even dim H (X; lF
2

) 

(mod 2). The Hopf invariant bmp2{x) f wm{P:) = l'l/2 is zero 

1, 3 or 7 (by the theorem of Adams, (7.10». unless m 

{Perhaps the simplest proof uses the quadratic form on a 

framed manifold. We use the notation of §5. 

Lemma (8.5). Let X be a framed manifold of dimension m 

= 2k '" 2 (mod 4) and Y S X a framed submanifold of dimension 

k with normal bundle u representing a class y E Hk{X). The 

° stable trivializations define an index map wl'l/2{Y; - L.lJ) ~ 

wO,k' The image of ~(L.u) is equal to: 

[y) .. (Q{y) + Hopf invariant of [YJ) E "'k $ l'l/2 

The essence of the proof is this: LI.!{ 1) E w ~/2 (X x X; - mL) 

restricts to ",;{y{L.\)) E w~/2{YXY; -mL), where AX and ... Y 

are the respective inclusions of the diagonal. 

(8.4) is proved by applying the lemma to the diagonal 

submanifold X of X x X with normal bundle -rX. ) 

Without the requirement that the manifold be framed, but 

merely that it be oriented, we may define the K0l'l/2-Euler 

characteristic in KOO,m' For (6.3), with coefficients, gives 

an isomorphism: K0l'l/2{X; -L.-rX) ~ K0l'l/2{X; Em_Lm_-rX) == 

KOO,-m{X; -"t:X). The computation of the Euler characteristic 
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r 
and its interpretation as an obstruction to the existence of 

vector fields formed the subject of the important paper [7] 

of M. F. Atiyah and J. L. Dupont. 

Theorem (8.6). (Atiyah-Dupont). The K0l'l/2-Euler 

characteristic of an oriented m-manifold X in KOO,m is: 

!(E{Xl+S{X» .. !(E{X) -S{X»t € l'le71'1t if m=-O (mod 4), 

H{X) E l'l/2 if m '" 1 (mod 4), 

!E{X) E l'l if m == 2 (mod 4), 

° € 0 if m == 3 (mod 4), 

where SeX) is the signature and H{X) the Kervaire 

semicharacteristic ~. dim Hi (X; E) (mod 2) • L.-; 1 even 

(According to G. Lusztig, J.l,iilnor, F. P. Peterson [65], the 

two definitions of H{X) in (8.4) and (8.6) agree for a framed 

manifold of dimension 1 (mod 4). ) 

The proof of (8.2) given by W. A. Sutherland for even m 

relies on the fact that the image of 

under the index map wO{X';--rx')--+wo = l'l is E(X)-E{X'), 

which vanishes when X and X' are homotopy equivalent, because 

of the expression of E{X) as the alternating sum 

~ i i 
~ i (-1) dim H (X; E). If m'" 1 (mod 4), then a similar 

proof, in the style of [29J , can be given by observing that 

the K0l'l/2-index of 
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is R(X)-R(X') ~ 'll/2, which vanishes for the same reason. This 

is not quite immediate. In general, the diagram 

K0'll/2(X; -L.TX) K0'll/2 (X' ; - L.TX') 

~I I~ 
KOO,-m(X; -,X) 

will not be commutative. The deviation from commutativity will 

be multiplication by a unit in K0'll/2(X) restricting to in 

KO(X), that is, of the form 1 + (1-t)w. But (1-t)KOo,1 0. 

The equivariant K0'll/2-theory may be complexified in two 

ways, either directly to K'll/2-theory, or, by extending the 

involution antilinearly, to KR-theory. One may again consider 

1 (L.-rX) E KR(X; - L.-.:X) (writing L rather than iE). This, too, 

was introduced into obstruction theory by Atiyah and Dupont. 

The ori"entabili ty condition necessary to define the 'll/2-Euler 

characteristic is now weakened to the existence of a (flat) 

square root, E say, of the complexified line bundle of m-forms 

Am,*x 0 c ; topologically w
1

(X)2 = 0. The KR-Euler characteristic, 

depending upon the choice of 8, is: 

E(X;~) E 'll, R(X;E) E 'll/2, ;E(X;£) EO 'll, ° E ° 

according as m = D, 1, 2, 3 (mod 4). E and R are the Euler 

characteristic and Kervaire semicharacteristic with coefficients 

in the flat bundle and are invariants of non-singular symmetric 

bilinear forms defined over C. E, S, R in (8.6) are likewise 

invariants of real symmetric forms. This will become clearer 

in the next paragraph, in which K0'll/2- and KH-theory are 
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interpreted respectively as the Hermitian K-theory of E and 

C (with the trivial involution) 
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9. Topological Hermitian K-theory 

The topological Hermitian K-theory is now well understood. 

It will serve as model for the algebraic theory of the next 

paragraph. Let X be a compact Hausdorff space with involution 

and r a (finite dimensional) complex vector bundle over X. The 

involution on X is written In the context of symmetric 

forms ~ will be not the complex conjugate, but the complex 

bundle with fibre f<x = ~x (x € X) induced from r by the 

involution. 

A ~-singular symmetric ~ on r is a bundle map 

g: r-!i9;;" ~ C satisfying the conditions of 

~-singularity: the adjoint g' : r~;* (= Hom<,;,C)) 

is a bundle isomorphism, 

and symmetry: gx(u,v) 

v E "x = fx . 

gx(v,u) if u € t'x fAx' 

KO,O(X) will be the Grothendieck group of isomorphism 

classes of such bundles with non-singular symmetric forms. 

There is a forgetful map KO,O(X) -+ KO(X) to complex K-theory 

° ° ° and a hyperbolic map K (X) ~ K ' (X) taking a complex bundle 

'" to "Ea;;* with the form (v$;;*)@(;;$lJ*) ~C : (u,")@(v,ll) 

Both the insight into Hermitian K-theory as a 

~/2-equivariant cohomology theory and the basic computational 

tool of the theory are supplied by the identification: 

Lemma (9. 1) • KR(X) • 
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Indeed, choosing a positive-definite Hermitian metric 

< _, _) on r- (unique up to equivalence or homotopy), we may write 

(u" I"-x' v ~ J-<x) , 

where '\'X is a conjugate linear map /-'X ~ I"x • 'l'x.'f'x is a 

positive-definite C-linear automorphism of fx and has a 

canonical positive-definite square-root. j ::: 
X 

is a Real structure for fA - j2 = 1, and is determined up to 

equivalence by the symmetric form. 

To develop the theory and, in particular, to state a 

periodicity theorem, one is forced to introduce forms defined 

on complexes of vector bundles and with coefficients in a 

complex line bundle. So let,.,. : ~,.,.r ~fr+1 ~ be a 

complex of C-vector bundles (with rr = ° for all but finitely 

many r ,,~) and E a C-line bundle with involution (that is, a 

~/2-line bundle) over X. Write t(m) for the complex with 

component E in degree m and otherwise zero. The involution on 

£ will be written once again as A ~-singular £(m)-

valued symmetric bilinear ~ on the complex r- is a chain map 

g: t' @ F ~ E (m) of degree zero, non-singular in the sense 

that its adjoint g' : t' --+ Hom(f,E(m» is a chain homotopy 

equivalence and symmetric in the graded sense: g (u,v) 
x . 

(u E /-,r, v E J-<:!). (The tensor product is the 
x x 

product of complexes and homomorphisms are of degree zero. ) 

One introduces a notion of equivalence for such forms: 

generated by 

(0) isomorphism (in the strict sense), 
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(i) homotopy if (r,dt,gt) (t E [O,1J) is a family of non-

singular forms, then (~,dO,gO) is equivalent to (r,d 1 ,g1)' 

(ii) addition of an acyclic (that is, exact) complex. 

The set of equivalence classes is a group under direct sum and 

will be denoted by K~,-m(X). A surgery argument shows that 

this is consistent with the primitive definition if m = ° and 

e = C; a trivial coefficient bundle will sometimes be dropped 

from the notation. 

The tensor product of complexes and coefficient bundles 

defines a product: 

There is a basic periodicity class in K~~~(point) represented 

by the complex C concentrated in degree 1 with the symmetric 

form IC®IC - L®IV given by multiplication. Its square gives 

periodicity in m modulo 4, re-indexing a complex by a shift of 

degree 2. 

As in the usual K-theory it is convenient to extend the 

definition to locally compact spaces by considering complexes 

with compact support. To accommodate the coefficient bundle 

one must consider locally compact spaces over X. The most 

important example is the Bott class. Let <; be a complex 'lL/2-

vector bundle of dimension n over X. Exterior multiplication 

defines a An t = (det ~) (n)-valued symmetric form on the 

exterior algebra J\. ~ • Lifted to the total space E(L ® i:;) of 

C; with the negative of the given involution and equipped with 

the standard differential, this defines a class 

98 

which restricts to the periodicity class in KO(E(~». 

Proposition (9.2). Multiplication by ~i:; gives a 

periodicity isomorphism in Hermitian K-theory 

KO,-m(X) _ KO,-(m+n) (E(L.'1;» 
E . E®det(~) 

This result, or its generalization to locally compact 

spaces over X, permits the definition, in the usual way, of a 

periodic 'lL/2-cohomology theory K** (or with coefficients K~*). 

K-i,-j(X) is just KR i - 2j (X). It is related to complex 

K-theory by: 

Lemma (9.3) • 

And then the exact sequence of the pair (D(L),S(L», as 

in stable cohomotopy (4.3), has the following interpretation. 

be the involution in complex K-theory which takes a Let TE 

vector bundle lJ over X to rlom(ii,E) • 

Lemma (9.4). The linear and Hermitian K-theory are 

, K-(i+1),-j(X) ~ related by the exact sequence: •• ~ E 
h .. 1 

K-i,-j(X) ~ K-i(X) ~ K-l,-J+ (X) --7 .. in which 
E E 

r is the forgetful (restriction) map and hE the hyperbolic 

(induction) map. K-i(X) ~ K-i,-j(X) The composition r.hE : E 

Now define formally the Witt cohomology theory of a 

compact Hausdorff space Y (no involution) as: 
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.i 

i 
!f 

'I .~ 

f 
I 
I 

I , 

lim K-i,-j(y). 
~ 

i 

(It is a cohomology theory because the direct limit is an exact 

functor.) The limit is taken over successive multiplication by 

b, as in (4.4). 

(i) 

lim 
~ 

i 

Lemma (9.6). (Formal properties of the Witt theory) • 

Restriction to the fixed subspace gives an isomorphism 

K- i , -j (X) ---4 W- j (x?l/2). 

(ii) K-i,-j(X)[!) splits as the direct sum of W- j (X?l/2)(!J and 

the subspace of K-i(X)[!>] fixed by (_1)i-j T 

As it happens, b3 = ° in this example b is just 

"I E KR- 1(point) and the Witt theory must vanish identically. 

This will not always be so; see (9.11). 

All this is rather superficial. At a deeper level is a 

'periodicity theorem' corresponding to (6.3). 

Proposi tion (9.7) • Let ~ be a real vector bundle of 

dimension n over X. Its orientation bundle is a principal 

?l/2-bundle; let w be the complex line bundle associated to it 

by the action of ?l/2 on C as ±1. Then there is a canonical 

isomorphism 

K;i.-j(E(L.'!;» 

lifting the identity 

~ K-i , -j+n(E(\;» 
E0w 

on K-i(E(I;». 

The proposition follows from (9.2) and the periodicity 

isomorphism KR*(X) ~ KR*(E(l;E9i~» in KR-theory. 

100 

Continuing our survey, we note that there is a squaring 

operation 

(9.8) 

mapping a complex bundle l> to u® j;* with bilinear form: 

(u®<:(,v®~):= x(v).P(u) p2(x+y) =p
2
(x)+i*(x.Ty)+P

2
(y); 

i*p2(x) = x.Tx (x, y E KO(X». (i* = hand i* = r in (9.4).) 

The coefficient groups K-i(point) of complex K-theory may 

be regarded as the topological K-groups Ki(~) of C and the 

cohomology functor X ~ K*(X) as the 'topological K-theory of C'. 

On the other hand, the groups K-i(X) may themselves be thought 

of as the topological K-groups Ki(R) of the C*-algebra R of 

continuous complex-valued functions on X; the corresponding 

K-theory is K*(X x -) In the Hermitian case, the coefficient 

groups K-i,-j(point) will, similarly, be the topological 

Hermitian K-groups Ki,.j(C) of C with the trivial involution; 

and the ?l/2-equivariant theory K** is the 'topological 

Hermitian K-theory of C'. The involution on X translates into 

a C-linear involution of R (commuting with the *-operator), the 

coefficient bundle E to the invertible R-module E of cross-

sections, and the involution on E to an involution of E. 

K-
E
i , -j (X) becomes the topological Hermi tian K-group K. . (R; E) 

1.J 

of the C*-algebra with involution R, with coefficients in the 

invertible R-module with involution E. From this point of view 

the definition of the Witt theory must be completed by setting: 

(9.9) lim 
~ 

i 
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A topological Hermitian K-theory for Emay be developed 

in the Same way. KR-theory is replaced by KO~/2-theory. 

Lemma (9. 10) • 

This is the classical splitting of a non-singular 

symmetric form over E into a positive- and a negative-definite 

component. 

The fundamental properties (9.3)-(9.8) are valid too. The 

Witt theory is more interesting. 

Lemma (9. 11) • KO(y)m. 

In the analogous theory for ~ with the non-trivial 

involution, conjugation, KO / is replaced by K 
~ 2 ~/2' 

The paper [5J of M. F. Atiyah is doubtless the source of much of 

the theory described here. The formal structure of Hermitian K

theory was laid down by C. T. C. Wall, [87] and [88J • G. Lusztig 

studied the real theory in [64J and M. F. Atiyah and E. Rees the 

complex theory, [8J (not to mention Poincare and Serre). The 

splitting (9.6)(ii) away from the prime (2) is in [50J. 
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10. Algebraic Hermitian K-theory 

Our subject is the Karoubi-Quillen algebraic Hermitian 

K-theory of a ring with involution in which £ ~ invertible. 

Once again, the squaring or quadratic construction will play a 

vital part. 

Let R be a ring (not necessarily commutative, but with 

identity) with involution; this involution, written ,is 

additive and satisfies rs = s.r (r,s €C R) • Let E be an 

invertible R-bimodule with involution: R acts on the left and 

on the right and the involution of E is additive with res 

s.e.r (e € E) (The prime example is E R with the given 

involution. ) E defines a (contravariant) involution fiE of 

the category of finitely generated projective (left) R-modules: 

{f e Hom~(p,E) f(sy) = f(y)s for s e R, ye p} 

with the left-action of R. The involution on E identifies 

The primitive object of interest in Hermitian K-theory is 

a non-singular Hermitian form on a finitely generated projective 

module, that is, a ~-bilinear map g: P x P --'> E satisfying: 

(i) g(rx,sy) = rg(x,y)s (r,s eR; x,y e P) ; 

(ii) g(x,y) = g(y,x) 

(iii) the adjoint g': P - t>E(P) (g'(x) g(x,-)) is an 

isomorphism. 

Equivalently and better for our purposes, in terms of the 

adjoint alone, it is an isomorphism g': P -+ .tlE(P) of R

modules such that PE(g') = g' • 
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I 

~i 
J 

J 
I 
1 
I 
f 

It is sensible if 2 is invertible in R to define KO,O(R; E) 

to be the Grothendieck group of isomorphism classes of such non-

singular Hermitian forms under direct sum. It maps, by 

forgetting the structure, to the group KO(R) of finitely 

generated projective R-modules. (There are two general 

comments: first, functoriality, which is easier to describe in 

the commutative case. Let",: R ---7 R' be a homomorphism of 

commutative rings with trivial involution. Then the tensor 

product R'@R- defines ~*: KO,O(R;E) --l-KO,O(R';R'@RE). 

Under the restrictive hypotheses that R' be finitely generated 

and projective as R-module and that Ho~(R"R) be an invertible 

R'-module, restriction defines a map q>*: KO,o(R'; Ho~(R' ,E» 

~ Ko,O(R; E) in the opposite direction. Second, notice that 

the coefficient module E is important only up to 'squares'. If 

F is an invertible R-bimodule with conjugate bimodule F (defined 

so that rfs = s.f.r for r,s E Rand f E F), then F@RE@R F 

has an involution f@e@g 1---7 g@e~f and F@R - gives a 

'periodicity isomorphism' Ko,O(R; E) --l- KO,O(R; F@EQ\)F). 

The hyperbolic functor takes a module Q to HE(Q) 

QG):)E(Q) with the form defined by the identity map: 

Now the group Aut(P) of 

automorphisms of the R-module P has an involution 'inverse 

-1 -1 transpose' TE : x I---? g' '~E(x) .g'. This is true in 

particular of Aut(HE(Q», which contains Aut(Q) x Aut(Q) as the 

subgroup of diHgonal matrices. The inclusion 

h: Aut(Q) x Aut(Q) -* Aut(HE(Q» 

104 

is equivariant with respect to the map which switches the two 

factors Aut (Q) • This is the starting point for the 

construction of the equivariant Hermitian K-theory. 

We must first recall Quillen's original definition of 

algebraic K-theory. (The reader is referred to the exposition 

by J.-L. Loday [62] Set GL(R) : = (n e, ~) • 

Quillen gave a construction (the 'plus' construction, but the 

notation has been pre-empted by compactification) 

which abelianizes the fundamental group GL(R) of the classifying 

space and induces an isomorphism in homology (with arbitrary 

coefficients). The algebraic K-group Ki (R), for i > 0, is 

defined to be the homotopy group ~.(BabGL(R» 
~ 

It is clear how one should adapt the construction to 

Hermitian K-theory. GL(R) is intuitively the limit of Aut(Q) 

for all finitely generated projective modules Q and we redefine 

it as the direct limit lim - (with respect to the 

standard inclusions) It is a discrete topological group with 

involution TE • 

So consider a topological group G with (continuous) 

involution T. We make the hypothesis, which is trivially 

fulfilled by a discrete group, that the connected component of 

the identity be a Lie group (with smooth involution) (But we 

cannot afford any countabili ty condition. ) 
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Non-equivariantly, the functor which assigns to a compact 

ENR-pair (X,Y) the set P(G)(X,Y) of isomorphism classes of 

principal G-bundles P ~ X equipped with a trivialization pi Y 

----> Y x G over Y is represented by the pointed classifying space 

of G: P(G)(X,Y) = [X/Y; BG] (To define BG it is, of course, 

necessary to work in a larger category of spaces.) There is a 

corresponding functor P (G) 7l/2 on compact 7l/2 -ENR pairs. (A 

7l/2-principal G-bundle P -4 X has an involution on P covering 

that on the base and such that the operation of G: P x G -4 P is 

a 7l/2-map.) The basic properties follow readily from the 

definition. 

Lemma (10.2). Let (X,Y) be a compact ENR-pair (with the 

trivial action of 7l/2 when appropriate). 

(i) P(G)71/2«X,Y) x S(L» P(G)(X,Y) • 

(ii) If X is connected and Y non-empty, then 

P(G)71/2(X,Y) = P(G 71/
2

)(X,y). 

(iii) P(G)71/2(point) H 1(71/2; G) (that is, the set of 

elements g E G such that gT(g) 

relation g N hgT(h)-1 (h E G» 

1 modulo the equivalence 

The definition and construction of a 7l/2-classifying space 

parallel the non-equivariant theory. (Let EG -4 BG be the 

universal bundle constructed by ~Iilnor as an infinite join. 

7l/2 acts on EG .. EG by switching the factors. The projection 

EG ... EG ---> (EG,. EG)/G to the orbit space of the G-action: 

[x,t,y).g = [xg,t,yT(g)] (x,y E. EG, t € [0,1]) is a universal 

7l/2-bundle. (10.2) may be refined to a statement about the 

classifying space, and (i) allows us, without ambiguity, to call 

this BG, the name of its underlying (pointed) space. 
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A convenient category, and the one we shall use, for 

representing-spaces in 7l/2-topology is that of the (metrisable) 

7l/2-ANRs. There is an indispensable criterion for identifying 

homotopy equivalences. Let A and B be pointed 7l/2-ANRs. Then 

a 7l/2-map f: A ~ B is a 7l/2-homotopyequivalence if (and only 

if) f and its restriction to the fixed subspaces A 7l/2 --+ J371/2 

are (non-equivariant) homotopy equivalences. (Bredon [18), 

James-Segal [4)]. ) Often one is concerned only with the 

functors Z ~ [Z; A] 7l/2, [Z; B] 7l/2 on the category of 

compact pointed 7l/2-ENRs. To show that f defines an equivalence, 

it is enough to check when Z has the form X+ or (XXS(L»+, X a 

compact ENR (with trivial involution). (Here A and B can be 

arbitrary topological spaces.) 

We end this topological digression with a transparent, 

but significant, remark. 

Remark (10.). The space of pointed 7l/2-maps from L+ to 

A is homeomorphic to the homotopy-fibre of the inclusion A71/ 2 

--+ A of the fixed subspace. 

Consider now the classifying space of the group with 

involution GL(R). (10.2) supplies the following information 

about the fixed subspace. The connected component of the base-

point is the classifying space BO(R) of the infinite orthogonal 

group O(R), the fixed subgroup. (iii) identifies the set of 

components with the kernel of the restriction map KO,o(R; E) --+ 

KO(R). Here and in the remainder of the paragraph, 2 is supposed 

to be invertible in R. (Then every element of the kernel may be 

written as a difference [llE(Rnn - [p] with P and HE(Rn ) 
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isomorphic as modules. The symmetric form on P defines an 

1 n 
element of H (lZ/2; Aut(HE(R »). ) 

An equivariant Quillen construction gives a map of lZ/2-

ANRs (with base-point) 

abelianizing the fundamental group and inducing an isomorphism 

of homology (with any twisted coefficients) of BGL(R) and of 

every component of the fixed subspace. Direct sum defines a 

structure of homotopy-commutative and associative lZ/2-H-space 

The monoid of path-components of the fixed sub-

space is a group: Ker {KO,o(R; E) ----* KO(R) l The component of 

the base-point in (BabGL(R»lZ/2 is BabO(R), the result of 

applying Quillen's construction to the classifying space of the 

orthogonal group. 

Definition (10.4). i ~ j ~ 0 and i > O. 

In certain dimensions this is exactly Karoubi's original 

non-equivariant definition, [50J For j > 0, 

( 10.5) Kj,j(R; 1) 

Kj +l ,j(R; E) 

1i. (BabO(R», 
J 

ab ab 
"j+l (B GL(R) ,B O(R» 

The second equality follows from (10.) • 

The method of Gersten-Wagoner will be used to complete 
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the definition. Let C ('cone') be the ring of infinite matrices 

[a
pq

] (p,q €. 1i) over lZ which hFlve only finitely many non-zero 

elements in each row and each column, K ('kompakt') the two-

sided ideal of matrices with only finitely many non-zero entries 

altogether, and S ('suspension') the quotient e/K. The matrix: 

a
pq 

= 1 if q = p+l, 0 if not, represents an invertible element 

z in S. Think of the group of units S· as the group Aut(S) S 

GL(S) of automorphisms of S as left S-module. Then the 

homomorphism n ~ zn : lZ ----> GL( S) induces a map E + = BlZ ~ 

BGL(S) of classifying spaces and defines an element z. €. K
l
(S). 

The basic theorem asserts that the tensor product z •• 

S.R is the tensor 

product of rings is a bijection for any connected compact 

ENR Z with base-point. Ki(R), for any integer i, positive or 

negative, is defined So that z •• : Ki (R) ----* Ki + l (S.R) is an 

isomorphism. This is consistent with the definition of KO as 

a Grothendieck group. 

The equivariant theory will be defined by the squaring 

construction. If S·o is the opposite ring of S, then S@So hFls 

a canonical involution: s@tO ~ t@sO (s,t Eo S) • 

Proposition (10.6). For any connected compact lZ/2-ENR Z 

with base-point, there is a natural isomorphism of abelian 

groups: 

[Z; BabGL(R)]lZ/2 ----+ [(EEIlL)+" Z; BabGL(S@So.R)]lZ/2 • 

(In just a little more detail, 

the homomorphism lZxLZ ----> Aut(H(S@So» : 
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t' 

(m,n) f----4-

is equivariant with respect to the switching map on ~x~. At 

the classifying space level it gives rise to a map E+ x JR+ ------> 

BabGL(S0S o ) = B, say. Now [JR+xJR"+; B]~/2 splits as 

[JR+ "Jl+; ll] ~/2 $ [:Ilt"'; B]. We take the first component. The 

spli tting comes from (10.1), which provides a ~/2-map B x B ------) 

B restricting to the identity in [B; B) = [13 v B; ll] ~/2. 

Compare (A.4). ) 

(10.7) 

Now K .. (R; E) for all integers i,j is defined to satisfy: 
l,J 

In order to describe the groups KO,j(R; E), we shall use 

the invertibility of 2 in a crucial way. Let S' be the ring 

S[~) with the involution given by matrix transposition. The 

hyperbolic S'-module Il(S') splits as an orthogonal direct sum 

S' $::3' with symmetric forms (s,t) r--> st, respectively - st, on 

the two factors. The automorphism of Il(S') which acts as the 

image z' of z in (S')' = Aut(S') on the first summand and 

trivially on the second defines an element z' * ~ K (S'). 
1,1 

Proposition (10.8). Z as in (10.6). Then the product: 

[Z; BabGL(R)]~/2 ~ [JR+" Z; llabGL(S'.R)]~/2 with z'* 

is an isomorphism. 

The proof has three parts, checking non-equivariantly, 

when the involution on Z is trivial, and when Z = L+. (Of these, 
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the first follows from the Gersten-Wagoner theorem, since the 

restriction i*(z'*) E K
1
(S') comes from z* E K1(S), and the 

second is a re suI t about the orthogonal group, [ (2) 3.1.6.) 

KO,O(R; E) has been defined twice, initially as a 

Grothendieck group, and now again by (10.7). M. Karoubi and 

O. Villamayor [51) have identified K
1
,l(S'.R; S'.E) with the 

Grothendieck group; in conjunction with (10.8) this confirms 

the equivalence of the two definitions. The groups K .. (R; E) 
l,J 

are the coefficient groups of a ~/2-cohomology theory enjoying 

all the essentially formal properties of §9. Ko ,l(R; E) is 

described by the exact sequence (9.4) 

Proposition (10.9) • 

(i) KO,o(R; E) is the Grothendieck group of non-singular 

symmetric forms on finitely generated projective R-modules. 

(ii) K
O

,l(R; E) is the quotient of the monoid of isomorphism 

classes of triples (QO,Ql;f), where Q
O 

and Q
1 

are finitely 

generated projective R-modules and f is an isomorphism HE(QO) 

~ H
E

(Ql) (preserving the symmetric form), by the relations: 

(QO,Ql;f) + (Ql,Q2;g) 

(Q,Q;1) o. 

(An isomorphism (QO,Ql;f) ~ (QO',Ql';f') is given by a pair of 

isomorphisms k
i 

: Q
i 

--+ Qi' such that f' .Il
E

(k
O

) = Il
E

(k
1
).f • ) 

There is a 4-fold periodicity in Ilermitian K-theory. 

Proposition (10.10). (Karoubi periodicity. [50J , [62J 
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.~i , i . 

I 

I 

, 
r 
I 
i; 

3.1. 7 . ) Let n, denote 7l with the involution -1. Then there 

such that u.v = 1 in KO,O(7l[~) 711 $ 7lt E!]7l/2 .x$ 7l/2. tx • 

(x
2 = 0.) This implies that the groups Ki,j(R; E) are periodic 

in (mod 4) • 

One might hope to do better, namely to define a periodicity 

isomorphism K-i,-j(E(L.~» ~ K-i,-j+n(E(~» for any oriented 

vector bundle ~ of dimension n, as in (9.7). There is one 

piece of evidence for the existence of such an isomorphism. 

Algebraic K-theory has been 'computed' in essentially only one 

case: that of a finite field. This was the starting point of 

Quillen's theory. E. W. Friedlander [31J has given an analogous 

computation of the Hermitian K-theory of a finite field of odd 

characteristic, with the trivial involution, by relating it to 

the fibre of the Adams operation ",q - 1 in the topological 

Hermitian K-theory of ~, with the trivial involution. 

Remark (10.11). h denotes the complex theory of §9. Let 

q be odd. The Adams operation t q defined on KO(-) and KO'O(-) 

extends to a multiplicative operation on the localized 

cohomology theories K*(-)(2) and K**(-)(2)' It respects i* and 

the 4-fold periodiCity. What is more, for any oriented real 

vector bundle ~ of dimension a multiple of 4, the periodicity 

map K**(E(L'\;))(2) -4 K**(E(!;»(2)' of (9.7), commutes with the 

(10.11) is false for the real K0
7l

/ 2 -theory , and the lack of 

commutativity has geometric significance. ) 

(10.9) and (10.10) give a complete description of the 

groups KO,j(R; E). If the ring R is regular, then Ki(R) is 

known to vanish for i <. 0 and the Witt group W/R; E), (9.9), is 

the cokernel of the hyperbolic (induction) map KO(R) --7 

This has been interpreted by A. A. Ranicki, [73J , as 

a cobordism group of 'algebraic Poincare complexes'. In the same 

way, there is a realization of KO,/R; E) as a group of 

equivalence classes of complexes with non-Singular symmetric 

for~, precisely parallel to the topological theory. It is a 

notable defect of the algebraic theory presented here that this 

relationship has appeared so late and, apparently, so 

fortuitously. 

The topological real theory of the last paragraph relates 

in a rather satisfactory manner the Euler class 1(L.t) of an 

oriented real vector bundle with the antipodal involution (and 

the associated obstruction theory of §2) to the Hirzebruch L

class, (6.8), via the Witt theory (9.11). Further, when ~ is 

the tangent bundle of a manifold, the 7l/2-Euler characteristic, 

(8.6), appears naturally as an invariant of the non-singular 

cup-product form on the de Rham cohomology. 

action of t
q 

• One might hope that an algebraic Hermitian K-theory of 7l 

would have analogous properties. The work of G. Brumfiel and 

This is clear, because the real (or Real) representation J. Morgan [24J and A. A. Ranicki [73J suggests that the 

ring of SO(n) is embedded in the complex ring by the restriction corresponding Witt theory, localized at (2), should be: 

i*. But the periodicity class restricts to 1. (Of course, 
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"" 4r-
j

( ) '" "" H4r+1- j (Y.:IF ) L,r~OH Y;Zl(2) '" ~r~O ' 2' 

and that ~(L.~) E KO'O(X; - L.~) ~ KO,-n(X; -1;) should map to 

(L4r (!;), (v(I;).6v(i':»4r+1)r~0 in WO(X)(2) - W-n(X; -~)(2)' 

where n is the dimension of 1;, v the (total) Wu class and 6 the 

Bockstein ( Sq1). This would, in particular, relate the Zl(2) 

L-class L(~) to obstruction theory, a relation whose existence 

has been conjectured by i~. E. Nlahowald. Moreover, the de Rham 

invariant v(x).6v(X)[X] ~ :IF2 of a (4k+1)-manifold would appear 

as a component of the Zl/2-Euler characteristic. From one point 

of view it is the discrepancy between the :IF 2 - and JR-semi-

characteristics, [65 J . From another, it is an obstruction (and 

up to cobordism the only one) to the existence of a 3-field on 

X; it may be written as w
4k

_
1

(X).w
2

(X)[X] • 

Finally, granted such a theory for vector bundles, one 

might turn to topological bundles. Is the periodicity theorem 

(6.3) valid in this more general case? 

It is the thesis of this paragraph that Karoubi's definition, 

[50J, of the Hermitian K-theory of a ring in which 2 is a unit 

is the correct one and that it is best formulated in the 

language of Zl/2-homotopy theory. The significance of the bi

grading was made clear by C. T. C. Wall in [88J • C. H. Giffen has 

announced results on the equivariant theory in [32J. In addition, 

he investigates the filtration (b
n

) of K**(R) in dimension (0,0) 

for certain rings R. 

114 

B. Appendix: On the Hermitian J_homomorphism 

In homotopy theory the distinction between real vector 

bundles and complex bundles with a non-singular symmetric form 

the real orthogonal group O(n) is a maximal compact subgroup 

in both GL(n,lR) and O(n,~) is a subjective rather than a 

material one. (This is not true in differential geometry. 

Consider a smooth complex vector bundle of even dimension with 

a smooth non-singular symmetric form and a compatible connection. 

Then the Pfaffian of the curvature represents the Euler class, in 

de Rham cohomology, of the associated, homotopy-theoretic, real 

vector bundle. If the connection is flat, then the rational 

Euler class is zero. On the other hand, there are flat real 

vector bundles with non-vanishing rational Euler class.) In the 

context of the J-homomorphism, nevertheless, the Hermitian 

standpoint seems to be preferred to the Heal. We redress the 

balance of §6. 

As far as homotopy theory is concerned a non-singular €-

symmetric (e = +1 or -1) form on a complex vector bundle ~ over 

a compact Zl/2-ENR X is a conjugate linear bundle map j : ,.... ~ fA 

covering the involution on X and such that j2 = E. The 

symmetric form is recovered, by choosing an invariant Hermitian 

metric .(-,-> , as (u,v) 1---4 < jxu,v) (u E fx' v E "'x). (See 

(9.1). ) 

We begin with the local obstruction. Let V be a complex 

vector space with conjugate linear structure map j, j2 = e, and 

invariant metric. The involution T€, p 104, of Aut(V) restricts 
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,; 
i. 

, .. 

to the involution of the unitary group U(V) given by conjugation 

with j. We have, for any based compact ~/2-ENR Z: 

e [ Z; U(V» 'll/2 -1 
"'D(E)«Z,,,,)xS(V); -V) 

-1 
W'll/2«Z,,,,) xo;P(V); -H.V) 

{Z; L"",,«:P(V)""J'll/2, 

where D(E) is the extension of S 1 by 'll/2: S 1 uS 1 j, with jzj-1 

z-1 (z E. S 1), j2 = E "S1. (D(,,") is 0(2), D(-) the 

normalizer of S1 in S3.) D(f) acts on V by the given action of 

j and complex multiplication by elements of S1. The quotient 

D(.)/s1 acts on o;P(V), freely if. = -1, and on the tensor 

product H.V of V and the complex Hopf bundle (although not on 

the individual factors in the skew case). D(E) acts on Z 

through the projection onto 'll/2, Stably, we have 

9 

o;P+(oo) is the classifying space of the group with involution S1; 

ap_(~) Can be regarded as the orbit space (ED(_»/S1, where ED(-) 

--+ BD(-) is a universal principal D(-)-bundle. Again, as in §6, 

1 ... e is a homomorphism to the group of units in D(e )-stable 

cohomotopy. By restricting to the subgroup of D(e) generated by 

j, we obtain the basic Hermitian J-homomorphism 

J K- 1,-1(X) 
€ 

To define the target groups, look at the action of 'll/4 on X 

through the projection p: 'll/4 -4 'll/2. Restriction to subspaces 

fixed by the kernel of . ° (). ° ( p gl.ves a map w'll/4 X -+ w'll/2 X)' 

116 

which is split by p. (lifting a 'll/2-action to an action of 

-1 ° 1 'll/4). L(+)'ll/2(X) will be w'll/2(X)' and L(-)~/2(X) the 

complementary summand in W~/4 (X)'. There are obvious 

restriction maps i*: L(E)~~2(X) ----+ L(0)-1(X) = wO(X)' and 

slightly less obvious 'induction maps' in the opposite direction. 

They are compatible, via J, with the restriction and hyperbolic 

maps in K-theory. i. is defined by doubling; we illustrate the 

construction for E = -1 on the global scale. 

Remark (B.1). (Woodward [91]) . Let ~, ~' be real vector 

bundles over a compact ENR X, dim ~ = dim 1;' » dim X, and f : 

se;) --) S(I;') a fibre-homotopy equivalence. Write E for the 

irreducible 2-dimensional real representation of 'll/4. Then 

S(E@I;) and S(E@I!;.') are 'll/4-equivariantly fibre-homotopy 

equivalent. (It follows that the mod 4 Pontrjagin classes of 

the two bundles coincide; they can be recovered from the 'll/4-

cohomology Euler class of E®~. Indeed, this is a lifting to 

stable cohomotopy of the classical argument involving the 

Pontrjagin square.) 

We replace f by S2(f), (3.7), which commutes with the 

antipodal involution, and then double it. The generator of 'll/4 

acts on ~ $~ by (u,v) ~ (-v,u) in each fibre. 

If q is an odd integer, there is an Adams operation ~q on 

KO,O(X) E • 

Proposition (B.2). (Hermitian Adams conjecture). q odd. 

Any class in (~q-1)K~'O(X) is representable as a difference of 

complex vector bundles ~,v with conjugate linear structure maps 
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for which there exists a 'lZ/2 (or 'lZ/4 if 10 ~ -1) -equivariant 

map ~+ --+ ,,+ over X with odd (non-equivariant) degree in each 

fibre. 

This is proved by reduction to the case of a line-bundle 

(even in the skew case). It may be well to recall the principal 

step in the Becker-Gottlieb argument (with a modification due to 

A. Dold [28]). We state it non-equivariantly. 

Lemma (B, 3). Let 1T: E ---> B be a manifold over a compact 

ENR B, p 38, and ~ an oriented virtual real vector bundle of 

dimension ° over B. Assume E to be connected. Let I(M) ~ HO(B) 

lZ and I(-.r*<><) <; HO(E) ~ lZ be the Hurewicz images of <....>O(B; 0<) 

and wO(E; ~*~) respectively. Then 

where ~ is the Euler characteristic of the fibre of IT. 

(For the transfer "*''j(-c(1T)) : wO(E; "11*"') ---7 ",O(B;«) lifts 

multiplication by t in integral cohomology.) 

A description of the discrete analogue of 9 will conclude 

this survey. Let k be a finite field, with q elements. Consider 

a locally trivial bundle ~ of finite-dimensional k-vector spaces 

over X. The complement of the zero-section is a finite cover of 

X with a free action of the group k' of units in k by 

multiplication. It determines, p 57, an element, e(~) say, of 

w~.(X) in fact, of the free summand tX+; (Bk')+} Now 

0«1'-) = 1 ... e(r-) is invertible in w~,(X) [l/q) and "(r-EEl") 

"(~).,,(u) if u is a second bundle. From this it follows that 

9 extends to a linear map: 
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{X+; lZ x BGL(k)] ( 

spli t ting the inclusion 'R' : Bk' ~ 1 x BGL( k) of the line 

bundles, and 0< to a homomorphism defined on the algebraic K-

theory of k: 

If the characteristic of k is odd, then there is an 

Hermi tian analogue due to G, B, Segal [78] , Suppose that ~ has 

a non-singular £-symmetric form: The 

combinatorial information will be contained in the finite covers 

Sa(f) ~ X, one for each a E k, with fibre over x E X 

(Sa(t<»x:= {(u,v) E "'xx/Ai -{(O,O)} I gx(u,v) = a J 

Now the extension D(E): k'vk'j (with jzj-1 = z-l for z E k', 

j2 = E E k') of k' by lZ/2 acts 

j,(u,v) = (Ev,u). Define 9(,...) 

on Sa("'): z,(u,v) = (zu,z-l v ), 

° E ""D(E)(X)(2) to be the 

difference [So(I'-)] -[S1("")] • It lies in the 'free summand' 

.ex+; (Bk·)+}lZ/2 (Bk' the classifying space of the group 

wi th involution z ~ z -1) if £ = +1, 

[X+; (ED(_)/k')+1'lZ/2 if £ = -1. 

Choose a non-square b in k', The involution -r : z 1---4 z-1 

j ~ bj of D(E) is dependent on the choice of b only up to inner 

automorphisms, Write' for the involution of ° "'V(€)(X)(2) 

induced by -r and the involution of X, Then [Sa(I'-») = [S1("")] 

or [5 1(",,»), according as a E k' is a square or a non-square, 

M(,...) = 1 + 9(1'-) is invertible and satisfies the formula: 

o«~EElu) = "'(~)."'(l» + c("(r)' - ~(r»,("(u)' - «(»», where c is 
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equal to t(q-1) if q 1 (mod 4), t(-q-1) if q 3 (mod 4). 

i*e(r-) E {X+; (Bk')+1(2)' surprisingly, agrees with the 

non-equivariant e(~), at (2). (It suffices to check for line 

bundles if q ~ 1 (mod 4), and 2-dimensional bundles if q ~ 3 

(mod 4). Then we can use the doubling construction and the 

transfer. 

O,O( ) 0 (). 
Of extends to a map Ke X -+ ""D(€) X (2) such that: 

(B.4) et (x) • «.( y ) • (1 + c ( l; (x) -1 )( I; (y ) -1) ) , 

whel'e l;(x) = o«x)/«(x)' • 

generated by 1 and <b):= k with the form (u,v) I---) buv (b a non

square). Let' denote the involution of K~'O(X) given by the 

tensor product with (b) • Then «(x') = ,,(x), and, since 2x 2x' , 

(H.4) implies at once that i;(x+y) = \;(x).\;(y) • 

(B.2) is, of course, a corollary of the ~/2 (or ~/4)-equivariant 

real Adams conjecture and such results are practically as old as 

the non-equi variant theorem, [77]. There has been important 

recent work on the equivariant Adams conjecture for more 

complicated groups by T. tom Dieck and others. The formula (H.4) 

is implicit in Segal's work; it is closely related to a result 

of J. Tornehave [86] on the deviation from additivity of a 

chosen solution of the Adams conjecture. 
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