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ON THE INDEX OF A FIBERED MANIFOLD!
S. S. CHERN, F. HIRZEBRUCH, AND J-P. SERRE

Introduction. Let V be a real vector space of dimension 7. Let
F(x,y) ={x,y), %, yEV, be a real-valued symmetric bilinear function.
We can find a base ¢;, 1 S¢=7r, in V, such that

P p+q
(1) F(x, 3) = 25 a'y' — 2 iy

=1 $m=p+1
where x= Y 1., x%; and y= > 1., y'e..

The number p —g is called the index of F, to be denoted by 7(F). It
depends only on F. If Fis nonsingular (i.e. p+g=r), then min (p, q)
equals the maximal dimension of the linear subspaces of V contained
in the “cone” F(x, x)=0.

Now let M be a compact oriented manifold. The index of M is
defined to be zero, if the dimension of M is not a multiple of 4. If
M has the dimension 4k, consider the cohomology group H%*(M) with
real coefficients. This is a real vector space, and the equation

(2) (2, pE=2\Uy, =z y€ H*M),

where £ is the generator of H*#*(M) defined by the given orientation of
M, defines a real-valued symmetric bilinear form (x, y) over H*(M).
Its index is called the index of M, to be denoted by 7(M). Reversal
of the orientation of M changes the sign of the index. The form (x, y)
defined by (2) is nonsingular, since, by Poincaré’s duality theorem,
the equation x\Jy=0 for all x&H?*(M) implies y=0.

The main purpose of this paper is to prove the theorem:

THEOREM. Let E—B be a fiber bundle, with the typical fiber F, such
that the following conditions are satisfied:

(1) E, B, F are compact connected oriented manifolds;

(2) The fundamental group mi(B) acts trivially on the cohomology
ring H*(F) of F.

Then, if E, B, F are oriented coherently, so that the orientation of Eis
induced by those of F and B, the index of E is the product of the indices
of F and B, that s,

r(E) = 7(F)7(B).
Received by the editors September 7, 1956.

1 Work done when the first named author was under partlal support by the Na-
tional Science Foundation. .
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REMARK. We do not know whether condition (2) and the connect-
edness hypothesis of condition (1) are necessary. For instance, let E
be an n-sheeted covering of B (the spaces B and E still being compact
oriented manifolds); is it true that 7(E)=n7(B)? We know the
answer to be positive only when B possesses a differentiable structure:
in that case, according to a theorem of one of us, 7(B) (resp. 7(E))
is equal to the Pontrjagin number L(B) (resp. L(E)) and it is clear
that L(E)=n-L(B).

1. Algebraic properties of the index of a matrix. Let ¢;, 1=<¢=7,
be a base in V. A real-valued symmetric bilinear function (x, y) de-
fines a real-valued symmetric matrix C=(c;j), ¢;;={e;, €5), 1 =4, j <7,
and is determined by it. The index of the bilinear function is equal
to the index 7(C) of C, if we define the latter to be the excess of
the number of positive eigenvalues over the number of negative eigen-
values of C, each counted with its proper multiplicity. We have the
following properties of the index of a real symmetric matrix:

For a nonsingular (rXr)-matrix T we have

(3) 7(C) = r(*TCT).

Here, as always, we denote by ‘T the transpose of T. For nonsingular
square matrices 4, L (with 4 symmetric) we have

0 0 L 0 L
4) [0 4 0] = T(‘L 0) + 7(4) = 7(4).
tL 0 O

Here and always we make use of the convention that the index of
the empty matrix is zero.
To prove (4) it is enough to show that

e

In this case, 7 is even. Put =2u. Obviously, the cone F(x, x) =0 of
the symmetric bilinear function F(x, y) belonging to the matrix

(2 )

contains a linear space of dimension g. Thus min (p, ¢) 2. On the
other hand, p+¢=2u. Therefore, p =g and 7=0.

LemMA 1. Let C be a real, symmetric, nonsingular matrix of the form
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0 L,
- .
La o
where Lo, - - - , L are square matrices (empty matrices are admitted)
and where L; is the transpose of Lm—;. Then
0 L,
. 0, if mis odd,
Q= - {T(L,.), if m=2n.
Ln 0
Proor. We put
0 L
(6) C = o, 0sSrAs 1
Lmn . A=

Sincedet (Cy) = + [, det (L:) 0, the index 7(Cy) is obviously inde-
pendent of \, so that 7(C) =7(C1) =7(Cy). By (4) we have 7(Co) =0
resp. 7(Co) =7(L,), q.e.d.

LEMMA 2. Let A and B be two square matrices, which are either both

symmetric or both skew-symmeiric. Then their tensor product A®B is
symmetric, and

@) (4 ® B) = 7(4)7(B) or 0,
according as both A and B are symmelric or skew-symmetric.

Suppose first that 4 and B are both symmetric. Let a;>0, a; <0,
1=i=p, p+1=j=<p-+gq, be the nonzero eigenvalues of 4 and B >0,
B8:1<0, 1=Sk=p', p'+1=1=p'+q be the nonzero eigenvalues of B.
Then the nonzero eigenvalues of A®B are aufy, 1Su=p-+q,
1=t=p'+¢ . It follows that

(A ® B) = pp' + q¢' — p¢’ — p'q = 7(4)7(B).

Now let 4 and B be both skew-symmetric. By applying (3) to
the matrix C=4 ® B we can suppose that 4 and B are both of the
form

4, 0
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where each 4;is a 2X2 block:

4= (1)
(e (0)

we have 7(4 ®@B) =0.

J.

(UMD

2. Poincaré rings. We consider a graded ring 4 with the following
properties:
(1) In the direct sum decomposition

= 2 4

. 05r<c0

Since

of A into the subgroups of its homogeneous elements, each A" is a
real vector space of finite dimension. There exists an # with A7=0
for r>n and with dim 4»=1.

(2) If x€A*, yEAi then xyE A% and

xy = (—1)¥yz.

Let £#0 be é base element of Ar, Relvative to'E we deﬁne a bilinear
pairing (x, ) of A" and 4" into the real field by the equation

(%, 9)t = xy, xE AT,y E A,

Let ¢,—, be the linear mapping of A" into (47)*, the dual vector
space of A7, which assigns to y& A the linear function (x, y) on
Ar (xEA"). '

A graded ring 4 is called a Poincaré ring if it satisfies (1), (2) and
has moreover the following property:

(3) The mapping i,—, is a bijection of A"" onto (A7)*.

A consequence of (3) is

dim A" = dim 4™, 0<r=n.

The cohomology ring of a compact orientable manifold is a Poin-
caré ring.

A differentiation in a Poincaré ring 4 is a linear endomorphism
d: A—A, satisfying the following conditions:

(a) dACArtY

(8) dd=0;

(7) d(xy) =(dx)y+(—1)x(dy), lf xEAT;

(8) dA»1=0.
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As is well known, such a differentiation defines a derived ring
=d~1(0)/dA. If we put A"—-d-l(O)f\A'/dA"l, we have the dlrect
sum decomposition

A= Y A,

Osrsn

and 4’1 isa graded ring. It is easy to venfy that, 1f K EA", y'ed’,
then x'y’ €A’#i, and

2’y = (—=1)y's

From the property (6) of d we have dim 4'»=1, Thus ‘A’ satisfies (1)
and (2) with the same maximal degree 7 as A. We denote the residue
class of £in A’» by &. Relative to £ we have the linear mapping

Al (A77)*.

LEMMA 3. The derived ring of a Poincaré ring with differentiation is
a Poincaré ring, t.e. 1,,_, is bijective.

It remains to prove that 4’ has the property (3) in the definition of
a Poincaré ring. Let x€Ar, yEA» 1, By property (8) of d, we have

0 = d(zy) = (d2)y + (—1)2(dy).
This gives
(8) <dx1 y) = (—1)’_1<x! dy):

a relation which is independent of the choice of £. This relation is
equivalent to saying that the following diagram is commutative:

An—rl 5 Arr 5 An—rtl

l in—ﬁ-l B J in—r : J iﬁ-—r+l :
. —1)r—1(¢ 1)r t
(Aﬁl)*(__)_ﬂ))(A )*( )(d)(Ar—l)*

where (47)* is the dual space of A7, and *d is the dual homomorphism
of d. We have the canonical isomorphism

(A'r)* g td—l(o) N (Ar)*/td(AH-l)*'

The above diagram shows that 7,_, induces an isomorphism, namely
45 _,, of A’ onto (4'")*. It follows that 4’ and A’» are dually
paired into the real field relative to the element ¥ €4’*, which is the
residue class of .
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In analogy with the index of an oriented manifold we can define
the index 7¢(A4) of our Poincaré ring 4 relative to £. It is to be zero,
if n=0, mod 4. If n =4k, 7¢(4) is to be the index of the bilinear func-
tion (x, ¥), x, yEA%*. Obviously, 7¢(4) =7¢(4), if & is a positive mul-
tiple of £.

LeMMA 4. In a Poincaré ring A let £5<0 be a base of A", and let
E'E A’ be the residue class which contains £, Then t¢(A') =1:(4).

It is only necessary to prove the lemma for the case n=4k. Let
Z%=d-1(0)MNA%*, B*=dA%1 and let g, b, c be the respective dimen-
sions of 42, B2, Z%*_ ]t follows immediately from (8) that each of the
two spaces B% and Z?% is the orthogonal of the other with respect to
the symmetric form (x, y) of A%, whence ¢ = b + c. We have
B2*CZ*C A%, If e, is a base of A% such that e;&B?* for 1 £:<b and
e;EZ% for b+1 =i =c, the matrix ({e;, ¢;)) has then the form

0 0L
0 Q *,
AR

where L and Q are square nonsingular matrices, of orders b and ¢c—b
respectively. Its index is 7;(4), while 7(Q) is 7(4’). By Lemma 1,
we get therefore 7y-(A4’) =7¢(4), as contended.

3. Proof of the theorem. It suffices to prove the theorem (see Intro-
duction) for the case dim E =4k, which we suppose from now on. We
consider the cohomology spectral sequence EP?, 2<r=< «, of the
bundle E—B, with the real field as the coefficient field. Let

Es= Y E, E =Y E, 227 S .

ptg=s 0se
Each E, is a graded ring, satisfying E'Ef CE!** and also EPAEY?
CEP*74+¢ 1t has a differentiation d,, such that E,,, is the derived
ring of E,. In our case d, is trivial for sufficiently large r and E,, or
E, for r sufficiently large, is the graded ring belonging to a certain
filtration of the cohomology ring of the manifold E. The term E, of

the spectral sequence is by hypothesis (2) of our theorem isomorphic
to H*(B, H*(F)) =H*(B) @ H*(F), such that

EY' >~ H*B, B'(F) = H(B) ® H'(F).

If we identify E}*® with H?(B) @ H%(F) under this isomorphism, the
multiplication in E; is given by



1957) ON THE INDEX OF A FIBERED MANIFOLD 593

GNP ®f) = (1)} Ub)® (fU),
b€ H»B), V¥ E€H”(B), fE€HWF), [EHYF).

Let m=dim F, so that dim B=4k—m. Since B and F are mani-
folds, E, is a Poincaré ring with respect to the grading

E2 = E E; (E; = 0 fors > 4k, E;k - E;k—m,m)'

0ss<0

The ring E; is isomorphic to the cohomology ring of BXF.

The orientations of B, F define a generator £, =£{3®%r of Esf. Here
£p (resp. £r) denotes the generator of H%*—™(B) (resp. H™(F)) belong-
ing to the orientation of B (resp. F). We wish to prove that

76(Es) = 7(B)-7(F).
We have

2k,0 2k~-1,1 2k—m,m

9) E:k=E, + E, + -+ E,

Here some of the E}® might vanish, in particular Ef*=0 if p <0.
Clearly, for x€E*~% and yEE* %% we have xy=0 unless

¢t+qg =m
By Poincaré duality in B and F, we have

dim By " = dim By "™,

Therefore, the symmetric matrix, which defines the bilinear sym-
metric function over EZ, is, when written in blocks relative to the
direct sum decomposition (9), of the form

0 Ly

Ln 0
where the L; are nonsingular square matrices, such that L; is the
transpose of L,—;. By Lemma 1 we obtain
7¢,(E2) = 0if m is odd, Te,(E2) = 7(Lms2) if m is even.
In the first case the equation 74(E;) =7(B)7(F) is proved, since
Te(Es) =7(F) =0. In the latter case we have

2k—m/2,m/2
Y =

Hlk—mlz(B) ® Hm/2(F),
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and it is clear that up to the sign (—1)™/2 the matrix Ly is the tensor
product of the two matrices defining the bilinear forms of B and F. If
m/2 is odd, both matrices in this tensor product are skew-symmetric,
and we have, by Lemma 2, 7(Ln/2) =0; on the other hand we have
7(B)7(F) =0, since dim F50 (mod 4) and thus by definition 7(F) =0.
If m/2 is even, that is, if m =0 (mod 4), both matrices are symmetric,
and Lemma 2 gives: 7(Lnys) =7(B)7(F). Combining all cases, we get
the formula

(10) 74,(Es) = 7(B)7(F)

in full generality.

The differentiation d; of E, satisfies the conditions of a differentia-
tion in a Poincaré ring given in §2. In fact, dim E¥=1, since E is a
manifold of dimension 4k. Therefore, dim E¥*=1 for 2=<r. Thus d,
annihilates E3*~!; more generally d, annihilates E&~*. It follows by
Lemma 3 that E; is a Poincaré ring. It has d; as differentiation and
therefore E, is a Poincaré ring etc. Finally, E, is a Poincaré ring. By
Lemma 4 and (10) we get

T(B)T(F) = TE:(EZ) = ’TE!(ES) s = TE.(E,),

where £, (resp. £.) is the image of £ in E, (resp. E.).
It remains to prove that r¢ (E.) =7(E). The cohomology ring H*(E)
is filtered: :

HYE)=D"'DD'D---DD* DDt D ..., N D» =0,
(11) Dre = D7 | H?+e(E),
Dra.Dv' ' C Drtel b,
We have the filtration
H7(E) = D% D DL1D ... DD Dril-1 = 0

and the canonical isomorphism

(12) Dp.e/DpH.q—-l gEzw

The ring structure of E,, is induced by that of H*(E) by the canonical
homomorphisms D?9—E%* (see (12) and (11)). Since E¥=E%-™",
(where m =dim F), we have

(13) Htk(E) — le—ln.m g E:b—m.m

and

(14) DAk = ( o for 1 < m.
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Earlier we have chosen a generator £,EE%. Under the canonical iso-
morphism (13) £, goes over in the generator £x of H*(E) belonging
to the orientation of E generated by the given orientations of B and
F in this order.? We now consider the bilinear symmetric function
(x, y) over H*(E) relative to £g. Choose a direct sum decomposition
of H?*(E) in linear subspaces,

(15) H*E)=Ve+Vi+Vat -+ Vm

such that '
q
2 Vi= D¥ue (0sg=m).
=0

Here we use that D%~ = D%-—m.m for s >m. By (11) and (14) we have
(16) (z,y) =0 forxc€V,yEVjandi+j<m,
and moreover by (13) |

amn (x, y) = (%, ¥), forx€V,yEViandi+ j=m,

where % (resp. 7) denotes the image (see (12)) of x (resp. y) in E%~*
(resp. E%~%%) and where on the right side of this equation stands the
symmetric bilinear form over E% relative to £.. Since (%, )=0 for
FEE% % §CE% 9% unless ¢+¢ =m, and since E, is a Poincaré
algebra, we can conclude

(18) dim E, ** = dim E, "7

The preceding remarks, in particular (16), (17), (18), imply: The
matrix of the symmetric bilinear function over H*(E) relative to g

can be written in blocks with respect to the direct sum decomposition
(15) in the form -

0 Ly
L,

Ln .

2 This is easy to see when E is a trivial bundle, in which case it is almost the
- definition of the orientation of a product of manifolds. The general case can be re-
duced to this one by comparing the spectral sequence of E to that of the bundle in-
duced by E on an open cell of the base, the cohomology being taken with compact
carriers.
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where the L; are nonsingular square matrices and where L; is the
transpose of L,,—;. Moreover,

o Do

Lo 0
is the matrix of the symmetric bilinear function over E¥ relative to

¢.. By Lemma 1 we have 7(E) =7¢(E£). This concludes the proof of
our theorem.

Un1versIiTY oF CHICAGO,
UNIVERSITY OF NANCAGO,
PRINCETON UNIVERSITY AND
UNIVERSITAT BoNN

THE PERIPHERAL CHARACTER OF CENTRAL
ELEMENTS OF A LATTICE!

A. D. WALLACE

A lattice being a Hausdorff space together with a pair of continuous
lattice operations (A and V) the content of this note is best exhibited
by quoting a corollary to our theorem: If a compact connected lattice is
(topologically) situated in Euclidean n-space then its center is contained
in its boundary. Thus, far from being “centrally located,” the central
elements are “peripheral.”

The above is a consequence (see [3, p. 273]) of the

THEOREM. If L is a compact connected lattice, if R is an (n, G)-rim

[3] for L and if (i) a is central [1, p. 27] or if (ii) L is modular and a is
complemented then a & R.

ProoF. The procedure is to introduce an appropriate multiplication
into L so that L is a semigroup, to show that L is not simple (in the
semigroup sense [3]) and that a is a left unit. Since L is compact it
has a zero and unit, 0 and 1, as is well-known. Indeed, the set
N{x\VL|xEL} is easily seen to consist of exactly one element,
namely 1. If a=1 then the hypotheses of Theorem 1 of [3] are ful-
filled using the multiplication (x, y)—x Ay so that 1 being a unit for
the multiplication, 1ER. If a1 let x-y=(a’ Ax)\Vy, o’ being a

Received by the editors September 15, 1956.

1 This work was supported by the National Science Foundation.



