Proceedings of Symposia in Pure Mathematics
Volume 32, 1978

ON SLICE KNOTS IN DIMENSION THREE

A. J. CASSON AND C. McA. GORDON*

1. Introduction. Under the equivalence relation of concordance (sometimes called
cobordism), smooth knots in the 3-sphere S3 form an abelian group with respect
to connected sum [4]. The knots K representing the zero class are precisely those
which are slice, that is, satisfy (S3, K) = @(B*, D) for some smooth 2-disc D in the
4-ball BY. Now associated with any knot K and a Seifert surface V spanning K,
is a bilinear Seifert pairing 6,: H\(V) x H(V) —» Z [12], [6]. We say that K is
algebraically slice if 0, vanishes on a subgroup of Hy(¥) whose rank is 4 rank Hy(V)
(this condition is independent of the choice of F). It is known that a necessary
condition for X to be slice is that it be algebraically slice. Moreover, in higher (odd)
dimensions analogous definitions may be made, and there the conditions are equi-
valent [6]. We shall show that this is not the case in dimension 3.

The Seifert pairing (up to appropriate equivalence) and a fortiori the ‘algebraic
concordance’ class of K, is determined by the Blanchfield linking pairing on H,(X),
where X is the universal abelian cover of the complement X of K [14]. Our ‘second
order’ obstructions may be regarded as arising from certain cyclic covers of X, or
(as in the present paper), from certain metacyclic branched covers of (S3, K). In
particular, our method provides potentially nontrivial obstructions to null-con-
cordance for any knot with Alexander polynomial A(¢) # 1. (Whether or not there
exist knots with 4() = 1 which are not slice is an interesting open question.)

The present paper and the earlier account [2] are related as follows. First, a fairly
simple method was found for showing that certain (algebraically slice) knots K were
not ribbon knots, using signatures associated with certain cyclic covers of (say) the
2-fold branched cover of (S3, K) (see [2]). This was extended to give a necessary
condition for X to be slice, in terms of the behavior as # —+ oo of the corresponding
invariants associated with the 2»-fold branched cyclic cover of (3, K) (see §4).
Calculations for certain specific examples, however, disclosed a multiplicativity in
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the invariants which showed that this behaviour was determined by the 2-fold
branched cover (see §5). The search for an explanation of this phenomenon led to
the approach in [2]. Thus the purpose of the present paper is to fill the existing
historical gap, to motivate [2], and to provide variety. It should also make clear the
relationship to earlier work of Massey [8], Hsiang-Szczarba [5], and Rohlin [10].

Organization is as follows. In §2 we use the Atiyah-Singer G-signature theorem
[1] to associate with a 3-manifold M and an epimorphism ¢: H,(M) - Z,, certain
rational numbers ¢, (M, ¢), 0 < r < m. In §3 we show that if A is obtained by
surgery on a link L in $3 (and if ¢ is appropriately related to L), then ¢,(M, ) may
be expressed in terms of standard invariants of L, in particular, signatures of the
type introduced by Tristram {13]. In §4 we establish a necessary condition, in
terms of certain ¢,(M, ¢), for a knot K to be slice. More precisely, we consider, for
some fixed prime ¢, the g»-fold branched cyclic cover M,, of (S3, K), and show that
if K is a slice knot, then, for suitable ¢,: H\{(M,) — Z,, ¢,(M,, ¢,) must remain
bounded as n» — co. Finally, in §5, we study the class of knots consisting of the
various doubles of the unknot, and use the result of §4 to show that although
there are infinitely many algebraically slice knots in this class, only two are slice.
The calculation of the relevant invariants o,(M,, ¢,) is based on §3.

We work throughout in the smooth category. In the absence of evidence to the
contrary, manifolds are to be assumed compact and oriented, and homology to be
with integer coefficients.

2. An invariant. Let ¥ — N be an m-fold cyclic branched covering of closed
4-manifolds, branched over a surface F — N with inverse image F = N. The (sym-
metric) intersection form on Hy(N) extends naturally to a nonsingular Hermitian
form - on H = HyN) ® C.Letz: H — H be the automorphism induced by the
covering translation of N which rotates each fibre of the normal bundle of F
through 2z/m. Note that 7 is an isometry of (H, -), and that 77 = id. Write @ =
e?=i/m_and let E, be the w"-eigenspace of 7, 0 < r < m. Then (H, +) decomposes as
an orthogonal direct sum E, @ E; @ --- @ E,,_;. Let ¢,(N) be the signature of the
restriction of « to E,.

The following identity is proved by Rohlin in [10]. For the convenience of the
reader we include a proof; which follows closely that of Rohlin.

LeMMaA 2.1. &,(N) = sign N — 2[Fr(m — r)/m2.

PROOF. We can write E, = EX @ E_, where - is + definite on E}. Then H =
H+*® H-, where H*t = Ef ® Ef @ .- @ Et_;, and for 0 £ s < m we have the
75-signatures

sign(z®, N) = trace(s|H*) — trace(r’|H)
m—1 - -
=3 wrs V).
r=0
A standard transfer argument gives eo(N) = sign N. Thus
| ) - . m—1 _
sign(z®, N) — sign N = J; w” ¢, (N).
r=1

Inverting, we obtain, for0 < r < m,
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e ) = 5 33 (@ = 1) (igne, F) — sign V)

m—1

=signN + Z (0™ — 1) sign(z*, N).

By the G-signature theorem [1, Proposition 6.18), sign(z®, N) = [FJ? cosec? (zs/m),
0 < 5 < m. We see geometrically that the self-intersection number [£?] is equal
to [F]?/m. Therefore

e, (W) =sign N + -3 [F] '"Z:—l(w'" -1 c:o:)sec2 —

Now

9 &S

—rs _ 27"'_3__ 2 TTS
Z(w rs — 1) cosec ZZ‘sm - cosec?

s=1

The second sum must vanish, and one may easily verify that it does. To evaluate
the first sum, Iet & = e=/m Then

Z: sm2—""—‘s-'-c secz-f-:—— sz—:l(eef::g;n)z

s=1

— Z (Es(r-l) + Es(r—3) F oo F E-—-s(r—l))Z
=1

=5 Py, say.

s=1

Now P(z) = P(z 1), and &2 = 1. Therefore

T A =5 & PE) -5 PO+ A= 1)
1

2
=rim-r)

= = (Zm Y, coefficient of z2™ in P(z)) - r2
- .

as the only contribution to the sum of coefficients comes from ¢ = 0, and is 7. Hence
mil (o — 1) cosec? (zs/fm) = — 2r(m — r), and the proof is complete.

Now let M be a closed 3-manifold, and ¢: Hy(M) - Z,, an epimorphism. ¢
induces an m-fold cyclic covering M — M, with a canonical generator correspond-
ing to 1 € Z,,, for the group of covering translations.

Suppose that for some positive integer n, there is an mn-fold cyclic branched
covering of 4-manifolds W — W, branched over a surface F — int W, such that
d(W - W) = n(M — M), and such that the covering translation of W which
induces rotation through 2z/m on the fibres of the normal bundle of F restricts on
each component of 8 W to the canonical covering translation of # determined by
¢. Let this covering translation induce ¢ on H = H,y(W) ® C. As in the closed case,
(H, ) is an orthogonal direct sum of eigenspaces of 7, and again we have the eigen-
space signatures ¢,(W), the only difference being that the form - will not now in
general be nonsingular. Define, for 0 < r < m, the rational number
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o, (M, 99) = —'lt—(Slgn W — af(W) - 2AFY ';g};;. r) )

It follows readily from Lemma 2.1, and Novikov additivity of sign W and ¢,(¥)
(valid for the latter because they are linear combinations of zs-signatures) that
oM, ¢) depends only on (M, p) and r.

As we shall see in Lemma 2.2 below, it is always possible to take n = 1, but the
extra generality in the definition will be useful in §4. We shall, however, always be
in a situation where eithern = l or F = @.

The following lemma shows that ¢,(M, ¢) is always defined.

LEMMA 2.2. Given (M, ¢) as above, suppose M = oW with H(W; Z,,) = 0. Then
M — M extends to an m-fold cyclic branched covering W — W over a surface F c
int W, such that the canonical covering translation of M corresponds to rotation
through 2z/m on each fibre of the normal bundle of F < int W.

PrOOF. ¢ € Hom(H (M), Z,) = H(M; Z,). Since H\(W,; Z,) = 0, there is a
surface F c int W such that the image in Hy(W; Z,,) of [F] € Hy(W) is the Lefschetz
dual of 6p € H{W, M ; Z,,) = Hom(HxW, M), Z,,). Thus, in terms of intersections,

[F] - x (mod m) = dp(x) = p(ax) forall x e Hy(W, M).

Let pe HW, W — F; Z,) = Hom(Hy(W, W — F), Z,) be dual to the funda-
mental class in Hy(F; Z,,). Comparing the cohomology exact sequences of the pairs
(W, M), (W, W — F), with Z, coefficients, we see that p = d¢ for some ¢ €
HYW — F; Z,) = Hom(H|(W — F), Z,) which extends ¢. Note also that since

[F]- y (mod m) = 3¢(y) = (@y) for all ye HyW, W — F),

¢ evaluates to 1 € Z,, on a meridian of F. Then ¢» determines the desired branched
covering W — W.

3. Surgery descriptions. We now describe a method for computing o (M, ¢). A
framed oriented link L, with components L,, ---, L,, in S3, is a surgery description of
(M, ) if

(i) M is obtained by surgery on L (according to its framing), and

(i) if g; € H (M) is the image of the class of a meridian y; of L,, then ¢(g,) =
le Z, foreachi =1, ---, n.

(Note that the orientation of L isirrelevant to (i), but not to (ii).)

Surgery descriptions in this sense always exist, for it is known that, given M,
there exists a link L satisfying (i) [16], [7], which may now be modified by moves
corresponding to handle additions and handle slides until (ii) is also satisfied.

The invariants ¢,(M, ¢) can be expressed in terms of certain invariants of L,
as follows. Let A = (a;;) be the matrix of linking numbers of L, that is, a;; =
Ik(L;, L), i # j, and a;; is the framing integer associated with L;. Choose a Seifert
surface ¥ spanning L, let S be the corresponding Seifert matrix, and let ST denote
the transpose of S. Recall that @ = e27i/m,

LEMMA 3.1. Let the framed oriented link L be a surgery description of (M, ).
Then, forO < r < m,

o (M, p) = sign A — sign((l — )S + (1 — ")ST) — Z(Zl:.,a,-’%(m =)
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PROOF. Let W be the 4-manifold obtained by attaching » 2-handles to the 4-ball
B* along disjoint tubular neighbourhoods of the components of L, according to the
framing of L. Then W is 1-connected and 3 = M. Recalling the proof of Lemma
2.2, we seek F < int W such that

[F]-x (mod m) = dp(x) = p(9x) for all xe Hy(W, M)._

Fori=1, -, n let c;e Hy(W) be the class represented by the core of the
ith 2-handle together with (say) the cone (in B*) on L,. Then H,(W) is free abelian
on ¢y, -+, ¢,. Also, Hy(W, M) is free abelian on cf, ---, ¢*, where cf is the class
of the co-core of the ith 2-handle. Let f = 32, ¢, Then f:c¥ =1, =1, -, n,
and by hypothesis p(dc¥) = ¢(z;) = 1€ Z,,. Hence f-x (mod m) = ¢(ax) for all
x e Hyo(W, M). Let V' be obtained by pushing the interior of ¥V, the Seifert sur-
face for L, into the interior of B4, in the obvious way, using a collar of $% in B4
The union of ¥’ with the cores of all the 2-handles is then a surface F c int W
representing /. By the proof of Lemma 2.2, we then have an m-fold cyclic
branched cover W of (W, F) such that 3(W — W) is the covering M — M
determined by ¢. .

The intersection form on Hy(W) is given, with respect to the basis ¢y, -+, C,,
by the matrix A of linking numbers of L; hence sign W = sign A. Also, [F]? =
(O3 ¢)? = X3, ja;;- This accounts for the first and last terms on the right-hand
side of the assertion of the lemma; it remains to identify the middle term as &,( W).

Now W = B |J H, where 5 is the m-fold cyclic branched cover of (B4, ¥*), and
H is the m-fold cyclic branched cover of (| ] 2-handles, () cores). Thus 33 is the
m-fold cyclic branched cover of (83, L), and H is a disjoint union of n 2-handles,
attached to 5 along a tubular neighbourhood of L < 3B, where L is the inverse
image of L. Since Hy(L) = 0 = Hy(H), there is a Mayer-Vietoris exact sequence
0 —» Hy(B) - Hy(W) — H(L) which is equivariant with respect to the action
of the group of covering translations. Now tensor with C, and observe that the
resulting exact sequence induces a corresponding exact sequence of eigenspaces.
In particular, since the covering translations act trivially on L, we have ¢(B) =
eW)for0 < r < m.

For calculating intersections, it turns out to be more convenient to use, instead
of B, the corresponding unbranched cover. So consider a tubular neighbourhood
V' x D2 of ¥ in B, and let B be the m-fold cyclic cover of Bt — ¥’ x int D2,
Then B = B \J V' x D2, and, since Hy(V') = 0, we have an equivariant Mayer-
Vietoris exact sequence

Hy(V' x S) — HyB) — HyB) — Hy(V" x SY.

Since the covering translations induce the identity on H (¥’ x S!), an elementary
argument shows that inclusion induces an isomorphism of eigenspaces E,(B)=
E,(B)for0 < r < m,and hencee,(B) = ¢(B),0 <r < m.

B may be described as follows. First let C be obtained by cutting Bt — V' x
int D? along the trace T of the isotopy which pushed the interior of V into the inte-
rior of B4 Observe that T = ¥ x I, that C & B%, and that C contains two copies
T* of T in its boundary. Now take m copies C, of C, s € Z,,, and identify T; with
T;;, for each s. The result is B. Let zy,--+, z, be cycles in J representing a basis for
H(V). These determine cycles z{, -+, z}, say, in T3 and z7, ---, z; in Ty, and for
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each { = 1, ---, k, the union of the cone on z} in Cy and the cone on z; in C;
determines a class x; € Ho(B). A Mayer-Vietoris argument shows that x;, -+, x;
is a Z[Z,]-basis for H,(B). Letting 7 as usual denote the automorphism of H(B)
induced by the canonical covering translation, which takes each C, to C,;, @
basis for H(B) over Zis {r*x;:0 < r < m, 1 £ i < k}. The intersection form on
H(B) with respect to this basis can be readily described. Recall that S is the
Seifert matrix of L with respect to V; write S = (v;;). Then (with an appropriate
modification if m = 2)

Vis + Vi s =1,

—v,-,-, §s=1 + 1,

TIX; T X; = .
"T'] —VI,-, S=t‘—'1,
0, . otherwise.

Now pass to H «(B) ® C, but continue to write 7, x; instead of ¢ ® id, x; @ 1.
Let y,, = 2"doex;, 0r<m 1Si<k Then{y,,;1 SiZk} is a
linearly independent set of elements of E,,0 < r < m. Since Ec® E; @ - ®
E,_; = HyB) ® C has dimension mk, it follows that in fact it is a basis for E,.

- With respect to this basis, the Hermitianized intersection form on E, is given by

m—1 m—1

y‘." ’yj.r B Z Z (a)_f-f TSx') . (w"rt T'xj)
=0

m—1 m—1
= t=20 § w—r(s—t)(z-sx‘..ftxj)

m—1

= Z(:) Wiy + Vi — @V —wTVy)
=m((l - o™");; + (1 — &")v).

Hence, for 0 < r < m, e{W) = ¢(B) = sign((1 — 0™)S + (1 — @”)ST), and the
proof is complete.

REMARK. The signatures sign((1 — ")S + (1 — ")S7), for m prime and r =
[m/2}), were used by Tristram in {13]. (Compare also (9] and [6].) The above in-
terpretation of them as eigenspace signatures associated with an m-fold branched
cyclic cover has also been given, in somewhat greater generality, by Viro [15].

. 4, Slice knots, Let X be a knot in S3. Fix a prime ¢, and let M, denote the g=-fold

branched cyclic cover of (83, K), n =1, 2, -... (By an argument analogous to
the proof of Lemma 4.2 below, H, (M ,; Q) = H,(S%; @).) Suppose we have an
epimorphism ¢: H,(M,) = Z,. It is not hard to show that the branched covering
projection M, — M induces a surjection on x;, and hence on H,. Composition
with ¢ then defines epimorphisms ¢,,: H(M,) — Z,, forall n.

THEOREM 4.1. Suppose K is a slice knot. Then there is a constant ¢, and a subgroup
G of H\(My) with |G|2 = |H(M")|, such that if m is a prime power and ¢: Hy(M")
— Z,, is an epimorphism satisfying o(G) = 0, then |6 (M ,, ¢,)| < cforalln.

We remark that the proof of Theorem 4.1 will apply without essential change to
any knot K in a homology 3-sphere M such that (M, K) = &(W, D) for some
2-disc D in a homology 4-ball W.

We require some preliminary lemmas.
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LEMMA 4.2. Let D be a _2-disc in B4, and let V, be the qn-fold branched cyclic cover
of (B4, D), g prime. Then H (V,: Q) = 0

Proor. Let X be the infinite cyclic cover of Bt — D. We then have the exact
sequence (see [9]) :

e BAR Z) LR Z) — AV, Z) — B (X Z

where 7 is the automorphism induced by the canonical covering translation of X,
Since ¥y = B4,  — 1 is an isomorphism. Hence, with Z_ coefficients, 1" — 1 =
(t — 1)*is also an isomorphism, giving H(V,; Z,) = 0. Since ¥, is compact, the
result follows.

LeEMMA 4.3. Let V be a Q-homology 4-ball. If the image of HI(BV) - H((V)
has order 1, then H,(@V) has order I2.

PROOF. Since H4(d¥) = 0, we have an exact sequence
0 — Hy(V) - HyV, V) > Hi@V) - H(V) - H(V, V) - 0.

By duality and universal coefficient theorems, |H V)| = |H|(V, 2¥)| and
|H(V, oV)| = |H{(V)|; hence the result. '
A slight extension of [5, I.cmma 4.1] yields

LEMMA 4.4. Let X be a connected complex with m(X) finitely generated, H,(X)
JSinite, and H\(X; Z,) cyclic for some prime p. Let X — X be a regular pr-fold
cyclic covering. Then H,(X; Q) = 0.

" For a proof of the following, see [9].

LemMMA 4.5. Let X be a finite connected complex and X - X a regular mﬁmte
cyclic covering. Let Fbe a field. If H\(X; F) = F, then dim H,(X; F) is finite.

ProOF OF THEOREM 4.1. By hypothesis, (53, K) = 9(B*, D) for some 2-disc
D < B Let V, be the g=-fold branched cyclic cover of (B4, D); thus 9V, = M
By Lemma 4.2, H(V,; Q) =0. Let i,,: H{(M,) - Hy(V,) be induced by
inclusion, and let G = keri,,. By Lemma 4.3, |G|2 = |H,(M,)|.

Suppose m = pe, p prime. Since ¢(G) = 0, there is an epimorphism ¢: H,(V)
— Z 4 for some b making the diagram

H(M,) H(V,)
? ¢

commute, where Z, —» Z, is multiplication by p®—¢. Composing ¢ with the
epimorphism H( V,,) — Hy(Vy) induced by the branched covering projection
gives a commutative diagrm

H\(M n) H(YV,)
Pn On
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for all n.
Let d, = dim H(V,; Z,). By doing surgery on d, — 1 circles in int V, we
may obtain W, with H,(W ,; Z,) cyclic and a commutative diagram

Hy(M,) —=— H(W,)

’

on g,

where i, is inclusion and ¢, is surjective. Let W, —» W, be the p’-fold cyclic
covering induced by '¢,; then (W, —» W,) consists of pt—¢ copies of the pe-fold
cyclic covering M, — M, induced by p,,.

Since H¢(V,; @) = 0, the euler characteristic y(V,) = 1. Hence y(W,) = y(V,) +
Xd, — 1) = 2d, — 1, giving y(W,) = p¥2d,, — 1). By Lemma 4.4, H(W,; @) =
0. Therefore Hy(W ,; @), which is isomorphic to H,(W,, aW,; Q) by duality,
has dimension pt—s — 1.1t follows that dim H«(W ,; Q) = p¥(2d, — 1) + p¥— — 2.
Note also that since signature is unaffected by surgery, sign W, =sign V, = 0.
Hence -

6AM,y p)] < p,,i (PQd, — 1) + pe — 2)

<pu2d, - 1) + 1.

Finally, let X denote the infinite cyclic cover of X = Bt — D, and let ¢:
H(X; Z ) = H(X; Z,) be the automorphism induced by the canonical covering
translation. Then (see the proof of Lemma 4.2) H((V,; Z,) = coker(t? — 1).
In particular, d, < d = dim Hy(X; Z,), which is finite by Lemma 4.5. We may
now set ¢ = |G| (2d — 1) + 1, and the proof is complete.

5. Some calculations. Let us consider the knots K} (k € Z) illustrated in Figure 1.

k full positive twists
FIGURE 1

Thus K, may be described as the k-twisted double of the unknot, or alternatively as
the rational (2-bridge) knot corresponding to the rational number (4k + 1)/2 [11],
[3]. Its 2-fold branched cover is the lens space L(4k + 1, 2).

K, has a Seifert surface of genus 1 with corresponding Seifert matrix

("o &)

0 k/
It follows easily that K, is algebraically slice precisely when 4k + 1 = /2 for some
integer /. The first two such valugs of k, namely 0 and 2, give the unknot and the
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stevedore’s knot respectively, both of which are slice (indeed ribbon) knots. How-
ever,

THEOREM 5.1. K is sliceonlyif k = 0, 2.

In fact, the proof shows that if k # 0, 2, then K, does not bound a disc in any
homology 4-ball (see remark after Theorem 4.1).

Proor. If K, is slice, then it is certainly algebraically slice. So for some fixed k
such that 4k + 1 = [, let M, be the 2»-fold branched cyclic cover of (S3, K,).
For any divisor m of / we have epimorphisms ¢: H{(M,) = Zp — Z,, which
necessarily satisfy ¢(G) = 0 where G < H,(M;) has order . We compute
o (M,, p,) (for suitable ¢) using the following surgery description. In Figure 2,
surgery with framing 41 on the unknotted curve J indicated yields S3 in such a

FIGURE 2

way that the other unknotted curve, K, becomes K,. By an isotopy of 53, Figuré
2 may be transformed to Figure 3. Then M, the 2#-fold branched cyclic cover of
(83, K,), is obtained by surgery on the link L consisting of the 2= lifts of J in the

FIGURE 3

2»-fold branched cyclic cover of (S3, K). The latter is just $3, and L is illustrated in
Figure 4. To determine the appropriate framing x of a component L; of L, choose
(temporarily) an equivariant orientation of L. Consider a 2-chain C; whose bound-
ary is a slightly pushed-off copy of L; determined by the framing of L,. This projects
to a 2-chain C whose boundary is a similarly defined push-off of J. Consideration
of the intersections of { );C; and C with L and J respectively gives, for each i,
1 = framing of J = x + )] Ik(L;, L;) = x — 2k;
: i#

hence x = 2k + 1.

We must now consider p,: Hy(M,) - Z,. M, is obtained by surgery on the
framed link shown in Figure 5, to which, for reasons soon to become apparent,
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/ﬁ)’\
c <

FIGURE 4

FIGURE §

we have assigned a nonequivariant orientation. Let 4, g and A;, y be oriented
longitude-meridian pairs for the two components, where 2; is chosen to be null-
homologous in the complement of the ith component. The first homology of the
complement of the link is free abelian on g, 4, and we have 4 = 2ky,, 2, = 2ky,.
Surgery has the effect of adding the relations

M+ @+ D=0, A+ @2+ Hue=0.

Thus if %; denotes the image of 4; in H{(M,), we see that H\ (M) is cyclic of order
4k + 1 = I2, generated by &; = yzs Hence ¢: H\(M;) - Z,, can be chosen to
satisfy p(@;) = p(fz) = 1. -

More generally, we give the link L which yields M, the alternating orientation
shown in Figure 6. Recalling that ¢, is defined to be the composition H,(M,) —
H(M)) 2 Z,, it follows that we then have p(;) = 1 for each i, where g, H|(M,)
corresponds to the meridian of the ith component L; of L. Thus L is a surgery
presentation for (M, ¢,) in the sense of §3.
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" The linking matrix 4 of L is the 2» x 2= matrix

k+ 1 k 0 e 0 k
k 2k + 1 k 0
0 k 2k + 1 :
: - 0
0 | k
k 0 0 k 2k+1

Note that A = kB + I, where B is
210 01
I 2 1 0
01 2 :
: .. 0
0 2 1

1 0« 01 2

It is easy to verify (for example by inductively computing the principal minors)
that B is positive definite. Hence A is also positive definite, that is, sign4 = 2».
Also, ZI'J Gy = 27(4k + 1) = 2?’12.

Let V be the Seifert surface for L illustrated in Figure 6.

FIGURE 6

The 2# (2k — 1)-element sets of which {7y, -+, 7ei—1}, {71 ***» T2—1} IS @ typical pair,
together with ¢, determine a basis for H;(V). In the corresponding Seifert matrix,
S, 52y, 71, ***» 71 contribute the 2k — 1) x (2k — 1) block

=1 1 0o ... 0
0 —1 1 0\
C= : -1
: 0
1
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and 74, -+, 72,3 contribute the transpose C7 of C. Thus S, is the (2#(2k — 1) + 1)
x (27(2k — 1) + 1) matrix

C 1
CT :
C 1
CT
C 1
CT
1 1 1 =21

Let w = e?*/m Write S, , for the Hermitian matrix (1 — w)S, + (1 — ©")ST,
and similarly for C. Then S, , is

C, @
CcT a
C, a
CcT o
C, a
CT |«
a a a« a ax &
whereaw = 1 — @ and x = — 2" 1 q@. Now choose P such that PC,P* =D is
diagonal, and let Q be the (2#(2k ~ 1) + 1) x (2¢(2k — 1) + 1) matrix
P
P
0
P
P
0 1
Then 0S,, O* is
D *
D *
D *
D *
* &k e * * X

where the entries in the last row (and last column) are periodic with period
2(2k — 1). We shall see later (in the proof of Lemma 5.2) that C, is nonsingular.
Assuming this, use the diagonal entries of the D’s in 05,,, O* to clear all the en-
tries (except the last) from the last row and column. Because of the periodicity
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noted above, this process changes the entry x to x + 21y = 2»-1(y — aq) for
some y independent of n. Hence sign S, , = 27 sign C, + y,, where |p,| = 1
and 7, is independent of n. By Lemma 3.1, for0 < r < m,

ar(Mua ‘pn) =20 —2n Sign C, - Nr — 2-"+1r(m —-r) (l/m)z'
In particular, note the multiplicative relation

0 AMp, 05) + 7, = 2”(0,(M Lo + 77!')‘

It follows from Theorem 4.1 that for K, to be slice we must have ¢,(M,, p) +
7, = 0, or, equivalently,

sign C, = 1 — 2r(m — r) ({/m)?,

for every prime power divisor m of /, and every r, 0 < r < m. (We may remark
that the present examples are somewhat deceptive in that the multiplicativity noted
above does not hold in general. Nevertheless, a good deal of information can be
extracted from a single branched cover; see [2, Theorems 2 and 3].)

Since C,,_, = C,, and m is odd, there is no loss of generality in restricting to
0 < r £ (m — 1)/2. Theorem 5.1 will follow easily from

LEMMA 5.2. Suppose misoddand 0 < r < (m — 1)/2. Then
sign C, = — 2[2krim] — 1.

Proor. Let D, be the » x n principal minor of C,, n = 1, ---, 2k — 1. Then,
writing @« = 1 — o~ as before, and expanding D, by (say) the first row, we obtain
the difference equation

D,= —(a + a)D,—; — aaD,_,, n=2 -,2k —1.

Since the roots of the corresponding characteristic equation x2 + (¢ + @)x + ad =
0 are — @, — @, the general solution of this difference equation is
(— D*(Aa» + Ba~), where A and B are arbitrary constants. Qur initial values
Dy=1, Dj= —(a + @) give 4 = af(la — &), B = — @&/(a — a); hence

= | — nM)

Write a = pe, p > 0. Then D, = (— p)*sin(n + 1)d/sin §. Also, since tan § =
(— sin 2zr/m){(1 — cos 2zr/m) = — cot zr/m, and since — z/2 < @ < 0, we have
6 = zr/m — z/2. In particular, we see that D,,_; = det C, # 0, a fact which we
used earlier. We also see that there are no two consecutive zeros among the D,,
so sign C, = (number of permanences of sign) — (number of changes of sign) in
the sequence Dy, .-+, Dy, (where ('s may be assigned either sign). Thus
sign C, = 2¢ — (2k — 1), where ¢ = number of changes of sign of sin nf =
sin {zrfm — zf2), n = 1, -, 2k, Write r = (m — 5)/2,1 £ s £ m — 2,5 odd.
Then sin n(zrfm — x{2) = — sin zns{2m. Hence ¢ = number of changes of sign
of sin zns/2m, n = 1, -+, 2k, = [2ks/2m] = [k — 2kr/m] = k — 1 — [2kr/m].
Therefore,

signC,=2(k—l~[2’ﬁr])—(2k— ) = -2[%-]-1
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as stated.
Returning to the proof of Theorem 5.1, recall that K, slice implies

2r(m — rY(Iim)2 — 1 + sign C, = 0

for every prime power divisor mof [ = 4k + 1,and everyr,0 < r < m. By Lemma
5.2, this is equivalent to the condition that forevery r,0 < r £ (m — 1)/2,

r(m — r)(Ijmy — [2”;’] —1=0.

Replacing [2kr/m] by (12 — Dr/2m = 2kr/m > [2kr/m], it follows that we must
have

1 <O.

rom — r)tmy - LD _

Multiplying by 2/r, we obtain (m — 2r) (Ilm)2 + 1/m — 2/r < 0, and hence, since
m|l, m + 1/m < 2(r + 1/r). But putting r = (m — 1)/2, the value which maxi-
mizes r + 1/r, gives m?2 — 4m — 1 < 0, which is clearly violated by (odd) m > 3.
Moreover, if / > 3, then / has a prime power divisor m > 3. Hence K, can be slice
only if / = 1, 3, that is, £k = 0, 2. Indeed we have shown that this fact is detected
by the invariants ¢,(M,, ¢,) forany 7,0 < r < m.
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