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Introduction 

Suppose that  C is a category of topological spaces with base point and 
continuous maps preserving base points, S is the category of sets with a 
distinguished element and set maps preserving distinguished elements, 
and H :  C -+ S is a contravariant functor. The main result of this paper 
is that, if H satisfies certain axioms, there is a space Y, unique up to 
homotopy type, such that  H i s  naturally equivalent to the functor which 
assigns to each X E C the set  of homotopy classes of maps of X into Y. 
This result is stated in 5 1and proved in $ 5  1, 2, and 3. 

The main application of this result is a representation theorem for co- 
homology theories which satisfy all the Eilenberg-Steenrod axioms except 
the dimension axiom. Suppose that  for each integer q,  Hgis a contrava- 
riant functor from the category of pairs of finite cw-complexes to the 
category of abelian groups and aq: Hg(A) -Hq"(X, A) are a collection of 
natural transformations. Furthermore, suppose Hqand aq satisfy all the 
Eilenberg-Steenrod axioms except the dimension axiom which is replaced 
by the condition that  Hqon a point be countable. In 3 4 we show that  there 
is an a-spectrum Y [4], i.e., a sequence of spaces Y, and homotopy equiv- 
alences h,: Y, -+aY,+,, such that  H4(X) is naturally equivalent to the 
group of homotopy classes of maps of X into Y,. The hypothesis that  Hg 
of a point is countable is admittedly unfortunate, but the author seems 
unable to remove i t  without making some more drastic assumptions about 
H (see 3 4, Theorem 11.) 

In 5 5 we apply our main result to prove the existence of a universal 
bundle for a topological group, and also to characterize singular cohomol- 
ogy theory on the category of all cw-complexes. 

Finally, in an appendix, we briefly indicate how this theory may be 
dualized so as to give similar representation theories for covariant 
functors. 

The author acknowledges with pleasure his indebtedness to Arnold 
Shapiro for many helpful suggestions in the development of this theory. 

Part of this research was supported b y  a National Science Foundation Research Grant No. 
G-8207. 
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1. Statement of the main theorem 

A category C will be called a category of spaces if its objects are path- 
wise connected topological spaces with base point which admit the struc- 
ture of a CW-complex, and its maps are all continuous maps of X into Y 
carrying the base point of Xinto the base point of Y for each pair X, Y E  C. 
Furthermore it will be assumed that ,  if X E C and X '  is a subcomplex of 
X with respect to some CW-complex structure on X, then X '  E C. Cl and 
C, will denote the category of spaces which have as objects all spaces ad- 
mitting a Cw-complex structure and all spaces admitting the structure of 
a finite cw-complex, respectively. S will denote the category of sets with 
a distinguished element and set maps preserving distinguished elements. 

(XIUX,, XI, X,) will be called a proper t r i ad  of Cif XI, X,, Xl U X, and 
Xl n X, are in C, all have the same base point, and (XI, Xl n X,) and 
(X,, Xl n X,) each have the homotopy extension property. 

If X and Y E  C, [X, Y] will denote the set of homotopy classes of maps 
of X into Y with respect to homotopies which leave the base point of X 
fixed. [ , Y] will denote the functor from C to S which assigns to each 
X E  C the set [X, Y] with the class of the constant map as distinguished 
element, and assigns to each map f : X-X' the map f *: [X', Y]+[X, Y] 
defined as follows: 

f *[sl = [ s f  I 
where [g] denotes the homotopy class of g. The notation [ , Y] is slightly 
ambiguous in that  it does not indicate the domain category C, but this 
category will be clear from the context. 

Let H: C-+S be a contravariant functor. Below we give a set of axioms 
of which one combination will be used in dealing with H when C= C,, and 
another combination will be used when C = Cl. 

Axiom h. If f ,  g: X - Yare  homotopic, H(f )  = H(g). 
Axiom e. (el)  If p is a point, H(p) contains only one element. 

(e2) Suppose (X, XI, X,) is a proper triad, A = Xl n X, and 
ji: A -+ Xi and k,: Xi + X are the inclusion maps. If u, E H(X,) and 
u, E H(X,) such that  H (  j ,)ul= H(j,)u,, then there is a v E H(X) such that  
H(kl)v = ul and H(k,)v = u,. Furthermore, if A is a point, v is unique. 

Axiom c. If Snis the n-sphere, H(Sn) is countable for all n > 0. 
Axiom w. Suppose S; is a collection of n-spheres whose wedge product 

VS; is in C. Let i,: S; -+ VS: be the inclusion map. 

HH(i,):H(VS;) ~ H ( S G )-+ 

is an isomorphism. 
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Axiom 1. Suppose X,X,. . .Xn. . .are a collection of subcomplexes of X= 
U X nE C with respect to some CW-complex structure on X such that  
X ;  = X n .  Let i,: X,  -+ X be the inclusion map. Let inv lim H(Xn)be 
the inverse limit of H(Xn)with respect to the maps induced by the in- 
clusions of X, into X,. 

inv lim H(i,): H ( X )  -+ inv lim H(X,) 

is an epimorphism. 
Note that  if C = Co, axiom 1 automatically holds. Also axiom e implies 

that  H(X V Y ) - H ( X ) x  H ( Y ) ,  i.e., whenA in axiom e is a point. Thus, 

1.1. LEMMA.I f  C= Coand H satisfies axiom c, H satisfies axioms w 
and 1. 

One may easily check that  [ , Y ]satisfies all of these axioms except c. 

THEOREMI. I f  H. C+ S is  a contravariant functor, C = C,, and H 
satisfies axioms h, e and c; or C= C,, and H satisfies h, e, w and 1, then 
there is  a space Y E  C,, unique up  to homotopy type, such that [ , Y ]  on C 
and Hare  naturally equivalent. 

In the remainder of this section we outline the proof of Theorem I by 
reducing it to a sequence of propositions which are then proved in §§  2 
and 3. 

Suppose H: C-+S is a contravariant functor satisfying axiom h. Given 
Y EC and u E H ( Y ) ,we construct a natural transformation T(u):[ , Y]-+ 
H as follows: If [ g ]E [ X ,  Y ] ,  let T(u)[g]= H(g)u. Since H satisfies h, 
T(u)[ g ]  is independent of the choice of g. If f :  X' + X ,  

H ( f )  T (u )  [ g l  = H ( f  )H(g)u 
= H ( f  g)u 
= T ( u ) f* [sl . 

Hence T(u)is natural. When C = C,, we use this construction to give an 
equivalence between [ , Y ]  and H for an appropriately chosen Y; but 
when C = Co, this construction will not suffice because in general the ap- 
propriate Y will not lie in Co. To circumvent this difficulty we extend H 
to a larger category. The following is an auxiliary axiom which describes 
the properties this extension must have in order that  Y be constructed. 

Let X be an infinite cardinal number greater than or equal to the cardi- 
nality of H(Sn)for all n>O. If f :  A + X ,  let 2, denote the identification 
space formed by attaching the cone over A to X by the map f (see § 2.) 

Axiom e'. C contains all spaces which admit a CW-complex structure 
with X or less cells. If A = V S n ,  X and Z,,, where f :  A -+ X ,  are in C; 
then the following sequence is exact: 
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where i is the inclusion map. 
If C = Cl,A E C. In $ 2 we show that  the exactness of the above se- 

quence follows from axiom e. Thus, 
1.2 LEMMA.I f  H: Cl -+ S satisfies e, i t  satisfies e'. 
Let C, be the category of spaces which admit a countable cw-complex 

structure. In $ 3 we prove: 

1.3 LEMMA.I f  H: Co-+ S satisfies h, e and c, then H can be extended 
to a functor H: C, -S satisfyi~zgh, w, 1 and e'. 

I t  is exactly in the proof of 1.3 that  we need axiom c. Possibly this 
lemma can be generalized t o  larger cardinals by some transfinite argu- 
ment, but the author has not succeeded in doing this. 

Combining 1.1,1.2 and 1.3 we see that  if H satisfies the hypothesis of 
Theorem I it can be extended so as to satisfy the hypothesis of the fol- 
lowing lemma. 

1.4 LEMMA.Let C and C' be categories of spaces such that C i s  a sub- 
category of C' and let H: C' -+ S be a contravariant functor such that: 

( i ) H satisfies h, e', w and 1. 
(ii) HICsatisJies h, e, w and 1. 

Then there i s  a YEC'such that [ , Y] and H 1 C are equivalent. 
We now reduce 1.4 to some further lemmas. 

1.5 LEMMA.I f  HI and H,: 1'4S both satisfy h, e and w, and T :  HI- 
Hz i s  a natural transformation such that T :  Hl(Sn)  w H,(Sn) for all 
n > 0, then T:H l ( X )w H z ( X )  for all X E C such that dim X < m. 

Lemma 1.5 is proved in $ 2 .  
To eliminate the finite dimensional restriction when C =el,we show in 

g 2: 
1.6 LEMMA.SupposeH.r1+S satisJies h, e, w and 1, and T: [ , Y ] - H  

i s  a natural transformation such that T : [ X ,  Y ]w H ( X )  for all X E  C 
such that dim X < a. Then T: [ X ,  Y] w H ( X )  for all X E Cl. 

The proof of 1.5 is motivated by the usual five lemma argument, name- 
ly: Suppose X E C and dim X = n f 1. Then X = Z, where f: VS2-X'  
and dim X' 5 n. Axiom e gives an exact sequence: 

where S is the suspension. Thus if H took its values in the category of 
abelian groups, induction and the five lemma would give the desired result. 
This is essentially the proof we use except that  a more delicate five lem- 
ma, which is applicable when some of the objects are not groups, must 
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be used. One might suppose that  the proof of Theorem I could be simplified 
by assuming H took its values in the category of abelian groups. Surpris- 
ingly, this hypothesis can not be used because one is unable to prove that  
the space Y, constructed from H,  is an H-space until one knows that  
[ , Y] and H are equivalent. Hence, one cannot prove that  [ , Y] is a 
group before applying 1.5. A simplifying assumption which does work is 
to suppose that  H(X) =H1(SX) for some functor H' satisfying the axioms. 

Suppose H: C+S satisfies the hypotheses of 1.4. We next show how to con- 
struct a space Yand a u  E H(Y) such that  T(u): [Sn,  Y] w H(Sn)for alln >0. 
We construct spaces Y, E C'and un E H(Y,) by induction on n such that: 

( i )  Yap,c Yn. 
( i i )  H(i,)un = u,-, where in :  Yn-, -+ Y, is the inclusion map. 
(iii) T(u,): [S", Yn] -+ H(Sm) is onto for all m>O and 1-1 for m 5 n.  
(iv) The cardinality of the number of cells in Y, 5 X(see e' for a de-

finition of X.) 
Choose generators g; for H(Sn).  Let S; be a copy of Snfor each g;, 

Yo= VS; over all a and n > 0, and let h;: Sn-- Yo be a homeomorphism 
of Snonto S; followed by the inclusion map. By axiom w, H(Y , ) w ~H(S;). 
Hence there is an element uo E H(Yo) such that  H(h:)uo = g;. Therefore 
T(uo) [h;] = G. 

Suppose Yn-, and u,-, have been defined and satisfy (i)-(iv). Let [f,] 
generate the kernel of T(u,-,): [Sn, Y,-,1 --+ H(Sn). Let S; be a copy of 
Snfor each /3, A = VS; and f = Vf,. One can easily convince oneself 
that  cardinality of { f,)< X so that  by e', A and 2,E C'. Again by axiom w, 
H(A) w rlH(S;). Let k,: S F  A be the inclusion map. 

Therefore H(f)u,-, = 0. Let Yn = 2,.Axiom e' yields u, E H(Yn) such 
that  H(i,)un = u,-,. Consider the commutative diagram: 

1 L 
I 7 
I in* H(S") 

1 / k u n )  


[Sm,  Ynl 

T(un-,) is onto for all m,  hence T(u,) is. Y, was formed from Yn-, by 
adding n + 1cells. Therefore in,is onto for m < n. T(u,-,) is 1- 1for 
m < n ,  hence T(u,) is. For m = n ,  the kernel of T(un-,) is contained 
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in the kernel of in,and hence T(un) is 1-1. 
Let Y = U Yn. By axiom 1 there is a u E H(Y) which restricts to u, 

for each n. Hence T(u): [Sn,  Y] w H(Sn)  for all n > 0. We have there- 
fore shown, modulo the proofs of 1.3, 1.5, and 1.6, that  if H satisfies the 
hypotheses of Theorem I, there is a Y E  C, such that  [ , Y] and H are 
equivalent. I t  thus remains to show that  the homotopy type of Y is u- 
nique. When C = Cl this follows from the obvious fact that ,  if T: [X, Y]- 
[X, Y'] is a natural transformation defined for all X E C,, then there is a 
map f: Y - Y', unique up to  homotopy, such that  T = f ,. Namely, 
f E T(id) where id: Y- Y is the identity map. 

In 9 3 we prove: 

1.7 LEMMA.If Y and  Y' E C,, and  T: [X, Y] -+ [X, Y'] i s  a na tu ra l  
t r ans  formation defined for a l l  X E C,, then there i s  a map f: Y-+ Y' such 
that T =  f,. 

In general f will not be unique up to homotopy type. Nevertheless if 
T = f, is an equivalence, f,: [Sn,  Y] w [Sn,  Y'] for all n > 0. Therefore 
by J.H.C.Whitehead's theorem, f is a homotopy equivalence. 

2. Proof of Lemma 1.5 

We begin by developing the machinery to  be used in place of exact 
sequences and the five lemma. Let A, Xo, XI, and fi: A-Xi be in C. Z,,,,, 
will denote the identification space formed from XoU Xl U (A x I )  by the 
following identifications. * denotes the base point. 

(We will always assume A, X,, X1have been made disjoint.) 
Let ci: * -Xi and c: A -*. The following are notational conventions: 

xo v Xl = Z C 0 . C l  , 
Zf = Zc.1, 
SA = z c , c  , 
Sn= SSn-I, So= two points. 

We assume throughout this section that  H i s  a contravariant functor 
satisfying h and e. Let fi: A -t Xi, i = 0, 1, and let ji:Xi -Z,o,flbe the 
inclusion maps. 

2.1 LEMMA.If ui  E H(XJ a r e  such that H( fo)uo = H(fl)ul, then there 
i s  a v E H(Zfo,ll) such that H(jo)v = u, and  H(jl)v = u,. Furthermore if 
A i s  a point, v i s  unique. 
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PROOF. Let X,, Xl and A be the image in Z f o , f lof Xo U ( A  x [O, 1/21), 
X,  il ( A x [1/2, 11) and A x  112. Then (Z,,,,,, $, $) is a proper triad, A = 
Xon X, and zoand X, are deformation retracts of X,  and XI .  Lemma 2.1 
then follows from e2 applied to (Z,,,,,, X,, TI),and h applied to the various 
maps involved. 

Let ji: Xi -- Xo V X, be the inclusion maps. 

2.2 LEMMA.H( j,) x H(j,):H(X,  v XI )w H(X,)x H(X,) . 
PROOF. By e l ,  H(c,)u, = H(c,)u, for any pair of elements ui E H(Xi) .  

Lemma 2.2 then follows from 2.1 when A is a point. 
Let t :  S X -  S X  V S X  be the map which pinches X x 112 to a point. 

By 2,2, t defines a map t*:  H ( S X )  x H ( S X )-H ( S X ) .  By standard argu- 
ments we have: 

2.3 LEMMA.t* defines a natural group structure on H ( S X )  and 
H ( S ( S X ) )  i s  abelian. 

Let r :  Z ,  -S A  V Z ,  be the map which pinches A x 112 to a point. Ap-
plying 2.2 we obtain a map r*:  H(SA) x H(Z,) -H(Z,). 

Again by standard arguments: 

2.4 LEMMA.r* defines an action of the group H(SA) on the set H(Z,). 

Let i:X -Z ,  be the inclusion map. 

2.5 LEMMA.H(i)  induces an  isomorphism of the orbits of H(Z,) onto 
the kernel of H( f ). 

Note that  if we were dealing with groups instead of sets, 2.5 would 
simply say that  the following sequence is exact. 

PROOF. By e l  and 2.1, image H(i )= kernel H( f ). Let j, and j, be the 
inclusion maps of S A  and Z ,  into SAVZ, .  Then r i= j,i. Let w E H(SA)  
and u E H(Z,). 

Hence H(i)  induces a map from the orbits of H(Z,) onto the kernel of 
H ( f)-

Suppose uoand u, E H ( Z f )and H(i)u,= H(i)u,. Let k,, k,: 2, -+ Zi,i be 
the two inclusion maps. By 2.1, there is an element w1E H(Zi,i)such that  
u ,  = H(ki)wl. Let h: S A  -+ Zi,i be defined as follows: 
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Let w=H(h)wl. One can easily check by drawing a picture that  ( hvk,)r 
and k, are homotopic. 

Hence u,  and ul are in the same orbit and therefore H(i)  is 1- 1 on or- 
bits. 

Lemma 2.5 enables us to prove the  onto part of the  five lemma. Lem-
ma 2.6 below describes a gadget we use to prove the  1- 1part. 

Suppose A = S B  so that  H(SA) is abelian. Let v E H ( X )  be in the  
kernel of H ( f ) .  By 2.5, there is a u E H ( Z f )such that  H(i)u = v. Let 
~ ( v )be the isotropy group of u under the  action of H(SA). Since H(SA) 
is abelian ~ ( v )does not depend on u .  

2.6 LEMMA. There is  a space W f  and maps h: X- W f  and k:  SA-  W f  
which depend only on f such that q (v )  =H(k)H(h)-'v for all v E ker H( f ) .  

The construction of W,, is accompanied by a proof that  

Suppose v E ker H( f ), u E H ( Z f ) ,  w E H(SA),  H(i)u = v and wu = u .  
There is a x, E H(SA V 2,)such that  H( j,)x, = w and H( j,)x, = u ,  where 
j, and j, are the inclusion maps of S A  and Z,  into S ( A ) v Z f ,respectively. 

where j: Z f  -Z f  is the identity map. Therefore there is an  element 
x, E H(Z,,j)such that  H(il)x,= xl and H(i,)x, = u ,  where il and i, are the 
inclusion maps of S A  V Z,  and Z f  into ZTSi.Roughly speaking, each ele- 
ment of H(Z,,,) gives elements u ,  u' E H(Zj ) ,and w E H(SA) such that  
?uu= u'. We now add a homotopy to Z,,j to make u = u'. 

Hence H(i, V ilj,)x, E H(Z, V Z j )  corresponds to the element 
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Let m ,  = i, V i l j ,  and let m, be the folding map of Z I V Z l  onto 2,. Un-
der H(m,), u also corresponds to  ( u ,  u) .  Let W ,  = Z m l . m 2 .  There is an  
element x, s H( W,) such tha t  H(s,)x,= x, and H(s2)x3= u ,  where s, and s, 
are the  inclusion maps of Z,,, and Z f  into W,. 

Let h = s,i and k = sli, j,. Recall i:X -2,. 

therefore w s H(k)H(h)-lv. 

Suppose x s H( W f )  and H(h)x = v. Let u = H (s,)x. 

Note s2m2= s,m,. Therefore, 

But m ,  = i,Vi,j,.  Therefore, since rn, is the  folding map, H(i,)H(s,)x=u 
and H(j,)H(i,)H(s,)x= u.  

Therefore H(k)xe rp(v)and the proof of 2.6 is complete. 
PROOFOF LEMMA 1.5. Let H, and Hz:C -S be functors satisfying h ,  e 

and w, and let T: H, -Hz be a natural transformation such tha t  
T:H1(Ss).y H2(Sn)for all n > 0. 

If X e C and dim X < co, to  within homotopy type, X may be given a 
CW-complex structure in the following fashion: Let X, s C be a sequence 
of spaces, n = 1, 2, . . . , dim X ,  and f,: { V S : / a s A,) -X, such tha t  
X,,,= Z f ,  and X, = V S t .  Then we may assume X = UX,. 

We first show that  T: H l ( X )-H,(X) is onto for all X e C such that  
dim X < co. Let X have the structure described above. Let A, = V S ; .  
We show by induction on n that  T: Hl(X,)-H,(X,) is onto. Note first t h a t  



476 EDGAR H .  BROWN, JR. 

Hi(A,) = H,(V S:) M JJ H,(S:) by axiom w. Hence T:Hl(Xl)M H,(X,). 
The inductive step then follows from 2.5 by moving elements around a 
diagram as in the five lemma. 

We next show that  T is an isomorphism. Again we apply induction to 
T:H ) -H X .  We have already noted that  this is an isomorphism 
for n = 1. Suppose it is an isomorphism for n - 1. For vi E H,(X,-,), let 
pi(vi) c H,(SA,-,), i = 1, 2, be the isotropy groups described in 2.6. The 
fact that  T is onto and 2.6 then yield: Tq,(v)=q,(Tv)for each v E kernel 
H,(f,-,). The inductive step then follows by moving elements around a 
diagram. 

PROOFOF LEMMA1.6. Suppose H. Cl-S satisfies h,  e,  w and 1, and 
T: [ , Y ]-H is a natural transformation such that  T: [ X ,  Y ]  -H ( X )  
for all X E Cl such that  dim X <  co. We wish to show that  T: [ X ,  Y ] w H ( X )  
for all X c  C,. 

Suppose X c  C,, X n  is the n-skeleton of X with respect to some cw-com- 
plex decomposition, and i,: X" -X is the inclusion map. 

2.7 LEMMA.If  u E H ( X ) ,  there i s  an [ f ] E [ X ,  Y ]such that T [  fi,] = 
H(i,)u. 

PROOF. For each n there is a unique element [ f,] E [ X " ,  Y ]  such that  
T[ f , ]  = H(in)u. Clearly fn lX"-' and fa-, are homotopic, and hence there 
is an f :  X-+  Y such that  f I X" and f ,  are homotopic. 

2.8 LEMMA.I f  [ f ]  and [ g ]E [ X ,  Y ]  and T [ f ] =  T [ g ] ,  there is  a homo- 
topy equivalence k:  Y - Y such that f and kg are homotopic. 

PROOF.Let u = T(r)E H ( Y )where I c [ Y ,  Y ]  is the class of the iden- 
tity map. H( f )u = T [  f ] = T [ g ]= H(g)u. Therefore there is a w c H(Z, ,) 
such that  u = H(j,)w = H(j,)w where j,: Y-Z,,, are the two inclusions. 
Let t : Z,,, - Y be the map corresponding to w as described in 2.7. Let 
in:Y "  - Y be the inclusion map ( Yn=n-skeleton). T[tj,i,]= H(j,i,)w = 
H(i,)H(j,)w = H(in)u= T[ in] . But on [ Y " ,  Y ] ,  T is an isomorphism. 
Therefore tj,i, and i, are homotopic. This implies that  (tj,),: [S" ,  Y ]  M 

[ S n ,  Y ]  for all n and hence that  t j ,  is a homotopy equivalence. Similarly, 
t j ,  is a homotopy equivalence. Let h be a homotopy inverse of t j ,  and 
let k = htj,. Let q: X x  I -  t )  {z,  t )  and let h = hq.Z,,, be given by ~ ( z ,= 
Then h provides a homotopy between f and kg. 

We now show that  T is 1-1 .  Suppose T [ f ]= T[g] . Then T [ f ~ f ] =  
T [ f  V g ]  c H(X V X ) .  Therefore there is a map k:  Y -+ Y such that  
[ f  V gl = [ ( f  v f ) k ]  = [ f k  V f k ]  and hence [g l  = [ f k l  = [ f l .  

Finally we show that  T is onto. In 3 (Lemma 3.1) we show that  there 
is a u E H ( Y ) such that  T = T(u) .  Let v E H ( X ) .  Let w E H(X V Y )  be 
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the element corresponding to (v, u ) and let j :  Y --+ XV Y be the  inclusion 
map. Consider the  commutative diagram: 

Since T ( u )is an isomorphism, T(w)is onto. Jus t  as in the construction 
of Y a t  the end of 3 1, we may adjoin cells to X V Y to obtain a space 
and an element x E H ( Z )such that  T(x):[Sn,Z ] M H ( S n ) ,and such tha t  z 
restricted to X V Y is w. ( X  V Y and w play the role of Y oand u,.) If 
k :X V Y+Z is the  inclusion map, T(x)( kj),= T (u)and hence (kj),: 
[ S n ,  Y ]  M [SatZ ] .  Therefore k j  has a homotopy inverse h: 2-4 Y .  If 
i:X - t  Z is the inclusion map, 

T [hi] = T (u )  [hi] 
= H(i)  H(h)u 
= H(i)H(lcj)-lu 
= H(i)w 
= v .  

This completes the proof of 1.6. 

3. Natural transformations 

Let H: C -S be a contravariant functor satisfying axiom h. In this 
section we investigate natural transformations T: [ , Y ]+H. Suppose 
YEC. Let I E [ Y ,  Y ]  be the  homotopy class of the identity map and let 
u ( T ) =  T(c) E H ( Y ) .  Given an element u E H ( Y ) ,we may define a natural 
transformation T(u):[ , Y]-H as follows: If [ f ]e [ X ,  Y ] ,  let T ( u ) [ f ] =  
H ( f ) u .  It is easily checked that  T(u )is in fact a natural transformation 
and that: 

3.1 LEMMA.u -+ T ( u )  is  a 1-1function from H( Y )  onto the natural 
transformations of [ , Y ]  into H. Furthermore, T--. u ( T )  is  i ts  in-
verse. 

Suppose C=Co. We wish to extend H to C,. For each X e C,, let R(X)= 
set of natural transformations of [ ,XI into H with the  trivial transfor- 
mation as distinguished element. I f f :  X -+X' ,  let R(f )  T =Tf, ,  T e H(X')  
and f,: [ , XI [ , X'] the  map induced by f .  Note that  if f and f'--+ are 
homotopic H(f )  = H(f '). Hence by 3.1: 
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3.2 LEMMA.H i s  a eontravariant functor from Cl to S satisfying 
axiom h which agrees with H on C,. 

We next wish to give another characterization of H. Let X E C, and 
let {X,) be its finite subcomplexes with respect to some cw-complex de-
composition. If X , c  X,, let i,,, be the inclusion map. Let i,: X, -X be 
the inclusion map. Then {H(X,), H(i,,)) forms an inverse system and 
~ ( i , ) :H(X) -H(X,) = H(X,) defines a map 

X: H(X) - inv lirn H(X,) 

3.3 LEMMA.X i s  a n  isomorphism. 
PROOF. Suppose TI and TzE ~ ( x )and XT, = XT,. Let Y E C, and 

[f ]  E [ Y, XI. There is an X, and f,: Y -X, such that  i,f, =f. There-
fore T,[f] = H(i,)Tl[f,] = H(i,)T,[f,]=T,[f]. Therefore T I =  T,. Sup-
pose u € inv lim H(X,). Let T, € H(X) be defined as follows: Let Y, f ,  f, 
and i, be as above. Let Tu[f ]  = H(f,)u,, where u, is the projection of 
u into H(X,). I t  is easily checked that  T, E H(X) and H(i,)T, = u. 

PROOFOF LEMMA 1.7. Let [ , Y],, Y E  el, denote the restriction of 
[ , Y] to C, and let [ , Y]: Cl -S denote the extension of [ , Y], de-
scribed in 3.2, i.e., [Y', Y] = natural transformations of [ , Y'], into 
[ , Y],. Let p: [Y', Y] -- [Y', Y] be given by p [f ] = f ,. We must show 
that  p is onto if Y, Y' E C,. By 3.3, 

X: [Y', Y] FW inv lirn [Yb, Y] 

where Y&are the finite subcomplexes of Y' with respect to some cw-
complex decomposition. Also Xp[f] = [fi,] where i,: Y2- Y' is the in-
clusion map. But when Y' E C,, the homotopy extension theorem and the 
fact that  there are finite subcomplexes Y:, Yi, ..-such that  Y = UY,,im-
ply that  X p  is onto. Therefore p is onto. 

PROOFOF LEMMA 1.3. Suppose H. Co-f S satisfies axioms h,  e and c. 
Let H: C- S be the extension of H described in 3.2 restricted to C,. we 
wish to show that H satisfies h, w, 1and e'. Axiom h follows from 3.2, 
w and 1follow from 3.3. 

Let ST,i = 1, 2, . be a finite or countable collection of n-spheres, A =  
V S:, X E C and f:A -X. We must show that  

is exact, where i:X - Zfis the inclusion map. 
We first prove this when A =  S". Suppose Xhas been given a countable 

cw-complex structure. There is a finite subcomplex X , c X  and a map 
f,: Sn-t X,,such that  f is f, followed by the inclusion map. Since X is 
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a countable cw-complex, there is a sequence of finite subcomplexes 
Xoc X, c X, c ...such that  X = UX,. Let fi = f o  followed by the  
inclusion of Xo into Xi, Zi = Zfi and ji: Xi -Zi and ki: Zi -- Zi+,be 
the inclusion maps. H(f )H(j)  = H(j f )  is trivial because jf is homo-
topic to the constant map, and H of a point contains only one element. 
Therefore image H ( j )  c kernel H(f ). Suppose v E kernel H(f ) .  Let vi 
be the projection of v into H(Xi). By 3.3, i t  is sufficient to find ui  E H(Z,) 
such that  H(ji)u, = vi and H(ki)ui+,= ui. Since H(f)v  = 0, H(fi)v, = 0. 
Therefore, by 2.5, there are elements ui E H(Zi) such tha t  H(ji)ui  = vi. 
Let mi: Xi--Xi .,be the inclusion map. Then kiji=ji+,miand H(mi)vi+,=vi 
since the vi's come from a v E H(X). Therefore H(ji)H(ki)Gitl= H(ji)ui. 
Hence, by 3.5, there is a wi E H(Sn+') such tha t  w,ui = H(k,)u,+,. Let 
y, = (wow1--wi..,)-' and ui  = yiiii. 

Wenextconsider thecasewhenA=VS;.  L e t A , = S ; V S f V - - - V S 1  
and f,= f 1 Ai. Again, since jf is homotopically trivial, image H( j )  c 
kernel H(f) .  Suppose v E kernel H(f ) .  By induction, and as a result of 
what we have proved above, we can find ui E H(Zfi)such that  ui restrict-
ed to X i s  v; and restricted to ZftP1,is u,-,. Lemma 3.3 will then yield 
an element u E H(Zf) which restricts to v. 

4. Cohomology theories 

Let 4be a category of pairs of topological spaces which admit the 
structure of a cw-complex and subcomplex and all continuous maps from 
pairs to pairs. The pair (X, a),where 0 is the null set, is denoted by X. 
Let 9be the category of abelian groups and homomorphisms. 

A cohomology theory on d with values i n  9is defined to be a collection 
of contravariant functors H4:cR+9 ,  - co < q < C O ,  and a collection of 
natural homomorphisms aq: Hq(A)+Hq+'(X,A) defined for each pair 
(X, A) E J1which satisfy the following axioms: 

(4.1) If f ,  g: (X, A) - (Y, B) are homotopic, Hq( f )  = Hq(g)for all q .  
(4.2) Let i: (X, 0 )  - (X, A) and j: A -+X b e  the inclusion maps. Then 

the following sequence is exact. 
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Hq(i) Hq(j). . . -HQ-'(A) HQ(X, A) --+ Hq(X) -HQ(A) . . . -
(4.3) If (XI, Xl n X,) and (X,, XI n X,) e A the  map H4(XluX2,  X,)+ 

Hq(Xl, Xl n X,) induced by the inclusion map is an isomorphism for all q. 
For each pair (X, A) E A ,  let Z(X, A) be the  space with base point p 

formed from XU ( A x  I )  U {p), where p is not in X, by identifying a and 
(a, 1)for eacha e A a n d A x  (0) withp. Note that  Z(X)=Z(X,@)=XU{p) .  
Let SZ(A) be the suspension of Z(A) and let S: Z(X, A) -SZ(A) be the 
map which identifies X to p. Let Y = {Y,, h,) be an f2-spectrum; that  is, 
a sequence of spaces Y, with base point and homotopy equivalences h,: 
Y, - f2 Y,+, where f2 Y, is the space of loops based a t  the base point and h, 
takes the base point into the constant loop. Then [Z(X, A), Y,], with the  
group structure induced by h,: Y, -+ fl  Y,,,, is a functor from A to 9.Let 
7 : [Z(A), flYq+,]-- [SZ(A), Y,+,] be the usual isomorphism, and let aq: 
[Z(A), Yq]--[Z(X, A), Yq+,] be the homomorphism defined by 64= S*qh,,[ f 1. 
Standard arguments then yield: 

4.4 LEMMA. {[Z( ), Y,], Jq} i s  a cohomology theory. 
We next formulate axioms w and 1 in terms of cohomology theories. 

Let J0and dldenote the categories of pairs of topological spaces which 
admit, respectively, the structure of a finite cw-complex and subcomplex 
and the structure of a cw-complex and subcomplex. 

(4.5) A = doand, if p is a point, H4(p) is countable for all q. 
(4.6) J = dl.If U is a topological space with the discrete topology, 

ITHq(i,): Hq(  U) - TIH4(x) , 
where i,: {x)- U is the inclusion map. If Xl c X, c . . . is a sequence 
of subcomplexes of X = UX, with respect to some CW-complex structure 
on X, then the inclusion maps in:Xn-X induce an epimorphism: 

HQ(X)- inv lim H4(X,) . 
THEOREM11. If {Hg, Sq) i s  a cohomology theory satisfying (4.5) or  (4.6), 

there i s  a n  a-spectrum Y = {Y,, h,) such that Y, E C and  na tu ra l  equiv- 
alences T4: [Z( ), Y,] -Hgsuch that S4Tq = ~ ~ ~ ~ 8 ~ 

We next describe the  extent to which the spectrum Y in Theorem 11 is 
unique. If Y and Y' are spectra, a map F: Y - Y is a sequence of maps 
f,: Y, - Y; such that  hi f, and f2fqtlh, are homotopic. F is a homotopy 
equivalence if there is a map G: Y'-- Y such that  g, f, and f,g, are homo- 
topic to the identity maps for each q. 

THEOREM If {H4, a4) satisfies (4.6) the spectrum given by Theorem 11III. 

i s  unique u p  to homotopy type. If {Ha, 8 )  satisfies (4.5) and  Y and  Y' 
are  two spectra giving cohomology theories equivalent to {H4, aq}, then 

mailto:Z(X)=Z(X,@)=XU{p)
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there i s  a collection of homotopy equivalences f,: Y, --+ Y; such that hl f, 
and slf,+,h, a re  homotopic on each finite subcomplex of Y,. 

The complicated form of Theorem 111for the condition (4.5) arises be- 
cause of the following fact. Suppose X is a cw-complex, and X, are its 
finite subcomplexes. In general the map of [X, Y] - inv lim [X,, Y] is 
not 1- 1. Thus we can have two maps f and f': Y- Y which induce 
the identity transformation on [ , Y] restricted to C, but are not homo- 
topic. 

The proof of the first part of Theorem 111 is obvious, and the second 
part follows from 1.7. 

PROOFOF THEOREM 11. We only give the proof for the case in which 
{Ha,8,) satisfies (4.5). The proof when i t  satisfies (4.6) is analogous. 

Let Jq:Co-' S be the contravariant functor defined as follows: If X E C, 
and x, E X i s  its base point, J 4 ( X )  is the underlying set of Hq(X, x,) with 
the identity element of this group as distinguished element. If f: X- Y 
is a map in C,, J 4 (  f )  = H4(f ') where f ': (X, x,) -( Y, yo) is the map in J 
defined by f. We first show that  J4satisfies axioms h ,  e and c. 

Axiom h follows immediately from (4.1). If p is a point, Jq(p)  = 
Hq(p, p) = 0 by the exact sequence for the pair (p, p). Let x, E X be the 
base point of X, k: {x,}-X the inclusion map, and C: X-x, the constant 
map. Then Hq(k)Hq(C)= Hq(Ck) is the identity map on Hq(xo) and hence: 

(4.7) H(k): H q ( X )  -Hq(xO)is onto. 

By the exact sequence of the pair (X, x,), 

(4.8) J q ( X )= HYX, x,) is isomorphic to the kernel of H(k). 
Let (X, XI, X,) be a proper triad, A = XI n X,, and let ji:Xi -X and 

and ki: A -Xi, i = 1 , 2 ,  be the inclusion maps. Consider the Mayer-Vie- 
toris sequence [I], 

where a = Hq(jl)+ H4(j2) and b = Hq(kl)- Hq(k2). In  [I] i t  is shown that  
this sequence is exact without using the dimension axiom, hence i t  is exact 
in the present context. Using this sequence, (4.7) and (4.8) one can easily 
check that  Jqsatisfies axiom e. 

4.9 LEMMA. There i s  a na tu ra l  isomorphism E: H4(X, x,) + 

Hqt'(SX, x,). 
PROOF. Recall that  the exact sequence of a triple follows from the 

exact sequence of a pair. Let Xi and X- be the upper and lower cones 
of SX. H4(X, x,) w Hq+l(X+,  X )  by the exact sequence of the triple 
( X + ,  X,  x,) and the fact that  X+is contractible. By excision Hq+'(X', X ) w  
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HqT1(SX, X-) and, by the exact sequence of the triple (SX, X-,  x), 
H4-'(SX, X-)wHq+l(SX, x,). Clearly all these isomorphisms are natural. 

Let p be the base point of Sn. By excision, Hq(p) w H4(S0, p) and by 
4.9, Hq(S", p) -Hq-n(SO,p). Hence by (4.5), Jq (Sn)  = Hq-"(p) is count- 
able, and thus Jqsatisfies axiom c. 

Applying Theorem I to J q ,  we obtain a cw-complex 7,and a natural 
equivalence T: [ , yq]-Jq.Furthermore, 7,can be chosen to  be a count- 
able CW-complex. Lemma 4.9 yields a natural equivalence v: [X, y*] -
[SX, FqTI]=[X, SL~,_,] which, by 1.7, is induced by a map h,: Yq-SLyq-,. 
Milnor has shown in [2] that  the loops on a cw-complex have the same 
homotopy type as a CW-complex. Therefore by J.H.C. Whitehead's theo- 
rem, h, defines a homotopy equivalence between F, and the path com- 
ponent of the constant map of SLy4-,.Choose a loop a from each path 
component of SL yq+,and let Yq = Fqx {a). Let h,: Yq -- SLYqTl= SL yq+, 
be given by h,(y, a )  = zq(y).a where y c 7, and ". l l  denotes path multi- 
plication. Then hq is a homotopy equivalence and hence {Y,, h,) is an SL- 
spectrum. Also Yq admits a cw-complex structure. The reason for passing 
from F4to Yq, besides the fact that  this is necessary to obtain an SL-spec- 
trum, is that  the spaces in J are not required to be pathwise connected. 

By the usual arguments, the map H4(SX, x,) x Hq(SX, x,) -- Hq(SX, x,) 
induced by the folding map is given by (u, v) -u + v. Hence the group 
structure on Hq(SX, x,) is determined by the folding map. Therefore the 
following are all group isomorphisms: 

H4(X, x,) w Hq-'(SX, x,) 

- [SX, y,+11 

t x ,  fiY,+lI 

[X, YQ1 .-
Furthermore, these isomorphisms are all natural. 

Let Â  = Z(A, A). By excision, H4(X,  A) w Hq(Z(X,A), Â ) and by the 
exact sequence of the triple (Z(X, A), A^, p), Hq(Z(X, A), A)- H4(Z(X, A),p). 
Combining these isomorphisms with the isomorphisms described in 
the previous paragraph, we obtain a natural equivalence Tq: [Z(X,A), Yq]w 
Hq(X, A). Finally, the fact that  SqT4 = T~--'%can be verified by moving 

around a few diagrams. 


5. Furthermore applications of Theorem I 

1. Classification of principal bundles. Let G be a topological group. 

We define a principal G-bundle with base points to be a principal bundle 

{B, X, p, G) as defined by Steenrod in [3], together with base points b, E B 




483 COHOMOLOGY THEORIES 

and x, c X such that  p(b,) =x,. Two such bundles will be called equivalent 
if there is a bundle equivalence mapping one into the other, and which 
carries the base point into the base point. For each X c  C,,let B(X; G) c S 
be the set of equivalence classes of principal G bundles with base points, 
with the class of the trivial bundle as distinguished element. If f: X'-X, 
let B( f ) :  B(X; G) -B(Xr; G) be the map which is induced by assigning 
to each bundle over X' the bundle over X induced by f. Elementary 
bundle arguments show that  B satisfies axioms h ,  e ,  w and 1. (Bundles 
with base points are needed in order to show that  

B(X V Y, G) FW B(X, G) x B( Y; G). 

We thus have a variation of the well known theorem concerning the clas- 
sification of principal bundles, namely: 

5.1 THEOREM. There i s  YG E Cl unique u p  to homotopy type, and  a n  
element cu c B(Y,; G) such that T(cw): [X, Y,] w B(X; G) for al l  X c  C. 

Note that  cw is the class of a universal bundle for G, and T(a )  is the 
usual transformation from homotopy classes of maps into the classifying 
space into equivalence classes of bundles. If {X, Y,} and B(X; G) denote, 
respectively, homotopy classes of maps without base points and equiva- 
lence classes of bundles without base points, 5.1 together with fairly 
simple arguments show that  T(cu) induces an isomorphism 

{X, YG} B(X; G) . 
2. Ordinary cohomology theory on CW-complexes. Suppose {H4, Sp} is 

a cohomology theory on dlsatisfying (4.1), (4.2), (4.3) and the following 
condition: If S is a topological space with the discrete topology, 

Let G = Ho(p), where p is a point, and let K(G) = {K(G, q}, h,} be the a-
spectrum obtained from Eilenberg-MacLane spaces K(G, q). Let Z(X, A) 
and 64 be as described in 9 4. 

5.2 THEOREM. There a re  natura l  equivalences Tq: [Z(X, A), K(G, q)] M 

H4(X,A) defined for a l l  (X, A) c dlsuch that SqTq = T~+'@. 
PROOF. {H4, S4} satisfies (4.6) because of (5.3) and the fact that  

Hq(X) w Hq(Xn)  for q < n  and X n ,  the n skeleton of X. Hence by Theo- 
rem 11, there is an a-spectrum {Y,, h,} such that  [Z( ), Y,] and Hqare 
equivalent. [Sn,  Y,] w Hq(Sn)w Hq-"(p) and hence Y, is an Eilenberg- 
MacLane space of type (G, q). 
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Appendix 

Most of the machinery developed in the previous sections can be dual- 
ized so as to deal with the functor [X, ], but unfortunately the dual of 
the proof of the dual of Theorem I breaks down in a t  least two places. 
First, it is difficult to recover x,(X) from [X, 1; and second, annihilating 
cohomology classes is more difficult than annihilating homotopy classes. 
Therefore the construction of X is more difficult. In this appendix, we 
briefly describe how the first part of 5 1may be dualized, and we state a 
theorem analogous to Theorem I with sufficiently stringent hypotheses so 
that  the obvious duals of the arguments given in 5 3  1 , 2  and 3 provide a 
proof for it. 

Suppose fi: Yi -- B, i = 0 , l .  Let P ( B )  be the  space of paths on B with 
the compact open topology, and let E,o,,lc Yo x P(B) x Ylbe the space 
defined as follows: 

Let K, be an Eilenberg-MacLane space of type (2,n). Let PIbe the 
category of all pathwise connected spaces with base point which have the 
same homotopy as a CW-complex and all continuous maps. Let Pobe the 
subcategory of 2,of all space with only a finite number of non-zero 
homotopy groups and for which n, operates trivially on n, for all n > 0. 
E,,,,,, K,, Poand PIplay the role of Z,, ,2 ,  S n ,C,and C,. 

Suppose z:Po--S is a covariant functor. 
Axiom h*. If f and g: X - Y are homotopic, n( f )  = n(g). 
Axiom e*. Let fi: Yi -B and let pi: E,,,,,- Yi, i = 0, 1 ,  be the pro- 

jections. If aiE n(Y,) and n( fo)ao = n( f,)a,, there is a P € x(Efo,,,) such 
that  x(po)P = a, and n(p,)P = a,. Furthermore, if B is a point, P is u- 
nique. If p is a point, x(p) contains only one element. 

Axiom c*. n(KI) = 0, and x(K,) is finitely generated for all n. 

THEOREM. If n satisfies h*, e* and c*, then there is an X c 2,unique 
up to homotopy type, and a natural equivalence T: [X, ] w n. 
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Theorem 5.2 is incorrect. A counter-example map can be found in [I]. 
The first sentence in the proof is false, but fortunately this does not affect 
any of the other theorems in the  paper. As Milnor has shown in [2], the 
theorem may be corrected by replacing (5.3) by a different additivity con- 
dition, i.e., if X is a disjoint union of a collection of spaces X, € J,,then 
the inclusion maps of X, into X induce an isomorphism, 

Using this notion of additivity, Theorem I may be simplified as follows: 
AXIOMa. If X = V X,, X,  E C, and i,: X, -X are the  inclusion maps, 

then 

Using the  techniques of [2] one may easily prove: 

LEMMA.If C= C,,and H satisfies axioms h, e and a ,  then H satisfies 
axioms w and 1. 
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